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1 Summary 

 

 

The brain is the most complex organ in animals. It controls and coordinates 

operations like physiology and behavior. The insect brain is built by a conserved set 

of neuropils which arise from the neuroblasts (NBs). The central complex (CX) is an 

assembly of neuropils spanning the brain midline, which consists of the 

protocerebral bridge (PB), central body (CB) with upper and lower unit and the 

noduli (NO). Drosophila melanogaster and Schistocerca gregaria, are the most 

studied insect model systems for brain development. Some NBs and lineages 

contributing to the CX were identified in Drosophila and Schistocerca. However, 

the molecular and genetic investigations are hampered by the lack of a sequenced 

genome and the limited potential of the RNAi technique in the latter. Drosophila is 

not well suited for studying the embryonic signals required for CX development, 

since the CX is not detected during the embryogenesis. The red flour beetle 

Tribolium castaneum, with respect to functional genetics, has more tools than 

most other insects apart from Drosophila. Most importantly, the CB partially forms 

during embryogenesis. Tc-foxQ2 has shown to be a key regulatory factor in the 

anterior median head. It is exclusively expressed in the anterior protocerebral 

neuroectoderm. Further, Tc-foxQ2 knock-down was shown to result in central brain 

phenotypes in Tribolium. However, the embryonic development of the anterior 

brain is poorly studied. Nothing is known about the function of this gene in 

Drosophila. In order to get more insights into these processes, I used Tribolium as a 

model organism to study the role of Tc-foxQ2 in the early brain development, 

focusing on the CX and central brain development.  

 

In this study, I wanted to study the contribution of Tc-foxQ2 positive cells to the 

brain and characterize the function of the Tc-foxQ2 gene. To this end I generated a 

Tc-FoxQ2 antibody and an imaging line to mark Tc-foxQ2 positive cells by using 

CRISPR/Cas9 system. With this imaging line, NBs and at least subsets of their 

lineages contributing to the central brain could be visualized and traced. I 

identified Tc-FoxQ2 positive NBs at different stages in the embryo and 

demonstrated that the transcription factors Tc-six3, Tc-six4, Tc-chx, Tc-rx, Tc-ey, 

Tc-scro and Tc-fez1 are co-expressed in these Tc-FoxQ2 positive NBs. Further, I was 

able to show that Tc-FoxQ2 positive cells projected to the contralateral side 

through the initial axonal commissure of the brain, but did not pioneer the primary 

brain commissure. Further, I found that the identified FAM2 NB generated a 

median lineage and the A-PD NB generated a lateral lineage, which projected axon 

fascicles into the central brain primordium in the late embryo. In the adult brain, 



Summary 

2 
 

the median lineage and lateral lineage generated axon bundles projecting into the 

PB. Moreover, Tc-foxQ2 is required for the formation of midline crossing 

projections of a number of cell groups. knock-down of Tc-foxQ2 leads to the 

aberrant formation of the brain commissures at later stage, but did not affect the 

formation of the initial brain commissures at an earlier stage. Additionally, I found 

a medial fusion of the brain hemispheres as described before and the reduction of 

a number of cells which contribute to the central brain. Finally, the reduction of 

EGFP signal and number of marked cells in Tc-foxQ2 RNAi in the Tc-foxQ2 enhancer 

trap line indicated a self-regulatory function of this gene. Taken together, this study 

reveals an important function of Tc-foxQ2 in central brain formation. 
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2 Introduction 

 

2.1 Brain - the most complex organ 

 

The brain is the one of the most important organs in animals, which serves as the 

most advanced part of the central nervous system. The brain controls and 

coordinates the complex operations like behavior, memory, movements and 

orientation. Due to this essential role for survival, it is likely that the morphology 

and function of the brain undergo high evolutionary pressure. The vertebrate brain 

is highly complex so that it complicates the study of the brain development. Until 

recently, it still has difficulties in investigating the cellular and molecular 

mechanisms of brain development in vertebrates. This is in part due to the billions 

of neurons in the vertebrate brain (Reichert and Boyan, 1997). A mouse brain 

contains ~75 million neurons (Oh et al., 2014). By contrast, the insect brain is 

smaller and simpler than the vertebrate brain, which consists of dramatically fewer 

neurons. For example, Drosophila melanogaster has a tiny brain which comprises 

just 200 000 neurons in the adult brain (Younossi-Hartenstein et al., 1996; Urbach 

and Technau, 2004; Younossi-Hartenstein et al., 2006). Methods are now available 

to identify the cells and visualize the structures in the insect brain. The molecular 

techniques and transgenic tools are highly developed in Drosophila, which make it 

as the preferred model organism for the molecular and genetic investigations of 

the brain development (Reichert and Boyan, 1997; Urbach and Technau, 2003b; 

Younossi-Hartenstein et al., 2006). The grasshopper is an ideal model organism for 

cellular analysis due to the large size of the neuroblasts (NBs) in the brain. It has 

been shown that the size of the NBs in the grasshopper brain is almost three times 

larger than in Drosophila (Doe and Goodman 1985). It is known that insects and 

vertebrates have homologous genes that are conserved in functions (McGinnis and 

Krumlauf, 1992; Reichert and Boyan, 1997). It is very likely that the analysis of 

genes which play importance roles for the brain development in insect may lead to 

the discovery of homologous genes that are equally important in the vertebrate 

brain. For these reasons, the insect brain has become an important model system 

to study the developmental processes of the brain.  

 

2.2 Insect brain 

The insect brain derives from the anterior neuroectoderm which forms the 

supraesophageal ganglion. This ganglion, also simply termed ‘brain’, consists of 
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three major parts: the protocererbrum (PC), the deuterocerebrum (DC) and the 

tritocerebrum (TC) (Figure 2.1A, B). The subesophageal ganglion consists of the 

fused mandibular, maxillary and labial neuromeres, which are structured similarly 

to those of the segmental ganglia of the VNC that develop from the ventral 

neuroectoderm (Reichert and Boyan, 1997). The PC is the largest portion of the 

brain. It includes the intrinsic neuropils: the mushroom bodies (MBs), the central 

complex (CX), the lateral accessory lobes (LALs) and the optic lobes (OLs). The DC is 

smaller comprising the antennal lobes (ALs) and the TC is associated with the 

intercalary segment (Figure 2.1C; Reichert and Boyan, 1997; Kurylas et al., 2008).  

 

The mushroom bodies (MBs) are a pair of protocerebral brain structures 

comprising Kenyon cells, calyces and lobes. The thousands of Kenyon cells are 

densely packed and extend dendrites into the calyx. And the axons from Kenyon 

cells project through the peduncle and form five distinct lobes (the vertical α and α′ 

lobes and the medial β, β′ and γ lobes). The MBs are known to be essential for 

learning and memory (Armstrong et al., 1998; Kurusu et al., 2002; Strausfeld et al., 

2003; Tanaka et al., 2008; Strausfeld et al., 2009). The optic lobes (OLs) which are 

located in the lateral PC are the visual processing center of the insect brain. In 

Drosophila, the OLs contain more than 60% of the brain’s neurons and consist of 

three distinct neuropils: the lamina, medulla and lobula complex (Elphick et al., 

1996; Homberg et al., 2011; Nériec and Desplan, 2016). The antennal lobes (ALs) 

are the glomerular architectures in the deutocerebrum of insects and serve as a 

primary olfactory center that transmits odor information from the antennae to 

higher brain centers (Stocker et al., 1990; Marin et al., 2002; Jefferis et al., 2007). 

The central complex (CX) is a midline spanning neuropil in insect brain. It consists 

of the protocerebral bridge (PB), the fan-shaped body (FB), the ellipsoid body (EB) 

and the paired noduli (NO). The FB and EB are also called upper unit and lower 

unit of the central body (CB). The basic modules of the CX are highly conserved 

across insect species (Williams 1975; Hanesch et al., 1989; Wegerhoff and 

Breidbach, 1992; Rein et al., 2002; Loesel et al., 2002; Homberg 2008; El Jundi et 

al., 2010; Dreyer et al., 2010). The CX is a higher order integration center in the 

insect brain. It is known to be involved in sky compass orientation, locomotor 

behavior, courtship, and memory (Strauss 2002; Homberg 2008; Weinrich et al., 

2008; Pfeiffer and Homberg 2014).  

 

 

 

 

 

 

http://dev.biologists.org/content/139/14/2510#ref-2
http://dev.biologists.org/content/139/14/2510#ref-23
http://dev.biologists.org/content/139/14/2510#ref-45
http://dev.biologists.org/content/139/14/2510#ref-45
http://dev.biologists.org/content/139/14/2510#ref-46
https://www.ncbi.nlm.nih.gov/pmc/articles/PMC5174189/#R36
http://dev.biologists.org/content/135/17/2883#ref-20
https://link.springer.com/article/10.1007/s00427-016-0542-7#CR69
https://link.springer.com/article/10.1007/s00427-016-0542-7#CR27
https://link.springer.com/article/10.1007/s00427-016-0542-7#CR91
https://link.springer.com/article/10.1007/s00427-016-0542-7#CR44
https://link.springer.com/article/10.1007/s00427-016-0542-7#CR65
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Figure 2.1 Structural organization of the insect brain. (A) Orientation of the brain (or 

supraoesophageal ganglion) and the subesophageal ganglion within the head capsule of 

the grasshopper. (B) and (C) Schematic view of the adult brain, exhibiting the 

protocerebrum (PC), the deutocerebrum (DC), the tritocerebrum (TC) and various 

neuropils. The PC comprises the mushroom bodies, the central complex, and the optic 

lobes. The DC encompasses the antennal lobes. (Taken from Reichert and Boyan, 1997; 

Urbach and Technau, 2003a)  

 
The basic neural architectures in the adult brain in insects are conserved but the 

morphological diversity reflects the species diversity, such as shape, size and 

development time of neuropils (Figure 2.2; Figure 2.3). For instance, the MBs of 

the honey bees show a larger volume as compared to the desert locusts (Brandt et 

al., 2005; Koniszewski et al., 2016). Compared with the vinegar flies, the red flour 

beetles have smaller OLs (Dreyer et al., 2010; Koniszewski et al., 2016). On the 

other hand, the timing of the development of the neuropils also varies in different 

species. In Drosophila, the first identifiable CX appears in the third instar larva, 

showing the immature PB and FB (Young and Armstrong 2010). In tenebrionid 

beetles, such as Tribolium and Tenebrio, a partially formed CB can be detected in 

the late embryos, which successively develops until the adult stage (Wegerhoff and 

Breidbach 1992; Wegerhoff et al., 1996; Koniszewski et al., 2016). In grasshopper, 

the CB develops fully during embryogenesis (Boyan and Williams 1997, 2011; 

Williams et al., 2005; Boyan and Reichert, 2011).  
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Figure 2.2 The diversity of the adult brain in different species. (a) Vinegar fly Drosophila 

melanogaster, (b) red flour beetle Tribolium castaneum, (c) honey bee Apis melifera and 

(d) desert locus Schistocerca gregaria. The respective neuropils are shown in the same 

color: mushroom bodies (MBs, red), central complex (CX, green), antennal lobes (ALs, blue) 

and optic lobes (OLs, yellow and orange). Lamina of optic lobes (yellow) and lobula of 

optic lobes (orange). The figure is taken from (Koniszewski et al., 2016) based on (Rein et 

al., 2002; Kurylas et al., 2008; Dreyer et al., 2010; Rybak et al., 2010). 

 

 

 
 

Figure 2.3 The timing of the CX development of Drosophila melanogaster (a), Tribolium 

castaneum (b) and Schistocerca gregaria (c). In Drosophila CB is absent during embryonic 

stages, in Tribolium only the FB is developed and in Schistocerca the CB is fully developed. 

Light colors mark developing but not functional neuropils while white demonstrates the 

absence of detectable neuropil. PB protocerebral bridge; No noduli; FB fan-shaped body; 

EB ellipsoid body. The figure is taken from (Koniszewski et al., 2016) based on (Dreyer et al., 

2010; Hanesch et al., 1989; Kaiser, 2014). 
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2.3 Early neurogenesis in insect central nervous 

system 

2.3.1 Neuroblast formation 

The neurogenesis begins with the delamination of the neuroblasts (NBs) from the 

neuroectoderm. The neuroectoderm (also referred to as neurogenic region) gives 

rise to the brain and the ventral nerve cord (VNC), which comprise the central 

nervous system (CNS) of insects. The equipotent cells that are clustered in groups 

at invariant positions in the neuroectoderm, called proneural clusters, express the 

proneural genes achaete, scute and lethal of scute which are combined in the 

achaete/scute gene complex (AS-C) at the beginning of neurogenesis (Campuzano 

et al., 1985; Cabrera et al., 1987; Skeath et al., 1992). The expression of the 

proneural genes confers neural potential to all cells within such a proneural cluster. 

However, only one cell of the proneural cluster adopts the neural fate to become 

the NB, while the remaining others adopt the epidermal fate to differentiate into 

the progenitors of epidermis (epidermoblasts) (Figure 2.4A). This selection is 

regulated by Notch signaling pathway through the mechanism of lateral inhibition 

(Figure 2.4B; Cabrera et al., 1987; Skeath and Carroll 1992; Heitzler et al., 1996; 

Beatus and Lendahl, 1998). High levels of Notch signaling inhibit the expression of 

its ligand Delta and the proneural genes in the surrounding cells. Therefore lateral 

cells adopt the epidermal fate. Meanwhile, the selected proneural cell, which 

continues to expresses high levels of the proneural gene and Delta, acquires the 

NB fate.  

http://dev.biologists.org/content/129/18/4193#ref-11
http://dev.biologists.org/content/129/18/4193#ref-11
http://dev.biologists.org/content/129/18/4193#ref-51
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Figure 2.4 Schematic drawing of NBs formation and the lateral inhibition involving Notch, 

Delta and the proneural genes. (A) A single cell is selected to acquire a NB fate from the 

proneural cluster and the remaining cells adopt an epidermal fate. This is achieved by the 

process of lateral inhibition (B). (Taken from Egger et al., 2008) 

 

 

In Drosophila, ~30 NBs delaminate from the ventral neuroectoderm in each 

hemisegment within five temporal waves and form a stereotypical array. These 

NBs are assigned in seven anteroposterior rows and three dorsoventral columns. 

These 30 NBs totally generate approximately 350 progeny which build a 

hemineuromere (Schmidt et al., 1997). The fate of the individual NB is specified by 

its position, time of formation as well as the combination of developmental genes 

it expresses (Doe 1992; Urbach and Technau, 2004; Hartenstein et al., 2008). 

Compared to the VNC, the brain shows a much higher complexity. The formation 

of NBs in the brain seems not to follow the apparent row-column patterning. This 

is mainly owing to massive morphogenetic movements during development and 

an expansion of number of NBs forming the brain. In Drosophila, ~100 NBs have 

been identified in the embryonic brain. They form in a reproducible time pattern 

rather than in waves. Their spatial arrangement is largely invariantly. Each NB is 

generated at a characteristic time (Urbach and Technau, 2004). The protocerebral 

neuroectoderm gives rise to ~70 NBs, taking the largest portion of NBs population 

in the brain. The deutocerebrum is formed from ~21 NBs and the tritocerebrum 

forms from a minimal amount of NBs (Urbach and Technau, 2003b). 

 

A 

B 
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2.3.2 Neuroblast identity 

In the VNC, each NB generates a unique cell lineage and the identity of the 

individual NB is specified by both temporal and spatial pattern. The expression of 

the anteroposterior and dorsoventral patterning genes subdivide the ventral 

neuroectoderm into a grid like pattern. Anteroposterior patterning is mediated by 

the segment polarity genes, which are expressed in transverse stripes within each 

segment. Dorsoventral patterning is mediated by the the homeobox genes ventral 

nervous system defective (vnd), intermediate neuroblasts defective (ind) 

and muscle segment homeobox gene (msh) which are expressed along the DV axis 

in columns within each segment (Skeath, 1999). The NBs which arise in the 

corresponding position of each hemisegment are homologs. These homologs 

express the same combination of the developmental genes and generate similar 

cell lineages, which are modulated by the action of the Hox-cluster genes 

(McGinnis and Krumlauf, 1992; Urbach and Technau, 2003a; Urbach and Technau, 

2004; Karlsson et al., 2010).  

 

In Drosophila, the brain NBs are continuously added in a reproducible pattern. 

More than 40 molecular markers, including proneural genes, segment polarity 

genes, dorsoventral patterning genes and many others were used to establish a 

map of brain NBs for embryonic stages (Figure 2.5; Urbach and Technau, 2003b). 

This study revealed that each NB expresses a specific combination of transcription 

factors, and it was suggested that these combinations determine the individual 

fate of each NB. This complex co-expression pattern presumably reveals part of the 

mechanism for the specification of individual NBs and the components of their 

corresponding cell lineages, but the genetically relevant networks are still poorly 

known. Moreover, the segmental pattern is less conserved in the anterior brain. 

Serially homologous NBs have been found in the hemisegments of the VNC and 

the posterior brain (deuterocerebrum and tritocerebrum). However, the 

protocerebrum comprises very little homology to trunk neuromeres (Urbach and 

Technau, 2004). 
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Figure 2.5 Specific combinations of marker gene expression reflect individual identities 

of brain NBs in Drosophila. More than 40 molecular markers (representing 34 different 

genes as listed below) have been found to specifically express in brain NBs. Each brain NB 

reveals a unique combinatorial code of marker gene expression. Red lines indicate the 

segmental boundaries between the protocerebrum (P), deutocerebrum (D) and 

tritocerebrum and (T). Lr-P: labral protocerebrum; Oc-P: ocular protocerebrum. (Taken 

from Urbach and Technau, 2003b) 

 

2.3.3 Neuroblast Lineages - type I and type II 

NBs are the primary progenitors which undergo multiple divisions to generate the 

unique set of neural cells forming a neural lineages consisting of neurons, glial cells 

and axonal fascicles. The cell bodies of a given lineage stay together to form a 

stereotypic cluster and make the similar projection patterns (Larsen et al., 2009; 

Yang et al., 2013; Lee, 2017). Recent studies have shown that there are two 

different types of NBs existing in the insect brain: type I NBs and type II NBs (Figure 

2.6). Type I NBs generate relatively simple cell lineages and represent the classical 

mode of neurogenesis. They undergo asymmetric cell divisions to self-renew and 

bud off ganglion mother cells (GMCs). The GMC then divides symmetrically to 

produce two daughter cells that develop into neurons and/or glia (Truman and 

Bate, 1988; Doe, 2008; Knoblich, 2008). In Drosophila, type I NBs can be identified 

by certain molecular markers. Type I NBs express Deadpan (Dpn) and Asense (Ase) 
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but not Pointed P1 (PntP1; Pnt) (Zhu et al., 2011; Xie et al., 2016). In contrast, type 

II NBs have more complicated and larger lineages. Type II NBs divide 

asymmetrically to self-renew and generate intermediate neural progenitors (INPs) 

which retain limited self-renewing potential. Each INP then divides to self-renew 

and produce a GMC which subsequently undergoes a terminal division to generate 

two neural progeny. Since each INP has the capacity to self-renew (four to eight 

times), the INPs have the potential to significantly amplify the number of the 

neural cells within the lineages. Type II NBs are positive for Dpn and PntP1 but not 

Ase and their progeny INPs express Dpn and Ase (Bello et al., 2008; Boone and Doe, 

2008; Izergina et al., 2009; Weng and Lee, 2010; Zhu et al., 2011; Walsh and Doe, 

2017). 

 

 

 

 

Figure 2.6 Type I NBs and type II NBs and their mode of asymmetric cell division. (A) 

Type I NBs divide asymmetrically to self-renew and generate a ganglion mother cell (GMC, 

orange). GMCs divide once to generate a pair of neurons or glia (gray). (B) Type II NBs 

divide asymmetrically to self-renew and generate an immature intermediate neural 

progenitors (INPs; yellow) which then divide asymmetrically to self-renew and to generate 

a GMC. The GMCs subsequently undergoes a terminal division to generate two neural 

progeny (gray). (Taken from Homem and Knoblich, 2012) 

 

 

Most of the NBs in the insect brain are type I NBs. In the Drosophila embryonic 

brain, there are approximately 100 type I NBs per hemisphere, whereas only 8 type 

II NBs are identified (Walsh and Doe, 2017). Type I NBs usually give rise to the 

progeny contributing to the small and diffuse neuropils or to the mushroom bodies, 

whereas type II NBs generate larger lineages through amplifying proliferation of 

the intermediate progenitors, contributing to the central complex. For instance, in 

Drosophila type I NBs generate the intrinsic cells which contribute to the 

mushroom bodies, containing an average of approximately 150 to 200 cells in adult 

brain, whereas the dorsomedial (DM) lineages which derive from type II NBs and 

innervate to the central complex, have an average of 450 cells (Bello et al., 2008; 
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Izergina et al., 2009; Pereanu et al., 2010). Similar findings have been also reported 

in grasshopper. The studies in the grasshopper show that the identified embryonic 

lineages W, X, Y, Z contributing to the central complex are the largest lineages 

(Type II lineages) in the brain. Each of these type II lineages contains more progeny, 

around 4 to 5 times, than those associated with the embryonic mushroom bodies 

(Boyan and Williams 1997; Williams et al., 2005; Williams and Boyan 2008; Boyan 

et al., 2010). Some type I NBs, such as mushroom body NBs, form during 

embryogenesis and survive into larval stage or even adult stages, generating 

progeny persistently throughout development. This demonstrates they undergo 

long time proliferation (Cayre et al., 1996; Prokop and Technau, 1994; Ito et al., 

1997; Kunz et al., 2012). By contrast, type II lineages are always generated during a 

restricted and shorter developmental period. For example, the dorsomedial (DM) 

lineages are generated at the late third larval stage in Drosophila (Bello et al., 2008) 

and W, X, Y, Z lineages are generated at the mid-embryogenesis in Schistocerca 

(Boyan and Williams 1997; Williams et al., 2005; Boyan et al., 2010). These 

lineages do not increase significantly after that. 

 

2.4 Development of insect brain from embryo to adult 

The holometabolous insects develop larval morphology during embryogenesis and 

later undergo an extensive morphological transformation of the larva into flying 

adult during metamorphosis. How does the embryonic pattern develop into the 

adult brain? Insect brain development begins with the delamination of NBs from 

the anterior neuroectoderm. Following delamination, these brain NBs start 

generating their neuronal progeny (Hartenstein and Campos-Ortega, 1984). The 

brain NBs can be identified based on their stereotyped position and can also be 

characterized by the expression of cell-specific molecular markers (Zacharias et al., 

1993; Urbach and Technau, 2003b). By late embryogenesis the embryonic NBs 

cease to proliferate and enter into quiescence, and the quiescent NBs reactivate to 

resume proliferation during the first larval stage. This postembryonic neurogenesis 

continues throughout larval stages and extends into pupal stages, giving rise to 

more than 90% of neurons contributing to the adult brain. At some time point, the 

NBs exit from the cell cycle and die (Truman and Bate, 1988; Prokop and Technau, 

1991; Ito and Hotta, 1992; Maurange et al., 2008). The formation of the adult brain 

involves massive postembryonic neurogenesis and reorganization of a small 

portion of the neurons born during embryogenesis. Therefore, the NBs responsible 

for the larval neurogenesis are embryonic NBs that are reactivated 

postembryonically, generate the vast majority of neurons in the adult brain.  

 

http://dev.biologists.org/content/139/14/2510#ref-38
http://dev.biologists.org/content/139/23/4297#ref-121
http://dev.biologists.org/content/136/20/3433?ijkey=09c86bd44e29208ab5500bcfddc395f0cde34d95&keytype2=tf_ipsecsha#ref-41
http://dev.biologists.org/content/136/20/3433?ijkey=09c86bd44e29208ab5500bcfddc395f0cde34d95&keytype2=tf_ipsecsha#ref-41
http://dev.biologists.org/content/139/14/2510#ref-17
http://dev.biologists.org/content/139/23/4297#ref-77
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2.5 Development of brain commissures and the central 

complex 

The axongenesis in the insect brain has been investigated in Drosophila and 

Schistocerca. At a certain stage during embryogenesis, the brain hemispheres 

become linked to each other at the midline by cells arranged in a bridge-like 

pattern, and at the same time the primary axon extends across the midline, which 

is pioneered by the cells located near the medial edge of each hemisphere (Boyan 

et al., 1995a, b, c; Therianos et al., 1995). The establishment of the primary axonal 

projection across the brain midline is thus closely associated with the 

interhemispheric cellular bridge. Both neurons and glial cells have shown to be 

involved in this process (Boyan et al., 1995a, c; Therianos et al., 1995). With the 

primary axon guidance, the later emerging axons will follow this pathway and 

extend across the midline. During subsequent embryogenesis, this brain 

commissure differentiates further and grows rapidly in size to become the massive 

commissures (Therianos et al., 1995). In the adult grasshopper, the brain 

hemispheres are interconnected by over 70 commissures which are derived from 

the primary brain commissure during embryonic development (Boyan et al., 1993). 

 

The CX is a midline spanning neuropil in the insect brain and its development has 

been characterized in some insect species, particularly in Drosophila and 

Schistocerca. In Drosophila, the CX is first detectable in the third instar larva, 

showing the immature protocerebral bridge and fan-shaped body (Schneider et al., 

1993; Young and Armstrong, 2010). The CX has also been described as a series of 

interhemispheric commissures at this stage (Hanesch et al., 1989). Four 

dorsomedial lineages (DM1-4) which are generated by four identified type II NBs 

are shown to contribute to the developing adult CX (Izergina et al., 2009; Pereanu 

et al., 2011; Boyan and Reichert 2011; Riebli et al., 2013; Yang et al., 2013). In 

Schistocerca, the CX starts differentiation during mid-embryogenesis (Reichert and 

Boyan, 1997). Four NBs located in the pars intercerebralis in each hemisphere are 

shown to be involved in the CX development. These NBs give rise to stereotypic 

neural clusters which contribute the axon fascicles initially to the protocerebral 

bridge (PB) and then to central body (CB) via four discrete tracts (w, x, y, z) (Boyan 

and Williams, 1997; Williams et al., 2005; Williams and Boyan, 2008; Boyan et al., 

2008; Boyan and Reichert, 2011). The corresponding W, X, Y, Z clusters and tracts 

are also found in the adult brain (Williams, 1975; Boyan et al., 1993; Vitzthum et al., 

1996). Studies have also shown that the CX is innervated by different neuronal cell 

types. For instance, tangential neurons have arborizations outside the CX and 

tangentially project to a single subunit of the CX (e.g. within the particular layers of 

the FB or the entire rings of the EB), while columnar neurons interconnect the PB 

to CB and divide the PB and CB as regular columnar elements (Homberg 1985; 

Hanesch et al., 1989; Loesel et al., 2002; Boyan and Williams 2011; Phillips-Portillo 

https://link.springer.com/article/10.1007/s00427-016-0542-7#CR110
https://link.springer.com/article/10.1007/s00427-016-0542-7#CR43
https://link.springer.com/article/10.1007/s00427-016-0542-7#CR54
https://link.springer.com/article/10.1007/s00427-016-0542-7#CR13
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2012; Heinze et al., 2013; Pfeiffer and Homberg 2014). The axonal projections of 

columnar neurons may also extend to the lateral accessory lobe or to the noduli 

(Pfeiffer and Homberg 2014). Therefore, columnar neurons play an important role 

in the communication between different subunits of the CX. 

 

2.6 Tribolium castaneum - a model organism for the 

central brain development  

 

Drosophila melanogaster and Schistocerca gregaria, are the most studied two 

insect model systems for the central brain development. In Schistocerca, 

embryonic brain development was analyzed by morphological studies like 

immunohistochemistry, BrdU incorporation and dye injection (Boyan and Williams 

1997; Wiliams et al., 2005; Boyan et al., 2010; Boyan and Liu 2014). However, the 

molecular and genetic investigations were limited due to the lack of sequenced 

genome and the limited potential of the RNAi technique (Dong and Friedrich, 

2005). Advances in molecular techniques and various genetic tools make the 

Drosophila as the preferred model organism to study the brain development 

(Urbach and Technau, 2003b; Younossi-Hartenstein et al., 2006). However, 

Drosophila also has the limitation that it shows derived mode of embryogenesis. 

Notably, the central complex is not detected during the embryonic stage. This 

indicates that Drosophila is not suitable for studying the embryonic signals 

required for CX development.   

 

The red flour beetle Tribolium castaneum, a holometabolous insect, is a 

representative of the most diverse species on earth, i.e. the coleopterans (Grimaldi 

and Engel, 2005). It exhibits a more typical developmental process of the insects. 

Hence, it has become a comparative model organism in evolutionary 

developmental biology (Brown et al., 2009). Choosing Tribolium as model organism 

for studying brain development is mainly for several reasons. First, embryonic 

central brain development is more typical than seen in Drosophila. Specifically, the 

CB partially forms during embryogenesis and the primordium of CB is detected in 

the first instar larva (Posnien et al., 2011b; Koniszewski et al., 2016). Second, with 

respect to functional genetics Tribolium has more tools than most other insects 

apart from Drosophila. The genome has been sequenced (Richards et al., 2008), 

which facilitates studying gene function. Tribolium shows robust and systemic RNAi 

for all developmental stages. The dsRNA injection into hemolymph makes the 

knockdown spread to all cells of the injected animal and is even transmitted to the 

offspring of injected females (parental RNAi) (Brown et al., 1999; Bucher et al., 

2002). Furthermore, transposon-mediated transgenesis (Berghammer et al., 1999), 

misexpression tools including heat shock-based gene misexpression (Schinko et al., 

2012), and GAL4/UAS-based misexpression (Schinko et al., 2010) have been 

https://link.springer.com/article/10.1007/s00427-016-0542-7#CR65
https://link.springer.com/article/10.1007/s00427-016-0542-7#CR65
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established. Moreover, the large-scale transposon mediated mutagenesis screen 

GEKU provides various enhancer trap lines marked with EGFP (Trauner et al., 2009). 

