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And I’m not happy with all the analyses
that go with just the classical theory,
because nature isn’t classical, dammit,
and if you want to make a simulation of nature,
you’d better make it quantum mechanical,
and by golly it’s a wonderful problem,
because it doesn’t look so easy.

RICHARD FEYNMAN





Abstract

This thesis is divided into two parts. Both of them investigate current topics in quantum in-
formation processing. The first employs super-resolving stimulated emission depletion (STED)
fluorescence microscopy for the characterization of solid-state spins as a resource for quantum
information processing. The other focuses on the high-fidelity control of single quantum bits.
In the first part, a custom built STED microscope is utilized to demonstrate imaging of the

“Stuttgart 1” (ST1) center with a spatial resolution unlimited by the diffraction of light. The bright
fluorescence of the ST1 center in combination with its spin properties make it a promising candidate
for quantum information processing and quantum sensing applications. Furthermore, the STED
imaging of nitrogen vacancy (NV) center based fluorescent nuclear track detectors is presented.
Here, the increased resolution could enable the extraction of the vacancy diffusion coefficient in
diamond with high precision. Additionally, an improved understanding of the absorption process
of ionizing radiation in matter might by obtained by the imaging of sub-cascade events. While the
first is a crucial property in the generation process of NV center based quantum registers, the later
is of importance in radiation treatment.
In the second part, a recently proposed universal set of single-qubit superadiabtic geometric

quantum gates (SAGQGs) is realized with a fidelity exceeding the error threshold for the efficient
implementation of quantum error correction codes. Even though demonstrated for the NV center
in diamond, the SAGQG can be realized with any quantum system featuring sufficient control
of the driving field parameter. Additionally, a standardized benchmarking analysis is proposed,
which identifies the most robust combination of quantum gates for a given set of modalities. It is
shown that the most robust universal set of gates is in general not realized by a single quantum
gate modality and varies with the physical platform. A systematic application of the benchmarking
analysis to currently available noise intermediate scale quantum registers offers the potential to
pave the way towards fault-tolerant quantum computation.
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1. Quantum information processing

The foundations of quantum information processing dates back to the 1980’s. R. Feynman high-
lighted that, due to discretization, classical computers are insufficient in simulating physics [1].
Instead he suggested that a probabilistic computer based on the laws of quantum mechanics needs
to be utilized to describe nature precisely. D. Deutsch was the first to extend the possible range
of applications to certain numeric problems promising a significant (exponential) speed up with
respect to classical computers [2]. Today, computational problems theoretically benefiting from
quantum supremacy [3] include, e.g., the prime factorization (Shor) [4], the search in an unsorted
database (Grover) [5] and combinatorial optimization problems (e.g., travelling salesman problem)
[6]. While the first represents the backbone of modern cryptography the two later might be-
come powerful tools for big data applications. However, the full potential of universal quantum
computers is not yet revealed and is an active field of research.
Experimental advances in the coherent control of quantum systems like cold atoms, supercon-

ducting qubits and solid-state spins paved the way for nowadays quantum registers. Scalable
quantum computation is not yet achieved but state-of-the-art quantum annealer provide in the
order of O(103) physical quantum bits (qubits) [7], while circuit based computer approach in the
range of O(102) physical qubits [8, 9]. Typically, the noise acting on the system increases with the
number of qubits. Hence, quantum register in the current era are sometimes referred to as noisy
intermediate scale quantum computers (NISQs) [10]. Two main challenges need to be solved in
order to realize universal quantum computation. First, a further scaling of the number of qubits
is necessary in order to tackle relevant problems inaccessible for modern super computers. E.g.,
the prime factorization of a 430-bit (130 digit) number requires in the order O(109) gate opera-
tions and 2, 150 computational quantum bits. Protection against decoherence by quantum error
correction codes (QECCs), might increase the number of required physical qubits to O(106) [11].
Second, quantum gates with an error rate between 10−2 and 10−6 need to be reliably implemented
for QECC to become efficient [11, 12].

1.1. Quantum bit operations

A classical bit can take either of the binary values 0 or 1. In contrast a qubit may occur in any
superposition of its to two computational states |0〉 and |1〉. The state of a qubit

|ψ〉 = cos θ/2 |1〉+ eiϕ sin θ/2 |0〉 , (1.1)

is defined by two continuous variables θ and ϕ, representing a two-dimensional state space. The
angles θ and ϕ might be utilized to illustrate the quantum state as a unit vector on the Bloch-
sphere (Fig. 1.1.a). The poles of the sphere represent the pure states |0〉 and |1〉, respectively. In
spherical coordinates θ represents the polar angle and ϕ the azimuth. Analogously to classical
logic gates, quantum gates (QGs) are the building blocks of computation in circuit based quantum
computation. Classical strategies compensating for errors in the gate realization are prohibited by

3



1. Quantum information processing

Figure 1.1.: Bloch sphere picture. (a) The state |ψ〉 of a qubit can be represented as a vector on the
Bloch sphere defined by the two angles θ and ϕ. (b) The Pauli-X gate rotates the initial
state |ψi〉 around the x-axis (blue arrow) by an angle of π.

the quantum “no-cloning theorem” [13, 14].

One distinguishes quantum gates acting on single and multiple qubits. It can be shown that
only two non-commuting single and one non-trivial two-qubit gates are needed to realize universal
quantum computation (Sec. 1.1.3).

1.1.1. Single qubit quantum gates

While the control of a single classical bit only requires the logical NOT-operation, the control of a
quantum bit is more demanding. QGs are described by an operation U transferring the input state
|ψi〉 of a qubit to an well-defined output state |ψf 〉 = U |ψi〉. U can be visualized as a rotation of
the state vector on the Bloch sphere by an angle θ around a well defined axis (Fig. 1.1.b). The
operation U is a unitary 2× 2 transformation.

The Pauli matrices form a basis of the four-dimensional complex vector space of all complex
2× 2 matrices [15]. Typically, they are denoted by σ and are explicitly written as:

σx =

0 1

1 0

 , σy =

0 −i

i 0

 , σz =

1 0

0 −1

 . (1.2)

Exponentiating iσ results in the special unitary group SU(2). Hence, any quantum operation can
be represented by the Pauli matrices. Throughout the thesis, the generalized expression utilized
to describe a rotation around n̂ by an angle θ is

Rn̂ (θ) = exp
(
−iθ2 n̂ · ~σ

)
, (1.3)

where ~σ = (σx, σy, σz) is the three component Pauli vector and n̂ = (nx, ny, nz) is a unit vector
defining the axis of rotation. Rotations by θ = π around σx, σy and σz are referred to as Pauli
X, Y and Z gate, respectively. The identity operation leaves the input state |ψi〉 unchanged
(θ = {0, 2nπ}, n ∈ Z). Commuting gate operations are referred to as Abelian. Non-commuting
(non-Abelian) gate operations are needed to perform arbitrary rotations of the spin state.

4



1.2. Scalable quantum computation

1.1.2. Multi qubit quantum gates

Multi-qubit quantum gates acting on k qubits are represented by a unitary matrix U of dimension
2k × 2k. The corresponding quantum state is described by a 2k-dimensional complex vector.
Mathematically the Bloch sphere representation can be extended to be 2k-dimensional, however
the increased dimensionality prohibits its illustration. Note, in contrast to classical two-bit gates,
featuring two inputs and one output, its quantum mechanical counterpart is reversible. Multi qubit
gates typically feature one or more control qubits whose state decides if the operation is performed
on the second qubit.

1.1.3. Universal set of gates

Intuitively, one might expect that a large number of quantum gates is needed to be able to perform
arbitrary unitary transformation in a 2k-dimensional Hilbert space. However, it was shown that
any unitary quantum operation can be efficiently approximated by a small universal set of gates
with arbitrary precision [16]. It can be shown that every 2k-dimensional unitary matrix can be
decomposed into second order tensors, such that a universal set consists of two non-commuting
single qubit and one non-trivial two qubit gate [17, 18]. As a consequence, by identifying a small
set of noise resilient quantum gates universal quantum computation on NISQs is within the realms
of possibility.

1.2. Scalable quantum computation

The performance of sophisticated quantum algorithms requires in the order of 106 physical qubits.
As D. DiVincenzo stated in 2000, a quantum mechanical system needs to meet five (plus two)
criteria in order to provide a realistic platform for for quantum computation:

I. A scalable physical system with well defined qubits

II. The ability to initialize the state of the qubits

III. Long decoherence times

IV. A “universal” set of quantum gates

V. A qubit-specific measurement capability

Scalability is required to tackle relevant problems inaccessible for classical computers. The initia-
lization into a fiducial state makes it possible to start computing from a well-known input state.
Full information on the final state can only be extracted by a precise measurement of each qubit
individually. Long coherence times enable the application of a sufficient amount of quantum gate
operation (O(109)) [11], while a universal set of gates is required to realize all possible quantum
algorithms. Two additional criteria are required for the realization of quantum communication, a
topic not covered within the scope of this thesis. A summary of today’s most promising physical
platforms for scalable quantum computation including, i.a., trapped atoms, superconductors and
solid-state spins is given in [19].

5



1. Quantum information processing

1.3. Quantum error correction codes
In every quantum structure inevitable interactions with the environment cause loss of information
due to decoherence. In contrast to classical computation architectures, the quantum “no cloning
theorem” [13, 14] prohibits the duplication of quantum information and hence the use of classical
correction protocols. QECCs, test if decoherence occured and restore the initial decoherence
free quantum state by encoding a single computational quantum bit in several physical bits [20].
However, for these strategies to become efficacious the fidelity of the applied unitary operations
need to exceed a certain threshold. Different works suggest that error thresholds per quantum gate
between 10−6 and 10−2 are necessary [11, 12]. Even though quantum gate fidelities close to one
have been demonstrated utilizing dynamic phase based quantum gates (e.g., [21]) the realization
of QECCs remains pending. Exploiting intrinsically robust, geometric phase based quantum gates
(Ch. 8) might provide a powerful tool in the field of quantum information processing (QIP).

6



2. Nitrogen vacancy center in diamond

Among the more than hundred known fluorescent defect centers in diamond [22] the nitrogen
vacancy (NV) center, consisting of a substitutional nitrogen atom and an adjacent vacant lattice
site (Fig. 2.2.a), is the most studied one. First, a short note on the diamond host material is
given. In Sec. 2.2 the NV centers unique optical and spin properties are discussed in detail,
highlighting its potential for quantum information processing and quantum sensing applications.
Finally, applications and current limitations of NV center are discussed (Sec. 2.3 and Sec. 2.4).

2.1. Diamond
Diamonds are semi conductors exhibiting a bandgap of 5.47 eV, equivalent to the energy of a
photon in the ultra violet (UV) regime. As a consequence, a pure diamond lattice is transparent
for visible light and colorless for the observer. In fact, color is originating from defects in the
carbon lattice. The significant refractive index mismatch (nDiamond = 2.4) between the diamond
and standard immersion media represents a challenge for high-resolution imaging of color centers.
At the same time, the thermal conductivity enables the application of remarkably high optical
power, e.g., in stimulated emission depletion (STED) nanoscopy (Sec. 4.1.2). For research purposes
typically industrial single or poly-crystalline diamonds are used. These are created by either
the high-pressure-high-temperature (HPHT) or continuous vapour deposition (CVD) method [23].
Processing isotopically pure methane during the CVD growth generates a carbon lattice free of
inherent 13C nuclear spins [24] and results in a close to spin-noise free environment. The hardness in
combination with advanced manufacturing techniques like reactive-ion-etching (RIE) and fast ion-
beam (FIB) milling, enables the fabrication of nano-pillars [25], whispering gallery mode resonators
[26], atomic force microscopy (AFM) tips [27] and solid-immersion lenses (SIL) [28], only to name
a few. These advanced structures are utilized to increase the photon collection efficiency, position
defect centers close to a specimen, store photons and increase the optical resolution. Hence,
diamond is a versatile material providing a brought range of applications.

2.2. Optical & spin properties
The nitrogen vacancy center in diamond occurs in at least two different charge states, the negatively
charged NV− and the neutral NV0. Depending on the charge state the zero phonon line (ZPL) is
located either at 637 nm (NV−) or 575 nm (NV0) [29]. At room-temperature (300 K) the phonon
sideband emission extends up to about ∼ 800 nm (Fig. 2.1.b). The excited states features a
fluorescence lifetime of about τNV− ≈ 12 ns and τNV0 ≈ 7 ns (Fig. 2.1.c) [30], respectively. Its
photo-stability enables long-term measurements [31, 32]. Ionization and electron recaputering
converts the NV center between its charge states under illumination. The conversion rate depends
on the excitation intensity and wavelength [29]. It was shown that on illumination with green light
(∼ 532 nm) of intensity ∼ 1 MW cm−2 the NV center is efficiently prepared in its negative charge
state [33].
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2. Nitrogen vacancy center in diamond

Figure 2.1.: Optical NV center properties. (a) Illustration of an nitrogen (orange) vacancy (red)
center within the carbon (grey) diamond lattice. (b) Optical emission spectrum of an en-
semble consisting of NV− and NV0 center excited at 532 nm. Solid red lines indicated the
ZPLs at 637 nm (NV−) and 575 nm (NV0). (c) Averaged fluorescence lifetime measurement
of an ensemble of NV0 (green) and NV− (blue) center, respectively. Dashed lines represent
exponential fits extracting τNV− ≈ 12 ns and τNV0 ≈ 7 ns.

Here, the focus is on the NV− center, in the following referred to as NV center, which is utilized
throughout the thesis because of its unique spin properties. The four electrons contributing to the
NV center form a spin one system [34] (Fig. 2.2.b). The electron spin can be efficiently initialized
into the ms = 0 by optical pumping, even at room-temperature [35]. A, for our purposes, dark
decay channel via the singlet state (blue dashed arrows) only accessible for spins within ms = ±1
ends in the ground state ms = 0 (Fig. 2.2.b). Therefore, after illumination with green light the
NV center is initialized into the triplet ground-state ms = 0, providing a means for efficient optical
electron spin polarization [36]. This is in stark contrast to the typically stochastic initialization
based on the temperature dependent Boltzmann distribution in nuclear magnetic and electron
paramagnetic resonance experiments. Due to its dark nature (no photon emission in the detection
band) the same decay channel enables the readout of the electron spin state via state dependent
fluorescence [37]. Figure 2.2.a presents the fluorescence level for spins initialized in ms = 0 (red)
and ms = ±1 (dark blue) when illuminated with green light starting at t = 0 ns. The fluorescence
difference (black) is measured with single photon counting devices in a detection window of length
tdet ≈ 300 ns, allowing for optically detected magnetic resonance (ODMR) measurements [31].
The triplet ground state features a V-shaped level structure (Fig. 2.2.c) with a zero-field splitting

of D ≈ 2.87 GHz (e.g., [22, 34, 38]). The exact value of D depends on the diamond sample,
temperature, strain, electric and magnetic fields, making the NV center a powerful tool for quantum
sensing applications. The full system Hamiltonian within an external magnetic field B0 but no
external driving is described by [22]:

H = SDS︸ ︷︷ ︸
I

+ geβeB0S︸ ︷︷ ︸
II

+SAI︸︷︷︸
III

− gNβNIB︸ ︷︷ ︸
IV

. (2.1)

Here, term I and II describe the fine structure, term III the hyperfine interaction with the nitrogen
nucleus and term IV the interaction with surrounding nuclear spins. The use of isotopically pure
samples suppresses term IV. An external magnetic field lifts the degeneracy of the |±〉 state (term
II). The hyperfine coupling of the electron spin to nitrogen nuclear spin increases the number of
resonance to four (14N) and six (15N), respectively. A magnetic field of |B| ≈ 400 G aligned along
the NV center axis tunes the triplet excited state to an avoided level crossing. Here, polarization
of the nitrogen nuclear spin by electron-nuclear-spin flip-flops is enabled [39, 40] (Sec. B.2). In this
way, the term III is eliminated and an effective three-level system with transition frequencies at
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Figure 2.2.: NV center characteristics. (a) Spin state readout by state dependent fluorescence. The
dark decay channel via the singlet state (blue in (b)) causes a decreased fluorescence for
the ms = ±1 state (blue) compared to the fluorescence of the ms = 0 state. (b) Jablonski
diagram of the NV center. Green light excites the triplet state. Spontaneous emission is in
the red due to the Stokes shift. (c) The V-shaped triplet ground state (grey rectangular in
(b)) features transitions accessible by microwave driving fields (blue) and thereby allows for
coherent spin state manipulation.

∼ 1.73 GHz (|0〉 ↔ |−〉) and ∼ 4.01 GHz (|0〉 ↔ |+〉) is generated.
Both transitions (|0〉 ↔ |±〉) are accessible for microwave driving fields ω± enabling coherent

spin-manipulation [41] (Fig. 2.2.c). The interaction Hamiltonian for an NV center with polarized
nuclear spin driven by microwave fields within the rotating frame is:

Hint = ∆+ |+〉 〈+|+ ∆− |−〉 〈−|+ (Ω+ |0〉 〈+|+ Ω− |0〉 〈−|+ H.c.). (2.2)

Here, ∆± = ω0± − ω± is the detuning of the driving field with angular frequency ω± with respect
to ω0±, the energy difference between the states |0〉 ↔ |±〉. Ω+ and Ω− are the Rabi frequencies
of the respective transition and H.c. the Hermitian conjugate. The large energy difference between
the transitions |0〉 ↔ |±〉 in combination with a polarized nitrogen nuclear spin makes it possible to
treat the NV center as a simple two-level system when driving a single transition. The Hamiltonian
simplifies to:

H±int = ∆± |±〉 〈±|+ (Ω± |0〉 〈±|+ h.c.). (2.3)

Hence, depending on the experiment the NV center can be treated either as qubit or qutrit system.
In addition, NV centers in optimized diamond samples feature long electron spin coherence times

of up to 0.6 s at cryogenic and several milli-seconds at room-temperature [42]. In conclusion, the
properties of the NV center meet the II.-V. DiVincenzo criteria (Sec. 1.2) for quantum computation
by default. Even though, the deterministic creation of scalable quantum architectures has not been
achieved yet, experimental efforts accomplished first milestones (Sec. 2.4). Hence, the NV center
potentially satisfies all of the DiVincenzo criteria (Sec. 1.1.3), providing a platform for scalable,
universal quantum computation.

2.3. Applications
Due to its remarkable properties the NV center enriched various fields of research in the last de-
cade. These include super-resolution microscopy, quantum sensing (QS) and quantum information
processing (QIP). Similar properties are only featured by the recently discovered but still unde-
termined “Stuttgart 1” (ST1) center and the silicon vacancy (SiV) center. While the first lags
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2. Nitrogen vacancy center in diamond

protocols for the defect center generation, the second is restricted to applications at cryogenic
temperatures.
The photo stability of the NV center drew attention in the field of super-resolution microscopy,

where photo bleaching is one of the key challenges. Various techniques like stimulated emission de-
pletion (STED) [32, 43], ground state depletion (GSDIM) [44, 45], spin-RESOLFT [46, 47], charge
state depletion (CSD) [48] as well as stochastic optical reconstruction (STORM) [49] microscopy
have been demonstrated in single crystalline bulk diamond. In nano crystals so far only STED [50]
and STORM [51] imaging have been demonstrated. The availability of nano-diamonds containing
NV centers as potentially non-toxic photostable markers for specimen in life science is currently
limited by the lag of efficient functionalization protocols.

Additionally, the NV center is utilized as room-temperature quantum probe for quantum sensing
(QS) applications. High precision quantum sensing of magnetic fields [52, 53, 54], electric fields
[55] and temperature [56, 57] have been demonstrated. Recently, the triggered detection of single-
neuron action potentials has been reported [58]. The variety of measurable physical quantities
make the NV center a potentially powerful tool for material science, life science and medicine.

In the field of quantum information processing (QIP) the NV center represents a qubit/qutrit
platform under ambient conditions, avoiding the need for cryogenic or laser cooling systems. Single
qubit operations by means of coherent microwave fields have been performed for dynamic [59] and
geometric quantum gate modalities [60, 61]. Multi-qubit gates have been realized by utilizing
the backaction of the electron spins on a neighboring 13C nuclear spin [62, 63, 60] as well as
the host nitrogen nuclear spin [64]. Additionally, by exploiting the coherent coupling by dipole-
dipole interaction of two NV center electron spins separated by roughly ∼ 10 nm the feasibility
of electron spin based quantum registers has been proven [65]. STED microscopy enables the
targeted initialization and readout of dipole-dipole coupled multi qubit quantum registers with
sub-diffraction limited resolution [66]. While the spin-RESOLFT technique provides a means
to readout out the NV center electron spin, the targeted initialization is prohibited [46]. The
proposal avoiding the need for super-resolution readout by the utilization of a ‘dark’ spin chain
bus sets significantly higher requirements to the sample generation [67], which already represents
the bottleneck on the way to scalable quantum architectures.

2.4. Current limitations in QIP

Currently, the deterministic high spatial resolution generation of NV center as prerequisite for
solid-state spin based quantum register is not yet achieved. However, tremendous experimental
efforts are taken to overcome the limitations which are of solely technical nature. Small quantum
register have been realized by the implantation of molecular [68] and atomic nitrogen [69] through
nano-apertures. These approaches are highly stochastic and therefore do not provide a means
for efficient scaling. The deterministic implantation of nitrogen ions by a modified Paul trap [70,
71] as well as by mirror charge detection [72] have been reported. Positioning of NV center by
implantation through a pierced atomic force microscopy tip obtained ∼ 20 nm spatial resolution
[73] but is not deterministic.
Since the NV center exhibits two constituents the sample needs to be annealed after implantation.

In this way, vacancies are transport to the implanted nitrogen by diffusion. Additionally, annealing
provides a means to cure damages of the carbon lattice originating from the nitrogen implantation.
Next to elaborate techniques, like the implantation through boron doped layers [74], an improved
understanding of the fundamental vacancy diffusion process in diamond might improve the NV
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center yield after annealing [75].
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3. Scope of this thesis

The NV center in diamond, a quantum system under ambient conditions, is a promising platform
for quantum information processing (QIP). However, the deterministic generation of defect centers
with high spatial precision remains a challenging task. Besides difficulties in the implantation
process of the nitrogen atom [70, 73], the NV center is suffering from a limited conversion efficiency
[74]. An improved understanding of the underlying vacancy diffusion process might pave the way
for improved annealing routines and thereby to reliable scaling. Here, it is demonstrated that STED
nanoscopy offers the potential to determine the vacancy diffusion coefficient with high precision
[75] (Ch. 7).
Due to the current technical limitations in the generation of NV center based quantum regis-

ters, a systematic screening for optically active defect centers featuring optically detected magnetic
resonance (ODMR) is an active area of research [76]. When aiming to realize quantum registers by
exploiting the electron spin dipole-dipole interaction the diffraction unlimited, targeted, read-out
of the spin state is compulsory [65]. As a consequence, the demonstration of super-resolution mi-
croscopy represents an important step in the screening procedure. Towards this end, STED imaging
of the recently discovered but still unidentified ST1 center in diamond [77] is demonstrated (Ch. 6).
No matter, which physical platform will in the end facilitate a scalable quantum architecture, it

needs to provide a universal set of quantum operations with close to perfect fidelity [12]. Geometric
phase based quantum gates represent a promising resource for QIP, due to their intrinsic resilience
against local noise. Originally derived in the adiabatic limit [78], first experiments realized non-
adiabatic universal sets of single-qubit geometric quantum gates (e.g, [61, 79, 80]). In this way,
the application in realistic, decoherence limited quantum systems was enabled. Here, a recently
proposed set of non-Abelian, single qubit, superadiabatic geometric quantum gates (SAGQGs) is
realized [81] (Ch. 11). The SAGQG, realized on a two-level system employing a single driving
field, offers the potential for high-fidelity quantum computation, while keeping the experimental
resources to its minimum.
SAGQGs enrich the selection of quantum gate modalities including dynamic, adiabatic geome-

tric, non-adiabatic Abelian geometric and non-adiabatic holonomic approaches. This variety raises
the question which of the versatile options is providing the highest resilience against noise. For
a set of non-adiabatic gate modalities the robustness with respect to constant control parameter
imperfections for a realistic set of experimental boundary conditions is investigated (Ch. 12). This
benchmark analysis provides a powerful tool for the identification of the most robust, universal set
of QGs for the considered physical platform (Ch. 13).

13





Super-resolution microscopy





4. Theoretical background

Here, the physical concept of the techniques used in Ch. 5-7 are presented. These include confocal
and STED microscopy, as well as solid-state nuclear track detectors (SSNTDs).

4.1. Fluorescence imaging of solid-state spins

Fluorescence imaging and optical addressing represent main challenges in the observation and
control of several quantum systems like ultra-cold atoms [82], trapped atomic ions [83], Bose-
Einstein-condensates [84] and solid-state spins [31]. Often, the relevant quantum information is
encoded in the final position of the emitter, thereby raising the need for high spatial resolution wide-
field imaging. Towards this end, ultra-high vacuum compatible objective lenses are designed [85]
and sophisticated algorithms located emitters with a precision below the diffraction limit of light
(e.g., [86]).
In contrast, the relevant quantum information of the NV center electron spin is extracted by

measuring the fluorescence level originating from a defect center at a well-defined position (Sec. 2.2).
As a consequence, the advantages of the conventional scanning confocal microscopy (Sec. 4.1.1)
can be exploited in quantum information processing (QIP) and quantum sensing (QS) applications
based on solid-state spins. However, in order to guarantee a sufficient dipole-dipole coupling of
the electron spins, a separation between defect centers of . 30 nm [65] is needed in quantum
registers. Therefore, super-resolution imaging techniques for the deterministic addressing and
read-out of individual electron spins are required. Diffraction-unlimited imaging of single defect
spins has been demonstrated utilizing different techniques (Sec. 2.3). Here, the focus is on STED
microscopy (Sec. 4.1.2), the technique which was applied within this thesis. At the same time, so
far only STED and spin-RESOLFT microscopy proved sub-diffraction limited spin-state readout
of individual solid-state spins within small ensembles [66, 46].

