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1 Abstract	
The	 eukaryotic	 splicing	 of	 precursors	 to	 mRNA	 is	 facilitated	 by	 a	 highly	 dynamic,	 multi-
megadalton	 macromolecular	 machine	 termed	 the	 spliceosome.	 The	 underlying	 chemical	
reaction	features	the	excision	of	an	intron,	which	is	followed	by	the	re-ligation	of	two	exons	with	
single	nucleotide	precision.	The	spliceosome	therefore	actively	participates	in	the	flow	of	genetic	
information.	 How	 catalysis	 is	 mechanistically	 achieved	 and	 why	 the	 dynamic	 nature	 of	 the	
molecular	machine	is	essential	for	its	function	was	poorly	understood	in	the	past.		

This	 work	 presents	 the	 first	 high-resolution	 structures	 of	 human	 spliceosomes	 in	 the	 pre-
catalytic	and	the	catalytically	activated	phase	of	assembly.	Elucidated	by	cryo-EM,	the	molecular	
architectures	of	the	B	and	C*	complex	reveal	significant	insights	into	the	mechanism	of	catalytic	
activation	and	general	activity.	The	pre-catalytic	B	complex	thereby	shows	a	distinctive	spatial	
separation	 of	 the	 reactive	 pre-mRNA	 BS-A	 and	 5’SS	 elements	 during	 spliceosomal	 assembly.	
Mechanistically,	the	structure	sheds	light	on	the	tremendous	restructuring	events	that	take	place	
upon	the	 integration	of	 the	 tri-snRNP	 into	 the	pre-spliceosomal	A	complex.	B-specific	proteins	
like	 PRP38,	 SNU23,	 MFAP1	 or	 SMU1	 specifically	 stabilize	 the	 B	complex	 configuration	 and	
prevent	premature	activation	by	contacting	the	important	U6	snRNA	ACAGA	box	helix	and	RNA	
helicase	BRR2.	 Intriguingly,	a	detailed	comparison	between	the	yeast	and	human	pre-catalytic	
spliceosome	structures	unexpectedly	reveals	a	potentially	different	catalytic	activation	pathway	
in	higher	and	lower	eukaryotes.		

The	molecular	architecture	of	the	C*	complex	highlights	a	profound	conservation	of	the	catalytic	
core	of	the	assembly	between	species	once	the	spliceosome	is	catalytically	activated.	Unexpected	
differences	 nonetheless	 exist	 between	 the	 structural	 organization	 of	 yeast	 and	 human	
spliceosomes:	for	example,	the	ACAGA	box	and	BSH	helices	are	characteristically	extended	in	the	
human	 spliceosome,	 which	 potentially	 compensates	 for	 the	 degenerate	 appearance	 of	 the	
corresponding	signal	sequences	 in	the	pre-mRNA	of	higher	eukaryotes.	 In	addition,	metazoan-
specific	 proteins	 such	 as	 RBM22	 or	 IBP160	 (Aquarius)	 can	 be	 localized	 and	 likely	 assist	 in	
modulating	the	splicing	activity	by	interacting	with	the	pre-mRNA	and	proximal	protein	factors.	
Large-scale	remodelling	events	of	the	remaining	U2	snRNP	components	are	furthermore	found	
to	convey	their	functionally	essential	dynamic	trajectories	onto	the	much	smaller	entities	at	the	
catalytic	core	of	the	C*	complex.	For	example,	the	BSH	that	spatially	occupies	the	catalytic	centre	
in	the	post-step	1	C	complex	is	repositioned	accordingly	in	the	pre-step	2	C*	complex.		

Besides	clarifying	the	molecular	architecture	of	the	spliceosome	itself,	 the	results	presented	in	
this	work	contribute	towards	a	better	understanding	of	the	involved	assembly	pathways	and	the	
mechanism	 of	 catalysis.	 The	 substantial	 differences	 between	 yeast	 and	 human	 spliceosomes	
during	 catalytic	 activation	 and	 in	 the	 handling	 of	 pre-mRNA	 stabilization	 within	 catalytically	
activated	spliceosomes	may	furthermore	add	to	the	evolutionary	understanding	of	RNA	splicing.		

					

1	Abstract	
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2 Introduction	

2.1 Molecular	machines	
Molecular	 machines	 are	 the	 functional	 entities	 that	 carry	 out	 all	 work	 within	 the	 cell.	
Comparable	to	their	macroscopic	counterparts,	molecular	machines	process	a	defined	set	of	raw	
materials	 in	 a	 characteristic	 way	 in	 order	 to	 obtain	 a	 specific	 product.	 In	 a	 molecular,	
microscopic	 context	 this	means	 that	molecular	machines	 usually	 catalyse	 and	 control	 a	well-
defined	 chemical	 reaction	 by	 appropriately	 positioning	 the	 individual	 reactants	 at	 their	
specifically	 organized	 catalytic	 centre.	 The	 following	 sections	 will	 introduce	 the	 evolutionary	
development	of	molecular	machines	 in	 life,	 their	 catalytic	 capabilities	 and	 their	 general,	 often	
modular	appearance.					

2.1.1 The	rise	of	molecular	machines	

Energy	 is	 employed	 in	 all	 kingdoms	 of	 life	 to	 chemically	 transform	 matter	 from	 the	 direct	
surroundings	 into	 structurally	 better-defined	 assemblies	 of	 functional	 relevance	 –	 a	 key	
principle	of	the	survival	and	function	of	every	self-sustaining	organism.	While	thermal	energy,	in	
the	 natural,	 molecular	 context,	 is	 available	 at	 all	 times	 and	 directly	 resulting	 in	 Brownian	
motion,	other	energy	sources	–	such	as	those	stored	in	chemical	bonds	or	electromagnetic	fields	
–	may	 be	 utilized	whenever	 available	 or	 needed.	 In	 life,	 the	 process	 of	 evolution,	 fostered	 by	
billions	 of	 years	 of	 trial	 and	 error	 types	 of	 experiments,	 eventually	 found	 some	 of	 the	 most	
elegant	solutions	to	the	problem	of	how	to	combine	a	limited	number	of	chemical	elements	and	
the	 energy	 available	 at	 a	 certain	 area	 in	 order	 to	 form	 small	 (organic)	molecules,	 but	 equally	
well	multi-million	atom	conglomerates	of	specific	function.		

Viewed	 as	 a	 combinatorial	 problem	 where	 a	 certain	 amount	 of	 atomic	 building	 blocks	 are	
available	in	order	to	be	rearranged	by	limited	quantities	and	types	of	energy	until	a	“functional”	
solution	is	found,	it	turns	out	that	the	time	required	for	this	process	to	be	successful	is	directly	
correlated	to	the	total	amount	of	sampling	possible.	Therefore,	while	the	actual	origin	of	life	is	
still	 under	 debate,	 it	 becomes	 inevitable	 that	 small	 organic	 molecules	 with	 little	 structural	
complexity	must	have	initially	made	the	beginning.	By	adding	time,	the	right	environment	and	a	
further	 myriad	 rounds	 of	 recombination,	 ribonucleic	 acids	 (RNA)	 eventually	 assembled	 and	
likely	 laid	 the	 foundation	 for	 the	 very	 first	 molecular	 machines	 (Joyce,	 1989;	 Yarus,	 2018).		
Beginning	with	 the	most	 basic	 catalytically	 active	 entities	 of	 di-	 or	mononucleotides,	 some	 of	
which	are	 still	utilized	as	essential	 cofactors	 in	 today’s	modern	 life	enzyme	chemistry	 (White,	
1976;	 Yarus,	 2011),	 more	 complex	 structures	 were	 derived,	 paving	 the	 way	 for	 genetic	
reproduction	and	every	other	cellular	function.				

2.1.2 The	machinery	of	the	Cell	

Since	 the	 rate	 of	 an	 uncatalyzed	 chemical	 reaction	 is	 often	 found	 to	 be	 too	 slow	 to	 foster	 a	
biological	 process,	 kinetics	 need	 to	 be	 accelerated	 through	 more	 efficient	 catalysis.	 While	
evolution	must	have	 initially	solved	a	seemingly	 infinite	number	of	trials	 in	order	to	construct	
the	 first	molecular	machine	 that	 e.g.	 catalyses	 a	 certain	 chemical	 reaction,	 the	 evolved	 spatial	
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arrangement	of	atoms	in	that	enzyme	then	consequently	allowed	for	the	directed	catalysis	of	e.g.	
the	 very	 same	 reaction	 with	 much	 improved	 specificity	 and	 rate.	 Viewed	 in	 the	 light	 of	 this	
Gedankenexperiment,	efficient	(macro)	molecules	that	positively	influence	the	rate	of	a	specific	
(bio)	 chemical	 reaction	 are	 absolutely	 essential	 for	 maintaining	 homeostasis	 in	 any	 living	
organism.	 In	 fact,	 the	 metabolism	 and	 reproductive	 capability	 of	 any	 cell	 is	 compellingly	
dependent	on	the	function	of	molecular	machines,	which	often	directly	execute	or	are	involved	
in	enzymatic	functionality.		

While	the	exact	number	of	different	molecular	complexes	in	the	cell	is	not	known,	in	particular	
those	comprising	the	proteome,	it	is	estimated	that	the	human	genome	encodes	anywhere	from	
several	 tens	of	 thousands	 to	millions	of	 functional	entities	 (Ponomarenko	et	al.,	2016).	Out	of	
this	pool,	enzymes	make	up	a	significant	fraction	and	are	commonly	classified	according	to	their	
functions	 into	 six	 subsets.	Oxidoreductases	 catalyse	 redox	 reactions;	Transferases,	Hydrolases	
and	 Lyases	 specifically	 break	 and	 potentially	 reform	 a	 different	 chemical	 bond;	 Isomerases	
selectively	 isomerise	 a	 certain	 molecule;	 and	 finally	 Ligases,	 which	 specifically	 create	 bonds	
between	two	previously	unconnected	molecules	(Cornish-Bowden,	2014).	All	of	these	molecular	
machines	 therefore	 execute	 a	 specific	 catalytic	 function.	 The	 structural	 and	 biochemical	
characterization	of	molecular	machines	during	the	last	century	has	yielded	detailed	insights	into	
the	function,	requirements,	and	order	of	the	enzymatic	processes	that	catalyse	the	chemistry	of	
life.	

2.1.3 Types,	sizes	and	building	blocks	

The	 function	 and	 organization	 of	 molecular	 machines	 often	 appears	 to	 resemble	 that	 of	 the	
much	larger	mechanical	devices,	such	as	those	that	are	man-made	from	metal	or	other	materials.	
In	 this	 light,	 considering	a	macroscopic	machine,	 it	will	 always	have	been	designed	 to	 serve	a	
dedicated	 purpose.	 In	 a	 generalized	 manner	 this	 purpose	 then	 aims	 at	 facilitating	 a	 certain	
process	 as	 efficiently	 as	 possible;	 for	 example,	 cutting	 a	 piece	 of	wood	with	 a	 circular	 saw	or	
providing	 rotational	motion	using	 the	 torque	vectoring	components	of	 a	 fuel-powered	engine.	
Every	device	of	this	kind	will	consist	of	a	functional	area,	e.g.	the	saw	blade	in	the	example	of	the	
circular	saw	and	some	surrounding	scaffolding	material,	such	as	the	housing	and	handles	of	the	
depicted	tool.	Furthermore,	every	machine	is	constructed	from	a	certain	material,	or	a	mixture	
of	multiple;	may	it	be	wood,	metal	or	plastic.		

Enzymes,	 or	molecular	machines,	 are	 equally	 well	 composed	 from	 a	 limited	 set	 of	 structural	
entities:	 essentially	 the	 20	 amino	 acids	 and/or	 certain	 nucleic	 acids.	 Within	 the	 microscopic	
world,	 instead	 of	 materials	 like	 wood	 or	 metal,	 these	 molecular	 building	 blocks	 directly	
assemble	the	entire	framework	of	any	molecular	machine:	the	mechanical	scaffold	or	“housing”	
as	 well	 as	 the	 catalytically	 active	 site	 of	 the	 enzyme.	 Importantly,	 the	 catalytic	 centre	 of	 any	
enzyme	 can	 only	 be	 functional	 if	 the	 molecular	 scaffold	 enclosing	 it	 is	 found	 to	 be	 in	 its	
predestined	 spatial	 conformation.	 Hence,	 the	 catalytic	 properties	 of	 an	 enzyme	 are	 directly	
dependent	on	the	structural	entities	that	frame	the	catalytically	active	area.	The	latter	may	then	
catalyse	a	specific	chemical	reaction	by	arranging	a	defined	set	of	reactants	in	a	spatially-precise	
manner.	 Individual	 reactive	 groups,	 ions	 or	 molecules	 that	 are	 commonly	 present	 in	 close	
proximity	 can	 then	 interact	with	a	 selectively-bound	 reactant	 in	order	 to	perform	 the	desired	
chemical	 reaction.	 This	 carefully-controlled	molecular	 environment	 ensures	 a	 high	 selectivity	
for	 and	 control	 over	 the	 reaction	 educts	 and	 products,	 while	 precisely	 targeting	 the	 catalytic	
activity	to	the	reactants	of	choice.	Briefly	illustrating	this	chemical	precision	it	is	interesting	to	
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note	that	enzymes	even	routinely	perform	enantioselective	catalysis	(Jaeger	and	Eggert,	2004);	
a	process	that	is	generally	hard	to	achieve	in	non-biocatalytic	chemistry.		

To	 elucidate	 some	 of	 the	 general	 features	 resulting	 in	 the	 great	 diversity	 of	 enzymatic	
functionality,	the	following	subsections	will	give	a	short	introduction	to	the	commonly	observed	
molecular	 frameworks	 of	 enzymatic	 complexes,	 their	 sizes,	 and	 a	 frequently	 recognized	
structural	modularity.			

2.1.3.1 Molecular frameworks 

While	the	moieties	in	the	active	centre	of	a	molecular	machine	actually	facilitate	the	chemistry	of	
an	enzymatic	reaction,	 the	molecular	 framework	surrounding	this	area	 is	equally	 important	 in	
maintaining	and	regulating	the	catalytic	activity	of	any	enzyme.	In	nature,	enzymatic	complexes	
are	therefore	generally	composed	of	either	nucleic	acids	entirely,	a	hybrid	structure	of	nucleic	
acids	and	protein	components,	or	exclusively	proteins.		

As	mentioned	before,	biocatalysts	 relying	on	nucleic	acid	chemistry	entirely	are	 thought	 to	be	
the	 earliest	 representatives	of	 their	 kind.	Termed	 ribozymes	 (ribonucleic	 acid	 enzymes),	 they	
specifically	 catalyse	 phosphate	 group	 transfers	 and	 peptide	 bond	 formation	 reactions	 (Fedor	
and	Williamson,	2005).	Some	ribozymes	thereby	completely	rely	on	nucleic	acids	as	molecular	
scaffolds	and	catalytic	moieties,	emphasising	the	importance	of	ribonucleic	acids	as	chemically	
diverse	 building	 blocks	 within	 molecular	 machine	 architecture.	 Enzymes	 of	 this	 family	
commonly	catalyse	phosphodiester	bond	cleavage	and	transfer	by	an	SN2-type-in-line	reaction	
mechanism,	a	type	of	reaction	that	is	crucially	important	in	nucleic	acid	processing	and	splicing	
(Long	and	Uhlenbeck,	1993;	Scott	and	Klug,	1996).	One	such	example	are	self-cleaving	hairpin	
ribozymes,	which	catalyse	a	specific	cleavage	reaction	utilizing	the	2’	hydroxyl	group	of	a	nucleic	
acid’s	ribose	as	the	nucleophile.	The	process	thus	generates	a	cleaved,	free	5’	hydroxyl	terminus	
at	 one	 nucleobase	 and	 a	 cyclic	 2’,3’	 phosphate	 termini	 at	 the	 other	 end	 of	 the	 cleavage	 site	
(Ferré-D'Amaré	 et	 al.,	 1998).	 	 Strikingly,	 the	RNA	moieties	 involved	were	 found	 perform	 this	
type	 of	 catalysis	 entirely	 based	 on	 nucleic	 acid	 chemistry	 alone,	 in	 particular	 without	 the	
involvement	 of	 water,	 metals	 or	 other	 cofactors	 during	 the	 reaction	 (Nesbitt	 et	 al.,	 1997).	 A	
second	class	of	ribozymes	that	exclusively	utilize	ribonucleic	acids	as	their	molecular	framework	
commonly	 feature	 divalent	 metal	 cations	 and	 water	 molecules	 as	 cofactors	 to	 perform	 self-
splicing,	 instead	 of	 self-cleavage	 (Fedor	 and	 Williamson,	 2005).	 The	 catalysed	 reaction	 is	
reversible	 and	 specifically	 removes	 a	 certain	 intronic	 sequence	 from	 a	 preliminary	 RNA	
transcript.	 During	 catalysis,	 cofactors	 like	water	molecules	 and	 two	Mg2+	ions	 are	 involved	 in	
first	 cleaving	a	phosphodiester	bond	at	 a	particular	position	 then	 initiating	 the	 religation	 to	a	
different,	appropriately	positioned	downstream	RNA	3’	hydroxyl	group	 in	 the	reverse	manner	
(Steitz	 and	 Steitz,	 1993).	 The	 Group	 I	 and	 II	 self-splicing	 introns	 are	 particularly	 important	
representatives	 of	 this	 class	 of	 enzymes,	 of	 which	 the	 corresponding	 crystal	 structures	
significantly	 aided	 in	 explaining	 their	 catalytic	mechanism	 (Golden	 et	 al.,	 1998;	 Kruger	 et	 al.,	
1982;	Toor	et	al.,	2008).	Considering	the	rigidity	and	catalytic	activity	of	 these	complexes	 it	 is	
noteworthy	 that	 divalent	 metal	 cations	 likewise	 often	 associate	 with	 nucleic	 acid-based	
molecular	frameworks	in	a	structurally	supportive	manner.	Most	relevantly,	these	interactions	
are	 promoted	 between	 hard,	 divalent	 cations	 like	 Mg2+	 and	 the	 various	 oxygens	 of	 the	
nucleobases	 and	 their	 phosphates.	 Furthermore,	 metal	 cations	 are	 frequently	 integrated	 at	
different	 regions	 of	 the	 molecular	 framework	 that	 are	 characteristic	 for	 the	 function	 of	 the	
ribozyme.	Efficiently	neutralizing	negative	charges	(e.g.	those	of	the	phosphate	backbone),	these	
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cations	 thus	 enable	 a	 closer	 and	 structurally	 more	 rigid	 packing	 of	 RNA/based	 structures	
(Draper,	2004;	Draper	et	al.,	2005).		