In addition, powerful in vivo imaging tools have been generated: a nuclear reporter 

line (Sarrazin et al., 2012) and the light-sheet-based live imaging (Strobl and Stelzer, 

2014; Strobl et al., 2015). Finally, the unbiased large-scale iBeetle-Screen, a 

genome-wide RNAi screen, allows finding novel genes required for a process apart 

from the classical candidate gene approach (Schmitt-Engel et al., 2015). Hence, 

Tribolium castaneum is a good model to study the genetic mechanisms of 

embryonic central brain development, including CX development. 

 

 

2.7 CRISPR/Cas9 as an approach to generate imaging 

lines  

One prerequisite for investigating brain development is the marking of subsets of 

neural cells. The recently discovered CRISPR/Cas technology has emerged as a 

highly versatile and efficient tool for genome editing. CRISPR (clustered regularly 

interspaced short palindromic repeats)/Cas (CRISPR-associated protein) is 

originally from the adaptable immune mechanisms of bacteria and archaea, in 

which CRISPR-derived RNA (crRNA) guides Cas nucleases to specifically target and 

cleave the foreign DNA, such as viral DNA (Horvath and Barrangou, 2010; Gasiunas 

et al., 2012; Jinek et al., 2012). Today, the CRISPR system most commonly used for 

genome editing, derived from Streptococcus pyogenes, consists of a Cas protein 

(Cas9) and a single chimeric guide RNA (known as gRNA) which is the combination 

of the crRNA and tracRNA (trans-acting antisense RNA). The guide RNA contains a 

region of 20 nucleotides at its 5′ end which pairs with the target DNA and 

determines specificity (crRNA), and an invariable sequence at its 3′ end that is 

indispensable to bind with Cas9 nucleases (tracRNA). Cas9 nucleases acts as 

‘molecular scissors’ that is directed by the gRNA to target the specific DNA 

sequence in the genome and make a double-stranded break (DSB). Additionally, 

the target recognition depends on the presence of PAM that is typically NGG, 

which is located downstream of the 20 nucleotides target sequence in the genomic 

target DNA. Hence only sequences that match N20NGG can be targeted by 

CRISPR/Cas9. The DSB usually occurs 3 nucleotides upstream of the PAM 

(N17
˅N3NGG) (Garneau et al., 2010; Jinek et al., 2012; Jiang et al., 2013; Sander and 

Joung, 2014). With this approach, almost any gene of interest in the genome can 

be specifically targeted. The applications of the CRISPR/Cas have been established 

in model organisms and it also in principle allows the genetic intervention in other 

species as well (Bassett et al., 2013; Gratz et al., 2013; Port et al., 2014; Gilles and 

Averof, 2014; Awata et al., 2015; Gilles et al., 2015; Zhu et al., 2015; Bi et al., 2016; 

Hammond et al., 2016; Li et al., 2016; Wang et al., 2016). 

 

https://www.ncbi.nlm.nih.gov/pmc/articles/PMC5592444/#B70
http://dev.biologists.org/content/142/16/2832.long#ref-38
http://dev.biologists.org/content/142/16/2832.long#ref-38
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CRISPR/Cas9 mediated cleavage of DNA typically undergoes two major 

mechanisms for DNA damage repair: non-homologous end joining (NHEJ) and 

homology directed repair (HDR) (Figure 2.7). In NHEJ, the broken ends are ligated 

to each other, resulting in the introduction of small insertions or deletions (indels) 

of various lengths at the break site. NHEJ thus provides an efficient way to disrupt 

gene function and can be used to mediate gene knockout. Additionally, in NHEJ 

exogenous linear DNA can also be ligated to the broken ends in random orientation 

with the absence of homologous sequences in the repair template, which is called 

homology-independent knock-in. HDR-mediated repair is based on inserting 

specific sequences into the target locus in the presence of an 

exogenously introduced repair template which has homology arms flanking the 

insertion sequence. HDR thus generates precise modifications known as 

homology-dependent knock-in. In living organisms, NHEJ and HDR mechanisms are 

ubiquitous. NHEJ occurs more frequently than HDR does and considered to be the 

predominant repair mechanism (Gilles and Averof, 2014). 

 

 

 

Figure 2.7 Schematic of repair mechanisms of CRISPR/Cas9 mediated double-stranded 

break. In non-homologous end joining (NHEJ), the broken ends are ligated, which results 

in either perfect rejoining or the introduction of small insertions (green) or deletions (red) 

at the break site. NHEJ can also introduce the exogenous linear DNA (yellow) to the broken 

ends. Homology directed repair (HDR) is based on inserting specific sequences into the 

target locus in the presence of an exogenously introduced repair template which has 

homology arms (blue) flanking the insertion sequence. (Taken from Gilles and Averof, 

2014) 
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The conventional approaches for generating imaging lines in Tribolium rely on the 

piggyBac transposon mediated integration of genetic constructs that are inserted 

randomly into the genome, such as using enhancer trapping (Trauner et al., 2009). 

Alternatively, one can use the regulatory region of the gene of interest to drive a 

reporter gene (Koniszewski, 2011) directly or via the Gal4/UAS system (Koniszewski 

et al., 2016). These lines prove to be good tools to study gene functions but have 

disadvantages: Enhancer trapping is a random process and many experiments are 

required to get one line that is interesting for a given project. Reporter constructs, 

in turn, often do not contain all regulatory elements and the expression depends 

on the genomic context. Hence, the patterns often do not closely match the 

endogenous expression. Compared with these approaches, apparently, 

CRISPR/Cas9 genome editing allows more efficient and easier solution by making 

an insertion at a specific location rather than a random one for specific research 

questions. In this study, I use CRISPR/Cas9 mediated NHEJ to generate a 

gene-specific enhancer trap line to mark neural cells throughout development for 

studying the NBs and their lineages which contribute to the central brain. 

 

2.8 Tc-foxQ2 as a candidate gene for the central brain 

development 

 

FoxQ2 is a member of forkhead transcription factor family. All members of the 

forkhead family are known to encode transcription factors, which share ~110 

amino acid encompassing DNA-binding domain, termed the forkhead domain 

(Kaufmann and Knöchel, 1996). The forkhead domain genes are found to be 

involved in development and differentiation (Kume et al., 2001; Mahlapuu et al., 

2001; Zaffran et al., 2001). Some studies have uncovered that the forkhead domain 

genes play key roles in human health and diseases (Benayoun et al., 2011). FoxQ2 

orthologs have been found in many species across the metazoan kingdom, 

including cnidarians, annelids, vertebrates and insects. Their comparable apical 

patternings in these different species suggest that foxQ2 is highly conserved 

among animals (Tosches and Arendt, 2013). Moreover, it has been shown that 

foxQ2 patterns a neurogenic region in Strongylocentrotus, Nematostella, Strigamia, 

Drosophila and Tribolium (Yaguchi et al., 2008; Sinigaglia et al., 2013; Hunnekuhl 

and Akam, 2014; Lee and Frasch, 2004; Kitzmann et al., 2017).      

 

In protostomes, the function of foxQ2 has only been studied in Tribolium. The 

Tribolium ortholog Tc-foxQ2 is specifically expressed in the anterior head region 

and the corresponding neuroectoderm and it has proven to be an upstream factor 

within the anterior head gene regulatory network, with mutual activation 

of Tc-six3. Knock down of Tc-foxQ2 leads to a strong epidermal phenotype, 

showing the loss of the labrum (Kitzmann et al., 2017). The Drosophila ortholog of 

http://dev.biologists.org/content/144/16/2969.long#ref-2
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foxQ2 is fd102c. The embryonic expression pattern of fd102c was characterized, 

showing a small anterior domain in blastoderm and a large number of neurons in 

the brain hemispheres at the late embryonic stage. However, the function of 

fd102c has not been studied (Lee and Frasch, 2004). In addition, foxQ2 function 

has been studied in sea urchin and sea anemone. In sea urchin Strongylocentrotus 

purpuratus, foxQ2 is involved in ectodermal patterning. Knock down of foxQ2 leads 

to a weak thickening of the animal plate ectoderm. But foxQ2 seems to be crucial 

for the development of serotonergic neurons (Yaguchi et al., 2008). In sea 

anemone, Nematostella vectensis, Nv-foxQ2 is involved in the development of the 

aboral region. A defect of the outer morphology was not observed in 

Nv-foxQ2 knockdown but the size of apical organ was reduced (Sinigaglia et al., 

2013). 

 

As head epidermis and brain originate from the same early neuroectodermal 

patterning in insects, the genes involved in head development are very likely to 

play an important role in brain development. In Tribolium, Tc-six3 is known to be 

an upstream regulator in anterior median head and required for the formation of 

the central body (Posnien et al., 2011b). Tc-foxQ2, mutually activated with Tc-six3 

in anterior head patterning, has shown to be another key regulatory factor and the 

central brain is affected in knock-down animals. Knock-down of Tc-foxQ2 could 

result in reduction of the central body, convergence of the brain hemispheres and 

defects of the mushroom bodies in L1 Larvae (Kitzmann et al., 2017). However, the 

embryonic development of the anterior brain (protocerebrum) of the insect is 

poorly studied and the embryonic formation of the CX cannot be studied in 

Drosophila due to its postembryonic development. In order to get more insights 

into these processes, I used in this study Tc-foxQ2 because it is exclusively 

expressed in the anterior protocerebral neuroectoderm, is required for anterior 

patterning in all animals and was shown to elicit central brain phenotypes. 

 

2.9 Aims of the study 

The insect brain is built by a conserved set of the neuropils which arise from the 

NBs. Each individual NB is specified by a combination of expressed transcription 

factors which are likely to determine its developmental fate. The progeny of a 

given NB form a stereotypic cell lineage. Therefore, the early determinants and 

signals that specify the NBs identities are essential for the formation of brain 

structures as well as their functions. The NBs identities are well studied for the 

trunk but poorly known for the brain. 

 

In this study, I wanted to find out how many NBs express Tc-foxQ2 and I wanted to 

find out in how far their lineages contribute to the central brain and the central 

complex development. Further, I wanted to know, which transcription factors are 

co-expressed with Tc-foxQ2 to specify the NBs in the embryo. Finally, I intended to 

http://dev.biologists.org/content/144/16/2969.long#ref-66
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knock down Tc-foxQ2 by RNAi to study the phenotype in order to get insights into 

the function of Tc-foxQ2 in embryonic brain development. As prerequisite for 

these studies, I generated a Tc-foxQ2 antibody and an imaging line to mark 

Tc-foxQ2 cells by using CRISPR/Cas9. With this imaging line, NBs and at least 

subsets of their lineages contributing to the central brain could be visualized and 

traced.  
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3 Material and Methods 

 

3.1 Animals 

The San Bernadino (SB) wild type (wt) strain was used for cDNA synthesis, RNAi 

experiments, whole mount in situ hybridization and antibody staining. 

 

The Tc-vermillionwhite (Tc-vw) strain was used for transgenesis. This line is a mutant 

of Tc-vw (tryptophan oxygenase) which results in non-pigmented eyes (white eyes) 

(Lorenzen et al., 2002). Eye marker expression can be easily screened within the 

Tc-vw strain. 

 

The line E011A-01 (lab internal number: 50) is a Tc-rx enhancer trap line from the 

GEKU screen (http://www.geku.base.unigoettingen.de).  

 

The line E035004 (lab internal number: 120) is an enhancer trap line derived from 

the GEKU screen and the insertion is in the Tc-ten-a locus. 

 

Tc-rx reporter line (lab internal number: 178) contains parts of the upstream 

genomic region of Tc-rx fused with basal promoter elements driving DsRedExpress 

(DsRedEx) (Koniszewski, 2011). 

 

3.2 Fixation  

3.2.1 Fixation of the embryo 

The development from the zygote to the fully developed embryo lasts around 72 h 

at 32°C in Tribolium. Stock beetles were kept at 32°C for three days and 0-72 h 

aged embryos were sieved out and collected in 180 µm mesh baskets. The 

embryos were rinsed with tap water several times and washed in 50% bleach twice 

for three minutes to dechorionate, afterwards they were thoroughly washed with 

tap water to completely remove the bleach. Fixation was performed using 

standard protocols (Schinko et al., 2009) as described with slight modifications. 

The fixation buffer here used is containing 6 ml heptane, 2 ml PEMS (0.1 M PIPES, 

2 mM MgCl, 5 mM EGTA, pH 6.9), and 300 μl 37% formaldehyde. The embryos 
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were fixed on a shaking platform at 225 rpm for 25 min. Fixed embryos were 

stored in methanol at -20°C for in situ hybridization and antibody staining. 

 

3.2.2 Dissection and fixation of the larval brain 

The mid-late staged larva was selected and put into the ice-cold PBS. The larva was 

cut in the groove between the first thorax and second thorax by forceps. The 

cuticle of first thorax was removed, and then the cuticle of head was torn from 

lateral side, which resulted in the exposure of the brain. The dissected brains were 

collected in a 0.5 ml tube filled with 375 μl PBT (PBS with 0.1% Triton-X-100), 

which was kept on ice for the duration of dissection. The whole dissection 

procedure was taken no longer than 40 min to prevent brain degradation. For 

fixation, methanol-free formaldehyde was added to the final concentration of 4% 

to the tube. The brains were kept on ice for 30 min, followed by washing with PBT. 

Next, antibody staining was performed (see section 3.3). 

 

3.2.3 Dissection and fixation of the adult brain 

The brains were dissected in ice-cold PBS by using forceps for a maximum of 40 

min in case the brains started to degrade. The head was pulled off and placed 

dorsal side upwards. One forceps was used to hold the head by inserting the eyes, 

while the other forceps was used to lift the head capsule from the side close to 

thorax and expose the brain. The head capsule and tissues around the brain were 

carefully removed. The dissected brains were collected in a 0.5 ml tube filled with 

375 μl of PBT (PBS with 0.2% Triton-X-100), which was kept on ice for the duration 

of the dissection. For fixation, methanol-free formaldehyde was added to the tube, 

making the final concentration is 4%. The brains were placed back on ice and kept 

for 45 min. Afterwards, the brains were washed with PBT and then were ready for 

the antibody staining.  

 

3.3 Immunohistochemistry 

3.3.1 Antibodies  

The following primary antibodies were used: mouse-anti-ac.tubulin, 

chicken-anti-GFP, rabbit-anti-DsRed, rabbit-anti-Repo and guinea pig-anti-FoxQ2. 

The secondary antibodies included goat anti-mouse, goat anti-chicken, goat 

anti-rabbit and goat anti-guinea pig, coupled with Alexa Fluor 488 or 555, and with 
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the dilution of 1:1000. 

 

3.3.2 Antibody staining of the embryo   

The fixed embryos were rehydrated by washing with PBT (PBS with 0.1% 

Triton-X-100) and incubated in blocking buffer (3% BSA with 0.05% sodium azide in 

PBS) for 1 h at room temperature. Afterwards, the primary antibody was added 

and incubated overnight at 4°C. After several times washing with PBT, the 

secondary antibody was added (dilution 1:1000) and incubated for 90 min at room 

temperature in the dark. Since then all the following steps were performed in the 

dark. The embryos were again washed with PBT, and 10 min DAPI staining (1 ng/μl) 

was performed to stain the nuclei. The stained embryos were kept in 

VECTASHIELD® (Vector Laboratories) that is an antifade mounting medium for 

fluorescence and stored at 4°C.  

 

3.3.3 Antibody staining of the larval brain 

After removing the PBT, the brains were incubated in blocking solution for 5 h at 

room temperature. The blocking solution was subsequently removed and the 

primary antibody, diluted in blocking solution, was added. The brains were 

incubated with primary antibody at 4°C overnight. Afterwards, the primary 

antibody was removed and the brains were washed with PBT for 3 h at room 

temperature. Then the secondary antibody was added in PBT with the dilution of 

1:1000. From this step, the staining was performed in the dark. The brains were 

incubated with secondary antibody for 3 h at room temperature and rinsed with 

PBT, followed by a 15 min DAPI staining. After washing with PBT, a small amount of 

VECTASHIELD® was added to preserve the fluorescent staining. The samples were 

kept at 4°C for several hours. Then the brains were either mounted or transferred 

to -20°C for longer storage .  

 

3.3.4 Antibody staining of the adult brain 

After removing the PBT, the brains were incubated in blocking solution at 4°C 

overnight. The blocking solution was subsequently removed and replaced by 

blocking solution with primary antibody. After incubation for 24 h at 4°C, the 

primary antibody was removed and the brains were washed with PBT for 6 h at 

room temperature. Then the secondary antibody was added in PBT with the 

dilution of 1:1000. From this step, the staining was performed in the dark. The 

brains were incubated with secondary antibody overnight at 4°C and rinsed with 
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PBT, followed by a 30 min DAPI staining. After washing with PBT, a small amount of 

VECTASHIELD® was added. The samples were kept at 4°C for several hours. Then 

the brains were either mounted or transferred to -20°C for longer storage .  

 

3.4 Fluorescent in situ hybridization 

3.4.1 Probe 

RNA probes for in situ hybridization were synthesized with the DIG 

(Digoxegenin-UTP; DIG) RNA labeling mix (Roche, Germany) and the Fluorescin 

(Fluorescin-UTP; FLUO) labeling mix (Roche, Germany) using the T7 RNA 

polymerase. All RNA probes used in this thesis are available in the laboratory.  

 

3.4.2 Staining 

Fluorescent in situ hybridization was performed using a horseradish peroxidase 

(POD) mediated tyramide signal amplification (TSA). Staining was based on 

previously described protocol (Oberhofer et al., 2014) and was optimized by 

Marita Buescher. Finally, DAPI staining was performed. 

 

3.5 Mounting  

The stained embryos were submerged in VECTASHIELD® on a hollow microscopic 

slide. Yolk cells were removed from germ bands as much as possible. The embryos 

in different stages were transferred in a small drop of VECTASHIELD® between the 

lower slide and upper coverslip with spacers (upper coverslip 22×22 mm, lower 

slide 76×26 mm), carefully flattened and sealed with nail-polish. Staging of the 

embryos was carried out according to Biffar as a reference system (Biffar, 2014). 

The embryos from different developmental stages (NS3 to NS15) were selected 

and mounted to make the microscope slides. The slides were stored at 4°C 

overnight or -20°C for longer time.  

 

The stained larval brains and adult brains were mounted in a drop of 

VECTASHIELD® under a coverslip separated by spacers of ~200 μm thickness, so 

that the brain is not flattened. The slides were stored at 4°C overnight or -20°C for 

longer time. 
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3.6 RNA interference (RNAi)  

The DNA templates for non-overlapping double-stranded RNA (dsRNA) fragments 

were produced by standard PCR from a plasmid template described previously 

(Kitzmann et al., 2017). The dsRNA was synthesized using the Ambion® 

MEGAscript® T7 kit (Life Technologies, Carlsbad, CA, USA). The transcribed dsRNA 

was extracted via LiCl precipitation and dissolved in injection buffer (1.4 mM NaCl, 

0.07 mM Na2HPO4, 0.03 mM KH2PO4, 4 mM KCl, pH 6.8). The annealing of dsRNA 

was performed in a 94°C heating block for 5 min followed by slowly cooling it down 

to the room temperature. The concentrations of the injected dsRNA were 

measured using NanoDrop 1000 Spectrophotometer (constant 45 settings). 

Parental RNAi was performed according to previously published protocols (Bucher 

et al., 2002) by injecting dsRNA into pupae using the FemtoJet® express device 

(eppendorf, Germany). Different concentrations of dsRNA were used (1.5 µg/µl 

and 3 µg/µl ) based on the requirement of experiment. 

 

3.7 Generation of a Tc-FoxQ2 polyclonal antibody 

3.7.1 Cloning 

The C-terminal part of Tc-foxQ2 was amplified from cDNA pool by PCR using primer 

pairs with BsaI restriction site forward and reverse. PCR product was digested with 

BsaI HF and ligated into pET-SUMO vector. pET-SUMO and insert here were used at 

1:5 molar ratio. Afterwards, the ligation was transformed into E. coli DH5α cells. 

Positive clones were selected by colony PCR and confirmed by sequencing.  

Ligation program in thermocycler: 

37°C 15 min 

20°C 15 min 

Go to 1 repeat 20x 

Hold at 14°C 

3.7.2 Protein expression 

The BL21 (DE3) E. coli strain was used as the host for protein expression. The 

recombinant plasmid was isolated and transformed into BL21 (DE3). Single colony 

was inoculated into 25 ml LB medium containing 50 μg/ml kanamycin. The bacteria 

were grown overnight at 37°C with shaking 225 rpm. 1% bacterial culture was 
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inoculated into 25 ml TB buffer (with 1x phosphate and 50 μg/ml kanamycin) and 

grown at 37°C with shaking until the OD600 reached 0.6-0.8 (approximately 3 h). 

Then the culture was splited into two cultures: 20 ml for IPTG induction and 5 ml 

for control. 1M IPTG was added at 1:1000 into 20 ml culture to induce expression. 

The two cell cultures were continued to incubate at 37°C with shaking for 4 h. 

Afterwards, 2x 500 μl aliquots from induced cell culture with IPTG and 500 μl 

aliquot from uninduced cell culture were taken and centrifuged at maximum speed 

for 30 s. Then cell pellets were kept and frozen at -80°C. Afterwards, protein 

expression and protein solubility were analyzed by sodium dodecyl sulfate 

polyacrylamide gel electrophoresis (SDS-PAGE). 

 

3.7.3 Protein purification 

The expression was scaled up to 1 L bacterial culture for purification. Bacterial 

pellet was resuspended in lysis buffer (50 mM Tris-HCl pH=7.8, 500 mM NaCl, 10 

mM imidazole) and fractionated by using Fluidizer (mechanical lysis, by high 

pressure 80 psi). After ultracentrifugation, the recombinant protein in supernatant 

was purified with Ni2+ chelate affinity chromatography which provides the very 

high affinity and selectivity for His-tags via gradient with 200 mM imidazole in lysis 

buffer. Imidazole was able to compete for the coordination sites on Ni2+ and 

displace 6xHis. SUMO protease was used to cleave the His-SUMO tag, at the 

concentration of 1:50 with regard to the recombinant protein. Dialysis (50 mM 

Tris-HCl pH 7.8, 500 mM NaCl) for removing imidazole and SUMO protease 

digestion were performed simultaneously overnight. Then the His-SUMO tag was 

separated from the protein of interest via re-Ni2+ chelate affinity chromatography. 

The flowthrough contained only the protein of interest. Gel-filtration 

chromatography (Superdex G-30) was performed to remove the remaining 

contaminations and finally the purified protein of interest was stored into PBS. All 

the steps for purification was done at 4°C. Handling the instrument like fluidizer, 

centrifuge and Äkta, were following the instructor manual modified by Dr. Achim 

Dickmanns (AG Ficner), Kolja N. Eckermann and Max S. Farnworth in the 

laboratory. 

3.7.4 Antibody generation 

Purified C-terminal polypeptide of Tc-FoxQ2 (85 amino acids) was sent to 

Eurogentec (Liège, Belgium) for speedy 28 days polyclonal antibody production in 

guinea pig. To ensure no cross-reaction between the antigen and background 

antibodies, pre-immune screening of serum from five guinea pigs were analyzed 

and the best two guinea pigs were selected for immunization programme to raise 

antibodies against Tc-FoxQ2 polypeptide. The final serum is used straight as the 

Tc-FoxQ2 antibody. For antibody staining, anti-FoxQ2 was used as the primary 
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antibody with the dilution of 1:1000 and anti-guinea pig coupled with Alexa Fluor 

555 were used as secondary antibody.  

 

3.7.5 Antibody preobsorption 

Before antibody staining, preobsorption of anti-FoxQ2 was performed for 

eliminating non-specific binding. 0-12 h embryos were used for preobsorption as 

Tc-FoxQ2 expression was not detected during that stage. The embryos were fixed 

following standard protocol and incubated in blocking buffer for 1 h. The blocking 

buffer was subsequently removed and replaced by anti-FoxQ2 diluted 1:1000 in 

blocking buffer. After incubation for 48 h at 4°C, preobsorbed anti-FoxQ2 was 

pipetted in a fresh tube and stored at 4°C. 

 

 

3.8 Generation of a Tc-foxQ2 enhancer trap line by 

CRISPR/Cas9 

3.8.1 Guide RNAs design and cloning 

The guide RNAs (gRNAs) were designed with the aid of the flyCRISPR Optimal 

Target Finder (http://tools.flycrispr.molbio.wisc.edu/targetFinder/; Gratz et al. 

2014). The TriGenes gRNA oligo design tool was used for generating the sequences 

of the oligos to order. The annealed oligos were cloned into the gRNA expression 

vector p(TcU6b-BsaI) via the BsaI restriction sites. The detailed annealing and 

ligation are following the protocol described previously (Gilles et al., 2015). 

Sequencing was performed with the T7-Minimal sequencing primer.  

 

5’         gRNA target sequence         3’ 

......GCACCG     TTCGNNNNNNNNNNNNNNNNNNN     GTTTTAGAGC...... 

......CGTGGCAAGC     NNNNNNNNNNNNNNNNNNNCAAA     ATCTCG...... 

                 3’                                 5’ 

Figure 3.1 Detailed view of the gRNA expression vector p(U6b-BsaI) cloning sites. The 

vector p(U6b-BsaI) with overhangs digested by BsaI and the gRNA target sequence 

designed with the complementary overhangs. The G is the first nucleotide of 20-nt in 

target sequence marked in purple, which is necessary for U6 promoter driving expression. 

The orange sequence represents the overhangs generated by BsaI digestion.  

 

http://tools.flycrispr.molbio.wisc.edu/targetFinder/
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3.8.2 Plasmids and cloning  

[3xP3-Tc’v-SV40; bhsp-EGFP-2A-Cre] is designed as a repair template for 

NHEJ-mediate knock-in by CRISPR/Cas9. For linearizing the plasmid, Dm-ebony 

target site (gRNA-eb) and Dm-yellow target site (gRNA-ye) were cloned into either 

side of the construct. Two different versions of repair plasmids were designed: 

 

[3xP3-Tc’v-SV40-Cre-2A-EGFP-bhsp-gRNA-eb] 

 

 

[gRNA-ye-3xP3-Tc’v-SV40-Cre-2A-EGFP-bhsp-gRNA-eb] 

 

Each fragment of the construct was amplified by PCR from plasmids available in 

the laboratory’s plasmid library by using primers with overhangs that are 

complements of two adjacent fragments. The 2A-peptide and the target sequences 

for cleavage were completely added by primers. In addition, an ApaI and a XbaI 

restriction sites were added in end primers for the following ligation. Overlap 

extension PCR was performed to assemble all fragments together. The entire 

constructs were finally cloned into pJET1.2 vector. The repair templates were made 

by master student Dominik Mühlen.  

 

The helpler plasmid p(bhsp68-Cas9) expressing Cas9 was a gift from Michalis 

Averof (Addgene plasmid # 65959). 

 

3.8.3 Guide RNAs testing 

T7 Endonuclease I assay was performed to test gRNA efficiency. Around 50 

embryos aged 2-3 h were injected with an individual gRNA expression plasmid and 

Cas9 expression plasmid for a final concentration of 400-500 ng/μl each. The 

embryos were incubated at 32°C for two days. 20 survived embryos were 

transferred into 1.5 ml tube and homogenized in 100 μl buffer (10mM Tris-HCl pH 

8.0, 25 mM NaCl, 1 mM EDTA, 0.2% Triton-X-100 and freshly add 200 μg/ml 

Proteinase K ). The embryos were incubated at 55°C for 1 h and then at 95°C for 

7-8 min. After centrifuge at 14000 rpm for 2 min at room temperature, the 

supernatant was taken as the template for the following PCR reaction. 

Primers either side of the target sequence were designed to amplify a ~1 kb region 

containing the target site by PCR (Table 7.1). After gel purification, 200 ng DNA 

mixing with 2 μl 10xNEBuffer 2 and H2O to a total of 19 μl were annealed by using 

a heating block, incubating at 98°C for 5 min and cooling slowly until to 

approximately 25°C. 1 μl T7 endonuclease I was added and incubated for 15 min at 

37°C. The reaction was stopped by adding 1.5 μl 0.25M EDTA. Then the products 

were loaded on 1.5 % agarose gel.  
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Figure 3.2 The efficiency of gRNAs tested by T7 Endonuclease I assay. gRNA-PC here is 

used as a positive control that works in Drosophila (from Hassan Mutasim Mohammed 

Ahmed ). gRNA3 targeting the first intron shows a smear and two additional cut bands but 

very weak. The size of the two bands is ~750bp and ~400bp, which is consistent with the 

expectation. White arrow indicates the additional cut bands. 

 

3.8.4 Embryonic injection  

Tc-vw strain was used for transgenesis. Embryonic injection was performed 

according to standard procedure with little modification (Berghammer et al. 1999; 

Schinko et al., 2012). The beetles were transferred from whole grain flour at 32°C 

into white flour and kept at room temperature for 1 h. The embryos were collected 

and further developed for 1 h at room temperature. Afterwards, embryos were 

washed with 1.5% bleach for 45 s followed by rinsing with tap water to get rid of 

residual flour and bleach. The embryos for injection were aged no more than 3 h at 

25°C. Before embryonic injection, all plasmids for CRISPR/Cas9 system need to be 

precipitated to remove the impurity and ensure the high enough concentration.  

 

The final concentration of p(bhsp-Cas9) and the repair plasmid is 500 ng/μl each, 

and p(U6b-target-gRNA) is 125 ng/μl each. p(U6b-gRNA-eb) and p(U6b-gRNA-ye) 

are used for linearizing the repair plasmid. Previous studies have shown that the 

used concentrations of Cas9 are range from 300 to 1000 ng/µl, and the 

concentrations of gRNA are ranging from 75 to 500 ng/µl, in which between 75 

and 150 ng/µl are the optimal injection range (Ren et al., 2014; Gilles et al., 2015). 

Therefore, I used 125 ng/µl for gRNA and 500 ng/µl for Cas9, a concentration in 

between. This would not only avoid the potentially low efficiency due to the 

insufficient injection components but also ensure an appropriate survival rate.  

 

Injected embryos were placed on apple agar plates in a sealed box at 32°C to keep 
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them under humid conditions. After three days when the first larva hatched the 

box was opened and further incubated at 32°C. Hatched larvae were collected and 

transferred as soon as possible into whole grain flour and kept at 32°C. 

