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SUMMARY 

The aim of genomic selection (GS) is to predict breeding values with high accuracy for young 

animals (without own phenotypic record) as early as possible. GS can increase the accuracy 

of the breeding values at the time point of selection, but often the number of available animals 

for the reference set within an organization (subpopulation) is the limiting factor. One 

possibility to overcome this problem is to enlarge the reference population by combining 

closely (or distantly) related subpopulations within a breed, a so called multi-subpopulation 

reference population. The assessment of predictive ability of genomic breeding values when 

using single- and multi-subpopulation references sets within a breed for the trait number of 

piglets born alive (NBA) was conducted in Chapter 2. Furthermore, a comprehensive 

comparison of different genomic relationship matrices (partly accounting for subpopulation 

structures) was investigated to assess their usefulness for multi-subpopulation approaches.  

Superiority of multi-subpopulation predictions in pigs compared to within-subpopulation 

predictions turned out to be rather small. Although predictions were performed within one 

breed (i.e. Large White), but different subpopulations, no increase or even a decrease in 

predictive ability was observed. Anyway, closely related subpopulation reference sets 

performed better than distantly related subpopulation reference sets. Despite the low 

differentiation of the subpopulations (low FST-values), the genetic connectedness between 

different subpopulations seems to be too small to improve the prediction accuracy by using 

multi-subpopulation reference sets, which may be caused by the separate breeding work of 

different German pig breeding organizations and have led to stratified subpopulations within 

the breed German Large White. The consideration of possible substructures through the use of 

different genomic relationship matrices in genomic estimations was also only partially 

successful. For practical application, resources of pig breeding companies should be used 

genotyping animals (boars and sows) within organization to create a sufficient large reference 

population which should be updated continuously. 

Since GS is considered to be state-of-the-art in animal breeding, a comprehensive comparison 

of different genomic models, multi- and single-step, was performed for NBA and two breeds 

(German Landrace and German Large White) in Chapter 3. Multi-step methods consist of 

mainly three parts with many parameters and multiple assumptions: (i) constructing of a 

response variable for genotyped animals that integrate all phenotypic information, (ii) 

exploiting the association between response variable and marker information through 
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genomic prediction, and (iii) blending the genomic information with parental average. If 

assumptions in those steps are violated, loss of information, inaccuracies and biases may 

arise. One possibility to overcome these issues is the single-step method. In single-step 

methodology, all available information (i.e. pedigree, phenotypic and genetic) is combined 

within a single model.  

Assessment of predictive abilities for young genotyped animals indicated that both genomic 

methods, multi- and single-step, outperformed conventional predictions, while single-step 

provided higher reliabilities than multi-step. Bias was assessed by regression of corrected 

phenotypes on the different genomic breeding values. Predictions were less biased for single-

step compared to multi-step. In general, reliabilities and predictive abilities for young animals 

were relatively small for both breeds, which may be caused by (i) small numbers of 

genotyped animals in general, (ii) rather moderate reliabilities of pseudo-observations, (iii) 

low numbers of genotyped progenies per boar and (iv) only few parent-offspring-links 

between reference and validation set. In order to potentially improve prediction accuracy and 

reduce bias of genomic predictions, an adjustment of 𝐆 through sophisticated weighting and 

scaling strategies was performed. However, an increase of predictive ability through 

adjustment was not successful for both small empirical data sets. For practice, single-step 

turned out to be useful and conceptually convincing approach for NBA in moderately sized 

German Large White and German Landrace populations. 

Although GS is considered to be the preferred method, accurately estimated conventional 

breeding values through (consequent) performance testing along with recording phenotypes 

still remains one of the most important steps in the animal breeding schemes. Fertility traits 

such as NBA are economically important and included in most breeding schemes. In order to 

improve efficiency of breeding programs (and efficiency of piglet producers), traits like 

mothering ability (MA) of a sow, piglet survival (PS) or number of piglets weaned (NOW) 

from a sow have become more and more important. Therefore, knowledge of genetic 

parameters of fertility traits is necessary to estimate conventional breeding values accurately, 

to combine fertility traits in selection and to optimize breeding schemes. In Chapter 4 

estimates of genetic parameters for e.g. heritability, repeatability, genetic and phenotypic 

variances and correlations between traits were calculated in order to evaluate an appropriate 

model for the routine breeding value estimation for a German pig breeding organization. The 

analyzed traits were: NBA, NOW, MA, PS and farrowing interval (FI). Variable selection for 
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fixed effects was performed and different models (bivariate animal or repeatability model) 

were used to estimate genetic components.  

Genetic components were generally close to literature means, although estimated variance 

components strongly depended on the population structure and data set used, which made a 

direct comparison (of differences) difficult. However, estimates of additive genetic variance, 

heritability and genetic correlation indicated that the amount of genetic variation for selection 

was large enough to improve the traits studied. Trends observed from the data already showed 

an improvement of NBA (NOW) per sow and year. For the routine breeding value estimation, 

a bivariate animal model should be used for NBA and NOW, in which the first parity and 

subsequent parities should be considered as different traits. A repeatability animal model 

should be used for MA, PS and FI. With regard to animal welfare of sow and piglet, 

decreasing individual birth weights and biological limitations of reproduction performance of 

a sow, especially PS and MA are getting more and more important and thus should be further 

addressed and studied. 
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ZUSAMMENFASSUNG 

Ziel der genomischen Zuchtwertschätzung (ZWS) ist es, Zuchtwerte mit hoher Genauigkeit 

für junge (nicht-phänotypisierte) Tiere zu einem möglichst frühen Zeitpunkt vorherzusagen. 

In der Schweinzucht kann durch die genomische ZWS eine Erhöhung der Genauigkeit der 

Zuchtwerte zum Selektionszeitpunkt erreicht werden. Jedoch ist häufig die Anzahl der zur 

Verfügung stehenden Tiere für die Referenzpopulation innerhalb einer Organisation der 

limitierende Faktor. Eine Möglichkeit dieses Problem zu überwinden besteht darin, die 

Referenzpopulation durch eng (oder entfernt) verwandte Subpopulationen innerhalb einer 

Rasse zu einer sogenannten Multi-Subpopulation-Referenzpopulation zu erweitern. 

Durch die getrennte Zuchtarbeit verschiedener Schweinezuchtorganisationen sind über 

Jahrzehnte Subpopulationen in der Rasse Deutsches Edelschwein entstanden. Ziel dieser 

Untersuchung (Kapitel 2) ist daher die Evaluierung einer gemeinsamen genomischen ZWS, 

wobei die Daten verschiedener Zuchtorganisationen kombiniert werden sollen, um dadurch 

eine verbesserte Vorhersagegenauigkeit für die Selektion im Merkmal Anzahl lebend 

geborene Ferkel (LGF) zu erhalten. Des Weiteren wurde untersucht, ob die Berücksichtigung 

möglicher Substrukturen von gemischten Subpopulationen in der genomischen ZWS (z.B. 

durch die Skalierung der genomischen Verwandtschaftsmatrix) zu einer Erhöhung der 

Vorhersagegenauigkeit führt.  

Durch das Zusammenlegen von mehreren Subpopulationen zu einer gemeinsamen Multi-

Subpopulations-Referenzstichprobe kommt es generell zu Genauigkeitsverlusten. Obwohl die 

Berechnungen innerhalb einer Rasse, aber in verschiedenen Subpopulationen durchgeführt 

wurden, konnte die Vorhersagegenauigkeit nicht verbessert werden. Tendenziell konnten 

jedoch eng verwandte Subpopulationen besser vorhergesagt werden als entfernt verwandte. 

Trotz der geringen Differenzierung der Populationen (geringe Fst-Werte) scheinen die 

Subpopulationen durch die getrennte Zuchtarbeit zu wenig genetische Verknüpfungen zu 

haben, als dass eine gemeinsame genomische ZWS die Genauigkeit der Vorhersage erhöhen 

könnte. Die Berücksichtigung möglicher Substrukturen durch den Einsatz verschiedener 

genomischer Verwandtschaftsmatrizen war ebenfalls nur teilweise erfolgreich. Sofern eine 

gemeinsame ZWS für die Rasse Deutsches Edelschwein etabliert werden soll, ist es in 

Zukunft besonders wichtig, genetische Verknüpfungen zwischen den Subpopulationen zu 

schaffen. Andernfalls sollten die Ressourcen der Schweinezüchter v.a. für die Phäno- und 
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Genotypisierung von Tieren innerhalb der Organisation genutzt werden, um eine ausreichend 

große und aktuelle Referenzpopulation zu schaffen. 

Da die genomische Selektion als „Status quo“ in der Tierzucht gilt, wurde in Kapitel 3 ein 

umfassender Vergleich verschiedener genomischer Modelle für das Merkmal LGF 

durchgeführt. Aktuelle Methoden der genomischen ZWS sind sog. multi-step-Verfahren, die 

aus mehreren Berechnungsschritten bestehen: (1) Berechnung der Inputvariable für die ZWS 

wie z.B. dem konventionellen Zuchtwert oder eines sog. Quasi-Phänotypen für die typisierten 

Tiere, (2) Berechnung der genomischen Zuchtwerte für typisierte Tiere, und (3) Blending der 

genomischen Zuchtwerte mittels der konventionellen Zuchtwerte bzw. des Elternzuchtwerts, 

um den finalen geblendeten genomischen Zuchtwert zu berechnen. Eine der 

Herausforderungen dieses Verfahrens ist die Abhängigkeit von vielen Parametern und 

Annahmen, was die Methode komplex und anfällig für Fehler machen kann. In diesem 

Zusammenhang wurde das sog. single-step-Verfahren entwickelt. Hierbei werden alle 

verfügbaren Informationen wie Pedigree, Rohphänotypen und Genotypen aller Tiere in einem 

Schritt miteinander verknüpft, was zu einer sichereren Schätzung der genomischen 

Zuchtwerte beitragen kann. In Kapitel 3 wurden die Vorhersagegenauigkeiten der 

genomischen Zuchtwerte mit den beiden Verfahren, multi- und single-step, für das Merkmal 

LGF miteinander verglichen. Für diese Analyse standen Daten der Rassen Deutsche 

Landrasse und Deutsches Edelschwein für das Merkmal LGF zur Verfügung.  

Die Schätzung von sicheren genomischen Zuchtwerten in Populationen mit geringer Anzahl 

an genotypisierten Tieren ist generell problematisch. Allerdings lieferten genomische 

Verfahren genauere Vorhersagen für junge Tiere als konventionelle 

Zuchtwertschätzverfahren. Um eine mögliche Verzerrung der Zuchtwerte zu erfassen, wurde 

eine Regression der korrigierten Phänotypen auf die verschiedenen genomischen Zuchtwerte 

durchgeführt. Genomische Vorhersagen mittels single-step waren weniger verzerrt als mit 

dem multi-step-Verfahren. Die Sicherheit der Zuchtwerte sowie die Vorhersagefähigkeit für 

junge Tiere waren bei beiden Rassen eher klein, was (i) auf die geringe Anzahl 

genotypisierter Tiere im Allgemeinen, (ii) die geringen Sicherheiten der Quasi-Phänotypen, 

(iii) die geringe Anzahl genotypisierter Nachkommen pro Eber sowie (iv) die geringe Anzahl 

an Eltern-Nachkommen-Verknüpfungen zwischen Referenz- und Validierungstieren 

zurückzuführen ist. Um die Vorhersagegenauigkeit zu verbessern und die Verzerrung 

genomischer Vorhersagen zu reduzieren, wurde eine Anpassung der genomischen 

Verwandtschaftsmatrix durch verschiedene Gewichtungs- und Skalierungsstrategien 
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durchgeführt. Eine Erhöhung der Vorhersagekraft erwies sich jedoch für keinen der beiden 

empirischen Datensätze als erfolgreich. Zusammenfassend lässt sich sagen, dass für kleine 

und strukturierte Schweinzuchtpopulationen das single-step-Verfahren eine robuste 

Alternative zu dem bisher genutzten multi-step-Verfahren für Fruchtbarkeitsmerkmale 

darstellt. 

Obwohl die genomische Selektion mittlerweile einer der wichtigsten Bestandteile in der 

Schweinzucht ist, bleibt die sichere Schätzung der konventionellen Zuchtwerte durch die 

konsequente und genaue Erfassung von Phänotypen nach wie vor eine der wichtigsten 

Aufgaben und Schritte in Zuchtprogrammen. Fruchtbarkeitsmerkmale wie z.B. LGF sind 

wirtschaftlich wichtige Merkmale und in den meisten Zuchtprogrammen implementiert. Um 

die Effizienz der Zuchtprogramme oder die Effizienz der Ferkelproduzenten zu verbessern, 

gewinnen Merkmale wie die Mütterlichkeit einer Sau (MS), die Überlebensfähigkeit des 

Ferkels (PS) sowie die Anzahl abgesetzter Ferkel (AGF) zunehmend an Bedeutung. 

Dementsprechend sind Kenntnisse zu genetischen Parametern notwendig. Für eine deutsche 

Schweinezuchtorganisation soll ein geeignetes Model für die routinemäßige ZWS für 

verschiedene Fruchtbarkeitsmerkmale untersucht werden (Kapitel 4). Die folgenden 

genetischen Parameter werden für fünf verschiedene Fruchtbarkeitsmerkmale berechnet: 

Erblichkeit, Wiederholbarkeit, genetische und phänotypische Varianzen und Korrelation 

zwischen den Merkmalen. Die analysierten Merkmale waren: LGF, AGF, MS, PS und 

Absetzintervall (AI). Eine Variablenselektion wurde für die fixen Effekte im Model 

durchgeführt. Zwei verschiedene Modelle (Zwei-Merkmals-Modell und 

Wiederholbarkeitsmodell) wurden zur Schätzung und Berechnung der genetischen 

Komponenten verwendet.  

Die geschätzten genetischen Komponenten stimmen generell mit Werten aus der Literatur 

überein. Die berechneten Parameter wie z.B. die Varianzkomponenten sind populations- 

sowie datenstrukturabhängig, daher ist ein direkter Vergleich mit Literaturwerten nur bedingt 

möglich. Schätzungen der additiven genetischen Varianz, der Erblichkeit und der genetischen 

Korrelation deuten darauf hin, dass die untersuchten reproduktiven Merkmale durch Selektion 

verbessert werden können. Die aus den Daten beobachteten Trends von 2010 bis 2016 zeigten 

bereits eine Verbesserung in z.B. den Merkmalen LGF und AGF pro Sau und Jahr. Als 

routinemäßige ZWS sollte für LGF und AGF das Zwei-Merkmals-Modell verwendet werden, 

wobei der erste Wurf und die darauffolgenden Würfe je als ein Merkmal betrachtet werden 

sollten. Wiederholbarkeitsmodelle sollten hingegen bei PS, AI und MS verwendet werden. 
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Zusammenfassend lässt sich sagen, dass die Überlebensfähigkeit eines Ferkels sowie die 

Mütterlichkeit der Sau immer wichtiger werden, insbesondere im Hinblick auf den Tierschutz 

(Sau und Ferkel), die geringen individuellen Geburtsgewichte sowie das Erreichen der 

biologische Leistungsgrenze einer Sau. 
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Preface 

The primary focus of this thesis is to explore the potential of genomic prediction of breeding 

values for fertility traits in practical pig data. A short overview of breeding history, relevant 

methods and genomic selection in pig breeding will be presented hereafter. 

 

Pig production in Germany 

In the past decades, the northwest of Europe has developed into a concentration area of pork 

production. This development was due to high growth rates in production, a high degree of 

farm specialization and infrastructure. In 2018, the number of pigs kept in Germany amounts 

to roughly 27 million, of which 7.9 million are piglets, 1.9 million are breeding sows and 17.0 

million are slaughter pigs
1
, respectively.  

In Germany, pig breeding is organized by separate herdbook societies and breeding 

companies. Herdbook organizations usually operate on a regional basis and conduct their own 

breeding programs with self-defined breeding purpose. In general, breeding organizations 

work with the same breeds, which are bred separately for several generations and which 

create subpopulations within a breed. Sire and dam lines are bred specifically for markets 

where each breeding organization pursuing its own breeding objective. Therefore, availability 

of uniformly defined phenotypes is highly fragmented which complicates a common 

evaluation of breeding values within and across breeds. The main goal for every breeding 

organization, especially for those working with dam lines, is the improvement of reproduction 

traits, e.g. “number of piglets born alive” and “number of piglets weaned” (Knol et al., 2016; 

Willam and Simianer, 2017).  

Breeding organizations are represented by a nucleus population and are responsible for the 

breeding of purebred animals. Genetic progress is mainly achieved at this stage of breeding, 

primarily through extensive performance tests and intensive selection. A typical large pure 

line pig population counts about 2000 sows with around 50 sires selected by year, but can be 

much smaller (Knol et al., 2016). The crossbred end product derives from multiple breeds and 

lines. Classical breeding programs are crossbreeding programs (e.g. three-way cross) which 

incorporates a F1 sows, mostly a cross of Landrace and Large White, with a sire line. Typical 

sire lines are Piétrain, Duroc or Hampshire.  

                                                 
1
 https://www.destatis.de/DE/PresseService/Presse/Pressemitteilungen/2018/06/PD18_234_413.html 
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A brief history of animal breeding 

Animal breeding is based on the selection of the best animals from the current population as 

parents for the next generation. Estimating reliable breeding values for selection is one of the 

most important issues for an efficient breeding program. Genetic improvement in livestock 

species aims to increase sustainability and efficiency of animal products. Pig production 

centers around the use of crossbred animals (Knol et al., 2016). In the pork industry the 

systematic breeding started in the 1940’s to 60’s with the application of quantitative genetics 

through selection index (Hazel, 1943) and systematic crossbreeding (Dickerson, 1952; 1974). 

Later, Henderson introduced BLUP (best linear unbiased prediction), which has become the 

most widely accepted method for genetic evaluations in domestic livestock and provides the 

fundament for a comprehensive selection (Henderson, 1975). Based on this theory polygenic 

breeding values with maximum achievable accuracy can be estimated from phenotypic 

records of an individual itself and/or from records of relatives, which are linked by their 

relationship (pedigree). This estimation is carried out simultaneously for all individuals in the 

pedigree. As parents for the next generation, animals with the highest estimated breeding 

values are chosen. Through the years, the BLUP method evolved in terms of application and a 

number of extensions like e.g. sire models, sire and maternal grandsire models, reduced 

animal models or univariate and multivariate models have been introduced (Mrode, 2013). 

With the advent of DNA technology and the associated consideration of DNA markers in the 

selection process, animal breeding has changed substantially. Various methods have been 

proposed which are briefly outlined. 

With the availability of the first genetic molecular markers, the development of a variety of 

experimental studies to locate genomic regions and Quantitative Trait Loci (QTL) associated 

with economically interesting traits was encouraged (Mrode, 2013; Ibáñez-Escriche et al., 

2014). In the early 1990s marker-assisted selection (MAS) became available and quickly 

became immense popular at that time (Knol et al., 2016). Expectations that QTL discovery 

raised in scientific community were not accompanied by a variety of identification of causal 

polymorphism that could be directly applied in breeding industry (Ibáñez-Escriche et al., 

2014). Fernando and Grossman (1989) introduced a method in which marker information was 

included into conventional BLUP (MA-BLUP) to obtain marker-enhanced breeding values. 

At that time the number of considered markers – usually microsatellites - was limited up to 

roughly 300. The incorporation of such markers that are linked to a particular QTL (and 

phenotype) in a genetic evaluation procedure would increase the accuracy of evaluation and 
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therefore the expected genetic progress. The benefits of these methods depend largely on the 

amount of genetic variance explained by the marker (Mrode, 2013; Knol et al., 2016). 

However, most economically and ecologically important traits are of complex nature and 

usually influenced by a large number of genes (or QTLs) having only small effects (e.g. 

Hayes and Goddard, 2001; Knol et al., 2016). As a consequence, the application of gene or 

marker assisted selection in breeding industry was minor and appeared not as successful as 

expected (Ibáñez-Escriche et al., 2014; Knol et al., 2016).  

In 2001, the general idea of using thousands of markers across the whole genome to predict 

genetic values instead of looking for particular QTLs with large effects arose and turned out 

to be a major breakthrough (Meuwissen et al., 2001). With the development of high-

throughput SNP (single nucleotide polymorphisms) chips in 2006, large numbers of markers 

became commercially available (Mrode, 2013; Knol et al., 2016; Weller, 2016). Exploiting 

linkage disequilibrium (LD) between SNPs and genes that are involved in complex trait 

variation with the aim to map genes and to predict genomic values became possible (Goddard 

and Hayes, 2009; Bennewitz et al., 2017). In 2001, Meuwissen et al. (2001) demonstrated in a 

simulation study how to link all markers to the considered trait (phenotype) simultaneously 

and that, with a sufficient marker density, genomic values can be properly estimated 

(Meuwissen et al., 2001). The procedure involves estimating SNP effects simultaneously 

based on individuals with phenotypic and genotypic records (reference population). Estimated 

SNP effects are then used to obtain genomic breeding values for genotyped selection 

candidates that do not yet have phenotypic records (Goddard and Hayes, 2007; Mrode, 2013; 

Knol et al., 2016). The usage of such genomic breeding values for the selection decision has 

been referred to as genomic selection (GS).  

The implementation of GS has the potential to fundamentally alter the structure of livestock 

breeding programs caused by e.g. early availability of genotypes of young animals 

(immediately after birth). Young animals (selection candidates) only need to have marker 

genotypes and there will be no further need to record phenotypes for the selection which has 

the potential to save a huge amount of costs at that point of time. The reference population 

might involve genotyped animals with alternative types of information including single or 

repeated measures of individual phenotypic performance, information on progeny, estimated 

breeding values (EBV) from genetic evaluations, or a pooled mixture of more than one of 

these information sources (Garrick et al., 2009). The reference population could be 

additionally composed of commercial animals that can be extensively recorded including 
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traits that cannot be measured from selection candidates such as carcass and meat quality 

traits, feed consumption or response to disease challenge (Goddard and Hayes, 2007). An 

appropriate reference population size is required for GS profitability (Meuwissen, 2009), 

which depends on many parameters such as effective population size, currency of reference 

population (up to date, a reference population reflecting the actual population structure), 

genetic architecture of the trait, genome size and SNP chip density (Goddard, 2009). 

Feasibility of the application of GS is thus breeding scheme and population dependent 

(Ibáñez-Escriche et al., 2014). 

The ultimate method for determining all DNA variation is complete sequencing of the 

genome which is referred to as “next-generation sequencing” (NGS) or “massively parallel 

sequencing”. Those high-throughput DNA sequencing methods were developed in the mid to 

late 1990s and were implemented into commercial DNA sequencers by 2000 (Mrode, 2013). 

Different to SNP arrays, which rely on already known positions, NGS is based on the re-

sequencing of the whole genome. With this procedure it is expected that causative variants 

(mutations) are present in the whole-genome sequence data and therefore, GS can directly 

work with causative variants instead of having to rely on LD structure between markers and 

causative mutations (Meuwissen et al., 2016). Recently, small increases (2-5%) in accuracy of 

genomic breeding values with sequence data were demonstrated in cattle (Brøndum et al., 

2015). However, WGS data is expected to be future’s genotype data. If sequencing costs 

continue to fall, WGS may become the most effective genotyping method (Gorjanc et al., 

2015). 

 

Methods of breeding value estimation  

Conventional BLUP 

A traditional best linear unbiased prediction (BLUP) animal model as described by Henderson 

(1975) was used for the prediction of conventional estimated breeding values (EBVs) in this 

thesis. The basic animal model is as follows: 

𝐲 = 𝐗𝐛 + 𝐙𝐚 + 𝐞, 

in which 𝐲 represents the vector of observations for the target trait, 𝐛 is the vector of fixed 

effects, 𝐚 is the vector of random additive genetic effects of all animals which is assumed to 

be normally distributed with 𝐚 ~ N(0, 𝐀σa
2), and 𝐞 being the vector of residual effects which is 
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assumed to be normally distributed with 𝐞 ~ N(0, 𝐈σe
2). Matrices 𝐗 and  𝐙 are incidence 

matrices relating records to fixed (𝐛) and animal (𝐚) effects, respectively. 𝐀 represents the 

pedigree-based numerator or additive genetic relationship matrix between individuals, I is an 

identity matrix and σa
2 and σe

2 are additive genetic and residual variances, respectively.  

In the presented animal model, replacing 𝑨 by a genomic relationship matrix (𝑮) will result in 

genomic BLUP (GBLUP) (Goddard, 2009; Hayes et al., 2009), while replacing 𝑨 by a mixed 

pedigree and genomic relationship matrix H will lead to single-step genomic BLUP (Legarra 

et al., 2009; Aguilar et al., 2010; Christensen and Lund, 2010). The construction of both 

mentioned matrices will be briefly presented in the following. 

In this thesis, conventional BLUP as described above is used to estimate breeding values in 

Chapter 2, 3 and 4. 

 

Genomic BLUP 

In traditional BLUP, breeding values are estimated using phenotypes and family relationships, 

which are based on the pedigree of the individuals. In genomic BLUP (GBLUP), genomic 

breeding values are estimated using quasi-phenotypes and genomic relationships, which are 

based on genome-wide dense marker data (Meuwissen et al., 2016). In the context of genomic 

predictions two equivalent systems of predicting genomic breeding values (as shown by 

Hayes et al., 2009) exist: genomic BLUP and SNP-BLUP (Ridge-Regression (RR)-BLUP). 

Since SNP-BLUP is not applied in this thesis, only GBLUP is presented. The model behind 

GBLUP is defined as follows: 

𝐲 = µ + 𝐖𝐠 + 𝐞, 

where y represents the vector of phenotypes or quasi-phenotypes (e.g. deregressed proofs, 

DRP) for the target trait, µ is the overall mean, 𝐠 is the vector of random genomic effects 

(DGV), and 𝐞 is the vector of random residual effects. 𝐖 is the corresponding design matrix 

for the random genomic effects. It is assumed that g ~ N(0, 𝐆𝐱σg
2) and e ~ N(0, Iσe

2), in which 

𝐆𝐱 is the genomic relationship matrix, x defines the used G-matrix according to the different 

approaches and σg
2 is the corresponding additive-genetic variance. I is the corresponding 

identity matrix with σe
2 being the residual variance. In GLBUP, all individuals with and 

without phenotype are taken into account to obtain genomic breeding values directly and 

simultaneously from MME in one step, which is used in this thesis. 
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The computational requirements for SNP-BLUP and GBLUP are very different. GBLUP is 

computationally less demanding than SNP-BLUP as long as the amount of animals is smaller 

than the number of estimated random effects. For pigs, the number of genotyped animals 

often is still smaller than the number of markers (SNPs), which makes GBLUP 

(computationally) preferable compared SNP-BLUP and so GBLUP has become standard 

procedure (Knol et al., 2016; Meuwissen et al., 2016). Howeverthe number of genotyped 

animals is expected to increase in the future. Especially for cattle, SNP-BLUP might become 

the method of choice (Meuwissen et al., 2016). 

In conventional BLUP the independent variables are phenotypic records of the selection 

candidates or observations of their relative. In genomic BLUP, the independent variables are 

quasi-phenotypes, e.g. EBVs estimated from BLUP or deregressed proofs (DRP) as described 

by Garrick et al. (2009). DRPs are always calculated with removal of parental average effect 

(Garrick et al., 2009). When EBVs are used as quasi-phenotypes in the analysis, it was 

assumed that e ~ N(0, I𝜎𝑒
2), with I being an identity matrix and 𝜎𝑒

2 being the residual 

variance. When DRPs were used in the analysis, it was assumed that e ~ N(0, R𝜎𝑒
2) with 

diag(R)=

h
2
(
1- ri

2*

ri
2*

+c)

1- h
2 . The reliability of the DRPs for each individual i (𝑟𝑖

2∗) was recalculated as 

described by Garrick et al. (2009). The heritability (h
2
) correspondes to estimates used in the 

conventional breeding value estimation. To assess the constant 𝑐 = 1 −
𝜎𝑔

2

𝜎𝑔
2+ 𝜎𝑟

2, some 

preliminary analyses with ASReml (Gilmour et al., 2009) were performed using the genomic 

relationship matrix and EBV to obtain estimates of the genetic variance explained by markers 

(𝜎𝑔
2) and the residual variance (𝜎𝑟

2) (i.e. genetic variance not explained by markers). 

In this thesis, mainly DRPs with removal of the parent average (PA) instead of EBVs are used 

as response variable for genomic predictions for some reasons (Garrick et al., 2009): 

(i) If the parent average is still included in the quasi-phenotypes (e.g. in EBVs) of the 

reference set and DGVs and EBVs of the validation set are correlated later, 

predictive ability can easily be overestimated through e.g. double counting. 

(ii) DRPs exclude ancestral information. If both an offspring and its parent are 

genotyped, the degree of double-counting decreases when using deregressed EBV 

as the response variable. 
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(iii) Animals without individual or progeny information cannot usefully contribute to 

genomic prediction because they do not add information that would not be already 

available from their parent’s EBV. 

(iv) Using EBVs as the response variable results in double shrinkage of the genomic 

breeding values, particularly when the reliabilities of the EBV are low. The 

shrinkage of DGVs is generally smaller using DRPs. 

 

Blending to obtain Genomic Enhanced Breeding Values 

Genomic breeding values can be combined with the conventional breeding value that takes no 

account of genomic information (the polygenic EBV) to obtain the genomically enhanced 

breeding value (GEBV), a procedure which is called “blending” (VanRaden et al., 2009). To 

compute those GEBVs, three different breeding values are combined in a selection index and 

weighted according to their statistical reliability. In this thesis, mainly breeding values (BV) 

for validation individuals were computed and combined in the blending index as follows: (i) 

the parental index (PA) of an animal from the BLUP breeding value estimation, (ii) the direct 

genomic breeding value, which was computed on the basis of the genomic relationship matrix 

and deregressed proofs (DRP) with removal of the PA (as described in Garrick et al., 2009) 

and (iii) parental index (PI), which was estimated based on a pedigree relationship matrix 

using only the genotyped animals and DRPs as pseudo-observations. Subsequently, the 

variances of estimated breeding values (=𝑟𝐵𝑉
2 𝜎𝑔

2) of these three information sources are 

combined in a selection index to calculate the optimum weighting of each part of the breeding 

values for each animal resulting in the final GEBV (VanRaden et al., 2009) of an animal for 

which also the respective reliability can be calculated.  

In this thesis, methods including conventional BLUP, GBLUP and blending are referred to as 

“multi-step method”. This multi-step method mainly consist of three parts: (i) construction of 

a response variable (e.g. quasi-phenotypes derived from routine BLUP) for genotyped 

animals that integrate all available phenotypic information, (ii) exploiting the association 

between response variable and marker information through genomic prediction (genomic 

BLUP), and (iii) blending genomic predictions with parental average estimated breeding 

values (Christensen et al., 2012). GBLUP for estimating direct genomic breeding values and 

blending for estimating genomically enhanced breeding values are used in Chapter 2 and 3. 
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Construction of the genomic relationship matrix 

The additive genetic relationship matrix uses only pedigree data to compute probabilities that 

genes are identical by descent (Wright, 1922). Consequently, the expected relationship 

coefficient (pedigree-based relationship) between two full sib animals is 0.5. The genomic 

relationship matrix utilizes genomic data to estimate the fraction of total DNA or fraction of 

alleles at a specific locus (realized relationship coefficient) that two individuals share 

(VanRaden, 2007). Deviations between expected and realized relationship between full sibs 

might occur due to the fact that individuals might inherit different alleles from the last 

generation (parents), which is referred to as the “Mendelian sampling effect”. In contrast to 

expected values, where all full sibs of a family have the same value as long as no own or 

progeny information is available, realized (genomic) relationships may differ between full 

sibs of one family and thus allow selecting within full sib groups based on genomic values. 

Further, predictions based on genomic relationships may provide more accurate breeding 

values than pedigree-based ones (VanRaden, 2007).  

VanRaden (2008) introduced one of the first and most widely used genomic relationship 

matrix which will be described as follows:  

𝑮 =
(𝑴−𝑷)(𝑴−𝑷)′

2 ∑ 𝜋𝑗(1−𝜋𝑗)𝑚
𝑗=1

, 

where M is the marker genotype matrix with genotypes coded 0, 1 and 2 for AA, AB and BB, 

P contains two times the allele frequencies πk of the B allele at each locus j such that all 

entries of column j of P are 2πj and m is the total number of markers. This standardization 

(division by 2 ∑ 𝜋𝑗(1 − 𝜋𝑗)𝑚
𝑗=1 ) makes the pedigree-based relationship and genomic 

relationship comparable on the same scale (VanRaden, 2008). This genomic relationship 

matrix is used in Chapter 2 and 3 

In order to account for population structure and genetic architecture, different genomic 

relationship matrices are presented in Chapter 2. For instance, Gengler et al (2007) proposed 

to use allele frequencies from the base population rather than actual frequencies to scale the 

genomic relationship matrix (Gengler et al., 2007). Zhou et al. (2014) introduced a genomic 

relationship matrix that should be weighted according to marker effects and LD phase 

consistencies (Zhou et al., 2014b). More details regarding their construction can be found in 

Chapter 2 or corresponding literature. 
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Single-step genomic BLUP 

In recent years, another approach was introduced by Legarra et al. (2009), Aguilar et al. 

(2010) and Christensen and Lund (2010) which is referred to as “single-step evaluation” or 

“single-step genomic BLUP” (ssGBLUP). They propose to do the blending step inside the 

mixed models equations (MME) system. The key idea is to use all available information such 

as phenotypes, genomic and pedigree information together in a single model to predict 

genomic breeding values (ssGEBVS) for all individuals simultaneously.  

In a single-step genomic BLUP model, the pedigree-based relationship matrix 𝐀 will be 

replaced in the conventional BLUP model (described above) with 𝐇, a mixed pedigree and 

genomic relationship matrix. It is assumed that u (a in conventional BLUP) and e are 

normally distributed with u ~ N(0, 𝐇σu
2) and e ~ N(0,𝐈σe

2), respectively, where u is the vector 

of single-step genomic breeding values with  σu
2 being the corresponding genetic variance, I is 

an identity matrix and σe
2 is the corresponding residual variance. The inverse variance-

covariance matrix of the genetic effects 𝐇−𝟏 is calculated as a combined relationship matrix 

as suggested by Aguilar et al. (2010) and Christensen and Lund (2010) and written as follows: 

𝐇−𝟏 =  𝐀−𝟏 + [
0 0
0 𝐆𝐰

−𝟏 −  𝐀𝟐𝟐
−𝟏],  

where 𝐀−𝟏 is the inverse of the pedigree-based relationship matrix 𝐀, 𝐆−𝟏 is the inverse of the 

genomic relationship matrix 𝐆 and 𝐀𝟐𝟐
−𝟏 is the inverse of the subset of the pedigree-based 

relationship matrix 𝐀 between genotyped animals only. To make 𝐆 compatible with 𝐀, 𝐆 is 

modified to be on the same scale as 𝐀 (as described by Christensen et al. (2012)). To scale the 

genomic information and to improve convergence behavior of iterative approaches (Misztal et 

al., 2013), 𝐆𝐰 is calculated as follows: 

𝐆𝐰 = (α ∗ 𝐆 + β ∗  𝐀𝟐𝟐),  

with α = 0.95, β = 0.05. For the proportions of α and β, the default values implemented in 

the software BLUPF90 were used for breeding value calculation in this thesis (Misztal et al., 

2002). Single-step genomic BLUP for estimating single-step genomic breeding values as 

described above is also referred to as “single-step method” and used in Chapter 3. 

