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Abstract

Next Generation Sequencing (NGS) has been crucial for the breakthrough ex-
perienced by cancer genomics during the last decade. In turn, the knowledge
gathered has fostered the development of targeted drugs and genomics-driven
cancer treatment. Some university hospitals have built the infrastructure and
invested in human resources for the implementation of NGS within preci-
sion medicine initiatives. However, the expertise required to integrate the
data with available knowledge spans several disciplines; the information
to decipher the clinical implications codified in the genome of a tumor is
scattered across many resources; and the complexity of the data demands of
computational support.

In the anticipation of a widespread use of clinical sequencing, this the-
sis describes an evidence-based workflow, the Molecular Tumor Board (MTB)
Report, aimed at paving the way for genomics-driven oncology. Deciding
whether or not a molecular alteration entails clinical action (i.e. if the variant
is actionable) involves a wide-range of expertise and the need to keep up
with the pace of new discoveries (e.g. clinical trials, conferences, preclinical
studies). The workflow presented here uses public resources to narrow so-
matic variants from a tumor’s genomic profile down to actionable variants.
Furthermore, actionable variants are classified into a six-level system based
on the evidence that supports the actionability. The variables considered are
cancer type in which the evidence exists and grade of predictive association
between a variant and a drug. The classified variants and the evidence that
supports their actionability are detailed in a concise report to support clinical
discussions. To increase the usability and availability of the workflow, it has
been implemented as a web-based application. The user can provide custom
data as well as explore a public dataset. Actionable variants can be visualized
in an interactive setting and downloaded in the aforementioned report format
or in a tabular data file.

The MTB Report workflow was tested over two different large public
datasets to evaluate its scope and strengths, The Cancer Genome Atlas (TCGA)
and Genomics Evidence Neoplasia Information Exchange (GENIE). The results
concerning variants currently used to guide treatment were in line with
published numbers of patients receiving genomics-driven therapies. The
results also suggested that these numbers could be increased to a large extent
if low-evidence (clinical and preclinical evidence) and predictive associations
that have not been established for the cancer type in the patient being tested



vi

(i.e. off-label) were considered.

A retrospective comparison study was performed for a subset of pa-
tients from the Molecularly Aided Stratification for Tumor Eradication Re-
search (MASTER) precision medicine program. The variants identified by
the MTB Report were compared to the variants suggested by the experts of
the MASTER program. The results showed high concordance between both
approaches, as the majority of expert suggestions were identified by the work-
flow. The workflow identified a plethora of other variants, that, though not
yet actionable, depicted a comprehensive landscape of the actionability of the
patient.

In all, this thesis work established a computational workflow aimed at
enabling a widespread use of NGS for guiding clinical decisions. We envision
that such efforts on standardizing genomic data interpretation and reporting
will become useful resources in the field of precision medicine.
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Chapter 1

Cancer Genomics

– a Breakthrough in Cancer Therapy –

Cancer is a heterogeneous disease characterized by an uncontrolled cell
growth and the ability to spread to distant body parts (i.e. metastasize).
Though cancer survival rates are higher now than in the past, the number of
new cases per year keeps increasing and cancer is among the leading causes
of death worldwide. For many decades, cancer treatment has relied almost
entirely on cytotoxic agents (i.e chemotherapy) and one-size-fits-all approach.
This type of treatment essentially ignores the underlying biology of the disease
by attacking all dividing cells and consequently provoking highly impairing
side effects. Despite this inability to target only cancer cells, cytotoxic agents
are largely used and prove effective for many patients. However, the ability
of tumor cells to overcome cytotoxicity and the difficulty in finding the right
dosage show the need for new treatment strategies more in accordance with
new molecular discoveries. Indeed, conventions for diagnosis and treatment
decisions are still based, to a large extent, on morphological aspects (anatomic
site, staging, histology) rather than molecular aspects (expressed proteins,
DNA mutations, gene signatures) (Levy et al., 2012).

Prior to the rise of Next Generation Sequencing (NGS) techniques, efforts
on identifying cancer-causing genes led to the development of first targeted
agents in the late 90s1. However, the availability of NGS allowed a better
understanding of the molecular mechanisms of cancer development, which,
in turn, has translated into a faster and significant development of targeted

(1) FDA approves trastuzumab (Herceptin) in 1998 for HER2 positive breast cancer and
imatinib (Gleevec) in 2001 for Philadelphia chromosome-positive (BCR-ABL fusion gene)
chronic myeloid leukemia

3
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agents. NGS has also the potential to characterize patient genomes at the
point of care to better profile the disease and guide treatment. As NGS gains
sensitivity, speed and throughput in detecting molecular alterations, the main
challenge is filtering and contextualizing the alterations that are relevant to
make clinical decisions (Good et al., 2014). These alterations are here referred
to as actionable.

Deciding whether or not a molecular alteration is actionable requires
expertise in several areas (oncology, molecular pathology, bioinformatics, ge-
netics). Hence, the best setting to incorporate genomic data into treatment
planning is the Molecular Tumor Board (MTB). MTBs are multidisciplinary
meetings in which complex cancer cases are discussed among a team of ex-
perts. However, expertise to interpret genomic findings requires keeping up
with the pace of new discoveries (e.g. preclinical studies, conferences, clinical
trials). For that, computational algorithms, data integration methods and in-
formatics infrastructures are crucial to provide rigorous clinical interpretation
of comprehensive genomic data (Garraway et al., 2013). Therefore, the aim of
this thesis is reducing the complexity and workload that represents including
genomic data in clinical decisions. To address this aim, a tool that reports
clinically relevant genomic findings (i.e. actionable variants) was developed.

1.1 High-throughput Genomic Measurement Techniques

First discoveries in cancer genomics where achieved with the use of cyto-
genetic and molecular biology techniques, such as chromosome banding,
Fluorescence in situ Hybridization (FISH) or Polymerase Chain Reaction (PCR).
In 2003, The Human Genome Project completed the first draft of the human
genome (International Human Genome Sequencing Consortium, 2004). Per-
formed entirely with Sanger-based sequencing technologies, it was a tipping
point in the genomics field, as it provided the community with a reference
genome. Having a reference genome is crucial to identify alternative variants
in a given sample: from single-base substitutions, to Small Insertions or Dele-
tions (indel), to Copy Number Variations (CNV) and to Structural variations (SV)
(rearrangements and inversions). As regards to single-base substitutions, a
single Base Pair (bp) position in which alternative alleles exist in more than 1%
of the population is known as Single Nucleotide Polymorphism (SNP); otherwise,
the term is Single Nucleotide Variant (SNV).

The reference genome was widely used for the design of probes for array-
based high-throughput methods. SNP arrays were initially designed to inter-
rogate allele frequencies of thousands of SNPs for genome-wide association
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studies, but have also been used to quantify copy number events. The allele-
specific intensity measures can be used to identify copy number imbalances
across the genome and have also the potential to detect copy-neutral loss-of-
heterozygosity (Cooper et al., 2008). Affymetrix SNP Array 6.0 is designed
to interrogate around 2 million probes, half of which are SNP and the other
half are copy number probes. In contrast, array comparative genomic hy-
bridization (array-CGH) measures the fluorescence intensity ratio between
two labeled samples hybridized to the array, that, in turn, is proportional
to the ratio of DNA copy numbers in the two samples. On the downside,
this method is only able to detect unbalanced chromosomal abnormalities
(i.e. those that affect copy number, such as reciprocal translocations and
inversions) (Shinawi and Cheung, 2008). A combination of both methods
(SNP-CGH) has also been used in cancer to detect both kinds of events (Peiffer
et al., 2006).

In 2008, a second generation of sequencing technologies –also known
as NGS, high-throughput or massively parallel sequencing– revolutionized
again the field: throughput and accuracy increased, and costs per base
decreased beyond any expectations (see curve of costs per base over time
in www.genome.gov/sequencingcostsdata). The applications of NGS have
from then onwards spread to a large number of research fields, creating the
terminology (-omics) for the study of particular molecular layers: genomics
(DNA), transcriptomics (RNA), proteomics, epigenomics (DNA-protein in-
teractions), and similar. In turn, the high-dimensional data generated with
high-throughput techniques (e.g. NGS or mass spectrometry), are commonly
referred to as omics.

1.1.1 DNA Sequencing Approaches

There are mainly two approaches for DNA Sequencing (DNA-Seq): Whole-
Genome Sequencing (WGS) and targeted sequencing. On the one hand, WGS
offers the most comprehensive characterization of a genome as it has the power
to detect alterations from single-base substitutions (SNV) to chromosomal
rearrangements (SV). Yet, the large amount of sequencing required to have a
standard coverage (that is, the average number of times (x) each bp is covered)
is very costly. For instance, a human genome has 3 thousand million bp, or
Giga Base Pairs (Gb); so 30x coverage requires the generation of 90 Gb per
sample. On the other hand, targeted sequencing is often preferred as a most
cost-effective approach. Whole-Exome Sequencing (WES) is a type of targeted
sequencing, in which protein-coding regions (i.e. exons, which account for 1%
of the genome) are captured during the library preparation. This technique

www.genome.gov/sequencingcostsdata
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generates higher coverage at the regions of interest compared to WGS, as
75x coverage of a human exome (30 million bases, or Mega Base Pairs (Mb))
requires the generation of around 3 Gb per sample2. Hence, it provides higher
throughput at lower cost and, in turn, requires less input DNA.

DNA-Seq consist of three main steps: library preparation, sequencing and
data analysis. The specific combination of platforms and protocols determines
the type and quality of data obtained. Library preparation protocols convert
the isolated DNA into standard libraries suitable for the sequencing machine.
DNA is cleaved into short fragments (final read length depends on the specific
technology, ranging from 50 to 700 bp) and the DNA fragments are ligated to
adapters (they will bind to primers attached to the surface in which sequenc-
ing will take place). Assessing quality and quantity of the DNA before and
after library preparation is recommended to identify degraded, fragmented,
and low-purity samples (Illumina, 2017). For many applications, DNA needs
to be amplified to have enough bulk input amount. Sequencing generally
consists of a cluster amplification step (PCR-based) that is required to gener-
ate enough signal to be detected by the measurement instruments. Next, the
actual measurement happens in parallel for all reads. Different methods are
used depending on the technology: sequencing-by-synthesis approach (Illu-
mina platforms), pyrosequencing (454 platforms), or sequencing by ligation
(SOLiD platforms). Despite the important advances in high-throughput and
costs, most protocols still require a non-negligible amount of input DNA and
an amplification step which introduces technical biases (e.g. PCR duplicates).
Also, the short read length poses a challenge for downstream computational
processing. All these limitations are overcome by third-generation sequencing
–Nanopore and PacBio– platforms; however, error rates of these technologies
are not yet acceptable for most applications. For a comprehensive review of
the different technologies, the reader is referred to Metzker (2010).

1.1.2 DNA Sequencing Data Analysis

For some organisms (mainly model organisms) we have good representative
assemblies of the species genome (i.e reference genome). In such cases, the
bioinformatic pipeline to analyze DNA-Seq data consists of i) quality check
of the raw reads; ii) map reads to reference genome; iii) mark (or remove)
duplicates arisen from PCR; and iv) actual detection of variants (i.e. variant
calling). The large amount of generated data and the short lengths of reads

(2) Exon capture efficiency rates are around 70%. For more information, visit: https:

//genohub.com/exome-sequencing-library-preparation/#inefficiency

https://genohub.com/exome-sequencing-library-preparation/#inefficiency
https://genohub.com/exome-sequencing-library-preparation/#inefficiency
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have forced the development of new bioinformatic algorithms, open source
software, pipelines and data formats for sequencing data analysis. The reader
is referred to Bao et al. (2014) for a review of software for WES and to the
Genome Analysis Toolkit (GATK) (McKenna et al., 2010) best practices for a
detailed recommendation of pipelines3.

The most challenging aspects are being able to reconstruct the genome
using short reads, detecting duplicates from the PCR step and differentiating
sequencing errors from actual nucleotide variations in the data in the variant
calling step (e.g. SNV and indel) (Bao et al., 2014). The latter is especially
important, as the majority of genomic studies focus on variant discovery.
In cancer genomics, variant discovery is aimed at identifying germline and
somatic variants. Germline variants are genomic alterations that are present in
germ cells and are therefore passed to all cells of the offspring (i.e. inherited).
In contrast, somatic variants are genetic alterations acquired during life and
are not transmitted to the offspring (e.g. variants present only in tumor cells).
Somatic variant calling is an application of particular interest for cancer
research, and ideally uses matched tumor and normal samples. The simplest
approach consists of separately calling variants in matched tumor and normal
samples and subtracting calls found in the normal (germline) from variants
found in the tumor (somatic+germline). This approach is used by VarScan2
(Koboldt et al., 2012). In contrast, other algorithms, such as MuTect (Cibulskis
et al., 2013) and Strelka (Saunders et al., 2012), simultaneously call variants
using information from both matched samples and do not assume diploidy
(Xu, 2018).

Though SNV calling is the most popular application, NGS has the power
to detect CNVs and other SVs overcoming many of the limitations of array-
based approaches (e.g. hybridization noise, limited coverage and resolution).
CNVs from sequencing data are detected using combined information from
allele frequencies, depth of coverage and read level information. In contrast
to array based methods, the specific breakpoints of CNVs can be inferred
from soft clipped reads (a read that spans over two separate regions of the
chromosome and therefore only one end of the read was mapped) (Tattini et al.,
2015). Currently, low-coverage WGS is recommended for CNVs detection as
it gives a genome-wide picture, offers a reliable and even sequence coverage
and is usually PCR-free (Sims et al., 2014). WES can also be used to detect
CNVs, but with certain limitations. Different efficiency of probe hybridization
yields an uneven coverage distribution that affects CNV calling. Besides, the

(3) https://software.broadinstitute.org/gatk/best-practices/

https://software.broadinstitute.org/gatk/best-practices/
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probability to find breakpoints within the exome is very low (Zhao et al.,
2013). The same applies to the detection of fusion genes, as both WGS or WES
can potentially detect chimeric transcripts (with the difference that WES is
restricted to coding regions whereas WGS can detect, for example, promoter-
gene fusions). Yet, the functional impact of the chimeric transcript can only
be asserted by gene expression data (for instance, RNA Sequencing (RNA-Seq)).
Therefore, a combination of shallow WGS and RNA-Seq rises as an optimal
solution for many applications (Mertens et al., 2015).

1.1.3 Public Data Repositories for Omics Data

The idea of sharing NGS data started with The Human Genome Project (In-
ternational Human Genome Sequencing Consortium, 2004). Without a draft
of the human reference genome, bioinformatics mapping algorithms would
need to be more complex (as it happens in de novo sequencing for non-model
organisms). Other projects followed, such as HapMap (International HapMap
Consortium, 2003), ENCODE (The ENCODE Project Consortium, 2007) and
1000 Genomes (The 1000 Genomes Project Consortium, 2010). In the field
of cancer genomics, The Cancer Genome Atlas (TCGA) project is one of the
largest, most well-known effort of multi-omics cancer data generation. It
consists of matched tumor-normal samples from over 11,000 patients across
33 cancer types, covering 7 data types measured with 15 different techniques.
The International Cancer Genome Consortium (ICGC) currently coordinates
55 cancer research projects (including TCGA) that generate omics data of
cancer patients. The last of such sequencing efforts is the American Association
for Cancer Research (AACR)’s project Genomics Evidence Neoplasia Information
Exchange (GENIE), which focuses on advanced cancer patients and has the
aim of standardizing the aggregation, registering and sharing of NGS and
clinical data.

Data generated by two of these projects (TCGA and GENIE) are analyzed
within the scope of this thesis. Such resources of omics measurements linked
to clinical data are crucial for a successful identification of molecular traits
linked to the disease (i.e. biomarkers). Moreover, multi-center studies allow
gathering of high sample sizes that would otherwise be impossible and are
necessary to establish any kind of statistical inference. Thus, the growing
availability of high-throughput technologies and international efforts to gen-
erate, gather, analyze and share cancer omics data have fostered the perfect
setting for promoting cancer genomic research.
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1.2 Cancer is an Acquired Genetic Disease

Cancer is the manifestation of sequential alterations accumulated in the
genome and epigenome of cells during lifetime. Some of these alterations
can have an inherited origin (i.e. germline) and cause susceptibility to de-
velop cancer, such as BRCA1/2 mutations in breast and ovarian cancer (Miki
et al., 1994; Wooster et al., 1994; Foulkes, 2014). However, the majority of
mutations are acquired (i.e. somatic) and therefore only present in a subset
of cells in the organism. Cells with cancer-driving alterations gain growth
advantages in contrast to normal cells by the deregulation of pathways from
three crucial molecular processes: cell survival, genome maintenance and cell
fate (Vogelstein et al., 2013). These advantages have been classified into 10
core biological capabilities of tumor cells, which are known as the hallmarks
of cancer (Hanahan and Weinberg, 2000, 2011).

Pan-cancer genomic studies have shown that, as opposed to the traditional
taxonomy of cancer merely based on the site/tissue of origin, there are cross-
tissue patterns at a molecular level. For example, basal breast cancer and
endometrial serous-like carcinoma share ATM mutations, BRCA1 and BRCA2
inactivation, RB1 loss and CCNE1 amplification (The Cancer Genome Atlas
Network, 2012). Squamous malignancies also present common molecular
patterns (Yan et al., 2010). These observations have led to suggest that cell-
of-origin might be the main factor underlying molecular patterns in cancer
(Hoadley et al., 2014, 2018).

It has been observed that mutation load and mutational signatures corre-
late with cancer type (e.g. childhood malignancies and leukemia have few
mutation events, whereas lung cancer or melanomas high mutation load
due to external mutagens). However, cancer type only explains about half
of the genomic variability between tumor samples (Lawrence et al., 2013).
Underlying biology and driver mechanisms differ from patient to patient,
even within the same cancer type. As a matter of fact, though some genes
are highly tumor type specific (e.g. APC and KRAS in colorectal cancer, VHL
in kidney malignancies), mutations in these genes are also observed in other
cancer types at lower frequencies (Kandoth et al., 2013). Hence, no gene is
always mutated nor exclusively altered in just one tumor type. This genomic
heterogeneity is also observed within the same patient: between metastases,
within a metastasis and within one tumor. Indeed, heterogeneity is as crucial
to cancer development as genetic diversity is to evolution.
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1.2.1 Mutational Processes drive Tumor Progression

Large-scale pan-cancer sequencing of human tumors has made it possible
to understand the extent to which specific alterations contribute to cancer
development. As it has been said, cancer is the consequence of sequentially
acquired alterations. Thus, a cell –or a group of cells– evolves from benign to
malign with the acquisition of alterations, each of which confers a selective
growth advantage (i.e. increased fitness in terms of population genetics) over
surrounding cells. However, this is an iterative process: a cell with a selective
growth advantage is selected, followed by an expansion of this clone. In turn,
the progeny of this clone will acquire new alterations (genetic diversification)
and a new clone will be selected, and so on (Greaves and Maley, 2012). The
combination of genetic heterogeneity, selective pressure from the environment
and competition with surrounding cells with other genomic landscapes (sub-
clones) gives rise to simultaneous linear and branching evolution processes.
As a consequence, and again using concepts from population genetics, some
genomic alterations are shared by all tumor cells (clonal alterations) whereas
others are only present in subclones. Furthermore, as this is a dynamic pro-
cess, the genomic architecture might change with time and/or with other
selective pressures, such as treatment, giving rise to resistances (Yates and
Campbell, 2012).

