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Thesis abstract 

Islands have always played a central role in ecology and biogeography. On the one hand, 

island biotas are ecologically unique by featuring exceptionally high rates of endemism and 

remarkable evolutionary adaptations while being generally poor in species. On the other 

hand, the geographical, climatic, and geological diversity of islands across the globe facilitates 

the detailed study of abiotic and biotic factors that have shaped these extraordinary 

assemblages. Many findings from island biogeography have led to general ecological insights 

in the past, e.g. the dynamic regulation of species diversity via immigration, extinction and 

speciation. Today, the increasing availability of ecological data allows going beyond species 

numbers and resolving the identities, functional traits and phylogenetic relationships of 

individual species at the global scale. This opens new and promising ways of inquiry in the 

field of island biogeography and bears great potential for understanding the ecological 

processes shaping island biodiversity at a deeper level.  

The objective of the present thesis is twofold. First, I aim to identify and address challenges 

in the utilization of global plant diversity data that currently impede the effectiveness of 

macroecological approaches in (island) biogeographical research. Second, I endeavour to 

utilize these insights to conduct large-scale, data-driven analyses of plant diversity that 

examine the ecological and biogeographical mechanisms underlying the assembly of island 

floras. Consequently, the chapters of this thesis are arranged into a conceptual part (Chapters 

1 and 2) and an empirical part (Chapters 3 and 4). 

In Chapter 1, I develop a novel conceptualization of ecological data types according to their 

domain and resolution. Focusing on data from two domains, species distributions and 

functional traits, I show that existing digital infrastructures are generally more advanced for 

disaggregated data types, e.g. point occurrence records, vegetation plots and individual-level 

trait measurement, than for aggregated data types, e.g. regional checklists or species-level 

functional traits). I discuss the need for the integration of aggregated data types into the 

macroecological data landscape and demonstrate the potential of this approach with three 

case studies. In Chapter 2, I present the GIFT database, a novel resource for macroecological 

analyses of global plant diversity. GIFT implements many of the concepts outlined in chapter 

1 and achieves nearly global coverage in terms of plant distributions and several key 

functional traits. The chapter provides extensive information on the design and internal 

processing workflows of the database, and describes the geographical, taxonomic and 

functional coverage of GIFT. 

In Chapter 3, I use data from GIFT to assess global patterns in the beta diversity of island 

and mainland floras. To this end, I model species turnover, i.e. the richness-insensitive 

component of beta diversity, as a function of pairwise geographical distance and climatic 

differences between floristic regions. I show that, on average, island floras are more similar 
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to each other than mainland floras and that species turnover among island assemblages is 

mostly determined by climatic conditions rather than by geographic distance. These findings 

suggest that island floras sample largely from a limited set of widespread, dispersive species, 

while less dispersive taxonomic groups tend to be rare on islands and hence contribute little 

to species turnover. This interpretation is substantiated by the turnover patterns observed 

for varyingly dispersive taxonomic and functional groups, and represents a strong basis for 

the quantitative evaluation of dispersal and environmental filters during island colonization. 

In Chapter 4, I further examine ecological filters during island colonization by providing the 

first global, quantitative analysis of island disharmony – a phenomenon that describes the 

biased representation of higher taxa on islands compared to their mainland source regions. I 

develop a novel method for the statistical estimation of island-specific source regions as well 

as two measures that quantify the overall compositional disharmony of an island flora and 

the global over- or under-representation of individual families on islands. Analyzing these 

two measures as a function of island- and family-specific characteristics, respectively, reveals 

that the overall disharmony of island floras is closely linked to island area, isolation, and 

climatic conditions, whereas the global over- or under-representation of individual families 

shows little systematic variation with family-level functional traits or family size. These 

findings provide a comprehensive basis for understanding the island- and taxon-specific 

factors that determine assembly processes on islands, but at the same time highlight the need 

for a stronger utilization of functional and phylogenetic approaches in island biogeography.  

In conclusion, the present thesis makes several important contributions to the fields of 

macroecology and island biogeography. In a broader context, I identify aggregated data types 

as a rich, but under-utilized source of plant diversity information with great potential for 

improving global data coverage and representativeness. The effectiveness of a targeted 

integration of aggregated data is demonstrated by the GIFT database, which describes global 

plant diversity at an unprecedented level of completeness and constitutes an invaluable 

resource for future macroecological research. In a more specific context, my research on the 

beta diversity and disharmony of island floras provides comprehensive new insights into 

fundamental ecological processes that govern the assembly of island floras. In particular, the 

proposed method for a statistical estimation of island source regions as well as my findings 

on the relative roles of dispersal, environmental and biotic filtering address key problems in 

island biogeography.  
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Zusammenfassung 

In der ökologischen und biogeographischen Forschung nehmen Inseln seit jeher eine 

besondere Rolle ein. Zum einen besitzen Inseln ökologisch faszinierende Artgemeinschaften, 

welche sich oft durch einen hohen Grad an Endemismus und außergewöhnliche Adaptionen 

bei gleichzeitig relativ geringer Gesamtartenzahl auszeichnen. Zum anderen ermöglicht die 

geographische, klimatische und geologische Vielfalt der weltweit mehr als 100.000 Inseln 

vergleichende Studien zu den ökologischen und evolutionären Faktoren, die zum Entstehen 

dieser Artgemeinschaften beigetragen haben. Die Erkenntnisse der Inselbiogeographie sind 

dabei nicht nur auf Inseln beschränkt, sondern führten in der Vergangenheit immer wieder 

zu grundlegenden Einsichten in ökologische Zusammenhänge, wie etwa der dynamischen 

Regulierung von Artenvielfalt durch Immigrations-, Extinktions- und Artbildungsprozesse. 

Heute erlaubt die steigende Verfügbarkeit ökologischer Daten außerdem über die 

Betrachtung von Artenvielfalt hinaus zu gehen, und die Identitäten, funktionellen 

Eigenschaften und phylogenetischen Beziehungen einzelner Arten aufzuschlüsseln. Dadurch 

gewinnen makroökologische Methoden in der inselbiogeographischen Forschung 

zunehmend an Relevanz und versprechen ein tieferes Verständnis ökologischer Prozesse auf 

Inseln. Auf diesem Weg sind allerdings noch mehrere Hürden zu überwinden. 

Mit der vorliegenden Arbeit verfolge ich zwei Ziele. Zum einen möchte aktuelle Defizite in 

der Verfüg- und Verwendbarkeit von Biodiversitätsdaten identifizieren und somit zu einer 

allgemein effektiveren Nutzung makroökologischer Ansätze in der Inselbiogeographie 

beitragen. Zum anderen möchte ich die daraus gewonnen Erkenntnisse in der Analyse 

globaler Pflanzendiversitätsmuster umsetzen, um neue Einsichten in die Entstehung und 

Zusammensetzung von Inselfloren zu gewinnen. Die vier Forschungskapitel gliedern sich 

dementsprechend in einen konzeptionellen (Kapitel 1 und 2) und einen empirischen Teil 

(Kapitel 3 und 4). 

In Kapitel 1 erarbeite ich eine Einteilung ökologischer Datentypen auf Grundlage von 

Datenauflösung und -domäne. Ich kann zeigen, dass die existierende digitale Infrastruktur in 

den Schlüsseldomänen der Verbreitung und funktionellen Eigenschaften von Arten deutlich 

ausgereifter für disaggregierte Datentypen (z.B. Punktvorkommen, Vegetationsplots, 

Einzelmessungen von funktionellen Eigenschaften) als für aggregierte Datentypen ist (z.B. 

regionale Checklisten oder Mittelwerte funktioneller Eigenschaften). Im Weiteren diskutiere 

ich die Notwendigkeit einer stärkeren Integration von aggregierten Datentypen in die 

makroökologische Datenlandschaft, und belege das Potenzial eines solchen Vorgehens 

anhand von drei makroökologischen Fallstudien. In Kapitel 2 stelle ich GIFT vor, eine neue 

Datenbank zur makroökologischen Analyse von Pflanzendiversität. GIFT setzt viele der in 

Kapitel 1 erarbeiteten Konzepte zur Integration globaler Biodiversitätsdaten um, und 

erreicht nahezu globale Abdeckung hinsichtlich floristischer Verbreitungsdaten sowie 
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bestimmter funktioneller Eigenschaften von Planzen. Das Kapitel stellt umfassende 

Informationen zum Aufbau der Datenbank zusammen, erläutert automatisierte Abläufe zur 

Verarbeitung ökologischer Daten und präsentiert detaillierte Statistiken zur geographischen, 

taxonomischen und funktionellen Abdeckung von GIFT.  

In Kapitel 3 nutze ich GIFT um globale Muster in der kompositionellen Ähnlichkeit von 

Insel- und Festlandsfloren zu untersuchen. Hierzu modelliere ich den Arten-turnover, d.h. 

den von der Gesamtartenzahl unbeeinflussten Teil der Beta-Diversität zweier Floren, in 

Abhängigkeit von geographischer Distanz und klimatischen Variablen. Ich zeige, dass sich 

Inselfloren im Mittel ähnlicher sind als Festlandsfloren und der Arten-turnover auf Inseln 

weniger von geographischer Distanz als vielmehr von klimatischen Bedingungen bestimmt 

wird. Die Ergebnisse legen nahe, dass Inseln mehrheitlich durch eine begrenzte Gruppe von 

Arten kolonisiert werden, die sich verlässlich über weite Entfernungen ausbreiten können, 

während Arten mit schlechteren Ausbreitungsfähigkeiten nur selten auf Inseln vertreten sind 

und daher wenig zum Arten-turnover beitragen. Diese Interpretation wird vom 

entsprechenden Verhalten sich unterschiedlich gut ausbreitender taxonomischer und 

funktioneller Gruppen gestützt und liefert eine wichtige Grundlage zur quantitativen 

Bewertung von Ausbreitungs- und Umwelt-Filtern bei der Kolonisierung von Inseln. Auch 

in Kapitel 4 untersuche ich ökologische Filtereffekte während der Kolonisierung von Inseln 

und präsentiere die erste globale, quantitative Analyse von Insel-„Disharmonie“ – einem 

Konzept, das die proportionale Über- oder Unterrepräsentation bestimmter Taxa auf Inseln 

im Vergleich zu deren Ursprungsregionen auf dem Festland beschreibt. Dazu entwickle ich 

einen neuen Ansatz zur statistischen Abschätzung der geographischen Ursprungsregionen 

von Inselfloren sowie zwei Maße zur Quantifizierung der Disharmonie einer Flora als 

Ganzes und der globalen relativen Häufigkeit einzelner Pflanzenfamilien auf Inseln. Die 

Analyse dieser Maße in Abhängigkeit insel- beziehungsweise familienspezifischer 

Eigenschaften zeigt, dass die Disharmonie von Inselfloren insgesamt stark durch Inselgröße, 

-isolation und -klima bestimmt wird, während die Repräsentation einzelner Familien kaum 

anhand funktioneller Eigenschaften oder der Familiengröße vorhersagbar ist. Dieser 

Ergebnisse liefern wichtige Beiträge zum Verständnis insel- und taxon-spezifischer Faktoren 

bei der Zusammensetzung von Inselfloren. Gleichzeitig hebt die Studie das hohe Potential 

einer verstärkten Einbindung funktioneller und phylogenetischer Ansätze in die 

makroökologische (Insel-)forschung hervor. 

Zusammenfassend leistet die vorliegende Dissertation mehrere wichtige Beiträge zur 

makroökologischen und inselbiogeographischen Forschung. Im erweiterten Kontext 

identifiziere ich aggregierte Datentypen als reichhaltige, jedoch vernachlässigte Quelle von 

Informationen zur globalen Pflanzendiversität, welche massiv zu einer verbesserten 

Datenabdeckung und -repräsentativität beitragen kann. Die von mir vorgestellte GIFT 

Datenbank demonstriert das Potenzial einer stärkeren Integration aggregierter Datentypen 

in die makroökologische Forschung und bildet die globale Pflanzenvielfalt in teilweise 

unerreichtem Umfang ab. GIFT wird daher auch zukünftig als Grundlage wichtiger 
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makroökologischer Analysen dienen. Im konkreten inselbiogeographischen Kontext verhilft 

meine Forschung bezüglich Betadiversität und Disharmonie zu neuen Einsichten in 

grundlegende ökologische Prozesse bei der Entstehung und Entwicklung von Inselfloren. 

Insbesondere die von mir entwickelte Methode zur Abschätzung der geographischen 

Ursprünge von Insel-Artgemeinschaften, sowie meine Erkenntnisse zu den relativen 

Beiträgen von Ausbreitungs-, Umwelt-, und Interaktionsfiltern bei der Kolonisierung von 

Inseln stellen wichtige Fortschritte in Kernbereichen der Inselbiogeographie dar.  
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General Introduction 

Historical biogeography and the significance of  islands 

Terrestrial plant life has endured more than 400 million years of geological, environmental, 

and geographical change (Morris et al., 2018). The effects of this eventful past are preserved 

in the complex distribution and striking variation of today’s plant diversity. Among the three 

to four hundred thousand species of extant vascular plants (Christenhusz & Byng, 2016; 

Willis, 2017), examples range from miniscule aquatic herbs (Wolffia arrhiza, Díaz et al., 2016) 

to giant forest trees (Sequoia sempervirens, Díaz et al., 2016), from narrow-ranged endemics 

(Erica capensis, Helme & Trinder-Smith, 2006) to global cosmopolitans (Phragmites australis, 

Eller et al., 2017), and from ancient evolutionary relics (Amborella trichipoda, Poncet et al., 2013) 

to members of recent radiations (Lupinus semperflorens, Hughes & Eastwood, 2006). 

Understanding how such diversity patterns vary in space and time is among the most 

fundamental questions in ecology (Pennisi, 2005; Sutherland et al., 2013). The respective 

scientific discipline, focusing on the systematic investigation of spatiotemporal variations in 

biodiversity, is termed biogeography (Lomolino et al., 2016).  

In the 18th century, early naturalists started to realize that the spatial distribution of species is 

highly structured. Carl Linnaeus (1707-1778) noted that species are adapted to certain 

environments and do not occur outside their preferred range of conditions. Georges-Louis 

Leclerc, Comte de Buffon (1707-1788) added to this observation that distant locations 

generally harbor distinct sets of species, irrespective of their climatic and environmental 

similarity (Lomolino et al., 2016). Subsequently, eminent researchers such as Johann Reinhold 

Forster (1729-1798), Sir Joseph Banks (1743-1820), Augustin-Pyrame de Candolle (1778-

1841) and, especially, Alexander von Humboldt (1769-1859) further consolidated the 

emerging field of biogeography, documenting latitudinal and elevational gradients in species 

diversity, defining biogeographic regions, and expressing first ideas of mutual interactions 

influencing the distribution of species (Lomolino et al., 2016, see also Plate 1). These 

contributions greatly helped to understand the relationship between species distributions and 

contemporary environmental conditions, but could not sufficiently explain biogeographical 

patterns such as the abrupt faunal change within the Malay Archipelago or the unique biotas 

of oceanic islands. These and other observations were finally put into perspective by Charles 

Darwin (1809-1882) and Alfred Russel Wallace (1823-1913). Their independent discovery of 

evolution by means of natural selection (Darwin & Wallace, 1858; Darwin, 1859) provided 

the key to understanding species distributions – in fact, species themselves – as the current 

endpoints in a series of past geological, climatic and ecological dynamics. It is not a 

coincidence that the ideas of both Darwin and Wallace were substantially inspired by 

observations they had made on islands. 
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Plate 1: Seminal works by early 
biogeographers on the 
distribution of plant diversity. 
Top: Elevational zonation of 
the Ecuadorian Andes 
including Mt. Chimborazo 
(Humboldt, 1805-1834). Left: 
Global floristic regionalization 
(Grisebach, 1866). Grisebach 
acknowledged the uniqueness 
of island floras by placing 
them in a separate category 
(zone 24: “Oceanische 
Inselfloren”). 

Islands are exceptionally informative subjects of biogeographical research. Islands are 

characterized by isolated, comparatively simple biotas, well-defined geographical boundaries 

(Gillespie, 2007), and feature a large range of climatic (e.g. temperature, precipitation, 

seasonality), geographical (e.g. area, elevation, isolation) and historical (e.g. island age, 

geological origin, Pleistocene impacts) conditions (Weigelt et al., 2013). This makes islands 

ideal model systems for studying evolutionary, ecological and biogeographical processes at 

large spatial scales, where experimental manipulations are infeasible (Vitousek, 2002; 

Whittaker & Fernández-Palacios, 2007; Whittaker et al., 2017). Moreover, islands 

disproportionately contribute to global biodiversity (Myers et al., 2000; Barthlott et al., 2005) 

and feature some of the highest endemism rates worldwide (Kier et al., 2009) while being 

known hotspots of biological invasions and species extinctions (Sax & Gaines, 2008; van 

Kleunen et al., 2015). For these reasons, islands are highly relevant study systems from both 

a methodological and ecological point of view. 

The unique properties of islands inspired another seminal work that holds relevance to this 

date: the equilibrium theory of island biogeography (ETIB, MacArthur & Wilson, 1963, 

1967). Similar to the theory of evolution by natural selection, the ETIB laid out a radically 

new perspective that describes complex biotic patterns as the outcome of only a few 
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fundamental processes. According to the ETIB, the species number of an island arises 

dynamically from opposing rates of immigration and extinction that vary with island isolation 

and area, respectively. The simple yet elegant mathematical formulation of the model 

prompted a shift towards a more quantitative approach to ecology and biogeography 

(Simberloff, 1969; Levin, 1974b; Connor & McCoy, 1979; Hubbell, 2001). In fact, the 

simplicity of the ETIB was the key to its immense success, as it provided a generalizable 

framework for predicting species richness across different taxa and geographical settings 

(Simberloff, 1974; Santos et al., 2016), including insular habitats on the mainland such as 

mountain tops (Brown, 1971), lakes (Browne, 1981), or forest fragments (Harris, 1984).  

Many aspects of island biodiversity, however, remained beyond the scope of the ETIB and 

its extensions. In particular, compositional and morphological features of island biota proved 

notoriously hard to predict from analytical models, as they result from a complex interplay 

of island- and taxon-specific characteristics, evolutionary dynamics, and stochastic events 

(Whittaker & Fernández-Palacios, 2007). Scientific progress on these more intricate aspects 

of island biodiversity therefore was based on natural-historical observations and conceptual 

models. Especially the work of Carlquist (1965, 1966a, 1966b, 1966c, 1966d, 1974) greatly 

advanced the understanding of assembly processes on islands. Accordingly, species 

immigration and extinction are characterized by selective ecological filters (Carlquist, 1965): 

on the one hand, dispersal filtering prevents species with poor dispersal abilities from 

crossing the open sea; on the other hand, environmental filtering prevents the establishment 

of species that cannot persist under the predominant biotic and abiotic conditions of the 

island. Successful colonizers find themselves in a new ecological and evolutionary arena and 

– given a sufficient amount of time and reproductive isolation from the mainland – 

potentially diversify and/or adapt to the local conditions. This sequential view of assembly 

processes has helped to understand many peculiar features of island biota such as the over- 

or under-representation of certain taxa (Carlquist, 1965; Hoekstra & Fagan, 1998) or 

common evolutionary trends (e.g. insular woodiness or loss of dispersal capacity; Carlquist, 

1966b, 1970; Whittaker & Fernández-Palacios, 2007). Furthermore, it provided a framework 

for deriving testable hypotheses regarding the taxonomic, functional, and phylogenetic 

composition of island biota (Midway & Hodge, 2012).  

Biogeographical research has impacted our understanding of the natural world in many ways, 

and islands have played a central role in this process. Due to their geographical isolation and 

ecological simplicity, islands represent excellent study systems, which helped uncover 

fundamental mechanisms of evolution (natural selection), community assembly 

(immigration, extinction and speciation). However, the two classical research paradigms in 

(island) biogeography, natural history (Humboldt, 1805-1834; Wallace, 1881; Carlquist, 1965) 

and mathematical modelling (Arrhenius, 1921; MacArthur & Wilson, 1967; Hubbell, 2001), 

have been unable to fully bridge the gap between detailed descriptions and robust 

generalizations. Consequently, a novel approach – rigorously quantitative yet capable of 

resolving the complexities of ecological systems – was required. 
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The macroecological approach 

Macroecology seeks to understand ecological phenomena at large spatiotemporal scales by 

analyzing emergent statistical patterns in the distribution, abundance and diversity of 

organisms (Brown & Maurer, 1989; Brown, 1995; Kent, 2005). This data-driven approach 

offers a powerful toolkit for island biogeographical research (Kueffer et al., 2014). Kreft et al. 

(2008), for example, analyzed the effects of area, isolation, climate, topography and geology 

on the number of native vascular plant species in 1458 island and mainland floras, providing 

the first quantitative synthesis on the drivers of insular species richness. Their finding that 

on islands, but not on the mainland, area is the most important predictor of species richness 

showed that area-mediated effects on species richness – e.g. speciation rate, extinction rate, 

or carrying capacity – differ in strength across geographical settings. Macroecological 

approaches have also been critical for testing theoretical frameworks such as the general 

dynamic model of island biogeography (Whittaker et al., 2008), which postulates that rates of 

key ecological processes on islands vary over geological timescales. The major prediction of 

this model, that species richness follows a hump-shaped relationship with island age, has 

been empirically confirmed for multiple archipelagos and taxa (Whittaker et al., 2008; 

Cameron et al., 2013; Lenzner et al., 2017).  

The power of the macroecological approach is manifest most clearly when looking not just 

at species numbers, but also at species composition. Knowing which species occur in a given 

geographical area, and not just how many, opens up entirely new research avenues. Species 

identities establish a link to the wealth of species-specific information on functional traits, 

taxonomic and phylogenetic relationships, biotic interactions, and abiotic preferences that 

constitute the basis for a statistical (i.e. macroecological) characterization of species 

assemblages. This makes aspects of island biodiversity that used to be too complex for 

analytical models tangible. In recent years, the potential of species-level macroecological 

approaches has been demonstrated by numerous studies, for example on the beta diversity 

(Stuart et al., 2012; Cabral et al., 2014), functional characteristics (Santos et al., 2015; Whittaker 

et al., 2014), or phylogenetic structure (Cardillo et al., 2008; Weigelt et al., 2015) of island 

biotas. However, many fundamental questions in island biology and biogeography remain to 

be addressed (Patiño et al., 2017).  

The focus on statistical patterns makes macroecology a particularly data-intensive discipline, 

whose capacity to produce novel ecological insights is highly dependent on the availability 

and quality of ecological data (Kueffer et al., 2014). The rise of macroecology within the last 

two decades (Beck et al., 2012) has been enabled and accompanied by the rapid growth of 

ecological databases. Today, unprecedented amounts of data on the spatial distribution 

(Global Biodiversity Information Facility, GBIF, 2018; Map of Life, Jetz et al., 2012), 

functional traits (TRY, Kattge et al., 2011a), taxonomic affiliations (TPL, The Plant List, 2013; 

TNRS, Boyle et al., 2013) and (phylo-)genetic relationships (Genbank, Benson et al., 2005; 

TreeBASE, Piel et al., 2009) of plant species are available. Moreover, modern geospatial data 
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products allow for a global characterization of abiotic, biotic and socioeconomic variables 

with high accuracy and at high spatiotemporal resolutions (e.g. Karger et al., 2017; Hengl et 

al., 2017; Copernicus Global Land Service, 2018).  

Despite these developments, our knowledge of biodiversity continues to be limited by the 

lack of ecological data (Taugourdeau et al., 2014; Hortal et al., 2015). Some data limitations 

are inevitable and arise from fundamental constraints (e.g. in terms of money, time, labor, 

etc.) on the spatiotemporal resolution at which biodiversity can be measured (Hortal, 2008), 

but others can be overcome by a coordinated utilization and integration of existing data 

resources. One potential area of improvement is the common practice of using local (i.e. 

highly resolved) diversity data such as point occurrences or vegetation plots to address 

questions at continental or global scales (see e.g. Moles et al., 2007; Moles et al., 2009; 

Morueta-Holme et al., 2013; Vellend et al., 2013). This mismatch in scales entails two pitfalls 

that may compromise the reliability of ecological inferences. First, highly resolved diversity 

data are particularly affected by the above-mentioned constraints on the ability to measure 

biodiversity, and therefore exhibit severe deficits in terms of large-scale geographical, 

temporal and taxonomic coverage (Gonzalez et al., 2016; Meyer et al., 2016). Second, highly 

resolved diversity data reflect local ecological processes and do not scale up to large 

geographical extents, where other factors such as climate and biogeographical history 

regulate biodiversity (Huston, 1999; Hortal, 2008, but see e.g. Azaele et al., 2015). A viable 

way to overcome these drawbacks is to align the scale of the analyzed data with that of the 

research question, which emphasizes a stronger utilization of relatively coarse-grained, but 

sufficiently complete and representative diversity data to address macroecological problems.  

Study outline 

With the present thesis, I aim at elucidating the assembly of island floras from a 

macroecological perspective, with a particular focus on the taxonomic and functional 

composition of island plant assemblages. The four research chapters recapitulate major steps 

towards this objective. 

In Chapter 1, I provide a general perspective on the opportunities and challenges of data 

integration for macroecological research. I examine the availability, applicability and 

utilization of different types of plant diversity data and show that (1) the macroecological 

data landscape is dominated by disaggregated data (e.g. point occurrence records, trait 

measurements) as opposed to aggregated data (e.g. species checklists, taxonomic 

monographs), and that (2) major data providers mostly focus on a single domain of data (e.g. 

distributions, functional traits, genetic sequences). I argue that a stronger integration of data 

across domains and different levels of aggregation has considerable potential for improving 

data coverage and representativeness at global scales. I describe generalizable strategies for 

the effective collection, mobilization, imputation and integration ecological data with a 

particular focus on plant distributions and functional traits. Finally, I present three case 
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studies that highlight the potential of macroecological data integration for answering 

fundamental ecological and (island) biogeographical questions.  

In Chapter 2, I present the Global Inventory of Floras and Traits (GIFT) database. GIFT 

represents the basis of all empirical studies in this thesis (Chapters 3 and 4, case studies in 

Chapter 1) and implements many concepts and ideas outlined in Chapter 1, in particular the 

utilization of aggregated data (e.g. species checklists and Floras) and the integration of data 

from multiple domains (e.g. species distributions, functional traits, taxonomic and 

phylogenetic information, geographical characteristics). The chapter provides detailed 

information on the technical design, processing workflows and data coverage of GIFT.  

In Chapter 3, I assess the drivers of species turnover among vascular plant assemblages on 

islands and the mainland. I use generalized linear models to compare the distance decay of 

similarity, i.e. species turnover as a function of geographic distance among sites, for different 

taxonomic and functional plant groups (angiosperms, gymnosperms, pteridophytes, trees, 

shrubs, herbs) on islands and the mainland. I then apply generalized dissimilarity models to 

quantify the unique effects of geographic distance and climatic variables in creating species 

turnover among island and mainland assemblages, respectively. Finally, I present a global 

prediction of species turnover across a high-resolution equal-area grid. 

In Chapter 4, I address the phenomenon of island disharmony, the biased representation of 

higher taxa on islands compared to their mainland source regions. I present a novel method 

for identifying island-specific species source regions and develop a measure that quantifies 

the compositional disharmony of a given island flora. I analyze this measure for 320 islands 

as a function of important island biogeographical variables (distance from the mainland, area, 

geological origin, climatic conditions), providing the first global, quantitative assessment of 

island disharmony to date. Furthermore, I analyze the global over- or under-representation 

of 450 vascular plant families on islands as a function of family-specific characteristics that 

presumably affect colonization success (range size, species number and age; functional traits 

related to dispersal ability, reproduction and life-history). 
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1 Global integration of  plant diversity data – the significance 

of  data resolution and domain 

 

Christian König, Patrick Weigelt, Julian Schrader, Amanda Taylor, Jens Kattge and 

Holger Kreft 

 

 

1.1 Abstract 

Recent years have seen an explosion in the availability of biodiversity data describing the 

distribution, function, and evolutionary history of life on earth. Integrating these 

heterogeneous data remains a challenge due to large variations in observational scales, 

collection purposes and terminologies. While seminal projects for the integration of 

disaggregated biodiversity data (e.g. point occurrence records, trait measurements) have been 

established, aggregated data types (e.g. Floras, taxonomic monographs) have received less 

such attention, leaving a major source of information on global biodiversity largely untapped. 

Focusing on plant distributions and functional traits, we here demonstrate the synergies 

arising from a more tight integration of biodiversity data across domains and resolutions. To 

this end, we lay out effective strategies for data collection, mobilization, imputation, and 

sharing, and summarize existing frameworks for scalable and integrative biodiversity 

research. In three case studies related to the global distribution of plant growth forms, the 

latitudinal gradient of seed mass, and the global prevalence of insular woodiness, we highlight 

the potential of aggregated data for biodiversity research and improving the 

representativeness and completeness of biodiversity data in general. Our results show the 

need for a more extensive use of available data resources for achieving a both precise and 

general picture of global biodiversity. 