Several methods of combining G and A have been proposed in literature: (i) adapt G to A 

(Forni et al., 2011; Christensen, 2012) and conversely (ii) A to G (Christensen, 2012; Legarra 
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et al., 2015; Garcia-Baccino et al., 2017). Another possibility to ensure convergence of 

iterative approaches (Misztal et al., 2010) and to reduce inflation of predictions (Koivula et 

al., 2015), two scaling factors (𝝉, 𝝎) have been introduced to calculate 𝐇𝛕,𝛚
−𝟏  (Misztal et al., 

2010; Tsuruta et al., 2011): 

𝐇𝛕,𝛚
−𝟏 =  𝐀−𝟏 +  [

𝟎 𝟎
𝟎 𝛕𝐆−𝟏 − 𝛚𝐀𝟐𝟐

−𝟏]. 

Martini et al. (2018) investigated optimal values of 𝛕 and 𝛚 in terms of predictive ability, 

inflation and iterations up to convergence on a publicly available wheat data set. Value used 

for τ and ω in this thesis is 1, which will be referred to as “original single-step genomic 

BLUP”. Further aspects of combining genomic and pedigree relationship matrix for 𝐇−𝟏, 

𝐇𝛕,𝛚
−𝟏  and values for 𝛕 and 𝛚 will be discussed in detail in Chapter 5.  

Due to the fact that 𝐆 must be inverted directly, the size of the dataset to which single-step 

genomic BLUP could be applied to is limited. To overcome this limitation and to expand the 

application of single-step genomic BLUP to millions of genotyped animals, the ancestor, 

proven and young bull algorithm (APY) has been introduced (e.g. Fragomeni et al., 2015). 

APY is a method based on genomic recursion (Misztal et al., 2014)), in which genomic 

breeding values of new genotyped animals (young) are conditioned on genomic breeding 

values of all previous genotyped animals (proven). The direct inversion is required for only a 

small proportion of 𝐆 composed of relationships among animals treated as “proven” 

comprising those animals with high accuracies and thus containing most genomic 

information. Further issues on APY will be discussed in Chapter 5. 

 

Nonlinear methods 

In animal breeding and for the prediction of genomic breeding values, other models such as 

Bayesian methods (often called the Bayesian alphabet) can be applied. Since nonlinear 

methods e.g. Bayesian methods are beyond the subject of this thesis, this short paragraph will 

just give a brief outline over a few approaches.  

Bayesian linear regression models can e.g. assume different priors (Gianola, 2013). In 

BayesA (Meuwissen et al., 2001) each SNP is assumed to be sampled from a distribution with 

a different variance. In BayesB a certain amount of SNPs is assumed to have no effect and the 

others have a SNP-specific variance (Meuwissen et al., 2001). In BayesR SNP effects are 
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supposed to be zero or to come from different normal distributions (Erbe et al., 2012). Further 

models from the Bayesian alphabet are BayesC or BayesDπ (Habier et al., 2011).  

 

Assessment of predictive ability 

The accuracy of estimated breeding values is an important parameter in livestock genetic 

improvement. It is used to calculate response to selection and to express the credibility of 

individual EBVs (Bijma, 2012). Empirical accuracy of prediction can be measured as the 

correlation between the true breeding values (A) and breeding values (𝐴̂) estimated from 

models: 𝜌 = 𝐶𝑜𝑟𝑟(𝐴, 𝐴̂)).  

The accuracy is an important parameter for two reasons. First, response to selection is 

proportional to accuracy (e.g. Falconer and Mackay, 1996). Further details can be found in the 

following chapter on the breeder’s equation.. Second, the accuracy reflects the credibility of 

an individual EBV and relates to the risk that this EBV will change over time when more 

information becomes available (Bijma, 2012). From this perspective, the accuracy is a 

measure of the standard error (SE) of prediction of an individual EBV (Henderson, 1975; 

Meyer, 1989). Accuracy of prediction (𝜌𝑖) is routinely available from genetic evaluations for 

each individual i can be calculated from the framework of BLUP, i.e. 

𝜌𝑖 = √1 −
𝑃𝐸𝑉𝑖

var(𝐴𝑖)
, 

where 𝑃𝐸𝑉𝑖 is the prediction error variance of the corresponding BV of the i
th

 individual 

(𝑣𝑎𝑟(𝐴 − 𝐴̂)), and can be obtained from the diagonal elements of the inverse of the 

coefficient matrix of MME, var(𝐴𝑖) is the genetic variance calculated from the corresponding 

genomic model (Tier and Meyer, 2004).  

Since the true breeding values are unknown, the correlation between phenotype (or pseudo-

observation/quasi-phenotype) and estimated breeding value will be calculated which is 

referred to as “predictive ability”. To assess the accuracy of prediction in (genomic) BLUP, 

there are two different approaches used in this thesis: (i) the accuracy of prediction obtained 

from the framework of mixed model equations as theoretical reliability of a breeding value for 

an individual (Henderson, 1975,), as described above, and (ii) from observed correlations 

from cross-validation approaches which became quite popular with the advent of genomic 

selection.  
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Several different cross-validation strategies can be used for calculating the predictive ability 

and different ways of splitting the data sets have been developed. In this thesis, k-fold cross-

validation and forward prediction (stratified cross-validation version, e.g. sorted by age) are 

used to assess the predictive ability for selection candidates. In this procedure, the whole data 

set is equally and randomly divided in k subsets. Through replication, each subset acts as the 

validation set once and guarantees that each observation is used for validation exactly one 

time. The validation set is consequently left out in the learning process. The number of 

iterations as well as the size of reference and validation sets depends on the chosen factors.  

A five-fold (k=5) cross-validation with 20 random replications is used. Animals are allocated 

to five folds completely at random, while in each run 80% of the animals (four folds) are used 

for calibration (reference population) of the model to predict DGVs of the remaining 20 % of 

the animals (validation population) so that each fold is used as the validation set once. To 

avoid sampling bias the whole cross-validation procedure is repeated 20 times.  

Forward prediction is used to mimic the real situation in animal breeding, where the youngest 

animals depicted the selection candidates as parents for the next generation. According to 

that, the data set is divided into a reference and a validation set by year of birth while older 

animals belong to the reference and younger animal to the validation population. Since only 

one such split is possible, the procedure cannot be replicated and thus does not provide any 

empirical standard errors. 

As a measure of predictive ability in both approaches, various correlations between the 

phenotypes (or quasi-phenotypes) and genomic breeding values (e.g. DGV, GEBV, ssGEBV) 

are calculated in the validation population in Chapter 2 and 3. For the five-fold cross-

validation, the predictive ability is calculated for each run and averaged over folds. 

In practical breeding, phenotypes or conventional breeding values are not available for the 

animals for which genomic breeding values should be predicted (selection candidates). For 

validation purpose, it is important to assess properties of models and to predict the potential 

accuracy of genomic prediction for those animals. Hence, cross-validation within the set of 

genotyped and phenotyped animals has become the procedure of choice. 
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Breeder’s equation 

Breeding means selecting the best male and female animals of a generation to produce 

progenies that are on average superior to the parents. The accuracy of prediction (𝜌) is a 

measure of the correlation between true (𝐴) and estimated (𝐴̂) breeding value which is 

important for the response to selection per year (∆𝐺) for a particular trait (Falconer and 

Mackay, 1996):  

∆𝐺 =
𝑖𝜌𝜎𝑎

𝐿
, 

where 𝑖 represents the intensity of selection in the population, 𝜌 the accuracy of selection, 𝜎𝑎 

the additive genetic standard deviation and 𝐿 the generation interval (age of parents at birth of 

progenies used for breeding). The equation provides information on how the mean value of a 

trait under selection will change from one year to the next, which is also referred to as 

“genetic trend”. The genetic trend in pig breeding is discussed more detailed in Chapter 5. 

 

Genomic selection in pig breeding  

Genomic selection was first applied in dairy cattle (VanRaden et al., 2009), where the main 

purpose is to improve performance of purebred animals. With the development of the 60k 

SNP array for Sus scrofa (Ramos et al., 2009), genomic information became available and can 

be used to augment classical (conventional) breeding value estimation by genomic breeding 

value estimation in pigs. Implementation of genomic selection in dairy cattle (e.g. Hayes et 

al., 2009a; Hayes et al., 2009b; VanRaden et al., 2009) has resulted in increased genetic gain, 

which has been demonstrated by genetic trend analysis in various countries (Meuwissen et al., 

2016). The implementation of genomic selection into pig breeding has not been implemented 

as consistently as in cattle breeding. Peculiarities like e.g. small nucleus sizes, diversity of 

breeding goals, pyramid system or small pig breeding organizations made genomic evaluation 

strategies not straightforward to implement in pigs (Ibáñez-Escriche et al., 2014). However, 

the potential of GS for pig breeding is known, e.g. advantages for complex traits with low 

heritability, increased accuracy of breeding values, availability of breeding values at an earlier 

point in time, reduction of test-matings and therefore cost savings in performance testing (e.g. 

Simianer, 2009). 



1
st
 CHAPTER GENERAL INTRODUCTION 27 

In recent years, studies on the potential of GS in pigs e.g. FrOGS
2
 for German Landrace or 

pigGS
3
 for German Large White and German Landrace (among others) have been conducted 

in Germany. Today, most international breeding companies e.g. PIC
4
, Topigs Norsvin

5
, 

DanBred
6
, Hypor

7
 and DanAvl

8
 have integrated GS into their breeding programs in order to 

achieve a higher genetic progress. This development is promoted by the reduction of costs for 

genotyping. However, due to the limited transparency of the activity of breeding companies it 

often remains unclear to what extent GS is used, e.g. with regard to the number of genotyped 

animals and selection candidates, respectively. 

In Germany and Switzerland, herdbook organizations have also started to implement GS into 

their breeding programs for some breeds and traits. For instance, the “Erzeugergemeinschaft 

und Züchtervereinigung für Zucht- und Hybridzuchtschweine”
9
 (EGZH) in Bavaria has 

developed a single-step procedure for Piétrain (sire line) and German Landrace (dam line) to 

routinely estimate genomic breeding values. Data from the station test (sire and dam line) is 

used for breeding value estimations. Additionally for dam lines (Landrace and Large White) 

and their crosses, data collected on practical piglet farms is also taken into account. German 

Genetic
10

 implements GS for Piétrain in a two-step procedure. First, selection candidates are 

genotyped using low density markers (n=384 SNPs) and in a second step, imputing 

procedures are used to increase the number of markers up to 60k SNPs to estimate genomic 

breeding values (Wellmann et al., 2013). SUISAG
11

 calculates based on high density SNP 

data, genomically enhanced breeding values for young, untested full sibs to select the best full 

sib for breeding purposes from a family. For sire lines, production performance is the most 

important breeding goal, for dam lines it is the reproduction performance.  

The most important selection step in pig breeding is the selection of elite boars in nucleus 

herds. The improvement of genetic gain on the nucleus herd has an important impact on the 

large commercial populations and can make GS economically feasible, given the large 

influence of elite animals (Simianer, 2009). In general, boar test recording occurs before 

                                                 
2
 http://www.lfl.bayern.de/mam/cms07/itz/dateien/schwein_genomische_selektion_endbericht_frogs.pdf 

3
 http://www.fbf-forschung.de/aktuelles/piggs-fbf-mitglieder-gemeinsam-auf-dem-weg-zur-g.html?highlight= 

piggs 
4
 http://de.pic.com/ 

5
 https://topigsnorsvin.de/ 

6
 https://danbred.com/de/ 

7
 https://www.hypor.com/de/ 

8
 http://www.danzucht.com/ 

9
 http://www.lfl.bayern.de/itz/schwein/023973/index.php 

10
 https://www.german-genetic.de/ 

11
 https://www.suisag.ch/ 
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selection of elite boars, so that extra gains due to a reduction of generation interval are 

limited, although 23% reduction in generation interval may be realized by introduction of GS 

(Meuwissen et al., 2016). However, compared to dairy cattle (generation interval of 6-8 

years), the generation interval is already relatively short (roughly 2 years). Implementation of 

GS in pig breeding is thus mainly focused on traits being invasive (e.g. slaughter quality) and 

which can neither be recorded on boars (e.g. maternal traits) nor on purebred animals (e.g. 

crossbred performance). Besides this, it is important to have a relationship between purebred 

production in very good environment and crossbred performance in harsher environment due 

to the fact that pork is produced by crossbred animals, whereas purebred animals (elite 

nucleus herd) are being selected (Meuwissen et al., 2016). Esfandyari et al. (2015) reported 

that in practice only 40-70% of the genetic improvement realized in the nucleus herd (e.g. pig 

grow 100g/day faster) will also result in improved crossbred performance (e.g. pig grow 40-

70g/day faster). In this situation, an advantage of the GS model can be the estimation of 

marker effects from data on the purebred and crossbred individual, which could help to 

improve the performance of purebred nucleus animals with respect to crossbred performance 

under commercial environment, respectively. Hence, optimal across breed/purebred genomic 

selection methods need to be developed (Meuwissen et al., 2016). 

 

Potentials for improving prediction accuracy in pig breeding 

Enlarging reference sets 

Especially for small breeds or populations, establishing a reference population with sufficient 

size to obtain a higher accuracy from genomic prediction than from a simple parental average 

might be difficult (Thomasen et al., 2012). In order to obtain more phenotypes for the 

prediction equation, pooling references populations for predictions can be a good strategy. 

Therefore, genomic predictions can be done in several ways: (i) within breed and population, 

(ii) within breed and multi-population, and (ii) across breeds or lines. 

In pig breeding it has been shown (e.g. Nielsen et al., 2010) that incorporating SNP 

information into BLUP evaluations lead to an increase in reliability of estimated breeding 

values for genotyped and non-genotyped animals. Several studies that have investigated the 

different genomic methods reported increases in observed reliability of prediction due to 

single-step compared to multi-step models e.g. in cattle (Koivula et al., 2012; Guarini et al., 

2018) or in pigs (Chapter 3). Single-step model may also account for pre-selection of young 
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genotyped animals to avoid bias in GEBV, for which multi-steps methods do not account for 

(Vitezica et al., 2011).  

One strategy of enlarging the reference population is the combination of different populations 

of a breed or different breeds. Due to possible differences between the populations there are at 

least three factors known that can influence the value of an individual from another 

population: differences in (i) LD pattern, (ii) allele frequencies of QTL and SNPs and (iii) 

level of family relationships. The mentioned factors will be discussed in detail in Chapter 5.  

In this thesis, Chapters 3 and 4 mainly deal with the estimation of breeding values within a 

breed and population. Chapter 3 focuses on multi-subpopulations within a breed, whereas 

chapter 4 compares different methods of genomic breeding value estimation. 

 

Expected potential of multi-subpopulation genomic prediction 

The potential of combining populations to enlarge reference sets is first examined with 

simulations. Most of those simulation studies (e.g. Ibánẽz-Escriche et al., 2009; de Roos et al., 

2009) showed that combining populations for genomic predictions led to an increase in 

prediction accuracy, especially when populations are separated only a few generations ago 

and have a reasonable SNP density to find consistency in LD pattern between QTL and SNP 

across populations. 

Most studies on real data for multi-subpopulations are conducted on large cattle populations 

(e.g. Hayes et al., 2009; Brøndum et al., 2011; Lund et al., 2011; Pryce et al., 2011; Harris et 

al., 2014) and started focusing on combining populations from the same breed across 

countries. In general, those studies show a higher accuracy of genomic prediction when 

populations across countries are combined in one reference population than within-country 

reference populations (e.g. VanRaden et al., 2012; Zhou et al., 2014a). 

In recent years evaluations on multi-populations started to increase in pig breeding. Hidalgo et 

al. (2015) investigated the use of across-breed reference populations (Landrace and 

Yorkshire) to increase the accuracy of genomic selection and reported limited gains in terms 

of accuracy. Boré et al. (2018) combined different Yorkshire (Landrace) reference 

populations from different countries in order to evaluate the feasibility of across-country 

reference populations for pig genomic selection and received promising results. Song et al. 

(2017) studied the efficiency of genomic prediction using an admixed reference population 
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comprising three Yorkshire populations with different genetic backgrounds and discovered 

that the prediction accuracy was slightly improved through enlarging the reference population 

by admixing different populations. The enlargement of the reference population within-breed 

by combining subpopulations from herdbook associations are evaluated in Chapter 2. 

 

Single-step 

Another possibility to increase the accuracy of prediction is the usage of different information 

sources in one step as applied e.g. in single-step genomic BLUP. Song et al. (2017) obtained 

23 to 31% higher accuracies from single-step genomic BLUP than from GBLUP (GEBVs) for 

reproduction traits in pigs. Improvements in accuracy of selection with the single-step method 

are also reported for pigs by Forni et al. (2011) and Christensen et al. (2012). Single-step 

genomic BLUP has been investigated in various livestock studies e.g. in cattle (e.g. Aguilar et 

al., 2010; Lourenco et al., 2015b) or broiler (e.g. Chen et al., 2011; Lourenco et al., 2015a) 

showing that single-step produces higher prediction accuracies than pedigree-based or multi-

step methods. Further aspects concerning the comparison of methods for genomic predictions 

are presented in Chapter 3 and further discussed in Chapter 5. 

 

Fertility traits 

Fertility is the ability to produce offspring. Pig breeding attempts to optimize fertility and to 

improve the selection of the best animals as parents for the next generation through the 

development of enhanced traits with reliable recording. The overall purpose is to achieve 

highest possible number of weaned piglets per sow and year over a long lifetime which is 

influenced by many different factors, e.g. weight gain, puberty age, first pregnancy, litter size, 

nursing period, number of born alive/weaned piglets, farrowing interval, successful pregnancy 

after insemination. In addition, these factors are influenced by the following environmental 

factors such as management (housing and feeding) and season and maternal effects 

(environment and genetics). Due to the fact that the return of the pig breeders results from the 

weaned piglets per sow and year, age at the first estrus, litter size at birth, survival rates of 

piglets after birth and intervals between litters are important, economic reproductive traits and 

are of special interest. 

Besides litter size (e.g. number of piglets born alive), which is a major component of the 

selection decision and the most important economic trait, other (alternative) traits such as 
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mothering ability or piglet survival are gaining importance for a sustainable pig production. 

The Nebraska selection experiments on litter size in pigs (Johnson et al., 1999) showed 

increases in number of ovulations, number total born, number live born and number of 

stillborn piglets, but not in the number of weaned piglets and thus piglet survival decreased. 

The genetic correlation of litter size with survival is negative in pigs (Knol, 2001). 

For accurate breeding value estimation, the combination of different maternal traits in the 

selection process and the optimization of breeding schemes and knowledge of genetic 

parameters of reproduction traits is necessary. In Table 1.1 heritability of some maternal 

(fertility) traits is represented. Evaluations of models for improving (alternative) maternal 

traits are conducted in Chapter 4. 

Tab. 1.1: Heritabilities for different fertility traits in dam lines 

Trait Heritability Reference 

Number of piglets born alive 0.05/0.06 (both Landrace) 

0.09 (Large White) 

0.10 (Yorkshire) 

0.08 (Landrace) 

Alfonso et al. (1997) 

Arango et al. (2005) 

Chen et al. (2003) 

Chen et al. (2003) 

 0.08/0.09 (Landrace) Hanenberg et al. (2001) 

Number of piglets stillborn 0.09 (Large White) Arango et al. (2005) 

 0.02/0.05 (both Landrace) Hanenberg et al. (2001) 

 0.03 Knol (2001) 

Number of piglets born total 0.06/0.07 (both Landrace) Alfonso et al. (1997) 

 0.09/0.01 (Landrace) Hanenberg et al. (2001) 

Number of piglets weaned 0.05 (Yorkshire) 

0.05 (Landrace) 

Chen et al. (2003) 

Chen et al. (2003) 

Piglet survival 0.05 (Dam line) Knol et al. (2002) 

Farrowing interval  0.04/0.05 (Dam lines) Knol et al. (2002) 

 0.01/0.03 (Landrace) Hanenberg et al. (2001) 

Mothering ability 0.02/0.03 (Landrace) Hanenberg et al. (2001) 
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Objectives of this thesis 

The general aim of animal breeding is to improve the performance of future generations by 

selecting the best animals of the current population. For many years, those animals were 

identified based on conventional estimated breeding values. At the beginning of this century, 

Meuwissen et al. (2001) proposed to use thousands of genome-wide markers simultaneously 

for the prediction of genomic estimated breeding values. The process of calculating genomic 

estimated breeding values, which are used for selection of the best candidates, is known as 

genomic prediction and widely used. The accuracy of genomic prediction depends on various 

factors, for instance, the strength of LD between SNP and QTL and the size of reference 

animals and the number of animals with known phenotype and genotype, respectively. 

The overall objective of this thesis is the evaluation of genomic predictions and the 

improvement of the prediction accuracy in a practical pig breeding data set through (i) 

enlarging reference populations or (ii) enhanced methods for genomic predictions. As 

described above, several conventional and genomic methods for predictions are investigated 

in this thesis: 

Chapter 2 studies if the use of multi-subpopulation reference sets for small pig populations is 

a suitable option to enlarge the reference size for predictions and to ascertain if multi-

subpopulation genomic prediction is superior compared to within-subpopulation prediction in 

pigs. 

Chapter 3 shows a comprehensive comparison of different methods for genomic predictions 

with regard to predictive abilities of single-step and multi-step methods for a lowly heritable 

trait with data from a practical pig breeding program. 

Chapter 4 presents results of a comprehensive evaluation of different conventional 

approaches with variable selection of components for estimating the variance components for 

different fertility traits in practical pig data. 

Chapter 5 provides a general discussion on factors affecting genomic selection and predictive 

accuracy, perspectives and critical issues of methods.   



1
st
 CHAPTER GENERAL INTRODUCTION 33 

REFERENCES 

Aguilar, I., I. Misztal, D. L. Johnson, A. Legarra, S. Tsuruta, and T. J. Lawlor. 2010. Hot 

topic: A unified approach to utilize phenotypic, full pedigree, and genomic 

information for genetic evaluation of Holstein final score. J. Dairy Sci. 93(2):743–

752. doi:10.3168/jds.2009-2730. 

Alfonso, L., J. L. Noguera, D. Babot, and J. Estany. 1997. Estimates of genetic parameters 

for litter size at different parities in pigs. Livest. Sci. 47(2):149–156. 

doi:10.1016/S0301-6226(96)01401-7. 

Arango, J., I. Misztal, S. Tsuruta, M. Culbertson, and W. Herring. 2005. Threshold-linear 

estimation of genetic parameters for farrowing mortality, litter size, and test 

performance of Large White sows. J. Anim. Sci. 83(3):499–506. 

doi:10.2527/2005.833499x. 

Bennewitz, J., C. Edel, R. Fries, T. H. E. Meuwissen, and R. Wellmann. 2017. Application 

of a Bayesian dominance model improves power in quantitative trait genome-wide 

association analysis. Genet. Sel. Evol. 49(1). doi:10.1186/s12711-017-0284-7. 

Bijma, P. 2012. Accuracies of estimated breeding values from ordinary genetic evaluations 

do not reflect the correlation between true and estimated breeding values in selected 

populations: Accuracy and selection. J. Anim. Breed. Genet. 129(5):345–358. 

doi:10.1111/j.1439-0388.2012.00991.x. 

Boré, R., L. F. Brito, M. Jafarikia, A. Bouquet, L. maignel, B. Sullivan, and F. S. Schenkel. 

2018. Genomic data reveals large similarities among Canadian and French maternal 

pig lines. Can. J. Anim. Sci. 98(4):809-817. doi:10.1139/CJAS-2017-0103. 

Brøndum, R. F., E. Rius-Vilarrasa, I. Strandén, G. Su, B. Guldbrandtsen, W. F. Fikse, and 

M. S. Lund. 2011. Reliabilities of genomic prediction using combined reference data 

of the Nordic Red dairy cattle populations. J. Dairy Sci. 94(9):4700–4707. 

doi:10.3168/jds.2010-3765. 

Brøndum, R. F., G. Su, L. Janss, G. Sahana, B. Guldbrandtsen, D. Boichard, and M. S. Lund. 

2015. Quantitative trait loci markers derived from whole genome sequence data 

increases the reliability of genomic prediction. J. Dairy Sci. 98(6):4107–4116. 

doi:10.3168/jds.2014-9005. 

Chen, C. Y., I. Misztal, I. Aguilar, A. Legarra, and W. M. Muir. 2011. Effect of different 

genomic relationship matrices on accuracy and scale. J. Anim. Sci. 89(9):2673–2679. 

doi:10.2527/jas.2010-3555. 

Chen, P., T. J. Baas, J. W. Mabry, K. J. Koehler, and J. C. M. Dekkers. 2003. Genetic 

parameters and trends for litter traits in US Yorkshire, Duroc, Hampshire, and 

Landrace pigs. J. Anim. Sci. 81(1):46–53. doi:10.2527/2003.81146x. 

Christensen, O. F. 2012. Compatibility of pedigree-based and marker-based relationship 

matrices for single-step genetic evaluation. Genet. Sel. Evol. 44(1):37. 

doi:10.1186/1297-9686-44-37. 

Christensen, O. F., and M. S. Lund. 2010. Genomic prediction when some animals are not 

genotyped. Genet. Sel. Evol. 42(2):1–8. doi:10.1186/1297-9686-42-2. 

Christensen, O. F., P. Madsen, B. Nielsen, T. Ostersen, and G. Su. 2012. Single-step 

methods for genomic evaluation in pigs. animal. 6(10):1565–1571. 

doi:10.1017/S1751731112000742. 



1
st
 CHAPTER GENERAL INTRODUCTION 34 

Dickerson, G. E. 1952. Inbred lines for heterosis tests? Chapter 21 of Heterosis, Iowa State 

University, Ames, Iowa (USA). 

Dickerson, G. E. 1974. Evaluation and utilization of breed differences. In: Proceedings of 

the working symposium on breed evaluation and crossing with farm animals. Zeist, 

Germany. 

Erbe, M., B. J. Hayes, L. K. Matukumalli, S. Goswami, P. J. Bowman, C. M. Reich, B. A. 

Mason, and M. E. Goddard. 2012. Improving accuracy of genomic predictions within 

and between dairy cattle breeds with imputed high-density single nucleotide 

polymorphism panels. J. Dairy Sci. 95(7):4114–4129. doi:10.3168/jds.2011-5019. 

Esfandyari, H., A. C. Sørensen, and P. Bijma. 2015. A crossbred reference population can 

improve the response to genomic selection for crossbred performance. Genet. Sel. 

Evol. 47(1):76. doi:10.1186/s12711-015-0155-z. 

Falconer, D. S., and T. F. C. Mackay. 1996. Introduction to Quantitative Genetics. 4th 

edition, Longman, Burnt Mill, Harlow, UK. 

Fernando, R. L., and M. Grossman. 1989. Marker assisted selection using best linear 

unbiased prediction. Genet. Sel. Evol. 21(4):467. doi:10.1186/1297-9686-21-4-467. 

Forni, S., I. Aguilar, and I. Misztal. 2011. Different genomic relationship matrices for single-

step analysis using phenotypic, pedigree and genomic information. GSE. 43(1). 

doi:10.1186/1297-9686-43-1. 

Fragomeni, B. O., D. A. L. Lourenco, S. Tsuruta, Y. Masuda, I. Aguilar, A. Legarra, T. J. 

Lawlor, and I. Misztal. 2015. Hot topic: Use of genomic recursions in single-step 

genomic best linear unbiased predictor (BLUP) with a large number of genotypes. J. 

Dairy Sci. 98(6):4090–4094. doi:10.3168/jds.2014-9125. 

Garcia-Baccino, C. A., A. Legarra, O. F. Christensen, I. Misztal, I. Pocrnic, Z. G. Vitezica, 

and R. J. C. Cantet. 2017. Metafounders are related to Fst fixation indices and reduce 

bias in single-step genomic evaluations. Genet. Sel. Evol. 49(1):34. 

doi:10.1186/s12711-017-0309-2. 

Garrick, D. J., J. F. Taylor, and R. L. Fernando. 2009. Deregressing estimated breeding 

values and weighting information for genomic regression analyses. Genet. Sel. Evol. 

41(1):55. doi:10.1186/1297-9686-41-55. 

Gengler, N., P. Mayeres, and M. Szydlowski. 2007. A simple method to approximate gene 

content in large pedigree populations: application to the myostatin gene in dual-

purpose Belgian Blue cattle. animal. 1(1):21. doi:10.1017/S1751731107392628. 

Gianola, D. 2013. Priors in Whole-Genome Regression: The Bayesian Alphabet Returns. 

Genetics. 194(3):573–596. doi:10.1534/genetics.113.151753. 

Goddard, M. 2009. Genomic selection: prediction of accuracy and maximisation of long 

term response. Genetica. 136(2):245–257. doi:10.1007/s10709-008-9308-0. 

Goddard, M. E., and B. J. Hayes. 2007. Genomic selection. J. Anim. Breed. Genet. 

124(6):323–330. doi:10.1111/j.1439-0388.2007.00702.x. 

Goddard, M., and B. J. Hayes. 2009. Mapping genes for complex traits in domestic animals 

and their use in breeding programmes. Nat. Rev. Genet. 10(6):381–391. 

doi:10.1038/nrg2575. 



1
st
 CHAPTER GENERAL INTRODUCTION 35 

Gorjanc, G., M. A. Cleveland, R. D. Houston, and J. M. Hickey. 2015. Potential of 

genotyping-by-sequencing for genomic selection in livestock populations. Genet. Sel. 

Evol. 47(1):12. doi:10.1186/s12711-015-0102-z. 

Guarini, A. R., D. A. L. Lourenco, L. F. Brito, M. Sargolzaei, C. F. Baes, F. Miglior, I. 

Misztal, and F. S. Schenkel. 2018. Comparison of genomic predictions for lowly 

heritable traits using multi-step and single-step genomic best linear unbiased 

predictor in Holstein cattle. J. Dairy Sci. 101(9):8076-8086. doi:10.3168/jds.2017-

14193. 

Habier, D., R. L. Fernando, K. Kizilkaya, and D. J. Garrick. 2011. Extension of the bayesian 

alphabet for genomic selection. BMC Bioinformatics. 12:186. doi:10.1186/1471-

2105-12-186. 

Hanenberg, E., E. F. Knol, and J. W. M. Merks. 2001. Estimates of genetic parameters for 

reproduction traits at different parities in Dutch Landrace pigs. Livest. Prod. Sci. 

69(2):179–186. doi:10.1016/S0301-6226(00)00258-X. 

Harris, B. L., A. M. Winkelman, and D. E. Johnson. 2014. Across-breed genomic prediction 

in dairy cattle. In: Proceedings of the 9th World Congress on Genetics Applied to 

Livestock Production, Vancouver, Canada. 

Hayes, B. E. N., and M. E. Goddard. 2001. The distribution of the effects of genes affecting 

quantitative traits in livestock. Genet. Sel. Evol. 33(3):209. doi:0.1186/1297-9686-

33-3-209. 

Hayes, B. J., P. J. Bowman, A. C. Chamberlain, K. Verbyla, and M. E. Goddard. 2009. 

Accuracy of genomic breeding values in multi-breed dairy cattle populations. Genet. 

Sel. Evol. 41(1):51. doi:10.1186/1297-9686-41-51. 

Hayes, B. J., P. J. Bowman, A. J. Chamberlain, and M. E. Goddard. 2009. Invited review: 

Genomic selection in dairy cattle: Progress and challenges. J. Dairy Sci. 92(2):433–

443. doi:10.3168/jds.2008-1646. 

Hayes, B. J., P. M. Visscher, and M. E. Goddard. 2009. Increased accuracy of artificial 

selection by using the realized relationship matrix. Genet. Res. 91(1):47. 

doi:10.1017/S0016672308009981. 

Hazel, L. N. 1943. The Genetic Basis for Constructing Selection Indexes. Genetics. 

28(6):476–490.  

Henderson, C. R. 1975. Best linear unbiased estimation and prediction under a selection 

model. Biometrics. 31:423–447. doi: 10.2307/2529430. 

Hidalgo, A. M., J. W. M. Bastiaansen, M. S. Lopes, B. Harlizius, M. A. M. Groenen, and D. 

J. de Koning. 2015. Accuracy of Predicted Genomic Breeding Values in Purebred 

and Crossbred Pigs. G3: Genes, Genomes, Genetics 5(8):1575–1583. 

doi:10.1534/g3.115.018119. 

Ibánẽz-Escriche, N., R. L. Fernando, A. Toosi, and J. C. Dekkers. 2009. Genomic selection 

of purebreds for crossbred performance. Genet. Sel. Evol. 41(1):12. 

doi:10.1186/1297-9686-41-12. 

Ibáñez-Escriche, N., S. Forni, J. L. Noguera, and L. Varona. 2014. Genomic information in 

pig breeding: Science meets industry needs. Livest. Sci. 166:94–100. 

doi:10.1016/j.livsci.2014.05.020. 



1
st
 CHAPTER GENERAL INTRODUCTION 36 

Johnson, R. K., M. K. Nielsen, and D. S. Casey. 1999. Responses in ovulation rate, 

embryonal survival, and litter traits in swine to 14 generations of selection to increase 

litter size. J. Anim. Sci. 77(3):541–557. doi:10.2527/1999.773541x. 

Knol, E. F. 2001. Genetic aspects of piglet survival. Doctoral thesis, Institute for Pig 

Genetics and Animal Breeding and Genetics Group, Wageningen University, 

Wageningen, The Netherlands. 

Knol, E. F., B. J. Ducroa, J. A. M. van Arendonka, and T. J. van der Lendea. 2002. Direct, 

maternal and nurse sow genetic effects on farrowing-, pre-weaning- and total piglet 

survival. Livest. Prod. Sci. 73(2–3):153–164. doi:10.1016/S0301-6226(01)00248-2. 

Knol, E. F., B. Nielsen, and P. W. Knap. 2016. Genomic selection in commercial pig 

breeding. Anim. Front. 6(1):15. doi:10.2527/af.2016-0003. 

Koivula, M., I. Strandén, J. Pösö, G. P. Aamand, and E. A. Mäntysaari. 2015. Single-step 

genomic evaluation using multitrait random regression model and test-day data. J. 

Dairy Sci. 98(4):2775–2784. doi:10.3168/jds.2014-8975. 