Further	 extending	 the	defined	but	 limited	 chemistry	of	 nucleic	 acid	moieties	 alone,	molecular	
machines	of	 greater	 catalytic	potential	 developed.	 	 The	 incorporation	of	protein	domains	 into	
the	previously	RNA-only	molecular	framework	therefore	resulted	in	a	significant	hybrid	class	of	
enzymes	termed	ribonucleoproteins	(RNP),	catalysing	reactions	of	greater	variability.	While	the	
actual	catalytic	centre	of	 these	complexes	 is	still	comprised	of	RNA	only,	some	or	many	of	 the	
structural	domains	enveloping	 the	active	 site	actually	 consist	of	 amino	acids.	Evolutionarily,	 a	
plausible	 hypothesis	 states	 that	 ribosomes	 were	 the	 first	 representatives	 of	 this	 hybrid	 RNP	
class	of	 enzymes	 (Root-Bernstein	and	Root-Bernstein,	2015;	2016).	Composed	of	 significantly	
more	RNA	than	amino	acid	residues	by	weight	(Londei	et	al.,	1983),	its	active	centre	promotes	
catalysis	 through	 structurally	 defined	 interactions	 between	 nucleobases	 and	 their	 ribose	
moieties,	 water	molecules	 and	 the	 amino	 acid	 educts	 and	 products	 (Leung	 et	 al.,	 2011).	 The	
peptide	 transfer	 required	 for	 protein	 synthesis	 is	 then	 achieved	 in	 a	 two-step	 tetrahedral	
intermediate	 mechanism	 (Hiller	 et	 al.,	 2011).	 The	 spliceosome	 family	 represents	 another	
crucially	 important	member	of	 the	 hybrid	molecular	 framework	RNP	 class	 of	 enzymes.	While	
spliceosome	dependent	precursor	messenger	RNA	(pre-mRNA)	splicing	 is	catalysed	through	a	
two-metal	mechanism	by	an	RNA-derived	 catalytic	 centre,	 similar	 to	 that	of	 the	Group	 II	 self-
splicing	 intron	ribozyme	described	above,	80-90%	of	 the	molecular	machine	 is	composed	of	a	
protein	scaffold,	rather	than	of	RNA	itself	(Fica	et	al.,	2013;	Will	and	Lührmann,	2011).	Proteins,	
not	RNA,	therefore	control	many	of	the	structural	and	regulatory	aspects	of	the	highly	regulated	
and	 precise	 pre-mRNA	 splicing	 process.	 Other	 examples	 of	 functionally	 relevant	 RNP	 derived	
enzyme	 families	are	 furthermore	given	by	 telomerase	and	RNAse	P,	both	either	catalysing	 the	
cleavage	or	ligation	of	(poly-)RNA	molecules,	respectively	(Marquez	et	al.,	2006;	Nguyen	et	al.,	
2018).	 The	 addition	 of	 protein	 factors	 to	 RNA	 based	 catalytic	 networks	 thus	 significantly	
enhanced	their	regulatory	and	functional	capabilities.	While	the	catalytic	potential	of	the	above	
mentioned	 enzymes	 still	 seems	 to	 be	 limited	 to	 peptide	 bond	 formation	 and	 RNA	 based	
hydrolysis	or	ligation	reactions,	some	of	the	most	fundamental	chemistry	in	life,	including	pre-
mRNA	 splicing	 and	 protein	 synthesis,	 is	 actually	 facilitated	 by	 this	 class	 of	 highly	 complex	
molecular	machines.		

Walking	down	the	timeline	of	evolution,	metabolic	processes	in	biology	nonetheless	eventually	
required	 an	 even	 more	 diverse	 chemistry	 than	 that	 achievable	 by	 an	 entirely	 RNA	 based	
catalysis	 only.	 Extensive	 three-dimensional	 protein	 structures	 seemed	 to	 fulfil	 this	 task	 and,	
compared	to	their	RNA	based	counterparts,	consequently	offered	a	structurally	more	versatile	
backbone	 as	 well	 as	 a	 chemically	 highly	 variable	 pool	 of	 side	 chain	 moieties	 that	 ergo	 then	
participate	 in	three	dimensional	structure	formation	and/or	catalysis	(Narlikar	and	Herschlag,	
1997).	While	peptide	entirely	derived	enzymatic	complexes	 initially	may	have	been	 functional	
solely	utilizing	eight	or	nine	disparate	amino	acids,	evolution	soon	favoured	the	incorporation	of	
more	 than	 20	 different	 types	 of	 side	 chain	 moieties	 during	 protein	 synthesis	 (Müller	 et	 al.,	
2013).	 In	 consequence,	 the	 latter	 then	 allowed	 for	 a	 great	 wealth	 of	 different,	 chemically	
versatile	 molecular	 machines	 to	 emerge.	 Considering	 the	 innumerable	 catalytic	 mechanisms	
employed	 by	 protein-derived	 enzymes,	 however,	 a	 detailed	 explanation	 of	 their	 mechanisms	
would	 be	 far	 beyond	 the	 scope	 of	 this	 introduction.	 Nevertheless,	 the	 structural	 framework	
composing	protein-derived	molecular	machines	is	as	important	in	order	to	enable	their	catalytic	
capabilities	and	proper	function	as	it	is	to	the	RNA	derived	examples	described	above.		
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2.1.3.2 Functional domains and their size 

In	analogy	 to	a	macroscopic	machine,	molecular	machines	are	often	composed	of	more	 than	a	
single	 functional	 unit.	 The	 amino	 acids	 that	 assemble	 these	 individual	 units	 are	 commonly	
arranged	 in	 a	 specific	 spatial	 arrangement,	which	 is	 characterized	by	primary,	 secondary	 and	
tertiary	 structural	 elements.	 Extending	 this	 classification,	 so	 called	 protein	 domains	 may	 be	
defined	 in	 order	 to	 describe	 a	 functional	 unit	 of	 compact,	 mostly	 rigidly-folded	 primary	 and	
secondary	structure	elements	that	are	assembled	into	a	recognizable,	characteristically	shaped	
domain	of	 tertiary	 structure	 (Richardson,	 1981).	 Similar	motifs	 likewise	 exist	 in	RNA-derived	
structures,	 where	 hairpin-	 or	 stem-loop	 based	 structures	 form	 stable,	 generally	 independent	
molecular	 units	 in	 three	 dimensional	 space	 (Svoboda	 and	 Di	 Cara,	 2006).	 These	 structurally	
well-defined	domains,	which	often	retain	their	specific	function	also	in	an	isolated	context,	may	
then	 serve	 as	 the	 smallest	 unit	 of	 functional	 building	 blocks	 available	 to	 nature	 in	 order	 to	
construct	any	kind	of	molecular	machine	in	a	modular	manner.		

Given	the	wealth	of	different	domain	structures	that	evolved	over	time,	many	of	them	appear	to	
be	 well	 conserved	 throughout	 species	 and	 are	 consequently	 utilized	 in	 a	 large	 number	 of	
molecular	 complexes.	 Some	 of	 these	 domains,	 such	 as	 the	 Tetratricopeptide	 Repeat	 (TPR)	 or	
HEAT	 folds	 often	 stack	 up	 to	 form	 alpha-helical	 solenoid	 structures	 that	 may	 selectively	
influence	 the	molecular	 framework	of	 a	 complex	 (Blatch	and	Lässle,	 1999;	Kobe	et	 al.,	 1999).	
Others,	like	e.g.	RNA	Recognition	Motives	(RRM),	zinc	fingers	(Znf)	or	tryptophan-aspartic	acid	
repeats	 (WD-40),	 facilitate	 the	 stable	 association	 of	 nucleic	 acids	 with	 hybrid	 molecular	
complexes,	or	other	 tasks	of	structural	maintenance	(Bandziulis	et	al.,	1989;	Neer	et	al.,	1994;	
Pabo	et	al.,	2001).	Still	others	provide	examples	for	domain	folds	that	may	independently	exert	
specific	catalytic	functions.	While	the	latter	is	sometimes	required	for	the	overall	functionality	of	
a	(macro-)	molecular	machine,	the	catalytic	activity	itself	may	also	get	lost	or	become	dormant	
in	different	variants	of	an	otherwise	homologous	domain.	Hence,	the	structurally	well-conserved	
domain	then	exerts	a	different	but	not	catalytic	function.	Prime	examples	for	these	cases	are	the	
RNase	 H	 or	 RecA	 (-like)	 domains,	 which	 are	 found	 to	 perform	 catalytic	 activity	 in	 many	
complexes	while	seemingly	carrying	out	different,	non-enzymatic	functions	in	others	(Davies	et	
al.,	1991;	Schellenberg	et	al.,	2013;	Schmitt	et	al.,	2018).		

Even	though	the	specific	function	of	the	various	domains	may	be	exceptionally	diverse,	the	most	
frequently	observed	size	or	molecular	weight	is	not.	Commonly,	the	recognized	size	of	a	protein	
domain	was	 rather	 determined	 to	 be	 around	 125-150	 amino	 acids	 (aa)	 in	 size,	 or	 roughly	~	
14kDa	in	molecular	weight	(Berman	et	al.,	1994).	Exceptions	obviously	exist,	where	particular	
domain	 frameworks	were	 found	 to	be	not	much	 larger	 than	36	amino	acids	 in	 some	 cases	or	
almost	700	residues	 long	 in	others	 (Jones	et	al.,	 1998).	Nevertheless,	 the	commonly	observed	
complexity	of	the	average	domain	structure	seems	to	be	limited	by	folding	kinetics,	theoretically	
yielding	the	maximum	free	energy	of	unfolding	for	entities	of	100	amino	acids	in	lengths	(Xu	and	
Nussinov,	1998).	Thus	likely	making	it	the	optimal	size	for	a	protein	domain.		

2.1.4 Macromolecular	machines		

While	all	molecular	machines	are	ultimately	composed	out	of	one	or	multiple	domains,	not	all	of	
the	 resulting	 enzymes	 are	 similar	 in	 size.	 Even	 though	 most	 functional	 entities	 in	 cellular	
homeostasis	 are	 represented	 by	 a	 single	 domain	 structure	 (Berman	 et	 al.,	 1994),	 some	 are	
conglomerates	 of	 larger	 or	 very	 large	 proportions.	 In	 fact,	 significant	 examples	 like	 the	
proteasome,	 ribosome	 or	 spliceosome	 structures	 form	 molecular	 machines	 of	 exceptional	
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dimensions,	sometimes	containing	80	or	more	distinct	units	of	protein	or	RNA,	of	which	most	
again	harbour	various	functional	domains	in	a	single	chain	(Agafonov	et	al.,	2011;	Fischer	et	al.,	
2010;	 Unno	 et	 al.,	 2002).	 These	 conglomerates	 of	 enzymatic	 functionality	 are	 thus	 termed	
macromolecular	machines,	a	denomination	also	commonly	used	 in	 the	 literature	(Barford	and	
Hopfner,	2016;	Nogales	and	Scheres,	2015;	Saibil,	2012).	
	

	
Fig.	 1	 Modular	 composition	 of	 a	 macromolecular	machine.	 Depicted	 is	 a	 pseudo-atomic	model	 of	 the	
human	C*	complex	spliceosome	(Bertram	et	al.,	2017b).	The	proteins	and	RNA	moieties	that	constitute	
the	fully	assembled	complex	(on	the	right)	are	shown	individually	on	the	left-hand	side	in	a	comic-like	
ribbon-style	 representation.	 Individual	 domains	 of	 the	 same	 protein	 are	 not	 necessarily	 differently	
coloured.		

As	 implied	 before,	 macromolecular	 machines	 are	 assembled	 on	 a	 modular	 basis.	 Hence,	 the	
structure	 and	 function	 of	 various,	 potentially	 hundreds	 of	 different	 domains	 are	 combined	
within	one	complex	(Fig.	1).	This	modularity	is	found	to	be	a	widely	adopted	feature	in	nature,	
as	it	practically	enables	evolution	to	mix	and	match	previously	developed	molecular	assemblies	
in	order	to	form	novel	complexes	of	a	potentially	entirely	different	function,	wherever	needed.	
In	 the	 process,	 however,	 certain	 domains	 of	 otherwise	 great	 homology	 frequently	 undergo	 a	
change	 in	 function	 upon	 utilization	 in	 a	 complex	 of	 a	 different	 kind.	 Often,	 this	 change	 is	
furthermore	 accompanied	 by	 a	 slight	 variation	 in	 primary	 amino	 acid	 sequence	 and/or	
structure.	 For	 example,	 a	 specific	 domain’s	 catalytic	 functionality	 that	 is	 essential	 to	 one	
macromolecular	 complex	 can	 be	 transformed	 into	 a	 merely	 structurally	 supportive	 task	 in	
another	 (compare	 domain	 functionality	 described	 in	 section	 2.1.3.2	 and	 as	 another	 example:	
EF-G	 or	 SNU114,	 a	 GTPase	 that	 is	 catalytically	 functional	 in	 the	 ribosomal	 context	 but	 not	
necessarily	in	that	of	the	spliceosome	(Carlson	et	al.,	2017;	Fica	et	al.,	2017)).			

The	 structural	 arrangement	 of	 the	 chemical	 moieties	 that	 assemble	 each	 domain	 and	 any	
macromolecular	complex	 is	 therefore	directly	related	to	 its	 function	and	 is	 thus	of	exceptional	
importance.	 Hence,	 structural	 analysis	 of	 large	 macromolecular	 machines	 provides	 valuable	
insights	 into	 the	 architecture	 and	 spatial	 composition	 of	 the	 complex	 in	 question.	
Comprehending	 a	 molecular	 machine’s	 three-dimensional	 structure	 at	 high	 resolution	 may	
therefore	ultimately	reveal	its	mechanism	of	action	–	in	direct	analogy	to	knowing	the	detailed	
blueprints	of	a	man	made,	macroscopic	machine.		
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2.2 Electron	cryo-microscopy	(cryo-EM)	
In	 order	 to	 analyse	 the	 spatial	 organization	 of	 such	 structures	 at	 sufficient	 detail,	 various	
techniques	are	available	and	commonly	utilized.	This	section	will	briefly	elucidate	the	prospects	
of	 using	 microscopic	 magnification	 to	 visualize	 macromolecular	 structures	 at	 up	 to	 atomic	
resolutions.	

2.2.1 How	to	visualize	atomic	structures?	

The	 human	 eye	 is	 generally	 not	 capable	 of	 resolving	 structural	 detail	 that	 is	 smaller	 than	 a	
couple	of	hundred	micrometres	(µm)	in	size.	Auxiliary	tools	are	therefore	required	to	increase	
the	 resolution	 that	 is	 effectively	 achievable.	 The	most	 commonly	 utilized	 approach	 is	 thus	 to	
simply	magnify	 the	 projected	 image	 of	 a	 certain	 object.	 Consequentially,	 the	 latter	 procedure	
isotopically	 increases	 the	 distance	 between	 specific	 points	 of	 the	 object	 in	 the	 final	 image.	 In	
order	to	achieve	such	proportional	magnification,	various	kinds	of	microscopy	techniques	have	
been	developed	during	 the	 last	 centuries.	Beginning	 in	 the	17th	 century,	arrays	of	glass	 lenses	
staggered	 in	optical	microscopes	were	 successfully	used	 to	 significantly	magnify	 small	objects	
for	the	first	time.	Utilizing	photons	in	the	visible	light	spectrum	it	thus	became	possible	to	depict	
and	 identify	 previously	 invisible	 microscopic	 features	 up	 to	 a	 certain	 resolution.	 The	 term	
resolution	thereby	describes	the	minimal	distance	at	which	two	points	(at	specimen	level)	may	
still	be	distinguished	as	such	(e.g.	in	the	magnified	image).	Unfortunately,	the	maximal	attainable	
resolution	 on	 the	 optical	 axis	 in	 any	 kind	 of	 microscopy	 that	 visualizes	 illuminated,	 passive	
objects	is	limited	by	the	physical	relationships	that	are	described	by	the	Abbe	diffraction	limit.	
The	 latter	 thus	 describes	 the	 resolution	 limiting	 correlation	 between	 the	 illuminating	
wavelength	and	the	optical	properties	of	a	microscope.	More	precisely,	the	principle	states	that	
two	 separated	 objects	 in	 the	 projected	 image	 may	 only	 be	 resolved	 as	 such	 if	 the	 distance	
between	them	is	greater	or	equal	to	the	wavelength	divided	by	twice	the	numerical	aperture	of	
the	 lens,	 even	 when	 using	 perfect	 instrumentation.	 Hence,	 as	 conventional	 light	 microscopic	
lenses	 only	 achieve	 numerical	 aperture	 values	 of	 around	 1	 they	 can	 not	 resolve	 structural	
features	separated	by	~	200	nm	or	less,	as	the	shortest	wavelength	of	visible	light	(in	the	blue	
spectrum)	is	approximately	400	nm.		

Picking	up	on	the	initial	proposal	to	use	microscopy	in	order	to	resolve	and	analyse	the	atomic	
details	 of	 a	 (macro)	 molecular	 machine	 it	 becomes	 obvious	 that	 a	 diffraction-limited	 light	
microscopic	system	is	physically	not	capable	of	achieving	this	task.	As	an	example,	to	visualize	
two	 organically	 bonded	 carbon	 atoms	 that	 are	 typically	 situated	 ~	0.12	–	0.15	nm	 apart,	 an	
illuminating	 wavelength	 of	 at	 least	 0.3	nm	 would	 be	 required.	 Glass	 lenses,	 however,	 cannot	
effectively	manipulate	electromagnetic	 radiation	at	wavelengths	 smaller	 than	~	200	nm.	Thus,	
preventing	their	utilization	in	conventional	high-resolution	microscopy.		

As	 the	 wavelengths	 of	 the	 utilized	 radiation	 critically	 influences	 the	 maximum	 attainable	
resolution,	different	means	of	 illumination	are	 required	 to	overcome	 these	 limitations.	 In	 fact,	
electrons	 in	motion	adopt	wave-like	properties	and	can	be	precisely	manipulated	by	arrays	of	
electromagnetic	 lenses,	 even	 if	 accelerated	 to	wavelengths	 far	 smaller	 than	 those	 required	 to	
satisfy	 the	 Abbe	 diffraction	 limit	 for	 structures	 of	 molecular	 size.	 Electron	 microscopy	 can	
therefore	be	used	to	study	the	structure	and	function	of	macromolecular	complexes.		
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2.2.2 General	features	of	the	electron	microscope	

The	electron	microscope	generally	offers	the	potential	to	utilize	accelerated	electrons	in	order	to	
probe	 a	 specifically	 prepared,	 often	 very	 thin	 sample	 of	matter.	 Initially	 constructed	 by	Ernst	
Ruska	 and	Max	Knoll	 in	1931	at	 the	Fritz-Haber-Institute	 in	Berlin,	 the	 technology	 ever	 since	
matured	 to	 become	 a	 powerful	 tool	 in	 determining	 molecular	 structures	 at	 up	 to	 atomic	
resolution	(Renaud	et	al.,	2018).	Nowadays	commonly	utilized	in	the	life	and	material	sciences,	
modern	 electron	 microscopes	 are	 capable	 of	 resolving	 a	 samples	 structural	 detail	 through	
various	modes	of	operation.	Transmission	Electron	Microscopy	(TEM)	classically	represents	the	
most	 utilized	 method,	 which	 illuminates	 a	 thin	 specimen	 in	 a	 bright-	 or	 dark	 field	 mode	 to	
project	 a	 magnified	 image	 of	 the	 sample	 onto	 a	 detector.	 Scanning	 (transmission)	 electron	
microscopy	(S(T)EM),	in	contrast,	features	a	focused	beam	of	electrons	that	is	scanning	over	or	
though	the	sample	point-by-point	while	other,	less	frequently	applied	technics	may	additionally	
analyse	secondary	radiation	(e.g.	X-rays)	generated	by	the	primary,	incident	beam	of	electrons.	
The	spectroscopic	analysis	of	the	radiation	that	is	modified	or	emitted	by	the	sample	is	likewise	
possible.		

