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ABSTRACT 

Jasmonoyl-isoleucine (JA-Ile) is a phytohormone that orchestrates responses to wounding, 

feeding insects or necrotrophic pathogens in plants. JA-Ile-metabolism has been studied 

intensively (Wasternack, 2015) and most of the enzymes of the JA-Ile-synthesis as well as of its 

catabolism have been described (Koo, 2018; Wasternack, 2015). However, the enzyme(s) 

responsible to specifically glycosylate 12-hydroxy-JA (12-OH-JA) are still elusive although the 

metabolite 12-O-glucosyl-JA (12-O-Glc-JA) has been described in plants (Koo, 2018; Miersch et 

alia (et al.), 2008; Seto et al., 2009). 12-O-Glc-JA triggers tuber formation in potato (Yoshihara 

et al., 2014) and induces leaf-closing in Mimosa (Nakamura et al., 2011). Furthermore, the 

glycoside might have individual functions as storage- or transport-compound (Miersch et al., 

2008).  

Therefore, this work investigated the glycosylation of 12-OH-JA. Four UDP-dependent 

glycosyltransfereases (UGTs) (UGT76E1, UGT76E2, UGT76E11, and UGT76E12) were 

identified as wound-induced and JA-related and sequence-analyses identified the catalytic motifs 

in all of them. UGT76E1, UGT76E2, UGT76E11, and UGT76E12 were heterologously expressed 

and purified from bacterial cultures. The UGT enzymes were characterized biochemically by 

different activity assays in conditions as equal as possible to determine their individual substrate 

tolerances and specificities. In addition, a new approach was established which exposes the 

enzymes to their native substrate to challenge their selectivity. Through this approach, it was 

possible to investigate purified proteins as close as possible to their natural environment. Finally, 

the kinetic parameters of the UGTs were recorded with their preferred substrates in a continuous 

assay. Altogether, UGT76E1 and UGT76E2 were characterized as 12-OH-JA-UGTs. UGT76E11 

showed activity towards oxylipins and an unknown compound with the calculated sum formula 

C11H18O3. UGT76E12 showed high activity towards an artificial hydroxy-FA, and three 

oxylipins as well as to 12-OH-JA with minor extent.  

This is the first report of UGTs that specifically glycosylate oxylipins. So far, glycosylated 

oxylipins have been found in L. paucicostata (Kai et al., 2010) but not in A. thaliana. However, 

glycosylation may increase the solubility of the FA-derived compounds in the plant cell and may 

be involved in oxylipin regulation or even signaling (confer Wasternack & Feussner, 2018). 

To investigate the physiological role of the candidate UGTs, a CRISPR/Cas9 approach was 

designed. A ugt765e1 mutant plant line was originally identified by screening for an altered 

metabolite profile of 12-OH-JA, 12-OH-JA sulfate, and 12-O-Glc-JA. Due to potential 

redundancy of the candidates forming 12-O-Glc-JA, higher order mutants will be necessary to 

investigate the consequences of a 12-O-Glc-JA-depletion in vivo. 
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1. INTRODUCTION 

Providing food for the increasing human population is a critical issue nowadays. Increasing the 

yield is thus a common way to optimize the existing agricultural resources. However, humans 

have to share their revenues. Especially, feeding insects and pathogen infections cause losses in 

agriculture. Within optimizing agricultural processes, genetic and biochemical approaches help 

to understand plant defense as well as pathogen invasion and have already pushed the limits (Guo 

et alia (et al.), 2018). “A detailed understanding of plant immunity to arthropod herbivores will 

provide new insights into basic mechanisms of chemical communication and plant-animal 

coevolution and may also facilitate new approaches to crop protection and improvement” (Howe 

& Jander, 2008). Thereby, plants actively respond to threats by producing toxins, defensive 

proteins and emitting volatiles that recruit insect predators. Interestingly, insects and injured plant 

cells initiate the defense responses themselves. These initial stimuli are processed by conserved 

pathways of plant hormones and the group of jasmonates promote many defense responses to a 

broad spectrum of insects and pathogens (Koo, 2018).  

1.1. JASMONATES AS PLANT HORMONES 

In addition to defense against biotic attackers, jasmonates are involved in abiotic stress responses 

(Farmer, 2007; Wasternack et al., 1998) and influence developmental processes like flower 

development and root growth (Ueda & Kato, 1980; Yoshihara et al., 2014). Jasmonates are 

molecules that derive from the core molecule jasmonic acid (JA) (Wasternack et al., 1998). They 

may have similar evolutionary origin and biosynthetic similarities to eicosanoids, which act in 

mammalian wound and inflammatory responses (Koo, 2018). Eicosanoids like leukotrienes and 

prostaglandins have been studied extensively due to their clinical importance (Bensinger & 

Tontonoz, 2008).  

To study the formation of jasmonates and processes regulated by them in plants, mechanical tissue 

damage is often used to elicit the core of inducible defense responses (Koo & Howe, 2009). 

Thereby, the jasmonate pathway can be stimulated in a controlled and reproducible way. On top 

of this, jasmonates induce systemic responses by either acting as a mobile signal or being 

synthesized de novo at the distal site (Gasperini et al., 2015; Glauser et al., 2009; Koo & Howe, 

2009). 

Initially, the odorant molecule JA-methyl ester (JA-ME) was isolated from Jasminium 

grandiflorum flowers (Demole et al., 1962), which gave the name to the whole class of 

jasmonates. Since then, many aspects of the biosynthesis, signal perception, hormonal activity 

and different physiological effects have been elucidated (Wasternack, 2015).  
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1.1.1. JA-BIOSYNTHESIS 

A variety of oxidized fatty acids (FAs) – so-called oxylipins – have functions in intra- and 

intermolecular signaling in animals, plants and fungi (Andreou et al., 2009; Wasternack & 

Feussner, 2018). In plants, jasmonoyl-isoleucine (JA-Ile) – the active form of JA – is the major 

oxylipin acting as phytohormone. 

The synthesis of oxylipins may start with the peroxidation of polyunsaturated fatty acids 

(PUFAs). In case of JA, an unspecific glycerolipase may release α-linolenic acid ((9Z,12Z,15Z)-

9,12,15-octadecatrienoic acid) from one of the two positions of a galactolipid of the plastidial 

membrane (Figure 1-1) (Koo, 2018). This molecule is oxygenated at the C13 to 13-hydroperoxy-

octadecatrienoic acid (13-HPOT) by specific 13-linoleate lipoxygenase (LOX) enzymes (13-

LOX). In A. thaliana leaves, LOX2 is responsible for the bulk of JA synthesis in the first hour 

post wounding (hpw) (Glauser et al., 2009). However, in this plant up to four isoenzymes can 

contribute to JA formation (Caldelari et al., 2011; Chauvin et al., 2012). In addition, two other 

LOXs (9-LOX) specifically catalyze 9-hydroperoxy-octadecatrienoic acid (9-HPOT) from α-

linolenic acid. Altogether, this LOX-pathway feeds the substrate pool of this branch with 9- and 

13-HPOT (Blée, 2002). Several enzymes may compete for this substrate pool (Figure 1-2) 

(Feussner & Wasternack, 2002). In plants, a specific group of cytochrome P450 (P450) enzymes 

of the CYP74 family primarily metabolizes the LOX-products. As a member of this family, a 

hydroperoxide lyase (HPL) cleaves the hydroperoxides and produces green-leaf volatiles, which 

may attract beneficial predators to fight against herbivores (Chehab et al., 2008). Noticeable, the 

A. thaliana accession Columbia 0 (Col-0) is natural HPL-mutant (Duan et al., 2005), which 

promotes JA-production by elevated substrate availability (Chehab et al., 2008). Furthermore, 

glycosylated oxylipins were identified (Kai et al., 2010). Such molecules may be formed from 

hydroxy or carboxy derivatives such as (10E,12Z,15Z)-9-hydroxy-10,12,15-octadecatrienoic acid 

(9-HOT) and (9Z,11E,15Z)-13-hydroxy-9,11,15-octadecatrienoic acid (13-HOT), which are 

synthetized from α-linolenic acid by LOX and reductase activity (Figure 1-2). 

The second member of the CYP74 family is allene oxide synthase (AOS). In A. thaliana, a single 

copy gene is detectable in its genome. This enzyme reaction may be the first step with 13-HPOT 

as substrate of JA-biosynthesis (Figure 1-2) by producing an unstable allene oxide 12,13-epoxy-

octadecatrienoic acid (12,13-EOT, Figure 1-1). The allene oxide cyclase (AOC) subsequently 

converts 12,13-EOT to the stable cis-(+)-12-oxo-phytodienoic acid (12-OPDA). Those three 

reactions take place in the plastid, from where 12-OPDA gets exported by a yet unknown protein 

and imported into the peroxisome by the peroxisomal ATP-binding cassette transporter 1 (PAX1) 

(Theodoulou et al., 2005). There, the double bond of 12-OPDA within the cyclopentene ring is 

reduced to yield 3-oxo-2-pentenylcyclopentane-1-octanoic acid (OPC-8) by the  
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12-oxo-phytodienoate reductase isoform 3 (OPR3). Finally, three rounds of β-oxidation shorten 

OPC-8 to yield JA. Each β-oxidation cycle includes activation by the OPC-8 Coenzyme A ligase 

1 (Koo et al., 2006), dehydrogenation, hydration, and oxidation by the three enzymes of the FA-

β-oxidation (Figure 1-1A).  

Another route in JA synthesis is the initial release and peroxidation of roughanic acid (16:3 [n-

3]) leading to dinor-12-OPDA (dnOPDA) (Weber et al., 1997). Parallel to 12-OPDA, this 

molecule is thought to be translocated and reduced by OPR3 (Chini et al., 2018) yielding JA via 

3-oxo-2-pentenylcyclopentane-1-hexanoic acid (OPC-6). Recently, another alternative path was 

 

Figure 1-1: Biosynthesis of jasmonic acid and jasmonoyl-isoleucine in plants 

The biosynthesis of jasmonic acid (JA) is spread over three cell compartments. A) Linolenic acid, 

released from the inner plastidial membrane by a lipase, is oxidized to 13-hydroperoxy-octadecatrienoic 

acid (13-HPOT) by a 13-lipoxygenase (13-LOX). 13-HPOT is dehydrated to 12,13-epoxy-

octadecatrienoic acid (12,13-EOT) by the allene-oxide synthase (AOS) and cyclized to the 12-oxo-

phytodienoic acid (12-OPDA) by the allene-oxide cyclase (AOC). 12-OPDA is transported from the 

chloroplast into the peroxisome where it is reduced to 3-oxo-2-pentenyl-cyclopentane-1-octanoic acid 

(OPC-8) by the oxo-phytodienoate reductase isoform 3 (OPR3). Shorted in three rounds of β-oxidation, 

JA is formed and exported into the cytoplasm. There, it gets hormonal activity by the conjugation to 

isoleucine by jasmonic acid resistant 1 (JAR1) forming jasmonoyl-isoleucine (JA-Ile). B) An alternative 

JA pathway lacks the reduction in the peroxisome yielding didehydro-JA (ddh-JA) after the β-oxidations. 

Final reduction of cytosolic ddh-JA to JA is performed by OPR isoform 2 (OPR2). Transports over 

biological membranes are indicated by dashed arrows. Figures modified from Wasternack & Hause, 2013 

and Chini et al., 2018. 
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B)
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identified, which lacks the initial reduction of 12-OPDA to OPC-8 in the peroxisome. Here, the 

12-OPDA undergoes the three cycles of β-oxidation yielding didehydro-JA (ddh-JA), which, in 

turn, gets exported to the cytoplasm and is reduced to JA by OPR isoform 2 (OPR2, Figure 1-1B) 

(Chini et al., 2018).  

 

 

Figure 1-2: The LOX pathway is the major pathway of oxylipin formation 

Lipoxygenases (LOX) oxygenate polyunsaturated fatty acids (PUFAs) such as α-linolenic acid to the 9-

LOX- and 13-LOX-derived hydroperoxides, 9-hydroperoxy-octadecatrienoic acid (9-HPOT) or 13-

hydroperoxy-octadecatrienoic acid, (13-HPOT). Those molecules can be metabolized to diverse 

oxylipins: epoxy-hydroxy PUFA by a peroxygenase (POX), divinyl ether PUFAs by a divinyl ether 

synthase (DES), hydroxy PUFAs by a reductase (Red), jasmonates by an allene oxide synthase (AOS), 

keto PUFAs by a LOX, leaf aldehydes by a hydroperoxide lyase (HPL), and to epoxy-hydroxy PUFAs 

formed by an epoxy alcohol synthase (EAS). Figure is modified from Feussner & Wasternack, 2002. 

 

1.1.2. JA-ILE SIGNALING 

In plant defense, JA-Ile orchestrates a rapid defense towards herbivores, wounding or 

necrotrophic pathogen attacks. Signal transduction pathways like calcium ion fluxes and 

phosphorylation cascades assist jasmonate signaling (Howe & Jander, 2008). In A. thaliana, JA 
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levels rise within 30 s in the local leaf and in 120 s in the systemic leaves (Glauser et al., 2009). 

For its activation, JA is conjugated with the amino acid isoleucine to form JA-Ile by the jasmonic 

acid-amido synthetase, named JA resistance 1 (JAR1), a member of the acyl acid-amido 

synthetase family Gretchen Hagen 3 (GH3, GH3.11, Figure 1-3) (Westfall et al., 2012). It de-

represses transcription of the JA-responsive genes (Wasternack & Hause, 2013). Transcription 

activators, exempli gratia (e. g.) the leucine-zipper MYC2, are constitutively bound to promoter 

regions of these genes which are in turn repressed by jasmonate zinc-finger inflorescence 

meristem domain (JAZ) proteins. Additionally, the gene transcription is successfully down 

regulated by the interaction of the co-repressors novel interactor of JAZ in complex with topless 

(Pauwels et al., 2010). Upon de-repression of JA-responsive genes, JA-Ile enables molecular 

binding of coronatine insensitive 1 (COI1) – as F-box ligase of the Skp1/Cullin/F-box(COI1) 

(SCFCOI1) complex – to JAZ. Likewise, the JA-repressors are targeted for poly ubiquitination and 

protein degradation by the proteasome (Wasternack & Hause, 2013). Subsequently, MYC2 and 

its bound co-activator mediator 25 can activate JA-responsive gene expression. Such genes 

include new JAZ and MYC2, which suppress further transcription in the absence of an additional 

JA-Ile signal as negative feedback regulation (Koo et al., 2014). The real situation in the nucleus 

involves more regulative proteins like histone acetyltransferases or additional repressors 

competitive for MYC2-binding called jasmonate associated MYC2-like proteins (Wasternack & 

Song, 2017). This complex regulation directs the interaction with other phytohormones and 

balances growth and defense related pathways (see 1.1.4) (confer (cf.) Guo et al., 2018; 

Wasternack & Song, 2017),  

So far, two transporters have been described that are involved in this pathway: PXA1 and the 

jasmonic acid transporter 1 (JAT1). JAT1 has dual function. It imports JA-Ile into the nucleus 

and transports JA or JA-Ile through the plasma membrane (Li et al., 2017; Nguyen et al., 2017). 

Further, intercellular transport of both maybe mediated by the multifunctional glucosinolate 

transporter 1 (GTR1) transporting gibberellins and jasmonates (Ishimaru et al., 2018; Saito et al., 

2015). 

Concerning the JA-precursor 12-OPDA and its amino acid conjugate 12-OPDA-Ile, it has been 

discussed that they may have their individual set of responsive genes (Arnold et al., 2016). The 

structural and metabolic relation of 12-OPDA-Ile to JA-Ile suggests similar behavior but, for 12-

OPDA-Ile, neither the enzymatic conjugation, the transport mechanism, nor the perception have 

been studied in A. thaliana yet. However, in early land plants like bryophytes, the active 

compound JA-Ile is not present. In liverworts for example, the alternative precursor dnOPDA 

stimulates COI1-JAZ interaction within the molecular machinery (Monte et al., 2018). 

Furthermore, several jasmonate derivatives were tested to have activating or inactivating 

functions (see Figure 1-3) (Miersch et al., 2008; Wasternack & Feussner, 2018). 
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As a result, JA-Ile signaling may stimulate the synthesis of chemicals that act as insect deterrents, 

toxins, or anti-nutritive substances (Wu & Baldwin, 2010). Such compounds are often stored in 

specialized defensive organs like trichomes (Yoshida et al., 2009). It also promotes defense by 

deposition of callose, surface lipids, and phenolics (Koo, 2018). In addition, jasmonates promote 

the emission of volatiles that may alert neighboring plants or attract insect predators (Kessler & 

Baldwin, 2001). Physiologically, the JA-Ile pathway readjusts growth and development for 

defense (Guo et al., 2018). 

1.1.3. JA-ILE INACTIVATION 

As a phytohormone, JA-Ile reprograms plants to defense meaning signal-termination is important 

to restore growing conditions (Guo et al., 2018; Koo, 2018). Other phytohormones are also 

conjugated to amino acids. In contrast to JA-Ile, auxin is inactivated by conjugation whereas the 

free molecule is active. However, GH3 enzymes catalyze the reaction in analogy to JAR1 

(Staswick & Tiryaki, 2004). For JA-Ile, there are at least two ways to terminate the signal: de-

conjugation of the active conjugate and oxidation of the molecule at the ω-terminus of the 

pentenyl side chain. However, both pathways may overlap and co-operate in inactivating the JA-

Ile signal (Figure 1-3). 

So far, the oxidation of the active JA-Ile to the 12-hydroxy-JA-Ile (12-OH-JA-Ile) may be the 

initial and direct modification for the inactivation. Further oxidation yields 12-carboxy-JA-Ile 

(12-COOH-JA-Ile) (Heitz et al., 2012). All three oxidation states – JA-Ile, 12-OH-JA-Ile, and 12-

COOH-JA-Ile – can be de-conjugated by the amidohydrolase indole-3-acetic acid (IAA)-alanine 

resistant 3 (IAR3, Figure 1-3) (Zhang et al., 2016). In addition, IAA-leucine resistant-like 6 

(ILL6) is capable to cleave off the amino acid from JA-Ile and 12-OH-JA-Ile (Figure 1-3) 

(Widemann et al., 2013; Zhang et al., 2016). An ill6iar3 double mutant with increased JA-Ile/12-

OH-JA-Ile levels and overexpressing lines with reduced levels confirm the redundant action of 

ILL6 or IAR3 in planta (Zhang et al., 2016).  

However, cleavage of JA-Ile to JA alone retains the potential of a re-activation whereas oxidation 

to 12-OH-JA-Ile indeed reduces activity towards transcriptional activation (Koo et al., 2014; Koo 

et al., 2011). Generally, oxidation is a common step of inactivating phytohormones and is often 

catalyzed by P450 enzymes. For instance, hydroxylation of abscisic acid (ABA), gibberellic acid 

(GA) and brassinosteroids are essential steps in signal termination (Mizutani & Sato, 2010). 

Metabolomic data have shown that oxidized jasmonates like 12-OH-JA-Ile and 12-COOH-JA-Ile 

accumulate when JA-Ile levels decrease (Bruckhoff et al., 2016). Three P450s – CYP94B1, 

CYP94B3, and CYP94C1 – have been identified to oxidize JA-Ile with different specificities 

(Heitz et al., 2012; Kitaoka et al., 2011; Koo et al., 2014; Koo et al., 2011; Widemann et al., 

2016). CYP94B1 and CYP94B3 preferentially form 12-OH-JA-Ile during plant defense and 
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CYP94C1 catalyzes the reaction in flower maturation (Widemann et al., 2016). Here again, the 

three P450s act redundantly (Bruckhoff et al., 2016; Koo et al., 2014). However, CYP94C1 

exclusively forms 12-COOH-JA-Ile (Figure 1-3) (Bruckhoff et al., 2016; Widemann et al., 2016). 

Besides its accumulation after wounding, 12-COOH-JA-Ile is formed during flower opening 

(Widemann et al., 2016). However, possible functions of the different oxidized JA-Ile derivatives 

have to be investigated. 

Subsequent de-conjugation of 12-OH-JA-Ile may yield 12-hydroxy-JA (12-OH-JA), which did 

not exhibit JA-typical responses like inhibition of root growth, germination or expression of JA 

responsive genes (Gidda et al., 2003; Miersch et al., 2008). Although residual amounts of 12-

OH-JA were present in different mutant lines theoretically impaired in 12-OH-JA formation by  

 

 

Figure 1-3: Metabolic fate of jasmonates in plants 

Wound stimuli like feeding insects lead to the activation of jasmonic acid (JA, 1) biosynthesis. JA gets 

active as hormone by the conjugation to isoleucine. Jasmonoyl-isoleucine (JA-Ile, 2) stimulates de-

repression of JA-responsive genes via proteasomal degradation. The amounts of JA and JA-Ile in the cell 

are controlled by ω-oxidations and/or de-conjugation of the isoleucine-moiety. CYP94B1, CYP94B3, and 

CYP94C1 oxidize JA-Ile to 12-hydroxy-JA-Ile (12-OH-JA-Ile, 3) and CYP94C1 to 12-carboxy-JA-Ile 

(12-COOH-JA-Ile, 4). JA-Ile, 12-OH-JA-Ile, and 12-COOH-JA-Ile get de-conjugated by IAA-alanine-

resistant 3 (IAR3) and IAA-leucine-resistant-like 6 (ILL6) forming JA, 12-hydroxy-JA (12-OH-JA, 5) 

and 12-carboxy-JA (12-COOH-JA, 6), respectively. JA is oxidized to 12-OH-JA by jasmonate-induced 

oxidases 1 to 4 (JOX1-4). 12-OH-JA gets modified to 12-OH-JA sulfate (12-HSO4-JA, 7) by 

sulfotransferase 2a (ST2a) or glycosylated to 12-O-glucosyl-JA (12-O-Glc-JA, 8). Question marks 

indicate so far unknown enzymes for the reactions to 12-O-Glc-JA, jasmonic acid-glucosyl ester (JA-GE, 

9), and 12-O-glucosyl-JA-Ile (10). Scheme modified from Wasternack & Hause, 2013, additions from 

Caarls et al., 2017; Kitaoka et al., 2014; Widemann et al., 2016; Zhang et al., 2016. Photo was taken from 

Iven et al., 2014. 
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serial hydroxylation and de-conjugation of JA-Ile (cf. Bruckhoff et al., 2016; Widemann et al., 

2013; Zhang et al., 2016), this path was the only route to form 12-OH-JA known until recently. 

After the direct oxidation of JA had been suggested (Bruckhoff et al., 2016), the responsible 

enzymes were independently identified twice (Caarls et al., 2017; Smirnova et al., 2017). These 

jasmonate-induced oxygenase 1 to 4 (JOX1-4) belong to the family of 2-oxoglutarate Fe(II)-

dependent oxygenases (Figure 1-3) (Caarls et al., 2017). The respective quadruple mutant showed 

elevated JA-levels and reduced levels of 12-OH-JA resulting in higher resistance to a necrotrophic 

fungus and feeding insects. Although induced by JA, JOX1-4 down-regulate the JA-Ile-dependent 

responses (Caarls et al., 2017) like it has been observed for their metabolic product 12-OH-JA 

before (Miersch et al., 2008). Trying to explain this dual synthesis routes of 12-OH-JA, Smirnova 

and co-workers suggested specificity of the de-conjugation path in response to wounding and the 

oxidative path for necrotrophic pathogen attack. Besides its dual synthesis paths, 12-OH-JA can 

be modified by two different ways (Figure 1-3). On the one side, the specific sulfotransferase 2a 

(ST2a) is known to form 12-hydroxy-JA sulfate (12-HSO4-JA) (Gidda et al., 2003). On the other 

side, the 12-hydroxy group can be glycosylated to form 12-O-glucosyl-JA (12-O-Glc-JA) 

(Wasternack & Feussner, 2018). Here, the responsible enzymes are still elusive (Koo, 2018; 

Wasternack & Feussner, 2018). Similar to 12-OH-JA, 12-HSO4-JA and 12-O-Glc-JA may be part 

of the inactivation process of the JA-Ile defense (Gidda et al., 2003; Miersch et al., 2008). All 

three metabolites (12-OH-JA, 12-HSO4-JA, and 12-O-Glc-JA) have been identified in many plant 

species in an organ-specific manner (Miersch et al., 2008; Seto et al., 2009). In addition, 12-OH-

JA has been identified as tuber-inducing compound in Solanum tuberosum, which is reflected in 

its trivial name tuberonic acid (Yoshihara et al., 2014).  

In analogy to the oxidation products of conjugated jasmonates, also JA, 12-OH-JA, and 12-

COOH-JA are present in A. thaliana. The metabolite 12-COOH-JA has been found in open 

flowers of A. thaliana (Bruckhoff et al., 2016). Although, the biosynthesis is unknown the 

abundance of 12-COOH-JA is connected to CYP94C1-activity (Bruckhoff et al., 2016). 

Furthermore, IAR3 is capable to de-conjugate 12-COOH-JA-Ile to 12-COOH-JA in vitro (Figure 

1-3) (Zhang et al., 2016). On top of this, the abundance of 12-COOH-JA in open flowers might 

be connected to the accumulation of 12-COOH-JA-Ile upon flower opening (Widemann et al., 

2016). Hence, 12-COOH-JA is likely to be another catabolic derivative by serial oxidation and 

de-conjugation of jasmonates. 

In summary, six different inactivating metabolites are found around the two active molecule JA-

Ile. Mainly, two catabolic routes terminate the defense signal by terminal oxidation and de-

conjugation. Three different oxidation states have been identified for the core molecule JA and 

the active form JA-Ile. Within the catabolic fate, 12-OH-JA has an emphasized position, since it 

is produced in two ways (oxidation of JA and de-conjugation of 12-OH-JA-Ile) and metabolized 
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in two ways to 12-HSO4-JA and 12-O-Glc-JA. Surprisingly, no individual metabolic functions of 

any of the catabolic derivatives has been identified yet. 

1.1.4. JASMONATE CROSSTALK 

Major plant processes like growth, development, and defense are orchestrated by different 

phytohormones. Therefore, a precise balance of these general processes and the actually needed 

pathways is essential for an effective plant growth and metabolism. A complex network of signal 

transduction pathways regulated by the different phytohormones regulates and balances the 

interaction of plants with their environment (Guo et al., 2018). In this respect, the enzymes of the 

different pathway are good examples how this crosstalk is achieved. As mentioned above, the 

amidohydrolases IAR3 and ILL6 were initially identified and named as auxin hydrolases (Zhang 

et al., 2016) however they use JA-Ile as substrate as well. Besides JAR1, another member of the 

GH3 family (AtGH3.5) conjugates auxin, benzoic acid (BA), and salicylic acid (SA) (Westfall et 

al., 2016). Such broad substrate tolerances for different plant hormones allow common 

modification patterns of different phytohormones leading to a complex and fine-tuned crosstalk 

between the different phytohormones that can influence each other. In the case of jasmonates, the 

crosstalk with other phytohormones or day and night signaling pathways regulates the balance 

between growth and defense (Guo et al., 2018; Pieterse et al., 2009).  

JA-Ile inhibits root growth by crosstalk with auxin (Yoshihara et al., 2014) but also promotes the 

activation of auxin biosynthesis and vice versa (Koo, 2018). On top of this, both pathways share 

a similar genetic regulation via a SCF complex-mediated degradation of repressors (Koo, 2018). 

This might explain the overlapping activities of JA- or auxin-related enzymes. A crosstalk 

between JA-Ile and GA may be synergistic in stamen development but also antagonistic during 

plant growth and defense (Wasternack & Hause, 2013). Here, the main regulators JAZ and 

DELLA repress each other (Koo, 2018). Next, the interaction of JA-Ile and ABA is mostly 

antagonistic due to their roles in different stress responses – water control after drought or heat is 

regulated by ABA, while the wound response is controlled by JA-Ile. However, the crosstalk of 

JA-Ile and ABA can also have a synergistic character since wounding may cause water loss and 

ABA receptors are expressed via JA-Ile in Nicotina tabacum (N. tabacum) and A. thaliana 

(Lackman et al., 2011). In defense, JA-Ile and ethylene generally act synergistically in response 

to necrotrophic pathogens (Pieterse et al., 2013; Xu et al., 1994). Here, JAZ-degradation activates 

both, JA-Ile and ethylene controlled responses (Zhu et al., 2011). Anyhow, the best studied 

phytohormone crosstalk is between JA-Ile and SA. Both hormones act in plant defense but SA is 

involved in the response towards biotrophic pathogens, while JA-Ile reacts towards necrotrophic 

pathogens and tissue damage. In nature, plants often have to face both infections simultaneously 
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and JA-Ile and SA levels are well balanced until one particular stimulus pushes the response 

towards one defense pathway (Wasternack & Hause, 2013). 

A complex network of interaction between JA-Ile and different other phytohormones may be 

assisted by chemical modifications, which potentially change the signaling character of JA-Ile. In 

case of jasmonates, different modifications are known to take place in plants, like conjugation, 

oxidation, de-conjugation, methylation, sulfation, and glycosylation (see Figure 1-3) (Iven et al., 

2014) but most of the physiological roles of such modifications are elusive (Koo, 2018). In 

contrast to this, many specific enzymes catalyzing the different modifications of jasmonates are 

well studied. The only modification where the enzymes enzymatic are not known yet is the 

glycosylation of different jasmonates (JA, 12-OH-JA, 12-OH-JA-Ile, Figure 1-3).  

1.2. GLYCOSYLTRANSFERASES IN PHYTOHORMONE HOMEOSTASIS 

Glycosylated forms of all phytohormones except ethylene are well known in A. thaliana (Bowles 

et al., 2006). All individual steps in phytohormone-metabolism are regulated and balanced by 

specific modifications whereby glycosylation is often the final step (Vogt & Jones, 2000). 

Glycosylation increases the solubility of lipophilic compounds like anthocyanin pigments (Vogt 

& Jones, 2000). Furthermore, it promotes metabolic transport and likewise changes the inter- or 

intracellular localization of the metabolites, e. g the glycosylated anthocyanin pigments are stored 

in the vacuole. In combination with a specific hydrolase enzyme, glycosylated molecules can 

serve as reversible storage forms. Whereas, without a hydrolase the molecule can be trapped in 

the organelle to regulate the cellular pool of bioactive compounds. In both cases, the activity of 

glycosyltransferases regulate the bioactivity and the homeostasis of specialized metabolites and 

phytohormones. Hereby, the responsible UGT is often controlled on the transcriptional level to 

regulate its mode and time of action (Bowles et al., 2006; Ross et al., 2001; Vogt & Jones, 2000). 

In analogy, glycosylation of specialized molecules is part of a three-step detoxification-strategy: 

Phase I is an activation of the molecule by oxidation or hydrolytic cleavage. Phase II is the 

glycosylation itself. It is a second layer of chemical modification, which prepares the compound 

for elimination from the cytosol. Phase III is the transport of the modified molecule into the 

vacuole or the apoplast (Coleman et al., 1997). Besides the plants vacuole, the apoplast is another 

storage site, which accumulates inert derivatives for further storage or degradation (Dietz et al., 

2000).  

Glycosyltransferase enzymes catalyze the transfer of a hexose-moiety to a chemical. There are 

different classifications of glycosyltransferases known. The database of carbohydrate-active 

enzyme (CAZy) ranks all glycosyltransferases known into 106 sequence-based families by their 

co-substrate usage e. g. nucleotide diphosphate-sugars, nucleotide monophosphate-sugars or 
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sugar phosphates (http://www.cazy.org/, access 20.08.2018) (Campbell et al., 1997). 

Glycosylation of natural products and small lipophilic compounds is catalyzed by 

glycosyltransferases of the family 1. This is the biggest family of all glycosyltransferases known 

and uses uridine diphosphate (UDP)-activated sugars for catalysis (Bowles et al., 2006). This 

subgroup was then used as basis for more detailed groupings (Campbell et al., 1997): All 

glycosyltransferases using UDP-activated sugars are called UDP-dependent-glycosyltransferases 

(UGTs) and are grouped into one superfamily. The UGT-superfamily is divided into families by 

at least 40 % amino acid sequence homology. Here, the families 71 to 100 are specific for plants. 

These 30 UGT families are further separated into subfamilies by at least 60 % homology and are 

classified by individual numbers (Figure 1-4) (Mackenzie et al., 1997). This nomenclature will 

be used throughout this work to describe the analyzed glycosyltransferases.  

 

 

Figure 1-4: Nomenclature of UDP-dependent glycosyltransferases of family 1 

The scheme illustrates the systematic nomenclature of the superfamily of UDP-dependent 

glycosyltransferases of the family 1 (UGTs). Further grouping is achieved in families with ≥ 40 % and in 

subfamilies with ≥ 60 % amino acid sequence homology. Lastly, all members of one subfamily are 

individually numbered (Mackenzie et al., 1997). 

 

All UGTs transfer the activated sugar moiety from a donor onto the acceptor molecule. In plants, 

the donor is mostly UDP-glucose (UDP-Glc) but can also be UDP-galactose, UDP-xylose, UDP-

glucoronic acid or UDP-rhamnose (Vogt & Jones, 2000). The glucose (Glc) moiety of UDP-Glc 

derives from Glc-1-phosphate reacts with UTP-nucleotide releasing pyrophosphate. For this 

reaction two UTP-Glc-1-phosphate uridylyltransferases are known in A. thaliana (Meng et al., 

2009). Then, the actual UGT-reactions can take place: The UGT individual binds the co-substrate 

and transfers the Glc moiety from the donor onto the deprotonated group of a substrate-acceptor 

(Reaction 1). Usually, hydroxy groups (OH-), thioles (SH-), secondary amines (NH-), and rarely 

methines (CH-) can be used for glycosylation by UGTs (Bowles et al., 2006). 

 

Reaction 1 

R-OH + UDP-Glc 
UGT
→   R-O-Glc + UDP 

R-OH: Hydroxy-substrate, sugar acceptor 

UDP-Glc: Uridine diphosphate glucose, sugar-donor 

UGT: Uridine diphosphate-dependent glycosyltransferase 

R-O-Glc: Product, O-glucosyl-substrate 

UDP: Uridine diphosphate 

UGT 74 F 1
Superfamily Family Subfamily Numbering



INTRODUCTION 

12 

 

All plant UGTs that could be analyzed by x-ray crystallography so far share a common protein 

structure (fold-B). This structure features two domains split by a cleft. The UDP-Glc-binding 

motif is located at the C-terminal domain and harbors a general Rossmann-fold motif to 

coordinate the sugar-nucleotide (Albesa-Jové & Guerin, 2016; Bowles et al., 2006). This 

Rossmann-fold motif is a general structural feature of proteins to coordinate nucleotides by an 

alternating order of β-sheets and α-helices (Lesk, 1995). This C-terminal motif is highly 

conserved and characteristic for all UGT enzymes. In this 40-44 amino acid-long region, six 

characteristic amino acids achieve the direct UDP-Glc binding (Figure 1-5A) (Albesa-Jové & 

Guerin, 2016; Bowles et al., 2006). This motif was identified by x-ray crystallography of the 

glycosyltransferase UGT78A5 from Vitis vinifera (V. vinifera, VvGT1), with the bound cofactor 

in the crystal structure (Figure 1-5A) (Offen et al., 2006). On the other side of the cleft, the N-

terminal domain is specific for substrate binding. Thus, the general sequence homology is much 

lower but the motif of a catalytic histidine and an assisting aspartate is well conserved (Figure 

1-5B). This motif was proposed by the x-ray crystal structure of VvGT1 and the 

glucosyltransferase UGT74F2 from A. thaliana (George Thompson et al., 2017; Offen et al., 

2006). UGT74F2 uses SA as substrate to form specifically the SA-glucosyl ester (SA-GE), 

(George Thompson et al., 2017; Lim et al., 2002). Here, a tyrosine, an aspartate and the catalytic 

histidine coordinate SA as substrate in a way that the hydroxy group of the acid can attack the 

anomeric carbon of UDP-Glc by a SN2-reaction mechanism (see Figure 1-5B) (Albesa-Jové & 

Guerin, 2016; Bowles et al., 2006). In the case of a glycosidic product formed, the assisting 

aspartate deprotonates the secondary amine in the imidazole ring of the catalytic histidine. 

Consequently, the second nitrogen of the imidazole ring, which is a tertiary amine, compensates 

for that by deprotonating the hydroxy group of the substrate (Albesa-Jové & Guerin, 2016; George 

Thompson et al., 2017). Subsequently, the substrate anion targets the C1 of the sugar-donor by a 

nucleophilic attack. These reaction mechanisms explain the so-called inverting reaction of this 

class of UGTs (Lairson et al., 2008): The activated sugar donor is in the α-configuration and 

nucleophilic attack of the substrate-anion from behind leads to a flip into the β-conformation of 

the sugar in a SN2-reaction mechanism. Hence, the orientation of the substrate to the catalytic 

histidine is crucial for catalysis. In the case of a hydroxy group, the anionic oxygen atom forms a 

glyosidic product with the sugar. In the case of a carboxy group, the carbanion forms a glycosyl 

ester (GE) as product (see Figure 1-5B). For example, the two homologue proteins UGT74F1 and 

UGT74F2 are characterized as SA-UGTs in A. thaliana. Thereby, UGT74F1 coordinates the SA-

substrates via the carboxy group of the benzoate and the 2-hydroxy group gets deprotonated to 

from a glycoside. UGT74F2, on the other side, coordinates the SA-molecule via the hydroxy 

group and the carboxy group gets deprotonated to form a GE (George Thompson et al., 2017). 

However, UGT74F1 and UGT74F2 have overlapping activates towards the respective other 
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reaction (George Thompson et al., 2017; Lim et al., 2002). Generally, the catalytic sites of the 

UGT enzymes show high regio-selectivity and -specificity for the reactive groups, whereas, the 

substrate specificity tends to be broad (Vogt & Jones, 2000). 

 

 

Figure 1-5: Catalytic motifs of UDP-dependent glycosyltransferases 

UDP-dependent glycosyltransferases (UGTs) use an activated sugar donor, e g. UDP-Glc, to transfer the 

sugar moiety onto the substrate. Hence, all UGTs share a conserved motif for the binding of the sugar 

donor and the catalytic site. A) Conserved binding motif of UDP-Glc in the active site of VvGT1. The 

UDP-Glc orientation is achieved by six conserved amino acids (marked in the amino acid sequence by 

red letters) (taken from Bowles et al., 2006; Offen et al., 2006). B) The catalytic site of UGT74F2 with 

the coordinated substrates salicylic acid (SA) and UDP-Glc. Hydrogen bonds are given as dashed lines. 

The reaction mechanism is indicated with arrows: Y15, H18, and D111 coordinate SA; SN2 attack by the 

hydroxy group of the acid to the anomeric carbon of UDP-Glc results in the formation of SA-glucosyl 

ester (taken from George Thompson et al., 2017). 