 

3.8.5 Screen 

The injected animals were separated into male and female during pupal stage. 

Each animal was crossed to three Tc-vw wild type beetles of the opposite sex. The 

beetles were kept at 32°C for several weeks in whole grain flour. The G1 offspring 

were screened for black eyes. Transgenic beetle was outcrossed with Tc-vw wild 

type and kept as a new stock.  

 

3.8.6 Establish the homozygous stock by genotyping 

Genotyping based on extracting genomic DNA from wing tissue was used to 

establish the homozygous stock. Individuals were sexed after pupation and 

separately reared at 32°C until they reached adulthood and were ready for wing 

dissection. Before dissection, individual adult was placed in a 1.5 ml tube and kept 

on the ice for low temperature paralysis for 1 min. Then the adult beetle was 

transferred to glass dish and held belly up with one forceps. The tip of other 

forceps was carefully inserted at the posterior region between the right elytron 

and the abdomen to slightly lift the elytron from the abdomen and expose the 

right wing. The wing was quickly dragged out as proximal as possible with forceps. 

The dissected wing was placed in a 200 μl tube and kept on ice for the moment 

and the adult beetle was returned to the tube to recover from paralysis. The whole 

dissection process for one wing needs to be fast (no more than 30 s), finished 

before the adult beetle woke up. One wing was dissected each adult beetle. After 

the dissection, the wings were frozen at -80˚C for 20 min. Genomic DNA extraction 

from dissected wings was performed as previously described (Strobl et al., 2017), 

with slight modifications. 20 μl HOM buffer (500 μg/ml Proteinase K, 10 mM 

Tris-HCl, 1 mM EDTA, and 25 mM NaCl in double-distilled H2O) was added in each 

tube to cover the wing and a RNase-Free tip was used to physically homogenize 

the wing. The mixture was incubated at 37˚C for 1 h and then inactivated at 75˚C 

for 20 min. From this solution, 1 μl was used as a template for the PCR-based 

genotyping. Three primers were designed as a group for PCR amplification (Table 

7.1) 
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Figure 3.3 Agarose gel electrophoresis for the homozygous and heterozygous. The 

homozygous individuals would have two bands of estimated 606bp and ~7.5kb by PCR 

amplification, whereas the heterozygous individuals would have three bands of estimated 

443bp, 606bp and ~7.5kb. The estimated size of ~7.5kb was so large that I did not include 

it here. This was adequate to indentify the homozygous and heterozygous. Lane1 and 

Lane3, represent the homozygous individuals with one PCR product of 443bp. Lane2, 

represents the heterozygous individual with two PCR products of 443bp and 606bp.  

 

3.9 Image processing and documentation 

Immunohistochemistry, fluorescent in situ hybridization and DAPI staining were 

imaged using LSM510 (ZEISS). The best samples were selected and photographed 

with either the 20x or 40x objective. Z-projections were made using Fiji (Schindelin 

et al., 2012) with maximum intensity. All images were level-adjusted and 

assembled in Photoshop CS (Adobe). 
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4 Results 

 

4.1 Generation of a Tc-FoxQ2 polyclonal antibody 

4.1.1 Double fluorescent in situ hybridization leads to low 

resolution at the cellular level 

To identify Tc-foxQ2 positive NBs, Tc-asense (Tc-ase) a NB specific marker (Brand et 

al., 1993; Wheeler et al., 2003) was used. Double fluorescent in situ hybridization 

was performed. The co-expression of Tc-foxQ2 and Tc-ase was detected in the 

domain of anterior neuroectoderm (Figure 4.1A: white box). However, double in 

situ hybridization showed low cellular resolution, which led to the failure of the 

single cell identification. Although some cell might be identified with the presence 

of DAPI staining (Figure 4.1B, C: arrows), the results were still not convincing. 

Therefore, an antibody against Tc-FoxQ2 which allows significant advances 

in resolution and high quality needs to be generated.  

 

 

 
Figure 4.1 Double fluorescent in situ hybridization of Tc-foxQ2 and Tc-ase in the embryos. 

(A) Overview of Tc-foxQ2 and Tc-ase expression. The co-expression was detected in the 

domain of anterior neuroectoderm (white box). (B, C) Close-ups of the single stack slice of 

the white box in (A). The arrows indicate the cells co-expressing Tc-foxQ2 and Tc-ase with 

low resolution, which leads to the failure of the cell identification. Red: Tc-foxQ2; green: 

Tc-ase; blue: DAPI. 
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4.1.2 Expression and purification of the Tc-FoxQ2 polypeptide 

For expression of Tc-FoxQ2 polypeptides, the pET SUMO Protein Expression System 

was used. This system is well known for significantly increasing the yield of 

difficult-to-express proteins in E. coli. Small ubiquitin-like modifier (SUMO) is the 

Saccharomyces cerevisiae Smt3 protein which is an 11 kDa homolog of the 

mammalian SUMO-1 protein (Saitoh et al., 1997). The fusion of a protein to SUMO 

can increase its expression level as well as enhance the solubility of the 

recombinant protein. The tertiary structure of the SUMO protein can be 

specifically recognized and cleaved by SUMO Protease (Li and Hochstrasser, 1999; 

Mossessova and Lima, 2000). In addition, hexahistidine tag (6xHis-tag), which is 

able to bind to several types of immobilized metal ions, including nickel, cobalt and 

copper under specific buffer conditions is used for specifically detecting and 

purifying the recombinant fusion protein. 

 

To avoid the cross-reactivity with proteins with high homology and make Tc-FoxQ2 

antibody more specific, I excluded regions with high homology. Blast analyses in 

Tribolium suggested that 65 amino acids in the N-terminal and 85 amino acids in 

the C-terminal region of Tc-FoxQ2 show little homology to other proteins 

(underlined in Figure 4.2). 

 

MCSNETPANTSPRLPMPFALEGGPRALLPIDQYRLQLYQYAVAERLRYPLLNPFPTPL

TCYPLFPRALQPEEPKPQHSYIGLIAMAILSSPEGKLVLSDIYQHILDHYPYFRTRGP

GWRNSIRHNLSLNDCFIKAGRSANGKGHYWAIHPANVDDFRKGDFRRRKAQRKV

RKHMGLAVDEDGADSPSPPPLSVSPPVVPGPSTSVYHTVPARGPSRKRQFDVASLL

APDSGEDTNEEDIDVVSSDQHQETSPKQWPNMFPIVNYYQALLQARPGTTAETATD

TTDS  

Figure 4.2 Protein sequence of Tc-FoxQ2. The N-terminus containing 65 amino acids and 

the C-terminus containing 85 amino acids are underlined, which have little homology to 

other proteins in Tribolium. 

 

The C-terminus of Tc-foxQ2 (Tc-foxQ2-C) was cloned into the pET SUMO vector that 

was modified by Prof. R. Ficner lab and K. N Eckermann. After induction with IPTG, 

high level expression of protein was detected (Figure 4.3A). Next, experiments 

were conducted to assess protein solubility. The cells were fractionated and after 

centrifugation, a large amount of protein was detected in the cell supernatant, 

indicating the protein was of high solubility (Figure 4.3B, lane 2). The size of 

Tc-FoxQ2-C polypeptide (85 amino acids) is 9.35 kDa and expression of Tc-FoxQ2-C 

containing the 6xHis-SUMO increases the size by approximately 13 kDa. Therefore, 

the expected size for recombinant fusion protein is ~22 kDa. The recombinant 

fusion protein (6xHis-SUMO-Tc-FoxQ2-C) was purified with Ni2+ chelate affinity 

chromatography (Figure 4.3B, lane 4). With SUMO protease digestion, two bands 

were supposed to be detected at ~13 kDa (6xHis-SUMO) and ~9 kDa (Tc-FoxQ2-C). 
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However, the size of both were larger than expected (Figure 4.3C, lane2: red 

arrows), which may be due to the slower migration during SDS-PAGE. Afterwards, 

by using re-Ni2+ chelate affinity chromatography, Tc-FoxQ2-C passed through and 

was collected in flow through (Figure 4.3C: red rectangle). Finally gel-filtration 

chromatography was performed to remove the remaining contaminations. 

 

The N-terminal polypeptide of Tc-FoxQ2 was well expressed and was detected to 

be soluble as well. However, it had difficulties in purification, showing with very 

little amount of recombinant protein eluted by imidazole (data were not shown). 

 

 

-     +      M    1    2      3    4     M     1      2     3 

 
Figure 4.3 Comassie blue-stained SDS-PAGE gel analysis of expression and purification of 

Tc-FoxQ2-C. (A) Recombinant protein 6xHis-SUMO-Tc-FoxQ2-C expression induced by 1 

mM IPTG for 4 h at 37°C. (-) Before IPTG induction, as a negative control; (+) after IPTG 

induction. (B) Solubility analysis and purification via Ni2+ chelate affinity chromatography. 

M, marker; Lane 1, cell pellet; lane 2, supernatant; lane 3, flow through; lane 4, eluted 

fractions by ~50 mM imidazole. (C) SUMO protease digestion and re-Ni2+ chelate affinity 

chromatography. M, marker; Lane 1, before SUMO protease digestion, the estimated size 

of the recombinant protein 6xHis-SUMO-Tc-FoxQ2-C was ~22 kDa (red arrow); lane 2, 

after SUMO protease digestion, two bands were observed (red arrows), which were larger 

than expected size of ~13 kDa (6xHis-SUMO) and ~9 kDa (Tc-FoxQ2-C); lane 3, flow 

through after re-Ni2+ chelate affinity chromatography in which contained Tc-FoxQ2-C (red 

rectangle).  

 

 

Purified C-terminal polypeptide of Tc-FoxQ2 was sent to Eurogentec (Liège, 

Belgium) for speedy 28 days polyclonal antibody production in guinea pig. The final 

serum was directly used as the Tc-FoxQ2 antibody. After concentration tests, I used 

1:1000 dilution of anti-FoxQ2 as the primary antibody, and anti-guinea pig coupled 

Alexa Fluor 555 as secondary antibody for antibody staining.  

A B 
C 
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4.1.3 Specificity of the Tc-FoxQ2 antibody 

To test the specificity of Tc-FoxQ2 antibody, in situ hybridization combined with 

antibody staining was performed in the embryos. As shown in Figure 4.4, from 

young to old stages, Tc-foxQ2 RNA showed a dynamic expression pattern (Figure 

4.4A-E; Kitzmann et al., 2017), which was highly consistent with Tc-FoxQ2 protein 

expression (Figure 4.4A’-E’). Tc-foxQ2 expression was observed in two domains 

located at the anterior brain at the early stage (Figure 4.4A). Then the expression 

splitted into several domains, including non-neural expression in the labral and 

stomodeal domains (Figure 4.4C: dashed circle), as well as the expression domains 

in the neuroectoderm (Figure 4.4B-E: arrows). At late stages, the expression 

domains of Tc-foxQ2 in the neuroectoderm successively moved towards the 

midline along with morphogenetic movements of the head (Figure 4.4E: arrow; 

Kitzmann et al., 2017). A near complete overlap between Tc-foxQ2 RNA expression 

and Tc-FoxQ2 protein expression at all embryonic stages were observed (Figure 

4.4A’’-E’’), suggesting high specificity of Tc-FoxQ2 antibody. DAPI staining was used 

to visualize the brain morphology during the embryonic development (Figure 

4.4A’’’-E’’’).  

 

Tc-foxQ2 RNA     Tc-FoxQ2 protein       Merge          Merge/DAPI 

 

Figure 4.4 Overview of Tc-foxQ2 RNA expression and Tc-FoxQ2 protein expression from 

stage NS3 to NS13 in the embryos. (A-E) Tc-foxQ2 RNA shows a dynamic expression 
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pattern in the anterior median region during the embryogenesis, showing in the putative 

neuroectoderm, labrum and stomodeum. (A’-E’) Tc-FoxQ2 protein expression shows an 

identical expression pattern with Tc-foxQ2 RNA. (A’’-E’’) Merge of Tc-foxQ2 RNA and 

Tc-FoxQ2 protein. (A’’’-E’’’) Merge with nuclear staining DAPI to visualize the morphology 

of the embryo. Green: Tc-foxQ2 RNA; magenta: Tc-FoxQ2 protein; blue: DAPI.  

 

At the cellular level, Tc-FoxQ2 protein exhibited much better resolution than 

Tc-foxQ2 RNA (Figure 4.5C). Tc-foxQ2 RNA was detected throughout the cytoplasm 

(Figure 4.5B), which made it difficult to identify cell boundaries and led to 

difficulties exactly determining the number of positive cells. Tc-FoxQ2 protein was 

observed in the nuclei which were stained with DAPI (Figure 4.5E) as expected 

because Tc-FoxQ2 is a transcription factor which is able to bind to DNA. Hence, 

using Tc-FoxQ2 antibody staining allowed a convincing cell identification. 

 
 

 

Figure 4.5 Single section of Tc-foxQ2 RNA expression and Tc-FoxQ2 protein expression. (A) 

Expression of Tc-foxQ2 RNA and Tc-FoxQ2 protein in the embryo. (B-E) Close-ups of the 

white rectangle in (A). (B) Tc-foxQ2 RNA is detected throughout the cytoplasm. (C, E) 

Tc-FoxQ2 protein is detected in the nuclei. (D) Tc-foxQ2 RNA and Tc-FoxQ2 protein shows a 

complete overlap. Green: Tc-foxQ2 RNA; magenta: Tc-FoxQ2 protein; blue: DAPI.  
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4.2 Generation of a Tc-foxQ2 enhancer trap line by 

CRISPR/Cas9 

To detect Tc-foxQ2 positive cells throughout development, I generated an 

enhancer trap line in the Tc-foxQ2 locus via CRISPR/Cas9 mediated 

non-homologous end joining (NHJE). NHEJ, with the absence of the homology 

arms flanking the insertion sequence, provides a faster approach for gene knock-in. 

In NHEJ, the exogenous linear DNA can be ligated to the broken ends in random 

orientation, resulting in the introduction of insertion at the break site. Although 

NHEJ is more error prone compared to the homology directed repair (HDR) for 

knock-in, the target sites of the enhancer trap line are in the upstream region or 

the first intron of the gene, in which the precise approach is not required.  

 

I designed the guide RNAs (gRNAs) targeting the upstream region or the first intron 

of Tc-foxQ2. The choice of gRNAs is often quite limiting and sometimes the gRNAs 

will have off-target properties. I selected the most promising gRNAs with the 

prediction of none off-targets or less off-targets. To increase the probability of a 

CRISPR/Cas9 mediated double stranded break (DSB), two gRNAs were designed to 

target the upstream region, and three to the first intron (Figure 4.6). The gRNA 

target sequence was cloned into the gRNA expression vector p(U6b-BsaI) which 

contains Tribolium U6 promoter and tracrRNA sequences by BsaI restriction sites 

(Gilles et al., 2015).  

 

 

 

Figure 4.6 The genomic region of Tc-foxQ2 (Tc004761) and the location of the gRNAs 

target sites in genome. gRNA1 and gRNA2 target the upstream region. gRNA3, gRNA4 

and gRNA5 target the first intron. The genomic region and sequence of Tc-foxQ2 were 

viewed by the iBeetle genome browser 

(http://bioinf.uni-greifswald.de/gb2/gbrowse/tcas5/).  

 

 

The repair template was a multicistronic transgene which consisted of the 

enhanced green fluorescent protein EGFP and Cre recombinase linked by the 2A 

peptide under the control of the basal heat shock promoter. 2A peptide was 

self-cleaving, which was used to express multiple proteins from a single 

http://bioinf.uni-greifswald.de/gb2/gbrowse/tcas5/
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transcription unit through the cleavage of itself (Szymczak-Workman et al., 2012). 

The Cre recombinase allowed for the future use of the Cre/loxP system. This heat 

shock core promoter Tc-hsp68 was non-heat shock responsive and it did not drive 

the expression on its own but was able to be activated by the combination with 

enhancers (Schinko et al., 2012; Schinko et al., 2010). In addition, the repair 

template also contained the marker Tc-vermillionwhite (Tc-vw), which was driven by 

an eye-specific promoter 3xP3 and rescued the eye color in transgenic individuals 

within the Tc-vw strain (white eyes switched to black eyes) (Berghammer et al., 

1999; Lorenzen et al., 2002).  

 

For the NHEJ-mediated knock-in, the repair plasmid had to be linearized. To avoid 

targeting of the endogenous genes at the same time, Drosophila target sequences 

Dm-ebony and Dm-yellow were chosen and cloned into the plasmid. The 

Drosophila target sequences selected were supposed to possess efficient targets of 

gRNAs so that the plasmid was linearized with a high probability (Ren et al., 2014). 

Furthermore, the Drosophila target sequences were also checked for homologous 

sequences in Tribolium to exclude endogenous gene targeting. Two different 

versions of the repair plasmids were designed. Both had a Dm-ebony target site 

(gRNA-eb) at the 5’ end of the heat shock promoter, whereas one had an 

additional Dm-yellow target site (gRNA-ye) at the 3’ end of the 3xP3 promoter 

(Figure 4.7A, B). The repair plasmid would be opened by the gRNA targeting 

sequence in itself. If the repair plasmid had both gRNA-eb and gRNA-ye target sites, 

it would be excised from the plasmid without backbone. If the repair plasmid only 

had gRNA-eb target site, it would be just linearized and inserted with backbone. 

 

 
 

 

 

 

Figure 4.7 The scheme of the repair templates. (A) The repair template with Dm-ebony 

gRNA target site. (B) The repair template with both Dm-ebony and Dm-yellow gRNA target 

site. The basal heat shock promoter drives expression of EGFP and Cre which are 
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connected by 2A-peptide. Tc-vw is a marker gene under the control of the 3xP3 promoter, 

followed by Sv40 which serves as polyadenylation signal.  

 

I injected all gRNAs targeting the same region (the upstream region or the first 

intron) together with the repair plasmid, Cas9 expression plasmid and the gRNAs 

for linearizing the repair plasmid. As two repair plasmids were designed and two 

regions were targeted, four injection combinations were performed (Table 4.1). 

The final concentration of p(bhsp-Cas9) and the repair plasmid is 500 ng/μl each, 

and p(U6b-target-gRNA) is 125 ng/μl each. For each combination, 1000 to 1600 

embryos were injected to ensure the high number of survival animals. Developed 

pupae were separated into males and females and cross each with three Tc-vw 

wild type pupae of opposite sex and G1 animals were screened for black eyes.  

 

Table 4.1 Components of the injection mix and concentrations for CRISPR/Cas9.  

Upstream Intron1 Upstream Intron1 
Final 

concentration 

p(bhsp-Cas9) p(bhsp-Cas9) p(bhsp-Cas9) p(bhsp-Cas9) 
 

500 ng/μl 

each Repair plasmid 

with eb target site 

Repair plasmid 

with eb target site 

Repair plasmid with 

eb and ye target site 

Repair plasmid with 

eb and ye target site 

p(U6b-gRNA-eb) p(U6b-gRNA-eb) 
p(U6b-gRNA-eb)  

p(U6b-gRNA-ye) 

p(U6b-gRNA-eb) 

p(U6b-gRNA-ye) 

 

 

 

125 ng/μl 

each 
p(U6b-gRNA1) p(U6b-gRNA3) p(U6b-gRNA1) p(U6b-gRNA3) 

p(U6b-gRNA2) p(U6b-gRNA4) p(U6b-gRNA2) p(U6b-gRNA4) 

 p(U6b-gRNA5)  p(U6b-gRNA5) 

 

 

As shown in Table 4.2, the hatching rate of the injected embryos was more than 30% 

and the survival rate ranged from 14.14% to 21.88%. The hatching rate of the 

repair plasmid without backbone was higher (42.85%, 40.86%) than that of the 

repair plasmid with backbone (31.99%, 32.67%). The adult survival rate showed 

the consistent results. Interestingly, the survival rate of the upstream treatment 

which contained two gRNAs was higher than the first intron treatment with three 

gRNAs. Finally, I got nine positive transgenic lines from the repair plasmid with 

backbone treatment, in which six lines from the upstream and three from the first 

intron. The efficiency of germ line transmission was therefore 2.6% and 1.3%, 

respectively. However, I did not get any positive transgenic individuals from the 

repair plasmid without backbone treatment, neither the upstream nor the first 

intron. 
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     Table 4.2 The number of the injected embryos, the hatched larvae and developed adult 

beetles as well as the efficiency of germ line transmission.  

Knock-in 

repair 

plasmid 

Target 

region 

Injected 

embryos 

Hatched 

larvae 

Hatching 

rate[%] 

Developed 

adults 

Survival 

rate [%] 

Efficiency 

[%] 

With 

backbone 

Upstream 1496 479 31.99 234 15.64 6/234=2.6 

Intron1 1619 529 32.67 229 14.14 3/229=1.3 

Without 

backbone 

Upstream 1097 470 42.85 240 21.88 ---- 

Intron1 1303   532 40.86 251 19.26 ---- 

 

The nine transgenic lines were analyzed for EGFP expression. First, I checked the 

green fluorescence of the washed embryos from these lines under the 

fluorescence microscope. The three transgenic lines of the first intron showed little 

EGFP expression in anterior median head, which was not consistent with Tc-FoxQ2 

expression. Among the six transgenic lines of the upstream region, only one line 

No.86 showed EGFP expression quite similar to Tc-FoxQ2 expression, the others 

exhibited either no EGFP expression or the EGFP expression in the unexpected 

parts of the body (Table 4.3). The multiply different patterns could be owing to the 

different orientation of the insertion or off-target effects. Further, since two gRNAs 

together were used to target the upstream region, this could lead to several 

possibilities, e.g. the insertion was in either gRNA1 or gRNA2, both gRNAs worked 

and the entire part between them was deleted. All these possibilities could 

probably lead to the different patterns. As I aimed at a functional Tc-foxQ2 line, I 

did not follow up these possibilities. Then antibody staining was performed in the 

embryos of the line 86up to compare EGFP expression and Tc-FoxQ2 endogenous 

expression. As expected, the expression of EGFP was very highly overlapping with 

Tc-FoxQ2 (Figure 4.8). Data were just shown the stage NS3 (A-A’’’) and NS5 (B-B’’’) 

here. More detailed descriptions of this line see section 4.4. The remaining CRISPR 

lines were not identified and described in this thesis due to the unexpected EGFP 

expression. 
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Table 4.3 The initial analysis for the EGFP expression of the transgenic lines. 

No. marks individual surviving G0 animals. 

Intron1 

No. 
EGFP expression 

109 Little EGFP expression in anterior 

median head 
125 

144 

  

 

Upstream 

No. 
EGFP expression 

86 
In anterior median head, 

quite similar to Tc-FoxQ2 

129 In the brain and trunk, not specific 

150 In the brain and trunk, not specific 

165 No EGFP signal 

178 In the part of brain and trunk 

214 In the posterior of abdomen 

 

 

       Tc-FoxQ2           EGFP           Merge         Merge/DAPI 

 

Figure 4.8 The expression of Tc-FoxQ2 and EGFP in line 86up. The expression of Tc-FoxQ2 

and EGFP are largely overlapping at stage NS3 (A-A’’’) and NS5 (B-B’’’). Nuclei staining with 

DAPI is for visualizing the morphology of the embryonic brain. Green: EGFP; magenta: 

Tc-FoxQ2 protein; blue: DAPI. 
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To test whether the insertion was as expected in the 86up line, sequencing was 

performed. I wanted to test which gRNA (gRNA1 or gRNA2) worked and what the 

orientation of the insertion was. Two primers in the adjacent genome (AG) and 

one primer in EGFP were designed (Figure 4.10, yellow arrows). All the possibilities 

of PCR results were shown in Table 4.4. PCR results showed the distinct bands of 

approximately 520bp (Figure 4.9 lane1, 2: red arrowhead) and 1170bp (Figure 4.9 

lane3, 4: red arrow). However, only one could be correct. The former indicated the 

EGFP oriented the same direction as Tc-FoxQ2 while the latter indicated the 

opposite direction. Other unspecific bands were not taken into consideration here. 

Sequencing results revealed that the band of 1170bp had the expected sequence 

while the 520bp band had an unrelated sequence. The repair plasmid was inserted 

as expected in the gRNA1 target site and EGFP on the repair plasmid was 

transcribed in opposite direction to the Tc-FoxQ2. The following scheme gave an 

overview about the repair plasmid insertion of the 86up line (Figure 4.10A). The 

sequences at the insertion site were shown in Figure 4.10B. To establish a 

homozygous line, I used genotyping based on extracting genomic DNA from wing 

tissue. This approach allowed dissecting wing tissue without affecting survival and 

fertility of adult beetles (Strobl et al., 2017).  

 

 

Table 4.4 The insertion sites and the possibilities of  

amplificated loci by PCR. 

Insertion 

site 

Primer combination 

AG_fwd 

EGFP_rev 

AG _rev 

EGFP_rev 

gRNA1 520bp 1170bp 

gRNA2 1140bp 560bp 

 

 

 

           M       1       2        3        4 

 

Figure 4.9 PCR analysis of the 86up line for the insertion site. Lane1 and Lane2: PCR 
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product amplified with primers: AG_fwd and EGFP_rev. Lane3 and Lane4: PCR product 

amplified with primers: AG_rev and EGFP_rev. Red arrowhead: the potentially positive 

bands with the size of 520bp. Red arrow: the potentially positive band with the size of 

1170bp. Sequencing results revealed that the band of 1170bp had the expected sequence. 

 

A 

 

 
 

B 

5’---AAACTGTATATGGGCGTTACTGTCACCCGGCGGGCTGCCCGGTTCGGGCCCGA---TGAAACGCCAGGATCCAGGAACACAA---3’  

 

5’---TATATGGGCGTTACTGTCACCGCATCGCATATGGGCTGCCCGGTTCGGGCCCGA---TGAAACGCCATTGTGTCCAGGAACAC---3’ 

 

Figure 4.10 An overview of the insertion in genome and the alignment of the insertion. 

(A) The repair plasmid is inserted in gRNA1 target site and EGFP is oriented in the opposite 

direction to the Tc-FoxQ2. The repair plasmid is linearized at the gRNA-eb target site, which 

makes it bear the backbone. The yellow arrows indicate the approximately location of the 

primers. The space between the blue lines is 100bp. (B) The upper row is the sequence of a 

perfect insertion without any indels. The lower row is the actual sequencing results of the 

86up line. The PAM is highlighted in red and the gRNA target sequence is underlined. The 

purple bases represent the gRNA1 target sequence and the brown bases represent the 

gRNA-eb target sequence. The grey indicates the insertion with the size of ~7kb. The 

mutations are marked in green. The CRISPR/Cas9 mediated double stranded break occurs 

at the DNA 3bp upstream of the PAM as predicted. Just small insertion mutations were 

detectable as seen in the alignment.  

gRNA1 target sequence: 5’ GGGCGTTACTGTCACCCTCCAGG 3’. 

gRNA-eb target sequence: 5’ CCAGGAGGCGGGCTGCCCGGTTC 3’ 
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4.3 Generation of Tc-FoxQ2+ neuroblasts during 

embryogenesis 

 

4.3.1 Morphological overview of brain development in the 

embryo 

In Tribolium, a morphological staging system has been established with respect to 

early neurogenesis. This morphological staging system has 15 stages, termed NS1 

to NS15 (Biffar, 2013). In this thesis, I followed this morphological staging system as 

a reference for the corresponding developmental stages. To visualize the overview 

of the morphological brain development in the embryo, nuclei were stained with 

DAPI. I chose those developmental stages which showed the obviously 

morphological changes of the brain.  

 

Stage NS4 was the earliest stage when the brain neurogenesis occurred. At this 

stage, the expression of Tc-ase was first detected (data not shown), indicating NBs 

were delaminating from the neuroectoderm. This was consistent with what 

previous observations (Biffar, 2013). During stage NS3 to NS7, the brain was shown 

with the very thin tissue of a flat sheet of cells and NBs continuously delaminated 

(Figure 4.11A-C). Until stage NS7 the labral buds (Figure 4.11C: red arrow) and 

stomodeal buds (Figure 4.11C: red arrowhead) had formed. At stage NS11, the 

brain became thicker with the increasing number of the cells (Figure 4.11D). Later, 

the shape of the brain became oval, starting to bend towards dorsal at NS13 

(Figure 4.11E). At stage NS14, the globular brain hemispheres formed and 

approached each other at the dorsal midline (Figure 4.11F). At stage NS15, the 

latest stage of the embryogenesis, the brain hemisphere approached more closely 

each other and increased in size and thickness, showing a pear-like shape (Figure 

4.11G). I concluded that the transformation of the simple sheet‐like early 

embryonic brain into the highly differentiated late embryonic brain involved a 

series of morphogenetic movements that occurred in virtually all parts of the 

brain. 
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Figure 4.11 Overview of the morphological brain development from NS3 to NS15 during 

embryogenesis and staining of Tc-ase-RNA exonic probe and intronic probe. (A, B) At 

stage NS3 and NS5, the brain shows a flat sheet of cells. (C) At stage NS7, the labral and 

stomodeal buds have been formed (red arrow, red arrowhead). (D) At stage NS11, the 

brain gets thicker with the increasing number of the cells. (E, F) At stage NS13 and NS14, 

the shape of the brain becomes oval along with the increase in size and thickness. (G) At 

stage NS15, the brain hemisphere shows a pear-like shape. All planes are dorsal view. (H) 

The staining of Tc-ase-RNA exonic probe, showing the marked cytoplasm. (I) The staining 

of Tc-ase-RNA intronic probe, showing the marked nuclei. 

 

 

4.3.2 Identification of Tc-FoxQ2+ neuroblasts in the embryonic 

brain 

To identify Tc-FoxQ2+ NBs, I performed Tc-FoxQ2 antibody staining and Tc-ase in 

situ hybridization. The Tc-ase-RNA exonic probe marked the cytoplasm, which 

made it difficult to see the border between cells (Figure 4.11H). I therefore used a 

Tc-ase-RNA intronic probe, which marked only nuclei, in order to get better 

resolution (Figure 4.11I). In addition, NBs could be morphologically distinguished 

by the large size of their nuclei, their round shape and position (below the 

peripheral neuroectoderm).  