Since	 TEM	 is	 the	 main	 method	 that	 is	 used	 within	 the	 scope	 of	 this	 work,	 the	 following	
elaboration	will	 briefly	describe	 and	 introduce	 the	 function	and	 capabilities	 of	 a	 transmission	
electron	microscope.	As	the	basic	optical	principals	of	image	formation	are	very	similar	in	light	
or	electron	microscopes,	their	setup	is	somewhat	comparable,	while	important	differences	exist.		

2.2.2.1 Setup 

Beginning	with	the	source	of	illumination,	electron	microscopes	classically	feature	one	of	three	
different	kinds	of	 electron	 sources.	The	electron	emitting	part	of	 the	assembly	 is	 furthermore	
frequently	described	as	the	cathode	of	a	microscope.	Historically,	heated	tungsten	filaments	or	
lanthanum	hexaboride	(LaB6)	crystals	are	used	to	provide	the	electrons	required	for	imaging	by	
emission	 into	 the	 liner	 tube	of	 the	microscope	column.	More	recent	devices,	however,	 instead	
feature	an	ultra-thin	tipped,	zirconium	oxide-coated	tungsten	crystal	that	is	operated	as	field-	or	
Schottky	 emitter	 in	 order	 to	 extract	 a	 temporally	 and	 spatially	 coherent	 beam	of	 electrons	 at	
desirably	 high	 currents	 (Swanson	 and	 Schwind,	 2009).	 Extracted	 by	 a	 positive	 potential	
difference	 between	 the	 tip	 of	 the	 emitter	 and	 an	 anode,	 emitted	 electrons	 pass	 through	 the	
Wehnelt	 aperture	 into	 an	 accelerator	 stack	 of	 conductive	 plates.	 Since	 the	 wavelength	 of	 an	
electron	 is	 directly	 correlated	 to	 its	 momentum	 (hence,	 its	 mass	 and	 velocity),	 as	 initially	
described	 by	 the	 French	 physicist	 de	 Broglie,	 acceleration	 is	 required	 to	 obtain	 electron	
radiation	 of	 the	 desired	wavelength	 and	 high	 energy.	 The	 latter	 is	 practically	 achieved	 in	 the	
microscope	by	exposing	the	emitted	beam	of	electrons	to	an	increasingly	positive	electric	field	
that	is	created	by	a	potential	difference	applied	perpendicular	to	the	path	of	flight.	Acceleration	
voltages	 of	 around	 300	 kV	 are	 currently	 utilized	 in	 high-end	 equipment	 to	 generate	 electron	
radiation	of	approximately	2	pm	in	wavelength.	The	accelerated	electrons	are	then	ready	to	be	
used	 for	 imaging,	 in	 analogy	 to	 the	photons	 that	 are	emitted	 from	a	 light	 source	 in	an	optical	
microscope.	
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In	 order	 to	 achieve	 the	 imaging	 of	 a	 sample,	
accelerated	 electrons	 have	 to	 be	 refracted	 by	
electromagnetic	 coils	 and	 lenses.	 As	 electrons	
carry	 a	 negative	 charge,	 not	 only	 an	 externally	
applied	electric	field	(such	as	that	utilized	during	
acceleration)	but	also	a	magnetic	 field	effectively	
influences	the	propagation	of	an	electron	through	
space	by	the	exertion	of	Lorentz	force.	A	magnetic	
field	 created	 in	 close	 proximity	 thus	 affects	 the	
trajectory	of	any	electron	wave.	 In	 fact,	 electron-
optical	 elements	 provide	 a	 specifically	 shaped	
magnetic	 field	 by	 sending	 an	 electrical	 current	
through	coils	of	wire.	Assemblies	built	to	induce	a	
spherical	 magnetic	 field	 therefore	 ultimately	
behave	 as	 an	 electromagnetic	 lens	 (Scherzer,	
1936),	 in	 functional	 analogy	 to	 their	 optical	
counterparts	 made	 from	 glass	 or	 other	
transparent	 materials.	 Even	 though	 the	 exact	
mechanism	 of	 action	 is	 different	 from	 that	
observed	for	a	glass	lens	element,	electromagnetic	
lenses	eventually	possess	the	capability	to	deflect	
or	 condense	 incident	 electron	 radiation.	 As	 the	
refractive	 power	 of	 an	 electromagnetic	 lens	 is	
directly	dependent	on	the	strength	of	its	magnetic	
field,	 both	 can	 be	 adjusted	 by	 changing	 the	
current	 that	 is	 sent	 through	 the	 coils	 of	 wire	
within	the	element.	Therefore,	in	contrast	to	glass	
lenses,	electromagnetic	lenses	offer	the	possibility	
to	 be	 adjusted	 in	 refractive	 strengths,	 a	 feature	
that	 is	 readily	 used	 in	 any	 kind	 of	 electron	
microscopic	application.		

Continuing	 the	 path	 through	 the	 microscope	
column,	 the	 accelerated	 electron	 beam	 is	
channelled	 into	 an	 array	 of	 two	 or	 three	
electromagnetic	condenser	lenses,	thus	preparing	
the	beam	to	 illuminate	 the	sample.	The	 interplay	
between	 these	 optical	 elements	 –	 which	 are	
operated	 at	 adjustable	 refractive	 powers	 and	
various	exchangeable	apertures	–	then	allows	for	
a	 precise	 shaping	 of	 the	 beam	 to	 finely	 tune	 the	
illuminated	 area	 and	 the	 angle	 of	 incidence.	
Furthermore,	the	coherence	and	brightness	of	the	
incident	electron	illumination	(“light”)	are	readily	
adjustable,	as	the	combination	of	a	fixed	diameter	
aperture	 and	 the	 adjustable	 refractive	 strengths	
of	certain	 lenses	within	 the	condenser	 lens	array	

	
Fig.	 2	 General	 schematic	 of	 an	 electron	 cryo	
microscope	 (cryo-EM).	 The	 illuminating	
electrons	 are	 extracted	 and	 accelerated	 in	 the	
tip	 if	 the	 instrument	 at	 the	 electron	 source.	
Passed	 through	 and	 shaped	 by	 the	 condenser	
lens	 system,	 the	 radiation	 then	 interacts	 with	
the	 sample	 that	 is	 inserted	 into	 the	 objective	
lens.	The	 image	 information	 is	 then	passed	on	
and	recorded	at	the	detector.	
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may	be	used	to	physically	block	fractions	of	the	electrons	that	are	initially	emitted	by	the	source.	
Once	optimized	in	shape,	dose	and	coherency	characteristics,	the	beam	enters	the	upper	part	of	
the	objective	lens	that	is	physically	mounted	just	below	the	condenser	lens	system.	

The	 objective	 lens	 itself	 then	 images	 the	 sample.	 Divided	 into	 upper	 and	 lower	 portions,	 the	
specimen,	which	is	commonly	applied	to	a	thin	metal	grid	of	2-3	mm	in	diameter	(section	2.2.4),	
is	then	inserted	in-between	these	two	parts	of	the	objective	lens.	The	so-called	upper	and	lower	
pole	pieces	of	the	lens	then	precisely	shape	the	magnetic	field	to	channel	the	beam	of	electrons	
through	 the	 pole	 piece	 gap	 and	 the	 sample.	 As	 the	 exiting	 wave	 now	 contains	 the	 spatial	
information	of	the	imaged	sample	area,	the	electron-optical	features	of	the	objective	lens	need	to	
be	 particularly	 well-adjusted	 and	 monitored	 to	 prevent	 aberrations	 in	 the	 final,	 recorded	
projection.		

The	 virtual	 image	 of	 the	 specimen,	 which	 is	 now	 physically	 carried	 in	 the	 scattered	 electron	
wave,	 may	 then	 be	 magnified	 in	 a	 setup	 relatable	 to	 that	 of	 an	 optical	 microscope.	 Hence,	
another	 array	 of	 intermediate	 lenses	 magnifies	 the	 virtual	 image	 through	 manipulating	 the	
convergence	and	opening	angles	of	 the	beam.	 Importantly,	 in	 this	process	 the	user	may	 freely	
choose	 the	 desired	 degree	 of	 magnification	 without	 the	 exchange	 of	 any	 hardware,	 as	
electromagnetic	lenses	are	adjustable	in	refractive	power.		The	actual	magnification	capabilities	
of	 an	 electron	microscope	 therefore	 often	 reach	 from	 less	 than	 fifty	 to	 several	 million	 times	
magnification.	Once	brought	to	the	desired	magnification	the	emergent	beam	passes	through	a	
final	projector	lens	that	eventually	adapts	the	geometry	of	the	beam	in	order	to	properly	expose	
a	downstream	detector	or	fluorescent	screen.		

As	 electrons	 interact	 strongly	 with	 any	 kind	 of	 matter,	 including	 the	 gas	 molecules	 in	 the	
ambient	 air,	 a	 high	 vacuum	 is	 required	 at	 all	 times	 when	 utilizing	 electron	 radiation	 in	 a	
microscope	 setup.	 Vacuum	 pumps	 are	 thus	 mounted	 in	 several	 stages	 onto	 the	 microscope	
column	and	operate	to	remove	as	many	contaminant	molecules	from	the	liner	tube	atmosphere	
as	 possible.	 Practically,	 turbo	molecular	 and	 ion-getter	 pumps	 create	 local	 vacuums	 of	 up	 to	
1x10-9	mbar.	

2.2.2.2 Contrast formation and transfer 

The	formation	and	transfer	of	contrast	is	essential	for	the	imaging	and	interpretation	of	any	kind	
of	 data	 obtained	 with	 a	 microscope.	 The	 term	 contrast	 thereby	 describes	 the	 magnitude	 of	
difference	 in	 intensity	 of	 a	 certain	 signal	with	 respect	 to	 that	 originating	 from	 the	 immediate	
surroundings.	A	high	contrast	in	imaging	therefore	increases	the	likelihood	of	discriminating	an	
actual	 feature	 from	other	 features	or	noise	 in	 the	direct	vicinity	and	 is	 thus	essential	 to	draw	
conclusions	from	the	recorded	data.	

In	TEM,	 two	physically	different	principals	of	contrast	 formation	generally	contribute	 towards	
the	 overall	 image	 contrast	 that	 is	 finally	 recorded	 on	 the	 detector.	 First,	while	 illuminating	 a	
somewhat	transparent	sample,	some	of	the	illuminating	radiation	is	either	absorbed	in	various	
ways	 or	 deflected	 at	 high	 scattering	 angles	 far	 away	 from	 the	 optical	 axis	 by	 certain,	mostly	
dense	 features	 within	 the	 specimen.	 Since	 some	 of	 the	 illuminating	 radiation	 has	 now	 been	
removed	from	the	imaging	process,	the	corresponding	positions	in	the	final	image	appear	to	be	
depicted	darker	in	general	(of	lower	intensity),	with	respect	to	their	more	intensely	illuminated	
surroundings	(Lenz,	1971).	Therefore,	amplitude	contrast	is	formed.		

A	 second,	more	 significant	way	 of	 contrast	 formation	 in	 electron	microscopy	 is	 described	 by	
phase	contrast.	In	simple	terms,	parts	of	the	initially	plane,	incoming	electron	wave	interact	with	
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a	sample	of	weak	phase	objects	while	passing	through	it.	In	the	process,	certain	fractions	of	that	
wave	 are	 deflected	 or	 elastically	 scattered	 away	 from	 the	main	 trajectory	 of	 the	 illuminating	
wave	at	a	specific	angle	by	the	electrostatic	potential	of	the	sample	(Oxley	et	al.,	2017).	Since	the	
observed	scattering	angles	in	this	scenario	are	usually	small	(i.e.,	several	degrees)	(Wade,	1992),	
the	 scattered	parts	 of	 the	 electron	wave	may	not	 escape	 from,	 but	 are	 instead	 refracted	back	
into,	 the	 optical	 system	 by	 the	 objective	 lens.	 The	 respective	wave	 components	 are	 thus	 still	
available	for	imaging	and	will	consequently	also	reach	the	detector.	The	distance	travelled	(i.e.,	
path	 length)	 of	 these	 refracted	 parts	 of	 the	 wave,	 however,	 has	 now	 changed,	 therefore	
introducing	 a	 phase	 shift	 between	 the	 scattered	 and	 unscattered	 parts	 of	 the	 formerly	 plane,	
incident	wave	(Reimer,	2013).	Mathematically,	the	appearance	of	these	waves	can	be	modelled	
by	 specific	 wave	 functions	 that	 in	 particular	 describe	 the	 wavelength	 (e.g.	 the	 energy	 of	 the	
accelerated	electron),	amplitude	and	phase	of	any	(composite)	wave	at	a	given	position.	When	
traversing	down	the	microscope,	scattered	and	unscattered	parts	of	the	wave	thus	interfere	at	
characteristic	 positions	 or	 planes	 in	 the	 instrument.	 After	 passing	 the	 objective	 lens,	 for	
example,	the	composite	wave	function	shows	strong	amplitude	maxima	in	the	back	focal	plane	of	
that	lens,	which	ultimately	represent	the	diffraction	pattern	of	the	originally	imaged	specimen	in	
reciprocal	space.	Traveling	further,	the	patterns	of	interference	are	altered	again	in	order	for	the	
composite	 wave	 function	 to	 eventually	 reproduce	 the	 density	 distribution	 of	 the	 original	
specimen	at	the	image	plane	of	the	lens.	Since	the	process	of	image	formation	can	be	considered	
a	 linear	process	 in	 first	 approximation	 (Lenz,	1971),	 the	density	 information	contained	 in	 the	
composite	 wave	 function	may	 additionally	 be	magnified	 in	 a	 linear	 fashion	 by	 exploiting	 the	
basic	principles	of	optical	magnification	using	 lens	arrays.	When	 finally	 reaching	 the	detector,	
which	is	mounted	in	a	plane	that	is	approximately	conjugate	to	the	image	plane	of	the	objective	
lens,	the	optical	system	of	the	microscope	is	aligned	in	a	way	to	promote	interference	of	all	parts	
of	the	wave	that	reach	this	plane.	If	a	shift	in	phase	is	now	present	in	some	parts	of	that	wave	it	
will	positively	or	negatively	 interfere	with	 the	unaltered	parts	of	 the	originally	 incident	wave.	
Hence,	intensity	minima	or	maxima	are	introduced	at	various	spatially	defined	positions	on	the	
detector.	 Effectively,	 this	 interference	 of	 phase-shifted	 waves	 thus	 translates	 a	 practically	
undetectable	 phase	 shift	 into	 fluctuations	 of	 amplitude,	 which	 can	 then	 be	 identified	 on	 the	
detector	as	changes	 in	exposure,	hence,	 the	read	out	 intensity.	The	actual	appearance	of	 these	
intensities,	however,	is	substantially	modulated	by	the	scattering	angles,	certain	aberrations	and	
the	refractive	power	of	 the	objective	 lens	(i.e..	via	defocus).	 In	particular,	 spherical	aberration	
and	defocus	thereby	represent	optical	phenomena	that	add	substantial	phase	shifts	to	the	beam	
and	thus	significantly	modulate	the	 intensities	that	are	eventually	detected.	By	means	that	are	
explained	 in	much	greater	detail	here	 (Lenz,	1971),	 contrast	 is	only	efficiently	 transferred	 for	
features	 that	 scatter	 the	 incoming	 electron	wave	 at	 specific	 angles,	 given	 a	 fixed	 focal	 length	
(strength	 of	 the	 objective	 lens)	 and	 constant	 spherical	 aberration.	 The	 signal	 that	 eventually	
reaches	the	detector	is	thus	not	entirely	representative	of	the	complete	spatial	relationships	of	
the	originally	imaged	object	but	is	rather	filtered	in	a	complex	manner,	which	can	be	precisely	
described	 by	 the	 (phase)	 contrast	 transfer	 function	 (CTF)	 (Erickson	 and	 Klug,	 1970).	 In	
consequence,	some	features	of	a	specific	spatial	frequency	(as	the	CTF	is	evaluated	in	reciprocal	
space)	generate	a	strong	positive	contrast	(i.e.,	are	depicted	brighter),	while	others	are	imaged	
with	negative	(darker)	or	no	contrast	at	all	(hence,	are	invisible).	As	the	contrast	modulations	
described	above	are	strongly	(de)focus	dependent,	micrographs	are	often	deliberately	recorded	
in	an	underfocused	fashion	to	increase	the	contrast	for	features	of	low	spatial	frequency.	Finally,	
the	 detector	 records	 the	 resulting	 variations	 in	 intensity	 near	 a	 plane	 conjugate	 to	 the	 image	
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plane,	where,	more	 accurately,	 the	 probability	 of	 detecting	 an	 electron	 is	 proportional	 to	 the	
squared	amplitude	of	the	composite	wave	function	at	this	position.	

Since	 in	a	 typical	 life	science	TEM	application	most	 interactions	between	the	 incident	electron	
wave	and	the	sample	material	result	 in	small-angle	scattering	events,	phase	contrast	generally	
contributes	more	than	90%	of	the	overall	contrast	 in	the	recorded	image	(Penczek,	2010a).	In	
order	to	successfully	conserve	and	reproduce	the	original	spatial	relationship	of	the	features	in	
the	 sample	 and	 the	projected	 image	 through	phase	 contrast,	 a	highly	 sophisticated	and	 tuned	
optical	 system	 is	 required.	 Perturbations	 of	 the	 latter	 due	 to	 (sometimes	 inevitable)	 flaws	 in	
hardware	design	or	from	external	sources	thus	significantly	reduce	the	quality	and	resolution	of	
any	 image	projected	 through	 it	 (section	2.2.3).	Hence,	 efforts	are	being	made	 to	 correct	 these	
aberrations.	