  



8 Chapter 1 

 

  



Global integration of plant diversity data – the significance of data resolution and domain 9 

 

1.2 Introduction 

Minimizing the negative ecological impacts of habitat loss (Watson et al., 2016), climate 

change (Pachauri et al., 2014), and species invasion (Seebens et al., 2017) is one of the major 

challenges of this century and requires a detailed understanding of global biodiversity (Kerr 

et al., 2007; Barnard & Thuiller, 2008). In this context, vascular plants constitute a critical 

group, as they are key providers of biochemical energy and habitat structure. At the same 

time, the sheer magnitude of plant diversity renders an exhaustive assessment of even its 

most basic dimensions, e.g. the number of extant species, difficult (Brown & Lomolino, 

1998). This effect is further amplified when looking at more complex, often interdependent 

aspects such as species distributions, functional traits, or phylogenetic relationships, and 

becomes increasingly pervasive at small informational grain sizes (Hortal et al., 2015). Despite 

these existing shortfalls in on our knowledge of global plant diversity, recent years have seen 

an explosion in both the availability (Kattge et al., 2011a; GBIF, 2018; Maitner et al., 2018) 

and large-scale utilization (Zanne et al., 2014; Díaz et al., 2016; König et al., 2017; Butler et al., 

2017; Smith & Brown, 2018) of plant diversity data. This data-driven paradigm has been 

recognized as key for reducing the shortfalls in biodiversity knowledge and building a 

sufficiently robust understanding of global biodiversity to address the pressing challenges 

imposed by global change (Kelling et al., 2009; Hampton et al., 2013).  

Biogeography is a key discipline for the integration of heterogeneous biodiversity data, as it 

brings together the two principal dimensions of ecology – the organism and the environment 

– at large spatiotemporal scales. Biogeographical data can therefore be integrated with a 

variety of organismic (e.g. taxonomic, functional, phylogenetic) and environmental (e.g. 

climate, soil, topography) information. A particularly promising branch of biogeography is 

functional biogeography. Functional biogeography focuses on documenting and 

understanding the geographical variation in traits, utilizing ideas, concepts, and methods 

from a variety of disciplines including ecosystem ecology, evolutionary biology, earth 

sciences, and ecoinformatics (Violle et al., 2014). In particular, functional biogeography adds 

a spatial dimension to functional ecology and is thus relevant for a variety of research areas, 

in which adopting a functional perspective has stimulated substantial scientific progress, e.g. 

community ecology (McGill et al., 2006; Stegen & Swenson, 2009), biodiversity research 

(Petchey & Gaston, 2002; Lamanna et al., 2014), ecosystem ecology (Díaz et al., 2007; Bello 

et al., 2010), or conservation biology (Cadotte et al., 2011; Ostertag et al., 2015). Moreover, 

the integration of species distributions and functional traits opens up new and interesting 

research questions: How are different aspects of functional diversity distributed in space? Is 

there a consistent relationship between functional diversity and ecosystem functioning across 

habitats, ecosystems, or biomes? Which functional properties are particularly sensitive to 

climate and land-use changes, and where do they occur most frequently? 

Data-driven functional biogeography – and biodiversity research in general – has to bridge 

the gap between fine-scale precision and global representativeness. This gap is reflected by 
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the variety of existing data types, ranging from highly resolved point occurrence records and 

trait measurements to relatively coarse, but also more representative data types such as Floras 

and taxonomic monographs. Consequently, the integration of biodiversity data across 

multiple resolutions is crucial for overcoming the deficits of individual data types and 

constitutes a key requirement for developing a deeper understanding of global biodiversity 

(Jetz et al., 2012). This poses new scientific challenges, e.g. with respect to data sharing and 

collaborative research (Hampton et al., 2015; Michener, 2015a), the representativeness of 

large-scale datasets (Engemann et al., 2015; Meyer et al., 2016), or the effective integration of 

multiple data types (Jetz et al., 2012; La Salle et al., 2016).  

Focusing on plant distributions and functional traits, our aim here is to help address these 

challenges in order to realize the full potential of plant diversity data. First, we characterize 

common data types with respect to their informational resolution and domain, and highlight 

general trade-offs across biodiversity data. Based on that, we outline strategies for the 

effective utilization and integration of plant diversity data across domains and resolutions. 

We provide suggestions for improving data collection, identify potentials for data 

mobilization, and describe methods for filling data gaps through imputation. Furthermore, 

we discuss methodological, sociocultural, and information technological barriers that 

currently impede the large-scale integration of biodiversity data. We present three case studies 

based on the Global Inventory of Floras and Traits database (see Box A1.1, Chapter 2), a 

novel resource for functional biogeography, to demonstrate how already the integration of 

selected aggregated data types allows tackling fundamental questions in ecology and 

biogeography related to (1) the global distribution of plant growth forms, (2) the latitudinal 

gradient in seed mass and (3) the prevalence of insular woodiness on oceanic islands. 

1.3 Data as key to global plant ecology 

1.3.1 Data domains, types and resolution 

Biodiversity science can be organized into different domains that cover distinct spheres of 

knowledge, e.g. of the taxonomic classification, geographical distribution, functional traits or 

abiotic tolerances of organisms (Hortal et al., 2015). A domain is typically associated with a 

set of domain-specific data types (Figure 1.1). Species distributions, for example, can be 

represented by point occurrences, plot networks, checklists, or expert range maps. 

Functional trait data may come in the form of field measurements for individual plants, or 

as aggregated values for populations, species, or higher taxonomic groups (e.g. genera or 

families). In addition, some biodiversity data types combine information from multiple 

domains, e.g. regional Floras representing a source of both distributional and functional 

information.  
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Figure 1.1: Selected biodiversity data types, arranged according to their primary domain (species 
distributions vs. functional traits) and informational resolution (disaggregated vs. aggregated). 
Existing projects that integrate global plant diversity data are often domain-specific (e.g. Map of Life: 
Jetz et al., 2012; TRY: Kattge et al., 2011a, GBIF, 2018) or focus on the disaggregated end of the data 
spectrum (e.g. BIEN: Enquist et al., 2016). Complementing the ecological data landscape with 
aggregated data (e.g. GIFT, see Chapter 2) creates strong synergies and facilitates biodiversity data 
integration across domains and resolutions. 

Across different data types, there is a trade-off between high informational resolution on the 

one hand, and completeness and representativeness on the other (Rondinini et al., 2006). This 

trade-off is important, because data resolution affects the precision (i.e. certainty) of ecological 

inferences, whereas data representativeness affects their accuracy (i.e. correctness) (Walther & 

Moore, 2005; Hortal et al., 2015).  Disaggregated data, e.g. point occurrences or trait 

measurements, generally have a high informational resolution, which is necessary to address 

questions at the level of populations or communities (Bolnick et al., 2011; Meyer et al., 2018). 

However, at macroecological scales, disaggregated data often exhibit deficits in terms of 

completeness and representativeness (Schrodt et al., 2015; Engemann et al., 2015; Meyer et 

al., 2016). In contrast, aggregated data, e.g. regional floras and checklists, or taxonomic 

monographs, provide a mostly complete and representative account of their subject region 

or taxon (Frodin, 2001; Farjon, 2010) but are limited in their capacity to resolve fine-grained 

ecological information (Figure 1.1).  

Major projects for biodiversity data integration focus primarily, though not exclusively, on 

the disaggregated end of the data spectrum, e.g. the Global Biodiversity Information Facility 
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(GBIF) for species occurrence records, TRY for primary trait data or the Botanical 

Information and Ecology Network (BIEN) for primary data on New World plant 

distributions and functional traits (see also Figure 1.1). A systematic compilation of existing 

aggregated plant diversity data to complement these initiatives is still missing. GIFT, the 

Global Inventory of Floras and Traits database (Chapter 2), is a contribution towards filling this 

gap and building a robust baseline for global plant diversity research. 

1.3.2 Data collection and processing 

The integration of biodiversity data starts in the field – with the primary biodiversity data 

collected in surveys, experiments, citizen science projects and other research efforts. Such 

data is usually specifically tailored to answer a particular research question. Thus, robust 

ecological generalizations require large quantities of (disaggregated) primary or (aggregated) 

derived data that is organized and integrated in comprehensive biodiversity databases. The 

quality and coverage of such databases can be greatly improved when primary research 

projects put strong emphasis on the utility and re-usability of collected data for secondary 

scientific purposes (Michener & Jones, 2012).  

The utility of primary data for data integration efforts can be increased in several ways. First, 

focusing on regions, ecosystems, plant groups, or functional traits that are currently 

underrepresented in global biodiversity databases increases the general interest in the 

collected data as well as the study itself. Coverage analyses based on integrated biodiversity 

resources can provide guidance by identifying knowledge gaps and setting research priorities 

(Meyer et al., 2016). Second, cross-institutional coordination of research projects creates 

synergies through standardized methods and complementary research foci. Research 

networks such as the International Long Term Ecological Research Network (ILTER, see 

Vanderbilt & Gaiser, 2017) provide an ideal framework to utilize these synergetic effects 

(Peters et al., 2014b). Third, an efficient study design helps to maximize the data output given 

the available resources. This can be aided, for instance, by statistical power analyses (Johnson 

et al., 2015), optimizing study logistics and surveying effort (Moore & McCarthy, 2016), and 

cooperating closely with local field guides and botanists (Elbroch et al., 2011). Throughout 

the process of data collection, digital solutions such as Open Data Kit (Brunette et al., 2013) 

can help to conveniently enter, cross-check, annotate and aggregate field data. This increases 

data integrity and provides crucial meta-information for later quality assessments and 

integration efforts. 

The re-usability of primary data can be ensured by adopting existing data standards and 

protocols. The Plant List (2013) provides a widely-accepted basis for resolving and 

standardizing plant species names. Software packages such as taxonstand (Cayuela et al., 2012), 

taxize (Chamberlain & Szöcs, 2013) or the taxonomic name resolution service (Boyle et al., 2013) 

help to utilize The Plant List and other authoritative taxonomic resources to resolve 

thousands of species names at a time. With respect to functional traits, defined measurement 
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protocols (Pérez-Harguindeguy et al., 2013) and terminologies (Garnier et al., 2017) facilitate 

interoperability across research projects. The exchange of diversity data is supported by data 

standards like the Darwin Core Archive (Wieczorek et al., 2012) or the Humboldt Core 

Archive (Guralnick et al., 2017). Finally, innovative publishing frameworks such as the 

Biodiversity Data Journal (Pensoft, 2017) or the GBIF Integrated Publishing Toolkit (GBIF, 

2018) allow for a quick publication of standardized and easily accessible datasets.  

1.3.3 Data mobilization 

The increasing digitization of scientific collections and literature has set ecology up for the 

age of “Big Data” (Hampton et al., 2013). The Global Biodiversity Information Facility 

(GBIF, 2018), for example, currently provides access to more than 208 million occurrence 

records of vascular plants, 62 million of which are derived from preserved herbarium 

specimens. While this is a substantial achievement, specimen records encode more than just 

distributional information (Beaman & Cellinese, 2012). In particular, the (semi-)automated 

extraction of traits from herbarium specimens represents an area of largely unused potential. 

Standardized measurements on collected plant material may be incorporated into digitization 

workflows, potentially yielding thousands of geographically defined records of e.g. specific 

leaf area (Queenborough & Porras, 2014) or phenological plant information (Gallinat et al., 

2018). Also, images of already digitized specimens can be used to retrieve certain functional 

traits, e.g. leaf size (Corney et al., 2012). Nonetheless, the set of traits that can be (non-

destructively) obtained from herbarium specimens excludes many important characteristics, 

e.g. plant growth form, vegetative height, or stem specific density.  

Another way to mobilize substantial amounts of ecological data – mainly from the aggregated 

end of the data spectrum – lies in the botanical literature. Generations of botanists have 

produced thousands of Floras, species checklists, and taxonomic monographs. Vascular 

plants are among the most intensively studied groups, and with some exceptions, almost any 

region on earth has been subject to some form of floristic inventory (Frodin, 2001). Such 

resources provide expert-validated distributional information, often including the 

biogeographical status of the listed species (e.g. endemic, native, introduced). Moreover, 

descriptions of general morphology, life history, flowers, fruits, seeds, phenology and other 

features of the covered taxa are often available. Massive efforts to make biodiversity literature 

digitally available and searchable are underway (e.g. www.biodiversitylibrary.org, 

www.plantsoftheworldonline.org) and machine learning algorithms are becoming 

increasingly successful at extracting information from loosely structured text data (Collobert 

et al., 2011; LeCun et al., 2015). Considering the wealth of information contained in published 

floristic literature, the development of general, scalable methods for data extraction seems to 

be central for improving the coverage of biodiversity databases. Machine learning techniques 

such as recurrent neural networks might be particularly suited for this task. First studies using 

machine learning to extract trait information from floristic descriptions show promising 

results (Hoehndorf et al., 2016). 
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1.3.4 Data imputation 

Data imputation is a technique where missing or inconsistent data items are replaced with 

estimated values (OECD, 2013) and represents an inexpensive yet powerful way to improve 

data coverage in ecological datasets. A conceptual distinction can be made between logical 

and statistical imputation methods (Figure 1.2). 

 

Figure 1.2: Comparison of logical and statistical data imputation. Logical imputation infers a limited 
quantity of highly certain data (e.g. deducing woodiness status from growth form), whereas statistical 
imputation yields large quantities of less certain data (e.g. predicting a suite of functional traits from 
sparse records). 

Logical imputation uses unequivocal relationships among data to infer new values. This is 

possible either when data is categorically nested, e.g. trees always being woody (Beentje, 

2016), or linked by mathematical relationships, e.g. leaf mass per unit area (LMA) being the 

inverse of specific leaf area (SLA). While the considerations underlying logical imputation 

seem rather trivial, the approach has yet to be widely used for complementing plant diversity 

data. Applications of logical imputation include, for example, (1) the propagation of 

information from complex functional traits to more simple ones (see Figure A1.2), (2) the 

imputation of species-level traits when a higher taxon is known to be uniform with respect 

to that trait, or (3) the improvement of regional species checklists based on geographically 

nested occurrence records or plot data. The main advantage of logical imputation is that the 

results can be treated with the same certainty as the underlying data. This makes it a 

particularly suitable approach for building and extending repositories of primary data. At the 

same time, logical imputation helps to harmonize data that uses differing terminologies by 

embedding it in a logical hierarchy (e.g. bee-pollination, insect-pollination, and animal-

pollination form nested subsets of pollination syndromes). However, considering that such 

clear hierarchical relationships are scarce among biodiversity data, the gap-filling potential of 

logical imputation is limited. 

Logical imputation Statistical imputation

Data relationship Hierarchical (one-to-many) or bijective (one-to-
one)

Correlative (many-to-many)

Imputation method Logical deduction Statistical prediction

Gap-filling potential Limited Very high

Certainty of results Very high (depending on correctness of input data
and specified relationships)

Variable (depending on correlative structure of
input data and model performance)

Applications
(examples)

Hierarchical deduction of categorical traits („tree“ 
 „woody“) or occurrence information („occurs in 
Yasuni National Park“  „occurs in Ecuador“)

Bayesian Hierarchical Probabilistic Matrix 
Factorization (Schrodt, 2015), Multiple Imputation
by Chained Equations (Azur, 2011)
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Statistical imputation, on the other hand, utilizes correlative relationships among data to 

predict new values. As statistical imputation is based on statistical models, it can incorporate 

a variety of additional data to refine prediction accuracy. Gap filling techniques for functional 

traits, for example, take into account trait-trait, trait-environment, and trait-phylogeny 

relationships to predict full trait matrices from sparse data (Penone et al., 2014; Schrodt et al., 

2015). Analogous to that, species distribution models make use of environmental 

information, species-specific characteristics, or biotic interactions to predict continuous 

species distributions from point occurrence records (Elith & Leathwick, 2009; Peterson, 

2011). Statistical imputation methods allow for the prediction of any number of missing 

values, but the accuracy of these predictions is always dependent on the quality (i.e. 

correctness, representativeness, and completeness) of predictor variables as well as the 

performance of the underlying statistical model. Hence, statistical imputation is a valuable 

tool for improving data coverage in specific use cases (Paine et al., 2011; Syfert et al., 2014; 

Díaz et al., 2016), but cannot be considered an expansion of primary data. 

Strong synergies arise from combining logical imputation, which maximizes the amount of 

quasi-primary data, with statistical imputation, which may utilize this additional data to 

improve prediction accuracy. The potential of logical imputation for deducing simple 

functional traits such as woodiness or growth form is substantial (see case studies in Chapter 

1.4). While improved knowledge on these traits is of broad ecological interest in itself 

(McGlone et al., 2015; Beech et al., 2017), it might be particularly useful to enhance the 

performance of statistical imputation techniques (van Buuren & Groothuis-Oudshoorn, 

2011; Schrodt et al., 2015). Similarly, logically imputed distributional information can help to 

improve species distribution models, e.g. by flagging and removing inconsistent occurrence 

records (Jetz et al., 2012) or deriving often-required pseudo-absences for species distribution 

models from regional checklists (VanDerWal et al., 2009; Barbet-Massin et al., 2012). 

1.3.5 Data sharing 

Data sharing is a basic condition for the global integration of plant diversity data. Ecology, 

as opposed to, e.g., taxonomy or molecular biology, lacks a long-standing culture of data 

sharing (Reichman et al., 2011; Hampton et al., 2013) and although open science initiatives 

start to gain traction in ecology, considerable institutional and sociocultural challenges remain 

(Michener, 2015a; Gewin, 2016). Publishers, universities, and funding agencies have a central 

responsibility for creating an environment where data sharing is a scientific asset, not a 

disadvantage. Corresponding measures comprise a range of obligations and incentives for 

data sharing (Whitlock, 2011; Kattge et al., 2014). One example for an effective obligation is 

that many journals now require all data that were used to conduct a study to be stored in 

open repositories (Mills et al., 2015). Likewise, funding agencies strive to improve data quality 

and long-term accessibility by requiring data management plans (Michener, 2015b). The most 

important measure, however, is the establishment of adequate incentives for data sharing, 

which is primarily a matter of increasing the academic credit gained from doing so. Dataset 
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citations are an effective way of incentivizing and acknowledging data contributions, but also 

alternative impact measures and a stronger appreciation of data as scientific output can help 

to open up ecological research culture (Kattge et al., 2014; Gewin, 2016). 

1.3.6 Data integration 

Biodiversity data are typically collated and integrated in domain-specific databases that allow 

fast extraction, exploration, and visualization of highly normalized d ata. This approach has 

transformed the ecological research landscape in the past decades and acted as a catalyst of 

ecological knowledge synthesis (Kelling et al., 2009). However, the scope of any single project 

is bound to a limited amount of technical, financial and human resources. The challenge of 

building a scalable, dynamic e-infrastructure that integrates the wealth of existing 

environmental and ecological data is therefore best realized by bundling existing efforts 

within a unifying framework (Peters et al., 2014b; La Salle et al., 2016).   

The idea of a distributed network aims to organize data, resources and expertise from diverse 

data holders in a single, collaborative infrastructure that allows for the seamless discovery, 

acquisition, citation and (re-)use of data (Michener et al., 2011; Peters et al., 2014b). A shared 

data portal acts as a central access point, while more specialized databases remain generally 

in charge of data aggregation and warehousing (Michener & Jones, 2012). This organizational 

model, in principle, has the potential to integrate the heterogeneous ecological data 

landscape, but is also strongly dependent on the broad adoption of data standards. These 

include, but are not necessarily restricted to: (1) universal identifiers ranging from 

standardized species names to digital identifiers for documents, data and persons (e.g. DOIs, 

LSIDs, ORCIDs) (Page, 2008), (2) compatible database structures and the implementation 

of standardized APIs and exchange formats (Kattge et al., 2011b), (3) rich and well-structured 

meta-data (Reichman et al., 2011; Fegraus et al., 2005), and (4) the formalization of existing 

ecological concepts in ontologies and thesauri (Mouquet et al., 2015; Garnier et al., 2017).  

The Data Observation Network for Earth (https://www.dataone.org, Michener et al., 2011) 

already provides the basic infrastructure for building an open and distributed network of 

biodiversity data holders. However, currently the majority of member nodes consists of 

generic data repositories (e.g. DRYAD) and regional projects (e.g. USGS), whereas the 

participation of major aggregators of global plant diversity data (e.g. GBIF) has yet to be 

realized. Consequently, DataONE currently does not leverage the full potential of its 

powerful organizational model (Reichman et al., 2011; Michener et al., 2011). Some of the 

future challenges for distributed infrastructures such as DataONE are, for example, the 

continuing promotion and development of data standards, the improvement of web-based 

visualization and analysis capabilities, the incorporation of machine learning for improved 

data discovery and utilization (Peters et al., 2014a), and the robust implementation of dynamic 

cross-checking and data imputation workflows for parallel data streams. 
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1.4 Case studies 

We conducted three case studies that demonstrate the potential of large-scale data integration 

in plant diversity research. Each case study addresses a central topic in functional 

biogeography using data from GIFT (Chapter 2). Considering that GIFT’s main focus lies 

on aggregated data on plant distributions and functional traits, these examples merely provide 

an outlook of what the full integration of biodiversity data across domains and resolutions 

can achieve. 

1.4.1 Global patterns in plant growth form 

The grouping of plants into plant functional types such as growth forms captures 

fundamental axes of ecological variation in a uniquely simple way (Leishman & Westoby, 

1992; Díaz et al., 2016). Consequently, knowledge of plant growth form constitutes an 

important aspect in many ecological applications, ranging from local studies of plant diversity 

(Knapp et al., 2008; Madrigal-González et al., 2017) to dynamic global vegetation models 

(Prentice et al., 2007; Wullschleger et al., 2014). However, despite being a relatively simple 

and easily determinable trait, data on growth form is still surprisingly scarce and scattered 

both taxonomically and geographically. Here, we demonstrate the opportunities arising from 

a systematic collection of growth form data. 

We combined angiosperm checklists and growth form data (herb/shrub/tree) available in 

GIFT. Oceanic islands and units with more than 33 % of species lacking growth form 

information were excluded. From the remaining 818 regional checklists, we included only 

those species with known growth form status, yielding 1,472,024 species-by-sites 

combinations and 162,300 unique species. We used this dataset for predicting growth form 

spectra for 6495 equal-area grid cells (~ 23,300 km² each) using multinomial logistic 

regression (nnet R-package,  Venables & Ripley, 2002) based on contemporary climatic 

conditions. Since our objective was predictive accuracy, not statistical inference, we did not 

account for collinearity among predictors and used all 19 bioclimatic variables from the 

CHELSA climate layers (Karger et al., 2017). We weighted each observation by the inverse 

log-area of the corresponding geographical region to account for the decreasing 

representativeness of averaged climatic conditions for larger, climatically more variable 

regions. 

Globally, herbs represented the most frequent growth form (Figure 1.3A&C), accounting for 

68 % of species-by-sites combinations and 56 % of species. Shrubs and trees were less 

abundant with 17 % and 18 % of species-by-sites combinations, and 23 % and 21 % of 

species, respectively. Regionally, however, shrubs and trees reached relatively high 

proportions, particularly in Australian scrublands (Figure 1.3E) and the Amazon rainforest 

(Figure 1.3G). Except for local deviations, e.g. in the shrub-dominated ecosystems of 

Western Australia, our predictions of global patterns in growth form composition were in 

strong agreement with the observed data (McFadden’s Pseudo-R² = 0.91). Additionally, our 
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results are supported by an independent analysis of Engemann et al. (2016), which revealed 

similar geographical trends in growth form composition for North- and South America. 

 

Figure 1.3: The global composition in plant growth form as observed for 818 angiosperm floras (left) 
and modelled for 6495 equal-area grid cells of approximately 23,300 km² each (right). Upper plots 
summarize the overall growth form composition across all observed (A) and modelled (B) 
geographical units, with each line representing a single flora. Lower plots (C-H) show the observed 
and modelled geographic variation in the proportion of herbs, shrubs, and trees individually. Note 
that the range of values varies across growth forms. 

This case study has two implications. First, a characterization of all plant species with respect 

to fundamental categorical plant traits such as growth form is within reach when exploiting 

the full potential of data mobilization and imputation. Second, even spatially coarse-grained 

data may contain enough information to derive reasonably accurate predictions at finer grain 

sizes. Consequently, improving knowledge on coarse, yet ecologically informative traits will 

allow for an increasingly accurate functional description of plant assemblages worldwide and 

improve our understanding of their responses under altered environmental conditions. 

1.4.2 The latitudinal gradient in seed mass revisited 

Latitude is strongly correlated with several ecologically relevant environmental 

characteristics, e.g. temperature, precipitation, seasonality, and long-term climatic stability. 

Hence, many aspects of biodiversity including geographic range size (Stevens, 1989), net 
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primary productivity (Cramer et al., 1999), and species diversity (Hillebrand, 2004) show 

systematic variation along latitude. Also some plant traits vary strongly with latitude. Moles 

et al. (2007) analysed the latitudinal variation in seed mass based on a dataset of 11,481 

species-by-sites combinations. They found a 320-fold decrease in seed mass between the 

equator and 60 degrees latitude as well as a sudden, 7-fold drop at 23 degrees latitude. These 

results were linked to changes in vegetation type and growth form composition, leading the 

authors to posit an abrupt change in plant strategy at the edge of the tropics. Here, our aim 

is to replicate these findings. 

We extracted species lists for all mainland units in GIFT where a complete survey of seed 

plants was available. In cases where geographical units overlapped by more than 5 %, we 

removed the larger unit if floristic data was available at a higher spatial resolution (e.g. 

preferring federal state- over country-level data); otherwise we removed the smaller unit (e.g. 

preferring country-level data over a single national park inventory). Furthermore, we only 

kept species with information on both seed mass or growth form, yielding a final data set of 

519,812 species-by-region combinations and 563 distinct geographical units. In re-assessing 

the relationship between seed mass and latitude, we followed the methodology of Moles et 

al. (2007) and used linear regression and piecewise linear regression. 

 

Figure 1.4: Latitudinal gradient in seed mass for 519,812 species-sites combinations. Piecewise 
regression (dashed black line) was implemented following Moles et al. (2007) and compared against 
linear models for the entire data set (solid black line) and individual growth forms (coloured lines). 
Upper plot shows the relative proportion of growth forms in each 1-degree latitudinal band. Right-
hand plot depicts the frequency distribution of seed mass for individual growth forms. 
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We found that the estimated decrease in mean seed mass between the equator and 60 degrees 

latitude was only 11-fold according to simple linear regression (Figure 1.4, solid black line) 

and 8.8-fold according piecewise linear regression, the latter indicating a 1.5-fold drop at 27 

degrees latitude (Figure 1.4, dashed black line). In both cases, the explanatory power was low 

(𝑅𝑙𝑖𝑛𝑒𝑎𝑟
2  = 0.045, 𝑅𝑝𝑖𝑒𝑐𝑒𝑤𝑖𝑠𝑒

2  = 0.048), reflecting the presence of substantial variation in seed 

mass at any given latitude. The latitudinal response of individual growth forms was even 

weaker than the overall effect (see coloured lines vs. black line in Figure 1.4), while the 

logarithmic mean seed mass per growth form (herbs: 0.99 mg, shrubs: 4.59 mg, trees: 48.95 

mg, Figure 1.4, right-hand plot) differed significantly (Kolmogorov–Smirnov test, p < 0.001). 

Consequently, the overall poleward decrease in seed mass seems to be mostly driven by the 

gradual replacement of large-seeded trees by small-seeded herbs (Figure 1.4, upper plot). In 

conclusion, our results suggest that the latitudinal gradient in seed mass is considerably less 

steep than previously reported (Moles et al., 2007) and lacks a pronounced drop at the edge 

of the tropics.  

This case study illustrates that that the quantification of large-scale diversity patterns is highly 

dependent on the representativeness of the underlying data. In this respect, functional 

representativeness has been a largely neglected dimension of sample quality. Indeed, the data 

that generated the original results show a much higher proportion of tree-dominated biomes 

and, additionally, of tree species at tropical latitudes compared to ours (Moles et al., 2007). 

Integrated biodiversity resources with broad data coverage can help to detect and resolve 

such latent biases in macroecological datasets.  

1.4.3 A global assessment of insular woodiness 

In our last case study, we examine the prominent island syndrome of insular woodiness, the 

tendency of primarily herbaceous plant lineages to adopt a woody habit on islands. 

Explanations for this condition include the competitive advantage arising from a higher 

stature (Darwin, 1859), the increased pollination probability due to an extended lifespan 

(Wallace, 1878), and the reduced physiological stress due to moderated climate on islands 

(Carlquist, 1974). The generality of island syndromes such as insular woodiness is regarded 

as one of the most fundamental questions in island biology (Patiño et al., 2017). Here, we 

tackle this question and explore patterns in woodiness of island floras.  