 

The earliest delaminated NBs were detected at stage NS4. However, I did not 

detect any NBs expressing Tc-FoxQ2 (data not shown). At stage NS8, the number of 

Tc-ase-RNA exon  H Tc-ase-RNA intron  I 

 

A B C 

D E F 

G 
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the NBs increased, showing that more NBs had delaminated. At that stage, ~15 

Tc-FoxQ2+ NBs per hemisphere were observed and divided into two groups: a large 

group of ~12 FoxQ2+ NBs in the anterior (n=6; Figure 4.12A’’: blue, green and 

orange) and a smaller group of 3 Tc-FoxQ2+ NBs close to the basis of the labrum 

(n=6; Figure 4.12A’’: grey). By stage NS11, the number of the Tc-FoxQ2+ NBs in the 

anterior group decreased to 8 to 11 (n=6; Figure 4.12B’’: blue, green and orange) 

and only one Tc-FoxQ2+ NBs was detected at the posterior of the labrum (n=6; 

Figure 4.12B’’: grey). At the late stage NS14, there were just 5 to 7 Tc-FoxQ2+ NBs 

that were scattered and had incompact arrangement in the anterior region (n=6; 

Figure 4.12C’’: blue and orange). At stage NS15, the dynamic morphogenetic 

movement of the brain and much more cells made it difficult to identify the 

Tc-FoxQ2+ NBs. The raw counts of the Tc-FoxQ2+ NBs were displayed in Table 7.4. 

Based on this molecular marker analysis, I identified ~15 Tc-FoxQ2+ NBs at stage 

NS8, 9 to 12 Tc-FoxQ2+ NBs at stage NS11 and 5 to 7 Tc-FoxQ2+ NBs at stage NS14. I 

concluded that the number of FoxQ2+ NBs decreased during embryogenesis. 
 

In Drosophila, the brain is divided into the protocerebrum (PC), deutocerebrum 

(DC) and tritocerebrum (TC). And within the protocerebrum, NBs are subdivide 

into an anterior (Pa), central (Pc) and posterior (Pp) group (Younossi-Hartenstein et 

al., 1996). By using this as a reference, I could say that both groups of Tc-FoxQ2+ 

NBs were in protocerebrum anterior (Pa) region. From stage NS8 to NS11, the 

spatial arrangement of Tc-FoxQ2+ NBs did not change much except for the number. 

Two Tc-FoxQ2+ NBs were able to be followed over time (Figure 4.12A’’, B’’: green 

and orange) due to their position relatively distant from other FoxQ2+ NBs that 

were arranged closely in the anterior group. In order to easily describe in the 

following, I named the two Tc-FoxQ2+ NBs anterior-posteroventral (A-PV) (Figure 

4.12A’’, B’’: green) and anterior-posterodorsal (A-PD) (Figure 4.12A’’, B’’: orange), 

respectively. The A-PD Tc-FoxQ2+ NB moved toward to anterior-dorsal region, while 

the A-PV FoxQ2+ NB approached other anterior Tc-FoxQ2+ NBs from stage NS8 to 

NS11. At stage NS14 when the brain morphology had changed much, the A-PD 

Tc-FoxQ2+ NB could be still identified due to its position (Figure 4.12C’’: orange). 

However, it was difficult to determine the A-PV Tc-FoxQ2+ NB because of the 

declined number of Tc-FoxQ2+ NBs and the altered spatial arrangement (Figure 

4.12C’’: blue). In addition, two Tc-FoxQ2+ NBs which derived from the anterior 

group were located close to the midline at stage NS14, thus I called them Tc-FoxQ2 

anteromedian (FAM) NBs: FAM1 NB and FAM2 NB, respectively (Figure 4.12C’’: red 

circle). 
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Tc-FoxQ2/Tc-ase /DAPI 
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Figure 4.12 Tc-FoxQ2+ NBs pattern during embryogenesis. (A-C) Each stage shows 

multiple focal planes from dorsal to ventral views of the hemisphere to clearly visualize 

each Tc-FoxQ2+ NBs. (A) ~15 Tc-FoxQ2+ NBs are identified at stage NS8. (B) ~10 Tc-FoxQ2+ 

NBs are identified at stage NS11. (C) ~5 Tc-FoxQ2+ NBs are identified at stage NS14. Arrows 

indicate the identified Tc-FoxQ2+ NBs. (A’-C’) Overview of the all planes of the brain 

hemisphere. Magenta: Tc-FoxQ2 antibody; green: Tc-ase-RNA intronic probe; blue: DAPI. 

(A’’-C’’) Summary of Tc-FoxQ2+ NBs formation. Blue: the anterior Tc-FoxQ2+ NBs; green: 

the A-PV Tc-FoxQ2+ NB; orange: the A-PD Tc-FoxQ2+ NB; grey: the Tc-FoxQ2+ NBs at the 

basis of the labrum; red circle: the FAM1 NB and FAM2 NB. Lr: labrum; Sto: stomodeum; 

Oc: ocular; Ic:  intercalary; Ant: antenna. The dashed box (black or white) represents the 

anterior region of the brain hemisphere where most Tc-FoxQ2+ NBs are located. The 

dashed circle (yellow) represents the basal domain of the labrum.  

 

 

4.3.3 Candidate genes for Tc-FoxQ2+ neuroblasts identity 

specification 

 

In insects, the head epidermis and the brain derive from the same early 

neuroectodermal precursor cells. Hence, the genes identified to pattern the head 

are most likely also involved in brain patterning. The identity of the NB is specified 

by the combination of several regulators (Bossing et al., 1996; Schmid et al., 1999; 

Urbach and Technau, 2003). The genes that probably specify NB identity are critical 

for describing the characteristics of each NB.  

 

Therefore, I wondered what transcription factors possibly specified the Tc-FoxQ2+ 

NBs. Here I selected candidate genes which were known to be expressed in 

anterior head or even to play an important role in head development (Posnien et 

al., 2011b; Kitzmann et al., 2017). Of those, I tested the genes that showed 

co-expression with Tc-FoxQ2 in neurogenic region. I performed Tc-FoxQ2 antibody 

staining in combination with in situ hybridization of individual transcription factors 

and nuclei marker DAPI in the embryos (n=6). From stage NS14 onwards, I was 

unable to test the Tc-FoxQ2+ NBs for expression with other transcription factors. 

During late stages of the embryonic development, the dynamic morphogenetic 

movement of the brain and the large number of differentiating cells made it more 

difficult to determine and identify individual cells with in situ hybridization. I 

therefore restricted the analysis of Tc-FoxQ2+ NBs with other transcription factors 

to the certain stages (NS8-NS11) of embryogenesis. 

 

Tc-six3, a transcription factor which belongs to sine oculis homeobox transcription 

factor family, is a major regulator of the anterior median head and known to be 

https://www.sciencedirect.com/science/article/pii/S0092867401004652#BIB1
http://dev.biologists.org/content/143/3/411#ref-48
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required for the embryonic formation of the central complex in Tribolium (Posnien 

et al., 2011b). The ortholog in Drosophila is optix which has functions in eye 

development. Ectopic expression of optix results in ectopic eyes formation 

(Seimiya and Gehring, 2000). In Tribolium, a previous study showed that the 

expression of Tc-foxQ2 and Tc-six3 were largely overlapping in the anterior median 

region from early stages on and they were co-expressed in the labrum and the 

anterior portion of the protocerebrum at later stages (Kitzmann et al., 2017). At 

stage NS8, the earliest stage when Tc-FoxQ2+ NBs had delaminated, Tc-six3 mRNA 

was detected to cover the complete Tc-FoxQ2 expression domains, indicating 

Tc-six3 was expressed in all FoxQ2+ NBs (Figure 4.13A, A’). At later stage NS11, 

though the location of the A-PD Tc-FoxQ2+ NB had changed a bit, moving toward to 

anterior-dorsal side, Tc-six3 expression domain remained constant and was 

detectable in all Tc-FoxQ2+ NBs (Figure 4.14A, A’). Therefore, from stage NS8 to 

NS11, all Tc-FoxQ2+ NBs were Tc-six3 positive.  

 

Tc-six4 is a Six family homeodomain transcription factor. It has been identified as a 

marker for the insect head placode and also gives rise to neural cells (Posnien et al., 

2011a). In Drosophila, six4 is required for the proper development of the cells 

deriving from the mesoderm, including fat body, gonad and muscles (Clark et al., 

2006). In Tribolium, there was no overlap of Tc-six4 and Tc-foxQ2 at early stages. 

Co-expression started from mid embryonic stage when Tc-six4 was partially 

overlapping with Tc-foxQ2 expression domain within the neurogenic region 

(Kitzmann et al., 2017). At stage NS8, Tc-six4 expression almost completely covered 

the Tc-FoxQ2 expression region and was detected in all Tc-FoxQ2+ NBs except the 

A-PD Tc-FoxQ2+ NB (Figure 4.13B, B’). At stage NS11, the Tc-six4 expression domain 

had not changed, showing the expression in Tc-FoxQ2+ NBs except for the A-PD 

Tc-FoxQ2+ NB (Figure 4.14B, B’).  

 

Tc-chx is a transcription factor that is expressed in the anterior median head and 

marks the pars intercerebralis (PI) which is a part of neuroendocrine system 

(Posnien et al., 2011b; Kitzmann et al., 2017). In Tribolium it has been proven that 

Tc-chx is involved in the central body formation (Koniszewski, 2011). Two 

homologues Vsx1 and Vsx2 in Drosophlia are identified, which are required for 

optic lobe development (Erclik et al., 2008). Further, in Drosophlia Vsx is also 

shown to be expressed in the PI, the region where the CX derives from (Boyan and 

Williams, 1997; De Velassco et al., 2007). In Tribolium, at early stages there was a 

little overlap of Tc-chx and Tc-foxQ2 in the posterior portion of the labrum. Later, 

an additional co-expression appeared in the neurogenic region (Kitzmann et al., 

2017). At stage NS8, the expression of Tc-chx showed no overlap with Tc-FoxQ2 

and seemed mutually exclusive (Figure 4.13C, C’). I did not observe any Tc-FoxQ2+ 

NB expressing Tc-chx. However, during the course of development, Tc-chx 

expression domain was dynamic and additional expression emerged, which led to 

co-expression with Tc-FoxQ2. Apart from the A-PD Tc-FoxQ2+ NB, all Tc-FoxQ2+ NBs 

were Tc-chx positive at stage NS11 (Figure 4.14C, C’). Noticeably there was only 
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weak expression of Tc-chx in Tc-FoxQ2+ NBs. 

 

Tc-retinal homeobox (Tc-rx) which encodes for a transcription factor containing a 

paired-like homeodomain plays a role in labrum formation and neuroectodermal 

development in Tribolium (Koniszewski, 2011; Posnien et al., 2011b). The rx gene is 

well conserved from fly to human (Mathers et al., 1997, Eggert et al., 

1998;  Walldorf et al., 2000, D'Aniello et al., 2011). In vertebrates, Rx is essential 

for brain and eye development (Mathers et al., 1997; Bailey et al., 2004). The 

homologue of rx in Drosophila is required for brain and clypeus development but 

not essential for eye formation (Davis et al., 2003). Recently the studies have 

shown that rx is expressed in the MB NBs and controls the cell proliferation and 

growth of the MB NBs, and is required for the MB development (Kunz et al., 2012; 

Kraft et al., 2016). In Tribolium, the expression of Tc-rx and Tc-foxQ2 was little 

overlapping in the neuroectoderm at early stages and then additional 

co-expression in the labrum appeared (Kitzmann et al., 2017). From stage NS8 to 

NS11, Tc-rx expression was detected only in the A-PD Tc-FoxQ2+ NB (Figure 4.13D, 

D’; Figure 4.14D, D’). 

 

Tc-eyeless (Tc-ey) is a transcription factor that is involved in anterior median head 

patterning in Tribolium (Posnien et al., 2011b). It also shows the expression in 

anteriormost tissue, which contributes to the putative mushroom body (MB) 

(Posnien et al., 2011b). In Drosophila, ey is known to be expressed in the MB NBs 

in the embryo and involved in the appropriate development of the MBs (Kurusu et 

al., 2000, Noveen et al., 2000; Kunz et al., 2012). In Tribolium, the expression of 

Tc-ey started in a prominent ocular region and then an additional anterior median 

expression arised (Posnien et al., 2011b). At stage NS8 only A-PD Tc-FoxQ2+ NB was 

observed to express Tc-ey (Figure 4.13E, E’). At stage NS11, in addition to A-PD 

Tc-FoxQ2+ NB, Tc-ey was also detected in the A-PV Tc-FoxQ2+ NB (Figure 4.14E, E’). 

 

Fez is a zinc-finger gene which encodes a transcriptional repressor (Hashimoto et 

al., 2000; Hirata et al., 2006). It has been reported that Tc-fez1 is involved in insect 

head epidermis patterning (Posnien et al., 2011b). Tc-fez1 was expressed in ocular 

and small region of the anterior neuroectoderm (Posnien et al., 2011b). Tc-fez1 

was detected in A-PV and A-PD Tc-FoxQ2+ NBs at stage NS8 (Figure 4.13F, F’). Later, 

the expression domain of Tc-fez1 expanded. In addition to A-PV and A-PD 

Tc-FoxQ2+ NBs, one more FoxQ2+ NB was observed to express Tc-fez1 (Figure 4.14F, 

F’).  

 

Tc-scarecrow (Tc-scro/nk2.1) is a transcription factor of homeobox family with roles 

in labrum and stomodeum development in Tribolium (Kittelmann, 2012; 

Kittelmann et al., 2013; Posnien et al., 2011b). The homologue in Drosophila is a 

member of NK-2 homeobox gene family, which is expressed in the 

procephalic NBs that generate the neurons in the brain (Zaffran et al., 2000). In 

Tribolium, the co-expression of Tc-scro and Tc-foxQ2 showed in the lateral portion 
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of labrum, the stomodeum and additionally small region of the anterior 

neuroectoderm (Kitzmann et al., 2017). At stage NS8, Tc-scro expression was 

observed only in the A-PD Tc-FoxQ2+ NB (Figure 4.13G, G’). With development, the 

original Tc-scro expression domain in neurogenic region moved towards to the 

anterior, which skipped the A-PD Tc-FoxQ2+ NB. And an additionally small Tc-scro 

expression domain appeared, covering the A-PV Tc-FoxQ2+ NB and the neighbor 

Tc-FoxQ2+ NB (Figure 4.14G, G’). Furthermore, Tc-scro expression was always 

detected in the Tc-FoxQ2+ NBs in the basal domain of the labrum (Figure 4.13G’’, 

G’’’: dashed yellow circle; Figure 4.14G’’, G’’’: dashed yellow circle). 

 

In summary, at stage NS8, all Tc-FoxQ2+ NBs were Tc-six3 positive (Figure 4.13A, A’). 

Tc-six4 expression was detected in all Tc-FoxQ2+ NBs except the A-PD Tc-FoxQ2+ NB 

(Figure 4.13B, B’). By contrast, the expression of Tc-rx and Tc-ey were detected only 

in the A-PD Tc-FoxQ2+ NB, and Tc-fez1 was detected in the A-PV and A-PD 

Tc-FoxQ2+ NBs (Figure 4.13D, D’, E, E’, F, F’). However, I did not observe any 

Tc-FoxQ2+ NBs expressing Tc-chx at this stage (Figure 4.13C, C’). Furthermore, 

Tc-scro expression was observed in the A-PD Tc-FoxQ2+ NB and the Tc-FoxQ2+ NBs 

in the basal domain of the labrum (Figure 4.13G-G’’’). At the later stage NS11, 

Tc-six3, Tc-six4 and Tc-rx expression domain remained constant while Tc-chx, Tc-ey, 

Tc-fez1 and Tc-scro showed the dynamic expression pattern. Though the number of 

the Tc-FoxQ2+ NBs was less at stage NS11 than that of stage NS8, all of them were 

Tc-six3 positive (Figure 4.14A, A’). And all the Tc-FoxQ2+ NBs except the A-PD 

Tc-FoxQ2+ NBs remained Tc-six4 positive (Figure 4.14B, B’). Tc-rx was still detected 

only in the A-PD Tc-FoxQ2+ NB (Figure 4.14D, D’). Compared to stage NS8, 

transcription factors Tc-chx, Tc-ey, Tc-fez1 and Tc-scro were expressed in more 

Tc-FoxQ2+ NBs at stage NS11. None of the Tc-FoxQ2+ NBs were Tc-chx positive at 

NS8 (Figure 4.13C, C’), whereas only the A-PD Tc-FoxQ2+ NB was not Tc-chx 

positive and the weak Tc-chx expression was detectable in other Tc-FoxQ2+ NBs at 

NS11 (Figure 4.14C, C’). Tc-ey was not only expressed in the A-PD Tc-FoxQ2+ NBs 

but also in the A-PV Tc-FoxQ2+ NB (Figure 4.14E, E’). In addition to the A-PD and 

A-PD Tc-FoxQ2+ NBs, one more Tc-FoxQ2+ NB was observed to express Tc-fez1 

(Figure 4.14F, F’). I did not observe the A-PD Tc-FoxQ2+ NB expressing Tc-scro 

anymore but Tc-scro expression was detected in the A-PV Tc-FoxQ2+ NB and its 

neighbor Tc-FoxQ2+ NB as well as the Tc-FoxQ2+ NBs in the basal domain of the 

labrum (Figure 4.14G-G’’’). In addition, the expression of other transcription 

factors was not detectable in the Tc-FoxQ2+ NBs in the basal domain of the labrum 

except Tc-scro. 

 

Taken together, the number of the Tc-FoxQ2+ NBs decreased during embryogenesis. 

Tc-FoxQ2+ NBs were specified by a unique combination of the transcription factors. 

The later stage the more transcription factors were observed to express in the 

Tc-FoxQ2+ NBs.  
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NS8    Tc-FoxQ2/TFs/DAPI                 Tc-FoxQ2/TFs/DAPI 

 

Figure 4.13 Tc-FoxQ2+ NBs express transcription factors at stage NS8. (A) Co-expression of 

Tc-six3 and Tc-FoxQ2. All Tc-FoxQ2+ NBs are Tc-six3 positive. (B) Co-expression of Tc-six4 

and Tc-FoxQ2. Tc-six4 is not expressed in the A-PD Tc-FoxQ2+ NB. (C) Tc-chx and Tc-FoxQ2 

shows mutually exclusive expression. (D) Co-expression of Tc-rx and Tc-FoxQ2. Only the 

A-PD Tc-FoxQ2+ NB is Tc-rx positive. (E) Co-expression of Tc-ey and Tc-FoxQ2. Only the A-PD 

Tc-FoxQ2+ NB shows the expression of Tc-ey. (F) Co-expression of Tc-fez1 and Tc-FoxQ2. 
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The A-PV and A-PD Tc-FoxQ2+ NBs are Tc-fez1 positive. (G, G’’) Co-expression of Tc-srco 

and Tc-FoxQ2. The A-PD Tc-FoxQ2+ NB and the Tc-FoxQ2+ NBs in basal domain of the 

labrum are Tc-srco positive. (A’-G’, G’’’) DAPI staining visualizes the Tc-FoxQ2 expression in 

the nuclei. Red: Tc-FoxQ2 antibody; cyan: the transcription factors; blue: DAPI. (H) 

Summary of the transcription factors expression in the Tc-FoxQ2+ NBs at stage NS8. The 

dashed box (black) represents the anterior region (A-G) and (A’-G’). The dashed circle 

(yellow) represents the basal domain of the labrum (G’’, G’’’).  

 

NS11    Tc-FoxQ2/TFs/DAPI                  Tc-FoxQ2/TFs/DAPI 
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Figure 4.14 Tc-FoxQ2+ NBs express transcription factors at stage NS11. (A) Co-expression 

of Tc-six3 and Tc-FoxQ2. All Tc-FoxQ2+ NBs show the expression of Tc-six3. (B) 

Co-expression of Tc-six4 and Tc-FoxQ2. Tc-six4 is not expressed in the A-PD Tc-FoxQ2+ NB. 

(C) Co-expression of Tc-chx and Tc-FoxQ2. The A-PD Tc-FoxQ2+ NB is Tc-chx negative while 

other Tc-FoxQ2+ NBs show weak Tc-chx expression. (D) Co-expression of Tc-rx and Tc-FoxQ2. 

Only the A-PD Tc-FoxQ2+ NB shows Tc-rx expression. (E) Co-expression of Tc-ey and 

Tc-FoxQ2. The A-PV and A-PD Tc-FoxQ2+ NB are Tc-ey positive. (F) Co-expression of Tc-fez1 

and Tc-FoxQ2. In addition to the A-PV and A-PD Tc-FoxQ2+ NBs, one more FoxQ2+ NB 

shows expression of Tc-fez1. (G, G’’) Co-expression of Tc-srco and Tc-FoxQ2. The A-PV 

Tc-FoxQ2+ NB and the neighbor Tc-FoxQ2+ NB show the expression of Tc-srco, and the 

Tc-FoxQ2+ NBs in basal domain of the labrum remain Tc-srco positive. (A’-G’, G’’’) DAPI 

staining visualizes the Tc-FoxQ2 expression in the nuclei. Red: Tc-FoxQ2 antibody; cyan: the 

transcription factors; blue: DAPI. (H) Summary of the transcription factors expression in 

the Tc-FoxQ2+ NBs at stage NS11. The dashed box (black) represents the anterior region 

(A-G), (A’-G’) and (G’’, G’’’). The dashed circle (yellow) represents the basal domain of the 

labrum (G’’, G’’’).  

 

 

4.4 Description of the Tc-foxQ2 enhancer trap line  

4.4.1 Co-expression analysis of Tc-FoxQ2 and EGFP in the embryo  

To investigate in how far the expression of Tc-FoxQ2 and EGFP of the 86up line 

overlapped, antibody staining was performed in the embryo, larva and adult. The 

co-expression of Tc-FoxQ2 and EGFP were analyzed from early stage (NS3) to the 

latest stage of embryogenesis (NS15).  

 

Tc-FoxQ2 and EGFP expression were almost completely overlapping from early 

stages onwards. At early stage NS3, Tc-FoxQ2 expression showed two round 

domains within the non-neural anterior median region (Figure 4.15A-A’’’). The 

expression of EGFP was almost completely overlapping with Tc-FoxQ2. Only a few 

Tc-FoxQ2 positive cells in the anterior most outside were not expressing EGFP 

(Figure 4.15A-A’’, arrowheads). A narrow stripe of cells which were located close to 

the midline showed weaker Tc-FoxQ2 signal than most other cells, whereas EGFP 

expression in these cells was strong. This revealed that all EGFP positive cells were 

expressing Tc-FoxQ2, whereas not all Tc-FoxQ2 positive cells were also positive for 

the EGFP. In other words, EGFP marked the subset of Tc-FoxQ2 positive cells. 

 

At stage NS6, the expression of Tc-FoxQ2 was splitted into several domains. 

Tc-FoxQ2 expression was detected in the labrum, stomodeum as well as the 

anterior neuroectodermal region, exhibiting a ‘goat head’ shape pattern (Figure 

4.15B-B’’’). At the same time, EGFP expression co-localized with Tc-FoxQ2 
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expression and showed almost completely overlap with it. It is worth mentioning 

that EGFP expression was completely overlapping with Tc-FoxQ2 expression in 

anterior neuroectoderm region where Tc-FoxQ2+ NBs had been identified, 

indicating EGFP also marked the Tc-FoxQ2+ NBs. In addition, the expression of EGFP 

was also visualized in a small domain of the stomodeum where Tc-FoxQ2 

expression was not detected (Figure 4.15B-B’’: dashed circles). This was suggested 

that EGFP marked more cells than Tc-FoxQ2 did.  

 

At stage NS8, the expression pattern of Tc-FoxQ2 was not changed too much, with 

expression domains in the neuroectoderm and in the labral/stomodeal region 

(Figure 4.15C-C’’’). EGFP expression was consistent with Tc-FoxQ2 expression but 

showed very small domains without Tc-FoxQ2 expression. In the anterolateral 

region, 3 to 4 cells expressing EGFP were not Tc-FoxQ2 positive (Figure 4.15C-C’’: 

arrows), whereas the rest of EGFP positive cells were expressing Tc-FoxQ2. 

 

From stage NS11 onwards, the expression of Tc-FoxQ2 in anterior neuroectoderm 

region successively approached the midline (Figure 4.15D-D’’’), probably due to 

morphogenetic movements. EGFP expression was almost completely coincident 

with Tc-FoxQ2 expression. However, there was still a small group of EGFP positive 

cells in the anterolateral region not expressing Tc-FoxQ2 (Figure 4.15D-D’’: arrows). 

These cells were probably the same cells described at stage NS8 according to their 

location.    

 

At stage NS13, Tc-FoxQ2 expression appeared in 4 cells in the ocular region while 

EGFP was not detected in these cells (Figure 4.15E-E’’: arrowheads). The 

expression of Tc-FoxQ2 in anterior neuroectoderm region moved towards the 

midline, which was overlapping with EGFP (Figure 4.15E-E’’’). Additionally, a few 

cells located very close to the midline showed weak GFP signal but not Tc-FoxQ2 

expression at that stage (Figure 4.15E-E’’: arrows). 

  

At stage NS15, the latest embryonic stage, the initial brain lobes were formed. The 

protocerebrum was increased in size and the morphology of the protocerebrum 

section was visualized with DAPI staining. Tc-FoxQ2 showed a more complicated 

expression pattern in the protocerebrum. As shown in Figure 4.15F-F’’’, almost all 

the cells that expressed Tc-FoxQ2 were expressing EGFP as well. Two distinct cell 

groups were observed per hemisphere based on their distribution: the anterior 

median group and the lateral group (Figure 4.15F-F’: dashed circles). The cells in 

the anterior median group stayed together to form a big column, which made the 

axonal projections to cross the midline and connected two brain hemispheres. I 

assumed that this group of cells would make contributions to the central brain 

formation. The other cells were distributed over larger areas and in spatially 

separate layers and their axonal projections were not visualized, which made it 

difficult to group these cells and determine the contributions of them. In addition, 

a complete Tc-FoxQ2 and EGFP co-expression was observed in the stomodeum, 
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though Tc-FoxQ2 signal was not as strong as EGFP. 

 

 

       Tc-FoxQ2           EGFP            Merge         Merge/DAPI 

 
Figure 4.15 Overview of Tc-FoxQ2 and EGFP co-expression in the embryo. Almost all the 

cells that express Tc-FoxQ2 also express EGFP as well. All panels show maximum projection 

of all stacks. (A-A’’’) At NS3, only few Tc-FoxQ2 positive cells in the anterior most outside 

are not expressing GFP (arrowheads). (B-B’’’) At NS6, co-expression is detected in the 

labrum, stomodeum as well as the anterior neuroectoderm region. Some cells in the 

stomodeum express EGFP but not Tc-FoxQ2 (dashed circles). (C-C’’’) At NS8, in the 

anterolateral region 3 to 4 cells expressing EGFP are not expressing Tc-FoxQ2 (arrows). 

(D-D’’’) From stage NS11 onwards, the expression of Tc-FoxQ2 in anterior neuroectoderm 

region successively approach midline. Several EGFP positive cells in the anterolateral 

region are not Tc-FoxQ2 positive (arrows). (E-E’’’) At NS13, a few cells located very close to 

the midline show weak EGFP signal but not Tc-FoxQ2 expression (arrows). Four cells in the 

ocular region only express Tc-FoxQ2 (arrowheads). (F-F’’’) At NS15, the assignment of the 

cells becomes more complicated. The dashed circles represent the anterior median group 

and the lateral group.  
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4.4.2 Development and contribution of Tc-FoxQ2+ cells to the 

central brain during embryogenesis 

4.4.2.1 Tc-FoxQ2 projects to the contralateral side through the 

initial axonal commissure in the embryo  

The brain commissures are tracts that connect the two brain hemispheres, where 

the cells extend their axons towards the midline. The axons from the same neural 

hemi-lineage often make their projections together. When these axons reach the 

midline, they fasciculate with their homologs and extend towards the opposite 

hemisphere. The primary axonal commissure in the brain is established by neurons 

that are located near the medial edge of each hemisphere and send their axons 

towards the midline (Therianos et al., 1995).  

 

I used immunohistochemical markers and Tc-FoxQ2 enhancer trap line to track the 

temporal and spatial development of Tc-FoxQ2 positive cells during embryogenesis. 

Acetylated tubulin is known as a marker for axons of CNS (Black and Keyser, 1987; 

Bernhardt et al., 1990; Harzsch et al., 2002). By using anti-ac. tubulin staining, the 

axon tracts in the brain become visible during late embryonic development. I 

found that, at stage NS13 when the primary midline spanning axons appeared, a 

small cluster containing around 28 marked Tc-FoxQ2 cells was located at the 

medial edge of the hemisphere making contact with the axon tracts which crossed 

the midline (n=6; Figure 4.16B: dashed lines, arrowheads). However, the axons that 

were extended by Tc-FoxQ2 cells and were supposed to be marked by EGFP were 

not detected (Figure 4.16A: arrowhead), which might be owing to the delayed 

EGFP expression in the enhancer trap line. This was suggested that these Tc-FoxQ2 

cells projected through the primary commissure, which was probably built by 

other cells. Moreover, the cell cluster in question might be composed of one 

neural lineage (Figure 4.16A, B: dashed lines). This statement was based on the 

column like shape of the cells, which was typical for neural lineages such and the 

fact that I found one NB in that cluster recognized by its morphology and position 

that was distal to the axonal projection (Figure 4.16B: dashed circle).  

 

Cells observed at the brain midline showing weak EGFP signal may be associated 

with the formation of the initial axonal commissure (Figure 4.16A, B: empty 

arrows). However, these cells were not expressing Tc-FoxQ2 protein (Figure 

4.15E-E’’: arrows), indicating these cells shut off Tc-FoxQ2 but still had the stable 

EGFP, or the enhancer trap may drive non-Tc-FoxQ2 expression. Another group of 

cells located close to the posterior of the brain commissure moved towards 

superficial position in the mediodorsal brain during development (Figure 4.16A, B: 



Results 

57 
 

stars). As they did not contribute to the central brain I excluded them from further 

characterization in this thesis. 