2.2.2.3 Image detection 

Once	the	electron	wave	has	interacted	with	the	sample	and	thus	transfers	its	spatial	information,	
an	efficient	way	of	detection	is	required	in	order	to	record	that	information.	As	the	refracted	and	
unrefracted	wave	 fronts	 interfere	at	 the	 surface	of	 the	detection	device,	 intensity	minima	and	
maxima	 are	 formed,	 resulting	 in	 amplitude	 and	 phase	 contrast	 (see	 section	 2.2.2.2).	 These	
intensity	perturbations	are	then	recorded	at	a	defined	spatial	position	on	the	detector	and	thus,	
after	readout,	may	be	correlated	to	each	other	during	image	processing.		

In	 conjunction	 with	 the	 recorded	 signal,	 however,	 every	 detector	 inevitably	 adds	 additional,	
signal-independent	intensities	to	the	final	image,	which	are	commonly	classified	as	noise.	Even	
though	noise	will	accumulate	in	the	final	image	from	different	sources,	the	amount	that	is	added	
by	 the	 detector	 itself	 at	 different	 spatial	 frequencies	 is	 of	 great	 importance.	 A	 critical	 quality	
measure	of	the	readout	signal	is	therefore	given	by	the	detector’s	detective	quantum	efficiency	
(DQE)	(Dainty	et	al.,	1976).	The	latter	is	defined	by	the	square	of	the	ratio	of	the	output	signal-
to-noise	(SNR)	to	that	of	the	input	SNR	(McMullan	et	al.,	2014).	Consequently,	the	DQE	describes	
how	 well	 a	 detector	 is	 capable	 of	 recovering	 the	 properties	 of	 an	 original	 input	 signal	 with	
respect	 to	 that	which	 is	eventually	 read	out	 from	 the	device	after	 recording.	Hence,	high	DQE	
values	close	to	one	represent	an	almost	perfect	signal	recovery,	while	values	approaching	zero	
indicate	that	a	signal	can	hardly	be	distinguished	from	noise.		

Photographic	 film	 was	 historically	 used	 for	 the	 purpose	 of	 image	 recording	 not	 only	 in	
photography	 or	 light	microscopy	but	 also	 in	 electron	microscopic	 applications.	 Electrons,	 like	
photons,	darken	a	film	material	through	specific	chemical	interactions	with	its	substrate.	Areas	
where	 the	 illuminating	 waves	 constructively	 interfere	 are	 thus	 blackened	 more	 than	 areas	
where	 less,	no,	 or	destructive	 interference	 is	observed.	 Importantly,	 the	darkening	of	 the	 film	
material	 is	 linearly	 correlated	 to	 the	 amount	 of	 interference	 observed	 at	 the	 corresponding	
position.	Therefore,	the	amplitude	of	the	composite	wave	is	recorded.	While	photographic	film	
provides	good	imaging	characteristics	and	a	high	DQE	in	many	recording	scenarios,	its	physical	
handling	 is	exceptionally	 tedious.	As	 the	 film	material	needs	to	reside	within	the	high	vacuum	
environment	 of	 the	 microscope	 for	 imaging,	 an	 undesirable	 breach	 of	 that	 vacuum,	 which	
potentially	 introduces	 moisture	 or	 other	 contaminants	 into	 the	 column,	 is	 inevitable	 once	
exposed	or	new	 film	material	has	 to	be	 recovered	or	 inserted	 into	 the	microscope.	Every	 film	
plate	of	every	micrograph	that	was	recorded	then	has	to	be	separately	developed	and	digitized	
for	analysis	 in	downstream	 image	processing	applications.	With	 the	advent	of	other	detection	
devices	the	use	of	film	thus	was	replaced	with	faster,	more	convenient,	and	higher-throughput	
methods	of	data	collection.	
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Modern	 image	detection	of	electron	microscopic	signals	 is	 therefore	most	commonly	achieved	
by	 the	 use	 of	 semiconductor-based	 detectors.	 Charge	 coupled	 device	 (CCD)	 chips,	 which	 are	
excited	 by	 photons	 produced	 through	 electrons	 hitting	 a	 thin	 scintillation	material	 above	 the	
sensitive	detection	layer,	were	formerly	used	for	this	purpose,	as	a	direct	digital	readout	of	the	
recorded	 signal	 provides	 a	 great	 advantage	 in	 efficiency	 over	 the	 manual	 development	 of	
photographic	film.	CCDs,	however,	are	not	hard	enough	to	endure	direct	electron	irradiation	at	
the	 doses	 required	 in	 electron	 microscopy.	 Therefore,	 improved	 complementary	 metal	 oxide	
semiconductor	(CMOS)	detector	designs	eventually	allowed	the	construction	of	a	direct	electron	
detector	 (McMullan	 et	 al.,	 2016).	 	 The	 latter	 then	 allowed	 for	 a	 removal	 of	 the	 scintillation	
material	 and	 a	 much	 thinner	 design	 of	 the	 active	 detection	 layer	 (i.e.,	 “back-thinning”)	 to	
provided	a	significantly	improved	DQE	compared	to	all	other	detection	methods	available	to	this	
date.	In	combination	with	a	fast	readout	rate	it	thus	became	feasible	to	operate	the	detectors	in	
several	 recording	 modes,	 allowing	 to	 further	 improve	 the	 quality	 of	 the	 (raw)	 data.	 	 Single	
electron	counting	and	the	possibility	of	reading	out	many	frames	(hundreds	to	thousands)	per	
second	 improves	 the	 spatial	 accuracy	 of	 the	 recorded	 signals,	 thus	 significantly	 contributing	
towards	the	widespread	adoption	and	success	of	electron	(cryo-)	microscopy	techniques	today	
(Grigorieff,	2013;	Li	et	al.,	2013).	

2.2.3 Optical	aberrations	and	resolution	

The	 most	 fundamental	 aim	 of	 microscopy	 is	 to	 extract	 and	 reproduce	 the	 exact	 spatial	
relationships	of	an	object	of	interest	within	a	projected,	often	magnified	image	of	that	object.	The	
precise	 focusing	of	rays	originating	from	one	point	at	 the	object	plane	to	another	point	on	the	
image	plane	near	the	detector	is	therefore	of	absolute	importance.	In	electron	microscopy,	any	
real	optical	system	introduces	aberrations	that	reduce	the	imaging	quality	compared	to	an	ideal,	
hypothetical	system.	As	in	light	microscopy,	certain	aberrations	are	inevitably	introduced	by	the	
physical	 characteristics	 of	 an	 optical	 element	 while	 others	 are	 caused	 by	 variations	 in	
production	 quality	 or	 the	 physical	 alignment	 of	 one	 unit	with	 respect	 to	 another.	 In	 practice,	
various	types	of	aberrations	interfere	destructively	with	the	imaging	process,	ultimately	limiting	
the	maximal	attainable	resolution.	

Besides	 their	wave-like	properties,	 electrons	also	possess	 the	 characteristics	of	 a	particle	 that	
may	be	accelerated,	deflected	or	otherwise	manipulated	by	certain	 fields.	Electron	trajectories	
can	therefore	be	calculated	and	visualized	by	applying	the	laws	of	relativistic	mechanics.	While	a	
detailed	mathematical	description	 is	beyond	 the	scope	of	 this	 introduction	(but	may	be	 found	
here	 (Reimer,	 2013)),	 a	 recapitulatory	 explanation	 of	 the	 most	 significant	 aberrations	 in	
electron	microscopy	and	their	general	effects	on	image	quality	is	given	below.	

2.2.3.1 Optical aberrations  

Electron	 microscopical	 aberrations	 can	 be	 classified	 into	 isotropic	 and	 anisotropic	 effects	 of	
various	order,	resulting	in	on-	or	off-axis	errors	(Reimer,	2013).	Due	to	the	practical	importance	
of	 retrieving	high-resolution	 image	 information	 in	 single	 particle	 cryo-EM,	 this	 section	briefly	
describes	the	effects	of	spherical	aberration,	axial	astigmatism,	distortion,	coma	and	chromatic	
aberration.	

Spherical	aberration	belongs	to	the	class	of	isotropic,	on-axis	aberrations	and	represents	one	of	
the	 most	 significant	 imaging	 defects	 in	 any	 kind	 of	 microscopy.	 As	 electron	 lenses	 induce	 a	
spherical	magnetic	field	around	circular	coils	of	wire,	which	gradually	decays	with	an	increasing	
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distance	to	these	wires,	rays	passing	through	that	field	closer	to	the	coil	experience	a	stronger	
deflective	force,	hence,	more	refractive	power	than	rays	passing	through	the	centre	of	the	lens	
(Fig.	3b).	Where	a	similar	behaviour	can	be	observed	in	spherical	optical	lenses	(although	due	to	
a	 different	 physical	 effect),	 corresponding	 rays	 originating	 from	one	 point	 above	 the	 lens	 are	
consequently	 focused	 not	 in	 one	 spot,	 but	 on	 different	 planes	 behind	 the	 optical	 element.	
Therefore,	a	specific	feature	of	the	original	object	is	not	projected	as	a	sharp	point	in	the	image	
plane	but	effectively	blurred	out	by	 the	effective	broadening	of	 focal	points.	The	magnitude	of	
spherical	aberration	is	described	by	the	spherical	aberration	coefficient	(Cs)	and	decreases	with	
increasing	strengths	of	 the	 lens	(Reimer,	2013).	Hence,	 stronger	 lenses	 in	 the	 intermediate	or	
projection	system	experience	less	spherical	aberration	effects	than	a	generally	weaker	objective	
lens.	 	 Typical	 values	 of	 the	 Cs	 for	 an	 objective	 lens	 lie	 between	 Cs	 =	 0.5	 –	 3	mm.	 As	 in	 light	
microscopy,	 the	 deteriorating	 effects	 of	 spherical	 aberration	 can	 be	 reduced	 by	 introducing	
additional	optical	elements;	that	is,	a	Cs	corrector	(Hosokawa	et	al.,	2003).		

	
Fig.	3	Specific	optical	aberrations	 in	 the	electron	microscope.	 Illustrated	 is	 the	optical	path	of	a	parallel	
beam	of	 electrons	 (red)	 that	 is	 incident	 from	 the	 left	 side	 of	 the	 schematic	 and	 refracted	by	 a	 stylized	
converging	electron	lens	(blue).	The	dashed	line	in	grey	depicts	the	optical	axis.	(a)	A	perfect,	imaginary	
lens	that	focuses	all	incoming	parallel	radiation	at	the	indicated	focal	point.	No	aberrations	are	visible.	(b)	
The	effect	of	spherical	aberration	onto	the	focussing	of	parallel	radiation.	The	parts	of	the	beam	that	are	
passing	the	lens	at	a	more	central	position	are	generally	refracted	less	strongly.	(c)	The	effect	of	coma	that	
is	 induced	by	parallel	 rays	 that	 enter	 the	 lens	 at	 an	 angle	with	 respect	 to	 its	 optical	 axis.	An	originally	
point-shaped	 feature	 in	 the	 imaged	 object	 is	 characteristically	 distorted	 towards	 a	 specific	 side	 at	 the	
image	 plane.	 (d)	 Chromatic	 aberration	 that	 is	 induced	 by	 a	 varying	 refractive	 index	 of	 the	 lens	 with	
respect	to	the	energy	of	 the	 incident	radiation.	High	energy	electrons	are	depicted	by	the	dark	red	 line,	
hence,	 are	 refracted	 less;	 low	 energy	 electrons	 by	 the	 bright	 red	 line,	 which	 thus	 are	 refracted	 more	
strongly.	

A	 further	 significant	 on-axis	 aberration	 related	 to	 spherical	 aberration	 is	 axial	 astigmatism.	
Caused	by	imperfections	in	the	rotational	symmetry	of	the	magnetic	field	of	a	lens,	astigmatism	
likewise	 results	 in	 the	misfocusing	 of	 a	 point	 on	 the	 object	 plane	 in	 the	 image	 plane.	Where	
spherical	 aberration	 is	 induced	 by	 a	 radial	 variance	 in	 magnetic	 field	 strength,	 astigmatism	
generally	describes	an	elliptical	or	otherwise	non-spherical	variance	in	that	field.	Rays	passing	
the	lens	in	sagittal	and	meridional	direction	therefore	focus	at	different	points	around	the	image	
plane.	 In	 first-order	 (or	 two-fold)	 astigmatism	 (three-	 and	higher	 fold	 variants	 also	 exist)	 the	
resulting	distance	between	minimal	and	maximal	focal	height	is	commonly	given	in	nm	and	thus	

Image

a)

b)

c)

d)
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represents	 a	 coefficient	 for	 the	 magnitude	 of	 the	 astigmatism	 observed	 in	 the	 image.	 Since	
astigmatism,	 such	as	 that	 introduced	by	 the	objective	 lens,	affects	 the	entire	 field	of	view	 in	a	
predictable	manner,	 it	 is	 also	described	 as	 the	 angular	 dependency	of	 defocus	 (THON,	 1971).	
The	 first-order	 astigmatism	 of	 a	 lens	may	 be	 corrected	 by	 stigmation	 of	 the	 beam	 utilizing	 a	
weak	 quadrupole	 lens	 (Reimer,	 2013)	 or	 computationally	 during	 image	 processing,	 as	
mentioned	in	section	2.3.2.	

Distortion	 represents	 an	off-axial	 aberration	 that	 causes	 anisotropic	magnification.	Non-linear	
forms	of	distortion	 for	example	cause	the	effect	 that	points	 further	away	 from	the	optical	axis	
are	 displaced	 in	 a	 pincushion,	 barrel	 or	 other	 fashion.	 Effectively,	 describing	 the	 first	 two	
examples,	 imaged	 lines	 that	 do	 not	 pass	 through	 the	 optical	 axis	 are	 thus	 bent	 outwards	 or	
inwards,	 respectively.	 Linear	 distortion	 generates	 an	 additional	 form	 of	 anisotropic	
magnification	 that	 results	 in	 a	 proportional,	 often	defocus-dependent	 change	 in	magnification	
over	 different	 areas	 of	 a	micrograph	 (Rubinstein	 et	 al.,	 2015).	 Distortion	 thus	 anisotropically	
varies	 the	 spatial	 correlation	 of	 features	 in	 the	 projected	 image	 with	 respect	 to	 those	 in	 the	
original	 image.	 It	 may	 be	 corrected	 optically	 by	 tuning	 specific	 lens	 characteristics	 or	
computationally,	as	initially	introduced	by	Crowther	&	Sleytr	(Crowther	and	Sleytr,	1977).	

Having	 contained	 the	 above	 mentioned	 imaging	 defects,	 coma	 is	 one	 of	 the	 most	 critical	
aberrations	 for	 high-resolution	 imaging	 in	 electron	microscopy	 (Ishizuka,	 1994).	As	 generally	
induced	by	rays	that	enter	a	lens	at	an	angle	with	respect	to	its	optical	axis,	refracted	rays	are	
then	 focussed	at	different	positions	 in	 the	 image	plane	depending	on	 the	position	where	 they	
initially	entered	the	magnetic	field	of	the	lens	(Fig.	3c).	Coma	thus	results	in	the	imaging	of	an	
off-axis	 point	 in	 the	 object	 plane	 as	 circles	 of	 increasing	 radius	 in	 the	 projected	 image.	
Appearance	wise,	these	circles	are	additionally	shifted	away	from	their	expected	Gaussian	image	
point	at	 a	distance	correlating	 to	 their	 radius	 (Reimer,	2013).	This	effect	 therefore	 creates	an	
image	reminiscent	of	a	comet	 tail.	 In	contrast	 to	 the	effects	of	e.g.	 two-fold	astigmatism,	coma	
cannot	 easily	 be	 eliminated	 during	 image	 processing	 and	 therefore	 needs	 to	 be	 corrected	
optically,	 before	 the	 exposure,	 by	 a	 particular	 coma-free	 alignment	 procedure.	 As	 initially	
developed	by	Zemlin	and	colleagues	in	1978,	the	procedure	consists	of	aligning	the	beam	exactly	
onto	 the	 optical	 axis	 of	 the	 imaging	 lens	 (Zemlin	 et	 al.,	 1978),	 thus	 effectively	 reducing	 the	
effects	of	axial	coma.	

Finally,	chromatic	aberration	represents	another	important	aberration	in	high-resolution	phase	
contrast	microscopy.	As	generally	observed	in	all	kinds	of	microscopy,	chromatic	aberration	is	
inevitably	induced	by	the	energy	spread	of	the	illuminating	radiation	and	not	by	imperfections	
of	the	lens.	In	electron	microscopy,	the	focal	length	of	a	magnetic	lens	is	directly	proportional	to	
the	energy	of	the	incident	radiation	and	the	strength	of	the	magnetic	field	(or	the	current)	that	is	
sent	 through	 the	 coils	 (Reimer,	 2013).	 Therefore,	 electrons	 with	 different	 energies	 (thus	
possessing	a	different	wavelength)	are	refracted	at	disparate	focal	lengths	by	the	same	lens	(Fig.	
3d).	Chromatic	aberration	is	thus	best	minimized	by	the	use	of	a	coherent	source	of	illumination,	
such	as	a	(cold)	field-emitter	and/or	the	use	of	a	monochromator	(Kimoto,	2014;	Tsuno,	2011).		

2.2.3.2 Optical resolution 

As	introduced	in	section	2.2.1,	the	point-to-point	resolution	in	electron	microscopy	is	generally	
not	diffraction-limited.	Even	though	electrons	with	short	wavelengths	(typically	in	the	range	of	a	
few	pm)	are	utilized	as	the	source	of	 illumination,	and	satisfactory	numerical	apertures	would	
theoretically	 satisfy	 the	 Abbe	 diffraction	 limit	 for	 higher	 resolutions,	 the	 optical	 quality	 of	
electromagnetic	 lenses	 is	 significantly	 worse	 than	 that	 of	 their	 light	 optical	 counterparts	
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(Penczek,	2010b).	Aberrations,	therefore,	prevent	the	electron	optical	system	from	reaching	the	
theoretically	 possible	 specifications.	 Hence,	 the	 maximal	 attainable	 resolution	 in	 electron	
microscopy	is	not	diffraction-,	but	rather	aberration-limited.	

In	 practice,	 any	 kind	 of	 aberration	 directly	 interferes	 with	 the	 spatially	 proportional	
reproduction	of	 an	objects	 features	 in	 the	 imaged	projections.	During	 imaging	 (in	 real	 space),	
the	original,	unaltered	image	function	of	the	specimen	is	thus	always	convolved	with	that	of	the	
sum	of	 all	 aberrations;	 hence,	 a	 specific	 point	 spread	 function.	 Consequently,	 the	 information	
recorded	 in	 the	 final	 image	 does	 not	 represent	 the	 exact	 spatial	 relationships	 of	 the	 original	
specimen	 but	 is	 rather	 blurred	 out	 by	 the	 effects	 of	 various	 aberrations	 that	 are	 added	
cumulatively.	 A	 major	 objective	 in	 improving	 the	 point-to-point	 resolution	 in	 electron	
microscopy	is	thus	to	contain	and	reduce	the	aberrations	introduced	during	the	imaging	process.		