 

There are 120 genes encoding UGTs predicted in the A. thaliana genome. Thereof, 109 carry the 

specific UDP-Glc-binding motif and 107 out of these 109 share nine conserved sequence-regions 

(Ross et al., 2001). These UGTs were arranged in a phylogenetic tree into 14 groups depending 

on the amino acid similarity of the nine characteristic motifs (named A-N, Supplemental figure 

1, membership > 60 % similarity) (Ross et al., 2001). Although general catalytic preferences 

cannot be predicted, the group L (consisting of members of the UGT-subfamilies UGT74, UGT75 

and UGT 84) contains UGTs, which form mainly GE-products with IAA and SA. UGT84B1, 

UGT74E2, and UGT74D1 are described to glycosylate auxins like indole-3-carboxylic (ICA) acid 

and indole-3-butyric acid (IBA) (Jackson et al., 2001; Jin et al., 2013; Tanaka et al., 2014). For 

IAA the glycosylation has major influence on the hormone homeostasis. In this case, 90 % of all 

IAA is conjugated via an amide bond, 10 % are linked as GE for inactivation and storage and only 

1 % is free IAA (Woodward & Bartel, 2005). UGT84A1 and UGT84A3 are described to produce 

phenylpropanoid-GE as precursors of lignin synthesis. Here, the glycosylation is thought to 

promote export of the monomers for extracellular polymerization (Lim et al., 2001). In this L 

A)
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group, also UGT74F1 and UGT74F2, which glycosylate SA, are clustered (see above, (George 

Thompson et al., 2017; Lim et al., 2002). For 2-O-glucosyl-SA (2-O-Glc-SA), it has been 

reported to be localized in the vacuole (in soybean (Dean et al., 2003) and in tobacco (Dean et 

al., 2005)). The group H of UGTs harbors all UGT76 enzymes. This subfamily is not yet well 

characterized. Here, UGT76B1 is published to form a (2R,3R)-2-hydroxy-3-methylpentanoic acid 

glycoside (HMPA-Glc). The activity was found after UGT76B1 was identified as the top induced 

UGT-gene after various biotic and abiotic stresses. UGT76B1 might regulate SA and JA-Ile 

crosstalk in plant stress response by producing HMPA-Glc  

 

 

Figure 1-6: Phylogenetic tree of UGTs of A. thaliana related in hormone homeostasis 

Phylogenetic tree of 51 out of 107 UGT genes of A. thaliana. The selected branch includes several genes 

(indicated by grey ellipses), whose gene products are involved in hormone homeostasis or stress 

response. Enzymatic products of selected UGTs are given in black boxes. The complete phylogenetic tree 

is shown in Supplemental figure 1. GE, glycosyl ester; HMPA-Glc, (2R,3R)-2-hydroxy-3-

methylpentanoic acid glycoside; DHBA, dihydroxy-benzoic acid; IAA, indole-3-acetic acid; IBA, indole-

3-butylric acid; JA, jasmonic acid; 3-O-Glc-flavonoid, 3-O-glycosyl-flavonoid. Indicated activities are 

taken from Bowles et al., 2006; George Thompson et al., 2017; Hou et al., 2004; Huang et al., 2018; 

Jackson et al., 2001; Lim et al., 2002; Ross et al., 2001; Song, 2005; Tanaka et al., 2014; von Saint Paul 

et al., 2011. 
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(von Saint Paul et al., 2011). In addition to that, UGT76C2 was characterized as being specific 

for the amine-glycosylation of cytokinins after drought stress (Hou et al., 2004). Although not 

much is known about the group H, the activities that are known could point towards diverse 

glycosylation activities within the plant´s defense response and phytohormone homeostasis. 

1.2.1.1. GLYCOSYLATION OF JASMONATES 

Glucose derivatives of jasmonates, like JA-glucosyl ester (JA-GE) (Miersch et al., 1987; Swiatek 

et al., 2004), the 12-O-Glc-JA (Miersch et al., 2008), and the 12-O-glucosyl-JA-Ile (12-O-Glc-

JA-Ile) (Kitaoka et al., 2014) have been identified in many plant species (Figure 1-3) (Wasternack 

& Feussner, 2018). Furthermore, a JA-Ile glucosyl ester has been postulated as putative natural 

compound (Wasternack & Hause, 2013). Although, there is a set of glycosylated jasmonate, no 

intra- and intercellular functions are known for any of them (Koo, 2018). In N. tabacum cell 

cultures (Bright Yellow-2-cells), JA-application promotes the formation of JA-GE but also the 

export of 12-OH-JA (Swiatek et al., 2004). In A. thaliana, UGT74D1, named UDP-glucose:JA 

glucosyltransferase 1 (JGT1), was published to produce JA-GE but already that study showed 

higher affinities towards auxins and even dihydro-JA (Song, 2005). Anyhow, the same enzyme 

was found to be specific for IAA and 2-oxindole-3-acetic acid but without JA being tested as 

mentioned above (Jin et al., 2013; Tanaka et al., 2014). In summary, UGT74D1 seems to be rather 

unspecific and forms GEs of different phytohormones. This might point towards a putative 

function in homeostasis by balancing levels of several phytohormones.  

In the case of the ω-glycosylation of 12-OH-JA and 12-OH-JA-Ile, the addition of the Glc requires 

hydroxylation beforehand. Likewise, it follows the detoxification phases I and II (see above). 

Possibly, a similar inactivation mechanism could exist as described for SA in the vacuole (Dean 

et al., 2005; Dean et al., 2003) or possibly in the apoplast (Dietz et al., 2000). 

So far, one study has detected 12-O-Glc-JA-Ile after wounding in A. thaliana, N. tabacum, and 

Glycine max (Kitaoka et al., 2014). However, the levels were much lower than for 12-OH-JA. 

Nevertheless, the same group found 12-O-Glc-JA-Ile to be de-conjugated to 12-O-Glc-JA by 

IAR3 in vitro (Zhang et al., 2016). Together, there might be a physiological activity of 12-O-Glc-

JA-Ile.  

12-OH-JA and 12-O-Glc-JA may induce tuber formation in S. tuberosum (Yoshihara et al., 2014). 

Despite, 12-OH-JA and 12-HSO4-JA do not induce typical JA-responses like inhibiting root 

growth and germination rates in Solanum lycopersicum (S. lycopersicum) (Gidda et al., 2003; 

Miersch et al., 2008). All three JA-derivatives are induced by JA-Ile/COI but do not stimulate the 

defense-signaling themselves. Thus, it is highly unlikely that those derivatives can be metabolized 

back to JA (Gidda et al., 2003; Miersch et al., 2008). Nevertheless, the balance of 12-HSO4-JA 

and 12-O-Glc-JA seems to be tightly regulated. On the one hand, a ST2a over-expressing line 
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shows enhanced levels of 12-HSO4-JA over 12-O-Glc-JA in S. lycopersicum (Wasternack & 

Hause, 2013). On the other hand, a mutant with disrupted 12-HSO4-JA-levels shows elevated 12-

O-Glc-JA-abundance (Mugford et al., 2009). Both reactions seem to compete for the joint 

substrate 12-OH-JA. In addition to this, 12-OH-JA and/or 12-O-Glc-JA are mobile compounds 

in S. tuberosum and N. tabacum. After application of radiolabeled 12-OH-JA, both radiolabel 

metabolites (12-OH-JA and 12-O-Glc-JA) could be detected in distal leaves (Seto et al., 2009). 

Hence, glycosylation might change or retain the localization of 12-OH-JA. On top of this, there 

is a β-glucosidase specifically hydrolyzing 12-O-Glc-JA to 12-OH-JA in Oryza sativa (O. sativa) 

(Wakuta et al., 2010). In O. sativa and N. tabacum, there are UGTs specific for SA-glycosylation 

(UGT74H3 and UGT74G1-like respectively), which also tolerate 12-OH-JA (Seto et al., 2011; 

Seto et al., 2009). Nevertheless, no specific UGTs have been found for any of those glycosylation 

reactions of jasmonates yet (Koo, 2018; Wasternack & Feussner, 2018). 

Up to now, there is just one physiological effect of 12-O-Glc-JA known, which acts as a COI1-

JAZ independent leaf-closing factor in Samanea saman (S. saman). Noticeable, this effect is 

induced to a lesser extent by 12-OH-JA application, too (Nakamura et al., 2011). Therefore, 

specific and individual functions of 12-OH-JA and its glycoside cannot be addressed without 

knowing the catalytic enzymes and using the respective plant mutants. 
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2. AIMS OF THE STUDY 

The overall topic concerns the metabolic fate of jasmonates in plant defense of wounded 

A. thaliana. Especially the catabolic fate may be highly diverse including signal termination, 

degradation, storage as well as regulation and balance with other phytohormones. The initial 

hydroxylation of the active JA-Ile leads to inactivation (Heitz et al., 2012). On top of this, there 

are three different glycosylated jasmonates in A. thaliana, which change the properties of the free 

compounds. In such cases, a glycosylation reaction increases the solubility of jasmonates and 

might tag the molecules for an altered localization e. g. for deposition in the vacuole or the 

apoplast (Dean et al., 2005; Dean et al., 2003; Dietz et al., 2000). All these derivatives are yet 

without a function. Consequently, it is important to identify the specific UGTs first. Hereby, it is 

crucial to characterize them enzymatically in respect to their substrate specificity and selectivity. 

In addition, kinetic parameters will give detailed information about the UGT´s preference and 

activity. Vogt and Jones, 2000, stress the importance of detailed enzymatic data to conclude real 

activities. Such findings will complete the set of catalytic enzymes acting on jasmonates (see 

Figure 1-3). Generally, the responsible UGT(s) will dramatically increase the understanding on 

the whole pathway in response to wounding, feeding insects or necrotrophic pathogens and 

phytohormone signal termination. Then, investigations of all reactions, their crosstalk, and 

regulation might address different roles of the glycosylated jasmonates. 

This work follows the approach to mimic defense by mechanical wounding in the model plant 

A. thaliana (Koo & Howe, 2009). After wounding, jasmonates follow a chronological sequence 

of metabolic modifications (Bruckhoff et al., 2016; Iven et al., 2014). This work wants to use this 

knowledge and postulates that also the gene expression of the responsible UGT-candidates might 

follow such temporal order since UGTs are usually regulated on this level (Vogt & Jones, 2000). 

In this way, the stringent series of metabolic modifications of jasmonates can be achieved by 

exact and controlled gene activations. Once putative candidates have been identified, the UGTs 

will be tested with multiple experimental layers to characterize them enzymatically. On top of 

this, the UGT candidates will be investigated in vivo using gene editing to generate plant mutants. 

Likewise, it may be possible to separate the physiological functions of 12-OH-JA and 12-O-Glc-

JA. 
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3. MATERIAL AND METHODS 

3.1. MATERIAL 

3.1.1. EQUIPMENT 

Table 3-1: Equipment  

Equipment  Supplier  

Acquity UPLC BEH RP 18 column (1x100 mm, 

1.7 μm particle size) 

Waters Corporation (Milford, USA) 

Acquity UPLC HSS T3 column (1x100 mm, 1.8 

μm particle size) 

Waters Corporation (Milford, USA) 

Acquity UPLC system with (or without) UPLC 

eLambda 800 nm PDA detector 

Waters Corporation (Milford, USA) 

Agilent 1100 HPLC system Agilent Technologies (Waldbronn, Germany) 

Agilent 1200 UHPLC system Agilent Technologies (Waldbronn, Germany) 

ÄKTA prime plus GE Healthcare (Little Chalfont, UK) 

ÄKTA prime system  GE Healthcare (Little Chalfont, UK) 

Applied Biosystems 4000 quadrupole/linear ion 

trap mass spectrometer  

MDS Sciex (Framingham, USA) 

Agilent 6540 Accurate-Mass Quadrupole-Time Of 

Flight (Q-TOF) mass spectrometer 

Agilent Technologies (Waldbronn, Germany) 

Arium pro Ultrapure Water System Sartorius AG (Goettingen, Germany) 

Avanti J-25 centrifuge Beckmann Coulter GmbH (Krefeld, Germany) 

Biometra BioDocAnalyzer Analytik Jena AG (Jena, Germany) 

CanonScan 8000F scanner Canon Incorporated (Tokyo, Japan) 

Centrifuge 5415 D Eppendorf AG (Hamburg, Germany) 

Centrifuge 5417 R Eppendorf AG (Hamburg, Germany) 

Centrifuge 5810 R Eppendorf AG (Hamburg, Germany) 

Climate chambers  YORK Refrigeration, YORK Industriekaelte 

GmbH & Co. KG (Mannheim, Germany) 

Fluorescent image analyzer FLA-3000 Fujifilm Corporation (Tokyo, Japan) 

HiLoad 16/600 Superdex 75 prep grade GE Healthcare (Little Chalfont, UK) 

HiLoad 26/600 Superdex 200 prep grade GE Healthcare (Little Chalfont, UK) 

HisTALON Superflow Cartridge, 1 mL, 5 mL Takara Bio Europe (Saint-Germain-en-Laye, 

France) 

HisTrap HP, 1 mL, 5 mL GE Healthcare (Little Chalfont, UK) 

HiTrap Desalting 5 mL GE Healthcare (Little Chalfont, UK) 

ZORBAX RX-SIL (4.6 x 50 mm, 1.8 µm particle 

size) 

Agilent (Waldbronn, Germany) 

PCR detection systems iQ5 real-time  Bio-Rad Laboratories GmbH (Muenich, Germany) 

JA10 rotor Beckman Coulter GmbH (Krefeld, Germany) 

JA25.50 rotor Beckman Coulter GmbH (Krefeld, Germany) 

LCT Premier TOF-MS Waters Corporation (Milford, USA) 

Mastercycler gradient Eppendorf AG (Hamburg, Germany) 

Mastercycler personal  Eppendorf AG (Hamburg, Germany) 

Microfluidizer M-110L Microfluidic (Westwood, USA) 

Mini-PROTEAN 3 electrophoresis system Bio-Rad Laboratories GmbH (Munich, Germany) 

Mixer Ball Mill MM200 with stainless steel 

grinding jars or PTEE-jars 

Retsch GmbH (Haan, Germany) 

NanoDrop 2000 spectrophotometer Thermo Fisher Scientific (Waltham, USA) 

NGM 68 Nitrogen-Membrane-Generator cmc Instruments (Eschborn, Germany) 

Percival CU-36L/D  Percival Scientific Inc. (Perry, USA) 

Premium Freezer Liebherr (Bulle, Switzerland) 

Quartz SUPERSIL cuvettes Hellma Analytics, Muellheim, Germany 
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RK 51005 Ultrasonic cleaner Sonorex (Moerfelden-Walldorf, Germany) 

Sterile bench Prettl-Telstar BioII-A Telstar (Terrassa, Spain) 

TriVersa NanoMate Advion (Ithaca, USA) 

Ultraflow Freezer Nuaire (Plymouth, USA) 

Ultrasonic unit Branson Sonifier Cell disruptor B15 Branson Ultrasonics Corporation (Danbury, USA) 

V-630 UV/Vis Spectrophotometer JASCO Corporation (Hachioji, Japan)  

 

3.1.2. SOFTWARE 

Table 3-2: Software  

Software Supplier 

Analyst software 1.6.2 Applied Biosystems (Darmstadt, Germany) 

Bildanalyseprogramm1.0.4.6 Datinf GmbH (Tuebingen, Germany) 

Biometra BioDocAnalyzer 2.2 Analytik Jena AB (Jena, Germany) 

ChemBioDraw 14.0.0.117 PerkinElmer (Waltham, USA) 

Geneious 8.1 Biomatter Ltd. (Auckland, New Zealand) 

Inkscape Vector Graphics Editor 0.92.1.1 Inkscape Project 

MarkerLynx for MassLynx software Waters Corporation (Milford, USA) 

Marvis Suite 2.6 Kaever et al., 2014 

MassHunter Quantitative Analysis B.05.00 Agilent Technologies (Santa-Clara, USA) 

MassHunter Workstation Acquisition software 

B.04.00 

Agilent Technologies (Santa-Clara, USA) 

MassLynx software 4.1 Waters Corporation (Milford, USA) 

Microsoft Office 2016 Microsoft Corporation (Redmond, USA) 

NanoDrop Thermo Fisher Scientific (Waltham, USA) 

Origin 8.5 Origin Lab (Northampton, Massachusetts, USA) 

Photoshop CS6 Adobe Systems Incorporated (San Jose, 

California, USA) 

Pymol v0.99 DeLano Scientific LLC (San Francisco, USA) 

iQ5 Optical System Software Bio-Rad Laboratories GmbH (Muenich, 

Germany) 

SigmaPlot Systat Software GmbH (Erkrath, Germany) 

Spectra Manager II Software JASCO Corporation (Hachioji, Japan) 

 

3.1.3. CONSUMABLES 

All general consumables were purchased from Sarstedt AG & Co. KG (Nuembrecht, Germany), 

if not stated otherwise.  

Table 3-3: Consumables 

Product Supplier 

Glass vials for HPLC Macherey-Nagel (Dueren, Germany) 

Glass vials for UPLC Macherey-Nagel (Dueren, Germany) 

Micropore tape 3M Science. Applied to Life (St Paul, USA) 

Roti-NC, pore size 2 µm Carl Roth & Co. (Karlsruhe, Germany) 
Silica gel 60 plate Merck KGaA, Darmstadt, Germany 

Spin-X UF 6, 30 kDa cut-off Corning B.V. Life Science (Amsterdam, 

Netherlands) 

Soil: Fruehstofer Erde Industrie Erdwerk Archut (Lauterbach-Wallenrod, 

Germany) 

Soil: Fruehstofer Erde, T25 fein Industrie Erdwerk Archut (Lauterbach-Wallenrod, 

Germany) 

 



MATERIAL AND METHODS 

20 

3.1.4. CHEMICALS 

All chemicals were purchased from Carl Roth & Co. (Karlsruhe, Germany) and Merck KGaA 

(Darmstadt, Germany) if not stated otherwise. Solvents like methanol, ethanol, dichlormethane, 

and acetonitrile (ACN) were supplied by Thermo Fisher Scientific (Waltham, USA) in high 

performance liquid chromatography (HPLC)- or liquid chromatography (LC) coupled to mass 

spectrometry (MS) (LC-MS)-grade. Ultra-pure water was taken from an Arium pro Ultrapure 

Water System (Sartorius, Goettingen, Germany). 

 

Table 3-4: Chemicals  

Chemical Manufacturer 

11-Hydroxy-JA Kindly provided by Dr. Otto Miersch (University of 

Halle/Wittenberg, Germany) 

12-Hydroxy-JA methyl ester Kindly provided by Dr. Otto Miersch (University of 

Halle/Wittenberg, Germany) 

12-Hydroxy-JA Kindly provided by Dr. Otto Miersch (University of 

Halle/Wittenberg, Germany) 

12-O-Glycosyl-hydroxy-JA Kindly provided by Dr. Otto Miersch (University of 

Halle/Wittenberg, Germany) 

3-Hydroxy-hexadecanoic acid Larodan (Solna, Sweden) 

Dihydro-kaempferol PhytoLab GmbH &C. KG (Vestengergsgreuth, 

Germany) 

Dihydro-myricetin PhytoLab GmbH &C. KG (Vestengergsgreuth, 

Germany) 

9,12,13-Trihydroxy-octadecadienoic acid Larodan (Solna, Sweden) 

Gibberellic acid 3 Duchefa Biochemie B.V (Haarlem, Netherlands) 

Microagar Duchefa Biochemie B.V (Haarlem, Netherlands) 

Silwet L-77 silicone surfactant Momentive Performance Materials Inc., Waterford, 

USA 

9,12,13-Trihydroxy-octadecaenoic acid Larodan (Solna, Sweden) 

D5 12-oxophytodienoic acid Kindly provided by Dr. Otto Miersch (University of 

Halle/Wittenberg, Germany) 

D5 jasmonic acid Kindly provided by Dr. Otto Miersch (University of 

Halle/Wittenberg, Germany) 

D4 jasmonoyl-leucine Kindly provided by Dr. Otto Miersch (University of 

Halle/Wittenberg, Germany) 

D4 salicylic acid Isotopes (Quebec, Canada) 

D5 indole-3-acetic acid Eurisotop (Freising, Germany) 

D6 abcisic acid Isotopes (Quebec, Canada) 

2-oxothiazolidine-4-carboxylic acid Merck KGaA (Darmstadt, Germany) 

Uridine diphosphate glucose [glucose14C(U)] PerkinElmer Inc. (Waltham, USA) 
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3.1.5. ENZYMES, SIZE MARKERS, ANTIBODIES, AND MOLECULAR BIOLOGICAL 

KITS 

Table 3-5: Enzymes, size markers, antibodies, and molecular biological kits 

Enzymes Supplier 

DNAse I from bovine pancreas Merck KGaA (Darmstadt, Germany) 

Jump-start RedTaq ready mix Merck KGaA (Darmstadt, Germany) 

Lactatdehydrogenase Boehringer Mannheim GmbH (Mannheim, 

Germany) 

Lysozyme from chicken egg white, ~ 70 000 U/mL Merck KGaA (Darmstadt, Germany) 

Phusion High-Fidelity Polymerase Thermo Fisher Scientific (Waltham, USA 

Pyruvatkinase Boeringer Mannheim GmbH (Mannheim, 

Germany) 

Restriction endonuclease enzymes Thermo Fisher Scientific (Waltham, USA) 

T4-DNA-Ligase Thermo Fisher Scientific (Waltham, USA) 

Takyon No ROX SYBR Mastermix blue dTTP Kaneka Eurogentec S.A. (Seraing, Belgium) 

Size marker  

Gel Filtration Standard Bio-Rad Laboratories GmbH (Muenich, 

Germany) 

Gene-Ruler 1kb DNA Ladder Thermo Fisher Scientific (Waltham, USA) 

Roti-Mark standard Carl Roth GmbH & Co. KG (Karlsruhe, 

Germany) 

Unstained Protein Molecular Weight Marker Thermo Fisher Scientific (Waltham, USA) 

Molecular biological kits  

GenElute Plasmid Miniprep Kit Merck KGaA (Darmstadt, Germany) 

Nucleospin Gel and PCR Clean-up Macherey-Nagel (Dueren, Germany) 

Antibodies  

Tetra-His Antibody Quiagen (Hilden, Germany) 

Goat anti mouse lgG Merck KGaA (Darmstadt, Germany) 

 

3.1.6. MEDIA 

 

Table 3-6: Antibiotics  

Given are the final concentrations of the antibiotics. 

Antibiotics Concentration [µg/mL] 

Kanamycin 25 

Carbenicillin 100 

Rifampicin 50 

Chloramphenicol 35 

Hygromycin 50 

 

Table 3-7: Media for plant cultivation 

In sterile conditions, plants were cultivated on plates with 1/2 Murashige Skoog medium. The ingredients 

were dissolved in water. Weight per volume, w/v. 

Murashige Skoog powder 0.22 % [w/v] 

sucrose 0.05 % [w/v] 

Microagar 0.2 % [w/v] 
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Table 3-8: Media for E. coli cultivation 

The cultures were used for DNA-amplification and cloning as well as pre-cultures and main-cultures for 

protein expression. E. coli were transformed with different plasmids and cultivation was always 

connected to antibiotic selection (Table 3-6). The standard medium for bacteria cultivation was Luria-

Bertani (LB) medium. Protein expression was done in special auto-induction medium (ZYP-5052) like in 

Studier, 2002. During preparation, ammonium and phosphate salts were added last to avoid precipitation. 

Volume per volume, v/v; weight per volume, w/v. 

LB medium 

NaCl 5 g/L 

Peptone 10 g/L 

Yeast extract 10 g/L 

ZY medium 

Peptone 10 g/L 

Yeast extract 5 g/L 

ZYP-5052 expression medium 

MgSO4 1 mM 

FeCl3 10 µM 

CaCl2 4 µM 

MnCl2 2 µM 

ZnSO4 2 µM 

CoCl2 0.4 µM 

CuCl2 0.4 µM 

NiCl2 0.4 µM 

NaMoO4 0.4 µM 

Na2SeO3 0.4 µM 

H3BO3 0.4 µM 

(NH4)2SO4 25 mM 

KH2PO4 50 mM 

Na2HPO4 50 mM 

Glycerol 0.5 % [v/v] 

Glucose 0.05 % [w/v] 

α-lactose 0.2 % [w/v] 

ZY medium 93 % [v/v] 

 

3.1.7. PLASMIDS 

Table 3-9: Plasmids 

Plasmid Selection marker Reference 

pCambia Kanamycin resistance 

BASTA resistance 

Dr. Ellen Hornung, (University of Goettingen, 

Germany, (Hornung et al., 2005) 

pET24a Kanamycin resistance Novagen (Schwalbach, Germany) 

pET28a Kanamycin resistance Novagen (Schwalbach, Germany) 

pJET1.2/blunt Ampicillin resistance Thermo Fisher Scientific (Waltham, USA) 

pUC18-Entry Carbenicillin resistance Dr. Ellen Hronung, University of Goettingen, 

Germany (Hornung et al., 2005) 

pHEE401E Kanamycin resistance /  

Streptomycin resistance 

Addgene (Cambridge, USA, Wang et al., 2014) 
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3.1.8. BACTERIA STRAINS 

Table 3-10: Bacterial strains 

Strain Genotype Reference 

Agrobacterium tumefaciens EHA 

105 

 Dr. Ellen Hornung 

(University of Goettingen, 

Germany) 

Escherichia coli Rosetta II (DE3) Δ(ara-leu)7697ΔlacX74 ΔphoA 

PvuII phoR araD139 ahpC galE 

galK rpsL F′[lac+ lacIq pro] 

gor522::Tn10 trxB pRARE2 

(CamR, StrR, TetR)  

Novagen (Schwalbach/Ts., 

Germany) 

Escherichia coli BL21 Star (DE3) F- ompT hsdSB (rB-mB-) gal dcm 

rne131 (DE3) 

Thermo Fisher Scientific 

(Waltham, USA) 

Escherichia coli DH5α fhuA2 lac(del)U169 phoA glnV44 

Φ80' lacZ(del)M15 gyrA96 recA1 

relA1 endA1 thi-1 hsdR17 

New England Biolabs Ltb 

(Ontario, Canada) 

Escherichia coli XL-1-blue recA1endA1gyrA96 thi-1hsdR17 

supE44 relA1lac[F´proAB 

lac9zM15 Tn19(Tetr)] 

Agilent Technologies 

(Santa-Clara, USA) 

 

3.1.9. PLANT LINES 

All plant lines used in this work are A. thaliana plants of the accession Col-0. 

Table 3-11: Plant lines 

Locus of 

mutation 

Plant Plant line Reference 

 Col-0  Nottingham Arabidopsis Stock Centre 

At5g42650 delayed-dehiscence 2-

2 (dde2-2) 

N65993 Dr. Michael Stumpe (University of 

Goettingen, Germany, von Malek et al, 

2002) 

 

3.1.10. OLIGONUCLEOTIDES 

Table 3-12: Oligonucleotides 

No. Name Sequence Item 

rest. 

site 

P005 UGTE12-fwd-pET28 ACGCATATGATGCAGGTTTTGGGAATGGAGG Cloning NdeI 

P006 UGTE12-rev-pET28 ACGCTCGAGTCATAGAGTCCTTATGAAGTGTAC Cloning XhoI 

P007 UGTE1-fwd-pET28 ACGCATATGATGGAAGAACTAGGAGTGAAGAGAAG Cloning NdeI 

P008 UGTE1-rev-pET28 ACGCTCGAGGTGAACAATGATTTTGTCTATAAATGC Cloning XhoI 

P026 pJET fwd CGACTCACTATAGGGAGAGCGGC Sequencing   

P027 pJET rev AAGAACATCGATTTTCCATGGCAG Sequencing   

P028 T7-for TAATACGACTCACTATAGGG Sequencing   

P029 T7-rev GCTAGTTATTGCTCAGCGG Sequencing   

P044 pJet for outer ACCATATCCATCCGGCGTAA Sequencing   

P045 pJet rev outer AAGAAAACCCACGCCACCTA Sequencing   

P129 E1-q-left  TGCCAACTTCAGCATTTGGG qPCR   

P130 E1-q-right ACCATGCCAAAGATGAGCTC qPCR   

P131 E12-q-left TCGTCACCATTCCAGAAAGC qPCR   
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P132 E12-q-right TTGTTGCAGCACCAACTGAC qPCR   

P133 Actin8-RT_for GGTTTTCCCCAGTGTTGTTG qPCR   

P134 Actin8-RT_rev  CTCCATGTCATCCCAGTTGC qPCR   

P135 UBQ5-RT_fwd  GACGCTTCATCTCGTCC qPCR   

P136 UBQ5-RT_rev GTAAACGTAGGTGAGTCCA qPCR   

P137 E2-fwd ACGCATATGGAGGAAAAGCAAG Cloning NdeI 

P138 E2-rev ACGCTCGAGCATGGAATTAAC Cloning XhoI 

P139 E11-fwd ACGCATATGGAGGAAAAGCC Cloning NdeI 

P140 E11-rev ACGCTCGAGTAGAGTCCTCATG Cloning XhoI 

P157 U6-29p-F TTAATCCAAACTACTGCAGCCTGAC 

CRISPR-

Sequencing   

P158 U6-29-p-R AGCCCTCTTCTTTCGATCCATCAAC 

CRISPR-

Sequencing   

P159 U6-1t-F GCTAAGACAAAGTGATTGGTCCGTT 

CRISPR-

Sequencing   

P160 U6-1t-R AACGGACCAATCACTTTGTCTTAGC 

CRISPR-

Sequencing   

P161 A-DT1-BsF ATATATGGTCTCGATTGCGGGAAGGCTCTTTACTCCAGTT CRISPR/Cas9   

P162 A-DT1-F0 TGCGGGAAGGCTCTTTACTCCAGTTTTAGAGCTAGAAATAGC CRISPR/Cas9   

P163 A-DT0-BsR2 ATATTATTGGTCTCAATCTCTTAGTCGACTCTACCAAT CRISPR/Cas9   

P164 A-DT2-BsF2 
ATATTATTGGTCTCAAGATTGCAGACTCAGTTAAGCTGCCTG

TT CRISPR/Cas9   

P165 A-DT2-F0 TGCAGACTCAGTTAAGCTGCCTGTTTTAGAGCTAGAAATAGC CRISPR/Cas9   

P166 A-DT0-BsR3 ATATTATTGGTCTCATCACTACTTCGTCTCTAACCAT CRISPR/Cas9   

P167 A-DT3-BsF3 
ATATTATTGGTCTCAGTGATTGCTCTGGTAAGCTTTCTGGAA

GTT CRISPR/Cas9   

P168 A-DT3-F0 TGCTCTGGTAAGCTTTCTGGAAGTTTTAGAGCTAGAAATAGC CRISPR/Cas9   

P169 A-DT4-R0 
AACAACAGTCCTTGAAGCTCACCAATCACTACTTCGACTCTA

GCTGTAT CRISPR/Cas9   

P170 A-DT4-BsR ATTATTGGTCTCTAAACAACAGTCCTTGAAGCTCAC CRISPR/Cas9   

P171 B-DT1-BsF ATATATGGTCTCGATTGAACAGTGATGGAGAAGCCCTGTT CRISPR/Cas9   

P172 B-DT1-F0 TGAACAGTGATGGAGAAGCCCTGTTTTAGAGCTAGAAATAGC CRISPR/Cas9   

P173 B-DT0-BsR2 ATATTATTGGTCTCAATCTCTTAGTCGACTCTACCAAT CRISPR/Cas9   

P174 B-DT2-BsF2 
ATATTATTGGTCTCAAGATTGTCGTGCTAAAGACGACACTGT

T CRISPR/Cas9   

P175 B-DT2-F0 TGTCGTGCTAAAGACGACACTGTTTTAGAGCTAGAAATAGC CRISPR/Cas9   

P176 B-DT0-BsR3 ATATTATTGGTCTCATCACTACTTCGTCTCTAACCAT CRISPR/Cas9   

P177 B-DT3-BsF3 
ATATTATTGGTCTCAGTGATTGTTTCAGCACCACAAGTGCCA

GTT CRISPR/Cas9   

P178 B-DT3-F0 TGTTTCAGCACCACAAGTGCCAGTTTTAGAGCTAGAAATAGC CRISPR/Cas9   

P179 B-DT4-R0 
AACTTCCAGAAAGCTTACCAGAGCAATCACTACTTCGACTCT

AGCTGTAT CRISPR/Cas9   

P180 B-DT4-BsR ATTATTGGTCTCTAAACTTCCAGAAAGCTTACCAGAG CRISPR/Cas9   

P183 SGT-fwd ACGGAATTCGAGAAGATGAGAGG Cloning EcoRI 

P184 SGT_rev ACGGGATCCTTTGATTTGAATTTTTG Cloning BamHI 

P187 SGT_rev_new ACGCTCGAGTCATTTGATTTGAATTT Cloning XhoI 

P188 2A-DT1-BsF ATATATGGTCTCGATTGCGGGAAGGCTCTTTACTCCAGTT CRISPR/Cas9   

P189 2A-DT1-F0 TGCGGGAAGGCTCTTTACTCCAGTTTTAGAGCTAGAAATAGC CRISPR/Cas9   

P190 2A-DT2-R0 
AACAGGCAGCTTAACTGAGTCTGCAATCTCTTAGTCGACTCT

AC CRISPR/Cas9   

P191 2A-DT2-BsR ATTATTGGTCTCGAAACAGGCAGCTTAACTGAGTCTGCAA CRISPR/Cas9   

P192 2B-DT1-BsF ATATATGGTCTCGATTGAGGGCTTCTCCATCACTGTTGTT CRISPR/Cas9   

P193 2B-DT1-F0 TGAGGGCTTCTCCATCACTGTTGTTTTAGAGCTAGAAATAGC CRISPR/Cas9   

P194 2B-DT2-R0 
AACAGTGTCGTCTTTAGCACGACCAATCTCTTAGTCGACTCT

AC CRISPR/Cas9   

P195 2B-DT2-BsR ATTATTGGTCTCGAAACAGTGTCGTCTTTAGCACGACCAA CRISPR/Cas9   

P237 E1-detect (rev) CGGTCAAGCTGCCTGGG Seq-CRISPR   

P238 E2-detect (rev) CAGGATCTTTCATGTCG Seq-CRISPR   



MATERIAL AND METHODS 

25 

P239 E11-detect (rev) CGTTTTGTTGTCCTTTGGG Seq-CRISPR   

P240 E12-detect (rev) CTTTGGCTGCAGCTTCAGC Seq-CRISPR   

P241 E2-q-left TTGGGCCAATAGAGAGTACGC qPCR   

P242 E2-q-right ACCGGAACTTGCAGTTGTTG qPCR   

P243 E11-q-left TTTTGGAGCCATTGCGGATG qPCR   

P244 E11-q-right ATCACTGGAAAACGGCTTGC qPCR   

P245 SGT-q-left AAACCTTCGGCTCCAAAACC qPCR   

P246 SGT-q-right ATCCATTGCAAGGTCAAGCG qPCR   

P247 E2-q-left_new GAGCTCATCTTTGGCAAGGTTG qPCR   

P248 E2-q-right_new TTCAACCACTCAACGCAACTC qPCR   

 

3.2. METHODS 

The plant work dealing with A. thaliana was generally performed according to Weigel & 

Glazebrook, 2002. 

3.2.1. PLANT GROWTH AND TREATMENT 

3.2.1.1. PLANT GROWTH AND CULTIVATION 

Plants were grown either on soil or on plates in sterile conditions. 

For standard growth conditions, plants were grown on soil (Fruehstofer Erde, Industrie Erdwerk 

Archut, Lauterbach-Wallenrod, Germany). Therefore, the seeds were sowed on steamed soil 

(80 °C, 8 hours (h)) and stored at 4 °C in the dark for 2 days (d) to guarantee a synchronized 

germination. Then, the plants were transferred either into climate chambers with long day 

conditions (16 h light / 8 h dark, 22 °C, 60 % humidity, and light intensity of 100 µmol m-2s-1) for 

seed propagation and homozygosity tests or into Percival CU-36L/D (Percival Scientific Inc., 

Perry, USA) with short day conditions (8 h light / 16 h dark, 22 °C, 60 % humidity, and light 

intensity of 100 µmol m-2s-1) for wounding experiments (see 3.2.1.3).  

For sterile growth conditions, the seeds were sterilized with bleach first. Approximately (appr.) 

200 seeds were treated with 1 mL sterilization solution (66 % Na-hypochlorite [12 %], 0.1 % 

Tween 20 in water) and incubated for 10 min. Following, the solution was discarded and the seeds 

were washed with 0.5 mL pure ethanol five times and air dried. These seeds were brought onto 

1/2 Murashige Skoog plates (Table 3-7). Therefore, the seeds were given in sterile 0.1 % Agarose 

in water [weight per volume (w/v)] and applied onto the plates. The suspension was allowed to 

dry for appr. 1 h under the sterile bench. Then, the covered plate was sealed with Micropore-tape 

(3M Science, St Paul, USA). The plates were transferred to long day conditions (16 h light / 8 h 

dark, 22 °C). 
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3.2.1.2. SEED PROPAGATION FROM JA-DEFICIENT PLANTS BY JA METHYL ESTER 

TREATMENT 

JA-deficient plants tend to be male sterile (Caldelari et al., 2011; Stintzi & Browse, 2000; von 

Malek et al., 2002). This causes problems in propagating seeds because such mutants are impaired 

in elongating the anthers in the flowers and, hence, not able to self-fertilize. To propagate the JA-

deficient mutant dde2-2 (Table 3-11) (von Malek et al., 2002), plants were grown under long-day 

conditions and the flowers were sprayed every day with a solution of 0.01 % JA-ME, 95 %, Merck 

KGaA, Darmstadt, Germany) in 0.1 % Tween 20.  

3.2.1.3. WOUNDING OF ARABIDOPSIS 

Plant were wounded like described in (Mosblech, 2010). For the wounding experiment, five plants 

per pot (9 x 9 x 8 cm) were grown under short day conditions (8 h light /16 h dark, 22 °C) for six 

weeks. Leaves were wounded three times across the mid vein by squeezing with forceps. In this 

work, non-arresting Kocher’s forceps were used controlled wounding of the leaves. Damaged 

rosette leaves were harvested by cutting the aboveground part of the plants. Usual harvesting time 

points were 1, 2, and 5 hpw. Control plants were harvested without of wounding. All harvested 

rosettes were immediately flash-frozen in liquid N2. 10 plants per time point were pooled as one 

replicate. The plant material was stored at -80 °C for further analyses. 

3.2.2. MOLECULAR BIOLOGICAL METHODS 

If not mentioned otherwise, all molecular biological methods were performed according to 

Ausubel et al., 1993, or Sambrook et al., 1989. 

3.2.2.1. EXTRACTION OF GENOMIC PLANT DNA 

Genomic DNA was extracted from homogenized plant material following the method of Doyle 

& Doyle, 1987. It was used to amplify specific gene fragments for genotyping of plants and to 

detect single nucleotide polymorphisms. Therefore, appr. 100 mg of the sample were 

homogenized in 250 µL cetyltrimethylammonium bromide (CTAB) solution (Table 3-13) and 

incubated at 65 °C for 15 minutes (min). Then, 250 µL of chloroform : isoamyl alcohol [24:1, 

volume per volume (v/v)] were added and mixed. After centrifugation at 7 500 xg at room 

temperature for 4 min, 180 µL of the aqueous phase were taken and mixed with the same volume 

of isopropanol. After 2 min of incubation, the sample was centrifuged at 20 000 xg at room 

temperature for 10 min. The supernatant was carefully removed and the pellet was washed with 

75 % ethanol and dried at 65 °C. Finally, the dry pellet was dissolved in 70 µL H2O. 
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Table 3-13: Cetyltrimethylammonium bromide solution  

Cetyltrimethylammonium bromide (CTAB) extraction solution was used for extracting genomic DNA 

from plant tissue. Ethylenediaminetetraacetic acid (EDTA). Weight per volume, w/v. 