Koivula, M., I. Strandén, G. Su, and E. A. Mäntysaari. 2012. Different methods to calculate 

genomic predictions—Comparisons of BLUP at the single nucleotide polymorphism 

level (SNP-BLUP), BLUP at the individual level (G-BLUP), and the one-step 

approach (H-BLUP). J. Dairy Sci. 95(7):4065–4073. doi:10.3168/jds.2011-4874. 

Legarra, A., I. Aguilar, and I. Misztal. 2009. A relationship matrix including full pedigree 

and genomic information. J. Dairy Sci. 92(9):4656–4663. doi:10.3168/jds.2009-2061. 

Legarra, A., O. F. Christensen, Z. G. Vitezica, I. Aguilar, and I. Misztal. 2015. Ancestral 

Relationships Using Metafounders: Finite Ancestral Populations and Across 

Population Relationships. Genetics. 200(2):455–468. 

doi:10.1534/genetics.115.177014. 

Lourenco, D. A. L., B. O. Fragomeni, S. Tsuruta, I. Aguilar, B. Zumbach, R. J. Hawken, A. 

Legarra, and I. Misztal. 2015a. Accuracy of estimated breeding values with genomic 

information on males, females, or both: an example on broiler chicken. Genet. Sel. 

Evol. 47(1):56. doi:10.1186/s12711-015-0137-1. 

Lourenco, D. A. L., S. Tsuruta, B. O. Fragomeni, Y. Masuda, I. Aguilar, A. Legarra, J. K. 

Bertrand, T. S. Amen, L. Wang, D. W. Moser, and others. 2015b. Genetic evaluation 

using single-step genomic best linear unbiased predictor in American Angus. J. 

Anim. Sci. 93(6):2653–2662. doi:10.2527/jas.2014-8836. 

Lund, M. S., A. P. de Roos, A. G. de Vries, T. Druet, V. Ducrocq, S. Fritz, F. Guillaume, B. 

Guldbrandtsen, Z. Liu, R. Reents, and others. 2011. A common reference population 

from four European Holstein populations increases reliability of genomic predictions. 

Genet. Sel. Evol. 43(1):43. doi:10.1186/1297-9686-43-43. 

Martini, J. W. R., M. F. Schrauf, C. A. Garcia-Baccino, E. C. G. Pimentel, S. Munilla, A. 

Rogberg-Muñoz, R. J. C. Cantet, C. Reimer, N. Gao, V. Wimmer, and H. Simianer. 

2018. The effect of the H−1 scaling factors τ and ω on the structure of H in the 

single-step procedure. Genet. Sel. Evol. 50(1):16. doi:10.1186/s12711-018-0386-x. 

Meuwissen, T. H. E. 2009. Accuracy of breeding values of “unrelated” individuals predicted 

by dense SNP genotyping. Genet. Sel. Evol. 41(1):35. doi:10.1186/1297-9686-41-35. 

Meuwissen, T., B. Hayes, and M. Goddard. 2016. Genomic selection: A paradigm shift in 

animal breeding. Anim. Front. 6(1):6–14. doi:10.2527/af.2016-0002. 



1
st
 CHAPTER GENERAL INTRODUCTION 37 

Meuwissen, T., B. J. Hayes, and M. E. Goddard. 2001. Prediction of total genetic value 

using genome-wide dense marker maps. Genetics. 157(4):1819–1829. 

Meyer, K. 1989. Approximate accuracy of genetic evaluation under an animal-model. 

Livest. Prod. Sci. 21:87–100. doi:10.1016/0301-6226(89)90041-9. 

Misztal, I., S. E. Aggrey, and W. M. Muir. 2013. Experiences with a single-step genome 

evaluation1. Poult. Sci. 92(9):2530–2534. doi:10.3382/ps.2012-02739. 

Misztal, I., I. Aguilar, A. Legarra, and T. J. Lawlor. 2010. Choice of parameters for single-

step genomic evaluation for type. J. Dairy Sci. 93 (Suppl. 1) (2010), p. 533(Abstr.) 

Misztal, I., A. Legarra, and I. Aguilar. 2014. Using recursion to compute the inverse of the 

genomic relationship matrix. J. Dairy Sci. 97(6):3943–3952. doi:10.3168/jds.2013-

7752. 

Misztal, I., S. Tsuruta, T. Strabel, B. Auvray, T. Druet, D. H. Lee, and others. 2002. 

BLUPF90 and related programs (BGF90). In: Proceedings of the 7th world congress 

on genetics applied to livestock production. Montpellier, France. 

Mrode, R. A. 2013. Linear Models for Prediction of Animal Breeding Values. 3rd Edition. 

CAB International, UK. 

Nielsen, B., T. Ostersen, G. Su, O. F. Christensen, and M. Henryon. 2010. Use of genomic 

SNP information in pig breeding. In: Proceedings of the 9th World Congress on 

Genetics Applied to Livestock Production. Vancouver, Canada. 

Pryce, J. E., B. Gredler, S. Bolormaa, P. J. Bowman, C. Egger-Danner, C. Fuerst, R. 

Emmerling, J. Sölkner, M. E. Goddard, and B. J. Hayes. 2011. Short communication: 

Genomic selection using a multi-breed, across-country reference population. J. Dairy 

Sci. 94(5):2625–2630. doi:10.3168/jds.2010-3719. 

Ramos, A. M., R. P. M. A. Crooijmans, N. A. Affara, A. J. Amaral, A. L. Archibald, J. E. 

Beever, C. Bendixen, C. Churcher, R. Clark, P. Dehais, M. S. Hansen, J. Hedegaard, 

Z.-L. Hu, H. H. Kerstens, A. S. Law, H.-J. Megens, D. Milan, D. J. Nonneman, G. A. 

Rohrer, M. F. Rothschild, T. P. L. Smith, R. D. Schnabel, C. P. V. Tassell, J. F. 

Taylor, R. T. Wiedmann, L. B. Schook, and M. A. M. Groenen. 2009. Design of a 

High Density SNP Genotyping Assay in the Pig Using SNPs Identified and 

Characterized by Next Generation Sequencing Technology. PLOS ONE. 4(8):e6524. 

doi:10.1371/journal.pone.0006524. 

de Roos, A. P. W., B. J. Hayes, and M. E. Goddard. 2009. Reliability of Genomic 

Predictions Across Multiple Populations. Genetics. 183(4):1545–1553. 

doi:10.1534/genetics.109.104935. 

Simianer, H. 2009. The potential of genomic selection to improve litter size in pig breeding 

programs. In: Proceedings 60th Annual meeting of the European Association of 

Animal Production, Barcelona, Spain.  

Song, H., J. Zhang, Y. Jiang, H. Gao, S. Tang, S. Mi, F. Yu, Q. Meng, W. Xiao, Q. Zhang, 

and X. Ding. 2017. Genomic prediction for growth and reproduction traits in pig 

using an admixed reference population. J. Anim. Sci. 95(8):3415–3424. 

doi:10.2527/jas.2017.1656. 

Thomasen, J. R., B. Guldbrandtsen, G. Su, R. F. Brøndum, and M. S. Lund. 2012. 

Reliabilities of genomic estimated breeding values in Danish Jersey. animal. 

6(5):789–796. doi:10.1017/S1751731111002035. 



1
st
 CHAPTER GENERAL INTRODUCTION 38 

Tier, B., and K. Meyer. 2004. Approximating prediction error covariances among additive 

genetic effects within animals in multiple-trait and random regression models. J. 

Anim. Breed. Genet. 121(2):77–89. doi:10.1111/j.1439-0388.2003.00444.x. 

Tsuruta, S., I. Misztal, I. Aguilar, and T. J. Lawlor. 2011. Multiple-trait genomic evaluation 

of linear type traits using genomic and phenotypic data in US Holsteins. J. Dairy Sci. 

94(8):4198–4204. doi:10.3168/jds.2011-4256. 

VanRaden, P. M. 2007. Genomic measures of relationship and inbreeding. Interbull Bull. 

No. 37:33. 

VanRaden, P. M. 2008. Efficient Methods to Compute Genomic Predictions. J. Dairy Sci. 

91(11):4414–4423. doi:10.3168/jds.2007-0980. 

VanRaden, P. M., K. M. Olson, D. J. Null, M. Sargolzaei, M. Winters, and J. B. van Kaam. 

2012. Reliability increases from combining 50,000-and 777,000-marker genotypes 

from four countries. Interbull Bull. No. 46. 

VanRaden, P. M., C. P. Van Tassell, G. R. Wiggans, T. S. Sonstegard, R. D. Schnabel, J. F. 

Taylor, and F. S. Schenkel. 2009. Invited Review: Reliability of genomic predictions 

for North American Holstein bulls. J. Dairy Sci. 92(1):16–24. doi:10.3168/jds.2008-

1514. 

Vitezica, Z. G., I. Aguilar, I. Misztal, and A. Legarra. 2011. Bias in genomic predictions for 

populations under selection. Genet. Res. 93(5):357–366. 

doi:10.1017/S001667231100022X. 

Weller, J. I. 2016. Genomic Selection in Animals Genomic Selection in Animals. John 

Wiley & Sons, Inc. 

Willam, A., and H. Simianer. 2017. Tierzucht. 2nd Edition, Eugen Ulmer, Stuttgart. 

Wright, S. 1922. Coefficients of inbreeding and relationship. Am. Nat. 56(645):330–338.  

Zhou, L., B. Heringstad, G. Su, B. Guldbrandtsen, T. H. E. Meuwissen, M. Svendsen, H. 

Grove, U. S. Nielsen, and M. S. Lund. 2014a. Genomic predictions based on a joint 

reference population for the Nordic Red cattle breeds. J. Dairy Sci. 97(7):4485–4496. 

doi:10.3168/jds.2013-7580. 

Zhou, L., M. S. Lund, Y. Wang, and G. Su. 2014b. Genomic predictions across Nordic 

Holstein and Nordic Red using the genomic best linear unbiased prediction model 

with different genomic relationship matrices. J. Anim. Breed. Genet. 131(4):249–

257. doi:10.1111/jbg.12089. 

 

 

 

 

  



 

 

 

2
nd

 CHAPTER 

 

 

Can multi-subpopulation reference sets improve the genomic predictive ability for pigs? 

 

A. Fangmann*, S. Bergfelder-Drüing†, E. Tholen†, H. Simianer*, M. Erbe*‡ 

 

* Department of Animal Sciences, Animal Breeding and Genetics Group, Georg-August-

University of Goettingen, 37075 Goettingen, Germany 

† Institute of Animal Science, Group of Animal Breeding and Husbandry, University of 

Bonn, 53113 Bonn, Germany 

‡ Institute for Animal Breeding, Bavarian State Research Centre for Agriculture, 85586 

Poing-Grub, Germany 

 

 

 

 

 

 

 

Published in Journal of Animal Science 

Vol. 93, No. 12, p. 5618-5630, November 2015 

© 2015 American Society of Animal Science. All rights reserved. 

doi: 10.2527/jas.2015-9508 

 



2
nd

 CHAPTER MULTI-SUBPOPULATIONS REFERENCE SETS 40 

ABSTRACT 

In most countries and for most livestock species, genomic evaluations are obtained from 

within-breed analyses. To achieve reliable breeding values, however, a sufficient reference 

sample size is essential. To increase this size, the use of multi-breed reference populations for 

small populations is considered as a suitable option in other species. Over decades the 

separate breeding work of different pig breeding organizations in Germany has led to 

stratified subpopulations in the breed German Large White. Due to this fact and the limited 

number of Large White animals available in each organization, there was a pressing need for 

ascertaining if multi-subpopulation genomic prediction is superior compared to within-

subpopulation prediction in pigs. Direct genomic breeding values (DGVs) were estimated 

with GBLUP for the trait ‘number of piglets born alive’ using genotype data (Illumina 

Porcine 60K SNP BeadChip) from 2,053 German Large White animals from five different 

commercial pig breeding companies. To assess the prediction accuracy of within- and multi-

subpopulation reference sets, a random five-fold cross validation with 20 replications was 

performed. The five subpopulations considered were only slightly differentiated from each 

other. However, the prediction accuracy of the multi-subpopulations approach was not better 

than that of the within-subpopulation evaluation, for which the predictive ability was already 

high. Reference sets composed of closely related multi-subpopulation sets performed better 

than sets of distantly related subpopulations but not better than the within-subpopulation 

approach. Despite the low differentiation of the five subpopulations the genetic connectedness 

between these different subpopulations seems to be too small to improve the prediction 

accuracy by applying multi-subpopulation reference sets. Consequently, resources should be 

used for enlarging the reference population within subpopulation, e.g. by adding genotyped 

females. 

 

Key words: genomic selection, multi-subpopulation, pig, predictive ability 
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INTRODUCTION 

With genomic prediction an individual breeding value can be predicted from genomic 

markers, using a prediction equation derived in a reference population with known phenotypic 

and genomic information. To achieve reliable breeding values, a reference sample of 

reasonable size is essential. If not enough reference individuals are available within a specific 

breed, one possible way to overcome this problem is to train the model in a breed with a large 

reference population and use the estimated marker effects to predict genomic breeding values 

in other breeds (Harris et al., 2008; Hayes et al., 2009). A more promising solution is 

combining different breeds within one species to a large reference population, a so called 

multi-breed reference, which might capture most of the genetic variants segregating within 

and across breeds (Hayes et al., 2009; Pryce et al., 2011) when estimating the marker effects. 

In pig breeding, different breeding organizations generally have closed breeding populations 

of limited size which are only loosely genetically linked. In this study we will use the general 

idea of combining different groups of animals to form a reference population when a specific 

group lacks reference individuals. However, the considered structure is not multi-breed, but 

multi-subpopulation within a breed, which has not been studied extensively in the literature so 

far. Differing breeding programs of various pig breeding organizations in Germany, Austria 

and Switzerland have led to stratified subpopulations in the breed German Large White. Due 

to this fact and the limited number of animals available in each organization, the following 

research objectives will be addressed: 1. Assessment of prediction ability of genomic 

breeding values when using single- and multi-subpopulation reference sets within a breed. 2. 

Comparison of different genomic relationship matrices, partly accounting for subpopulation 

structure, to assess their usefulness for multi-subpopulation approaches. 

 

MATERIALS AND METHODS 

Data 

Conventional breeding values and genotypes were available from boars and sows of the breed 

German Large White from five commercial pig breeding organizations from Germany, 

Austria and Switzerland (also termed subpopulations in the following). The selection of 

genotyping was done separately by each commercial breeding organization. The trait under 

consideration was ‘number of piglets born alive’ (NBA), for which a conventional estimated 

breeding value (EBV) with the corresponding reliability was available for each individual. 
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Since our study is based on real data provided by different commercial pig organizations and 

no pedigree links between individuals of different organizations exist, we did not run 

combined conventional breeding value estimation with individuals of all organizations. 

Organization 2, 3 and 5 only provided EBVs with corresponding reliabilities for genotyped 

animals, but no information about raw phenotypes or corresponding parents. For organization 

1 and 4, raw phenotypes were available and for genotyped animals EBVs were calculated 

with a repeatability BLUP-model. The corresponding reliabilities were computed with the 

software package WOMBAT (Meyer, 2007). Organization 3 and 5 also used a repeatability 

BLUP-model to calculate EBVs, whereas the corresponding reliabilities were approximated 

using the method of Tier and Meyer (2004) in organization 3 and using the method of Graser 

and Tier (1997) in organization 5, respectively. Organization 2 calculated EBVs using a 

multiple-trait BLUP-model and reliabilities were approximated using the method of Misztal 

and Wiggans (1988). 

In total, 2,365 animals were genotyped with the Illumina Porcine 60K SNP BeadChip 

(Illumina, Inc., San Diego, CA). Based on a principal component analysis (PCA) calculated 

on genomic data, 168 animals were removed from the data set due to incorrect labeling of 

those animals in a first quality step. Markers with unknown positions (7,381) or not called in 

all animals (781) and monomorphic markers (2,896) were also removed from the data set.  

Quality control was performed simultaneously for all individuals of all subpopulations using 

the software PLINK (Purcell et al., 2007). Quality control involved excluding SNPs based on 

call rate (< 97%) and frequency of occurrence of the minor allele, which should be observed 

at least ten times in order to exclude genotyping errors. Accordingly, 2’862 SNPs were 

removed from the data set. After quality control, 46’064 SNPs on 18 autosomes remained. 

Individuals with low call rate (< 98%) were removed as well, leaving a data set of 2,053 

individuals from 5 subpopulations for further analyses (see Table 2.1 for details). Since no 

major imputing differences occurred across all subpopulations compared to results within 

subpopulation, missing genotypes of the remaining animals were imputed chromosome-wise 

across all subpopulations using BEAGLE (Browning and Browning, 2007). 
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Table 2.1. Total number of animals and number of animals in reference and validation sets 

for the forward prediction. The reference set for each subpopulation compromised animals 

with a year of birth before 2010 and the validation set contained animals born in 2010 and 

2011, which represented the youngest animals in the data set. 

Subpopulation 
Total number 

of animals 
Born between 

Reference set 

Born before 

2010 

Validation set 

Born in 

2010/2011 

1 187 2002 – 2011 100 87 

2 140 1997 – 2011 122 18 

3 155 2001 – 2011 120 35 

4 821 1993 – 2011 564 257 

5 540 2002 – 2011 295 245 

 

GBLUP model 

EBVs for the trait NBA were used as quasi-phenotypes in the analyses. It was also tested how 

the usage of deregressed proofs (DRPs) (Garrick et al., 2009) instead of EBVs affected the 

predictive ability of the DGVs. The estimation of DGVs was performed using a GBLUP 

animal model and variance components were estimated using the software ASReml (Gilmour 

et al., 2009). The following model was used: 

y = Xb + Wg + e (1) 

where y was the vector of EBVs or DRPs for NBA, X was a design matrix of fixed effects, b 

was a vector containing the fixed effects. In case of within-subpopulation scenarios, the only 

fixed effect was an overall mean, while a general mean and a fixed effect for subpopulation 

was modelled for the multi-subpopulation scenarios. W was a design matrix for the random 

genomic effects, g was a vector of random genomic effects (DGV) and e was a vector of 

random residual effects. It was assumed that g ~ N(0, 𝑮𝒙𝜎𝑔
2), where 𝑮𝒙 was a genomic 

relationship matrix, where x defined the used G-matrix according to the different approaches 

and 𝜎𝑔
2 was the corresponding additive-genetic variance. As one option, the G-matrix 

suggested by VanRaden (2007) was used (x = VR), with 𝑮𝑽𝑹 calculated as 

𝑮𝑽𝑹 =  
(𝐌 − 𝐏)(𝐌 − 𝐏)′

2 ∑ πk (1 − πk)𝑛
𝑘=1

 (2) 

where M was the marker genotype matrix with genotypes coded 0, 1 and 2, P contained two 

times the allele frequencies πk of the second allele at each locus k such that all entries of 

column k of P were 2πk and n was the total number of markers. 
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When EBVs were used as quasi-phenotypes, it was assumed that e ~ N(0, Iσe
2), with I being 

an identity matrix and σe
2 being the residual variance. The calculation of the DRPs (including 

the removal of the parent average effect (PA) for subpopulation 1 and 4) was performed as 

described by Garrick et al. (2009) in which the residual variance received the weight: 

diag(𝐑) =

h2(
1 − ri

2∗

ri
2∗ + c)

1 −  h2
 

(3) 

so that it was assumed that e ~ N(0, Rσe
2). The reliability of the DRPs for each individual i 

(ri
2∗) was recalculated as described by Garrick et al. (2009). The heritability (h

2
) corresponded 

to estimates used in the conventional breeding value estimation. To assess the constant 

c = 1 −
σg

2

σg
2+ σr

2 we ran some preliminary analyses with ASReml (Gilmour et al., 2009) using 

the genomic relationship matrix (VanRaden, 2007) and EBV as quasi-phenotype to obtain 

estimates of the genetic variance explained by markers (σg
2) and the residual variance (σr

2) 

(i.e. genetic variance not explained by markers). Based on these results we obtained c = 0.12, 

which we used in the further analyses. 

Another genomic relationship matrix was calculated based on VanRaden (2007), but using 

allele frequencies from the base generation of the respective subpopulation following Gengler 

et al. (2007) rather than actual frequencies in the whole sample. For scaling of the 𝐆𝐆-matrix 

(Gengler et al., 2007), the so-called base allele frequencies of the founder animals were 

calculated for all markers within the subpopulation. For the calculation, 276 founder animals 

for subpopulation 1 born before 1991 and 809 founder animals for subpopulation 4 born 

between 1976 and 1985, respectively, were used. Since no year of birth was available for the 

other three subpopulations, we decided to take the individuals with unknown parents and their 

direct offspring as base animals. To calculate the respective base allele frequency, we used 

515, 490, and 407 founder animals for subpopulation 2, 3, and 5, respectively. 𝐆𝐆 was 

calculated analogously to equation (2) but with P containing base allele frequencies different 

in each subpopulation rather than actual frequencies, whereas 2 ∑ πk(1 − πk)n
k=1   was 

calculated with πk being the average frequency over all subpopulations considered. 

 

G-matrices weighted by marker effects and LD phase consistencies (𝐆𝐙) 

In addition, another genomic relationship matrix, termed 𝐆𝐙 in the following, was calculated 

according to Zhou et al. (2014). Within and between subpopulation blocks of 𝐆𝐙 were 
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calculated differently based on marker effects and LD phase consistencies to weight G. 𝐆𝐙 

can only be calculated for a maximum of two stratified groups (Zhou et al., 2014). For the 

within-subpopulation blocks (termed 𝐆𝐙𝐰_𝐢), the following formula was used: 

𝐆𝐙𝐰_𝐢 =  
∑  wik 𝐌𝐢𝐰

n
k=1 𝐌𝐢𝐰

′

∑ 2πik (1 − πik)n
k=1

 (4) 

where i refers to the subpopulation (i=1,2), 𝐌𝐢𝐰was the marker genotype matrix with 0 – 

2πik, 1 – 2πik, and 2 – 2πik, respectively, and πik was the observed allele frequency at locus k 

in subpopulation i. For within-subpopulation blocks, the weight wik was calculated as 

wik =  αik
′2, where αik

′ =  ±√αik
2 / α2 was the scaled marker effect for marker k for the trait 

within subpopulation i and the sign was assigned according to the original sign of the marker 

effect αik (Zhou et al., 2014). The marker effects were extracted from the GBLUP solutions 

of the reference population in the respective run. 

For between-subpopulation blocks, the weights were calculated as wk12 = corLD |α1,k
′ α2,k

′ |, 

where corLDdescribes the LD phase consistency and α1,k
′ and α2,k

′  were scaled marker effects 

of marker k on the trait of subpopulation 1 and subpopulation 2, respectively. For the 

calculation of the phase consistency SNPs were pooled in intervals of 12 markers and the 

correlation corLD was calculated for each interval (Zhou et al., 2014). To calculate between 

subpopulations blocks (𝐆𝐙𝐛), the following formula was used:  

𝐆𝐙𝐛 =  
∑ 𝐌𝐛

n
k=1 𝐌𝐛

′ wk12 

2√∑ π1,k (1 − π1,k)n
k=1 ∑ π2,k (1 − π2,k)n

k=1

 (5) 

where 𝐌𝐛 was the marker genotype matrix connecting individuals from subpopulations 1 and 

2.  

 

Assessment of prediction accuracy with five-fold-cross validation 

Based on the results of a PCA and calculated FST values (Wright, 1943) between 

subpopulations, different subpopulations were combined to investigate the effect of a multi-

subpopulation reference population on the predictive ability of DGVs. Here, closely and 

distantly related subpopulations, respectively, were combined to form several reference 

populations. For details see Table 2.2. 
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Table 2.2. Close and distant reference populations for subpopulation 1 and 4.  

Subpopulation Close reference populations Distant reference populations 

1 1 + 2 1 + 4 + 5 

1 1 + 3 1 + 2 + 3 + 5 

1 1 + 2 + 3 all 

1 1 + 2 + 4 - 

4 4 + 2 4 + 5 

4 4 + 2 + 1 4 + 5 + 1 

4 - all 

 

To test the predictability of within- and multi-subpopulation reference sets, a random five-

fold cross validation was performed. In the within-subpopulation scenarios, animals were 

allocated to the five folds completely at random. For multi-subpopulation scenarios, 

individuals were distributed randomly to folds subpopulation-wise to guarantee that the 

proportion of individuals per subpopulation in the reference sets was the same in all runs. In 

each run, 80% (four folds) of the animals were used for calibration (reference set) of the 

model and DGVs of the remaining 20% of the animals (validation set) were predicted such 

that each fold was used as the validation set once. As a measure of predictive ability, the 

correlation between the quasi-phenotypes (EBVs or DRPs) and DGVs was calculated in the 

validation set for each run and averaged over folds. To avoid sampling bias the whole cross-

validation procedure was repeated 20 times. A paired t-test was used to test the difference of 

the predictive ability between within-subpopulation and multi-subpopulation reference sets. In 

case of the scenarios with 𝑮𝒁, marker effects were recalculated in each run for each replicate 

using only individuals from the reference set.  

Since organizations 1 and 4 provided raw phenotypes for a genomic prediction, only 

individuals of these subpopulations were used as validation individuals in multi-

subpopulation runs throughout this study. The predictive ability was calculated only with 

those individuals in the validation set belonging to subpopulation 1 or 4, respectively. 

Furthermore, subsets were constructed to assess whether sows of the same subpopulation or 

boars and sows of another subpopulation contributed more heavily to the predictive ability of 

DGVs of subpopulation 1. For details see Table 2.3. 
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Table 2.3. Predictive ability of the DGVs for subpopulation 1 with 𝑮𝑽𝑹, expressed as 

correlation between EBV and DGV, using a five-fold cross validation with 20 replicates and 

different reference populations. To assess whether sows of the same subpopulation or another 

subpopulation contributed more to the predictive ability of DGVs, different subpopulations 

were combined. For the displayed predictability of the DGVs, the average (± standard error) 

over the 20 replicates of each reference population was calculated. 

Reference population 
Total 

number of 

animals 

Predictive 

ability of 

DGVs 

Subpopulation 1 Subpopulation 2 Subpopulation 3 

♂ ♀ ♂/♀ ♂/♀ 

192    192 0.63 ± 0.005 

192 146   338 0.76 ± 0.002 

192  140  332 0.63 ± 0.005 

192 146 140  478 0.77 ± 0.002 

192  140 155 487 0.62 ± 0.005 

192 146 140 155 633 0.76 ± 0.002 

 

Forward Prediction 

Additional to the random five-fold cross validation, the data was divided into reference and 

validation set by year of birth of the animals, defined as forward prediction. The reference set 

contained animals born before 2010 whereas the validation set was composed of the youngest 

animals born in 2010 and 2011. For this approach, EBVs for the reference populations 1 and 4 

were calculated based on available information until 2009, so that no information of 

validation individuals was used to estimate EBVs of the reference individuals. The number of 

animals used as reference and validation set, respectively, is shown in Table 2.1. Throughout 

this paper, the predictive ability is always defined as the correlation between the quasi-

phenotypes EBVs or DRPs and DGVs in the validation set. 

 

RESULTS 

Stratification of the subpopulations 

When different subpopulations are to be used in a multi-subpopulation reference set, it is 

important to analyze the population structure first. To visualize the relationship between the 

five subpopulations, a plot of the first two principal components for all subpopulations is 

presented in Fig. 2.1. In addition, pairwise FST values of each population to population 1 and 4 
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are given in Fig. 2.1. The first and second principal components explain 5.6% and 2.5% of the 

total variance, respectively. In general, the FST values turned out to be very small and ranged 

from 0.010 to 0.035 for subpopulation 4 with all other subpopulations (Fig. 2.1; bold colored 

numbers) and from 0.007 to 0.023 for subpopulation 1 with all other subpopulations (Fig. 2.1; 

italic colored numbers), respectively. Subpopulation 1 was closely related to subpopulation 2 

and 3 and less related to subpopulation 5, but FST values were also small for distantly related 

subpopulations. As with subpopulation 1, subpopulation 4 was more closely related to 

subpopulations 2 and 3 and seemed to be more distant from subpopulation 1 and 5, 

respectively. For subpopulation 5, stratification into two subgroups was observed. 

 
Figure 2.1. Principal components analysis for Large White subpopulations and FST values 

between subpopulation 1 and 4 and all other subpopulations, respectively. The bold colored 

numbers represent the FST values between subpopulation 4 and another subpopulation, the 

italic colored numbers between subpopulation 1 and another subpopulation. 

 

One goal of this study was to verify if a multi-subpopulation reference set can help to 

overcome the problem of limited genomic prediction accuracy due to small reference sets 

within the breeding populations of different pig breeding organizations. The best basis for a 

two-step genomic breeding value prediction would thus be a common conventional breeding 

value scheme among all organizations which was however not possible in this study. The 

present study was conducted using real data provided by five commercial pig breeding 

companies. Only organization 2 and 4 provided raw phenotypes for ‘number of piglets born 

alive’ such that EBVs could be estimated with the same model assumptions, whereas the 
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other organizations only provided calculated EBVs with the corresponding reliabilities (for 

descriptive statistics see Appendix 2.1).  

As no pedigree links existed between individuals of different organizations in the data set 

used, disconnected subsets would nevertheless exist in a joint conventional estimation. We 

further checked the genomic relationships coefficients between individuals of the different 

subpopulations to inspect if substantial relationships exist that would have remained 

undetected with pedigree analyses. Appendix 2.2 shows that genomic relationships were 

relatively small on average with only a few exceptions, thus confirming that there was hardly 

any genetic exchange between subpopulations. Thus we do not expect that a joint 

conventional breeding value estimation, if it were possible, would have provided more 

accurate or less biased conventional breeding values. 

 

Assessment of prediction accuracy  

To evaluate the predictive ability of DGVs, a five-fold cross validation with a quasi-

phenotype for different reference populations with individuals of subpopulation 1 as 

validation population was performed (Fig. 2.2). The upper plot shows the results for the 

quasi-phenotype EBV and the lower plot for DRP. Within subpopulation 1, the recorded 

predictive ability with EBV was 0.77. Adding closely related subpopulations to subpopulation 

1 as multi-subpopulation reference population, the predictive ability remained constant. 

Adding distantly related subpopulations to subpopulation 1 resulted in a slight decrease of the 

predictive ability for subpopulation 1. The difference between within- and multi-

subpopulation reference sets was significant (P < 0.05) for two closely related reference 

populations as well as two distantly related reference populations.  

Within subpopulation 1, the recorded predictive ability with DRP was 0.54 (lower plot). 

Using a multi-subpopulation reference, the predictive ability slightly increased to 0.56 and 

significantly to 0.57 by adding subpopulation 2 and subpopulations 2 and 4, respectively. By 

adding subpopulation 3 to the reference population, the predictability decreased slightly. For 

distantly related multi-subpopulations, the correlation between DGVs and DRPs declined to 

0.53 (significantly), 0.54 and 0.54 (Fig. 2.2, lower plot).  
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Figure 2.2. Predictive ability of the DGV prediction for subpopulation 1 using the G-matrix 

introduced by VanRaden (2007), expressed as correlation between DGV and EBV (top) and 

DGV and DRP (bottom), using a five-fold cross validation with 20 replicates for different 

Large White reference populations. A paired t-test was used to test the difference between 

within-subpopulation and multi-subpopulation reference sets (P < 0.05). Blue = within-

subpopulation 1 approach, green = closely related reference populations, red = distantly 

related reference population.  

 

The predictive ability of DGVs for subpopulation 4 using a five-fold cross validation with 

quasi-phenotype EBV and DRP is displayed in Fig. 2.3, respectively. Within subpopulation 4, 

the correlation between DGVs and EBVs was 0.86 (upper plot). Adding closely related 

subpopulations resulted in a predictive ability of 0.86 by combining subpopulations 4 and 2 as 

well as combining subpopulations 4, 2 and 1 as the multi-subpopulation reference set, 

respectively. Using distantly related multi-subpopulation reference sets resulted in a 

significant decline in predictability for subpopulation 4 of around 0.01 for all three distant 

reference populations. Within subpopulation 4, the predictive ability of DGVs with DRP 

(lower plot) was 0.53. Adding closely related subpopulations led to a slight increase in 

predictive ability for subpopulation 4 of 0.03 with the multi-subpopulations 4 and 2 and 0.08 

with 4, 2 and 1, respectively. A decrease in the predictability for subpopulation 4 of 0.02 

occurred with the inclusion of distantly related subpopulations to the multi-subpopulation 
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reference set. Except for the reference subpopulations 4 and 2, all differences between within- 

and multi-subpopulation reference set for both plots were significant (P < 0.05). 

 

Figure 2.3. Predictive ability of the DGV prediction for subpopulation 4 using the G-matrix 

introduced by VanRaden (2007), expressed as correlation between DGV and EBV (top) and 

DGV and DRP (bottom), using a five-fold cross validation with 20 repetitions for different 

Large White reference populations. A paired t-test was used to test the difference between 

within-subpopulation and multi-subpopulation reference sets (P < 0.05). Blue = within-

subpopulation 4 approach, green = closely related reference populations, red = distantly 

related reference population. 

 

Results for the predictive ability of DGVs with 𝑮𝒁 and with quasi-phenotype DRP are 

displayed in Fig. 2.4 for subpopulation 1 (left plot) and 4 (right plot). Within subpopulation 1, 

the correlation between DGVs and DRPs reached 0.47 and decreased significantly by adding 

closely related subpopulations. Within subpopulation 4, the predictive ability of DGVs was 

0.49 and significantly decreased to 0.45 for closely and 0.2 for distantly related multi-

subpopulations as reference populations. 

Comparing the five-fold cross validation results of subpopulation 1 with 𝑮𝑽𝑹 (Fig. 2.2) to the 

results with 𝑮𝒁 (Fig. 2.4), the variation in predictive ability for the respective reference set for 

the DGVs seemed to be the same, likewise for subpopulation 4 (Fig. 2.3). The level of the 
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predictive ability of the DGV prediction with 𝑮𝒁was slightly lower than the level with 𝑮𝑽𝑹 

for both within subpopulation approaches.  

 

Figure 2.4. Predictive ability of the DGV prediction for subpopulation 1 (left) and 4 (right) 

using the G-matrix introduced by Zhou et al. (2014), expressed as correlation between DGV 

and DRP, using a five-fold cross validation with 20 repetitions for different Large White 

reference populations. A paired t-test was used to test the difference between within-

subpopulation and multi-subpopulation reference sets (P < 0.05). Blue = within-subpopulation 

1 or 4 approach, green = closely related reference populations, red= distantly related reference 

populations. 

 

Assessment of prediction accuracy (subset) 

We compared the combination of boars of subpopulation 1 with sows of subpopulation 1 and 

with another subpopulation (2 or/and 3) to assess the predictive ability of DGVs (Table 2.3). 

If only male animals of subpopulation 1 were used as the reference set, a predictability of 0.63 

was obtained. Adding sows of subpopulation 1 to the reference population (from 0.63 to 0.76) 

contributed more to the predictive ability of DGVs than adding animals from another 

subpopulation (0.62 or 0.63). 