2.2.4 Sample	preparation	and	imaging	under	cryo-conditions	

Biomolecules	that	are	to	be	imaged	within	an	electron	microscope	inevitably	need	to	be	exposed	
to	 high	 levels	 of	 radiation	 as	 well	 as	 to	 the	 ultra-high	 vacuum	 of	 the	 microscope	 column	
(typically	 up	 to	 10-9	mbar).	 Attempts	 of	 probing	 the	 sample	 in	 a	 liquid	 environment	 are	
therefore	 condemned	 to	 fail,	 as	 evaporation	would	dry	out	 the	 specimen	while	 contaminating	
the	vacuum.	Setting	aside	the	possibility	to	stain	and	dry	the	sample	(e.g.	utilizing	heavy	atom	
metal	salts),	a	method	that	was	classically	used	but	is	limited	in	resolution	due	to	the	grain	size	
of	 the	 stain,	 the	 challenge	 to	 image	 unstained	 biological	 specimen	 was	 eventually	 solved	 by	
Dubochet	and	Alasdair	McDowall	by	embedding	the	sample	into	a	thin	layer	of	glycerol	or	non-
crystalline	(hence,	vitreous)	ice	(Dubochet	et	al.,	1985;	1988).	A	procedure	that	is	routinely	used	
in	 today’s	 high-resolution	 electron	 microscopy	 once	 represented	 a	 cornerstone	 in	 the	
development	 of	 the	 method.	 The	 electron	 microscopic	 probing	 of	 frozen	 samples	 was	 thus	
named	electron	cryo-microscopy	(cryo-EM)	and	its	inventors	were	awarded	the	Nobel	Prize	in	
Chemistry	in	2017.		

While	embedded	in	a	thin	layer	of	ice,	proteins	or	any	other	biomolecules	remain	in	their	natural	
buffer,	 fully	 hydrated	 and	 physically	 fixed	 at	 a	 static	 position	 –	 desirable	 attributes	 not	
necessarily	offered	by	all	methods	of	structural	biology.	The	formation	of	ice	crystals,	however,	
needs	 to	 be	 prevented	 as	 they	 would	 strongly	 diffract	 the	 incident	 electron	 beam	 and	
overshadow	 the	 actual	 signal	 that	 originates	 from	 the	 specimen.	 Once	 a	 cooling	 rate	 of	more	
than	105	K	s-1	is	reached,	ion	enriched	water	tends	to	freeze	into	an	amorphous,	glass	like	solid	
in	 a	 process	 termed	 vitrification	 (Brüggeller	 and	 Mayer,	 1980).	 For	 thin	 samples,	 like	 those	
typically	featured	in	a	cryo-EM	application,	rapid	cooling	is	performed	by	applying	the	sample	to	
a	thin	metal	grid	as	mechanical	support	and	then	plunging	the	entire	preparation	into	a	liquefied	
gas,	 such	 as	 ethane	 cooled	 to	 approximately	 93	 K	 (-180	 °C)	 (Dobro	 et	 al.,	 2010).	 In	 order	 to	
generate	thin	layers	of	ice,	which	is	a	prerequisite	for	reaching	sufficiently	high	cooling	rates	and	
electron	 permeability	 later	 in	 the	microscope,	 excess	water	 or	 buffer	 is	 usually	 blotted	 away	
from	the	grid	just	before	plunge	freezing.			

Another	 positive	 effect	 of	 probing	 biological	 samples	 with	 electron	 radiation	 at	 low	
temperatures	(e.g.	at	77	K	for	liquid	nitrogen)	is	the	decreased	sensitivity	to	radiation	damage	
(Bammes	 et	 al.,	 2010;	 Stark	 et	 al.,	 1996).	 While	 any	 crude	 biological	 specimen	 at	 room	
temperature	would	immediately	vaporize	when	exposed	to	an	electron	dose	that	is	required	for	
imaging,	 the	 same	 sample	 does	 stay	 intact	 long	 enough	 in	 a	 low	 temperature	 frozen	 state.	
Nevertheless,	in	particular	when	compared	to	the	doses	that	are	commonly	utilized	in	electron	
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microscopy	of	relatively	radiation	insensitive	inorganic	sample	materials	(e.g.,	several	thousand	
electrons	per	Å2	per	 second),	 cryo-EM	of	biological	 specimen	must	be	performed	under	much	
lower	dose	 conditions	 (e.g.,	 up	 to	50	electrons	per	A2	per	 second).	Hence,	 the	name	 low	dose	
cryo-EM	 was	 established.	 Unfortunately,	 the	 low	 dose	 imaging	 of	 these	 specimen	 generates	
images	of	critically	low	signal	to	noise	ratio.	Extensive	image	processing	is	therefore	required	in	
order	 to	 enhance	 the	 signal	 and	 eventually	 reconstruct	 a	 high-resolution	 three-dimensional	
model	of	the	originally	imaged	(macro-)	molecular	complex	of	interest.		

2.3 Image	and	data	processing	
Any	 image	 or	 micrograph	 recorded	 by	 TEM	 eventually	 provides	 the	 two-dimensional	 (2D)	
projections	of	a	three-dimensional	(3D)	object	of	interest,	e.g.	a	large	macromolecular	complex	
particle	(Saibil,	2012).	In	the	process,	the	entire	density	distribution	of	the	3D	object	is	projected	
along	 one	 specific	 (projection)	 axis	 into	 a	 single	 2D	 image	 (Penczek,	 2010c).	 The	 relative	
angular	relationship	between	this	axis	and	an	arbitrary	reference	axis	in	a	coordinate	system	is	
given	 by	 the	 projection	 angle,	 which	 is	 determined	 by	 the	 angular	 relationship	 between	 the	
particle’s	orientation	on	the	grid	and	that	of	the	incident,	illuminating	radiation.	As	the	latter	is	
commonly	not	tilted	during	image	acquisition,	the	angle	at	which	a	3D	particle’s	appearance	is	
projected	onto	a	detector	is	solely	dependent	on	the	orientation	of	that	particle	on	the	grid.	To	
finally	reconstruct	a	3D	model	of	the	initially	imaged	particle,	its	projections	need	to	be	recorded	
at	 various	 projection	 angles	 (Penczek,	 2010c).	 In	 cryo-EM,	 the	 latter	 is	 readily	 achieved	 by	
applying	and	 freezing	a	highly	purified	sample	of	 the	molecular	complex	of	 interest	 to	an	EM-
grid	(Dobro	et	al.,	2010).	As	the	particle	surfaces	 ideally	 interact	with	the	grid	substrate	 in	an	
unspecific	manner,	a	random	distribution	of	particle	orientations	is	ideally	obtained.	Therefore,	
once	 imaged,	 projections	 of	 single	particles	 at	 (ideally)	 random	angles	 are	 recorded	on	 every	
micrograph	and	may	consequently	be	utilized	for	3D	reconstruction.		Since	many	images	of	(the	
same	kind	of)	single	particle	are	recorded	and	utilized,	the	procedure	is	commonly	described	as	
single	particle	cryo-EM.	

In	 order	 to	 reconstruct	 and	 analyse	 the	 three-dimensional	 density	map	 of	 a	macromolecular	
complex	from	the	2D	projections	that	were	recorded	in	an	electron	microscope,	extensive	image	
processing	 is	 required.	 The	 following	 sections	 will	 thus	 briefly	 introduce	 the	 most	 essential	
procedures	 and	 finally	 complete	 the	 explanation	 of	 cryo-EM	 as	 a	method	 for	 high-resolution	
single	particle	3D	structure	determination.		

2.3.1 Micrograph	quality	control	and	pre-processing	

Every	set	of	raw	micrographs	has	to	be	pre-processed	and	analysed	accordingly	once	recorded	
by	the	microscope.	As	modern	detectors	allow	for	a	dose	fractionation	through	the	consecutive	
recording	of	multiple	frames	at	very	short	exposure	times	(section	2.2.2.3),	each	exposure	of	the	
same	frameset	needs	to	be	aligned	with	respect	to	the	others.	The	latter	is	commonly	achieved	
by	a	selection	of	software	packages	and	effectively	reduces	the	effects	of	beam-induced	motion	
blurring	or	 charging,	 that	would	otherwise	diminish	 image	quality	 (McLeod	et	 al.,	 2017).	The	
resulting	 framesets	 of	 the	 aligned	 images	 are	 then	 averaged	 and	 optionally	 dose	weighted	 in	
order	 to	 improve	 the	signal	 to	noise	ratio	of	 the	 final	micrograph	representation,	while	at	 the	
same	 time	 optimizing	 the	 representation	 of	 high	 spatial	 frequency	 information	 in	 the	 data	
(Zheng	 et	 al.,	 2017).	 Once	 processed,	 the	 original	 stacks	 of	 raw-micrograph	 images	 that	 are	
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generally	 of	 a	 large	 file-size	 may	 now	 be	 deleted.	 The	 pre-processed,	 averaged	 and	 dose-
weighted	newly	synthesized	micrographs	are	further	processed.			

The	quality	 of	 each	 individual	micrograph	may	nevertheless	 significantly	 vary	 throughout	 the	
dataset.	 Even	 though	 areas	 on	 a	 grid	 that	 are	 to	 be	 recorded	 are	 usually	 carefully	 selected	 in	
advance,	 local	contaminations	are	still	 imaged	occasionally	and	thus	need	to	be	removed	from	
the	 dataset	 at	 later	 stages.	 In	 particular	 variances	 in	 ice	 thickness,	 particle	 aggregation	 or	
charging	 effects	 represent	 instances	 where	 the	 projections	 of	 single	 particles	 become	
uninterpretable	 and	 are	 thus	 unusable	 for	 subsequent	 reconstruction	 procedures.	 Since	
automated	routines	are	currently	not	available,	micrographs	have	to	be	visually	 inspected	and	
consequently	 sorted	 according	 to	 the	 general	 quality	 requirements	 introduced	 above	 using	
certain	software	(unpublished	work,	Stark	lab).		

Additionally,	 the	so-called	power	spectrum	of	a	micrograph	may	be	calculated	at	 this	 time;	an	
operation	where	the	real	space	image	information	is	mathematically	transformed	to	reciprocal,	
or	Fourier	space.	The	resulting	Thon-rings	may	then	be	manually	evaluated	and	characterized	to	
discard	 recordings	 that	 show	 crystalline	 ice,	 drift	 (mechanical	 movement	 of	 the	 sample	 or	
sample	holder),	 charging,	or	a	very	weak	signal	 to	noise	ratio	 in	 the	 image	(Cong	and	Ludtke,	
2010;	THON,	1971).	Approximately	50-90%	of	the	originally	recorded	micrographs	are	usually	
evaluated	as	acceptable	and	thus	passed	on	to	the	next	step	in	image	processing.				

2.3.2 Aberration	estimation,	particle	picking	and	extraction	

As	described	in	section	2.2.3,	certain	aberrations	may	be	detected	and	corrected	during	 image	
processing.	 Additionally,	 as	 introduced	 in	 section	 2.2.2.2,	 the	 signal	 recorded	 on	 each	
micrograph	 is	mostly	 phase	 contrast	 derived	 and	 thus	 always	modulated	 by	 a	 CTF.	 For	 high-
resolution	3D	reconstruction	purposes,	however,	an	eventually	homogeneous	signal	distribution	
over	all	spatial	frequencies	is	of	superior	importance	(Zou	et	al.,	2011).	The	power	spectra	of	the	
pre-processed	micrographs	are	therefore	utilized	to	fit	an	approximation	of	the	respective	CTF	
for	 every	micrograph.	 As	 the	 CTF	 is	 directly	 dependent	 on	 the	 focal	 height	 of	 the	 recording,	
fitting	the	function	to	the	real	data	also	reveals	its	respective	defocus	parameters.	In	addition	to	
the	amplitude	and	direction	of	the	2-fold	astigmatism	that	is	often	present	in	the	data,	the	CTF	
zero	crossings	are	precisely	mapped	in	the	same	procedure	(Vulovic	et	al.,	2010).	This	analysis,	
usually	 automatically	 performed	 by	 software,	 thus	 allows	 the	 application	 of	 basic	 image	
processing	procedures	such	as	phase	flipping	or	astigmatism	correction	(Zhang,	2016;	Zhou	et	
al.,	1996).	Specifically	 the	 flipping	of	phases	 that	would	otherwise	have	 resulted	 in	a	negative	
image	 contrast	 composes	new	 images	of	 the	particle	projections	 that	 consequently	 feature	 an	
all-positive	 image	 contrast.	 The	 above	 described	 procedures	 are	 thus	 absolutely	 essential	 to	
eventually	 retrieve	 the	 high	 spatial	 frequency	 information	 from	 any	 phase	 contrast	 transfer	
function	modulated	image	(Cong	and	Ludtke,	2010).		

Once	 the	 CTF	 and	 2-fold	 astigmatism	 parameters	 are	 determined,	 the	 position	 of	 all	 single	
particle	projections	on	the	micrograph	must	be	determined;	a	process	commonly	referred	to	as	
particle	picking.	The	resulting	coordinates	are	consequently	used	to	extract	the	imaged	particles	
from	 the	micrographs,	 ideally	 discarding	 artefacts	 and	 blank	 spaces	 from	 further	 processing.	
Even	 though	 at	 present	 day	 this	 task	 is	 commonly	 performed	 by	 software	 (Woolford	 et	 al.,	
2007),	the	precise	picking	of	particle	coordinates	is	often	complex	due	to	the	diverse	shape	and	
appearance	of	various	macromolecular	complexes	(Cong	and	Ludtke,	2010)	as	well	as	variations	
in	image	contrast	e.g.	as	a	result	of	a	varying	ice	thickness.	As	soon	as	the	particle	coordinates	
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are	 obtained,	 every	 projection	 is	 cropped	 from	 its	 original	 micrograph	 at	 a	 box	 size	 that	 is	
approximately	 1.5	 -	 2x	 the	 diameter	 of	 the	 particle.	 All	 further	 basic	 image-processing	
procedures	are	then	performed	on	these	stacks	of	particle	images	only.		

2.3.3 Particle	classification	and	averaging	

As	 explained	 in	 section	 2.2.4,	 the	 low	 dose	 imaging	 that	 is	 commonly	 applied	 during	 single	
particle	image	acquisition	inevitably	results	in	a	noisy	representation	of	the	recorded	image.	One	
of	 the	 most	 critical	 challenges	 in	 (single	 particle)	 cryo-EM	 image	 processing	 is	 therefore	 to	
improve	the	generally	low	signal-to-noise	ratio	(SNR)	in	the	recorded	image,	which	is	inevitable	
when	 using	 low	 dose	 exposure	 techniques.	 The	 first	 successful	 attempts	 to	 master	 this	 task	
experimentally	were	initially	presented	by	Henderson	and	colleagues,	who	effectively	averaged	
the	 signal	 of	 millions	 of	 Bacteriorhodopsin	 particles	 arranged	 in	 a	 2D	 crystal	 lattice	 during	
imaging	 to	 generate	micrographs	 of	 satisfactory	 signal-to-noise	 ratio	 (Henderson	 et	 al.,	 1990;	
Unwin	 and	 Henderson,	 1975).	 In	 single	 particle	 applications,	 however,	 the	 data	 recorded	 is	
noisy	and	not	directly	 interpretable	 to	atomic	detail.	Nevertheless,	 the	signal	of	single	particle	
projections	may	be	equally	well	improved	with	respect	to	the	ambient	noise	by	averaging	with	
other	 projections	 of	 the	 same	 kind	 during	 image	 processing	 (Henderson,	 1995).	 As	 the	
projections	 of	 single	 particles	 are	 usually	 recorded	 at	 random	 projection	 angles	 and	 not	 in	 a	
crystalline	 lattice,	 however,	 a	 careful	 alignment	 and	 classification	 of	 all	 images	 is	 obligatory	
before	averaging	by	summation	(Frank,	1975).	After	alignment	and	classification,	the	same	kind	
of	projections	thus	show	the	same	features	at	the	same	position	while	the	noise	in	the	image	is	
generally	 distributed	 randomly.	 Therefore,	 after	 averaging,	 the	 signal	 of	 the	 particle	 features	
increases	 proportionally	 with	 the	 number	 of	 images	 utilized,	 while	 the	 signal	 that	 originates	
from	random	noise	cancels	out	in	a	similarly	proportional	manner.		

Many	algorithmic	approaches	have	been	developed	 in	order	 to	align	and	classify	 sets	of	noise	
contaminated	single	particle	projections	(Marabini	and	Carazo,	1996;	Schatz	and	van	Heel,	1990;	
van	 Heel	 et	 al.,	 1992).	 Some	 of	 which,	 in	 particular	 those	 that	 are	 based	 on	 multivariate	
statistical	analysis	(MSA)	approaches	(Schatz	and	van	Heel,	1992),	are	still	utilized	today.	While	
iterative	 rounds	 of	 cross	 correlation	 based	multiple	 reference	 alignments	 (Saxton	 and	 Frank,	
1976)	 and	 principle	 component	 analysis	 (PCA)	 based	 classification	 allow	 for	 a	 precise	
segregation	of	 single	 particle	 projections	 into	 classes	 of	 similar	 appearance,	methods	 that	 are	
based	on	maximum	likelihood	estimations	and	Bayesian	statistics	are	gaining	importance	in	the	
field	 and	 are	nowadays	used	on	 a	 routine	basis	 (Scheres,	 2012a;	 Sigworth,	 1998).	 Finally,	 2D	
class	 averages	 of	 sufficiently	 improved	 SNR	 and	 best	 possible	 structural	 homogeneity	 are	
required	to	proceed	to	angular	reconstitution	and	3D	reconstruction	steps.	