 

Taken together, Tc-FoxQ2 cells projected to the contralateral side through the 

initial axonal commissure, but did not pioneer the primary brain commissure.  

 

                                    

 

Figure 4.16 Development and contribution of Tc-FoxQ2 positive cells to the central brain 

during embryogenesis. (A, B) The initial axonal commissure forms at stage NS13 (B: 

arrowhead). The axons from Tc-FoxQ2 cells marked by EGFP are not detected (A: 

arrowhead). A small cluster of Tc-FoxQ2 cells might be composed of one neural lineage 

(white dashed lines). (C, D) At NS14, the median columnar lineage becomes larger with 

more cells. The axonal projections marked by EGFP from the lineage are detectable but 

not joined at the midline (C: arrowhead). More axon fascicles labeled by ac. tubulin 

generate and reach across the midline (D: arrowhead). (E, F) At NS15, the median 

columnar lineage produces more cells and moves closer to the midline. The axonal tracts 

marked by EGFP projected to the central brain primordium (E: arrowhead). The space in 

EGFP EGFP/ac. tubulin 
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the brain midline was filled by numerous axons labeled by ac. tubulin (F: arrowhead). (G, H) 

The lateral lineage is detectable at NS15, showing a small cell cluster (orange dashed 

circle). Green: EGFP; magenta: ac. tubulin. (A) and (B), (C) and (D), (E) and (F), (G) and (H) 

are not the same embryo but from the same developmental stage. 

 

4.4.2.2 FAM2 neuroblast and A-PD neuroblast generate the 

neural lineages contributing to the central brain primodium  

As the brain developed and underwent dynamic morphogenetic movements, the 

small lineage became a larger column-like lineage which progressively moved 

closer to the midline at stage NS14 (Figure 4.16C-F). At the same time, the cells 

belonging to this lineage remained together and differentiated into more cells 

throughout development, forming a large and compact cluster. The NB which 

generated the specific lineage was recognized easily (Figure 4.16D: white dashed 

circle) and the number of the progeny increased, revealing 37 to 43 cells in each 

hemisphere (n=5; Figure 4.16C, D). Axonal projections marked by EGFP from these 

cells were observed but at that stage did not yet join at the midline (Figure 4.16C: 

arrowhead). Immunohistochemical analysis using ac. tubulin antibody revealed 

that, more axon fascicles were generated and crossed the midline, forming tight 

axon bundles (Figure 4.16D: arrowhead). Several fibers that derived from the 

neural lineage projected into two bundles (Figure 4.16D: arrow), reaching the 

midline by following the axonal pathways. 

 

At stage NS15, the median lineage contained approximately 65 cells in each 

hemisphere that was small and densely packed (n=4; Figure 4.16E, F). However, I 

was unable to trace and identify the NB at this stage due to massive number of 

cells and lack of specific NB markers. The axons formed one fascicle and projected 

into a coherently-labeled midline structure which possessed the morphological 

features of the central brain primordium (Figure 4.16E: arrowhead). The lateral 

lineage showed a small cluster containing around 15 cells (n=4; Figure 4.16G, H: 

orange dashed circles). The axonal tracts generated by the lateral lineage projected 

into the midline. Anti-ac. tubulin staining revealed that the commissural axons 

differentiated further to become complicated and massive. The space in the brain 

midline was filled by numerous axons (Figure 4.16F: arrowhead). Four axon 

fascicles in each hemisphere (Figure 4.16F: arrow) originated from the median 

columnar lineage and projected into the central brain.  

 

As Tc-FoxQ2+ NBs had been identified during embryogenesis (see section 4.3.2), I 

wondered, which of the identified NBs generated the median columnar lineage 

and the lateral lineage. Based on its position, I hypothesized that the FAM2 NB 
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which was previously identified at stage NS14 could generate the median columnar 

lineage based on the following criteria: Both FAM1 and FAM2 were NBs located 

close to the midline and they were located closely to each other. The FAM1 NB 

produced few offspring that showed weak EGFP signal and the axon fascicles were 

barely detected (Figure 4.17A-A’’: dashed lines). By contrast, the FAM2 NB (Figure 

4.17A-A’’: dashed circles) generated more progeny and gave rise to recognizable 

lineage. The A-PD NB located laterally to the FAM2 NB could be the one producing 

the lateral lineage (Figure 4.17B-B’’: dashed circles). At stage NS14, A-PD NB 

lineage was small with only few cells. 

 

Taken together, by using Tc-foxQ2 enhancer trap line and ac. tubulin antibody, I 

found that Tc-FoxQ2 cells projected through the initial axonal commissure in the 

embryonic brain. I also found that the FAM2 NB generated the median columnar 

lineage and A-PD NB generated the lateral lineage, which projected axon fascicles 

into the central brain primordium. Further, this Tc-FoxQ2 positive projection 

prefigures the CX as will be shown in subsequent section. 

 

  
Figure 4.17 The FAM1 NB, FAM2 NB and A-PD NB lineages at stage NS14. (A-A’’) FAM1 NB 

generates a small amount of offspring that show weak EGFP signal (white dashed line). 

FAM2 NB generates the columnar lineage. (B-B’’) A-PD NB lineage is small with only few 

cells. DAPI staining is used to visualize the cell nuclei. The white dashed circles represent 

the NBs. Green: EGFP; blue: DAPI. 
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4.4.2.3 Tc-FoxQ2+ cells are not glial cells 

It is known that the NBs generate both neurons and glia. I wondered if Tc-FoxQ2 

positive cells included also glial cells. Immunohistochemical staining was 

performed with an antibody against the glial marker reversed polarity (anti-Repo; 

Campbell et al., 1994; Lee and Jones 2005). However, I observed that not a single 

Tc-FoxQ2 cell from NS13 to NS15 overlapped with Repo staining, indicating that 

Tc-FoxQ2 cells are indeed neurons and not glial cells (data not shown). 

 

 

4.4.3 Development and contribution of Tc-FoxQ2+ cells to the 

central brain postembryonically  

4.4.3.1 Development and contribution of Tc-FoxQ2+ cells in the 

larval brain 

In the larval brain, three cell clusters were observed in each hemisphere: the 

median cluster, the lateral cluster, and the posterior cluster (Figure 4.18A-C: white 

circle, white dashed circle and blue circle). In the median cluster, not all Tc-FoxQ2 

cells expressed EGFP, but almost all EGFP cells were Tc-FoxQ2 positive (Figure 

4.18A-C: white dashed circle). The cells co-expressed Tc-FoxQ2 and EGFP were 

dispersed spatially in different layers. The complete co-localization of Tc-FoxQ2 and 

EGFP were found in the cells of lateral cluster which was the most distal to the 

midline (Figure 4.18A-C: white circle). Some of the cells in the lateral cluster sent 

the axon tract to the most posterior commissure (Figure 4.18B: empty arrows). The 

cells in the posterior cluster (Figure 4.18A-C: blue circle) generated bundles of 

fibers and contributed to the other less posterior commissure (Figure 4.18B: empty 

arrows). I assumed that these cells corresponded to the posterior group of the 

embryo based on their position (Figure 4.15F-F’’). Owing to their location, I could 

eliminate the possibility that the two posterior brain commissures belong to the 

central complex (CX). 

 

Two anterior brain commissures which might be related to the central brain 

according to their position were observed (Figure 4.18D: arrow, arrowhead). The 

lateral cluster contained 17 to 21 cells and generated a bundle of fibers projecting 

into the outside of the central body (CB) anterior rim (n=3; Figure 4.18D, F: arrows), 

presumably the protocerebral bridge (PB) based on its position. The CB coated by 

glial cells was marked with DAPI (Figure 4.18E: yellow dashed circle; Koniszewski et 
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al., 2016). According to the position and projection of the lateral cluster, I assumed 

that it corresponded to the lateral lineage of the embryo (Figure 4.16G, H: orange 

dashed circles). In addition, the other commissure was observed at the posterior 

rim of the CB (Figure 4.18D, F: arrowheads). However, I was unable to trace this 

commissure back to the cells the projections came from. Moreover, the cells in the 

median region were arranged not compactly (Figure 4.18B: white dashed circle). 

Based on their position, they might be related to the most anterior commissure 

(Figure 4.18D: arrow). However, their projections were not detectable during the 

larval stage. These cells might correspond to the median columnar lineage of the 

embryo based on their location (Figure 4.16E). It was shown that the median 

columnar lineage of the embryo containing approximately 65 cells at NS15. 

However, the median region of the larva showed reduced cell number, which 

might undergo the apoptosis and reorganization during the transition.  

 

Taken together, in the larval brain all EGFP positive cells were Tc-FoxQ2 positive as 

well, but not all cells expressing Tc-FoxQ2 were EGFP positive. The cells 

co-expressed Tc-FoxQ2 and EGFP in the lateral cluster were shown to contribute to 

the central brain, presumably the PB based on its position.  

 

 
Figure 4.18 Contribution of Tc-FoxQ2 cells to the central brain in the larval brain. (A-C) 

Co-expression of Tc-FoxQ2 and EGFP in the larval brain. (C) is the merge of (A) and (B). All 

panels show the maximum projection of all stacks. Three clusters of cells are in each 

hemisphere: the lateral cluster (white circles), the median cluster (white dashed circles) 

and the cluster located between the midline cluster (blue circles). The lateral cluster shows 

the complete co-localization of Tc-FoxQ2 and EGFP. The two posterior commissures (empty 

arrows) originate from the lateral cluster and the cluster between the median cluster and 

lateral cluster. (D-F) The lateral cluster projects into the central brain. (F) is the merge of (D) 

and (E). The panels show the maximum projection of selected stacks. The CB coated by 

glial cells is marked with DAPI (orange dashed circle). Green: GFP; magenta: Tc-FoxQ2; blue: 

DAPI. Anterior is up in all panels. 

Tc-FoxQ2/EGFP EGFP Tc-FoxQ2 

EGFP DAPI /EGFP DAPI 
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4.4.3.2 Development and contribution of Tc-FoxQ2+ cells in the 

adult brain 

In adult brain, the expression pattern and projection pattern were similar to the 

larval brain. Three clusters of cells were observed on either side of the midline and 

the vast majority of the cells showed the co-expression of Tc-FoxQ2 and EGFP 

(Figure 4.19A-A’’: white circle, white dashed circle and blue circles). The cells in the 

anterior cortex only expressed Tc-FoxQ2, no EGFP signal were detected in these 

cells (Figure 4.19A-A’’: arrowheads). The lateral cluster that contained 20 to 25 

cells co-expressing Tc-FoxQ2 and EGFP (n=3; Figure 4.19A-A’’: white circle) made 

more bundles of fibers project across the midline (Figure 4.19A’: arrow), which 

were located anterodorsal to the CB and seemed to innervate into the PB (Figure 

4.19B-B’’: white dashed outline and arrows). The cells in the median cluster sent 

three to four long tracts through the PB and straight towards the posterior (Figure 

4.19C-C’’). The posterior cluster contained fewer cells co-expressing Tc-FoxQ2 and 

EGFP, only two to three of which were EGFP positive (Figure 4.19A-A’’: blue circles). 

These cells made their projections to the unknown axons across the midline in the 

posterior (Figure 4.19A’: empty arrow), which probably corresponded to one of the 

posterior commissures in the larval brain (Figure 4.18B: empty arrow). Additionally, 

the anterior part of the CB was marked with EGFP (Figure 4.19D-D’’). However, it 

was impossible to track back to the respective cell bodies. Interestingly, an 

unknown U-shape structure which made central brain commissures was detected 

(Figure 4.19E-E’’: arrowheads). This structure was located ventrally to the CB and 

therefore not relevant to the CB, but again, it was impossible to track back to the 

respective cell bodies. I assumed that this structure probably developed from the 

commissures at the posterior rim of the CB in the larval brain (Figure 4.18D, F: 

arrowheads). DAPI staining was used to visualize the borders of the PB and the CB 

(Figure 4.19 B’, D’: white dashed outlines). Moreover, compared to the larval brain, 

the cell number as well as their spatial distribution did not change too much in the 

adult brain, indicating that the larval brain neurogenesis generated the vast 

majority of the adult brain.  

 

Taken together, EGFP and Tc-FoxQ2 were highly overlapping and EGFP marked the 

subset of Tc-FoxQ2 cells in the adult brain. The cells co-expressed EGFP and 

Tc-FoxQ2 in the median cluster and lateral cluster generated interesting axon 

bundles which projected into the PB. Tc-FoxQ2 cells and axonal projections directly 

innervating to the CB were not observed.  
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Figure 4.19 Contribution of Tc-FoxQ2 cells to the central brain in the adult brain. (A-A’’) 

Co-expression of Tc-FoxQ2 and EGFP in the adult brain. Three clusters of cells are observed 

in each brain hemisphere, showing the almost completely overlap of Tc-FoxQ2 and EGFP. 

(B-B’’) The fiber bundles from the lateral cluster project together crossing the midline, 

which appears to innervate the PB (arrows). (C-C’’) The cells in the median cluster sent 

three long tracts initially to the PB, and then almost vertically towards the posterior. (D-D’’) 

Tc-FoxQ2 marks the upper unit of the CB. (E-E’’) An unknown U-shape structure projects 

across the central brain (arrowheads). Green: EGFP; magenta: Tc-FoxQ2; red: Synapsin; 
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blue: DAPI. DAPI staining enables the visualization of borders of the PB and CB (white 

dashed outlines). Anterior is up in all panels. 

 

 

4.5 Tc-foxQ2 Knock-down causes central brain phenotypes 

in the embryo 

It has been shown that Tc-six3 is required for the CX formation. Tc-six3 knock-down 

led to defects in the CB in L1 larvae (Posnien et al., 2011b). Further, Tc-foxQ2 and 

Tc-six3 are largely overlapping in the anterior neuroectodem and Tc-foxQ2 also has 

a function in neural development, resulting in the size reduction of the CX in 

Tc-foxQ2 RNAi animals (Kitzmann et al., 2017). Tc-FoxQ2 and Tc-six3 were 

co-expressed in the neuroectoderm during embryogenesis and Tc-FoxQ2 positive 

NBs were shown to be Tc-six3 positive (see section 4.3). In order to investigate the 

neural function of Tc-foxQ2 in more detail, I performed Tc-foxQ2 pRNAi in the SB 

strain and different imaging lines which mark the central brain (raw counts are 

displayed in Table 7.5-7.14). 

 

4.5.1 Tc-foxQ2 RNAi in the Tc-foxQ2 enhancer trap line 

The 86up line is an enhancer trap line which was generated in this work (see 

section 4.2) and marked Tc-foxQ2 expressing cells with EGFP. Tc-foxQ2 RNAi in this 

line showed that the signal intensity of neuroectodermal EGFP expression was 

strongly reduced compared to the stomodeal expression (Figure 4.20). At stage 

NS13, the pattern of the EGFP expression domain appeared not to be reduced but 

the signal intensity and the number of marked cells was strongly reduced (n=5; 

Figure 4.20A, B: arrows; Figure 4.20E). Interestingly, I found that one neural lineage 

in each brain hemisphere was reduced (Figure 4.21A, B: circles) and the NB was still 

there in RNAi animals (Figure 4.21A’’, B’’: dashed circles). According to its location, 

it could be the FAM2 lineage (see section 4.4.2.2). At stage NS15, the number of 

the marked cells in the median brain was obviously reduced (n=4; Figure 4.20D: 

arrow; Figure 4.20E) compared to the wt (n=4; Figure 4.20C: arrow; Figure 4.20E). 

The cells that were still marked belonged mainly to the median columnar lineage 

that was described in section 4.4.2.2. The axonal projection from these cells was 

strongly reduced, showing only one tract crossing the brain midline (Figure 4.20D: 

dashed box; Figure 4.20D’’: arrowhead). In wt, the axonal projections from the cell 

group formed a bundle of tracts across the midline (Figure 4.20C: dashed box; 

Figure 4.20C’’: arrowhead). In addition, the EGFP expression in the stomodeum 

was not altered – it showed a strong signal and its regular shape (Figure 4.20C, D: 

empty arrows). The difference in Figure 4.20C versus Figure 4.20D was due to 
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different orientation of the embryo. Taken together, Knock-down of Tc-foxQ2 in the 

Tc-foxQ2 enhancer trap line resulted in the reduction of Tc-FoxQ2 expression 

indicating a self-regulatory function of this transcription factor. 

 

 

 

 

  

(C-C’) shows the marked cells in the anterior brain (arrow) and the stomodeum 

(empty arrow) at stage NS15 in wt. The axonal tracts from these cells in the 

anterior brain are crossing the midline (dashed box). (D-D’) In RNAi animal, the 

marked cells in the anterior brain (arrow) and the axonal tracts across the midline 

(dashed box) are significantly reduced. (C’’-C’’’) and (D’’-D’’’) show the close-ups of 

the brain commissures (arrowheads) in (C-C’,) and (D-D’) (dashed boxes), 

respectively. (E) The total cell number in the neuroectoderm is reduced at NS13 

and NS15 in RNAi. Green: EGFP; blue: DAPI.  
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E 
Figure 4.20 Knock-down of Tc-foxQ2 in 

the embryo of the 86up line, which is an 

enhancer trap marking Tc-foxQ2 positive 

cells with EGFP. (A, A’) EGFP is 

expressed in the anterior 

neuroectoderm (arrow) and the 

stomodeum (empty arrow) at stage 

NS13 in wt. (B, B’) In RNAi animal, 

EGFP signal intensity and the number 

of the marked cells are reduced. 

(arrow) 
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Figure 4.21 Knock-down of Tc-foxQ2 leads to a reduction of the neural lineage at stage 

NS13 in the 86up line. (A-A’’) In wt, one NB lineage is shown in the anterior 

neuroectodermal region in each hemisphere (circle). The dashed circle represents the NB. 

(B-B’’) In RNAi animal, the lineage is reduced (circle) and the NB remains there (dashed 

circle). Green: EGFP; blue: DAPI.     

 

4.5.2 Tc-foxQ2 RNAi in the SB strain 

 

To investigate the role of Tc-foxQ2 in the development of axonal projections in the 

brain, ac. tubulin staining was performed in the SB embryos. By using DAPI, the 

morphology of the brain sections was visualized. At stage NS13, the initial midline 

spanning axons appeared in wt (Figure 4.22A, A’’: arrowheads; section 4.4.2.1). In 

RNAi, the initial brain commissures were still detectable and even not reduced 

(Figure 4.22B, B’’: arrowheads). Further, it showed a groove in the anterior median 

region of the brain (Figure 4.22B-B’’: arrows) compared to the wt (Figure 4.22A-A’’: 

arrows). This defect might be the reduction or loss of the labrum since previous 

study has showed that Tc-foxQ2 RNAi could lead to the severe defect in the labrum 

(Kitzmann et al., 2017). This was suggested that Tc-foxQ2 was not required for the 

formation of the initial brain commissures. In stage NS15 of wt, at least seven 
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axonal fascicles originated from the anterolateral brain and projected through the 

brain midline (Figure 4.23A). When these axons reached the midline, some of 

them apparently connected with their homologs from the other hemisphere. It 

appeared that some of them extended towards the opposite hemisphere forming 

a cross at the midline (Figure 4.23A: arrowhead). The Knock-down of Tc-foxQ2 

resulted in central brain defects. The axonal projections were disordered and did 

not follow the stereotypic pathways to cross the midline (Figure 4.23B: arrow), 

which led to shorter and asymmetric brain commissures (Figure 4.23B: arrowhead). 

The brain hemispheres appeared to be more close to each other, showing a 

shorter space in the central brain (Figure 4.23B’: arrowhead) in line with previous 

findings (Kitzmann et al., 2017). This phenotype was observed most frequently. 

Another phenotype showed disordered axonal projections in the brain (Figure 

4.23C: arrow) and only one bundle of the commissures in the central brain (Figure 

4.23C: arrowhead). Further, the brain hemispheres seemed to be heavily reduced 

along the anteroposterior axis in this phenotype. Taken together, these data in SB 

showed an important and widespread role of Tc-foxQ2 in the development of 

projections of the brain. Tc-foxQ2 is not required for the formation of the initial 

brain commissures, only for the later brain commissures. 

 

 

 ac. tubulin               DAPI             ac. tubulin/DAPI 

 

Figure 4.22 Knock-down of Tc-foxQ2 in the embryo of SB at stage NS13. (A-A’’) In wt, the 

initial brain commissures form at stage NS13 (arrowheads). (B-B’’) Tc-foxQ2 RNAi shows no 

aberrations in the initial brain commissures (arrowheads) but a groove in the anterior 

median domain of the brain (arrows). Red: ac. tubulin; blue: DAPI.  
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 ac. tubulin               DAPI             ac. tubulin/DAPI 

 

Figure 4.23 Knock-down of Tc-foxQ2 in the embryo of SB at stage NS15. (A-A’’) In wt, at 

least seven axonal bundles in the anterolateral brain (arrow) project through the brain 

midline (arrowhead). (B-B’’) and (C-C’’) shows the phenotypes in the central brain in RNAi 

animals. The brain commissures are reduced (C: arrowheads) and the axonal projections 

show the disarrangement (B, C: arrows; B: arrowhead). The brain hemispheres are more 

close to each other (B’) or are reduced along the anteroposterior axis (C’). Red: ac. tubulin; 

blue: DAPI. 

 

 

4.5.3 Tc-foxQ2 RNAi in the imaging lines marking the central 

brain 

 

The line E035004 (lab internal number: 120) is an enhancer trap line derived from 

the GEKU screen, in which a construct containing EGFP under the control of a 3xP3 

promoter is inserted (Berghammer et al., 1999; Trauner et al., 2009). This line has 

shown to be in the Tc-ten-a locus and the signal is overlapping with anti-Ten-a 

staining (Marita Buescher’s work). In Drosophila, Ten-a is a dimeric receptor which 

marks the axons of the embryonic CNS (Fascetti and Baumgartner, 2002). In this 

line, three groups of cells marked with EGFP were observed at stage NS15. The 

median group contained ~27 cells (n=4; Figure 4.24A: dashed circle) while the 

lateral group contained approximately 32 cells (n=4; Figure 4.24A: empty arrow). 
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However, the projections of these two groups were too fused to follow. The 

posterior group possessing ~39 cells projected through the midline (n=4; Figure 

4.24A: circle, arrowhead), which was shown to be a subset of the brain 

commissures marked with ac. tubulin (Figure 4.24A’: arrowhead). Knock-down of 

Tc-foxQ2 most frequently led to the disarrangement of cells in the central brain 

and the loss of the marked part of the brain commissures (Figure 4.24B: 

arrowhead). The number of the cells in the posterior group was reduced and many 

of these cells showed weakened EGFP signal (Figure 4.24B: circle). The axonal 

projections from this posterior group into the midline were missing. The cells in 

the median group seemed to be misarranged in the central brain (Figure 4.24B: 

dashed circle). The lateral group remained invariant but showed weaker EGFP 

signal (Figure 4.24B: empty arrow). Note, that the brain commissures marked with 

ac. tubulin were not completely gone (Figure 4.24B’’: arrowhead) and the brain 

hemispheres appeared to be closer similar to the findings shown above (Figure 

4.24B’’: arrows), which was in consistent with the observation of RNAi in SB (Figure 

4.23B-B’’). In the strongest phenotype, the brain commissures were completely 

absent, and the brain hemispheres were reduced in size and were fused at the 

midline (Figure 4.24C-C’’: arrowheads, arrows) such that the assignment of cells to 

the respective groups becomes difficult. The putative cells in the posterior group 

appeared to be separated into two groups (Figure 4.24C: circles) due to the heavily 

changed brain hemisphere and their projections were not detectable. Moreover, 

the cells of the putative median and the lateral groups became closer and the 

number of the cells in these two groups was decreased (Figure 4.24C: dashed circle, 

empty arrow). 
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             EGFP             EGFP/ac. tubulin         EGFP/DAPI 

 

    

of the marked part of the brain commissures (arrowhead). The cells in the posterior group 

are reduced (circle) and their axonal projections towards the midline are missing. (C-C’’) 

The strongest phenotype shows the fused brain hemispheres and the strongly reduced 

brain size (arrows). The brain commissures are completely absent (arrowheads). (D) The 

total cell number of the three groups is reduced in RNAi. Magenta: ac. tubulin; green: 

EGFP; blue: DAPI. 

 

 

The line E011A-01 (lab internal number: 50) is a Tc-rx enhancer trap line from the 

GEKU screen. The insertion is known to be in the 5’ upstream region of Tc-rx. In 

this line, two groups of cells marked with EGFP were observed to contribute to the 

central brain. The median group contained ~43 cells which made three to four 

axonal projections across the midline (n=6; Figure 4.25A: circle), while the lateral 

group contained ~34 cells which sent two tracts across the midline (n=6; Figure 

4.25A: dashed circle). Tc-foxQ2 Knock-down in this line showed that the brain 

0 

30 

60 

90 

120 

WT RNAi 

n=4 
D 

C
el

l n
u

m
b

er
 

Figure 4.24 Knock-down of Tc-foxQ2 at stage 

NS15 of the line E035004 which is an enhancer 

trap line in the Tc-ten-a locus. (A-A’’) In wt, 

three groups of cells marked with EGFP are 

shown in each hemisphere: the median group 

(dashed circle), the lateral group (empty arrow), 

and the posterior group (circle). (B-B’’) The weak 

phenotype shows the disarrangement of cells in 

the central brain (dashed circle) and the absence      
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commissures were reduced (Figure 4.25B: arrowheads) and the cell number of the 

median group and the lateral group was significantly decreased as well (Figure 

4.25C). In RNAi animals, the median group projected only one tract through the 

midline (Figure 4.25B: arrow). The axonal tracts from the lateral group were barely 

seen. The brain hemispheres were shown to be closer to each other and the space 

in the central brain where the brain commissures located was reduced (Figure 

4.25B’: arrowhead). 

 

 

            EGFP                   DAPI               EGFP/DAPI 

 

  
 

 

Tc-rx reporter line (lab internal number: 178) contains parts of the upstream 

genomic region of Tc-rx fused with basal promoter elements driving DsRedExpress 

(DsRedEx) (Koniszewski, 2011). This line marked one median group of cells 

contributing to the central brain (Figure 4.26A: circle, arrowhead). A lateral group 

of cells did not contribute to the central brain (Figure 4.26A: arrow) and the axons 

from these cells were not detectable. Knock-down of Tc-foxQ2 most frequently led 

to an obviously reduced cell numbers and the complete loss of the brain 

commissures (Figure 4.26B: circle, arrowhead). Interestingly, the cells located in 

the lateral rim of the brain hemispheres were almost absent although they did not 

project to the central brain (Figure 4.26A, B: arrows). The brain hemispheres 

appeared to be more closely (Figure 4.26A’, B’). 
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C Figure 4.25 Knock-down of Tc-foxQ2 at stage NS15 in a 

Tc-rx enhancer trap line. (A-A’’) In wt, two groups of the 

cells marked with EGFP (circle, dashed circle) make the 

projections to the central brain (arrowhead). (B-B’’) The 

phenotype shows a strongly reduced brain commissures 

(arrowhead) and reduced cells contributing to the central 

brain (circle, dashed circle). (C) The total cell number of 

the two groups is reduced in RNAi. Green: EGFP; blue: 

DAPI.  
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DsRedEx                DAPI             DsRedEx/DAPI  

 

  

cells contributing to the central brain (circle). The number of the cells located in the lateral 

rim is also reduced (arrow). (C) The cell number of the median group is significantly 

reduced in RNAi. Red: DsRedEx; blue: DAPI.  

 

 

Taken together, the experiments using the brain imaging lines demonstrate that 

Tc-foxQ2 is required for the formation of the central brain. Knock-down of Tc-foxQ2 

leads to the aberrant formation of the brain commissures at later stage (NS15), but 

does not affect the formation of the initial brain commissures at earlier stage 

(NS13). Tc-foxQ2 is absolutely required for the formation of midline crossing 

projections of a number of cell groups (e.g. in line E035004, E011A-01, Tc-rx 178) 

but it does not appear to act on the top level, because some projections are still 

visible in RNAi embryos based on ac. tubulin staining (Figure 4.23B, C: arrowheads). 

Further, I find a medial fusion of the brain hemispheres as described before 

(Koniszewski, 2017) and the reduction of a number of cells which contribute to the 

central brain (e.g. in line line E035004, E011A-01, Tc-rx 178). Further, the reduction 

of EGFP signal and number of marked cells in the Tc-foxQ2 enhancer trap line 

indicates a self-regulatory function of this gene. 
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Figure 4.26 Knock-down of Tc-foxQ2 at stage NS15 

in a Tc-rx reporter line. This line contains parts of 

upstream region of Tc-rx fused with basal promoter 

driving DsRedEx (Koniszewski, 2011). (A-A’’) In wt, 

the median group of the marked cells makes 

projection across the central brain (circle, white 

arrowhead). (B-B’’) The phenotype shows a loss of 

the brain commissures (arrowhead) and reduced 
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5 Discussion 

 

 

Drosophila is the most studied model insect for brain development. However, due 

to the absence of the CX in the embryonic stage, the early determinants and 

signals required for CX development remain unknown. The red flour beetle 

Tribolium has become the second most studied model insect in developmental 

biology after Drosophila. It exhibits a more typical developmental process of the 

insect, like the short germ mode of segmentation, development of larval legs and 

the formation of a non-involuted head. Importantly, the CB partially forms during 

the embryogenesis in Tribolium but respective neuropils are developing only at 

late larval and pupal stages in the fly. Hence, the embryonic development of the 

central brain is quite diverged in Drosophila such that Tribolium is a good model for 

studying this process. Here, I used Tribolium to study the early brain development, 

focusing on the CX and central brain development. I generated a Tc-FoxQ2 

antibody and an enhancer trap line to mark Tc-foxQ2. Further, I identified 

Tc-FoxQ2+ NBs and their lineages which contributed to the CX development. 

Moreover, I found that Tc-FoxQ2+ NBs were marked by different combinations of 

transcription factors. Finally, Tc-foxQ2 RNAi showed that Tc-foxQ2 played an 

important role in the axon scaffold formation and was required for the central 

brain probably including CX development.  