There is a difference between those genomic alterations generated during
the genetic diversification step (but without any effect on growth) and those
that are actually selected. Or, in other words, passenger (no effect on cell’s
fitness) and driver (direct or indirect positive effect on cell’s fitness) events. As
a matter of fact, solid tumors have between tens and hundreds of mutations
that affect the protein primary structure, yet only from 2 to 10 mutation are
within driver genes (Tamborero et al., 2013; Kandoth et al., 2013). A proper
identification of driver events (and genes) has only been possible with the
advent of NGS and international initiatives like TCGA, which have provided
enough sample size and resolution to identify frequent alterations within and
across tumor types. However, Chang et al. (2018a) observed that driver genes
present different rates of mutation discovery when increasing sample size,
and showed that just a few have reached saturation. Recent studies set the
number of cancer driver genes around 800 (Tamborero et al., 2018a). As more
and more cancer-causing genes are identified it becomes clear that the catalog
of driver mutations is not yet complete.

Genomic alterations can affect the protein products by either enhancing or
diminishing their function. The former are known as Gain-of-Function (GoF)
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alterations; the latter, as Loss-of-Function (LoF). Following this line of thought,
a gene that, when affected by a GoF alteration, increases the cell’s fitness, is
known as oncogene; likewise, a gene that, when affected by a LoF alteration,
increases the cell’s fitness, is known as tumor-suppressor gene. Biologically,
genes that favor proliferation, growth, survival and migration are potential
oncogenes. On the contrary, tumor-suppressor genes are responsible for
ensuring genome stability, acting as cell growth checkpoints and promoting
apoptosis.

In general terms, the aim of new therapeutic strategies is to design drugs
that i) inhibit oncogenes or ii) restore or compensate the function of tumor-
suppressor genes. Whereas the former is achievable with small molecules or
Monoclonal Antibodies (mAb) that block their enzymatic function or avoid lig-
and binding, the latter would require an introduction of a functional protein.
For more details, see §1.3.

1.2.2 Effects of Genomic Variants on Protein Function

Back in the 60s, Phildelphia chromosome was the first recurrent chromosomal
abnormality discovered by cytogenetic analyses in Chronic Myeloid Leukemia
(CML). Yet, the mechanism through which this chromosomal rearrangement
contributed to cancer development was not known. The establishment of
FISH allowed the characterization of fusion oncogones BCR-ABL in CML
(Shtivelman et al., 1985) and MYC fusions in Burkitt lymphoma (Leder et al.,
1983). Subsequent improvements in molecular techniques –first and second
generation sequencing platforms – allowed the discovery of a large variety of
genomic events causing GoF and LoF of oncogenes and tumor-suppressor genes,
respectively. Table 1.1 summarizes the main genomic events that occur in
cancer cells.

SNVs and indels located within gene-coding or promoter regions can
change the protein function by modifying the coded aminoacid (missense,
frameshift) or by truncating the protein (nonsense), among others. However,
predicting the functional impact and thus the effect of the mutation (namely
GoF or LoF) is a difficult task, as illustrated by the controversy of both tumor-
suppressor and oncogenic mutations in TP53 (Deppert, 2007). As far as CNVs
are concerned, the main challenge is the correct identification of the target
gene (i.e. gene that, when deleted or amplified, is responsible for the selective
growth advantage). This is especially difficult for broad CNVs, which are large
in size (may affect hundreds of genes) and shallow in amplitude. As for focal
CNVs, the effect on target genes might be more visible, since they are small in
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Table 1.1: Types of genomic alterations. Table adapted from Good et al. (2014).

Event type Description Types Example

Single nucleotide variants
(SNV)

Single-base substitutions Missense, non-
sense, nonstop,
silent

BRAF
c.1799T>A
(V600E)

Small insertions or dele-
tions (indel)

Small numbers of nucleotides
deleted or inserted

Frameshift,
inframe

PTEN c.800delA
(K267fs*9)

Structural variations (SV) Large-scale genomic rearrange-
ments (can yield fusion genes if
breakpoints fall close to or within
gene coding regions)

Translocation,
inversion, and
CNV

FLT3 tandem du-
plication; BCR-
ABL fusion

Copy number variations
(CNV)

Broad (large-scale) or focal (1Kb-
3Mb) gains or losses of DNA. They
are types of SV.

Amplification,
deletion

ERBB2 amplifi-
cation

size but deep in amplitude (peak amplifications of oncogenes, homozygous
deletions of tumor-suppressor genes). Most cancer cells present both SNVs
and CNVs, but, interestingly, Ciriello et al. (2013) observed a pattern of
mutual exclusivity between high numbers of SNVs and CNVs, which they
called the cancer genome hyperbola. In other words, it means that some tumors
are characterized by many SNVs, others by many CNVs, but never by both.
Finally, with regard to SV, when breakpoints of a translocation, inversion or
CNV fall within gene-coding regions, portions of these two genes can fuse
and create a fusion (chimeric) gene. Most common products are oncogenes by
means of i) transcriptional deregulation (the promoter of one gene affects the
expression of the other, as in TRA-MYC) or ii) hybrid proteins with abnormal
enzymatic activity (enhanced tyrosine kinase activity in BCR-ABL and PML-
RARA). Nonetheless, gene truncations can create tumor-suppressor fusion
genes (e.g. CDKN2A-NF1 prevents normal activity of CDKN2A) (Mertens
et al., 2015).

1.3 Targeted Therapies

Understanding the commonalities among tumor genomes has allowed a ra-
tional development of drugs. The so-called targeted drugs target the aberrant
protein products of driver genes, which are not only necessary for tumor evo-
lution, but also for its survival. Thanks to phenomena like oncogene addiction
or synthetic lethality (see Targeting strategy), targeted drugs can selectively kill
tumor cells while leaving normal cells intact and, thus, maximizing clinical
responses and minimizing side effects. This rationale was already used in
the development of the first tyrosine kinase inhibitors (imatinib) and mAb
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(trastuzumab). However, cancer genomics has increased the pace of clinical
translation over the last years (Chin et al., 2011). Several aspects of targeted
therapies are important for understanding their mechanisms of action:

• Targeting strategy. The easiest and most common approach is directly
blocking an oncogene to which tumor cells are addicted (e.g. EGFR,
MET inhibitors). Yet, some oncogenes are difficult to target and indirect
targeting of downstream effectors is the only possibility to efficiently
block their oncogenic function (e.g. MEK, AKT inhibitors). Targeting
tumor-suppressor genes is even more complex since they are usually
not expressed due to mutations, deletions or silencing. Restoring their
function is theoretically possible through gene therapy (introducing
a functional copy of the gene), but most attempts have failed so far
due to the low or uncontrolled expression of transfered genes (Guo
et al., 2014). A more effective approach consists of restoring a tumor-
suppressor activity by targeting its negative regulators (e.g. inhibition
of MDM2, a degrader of p53). Synthetic lethal interactions can also be
exploited for drug design. Synthetic lethality is the condition in which
inhibition of two independent molecules has little effect on a cell, but
a simultaneous inhibition yields cell death (Lord et al., 2015). PARP
inhibitors exploit this phenomenon: the loss of BRCA1/2 activity makes
tumor cells dependent on PARP function to repair double strand DNA
breaks. Thus, inhibiting PARP dooms BRCA1/2 deficient cells to cell
death because they are not able to repair DNA breaks 4 (Farmer et al.,
2005; Fong et al., 2010; Ledermann et al., 2014; Lord and Ashworth,
2017) .

• Type of molecule. Targeted drugs are divided into two main groups
according to their molecular nature: i) small molecules, that due to
their small molecular weight (<900 Da) can easily permeate the cell
membrane and block intracellular signaling (e.g. kinase and proteasome
inhibitors); and ii) biological substances, prepared or derived from
living organisms, including vaccines, hormones, cytokines, gene therapy,
growth factors, viruses and mAb. Kinase inhibitors and mAbs account
for most targeted drugs (Table A.1).

(4) PARP inhibitor olaparib was approved by FDA in 2014 for germline BRCA-mutated
ovarian tumors, expanded later to breast tumors (U.S. Food and Drug Administration,
2014, 2018).
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• Target pathway/process/function. Cancer is caused by the deregula-
tion of molecular processes that provide tumor cells with the hallmarks
of cancer. Targeted drugs aim at restoring the original function of the
deregulated pathways by targeting specific proteins. Table A.1 shows
targeted drugs grouped by the pathways they target.

• Target gene(s). A targeted drug is characterized by blocking specific
proteins essential for tumor cells. Some drugs selectively target one
protein (e.g. most mAb), but more commonly, they target a group of
proteins of the same family (e.g. ponatinib inhibits ABL, FLT3 and
FGFR1/2/3; afatinib inhibits EGFR and HER2; pan-PI3K inhibitor co-
panlisib, inhibits predominantly alpha and delta isoforms). Information
retrieved from http://dgidb.org/.

• Target mutation. Targeted drugs have mutation specificity. Different
genomic alterations in the same gene can trigger diverse phenotypes and,
in turn, pharmacological responses. For example, imatinib successfully
inhibits ABL, PDGFB and PDGFRA fusion genes, as well as mutated KIT.
However, imatinib fails to generate response against ABL mutations and
D816 mutation in KIT (Heinrich et al., 2003; Jabbour et al., 2006). In a
similar fashion, EGFR inhibitors erlotinib and gefitinib accomplish high
response rates in lung tumors with mutations in exons 19 and 21 (Lynch
et al., 2004; Pao et al., 2004), but fail against T790M resistance mutation
in exon 20 or when EFGR is amplified or overexpressed (Pao et al., 2005;
Sone et al., 2015). Therefore, considering down to mutation resolution
is crucial for drug prescription as well as for drug prioritization and
repurposing.

• Cancer type. Genomic alterations conferring sensitivity to a targeted
drug are context specific. For instance, while inhibition with vemu-
rafenib is very efficient in BRAF V600E mutant melanoma (Chapman
et al., 2011), colorectal patients with the same mutation show little
response to vemurafenib (Kopetz et al., 2010). In this context, the tu-
mor microenvironment bypasses the drug effect by increasing EGF, and,
instead, a combination of BRAF plus EGFR inhibitor is recommended
(Prahallad et al., 2012).

1.3.1 Predictive Biomarkers and Companion Diagnostics

A biomarker is a measurable indicator that is associated with some clinical
feature (e.g. Progression-free Survival (PFS), Overall Survival (OS), diagno-
sis, treatment response, etc.). Any genomic alteration can be a biomarker

http://dgidb.org/
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(SNV, CNV, fusions, etc.), but also RNA, proteins or metabolites. Common
classifications divide biomarkers into prognostic, diagnostic and predictive
biomarkers. Prognostic biomarkers provide information on clinical outcome
(e.g. future onset of a disease, chance of survival). Diagnostic biomarkers
inform about presence of a disease or disease subtype. Finally, a biomarker
that dichotomizes the clinical outcome upon treatment is known as predictive
biomarker. In other words, a predictive biomarker stratifies patients into
responders and non-responders (Figure 1.1).

In the context of targeted drugs, the biological rationale supports the idea
that a tumor should be sensitive to a drug the target of which is mutated in
the tumor. For instance, erlotinib was first approved for pretreated unselected
Non-Small Cell Lung Cancer (NSCLC) patients after showing improved PFS
and OS compared to standard therapy. Studies showed that EGFR mutations
were common among responsive patients, and later phase III trials showed
that patient selection based on EGFR mutations could better stratify patients
benefiting from EGFR inhibitors: patients with EGFR mutations showed
longer PFS with EGFR-inhibitors, whereas patients with wild-type EGFR
showed longer PFS with chemotherapy (Kobayashi and Hagiwara, 2013).
Since 2013, medical guidelines recommend testing for EGFR mutations for
first-line treatment of advanced NSCLC5 (Lindeman et al., 2013).

This logical approach of checking the mutational status of drug targets
works in some cases, such as erlotinib, but it does not necessarily have to. For
instance, cetuximab or panitumumab are anti-EGFR mAb whose prescriptions
are not bound to EGFR status –their target– but to KRAS status –mutations
in which predict drug resistance (Lièvre et al., 2006). The same is true for
drugs that indirectly target an oncogene or tumor-suppressor gene: BRCA1/2
mutations or copy-number loss predict response to PARP inhibitors. Therefore,
to differentiate between a drug target and alterations that make cells sensitive
(or resistant) to a certain targeted agent, the latter are referred to as predictive
biomarkers.

A list of predictive biomarkers included as part of a drug label by Food and
Drug Administration (FDA) can be found in Table A.2. Both FDA and European
Medicines Agency (EMA) use the terminology companion diagnostic to specify
that a biomarker test is required for a drug’s prescription, and, as such, it is

(5) in 2013 FDA included EGFR status in erlotinib’s and afatinib’s indications; in 2015,
gefitinib’s (Cancer Network, 2013; U.S. Food and Drug Administration, 2013; Kazandjian
et al., 2016)
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Figure 1.1: Concept of predictive biomarkers depicted in Kaplan-Meier survival curves.
a) Probability of survival of patients randomized to treatment A (e.g. targeted drug) and
treatment B (e.g. chemotherapy) shows no substantial benefit of one treatment over the other.
However, a subset analysis shows that b) biomarker-positive patients are more likely to respond
to therapy A, whereas c) biomarker negative patients are more likely to survive under therapy
B.

considered a medical device with all its regulatory implications. However, for
a biomarker to be included in the drug indication, a randomized clinical trial
has to show that a drug performs better than the standard treatment in the
biomarker-positive arm, but not in the biomarker negative arm (or the other
way around for biomarkers predicting resistance). Yet, achieving the required
sample size appears to be very challenging for some tumor entities due to
the fact that most genes are altered at low frequencies across cancer types
(Kandoth et al., 2013; Lawrence et al., 2014). To address this issue, tumor
agnostic strategies enriching for patients with the biomarker are commonly
used as a proof-of-concept in early phase trials, which, in the best case, will
lead to cancer type specific clinical studies.



Chapter 2

Genomics-driven Oncology

– Sequencing Data and its Interpretation Challenges –

Cancer research is currently inconceivable without genomics. This tech-
nology has provided a comprehensive picture of the molecular mechanisms of
cancer and has largely guided the development of new therapeutic strategies.
Furthermore, the instruments that make genomic studies possible (i.e. high-
throughput sequencing technologies) are being developed at an incredibly
fast pace, exceeding all expectations. Today, sequencing a human genome
costs around a thousand dollars and takes a few hours; it is possible to se-
quence tumors, circulating tumor cells and even sequence at a single-cell
level. Therefore, these technologies are of high interest not only for research
but also for advanced clinical diagnostics.

Testing thousands of molecular biomarkers at the same time allows an eas-
ier and more elaborate diagnosis of complex and heterogeneous diseases such
as cancer. It opens the possibility to stratify patients into different subtypes
and thus choose an optimal “personalized” treatment option for each patient.
This concept opposes to "one-size-fits-all" medicine and is embraced by all
the terms ambiguously used by scientific literature and press: personalized,
precision, stratified, biomarker-driven, genomics-driven medicine. These terms
stress different aspects of the same idea: tailoring clinical management (e.g.
prevention, diagnosis and treatment) to the molecular characteristics of the
disease.

Over the last years, we can find growing number of examples in which
high-dimensional molecular data –omics data– have been used to redefine
disease classifications. For instance, gene signatures are measurements of a
combination of genes that have been extensively used as biomarkers. PAM50

17
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is one of the most widely known gene expression signature, which defines
five breast cancer molecular subtypes that are not only largely concordant
with Immunohistochemistry (IHC) subtypes but have added prognostic and
predictive information (Parker et al., 2009). Similar approaches have been
used to define molecular subtypes in colorectal (Guinney et al., 2015), gastric
(Lei et al., 2013) and pancreatic cancer (Bailey et al., 2016), just to mention
some examples. As illustrated by these studies, molecular subtypes can be
defined by a group of biomarkers – signature – but also by single biomarkers.
For instance, NSCLC subtypes are defined by the genomic status of individual
genes: EGFR, KRAS, ALK, MET, BRAF, HER2, ROS1 – of which EGFR, ALK,
BRAF and ROS1 subtypes have already a companion diagnostic (see Table A.2)
(Vargas and Harris, 2016). Also, we can talk about pan-cancer subtypes, such
as those with NTRK fusions which account only for 0.5% of all solid and
hematologic tumors but have shown durable responses to NTRK inhibitors
(Vaishnavi et al., 2015; Drilon et al., 2018). These new subtypes are known as
molecular subtypes (in contrast to classical histological or clinical subtypes).

Omics technologies have revolutionized the field of cancer research by
capturing information of all molecular layers of cells which play an important
role in the disease, namely the transcriptome, the epigenome, the genome, and
so on. Interestingly, the main translational and clinical achievements in preci-
sion oncology have been in the field of genomics. Whereas transcriptomics
has been widely used for stratification purposes, the approval of genomic
companion diagnostics for targeted drugs has been a major shift in cancer
treatment.

To deal with the increasing complexity of cancer diagnosis and treatment,
many clinical institutions have established so-called tumor boards. These
disease-oriented multidisciplinary teams address the clinical management
of patients by integrating findings from various medical specialties. New
disciplines like genomics are slowly being introduced in such teams due
to the need to perform genome-wide biomarker tests; these teams are often
called MTB. MTBs have the potential to perform genomics-driven (genetically
informed) medicine, but face common obstacles as genomic data is complex
to interpret, there are multiple platforms, tools and workflows to chose from,
and there is limited drug access. No major attempts to establish quality
requirements, guidelines or tools have been done to date (Velden et al., 2017).
Besides, decision making in clinical practice requires stronger evidence than
a mechanistic explanation; any genomics-driven treatment has to be better
than placebo and that one-size-fits-all approach.
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The remaining part of this chapter will describe the different aspects
of the implementation of genomics-driven oncology. Namely, practical and
technical challenges of NGS clinical applications (§2.1) and the conceptual
and practical difficulties for the identification of actionable alterations (§2.2).

2.1 Next Generation Sequencing in Clinical Applications

Growing numbers of biomarkers are being discovered and slowly translated
into companion diagnostics. However, traditional detection methods are
limited to one or few genomic alterations (e.g. ALK fusion using FISH; exon
19 mutations in EGFR using PCR). NGS opens the door to a cost-effective
way to increase the number of genes and alterations tested in one single
experiment.