2.3.4 Angular	reconstitution	and	3D	reconstruction	

Even	 though	 2D	 projections	 of	 a	 macromolecular	 complex	 are	 typically	 recorded	 in	 a	 single	
particle	 cryo-EM	 type	 of	 experiment,	 a	 3D	 reconstruction	 of	 the	 sample	 is	 generally	 desired.	
Methods	 to	routinely	achieve	 this	 task	were	 initially	applied	 to	electron	micrographs	of	 single	
particle	projections	in	the	1970s,	even	though	the	mathematical	foundation	was	developed	long	
before	(Crowther	and	Klug,	1975;	Frank,	1981).	In	order	to	reconstruct	a	3D	volume	from	its	2D	
projections,	the	latter	need	to	be	back	projected	while	spatially	arranged	at	their	corresponding,	
original	projection	angles	(Fig.	4).	In	effect,	a	virtual	3D	model	of	the	originally	imaged	object	is	
created	at	the	centre	of	an	imaginary	projection	sphere,	which	can	then	be	analysed	at	various	
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threshold	levels	that	again	represent	the	density	distribution	of	the	original	object.	Even	though	
the	 above	 described	 procedure	 is	 well	 characterized	 in	 theory	 and	 efficiently	 computed	 in	
reciprocal	 space,	 its	 application	 to	 real	 electron	 microscopy	 data	 is	 not	 trivial.	 The	 most	
challenging	task	in	this	regard	is	represented	by	the	(re-)	assignment	of	the	projection	angles	to	
the	 arbitrarily	 recorded	 2D	 images.	 Although	 the	 entire	 3D	 density	 distribution	 is	 conserved	
within	a	2D	projection	of	a	3D	particle,	the	relative	angular	relationship	of	that	projection	to	the	
originating	particle	is	lost.	The	knowledge	of	the	exact	projection	angles,	however,	is	critical	for	
the	success	of	any	back	projection	attempt	during	3D	reconstruction	(Penczek,	2010c).		

Depending	 on	 the	 prior	 knowledge	 regarding	 the	
structure	 of	 an	 imaged	 sample,	 various	 methods	 of	
angular	reconstitution	have	been	developed	in	the	past.	
One	 of	 the	 most	 direct	 ways	 to	 achieve	 the	 latter,	 if	
applicable,	 is	 to	 utilize	 the	 intrinsic	 symmetry	 of	 a	
macromolecular	 complex	 to	 reconstruct	 the	 relative	
angular	relationship	of	its	asymmetric	units.	As	for	the	
first	 time	presented	by	David	DeRosier	and	Aron	Klug	
in	1968,	they	were	able	to	reconstruct	a	3D	model	of	a	
Bacteriophage	T4	tail	from	a	single	micrograph	through	
symmetry	 analysis	 of	 its	 diffraction	 pattern	 and	
subsequent	 Fourier	 synthesis	 (de	 Rosier	 and	 Klug,	
1968).	Even	though	the	resulting	physical	model	was	of	
poor	resolution	and	eventually	carved	from	wood,	they	
were	 nevertheless	 able	 to	 prove	 the	 concept	 of	 back	
projection	 as	 an	 incredibly	 valuable	 tool	 in	 3D	
reconstruction	 from	 electron	 microscopic	 images.	
Although	 the	appearance	of	 symmetry	greatly	 reduces	
the	 complexity	 of	 angular	 reconstitution,	 far	 from	 all	
(macro)	 molecular	 complexes	 actually	 exhibit	 a	
periodic	 structure.	 Other	 methods	 were	 therefore	
developed	 to	 reconstitute	 the	 angular	 relationship	 of	
non-symmetric,	single	particle	projections.		

Another	 successful	 approach	 that	 considers	 multiple	
pairs	of	projections	recorded	from	the	same	particle	is	
still	utilized	today.	To	image	these	projection	pairs,	the	
sample	 is	 recorded	 multiple	 times	 (at	 least	 twice)	 at	
various	 tilt	 angles	 during	 a	 tomography	 type	 of	 experiment.	 Termed	 random	 conical	 tilt,	 the	
method	relies	on	correlating	sets	of	particles	that	are	deliberately	imaged	on	a	common	tilt	axis,	
with	all	others.	If	projections	are	consequently	related	amongst	themselves	by	a	rotation	around	
the	common	tilt	axis,	only	one	more	angle	is	required	to	be	determined	in	order	to	describe	the	
entire	 set	of	 angular	 relationships.	 In	 this	manner,	 Frank	and	Radermacher	demonstrated	 the	
angular	reconstitution	and	3D	reconstruction	of	a	50S	Ribosomal	subunit	in	1986	(Radermacher	
et	al.,	1986;	1987).		

Preceding	these	developments,	a	method	that	is	still	commonly	utilized	today	does	not	require	
additional	experimental	procedures	to	correlate	the	projection	axis	of	randomly	oriented,	single	
particle	 recordings.	 Once,	 however,	 again	 established	 for	 structures	 of	 high	 symmetry,	 a	
procedure	 that	 correlates	 pairs	 of	 “common	 lines”	 in	 the	 Fourier	 domain	 of	 single	 particle	

	
Fig.	 4	 Simulated	 Projection	 sphere	
illustrating	 the	 relationship	between	2D	
projections	 and	 their	 3D	 origin.	 Various	
2D	 projections	 of	 the	 same	 3D	 particle	
that	 is	 oriented	 in	 the	 centre	 of	 the	
sphere	 are	 illustrated.	 The	 2D	
projections	are	 thereby	arranged	on	 the	
arbitrarily	 sized	 projection	 sphere	
according	 to	 their	 correctly	 determined	
projection	 angle.	 A	 (simulated)	
projection	 of	 the	 central	 3D	 particle	
would	thus	exactly	yield	the	depicted	2D	
projections	 and	 vice	 versa.	 Hence,	 a	
back-projection	 of	 the	2D	projections	 at	
their	 corresponding	 angle	 would	 in	
return	yield	the	original	3D	model	in	the	
centre.	
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projections	was	utilized	(Crowther	et	al.,	1970).	The	reciprocal	space	based	method	is	based	on	
the	projection-slice	theorem	(Garces	et	al.,	2011)	and	allows	the	correlation	between	features	in	
a	projection	and	the	corresponding	object	of	one	additional	dimension.	Hence,	for	example	a	2D	
projection	 and	 its	 3D	object	 of	 origin.	Marin	 van	Heel	 refined	 and	modified	 this	 procedure	 to	
utilize	 real	 space	 common	 lines	 in	 sinograms	 to	 reconstitute	 the	 angular	 relationship	 of	 any	
projection	 from	 the	 same	 3D	 object	 (van	 Heel,	 1987).	 Effectively,	 both	 variants	 work	 to	 a	
satisfactory	extent	if	the	input	2D	projections	1)	all	belong	to	the	same	3D	object	and	2)	are	of	
sufficient	SNR.	These	prerequisites	thus	render	it	essential	that	the	sample	in	question	is	1)	of	
high	purity,	hence,	all	projections	come	from	the	same	3D	object	and	2)	of	sufficient	SNR,	hence,	
the	experimentally	recorded	projections	have	been	pre-processed	accordingly	(section	2.3.3).		

Once	3D	information	concerning	the	particle	of	interest	is	available,	e.g.	through	initial	attempts	
of	angular	reconstitution,	a	crystal	structure	or	any	other	model	that	is	compositionally	related,	
computed	projections	of	this	existing	model	can	then	be	utilized	as	an	alignment	reference	for	
the	recorded	data.	Since	the	reference	projections	are	computed,	not	empirically	recorded,	their	
angular	 relationship	 is	 known.	 All	 particles	 that	 are	 aligned	 to	 a	 projection	 of	 this	 kind	may	
therefore	 be	 used	 at	 once	 in	 a	 3D	 reconstruction	with	 an	 angular	 relationship	 that	 originates	
from	and	is	equal	to	that	of	the	original	reference	projection	(Penczek	et	al.,	1994).	The	method	
is	 therefore	 named	 projection	 matching	 and	 reviewed	 in	 more	 detail	 here	 (Elmlund	 and	
Elmlund,	 2015).	 As	 an	 existing	model	 is	 used	 as	 a	 reference,	 the	 procedure	may	 likewise	 be	
utilized	 to	 iteratively	 refine	 a	 3D	 structure	 against	 the	 data	 through	 consecutive	 rounds	 of	
alignment,	 3D	 reconstruction	 and	 re-projection	 of	 the	 reconstructed	 volume.	 This	 procedure	
thus	allows	an	iterative	improvement	of	the	back-projected	3D	volume,	hence,	its	re-projections,	
and	consequently	results	in	a	more	precise	alignment	of	the	recorded	data	to	the	computed	re-
projections	of	higher	resolution	during	the	next	 iteration.	Maximum-likelihood	based	methods	
of	 classification	 in	 combination	 with	 projection	 matching	 procedures	 therefore	 allow	 the	
refinement	of	cryo-EM	data	to	highest	resolutions	(Scheres,	2012b).		

2.3.4.1 Resolution after 3D reconstruction 

Objective	measures	 for	 the	assessment	of	 resolution	are	of	great	 importance	 in	evaluating	 the	
informative	value	of	any	reconstructed	3D	volume.	As	introduced	in	section	2.2.3.1,	the	optical	
resolution	of	the	microscope	does	not	necessarily	equal	the	resolution	of	the	3D	volume	after	3D	
reconstruction.	 Instead,	 the	 point-to-point	 resolution	 theoretically	 obtainable	 in	 an	 ideal	
exposure	of	a	2D	micrograph	is	further	degraded	by	the	low	SNR	in	a	typical	cryo-EM	recording,	
alignment-	 and	 aberration	 correction	 errors,	 and	 additional	 optical	 aberrations	 introduced	by	
recording	 procedures	 that	 are	 optimised	 for	 speed	 (e.g.	 beam	 tilt	 induced	 coma)	 (Penczek,	
2010b).	 The	 resolution	 assessment	 of	 cryo-EM	 data	 after	 image	 processing	 therefore	 rather	
concentrates	on	 the	consistency	of	 the	 result,	which	 is	generally	an	averaged	 image	 in	 the	2D	
classification	scenario	and	a	density	map	after	3D	reconstruction.	While	a	wealth	of	procedures	
have	been	developed	over	the	years,	the	Fourier	Ring	Correlation	(FRC)	in	2D	(Heel	and	Stöffler-
Meilicke,	1985;	Saxton	and	Baumeister,	1982)	or	Fourier	Shell	Correlation	(FSC)	in	3D	(Harauz	
and	van	Heel,	1986)	are	most	commonly	utilized	in	the	field	today.	The	FSC	thereby	represents	a	
1D	 function	 of	 the	 modulus	 of	 spatial	 frequency,	 where	 its	 values	 are	 computed	 correlation	
coefficients	 between	 two	 similar	 but	 independently	 reconstructed	 3D	 volumes.	 Consequently,	
values	of	the	FSC	curve	close	to	one	represent	a	strong	similarity	between	the	two	3D	volumes	at	
a	given	spatial	frequency	while	values	approaching	zero	suggest	a	random,	thus	no	correlation.	
A	 specific,	 somewhat	 arbitrary	 cut-off	 value	 (e.g.	 0.5	 or	 0.143)	 is	 then	 used	 to	 determine	 the	
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resolution	 (Rosenthal	 and	Henderson,	 2003).	Defined	dataset	 refinement	procedures	 and	FSC	
cut-off	values	eventually	represent	the	“gold-standard”	of	resolution	determination	(Henderson	
et	al.,	2012).	The	obtained	numerical	value	thereby	commonly	represents	spatial	frequency	(e.g.	
1/Å	 in	 units),	while	 an	 inverse	 of	 this	 number	 is	 used	 to	 describe	 the	 apparent	 resolution	 in	
units	of	real	space	distance,	e.g.	Å.	Resolution	estimations	of	 this	kind	are	additionally	utilized	
during	refinement	procedures	in	order	to	prevent	overfitting	and	to	guide	the	process	in	general	
(Scheres,	 2012b).	 3D	 maps	 may	 therefore	 be	 filtered	 and	 post-processed	 at	 their	 respective	
maximum	resolutions	without	the	risk	of	an	over-	or	underestimation	of	the	information	content	
that	is	actually	present	in	the	data.	

Once	the	resolution	of	a	reconstructed	3D	model	is	evaluated,	its	numerical	value	is	expected	to	
represent	 a	 consistent	 and	 reproducible	 indication	 for	 the	 information	 content	 of	 the	map.	 In	
general,	 it	 is	 accepted	 that	 resolutions	worse	 than	30	Å	 solely	describe	 the	overall	 shape	of	 a	
macromolecular	complex	in	rough	detail.	In	the	range	of	30	–	10	Å	it	then	becomes	feasible	to	fit	
and	 identify	 rigidly	 folded	whole	 protein	 structures	 or	 their	 domains.	 A	map	with	 a	 10	 –	 4	Å	
resolution	 range	 is	 expected	 to	 clearly	 reveal	 the	 shape	 of	 alpha-helices	 and	 beta-sheets,	
eventually	 separating	 the	 later	 and	 allowing	 an	 identification	 of	 the	 alpha-helix	 pitch	 at	
resolutions	 close	 to	 4	 Å	 (Baker	 et	 al.,	 2012).	 Maps	 better	 than	 4	Å	 in	 resolution	 are	 finally	
expected	to	reliably	reveal	densities	for	 individual	side-chain	moieties,	where	resolutions	of	3,	
2	Å	 or	 even	 lower	 values	 continuously	 increase	 the	 certainty	 of	 their	 fit,	 up	 to	 exposing	 true	
atomic	detail	at	around	1	Å	(Popp	et	al.,	2018).		

2.3.5 (Atomic)	model	building	and	interpretation		

Reconstructed	3D	volumes	that	are	refined	to	resolutions	better	than	~10	Å	are	commonly	fitted	
with	 a	 (pseudo-)	 atomic	 model,	 while	 actual	 atomic	 modelling	 usually	 becomes	 feasible	 at	
resolutions	 better	 than	 4	 Å.	 The	 resulting	 model	 then	 approximately	 defines	 the	 position	 of	
ideally	all	atoms	in	the	structure.	Depending	on	the	quality	of	the	map,	this	model	may	finally	be	
used	to	determine	and	describe	the	molecular	architecture	of	a	large	macromolecular	complex,	
the	conformation	and	interaction	sites	of	protein	or	nucleic	acid	domains	or	even,	at	sufficiently	
high	resolutions,	the	chemistry	involved	in	the	function	of	a	molecular	machine.	The	evaluation	
of	 an	 atomic	 model	 thereby	 allows	 for	 a	 more	 straightforward	 and	 comprehensive	
interpretation	of	the	data	that	is	obtained	by	a	typical	single	particle	cryo-EM	experiment.	The	
construction,	 refinement	 and	 validation	 steps	 that	 are	 required	 for	 the	 generation	 of	 such	 a	
model	are	not	 trivial	and	an	 in-depths	description	of	 the	 involved	processes	would	be	beyond	
the	scope	of	this	introduction.	Nevertheless,	to	provide	a	general	overview	of	the	steps	that	are	
necessary	 to	model	 atomic	 coordinates,	 the	most	 important	operations	are	 shortly	elaborated	
below.	More	detailed	reviews	may	be	found	here	(Brown	et	al.,	2015;	Davis	et	al.,	2007;	Jensen,	
2010;	Terwilliger	et	al.,	2012).	

2.3.5.1 Docking of known structures 

As	 mentioned	 above,	 (pseudo-)	 atomic	 models	 are	 typically	 built	 for	 EM	 density	 maps	 of	
approximately	 10	 Å	 in	 resolution	 or	 better.	 The	 modelling	 process	 usually	 follows	 a	 well-
established	procedure	that	initially	takes	potentially	available,	prior	structural	and	biochemical	
information	into	account.	In	particular	the	atomic	coordinates	of	single	(sub-)	domains	or	other	
structural	 models	 that	 are	 deposited	 within	 a	 database	 are	 often	 of	 good	 use.	 Since	 the	
biochemical	 composition	 of	 an	 investigated	 macromolecular	 complex	 is	 usually	 known,	
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modelling	attempts	may	be	limited	to	exclusively	those	structural	domains	that	are	expected	to	
be	a	member	of	the	probed	structure.	As	macromolecular	complexes	are	often	assembled	from	
various	subunits	or	domains	of	previously	known	proteins,	structural	models	of	the	latter	were	
often	 solved	 in	 advance	 by	 means	 of	 X-ray	 crystallography	 or	 NMR	 studies.	 Utilizing	 these	
models	 as	 rigid-bodies,	 exhaustive	 translational	 and	 rotational	 searches	 can	 be	 performed	 in	
order	to	match	their	appearance	with	a	part	of	the	electron	density	map	(Rossmann	et	al.,	2005).	
Several	 software	 packages	 are	 available	 to	 perform	 this	 task	 semi-automatically	 (Siebert	 and	
Navaza,	2009;	Topf	et	al.,	2008),	even	though	manual	adjustments	by	a	trained	user	are	almost	
inevitable	to	obtain	meaningful	results.	 	Furthermore,	additional	information	from	biochemical	
studies	or	 restraints	obtained	by	crosslinking	coupled	 to	mass	spectrometry	 (CX-MS)	analysis	
(Schmidt	and	Urlaub,	2017)	may	be	imposed	onto	the	structural	model.	In	particular	CX-MS	type	
of	experiments	often	yield	experimentally	validated	structural	restrains	that	are	tremendously	
valuable	in	most	real	applications	(Dybkov	et	al.,	2018;	Rhode	et	al.,	2003;	Schmidt	and	Urlaub,	
2017).	 In	 this	 way,	 small	 protein	 domains	 with	 a	 rather	 generic	 overall	 shape	 may	 also	 be	
reliably	 fitted	 into	densities	 at	 areas	 that	 exhibit	 a	 less	 favourable	 local	 resolution.	 Should	no	
coordinate	model	be	available	 for	a	specific	domain	structure	of	 interest,	 several	methods	are	
available	for	de-novo	construction.	

2.3.5.2 De-novo modelling of unknown structures 

The	information	content	that	is	extractable	from	any	electron	density	map	is	directly	correlated	
to	 its	 resolution.	 Successful	 de-novo	 modelling	 attempts	 are	 thus	 strongly	 dependent	 on	 the	
(local)	resolution	of	the	map,	where	areas	of	higher	resolution	are	usually	modelled	with	greater	
confidence	than	those	of	lower	resolution.	The	de-novo	modelling	procedure	is	therefore	largely	
dependent	 on	 the	 actual	 features	 that	 can	 be	 identified	 in	 the	 map.	 A	 resolution	 of	 10-6	 Å	
initially	allows	to	fit	alpha-helices	into	characteristic	strings	of	density	that	are	readily	observed	
(DiMaio	and	Chiu,	2016).	However,	since	the	specific	density	elements	that	represent	side-chain	
moieties	are	not	recognizable	at	these	resolutions,	it	is	obligatory	to	determine	the	register	and	
general	 position	 of	 each	 helical	 element	 through	 prior	 information	 (Baker	 et	 al.,	 2010).	 The	
latter	may	be	obtained	by	tracing	a	sequence	that	 is	 leading	away	from	an	already	positioned,	
adjacent	part	of	 the	same	domain	or	by	considering	additional	 restraints	 that	are	 revealed	by	
crosslinking	studies.	A	reliable	and	 justifiable	de-novo	placement	of	 the	structure	 is	otherwise	
impossible.			