4.1.1. Confocal microscopy

In confocal microscopy, only a small volume of diffraction-limited extend is illuminated at a time.
Already in 1873, E. Abbe discovered that the radius of the focal spot has a lower limit given by [87]

rAbbe = λ

2n sinα = λ

2 ·NA , (4.1)

where λ is the wavelength of light, n the refractive index of the immersion medium, α is half
the opening angle of the objective lens and NA = n sinα its numerical aperture. For light in the
visible regime and high quality objective lenses the resolution is typically limited to rAbbe & 200 nm.
Emitters located within the diffraction limited focal volume are excited into a higher energetic state
by absorption of an incoming photon. Relaxation into the ground state emits a, with respect to the
excitation light, red-shifted photon (Stokes shift). Separation of the excitation and fluorescence
light is performed by a dichroic mirror (DCM). Focusing the collected light on a pinhole and
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Figure 4.1.: Confocal microscopy. (a) Schematic drawing of a confocal microscope. Excitation light
(green) originating from a point-source is focused to a diffraction limited spot. Emitters
within the focal spot get excited by absorbing an incoming photon. Red-shifted fluorescence
is separated from the excitation beam by a dichroic mirror (DCM) and detected after passing
a confocal pinhole. Light originating from outside the focal volume (orange) is blocked at
the pinhole. (b) Calculated confocal image of a point-like emitter. (c) Slice through the
center of the intensity distribution (white line in b). The Abbe-limit defines the distance
rAbbe between the center of the distribution and the first intensity minimum.

measuring it with a sensitive photon counting device completes the microscope. As indicated in
Fig. 4.1.a, background fluorescence originating from outside the focal volume (orange beam) is
strongly suppressed by the pinhole such that an improved signal-to-background ratio is obtained.
Commonly, images are acquired in a pixelated manner by scanning the sample or excitation beam
over the region of interest. Confocal microscopy is especially suited for efficient initialization with
moderate optical powers as focusing the excitation beam to a diffraction limited spot generates
high intensities.

4.1.2. STED microscopy

Basically, a STED microscope [88] suppresses the fluorescence in a well-defined area by pumping
the emitter from the excited state (on) into the ground state (off) by means of stimulated emission.
Typically, the diffraction-limited confocal excitation beam is overlapped with a, in the focal plain of
the objective lens, doughnut-shaped depletion beam featuring an intensity minimum at the position
of the excitation maximum (Fig. 4.2.a-b). This beam depletes emitters into the ground state,
where photon emission is prohibited, resulting in a reduced effective point spread function (PSF)
and hence in breaking the diffraction barrier of light (c). The resolution of a STED microscope
scales with the intensity I of the depletion beam according to [89]

rSTED = λ

2n sinα
√

1 + I
IS

= rAbbe√
1 + I

IS

, (4.2)

where IS is the saturation intensity of the emitter. From Eq. 4.2 one can immediately conduct
that the achievable spatial resolution is theoretically unlimited. However, technical limitations
like the available laser power, sample photo damage, the size of the fluorophore and the quality
of the doughnut’s intensity minimum restrict the resolution to typically r ∼ 20 nm in biological
specimen [90]. By today, the highest obtained (one-dimensional) optical resolution demonstrated
on a STED microscope is r ∼ 2.4 nm utilizing the solid-state spin dedicated to the nitrogen vacancy
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Figure 4.2.: Illustration of the STED microscopy principle. (a) Diffraction limited point spread
function of the excitation beam. (b) Doughnut shape stimulated emission depletion beam
featuring an intensity zero at its center position. (c) The effective point-spread-function of
the system exhibits a resolution beyond the diffraction limit. Lower plots represent a cut
through the center of the respective intensity distribution.

center in a diamond sample possessing a nano-fabricated solid-immersion lens [43]. It has been
shown that STED microscopy enables the targeted readout of solid-state spins with sub-diffraction
limited resolution while preserving the spin state population of defect centers outside the volume
of the effective PSF [66]. This unique property makes STED microscopy the most promising
super-resolution imaging technique for QIP and QS.

4.2. Solid-state nuclear track detection

Solid-state nuclear track detectors allow to investigate the trace of single ionizing particles by visu-
alizing the damage they inflicted to a solid. For decades, plastic nuclear track detectors (PNTDs)
represented the state-of-the-art, but were limited in spatial resolution and the ability to resolve
damages induced to surfaces. Aluminium-oxide-based fluorescent nuclear track detectors (FNTDs)
have been developed utilizing fluorescent defects in crystals to visualize ion trajectories by high-
resolution optical imaging [91]. Fluorescence microscopy in transparent solids enabled the three-
dimensional imaging of whole ionizing radiation traces. Recently, the variety of FNTD has been
enriched by the NV center in diamond [92]. Here, a comparative overview on the physical pro-
cesses of origin of the PNTDs as well as the aluminium oxide and diamond based FNTD is given,
highlighting the advantages and potentials of FNTDs compared to PNTDs.

4.2.1. Plastic nuclear track detectors

Plastic nuclear track detectors utilize polymers (e.g., CR-39), which form radicals under ionizing
radiation. After irradiation, the radicals form a latent ion trace within the sample [93]. Radicals
and hence locations traversed by the radiation are revealed by surface etching of the sample.
These regions etch faster than the surrounding material, resulting in a topographic radiation
map. Subsequent analysis by atomic force [94] or conventional optical microscopy [95] extracts
the number and position of the ions. The typically achievable resolution (∼ 1 µm) makes PNTDs
a powerful and cheep platform for dosimetry. However, the required etching process limits the
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analysis to surfaces. Three-dimensional imaging of whole ion traces remains challenging.

4.2.2. Fluorescent nuclear track detectors

The optical imaging of nuclear tracks utilizing magnesium and carbon doped aluminium oxide
single crystals (Al2O3 : C,Mg), referred to as FNTDs, enriched the palette of SSNTDs. In this
system, ionization by high energetic ions generates electrons along the ion track, transforming
F2+(2Mg) into the fluorescent F+(2Mg) defect by electron capturing [96]. In contrast to PNTDs,
the traces in aluminium-oxide-based FNTDs are observable without any additional treatment using
fluorescence microscopy. Standard confocal scanning microscopy demonstrated spatial correlation
of ion trajectories and cell damage providing a potentially powerful tool in radiation therapy [97].
As shown in Sec. 4.1.1 the spatial resolution of the traces obtained in confocal microscopyis limited
by diffraction. Also with STED microscopy, resolutions below ∼ 100 nm could not be achieved in
aluminium-oxide-based FNTD imaging.
In a similar manner, NV centers in diamond can be utilized as FNTD [98]. However, the

defect center creation is based on a different physical process. By irradiating a nitrogen-containing
diamond sample with heavy ions of high energy (hundreds of MeV), vacancies are created along
the ions trajectory. Vacancy diffuse during the subsequent annealing generates NV centers when
a vacancy is caught by an intrinsic nitrogen atom. Similar to the PNTD, the exact characteristics
of the NV center based FNTD depend on the processing of the sample as well as its nitrogen
content [75]. The analysis of NV center based FNTDs offers the potential to determine physical
constants like the vacancy diffusion coefficient in diamond (see Ch. 7 and [75]). Additionally,
the colocalization of cell damage and ion trajcetories potentially enabels new insights in medical
radiation treatments [96].
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5. A STED microscope for imaging of
solid-state spins

The demands a microscope for the coherent manipulation of optically detected solid-state spins
needs to meet are numerous and technically challenging. For example: High mechanical stability,
precise timing of optical and microwave driving fields as well as a high degree of automation are key
requirements to perform long-term measurements within a spot smaller than the diffraction-limit.
Here, the experimental apparatus designed and built for sample-scanning super-resolution STED
imaging of various point defects in diamond (Ch. 6 and Ch. 7) is described and characterized. Ad-
ditional components required for the coherent control of the NV center electron spin are discussed
in Ch. 10.

5.1. Optical configuration
In essence, the microscope is build as a standard confocal microscope with the ability to perform
super-resolution microscopy by means of an additional STED laser beam. A simplified sketch of
the optical components of the system is depicted in Fig. 5.1. Confocal measurements (except for
fluorescence lifetime imaging) are performed by continuous wave excitation at 546 nm wavelength
(2RU-VFL-P-1500-546-R, MPB Communications Inc.) with an optical power of up to 1 W. For
time-gated STED measurements pulsed laser excitation is provided by a laserdiode (PicoQuant
LDH-P-FA-530XL) at a wavelength of 532 nm with an optical power of ≤ 100 mW and a pulse
length of 100 ps. The trigger synchronising depletion and excitation laser is provided by the STED
laser at a repetition rate of 20− 30 MHz (Sec. A.1). The optical power of each excitation beams is
modulated and switched by a separate acousto-optical modulator (AOM) (AA.MT250-A0.2-VIS,
AA Optoelectronics) in double-pass configuration. In this way an extinction ratio of ≥ 66 dB is
guaranteed. This necessary to prevent interaction of the light with the measured qubit during
the realization of coherent microwave experiments. Both excitation beams are superimposed and
coupled into the same optical single-mode fibre. Transmission through the optical fiber cleans
the mode profile and enables fast switching between continuous wave and pulsed excitation. A
dichroic mirror (ZT594rdc, Chroma) guides the excitation beams into the objective lens (HCX PL
APO 100x/1.4-0.7, Leica) which focuses them to a diffraction limited spot. The designed Abbe
radius of the excitation spot is r = λexc/(2NA) ≈ 190 nm [87]. An active objective temperature
controller (3508, Eurotherm) stabilizes the temperature to 30 ◦C at the sample and pre-compensates
heating effects induced by the near-infrared STED beam. Depolarization effects [99] are minimized,
by tuning the polarization to be circular in the back aperture of the objective lens, utilizing
retardation plates (B.Halle). Redshifted fluorescence originating from the excitation volume is
collected by the objective lens, passes through the dichroic mirror and is focused onto the confocal
pinhole. Two avalanche photodiodes (APDs) (SPCM-AQRH-13, Excelitas) forming a Hanbury
Brown-Twiss interferometer [100] detect the fluorescence. This configuration additionally enables
the determination of the number of emitters within the focal volume by measuring the second
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Figure 5.1.: Simplified sketch of the experimental apparatus. In general the apparatus can be
divided into three parts. The preparation and superimposing of two excitation beams (green),
the preparation and doughnut generation by means of a SLM of the stimulated emission
depletion beam (red) and the microscope guiding the beams into the objective lens as well
as collecting the emitted fluorescence (orange) with two APDs in a Hanbury Brown and
Twiss configuration. The STED laser is protected from damages by back reflections by an
optical isolator (OI). AOMs in double-pass configuration allow to regulate the optical power
and switch between the beams. Superimposing and separation of different wavelengths is
performed by DCMs. Optical fibers (F) are utilized to overlap and transfer beams. Waves
plates (λ/2 and λ/4) allow for a precise control of the polarization within the focal plain.
A flip mirror (FM) in combination with a charge-coupled device (CCD) enables wide-field
imaging. By inserting a pellicle into the beam path,the back-reflection of gold-beads can be
imaged onto a PMT allowing a precise measurement of the PSF.

order correlation function [101, 102]. Photon detection events are stored into a multiple-event time
digitizer (MCS6A, Fast ComTech GmbH) exhibiting 100 ps time-resolution, enabling time-gated
detection [103].
Super-resolution imaging is realized by illuminating the sample with a STED beam (Sec. 4.1.2).

The STED laser provides up to 10 W optical power at 775 nm wavelength. Each optical pulse,
provided at a repetition rate of 20 − 30 MHz, features a rectangular temporal envelope of two
nanoseconds duration. An optical isolator placed immediately in front of the STED laser aperture
protects the device from damages by back-reflection (Katana, OneFive). Again, modulation and
switching of the STED beam is performed by an AOM (AA.MT200-0.5-800, AA Optoelectronics) in
double-pass configuration. Currently, the maximally applicable STED power is limited to 600 mW
by the damage threshold of the optical fiber used for cleaning the mode profile and guiding of the
beam. In future, this limitation will be overcome by utilizing an optical hollow-core fiber suitable
for the transmission of high optical powers. After transmission through the optical fiber, a spatial
light modulator (SLM) (LCOS-SLM X13267-02, Hamamatsu) imprints a user-defined phase mask
onto the beam. The phase mask is used to generate the doughnut in the focus of the objective
lens and to control optical aberrations (Sec. 5.3). An additional dichroic mirror (F39-758, AHF
Analysetechnik) superimposes the STED beam with the excitation beams and guides it into the
objective lens. A detailed discussion on the obtained optical resolution for nitrogen vacancy (NV)
and “Stuttgart 1” (ST1) center is presented in Sec. 6.2 and Sec. 7.2.1, respectively.
A magnetically mounted pellicle beam splitter (BP145B1, Thorlabs) can be introduced into

the beam path to analyse the excitation and depletion beam PSFs independently of the confocal
pinhole. It guides the reflective signal of beads onto a photomultiplier tube (PMT) (H10723,
Hamamatsu). By sample scanning microscopy the full information on the PSFs can be extracted.
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Figure 5.2.: The scanning stage system. (a) Technical drawing of the stage system, consisting of 1
coarse- and 2 fine-stage, 5 fixed and 4 moving wedge, the 7 guiding hollow cylinder
and the 8 translating cylinder. (b) Long-term tracking position in x, y and z-direction of a
single emitter as measure of the mechanical stability. (c) Temperature measured during the
same period outside the isolation box of the objective lens.

The imaging of a large area of the sample on a charge-coupled device (Phillips) is enabled a
magnetically mounted wide-field lens in the excitation path in combination with a motorized flip
mirror in the detection. The wide-field configuration is used for a simplified navigation on the
sample.

5.2. Scanning stage system

The demands on the sample scanning system are particularly versatile. On the one hand, a
scanning range of several millimeters in all spatial dimensions is needed to manoeuvre precisely
on the diamond sample. On the other, a position accuracy below one nanometre is required to
reliably perform high spatial resolution imaging. At the same time, the system needs to be long-
term stable to perform spin manipulation experiments at single quantum emitters located within
the effective PSF. To our best knowledge, no commercially available system is satisfying these
demands. Therefore, in close collaboration with our optical engineer and mechanical workshop a
mechanically stable, long-range scanning system was designed and built in-house (Fig. 5.2.a).
A design concatenating a coarse and fine scanning stage was chosen. Coarse xy-positioning is

performed by a piezo stage (M-686.D64, Physik Instrumente, turquoise) with a travel range of
25 mm × 25 mm. This stage features a self-locking system, retaining the sample position after
reaching the region of interest. The fine positioning and scanning is performed by an additional
stage (P-562.3CD, Physik Instrumente, green) featuring a travel range of 200 µm×200 µm×200 µm
with a closed loop resolution of 0.2 nm.
Commercial stages with a long travel range in z-direction are usually heavy and bulky. To avoid

an over or asymmetric load of the xy-coarse stage, an opto-mechanical component was designed
to translate the movement of a linear actuator (M-230.25, Physik Instrumente) into a z-movement
of the sample (Fig. 5.2.a). The linear actuator pushes a sliding wedge (purple) onto a wedge fixed
to the coarse xy-stage (brown), thereby lifting a cylinder (yellow) which is eventually holding the
fine stage and sample. To fix the position of the cylinder in xy-direction it is inserted into a hollow
cylinder (pink) produced with small mechanical tolerances (O(5 µm)). A rotation of the cylinders
with respect to each other is prevented by a tongue and groove joint. Eight springs provide a
counterforce keeping the sliding cylinder in contact with the linear actuator. Hence, the position
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5. A STED microscope for imaging of solid-state spins

of linear actuator defines the sample height at all times. The wedge angle of 14◦ converts the
horizontal movement of the linear actuator into the z-movement of the sample by a translation
factor of ×0.25. This results in a z travel range of 4.5 mm. A position detector (MHR 100, Althen)
measuring the vertical distance between the two cylinders provides an additional feedback on the
position.

In most super-resolution imaging applications only the relative position of the emitters is of
interest, while the absolute position does not contain any additional information. In contrast, for
the optical addressing and readout of solid-state spins the emitters need to be precisely located
within the excitation volume. The designed control software strictly synchronises the detection
with the position signal of the scanning stage to ensure that imaging is performed within the
absolute frame of the fine-stage. This is not necessarily given in other imaging routines. Images
are acquired in line-scanning mode. Towards this end waveforms are generated which define the
stage position at given times. The waveforms consist of three phases: acceleration, linear movement
and deceleration. Data are acquired during the linear movement, where the constant velocity of the
stage relates dwell time and pixel size, such that the dwell time defines the pixel size. Depending
on the loaded sample and chosen scan parameters the acceleration needs to be limited (software-
based).

Long term stability

The stability of the stage system is tested by continuously taking xy and xz-confocal images of
a single emitter. Subsequently, a two dimensional Gaussian distribution is fitted to the acquired
images, extracting the current position of the emitter. In Fig. 5.2.b the fitted x, y and z-position
are plotted versus the experiment duration of 48 h. The position data shows a strong correlation to
the ambient temperature (Fig. 5.2.c). Thermal effects are more severe than the settling behaviour
of the concatenated stage system. However, within the typical retracking intervals of five to ten
minutes, the observed drifts are much smaller than the confocal resolution (O(20 nm)). Therefore,
the stability of the system is sufficient for single-qubit experiments. For coherent spin manipulation
experiments with high STED resolution an active sample stabilization based on a reflective infrared
signal or the transmitted excitation light should be considered [104, 105]. A first study proving
the feasability of an active stabilization system has been performed in [106].

Large field scanning

The designed stage system in combination with the custom-written control software allows for
the screening of complete diamond samples in an automatized manner. To do so, an xy image
(150 µm × 150 µm) is acquired using the fine stage, subsequently the coarse stage is repositioned
and the next image is taken. In post-processing all sub-images are concatenated according to the
position of the coarse stage. Whole diamond samples with edge length of several millimeters can
be imaged with high-resolution (1 µm) during an acquisition time of one day. The resulting images
are a valuable tool for sample pre-characterization. Aforementioned active z-position stabilization
can be implemented to improve the image quality further by keeping the depth of interest within
the focal plain and thereby compensating for the unevenness and tilt of the sample.
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5.3. Spatial light modulation

Figure 5.3.: Illustration of the SLM configuration. (a) An incident beam is reflected at the SLM
chip, where the phase of the beam is modulated. Due to the applied optical grating the
reflected beam is diffracted into• of several orders. Focusing onto a pinhole ensures propaga-
tion of the desired beam order to the sample, only. (b) Illustration of the three components
contributing to the total phase mask. Surface correction data is provided by the distributor
while the diffraction grating is designed according to the experimental needs. The shown
phase mask consists of a vortex and a vertical coma of 0.4λ amplitude. Summation of these
three contributions results in the total phase mask as shown on the SLM.

5.3. Spatial light modulation

In recent years, the improved quality of SLMs boosted the use of active optical elements in optical
microscopy [107]. Precise phase handling enables the compensation of system inherent aberrations
and corrections depending on the imaging depth within the specimen . A reduction of optical
aberrations leads in STED/RESOLFT microscopy to an improved quality of the doughnut and an
increased resolution.
Additionally, SLMs allow for the alignment of the phase mask with respect to the beam without

mechanical motion. Therefore, no settling behaviour of screws distorts the system after alignment.
Similarly, the overlap of excitation and STED beam can be fine-adjusted fully electronically by
adding tips and tilts to the phase mask.

5.3.1. Experimental implementation

The SLM utilized for the phase vortex creation and aberration control of the STED beam is used
in reflective mode. In order to guarantee optimal performance the incident angle of the beam
should be less than ten degree. Due to its pixelation, the SLM chip itself acts as an optical grating
generating higher order diffraction beams. Commonly, a well controlled optical grating is added
to the modulation pattern to prevent distortions of the beam with its higher orders. Separation
of the different diffraction orders is accomplished by focusing the reflected signal onto a pinhole
(Fig. 5.3.a).
A custom-written Matlab program generates the phase mask as an 8-bit grey-scale image.

Subsequently, the image is send to a computer that provides the phase mask to the SLM controller
via a digital visual interface (DVI) connection. Creation of the phase mask is performed in three
steps (Fig. 5.3.b). First, a wavelength dependent calibration mask (provided by the supplier) is
loaded which compensates for the surface unevenness in the active area, ideally leading to a planar
wavefront. Second, the diffraction grating is added. The periodicity of the grating was set to
16 pixels resulting in a diffraction efficiency in the first order of about 70 % and a beam separation
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5. A STED microscope for imaging of solid-state spins

angle between 0th and 1st order of roughly 3.5◦. Each phase mask contains at least these two
components in order to guide the beam unperturbed to the objective lens. In a final step, the
beam manipulation phase mask is calculated. At the current state, the software allows for adding
a phase-spiral or step needed for the creation of 2D and 1D doughnuts, respectively. Additionally,
the possibility to manually compensate for optical aberrations by adding Zernike polynomials up
to radial order four of arbitrary beam diameter is implemented. By summation of the three single
images the total phase mask as presented on the SLM is generated. Automatized aberration control
routines could be implemented in future (e.g. [108]).
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6. STED imaging of ST1 centers in diamond

Due to the technical difficulties in the deterministic high spatial resolution generation of NV centers,
a systematic screening aiming to identify unknown defect center with similar properties is currently
performed [76]. However, the coupling via the electron dipole-dipole interaction fundamentally
requires a defect center separation in the order of≤ 30 nm in quantum information processing (QIP)
architectures [65]. Consequentially, the targeted spin state readout needs to be performed with
an optical resolution unlimited by diffraction. STED microscopy, capable of coordinate targeted
spin-state readout [66], is integrated as part of the screening procedure.
Recently, an up to the present unidentified fluorescent defect in diamond, referred to as “Stutt-

gart 1” (ST1) center, has been discovered [77, 109]. Next to the NV center it is the only defect
center known to feature optically detected magnetic resonance (ODMR) at room temperature,
making it an additional promising candidate for solid-state spin based QIP and quantum sensing
(QS) applications (Sec. 6.1). Here, first STED microscopy imaging of the ST1 defect is demon-
strated, paving the way for super-resolution applications (Sec. 6.2). In Sec. 6.2.1 the resolution
scaling of ST1 and NV centers as a function of the STED intensity is compared, utilizing the same
experimental apparatus.

6.1. ST1 center properties

In comparison to the NV center the ST1 center emission spectrum is shifted towards smaller
wavelengths featuring a zero phonon line located at 550 nm. Its fluorescence lifetime of τST1

0 ≈
9.5 ns is shorter by about 3 ns [77]. The emission side band of the ST1 center at room temperature
is rather broad and homogeneous, such that depletion at 775 nm is expected to be possible. Hence,
the very same experimental apparatus can be utilized for super-resolving imaging of NV centers
and ST1 centers.
At zero magnetic field, the ODMR spectra shows three resonances at 0.278 GHz, 0.996 GHz and

1.274 GHz with a contrast of up to 45 %. Limited by the microwave amplifier bandwidth, the ex-
perimental system is not capable of efficiently performing coherent spin manipulation experiments
on ST1 centers in the current configuration. However, by exchanging minor components of the
driving field delivery system, the application of microwaves in the required frequency regime can be
enabled for future applications. The observed ODMR spectrum is described by an electronic level
structure featuring a singlet ground state and a metastable triplet state [77]. Singlet ground states
prevents decoupling from the spin environment, which is advantageous in comparison to the NV
center featuring a triplet ground state. No indication of a hyperfine coupling of the electron spin is
observed in the ODMR spectrum, suggesting a nuclear-spin-free constituent. The absence of inhe-
rent close-by nuclear spins make the ST1 center a promising candidate for solely electron spin based
QIP, as well as QS architectures. Possible candidates for the constituent include oxygen

(
O16),

magnesium
(
Mg24) and calcium

(
Ca40).
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6. STED imaging of ST1 centers in diamond

Figure 6.1.: STED imaging of a ST1 center. (a) Confocal and super-resolved (inset) image of a
ST1 center in diamond. (b) Optical resolution in terms of the FWHM as a function of the
applied STED intensity for ST1 (blue) and NV center (red), respectively. Colored dashed
lines represent the fit of the super-resolution law.

6.2. STED imaging

Despite the slightly different optical properties, we utilize the experimental apparatus optimized
for the imaging of NV centers (Ch. 5) for first proof-of-principle demonstration of super-resolution
imaging on ST1 centers. The considered high pressure, high temperature (HPHT) diamond sample
did not contain any fluorescent defects prior implantation. Negatively charged ions of energy 53 keV
and mass 27 u (corresponding to CN−) were implanted under normal incident angle in the attempt
to generate NV centers. After annealing at 800 ◦C for 2 h in vacuum a random distribution of
ST1 centers was observed. The sample was provided by our collaborators from the university of
Leipzig.

In Fig. 6.1.a, the resolution enhancement of an image taken with 610 mW optical STED power
(inset) compared to a confocal image of the same ST1 defect center is presented. Here, the
resolution is limited by the damage threshold of the optical fibre delivering the STED beam. The
obtained PSFs are fitted by a two-dimensional Gaussian of the form

I(x, y) = I0 exp
[
(x− µx)2/(2σ) + (y − µy)2/(2σ)2]+O, (6.1)

where I0 is the amplitude, O the background level, µx and µy the center position and σ the standard
deviation. The full-width at half-maximum (FWHM) of the intensity distribution is determined
according to FWHM = 2

√
2 log 2 · σ. As a result, the confocal resolution FWHMconfocal = 312 ±

46 nm could be significantly improved by STED microscopy to FWHMSTED = 70±8 nm. However,
in order to push the resolution to its ultimate limits a depletion laser shifted towards the blue,
where the depletion is expected to be more efficient, should be considered.

In Fig. 6.1.b the FWHM is plotted versus the STED intensity, which was varied between 0 and
0.76 GW cm−2 (blue). STED intensities are estimated by the spatio-temporal average of the applied
optical STED power. Here, the intensity of the STED beam in the focal plain is approximated
by [110]:

ISTED = PSTED

2.72 · π · FWHM2/4
= IGauss

2.72 . (6.2)
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6.2. STED imaging

Table 6.1.: Defect center properties. Experimentally obtained confocal dconfocal and STED dSTED
resolution, STED beam saturation intensity Isat and STED beam cross section σSTED for NV
and ST1 center. Additionally, the literature values of the fluorescence lifetime τ0 is given [30,
77].

NV ST1

dconfocal [nm] 388.1± 62.0 317.4± 34.4
dSTED [nm] 78± 11 70± 8
Isat [GW/cm2] 0.022± 0.0089 0.050± 0.0235
σSTED [cm2] (8.51± 3.4) · 10−17 (3.62± 1.7) · 10−17

τ0 [ns] 12 9.5

The factor 2.72 is theoretically derived and scales the Gaussian FWHM to its doughnut shaped
counterpart. Subsequently, the super-resolution law [89]

dSTED = dconfocal
1√

1 + ISTED
Isat

, (6.3)

is fitted to the data (dashed blue line), extracting the saturation intensity.