We selected a set of twelve globally representative oceanic islands with a substantial number 

(> 40) of endemic plant species from GIFT. We focused on seed plants because extant spore-

bearing plants do not exhibit secondary growth, which is a precondition for developing 

woodiness (Ragni & Greb, 2018). Based on the biogeographical status, we grouped species 

on each island into native non-endemics (species whose natural range includes, but is not 

restricted to the respective island or island group) and endemics (species whose range is 

restricted to the respective island or island group). We then contrasted endemics and non-

endemics on each island with respect to the proportion of woody vs. non-woody species and 
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the proportions of different life forms sensu Raunkiær (1934), assuming that trait syndromes 

of endemic species are the outcome of adaptive processes to local biotic and abiotic 

conditions. 

 

Figure 1.5: Proportions of woody vs non-woody species and Raunkiær life forms among seed plants 
on twelve oceanic islands. For each island, species were classified into native non-endemics (left-hand 
bars) and endemics (right-hand bars). Numbers above bars denote the number of species with known 
trait status and the total number of species for each group per island.  

On all investigated islands except La Réunion, endemics showed a significantly higher 

proportion of woody species compared to native non-endemics (χ² test of homogeneity at α 

= 0.05, see Figure 1.5). Likewise, woody life forms (phanerophytes and chamaephytes) were 

strongly overrepresented among island endemics. Moreover, we found the differential 

representation of life forms to be highly collinear with their approximate position the rK-

spectrum: therophytes (strongly r-selected) showed the largest overall decrease, while 

phanerophytes (strongly K-selected) showed the largest overall increase between native non-

endemics and endemics (Figure 1.5). We did not perform statistical tests on the proportion 

of life forms due to the relatively low data coverage for endemic species. 

This study illustrates that data integration bears great potential for examining long-standing 

ecological and biogeographical questions from a data-driven perspective. Our findings 

suggest that insular woodiness is indeed a widespread phenomenon, occurring under a wide 

range of climatic conditions and spatial settings. Although an altered functional composition 

of island endemics may have other causes than adaptation, e.g. higher diversification rates of 

woody colonizers or relictual populations of woody clades, our results are in line with 

molecular studies that focus on trait shifts that occurred after island colonization (Lens et al., 

2013; García-Verdugo et al., 2014).  
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1.5 Conclusion and future directions 

The availability, quality and interoperability of data is paramount to the progress of 

biogeography and ecology as increasingly data-intensive disciplines (Michener & Jones, 2012; 

Hampton et al., 2013; Franklin et al., 2017). Here, we demonstrated how the explicit 

consideration of data resolution offers new perspectives on the compilation and integration 

of plant diversity data. Our results show that a near-complete collection of coarse-grained 

plant distributions and basic functional traits is within reach, when exploiting the full 

potential of data mobilization and imputation. This offers new opportunities for plant 

diversity research in general.  

Currently, studies and projects for the integration of global plant diversity are mostly based 

on disaggregated data. While this approach has been a highly successful line of research 

(Swenson et al., 2012; Moles et al., 2014; Díaz et al., 2016), the pervasiveness of biases and 

gaps in disaggregated biodiversity data is of increasing concern to ecologists (Boakes et al., 

2010; Engemann et al., 2015; Sandel et al., 2015; Meyer et al., 2016). We have shown that 

systematic utilization of aggregated data can help address this problem. First, aggregated data 

provide a coarse but more complete and less biased picture of geographical variation in 

taxonomic, functional and phylogenetic diversity. This offers much-needed baselines against 

which the completeness of disaggregated data can be evaluated in order to quantify and map 

gaps in global biodiversity knowledge (Hortal et al., 2015; Franklin et al., 2017). Second, 

aggregated data provide prior information about the geographical and statistical distribution 

of more highly resolved, but potentially incomplete or biased ecological variables. This 

knowledge can be used, for instance, to inform functional biogeographical analyses (see case 

study 2), to improve species distribution and niche models (Merow et al., 2016), or to 

parametrize ancestral state reconstructions (Pagel et al., 2004) and dynamic global vegetation 

models (Scheiter et al., 2013). Third, aggregated data capitalize on expert knowledge to 

compensate for the varying availability and quality of primary (disaggregated) data. 

Consequently, aggregated data types are not mere compilations of disaggregated data, but 

provide valuable additional information, e.g. reliable species absences or uniform functional 

traits for higher taxa. The potential of utilizing aggregated biodiversity data extends to other 

clades for which a wealth of literature exists, e.g. mammals, birds, or many groups of 

arthropods.  

Data integration is potent not only across resolutions, but also across domains. Satellite-

borne, multispectral imagery is a crucial component of biodiversity research, providing global 

high-resolution data of e.g. net primary productivity, vegetation cover or canopy height 

(Kuenzer et al., 2014). Advanced instruments will soon enable the derivation of similar data 

products for selected functional traits, which helps tracking changes in the biosphere at 

increasing spatial and temporal resolutions. Nevertheless, the identification of individual 

plants from space remains impossible for most practical purposes, which highlights the need 

for integrating in-situ and satellite-borne data to address ecological questions at global scales 
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(Jetz et al., 2016). Vegetation plot databases are another key source of plant diversity data, 

holding crucial information on species abundances and co-occurrences. BIEN demonstrates 

how the integration of specimen- and plot data with taxonomic, functional and phylogenetic 

information helps bridging the gap between local-, regional- and continental-scale ecological 

processes (Blonder et al., 2015; Engemann et al., 2016). Furthermore, biogeographical 

analyses could benefit from integrating contemporary species distributions with fossil 

records and phylogenies, and conservation planning could be aided by bringing together 

ecological, environmental and socioeconomic data within a consistent framework – the 

potential of cross-domain data integration remains to be fully explored.  

The unparalleled pressure on our global biosphere renders a full utilization of all available 

biodiversity data imperative. Rapid advancements in information technology have brought 

down the technological barriers to this objective. It is now up to ecologists to keep pace with 

this development, and to work collaboratively on creating infrastructures for the integration 

of biodiversity data that bridge the gap between fine-scale precision and global 

representativeness.  
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2 GIFT – A Global Inventory of  Floras and Traits for 

macroecology and biogeography 

 

Patrick Weigelt, Christian König and Holger Kreft 

 

 

2.1 Abstract 

To understand the evolutionary history and geographic distribution of plant life on Earth, 

we need to integrate high-quality and global-scale distribution data with functional and 

phylogenetic information. Large-scale distribution data for plants are, however, often 

restricted to either certain taxonomic groups or geographic regions. For example, range maps 

only exist for a small subset of all plant species and digitally available point-occurrence 

information is strongly biased geographically and taxonomically. An alternative, currently 

rarely used source of information is represented by regional Floras and checklists, which 

contain highly curated information about the species found in clearly defined areas, and 

which together cover virtually the entire global land surface. Here we report on our recent 

efforts to mobilize this information for macroecological and biogeographical analyses in the 

GIFT database, the Global Inventory of Floras and Traits. GIFT integrates species 

distributions of land plants (focusing on vascular plants) with trait and phylogenetic 

information as well as region-level geographic, environmental and socio-economic data. 

GIFT currently holds species lists for 2,893 regions across the whole globe including 

~315,000 taxonomically standardized species names (i.e. c. 80% of all known land plant 

species) and ~3 million species-by-region occurrences. In addition, GIFT contains 

information about the floristic status (native, endemic, alien and naturalized) and takes 

advantage of the wealth of trait information in the regional Floras, complemented by data 

from global trait databases. Utilizing hierarchical and taxonomic trait imputation, GIFT 

holds information for 83 functional traits and more than 2.3 million trait-by-species 

combinations and achieves unprecedented coverage in categorical traits such as woodiness 

(~233,000 spp.) or growth form (~213,000 spp.). Here we present the structure, content and 

automated workflows of GIFT and a corresponding web-interface (http://gift.uni-

goettingen.de) as proof of concept for the feasibility and potential of mobilizing aggregated 

biodiversity data for global macroecological and biogeographical research. 

  

http://gift.uni-goettingen.de/
http://gift.uni-goettingen.de/
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2.2 Introduction 

Worldwide, about 382,000 vascular plant species form the basis of our terrestrial biosphere 

and provide key ecosystem services to humanity (Willis, 2017). Despite the long history of 

botanical exploration of our planet, the global distribution is only known for a subset of all 

plant species at comparatively coarse spatial grains (e.g. WCSP, 2014). In contrast to smaller 

and better known taxa like birds and mammals (BirdLife International, 2018; IUCN, 2018), 

high-quality species-level range maps or atlas data of plants are only available for certain well-

studied groups (e.g. conifers in Farjon & Filer, 2013; cacti in Barthlott et al., 2015) or confined 

regions (e.g. Europe in Tutin et al., 1964–1980). Many research questions at the forefront of 

biogeography and macroecology, however, require a detailed knowledge of global plant 

distributions and, additionally, of species-level functional traits and phylogenetic 

relationships (e.g. Morueta-Holme et al., 2013; Weigelt et al., 2015; König et al., 2017). 

Several national and international initiatives focus on mobilizing and aggregating plant 

distribution information. For instance, the Global Biodiversity Information Facility (GBIF, 

2018) provides access to ~214 million point occurrences of vascular plant species from 

herbarium records and observations. These records are invaluable for plant ecology and 

conservation-related research, as they provide information about key aspects of species 

identity, time and place (Powney & Isaac, 2015). However, taxonomic, geographical and 

temporal biases (Hortal et al., 2015; Meyer et al., 2016) as well as the lack of important meta-

information, like, for example, the floristic status at a given location (native, non-native, 

naturalized, etc.), limit their usefulness for macroecological research. An alternative source 

of information are Floras and checklists which, in contrast, present highly curated accounts 

of the plant species known to occur in a certain region. Floras and checklists are often based 

on decades to centuries of exploration and regional botanical work, and have profited from 

the expertise of generations of botanists. They aim at providing (near-)complete floristic 

inventories for a given region and thus provide information on species presences and their 

floristic status, and additionally allow for the inference of local species absences (Lobo et al., 

2010; Jetz et al., 2012). So far, extensive compilations of plant checklists exist only for certain 

geographic regions (e.g. Ulloa Ulloa et al., 2017), taxonomic groups (e.g. Flann, 2009; WCSP, 

2014), functional types (e.g. BGCI, 2017), or, for example, naturalized alien plants (van 

Kleunen et al., 2015; Pyšek et al., 2017). 

In light of the increasing availability of biodiversity data, it is a major challenge to integrate 

various data types and to link data from different ecological domains representing species 

distributions, functional traits, phylogenetic relationships or environmental characteristics 

for analyses and cross-validation (see Chapter 1). Initiatives that integrate different types of 

distribution data with additional biotic or abiotic information are currently most 

comprehensive for particular geographic regions (e.g. BIEN for the Americas; Enquist et al., 

2016) or other taxa (e.g. Map of Life for vertebrates; Jetz et al., 2012). However, the wealth 

of aggregated information in regional Floras and checklists (Frodin, 2001) allows for a near-
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global characterization of plant distributions. In combination with functional traits from the 

botanical literature or large trait databases (e.g.  Kattge et al., 2011a; Royal Botanic Gardens 

Kew, 2016) and ever-growing species-level phylogenies (e.g. Smith & Brown, 2018), this 

represents a promising basis for macroecological and biogeographic research. 

Here, we present GIFT, the Global Inventory of Floras and Traits database, a new resource 

designed to integrate species distribution data and functional traits of vascular plants from 

regional Floras and checklists with phylogenetic information and geographic, environmental, 

and socio-economic characteristics (Figure 2.1). As such, the database architecture, 

workflows, and data of GIFT facilitate a wide array of macroecological and biogeographical 

analyses and may help to extent and validate other plant distribution and trait data resources. 

The general concepts outlined here may serve as a role-model for aggregated species checklist 

and trait databases for other major taxonomic groups.  

 

Figure 2.1: Conceptual framework of the Global Inventory of Floras and Traits database (GIFT). 
The core information in GIFT are species occurrences in geographic regions (islands, political units, 
protected areas, biogeographical regions) based on Floras and checklist. At the level of the 
geographical regions, this information is linked to physical geographic, bioclimatic, and 
socioeconomic properties. At the level of the species, functional traits, taxonomic placement, and 
phylogenetic relationships are linked. This integration of species distribution data in the form of full 
regional inventories and regional and species characteristics allows for a wide variety of 
macroecological and biogeographical analyses of taxonomic, phylogenetic, and functional diversity as 
well as for the refinement and validation of other plant distribution and trait datasets. 

2.3 Content and structure of  GIFT 

2.3.1 Overview 

Regional Floras and checklists are a rich source of information on species distributions that 

often also contain detailed descriptions of species traits (Palmer & Richardson, 2012). In the 
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past, a lot of the knowledge hidden in printed books (Frodin, 2001) resided in libraries and 

was difficult to access for ecological research. These resources, however, are increasingly 

being made digitally available (e.g. Zuloaga et al., 2004; Acevedo-Rodríguez & Strong, 2007) 

and modern regional inventory projects are set up as digital databases right from the start 

(e.g. Brach & Song, 2006; Jardim Botânico do Rio de Janeiro, 2016). In GIFT, we make use 

of this wealth of available information, and collate and mobilize plant species lists and trait 

information from published and unpublished Floras, catalogs, checklists and online 

databases into one global database.  

The original checklist data in GIFT consist of species names from the literature, their 

occurrences in the regional species lists and original trait information (yellow boxes in Figure 

2.2). All this information is linked to meta-data on the included literature references, species 

lists, traits, and geographic entities (white boxes in Figure 2.2). Transparent automated 

workflows allow a fast and reliable integration of new datasets and provide extensive derived 

information (blue boxes in Figure 2.2): (1) taxonomic match-up with taxonomic resources 

and name standardization, (2) taxon placement according to a taxonomic backbone and 

phylogeny, (3) trait standardization and hierarchical and taxonomic trait derivation, (4) 

calculation of regional summary statistics like species richness or trait coverage and (5) 

extraction and computation of geographic, environmental and socio-economic regional 

characteristics. Based on this generic database framework, GIFT can be queried for complete 

species checklists of a certain taxonomic or functional group and floristic status (e.g. ‘native 

angiosperms’ or ‘naturalized trees’). Alternatively, one can extract e.g. the distribution or trait 

information for a given set of species, or regional characteristics such as environmental data, 

species numbers, and trait coverage per taxon, floristic status, region. GIFT is stored on a 

MySQL 5.5.43 database server. Workflows for preparing, importing, processing, extracting, 

and visualizing data are written in the R statistical programming language (R Core Team, 

2018). 

2.3.2 Checklists 

GIFT currently contains 3,826 species lists referring to 2,893 different geographic regions 

which are based on 429 original checklist data sources (Figure 2.2). A full and up-to-date list 

of all data citations and their bibliographic references is available at the GIFT website 

(http://gift.uni-goettingen.de) and publications based on GIFT are requested to cite the 

checklist resources the analyses are based upon (e.g in Weigelt et al., 2016). Checklists and 

inventories stem from publically available sources as well as from unpublished sources 

(4.2%), for which usage conditions are stored in the database. Meta-data on references and 

species lists further specify the type of the reference as provided (Flora, checklist, catalogue, 

identification key, survey, etc.), the taxonomic and floristic scope of the reference (e.g. all 

native and naturalized angiosperms), whether the species’ floristic status is indicated and 

which functional traits are reported.  

http://gift.uni-goettingen.de/
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Figure 2.2: Simplified structure of the Global Inventory of Floras and Traits database (GIFT). Meta-
data on literature references, species lists and geographic regions builds the backbone of the database 
(top row). A reference can include several species lists (e.g. for different sub-regions) and a geographic 
region can be covered by several lists and references. Species lists vary in taxonomic and floristic 
scope (e.g. all native and naturalized angiosperms) and in the information content (floristic status, 
functional traits). 
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The actual distribution information is kept in a separate table that links the taxonomic names 

to the species lists they occur in and via those to the geographic regions (Figure 2.2, ‘species 

occurrences’). For each species occurrence, we indicate, if possible, whether the taxon is 

native or not. For native species, we indicate if they are endemic to the geographic entity of 

the species list or to the geographic entity of the entire reference. For non-native species, we 

indicate whether they are naturalized or not. In all cases, we also indicate whether this 

information is questionable according to the literature source. Via the species names, 

occurrences are linked to functional traits as well as to the taxonomic and phylogenetic 

backbone. Via the geographic regions, species and traits are linked to regional geographical 

characteristics (Figure 2.2). Routines for exporting checklists from GIFT and their meta-data 

as Darwin Core (Wieczorek et al., 2012) and Humboldt Core (Guralnick et al., 2017) archives, 

respectively, are currently being developed. 

2.3.3 Species names and taxonomic standardization 

All species names enter the database in their original form including infraspecific information 

and author names where available. Species names derived from heterogeneous resources, 

referring to various geographic regions and published over a timespan of about one hundred 

years, inevitably vary considerably in the taxonomic concepts (Jansen & Dengler, 2010). To 

compare species identities across different resources, we therefore submit all non-hybrid 

species names to a semi-automated taxonomic standardization and validation procedure 

based on taxonomic information provided by The Plant List 1.1 (TPL; The Plant List, 2013) 

and additional resources available via iPlant’s Taxonomic Name Resolution Service (TNRS; 

Boyle et al., 2013). This procedure was exclusively developed to meet the needs of the GIFT 

database and has already been applied and described in Meyer et al. (2016).  

First, all genus names not occurring in TPL are corrected manually based on literature and 

online resources (e.g. Mabberley, 2008; IPNI, 2012). Entries that cannot be assigned to an 

established genus name at all (valid or not) are excluded from further steps. Second, all 

species names are compared automatically to all taxonomic names available for a particular 

genus in TPL based on pairwise orthographic distances (generalized Levenshtein distance; 

Levenshtein, 1966) between species epithets, infraspecific names, author names and the 

entire species names. We use both the absolute orthographic distance, which is the number 

of changes needed to transform one character string into the other (Levenshtein, 1966), and 

the relative orthographic distance, which relates the absolute orthographic distance to the 

length of the longer input string. Based on the orthographic distances of an original species 

name to all congeneric species listed in TPL, we determine the final working name 

hierarchically: First, we choose the best-matching species epithet. If multiple epithets match 

equally well, we choose those with best-matching infraspecific names (if infraspecific name 

available and if absolute orthographic distance < 4 and relative orthographic distance < 0.3), 

and then those with best-matching author names (if author names available and relative 

orthographic distance < 0.5). The specific matching thresholds at each step were set in 



32 Chapter 2 

 

consideration of the balance between the number of names that cannot be matched and the 

number of names that are matched to the wrong species. Synonyms are linked to their 

accepted species names as suggested by TPL. If several names match equally well and lead 

to different accepted binomial species names, we first remove illegitimate and invalid names, 

then synonyms and then accepted names with poorer overall orthographic distance. In 

addition, all names are resolved using the TNRS application programming interface (API), which 

returns similar statistics on the name matching and the status of the matched names like the 

above-described approach using TPL. For choosing standardized binomial working names 

we give priority to TPL over TNRS, because of the possibility of adjusting our TPL name 

matching approach. If a name does not match any name via TPL or TNRS with a relative 

orthographic distance < 0.25 for either the epithet or the full name, we keep the original 

name as working name. If not stated otherwise summary statistics below are based on these 

standardized binomial working names. 

All original names, orthographic distances, matched names and meta-information about the 

matching are stored in the database (Figure 2.2). Thus, the taxonomic standardization in 

GIFT is fully transparent and repeatable whenever taxonomic resources are updated or 

extended. Moreover, the stored information can be used to filter out names that did not 

match, matched only to a certain degree, or that do not lead to an accepted species name, 

allowing for rigorous sensitivity analyses of the effects of taxonomic uncertainties on the 

outcome of macroecological and biogeographical analyses.  

2.3.4 Taxonomic backbone and phylogeny 

All species working names are linked to a taxonomic backbone via their genus names. The 

taxonomy is based on the Angiosperm Phylogeny Group IV system for angiosperms (The 

Angiosperm Phylogeny Group, 2016), and on the Angiosperm Phylogeny Website version 

13 (Stevens, 2001 onwards) and The Plant List 1.1 for gymnosperms, pteridophytes and 

bryophytes (The Plant List, 2013). Based on the taxonomic backbone, the database can be 

queried in two directions. First, species lists can be extracted including only species that 

belong to a certain taxon (e.g. only angiosperms). Second, geographic units can be chosen 

for which species lists cover a complete taxon of interest (e.g. all regions with Bixaceae 

checklists). In combination, species lists of a certain taxon can be produced for all regions 

where the required data is available. In addition, species-level functional traits can be 

aggregated at any desired taxonomic level and trait information for broad taxonomic groups 

can be used to derive species-level information for traits that are consistent across a larger 

taxonomic groups.  

All seed plant species are linked to a global phylogeny with 353,185 terminal taxa (Smith & 

Brown, 2018) for phylo-geographical analyses. Two versions of this phylogeny are included 

in the database in tabular form to extract checklist and trait information for particular clades 

and to visualize trait and taxonomic coverage across the phylogeny. In one version, species 
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in GIFT not included in the phylogeny were added replacing all members of the genera they 

belong to with polytomies (Pearse et al., 2015) and in the other version missing species were 

excluded to keep detailed phylogenetic relationships among the species included. In addition, 

all vascular plant species in GIFT are linked to a phylogeny with fewer terminal taxa but 

broader phylogenetic extent (i.e. including pteridophytes; Qian & Jin, 2016), which was used 

here to assess taxonomic coverage of distribution and trait data at the family level. 

2.3.5 Functional traits 

Species in GIFT are linked to functional trait information from currently 155 original 

resources. Most trait resources are Floras and checklists for which annotated information on 

traits have been extracted, but also large trait compilations with or without spatial context 

are incorporated (e.g. Zotz, 2013; BGCI, 2017). The range of functional traits currently 

covered by GIFT reflects different aspects of plant morphology, life history, reproduction, 

physiology, genetics, and ecology (Table A2.1). The main focus lies on trait information 

aggregated at the species level, making GIFT a valuable complementary resource to initiatives 

that collate large amounts of trait measurements at the individual level (e.g. Kattge et al., 

2011a). 

 

Figure 2.3: Trait processing in GIFT. Original trait records entering GIFT are subjected to three 
processing steps: (1) Trait values are standardized with respect to language, terminology and 
measurement unit. (2) Additional trait values are derived hierarchically for traits that are logically 
nested (Figure A1.2) and taxonomically for species that belong to taxonomic groups that are uniform 
with respect to a particular trait. (3) Derived trait values are aggregated at the species level based on 
the consensus among resources (categorical traits) or summary statistics are computed based on the 
original values (numerical traits).  

Many trait resources provide equivalent information in various languages, using different 

terminologies or measurement units. The first step of trait processing in GIFT (Figure 2.3) 

is therefore the standardization of primary trait data according to pertinent trait literature 
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(Pérez-Harguindeguy et al., 2013; Garnier et al., 2017) using defined categorical levels 

(categorical traits) and units of measurement (numerical traits) (Table A2.1). To retain the 

maximum information provided by the original resources, many categorical traits are defined 

at multiple levels of detail (e.g. life form 1 and life form 2, Figure A1.2). In the second step 

of trait processing, the standardized trait values are subjected to a hierarchical derivation 

procedure (Figure 2.3). This procedure makes use of logical links and nestedness among 

many functional traits based on their definitions. For example, the value “tree” in the trait 

growth form implies the value “woody” in the trait woodiness. As such, hierarchical trait 

derivation increases the amount of trait information in GIFT. In addition, hierarchical 

derivation ensures compatibility among different levels of detail of the same trait by 

automatically deriving values in coarser variations from available information in more 

detailed ones. We organize such hierarchical relationships between traits in a directed graph 

that can be easily traversed to fill data gaps (Figure A1.2) A tabular version of the graph is 

stored in the database (Table A2.2). A similar derivation approach is implemented for 

taxonomic groups that are uniform with respect to a particular trait (taxonomic trait 

derivation). In this case, the basis of derivation is not the logical hierarchy of trait values, but 

that of taxonomic groups. For example, the genus Abies consists exclusively of monoecious 

trees (Farjon, 2010). Thus, all species of Abies can be characterized with respect to growth 

form “tree” and reproductive mode “monoecious” based only on their taxonomic position. 

Subsequently, the taxonomically derived species-level traits are subjected to the hierarchical 

derivation as outlined above. 

To obtain a single, standardized value per trait and species, original and derived trait values 

are aggregated based on the consensus among resources (categorical variables, 66 % 

consensus threshold) or summary statistics are computed based on the original values 

(numerical variables, currently: mean, minimum and maximum) (Figure 2.3). Trait derivation 

and aggregation for a given species are repeated each time a new trait record enters the 

database, such that the final values and proportions of supporting resources are continually 

re-evaluated in the light of new information. Throughout the entire procedure of trait 

processing, information can be traced back to their original reference and unstandardized 

value. This provides a basis for implementing advanced gap-filling (Schrodt et al., 2015) and 

aggregation techniques (Kattge et al., 2011b) in the future. 

2.3.6 Geographic regions 

Each regional species checklist in GIFT unambiguously refers to a geographic region, e.g. an 

island, archipelago, political or biogeographical unit, or protected area. Spatial polygons come 

from the Biodiversity Information Standards Working Group (TDWG, 2007), the GADM 

database of Global Administrative Areas (Hijmans et al., 2009), single island polygons 

extracted from GADM (see Weigelt et al., 2013), the Global Island Database (UNEP-

WCMC, 2013), the World Database on Protected Areas (UNEP-WCMC, 2014), or are 

digitized manually according to the checklist literature resources. The regions vary in area by 
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13 orders of magnitude, ranging from tiny islands to large countries and botanical continents 

(Figure 2.4). Regions may be nested or overlap with each other. The degree of overlap is 

calculated automatically and recorded in the database to allow spatial aggregation of 

information or the exclusion of overlapping entities analyses.  

 

Figure 2.4: Frequency distributions of 2007 geographic regions in GIFT with information on native 
vascular plant species composition and spatial properties for a) region area (km²), b) latitude and c) 
species richness of native vascular plants. Blue bars = islands, brown = mainland regions, white = 
total, dark blue = overlap of mainland and island bars. 

For each geographic region, a suite of currently 123 physical geographic, bioclimatic and 

socio-economic characteristics is computed for macroecological analyses based on the 

regions’ spatial information and additional spatial datasets (Table A2.3). Specifically, this 

includes (1) characteristics based on the spatial polygon itself like its area, centroid 

coordinates and geographic extent, (2) summary statistics  (15 quantiles including minimum, 

median and maximum, mean, standard deviation, mode, number of unique values, Shannon 

diversity and number of cells) derived from raster layers like digital elevation models 

(Danielson & Gesch, 2011), global climate layers (e.g. CHELSA; Karger et al., 2017) or 

human population density (Doxsey-Whitfield et al., 2015), and (3) miscellaneous metrics 

calculated from additional spatial resources like biogeographic region affinity (Takhtajan, 

1986) or island isolation (Weigelt & Kreft, 2013) (Figure A2.1c). 

For families and higher taxonomic groups, we automatically calculate the number of all 

species, native species, naturalized species and endemic species for all regions that are 

covered by checklists for the given combination of taxonomic group and floristics status. 

Additionally, we calculate for the same taxonomic groups and floristic subsets the percent 

trait coverage for all functional traits covered by the database. It is hence possible to extract 

and visualize for which regions and taxa what information in terms of species checklists and 

functional traits is available. Based on the various checklist resources available for each 

geographic region, we decide whether the checklist information should theoretically 

completely cover the whole native vascular or angiosperm flora. This, however, is a rough 

and subjective estimate and given the huge amount of unexplored plant diversity especially 

in the Tropics and only partial completeness of the according Floras, it needs further 
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evaluation. To this end, we are currently incorporating species numbers and richness 

estimates from the literature (Frodin, 2001; Kreft & Jetz, 2007) into the database and develop 

workflows to compare them to the species numbers derived from the checklists. Regions 

deviating considerably from these literature values can be excluded from analyses if needed. 

The same way regional trait coverage can be used to exclude regions with little trait 

information from analyses on trait patterns. 

2.3.7 Versioning 

This paper describes GIFT version 1.0. New data is incorporated in chunks and each time 

new data is added or workflows are modified, a new version is released. Changes will be 

documented at http://gift.uni-goettingen.de/about. Old versions are backed up and can be 

restored to reproduce analyses carried out on old versions of the database. 

2.4 Current state 

2.4.1 Geographic coverage 

Initially, GIFT started with the collection of Floras and checklists for oceanic islands and the 

basic workflows have been developed for various projects focusing on island plant diversity 

(Weigelt et al., 2015; Weigelt et al., 2016). Island floras usually host a comparatively limited 

set of species and have clearly defined geographic boundaries. As such, they have attracted a 

lot of scientific interest in the past, leading to a high availability of island Floras and checklists. 