Obtaining and processing patient samples entails important limitations
with regard to the quality and quantity of tumor material. Clinical biospeci-
mens are usually fixed as Formalin-Fixed Paraffin-Embedded (FFPE) material
and stored in biobanks for a long time, which deteriorates the quality of the
DNA. Also, most of the resected sample is used for initial diagnosis, reducing
the quantity of available biomaterial for NGS. Furthermore, the resected tu-
mor often contains stromal cells and other non-tumor tissue. This yields low
tumor content (also known as purity of the sample) which affects subsequent
variant calling as the allele frequencies are modified. Other intrinsic aspects
of tumors, such as clonality and ploidy, render the process of variant calling
more challenging. Alioto et al. (2015) showed that low tumor content limits
the maximum number of called mutations and that 100x coverage of both
matched normal and tumor samples is necessary to accurately detect clonal
and subclonal mutations.

Many clinical institutions have overcome most of these challenges and
tumor samples are routinely subjected to NGS in many hospitals. There are
three types of NGS technologies for clinical applications: targeted gene panels,
WES and WGS. Targeted panels can focus only on frequently mutated hotspot
positions1 or sequence entire coding regions of a selected panel of genes2.
Panels are an affordable and customizable approach that require little input
DNA, can detect a combination of genomic events (SNVs, CNVs, rearrange-

(1) TrueSeq Amplicon Cancer Panel from Illumina Inc. covers 212 hotspots; Ion AmpliSeq Cancer
Hotspot panel v2 from ThermoFisher covers 1974 hotspots.

(2) FoundationOne and FoundationOne Heme from Foundation Medicine cover SNVs, CNVs
and fusions in over 300 genes; Oncoplex from University of Washington covers SNVs,
CNVs and fusions in 234 genes.
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ments) and can reach high coverage (to overcome low purity, for example). As
a matter of fact, all contributing centers to the GENIE project have decided for
panel sequencing, which allowed to collect the largest number of patients to
date in this kind of study (The AACR Project GENIE Consortium, 2017). On
the downside, panels are restricted to genes known to be implicated in cancer
and, therefore, leave no room for new discoveries. In contrast, WES allows
the identification of new or rare mutations, which is the reason why large
clinical research institutions have decided for this approach (Van Allen et al.,
2014; Beltran et al., 2015). Finally, WGS allows a genome-wide interrogation
of SNVs, indels, SVs and CNVs. However, increased costs and complexity to
interpret the findings make WGS less suitable for clinical applications. All in
all, the choice has to be a balance between cost and the desired depth/breadth
of sequencing.

As for any other drug or medical device, clinical trials must be carried out
to test: i) whether NGS is a feasible approach according to clinical standards
(turnaround time, clinical validity), and ii) if NGS is of any benefit for cancer
patients (clinical utility). Many world-wide institutions are already trying to
answer these questions. For example, NCI-MPACT and MATCH (Lih et al.,
2016, 2017), MOSCATO (Massard et al., 2017) or SHIVA (Le Tourneau et al.,
2015a) trials have established bioinformatic infrastructures for NGS and used
treatment algorithms to stratify the patients into predefined arms (or create
new arms when necessary). Other institutions, such as MD Anderson Cancer
Center (Tsimberidou et al., 2012), New York Presbyterian Hospital–Weill
Cornell Medical College (Beltran et al., 2015), Memorial Sloan Kettering
Cancer Center (Zehir et al., 2017) and Heidelberg National Center for Tumor
Diseases (NCT) (Horak et al., 2017), opted for observational studies. These
studies also consist of standardizing techniques and workflows, however,
the treatment decision does not take place within the clinical trial; the MTB
decides, based on the NGS data generated within the study, whether to enroll
the patient into an interventional clinical trial with matched targeted therapy,
or to undergo some other treatment strategy. On the one hand, observational
studies are more flexible and they leave room for discussion of rare events and
Variants of Unknown Significance (VUS). On the other hand, no conclusions can
be drawn about NGS as a treatment strategy over conventional (non-genomic)
strategies.

Overall, these studies have set the infrastructure and standards for se-
quencing clinical specimens (both FFPE and fresh frozen tissue) with turn-
around times from written consent to report generation below 6 weeks,
thus demonstrating the feasibility of implementing NGS in clinical routine
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(Van Allen et al., 2014; Rennert et al., 2016; Horak et al., 2017). The num-
ber of patients with reported actionable variants varies from 40-80% across
studies (this variation depends on the definition of actionable, as will be
discussed in next section). However, actual numbers of patients treated with
genomics-driven therapies were substantially lower (5-35%), in general due
to complications such as access to drugs under development, access to clinical
trials and clinical deterioration of patients (André et al., 2014; Beltran et al.,
2015; Roychowdhury et al., 2011; Sohal et al., 2016; Horak et al., 2017). The
implications on patient outcome are yet a controversial aspect. Whereas some
trials and meta-analysis have been able to observe improved outcomes using
genomics-driven strategies to assign treatment (Schwaederle et al., 2015b;
Wheler et al., 2016; Massard et al., 2017), others have failed to show the
clinical utility of such an approach (Le Tourneau et al., 2015a; Tannock and
Hickman, 2016; Marquart et al., 2018).

2.2 The Challenge of Identifying Actionable Variants

As more and more clinical institutions are technically ready for daily use of
NGS, the challenge lies in identifying patient-specific genomic alterations
that are relevant for guiding treatment. In the best case scenario, the treat-
ing clinician will identify a well-known mutation among all called genomic
alterations. However, most mutations are infrequent at a cohort scale and
their implications are yet to be discovered. Thus, the variants called in the
bioinformatic analysis will be to a large extent VUS.

To date, cancer genomics studies have focused mainly on the identification
of driver and biologically relevant events. In a clinical context, though, the
focus of cancer genomics shifts from cancer-causing variants towards variants
that influence drug response, course and severity of the disease. A genomic
variant that informs about treatment action is usually referred to as actionable.
This definition can be restricted to biomarkers for approved drugs following
the indications of cancer type. Yet, it can be broadened to cancer types not
included in the drug indication (off-label use), or to variants being studied in
clinical trials. In this work actionable is used in this broad definition. Similarly,
targetable usually refers to a variant in a gene which is the target of a drug.
Again, this definition can refer only to direct targets (to which the drug binds),
or include also indirect targets of a drug. The term druggable is also used in
the literature in a similar fashion. The terminology targetable is reserved for
drug targets, which do not necessarily need to inform about drug response –
in contrast to a predictive biomarker, which can or cannot be a drug target,
but by definition informs about drug response.
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Actionability is more and more understood as a dynamic concept defined
by several variables: gene, variant, drug and cancer type. To keep the most
inclusive definition but differentiate among strength of evidence, tiers, classes
or levels are commonly used. Wagle et al. (2012) introduced a 3-tier system to
differentiate actionable variants from prognostic and from VUS. Since then,
such systems have been adopted by genomics-driven medical community
as a simple and clinically relevant classification approach (Sukhai et al.,
2016; Van Allen et al., 2014; Dienstmann et al., 2015a; Griffith et al., 2017;
Chakravarty et al., 2017; Meric-Bernstam et al., 2015b; Tamborero et al.,
2018a; Hintzsche et al., 2018; Horak et al., 2017; Beltran et al., 2015).

Determining the actionability of a variant can be very complex, for tar-
geted therapies have complex mechanisms of action (discussed in §1.3). For
instance, the expected relation between GoF mutations in oncogenes and LoF
mutations in tumor suppressors is not always fulfilled: in FGFR2, N549K is
a GoF missense mutation which in endometrial cancer predicts response to
FGFR inhibitors (Nakanishi et al., 2014), whereas R251Q in the same gene is
a LoF missense mutation and does not predict FGFR inhibitors response in
melanoma (Gartside et al., 2009). The ability of a drug to bind to its target can
be an important factor to predict the effect of a variant: first-generation ALK
inhibitor crizotinib is effective against ALK rearrangements but not against
acquired resistance mutations (L1196M, C1156Y) or ALK amplification. Yet,
new generation inhibitors –ceritinib, alectinib, lorlatinib, brigatininb– bind
more strongly to the target and are effective also against the latter (Sullivan
and Planchard, 2016). So, when one has to interpret a VUS or a known vari-
ant in a new context, several questions arise: is this mutation a LoF or GoF?
Does it confer sensitivity to any targeted drug? Is there some evidence in
any other cancer type? If so, can this evidence be projected to a new cancer
type? In the case of multiple actionable alterations, how should they be prior-
itized? If there are no alterations in actionable genes, can indirect targeting
be considered?

2.2.1 Overview of Data and Knowledge Resources

There are many databases, integrative efforts and curated resources that can
assist in determining the actionability of a variant. However, sometimes lit-
tle overlap is found among databases which in principle have the same aim
(Ahmed et al., 2011; Griffith et al., 2017). Also, information is irregular and
spread across many resources. For instance, some databases focus on drug
targets (also known as drug-gene interactions), while others focus on biomark-
ers (variants associated to clinical outcome). Yet, biomarkers are in many
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cases also drug targets. Curated medical guidelines include recommendations
for genomic tests, information on drug targets and biomarkers. Finally, lists
of biologically relevant cancer genes are often used to provide mechanistic
explanations and justify the use of a drug. Table 2.1 summarizes the main
resources grouped according to the data type they focus on.

The physician responsible for deciding on a treatment with the support of
genomics data faces an overwhelming range of resources to query and decide
on (Table 2.1). For that, the genomics medicine community has claimed
the need for a comprehensive knowledge database as well as computational
algorithms for matching patient’s variants to drugs. Last but not least, the
information needs to be reported to the treating clinician following standards,
providing a minimal set of information, linking statements to evidence source
and prioritizing results. Yet, the report has to be a compromise between
comprehensiveness and the right level of compression (Johnson et al., 2015;
Welch and Kawamoto, 2013; Good et al., 2014; Garraway et al., 2013).
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2.3 Aims and Organization of the Thesis

Interpretation of genomic data is a cumbersome task for a clinician. In order
to fulfill the needs of the medical community, genomics expertise in MTBs
is inevitably required. Computational algorithms and visualization tools are
crucial to support analysis and interpretation of genomic data. The overall
goal of this thesis is to pave the way for the use of genomic technologies in
clinical decisions. More precisely, this is a four-fold aim:

Propose a workflow for genomics-driven clinical decisions — Fulfill the in-
terpretation and reporting gap of genomics-driven oncology: assemble
existing public knowledge into a workflow that filters genomic variants
of a patient and reports the actionable variants. The main concept is
depicted in Figure 2.1.

Implement the workflow for a broad audience — Implement the workflow
as a web tool with the R Shiny framework to contribute to the standard-
ization of reporting genomic findings. The i(nteractive)MTB-Report app
is available as a web page at http://www.ams.med.uni-goettingen.
de:3838/iMTB-Report/app/ and distributed in GitHub (https://github.
com/jperera-bel/iMTB-Report).

Evaluate the scope of the workflow on large public datasets. — Assess the
feasibility and scope of the workflow by applying it onto two datasets:
TCGA and the AACR‘s project GENIE.

Provide a proof-of-concept of the workflow — Demonstrate the workflow’s
strengths in terms of clinical utility by analyzing patients sequenced
within the NCT Molecularly Aided Stratification for Tumor Eradication
Research (MASTER) program.

This thesis is organized as follows: Materials and Methods part is divided
into two chapters. Chapter 3 describes specific concepts for knowledge orga-
nization of clinically actionable variants and the selection of databases used
in this thesis. Chapter 4 details the datasets analyzed within this thesis and
the tools used. The following part, Results, starts with the description of the
workflow that was developed, the MTB Report workflow, and its implemen-
tation as an R Shiny application in Chapter 5. Next, the results of applying
our workflow to large public genomic datasets are presented in Chapter 6.
Chapter 7 consists of a retrospective analysis to provide a proof-of-concept of
the clinical utility of the workflow.

http://www.ams.med.uni-goettingen.de:3838/iMTB-Report/app/
http://www.ams.med.uni-goettingen.de:3838/iMTB-Report/app/
https://github.com/jperera-bel/iMTB-Report
https://github.com/jperera-bel/iMTB-Report
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Figure 2.1: Concept of computationally assisted genomic-data interpretation. Assemble
public knowledge into a workflow that filters patient’s genomic variants and reports actionable
variants.

Finally, Discussion and Conclusions part includes a discussion in chapter
8 in which the main additions of this thesis to the genomic-driven oncology
toolbox are discussed and put into context with new developments. The thesis
is wrapped up in the conclusions in Chapter 9.
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Chapter 3

Knowledge of Actionable Variants

To introduce the knowledge required for understanding the findings of this
thesis, this chapter describes the concepts for the organization of knowledge of
clinically actionable variants (§3.1). Next, the databases used in the workflow
presented in results are described in detail (§3.2).

3.1 Organization of Actionable Variants Knowledge

In order to suggest drugs to patients based on their genomic profile (i.e.
interpret a tumor’s genome), the term actionable variant has to be defined.
In this work, the term actionable variant is used as a synonym for predictive
biomarker. The actionability considered ranges from approved biomarkers
(i.e. companion diagnostics) to investigational biomarkers (i.e. assessed in
preclinical studies). Here, off-label cases are taken into account (e.g. cancer
type indication, VUS). More details will be given in §5.4.

Along with the development of genomics-driven medicine, there has been
a parallel attempt to set standards on how to organize the knowledge required
to enable this new type of medicine. A catalog of actionable variants must
comprise, at least, four layers of information: i) gene, ii) genomic variant, iii)
drug, and iv) cancer type. Good et al. (2014) and Dienstmann et al. (2014)
suggested a minimum of data layers needed for curation of actionable variants:

• Gene annotation. The gene that has an actionable genomic mutation.
The recommended nomenclature for gene annotation is HUGO Gene
Nomenclature Committee (HGNC) gene symbols, as it is human read-
able and it is related to biological concepts (e.g. BRAF). Yet, other
gene nomenclatures can be used in addition (Entrez –673, Ensembl
–ENSG00000157764).

29
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• Variant annotation. The genomic alteration that is considered action-
able. A list of possible alterations types can be found in Table 1.1. To en-
sure good practice and reproducibility, Human Genome Variation Society
(HGVS) recommendations and standards for variant annotations should
be followed (https://varnomen.hgvs.org/). In principle, genomic-
level annotation should be used (e.g. chr12:g.25398284C>T) along
with coding-annotation (e.g. c.35G>A) to avoid transcript conflicts (e.g.
KRAS:NM_004985:exon2:c.G35A:p.G12D vs. KRAS:NM_033360:exon2:
c.G35A:p.G12D). Yet, in publications and medical community, protein-
level annotations are widely used (e.g. p.G12D) and, as such, should
also be specified.

• Tumor type annotation. Cancer subtype (histological subtype, site
subtype, or even molecular subtype) in which the variant is considered
actionable. Ideally, disease ontologies should be used: Disease Ontology
(http://www.disease-ontology.org/), ICD-O (http://codes.iarc.
fr/), MeSH terms (https://meshb.nlm.nih.gov/), OncoTree ontology
(http://oncotree.mskcc.org/).

• Drug annotation. Treatment for which the genomic variant indicates re-
sponse or resistance. Besides generic names, drugs should be annotated
using identifiers. Also, providing the type of inhibitor is useful when
the drug is in preclinical settings (e.g. BTK inhibitors). Remarkably,
drug annotation is the field in which the lower level of standardization
has been accomplished to date.

• Effect or direction of association. The direction of the predictive asso-
ciation between the variant and the drug (e.g. response, resistance, no
response). In other words, whether the annotated variant or the lack
of the variant is the predictor (e.g. EGFR mutations in lung cancer vs.
KRAS wild-type in colorectal cancer).

• Type of association. Prognostic, diagnostic or predictive association.
In this thesis, only predictive associations are considered as actionable
variants. However, databases curating variants for clinical interpretation
can include other associations between a variant and clinical outcome
(e.g.high risk of relapse, better outcome, molecular subtype). Eventually,
biologically relevant variants can also be included in these kind of
knowledge bases.

• Level of evidence. Classification system to rate the clinical utility of
the association, or, in other words, the level of actionability. Common
systems differentiate between consensus (i.e. standard) and emerging

https://varnomen.hgvs.org/
http://www.disease-ontology.org/
http://codes.iarc.fr/
http://codes.iarc.fr/
https://meshb.nlm.nih.gov/
http://oncotree.mskcc.org/)
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(i.e. investigational) evidence. The former includes biomarkers that are
recognized by either FDA and EMA or recommended by the National
Comprehensive Cancer Network (NCCN) or similar expert-panels. The
latter refers to biomarkers for which compelling clinical evidence exists
(clinical trials, case reports) but the predictive association between
the variant and the drug has not been approved in any scenario (here,
preclinical evidence can also be considered). Yet, off-label scenarios fall
within a gray-zone.

3.2 Databases of Actionable Variants

As depicted in Table 2.1, several databases collect information on actionable
variants. Yet, some of these databases do not have enough annotation details
for clinical implementation and follow different curation and accessibility
methods. Within the scope of this thesis, the following selection criteria were
used: the depth of annotation (layers explained in the previous section), bulk-
download option, up-to-date, clinically focused, cancer focused and somatic
variants focused. As a result, two databases and two lists of actionable genes
were used within the scope of this thesis: Clinical Interpretation of Variants in
Cancer (CIViC) (Griffith et al., 2017), Gene Drug Knowledge Database (GDKD)
(Dienstmann et al., 2015a), Tumor Alterations Relevant for Genomics-driven
Therapy (TARGET) (Van Allen et al., 2014) and gene list from Meric-Bernstam
et al. (2015b)1.

3.2.1 Clinical Interpretation of Variants in Cancer (CIViC)

The CIViC database is a community-driven effort born from the proposed
knowledge base system by Good et al. (2014). Both open access and open
source, it is built upon a collaborative process in which anyone can be a
curator. Yet, user-roles and limited powers ensure the reliability and revision
of all interpretations. The scope of the database includes all types of genomic
biomarkers in cancer: prognostic, diagnostic, predisposing and predictive. It
also contains both germline and somatic variants. It is the largest database
compiling curated information of this kind. The database acknowledges a
bias towards Acute Myeloid Leukemia (AML), breast and lung cancer, since
Washington University is especially focused on clinical research in these
entities.

(1) Databases such as Cancer Biomarkers (Tamborero et al., 2018a) and OncoKB (Chakravarty
et al., 2017) would fulfill this thesis’ criteria, however, they are not included as they were
in their first stages at the time the work for this thesis was performed.
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A detailed example of the structure of this database is shown in Table 3.2.
Moreover, comprehensive annotation for gene, variant, disease and sequence
are provided by an automated import of data from other databases and
ontologies. Level of evidence annotation consists of 5 tiers: A (validated), B
(clinical), C (case study), D (preclinical) and E (inferential). Also, a free-text
summary is stated for each association.

For the analyses of TCGA, GENIE and MASTER presented in Chapter 6
and Chapter 7, CIViC version from 1st of June 2017 was used. In this version,
the database contained 1931 variant-drug evidences on 290 genes (of which
213 had predictive associations with a drug) across 177 cancer types.