5.1 CRISPR/Cas9  

5.1.1 CRISPR/Cas9 mediated knock-in via non-homologous end 

joining (NHEJ) 

In order to study the contribution of Tc-foxQ2 positive cells to the brain I needed to 

specifically mark those cells. The strategy that I used was to generate a Tc-foxQ2 

enhancer trap line via CRISPR/Cas9. Compared to the conventional approaches 

which rely on the piggyBac transposon mediated integration of the construct 

randomly into the genome (Trauner et al., 2009; Koniszewski, 2011), CRISPR/Cas9 

technology allows for inserting the construct at a specific location (Garneau et al., 

2010; Jinek et al., 2012; Gilles et al., 2015), which makes the process easier and 

more efficient. Homology directed repair (HDR) and non-homologous end joining 

(NHEJ) are two main approaches to integrate the marker construct into the target 

locus. The reasons why I used NHEJ are on the one side, the same construct can be 
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re-used for any gene of interest. On the other side, it has been proven that NHEJ is 

the predominant DNA repair mechanism and occurs more frequently than HDR 

(Gilles and Averof, 2014). In the zebrafish, the CRISPR/Cas9 mediated knock-in via 

NHEJ showed a very high efficiency of germ line transmission, which could reach 

34.2% (Auer et al., 2014). Further, even if NHEJ is less precise compared to HDR, 

the enhancer trapping occurs in the non-coding DNA (upstream region or in the 

first intron) but not in the exon, which means the accuracy is actually not required. 

Thus, NHEJ as a feasible approach for knock-in was applied in this study. 

 

5.1.2 The survival rate of injected embryos and the 

concentrations of injection components 

In the CRISPR/Cas9 experiments, in order to increase the possibility of double 

stranded break (DSB), I designed multiple gRNAs, which I mixed for targeting the 

same region (the upstream region or the first intron). In one treatment, the 

plasmid was just linearized at one position. Here, the survival rate of the injected 

animals of the upstream treatment (15.64%) which had two gRNAs targeting sites 

was higher than the first intron treatment (14.41%) which had three gRNAs 

targeting sites (Table 4.2). In the other treatment, the plasmid was cut twice in 

order to remove the backbone from the construct. In this treatment, the survival 

rate of the injected animals of the upstream treatment (21.88%) was also higher 

than the first intron treatment (19.26%). This could be owing to the amount of 

injected plasmids. Generally, more injected components leads to higher lethality. 

Alternatively, it could be that the increased likelihood of inducing DSBs with three 

gRNAs might lead to more damage and consequently death of the animal. 

Moreover, with more gRNAs the likelihood of off target effects might increase. 

 

For the same targeting region and using the same gRNAs, however, the plasmid cut 

twice which had one more gRNA showed the higher survival rate than that of the 

plasmid cut once. In the first intron, the survival rate of the injected animals of the 

plasmid cut twice is 19.26%, while the survival rate of the injected animals of the 

plasmid cut once is 14.14%. In upstream treatment, the plasmid cut twice also 

showed higher survival rate of the injected animals (21.88%) than the plasmid cut 

once (15.64%). Again, the high concentration of injected components could have 

affected the survival rate. However, it is also possible that technical issues affected 

injection quality.  

 

5.1.3 The efficiency of CRISPR/Cas9 in Tribolium 

I finally got nine positive lines, which were all from the linearized repair plasmid 
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without removing the backbone. Six lines came from the treatment targeting the 

upstream region while three came from the treatment targeting the first intron. 

The efficiency of germ line transmission was 2.6% (G0 with positive offspring 

compared to all surviving G0) for the upstream and 1.3% for the first intron, 

respectively (Table 4.2). This was generally consistent with the results of 

Schwertner’s work, which showed the efficiency between 1.7% to 3.9% 

(Schwertner 2016, unpublished). In the zebrafish, the efficiency of germ line 

transmission of the knock-in via NHEJ ranged from 1.2% to 34.2% (Auer et al., 

2014).  

 

Of these nine transgenic lines, only one (No.86) from the upstream region showed 

the Tc-FoxQ2 expression pattern in its offspring (section 4.4.1). The three 

transgenic lines in the first intron showed a similar EGFP expression pattern in the 

anterior median region (Table 4.3). This indicates that probably the insertions of 

these three lines are in the same locus and might have the same orientation. 

Although the EGFP expression was in the anterior median region, it did not show a 

pattern identical to the Tc-FoxQ2 expression pattern. Thus, I did not analyze it 

further. It would be interesting to analyze the expression between Tc-FoxQ2 and 

EGFP by antibody staining with this line, e.g. how far the expression overlaps or if 

the EGFP expression is a subset of Tc-FoxQ2 expressing cells. In the upstream 

region, except for the line 86up which showed a pattern very similar to the 

endogenous Tc-FoxQ2 expression pattern, other lines showed an unexpected EGFP 

expression or no EGFP signal (Table 4.3). One reason for the different patterns 

could be the different orientation of the insertion at the same location, which 

could possibly change the influences of the surrounding enhancers and could lead 

to the different regulatory activity. Due to the fact that the backbone is still present, 

the promoter of the construct is either quite close to the endogenous promoter 

(i.e. ~700 bp upstream of the transcription start site) while it is ~7.5 kb apart in the 

other orientation. Indeed, the line 86up is oriented such that the promoter is close 

to the endogenous one.  

 

Further, the different insertion location, i.e. gRNA1 or gRNA2 within the upstream 

region, could result in different expression patterns because of the different 

location with respect to the surrounding enhancers. If both gRNA1 and gRNA2 

worked at the same time, the entire part between them (~620 bp) would be lost. 

Moreover, the insertion could also have occurred at an off-target site and produce 

a different pattern for that reason. Although the evaluation of the gRNAs has been 

done at the beginning with a bioinformatics tool, this could only minimize 

the potential off-target effects and not completely eliminate them. Since the line 

86up with expected Tc-FoxQ2 expression was available and the integration was 

shown to be as expected, the molecular nature of the other lines was not analyzed 

further. 

 

I did not get any positive transgenic individuals from the treatment in which the 
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plasmid was cut twice to remove the backbone. The reason could be as follows: 

after linearizing two linear DNA fragments were generated: the backbone and the 

construct. The backbone would compete with the pure construct for knock-in, 

which would lead to the reduction of the chances for the expected pure construct. 

It would be possible that the backbone was inserted but was not identified due to 

the lack of the marker.   

 

In summary, by using CRISPR/Cas9 mediated knock-in via NHEJ, I successfully 

generated a Tc-foxQ2 enhancer trap line. In these experiments, the germ line 

transmission was in the range of other reports but not specifically high (1.3%, 

2.6%). In the zebrafish, the efficiency of germ line transmission of knock-in via 

NHEJ could reach 34.2% (Auer et al., 2014). The reasons for the lower germ line 

transmission rate might be the time delay of the Cas9 and gRNA transcription from 

the plasmid. It is unknown when and how efficiently the gRNA is transcribed after 

injection, even if an endogenous promoter is used. The same is true for Cas9. For 

increasing the germ line transmission efficiency, it would be possible to inject 

gRNA and Cas9 as mRNA or inject the linearized repair plasmid. It would be also 

possible to generate a transgenic line expressing Cas9 under the germ line specific 

driver, similar to nanos or vasa in Drosophila (Ren et al., 2013; Sebo et al., 2014) . 

The intention of injecting multiple gRNAs together is to increase the possibilities of 

the DSB, because not all gRNAs work efficiently. However, when combined with 

NHEJ to integrate a repair plasmid, complicated insertion can happen, e.g. the 

orientation of the repair plasmid, the multiple copies of the repair plasmids, which 

make it difficult to identify and understand the insertion. Moreover, the chance of 

off-target may increase with more gRNAs and the intervening fragment could 

insert in the other orientation, which could lead to changes in regulation. 

Therefore, injecting only one efficient gRNA at a time might be a good alternative. 

The T7 Endonuclease assay can be used to test the efficiency of gRNAs but it does 

not exactly reflect the in vivo situation. Regarding the quite good reflection of 

Tc-FoxQ2 expression by the enhancer trap generated in this work, this approach 

might be useful to generate reporters for other genes in the future. 
 

 

5.2 The development of Tc-FoxQ2+ cells to the central 

brain 

5.2.1 The enhancer trap line is a good tool to study the 

development of Tc-FoxQ2+ cells  

In order to study the brain development, neural cells building the brain need to be 
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visualized. Only this way, the question of how NBs generate the corresponding 

lineages and develop into the neuropils at a cellular level in the brain can be 

answered. To this end, transgenic lines marking a specific genes involved in the 

brain development can be generated (Koniszewski et al., 2016). In this study, I 

generated an enhancer trap line (Tc-foxQ2up) which marked the Tc-FoxQ2 positive 

cells by EGFP. The investigation for the overlap of EGFP and Tc-FoxQ2 in Tc-foxQ2up 

line showed an almost complete consistence in the embryo, larva and adult 

(section 4.4). However, still few cells showed divergent expression. Some cells only 

expressed EGFP but not Tc-FoxQ2, indicating these cells shut off Tc-FoxQ2 but still 

had the stable EGFP, or the enhancer trap may drive expression in non-Tc-FoxQ2 

cells. Other cells were only Tc-FoxQ2 positive but did not show EGFP expression. 

Either EGFP expression in Tc-foxQ2up line was delayed or the enhancer trap did 

not mark the expression in these cells. Taken together, despite a low degree of 

unexpected expression, the Tc-foxQ2up line is a good tool to study the 

development of Tc-FoxQ2 positive cells. In a parallel project by Max Farnworth in 

the lab, a bicistronic line was generated in Drosophila where the marker is fused to 

and expressed from the endogenous transcript. Here, a close to 100% overlap was 

observed. Hence, this approach is more exact but also much more labor intensive. 

 

5.2.2 Tc-FoxQ2 lineages contribute to the central complex 

development  

In this work, I identified Tc-FoxQ2+ NBs in the embryonic stage and successfully 

traced two of them and their lineages into the adult stage. The two Tc-FoxQ2+ NBs, 

FAM2 and A-PD, were found to contribute to the CX development. They gave rise 

to a median lineage and a lateral lineage in the brain, respectively (section 4.4.2; 

4.4.3). It is known that the vast majority of cell bodies in the larval brain remain 

during metamorphosis to build the adult brain (Ito and Hotta, 1992; Maurange et 

al., 2008). Hence, it is expected that the larval brain and adult brain basically have 

similar structural characteristics. Indeed, in Tc-foxQ2up line, the larval brain and 

the adult brain showed similar EGFP expression patterns and could be linked 

intuitively based on the position and projection of the cells. This means the 

corresponding cell clusters in the adult brain can be also found in the larval brain. 

Three clusters of cells were observed in each hemisphere in both larval and adult 

brain: a median cluster, a lateral cluster and a posterior cluster (Figure 4.18C; 

Figure 4.19C). In the adult brain, the cells in the median cluster projected their 

axonal tracts through the PB and then extended towards the posterior (Figure 

4.19C-C’’). The upper unit of the CB was marked by EGFP, however, no cell bodies 

and projections could be unequivocally assigned to this signal (Figure 4.19D-D’). A 

comparison with other species might be helpful in this respect: in the grasshopper, 

median cell lineages project their axonal bundles initially into the PB and then 

http://dev.biologists.org/content/139/14/2510#ref-17
http://dev.biologists.org/content/139/23/4297#ref-77
http://dev.biologists.org/content/139/23/4297#ref-77
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reach the CB, connecting the PB and CB by W, X, Y, Z tracts (Boyan and Williams, 

1997; Williams et al., 2005; Williams and Boyan, 2008; Boyan et al., 2008; Boyan 

and Reichert, 2011). Therefore, I assume that the contribution of the marked 

upper unit of the CB possibly originated from the median cluster. However, due to 

the low number of tracts and technical limitations, e.g. the quality of the 

immunostaining or the resolution of the imaging, it was impossible to see and 

trace back these projections. In the larval brain, the cells in the median cluster 

were separately arranged and the axonal projections were not detected (Figure 

4.18B, C: white dashed circles). Interestingly, in the last embryonic stage, the cells 

in the median cluster formed a big stereotypic column and projected across the 

brain midline (Figure 4.16E: arrowhead). Based on these observations, I 

hypothesize that some cells might undergo apoptosis and the remaining ones 

might rearrange during the transition from the embryo to the larva. To test this 

speculation, caspase antibody staining could be performed to check for apoptosis 

(Florentin and Arama, 2012).  

 

It is known in Drosophila that the NBs generated in the embryonic stage are 

responsible for the larval neurogenesis after undergoing a period of quiescence 

during transition (Truman and Bate, 1988; Prokop and Technau, 1991; Ito and 

Hotta, 1992; Maurange et al., 2008). However, in this work, due to the lack of the 

molecular marker for NBs and the technical limitations, NBs in the larval brain, 

even in the last embryonic brain, could not able to be identified. To get a better 

understanding of the correlation of NBs and their lineages in the embryo and larva, 

it would be interesting to perform immunostainings in L1 larval brains with NB 

markers, like anti-Ase and anti-Dpn protein. However, several attempts by others in 

the lab of generating an anti-Ase antibody were not successful. 

 

The lateral cluster tangentially sent the axonal bundles across the midline and 

appeared to innervate the PB in the adult brain (Figure 4.19B-B’’: arrows). It is 

known that the tangential neurons typically arborize within a single subunit of the 

CX (Homberg 1985; Hanesch et al., 1989; Loesel et al., 2002; Phillips-Portillo 2012). 

Hence, I assume that the lateral cluster could be the tangential lineage. In the 

larval brain, the lateral cluster apparently projected outside of the CB upper rim 

(Figure 4.18D-F: arrows), but this statement is based on indirect evidence. This 

assumption could be confirmed by performing anti-synapsin or phalloidin staining, 

which mark the neuropils. In the embryo, the axonal projection from the lateral 

cluster could also be seen but not as obvious as the tracts sent by the median 

cluster (Figure 4.16G: orange dashed circle). They finally joined the axonal tracts 

sent from the median cluster and contributed to the central brain commissures.  

 

Based on the contributions of the lateral cluster and the median cluster in the 

larval and adult brain, I could make a statement that the brain commissures 

marked by Tc-foxQ2up line in the embryo are the CX primodium, thereby revealing 

that Tc-FoxQ2 lineages contribute to the CX development. Indeed, in Schistocerca 

http://dev.biologists.org/content/139/23/4297#ref-121
http://dev.biologists.org/content/136/20/3433?ijkey=09c86bd44e29208ab5500bcfddc395f0cde34d95&keytype2=tf_ipsecsha#ref-41
http://dev.biologists.org/content/139/14/2510#ref-17
http://dev.biologists.org/content/139/14/2510#ref-17
http://dev.biologists.org/content/139/23/4297#ref-77
https://link.springer.com/article/10.1007/s00427-016-0542-7#CR43
https://link.springer.com/article/10.1007/s00427-016-0542-7#CR54
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the CB forms from commissural structures (Boyan et al., 2008b).  

 

5.2.3 Tc-FoxQ2 lineages- type I or type II  

It is known from Drosophila that type I NBs contribute to the small and diffused 

neuropils and MBs in the anterior brain, whereas type II NBs generate large neural 

lineages contributing to the CX (Bello et al., 2008; Izergina et al., 2009). In 

Drosophila, eight type II NBs have been identified to contribute to the CX 

development (Bello et al., 2008; Izergina et al., 2009; Walsh and Doe, 2017). Two 

of them are located more laterally, and six of them called DM1-6 NBs are located in 

the dorsomedial (DM) region generating remarkably large lineages. In Schistocerca, 

the identified four W, X, Y, Z lineages contributing to the CX were also shown to be 

type II lineages (Boyan and Williams 1997; Williams et al., 2005; Williams and 

Boyan 2008; Boyan et al., 2010). In this study, I identified two Tc-FoxQ2 neural 

lineages contributing to the CX development. The FAM2 NB was located in the pars 

intercerebralis giving rise to a median columnar lineage and the A-PD NB was 

located in the lateral area producing a lateral lineage. Interestingly, these two 

neural lineages are not remarkably large lineages because of the small number of 

the cells. The median lineage contained ~65 cells, while the lateral lineage 

contained ~15 cells. It has been shown that type II lineages contain on average 450 

cells, whereas type I lineages contain around 100 to 150 cells (Williams et al., 2005; 

Bello et al., 2008; Williams and Boyan 2008; Izergina et al., 2009; Boyan et al., 2010; 

Pereanu et al., 2010; Riebli et al., 2013). In addition, in Drosophila, type I NBs are 

characterized by the transcription factors Dpn and Ase, and by the differentiation 

factor Pros which is expressed in the cytoplasm. Type II NBs are identified by Dpn 

expression, but not Ase or Pros expression (Zhu et al., 2011; Weng and Cohen, 

2015; Xie et al., 2016). In this work I used Tc-ase as a NB marker to identify the 

Tc-FoxQ2+ NBs. However, Tc-dpn showed an unexpected expression in Tribolium 

(Marita Buescher, personal communication). In the conclusion, I hypothesize that 

Tc-FoxQ2 lineages might be type I lineages. Since the NBs in Tribolium brain have 

not been characterized, it is still difficult to know whether the Tc-foxQ2up line 

marks the type I or type II lineage. 

  

5.2.4 Transcription factors are co-expressed in the Tc-FoxQ2+ 

neuroblasts 

In the Drosophlia embryo, the brain NBs delaminate continuously and generate in 

a reproducible pattern. The identity of each NB is believed to be specified by the 

combination of transcription factors (Urbach and Technau, 2003; Steinmetz et al., 

2010). However, in these studies several genes conserved in the anterior region of 



Discussion 

80 
 

animals had not been included. The identification of Tc-FoxQ2+ NBs during the 

embryogenesis showed that such genes have to be considered. I showed that the 

number of Tc-FoxQ2+ NBs reduced over time (Figure 4.12). Further, I determined 

co-expression of other transcription factors in these Tc-FoxQ2+ NBs.  

5.2.4.1 Tc-six3 is expressed in the FAM2 neuroblast and A-PD 

neuroblast  

The results showed that all Tc-FoxQ2+ NBs in the anterior neuroectoderm were 

Tc-six3 positive from NS8 to NS11 (Figure 4.13A-A’; Figure 4.14A-A’). From NS8 to 

NS14, it was shown that Tc-foxQ2 expression was the subset of Tc-six3 expression 

in the anterior neuroectoderm (Kitzmann et al., 2017). Hence, it is suggested that 

the FAM2 NB which generates the median columnar lineage and the A-PD NB 

which generates the lateral lineage are Tc-six3 positive. Furthermore, the brain 

phenotype of Tc-foxQ2 knock-down and Tc-six3 knock-down in L1 larvae shared 

some features, e.g. the defects in the CB (Posnien et al., 2011b; Kitzmann et al., 

2017), which suggests a correlation of Tc-foxQ2 and Tc-six3 in neural development. 

Therefore, it is suggested that Tc-FoxQ2 and Tc-six3 together (maybe in concert 

with other factors) specify the FAM2 NB and A-PD NB contributing to the CX 

development.  

 

5.2.4.2 Tc-chx is expressed in the FAM2 neuroblast  

It is known that four NBs in each hemisphere, which are located in the pars 

intercerebralis, contribute to the CX development in grasshopper Schistocerca. 

These NBs give rise to the stereotypic neural lineages which send the axon fascicles 

initially to the PB and then to CB via four discrete tracts (W, X, Y, Z) (Boyan and 

Williams, 1997; Williams et al., 2005; Williams and Boyan, 2008; Boyan et al., 2008; 

Boyan and Reichert, 2011). In Drosophila, a similar set of four NBs in each 

hemisphere were also observed, four columnar lineages (DM1-4) which 

corresponded to the W, X, Y ,Z lineages in grasshopper contributing to the CX 

(Izergina et al., 2009; Young and Armstrong 2010; Boyan and Reichert 2011). 

Further, Dchx1 is known to be specifically expressed in the pars intercerebralis (de 

Velasco et al., 2007). In Tribolium, the expression of Tc-chx was also found in the 

pars intercerebralis. Moreover, the expression of Tc-chx was observed to be 

overlapping with Tc-foxQ2 in the pars intercerebralis (Posnien et al., 2011b; 

Kitzmann et al., 2017). Further, Tc-chx was shown to play an important role in the 

CB formation. Tc-chx knock-down led to the loss of the CB (Koniszewski, 2011). One 

Tc-FoxQ2+ NB in the anterior median region, which probably corresponds to the 

pars intercerebralis, were the Tc-chx positive (Figure 4.14C-C’) and contribute to 

the CX. As the four NBs identified in Drosophila and Schistocerca are type II NBs, it 
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is hypothesized that the FAM2 NB is not a homologue of these four NBs. It could 

be an additional NB contributing to the CX. 

 

5.2.4.3 Tc-rx and Tc-ey might play a role in specifying the 

central complex neuroblast  

The identified NBs contributing to the CX are located in the pars intercerebralis of 

Schistocera, as well as in Drosophila (Boyan and Reichert, 2011). Previous studies 

in Tribolium suggested that Tc-rx has no connection with these NBs because Tc-rx is 

not expressed in the pars intercerebralis (Koniszewski, 2011). Instead, Tc-rx was 

shown to be expressed in the lateral neurogenic region (Posnien et al., 2011b; 

Kitzmann et al., 2017). However, it was shown that Tc-rx knock-down resulted in a 

split CB in the L1 larval brain (Koniszewski, 2011). This suggested that Tc-rx was 

probably involved in the formation of the CB. This is in line with the findings in 

Drsophila where rx is required for development of the ellipsoid body (EB) (Davis et 

al., 2003), which is part of the CX. However, it remained unclear, what neural 

lineage was affected in these rx knock-down situations. Based on my findings I can 

hypothesize what NBs might be involved. In this work, I found that Tc-rx was 

expressed in the A-PD NB which was located at the anterolateral region of the 

brain and not in the pars intercerebralis from NS8 to NS11 (Figure 4.13D-D’; Figure 

4.14D-D’). Hence, Tc-rx might play a role in specifying the A-PD NB that forms the 

lateral lineage, which contributes to the CX.  

 

I also found that Tc-ey was expressed in the Tc-rx/FoxQ2+ A-PD NB from NS8 to 

NS11 (Figure 4.13E-E’; Figure 4.14E-E’). Previous studies suggested that Tc-ey 

marks MB NBs since the expression domain of Tc-ey in the anterior neuroectoderm 

of Tribolium was similar to the domain in Drosophila where the MB NBs arise 

(Posnien et al., 2011b). Moreover, ey has been shown to be a key regulator of MB 

development in Drosophila (Kurusu et al., 2000, Noveen et al., 2000; Kunz et al., 

2012). Hence, it appears that the A-PD NB determined here could be one of the 

MB NBs but unexpectedly, it also contributed to the CX. It still needs to be clarified 

whether Tc-ey is required for CX contribution of the A-PD NB.  

 

In summary, Tc-FoxQ2, Tc-six3 and Tc-chx that are co-expressed in the FAM2 NB in 

the pars intercerebralis together probably specify the FAM2 NB, which forms the 

median columnar lineage contributing to the CX in Tribolium. An additional A-PD 

NB, which is located in the anterolateral region, does not belong to the pars 

intercerebralis, but generates the lateral lineage contributing to the CX 

development. This A-PD NB co-expresses Tc-FoxQ2, Tc-six3, possibly Tc-rx and 

Tc-ey. 

 

https://www.sciencedirect.com/science/article/pii/S0925477316300430#bb0105
https://www.sciencedirect.com/science/article/pii/S0925477316300430#bb0105
https://www.sciencedirect.com/science/article/pii/S0925477316300430#bb0175
https://www.sciencedirect.com/science/article/pii/S0925477316300430#bb0250
https://www.sciencedirect.com/science/article/pii/S0925477316300430#bb0170
https://www.sciencedirect.com/science/article/pii/S0925477316300430#bb0170
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5.3 Tc-foxQ2 is involved in building the axon scaffold in 

the central brain  

The protocerebrum is different from the segmental ganglia in several respects. 

Among other issues, the commissures crossing the midline are much more 

prominent in the protocerebrum and they contribute to midline-spanning 

neuropils, which are absent in the VNC. This difference needs to be reflected in 

cellular differences regulated by genes. Genes active in the anterior 

neuroectoderm but not in the more posterior CNS are prime candidates to be 

involved in shaping the difference. Hence, Tc-foxQ2 could be one of these genes. In 

order to study whether Tc-foxQ2 is involved in the axon scaffold formation in the 

embryo, Tc-foxQ2 knock-down was performed in SB animal, combined with the 

immunostaining for ac. tubulin which is a general neuronal marker labeling the 

axons. The axonal bundles spanning the central brain were reduced and/or 

aberrant and the projections across the midline were not formed properly such 

that the commissures were affected after Tc-foxQ2 RNAi (Figure 5.2B, C). In the 

strongest phenotype, the brain commissures were even absent (Figure 5.3C’). This 

complete disorder or loss suggests that Tc-foxQ2 is involved in building the axon 

scaffold in the central brain. 

 

Do Tc-foxQ2 positive cells themselves contribute to the commissures? In 

Tc-foxQ2up line, EGFP positive cells located in the contralateral side projected 

through the initial commissure, but they did not pioneer the primary brain 

commissure (Figure 4.16B: arrowhead, white dashed line). This is based on the 

observation that when the primary brain commissure formed, no co-localization of 

ac. tubulin and EGFP was observed. The EGFP positive commissures were observed 

only later when the ac. tubulin marked commissures were already quite developed. 

However, I cannot exclude some delay of EGFP signal compared to the ac. tubulin 

signal because it might take some time until it diffuses into the axons and 

accumulates sufficient molecules to become detectable. In the adult, the Tc-foxQ2 

positive neurons significantly contributed to PB spanning the midline.  

 

Taken together, functional tests and contribution of marked cells suggest that 

Tc-foxQ2 function indeed contributes to the formation of extensive midline 

structures in the protocerebrum.   
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5.4 The brain phenotype of Tc-foxQ2 in the embryo 

It has been shown that Tc-foxQ2 is required for brain development, leading to 

defects in the CB and the MBs in the L1 larvae in Tc-foxQ2 knock-down 

experiments. The phenotype of Tc-foxQ2 knock-down showed a reduced CB and 

the fusion of the medial lobes of the MBs (Kitzmann et al., 2017). In other species, 

foxQ2 has also been shown to have anterior neural functions. In sea urchin 

Strongylocentrotus and sea anemone cnidarian Nematostella, foxQ2 knock-down 

led to the alteration in the structure of the neurosecretory apical organ (Sinigaglia 

et al., 2013; Yaguchi et al., 2012, 2010, 2008). In the centipede Strigamia, based on 

the expression pattern of foxQ2 in the apical plate, a neural function was also 

proposed (Hunnekuhl and Akam, 2014). One of the aims of this study was to get a 

more precise view on the Tc-foxQ2 brain phenotype. What exactly happened to 

cell bodies and the axonal projections which contribute to the central brain after 

Tc-foxQ2 knock-down? To answer this question, I used different transgenic lines 

and antibodies which marked the central brain and described the Tc-foxQ2 

knock-down phenotypes with these lines. 

 

In the lines E011A-01 (a Tc-rx enhancer trap line from the GEKU screen, in which a 

construct containing EGFP under the control of a 3xP3 promoter is inserted) and 

Tc-rx 178, (a Tc-rx reporter line contains parts of the upstream genomic region of 

Tc-rx fused with basal promoter elements driving DsRedEx) (Koniszewski, 2011), 

Tc-foxQ2 knock-down showed that the marked cells contributing to the central 

brain commissures were almost gone and the number of the cells which 

contributed to the central brain commissures was significantly decreased (Figure 

5.4B; Figure 5.5B). In the line E035004 (an enhancer trap line derived from the 

GEKU screen), the strongest phenotype revealed that the brain hemispheres were 

reduced and fused at the midline, and the brain commissures were completely 

absent (Figure 5.3C). The fact that the entire commissure is lacking (ac. tubulin 

staining) or disturbed (ac. tubulin and imaging lines) shows that Tc-foxQ2 cells do 

not just project across the midline but are required for its formation. These 

findings further confirm that Tc-foxQ2 has an early and central function in the 

formation of the brain commissures. It is likely that the cells or mechanisms 

guiding and forming the axon scaffold are affected after Tc-foxQ2 knock-down, 

which finally leads to a disordered or lacking axon scaffold. Therefore, Tc-foxQ2 

RNAi could lead to reduction or loss of the central brain commissures, which could 

in turn result in the observed phenotype with respect to other cells usually 

projecting across the scaffolds. 

 

In Tc-foxQ2up line, knock-down of Tc-foxQ2 showed a reduced number of cell 

bodies as well as their axonal projections (Figure 5.1B, D). The brain commissures 

which were shown to be in the CX primodium were not completely absent (Figure 

5.1D: arrowhead). It is unclear, whether this reflects the strongest phenotype or 
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whether residual Tc-foxQ2 function could have been present in these animals. In 

order to get better understanding of the loss-of-function phenotype, a Tc-foxQ2 

mutant line should be generated, which is easily done using the CRISPR/Cas9 

system (Garneau et al., 2010; Jinek et al., 2012; Gilles et al., 2015; Schwertner 

2016, unpublished). By knocking in a reporter gene into the coding sequence of 

Tc-foxQ2, a loss of Tc-foxQ2 function would be generated and the insertion would 

be simultaneously visualized by the eye marker. Recent studies showed that in the 

zebrafish phenotypes from the transient knock-down experiments showed quite 

some difference from phenotypes from the stable loss-of-function mutant lines 

(Rossi et al., 2015). It would be interesting to see whether Tc-foxQ2 mutants show 

the completely loss of the CX primordium. Moreover, it would be interesting to 

analyze whether Tc-foxQ2 mutants have additional defects. 

 

5.5 The heterochrony in the central body development 

The timing of the CB development differs in insects. In most hemimetabolous, 

e.g. the orthopteran Schistocerca gregaria, the CB completely develops at the end 

of the embryogenesis, and just undergoes growth in size without major changes in 

morphology during postembryonic development (Boyan and Williams 1997, 2011; 

Williams et al., 2005; Boyan and Reichert 2011). In some species such as flies 

(Musca, Drosophila), butterflies (Pieris), moths (Ephestia) and bees (Apis), the CB 

develops relatively late and is undetectable at late embryonic stage (Panov, 1959). 