6.2.1. Comparison to the NV center

The resolution scaling of the ST1 center is compared to the one of an NV center within a dia-
mond sample featuring similar properties. Nitrogen ions (15N+) were implanted by a nano-
implanter [111, 73] with an energy of 5 keV generating NV centers shallowly underneath the surface
after subsequent annealing. Utilizing the same experimental apparatus, the scaling of the opti-
cal resolution as a function of the applied STED intensity is recorded. The data is evaluated as
described above and presented in Fig. 6.1.b (red).
Based on the rate equation of a simplified two-level system a formula connecting the STED

saturation intensity to the depletion cross section can be derived [112]:

Isat = σexc

σSTED

hνSTED

hνexc
Iexc + kfl

hνSTED

σSTED
. (6.4)

Both resolution scaling curves were measured with the same experimental apparatus such that
the photon energies hνexc and hνSTED are identical. The point-like nature of defects in diamond
suggests similar cross sections for excitation σexc and depletion σSTED of both of the defect centers.
The fluorescence rate scales with the fluorescence lifetime kfl = 1

τ0
, which is known to be similar

for ST1 center and NV center. Due to the similarity of the optical properties the resolution
scaling with the applied STED intensity is expected to be in the same order of magnitude. This
is in good agreement with the experimental observation. Table 6.1 summarizes the fit values and
reconstructed depletion cross sections for ST1 and NV center.

6.2.2. Summary

In this chapter the super-resolution STED imaging of the ST1 center in diamond was demonstra-
ted. Measurements were performed on an experimental apparatus optimized for the imaging of
NV centers. The obtained resolution of ∼ 70 nm represents a fivefold improvement compared to
confocal imaging mode and was limited by the available STED beam intensity. The scaling of the
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6. STED imaging of ST1 centers in diamond

resolution with the STED intensity is comparable to the one of NV centers, suggesting that the
use of optimized ST1 center diamond samples enables optical resolutions in the regime of a few
nanometers [43].
Due to the technical challenges in the generation of dipole-dipole coupled NV center pairs it

is advisable to search for additional defect centers in solids with similar physical properties but
allowing easier implantation. Towards this end, the ST1 center proofs the availability of additional
defect centers featuring ODMR, even though for the moment its constituent remains unidentified.
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7. Fluorescent nuclear track detection

Fluorescent nuclear track detectors (FNTDs) in combination with STED microscopy enable new
insights in radiation therapy and the determination of physical properties. Here, the ability to
determine the vacancy diffusion coefficient in diamond with surpassing precision is discussed based
on the concept presented in [75] (Sec. 7.2). This property is of fundamental importance in the
creation of optimized samples for quantum information processing (QIP) and quantum sensing
(QS) applications. Additionally, the imaging of sub-cascade events is described (Sec. 7.2.1).

7.1. Sample description

The analysed sample was prepared by collaborators from the Tsukuba University, Japan, utilizing a
HPHT diamond sample with an nitrogen abundance of 10 ppb. Irradiation with osmium (Os) ions
was performed at an energy of 490 MeV and a flux of 1× 107 ions/cm2 under an incidence angle of
0◦. Annealing was conducted at 1000 ◦C for 2 h in vacuum. Imaging from the side perpendicular to
the osmium ions direction of travel, enables scanning of the sample within a single focal depth. In
that way, a varying imaging quality due to depth induced aberration can be avoided. In Fig. 7.1.a a
typical confocal overview of an ion trace with an approximate length of 12 µm is presented. Based
on simulations performed with “Stopping and range of ions in matter” (SRIM [113]), the total
number of vacancies within an average ion trace is estimated to be in the order of 35, 000.
The two processes contributing to the loss of energy of the heavy ion are electronic and nuclear

stopping. Electronic stopping predominantly occurs for high ion energies. Typically, the energy
transferred to the electron is not sufficient to displace a carbon atom out of the diamond lattice. In
contrast, for slow ions (∼ 10 keV) the interaction with nuclei of the crystal lattice become dominant
which displaces a carbon atom out of the lattice if the energy transfer is higher than the binding
energy. Consequentially, close to the Bragg peak the generation of vacancy is most likely and
highest vacancy densities are expected. Lower vacancy densities closer to the entrance point of the
ions enables a mechanism to estimate the vacancy diffusion coefficient in diamond [75].

7.2. Vacancy diffusion coefficient in diamond

The diffusion coefficient of carbon and nitrogen within diamond have been subject of intense
studies [114] and the obtained knowledge could be used to optimize the curing of the diamond
lattice after damaging [115]. Even though the mobilization of vacancies (GR1 center) above 600 ◦C
is observed [116], only recently the direct determination of the vacancy diffusion coefficient utilizing
FNTD has been reported [75]. Here, a further development of this principle replacing the confocal
by STED microscopy is discussed with respect to its capability to extract the diffusion coefficient
with higher precision.
Close to the entrance point high energetic osmium ions displace carbon atoms from the crystal

lattice with small but finite probability, thereby generating vacancies. Due to the conservation
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7. Fluorescent nuclear track detection

Figure 7.1.: High-resolution ion track imaging. (a) Confocal overview image of a complete fluores-
cent ion track. (b) Enlargement of the area within the white rectangular in (a). (c) STED
imaging of the same region as in (b) reveals single defect centers.

of momentum the interaction with the carbon diamond lattice does not redirect the osmium ions
and therefore, vacancies are created along a well-defined, narrow line. For this reason the pre-
sented analysis focuses on the region indicated by the white rectangular in Fig. 7.1.a. Annealing
mobilizes the vacancies and generates NV centers, whenever a vacancy is caught by one of the (in
first approximation) homogeneously distributed nitrogen atoms. The evolution of the NV center
distribution as a function of annealing temperature and time contains information on the lateral
vacancy diffusion coefficient in diamond [75]. Obviously, conventional microscopy techniques are
incapable of resolving the NV center distribution within a diffraction limited spot. An approxima-
tion might be obtained by estimating the number of NV centers utilizing the integrated intensity
and knowing the average distance of the nitrogen atoms within the diamond lattice. In contrast,
super-resolution microscopy offers the potential to determine the vacancy diffusion coefficient via
the exact number and positions of the NV centers.
In parts (b) and (c) of Fig. 7.1 the comparison between a standard confocal image and the super-

resolved STED image within the region of interest is shown. At an optical stimulated emission
depletion beam power of 650 mW (ISTED ∼ 0.81 GW cm−2) single nitrogen vacancy centers are
observed. Currently, the optical resolution of roughly 50 nm is limited by the available STED
beam power.

7.2.1. Resolution

Figure 7.2 presents the obtained resolution (FWHM) as a function of the optical STED intensity for
a shallow ion trace (approx. 1 µm underneath the surface). A fit of the expected scaling behaviour
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Figure 7.2.: Ion track resolution. (a) Optical resolution as a function of the applied STED intensity.
The red line represents a fit of the super-resolution law. (b-c) Confocal and STED image
of the same cascade event, respectively. The high-resolution image enables the extraction of
the divergence angle θ ≈ 22◦ of a cascade event.

(Eq. 4.2) is shown as a red solid line. The confocal resolution of FWHM = 388.6 ± 62.0 nm was
improved to FWHM = 67.7±19.1 nm at a STED intensity of 0.722 GW cm−2. Since primarily single
NV centers are observed, the resolution is sufficient for the anticipated application. Additionally,
the observation of cascade events is enabled (Fig. 7.2.b-c). While the confocal image displays a
single bright spot, the STED image shows two distinct lines diverging under an angle of θ ≈ 22◦.
Such events are predicted by SRIM-simulations [75] and contain information on the absorption of
particles of high-energy in matter.

7.2.2. Localization

In order to localize emitters in Fig. 7.1.c in an automatized fashion the evaluation routine presented
in [117] was adopted. First, the resolution is estimated by fitting a two-dimensional Gaussian
function G(x, y) to a well isolated NV center. Fit values are assumed to represent the idealized
PSF and contain information on the obtained resolution and integrated intensity of a single emitter.
Subsequently, a threshold analysis performed on the cross correlation of the idealized PSF with the
raw image, pre-locates the emitters. In a small area around each localization, a two-dimensional
Gaussian fit to the original STED image is performed in order to increase the localization precision.
The integrated intensity in 16 out of the 90 localization areas indicates the presence of two or more
NV centers and is utilized as an estimate for the exact number of emitters [117]. The obtained
resolution is not sufficient to resolve all NV centers individually. For simplicity it is assumed that
all contributing emitters within a localization region are located in the center of the Gaussian
fit. In this way, introduced spatial uncertainties are less than or equal to the optical resolution
(∼ 50 nm) and should not influence the overall emitter distribution significantly.

7.2.3. Binning

Based on the localizations the Euclidean distance of each NV center to the ion track is determined.
The most probable ion trajectory is estimated by determining the center of mass Cx(y) along
the x-direction for each line y in the confocal image. Subsequently, a straight line is fitted to
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Figure 7.3.: NV center distribution within an ion trace. Histogram of the NV center distribution
determined from super-resolution imaging (blue) with respect to the center of mass of the
ion track. The histogram of the NV center position extracted from the STED image reveals
the substructure hidden in the along the ion track integrated confocal intensity distribution
(red line).

Cx(y). The histogram shown in Fig. 7.3 presents the number of localizations as a function of
the distance to the ions trajectory. Additionally, the integrated fluorescence along the ion trace
of the confocal image is presented (red line). While the confocal intensity distribution shows a
single asymmetric peak, the NV center distribution obtained by STED microscopy reveals the
substructure consisting of two distinct peaks. The increased localization precision will enable the
determination of the vacancy diffusion coefficient with high precision in the future.

7.3. Summary
In this chapter, the indirect STED imaging of the trajectory of osmium ions of high-energy within
diamond was presented An optical resolution of 50 nm could be obtained, which is remarkable
considering that the ion track is located more than 1 µm underneath the diamond surface. The
obtained resolution was limited on the one hand by the accessible optical STED power on the
other by depth induced aberrations. However, imaging single NV centers within FNTDs with
high statistics will in future enable the precise determination of the vacancy diffusion coefficient
in diamond. To accomplish this, the measurements need to be repeated for samples with varying
annealing parameter (temperature and time). Limited by the availability of suitable specimen
we were restricted to the presentation of proof-of-principle measurements. The determination of
the vacancy diffusion coefficient represents a crucial step for improving the conversion yield of
implanted nitrogen ions into NV centers. An increased conversion yield represents an important
step towards scalable deterministic creation of solid-state spin based quantum registers. Addition-
ally, the possibility to resolve cascade events might provide a means for new insights in radiation
therapy.
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8. Geometric phase based quantum gates

Soon after their discovery geometric phases were counted as a potentially powerful tool for robust
quantum computation. First an intuitive classical example is given, highlighting some of the
features of geometric phases. Afterwards, a closer look on the mathematical representation of
the Berry phase and its generalizations to Aharonov-Anandan and holonomic geometric phases is
taken. Additionally, the origin of the intrinsic robustness is discussed.

8.1. Intuitive example

In general, geometric phases arise when parallel transporting (meaning without any local rotation)
a vector on a surface with non-trivial geometry. An intuitive classical illustration is shown in
Fig. 8.1.a. A vector (blue) located at the pole of a 2-sphere (I) (in this example this is not
the Bloch-sphere) is parallel transported to the equatorial plain (II) and subsequently along the
equatorial line (III). Finally, the trajectory is closed by transporting the vector back to the pole
(IV ). Even though no local rotation has been performed, the vectors at position (I) and (IV )
differ by an angle γ. This angle γ is a consequence of the non-trivial geometry of the sphere surface
and is solely depending on the solid angle Ω (red shaded area) enclosed by the circuit C (red solid
line). Hence, sometimes geometric phases are referred to as a global change without a local change.
You can easily convince yourself that the cyclic parallel transport of a vector on a surface of trivial
(flat) geometry will not generate such an additional phase factor (Fig. 8.1.c).
Similarly the origin of the robustness property can be illustrated (Fig. 8.1.b). Imagine, due to

noise or experimental control parameter imperfections, the vector is not following the anticipated
trajectory (red line) exactly but is jittering around it (blue line). As mentioned above, the final
value of γ is only depending on the enclosed solid angle Ω such that the jitter is averaging out
as long as the noise amplitude is small and its frequency high with respect to the inverse gate
duration 1/tGate. Hence, geometric phases feature an intrinsic tolerance against noise.

8.2. Berry phase

In 1984, M.V. Berry discovered that an additional phase factor is associated with a cyclic adiabatic
system evolution in parameter space, which only depends on the geometry of the Hilbert space [78].
Let H be a Hamiltonian depending on the parameter set R and let R perform an adiabatic cycle
such that R(T ) = R(0). The instantaneous eigenstates |n(R(t))〉 depend on the chosen path in
parameter space. For a system initialized in one of the eigenstates |n(R(0))〉 under the adiabatic
condition the final state |Ψ(t)〉 at time t follows as:

|Ψ(t)〉 = exp
(
− i
~

∫ t

0
En(R(t′))dt

)
exp(iγn(t)) |n(R(t))〉 . (8.1)
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Figure 8.1.: Classical example of a geometric phase. (a) Intuitive explanation of the origin of
geometric phases. A vector (blue arrow) is transported along a closed loop trajectory (red
line) without any local rotation (parallel transport condition). The non-trivial geometry of
the 2-sphere surface results in a global change γ of the vector without a local change. (b)
Fast noise of small amplitude does not alter the geometric phase γ significantly since γ only
depends on the enclosed solid angle. (c) In contrast, when parallel transporting a vector in
a closed loop on a trivial (flat) surface the local and global properties of the vector remain
unchanged.

Next to the dynamic phase (first exponential) a second phase factor γn(t) arises. Under the cyclic
condition the geometric phase follows as a circuit integral

γn(C) = −i
∮
c

〈n(R)|∇Rn(R)〉dR, (8.2)

where C is the closed path in parameter space R. It follows that γn(C) only depends on the path
of R as long as the evolution is performed slow enough. Since 〈n(R)|∇Rn(R)〉 is imaginary the
geometric phase factor γn(C) is real valued. Utilizing Stokes theorem converts the circuit integral
into a surface integral

γn(C) = −
∫ ∫

dS · Vn(R), (8.3)

where dS is the surface area element in parameter space R and Vn(R) is referred to as vector
potential since it originates from the curl of a vector. As the intuitive example in Sec. 8.1 the
geometric phase only depends on a surface integral.

8.3. Aharonov Anandan phase

It were Y. Aharonov and J. Anandan who realized that the occurrence of geometric phases is not
restricted to adiabatic system evolutions [118]. In fact, every closed curve in the projective Hilbert
space gives rise to a geometric contribution to the total phase φ, which is derived to be:

φ = −
∫ T

0
〈ψ(t)|H(t) |ψ(t)〉dt︸ ︷︷ ︸

Dynamic

+
∫ T

0

〈
ψ̃(t)

∣∣∣ i(∂/∂t) ∣∣∣ψ̃(t)
〉

dt︸ ︷︷ ︸
Geometric

. (8.4)

Here, the first term is again the well known dynamic phase equivalent to the one in Eq. 8.1 and the
second is the geometric contribution referred to as Aharonov-Anandan (AA) phase. Note,

∣∣∣ψ̃(t)
〉

is the periodic state vector representation of the cyclic state sometimes referred to as reference
section state [119]. However, in general the AA phase is restricted to non-commuting (Abelian)
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U(1) transformations. Obviously, in the adiabatic limit the AA phase corresponds to the Berry
phase.

8.4. Abelian non-adiabatic geometric quantum gates

The Aharanov-Anandan phase is only a promising tool for geometric phase based quantum in-
formation applications if the dynamic phase contribution can be suppressed efficiently. Typically,
the so called two-loop method, where the dynamic phase acquired in the first half of the sequence
cancels with the one acquired during the second (used, e.g., in [120, 121, 122]), is utilized. Hence,
the dynamic contributions are self-compensating and pure geometric evolution is achieved. Note,
even though the value of the dynamic phase at the end of the sequence is zero, it is not during the
gate operation itself.

8.5. Non-Abelian holonomies

A conceptually different approach to geometric phase based quantum computation was suggested
by P. Zanardi and M. Rasetti [123]. Its main advantage is the possibility to generate SU(2) (ma-
trix valued) transformations resulting in the realization of non-commuting (non-Abelian) quantum
gates by means of holonomies [124]. Essentially, a computational subspace is adiabatically trans-
ported on a closed loop in a higher dimensional Hilbert space.
However, this approach requires at least a four level system n ≥ 4 with at least three driving

fields [123]. The high number of experimental control parameter in combination with its adiabatic
nature hindered the experimental demonstration of this quantum gate concept for more than a
decade. Only recently, adiabatic single-qubit holonomic quantum gates have been demonstrated
in a trapped ion four-level tripod configuration [125].
It is noteworthy, that holonomy based quantum gates allow to acquire the geometric phase by

the evolution of a computational subspace with energy eigenvalue zero [126]. Hence, the acquired
dynamic phase is equal to zero at any point during the sequence and pure geometric evolution is
obtained by default. However, strict timing conditions need to be fulfilled in order to avoid loses
into the ancillary levels.

8.6. Non-adiabatic non-Abelian holonomies

In 2012, E. Sjöqvist et al. proposed a scheme for non-adiabatic non-Abelian geometric quantum
computation overcoming the need for long gate durations [127]. The availability of a set of purely
geometric, universal, non-adiabatic quantum gates drew significant attention and was experimen-
tally realized utilizing microwave [61, 60] and optical transitions [128, 129] on nitrogen-vacancy
center in diamond, as well as in liquid NMR [79], super-conducting qubits [80].
Consider the V-shaped level scheme featuring the ground state |0〉 and the two excited states

|±〉. The computational basis spanned by |+〉 and |−〉, while |0〉 acts as in ancilla. The resonantly
driven interaction Hamiltonian in the rotating is defined by:

H(t) = Ω(t)/2 (γ− |0〉 〈−|+ γ+ |0〉 〈+|+ H.c.) . (8.5)

Resulting in a Rabi oscillation between the ground |0〉 and bright state |b〉 = −γ∗+ |+〉 − γ∗−, while
the dark state |d〉 = −γ− |+〉 + γ+ |−〉 decouples from the gate operation [130]. Since Ω(t) is
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8. Geometric phase based quantum gates

the Rabi frequency the systems performs a cyclic evolution if
∫ t′

0 Ω(t′)dt′ = 2π, in case the Rabi
weights are well normalized |γ−|2 + |γ−|2 = 1. The final evolution operator only depends on the
chosen path Cn

U (1)(Cn) = n · ~σ, (8.6)

where ~σ is the vector of the standard Pauli matrices ~σ = (σx, σy, σz). For γ− = sin (θ/2) eiφ and
γ+ = − cos (θ/2) the unit vector n follows as:

n = (cos (θ) sin (φ) , sin (θ) sin (φ) , cos (θ)) . (8.7)

By choosing the components θ and φ appropriately (which defines the Rabi frequency ratio γ+/γ−)
the rotation axis of the operation U1(Cn) is defined. Rotations by arbitrary angles can be obtained
by subsequent application of π-pulses around the unit vectors n and m, such that:

U (1)(C) = U (1)(Cm)U (1)(Cn) = n ·m− iσ(n×m). (8.8)

U (1)(C) is an SU(2) transformation, equivalent to a rotation around the normal of the plain
spanned by n and m by an angle of 2 arccos(m · n). Consequentially, U (1)(C) is a universal
single qubit quantum gate. A similarly derived two-qubit (conditional phase shift) quantum gate
completes the universal non-adiabatic holonomic quantum gate set [127].

8.7. Intrinsic robustness
On the one hand, geometric phases provided understanding of fundamental physics phenomena
like the Aharonov-Bohm effect [131] and are in itself a fascinating field of research. On the other,
they are a promising tool to realize robust high fidelity quantum gates as building blocks for NISQ.
The reason for the conjecture that geometric phase based quantum gates are resilient against noise
is that they rely on global features while decoherence and parameter noise are of local nature.
The influence of noise on geometric phase based quantum gates has been investigated theoreti-

cally and experimentally in certain scenarios. E.g., S. Filipp et al. demonstrated the resilience
against artificial noise for adiabatic geometric phase shift gates with increasing gate duration [132,
133]. Naively, on might expect the longer exposure to the noise source reduces the gate fidelity.
However, by prolonging the gate duration, the noise frequency in comparison to the inverse gate
duration is increased and the effect of the noise is more likely to average out [134, 135] (compare
Sec. 8.1). Consequentially, quasi static (DC) noise is distorting the path and results in dephasing,
which however appears to be less pronounced than for the dynamic counterpart [136].
Numeric investigations by M. Johansson et al. suggest superior robustness against decay, de-

phasing and constant control parameter imperfections of non-adiabatic holonomic quantum gates
with respect to their adiabatic counterparts [137]. Similarly, Liang et al. proposed supremacy of
the superadiabatic geometric quantum gate (realized in Ch. 11) over non-adiabatic holonomic and
adiabatic geometric quantum gates with respect to constant driving field miss tuning [81].
In conclusion, there are strong indications that geometric phase based quantum gates are robust

with respect to local noise and constant driving field parameter imperfections. However, a detailed
comparative study on the performance of different quantum gate modalities based on dynamic and
geometric phases has not yet been performed.
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Commonly, two different approaches for the quantification of the performance of quantum gates
are followed. Standard quantum process tomography (QPT) reconstructs the quantum process
matrix of single gate operations. Hence, it enables the identification and optimization of error-
prone gates. In contrast, randomized benchmarking (RB) reveals the error scaling of Clifford gate
based computational sequences of different length. While it extracts the computational relevant
error, it does not contain information on the individual gate performance. In the scope of this
thesis QPT and RB are implemented to reveal the complete performance information.

9.1. Standard quantum process tomography
Standard QPT is a commonly used tool (e.g., [138, 139, 140, 61]) in order to reconstruct the
quantum process matrix χexp of an unknown quantum operation. χexp contains the full information
on the process. The fidelity F , defined as the overlap of the unknown, experimentally measured
and the ideal quantum process matrix F = Tr (χexpχtheo), quantifies the gate performance with
F = 1 for an ideal gate realization. QPT makes it possible to determine the quantum gate fidelity
for different gates (e.g., Pauli-X, Pauli-Z) separately, revealing full performance information about
the considered set of gates.

9.1.1. Quantum process matrix

The quantum process matrix χ describes how an arbitrary input state |ψ〉 transforms under an
unknown quantum operation E . An input state can be described by the density matrix according
to

ρin =
∑
k

pk |k〉 〈k| , (9.1)

with 0 ≤ pk ≤ 1,
∑
pk = 1 and |k〉 are elements of the d-dimensional Hilbert space. The operation

E acting on ρin generates the output state ρout = E(ρin). By switching to the operator-sum
representation the output state can be described by the quantum process matrix χnm according
to [16]

ρout = E(ρin) =
∑
mn

χmnEmρ
inE†n, (9.2)

where EmρinE†n is a basis transformation into {Em} ∈ SU(d), representing a full set of orthogonal
basis operator.

9.1.2. Evaluation routine

The utilized quantum process tomography evaluation routine is based on the work presented
in [141]. For completeness, a short summary of the general concept is given (for details see [142]).
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Measurements are performed on d2 states Ψj forming a orthogonal basis:

ρ =
∑
j

qjρj =
∑
j

qj |Ψj〉 〈Ψj | . (9.3)

Both E(ρinj ) and EmρinE†n can be decomposed into the basis spanned by ρk:

E(ρinj ) =
∑
k

λjkρk, (9.4)

Emρ
inE†n =

∑
k

βmnjk ρk. (9.5)

The result of E(ρinj ) is evaluated by quantum state tomography measuring its components in the
basis of ρk. This requires d2 projective measurements per input state ρinj resulting in a total of d4

measurement. From the measurement outcomes O the coefficients λjk are calculated by solving
the linear system of equation:

Opj =
〈
Ψp|E(ρinj )|Ψp

〉
=
∑
k

λjk 〈Ψp|ρk|Ψp〉 =
∑
k

λjk| 〈Ψp|Ψk〉 |2. (9.6)

Similarly, the coefficients βnmjk follow by solving the system of linear equations which is purely
based on theoretical values:

〈
Ψp|Emρinj E†n|Ψp

〉
=
∑
k

βmnjk 〈Ψp|ρk|Ψp〉 =
∑
k

βmnjk | 〈Ψp|Ψk〉 |2. (9.7)

After calculating the generalized inverse κmnjk of βmnjk the experimental quantum process matrix
follows from Eq. 9.2 immediately:

χmn =
∑
jk

κmnjk λjk. (9.8)

However, due the imperfect measurement or dissipative processes and decoherence the calculated
quantum process matrix is in general not physical, i.e., χ can be non-Hermitian, traceless or not
completely positive. To this end, a maximum-likelihood-estimation is performed resulting in the
most probable physical χ-matrix [61]. The error-estimation is based on a Monte-Carlo simulation
utilizing the mean and standard deviation of the observable O, resulting in a distribution of Monte-
Carlo sampled, physical process matrix χMC . The quantum gate fidelity and its error are calculated
from the distribution of χMC matrices.

9.1.3. Choice of basis operators

In the scope of this thesis quantum gates defined on the two and three-dimensional Hilbert space
(d = {2, 3}) are demonstrated. Two sets of orthogonal basis operators Em need to be chosen to
reconstruct the full quantum process matrices χmm in the respective Hilbert space. The chosen
set of Em in two-dimensional Hilbert space spanned by the computational space {0,−} are the
well-known Pauli matrices completed by the identity matrix, the generators of the special unitary
group SU(2). The most compact representation of generators Em spanning SU(3) are defined by
the eight Gell-Mann matrices, which are Hermitian, traceless and fulfil tr(λiλj) = 2δij . However,
the Gell-Mann matrices do not allow to immediately extract the reduced 4 × 4 quantum process
matrix of the computational subspace spanned by {+,−}. Here, we utilize the set of nine generators
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9.1. Standard quantum process tomography

Table 9.1.: Definition of the QPT basis. Convention of the basis operators Em for quantum process
tomography measurements in Pauli (P.), explicit state (exp.) and matrix (mat.) representa-
tion on the two and three-dimensional Hilbert space.

Em P. H2 P. H3 exp. H2 exp. H3 mat. H2 mat. H3

E1 σ0 σ0
+− |0〉 〈0|+ |−〉 〈−| |+〉 〈+|+ |−〉 〈−| ( 1 0

0 1 )
(

1 0 0
0 1 0
0 0 0

)
E2 σx σx+− |0〉 〈−|+ |−〉 〈0| |+〉 〈−|+ |+〉 〈0| ( 0 1

1 0 )
(

0 1 0
1 0 0
0 0 0

)
E3 σy σy+− i |0〉 〈−| − i |−〉 〈0| i |+〉 〈−| − i |−〉 〈+|

( 0 −i
i 0

) ( 0 −i 0
i 0 0
0 0 0

)
E4 σz σz+− |0〉 〈0| − |−〉 〈−| |+〉 〈+| − |−〉 〈−|

( 1 0
0 −1

) ( 1 0 0
0 −1 0
0 0 0

)
E5 - σx+0 - |+〉 〈0|+ |0〉 〈+| -

(
0 0 1
0 0 0
1 0 0

)
E6 - σy+0 - −i |+〉 〈0| − i |0〉 〈+| -

( 0 0 −i
0 0 0
i 0 0

)
E7 - σx−0 - |−〉 〈0|+ |0〉 〈−| -

(
0 0 0
0 0 1
0 1 0

)
E8 - σy−0 - −i |−〉 〈0| − i |0〉 〈−| -

( 0 0 0
0 0 −i
0 i 0

)
E9 - I0 - |0〉 〈0| -

(
0 0 0
0 0 0
0 0 1

)

Em suggested in [141]. Table 9.1 summarizes the choice of basis states Em in the Pauli matrix,
explicit state and matrix representation for d = 2, 3, respectively. E1 to E4 correspond to the
generators of the (reduced) computational space.