 

Forward Prediction  

Predictability of DGVs for the youngest animals of subpopulation 1 and 4 is shown in Table 

2.4 for different multi-subpopulation reference sets as well as with 𝑮𝑽𝑹, 𝑮𝑮 and 𝑮𝒁 being 

used to describe the genomic covariance structure. The predictive ability of DGVs of the 
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youngest animals of subpopulation 1 was relatively high and ranged from 0.42 to 0.51 (EBV) 

with 𝑮𝑽𝑹 and 𝑮𝑮 and between 0.49 and 0.52 (EBV) with 𝑮𝒁. By adding close or distant 

subpopulations to the reference population, the predictability remained constant or decreased. 

The lowest value was reached for the multi-subpopulation reference set with subpopulations 

1, 4 and 5 (0.42) and the greatest value with subpopulations 1 and 2 (0.51), respectively. 

Using DRPs as the input-variable, the highest value (0.31) in predictive ability was observed 

when using a multi-subpopulation with all subpopulations, whereas only 0.25 could be 

reached with subpopulation 1 as the reference population. The predictive abilities of DGVs 

using 𝑮𝒁 were slightly better than with 𝑮𝑽𝑹 or 𝑮𝑮 in most of the considered scenarios. 

The predictive ability of DGVs of subpopulation 4 were high with quasi-phenotype EBVs and 

ranged from 0.55 to 0.57 with 𝑮𝑽𝑹, from 0.57 to 0.70 with 𝑮𝑮 and from 0.60 to 0.61 with 𝑮𝒁. 

The greatest predictive abilities were observed within subpopulation 4 for the prediction with 

𝑮𝑮, quasi-phenotype EBV and multi-subpopulation reference set 4 and 2 (0.70) as well as 4, 2 

and 1 (0.70), respectively. With quasi-phenotype DRP, the greatest predictive ability was 

achieved by using subpopulations 4 and 2 as a multi-subpopulation reference set and declined 

from closely to distantly related subpopulations. The lowest value for DRP and 𝑮𝑽𝑹 was 

obtained using subpopulation 4 and 5 as the reference population (0.17). Consequently and 

for all approaches, the more distantly related the reference population to the validation set the 

poorer was the predictability of DGVs. 

To account for the fact that quasi-phenotypes originated from different runs, we modeled a 

fixed subpopulation effect when using a multi-subpopulation reference set. For comparison, 

the predictive ability with quasi-phenotype DRP with and without the fixed effect of the 

subpopulation (Appendix 2.3) was calculated for subpopulation 1 with two multi-

subpopulations (closely and distantly related). For the random five-fold cross-validation as 

well as the forward prediction approach, no differences in the predictive ability for 

subpopulation 1 were obtained by treating the two subpopulations as one common population 

(i.e. no subpopulation effect modeled) and there was hardly any re-ranking of individuals.  

Since no parent breeding values were available for subpopulations 2, 3 and 5, we were not 

able to remove the parental average (PA) for these subpopulations. Thus, the weighting 

factors used for the residual variance in the genomic prediction model when DRP was used as 

quasi-phenotype may be biased. To check the influence on our results, we also calculated 

DRPs without removing of PA (DRP*) for subpopulations 1 and 4, i.e. EBVs divided by their 
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reliabilities and respective weights were also calculated with the corresponding EBV 

reliabilities. Next, the correlation between the DGVs calculated with DRPs (removal of PA) 

and DGVs calculated with DRPs* (without removal of PA) were computed for all animals 

being in the reference set and for those animals being in the respective validation set 

(Appendix 2.4). Except for two values, all correlations were above 0.9, suggesting that the 

DGVs were highly correlated and there was no strong impact of removing or not removing 

the PA on DGV prediction. 
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Table 2.4. Predictive abilities of DGVs for the youngest animals for subpopulation 1 and 4 and different G matrices (introduced by VanRaden 

(2007), Gengler et al. (2007) and Zhou et al. (2014)) were presented. To assess the predictability of the DGVs of the youngest animals with 

multi-subpopulation reference sets, correlations between DGV and EBV as well as DGV and DRP within the subpopulation were calculated. 

Greatest value in each column and subpopulation are printed in bold. 

Reference population Validation set 

𝑮𝑽𝑹 𝑮𝑮 𝑮𝒁 

Cor(DGV 

and EBV) 

Cor(DGV 

and DRP) 

Cor(DGV and 

EBV) 

Cor(DGV and 

DRP) 

Cor(DGV and 

EBV) 

Cor(DGV and 

DRP) 

Subpopulation 1 Subpopulation 1 0.45 0.25 0.45 0.25 0.52 0.30 

Subpopulation 1 and 2 Subpopulation 1 0.51 0.29 0.51 0.29 0.49 0.31 

Subpopulation 1 and 3 Subpopulation 1 0.44 0.26 0.44 0.26 0.52 0.32 

Subpopulation 1, 2 and 4 Subpopulation 1 0.45 0.30 0.45 0.30 - - 

Subpopulation 1, 4 and 5 Subpopulation 1 0.42 0.27 0.42 0.27 - - 

Subpopulation 1, 2, 3 and 5 Subpopulation 1 0.46 0.26 0.46 0.26 - - 

All Subpopulations Subpopulation 1 0.44 0.31 0.44 0.30 - - 

Subpopulation 4  Subpopulation 4 0.57 0.19 0.57 0.19 0.61 0.38 

Subpopulation 4 and 2 Subpopulation 4 0.57 0.19 0.70 0.30 0.61 0.29 

Subpopulation 4, 2 and 1 Subpopulation 4 0.57 0.19 0.70 0.28 - - 

Subpopulation 4 and 5 Subpopulation 4 0.54 0.17 0.68 0.28 0.60 0.30 

Subpopulation 4, 5 and 1 Subpopulation 4 0.54 0.18 0.68 0.27 - - 

All Subpopulations Subpopulation 4 0.55 0.18 0.67 0.28   
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DISCUSSION 

Stratification of the subpopulation 

Stratification was observed in our data set, but the recorded FST values between 

subpopulations were small. Thus, it seems reasonable to expect the prediction of more 

accurate DGVs based on multi-subpopulation rather than within-subpopulation reference sets. 

Different to results of studies with multi-breed reference populations in cattle (e.g. Pryce et 

al., 2011; Schrooten et al., 2013), predicting DGVs using a combination of subpopulations 

within a breed did not show the desired increase in the predictive ability of genomic selection 

in pigs. In cattle, due to e.g. exchange of semen and a high rate of artificial insemination, 

genetic links between individuals even from different countries or managed by different 

breeding associations are often high and clear population stratification into different groups is 

rare. In pig breeding, different commercial breeding companies have relatively closed 

breeding stocks and different breeding goals. One common objective is the protection of the 

'breeding product'. Usually, there is hardly any exchange of animals or semen so that few 

genetic links between animals of the same breed but from different breeding organizations 

exist. 

 

Assessment of prediction accuracy  

Given the small number of individuals in the within-subpopulation reference set, the recorded 

predictive abilities for the within-subpopulation prediction with EBVs and 𝑮𝑽𝑹 were high. 

When using DRPs as quasi-phenotypes, predictive abilities were generally much lower. If the 

parent average is still included in the quasi-phenotypes (e.g. in EBVs) of the reference set and 

DGVs and EBVs of the validation set are correlated later, predictive ability can easily be 

overestimated through e.g. double counting (Garrick et al., 2009). DGVs will then be a good 

proxy for the parent average part of the validation individual’s EBV while they may still not 

describe the Mendelian sampling properly. Generally, we are interested in the best prediction 

of the true breeding value. Thus the predictive ability is more relevant when using DRPs with 

the PA removed used as quasi-phenotypes than with EBVs. For constructing information for 

genomic predictions, Garrick et al. (2009) argued for the removal of parent average effects. 

Furthermore, animals without individual or progeny information cannot usefully contribute to 

genomic prediction because they do not add information that would not be already available 

from their parent’s EBV (Garrick et al., 2009). 
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In our data sets predictive abilities of genomic breeding values from the five-fold cross-

validation were equally or only slightly better than those of a conventional parent average 

(results not shown) which is not surprising regarding the small number of genotyped 

individuals. However, we were most interested in relative differences between predictive 

ability results obtained with different references sets. 

Hayes et al. (2009) and Pryce et al. (2011) found that for small cattle breeds it is 

advantageous to form a multi-breed reference by combining them with others. Our results do 

not confirm this finding. The reference population of subpopulation 1 (n=150) was quite 

small, but still performed better than using multi-subpopulation reference sets, even if the 

multi-subpopulation reference sets were quite large (up to n=1,201). The same tendency to 

decrease was shown for subpopulation 4 which provided a major part of individuals in 

multiple-subpopulation reference sets tested.  

To assess a possible bias of DGV, we performed linear regressions of DRP on DGV within 

random five-fold cross-validation validation sets. The regression coefficients from random 

five-fold cross-validation indicated that the prediction bias of DGV slightly increased from 

1.10 to 1.46 (decreased from 1.35 to 1.21) when adding subpopulations to the reference set of 

subpopulation 1 (4). This inconsistency in results partly must be attributed to the limited 

sample size. Wu et al. (2015) reported that the prediction bias diminished with increasing 

relationships between training and test animals, which agreed with our results for 

subpopulation 4 and was also stated by previous studies (e.g. Gao et al., 2013). To prevent 

increases of bias and decreases of reliability, continuous updates of the reference set with 

animals from recent generations are required (Habier et al., 2010; Pszczola et al., 2012). 

In general, the improvement of the prediction accuracy depends on the amount of useful 

information that is added on top of the already available information. Calus et al. (2014) 

stated for layer chickens that multi-line prediction may be effective when lines are closely 

related and accuracy may be slightly improved. This conclusion is based on a study of two 

closely related and one unrelated chicken layer line where an increase in accuracy by using 

closely related multi-subpopulations as reference population was observed. We also tested 

different levels of relatedness by building multi-subpopulation reference sets with closely and 

distantly related subpopulations, respectively. The increase of predictive ability by using 

closely related multi-subpopulations as the reference population was poor and stayed almost 

at the same level as within-subpopulation in our data set. Furthermore, Zhou et al. (2014) 
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reported that close genomic relationships were required to increase the accuracies with two-

breed prediction. Even though FST values were small in our study, average genomic 

relationships for individuals from subpopulation 1 (4) with individuals from other 

subpopulations were basically zero or even slightly negative (Appendix 2.2), reflecting the 

lack of genetic ties (even lower than theoretically expected) and possibly explaining why no 

advantage was observed for closely related multi-subpopulation references.  

Hidalgo et al. (2014) obtained accuracies, expressed as correlation between GEBV and 

deregressed EBV, of 0.16 and 0.24 for ‘number of piglets born alive’ within a Large White 

and within a Dutch Landrace population (training and prediction data were subsets from the 

same population), respectively. The obtained accuracies across the two populations were 

close to zero when one population was used for training to predict the other population. 

Hidalgo et al. (2014) mentioned as a possible explanation for the poor multi-population 

performance that the QTL and markers might not be in the same linkage phase for sow-

dependent traits and that the GEBV accuracies may depend on the genetic architecture of the 

trait and of the population stratification. Furthermore, Hidalgo et al. (2014) mentioned that 

they observed modest predictive ability for the traits within populations, which were 

nevertheless lower than expected. They suggested that due to the fact that reproductive traits 

are rather polygenic and are a result of complex genetic and biological mechanisms, a less 

accurate prediction in a multi-population setting is to be expected. Moreover, reproductive 

traits are affected by a large number of QTL (138 QTL for NBA, PigQTLdb, 

http://www.animalgenome.org/cgi-bin/QTLdb/SS/index, June 2015; Bergfelder-Drüing et al., 

2015) with low to moderate effects (Rothschild and Ruvinsky, 1998) or may have an 

incomplete LD between marker and QTL (de Roos et al., 2009; Hidalgo et al., 2014; Zhou et 

al., 2014). For traits with larger heritability, e.g. growth rate or feed intake, or traits with a 

smaller number of affecting QTL, an increase of predictive ability of DGVs would generally 

be possible. Since the genetic links between individuals of different subpopulations were low 

on average (Appendix 2.2), we do however not expect significantly greater predictive abilities 

for those traits. 

De Roos et al. (2009) showed with a simulation study that a marker might be in high LD with 

QTL in one population only. This resulted in poor predictions for another population, in 

addition different QTL might segregate in different populations and the genetic background in 

the other line might change the effect of a specific QTL allele. With increasing marker 

density, the probability increases that a marker is in high LD with a QTL. Ibáñez-Escriche et 
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al. (2009) and de Roos et al. (2009) concluded that multi-population evaluations were 

preferable to within-population evaluations when the populations were closely related, the 

marker density was high or the number of phenotypic records was small. Since the marker 

spacing in our study was modest (49 kbp on average), the reasons mentioned by de Ross et al. 

(2009) and Hidalgo et al. (2014) might explain the results obtained with the multi-

subpopulations as the reference set.  

Daetwyler et al. (2012) suggested that exploiting population structure arising from relatedness 

could increase the accuracy of prediction in some cases, for example when the selection 

candidates were offspring of the reference population from which the prediction equation was 

derived. For the multi-subpopulation scenarios, no direct relatedness of the selection 

candidates and reference animal was given, which might explain the poor performance. 

Adding sows of the same population to the boar reference population contributed more to the 

DGV prediction than adding boars and sows from another subpopulation to enlarge the 

reference set (Table 2.3), which again confirms the importance of relatedness. Even 

accounting for population stratification by using relationship matrices e.g. based on Zhou et 

al. (2014), did not yield considerably greater predictive ability of DGVs for reasons 

mentioned above (for details see ‘Different G-matrix approaches’). 

Since GBLUP is strongly based on genomic relationships between the reference and 

validation set, it might not be an optimal model for genomic predictions across breeds (Zhou 

et al., 2014). Variable selection models make different assumptions on the contribution of 

marker effects to the total variance. Some studies applied Bayesian methods for across-breed 

predictions in dairy and beef cattle (Hayes et al., 2009; Pryce et al., 2011; Erbe et al. 2012; 

Saatchi and Garrick, 2013) or chicken (Calus et al., 2014). In summary, they found partly a 

small increase in accuracy when multi-breed or across-breed reference sets were used. 

However, no consistent increase in accuracy across different traits was obtained. Variable 

selection methods have indeed some utility, e.g. if a common QTL with large effects (as e.g. 

DGAT1 for fat yield) is segregating among different subpopulations (Pryce et al., 2011; 

Saatchi and Garrick, 2013). However, in our study with stratified pig subpopulations, we 

would not expect significantly better results from variable selection models. 

Other possible reasons for not observing any advantage of multi-subpopulation reference sets 

compared to within-breed models could be genotype by environment interactions and 

differences in methods of phenotypic and genetic evaluation (Pryce et al., 2011). Another 



2
nd

 CHAPTER MULTI-SUBPOPULATIONS REFERENCE SETS 60 

possibility to predict accurate DGVs within multi-breed models was suggested by Harris et al. 

(2014). They suggested that the use of high density SNP data to form haplotypes blocks for 

usage in a multi-breed genomic analyses could improve the accuracy and remove the need for 

homogeneity of QTL and marker phase and effective size. They suggested that the formation 

of breed-specific haplotypes blocks that were associated with the QTL alleles segregating 

within a given breed can explain a larger proportion of the genetic variance within multi-

breed models.  

 

Forward prediction 

In practice we are interested in DGVs with a high accuracy for the youngest animals, which at 

the time of selection do not have performance values of their own or for their progeny. Since 

the reference set of subpopulation 1 was substantially smaller in the forward prediction 

scenario than in the five-fold cross-validation scenarios, the lower predictive ability observed 

in the forward prediction scheme may be partly explained by this. Adding information from 

closely related multi-subpopulations, especially subpopulation 2, slightly increased the 

accuracy, whereas adding distantly related reference populations to the reference set led to a 

slight decrease of the predictive ability.  

 

Different G-matrix approaches 

The results of the cross validation and forward prediction indicated that for multi-

subpopulation sets G should be scaled in a different way to capture the structure and 

relationship for different subpopulations as also stated by Hayes et al. (2009) and Calus et al. 

(2014). Therefore, the main interest was to predict DGVs more realistically through an 

improved adjustment of G. Using a genomic relationship matrix based on VanRaden (2007) 

and treating all subpopulations in the same manner largely ignores a possible substructure, 

reflected by different allele frequencies. Vallée et al. (2014) predicted the accuracy using 

crossbred performances within and across beef cattle breeds and indicated that the loss of 

accuracy using admixed or multi-population sets might be due to different allele frequencies 

between populations. They concluded that building G with breed-specific allele frequencies 

might lead to improved accuracies. 

To test the impact of allele frequencies when accounting for substructures, we used base allele 

frequencies of each subpopulation according to Gengler et al. (2007) instead of actual 
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frequencies derived from multi-subpopulation sets. Another way to adjust for subpopulation-

specific allele frequencies is to calculate the genomic relationship matrix introduced by 

VanRaden (2007) with allele frequencies present in the respective population. This was done 

exemplary for the multi-subpopulations 4 and 2, and we used the mean allele frequency of 

both subpopulations for standardization.  

Predictive ability of the random five-fold cross validation and forward prediction did not 

increase for subpopulation 1 with base allele frequencies. Predictive ability with EBVs used 

as quasi-phenotypes was +0.06 greater than with the genomic relationship matrix of 

VanRaden (2007) (results not shown). However, the predictive ability with allele frequencies 

present in the respective population was slightly greater than with the standard genomic 

relationship matrix introduced by VanRaden (2007) (results not shown). The goal of using 

base allele frequencies was to account for subpopulation structures. It was thus not so 

important to use base allele frequencies (Gengler et al., 2007) of the respective subpopulation, 

but more relevant to use a combination of population-specific allele frequencies which were 

present in the jointly analyzed subpopulations.  

Another possibility to account for the subpopulation structure is by using the genomic 

relationship matrix suggested by Zhou et al. (2014). With this approach, lower predictive 

abilities were obtained and predictive ability deteriorated with multi-subpopulation reference 

sets (Fig. 2.4), which might be due to the low correlations between the marker effects for 

different subpopulations (Appendix 2.5). In addition, the present results agree with findings of 

Daetwyler et al. (2012) that accounting for LD structure or fitting of principle components to 

account for population structure decreased the accuracy of multi-breed genomic predictions. 

With the adjustment for marker effects and LD structure, the predictive ability increased only 

slightly, which agrees with the results of Zhou et al. (2014) that weighing the G-matrices by 

LD phases consistency or marker effects did not improve accuracies of the two-breed 

genomic predictions. 

 

CONCLUSIONS 

Using multi-breed populations to predict genomic breeding values is still considered an 

attractive option to increase the reference set size used for improving prediction equations in 

genomic selection in dairy cattle. In this study we showed that combining different 

subpopulations of German Large White pigs to form a multi-subpopulation reference 
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population does not lead to a better predictive ability for individuals within a specific 

subpopulation. Adding individuals from distantly related subpopulations actually decreased 

the predictive ability of DGVs. However, adding sows of the same subpopulation to the 

reference set yielded in an improved predictability of DGVs. Implementation of genomic 

breeding value prediction itself into a pig breeding program might have the potential to 

improve the selection response for the trait ‘number of piglets born alive’. However, the 

accuracy of genomic prediction with different subpopulations in the reference set might only 

be improved after creating more concurrent links between subpopulations, e.g. by using the 

same boars across populations. 
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APPENDIX 

APPENDIX 2.1 

Summary for all animals in the subpopulation 

 
EBV DRP 

min mean max min mean max 

Subpopulation 1* -1.81 0.87 3.44 -3.87 0.92 8.37 

Subpopulation 2 -2.06 -0.24 1.67 -3.27 -0.35 2.83 

Subpopulation 3  -1.51 0.17 2.28 -1.86 0.26 4.43 

Subpopulation 4* -1.45 1.22 3.57 -3.80 1.28 5.88 

Subpopulation 5 -2.93 0.43 3.28 -4.23 0.98 7.92 

* With removal of PA in the DRP calculation 
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APPENDIX 2.2 

Genomic Relationship between different subpopulations (𝑮𝑽𝑹) 

Subpopulations 
Summary 

Number of combinations between animals of 

different subpopulations  

Min 1
st
 Qu. Mean 3

rd
 Qu. Max  𝐺𝑉𝑅> 0.25 𝐺𝑉𝑅> 0.5 

1 -0.17 -0.05 -0.001 0.03 0.59  240 10 

1 and 2 -0.14 -0.05 -0.02 0.004 0.46  4 0 

1 and 3 -0.17 -0.05 -0.02 0.007 0.49  8 0 

1, 2 and 3 -0.13 -0.04 -0.01 0.01 0.55  50 7 

1, 4 and 5 -0.18 -0.10 -0.07 -0.05 0.17  0 0 

1, 2, 3 and 5 -0.08 -0.05 -0.02 0.01 0.59  57 11 

4 -0.17 -0.03 -0.001 0.02 0.68  1875 185 

4 and 2 -0.13 -0.05 -0.02 0.003 0.31  1 0 

4, 2 and 1 -0.07 -0.05 -0.02 0.003 0.43  9 0 

4 and 5 -0.20 -0.10 -0.08 -0.06 0.11  0 0 

All -0.07 -0.03 -0.08 0.014 0.58  55 10 
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APPENDIX 2.3 

Assessment of the predictive ability calculated with and without effect of the line included in 

the model for the validation set subpopulation 1  

Cor (DGV, DRP) 

Random 5-fold cross-

validation 
Forward Prediction 

Correlation 

between DGVs 

with and 

without line 

effect 

Effect of 

line 

No effect 

of line 

Effect of 

line 

No effect 

of line 

Subpopulation 1 and 3 0.527 0.530 0.343 0.346 0.998 

Subpopulation 1, 4 and 5 0.540 0.540 0.308 0.309 0.991 

 

 

Rank of Breeding Value (DGV) over the whole population 

Breeding Value without effect of 

line compared to with effect of 

line 

Reference and validation set 

Top 10 Top 20 Top 40 

In Out In Out In Out 

Subpopulation 1 and 3* 8 2 19 1 33 7 

Subpopulation 1, 4 and 5* 9 1 19 1 39 7 

*Consideration as common population without subpopulation structure 
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Rank of Breeding Value (DGV) within each subpopulation  

Breeding Value without effect of line 

compared to with effect of line 

Reference and validation set Validation set* 

Top 10 Top 20 Top 40 Top 10 Top 20 Top 40 

In Out In Out In Out In Out In Out In Out 

Subpopulation 1 and 3 

Subpopulation 1 8 2 19 1 33 7 4 6 10 10 21 19 

Subpopulation 3 9 1 19 1 40 0 
§ 

Subpopulation 1, 4 and 

5 

Subpopulation 1 10 0 19 1 36 4 5 5 9 11 17 23 

Subpopulation 4 9 1 18 2 39 1 
§ 

Subpopulation 5 9 1 19 1 39 1 
§ 

* Animals belonging to the group with year of birth being 2010 and 2011 
§
 Not considered as validation set 
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APPENDIX 2.4 

Correlation between DGV calculated with DRP and DGV calculated with DRP* 

Reference population Validation set 
Correlation for all 

animals in reference set 

Correlation for 

Validation set 

1 1 0.91 0.91 

1 and 2 1 0.90 0.87 

1 and 3 1 0.91 0.88 

1, 2 and 4 1 0.91 0.94 

1, 4 and 5 1 0.94 0.94 

1, 2, 3 and 5 1 0.94 0.93 

All  1 0.94 0.95 

4  4 0.93 0.93 

4 and 2 4 0.93 0.93 

4, 2 and 1 4 0.91 0.93 

4 and 5 4 0.94 0.93 

4, 5 and 1 4 0.94 0.93 

All  4 0.94 0.93 

* without removal of PA 

 

APPENDIX 2.5 

Correlation between SNP effects for different populations 

Combination Correlation 

Rank-based 

correlation 

according to 

spearman 

Correlation 

with sliding 

window  

(10 SNPs) 

Correlation 

with Top 10 

SNPs 

Subpopulation 1 and 2 0.085 0.078 0.074 0.211 

Subpopulation 1 and 3 0.090 0.086 0.075 0.001 

Subpopulation 1 and 4  0.067 0.072 0.052 -0.167 

Subpopulation 1 and 5 0.039 0.035 0.053 -0.059 

Subpopulation 4 and 2 0.046 0.043 0.056 0.214 

Subpopulation 4 and 3 0.054 0.058 0.057 -0.016 
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ABSTRACT 

Currently used multi-step methods to incorporate genomic information in the prediction of 

breeding values (BV) implicitly involve many assumptions which, if violated, may result in 

loss of information, inaccuracies and bias. To overcome this, single-step genomic best linear 

unbiased prediction (ssGBLUP) was proposed combining pedigree, phenotype and genotype 

of all individuals for genetic evaluation. Our objective was to implement ssGBLUP for 

genomic predictions in pigs and to compare the accuracy of ssGBLUP with that of multi-step 

methods with empirical data of moderately sized pig breeding populations. Different 

predictions were performed: conventional parent average (PA), direct genomic value (DGV) 

calculated with genomic BLUP (GBLUP), a genomic enhanced breeding value (GEBV) 

obtained by blending the DGV with PA, and ssGBLUP. Data comprised individuals from a 

German Landrace (LR) and Large White (LW) population. The trait ‘number of piglets born 

alive’ (NBA) was available for 182,054 litters of 41,090 LR sows and 15,750 litters from 

4,534 LW sows. The pedigree contained 174,021 animals, of which 147,461 (26,560) animals 

were LR (LW) animals. In total, 526 LR and 455 LW animals were genotyped with the 

Illumina PorcineSNP60 BeadChip. After quality control and imputation, 495 LR (424 LW) 

animals with 44,368 (43,678) SNPs on 18 autosomes remained for the analysis. Predictive 

abilities, i.e. correlations between deregressed proofs and genomic BVs, were calculated with 

a five-fold cross validation and with a forward prediction for young genotyped validation 

animals born after 2011. Generally, predictive abilities for LR were rather small (0.08 for 

GBLUP, 0.19 for GEBVs and 0.18 for ssGBLUP). For LW, ssGBLUP had the greatest 

predictive ability (0.45). For both breeds, assessment of reliabilities for young genotyped 

animals indicated that genomic prediction outperforms PA with ssGBLUP providing greater 

reliabilities (0.40 for LR and 0.32 for LW) than GEBVs (0.35 for LR and 0.29 for LW). 

Grouping of animals according to information sources revealed that genomic prediction had 

the highest potential benefit for genotyped animals without own phenotype. Although, 

ssGBLUP did not generally outperform GBLUP or GEBVs, the results suggest that ssGBLUP 

can be a useful and conceptually convincing approach for practical genomic prediction of 

NBA in moderately sized LR and LW populations. 

 

Key words: genomic selection, multi-step, number of piglets born alive, pig, single-step 
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INTRODUCTION 

Initial methods for using genomic information to predict genomic breeding values were multi-

step methods (VanRaden, 2008; Hayes et al., 2009a). These methods mainly consist of three 

parts: (i) construction of a response variable (also called ‘pseudo-observation’) for genotyped 

animals that integrate all available phenotypic information, (ii) exploiting the association 

between response variable and marker information through genomic prediction, and (iii) 

blending genomic predictions with parental average estimated breeding values (Christensen et 

al., 2012). Those steps involve many parameters and multiple assumptions, which, if violated, 

may result in loss of information, inaccuracies and biases which strongly depends on species 

and data set (Legarra et al., 2014). A strategy to overcome these problems is the ‘single-step’ 

approach. In general, single-step methodology combines pedigree, phenotypic and genomic 

information of all breeding individuals for genetic evaluation in one model (Christensen et al., 

2012). Single-step methods have been proposed by Legarra et al. (2009), Aguilar et al. (2010) 

and Christensen and Lund (2010) and were found to be simple, fast and accurate (Misztal et 

al., 2013). Christensen et al. (2012) suggest that the single-step method is at least as accurate 

as a multi-step method for prediction of genotyped animals and that both methods perform 

better than purely pedigree-based methods. Studies in cattle (e.g. Lourenco et al., 2015b), 

chickens (e.g. Misztal et al., 2013; Lourenco et al., 2015a) or pigs (e.g. Guo et al., 2015) 

confirmed that single-step methods are at least as accurate as multi-step methods. Our main 

objective was to implement single-step methodology for genomic predictions for a lowly 

heritable trait with data from a practical pig breeding program and to conduct a 

comprehensive comparison between accuracy of single-step and multi-step methods. For this 

purpose, we studied the trait ‘number of piglets born alive’ recorded in moderately-sized 

commercial German Landrace and Large White breeding populations. 

 

MATERIALS AND METHODS 

Animals and Data 

Real data from purebred and crossbred animals from German Landrace (LR) and German 

Large White (LW) pigs were provided from a commercial pig breeding organization in 

Germany. The analyzed trait was ‘number of piglets born alive’ (NBA). The data set 

compromised 182,054 litters from 41,090 LR sows, 15,750 litters from 4,534 LW sows and 

23,143 litters from 4,725 multiplier sows (LW x LR). Pedigree data consisted of 174,021 
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animals, of which 147,461 (26,560) animals were LR (LW) animals. Records of litters were 

available from 2000 to 2014. Because we had no genotypes of multiplier sows, we only used 

their phenotypic information for the conventional and single-step breeding value estimation. 

In total, 526 Landrace and 455 Large White animals were both genotyped with the Illumina 

PorcineSNP60 BeadChip (Illumina, Inc., San Diego, CA). Uncalled markers and markers 

with unknown position were removed from the data set. Quality control (QC) was performed 

with the software PLINK (Purcell et al., 2007) requesting that each animal had a call rate > 

98% and each marker had a call rate > 97%. In order to exclude genotyping errors, the minor 

allele of the marker had to be observed at least ten times. Missing genotypes were 

subsequently imputed with the software BEAGLE (Browning and Browning, 2007). After QC 

and imputation, 495 LR (424 LW) animals with 44,368 (43,678) SNPs on 18 autosomes 

remained for the analysis. 

 

Multi-step approach 

The multi-step approach consisted of the following three steps: 

BLUP model. A traditional best linear unbiased prediction (BLUP) animal model with 

repeated measurements was used to predict conventional breeding values (EBV) for NBA of 

LW and LR using the software ASReml (Gilmour et al., 2009). The model was very similar to 

the routine breeding value evaluation of the organization. Fixed effects included herd-year-

season, breed of sow, breed of sire, number of litter, age at first farrowing (only for first 

parity) and interval between farrowing (linear and quadratic, not for first parity). In a second 

step, deregressed proofs (DRP) were calculated from EBVs with removal of the parent 

average effect (PA) as described by Garrick et al. (2009). Due to missing parent average 

values for genotyped animals and genotyped animals only with PA as breeding value, we 

were not able to calculate DRPs for all genotyped animals and had to remove those animals 

from analysis. Table 3.1 shows the remaining number of genotyped animals for genomic 

evaluation for which DRPs could be calculated.  
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Table 3.1. Total number of genotypes for genomic predictions for ‘number of piglets born 

alive’ (NBA) for Landrace (LR) and Large White (LW) animals 

Total number of  LR LW 

Genotypes 526 455 

Genotypes after quality control 495 424 

Genotypes after calculating deregressed proofs 443 287 

Validation individuals for forward predictions 97 53 

 

Genomic BLUP model. Estimation of direct genomic breeding values (DGV) was performed 

using a genomic BLUP (GBLUP) animal model for each breed separately. The following 

model was used: 

y = µ + Wg + e,  

where y was the vector of DRPs for trait NBA, µ was the overall mean, g was a vector of 

random genomic effects, and e was a vector of random residual effects. W was the 

corresponding design matrix. We assumed that g ~ N(0, 𝐆σg
2), where 𝐆 was a genomic 

relationship matrix as proposed by VanRaden et al. (2007) and σg
2 was the corresponding 

genomic variance. Genomic BVs obtained from this model were denoted DGVs. Variance 

components were computed using the software ASReml (Gilmour et al., 2009). 

Blending to obtain Genomic Enhanced Breeding Values. In a routine breeding program, 

the DGV is not used directly but is combined with EBV to obtain a genomically enhanced 

breeding value (GEBV), a procedure which is called ‘blending’ (VanRaden et al., 2009). For 

the blending index as defined in VanRaden et al. (2009) three different breeding values (BV) 

were combined for the validation individuals in the forward prediction scheme: (i) the PA of 

an animal from the BLUP breeding value estimation, (ii) the DGV, which was computed on 

the basis of the genomic relationship matrix and DRPs with removal of the PA (Garrick et al., 

2009) and (iii) parental index (PI), which was estimated based on a pedigree relationship 

matrix using only the genotyped animals and DRPs as pseudo-observations. Subsequently, the 

reliabilities of these three information sources are combined in a selection index to calculate 

the optimum weighting of each part of the breeding values for each animal resulting in the 
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final GEBV (VanRaden et al., 2009) of an animal for which also the respective reliability can 

be calculated. 

 

Single-step genomic BLUP 

A single-step genomic BLUP (ssGBLUP) model for each breed separately was used by 

replacing the pedigree-based relationship matrix 𝐀 with 𝐇, a mixed pedigree and genomic 

relationship matrix. It was assumed that u ~ N(0, 𝐇σu
2) and e ~ N(0,𝐈σe

2), where u was the 

vector of single-step genomic BVs (ssGEBV) with  σu
2 being the corresponding genetic 

variance, I was an Identity matrix and σe
2 was the corresponding residual variance. 

The inverse variance-covariance matrix of the genetic effects (𝐇−𝟏) was calculated as a 

combined relationship matrix suggested by Aguilar et al. (2010) and Christensen and Lund 

(2010) as: 

𝐇−𝟏 =  𝐀−𝟏 + [
0 0
0 𝐆𝐰

−𝟏 −  𝐀𝟐𝟐
−𝟏],  

where 𝑨−𝟏 was the inverse of the pedigree-based relationship matrix 𝐀, 𝐆−𝟏 was the inverse 

of the genomic relationship matrix 𝐆 and 𝐀𝟐𝟐
−𝟏 was the inverse of the subset of the pedigree-

based relationship matrix 𝐀 between genotyped animals only. To make 𝐆 compatible with 𝐀, 

𝐆 was modified to be on the same scale as 𝐀 (Christensen et al., 2012). To scale the genomic 

information and to avoid singularity problems, we calculated 𝐆𝒘 as: 

𝐆𝒘 = (α ∗ 𝐆 + β ∗ 𝐀𝟐𝟐),  

with α = 0.95, β = 0.05. The proportions of α and β were used from the default values in the 

software BLUPF90 (Misztal et al., 2002). 

Prediction of genomic BVs and estimation of variance components were performed with the 

programs implemented in the software BLUPF90 (Misztal et al., 2002). BVs obtained from 

single-step procedure were denoted ssGEBVs. 