2 % [w/v] CTAB 

100 mM Tris/HCl pH 8.0 

20 mM EDTA 

1.4 M NaCl 

 

3.2.2.2. EXTRACTION OF TOTAL PLANT RNA 

RNA from A. thaliana was isolated to amplify coding sequences of processed gene products and 

to monitor the expression of Arabidopsis genes quantitatively. To isolate total RNA from 

vegetative tissue, a modified protocol from (Onate-Sanchez & Vicente-Carbajosa, 2008) was 

used. 300 μl of extraction buffer (Table 3-14) were pipetted in a 1.5 mL reaction tube and 100 mg 

frozen tissue-powder were weighted into the tube. The suspension was mixed roughly and 

incubated for 5 min at room temperature. Then, 100 µL of protein precipitation solution (Table 

3-14) were added and the suspension was incubated at 4 °C for at least 10 min. Following, the 

suspensions was centrifuged at 20 000 xg and 4 °C for 10 min. The supernatant was transferred 

to a fresh tube and mixed with 300 µL isopropanol. This volume was centrifuged at 20 000 xg 

and 4 °C for 4 min to precipitate poly-nucleotides. Then, the supernatant was carefully removed 

and the pellet was washed with 500 µL 70 % ethanol and centrifuged as before. The supernatant 

was taken again and the pellet was dried at 50 °C. The dry residue was resuspended in 20 µL 

diethyl pyrocarbonate DEPC-water (Table 3-14). The entire volume was used for DNase I 

treatment. Therefore, 3 µL of 10x DNase buffer were mixed with the RNA and 2 µL (2 units) of 

DNase I (Thermo Fisher Scientific, Waltham, USA) were added and incubated at 37 °C for 

30 min. The reaction was stopped by adding 2 µL 50 mM ethylenediaminetetraacetic acid 

(EDTA) and incubating at 65 °C for 10 min. 70 µL of DEPC-water were added to the 30 µL of 

DNase-treated RNA and this was mixed with 50 µL 7.5 M NH4Ac and 400 µL 100 % ethanol. 

This solution was centrifuged at 

 

Table 3-14: Solutions for RNA extraction 

Diethyl pyrocarbonate (DEPC), ethylenediaminetetraacetic acid (EDTA), sodium dodecyl sulfate (SDS). 

Cell lysis solution 

2 % SDS 

68 mM Sodium citrate 

138 mM Citric acid 

1 mM EDTA 

Protein-DNA precipitation solution 

4 M NaCl 

16 mM Sodium citrate 

32 mM Citric acid 

DEPC-water 

0.1 % 
DEPC in water dissolved 2 h at 37 

°C and autoclaved 
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20 000x g and 4 °C for 20 min to separate RNA from degraded DNA. Afterwards, the pellet was 

washed with 200 µL ethanol at 20 000x g and 4 °C. The supernatant was removed and the pellet 

was dried at 50 °C. Finally, the residue was resuspended in 20 µL water. The extracted RNA was 

stored at -80 °C.  

3.2.2.3. SYNTHESIS OF COMPLEMENTARY DNA 

To check the expression of genes or to clone correctly processed gene products for protein 

expression, RNA has to be used as template. While, especially for polymerase chain reaction 

(PCR), it is necessary to use DNA. Therefore, complementary DNA (cDNA) has to be synthesized 

from the RNA.  

1 µg RNA was reversely transcribed into cDNA. Initially, the RNA was incubated with 1 µL 

0.5 µg/µL olido dT18-primer at 65 °C for 10 min. Then, 2 µL 5x buffer for the reverse 

transcriptase, 2 µL 10 mM deoxyribonucleoside triphosphates (dNTP) mix, and 1 µL (200 units) 

reverse transcriptase (RevertAid, Thermo Fisher Scientific, Waltham, USA) were added to a final 

volume of 10 µL. The transcription reaction was carried out in a thermo cycler (Eppendorf cycler, 

Hamburg, Germany) at 37 °C for 1 h and at 70 °C for 10 min. For further use, 90 µL water were 

added to obtain cDNA-concentrations of 300 – 500 ng/µL. 

3.2.2.4. CULTIVATION OF E. COLI BACTERIA 

Bacteria were cultivated either in liquid culture or on solid medium. A cultivation was always 

connected with a selection against specific antibiotics (Table 3-9). The first selection after ligation 

usually was performed on plates (LB-medium (Table 3-8) with 1.5 % [w/v] agar, (Duchefa 

Biochemie B.V, Haarlem, Netherlands)). Incubation at 37 °C overnight allowed positively 

transformed cells to form single colonies, which were investigated further. 

For plasmid amplification, 5 mL liquid LB medium containing the respective antibiotic (Table 3-

9) were inoculated with one single colony of a plate-culture and incubated at 37 °C and 200 

rotations per minute (rpm) overnight. 

In preparation of protein expression, the expression cells, the vector, and the expression medium 

were optimized. Best yields were obtained from heterologous protein expression with the pET28a 

vector in BL21 Star (DE3) cells in ZYP-5052 by using auto-induction medium (Table 3-8) 

(Studier, 2005). This kind of medium automatically induced protein expression at low glucose 

and high lactose conditions without further stimulation. Firstly, 50 mL pre-culture were 

inoculated with several colonies from a cultivation plate or with the 0.5 mL of a glycerol stock 

(an aliquot of an earlier pre-culture with 30 % glycerol [v/v], stored at -80 °C) and cultivated in 

LB medium at 37 °C overnight. Thereof, a main expression culture was prepared. Therefore, 
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250 mL liquid expression medium (Table 3-8) in a 1 L flask were inoculated with pre-culture to 

an optical density at 600 nm (OD600) of 0.1 and the cultures were incubated at 16 °C for 3 d. After 

protein expression, the cells were harvested by centrifugation at 4 000 xg and 4 °C for 20 min. 

The pellets were transferred into 50 mL tubes and flash-frozen in liquid N2 for storage at -80 °C.  

3.2.3. CLONING OF CODING SEQUENCES FROM A. THALIANA INTO RECOMBINANT 

PLASMIDS 

3.2.3.1. AMPLIFICATION OF DNA FRAGMENTS USING PCR 

PCR is the standard method to amplify DNA fragments from a template sequence. The general 

method consists of three steps: (i) a DNA double strand is melted into single strands at a 

temperature of 94 – 98 °C. (ii) Specific primers bind to the complement sequence of the single 

stranded template DNA. This works best at a temperature appr. 3 °C under the specific melting 

temperature of the primers. (iii) The primer sequences are elongated by the DNA-polymerase at 

its optimal temperature. These three steps are repeated for 20 - 40 circles. Thereby, the sequence 

of interest flanked by the two primers is multiplied exponentially. Here, two polymerase enzymes 

were used: Jump-start RedTaq (Merck KGaA, Darmstadt, Germany) and Phusion High-fidelity 

polymerase (Thermo Fisher Scientific, Waltham, USA). Both enzymes were used following the 

manufacturers protocol for reactions mixtures and PCR settings. All PCRs were carried out in 

thermo cyclers (Eppendorf cyclers, Hamburg, Germany). 

Noticeably, the coding sequence of UGT74F1 was amplified from root-RNA to express the 

protein heterologously in bacteria (see 3.2.2.4). Interestingly, the obtained PCR product 

corresponds to gene product At2g43840.1 on The Arabidopsis Information Research. This differs 

in three base pairs (bp) from the variant At2g43840.2: at position 625 bp from the start, the 

amplified sequence is adenine-adenine-guanine in variant 1 compared to tyrosine-tyrosine-

adenine in variant 2. This position corresponds to exon-intron border of exon 1 and intron 1. This 

differences change the amino acid sequence of variant 1 to 2 as following: valine209 to glutamic 

acid and lysine210 to glutamic acid. 

3.2.3.2. SEPARATION OF NUCLEOTIDES BY ELECTROPHORESIS 

Polynucleotides carry negative charges on their sugar-phosphate backbones, which are 

proportional to the length of the nucleotide sequence. Thus the molecules can be separated 

according to their size along an electrical field in a gel matrix retarding DNA movement. Here, 

electrophoretic separation of nucleotides was performed in horizontal 1 % agarose gels in 

Tris/acetic acid/EDTA (TAE) buffer (Table 3-15). In case of separating RedTaq-PCR products, 

no additional dye was added since the RedTaq buffer already includes a dye. Other DNA samples 

were mixed with 1/6 volume loading dye (Table 3-15). For size calibration of the nucleotide 
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fragments, 5 µL of the Gene-Ruler 1 kb DNA Ladder (Thermo Fisher Scientific, Waltham, USA) 

were added to the gel. After running the electrophoresis, the DNA was stained in 2 μg/mL 

ethidium bromide in TAE buffer (Table 3-15) for appr. 10 min. DNA signals were visualized by 

exiting with UV light in a Biometra BioDocAnalyzer (Analytik Jena AG, Jena, Germany). 

 

Table 3-15: Buffer system for agarose gel electrophoresis 

Agarose gel electrophoresis was used to separate DNA- or RNA-fragments by size. DNA was separated 

in 1 % agarose gels in Tris/acetic acid/ethylenediaminetetraacetic acid (EDTA) (TAE) buffer. If 

necessary, the DNA samples were prepared with 6x loading dye. Volume per volume, v/v; weight per 

volume, w/v. 

TAE buffer 

40 mM Tris 

20 mM Acetic acid 

2 mM EDTA 

6x loading dye 

40 mM Tris 

2 mM EDTA 

50 % [v/v] Glycerol 

0.4 % [w/v] Bromphenole blue 

 

3.2.3.3. PURIFICATION OF PLASMIDS AND DNA FRAGMENTS 

Isolation of pure plasmids was performed using the GenElute Plasmid Miniprep Kit (Merck 

KGaA, Darmstadt, Germany) according to the protocol provided by the manufacturer. For 

purification of DNA fragments, the DNA solutions were separated by agarose electrophoresis 

(3.2.3.2) first. These separated DNA fragments were cut from the gel and purified using the 

NucleoSpinExtract II Kit (Macherey-Nagel, Dueren, Germany) according to the protocols 

provided by the manufacturer. 

3.2.3.4. RESTRICTION AND LIGATION OF DNA 

Specific restriction of double-stranded DNA enables site-directed cloning. The restriction sites 

are normally added during PCR from the primers sequences. These specific sites are cut by 

endonuclease restriction enzymes (Thermo Fisher Scientific, Waltham, USA) leaving 

complementary overhangs which can be ligated again. Originally, these enzymes defend bacteria 

against attacking phages by cutting foreign DNA. Commercially used endonucleases type II 

recognize specific palindromic DNA sequences and cut them. Type I enzymes cut next to the 

recognition site. In this work, digestion reactions of double stranded DNA were performed in 

reaction volumes of 20-50 μL at 37 °C for 1 h up to overnight. Reaction solutions were prepared 

as recommended by the manufacturer. Digested fragments were separated by agarose gel 

electrophoresis (3.2.3.2) and analyzed by UV light.  
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DNA ligation was performed with at least two double stranded DNA fragments with 

complementary overhanging sequences to gain one functional DNA plasmid. The ligation 

reaction was performed in 10 µL volume following the manufacturers concentrations for T4-

Ligase and buffers (Thermo Fisher Scientific, Waltham, USA) and incubated for 30 min at room 

temperature. Concerning DNA concentrations, it is important to mix the fragments in optimal 

amounts. The concentration of open ends of the smaller insert is best five times higher than that 

of the bigger fragment, the vector (Equation 1). Nucleotide concentrations were determined in a 

NanoDrop spectrophotometer (Thermo Fischer Scientific, Waltham, USA) at 260 nm. Following 

ligation, the reaction solutions were subsequently transformed into competent cells optimized for 

plasmid-amplification (Table 3-10). 

 

Equation 1 

Volume(insert) = 
5 ∙ size(insert) ∙ c(vector) ∙ Volume(vector)

size(vector) ∙ c(insert)
 

Volume (insert): Volume of the insert fragment for an effective ligation 

Size (insert): Size of the insert in base pairs 

c (insert): Concentration of the insert  

Volume (vector): Volume of the vector fragment 

Size (vector): Size of the vector in base pairs 

c (vector): Concentration of the vector  

 

3.2.3.5. TRANSFORMATION OF COMPETENT E. COLI CELLS 

Transformation of bacteria was used for different purposes: amplification of DNA and plasmids, 

propagation of correctly ligated DNA fragments, heterologous expression of proteins for 

purification, and Agrobacteria-mediated plant transformation. Therefore, 1 µL (appr. 200 ng) of 

plasmid was mixed with 100 μL of chemical competent cells (> 107 colony forming units, Table 

3-10, provided by Dr. Ellen Hornung, University of Goettingen, Germany) or, in case of 

transformation after ligation, the whole ligation volume was mixed with the competent cells. All 

transformations were incubated on ice for 20 min. Subsequently, the transformation of the cells 

was stimulated by a heat shock at 42 °C for 45 s. This treatment loosens the cell wall of the 

bacteria and enables assimilation of the plasmid of interest. The suspension was chilled on ice for 

5 min before 900 µL Luria-Bertani (LB) medium (Table 3-8) were added. The cultures were 

incubated at 37 °C and 200 rpm for appr. 90 min to recover and express the antibiotic resistance 

proteins. In case of ligation, all cells or, in case of plasmid transformation, just a part of the 

cultures were plated on a LB-agar plate (LB-medium (Table 3-8) with 1.5 % [w/v] microagar 

(Duchefa Biochemie B.V, Haarlem, Netherlands)) containing the appropriate antibiotics. The 

plates were incubated overnight at 37 °C. In case of transformation into Agrobacterium 

tumefaciens (A. tumefaciens), plates and cultures were incubated for 2 d at 28 °C. 
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3.2.3.6. COLONY PCR 

Colony PCR was used to identify those cells of a transformation reaction (3.2.3.5) that contain 

the correct plasmid. Therefore, positively selected colonies were analyzed for the insert of interest 

on the respective plasmid. A single colony was picked and first streaked on a fresh LB-agar plate 

(1.5 % [w/v] agarose, (Duchefa Biochemie B.V, Haarlem, Netherlands) in LB-medium (Table 3-

8)) with the respective antibiotics and then dissolved in 20 μL PCR reaction solution: 10 µL 

Jump-start Red Taq master mix (Thermo Fisher, Waltham, USA), 1.25 mM primer forward, and 

1.25 mM primer reverse in water. The PCR program was set as recommended by the 

manufacturer. Primers were specific for the insert or specific for the vector backbone flanking the 

insert. PCR products were analyzed by agarose gel electrophoresis (3.2.3.2) and visualized by 

UV-light. 

3.2.4. GENERATION OF PLANT MUTANTS 

3.2.4.1. GENE EDITING BY CLUSTERED REGULARLY INTERSPACED SHORT 

PALINDROMIC REPEATS / CRISPR ASSOCIATED PROTEIN 9 

The method of clustered regularly interspaced short palindromic repeats (CRISPR) / CRISPR 

associated protein 9 (Cas9) is based on a bacterial defense system against viruses. Viral sequence 

information from a previous attack are stored in the bacterial genome as so-called CRISPR. The 

molecular tool CRISPR/Cas9 was optimized for scientific usage: the guide RNAs (gRNAs) is 

designed to contain all information to direct Cas9 to its target sequence for cutting the double 

stranded protospacer adjacent motif (PAM).  

The targets for UGT76E1, UGT76E2, UGT76E11, and UGT76E12 were identified with three 

different online tools: (i) CRISPRdirect (https://crispr.dbcls.jp/) gives target candidates by 

comparing the given gene sequence to the selected genome (A. thaliana). The guanine/cytosine-

content of the gRNA should be higher than 40 % and stop-sites for the RNA-Pol III should be 

avoided. Further, the tool gives the number of off-targets in the genome scored by the position of 

a mismatch to the PAM. (ii) CRISPR-P (http://crispr.hzau.edu.cn/CRISPR2/) scored candidate 

targets by the number of off-target sites in the genome (A. thaliana) without judging the position 

of the mismatch. (iii) The Genetic Pertubation Platform for designing sgRNAs for CRISPRko 

(http://portals.broadinstitute.org/gpp/public/analysis-tools/sgrna-design) tested the on-target 

efficiency of candidate targets. Besides misleading results for the human genome (default taxon 

= human), the “On-Target Efficacy Score” (which is independent of the taxon) gives the power 

of target sequence for the gene of interest. Values above 0.5 were treated as good candidates, 

values above 0.7 were judged as very good candidates (oral communication Dr. C. Thurow, 

Georg-August-University, Goettingen, Germany). 
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The best candidates from above (see Table 4-6) were used to design a constructs with four targets 

and replaced the dummy nucleotides in CRISPR/Cas9 construct according to the protocol from 

(Xing et al., 2014) (supplemental material S2 and S3). Differing from the protocol, the gRNAs 

were first ligated into the pJET vector for DNA-amplification and sequencing. The pJET-

constructs and the donor vector, pHEE401E (Addgene, Cambridge, USA) were subsequently cut 

with the endonuclease enzyme BsaI (Thermo Fisher Scientific, Waltham, USA) overnight at 

37 °C. The fragments were purified by agarose electrophoresis (3.2.3.2) and extracted from the 

gel (Nucleospin Gel and PCR Clean-up, Macherey-Nagel, Dueren, Germany). The four fragments 

were ligated into the acceptor vector corresponding to (Equation 1). The ligations were incubated 

at room temperature overnight, transformed into ultra-high-competent DH5α cells (Table 3-10), 

and selected on kanamycin plates. Positive colonies were re-streaked on both kanamycin and 

streptomycin (separately), to select for the loss of the streptomycin-resistance gene originally 

present in the cloning site of pHEE401E. Positive colonies were screened for the presence of a 

newly introduced HindIII (Target UGT76E11) restriction site, resulting in a fragment of 1580 bp. 

Candidates were confirmed through sequencing with vector-specific sequencing primers (Table 

3-12) (Xing et al., 2014) (supplemental material S2 and S3). Correct plasmids were transformed 

into A. tumefaciens for plant transformation by floral dip (Table 3-10, 3.2.4.3).  

3.2.4.2. TRANSFORMATION OF AGROBACTERIUM TUMEFACIENS 

Chemically competent A. tumefaciens were provided by Dr. Ellen Hornung (Georg-August-

University, Goettingen, Germany). Competent cells were thawed, mixed with 3 μg plasmid DNA, 

and incubated on ice for 30 min. The transformation of the cells was stimulated by shock freeze 

at -80 °C for 2 min. After the suspension has been thawed again, 900 μl LB medium were added 

and the culture was incubated for 3-4 h at 28 °C for recovery. Following, all the cells were plated 

on LB-plates (1.5 % [w/v] agar, (Duchefa Biochemie B.V, Haarlem, Netherlands) in LB-medium 

(Table 3-8)) supplemented with kanamycin and rifampicin (Table 3-6). The plates were incubated 

at 28 °C for 2 d. Resulting clones were used for plant transformation.  

3.2.4.3. AGROBACTERIUM-MEDIATED TRANSFORMATION OF A. THALIANA 

An important part of the CRISPR/Cas9 gene editing in A. thaliana is the presence of the 

CRISPR/Cas9-plasmid in the plant. Therefore, A. tumefaciens was used to mediate the gene 

transfer into the plant embryo by floral dip (Clough & Bent, 1998). After transformation of the 

agrobacteria with the plasmid of interest (Table 3-9), several colonies were used to inoculate a 

pre-culture. 20 ml culture (LB medium (Table 3-8), kanamycin and rifampicin (Table 3-6)) were 

incubated at 28 °C and 200 rpm overnight. This pre-culture was used to inoculate 400 ml LB 

medium as main-culture. After growing overnight at 28 °C and 200 rpm the cells were harvested 

by centrifugation at 8000x g for 20 min and the resulting pellet was resolved in 300 ml 5 % [w/v] 
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sucrose solution. Then, 70 μl Silwet L-77 (Momentive Performance Materials Inc., Waterford, 

USA) were added. Subsequently, the flowering inflorescences of Arabidopsis (grown for appr. 

4 – 5 weeks in long-day conditions, 16 h light / 8 h dark, 22 °C) were dipped into this bacteria 

suspension. The plants were covered overnight. The flower dipping transformation was repeated 

one week later. Positive T1 transformed lines were selected by hygromycin (Table 3-6).  

3.2.4.4. QUANTITATIVE REAL-TIME PCR EXPRESSION ANALYSIS 

To analyze the expression status of selected genes quantitative real-time PCR (qPCR) was used. 

It determines the amount of gene product in a biological sample. The amounts were determined 

in a cDNA pool, which has been synthesized from total RNA of A. thaliana (3.2.2.2). The analysis 

monitors the amount of DNA synthesized in a PCR reaction in real-time. Here, the reactions were 

carried out in an iQ5 real-time PCR detection systems (Bio-Rad Laboratories GmbH, Muenich, 

Germany) with the appropriate filter for the emitting wavelength of the fluorescent chromophore 

SYBR-green (Thermo Fisher Scientific, Waltham, USA). The molecule intercalates into the DNA 

formed during the reaction and gives fluorescent signals, which are detected during the PCR run 

at the end of every cycles. The amount of template in the cDNA pool defines how many cycles 

will be needed for that particular PCR-product to reach the exponential phase. Likewise, higher 

and earlier fluorescent signals are detected in the PCR when the gene had been expressed with 

higher rates. The amount of transcript of different genes under certain conditions can be quantified 

and compared by the number of cycles which it took to synthesis a certain amount of DNA in the 

qPCR. The obtained qPCR data of genes of interest were compared to the expression of the 

reference gene actin 8 (At1g49240). This gene has been chosen because its expression is not 

altered in the response to wounding and not directly involved in genetic JA-response.  

Here, the Takyon No ROX SYBR Mastermix (Kaneka Eurogentec S.A., Seraing, Belgium) was 

used as a 2x ready to use mix. For a reaction 10 µL Takyon No ROX SYBR Mastermix, 2 µL 

primer mix (25 mM), 5.5 mL water, and 2.5 µL cDNA (300-500 ng/µL) were mixed in PCR 

stripes with flat caps. The reaction was performed with 40 cycles. Special qPCR-primers were 

designed with the online tool primer3plus (https://primer3plus.com/cgi-bin/dev/primer3plus.cgi). 

The DNA sequences of UGT76E1, UGT76E2, UGT76E11, UGT76E12, and UGT74F1 were 

submitted to primer3prefold (https://primer3plus.com/cgi-bin/dev/primer3prefold.cgi) and 

regions tending to form secondary structure were identified and neglected for primer design. 

These results were send to primer3plus to score candidate primer pairs (server setting qPCR). The 

best primer pairs for every gene were tested by PCR. Positive testing means that one specific 

DNA product is formed exclusively and no unspecific DNA fragments are co-amplified. Positive 

and specific primers (Table 3-12) were used for qPCR. 
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3.2.5. PURIFICATION OF HETERLOGOUS EXPRESSED PROTEINS 

3.2.5.1. CELL DISRUPTION OF E. COLI CELLS 

After heterologous protein expression (see 3.2.2.4), the bacterial cells were harvested and 

disrupted for the following protein purification. Therefore, a cell pellet was resuspended in the 

His A buffer (Table 3-16 – Table 3-20). Appr. 3 mL buffer per 1 g cells were used to get a dense 

suspension for effective disruption. This suspension was treated with 1 mg/mL lysozyme from 

chicken egg white (Merck KGaA, Darmstadt, Germany) and 0.01 mg/mL DNAse I from bovine 

pancreas (Merck KGaA, Darmstadt, Germany) and stirred for 20 min. Following that 

pretreatment, small volumes (< 30 mL) were disrupted by pulsed ultrasonic treatment (Branson 

Sonifier Cell Disruptor B15, Branson Ultrasonics Corporation, Danbury, USA) at 40 % power 

and 50 % impulse level for 5 x 1 min and cooled down in between for 1 min. Larger volumes of 

around 120 mL were disrupted by high pressure in a Microfluidizer device (Fluidizer 110L, 

Microfluidic, Westwood, USA). The crude lysate was centrifuged at 50 000 xg for at least 30 min 

to pellet the cell debris. The resulting cleared lysate was introduced to protein purification. 

3.2.5.2. RECOMBINANT PROTEIN PURIFICATION 

For preparing protein purification, the protein parameters were calculated with the ProtParam 

online tool (https://web.expasy.org/protparam/). Calculated properties were: the molecular 

weights (MWs), the isoelectric points (pIs), and the specific extinction coefficients at 280 nm. 

Here, the calculations take into account the numbers of the aromatic amino acids tryptophan, 

tyrosine and cysteine and the MW. Furthermore, the amino acid sequences were analyzed for 

signal peptides by SignalP (http://www.cbs.dtu.dk/services/SignalP/), for target peptides by 

TargetP (http://www.cbs.dtu.dk/services/TargetP/), and for transmembrane domains with the 

TMHMM tool (http://www.cbs.dtu.dk/services/TMHMM/).  

Protein purification was applied for proteins tagged with an N-terminal hexa-histidine tag 

(HisTag), which were heterlogously expressed in E coli. A two-step purification strategy of 

immobilized metal affinity chromatography (IMAC) and size exclusion chromatography (SEC) 

was used. The ÄKTAprime plus systems (GE Healthcare (Little Chalfont, UK) was used for 

protein purification at 4 °C. The IMAC was done with 5 mL HisTrap columns (GE Healthcare 

(Little Chalfont, UK) or 5 mL HisTALON columns (Takara Bio Europe, Saint-Germain-en-Laye, 

France). The SEC was performed with a S75 Sepharose gel filtration column (GE Healthcare, 

Little Chalfont, UK).  

The first purification step was an IMAC. Here, the purification bases on the affinity of the 

imidazole groups of the histidine amino acids of the HisTag of the protein to form octahedral 

complexes with incomplete-chelated bivalent cations (Ni2+ or Co2+) on the resin. Meaning that 
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the tagged proteins were bound to the equilibrated column while all the other proteins of the 

cleared lysate flowed through the column. This protein loading was done with a flowrate of 

1.5 mL/min. Loading conditions were also used to wash all unspecific proteins from the matrix. 

In some cases, this washing was not sufficient to remove unspecific bound proteins. Especially, 

bacterial chaperons are often bound to the proteins of interests directly and rigidly. Those 

chaperones are native bacterial proteins assisting in correct protein folding during protein 

biosynthesis and require metabolic energy to be released again. In that cases, a second washing 

step was applied: a wash buffer (50 mM Tris pH 7.5, 100 mM NaCl, 2 mM dithiothreitole (DTT), 

5 mM ATP, 5 mM MgCl2, 20 mM Imidazole, Table 3-21) was used to elute strongly interacting 

proteins from the matrix or the tagged protein. For protein elution, the His-tagged proteins was 

displaced from the complex by imidazole (150 mM for HisTrap and 40 mM for HisTALON). At 

the end of every purification run, a washing with imidazole was performed (500 mM for HisTrap 

and 200 mM for HisTALON) to elute every protein from the column and to start recovery of the 

column. The entire purification process was recorded by UV-Vis spectroscopy at 280 nm. 

Samples of all purification steps were analyzed by denaturating sodium dodecyl sulfate (SDS)-

polyacrylamide gel electrophoresis (PAGE). 

For a second purification step a SEC was used. SEC separates proteins by their specific radius of 

gyrations, which is the mean of all the distances from the surface of the protein to the center of 

gravity. Generally, radius of gyration corresponds to the size of the protein. It ensure that co-

purified proteins from the IMAC purification are separated in a second purification step by a 

different chromatographic principle (SEC). Technically, the sepharose matrix of the gel filtration 

has a defined pore size in which molecules might or might not diffuse corresponding to their 

radius of gyration - their size. Consequently, smaller molecules diffuse in pores and have more 

interaction. Physically, longer distance at a constant speed equals more time. Hence, bulky 

molecules elute earlier from the gel filtration than smaller ones. Like this, the elution volume of 

a specific protein from the gel filtration column can be calculated by calibrating the column 

(Equation 2). Here, the real protein sizes of the expressed amino-acid chain with HisTag were 

used for calculations. The HiLoad 16/600 Superdex 75 prep grade (GE Healthcare , Little 

Chalfont, UK) is capable to separate proteins up to 70 kDa. Again, protein elution was monitored 

 

Equation 2 

VolumeS75(protein)= 
log

10
(MW(protein)) − 6.9219

(-0.0352)
 

VolumeS75(protein): Elution volume of the protein of interest on the HiLoad 16/600 Superdex 75 prep 

grade (GE Healthcare, Little Chalfont, UK) 

MW(protein): Molecular weight of the protein of interest 
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by UV-Vis spectroscopy at 280 nm and SDS-PAGE. For further use and tests, the homogeneous 

proteins were concentrated to > 1 mg/mL with concentrators (Spin-X UF6, 30 kDa cut-off, 

Corning B.V. Life Science, Amsterdam, Netherlands), flash-frozen in liquid N2 and stored at -

80 °C. 

 

Table 3-16: Buffer systems for protein purification of UGT76E1 

Specific buffer systems were used to purify heterologous expressed proteins. His A buffer was used for 

equilibrating the HisTALON Superflow Cartridge (Takara Bio Europe, Saint-Germain-en-Laye, France), 

loading the cleared lysate, and washing. His B was the elution buffer to displace proteins from the affinity 

columns. Following, proteins were purified with size exclusion chromatography. The gel filtration buffer 

was a low-salt buffer without special additives. 

His A  

50 mM Tris/HCl pH 9.0 

100 mM NaCl 

0.1 % Tween 20 

His B  

50 mM Tris/HCl pH 9.0 

100 mM NaCl 

0.1 % Tween 20 

200 mM Imidazole 

Gel filtration  

50 mM Tris/HCl pH 9.0 

100 mM NaCl 

 

Table 3-17: Buffer systems for protein purification of UGT76E2 

Specific buffer systems were used to purify heterologous expressed proteins. His A was used for 

equilibrating the HisTrap HP (GE Healthcare, Little Chalfont, UK), loading the cleared lysate, and 

washing. His B was the elution buffer to displace proteins from the affinity columns. Following, proteins 

were purified with size exclusion chromatography. The gel filtration buffer was a low-salt buffer without 

special additives. 

UGT76E2 His A 

50 mM Tris/HCl pH 8.0 

100 mM NaCl 

0.1 % Tween 20 

UGT76E2 His B 

50 mM Tris/HCl pH 8.0 

100 mM NaCl 

0.1 % Tween 20 

500 mM Imidazole 

UGT76E2 Gel filtration 

50 mM Tris/HCl pH 8.0 

100 mM NaCl 
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Table 3-18: Buffer systems for protein purification of UGT76E11 

Specific buffer systems were used to purify heterologous expressed proteins. His A was used for 

equilibrating the affinity columns, loading the cleared lysate, and washing. His B was the elution buffer to 

displace proteins from the affinity columns. Following, proteins were purified with size exclusion 

chromatography. The gel filtration buffer was a low-salt buffer without special additives. 

His A  

20 mM Tris/HCl pH 7.5 

50 mM NaCl 

10 % Glycerol 

0.1 % Tween 20 

His B  

20 mM Tris/HCl pH 7.5 

50 mM NaCl 

10 % Glycerol 

0.1 % Tween 20 

500 mM Imidazole 

Gel filtration  

20 mM Tris/HCl pH 7.5 

50 mM NaCl 

 

Table 3-19: Buffer systems for protein purification of UGT76E12 

Specific buffer systems were used to purify heterologous expressed proteins. His A was used for 

equilibrating the affinity columns, loading the cleared lysate, and washing. His B was the elution buffer to 

displace proteins from the affinity columns. Following, proteins were purified with size exclusion 

chromatography. The gel filtration buffer was a low-salt buffer without special additives. 

His A  

50 mM Tris/HCl pH 8.0 

100 mM NaCl 

10 % Glycerol 

His B  

50 mM Tris/HCl pH 8.0 

100 mM NaCl 

10 % Glycerol 

500 mM Imidazole 

Gel filtration  

50 mM Tris/HCl pH 8.0 

100 mM NaCl 

 

Table 3-20: Buffer systems for protein purification of UGT74F1 

Specific buffer systems were used to purify heterologous expressed proteins. His A was used for 

equilibrating the affinity columns, loading the cleared lysate, and washing. His B was the elution buffer to 

displace proteins from the affinity columns. Following, proteins were purified with size exclusion 

chromatography. The gel filtration buffer was a low-salt buffer without special additives. 

His A  

50 mM Tris/HCl pH 8.0 

100 mM NaCl 

0.1 % Tween 20 

His B  

50 mM Tris/HCl pH 8.0 

100 mM NaCl 

0.1 % Tween 20 

500 mM Imidazole 

Gel filtration  

50 mM Tris/HCl pH 8.0 

100 mM NaCl 
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Table 3-21: Wash buffer for protein purification 

To remove unspecific proteins from the affinity purification column, a special wash buffer was used. It 

was applied between loading of proteins and specific elution of the proteins of interests. Dithiothreitol, 

DTT; adenine triphosphate, ATP. 

His wash buffer  

50 mM Tris/HCl pH 7.5 

100 mM NaCl 

2 mM DTT 

5 mM ATP 

5 mM MgCl2 

20 mM Imidazole 

 

3.2.5.3. PROTEIN SEPARATION BY SDS-PAGE 

SDS-PAGE (Davis, 1964; Kellenberger, 1968; Laemmli, 1970; Ornstein, 1964) was used to 

record the protein purification process. The samples were sonified and boiled before the proteins 

were separated by SDS-PAGE. For SDS-PAGE, samples of 20 µL were mixed with 20 µL of 2x 

Laemmli sample buffer (Table 3-22). Thereof, 5-10 µL were loaded on a 10 % acryl amide gel 

(Table 3-23). For molecular weight determination 5 µL Unstained Molecular Weight Marker 

(MBI Fermentas, St. Leon Roth, Germany) were loaded on a separate lane of the gel. The 

separation itself was performed in a Mini-Protean3 electrophoresis system (Bio-Rad Laboratories 

GmbH, Munich, Germany) at 30 mA per gel until the running front was just run out of the gel. 

The proteins in the gel were visualized with Coomassie Brillant Blue staining solution, which is 

prepared of 1 mL of Coomassie staining stock solution in appr. 50 mL of fixation solution (Table 

3-25). The gel was boiled in the staining solution and incubating for 10 min for protein staining. 

For de-staining the gel was several times boiled in water and incubated with a dye-absorbing 

tissue for 10 min.  

For SDS-PAGE of whole bacterial cells, aliquots of the expression culture (Equation 3) were 

centrifuged at 10 000x g for 4 min. The pellet was dissolved in 50 µL water and 50 µL 2x 

Laemmli sample buffer. The samples were sonified and boiled before the proteins were separated 

by SDS-PAGE as before. 

 

Equation 3 

0.5 mL

OD600

= Volume (aliquot) 

OD600: Optical density of the bacterial culture at 600 nm 

Volume (aliquot): Volume of the aliquot in mL 
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Table 3-22: Composition of 2x Laemmli sample buffer 

Dithiothreitole (DTT), sodium dodecyl sulfate (SDS). Volume per volume, v/v; weight per volume, w/v. 

100 mM Tris/HCl pH 6.8 

200 mM DTT 

4 % [w/v] SDS 

0.002 % [w/v] Bromphenole blue 

40 % [v/v] Glycerol 

 

Table 3-23: Composition of 10 % SDS-PAGE gel 

Tetramethylethylenediamine (TEMED). The volume of the recipe is sufficient for 4x 0.75 mm gels (Bio-

Rad Laboratories GmbH, Munich, Germany). 

 4 % Stacking gel (mL) 10 % Separation gel (mL) 

Separation gel buffer - 4.25 

Stacking gel buffer 1.90 - 

Water 4.50 6.92 

(Bis) acrylamide (30 % [w/v]) 1.00 5.67 

Ammonium persulfate 70∙10-3 153∙10-3 

TEMED 7.5∙10-3 17∙10-3 

 

Table 3-24: Composition of stock buffers for SDS-PAGE 

Stacking gel buffer 

0.5 M Tris/HCl pH 6.8 

0.1 % [w/v] SDS 

Separation gel buffer 

1.5 M Tris/HCl pH 8.8 

0.1 % [w/v] SDS 

 

Table 3-25: Coomassie staining solution 

Volume per volume, v/v; weight per volume, w/v. 

Coomassie staining stock solution 

0.25 % [w/v] Brilliant blue G-250 

0.25 % [w/v] Brilliant blue R-250 

In 100 % [v/v] Ethanol 

Fixation solution 

5 % [v/v] Acetic acid 

10 % [v/v] Ethanol 

85 % [v/v] H2O 

 

3.2.5.4. PROTEIN DETECTION BY WESTERN BLOT 

His-tagged proteins were detected in whole bacterial cell after protein expression. After SDS-

PAGE of the samples, the stacking gel was removed and the proteins in separation gel were 

transferred onto a nitrocellulose membrane (Roti-NC, pore size 2 µm, Carl Roth & Co., Karlsruhe, 

Germany). Therefore, a Mini-Protean3 electrophoresis system was used with a Mini Trans-Blot 

Cell (both Bio-Rad Laboratories GmbH, Munich, Germany). The transfer was carried out in wet 

conditions in transfer buffer (25 mM Tris, 192 mM glycine, 20 % methanol [v/v]) at 240 mA and 

80 V for 2 h. The transfer cassette was dismantled and membrane was checked for successful 
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protein blotting by staining with Ponceau S (0.1 % [w/v] in water : acetic acid, [99 : 1, v/v] for 

5 min. The staining was removed with water before the membrane was incubated in 0.05 % [v/v] 

Tween 20, 10 mM Tris/HCl, pH 7.9, 150 mM NaCl (Tween-Tris buffered saline, T-TBS) 

containing 3 % milk powder (blotting grade, Carl Roth & Co., Karlsruhe, Germany). The 

blocking was performed at room temperature for 1 h. Following, the membrane was incubated 

within a solution of the primary antibody (0.1 µg/mL in T-TBS, 3 % milk powder, Tetra-His 

Antibody, Quiagen, Hilden, Germany) at 10 rpm and 4 °C overnight. Next, the primary antibody 

solution was removed and membrane was washed four times with T-TBS, 3 % milk powder at 

room temperature on a rotary shaker for 10 min. Primary antibody-antigen conjugates were 

detected using an alkaline phosphatase-conjugated secondary antibody (goat anti mouse lgG, 

Merck KGaA, Darmstadt, Germany) diluted 1 : 30 000 in T-TBS, 3 % milk powder. The 

membrane was incubated with this secondary antibody solution at room temperature on a rotary 

shaker for 1 h. The antibody solution was removed and membrane were washed with T-TBS for 

10 min (two times) and for 5 min (two times) with Tris buffered saline (TBS). For activity staining 

mediated by the alkaline phosphatase (AP), the membrane was equilibrated in AP buffer (100 mM 

Tris/HCl pH 9.5, 100 mM NaCl, 5 mM MgCl2) and incubated with staining solution (15 mL AP 

buffer, 49.5 µL Nitro-blue-tetrazolium-chloride (50 mg/mL in 70 % dimethylformamide), 99 µL 

5-bromo-4-chloro-3´-indolyphosphate p-toluidine salt (50 mg/mL in dimethylformamide) in the 

dark for 30-300 min. The staining reaction was stopped by transferring into water. 

3.2.6. ENZYME CHARACTERIZATION 

3.2.6.1. PROTEIN ACTIVITY ASSAY 

A fast and simple protein activity assay was performed to monitor the activity of an enzyme 

during protein purification, to check enzymatic activity towards new potential substrates, and to 

test the activity of so far not characterized UGT-enzymes. Therefore, reactions were set up in 

100 µL assay volume containing 10 µg enzyme, 0.1 mM substrate and 0.5 mM UDP-Glc. The 

assay were incubated at room temperature for 1 h and stopped by adding 100 µL ACN. The 

solvent precipitates. The samples were centrifuged at 20 000x g at room temperature for 5 min 

and 50 µL of the supernatant were transferred into glass vials. The substrates and products of the 

reaction were analyzed by LC coupled to mass spectrometer (LC-MS), 3.2.8.4).  

3.2.6.2. DETERMINATION OF OPTIMAL TEMPERATURE AND PH VALUES 

The enzymatic characterization of UGT76E1, UGT76E2, UGT76E11, and UGT76E12 required 

the determination of optimal parameters for the reaction, like pH and temperature optima.  