9.1.4. Experimental sequence

The QPT measurement is performed in d4 experimental runs. Each run is initialized by optically
pumping the NV center electron spin into the |0〉 state (Fig. 9.1). The application of π/2 and
π-pulses prepares the spin in one of the d2 input (quasi-)pure states ρinj = |ψj〉 〈ψj | (Tab. 9.1).
Subsequently, the gate operation is performed resulting in the final state ρoutj = E(ρinj ). Projec-
tive readout pulses perform the back-projection of ρoutj onto Em resulting in the observable Opj
required for the evaluation presented in Sec. 9.1.2. Finally, the population is optically readout by
illumination with green light and simultaneous fluorescence detection.
With increasing dimensionality d of the Hilbert space the QPT measurement becomes experi-

mentally elaborate and its evaluation computationally intense. Practically, the execution of QPT
becomes infeasible for large d. However, universal quantum computation is obtained for a set of
two non-commuting single qubit and one non-trivial two-qubit gate. Hence, as long as the compu-
tational qubit is encoded in a low dimensional Hilbert space standard quantum process tomography
represents a powerful tool for the quantification of the quantum gate performance.

9.1.5. Rotating frame considerations

In Sec. 12.4 the quantum gate fidelity of a gate operation suffering from the intentional detuning η of
the driving field frequency is investigated. In general, subsequent gate operations suffering the same
constant detuning η are performed in the identical rotating frame of reference. Consequentially, the
on-resonant QPT preparation and projection pulses need to be applied in the reference frame of the
imperfect gate operation. Experimentally this situation is achieved by properly switching between
the involved rotating driving field frames (compare Sec. 10.1.1) as described in the following.

43



9. Performance evaluation

Figure 9.1.: Quantum process tomography measurement scheme. After initialization (ini) a pre-
paration pulse (prep) is applied. Subsequently, the gate operation is performed. A projection
pulse (proj) and finally the spin state is readout (ro). Each of the preparation pulses is combi-
ned with each of the projection pulses resulting in d4 combinations, where d is the dimension
of the investigated Hilbert space.

By defining the time point t = 0 between preparation and the gate operation a smooth transi-
tion (no phase jump) between the on-resonant (negative times) and the detuned (positive times)
reference frame is ensured. However, at the end of the gate operation t = tGate a phase difference
∆ϕ = η · tGate was acquired between the rotating frame of the gate operation and the frame of the
projection pulse (see Sec. 10.1.2). By adding ∆ϕ to the projection driving field parameters the
designed experiment of an accurate QPT sensing an imperfect quantum gate is realized.

9.2. Randomized benchmarking

Based on the protocol introduced by Knill et al. [143] a randomized benchmark (RB) analysis
is implemented. The RB investigates the error scaling of concatenated gate sequences realized
by a set of Clifford gates. The basic assumption of RB is that for a randomly chosen sequence
the noise is depolarizing [16], such that a fully depolarized system is in the completely mixed
state ρmix = 1

d

∑d
i=1 |ψi〉 〈ψi|. By varying the randomized sequence potential dependencies on the

selected sequence are averaged out. Measuring the degree of polarization for different sequence
length enables a mechanism to study the error scaling for the particular gate modality. Since the
RB applies sets of quantum gates, the average error per gate εg for the chosen set of gates is
extracted, while the error of the individual gates remains undetermined. Among others, rando-
mized benchmarking has been demonstrated utilizing trapped ions [143, 144], liquid NMR [145],
superconducting qubits [146] and solid-state qubits [147]. Error probabilities per gate down to
εg = 2.0(2) · 10−5 have been proven in the physical system of trapped ions [148]. While RB analy-
sis have been demonstrated for multi-qubit gates [145] in the scope of this thesis only single-qubit
gates are realized.

9.2.1. Single qubit randomized benchmarking

First, NG sequences G = {G1 . . . GlNl } of randomly generated π/2-pulses with a total length lNl
are generated. Each sequence is reduced to Nl subsequences of length lk = {l1, l2, . . . , lNl}. After
calculating the expected measurement outcome of each sequence Glk , a gate R projecting the spin
to one of the computational eigenstates (|0〉, |1〉) is chosen randomly and concatenated to Glk . The
resulting sequences RGlk . . . G1 are Pauli randomized NP times. To do so, a random sequence of π-
pulses and identity operations is generated P = {P1 . . . Plk+2} for every of the NG ·Nl subsequences.
Finally, the NG ·NP ·Nl experimental sequences S = {Plk+2RPlk+1Glk . . . G1P1} are concatenated.
Since the whole experimental sequence S is known and the final state |Ψf 〉 is designed to be one
of the computational eigenstates, an estimate on the sequence fidelity f is obtained by comparing
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the measurement population |Ψmeas〉 with the anticipated one:

f = 〈Ψf |Ψmeas〉 . (9.9)

In case the signal is completely depolarized the measurement of |0〉 and |1〉 are equally probable.
Therefore, the fidelity f will decay towards 0.5 with increasing sequence length lk.

9.2.2. Experimental implementation

We generate NG = 4 random sequences G of length l = 48 consisting of π/2-pulses representing
the computations. Gate operations Gk are assumed to be performed by rotations of π/2 around
a set of orthogonal axis g = {Rx

(
π
2
)
, Ry(π2 ), Rz(π2 ), Rx(π2 ), Ry(π2 ), Rz(π2 )}. Each sequence is

reduced to NL = 13 different sequence length lk = {2, 4, 6, 8, 10, 14, 18, 22, 16, 30, 34, 40, 48}. The
expected measurement outcome M is calculated for the NG · NL sequences. Based on M the
projection pulse R is randomly chosen from a suitable subset of g and added to the respective
sequence. The obtained NG · NL sequences are Pauli randomized NP = 8 times by means of
π-pulses and identity operations (r = {Rx(π), Ry(π), Rz(π), Rx(π), Ry(π), Rz(π), Rz(0), Rz(2π)}).
In total NG ·NL ·NP = 416 different sequences are generated and each of them is averaged Ne = 107

times.
For the maximal computational sequence length lk = 48 the total number of gate operations is

99, including the randomization pulses. Therefore, depending on the realized gate concept (see
Ch. 12) the maximal total sequence length varies between tHQG = 37.8 µs, tSAGQG = 31.7 µs and
tDYN = 17.14 µs. Due to the different length of the computational gates in the dynamic realization
the sequence duration is given as the mean value of the realized S. Decoherence effects can be
neglected in good approximation, since the relevant decay time T1ρ ≈ 5 ms (Sec. B.1) is much
longer than the longest sequence duration.

9.2.3. Fidelity and error scaling

The average fidelity f of each sequence S is calculated as described in the following. For each S
the expected measurement outcomes, by design either |0〉 or |−〉, are calculated. The population is
extracted by detecting the fluorescence level after S was applied and comparing it to the reference
fluorescence level of |0〉 and |−〉.

The average fidelity, for each sequence length lk, is calculated by averaging over the NG · NP
measurements according to [143]:

f lk = 1− plk = 1−
NG∑
j=1

NP∑
m=1

pj,lk,m
NGNP

. (9.10)

In case of non-systematic errors the result should not differ significantly for each individual sequence
f j,lk = 1− pj,lk = 1−

∑NP
m=1

pj,lk,m
NP

. Errors correspond to the standard error of the mean σmean =
σf lk

/
√
N , where N = NP ·NG is the number of measurements per sequence length lk. A functional

of the form [144]

f(l) = 1−
(
(1− αnεm)(1− αnεg)l + 1

)
/αn, (9.11)

where αn = 2n/(2n − 1) is a factor depending on the number of involved qubits n, is fitted to the
data extracting the average error per gate εg. The factor εm combines the average error of the
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initialization, the final projecting π/2-pulse, the final Pauli randomization and the readout.
For gate concepts realized on the two-dimensional Hilbert space spanned by |0〉 and |−〉 the

complete randomized benchmarking analysis can be realized by one gate modality. The HQG
realized on three dimensional Hilbert space featuring the computational subspace |+〉, |−〉 requires
initialization and readout pulses at the beginning and end of each sequence. Choosing |−〉 as
the initial state requires a π-pulse on the transition |0〉 ↔ |−〉 at the beginning and end of each
measurement.
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In Ch. 5 the optical components of the experimental apparatus have been discussed. Here, the
additional microwave components needed for the coherent manipulation of solid-state spins are
introduced. Additionally, details on the generation of driving field sequences and are given.

10.1. Coherent spin manipulation

In addition to the optical components of the system, a microwave source is required in order to
perform coherent spin manipulation experiments on NV centers (Sec. 2.2). The experimental re-
alization features an arbitrary waveform generator (AWG) (AWG70002A, Tektronix) providing
microwave fields in up to two channels at a sampling rate of 25GSamples/s and with eight bit
vertical resolution. Additionally, up to four binary marker output channels are utilized to synchro-
nize the AOMs of the excitation and STED laser, as well as the detection card of the microscope,
with the applied microwave fields. Transistor-transistor logic cards controlled by a data acquisition
card (PCIe-6353, National instruments) enable the switching between coherent experiment mode
and imaging mode. In imaging mode the AWG is idle and the experiment is fully operated by
the control computer (Sec. A.1). A synchronization between AWG and laser pulses is required to
allow for time-gated detection in experiment mode. The STED laser was chosen to be the master,
delivering the trigger signal to the excitation laser and the AWG. In this way, the STED laser,
featuring a trigger output (internal jitter < 2 ps), is protected against self-damaging caused by
failing of the trigger source. At the same time a stable system clock is provided.
The AWG output channel is amplified by a broadband high-power microwave amplifier (ZHL-

16W-43+, Mini-Circuits) and delivered to the sample by low loss SMA-cable (Huber+Suhner). In
house designed circuit boards [149] fabricated on low-loss high-frequency circuit material (Rogers
Corporation) guide the microwave fields to the sample. A gold micro-wire (� = 30 µm) spanned
over the diamond sample serves as antenna. Dumping the microwave into an attenuator in com-
bination with a broadband microwave circulator (CS-8, Microwave Communications laboratories,
Inc.) prevents back reflections disturbing and potentially damaging the system.
Typically, the in this system obtained Rabi frequencies are in the range of 5 − 10 MHz for NV

centers separated from the gold wire by 50 − 100 µm. In order to obtain higher Rabi frequencies
Ω-loop antennas might be utilized.

10.1.1. Sequence creation

Each coherent spin manipulating experiment consist of three instances, as illustrated in Fig. 10.1.a.
First, the quantum system is initialized by illumination with a green laser pulse (Sec. 2.2). Sub-
sequently, the actual experiment is performed by application of microwave driving fields. The
AOM double-pass configuration acts as a fast switch turning off the laser beams during this part of
the sequence. Finally, the spin state is readout while illumination with another green laser pulse,
which at the same time initializes the subsequent experiment. A normalized signal is obtained by
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Figure 10.1.: Coherent microwave experiment sequence creation. (a) Illustration of the experi-
mental sequence. A green laser pulse initializes the spin (INI), afterwards the spin mani-
pulation takes place and finally the spin state is read out (RO). By normalising the signal
(s.) to a reference (ref.) after reinitialization . (b-c) When switching between two harmo-
nic oscillations of same phase at t0 but different frequencies f1 (orange line/arrow) and f2
(blue line/arrow), at time tn the phase ∆ϕ = 2π(f2 − f1)tn needs to be added in order to
maintain the proper rotating frame (blue dashed line/arrow). The additional phase leads
to a smooth transition between the two frames rotating with different velocities (II).

comparing the signal fluorescence level (s.) with a reference signal (ref.). The reference is measured
for the spin initialized in the ms = 0 state. Since initialization and readout are identical for all
experiments these parts of the sequence are predefined in the control software.
The creation of microwave experiments requires a high degree of flexibility. First the duration

of the sequence texp is defined. Within texp the zero time point t0, which represents the reference
for all other time points tn of the sequence, is chosen. Note, parts of the experiment might be
performed at negative times. According to a list containing the amplitude A, the detuning ∆ and
the phase ϕ for all time points tn the driving field amplitude D is calculated by:

D(tn,∆, A, ϕ) = A cos ((ω0 + 2π ·∆) · (tn − t0) + ϕ) . (10.1)

Obviously, a sinusoidal driving field is obtained for a list containing identical entries for all A,
∆ and ϕ, respectively. Note, when switching between two driving field frequencies ω0 + ∆1 and
ω0 + ∆2 at time point tn a phase jump of ∆ϕ = 2πtn(∆1 −∆2) occurs (Fig. 10.1.b-c). This phase
difference needs to be accounted for if the subsequent part of the experiment is suppose to be
performed in the same frame of reference (FoR). Figure 10.1.c illustrates the switching between
the FoR. At t = 0 the two FoRs, represented by the yellow and blue arrows, start at the same
position. After time tn the covered angle differs by ∆ϕ. When (I.) switching the driving field
frequency without correcting for ∆ϕ the reference frame is effectively rotated. In contrast, when
accounting for ∆ϕ (II.) the frame of reference remains unchanged.
Note, due to slow drifts of the system resonance frequency ω0 and Rabi frequency Ω0 varies with

time. Therefore, an experimental routine retuning the control parameter in preset time intervals
has been implemented in order to guarantee measuring at the optimal working point (see Sec. A.2).

10.1.2. System frequency response

The advent of arbitrary waveform generators tremendously simplified the generation of time-
dependent microwave fields and thereby offers high potential in quantum sensing (QS) and QIP.
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Figure 10.2.: Illustration of the system frequency response. (a) The pulse length (blue 21.5 ns,
orange 215 ns) in time-domain determines the width (w1, w2) of the sinc function in fre-
quency space. (b) A non-homogeneous gain of the microwave amplifier approximated by
an error-function (green) weights high frequency components of the sinc function stronger
than low frequency components. (c) The weighting causes a shift of the effectively sensed
frequency depending on the pulse length in time domain. In the considered case, a tenfold
increase of the pulse length causes an relative shift of ∆f = 800 kHz

However, high-power broadband microwave amplifier remain a bottleneck with significant experi-
mental consequences. The microwave amplifier used in the experimental apparatus specifies a
uniform gain in the frequency range of 1.8 − 4.0 GHz. As a consequence, at a magnetic field of
|B| ≈ 400 G, needed for the nuclear polarization of the nitrogen spin (compare B.2), the system is
working at or even beyond the limit of the stated frequency range. The involved implications are
highlighted in the following and need to be considered in precision measurements. Particularly, in
the standard quantum process tomography measurements presented in Sec. 12.5 a frequency shift
due to system frequency response is considered.
Consider a π-pulse described by a cosine of frequency f0 = 1.73 GHz multiplied by a rectangular

function of duration d. The function corresponds to the convolution of a Dirac delta function
δ(f − f0) with a sinc function sinc(f/d) (convolution theorem) in frequency domain. Obviously,
the width of the sinc in frequency space is depending on the temporal length of the π-pulse (see
Fig. 10.2.a). To describe the signal sensed by the NV center the frequency spectra needs to be
multiplied by the frequency depended gain of the experimental system. Since no information on the
amplifier gain below 1.8 GHz is available, we utilize an error-function erf(f/σ) with σ = 1.8 GHz
(Fig. 10.2.b) to illustrate the basic principle. The slope of the error function weights high frequency
components of the sinc function stronger than low ones. This results in an effective shift ∆f of
the peak position (Fig. 10.2.c) at position of the defect center. For shorter π-pulse durations the
effect becomes larger due to the increased width of the sinc function in frequency space.
Experimentally, the effect is visualized by taking ESR spectra in the same frequency range with

modified π-pulse length and Rabi frequency (Fig. 10.3.a). Note, a shift of the sensing frequency to
higher values causes the resonance within the spectra to appear at lower frequencies. A simulation
based on the above presented model reveals a 1/tπ dependency of the sensing frequency. The
experimental resonance frequency, extracted by a Lorentzian fit, depending on the π-pulse length is
fitted by the function b(t) = off +a/t (see Fig. 10.2.b) in good agreement. The effect is reproducible
and after once calibrating at a certain frequency, correction factors can be introduced into the
experimental routine. Equivalently, the effect is observed for the high transition at ∼ 4.01 GHz.
Based on this insight, the strategy to perform precision experiments is the following: First,

determine the resonance frequency with a precision, depending on the sample, of up to ∼ 25 kHz
by means of a low microwave amplitude ESR measurement. Second, based on a calibration meas-
urement correct the ESR resonance frequency to be on-resonance for full amplitude microwave
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10. Microwave control

Figure 10.3.: Measured system frequency response. (a) Measured ESR spectra for π-pulse length
between 71 ns and 355 ns. (b) Resonance frequency extracted by a Lorentzian fit to the
spectra in (a). As expected from simulations the experimental data show a 1/tπ dependency
(red line), which is depicted in (a) as well.

experiments. Subsequently, the Rabi oscillation is measured for pulse length where resonant dri-
ving is assured. In this way the system is fully characterized and measuring at the optimal working
point is guaranteed.
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11. Superadiabatic geometric quantum
gates

In Ch. 8 the advantages and disadvantages of adiabatic geometric phase based quantum compu-
tation were discussed. In summary, the improved robustness of geometric quantum gates comes
at the cost of a long gate duration, which makes the system sensitive to open system effects and
decoherence effects. Until now, strategies avoiding the need for adiabaticity involved non-Abelian
holonomies (see Sec. 8.6) and thereby (at least) three-level systems.
Here, the realization of a recently proposed set of superadiabatic geometric quantum gates [81]

based on the concept of transitionless quantum driving [150] is demonstrated. Remarkably, the
gates are defined on the two-dimensional Hilbert space (see Sec. 11.3.1). As a consequence, the
advantages of non-adiabatic system evolution and geometric phases are combined, while keeping
the experimental resources minimal.
We will slowly approach the subject by giving an intuitive example and introducing the funda-

mental concepts. Afterwards, linearly chirped Gaussian pulses are utilized to realize high-fidelity
population transfer and illustrate the advantages of superadiabatic system evolutions. In a proof-of-
principle realization, the Bloch sphere trajectory of a non-Abelian set of superadiabatic geometric
quantum gates is measured. The quality of the gate performance is quantified by determining the
quantum gate fidelity by standard quantum process tomography. Finally, the robustness at the
boarder of the accessible parameter space is investigated.

11.1. Superadiabatic geometric quantum driving

Superadiabatic geometric quantum driving provides a means to accelerate an adiabatic geometric
process without disturbing its energy eigenstates. The intuitive example in Sec. 11.1.1 illustrates
how a local rotation can suppress transitions between the energy eigenstates, as a requirement for
purely geometric evolution, of a non-adiabatically driven system. Accelerated driving field frames
of reference as a tool for transitionless quantum driving are discussed in Sec. 11.1.2. Finally, in
Sec. 11.1.3 a general Hamiltonian for superadiabatic, transitionless quantum driving is derived.

11.1.1. Intuitive explanation

Based on the work of Sels et al. [151], we start with presenting an intuitive illustration of the basic
concept of superadiabatic quantum driving in a classical context. Imagine a waiter serving a full
glass of water placed on a plate. When performing the transport adiabatically, the glass will arrive
at the table without any excitation spilling the water (Fig. 11.1.a). However, the waiter needs to
perform the transport as fast as possible in order to maximize his tip. Accelerating the transport
on the same trajectory causes a pseudo force in the frame of reference of the tablet. This pseudo
force excites the water in the glass and causes it to spill over (b). By appropriately rotating the
tablet the pseudo force can be countered (c), finally enabling a fast and robust transport. For this
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Figure 11.1.: Intuitive introduction of the superadiabatic concept. (a) When transporting a
glass of water adiabatically the water on the tablet remains unexcited. (b) Performing the
transport along the same path in an accelerated manner the arising pseudo force excites
the water in the glass, causing the water to spill over. (c) By precisely rotating the plate
the pseudo force might be countered completely, achieving a controlled and fast transport.

reason the superadiabatic approach is sometimes referred to as counter-diabatic [152]. Following
the nomenclature of the original work by M.V. Berry and R. Lim introducing the superadiabatic
basis [153] we stick with the term superadiabatic in the following.

Let us now transfer this analogy into the quantum world. An adiabatically changing original
Hamiltonian H0(t) drives the instantaneous eigenstates |λ±(t)〉 without transitions between them
(parallel transport). Here, the instantaneous energy eigenstates are the equivalent to the level of
excitation of the water within the glass. Transitions between the instantaneous eigenstates occur
when the evolution is accelerated. To be accurate, also for a adiabatically slow driven Hamiltonian
the transition amplitudes of the instantaneous eigenstates are exponentially weak but non-zero.
In order to prevent transitions between the eigenstates a correction Hamiltonian HC(t) can be
derived, which is countering the arising “pseudo-forces” [150]. The sum of H0(t) and HC(t) defines
the superadiabatic Hamiltonian

Ĥ(t) = H0(t) +HC(t), (11.1)

driving the original Hamiltonian arbitrary fast. In fact, the concept of transitionless quantum dri-
ving (TQD) finds a neighbouring Hamiltonian Ĥ which sets the transition amplitudes to precisely
zero independently of the degree of slowness [150]. Since H1(t) incorporates a time-dependent
phase, which might be transformed into a time-dependent detuning (e.g., [154]), the frame of
reference (FoR) is rotated similarly to the tablet of the waiter. Already in classical mechanics
time-dependently accelerated FoR are non-trivial problems and we briefly discuss accelerated FoR
in the quantum mechanical context within the next section.

11.1.2. Accelerated driving field frames

Following the proposal by Liang et al. the superadiabatic geometric quantum gate [81] is defined
on the two dimensional Hilbert space and is driven time dependently. Consequentially, the Hamil-
tonian in the laboratory frame HL(t) follows as the one of a two-level system with energy spacing
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~ω0 and a driving field of angular frequency ωD(t), phase ϕ and amplitude ΩR(t):

HL(t) = ~
2

 ω0 2ΩR(t) cos(ωD(t)t+ ϕ)

2ΩR(t) cos(ωD(t)t+ ϕ) −ω0


= ~

2

 ω0 ΩR(t)
(
ei(ωD(t)t+ϕ) + e−i(ωD(t)t+ϕ))

ΩR(t)
(
ei(ωD(t)t+ϕ) + e−i(ωD(t)t+ϕ)) −ω0

 . (11.2)

In order to move into the FoR rotating with the driving field, the transformation H̃ = UHLU
† +

i~∂U∂t U
† is performed. Here, U is the unitary matrix U = e−i/~HD(t)t incorporating the transfor-

mation matrix:

HD(t) = ~
2

ωD(t) 0

0 −ωD(t)

 . (11.3)

In contrast to driving fields of fixed frequency, the explicit time dependence of ωD(t) causes the
second term

(
i~∂U∂t U

†) to contain two contributions (ωD(t) and ω̇D(t)t). Performing the transfor-
mation explicitly leads to

H̃(t) = ~
2

 ∆(t) + ∆̇(t)t ΩRe
iωD(t)t(ei(ωD(t)t+ϕ) + e−i(ωD(t)t+ϕ))

ΩRe
−iωD(t)t(ei(ωD(t)t+ϕ) + e−i(ωD(t)t+ϕ)) −(∆(t) + ∆̇(t)t)


= ~

2

 ∆(t) + ∆̇(t)t ΩR(ei(2ωD(t)t+ϕ) + e−iϕ)

ΩR(eiϕ + e−i(2ωD(t)t+ϕ)) −(∆(t) + ∆̇(t)t)


= ~

2

∆(t) + ∆̇(t)t ΩRe
iϕ

ΩRe
−iϕ −(∆(t) + ∆̇(t)t)

 , (11.4)

where ∆(t) = ω0−ωD(t) is the detuning from resonance and ∆̇(t) = ω̇D(t) its temporal derivative.
In the last step the rotating wave approximation (RWA), cancelling out high frequency components,
was performed. A similar Hamiltonian might be derived to describe processes in the d-dimensional
Hilbert space. Note, the temporal change of the driving field frequency ωD(t) results in an effective
acceleration of the driving field frame (∆(t) + ∆̇(t)t). However, the proposal by Liang et al. [81]
performs the derivation of the superadiabatic Hamiltonian for the effective detuning:

∆eff(t) = ∆(t) + ∆̇(t)t. (11.5)

In order to obtain the driving field frequency ωD(t) = ω0 + ∆(t) in the laboratory frame the above
differential equation needs to be solved whenever ∆eff(t) is given. When designing ∆eff(t) it needs
to be ensured that at least one analytic or numeric solution exists.

11.1.3. Superadiabatic Hamiltonian

In Sec. 11.1.2 a general expression for the Hamiltonian of a time dependently driven two-level
system was derived (Eq. 11.4). Due to its deviation to the one utilized by Liang et al. in their
proposal of the superadiabatic quantum gates [81] a validation of the proposal is required. Starting
from Eq. 11.4 we perform the derivation explicitly (App. C). In essence, the in [81] derived
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11. Superadiabatic geometric quantum gates

superadiabatic Hamiltonian HS(t) holds true when replacing the effective detuning ∆eff(t) by
∆(t) + ∆̇(t)t in all terms, such that follows:

HS(t) = ~
2

 ∆(t) + ∆̇(t)t ΩS(t)e−i[ϕ+ψS(t)]

ΩS(t)ei[ϕ+ψS(t)] −(∆(t) + ∆̇(t)t)

 . (11.6)

Here the superadiabatic Rabi-frequency

ΩS(t) =
√

Ω2
R(t) + Ω2

C(t), (11.7)

and the superadiabatic phase

ψS(t) = arctan[ΩC(t)/ΩR(t)], (11.8)

are defined. Both parameters vary over time and depend on the corrected Rabi frequency

ΩC(t) ≡ θ̇ =
[
Ω̇R(t)(∆(t) + ∆̇(t)t)− ΩR(t) ∂∂t (∆(t) + ∆̇(t)t)

]
Ω(t)2 , (11.9)

which incorporates the generalized Rabi frequency Ω(t) =
√

ΩR(t)2 + (∆(t) + ∆̇(t)t)2.