 

Assessment of predictive ability  

Five-fold cross validation. To assess the predictive ability, a five-fold cross validation with 

20 random replicates was performed. As a measure of accuracy, the correlation between 
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DRPs and genomic BVs being either DGVs, GEBVs or ssGEBVs, was calculated in the 

validation set for each run and averaged over folds.  

Forward prediction. To mimic a real situation in animal breeding, the data set was divided 

into a reference and validation set by the year of birth. Animals that were born before 2011 

belonged to the reference set, whereas the youngest animals born from 2011 to 2014 belonged 

to the validation set. Predictive ability was calculated based on the correlation between DRPs 

and genomic BVs, which were either DGVs, GEBVs or ssGEBVs. Genomic BVs for the 

validation set were calculated based on reference individuals only using information that were 

available for animals that were born before 2011. 

Additionally, we conducted a forward prediction to assess the predictive ability, expressed as 

correlation between corrected phenotype (yc) and different genomic BVs (DGV, GEBV or 

ssGEBV) for young genotyped validation animals. The reference set size remained as before. 

Due to the small number of genotyped LW animals, we performed this forward prediction 

only for young LR animals. 

 

MME reliabilities in forward prediction scenarios 

Theoretical reliabilities of the corresponding BVs for the youngest animals (from forward 

prediction) were calculated from the inversion of the mixed model equation (MME; 

Henderson, 1975; Tier and Meyer, 2004) and averaged over the youngest animals for the 

different genomic methods. The theoretical reliability (𝐫𝟐) of the corresponding BV for an 

individual (i) was calculated as 

𝐫𝐢
𝟐 = 1 −

𝐒𝐄(𝐠𝐢)
𝟐

σg
2 ,  

where 𝐠𝐢 was the corresponding BV of the i
th

 individual, 𝐒𝐄(𝐠𝐢) was the standard error of the 

corresponding BV and σg
2 was the corresponding genetic variance calculated from the 

genomic model (Tier and Meyer, 2004; Hayes et al., 2009b). 

Furthermore, to evaluate the quality of prediction for different groups of animals, theoretical 

reliabilities for EBV and ssGEBV were calculated and averaged within groups for all 

available animals. Used animals were classified according to their available information: For 

groups with phenotypes (P; own and/or progeny), BVs were calculated based on all available 

information. For groups of young genotyped boars and sows, BVs were calculated based on 
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reference animals only. Those young animals had no own or progeny performance (nP) and 

were denoted as selection candidates. Within each group, the correlation between EBVs and 

ssGEBVs was calculated separately.  

 

RESULTS 

Descriptive analysis 

Descriptive analysis of the raw data for LR and LW sows is show in Table 3.2. On average, 

11.3 (13.8) LR (LW) piglets were born alive per sow and litter, while LR (LW) had on 

average 2.8 (2.6) parities. LR sows farrowed the first time with 360 days of age, LW sows 

with 363.1 days of age. Heritability for NBA calculated from the whole data set (ASReml; 

Gilmour et al., 2009) was 0.19 ± 0.01. This heritability was also used in the de-regression 

procedure for EBVs (Garrick et al., 2009).  

Table 3.2. Structure of the raw data for Landrace (LR) and Large White (LW) sows 

 LR LW 

 𝐱̅ std min max 𝐱̅ std min max 

Number of piglets 

born alive (NBA) 
11.3 2.6 3.0 24.0 13.8 3.1 3.0 25.0 

Age at first 

farrowing (days) 
360.0 23.6 274.0 420.0 363.1 19.2 282.0 420.0 

Interval between 

farrowing (days) 
202.4 89.5 136.0 420.0 212.7 97.5 136.0 420.0 

Parity 2.8 1.2 1.0 4.0 2.6 1.2 1.0 4.0 

 

Assessment of predictive ability  

Five-fold cross-validation. Predictive ability for NBA was calculated with five-fold cross 

validation for a total of 443 genotyped LR animals and a total of 287 all genotyped LW 

animals (Table 3.3). Predictive ability, expressed as correlation between DRP and DGV, was 

on a moderate level with 0.43 ± 0.02 (0.39 ± 0.02) for LR (LW). Correlations between DRP 

and GEBV turned out to be greatest with for LR (LW) animals, while correlations between 

DRP and ssGEBV were slightly higher than with DGV. 
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Table 3.3. Assessment of predictive ability (± standard error of correlation coefficient, SE), 

i.e. correlation (cor) between deregressed proofs (DRP) and different breeding values (DGV, 

GEBV and ssGEBV), for all genotyped (five-fold cross-validation) and young genotyped 

(forward prediction) Landrace (LR) and Large White (LW) animals. Breeding values for 

young genotyped animals were calculated based on reference animals and compared to DRP, 

which were calculated based on all genotyped animals. 

 

Five-fold cross validation Forward prediction 

LR LW LR LW 

COR(DRP
1
, DGV

2
) 0.43 ± 0.02 0.39 ± 0.02 0.08 ± 0.14 0.43 ± 0.11 

COR(DRP,GEBV
3
) 0.52 ± 0.01 0.52 ± 0.01 0.19 ± 0.13 0.40 ± 0.12 

COR(DRP, ssGEBV
4
) 0.43 ± 0.02 0.40 ± 0.02 0.18 ± 0.13 0.45 ± 0.11 

1
DRP = deregressed proofs.

 

2
DGV = direct genomic breeding value. 

3
GEBV = genomically enhanced breeding value. 

4
ssGEBV = single-step genomically enhanced breeding value. 

Forward prediction. Predictive abilities for the youngest genotyped animals for LR and LW 

are shown in Table 3.3. In general, predictive abilities turned out to be substantially higher for 

young genotyped LW animals than for young genotyped LR animals. For young genotyped 

LR animals, correlation between DRP and GEBV was superior to the correlation between 

DRP and DGV and ssGEBV, respectively. In LW, the greatest correlation was measured for 

DRP with ssGEBV, followed by DGV and GEBV. 

Figure 3.1 shows correlations (r) between different genomic BVs, for young genotyped LR 

(upper plots) and LW (lower plots) animals. For young genotyped LR animals, the correlation 

between DGV and ssGEBV was superior to GEBV and ssGEBV and DGV and GEBV, 

respectively. For young genotyped LW animals, the correlation between ssGEBV and GEBV 

was superior to DGV and GEBV and DGV and ssGEBV, respectively.  
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Figure 3.1. Correlation (r) between different breeding values (direct genomic value, DGV; genomically enhanced breeding value, GEBV and 

single-step genomically enhanced breeding value, ssGEBV) for young genotyped animals. Breeding values were calculated based on reference 

animals. DGV were calculated with quasi-phenotype deregressed proof (DRP). Results are presented for Landrace (LR, upper plot) and Large 

White (LW, lower plot). The blue lines display the angle bisector while the orange and red lines show regression lines. 
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Predictive abilities, expressed as correlation between corrected phenotype 𝑦𝑐 and different 

genomic BVs (DGV, GEBV or ssGEBV) for a total of 59 young genotyped LR sows are 

displayed in Table 3.4. BVs were calculated based on reference animals and compared to 

corrected phenotypes, which were calculated based on all animals. Predictive abilities turned 

out to be greatest with ssGEBV, which emphasizes that single-step is superior to GEBVs 

obtained after blending (decreased by 0.05 points) and DGVs from a GBLUP model 

(decreased by 0.14 points).  

Among predictive abilities, Table 3.4 displays regression coefficients of corrected phenotypes 

on different genomic BVs (DGV, GEBVor ssGEBV) for young genotyped LR sows, which 

turned out to be close to 1 with ssGEBV indicating that single-step estimates appear to be less 

biased than GEBV estimates obtained by blending DGVs with EBVs (0.08 points) or DGVs 

(0.20 points). 

Table 3.4. Assessment of predictive ability, expressed as correlation between corrected 

phenotype (𝑦𝑐) and different breeding values (DGV, GEBV or ssGEBV), and regression 

coefficients (slope ± standard error) for 59 young genotyped Landrace (LR) sows. Breeding 

values (BV) were calculated based on reference animals and compared to corrected 

phenotypes, which were calculated based on all genotyped animals. 

Forward Prediction young genotyped LR sows  

BV Cor(𝒚𝒄
1
,BV) Regression of 𝒚𝒄 on BV 

DGV
2
 0.30 0.80 ± 0.33 

GEBV
3
 0.39 0.92 ± 0.29 

ssGEBV
4
 0.44 0.99 ± 0.27 

1𝑦𝑐 = corrected phenotype. 
2
DGV = direct genomic breeding value. 

3
GEBV = genomically enhanced breeding value. 

4
ssGEBV = single-step genomically enhanced breeding value. 

MME reliabilities in forward prediction scenarios 

Theoretical reliabilities calculated from MME for different BVs for young genotyped LR and 

LW animals are displayed in Table 3.5. Reliabilities were calculated based on reference 

animals that were born before 2011. The highest reliability for young genotyped animals was 

calculated for ssGEBV with 0.40 (0.32) for LR (LW), while reliabilities for GEBVs decreased 
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by 0.05 (0.03) points and for DGVs by 0.12 (0.09) points. Reliabilities of genomic BV were 

always higher than those of conventional PAs, and increased by 0.13 (0.11) points for LR 

(LW) animals when applying ssGBLUP. 

Table 3.5. Theoretical reliability from MME (± standard error, SE) for different breeding 

values (PA, DGV, GEBV and ssGEBV) for young genotyped Landrace (LR) and Large 

White (LW) validation animals calculated based on reference animals. 

Forward Prediction LR LW 

PA
1
 0.27 ± 0.014 0.21 ± 0.030 

DGV
2
 0.28 ± 0.009 0.23 ± 0.010 

GEBV
3
 0.35 ± 0.011 0.29 ± 0.013 

ssGEBV
4
 0.40 ± 0.006 0.32 ± 0.012 

1
PA = parental average.

 

2
DGV = direct genomic breeding value. 

3
GEBV = genomically enhanced breeding value. 

4
ssGEBV = single-step genomically enhanced breeding value. 

Table 3.6 shows reliabilities for EBV and ssGEBV for groups of genotyped LR sows and 

boars. Animals belonging to group P provided genomic and phenotypic information (P) for 

the BV estimation. Due to the considered trait, females provided own and/or progeny 

performance of NBA, while for males only progeny performances were available. BVs and 

corresponding reliabilities of P were calculated based on all available information. Animals 

belonging to group nP were young selection candidates with genomic but no phenotypic 

information. Those BVs and reliabilities were calculated based on reference animals. 

Reliabilities of EBV and ssGEBV in group P turned out to be on the same level for 

phenotyped females (0.73 for EBV and 0.74 for ssGEBV). For phenotyped males, a moderate 

increase in reliability from EBV to ssGEBV was observed (by 0.05 points), while the 

correlation compared to phenotyped females slightly decreased (by 0.07 points). The greatest 

increase in reliability from EBV to ssGEBV was observed for young candidates in group nP 

(both approx. by 25 per cent), showing that genomic prediction has the highest potential 

benefit for genotyped animals without own phenotype. Consequently the correlations between 

EBVs and ssGEBVs for young candidates were also low (nP; 0.80 for females and 0.67 for 

males), while it was 0.98 in the group with phenotyped sows (P).  



3
rd

 CHAPTER           EMPIRICAL COMPARISON OF GENOMIC METHODS 83 

 

Table 3.6. Theoretical reliability (± standard error, SE) of conventional estimated breeding 

value (EBV) and single-step genomically enhanced breeding value (ssGEBV) for different 

groups of genotyped Landrace (LR) animals. Animals were grouped according to provided 

information. For groups with phenotypes (P, own and/or progeny), breeding values were 

calculated based on all available information. For groups of young genotyped boars and sows, 

breeding values were calculated based on reference animals. Those young animals had no 

own or progeny performance (nP). 

   Reliability of  

Genotyped groups 
Number of 

animals 
EBV

1
 ssGEBV

2
 

Cor(EBV 

and 

ssGEBV) 

P 

Sows with own and/or progeny 

phenotype 
232 0.73 ± 0.01 0.74 ± 0.01 0.98 

Boars with progeny phenotype  263 0.60 ± 0.01 0.65 ± 0.02 0.91 

nP 

Young sows  59 0.33 ± 0.01 0.41 ± 0.01 0.85 

Young boars  38 0.32 ± 0.02 0.40 ± 0.01 0.67 

1
EBV = conventional estimated breeding value. 

2
ssGEBV = single-step genomically enhanced breeding value. 

For some genotyped animals, no parent information and corresponding PAs were available so 

that we could not calculate DRPs for those animals. Thus, these genotyped animals were 

removed from the analysis. Single-step can ignore filter criteria for calculating pseudo-

observations and includes all data for the prediction of BVs. Thus, we were able to estimate 

EBV, GEBV and ssGEBV with corresponding theoretical reliability from the inverse of 

MME. Because most of the LR animals were included in our analysis, this approach was 

performed for a total of 137 excluded LW animals, which were mainly boars without progeny 

phenotypes. For excluded LW animals, EBVs obtained from BLUP had an average reliability 

of 0.12. GEBVs obtained after blending and ssGEBVs obtained from single-step were on 

average 0.36 (both) with an increased accuracy of 0.22 for GEBV and 0.20 for ssGEBV 

compared to EBV. 

 

DISCUSSION 

In the current study for German Landrace and Large White populations, we basically 

compared four methods for evaluation of NBA: conventional parent average (PA), which is 

the conventional breeding value for a young animal without own or progeny performance, the 
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direct genomic value (DGV) calculated with genomic BLUP (GBLUP), a genomic enhanced 

breeding value (GEBV) obtained by blending the DGV with the conventional EBV, and 

genomically enhanced breeding values obtained from a single-step GBLUP (ssGEBV).  

A comparison with other studies shows that the estimated heritability of NBA h
2
 = 0.19 was 

close to literature means (Rothschild and Ruvinsky, 1998; Huby et al., 2003; Putz et al., 

2015). Compared to Huby et al. (2003), average NBA was larger (approx. 1.6 piglets born 

alive more) for both breeds in our study, reflecting the recent genetic trend in this trait. 

Compared to our study, Putz et al. (2015) recorded nearly the same average performance for 

NBA with 11.47 (10.86) piglets born alive for LR (LW). 

In general, multi-step evaluations are rather complex and susceptible to errors, which have 

been observed in publications (e.g. in Mistzal et al., 2013). Single-step provides a unified 

approach which, in theory, has the following advantages: (i) it does not rely on pseudo-

observations, (ii) it weighs all information properly, (iii) it accounts for preselection bias of 

genomically selected parents without phenotypes and (iv) it provides more accurate genomic 

BVs than e.g. multi-step approaches (Aguilar et al., 2010; Legarra et al., 2014).  

Similar to results in the literature (Christensen et al., 2012; Guo et al., 2015) we also found 

that predictive abilities, measured as correlation between DRP and BV, showed that in 

general methods accounting for genomic information were more accurate than methods based 

on pedigree information alone. In genomic prediction, realized relationships among 

individuals are captured by marker information and might explain why genomic methods 

provided better predictabilities (Guo et al., 2015). Single-step and selection-index blending 

mainly uses the same information but single-step method still performed similarly or slightly 

better than selection-index blending in forward prediction, which is the case of highest 

practical relevance (Table 3.3). This might be attributable to the use of raw data in single-step 

instead of pseudo-observations like in multi-step. Also, selection-index blending involves two 

steps, where in the second step possible uncertainty from the first step is not properly taken 

into account (Christensen and Lund, 2010) and therefore might cause prediction problems 

(Table 3.3). Predictive ability for young LW candidates decreases with blending compared to 

GBLUP, which is rather surprising due to the fact that blending in principle uses more 

information for predictions than GBLUP. This could be partly explained by the quality of the 

empirical data like e.g. low and/or heterogeneous reliabilities of traditional EBVs. In any 
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case, blending is based on various assumptions which might not hold in the present data 

constellation. 

In five-fold cross validation (Table 3.3), predictive abilities turned out to be higher for GEBV 

than for ssGEBV, a pattern that we did not observed in the forward prediction scheme One 

possible reason might be that the set-up of the single-step system was not optimal in the 

present data (see further discussion about that below) and this becomes more obvious in the 

case a breeding value of an individual in the validation set contains information from the 

individual’s genotype but potentially also from phenotypic observations of progeny which can 

be the case in a cross-validation scheme as individuals are not ordered by age.  

Reliabilities of EBVs for individuals were rather small in this data set. Subsequently, de-

regression might not work properly and corresponding DRPs might not be accurate enough. 

To evaluate whether it would be a better option to use EBVs as response variable directly, we 

exemplary calculated predictive abilities, expressed as correlation between EBV and genomic 

BV, for a five-fold cross validation. As expected, the correlations were on a higher absolute 

level than with DRP, but the overall pattern of predictive abilities was nearly the same as with 

DRP (results not shown). Since using EBVs and DRPs leads to basically the same 

conclusions, we only report DRP-based results to avoid redundancy. 

Predictive ability for NBA for young genotyped animals calculated with forward prediction 

was generally low, especially for young genotyped LR animals. This could be due to the low 

heritability of NBA and the low number of genotypes available for LR and LW. Ibañez-

Escriche and Gonzalez-Recio (2011) suggested that genomic prediction could be of special 

interest when the accuracy of selection was generally low, as well as for low heritability traits 

or traits that can only recorded directly in one sex, as is the case for NBA here. Prediction of 

young female candidates was generally more accurate than for young male candidates (results 

not shown), for which we also observed some outliers, which generally might lead to a poorer 

prediction for this breed (especially for LR). Besides the low heritability of the considered 

trait, another reason for poor predictions could be the generally low number of genotyped 

progenies per boar (2.74 for LW and 2.87 for LR) in combination with low reliabilities of 

EBVs for boars. Especially for traits with low heritability, larger numbers of genotypes and 

phenotypes are required to obtain an acceptable accuracy for genomic predictions (Calus and 

Veerkamp, 2007).  
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Since reliabilities for pseudo-observations (DRP) of reference animals were also rather 

moderate (0.27 for LW and 0.40 for LR), obtaining acceptable reliabilities might become 

difficult. It is also rather surprising that predictive abilities for young LW were greater than 

for young LR animals, although the number of genotyped animals for LW was lower than for 

LR. This might be an artifact of the small data size and/or might be due to the structure of 

reference and validation set. Only a few parent-offspring-links between reference and 

validation set in both breeds existed, but large quantities of really close relationships between 

individuals of reference and validation set were missing. The genotyping strategy of the small 

pig breeding organization mainly focused on representing the whole population of LW and 

LR animals and secondly to create close genetic links between reference and validation set. 

Thus, genomic relationships between reference and validation set were on average rather 

small for LW animals (0.0050) and even smaller for LR (0.0004). The composition of the 

reference population is as important as the reference size (Lourenco et al., 2015b) and there is 

a potential for improvement of both in this study. 

Due to the small population size of LR and LW and to assess the variation of predictive 

abilities of the different genomic methods, we calculated bootstrap predictive abilities for 

randomly sampled candidates as described in Cuyabano et al. (2015). Predictive abilities, 

expressed as correlation between DRPs and genomic BVs, were calculated for each of the 

randomly sampled sets of candidates and averaged over sets (Appendix 3.1). As expected, the 

calculated predictabilities varied between sampled sets. Predictive abilities resulting from 

bootstrapping turned out to be on average slightly lower than predictive abilities of the 

original genomic models for LW and LR, while the ranking of the three models did not 

change compared to the original genomic models. The maximum sampled predictive abilities 

for both breeds were higher than those from the original genomic models indicating that with 

sufficient more individuals the predictive ability might increase. The ranges for predictive 

abilities (± standard deviation) for LR (LW) varied between 0.25 ± 0.057 (0.35 ± 0.071) 

points for GBLUP, 0.28 ± 0.045 (0.33 ± 0.072) for blending and 0.22 ± 0.048 (0.35 ± 0.069) 

for ssGBLUP. Overall, bootstrap sampling did not increase the predictive ability of genomic 

prediction but could be a helpful tool to determine the variation of predictive ability for the 

different genomic methods (Mikshowsky et al., 2016).  

In this multi-step methods, the dependent variable for predictions are pseudo-observations 

(DRP), while in single-step the independent variable is the raw-phenotype or a corrected 

phenotype. Correlations (predictive abilities) between DRP and genomic BVs from forward 
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predictions (Table 3.3) were generally smaller than obtained between yc and genomic BV for 

young genotyped LR animals (Table 3.4). Both results indicated that predictions with 

ssGBLUP were preferable to blending and GBLUP and the calculated regression coefficient 

of yc on ssGEBV (close to 1) supported this conclusion. 

In this study, young genotyped animals showed higher theoretical reliabilities for blending 

and ssGBLUP than PA and DGV (Table 3.5). Usually, the average of the theoretical 

reliability is similar to the prediction accuracy, unless the trait is under strong selection 

(Bijma, 2012). In this study, (young) genotyped animals were selected based on PA and then 

genotyped. BVs of those animals are only expected to be unbiased, if those (young) animals 

were a random sample (Su et al., 2012), which is not the case here. In these cases, the 

predictive ability is lower because it accounts for selection. Table 3.5 showed that forward 

predictions, especially for LR (Table 3.3), were less accurate than expected, which could be 

due to the following reasons: (i) candidates are selected, (ii) DRPs might not be well 

estimated and/or (iii) the small amount of data caused inflation of prediction ability, which is 

quite common in small genotyped populations. Single-step GBLUP can avoid a bias due to 

preselection of young animals on Mendelian sampling variations and thus should be less 

biased (Su et al., 2012). 

Since there might be a scope to improve predictive accuracy and reduce bias of genomic 

predictions with such small empirical data sets by various means, we exemplary performed 

analyses putting 𝐆 and 𝐀 on a comparable scale by sophisticated weighting and scaling 

strategies (Christensen et al., 2012; Su et al., 2012; Misztal et al., 2013) as e.g. described in 

Vitezica et al. (2011) or Meuwissen et al. (2011). Furthermore, we used base allele 

frequencies (Gengler et al., 2007) instead of actual allele frequencies estimated from markers 

for calculating 𝐆 to be analogous to 𝐀. In this approaches, we used both frequencies (base and 

actual) for calculating 𝐆 and afterwards adjusted 𝐆 according to Meuwissen et al. (2011). 

Predictive abilities from five-fold cross validation and forward prediction turned out to be 

almost equal to the ones obtained with 𝐆 according to VanRaden et al. (2007) (Table 3.3). 

Vitezica et al. (2011) showed that tuning 𝐆 helped to account for selective genotyping of 

animals and therefore should provide more accurate predictions, which we cannot confirm 

with these empirical data sets. According to Meuwissen et al. (2011), the correction for base 

level inbreeding does provide an improved genomic relationship matrix 𝐆. Since there was 

hardly any difference between predictive abilities obtained with the approach suggested by 

Meuwissen et al. (2011) compared to predictive abilities from the original calculation of 𝐆 
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(VanRaden et al., 2007), irrespective of which allele frequencies we used, scaling 𝐆 as 

described in Meuwissen et al. (2011) led to no improvement. Accordingly, we also checked 

for correlations between off diagonal elements of 𝐆 (VanRaden et al., 2007) and 𝐀, which 

turned out to be rather high for LW (0.82) and LR (0.88), which indicated a reasonable 

pedigree quality and provided no indication of major genotyping errors. Values for genomic 

inbreeding and pedigree-based inbreeding of genotyped individuals from the corresponding 

relationship matrices were both on average 0.003 ± 0.025 (for LW) and 0.009 ± 0.023 (for 

LR). In conclusion, an adjustment of 𝐆 in order to substantially increase the predictive ability 

proved to be not successful for both small empirical data sets. 

Single-step GBLUP has been applied in various livestock studies (e.g. Aguilar et al., 2010; 

Chen et al., 2011; Guo et al., 2015; Lourenco et al., 2015a; Lourenco et al., 2015b). In 

general, these studies showed that single-step methods produced higher predictabilities than 

pedigree-based and multi-step methods for varying production and fertility traits of different 

species. In summary, our results were largely in agreement with these previous studies. 

 

CONCLUSION 

Estimation of accurate genomic BVs in populations with low number of genotyped animals is 

generally problematic for highly selected traits (Lourenco et al., 2014). The realized accuracy 

of genomic evaluation is dependent on many factors, including the quality of genomic data 

and the structure of the population (Misztal et al., 2013). Although, using the single-step 

approach to calculate more accurate breeding values is not clearly outperforming the blending 

approach in our data set, it might be a good alternative when a reasonable number of 

genotypes become available. In moderately sized pig breeding organizations, the decision 

which genomic method should be used in future needs to be monitored by ongoing validation 

assessments. Especially when some results do not conform with expectations, it is particularly 

important to regularly update the reference set. Single-step is relatively easy to apply with 

available software (Misztal et al., 2002) without a need to calculate DRPs or to construct an 

approximate selection-index for blending. Thus, it is recommended as the more consistent and 

robust approach to be used with typical data structures in moderately sized pig breeding 

organizations. 
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APPENDIX 

APPENDIX 3.1: RANGE OF PREDICTIVE ABILITIES FROM BOOTSTRAPPING CANDIDATES (FORWARD PREDICTION; ± SE OF 

CORRELATION COEFFICIENT) 

 Landrace Large White 

 Boostrapped samples  Bootstrapped samples  

 Min Mean Max Full set Min Mean Max Full set 

GBLUP
1
 0.00 ± 0.11 0.08 ± 0.11 0.25 ± 0.11 0.08 ± 0.14 0.25 ± 0.15 0.43 ± 0.13 0.60 ± 0.10 0.43 ± 0.11 

Blending 0.05 ± 0.11 0.18 ± 0.10 0.33 ± 0.10 0.19 ± 0.13 0.24 ± 0.15 0.39 ± 0.13 0.57 ± 0.11 0.40 ± 0.12 

ssGBLUP
2
 0.00 ± 0.11 0.07 ±  0.11 0.22 ± 0.11 0.18 ± 0.13 0.27 ± 0.15 0.44 ± 0.13 0.62 ± 0.09 0.45 ± 0.11 

1
GBLUP = genomic BLUP. 

2
ssGBLUP = single-step genomic BLUP. 
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ABSTARCT 

Records of a German pig breeding organization comprising 78,749 litters from 22,116 dams 

from four different dam lines born from 2010 to 2016 were used for the analysis (data set 1). 

Records of six consecutive parities of 3,673 dams with 22,038 litters beginning with the first 

parity were included in data set 2. A third data set was based on piglets and comprised of 

1,780,753 piglets from 36,612 dams (data set 3). A comparison of different models with 

variable selection was conducted for estimation of variance components. Animal models with 

repeated measurements as well as bivariate models were used to estimate variances and 

covariances for the animal genetic, phenotypic and permanent environmental component. 

Based on this genetic parameters, heritabilities and genetic correlations were derived for the 

following reproductive traits: number born alive (NBA), farrowing interval (FI), number 

weaned (NOW), mothering ability (MA) and piglet survival (PS). The goodness of the fit of 

the corresponding models can be determined by their Akaike Information Criterion (AIC). 

Based on different single-trait repeatability animal models, estimates of heritability range 

between 0.11 and 0.14 for NBA; between 0.10 and 0.15 for FI; between 0.06 and 0.12 for 

NOW; between 0.08 and 0.15 for MA and between 0.08 and 0.10 for PS, respectively. 

Estimates of h
2
 obtained from the bivariate analysis were 0.12 for NBA; between 0.11 and 

0.15 for FI; between 0.06 and 0.14 for NOW and between 0.09 and 0.12 for MA, respectively. 

Genetic correlations between NBA and NOW were on average 0.80, while genetic 

correlations varied between -0.30 and -0.45 for NBA and MA, 0.01 and 0.05 for FI and 

NOW, 0.09 and 0.10 for FI and MA and -0.05 and 0.04 for FI and NBA, respectively. 

Although the estimates of h
2
 for reproductive traits were low, traits are heritable and genetic 

variances are viable for selection. 

 

Key words: genetic parameter, pig, reproduction traits 
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INTRODUCTION 

Improvement of litter size is an economical important breeding goal in swine and included in 

most breeding schemes (Rydhmer, 2000). Under commercial management, the number of 

piglets born alive is reliably recorded and the trait of interest for selection in dam lines (Irgang 

et al., 1994). However, number of piglets born alive or born alive per litter and sow often is 

still the only reproduction trait in the selection process. Another interesting trait could be 

piglet survival, which can be determined in two ways: first, piglet survival itself, where it is 

independent of which sow the piglet was nursed or weaned and second, mothering ability or 

number of weaned piglets of a sow, which include the number of adopted piglets but exclude 

the number of piglets transferred to another sows. 

Therefore, knowledge of genetic parameters of reproduction traits is necessary to estimate 

accurate breeding values, to combine different fertility traits in selection and to optimize 

breeding schemes (Roehe and Kennedy, 1995). The objective of this study is to provide 

estimates of genetic parameters for reproductive traits and to evaluate an appropriate model 

for those traits for the routine breeding value estimation of a German pig breeding 

organization. 

 

MATERIAL AND METHODS  

Animals and Data 

Farrowing records of four dam lines from were obtained from a German pig breeding 

organization. Records of litters born from 2010 to 2016 were used in this study. Traits of 

interest were number of piglets born alive per litter of a sow (NBA), farrowing interval (FI; 

calculated according to ten Napel et al., 1995) defined as the interval between weaning and 

successful insemination, number of weaned piglets per litter of a sow (NOW; including the 

number of adopted piglets and excluding the cross-fostered piglets), mothering ability (MA) 

of a sows defined as NOW divided by the sum of weaned and potentially weaned piglets 

(ptNOW, equals sum of weaned and not weaned piglets of a sow) and piglet survival (PS; 

related to biological litter) referred to as piglet of a sow, that survived the nursing period, 

independent of which sow (nurse or biological dam) it was nursed, respectively. A quality 

control was performed using the following limits: pregnancy time: 81-149d, farrowing 

interval: 18-39d, age at first farrowing: 271-549d, interval between farrowing: 111-279d, time 

between insemination and fertilization: 0-59d, age of sow at farrowing: 271-2799d, number of 

piglets born alive: 1-30 and number of nursed piglets: 3-20. 
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In total, 78,749 litters from 22,116 dams from four different dam lines remained for analysis 

(data set 1): German Landrace (n=45,069), German Large White (n=32,856), Schwaebisch 

Haellisch (n=607) and Leicoma (n=217). Records of six consecutive parities of sows (3,673 

dams) beginning with the first parity formed data set 2, comprising only those sows that had 

complete records for the first sixth parities: German Landrace (n= 12,678), German Large 

White (n= 9162), Schwaebisch Haellisch (n=138) and Leicoma (n=60). As boar of litter, 13 

different breeds were used to produce pure-bred piglets within dam line and crossbred piglets 

with sire breeds such like Pietrain (n=14,667 in data set 1 and n=3,934 in data set 2) and 

Duroc (n=2,335 in data set 1 and n=570 in data set 2). Data set 3 was based on piglet data and 

was used to estimate the piglet survival. In total, 1,780,753 piglets from 36,612 dams 

(German Landrace (n=20,696), German Large White (n=15,362), Schwaebisch Haellisch 

(n=346) and Leicoma (n=208), respectively) were used for this analysis. 

 

Statistical Analysis 

Variance components were estimated using the software ASReml (Gilmour et al., 2009 ; 

Version 3.0 and 4.1). All analyses were completed with single and bivariate trait models. 

Bivariate analyses comprised two different approaches: first, to partly account for bias by 

involuntary or directional selection from parity to parity, the first parity of a certain trait was 

considered as different trait compared to the following five parities (Rothschild et al., 1979; 

Alfonso et al., 1997) and secondly, two different traits were used in the analysis for all 

parities. 

An animal model with repeated measurements was used in which all traits were treated as 

trait of the dam. The statistical model used to describe the data was as follows:  

𝒚 = 𝑿𝒃 + 𝒁𝒂 + 𝑾𝒑 + 𝒆 (I) 

where 𝒚 represent the vector of observations for the different dam traits (NBA, MA, NOW, 

FI) for all parities (I, data set 1), for the first parity and for the second to sixth parity (data set 

2), respectively, 𝒃 the vector of fixed effects, 𝒂 the vector of random additive genetic effects 

of animals ~ N(0, 𝑨𝜎𝑎
2), 𝒑 the vector of permanent environment effects~ N(0, 𝑰𝜎𝑝𝑒

2 ) and 𝒆 the 

vector of residual effects ~ N(0, 𝑰𝜎𝑒
2). Matrices 𝑿,  𝒁 and 𝑾 are incidence matrices, 𝑨 is the 

additive genetic relationship matrix and 𝜎𝑎
2, 𝜎𝑝𝑒

2 and 𝜎𝑒
2 are direct, permanent environment and 

residual variances, respectively. 
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The following two bivariate animal models with repeated measurements were used:  

[
𝒚𝟏

𝒚𝟐
] =  [

𝑿𝟏 𝟎
𝟎 𝑿𝟐

] [
𝒃𝟏

𝒃𝟐
] + [

𝒁𝟏 𝟎
𝟎 𝒁𝟐

] [
𝒂𝟏

𝒂𝟐
] + [

𝟎 𝟎
𝟎 𝑾𝟐

] [
𝟎
𝒑𝟐

] + [
𝒆𝟏

𝒆𝟐
] (II) 

    [
𝒚𝟏

𝒚𝟐
] =  [

𝑿𝟏 𝟎
𝟎 𝑿𝟐

] [
𝒃𝟏

𝒃𝟐
] + [

𝒁𝟏 𝟎
𝟎 𝒁𝟐

] [
𝒂𝟏

𝒂𝟐
] + [

𝑾𝟏 𝟎
𝟎 𝑾𝟐

] [
𝒑𝟏

𝒑𝟐
] + [

𝒆𝟏

𝒆𝟐
] (III) 

where 𝒚𝟏 and 𝒚𝟐 represent observations in the different parities for the different traits (II, 𝒚𝟏 

= first parity and 𝒚𝟐 = second to sixth parity, data set 2) or different combinations of the 

different traits for all parities (III, NBA, NOW, FI, MA, data set 2). The vectors 𝒃𝟏 and 𝒃𝟐 

represent the fixed effects, 𝒂𝟏 and 𝒂𝟐 are the random additive genetic effects, 𝒑𝟏 and 𝒑𝟐 are 

the permanent environment effects and 𝒆𝟏 and 𝒆𝟐 the residual effect for trait 1 and trait 2, 

respectively. Matrices 𝑿𝒇, 𝒁𝒇 and 𝑾𝒇 (f=1, 2) are the incidence matrices. It assumed that 

permanent environmental effect, animal and error are independently distributed with mean 

zero and variance: 

𝑽 [
𝒂

𝒑𝒆
𝒆

] =  [
𝑮 ⊗  𝑨 𝟎 𝟎

𝟎 𝑸 ⊗  𝑰 𝟎
𝟎 𝟎 𝑹 ⊗  𝑰

] 

𝑮 =  [
𝝈𝒂𝒊𝒊

𝟐 𝝈𝒂𝒊𝒋

𝝈𝒂𝒋𝒊 𝝈𝒂𝒋𝒋
𝟐 ], 𝑸 =  [

𝝈𝒑𝒆𝒊𝒊
𝟐 𝝈𝒑𝒆𝒊𝒋

𝝈𝒑𝒆𝒋𝒊 𝝈𝒑𝒆𝒋𝒋
𝟐 ], 𝑹 =  [

𝝈𝒆𝒊𝒊
𝟐 𝝈𝒆𝒊𝒋

𝝈𝒆𝒋𝒊 𝝈𝒆𝒋𝒋
𝟐 ], 

where ⊗ is the Kronecker product, I is the identity matrix equal to number of observations, A 

the pedigree relationship matrix, G (Q and R) is the variance covariance matrix of random 

animals effect (permanent environmental and residual effects). Variances and covariances for 

trait 1 (i) and trait 2 (j) are defined as follows: additive genetic variance for trait 1 (𝝈𝒂𝒊𝒊
𝟐 ) and 2 

( 𝝈𝒂𝒋𝒋
𝟐 ) and additive genetic covariance between traits (𝝈𝒂𝒋𝒊 = 𝝈𝒂𝒋𝒊); permanent environmental 

variance for trait 1 (𝝈𝒑𝒆𝒊𝒊
𝟐 ) and 2 ( 𝝈𝒑𝒆𝒋𝒋

𝟐 ) and permanent environmental covariance between 

traits (𝝈𝒑𝒆𝒋𝒊 = 𝝈𝒑𝒆𝒋𝒊), and residual variance for trait 1 (𝝈𝒆𝒊𝒊
𝟐 ) and 2 ( 𝝈𝒆𝒋𝒋

𝟐 ) and residual 

covariance between traits (𝝈𝒆𝒋𝒊 = 𝝈𝒆𝒋𝒊), respectively. Due to computational limitations and no 

convergence, we did not run or represent results of a multivariate analysis. For the estimation 

of variance components of PS in data set 3, a piglet-based logistic animal model with repeated 

measurements (I) and binary coding for piglet survival at weaning (0=not survived and 1= 

survived) was used. 
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Fixed and random effects and covariables 

For all reproduction traits, various fixed effects and covariables were used to evaluate the 

appropriate model for each trait. All these effects were adopted from the used models of the 

pig breeding company. All models included a fixed effect for herd year season (HYS) and 

breed of the dam (breed, n=4) as fixed effects. Additionally, the following fixed effects could 

be used as variable in the model: boar of the litter (n=2,625 for data set 1, n= 1,756 for data 

set 2) and parity. Age of sow at farrowing (linear and quadratic), farrowing interval, nursing 

time (linear and quadratic), number of weaned piglets, litter size, competing piglets (number 

of competing piglets at the nurse sow/teat) and number of cross-fostered piglets can be used 

or selected as covariable for the models.  