GIFT therefore offers a very comprehensive overview over the floristic composition of 

1,845 of the world’s islands (Figure 2.4), which has already led to a variety of studies on island 

biodiversity patterns and their determinants (e.g. Weigelt et al., 2013; Cabral et al., 2014; 

Weigelt et al., 2015; Weigelt et al., 2016; Lenzner et al., 2017). More recently, GIFT has been 

expanded to cover 1,048 mainland regions, allowing for comparative analyses of continental 

and insular floras (König et al., 2017) and exhaustive studies of global plant diversity. 

Table 2.1: Current coverage of GIFT for selected major plant groups in terms of number of regions 
with supposedly full inventories for native species, unstandardized taxonomic names, standardized 
species names, species with resolved taxonomy, and trait records. 

Taxonomic group Regions Names Species Species resolved Trait records 

Embryophyta 53 717117 324136 277580 2307100 

Tracheophyta 2062 714781 322002 275610 2306973 

Pteridophyta 2079 24241 11888 8408 54772 

Gymnospermae 2211 4031 1151 1051 12352 

Angiospermae 2218 686509 308963 266151 2239849 

Orchidaceae 2478 64508 28155 27029 192332 

Asteraceae 2218 58492 27755 24450 167300 

Fabaceae 2218 46999 21000 18416 145895 

Poaceae 2431 38464 12368 11215 130492 

Rubiaceae 2431 29485 14260 13545 96684 

Lamiaceae 2431 18120 7882 7560 61708 

http://gift.uni-goettingen.de/about
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In total, GIFT currently includes 2,893 geographic regions covering the whole globe. Of 

those regions, 2,062 have at least one checklist for all native vascular plants, together covering 

all floristic kingdoms and biomes and 79.1 % of the earth’s land surface excluding Antarctica 

(Figure 2.5a). After removing overlapping entities to avoid pseudo-replication, up to 1,841 

regions and 58.2 % land surface coverage remain when prioritizing small entities (> 100 km²) 

over large entities, and 1,555 regions and 73.1 % land surface coverage remain when 

prioritizing large entities over small entities (single islands always prioritized over island 

groups). Geographic coverage varies with focal taxonomic group (Figure 2.5, Table 2.1) and 

floristic status (Figure A2.2), and is highest for native species. Largest gaps for native vascular 

plant floras are currently located in Tropical Africa, the Middle East, Central Eurasia, and 

South East Asia (Figure 2.5). Data gaps in GIFT do not necessarily represent true knowledge 

gaps. Floras of the countries of the former USSR, West Africa, Madagascar, Java and India, 

for example, are available and are currently in the process of being incorporated. 

 

Figure 2.5: Spatial coverage of checklist data currently stored in GIFT. a) Regions with checklist data 
for native vascular plants. Darker green shade indicates overlapping regions. b-d) Checklist coverage 
and species richness of major taxonomic groups for regions with theoretically complete inventories. 
Regions <25,000 km² are plotted as points. 

Since many Floras refer to entire countries of various sizes, and some of the resources in 

GIFT use broad distributional classifications (e.g. WCSP, 2014; BGCI, 2017), most mainland 

regions in GIFT are relatively large, especially in comparison to an average island (Figure 

2.4). However, we aim to also include mainland regions of small sizes like protected areas 

and small political units, since smaller units span smaller environmental gradients, and should 
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thus provide a tighter link between taxonomic, functional and phylogenetic species 

composition and aggregated abiotic conditions (Pearson & Dawson, 2003). 

2.4.2 Taxonomic coverage 

GIFT currently includes 324,136 taxonomically standardized species from all major groups 

of land plants (Embryophyta), 277,580 of which are resolved to accepted species names. The 

focus for the collection of species lists and traits lies on vascular plants (Tracheophyta, 

322,002 species) and in particular on angiosperms (Angiospermae; 308,963 species; Table 

2.1). On average, 79.3% of all accepted species per plant family according to TPL are covered 

by distribution data. Taxonomic coverage of distribution data does not show a significant 

phylogenetic signal (Abouheif’s Cmean = 0.03, p = 0.142; Abouheif, 1999), i.e. it exhibits no 

detectable taxonomic bias (Figure 2.6). The 324,136 species names in total derive from 

717,117 unstandardized original names (after genus name correction and exclusion of hybrid 

names) that differ in spelling or in the availability of author names or infraspecific 

information. 98.2 % of all original names could be matched and standardized to an existing 

species name using our approach to match TPL or using the TNRS API. For 90.5 % of all 

names, the synonymy could be resolved. Only 3.6 % of all working names are names that 

were adopted unchanged from the original names because they could not be adequately 

matched to taxonomic resources.  

 

Figure 2.6: Taxonomic coverage of distribution data in GIFT at the family level. Tip color and inner 
ring color indicate the proportion of species with distribution information relative to all species of a 
given family, the grey outer ring delimits major clades of vascular plants. The height of bars in the 
outer ring is proportional to log10 total family species richness. Phylogenetic signal in taxonomic 
coverage was assessed as Abouheif’s Cmean, a measure of phylogenetic autocorrelation based on the 
sum of the successive squared differences between values of neighbouring tips in the phylogeny 
(Abouheif, 1999). 
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2.4.3 Trait coverage 

In total, there are 3,475,337 original trait records referring to 550,892 original taxon names. 

Hierarchical trait derivation yields an additional 1,261,718 trait records. After aggregating 

original and derived trait records, i.e. resolving species names and combining trait records 

for identical species, 2,307,100 species-trait combinations for 267,978 standardized species 

remain for ecological analyses (Table 2.1). 

The majority of trait information in GIFT refers to morphological characteristics such as 

woodiness (234,214 species) climbing habit (223,280 species), or growth form (213,372 

species)(Table A2.1). Life history traits such as life form (100,607 species) or life cycle (84,206 

species) are the second most common trait category. Other categorical traits are considerably 

rarer, e.g. photosynthetic pathway (31,534 species), dispersal syndrome (8,204 species), or 

pollination syndrome (4,511 species). Also quantitative traits such as maximum plant height 

(53,449 species), mean seed mass (23,874 species) or mean specific leaf area (2,304 species) 

are comparatively poorly covered.  

To illustrate patterns in the geographic and taxonomic trait coverage of GIFT, we use the 

overall coverage across all traits as well as four exemplary traits (growth form, plant height, 

life form and seed mass). Geographically, most trait information per species is available in 

Europe and some comparatively species-poor temperate islands (Figure 2.7a). Also, non-

tropical parts of the Americas, Africa and Australia are well covered, whereas tropical regions 

in Africa and South-East Asia are least well covered with respect to their plant functional 

characteristics. However, geographic coverage varies strongly among individual functional 

traits. Frequent traits such as growth form are available for most species in almost every 

floristic region, whereas the coverage of comparatively less well-covered traits is strongly 

dependent on the geographic scope of the main contributing resources (Figure 2.7). Life 

form sensu Raunkiær (1934), for example, is widely available throughout Europe but rarely 

reported for species in other regions of the world (Figure 2.7d). Likewise, plant height and 

seed mass exhibit uneven geographical coverage distributions, with highest coverage in 

Australia, South Africa, and Europe (Figure 2.7c&e).  

The taxonomic coverage of trait information in GIFT bears little, though significant, 

phylogenetic signal overall (Cmean = 0.21, p < 0.001, Figure A2.3a), but reveals interesting 

patterns when examined at the level of individual traits (Figure A2.3b-e). For example, plant 

height is very well covered for the graminid clade (leftmost group within the monocots, 

Figure A2.3c), and Raunkiær life form is particularly well covered in gymnosperms and 

monocots (Figure A2.3d).  
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Figure 2.7: Geographical trait coverage of GIFT. (a) The total number of trait records per native 
angiosperm species per region and (b-e) trait coverage per region (number of native angiosperm 
species with trait information/number of all native angiosperm species) for exemplary traits with 
characteristic geographic patterns in coverage. Regions <25,000 km² are plotted as points. 

2.4.4 Web interface 

An overview of the current content of GIFT is available through a web interface at 

http://gift.uni-goettingen.de. It provides summary statistics and allows producing 

customized richness and trait coverage maps for every combination of taxonomic group and 

floristic subset based on the species numbers and trait coverage values in the database. It is 

http://gift.uni-goettingen.de/
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possible to see for which regions and taxa what information in terms of species checklists 

and functional traits is available and to browse the bibliographic references.  

2.5 Applications and outlook 

GIFT takes advantage of the wealth and quality of curated Floras and plant checklists, 

integrated with diverse information on species characteristics and their environment. The 

integration of these data and the workflows described above allow exploring and testing 

macroecological and biogeographical hypotheses and improving existing distribution and 

trait datasets (Figure 2.1). The combination of floristic composition, environmental 

properties, functional traits and phylogenetic information allows moving beyond species 

richness as a proxy for biodiversity (Barthlott et al., 2005; Kreft & Jetz, 2007; Kreft et al., 

2008) and considering other facets of diversity. Examining the drivers of taxonomic, 

functional and phylogenetic diversity and turnover (Qian et al., 2013; Lamanna et al., 2014; 

Weigelt et al., 2015; König et al., 2017), for example, may help to disentangle the mechanisms 

underlying global plant diversity more directly (Graham et al., 2014). 

The integration of plant distribution data and functional traits in GIFT opens up new 

avenues in the emerging field of functional biogeography. Functional biogeography 

combines the mechanistic focus of functional ecology with the large eco-evolutionary scales 

of biogeography (Violle et al., 2014) and thus provides a direct link between measures of 

organismal performance and a wide range of abiotic and biotic conditions. Although 

functional biogeographical approaches already provided significant insights into patterns and 

drivers of functional diversity (Moles et al., 2014; Reichstein et al., 2014; Engemann et al., 

2016; Butler et al., 2017), the availability and representativeness of data on plant traits and 

distributions remains a limiting factor. Together with distribution and floristic status 

information available in GIFT, functional traits may help to better understand the 

biogeographic history of plant life on Earth and its anthropogenic stressors. Analyses of 

endemic species and their traits, for example, can shed light on the evolution of new species 

and their contribution to current biogeographic patterns (Weigelt et al., 2016). Naturalized 

alien species and their traits help to understand the role of humans in changing plant 

assemblages and may teach us how new habitats and regions are colonized. Knowledge on 

the composition of native vs. alien floras (see www.glonaf.org, van Kleunen et al., 2015; Pyšek 

et al., 2017) allows to tackle pressing questions in invasion ecology, for example what native 

floras are susceptible to plant invasions and how regional plant composition changes due to 

the naturalization of alien species (Winter et al., 2009). 

Apart from direct use as data source for macroecological or biogeographical research, GIFT 

is also a valuable resource to validate or expand other distribution or trait datasets (Figure 

2.1). Having near-global and full taxonomic coverage of distribution data (Figure 2.5) and 

several functional traits (Table A2.1), GIFT can help to assess the representativeness of 

macroecological datasets and to overcome data limitations to find answers to fundamental 

http://www.glonaf.org/
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questions in functional biogeography and macroecology (Scheffer et al., 2014; FitzJohn et al., 

2014, see also case studies in Chapter 1). It may for example help to estimate whether data 

from resources like GBIF or TRY are sufficiently complete or representative for analyses of 

a given taxon, region or functional group. Alternatively, GIFT can also be used to infer the 

floristic status of plant point occurrences (e.g. to tell apart native and non-native species), to 

identify unlikely or dubious occurrences or to infer local species absences. The latter may be 

particularly useful for species distribution modelling where random pseudo-absences are 

commonly used when true absences are not known (Lobo et al., 2010; Barbet-Massin et al., 

2012). Furthermore, GIFT can be used to define regional species pools of local plant 

communities (Karger et al., 2016), for example, for identifying likely source regions of species 

that colonize oceanic islands (see Chapter 4). Defining the regional species pool or inferring 

the floristic status may not only be important for macroecological studies, but also for field 

projects at the local to regional scale.  

The mid-term goal of GIFT is to reach full global coverage of vascular plant checklists. 

Already now, 79.1 % of the global land surface is covered and further Floras and checklists 

covering missing parts are currently processed. Realistically, GIFT will reach about 90% 

spatial coverage by the end of 2018 and will serve as a representative resource for analyses 

of global plant diversity. In the meantime, regions already covered by coarse geographical 

units will be complemented by finer-scale data, and new literature resources will be included 

to update outdated checklists. Once the availability of checklists per region has further 

increased, workflows to spatially aggregate them will be developed. This will include the 

identification of conflicting information and choice of the best and most up-to-date 

information as well as derivation of the floristic status from small to large regions and vice-

versa.  

A major challenge regards the evaluation of checklist quality and completeness in GIFT. The 

species richness data sets currently being included allow for a comparison of expected and 

observed species numbers, but also the integration of other data like, for example, point 

occurrence information as provided by GBIF or vegetation plot data may help to estimate 

completeness of the regional checklists in GIFT and eventually update them. Furthermore, 

the lack of cosmopolitan or regionally common species in checklists, an uneven 

representation of expected higher taxa, or deviances from expected ecological relationships 

like, for example, the species area relationship or the latitudinal diversity gradient may be 

used to flag potentially incomplete checklists (Santos et al., 2010). Regions with incomplete 

checklists can then be excluded from analyses or survey effort can be included in statistical 

models and data acquisition can be prioritized for those regions.  

In conclusion, GIFT offers a novel integrated database framework to study the geographic 

distribution of plant life across the globe. The integration of regional plant checklists with 

functional traits, phylogenetic relationships and regional environmental characteristics allows 

for a swift extraction of macroecological datasets for hypothesis testing and the validation 
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and extension of alternative resources. In addition, the outlined database framework can 

serve as an example for other taxa with insufficiently complete information at the level of 

individual species and for an integration of comparable data types such as vegetation plots 

or surveys. The spatially nested structure of regions in GIFT allows for an ongoing inclusion 

of resources to improve inventory quality and spatial resolution in future database releases.  
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3 Dissecting global turnover in vascular plants 

 

Christian König, Patrick Weigelt and Holger Kreft 

 

 

3.1 Abstract 

Aim: To provide a global assessment of compositional turnover in vascular plants across 

geographic settings, taxa, and functional groups. We tested whether turnover and its 

spatial and environmental drivers are affected by the geographical setting and whether 

taxonomic and functional groups exhibit specific turnover patterns that are associated 

with their ecological characteristics. 

Location: Global. 

Methods: We collated a global dataset of vascular plant checklists comprising 258 island and 

346 mainland units. We created subsets based on the geographical setting of study units 

(mainland, islands, different island types) as well as taxonomic and functional properties 

of species (angiosperms, gymnosperms, pteridophytes, trees, shrubs, herbs). For the 

entire dataset and each subset, the distance decay of similarity was assessed using 

generalized linear models. To disentangle the relative importance of spatial and 

environmental drivers of turnover, we employed generalized dissimilarity models. Finally, 

the model results were used to predict compositional similarity of vascular plants across 

a global grid. 

Results: The distance decay of similarity was stronger for mainland units than for islands. 

Among taxonomic and functional groups, the rate of decay was lowest for pteridophytes 

and highest for shrubs. Partitioning of turnover into distance- and environment-related 

effects revealed fundamental differences between mainland and island systems, with 

geographic distance being more important on the mainland than on islands. This trend 

was consistent across taxonomic and functional groups.  

Main conclusions: Our results reveal the important role of geographical context in shaping 

beta diversity patterns. We argue that geographical settings are characterized by specific 

configurations of ecological filters that strongly impact the magnitude and structure of 

turnover. Moreover, taxonomic and functional groups are differentially successful in 

passing these filters, resulting in group- and setting-specific turnover patterns. Exploring 

these interdependencies for different taxa and geographical settings at different scales will 

help to improve our understanding of beta diversity. 
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3.2 Introduction 

Beta diversity, the variation in community composition among sites (Whittaker, 1960), is a 

central concept in ecology and biogeography as it provides a key link for understanding the 

relationships between species and their environment. Three main explanations for the origin 

of beta diversity have been proposed: 1) the uniformity hypothesis (Pitman et al., 1999), 

stating that compositional variation arises as sampling artifact due to different local 

abundances of species; 2) the neutrality hypothesis (Hubbell, 2001), stating that 

compositional variation is created through stochastic, spatially limited dispersal, and 

speciation; and 3) the niche-assembly hypothesis (Whittaker, 1956; Hutchinson, 1957), 

stating that environmental factors determine the presence or absence of species and hence 

the compositional variation among sites. While the uniformity hypothesis predicts overall 

low beta diversity and has received little empirical support, numerous studies have contrasted 

the role of neutral vs. niche-based processes (Condit et al., 2002; Fargione et al., 2003; Leibold 

& McPeek, 2006; Baldeck et al., 2013). It is generally asserted that a strong spatial signal in 

community similarity indicates a strong role of dispersal limitation, thus supporting the 

neutrality hypothesis, whereas a strong environmental signal indicates strong habitat filtering, 

thus supporting the niche-assembly hypothesis (Legendre et al., 2005). Importantly, both 

hypotheses are not mutually exclusive and neutral and niche-based process may act jointly in 

natural systems (Chase, 2014). The challenge in understanding beta diversity is therefore not 

to find a single universal explanation for all observable phenomena, but to evaluate the 

relative role of individual drivers and processes at different scales and in varying contexts. 

Perhaps the most widely used approach to examine determinants of beta diversity is to track 

the change in compositional similarity along gradients of geographical or environmental 

separation. The rate at which compositional similarity decreases along such a gradient 

indicates the importance of the considered factor for species composition (Tuomisto et al., 

2003; Soininen et al., 2007). Geographic distance is most frequently chosen as predictor of 

compositional similarity (distance decay of similarity, Nekola & White, 1999) because it can 

be measured easily and ecological theory provides mechanistic explanations, e.g. spatially 

structured speciation or dispersal patterns (Hubbell, 2001), upon which testable hypotheses 

can be formulated. However, as Nekola & White (1999) pointed out, not only compositional 

but also environmental similarity is negatively correlated with geographic distance, making it 

difficult to disentangle the unique contributions of spatial and environmental factors to beta 

diversity. Moreover and unlike geographic distance, there is no canonical measure of 

environmental distance because relevant target variables are both scale- and taxon-dependent 

and differ in their relative importance. Several methods have been proposed to address these 

issues including multiple regression on distance matrices (Manly, 1986), variation partitioning 

(Borcard et al., 1992), and generalized dissimilarity modelling (Ferrier et al., 2007). 

The diverse approaches to analyzing beta diversity are often applied to different subsets such 

as taxonomic groups (Tuomisto et al., 2003; Ruokolainen et al., 2007), functional groups (Bin 
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et al., 2010; López-Martínez et al., 2013), or geographical settings (Fattorini, 2010; Stuart et al., 

2012), where each subset serves as an independent test case under different conditions. 

Comparing species groups with differential dispersal abilities, for example, allows inference 

about the strength of dispersal-related (distance-dependent) determinants of beta diversity. 

Contrasting geographical settings with distinct properties, on the other hand, may yield 

insights on the relative importance of assembly processes under different environmental 

conditions. However, studies on beta diversity that take advantage of species-level traits as 

well as environmental factors are profoundly rare. 

Here, we present a global analysis of vascular plant beta diversity using a large floristic data 

set of 604 checklists comprising 149,475 species. We focused on the turnover (i.e. richness-

insensitive) component of beta diversity and examined different geographic, taxonomic, and 

functional subsets in order to identify the factors determining turnover at global scales. To 

assess the general strength of turnover, we analyzed the distance decay of similarity in each 

subset. We then applied generalized dissimilarity models with an additional set of 

environmental predictors to disentangle the relative importance of spatial and environmental 

drivers, and to predict floristic similarity across a global equal-area grid. We hypothesize that 

turnover and the importance of spatial and environmental variables vary (1) across 

geographic settings, indicating that different geographical settings impose distinctive 

combinations of dispersal and environmental filters, and (2) across taxonomic and functional 

groups, indicating that groups are differentially successful in passing these filters. In 

particular, we expect geographic distance (i.e. dispersal filtering) to be the predominant driver 

in island systems and environmental conditions (i.e. environmental filtering) to be 

predominant drivers in mainland systems. On the other hand, we expect groups with, on 

average, good dispersal abilities to be less sensitive to geographic distance. Likewise, groups 

composed of species with large environmental tolerances should be less sensitive to 

environmental distances. 

3.3 Methods 

3.3.1 Species data 

Building on previous work of Weigelt et al. (2015), we assembled vascular plant checklists 

from published floras, checklists and online databases (see Appendix 1 – data sources). We 

standardized species names and higher taxonomic ranks according to The Plant List (2013) 

and, for species not listed in The Plant List, using iPlant’s taxonomic name resolution service 

(Boyle et al., 2013). Our inclusion criteria for checklists were that (1) the checklist was 

sufficiently complete, i.e. the reported species number fell into a reasonable range for the 

given biome and area (Kreft & Jetz, 2007), (2) the floristic status (native vs. alien) of all 

species was documented, (3) the checklist contained more than 30 native vascular plant 

species to allow robust statistical analyses, and (4) the corresponding geographical unit could 

be clearly defined and had a size between 1 and 500,000 km². To increase comparability 
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among and environmental consistency within operational geographical units (hereafter 

OGUs), we focused on collecting mainland checklists for relatively small regions such as 

protected areas or federal states. The final dataset (see Table A3.2) consisted of 258 island 

and 346 mainland OGUs containing a total of 149,475 native plant species (all aliens were 

excluded) and 771,403 species records (Figure A3.1). 

We collected morphology-related trait information from the original checklists and 

additionally large trait databases (see Table A3.2). Since terminology of trait information 

differed greatly across resources, we translated the original descriptions into a hierarchical 

system of growth- and lifeform traits with defined values for each level (Figure A3.2). We 

then used values from highly resolved levels to deduce missing values for coarser levels. 

Where resources provided conflicting trait values for a given species (less than 5 % of cases), 

we used a threshold of at least 66 % agreement to assign a final value to the species. Although 

more detailed traits such as life form sensu Raunkiær (1934) are ecologically more informative, 

we chose growth form (values: herb, shrub and tree) as target variable in all trait-related 

analyses, because it represented the best compromise between data coverage and ecological 

relevance. This way, we could assign growth forms to a total 102,809 out of 149,475 species 

and achieved an average coverage of 81.9 % and 87.1 % for island and mainland OGUs, 

respectively. 

3.3.2 Abiotic data 

Spatial polygons for OGUs were assembled from the GADM database of Global 

Administrative Areas (Hijmans et al., 2009) for political units and islands, and from the World 

Database of Protected Areas (UNEP-WCMC, 2014) for protected areas. Some OGUs were 

digitized manually on the basis of information given in the respective publication (maps, 

coordinates). The geographic distance between OGUs was calculated as the distance between 

the polygon mass centroids on a sphere with the earth’s radius. Environmental data were 

extracted from 30 arc-seconds WorldClim raster layers (Hijmans et al., 2005) for annual mean 

temperature, annual mean precipitation, temperature seasonality, precipitation seasonality 

and elevation. These variables have been shown to capture major ecologically relevant axes 

of environmental space (Moser et al., 2005; Kreft & Jetz, 2007; Weigelt & Kreft, 2013). 

Because of the skewed distribution of raster cell values, we did not use the mean but the 

median of all cells overlapping with an OGU as environmental predictors. Pairwise 

correlation plots and variance inflation factors did not indicate problematic levels of 

multicollinearity among the predictor variables (Figure A3.3). Island geology, distinguishing 

between continental islands (i.e. shelf islands and continental fragments), oceanic islands (i.e. 

islands of volcanic origin or uplifted by tectonic processes), and atolls (i.e. flat, ring-shaped 

coral islands) was ascertained through extensive literature research.  
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3.3.3 Compositional similarity 

Beta diversity describes two independent sources of compositional variation: The 

replacement or turnover component, reflecting the amount of change in species identities 

among study sizes, and the nestedness component, reflecting the compositional variation owing 

to differences in species numbers (Lennon et al., 2001; Baselga, 2010; Legendre, 2014). We 

quantified compositional variation using the βsim-index which is insensitive to richness 

differences and thus only quantifies the turnover component of beta diversity (Baselga, 

2010). This is a crucial property when comparing units of unequal area, as we do here, 

because of the strong dependence of species number on area (Arrhenius, 1921; Connor & 

McCoy, 1979). The index is defined as 𝛽𝑠𝑖𝑚 =  
min (𝑏,𝑐)

min(𝑏,𝑐)+𝑎
  where a is the number of species 

common to both comparison units and b and c are the number of species unique to the first 

and second unit, respectively. 

We prepared a binary species-by-sites matrix containing all species and all OGUs. Based on 

geographical, taxonomic and functional criteria, we produced different subsets of the full 

matrix (Figure 3.1). We derived row-wise subsets for mainland units, islands, and particular 

island types as well as column-wise subsets for angiosperms, gymnosperms, pteridophytes, 

trees, shrubs, and herbs. We also produced separate island- and mainland subsets for all 

taxonomic and functional groups. For each subset, we computed separate βsim-similarity 

matrices. If an OGU had less than 10 species of a particular taxonomic or functional subset, 

it was excluded from the respective similarity matrix to avoid bias emerging from low sample 

size. Moreover, we excluded OGUs from the functional subsets when the growth form was 

known for less than 80 % of the species. 

3.3.4 Analysis 

Turnover was assessed in a two-step approach (Figure 3.1). First, we were interested in the 

general pattern of turnover for the different geographical, taxonomic and functional subsets 

and applied single-predictor log-binomial generalized linear models (GLM), producing a 

best-fit decay curve of compositional similarity against geographical distance. The intercept 

was fixed at 1, assuming complete similarity at 0 km distance. Following Soininen et al. (2007), 

we used the halving distance (DS/2), i.e. the distance after which a given similarity value is 

predicted to decrease by 50 percent, as a measure of the turnover rate. Due to the constant 

rate of decay assumed in the model, the halving distance holds as descriptor of turnover per 

unit distance over the whole gradient. Acknowledging that the non-independence of 

observations in similarity matrices leads to correct parameter estimates but invalid test 

statistics (Lichstein, 2007), we estimated confidence intervals for the GLMs using a 

bootstrapping approach. We randomly excluded 50 % of OGUs from each similarity matrix 

and used the 2.5 and 97.5 percentiles of the sample distribution of estimated coefficients 

from 250 individual runs. 
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Figure 3.1: Framework of this study for analyzing global turnover of vascular plants. Subsets of the 
species-by-sites matrix were produced on the basis of geographical, taxonomic and functional criteria. 
For each subset, turnover along geographical and environmental gradients was assessed using single 
predictor log-binomial generalized linear models and multi-predictor generalized dissimilarity models 
(GDM). Abbreviations: DS/2, distance after which similarity decreases by 50% (halving distance); x1...p, 
GDM predictor variables; f(x1...p), GDM transformation functions for x1...p that maximize the deviance 
explained by full model; OGU, operational geographical unit. 
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In the second part of the analysis, we applied generalized dissimilarity modelling (GDM) 

(Ferrier et al., 2007) to investigate spatial and environmental drivers of turnover. GDM is 

specifically designed to analyze and predict large-scale patterns in beta diversity with respect 

to a set of explanatory variables. The model accounts (1) for variations in the rate of turnover 

along individual variables and (2) for the curvilinear relationship between compositional 

similarity and gradients of geographic or environmental separation (Ferrier et al., 2007). This 

is achieved by producing a set of monotonically increasing I-spline basis functions for each 

predictor and reformulating pairwise differences among sites as the differences along the I-

spline basis functions. Coefficients for each basis function are calculated using maximum 

likelihood estimation in an inverse log-binomial GLM with compositional similarity as 

response and the set of reformulated distances as predictors. The sum of fitted I-spline basis 

functions per predictor yields the final transformation function, representing the best 

supported relationship between observed compositional similarity and pairwise distances 

along the considered predictor (Fitzpatrick et al., 2013). The transformation functions 

provide two important pieces of information (Figure 3.1): First, the total height of the curve 

serves as a proxy for the turnover associated with the respective environmental variable when 

all other variables are held constant. Second, the shape of the curve reflects the variation in 

the rate of turnover along the considered variable (Ferrier et al., 2007).  

Generalized dissimilarity models for each subset were fitted with the R-package gdm (Manion 

et al., 2015), using a geographical distance matrix and the untransformed vectors of mean 

annual temperature, annual precipitation, temperature seasonality, precipitation seasonality, 

area and elevation as predictor variables of compositional similarity. We used the default 

setting of three I-spline basis functions per predictor. Significance testing of variables was 

realized by a combination of Monte Carlo sampling and stepwise backward elimination as 

implemented in the gdm.varImp-function. We performed 250 permutations per step until 

only significant (α = 0.05) variables remained in the model.  