In Drosophila, the first identifiable CB appears in the third instar larva, showing the 

immature FB (Young and Armstrong 2010). These timing differences of 

development have been termed “heterochrony” (Gould, 1977; Koniszewski et al., 

2016). The heterochronic development of the CB in different species may be 

related with the functions, which could be explained by the corresponding 

formation of walking legs. In Schistocerca the CB fully developed during 

embryogenesis and the hatched larvae have developed walking legs, whereas in 

Tribolium the hatchlings possess immature walking legs and in Drosophila the 

hatchlings do not have walking legs until become adults (Pfeiffer and Homberg 

2014; Koniszewski et al., 2016).   

 

It is known that in tenebrionid beetles, such as Tribolium and Tenebrio, the CB 

partially forms during the embryogenesis (Wegerhoff and Breidbach 1992; 

Wegerhoff et al., 1996; Koniszewski et al., 2016). In the L1 larval brain of Tribolium, 

the FB, which is the upper unit of the CB, was detected by using synapsin staining. 

The PB was also present in L1 larvae but it was split medially (Koniszewski et al., 

2016). In this work, the CX primodium, which was marked by Tc-foxQ2up line, was 

first detected at stage NS14, showing the axonal bundles projecting towards the 

midline but not yet joining at the midline (Figure 4.16C: arrowhead). At the last 

embryonic stage, the CX primodium spanning the midline and connecting the two 

brain hemispheres was observed (Figure 4.16E: arrowhead). This study allows the 

https://www.ncbi.nlm.nih.gov/pmc/articles/PMC4896989/#CR34
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visualization of the part of the CX primodium which is built by the Tc-FoxQ2 

positive cells in the embryonic stage, further providing the evidence for CX 

development during embryogenesis. In the adult brain, the PB was fully developed, 

which was detected by using synapsin staining (Figure 4.19C’). The CB could be 

marked by the line E011A-01 (data not shown). Here, only the upper unit of the CB 

was marked by Tc-foxQ2up line in the adult brain (Figure 4.19D).  

 

It is known that the Drosophila ortholog of foxQ2 is fd102c, which is expressed in a 

large number of neurons in the brain hemispheres at the late embryonic stage (Lee 

and Frasch, 2004). Hence, marking fd102c cells in Drosophila might help to 

monitor the differences of development. 

 

5.6 Outlook 

 

In this study, I used Tc-ase-RNA intronic probe to mark the NBs. Although it 

showed better resolution than Tc-ase-RNA exonic probe, I was not able to identify 

the Tc-FoxQ2+ NBs at the latest stage (NS15) due to the large number of the cells in 

the brain. Therefore, antibody staining is necessary for the cellular level study. 

Double immunostainings could provide more precise insights about the 

co-localization of the Tc-FoxQ2 and a NB marker (e.g. Tc-Ase or Tc-Dpn) and the 

number of Tc-FoxQ2+ NBs at later stages in the embryo. It would be also interesting 

to generate a transgenic line to mark Tc-ase with a reporter gene by using the 

CRISPR/Cas9 system. The line could be used in combination with the fluorescent 

marker protein together with the Tc-FoxQ2 antibody.  

 

Previous study showed that NBs undergo quiescence at the embryo-larval 

transition in Drosophila (Truman and Bate, 1988). Thus, it would be worth 

investigating the Tc-FoxQ2+ NBs. To this end, phospho-histone H3 (pH3) antibody 

staining which mark the mitotic cells could be done with the embryos at later 

stages and the newly hatched larvae. This could find out if only the Tc-FoxQ2+ NB 

divides or also additional cells close to the Tc-FoxQ2+ NB divide. 

 

This work showed that Tc-foxQ2 knock-down results in a very small number of the 

brains showing the strongest phenotype, which is characterized by the loss of the 

brain commissures. The frequent phenotypes still showed the axonal projections 

across the midline, which seemed not to act on the top level. Thus, the following 

question arises: is this due to a low penetrance of RNAi treatment or a 

compensatory trait of the system? To answer this question, a loss of Tc-foxQ2 

function should be studied. This could be achieved by generating a transgenic 

Tc-foxQ2-null mutant by using the CRISPR/Cas9. Knock-in of a marker into the 

coding sequence of Tc-foxQ2 would lead to a loss of Tc-foxQ2 function. Then these 

mutants could be used to analyze their brain phenotype. It should be analyzed 
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whether the mutants show the strengthened phenotype, like the complete 

absence of the brain commissures and the reduced number of Tc-foxQ2 positive 

cells in the anterior brain. Further, it would be interesting whether Tc-foxQ2-null 

mutants show additional defects. Hence, a Tc-foxQ2-null mutant line could be used 

to test whether the brain phenotype is complete.  

 

It would be also interesting to get more details on the brain defects in Tc-foxQ2 

knock-down larvae. The dissected larval brains could be stained with the neural 

markers which mark the CX, like anti-synapsin, anti-5HT (serotonin), 

anti-myoinhibitory protein (MIP), anti-periviscerokinin (PVK), and anti- TKRP 

(tachykinin-related peptide) (Koniszewski et al., 2016). 

 

The Tc-foxQ2 enhancer trap line also had the potential of further use as a Cre 

recombinase was integrated. Crossing this line with other loxP lines could mark the 

cells permanently with a different fluorescent protein. Additionally, gene ablations 

could be also possible among other Cre/loxP experiments. 



References 

87 
 

 

6 References 

Armstrong, J. D., de Belle, J. S., Wang, Z. & Kaiser, K. Metamorphosis of the mushroom 

bodies; large-scale rearrangements of the neural substrates for associative learning and 

memory in Drosophila. Learning & Memory 5, 102-114 (1998). 

Auer, T. O., Duroure, K., De Cian, A., Concordet, J.-P. & Del Bene, F. Highly efficient 

CRISPR/Cas9-mediated knock-in in zebrafish by homology-independent DNA repair. 

Genome research 24, 142-153 (2014). 

Awata, H., Watanabe, T., Hamanaka, Y., Mito, T., Noji, S., & Mizunami, M. Knockout 

crickets for the study of learning and memory: Dopamine receptor Dop1 mediates 

aversive but not appetitive reinforcement in crickets. Scientific reports 5, 15885 (2015). 

Bailey, T. J., El-Hodiri, H., Zhang, L., Shah, R., Mathers, E. H., & Jamrich, M. Regulation of 

vertebrate eye development by Rx genes. International Journal of Developmental Biology 

48, 761-770 (2004). 

Bassett, A. R., Tibbit, C., Ponting, C. P. & Liu, J. L. Highly efficient targeted 

mutagenesis of Drosophila with the CRISPR/Cas9 system. Cell reports 4, 220-228 

(2013). 

Bayraktar, O. A., Boone, J. Q., Drummond, M. L. & Doe, C. Q. Drosophila type II 

neuroblast lineages keep Prospero levels low to generate large clones that contribute to 

the adult brain central complex. Neural development 5, 26 (2010). 

Beatus, P. & Lendahl, U. Notch and neurogenesis. Journal of neuroscience research 54, 

125-136 (1998). 

Bello, B. C., Izergina, N., Caussinus, E. & Reichert, H. Amplification of neural stem cell 

proliferation by intermediate progenitor cells in Drosophila brain development. Neural 

development 3, 5 (2008). 

Benayoun, B. A., Caburet, S. & Veitia, R. A. Forkhead transcription factors: key players in 

health and disease. Trends in Genetics 27, 224-232 (2011). 

Berghammer, A. J., Klingler, M. & Wimmer, E. A. Genetic techniques: a universal marker 

for transgenic insects. Nature 402, 370 (1999). 

Bernhardt, R. R., Chitnis, A. B., Lindamer, L. & Kuwada, J. Y. Identification of spinal 

neurons in the embryonic and larval zebrafish. Journal of comparative neurology 302, 

603-616 (1990). 

Bhat, K. M. Segment polarity genes in neuroblast formation and identity specification 

during Drosophila neurogenesis. Bioessays 21, 472-485 (1999). 

Bi, H. L., Xu, J., Tan, A. J. & Huang, Y. P. CRISPR/Cas9‐mediated targeted gene mutagenesis 



References 

88 
 

in Spodoptera litura. Insect science 23, 469-477 (2016). 

Biffar, L. Early neurogenesis in the flour beetle Tribolium castaneum, Queen Mary 

University of London, (2013). 

Black, M. M. & Keyser, P. Acetylation of alpha-tubulin in cultured neurons and the 

induction of alpha-tubulin acetylation in PC12 cells by treatment with nerve growth factor. 

Journal of Neuroscience 7, 1833-1842 (1987). 

Boone, J. Q. & Doe, C. Q. Identification of Drosophila type II neuroblast lineages containing 

transit amplifying ganglion mother cells. Developmental neurobiology 68, 1185-1195 

(2008). 

Bossing, T., Udolph, G., Doe, C. Q. & Technau, G. M. The Embryonic Central Nervous 

System Lineages of Drosophila melanogaster: I. Neuroblast Lineages Derived from the 

Ventral Half of the Neuroectoderm. Developmental biology 179, 41-64 (1996). 

Boyan, G. & Liu, Y. Timelines in the insect brain: fates of identified neural stem cells 

generating the central complex in the grasshopper Schistocerca gregaria. Development 

genes and evolution 224, 37-51 (2014). 

Boyan, G., Therianos, S., Williams, J. & Reichert, H. Axogenesis in the embryonic brain of 

the grasshopper Schistocerca gregaria: an identified cell analysis of early brain 

development. Development 121, 75-86 (1995a). 

Boyan, G. & Williams, J. Embryonic development of the pars intercerebralis/central 

complex of the grasshopper. Development genes and evolution 207, 317-329 (1997). 

Boyan, G., Williams, J. & Herbert, Z. Fascicle switching generates a chiasmal 

neuroarchitecture in the embryonic central body of the grasshopper Schistocerca gregaria. 

Arthropod structure & development 37, 539-544 (2008). 

Boyan, G., Williams, J. & Herbert, Z. An ontogenetic analysis of locustatachykinin-like 

expression in the central complex of the grasshopper Schistocerca gregaria. Arthropod 

structure & development 37, 480-491 (2008). 

Boyan, G. & Williams, L. Embryonic development of the insect central complex: insights 

from lineages in the grasshopper and Drosophila. Arthropod structure & development 40, 

334-348 (2011). 

Boyan, G., Williams, L., Legl, A. & Herbert, Z. Proliferative cell types in embryonic lineages 

of the central complex of the grasshopper Schistocerca gregaria. Cell and tissue research 

341, 259-277 (2010). 

Boyan, G., Williams, L. & Meier, T. Organization of the commissural fibers in the adult brain 

of the locust. Journal of Comparative Neurology 332, 358-377 (1993). 

Boyan, G. S. & Reichert, H. Mechanisms for complexity in the brain: generating the insect 

central complex. Trends in neurosciences 34, 247-257 (2011). 

Boyan, G. S., Williams, J. L. D. & Reichert, H. Morphogenetic reorganization of the brain 



References 

89 
 

during embryogenesis in the grasshopper. Journal of comparative neurology 361, 429-440 

(1995b). 

Boyan, G. S., Williams, J. L. D. & Reichert, H. Organization of a midline proliferative cluster 

in the embryonic brain of the grasshopper. Roux's archives of developmental        

biology 205, 45-53 (1995c). 

Brand, M., Jarman, A. P., Jan, L. Y. & Jan, Y. N. asense is a Drosophila neural precursor gene 

and is capable of initiating sense organ formation. Development 119, 1-17 (1993). 

Brandt, R., Rohlfing, T., Rybak, J., Krofczik, S., Maye, A., Westerhoff, M., Hege H. & Menzel, 

R. Three‐dimensional average‐shape atlas of the honeybee brain and its applications. 

Journal of Comparative Neurology 492, 1-19 (2005). 

Brown, S. J., Mahaffey, J. P., Lorenzen, M. D., Denell, R. E. & Mahaffey, J. W. Using RNAi to 

investigate orthologous homeotic gene function during development of distantly related 

insects. Evolution & development 1, 11-15 (1999). 

Brown, S. J.  Shippy, T. D., Miller, S., Bolognesi, R., Beeman, R. W., Lorenzen, M. D., Bucher, 

G., Wimmer E. A. & Klingler, M. The red flour beetle, Tribolium castaneum (Coleoptera): a 

model for studies of development and pest biology. Cold Spring Harbor Protocols 2009, 

pdb. emo126 (2009). 

Bucher, G., Scholten, J. & Klingler, M. Parental RNAi in tribolium (coleoptera). Current 

Biology 12, R85-R86 (2002). 

Cabrera, C. V., Martinez-Arias, A. & Bate, M. The expression of three members of the 

achaete-scute gene complex correlates with neuroblast segregation in Drosophila. Cell 50, 

425-433 (1987). 

Campbell, G., Goring, H., Lin, T., Spana, E., Andersson, S., Doe, C. Q., & Tomlinson, A. RK2, 

a glial-specific homeodomain protein required for embryonic nerve cord condensation and 

viability in Drosophila. Development 120, 2957-2966 (1994). 

Campuzano, S., Carramolino, L., Cabrera, C. V., Ruiz-Gómez, M., Villares, R., Boronat, A., & 

Modolell, J. Molecular genetics of the achaete-scute gene complex of D. melanogaster. Cell 

40, 327-338 (1985). 

Campuzano, S. & Modolell, J. Patterning of the Drosophila nervous system: the 

achaete-scute gene complex. Trends in Genetics 8, 202-208 (1992). 

Carroll, D. Genome engineering with targetable nucleases. Annual review of biochemistry 

83, 409-439 (2014). 

Cayre, M., Strambi, C., Charpin, P., Augier, R., Meyer, M. R., Edwards, J. S., & Strambi, A. 

Neurogenesis in adult insect mushroom bodies. Journal of comparative neurology 371, 

300-310 (1996). 

Clark, I. B., Boyd, J., Hamilton, G., Finnegan, D. J. & Jarman, A. P. D-six4 plays a key role in 

patterning cell identities deriving from the Drosophila mesoderm. Developmental biology 

294, 220-231 (2006). 



References 

90 
 

D'Aniello, E., Pezzotti, M. R., Locascio, A. & Branno, M. Onecut is a direct neural-specific 

transcriptional activator of Rx in Ciona intestinalis. Developmental biology 355, 358-371 

(2011). 

Davis, R. J., Tavsanli, B. C., Dittrich, C., Walldorf, U. & Mardon, G. Drosophila retinal 

homeobox (drx) is not required for establishment of the visual system, but is required for 

brain and clypeus development. Developmental biology 259, 272-287 (2003). 

De Velasco, B., Erclik, T., Shy, D., Sclafani, J., Lipshitz, H., McInnes, R., & Hartenstein, V. 

Specification and development of the pars intercerebralis and pars lateralis, 

neuroendocrine command centers in the Drosophila brain. Developmental biology 302, 

309-323 (2007). 

Doe, C. Q. Molecular markers for identified neuroblasts and ganglion mother cells in the 

Drosophila central nervous system. Development 116, 855-863 (1992). 

Doe, C. Q. Neural stem cells: balancing self-renewal with differentiation. Development 135, 

1575-1587 (2008). 

Doe, C. Q. & Goodman, C. S. Early events in insect neurogenesis: I. Development and 

segmental differences in the pattern of neuronal precursor cells. Developmental biology 

111, 193-205 (1985). 

Dong, Y. & Friedrich, M. Nymphal RNAi: systemic RNAi mediated gene knockdown in 

juvenile grasshopper. BMC biotechnology 5, 25 (2005). 

Dreyer, D., Vitt, H., Dippel, S., Goetz, B., El Jundi, B., Kollmann, M., Huetteroth W. & 

Schachtner, J. 3D standard brain of the red flour beetle Tribolium castaneum: a tool to 

study metamorphic development and adult plasticity. Frontiers in Systems Neuroscience 4, 

3 (2010). 

Egger, B., Chell, J. M. & Brand, A. H. Insights into neural stem cell biology from flies. 

Philosophical Transactions of the Royal Society of London B: Biological Sciences 363, 39-56 

(2008). 

Eggert, T., Hauck, B., Hildebrandt, N., Gehring, W. J. & Walldorf, U. Isolation of a Drosophila 

homolog of the vertebrate homeobox gene Rx and its possible role in brain and eye 

development. Proceedings of the National Academy of Sciences 95, 2343-2348 (1998). 

El-Sherif, E., Averof, M. & Brown, S. J. A segmentation clock operating in blastoderm and 

germband stages of Tribolium development. Development, dev. 085126 (2012). 

El Jundi, B., Heinze, S., Lenschow, C., Kurylas, A., Rohlfing, T., & Homberg, U. The locust 

standard brain: a 3D standard of the central complex as a platform for neural network 

analysis. Frontiers in systems neuroscience 3, 21 (2010). 

Elphick, M., Williams, L. & Shea, M. New features of the locust optic lobe: evidence of a 

role for nitric oxide in insect vision. Journal of Experimental Biology 199, 2395-2407 

(1996). 

Erclik, T., Hartenstein, V., Lipshitz, H. D. & McInnes, R. R. Conserved role of the Vsx genes 



References 

91 
 

supports a monophyletic origin for bilaterian visual systems. Current Biology 18, 

1278-1287 (2008). 

Fascetti, N. & Baumgartner, S. Expression of Drosophila Ten-a, a dimeric receptor during 

embryonic development. Mechanisms of development 114, 197-200 (2002). 

Florentin, A. & Arama, E. Caspase levels and execution efficiencies determine the 

apoptotic potential of the cell. J Cell Biol 196, 513-527 (2012). 

Garneau, J. E., Dupuis, M. È., Villion, M., Romero, D. A., Barrangou, R., Boyaval, P., Fremaux, 

C., Horvath, P., Magadán, A. H. & Moineau S. The CRISPR/Cas bacterial immune system 

cleaves bacteriophage and plasmid DNA. Nature 468, 67 (2010). 

Gasiunas, G., Barrangou, R., Horvath, P. & Siksnys, V. Cas9–crRNA ribonucleoprotein 

complex mediates specific DNA cleavage for adaptive immunity in bacteria. Proceedings of 

the National Academy of Sciences 109, E2579-E2586 (2012). 

Gilles, A. F. & Averof, M. Functional genetics for all: engineered nucleases, CRISPR and the 

gene editing revolution. EvoDevo 5, 43 (2014). 

Gilles, A. F., Schinko, J. B. & Averof, M. Efficient CRISPR-mediated gene targeting and 

transgene replacement in the beetle Tribolium castaneum. Development 142, 2832-2839 

(2015). 

Gratz, S. J., Wildonger, J., Harrison, M. M. & O'Connor-Giles, K. M. CRISPR/Cas9-mediated 

genome engineering and the promise of designer flies on demand. Fly 7, 249-255 (2013). 

Grimaldi, D. & Engel, M. S. Evolution of the Insects. (Cambridge University Press, 2005). 

Hammond, A., Galizi, R., Kyrou, K., Simoni, A., Siniscalchi, C., Katsanos, D., et al. A 

CRISPR-Cas9 gene drive system targeting female reproduction in the malaria mosquito 

vector Anopheles gambiae. Nature biotechnology 34, 78 (2016). 

Hanesch, U., Fischbach, K.-F. & Heisenberg, M. Neuronal architecture of the central 

complex in Drosophila melanogaster. Cell and Tissue Research 257, 343-366 (1989). 

Hartenstein, V. & Campos-Ortega, J. A. Early neurogenesis in wild-type Drosophila 

melanogaster. Wilhelm Roux's archives of developmental biology 193, 308-325 (1984). 

Hartenstein, V., Spindler, S., Pereanu, W. & Fung, S. Brain development in Drosophila 

melanogaster 1-31 (2008). 

Harzsch, S., Anger, K. & Dawirs, R. Immunocytochemical detection of acetylated 

alpha-tubulin and Drosophila synapsin in the embryonic crustacean nervous system. 

International Journal of Developmental Biology 41, 477-484 (2002). 

Hashimoto, H., Yabe, T., Hirata, T., Shimizu, T., Bae, Y. K., Yamanaka, Y., Hirano Toshio & Hibi, 

M. Expression of the zinc finger gene fez-like in zebrafish forebrain. Mechanisms of 

development 97, 191-195 (2000). 

Heinze, S., Florman, J., Asokaraj, S., El Jundi, B. & Reppert, S. M. Anatomical basis of sun 

compass navigation II: the neuronal composition of the central complex of the monarch 

https://www.nature.com/articles/nature09523#auth-7
https://www.nature.com/articles/nature09523#auth-8
https://www.nature.com/articles/nature09523#auth-9
https://www.nature.com/articles/nature09523#auth-9


References 

92 
 

butterfly. Journal of Comparative Neurology 521, 267-298 (2013). 

Heitzler, P., Bourouis, M., Ruel, L., Carteret, C. & Simpson, P. Genes of the Enhancer of split 

and achaete-scute complexes are required for a regulatory loop between Notch and Delta 

during lateral signalling in Drosophila. Development 122, 161-171 (1996). 

Hirata, T., Nakazawa, M., Muraoka, O., Nakayama, R., Suda, Y., & Hibi, M. Zinc-finger genes 

Fez and Fez-like function in the establishment of diencephalon subdivisions. Development 

133, 3993-4004 (2006). 

Homberg, U. Interneurones of the central complex in the bee brain (Apis mellifera, L.). 

Journal of insect physiology 31, 251-264 (1985). 

Homberg, U. Evolution of the central complex in the arthropod brain with respect to the 

visual system. Arthropod structure & development 37, 347-362 (2008). 

Homberg, U., Heinze, S., Pfeiffer, K., Kinoshita, M. & El Jundi, B. Central neural coding of 

sky polarization in insects. Philosophical Transactions of the Royal Society of London B: 

Biological Sciences 366, 680-687 (2011). 

Homem, C. C. & Knoblich, J. A. Drosophila neuroblasts: a model for stem cell biology. 

Development 139, 4297-4310 (2012). 

Horvath, P. & Barrangou, R. CRISPR/Cas, the immune system of bacteria and archaea. 

Science 327, 167-170 (2010). 

Hunnekuhl, V. S. & Akam, M. An anterior medial cell population with an apical-organ-like 

transcriptional profile that pioneers the central nervous system in the centipede Strigamia 

maritima. Developmental biology 396, 136-149 (2014). 

Ito, K., Awano, W., Suzuki, K., Hiromi, Y. & Yamamoto, D. The Drosophila mushroom body is 

a quadruple structure of clonal units each of which contains a virtually identical set of 

neurones and glial cells. Development 124, 761-771 (1997). 

Ito, K. & Hotta, Y. Proliferation pattern of postembryonic neuroblasts in the brain of 

Drosophila melanogaster. Developmental biology 149, 134-148 (1992). 

Izergina, N., Balmer, J., Bello, B. & Reichert, H. Postembryonic development of transit 

amplifying neuroblast lineages in the Drosophila brain. Neural development 4, 44 (2009). 

Jefferis, G. S., Potter, C. J., Chan, A. M., Marin, E. C., Rohlfing, T., Maurer, C. R., & Luo, 

L.Comprehensive maps of Drosophila higher olfactory centers: spatially segregated fruit 

and pheromone representation. Cell 128, 1187-1203 (2007). 

Jiang, W., Bikard, D., Cox, D., Zhang, F. & Marraffini, L. A. RNA-guided editing of bacterial 

genomes using CRISPR-Cas systems. Nature biotechnology 31, 233 (2013). 

Jinek, M., Chylinski, K., Fonfara, I., Hauer, M., Doudna, J. A., & Charpentier, E. A 

programmable dual-RNA–guided DNA endonuclease in adaptive bacterial immunity. 

Science, 1225829 (2012). 

Kaiser, A. Immuncytochemische Färbungen und 3D-Rekonstruktionen am Zentralkomplex 



References 

93 
 

der Westlichen Honigbiene Apis mellifera, (2014). 

Karlsson, D., Baumgardt, M. & Thor, S. Segment-specific neuronal subtype specification by 

the integration of anteroposterior and temporal cues. PLoS biology 8, e1000368 (2010). 

Kaufmann, E. & Knöchel, W. Five years on the wings of fork head. Mechanisms of 

development 57, 3-20 (1996). 

Kittelmann, S. Formation of the Clypeolabral Region During Embryonic Head Development 

of the Red Flour Beetle Tribolium castaneum, Niedersächsische Staats-und 

Universitätsbibliothek Göttingen, (2012). 

Kittelmann, S., Ulrich, J., Posnien, N. & Bucher, G. Changes in anterior head patterning 

underlie the evolution of long germ embryogenesis. Developmental biology 374, 174-184 

(2013). 

Kitzmann, P., Weißkopf, M., Schacht, M. I. & Bucher, G. foxQ2 has a key role in anterior 

head and central brain patterning in insects. Development, dev. 147637 (2017). 

Knoblich, J. A. Mechanisms of asymmetric stem cell division. Cell 132, 583-597 (2008). 

Koniszewski, N. Functional analysis of embryonic brain development in Tribolium 

castaneum. (2011). 

Koniszewski, N. D. B., Kollmann, M., Bigham, M., Farnworth, M., He, B., Büscher, M., et al. 

The insect central complex as model for heterochronic brain development—background, 

concepts, and tools. Development genes and evolution 226, 209-219 (2016). 

Kraft, K. F., Massey, E. M., Kolb, D., Walldorf, U. & Urbach, R. Retinal homeobox promotes 

cell growth, proliferation and survival of mushroom body neuroblasts in the Drosophila 

brain. Mechanisms of development 142, 50-61 (2016). 

Kume, T., Jiang, H., Topczewska, J. M. & Hogan, B. L. The murine winged helix transcription 

factors, Foxc1 and Foxc2, are both required for cardiovascular development and 

somitogenesis. Genes & development 15, 2470-2482 (2001). 

Kunz, T., Kraft, K. F., Technau, G. M. & Urbach, R. Origin of Drosophila mushroom body 

neuroblasts and generation of divergent embryonic lineages. Development, dev. 077883 

(2012). 

Kurusu, M., Awasaki, T., Masuda-Nakagawa, L. M., Kawauchi, H., Ito, K., & 

Furukubo-Tokunaga, K. Embryonic and larval development of the Drosophila mushroom 

bodies: concentric layer subdivisions and the role of fasciclin II. Development 129, 409-419 

(2002). 

Kurusu, M., Nagao, T., Walldorf, U., Flister, S., Gehring, W. J., & Furukubo-Tokunaga, K. 

Genetic control of development of the mushroom bodies, the associative learning centers 

in the Drosophila brain, by the eyeless, twin of eyeless, and Dachshund genes. Proceedings 

of the National Academy of Sciences 97, 2140-2144 (2000). 

Kurylas, A. E., Rohlfing, T., Krofczik, S., Jenett, A. & Homberg, U. Standardized atlas of the 



References 

94 
 

brain of the desert locust, Schistocerca gregaria. Cell and tissue research 333, 125 (2008). 

Larsen, C., Shy, D., Spindler, S. R., Fung, S., Pereanu, W., Younossi-Hartenstein, A., & 

Hartenstein, V. Patterns of growth, axonal extension and axonal arborization of neuronal 

lineages in the developing Drosophila brain. Developmental biology 335, 289-304 (2009). 

Lee, B. P. & Jones, B. W. Transcriptional regulation of the Drosophila glial gene repo. 

Mechanisms of development 122, 849-862 (2005). 

Lee, H. H. & Frasch, M. Survey of forkhead domain encoding genes in the Drosophila 

genome: classification and embryonic expression patterns. Developmental dynamics: an 

official publication of the American Association of Anatomists 229, 357-366 (2004). 

Lee, T. Wiring the Drosophila Brain with Individually Tailored Neural Lineages. Current 

Biology 27, R77-R82 (2017). 

Li, S.-J. & Hochstrasser, M. A new protease required for cell-cycle progression in yeast. 

Nature 398, 246 (1999). 

Li, Y., Zhang, J., Chen, D., Yang, P., Jiang, F., Wang, X., & Kang, L.. CRISPR/Cas9 in locusts: 

Successful establishment of an olfactory deficiency line by targeting the mutagenesis of an 

odorant receptor co-receptor (Orco). Insect biochemistry and molecular biology 79, 27-35 

(2016). 

Loesel, R., Nässel, D. R. & Strausfeld, N. J. Common design in a unique midline neuropil in 

the brains of arthropods. Arthropod Structure & Development 31, 77-91 (2002). 

Lorenzen, M. D., Brown, S. J., Denell, R. E. & Beeman, R. W. Cloning and characterization of 

the Tribolium castaneum eye-color genes encoding tryptophan oxygenase and kynurenine 

3-monooxygenase. Genetics 160, 225-234 (2002). 

Mahlapuu, M., Ormestad, M., Enerback, S. & Carlsson, P. The forkhead transcription factor 

Foxf1 is required for differentiation of extra-embryonic and lateral plate mesoderm. 

Development 128, 155-166 (2001). 

Marin, E. C., Jefferis, G. S., Komiyama, T., Zhu, H. & Luo, L. Representation of the 

glomerular olfactory map in the Drosophila brain. Cell 109, 243-255 (2002). 

Mathers, P., Grinberg, A., Mahon, K. & Jamrich, M. The Rx homeobox gene is essential for 

vertebrate eye development. Nature 387, 603 (1997). 

Maurange, C., Cheng, L. & Gould, A. P. Temporal transcription factors and their targets 

schedule the end of neural proliferation in Drosophila. Cell 133, 891-902 (2008). 

McGinnis, W. & Krumlauf, R. Homeobox genes and axial patterning. Cell 68, 283-302 

(1992). 

McNamara, K. J. A guide to the nomenclature of heterochrony. Journal of Paleontology 60, 

4-13 (1986). 

 



References 

95 
 

Mossessova, E. & Lima, C. D. Ulp1-SUMO crystal structure and genetic analysis reveal 

conserved interactions and a regulatory element essential for cell growth in yeast. 

Molecular cell 5, 865-876 (2000). 

Nériec, N. & Desplan, C. From the eye to the brain: development of the Drosophila visual 

system. Current topics in developmental biology 116, 247-271 (2016). 