Selected variables and corresponding models for estimating the variance components of NBA 

are shown in Appendix 4.1 and for FI (NOW, MA, PS) in Appendix 4.2 (4.3, 4.4, 4.5), 

respectively. For the estimation of genetic correlations between the reproductive traits, 

various two-trait animal models were used as shown in Appendix 4.6. 

 

Model comparison 

To receive an estimator of the relative quality of statistical models for a given data set, we 

calculated the Akaike Information Criterion (AIC; Akaike, 1974; Gilmour et al., 2009) from 

ASReml. AIC was used to assess the quality of each model and goodness of the fit, 

respectively. The model with the lowest AIC was considered optimal. 

 

RESULTS AND DISCUSSION  

Descriptive statistics 

Means and standard deviations of the different traits and two data sets are presented in Table 

4.1. Compared to literature, means for NBA (13.19 and 13.52) and NOW (12.07 and 12.39) 

were as expected for both data sets. FI was as desired low and MA on an acceptable high 

level (0.92).  
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Table 4.1. Number of observation (n), means (x̅) and standard deviations (± SD) for number 

of piglets born alive (NBA), farrowing interval (FI), piglet survival (PS) and number of 

weaned piglets of a sow (NOW) and mothering ability (MA) for data set 1 and data set 2. 

Trait 

Data set 1 

(n= 78,749) 

Data set 2 

(n=22,038) 

𝐱̅ ± SD 𝐱̅ ± SD 

NBA 13.19 2.92 13.52 2.82 

FI 6.20 3.23 5.87 2.77 

NOW 12.07 2.72 12.39 2.63 

MA 0.92 0.11 0.92 0.10 

PS 12.08 2.72 12.38 2.62 

On average, total number of born piglets (TNB), NBA and NOW increased from parity to 

parity (approx. until fifth parity) and slightly decreased afterwards. FI between litters 

decreased until the eight litter and increased afterwards (Figure 1). From the first to the 

second parity, there was a greater improvement for every trait relative to the other parities 

(Figure 1), which lead among other things to analyze and compare the first and the following 

parities as different traits in some models, such as Boesch et al. (1999) or Hanenberg et al. 

(2001).  

 

Figure 1: Mean value for different 

maternal traits as a function of parity for 

data set 1. 

 

Figure 2: Mean value for different 

maternal traits as a function of parity for 

data set 2. 

In the first parity, roughly one piglet less was born and weaned than in the following five 

parities (data set 2, Figure 2). The amount of stillborn piglets (NBD) increased with parity 

number from 3.3% (first parity) to 7.8 % (sixth parity). The number of losses at weaning 

(NNW) increases from 0.91 piglet in the first parity up to 1.34 piglets in the sixth parity. 
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However, the number of weaned piglets increased on average by approx. 1 piglet per litter 

from first to sixth parity (Figure 2), because of the fact that in total more piglets were born. 

 

Variance components and heritability 

Estimates of genetic and phenotypic variance, permanent environment, heritability, 

repeatability and genetic and phenotypic correlation are reported for the different traits and 

models in Table 4.2 to 4.6, respectively.  

For NBA (Table 4.2), heritabilities were generally small (0.14 for model 1) but in the range of 

literature reports (Southwood and Kennedy, 1990; Roehe and Kennedy, 1995; Chen et al., 

2003; Huby et al., 2003; Putz et al., 2015). Splitting NBA into two different traits led to a 

different magnitude of heritability for NBA1 (approx. 0.14) and NBA2-6 (approx. 0.11), 

irrespective of which model 2 was used. Different magnitudes have also been reported by 

Alfonso et al. (1997). Genetic correlations between NBA1 and NBA2-6 in the two-trait 

analysis (model 3) are low (0.55), which suggested treating NBA1 and NBA2-6 as genetically 

different traits, as suggested by Rothschild et al. (1979).  

Table 4.2: Genetic variance (𝜎𝑎
2), phenotypic variance (𝜎𝑝

2), permanent environment (𝜎𝑝𝑒
2 ), 

heritability (h
2
), repeatability (w

2
), genetic (𝑟𝑔) and phenotypic (𝑟𝑝) correlation of different 

models for number of piglets born alive (NBA). 

Model Trait 𝝈𝒂
𝟐 𝝈𝒑

𝟐 𝝈𝒑𝒆
𝟐  h

2
 w

2
 𝒓𝒈 𝒓𝒑 

Model 1 

1.1 NBA 1.111 7.853 0.364 0.141 0.180   

1.2 NBA 0.109 7.853 0.365 0.141 0.180   

Model 2 

2.1 NBA1 0.949 6.711  0.141    

2.2 NBA2-6 0.782 7.347 0.558 0.106 0.182   

Model 3 

3.1 
NBA1 0.796 6.835  0.116  

0.550 0.086 
NBA2-6 0.885 7.322 0.397 0.121 0.175 

 

Heritabilities for FI (Table 4.3) were low (0.11 to 0.14) but in agreement with literature (ten 

Napel et al., 1995; Hanenberg et al., 2001). Hanenberg et al. (2001) found heritabilities for FI 

of 0.14 (first parity) and 0.07 (following parities). Compared to results of ten Napel et al. 

(1995), heritability estimates of FI in our study were lower. The difference might arise due to 

the use of practical on-farm data in this study compared to the selection experiment data of 
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ten Napel et al. (1995). Genetic correlations between FI1 and FI2-6 are moderate (0.72). 

Genetic and phenotypic variances were generally low but even lower for FI2-6.  

Table 4.3: Genetic variance (𝜎𝑎
2), phenotypic variance (𝜎𝑝

2), permanent environment (𝜎𝑝𝑒
2 ), 

heritability (h
2
), repeatability (w

2
), genetic (𝑟𝑔) and phenotypic (𝑟𝑝) correlation of different 

models for farrowing interval (FI). 

Model Trait 𝝈𝒂
𝟐 𝝈𝒑

𝟐 𝝈𝒑𝒆
𝟐  h

2
 w

2
 𝒓𝒈 𝒓𝒑 

Model 1 

1.1 FI 1.311 10.051 0.236 0.130 0.154   

1.2 FI 1.316 10.039 0.218 0.131 0.153   

Model 2 

2.1 FI1 1.397 11.273  0.124    

2.2 FI2-6 0.711 6.457 0.000 0.110 0.110   

Model 3 

3.1 
FI1 1.576 11.212  0.141  

0.715 0.089 
FI2-6 0.718 6.460 0.000 0.111 0.111 

 

Heritabilities for NOW (Table 4.4) for the first parity (NOW1) were higher (approx. 0.12) 

than for the following parities (NOW2-6, approx. 0.06). One reason could be due to the low 

genetic variances in the subsequent parities. Estimates of heritability for NOW in this study 

were in agreement with estimates reported by Southwood and Kennedy (1990), Roehe and 

Kennedy (1995) and Putz et al. (2015) but slightly higher (approx. +0.07) than estimates 

reported by Chen et al. (2003) and Huby et al. (2003), respectively. Genetic correlations 

between NOW1 and NOW2-6 from two-trait analysis (model 3) were moderate with 0.58. 

Table 4.4: Genetic variance (𝜎𝑎
2), phenotypic variance (𝜎𝑝

2), permanent environment (𝜎𝑝𝑒
2 ), 

heritability (h
2
), repeatability (w

2
), genetic (𝑟𝑔) and phenotypic (𝑟𝑝) correlation of different 

models for number of weaned piglets (NOW). 

Model Trait 𝝈𝒂
𝟐 𝝈𝒑

𝟐 𝝈𝒑𝒆
𝟐  h

2
 w

2
 𝒓𝒈 𝒓𝒑 

Model 1 

1.1 NOW 0.725 6.685 0.261 0.109 0.148   

1.2 NOW 0.729 6.686 0.258 0.109 0.148   

Model 2 

2.1 NOW1 0.707 6.121  0.116    

2.2 NOW2-6 0.354 6.063 0.487 0.059 0.139   

Model 3 

3.1 
NOW1 0.715 6.124  0.117  

0.575 0.064 
NOW2-6 0.357 6.083 0.405 0.059 0.125 
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For all models for MA (Table 4.5), genetic (approx. 0.001) and phenotypic (approx. 0.01) 

variances and heritability estimates (range between 0.08 and 0.15) were low, respectively. 

Compared to Hanenberg et al. (2001), values of MA in this study was higher. Hanenberg et al. 

(2001) concluded that mothering ability is a combination of real mothering ability and piglet 

vitality (quality). In most herds, sows with better mothering abilities nurse weak piglets of 

sows with low mothering abilities. Since no correction for quality of the piglet was made in 

Hanenberg et al. (2001) analysis, estimates of heritability for MA are expected to have a 

downward bias (Hanenberg et al., 2001). Genetic correlations between MA1 and MA2-6 from 

two-trait analysis were high (0.73 for model 3.1 and 0.82 for model 3.2).  

Table 4.5: Genetic variance (𝜎𝑎
2), phenotypic variance (𝜎𝑝

2), permanent environment (𝜎𝑝𝑒
2 ), 

heritability (h
2
), repeatability (w

2
), genetic (𝑟𝑔) and phenotypic (𝑟𝑝) correlation of different 

models for mothering ability (MA). 

Model Trait 𝝈𝒂
𝟐 𝝈𝒑

𝟐 𝝈𝒑𝒆
𝟐  h

2
 w

2
 𝒓𝒈 𝒓𝒑 

Model 1 

1.2 MA 0.0009 0.0090 0.0003 0.0996 0.1333   

Model 2 

2.1 MA1 0.0010 0.0103  0.1012    

2.2 MA2-6 0.0013 0.0092 0.0001 0.1456 0.1522   

2.3 MA2-6 0.0007 0.0080 0.0003 0.0813 0.1250   

Model 3 

3.1 
MA1 0.00122 0.01038  0.1177  

0.7372 0.0919 
MA2-6 0.00094 0.00869 0.00009 0.1076 0.1185 

3.2 
MA1 0.00108 0.00980  0.1098  

0.8205 0.0871 
MA2-6 0.00076 0.00809 0.00017 0.0936 0.1150 

 

For PS (Table 4.6 and 4.7), different univariate variants of model 1 were compared. Due to 

large amount of data, data structures and computational limitations and convergence 

problems, bivariate models were not considered. Therefore, genetic and phenotypic 

correlations could not be estimated. Additionally, possible effects of cross-fostering were 

taken into account and each model was calculated with a cross-fostering effect as covariables 

(Table 4.7). Due to the fact, that we had approx. 4,000 cross-fostered piglets (roughly 4% of 

the data set), no major differences between models considering cross-fostering or not arose. 

Irrespective of cross-fostering, heritabilities (ranging from 0.089 to 0.103), genetic (varying 

between 0.304 and 0.402) and phenotypic (varying between 3.749 and 3.939) variances did 

not vary greatly between corresponding models. Putz et al. (2015) obtained estimates of 

heritabilities for the number of piglets born alive according to the biological litter of 0.11 
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(0.12) for Large White (Landrace), which are slightly higher than estimates of PS reported 

from this data. Obtained variance are also higher (Putz et al., 2015) than presented here. 

Another restriction, which might be considered and recorded for future analyses, was the 

aspect of which piglet (light or heavy piglet) was cross-fostered, which was reported to play 

an important role (Knol et al., 2002). To conclude, using cross-fostering as fixed effect in the 

model did not improve the estimations. Putz et al. (2014) suggested to account for cross-

fostering if it occurs in large quantities. However, PS was lowly heritable and its genetic 

variance was large enough to enable selection on that trait.  

Table 4.6: Genetic variance (𝜎𝑎
2), phenotypic variance (𝜎𝑝

2), permanent environment (𝜎𝑝𝑒
2 ), 

heritability (h
2
) and repeatability (w

2
) for piglet survival (PS) without cross-fostering effect. 

Model 𝝈𝒂
𝟐 𝝈𝒑

𝟐 𝝈𝒑𝒆
𝟐  h

2
 w

2
 

Model 1      

1.1 0.402 3.939 0.247 0.102 0.165 

1.3 0.323 3.835 0.222 0.084 0.142 

1.5 0.304 3.783 0.189 0.080 0.130 

1.6 0.335 3.749 0.125 0.089 0.123 

 

Table 4.7: Genetic variance (𝜎𝑎
2), phenotypic variance (𝜎𝑝

2), permanent environment (𝜎𝑝𝑒
2 ), 

heritability (h
2
) and repeatability (w

2
) for piglet survival (PS) with cross-fostering effect. 

Model 𝝈𝒂
𝟐 𝝈𝒑

𝟐 𝝈𝒑𝒆
𝟐  h

2
 w

2
 

Model 1      

1.1 0.402 3.939 0.247 0.102 0.165 

1.3 0.322 3.835 0.223 0.084 0.142 

1.5 0.299 3.780 0.191 0.079 0.130 

1.6 0.338 3.750 0.123 0.090 0.123 

 

In general, estimated variance components depend on the population structure and data set 

which aggravates comparison of differences in variance components with literature estimates 

difficult. Estimates of the heritabilities of sow reproductivity might also be biased due to 

selection. For all traits, lower estimates of heritabilities were obtained in the subsequent 

parities (second to sixth), which might have resulted from reduced additive genetic variances 

due to culling sows with low prolificacy, as was also found by Irgang et al. (1994). Selection 

and culling occurs especially after the first farrowing. This might explain the absolute 

difference in the heritabilities between first parity and second to sixth parity. However, 
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absolute differences were small (<0.1), which indicates that preselection and culling occur but 

have a minor impact. 

Another point was the maternal genetic effect. Southwood and Kennedy (1990), Alfonso et al. 

(1997), Crump et al. (1997) and Chen et al. (2014) reported minor differences in estimates of 

heritability with and without accounting for maternal genetic effects. Chen et al. (2003) 

reported that the percentage of the variance accounted for maternal genetic effect ranged from 

0.00 to 0.02 for NBA and NOW. Furthermore, they reported that only little changes in the 

ranking of the sows on estimated breeding values occurred. Boesch et al. (1999) estimated a 

small portion of maternal genetic variance compared to the total variance and concluded to 

exclude maternal genetic effects from the model. Thus, an animal model with repeated 

measurements for estimation of permanent environmental effects was recommended for litter 

size (NBA) (Boesch et al., 1999). However, Boesch et al. (1999) and Roehe (1998) 

recommended including maternal traits (effects) like individual birth weight or weight at 

weaning into the analysis, especially when cross-fostering was practiced. With respect to the 

analyzed traits, considering birth weights or weights at weaning in our analysis would have 

been desirable, but unfortunately those weights were not available. Rydhmer (2000) included 

that biological (maternal) and fostering (nurse) dam should be included in the model, when 

cross-fostering is heavily applied. Due to the fact, that the proportion of cross-fostering in this 

data set was rather minor (approx. 4 %), maternal (or nurse) genetic effects are not considered 

in the presented models.  

The size of genetic correlations between the first and second to sixth parity was important to 

find appropriate models for selection programs for improvement of reproductive traits (Irgang 

et al., 1994). Generally, genetic correlation of approx. 1 between first and second to sixth 

parity suggest that a single-trait model with repeated measurements (I) should be used for 

estimation of breeding values. Contrary to this, low genetic correlations suggest that first and 

second to sixth parity should be treated as two different traits and that bivariate animal-

models (like model III) should be used for estimation. Accordingly, for FI (𝒓𝒈= 0.71) and MA 

(𝒓𝒈>0.73) with moderate to high genetic correlations a single-trait models should be used. For 

NBA (𝒓𝒈= 0.55) and NOW (𝒓𝒈= 0.58), bivariate models in which first and second to sixth 

parity are treated as different traits should considered as appropriate. However, a current 

limitation of the bivariate model could be increasing computing costs (Irgang et al., 1994) 

which should be taken into account for commercial use. 
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Model comparison 

Results for AIC for each trait and corresponding models are reported in Appendix 4.1-4.5. To 

assess which model and corresponding effects were optimal for which trait; AIC had to be 

compared within each trait, model and data set, respectively. For all models, irrespective of 

single-trait or two-trait model, HYS and Breed are always considered as a fixed effect and for 

this reason are not discussed in detail below. Only additional effects (from variable selection) 

are mentioned in the following. For all models and traits, including boar as random effect did 

not improve the goodness of the model (results not shown). 

For NBA (Appendix 4.1), a single-trait model considering parity and age of sow at farrowing 

turned out to be optimal. In general, considering boar did not improve the fit of the model 

(results not shown). Incorporating farrowing interval into the two-trait analysis did not 

improve the fit of the model (result not shown), while age of sow at farrowing seems to be 

important for the analysis.  

For FI (Appendix 4.2), considering nursing time (linear and quadratic) as fixed effect 

improved the fit of the model more than including age of the sow at farrowing (quadratic), 

especially for the bivariate analysis (result not shown). For the single-trait models, NOW 

should be includes in the analysis to improve the fit of the model.  

For an estimation of NOW (Appendix 4.3), boar, age of farrowing and nursing time should be 

included as fixed effects in presented models.  

In the single-trait models and for the two-trait model for MA (Appendix 4.4), nursing time 

and potentially weaned piglets, parity and boar improve the fit. Age of sow at farrowing 

seems to be important for the analysis of second to sixth parity (model 2.2). 

Considering cross-fostering for the estimation of variance components for PS turn out to be 

generally slightly better. Within each analysis, irrespective of cross-fostered or not cross-

fostered, model 1.1 was the optimal model. Including litter size or competing piglets into the 

model, estimation of variance components did not benefit, which was rather surprisingly 

considering the biological background of those two effects for PS.  

 

Genetic correlation between traits 

Estimates of genetic (𝜎𝑎
2) and residual (𝜎𝑒

2) variance, heritability (h
2
) and genetic correlations 

(𝑟𝑔) between two traits are shown in Table 4.9, respectively. For both models, genetic 
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correlation between NBA and NOW were high (𝑟𝑔>0.78) and favorable. An increase in piglets 

born alive led to an increase in piglets weaned. High genetic correlations between NBA and 

NOW are also reported by McCarter et al. (1987), Kaplon et al. (1991a) and Huby et al. 

(2003). Compared to this study, Chen et al. (2003) and Putz et al. (2015) reported lower 

correlations between NBA and NOW but concluded that this was due to the fact of cross-

fostering.  

Genetic correlations between NBA and MA were negative and moderate with -0.45 and -0.30, 

respectively. An increase in piglets born alive led to a decrease in the mothering abilities of a 

sow, which is unfavorable. Thus, the more pigs a sow had to suckle and feed the harder for 

the sow to raise all piglets. However, this moderate negative correlation could also occur due 

to higher piglet mortality, which is quite difficult to investigate (Knol et al., 2002). Along 

with that, individual birth weight is one of the most important factors for piglet survival (Knol 

et al., 2002). For instance, individual birth weights might be rather small for piglets in large 

litters compared to piglets in smaller litters (Knol, 2001). The Pearson correlation between 

total born (born alive) and not weaned piglets was 0.39 (0.38), indicating that piglet mortality 

should not be ignored in this context. However, this undesirable negative genetic correlation 

was also found by Hanenberg et al. (2001).  

Genetic correlations between FI and NOW (0.01 and 0.05), and MA (0.09 and 0.10) were 

marginal positive for all models and economically unfavorable. Genetic correlations between 

FI and NBA were around zero (0.04 and -0.05). An increase in born alive and weaned piglets 

might increase the farrowing interval between weaning and successfully gestation of the sow. 

Accordingly, fewer litters per sow and year can be realized and less piglets will be weaned. 

However, the farrowing interval between parities was quite acceptable ranging between 6.46 

and 10.12 days.  
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Table 4.9: Genetic variance (𝜎𝑎
2), residual variance (𝜎𝑒

2), heritability (h
2
) and corresponding 

standard error (SE) and genetic correlation (𝑟𝑔) and corresponding standard error (SE) 

between traits for different bivariate models. 

Model Trait 𝝈𝒂
𝟐 𝝈𝒆

𝟐 h
2
 (SE) 𝒓𝒈(SE) 

NOW and NBA 

1.1 
NOW 0.384 5.413 0.063 (0.011) 

0.781 (0.042) 
NBA 0.563 5.958 0.081 (0.012) 

1.2 
NOW 0.475 5.503 0.075 (0.012) 

0.829 (0.031) 
NBA 0.735 6.102 0.101 (0.013) 

MA and NBA 

1.1 
MA 0.001 0.008 0.095 (0.012) 

-0.449 (0.088) 
NBA 0.575 5.960 0.083 (0.013) 

1.2 
MA 0.002 0.008 0.155 (0.015) 

-0.288 (0.078) 
NBA 0.712 6.103 0.098 (0.013) 

NOW and FI 

1.1 
NOW 0.371 5.406 0.061 (0.011) 

0.011 (0.112) 
FI 0.835 6.529 0.113 (0.013) 

1.2 
NOW 0.369 5.404 0.060 (0.011) 

0.049 (0.112) 
FI 0.822 6.525 0.112 (0.013) 

MA and FI 

1.1 
MA 0.001 0.008 0.088 (0.012) 

0.093 (0.095) 
FI 0.835 6.517 0.145 (0.013) 

1.2 
MA 0.001 0.008 0.107 (0.013) 

0.102 (0.091) 
FI 0.768 6.593 0.104 (0.128) 

NBA and FI 

1.1 
NBA 0.544 5.952 0.078 (0.012) 

0.041 (0.104) 
FI 0.821 6.526 0.112 (0.013) 

1.2 
NBA 0.751 6.103 0.103 (0.014) 

-0.053 (0.094) 
FI 0.780 6.520 0.106 (0.013) 

 

Implications and final remarks 

This report of genetic estimations for different reproductive traits was based on data from dam 

lines of a German pig breeding organization. Estimates of additive genetic variance, 

heritability and genetic correlation for the analyzed traits indicate that the amount of additive 

genetic variation available for selection is large enough and that the investigated reproductive 

traits can be improved through selection. Trends observed from the data show that total 

number of born piglets increased by approx. 0.41 piglets per year and number of born alive 

(weaned) piglets by approx. 0.29 (0.25) piglets per year (results not shown). 
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When genetic correlation between parities is clearly distinct from 1, bivariate animal models 

should be used for estimation of breeding values, in which the first parity and subsequent 

parities should be considered as different traits (e.g. for the traits NBA and NOW). However, 

computing time should be taken into account in commercial use. Alternatively, single-trait 

models with repeated measurements can be used for routine breeding value estimations on 

this data set. Single-trait models should also be used for piglet survival, farrowing interval and 

mothering ability.  

Taken the increasing amount of piglets to be weaned into account, piglet survival and 

mothering ability of a sow becomes more important and should be further addressed. Future 

investigations on reproductive traits can also focus on including other genetic effects into the 

models like maternal genetic effect, a genetic effect for the piglet itself and/or a genetic effect 

of the nurse sow for estimation of variance components. Another interesting issue is the 

consideration of individual birth weights or weights at different stages during the nursing 

period to further evaluate different aspects of reproduction traits. However, the above 

mentioned studies will require precise recording of cross-fostering, individual weights, a large 

data set and powerful statistical analysis. 
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APPENDIX 

Appendix 4.1. Different models for estimating the variance components of NBA 

Mode

l 

Trait Fixed effect Covariable AIC 

  HYS
1
 Breed Boar Parity Age of sow 

at 

farrowing  

Farrowin

g interval 

 

Model 1 

1.1 NBA x x  x x x 15,439.62 

1.2 NBA x x  x x  15,429.70 

Model 2 

2.1 NBA1 x x   x x 10,663.14 

2.2 NBA2-6 x x  x x x 13,950.22 

Model 3 

3.1 
NBA1 x x x  x  

4,541.76 
NBA2-6 x x x x x  

1 
HYS = herd year season. 

2 
NBA1-6 = number of piglets born alive for all available parities. 

3 
NBA1 = number of piglets born alive for the first parity.  

4
 NBA2-6 = number of piglets born alive for second to sixth parity.
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Appendix 4.2. Different models for estimating the variance components of FI 

Model Trait Fixed effect Covariable AIC 

  HYS Breed Parity Age of sow at farrowing Nursing time NOW  

     linear quadratic linear quadratic   

Model 1  

1.1 FI
1
 x x x x x x  x 15,929.60 

1.2 FI x x x x  x x x 15,834.66 

Model 2 
 

2.1 FI1 x x x x  x x x 12,492.32 

2.2 FI2-6 x x  x  x x x 12,197.72 

Model 3 
 

3.1 FI1 x x  x  x x  
574.08 

FI2-6 x x x x  x x  
1 

FI1-6 = farrowing interval for all available parities.  
2 

FI1 = farrowing interval for the first parity.  
3
 FI2-6 = farrowing interval for second to sixth parity. 
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Appendix 4.3. Different models for estimating the variance components of NOW 

Model Trait Fixed effect Covariable AIC 

  HYS Breed Boar Parity Age of sow 

at 

farrowing 

Nursing 

time 

 

Model 1 

1.1 NOW
1
 x x x x  x 2,636.70 

1.2 NOW x x x x x x 2,650.50 

Model 2 

2.1 NOW1
2
 x x x  x x 8,631.50 

2.2 NOW2-6
3
 x x x x x x 8,671.50 

Model 3 

3.1 
NOW1 x x x  x x 17,266.1 

NOW2-6 x x x  x x  
1 

NOW1-6 = number of weaned piglets for all available parities.  
2 

NOW1 = number of weaned piglets for the first parity. 
3
 NOW2-6 = number of weaned piglets for second to sixth parity. 
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Appendix 4.4. Different models for estimating the variance components of MA 

Model Trait Fixed effects Covariables AIC 

  HYS Breed Boar Parity 
Age of sow at 

farrowing 
ptNOW

4
 Nursing time  

Model 1 

1.1 MA
1
 x x x x   x -11,276.60 

1.2 MA x x x x  x x -18,050.10 

Model 2 

2.1 MA1
2
 x x x     -8,993.30 

2.2 MA2-6
3
 x x x x x  x -15,247.10 

2.3 MA2-6 x x x x  x x -941.98 

Model 3 

3.1 
MA1 x x x    x 

-8,851.70 
MA2-6 x x x    x 

3.2 
MA1 x x x   x x 

9,748.54 
MA2-6 x x x   x x 

1 
MA1-6 = mothering ability of a sow for all available parities.  

2 
MA1 = mothering ability of a sow for the first parity. 

3 
MA2-6 = mothering ability of a sow for second to sixth parity. 

4 
ptNOW = number of potentially weaned piglets equals sum of weaned and not weaned piglets. 
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Appendix 4.5. Different models for estimating the variance components of PS 

Model Trait Fixed effects Covariables Random 

Effects 
AIC

7
 

  HYS Breed Boar Parity Age of 

sow at 

farrowing 

Nursing 

time 

Litter 

size 

Competing 

piglets
1
 

Cross-

fostered 

piglets
2
 

Boar 

I II 

Model 1    

1.1 PS
3
 x x x x      (x)

6
  2,850.62 4,472.46 

1.2 PS x x x x x x   (x)  6,719.34 6,670.40 

1.3 PS x x x x x x x  (x)  15,276.36 16,150.20 

1.4 PS x x x x x x  x (x)  5,872.32 5,381.66 
1 

Competing piglets
 
= number of competing piglets at nurse sow; equals number of weaned piglets (NOW).  

2 
Binary coding, 0 = not cross-fostered and 1 = cross-fostered.  

3
 PS = Piglet survival. 

4 
PS1 = piglet survival for first parity. 

5
 PS2ff = piglet survival from second parity upwards.  

6 
Equal Model with additional covariable (cross-fostered). 

7
 I =AIC for models without cross-fostering effect, II= AIC for models with cross-fostering effect. 
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Appendix 4.6. Different models for estimating the genetic correlation between reproductive traits 

Model Trait Fixed effects Covariables 

  
HYS Breed Boar Parity Age of sow at 

farrowing 

Nursing 

time 

Farrowing 

Interval 

ptNOW
1
 NOW 

NOW and NBA 

1.1 
NOW x x x x  x    

NBA x x x x x  x   

1.2 
NOW x x x x x x    

NBA x x  x x  x   

MA and NBA 

1.1 
MA x x x x  x  x  

NBA x x x x x  x   

1.2 
MA x x x   x    

NBA x x  x x  x   

NOW and FI 

1.1 
NOW x x x x  x    

FI x x  x x x   x 

1.2 
NOW x x x x x x    

FI x x  x x x    

MA and FI 

1.1 
MA x x x x  x  x  

FI x x  x x x   x 

1.2 
MA x x x   x    

FI x x  x x x    
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NBA and FI 

1.1 
NBA x x x x x  x   

FI x x  x x x   x 

1.2 
NBA x x  x x  x   

FI x x  x x x    

1
ptNOW = number of potentially weaned piglets equals sum of weaned and not weaned piglets. 
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Preface 

This work studies and evaluates the predictability of genomic evaluations of fertility traits for 

practical pig breeding. Different approaches were used, namely, evaluating the effects of 

enlarging the reference population within breed and multi-subpopulations for genomic 

predictions in order to improve the prediction accuracy (Chapter 2) and secondly, a 

comprehensive comparison of different genomic methods for predictions in practical pig data 

(Chapter 3). A comprehensive study of genetic components for fertility traits is presented in 

Chapter 4. The following discussion is devoted to issues arising from these studies and the 

need for further investigation.  

 

Perspectives and challenges of the genomic selection in pig breeding   

The success of a genomic (pig) breeding program depends on many factors, e.g. availability 

of a sufficiently large reference population, a reasonable (i.e. cost-efficient) genotyping 

strategy, sustainability of the genomic program and control of inbreeding. GS implementation 

in pig breeding suffers from small reference (and validation) sets. Although breeding 

companies breed with the same breeds, cooperation with each other is scarce. In addition, the 

early specialization in production (e.g. pig breeder, piglet producer and fattener) encourages 

the development of competing breeding companies and sometimes also replaces traditional 

structures. For a sufficient large reference population in pigs, genotypes of about 500 to 1000 

boars per line with reliable estimated breeding value are required for genomic predictions 

(personal communication, BHZP). The number of boars used in nucleus pig breeding is rather 

small. Boars are only used for a short time and are, compared to bulls, less valuable in 

breeding. Further aspects to be considered are e.g. that recording of phenotypes must be 

standardized across lines and farms, genetic relationships must exist and estimated breeding 

values have to be on the same scale. 

To implement GS, initial financing is crucial; this is only realistic for the nucleus herds. A 

comprehensive genotyping of all male piglets of a litter is desirable, but too expensive in 

regard to cost management. One possibility of a cost-effective alternative is low-density 

genotyping of animals followed by imputing of genotypes to high density genotypes. 

Wellmann et al. (2013) developed an imputation method for a situation in which selection 

candidates are genotyped with a low-density SNP panel but have high-density genotyped 

sires. This method is suggested as a promising strategy for the implementation of GS at 

acceptable costs.  
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Genomic selection in pig breeding 

Potential of multi-populations in practice 

The combination of subpopulations within one breed in order to enlarge the size of the 

reference set as described in Chapter 2 is expected to increase the accuracy of genomic 

prediction. Some studies confirm this expectation, e.g. in cattle (Brøndum et al., 2011; Zhou 

et al., 2014), while other studies show no increase or even a decrease by combining breeds for 

e.g. cattle (Erbe et al., 2012; Olson et al., 2012) or pigs (Boré et al., 2018). Some possible 

factors why the enlargement of the reference set in this thesis (Chapter 2) and in general does 

not lead to the desired effects are discussed below. 

 

Level of family relationships 

Combining populations into one reference population is in theory expected to be beneficial if 

the combined populations are closely related and the number of individuals added to the 

reference set from another population is very large. The combination of closely related 

animals is in accordance with these mentioned theoretical expectations and is presented in 

Chapter 2 in Table 2.3. Adding sows of the same population to enlarge the reference set 

within the population improves the predictive ability of the population due to the high level of 

family relationships between those animals, this effect was also shown for cattle (Plieschke et 

al., 2018). The assumption that adding a large number of individuals from another 

subpopulation would also increase the predictive ability (Figure 2.2 and 2.4) could not be 

confirmed in this thesis, regardless of the fact whether closely or distantly related animals 

were added to the reference set. 