We used two different approaches to assess the importance of predictor variables which 

reflect the level importance and dispersion importance (Achen, 1982; Grömping, 2006) with respect 

to compositional similarity. Dispersion importance, i.e. the amount of variance explained, 

was quantified by fitting separate GDMs using the full set of significant predictors (full 

model), only geographic distance (distance-only model), and only environmental variables 

(environment-only model). Based on the respective deviance explained, the metric of model fit 

in GDM, we partitioned the variation in compositional similarity into purely spatial, purely 

environmental, shared and unexplained effects (Borcard et al., 1992; Legendre, 2008). For 

assessing level importance, i.e. a predictor’s importance for the response’s mean, we followed 

Fitzpatrick et al. (2013) and used the height of significant transformation functions in the full 

model. To improve comparability between methods, heights were linearly rescaled so that 

their sum equals the proportion of deviance explained by the model.  
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Finally, we used GDM to derive predictions of compositional similarity across a global grid 

of 2986 equal-area grid cells (c. 50,000 km² per cell) on the basis of the distance-only, 

environment-only and full model for the mainland subset. Observed and predicted pairwise 

similarities were subjected to non-metric multidimensional scaling (NMDS) using the 

metaMDS function of the R-package vegan (Oksanen et al., 2013). This yielded a quasi-optimal 

representation of pairwise similarities in a three-dimensional space. The orientation of the 

NMDS objects was aligned perpendicular to the vectors of mean annual temperature and 

mean annual precipitation. The resulting vectors of x, y and z coordinates were individually 

rescaled to a range between 0 and 1 and projected into the red-green-blue color-space. This 

allowed us to visually assess the model performance and to create a first ever global map of 

floristic similarity. 

All analyses were carried out with the R statistical programming language v 3.2.3 (R Core 

Team, 2017). 

3.4 Results 

Across all subsets, compositional similarity showed a pronounced decay with geographic 

distance, but the rate of decay (quantified as halving distance, DS/2) differed strongly. The 

overall similarity of plant species assemblages declined by 50 percent every 1,576 km (Figure 

3.2a). Island OGUs (DS/2 = 1,840 km) showed a lower turnover rate than mainland OGUs 

(DS/2 = 1216 km). This pattern was consistent across taxonomic and functional subsets and 

most pronounced for trees (Figure A3.4 and Table A3.1). Also when inspecting the overall 

turnover rates for different island types (Figure 3.2b), neither continental (DS/2 = 1,384 km) 

nor oceanic islands (DS/2 = 1,628 km) exhibited a higher turnover rate than mainland OGUs. 

Moreover, we found very low turnover for atolls (DS/2 = 5,967 km). Taxonomic and 

functional groups exhibited different distance decay patterns as well (Figure 3.2c). The 

halving distance of angiosperms (DS/2 = 1,544 km), with 95 % of all species records the 

largest taxonomic subset, was very close to that of the full dataset (see Figure 3.2c vs. 3.2a). 

Gymnosperms (DS/2 = 1,476 km) showed similarly high turnover as angiosperms, while 

pteridophytes (DS/2 = 2,156 km) had the lowest turnover rate. Among functional groups 

(Figure 3.2d), shrubs (DS/2 = 826 km) had a higher turnover rate than trees and herbs (DS/2 

= 1,163 km and 1,523 km, respectively). 
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Figure 3.2: Distance decay of similarity for different subsets based on (a) geographical setting, (b) 
island type, (c) taxonomic group and (d) functional group. For each subset, DS/2 denotes the distance 
after which similarity decreases by 50 % (halving distance) and n denotes the number of unique 
pairwise combinations within the subset. Regression lines (white) were fitted using a log-binomial 
generalized linear model (GLM) with an intercept of 1. Confidence intervals (red) were computed by 
subsampling the data 250 times, refitting the model and taking the 2.5 and 97.5 percentiles of the 
sampling distribution of coefficient estimates. 
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According to generalized dissimilarity modelling, geographic distance and environmental 

variables accounted for a combined 56-85 % of compositional variation in the investigated 

subsets. The shapes of transformation functions in the fitted GDMs were broadly similar, 

indicating no fundamentally different responses along geographical and environmental 

gradients (Figure A3.6). However, the relative importance of predictor variables differed 

strongly across subsets (Figure 3.3). The variance-based approach generally tended to assign 

a higher importance to geographic distance than the transformation-based approach, such 

that the shared effects drew more strongly from the contribution of environmental variables. 

Contrary to our expectations, both methods concordantly showed a higher importance of 

geographic distance on the mainland, whereas environmental variables were considerably 

more important on islands. Looking at particular island types, we found the importance of 

environmental variables vs. geographic distance to increase from continental islands to 

oceanic islands to atolls (Figure 3.3). Moreover, atolls stood out due to strong effects of 

precipitation seasonality and the non-significance of all other environmental variables. 

However, it must be acknowledged that atolls, owing to their specific ontogeny, span only 

small environmental gradients. For instance, being located in the tropics, they cover a 

confined temperature range. 

 

Figure 3.3: Turnover partitioning for taxonomic and functional groups using generalized dissimilarity 
modelling (GDM). Results are shown for different subsets of the entire dataset based on geographical 
setting, island type, taxonomic, and functional group. For each subset, two alternative measures of 
variable importance are presented where the left-hand side is based on the height of GDM 
transformation functions and the right-hand side is based on variation partitioning. 
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Taxonomic and functional subsets were quite similar regarding the relative importance of 

predictor variables (Figure 3.3). Only turnover in gymnosperms exhibited a substantially 

larger sensitivity to geographical distance compared to other subsets. However, we obtained 

more heterogeneous results when analyzing turnover of individual groups for island and 

mainland OGUs separately (Figure A3.5). Here, turnover again showed a consistent shift 

towards stronger environmental control and lower importance of geographic distance on 

islands compared to the mainland. Tree turnover exhibited the strongest contrast, while the 

differences were least pronounced for pteridophytes. The shift in variable importance was 

generally stronger in the transformation-based as compared to the variance-based approach. 

For shrubs, the variance-based approach even indicated a higher importance of geographic 

distance on islands. No GDM could be fitted for gymnosperms on islands because only 

seven OGUs met our inclusion criteria.  

Our predictions of global compositional similarity (Figure 3.4) illustrate how turnover results 

from a combination of spatial and environmental determinants. Noticeably, the predictions 

of the environment-only model closely resemble biomes and reflect the expected 

compositional similarity in the absence of dispersal limitation and biogeographical history. 

The distance-only model, in contrast, depicts the expected similarity in absence of 

environmental limitations. A visual comparison of observed vs. predicted similarities (Figure 

3.4) confirms that GDM is able to accurately model large-scale turnover patterns in 

continuous environments, albeit predictions became less accurate in regions with a unique 

biogeographical history, e.g. Australia and South Africa. 

3.5 Discussion 

In general, global turnover in vascular plants was remarkably well explained by a combination 

of geographic distance and a small set of climatic predictors. However, our analyses revealed 

considerable differences among geographical settings as well as functional and taxonomic 

groups in the total amount of compositional turnover and the relative importance of its 

spatial and environmental drivers. 

3.5.1 Turnover as result of filtering processes 

Unexpectedly, turnover among islands was lower than among mainland OGUs and generally 

more associated with environmental variables than with geographic distance (Figures 3.2 and 

3.3). This finding seems to contradict the general notion of islands as isolated microcosms, 

featuring unique biota (Gillespie, 2007). However, these results become comprehensible 

when shifting the perspective from iconic, isolated archipelagos such as Hawaii towards a 

more general view on islands. Islands are surrounded by inhospitable open sea which 

presents a strong dispersal filter to the immigrating species (Carlquist, 1965; Whittaker & 

Fernández-Palacios, 2007). On the other hand, local conditions on islands impose an 

environmental filter upon arriving species’ climatic tolerances, habitat preferences, or 
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reproductive strategies (Carlquist, 1965; Weigelt et al., 2015). A lower turnover rate among 

islands can thus be explained by these filtering processes reducing the set of potential 

colonizers and thereby homogenizing the composition of realized species assemblages. 

Additionally, the particularly strong dispersal filter associated with islands may be passed only 

by dispersive – and therefore rather distance-insensitive – species, which explains the reduced 

importance of geographic distance for compositional turnover (Figures 3.3 and A3.5). 

 

Figure 3.4: Predicted compo-
sitional similarity of vascular 
plants for 2,986 equal-area grid 
cells of c. 50,000 km² size. 
Predictions are derived from a 
generalized dissimilarity model 
fitted with geographical, 
environmental, and floristic 
information for 346 mainland 
operational geographical units. 
Predicted similarities were 
subjected to a three-
dimensional non-metric multi-
dimensional scaling (NMDS), 
standardized, and projected 
into RGB-color space. Similar 
colors indicate grid cells with 
similar predicted species 
composition. Upper panel 
shows observed similarities. 
Center left- and right-hand 
panels show model predictions 
for geographic distance and 
environmental conditions only. 
Lower panel depicts the 
predicted similarities based on 
the full model. Projection: 
Eckert IV. 

Atolls make a strong case for the interpretation of turnover being the result of filtering 

processes. The conditions on atolls impose both very strong dispersal and environmental 

filters that may be passed only by few species that are both highly dispersive and adapted to 

tropical temperatures, coastal conditions (e.g. high salinity, high levels of disturbance), and 

small population sizes. Consequently, we found very low turnover among atolls and a low 

sensitivity to geographical distance (Figures 3.2 and 3.3), confirming previous, more 

descriptive analyses (Stoddard, 1992). Systems that exhibit relaxed filtering such as oceanic 

islands (reduced environmental filtering) or continental islands (reduced dispersal and 

environmental filtering), however, sample from a larger pool of potential colonizers and are 

thus characterized by higher turnover rates. This rationale may also help to understand other 

prominent biogeographical patterns including latitudinal or elevational gradients in beta 

diversity (Qian & Ricklefs, 2007; Tello et al., 2015). For example, it suggests that the size of 
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the species pool (gamma diversity) is an inherent property of the geographical or 

environmental setting and that correcting for variations in pool size (Kraft et al., 2011) might 

lead to incorrect conclusions regarding the role of assembly processes. 

The above considerations are not addressing the main reason why island biota are regarded 

as unique: endemism. Islands are hotspots of in-situ diversification (Kier et al., 2009) and 

endemic species are potentially a strong driver of turnover among islands. The impact of 

endemism on turnover is proportional to the fraction of endemic species in a flora. While 

this fraction may be quite high for large, isolated islands, the majority of islands represents 

smaller and less isolated geographical entities (Weigelt et al., 2013). From the 115 island 

OGUs in our dataset with available information on endemism status, 90 had less than 10 % 

endemics. Thus, the native flora of most islands consists predominantly of rather widespread 

non-endemic species and is a product of strong dispersal and environmental filtering, 

resulting in reduced turnover. Supporting this, the most frequently shared species among 

islands in our dataset were invariably pantropical coastal and littoral plants such as Scaevola 

taccada, Cassytha filiformis, Fimbristylis cymosa, or Ipomoea pes-caprae. While studies on other 

organismic groups report different results (Stuart et al., 2012), the overall effect of endemism 

on the compositional structure of plant assemblages on islands may be smaller than expected. 

3.5.2 The role of species attributes for turnover 

As illustrated by the small set of widespread littoral plants on islands, the ability to pass 

ecological filters depends on species attributes like dispersal ability or environmental 

tolerance. This is reflected by group-specific turnover patterns. According to our analyses, 

turnover rates were lowest for pteridophytes, intermediate for angiosperms, gymnosperms 

and herbs, high for trees and very high for shrubs (Figures 3.2c and 3.2d). Similar results at 

smaller scales were reported by Tuomisto et al. (2003) and Qian (2009) for angiosperms vs. 

pteridophytes, and by López-Martínez et al. (2013) for shrubs vs. trees. Our findings align 

well with the average propagule size, and thus approximate dispersal ability, of the 

investigated groups (Levin, 1974a; Westoby et al., 1996; Moles, 2005) and further confirm a 

negative relationship between dispersal ability and turnover (Nekola & White, 1999; 

Tuomisto et al., 2003; Qian, 2009).  

The relative importance of geographic distance and environmental variables for turnover was 

rather similar across functional and taxonomic groups (Figure 3.3). When contrasting group 

responses in mainland and island systems, however, we found a consistently elevated 

importance of environmental variables and reduced importance of geographic distance on 

islands (Figure A3.5). Notably, the shift in variable importance was strongest for groups with 

high sensitivity to geographic distance on the mainland, suggesting that these are more 

strongly affected by the increased level of dispersal filtering on islands. Consequentially, only 

a small, highly dispersive fraction of these groups is represented on islands, leading to the 

inversion of variable importance and the low relative importance of geographic distance. 
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Gymnosperms on islands mark an extreme case of this effect: here, the strength of dispersal 

filtering apparently surpasses the group’s dispersal abilities to such an extent, that it is almost 

entirely absent from this geographical setting (Figures A3.4 and A3.5). 

While our results demonstrate a clear relationship between turnover and group-specific 

dispersal abilities, the linkage between turnover and environmental group characteristics is 

less evident. However, assumptions regarding group differences in dispersal ability can be 

reasonably justified on the basis of average propagule sizes and characteristic reproductive 

strategies. In contrast, a similar evaluation of the considered groups with respect to 

environmental tolerances is more difficult. A rigorous test of the relationships between 

species characteristics and environmental filtering would require a detailed a priori definition 

of groups based on features that are causally linked to niche breadth and independent of 

dispersal ability. Given the recent progress in estimating niche dimensions (Kearney et al., 

2010; Blonder et al., 2014; Díaz et al., 2016) and the increasing availability of functional trait 

data (Kattge et al., 2014), we are confident that such analyses are soon within reach. 

3.5.3 The origin of beta diversity 

Although estimates of variable importance were plausible in the context of specific 

geographical settings and species groups, it is difficult to draw a general conclusion regarding 

the balance of spatial and environmental drivers of vascular plant turnover. The two 

measures of variable importance produced slightly different results, with the variance-based 

approach putting more weight on geographic distance than the transformation-based 

approach. Considering the way these methods work, this difference exposes highlights some 

important properties of large-scale beta-diversity patterns. Most of the systematic change in 

compositional similarity occurred within the first 3,000-5,000 km, whereas pairwise similarity 

was generally low thereafter (Figure 3.2). Hence, for the 75-85 % of site-pairs that lie beyond 

that threshold, almost complete turnover is predicted very accurately by geographic distance 

alone. This is reflected by the high importance of geographic distance in the variance-based 

approach. In contrast, the transformation-based approach is more robust against the high 

number of low values of compositional similarity at large geographic distances: If a further 

change in a predictor does not affect compositional similarity, the transformation function 

flattens out and the variable importance remains constant. This, however, does not allow 

addressing multicollinearity among predictors by estimating shared effects. In summary, the 

variance-based approach is best understood as reflecting the overall prediction accuracy of a 

variable, whereas the transformation-based approach indicates of a variables’ importance for 

systematic changes in compositional similarity. 

Relating this to our results, both methods clearly show that environmental and spatial factors 

act jointly in causing turnover in vascular plants. For most subsets, the systematic change in 

composition is slightly more controlled by environmental conditions than by geographic 

distance. With increasing geographic distance, however, compositional similarity generally 



60 Chapter 3 

 

approaches very low values and environmental variables become increasingly expendable for 

predicting turnover. Topographical site properties such as elevation and area did not have 

important effects at the studied spatial grain and extent. Also with regard to the question 

whether niche-based or neutral processes drive global turnover, it is important to consider 

scaling effects. Chase (2014) provides compelling arguments why the importance of neutral 

processes should diminish with increasing spatial scale. At such scales, unique effects of 

geographic distance are more likely the product of evolutionary history than of neutral 

immigration-extinction dynamics. Moreover, it is important to note that dispersal, although 

partly stochastic, is not necessarily a neutral process: Species clearly differ in their dispersal 

ability which (1) violates the assumption of species equivalence in neutral models and (2) 

adds a deterministic component to the process of dispersal (Lowe & McPeek, 2014). 

Equating distance-related effects on species composition with the importance of neutral 

processes would therefore disregard the signal of non-random species filtering. According 

to our results, global turnover in vascular plants is structured by a combination of niche-

based processes related to environmental factors and predominantly non-neutral dispersal- 

and speciation-related processes to geographical distance. 

3.5.4 Methodological strengths and limitations 

The nature of large-scale beta diversity data presents some statistical challenges due to the 

high number of low and zero-values. In contrast to the distance decay models, generalized 

dissimilarity modeling was relatively robust to this idiosyncrasy and proved to be a powerful 

tool for analyzing turnover, with our predictions of mainland compositional similarity (Figure 

3.4) showcasing only one application. A mechanistic understanding of beta diversity is 

increasingly recognized as a key requirement for the effective protection of global 

biodiversity (Socolar et al., 2016). Complex statistical models such as GDM are a promising 

way to further develop this understanding and to derive accurate predictions of ecosystem 

responses under future conditions (Mokany et al., 2016). A next promising step towards this 

objective is to integrate phylogenetic information into the modeling framework (Graham & 

Fine, 2008; Rosauer et al., 2014). This may reduce the problem of zero inflation, increase the 

informational resolution of the data, and allow for disentangling the role of evolutionary 

history and dispersal limitation in the spatial signal of compositional similarity. 

3.6 Conclusion 

Our results demonstrate a complex interplay of geographical and environmental factors as 

well as species characteristics in determining the magnitude and structure of turnover. We 

found strong evidence that (1) the geographical setting affects turnover via dispersal and 

environmental filtering and (2) the ability to pass these filters varies among taxonomic and 

functional groups and is largely congruent with expectations based on group specific 

attributes, particularly with dispersal ability. However, while the relationship between species 

attributes and turnover has received a fair amount of attention during the last decades, our 
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findings suggest that the geographical context may play an equally, if not more important 

role in shaping patterns of compositional turnover. Addressing the specific ecological filters 

that are associated with different geographical settings may help to better understand large-

scale patterns in beta diversity. For this purpose, the application of powerful statistical 

models such as GDM in combination with phylogenetic data offers great potential. 
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4 Source pools and disharmony of  the world’s island floras 

 

König, Christian, Patrick Weigelt, Amanda Taylor, Anke Stein, Wayne Dawson, Franz 

Essl, Jan Pergl, Petr Pyšek, Mark van Kleunen, Marten Winter, Cyrille Chatelain, Jan J. 

Wieringa, Pavel Krestov and Holger Kreft 

 

 

4.1 Abstract 

Disharmony is a key concept in island biology that describes the biased representation of 

higher taxa on islands compared to their mainland source regions. Although differential 

colonization success of taxa is predicted by selective dispersal, environmental and biotic 

filtering, the empirical evidence for disharmony remains largely anecdotal. Here, we develop 

a novel method for delineating island source regions and present the first global quantitative 

assessment of island disharmony. We analyzed the overall compositional bias of 320 island 

floras and examined the over- or under-representation on islands for 450 plant families. We 

found that the compositional bias of island floras is strongly predicted by geographical and 

climatic island characteristics (isolation, area, geologic origin, temperature, precipitation), 

whereas the representation of individual families is only weakly related to family-specific 

characteristics (family size, family age, taxonomic group, functional traits), indicating that the 

taxonomic scope of the disharmony concept has historically limited its wider applicability. 

Our results provide a strong foundation for integrating disharmony with quantitative 

functional and phylogenetic approaches in order to gain a deeper understanding of assembly 

processes on islands. 
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4.2 Introduction 

Islands are renowned for their unique biotas, often characterized by high levels of endemism 

(Kier et al., 2009), species radiations (Böhle et al., 1996; Givnish et al., 2009), relictual taxa 

(Vargas, 2007) or peculiar shifts in species’ life history and morphology (Carlquist, 1965). 

These features can be attributed to the isolated nature of islands (Weigelt & Kreft, 2013), 

which strongly affects the fundamental processes controlling species diversity: immigration, 

speciation, and extinction. Thus, research on island systems has stimulated many seminal 

contributions to evolutionary (Darwin, 1859; Wallace, 1881) and ecological theory 

(MacArthur & Wilson, 1963, 1967; Hubbell, 2001; Whittaker et al., 2008). The island 

biogeographical studies by Carlquist(1965, 1967, 1974) are undoubtedly among these seminal 

contributions, providing substantial insights into processes such as long-distance dispersal or 

adaptive radiation, and inspiring island research to this date (Traveset et al., 2015). In contrast 

to the strictly analytical approach of MacArthur & Wilson’s equilibrium theory of island 

biogeography (MacArthur & Wilson, 1963, 1967), Carlquist’s work offers mostly a natural 

history perspective. While this perspective does not allow for quantitative predictions of e.g. 

species richness, it is a powerful framework for understanding qualitative features of island 

biota such as taxonomic composition or morphological adaptations (Midway & Hodge, 

2012). One such feature is the striking taxonomic “imbalance” of many island biotas– a 

phenomenon known as disharmony (Carlquist, 1965, 1974). 

Island disharmony refers to the biased representation of higher taxa (e.g. families) in island 

biotas compared to their mainland source regions (Whittaker & Fernández-Palacios, 2007). 

It is the result of selective assembly mechanisms – dispersal filtering, environmental filtering 

and biotic filtering (Carlquist, 1974; Keddy, 1992; Weiher et al., 2011; Kraft et al., 2015) – 

acting with particular rigor in island systems, thus permitting only a subset of the mainland 

flora to successfully colonize islands (Weigelt et al., 2015). The interplay between geographical 

setting and taxon-specific colonization success highlights two distinct aspects of island 

disharmony. On the one hand, the overall compositional bias of island floras relative to their 

mainland source regions (compositional disharmony) should reflect the impact of ecological 

filters during their assembly, and thus show predictable variation with island-specific 

characteristics such as isolation, area, climatic conditions, or geological origin. On the other 

hand, the selectivity of these filters should result in a predictable over- or under-

representation of individual taxa on islands (representational disharmony) that is associated 

with taxon-specific attributes related to e.g. dispersal ability or environmental tolerances. 

Indeed, numerous studies demonstrate that community composition of island floras is 

strongly dependent on geographical setting (Cabral et al., 2014; König et al., 2017) and taxon-

specific attributes (Burns, 2005; Olesen et al., 2010). 

While the theoretical underpinnings of island disharmony are well established, the concept 

itself has been applied rather inconsistently and lacks a quantitative basis. In particular, the 

specification of mainland source regions is not trivial and often very coarse (Bernardello et 
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al., 2006) and the taxonomic bias of island floras is usually illustrated by means of anecdotal 

evidence rather than objective quantitative measures (Francisco-Ortega et al., 2010). In 

addition, there has been little work on whether the over- or under-representation of certain 

plant taxa on islands is globally consistent or not (but see e.g. Kreft et al., 2010), and whether 

representational deviations are linked to taxon-specific attributes that supposedly affect 

colonization success (but see e.g. Grossenbacher et al., 2017). Consequently, the empirical 

evidence for island disharmony remains fragmentary. 

Here, we provide the first quantitative analysis of island disharmony for vascular plants using 

an unprecedented dataset of 320 island and 611 mainland floras including a total of 225,053 

species. First, we present a novel method for estimating island-specific source regions and 

develop two mathematical indices that quantify compositional and representational 

disharmony. This enabled us to examine the phenomenon of disharmony from an island- 

and a taxon-centred perspective, and thus to disentangle its island-specific and taxon-specific 

drivers. Accordingly, we analyze compositional disharmony as a function of island isolation, 

area, geological origin, and climatic conditions, and representational disharmony as a 

function of families’ species richness, age, range size, and predominant functional 

characteristics related to colonization success. In particular, we are interested in the 

importance of dispersal, environmental and biotic filtering in creating disharmonic island 

floras. If dispersal filtering is the dominant cause of disharmony (Carlquist, 1967, 1974), we 

would expect strong positive effects of isolation on compositional disharmony as well as a 

consistently positive effect of dispersal-related traits on representational disharmony. 

Alternatively, if environmental or biotic filtering processes play an important role (Carvajal-

Endara et al., 2017; Grossenbacher et al., 2017), we expect to find a strong response of 

compositional and representational disharmony to island climatic variables and pollination 

or competition-related traits, respectively.  

4.3 Methods 

We examined the phenomenon of island disharmony from both an island- and a taxon-

centred perspective (Figure 4.1). First, we assessed compositional disharmony, i.e. the 

phenomenon of island floras being taxonomically biased compared to their mainland source 

regions. Second, we investigated representational disharmony, i.e. the role of individual taxa 

in creating compositional disharmony by assessing their global representation on islands 

compared to the mainland. In both cases, we chose families as the focal taxonomic level. 

Families provide a reasonable balance between ecological uniformity and taxonomic 

aggregation. In contrast, higher taxonomic levels such as orders encompass too many species 

that are too heterogeneous in their attributes to be ecologically meaningful study units, 

whereas lower levels such as genera are too numerous to be harmonically represented in any 

island flora.  

All analyzes were performed in the R statistical framework version 3.44 (R Core Team, 2017). 
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Figure 4.1: Schematic representation of the quantification of compositional and representational 
disharmony. (A) Calculation of compositional disharmony by the example of Pico Island (Azores). 
Source regions were estimated based on predictions of species turnover between the focal island and 
all mainland units (W, upper plot). The taxonomic bias between the focal island and all mainland 
units was quantified using Bray-Curtis dissimilarity on relative proportions of plant families (B, lower 
plot). The compositional disharmony of the focal island (Dcomp) was then calculated as the mean 
taxonomic bias relative to all mainland regions, weighted by their respective source pool weight. (B) 
Estimation of representational disharmony by the example of Poaceae. Representational disharmony 

was quantified based on the mean proportion of the focal taxon in mainland floras (𝑃̅ml) and island 

floras (𝑃̅is). The corresponding index (Drep) transforms the ratio between these two components to a 
range between -1 (family occurs on the mainland only) and 1 (family occurs on islands only). 

4.3.1 Data collection 

All ecological and environmental data were obtained from the Global Inventory of Floras 

and Traits database (GIFT, see Chapter 2), a novel resource for macroecological analyses of 

global plant diversity. The primary data type in GIFT are regional plant checklists that are 

integrated with additional information at the level of taxa (e.g. functional traits, taxonomic 

placement, phylogenetic relationships, or floristic status) and geographical units (e.g. climatic 

and environmental conditions, socioeconomic factors or physical geographic properties).  

We extracted all checklists from GIFT that indicate which of the listed species are native to 

the corresponding geographical region. Based on this information, we excluded all non-

native species from the analyses. Checklists referring to the same geographical unit were 

combined. We then removed all geographical units that were not covered by either a 

complete checklist of vascular plants or by several checklists that add up to a complete 

checklist of vascular plants (e.g. separate lists for pteridophytes and seed plants). Checklists 
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were considered complete if the number of species fell into a reasonable range for the given 

area, biome and taxon (Kreft & Jetz, 2007). The resulting dataset contained checklists of 

native vascular plants for 611 mainland and 320 islands units (see Table A4.1). 

4.3.2 Compositional disharmony 

Quantification 

The quantification of compositional disharmony requires estimates of island-specific source 

regions and an objective measure of taxonomic bias (Figure 4.1A). We based our method for 

estimating source regions on the fact that geographic distance and environmental gradients 

produce distinct and predictable patterns in species turnover (Fitzpatrick et al., 2013; König 

et al., 2017). Species turnover is a richness-insensitive measure of compositional similarity 

that quantifies the proportion of shared species between assemblages (Baselga, 2010). This 

makes turnover a crucial concept for constructing biogeographical species pools and 

delineating source regions (Carstensen et al., 2013). 

We used generalized dissimilarity modelling (Ferrier, 2002; Ferrier et al., 2007) to model 

species turnover (βsim, Koleff et al., 2003) among geographical units as a function of pairwise 

geographic distance and differences in mean annual temperature, mean annual precipitation, 

temperature seasonality and precipitation seasonality. These covariates are strong predictors 

of large-scale species turnover (König et al., 2017). The model was fitted using mainland data 

only (deviance explained = 80.5%), because island floras exhibit strong imprints of ecological 

filtering, which would mask the very effects we aim to quantify in this study. We derived 

model predictions of species turnover between each island and a global equal-area, 

equidistant hexagon grid (~ 23,300 km² per cell) covering all continents and important island 

source regions. The predictions were then aggregated to the level of the GIFT mainland units 

by calculating the area-weighted mean of grid values per unit (Figure 4.1A). The resulting m 

× n matrix, W, contained the expected proportion of shared species (1-βsim) between all m 

islands and all n mainland units from a “mainland perspective”, i.e. assuming that island 

floras assemble under the same conditions as floras on the mainland. The matrix W can thus 

be interpreted as reflecting the importance of a given mainland unit as a source region for a 

given island, while excluding the effects of modified filtering during island colonization. We 

set W = 0 for mainland units with very low values, i.e. highly improbable source region for 

a given island, to ensure a balanced estimation of compositional disharmony (see 

Supplementary text A4.1 for details). To validate our method, we compared the results with 

empirical source pool reconstructions based on floristic and phylogenetic relationships to 

the mainland.  