The enzymatic product formation was evaluated at different pH conditions. The reactions were 

performed in 200 μL solutions containing 0.1 mM ω-hydroxy-hexadecanoic acid (ω-OH-16:0, 
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dissolved in ACN), 0.5 mM UDP-Glc, and 30 µg pure enzyme. To test a broad pH range from 2 

to 12 with the high buffering capacity, the Britton-Robinson buffer (BRB) system (Britton & 

Robinson, 1931) was used. Tested were 13 pH conditions: pH 3.0, 4.0, 5.0, 6.0, 7.0, 7.5, 8.0, 8.5, 

9.0, 9.5, 10.0, 11.0. All reactions were started by adding the enzyme and incubated at 25 °C for 

1 h. The reactions were stopped by adding 50 μL ACN. After centrifugation at 20 000x g at room 

temperature for 5 min, 50 µL of the supernatant were used for detecting relative amounts of ω-O-

glucosyl-hexadecanoic acid (ω-O-Glc-16:0) by LC-MS. 

The optimal reaction temperature of the UGTs was investigated similarly just at fixed pH and 

different temperatures: 4 °C, 10 °C, 15 °C, 20 °C, 25 °C, 30 °C, 35 °C, 42 °C, 50 °C. 0.1 mM ω-

OH-16:0, 5 mM UDP-Glc were mixed in 50 mM Tris-HCl, 100 mM NaCl buffer at pH 8.5 in a 

volume of 200 μL. These reactions were pre-incubated at the indicated reactions temperature for 

10 min. Reactions at temperature lower than room temperature were incubated in water baths and 

reactions at temperatures above room temperature were incubated in heating blocks. 30 µg 

enzyme was added and the reactions were carried out for 1 h before the reactions were terminated 

by the addition of 50 µL ACN. The reaction products were analyzed as before.  

3.2.6.3. ANALYSIS OF THE SUBSTRATE SPECIFICITY OF UGTS BY USING UDP-

14C(U)-GLC 

The substrate specificity of the UGTs was tested against different substrates with free hydroxy 

and/or carboxy groups. To describe the product formation in a half quantitative way radioactive 

product determination was used to contrast a set of different aglycones for their performance as 

substrate of one enzyme. Hereby, the Glc moiety is uniformly 14C labelled (14C(U)-Glc) one, 

which is transferred onto the aglycone upon catalysis. Like this, every turnover produces the same 

signal intensity and the signal intensities of all products can be compared. 

Different aglycones (Table 3-26) were tested as substrates for UGT76E1, UGT76E2, UGT76E11, 

UGT76E12, and UGT74F1. The enzymatic reactions were carried out in a total volume of 20 µL 

with 60 µM substrate, 3.3 µM labeled UDP-14C(U)-Glc (0.02 µCi), 28 µM UDP-Glc, and 5 µg 

enzyme. The reaction assays and one negative control with inactivated enzyme were started by 

adding the enzyme and incubating at 25 °C for 1 h. 30 µL of n-butanol were added to stop the 

reactions and to extract the metabolites (modified from Huang et al., 2015; Suzuki et al., 2007). 

This solution was mixed thoroughly and centrifuged at 13 200x g for 5 min. The organic phase 

was taken and transferred into a new reaction tube. The residue was extracted again, mixed, and 

centrifuged as before. Both extractions were pooled and evaporated under stream of nitrogen. The 

residue was resolved in 20 µL 70 % [v/v] ethanol and spotted on thin-layer chromatography 

(TLC) plates (Silica gel 60 plate, Merck KGaA, Darmstadt, Germany). The TLC-plates were 

placed in an equilibrated TLC-chamber and run in dichlormethane : methanol : water [80 : 20 : 2, 
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v/v/v] (modified from Augustin et al., 2012). Then, the plates were air-dried and covered with 

cling film and placed on phosphor screens in storage cassettes (Fujifilm Corporation Tokyo, 

Japan). After 3 d of incubation, the screens were scanned with a FLA-3000 fluorescent image 

analyzer (Fujifilm Corporation Tokyo, Japan). Data analysis was done with the 

“Bildanalyseprogramm1.0.4.6” (Datinf GmbH, Tuebingen, Germany) at a picture contrast of 

4 220 – 41 200 pixel. Signal intensities were determined as within a signal detection boxes. 

Background signals were subtracted by a neighboring box. Product signals were calculated as 

product signal minus background over area.  

 

Table 3-26: Substances, which were tested as substrates for the UGTs. 

Substrates 

1 Hexadecanoic acid (16:0) 12 Gibberellic acid (GA) 

2 ω-Hydroxy-hexadecanoic acid (ω-OH-16:0) 13 cis-(+)-12-Oxo-phytodienoic acid (12-OPDA) 

3 2-Hydroxy-hexadecanoic acid (2-OH-16:0) 14 Jasmonic acid (JA) 

4 3-Hydroxy-hexadecanoic acid (3-OH-16:0) 15 12-Hydroxy-JA (12-OH-JA) 

5 Hexadecanol (OH-C16) 16 11-Hydroxy-JA (11-OH-JA) 

6 Benzoic acid (BA) 17 12-Hydroxy-JA-methyl ester (12-OH-JA-ME) 

7 Salicylic acid (SA) 18 Quercetin 

8 Pipecolic acid (Pip) 19 Dihydro-myricetin(dh-myricetin) 

9 Indole-carboxylic acid (ICA) 20 Dihydro-kaempferol(dh-kaempferol) 

10 Abscisic acid (ABA) 21 Control with inactivted enzyme 

11 Zeatin   

 

3.2.6.4. DETERMINATION OF THE KINETIC PARAMETERS 

To record steady-state kinetics, a coupled spectrophotometric assay has been modified from 

(Brown et al., 2012). UGTs catalyze the transfer of a Glc-moiety from the donor UDP-Glc to the 

hydroxyl-aglycone releasing the respective glycone and UDP. Via the co-product UDP, the UGT-

reaction is coupled to the pyruvate kinase (PK) and lactate dehydrogenase (LDH) to record the 

UGT reaction kinetics in 1 : 1 : 1 stoichiometry: The PK phosphorylates UDP to UTP while 

metabolizing phosphoenolpyruvate (PEP) to pyruvate. LDH catalyzes the reduction of pyruvate 

to lactate by oxidizing nicotinamide adenine dinucleotide (NADH) to NAD+, which shows in 

contrast to NADH no absorption maximum at 340 nm. All measurements were performed in 

biological triplicates in Quartz SUPERSIL cuvettes (Hellma Analytics, Muellheim, Germany) in 

a V-630 UV/Vis Spectrophotometer (JASCO Corporation, Hachioji, Japan). The detailed reaction 

mixture is given in Table 3-27. UGT76E1 had be stabilized with bovine serum albumin (BSA, 

0.13 % [w/v]). For the assay, the NADH stock-solution was prepared freshly in the gel filtration 

buffer of the respective enzyme (Table 3-16 – Table 3-20). The exact concentration of NADH 

was determined in 1/100 dilutions in the photometer with the Lambert Beer law (Equation 4). 

Therewith, a 2x master mix was prepared to reduce pipetting errors between the different 

measurements. The setup was blanked with an empty cuvette. The master mix was added to the 
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substrate and the buffer in the cuvette. This solution was checked to have an absorption at 340 nm 

of appr. 0.9 - the calculated value for the working concentration of 0.15 mM NADH in the cuvette 

is 0.96 (Equation 4). To start the reactions, the enzyme was added and mixed carefully by 

pipetting. The reaction was recorded at 340 nm for 300 - 600 s depending on the velocity of the 

reaction. The linear slope of the reaction was determined with the Spectra Manager II Software 

(JASCO Corporation, Hachioji, Japan). A high concentration of UDP was used to was ensured 

that the rate limiting reaction is the UGT reaction. For evaluation, the reaction velocities were 

plotted against the given substrate concentration by the SIMGA-Plot software. Finally, the 

velocities were calculated to kcat values by a modified Lambert-Beer equation (Equation 5) 

 

Equation 4 

c(analyte)= 
Absorption

ε(analyte) ∙ l
 

c(analyte): Concentration of the analyte of interest 

ε (analyte): Specific extinction coefficient of the analyte 

l: Path length, for cuvettes normally = 1 cm 

 

Equation 5 

kcat= 
Vmax

[E]
= 

∆ Absorption

ε (NADH) ∙ l ∙ [E] ∙ t
 = [s-1] 

kcat: Maximal turnover number 

Vmax: Maximal reaction velocity; change of absorption per min 

[E]: Concentration of enzyme 

ε (NADH): Specific extinction coefficient of NADH, 6 220 M-1cm-1 

l: Path length (for the used cuvettes) = 1 cm 

t: Reaction time 

 

Table 3-27: Reaction mixture of the coupled spectrophotometric assay. 

Phosphoenolpyruvate, PEP; pyruvate kinase, PK; lactate dehydrogenase, LDH; uridine diphosphate 

glucose, UDP-Glc; nicotinamide adenine dinucleotide, NADH; UDP-dependent glycosyltransferase, 

UGT. Bovine serum albumin, BSA. Components marked with asterisks were mixed in a 2x master mix. 

Volume Component Final concentration 

1 µL KCl (1 M in water)  * 5 mM 

15 µL MgCl2 (1 M in water)  * 75 mM 

1 µL PEP (100 mM in water)  * 0.8 mM 

4 µL PK (2.5 mg/mL in buffer)  * 50 µg/mL 

4 µL LDH (2.5 mg/mL in buffer) * 50 µg/mL 

1 µL UDP-Glc (1 M in buffer)  * 5 mM 

1.2 µL NADH (25 mM in buffer)  * 150 µM 

5 - 30 µg UGT 50 - 150 µg/mL 

2 - 90 µL Substrate (1 mM in buffer) 10-450 µM 

0.26 mg BSA (only for UGT76E1)  * 0.13 % [w/v] 

X µL Gel filtration buffer   

200 µL Final volume   
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3.2.7. SUBSTRATE SYNTHESIS 

3.2.7.1. ENZYMATIC SYNTHESES OF 9- AND 13-HYDROXY-OCTADECATRIENOIC 

ACIDS 

(10E,12Z,15Z)-9-Hydroxy-10,12,15-octadecatrienoic acid (9-HOT) and (9Z,11E,15Z)-13-

hydroxy-9,11,15-octadecatrienoic acid (13-HOT) were used as substrates for the UGT reactions. 

Both compounds were synthesized enzymatically and purified to homogeneity afterwards by 

Sabine Freitag (University of Goettingen, Germany).  

In case of 9-HOT, the LOX from Solanum tuberosum was expressed from pET3b in BL21 Star 

(DE3) like described in Andreou et al., 2009. The bacterial cell pellet of 10 mL culture was used 

for the synthesis of 9-HOT. The pellet was resuspended in 1 mL lysis buffer (50 mM Tris/HCl 

pH 7.5, 300 mM NaCl, 10 % glycerol) supplemented with 1 µL Tween 20. The suspension was 

lysed by sonication as described above (see 3.2.5.1). The cell debris was sedimented by 

centrifugation at 3 220x g and 4 °C for 4 min. 4 mL of the crude lysate were mixed with 6 mL 

reaction buffer (100 mM Tris/HCl, pH 7.5) and 60 µL linolenic acid (250 mg/mL). The reaction 

was incubated stirring on ice for 30 min. Noticeable, every 5 min, fresh air was bubbled into the 

solution with a Pasteur pipette. The reaction was determined by adding 10 mL SnCl2 solution 

(0.375 % [w/v] in methanol) and incubating at room temperature for 10 min. Likewise, the 

hydroperoxide products were reduced to the respective hydroxides. 9-HOT was extracted similar 

to Bligh & Dyer, 1959: 100 µL concentrated acetic acid and 10 mL chloroform were added to the 

reduced reaction solution of the LOX from Solanum tuberosum. The solution was vigorously 

mixed and centrifuged at 3 220x g for 10 min. The lower phase was transferred to a new reaction 

tube and the remaining solution was extracted with chloroform again. The second lower phase 

was combined with the first phase and the whole volume was evaporated under a stream of 

nitrogen. The residue was dissolved in 500 µL ethanol.  

In case of 13-HOT, the LOX from G. max (GmLOX, Merck KGaA, Darmstadt, Germany) was 

used to produce the compound. 100 µL of GmLOX (0.250 mg/mL) were mixed with 2 mL borate 

buffer (200 mM borate, pH 9) and 60 µL linolenic acid (250 mg/mL) and incubated in an open 

vessel at room temperature for 30 min. Here, the reaction is stopped by adding appr. 0.1 g 

sodiumborhydride for reduction and proteins were precipitated by adding 100 µL concentrated 

acetic acid.  

3.2.7.2. PURIFICATION OF 9- AND 13-HOT 

After synthesis and extraction, the compounds 9- and 13-HOT were purified by HPLC by S. 

Freitag (University of Goettingen, Germany). Both were purified by straight-phase HPLC SP 

HPLC: isocratic conditions with 0.8 mL/min in hexane : isopropanole : trifluoroacetic acid 
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[100 : 1 : 0.02, v/v/v] on a ZORBAX RX-SIL (4.6 x 50 mm, 1.8 µm particle size, Agilent, 

Waldbronn, Germany). The elution of 9-HOT and 13-HOT was monitored by 234 nm and their 

identity confirmed by by coelution with the authentic standards. The concentration of 9-HOT and 

13-HOT were determined with the NanoDrop 2000 spectrophotometer (Thermo Fisher Scientific, 

Waltham, USA) at 234 nm. The shared molar extinction coefficient of 23 000 M-1cm-1 was used 

to calculate the concentration of 9-HOT and 13-HOT by the Lambert-Beer law (Equation 4). 

3.2.8. METABOLITE ANALYSES 

3.2.8.1. HOMOGENIZING PLANT MATERIAL 

Plant material was homogenized before analyses. Therefore, two techniques were used: (i) for 

extracting DNA or RNA, one leaf was collected in a reaction tube and flash-frozen in liquid N2. 

The frozen tissue was grinded with a small pistil in the tube. (ii) Samples from a wounding 

experiment were homogenized using a Mixer Ball Mill MM200 (Retsch GmbH, Haan, Germany) 

at 30 s-1 for 120 s. The device and the samples were constantly cooled with liquid N2.  

3.2.8.2. EXTRACTION OF PLANT MATERIAL 

The quantification of the plant hormones and, in particular jasmonates was essential to investigate 

their function in vivo. Here, a two phased methyl tert-butyl ether (MTBE) extraction was modified 

from Matyash et al., 2008. Briefly, appr. 100 mg of the frozen tissue powder were weighted into 

750 µL methanol (LC-MS grade, MeOH). 2.5 mL MTBE and 80 µL of an internal standard 

mixture (Table 3-28) were added and the solution was shaken in the dark at 4°C and 200 rpm for 

1 h. 600 µL water were added for phase separation and mixed roughly before centrifugation at 

450x g for 10 min at 22°C. Then, the upper phase was taken and transferred to another glass tube. 

 

Table 3-28: Internal standards for quantitative LC-MS/MS analysis 

For quantification, internal standards were added to the extraction solutions. Five-fold deuterated 12-

oxophytodienoic acid, D5-12-OPDA; five-fold deuterated jasmonic acid; D5-JA; four-fold deuterated 

jasmonoyl-leucine, D4-JA-Leu; four-fold deuterated salicylic acid, D4-SA; five-fold deuterated indole-3-

acetic acid, D5-IAA; six-fold deuterated abcisic acid, D6-ABA; 2-oxothiazolidine-4-carboxylic acid (St-

RA). 

Substance    (concentration) Volume 

D5-12-OPDA (3 ng/µL) 10 µL 

D5-JA  (1 ng/µL) 10 µL 

D3-JA-Leu (1 ng/µL) 20 µL 

D6-SA  (1 ng/µL) 10 µL 

D5-IAA  (1 ng/µL) 10 µL 

D6-ABA  (1 ng/µL) 10 µL 

St-RA  (5 ng/µL) 10 µL 
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700 µL MeOH: water [3 : 2.5, v/v] and 1.3 mL MTBE were mixed to the remaining phase for re-

extraction. After centrifugation as before, the upper and the lower phase were taken and pooled 

with the first upper phase. This solution was evaporated under a stream of nitrogen. The residue 

was dissolved in 100 µL MeOH twice and transferred to a reaction tube. For LC-MS 

measurements, the extracts were evaporated again and resolved in 20 µL solvent B (ACN : water, 

[90 : 10, v/v], 0.3 mM NH4COOH, pH 3.5) first. Then, 80 µL solvent A (0.3 mM NH4COOH in 

water, pH 3.5) were added to fit to the starting conditions of the chromatographic separation by 

LC. 

3.2.8.3. TARGETED LC-MS/MS ANALYSIS OF PHYTOHORMONES 

The LC-MS/MS measurement of the phytohormones were performed by Dr. Cornelia Herrfurth 

and Dr. Krzysztof Zienkiewicz (both University of Goettingen, Germany). The extracts were 

analyzed by ultra-perfomance-LC (UPLC) nano-electrospray ionization (ESI) MS-fragmentation 

(MS/MS) method according to Ghareeb et al., 2011. An Acquity UPLC system equipped with 

ACQUITY UPLC HSS T3 column (100 mm x 1 mm, 1.8 µm particle size; both from Waters 

Corp., Milford, MA, USA) was coupled to a nanoESI chip ion source (TriVersa NanoMate; 

Advion BioSciences, Ithaca, USA). The MS analysis was performed with an Applied Biosystems 

4000 quadrupole/linear ion trap mass spectrometer (MDS Sciex, Ontario, Canada). For analysis, 

10 μL of the extract were injected (see 3.2.8.2). The binary gradient system consisted of solvent 

A, water and solvent B, ACN : water, 90 : 10 [v/v], both containing 0.3 mM NH4COOH (adjusted 

to pH 3.5 with formic acid) was used. Elution was performed with the following gradient 

program: 10 % solvent B for 0.5 min, followed by a linear increase of solvent B up to 40 % within 

1.5 min held for 2 min and followed by increase of solvent B up to 95 % solvent B in 1 min. An 

isocratic run at 95 % solvent B was then held for 2.5 min. To recover starting conditions a linear 

decrease to 10 % B within 3 min was performed. The flow rate was 0.16 mL/min. For stable 

nanoESI conditions, 70 μL/min of 2-propanol/ACN/water [70 : 20 : 10, v/v/v/] containing 

0.3 mM NH4HCOO (adjusted to pH 3.5 with formic acid) delivered by a Pharmacia 2248 HPLC 

pump (GE Healthcare, Munich, Germany) were added just after the column via a mixing tee 

valve. By using a second post column splitter 502 nl/min of the eluent were directed to the 

nanoESI chip with 5 µm internal diameter nozzles. Ionization voltage was set to -1.7 kV, 

phytohormones were negatively ionized and detected in a scheduled multiple reaction monitoring 

(MRM) mode with AB Sciex 4000 QTRAP tandem mass spectrometer (AB Sciex, Framingham, 

MA, USA). For the scheduled mode, the MRM detection window was 72 s and a target scan time 

of 1.2 s was set. Mass transitions were optimized for every compound individually (Table 3-29). 

The mass analyzers were adjusted to a resolution of 0.7 amu full width at half height. The ion 

source temperature was 40 °C and the curtain gas was set at 10 – given in arbitrary units. 

Quantification was carried out using a calibration curve of intensity relations of the mass-to-
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charge ratio (m/z) of standard substances vs. molar amounts of unlabeled metabolites 

(0.3 – 1 000 pmol, [unlabeled]/[deuterium-labeled]). 

 

Table 3-29: Transitions of the multiple reaction monitoring mode of the LC-MS/MS analysis 

Metabolite in the LC-MS/MS analysis were identified in the multiple reaction monitoring mode by 

selecting their mother ion and an fragment for quantification. Every fragmentation scan has its individual 

clustering potential (DP), entrance potential (EP), and collision energy (CE). 12-Oxophytodienoic acid, 

12-OPDA; jasmonic acid, JA; 11/12-hydroxy-JA, 11/12-OH-JA; 12-hydroxy-jasmonoyl sulfate, 12-

HSO4-JA; 12-glycosyl-O-JA, 12-O-Glc-JA; jasmonoyl-isoleucine/leucine, JA-Ile/Leu; 12-hydroxy-JA-

Ile, 12-OH-JA-Ile; 12-carboxy-JA-Ile, 12-COOH-JA-Ile, abscisic acid, ABA; ABA-glycosyl ester, ABA-

GE; salicylic acid, SA; 2-O-glycosyl-SA, 2-O-Glc-SA; indole-3-carboylic acid, ICA; indole-3-acetic acid, 

IAA; five-fold deuterated 12-oxophytodienoic acid, D5-12-OPDA; five-fold deuterated jasmonic acid; D5-

JA; four-fold deuterated jasmonoyl-leucine, D4-JA-Leu; four-fold deuterated salicylic acid, D4-SA; five-

fold deuterated indole-3-acetic acid, D5-IAA; six-fold deuterated abcisic acid, D6-ABA. 

Q1 Q3 Analyte DP (V) EP (V) CE (eV) 

291 165 12-OPDA -70 -8.5 -28 

209 59 JA -30 -4.5 -24 

225 59 11/12-OH-JA -35 -9.0 -28 

305 97 12-HSO4-JA -30 -4.0 -32 

387 59 Glc-O-JA -85 -9.0 -52 

322 130 JA-Ile/Leu -45 -5.0 -28 

352 130 12-COOH-JA-Ile -45 -10.0 -30 

338 130 12-OH-JA-Ile -45 -10.0 -30 

263 153 ABA -35 -4.0 -14 

425 263 ABA-GE -30 -10.0 -16 

137 93 SA -25 -6.0 -20 

299 137 2-O-Glc-SA -30 -4.0 -18 

160 113 ICA -40 -6.5 -22 

174 130 IAA -35 -9.0 -14 

396 107 D5-12-OPDA -65 -4.0 -28 

214 62 D6-JA -35 -8.5 -24 

325 133 D4-JA-Leu -80 -4.0 -30 

141 97 D4-SA -25 -6.0 -22 

153 109 D5-IAA -50 -4.0 -22 

293 179 D6-ABA -80 -10.0 -42 

 

3.2.8.4. METABOLITE ANALYSIS BY LC-HIGH RESOLUTION-MS 

The metabolite fingerprinting experiments were performed by LC-high resolution-MS (LC-HR-

MS) together with Dr. Kirstin Feussner (University of Goettingen, Germany) according to Nahlik 

et al., 2010. The samples were separated by an Acquity UPLC system with UPLC eLambda 800 

nm PDA detector and equipped with an Acquity UPLC BEH SHIELD RP18 column (1x100 mM, 

1.7 μm particle size, Waters Corporation, Milford, USA). A flow rate of 0.2 ml min-1 at 40 °C 

was applied. Separation was gained with a binary gradient of solvent A (water : formic acid 

[100 : 0.1, v/v] and solvent B (ACN : formic acid [100 : 0.1, v/v]. The run was set with 

0 – 0.5 min at 10 % solvent B, 0.5 – 3 min gradual to 28 % solvent B, 3 – 8 min gradual to 95 % 

solvent B, 8 – 10 min at 95 % solvent B, and 10 – 14 min 10 % solvent. The LC-HR-MS was 

operated in negative ESI mode with W optics to ensure a mass resolution larger than 10 000. Data 

were acquired by MassLynx 4.1 software in centroid format over a mass range of m/z 85 – 1 200 
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with a scan duration of 0.5 s and an interscan delay of 0.1 s. The capillary and the cone voltage 

were maintained at 2 600 V and 30 V and the desolvation and source temperature at 350 °C and 

80 °C respectively. Nitrogen was used as cone (30 L h-1) and desolvation gas (800 L h-1). The 

Dynamic Range Enhancement mode was used for data recording. All analyses were monitored 

by using Leucine-enkephaline ([M-H]- 554.2615 or [M+H]+ 556.2771 as well as its 13C 

isotopomer [M-H]- 555.2615 or its double 13C isotopomer [M+H]+ 558.2836 as lock spray 

reference compound at a concentration of 0.5 μg mL-1 in ACN : water [50 : 50, v/v] and a flow 

rate of 30 μl min-1. For targeted data analysis, the MassLynx 4.1 software was used to investigate 

metabolites. 

3.2.8.5. NON-TARGETED EX VIVO METABOLITE FINGERPRINTING 

The non-targeted ex vivo experiments were performed together with Dr. Kirstin Feussner (Georg-

August-University, Goettingen, Germany). It uses the metabolite fingerprinting platform (Kaever 

et al., 2014) and connects it to activity assays with purified enzymes. The purified enzyme were 

incubated with an enriched metabolite extracts from both phases of the MTBE-extraction (see 

3.2.8.2). Here, the plant material of a wounding experiment (see 3.2.1.3) was used to provide the 

enzyme with the enriched metabolite extract including wound-accumulated metabolites like 12-

OH-JA. The reactions were measured by the non-targeted fingerprinting pipeline (Kaever et al., 

2014). The activity assays were performed as following: 100 µg homogeneous protein were 

incubated with 83 µL enriched plant extract (of 100 µL from 120 mg plant material), and 10 µM 

UDP-Glc. As positive control, known substrates were spiked into a selected number of reactions: 

10 µM 12-OH-JA, 10 µM SA, and 10 µM ω-OH-16:0. The reactions were incubated at 25 °C for 

1 h and terminated by adding 20 µL ACN. For measurement, the solutions were centrifuged at 

20 000x g at 4 °C for 10 min and 70 µL were transferred into UPLC-vials. The non-targeted ex 

vivo activity assay was performed as three independent experiments which were performed at the 

same time, treated equally and measured together.  

The technical parameters of the LC-HR-MS were set as described in 3.2.8.4. Samples were 

measured in positive and negative ionization mode. For data processing, the raw data of all 

samples of one experiment were taken and processed with MarkerLynx Application Manager for 

MassLynx 4.1 software resulting in two data matrices – from the two ionization modes. The 

toolbox MarVis (MarkerVisualization, http://marvis.gobics.de) was used for further data 

processing including ranking by ANOVA combined with the multiple testing by Benjamini-

Hochberg, filtering the data, adduct and isotope correction as well as combining of the selected 

data of the two data matrixes (MarVis Filter) for clustering and visualization (MarVis Cluster). 

For database search, metabolite set enrichment analyses (MarVis Pathway) were used. Here, also 

internal databases optimized for e. g. jasmonates and their glucosides were integrated. Selected 

high quality features (false discovery rate < 10-6) were chosen for clustering and data base search. 
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The identity of selected features was confirmed by coelution with authentic standards and/or by 

fragmentation analysis. 

3.2.8.6. STRUCTURE DETERMINATION BY FRAGMENTATION  

Detailed structural information of different markers identified by metabolite fingerprinting were 

confirmed by fragmentation (MS/MS) using a LC 1290 Infinity (Agilent Technologies, Santa 

Clara, USA) coupled with an Applied Biosystems 6540 UHD Accurate-Mass triple quadrupole 

time of flight mass spectrometer (Agilent Technologies, Santa Clara, USA). The MS/MS analyses 

were done by Dr. Kirstin Feussner (Georg-August-University, Goettingen, Germany). 

For LC an Acquity UPLC HSS T3 column (1 x 100 mm, 1.8 μm particle size, Waters 

Corporation, Milford, USA) was used at a flow rate of 0.5 ml min-1 and a temperature of 40 °C. 

The binary solvent system consists of A (water : formic acid [100 : 0.1, v/v] and B (ACN : formic 

acid [100 : 0.1, v/v]. The gradient was set as for LC-HR-MS analysis (3.2.8.4). The MS-

instrument was operated with a detection frequency of 2 GHz in the Extended Dynamic Range 

and the targeted MS/MS mode. The source conditions were set with gas temperature: 250 °C, 

drying gas flow: 8 L min-1, nebulizer pressure: 35 psi, sheath gas temperature: 300 °C, sheath gas 

flow: 8 L min-1, VCap voltage: 3 kV, nozzle voltage: 200 V, and fragmentor voltage: 100 V. 

Samples were ionized in negative and/or positive ESI mode with collision energy 12-32 eV. 

Isolation of precursor ions occurred within the narrow isolation width of 1.3 m/z. Data were 

acquired by Mass Hunter Workstation Acquisition software B.05.01 (Agilent Technologies, Santa 

Clara, USA). Mass Hunter Qualitative Analysis B.06.01 (Agilent Technologies, Santa Clara, 

USA) was used for data analysis.  
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4. RESULTS 

The JA-pathway has been studied intensively (Koo, 2018; Wasternack, 2015) and many of the 

enzymes of the JA-Ile-synthesis as well as for its catabolism have been described (see Figure 1-3). 

Up to now, the enzyme(s) responsible for the glycosylation of the 12-hydroxy group of 12-OH-

JA are still elusive although the metabolite 12-O-Glc-JA is known in A. thaliana (Koo, 2018; 

Miersch et al., 2008). 

Here, four uncharacterized UGTs are investigated towards their activity on jasmonates – in 

particular towards 12-OH-JA. The work was divided into several subtopics: (i) the identification 

of potential candidate UGTs and (ii) their expression analysis in wounded A. thaliana. Then, (iii) 

the candidate enzymes were characterized biochemically in respect to their preferred substrate 

and their kinetic parameters. On top of this, (iv) the in vivo analysis of the candidates was started. 

Therefore, the CRISPR/Cas9 approach was used to knock out the candidate genes specifically.  

4.1. IDENTIFICATION OF FOUR UGTS AS CANDIDATES FOR 12-OH-JA 

GLYCOSYLATION  

After wounding, the modifications within the JA metabolic fate follow a time-course (see 4.4). 

This temporal distribution is reflected in the expression of such genes, too. Likewise, it may be 

possible to identify genes involved in the glycosylation of 12-OH-JA by co-expression analysis 

of gene products, which are known to synthetize and metabolize 12-OH-JA. The UGT family of 

A. thaliana has been studied phylogenetically before (Lim et al., 2002; Ross et al., 2001) and, 

hence, the putative genes connected to jasmonates are annotated and can be identified by online 

searches. 

4.1.1. UGT76E1 AND UGT76E2 MAY BE RELATED TO 12-OH-JA METABOLISM 

12-OH-JA is directly oxidized from JA by JOX 1 to JOX 4 (Caarls et al., 2017). Therefore, the 

gene products of JOX1 to JOX4 were used as bait genes for RNA-seq co-expression analyses. For 

JOX1, JOX2, and JOX4, no co-regulations with predicted UGTs were found (data not shown). 

Whereas, JOX3 shows co-expression with its homologue JOX4, At2g39030, At4g37990, 

At1g52890, At2g36080, and, interestingly, with At5g59580 encoding for UGT76E1 (Table 4-1). 

UGT76E1 is a so far uncharacterized UGT. Searching against expression data from micro-array 

analysis, JOX3 is co-regulated with other members in the JA-metabolism CYP94B3, ILL6, TIFY7, 

TIFY 9, and TIFY 10 (Supplemental figure 2A) but not with UGT76E1 here. Next, ST2a, which´s 
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gene product forms 12-HSO4-JA from 12-OH-JA, was used as a bait gene for the RNA-seq data. 

No co-expression is shown for known players around jasmonates. Anyhow, ST2a is co-expressed 

with At5g59590 encoding for UGT76E2 (Table 4-1) – a second uncharacterized UGT. Further, 

the available micro-array data of ST2a were evaluated but no co-regulations with UGT76E2 or 

other putative UGTs were given (Supplemental figure 2B). 

Furthermore, gene products, which are known to be involved in the jasmonate inactivation were 

investigated. ILL6 and IAR3, whose gene products produce 12-OH-JA by de-conjugating 12-OH-

JA-Ile, did not show co-regulation with putative UGTs (data not shown). Additionally, CYP94B1, 

CYP94B3, and CYP94C1 oxidizing JA-Ile to 12-OH-JA-Ile were used as baits for co-expression 

searches. The 12-hydroxy group could be a target for further glycosylation to potentially form 12-

Glc-O-JA-Ile. However, no co-expressions of putative UGTs were found with the JA-Ile 

oxidizing P450s as baits (data not shown). 

Taken together, the search for gene products involved in the jasmonate catabolism identified two 

uncharacterized UGTs as candidates for the glycosylation of 12-OH-JA: UGT76E1 and 

UGT76E2.  

 

Table 4-1: Search for glycosyltransferase genes as candidates for JA-glycosylation 

RNA-seq co-expression analysis of gene products involved in 12-hydroxy-JA metabolism. Jasmonic acid 

oxidase 3 (JOX3, At3g55970) and sulfotransferase 2a (ST2a, At5g07010) were used as bait genes to 

search for candidates for JA-glycosylation. Two uncharacterized glycosyltransferases, UGT76E1 and 

UGT76E2, were identified (red frame). Given are the complete outputs of the data base search for every 

bait. The gene products are ranked by Mutual Rank (MR) giving an average correlation of two genes. 

Smaller MR-values indicate stronger correlation. Access 02.05.2018; the page was prepared on Dec. 14. 

2017 for ATTED-II version 9.1  

MR Locus Function 

Bait gene: JOX3 (At3g55970) 

1.6 At2g38240 
2-Oxoglutarate and Fe(II)-dependent oxygenase Superfamily protein, 

JOX 4 

1.8 At2g39030 Acyl-CoA N-acyltransferases superfamily protein 

3.2 At4g37990 Elicitor-activated gene 3-2 

3.4 At1g52890 NAC domain containing protein 19 

18.9 At5g59580 UGT76E1 

33.4 At2g36080 AP2/B3-like transcriptional factor family protein 

Bait gene: ST2a (At5g07010) 

7.7 At1g54100 Aldehyde dehydrogenase 7B4 

19.3 At2g38240 
2-Oxoglutarate and Fe(II)-dependent oxygenase Superfamily protein, 

JOX 4 

20.9 At1g64660 Methionine gamma-lyase 

37.1 At4g31380 FPF1-like protein 1 

44.1 At5g59590 UGT76E2 

50.9 At1g75450 Cytokinin oxidase 5 
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4.1.2. TRANSCRIPTOME ANALYSIS OF WOUNDED A. THALIANA LEAVES 

CONFIRMED UGT76E1, UGT76E2 AND IDENTIFIED UGT76E11 AND 

UGT76E12 AS WOUND INDUCED TRANSCRIPTS 

A second source was used to support the candidates UGT76E1 and UGT76E2 and to search for 

additional UGTs, which could be involved in the catabolism of 12-OH-JA. Therefore, a combined 

transcriptome and metabolome study of a wounding time course for A. thaliana leaves was used 

(Kaever, 2014). The data were recorded 0, 0.5 and 2 hpw in leaves of wild type Col-0 and the JA-

deficient mutant delayed dehiscence 2-2 (dde2-2) (Park et al., 2002). This mutant is a loss-of-

function point mutation in the AOS, which results in JA-deficient plants. The transcriptome data 

were recorded by a 44 k Affimetrix micro-array analysis. 

There, the candidates UGT76E1 and UGT76E2 showed detectable signals at 2 hpw exclusively; 

all other time points and the dde2-2 show just trace signals. Yet, the intensity of UGT76E2 is 

below the signal threshold (> 500 procedure defined units (p.d.u.), oral communication Milena 

Lewandowska, University of Goettingen, Germany). In addition, a UGT related screening (cf. 

Figure 4-2) identified UGT76E11 (At3g46670) and UGT76E12 (At3g46660). UGT76E11 shows 

constitutive expression with additional induction at 2 hpw in Col-0 (5-fold) and dde2-2 (2-fold). 

Similar to UGT76E1 and UGT76E2, UGT76E12 displays wound induction in Col-0 at 2 hpw 

exclusively but with 5-fold higher intensities (Supplemental figure 3). Altogether, UGT76E1 and 

UGT76E2 show low signal intensities around the signal threshold whereas UGT76E12 depicts 

robust induction. The accumulations of UGT76E1, UGT76E2, and UGT76E12 at 2 hpw are 

strongly JA-dependent and the reduced expression of UGT76E11 in dde2-2 at 2 hpw suggest a 

JA-influence.  

The Arabidopsis Information Resource provides another source of expression data. There, the 

online tool Arabidopsis eFP Broswer offers transcriptome data for various stimuli, tissues, or 

developmental stages (Winter et al., 2007). In this context, focus was given to the expression of 

the candidate UGTs after abiotic stress like wounding (Kilian et al., 2007), cold, osmotic, salt, 

drought, UV-B, and heat stress. 

UGT76E1 is exclusively expressed in A. thaliana shoots in response to wounding (1 hpw, 

Supplemental figure 4A). UGT76E2 displays also a specific expression 1 hpw in shoots and, in 

addition, a constitutive expression in roots (Supplemental figure 4B). The expression of 

UGT76E1 and UGT76E2 is not induced by other kinds of abiotic stress like cold, osmotic, salt, 

drought, UV-B, and heat stress. In contrast to that, UGT76E11 shows constitutive expression in 

shoots, which could be enhanced mainly by cold (3 hours after all stimulus) and salt stress (12 

hours after all stimuli) but no expression in roots. Interestingly, in response to wounding, the 

expression of UGT76E11 is reduced at 0.5 hpw similar to the results of the in-house transcriptome 

analysis shown above (Supplemental figure 5A, see Supplemental figure 3C) and started to 
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increase 1 hpw. UGT76E12 illustrated specific expressions at 1 hpw, 24 h after oxidative stress, 

and highest inductions at 24h after osmotic stress in shoots. No expression of UGT76E12 is 

depicted in roots (Supplemental figure 5B). The expression data of the Arabidopsis eFP Broswer 

highlighted differential expression of UGT76E1 and UGT76E2 in roots and confirmed the 

findings in respect to the wound induction of the four candidate genes. 

4.1.3. REAL TIME PCR ANALYSES CONFIRM, THAT UGT76E1, UGT7E11, AND 

UGT76E12 ARE INDUCED AFTER WOUNDING  

To support the data of the co-expression analyses and transcriptome array, UGT76E1, UGT76E2, 

UGT76E11, and UGT76E12 were analyzed by a quantitative expression analysis performed by 

qPCR. The expression analysis was performed with cDNA, which had been synthesized from 

RNA of wounded leaves (0, 1, 2, and 5 hpw, see 4.4). Here, UGT74F1 (At2g43840) was added 

as control gene to the set of candidate genes: UGT74F1 encodes a glycosyltransferase, that 

specifically glycosylates SA (George Thompson et al., 2017; Lim et al., 2004) and acts as wound-

unrelated control here. 

The obtained raw data were normalized to the basal expression of the respective genes at 0 hpw. 

At 1 hpw, UGT76E1 and UGT76E2 show slight elevation with 2-fold higher expression. While, 

UGT76E11 and UGT76E12 already show significant accumulation with 4-fold and 3.5-fold 

enrichment, respectively. At 2 hpw, the expression rates of UGT76E1, UGT76E11, and 

UGT76E12 accumulated significantly with about 6- to 8-fold higher expressions. Whereas, 

UGT76E2 shows no further accumulation. At 5 hpw, the expressions of UGT76E1 and 

UGT76E12 decreases to levels of UGT76E2 (2-fold higher expression), while UGT76E11 still 

displays 5.5-fold higher expression in comparison to the unwounded plants. The control, 

UGT74F1 shows no induction after wounding at any of the time points (Figure 4-1A). Without 

normalization, UGT76E1, UGT76E2, UGT76E11, and UGT74F1 display similar low constitutive 

expression levels. Only UGT76E12 shows 2-fold elevated levels without wounding stimulus 

(Supplemental figure 6A). Furthermore, the expressions were compared between Col-0 and dde2-

2 at 0 and 2 hpw. The relative expression values of UGT76E1, UGT76E2, and UGT76E12 show 

control-like levels in dde2-2 at 2 hpw whereas UGT76E11 shows 3-fold elevated levels 

(Supplemental figure 6B).  

In summary, the quantitative expression analysis of the four candidate UGTs illustrates that 

UGT76E1, UGT76E11, and UGT76E12 are significantly upregulated in Col-0 after wounding. In 

contrast to that, UGT76E2 accumulates slightly but not significantly after wounding. The results 

of the quantitative expression analysis confirm the expression pattern of the transcriptome 

analysis for UGT76E1, UGT76E11, and UGT76E12, even though the relative expression rates 
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and fold changes are different (see 4.1.2). Contradictory to the transcriptome data, UGT76E12 

did not show significant accumulation after wounding.  