11.2. Population transfer by a linearly chirped Gaussian pulse

The general expression in Eq. 11.6 represents a tool to speed up time dependent adiabatic pro-
cesses in a two-level system. First experimental demonstrations performed the population transfer
of a Bose-Einstein condensate by the standard Landau-Zener [155] and tangent protocols [155,
156] superadiabatically. Recently, TQD has demonstrated the population transfer of solid state-
spins by optical stimulated Raman adiabatic passage (STIRAP) in a three-level system [157, 158].
While these demonstrations resulted in a precise control of the population, the phase remained
uncontrolled. Thereby prohibiting their use for quantum information processing. In the following
we will focus on two-level systems in order to keep the experimental resources minimal.
Recently, Dou et al. [154] proposed to apply the concept of TQD to a linearly chirped Gaussian

pulse (LCGP) in order to perform a fast and robust population inversion of the targeted quan-
tum system (Landau-Zener problem [159]). Even though, the superadiabatic schemes were already
utilized to accelerate the adiabatic population inversion by transporting through an avoided level
anti-crossing [155], the proposal is realized in order to illustrate the general concept of superadia-
batic quantum driving and highlight its advantages.
The original Hamiltonian features a linear sweep of the detuning ∆eff(t) = 2 · ∆(t) = 2αt

(Fig. 11.2.b), while the Rabi frequency Ω(t) = Ω0 exp(−t2/T 2) exhibits a Gaussian envelope cen-
tered around t = 0 (a). In our experiments we set the constants α = 27.4 kHz ns−1, Ω0 = 7 MHz
and T = 35.7 ns. When adding the correction Hamiltonian HC(t) in order to obtain a superadia-
batic system evolution the detuning ∆(t) remains unchanged, while the Rabi frequency function
ΩS(t) (orange) receives additional side lobes (a). Additionally, the time-dependent superadiabatic
phase ψS(t) defined by Eq. 11.8 occurs (c). Theoretically, in order to reduce the number of control
parameters, an appropriate transformation can incorporate the effect of the superadiabatic phase
ψS(t) in the detuning term. This results in an effective detuning ∆eff(t) = 2∆(t) + φ̇s(t)/2 (b,
orange) and a vanishing phase ϕ(t) = 0. However, standardized evaluation routines fail to solve
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Figure 11.2.: Superadiabatic population transfer by linearly chirped Gaussian pulses. (a)
Original Ω(t) (blue) and superadiabatic ΩS(t) (orange) Rabi frequency. (b) Original ∆(t)
(blue) and effective ∆eff(t) (orange) detuning. (c) Superadiabatic phase ψS(t). (d) Experi-
mentally measured (dots) and calculated (lines) population obtained by a Rabi experiment
(blue), a linearly chirped Gaussian (green) and a superadiabatic linearly chirped Gaussian
pulses (orange).

the differential equation for ∆eff(t) = ∆(t) + ∆̇(t)t and experiments are performed in the rotating
frame of the original driving field.
In Fig. 11.2.d the population as a function of time is presented for a Rabi oscillation (orange),

an adiabatic LCGP (green) and a superadiabatic LCGP (blue), respectively. The Rabi experiment
leads to the fastest inversion of the population after tπ = π/Ω0 ≈ 71 ns. However, in order to obtain
a close to perfect inversion efficiency strict timing requirements need to be fulfilled. The original
adiabatic LCGP Hamiltonian fails to invert the population since the adiabatic condition t� 2π/Ω0

is not fulfilled. In contrast, the superadiabatic realization leads to a perfect state inversion within
a finite time interval and without strict timing conditions. The subsequent application of several
pulses leads to fast loss of coherence for adiabatic LCGP, even though the difference appears to be
small.

11.3. Non-commuting superadiabatic single-qubit quantum
gates

Universal quantum computation requires a set of at least two non-Abelian single-qubit gates as well
as one non-trivial two-qubit gate. Non-Abelian holonomies are know to arise in a three or more
level system [124], while in general two-level systems are restricted to Abelian operations. In their
proposal [81] Liang et al. utilize the approach of S.-L. Zhang and Z.D. Wu to obtain non-Abelian
operation in a two-level system by controlling the evolution of a pair of orthogonal cyclic states [160,
161, 162]. In essence, two non-commuting quantum gates are obtained by realizing the phase shift
gate in different bases. Let |k〉 , k = 0, 1 and |±〉 = 1√

2 (|0〉 ± |1〉) be two sets of orthogonal states
and define the phase-shift gates |k〉 → exp [i(2k − 1)γ] |k〉 and |±〉 → exp [±iγ′] |±〉. All possible
single-qubit gates in the computational space spanned by |0〉 and |1〉 can be realized by combining
these two phase-gates.
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11.3.1. Pair of orthogonal cyclic states

Here, the time-evolution operator U realizing non-Abelian, geometric, single-qubit quantum gates
for a pair of orthogonal cyclic states is described. Consider the instantaneous eigenstates of the
Hamiltonian in Eq. 11.6:

|λ+〉 =

cos θ2e−iϕ/2

sin θ
2e
iϕ/2

 , |λ−〉 =

− sin θ
2e
−iϕ/2

cos θ2eiϕ/2

 ., (11.10)

where θ = arctan
(
ΩS(t)/(∆(t) + ∆̇(t) · t)

)
. In fact, every pair of orthogonal states may be para-

metrized by the above expression. All possible input states can be expressed as a superposition
of the eigenstates according to |ψi〉 = a+ |λ+(0)〉 + a− |λ−(0)〉. Obviously, a± can be calculated
according to a± = 〈λ±(0)|ψi〉 and need to be well normalized |a+|2 + |a−|2 = 1. Assume a cyclic
evolution of the system |λ±(T )〉 = exp(iφ±) |λ±(0)〉 [161], with real valued phase factor φ±. If
a path in parameter space is chosen such that dynamic contributions cancel out, pure geometric
evolution U(T ) |λ±(0)〉 = exp(±iγ) |λ±(0)〉 is obtained. By solving this equation for U , under
the assumption χ = θ(0) = {2πn, n ∈ Z} or χ = {2πn − 3π

2 , n ∈ Z}, the unitary time-evolution
operator U(T ) is determined to be (Sec. C.2)

U(χ, γ) =

cos γ + i cosχ sin γ i sinχ sin γe−iϕ

i sinχ sin γeiϕ cos γ − i cosχ sin γ

 ,

with χ = θ(0) being the mixing angle at t = 0 [160]. From U(χ1, γ1)U(χ2, γ2) = U(χ2, γ2)U(χ1, γ1)
follows immediately that two gates are only commuting when sin(γ1) sin(γ2) sin(χ1−χ2) = 0. This
corresponds to the cases where at least one of the gates is the identity operation (γ1∨γ2 mod π = 0)
or both rotation are performed around the same axis ([χ1 − χ2] mod π = 0). Setting χ = π/2
enables rotations around arbitrary unit vectors in the plain spanned by x̂ and ŷ. Particularly,
rotation around the x and y-axis are obtained for ϕ = 0 and ϕ = π/2, respectively. For χ = 0 the
phase shift gate U = exp (iγσz) is realized, independently of ϕ.

11.3.2. Proposed realization

In order to realize a SAGQG the adiabatic “orange slice”-like trajectory of the instantaneous
eigenstates is realized to generate a geometric phase equivalent to half the enclosed solid angle
γ = Ω̃/2. Figure 11.3.a illustrates the anticipated Bloch sphere trajectory along A-B-C-D-A
generating a Pauli-Z gate in four steps, each of length τ . The trajectory can be realized adiabatically
by applying the time-dependent Rabi frequency [81]

ΩR(t) =



Ω0
[
1− cos(πtτ )

]
, 0 ≤ t < τ

Ω0

[
1 + cos(π(t−τ

τ )
]
, τ ≤ t < 2τ

Ω0

[
1− cos(π(t−2τ)

τ )
]
, 2τ ≤ t < 3τ

Ω0

[
1 + cos(π(t−3τ)

τ )
]
, 3τ ≤ t ≤ 4τ

, (11.11)
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Figure 11.3.: Anticipated trajectory and driving field parameter. (a) Anticipated cyclic evolution
of the instantaneous eigenstate along the path A-B-C-D-A. Original (red dashed line) and
superadiabatic (solid blue line) (b) Rabi frequency, (c) detuning and (d) phase driving the
evolution shown in (a) as a function of time t.

and detuning

∆eff(t) = ∆(t) + ∆̇(t)t =



∆0
[
cos
(
πt
τ

)
+ 1
]
, 0 ≤ t < τ

∆0

[
cos
(
π(t−τ
τ

)
− 1
]
, τ ≤ t < 2τ

∆0

[
cos
(
π(t−2τ)

τ

)
+ 1
]
, 2τ ≤ t < 3τ

∆0

[
cos
(
π(t−3τ)

τ

)
− 1
]
, 3τ ≤ t ≤ 4τ

. (11.12)

From Eq. 11.11 and Eq. 11.12 follows that χ = θ(0) = 0 as required for the realization of a Pauli-Z
gate (see Sec. 11.3.1). The enclosed solid angle Ω̃ = 2γ = 2(π − (ϕ′2 − ϕ′1)) is determined by the
phase factors ϕ′1 and ϕ′2 applied according to:

ϕ(t) =

ϕ′1, 0 ≤ t < 2τ

ϕ′2, 2τ ≤ t < 4τ
. (11.13)

Similar time-dependent driving fields have already been used to demonstrate adiabatic geometric
quantum computation [163]. From this original Hamiltonian we obtain the superadiabatic geo-
metric driving parameter by calculating ΩS(t) according to Eq. 11.6 and solving the differential
equation ∆eff(t) = ∆(t) + ∆̇(t)t for ∆(t). The driving field parameter of the original (red) and
superadiabatic (blue) Hamiltonian are shown in Fig. 11.3.b-d for Ω0 = 3.5 MHz, ∆0 = 1 MHz and
τ = 114 ns. For the realization of a Pauli-Z gate the required value of γ = π/2 is obtained by
setting ϕ′1 = 0 and ϕ′2 = π/2.

In Sec. 8.4 the two-loop approach cancelling out the dynamic contribution of the system evolution
was discussed. Calculating φdyn(t) = − 1

~
∫
〈Ψ(t)|H(t)|Ψ(t)〉dt reveals the rise of a dynamic phase

during the gate evolution. The purely geometric phase at the end of the gate sequence is obtained
by the two loop approach resulting in a self-compensating trajectory.

Analogously, the driving field parameter for the Pauli-X gate follow for the trajectory B-C-D-
A-B. Therefore, the parameter ∆eff(t), ΩR(t) and ψS(t) are precisely the ones of the Pauli-Z gate
except for a time shift of τ . Major difference only occur for the applied detuning ∆(t) which again
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is calculated by solving the differential equation Eq. 11.7. Effectively, for the same parameter
set ∆0, Ω0 and τ the maximal applied detuning is twice as high as the one of the Pauli-Z gate
(maxt ∆x(t) = 2×maxt ∆z(t)). While this difference from the theoretical point of view does not
influence the superadiabatic Hamiltonian, experimental implications like an insufficient driving
might occur for large detuning values ∆0.

11.4. Parameter optimization

In Sec. 11.3.2 the time dependent expressions for the original Hamiltonians amplitude ΩR(t),
detuning ∆(t) and phase ϕ(t) realizing superadiabatic geometric quantum computation are given.
The expressions depend on the three free parameters Ω0, ∆0 and τ without strict theoretical
confinements. However, the experimental apparatus sets boundary conditions in terms of, e.g., the
maximal applicable Rabi frequency Ωmax (≈ 7.5 MHz in our realization). Due to the appearance
of ∆(t) in Eq. 11.9 describing the superadiabatic Rabi frequency, all free parameters contribute
to the final shape of driving field amplitude ΩS(t). In the adiabatic limit τ � 2π/Ωmax one
finds that ΩC(t) → 0 and therefore, ΩS(t) → ΩR(t) (solid blue line Fig. 11.4.a). In the regime
τ ≈ 2π/Ωmax the contribution of ΩC(t) to ΩS(t) becomes pronounced. In general, ΩC(t) (dashed
lines) adds side lobes to ΩS(t) (solid lines), which increase for small τ and Ω0 values (indicated by
red arrow). Intuitively fast gate operation requires strong ΩC(t) contributions, which eventually
cause ΩS(t) to exceed the maximally allowed value of Ωmax (solid orange line). This results in
an insufficient driving of the Hamiltonian (shaded yellow area). The available coherence time
is exploited best for the parameter set {Ω0, ∆0} which enables the minimization of τ without
exceeding any experimental limitation. Since no analytical expression connecting the maximal
amplitude of ΩS(t) to the free parameter ∆0, Ω0 and τ could be obtained, a numerical analysis
was performed. The analysis calculates the minimal τ -value for a set of ∆0 and Ω0 fulfilling the
confinements

τmin (Ω0,∆0) =
(

2/max
t

(ΩS(t,Ω0,∆0))
)
∧ ΩS(t) ≤ Ωmax ∀t. (11.14)

Note, τmin is a consequence of the specific experimental limitations rather than a theoretical con-
straints due to, e.g., the need for adiabaticity. The contour plot in Fig. 11.4.b presents the results
of the analysis for the Pauli-X gate. Since ΩS(t) is equivalent for rotations by arbitrary angles ϕ
around the x (Rx (ϕ)), y (Ry (ϕ)) and z-axis (Rz (ϕ)) up to a time shift of τ , the presented analysis
is valid for every SAGQG realization on the employed experimental apparatus. The parameter Ω0

is limited to ≤ 3.5 MHz due to a factor of 2 in Eq. 11.11 for t = τ, 3τ . There are no theoretical
restrictions on the value of ∆0 but experimentally sufficient driving is guaranteed for detunings in
the order of the power broadened linewidth. A global minimum min

Ω0,∆0
(τmin) ≈ 71 ns = tπ is loca-

ted in the parameter region around Ω0 = 1.5 MHz and ∆0 = 1.5 MHz. In conclusion, the minimal
practical achievable SAGQG gate duration tGate = 4tπ = 4π/Ωmax is four times the length of a
dynamic π-pulse at maximal Rabi frequency Ωmax. Utilizing a highly suitable diamond sample and
the above parameter set, roughly 10.000 gate realizations can be performed within the available
longitudinal relaxation time T1ρ = 5.05± 1.56 ms (Sec. B.1).
For first proof-of-principle realizations (Sec. 11.5 and Sec. 11.6) the parameter set Ω0 = 3.5 MHz,

∆0 = 1 MHz and τ = 0.8/tπ ≈ 114 ns was chosen in order to ensure stable experimental conditions.
In Sec. 11.8 the derived practical parameter limits are investigated by varying the τ -value around
the boundary value τmin.
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Figure 11.4.: Superadiabatic quantum gate parameter optimization. (a) Original Rabi frequency
ΩR(t) (blue), correction Rabi frequency (dashed lines) and superadiabatic Rabi frequency
(solid lines) for ∆0 = 2 MHz, Ω0 = 2 MHz and τ = 120 ns green (τ = 60 ns orange).
The black dashed line represents the threshold equivalent to maximal applicable driving
field strength Ωmax. Rabi frequencies above the threshold (shaded orange area) can not
be driven sufficiently. The red arrow indicates a increase of the side lobe amplitude with
decreasing τ and Ω0. (b) Minimal gate parameter τmin depending on the detuning ∆0 and
Rabi frequency Ω0 fulfilling the requirement ΩS(t, τ,∆0,Ω0) ≤ Ωmax at all times.

11.5. Bloch-sphere trajectory

After theoretically investigating the accessible parameter space in Sec. 11.4, here the SAGQG
is demonstrated in a proof-of-concept realization. The Bloch sphere trajectory during the su-
peradiabatic gate operation is measured in a stroboscopic manner. The QG is run for a time
ti and subsequently the Bloch sphere coordinates (Ψx,Ψy and Ψz) are identified by projective
readout out pulses. Projective readout out pulses transfers the Ψx (Ψy)-component into a mea-
surable population by means of a π/2-rotation around the anti y-axis Ry (π/2) (x-axis Rx (π/2)).
The Ψz component is equivalent to the population and read out immediately. By varying time
ti = tGate · i/N in N steps the full Bloch sphere trajectory is reconstructed.
It is desired to perform the projection pulses of the stroboscopy measurement within the in-

stantaneous driving field frame of the quantum gate. In general, when realizing a SAGQG the
system is off-resonantly driven and consequentially the instantaneous rotating driving field frame
is varying with the detuning ∆(t) as a function of time. However, all read-out pulses are applied
on-resonance in order to obtain highest accuracy. The phase difference between the two rotating
frames at time ti of the sequence is ϕ(ti) = ∆(ti) · ti and needs to be compensated for during the
waveform creation (Sec. 10.1.1).
Figure.11.5 presents the calculated and experimentally measured Bloch-sphere trajectory for a

qubit initialized in the |0〉 state for a (a,b) Pauli-Z and (c,d) Pauli-X gate. In (b) and (d) the
temporal evolution of the Ψx, Ψy and Ψz Bloch vector components are shown separately, while in
(a) and (c) the information is combined to reconstruct the trajectory on the Bloch sphere itself.
Numerical data are obtained by calculating the time-evolution operator U = T exp

(
i
∫ ti
t0
HS(t)dt

)
,

where T is the time ordering operator. The experimental data are in good agreement with the
simulations and remaining discrepancies are attributed to imperfect dynamic projection pulses.
Let us first take a closer look on the realization of the Pauli-Z gate (Fig. 11.5.a,b). As can be de-

duced from Sec. 11.3 the initial state |0〉 is equivalent to the initial energy eigenstate |λ+(0)〉 = |0〉
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11. Superadiabatic geometric quantum gates

Figure 11.5.: Measured Bloch sphere trajectory. (a, c) Measured (dots) and simulated (lines) Bloch
sphere trajectory of Pauli-Z and Pauli-X, respectively. The time point of each stroboscopy
measurement is encoded in the colormap from blue (beginning) to yellow (end). (b, d)
Bloch vector components ψx (blue), ψy (orange) and ψz (green) of the trajectory presented
in (a) and (c) versus the time in multiples of τ .

of the Hamiltonian HS(0). The second eigenstate |λ−(0)〉 = |1〉 remains unoccupied. As a conse-
quence the spin vector follows the designed “orange slice” like trajectory, as described in Sec. 11.3.2,
precisely. In contrast, when realizing the Pauli-X gate the basis change (Sec. 11.3.1) causes the
initial state |0〉 to be unequal to the energy eigenstates of the system |λ−(0)〉 = 1/

√
2(|1〉+ |0〉) and

|λ+(0)〉 = 1/
√

2(|1〉 − |0〉). Indeed, both eigenstates are equally populated |a+|2 = |a−|2 = 1/2.
Therefore, the spin vector does not follow the path designed for the eigenstates. The complex
trajectory can be interpreted as a consequence of the non-trivial parameter space utilized for the
realization of the Aharonov-Anandan phase.

11.6. Generalized SAGQG with arbitrary rotation angle

In Sec. 11.5 it was shown that a geometric phase of γ = π/2 can be acquired, realizing geometric
Pauli-X and Pauli-Z gates, in a superadiabatic fashion. However, future quantum algorithms might
raise the need for rotations by an arbitrary rotation angle 2γ. As stated in Sec. 11.3.2 the acquired
geometric phase γ is a function of the phase values ϕ′1 and ϕ′2 tuning the opening angle of the
“orange slice” and thereby modifying the enclosed solid angle. All superadiabatically obtained
phase values require the same gate duration tGate = 4τ , which is in contrast to the dynamic
rotation by an arbitrary angle α realized by a constant driving of duration t = α/ΩR. Building
blocks of same duration might turn out to be a useful feature in future circuit based quantum
devices, since free precession times are avoided.
By dynamically initializing the system in one of the three orthogonal states |0〉, 1/

√
2 (|0〉 − |1〉)

and 1/
√

2(|0〉+ i |1〉) and subsequently performing the gate operation for 0 ≤ γ ≤ π the concept is
proven experimentally (Fig. 11.6.a-c). The effect of the rotation about the x-axis can be readout
immediately. However, a π/2-pulse around the x-axis (Rx (π/2)) is applied to convert the phase
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11.7. Quantum gate fidelity

Figure 11.6.: Superadiabatic quantum gates with arbitrary phase angle. A spin initialized into
|0〉, 1/

√
2(|0〉 − |1〉) and 1/

√
2(|0〉+ i |1〉) (red arrow in (e, f, g)) is rotated by an arbitrary

angle around the x and z-axis. (a, b, c) present the respectively measured (dots) and
expected (dashed lines) population of the |0〉 state. (e, d, f) Bloch spheres indicating the
initial state (red arrow) and the obtained rotation.

acquired by the rotation about the z-axis into a measurable population. The Bloch spheres in (e,
f, g) illustrate the performed rotation (green, blue dashed lines) for the set of initialized states (red
arrows). Obviously, a spin initialized along the rotation axis does not acquire a phase during the
gate operation. (a, c, e) show the measured (dots) along with the theoretically expected (dashed
lines) population of the |0〉 state depending on the geometric phase value γ. The measurement
proofs that the superadiabtic geometric quantum gate modality provides a means for universal
single-qubit quantum computation.

11.7. Quantum gate fidelity

Standard quantum process tomography (QPT) on the two-dimensional Hilbert space spanned
by the computational states |0〉 and |1〉 is performed to extract the quantum gate (QG) fide-
lity (Sec. 9.1).

11.7.1. Pauli gates

Figure 11.7.a-b shows the experimentally reconstructed real part of the quantum process matrix
χexp (colored pillars), as well as the anticipated one (green frames) for the Pauli-X and Pauli-Z gate,
respectively. The imaginary parts for all components are expected to be zero and the measured
ones are smaller than the respective errors. Based on χexp the QG fidelities are determined to be
F SAG

x = 0.973+0.026
−0.031 and F SAG

z = 0.974+0.021
−0.024 for Pauli-X and Pauli-Z gate, respectively. However,

due to its dynamic nature the QPT itself suffers from parameter imperfections, decoherence effects
and noise. This causes an artificially reduced fidelity values. The effects of the imperfect QPT are
decoupled from the gate performance by calculating the corrected fidelity F̃i = Fi/FID. Here, FID =
0.979+0.021

−0.033 is the experimental fidelity of the identity operation, resulting in F̃ SAG
x = 0.994+0.026

−0.031
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11. Superadiabatic geometric quantum gates

Figure 11.7.: Anticipated and reconstructed quantum process matrices. Reconstructed (colo-
red pillars) and anticipated (green frame) real part of the quantum process matrix χexp
for (a) Pauli-X, (b) Pauli-Z and (c) Hadamard superadiabatic geometric quantum gates,
respectively. Black error bars indicated the 1σ measurement uncertainties.

and F̃ SAG
z = 0.995+0.021

−0.024. Within our experimental uncertainties these results are compatible with
an ideal fidelity, proofing the realization of a set of high fidelity QGs.

11.7.2. Hadamard gate

The Hadamard gate is demonstrated as an example for a short sequence of concatenated SAGQG.
It corresponds to a rotation around the (x̂+ ẑ)/

√
2 axis by π and is represented by the Hadamard

matrix:

H = 1√
2

1 1

1 −1

 . (11.15)

In order to realize the Hadamard gate the non-Abelian nature of the superadiabatic geometric
quantum gate is utilized. The desired operation is realized by performing a rotation of π/2 around
the y-axis Ry (π/2) and a subsequent rotation by π around the z-axis Rz (π). The combination
of two superadiabatic rotations doubles the duration of the Hadamard gate compared to the one
of the Pauli-X or Pauli-Z gate. Note, due to the explicit absolute time dependence in ∆eff(t) =
∆(t) + ∆̇(t)t the applied detuning needs to be calculated for each gate depending on its position
within the sequence individually. This represents a drawback in terms of the waveform creation
time, compared to gate realizations featuring a constant or vanishing detuning. However, the
circumstance of equal gate durations (see Sec. 11.6) enables the generation of a database containing
quantum gates for each position of the sequence. This is particularly important for the randomized
benchmarking analysis performed in Sec. 12.6.
The superadiabatic implementation results in a QG fidelity FH = 0.974+0.021

−0.024 and a corrected
QG fidelity F̃H = 0.992+0.022

−0.029 (see Fig. 11.7). As expected from Sec. 11.7.1 the combination of
two superadiabatic rotations results in a high gate fidelity compatible with F = 1. Table 11.1
summarizes the obtained QG fidelitiy values.

11.8. τ variation

So far, the high fidelity realization of this quantum gate concept within the accessible parameter
space has been successfully demonstrated. Here, a first investigation on the robustness of the
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Table 11.1.: Measured superadiabatic geometric quantum gate fidelities. Measured quantum
gate fidelities F and corrected quantum gate fidelity F̃ for the Pauli-X, Pauli-Z, Hadamard
and identity gate. Errors correspond to the 68 % confidence interval.

Pauli-X Pauli-Z Hadamard Identity

F 0.973+0.026
−0.031 0.974+0.022

−0.029 0.971+0.021
−0.024 0.979+0.021

−0.033

F̃ 0.994+0.026
−0.031 0.995+0.022

−0.029 0.992+0.020
−0.024 -

Figure 11.8.: Variation of the SAGQG timing parameter τ . For three parameter sets (∆0 =
{1.5, 1.5, 2 }MHz and Ω0 = {1.5, 6, 8 }MHz) the quantum gate fidelity is measured as a
function of τ . Vertical dashed lines indicate the minimal τ -value which is driven efficiently
τmin. Solid lines represent a guide to the eye.

SAGQG is performed. The numerical analysis in Sec. 11.4 revealed the boundaries of the experi-
mental accessible parameter space. Exceeding these boundaries results in an insufficient driving of
the Hamiltonian HS(t).
The QG robustness is investigated by performing QPT on gate realizations with varying control

parameters. Explicitly, we fix the driving field parameters Ω0 and ∆0 while varying τ . Forcing
τ < τmin causes maxt ΩS(t) to exceed the maximal Rabi frequency Ωmax. This condition can not be
satisfied given experimental limitations on Ωmax and causes an imperfect gate realization. Again, it
needs to be stressed that τmin is a consequence of experimental limitations rather than theoretical
constraints.
For three sets of parameters ∆0 = {1.5, 1.5, 2 }MHz and Ω0 = {1.5, 6, 8 }MHz the quantum gate

fidelity is measured by standard QPT, while varying τ between 0.5 · tπ and 1.5 · tπ (Fig. 11.8). The
in Sec. 11.4 calculated minimal τ -values for the chosen parameter sets driving the Hamiltonian effi-
ciently are τmin = {72, 100, 107 }ns (vertical dashed lines), respectively. Surprisingly, one observes
a stable fidelity regime close to 1 for τ smaller than the expected threshold τmin, even though the
designed Hamiltonian is faulty driven. Only for τ < tπ, representing the global minΩ0,∆0(τmin), a
significant drop of the fidelity is observed for all three parameter sets. The results represent a first
indication of the intrinsic tolerance of SAGQG with respect to small control parameter imperfecti-
ons. A detailed performance analysis including a comparison to other geometric and dynamic gate
modalities is presented in Ch. 12.