To assess the actual taxonomic bias of an island flora, we converted the species checklists to 

relative family proportions in order to account for species richness differences. We then 

calculated the Bray-Curtis dissimilarity for all pairwise island-mainland combinations, 
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yielding an m × n matrix, B. The Bray-Curtis index is the abundance-based version of the 

Sørensen index that relates the summed differences between two variables to their overall 

sum. Although usually applied to count data, the index also works with relative proportions 

(Greenacre & Primicerio, 2013), making it an appropriate measure of taxonomic bias.  

Finally, we calculated the compositional disharmony of each island, Dcomp, as the mean 

taxonomic bias of a given island i relative to all mainland units (Bi), weighted by their 

respective importance as a source region for the specific island (Wi). Dcomp ranges between 

0 and 1, with higher values indicating more disharmonic floras (Figure A4.1).  

Analysis 

For each island, we calculated area (AREA; km²) and extracted averaged values for mean 

annual temperature (MAT; °C), mean annual precipitation (MAP; mm/a), temperature 

seasonality (TVAR; °C), and precipitation seasonality (PVAR; mm/a) from CHELSA climate 

layers (Karger et al., 2017). We additionally calculated the minimum distance to the nearest 

mainland (DIST), assessed the geological origin based on pertinent literature (GEO, 

distinguishing between shelf, continental fragment, volcanic, tectonic uplift and atoll, see 

Chapter 3.3.2 for definitions), and respective island group (ARCH) for each island. 

We log10-transformed AREA, DIST, MAP, TVAR and PVAR because of strongly skewed 

distributions. For MAT, no adequate transformation was found. We then scaled all 

continuous predictor variables to µ = 0 and σ = 1 in order to standardize model coefficients. 

Although our response variable (Dcomp) is, in principle, a proportional value ranging from 0 

to 1, it was effectively bound between 0.19 and 0.87, and approximately normally distributed 

within that interval. We therefore performed the analysis of compositional disharmony using 

standard linear mixed effects models. Following Bunnefeld & Phillimore (2012), we specified 

archipelago (ARCH) as random effect. Moreover, we included interactions between DIST 

and GEO, and AREA and GEO in order to reflect potentially varying effects of island 

isolation and area on compositional disharmony, depending on whether an island has once 

been connected to the mainland or not. Based on the full model (Dcomp ~ DIST: GEO +

AREA: GEO + MAT + MAP + TVAR + PVAR + GEO + (1|ARCH)), we (1) fitted models for all 

possible combinations of predictor variables, (2) selected those models with the most 

empirical support (ΔAIC < 2), and (3) performed model averaging on this set of models 

(Grueber et al., 2011; Barton, 2016). Unless stated otherwise, all reported effects are based 

on the averaged model results. 

4.3.3 Representational disharmony 

Quantification 

For the quantification of representational disharmony, we developed a second index (Drep) 

that is based on the mean proportional representation of the focal family across all mainland 



70 Chapter 4 

 

units (𝑃̅ml) and all oceanic islands (𝑃̅is, see Figure 4.1B). We focused on oceanic islands 

(volcanic islands, tectonic islands and atolls) because their floras reflect the effects of 

dispersal, environmental and biotic filtering most clearly (Whittaker & Fernández-Palacios, 

2007) and thus allow for the most rigorous assessment of taxon-specific drivers of 

disharmony. The index is symmetric and obtains values in the interval (-1, 1), with the sign 

indicating whether the focal family is proportionally more abundant on islands or on the 

mainland (Figure A4.1). For example, a family with Drep = 0.5 has, on average, a two times 

higher proportion on islands as compared to the mainland, whereas a family with Drep = -

0.9 has a 10-times higher proportion on the mainland. The special cases of Drep = -1, Drep 

= 0 and Drep = 1 indicate a family’s restriction to the mainland, equal proportional 

representation on islands and the mainland, and restriction to islands, respectively.  

Analysis 

We obtained the total number of species in each family (SPEC) from The Plant List (2013) 

and supplemented it with values from Christenhusz & Byng (2016) where The Plant List did 

not resolve the respective family. The assignment of taxonomic supergroups (GROUP, 

distinguishing between angiosperms, gymnosperms and pteridophytes), family age estimates 

(AGE) and all further phylogenetic analyses were based on a recent megaphylogeny of 

vascular plants (Qian & Jin, 2016). For seed plants only, we selected six functional traits 

reflecting dispersal ability (dispersal syndrome, fruit type, seed mass), life history (growth 

form) and reproductive characteristics (pollination syndrome, self-compatibility). For each 

trait, we aggregated all species-level information available in GIFT (see Table A4.1) to the 

family-level: for categorical traits, we assigned a value to a family when the majority (> 66 %) 

of the species level values in GIFT were identical, i.e. a predominant trait syndrome was 

evident for the respective family; for numerical traits, we calculated the median across all 

species in the respective family with information on the respective trait.   

We used multiple linear regression to analyze representational disharmony (Drep) as a 

function of GROUP, AGE, and SPEC. We had to omit all functional trait variables because 

missing data points would have drastically reduced the statistical power of the model. Instead, 

we analyzed the impact of traits on Drep individually, using single-predictor linear models for 

continuous traits and one-way ANOVAs for categorical traits. For significant categorical 

variables, we performed a Tukey HSD post-hoc test to identify systematic variation among 

variable levels.  

To test for phylogenetic signal in Drep, i.e. whether closely related taxa tend to be similarly 

over- or under-represented on islands, we calculated Abouheif’s Cmean using the phylosignal 

R-package (Keck, 2015). The Cmean index is a measure of phylogenetic autocorrelation that 

quantifies the squared differences between values (in this case Drep) of neighboring tips in a 

phylogeny (Münkemüller et al., 2012).  
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4.4 Results 

4.4.1 Source region estimation 

Our method for estimating island source regions showed strong agreement with empirical 

source pool reconstructions (Figure 4.2). Accordingly, most island floras sample from a 

limited set of nearby and climatically similar mainland regions. The estimated source regions 

for the Falkland Islands, for instance, are highly concentrated in the nearby non-tropical parts 

of South America, which corresponds closely to the account given by Moore (1968) (Figure 

4.2D). However, with increasing isolation from the mainland, the distribution of island 

source regions became more diffuse in both the statistical and empirical reconstructions. For 

example, we estimated the source regions of the Hawaiian flora to be Circum-Pacific (Figure 

4.2B). While this wide distribution of source regions is generally in agreement with the 

empirical reconstruction by Keeley & Funk (2011), our method puts more emphasis on 

North and Central America as source regions of the Hawaiian flora. Despite such minor 

discrepancies, the overall congruency between empirical reconstructions and our statistical 

estimates of island source regions demonstrates the robustness of our method. 

 

Figure 4.2: Exemplary comparison of empirically reconstructed and statistically modelled source 
pools for six islands. Grey boxes summarize the results of previous source pool reconstructions based 
on floristic or phylogenetic affinities. Maps show corresponding statistical source pool estimates 
(proportion of shared species, 1-βsim) between the focal island and 6505 equal-area grid cells (~23,300 
km² each). Predictions were derived from a generalized dissimilarity model (Ferrier, 2002; Ferrier et 
al., 2007) fitted with geographical and climatic characteristics of 611 mainland floras worldwide. 
Histograms show the distribution of predicted values for each focal island (note that the range of 
values differs among islands). 

(A)   Galapagos (Isabela)
Carvajal-Endara et al. (2017): Most important source regions in Ecuador, Colombia, Venezuela, 
Peru, Central America and Mexico and Bolivia (decreasing order of importance).

(B)   Hawaii (Big Island)
Keeley & Funk (2011): Diverse floristic origins with hotspots in Malesia, Pacific, Australia, and 
Western North America. Many pantropical and cosmopolitan species.

(C)   Azores (Pico)
Schaefer (2002): Flora predominantly from Europe, in particular Western Europe. Minor floristic 
relationships to North America.

(D)   Falkland (West Falkland)
Moore (1968): Close floristics affinities to southern South America, in particular Tierra del 
Fuego and parts of the Southern Andes. A few species from Northern temperate regions.

(E)   Cocos Island
Igea et al. (2015): Neotropical flora. Important source regions in Central America, Colombia, 
Ecuador, Venezuela, Mexico, Peru, Greater Antilles and Guyanas, Brazil and Bolivia-Paraguay.

(F)   Mascarenes (La Réunion)
Strahm (1993): Particularly strong affinities to Madagascar and, more generally, Africa. Some 
presumably East-Asian elements present.
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4.4.2 Compositional and representational disharmony 

Compositional disharmony (Dcomp) ranged between 0.19 (Corsica, Mediterranean Sea) and 

0.87 (Clipperton Island, East Pacific). Overall, the most harmonic island floras were found 

in the Mediterranean Basin and off the shores of temperate continental regions (East Asia, 

Europe, North America). Particularly disharmonic floras were located in the Arctic and 

Antarctic seas and the Central Pacific (Figure 4.3A). In agreement with our expectations, 

compositional disharmony increased with island isolation and decreased with island area 

(Table 4.1, Figure 4.3B). Although compositional disharmony differed strongly among island 

types (Figure 4.3B), geological origin (GEO) was not an important variable in the multi-

predictor setting – after controlling for the effect of island area, isolation and climatic 

characteristics, only atolls had a positive effect on Dcomp. (Table 4.1). Correspondingly, none 

of the most supported models included an interaction term. Climatic variables had 

consistently negative and unexpectedly strong effects on compositional disharmony. 

Measured by the slope of standardized regression coefficients, precipitation seasonality 

(PVAR) was the second most important predictor of Dcomp after area (AREA) – and before 

island isolation (DIST, Table 4.1). The explanatory power of geographical and climatic 

variables for compositional disharmony was relatively high (R²marginal = 0.44). However, the 

floras of e.g. Singapore (tropical, medium-sized shelf island, species-rich, not isolated, Dcomp 

= 0.45) and South Georgia (Antarctic, large continental fragment, species-poor, highly 

isolated, Dcomp = 0.78) indicate the existence of additional island-specific factors in creating 

compositional disharmony, which is also reflected by the substantial contribution of the 

random variable (ARCH) to the overall model fit (R²conditional = 0.87). 

Table 4.1: Statistical model results for compositional disharmony (Dcomp) and representational 

disharmony (Drep). Variable abbreviations are given in the methods section. Variables are highlighted 
in bold if their confidence intervals (CI2.5, CI97.5) do not include zero.  

Compositional disharmony (Dcomp) Representational disharmony (Drep) 
 estimate std. error CI2.5 CI97.5  estimate std. error 

 
p-value 

Intercept 0.547 0.012 0.499 0.557 Intercept -0.307 0.279 0.272 
AREA -0.060 0.005 -0.070 -0.051 AGE -0.244 0.149 0.102 
DIST 0.027 0.009 0.009 0.046 SPEC 0.160 0.027 < 0.001 
MAT -0.020 0.018 -0.058 0.000 GROUP - - - 
TVAR -0.052 0.015 -0.080 -0.024   Angiosperms - - - 
MAP -0.025 0.010 -0.045 -0.005   Gymnosperms 0.073 0.200 0.714 
PVAR -0.027 0.010 -0.047 -0.007   Pteridophytes 0.886 0.113 < 0.001 
GEO -         
  Shelf 0 - - -      
  Fragment -0.014 0.0230 -0.059 0.031      
  Floor 0.023 0.019 -0.015 0.061      
  Volcanic 0.015 0.014 -0.012 0.042      
  Atoll 0.050 0.022 0.007 0.093      
          
model type Gaussian Linear Mixed Effects Model model type Gaussian Linear Model 
variance explained R²MARGINAL= 0.44 

R²CONDITIONAL = 0.87 
variance explained R² = 0.19 

sample size 320 sample size 451 
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Figure 4.3: Global patterns in floristic disharmony from an island- and a taxon-centred perspective. 
(A) Compositional disharmony of island floras worldwide (n = 320). Mainland regions that were 
used for floristic comparisons (n = 611) are colored in light grey. (B) Compositional disharmony 
of island floras as a function of island isolation (x-axis), area (dot size), and geological origin (dot 

color). Higher values of Dcomp indicate higher compositional dissimilarity relative to potential 
source regions on the mainland. (C) Representational disharmony of vascular plant families (n = 
450) as a function of family age (x-axis), species per family (dot size), and taxonomic group (dot 

color). Values of Drep above and below zero indicate a proportional over- and under-representation 
on islands, respectively. 
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Representational disharmony varied widely among vascular plant families (Figure 4.3C). 

Most notably, pteridophyte families were greatly over-represented on islands, whereas 

angiosperm and especially gymnosperm families tended to be under-represented. A few 

families such as Cycadaceae (gymnospermae, Drep = 0.62) or Marsileaceae (pteridophytes, 

Drep = -0.70) deviated from this general pattern. According to the multi-predictor model 

(Table 4.1), family species richness and taxonomic affiliation, but not family age had 

significant effects on representational disharmony. However, the explanatory power of the 

model was relatively low (R² = 0.19). Moreover, the relationship between family-level 

functional traits and representational disharmony was weak. Only in the case of pollination 

syndrome, we found significantly higher values of Drep for predominantly wind-pollinated 

families compared to predominantly insect-pollinated families (Figure A4.2). We did not find 

significant effects of growth form, self-compatibility, seed mass, fruit type and dispersal 

syndrome (Figure A4.2). In agreement with these results, we did not find a significant 

phylogenetic signal in Drep for seed plants (Cmean = 0.05, p = 0.071), but only for all vascular 

plants including the strongly over-represented pteridophyte clade (Cmean = 0.16, p = 0.001, 

Figure A4.3). 

4.5 Discussion 

Using a novel approach for estimating island source regions, we demonstrated that island 

disharmony can be assessed quantitatively. Our results show that compositional disharmony 

is a common feature of island floras worldwide, and that the magnitude of this effect clearly 

depends on the classical biogeographical variables of isolation and area, but is modulated by 

climatic conditions and geological history of an island. We found less clear relationships 

between family-specific characteristics and representational disharmony, i.e. the proportional 

over- or under-representation of individual taxa on islands relative to the mainland. Here, 

the most important predictor variable was a simple categorization of families into 

angiosperms, gymnosperms, and pteridophytes. In addition, species richness and pollination 

syndrome had significant effects on representational disharmony, whereas all other 

functional traits (growth form, dispersal syndrome, ability to self-pollinate, seed mass and 

fruit type) remained without effect. 

4.5.1 A new approach for estimating floristic source regions 

One key innovation of the present study is the outlined method for estimating floristic source 

regions based on a statistical model of species turnover. Source regions are typically defined 

as discrete, relatively large geographical units such as continents, biogeographical regions or 

countries (Fosberg, 1992; Keppel et al., 2009; Keeley & Funk, 2011). This coarse-grained 

approach is often necessitated by the broad geographical scope of floristic data sources (e.g. 

regional checklists, inventories, Floras), but, nonetheless, has proven to be a valuable tool 

for understanding the origins of island floras. However, the recent explosion in ecological 
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data availability (Hampton et al., 2013) has enabled more highly resolved, quantitative 

approaches to delineate species pools (Carstensen et al., 2013). Currently, the most versatile 

methods are based on ensembles of empirical (Graves & Rahbek, 2005) or modelled (Karger 

et al., 2016) species distributions. Such species-level approaches are theoretically well suited 

for identifying source regions of a given island, but practically require quasi-complete 

knowledge on the spatial distribution of all species occurring there. At the moment, however, 

complete knowledge of global plant distributions is still beyond reach (Meyer et al., 2016). 

Our approach, in contrast, models the proportion of shared species directly, instead of 

generating it from a compilation of complex species-level information. Consequently, source 

pool estimates based on species turnover are considerably less data-intensive than methods 

that require individual species distributions, while offering much finer spatial grain sizes and 

larger extents than empirical source pool reconstructions (see Figure 4.2). Considering that 

for the majority of islands no quantitative estimates of floristic source regions are available, 

the proposed method might add valuable aspects to island biogeographical research. 

Island colonization is an accumulative process, acting over millions of years. The extended 

temporal dimension introduces uncertainties to the estimation of island source regions 

because the climate, habitat distribution, position, size and shape of both islands (Whittaker 

et al., 2008; Weigelt et al., 2016) and source regions(Galley & Linder, 2006; Pokorny et al., 

2015) may have changed considerably since colonization. Cronk (1987) illustrates this for the 

flora of Saint Helena, which is mostly derived from a now-extinct wet forest flora that 

occupied large parts of Southern Africa during the Miocene. Moreover, the effective isolation 

of an island is difficult to quantify and depends not only on the distance to the mainland, but 

also on the availability of stepping stones and the direction of predominant sea and wind 

currents (Cook & Crisp, 2005; Weigelt & Kreft, 2013), as well as the dispersal abilities of the 

focal taxon. This is illustrated by the overestimated importance of Central American regions 

in our prediction of Hawaiian source regions (see Figure 4.2). Although Hawaii is situated 

closer to North America than to Asia and Australia, it is effectively less isolated from the 

latter continents because of interspersed Pacific islands that facilitate stepping-stone 

colonization (Carlquist, 1967). Another potential source of uncertainty is that different 

habitats or elevational zones of an island may sample from distinct source pools on the 

mainland, and thus vary in their degree of isolation (Steinbauer et al., 2012). A stronger 

consideration of the above-mentioned factors would certainly yield more accurate estimates 

of floristic source regions on the one hand, but adds much complexity on the other. Further 

methodological refinements and an extensive validation against empirical source pool 

reconstructions may help to find the appropriate balance between complexity and utility.  

Turnover-based estimates of species source regions may be applied to research questions 

beyond island disharmony. In conservation planning, for example, taxon-specific source 

region estimates could be derived from highly resolved distributional data such as vegetation 

plots or small-scale checklists to inform the design of regional ecological corridors and 

protected areas (Socolar et al., 2016). At larger scales, our approach could help to identify 
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(potential) sources of species invasions and to implement measures preventing further 

introductions from such regions. Island conservation might particularly benefit from these 

tools, since island biotas are disproportionally affected by species introductions and 

naturalizations (van Kleunen et al., 2015; Bellard et al., 2016; Pyšek et al., 2017). 

4.5.2 Determinants of compositional and representational disharmony 

Dispersal filtering has long been regarded as the predominant process in the assembly of 

island biotas, and therefore the main driver of disharmony (Carlquist, 1966a, 1967). Our 

results reveal that this is only partly true. On the one hand, the strong effect of isolation on 

island disharmony indeed suggests a major role of dispersal filtering in removing less 

dispersive taxa from the set of potential colonizers of an island. All gymnosperms except for 

Araucariaceae and Cycadaceae were under-represented on oceanic islands, which seems to 

fit the classical notion of gymnosperms as poor dispersers. Likewise, pteridophytes 

– possessing superior long-distance dispersal capabilities via ultra-light spores – were found 

to be strongly over-represented in island floras. These findings are in line with previous 

studies, which interpreted these broad taxonomic patterns as the outcome of selective 

dispersal filtering (Kreft et al., 2010; Rumeu et al., 2014; Weigelt et al., 2015). On the other 

hand, the strong effects of area, temperature seasonality, and geological origin on 

compositional disharmony, as well as the relationship between representational disharmony 

and pollination- but not dispersal-related traits, indicate an important role of non-dispersal 

related processes. Pollination is increasingly recognized as a critical factor for the 

colonization of islands (Olesen et al., 2010; Alsos et al., 2015; Grossenbacher et al., 2017). 

Given the general scarcity of animal pollinators on islands, abiotic pollination syndromes and 

the ability to self-pollinate are advantageous compared to biotic pollination or strict 

outcrossing (Baker, 1955). Indeed, we found wind-pollinated families to be much more 

evenly represented on islands than predominantly insect-pollinated families, whereas all other 

family-level traits had no detectable effects on representational disharmony. The lacking 

effect of classical dispersal traits such as seed mass, dispersal syndrome or fruit type seems 

to contradict longstanding assumptions regarding their relevance for island colonization 

(Carlquist, 1974; Howe & Smallwood, 1982; Portnoy & Willson, 1993). Indeed, while a 

relationship between such traits and dispersal distance is evident at small scales up to a few 

kilometers (Tackenberg et al., 2003), long-distance dispersal seems to operate with such high 

levels of stochasticity and complexity that this relationship vanishes (Higgins et al., 2003; 

Nathan, 2006; Nogales et al., 2012; Le Roux et al., 2014). Moreover, many large-seeded species 

that are adapted to dispersal by birds or seawater are successful long-distance dispersers, 

defying the common notion of small seeds as indicator of good dispersibility. Other studies 

even find no relationship at all between dispersal traits and colonization success (Heleno & 

Vargas, 2014). 

Abiotic factors such as climate or soil substrate also act as filters for colonizing plant species, 

as recently demonstrated for the Galapagos Islands (Carvajal-Endara et al., 2017) and New 
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Caledonia (Isnard et al., 2016). The strong effect of temperature-related variables in our 

(Table 4.1) seems to support (abiotic) environmental filtering as an important driver of island 

disharmony. However, the climatic variables in our models did not reflect climatic similarity 

to the mainland (which would be a plausible cause of disharmony, but was accounted for 

during source pool estimation), but the average conditions of the islands themselves. 

Potential explanations for the positive relationship between compositional disharmony and 

island temperature and temperature seasonality include (1) stronger environmental filtering 

on islands with temperate or polar climates, (2) higher speciation rates on warm tropical 

islands, or (3) glacial dynamics limiting the available time for colonization on cold, high-

latitude islands. In addition, separating abiotic and biotic drivers of community assembly is 

often difficult because competitors may preclude the establishment of colonizing species in 

generally suitable habitats, thus creating artificial environmental gradients in the composition 

of communities (Kraft et al., 2015).  

Even though the above considerations provide plausible explanations for the role of 

ecological factors in creating island disharmony, we want to stress that compositional 

disharmony, i.e. the overall compositional bias of island floras relative to their mainland 

source regions, is affected by neutral sampling effects related to species richness. Island floras 

can never be a perfect compositional representation of the much larger mainland source 

pool, because the number of families on an island is constrained by the number of species. 

Thus, extremely small proportions that arise, for example, in the case of rare families in 

species-rich mainland floras cannot be reproduced on islands, which inevitably increases 

compositional disharmony with decreasing species number (Figure A4.4). This interpretation 

moreover implies that compositional disharmony is also dependent on the size and spatial 

extent of the mainland source pool, as larger source pools usually include a higher number 

of taxa and are thus less likely to be represented harmonically in an island flora. This 

dependency might provide a further piece in the puzzle of understanding the disharmonic 

floras of highly isolated islands such as Hawaii or the Azores (see Figure 4.2B,C), whose 

source pools often encompass different biogeographical regions and continents. 

4.5.3 Disharmony – a necessarily vague concept? 

If the overall bias of island floras is rather accurately predicted by geographical and climatic 

island features, why does the representation of individual families on islands seem so 

unrelated to their functional traits? We consider two aspects relevant here. First, we 

approximated family-level traits based on species-level information of varying completeness 

(Figure A4.2). Missing data is a common problem in trait-based ecology (Taugourdeau et al., 

2014; Penone et al., 2014) and a major source of uncertainty and bias in the characterization 

of ecological patterns (Hortal et al., 2015). We therefore caution that our findings on 

representational disharmony depict trends rather than a definitive assessment. Second, a 

taxonomic perspective – especially when focusing on a fixed taxonomic level – is not an ideal 

framework for examining the outcomes of the complex ecological processes that produce 
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disharmonic island floras. In the scientific literature, examples of disharmonic floristic 

elements range from small genera (e.g. Metrosideros in Carlquist, 1966a) to large taxonomic 

clades (e.g. pteridophytes in Braithwaite, 1975). Some studies assemble several such examples 

for a particular island or island group in order to arrive at a more general conclusion 

(Carlquist, 1967; Whittaker et al., 1997). In fact, this is a reasonable approach because the 

degree to which taxa are consistently over- or under-represented on islands depends on their 

uniformity in terms of colonization success, and thus in terms of dispersal abilities, 

environmental tolerances and degree of biotic specialization. These parameters may vary 

greatly even within small families (Howe & Smallwood, 1982), but on the other hand show 

remarkable consistency within large taxonomic groups (Farjon, 2010), such that the required 

taxonomic level of observation is variable. Consequently, the classical concept of island 

disharmony sensu Carlquist (1965, 1974) – albeit immensely useful and influential – 

generalizes poorly across taxonomic groups. 

4.5.4 Conclusion 

We demonstrated that island disharmony is a common feature of insular floras worldwide, 

and that the traditional concept can be put on a quantitative footing. The generality and 

predictive power of the concept of island disharmony has historically been limited by its 

focus on taxonomic categorizations. However, given the rapid advances in ecological data 

availability and analytical tools, the approximation of ecological characteristics by means of 

taxonomic affiliation will eventually become obsolete. Instead, the assembly mechanisms that 

disharmony aims to reflect and explain can be investigated more directly using quantitative 

methods that are informed by functional and phylogenetic data. The outlined approach for 

the estimation of island source regions as well as the mathematical indices for quantifying 

island disharmony provide a big step towards this objective, and offer robust empirical 

insights into the factors shaping the composition of island floras.  

 



General Discussion 79 

 

General Discussion 

Summary and contribution of  this thesis 

The present thesis contributes to the fields of macroecology and biogeography on two 

different levels.  

Firstly, I provide important conceptual and practical advances on the subject of biodiversity 

data integration. I highlighted the significance of aggregated data types as unique sources of 

plant-ecological information and made the case for a targeted integration of diversity data 

across multiple domains (e.g. species distributions, functional traits, phylogenies) and levels 

of aggregation (e.g. point occurrences, vegetation plots, checklists). I showed that aggregated 

data types improve the representativeness and completeness of biodiversity data in general 

and constitute a crucial component in building a robust global baseline for plant diversity 

research (Chapter 1). I substantiated these points with three case studies that provide new 

insights into long-standing biogeographical questions regarding the global distribution of 

plant growth forms, the latitudinal gradient of seed mass, and the global prevalence of insular 

woodiness. All case studies were based on the Global Inventory of Floras and Traits database 

(GIFT, Chapter 2), which integrates hundreds of ecological data resources to support 

comprehensive analyses of taxonomic, functional and phylogenetic plant diversity at global 

scales. GIFT achieves substantially higher data coverage than established data providers in 

terms of coarse-grained species distributions (regional checklists) and functional traits 

(categorical traits on plant morphology and life history) and thus proves the effectiveness of 

the concepts outlined in Chapter 1. As such, GIFT fills a previously unoccupied niche in the 

macroecological data landscape and will continue to contribute to the knowledge of global 

plant diversity in the future. 

Secondly, I make empirical contributions towards a better understanding of assembly 

processes on islands. Leveraging the high data coverage provided by GIFT, I investigated 

global patterns and drivers of island beta diversity (Chapter 3) and disharmony (Chapter 4). 

In Chapter 3, I showed that plant speciese assemblages on islands generally tend to be more 

similar – i.e. exhibit lower beta diversity – than on the mainland, and that this 

homogenization effect is most pronounced for geographic settings characterized by strong 

ecological filtering (e.g. remote, environmentally homogeneous atolls) and for plant groups 

that are relatively insensitive to these filters (e.g. highly dispersive pteridophytes). These 

findings add to the understanding of assembly processes on islands and demonstrate how 

beta diversity patterns can be used to evaluate the relative importance of ecological filters in 

various contexts. In Chapter 4, I addressed the phenomenon of island disharmony, which 

describes the biased representation of higher taxa on islands compared to their mainland 

source regions. I approached this subject from two perspectives, differentiating between 
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island-specific factors potentially related to the overall disharmony of island floras (e.g. 

isolation, area, etc.), and taxon-specific characteristics potentially related to the overall 

representation of individual families on islands wordlwide (e.g. species number, dispersal 

traits, etc.). Representing the first quantitative, macroecological assessment of island 

disharmony to this date, my results show that the compositional bias of island floras is rather 

accurately predicted by island area, isolation, climate, whereas the representation of families 

on islands is only weakly related to family-specific characteristics. These findings suggest that 

a focus on taxa – a cornerstone of the classical concept of disharmony – is insufficient to 

capture the outcomes of complex ecological and evolutionary processes, rendering the 

increasing utilization of functional and phylogenetic approaches in biogeography a necessary 

next step. 

Challenges and future perspectives 

Data 

GIFT is specifically designed to support large-scale analysis of plant diversity at high levels 

of geographical, taxonomic and functional coverage (see Chapters 1.4.1, 1.4.2, 1.4.3, 3 and 

4). However, broad data coverage generally comes at the expense of fine-grained resolution 

(Mora et al., 2008; Hortal et al., 2015), which puts questions concerning local species 

abundances, community dynamics, infraspecific trait variation or biotic interactions currently 

beyond the scope of GIFT. Consequently, many of the pressing challenges imposed by global 

change cannot be conclusively addressed with GIFT.  