So far, three different approaches – the co-expression analysis, the 44 k Affimetrix transcriptome 

analysis of wounded A. thaliana leaves, and the quantitative expression analysis by qPCR – 

identified UGT76E1, UGT76E2, UGT76E11, and UGT76E12 as related to the JA-mediated 

wound-response in A. thaliana, even if the results for the three data sources are not completely 

consistent. 

 

 

Figure 4-1: Expression of UGT76E1, UGT76E2, UGT76E11, UGT76E12, and UGT74F1 in 

A. thaliana leaves after wounding 

Quantitative real-time PCR of UGT76E1 (red), UGT76E2 (green), UGT76E11 (orange), UGT76E12 

(blue), and UGT74F1 (grey). Plants were grown for six weeks at 22 °C under short day conditions (8 h 

light/16 h dark). Leaves were wounded three times across the mid vein by squeezing with forceps. 

Damaged rosette leaves were harvested at indicated time points (hours post wounding (hpw)), RNA was 

isolated, and appr. 1 µg transcribed complementary DNA were used for PCR. All expression values are 

normalized to actin 8 as reference. Relative expression of the transcripts normalized to their respective 

expression levels at 0 hpw. Each data point represents the mean value + SD of three biological replicates. 

10 plants per time point were pooled for one replicate. Asterisks indicate significance by one-sided T-Test 

with *p<0.05, **p<.0.01 

 

4.1.4. UGT76E1 AND UGT76E2 ARE ASSIGNED TO JA METABOLISM BY CO-

EXPRESSION ANALYSES 

UGT76E1, UGT76E2, UGT76E11, and UGT76E12 have been identified as candidates for the 

glycosylation of jasmonates by co-expression with known players in jasmonate metabolism. Now, 

the candidates were used as baits for co-expression analysis to support the connection to 

jasmonates from the other side. 
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UGT76E1 displays connections to JAZ2, ILL6, and JOX3, which are members of the JA-mediated 

wound-response in A. thaliana (Table 4-2). UGT76E2 shows co-regulation with genes induced 

by osmotic stress (data not shown, eFP-Browser, access 02.05.2018) like cinnamyl alcohol 

dehydrogenase 5 (cf. Lee et al., 2013), Myzus persicae-induced lipase 1 (cf. Louis et al., 2010) 

and UGT71B8, which glycosylates ABA (Dong et al., 2014). Furthermore, UGT76E2 is co-

regulated with ST2a, by which it also was identified before (Table 4-2). Next, UGT76E11 shows 

co-regulation with genes connected to drought response but not wounding. Like for UGT76E11 

itself, the co-regulated genes are induced by different abiotic stimuli with generally high 

expressions (data not shown, eFP-Browser, access 02.05.2018). UGT76E12 is co-regulated with 

genes induced by osmotic stress (data not shown, eFP-Browser, access 02.05.2018) like elicitor-

activated gene 3-2 (cf. Somssich et al., 1996), CYP76C2 (cf. Hofer et al., 2014), and phenolic 

lucoside malonyltransferase 1 (cf. Khan et al., 2016). None of them is known to have functions 

in wounding. 

 

Table 4-2: Co-expression analysis of UGT76E1, UGT76E2, UGT76E11, and UGT76E12 

RNA-seq co-expression analysis of gene products correlated with UGT76E1 (At5g59580), UGT76E2 

(At5g59590), UGT76E11 (At3g46670), and UGT76E12 (At3g46660). Identified gene products related to 

JA metabolism are given in bold. JAZ2, jasmonate-ZIM-domain protein 2; JOX3, jasmonic acid oxidase 

3. Given are the complete outputs of the database for every bait. Gene products are ranked by Mutual 

Rank (MR) giving an average correlation of two genes indicating stronger correlation by smaller values. 

Access 02.05.2018; the page was prepared on Dec. 14. 2017 for ATTED-II version 9.1 

MR Locus Function 

Bait gene: UGT76E1 (At5g59580) 

8.5 At1g74950 TIFY domain/Divergent CCT motif family protein, JAZ2 
14.4 At1g44350 IAA-leucine resistant (ILR)-like gene 6, ILL6 
18.9 At3g55970 Jasmonate-regulated gene 21, JOX3 

Bait gene: UGT76E2 (At5g59590) 

42.2 At4g34230 Cinnamyl alcohol dehydrogenase 5 
44.1 At5g07010 Sulfotransferase 2A, ST2a 
45.7 At5g14180 Myzus persicae-induced lipase 1 
102.6 At3g21800 UDP-glucosyl transferase 71B8 

Bait gene: UGT76E11 (At3g46670) 

6.1 At5g65890 ACT domain repeat 1 
8.0 At2g40435 Transcription factor SCREAM-like protein 

8.2 At5g24150 FAD/NAD(P)-binding oxidoreductase family protein 
16.3 At2g36590 Proline transporter 3 
29.0 At5g43745 Protein of unknown function (DUF1012) 
45.5 At5g15240 Transmembrane amino acid transporter family protein 

Bait gene: UGT76E12 (At3g46660) 

5.8 At4g37990 Elicitor-activated gene 3-2 
6.3 At5g45570 Cytochrome P450, family 76, subfamily C, polypeptide 2 
12.4 At5g39050 Phenolic lucoside malonyltransferase 1, PMAT1 

 

In addition to that, the available micro-array data of UGT76E1, UGT76E2, UGT76E11, and 

UGT76E12 were checked. Here, the data did not show direct evidence for a potential role of any 

candidate in the glycosylation of jasmonates (Supplemental figure 7, Supplemental figure 8). 

Interestingly, UGT76E12 is co-regulated with a gene encoding for β-glucosidase 11 (At1g02850) 
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(Supplemental figure 8B). This gene is expressed late after wounding – 12 hpw – but also after 

other abiotic stresses (data not shown, eFP-Browser, access 02.05.2018). Since β-glucosidases 

cleave glycosidic bonds, it might be connected to UGT76E12. 

4.2. SEQUENCE ANALYSES OF THE CANDIDATES 

4.2.1. UGT76E1, UGT76E2, UGT76E11, AND UGT76E12 HAVE SIMILAR GENE 

STRUCTURES 

In the A. thaliana genome, the four candidate genes are found in two loci. UGT76E1 (AT5g59580) 

and UGT76E2 (At5g59590) are located right next to each other on the chromosome five. 

Similarly, UGT76E11 (At3g46670) and UGT76E12 (At3g46660) are also located side by side on 

the chromosome three. Allover, the gene structures of all four genes are similar: they have two 

exons split by one intron located at the first third of the genes (Supplemental figure 9). No splice-

variants are known for the candidates. This is supported by findings that UGTs are clustered in 

groups of two to seven genes and harbor none to two introns (Ross et al., 2001). 

4.2.2. UGT76E1 AND UGT76E2 AS WELL AS UGT76E11 AND UGT76E12 

CLUSTER AS HOMOLOGUES 

As members of the UGT subfamily E, UGT76E1, UGT76E2, UGT76E11, and UGT76E12 are 

related with ≥ 60 % amino acid sequence homology (Mackenzie et al., 1997). In the phylogenetic 

tree of all UGTs of A. thaliana, the four candidates for 12-OH-JA glycosylation cluster in the 

group H, which contains all members of the UGT76 family. The tree was generated by comparing 

ten conserved motifs of all UGTs in A. thaliana (Figure 4-2, see Supplemental figure 1). 

Therefore, the candidates share > 60 % motif-similarity as members of the same group (Ross et 

al., 2001). In detail, UGT76E1 and UGT76E2 as well as UGT76E11 and UGT76E12 respectively 

cluster as homologs (Figure 4-2). The group H of the glycosyltransferase family has not been 

investigated in detail yet. No studies have been done on UGT76E1, UGT76E2 in particular, while 

UGT76E11 and UGT76E12 have been described to glycosylate flavonoids like quercetin (Li et 

al., 2018; Lim et al., 2004).  

As mentioned, all UGTs in A. thaliana share a common structure with two protein domains (see 

0) each harboring a conserved catalytic motif for substrate binding (N-terminus) and UDP-

binding (C-terminus, Figure 1-5) (Offen et al., 2006). Therefore, UGT76E1, UGT76E2, 

UGT76E11, and UGT76E12 were analyzed for these catalytic motifs.  

The two UGT-specific motifs of UGT76E1, UGT76E2, UGT76E11, UGT76E12, the control 

UGT74F1, and the UGT reference gene of V. vinifera VvGT1 (Figure 1-5) (Offen et al., 2006) 
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were aligned with the Geneious algorithm. All sequences show the catalytic histidine at the N-

terminus at the position 27 of the consensus sequences (Figure 4-3A). In the N-terminal regions, 

14 of 57 amino acids of the candidates are similar to the reference VvGT1 (> 60 % similarity, 

Figure 4-3A). The C-termini of the UGTs show high similarity, too. All six sequences share the 

UDP-Glc binding motif (Figure 4-3B, see Figure 1-5A). The candidate-UGTs show similarity for 

39 of 57 amino acids in comparison to the reference VvGT1 (> 60 % similarity, Figure 4-3B).  

 

 
Figure 4-2: Phylogenetic tree of group H UGTs in A. thaliana  

Phylogenetic tree of 19 out of 107 UGT genes of A. thaliana. The selected branch shows the group H 

(> 60 % motif-similarity). The four UGTs, which are potentially active in the JA-pathway are marked 

with red boxes. The complete phylogenetic tree is given in Supplemental figure 1. Figure was taken from 

(Ross et al., 2001).  

 

 

Figure 4-3: UGT76E1, UGT76E2, UGT76E11, and UGT76E12 show the catalytic motifs  

Amino acid alignment of the four UGT76Es (2. - 5.), the control UGT74F1 (1.), and the reference VvGT1 

(6.). Amino acids, which are conserved in the six indicated UGTs, are highlighted. Amino acids 

highlighted by black boxes share 100 % identity. Amino acids highlighted by dark grey, light grey or 

white boxes show 80 to 100 %, 60 to 80 %, or less than 60 % similarity, respectively. A) Amino acid 

alignment and consensus sequence for the N-termini are shown. The catalytic histidine (H) at position 27 

is marked by a red box. It was postulated by the x-ray crystal structure of VvGT1 and UGT74F1 (George 

Thompson et al., 2017; Offen et al., 2006). B) Amino acid alignment and consensus sequence of the C-

termini. The region is proposed to harbor the UDP-Glc binding motif (shown in red boxes) – postulated 

by the x-ray crystal structure of VvGT1 with the bound cofactor (Offen et al., 2006). Alignments were 

created with Geneious algorithm as global alignment with free end gaps and Blosum62 cost matrix in 

Geneious version 8.1 (Biomatters, New Zealand). Available from http://www.geneious.com. 
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Because the four candidates are highly conserved in the substrate and UDP-Glc binding-motifs, 

the complete amino acid sequences were compared among each other. UGT76E1 and UGT76E2 

show a high amino acid sequence identity of 88 %. Compared to UGT76E11, both, UGT76E1 

and UGT76E2, display a sequence identity of 65 %. With UGT76E12, UGT76E1 and UGT76E2 

share 65 and 67 % identity respectively. UGT76E11 and UGT76E12 have 84 % of the amino 

acids in common (Table 4-3). Taken together, all four UGTs are similar on the amino acid level 

with at least 65 % identity. This confirms the systematic classification to the subfamily E (≥ 60 % 

amino acid sequence homology) (Mackenzie et al., 1997). 

 

Table 4-3: Amino acid sequence comparison for UGT76E1, UGT76E2, UGT76E11, and UGT76E12 

Amino acid identity of the indicated UGTs was calculate and the respective identity is given in %. 

Alignments were created with the Geneious algorithm as global alignment with free end gaps and 

Blosum62 cost matrix in Geneious version 8.1 (Biomatters, New Zealand). Available from 

http://www.geneious.com. 

Amino acid identity UGT76E1 UGT76E2 UGT76E11 UGT76E12 

UGT76E1  88 65 67 
UGT76E2 88  65 65 
UGT76E11 65 65  84 
UGT76E12 67 65 84  

 

4.2.3. PROTEIN PARAMETERS OF UGT76E1, UGT76E2, UGT76E11, AND 

UGT76E12 ARE SIMILAR 

To get a better understanding of the four UGTs for the following protein purification and 

characterization, the protein parameters were estimated using the ProtParam online tool 

(https://web.expasy.org/protparam/). The MWs of the UGTs are about 51 kDa. The specific 

extinction coefficients at 280 nm are between 55.5 kM-1cm-1 (UGT76E12) and 66.4 kM-1cm-1 

(UGT76E1). The predicted extinction coefficients were used to determine the exact 

concentrations of the purified proteins by spectroscopy later on. The predicted pIs of the proteins 

are acidic and mainly similar for UGT76E2 (pH 5.4), UGT76E11 (pH 5.9), UGT76E12 (pH 6.0), 

and UGT74F1 (pH 5.5). Interestingly, UGT76E1 has a pI at pH 6.6, which differs most to its 

homologue UGT76E2 (pI 5.4). Sequence analyses did not identify any signal peptides or 

transmembrane domains in any of the sequences. In addition, target sequences are not predicted 

for UGT76E2, UGT76E11, and UGT76E12. Again, UGT76E1 was predicted differently with a 

putative mitochondrial location. The score was the lowest prediction probability that the TargetP 

tool gives (Supplemental table 1). 

The protein parameters illustrate that the five different UGTs are very similar in respect to their 

calculated properties. Only, UGT76E1 may show a less acidic pI and an uncertain putative 
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mitochondrial location (Supplemental table 1). In respect to the characterization of the four 

candidates, the predictions do not give reasons to remove any motifs from the sequences. 

4.3. BIOCHEMICAL CHARACTERIZATION OF UGT76E1, UGT76E2, 

UGT76E11, AND UGT76E12 

After the four candidate genes have been identified by co-expression analyses and first in silico 

investigations have been done, the coding sequences were cloned, the proteins were 

heterologously expressed in E. coli, purified and introduced to biochemical characterizations. 

Likewise, it was aimed to determine their preferred substrates with various types of activity 

assays. The four UGTs were tested towards potential substrates, which are typically containing 

free hydroxy and carboxy groups including the proposed native substrate 12-OH-JA. 

Additionally, the enzymatic performance of the homogeneous UGTs were analyzed in a native-

like environment. Finally, the kinetic parameters for the main substrates were determined in a 

continuous spectrophotometric assay.  

4.3.1. UGT76E1, UGT76E2, UGT76E11, UGT76E12, AND UGT74F1 WERE 

HETEROLOGOUSLY EXPRESSED IN E. COLI 

The coding sequences of UGT76E1, UGT7TE2, UGT76E11, UGT76E12, and UGT74F1 were 

amplified from cDNA. These RNA-based templates ensure correct splicing and processing of the 

gene products, which should result in functional proteins after heterologous expression in E. coli. 

The templates for UGT76E1, UGT7TE2, UGT76E11, UGT76E12 were synthesized from RNA 

of leaf material 2 hpw. The coding sequence of UGT74F1 was amplified as splice variant 2 (see 

3.2.3.1) from cDNA, which are synthesized from RNA of unwounded root material. The coding 

sequences of all five genes have been integrated into the open reading frame (ORF) of the pET28a 

vector (Supplemental figure 10). The vector is optimized for protein expression and harbors an 

N-terminal HisTag for affinity chromatography purification.  

To express the five UGTs in E. coli with high efficiency as soluble proteins, different 

optimizations have been done to the expression system. Best results were obtained for expressing 

the proteins with the pET28a vector in BL21 Star (DE3) cells in the auto-induction medium ZYP-

5052 (Table 3-8) (Studier, 2005).  

After protein expression, the heterologously expressed proteins can be visualized by SDS-PAGE 

in lysates of whole bacteria cells (Figure 4-4). There, signals of the expressed UGTs (~51 kDa) 

can be seen, which are absent in the empty vector control. However, UGT74F1 is the only 

expressed protein, which illustrates strong signals at the predicted size of the UGT protein. 

UGT76E1, UGT76E2, UGT76E11, and UGT76E12 display faint signals at the assumed 
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molecular weight of the expressed proteins. To detect the expressed proteins specifically in the 

whole cell lysates, the heterologous proteins were detected by immuno-blotting of their HisTags. 

The western blot shows a prominent signal for UGT76E2 and UGT74F1 at 51 kDa. In addition, 

a faint signal is visible for UGT76E11. No staining is visible for UGT76E1 and UGT76E12 

(Figure 4-4B), however signals of the SDS-PAGE suggest for protein expression of UGT76E1 

and UGT76E12.  

 

 

Figure 4-4: UGT76E1, UGT76E2, UGT76E11, UGT7 E12, and UGT74F1 were expressed in E. coli 

Indicated UGTs were fused to an N-terminal His-tags of pET28a vectors and heterologously expressed in 

E. coli BL21 Star (DE3) cells in auto-induction medium for 3 d at 16 °C. The heterologous protein 

expression was recorded in 100 mL E. coli cultures: A) Sodium dodecyl sulfate (SDS)-polyacrylamide 

gel electrophoresis (PAGE) of cultures expressing UGT76E1, UGT76E2, UGT76E11, UGT76E12, 

UGT74F1, and the empty vector control (EVC). After protein expression, 5 µL of the samples were 

loaded onto a 10 % SDS-PAGE for separation. The proteins were stained with 0.01 % Coomassie 

Brilliant Blue. The arrows indicate the size of UGT proteins at appr. 50 kDa. The expressions and the 

SDS-PAGE are representative for at least five independent expressions for every enzyme. B) Western 

blot of the UGTs. The his-tagged UGTs were specifically detected via primary and secondary antibody 

and an activity staining by phosphatase. The arrows indicate the size of UGT proteins of about 51 kDa. 

The blot was performed like this once. 

 

4.3.2. UGT76E1, UGT76E2, UGT76E11, UGT76E12, AND UGT74F1 WERE 

PURIFIED TO HOMOGENEITY 

The biochemical investigation of so far not characterized enzymes requires homogeneous 

proteins. Therefore, a two-step protein purification was set up to yield homogeneous UGT76E1, 

UGT76E2, UGT76E11, UGT76E12 and UGT74F1. Using different separation properties, two 

purification steps ensure that co-purifications of unspecific proteins are diminished. First, His-

tagged proteins are captured from the bacterial lysate by IMAC. Second, the UGTs are further 

purified by SEC.  
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Briefly, the cleared lysate was loaded onto the IMAC-column to retard His-tagged proteins from 

other bacterial proteins. Since those unspecific proteins were not (or rarely) bound to the bivalent 

cations of the column material, they could be washed away by loading buffer His A. The 

remaining captured proteins were eluted by imidazole. 

Even though UGT76E1, UGT76E2, UGT76E11 and UGT76E12 show very high amino acid 

sequence homologies (seen Table 4-3), it was not possible to use one common scheme for 

efficient and reliable purification of all UGTs up to homogeneity. The protein purification of the 

UGT enzymes required several optimizations for each enzyme. 

In this regard, the purification of UGT76E1 was most challenging and different parameters have 

been improved to produce a sufficient yield of active protein. Firstly, the cell pellet of 0.5 L was 

resolved in 20 mM Tris/HCl pH 7.5, 50 mM NaCl. Protein elution from the IMAC-material with 

150 mM imidazole resulted in a small UGT76E1 protein fraction (Figure 4-5A). However, the 

enriched UGT76E1 protein precipitated immediately and did not show any glycosyltransferase 

activity (data not shown). To improve the IMAC-purification step, the culture volume was 

enlarged stepwise to 2 L and the bivalent cation was exchanged from nickel to cobalt. Cobalt as 

chelating metal cation forms less strong chelate complexes with the His-tagged proteins and, thus, 

releases the proteins at lower imidazole concentrations. The reduction to 40 mM imidazole 

increased the protein stability. Additionally, the concentration of the Tris-buffer, its pH-value and 

the salt content were optimized to 50 mM Tris/HCl pH 9.0, and 100 mM NaCl. In addition, 0.1 % 

Tween 20 was added to improve solubility of UGT76E1. Finally, these changes of the IMAC-

purification resulted in a sufficient yield of active and stable UGT76E1 (Figure 4-5B-D).  

Similar optimizations have been done for UGT76E2, UGT76E11, UGT76E12, and the control 

protein UGT74F1. The cell pellet of 2 L culture (1 L for UGT74F1) was used for optimized 

settings. Improving purification procedures resulted in specific buffer requirements for each 

enzyme (Table 3-16 - Table 3-20) with varying concentrations of Tris/HCl-buffer (20 – 50 mM), 

NaCl (50 – 100 mM), different pH values (7.5 – 9.0), and in part requirements for 0.1 % Tween 

20 or 10 % glycerol. To increase the power of the IMAC purification and to remove impurities, a 

special wash buffer (50 mM Tris/HCl pH 7.5, 100 mM NaCl, 2 mM DTT, 5 mM ATP, 5 mM 

MgCl2, 20 mM imidazole, Table 3-21) was developed for purification of UGT76E2, UGT76E11, 

and UGT74F1. Here, ATP provides molecular energy to remove chaperons from the column-

resin or the proteins of interest. Following, the retained proteins were eluted from the column 

material by specific imidazole concentrations (appr. 150 mM for nickel- and appr. 40 mM for 

cobalt-affinity column resin). As second purification step, SEC was used.  

After optimization, the IMAC protein purifications of five UGTs show similar behaviors. After 

cell lysis, the majority of UGT76E1, UGT76E2, and UGT76E11 was soluble in the lysate fraction  
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Figure 4-5: Optimization of the protein purification of UGT76E1 by affinity chromatography 

UGT76E1 was fused to an N-terminal HisTag, heterologously expressed in E. coli BL21 Star (DE3) cells 

and purified by immobilized metal affinity chromatography (IMAC). The chromatograms illustrate the 

absorption at 280 nm (milli absorption units (mAU)) and the concentration of elution buffer (%) over the 

elution volume. Elution of active UGT76E1 is depicted in red area. IMAC for UGT76E1 was optimized 

in the following way: A) 0.5 L E. coli lysate with nickel affinity, 20 mM Tris/HCl pH 7.5, 50 mM NaCl. 

B) 1 L E. coli lysate with nickel affinity, 50 mM Tris/HCl pH 7.5, 100 mM NaCl. C) 1 L E. coli lysate, 

cobalt instead of nickel as binding metal for IMAC, 50 mM Tris/HCl pH 7.5, 100 mM NaCl, 0.1 % 

Tween 20. D) 2 L E. coli lysate with cobalt affinity, 50 mM Tris/HCl pH 9.0, 100 mM NaCl, 0.1 % 

Tween 20. Each profile is representative for at least three independent purifications. 

 

whereas large amounts of UGT76E12 and UGT74F1 remained in the pellet fraction. Following 

necessary (mainly for UGT76E2, UGT76E11, and UGT74F1) the special wash buffer improved 

this purification step. As shown in Figure 4-6, all chromatograms display specific protein elution 

at the applied imidazole concentrations. The fractions show enriched UGTs with some remaining 

impurities (SDS-PAGE, Figure 4-6). Only, UGT76E2 shows several additional protein signals. 

The UGT-enriched fractions of the IMAC were introduced to SEC. As shown in Figure 4-6 the 

chromatograms generally illustrate two protein peaks. For UGT76E1, both fractions were tested 

for activity (60 µg protein, 20 µM ω-OH-16:0, 5 mM UDP-Glc, 16 °C, 2 h, LC-MS analysis). 

The protein, which elutes in the first peak at 48 ml did not show activity and represents hetero-

oligomeric UGT76E1 whereas second peak at 63 mL showed UGT-activity and corresponds to 

the MW of monomeric UGT76E1 (data not shown, cf. Figure 4-7). Hence, the UGT-proteins,  

which elute later (second peak) were collected and used as purified UGTs for further analysis. 

The respective samples illustrate homogenous protein signals at the MWs of the five UGTs with 

some smaller proteins signals at lower MWs. Most likely, those indicate degradation because the 

signals increase over time (Figure 4-6).  
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Figure 4-6: Protein purification for UGT76E1, UGT76E2, UGT7E11, UGT76E12, and UGT74F1 

UGTs fused to an N-terminal His-tag and heterologously expressed in E. coli BL21 Star (DE3) were 

purified by a two-step protein purification strategy of immobilized metal affinity chromatography 

(IMAC) with nickel as bivalent cation and size exclusion chromatography (SEC). Shown are the 

purification chromatograms and a sodium dodecyl sulfate (SDS)-polyacrylamide gel electrophoresis 

(PAGE) with samples of pellet, lysate, IMAC eluate, and SEC eluate. Arrows indicate the size of the 

respective purified protein. Chromatograms illustrate the absorption at 280 nm (milli absorption units 

(mAU)) during elution. For IMAC, the second y-axis shows the concentration of elution buffer (%). For 

SEC, the second y-axis shows the conductivity (mS/cm). The volume that contained the protein of interest 

is marked in red. Purifications of A) UGT76E1 B) UGT76E2 C) UGT76E11 D) UGT76E12 E) 

UGT74F1. The depicted purifications are representative for at least four independent purifications for 

each UGT. 
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Taken together, the two-step purification strategy resulted in mainly homogeneous proteins of 

UGT76E1, UGT76E2, UGT76E11, UGT76E12, and UGT74F1. Lowest protein yields were 

obtained for UGT76E1 (appr. 0.5 mg/L culture) and highest yields were achieved for UGT76E2 

(5.0 mg/L culture). In the end, the proteins were concentrated as stocks (> 1 mg/mL) and stored 

at -80 °C.  

4.3.3. UGT76E1, UGT76E2, UGT76E11, UGT76E12, AND UGT74F1 SHOW 

ACTIVITY TOWARDS ω-OH-HEXADECANOIC ACID AND SOME TOWARDS 

12-OH-JA 

After heterologous expression and purification of the five UGTs, the uncharacterized UGTs were 

tested for their catalytic activity. Therefore, two tentative substrates were used: 12-OH-JA and ω-

OH-16:0. 12-OH-JA is the expected substrate for the four selected UGTs. The hydroxy-fatty acid 

ω-OH-16:0 should be used as alternative substrate, which is commercially available in contrast 

to 12-OH-JA. As mentioned above, P450 enzymes (CYP94B1, CYP94B3, and CYP94C1), which 

catalyze the oxidation of JA-Ile (see 1.1.3) also tolerate fatty acids for catalysis (Benveniste et al., 

2006). Moreover, some UGTs are capable to glycosylate hydroxy-fatty acids (Huang et al., 2015). 

Hence, UGT76E1, UGT76E2, UGT76E11, and UGT76E12 putatively active on 12-OH-JA might 

also tolerate FA-derivatives for their catalysis.  

In the assay, 10 µg homogeneous UGT76E1, UGT76E2, UGT76E21, UGT76E12, UGT74F1, 

and a heat-inactivated control (aliquots of all enzymes) were incubated with 0.1 mM ω-OH-16:0 

or 12-OH-JA, respectively, and the reaction products were analyzed by LC-MS. Here, LC-MS 

analyses provide high sensitivity to detect even small amounts of enzymatic products at a specific 

retention time (RT). The exact m/z of the expected products was used to extract the specific mass 

signal. The extracted ion chromatograms (EICs) for ω-glucosyl-O-hexadecanoic acid (ω-O-Glc-

16:0, [M-H]- 433.281) and 12-O-Glc-JA ([M-H]- 387.116) are shown in Figure 4-7. 

All tested enzymes used ω-OH-16:0 as substrate, at least to a limited extent. The product ω-O-

Glc-16:0 elutes at 5.8 min. It is formed in different amounts by UGT76E12 (100 %), UGT76E2 

(70 %), UGT74F1 (15 %), UGT76E1 (10 %), and only trace amounts by UGT76E11 (Figure 

4-7A). Next, the UGTs were tested towards 12-OH-JA. The product 12-O-Glc-JA elutes at 

3.3 min. Here, the highest activity is depicted by UGT76E2 (100 %), UGT76E1 and UGT76E12 

shows 65 %, and UGT76E11 illustrates trace amounts of product. UGT74F1 shows no product 

signal (Figure 4-7B).  

In summary, the activity assay uncovers enzymatic activity of all five UGTs towards the substrate 

ω-OH-16:0 (for UGT76E11, at least to a minor extent). The reaction serves as positive control 

for enzymatic activity in the following. 12-OH-JA was used as substrate by UGT76E2, 
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UGT76E1, and UGT76E12. These enzymes form 12-O-Glc-JA in vitro and, likewise, can be 

classified as 12-OH-JA UDP-glycosyltransferases. 

 

 

Figure 4-7: LC-MS based activity assays of UGT76E1, UGT76E2, UGT7E11, UGT76E12, and 

UGT74F1with ω-OH-hexadecanoic acid and 12-hydroxy-JA as substrates 

Activity tests of homogeneous UGT76E1, UGT76E2, UGT76E21, UGT76E12, UGT74F1, and 

inactivated UGTs as negative control were performed with 0.1 mM ω-hydroxy-hexadecanoic acid or 12-

hydroxy-JA and 0.5 mM UDP-Glc for 1 h at 25 °C. The reactions were stopped by adding 25 µL 

acetonitrile and analyzed by LC-MS. Extracted ion chromatograms (EICs) are shown for the products A) 

ω-glucosyl-O-hexadecanoic acid (ω-O-Glc-16:0, [M-H]- 433.281) and B) 12-O-glucosyl-JA (12-O-Glc-

JA, [M-H]- 387.116). Y-Axes are scaled to the highest product signal (100 %). Data represent a single 

experiment. Measurements were performed by Dr. Kirstin Feussner (University of Goettingen, Germany).  

 

To obtain information about the side of glycosylation (at the hydroxyl or the carboxy group of 

12-OH-JA), the product of the UGT76E2-reaction with 12-OH-JA (see above) was analyzed and 

compared to an authentic standard of 12-O-Glc-JA (kindly provided by Dr. Otto Miersch, 

University of Halle/Wittenberg, Germany) by MS/MS analyses. The LC-MS analysis of the 

enzymatic product shows two signals in the total ion chromatogram (TIC). The second signal 

could be assigned to the substrate 12-OH-JA. The first signal at 3 min shows the same RT as the 
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standard (Figure 4-8A, C). Both signals share the m/z of [M-H]- 387.116 and are identical in 

respect to their fragmentation patterns. All major fragments could be assigned to 12-O-Glc-JA 

including the analytical fragment of m/z 207.101, which derives from the neutral loss of the Glc-

moiety and m/z 59.013, which is specific for the α-carboxy group of jasmonates (Figure 4-8B, D, 

E). Therefore, 12-O-Glc-JA could be unequivocally confirmed as the product of the UGT76E2, 

UGT76E1 and UGT76E12 catalyzed reaction with 12-OH-JA. 

 

 
Figure 4-8: Structure confirmation of 12-O-glucosyl-JA 

An authentic chemical standard of 12-O-glucosyl-JA was compared to the reaction product of UGT76E2 

with 12-hydroxy-JA (12-OH-JA) by liquid chromatography coupled to tandem mass spectrometry (LC-

MS/MS). Shown are total ion chromatograms (TICs) and the MS/MS spectra in the negative ionization 

mode with collision energies of 20 eV. A) The TIC of 12-O-Glc-JA standard (a) and B) the corresponding 

MS/MS spectrum. C) TIC of the in vitro reaction of UGT76E2 with 0.1 mM 12-OH-JA and 0.5 mM UDP-

Glc (in 50 mM Tris/HCl pH 8.0, 100 mM NaCl, 1 h at 25 °C). The chromatogram shows the signals for the 

product 12-O-Glc-JA (a) and the substrate 12-OH-JA (b). D) MS/MS spectrum of the respective 12-O-Glc-

JA of the enzymatic reaction. E) Assignment of the MS/MS-fragments to the structure of 12-O-Glc-JA. LC-

MS/MS analysis was performed by Dr. Kirstin Feussner. 
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4.3.4. THE UGT ENZYMES PREFER MILD ALKALINE PH 

With a common substrate in hands, UGT76E1, UGT76E2, UGT76E11, and UGT76E12 can be 

compared with respect to their optimal parameters. Since, UGTs are generally similar and tend to 

have rather broad specificities, it is important to characterize them in detail to determine their 

preferences. The optimal pH and temperature were determined for UGT76E1, UGT76E2, 

UGT76E11, and UGT76E12 with ω-OH-16:0 as substrate. The formation of ω-O-Glc-16:0 was 

detected by LC-MS as before. The product intensities were evaluated as relative signal intensities 

of the signal areas and the highest value was set to 100 %. 

The optimal pH values were analyzed in the range of pH 3 to pH 11 in BRB (Britton & Robinson, 

1931). UGT76E1 shows two maxima at pH 7 and pH 9 (Figure 4-9A). UGT76E2 displays one 

optimum at pH 7.5 (Figure 4-9B). UGT76E11 and UGT76E12 show their optimum at pH 8. 

(Figure 4-9C, D). The pH optima of all four UGTs are rather similar with mild alkaline values of 

pH 7.0 – 8.0. 

 

 
Figure 4-9: Optimum pH of UGT7E1, UGT76E2, UGT76E11, and UGT7E12 

pH optima for the indicated UGTs were determined in the range of pH 3 to pH 11 in the Britton-Robinson 

buffer system. 0.1 mM ω-hydroxy-hexadecanoic acid and 0.5 mM UDP-Glc were incubated with enzyme 

at 25 °C for 1 h. The product formation was detected by LC-MS and shown as relative signal intensities 

(%). A) UGT76E1. B) UGT76E2. C) UGT76E11. D) UGT76E12. Data represents one experiment for 

UGT76E1. All other measurements are means with ±SD of at least three independent experiments. 
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The optimal temperatures of the UGTs were determined from 4 °C to 50 °C. UGT76E1 shows 

enzymatic activity (> 20 %) between 4 – 35 °C with an optimum at 20 °C. UGT76E2 shows 

activity between 15 – 42 °C and an optimum at 30 °C. UGT76E11 and UGT76E12 show 

enzymatic activity between 10 – 42 °C but with different optima – UGT76E11 at 25 °C and 

UGT76E12 at 30 °C (Supplemental figure 11).  

4.3.5. UGT76E1 AND UGT76E2 SHOW SUBSTRATE PREFERENCE FOR 12-OH-JA 

UGT enzymes tend to have rather broad substrate specificities (Bowles et al., 2006). Hence, it is 

necessary to test the specificities of the four UGTs with different substrates and compare their 

reaction performance. Therefore, a radioactive approach was established using 14C-labeled co-

substrate. The radioactive carbons are incorporated into the Glc moiety of the UDP-Glc. The 

UGTs transfer the 14C(U)-Glc moiety of the UDP-Glc onto the substrate. Like this, every reaction 

turnover produces the same signal intensity independently of the used substrate and the signal 

intensities of generated products can be compared to each other. 

The substrate specificities of the UGT76E1, UGT76E2, UGT76E11, UGT76E12, and UGT74F1 

were analyzed towards a set of different tentative substrates with different functional groups. 

Some of which harbored a carboxy group, some a hydroxy group, and other both. Hereby, the 

specificity of the UGTs towards forming GE- or Glc-products can be investigated. One sub-set 

included fatty acid derived compounds with a chain length of 16 carbons and without or with a 

hydroxy group at different positions, like hexadecanoic acid (16:0), ω-OH-16:0, 2-hydroxy-16:0 

(2-OH-16:0), 3-hydroxy-16:0 (3-OH-16:0). Additionally, a fatty alcohol with a chain length of 

16 carbons was used (hexadecanol (OH-C16)). This first set has developed from the activity 

towards ω-OH-16:0 and evaluates if the carboxy, the hydroxy group, both, or the position of the 

hydroxy group are essential for catalysis. A second group contained plant hormones and signal 

compounds as SA, pipecolic acid (Pip), ICA, ABA, zeatin, and GA. In addition, BA was included 

to discriminate against the hydroxy group of SA. This second set arose from the different activities 

of characterized UGTs towards small aromatic molecules (Lim et al., 2002) and will question a 

physiological specificity of the UGTs towards some phytohormones. However, the focus was 

given to a third set of JA-precursors and jasmonates including 12-OPDA, JA, 12-OH-JA, 11-

hydroxy-JA (11-OH-JA), 12-hydroxy-JA-methyl ester (12-OH-JA-ME). Here again, structural 

elements like a free or shielded carboxy group, the presence and position of a hydroxy group and 

the length of the C-terminus were investigated. Lastly, a fourth set of flavonoids contained 

quercetin, dihydro-myricetin (dh-myricetin), and dihydro-kaempferol (dh-kaempferol). These 

substrates can be glycosylated at different positions and have been used for broad activity tests 

before (Lim et al., 2004). A control was performed with heat-inactivated enzyme. For analysis, 

the reaction products were extracted with n-butanol (cf. Huang et al., 2015; Suzuki et al., 2007) 

and separated by TLC (cf. Augustin et al., 2012). Here, all samples of one UGT were run together 
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and treated equally. Hence, all product signals of one enzyme towards all substrates can be 

compared to each other qualitatively. 

Noticeable, this assay pointed out side activities of UGT76E12 towards the alcohol-solvent 

ethanol (Supplemental figure 12). Thus, all substrates were dissolved in ACN. Finally, 20 

aglycones with different structural properties were tested with the UGTs (Supplemental table 2). 

UGT76E1 illustrates low signal intensities but a clear preference for 12-OH-JA (100 %). Minor 

activities were detected towards ω-OH-16:0 (38 %), and zeatin (23 %). All three substrates share 

aliphatic chains with terminal hydroxy groups. In addition, 12-OH-JA and ω-OH-16:0 contain a 

carboxy group whereas zeatin includes a purine (see Supplemental table 2). UGT76E2 shows 

similar preferences with higher intensities. The highest product signal is seen for 12-OH-JA 

(100 %). This enzyme also tolerated 11-OH-JA and 12-OH-JA-ME (both 13 %) as well as ω-OH-

16:0, 3-OH-16:0, and zeatin (all appr. 7 %). Here, the exact ω-terminal position of the hydroxy 

group seems to be less important and UGT76E2 tolerates the methylated carboxyl group of 12-

OH-JA-ME as well (see Supplemental table 2). In the case of UGT76E11, the signal intensities 

are too low to judge them as enzymatic activities. On top of this, no clear specificity or preference 

can be derived from those signals. For UGT76E12, the highest activities are displayed for ω-OH-

16:0 (100 %), dh-kaempferol (63 %), 12-OH-JA (38 %), and quercetin (25 %). Here, UGT76E12 

showed dual specificity for the terminal hydroxy group of ω-OH-16:0 and 12-OH-JA as well as 

for polyphenolic compounds like dh-kaempferol and quercetin (see Supplemental table 2). The 

control, UGT74F1, shows high product formation with its native substrate SA (100 %). 

Additional products were formed with BA, ω-OH-16:0, ICA, 12-OPDA, 12-OH-JA, and 11-OH-

JA (all 6 %, Figure 4-10). Interestingly, UGT7674F1 displays side-activity towards substrates 

featuring a carboxy group, but no hydroxyl group (BA, ICA, 12-OPDA, JA, see Supplemental 

table 2). 

Altogether, UGT76E1 and UGT76E2 specifically glycosylate 12-OH-JA with a high specificity 

and they do not use JA or 12-OH-JA-ME. UGT76E12 displays the highest activity towards ω-

OH-16:0 but neither the respective FA nor the fatty alcohol. All three, UGT76E1, UGT76E2 and 

UGT76E12 prefer substrates featuring both, a terminal hydroxy group and a carboxy function. 

Thereby, the hydroxy group is necessary but not sufficient for catalysis. Although this experiment 

cannot distinguish between a glycose ester and a glycoside being formed, the structure analysis 

has confirmed the glycoside of 12-O-Glc-JA (see Figure 4-8). Hence, it is likely that glyosidic 

products are also formed in this experiment and the additional carboxy group assists catalysis. 