For	structures	that	are	to	be	modelled	into	maps	of	a	higher	resolution	(e.g.	better	than	4	Å),	a	
true	 de-novo	 modelling	 approach	 that	 actually	 sequences	 the	 density	 can	 be	 feasible;	 even	
though	 practically	 the	 latter	 often	 emerges	 to	 be	 a	 challenging	 task.	 Ambiguous	 side-chain	
densities	 like	 those	of	equally	 sized	amino	acids	 (e.g.	 aspartate	and	asparagine,	phenylalanine	
and	 tyrosine,	 serine	 and	 alanine),	 or	 other	 small	 amino	 acids	 often	 impede	 the	 sequence	
identification	from	maps	that	are	between	3	and	4	Å	in	resolution.	The	initial	modelling	of	longer	
strands	 of	 amino	 acids	 is	 thus	 required	 in	 order	 to	 identify	 the	 register	 of	 a	 given	 domain	
fragment.	Once	that	is	identified,	the	corresponding	model	may	be	extended	in	either	direction,	
directly	tracing	the	density	while	imposing	the	primary	sequence	of	the	known	protein	(Baker	et	
al.,	 2010).	 Software	 like	Coot	or	Chimera	 thereby	provide	 the	graphical	user	 interface	 for	 this	
work	and	other	generally	supportive	algorithms	for	model	building	(Emsley	and	Cowtan,	2004;	
Pettersen	 et	 al.,	 2004).	 Software	 that	 automatically	 approximates	 the	 sequence	 of	 a	 given	
density	 fragment	 is	also	available	(Wang	et	al.,	2015),	providing	the	potential	 to	automate	the	
above	described	procedures.	
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2.3.5.3 Refinement and validation of atomic coordinates 

Once	a	(pseudo)	atomic	model	is	built	for	the	interpretable	parts	of	a	structure,	its	geometry	and	
chemical	plausibility	generally	need	to	be	refined	against	the	experimental	data.	The	procedure	
thus	aims	at	maximizing	the	fit	of	the	model	to	the	experimentally	derived	electron	density	map	
while	 minimizing	 steric	 violations	 and	 clashes.	 The	 latter	 is	 primarily	 achieved	 by	 imposing	
prior	knowledge	 concerning	 the	general	 chemistry	of	proteins	onto	 the	molecules	 in	question	
(Brown	 et	 al.,	 2015).	 Multiple	 software	 packages	 are	 available	 to	 perform	 this	 task,	 utilizing	
various	 methodical	 approaches	 that	 were	 often	 originally	 developed	 to	 refine	 X-ray	
crystallography	 data	 in	 a	 comparable	 manner.	 The	 algorithmic	 solutions	 currently	 available	
operate	with	varying	success,	while	the	global	energy	minimization	routines	offered	by	software	
suites	 like	 REFMAC	 or	 Phenix	 are	 most	 commonly	 utilized	 in	 the	 field	 (Adams	 et	 al.,	 2010;	
Murshudov	et	al.,	2011).	A	careful	manual	supervision	of	the	often	automated	atomic	coordinate	
refinement	 procedures	 is	 nevertheless	 recommended	 to	 prevent	 unrealistic	 steric	 clashes	 or	
other	general	misfits	of	the	model.	To	geometrically	validate	the	refinement	procedure,	software	
like	 MOLprobity	 was	 developed	 (Davis	 et	 al.,	 2007),	 which	 independently	 analyses	 the	
coordinate	model	and	consequently	denominates	errors,	clash	scores	or	chemically	implausible	
structures.			

As	soon	as	a	model	is	finally	optimized	in	its	chemical	plausibility	and	fit	to	the	map,	it	may	be	
analysed	in	detail;	also	without	the	simultaneous	examination	of	the	map	it	was	derived	from.	
The	 visualisation	 options	 provided	 by	 3D	 rendering	 software	 like	 Chimera	 (Pettersen	 et	 al.,	
2004)	or	PyMol	(DeLano	Scientific	LLC,	USA)	then	allow	to	study	the	relationship	between	the	
structure	and	function	of	a	macromolecular	complex	in	great	detail.		

2.4 Pre-mRNA	splicing	
DNA	harbours	the	blueprints	for	all	proteins	and	most	molecular	entities	that	constitute	life.	The	
flow	of	genetic	information	thereby	typically	conveys	these	instructions	from	the	chromosomal	
DNA	 via	 single-stranded	 molecules	 of	 messenger	 RNA	 (mRNA)	 to	 the	 protein	 synthesizing	
machinery	 in	 the	 cytosol.	 Within	 eukaryotic	 systems,	 however,	 the	 genetically	 encoded	
information	is	usually	segregated	by	noncoding	intervening	sequences	(introns)	(Gilbert,	1978).	
Eukaryotic	 introns	 can	 span	 regions	 of	 several	 ten-	 to	 ten	 thousands	 of	 nucleotides	 (Gotoh,	
2018).	While	 the	origin	of	 these	 intronic	sequences	 is	 	still	under	vigorous	debate	(Irimia	and	
Roy,	2014;	Mattick,	1994;	Rogozin	et	al.,	2012),	they	often	interrupt	functionally	important	areas	
on	 the	 DNA	 and	 thus	 likewise	 on	 the	 premature	 RNA	 transcript	 thereof.	 Hence,	 the	 genetic	
information	on	a	gene	cannot	be	immediately	passed	on	to	the	protein	synthesizing	machinery	
without	 further	 processing.	 As	 the	 cellular	 DNA	 is	 usually	 not	modified	 for	 this	 purpose,	 the	
corresponding	 intron	 sequences	 have	 to	 be	 excised	with	 great	 precision	 from	 the	 premature	
RNA	transcript	by	RNA	splicing.			

The	 splicing	 of	 RNA	 in	 general	 and	 that	 of	 pre-mRNA	 in	 particular	 thus	 describes	 an	 ancient	
biochemical	process	in	life	that	is	facilitated	by	a	chemically	rather	simple	reaction.	In	essence,	
the	procedure	results	in	the	sequential	removal	of	a	certain	intron	sequence	from	a	consecutive	
strand	 of	 (pre-m)	 RNA	 by	 the	 hydrolysis	 and	 subsequent	 relegation	 of	 the	 flanking	 exon	
sequences;	 hence,	 a	 splicing	 reaction.	 The	 precise	 removal	 of	 potentially	 very	 large	 introns	
through	 splicing	 therefore	 provides	 a	 mechanism	 to	 restore	 or	 even	 establish	 the	 intended	
function	of	a	gene	product.	At	the	same	time,	the	process	is	capable	of	modifying	the	information	
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content	or	structural	appearance	of	a	raw	transcript	on	its	way	from	a	DNA	encoded	gene	to	a	
functional	protein	or	other	RNA	derived	entity	(Will	and	Lührmann,	2011).		

Splicing	occurs	in	all	kingdoms	of	life	(Yoshihisa,	2014),	where	the	chemically	similar	outcome	is	
catalysed	 via	 various	 routes	 and	 mechanisms.	 In	 Archaea	 and	 Eukaryotes	 the	 reaction	 is	
commonly	facilitated	through	one	of	the	major	three	pathways:	Group	I	&	II	self-splicing	introns	
(Saldanha	 et	 al.,	 1993)	 and	 the	 spliceosome	 dependent	 removal	 of	 introns	 from	 a	 strand	 of	
regular	 pre-mRNA	 (Will	 and	 Lührmann,	 2011).	 Due	 to	 the	 severity	 of	 problems	 arising	 from	
frame	shifted	or	otherwise	misprocessed	splicing	products,	the	chemical	reaction,	albeit	simple	
in	nature,	must	be	highly	regulated	and	catalysed	with	exceptional	fidelity.	Group	I	and	II	self-
splicing	introns	achieve	the	latter	by	autonomously	folding	into	a	fully	functional	ribozyme	that	
is	 endogenously	primed	 to	 splice	out	 a	defined	part	of	 its	own	sequence	 (Golden	et	 al.,	 1998;	
Lambowitz	 and	 Zimmerly,	 2011;	Marcia	 and	 Pyle,	 2012).	 The	 specifically	 arranged	molecular	
framework	 of	 the	 premature	 RNA	 transcript	 thereby	 directly	 forms	 the	 catalytically	 active	
enzyme	structure	by	 itself,	predominantly	 lowering	or	eliminating	 the	necessity	 for	additional	
protein	 factors	 to	 aid	 during	 catalysis.	 Due	 to	 the	 necessarily	 complex	 nature	 of	 the	 raw	
transcript,	however,	which	self-evidently	also	needs	to	encode	the	blueprint	of	the	catalytically	
active	 splicing	machinery,	only	a	very	 limited	number	of	RNAs	within	 the	 cellular	 context	 are	
processed	in	this	manner.		

Pre-mRNA	 transcripts,	 as	 a	 significantly	more	diverse	 family	 of	 splicing	 substrates	within	 the	
eukaryotic	cell,	are	instead	targeted	by	a	more	intricate,	trans-acting	macromolecular	machine	
termed	 the	 spliceosome.	 Functionally,	 its	 complex	 molecular	 architecture	 ensures	 a	 precise	
pre-mRNA	 target-	 and	 splice	 site	 selection	 as	well	 as	 the	 subsequent	 catalysis	 of	 the	 splicing	
reaction	 itself.	 The	 spliceosome	 dependent	 splicing	 of	 pre-mRNA	 (for	 simplicity,	 henceforth	
referred	 to	 as	 “splicing”)	 is	usually	 facilitated	 in	 the	nucleus	 concomitantly	with	 transcription	
(Tilgner	et	al.,	2012).	As	introduced	above,	it	represents	one	of	the	most	significant	pathways	to	
process,	 influence	 and	manipulate	 genetic	 information	on	 its	way	 from	a	 gene	 to	 a	 functional	
protein.	Alternative	 splicing,	 as	 commonly	observed	 in	higher	 eukaryotes,	 furthermore	 allows	
for	a	specific	modification	and	diversification	of	the	protein	products	derived	from	a	single	gene	
on	 the	DNA.	Depending	on	 the	cellular	context	 it	 thus	enables	one	gene	 to	encode	 for	various	
proteins;	 a	 feature	 that	 is	 particularly	 essential	 for	 the	 rise	 and	 development	 of	multicellular	
organism	like	ourselves	(Roy	et	al.,	2013).		

The	 spliceosome-dependent	 splicing	 of	 pre-mRNA	 is	 therefore	 a	 process	 of	 exceptional	
relevance	for	the	development	and	homeostasis	of	eukaryotic	life.	The	mechanism	and	function	
of	 the	 particularly	 dynamic	 molecular	 machine	 was	 consequently	 investigated	 for	 decades	
through	primarily	classic	biochemical	research.	Even	though	important	discoveries	were	made	
during	 this	 time,	 the	 understanding	 of	 the	 spliceosome’s	 precise	 structural	 architecture	 and	
mechanism	 of	 action	 was	 at	 all	 times	 limited	 by	 the	 relatively	 poor	 spatial	 resolution	 of	 the	
biochemical	 experiments.	 In	 fact,	 only	 high-resolution	 models	 of	 the	 entire	 macromolecular	
machine	 obtained	 by	means	 of	 structural	 probing,	 i.e.	 through	 electron	microscopy,	 offer	 the	
chance	to	significantly	increase	the	comprehension	of	the	structural	relationships	of	the	splicing	
process.		

While	 no	 high-resolution	 structures	 of	 a	 catalytically	 competent	 spliceosomal	 complex	 were	
available	 upon	 the	 start	 of	 this	 project,	 numerous	 have	 been	 published	within	 the	 last	 three	
years.	In	order	to	offer	the	best	possible	overview	of	the	current	state	of	research	I	will	therefore	
have	 to	 anticipate	 some	of	my	own	 results	within	 this	 introduction,	which	were	 in	 parts	 also	
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published	in	the	meantime	by	our	competitors.	Generally,	the	field	of	splicing	and	spliceosome	
research	has	made	a	tremendous	leap	forward	during	the	last	years,	as	the	numerous	recently	
unveiled	spliceosome	structures	enabled	an	 in-depth	understanding	of	 the	 involved	molecular	
mechanisms	for	the	first	time.		

2.4.1 Basic	splicing	mechanics	

Comparable	to	the	well-conserved	chemistry	of	 intracellular	RNA	polymerization,	a	ubiquitous	
two-step	reaction	pathway	facilitates	 the	splicing	of	RNA.	 In	this	regard,	 the	 initial	cleavage	of	
the	premature	poly	RNA	molecule	is	executed	at	a	defined	position	during	step	1	of	the	reaction,	
whereas	 step	 2	 subsequently	 completes	 the	 removal	 of	 the	 intron	 while	 facilitating	 the	
relegation	of	the	adjoining	exon	sequences	at	the	same	time.	Focussing	on	the	process	of	major	
spliceosome-dependent	 pre-mRNA	 splicing	 in	 humans,	 the	 following	 sections	 will	 briefly	
elucidate	the	requisite	sequence	features	of	the	RNA	substrate	as	well	as	the	basic	chemistry	of	
the	reaction.		

2.4.1.1 Sequence encoded features of the pre-mRNA  

To	accurately	splice	any	kind	of	RNA	transcript	a	precise	definition	of	the	corresponding	intron	
and	 exon	 boundaries	 is	 crucial.	 Pre-mRNA	 therefore	 contains	 several	 well-conserved,	
endogenous	 signal	 sequences	 that	 direct	 catalytic	 spliceosome	 activity	 exclusively	 to	 the	
intended	splice	sites.		

As	a	continuous	strand	of	RNA	is	cleaved	twice	in	order	to	remove	an	enclosed	intron	part	of	the	
assembly,	two	dedicated	splice	sites	(SS)	are	required.	These	SS	are	usually	characterised	by	a	
defined	sequence	of	nucleotides,	which	are	directly	encoded	within	the	substrate	RNA	molecule.	
Since	 pre-mRNA	 exons	 usually	 code	 for	 a	 particular	 amino	 acid	 sequence,	 SS	 defining	
nucleotides	are	instead	located	within	the	non-translated	intron	region	of	the	molecule	(Fig.	5).	
Depending	on	whether	recognized	by	a	U2-type	(major)	or	U12-type	(minor)	spliceosome,	the	
corresponding	 sequence	 snippets	 are	 highly	 conserved	 throughout	 the	 genome	 and	 across	
species	(Sheth	et	al.,	2006;	Turunen	et	al.,	2012).		

In	general,	tracing	the	pre-mRNA	molecule	in	5’	to	3’	direction,	the	interface	between	the	3’	end	
of	the	exon	(i.e.,	exon	1)	and	the	5’	end	of	the	intron	is	typically	referred	to	as	the	5’	splice	site	
(5’	SS).	Across	species	and	for	the	major	spliceosome,	this	SS	is	ubiquitously	defined	by	a	GU	or	
GC	doublet	as	the	first	nucleotides	of	the	intron,	followed	by	a	slightly	more	degenerate	purine	
sequence	of	3-4	bases	in	metazoans	(Konarska,	1998;	Sheth	et	al.,	2006).		

	
Fig.	 5	 Typical	metazoan	 pre-mRNA.	 Exon	1	 and	Exon	2	 are	 depicted	 in	 blue,	 the	 intron	 is	 depicted	 in	
brown.	The	5’	and	3’	splice	sites	(SS),	the	branch	site	(BS)	and	polypyrimidine	tract	(pY)	are	indicated	
accordingly.	 The	 letters	 residing	within	 the	 illustration	 of	 the	 intron	 represent	 single	 RNA	 nucleotide	
bases,	where	Y	represents	any	pyrimidine.	The	branch	site	adenosine	(BS-A)	nucleotide	is	marked	in	red.	

In	a	similar	manner,	the	3’	splice	site	(3’	SS)	also	features	an	equally	well	conserved	AG	doublet	
of	nucleotides	across	all	species,	representing	the	two	most	terminal	3’	nucleotides	of	any	intron	

Exon 1 Intron Exon 2

5’- -3’GU ... ... AG... YUNAY ... YYYY

5’ SS 3’ SSBS pY
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(Sheth	et	 al.,	 2006).	 In	metazoans,	 the	3’	 SS	 is	 furthermore	often	preceded	by	a	 characteristic	
poly-pyrimidine	tract	(pY)	(Coolidge	et	al.,	1997).	

During	the	first	step	of	splicing	(also	see	section	2.4.1.2)	a	characteristic	intron	lariat	structure	is	
formed	at	the	branch	site	(BS),	involving	a	specific	adenosine	nucleotide	(hence,	the	Branch	Site	
Adenosine	(BS-A)).	Comparable	to	the	importance	of	an	accurate	SS	selection,	the	specific	BS-A	
has	to	be	recognized	and	utilized	in	a	similarly	careful	manner	by	the	spliceosome	and	is	thus	
flanked	 by	 an	 additional	 set	 of	 conserved	 nucleotides	 in	 every	 intron	 element.	While	 the	 BS	
region	in	S.	cerevisiae	(henceforth	referred	to	as	yeast)	is	remarkably	conserved	(i.e.,	UACUAAC;	
the	BS-A	nucleotide	is	underlined),	the	related	sequence	in	metazoans	only	features	a	conserved	
uracil	and	the	BS-A	itself	(i.e.	yUnAy	in	the	human	case,	where	y	represents	a	greater	likelihood	
for	a	pyrimidine	and	n	any	nucleotide)	(Gao	et	al.,	2008).	The	branch	site	sequences	of	higher	
eukaryotes	 are	 thus	 more	 degenerate	 and	 proper	 BS	 selection	 is	 amongst	 others	 further	
supported	by	other	nucleotides	like	those	of	the	pY	tract	(Gao	et	al.,	2008).		

2.4.1.2 Chemical basis of splicing 

RNA	 nucleotides	 naturally	 polymerise	
through	 the	 formation	 of	 a	 specifically	
conserved	bond	between	an	oxygen	atom	
of	the	phosphoester	that	is	attached	to	the	
5’	 carbon	 of	 the	 +1	 nucleotide	 ribose	
molecule	and	the	hydroxyl	oxygen	bonded	
to	 the	 3’	 carbon	 of	 the	 previous	 -1	
nucleotide	 ribose.	 In	 order	 to	 facilitate	
step	 1	 of	 splicing,	 this	 bond	 has	 to	 be	
broken	 and	 substituted	 by	 an	 SN2-type	
transesterification	 reaction.	 Initiating	 the	
reaction,	 the	 2’	 hydroxyl	 oxygen	 of	 the	
conserved	 BS-A	 is	 arranged	 in	 a	
geometrically	 favourable	way	 that	 allows	
for	 a	 nucleophilic	 attack	 on	 the	
phosphoester	of	the	last	intron	nucleotide	
adjacent	 to	 the	5’	 splice	 site	 (5’	 SS)	 (Fica	
et	 al.,	 2013).	 While	 a	 free	 3’	 hydroxyl	
group	 of	 the	 most	 terminal	 exon	 1	
nucleotide	 remains,	 the	 5’	 end	 of	 the	
intron	is	now	covalently	bonded	to	the	2’	
hydroxyl	 oxygen	 of	 the	 BS-A.	 Hence,	 a	
characteristic	 intron	 lariat	 structure	 is	
formed	(Fig.	6).		