Noveen, A., Daniel, A. & Hartenstein, V. Early development of the Drosophila mushroom 

body: the roles of eyeless and dachshund. Development 127, 3475-3488 (2000). 

Oberhofer, G., Grossmann, D., Siemanowski, J. L., Beissbarth, T. & Bucher, G. 

Wnt/β-catenin signaling integrates patterning and metabolism of the insect growth zone. 

Development, dev. 112797 (2014). 

Oh, S. W., Harris, J. A., Ng, L., Winslow, B., Cain, N., Mihalas, S., Wang, Q., Lau, C., Kuan, L., 

Henry, A., et al. A mesoscale connectome of the mouse brain. Nature 508, 207 (2014). 

Overton, P. M., Meadows, L. A., Urban, J. & Russell, S. Evidence for differential and 

redundant function of the Sox genes Dichaete and SoxN during CNS development in 

Drosophila. Development 129, 4219-4228 (2002). 

Panov, A. Structure of the insect brain at successive stages of postembryonic development. 

II. The central body. Entomol Rev 38, 276-283 (1959). 

Pereanu, W., Kumar, A., Jennett, A., Reichert, H. & Hartenstein, V. Development‐based 

compartmentalization of the Drosophila central brain. Journal of Comparative Neurology 

518, 2996-3023 (2010). 

Pereanu, W., Younossi‐Hartenstein, A., Lovick, J., Spindler, S. & Hartenstein, V. 

Lineage‐based analysis of the development of the central complex of the drosophila brain. 

Journal of Comparative Neurology 519, 661-689 (2011). 

Pfeiffer, K. & Homberg, U. Organization and functional roles of the central complex in the 

insect brain. Annual review of entomology 59, 165-184 (2014). 

Phillips‐Portillo, J. The central complex of the flesh fly, Neobellieria bullata: Recordings and 

morphologies of protocerebral inputs and small‐field neurons. Journal of Comparative 

Neurology 520, 3088-3104 (2012). 

Port, F., Chen, H.-M., Lee, T. & Bullock, S. L. Optimized CRISPR/Cas tools for efficient 

germline and somatic genome engineering in Drosophila. Proceedings of the National 

Academy of Sciences 111, E2967-E2976 (2014). 

Posnien, N., Koniszewski, N. & Bucher, G. Insect Tc-six4 marks a unit with similarity to 

vertebrate placodes. Developmental biology 350, 208-216 (2011a). 

Posnien, N., Koniszewski, N. D. B., Hein, H. J. & Bucher, G. Candidate gene screen in the red 

flour beetle Tribolium reveals six3 as ancient regulator of anterior median head and 

central complex development. PLoS genetics 7, e1002416 (2011b). 

 



References 

96 
 

Prokop, A. & Technau, G. M. The origin of postembryonic neuroblasts in the ventral nerve 

cord of Drosophila melanogaster. Development 111, 79-88 (1991). 

Prokop, A. & Technau, G. M. Normal function of the mushroom body defect gene of 

Drosophila is required for the regulation of the number and proliferation of neuroblasts. 

Developmental biology 161, 321-337 (1994). 

Range, R. C. & Wei, Z. An anterior signaling center patterns and sizes the anterior 

neuroectoderm of the sea urchin embryo. Development, dev. 128165 (2016). 

Reichert, H. Drosophila neural stem cells: cell cycle control of self-renewal, differentiation, 

and termination in brain development. Cell Cycle in Development. Springer 529-546 

(2011). 

Reichert H, Boyan G. Building a brain: developmental insights in insects. Trends in 

neurosciences 20, 258-264 (1997). 

Rein, K., Zöckler, M., Mader, M. T., Grübel, C. & Heisenberg, M. The Drosophila standard 

brain. Current Biology 12, 227-231 (2002). 

Ren, X., Sun, J., Housden, B. E., Hu, Y., Roesel, C., Lin, S., et al. Optimized gene editing 

technology for Drosophila melanogaster using germ line-specific Cas9. Proceedings of the 

National Academy of Sciences 110, 19012-19017 (2013). 

Ren, X., Yang, Z., Xu, J., Sun, J., Mao, D., Hu, Y., et al. Enhanced specificity and efficiency of 

the CRISPR/Cas9 system with optimized sgRNA parameters in Drosophila. Cell reports 9, 

1151-1162 (2014). 

Richards, S., Gibbs, R. A., Weinstock, G. M., Brown, S. J., Denell, R., Beeman, R. W., Gibbs, R. 

et al. The genome of the model beetle and pest Tribolium castaneum. Nature 452, 

949–955 (2008). 

Riebli, N., Viktorin, G. & Reichert, H. Early-born neurons in type II neuroblast lineages 

establish a larval primordium and integrate into adult circuitry during central complex 

development in Drosophila. Neural development 8, 6 (2013). 

Rossi, A., Kontarakis, Z., Gerri, C., Nolte, H., Hölper, S., Krüger, M., & Stainier, D. Y. Genetic 

compensation induced by deleterious mutations but not gene knockdowns. Nature 524, 

230 (2015). 

Rybak, J., Kuß, A., Hans, L., Zachow, S., Hege, H. C., Lienhard, M., Singer J., Neubert K. & 

Menzel, R. The digital bee brain: integrating and managing neurons in a common 3D 

reference system. Frontiers in systems neuroscience 4, 30 (2010). 

Saitoh, H., Pu, R. T. & Dasso, M. SUMO-1: wrestling with a new ubiquitin-related modifier. 

Trends in biochemical sciences 22, 374-376 (1997). 

Sander, J. D. & Joung, J. K. CRISPR-Cas systems for editing, regulating and targeting 

genomes. Nature biotechnology 32, 347 (2014). 

 



References 

97 
 

Santagata, S., Resh, C., Hejnol, A., Martindale, M. Q. & Passamaneck, Y. J. Development of 

the larval anterior neurogenic domains of Terebratalia transversa (Brachiopoda) provides 

insights into the diversification of larval apical organs and the spiralian nervous system. 

Evodevo 3, 3 (2012). 

Sarrazin, A. F., Peel, A. D. & Averof, M. A segmentation clock with two-segment periodicity 

in insects. Science 336, 338-341 (2012). 

Schinko, J. B., Hillebrand, K. & Bucher, G. Heat shock-mediated misexpression of genes in 

the beetle Tribolium castaneum. Development genes and evolution 222, 287-298 (2012). 

Schinko, J. B. et al. Functionality of the GAL4/UAS system in Tribolium requires the use of 

endogenous core promoters. BMC developmental biology 10, 53 (2010). 

Schmid, A., Chiba, A. & Doe, C. Q. Clonal analysis of Drosophila embryonic neuroblasts: 

neural cell types, axon projections and muscle targets. Development 126, 4653-4689 

(1999). 

Schmidt, H., Rickert, C., Bossing, T., Vef, O., Urban, J., & Technau, G. M. The embryonic 

central nervous system lineages of Drosophila melanogaster. Developmental biology 189, 

186-204 (1997). 

Schmitt-Engel, C., Schultheis, D., Schwirz, J., Ströhlein, N., Troelenberg, N., Majumdar, U., 

et al. The iBeetle large-scale RNAi screen reveals gene functions for insect development 

and physiology. Nature communications 6, 7822 (2015). 

Schneider, L. E., Sun, E. T., Garland, D. J. & Taghert, P. H. An immunocytochemical study of 

the FMRF amide neuropeptide gene products in Drosophila. Journal of Comparative 

Neurology 337, 446-460 (1993). 

Sebo, Z. L., Lee, H. B., Peng, Y. & Guo, Y. A simplified and efficient germline-specific 

CRISPR/Cas9 system for Drosophila genomic engineering. Fly 8, 52-57 (2014). 

Seimiya, M. & Gehring, W. J. The Drosophila homeobox gene optix is capable of inducing 

ectopic eyes by an eyeless-independent mechanism. Development 127, 1879-1886 (2000). 

Sinigaglia, C., Busengdal, H., Leclere, L., Technau, U. & Rentzsch, F. The bilaterian head 

patterning gene six3/6 controls aboral domain development in a cnidarian. PLoS biology 

11, e1001488 (2013). 

Skeath, J. B. At the nexus between pattern formation and cell‐type specification: the 

generation of individual neuroblast fates in the Drosophila embryonic central nervous 

system. Bioessays 21, 922-931 (1999). 

Skeath, J. B. & Carroll, S. B. Regulation of proneural gene expression and cell fate during 

neuroblast segregation in the Drosophila embryo. Development 114, 939-946 (1992). 

Skeath, J. B., Panganiban, G., Selegue, J. & Carroll, S. Gene regulation in two dimensions: 

the proneural achaete and scute genes are controlled by combinations of axis-patterning 

genes through a common intergenic control region. Genes & Development 6, 2606-2619 

(1992). 



References 

98 
 

Steinmetz, P. R., Urbach, R., Posnien, N., Eriksson, J., Kostyuchenko, R. P., Brena, C., Guy, K., 

Akam, M., Bucher, G. & Arendt, D. Six3 demarcates the anterior-most developing brain 

region in bilaterian animals. EvoDevo 1, 14 (2010). 

Stocker, R., Lienhard, M., Borst, A. & Fischbach, K. Neuronal architecture of the antennal 

lobe in Drosophila melanogaster. Cell and tissue research 262, 9-34 (1990). 

Strausfeld, N. J., Sinakevitch, I., Brown, S. M. & Farris, S. M. Ground plan of the insect 

mushroom body: functional and evolutionary implications. Journal of Comparative 

Neurology 513, 265-291 (2009). 

Strausfeld, N. J., Sinakevitch, I. & Vilinsky, I. The mushroom bodies of Drosophila 

melanogaster: an immunocytological and golgi study of Kenyon cell organization in the 

calyces and lobes. Microscopy research and technique 62, 151-169 (2003). 

Strauss, R. The central complex and the genetic dissection of locomotor behaviour. Current 

opinion in neurobiology 12, 633-638 (2002). 

Strobl, F., Schmitz, A. & Stelzer, E. H. Live imaging of Tribolium castaneum embryonic 

development using light-sheet–based fluorescence microscopy. Nature protocols 10, 1486 

(2015). 

Strobl, F. & Stelzer, E. H. Non-invasive long-term fluorescence live imaging of Tribolium 

castaneum embryos. Development, dev. 108795 (2014). 

Szymczak-Workman, A. L., Vignali, K. M. & Vignali, D. A. Design and construction of 2A 

peptide-linked multicistronic vectors. Cold Spring Harbor Protocols 2012, pdb. ip067876 

(2012). 

Tanaka, N. K., Tanimoto, H. & Ito, K. Neuronal assemblies of the Drosophila mushroom 

body. Journal of Comparative Neurology 508, 711-755 (2008). 

Technau, G. M., Berger, C. & Urbach, R. Generation of cell diversity and segmental pattern 

in the embryonic central nervous system of Drosophila. Developmental dynamics: an 

official publication of the American Association of Anatomists 235, 861-869 (2006). 

Therianos, S., Leuzinger, S., Hirth, F., Goodman, C. S. & Reichert, H. Embryonic 

development of the Drosophila brain: formation of commissural and descending pathways. 

Development 121, 3849-3860 (1995). 

Tosches, M. A. & Arendt, D. The bilaterian forebrain: an evolutionary chimaera. Current 

opinion in neurobiology 23, 1080-1089 (2013). 

Trauner, J., Schinko, J., Lorenzen, M. D., Shippy, T. D., Wimmer, E. A., Beeman, R. W., 

Klingler M., Bucher G. & Brown, S. J. Large-scale insertional mutagenesis of a coleopteran 

stored grain pest, the red flour beetle Tribolium castaneum, identifies embryonic lethal 

mutations and enhancer traps. BMC biology 7, 73 (2009). 

Truman, J. W. & Bate, M. Spatial and temporal patterns of neurogenesis in the central 

nervous system of Drosophila melanogaster. Developmental biology 125, 145-157 (1988). 



References 

99 
 

Urbach, R. & Technau, G. M. Early steps in building the insect brain: neuroblast formation 

and segmental patterning in the developing brain of different insect species. Arthropod 

structure & development 32, 103-123 (2003a). 

Urbach, R. & Technau, G. M. Molecular markers for identified neuroblasts in the 

developing brain of Drosophila. Development 130, 3621-3637 (2003b). 

Urbach, R. & Technau, G. M. Neuroblast formation and patterning during early brain 

development in Drosophila. Bioessays 26, 739-751 (2004). 

Vitzthum, H., Homberg, U. & Agricola, H. Distribution of Dip‐allatostatin I‐like 

immunoreactivity in the brain of the locust Schistocerca gregaria with detailed analysis of 

immunostaining in the central complex. Journal of Comparative Neurology 369, 419-437 

(1996). 

Walldorf, U., Kiewe, A., Wickert, M., Ronshaugen, M. & McGinnis, W. Homeobrain, a novel 

paired-like homeobox gene is expressed in the Drosophila brain. Mechanisms of 

development 96, 141-144 (2000). 

Walsh, K. T. & Doe, C. Q. Drosophila embryonic type II neuroblasts: origin, temporal 

patterning, and contribution to the adult central complex. Development, dev. 157826 

(2017). 

Wang, J., Zhang, H., Wang, H., Zhao, S., Zuo, Y., Yang, Y., & Wu, Y. Functional 

validation of cadherin as a receptor of Bt toxin Cry1Ac in Helicoverpa armigera 

utilizing the CRISPR/Cas9 system. Insect biochemistry and molecular biology 76, 

11-17 (2016). 

Wegerhoff, R. & Breidbach, O. Structure and development of the larval central complex in 

a holometabolous insect, the beetle Tenebrio molitor. Cell and tissue research 268, 

341-358 (1992). 

Wegerhoff, R., Breidbach, O. & Lobemeier, M. Development of locustatachykinin 

immunopositive neurons in the central complex of the beetle Tenebrio molitor. Journal of 

Comparative Neurology 375, 157-166 (1996). 

Weinrich, A., Kunst, M., Wirmer, A., Holstein, G. R. & Heinrich, R. Suppression of 

grasshopper sound production by nitric oxide-releasing neurons of the central complex. 

Journal of comparative physiology A 194, 763-776 (2008). 

Weng, M., Golden, K. L. & Lee, C.-Y. dFezf/Earmuff maintains the restricted developmental 

potential of intermediate neural progenitors in Drosophila. Developmental cell 18, 126-135 

(2010). 

Weng, R. & Cohen, S. M. Control of Drosophila Type I and Type II central brain neuroblast 

proliferation by bantam microRNA. Development 142, 3713-3720 (2015). 

Wheeler, S. R., Carrico, M. L., Wilson, B. A., Brown, S. J. & Skeath, J. B. The expression and 

function of the achaete-scute genes in Tribolium castaneum reveals conservation and 

variation in neural pattern formation and cell fate specification. Development 130, 



References 

100 
 

4373-4381 (2003). 

Williams, J. Anatomical studies of the insect central nervous system: A ground‐plan of the 

midbrain and an introduction to the central complex in the locust, Schistocerca gregaria 

(Orthoptera). Journal of Zoology 176, 67-86 (1975). 

Williams, J. & Boyan, G. Building the central complex of the grasshopper Schistocerca 

gregaria: axons pioneering the w, x, y, z tracts project onto the primary commissural 

fascicle of the brain. Arthropod structure & development 37, 129-140 (2008). 

Williams, J., Guentner, M. & Boyan, G. Building the central complex of the grasshopper 

Schistocerca gregaria: temporal topology organizes the neuroarchitecture of the w, x, y, z 

tracts. Arthropod Structure & Development 34, 97-110 (2005). 

Xie, Y., Li, X., Deng, X., Hou, Y., O'Hara, K., Urso, A., Peng Y., Chen L. & Zhu, S. The Ets 

protein Pointed prevents both premature differentiation and dedifferentiation of 

Drosophila intermediate neural progenitors. Development, dev. 137281 (2016). 

Yaguchi, J., Angerer, L. M., Inaba, K. & Yaguchi, S. Zinc finger homeobox is required for the 

differentiation of serotonergic neurons in the sea urchin embryo. Developmental biology 

363, 74-83 (2012). 

Yaguchi, S., Yaguchi, J., Angerer, R. C. & Angerer, L. M. A Wnt-FoxQ2-nodal pathway links 

primary and secondary axis specification in sea urchin embryos. Developmental cell 14, 

97-107 (2008). 

Yaguchi, S., Yaguchi, J., Wei, Z., Shiba, K., Angerer, L. M., & Inaba, K. ankAT-1 is a novel gene 

mediating the apical tuft formation in the sea urchin embryo. Developmental biology 348, 

67-75 (2010). 

Yang, J. S., Awasaki, T., Yu, H. H., He, Y., Ding, P., Kao, J. C., & Lee, T. Diverse neuronal 

lineages make stereotyped contributions to the Drosophila locomotor control center, the 

central complex. Journal of Comparative Neurology 521, 2645-2662 (2013). 

Young, J. & Armstrong, J. Building the central complex in Drosophila: the generation and 

development of distinct neural subsets. Journal of Comparative Neurology 518, 1525-1541 

(2010). 

Younossi‐Hartenstein, A., Nassif, C., Green, P. & Hartenstein, V. Early neurogenesis of the 

Drosophila brain. Journal of Comparative Neurology 370, 313-329 (1996). 

Younossi‐Hartenstein, A., Nguyen, B., Shy, D. & Hartenstein, V. Embryonic origin of the 

Drosophila brain neuropile. Journal of Comparative Neurology 497, 981-998 (2006). 

Zacharias, D., Leslie, J., Williams, D., Meier, T. & Reichert, H. Neurogenesis in the insect 

brain: cellular identification and molecular characterization of brain neuroblasts in the 

grasshopper embryo. Development 118, 941-955 (1993). 

Zaffran, S., Das, G. & Frasch, M. The NK-2 homeobox gene scarecrow (scro) is expressed in 

pharynx, ventral nerve cord and brain of Drosophila embryos. Mechanisms of 

development 94, 237-241 (2000). 



References 

101 
 

Zaffran, S., Küchler, A., Lee, H.-H. & Frasch, M. biniou (FoxF), a central component in a 

regulatory network controlling visceral mesoderm development and midgut 

morphogenesis in Drosophila. Genes & development 15, 2900-2915 (2001). 

Zhu, L., Mon, H., Xu, J., Lee, J. M. & Kusakabe, T. CRISPR/Cas9-mediated knockout of 

factors in non-homologous end joining pathway enhances gene targeting in silkworm cells. 

Scientific reports 5, 18103 (2015). 

Zhu, S., Barshow, S., Wildonger, J., Jan, L. Y. & Jan, Y.-N. Ets transcription factor Pointed 

promotes the generation of intermediate neural progenitors in Drosophila larval brains. 

Proceedings of the National Academy of Sciences 108, 20615-20620 (2011).



Appendix 

102 
 

 

7 Appendix 

7.1 Abbreviations 

 

2A 

AL 

A-PD 

A-PV 

bhsp 

CB    

CNS  

CRISPR 

CX 

DAPI                 

DC 

Dm 

DSB 

DsRed   

dsRNA                        

EB 

EGFP 

FAM 

FB 

GFP                  

GMC 

gRNA 

HDR 

self cleaving peptide allowing polycistronic expression 

antennal lobe 

anterior-posterodorsal  

anterior-posteroventral 

regulatory region of heat shock protein 

central body 

central nervous system 

clustered regularly interspaced short palindromic repeats 

central complex  

4',6-diamidino-2-phenylindole 

deuterocerebrum  

prefix, Drosophila melanogaster 

double stranded break 

Discosoma sp. red fluorescent protein 

double-stranded RNA 

ellipsoid body  

enhanced GFP 

FoxQ2 anteromedian 

fan-shaped body 

green fluorescent protein 

ganglion mother cell 

guide RNA 

homology directed repair  
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His 

hsp68 

IPTG 

L1                   

LAL 

LSM 

MB 

NB 

NHJE 

NO 

PB 

PC 

PI 

pRNAi 

RNAi              

SB 

SUMO 

SV40               

Tc 

TC 

TSA 

VNC 

vw 

wt 

hexahistidine 

heat shock protein68 

Isopropyl β-D-1-thiogalactopyranoside 

first larval instar  

lateral accessory lobe 

laser scanning microscope 

mushroom body 

neuroblast 

non-homologous end joining 

noduli 

protocerebral bridge  

protocererbrum 

pars intercerebralis 

parental RNAi 

RNA interference 

San Bernadino  

small ubiquitin-like modifier 

stop/poly adenylation-signal 

prefix, Tribolium  castaneum 

tritocerebrum 

tyramide signal amplification 

ventral nerve cord 

vermillion white 

wild type 
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7.2 Primers and gRNAs used in this work 

 

 

Table 7.1 Primers sequences and purposes used for cloning. 

Primer Sequence Purpose 

BH_N_ter_fwd CCAGGTCTCATGGTATGTGCAGTAACGAGA

CTCCGG 

 

Cloning of Tc-foxQ2 

N-terminal fragment BH_N_ter_rev GGGGGTCTCCTCGAGGAAGAGCGGGTAG

CAG 

BH_C_ter_fwd CCAGGTCTCATGGTTCCACGTCCGTTTATCA

CAC 

 

Cloning of Tc-foxQ2 

C-terminal fragment BH_C_ter_rev GGGGGTCTCCTCGAGTTAAGAGTCTGTGG

TGTCGGTGGC 

BH_gRNA3_fwd  GCCACTGTTACCAAATATTGGTCC gRNA testing by 

T7 assay 
BH_gRNA3_rev GCGGTTTGTACGCAAATTTG 

RT1_EGFP_bhsp_rev  
TGCTCACCATGTTTGACTTTGAATTCACTA

GTAAATAATTCACTCAACTTTGTTAAAG 

 

 

 

 

Cloning of bhsp, 

EGFP, 2A and Cre 

RT2_bhsp_EGFP_fwd  
AGTGAATTCAAAGTCAAACATGGTGAGCA

AGGGCG 

RT3_2A_EGFP_rev  

GTCTCCTGCTTGCTTTAACAGAGAGAAGT

TCGTGGCTCCGGATCCCTTGTACAGCTCGT

CCATGCC 

RT4_2A_Cre_fwd  

GCCACGAACTTCTCTCTGTTAAAGCAAGC

AGGAGACGTGGAAGAAAACCCCGGTCCT

ATGTCCAATTTACTGACCGTACACCAA 

RT5_3xP3_fwd  
TCTAGACATTATTCATTAGAGACTAATTCA

ATTAGAGCTAATTCAATTAGGATCC 

 

 

 

 

Cloning of 3xP3, 

vermillion and Sv40 

  

RT6_Sv40_Cre_rev  
AATGGAAACAATTAAGATGAGTTTGGACA

AACCACA 

RT7_Sv40_Cre_fwd  
TTGTCCAAACTCATCTTAATTGTTTCCATTC

GACACGT 

RT8_Sv40_vw_rev  
GTATGGCTGATTATGACTAATCGCCATCTT

CCAGCA 

RT9_Sv40_vw_fwd  
GGAAGATGGCGATTAGTCATAATCAGCCA

TACCACA 

RT10_ebony_fwd  
GTCGGGCCCGAACCGGGCAGCCCGCCTCC

TGGCGTTTCATATATAAGCGCGGTCTCG 

Cloning of ebony 

site with ApaI 

RT11_yellow_fwd  
GTCTCTAGAGCGATATAGTTGGAGCCAGC

TGGATTATTCATTAGAGACTAATTC 

Cloning of yellow 

site with XbaI 
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BH_AG _fwd GCGCTGGCATTTTTAAATCACG  

Testing the  

insertion site BH_AG_rev ATACTGTAGAGCTGGAGCC 

BH_EGFP_rev TGGTGCAGATGAACTTCAG 

BH_insertUp_fwd GCGCTGGCATTTTTAAATCACG  

Establishing the 

homozygous stock BH_insert_fwd TGCTTTGAGTCGCTTGCTTA 

BH_insertDown_rev CCCTCAGAAACCCTCAGTTG 

 

 

Table 7.2 gRNAs target sequences and oligos used for generating gRNAs. The PAM 

sequence is marked in red. The orange sequence represents the complementary 

overhangs to the vector generated by BsaI digestion.  

Name 

of 

gRNA 

Genomic target sequence Sense oligo Antisense oligo 

gRNA1 GGGCGTTACTGTCACCCTCCAGG TTCGGGCGTTACTGTCACCCTCC AAACGGAGGGTGACAGTAACGCC 

gRNA2 GTGGCGGGGCGGAGCCAACGCGG TTCGTGGCGGGGCGGAGCCAACG AAACCGTTGGCTCCGCCCCGCCA 

gRNA3 GTGAAGCACTGAATCCTACCTGG TTCGTGAAGCACTGAATCCTACC AAACGGTAGGATTCAGTGCTTCA 

gRNA4 GAAGCACTGAATCCTACCTGGGG TTCGAAGCACTGAATCCTACCTG AAACCAGGTAGGATTCAGTGCTT 

gRNA5 GAATCTGCAGACACAACCCAAGG TTCGAATCTGCAGACACAACCCA AAACTGGGTTGTGTCTGCAGATT 

gRNA- 

eb 
GAACCGGGCAGCCCGCCTCCTGG TTCGAACCGGGCAGCCCGCCTCC AAACGGAGGCGGGCTGCCCGGTT 

gRNA- 

ye 
GCGATATAGTTGGAGCCAGCTGG TTCGCGATATAGTTGGAGCCAGC AAACGCTGGCTCCAACTATATCG 

 

Table 7.3 Plasmids used as PCR templates and molecular cloning. 

Plasmid name Description 

pJET1.2 backbone for knock-in construct cloning 

#82 pBac[3xP3-gTc'v; Tc'ems-overex] used to amplify 3xP3, Tc-vw 

#169 pSLfa[Tc-hsp_p-ECFP-SV40] used to amplify SV40 

# 133 pSLfa[Tc’hsp5’-Cre recomb-3’UTR]fa used to amplify Cre 

# 65 pBac[3xP3-gTc'v; Tc'hsp-Promotor RC] used to amplify bhsp 
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7.3 Quantification of the cell number in this study 

 

Table 7.4 Number of Tc-FoxQ2+ neuroblasts during embryogenesis. 

Stage/No. No.1       No.2 No.3 No.4  No.5 No.6 Mean  

NS8 

NS11 

NS14           

15 

10  

6             

16 

9 

5 

15 

9 

6 

12 

11 

5 

17 

12 

7 

16 

10 

5        

15 

10 

6 

 

 

Table 7.5 Number of cells in respective groups at stage NS13 of Tc-foxQ2  

enhancer trap line. 

Location/No. No.1       No.2 No.3 No.4  No.5 Mean 

Anterior 

neuroectoderm 
89 93 84 85 96 89 

Median lineage 26 28 33 31 24 28 

 

 

Table 7.6 Number of cells in respective groups at stage NS13 of Tc-foxQ2  

enhancer trap line in Tc-foxQ2 RNAi. 

Location/No. No.1       No.2 No.3 No.4  No.5 Mean  

Anterior 

neuroectoderm 
45 50 28 27 43 39 

Median lineage 11 10 9 6 8 9 

 

Table 7.7 Number of cells in the median lineage at stage NS14 of Tc-foxQ2 

enhancer trap line. 

Location/No. No.1       No.2 No.3 No.4  No.5 Mean 

Median lineage 43 37 40 44 39 41 
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Table 7.8 Number of cells in respective groups at stage NS15 of Tc-foxQ2 

enhancer trap line. 

Location/No. No.1       No.2 No.3 No.4  Mean  

Median lineage 68 62 71 58 65 

Lateral lineage 11 18 15 17 15 

 

 

Table 7.9 Number of cells in median and lateral lineages at stage  

NS15 of Tc-foxQ2 enhancer trap line after Tc-foxQ2 RNAi. 

Location/No. No.1       No.2 No.3 No.4  Mean  

Median lineage 

and lateral lineage 
34 28 36 32 33 

 

Table 7.10 Number of cells in respective groups of the line E035004. 

Location/No.  No.1       No.2 No.3 No.4 Mean  

Median group 30 28 27 24 27 

Lateral group 36 31 27 34 32 

Posterior group 38 40 41 36 39 

Total number 104 99 95 94 98 

 

 

Table 7.11 Number of cells in respective groups of line E035004 in Tc-foxQ2 RNAi. 

Location/No.  No.1       No.2 No.3 No.4 Mean 

Median group 8 17 15 18 15 

Lateral group 7 16 22 17 16 

Posterior group 22 28 17 16 20 

Total number 37 61 54 51 51 

 

 

 



Appendix 

108 
 

Table 7.12 Number of cells in respective groups of line E011A-01. 

Location/No.  No.1       No.2 No.3 No.4  No.5 No.6 Mean  

Median group 48 42 49 40 40 39 43 

Lateral group 28 35 31 30 37 43 34 

Total number 76 77 80 70 77 82 77 

 

 

Table 7.13 Number of cells in respective groups of line E011A-01 in Tc-foxQ2 RNAi. 

Location/No.  No.1       No.2 No.3 No.4  No.5 No.6 Mean  

Median group 30 25 34 21 23 21 26 

Lateral group 19 18 15 13 9 10 14 

Total number 49 43 48 34 32 31 40 

 

 

Table 7.14 Number of cells of Tc-rx reporter line in wt and in Tc-foxQ2 RNAi. 

 No.1       No.2 No.3 No.4  No.5 No.6 Mean  

WT 

RNAi           

35 

11      

42 

9 

43 

7 

36 

11 

41 

12 

44 

6        

40 

9 
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7.4 Vectors used in this study 

 

 

 
 

 

Figure 7.1 pET (His-SUMO-Tc’foxQ2-C). C terminal Tc-foxQ2 was cloned into pET SUMO 

vector which also contained His tag and SUMO. 
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Figure 7.2 pJET1.2 (yellow-3xP3-Tc’vw-SV40; ebony-Tc’bhsp-EGFP-2A-Cre). 

 

 

 

 

 

 

 

Figure 7.3 pJET1.2 (3xP3-Tc’vw-SV40; ebony-Tc’bhsp-EGFP-2A-Cre). 
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