For UGT76E11 however, the evaluation of the activity and specificity was not possible in this 

experiment. 
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Figure 4-10: Substrate specificity of UGT7E1, UGT7E2, UGT76E11, UGT76E12, and UGT74F1 

The substrate specificities of the UGTs were analyzed by an activity assay with 14C-labeled UDP-Glc 

(UDP-14C(U)-Glc) and the indicated substrates. The assay was performed in the respective gel filtration 

buffer with 0.06 mM substrate, 0.03 mM UDP-Glc, 0.02 µCi UDP-14C(U)-Glc for 1 h at 25 °C. After 

metabolite extraction and thin layer chromatography (TLC), the TLC-plates were incubated on phosphor 

screens for 3 d and the radioactive signals were detected. Given are product signals minus background 

over signal area ((Signal-Bkg)/Area). UGT76E1, UGT76E2, UGT76E11, UGT76E12, and UGT74F1 

were incubated with a set of different aglycones: hexadecanoic acid (16:0), ω-hydroxy-16:0 (ω-OH-16:0), 

2-hydroxy-16:0 (2-OH-16:0), 3-hydroxy-16:0 (3-OH-16:0), hexadecanol (OH-C16), benzoic acid (BA), 

salicylic acid (SA), pipecolic acid (Pip), indole-3-caboxylic acid (ICA), abscisic acid (ABA), zeatin, 

gibberellic acid (GA), 12- 12-oxo-phytodienoic acid (12-OPDA), JA, 12-hydroxy-JA (12-OH-JA), 11-

hydroxy-JA (11-OH-JA), 12-hydroxy-JA-methyl ester (12-OH-JA-ME), quercetin, dihydro-myricetin 

(dh-myricetin), dihydro-kaempferol (dh-kaempferol), and a control with inactivated enzyme (control). 

The data shows means of 3 independent experiments + SE for every UGT. 
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4.3.6. HOMOGENOUS ENZYMES CAN BE BROUGHT BACK TO THEIR NATIVE 

SUBSTRATES 

Besides single reactions (see 4.3.5), it is important to bring the UGTs in contact with a mixture 

of different substrates that may be available – like in a living cell. A new approach, which analyzes 

the enzymes in their native substrate environment, was adapted to the requirements of the four 

UGTs. To achieve this, enzyme biochemistry was combined with metabolomics; homogenous 

proteins were incubated with a metabolite rich extract from A. thaliana and measured with the 

non-targeted metabolite fingerprinting platform (Kaever, 2014). Differential analyses of 

metabolite rich extracts with and without enzyme can hereby identify specific reaction partners 

from a natural substrate mixture. 

12-OH-JA-Ile may a putative jasmonate substrate of the UGTs since Kitaoka and co-workers, 

2014, have found 12-O-Glc-JA-Ile in wounded A. thaliana (Kitaoka et al., 2014). So far, 12-OH-

JA-Ile could not be investigated by the former in vitro activity assays (see Figure 4-10) because 

the compound was not available. At the same time, it is well known that 12-OH-JA-Ile 

accumulates in response to wounding in vivo (Figure 4-18E) (Bruckhoff et al., 2016). Therefore, 

the biological material of a wounding experiment (see Figure 4-18) was used to provide substrates 

like 12-OH-JA and 12-OH-JA-Ile and mimic the native environment (see 4.1.3). Due to 

comprehensibility, attention was given to 2 hpw. At this time point, the substrate availability was 

best for UGT-activity towards jasmonates: 12-OH-JA and 12-OH-JA-Ile have accumulated and 

internal abundance of 12-O-Glc-JA is still low (Supplemental figure 14, see Figure 4-18). 

Nevertheless, the ex vivo fingerprinting approach entails several variables due to the complexity 

of the system. For this reason, different controls were taken to distinguish between enzymatic 

activities and internal plant metabolites. On the one hand, a negative control (heat-inactivated 

enzyme) was used to determine substrates and internal features. On the other hand, a positive 

control was performed to inspect product formation by spiking known substrates into the reaction 

solutions. Both controls together were thought to provide strong substrate/product patterns to 

prove the activity of the UGTs and to confirm the existence of the respective substrates. 

Altogether, the experiment used metabolite rich plant extracts after wounding (2 hpw) including 

potential jasmonates substrates (12-OH-JA and 12-OH-JA-Ile) that were dissolved in protein 

buffer (50 mM Tris/HCl, pH 8, 100 mM NaCl). The extracts were incubated (1 h, 25 °C) with 

100 µg homogenous UGTs or inactive enzymes (negative control) and 0.1 mM UDP-Glc as 

general co-substrate. A second set of reaction was performed as positive control with additional 

substrates spikes into the reactions. Afterwards, both sets were measured with the non-targeted 

LC-MS analysis and data were processed with the MarVis-tool (Kaever, 2014). This tool filters 

features from all reactions by their statistical distribution, clusters them by similar abundances, 

and identifies them by databank comparisons. The graphical output represents mean intensities of 
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the features (heat-map representation), which were clustered as one-dimensional self-organizing 

map (1D-SOMs). 

The data of the ex vivo metabolite fingerprinting approach for UGT76E1, UGT76E2, UGT76E11, 

UGT76E12 and UGT74F1 and the controls are given as 1D-SOM with vertical clusters 

illustrating feature-intensities for every enzyme and the neg. control (horizontal). Globally, both 

reaction sets of the internal reactions and the positive controls with additional substrates show 

similar accumulations. The Clusters 1 – 5 are dominated by patterns specific for UGT76E1. 

Meaning, features in these clusters are accumulating in samples incubated with UGT76E1. 

Clusters 6 – 10 show specific patterns for different enzymes: cluster 6 sums up features, which 

could represent products of UGT76E11, cluster 7 summarizes a pattern of tentative UGT76E1-

product, cluster 9 is connected to tentative products of UGT76E12, and cluster 10 represents 

UGT74F1-related features. The majority of features in clusters 11 – 18 seems neither to be related 

to tentative products nor substrates of the five UGTs. Clusters 19 and 20 show features specific 

for the additional substrates of the positive controls (Figure 4-11).  

 

 
Figure 4-11: Search for native substrates of UGT76E1, UGT7E2, UGT76E11, UGT76E12, UGT74F1 

by non-targeted ex vivo analysis 

For the enzymatic assay with the indicated UGTs total metabolite extracts of wounded A. thaliana plants 

were used. Therefore, plants were grown for six weeks at 22 °C under short day conditions (8 h light/16 h 

dark). Leaves were wounded three times across the mid vein by squeezing with forceps. Damaged rosette 

leaves were harvested at 2 hours post wounding (pool of 10 plants per sample), extracted by two-phase-

extraction, and used as substrate mix for the ex vivo activity assay. The extracts were resolved in 50 mM 

Tris pH 8, 100 mM NaCl buffer and incubated with 0.1 mM UDP-Glc and 100 µg of the indicated active 

UGT-enzyme or inactive enzymes (neg. control). As positive control (highlighted in grey), 0.01 mM 

salicylic acid, ω-hydroxy-hexadecanoic acid, and 12-hydroxy-JA were added to the mixtures. Reactions 

were incubated at 25 °C for 1 h, stopped by adding acetonitrile and analyzed by LC-MS-based metabolite 

fingerprinting. 1996 metabolite features (pVal < 10-6) were selected and their intensity profiles were 

clustered by means of one-dimensional self-organizing maps (1D-SOMs). Shown is the heat map 

representation of the clustering process by using 20 clusters. The number of features per cluster is 

proportional to the cluster-width. The data represents three measurements of one experiment that are 

representative for two independent experiments. Samples were measured by Dr. Kirstin Feussner 

(University of Goettingen, Germany). Experiment was designed and performed together with Dr. Kirstin 

Feussner. Data were analyzed with the MarVis tool (Kaever, 2014). 
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To streamline the extraction of tentative substrates and products out of the 1996 features of the ex 

vivo data set three criteria for data analysis were established. Tentative pairs of product and 

substrate are characterized by: (i) an exact mass difference of a Glc moiety (162.016 Da), (ii) a 

RT-shift of the more hydrophilic product in comparison to the substrate and (iii) inverse intensity 

pattern to each other. 

4.3.7. UGT76E1, UGT76E2, UGT76E12, AND UGT74F1 SHOW ACTIVITY 

TOWARDS THEIR KNOWN SUBSTRATES 

The patterns of the positive controls were used to evaluate the activities of the UGTs and support 

former findings in a concurrence situation. The substrates ω-OH-16:0, 12-OH-JA and SA were 

spiked with 10 µM each into every reaction of the positive controls. Features of both, the spiked 

substrates and the respective products, were identified in accordance to the three criteria defined 

above (Figure 4-12). First, SA could be detected in all samples besides those incubated with 

UGT74F1; UGT74F1 used up SA completely. The levels of the corresponding product, 2-O-Glc-

SA, are increased 2-fold in UGT76F1-treated samples exclusively. All other samples show 2-O-

Glc-SA levels, which are similar to the negative control and seem to be natural amounts of 2-O-

Glc-SA in the A. thaliana extracts 2 hpw. The substrate ω-OH-16:0 was used as a control reaction 

for all UGTs. The amounts of ω-OH-16:0 are reduced in UGTE76E1-, UGT76E11-, UGT76E12-

, and UGT74F1-treated samples compared to the negative control. On the product level, 

UGT76E12-treated samples shows the highest intensity of ω-O-Glc-16:0. UGT76E1, UGT76E2, 

and UGT74F1 illustrate similar product intensities about half of that of UGT76E12. The lowest 

activity is given by UGT76E11 with 1/5 of the maximal value. For 12-OH-JA, UGTE76E1- and 

UGT76E2-treated samples show reduced amounts of the substrate with stronger reduction in the 

UGT76E2-samples. In accordance to that, UGT76E2-treated samples show the highest amount 

of the product 12-O-Glc-JA, followed by UGT76E1-treated samples and, to a much lower extent, 

UGT76E12-treated samples (Figure 4-12). 

The positive controls of the ex vivo experiment confirm the specific activities of the UGTs in a 

concurrence situation and reflect the activity levels of previous experiments. Moreover, the three 

criteria for identifying activities for the indicated enzymes could be evaluated with specific 

substrate and product couples. 
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Figure 4-12: Activity of UGT76E1, UGT7E2, UGT76E11, UGT76E12, and UGT74F1 for 12-hydroxy-

JA, salicylic acid, and ω-hydroxy-hexadecanoic acid in total metabolite extracts  

For the enzymatic assays, total metabolite extracts of wounded A. thaliana plants were used. The 

indicated compounds were added as substrates and used as positive control for the ex vivo approach. 

Plants were grown for six weeks at 22 °C under short day conditions (8 h light/16 h dark). Leaves were 

wounded three times across the mid vein by squeezing with forceps. Damaged rosette leaves were 

harvested at 2 hours post wounding (pool of 10 plants per sample), extracted, and used as substrate mix 

for the ex vivo activity assay. The extracts were resolved in 50 mM Tris pH 8, 100 mM NaCl buffer and 

the assay was performed with 0.1 mM UDP-Glc, 0.01 mM salicylic acid, 0.01 mM ω-hydroxy-

hexadecanoic acid, and 0.01 mM 12-hydroxy-JA, 100 µg of the indicated active UGT-enzyme or inactive 

enzyme (neg. control) for 1 hour at 25 °C. The reactions were stopped by adding acetonitrile and analyzed 

by LC-MS with a method, which was developed for non-targeted fingerprinting. Out of 1996 metabolite 

features with a pVal < 10-6 the particular features for A) salicylic acid (SA) and 2-O-glycosyl-SA (2-O-

Glc-SA), B) ω-hydroxy-hexadecanoic acid (ω-OH-16:0) and ω-O-glucosyl-16:0 (ω-O-Glc-16:0), and C) 

12-hydroxy-JA (12-OH-JA) and 12-O-glucosyl-JA (12-O-Glc-JA) are shown as Box-Whisker-plots with 

intensities given as counts per second (cps). The data represents three technical replicates of one 

experiment. Samples were measured by Dr. Kirstin Feussner (University of Goettingen, Germany). 

Experiment was designed and performed together with Dr. Kirstin Feussner. Data were analyzed with the 

MarVis tool (Kaever, 2014). 
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4.3.8. UGT76E1, UGT76E2, UGT76E11, UGT76E12, AND UGT74F1 SHOW 

ACTIVITY TOWARDS NATIVE SUBSTRATES 

The non-targeted ex vivo metabolite fingerprinting approach was initiated to bring back purified 

enzymes to their native substrate environment aiming to identify new substrates.  

Two oxylipins were identified as new substrates of the four UGTs. The reaction pair of 13-HOT 

(276.210 Da, 6.59 min) and 13-glucosyl-O-octadecatrienoic acid (13-O-Glc-HOT, 465.274 Da, 

5.65 min, Supplemental table 3) is shown in Figure 4-13A. There, UGT76E11 and UGT76E12 

used up the substrate from the extracts and depict the highest product levels. UGT76E1 and 

UGT76E2-treated samples display half substrate levels and corresponding appr. 50 % of the 

highest product intensity. UGT74F1-treated samples shows negative control patterns with highest 

substrate intensities and no product intensities (Figure 4-13A). Furthermore, the glycosylation of 

(7Z9E,13Z)-11-hydroxy-7,9,13-hexadecatrienoic acid (11-HHT, 266.186 Da, 6.08 min) to 11-O-

glycosyl-hexadecatrienoic acid (11-O-Glc-HHT, 428.240 Da, 5.25 min, Supplemental table 3) 

was identified. Here, UGT76E2, UGT76E11, and UGT76E12 form the high product levels. 

UGT76E1-treated samples showed about half of that activity and UGT74F1 did not tolerate this 

substrate with control-like intensities (Figure 4-13B). Both glycosylated oxylipins are not 

abundant in the extracts as indicated by the negative controls (see Figure 4-13A, B). 

Next, the reaction pair of 12-OH-JA to 12-O-Glc-JA was also identified as native reaction with 

substrate from the extracts. Here, UGT76E11, UGT76E12, and UGT74F1-treated samples show 

highest substrate levels corresponding to the accumulation of 12-OH-JA 2 hpw. UGT76E1-

treated samples illustrate slightly reduced amounts whereas UGT76E2 used up completely 12-

OH-JA from the extracts. 12-O-Glc-JA illustrates a complementary pattern: UGT76E11, 

UGT74F1, and the negative control display low intensities of the glycoside as present without 

enzymatic activity. UGT76E12 shows 3-fold, UGT76E1 6-fold, and UGT76E2 12-fold higher 

product levels (Figure 4-13C). 

In addition, an unknown reaction pair for UGT76E11 was identified. The substrate shows no 

wound-related accumulation in the leaf extracts; it is detectable at 0, 2, and 5 hpw (data not 

shown). The substrate feature has an exact mass of 198.126 Da, a RT of 5.47 min and a deduced 

sum formula of C11H18O3. UGT76E11 used up the substrate exclusively forming high amounts 

of the corresponding product (Glc-C11H18O3, 360.179 Da, RT 4.65 min). Glc-C11H18O3 

shows trace intensities in UGT76E1, UGT76E2, UGT76E12, UGT74F1-treated samples, and the 

negative control (Figure 4-13D). To obtain structural information about the compound MS/MS 

analyses were performed. The fragmentation of the UGT76E11-specific product (Glc-

C11H18O3) show a loss of a hexose moiety, which leads to the mass signal of the substrate of 

[M+H]+ 199.099 and confirms the finding of the ex vivo approach (Fig. 4-13). The MS/MS 

spectrum of the substrate (C11H18O3) shows three serial losses of water, which suggests the 
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Figure 4-13: Native substrates of UGT76E1, UGT7E2, UGT76E11, UGT76E12, UGT74F1 identified 

by a non-targeted ex vivo analysis 

For the enzymatic assays, total metabolite extracts of wounded A. thaliana plants were used. Plants were 

grown for six weeks at 22 °C under short day conditions (8 h light/16 h dark). Leaves were wounded 

three times across the mid vein by squeezing with forceps. Damaged rosette leaves were harvested at 2 

hours post wounding (pool of 10 plants per sample), extracted, and used as substrate mix for the ex vivo 

activity assay. The extracts were resolved in 50 mM Tris pH 8, 100 mM NaCl buffer and the assay was 

performed with 0.1 mM UDP-Glc and 100 µg of the indicated active UGT-enzyme or inactive enzyme 

(neg. control) for 1 hour at 25 °C. The reactions were stopped by adding acetonitrile and analyzed by LC-

MS with a method, which was developed for non-targeted fingerprinting. Out of 1996 metabolite features 
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with a pVal < 10-6 the particular features for A) 13-hydroxy-octadecatrienoic acid (13-HOT) and 13-O-

glucosyl-octadecatrienoic acid (13-O-Glc-HOT), B) 11-hydroxy-hexadecatrienoic acid (11-HHT) and 11-

O-glycosyl-octadecatrienoic acid (11-O-Glc-HHT), C) 12-hydroxy-JA (12-OH-JA) and 12-O-glucosyl-

JA (12-O-Glc-JA) and D) C11H18O3 and C11H18O3-Glc are shown as Box-Whisker-plots with 

intensities given as counts per second (cps). The data represents three technical replicates of one 

experiment. Samples were measured by Dr. Kirstin Feussner (University of Goettingen, Germany). 

Experiment was designed and performed together with Dr. Kirstin Feussner. Data was analyzed with the 

MarVis tool (Kaever, 2014). 

 

 

existence of three hydroxy groups. The main fragment of [M+H]+ 111.044 equals C6H7O2. The 

UGT76E11-specific substrate could not be elucidated in more detail. In summary, 13-HOT, 11-

HHT are new substrates for UGT76E1, UGT76E2, UGT76E11, and UGT76E12. All four 

enzymes formed the respective products. Furthermore, the high activity of UGT76E2 towards 12-

OH-JA is supported by the ex vivo approach, too. In addition, UGT76E1 and UGT76E12 again 

show activity towards 12-OH-JA. Here, a first hypothesis for a specific, but so far not structurally 

elucidated substrate for UGT76E11 was generated. 

4.3.8.1. 12-OH-JA-ILE IS NO SUBSTRATE FOR THE ANALYZED UGTS 

Since 12-OH-JA-Ile was identified in A. thaliana after wounding (Kitaoka et al., 2014), the 

potential glycosylation reaction of 12-OH-JA-Ile to 12-O-Glc-JA-Ile was of special interest in 

this study. Because 12-OH-JA-Ile was abundant in the ex vivo extracts after wounding (see 

Supplemental figure 14, cf. Figure 4-18E), it was likewise tested as potential substrate of the 

different candidate UGTs. By the criteria introduced above, a putative product was searched by 

the exact mass of 501.257 Da and an earlier RT than 4.9 min (12-OH-JA-Ile). However, a feature 

of this mass could not be identified in any of the ex vivo samples (see Supplemental figure 14). 

 
Figure 4-14: MS/MS analysis of the unknown substrate C11H18O3 

The ex vivo metabolite fingerprinting experiment identified a reaction pair for UGT76E11: C11H18O3 to 

C11H18O3-Glc. LC-MS/MS analysis were performed with collision energies of 12 eV in the positive 

ionization mode. MS/MS fragmentation of A) the substrate signal (C11H18O3, [M+H]+ 199.099, at 6.01 

min) B) the product signal (C11H18O3-Glc, [M+H]+ 378.345at 5.01 min). LC-MS/MS analysis was 

performed by Dr. Kirstin Feussner. Intensities given as counts per second (cps). 
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Meaning, neither UGT76E1, UGT76E2, UGT76E11, UGT76E12, nor UGT74F1 tolerate 12-OH-

JA-Ile for catalysis. This finding was supported by a LC-HR-MS analysis of the UGT76E2-

treated sample (2 hpw) as second layer of evidence (Supplemental figure 14). Noticeably, these 

measurements also imply that 12-O-Glc-JA-Ile is not present as internal metabolite of A. thaliana 

with or without wounding stimulus here. 

Worth mentioning, 12-COOH-JA was detected the first time in wounded leaves of A. thaliana 

here. Before, the metabolite has been described in flowers of A. thaliana exclusively (Bruckhoff 

et al., 2016). From the metabolite rich extracts of the ex vivo approach, it was possible to identify 

the compound by exact mass and RT in the positive as well in the negative ionization mode. The 

pattern of 12-COOH-JA shows late wound accumulation at 5 hpw and its identity was confirmed 

by LC-MS/MS fragmentation (Supplemental figure 13). 

4.3.9. SUBSTRATE PREFERENCES OF UGT76E1, UGT76E2, UGT76E11, 

UGT76E12, AND UGT74F1 

So far, the characterization of the enzymes UGT76E1, UGT76E2, UGT76E11, and UGT7612 has 

given clear substrate preferences but has also indicated additional (side) activities. Therefore, a 

LC-MS-based activity assay was performed to judge the performances. UGT76E1, UGT76E2, 

UGT76E11, UGT76E12, and UGT74F1 were tested with the substrates ω-OH-16:0, SA, 12-OH-

JA, 9-HOT, 13-HOT. Additionally, (10E,15Z)-9,12,13-trihydroxy-10,15-octadecadienoic acid 

(triOH-18:2) and (10E)-9,12,13-trihydroxy-10-octadecaenoic acid (triOH-18:1) were included. It 

should be tested, if the UGTs would tolerate up to three hydroxyl-groups on a fatty acid as a 

substrate and if several glycosylations could be performed with one substrate molecule.  

ω-OH-16:0 is preferably glycosylated by UGT76E12 (100 %). In comparison to that UGT76E2 

shows 36 %, UGT76E1 9 %, UGT74F1 4 %, and UGT76E11 illustrates 2 % relative conversion 

rate. Similarly, both oxylipins, 9-HOT and 13-HOT, are best substrates of UGT76E12. Anyhow, 

9-O-Glc-HOT and 13-O-Glc-HOT are also formed by UGT76E2 (22 %, 94 %) and UGT76E11 

(5 %, 98 %). UGT76E1 produces low amounts of 13-O-Glc-HOT (6 %) but no 9-O-Glc-HOT. 

SA is the native substrate of UGT74F1 and 2-O-Glc-SA is exclusively formed by this enzyme 

(100 %). 12-O-Glc-JA is formed from 12-OH-JA by UGT76E2 (100 %), UGT76E1 (29 %), and 

UGT76E12 (28 %). The tri-hydroxy fatty acids were detected in the samples but neither mono-, 

di, nor tri-glycosylated products could be identified for any of the enzymes (Table 4-4). 

Altogether, the evaluation of the substrate preferences supports the specificities and tolerances 

observed before: UGT76E2 glycosylates preferentially 12-OH-JA. In addition, it uses 13-HOT 

with a high relative conversion rate as well as ω-OH-16:0 and 9-HOT to lower extent. UGT76E1 

forms 12-O-Glc-JA very specifically, but with a lower conversion rate as UGT76E2. UGT76E12 

shows broader substrate tolerance with highest activities towards the hydroxyl fatty acids and to 
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a lower extent with 12-OH-JA. UGT76E11 depicts high relative conversion rates with 13-HOT. 

None of the candidates tolerated tri-hydroxy-oxylipins as substrates.  

 

Table 4-4: Relative substrate preference of UGT76E1, UGT76E2, UGT76E11, UGT76E12, and 

UGT74F1 

Substrates so far identified for UGT76E1, UGT76E2, UGT76E11, UGT76E12, and UGT74F1 are 

evaluated by an in vitro assay. The relative conversion rate (%) was analyzed by LC-MS: ω-hydroxy-

hexadecanoic acid (ω-OH-16:0), salicylic acid (SA), 12-hydroxy-JA (12-OH-JA), 9-hydroxy-

octadecatrienoic acid (9-HOT), 13-hydroxy-octadecatrienoic acid (13-HOT). In addition, 9,12,15-

trihydroxy-octadecadienoic acid (tri-OH-18:2) and 9,12,13-trihydroxy-octadecaenoic acid (tri-OH-18:2  

were tested as substrates. In a 100 µL reaction assay, 10 µg homogenous enzyme were incubated with 

0.05 mM substrate and 0.25 mM UDP-Glc at 25 °C for 30 min. The reactions were stopped with 100 µL 

ACN. n. d., not detected. The data are representative for one experiment. 

Substrate UGT76E1 UGT76E2 UGT76E11 UGT76E12 UGT74F1 

ω-OH-16:0 9 36 2 100 4 

SA n. d. n. d. n. d. n. d. 100 

12-OH-JA 29 100 n. d. 28 n. d. 

9-HOT n. d. 22 5 100 n. d. 

13-HOT 6 94 98 100 n. d. 

Tri-OH-18:1 n. d. n. d. n. d. n. d. n. d. 

Tri-OH-18:2 n. d. n. d. n. d. n. d. n. d. 

 

4.3.10. THE KINETIC PARAMETERS OF UGT76E1, UGT76E2, UGT76E11, AND 

UGT76E12 WERE ESTIMATED BY A COUPLED PHOTOMETRIC 

A continuous record of an enzymatic reaction allows determining the initial linear phase, a so-

called steady-state kinetic. The initial velocity of a reaction is often measured by a 

spectrophotometric assay. Since the compounds of the UGT-reaction do not change their 

photometrical properties upon catalysis, the reaction was coupled to a redox reaction, which 

includes nicotinamide adenine dinucleotide (NADH/NAD+) as reaction partner. In particular, 

UGTs release UDP as co-product, which (cf. Reaction 1) can be linked to pyruvate kinase (PK) 

and lactate dehydrogenase (LDH) to record the UGT reaction kinetics in 1 : 1 : 1 stoichiometry. 

The PK natively phosphorylates ADP to ATP by metabolizing phosphoenolpyruvate (PEP) to 

pyruvate. However, it is also capable to phosphorylate UDP to UTP. Next, LDH catalyzes the 

reduction of pyruvate to lactate by oxidizing NADH to NAD+. NADH shows an absorption 

maximum at 340 nm, which NAD+ does not. (Figure 4-15). Hence, the UGT reaction is indirectly 

monitored by the decrease of the absorption of NADH at 340 nm and the reaction velocities can 

be determined from the initial slope (Figure 4-15, Equation 5) (cf. Brown et al., 2012). Like this, 

the steady-state kinetics of UGT76E1, UGT76E2, UGT76E11, and UGT76E12 were determined 

towards 9-HOT and 13-HOT. Additionally, UGT76E1 and UGT76E2 were measured with their 

preferred substrate 12-OH-JA. Due to limitations in the availability of 12-OH-JA, the kinetic  
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Figure 4-15: Scheme of a coupled spectrophotometric assay to record reactions of uridine 

diphosphate-dependent glycosyltransferases 

Uridine diphosphate (UDP)-dependent glycosyltransferases (UGTs) transfer a glucose (Glc) moiety from 

UDP-Glc to the hydroxyl-aglycone releasing the respective glycone and UDP. The UGT-reaction has 

been coupled via the co-product UDP to the pyruvate kinase (PK) and the lactate dehydrogenase (LDH) 

to record the UGT reaction kinetics in 1 : 1 : 1 stoichiometry: The PK phosphorylates UDP to UTP while 

metabolizing phosphoenolpyruvate (PEP) to pyruvate. LDH catalyzes the reduction of pyruvate to lactate 

by oxidizing NADH to NAD+, which shows no absorption maximum at 340 nm. The assay was adapted 

from Brown et al., 2012. The spectrum was taken from 

https://en.wikipedia.org/wiki/Nicotinamide_adenine_dinucleotide. 

 

parameters of UGT76E12 against 12-OH-JA could not be obtained. In addition, the control 

enzyme UGT74F1 was measured with SA. First, it must be shown that the coupling reactions 

(PK- and LDH-reaction) are not rate limiting for determining the reaction parameters of the 

reaction of interest. Therefore, a positive control (450 µM UDP) illustrates the capacity of the 

system. Generally, all UGT-reactions started with a lack phase. Then, the linear reaction phase – 

steady-state conditions – lasted for at least 100 s (UGT76E2 with 500 µM 12-OH-JA). The setup 

recorded specific activities at different substrate concentrations. The respective values of the 

steady-state slopes were plotted as reaction rate per enzyme concentration (V/[E]) against the 

substrate concentration. 

For the kinetic analyses of UGT76E1, 10 µg of the enzyme were stabilized with BSA and 12-

OH-JA was used as substrate in a concentration range from 0 – 1 179 µM. UGT76E1 showed 

only little initial reaction velocities, even in the range of substrate saturation at > 393 µM (Δ 

0.02 AU per min). Overall, the conversion of 12-OH-JA to 12-O-Glc-JA by UGT76E1 follows 

the Michaelis-Menten model (Figure 4-16). The reaction rate, which were obtained for 262 µM 

12-OH-JA do not match well with the Michaelis-Menten fit, but the fit still shows a correlation 
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of 0.982 (Table 4-5). The calculated parameters are the Michaelis-Menten constant (KM) of 61 µM 

12-OH-JA and a turnover number (kcat) of 0.0123 s-1. Before, UGT76E1 has shown low activity 

rates, which could be resolved here: UGT76E1 shows high catalytic affinity towards the preferred 

substrate 12-OH-JA (61 µM) but it is characterized as a slow enzyme (kcat of 0.0123 s-1). Since 

the affinity of UGT76E1 to 12-OH-JA is high, it is most likely that the low turnovers of UGT76E1  

 

 
Figure 4-16: Enzyme kinetics of UGT76E1 with 12-hydroxy-JA 

The initial velocities of UGT76E1-reaction were determined by a coupled spectrophotometric assay via 

the co-product UDP to pyruvate kinase and lactate dehydrogenase. The assay was adapted from Brown et 

al., 2012, and recorded at 340 nm. The reactions were performed at 25 °C with 10 µg UGT76E1 

(stabilized with 0.13 % [w/v] bovine serum) in 50 mM Tris/HCl, pH 9.0, 100 mM NaCl, 0.5 mM UDP-

Glc, and the indicated concentrations of 12-hydroxy-JA (12-OH-JA). A) The initial slopes of the 

UGT76E1-reactions are shown. The data shows one dataset of three biological replicates. B) Michaelis-

Menten plot of the UGT76E1-reactions. The data are mean values with standard deviation of three 

biological replicates. Due to limitations in 12-OH-JA availability, the value for 1179 µM was measured 

only once.  

 

are caused by restrictive conditions. Likewise, not optimal buffer conditions will influence the 

kinetic parameters similar to a competitive inhibition resulting in lower turnovers (kcat) but 

unchanged affinity (KM). 

Next, UGT76E2 was measured with 12-OH-JA. In contrast to UGT76E1, UGT76E2 was not 

stabilized with BSA and shows much higher activities. The reaction rate of UGT76E2 at 500 µM 

12-OH-JA was appr. 100 times faster than that of UGT76E1 (Figure 4-17). The same holds true 

for the absolute signals: at appr. 500 µM 12-OH-JA, UGT76E2 is around 20-fold faster (Δ 

0.300 AU per min) than UGT76E1 (Δ 0.015 AU per min). The values of the UGT76E2-kinetic 

follow the Michaelis-Menten model and can be fitted (Equation 5) with 0.998 correlation (Table 

4-5). Noticeably, the reaction rate does still not show saturation at the highest substrate 

concentration (500 µM 12-OH-JA). Anyhow, UGT76E2 shows a KM of 219 µM for 12-OH-JA 

and a kcat of 1.48 s-1 (Table 4-5). Here, the specific affinity of UGT76E2 and 12-OH-JA is 3-fold 

higher than for UGT76E1 but, at the same time, the turnovers are 100-fold faster. Those 
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parameters seem to reflect the high activities observed in the former experiments and confirms 

the specificity and preference of UGT76E2 towards 12-OH-JA.  

 

 
Figure 4-17: Enzyme kinetics of UGT76E2 with 12-hydroxy-JA 

The initial velocities of UGT76E2-reaction were determined by a coupled spectrophotometric assay via 

the co-product UDP to pyruvate kinase and lactate dehydrogenase. The assay was adapted from Brown et 

al., 2012, and recorded at 340 nm. The reactions were performed at 25 °C with 5 µg UGT76E2 in 50 mM 

Tris/HCl, pH 8.0, 100 mM NaCl, 0.5 mM UDP-Glc, and the indicated concentrations of 12-hydroxy-JA 

(12-OH-JA). A) The initial slopes of the UGT76E2-reactions are shown. The data shows one dataset of 

three biological replicates. B) Michaelis-Menten plot of the UGT76E2-reactions. The data are mean 

values with standard deviation of three biological replicates. Due to limitations in 12-OH-JA availability, 

the value for 500 µM was measured only twice.  

 

Furthermore, the kinetic parameters for UGT76E1, UGT76E2, UGT76E11, and UGT76E12 with 

the substrates 9-HOT and 13-HOT were determined. 13-HOT was found to be a general substrate 

of all four UGTs (see Figure 4-11). In case of 9-HOT, no enzymatic activities could be detected 

for UGT76E1, UGT76E2, and UGT76E11 (Table 4-5). For UGT76E12, a very high affinity with 

a KM of 21 µM but at the same time a very low turnover with kcat of 0.0007 s-1 was observed 

towards 9-HOT (Table 4-5, Supplemental figure 15A). For 13-HOT, it was possible to record the 

kinetic parameters of UGT76E2, UGT76E11, and UGT76E12. Just UGT76E1 did not shown 

detectable activities towards 13-HOT (Table 4-5). For UGT76E2, the kinetic measurements 

displays linear correlation between reaction velocity and substrate concentrations and no 

saturation (Supplemental figure 15B). However, the fit to the Michaelis-Menten-model showed a 

correlation of 0.951, which allows to calculate the parameters for KM of 4 mM and kcat of 0.5 s-1 

(Table 4-5,). The fit extrapolates the saturation resulting in 100-fold higher KM for 13-HOT with 

UGT76E2. UGT76E11 shows specific but very slow activity towards 13-HOT (KM of 156 µM, 

kcat of 0.0007 s-1, Table 4-5, Supplemental figure 15C). UGT76E12 illustrates very high 

specificity towards 13-HOT but also the slowest turnovers of all kinetics. Nevertheless, the 

parameters were calculated with KM of 23 µM and kcat of 0.0005 s-1 (Table 4-5, Supplemental 

figure 15D). Taken together, the kinetics of UGT76E11 and UGT76E12 with the oxylipin 
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substrates show a relative high affinity whereas the turnover rates are extremely low and at the 

detection limit of the spectrophotometric assay.  

The control enzyme UGT74F1 was measured with its native substrate SA. The kinetic parameters 

were calculated with KM of 212 µM and kcat of 0.0027 s-1 (Table 4-5, Supplemental figure 15E). 

This kinetic was recorded to relate the kinetics of the candidates to published data of other UGTs 

of A. thaliana. This KM matches well with the published data and this turnover rate is one order 

of magnitude lower than the former value (Table 5-1) (Lim et al., 2002). Since the kinetic 

parameters of the four candidate UGTs show similar values, the control measurements show, that 

the coupled spectrometric assay is suitable for the estimation of the kinetic parameters.  

 

Table 4-5: Kinetic parameters of the UGT76E1, UGT76E2, UGT76E11, UGT76E12, and UGT74F1 

towards their best substrates 

Steady-state kinetics were recorded for all four UGTs with the common substrates 9-

hydroxyoctadecatrienic acid (9-HOT), 13- hydroxy-octadecatrienoic acid. (13-HOT). UGT76E1 and 

UGT76E2 were also tested towards 12-hydroxy-JA (12-OH-JA). UGT74F1 was measured with salicylic 

acid (SA). A coupled spectrophotometric assay with the pyruvate kinase and the lactate dehydrogenase 

was used to measure the reactions of the UGTs in a 1 : 1 : 1 stoichiometry by the decrease of NADH at 

340 nm (Brown et al., 2012). The data were fitted with the hyperbolic function and the correlations are 

given. The kinetic parameters were calculated as Michaelis-Menten constant (KM), the turnover rate (kcat), 

and the catalytic efficiency (kcat/KM). The data is representative for three biological replicates of one 

experiment. 

 Substrate Correlation KM (µM) kcat (s-1) kcat/KM (s-1µM-1) 

UGT76E1 

12-OH-JA 0.982 61 0.0123 2.02 ∙ 10-4 

9-HOT - n. d. n. d. - 

13-HOT - n. d.  n. d. - 

UGT76E2 

12-OH-JA 0.998 219 1.4770 67.44 ∙ 10-4 

9-HOT - n. d. n. d. - 

13-HOT 0.951 4 000 0.5000 1.25 ∙ 10-4 

UGT76E11 
9-HOT - n. d. n. d. - 

13-HOT 0.993 156 0.0007 0.04 ∙ 10-4 

UGT76E12 
9-HOT 0.983 21 0.0007 0.33 ∙ 10-4 

13-HOT 0.990 23 0.0005 0.22 ∙ 10-4 

UGT74F1 SA 0.998 212 0.0027 0.13 ∙ 10-4 

 

In summary, the coupled spectrophotometric assay enabled kinetic investigations of UGT76E1, 

UGT76E2, UGT76E11, UGT76E12, and the control UGT74F1. UGT76E1, UGT76E11, 

UGT76E12, and UGT74F1 turned out to be slow catalysts with very poor turnover rates (Table 

4-5). In this regard, the compromise of three enzymatic reactions coupled might reduce the 

performance of the UGTs. Exclusively, UGT76E2 show better kcat-values with 12-OH-JA and 

13-HOT (Table 4-5). On the other side, the specific affinities of the candidate UGTs were 

comparable to UGT74F1 (Table 4-5). Thus, the calculated KM-values of UGT76E1 and UGT76E2 

for 12-OH-JA strengthen the hypothesis that these are specific 12-OH-JA UGTs. 
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4.4. JASMONATES ACCUMULATE AFTER WOUNDING 

The metabolite patterns of different jasmonates after wounding are well known (Bruckhoff et al., 

2016; Mosblech, 2010). Nevertheless, it was important for this study to ensure a stable and 

functional wound response in A. thaliana. The wounded plant material was the resource for the 

quantitative expression data and the ex vivo metabolite fingerprinting approach (see 4.1.4 and 

4.3.6). Therefore, the wounding experiment was set up like in Mosblech, 2010 and harvested at 

0, 1, 2, and 5 hpw. The samples were analyzed by the UPLC-ESI-MS/MS-based phytohormone 

profiling (Iven et al., 2014). Quantitative data are calculated from authentic internal standards 

given in nmol/g fresh weight (f. w.). Analytes, for which authentic standards were not available, 

relative intensities (p.d.u.) related to the chemically most similar standard are given.  

JA and the active compound JA-Ile rise to maximal values at 1 hpw (JA 3.1 nmol/g f. w., JA-Ile 

0.9 nmol/g f. w.) and decrease within the next 4 h (Figure 4-18A, D). The oxidized jasmonates, 

11/12-hydroxy-JA (11/12-OH-JA), 12-OH-JA-Ile and 12-COOH-JA-Ile accumulate after 

wounding with highest values at 5 hpw. The amount of 11/12-OH-JA is enriched to 2.4 nmol/g 

f. w. at 5 hpw (Figure 4-18B). 12-HSO4-JA and 12-O-Glc-JA are both formed from 12-OH-JA. 

12-HSO4-JA accumulates after wounding considerably but not significantly (Figure 4-18C), 

while 12-O-Glc-JAaccumulates significantly 2.5-fold at 2 and 6-fold at 5 hpw (Figure 4-18G). 

Similar to jasmonates, the precursor 12-OPDA displays significant accumulations at 1 hpw 

(2 nmol/g f. w.) and at 2 hpw (3 nmol/g f. w.) and reduced levels at 5 hpw (1.3 nmol/g f. w.) 