3.2.2 Gene Drug Knowledge Database (GDKD)

Similarly, GDKD was built upon the concepts proposed in Dienstmann et al.
(2014). As shown in Table 3.3, annotation levels and structure are very similar
to CIViC. However, this database follows an expert-only curation model and
data bulks are made available through the Synapse repository periodically
(https://www.synapse.org/#!Synapse:syn2370773). It focuses exclusively
on somatic variants which predict response to anti-cancer drugs (genomic
predictive biomarkers). Level of evidence is annotated in a similar fashion
as CIViC, thus, a simple relation can be drawn between both databases (Ta-
ble 3.1). In contrast to CIViC, which has plentiful of actionable variants
with evidence supported by preclinical studies, GDKD has a more filtered
list of preclinical actionable variants based on their scientific soundness and
translational power.

For the analyses of TCGA, GENIE and MASTER presented in Chapter 6
and Chapter 7, version 19.0 of GDKD was used. This version contained 618
variant-drug evidences on 170 genes across 65 cancer types.

3.2.3 Tumor Alterations Relevant for Genomics-driven Therapy (TAR-
GET) and Meric-Bernstam et al. (2015b)

TARGET was published in 2014 as part of a WES clinical pipeline and three
versions have been released. The latest version (TARGET_db_v3_02142015.xlsx)
available at http://software.broadinstitute.org/cancer/cga/target con-
sists of a list of 135 genes manually curated by experts from the Dana-Farber
Cancer Institute with predictive, prognostic and diagnostic implications in
cancer. Although the list has few annotation layers (see Table 3.4), it comprises
several genes not included in CIViC nor GDKD.

https://www.synapse.org/#!Synapse:syn2370773
http://software.broadinstitute.org/cancer/cga/target
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Table 3.1: Relation of levels of evidence between CIViC and GDKD.

CIViC GDKD
Level of evidence Evidence Status

A (validated) Consensus
FDA-approved
NCCN-guidelines

B (clinical)

Emerging

Late trials
Early trials

C (case study) Case report
D (preclinical) Preclinical
E (inferential) -

Meric-Bernstam et al. (2015b) published a list of therapeutically actionable
genes (i.e. predictive biomarkers) with a focus on genes included as selection
criteria in clinical trials.

Both lists were published with the aim to engage the community into cura-
tion of clinical implications of genomic alterations before CIViC and GDKD
were released. Although there is a high overlap between them, TARGET spans
a broader range of clinical implications (e.g. prognostic, diagnostic) ,whereas
Meric-Bernstam et al. (2015b) focuses only on actionable variants as defined
in this thesis.
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Table 3.2: CIViC database structure. Five selected variants are reproduced, including
diagnostic, prognostic and predictive associations.

Gene Variant Disease Drugs Evidence
type

Evidence
direction

Evidence
level

Clinical
signifi-
cance

Pubmed
id

NRAS Q61 Melanoma Diagnostic Supports B Positive 23861977
MAP2K1 Q56P Melanoma Selumetinib

(AZD6244)
Predictive Supports D Resistance

or Non-
Response

19915144

DNMT3A R882 Acute
Myeloid
Leukemia

Prognostic Supports B Poor Out-
come

21067377

ERBB2 amplification Gastric
Adenocar-
cinoma

Trastuzumab Predictive Supports A Sensitivity 20728210

ARAF S214C Non-
small Cell
Lung Car-
cinoma

Sorafenib Predictive Supports C Sensitivity 24569458

Table 3.3: GDKD database structure. Four selected actionable variants are reproduced

Disease Gene Variant Description Effect Association Therapeutic
context

Status Evidence PMID

breast BRCA2 any mutation loss-of-
function

response PARP in-
hibitors

early
trials

emerging 20609467

gastric ERBB2 amplifica-
tion

copy
number
gain

gain-of-
function

response trastuzu-
mab

FDA-
approved

consensus FDA

colorectal BRAF V600 missense
mutation

gain-of-
function

resistance cetuximab,
panitu-
mumab

late tri-
als

emerging 20619739

lung
adeno

ALK amplifica-
tion

copy
number
gain

gain-of-
function

resistance crizotinib case re-
port

emerging 22277784

Table 3.4: TARGET database structure. Four selected genes are reproduced: the first three
have predictive associations to drugs, the last one is a diagnostic biomarker.

Gene Rationale Types of recur-
rent alterations

Examples of
Therapeutic
Agents

ABL1 Translocations predict sensitivity to tyrosine kinase inhibitors such
as imatinib, dasatinib, and nilotinib. Secondary mutations can cause
resistance to these agents.

Rearrangement;
Mutation

Imatinib, Dasa-
tinib, Nilotinib,
ABL1 inhibitors

AKT2 Mutations may predict sensitivity to AKT/MTOR inhibitors Mutation; Am-
plification

AKT/MTOR in-
hibitors

ALK Translocations predict sensitivity to ALK-inhibitors such as crizo-
tinib. Secondary mutations can cause resistance. Amplification and
activating mutations may also be sensitive to these agents.

Rearrangement;
Mutation; Am-
plification

Crizotinib, ALK
inhibitors

CDH1 Diagnostic in lobular breast carcinoma. In gastric cancer, may signal
the presence of a germline mutation.

Mutation



Chapter 4

Data and Resources

This chapter summarizes the datasets, resources and tools used within this
thesis. §4.1 details the two public patient datasets used to evaluate the scope
and feasibility of the workflow (results presented in Chapter 6). §4.2 describes
the Molecularly Aided Stratification for Tumor Eradication Research (MASTER)
dataset used as a proof-of-concept for the clinical utility of the described
workflow (results presented in Chapter 7). Finally, section §4.3 details the
software and packages used for the implementation of workflow.

4.1 Public Datasets

Two large multi-center datasets of cancer patient samples profiled with high-
throughput genomic techniques were analyzed in this thesis: The Cancer
Genome Atlas (Weinstein et al., 2013) and Genomics Evidence Neoplasia Infor-
mation Exchange (The AACR Project GENIE Consortium, 2017).

4.1.1 The Cancer Genome Atlas (TCGA)

The Pan-Cancer 12 dataset comprises the first 12 cancer types profiled by
TCGA. It was chosen for being the most well-established TCGA dataset, which
has been studied in many publications and for which a data freeze is provided
(Weinstein et al., 2013). Synapse repository assembles high-level analyses
into a robust and consistent data freeze (latest version V4.7). For this work,
ready-to-use data was downloaded from the Synapse repository. See Table 4.1
for a dataset description. Next, a short description of the provenance of the
data is provided.

• SNVs. Exome-sequencing was performed in different institutions, and,
thus, exome-capture and sequencing platforms of tumor and matched

35
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Table 4.1: TCGA Pan-Cancer 12 dataset.

Acronyms Tumor Type SNV CNV Clinical Overlap

BLCA Bladder cancer 99 126 153 97
BRCA Breast carcinoma 772 887 929 756
COAD/READ Colorectal cancer 224 586 592 224
GBM Glioblastoma 291 578 598 287
HNSC Head and Neck Cancer 306 310 343 306
KIRC Kidney cancer 417 457 459 417
LAML Acute myeloid leukemia 200 198 202 190
LUAD Lung adenocarcinoma 230 357 508 172
LUSC Lung squamous carcinoma 178 345 389 178
OV Ovarian cancer 316 577 592 313
UCEC Uterine corpus endometrial

cancer
248 511 512 244

Total 3281 4932 5277 3184

normal samples differed among centers. For that, a standardization
process was performed by the analysis working groups of the TCGA
Research Network: recurrent false positives (blacklist) were removed,
germline variants and single nucleotide polymorphisms (allele fre-
quency > 0.1 in population studies) were also removed variants present
in dbSNP database (Sherry et al., 2001) were removed, and all variant
coordinates were transferred to GRCh37 and re-annotated using the
Gencode human transcript annotation imported from Ensembl release
69. The downloaded data freeze is a tab-delimited Mutation Annotation
Format (MAF) file1 which contains strict filters to ensure high qual-
ity mutation calls.: e.g. recurrent false positives (blacklist) were re-
moved, germline variants and single nucleotide polymorphisms (allele
frequency > 0.1 in population studies) were also removed. Data was
downloaded at this stage from https://www.synapse.org/Synapse:

syn1729383. For a more detailed explanation, see Kandoth et al. (2013)
and Synapse repository.

• CNVs. Affymetrix SNP Array 6.0 were used to measure CNVs. GIS-
TIC (Mermel et al., 2011) was used to identify recurrent regions with
CNVs (noise threshold of 0.3, a broad length cutoff of 0.5 chromosome
arms, a confidence level of 95% and a copy-ratio cap of 1.5). The down-
loaded file contains gene-wise CNV calls in which two thresholds are
applied: i) CNVs that passed the noise thresholds are given a value of
+1 (amplification) or -1 (deletion); and ii) focal high-level CNVs with
>4.4 copies are given +2 (focal amplifications) and with <1 copies are

(1) description here: https://docs.gdc.cancer.gov/Data/File_Formats/MAF_Format/

https://www.synapse.org/Synapse:syn1729383
https://www.synapse.org/Synapse:syn1729383
https://docs.gdc.cancer.gov/Data/File_Formats/MAF_Format/
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assigned -2 (focal deletions). Data was downloaded at this stage from
https://www.synapse.org/Synapse:syn1711454. For a detailed infor-
mation on the processing of CNV data, see Zack et al. (2013); The Cancer
Genome Atlas Network (2012).

• Clinical. Clinical data was downloaded from https://www.synapse.

org/Synapse:syn2325436. The annotated metadata may differ between
the different cancer types.

4.1.2 Genomics Evidence Neoplasia Information Exchange (GENIE)

GENIE’s main goal is to set standards for multi-center data aggregation in
a clinical routine basis. As a result, a harmonized dataset from eight con-
tributing clinical centers has compiled, by the time of this thesis, over 18.000
patient samples from 32 tissues. The dataset is enriched in late-stage samples.
Samples were profiled using different DNA targeted panels (covering from 50
to over 400 genes), which in some cases included also CNV and SV profiling
(Table 4.2). For detailed information on the methods, see GENIE data guide2.

Data was also downloaded from synapse repository. In this case, clinical
data was downloaded from syn7851246, SNVs from syn7851250, CNVs from
syn7851245 and fusion data from syn7851249. Both SNVs and CNVs file
formats were the same as for TCGA (see §4.1.1). Fusions are detailed in a
tab-delimited file containing the gene fusion in the format "BCR-ABL1 fusion"
or "AKT2 fusion" (HGNC gene symbols).

4.2 The Molecularly Aided Stratification for Tumor Eradica-

tion Research (MASTER) Dataset

Molecularly Aided Stratification for Tumor Eradication Research (MASTER)
is a clinical sequencing program within the National Center for Tumor Dis-
eases (NCT) with an institutional review board-approved protocol in Heidel-
berg. In this program, a sequencing platform has been developed in order
to perform prospective stratification of advanced cancer patients in clinical
context (Horak et al., 2017). Somatic variants (SNV, CNVs and SVs) derived
from WES of tumor and normal samples of 11 patients from this program
were used within this thesis. Next, the bioinformatics analysis performed
within the MASTER protocol are detailed.

(2) https://www.aacr.org/Research/Research/Documents/GENIE%20Data%20Guide.pdf

https://www.synapse.org/Synapse:syn1711454
https://www.synapse.org/Synapse:syn2325436
https://www.synapse.org/Synapse:syn2325436
https://www.aacr.org/Research/Research/Documents/GENIE%20Data%20Guide.pdf
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Table 4.2: GENIE dataset by center. # stands for number; X means that data is available
for the patients from that center. Fusions are only available for a subset of patients: *1911;
**409. Column Samples refers to the strategy to call somatic variants: T stands for tumor-only,
T-N stands for matched tumor-normal samples.

Center Center Name #Patients SNVs CNVs Fusions Samples

DFCI Dana-Farber Cancer Insti-
tute, USA

6137 X X T

GRCC Institut Gustave Roussy,
France

529 X T

JHU Johns Hopkins Sidney
Kimmel Comprehensive
Cancer Center, USA

1203 X T

MDA MD Anderson Cancer Cen-
ter, USA

961 X T

MSK Memorial Sloan Kettering
Cancer Center, USA

7341 X X X* T-N

NKI Netherlands Cancer Insti-
tute, The Netherlands

505 X T

UHN Princess Margaret Cancer
Centre, University Health
Network, Canada

1296 X T-N

VICC Vanderbilt-Ingram Cancer
Center, USA

832 X X X** T

Table 4.3: MASTER dataset.

MAS-
TER
ID

Tumor Gender Tumor
con-
tent

Coverage
tumor

Coverage
normal

01 Breast cancer metastasis Male 35% 138x 114x
02 Pancreatic adenocarcinoma Male 90% 128x 108x
03 Leiomyosarcoma of the

retroperitoneum
Female 155x 113x

04 Ovarian carcinoma Female 20% 109x 131x
05 Myxoid liposarcoma Female 100% 112x 125x
06 Neuroendocrine tumor Male 154x 143x
07 Neuroendocrine tumor Male 70% 150x 160x
08 Cholangiocarcinoma Male 60% 159x 123x
09 Clear cell sarcoma Female 135x 152x
10 Histiocytic sarcoma Male 70% 98x 96x
11 Pulmonary Adenocarcinoma Female 80% 131x 121x

Average coverage for tumor and normal samples was 133X and 126X,
respectively (details of each sample are listed in Table 4.3). Read alignment
was performed using BWA (version 0.6.2, Li and Durbin (2009)) against
reference human genome NCBI build 37.1. Default parameters and maximum
insert size set of 1000 bp were used. Next, SAMtools (version 0.1.19) was used
for sorting BAM files and Picard tools (version 1.90) for marking duplicates
(Li et al., 2009).
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SNV calling was done using standard mpileup and bcftools (SAMtools).
Next, heuristic rules were applied to filter the variants, as previously done
in Jones et al. (2012, 2013); Yaktapour et al. (2014). Namely, a minimum
tumor allele frequency (10%), a minimum number of tumor reads at the
position (5), a minimum number of normal reads at the position (12) and a
minimum tumor content (20%). Indels were called with Platypus (version
0.5.2, Rimmer et al. (2014)). Functional annotation was done with RefSeq
model in ANNOVAR (version of September 2013, Wang et al. (2011)). Finally,
non-silent coding variants (nonsynonymous, stop-gain, stop-loss and indels)
were selected.

Read-depth plots and an in-house pipeline which uses VarScan2 copy
number and copyCaller modules were used for CNV calling (Koboldt et al.,
2012). Regions with unmappable genomic stretches were filtered and merged.
Regions were annotated with RefSeq genes using BEDTools (Quinlan and
Hall, 2010). Regions with a tumor/normal coverage log ratio > 0.55 or < -0.55
were called as amplifications and deletions, respectively. Finally, SVs that can
lead to gene fusions – inversions, deletions, duplications– were called with
CREST at DNA level (Wang et al., 2011).

The high-confidence list of somatic variants was published as part of the
supplementary material in Perera-Bel et al. (2018).

4.3 Tools and Implementation

The workflow presented in this thesis was implemented using the scripting
language and environment for statistical computing R (Team, 2014). Core
functions were written to match input genomic data to databases of actionable
variants, to classify the filtered matched data into levels of evidence, and to
generate an output report with the results (method detailed in §5). For the
output report, a .tex file is automatically generated from a .Rnw file using
knitr and xtbale R packages, which is then converted to a .pdf using LaTeX
(texi2pdf R function). The core functions were published as Additional File
6 in Perera-Bel et al. (2018) and is being maintained on the online version
control website GitHub3.

The implementation as a web-based tool of the workflow was done using
the Shiny package (Chang et al., 2018b), a framework for building interactive
web applications using R. A user interface was build around the aforemen-

(3) Repository on GitHub: https://github.com/jperera-bel/MTB-Report

https://github.com/jperera-bel/MTB-Report
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tioned core functions of the workflow. The user interface uses the shinydash-
board and DT packages. The user provides the required inputs (SNVs, CNVs,
gene fusions and cancer type). Alternatively, the user can explore data from
the TCGA project. This feature uses the R client for Broad Institute’s Firehose
web API FirebrowseR (Deng et al., 2017) to retrieve genomic and clinical data
of the selected TCGA sample. On the server side, these inputs (user defined
or from TCGA) are reactive values connected to a main reactive expression
that calls the core functions to match, filter and classify actionable variants.
Several endpoints are connected to the reactive expression: a figure with a
visual summary of the number of findings per level identified; a table with
the actionable variants matched to database information; and file download.
The table can be filtered by selecting one or several levels of evidence, sorted
according to columns or searched for specific patters. The download option
offers to save the table as a .csv file, or to generate the full .pdf report with
LaTeX.

The Shiny based web application is available as open source under MIT
license on GitHub4 and hosted for use at the University web page5. As of
September 2018, version v0.1.1 has been released. By default, it supports
GDKD’s version v20.0 and CIViC’s version from 01 May 2018, but other
versions can be uploaded by the user.

(4) Repository on GitHub: https://github.com/jperera-bel/iMTB-Report
(5) University web page: http://www.ams.med.uni-goettingen.de:3838/iMTB-Report/

app

https://github.com/jperera-bel/iMTB-Report
http://www.ams.med.uni-goettingen.de:3838/iMTB-Report/app
http://www.ams.med.uni-goettingen.de:3838/iMTB-Report/app
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Chapter 5

Molecular Tumor Board Report Workflow

The Results part follows the same order as the aims (§2.3). Hence, in the first
place, Chapter 5 presents a workflow to enable genomics-driven oncology and
describes its implementation as a web application. Next chapters will present
the results of applying the workflow on two public datasets (Chapter 6)
and the results of a comparison analysis using patient data from a German
precision medicine initiative, the MASTER program (Chapter 7).

The workflow described in this chapter is referred to as the Molecular
Tumor Board (MTB) Report. Briefly, the MTB Report takes as input all somatic
variants of a sample and finds, with the use of public databases, which variants
have predictive evidence on drug response (i.e. actionable variants). The
output collects a filtered list of actionable variants and provides a detailed
information on the clinical evidence with the goal to allow a genomics-guided,
evidence-based clinical discussion.

The first section (§5.1) documents the modifications done to the databases
upon which the workflow relies. Next, the different steps of the workflow
(input data, filtering of variants, classification of variants and output report)
are detailed in four separate sections (§5.2, §5.3, §5.4 and §5.5). Finally, the
implementation as a web application is detailed (§5.6). A research article
describing the workflow has been published in Genome Medicine (Perera-
Bel et al., 2018). Furthermore, the source code is available in the GitHub
repository (https://github.com/jperera-bel/MTB-Report).

5.1 Parsing of Databases

Curated databases are an essential part of the proposed workflow, as the
output fully relies on them. Some modifications to the databases described
in methods (§3.2) are required to ensure a standardization and a correct

43
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matching in later steps.

• GDKD. This database contains redundant rows in cases in which mul-
tiple variants of one gene have the same clinical implications. To re-
duce both search time and output length, variants in the same gene are
merged (comma separated) if they share annotations at the disease, drug,
evidence and association levels. Further minor modifications to ensure
a correct functioning of the workflow consist of the removal of i) blank
spaces in gene names (manual errors introduced in the curation process)
and ii) special characters (ˆ and _) in columns containing PubMed and
abstract IDs ("PMID") (these characters can generate errors in the steps
that use LaTeX).