Since the mid-twentieth century alone, human activity has caused an estimated 0.65 °C 

increase in global mean temperature (Ribes et al., 2017), more than 17,000 introductions of 

alien species (Seebens et al., 2017), and the loss of more than 2.3 million square kilometres 

of tropical rainforest (Rosa et al., 2016). The accelerating pace of these and other 

anthropogenic pressures on our biosphere is projected to further amplify the detrimental 

impacts on populations, species and ecosystems worldwide (Tilman et al., 1994; Vitousek et 

al., 1997; Hoegh-Guldberg, 1999; Serreze & Barry, 2011; Newbold et al., 2015; Hallmann et 

al., 2017). Since the effects of human activity occur first at local scales before they emerge as 

consistent global patterns (Cardinale et al., 2012; Steffen et al., 2015), any strategy to 

counteract the ecological impacts of global change effectively has to operate at high 

spatiotemporal resolutions.  

Recent initiatives such as PREDICTS (Hudson et al., 2017) or BioTIME (Dornelas et al., 

2018) integrate highly resolved primary data that has been collected with a clearly defined 

purpose. Specifically, these two projects focus on disaggregated datasets (mostly at the plot-

level) that contrast the biodiversity of multiple sites under different land-use regimes 

(PREDICTS) or document changes in the biodiversity of individual sites over time 

(BioTIME). Having amassed several million species-by-sites records each, PREDICTS and 

BioTIME represent substantial advancements towards establishing clear cause-effect 
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relationships between human activities and local ecological responses. Complementary 

approaches towards this objective are collaborative research networks such as the 

International Long Term Ecological Research Network (ILTER, Vanderbilt & Gaiser, 2017) 

or the recently proposed Global Island Monitoring Scheme (GIMS, Borges et al., 2018). 

Other than projects that integrate data that has already been collected, these initiatives can 

implement highly standardized sampling protocols and specifically target taxa, ecosystems or 

geographical regions of high ecological importance. This is particularly relevant with respect 

to island biotas, which are highly threatened due to small population sizes, low functional 

redundancy and highly specialized endemic species (Fordham & Brook, 2010), but generally 

under-represented in global biodiversity databases or established research networks (Borges 

et al., 2016). Considering that islands are hotspots of historical species extinctions (Diamond 

et al., 1989) and will continue to be disproportionately affected by climate change, habitat 

loss and species invasions (Sax & Gaines, 2008; Caujapé-Castells et al., 2010; van Kleunen et 

al., 2015; Harter et al., 2015), island-focused initiatives such as GIMS are urgently needed.  

Despite the high data coverage of GIFT compared to initiatives focussing on the 

disaggregated end of the data spectrum (see Chapter 1), there are remaining data gaps (see 

Chapter 2). The current priority of the GIFT initiative is therefore to further improve the 

coverage of distributional and functional trait data in order to support increasingly accurate 

inferences about global plant diversity. The difference in checklist coverage between Chapter 

3 (258 islands and 346 mainland units as of August 2016) and Chapter 4 (320 islands and 611 

mainland units as of May 2018) demonstrates the significant progress in this regard. Once 

GIFT has reached near-global coverage in terms of coarse-grained checklist data and simple 

functional traits, further efforts will be directed towards increasing data resolution, i.e. 

focussing data collection on species checklists for small geographical units or numerical 

functional traits. This will allow for increasingly precise inferences about global plant diversity 

and hopefully close the gap in resolution to complementary disaggregated ecological data 

resources.  

Methodology  

A recurring theme in this thesis is the call for a stronger utilization of functional and 

phylogenetic approaches to enhance classical taxonomy-based concepts in biogeography. 

The fundamental drawback of taxonomy is that it is not an accurate reflection of eco-

evolutionary reality. The hierarchical structure of taxonomic classifications implies that 

organisms fall into well-defined groups of common descent (Hennig, 1966) or common 

appearance (Simpson, 1961; Mayr, 1969) – ideally both. In reality, however, this is rarely the 

case (de Queiroz, 1996; Ereshefsky, 2002). Higher taxonomic groups (e.g. genera or families) 

are constantly extended, merged or split based on rather flexible and subjective criteria 

(Dubois, 2007; Humphreys & Linder, 2009). Also relatively stable taxa of the same rank may 

vary widely in their age, diversification rate and phenotypic diversity (Magallón & Castillo, 

2009; Cornwell et al., 2014). Even the most fundamental taxonomic unit – the species – defies 
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an objective, universal definition to this date (Wiley, 1978; Mallet, 1995; Aldhebiani, 2018, 

but see e.g. Barraclough & Humphreys, 2015).  

The inconsistencies of taxonomic classifications may affect ecological and evolutionary 

inferences. For example, biogeographical regionalizations have been based on geographical 

patterns in (taxonomic) endemism for more than a century (Morrone, 2015). Regional 

boundaries were defined either qualitatively (e.g. Wallace, 1876; Takhtajan, 1986) or 

quantitatively (Kreft et al., 2010), but generally based on the amount and rank (species, genus, 

family, etc.) of endemic taxa in a given area. However, as laid out above, taxonomy is not an 

ideal proxy for the ancestral relationships – and hence biogeographical affinities – of species 

assemblages. Phylogenetic approaches offer continuous and evolutionarily more realistic 

estimates of assemblage dissimilarity (Graham & Fine, 2008), thus allowing for a more 

objective and robust delineation of biogeographical regions (Holt et al., 2013; Hattab et al., 

2015; Daru et al., 2015). With my study on geographical patterns in species turnover, I 

examined a closely related topic in Chapter 3. Although the focus of this study was not a 

biogeographical regionalization, here too, the use of a phylogenetic measure would have 

increased the informational resolution and allowed for a differentiation between 

biogeographical (deep-time) and ecological (shallow-time) drivers of species turnover (see 

e.g. Rosauer et al., 2014). 

The lack of biological realism in taxonomic classifications has also been a major reason for 

the rise of functional approaches (Keddy, 1992; Woodward & Cramer, 1996; Lavorel et al., 

2007). Functional ecology aims to approximate fundamental organismal properties such as 

competitive ability or dispersal capacity by means of easily measurable traits such as 

vegetative height or seed mass (Lavorel & Garnier, 2002). Based on these traits, species can 

be grouped into functionally consistent groups that – in theory – respond similarly under a 

given set of conditions (Díaz & Cabido, 1997; Duckworth et al., 2000). That such a grouping 

is not reliably achievable based on taxonomy was clearly shown in my research on island 

disharmony (Chapter 4). I found that the representation of plant families on islands was only 

weakly related to family-level functional traits that are widely considered to be associated 

with colonization success. This lack of a relationship was most plausibly explained by the 

high functional variation within families, suggesting that taxonomic groups are not always a 

suitable unit of observation for understanding complex biogeographical patterns such as 

island disharmony. The potential of focussing on functional rather than taxonomic 

biogeographical patterns is showcased in Chapters 1.4.1 and 1.4.2, where I derive global 

predictions of plant growth from composition and assess the latitudinal gradient in seed 

mass. Indeed, the recent increase in functional biogeographical studies indicates a growing 

recognition of such approaches (Violle et al., 2014; Whittaker et al., 2014; Engemann et al., 

2016; Zanne et al., 2018). 

Combining functional with phylogenetic approaches offers an immensely powerful toolkit 

to answer questions regarding the past, present and future of biodiversity. In a seminal study, 
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Zanne et al. (2014) reconstructed the evolution of woodiness, leaf phenology and conduit 

diameter to understand the radiation of angiosperms into freezing environments. Their study 

demonstrated impressively the interplay of physiological, ecological, and evolutionary 

processes in shaping biogeographical patterns. Similar approaches can be applied in island 

biogeography, e.g. to assess the direction and rate of adaptive processes on islands. I touched 

on this subject in Chapter 1.4.3, where I provided strong evidence for a globally consistent 

evolutionary trend towards increased woodiness in island plant assemblages. A generalization 

of this case study could  reconstruct key functional traits (Díaz et al., 2016) on a representative 

set of islands based on phylogenetic relationships, to then identify general temporal patterns 

in island functional diversity and trait space dimensions. The results would be a valuable 

addition to existing studies at smaller taxonomic and geographical scales (e.g. Givnish et al., 

2009; Lens et al., 2013) and help resolve competing hypothesis concerning the origin of island 

syndromes such as insular woodiness (Darwin, 1859; Wallace, 1881; Carlquist, 1965). 

Another interesting example for the synergies between phylogenetic and functional methods 

is given by Swenson et al. (2017), who predicted geographic variations in functional traits of 

the European tree flora based on phylogenetic and environmental relationships of the North 

American one. Although the authors acknowledged the imperfect predictability of some 

traits due to a weak phylogenetic signal, their rigorously predictive approach should serve as 

a model in other contexts. For example, it could be adapted to assess biogeographical theory 

by testing predictions about the properties of island floras based on the phylogenetic and 

functional characteristics of their source pools (see Chapter 4) and a hypothesized, island-

specific set of ecological filters. 

Theory 

Although the increasing availability of data and methodological frameworks has sparked 

substantial progress in ecology, a predictive understanding of ecological systems ultimately 

requires a robust theoretical grounding (Maurer, 2000; Marquet et al., 2014; Shou et al., 2015). 

In general, robust theories should be derived from first principles, i.e. well-established axioms 

that clearly link a specific mechanism to a given class of phenomena, and generate as many 

predictions from as few assumptions as possible (Marquet et al., 2014). Macroecology features 

several theories that generally match these criteria. The Metabolic Theory of Ecology (Brown 

et al., 2004), for example, predicts ecological patterns at multiple scales, including population 

dynamics, statistical distributions of life-history traits, and latitudinal gradients in species 

diversity and ecosystem productivity from scaling relationships between metabolic rate, body 

size and temperature. The Neutral Theory of Biodiversity (Hubbell, 2001) produces realistic 

predictions of species-area relationships and abundance distributions from stochastic 

demographic processes (immigration, speciation, extinction) of ecologically identical 

“species”. The Maximum Entropy Theory of Ecology (Harte, 2011) uses principles from 

information theory to predict accurate statistical distributions of e.g. abundance, body size, 
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or the geographic density of species using only four variables to describe the state of an 

ecological system (number of individuals, number of species, total metabolic rate, area). 

None of the above-mentioned theories explains all (or even the majority of) observable 

ecological phenomena. However, they provide logically consistent starting points for 

extensions and conceptual syntheses, as e.g. demonstrated by Enquist et al. (2015), who recast 

metabolic theory in terms of functional trait distributions, or Worm & Tittensor (2018), who 

synthesized aspects from neutral, metabolic and niche theory into a global theory of 

biodiversity. Most importantly, theoretical frameworks generate testable hypotheses about 

the core components and processes in ecological systems (see e.g. McGill, 2003, Hawkins et 

al., 2007, Xiao et al., 2015 for tests of the above-mentioned theories) and, in turn, depend 

critically on the empirical validation or falsification of these hypotheses (Maurer, 2000; 

Scheiner, 2013). This positive feedback between theory and empiricism can be greatly 

accelerated by integrated databases such as GIFT, which provide increasingly comprehensive 

and representative biodiversity data for rapid and conclusive hypothesis testing. Thus, the 

present thesis contributes to island biogeographical research not only through the detailed 

study of particular aspects of island plant diversity (Chapters 3 and 4), but also in a broader 

sense by outlining and implementating a valuable resource for future empirical studies 

(Chapters 1 and 2). 
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A1 Supplementary information to Chapter 1 

Box A1.1: Summary of the GIFT database.1 

GIFT is a new database that integrates distributional, functional, and phylogenetic plant 

diversity data for macroecological analyses (Weigelt et al., 2018). The project focusses on the 

aggregated end of the biodiversity data spectrum (Figure 1.1) and builds primarily on data that 

has been mobilized from the floristic literature and online databases. GIFT collaborates closely 

with other initiatives that aggregate and integrate global plant diversity data, e.g. GLoNAF 

(Global Naturalized Alien Flora, (van Kleunen et al., 2015)) and the TRY database (Kattge et 

al., 2011a).  

The three fundamental units of information in GIFT are data sources, species and geographical entities. These units are 

tightly interconnected and integrated with additional descriptive data such as, e.g., bibliographic information (data 

sources), functional traits, phylogenetic relationships and distributions (species), or climatic characteristics (geographical 

units). All data in GIFT are subjected to semi-automated import and processing workflows that ensure full data integrity 

and traceability. Species names undergo an orthographical and taxonomic standardisation based on The Plant List version 

1.1 (The Plant List, 2013) and additional taxonomic resources used by the Taxonomic Name Resolution Service (Boyle et 

al., 2013). Functional trait data is standardized according to relevant trait literature (Pérez-Harguindeguy et al., 2013; 

Garnier et al., 2017) and further augmented by means of logical imputation (Figure 1.2). Geographical entities are linked 

to spatial polygons from established providers of geographical information, e.g. GADM (https://gadm.org) for 

administrative areas, TDWG (https://www.kew.org/tdwg-world-geographical-scheme-recording-plant-distributions) for 

ecoregions, or WDPA (https://www.protectedplanet.net) for protected areas. Unique identifiers allow exploring complex 

relationships among data, e.g. global range size distributions or the variation of trait syndromes across taxa. 

GIFT currently comprises 322,002 species 

of vascular plants (Tracheophyta) and 

2,893 geographical units, including 

administrative and natural entities such as 

countries, islands, protected areas and 

natural landscapes (). A full inventory of 

(native) vascular plants is available for 

2,062 geographical units (Figure A1.1), 

spanning around eleven orders of 

magnitude in area (10 m2 – 3,069,765 

km2). Inventory coverage is almost 

complete for the Americas and Australia, 

but still has gaps in Central Africa and 

large parts of Asia. With 1,273 checklists, 

island floras are particularly well covered in GIFT. With respect to functional traits, 155 data sources provide information 

on 83 standardized traits for 548,886 unstandardized species names, amounting to 3,475,337 original trait records. After 

logical imputation and subsequent aggregation, GIFT holds 2,307,100 species-trait-combinations for 267,978 

standardized plant species. GIFT focusses on whole-plant traits and consequently has the highest coverage for 

morphological traits (e.g. woodiness: 234,214 spp., growth form: 213,372 spp.) and life history traits (e.g. Raunkiær life 

form: 100,607 spp., life cycle: 84,206 spp.). More complex categorical traits such as photosynthetic pathway (31,534 spp.), 

dispersal syndrome (8,204 spp.), or pollination syndrome (4,511 spp.), as well as numerical traits such as maximum/mean 

plant height (61,551 spp.), mean seed mass (23,874 spp.), or mean specific leaf area (2,304 spp.) are generally rarer.  

  

                                                 
1 This box is part of the main text in the original manuscript. For the purpose of this dissertation, it has been 

moved to the appendix because Chapter 2 provides the same information in more detail. 

 

Figure A1.1: Geographical coverage of GIFT for native 
vascular plant checklists 

http://glonaf.org/


114 Appendix 

 

 

Figure A1.2: Main module of the directed graph used for hierarchical trait derivation in GIFT, defining 
unambiguous relationships among 30 categorical levels from five functional traits (life form, life cycle, 
aquatic, growth form, climber and woodiness). Some traits are represented in multiple versions (e.g. 
growth form) to account for varying levels of detail of original information. The full list of parent-child 
relationships used for trait derivation in GIFT (71 connections among 89 categorical levels) is given in 
Table A2.2.  
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A2 Supplementary information to Chapter 2 

 

Figure A2.1: Geographical summary of selected environmental variables in GIFT. For a full list of 
geographic, environmental and socio-economic variables and source references see Table A2.3. 
Regions <25,000 km² are plotted as points.  
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Figure A2.2: Spatial coverage of floristic subsets in GIFT. Species richness of total angiosperms (a) 
refers to regions with information on both native and introduced angiosperm species or species with 
unresolved floristic status. Most commonly resources in GIFT include information on native species 
(b), while information on introduced naturalized (c) and endemic species (d) is considerably rarer. 
Endemism information is most common for island regions. Regions <25,000 km² are plotted as points. 
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Figure A2.3: Taxonomic trait coverage of GIFT across all functional traits at the family level (a; mean 
trait records per species) and for four selected functional traits individually (b-e; number of species 
with trait information/total number of species). Tip color and inner ring color denote trait coverage 
per family, outer ring delimits major clades of vascular plants. The height of bars in the outer ring is 
proportional to log10 family size. Phylogenetic signal in taxonomic coverage was assessed as 
Abouheif’s Cmean, a measure of phylogenetic autocorrelation based on the sum of the successive 
squared differences between values of neighbouring tips in the phylogeny (Abouheif, 1999). 
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Table A2.1: Functional traits in GIFT, their broader trait categories, type, units and factor levels 
respectively and the number of species covered in GIFT. 

Trait-
ID Category Trait Trait variant Type Unit/Level 

Species 
count 

1.1.1 Morphology Woodiness Woodiness 1 categorial woody, non-woody, variable 234214 

1.2.1 Morphology Growth form Growth form 1 categorial herb, shrub, tree, other 213372 

1.2.2 Morphology Growth form Growth form 2 categorial herb, graminoid, forb, subshrub, shrub, 
tree, palm, other 

165540 

1.3.1 Morphology Epiphyte Epiphyte 1 categorial obligatory, facultative, terrestrial 206699 

1.3.2 Morphology Epiphyte Epiphyte 2 categorial holoepiphyte, hemiepiphyte, 
prim_hemiepiphyte, sec_hemiepiphyte, 
facultative, terrestrial 

70816 

1.4.1 Morphology Climber Climber 1 categorial obligatory, facultative, self-supporting 223280 

1.4.2 Morphology Climber Climber 2 categorial liana, vine, self-supporting 93098 

1.5.1 Morphology Parasite Parasite 1 categorial obligatory, facultative, independent 209609 

1.6.1 Morphology Plant height Plant height min numeric m 28859 

1.6.2 Morphology Plant height Plant height max numeric m 53449 

1.6.3 Morphology Plant height Plant height mean numeric m 16127 

1.7.1 Morphology Aquatic Aquatic 1 categorial aquatic, semiaquatic, terrestrial 148432 

1.8.2 Morphology DBH DBH max numeric cm 25 

1.8.3 Morphology DBH DBH mean numeric cm 25 

2.1.1 Life history Lifecycle Lifecycle 1 categorial annual, biennial, perennial, variable 84206 

2.3.1 Life history Life form Life form 1 categorial phanerophyte, chamaephyte, 
hemicryptophyte, cryptophyte, 
therophyte 

81198 

2.3.2 Life history Life form Life form 2 categorial nanophanerophyte, phanerophyte, 
chamaephyte, hemicryptophyte, 
geophyte, hydrophyte, helophyte, 
therophyte, lithophyte 

100607 

2.4.1 Life history Deciduousness Deciduousness 1 categorial deciduous, evergreen, variable 8069 

3.1.1 Reproduction Self fertilization Self fertilization 1 categorial present, absent 3538 

3.10.1 Reproduction Seed length Seed length min numeric mm 1196 

3.10.2 Reproduction Seed length Seed length max numeric mm 1344 

3.10.3 Reproduction Seed length Seed length mean numeric mm 535 

3.11.1 Reproduction Seed width Seed width min numeric mm 100 

3.11.2 Reproduction Seed width Seed width max numeric mm 277 

3.12.1 Reproduction Seed height Seed height min numeric mm 7 

3.12.2 Reproduction Seed height Seed height max numeric mm 148 

3.13.1 Reproduction Fruit length Fruit length min numeric cm 962 

3.13.2 Reproduction Fruit length Fruit length max numeric cm 1096 

3.13.3 Reproduction Fruit length Fruit length mean numeric cm 520 

3.14.1 Reproduction Fruit width Fruit width min numeric cm 380 

3.14.2 Reproduction Fruit width Fruit width max numeric cm 432 

3.14.3 Reproduction Fruit width Fruit width mean numeric cm 561 

3.15.1 Reproduction Fruit height Fruit height min numeric cm 54 

3.15.2 Reproduction Fruit height Fruit height max numeric cm 54 

3.15.3 Reproduction Fruit height Fruit height mean numeric cm 54 

3.16.1 Reproduction Fruit type Fruit type 1 categorial achene, baccate, berry, capsule, drupe, 
follicle, lomentum, nut, pod, pome, 
schizocarp, siliqua, utricle, other 

5883 

3.17.1 Reproduction Dehiscence Dehiscence 1 categorial dehiscent, indehiscent 5513 

3.18.1 Reproduction Fruit dryness Fruit dryness 1 categorial dry, fleshy 2559 

3.19.1 Reproduction Seed volume Seed volume min numeric mm³ 2805 

3.19.2 Reproduction Seed volume Seed volume max numeric mm³ 2805 

3.19.3 Reproduction Seed volume Seed volume 
mean 

numeric mm³ 2805 

3.2.1 Reproduction Seed mass Seed mass min numeric g 22655 

3.2.2 Reproduction Seed mass Seed mass max numeric g 22655 

3.2.3 Reproduction Seed mass Seed mass mean numeric g 23874 

3.20.1 Reproduction Monocarpy Monocarpy categorial monocarp, polycarp 88 

3.3.1 Reproduction Dispersal syndrome Dispersal 
syndrome 1 

categorial anemochorous, zoochorous, 
autochorous, hydrochorous, 
unspecialized 

8204 

3.3.2 Reproduction Dispersal syndrome Dispersal 
syndrome 2 

categorial anemochorous, anthropochorous, 
autochorous, endozoochorous, 
epizoochorous, hydrochorous, 

3003 
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myrmecochorous, unspecialized, 
zoochorous 

3.4.1 Reproduction Reproduction_sexual Reproduction 
sexual 1 

categorial dioecious, monoecious, bisexual 2699 

3.5.1 Reproduction Reproduction_asexual Reproduction 
asexual 1 

categorial present, absent 1703 

3.5.2 Reproduction Reproduction_asexual Reproduction 
asexual 2 

categorial above-ground, below-ground 12 

3.6.1 Reproduction Pollination syndrome Pollination 
syndrome 1 

categorial wind, water, insect, bird, bat, other 4511 

3.6.2 Reproduction Pollination syndrome Pollination 
syndrome 2 

categorial wind, water, bee, beetle, ant, butterfly, 
moth, fly, insect, bird, bat, other 

4014 

3.7.1 Reproduction Flowering time Flowering start categorial Jan, Feb, Mar, Apr, May, Jun, Jul, Aug, 
Sep, Oct, Nov, Dec, variable 

7013 

3.7.2 Reproduction Flowering time Flowering end categorial Jan, Feb, Mar, Apr, May, Jun, Jul, Aug, 
Sep, Oct, Nov, Dec, variable 

6102 

3.8.1 Reproduction Fruiting time Fruiting start categorial Jan, Feb, Mar, Apr, May, Jun, Jul, Aug, 
Sep, Oct, Nov, Dec, variable 

514 

3.8.2 Reproduction Fruiting time Fruiting end categorial Jan, Feb, Mar, Apr, May, Jun, Jul, Aug, 
Sep, Oct, Nov, Dec, variable 

512 

3.9.1 Reproduction Seeds_per_fruit Seeds per fruit categorial 0, 1-10, 11-100, 101-1000, >1000 783 

4.1.1 Physiology Specific Leaf Area 
(SLA) 

SLA min numeric cm²/g 252 

4.1.2 Physiology Specific Leaf Area 
(SLA) 

SLA max numeric cm²/g 252 

4.1.3 Physiology Specific Leaf Area 
(SLA) 

SLA mean numeric cm²/g 2304 

4.10.1 Physiology Carnivory Carnivory categorial carnivorous, non-carnivorous 1769 

4.2.1 Physiology Photosynthetic 
pathway 

Photosynthetic 
pathway 

categorial C3, C4, CAM 31534 

4.3.1 Physiology Stem specific density 
(SSD) 

SSD min numeric mg/cm³ 371 

4.3.2 Physiology Stem specific density 
(SSD) 

SSD max numeric mg/cm³ 371 

4.3.3 Physiology Stem specific density 
(SSD) 

SSD mean numeric mg/cm³ 1094 

4.4.3 Physiology Leaf size Leaf size mean numeric cm² 1708 

4.5.1 Physiology Nitrogen fixer Nitrogen fix 1 categorial yes, no 10143 

4.6.1 Physiology Leaf length Leaf length min numeric cm 5787 

4.6.2 Physiology Leaf length Leaf length max numeric cm 6581 

4.6.3 Physiology Leaf length Leaf length mean numeric cm 132 

4.7.1 Physiology Leaf width Leaf width min numeric cm 5203 

4.7.2 Physiology Leaf width Leaf width max numeric cm 5791 

4.7.3 Physiology Leaf width Leaf width mean numeric cm 132 

4.8.3 Physiology Leaf thickness Leaf thickness 
mean 

numeric mm 134 

4.9.1 Physiology Leaf dry matter 
content (LDMC) 

LDMC min numeric mg/g 483 

4.9.2 Physiology Leaf dry matter 
content (LDMC) 

LDMC max numeric mg/g 483 

4.9.3 Physiology Leaf dry matter 
content (LDMC) 

LDMC mean numeric mg/g 483 

5.1.1 Genetics Chromosome number Chromosome 
number 

text  730 

6.1.1 Ecology Elevational range Elevational range 
min 

numeric m AMSL 53024 

6.1.2 Ecology Elevational range Elevational range 
max 

numeric m AMSL 54767 

6.1.3 Ecology Elevational range Elevational range 
mean 

numeric m AMSL 8170 

6.2.1 Ecology Bedrock Bedrock 1 text  290 

6.3.1 Ecology Habitat Habitat 1 text  35542 
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Table A2.2: Links between parent traits and derived traits used in the hierarchical trait derivation in 
GIFT. 