(Supplemental figure 16). Additionally, the wounding time course for SA and ABA, their 

glycosylated forms, 2-O-Glc-SA and ABA-GE as well as IAA and ICA are shown in 

Supplemental figure 16. This wounding experiment shows a functional wound response of 

A. thaliana. Hence, the biological material tested here was suitable for the quantitative expression 

analysis and the non-targeted ex vivo finger printing activity assay. 
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4.5. GENE EDITING ENABLES INVESTIGATING UGT76E1, UGT76E2, 

UGT76E11, AND UGT76E12 IN A. THALIANA 

Analysis of the in vivo roles of the UGTs was initially started through transfer DNA (T-DNA) 

insertion lines of UGT76E1 and UGT76E12. However, the annotated mutants of UGT76E1 could 

not be confirmed in the respective locus and the homozygous mutations in the promotor and the 

5´untranslated region of UGT76E12 did not affect the abundance and distribution of jasmonates 

after wounding (data not shown) (cf. Haroth, 2014). On top of this, the four UGT genes are located 

in two sets of two neighboring loci each within the A. thaliana genome, making it highly unlikely 
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Figure 4-18: Jasmonate profiles of A. thaliana after wounding 

For the wounding experiment, plants were grown for six weeks at 

22 °C under short day conditions (8 h light/16 h dark). Leaves were 

wounded three times across the mid vein by squeezing with forceps. 

Damaged rosette leaves were harvested at indicated time points 

(hours post wounding (hpw)), extracted, and analyzed by LC-

MS/MS. Quantitative data are given in nmol/g fresh weight for A) 

jasmonic acid (JA), B) 11/12-hydroxy-JA (11/12-OH-JA), and D) 

jasmonoyl-isoleucine (JA-Ile). Relative amounts were given in 

procedure defined units (p.d.u.) for C) 12-hydroxy-JA sulfate (12-

SO4-JA), E) 12-hydroxy-JA-Ile (12-OH-JA-Ile), F) 12-carboxy-JA-

Ile (12-COOH-JA-Ile) and G) 12-O-glucosyl-JA (12-12-O-Glc-JA). 

Each data point represents the mean value + SD of three biological 

replicates from three independent experiments. 10 plants were 

pooled for each time point of one replicate. Asterisks indicate 

significance by one-sided T-Test with *p<0.05, **p<.0.01, 

***p<0.005. Samples were measured by Dr. Cornelia Herrfurth 

(University of Goettingen, Germany). 
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to obtain respective double mutants by crossing individual mutant lines (oral communication Dr. 

Amélie Kelly, University of Goettingen, Germany). Therefore, a different approach was initiated 

in this study, in which all four genes were targeted by a CRISPR/Cas9 gene editing tool to 

generate stable single as well as higher order mutants (Wang et al., 2015; Xing et al., 2014). 

4.5.1. THE OPTIMIZED VECTOR SYSTEM TARGETS FOUR CANDIDATES TO CAS9 

Since the here presented work deals with four candidates genes– UGT76E1, UGT76E2, 

UGT76E11, and UGT76E12 –, the plant CRISPR/Cas9 vector of Xing et al., 2014 was highly 

suitable. It was originally designed to carry four targets in separate gRNAs with individual 

promoters and terminators. Wang and co-workers then improved the vector system of Xing, by 

introducing egg-cell specific promotors and terminators (pHEE401E vector, available from 

Addgene, Cambridge, USA), Figure 4-19). This way, the gRNA and Cas9 are both expressed in 

the single-cell-state of the plant embryo and successful Cas9-activity should thus lead straight to 

homozygous mutations in all later plant cells. Effective and selective design of the gRNA is 

crucial for successful gene editing by CRISPR/Cas9. Highly specific target-sequences of 

UGT76E1, UGT76E2, UGT76E11, and UGT76E12 were selected based on the following criteria: 

Presence of a PAM, no likely off-targets, GC-content around 40 %, and an on-target efficiency 

above 0.5 (Table 4-6). These short sequences were inserted as oligonucleotides into pHEE401E 

for subsequent Agrobacterium-mediated transformation of A. thaliana. 

 

 
Figure 4-19: Vector maps of the CRISPR-Cas9 constructs for four UGT-target genes 

A CRISPR-Cas9 approach was used to generate stable loss-of-function UGT-mutant lines of A. thaliana. 

The egg-cell specific promotor activates Cas9 in the one-cell phase making it possible to obtain 

homozygous mutants in the T1-generation already. A four-target construct was generated to target 

UGT76E1, UGT76E2, UGT76E11, and UGT76E12 to Cas9. The vectors are commercially available on 

www.addgene.org and are described in Wang et al., 2015; Xing et al., 2014. 

 

pHEE401E-4UGTs
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Table 4-6: CRISPR target sequences for UGT76E1, UGT76E2, UGT76E11, and UGT76E12 

Targets were chosen with the help of three online tools: CRISPRdirect (https://crispr.dbcls.jp/), CRISPR-

P (http://crispr.hzau.edu.cn/CRISPR2/), and The Genetic Pertubation Platform for designing sgRNAs for 

CRISPRko (http://portals.broadinstitute.org/gpp/public/analysis-tools/sgrna-design). The best targets are 

listed which were used integrated into the CRISPR/Cas9 vector. 

Target Sequence Strand Off targets Score 
On target 

efficiency 

GC content 

[%] 

UGT76E1 CGGGAAGGCTCTTTACTCCAAGG + 0 99 0.57 55 

UGT76E2 CCCAGGCAGCTTAACTGAGTCTG − 0 95 0.51 50 

UGT76E11 CCATTCCAGAAAGCTTACCAGAG − 1 (UGT76E12) 49 0.51 45 

UGT76E12 GGTGAGCTTCAAGGACTGTTTGG + 0 71 0.39 50 

 

4.5.2. CRISPR/CAS9 INITIATES A LOSS-OF-FUNCTION MUTATION IN UGT76E1 

After plant transformation, T1 seedlings were selected by hygromycin and positive plants 

propagated. Interestingly, some plants had developed a phonotype that is connected to 

jasmonates-deficiency (Caldelari et al., 2011; Stintzi & Browse, 2000; von Malek et al., 2002): 

around 5 % of the transformants of the generation 1 (T1) showed an impaired silique-formation. 

These plants were sprayed with JA-ME after which they formed seeds in response. These T1 

plants were chosen and a total of 76 plants were propagated (T2). It should be noted, that these 

plants did not display any growth phenotypes and that they set seeds without any application of 

JA-ME. Anyhow, those 76 plants were screened for alterations in their JA-catabolism as 

compared to wild type. To ensure seed propagation, the plants were grown under long day 

conditions (16 h light / 8 h dark) and only three leaves per plant were wounded and harvested at 

2 hpw for metabolite analyses (cf. 4.4). 

To highlight metabolite differences concerning 12-OH-JA, a coefficient was calculated between 

the UGT-substrate, the UGT-concurrence reaction, and the UGT-product (amount of 12-OH-JA 

multiplied with the amount of 12-SO4-JA over the amount of 12-O-Glc-JA). This coefficient was 

used to screen the 76 plants. Higher values depict more substrate and concurrence product than 

12-O-Glc-JA. Six wild type plants show equal levels. Most of the transformed plants exhibit 

levels within a maximal 3-fold fluctuation. Exclusively, one plant line shows a 7-fold higher value 

(Figure 4-20A). For this particular plant, all four candidate loci were sequenced and compared to 

the wild type. The sequence alignment of UGT76E1 revealed an insertion of a single thymidine 

at the expected Cas9-cutting-site (position 98 of the consensus, Figure 4-20B). This insertion 

causes a frame shift in the ORF of UGT76E1 and results in a stop codon shortly after (position 

136 of the consensus). Therefore, it may be assumed that in this particular plant line, UGT76E1 

is knocked out and not functional anymore. The sequencing was repeated three times 

independently supporting the mutation and confirming a homozygous ugt76e1 genotype. 

Here, the CRISPR/Cas9 approach has successfully produced a homozygous mutation of 

UGT76E1 in the T2-generation. The mutation was identified by altered metabolite levels of the 
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enzyme´s reaction partners. This is so far the only mutation that was obtained by this approach. 

Obviously, more mutations of the remaining UGTE76s are needed for gaining 12-O-Glc-JA-

deficient plants, which shall be screened for in the progeny of ugt76e1.  

 

 
Figure 4-20: Identification of a mutation in the ORF of UGT76E1 by CRISPR-Cas9 activity 

A CRISPR-Cas9 approach was used to introduce mutations in UGT76E1, UGT76E2, UGT76E11, and 

UGT76E12 in wild type A. thaliana (Col-0). After transformation, plant seedlings were selected by 

hygromycin. 76 F1-plants (7-82) were screened for alterations in the JA-catabolism in comparison to Col-

0 plants (1-6). Leaves were wounded three times across the mid vein by squeezing with forceps. 

Damaged rosette leaves were harvested at 2 hours post wounding. After extraction, the samples were 

analyzed by LC-MS/MS. Special focus was given to the following metabolites: 12-hydroxy-JA (12-OH-

JA) as substrate of the UGT-reaction, 12-O-glucosyl-JA (12-O-Glc-JA) as its product and 12-hyroxy-JA 

sulfate (12-SO4-JA) as product of a concurrence reaction with 12-OH-JA as substrate. A) The product of 

the relative amounts of 12-OH-JA and 12-SO4-JA divided by the relative amount of 12-O-Glc-JA were 

calculated and are shown as bar plots for all analyzed lines. Plant 59 exclusively shows the highest value 

(red arrow). Genomic DNA of plant 59 was sequenced. Jasmonate measurements were performed 

together with Dr. Krzysztof Zienkiewicz. B) Sequence alignment of the target region of plant line 59 and 

the corresponding UGT76E1 region in genomic DNA of Col-0. The alignment illustrates an insertion of 

one thymidine at the Cas9-cutting-site (green annotation). This insertion causes a stop codon in the open 

reading frame of the edited sequence (grey annotation) and an end of the amino acid sequence (*). The 

sequencing is representative for three independent experiments. The alignment was done with the 

Geneious algorithm as global alignment with free end gaps and 65 % cost matrix in Geneious version 8.1 

(Biomatters, New Zealand). Available from http://www.geneious.com 
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5. DISCUSSION 

The role of jasmonates in plants goes far beyond plant defense towards feeding insects, and 

necrotrophic pathogens. Therefore, JA, JA-Ile and their derivatives may have functions in other 

physiological processes (Koo, 2018; Wasternack & Hause, 2013; Wasternack & Song, 2017). 

Within the catabolic fate of jasmonates, the defense-inactive 12-OH-JA has a special position 

because it is produced in two ways and gets modified by two reactions (see Figure 1-3) (Miersch 

et al., 2008). It is synthesized either by oxidation of JA by JOX1-4 (Caarls et al., 2017) or by de-

conjugation of the inactive 12-OH-JA-Ile by IAR3 and ILL6 (see Figure 1-3) (Widemann et al., 

2015). Although both paths compete with each other (Bruckhoff et al., 2016), it was suggested 

that the oxidative path is favored after necrotrophic pathogen attack and the de-conjugation is 

preferred after wounding (Smirnova et al., 2017). The same holds true for the modifications of 

12-OH-JA. The levels of 12-HSO4-JA (Gidda et al., 2003) and 12-O-Glc-JA influence each other 

but molecular regulations are not known yet (Mugford et al., 2009; Wasternack & Hause, 2013). 

Interestingly, the enzyme(s) to specifically glycosylate 12-OH-JA were elusive although the 

reaction product, 12-O-Glc-JA, is known for a long time in plants (Miersch et al., 2008; Seto et 

al., 2009). The glycoside might have metabolic functions in signaling, inactivation, degradation, 

storage, or recycling (Bowles et al., 2006; Vogt & Jones, 2000). Thus, this work identified and 

characterized four UGTs with the aim to describe specific enzymes for the glycosylation of 12-

OH-JA to 12-O-Glc-JA. Likewise, it may be possible to complete the set of enzymes acting on 

jasmonates after wounding (see Figure 1-3) and to improve the knowledge of the metabolic flux 

around 12-OH-JA. Since 12-OH-JA may be regulated as an inactive jasmonate in regard to 

defense related JA-Ile responses (Miersch et al., 2008), it is not clear so far, which consequences 

the glycosylation or the sulfation introduced to 12-OH-JA may have (Koo, 2018; Wasternack & 

Feussner, 2018). Therefore, the characterizations of the candidate UGTs were achieved by 

different approaches – as suggested by Vogt & Jones, 2000 – to deal with the expected broad 

substrate tolerances of the enzymes and to obtain a comprehensive and conclusive picture of the 

catalytic activities of the JA-related UDP-dependent glycosyltransferases in A. thaliana. 

Furthermore, distinct biochemical data might assist evaluating complex physiological effects in 

vivo. 
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5.1. COMPREHENSIVE CHARACTERIZATION OF THE JA-RELATED UGTS 

REVEALED THEIR CATALYTIC PREFERENCES 

Briefly, UGT76E1, UGT76E2, UGT76E11, and UGT76E12 were identified as wound-induced 

and, therefore, JA-related UGTs. Sequence-analyses identified the catalytic motifs for substrate 

binding at the N-terminus and UDP-Glc binding at the C-terminus. Such structural motifs are 

common for all UGT enzymes with the protein fold B (see Figure 1-5). There, the enzyme consists 

of two domains connected via a large cleft, which harbors the active center (Albesa-Jové & 

Guerin, 2016; Offen et al., 2006; Wang, 2009). Logically, the substrate-binding at the N-terminal 

domain is less conserved and cannot be used to predict potential substrates. All four candidates 

belong to the UGT76 subfamily (Mackenzie et al., 1997), which is classified in the group H by 

sequence homology of nine conserved regions of all UGTs in A. thaliana (see Figure 4-2) (Ross 

et al., 2001). From the group H, three members – UGT76B1, UGT76C2, and UGT76D1 – have 

been characterized with catalytic activities to form HMPA-Glc, Glc-DHBA, and cytokinin 

glycosides, respectively (Hou et al., 2004; Huang et al., 2018; von Saint Paul et al., 2011). Thus, 

it was also not possible to deduce putative substrates of the candidates from these homologies. 

Nevertheless, UGT76B1, UGT76C2, and UGT76D1 are involved in defense responses in 

A. thaliana (Hou et al., 2004; Huang et al., 2018; von Saint Paul et al., 2011). In analogy to 

CYP94B1, CYP94B3, and CYP94C1 (see 1.1.3), which are oxidizing JA-Ile and were identified 

as FA-oxidases first (Benveniste et al., 2006), specific UGT may have similar catalytic tolerances. 

In addition to that, UGT76B1 was found to form glycosides with short OH-FA as for its published 

product HMPA-Glc (von Saint Paul et al., 2011). Since UGT76E1, UGT76E2, UGT76E11, and 

UGT76E12 are induced by wounding, they may be related to JA-metabolism and may be active 

on OH-FAs and 12-OH-JA. This hypothesis was supported by the activity of UGT76E1, 

UGT76E2, and UGT76E12 showed activity with 12-OH-JA (Table 4-4). On top of this, 

UGT76E1, UGT76E2, UGT76E12, and to some extent of UGT76E11 towards ω-OH-16:0 and 

oxylipins like 11-HHT, 9-HOT, and 13-HOT (Figure 4-7, Figure 4-13). Thus, it can be concluded 

that UGTs active on 12-OH-JA also tolerate oxylipins due to structural similarities.  

The four candidate UGTs and the control UGT, UGT74F1, specific for the glycosylation of SA 

(George Thompson et al., 2017; Lim et al., 2004), were characterized biochemically by different 

activity assays with the aim to confirm the expected activity towards 12-OH-JA, to describe the 

substrate preferences and, eventually, to identify new native substrates (see above) (cf. Vogt & 

Jones, 2000). Therefore, an activity assay with radiolabeled co-substrate (UDP-14C(U)-Glc), a 

comprehensive assay in a quasi-native substrate environment as well as detailed 

spectrophotometric analyses for estimating the kinetic constants were used.  
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As mentioned above, UGT76E1, UGT76E2, UGT76E11, and UGT76E12 showed activity 

towards ω-OH-16:0 and UGT76E1, UGT76E2, and UGT76E12 were also able to glycosylate 12-

OH-JA. For further investigations, the candidates were analyzed towards a set of putative 

substrates to narrow down their substrate preferences. With different sets of substrates (FA-

derived, plant specialized metabolites, jasmonates, and flavonoids) the specificities and 

necessities of the candidates towards a free or shielded carboxy group, the presence and position 

of a hydroxy group, and the overall size of the substrate were evaluated by an activity test with 

radiolabeled UDP-14C(U)-Glc. Like this, all reactions give the same product signal and can be 

evaluated for one enzyme but different UGTs cannot be compared to each other. Concerning 

phytohormones, the UGT76E1, UGT76E2, and UGT76E12 showed product formation with 12-

OH-JA exclusively. In addition, a special interest was to compare different general substrates to 

the preferred substrates. Lim and co-workers have tested the majority of A. thaliana UGTs 

towards BAs (Lim et al., 2002) and flavonoids (Lim et al., 2004). They found that a broad set of 

UGTs showed activity towards these general substrates. With benzoates, Lim and co-workers 

identified UGT74F1 to glycosylate SA to 2-O-Glc-SA preferably and the SA-GE only to a minor 

extent (Lim et al., 2002). This behavior could be confirmed in this study. UGT74F1 showed 

preference to SA and only minor activity to BA. This consistent reproduction of the activity of 

UGT74F1 served as positive control for the experimental setup and, hence, supports the findings 

for the candidates UGT76E1 and UGT76E2 as 12-OH-JA UGTs. Later Lim and co-workers found 

UGT76E12 and UGT74F1 to be active towards quercetin (Lim et al., 2004). The activity with 

flavonoids could be confirmed here for UGT76E12 but not for UGT74F1. Furthermore, the study 

of Lim showed minor activities of UGT76E1, UGT76E2, and UGT76E11 towards quercetin. In 

this study, only trace activities towards quercetin could be identified for UGT76E1, UGT76E2, 

and UGT76E11. Altogether, distinct specificities could be derived from OH-FAs and jasmonates 

as substrates: UGT76E1, UGT76E2, and UGT76E12 require – in case of fatty acids or the fatty 

acid derived oxylipins – a carboxy function and a hydroxy group, which is located in ω-position 

of the carbon chain (ω-OH-16:0). In addition to this, the ex-vivo approach has shown specificity 

of these UGTs to oxylipins with a hydroxy group in the middle of the aliphatic chain (9-, 13-

HOT, 11-HHT, see Figure 4-13). In addition, small aromatic compounds and phytohormones with 

carboxy and/or hydroxy groups were not tolerated. Side activities towards flavonoids could only 

be observed with UGT76E12. Nevertheless, strong specificity UGT76E1 and UGT76E2 was 

found for 12-OH-JA. Jasmonates with differing oxidized groups were not preferred by UGT76E2 

and not tolerated by UGT76E1. Again, a side activity of UGT76E12 could be observed with 12-

OH-JA but no other jasmonate.  

Interestingly, a glycosylation of JA to JA-GE could not be observed in this work. JA-GE was 

identified as JA-derivative in N. tabacum (Swiatek et al., 2004). Although UGT74D1 was 

published as JGT1 (Song, 2005), this enzyme shows higher activities towards auxins as substrates 
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(Jin et al., 2013; Tanaka et al., 2014). In this study, no candidate UGT tolerated the free carboxy 

group of JA for glycosylation. While the free carboxy group of 12-OH-JA was crucial for 

substrate recognition, neither UGT76E1, UGT76E2, nor UGT76E12 formed GEs with 12-OH-

JA as substrate (Figure 4-8). To identify an UGT with the ability to form JA-GE, it might be 

worth to investigate the UGTs of group L, in which most of the members form GEs (Figure 1-6). 

Another approach might try to identify a specific JA-GE UGT in N. tabacum first, because there 

the JA-GE has been found in response to JA-application (Swiatek et al., 2004). Also in 

N. tabacum, the respective UGT has still not been identified. 

Besides experiments to determine the enzymatic substrate tolerances and specificities, the ex vivo 

metabolite fingerprinting approach was used, which brings back enzymes to their native substrate 

environment and challenges their selectivity. Like this, it was possible to investigate purified 

proteins as close as possible to their natural environment. The metabolite rich extracts of 

A. thaliana after wounding mimicked the natural substrate availability, what led to the 

identification of wound-induced oxylipins like 13-HOT as substrates of the UGTs. However, a 

drawback of this assay is the missing compartmentation. The plant tissue is homogenized before 

extraction and all metabolites are extracted equally no matter if the compounds are naturally 

available for the enzymes or not. Since compartmentation is very important to understand the 

physiological processes in vivo (Ovádi & Saks, 2004), this has to be considered for evaluation of 

the ex vivo data. In this case, plant UGTs are proposed to be cytosolic enzymes (see Supplemental 

table 1) (Bowles et al., 2006; Lim et al., 2001; Vogt & Jones, 2000). In line with this, oxylipins 

like 13-HOT, and 11-HHT might not be accessible to the UGTs because they are present in the 

chloroplast and only 9-HOT is cytosolic like the UGTs (cf. Wasternack & Feussner, 2018). 

Altogether, UGT76E1 and UGT76E2 have been characterized as 12-OH-JA UGTs. UGT76E11 

showed activity towards 11-HHT, 13-HOT, and the unknown compound C11H18O3. UGT76E12 

showed high activity towards the artificial ω-OH-16:0, several oxylipins and to minor extent 12-

OH-JA. In addition, the in vivo analyses of the candidates were started. Therefore, the 

CRISPR/Cas9 approach was used to knock out the candidate genes specifically and a putative 

loss-of-function ugt765e1 could be identified by an altered metabolite profile of 12-OH-JA, 12-

SO4-JA, and 12-O-Glc-JA. 

5.2. UGT76E1, UGT76E11, AND UGT76E12 ARE SLOW CATALYSTS 

The kinetic values of UGT76E1, UGT76E2, UGT76E11, and UGT76E12 were recorded with 9-

HOT and 13-HOT in continues spectrophotometric assay. In addition, UGT76E1 and UGT76E2 

were measured with 12-OH-JA. As UGT76E12 has the lowest specificity towards 12-OH-JA 

(Table 4-4), these measurements were skipped due to substrate limitations. The experimental 

setup showed that the UGTs in this study were generally slow enzymes and kinetic measurements 
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could just be determined with specific substrates (see Table 4-5). Noticeable, besides this study, 

only Jackson et al., 2001 has determined the kinetic parameters of plant UGTs with a continuous 

spectrophotometric assay. However, kinetic measurements are not always reproducible: the 

reference UGT VvGT1, which was used to determine structural motifs in UGTs (see Figure 1-5, 

Figure 4-3), was measured with quercetin twice before. The kinetic parameters of Ford et al., 

1998 (KM of 15 µM, kcat of 19 mkatal/kg) differ dramatically from the values of (Offen et al., 

2006) (KM of 680 µM, kcat of 0.085 s-1, appr. 6.0 mkatal/kg). Therefore, the control enzyme 

UGT74F1 was used to evaluate the spectrophotometric assay and to compare the obtained kinetic 

values with those from the literature. In this study, the KM value for the native UGT74F1-substrate 

SA was 213 µM and the turnover rate was 0.003 s-1 (0.4 mkatal/kg). This KM value is very similar 

to that determined in a discontinuous assay by Lim and co-workers, 2002, with 230 µM. For the 

SA-UGTs of O. sativa and N. tabacum, much higher KM value were determined with SA, 

1 200 µM and 900 µM respectively. The turnover rate of UGT74F1 with SA is in this study is 2-

fold faster than the SA-UGTs of N. tabacum (0.2 mkatal/kg) but, at the same time, 4-fold slower 

than the turnover of SA-UGTs of O. sativa (1.5 mkatal/kg, Table 4-5) (Seto et al., 2011; Seto et 

al., 2009). The same UGT74F1 from A. thaliana was estimated by Lim et al., 2002 as being 10-

fold faster (5.8 mkatal/kg) than here. Generally, the turnover of UGT74F1 estimated here is 

similar to that of UGT76E1 with 12-OH-JA from this study and UGT73B1 with flavonoids (Table 

5-1). The affinity of UGT74F1 to SA is similar to many values determined for UGTs with their 

specific substrates (Table 5-1). In this regard, the kinetic values obtained for UGT74F1 here are 

comparable to those of several other kinetic studies.  

The kinetic parameters of UGT76E2 with 12-OH-JA point to medium affinity and a rather fast 

turnover rate (KM of 219 µM, kcat of 1.4 s-1); UGT76E2 was slightly less affine but 100-fold faster 

than UGT76E1 with the same substrate. It shows similar turnovers than the fastest plant UGTs 

from the comparison (Table 5-1). However Jackson et al., 2001, used a similar photometric setup 

and could record maximal reaction velocities, which were up to 3-fold faster than determined for 

UGT76E2 in this assay (Table 5-1). Compared to the only UGTs, which have been tested with 

12-OH-JA before (Seto et al., 2011; Seto et al., 2009), UGT76E2 with 12-OH-HA shows a 6-fold 

respective 2-fold higher affinity and a 1 500-fold respective 58 000-fold faster turnover rate than 

the SA-UGT from N. tabacum and O. sativa. The values of UGT76E2 with 13-HOT (KM of 

4 mM, kcat of 0.5 s-1) show also fast turnovers but unspecific affinity. This affinity is in a similar 

range than the affinity of the side activities of the SA-UGTs of O. sativa and N. tabacum with 12-

OH-JA what suggested that 13-HOT may not be the best substrate for UGT76E2 (Table 5-1). In 

summary, UGT76E2 seems to be a general fast UGT, but with clear affinity to its preferred 

substrate, 12-OH-JA.  

UGT76E1 showed high affinity with 12-OH-JA (KM of 60 µM, kcat of 0.012 s-1). These values are 

similar to the most affine measurements of comparisons and values of UGT76E12 with oxylipins 
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(Table 4-5). Since UGT76E1 had to be stabilized with BSA for kinetic measurements, it is likely 

that the buffer conditions were not optimal for the enzyme impairing its reaction speed. Such 

limitations will affect the turnover but not the affinity. Certainly, UGT76E1 will show higher 

reaction rates in optimal conditions. However, the turnover of UGT76E1 with 12-OH-JA is still 

2-fold faster than the velocity of the control UGT74F1 with its native substrate SA. Furthermore, 

the reaction velocity is similar to the turnovers of UGT73B1 with flavonoids and the SA-UGTs 

from N. tabacum and O. sativa with SA (Table 4-5). Compared to the activities of SA-UGTs from 

N. tabacum and O. sativa with 12-OH-JA (Seto et al., 2011; Seto et al., 2009), UGT76E1 is 22-

fold respectively 7-fold more affine and 21-fold respectively 830-fold faster than the SA-UGTs 

(Table 4-5). Altogether, the high affinity and the moderate turnover still give strong evidence for 

a natural activity of UGT76E1 towards 12-OH-JA.  

Especially, the kinetic constants with oxylipin substrates were very slow. Nevertheless, the very 

slow turnovers of UGT76E11 and UGT76E12 with 13-HOT are similar to those of UGT73B1 

 

Table 5-1: Comparison of kinetic parameters of UDP-dependent glycosyltransferases 

UDP-dependent glycosyltransferases (UGTs) and their gene number (Arabidopsis thaliana) are listed 

with substrate affinity (KM) and turnover rate (kcat) of indicated substrate. The data for the first five 

enzymes are results of this work, while the kinetic parameters of the following UGTs are taken from the 

literature. 12-Hydroxy-jasmonic acid, 12-OH-JA; 13-hydroxy-octadecanoic acid, 13-HOT; salicylic acid, 

SA; jasmonic acid, JA; indole-3-acetic acid, IAA; indole-3-butyric acid, IBA; indole-3-proponic acid, 

IPA, SA-UGT from Nicotina tabacum, NtSA-UGT; SA-UGT from Oryza sativa, OsSA-UGT; 

glycosyltransferase 1 from Vitis vinifera, VvGT1. 

Enzyme Gene substrate KM kcat Reference 

   (µM) (s-1) (mkatal/kg)  

UGT76E1 At5g59580 12-OH-JA 60 0.012 0.83 this study 

UGT76E2 At5g59590 12-OH-JA 219 1.477 58.2 this study 

UGT76E2 At5g59590 13-HOT 4 000 0.500 18.95 this study 

UGT76E11 At2g46670 13-HOT 156 0.001 0.18 this study 

UGT76E12 At2g46660 13-HOT 23 0.001 0.22 this study 

UGT76E12 At2g46660 9-HOT 22 0.001 0.33 this study 

UGT74F1 At2g43840 SA 213 0.003 0.39 this study 

UGT72E2 At5g66690 Sinapic acid 900 - 20.33 Lim et al., 2001 

UGT72E2 At5g66690 Sinapoyl-alcohol 240 - 151.52 Lim et al., 2001 

UGT73B1 At4g34138 Quercetin 18 - 0.33 Kim et al., 2006 

UGT73B1 At4g34138 Kaempferol 26 - 0.25 Kim et al., 2006 

UGT74D1 At2g31750 JA 290 0.035 - Song 2005 

UGT74D1 At2g31750 IAA 540 0.067 - Song 2005 

UGT74F1 At2g43840 SA 230 - 5.79 Lim et al., 2002 

UGT74G1-like NtSA-UGT 12-OH-JA 1 300 - 0.04 Seto et al., 2011 

UGT74G1-like NtSA-UGT SA 900 - 0.23 Seto et al., 2011 

UGT74H5 OsSA-UGT SA 2 100 - 1.53 Seto et al., 2009 

UGT74H5 OsSA-UGT 12-OH-JA 400 - 0.001 Seto et al., 2009 

UGT78A5 VvGT1 Quercetin 680 0.085 - Offen et al., 2006 

UGT78A5 VvGT1 Quercetin 15 - 18.88 Ford et al., 1998 

UGT84A1 At4g15480 Coumaric acid 400 - 13.07 Lim et al., 2001 

UGT84A1 At4g15480 Sinapic acid 580 - 6.39 Lim et al., 2001 

UGT84B1 At2g23260 IAA 240 - 180 Jackson et al., 2001 

UGT84B1 At2g23260 IBA 150 - 122 Jackson et al., 2001 

UGT84B1 At2g23260 IPA 140 - 113 Jackson et al., 2001 
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with quercetin and kaempferol (Kim et al., 2006). Like for UGT76E1, the slow reaction velocities 

are thought to be influenced by the buffer conditions. Hence, for UGT76E11 and UGT76E12 with 

13-HOT, the focus was given to the affinities (KM) and not to the reaction velocities (kcat). The 

affinities of UGT76E12 with 9-HOT and 13-HOT are the highest, which were determined in this 

work, and similar to the KM values of UGT76E1 with 12-OH-JA, and VvGT1 and UGT73B1 with 

quercetin (Table 4-5). Since these affinities were identified to be the native activities of the 

respective enzymes, it is very likely that UGT76E12 might be involved in the glycosylation of 

oxylipins and especially 13-HOT as well. UGT76E11 shows similar behavior with 13-HOT. The 

affinity (156 µM) is not as high as for UGT76E12 but still comparable to KM values of natural 

reaction partners like UGT74F1 with SA, UGT84B1 with auxins, and UGT72E2 with sinapoyl-

alcohol (Table 4-5). However, UGT76E11 showed also activity against 11-HHT and C11H18O3, 

and it has been shown to form flavonoid-glycosides (Li et al., 2018). Those activities have to be 

considered for a complete characterization of UGT76E11 with detailed kinetic measurements. 

In summary, the kinetic data support the high affinity of UGT76E12 towards oxylipins and a 

potential role in glycosylation of these plant metabolites. Further, the kinetic parameters reveal 

high affinity but low turnover of UGT76E1 towards 12-OH-JA and fast turnover of UGT76E2 

with 12-OH-JA but with lesser affinity. These catalytic differences are likely to influence the 

physiological function of UGT76E1 and UGT76E2 in plantae. 

5.3. UGT76E1 GLYCOSYLATES 12-OH-JA WITH HIGH SPECIFICITY 

In the beginning, it was postulated that the jasmonate metabolism might be driven by 

chronological protein biosynthesis of the responsible proteins (see 2). This hypothesis led to the 

identification of UGT76E1 by co-regulation with JOX3 (Table 4-1). The substrate for 

glycosylation – 12-OH-JA – shows elevated levels from 1 hpw on (see 4.4) and might trigger 12-

O-Glc-JA synthesis. This matches with the highest expression of UGT76E1 in the quantitative 

expression data as well as the transcriptomic data with accumulations at 2 hpw in a JA-dependent 

manner (see 4.1.2, 4.1.3). On top of this, UGT76E1 is co-regulated with genes involved in both 

synthetic paths of 12-OH-JA (JOX3 and ILL6, Table 4-2). Hence, the expression pattern of 

UGT76E1 is temporally connected with reactions producing its substrate and specifically 

classified into the wound-induced defense pathway in A. thaliana (Supplemental figure 4A).  

UGT76E1 showed problems in protein purification and protein stability. In contrast to its closest 

homolog – UGT76E2 (88 % identity) –, the purification of UGT76E1 has needed several 

optimizations (see Figure 4-5) and yielded the lowest amounts of all purifications. However, this 

is in analogy with (Vogt & Jones, 2000), who characterize UGTs as generally labile enzymes. 

Furthermore, Bowles and co-authors suggest that in vitro experiments with UGTs are difficult 

because specific co-factors, protein-protein interactions and metabolic channeling may be missing 
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in in vitro reactions. Thus, the protein stability of UGT76E1 might be caused by the lack of co-

factors, assisting or stabilizing proteins. At least in vitro, the enzyme might need special 

conditions regarding the buffer composition as well as additives to stabilize the protein. During 

kinetic measurements, UGT76E1 had to be stabilized with 0.13 % BSA and still showed slow 

reaction rates with 12-OH-JA. Due to this low turnover, UGT76E1 showed 30-fold lower catalytic 

efficiency than UGT76E2 although UGT76E1 had high affinity to 12-OH-JA (KM of 60 µM). 

However, it could be shown by different enzymatic assays (see Figure 4-10, Figure 4-13, Table 

4-5) that the glycosylation of 12-OH-JA to 12-O-Glc-JA is the preferred reaction of UGT76E1 in 

vitro. Likewise, different functional properties of the substrate could be identified as being crucial 

for catalysis: UGT76E1 seems to require a hydroxyl group and carboxy function. Though the 

hydroxy group is glycosylated (Figure 4-8), a free carboxy group is required for catalysis. The 

fatty alcohol (OH-C16) and 12-OH-JA-derivatives with a shielded carboxy group, like 12-OH-

JA-ME (tested in the radiolabeled assay) and the 12-OH-JA-Ile (provided in the ex vivo extracts), 

were not used as substrates by UGT76E1.  

Furthermore, UGT76E1 was the only candidate, for which the in vivo analysis could be started in 

this study. A recently described CRISPR/Cas9 toolbox (Wang et al., 2015; Xing et al., 2014) was 

used to target all four candidates to Cas9 endonuclease activity. As a result, a putative loss-of-

function ugt76e1 single mutant plant could be identified (Figure 4-20B). The specific mutant line 

was found by an altered distribution of the substrate, concurrence product, and product (12-OH-

JA * 12-HSO4-JA / 12-O-Glc-JA, Figure 4-20A). Surprisingly, the abundance of 12-O-Glc-JA 

itself was not reduced in this mutant line (data not shown). Thus, it is likely that UGT76E1, 

UGT76E2, and UGT76E12 may act redundantly. UGT76E1 and UGT76E2 both were 

characterized to specifically glycosylate 12-OH-JA in vitro and, in addition, UGT76E12 showed 

minor activity against 12-OH-JA (Table 4-4). In this respect, UGT76E1 and UGT76E12 were 

both significantly induced after wounding (Figure 4-1). Additionally, also UGT76E2 might 

compensate for reduced 12-OH-JA-glycosylation in vivo although it illustrated a different 

expression pattern (see Figure 4-1, Supplemental figure 3, Supplemental figure 4). To generate a 

12-O-Glc-JA-deficient mutant line at least these three UGTs active on 12-OH-JA have to be 

mutated.  

In summary, this study was aware that UGTs tend to be rather unspecific enzymes, which have 

to be tested with different substrates to identify their native reactions (Bowles et al., 2006; Vogt 

& Jones, 2000). Thus, the clear preference of UGT76E1 to 12-OH-JA in different activity assays 

emphasizes a potential role of UGT76E1 as natural 12-OH-JA-UGT in A. thaliana (Figure 5-1). 
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5.4. UGT76E2 FORMS 12-O-GLC-JA WITH HIGH SPECIFICITY AND 

TURNOVER NUMBERS 

The transcript of the next candidate, UGT76E2, did not show significant accumulation after 

wounding in the leaves of A. thaliana, which were analyzed by RT-PCR (see Figure 4-1). 

Nevertheless, UGT76E2 was identified by co-expression with ST2a and shows a similar 

expression profile as ST2a (data not shown, eFP-Browser access 02.05.2018). This shared profile 

depicted its induction after biotic and abiotic stresses whereas UGT76E1 showed induction after 

wounding exclusively. I(Supplemental figure 4B) As mentioned before, 12-OH-JA does not 

inhibit root growth like JA and JA-Ile. However 12-OH-JA and 12-O-Glc-JA were identified as 

tuber-inducing compounds in S. tuberosum (Yoshihara et al., 2014). Therefore, 12-OH-JA and 

12-O-Glc-JA may have a physiological role in below-ground parts of plants, at least in growth-

regulation of roots. The constitutive expression of UGT76E2 may be connected to this function 

but localization and expression studies of UGT76E2 have to be done to reveal the presence and a 

putative function of UGT76E2 roots. 

The enzyme showed generally high activities in all experiments and it was the enzyme with the 

best turnover rate (1.4 s-1) and the highest catalytic efficiency (67.44 * 10-4 s-1µM-1) of the four 

candidates (Table 4-5). UGT76E2 is about 100-times faster but also slightly less affine for 12-

OH-JA than UGT76E1. Its kinetic constants with 12-OH-JA are KM of 219 µM and a maximal 

turnover of 1.4 s-1. Surprisingly, the turnover of UGT76E2 with 13-HOT was also fast with 0.5 s-

1 though the catalytic affinity was very low and the KM could just be estimated with 4 mM. Hence, 

UGT76E2 is assumed to have a clear preference towards its native substrate, 12-OH-JA (Figure 

5-1). Similar to UGT76E1, certain structural requirements can be assumed for the substrates of 

UGT76E2: a carboxy function and a hydroxy group of the substrate is required. However, the 

position of the hydroxy group is less important: UGT76E2 shows minor activities towards 

hydroxy groups close to the carboxy group (3-OH-16:0, Figure 4-10), similar activities than 

UGT76E12 towards hydroxy groups in the middle of the unsaturated aliphatic chain (11-HHT 

and 13-HOT, Figure 4-13), and strong activities towards ω-hydroxy groups (ω-OH-16:0, 12-OH-

JA, Figure 4-10). In addition to this, UGT76E2 was the only UGT that tolerates a shielded carboxy 

group to minor extent (12-OH-JA-ME, Figure 4-10) but bigger groups attached inhibited catalysis 

(12-OH-JA-Ile, Supplemental figure 14). Hence, the specificity of UGT76E2 is not as tight as for 

UGT76E1 but shows strong preference for 12-OH-JA (Figure 5-1). The reason for this may be its 

higher activity. 
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5.5. UGT76E11 SHOWS ACTIVITIES TOWARDS OXYLIPINS AND A SO FAR 

UNKNOWN METABOLITE 

Next, UGT76E11 showed high expression in A. thaliana after wounding in a JA-related manner 

(Figure 4-1, Supplemental figure 2, Supplemental figure 6). Additionally, the transcription of 

UGT76E11 displayed constitutive and high expression after different abiotic stresses 

Supplemental figure 5. In another study, UGT76E11 was found to be induced after salinity, 

drought and hydrogen peroxide treatment in A. thaliana (Li et al., 2018). Such an expression 

profile of UGT76E11 may be not suitable for specific glycosylation of jasmonates after 

wounding. 