• CIViC. This database contains three types of clinical associations a
genomic variant can be annotated with (e.g. prognostic, diagnostic and
predictive). For the purpose of this thesis, only rows containing "Pre-
dictive" evidence (column "evidence_type") are selected. Finally, for the
same reason as in GDKD, variants in the same gene are merged (comma
separated) if they share annotations at the disease, drug, evidence and
association levels.

• TARGET. This database, as CIViC, also contains various types af as-
sociations. Hence, rows containing "Predictive" evidence (those with
annotations in "Drug" column) are selected. Taking advantage of the
similar structure in terms of annotation levels (layers) of this database
compared to the supplementary table 2 from Meric-Bernstam et al.
(2015b), and because neither of them are regularly updated, 20 gene an-
notations from the latter are manually added to the TARGET database.

The databases are stored as CSV files and are used later on in the filtering
step (§5.3). The full list of genes covered by each of the databases is shown in
Table A.4.

5.2 Genomic Data and Cancer Type handling

The two inputs required by the workflow are genomic data and cancer type.
However, as will be presented in §5.5, other clinically relevant data might be
provided by the user and will be displayed in the final report. For instance,
an ID of the patient, previous therapies received and sample information
(biospecimen type, sequencing technology, tumor content).
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Genomic data refers to fully-annotated and quality-filtered somatic vari-
ants. This is an important remark, as it is assumed that only high-quality
variants are provided and, thus, no quality filtering is performed. Neverthe-
less, quality information (e.g. allele frequencies, position depth, Phred scores,
functional predictions) can be provided and will be displayed, but merely
for informative purposes. Three kinds of somatic variants can be used as
input: SNVs (and indels), CNVs, and fusion genes. SNVs must be a table with
at least three columns, containing i) HGNC gene symbols, ii) variant type
(MAF format, see Table A.3) and iii) aminoacid change (e.g. V600E). MAF
format can easily be adapted from Variant Call Format (VCF) files1. CNVs
must be a table with at least two columns: the first column contains HGNC
gene symbols, the second column specifies the type of copy number alteration
(amplification or deletion). Gene fusions must be provided in a table with
two columns, each containing one of the two fused genes using HGNC gene
symbols.

Cancer type refers to the cancer diagnosis and has to be provided by the
user. A cancer type is generally defined by the organ or tissue in which the
cancer originated and is often combined with the type of cell that formed the
tumor (e.g. lung adenocarcinoma). Cancer type information is used by the
MTB Report workflow to classify actionable variants into levels of evidence
(detailed in §5.4). Since the databases use different cancer type annotations, a
table with equivalences between the different databases was manually built.
TCGA and GENIE cancer type annotations were also included in this mapping
file, and consensus cancer types were created (to be selected by the user as
input and to be displayed in the output report). The table was constructed in
the way that entries were duplicated if they could map to more than one dis-
ease type to account for hierarchical relations between subtypes. For instance,
the consensus lung (adeno) maps to TCGA’s type LUAD, GDKD’s lung adeno
and lung, CIViC’s Bronchogenic Lung Adenocarcinoma, Lung Acinar Adenocar-
cinoma, Lung Adenocarcinoma, Lung Carcinoma, Lung Cancer, Non-small Cell
Lung Carcinoma and to GENIE’s NSCLC. Likewise, lung consensus maps to
all the above plus TCGA’s type LUSC, GDKD’s lung squamous, CIViC’s Lung
Squamous Cell Carcinoma and GENIE’s Small Cell Lung Cancer. The complete
table can be found as supplementary material in Perera-Bel et al. (2018) or
in GitHub (https://github.com/jperera-bel/MTB-Report/blob/master/
data/cancer_types.csv).

This approach that requires manual curation was developed since only

(1) VCF to MAF: https://github.com/mskcc/vcf2maf

https://github.com/jperera-bel/MTB-Report/blob/master/data/cancer_types.csv
https://github.com/jperera-bel/MTB-Report/blob/master/data/cancer_types.csv
https://github.com/mskcc/vcf2maf
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Figure 5.1: Flowchart of steps to filter actionable variants. The flowchart depicts the rules
applied to genomic variants in order to determine their actionability. Asterisks depict variants
marked with a repurposing flag.

CIViC provided disease-ontology annotations among the databases used. On-
tologies are valuable as long as they can be used to match different resources
to each other. As the field evolves, new releases and new databases are in-
corporating the use of ontologies. Thus, further releases of the MTB Report
workflow will incorporated disease ontologies.

5.3 Filtering of Actionable Variants

The filtering consists of matching somatic variants from the patient. The
abstraction of the rules applied to filter actionable variants are outlined in Fig-
ure 5.1. For practical reasons, the steps shown in the figure are implemented
in a database- and variant type-basis.

To understand the filtering procedure, it is important to mention the
two manners in which a SNV can be annotated in a database (see Table 3.3).
The first manner is for very well described variants (hotspots): the specific
aminoacid changes are given (e.g. BRAF V600). The second manner is com-
mon in clinical and preclinical studies that study the predictive value of all
variants in a given gene: these cases are annotated in the databases as any or
LoF/GoF SNVs. In order to handle both annotations, the algorithm narrows
down from gene level to variant level and filters out SNVs at every step.

The general workflow depicted in Figure 5.1 consists of three main filtering
steps and two side rules to recover (i.e. repurpose) variants. In the first
place, filtering is done at gene level: genes not present in the databases are
filtered out. Second, variant types are matched between the patient and the
database (i.e. missense mutations, indels, nonsense mutations, amplifications,



5.4. Classification into Levels of Evidence 47

deletions and rearrangements). Nonsense mutations, in which a stop codon is
introduced in the middle of the coding sequence causing LoF of the protein
product, are matched to deletions or LoF with a repurposing flag. Third, SNVs
from the patient are matched to database annotations. If the same aminoacid
change from the patient is annotated in the database (first manner), the
predictive evidence in the database is matched to the patient’s variant. If the
gene in which the considered SNV is annotated as any (second manner), the
patient’s variant (regardless the aminoacid change) is automatically matched
to that predictive evidence. Finally, if the patient variant is not annotated in
the database, but other aminoacid changes are, the variant will be matched
with a repurposing flag if the entries in the database of that gene support
always the same effect (i.e. response vs. resistance) towards the drug.

Repurposing flags are used to recover VUS that are likely to be actionable.
Flagged variants are treated as normal matches for downstream classification
(§5.4), but the flag will be shown in the final report to acknowledge its VUS
nature.

In case a gene has two different mutations, or several annotations of the
same variant are provided (e.g. different transcripts), the algorithm checks all
of them.

5.4 Classification into Levels of Evidence

Patient’s variants matched by the filtering algorithm to database entries are
considered to be actionable. A variant is actionable when it informs about
treatment action; in other words, the variant is a biomarker of a given drug.
For clarification, an actionable variant can be matched to multiple database
entries (e.g. if the variant is actionable in distinct tumor types, towards dis-
tinct drugs, proven at distinct clinical or preclinical studies). Each predictive
association (i.e. each finding of the workflow) is unique for a given variant,
with a given drug in a given context.

Actionability of a variant can be supported by different levels of evidence.
For that, it is common to use classification schemes or tiers, in order to
inform about the strength of the evidence. Four main aspects are important
to determine the actionability of a variant: the affected gene, the genomic
variant, the cancer type and the drug. The first two are accounted for during
the filtering step (see previous section and Figure 5.1). Hence, at this stage of
the workflow, the last two remain to be accounted for.

In this work, a six-level system is proposed, defined by two variables: can-
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Figure 5.2: Levels of evidence. Six-levels system that classifies actionable variants along
two axes: strength of clinical evidence (axis 1-3) and cancer type (axis A-B). On the 1-3 axis, 1
stands for biomarkers approved by e.g. FDA, EMA, NCCN. Level 2 regards clinical trials and
case reports. Finally, level 3 consists of preclinical evidence including animal models and cell
lines.

cer type and strength of clinical evidence. Cancer type is dichotomized
into the same cancer type –as the patient in question– and other cancer
types. The strength of clinical evidence refers to the validation stage of
the drug–biomarker predictive association and is divided into three cate-
gories: approved, clinical and preclinical. Hence, the combination of these two
variables yields six levels of evidence (Figure 5.2).

This classification scheme is flexible in terms of repurposing between
cancer types and VUS. However, it does not account for biologically relevant
variants (unless they are actionable) nor variants in drug targets that are
not known to be predictive biomarkers. These aspects are important when
compared to other classification systems, as classification systems are to a
large extent interchangeable but each of them has a specific focus. As for our
six-level system, the focus is on the validation stage of the biomarker-drug
predictive association and the repurposing between cancer types. The reason
behind it is the fact that genomic events are present across cancer types and
most of the genes recurrently altered in cancer are already being studied in at
least one context. Thus, by making these cross-cancer cross-clinical evidence
knowledge available, the patient’s actionable landscape can be expanded.

5.5 Design of the Molecular Tumor Board Report

The format of the output is one of the main features of this workflow. It is
named after MTBs, as it is designed having in mind such a medical setting
(though, as stated in the disclaimer, the report is intended for research use
only and should not be used for medical or professional advice). Hence, the
report contains some technical terminology that happens to be appropriate for
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clinicians, geneticists, oncologists, pathologists and scientists, but that could
not be used in direct-to-consumer products. A report that targets clinicians,
who are often short in time, has to be concise. Yet, conciseness should not
be at the expense of complexity and completeness. The MTB Report uses a
tabular format, as tables allow a neat, structured and visual presentation of
results. Along these lines, the design of the report follows recommendations,
standards and guidelines on reporting genomic variants in clinical settings
(Richards et al., 2008, 2015; Matthijs et al., 2016; Li et al., 2017).

The MTB Report is structured into two main blocks (a sample report is
shown in Figure 5.3). Under "Patient information" the user can find anony-
mous patient details, clinical and specimen information –given by the user–
along with a summary of the genomic data provided as input. The second
block, entitled "Gene-drug predictive associations" details the variants found
by the algorithm as actionable. A summary of the variants identified as ac-
tionable and their quality (if provided by the user) is shown in genomic type
specific tables (that is, one for SNVs, one for CNVs and one for fusion genes).
The filtering method, the databases, and the classification system are briefly
explained. Finally, the table of results provides an interpretative design that
informs about the context of actionability. Each row represents a unique
predictive association between a variant and a drug in a given context (e.g.
response of drug X in a cancer type Y in a clinical trial). Each predictive
association is considered as one finding. The number of findings stratified by
cancer types is provided in the figure on the right side of the report. Patient’s
variants are listed on the left side and the matched predictive evidences are
on the right side of the table.

5.6 Implementation and Visualization with R Shiny

In order to increase the usability and visibility of the MTB Report workflow, a
Shiny-based web application was developed: the interactive Molecular Tumor
Board Report (iMTB-Report).

The iMTB-Report is a web application that allows an interactive visualiza-
tion of actionable variants of an individual tumor genome (Figure 5.4). The
user can uploead genomic data in common tabular data files (.dat, .csv, .xlsx).
The specific formats of genomic data have been detailed in §5.2.

The user can select which databases should be used in the analysis, and,
in case previous versions are desired, the user can upload older versions after
downloading them from the databases’ websites. After data uploading and
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Figure 5.3: MTB Sample Report. First page of the report of patient MASTER-04 from the NCT
MASTER dataset is shown. This figure has been modified from Perera-Bel et al. (2018) with the addition
of the disclaimer at the top of the page.
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database selection, input variants are queried against the databases and a list
of actionable variants is compiled. The user can explore the subset of filtered
actionable variants stratified by levels of evidence, and download a static .pdf
report or a .csv file with the results (Figure 5.4 ). Links to the source of the
information (links to PubMed IDs, google scholar searches and FDA website)
and to other relevant databases (Precision Medicine Knowledgebase (PMKB)
(Huang et al., 2017) and Drug Gene Interaction Database (DGIdb) (Griffith
et al., 2013)) are provided. Moreover, the user can browse up to 34 cohorts
of The Cancer Genome Atlas. The application is written in R using the Shiny
framework (Chang et al., 2018b), which allows an easy access to users not
familiar with R environment through a web interface (for more details, see
§4.3).

Figure 5.4: Interactive MTB Report. Interactive visualization of actionable variants of
TCGA patient TCGA-AB-2990 with AML. In the left, a figure summarizes the results by levels
of evidence. On the right, the table displays the variant-drug associations, providing links to
PMKB, DGIdb, Pubmed and Google Scholar. The table can be sorted according to a specific
column by clicking the table headers. The variants with a repurposing flag are highlighted in
red. Two buttons allow to download the table of results in csv format or in the MTB Report
format (pdf).





Chapter 6

Scope of the Molecular Tumor Board
Report Workflow

To determine the feasibility and scope of the proposed workflow (the third aim
of this thesis), MTB Reports for 3184 samples from TCGA and 18804 samples
from GENIE datasets were generated. In brief, data was downloaded from
Synapse repository (see §4.1), actionable variants of each patient were filtered
(§5.3) and then classified into levels of evidence (§5.4). The results presented
in this chapter describe the actionability landscape of two cancer datasets
from two projects according to the MTB Report workflow with emphasis
on particular aspects: levels of evidence, cancer types, genes and pathways.
Figure 6.1 depicts the results obtained in the two datasets at each level of
evidence across cancer types.

It is important to highlight that the two datasets are not directly compa-
rable, as several aspects directly influence the results. GENIE project used
targeted gene panels which included fusions, whereas TCGA used WES. In A1
level we can clearly see the importance of fusions for lung cancer treatment:
14% of LUAD and 3.4% of LUSC patients in TCGA vs. 40% of NSCLC patients
in GENIE (Figure 6.1c). Also, GENIE consists of patients with more advanced
disease stages than TCGA. The impact of the advanced nature of the diseases
can be observed by the fact that the MTB Report identifies both more action-
able variants and more patients with actionable variants in GENIE dataset
than in TCGA as regards to high levels (A1, B1) (Figure 6.1a,b,c). Finally, the
use of selected panels in GENIE is reflected in preclinical levels, in which
TCGA has higher number of patients with actionable variants than GENIE as
genes investigated in preclinical studies are usually not considered actionable,
and, thus, not included in gene panels designed for clinical use (Figure 6.2).
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Figure 6.1: TCGA (top) and GENIE (bottom) actionability landscape. Heatmap representation of the
number of actionable genes and the percentage of patients with actionable variants stratified by cancer type
and level of evidence. Findings associated to resistance/no response are not included in this representation.
Regarding wild-type variants, only findings in level A1 are considered, e.g., NRAS, KRAS wild type in
colorectal cancer. This figure has been modified from Perera-Bel et al. (2018).
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Figure 6.2: Comparison of TCGA and GENIE datasets. Cumulative number (percentage)
of patients with actionable variants at each level of evidence.

6.1 Role of Levels of Evidence

A1 is the most intuitive level, as it is a synonym for companion diagnostics.
In other words, A1 includes genes that are routinely checked in certain cancer
entities because they are part of a drug label or are included in treatment
guidelines. The workflow identified actionable variants in 9.9% and 15.3% of
TCGA and GENIE patients, respectively. Notably, most cancer types do not
have actionable variant at this level (in other words, just few cancer types have
approved companion diagnostics, see Table A.2). The differences between
the two datasets can be explained by the inclusion of fusions (important in
NSCLC) and more cancer types (e.g. melanoma) in GENIE.

The simplest type of repurposing, in which the predictive value of a variant
towards a drug is extrapolated to another cancer entity (B1 level), involves at
least twice as many patients. This rise is due to the fact that the same genes
that are companion diagnostics in certain entities (e.g. EGFR-lung cancer,
BRAF-lung cancer -melanoma -thyroid cancer, KRAS-lung cancer -colorectal can-
cer, NRAS-colorectal cancer, ERBB2-breast cancer -gastric cancer, BRCA1-ovarian
cancer, BRCA2-ovarian cancer, RET-lung cancer, ALK-lung cancer, ROS1-lung
cancer) are also altered in other cancer types at lower frequencies (Figure 6.3
and Figure A.1). Indeed, in a dataset enriched in advanced cancer patients
-more severe diseases and more acquired mutations– such as the GENIE,
around 40% of patients were found to have actionable variants at B2 level
(precisely 38.4%; 44.4% taking into account A1 and B1).

Clinical trials levels (2) include around 60% of patients as regards to the
same cancer type (A2) and above 80% pooling clinical trials on any cancer type
(B2). On the other hand, preclinical levels (A3, B3) do not have a large impact
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on the aforementioned numbers, increasing only 1-5 points the percentage
of covered patients. This supports the idea that clinical trials are already
studying the majority of cancer genes, or at least a subset of genes altered
in the majority of patients. Another issue is whether clinical trials are able
to prove any predictive value of the variants studied (e.g. many trials study
TP53, though none has yet been successful).

6.2 Cancer Type Particularities

Main differences in the percentage of patients with actionable variants be-
tween cancer types are observed at A levels (Figure 6.1b). Whereas some can-
cer types have high percentages of patients with actionable variants (breast
cancer has 62.8% and 65% for A2 level, and 69.6% and 69.4% for A3 in
TCGA and GENIE datasets, respectively), other cancer types do not present
actionable variants at A2 level (germ cell tumor, multiple myeloma) and
A3 level (adrenocortical carcinoma, germ cell tumor). In contrast, the same
cancer types that do not include any patients at A levels, present similar
percentages to the rest of cancer types at the corresponding B levels (germ
cell presents 50% of patients with actionable variants at B2 and B3 levels;
multiple myeloma 69.2% at B2 level; adrenocortical carcinoma 64.2% at B3
level). Overall, percentages at B levels are higher and more uniform than A
levels.

Variations in A levels between cancer types reflect the relevance of cer-
tain pathways in shaping drug response in specific cancer entities: BRAF
mutations in melanoma, DNMT3A and NPM1 in AML, KRAS in colorectal
cancer, TP53 in ovarian cancers, PIK3CA in breast cancers, EGFR in head
and neck malignancies and PTEN and PIK3CA in uterine cancer (Figure A.1).
Unfortunately, TCGA does not properly reflect current status of lung cancer
therapy (which is to a large extent fusion-based) because the data freeze from
TCGA used in this thesis did not include fusions.

Kidney cancer presents a large range of mutated genes but at really low
frequencies which complicates reaching half of the patients. 50% barrier is
only reached at A2 level with late clinical trials studying VHL as a biomarker,
and at preclinical studies of BAP1, VHL, PBRM1 and SETD2. AML also shows
a distinct pattern, in which 37.9% of patients present actionable variants
(DNMT3A and NPM1 chemotherapy biomarkers) but then it has the flattest
slope with the lowest cumulative percentage (73.2%).