11.9. Summary

In this chapter, the concept of transitionless quantum driving was described briefly. Superadiaba-
tic linearly chirped Gaussian pulses for population inversion have been realized. They act as an
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11. Superadiabatic geometric quantum gates

example for the robust acceleration of an originally adiabatic Hamiltonian. Based on the proposal
by Liang et al. [81] the first experimental realization of superadiabatic geometric quantum com-
putation was demonstrated. Qualitatively, the concept of SAGQG was realized by reconstructing
the complex Bloch sphere trajectory of well defined input states and by performing rotations by
arbitrary phase angles. As a quantitative measure of the gate performance, quantum process tomo-
graphy was performed. Th extracted quantum gate fidelities reach the fidelity threshold needed for
the efficient implementation of error-correction codes based on, e.g., surface codes [164, 165]. Ad-
ditionally, numeric simulations considering realistic experimental boundary conditions show that
the SAGQGs can be realized within a minimal gate duration of tGate = 4 · tπ, outperforming each
adiabatic approach significantly. Finally, the variation of experimental control parameter indicate a
stable performance over a large range of timing parameter and an intrinsic robustness with respect
to control parameter imperfections.
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The realization of different quantum gate modalities naturally raises the question, which of the
concepts results in the most robust quantum gate (QG) implementation for QECCs in NISQs.
However, a comprehensive, comparative performance analysis of geometric QGs as well as dynamic
QGs has not been conducted. Here, the robustness of a variety of QG modalities, including dy-
namic, Abelian geometric, non-adiabatic holonomic and superadiabatic geometric quantum gates,
are analysed with respect to constant driving field parameter detunings. Additionally, a randomi-
zed benchmarking (RB) analysis investigates the error scaling for the different modalities for the
NV center in diamond.

12.1. Considered quantum gates modalities
In order to cover a broad range of modalities for the realization of high-fidelity QGs the compara-
tive, quantitative and qualitative benchmark analysis is performed between dynamic quantum gate
(DYN), Abelian geometric quantum gate (AGQG), non-adiabatic non-Abelian holonomic quan-
tum gate (HQG) and superadiabatic geometric quantum gate (SAGQG). While the SAGQG is
discussed in detail in Ch. 11, we briefly describe the experimental implementation of DYN, AGQG
and HQG in the following.

12.1.1. Dynamic quantum gates

The realized set of dynamic single-qubit gates is defined on the two-dimensional Hilbert space
spanned by |0〉 and |−〉. Rotations around the x and y-axis are performed by resonant driving
fields of appropriate amplitude Ω, phase ϕ and duration tGate. Particularly, π and π/2-pulses are
realized by pulses of length tπ = π/Ω and tπ

2
= π/(2Ω). In contrast, the dynamic phase-shift gate is

implemented in a Ramsey experiment like fashion
(
Rx (π/2)− τ δfree −Rδx (π/2)

)
, where δ represents

a detuning of the resonance and τ δfree a time of free precession. The duration of the sequence is
limited by the detuning δ, which acquires the wanted phase ϕ during the time τ δfree = ϕ/δ. Note,
the detuning δ causes an increased generalized Rabi frequency Ω′ =

√
Ω2 + δ2 and a tilt of the

rotation axis. Thereby the faulty second π/2-pulse results in an erroneous gate operation. As
a consequence, the choice of δ represents a trade off between fast gate operation and designed
fidelity. The utilized detuning of δ = 1 MHz results in a free precession time of τ δfree = 500 ns and
a designed fidelity of F = 0.990 for the Pauli-Z gate.

12.1.2. Abelian geometric quantum gate

One of the simplest geometric phase based quantum gates is the phase shift gate realized by
the subsequent application of two π-pulses. The accumulated phase γ is defined by the phase
difference ∆ϕ = γ/2 of the π-pulses, while the absolute values of the driving field phases are not of
importance, and are set to ϕ1 = 0 and ϕ2 = ∆ϕ. The resulting trajectory resembles the “orange
slice”-like trajectory discussed in Sec. 11.3.2. Note, the complete gate sequence represents a closed
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Table 12.1.: HQG driving field parameter. Two subsequently applied HQG n andm realize arbitrary
single qubit quantum operations. Here, the parametrization angles φn,m, θn,m and Rabi
weights γn,m± of all in the scope of the thesis utilized quantum gates are given.

Gate φn θn γn− γn+ φm θm γm− γm+

Identity 0 −π2 −1/
√

2 −1/
√

2 0 −π2 −1/
√

2 −1/
√

2
Identity 0 −π2 −1/

√
2 −1/

√
2 2π −π2 −1/

√
2 −1/

√
2

Rx(π) π −π2 −1/
√

2 −1/
√

2 - - - -
Ry(π) −π2 −π2 −e−iπ2 /

√
2 −1/

√
2 - - - -

Rz(π) 0 0 0 −1 - - - -
Rx(π) −π π

2 e−iπ/
√

2 −1/
√

2 - - - -
Ry(π) π

2 −π2 −eiπ2 /
√

2 −1/
√

2 - - - -
Rz(π) 0 π 1 0 - - - -
Rx(π/2) −π2 −π4 −e−iπ2 sin

(
π
8
)

− cos
(
π
8
)

0 π 1 0
Ry(π/2) 0 π

4 sin
(
π
8
)

− cos
(
π
8
)

0 π 1 0
Rz(π/2) 0 π

2 1/
√

2 −1/
√

2 −π4
π
2 e−i

π
4 /
√

2 −1/
√

2
Rx(π/2) π

2
3π
4 ei

π
2 cos

(
π
8
)

− sin
(
π
8
)

0 π 1 0
Ry(π/2) 0 3π

4 cos
(
π
8
)

− sin
(
π
8
)

0 π 1 0
Rz(π/2) 0 π

2 1/
√

2 −1
√

2 π
4 −π2 −eiπ4 /

√
2 −1/

√
2

loop in projective Hilbert space acquiring an Abelian Aharonov-Anandan phase [118]. Dynamic
contributions are suppressed by employing the two-loop method (Sec. 8.4). The conceptually
simple and fast (tGate = 2 · tπ) AGQG provides a reference to the more complex SAGQG phase
shift gate. IN this way it can be probed if the increased QG complexity results in an improved
robustness and higher quantum gate fidelity.

12.1.3. Non-Abelian non-adiabatic quantum gates

Due to its holonomic nature, the non-Abelian non-adiabatic holonomic quantum gate (HQG) is
performed on the at least three-dimensional Hilbert space (Sec. 8.5). Here, the original approach
by E. Sjöqvist [127] defined on the Hilbert space spanned by |0〉, |−〉 and |+〉 is followed (Sec. 8.6).
For simplicity, the two driving fields feature a constant pulse envelope Ω(t) = Ω0. Processes acting
on the three-dimensional Hilbert space possess a quantum process matrix χ of dimensions 9 × 9
and standard quantum tomography requires 9 preparation and 9 projection pulses [141].

The driving field parameters are derived utilizing Eq. 8.7 and Eq. 8.8. Standard Pauli gates are
implemented by a single driving pulse. Rotations by an angle of π/2 are realized by the subsequent
application of two π-rotations n and m around suitably chosen axis. For example, a π/2-rotation
around x̂ (ŷ) is achieved by a π-rotation around [ŷ + ẑ] /

√
2 ([x̂+ ẑ] /

√
2) followed by a π-rotation

around ẑ, respectively. Equivalently to the AGQG realization, the phase-shift gate obtaining a
geometric phase γ is obtained by two π-pulses with a rotation axis in the xy-plain and a phase
difference of ∆ϕ = γ/2. The parameter for rotations around the anti-axis follow analogously. In
Tab. 12.1 the driving field parameters for all π and π/2-rotation utilized in the scope of this thesis
are given explicitly.
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Table 12.2.: Gate parameters of the benchmarking analysis. The parameters were chosen to
minimize the gate duration tGate, while not exceeding the maximal output power Pmax

out =
0.92.

Ωmax
− [MHz] Ωmax

+ [MHz] Pmax
out [norm.] P out [norm.] tGate [ns]

DYN Pauli-X 7 - 0.92 1 71
DYN Pauli-Z 7 - 0.92 1 571
AGQG Pauli-Z 7 - 0.92 0.12 142
SAGQG Pauli-X 7 - 0.92 0.77 320
SAGQG Pauli-Z 7 - 0.92 0.77 320
HQG Pauli-X 2.76 2.76 0.92 1 256
HQG Pauli-Z 3.9 - 0.79 0.86 256

12.2. Boundary conditions
The design of an experiment representing a fair comparison of the robustness of different quantum
gate modalities is challenging, due to the varying number of involved levels and driving fields,
as well as the extensive accessible parameter space. By exploiting the whole parameter space it
is likely to find configurations where one or the other QG modality reveals superior robustness
with respect to the assumed main source of error. In the following, the experimentalist point of
view is investigated, which is typically aiming for fastest gate execution limited by the maximal
available driving field strength Ωmax. The boundary conditions might vary depending on the chosen
experimental platform. Hence, the results presented here do not represent a genuine truth, but
need to be adjusted for the considered physical system.
Here, the experimental apparatus (Ch. 5 and Ch. 10) is limited by the output power of the

arbitrary waveform generator (AWG) (more precisely the microwave amplifier). The microwave
source provides the driving fields for all transitions at the same time through a single channel.
Inhomogeneities in the system specific microwave response cause the driving field strength to vary
for the transitions |0〉 ↔ |−〉 (Ω−max ≈ 7.57 MHz at ω = 1.73 GHz) and |0〉 ↔ |+〉 (Ω+

max ≈ 4.92 MHz
at ω = 4.01 GHz). Measuring in a stable experimental regime is guaranteed by setting Ωmax =
7 MHz for the |0〉 ↔ |−〉 transition corresponding to 92% of the maximal output power Pmax

out . For
the realization of the HQG the Rabi frequency is set to Ω0 = 3.9 MHz resulting in Pmax

out = 0.92 for
standard Pauli gates, as well.
In the following all gate parameter have been chosen to minimize tGate for the given Pmax

out .
Table 12.2 summarizes the maximal driving field parameter on both transition (Ωmax

− , Ωmax
+ ).

Additionally, the maximal output power Pmax
out , the average output power P out normalized to

Pmax
out = 0.92 (a measure for the introduced heating) and the gate duration tGate for all realized

gate modalities are given. All geometric phase based non-adiabatic approaches are realized on time
scales comparable to the once of the dynamic gate set. The SAGQG approach potentially benefits
from a lower average output power P out, which reduces the heating of the system.

12.3. Gate fidelity comparison
Standard quantum process tomography (QPT) measurements (Sec. 9.1) extracting the quantum
gate fidelity of the DYN, AGQG, SAGQG and HQG are performed utilizing the same nitrogen
vacancy center under ambient conditions. The choice of identical experimental conditions allows
for a quantitative performance comparison. Table 12.3 summarises the achieved corrected gate
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Table 12.3.: Measured quantum gate fidelities. Experimentally obtained corrected quantum gate
fidelities F̃ for dynamic (DYN), Abelian geometric (AGQG), superadiabatic geometric
(SAGQG) and non-adiabatic holonomic geometric (HQG) quantum gates.

DYN AGQG SAGQG HQG

F̃X 0.998+0.023
−0.030 - 0.994+0.026

−0.031 1.000+0.000
−0.121

F̃Z 0.997+0.023
−0.045 1.000+0.033

−0.040 0.995+0.021
−0.024 1.018+0.000

−0.120

fidelities for all four quantum gate modalities. Within the experimental uncertainties all corrected
gate fidelities are compatible with F̃ = 1. Induced by the more complex QPT, the error of the
HQG is approximately three times larger than the one of the gates realized on the two-dimensional
Hilbert space. The achieved QG fidelities reach a quality where differentiation is prohibited by
experimental uncertainties of the QPT. However, literature suggest geometric phase based QGs
provide a performance advantage for imperfectly driven and noise quantum register (Sec. 8.7). In
the following, the quantum gate fidelity depending on a faulty driving field Hamiltonian and for
concatenated gate sequences, where the influence of noise can not be ignored, is investigated.

12.4. Numerical robustness analysis

In general, one distinguishes between low frequency and high frequency noises acting on the in-
vestigated qubit. Due to the non-adiabaticity of all considered concepts the interaction with the
surrounding spin bath, which in diamond is known to decay with increasing frequency [42, 166],
is negligible for a single gate realization. Only noise at a frequency f in the order of the inverse
gate duration 1/tGate is expected to disturb the system significantly. However, the determination
of the exact noise spectra is a challenging task and a current field of research (e.g., [167, 168, 169]).
Here, the low frequency noise limiting case (DC noise) is considered, while in Sec. 12.6 the effects
of higher frequency noise are investigated indirectly by measuring the error scaling of concatenated
gate sequences.
In a theoretical approach, the quantum gate fidelity is investigated numerically for imperfect

driving Hamiltonians H(η, ε). Here, η is the detuning of the driving field frequency ωD from the
resonance ω0 and ε describes a faulty scaling of the Rabi frequency Ω0. Systematic detunings
η and ε correspond to experimental imprecisions in the determination of the resonance ω0 and
Rabi frequency Ω or the influence of a slowly drifting system. Errors of this kind are inherent in
every quantum system. However, the distinctiveness and dominant contribution will vary with the
utilized physical platform.

12.4.1. Implementation

An estimate on the quantum gate fidelity is obtained by numerically computing the full system
evolution for the Hamiltonian H(η, ε) and calculating the expected outcome of each prepara-
tion/projection combination. Subsequently, the results of this numerically performed standard
QPT are analysed by the evaluation routine described in Sec. 9.1.
The system evolution is described by the time evolution operator

U sim
η,ε (tGate) = T exp

(
i

~

∫ tGate

0
H(t, η, ε)dt

)
, (12.1)
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where T is the time ordering operator and tGate the gate duration. While it is trivial to solve the
integral for time independently driven quantum gates, in the case of a time-dependent driving it
needs to be evaluated numerically. By calculating the Riemann sum in n steps the time evolution
operator follows as

U sim
η,ε (T ) =

∏
n

T exp
(
i

~
H(tn, η, ε) · ts

)
, (12.2)

where ts = tGate/n. In order to account for the granularity of the AWG n was set to n = tGate/s

with s the inverse AWG sampling rate. Based on the time evolution operator of the detuned
Hamiltonian the final state

∣∣∣Ψj,k
f

〉
for each QPT preparation, projection combination is calculated

according to: ∣∣∣Ψj,k
f

〉
= Uproj

k · U sim
η,ε (T ) · Uprep

j |Ψi〉 . (12.3)

Here, |Ψi〉 is the initialized state |0〉 and Uprep
j (Uproj

k ) is the ideal time evolution operator of the
QPT preparation (projection) pulse, respectively. Note, j, k ∈ {1 . . . 4} for gates performed on the
two-dimensional Hilbert space (DYN, AGQG, SAGQG) and j, k ∈ {1 . . . 9} for the gates realized
in the three-dimensional Hilbert space (HQG).

The simulated QPT outcome is subsequently evaluated by the routine presented in Sec. 9.1 and
reveals the expected quantum gate fidelity F . Since U sim

η,ε (T ) is a unitary matrix for all ε and η the
evaluation of the numerical measurement outcome Eq. 12.3 will always result in a physical process
matrix χ and no maximum likelihood estimation, as for the experimental data set, is required. As
a consequence, the required computational resources to investigate a large parameter space of η
and ε remain in an adequate regime.

12.4.2. Detuning definition

In the following, the Hamiltonian for all QGs with detuning η and ε are given explicitly. The
orthonormal basis is spanned by |0〉 = (1, 0, 0)T , |−〉 = (0, 1, 0)T and |+〉 = (0, 0, 1)T , where T is
the conjugate transpose. The most general expression of the Hamiltonian in the driving field frame
is:

H(t,Ω±,∆±) = ~
2


0 Ω−(t) · eiϕ−(t) Ω+(t) · eiϕ+(t)

Ω−(t) · e−iϕ−(t) −2 ·∆−(t) 0

Ω+(t) · e−iϕ+(t) 0 −2 ·∆+(t)

 . (12.4)

Obviously, for DYN, AGQG and SAGQG utilizing the two-dimensional Hilbert space the driving
field parameter of the |0〉 ↔ |+〉 transition are set to ∆+ = Ω+ = 0 resulting in the effective
two-level Hamiltonian:

H(t,Ω,∆) = ~
2

 0 Ω(t) · eiϕ(t)

Ω(t) · e−iϕ(t) −2 ·∆(t)

 . (12.5)

The detuning from the resonance η is the difference of the driving field and resonance frequency
η = ωD−ω0. An artificial detuning η is introduced by replacing ∆−(t) and ∆+(t) by the respective
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Figure 12.1.: Numeric robustness calculation for Pauli-Z. Expected quantum gate fidelity F for
gate operations driven by an imperfect Hamiltonian H(η, ε), where η represents a detuning
from the resonance ω0 and ε is the detuning of the Rabi frequency Ω0. Numerical calcu-
lations are performed for the Pauli-Z gate realized by (a) DYN, (b) AGQG, (c) SAGQG
and (d) HQG, respectively.

expressions:

∆DYN(t, η) = η,

∆AGQG(t, η) = η,

∆SAGQG(t, η) = ∆(t) + η,

∆HQG,-(t, η) = η−, ∆HQG,+(t, η) = η+.

In contrast, Rabi measurements relate the maximal driving field amplitude to the corresponding
Rabi frequency Ωmax, utilizing the linear relation to scale the microwave amplitude Ω0 in the
subsequent experiments. A by ε incorrectly determined Ωmax leads to an erroneous scaling of Ω0

and is incorporated in the Hamiltonian by setting

ΩDYN(t, ε) = Ω0(t) · (1 + ε/Ωmax),

ΩAGQG(t, ε) = Ω0(t) · (1 + ε/Ωmax),

ΩSAGQG(t, ε) = ΩS(t) · (1 + ε/Ωmax),

Ω−HQG(t, ε) = Ω0(t) γ− · (1 + ε−/Ω−max), Ω+
HQG(t, ε) = Ω0(t) γ+ · (1 + ε+/Ω+

max),

respectively. In the presence of two in general independently detuned driving fields a continuum
of detuning combinations is possible. For simplicity, only the cases of same absolute detuning
value |η−| = |η+| (|ε−| = |ε+|) with same sign ηss (εss) and opposite sign ηos (εos) are considered.
Additionally, the different maximal applicable Rabi frequencies for the transitions |0〉 ↔ |−〉 (Ω−max)
and |0〉 ↔ |+〉 (Ω+

max), which are utilized as a scaling factor, need to be considered. For convenience,
we set Ω−max = Ω+

max = 6 MHz assuming an homogeneous frequency response of the system.

12.4.3. Results

In Fig. 12.1 and Fig. 12.2 the calculated fidelity F for the selected QG modalities depending on the
detuning parameter η and ε for the Pauli-X and Pauli-Z gate is presented. For an easy comparison,
the colormap within all plots is normalized to the fidelity interval F ∈ [0.9, 1]. The detunings ε
and η are in the range of ±1.6 MHz. Abelian geometric quantum gates are limited to commuting
operations around the z-axis. The holonomic Pauli-X gate requires two driving fields and the four
cases ηssεss, ηosεss, ηssεos and ηosεos (Sec. 12.4.2) are distinguished (c-f).
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Figure 12.2.: Numeric robustness calculation for Pauli-X. Expected quantum gate fidelity F for
gate operations driven by an imperfect Hamiltonian H(η, ε), where η represents a detu-
ning from the resonance ω0 and ε is the detuning of the Rabi frequency Ω0. Numerical
calculations are performed for the Pauli-X gate realized by (a) DYN, (b) SAGQG and (c-f)
HQG, respectively.

The robustness strongly varies not only with the chosen QG modality but also with the realized
QG (here Pauli-X, Pauli-Z). Since the lines of equal fidelity do not follow any mutual or regular
shape, a detailed comparison between the gate realizations is difficult but some general conclusions
can be drawn.
Most conspicuous is the poor performance of the DYN Pauli-Z gate (Fig. 12.1.a), which is

highly sensitive to the detuning η. Due to the intrinsic detuning this modality never yields ideal
fidelity. The AGQG, SAGQG and HQG counterparts appear to be intrinsically more robust (b-d).
Surprisingly, the dynamic Pauli-X gate realization (Fig. 12.2.a) is compared to the other modalities
similarly robust and superior robustness depends on the dominant detuning parameter. The HQG
robustness is mainly determined by the assumed sign of the detuning parameters (same sign or
opposite sign). While the same sign detuning (ηssεss) results in a high tolerance with respect to the
detuning parameter ε, its sensitivity to the detuning of η is comparatively high (f). The robustness
of the purely opposite sign case (ηosεos) behaves vica versa (c). The mixed detuning realizations
ηosεss and ηssεos can be interpreted as projection of the ηssεss, ηosεos cases, resulting in the most
reliable performance for ηosεss (d). Worst robustness is expected for the ηssεos case (e).
One might distinguish between symmetric (HQG, DYN Pauli-X) and asymmetric (AGQG, DYN

Pauli-Z, SAGQG) fidelity response with respect to the detuning parameter η. The symmetric cases
can be represent by a Rabi oscillation. Hence, a detuning η from the resonance causes a tilt of
the rotation axis and a change of the generalized Rabi frequency Ω =

√
Ω2

0 + η2. The generalized
Rabi frequency Ω does not depend on the sign of the detuning η and the tilt angle is of equivalent
absolute value. Gates detuned by +η and −η and performed on the same input state do not result
in the same output state |Ψout〉. But both |Ψout〉 feature the same distance to the anticipated
final state and hence the same overall gate fidelities are equivalent. Since for η = 0 the difference
between anticipated and covered rotation angle is of same absolute value, the fidelity response
is symmetric with respect to ε. Only for η 6= 0 the symmetry is broken and different fidelity
values are observed for ε, as a consequence of the combined differences in tilt and rotation angle.
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Figure 12.3.: Pauli-X gate fidelity as a function of the detuning η and ε. Calculated (solid
lines) and measured (dots with error-bars) quantum gate fidelity of the Pauli-X operation
for dynamic (orange), superadiabatic (blue) and holonomic (green, red) gate modality
depending on the detuning parameter (a) η and (b) ε.

In case of the HQG the Rabi oscillation is performed between the ground |0〉 and bright state
|b〉 = γ∗− |−〉+ γ∗+ |+〉, such that the observed generalized Rabi frequency and tilt angle depend on
the combination of all four detuning values.
In contrast, the gate modalities featuring a strong asymmetry with respect to η and ε are

concatenated out of two to four pulses. The performance of the first pulse defines the input
state of the subsequent pulses. Depending on the sign of the detuning the output of the first
operation changes. Hence, for different sign detunings the subsequent application of erroneous
gate operations does in general not result in output states with same distance to the anticipated
final state. Consequentially, no symmetry with respect to η and ε is expected. Note, the SAGQG
Pauli-X gate features an asymmetry as well, even though it is less pronounced than for the other
modalities.

12.5. Experimental detuning analysis

In order to obtain an easier access to the complex robustness data the limiting cases are analysed,
where only one of the parameter is assumed to be error-prone (ε = 0 or η = 0). The numeric pre-
diction are confirmed experimentally by performing standard QPT measurements of intentionally
detuned QGs (Sec. 9.1.5).
The utilization of an imperfect experimental system to measure the response to experimental

detunings requires a high degree of stability and precise knowledge on the system properties. By
closely monitoring and frequent retuning of the resonance ω0 and Rabi frequency Ω0 a standard
deviation of η and ε in the range of a few kilohertz (ση ≤ 50 kHz and σε ≤ 10 kHz) is ensured
(Sec. A.3).
Note, the generalized Rabi frequency Ω′ =

√
Ω2 + ∆2 is a quantity describing the flopping of the

qubit population (p2(t) = Ω2/Ω′2 sin (Ω′ · t/2)) and is an implication of the detuned Hamiltonian.
For a detuning ∆ the applied Rabi frequency Ω appearing in the Hamiltonian remains unchanged,
since it defines the driving field amplitude. Therefore, fidelity data F (ε, η) for ε = 0 correspond to
a vertical cut through the contour plots (black lines) presented in Fig. 12.1 and Fig. 12.2.
Experimentally η can easily be varied between ±1.5 MHz by appropriate programming of the
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Figure 12.4.: Pauli-Z gate fidelity as a function of the detuning η and ε. (a) Calculated (solid
lines) and measured (dots with error-bars) quantum gate fidelity of the Pauli-Z operation for
dynamic (orange), Abelian geometric (pink), superadiabatic (blue) and holonomic (green)
gate modality depending the detuning parameter (a) η and (b) ε.

AWG. However, a variation of the Rabi frequency by positive ε values is difficult, since the QGs
are performed close to the maximal Rabi frequency Ωmax by design. The presented measurements
are limited to the parameter range of −1.5 MHz ≤ ε ≤ 0 MHz. In the following the results for
Pauli-X and Pauli-Z are discussed individually.

12.5.1. Pauli-X

Figure 12.3 presents the calculated and measured Pauli-X quantum gate fidelity as a function of
the detuning (a) η and (b) ε for the DYN (orange), SAGQG (blue) and HQG (green, red) gate
modalities. In case of the HQG detunings of same sign (ηss, εss) and opposite sign (ηos, εos)
but same absolute value are considered. A rotation around the x-axis by means of the Abelian
geometric quantum gate (AGQG) approach is theoretically prohibited.

Surprisingly, for large detuning parameter η of the resonance frequency the DYN approach
outperforms both geometric phase based modalities. However, it needs to be stated that the
difference with respect to SAGQG is small even for unrealistically large detunings of ±1.5 MHz.
Both HQG (ηss, ηos) modalities perform poorly in this detuning regime. In the for our experimental
apparatus relevant regime |η| ≤ 500 kHz the fidelity of DYN and SAGQG modalities differ in the
order of 10−3 at the most. In the same regime, the robustness of the ηos HQG can compete with
the other approaches, but for driving fields with same sign detuning (ηss) the fidelity is dropping
quickly with η.