 

Figure 5-1: UGT76E1, UGT76E2 complete the set of jasmonate-enzymes after wounding 

Wound stimuli like feeding insects lead to the activation of jasmonic acid (JA, 1) biosynthesis. JA gets 

active as hormone by the conjugation to isoleucine. Jasmonoyl-isoleucine (JA-Ile, 2) stimulates de-

repression of JA-responsive genes via proteasomal degradation. CYP94B1, CYP94B3 and CYP94C1 

oxidize JA-Ile to 12-hydroxy-JA-Ile (12-OH-JA-Ile, 3) and CYP94C1 to 12-carboxy-JA-Ile (12-COOH-

JA-Ile, 4). JA-Ile, 12-OH-JA-Ile, and 12-COOH-JA-Ile get de-conjugated by IAA-alanine-resistant 3 

(IAR3) and IAA-leucine-resistant-like 6 (ILL6) forming JA, 12-hydroxy-JA (12-OH-JA, 5) and 12-

carboxy-JA (12-COOH-JA, 6), respectively. JA is oxidized to 12-OH-JA by jasmonate-induced oxidases 

1 to 4 (JOX1-4). 12-OH-JA gets modified to 12-OH-JA-sulfate (12-HSO4-JA, 7) by sulfotransferase 2a 

(ST2a). This work identified two specific UDP-dependent glycosyltransferases (UGTs, highlighted in 

red), which glycosylate 12-OH-JA to 12-O-glucosyl-JA (12-O-Glc-JA, 8). A third UGTs showed minor 

activity forming 12-O-Glc-JA. Scheme modified from Wasternack & Hause, 2013, additions from Caarls 

et al., 2017; Kitaoka et al., 2014; Widemann et al., 2016; Zhang et al., 2016. Photo was taken from Iven 

et al., 2014. 
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UGT76E11 illustrates overall non-specific and low signals in the radiolabeled substrate assay. In 

this case, the set of substrates in this experiment was most likely not suitable to identify specific 

substrates of UGT76E11. The work of Li and co-workers, 2017, has identified flavonoids, like 

quercetin, kaempferol, and naringenin to be the preferred substrates of UGT76E11 in vitro and in 

vivo (Li et al., 2018). However, this behavior could not be confirmed here, the radiolabeled 

substrate assay as well as the ex vivo approach did not identify activities towards quercetin, dh-

kaempferol or other flavonoids (Figure 4-10, 4.3.8). On the other side, the ex vivo analysis could 

identify specific activities of UGT76E11 from the metabolite-enriched extracts: 11-HHT, 13-

HOT, and a native compound of the elemental composition of C11H18O3. This unknown 

metabolite neither gave any databank hit nor could be structurally identified by MS/MS 

fragmentation analysis. From the overall ex vivo data set, it could be concluded that C11H18O3 

is not wound-induced but rather constitutively present in all samples. This is consistent with a 

more constitutive expression profile of UGT76E11. An identity of the metabolite might enlighten 

the specific and high activity of UGT76E11 towards this compound. The activity towards 11-

HHT and 13-HOT was similar for all four tested UGTs of the 76E-subfamily and might be due 

to their protein homology. Nevertheless, it may be important to test the different activities of 

UGT76E11 from this study (11-HHT, 13-HOT, C11H18O3) with the findings of Li and co-

workers (flavonoids). There, they tested specifically and exclusively flavonoids with UGT76E11. 

Therefore, it may be interesting to compare the activities towards oxylipins with the published 

activities towards flavonoids determine the best of them.  

5.6. UGT76E12 PREFERS OTHER OXYLIPINS OVER 12-OH-JA 

UGT76E12 could be identified as well by transcript accumulation after wounding in a JA-

dependent manner (see 4.1.2). The TAIR eFP Browser shows for UGT76E12 strong induction in 

response to wounding and to osmotic stress. UGT76E12 has been found as stress-induced UGT 

before (Rehman et al., 2018; von Saint Paul et al., 2011). In a general ranking after biotic and 

abiotic stress, UGT76E12 was on the fifth place of all induced UGTs in A. thaliana. Previous 

work only investigated the top hit, which was UGT76B1 that forms HMPA-Glc (von Saint Paul 

et al., 2011). However, this supports the more general stress-related expression of UGT76E12. In 

another study, UGT76E12 was found to be up-regulated in ABA-sensitive seedlings and after 12-

OPDA-application (Rehman et al., 2018). The induction by the JA-precursor 12-OPDA might 

explain the JA-dependency in this work. However, dissecting responses after 12-OPDA- or JA-

application needs additional experiments, because 12-OPDA will be converted in planta into JA. 

In comparison with UGT76E1, UGT76E2 and UGT76E11, UGT76E12 shows the highest rates 

of product formation with ω-OH-16:0 and oxylipins like 11-HHT, 9-HOT and 13-HOT. In 

addition, UGT76E12 also accepts 12-OH-JA as substrate but to a lower extent (see Figure 4-13, 
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Table 4-4). Here again, a free carboxy group together with the hydroxy group are necessary for 

catalysis because JA, 12-OH-JA-ME, 16:0 and the fatty alcohol OH-C16 were no substrates for 

UGT76E12. In respect to the position of the functional group, UGT76E12 seems to be more 

specific than UGT76E2. It tolerates the free hydroxy group at the ω-position (ω-OH-16:0, see 

Figure 4-10) and in the middle of the molecule (11-HHT, 9-HOT, and 13-HOT, see Figure 4-13 

and Table 4-4) but not in the direct neighborhood of the carboxy terminus in α- or β-position (see 

Figure 4-10). However, the kinetic parameters could be measured with 9-HOT (KM of 22 µM) 

and 13-HOT (KM of 23 µM). These are the best substrate affinities, estimated for all analyzed 

candidates with their preferred substrates. The turnover rates are very low in comparison to the 

other UGTs tested (see Table 5-1). Surprisingly, the targeted activity assays based on LC-MS 

measurements showed a high relative product formation for 13-O-Glc-HOT and 9-O-Glc-HOT 

(see Table 4-4). The glycosylation of 9-HOT and 13-HOT by UGT76E12 is a very interesting 

finding (Figure 5-2). It is the first time that UGTs have been described to be specific to these 

oxylipins. Since oxylipins are FA-derivatives, glycosylation might increase their solubility in the 

plant cell. Additionally, glycosylated oxylipins have been found in L. paucicostata (Kai et al., 

2010) but not in A. thaliana so far. Because different oxylipins may have different functions in 

plants (see 1.1.1), UGT76E12 might be involved in different aspects of oxylipin regulation or 

even signaling. For example, pool of green leaf volatiles may be influenced (Matsui, 2006) or the 

oxylipin-driven defense against pathogens in N. tabacum may be regulated (Mene-Saffrane et al., 

2003) with activity against 9-HOT. As 13-HOT is produced by the 13-LOX-pathway, an early 

interference with the pathway and its by-products is possible by storing glycosylated oxylipins in 

the plants vacuole after wounding. In this case, 13-HOT accumulates after SA-treatment and 13-

HOT alone is sufficient to induce pathogenesis-related genes in Hordeum vulgare (Weichert et 

al., 1999). Altogether, UGT76E12 shows high preference towards the oxylipin substrates and 

there are different putative functions of oxylipin-glycosides but all these hypotheses have to be 

evaluated in future work.  

 



DISCUSSION 

102 

Figure 5-2: The candidate UGTs 

glycosylate oxylipins 

Lipoxygenases (LOXs) oxygenate 

polyunsaturated fatty acids (PUFAs) to 

hydroperoxy-PUFAs. Those molecules 

can be metabolized to diverse oxylipins. 

In particular, reductases (Red) produce 

hydroxy-PUFAs like 9-hydroxy-

octadecatrienoic acid (9-HOT), 13-

hydroxy-octadecatrienoic acid (13-HOT), 

and 11-hydroxy-hexadecatrienoic acid 

(11-HHT). In parallel, an allene oxide 

synthase (AOS) and others initiate 

synthesis of jasmonic acid (JA). JA may 

be oxidized to 12-hydroxy-JA (12-OH-

JA) by jasmonate-induced oxidases 

(JOX). Both, hydroxy-PUFAs and 12-OH-

JA, can be glycosylated by the candidate 

UDP-dependent glycosyltransferases 

(UGTs), UGT71E1, UGT76E2, 

UGT76E11, and UGT76E12. These 

produce 12-O-glucosyl-JA (12-O-Glc-JA) 

and O-glucosyl-PUFAs (O-Glc-PUFAs). 

O-Glc-PUFAs have been described in 

Lemna paucicostata (Kai et al., 2010), but 

no function has been assigned yet. Figure 

was modified from Wasternack & 

Feussner, 2018. 

 

Additionally, UGT76E12 glycosylated flavonoids like quercetin (appr. 33 % of ω-OH-16:0) and 

dh-kaempferol (appr. 66 % of ω-OH-16:0, see Figure 4-10). This activity has been described 

before (Lim et al., 2004). In that work, UGT76E12 showed high activity towards quercetin and 

Lim and co-workers speculated that UGT76E12 may be suitable for industrial application and 

producing high-value natural glycosides. This behavior could be confirmed in this work although 

the activity towards flavonoids was not the preferred activity of UGT76E12. Furthermore, 

UGT76E12 showed minor activity towards 12-O-Glc-JA. Between the candidates, UGT76E12 

has produced similar amounts of 12-O-Glc-JA than UGT76E1 (see Figure 4-10, Table 4-4). 

However, the catalytic efficiency of UGT76E1 with 12-OH-JA (2.02 * 10-4 s-1 µM-1) was 10-fold 

higher than the efficiency of UGT76E12 with its preferred substrates 9-HOT (0.33 * 10-4 s-1 µM-

1) and 13-HOT (0.22 * 10-4 s-1 µM-1, see Table 4-5). Similar to other studies of different UGTs 

showing side activities with 12-OH-JA (Seto et al., 2011; Seto et al., 2009), the activity of 

UG76E12 might be similar due to structural similarities of 12-OH-JA to ω-OH-16:0 and 13-HOT. 

5.7. EVIDENCE FOR PHYSIOLOGICAL RELEVANCE OF 12-O-GLC-JA 

The metabolite 12-O-Glc-JA has been found in different plants (Miersch et al., 2008; Seto et al., 

2009). However, the responsible enzymes have been elusive until now. UGT76E1 and UGT76E2 
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have shown their preference to catalyze the glycosylation of 12-OH-JA. From here, the logical 

step is to investigate glycosylation in vivo. This was started by a CRISPR-Cas9 approach, which 

could generate at least a ugt76e1 single mutant until now. This single mutation was already 

sufficient to alter the abundance of metabolites, which are connected to 12-OH-JA (Figure 4-20). 

However, the levels of 12-O-Glc-JA alone were not reduced (data not shown). Therefore, 

generation of double (ugt76e1/ugt76e2) or triple (ugt76e1/ugt76e2/ ugt76e12) mutants of the 

UGTs might elucidate the role of 12-O-Glc-JA further. Thus, the CRISPR/Cas9 approach has to 

be repeated in homozygous ugt76e1-background to obtain double or multiple mutants of the 

UGTs. This might enlighten the physiological role of 12-O-Glc-JA and the respective enzymes. 

Deletion of all UGTs responsible for 12-O-Glc-JA synthesis is the first possibility to investigate 

the role of 12-O-Glc-JA independently of 12-OH-JA and vice versa. So far, it was not possible to 

assign functions of 12-OH-JA and its glycoside individually. Both seem to induce tuber formation 

in S. tuberosum (Yoshihara et al., 2014), both function as COI/JAZ-independent leaf closing 

factor in S. samen (Nakamura et al., 2011), and both might be mobile metabolites in A. thaliana 

(Seto et al., 2009). In this regard, it is important to specifically assign the observations to one 

metabolite and elucidate the function of jasmonates next to wounding.  

However, the existing knowledge provides more evidence of a metabolic function of 12-O-Glc-

JA than for its concurrence product 12-HSO4-JA. In respect to a re-localization upon 

glycosylation, it remains to be clarified if 12-O-Glc-JA is transported into the vacuole like for 2-

O-Glc-SA (Dean et al., 2005; Dean et al., 2003) or into the apoplast. An export of glycosylated 

phytohormones into the apoplast has only been shown for ABA (Dietz et al., 2000). However, 

JAT1, which seem to transport JA and JA-Ile trough the plasma membrane, may have the potential 

to transport jasmonates like 12-O-Glc-JA as well. Preliminary analysis of petiole exudates of 

wounded A. thaliana may hint towards elevated levels of 12-O-Glc-JA and other glycosylated 

plant hormones in the apoplast (data not shown). In addition, a specific hydrolase enzyme in 

O. sativa strengthen a reversible storage function at least in rice (Wakuta et al., 2010). 

As described, 12-OH-JA is modified in two reactions, which results in 12-O-Glc-JA and12-HSO4-

JA. Concerning this, it is tempting to speculate why two metabolic modifications are needed. One 

modification may therefore be necessary to bypass the function of the other (oral communication 

Prof. Dr. R. Solano, Spanish National Research Council, Madrid, Spain). In this regard, 12-O-

Glc-JA is more likely to have relevance in plantae than its concurrence product 12-HSO4-JA, for 

which no function has been assigned until now (see 1.1.3) (Gidda et al., 2003; Koo, 2018). On 

top of this, UGT76E1 and UGT76E2 are characterized to specifically form 12-O-Glc-JA while 

being differentially expressed in roots and shoots. This might support a distinct physiological 

relevance of 12-O-Glc-JA in different tissues and processes. 
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5.7.1. 12-O-GLC-JA-ILE CANNOT BE IDENTIFIED IN A. THALIANA 

So far, 12-O-Glc-JA-Ile has been found once in plants by (Kitaoka et al., 2014). In that work, 

they identified the compound by targeted LC-MS/MS analysis of wounded plant material related 

to an authentic chemical standard. Therewith, Kitaoka and co-workers were able to detect low 

amounts of 12-O-Glc-JA-Ile at 6 hpw in three plant species: A. thaliana (11 ±5 pmol/g f. w.), 

N. tabaccum (23 ±6 pmol/g f. w.), and G. max (22 ±5 pmol/g f. w.) (Kitaoka et al., 2014). 

Nevertheless, these abundances have big deviations and those signals might be at the detection 

limit of that method since a robust signal of e. g. 12-OH-JA-Ile are three orders of magnitude 

higher (9813 ± 2473 pmol/g f. w). 12-OH-JA-Ile was also measured in this study. Although, no 

quantitative levels could be determined, the 12-OH-JA-Ile accumulated to significant levels after 

wounding. 12-OH-JA-Ile was related to an internal JA-Ile-standard and shows much higher 

relative levels similar to the abundance in Kitaoka et al., 2014. However, IAR3 accepts 12-O-

Glc-JA-Ile for hydrolytic cleavage to 12-O-Glc-JA in vitro (Kitaoka et al., 2014), which may 

support a physiological existence of 12-O-Glc-JA-Ile. 

This work showed significant accumulation of 12-OH-JA-Ile after wounding (see Figure 4-18E). 

Therefore, the potential precursor-molecule was present in A. thaliana but the glycoside could not 

be identified in this study. Since no chemical standard was available here, 12-O-Glc-JA-Ile was 

searched by exact mass in the LC-MS analyses of the ex vivo approach with and without of 

enzymes (Supplemental figure 14). The samples were investigated in both ionization modes with 

two independent LC-HR-MS-methods. 12-O-Glc-JA-Ile could neither be detected as internal 

metabolite of A. thaliana in the enriched metabolite extract 5 hpw nor as product of UGT76E1, 

UGT76E2, UGT76E11 or UGT76E12 with the native substrate 12-OH-JA-Ile (Supplemental 

figure 14). Anyhow, it might be possible that so far unknown UGT(s) are responsible for the 

glycosylation of 12-OH-JA-Ile although the co-expression analysis performed in this work did 

not give any hit for putative candidates around 12-OH-JA-Ile (see 4.1.1).  

Altogether, this study was not able to detect 12-O-Glc-JA-Ile in A. thaliana after wounding. 

However, it is concluded that none of the investigated UGTs has the potential to use 12-OH-JA-

Ile as substrate. Kitaoka et al., 2014 is still the exclusive recourse of the abundance and future 

work has to challenge this again with optimized detection methods to prove the physiological 

presents and relevance of 12-O-Glc-JA-Ile. 

5.7.2. 12-COOH-JA WAS IDENTIFIED IN WOUNDED LEAVES OF A. THALIANA 

Up to now, the new metabolite 12-COOH-JA has been identified in flowers of A. thaliana 

(Bruckhoff et al., 2016). In addition, 12-COOH-JA and 12-OH-JA-Ile accumulated in a jox2 

mutant without wounding resulting in an elevated defense responses (Smirnova et al., 2017). 



DISCUSSION 

105 

Here, the compound was identified as wound-induced metabolite in A. thaliana leaves in the 

extracts of the ex vivo metabolite fingerprinting experiment (see 4.3.6). This finding supports the 

mutant analysis of Smirnova and co-workers, 2016, and puts 12-COOH-JA not only in the context 

of flower development but also in the wound response of A. thaliana. Nevertheless, it is not clear 

how the molecule is formed. Most likely, 12-COOH-JA is produced by hydrolytic cleavage of 

12-COOH-JA-Ile by IAR3. This is supported by different approaches: the accumulation of 12-

COOH-JA is dependent of CYP94C1 (Bruckhoff et al., 2016), it is produced by de-conjugation 

of 12-COOH-JA-Ile by IAR3 in vitro (Zhang et al., 2016), and its abundance is strongly related 

to 12-COOH-JA-Ile levels (Smirnova et al., 2017; Widemann et al., 2016). This hypothesis has 

to be challenged in future experiments with detailed phytohormone analysis of wounded 

A. thaliana in wild type, the cyp94c1 and the iar3 mutants of A. thaliana. The wound-induction 

of 12-COOH-JA gives new insights in the complex metabolic fate of jasmonates and offers a new 

approach to study a putative metabolic function of 12-COOH-JA. 
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6. OUTLOOK 

This study provided detailed biochemical characterizations of UGT76E1, UGT76E2, UGT76E11, 

and UGT76E12. Thereby, UGT76E1 and UGT76E2 could be identified as specific 12-OH-JA-

UGTs in vitro. UGT76E12 showed minor activity to 12-OH-JA. Its preferred substrates are 

oxylipins.  

The next step in the project has to be the physiological investigation of the UGTs. It started by 

now with the generation of a ugt76e1 single mutant by a CRISPR-Cas9 approach. The metabolite 

analysis showed that the 12-O-Glc-JA-content in planta was not reduced. However, the ratio of 

metabolites, which are connected to 12-OH-JA, was altered (Figure 4-20). Therefore, it is 

important to generate also double (ugt76e1/ugt76e2) or triple (ugt76e1/ugt76e2/ ugt76e12) 

mutants of the UGTs to deplete 12-O-Glc-JA in vivo. Thereby, it might be possible to investigate 

the role of 12-O-Glc-JA independently of 12-OH-JA and vice versa in A. thaliana. Still, the 

CRISPR/Cas9 approach is favored to obtain such double or multiple mutants, because UGT76E1 

and UGT76E2 as well as UGT76E11 and UGT76E12 are located as direct neighbors on the 

A. thaliana genome. Likewise, the putative function of 12-O-Glc-JA in storage and transport of 

jasmonates can be investigated (see 5.7). UGT76E1 and UGT76E2 showed a differential 

expression pattern in expression analyses (Supplemental figure 4). Therefore, localization studies 

might help to obtain hints to the relevance of the two enzymes in roots and shoots. This will also 

help to understand the role of 12-OH-JA and 12-O-Glc-JA in different plant tissues and may help 

to discover differential functions and regulations of the UGTs and the metabolic products. 

In addition to jasmonates, oxylipins like 11-HHT, 9-HOT, and 13-HOT were glycosylated by all 

four candidate UGTs in this study. Oxylipins are involved in regulatory processes and stress 

responses in plants (see 1.1.1). Glycosylation of these FA-derived compounds might increase 

their solubility in the plant cell. As 11-HHT, 9-HOT, and 13-HOT are produced by the LOX-

pathway, an early interference with the pathway and its by-products is possible and may be part 

of the regulation of the oxylipin pool. However, oxylipin-glycosides have been found in 

L. paucicostata (Kai et al., 2010) but not in A. thaliana. In this respect, also the analytical methods 

have to be optimized to detect and identify glycosylated oxylipins in A. thaliana. With improved 

analytical methods, it may be possible to investigate the relevance of glycosylated oxylipins in 

the stress responses e. g. after wounding in A. thaliana. Such findings may enlarge the picture of 

the wound-response beside from jasmonates. Concerning jasmonates, this study has produced 

large amounts of 12-O-Glc-JA in the different activity assays. For 12-O-Glc-JA, the authentic 

chemical standard is missing for quantitative and qualitative phytohormones measurements. 
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Purifying 12-O-Glc-JA from the in vitro reactions of UGT76E1 and UGT76E2 will yield an 

authentic chemical standard for analytical methods in the future.  

From the phylogenetic investigation, it was obvious that the group H of plant UGTs has not been 

investigated in detail and structural information are only available for UGT74F2. In contrast to 

UGT74F2, the enzymes in this work, UGT76E1, UGT76E2, UGT76E11, and UGT76E12, and 

UGT76B1 (von Saint Paul et al., 2011) seem to have substrate specificity towards hydrophobic 

or FA-derived substrates. Hence, crystal structures of candidate UGTs will bring detailed 

information about the reaction mechanism and the coordination of 12-OH-JA and oxylipins. A 

crystal structure would help to understand the function of the different functional groups that were 

identified as necessary for catalysis. Especially, UGT76E2 is a good candidate for this since it 

can be purified in high amounts from the expression cultures.  
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8. SUPPLEMENTAL DATA 

 

Supplemental figure 1: Phylogenetic tree of glycosyltransferases of A. thaliana 

Phylogenetic analysis of 107 UGTs in A. thaliana. “Neighbor-joining and parsimony-based analysis of 

nine conserved amino acid sequences. Bootstrap values over 60 % are indicated above the nodes, with the 

number on the left indicating neighbor-joining and that on the right indicating parsimony. Dashes indicate 

bootstrap values under 60%. Hypothetical intron gains and losses are indicated by diamonds with the 

intron number (I). Postulated intron gains are indicated by filled diamonds, intron losses by unfilled 

diamonds and the questionable intron loss by a striped diamond.” Colors indicate phylogenetic groups (A-

N) with a bootstrap support greater than 90 % in the distance analysis. Figure and text taken from Ross et 

al., 2001. 
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Supplemental figure 2: Search for glucosyltransferase genes products by co-expression analysis 

Micro-array co-expression analysis of gene products involved in 12-hydroxy-JA metabolism. A) Co-

expression gene network around Jasmonic acid oxidase 3 (JOX3, At3g55970, yellow circle). JOX3 is co-

expressed with genes involved in plant hormone signal transduction (red marks), biosynthesis of 

secondary metabolites (yellow marks), diterpenoid biosynthesis (green marks), and biosynthesis of 

antibiotics (blue marks). B) Co-expression gene network of sulfotransferase 2a (ST2a, At5g07010, yellow 

circle). Octagonal shape indicates transcription factors and circular shape others. Networks are drawn 

based on Mutual Ranks (MR) giving an average correlation of two genes indicating stronger correlation 

by smaller values (MR = 1-5: bold lines, MR = 5-30: normal lines, MR > 30: weak lines). Marks indicate 

a common KEGG pathway. Access 02.05.2018; the page was prepared on Dec. 14. 2017 for ATTED-II 

version 9.1 
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Supplemental figure 3: Expression of UGT76E1, UGT76E2, UGT76E11, and UGT76E12 in 

A. thaliana leaves after wounding 

Transcriptomic analysis of Col-0 and a JA-deficient mutant (dde2-2). Plants were grown for six weeks at 

22°C under short day conditions (8 h light/16 h dark). Leaves were wounded three times across the mid 

vein by squeezing with forceps. Damaged rosette leaves were harvested at indicated time points (hours 

post wounding (hpw)). RNA was isolated and used for micro-array analysis. The transcriptomics data was 

recorded by a 44 k Affimetrix micro-array analysis and the readout is given in relative intensities 

(procedure defined units (p.d.u.)). Given are Box-Whisker-plots of the relative intensities of A) 

At5g59580, UGT76E1, B) At5g59590, UGT76E2, C) At3g46670, UGT76E11, and D) At3g46660, 

UGT76E12. The data represents medians of three experiments. Data from Dr. A. Mosblech, Dr. K. 

Feussner and Prof. Dr. I. Heilmann, 2010 unpublished. 
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Supplemental figure 4: Expression of UGT76E1 and UGT7E2 after abiotic stresses 

Expression analysis of indicated genes after abiotic stresses: cold, osmotic, alt, drought, genotoxic, 

oxidative, UV-B, wounding, and heat. Stress responses are illustrated from 0 -24 hours after stimulus A) 

Expression pattern of UGT76E1. Response after wounding is highlighted (red box). B) Expression pattern 

of UGT76E2. Response after wounding is highlighted (red box). The graphics are taken from Arabidopsis 

eFP-Browser; original data from Winter et al., 2007. Access 02.05.2018 
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Supplemental figure 5: Expression of UGT76E11 and UGT7E12 after abiotic stresses 

Expression analysis of indicated genes after abiotic stresses: cold, osmotic, alt, drought, genotoxic, 

oxidative, UV-B, wounding, and heat. Stress responses are illustrated from 0 -24 hours after stimulus A) 

Expression pattern of UGT76E11. Response after wounding is highlighted (red box). B) Expression 

pattern of UGT76E12. Response after wounding is highlighted (red box). The graphics are taken from 

Arabidopsis eFP-Browser; original data from Winter et al., 2007. Access 02.05.2018. 
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Supplemental figure 6: Expression of UGT76E1, UGT76E2, UGT76E11, UGT76E12, and UGT74F1 

in Col-0 and JA-deficient mutant after wounding 

Quantitative real-time PCR of UGT76E1 (red), UGT76E2 (green), UGT76E11 (orange), UGT76E12 

(blue), and UGT74F1 (grey). Col-0 and JA-deficient (dde2-2) plants were grown for six weeks at 22 °C 

under short day conditions (8 h light/16 h dark). Leaves were wounded three times across the mid vein by 

squeezing with forceps. Damaged rosette leaves were harvested at indicated time points (hours post 

wounding (hpw)), RNA was isolated, and appr. 1 µg transcribed complementary DNA were used for 

PCR. All expression values are normalized to actin 8 as reference. Relative expression of the transcripts 

normalized to their respective expression levels at 0 hpw in Col-0 and dde2.2. Col-0-data represents the 

mean value + SD of three biological replicates, dde2.2-data presents one experiment. 10 plants per time 

point were pooled for one replicate. Asterisks indicate significance by one-sided T-Test with *p<0.05, 

**p<.0.01. 
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Supplemental figure 7: Co-expression analysis of UGT76E1 and UGT76E2 

Micro-array co-expression analysis of gene products of indicated genes. A) Co-expression gene network 

around UGT76E1 (At5g59580, yellow circle). UGT76E1 is co-expressed with genes involved in 

diterpenoid biosynthesis (red marks). B) Co-expression gene network of UGT76E2 (At5g59590, yellow 

circle). Octagonal shape indicates transcription factors and circular shape others. Networks are drawn 

based on Mutual Ranks (MR) giving an average correlation of two genes indicating stronger correlation 

by smaller values (MR = 1-5: bold lines, MR = 5-30: normal lines, MR > 30: weak lines). Marks indicate 

a common KEGG pathway. Access 02.05.2018; the page was prepared on Dec. 14. 2017 for ATTED-II 

version 9.1 
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Supplemental figure 8: Co-expression analysis of UGT76E11 and UGT76E12 

Micro-array co-expression analysis of gene products of indicated genes. A) Co-expression gene network 

around UGT76E11 (At3g46670, yellow circle). UGT76E11 is co-expressed with genes involved in 

biosynthesis of secondary metabolites (red marks). B) Co-expression gene network of UGT76E12 

(At3g46660, yellow circle). UGT76E12 is co-expressed with genes involved in biosynthesis of secondary 

metabolites (red marks) and genes of the phenylpropanoid biosynthesis (yellow marks). Octagonal shape 

indicates transcription factors and circular shape others. Networks are drawn based on Mutual Ranks 

(MR) giving an average correlation of two genes indicating stronger correlation by smaller values (MR = 

1-5: bold lines, MR = 5-30: normal lines, MR > 30: weak lines). Marks indicate a common KEGG 

pathway. Access 02.05.2018; the page was prepared on Dec. 14. 2017 for ATTED-II version 9.1 
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Supplemental table 1: Calculated protein parameters and predicted localizations for UGT76E1, 

UGT76E2, UGT76E11, UGT76E12 and UGT74F1 

Information about the proteins were calculated from their primary amino acid sequences with different 

online-tools. The table depicts the molecular weight (MW), the specific extinction coefficient at 280 nm 

(ε), the theoretical isoelectric point (pI), the presents of a signal peptide (SignalP), target peptides 

(TargetP), and the number of transmembrane domains (TMHMM) for UGT76E1, UGT76E2, 

UGT76E11, UGT76E12, and UGT74F1. The protein parameters were calculated with ProtParam and 

localization predictions were done with SignalP, TargetP (plant settings), and TMHMM online tools. 

Access was 04.05.2018. 

Parameter UGT76E1 UGT76E2 UGT76E11 UGT76E12 UGT74F1 

MW (kDa) 50.8 50.1 50.6 51.7 50.3 

ε (kM-1cm-1) 66.4 63.5 58.0 55.5 62.4 

pI 6.6 5.4 5.9 6.0 5.5 

SignalP / / / / / 

TargetP mitochondrial / / / / 

TMHMM 
(no.) 

0 0 0 0 0 

 

 

 

 

Supplemental figure 9: Gene structures of UGT76E1, UGT76E2, UGT76E11, and UGT76E12 in 

A. thaliana genome 

Gene maps of the indicated UGTs in the A. thaliana genome. Nucleotide bar depicts the location in the 

chromosome (black bar). Gene structure is shows in coding region (dark blue), untranslated region (light 

blue), and introns (arrow up lines). Shown are gene maps of A) UGT76E1, B) UGT76E2, C) UGT76E11, 

and D) UGT76E12. Graphics taken from The Arabidopsis Information Resource (TAIR), access 

02.05.2018. 
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Supplemental figure 10: Sequencing results of UGT76E1, UGT76E2, UGT76E11, UGT76E12, and 

UGT74F1 integrated into the expression vector 

The coding sequences of indicated genes were amplified from complementary DNA (cDNA) 2 hours post 

wounding. The sequence of UGT74F1 was amplified from root cDNA. Indicated UGT-sequences (green 

annotations) were fused to an N-terminal His-tags of pET28a vectors for heterologous protein expression 

in E. coli. Correct cloning was checked by sequencing from two directions (forwards and reverse). Poor 

sequencing results are marked with red tildes, manual insertion is given as green line, and differing 

sequence is marked with yellow line. Complete and correct sequencing results are shown for A) 

UGT76E1, B) UGT76E2, C) UGT76E11, and D) UGT76E12. E) The sequence of UGT74F1 illustrates a 

splice variant of the template. All alignments were done with the Geneious algorithm as global alignment 

with free end gaps and 65 % cost matrix in Geneious version 8.1 (Biomatters). Available from 

http://www.geneious.com 
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Supplemental figure 11: Optimum temperature of UGT7E1, UGT76E2, UGT76E11, and UGT7E12 

Temperature optima for the indicated UGTs were determined in the range of 4 to 50 °C. 0.1 mM ω-

hydroxy-hexadecanoic acid and 0.5 mM UDP-Glc in the gel filtration buffer of the receptive enzyme 

were equilibrated at the indicated temperatures for 1 h. The product formation was detected by LC-MS 

and shown as relative signal intensities (%) over temperature for A) UGT76E1, B) UGT76E2, C) 

UGT76E11, and D) UGT76E12. Data represents one experiment for UGT76E1. All other measurements 

are means with ±SD of and at least three independent experiments 
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Supplemental figure 12: UGT76E12 shows side activity towards ethanol 

The substrate specificities of UGT76E12 was analyzed by an activity assay with uniformly labeled UDP-
14C(U)-Glc towards ω-hydroxy-hexadecanoic acid. The assay was performed with 5 µg homogeneous 

UGT76E12, 50 µM or 100 µM ω-hydroxy-hexadecanoic acid dissolved in ethanol or acetonitrile (ACN) 

and 30 µM UDP-Glc, 0.02 µCi UDP-14C(U)-Glc in the buffer (20 mM tris/HCl, pH 7.5, 50 mM NaCl). 

The reaction took place for 1 h at 25 °C. After metabolite extraction and thin layer chromatography 

(TLC), the TLC-plates were incubated on phosphoscreens for 5 days and the radioactive signals detected. 

The arrow indicates a side product (side-prod.) with ethanol. The data represents one experiment. 

 

 

Supplemental table 2: Chemical structures of the UGT-substances 

Chemical structures of hexadecanoic acid (16:0), ω-hydroxy-16:0 (ω-OH-16:0), 2-hydroxy-16:0 (2-OH-

16:0), 3-hydroxy-16:0 (3-OH-16:0), hexadecanol (OH-C16), benzoic acid (BA), salicylic acid (SA), 

pipecolic acid (Pip), indole-3-caboxylic acid (ICA), abscisic acid (ABA), zeatin, gibberellic acid (GA), 

12- 12-oxo-phytodienoic acid (12-OPDA), JA, 12-hydroxy-JA (12-OH-JA), 11-hydroxy-JA (11-OH-JA), 

12-hydroxy-JA-methyl ester (12-OH-JA-ME), quercetin, dihydro-myricetin (dh-myricetin), and dihydro-

kaempferol (dh-kaempferol).  

Substrates Structure 
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Supplemental figure 13: 12-carboxy-JA was identified in leaves after wounding 

The metabolite 12-carboxy-JA (12-COOH-JA) was identified in the ex vivo metabolite fingerprinting 

analysis. Therefore, plants were grown for six weeks at 22 °C under short day conditions (8 h light/16 h 

dark). Leaves were wounded three times across the mid vein by squeezing with forceps. Damaged rosette 

leaves were harvested at 0, 2, and 5 hours post wounding (hpw), extracted, and used as substrate mix for 

the ex vivo activity assay. The extracts were resolved in 50 mM Tris pH 8, 100 mM NaCl buffer and 20 µl 

acetonitrile. This samples were analyzed by mass spectrometry with a method, which was developed for 

non-targeted fingerprinting. Out of 1996 metabolite features with a pVal < 10-6 the particular features of 

12-COOH-JA were found in the A) positive ionization mode and B) in the negative ionization mode 

shown as Box-Whisker-plots. The data represents three measurements of one experiments. 10 plants were 

pooled for each time point of one replicate. Data was analyzed with the MarVis tool (Kaever, 2014). C) 

The compound with the mass-to-charge ratio (m/z) 239.091(◊) was fragmented with a collision energy of 

12 eV. D) Structure analyses of the main fragments can be assigned to 12-COOH-JA. Analysis was 

performed by Dr. Kirstin Feussner. Intensities given as counts per second (cps) 
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Supplemental figure 14: 12-O-glucosyl-jasmonoyl-isoleucine is not detected in plants 

Plants were grown for six weeks at 22 °C under short day conditions (8 h light/16 h dark). Leaves were 

wounded three times across the mid vein by squeezing with forceps. Damaged rosette leaves were 

harvested at 5 hours post wounding (pool of 10 plants per sample), extracted, and used as substrate mix 

for the ex vivo activity assay. The extracts were resolved in 50 mM Tris pH 8, 100 mM NaCl buffer and 

the assay was performed with 0.1 mM UDP-Glc and 100 µg of the indicated active UGT-enzymes or 

inactive enzyme (control) for 1 h at 25 °C. The reactions were stopped by adding acetonitrile and 

analyzed by mass spectrometry with a method, which was developed for non-targeted fingerprinting 

(1996 features with pVal < 10-6). Given are the extracted ion chromatograms of 12-hydroxy-jasmonoyl-

isoleucine (12-OH-JA-Ile) in the negative ionization mode (mass-to-charge ration (m/z) 338.1967) and in 

the positive ionization mode (m/z 340.2124) as well as for 12-O-glucosyl-jasmonoyl-isoleucine (12-O-

Glc-JA-Ile) in the positive ionization mode (m/z 502.2652), and the negative ionization (m/z 500.2496). 

All chromatograms show relative signal intensities fixed to 104 counts per second over the time. The data 

is representative for three measurements of one experiments. Samples were measured by Dr. Kirstin 

Feussner. Data was analyzed with the MarVis tool (Kaever, 2014). 
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Supplemental figure 15: Enzyme kinetics with 9- and 13-hydroxy-octadecatrienoic acid 

The enzymatic kinetics of UGT76E2, UGT76E11, UGT76E12, and UGT74F1 were determined by 

spectrophotometric measurements. The UGT-reactions were coupled via the co-product UDP to the 

pyruvate kinase (PK) and the lactate dehydrogenase (LDH) in 1 : 1 : 1 stoichiometry. The PK 

phosphorylates UDP to UTP while metabolizing phosphoenolpyruvate to pyruvate. LDH catalyzes the 

reduction of pyruvate to lactate by oxidizing NADH to NAD+, which shows no absorption maximum at 

340 nm. The assay was adapted from Brown et al., 2012. The reactions were performed with 5 µg 

UGT76E2 in gel filtration buffer of the respective enzyme, 500 µM UDP-Glc, and indicated substrates 

concentration at 25 °C. The reactions were coupled to 50 µg pyruvate kinase, 50 µg lactate 

dehydrogenase, 0.8 mM phosphoenolpyruvate, and 0.15 mM NADH and monitored at 340 nm for 600 s. 

A) Kinetics of UGT76E12 with 9-hydroxy-octadecatrienoic acid (9-HOT) and Michaelis-Menten fit of 

the measurements. B) Kinetics of UGT76E2 with 13-hydroxy-octadecatrienoic acid (13-HOT) and 

Michaelis-Menten fit of the measurements. C) Kinetics of UGT76E11 with 13-HOT and Michaelis-

Menten fit of the measurements. D) Kinetics of UGT76E12 with 13-HOT and Michaelis-Menten fit of 

the measurements. Due to limitations in 13-HOT availability, the value for 150 µM was measured only 

once. E) Kinetics of UGT74F1 with salicylic acid (SA) and Michaelis-Menten fit of the measurements. 

The data are mean values with standard deviation of three biological replicates.  

 

A) B)

C) D)

 

E)
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Supplemental figure 16: Phytohormone profiles of A. thaliana 

after wounding 

For the wounding experiment, plants were grown for six weeks at 

22 °C under short day conditions (8 h light/16 h dark). Leaves 

were wounded three times across the mid vein by squeezing with 

forceps. Damaged rosette leaves were harvested at indicated time 

points (hours post wounding (hpw)), extracted, and analyzed by 

LC-MS/MS. Quantitative data are given in nmol/g fresh weight 

for: A) salicylic acid (SA), B) 2-glucosyl-O-SA (2-O-Glc-SA), 

C) indole-carboxylic acid (ICA), D) abscisic acid (ABA), E) 

ABA-glucosyl ester (ABA-GE), F) indole-acetic acid (IAA), and 

G) 12-oxophytodienoic acid (12-OPDA). Each data point 

represents the mean value + SD of three biological replicates 

from three independent experiments. 10 plants were pooled for 

each time point of one replicate. Asterisks indicate significance 

by one-sided T-Test with *p<0.05, **p<.0.01, ***p<0.005 

Samples were measured by Dr. Cornelia Herrfurth. 
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