6.2. Cancer Type Particularities 57

Figure 6.3: Actionable genes by levels of evidence in the TCGA dataset. Barplots depict-
ing the percentage of patients (including all TCGA cancer types) of the top twenty biomarkers
of each level of evidence. Level 2 is divided into three groups: 2a (late clinical trials), 2b (early
clinical trials), and 2c (case reports). Colors in the bars denote the type of genomic alteration.
Genes are colored according to manually curated pathway annotations.
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6.3 Common Actionable Genes and Pathways

Exploring the more prevalent actionable genes can give an idea of the main
targeting strategies (Figure 6.3). Drugs classified in high-evidence levels
target mainly RTK-signalling, MAPK and Genome Integrity genes. Targets
from the PI3K/AKT/MTOR and cell cycle signaling pathways may soon
enter clinical routine (late trials). New strategies (early trials, case studies
and preclinical) include genes involved in metabolism, WNT signaling and
epigenomic pathways (histone modification).

The aforementioned lack of fusions in TCGA dataset is also illustrated in
Figure 6.3. For instance, the lack of ROS1, ALK and ABL fusions in A1 level.
Interestingly, this figure also depicts, by the colors of the bars, the fact that
LoF alterations (deletions) are more difficult to target than GoF (SNVs and
amplifications).

6.4 Comparison to other Publications

Taking advantage of the fact that TCGA has been studied in many contexts, we
could find three studies with a scope similar to this thesis (i.e. identification
of actionable genes). The results reported in these studies were compared
to the results of the MTB Report workflow. The comparison is shown in
Figure 6.4. Although there is high concordance between the studies at A1
level, as soon as repurposing is considered, the reported numbers start to
diverge. OncoKB results are the most different, presumably by the use of a
more stringent definition of actionability, that, moreover, does not consider
preclinical evidence. The other three studies, including ours, present similar
results. This indicates that the databases used are an important factor in
the process of identifying actionable variants, as MTB Report uses GDKD,
the database from Dienstmann et al. (2015a). It is therefore reasonable that,
at most levels, the MTB Report shows the highest number of patients with
actionable variants as it takes advantage of several databases.

In all, factors that can explain the divergence between studies are: databases
used, definitions of actionability and characteristics of the TCGA dataset in-
cluded in the analysis (e.g. cancer types, genomics data types). The general
increasing trend along decreasing strength of evidence shows that low levels
of evidence certainly increase the actionable landscape of cancer patients.
Whereas an approach like OncoKB might be more accurately reflecting cur-
rent clinical implementation of NGS, the other three approaches highlight
the potential of NGS in guiding clinical trials and preclinical studies.
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Figure 6.4: Comparison of TCGA actionability in different in-silico studies. Cumulative
number (percentage) of patients with actionable variants at each level of evidence from our
workflow (MTB) and three other publications. Equivalences between levels of evidence is not
always one-to-one: Dienstmann et al. (2015a) does not report B1 level, and A3 and B3 levels
are reported together; Rubio-Perez et al. (2015) reports together the equivalents of A2 and B2
levels.





Chapter 7

Proof-of-Concept Application

This last chapter of Results part details the analysis addressing the last of the
aims of this thesis, that is, to provide a proof-of-concept for the clinical utility
of the MTB Report workflow. The MTB Report was used to identify actionable
variants in WES of matched tumor and normal samples of eleven patients
from the MASTER study. The clinical aspects of the samples, the sequencing
details, the bioinformatic processing and the identification of somatic variants
are described in §4.2.

7.1 Genomic Landscape of Patients from the MASTER program

A highly varying number of SNVs and CNVs can be observed from patient to
patient (Table 7.1). Patients MASTER-05, -09 and -10 had as little as 10-11
SNVs, whereas MASTER-06 had 2703 SNVs. MASTER-06 was a clear case of
an hyper-mutated tumor and also presented many broad CNVs, which, rather
than indicating driver events, are most likely a consequence of undergoing
too many chemotherapy cycles. The three patients with the lowest number
of SNVs had also the lowest number of genes affected by CNVs (107, 1,
and 5, respectively). However, most patients presented broad CNVs, which
translated to thousands of genes affected by CNVs (e.g. MASTER-01-04, -06
and -08). By definition, broad CNVs alter the copy number status of large
numbers of genes as they span at least 3Mb of the genome (some affect up to
whole chromosomal arms).

The complete list of actionable variants and their therapeutic implications
identified in each MASTER patient by the MTB Report workflow can be
found in the eleven reports published as Additional File 5 from Perera-Bel
et al. (2018). Nonetheless, a summary of the findings is also provided in
Table 7.1. The MTB Report identified from 0 to 21 actionable SNVs per
patient (median of 2, Interquartile Range (IQR) of 2.25), and from 0 to 14
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CNVs per patient (median of 5, IQR of 4.75). The number of findings (i.e.
drugs matched in a given context) associated to the actionable variants ranged
from 1 to 92 (median of 43, IQR of 55.75). Overall, 10 unique high-level
(A1, B1, A2), potentially clinically actionable findings were identified: two
BRCA deletions, one EGFR exon 19 indel, two TP53, two ABL1 and one MTOR
missense mutations. Besides, one missense mutation in TP53 and one in
KRAS predicted both response and resistance. Due to the advanced nature
of MASTER patients (inclusion criteria of this study are young adults with
advanced diseases), low-evidence actionable variants were of special interest.

7.2 Comparison to Actionable Variants Identified by the MAS-

TER program

A comparison study was performed to assess the relevance of the variants
filtered by the MTB Report workflow. Table 7.1 shows the comparison of the
actionable variants identified by MTB Report with the actionable variants
selected by the experts’ panel of the MASTER study. The experts’ comprised
bioinformaticians and translational oncologists responsible to interpret and
prioritize the results produced by WES. The general process for the inter-
pretation of variants consisted of a manual revision of the annotated list of
high-quality variants, visualization of the alignments, and prioritization of
actionable variants (described in Horak et al. (2017)). Main considerations
were i) quality of the variant (e.g. allele frequency, segment mean, gene
overlap and length of copy number events) and ii) clinical, functional and
biological implications (by means of annotations to databases). The most
relevant candidates (one to three) were discussed in the MASTER’s program
molecular tumor board and are detailed in Table 7.1.

With regard to this comparison study, platin-based chemotherapies and
PARP inhibitors were considered as equivalents. Hence, a match status is
shown in Table 7.1 when, upon the disruption of DNA repair pathway genes
(BRCA1, BRCA2, RAD51, PALB2, CDK12), either drug was suggested (as in
case MASTER-03). This decision is based on the evidence that PARP inhibitors
have antitumor activity in BRCA1/2 mutation ovarian cancer, which is in turn
associated with platin-based agents response (Fong et al., 2010).

Out of 20 variant-drug associations manually identified by the experts’
panel, 15 were also filtered by the MTB Report. These results show a high
concordance of MTB Report with experts judgments, though perfect matching
was not achieved. The mismatches can be explained by mainly two reasons:
information lacking in the MTB Report workflow-associated databases (PTPRJ,
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PTPN12, LCK), and MTB Report filtering rules do not allow extrapolation of
fusion evidence to missense mutations (e.g. MASTER-09 NTRK3 missense
mutation and NTRK3 it is present in GDKD only as a gene fusion biomarker).

The MTB Report reported many more findings per patient than the ones
discussed in MASTER’s program molecular tumor board. Each actionable
variant was matched to an average of 4.9 unique findings (ranging from 1 to
15) (calculated dividing the number of findings by the number of actionable
variants in Table 7.1). Necessarily, many gene–drug associations are repeated
among the findings; however, each finding is unique in terms of cancer type
or clinical evidence. MASTER-02 and -06 showed the highest number of
findings: the first, because it carried a KRAS G12D mutation, which is a very
prevalent and highly controversial mutation in terms of drug response; the
latter, because many cancer-related genes were mutated thus yielding many
actionable mutations.

Patient MASTER-04 (Figure 5.3 presented BRCA1 deletion (sensitive for
PARP inhibitors in ovarian cancer and level of evidence A2) and TSC2 non-
sense mutation (sensitive for MTOR inhibitors, level B2). The MTB Report
reports more and higher-ranked findings for PARP inhibitors than for MTOR
inhibitors; yet, the latter was selected by the experts’ panel. This apparent in-
consistency is explained by the fact that this patient case is from 2014 whereas
the MTB Report was generated after 2016, when olaparib was already ap-
proved (December 2014). So back in 2014, it was not possible to prescribe this
drug and, hence, it was not considered. Furthermore, a heterozygous BRCA1
loss would not have been considered a rationale for PARP inhibition. This
view only changed after the paper by Mateo et al. (2015) who postulated that
heterozygous alterations in homologous recombination DNA repair genes con-
fer sensitivity to olaparib. This case illustrates the rapidly evolving landscape
of targeted cancer drugs and highlights that NGS can be critical as the catalog
of actionable genetic lessons is constantly expanding.

The hypermutated genotype (2703 SNVs) of patient MASTER-06 led to
the second largest number of findings reported (89) and the largest number
of actionable SNVs (21). Among them, ATM missense mutation could be
suggested as one of the causes of the hypermutated genotype, as it is a DNA
repair protein. According to the experts, although four actionable genes were
discussed within the MASTER program, the current common practice for
patients with more than 400 missense mutations (or more than 100 in patients
with colorectal cancer) would be to check for PD-L1/PD1 expression as a
rationale for checkpoint inhibitors. Conversely, the other case with as many
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findings reported was MASTER-02 (92), in which 60% of them belong to just
one genomic variant: KRAS G12D. Whereas KRAS is a negative biomarker for
some cancer entities, targeting KRAS-mutant tumors remains to be one of the
main challenges in oncology.

MTB Report did not reveal any actionable variant matching to expert’s
panel suggestions for patient MASTER-09. The bad quality of this sample
and the few mutations to be assessed (11 SNVs and 1 fusion), yielded the con-
sideration of extreme repurposing from the experts’ side, suggesting NTRK3
missense mutation as potentially actionable. Hence, it is acceptable that the
MTB Report workflow was not able to detect this actionable variant.

It is worth mentioning that two of the matches were achieved by the use of
TARGET and Meric-Bernstam et al. (2015b) list, namely FGF1 in MASTER-01
and ERRFI1 in MASTER-08 (no level of evidence specified in Table 7.1).
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Chapter 8

Discussion

NGS is increasingly being used in clinical settings to characterize advanced
cancer patients with the aim of informing about diagnosis, prognosis and
treatment, in particular within precision oncology trials. NGS platforms (e.g.
hotspot panels, WES, WGS) are able to identify large amounts of genomic
variants, many of which still have unknown clinical implications. Hence,
assigning clinical meaning to the genome of a patient is an overwhelming task.
The MTB Report is a workflow that automates a number of cumbersome and
time-consuming steps which are usually carried out manually in preparation
of MTBs. It offers a pre-filtered list of actionable variants that may indicate
vulnerabilities of the tumor thus facilitating the clinicians’ work in deciding
for a treatment.

Through the analysis of large public datasets we have shown that the
MTB Report results are largely concordant to other studies (Marquart et al.,
2018), with regard to variants with high-evidence predictive associations:
only around 10% of cancer patients in TCGA and 15% of cancer patients in
GENIE to date are eligible for genomically-guided therapies – the chances
are completely determined by the cancer type, as companion diagnostics are
approved for specific cancer entities. Furthermore, the MTB Report is able
to identify actionable variants in over 90% of patients when low-evidence
levels are considered. The main strength of the workflow is the automatic
aggregation of information which makes the whole process scalable for clinical
practice. Nevertheless, as noted by experts of the MASTER trial, all MTB
Report findings have to be rated and reevaluated for their therapeutic impact
with regard the clinical course of each patient (e.g. response to prior therapies,
side effects), patient characteristics or relevant pathway interactions in case of
multiple findings.

The implementation of the workflow as a web-based application increased
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the usability of the MTB Report, allowing user-defined data, providing in-
teractivity and visualization of the data, and multiple download options.
The web-page distribution makes the workflow accessible to users without
programming skills (researchers, clinicians). Instead, the distribution as a
stand-alone application through GitHub promotes the incorporation of the
tool as part of bioinformatic pipelines.

8.1 Aspects of the Molecular Tumor Board Report

The strengths and weaknesses of the MTB Report are discussed in the fol-
lowing pages and will hopefully be addressed in future publications of this
fast-growing field of genomics-driven oncology.

8.1.1 Definition of Actionability

Actionability is a concept that has been used in the context of precision
medicine with slightly distinct connotations. Different definitions of ac-
tionability have been shown to influence the results of in silico prescription
publications, as we have seen in the comparison between four studies that
analyzed the actionability landscape of the TCGA dataset (Figure 6.4). Differ-
ences between Rubio-Perez et al. (2015) and the MTB Report can be explained
by a combination of three factors: 1) their dataset comprises more cancer
types than ours, 2) there is a lapse of time between both publications and
the field evolves rapidly, and most importantly, 3) the gene-drug associations
considered are different. Whereas some clinical interpretation approaches
include genes that are drug targets even if the drug prescription is indepen-
dent of the mutational status of the target (Rubio-Perez et al., 2015; Hintzsche
et al., 2016), our method focuses only on variants that have been shown to
have a predictive value on drug response (i.e. predictive biomarkers). For
instance, an EGFR mutation in head and neck cancer is not considered as A1
level in our study because cetuximab prescription is independent of EGFR
status (Network, 2006). Differences with Chakravarty et al. (2017) are mostly
due to the database they used, OncoKB. This database differentiates between
oncogenic (i.e. driver) and actionable variants. A variant is considered action-
able only if there is compelling clinical evidence of the biomarker as being
predictive of response to a drug (early phase trials, preclinical and VUS are
not included). As a result, OncoKB contains 38 actionable genes1, which
translates into 41% of samples with actionable variants (equivalent to our

(1) Genes with annotations in levels 1 to 3, downloaded 25 September 2018
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A1+B1+A2+B2 but excluding case reports and variants with a repurposing
flag) (Chakravarty et al., 2017). In contrast, the databases used by the MTB
Report contain a larger number of actionable genes: 170 in GDKD, 213 in
CIViC and 111 in TARGET2.

Even though these in silico studies differ in the percentages, the overall
message remains the same: reporting low-evidence biomarkers (i.e. off-label
use and on substances in clinical trials) undeniably increases treatment rec-
ommendations for cancer patients.

With respect to clinical studies, in which mostly high-evidence actionable
variants are considered, recent prospective trials using NGS to guide treat-
ment decisions have reported informative variants in a wide range of patients,
reflecting the definition of actionability used in each study. Studies compris-
ing high-evidence findings only (A1, B1, and open clinical trials within A2)
have reported actionable variants in 49% (Sohal et al., 2016), 48% (Massard
et al., 2017) and 36% of patients (Zehir et al., 2017). In contrast, studies
that include also low-levels of evidence (therapies in clinical or preclinical
development) reported actionable variants in the majority of patients: 94%
(Beltran et al., 2015), 82% (Rennert et al., 2016) and 75% (Horak et al., 2017).
Our analyses of TCGA and MASTER datasets are comparable to the studies
that use a broad actionability definition, therefore, above 90% of patients
were reported to have actionable variants. Interestingly, in cases in which
no evidence was found, MASTER experts considered extreme repurposing
between variant types; in this case, from evidence on fusions to missense
mutation in NTRK3.

Actionability rises as a dynamic concept in which variant-drug associa-
tions are supported by a range of evidence strengths. Besides, the rate of
actionability varies by cancer type and over time as more evidence is gener-
ated. The MTB Report expands the treatment options delivered by applying a
broad definition of actionability to associations in which neither the drug nor
the variant have been approved. Such strategy can be acceptable for patients
whose therapeutic options have been exhausted beyond the standard of care
(Meric-Bernstam et al., 2015b), but always informing about the actionability
strength through the classification into levels of evidence (see §8.1.4).

(2) Genes with predictive associations, versions specified in §3.2
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8.1.2 Off-label Prescription

Off-label prescription of drugs has been successfully done for many patients
for which no further treatment lines nor clinical trials were available (Conti
et al., 2013; Kordes et al., 2016; Chau et al., 2016). It is also true, though, that
there is explicit clinical evidence against off-label prescription of a drug in
some cases. BRAF V600E mutation is a predictive biomarker in melanoma
and NSCLC; however, clinical studies already showed that colorectal patients
with this same mutation do not respond to RAF inhibitors (Kopetz et al.,
2015; Hyman et al., 2015). The same applies to ERBB2 amplification, which
is a predictive biomarker for breast and gastric cancers (Table A.2), but has
failed to show predictive value upon treatment with trastuzumab in lung
cancer patients with ERBB2 amplification (Lara et al., 2004). Indeed, all these
examples are compiled in the databases used by the MTB Report, so both the
repurposing options and the resistances will be identified by the workflow.
These cases of conflicting evidences render interpretation of MTB Reports
more complex, such as, for instance, patient MASTER-02 in which KRAS
mutation yields 92 findings.

8.1.3 Standardization of Annotations

At the time this thesis’ work started, the knowledge bases were mainly lists/ta-
bles curated by oncologists collecting the most important pieces of evidence,
and, as such, did not use systematic annotations (e.g. ontologies, databases).
Next databases, like CIViC, PMKB, OncoKB, Cancer Biomarkers, established a
new concept and adopted the use of standardized annotations which allowed
a semi-automatic curation process and integration with other databases.

Currently, the use of reference annotations for genes and variants is widely
embraced in the community. All the above-mentioned databases standardize
genomic annotations by using gene IDs, reference genome builds, genomic
coordinates, transcript identifiers and HGVS format. The MTB Report will
incorporate such standards in next releases.

The use of public ontologies to annotate cancer types has been already
adopted by some databases, such as CIViC, JAX-CKB (Disease Ontology),
OncoKB (OncoTree ontology), clinicaltrials.gov (MeSH terms) and COSMIC
(National Cancer Institute thesaurus and Experimental Factor Ontology).
However, many other databases still use in-house taxonomies for tumor types
and tissues (GDKD, Cancer Biomarkers, PMKB, TARGET). Databases (and
tools such as the MTB Report) that want to be widely used will have to adopt
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the use of ontologies as the only way to ensure reproducibility.

Cancer type annotations are especially important, as the classification
system used (levels of evidence) depends on the definition of cancer type. For
instance, a patient with lung adenocarcinoma will have A-level actionable
variants of lung adenocarcinoma and NSCLC. However, if there are findings
on particularly squamous lung cancer, they will be considered as B together
with the findings on AML, for instance. Hence, the more generic the tumor
type supplied as input is, the less specific the results at A levels of the MTB
Report will be.

It will be likewise important to include molecular (sub)classification of
cancer types, as they will complement current histological classifications
(Hoadley et al., 2014, 2018). The MTB Report is able to match genomic al-
terations to molecular subtypes that respond better to a therapy (e.g. breast
cancers with HER2 amplification are matched to trastuzumab; lung cancers
with EGFR mutations are matched to EGFR inhibitors, and with MET am-
plifications to crizotinib). However, this is true as long as the molecular
subtype (HER2 positive) and the biomarker are measured at the same molecu-
lar level (that is, genomic). Transcriptome profiling has been used to identify
molecular subtypes in breast cancer (Perou et al., 2000), lymphoma (Alizadeh
et al., 2000; Barton et al., 2012) and colorectal cancer (Guinney et al., 2015).
The subsequent step of such studies is the identification of subtype-specific
biomarkers to stratify treatment (Barton et al., 2012; Bramsen et al., 2017).
For that, the MTB Report should allow as cancer type input not only tumor
types and tissues but also molecular subtypes. Yet, this will require a change
of paradigm, as ontologies do not include molecular/genetic subtypes (be-
sides some exceptions like breast cancer subtypes based on hormone receptor
status, or breast and ovarian hereditary cancers).