When considering the detuning parameter of the Rabi frequency ε the overall behaviour changes
dramatically (Fig. 12.3.b). Again, over the whole considered parameter space the DYN modality
is expected to be less sensitive to parameter mismatches than the SAGQG one. In general, the
HQG is less error susceptible for the detuning parameter ε than for η. Depending on the chosen
parameter detuning realization the HQG is either the most insensitive (εss) or the most error-prone
(εos) modality.
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12.5.2. Pauli-Z

The robustness of the Pauli-Z gate modalities with respect to the control parameter detuning η
and ε, presented in Fig. 12.4, differ from the one of the Pauli-X gate. The dynamic realization
(DYN) is sensitive to the detuning η, even dropping to zero around ±1 MHz. Note, the fidelity is
always well below one (Sec. 12.1.1) and shows almost no variation with ε. The HQG is the most
error prone geometric phase based gate for the detuning parameter η but the most stable one for
the detuning parameter ε. The QG fidelity of the SAGQG in the experimental relevant regime
of ε does not differ significantly from the one of the HQG modality but outperforms the AGQG
approach substantially. Contrary, for detuning parameter η the SAGQG and AGQG modalities are
comparably robust to constant driving field parameter imperfections in the experimental relevant
regime.

12.5.3. Summary

The performed standard QPT measurements of intentionally detuned QG operations are in good
agreement with the ones obtained from numerical calculations. Results were obtained by pushing to
the limits of the experimentally accessible parameter space, thereby representing a fair comparison
under realistic boundary conditions. For the chosen set of QG modalities no general superior
performance with respect to constant driving field parameter detunings for any of the modalities
was found. Indeed, robustness strongly depends on the realized quantum gate and the most
error prone detuning parameter (η or ε). In Sec. 13.2.2 the optimal choice of gate modalities
is discussed in detail for the NV center in diamond and superconducting transmon qubits. The
results underline the importance of the choice of quantum gate modality for any experimental
implementation. A detailed analysis like the one presented here of nowadays NISQ might boost
their range of applications and enables the realization of QECCs. Additional considerations on the
SAGQG driving field parameter are presented in App. D.

12.6. Average probability of error per gate

For concatenated gate sequences realizing quantum algorithms the effects of noise and decoherence
can no longer be ignored. The computational relevant average probability of error (APE) per
gate is typically extracted by randomized benchmarking (RB) (Sec. 9.2). The APE combines the
influence of static detuning and effects of interaction with the noise environment.

12.6.1. Modality comparison

As described in Sec. 9.2 randomized benchmarking analyses of the DYN, SAGQG and HQG are
performed. The Abelian nature of the AGQG prohibits the realization of RB measurements purely
based on this modality. In Fig. 12.5.a the average gate fidelity fa as a function of the number of com-
putational gates is presented. Errors correspond to the standard error of the mean σmean = σ/

√
N ,

where N = NP ·NG = 32 is the number of different sequences per sequence length lk. The obser-
ved decay of the fidelity of both geometric approaches is significantly slower than for the dynamic
realization. Even though, featuring the more complex amplitude, phase and frequency handling
the SAGQG outperforms the HQG modality, which is requiring two driving fields. The functional
defined in Eq. 9.11 is fitted to the data in order to extract the APE per gate εg and the combined
error of initialization, readout and projection εm. Table 12.4 summarizes the measured APE for
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Table 12.4.: Average probability of error per gate for different quantum gate modalities. APE
εg and εm for purely SAGQG, DYN and HQG modalities, as well as for HQG with increased
runtime and the combination of DYN .

x̂, ŷ ẑ εg
[
10−3] εm

[
10−3]

I. DYN DYN 23.0± 7.3 116.9± 45.7
II. SAGQG SAGQG 0.92± 0.34 18.0± 7.8
III. HQG HQG 7.39± 1.69 7.07± 1.21
IV. HQGlong HQGlong 11.31± 2.16 12.83± 21.764
V. DYN AGQG 5.87± 1.05 28.35± 12.15
VI. SAGQG AGQG 9.96± 2.74 21.64± 10.56

randomized benchmarking purely realized by DYN, SAGQG or HQG (columns I.-III.). The value
of the dynamic gate APE in the order of 10−2 is not sufficient to efficaciously implement QECCs
[20, 12]. However, under equivalent conditions the SAGQG perform significantly better with an
almost two order of magnitude improved average error rate (εg = 0.0009± 0.0003). Note, the rea-
lization of the computational gates (rotations by π/2) requires the application of two subsequent
pulses in the HQG case, finally resulting in an APE of εg = 0.0074± 0.0017.

12.6.2. Gate duration

The gate designs have been optimized for fast execution speed. Due to the experimental boundary
conditions the HQG performs faster

(
tHQG
Gate = 256 ns

)
than the SAGQG

(
tSAGQG
Gate = 320 ns

)
. Here,

it is investigated if the SAGQG performs better than the HQG, since its gate evolution is closer
to the adiabatic limit. The gate duration of the HQG tHQG

Gate is extended to be equal to tSAGQG
Gate . In

Fig. 12.5.b the RB analysis of the HQG with an extended gate duration (HQGlong, orange). Instead
of a decrease of the APE an increase to εHQGlong

g = 0.0113±0.0022 is observed (Tab. 12.4.III.-IV.).
The result indicates that the, compared to the SAGQG, worse gate performance is not induced by
high but low frequency noise. A further discussion on the effect of the noise frequency on the QG
is presented in Sec. 13.2.2.

12.6.3. Combining modalities

The analysis in Sec. 12.4 suggest that the pure dynamic set of gates is susceptible for errors and
results in a poor APE in the RB analysis. A significant improvement can be obtained when
replacing the dynamic phase-shift (Rz(θ)) gate by its more robust AGQG counterpart (violet,
Fig. 12.5.c). In this way the APE could be decreased from εg = 0.0230± 0.0073 to εg = 0.0059±
0.0011, revealing the potential power of the combination of different gate modalities.
Similarly, the randomized benchmarking of a set realized by AGQG (Rz(θ)) and SAGQG ((Rx(θ)

and Ry(θ)) was performed (red). In this composition the APE increased, compared to the pure
SAGQG realization, to εg = 0.0083±0.0022. For the in Sec. 12.6.2 determined most likely source of
error ε a similar robustness is expected in the experimental relevant regime. However, the observed
decrease of the APE is a consequence of the different required driving field frequency correction
factors (Sec. 10.1.2). The effect was not observed for the combination of DYN and AGQG gates,
since both modalities are based on simple π-pulses. Note, this source of error can be suppressed by
the development of microwave components with homogeneous frequency response at the transition
frequencies.
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12.7. Summary
In this chapter the robustness of various quantum gate modalities with respect to constant control
parameter imperfections was calculated and confirmed experimentally. The direct comparison of
dynamic and geometric phase based quantum gates revealed a surprising competitiveness of the
dynamic Pauli-X gate with respect to this kind of error. The most robust performance depends on
the realized gate, the most error-prone control parameter and in case of the HQG on the sign of
the parameter variation. In conclusion, when searching the most stable universal set of quantum
gates a combination of different quantum gate modalities should be considered. The validity of
this concept was confirmed by a randomized benchmarking analysis.
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12.7. Summary

Figure 12.5.: Randomized benchmarking measurement. Average gate fidelity as a function of the
number of computational gates l for: (a) pure DYN (green), SAGQG (yellow) and HQG
(blue) quantum gates, (b) HQG (blue) and HQG with increased gate duration (orange), as
well as (c) DYN (green), SAGQG (orange), combined DYN-AGQG (violet) and combined
SAGQG-AGQG (red). Error bars represent the standard error of the mean. Dashed lines
represent a fit of the function f(l) = 1 −

(
(1− αnεm)(1− αnεg)l + 1

)
/αn, with αn = 2,

respectively.
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13. Conclusion and outlook

Within this thesis two key challenges in the field of quantum information processing (QIP) have
been addressed. STED microscopy was applied in order to identify promising candidates for solid-
state spin based QIP applications and to determine properties to increase their production yield
respectively (Sec. 13.1). In the second part the implementation and benchmarking of high-fidelity
quantum gates for fault-tolerant quantum computing was conducted in Sec. 13.2.

13.1. Super-resolution microscopy of solid-state spins
In the scope of this thesis STED imaging of ST1 centers and NV center based fluorescent nuclear
track detectors (FNTDs) has been demonstrated. The first represents an important step in the
screening process for defect centers suitable for solid-state spin based QIP applications (Sec. 13.1.1).
The second makes it possible to determine the vacancy diffusion coefficient in diamond precisely
and offers the potential for new insights in radiation treatment (Sec. 13.1.2).

13.1.1. ST1 center imaging

In Ch. 6, STED imaging of the ST1 center in diamond was performed. Besides to the NV center
the ST1 center represents the only known defect center in diamond to feature optically detected
magnetic resonances (ODMRs) at room temperature [77, 109]. Its nuclear spin free constituent
makes the ST1 center an interesting candidate for QIP and QS applications. In order to provide
an efficient dipole-dipole coupling between neighboring ST1 center electron spins, a separation of
the order of 30 nm is fundamentally required. Hence, the optical spin-state read-out of a ST1
center based quantum register needs to be performed by a super-resolution imaging technique. In
Sec. 6.2.1, it was shown that the STED microscope can be used for super-resolution imaging of
NV centers and ST1 centers with similar performance, due to their similar optical properties. This
result suggests that optical resolutions down to a few nanometers are possible [43]. Screening for
the constituent of the ST1 center and other defect centers featuring ODMR is currently ongoing
[76].

13.1.2. Fluorescent nuclear track detection

Super-resolution STED microscopy of diamond based FNTDs has been demonstrated in Ch. 7.
Localization algorithms revealed a lateral substructure of the NV center distribution, which was
blurred in confocal microscopy (Sec. 7.2.3). Additionally, sub-cascade events could be resolved
(Sec. 7.2.1), enabling the detailed observation of the absorption process of ionizing radiation in
matter.
The established aluminium-oxide FNTDs are known to suffer from strong and inhomogeneous

background [96]. Particularly, in STED microscopy high intensities in combination with a reduced
fluorescence signal cause a loss in the signal-to-background ratio. As a consequence, the optical
resolution is limited to roughly 100 nm.
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An alternative approach is the direct imaging of fhe fluorescent isolated vacancies (“general
radiation1” (GR1) center) in diamond [170]. GR1 centers feature a zero phonon line (ZPL) at
742 nm and an emission sideband extending to the near-infrared. The direct imaging of GR1 centers
generated by ionizing radiation would allow their utilization as FNTD without any additional
treatment. The resolution is ultimately limited by the initial vacancy distribution known to be on
the order of 5 nm [75]. However, the radiative lifetime of approx. 100 ns is effectively reduced by
non-radiative decay channels, resulting in an overall fluorescence lifetime on the order of 2 ns [22].
Additionally, the strong non-radiative decay channels cause a low brightness of the GR1 center.
So far, neither super-resolution imaging nor imaging of single GR1 centers has been reported.
Currently, the demonstrated STED imaging of NV center based FNTDs represents the most

favourable platform for solid-state nuclear track detectors (SSNTDs). It offers a mechanism for the
determination of the vacancy diffusion coefficient in diamond with high precision. This knowledge
will potentially lead to optimized annealing protocols and hence to the deterministic generation
of NV centers. Additionally, by visualizing the absorption of ionizing radiation in matter, new
insights in radiation treatment might be obtained.

13.2. High-fidelity quantum computation

The implementation of quantum error correction codes (QECCs) for the realization of fault-tolerant
quantum computers requires high-fidelity quantum operations (Sec. 1.3). In the scope of this thesis
a conceptually new non-Abelian, non-adiabatic geometric QGs modality has been realized. In the
following section, these results are summed up and a qualitative comparison to QGs realized
by composite pulse sequences is performed (Sec. 13.2.1). A comparative benchmarking analysis
of different quantum gate modalities has been conducted in order to identify the most robust
universal set of single-qubit quantum gates for the considered experimental system (Ch. 12). Here,
the possible impact in the field of QIP is discussed.

13.2.1. Superadiabatic geometric quantum gates

In Ch. 11 the superadiabatic geometric quantum gate (SAGQG) [81] was realized with close to
ideal fidelity for single-qubit operations on the NV center electron spin under ambient conditions.
The implementation of the likewise proposed two-qubit controlled-NOT gate was not possible due
to the lack of suitable diamond samples.

SAGQGs exploit the concept of transitionless quantum driving (TQD) [150] in order to overcome
the adiabatic requirement for the occurrence of the Berry phase [78]. A minimal gate execution
time equivalent to the duration of four π-pulses at the system’s maximal Rabi frequency was theo-
retically derived (Sec. 11.4) and experimentally confirmed (Sec. 11.8). It needs to be stressed that
this limit is a consequence of the experimentally accessible parameter space, rather than theore-
tical requirements like the need for adiabaticity. Nevertheless, the gate duration is comparable
to dynamic pulses (Tab. 12.2) and shorter than the one of direct current (DC) noise resilient
composite pulse sequences. Composite pulse sequences (e.g., BB1 and SUPCODE) have shown
remarkable quantum gate fidelities utilizing the NV center electron spin. But these realizations
required tremendous experimental efforts in terms of microwave pulse characterization and error
compensation of the driving field [171]. In contrast, geometric phase based QG realizations like the
SAGQG feature an intrinsic robustness with respect to local (high frequency) noise [132]. A further
enhancement of the SAGQG fidelity might be achieved by reducing the DC noise introduced by
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the system’s frequency response (Sec. 10.1.2).
Even though it was proposed and demonstrated on the NV center electron spin, the gate modality

can be performed on any experimental platform featuring a sufficient control of the driving field
degrees of freedom. A precise time-dependent phase, amplitude and frequency handling of the
driving field is required, representing a potential challenge in optically driven systems (e.g., [128,
129]). The set of non-Abelian non-adiabatic geometric quantum gates realized on a simple two-level
system by a single driving field represents a high-fidelity universal set of QGs implemented with
minimal experimental resources. In contrast, the non-adiabatic HQG featuring a three-level system
and two driving fields (Sec. 8.6) sets additional requirements on the physical system (e.g., driving
field bandwidth) and causes a substantial time-overhead in the characterization measurements.
The non-Abelian nature of the SAGQG is obtained by the evolution of a pair of orthogonal

cyclic states as proposed by S.-L. Zhu and Z.D. Wang (ZW, Sec. 11.3.1) [160]. In this approach
the cyclic states of the system are dark states and hence, by design, no dynamic phase is acquired.
Recently, it was shown that the non-adiabatic HQG (Sec. 8.6) can be interpreted as a ZW gate as
well [172], underlining the importance of this physical concept.

13.2.2. Benchmarking analysis

The development of fault-tolerant quantum computers requires the identification of the most re-
liable out of various promising physical systems. Initial comparative benchmarking analyses of
different platforms are currently ongoing. For example, an experimental comparison of a 5-qubit
quantum register realized by the IBM quantum computer and a trapped ion system has been
performed [173]. Additionally, the effect of control noise has been investigated theoretically for
different quantum dot systems [174]. However, in order for this kind of benchmarking to be con-
clusive, it needs to be ensured that the compared physical platforms are operated at their optimal
configuration with maximum robustness. Hence, the identification of the most reliable universal
set of quantum gates for the individual platforms would represent the first step towards a more
“universal” performance evaluation of different quantum systems.
For a set of single-qubit quantum gates, a quantitative performance analysis comparing sim-

ple dynamic (DYN), Abelian geometric (AGQG), superadiabatic geometric (SAGQG) and non-
adiabatic holonomic (HQG) quantum gates has been conducted (Ch. 12). Standard quantum
process tomography (QPT) confirmed the high fidelity implementation of all considered quantum
gate modalities (Sec. 12.3). In fact, the obtained fidelities exceed the threshold where distinction
is prohibited due to experimental imperfections of the QPT itself. Subsequently, the effect of DC
noise on the QG fidelity has been calculated numerically and measured experimentally (Sec. 12.4
and Sec. 12.5). Additionally, conclusions regarding the contribution of high frequency noise could
be drawn by combining randomized benchmarking data and knowledge of the properties of geome-
tric phases (Sec. 12.6). Here, the effects of the different noise frequencies are interpreted in depth,
before performing case studies on two of the most promising experimental platforms for QIP.

Constant driving field imperfections

The robustness with respect to constant driving field parameter imperfections was investigated
numerically (Sec. 12.4) and experimentally (Sec. 12.5) under realistic experimental boundary con-
ditions (Sec. 12.2). This kind of error might be interpreted as DC or gate duration (tGate) dependent
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low frequency noise, including frequencies up to:

fDC �
1

10 · tGate
. (13.1)

Fluctuations at a rate below fDC are interpreted as constant and hence define the values of the
detuning parameters η and ε of the realized gate (Sec. 12.4). Typically, for the NV center fDC is
on the order of several hundred kilohertz. The exact value of η and ε might vary in subsequent
gates of an algorithm, such that the amplitude of the low frequency noise defines the standard
deviations ση and σε. Depending on the realized QG and chosen modality, the robustness with
respect low frequency noise varies significantly (Sec. 12.4).
The high-fidelity implementation of a universal set of single-qubit QGs by purely dynamic gate

operations appears unlikely due to the non-trivial realization of phase-shift gates. However, when
combining dynamic rotations around the x̂ and ŷ-axis (Rx(θ) and Ry(θ)) with a simple geometric
Abelian phases-shift gate, the average probability of error (APE) per gate is reduced considerably
(Sec. 12.6.3). This is achieved by replacing the most error-prone gate operation with respect to
fDC by a more robust one. The example illustrates that exploiting different theoretical concepts
is a valid tool for the realization of universal high-fidelity quantum operations.

A superior robustness of the SAGQG in comparison to the HQG for constant driving field
imperfections, as predicted in by Liang et al. [81], could in general not be confirmed (Sec. 12.4.3).
While in [81] only the single-qubit phase shift gate, requiring a single driving field in the non-
adiabatic holonomic case, is considered here, a more complete analysis including the general case of
quantum gates realized by two driving fields was performed. In this situation the exact robustness
depends strongly on the assumed detunings η and ε for the individual transitions |0〉 ↔ |−〉 and
|0〉 ↔ |+〉 (Fig. 12.2). A detailed case study considering specific properties of the physical platform
for NV centers and superconducting transmon qubits is presented at a later point of the discussion.

Suppression of high frequency noise

It was shown that adiabatic geometric phase based quantum gates are resilient against high fre-
quency noise [132, 133]. As indicated in [175] this intrinsic robustness holds true for SAGQGs and
non-adiabatic HQGs. A rough estimate of the high frequency threshold fHF, defining the noise
frequency which is efficiently suppressed by the geometric property of the quantum gate, might be
obtained by:

fHF �
10
tGate

. (13.2)

The utilization of non-adiabatic quantum gates pushes the efficiently suppressed noise frequency
fHF towards higher values. Hence, it needs to be re-evaluated which frequencies can be considered
as high. At non-adiabatic gate durations in the order of tGate ≈ 300 ns (Tab. 12.2) the threshold
frequency is expected at fHF ∼ 33 GHz. This value exceeds any reasonable assumption for the
spin-noise environment in diamond, which is typically featuring a DC-centered Lorentzian spectral
noise density (e.g., [42, 166]). Hence, non-adiabatic geometric phase based QGs are limited in
the ability to suppress environmentally induced fluctuations. This conclusion is supported by
the RB measurement presented in Sec. 12.6.2, where an increase of the HQG gate duration from
tGate = 256 ns to tGate = 320 ns, corresponding to a decrease of fHF ≈ 39 GHz to fHF ≈ 31 GHz
and an increase of fDC ≈ 390 kHz to fDC ≈ 312 kHz, caused an increase of the APE.

However, driving field fluctuations due to the microwave amplifier noise and rise time are able to
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Figure 13.1.: Possible sources of constant errors. (a) Energy scheme of the NV center triplet ground
state. D depends on temperature fluctuations δT . The energy spectra on the right side
illustrate the resulting same sign detuning from the original resonances (black). (b) Random
magnetic field fluctuations δB change the absolute value but not the sign of the Zeeman
term. Consequently, the energy spectra feature an opposite sign detuning from the original
resonances (black).

occur in the frequency regime above fHF. One concludes therefore, that non-adiabatic geometric
phase based quantum gates are accessible to environment induced intermediate frequency noise
but resilient against control parameter noise. In diamond the contribution intermediate frequency
noise can be efficiently suppressed by the use of optimized samples. The robustness with respect to
DC noise is comparable to that of the dynamic realizations, and supremacy depends on the exact
QG modality.

Case studies

In the following discussion, the optimal choice of a set of universal single-qubit QGs for the physical
platform of NV centers in diamond and superconducting transmon qubits are discussed. While the
first was investigated in the scope of the thesis, the later represents the system currently featuring
the largest number of physical quantum bits, making it one of the most promising candidates for
near-term, scalable, universal quantum computation.

NV centers in diamond

For the NV center, the precise knowledge of the main sources of error within the experimental
apparatus represents the basis for the discussion. First, the effect of DC noise on the system’s
Hamiltonian H (Eq. 2.1) is considered. The two possible sources of error are drifts of the electron
spin resonance (ESR) due to changes of the zero field splitting D, and random magnetic field drifts
δB. The effects of the respective noise on the magnetic field dependent energy levels (|0〉, |−〉
and |+〉) of H are illustrated in Fig. 13.1. A change of the temperature by δT varies D and both
transitions are shifted symmetrically (a). Hence, temperature induces a same sign detuning ηss

with respect to the ESR resonance. In contrast, drifts of the magnetic field by δB change the
Zeeman term asymmetrically (b). Consequentially, the transitions |−〉 and |+〉 suffer an opposite
sign detuning ηos.

In Sec. A.3 long-term measurements of the resonance frequency ω0, the Rabi frequency Ω0 and
the temperature are presented. The resonance frequency ω0 shows fluctuations correlated with the
ambient temperature. However, the observed drifts of ω0 are larger than the theoretically expected
value of dDdT = −77 kHz K−1 [176]. Thermal expansion of the magnet mounting system appears to
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be responsible for magnetic field fluctuations δB in the order of 0.1 G. The Rabi frequency remains
within our measurement precision constant during the whole measurement interval. Small drifts
of the Rabi frequency originate from fluctuations of the driving field amplitude or movements of
the microwave antenna and are expected to be of same sign (εss) for both transitions. Hence,
for the holonomic Pauli-X gate the most likely detuning parameter combination is ηosεss for the
NV center in diamond. At the same time for ηosεss the highest robustness of the non-adiabatic
HQG Pauli-X gate is expected. Even though two detuned driving fields are involved, in this
configuration the HQG provides the most stable realization with respect to the detuning ε and
competing robustness with respect to detuning η. For realizations of the Pauli-Z gate the HQG
realization appears to be sensitive to the detuning η and superior performance is expected for the
AGQG and SAGQG modalities. In conclusion, the benchmark analysis suggests that the SAGQG
modality to represents the most robust set of quantum gates, which is in agreement with our RB
measurements (Sec. 12.6).
We note that, the set consisting of SAGQG (Rz(θ)) and HQG (Rx(θ) andRy(θ)) might also result

in a high-fidelity realization. However, a combination of HQG and the SAGQG gate modalities
requires an additional projection between the involved computational subspaces ({|0〉 , |−〉} and
{|−〉 , |+〉}), which is likely to compensate potential advantages of the combination of the different
gate modalities.

Superconducting transmon qubits

Nowadays, the most scaled, circuit based, noisy intermediate scale quantum computers (NISQs)
are based on superconducting transmon qubits [8, 9]. Transmon qubits feature, depending on
the experimental realization, transition frequencies ω0 in the order of several gigahertz, while Rabi
frequencies Ω0 of up to tens of megahertz have been obtained [177, 178]. Hence, for first qualitative
conclusions the calculated data presented in Sec. 12.4.3 might be used, but for a quantitative
robustness estimation the numerical calculation needs to be repeated with the exact parameter
values of the considered transmon qubit.
The spectral noise density was measured to decay with 1/fα, where α ≈ 0.6 is constant [179].

In general, compared to the NV center, faster gate operation increases the frequency threshold
fHF even further. At the same time, noise frequencies which can be counted as DC contribution
(fDC) are increased. Consequentially, the focus of the benchmark analysis is on the robustness
with respect to constant detuning parameters η and ε. The anharmonicity of the system causes
leakage to neighboring transitions when driving a specific one, and an unintentionally increased
Rabi frequency is expected [180, 181]. Temperature fluctuations are strongly suppressed by state-
of-the-art cryostats. For this reason, the most likely error is a same sign detuning of ε towards
positive values (εss). In this configuration a universal set of QGs consisting solely of HQGs appears
to be remarkably robust (Sec. 12.4), significantly outperforming the dynamic approach. Still, for
positive ε the SAGQG Pauli-Z is expected to be the most robust implementation. Due to the
required projection of the different computational subspaces when combining SAGQG and HQG,
for superconducting transmon qubits a purely HQG realization is suggested.

13.3. Concluding remarks

In the last decade, the number of quantum bits within several quantum register realizations has
been continuously increasing. Hence, scalability, even though not yet achieved for every physi-
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cal system, no longer appears to be the limiting factor for fault-tolerant quantum computation.
Instead, the finite quantum gate fidelity prevents the efficient realization of quantum error cor-
rection codes. In this thesis, a new approach for geometric phase based quantum gates was realized
with a fidelity beyond the required error threshold. Additionally, a standardized benchmarking
routine for the identification of the most robust universal set of quantum gates for a given physical
system is suggested. This set of gates is not necessarily realized by a single gate modality and might
vary with the physical platform. The proposed routine was demonstrated for the NV center in
diamond but is of general validity. A systematic application of the benchmarking analysis to noisy
intermediate scale quantum computers will pave the way towards the realization of fault-tolerant
quantum computation.
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A. Data acquisition

Some of the presented data required significant averaging including frequent retuning of the control
parameter. Here, the most important features of the hard and software, needed for the automation
of the experimental apparatus, are given. This knowledge is not necessarily required for the
understanding of the findings within this thesis but supports attempts which aim to reproduce the
data.