Trait-ID parent  Trait parent Trait value parent Trait-ID child Trait child Trait value child 

3.6.2 Pollination syndrome 2 ant 3.6.1 Pollination syndrome 1 insect 

3.6.2 Pollination syndrome 2 wind 3.6.1 Pollination syndrome 1 wind 

3.6.2 Pollination syndrome 2 water 3.6.1 Pollination syndrome 1 water 

3.6.2 Pollination syndrome 2 bee 3.6.1 Pollination syndrome 1 insect 

3.6.2 Pollination syndrome 2 beetle 3.6.1 Pollination syndrome 1 insect 

3.6.2 Pollination syndrome 2 butterfly 3.6.1 Pollination syndrome 1 insect 

3.6.2 Pollination syndrome 2 moth 3.6.1 Pollination syndrome 1 insect 

3.6.2 Pollination syndrome 2 bird 3.6.1 Pollination syndrome 1 bird 

3.6.2 Pollination syndrome 2 bat 3.6.1 Pollination syndrome 1 bat 

3.3.2 Dispersal syndrome 2 anemochorous 3.3.1 Dispersal syndrome 1 anemochorous 

3.3.2 Dispersal syndrome 2 zoochorous 3.3.1 Dispersal syndrome 1 zoochorous 

3.3.2 Dispersal syndrome 2 endozoochorous 3.3.1 Dispersal syndrome 1 zoochorous 

3.3.2 Dispersal syndrome 2 epizoochorous 3.3.1 Dispersal syndrome 1 zoochorous 

3.3.2 Dispersal syndrome 2 myrmecochorous 3.3.1 Dispersal syndrome 1 zoochorous 

3.3.2 Dispersal syndrome 2 autochorous 3.3.1 Dispersal syndrome 1 autochorous 

3.3.2 Dispersal syndrome 2 hydrochorous 3.3.1 Dispersal syndrome 1 hydrochorous 

3.3.2 Dispersal syndrome 2 anthropochorous 3.3.1 Dispersal syndrome 1 unspecialized 

3.3.2 Dispersal syndrome 2 unspecialized 3.3.1 Dispersal syndrome 1 unspecialized 

2.3.2 Life form 2 nanophanerophyte 2.3.1 Life form 1 phanerophyte 

2.3.2 Life form 2 phanerophyte 2.3.1 Life form 1 phanerophyte 

2.3.2 Life form 2 chamaephyte 2.3.1 Life form 1 chamaephyte 

2.3.2 Life form 2 hemicryptophyte 2.3.1 Life form 1 hemicryptophyte 

2.3.2 Life form 2 geophyte 2.3.1 Life form 1 cryptophyte 

2.3.2 Life form 2 hydrophyte 2.3.1 Life form 1 cryptophyte 

2.3.2 Life form 2 hydrophyte 1.7.1 Aquatic 1 aquatic 

2.3.2 Life form 2 helophyte 2.3.1 Life form 1 cryptophyte 

2.3.2 Life form 2 therophyte 2.3.1 Life form 1 therophyte 

2.3.1 Life form 1 chamaephyte 1.2.2 Growth form 2 subshrub 

2.3.1 Life form 1 hemicryptophyte 1.2.2 Growth form 2 herb 

2.3.1 Life form 1 cryptophyte 1.2.2 Growth form 2 herb 

2.3.1 Life form 1 therophyte 1.2.2 Growth form 2 herb 

1.4.2 Climber 2 vine 1.4.1 Climber 1 obligatory 

1.4.2 Climber 2 vine 1.1.1 Woodiness 1 non-woody 

1.4.2 Climber 2 liana 1.4.1 Climber 1 obligatory 

1.4.2 Climber 2 liana 1.1.1 Woodiness 1 woody 

1.4.2 Climber 2 self-supporting 1.4.1 Climber 1 self-supporting 

1.3.2 Epiphyte 2 holoepiphyte 1.3.1 Epiphyte 1 obligatory 

1.3.2 Epiphyte 2 hemiepiphyte 1.3.1 Epiphyte 1 obligatory 
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1.3.2 Epiphyte 2 prim hemiepiphyte 1.3.1 Epiphyte 1 obligatory 

1.3.2 Epiphyte 2 sec hemiepiphyte 1.3.1 Epiphyte 1 obligatory 

1.3.2 Epiphyte 2 facultative 1.3.1 Epiphyte 1 facultative 

1.3.2 Epiphyte 2 terrestrial 1.3.1 Epiphyte 1 terrestrial 

1.2.2 Growth form 2 herb 1.2.1 Growth form 1 herb 

1.2.2 Growth form 2 graminoid 1.2.1 Growth form 1 herb 

1.2.2 Growth form 2 forb 1.2.1 Growth form 1 herb 

1.2.2 Growth form 2 subshrub 1.2.1 Growth form 1 shrub 

1.2.2 Growth form 2 shrub 1.2.1 Growth form 1 shrub 

1.2.2 Growth form 2 tree 1.2.1 Growth form 1 tree 

1.2.2 Growth form 2 palm 1.2.1 Growth form 1 other 

1.2.2 Growth form 2 other 1.2.1 Growth form 1 other 

1.2.1 Growth form 1 herb 1.1.1 Woodiness 1 non-woody 

1.2.1 Growth form 1 shrub 1.1.1 Woodiness 1 woody 

1.2.1 Growth form 1 tree 1.1.1 Woodiness 1 woody 

2.1.1 Lifecycle 1 biennial 1.2.2 Growth form 2 herb 

2.1.1 Lifecycle 1 annual 1.2.2 Growth form 2 herb 

2.3.1 Life form 1 phanerophyte 1.1.1 Woodiness 1 woody 

3.6.2 Pollination syndrome 2 insect 3.6.1 Pollination syndrome 1 insect 

3.6.2 Pollination syndrome 2 other 3.6.1 Pollination syndrome 1 other 

3.6.2 Pollination syndrome 2 fly 3.6.1 Pollination syndrome 1 insect 

1.5.1 Parasite 1 obligatory 1.3.2 Epiphyte 2 terrestrial 

3.16.1 Fruit type 1 achene 3.17.1 Dehiscence 1 indehiscent 

3.16.1 Fruit type 1 berry 3.17.1 Dehiscence 1 indehiscent 

3.16.1 Fruit type 1 drupe 3.17.1 Dehiscence 1 indehiscent 

3.16.1 Fruit type 1 capsule 3.17.1 Dehiscence 1 dehiscent 

3.16.1 Fruit type 1 baccate 3.17.1 Dehiscence 1 indehiscent 

3.16.1 Fruit type 1 drupe 3.17.1 Dehiscence 1 indehiscent 

3.16.1 Fruit type 1 lomentum 3.17.1 Dehiscence 1 indehiscent 

3.16.1 Fruit type 1 nut 3.17.1 Dehiscence 1 indehiscent 

3.16.1 Fruit type 1 pod 3.17.1 Dehiscence 1 dehiscent 

3.16.1 Fruit type 1 siliqua 3.17.1 Dehiscence 1 dehiscent 

3.16.1 Fruit type 1 utricle 3.17.1 Dehiscence 1 indehiscent 
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Table A2.3: Groups of physical geographical, environmental and socio-economic variables in GIFT. 
Metrics of datasets of type miscellaneous are calculated based on the regions polygons and eventually 
additional resources cited under “References”. For resources of type raster, summary statistics (15 
quantiles including minimum, median and maximum, mean, standard deviation, mode, number of 
unique values, Shannon diversity and number of cells) are calculated for all raster cells that fall into a 
region or are crossed by its border. 

Dataset Type Reference 

Accessibility to cities Raster Weiss et al. 2018 

Archipelago Miscellaneous  

Area of ice cover today and during last glacial maximum Miscellaneous Ehlers et al. 2011 

Area of region and largest included landmass Miscellaneous  

Biome Miscellaneous Dinerstein et al. 2017 

Canopy height Raster Simard et al. 2011 

Centroid latitude and longitude coordinates Miscellaneous  

Chelsa 1.2 bioclimatic variables Raster Karger et al. 2017 

Consensus land cover Raster Tuanmu & Jetz 2014 

Distance to nearest mainland Miscellaneous Weigelt et al. 2013 

GDP from satellite Raster Ghosh et al. 2010 

Geographic extent of region and largest included landmass Miscellaneous  

Global aridity and potential evapotranspiration Raster Zomer et al. 2008 

Global cloud cover Raster Wilson & Jetz 2016 

Global gridded soil information Raster Hengl et al. 2017 

Global habitat heterogeneity Raster Tuanmu & Jetz 2015 

Global multi-resolution terrain elevation data Raster USGS 2011 

Global soil water balance Raster Trabucco & Zomer 2010 

Gridded population of the world 4 Raster Doxsey-Whitfield et al. 2015 

Human footprint Raster Venter et al. 2016 

Last glacial maximum mainland connection, area and number of 
landmass entities 

Miscellaneous Weigelt et al. 2016, Weatherall et al. 2015 

Last of the wild human influence Raster WCS & CIESIN 2005a, 2005b 

MODIS gross and net primary productivity Raster Zhao & Running 2010 

Number of landmass entities comprised by region Miscellaneous  

Past climate change velocity Raster Weigelt et al. 2013, Hijmans et al. 2005 

Species richness at nearest mainland Miscellaneous Weigelt et al. 2013, Kreft & Jetz 2007 

Surrounding landmass proportion Miscellaneous Weigelt et al. 2013 

Takhtajan floristic region Miscellaneous Takhtajan 1986 

TDWG region Miscellaneous Brummitt 2001 

Tree density Raster Crowther et al. 2015 

WorldClim 1.4 last glacial maximum climate Raster Hijmans et al. 2005 

WorldClim 2.0 bioclimatic variables Raster Fick & Hijmans 2017 

 

Brummitt, R. K. (2001) World geographical scheme for recording plant distributions. Plant taxonomic database standards No. 2. (with assistance from F. 
Pando, S. Hollis, N. A. Brummitt and others). Edition 2. Hunt Institute for Botanical Documentation, Carnegie Mellon University, 
Pittsburgh, US. 

Crowther, T.W., Glick, H.B., Covey, K.R., Bettigole, C., Maynard, D.S., Thomas, S.M., et al. (2015) Mapping tree density at a global scale. 
Nature 525, 201-205. 

Dinerstein, E., Olson, D., Joshi, A., Vynne, C., Burgess, N.D., Wikramanayake, E., et al. (2017) An ecoregion-based approach to protecting 
half the terrestrial realm. BioScience 67, 534-545. 

Doxsey-Whitfield, E., MacManus, K., Adamo, S.B., Pistolesi, L., Squires, J., Borkovska, O. & Baptista, S.R. (2015) Taking advantage of the 
improved availability of census data: A first look at the gridded population of the world, version 4. Papers in Applied Geography 1, 
226-234. 
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Ehlers, J., Gibbard, P.L. & Hughes, P.D. (2011) Quaternary glaciations - extent and chronology. A closer look. Elsevier, Amsterdam, The 
Netherlands. 

Fick, S.E. & Hijmans, R.J. (2017) WorldClim 2: new 1-km spatial resolution climate surfaces for global land areas. International Journal of 
Climatology 37, 4302-4315. 

Ghosh, T., Powell, R.L., Elvidge, C.D., Baugh, K.E., Sutton, P.C. & Anderson, S. (2010) Shedding light on the global distribution of 
economic activity. The Open Geography Journal 3, 147-160. 

Hengl, T., Mendes de Jesus, J., Heuvelink, G.B.M., Ruiperez Gonzalez, M., Kilibarda, M., Blagotić, A., et al. (2017) SoilGrids250m. Global 
gridded soil information based on machine learning. PloS one 12, e0169748. DOI: 10.1371/journal.pone.0169748. 

Hijmans, R.J., Cameron, S.E., Parra, J.L., Jones, P.G. & Jarvis, A. (2005) Very high resolution interpolated climate surfaces for global land 
areas. International Journal of Climatology 25, 1965-1978. 

Karger, D. Nikolaus, Conrad, O., Böhner, J., Kawohl, T., Kreft, H., Soria-Auza, R.W., et al. (2017) Climatologies at high resolution for the 
earth’s land surface areas. Scientific Data 4, 170122. DOI: 10.1038/sdata.2017.122. 

Kreft, H. & Jetz, W. (2007) Global patterns and determinants of vascular plant diversity. Proceedings of the National Academy of Sciences 104, 
5925-5930. 

Simard, M., Pinto, N., Fisher, J.B. & Baccini, A. (2011) Mapping forest canopy height globally with spaceborne lidar. Journal of Geophysical 
Research 116. G04021. DOI: 10.1029/2011JG001708. 

Takhtajan, A. (1986) Floristic regions of the world. University of California Press, Berkeley, US. 

Trabucco, A. & Zomer, R. J. (2010) Global Soil Water Balance Geospatial. CGIAR Consortium for Spatial Information. Available at: 
http://www.cgiar-csi.org/data/global-high-resolution-soil-water-balance (accessed 18 April 2016). 

Tuanmu, M.-N. & Jetz, W. (2014) A global 1-km consensus land-cover product for biodiversity and ecosystem modelling. Global Ecology and 
Biogeography 23, 1031-1045. 

Tuanmu, M.-N. & Jetz, W. (2015) A global, remote sensing-based characterization of terrestrial habitat heterogeneity for biodiversity and 
ecosystem modelling. Global Ecology and Biogeography 24, 1329-1339. 

USGS (2011) Global Multi-resolution Terrain Elevation Data 2010 (GMTED2010). U.S. Geological Survey. Virginia. Available at 
https://lta.cr.usgs.gov/GMTED2010 (accessed 2 May 2017). 

Venter, O., Sanderson, E.W., Magrach, A., Allan, J.R., Beher, J., Jones, K., et al. (2016) Global terrestrial Human Footprint maps for 1993 
and 2009. Scientific Data 3, 160067. DOI: 10.1038/sdata.2016.67. 

WCS & CIESIN (2005a) Last of the Wild Project, Version 2, 2005 (LWP-2). Global Human Footprint Dataset (Geographic). NASA Socioeconomic 
Data and Applications Center (SEDAC), Palisades, US. DOI: 10.7927/H4M61H5F. 

WCS & CIESIN (2005b) Last of the Wild Project, Version 2, 2005 (LWP-2). Global Human Influence Index (HII) Dataset (Geographic). NASA 
Socioeconomic Data and Applications Center (SEDAC), Palisades, US. DOI: 10.7927/H4BP00QC. 

Weatherall, P., Marks, K.M., Jakobsson, M., Schmitt, T., Tani, S., Arndt, J.E., et al. (2015) A new digital bathymetric model of the world’s 
oceans. Earth and Space Science 2, 331-345. DOI: 10.1002/2015EA000107. 

Weigelt, P., Jetz, W. & Kreft, H. (2013) Bioclimatic and physical characterization of the world’s islands. Proceedings of the National Academy of 
Sciences 110, 15307-15312. DOI: 10.1073/pnas.1306309110. 

Weigelt, P., Steinbauer, M.J., Cabral, J.S. & Kreft, H. (2016) Late Quaternary climate change shapes island biodiversity. Nature 532, 99-102. 

Weiss, D.J., Nelson, A., Gibson, H.S., Temperley, W., Peedell, S., Lieber, A., et al. (2018) A global map of travel time to cities to assess 
inequalities in accessibility in 2015. Nature 553, 333. DOI: 10.1038/nature25181. 

Wilson, A.M. & Jetz, W. (2016) Remotely sensed high-resolution global cloud dynamics for predicting ecosystem and biodiversity 
distributions. PLOS Biology 14, e1002415. DOI: 10.1371/journal.pbio.1002415. 

Zhao, M. & Running, S.W. (2010) Drought-induced reduction in global terrestrial net primary production from 2000 through 2009. Science 
329, 940-943. 

Zomer, R.J., Trabucco, A., Bossio, D.A. & Verchot, L.V. (2008) Climate change mitigation. A spatial analysis of global land suitability for 
clean development mechanism afforestation and reforestation. Agriculture, Ecosystems & Environment 126, 67-80. 
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A3 Supplementary information to Chapter 3 

 

Figure A3.1: Summary of the operational geographical units (OGUs) analysed in Chapter 4. In all 
panels, island OGUs are depicted blue and mainland OGUs are depicted red. (a) Geographical 
distribution, Projection: Eckert IV, (b) Histogram of area per OGU, (c) Histogram of species number 
per OGU and (d) Major climatic characteristics of OGUs plotted in Whittaker biome space (Whittaker, 
R.H. (1970). Communities and ecosystems. Macmillan, New York). 
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Figure A3.2: Graph structure used to derive plant growth form from other available functional traits. 
Greyed out fields indicate that there is no meaningful derivation for the respective trait. Dotted lines 
indicate derivations that were not used in this study.  

Life form 2 phanerophyte hemicryptophytenanophanerophyte chamaephyte geophyte helophyte hydrophyte therophyte

Life form 1 phanerophyte hemicryptophytechamaephyte cryptophyte therophyte

Life cycle biennial annual

Growth form 2

Growth form 1

woodiness

tree shrub subshrub forbgraminoidliana vine

tree shrub herb

woody non-woody

herb

perennial

epiphyte
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Figure A3.3: Pairwise correlation of predictor variables used in GDM. Lower left triangle: Scatterplot 
for pairs of variables and LOESS-fit (red line), Diagonal: Histogram and variable abbreviations, Upper 
right triangle: Pearson correlation coefficients between pairs of variables. The highest observed variance 
inflation factor (not shown) was 3.25 for mean annual temperature (T_mean), suggesting no 
problematic amounts of multicollinearity among predictors. 
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Figure A3.4: Distance decay for taxonomic and functional groups (island vs. mainland comparison). 
DS/2 denotes the distance after which similarity decreases by 50 % (halving distance) and n denotes the 
number of unique pairwise combinations within each subset. Model coefficients (dots) were obtained 
using a log-binomial generalized linear model (GLM) with an intercept of 1. Confidence intervals 
(whiskers) were computed by subsampling the data 250 times, refitting the model and taking the 2.5 
and 97.5 percentiles of the sampling distribution of coefficient estimates. No significant model was 
obtained for subset ‘gymnosperms × island’. 
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Table A3.1: Distance decay model summaries. Halving distance (DS/2) denotes the distance after which 
similarity decreases by 50 % and n denotes the number of unique pairwise combinations within each 
subset. Model coefficients (‘beta_hat’) were obtained using a log-binomial generalized linear model 
(GLM) with an intercept of 1. Confidence intervals (‘beta_CI_min’ and ‘beta_CI_max’) were computed 
by subsampling the data 1000 times, refitting the model and taking the 2.5 and 97.5 percentiles of the 
sampling distribution of coefficient estimates. Significance levels: *** – p < 0.001; n.s. – not significant 

subset n halving distance (DS/2) beta_hat beta_CI_min beta_CI_max significance 

all entities 182106 1576 -0.00044 -0.000469 -0.000417 *** 

angiosperms 182106 1544 -0.000449 -0.000479 -0.000425 *** 

angiosperms × island 33670 1826 -0.00038 -0.000419 -0.00034 *** 

angiosperms × mainland 58996 1184 -0.000586 -0.000638 -0.000541 *** 

atolls 406 5967 -0.000116 -0.000147 -0.000092 *** 

continental islands 4005 1384 -0.000501 -0.000569 -0.000454 *** 

gymnosperms 3828 1476 -0.000469 -0.00055 -0.000413 *** 

gymnosperms × island 21 1099 -0.000631 -0.013594 -0.000263 n.s. 

gymnosperms × mainland 3240 1459 -0.000475 -0.000548 -0.000419 *** 

herbs 100576 1523 -0.000455 -0.000487 -0.000421 *** 

herbs × island 13861 1853 -0.000374 -0.000426 -0.000335 *** 

herbs × mainland 39621 1106 -0.000627 -0.000671 -0.000586 *** 

islands 33153 1840 -0.000377 -0.000422 -0.000343 *** 

mainland 59685 1216 -0.00057 -0.000616 -0.000527 *** 

oceanic islands 9870 1628 -0.000426 -0.000482 -0.000383 *** 

pteridophytes 97903 2156 -0.000322 -0.000345 -0.000306 *** 

pteridophytes × island 9870 2612 -0.000265 -0.000288 -0.000248 *** 

pteridophytes × mainland 45451 1925 -0.00036 -0.000391 -0.000332 *** 

shrubs 81406 826 -0.000839 -0.000907 -0.000777 *** 

shrubs × island 7381 1039 -0.000667 -0.000796 -0.000559 *** 

shrubs × mainland 39621 752 -0.000922 -0.001002 -0.000851 *** 

trees 60726 1163 -0.000596 -0.00066 -0.000543 *** 

trees × island 3570 2959 -0.000234 -0.000296 -0.000194 *** 

trees × mainland 34716 892 -0.000777 -0.000827 -0.000725 *** 
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Figure A3.5: Turnover partitioning for taxonomic and functional groups (mainland vs. island 
comparison) using generalized dissimilarity modelling. Results are shown for different subsets of the 
entire dataset based on geographical setting, island type, taxonomic, and functional group. For each 
subset, two alternative measures of variable importance are presented where the left-hand side is based 
on the height of GDM transformation functions and the right-hand side is based on variation 
partitioning. No GDM could be fitted for gymnosperms on islands. 
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Figure A3.6: GDM transformation functions for subsets based on (a) geographical setting, (b) island 
type, (c) taxonomic and (d) functional group. Units of measurement were adopted unchanged from 
WorldClim (Hijmans et al., 2005). 
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Table A3.2: Data references for Chapter 3. 
 d
istrib

u
tio

n
 

tra
its 

Academica Sinica (ed.) (1998). Proc Int Symp on Rare, Threatened, and Endangered Floras of Asia and the Pacific. 
Institute of Botany, Taiwan. 

1 0 

Alves, R. (1998). Ilha da Trindade e Arquipélago Martin Vaz. um ensaio geobotânico. Serviço de Documentação da 
Marinha, Rio de Janeiro, Brasil. 

1 0 

Arechavaleta, M., Rodríguez, S., Zurita, N. & García, A. (2009). Lista de especies silvestres de Canarias. Hongos, 
plantas y animales terrestres. Consejería de Medio Ambiente y Ordenación Territorial, Gobierno de Canarias, 
Santa Cruz de Tenerife, Spain. 

1 0 

Arechavaleta, M., Zurita, N., Marrero, M. & Martín, J. (2005). Lista preliminar de especies silvestres de Cabo Verde 
(hongos, plantas y animales terrestres). Consejería de Medio Ambiente y Ordenación Territorial, Gobierno de 
Canarias, Santa Cruz de Tenerife, Spain. 

1 0 

Athens, J.S., Blinn, D.W. & Ward, J.V. (2007). Vegetation history of Laysan Island, Northwestern Hawaiian 
Islands. Pacific Science, 61, 17–37. 

1 0 

Baker, M. & Duretto, M. (2011). A census of the vascular plants of Tasmania. Tasmanian Herbarium, Tasmanian 
Museum and Art Gallery, Hobart, Australia. 

1 0 

Barker, W.R., Barker, R.M., Jessop, J.P. & Vonow, H.P. (2005). Census of South Australian vascular plants. 
Journal of the Adelaide Botanic Gardens Supplement, 1, 1–396. 

1 0 

Belhacene, L. (2010). Catalogue 2010 des plantes vasculaires du département de la Haute-Garonne. Supplément 
à Isaatis, 10. 

1 0 

Bernal, R., Gradstein, S.R. & Celis, M. (2015). Catálogo de plantas y líquenes de Colombia, Available at: 
http://catalogoplantasdecolombia.unal.edu.co/ (last accessed: January 15, 2016). 

1 1 

BioScripts (2014). Flora Vascular, Available at: http://www.floravascular.com/ (last accessed: May 25, 2014). 1 1 

Borges, P., Abreu, C., Aguiar, A., Carvalho, P., Jardim, R., Melo, I., Oliveira, P., Sérgio, C., Serrano, A. & 
Vieira, P. (2008). Listagem dos fungos, flora e fauna terrestres dos arquipélagos da Madeira e Selvagens. Direcção 
Regional do Ambiente da Madeira and Universidade dos Açores, Funchal and Angra do Heroísmo, 
Portugal. 

1 0 

Borges, P., Costa, A., Cunha, R., Gabriel, R., Gonçalves, V., Martins, A.F., Melo, I., Parente, M., Raposeiro, 
P., Rodrigues, P., Santos, R.S., Silva, L., Vieira, P. & Vieira, V. (2010). A list of the terrestrial and marine biota 
from the Azores. Princípia, Cascais. 

1 0 

Botanical Garden Tel Aviv (2015). Israel Flora. (unpublished). Tel Aviv University. 1 1 

Bowdoin Scientific Station (2011). Vascular plants of Kent Island, Available at: 
https://www.bowdoin.edu/kent-island/species/plants.shtml (last accessed: September 14, 2011). 

1 0 

Brennan, K. (1996). An annotated checklist of the vascular plants of the Alligator Rivers Region, Northern Territory, 
Australia, Barton, Australia. 

1 1 

Brofas, G., Karetsos, G., Panitsa, M. & Theocharopoulos, M. (2001). The flora and vegetation of Gyali Island, 
SE Aegean, Greece. Willdenowia, 31, 51–70. 

1 0 

Broughton, D.A. & McAdam, J.H. (2005). A checklist of the native vascular flora of the Falkland Islands (Islas 
Malvinas). new information on the species present, their ecology, status and distribution. The Journal of the 
Torrey Botanical Society, 132, 115–148. 

1 0 

Burton, R.M. (1991). A check-list and evaluation of the flora of Nisyros (Dodecanese, Greece). Willdenowia, 
20, 15–38. 

1 0 

Butler, B.J., Barclay, J.S. & Fisher, J.P. (1999). Plant communities and flora of Robins Island (Long Island), 
New York. Journal of the Torrey Botanical Society, 126, 63–76. 

1 0 

Byrd, G.V. (1984). Vascular vegetation of Buldir Island, Aleutian Islands, Alaska, compared to another 
Aleutian Island. Arctic, 37, 37–48. 

1 0 

CARMABI (2009). Dutch Caribbean Biodiversity Explorer, Available at: 
http://www.dcbiodata.net/explorer/home (last accessed: June 24, 2011). 

1 0 
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Cascante-Marín, A. & Estrada-Chavarría, A. (2012). Las plantas vasculares de El Rodeo, Costa Rica. Brenesia, 
77, 71–128. 

1 1 

Case, T., Cody, M. & Ezcurra, E. (2002). A new island biogeography of the Sea of Cortés. Oxford University Press, 
New York, NY. 

1 0 

Catarino, L., Martins, E.S., Basto, M.F. & Diniz, M.A. (2008). An annotated checklist of the vascular flora of 
Guinea-Bissau (West Africa). Blumea-Biodiversity, Evolution and Biogeography of Plants, 53, 1–222. 

1 0 

Chang, C.-S., Kim, H. & Chang, K. (2014). Provisional Checklist of the Vascular Plants for the Korea Peninsular Flora 
(KPF). version 1.0, Korea. 

1 0 

Charters, M. (2007). Flora of Bermuda, Available at: http://www.calflora.net/floraofbermuda/. 1 0 

Chernyaeva, A. (1973). Flora of Onekotan Island. Bulletin of Main Botanical Garden, 87, 21–29. 1 0 

Chiapella, J. & Ezcurra, C. (1999). La flora del parque provincial Tromen, provincia de Neuquén, Argentina. 
Multequina, 8, 51–60. 

1 0 

Chinese Virtual Herbarium (2016). The Flora of China v. 5.0, Available at: http://www.cvh.org.cn/ (last 
accessed: January 15, 2016). 

1 1 

Christmas Island National Park (2002). Third Christmas Island national park management plan. Parks Australia 
North, Christmas Island, Australia. 

1 0 

Christodoulakis, D. (1996). The flora of Ikaria (Greece, E. Aegean Islands). Phyton, 36, 63–91. 1 0 

Clark, J.L., Neill, D.A. & Asanza, M. (2006). Floristic checklist of the Mache-Chindul mountains of 
Northwestern Ecuador. Contributions from the United States National Herbarium, 1–180. 

1 1 

Conti, F., Abbate, G., Alessandrini, A. & Blasi, C. (2005). Annotated Checklist of the Italian Vascular Flora. Palombi 
Editori, Roma, Italy. 

1 0 

Conti, F. & Bartolucci, F. (2015). The Vascular Flora of the National Park of Abruzzo, Lazio and Molise (Central 
Italy). Springer International Publishing, Cham. 

1 0 

Cronk, Q.C.B. (1989). The past and present vegetation of St Helena. Journal of Biogeography, 16, 47–64. 1 0 

D'Arcy, W. (1971). The island of Anegada and its flora. Atoll Research Bulletin, 139, 1–21. 1 0 

Desmet, P. & Brouillet, L. (2013). Database of Vascular Plants of Canada (VASCAN): a community 
contributed taxonomic checklist of all vascular plants of Canada, Saint Pierre and Miquelon, and 
Greenland. Phytokeys, 25, 55–67 

0 1 

Directorate of Wrangel Island Reserve (2003). Natural System of Wrangel Island Reserve. The World Heritage 
Committee, Paris, France. 

1 0 

Domínguez, E., Marticorena, C., Elvebakk, A. & Pauchard, A. (2004). Catálogo de la flora vascular del Parque 
Nacional Pali Aike. XII Región, Chile. Gayana Botánica, 61, 67–72. 
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Figure A4.1: Representational disharmony (Drep) as a function of the ratio between mean 
proportional representation in island- and mainland floras. 
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Figure A4.2: Relationship of representational disharmony (Drep) and family-level functional traits. 
Family-level traits were aggregated from species-level information of varying availability (growth form: 
213,317 spp., self-pollination: 3,538 spp., dispersal mode: 8,208 spp., pollination mode: 4,511 spp., seed 
mass: 23,874 spp., fruit type: 5,967 spp.) using the median (seed mass) or majority of values (all other 
traits) per family. 
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Figure A4.3: Representational disharmony (Drep) of 450 vascular plant families. Negative values indicate 
a proportional under-representation of the respective family in island floras compared to the mainland, 

whereas positive values indicate an over-representation. Drep = -1, Drep = 0 and Drep = 1 respectively 
denote a restriction to the mainland, even representation in island and mainland floras, and a restriction 
to islands. 
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Figure A4.4: Correlation between compositional disharmony (Dcomp) and log10(species richness). 
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Supplementary text A4.1: Truncation of mainland weights vector W 

The presented measure of compositional disharmony is calculated as the mean Bray-Curtis 

dissimilarity of family proportions of a given island i relative to all mainland floras (Bi), 

weighted by the mainland floras’ estimated importance as source regions for the respective 

island (Wi):  

 

We obtained Wi from predictions of species turnover between island i and all mainland units. 

The model we used to predict species turnover (Generalized dissimilarity modelling, Ferrier, 

2002; Ferrier et al., 2007) converges against, but never actually reaches 1 (complete species 

turnover) at large geographical and/or environmental distances. This is generally a realistic and 

useful property, because even remote or environmentally dissimilar regions might share a small 

fraction of their species. However, in our particular use case, the combined weight of many 

mainland regions with relatively low values of Wi could still introduce a substantial bias into 

Dcomp. This problem was especially pronounced for islands having only very few important 

mainland source regions, e.g. due to the lack of floristic data for nearby continental regions in 

our dataset.  

To avoid a dependency of Dcomp on the amount and geographical distribution of available 

mainland floras, we set Wi = 0 for mainland units falling below a certain island-specific value. 

To determine this threshold, we performed the following steps: 

1. Scale the source pool weights vector Wi for a given island i to a range of 0 to 1. 

2. Sort Wi in decreasing order, i.e. rank all mainland units according to their importance 

as source region for island i (Figure A4.5, black line). 

3. Fit a curve to the ordered values in Wi to obtain a smooth and continuous 

approximation of the weights distribution (Figure A4.5, blue line). We used the 

smooth.spline-function in R with a smoothing parameter of spar = 0.75. 

4. Take the derivative Wi’ to quantify the rate of change in Wi. 

5. Define the threshold for island i as that value in Wi, after which Wi’ permanently falls 

below 0.001, i.e. no more substantial changes in the importance of mainland source 

regions are predicted (Figure A4.5, red lines). The value of 0.001 was chosen after 

carefully inspecting curves of Wi and Wi’ for a representative set of island floras. 

𝐷𝑐𝑜𝑚𝑝(𝑖) =
∑ 𝐵𝑖 ∗ 𝑊𝑖

∑ 𝑊𝑖
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Figure A4.5: Determination of threshold value for weights vector W, exemplarily for six islands. 
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