Regarding drugs, annotations are far less standardized. Databases such as
DrugBank, Chembl, PubChem or Target-based Classification of Drugs from
KEGG collect some standardized names and descriptions of drugs and their
targets. Yet, no ontology exists that integrates drug categories (e.g. FGFR
inhibitors), generic and commercial names of drugs, and compounds under
investigation. Still, publications seeking some kind of standardization invest
large efforts on in-house solutions (Griffith et al., 2013; Iorio et al., 2016;
Tamborero et al., 2018a; Piñeiro-Yáñez et al., 2018).
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8.1.4 Levels of Evidence

Levels of evidence serve for highlighting the strength of evidence supporting
the actionability of a variant and, hence, make the MTB Report easier to
interpret in terms of the significance of the clinical impact. Many other
classification systems have been proposed, and our 6-levels system is not a
substitute for any of those. It is rather an orientation tool from which clear
relations can be established to the other classification systems (as it was done
in Figure 6.4 to compare results of four studies analyzing the TCGA dataset).

The Association for Molecular Pathology, the American Society of Clinical
Oncology and the College of American Pathologists have recently proposed
a classification system for actionable variants in a joint effort to establish
recommendations for reporting somatic variants (Li et al., 2017). Li et al.’s
classification comprises six levels: A1, A2, B, C1, C2 and D. Compared to
our classification, A and B segregate more precisely our A1 level in terms of
approval-status (A1), professional guidelines (A2) and well-powered studies
with consensus from experts (B). C1 equals our B1, whereas C2 in our case is
further divided into A2, B2 and includes both clinical trials and case studies.
Finally, level D is equivalent to both A3 and B3. We can find in the literature a
large range of complexity regarding classification systems, from three simple
categories (targets of approved drugs, drugs under development, and VUS)
in Beltran et al. (2015), to ten categories in Van Allen et al. (2014). Between
these extremes, Meric-Bernstam et al. (2015b) and Horak et al. (2017) have
proposed similar six-level systems stressing the statistical soundness and
power of clinical trials to be able to justify the prescription of the drug.

Our six-level classification scheme emphasizes i) the strength of the clini-
cal evidence of the predictive association between the biomarker and the drug
(axis 1–3) and on ii) the activity in cancer type (axis A–B). The first, because
drug approval is crucial for drug prescription; the second, to better inform
about off-label use and expand the repurposing of drugs.

8.1.5 Report Design

The MTB Report design is one of the main features of the workflow. The report
is designed as a supporting tool for researchers, oncologists, pathologists,
bioinformaticians, who have to interpret results from NGS technologies in
search for actionable variants. Therefore, it includes the maximum knowledge
relevant for assessing the actionability of variants but keeping the presentation
as simple and compressed as possible. The report includes a disclaimer of
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liability withdrawal, as it not a clinical test and is, hence, intended for research
use only.

To allow an intuitive reading of the report, a first table summarizes the
genes found to be actionable. In this table, information on the allelic frequency
of the variant, allelic status and the quality of the variant is provided. For
CNVs, we report the segment mean and the size of the segment. However, in
the iMTB Report the information provided can be customized according to
user’s preferences.

The main table contains the predictive associations between the identified
actionable variants and drugs. The table is sorted according to drug frequency
because it was shown to be more convenient for interpreting the therapeutic
options. Sorting by levels of evidence scatters the drugs along the table, which
complicates the interpretation. However, genes might be repeated along the
table. In this respect, the iMTB-Report implementation allows a more flexible
and user-oriented experience. The user can decide to sort the findings in the
interactive table according any variable or to filter the results to only one level
of evidence. Nevertheless, the static version of the report with the date of
issue is a general practice for medical records and that is the reason why the
MTB Report (and not a CSV or the interactive web-based tool) is the main
output of the workflow (Li et al., 2017).

As the use of NGS has entered clinical practice, guidelines and recom-
mendations for reporting this kind of data have been published. The MTB
Report adopted a great number of such recommendations. Although mainly
addressed at germline variants, some of the reporting recommendations of
Richards et al. (2008, 2015) are universal. Tables are recommended for large
numbers of results (e.g. NGS tests) as they are able to convey any informa-
tion in a simple format. Essential components that should be included are:
variant, gene, disease, allele frequency, tumor content and variant classifica-
tion. The report should keep record of the method (sequencing technique,
bioinformatics software, interpretation) and the version of any databases used
to provide the possibility to reanalyze in the future and to reproduce past
analyses. Any variant classification (levels of evidence in the MTB Report)
should be supported by literature. Recommendations for the design of molec-
ular genetic reports (Suthers, 2009) were incorporated in the MTB Report
design: provide consistent and informative headings, limit the information
under each heading, provide visual clues to the structure of the report, set
the context, meet the needs of other readers and keep the report length to
the minimum. Matthijs et al. (2016), on behalf of EuroGentest and the Eu-
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ropean Society of Human Genetics, coincide in this point, and also in the
minimum content of the report: laboratory, patient identification, sample
type, context (e.g. diagnosis), test description and results. Furthermore, they
state that laboratories need to define the list of variants being tested and
need to have an automated system to match patients and variants to allow
a re-classification if necessary (Bowdin et al., 2016), both statements being
fulfilled by the MTB Report. Finally, the discussion of whether VUS should
or should not be reported is left to the laboratory’s choice. Nevertheless, the
choice should be stated beforehand and it is, in general, recommended to do
so under a separate category (Matthijs et al., 2016; Li et al., 2017).

One of the main shortcomings of the MTB Report is the lack of genomic-
level annotations of the variants. If provided as input, it is possible to include
genomic and coding annotations in the first table containing the summary
of the actionable variants. However, the incorporation of this information to
unambiguously match patient’s variants requires the use of HGVS standards
by the databases used by the MTB Report, which only CIViC does. Future re-
leases of the workflow should include new databases (e.g. Cancer Biomarkers,
OncoKB) in which standard annotations are provided; more will be discussed
in §8.1.6.

8.1.6 Databases for the Interpretation of Actionable Variants

Interpretation of genomic data requires to keep up with a combination of
knowledge on different areas such as molecular biology, oncology, pathology,
bioinformatics and genomics. Since 2011, My Cancer Genome (https://www.
mycancergenome.org/) has offered a synthesis of the most relevant literature
on all these areas. Though it is still one of the most used resources to guide
genomics-driven therapies, the data is not structured and informatics tools
can not systematically parse the information. Since approximately 2014, there
has been an important development of genomics-driven oncology, which is
reflected by the number of databases with a very similar scope being published
within the last couple of years (notice in Table 2.1 the year of publication of
the databases under the category Clinically actionable variants (biomarkers)).
Unfortunately, little overlap has been observed among databases of actionable
variants (Griffith et al., 2017).

Between 2015 and 2016, GDKD and CIViC set the precedent for the cura-
tion of actionable somatic variants in cancer. The MTB Report was to a large
extent developed around these two knowledge resources. Since then, many
other databases have emerged that use similar annotation layers: JAX-CKB,

https://www.mycancergenome.org/
https://www.mycancergenome.org/
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OncoKB, PMKB, Cancer Biomarkers, myvariant.info (Xin et al., 2016), DEPO
(Sun et al., 2018), among others. The Cancer Genome Interpreter has par-
tially overtaken the principle of GDKD and recently published a web-tool
that hosts the Cancer Biomarkers database, which is an improved version
of GDKD in terms of annotations (it uses complete genomic annotations, in-
house drug and cancer type taxonomies) and accessibility (Tamborero et al.,
2018a). Institutions behind several of these databases have gathered in the
Variant Interpretation for Cancer Consortium (http://cancervariants.org/).
Created as a working group under the umbrella the Global Alliance for Ge-
nomics Health, their aim is to integrate individual databases (CIViC, OncoKB,
PMKB, MolecularMatch, JAX-CLKB, Cancer Biomarkers and BCCancer) into
a cross-knowledgebase platform 3 and set standards for the community to
share, organize and collect this kind of data. The natural course of the MTB
Report will be to incorporate those databases that are regularly updated and
maintained. Though time will show which databases will be able to get the
institutional support required, such cross-institution efforts will improve sus-
tainability, standardization and accessibility of cancer variants’ actionability
knowledge.

8.1.7 Tools for the Interpretation of Actionable Variants

Recently, several computational algorithms have been added to the toolbox
of matching genomic alterations to drugs. These tools are comparable to the
MTB Report, as they are oncology-focused, allow a multi-query of genomic
variants against selected knowledge bases and apply certain heuristic rules
or prediction algorithms to prioritize drugs. With regard to approved drugs,
all tools rely on the same resources. However, to expand the therapeutic
landscape, each tool follows a particular approach. PanDrugs uses multiple
resources and puts emphasis on pathway repurposing (Piñeiro-Yáñez et al.,
2018). The Cancer Genome Interpreter identifies driver variants and uses
the Catalog of Validated Oncogenic Mutations and the Cancer Biomarkers
database, which they also maintain, to identify actionable driver variants
(Tamborero et al., 2018a). The Personal Cancer Genome Reporter (Nakken
et al., 2017) integrates several databases and performs annotations for which
VCF files are required as input. The workflow is distributed with Docker
technology, a solution that might be very useful for the inclusion in in-house
pipelines but requires of programming expertise. Therefore, this solution does
not encourage other potential target users such as clinicians or researchers

(3) alpha version available under https://search.cancervariants.org

https://search.cancervariants.org
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without computational support. The IMPACT pipeline (Hintzsche et al., 2016)
and web portal (Hintzsche et al., 2018) have a strong focus on pharmacoge-
nomic (drug-target) interactions. In contrast, the MTB Report focuses on
evidence-based actionable variants and provides an expanded catalog by re-
porting cancer type repurposing and low evidence levels (case studies and
preclinical evidence). The iMTB-Report has the benefits of an online web page
distribution through the institute web page, but can also be run or installed
locally with the Shiny app distributed in GitHub.

Interestingly, from those actionable variants missed by the MTB Report
compared to the experts’ suggestions, LCK would have been matched to dasa-
tinib by IMPACT (as well as to other 15 approved drugs and 7 investigational)
and by PanDrugs (as well as to other 4 approved drugs, 40 in clinical trials
and 73 experimental), as they include target-drug databases. NTRK3 R116W
would have been matched to larotrectinib (resistance) and to novel receptor
tyrosine kinase inhibitors by the Cancer Genome Interpreter upon activating
aminoacid change repurposing (allowed in MTB Report), and to IGF1R in-
hibitors, PI3K inhibitors and midostaurin upon variant type repurposing (not
allowed in MTB Report). Yet, these comparisons are time-biased, as all MTB
Reports presented here were performed with database versions from 2014 to
June 2017, and, for instance, the sources supporting NTRK3 actionability in
SNVs date from the end of 2017 (Drilon et al., 2017). Indeed, this evidence is
now included in CIViC and thus, would be now identified by the MTB Report.
As for PTPRJ and PTPN12, which were suggested based on indirect targeting
rationale, PanDrugs was not able to identify drugs that indirectly target these
genes. In light of these findings, we believe that including drug-target interac-
tions and a pathway visualization could be highly informative for direct and
indirect targeting.

8.2 Challenges of Genomics-driven Oncology

Genomics-driven oncology needs the expertise on how to combine the data,
knowledge, technical and biological tools that are available. We regard the
MTB Report presented here as a small but crucial piece in a larger preci-
sion medicine workflow. Such a workflow has to ensure efficient sequencing
of patients’ samples, accurate bioinformatic processing of the data, clini-
cally meaningful interpretation of the results, decision-making based on the
integration of all available data of the patient, pursuing of follow-up and,
finally, using this information for interpreting future patients (Hyman et al.,
2017). In this section, some relevant challenges for the implementation of
genomics-driven oncology are discussed.
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8.2.1 Clinical Trials Accessibility

Our initial results demonstrate the potential of WGS/WES to perform genomics-
driven cancer treatment and justify the systematic evaluation of the clinical
utility of such reporting workflows in larger cohorts of cancer patients. Other
studies have forecasted similar numbers of patients with actionable variants
(Schwaederle et al., 2015a; Beltran et al., 2015; Van Allen et al., 2014; Rennert
et al., 2016; Schuh et al., 2018). Conversely, the actual number of patients
treated with genomics-driven therapies is known to be highly depending on
the availability of genomically-matched clinical trials. For instance, large
clinical trials, such as SHIVA, MD Anderson Cancer Center or NCT-MASTER
have been able to assign around 40% of tested patients to matched clinical
trials (Le Tourneau et al., 2015a; Meric-Bernstam et al., 2015a; Tsimberidou
et al., 2014; Horak et al., 2017). However, other studies reported numbers
limited to 5-20%, mainly due to lack of clinical trial access, individual prefer-
ences and patient deterioration (Beltran et al., 2015; Sohal et al., 2016; Zehir
et al., 2017; Massard et al., 2017).

Several aspects render clinical trial enrollment difficult. Most actionable
variants are present in a small proportion of patients, hindering the achieve-
ment of large sample sizes. In contrast, for a patient with a rare mutation,
it may be geographically difficult to participate in a genomically-matched
clinical trial. The first step towards a solution is to accommodate the design of
clinical trials to the new precision medicine paradigm. New early phase clini-
cal trials are designed to minimize sample sizes to provide proof-of-concept
for larger randomized designs (Dienstmann et al., 2015b). Next, robust com-
putational methods are needed to match patients with rare mutations to
genomically-matched clinical trials (Eubank et al., 2016) and harmonize ge-
nomic and clinical trial data registries (Siu et al., 2016). Finally, multi-center
trials and data sharing across institutions could increase patient recruitment.
However, incompatible electronic clinical information systems and acquisi-
tion and shipment of biomaterial pose major logistic barriers (Rubin, 2015;
Horak et al., 2017).

8.2.2 Precision Medicine Infrastructures and Treatment Algorithms

Institutional bioinformatic pipelines have been developed in the context
of precision medicine clinical trials to deal with genomic data analysis, in-
tegration with clinical information, interpretation to guide treatment and
matching to clinical trial arms. Some of these tests, infrastructures, platforms
or algorithms have been published, as EXaCT-1 (Rennert et al., 2016), MSK-
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IMPACT (Cheng et al., 2015) and GeneMed (Zhao et al., 2015). GeneMed was
developed in order to manage the NCI trials MPACT and MATCH (Coyne
et al., 2017) and has also been implemented as a distributable system, Open-
GeneMed, which allows for customization of study-specific rules to define
actionability (Palmisano et al., 2017). Knowledge and Data Integration (KDI)
was developed for SHIVA and RAIDS trials as a data analysis and integration
platform (Servant et al., 2014). Any precision medicine infrastructure uses
databases for variant annotation and includes rules to match genomic variants
to therapies. In this context, tools like the MTB Report could prove useful to
standardize this step of data analysis.

An interesting reflection arose from this precision medicine effort, claim-
ing that what genomics-driven trials actually test is the efficiency of the
treatment algorithm designed to assign therapies based on molecular data
(Le Tourneau et al., 2015b). There is a thin line to decide whether or not a
bioinformatic pipeline (or data infrastructure) is a treatment algorithm. A
treatment algorithm incorporates expert rules into the NGS bioinformatic
pipeline with the final aim of assigning a treatment to a patient. At the same
time, it ensures standardization and reproducibility by regulating technical
aspects such as minimum coverage, allele frequency, fold change, size of am-
plicons, prediction scores, etc., making them more suitable for clinical trials.
On the other hand, reporting tools such as the MTB Report display all the
treatment options based on NGS results and leave the decision to the liable
person. There is room for variability between reporting tools with regard to
the databases used, the prioritization rules, and the visualization approaches.

8.2.3 Ethical Concerns on Secondary Genomic Findings

As germline DNA is required for a proper identification of somatic variants,
this poses an ethical dilemma on whether or not the consequences of germline
variants (e.g. predisposition to hereditary diseases) should be tested for and
returned to the clinician and the patient (Lolkema et al., 2013). Issues such
as privacy, potential benefit to the patient and informed consent should be
carefully balanced. The American College of Medical Genetics and Genomics
seems to have reached a consensus with regard to a minimum list of genes
in which secondary genomic findings should be returned in a clinical setting.
The list of 59 medically actionable genes has recently been published (see
Table 1 in Kalia et al. (2017)). The list focuses on variants with high penetrance
and includes few genes predisposing to hereditary cancers (e.g. BRCA1/2,
RET, TP53).
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As noticed by Biesecker (2018), many laboratories offering gene panel
tests (e.g. gene panels for autism, cardiovascular and cancer diseases) actually
perform WES but disclose only a subset of genes relevant to one disease. The
author refers to these practices as exome slices or virtual panels and suggests
that, as long as the 59 genes are tested for in the sequencing (as it happens in
WES and WGS), the recommendations for secondary findings should apply
and mutations in the 59 genes should be disclosed. Likewise, though the
focus of the MTB Report is on cancer-related genes, as long as the input would
comprise any of the 59 genes, they should be returned. Such a list of genes
could easily be included as an appended table in the report.

8.2.4 Further Approaches to Tumor Treatment

Sequencing of cell-free Circulating Tumor DNA (ctDNA) –also known as liq-
uid biopsy– is emerging as a less invasive method suitable for diagnostic
purposes, for following the course of the disease or the treatment response.
It is still under discussion whether this technique is also appropriate for
diagnostic purposes and selection of therapy. Though high concordance
between plasma-based and tissue-based NGS has been shown for genomic
predictive biomarkers (Lebofsky et al., 2015; Kim et al., 2017; Zill et al.,
2018), other publications have shown poor concordance (Barata et al., 2017;
Kuderer et al., 2017). Most likely, the complexity risen due to the dynamic
evolutionary nature of tumors makes very difficult to capture in a snapshot
(biopsy) both clonal and subclonal mutations, leading to the observed poor
concordance. In a similar fashion, DNA, RNA, proteins and lipids extracted
from tumor-derived exosomes or microvesicles can be used to profile tumors
in a less-invasive multi-omics way (Hoshino et al., 2015; Menck et al., 2017).

Organoids (3D cell cultures, in this case, derived from tumor cells of a
patient) emerge as a feasible technique to perform screening of drugs selected
based on NGS data in clinical applications. The results of such screening can,
in turn, be tested in vivo in Patient-derived Xenografts (PDX) models. PDX
have been used in preclinical studies and are now starting to be employed in
observational and some interventional trials as avatars to test drug response in
vivo (NCT03134456, NCT02720796). However, high technical complexity, low
engrafting rates, and high costs will most likely prevent PDX from becoming
common in clinical practice. However, neither PDX nor organoids provide an
accurate model of immune and vascular microenvironment (Pauli et al., 2017;
Dienstmann and Tabernero, 2017).