Another aspect is the possible existence of substructures within the (sub-)population, which 

may not be taken into consideration correctly. Using a genomic relationship matrix based on 

VanRaden (2007) and treating all subpopulations in the same manner largely ignores possible 

substructures. Thus, the main interest of this thesis is predicting genomic breeding values 

more realistically through an improved adjustment of the genomic relationship matrix 

(Chapter 2). To balance the effects of possible subpopulation structures, different genomic 

relationship matrices were calculated to assess their usefulness for multi-subpopulation 

approaches. Results for the youngest animals (Table 2.4) indicate that using population-

specific allele frequencies present in the jointly analyzed subpopulations to account for 

subpopulation structures (instead of using the standard genomic relationship matrix 

introduced by VanRaden (2007) seems to be more relevant for predictive ability. Predictive 
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abilities are also raised slightly if closely related subpopulations are added to the reference 

population (Table 2.4), rather than more distantly related ones. Especially for the largest pig 

population (subpopulation 4, n=821), adding individuals from different subpopulations did 

not increase the predictive ability, while for smaller pig populations (subpopulation 1, n=187 

in Chapter 2) adding individuals from different populations seemed to be generally beneficial. 

However, the number of animals used in this study is rather small and general conclusions 

should be drawn very cautiously. 

To summarize, subpopulations should be enlarged within their own subpopulation to increase 

the level of family (and overall) relationships among the reference (and validation) set. To 

support this, a forward prediction (n=53 validation animals) with a differing number of 

reference animals (n=287 (100%) reference animals) for Large White animals (Chapter 3) 

was conducted and correlations between quasi-phenotype DRP and DGV (GBLUP) and 

ssGEBV (ssGBLUP) have been calculated, respectively (Figure 5.1).  

 

Figure 5.1: Forward prediction for differing size of reference population (in %) within one 

Large White population (Chapter 3). Predictive ability, assessed as correlation between DRP 

and DGV (GBLUP) and ssGEBV (ssGBLUP), have been calculated for 53 validation 

animals, respectively. 

Although the number of Large White animals used in this analysis is rather small (n=287 

reference animals), predictive abilities were increased for both GBLUP and ssGBLUP by 

enlarging the reference population size from 60% (n=172) to 100% (n=287) of the original 



5
th

 CHAPTER GENERAL DISCUSSION 123 

 

number of animals. Thus, increasing the reference population size within a population seems 

to be a reasonable methodological choice.  

 

Consistency of LD across populations 

In different populations, the QTL may be in high LD with a different SNP or the linkage 

phase between QTL and SNP may be reversed; this was shown in studies on chicken (e.g. 

Heifetz, 2005) or cattle (e.g. Gautier et al., 2007; de Roos et al., 2008). De Roos et al. (2008) 

reported that a high SNP density of roughly 300k SNPs equally spread across the genome 

may be able to overcome the differences in LD pattern between cattle populations. In the 

present study (Chapter 2), a smaller SNP panel of 60k was used for genomic evaluations. 

Further, the effect of weighing the genomic relationship matrices by e.g. LD phase 

consistency or calculated marker effects (Zhou et al., 2014a) in genomic predictions was 

studied, but no substantial increase in predictive ability was found. One possible explanation 

is the low correlation between the marker effects for different subpopulations (Appendix 2.5). 

However, accounting for LD structure to account for population structure decreases the 

accuracy of multi-breed genomic predictions (Daetwyler et al., 2012), which largely agrees 

with findings presented in this thesis (Figure 2.4). 

Reproductive traits (e.g. number of piglets born alive) are polygenic, affected by a large 

number of QTL having low to moderate effects (Rothschild and Ruvinsky, 1998), and may 

have an incomplete LD between SNP and QTL (Hidalgo et al., 2014; Zhou et al., 2014b) and 

thus be the result of complex genetic and biological mechanisms. Due to these facts, in a 

multi-population setting a less accurate prediction is to be expected (Hidalgo et al., 2014). 

One QTL may segregate only in one of the studied populations, which is the case for e.g. 

young mutations (Kemper et al., 2015). Consequently, for this specific QTL one population is 

not going to improve the prediction (Kemper et al., 2015), which may also explain the poor 

performance of enlarging reference sets which was found in this study (Chapter 2). Appendix 

2.5 shows the correlation between SNP effects for different populations. With respect to the 

top 10 SNPs, correlations between closely related populations like subpopulation 1 and 2 

(0.211) or subpopulation 4 and 2 (0.214) turned out be rather high and positive, indicating that 

these SNPs may have a similar effect for both subpopulations and thus, genomic predictions 

may work better. Correlations between distantly related populations such as subpopulation 4 

and 3 (-0.016) or subpopulation 1 and 4 (-0.167) were negative and therefore genomic 

prediction may be poor. 
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Impact of the reference and validation population size  

One of the most important aims, especially in pig breeding, is to increase the reference 

population. To ensure close relationships between the animals of a population, the 

composition of the reference set is as important as its size (Lourenco et al., 2015b). In this 

thesis (Chapter 2 and 3), the genotyping strategy mainly focused on representing the whole 

population of nucleus animals used for breeding and secondly to create close genetic links 

between reference and validation set. Therefore, the presented studies have a potential for 

improvement. 

Furthermore, differences in the size of reference animal sets exist between pig breeding 

organizations. In this thesis, data from small German herdbook organizations was used, which 

in general manage small nucleus herds and subsequently have rather small reference (and 

validation) sets. Internationally operating breeding companies such as PIC (http://de.pic.com/) 

or Topigs Norsvin (https://topigsnorsvin.de/) usually have larger nucleus herds. Thus, 

reference set for genomic predictions are larger making more accurate predictions possible. 

At present, the landscape of GS is changing: animals are being routinely genotyped and 

phenotypes for most traits are being collected (Howard et al., 2018). Genotypes within a 

species continue to increase in number and the relationship of recent selection candidates to 

the majority of the historic population is becoming more distant. Moreover, improvements in 

phenotype collections, changes in genetic architecture and/or changes in models across time 

create a situation, in which information from an older animal (in the reference set) has the 

potential to negatively impact the accuracy of selection candidates (Howard et al., 2018). The 

numbers of animals used for genomic predictions in this thesis were rather small (2,053 Large 

White animals in Chapter 2 and 495 (424) Landrace (Large White) animals in Chapter 3). 

Thus, removing older data (truncating data) does not primarily have any particular practical 

relevance for the presented data (Chapter 2 and 3), but should be addressed with respect to the 

impact of using all available data on the accuracy for selection candidates. 

Howard et al. (2018) assessed the impact of removing older data on simulation data (under 

idealized conditions without any pedigree or genotyping errors) and empirical pig data. For 

the simulation data, truncating was performed based on the ancestral generation number. For 

the empirical data it was based on the year an animal was born, which is also the scenario 

with practical relevance. Howard et al. (2018) had data on genotypes for Yorkshire (n=5,783) 

and Duroc (n=12,180) available from 2011 to 2017. Across the simulated and the empirical 

data, removing data from predictions resulted in no change (or a slight increase) in accuracy 
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for the selection candidates. Pocrnic et al. (2017) have also investigated the effect of pedigree 

truncation on the solution of ssGBLUP for lowly heritable traits in empirical pig data. They 

reported that including more than 2 generations of ancestors does not increase accuracy of 

prediction for young animals, but is sufficient to obtain the same GEBV relative to using full 

pedigree. On the whole, this is mainly in agreement with findings of Lourenco et al. (2014) 

for Holstein cattle and Yang and Su (2016) for pig-like simulation data. Both authors 

observed that generally 3 generations of phenotypic records plus 2 ancestral generations in 

pedigree were enough for genomic predictions of breeding value, although numbers are 

dependent on data-structure and heritability (Lourenco et al., 2014).  

To conclude: at a high level of heritability, small numbers of reference animals are sufficient 

to obtain high accuracies. However, since this thesis is concerned with reproductive traits, 

which have a low heritability, enlarging reference sets is crucial for success.  

Putz et al. (2018) reported that the size of the validation population has an impact on 

accuracy, especially when correlations between estimated breeding values and different types 

of corrected phenotypes are calculated in empirical pig data. They also reported fluctuating 

accuracies with large amounts of variation for Landrace animals compared to simulated data. 

In both of the present studies (Chapter 2 and 3), small numbers of validation animals were 

used. The number of Large White animals used for the forward prediction in Chapter 2 varied 

between 35 (Subpopulation 3) and 257 (Subpopulation 4) individuals (Table 2.1), while in 

Chapter 3 (Table 3.1), 53 Large White and 97 Landrace individuals were used as validation 

animals. When using small numbers of validation animals, the size and average reliability of 

the input variable (e.g. DRP or EBV) and corresponding genomic breeding values are of great 

importance. Having outliers in the data set leads to an emphasized impact and/or results can 

be biased due to a non-representative sample (VanRaden et al., 2009). Especially for 

Landrace animals in Chapter 3 (Table 3.3), some outliers were observed in the forward 

prediction analysis, which generally may lead to poorer predictions. In addition, since 

reliabilities of pseudo-observations (DRP) of reference animals are small to moderate (0.27 

for Large White and 0.40 for Landrace, Chapter 3), obtaining acceptable reliabilities from 

genomic predictions may become difficult. In order to prevent a future increase of bias and 

decrease of reliability, the reference and validation sets should be continuously updated with 

animals from recent generations. However, future research will be needed to assess the design 

of validation populations. 
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To encourage the continuous updates of the reference and validation set by the herdbook 

organization, a forward prediction was performed with two different validation sets for 

empirical data of Large White animals (Chapter 3) (Figure 5.2). Validation sets were divided 

according to generation, which was defined based on pedigree data. Generation 1 to 16 

(n=114) was used as the reference set in genomic evaluations (multi-step or single-step), 

generation 17 to 20 (genetically close to reference, n=86) and generation 21 to 24 (genetically 

distant to reference, n=56) functioned as validation sets. Predictive abilities were assessed as 

correlation between quasi-phenotype DRP and genomic breeding value obtained from multi-

step methods (e.g. DGV or GEBV) or ssGBLUP (ssGEBV). Predictive ability for GEBV 

turned out to be generally higher for the genetically close validation set than for the 

genetically distant. For DGV and ssGEBV, predictive abilities turned out to be higher for the 

distantly related validation sets. Genomic relationships between reference animals and 

distantly related validation animals turned out to be higher (0.003 from G-matrix and 0.047 

from H-matrix) than between reference and closely related validation animals (-0.001 from G-

matrix and 0.046 from H-matrix), which may partly explain the higher predictive abilities. 

 

Figure 5.2: Predictive ability expressed as correlation between DRP and different breeding 

values (DGV, GEBV and ssGEBV) obtained from multi-step or single-step method for 

genetically close and distant validations set. 
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Improvement of genomic predictability for pigs 

Using crossbred information for genomic prediction 

In pigs, crossbreeding is predominantly and intensively used in meat production systems 

(Xiang et al., 2016). GS offers the potential of selecting purebreds for crossbred performance 

by using combined information from purebreds and crossbreds (Ibánẽz-Escriche et al., 2009; 

Zeng et al., 2013) or using only purebred data (Esfandyari et al., 2015). Xiang et al. (2016) 

studied three different ssGBLUP scenarios in which purebred and crossbred data for total 

number piglets born (TNB) are used to explore the impact of (crossbred) genomic information 

on prediction accuracy for crossbred performance. For their approach, breed-specific 

combined relationship matrices are used to incorporate genomic information into the 

ssGBLUP model. For the construction of breed-specific marker-based relationship matrices, 

Xiang et al. (2016) assumed that the breed of origin of phased alleles in crossbred animals is 

known, which was referred to as “crossbred allele tracing”. They reported that methods with 

genomic marker information are powerful for genetic evaluation for crossbred performance 

with regard to predictive ability and unbiasedness. They demonstrated that using crossbred 

genomic information is useful in addition to purebred genotypes. Genetic correlations 

between purebred and crossbred performance for TNB were 0.75 (0.63) for Landrace 

(Yorkshire), indicating that selection on purebred performance results in an increased 

performance of crossbreds (Dekkers, 2007; Xiang et al., 2016). However, two assumptions 

could diminish and limit the interpretation of the results presented by Xiang et al. (2016): 

first, the assumption that the breed origin of phased marker genotypes are known (crossbred 

allele tracing) for crossbred animals, which does not hold in practice and may induce errors, 

and second, crossbred genotypes are imputed from 8k to 60k prior to allele tracing. Xiang et 

al. (2016) reported high imputation accuracies (>99%), however, a risk of using incorrect 

crossbred genotypes cannot be totally eliminated. 

 

Using sequence data for genomic prediction 

In recent years, the availability of whole-genome-sequence (WGS) data has increased rapidly 

due to the decreasing cost of next-generation sequencing. By using sequence data, the 

dependency on LD between QTL and SNPs is removed, because it is assumed, that sequence 

data contains all variants (e.g. causal mutations or causal QTL). Moreover, sequence-based 

haplotype blocks should be stable across populations and generations. Therefore, using 

whole-genome-sequence data may be preferable for reference population, especially for those 
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combining multiple populations as presented in Chapter 2. A first empirical application with a 

small set of sequenced lines of Drosophila melanogaster cannot confirm these expectations 

(Ober et al., 2012). Brøndum et al., (2015) showed for cattle that current data on WGS do not 

result in substantial improvements in reliability of genomic breeding values due to the fact 

that genomic relationships with 777k are already accurately estimated and WGS will neither 

improve genomic relationships nor GEBV. In addition, current WGS data are not very 

accurate (Brøndum et al., 2015) either due to imperfect genotype calling (extensive reliance 

on SNP imputation) or structural genomic variation, which is difficult to assess by short reads. 

Ni et al. (2017) conducted a study comparing predictive ability obtained with high-density 

(HD) array data or WGS data in a commercial chicken with various GBLUP models using 

different approaches to weight SNPs in the genomic relationship matrix. Using all imputed 

WGS data to perform genomic predictions compared to using HD data did not lead to an 

improved predictive ability, irrespective of the weighting factors used. Only using genic SNPs 

from WGS had a positive effect on predictive ability (Ni et al., 2017).  

 

Using different information sources in genomic predictions 

Andonov et al. (2017) investigated the accuracy of evaluation on a small population with 

different approaches for incorporating information from a large related population in a 

Holstein-like simulation study. Different ways of incorporating information into predictions 

were utilized: First, data from multiple countries can be combined and all information 

stemming from all relatives of (non-)genotyped animals and their performance can be used in 

ssGBLUP without losing any information. And second, GEBVs for genotyped animals in a 

small population can be computed by using SNP effects derived from a large population 

(Lourenco et al., 2015b; Andonov et al., 2017).  

Andonov et al. (2017) recommended increasing daughter groups per sire in the small 

population to improve the accuracy, especially for external animals, which are commonly 

used as sires in the small population. Since the number of genotyped progenies is in general 

much smaller for boars e.g. Chapter 3; 2.74 (2.87) genotyped progenies for Large White 

(Landrace) than for bulls, incorporating all available information from multiple countries may 

not be the best option to use in pig breeding. Thus, Andonov et al. (2017) suggested 

calculating SNP effects from the large population to derive GEBV for the small population as 

the best option and obtained highly accurate genomic predictions.  
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However, high genetic gains can only be expected when individuals of different (pig) 

breeding programs have a close genetic link to each other e.g. through import or exchange of 

breeding animals (or semen), which was also proposed and discussed in Chapter 2. If pig 

breeding companies want to enlarge their reference population in order to obtain higher 

reliabilities for selection candidates, exchanging animals or semen is unavoidable. 

Nevertheless, a common genetic breeding value estimation is also complicated due to the 

specialization of a breeding company in the market. One possibility to more accurately 

estimate genomic breeding values in pigs could be ssGBLUP, which was studied in detail in 

Chapter 3 and will be discussed in the following. For successful genomic breeding value 

estimation, however, large numbers of genetically closely related animals are always 

essential, irrespective of multi-step or single-step method. 

 

Single-step genomic BLUP in pig breeding 

Single-step method 

Single-step genomic BLUP was derived to utilize genotyped and non-genotyped individuals 

in the same BLUP framework by blending the pedigree-based and genomic relationship 

matrix (Legarra et al., 2009; Christensen and Lund, 2010). Results from various studies 

showed that GS models outperform pedigree-based predictions with little variability among 

genomic models (Chapter 3). Currently used multi-step methods to incorporate genomic 

information implicitly involve many assumptions which, if violated, may result in loss of 

information, inaccuracies and bias. In Chapter 3, a comprehensive comparison in terms of 

accuracy and bias for single-step and multi-step methods was conducted. In the following, 

some of issues arising from the study will be outlined. 

Superiority of ssGBLUP over GBLUP (multi-step) seems to be stronger when the size of the 

reference population is small, because in this case, the relative contribution of the phenotypic 

information of non-genotyped animals will be more relevant (Song et al., 2017). However, 

non-genotyped animals also benefit from genomic information of genotyped animals 

(Lourenco et al., 2015a; Xiang et al., 2016). Especially in pig breeding, the size of reference 

and validation set is small, as also presented in this thesis. In Chapter 2, the effect of 

improving the predictive ability by enlarging the reference size within breed but across 

subpopulations was studied, a method which unfortunately was not successful. Song et al. 

(2017) stated that genomic prediction with a small reference population might benefit more 

from ssGBLUP than genomic prediction with a large mixed reference population. Their 
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findings are in agreement with the results presented in this thesis. In chapter 3, we showed 

that with ssGBLUP the accuracy of breeding value estimation (Table 3.3) can be increased 

despite small reference and validation populations for both, Large White and Landrace (Table 

3.1).  

Superiority of single-step versus multi-step was also investigated in a simulation study by 

Schwarzenbacher (2017) with regard to potential bias due to preselection based on genomic 

information, since most countries use multi-step methods. Single-step produced significantly 

higher reliabilities, consequently larger genetic gain and evaluations were less biased because 

preselection was accounted for (Schwarzenbacher, 2017). 

Shabalina et al. (2017) investigate the effect of including genotypes from culled bulls on the 

reliability of genomic predictions from ssGBLUP. Four scenarios with a constant amount of 

phenotypic information and increasing number of genotypes from culled bulls were simulated 

and compared regarding prediction reliability. Increases in reliabilities were observed mainly 

due to the quantitative gain from additional information in the genomic relationship matrix. 

Shabalina et al. (2017) concluded that improvements in reliability from adding genotypes of 

culled animals may possibly be lower in real genomic breeding programs with large reference 

populations. Since the reference populations in pig breeding are generally small with low 

levels of reliabilities, adding genotypes from culled animals could be a good option to enlarge 

the reference population within a breed (or population) on the one hand and to create genetic 

links between reference and validation animals for more reliable predictions on the other 

hand.  

 

Reliabilities in single-step genomic BLUP 

In general, relatively high improvements in theoretical reliabilities were obtained in Chapter 

3. Theoretical reliabilities of parental average compared to genomic breeding value obtained 

from multi-step improved by 29% (Landrace) and 38% (Large White) and compared to 

single-step genomic breeding values by 48% (Landrace) and 52% (Large White), 

respectively. Putz et al. (2018) reported that theoretical accuracies improved by 37 % from 

conventional to genomic predictions. (Theoretical) reliability of genomic predictions (e.g. 

ssGBLUP) can be calculated by matrix inversion. Especially for large data sets, matrix 

inversion is not feasible. Misztal et al. (2013) developed a method approximating reliability 

based on decomposition into contributions from records, pedigrees and genotypes which 
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involved an inversion of a matrix that contains inverse of genomic and pedigree relationship 

matrix for genotyped animals. Approximation of reliabilities of predictions by ssGBLUP are 

accurate and computationally feasible for populations up to 100k genotypes (Misztal et al., 

2013), where quality control of information from SNP and proper scaling of 𝑮 is critical.  

Recently, a novel approach for approximating genomic reliabilities for national genomic 

evaluation for Holstein was presented by Liu et al. (2017). The new method was developed to 

ensure national genomic reliabilities being comparable between countries. Liu et al. (2017) 

introduced a genomic reliability method which adjusts theoretical genomic reliabilities based 

on genomic results and is applicable to single-step and multi-step genomic models. The 

proposed reliability method applies a SNP based genomic model, which is equivalent to 

GBLUP, but does not rely on genomic relationship matrix. Further, possible changes in 

genomic reliabilities reflects the changes in GEBV and ensure candidates genomic 

reliabilities from an early evaluation being consistent with later genomic reliabilities (when 

they received phenotypic data ; Liu et al., 2017). Although the method is efficient and feasible 

(Liu et al., 2017), further research on proper validation and verification for official 

implementation needs to be done. 

 

Construction of 𝐇−𝟏 matrix 

In ssGBLUP, there seems to be no general agreement between researchers on the selection of 

a 𝐆 matrix and blending 𝐆 and A matrices to become relative to the same base population. 

Default values used in BLUPF90 programs (Misztal et al., 2002) for scaling and weighting 

𝐆 and A were used in this thesis (Chapter 3). Further details regarding the construction 𝐇−𝟏 

can be found in Chapter 1. 

Martini et al. (2018) investigated optimal values of τ and ω in terms of predictive ability and 

inflation on publicly available wheat data set. To assess the predictive ability with different 

𝐇𝛕,𝛚
−𝟏  matrices, cross-validation was performed splitting the data set randomly into 10 groups 

and predictive ability was calculated as correlation between phenotype and estimated breeding 

value for the validation set. The inflation/deflation was calculated as regression coefficient (𝑏) 

of the phenotype on estimated breeding value. Martini et al. (2018) showed that increasing τ 

or decreasing ω tends to reduce the empirical variance of the estimated breeding values. 

Optimal values in terms of maximum predictive ability are given by τ = 1.8 and ω = 0.2 for 

scenario 1, which reflects the closest scenario to the presented empirical data used in this 
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thesis (Chapter 3). In terms of lowest inflation, τ = 2.0 and ω = −1.0 for scenario 1 (Martini 

et al., 2018). Martini et al. (2018) concluded that a reduction of inflation through increasing τ 

or decreasing ω was mainly influenced by decreasing the variance of estimated breeding 

values in the data set. However, Martini et al. (2018) suggested that consistency problems of 

𝐆 and A with respect to scaling (and weighting) should be addressed. 

The weighting factor β, which displays the proportion of variance that cannot be captured and 

explained by markers and therefore might be population- and trait-specific, was compared in 

various studies (e.g. Christensen et al., 2012; Guo et al., 2015; Song et al., 2017). Relatively 

high accuracies and low bias with β being 0.5 (𝐆𝐰 = (α ∗ 𝐆 + β ∗ 𝐀𝟐𝟐), were found in 

studies by Guo et al. (2015) and Song et al. (2017) for Danish, American and British 

Landrace and Danish Yorkshire populations, while values of β being 0.25 were found to be 

ideal for Danish Duroc in Christensen et al. (2012). An analysis with β being 0.5, which is 

referred to as “adjusted single-step genomic BLUP”, was performed for the empirical data set 

of Chapter 3 (results not shown). To summarize: predictive abilities, expressed as the 

correlation between genomic breeding values from multi-step compared to single-step, do not 

increase through adjustments of weighting factors (β) for both breeds compared to original 

ssGBLUP. 

The effect of different calculations of 𝐆 as described in e.g. Meuwissen et al. (2011), Vitezica 

et al. (2011) or the use of base allele frequencies according to Gengler et al. (2007) to 

calculate 𝐆 (VanRaden, 2008) was also studied in Chapter 3. However, different 𝐆 

calculations did not led to an improvement in predictive abilitiy of ssGBLUP compared to 

those obtained with 𝐆 according to VanRaden (2008). Checking for correlations between off 

diagonal elements of genomic (VanRaden, 2008) and pedigree-based relationship matrix 

turned out to be rather high for both breeds used in Chapter 3 (0.82 for Large White and 0.88 

for Landrace) indicating a reasonable pedigree quality without major genotyping errors and 

thus, no further need of adjustment for this data set.  

 

Algorithm for proven and young animals (APY) 

The computing limit of ssGBLUP is currently up to about 150k genotypes of progeny-tested 

animals (Aguilar et al., 2011) with no limitation on the number of animals comprising 

pedigree or number of considered traits. In 2014, a method based on genomic recursion was 

proposed by Misztal et al. (2014) in which genomic breeding values of new genotyped 
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animals (young) are conditioned on genomic breeding values of all previous genotyped 

animals (proven) which is referred to as “algorithm for proven and young animals” (APY). 

The direct inversion is required for only a small proportion of 𝐆 composed of relationships 

among animals treated as “proven” comprising those animals with high accuracies and thus 

containing most genomic information. Especially for breeds with large quantities of 

genotypes like Holstein, the development of APY is important. In this thesis, but also in 

general in pig breeding, numbers of genotypes used for genomic evaluation are rather small 

(e.g. 2,053 in Chapter 2) and thus, APY will not be applied in pig breeding in the near future. 

Therefore, only a short discussion of APY will be given below. 

In simulations, accuracies with APY were close to those with direct inverted 𝐆 even if some 

animals with records were treated as “young” (Fragomeni et al., 2015). However, compared 

to regular inversion of 𝐆−𝟏, APY results in the same genomic breeding value for GBLUP, for 

ssGBLUP APY leads to an approximation because young genotyped animals may provide ties 

to ungenotyped ancestors (Fragomeni et al., 2015).  

The optimal composition of core animal sets and how to choose animals for the core set are 

still some of the most critical issues of APY. Fragomeni et al. (2015) reported for Holstein 

that the choice of proven (or core) animals for calculating high accuracies is mostly arbitrary 

but the number matters. With a sufficiently large subset of proven animals in the recursion 

(>10k animals), the composition may no longer be relevant (Fragomeni et al., 2015). In 

contrast, Pocrnic et al. (2016) concluded that the number of core animals is not critical since 

the reduction in accuracy of genomic breeding value is minimal when using half the optimal 

number (roughly n=3k). Ostersen et al. (2016) reported that the choice of core animals is 

important for the accuracy of APY e.g. because accuracies for genomic breeding values are 

known to decrease as the prediction and predicted populations become more distantly related 

(Muir, 2007). They recommended choosing (i) core animals from all generations to ensure an 

equal representation of genotyped animals in each generation (e.g. increasing the number of 

independent chromosome segments, because each generation is expected to generate new 

cross-overs) and (ii) core animals that have the largest number of genotyped offspring. In 

empirical pig data, the optimal number of core animals was found to be 2k to 6k (Ostersen et 

al., 2016; Pocrnic et al., 2016b). However, further investigation on different core animal 

definitions/compositions needs to be carried out to quantify accuracy changes (Fragomeni et 

al., 2015) in practical implementation. 
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Validation methods for predictions 

In the last years, several authors have considered the question of how selection influences the 

accuracy of genomic predictions. Bijma (2012) reported that (theoretical) accuracies based on 

prediction error variance (PEV) obtained from BLUP framework are not valuable in 

populations under selection, since they overestimate the actual accuracy, while Edel et al. 

(2012) argued that the accuracy obtained in a forward prediction scheme will underestimate 

the true prediction accuracy in the presence of selection. Smaller values obtained with 

forward prediction (Table 3.3) than with averaged accuracies from MME (Table 3.5) were 

observed for both breeds in Chapter 3 (Figure 5.3). Theoretical reliabilities observed in this 

thesis (Chapter 3) agreed with findings in literature (e.g. Putz et al., 2018), although the 

number of validation and reference animals was significantly smaller in this study. 

 
Figure 5.3: Mean accuracy for number of piglets born alive calculated from MME averaged 

over animals and from forward prediction (left) and five-fold cross-validation (right) for 

different genomic breeding values of Chapter 3 (Table 3.3 and 3.5) for Landrace and Large 

White. 

Usually, the averaged theoretical reliability is similar to the prediction accuracy, unless the 

trait is under selection (Bijma, 2012). Genotyped animals in Chapter 2 and 3 were 

(pre)selected based on parental average. Their breeding values are only expected to be 

unbiased if those animals were randomly chosen (Su et al., 2012), while preselection tends to 

decrease (realized) accuracies of breeding values (Bijma, 2012). In such preselection cases, 

predictive abilities obtained from cross-validation scenarios are lower compared to theoretical 
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accuracies from MME (Figure 5.3) due to the following reasons: (i) preselection is taken into 

account, (ii) small quantity of data causes inflation of predictive abilities which is quite 

common in small genotyped populations as presented in Chapter 2 or 3 and/or (iii) the quasi-

phenotype (DRP) used may not be well calculated.  

Theoretical reliabilities obtained from BLUP framework are a direct function of PEV, where 

the values of PEV are mostly determined by the numbers of offspring (progeny tested) per 

boar (Dufrasne et al., 2011). In this thesis (Chapter 3), the number of genotyped offspring per 

boar is rather small with 2.74 (2.87) for Large White (Landrace) and may also led to 

uncertainty of prediction. Accounting for inbreeding by calculating theoretical reliabilities 

𝜌𝑖 = √1 −
𝑃𝐸𝑉𝑖

𝑔𝑖𝑖var(𝐴𝑖)
 with 𝑔𝑖𝑖 being the diagonal element of the genomic relationship matrix 

for individual 𝑖, does not substantially change (increase or decrease) the accuracy (results not 

shown).  

However, the main difference between theoretical reliabilities obtained from MME and 

predictive ability from cross-validation is that theoretical reliabilities give a measure of the 

individual’s genomic breeding value, while the predictive ability is indicative of the average 

accuracy of genomic breeding values in the population. With increased relatedness between 

reference and validation animals the empirical accuracy (from cross-validation) of genomic 

breeding value increases (Badke et al., 2012) as is to be expected. 

Putz et al. (2018) recently conducted a comparison of validation methods for pig litter traits to 

determine the optimal method for comparing pedigree BLUP to ssGBLUP in terms of 

accuracy and consistency. Empirical data and simulated data, which was created to mimic the 

field data and to calculate true accuracies, were used. Putz et al. (2018) used different 

methods to calculate and evaluate the accuracy of prediction within the validation set: (i) 

theoretical accuracy derived from BLUP framework, (ii) approximated accuracies from the 

accf90 or accf90(GS) program in the BLUPF90 family package (Misztal and Wiggans, 1988; 

Misztal et al., 2013), (iii) correlation between predictions and GEBV from full data set and 

(iv) correlation between (a) predictions and corrected phenotypes from the full data set, (b) 

predictions and corrected phenotypes divided by the square root of heritability and (c) sire 

predictions and the average of their daughters’ corrected phenotype, respectively. For the 

simulated data, Putz et al. (2014) reported relatively small difference between (i) accuracy of 
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TBV and theoretical accuracy calculated from MME. In empirical pig data, theoretical 

accuracy (calculated from MME, i) was underestimated compared to the true accuracy. 

A general problem in pig breeding is that pure-bred lines suffer from small numbers of sires 

used in the validation set. It is hardly possible to calculate the accuracy as correlation between 

(c) sire predictions and the average of their daughters’ corrected phenotype in pig empirical 

data, although the method performed quite well in simulated data (Putz et al., 2018). Cross-

validation accuracy, expressed as the correlation between predictions from full data set (iii), 

turned out to be poor for accuracy validation in empirical pig data due to the fact of extensive 

overlapping information (Putz et al., 2018).  

Further research on validation strategies will be necessary also with respect to future changes 

in genetic architectures of a trait or species (population structure), and especially in cases, 

where validation groups will consist entirely of animals preselected according to genomic 

breeding values (Edel et al., 2012). Masuda et al. (2018) recently conducted a study on 

preselection bias in Holstein and stated that trends for BLUP indicate a bias due to genomic 

preselection for genotyped sires and cows.  

Estimating how accurate genomic predictions are is important for at least three reasons 

(Daetwyler et al., 2013): first, response to selection (e.g. Falconer and Mackay, 1996) which 

will be discussed further on, second, the accuracy of an estimated breeding value expresses 

the credibility of an individual (e.g. Chapter 2 and 3) which is relevant for a selection 

decision, and third, the estimation of the prediction accuracy of models is useful for model 

comparison (e.g. Chapter 3). Daetwyler et al. (2013) suggested reporting the slope of the 

regression on estimated breeding values, especially when pedigree and genomic information 

is combined to produce one breeding value. Regressions of observations on predictions 

differing strongly from 1 point to deficiencies of the model and bias. A comparison of multi-

step to single-step was conducted in Chapter 3 with regressions of corrected phenotypes on 

different genomic breeding values (Table 3.4) indicating that ssGBLUP is preferable in terms 

of bias compared to multi-step methods (such as GBLUP and blending). But, as long as the 

information level for pigs is the accurately estimated genomic breeding value, irrespective of 

its being calculated from GBLUP or ssGBLUP, the ranking of individual is the most 

important selection criterion which is not influenced by the regressing coefficient (slope). 

Thus, accuracy of prediction as the correlation between observed and predicted value within 

the examined group remains the more important selection criterion. 
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Genetic progress in (genomic) pig breeding 

Genetic progress 

The main purpose of (pig) breeding is to obtain as much genetic progress as possible for the 

trait of interest. Genetic gain (∆𝐺) is a result of various factors, e.g. accurately estimated 

breeding values and available additive genetic variance (Aasmundstad et al., 2015). 

Meuwissen et al. (2001) suggested the inclusion of genomic information into estimations in 

order to improve the accuracy of breeding value estimation. The potential of GS, expressed as 

genetic trend, is displayed for fertility traits and production traits (Haberland et al., 2010; 

Haberland et al., 2014) in Table 5.1, respectively. In genomic breeding schemes, ∆𝐺 for litter 

size is about 38% (Table 5.1), which is 10% higher compared to conventional breeding 

schemes (∆𝐺=28%). Higher genetic trends are mainly attributable to higher (genomic) 

reliabilities (e.g. higher 𝜌) and to greater selection intensity for sires (Simianer, 2009). 

Lillehammer et al. (2011) reported even higher genetic trends for fertility traits in pigs (Table 

5.1).  

Tab. 5.1: Genetic trend for different fertility and production traits realized by implementation 

of GS in pigs 

Trait Genetic trend Reference 

Litter size 38 % Simianer (2009) 

Production traits 47% Haberland et al. (2010) 

Fertility traits 35-69% Lillehammer et al. (2011) 

Boar taint  10-12% Haberland et al. (2014) 

 

Haberland et al. (2010) showed that young boars can be selected more accurately by 

integrating genomic information into selection. Reliabilities of genomic breeding values were 

15% (29%) higher compared to conventional estimations for reference sizes of 500 (1000) 

genotyped animals, which was also shown in Chapter 3. With increasing reference size higher 

reliabilities are obtained. However, for the moderately sized pig breeding organizations used 

in this thesis, a reference size of 500 progeny-tested boars currently seems to be more realistic 

than having 1000 animals in the reference set.  