A.1. Electronic control circuit

The experimental control software distinguishes two different operational modes: experiment mode
and imaging mode. The main difference between the modes is the way how the data acquisition
of the multichannel scalar (MCS) is triggered. In imaging mode, used for performing confocal
and super-resolution microscopy, as well as for the refocusing of the defect center interleaved with
the experiments, the trigger of the acquisition is provided by the STED laser directly. Data
acquisition starts with the first trigger arriving after the MCS is armed (inset Fig. A.1). However,
during coherent spin manipulating experiments (experiment mode) the data acquisition needs to be
synchronized with the experimental sequence in order to enable time-gated detection. Therefore,
in this mode the trigger needs to be provided by the AWG, which itself is synchronized with
the STED laser. Whenever readout of the spin state is required the AWG starts the MCS after
detection of the next STED laser trigger (inset Fig. A.1). In the described configuration the STED
laser is internally triggered and acts as a master for all operational modes. Since the STED laser
is equipped with an unstoppable power supply it is protected against self damaging caused by loss
of an external trigger signal and power failure.
The desired behaviour is obtained by an electronic circuit (Fig. A.1) which is controlled by

the experiment computer via a National Instruments data acquisition (NIDAQ) card (PCIe-6353,
National Instruments). First, a card duplicates the 30 MHz STED laser reference. A pico-second
delay unit provides the opportunity to precisely tune the optical delay between excitation (EXC)
and STED pulses. Two additional copies of the reference are utilized for the switching between
experiment and imaging mode. One copy is either transmitted or blocked by a logic AND-card
whose second entrance port is controlled via the NIDAQ-card. The second copy is provided to
the AWG for synchronization in experiment mode. The synchronized marker output of the AWG
is directed to the MCS via a second AND-logic, as well controlled by the NIDAQ-card. The
combination of NIDAQ-card and AND-logic cards allows for deterministic switching between the
two trigger channels by setting one or the other NIDAQ channels to high. An additional OR-
logic card sums up the signals provided by both AND-gates and directs the new signal to the
start-channel of the multiple-event time digitizer. Note, for continuous wave (CW) excitation the
synchronization of the AWG to the STED laser is not required. However, in order to keep the
experiment control software as compact and robust as possible it does not distinguish between CW
and pulsed laser mode.
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A. Data acquisition

Figure A.1.: Simplified sketch of the electronic control circuit. The fanout card (grey) provides
multiple copies of the 30 MHz reference signal. Orange boxes represent classical logic gates.
Devices shown as green box exhibit a direct connection to the control computer. Depending
on the output of the NIDAQ-card the multiple-event time digitizer card is either trigger by
the laser directly or indirectly by the arbitrary waveform generator.

A.2. Superscript data acquisition

In order to perform automatized long-term measurements featuring periodic retuning of the physi-
cal control parameter an experimental routine defined as SuperScript was implemented. In intervals
predefined by the user the routine measures the ESR spectra and performs a Rabi measurement in
order to retune the systems resonance frequency ω0 and Rabi frequency Ω. Based on the refreshed
values ω0 and tπ = π/Ω the main experiment is updated in order to correct for slow drifts of the
system and measure close to the optimal working point (Sec. A.3). In case the main experiment is
performed on both NV center transitions two ESR and Rabi measurements are taken. Figure A.2.a
illustrates the SuperScript data acquisition in a flow chart. Obviously, the routine continuous with
the next main experiment if it is neither time for a ESR or Rabi measurement.
To avoid an unnecessary time overhead at the beginning of each experiment, it is checked if the

experiment changed and a new waveform needs to be created (Fig. A.2.b). Depending on the main
experiment up to several ten minutes of waveform creation and upload are saved. The experiment
timer controls if the anticipated number of averages has been recorded or a repositioning of the
NV center within the focal volume is needed. In case of a refocusing a xy and xz-scan of the NV
center is performed and its center position determined by two-dimensional Gaussian fits. After
repositioning the NV center the measurement is continued. Refocusing is adjusted depending on
the sample and typically takes two minutes. In future, an active sample stabilization will reduce
the time overhead as investigated in [106].

A.3. Resonance frequency tracking

In this Ch. 12, the robustness of different quantum gate modalities with respect to controlled
experimental control parameter imperfections is analysed. Obviously, such kind of measurements
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A.3. Resonance frequency tracking

Figure A.2.: Flowchart of the superscript data acquisition. (a) (b) At the beginning of each
experiment it is checked if the required experiment is identical to the previous on. If so
the experiment is started immediately. Otherwise the desired waveforms are created and
uploaded to the AWG. Subsequently the experiment is started and run for a predefined time
interval tretune. Afterwards the NV center is refocused and the number of averages checked.
If enough statistics have been obtained the software moves on to the next experiment.
Otherwise it is averaged for another tretune.

require close tracking of the ESR resonance and Rabi frequency to avoid distortions of the result
due to drifts of the system. Therefore, the actual quantum process tomography measurements
are taken interleaved with ESR spectra and Rabi measurements used for retuning of the control
parameter (Sec. A.2). Retuning intervals are typically set to 3−4 h and require (depending on the
number of driving fields) ≈ 25− 50 min, significantly prolonging the acquisition time.
In order to extract the resonance frequencies (ω0−, ω0+) and Rabi frequencies (Ω0,−, Ω0,+)

a Lorentzian function is fitted to the ESR resonances and a cosine to the Rabi measurements,
respectively. Figure A.3.a-b shows an exemplary ESR resonance and Rabi frequency retuning trace
over the acquisition time of one QPT detuning analysis curve like presented in Sec. 12.5. While the
measured Rabi frequency remains stable within the experimental uncertainties, the ESR resonance
shows temporal changes correlated with the temperature of the laboratory (Fig. A.3.c). The small
temporal delay between drifts of the ESR resonance and laboratory temperature is dedicated to
the fact that the temperature was measured outside the acoustic isolation box containing the
objective lens and sample. The fitting accuracy is exceptionally high (∆ω0− ≈ ±25 kHz) while
the temperature induced drift of the resonance ranges up to ∼ 100 kHz h−1. Measuring close to
the optimal working point is guaranteed by rejecting measurement intervals suffering from ESR
resonance drifts larger than ±150 kHz.
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A. Data acquisition

Figure A.3.: Tracking of the experiment control parameter. (a) Measured drift δ of ESR resonance
with respect to the starting value over the runtime. (b) Measured Rabi frequency value Ω at
maximal driving field strength over the runtime. (c) Laboratory temperature as measured
outside of the acoustic isolation box of the sample. Lines are guide to the eye. While the
Rabi frequency is stable the ESR resonance is correlated with the ambient temperature.
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B. Sample characterization

The diamond sample utilized in the quantum information measurements (Ch. 11 and Ch. 12) was
optimized to contain as few imperfections interacting with the NV center electron spin as possible.
Based on a diamond substrate with natural abundance (∼ 1.1 %) of 13C an isotopically pure 50 µm
thick layer with 99.999 % abundance of 12C was grown (Element6). The sample was used as grown
in order to avoid strain induced by surface polishing, reducing the coherence properties of the
NV centers. NV centers were generated by microbeam implantation of high energetic (10 MeV)
14N ions and subsequent annealing at 1000 ◦C for 2 h under vacuum. An average implantation
dose of approx. 2 ions/spot in combination with the finite conversion efficiency results in single
NV center. The high energetic implantation positioning the nitrogen ions 3.7 µm underneath the
diamond surface omits the interaction of surface related spin noise [182, 166] with the targeted
NV center electron spin. Full description of the resulting NV center coherence properties at room-
temperature and a magnetic field of |B| ≈ 406 G aligned parallel to the NV center axis is provided
in the following.

B.1. NV center coherence times
The longitudinal relaxation time T1 describes the population loss due to stochastic processes as,
e.g., phonon interactions which are irreversible [183]. Experimentally it is measured by initializing
the system into the |±1〉 state and readout of the population after time τ . An exponential fit of the
form M(τ) = C (1− 2 · exp(−τ/T1)), where C is the signals contrast, reveals T1 = 13.7 ± 2.2 ms
(Fig. B.1.a).
T1ρ is the longitudinal relaxation time in the rotating frame and is measured by a spin-lock

experiment. In this sequence, after the application of a π/2-pulse a, 90◦ phase shifted, continuous
driving field of duration τ locks the spin in its state. A second π/2-pulse at the end of the
sequence projects the relaxation into a measurable population difference. By fitting the function
M(τ) = C exp(−τ/T1ρ) the relaxation time is determined to be T1ρ = 5.05± 1.56 ms approaching
the ultimately limiting T1 time (Fig. B.1.b).

A Ramsey experiment extracts the spin dephasing/free induction decay (FID) time T ∗2 caused by
field inhomogeneities [184]. After initialization a π/2-pulse converts the |0〉 into the superposition
state 1√

2 (|+〉 − i |−〉) and the system evolves freely for time τ . An additional π/2-pulse projects
the obtained state back into the population basis ms = 0 and ms = −1 [185]. Fig. B.1.c shows
the measured FID decay signal. The fast oscillation originates from the detuning δ of the second
π/2-pulse while the exponential decay of the envelope is the T ∗2 -constant. Fitting the experimental
data by M(τ) = C exp(−t/T ∗2 ) cos(2πδt) reveals a spin dephasing time of T ∗2 = 4.25±0.27 µs. The
absence of a beating within the decay curve is an indication of a properly polarized 14N nuclear
spin [186] (Sec. B.2).
Finally, the spin-spin realization time T2 caused by random magnetic field fluctuations, com-

monly introduced by surrounding nuclear spins, is measured by means of a Hahn-Echo experiment
[187, 62]. Hahn-echo experiments extent the Ramsey experiment by an additional π-pulse applied
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B. Sample characterization

Figure B.1.: Measured diamond coherence properties. (a) Spin-lattice relaxation, (b) spin-lock, (c)
Ramsey and (d) Hahn-Echo measurements (blue) and the respective fitted decay function
(red, explicitly written in the text). Insets illustrate the measurement sequence, where green
rectangular indicate laser pulses and blue rectangular indicate microwave fields.

at half the free evolution time (t = τ/2), leading to a refocusing of the spin at time τ . After
fitting the functional M(τ) = exp(−τ/T2)p, the spin-spin relaxation time is determined to be
T2 = 1.13±0.09 ms and the parameter p = 2.36±0.66 is between 1 and 2.5 as required from theory
[188, 189].
In conclusion, the long coherence times make the sample highly suitable for quantum informa-

tion applications, even at room-temperature. Particularly, the absence of spin impurities allows
for the analysis of the quantum gate performance limited by controlled experimental parameter
imperfections rather than uncontrolled sample related environmental induced noise.

B.2. Nuclear spin polarization

Due to hyperfine coupling of the NV center electron spin with the nuclear spin of the host 14N ni-
trogen atom (I = 1) the electron spin resonance (ESR) spectrum in general shows three resonances
for each of the transitions |0〉 ↔ |−〉 and |0〉 ↔ |+〉, such that in general the experimental system
is described by a six level system. However, after polarization of the nuclear spin, due to the long
nuclear spin coherence time of several seconds [190, 37], measurements can be performed in a close
to perfect two-level system. It was shown that dynamic polarization of the nitrogen nuclear spin is
achieved by tuning to the excited state level anti-crossing (ESLAC) by application of a magnetic
field [39]. In order to polarize the nuclear spin into mI = 1 a magnetic field of about |B| ≈ 400 G
needs to be aligned along the NV center ẑ axis. Under green illumination the electron spin is
continuously pumped into ms = 0, while flip-flop process transfer the nuclear spin into ms = +1
[191]. A more detailed description of the physical process is presented in [40, 39, 191], while here
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B.2. Nuclear spin polarization

Figure B.2.: Nuclear spin polarization. ESR spectra of an NV center with a magnetic field of |B| ≈
406 G aligned (a) off-axis and (b) on-axis with respect to the NV center and a calculated
nuclear polarization of 74 % (94 %), respectively.

only its implication is of interest.

As reference for the coarse alignment of the magnetic field with respect to the NV center ẑ axis
the ESR spectra for both transitions, |0〉 ↔ |−〉 and |0〉 ↔ |+〉, are recorded. Out of the peak
position (fitted by a Gaussian function) of the resonance features ν+ and ν− the magnetic field
strength |Bext| [G] and the field angle θext [rad] can be estimated according to [52, 192]

|Bext| =
√

1
3γ2

(
ν2

+ + ν2
− − ν+ν− −D2

)2
,

θext = 1
2 arccos

(
7D3 + 2(ν+ + ν−)2 ·

(
2(ν2

+ + ν2
−)− 5ν+ν−

)
− 3D

(
ν2

+ + ν2
− − ν+ν−

)
9D(ν2

+ + ν2
− − ν+ν− −D2)2

)
,

where γ is the electron gyro magnetic ration and D ≈ 2.87 GHz the zero field splitting. Iterative
optimization of the magnetic field aligns the magnetic field with several degree precision. However,
the estimated field angle is only an approximation, since the exact value of ∆0 is a property of
the diamond sample and difficult to determine due to the presence of the earth magnetic field and
strain within the diamond.

Hence, fine tuning is performed by iteratively optimizing the magnet position to suppress the nu-
clear resonances mI = −1 and mI = 0 in the ESR spectra (Fig. B.2.a). In this stage low microwave
amplitude ESR measurements are performed in order to avoid power broadening [193]. Therefore,
the measured spectra exhibits fine resolved resonances. Typically, a microwave attenuation factor
of k = 5 − 10 compared to full amplitude experiments is used. The degree of polarization P is
quantified by [40]

P = pI=1 − pI=0 − pI=−1

pI=1 + pI=0 + pI=−1
, (B.1)

where pI=0,±1 is the integral over the respective ESR resonance peak. Typically, the contribution
of the pI=−1 state is already negligible when switching to the fine alignment procedure, such that
only pI=0 and pI=+1 need to be calculated. In Fig. B.2 the ESR spectra at 409 G for two slightly
different field orientations are presented. In this example, during the optimization process the
nuclear polarization is increased from (a) P = 0.74± 0.05 to (b) P = 0.94± 0.05. Uncertainties of
the polarization are estimated based on error propagation of the fit values. Frequently, the nuclear
polarization is controlled to ensure measuring at the optimal working point.
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Figure B.3.: Electron spin resonance line width. The low microwave amplitude ESR spectra of an
NV center reveals a line width of FWHM = 69.2± 16.0 MHz.

B.3. Line width
Utilizing low amplitude ESR measurements we determine the line width of the ESR resonance
(Fig. B.3). A Gaussian fit reveals a standard variation σ = 29.4 ± 6.8 kHz, i.e., a FWHM =
2
√

2ln2σ = 69.2±16.0 kHz. A line width of several tens kilohertz is a strong indication of diamond
sample containing only few imperfections [193], making the sample highly suitable for quantum
information processing applications.
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C. Auxiliary calculations

The Hamiltonian and time-evolution operator utilized in the scope of the thesis differ from the
once proposed by Liang et al. [81]. Here, their derivation is summed up.

C.1. Derivation of the superadiabatic Hamiltonian

Starting from Eq. 11.4 the approach of Liang et al. [81] is followed to confirm the systems supe-
radiabatic Hamiltonian. First the eigenvalues A± and eigenstates λ± are derived from:

H0(t)λ± = A±λ±. (C.1)

Or explicitly:

~
2

(∆(t) + ∆̇(t)t)−A± ΩR(t)eiϕ(t)

ΩR(t)eiϕ(t) −(∆(t) + ∆̇(t)t)−A±

λ± = 0. (C.2)

The above equation only holds true for det(H −EA±) = 0 and the eigenvalues follow immediately

A± = ~
2

√
(∆(t) + ∆̇(t)t)2 + ΩR(t)2 = ±~Ω

2 , (C.3)

where the generalized Rabi frequency Ω =
√

(∆(t) + ∆̇(t)t)2 + ΩR(t)2 is defined. The eigenvectors
of the system are obtained by solving:

H

a
b

 = A±

a
b

 . (C.4)

Due to the large similarity of the system to the one in [81] the eigenstates are estimated to be

|λ+(t)〉 =

cos θ2e−iϕ/2

sin θ
2e
iϕ/2

 , |λ−(t)〉 =

− sin θ
2e
−iϕ/2

cos θ2eiϕ/2

 , (C.5)

with θ = tan−1[ΩR(t)/(∆(t) + ∆̇(t)t)] being the mixing angle. Inserting the expressions into
Eq. C.1 confirms that |λ±(t)〉 are eigenvectors of the system. Under the adiabatic approximation
the system time evolution operator takes the form

U(t) =
∑
n=±

exp
{
i

[∫ t

0
An(t′)− En(t′)/~

]
dt′
}
|λn(t)〉 〈λn(0)| , (C.6)

with An(t′) = i 〈λn(t′)|∂t′λn(t′)〉 the so called effective vector potential [78]. Utilizing the concept
of transitionless quantum driving [150] a superadiabatic Hamiltonian HS(t) = H0(t) + HC(t) is
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derived, with:

HC(t) = i~
∑

n=+,−
[|∂tλn〉 〈λn| − 〈λn|∂tλn〉 |λn〉 〈λn|] . (C.7)

HS(t) drives the eigenstates |λn(t)〉 of the original Hamiltonian H0(t) accurately and arbitrarily
fast. Calculating HC(t) explicitly assuming a constant phase factor ϕ results in the four terms:

|∂tλ+〉 〈λ+| =

− θ̇2 sin θ
2 cos θ2 − θ̇2 sin2 θ

2e
−iϕ

θ̇
2 cos2 θ

2e
iϕ θ̇

2 sin θ
2 cos θ2

 , (C.8)

|∂tλ−〉 〈λ−| =

 θ̇
2 cos θ2 sin θ

2 − θ̇2 cos2 θ
2e
−iϕ

θ̇
2 sin2 θ

2e
iϕ − θ̇2 sin θ

2 cos θ2

 , (C.9)

〈λ+|∂tλ+〉 =
(
θ̇

2 cos θ2 sin θ2 −
θ̇

2 cos θ2 sin θ2

)
= 0, (C.10)

〈λ−|∂tλ−〉 =
(
θ̇

2 cos θ2 sin θ2 −
θ̇

2 cos θ2 sin θ2

)
= 0. (C.11)

The correction Hamiltonian follows according to Eq. C.7 as

HC(t) = ~
2

 0 −iθ̇e−iϕ

iθ̇eiϕ 0

 = ~
2

 0 −iΩC(t)e−iϕ

iΩC(t)eiϕ 0

 , (C.12)

where ΩC(t) ≡ θ̇ = [Ω̇R(t)(∆(t)+∆̇(t)t)−ΩR(t) ∂∂t (∆(t)+∆̇(t)t)]
Ω2 is the corrected Rabi frequency. While

the diagonal elements of the superadiabatic Hamiltonian HS(t) do not change with respect to the
original Hamiltonian H0(t), the off-diagonal elements contain two Rabi frequencies indicating that
two driving fields are required to realize HS(t). However, it can be shown that only one driving
field is needed

ΩR(t) + iΩC(t) =
√

ΩR(t)2 + ΩC(t)2

 1√
1 + ΩC(t)2

ΩR(t)2

+
iΩC(t)

ΩR(t)√
1 + ΩC(t)2

ΩR(t)2

 (C.13)

=
√

ΩR(t)2 + ΩC(t)2 · ei arctan ΩC (t)
ΩR(t) (C.14)

= ΩS(t) · eiψS(t), (C.15)

where the identity 1/
√

1 + x2 + i x/
√

1 + x2 = exp[i arctan x] was utilized. Additionally, the supe-
radiabatic phase ψS(t) = arctan(ΩC(t)/ΩR(t)) was defined. Therefore, the superadiabatic Hamil-
tonian can be realized by the application of a single time-dependent driving field:

HS(t) = ~
2

 ∆(t) + ∆̇(t)t ΩS(t)e−i[ϕ+ψS(t)]

ΩS(t)ei[ϕ+ψS(t)] −∆(t) + ∆̇(t)t

 . (C.16)

In Sec. 11.1.3 the superadiabatic Hamiltonian is used to derive a universal set of superadiabatic
geometric single qubit gates.
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C.2. Time evolution operator

In Sec. 11.3.1 the equation U(T ) |λ(0)〉 = exp(±iγ) |λ(0)〉 for the cyclic geometric evolution of the
eigenstates |λ±〉 was described. For the general expression of the eigenstates |λ±〉 one obtains:U11 U21

U12 U22

 ·
cos θ2e−iϕ/2

sin θ
2e
iϕ/2

 = e±iγ

cos θ2e−iϕ/2

sin θ
2e
iϕ/2

 , (C.17)

U11 U21

U12 U22

 ·
− sin θ

2e
−iϕ/2

cos θ2eiϕ/2

 = e±iγ

− sin θ
2e
−iϕ/2

cos θ2eiϕ/2

 . (C.18)

Solving the above linear system of equation will reveal the expression of the time-evolution operator.
Performing the matrix multiplication explicitly results in:

U11 =
(
U21 cos θ2e

iϕ + sin θ2e
−iγ
)

1
sin θ

2
, (C.19)

U11 =
(
−U21 sin θ2e

iϕ + cos θ2e
iγ

)
1

cos θ2
, (C.20)

U12 =
(
U22 cos θ2 − cos θ2e

−iγ
)

eiϕ

sin θ
2
, (C.21)

U21 =
(
−U22 sin θ2 + sin θ2e

iγ

)
eiϕ

cos θ2
. (C.22)

Substituting Eq. C.19 into Eq. C.20 yields:

U21 =
cos θ2eiγ

cos2 θ
2

sin θ
2
eiϕ + sin θ

2e
iϕ
−

sin θ
2e
−iγ

cos2 θ
2

sin θ
2
eiϕ + sin θ

2e
iϕ

(C.23)

= eiγe−iϕ
1
2 sin θ − e−iγe−iϕ sin2 θ

2 . (C.24)

Under the restriction θ = {2πn, 2πn− 3π
2 }, n ∈ Z one obtains:

U21 = i sin θ sin γe−iϕ. (C.25)

Note, the confinements on θ define the sets of orthogonal states to be either (|0〉 , |1〉) or (1/
√

2(|1〉 e−iϕ/2+
|0〉 eiϕ/2) and 1/

√
2(|1〉 e−iϕ/2− |0〉 eiϕ/2)). Similarly from substituting Eq. C.21 into Eq. C.22 fol-

lows:

U22 =
sin θ

2
cos θ2

cos θ2
sin θ

2
+ sin θ

2
cos θ2

eiγ +
cos θ2
sin θ

2

cos θ2
sin θ

2
+ sin θ

2
cos θ2

(C.26)

= cos γ
cos θ2
sin θ

2
+ sin θ

2
cos θ2

cos θ2
sin θ

2
+ sin θ

2
cos θ2

− i sin γ
cos θ2
sin θ

2
− sin θ

2
cos θ2

cos θ2
sin θ

2
+ sin θ

2
cos θ2

(C.27)

= cos γ − i sin γ cos θ. (C.28)
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C. Auxiliary calculations

Analogously, U21 and U11 are calculated to be:

U21 = i sin θ sin γe−iϕ, (C.29)

U11 = cos γ + i sin γ cos θ. (C.30)

The time-evolution operator for geometric phase based quantum gates for a pair of orthogonal
cyclic states follows as:

U =

cos γ + i sin γ cos θ i sin θ sin γ · e−iϕ

i sin θ sin γ · e−iϕ cos γ − i sin γ cos θ

 . (C.31)

In contrast to the time-evolution operator derived in [160] and utilized by Liang et al., Eq. C.31
features an additional phase ϕ allowing to vary the rotation axis in the x̂ŷ-plain when χ = π/2.
The additional degree of freedom is particularly handy when performing randomized benchmarking
measurements utilizing the Clifford group (Sec. 9.2).
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D. Tuning the SAGQG robustness

In Sec. 11.4 the experimental limitation on the minimal gate duration of the super-adiabatic
geometric quantum gate as a function of the free parameter Ω0 and ∆0 was investigated. It
turned out that for our experimental apparatus the fastest gate execution can be realized around
Ω0 = ∆0 ≈ 2 MHz. Here, the influence of Ω0 and τ on the tolerance with respect to parameter
imperfections of the SAGQG is studied. The fidelity depending on ∆0 is not investigated since
deviation from ∆0 ≈ 2 MHz cause an unwanted, immediate increase of the minimal duration of τ .

D.1. Robustness as a function of Ω0

In Fig. D.1 the numerically calculated quantum gate fidelity as a function of ε and η for SAGQG
Pauli-X and Pauli-Z is presented for varying Ω0 = {1.5, 2.5, 3.5}MHz and constant τ = 80 ns and
∆0 = 2 MHz. For easy comparison with the results from Sec. 12.4 the fidelity is again presented
in the interval F ∈ [0.9, 1]. One realizes that the area with a fidelity F larger than 0.9 increases
with the original Hamiltonians Rabi frequency Ω0. Intuitively, smaller values of Ω0 require larger
contributions of the correction Hamiltonian HC(t), including more complex amplitude and phase
modulation (Sec. 11.4). The large HC(t) contribution make the Hamiltonian HS(t) more sensitive
to parameter mismatches. Hence, in order to realize the most robust SAGQG the driving field
parameter Ω0 should approach half the maximal Rabi frequency Ω0 = Ωmax/2.

D.2. Robustness as a function of τ

Similarly to the parameter Ω0, the value of τ strongly determines the exact shape of HC(t). An
increased τ reduces the contribution of HC(t) at the cost of an increased gate duration. Figure
D.2.a-b present the quantum gate fidelity in dependence of the detuning parameter η and ε for
Pauli-X and Pauli-Z, respectively. Original Hamiltonians driving field parameter of the SAGQG
modality are set to Ω0 = 3.5 MHz, ∆0 = 2 MHz and τ = 120 ns. This values correspond to
the one utilized for the calculation of Fig. D.1.c,f except for the by a factor of 1.5 increased
τ -value. Experimentally, the calculation are confirmed by measuring the quantum gate fidelity
in dependence of the detuning η for the above defined parameter set (Fig. D.2.c). Solid lines
represent the calculated fidelity for the prolonged gate duration, while dashed lines are calculated
for τ = 80 ns. Similarly, in (d) the calculated gate fidelities in dependence of the detuning parameter
ε are shown.
For τ = 120 ns the Pauli-Z becomes almost insensitive to the detuning of parameter η but the

sensitivity of the Pauli-X gate is significantly increased. In contrast, the robustness with respect
to ε is slightly improved in both gate realizations in the experimentally more relevant negative
parameter region (ε < 0) for the increased τ -value.

Tuning of the τ -value offers the potential to slightly increase the gate robustness. However, an
optimal trade-off between robustness and time overhead, which most likely depends on the experi-
mental platform, needs to be calculated numerically. When pushing towards the error threshold
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D. Tuning the SAGQG robustness

Figure D.1.: Robustness calculation for various parameter Ω0. The SAGQG robustness in de-
pendence of the detuning parameters η and ε for (a-c) Pauli-X and (d-f) Pauli-Z with the
driving field parameters Ω0 = {1.5, 2.5, 3.5}MHz, ∆0 = 2 MHz and τ = 80 ns.

for QECCs in NISQ the resource demanding computational optimization of the gate robustness
should be performed.
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D.2. Robustness as a function of τ

Figure D.2.: Robustness modification by τ tuning. Calculated SAGQG fidelity in dependence of the
detuning parameters η and ε for (a) Pauli-X and (b) Pauli-Z for the original Hamiltonian
parameter Ω0 = 3.5 MHz, ∆0 = 2 MHz and τ = 120 ns. (c) Pauli-X (blue) and Pauli-Z
(orange) gate fidelity for τ = 120 ns (solid) and τ = 80 ns (dashed) in dependence of the
detuning parameters (c) η and (d) ε.
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