The interaction of tumor cells with other cell types, such as those present
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in the microenvironment and immune infiltrates, have been shown to have
important effects on shaping tumor response to therapies (Hanahan and
Weinberg, 2011; Prahallad et al., 2012; Blank et al., 2016; Tamborero et al.,
2018b). These interactions play an important role in immunotherapies, which
have led to durable responses and long-term remissions across tumor types
(Le et al., 2015; Sharma and Allison, 2015a). Efforts are focused now on
identifying biomarkers for immunotherapies (e.g. mutational load, PD-L1
expression, immune gene signatures, immune infiltrates (Gibney et al., 2016)),
elucidation of mechanisms of resistance to immunotherapies and finding
the right combination regiments (e.g. blocking two immune checkpoints
with PD-1 and CTL4 inhibitors or blocking an immune checkpoint and one
genomic vulnerability with CTL4 and BRAF inhibitors) (Sharma et al., 2017).
Indeed, combinations of targeted therapies and immune checkpoint therapies
are envisioned to have a synergistic effect that would i) improve median OS
and ii) increase the number of patients with durable responses (Sharma and
Allison, 2015b).

8.3 Perspectives of the Molecular Tumor Board Report and of

Genomics-driven Oncology

The current applications of the MTB Report are restricted to genomic alter-
ations that predict response to mono-therapies. As more and more patients are
developing drug resistance (Greaves, 2015, 2018), the databases are starting
to include genomic alterations that predict response to combination ther-
apies, drug response given a secondary alteration, thus complicating the
interpretability of the reports and drug prioritization. Furthermore, databases
also include genomic alterations that predict response –and resistance– to
immunotherapies. Unfortunately, the degree to which low response rates, de-
velopment of resistance, interaction with tumor microenvironment and high
toxicity of drug combinations will impact the benefit achieved by genomics-
driven medicine remains unclear. An important issue, especially with drug
combinations, is to ascertain the best combination at the right dose that leads
to higher response rates. However, to our best knowledge there is no resource
that records drug response rates in patients cohorts matched to genomic
profiles.

Although this thesis’ focus has been on somatic variants, germline vari-
ants can further expand the actionability landscape of cancer patients (be-
sides informing about syndrome predispositions and pharmacodynamics)
(Mandelker et al., 2017). As shown by Pritchard et al. (2016), metastatic
prostate cancers present actionable germline mutations in BRCA1, BRCA2
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and ATM genes; and tumors with mismatch repair deficiencies may benefit
from anti-checkpoint blockade immunotherapies (Le et al., 2015). Besides ge-
nomic alterations, cancer is also driven by epigenomic regulatory alterations,
RNA editing, alternative splicing, post-translational alterations, etc. Thus,
multi-omics integration will be able to provide more information on a tumor’s
actionability landscape than a single level (e.g. DNA). Such integration of data
originated from different molecular levels requires systems biology approaches
that take into account prior knowledge to construct complex networks of
molecular interactions using mathematical models. However, to begin with,
RNA-Seq could prove useful to define pathway activation and target expres-
sion. Indeed, mutational status is often not enough to support the use of a
drug, and functional data is required to measure the transcription of mutant
and wild-type alleles. Furthermore, RNA-Seq is better suited to detect fusion
genes than DNA sequencing. A combination of both DNA- and RNA-Seq can
provide a comprehensive view suitable for clinical translation (Roychowdhury
et al., 2011; Roychowdhury and Chinnaiyan, 2016).

Furthermore, the distribution of tumor mutations presents a long tail of
rare mutations that are still incompletely characterized (Chang et al., 2018a).
Sharing genomic data will accelerate the identification of rare mutations,
thereby expanding the reach of precision oncology in patients with cancer.
However, many other factors influence the course of a disease and treatment
response. Coupling genomic data to follow-up, treatment, diagnosis, family
history, and other kinds of data (diet, environment, etc.) increase the potential
of precision medicine (Rubin, 2015; Hyman et al., 2017). The use of medical
informatics infrastructure, algorithms and machine learning, will help to
find similar patients and design a personalized treatment strategy (Eubank
et al., 2016; Shameer et al., 2017). In turn, these predictions can be tested
in vitro and in vivo to select the optimal combinations that will tackle all
vulnerabilities (Hyman et al., 2017; Dienstmann and Tabernero, 2017). We
envision the MTB Report as one piece of such precision medicine framework
that takes advantage of all available information and links it to scientific
evidence.





Chapter 9

Conclusions

As NGS technologies are becoming more sensitive and affordable, the knowl-
edge gathered on how specific mutations shape tumor development and
treatment response has grown to a large extent. Clinical implications of
genomic variants had thus become unmanageable in practical terms. One
important branch of precision medicine deals with the use of genomic data
to guide cancer treatment. The main contribution of this thesis towards this
field has been the development of a workflow aimed at reducing the workload
that represents finding the clinical implications of genomic data for a bioin-
formatician, oncologist or researcher. The MTB Report workflow interrogates
somatic variants using public databases of actionable variants. The MTB
Report delivers a filtered list of somatic actionable variants in a report with
the supporting evidence that indicates the actionability strength and context.

The MTB Report showed high concordance with experts’ manual interpre-
tations and identified a comprehensive landscape of actionable variants of a
patient’s tumor. The proposed approach expands the number of actionable
variants by including investigational drugs and applying relaxed repurposing
rules. Hence, as it was shown in the analysis of two large public datasets
(TCGA and GENIE), a significant fraction of patients can get treatment rec-
ommendations guided by genomic data. Of course, all MTB Report findings
have to be rated and reevaluated for their therapeutic impact with regard to
the clinical history of each patient, as the efficacy of off-label use of targeted
drugs is still under discussion.

In the anticipation of a widespread use of clinical sequencing, this study
provides a proof of concept for the utility of the MTB Report for the clinical
interpretation of genomic data. Despite its limitations, this is one of the first
workflows fully available to the research community for the identification
of actionable variants. The implementation of the workflow as a web tool
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increased end-user feedback and will help in evaluating the extent to which
the tool facilitates interpretation of NGS studies.

For a valid interpretation of genomic data with regard to the actionability
of mutations, it is necessary to accommodate public databases into the same
organizational scheme. The dependence of the workflow on up-to-date knowl-
edge databases is an obvious caveat and appears as a prospective challenge.
Therefore, integrative efforts are needed to standardize and maintain the
curation of actionable variants’ knowledge. Also, further effort should be
dedicated to include enrollment suggestions for open genome-guided clinical
trials, interpretation of germline variants, prioritization in cases in which
many actionable variants co-occur and integration with other omics data.

In conclusion, this work demonstrates the potential of combining public
resources with a bioinformatic workflow to translate complex genomic pro-
files into a format suitable for clinical interpretation. Availability of source
code and open access databases enables reproducibility, transparency, cus-
tomization, knowledge sharing.
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Table A.2: Companion diagnostics in oncology approved by FDA, July 2018. Table mod-
ified from https://www.fda.gov/Drugs/ScienceResearch/ucm572698.htm. Abbreviations:
expr. (=expression) indicates that the biomarker is not measured at DNA level; (-) indicates
that biomarker negative status is used for that indication; HR, hormone receptor including ESR
(estrogen receptor) and PGR (progesterone receptor); APL, acute prolymphocytic leukemia;
HES, Hypereosinophilic syndrome; CEL, chronic eosinophilic leukemia; MDS, myelodysplastic
syndrome; MPD, myeloproliferative disorders.

Cancer type Biomarker Biomarker
type

Drugs

ALL BCR-ABL1 (-) biomarker Blinatumomab
BCR-ABL1 target Dasatinib; Imatinib; Ponatinib

AML FLT3 target Midostaurin
IDH2 target Enasidenib

APL PML-RARA biomarker Arsenic Trioxide; Tretinoin
Breast BRCA biomarker Olaparib

ERBB2 (-) biomarker Abemaciclib; Everolimus; Fulvestrant;
Palbociclib; Ribociclib

ESR (expr.) biomarker Abemaciclib; Everolimus; Palbociclib
HR (expr.) biomarker Lapatinib; Ribociclib; Tamoxifen
HR (expr.) (indirect) target Anastrozole; Exemestane; Letrozole
ERBB2 target Ado-Trastuzumab Emtansine; La-

patinib; Neratinib; Pertuzumab;
Trastuzumab

ESR, PGR (expr.) target Fulvestrant
Cancer MSI, MMR biomarker Nivolumab; Pembrolizumab
Cervical PD-L1 (expr.) (indirect) target Pembrolizumab
CLL Chr. 17p biomarker Ibrutinib

BCR-ABL1 target Ponatinib
CD20 (expr.) target Rituximab

CML BCR-ABL1 target Bosutinib; Dasatinib; Imatinib; Nilo-
tinib

Colorectal RAS (-) biomarker Cetuximab; Panitumumab
EGFR (expr.) target Cetuximab

Cutaneous T -
cell lymphoma

IL2RA (expr.) target Denileukin Diftitox

Gastric adenoc. ERBB2 target Trastuzumab
GIST KIT (expr.) target Imatinib
HES/CEL FIP1L1-PDGFRA target Imatinib
MDS/MPD PDGFRB target Imatinib
Melanoma BRAF (-) biomarker Nivolumab

BRAF target Cobimetinib; Trametinib; Vemu-
rafenib; encorafenib; binimetinib;
dabrafenib

Non-Hodgkin
lymphoma

MS4A1 (CD20)
(expr.)

target Rituximab

NSCLC PD-L1 (expr.) (indirect) target Pembrolizumab
ALK target Alectinib; Brigatinib; Ceritinib; Crizo-

tinib
BRAF target Dabrafenib; Trametinib
EGFR target Afatinib; Erlotinib; Gefitinib; Osimer-

tinib
ROS1 target Crizotinib

Ovarian BRCA biomarker Olaparib; Rucaparib
Thyroid cancer BRAF target Dabrafenib; Trametinib
Urothelial carc. PD-L1 (expr.) (indirect) target Pembrolizumab

https://www.fda.gov/Drugs/ScienceResearch/ucm572698.htm
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Table A.3: MAF variant types. List of possible variant categories in MAF file format and
their description. Information taken from https://gatkforums.broadinstitute.org/gatk/

discussion/comment/35514

MAF Variant type Description

Intron variant lies between exons within the bounds of the chosen tran-
script

5’UTR variant is on the 5’UTR for the chosen transcript
3’UTR variant is on the 3’UTR for the chosen transcript
IGR intergenic region. Does not overlap any transcript
5’Flank the variant is upstream of the chosen transcript (within 3kb)
3’Flank the variant is downstream of the chosen transcript (within 3kb)
Missense_Mutation the point mutation alters the protein structure by one amino acid
Nonsense_Mutation a premature stop codon is created by the variant
Nonstop_Mutation variant removes stop codon
Silent variant is in coding region of the chosen transcript, but protein

structure is identical. I.e. a synonymous mutation
Splice_Site the variant is within two bases of a splice site. See the secondary

classification to determine if it lies on the exon or intron side.
In_Frame_Del deletion that keeps the sequence in frame
In_Frame_Ins insertion that keeps the sequence in frame
Frame_Shift_Ins insertion that moves the coding sequence out of frame
Frame_Shift_Del deletion that moves the coding sequence out of frame
Start_Codon_SNP point mutation that overlaps the start codon.
Start_Codon_Ins insertion that overlaps the start codon.
Start_Codon_Del seletion that overlaps the start codon.
De_novo_Start_In
Frame

New start codon is created by the given variant using the chosen
transcript. However, it is in frame relative to the coded protein.

De_novo_Start_Out
OfFrame

New start codon is created by the given variant using the chosen
transcript. However, it is out of frame relative to the coded
protein.

RNA variant lies on one of the RNA transcripts.
lincRNA variant lies on one of the lincRNAs.
Translation_Start_Site initiator_codon_variant, start_lost

https://gatkforums.broadinstitute.org/gatk/discussion/comment/35514
https://gatkforums.broadinstitute.org/gatk/discussion/comment/35514
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Table A.4: List of actionable genes in-
cluded in each database. Acronyms are
used to indicate each database: G, GDKD;
C, CIViC; T, TARGET; M-B, Meric-Bernstam
et al. (2015b). Genes with * were added upon
expert suggestion.

Gene G C T M-B.

ABCB1 X
ABCC10 X
ABCC3 X
ABL1 X X X X
AGR2 X
AKT1 X X X X
AKT2 X X X X
AKT3 X X X X
ALCAM X
ALDH1A2 X
ALK X X X X
APC X X X
AR X X X X
AR-V7 X
ARAF X X X X
AREG X X
ARID1A X
ASNS X
ATM X X X X
ATR X X X X
ATRX X
AURKA X X X X
B2M X X
BAP1 X X X X
BCL2 X X X X
BCOR X
BCR X X X X
BIRC5 X
BIRC7 X
BRAF X X X X
BRCA1 X X X X
BRCA2 X X X X
BRD2 X
BRD3 X
BRD4 X X X
BTK X X
c15orf55 X
CALR X

Continued. . .

Gene G C T M-B.

CASP8 X
CBL X X
CBLC X
CCND1 X X X X
CCND2 X X X
CCND3 X X X X
CCNE1 X X X X
CD274 X X
CD44 X
CDH1 X
CDK12 X X X
CDK4 X X X X
CDK6 X X X X
CDKN1A X X X
CDKN1B X X X X
CDKN2A X X X X
CDKN2B X X X X
CDKN2C X X
CEBPA X X
CFLAR X
CHEK2 X X
COL1A1 X
CRKL X
CRLF2 X
CSF1R X X X
CSF3R X
CTLA4 X
CTNNB1 X X X
CXCR4 X
DDR2 X X X X
DDX43 X
DEFA1 X
DKK1 X
DNMT1 X
DNMT3A X X X X
DPYD X
DUSP6 X
ECSCR X
EGF X X X
EGFR X X X X
EIF4EBP1 X
EPAS1 X
EPHA2 X
EPHA3 X X X

Continued. . .
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Gene G C T M-B.

EPHB4 X
ERBB2 X X X X
ERBB3 X X X X
ERBB4 X X X X
ERCC1 X X
ERCC2 X X X
ERCC4 X
ERCC6 X
EREG X X
ERG X
ERRFI1 X X
ESR1 X X X X
ETS2 X
EZH2 X X X X
FANCA X
FANCC X X
FAT1 X
FBXW7 X X X
FCGR3A X
FGF2 X X
FGF3 X X X
FGF4 X X
FGFR1 X X X X
FGFR2 X X X X
FGFR3 X X X X
FGFR4 X X
FLCN X X
FLT3 X X X X
FNTB X
FOS X
FOXA1 X
FOXP3 X
FRS2 X
GAS6 X
GATA2 X
GATA3 X
GNA11 X X X X
GNAQ X X X X
GNAS X X X
GSTP1 X
HAVCR2 X
HDAC2 X
HGF X X X
HIF1A X

Continued. . .

Gene G C T M-B.

HLA-C X
HLA-DRA X
HMOX1 X
HRAS X X X X
HSPA5 X
HSPB1 X
HSPH1 X
IDH1 X X X X
IDH2 X X X
IGF1R X X X X
IGF2 X X X
IL7R X
INI1 X
INPP4B X
JAK1 X X X
JAK2 X X X X
JAK3 X X X
JUN X
KDR X X X X
KIAA1524 X
KIT X X X X
KRAS X X X X
LRP1B X X
MAGEH1 X
MAP2K1 X X X X
MAP2K2 X X X
MAPK1 X X X
MAPK3 X
MCL1 X X
MDM2 X X X X
MDM4 X X
MED12 X
MERTK X
MET X X X X
MGMT X X
MITF X X
MLH1 X
MLL X X X
MLL2 X
MMP2 X
MMP9 X
MPL X X X
MRE11 X
MSH2 X

Continued. . .
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Gene G C T M-B.

MSH3 X
MSH6 X
MTAP X
MTHFR X
MTOR X X X X
MYC X X
MYCL X
MYCN X X
MYD88 X X X
NAPRT X
NF1 X X X X
NF2 X X X X
NOTCH1 X X X X
NOTCH2 X X X
NPM1 X X X X
NQO1 X
NRAS X X X X
NRG1 X X
NT5C2 X
NT5E X
NTRK1 X X X
NTRK3 X X X X
PAK1 X
PALB2 X X X
PBK X
PBRM1 X
PDCD4 X
PDGFRA X X X X
PDGFRB X X X X
PDPK1 X
PGR X
PIK3CA X X X X
PIK3CB X X X
PIK3R1 X X X X
PIK3R2 X X
PLCG2 X
PML X X X
PMS2 X
POLE X X
POU5F1 X
PPP1R15A X
PRKAA2 X
PRKCH X
PROM1 X

Continued. . .

Gene G C T M-B.

PTC1 X
PTCH1 X X X X
PTEN X X X X
PTGS2 X
PTP4A3 X
PTPRB X
PTPRD X X
PTPRT X
RAB35 X
RAC1 X X
RAD23B X
RAD50 X X
RAD51 X
RAD51C X
RAF1 X X X X
RARA X X X
RB1 X X X
RET X X X X
RHEB X
RICTOR X X X
RIT1 X
RNF43 X X
ROBO4 X
ROS1 X X X X
RPS6 X
RRM1 X
RRM2 X
RSF1 X
RSPO2 X
RUNX1 X X
SERPINB3 X
SETD2 X
SF3B1 X X
SGK1 X
SH2B3 X
SIRT1 X
SLCO1B1 X
SLFN11 X
SMAD4 X
SMARCA1 X
SMARCA4 X X X
SMARCB1 X X X
SMO X X X X
SOCS1 X

Continued. . .
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Gene G C T M-B.

SOX10 X
SRSF2 X
STAG2 X X
STAG3 X
STK11 X X X X
STMN1 X
SUZ12 X
SYK X X X X
TBK1 X
TET2 X X
TFF3 X
TIMP1 X
TMPRSS2 X X
TOP1 X
TOP2A X X X
TP53 X X X
TSC1 X X X X
TSC2 X X X X
TUBB3 X
TYMS X
U2AF1 X
UGT1A X
UGT1A1 X
VEGFA X X
VHL X
WEE1 X
WT1 X
XPO1 X
XRCC1 X
ZEB1 X
ZNRF3 X X
ABL2 X
AURKB X
AURKC X
CBFB X
DDR1 X
DOT1L X
FLT1 X
FLT4 X
HDAC9 X
KMT2A X
MAP2K4 X
MAP3K1 X
MAP3K4 X

Continued. . .

Gene G C T M-B.

MAPK8 X
NOTCH3 X
NOTCH4 X
PDGFB X
PIK3CD X
PTPN11 X
SRC X
FGF1 X*
EGF1 X*
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Figure A.1: Percentage of patients per gene showing top ten genes at each level of evidence
in each tumor type. Level 2 is divided into three further groups: 2a (late clinical trials), 2b
(early clinical trials), and 2c (case reports).
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