Observed reliabilities of breeding values (conventional and genomic) in this thesis are 

moderate (Chapter 2 and 3, e.g. Table 3.5), although an improvement in fertility traits is 

feasible, as was also reported in other studies on litter traits. Genetic variation between and 

within breeds triggered substantial genetic increase in prolificacy in recent years (Canario et 

al., 2005).  
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Figure 5.4 shows the averaged phenotype for different fertility traits (Chapter 4) from 2010 to 

2016. For total number of piglets born (TNB), born alive (NBA) and weaned (NOW), a 

desired increase in performance of +2.39 piglets (+1.77 and +1.00) for TNB (NBA and 

NOW) from 2010 to 2016 is achievable, respectively. The observed numbers for NBA and 

NOW are smaller than for TNB, which is mainly due to piglets dying during the nursing 

period. For farrowing interval (FI), a decrease of 4.78 days from 2010 to 2016 is observed, 

which is also a desirable effect because sows return to the production cycle earlier and can 

produce more piglets per year. 

 

Figure 5.4: Averaged phenotype for total number of born piglets (TNB), born alive (NBA), 

weaned (NOW) and farrowing interval (FI) with respect to the production year. 

Poulsen et al. (2018) investigated the effects of transferring genetic merit of nucleus selection 

for litter size to production herds (sows) and defining the impact of realized improvement in 

production due to purebred selection. Selection for litter size in purebred sows, as it was also 

studied in this thesis, increases litter size in production sows, but the impact strongly depends 

on the production herd (GxE interaction; Poulsen et al., 2018). 

 

Improvement of sows’ prolificacy and piglets’ survival 

Litter size is one of the most important traits for productivity of a sow. In addition to NBA or 

NOW, alternative fertility traits such as mothering ability (MA) or piglet survival (PS) were 

studied in Chapter 4 in order to evaluate genetic parameters for selection. Genetic and 

phenotypic variation between parities of e.g. MA or NOW exist (Chapter 4) and thus, can be 
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used for the breeding decisions. Instead of evaluating “typical” alternative fertility traits, 

Freyer (2018) examined the individual variation in litter size based on the level of individual 

TNB per parity, which turned out to be quite large and heritable. Selection for homogeneous 

litters of a sow, based on selection on sow’s individual capacity in litter size and the 

corresponding individual variation in parities (e.g. “range” as second trait with ℎ2 =

0.06 to 0.10), is possible if at least five parities are available for estimations. Homogeneous 

litters also lead to improved animal-related conditions for piglets (Freyer, 2018) and thus 

commercial management (e.g. large litter size lead to small individual birth weights). Freyer 

(2018) showed that using individual maximum TNB as a “new trait” in genetic analysis 

reveals considerably higher heritability (ℎ2~0.3) than the reported estimates for heritability 

(ℎ2~0.12 ) and repeatability (𝑤2~0.18) for NBA in this thesis (Chapter 4). The highest TNB 

arose within parity five (Freyer, 2018), which is in agreement with results in this thesis 

(Chapter 4). However, variability of performances of sows is a keystone of genetic 

improvement and needs to be maintained to guarantee sustainability and success in long-term 

selection, although homogeneity in litter size is desired for commercial use.  

Exclusively selecting on prolificacy may initially lead to an increased litter size, but may also 

result in reduced sow and piglet vitality (e.g. large litter size lead to small individual birth 

weights). Including a piglet vitality index into routine genetic evaluation, which could consist 

of litter homogeneity and piglet vitality, would generally be possible (Pfeiffer et al., 2018). 

Heritabilities and genetic variance for litter quality traits such as individual birth or litter 

weights in Austrian maternal lines were observed in a study of Pfeiffer et al. (2018) showing a 

negative relationship between TNB and litter quality traits. In Chapter 4, mothering ability 

(MA) and piglet survival were studied. The negative relationship between NBA and MA 

(𝑟𝑔 ~ 0.3 − 0.5) which was observed is largely in agreement with findings of Pfeiffer et al. 

(2018). Unfortunately, individual birth or litter weights were not available and could therefore 

not be studied in this thesis (Chapter 4). 

 

Validity of repeatability model for fertility traits 

In Chapter 4 besides the variable selection for models two different models, bivariate and 

repeatability model, were examined for fertility traits. The assumptions of repeatability (as 

presented by Falconer and Mackay, 1996) can be summarized as: (i) variance of different 

measurements are equal and their components are present in the same proportions and (ii) 
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different measurements reflect what is genetically the same character. The results presented 

(Chapter 4) indicated that records of different parities (first and second to sixth) are not 

entirely controlled by the same genes. E.g. heritabilities of NBA (Table 4.2), NOW (Table 

4.4) or FI (Table 4.3) are higher in the first parity than for the following parities. Moreover, 

estimates of heritability for NOW and FI (Chapter 4) from repeatability (0.116 and 0.124) and 

bivariate models (0.117 and 0.141) for the first parity were generally higher than those 

obtained for subsequent parities (0.059 and 0.110). Thus, records of young and adult animals 

may not be controlled by the same genes, which can at least be partly explained by differences 

in the stage of maturity (Serenius et al., 2003). Thus, those traits should be considered as 

different traits and calculated using bivariate models. 

 

Future prospective and concluding remarks  

The costs of DNA testing are falling rapidly which will lead to (i) a higher proportion of 

animals being genotyped or even sequenced and (ii) help to generate larger, more-updated 

reference populations, which is particularly important for pig breeding. Along with that, 

single-step methods are likely to become routine due to more accurate breeding values. 

However, GS will be used for an increasing number of traits, while some will be difficult to 

record and measure. Especially in pig breeding, one perspective can be to train the prediction 

equation on commercial animals to select purebred animals on crossbred performance, which 

has been measured for commercially relevant traits such as meat quality, disease resistance 

and performance under harsher environment (Meuwissen et al., 2016). Although GS appears 

to be the method of choice, a continuous recording of phenotypic data and enlarging the 

reference population for retraining is crucial.  

The main conclusions from previous chapters can be summarized as: 

1. GS can be successfully implemented in practical pig breeding (Chapter 2 and 3). 

2. Enlarging the reference population by combing closely and/or distantly related 

subpopulations of one breed to form a multi-subpopulation reference set does not 

necessarily lead to higher prediction accuracy for individuals of a specific breed 

(Chapter 2). 

3. Accounting for subpopulation structures of combined reference populations does not 

improve the predictive ability (Chapter 2). 



5
th

 CHAPTER GENERAL DISCUSSION 141 

 

4. Enlarging the reference population with female individuals of the studied 

subpopulation yields an improved predictive ability (Chapter 2). 

5. Despite the limited size of the reference population, GS can produce more reliable 

genomic breeding values than conventional estimations (Chapter 2 and 3). 

6. Singel-step GBLUP might be preferable with regard to unbiasedness and produce 

higher predictive abilities compared to multi-step methods (Chapter 3). In moderately 

sized pig breeding organizations, however, the decision which genomic method should 

be used needs to be monitored by ongoing validation assessments. 

7. Estimates of genetic components for the fertility traits analyzed indicate that the 

amount of additive genetic variation is large enough for selection (Chapter 4).   



5
th

 CHAPTER GENERAL DISCUSSION 142 

 

REFERENCES 

Aasmundstad, T., I. Andersen-Ranberg, ø. Nordbø, T. Meuwissen, O. Vangen, and E. 

Grindflek. 2015. The effect of including genomic relationships in the estimation of 

genetic parameters of functional traits in pigs. J. Anim. Breed. Genet. 132(5):386–391. 

doi:10.1111/jbg.12156. 

Aguilar, I., I. Misztal, A. Legarra, and S. Tsuruta. 2011. Efficient computation of the genomic 

relationship matrix and other matrices used in single-step evaluation: Matrix 

computation genomic selection. J. Anim. Breed. Genet. 128(6):422–428. 

doi:10.1111/j.1439-0388.2010.00912.x. 

Andonov, S., D. A. L. Lourenco, B. O. Fragomeni, Y. Masuda, I. Pocrnic, S. Tsuruta, and I. 

Misztal. 2017. Accuracy of breeding values in small genotyped populations using 

different sources of external information—A simulation study. J. Dairy Sci. 

100(1):395–401. doi:10.3168/jds.2016-11335. 

Bijma, P. 2012. Accuracies of estimated breeding values from ordinary genetic evaluations do 

not reflect the correlation between true and estimated breeding values in selected 

populations: Accuracy and selection. J. Anim. Breed. Genet. 129(5):345–358. 

doi:10.1111/j.1439-0388.2012.00991.x. 

Boré, R., L. F. Brito, M. Jafarikia, A. Bouquet, L. maignel, B. Sullivan, and F. S. Schenkel. 

2018. Genomic data reveals large similarities among Canadian and French maternal 

pig lines. Can. J. Anim. Sci. 98(4):809-817. doi:10.1139/CJAS-2017-0103. 

Brøndum, R. F., E. Rius-Vilarrasa, I. Strandén, G. Su, B. Guldbrandtsen, W. F. Fikse, and M. 

S. Lund. 2011. Reliabilities of genomic prediction using combined reference data of 

the Nordic Red dairy cattle populations. J. Dairy Sci. 94(9):4700–4707. 

doi:10.3168/jds.2010-3765. 

Brøndum, R. F., G. Su, L. Janss, G. Sahana, B. Guldbrandtsen, D. Boichard, and M. S. Lund. 

2015. Quantitative trait loci markers derived from whole genome sequence data 

increases the reliability of genomic prediction. J. Dairy Sci. 98(6):4107–4116. 

doi:10.3168/jds.2014-9005. 

Canario, L., T. Tribout, J. Gogue, and J. P. Bidanel. 2005. Estimation of realized genetic 

trends in French Large White pigs from 1977 to 1988 using frozen semen: Farrowing 

and early lactation periods. In: Proceedings of the 56th Annual Meeting of the 

European Association for Animal Production. Uppsala, Sweden. 

Christensen, O. F., and M. S. Lund. 2010. Genomic prediction when some animals are not 

genotyped. Genet. Sel. Evol. 42(2):1–8. doi:10.1186/1297-9686-42-2. 

Christensen, O. F., P. Madsen, B. Nielsen, T. Ostersen, and G. Su. 2012. Single-step methods 

for genomic evaluation in pigs. animal. 6(10):1565–1571. 

doi:10.1017/S1751731112000742. 

Daetwyler, H. D., M. P. L. Calus, R. Pong-Wong, G. de los Campos, and J. M. Hickey. 2013. 

Genomic Prediction in Animals and Plants: Simulation of Data, Validation, Reporting, 

and Benchmarking. Genetics. 193(2):347–365. doi:10.1534/genetics.112.147983. 

Dekkers, J. C. M. 2007. Marker-assisted selection for commercial crossbred performance. J. 

Anim. Sci. 85(9):2104–2114. doi:10.2527/jas.2006-683. 



5
th

 CHAPTER GENERAL DISCUSSION 143 

 

Dufrasne, M., M. Rustin, V. Jaspart, J. Wavreile, and N. Gengler. 2011. Using test station and 

on-farm data for the genetic evaluation of Piétrain boars used on Landrace sows for 

growth performance1. J. Anim. Sci. 89(12):3872–3880. doi:10.2527/jas.2010-3816. 

Edel, C., S. Neuner, R. Emmerling, and K.-U. Goetz. 2012. A note on using “forward 

prediction”to assess precision and bias of genomic predictions. Interbull Bull. No. 

46:16–19.  

Erbe, M., B. J. Hayes, L. K. Matukumalli, S. Goswami, P. J. Bowman, C. M. Reich, B. A. 

Mason, and M. E. Goddard. 2012. Improving accuracy of genomic predictions within 

and between dairy cattle breeds with imputed high-density single nucleotide 

polymorphism panels. J. Dairy Sci. 95(7):4114–4129. doi:10.3168/jds.2011-5019. 

Esfandyari, H., A. C. Sørensen, and P. Bijma. 2015. A crossbred reference population can 

improve the response to genomic selection for crossbred performance. Genet. Sel. 

Evol. 47(1). doi:10.1186/s12711-015-0155-z. 

Falconer, D. S., and T. F. C. Mackay. 1996. Introduction to Quantitative Genetics. 4th ed. 

Longmans Green, Harlow, Essex, UK. 

Fangmann, A., S. Bergfelder-Drüing, E. Tholen, H. Simianer, and M. Erbe. 2015. Can multi-

subpopulation reference sets improve the genomic predictive ability for pigs? J. Anim. 

Sci. 93(12):5618-30. doi: 10.2527/jas.2015-9508. 

Fragomeni, B. O., D. A. L. Lourenco, S. Tsuruta, Y. Masuda, I. Aguilar, A. Legarra, T. J. 

Lawlor, and I. Misztal. 2015. Hot topic: Use of genomic recursions in single-step 

genomic best linear unbiased predictor (BLUP) with a large number of genotypes. J. 

Dairy Sci. 98(6):4090–4094. doi:10.3168/jds.2014-9125. 

Gautier, M., T. Faraut, K. Moazami-Goudarzi, V. Navratil, M. Foglio, C. Grohs, A. Boland, 

J.-G. Garnier, D. Boichard, G. M. Lathrop, I. G. Gut, and A. Eggen. 2007. Genetic and 

Haplotypic Structure in 14 European and African Cattle Breeds. Genetics. 

177(2):1059–1070. doi:10.1534/genetics.107.075804. 

Gengler, N., P. Mayeres, and M. Szydlowski. 2007. A simple method to approximate gene 

content in large pedigree populations: application to the myostatin gene in dual-

purpose Belgian Blue cattle. animal. 1(1):21. doi:10.1017/S1751731107392628. 

Guo, X., O. F. Christensen, T. Ostersen, Y. Wang, M. S. Lund, and G. Su. 2015. Improving 

genetic evaluation of litter size and piglet mortality for both genotyped and 

nongenotyped individuals using a single-step method. J. Anim. Sci. 93(2):503–512. 

doi:10.2527/jas2014-8331. 

Haberland, A. M., H. Luther, A. Hofer, E. Tholen, H. Simianer, B. Lind, and C. Baes. 2014. 

Efficiency of different selection strategies against boar taint in pigs. animal. 8(1):11–

19. doi:10.1017/S1751731113001857. 

Haberland, A. M., F. Ytournel, H. Luther, and H. Simianer. 2010. Evaluation of selection 

strategies including genomic breeding values in pigs. In: Proceedings of the 61st 

Annual Meeting of the European Federation of Animal Science. Heraklion, Greece. 

Heifetz, E. M. 2005. Extent and Consistency Across Generations of Linkage Disequilibrium 

in Commercial Layer Chicken Breeding Populations. Genetics. 171(3):1173–1181. 

doi:10.1534/genetics.105.040782. 

Hidalgo, A. M., J. W. M. Bastiaansen, M. S. Lopes, B. Harlizius, M. A. M. Groenen, and D. 

J. de Koning. 2014. Accuracy of Genomic Breeding Values Predicted Within and 



5
th

 CHAPTER GENERAL DISCUSSION 144 

 

Across Breeds in Pig Populations. In: Proceedings of the 10th world congress on 

genetics applied to livestock production. Vancouver, Canada. 

Howard, J. T., T. A. Rathje, C. E. Bruns, D. F. Wilson-Wells, S. D. Kachman, and M. L. 

Spangler. 2018. The impact of truncating data on the predictive ability for single-step 

genomic best linear unbiased prediction. J. Anim. Breed. Genet. 135(4):251–262. 

doi:10.1111/jbg.12334. 

Ibánẽz-Escriche, N., R. L. Fernando, A. Toosi, and J. C. Dekkers. 2009. Genomic selection of 

purebreds for crossbred performance. Genet. Sel. Evol. 41(1):12. doi:10.1186/1297-

9686-41-12. 

Kemper, K. E., B. J. Hayes, H. D. Daetwyler, and M. E. Goddard. 2015. How old are 

quantitative trait loci and how widely do they segregate? J. Anim. Breed. Genet. 

132(2):121–134. doi:10.1111/jbg.12152. 

Legarra, A., I. Aguilar, and I. Misztal. 2009. A relationship matrix including full pedigree and 

genomic information. J. Dairy Sci. 92(9):4656–4663. doi:10.3168/jds.2009-2061. 

Lillehammer, M., T. H. E. Meuwissen, and A. K. Sonesson. 2011. Genomic selection for 

maternal traits in pigs. J. Anim. Sci. 89(12):3908–3916. doi:10.2527/jas.2011-4044. 

Liu, Z., P. M. VanRaden, M. H. Lidauer, M. P. Calus, H. Benhajali, H. Jorjani, and V. 

Ducrocq. 2017. Approximating genomic reliabilities for national genomic evaluation. 

Interbull Bull. No. 51:75-85. 

Lourenco, D. A. L., B. O. Fragomeni, S. Tsuruta, I. Aguilar, B. Zumbach, R. J. Hawken, A. 

Legarra, and I. Misztal. 2015a. Accuracy of estimated breeding values with genomic 

information on males, females, or both: an example on broiler chicken. Genet. Sel. 

Evol. 47(1):47-56. doi:10.1186/s12711-015-0137-1. 

Lourenco, D. A. L., I. Misztal, S. Tsuruta, I. Aguilar, T. J. Lawlor, S. Forni, and J. I. Weller. 

2014. Are evaluations on young genotyped animals benefiting from the past 

generations? J. Dairy Sci. 97(6):3930–3942. doi:10.3168/jds.2013-7769. 

Lourenco, D. A. L., S. Tsuruta, B. O. Fragomeni, Y. Masuda, I. Aguilar, A. Legarra, J. K. 

Bertrand, T. S. Amen, L. Wang, D. W. Moser, and others. 2015b. Genetic evaluation 

using single-step genomic best linear unbiased predictor in American Angus. J. Anim. 

Sci. 93(6):2653–2662. doi: 10.2527/jas.2014-8836. 

Martini, J. W. R., M. F. Schrauf, C. A. Garcia-Baccino, E. C. G. Pimentel, S. Munilla, A. 

Rogberg-Muñoz, R. J. C. Cantet, C. Reimer, N. Gao, V. Wimmer, and H. Simianer. 

2018. The effect of the H−1 scaling factors τ and ω on the structure of H in the single-

step procedure. Genet. Sel. Evol. 50(1):16. doi:10.1186/s12711-018-0386-x. 

Masuda, Y., P. M. VanRaden, I. Misztal, and T. J. Lawlor. 2018. Differing genetic trend 

estimates from traditional and genomic evaluations of genotyped animals as evidence 

of preselection bias in US Holsteins. J. Dairy Sci. 101(6):5194–5206. 

doi:10.3168/jds.2017-13310. 

Meuwissen, T. H. E., T. Luan, and J. A. Woolliams. 2011. The unified approach to the use of 

genomic and pedigree information in genomic evaluations revisited: Unified approach 

to genomic selection. J. Anim. Breed. Genet. 128(6):429–439. doi:10.1111/j.1439-

0388.2011.00966.x. 

Meuwissen, T., B. Hayes, and M. Goddard. 2016. Genomic selection: A paradigm shift in 

animal breeding. Anim. Front. 6(1):6–14. doi:10.2527/af.2016-0002. 



5
th

 CHAPTER GENERAL DISCUSSION 145 

 

Misztal, I., A. Legarra, and I. Aguilar. 2014. Using recursion to compute the inverse of the 

genomic relationship matrix. J. Dairy Sci. 97(6):3943–3952. doi:10.3168/jds.2013-

7752. 

Misztal, I., S. Tsuruta, I. Aguilar, A. Legarra, P. M. VanRaden, and T. J. Lawlor. 2013. 

Methods to approximate reliabilities in single-step genomic evaluation. J. Dairy Sci. 

96(1):647–654. doi:10.3168/jds.2012-5656. 

Misztal, I., S. Tsuruta, T. Strabel, B. Auvray, T. Druet, D. H. Lee, and others. 2002. 

BLUPF90 and related programs (BGF90). In: Proceedings of the 7th world congress 

on genetics applied to livestock production. Montpellier, France. 

Misztal, I., and G. R. Wiggans. 1988. Approximation of Prediction Error Variance in Large-

Scale Animal Models. J. Dairy Sci. 71:27–32. doi:10.1016/S0022-0302(88)79976-2. 

Muir, W. M. 2007. Comparison of genomic and traditional BLUP-estimated breeding value 

accuracy and selection response under alternative trait and genomic parameters. J. 

Anim. Breed. Genet. 124(6):342–355. doi: 10.1111/j.1439-0388.2007.00700.x. 

Ni, G., D. Cavero, A. Fangmann, M. Erbe, and H. Simianer. 2017. Whole-genome sequence-

based genomic prediction in laying chickens with different genomic relationship 

matrices to account for genetic architecture. Genet. Sel. Evol. 49(1):8. 

doi:10.1186/s12711-016-0277-y. 

Ober, U., J. F. Ayroles, E. A. Stone, S. Richards, D. Zhu, R. A. Gibbs, C. Stricker, D. 

Gianola, M. Schlather, T. F. C. Mackay, and H. Simianer. 2012. Using Whole-

Genome Sequence Data to Predict Quantitative Trait Phenotypes in Drosophila 

melanogaster. N. R. Wray, editor. PLoS Genet. 8(5):e1002685. 

doi:10.1371/journal.pgen.1002685. 

Olson, K. M., P. M. VanRaden, and M. E. Tooker. 2012. Multibreed genomic evaluations 

using purebred Holsteins, Jerseys, and Brown Swiss. J. Dairy Sci. 95(9):5378–5383. 

doi:10.3168/jds.2011-5006. 

Ostersen, T., O. F. Christensen, P. Madsen, and M. Henryon. 2016. Sparse single-step method 

for genomic evaluation in pigs. Genet. Sel. Evol. 48(1):48. doi:10.1186/s12711-016-

0227-8.  

Pfeiffer, C., B. Fuerst-Waltl, P. W. Knap, A. Willam, C. Leeb, and C. Winckler. 2018. 

Genetic parameters for litter quality traits of Austrian Large White and Landrace sows. 

In: Proceedings of the 69th Annual meeting of the European Association of Animal 

Production. Dubrovnik, Croatia.  

Plieschke, L., C. Edel, E. C. G. Pimentel, R. Emmerling, J. Bennewitz, and K.-U. Götz. 2018. 

Genotyping of groups of cows to improve genomic breeding values of new traits. J. 

Anim. Breed. Genet. 135(4):286–292. doi:10.1111/jbg.12348. 

Pocrnic, I., D. A. L. Lourenco, H. L. Bradford, C. Y. Chen, and I. Misztal. 2017. Technical 

note: Impact of pedigree depth on convergence of single-step genomic BLUP in a 

purebred swine population. J. Anim. Sci. 95(8):3391. doi:10.2527/jas2017.1581. 

Pocrnic, I., D. A. L. Lourenco, Y. Masuda, and I. Misztal. 2016. Dimensionality of genomic 

information and performance of the Algorithm for Proven and Young for different 

livestock species. Genet. Sel. Evol. 48(1):82. doi:10.1186/s12711-016-0261-6. 

Putz, A. M., F. Tiezzi, C. Maltecca, K. A. Gray, and M. T. Knauer. 2018. A comparison of 

accuracy validation methods for genomic and pedigree-based predictions of swine 



5
th

 CHAPTER GENERAL DISCUSSION 146 

 

litter size traits using Large White and simulated data. J. Anim. Breed. Genet. 

135(1):5–13. doi:10.1111/jbg.12302. 

de Roos, A. P. W., B. J. Hayes, R. J. Spelman, and M. E. Goddard. 2008. Linkage 

Disequilibrium and Persistence of Phase in Holstein-Friesian, Jersey and Angus Cattle. 

Genetics. 179(3):1503–1512. doi:10.1534/genetics.107.084301. 

Rothschild, M. F., and A. Ruvinsky. 1998. The Genetics of the Pig. CAB International, Oxon, 

UK. 

Schwarzenbacher, H. 2017. Single versus two step genomic evaluations over many 

generations. In: Proceedings of 68th Annual meeting of the European Association of 

Animal Production. Tallinn, Estonia. 

Serenius, T., M.-L. Sevón-Aimonen, and E. A. Mäntysaari. 2003. Effect of service sire and 

validity of repeatability model in litter size and farrowing interval of Finnish Landrace 

and Large White populations. Livest. Prod. Sci. 81(2–3):213–222. doi 10.1016/S0301-

6226(02)00300-7. 

Simianer, H. 2009. The potential of genomic selection to improve litter size in pig breeding 

programs. In: Proceedings 60th Annual meeting of the European Association of 

Animal Production. Barcelona, Spain. 

Song, H., J. Zhang, Y. Jiang, H. Gao, S. Tang, S. Mi, F. Yu, Q. Meng, W. Xiao, Q. Zhang, 

and X. Ding. 2017. Genomic prediction for growth and reproduction traits in pig using 

an admixed reference population. J. Anim. Sci. 95(8):3415–3424. 

doi:10.2527/jas.2017.1656. 

Su, G., P. Madsen, U. S. Nielsen, E. A. Mäntysaari, G. P. Aamand, O. F. Christensen, and M. 

S. Lund. 2012. Genomic prediction for Nordic Red Cattle using one-step and selection 

index blending. J. Dairy Sci. 95(2):909–917. doi:10.3168/jds.2011-4804. 

VanRaden, P. M. 2008. Efficient Methods to Compute Genomic Predictions. J. Dairy Sci. 

91(11):4414–4423. doi:10.3168/jds.2007-0980. 

VanRaden, P. M., C. P. Van Tassell, G. R. Wiggans, T. S. Sonstegard, R. D. Schnabel, J. F. 

Taylor, and F. S. Schenkel. 2009. Invited Review: Reliability of genomic predictions 

for North American Holstein bulls. J. Dairy Sci. 92(1):16–24. doi:10.3168/jds.2008-

1514. 

Vitezica, Z. G., I. Aguilar, I. Misztal, and A. Legarra. 2011. Bias in genomic predictions for 

populations under selection. Genet. Res. 93(5):357–366. 

doi:10.1017/S001667231100022X. 

Xiang, T., B. Nielsen, G. Su, A. Legarra, and O. F. Christensen. 2016. Application of single-

step genomic evaluation for crossbred performance in pig 1. J. Anim. Sci. 94(3):936–

948. doi:10.2527/jas2015-9930. 

Zeng, J., A. Toosi, R. L. Fernando, J. C. Dekkers, and D. J. Garrick. 2013. Genomic selection 

of purebred animals for crossbred performance in the presence of dominant gene 

action. Genet. Sel. Evol. 45(11). doi: 10.1186/1297-9686-45-11. 

Zhou, L., B. Heringstad, G. Su, B. Guldbrandtsen, T. H. E. Meuwissen, M. Svendsen, H. 

Grove, U. S. Nielsen, and M. S. Lund. 2014a. Genomic predictions based on a joint 

reference population for the Nordic Red cattle breeds. J. Dairy Sci. 97(7):4485–4496. 

doi:10.3168/jds.2013-7580. 



5
th

 CHAPTER GENERAL DISCUSSION 147 

 

Zhou, L., M. S. Lund, Y. Wang, and G. Su. 2014b. Genomic predictions across Nordic 

Holstein and Nordic Red using the genomic best linear unbiased prediction model with 

different genomic relationship matrices. J. Anim. Breed. Genet. 131(4):249–257. 

doi:10.1111/jbg.12089. 

  



   

 

 

 

APPENDIX 



APPENDIX  149 

 

ACKNOWLEDGEMENTS 

Ich möchte mich ganz herzlich bei meinem Doktorvater Prof. Dr. Henner Simianer für die 

Möglichkeiten, die er mir eröffnet hat, und die vielen spannenden Themen, an denen ich 

arbeiten durfte, bedanken. Vielen Dank für die große Unterstützung und Motivation in den 

letzten Jahren. 

Bei Prof. Dr. Jörn Bennewitz bedanke ich mich für die Übernahme der Zweitprüferschaft 

meiner Doktorarbeit. 

Bei Prof. Dr. Jens Tetens möchte ich mich für die Übernahme des Prüfungsbeisitzes 

bedanken. 

Ganz herzlich bedanken möchte ich mich auch bei Frau Döring, die immer ein offenes Ohr 

für mich hatte. Vielen Dank für Ihre große Unterstützung und Hilfe in jeglicher Hinsicht. 

Bei meinen Kolleginnen und Kollegen aus der Arbeitsgruppe, die mich immer unterstützt 

haben und hilfsbereit zur Seite standen. Besonders möchte ich mich bei Malena bedanken, 

die immer eine offene Tür für mich hatte. 

I would like to thank Jack C. M. Dekkers and all people from his lab for their warm 

welcome, their support and friendship with various social activities during my visit in Ames 

(Iowa). 

Meiner Familie und meinen Freunden danke ich für die unendliche Unterstützung und ihr 

großes Verständnis. Ganz besonders möchte ich mich bei meinen Eltern, meinem Mann und 

meiner Tochter bedanken - für ihre Liebe, dass sie immer an mich glauben und immer für 

mich da sind. Vielen lieben Dank! 



APPENDIX  150 

 

CURRICULUM VITAE 

Name Anna Maria Fangmann  

Birth name große Holthaus 

Date of Birth 14 December 1988 

Place of Birth Lohne (Oldenburg), Germany 

Nationality German  

School education 

September 2008 General qualification for university entrance 

University degrees 

November 2013 - today PhD student, Animal Breeding and Genetics Group 

Georg-August-University Goettingen, Germany 

Thesis Topic: “Genomic and conventional evaluations for 

fertility traits in pigs”under supervision of Prof. Dr. Simianer 

April 2012 – October 

2013 

M. Sc. Agriculture - Animal Sciences, University of Goettingen, 

Germany 

Master Thesis: “Einfluss differenter Brutverfahren auf das 

Reproduktionsgeschehen bei Legehennen” (The influence of 

different incubation regime on hatchability traits in Layers) 

under the supervision of Prof. Dr. Knorr and Dr. Sharifi 

April 2009 – March 2012  B. Sc. Agriculture - Animal Sciences, University of Goettingen, 

Germany  

Bachelor Thesis: “Statistische und genetische Analyse 

ausgewählter Merkmale der Schlupffähigkeit und embryonalen 

Mortalität bei unselektierten Legehennenpopulationen” 

(Statistical and genetic analysis of the traits Hatchability and 

Embryonic Mortality in Layers) under the supervision of Prof. 

Dr. Knorr and Dr. Sharifi 

Research stays 

June 2014 – August 2014 Department of Animal Science, Institute of Animal Breeding 

and Genetics, Leader: Jack C. M. Dekkers 

Iowa State University Ames, Iowa (USA) 

Topic of research stay: “Including genomic predictions for 

health into terminal sire lines in pigs” 

  



APPENDIX  151 

 

Courses 

June 2013 Course of the Society for Animal Sciences (GfT) “Statistische 

Methoden in Quantitativer Genetik und Tierzüchtung“ 

(Statistical Methods in Quantitative Genetics and Animal 

Breeding), Kitzingen, Germany 

November 2013 Gene2Farm winter school 2013, Piacenza, Italy 

August 2015 Workshop “Writing and Presenting Scientific Papers” 

 

Scholarships and grants 

August 2015 EAAP Conference scholarship 2015 for the society’s annual 

meeting in Warsaw, Poland, and the associated course “Writing 

and presenting papers“ 

August 2016 Schaumann Stiftung Conference scholarship 2015 for the 

society’s annual meeting in Belfast, Ireland 

 



  152 

 

FURTHER PUBLICATIONS 

Große Holthaus A., Sharifi A. R., Preisinger R., Cavero D., Schmutz M., Weigend S., 

Sitzenstock F., Knorr C., Simianer H. (2013). The influence of Different Incubation Regime 

on the Hatchability Traits in Layers. European workshop of Fundamental Physiology and 

Perinatal Development in Poultry. Book of abstract of the 6
th

 Combined Workshop on 

Fundamental Physiology and Perinatal Development in Poultry. Göttingen, Germany. 

Dematawewa C.M.B., Grosse Holthaus A., Simianer H., Dekkers J.C.M. (2015). Genetic 

and economic effects of incorporating genomic predictions on health in swine breeding 

schemes. Book of abstracts of Joint Annual Meeting ADSA-ASAS. Orlando, Florida. 

Dematawewa C.M.B., Grosse Holthaus A., Simianer H., Dekkers J.C.M. (2015). Economic 

gain associated with genomic selection for health in a terminal sire line in pigs. Book of 

abstracts of Joint Meeting of ASAS Midwestern Section and ADSA Midwest Branch. Des 

Moines, Iowa. 

Fangmann A., Bergfelder-Drüing S., Tholen E., Simianer H., Erbe M. (2015). Can multi-

subpopulation reference sets improve the genomic predictive ability? Book of abstracts of the 

Annual Meeting of The European Federation of Animal Science. Warschau, Polen. 

Fangmann A., Sharifi A.R., Erbe M,. Simianer H. (2016). Empirical comparison of different 

methods for genomic evaluation in pigs. Book of abstracts of Annual Meeting of The 

European Federation of Animal Science. Belfast, Ireland. 

Ni G., Cavero D., Fangmann A., Erbe M., Simianer H. (2016). Whole-genome sequence-

based genomic prediction in laying chickens with different genomic relationship matrices to 

account for genetic architecture. Submitted to Genetics Selection Evolution. 

Zhang, Y., Weigend, S., Weigend, A., Preisinger, R., Schmutz, M., Fangmann, A., Simianer, 

H., Sharifi, R.A. (2018). Statistical and Genetic Analysis of hatchability Traits in Laying 

Hens. Submitted to Poultry Science. 


	SUMMARY
	ZUSAMMENFASSUNG
	1st CHAPTER
	GENERAL INTRODUCTION
	Preface
	Pig production in Germany
	A brief history of animal breeding
	Methods of breeding value estimation
	Conventional BLUP
	Genomic BLUP
	Blending to obtain Genomic Enhanced Breeding Values
	Construction of the genomic relationship matrix
	Single-step genomic BLUP
	Nonlinear methods

	Assessment of predictive ability
	Breeder’s equation
	Genomic selection in pig breeding
	Potentials for improving prediction accuracy in pig breeding
	Enlarging reference sets
	Expected potential of multi-subpopulation genomic prediction
	Single-step

	Fertility traits
	Objectives of this thesis


	2nd CHAPTER
	Can multi-subpopulation reference sets improve the genomic predictive ability for pigs?

	3rd CHAPTER
	Empirical comparison between different methods for genomic prediction of number of piglets born alive in moderate sized breeding populations

	4th CHAPTER
	Estimation of genetic parameters for reproduction traits in dam lines of a German pig breeding organization

	5th CHAPTER
	GENERAL DISCUSSION
	Preface
	Perspectives and challenges of the genomic selection in pig breeding
	Genomic selection in pig breeding
	Potential of multi-populations in practice
	Level of family relationships
	Consistency of LD across populations
	Impact of the reference and validation population size

	Improvement of genomic predictability for pigs
	Using crossbred information for genomic prediction
	Using sequence data for genomic prediction
	Using different information sources in genomic predictions

	Single-step genomic BLUP in pig breeding
	Single-step method
	Reliabilities in single-step genomic BLUP
	Construction of ,𝐇-−𝟏. matrix
	Algorithm for proven and young animals (APY)

	Validation methods for predictions
	Genetic progress in (genomic) pig breeding
	Genetic progress
	Improvement of sows’ prolificacy and piglets’ survival
	Validity of repeatability model for fertility traits

	Future prospective and concluding remarks