Step	2	of	splicing	accordingly	requires	the	
corresponding	 3’	 splice	 site	 (3’SS)	 to	 be	
positioned	 adjacently	 to	 the	 step	 1-
derived,	 free	 3’	 hydroxyl	 group	 at	 the	
terminus	 of	 exon	 1.	 Once	 again	 arranged	
in	an	appropriate	geometry,	a	second	SN2-
type	 transesterification	 reaction	 can	 occur,	 resulting	 in	 the	 attack	 of	 the	 aforementioned	 3’	

	
Fig.	 6	 Chemistry	 of	 pre-mRNA	 splicing.	 	 Exon	 1	 and	
Exon	 2	 are	 depicted	 in	 blue,	 the	 intron	 is	 depicted	 in	
brown.	 The	 5’	 and	 3’	 splice	 sites	 (SS)	 and	 the	 branch	
site	(BS)	is	indicated	accordingly.	Step	1	of	the	reaction	
is	initiated	by	an	attack	of	the	characteristic	2’OH	from	
the	 BS-A	 nucleotide	 on	 the	 phosphate	 of	 the	 5’SS	
residing	 guanosine	 nucleotide,	 forming	 the	
characteristic	 intron	 lariat	 structure.	 Step	 2	 is	 then	
facilitated	 by	 an	 attack	 of	 the	 exposed	 3’OH	 group	 of	
Exon	1	on	 the	 corresponding	phosphate	Exon	2.	Upon	
completion	 of	 the	 reaction	 both	 exons	 are	 spliced	
together	and	the	intron	lariat	structure	is	removed	from	
the	assembly.	
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hydroxyl	oxygen	from	exon	1	onto	the	phosphoester	of	the	first	exon	2	nucleotide.	As	the	intron	
attached	 3’	 hydroxyl	 group	 is	 eventually	 substituted	 by	 the	 corresponding	 exon	 1	 hydroxyl	
group,	 the	 intron	 lariat	 is	 effectively	 spliced	 out	 of	 the	 (pre-)	 mRNA	 and	 removed	 from	 the	
assembly.	Concurrently,	both	exons	are	re-ligated	due	to	the	substitutive	nature	of	the	reaction	
(Will	and	Lührmann,	2011).		

As	 typically	 observed	 for	 most	 chemical	 reaction	 mechanisms,	 SN2-type	 reactions	 likewise	
require	a	precise	steric	configuration	of	 the	 involved	reactants	 in	order	 to	achieve	 the	highest	
rate.	Within	the	catalytic	centre	of	the	spliceosome,	RNA	moieties	and	metal	cations	(e.g.,	Mg2+)	
directly	interact	with	the	pre-mRNA	substrate	and	aid	in	appropriately	positioning	the	latter	for	
catalysis	 (Fica	 et	 al.,	 2013).	 RNA,	 not	 proteins,	 therefore	 catalyse	 the	 actual	 splicing	 reaction,	
rendering	the	spliceosome	a	ribozyme.		

2.4.2 General	components	of	the	spliceosome		

Comprised	of	RNA	and	protein	components	alike,	the	spliceosome	represents	one	of	the	largest	
macromolecular	machines	of	the	cell,	reaching	several	megadaltons	in	mass	at	certain	assembly	
stages.	 In	 order	 to	 comprehend	 its	 catalytic	 mechanism	 and	 regulation,	 a	 more	 in-depth	
appreciation	of	the	properties	and	characteristics	regarding	the	most	integral	building	blocks	is	
essential.	A	brief	introduction	is	thus	provided	below.		

2.4.2.1 RNA  

Each	major	 spliceosomal	 complex	 is	 eventually	 utilizing	 five	 different	 uridylic-acid-rich	 small	
nuclear	riobonucleic	acids	(U-snRNA),	namely	the	U1,	U2,	U4/U6	and	U5	snRNAs	(Hodnett	and	
Busch,	 1968;	 Will	 and	 Lührmann,	 2006).	 Human	 U-snRNAs	 (Fig.	 7)	 are	 rather	 short	 (106-
187	nt)	in	length	and	transcribed	in	the	nucleus	predominantly	by	RNA	polymerase	II	(Will	and	
Lührmann,	2001).	U1-U5	snRNAs	feature	a	common	5’	trimethylguanosine	(TMG)	cap	(Guthrie	
and	 Patterson,	 1988)	 and	 are	 able	 to	 bind	 seven	 auxiliary	 Sm-proteins	 (the	 Sm-core)	 in	 a	
heptameric	 ring-like	 manner	 via	 a	 conserved	 Sm-binding	 site,	 which	 is	 situated	 towards	 the	
3’	end	of	the	strand	(Branlant	et	al.,	1982;	Urlaub	et	al.,	2001).	The	Sm-core	itself	is	assembled	in	
the	 cytoplasm	 after	 the	 newly	 synthesized	 snRNAs	 have	 been	 exported	 from	 the	 nucleus.	
Promoted	by	 the	 binding	 of	 a	 complete	 set	 of	 Sm	proteins,	 further	RNA	processing	 steps	 like	
TMG	cap	hypermethylation	(Mattaj,	1986)	or	modification	and	trimming	at	the	3’	end	of	specific	
snRNAs	are	performed	in	the	cytosol	(Seipelt	et	al.,	1999).	The	Sm-core	bound	snRNAs	are	then	
re-imported	into	the	nucleus	for	further	processing	and	assembly	into	a	functional	spliceosome	
(Fischer	et	al.,	1993).	In	contrast,	the	U6	snRNA	is	transcribed	by	RNA	polymerase	III	and	does	
not	contain	a	sequence	encoded	Sm-binding	site	(Dahlberg	and	Lund,	1991).	Instead,	it	interacts	
with	seven	Sm-like	(LSm)	proteins,	which	also	form	a	ring-like	structure	in	a	similar	geometry	
and	 position	 compared	 to	 that	 of	 their	 Sm	 counterparts.	 Due	 to	 all	 U6	 snRNA	 assembly	 and	
processing	stages	taking	place	in	the	nucleus,	nuclear	export	is	neither	required	nor	performed	
during	its	biogenesis	(Achsel	et	al.,	1999).		
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Fig.	 7	 Sequence	 and	 predicted	 secondary	 structure	 of	 the	 five	 human	 spliceosomal	 snRNAs.	 The	
nucleotide	sequence	 is	depicted	 in	the	 labelled	direction.	A	base	pairing	of	nucleotides	 is	 indicated	by	a	
dash,	the	conserved	Sm-binding	sites	by	white	writing	on	black	background.	The	chemical	modification	of	
certain	 nucleotides	 is	 denoted	 as	 follows:	 Ψ	 =	 pseudouridin;	 m(number)	 =	 methylation	 (at	 the	
correspondingly	numbered	position	of	 the	nucleobase),	no	number	 indicates	a	2’-O-methylation;	ppp	=	
tri-phosphate.	

Importantly,	 defined	 snRNA	 regions	 fold	 into	 characteristically	 shaped	 3D	 stem-loops	 and	
helices,	 some	 of	 which	 are	 only	 transiently	 formed.	 The	 resulting	 RNA-RNA	 interactions	 are	
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often	 highly	 conserved	 across	 species	 and	 essential	 for	 proper	 spliceosome	 functionality.	 The	
corresponding	 structures	 are	 either	 formed	 intramolecularly,	 as	 in	 the	 case	 of	 several	 stem-
loops	 of	 U2	 snRNA	 (Perriman	 and	 Ares,	 2007),	 or	 intermolecularly,	 as	 observed	 during	 the	
association	of	the	U2	or	U4	and	U6	snRNAs	(Sun	and	Manley,	1995;	Will	and	Lührmann,	2001).	
Modulating	these	interactions,	certain	bases	experience	posttranscriptional	modifications	equal	
to	those	that	were	likewise	reported	for	their	ribosomal	RNA	(rRNA)	counterparts	(Penzo	and	
Montanaro,	 2018).	 Site-specific	 pseudouridylation	 or	 2’-O-methylation	 is	 performed	 at	
conserved	regions	of	the	U1,	U2,	U4	and	U6	snRNA	(Karijolich	and	Yu,	2010;	Reddy	and	Busch,	
1983).	 An	 intricate	 network	 of	RNA-RNA	 interactions	 thus	 further	 extends	 the	 structural	 and	
chemical	abilities	of	the	spliceosomal	molecular	framework.	

2.4.2.2 Protein 

Even	 though	 the	 splicing	 reaction	 itself	 is	 catalysed	 by	 RNA,	 proteins,	 by	mass,	make	 up	 the	
largest	portion	of	the	molecular	machine.	In	fact,	more	than	200	different	proteins	are	reported	
to	 associate	 with	 the	 human	 spliceosome,	 while	 the	 assemblies	 of	 lower	 eukaryotes	 such	 as	
yeast	are	less	complex	in	molecular	composition	(Agafonov	et	al.,	2011).	The	spliceosome	is	thus	
an	exceptionally	protein-rich	ribonucleoprotein	(RNP)	machine,	in	particular	when	compared	to	
other	large	ribozymes	like	the	ribosome.		

Spliceosomal	proteins	assist	 in	integrating	the	tremendously	complex	snRNA	network;	guiding	
and	 sequestering	 pre-mRNA	 substrates;	 performing	 RNA	 helicase,	 binding	 and	 translocation	
activities;	and	participating	 in	spliceosome	regulation	and	localisation	(section	2.4.3).	Proteins	
are	essential	for	successful,	spliceosome-derived	pre-mRNA	splicing	(Will	and	Lührmann,	2011),	
although	the	catalysis	of	some	artificial	phosphoester	linkages	by	snRNAs	alone	was	described	
in	the	literature	(Valadkhan	and	Manley,	2001).		

Historically,	some	of	the	most	important	precursor	RNA	processing	(PRP)	alleles	were	identified	
in	 yeast,	 as	 demonstrated	 by	 large	 temperature-sensitive	 mutation	 screens	 during	 the	 late	
1980s	and	1990s	(Moore	et	al.,	1993;	Noble	and	Guthrie,	1996).	By	searching	for	defects	in,	or	
the	accumulation	of,	splicing	products	or	intermediates,	previously	unknown	genes	and	protein	
families	 that	often	harboured	Zn-finger,	RNA-helicase	or	other	sequence	motives	known	to	be	
associated	with	 protein-RNA	 interactions	were	 characterized.	 A	 great	 homology	 between	 the	
splicing	factors	of	different	species	(Fabrizio	et	al.,	2009;	Will	and	Lührmann,	2011)	eventually	
led	to	the	assumption	that	splicing	is	a	particularly	conserved	process	in	life.	The	latter	led	to	the	
assumption	that	the	yeast	spliceosome	is	generally	assembled	by	a	core	set	of	essential	protein	
components,	 whereas	 that	 of	 higher	 eukaryotes,	 metazoans	 or	 humans	 must	 have	 acquired	
additional,	potentially	regulatory	factors	during	evolution	(Fabrizio	et	al.,	2009).	Besides	those	
factors	that	fulfil	merely	structural	tasks,	eight	highly	conserved	DEXD/H-box	ATPases	or	RNA	
helicases	were	identified	to	associate	and	act	in	the	spliceosome	(Cordin	and	Beggs,	2013).	More	
of	 the	 most	 important	 proteins	 that	 are	 functionally	 involved	 in	 spliceosome	 assembly	 and	
operation	are	specifically	introduced	in	section	2.4.3.	

2.4.2.3 Small nuclear ribonucleoproteins (snRNP) 

Given	the	wealth	of	different	molecular	components	that	need	to	be	assembled	in	order	to	form	
a	functional	spliceosome,	a	pre-organization	of	those	components	in	vivo	can	simply	be	assumed	
for	 kinetic	 reasons.	 Indeed,	 spliceosome	 formation	 is	 enabled	 by	 the	 merger	 of	 four	 small	
nuclear	 ribonucleoprotein	 (snRNP)	 particles,	which	were	 first	 described	 by	 Lerner	 and	 Steitz	
(Lerner	et	al.,	1980;	Lerner	and	Steitz,	1979)	and	eventually	found	to	add	many	but	not	all	of	the	
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essential	molecular	components	to	the	functional	complex.	In	general,	each	snRNP	is	comprised	
of	one	or	two	snRNA(s),	as	well	as	~	10	–	30	associated	protein	factors	(Kambach	et	al.,	1999).	
The	aforementioned	Sm-proteins	that	are	associated	with	the	snRNAs	are	thereby	essential	for	
functional	 snRNP	 formation	 (Ségault	 et	 al.,	 1995).	 Since	 the	 U4	 and	 U6	 snRNAs	 are	 typically	
associated	with	each	other	 through	 intermolecular	base	pairing,	 they	 form	a	characteristic	di-
snRNP	assembly	in	combination	with	proteins	like	Prp	3,	4	and	31	(Wahl	and	Lührmann,	2015).	
Named	 according	 to	 the	 incorporated	 snRNA,	 U1,	 U2,	 U4/U6	 and	 U5	 snRNPs	 are	 commonly	
distinguished	regarding	the	major	spliceosome	(Moore	et	al.,	1993).		

Once	formed,	snRNPs	(e.g.,	U1	and	U2	snRNP)	are	then	directly	recruited	by	the	pre-mRNA,	or	
interact	to	merge	into	larger	assemblies	like	the	tri-snRNP	(U4/6	and	U5	snRNP)	before	being	
integrated	 into	 a	 competent,	 pre-catalytic	 spliceosome	 complex	 (section	 2.4.3).	 Besides	 the	
snRNPs,	certain	proteins	were	additionally	found	to	co-purify	and	thus	likely	pre-assemble	into	
larger	 building	 blocks,	which	 then	 associate	with	 the	 emerging	 spliceosome.	 In	 particular	 the	
intron-binding	 complex	 (IBC)	 (De	 et	 al.,	 2015),	 the	 RES	 (retention	 and	 splicing)	 complex	
(Dziembowski	et	al.,	2004)	and	most	importantly	the	PRP19/CDC5L	complex	(nineteen	complex	
in	 yeast,	 NTC)	 (Makarova	 et	 al.,	 2004)	 belong	 into	 this	 group.	 The	 remarkable	 remodelling	
events	leading	to	catalytic	activation	and	progression	are	further	described	below.	

2.4.3 Spliceosome	assembly	and	function	

One	 of	 the	 most	 distinctive	 characteristics	 of	 the	 spliceosome	 is	 the	 dynamic	 nature	 of	 its	
assembly	 and	 catalytic	 function	 (Will	 and	 Lührmann,	 2011).	 Spanning	more	 than	 40	 years	 of	
research,	 a	 tremendous	amount	of	 intra-	and	 intermolecular	 interactions	have	been	 identified	
between	 many	 of	 the	 involved	 molecular	 entities,	 which	 transiently	 strengthen	 and/or	
dissociate	 during	 specific	 stages	 of	 catalysis.	 The	 spliceosome	 thus	 not	 only	 appears	 to	 be	 a	
particularly	 large	 macromolecular	 machine,	 but	 also	 one	 that	 alters	 its	 appearance,	 size	 and	
molecular	composition	during	each	round	of	splicing	in	an	unprecedented	manner.	

Consequentially,	multiple	 spliceosomal	 complexes	 exist	 in	 parallel	 within	 the	 cell	 at	 different	
functional	states.	Building	up	or	transitioning	between	these	states,	specific	proteins	or	snRNAs	
are	added	(stabilized)	or	removed	(destabilized)	from	the	complex	in	a	particularly	conserved	
fashion	(Will	and	Lührmann,	2011).	The	spliceosome	thus	assembles	and	functions	in	a	stepwise	
manner,	beginning	at	 the	 first	 interaction	of	 the	U1	snRNP	with	 the	5’	SS	and	ending	with	 the	
disintegration	of	the	molecular	machine	after	splicing	is	completed	with	step	2	of	the	reaction.	
Once	 fully	 assembled,	 a	 defined	 set	 of	 core	 components	 is	 stably	 associated	 around	 the	 pre-
mRNA	 substrate	 at	 the	 centre	 of	 the	 molecular	 machine.	 The	 latter	 then	 enables	 peripheral	
factors	 to	 join,	 leave	 and	 remodel	 this	 core	 at	 specific	 stages	 of	 the	 reaction.	 In	 general,	
spliceosome	 formation	 can	 be	 divided	 into	 three	 major	 stages:	 First,	 the	 pre-spliceosomal	
assembly	at	which	the	5’	SS	and	BS	is	determined;	second,	the	pre-catalytic	complex	formation	
states,	which	are	primed	but	not	yet	competent	for	catalysis;	and	finally	the	third,	catalytically	
activated	stage	of	spliceosomal	assembly	that	performs	the	intron	excision	and	re-ligation	of	the	
exons.		
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Fig.	 8	 Splicing	 cycle.	 The	 snRNPs	of	 the	 spliceosome	 are	 represented	by	 coloured	 spheres	 and	 labelled	
accordingly.	The	directionality	of	 the	reaction	or	 the	corresponding	assembly	/	disassembly	pathway	 is	
marked	by	black	arrows.	Grey	arrows	indicate	a	presumed	pathway	of	utilisation.	The	various	helicases	
involved	 in	 spliceosome	 remodelling	 and	 function	 are	 indicated	 at	 their	 corresponding	 position	 of	
activation.		For	further	information,	see	text.	

The	rearrangements	facilitated	during	the	catalytic	cycle	are	striking	and	have	been	subject	to	
many	 years	 of	 extensive	 investigation.	 Summarizing	 these	 findings,	 most	 of	 the	 well-known	
spliceosomal	 intermediates	 are	 depicted	 within	 the	 splicing	 cycle	 (Fig.	 8).	 The	 wealth	 of	
biochemical	and	structural	data	regarding	whole	spliceosomal	complexes	and	their	constituting	
components	 now	 enables	 an	 in-depths	 analysis	 and	 comparison	 of	 discrete	 assembly	 and	
activation	 states	 within	 the	 splicing	 cycle.	 Even	 though	 this	 cycle,	 as	 depicted	 above,	 was	
constantly	expanded	 throughout	 the	years,	 it	 is	by	 far	not	 complete	and	 further	 intermediate,	
even	 more	 transient	 structural	 states	 of	 the	 spliceosome	 are	 likely	 to	 emerge	 in	 the	 future.	
Nevertheless,	 particularly	 when	 analysing	 the	 knowledge	 that	 was	 acquired	 through	 the	
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structural	 elucidation	 of	 spliceosomal	 components,	 it	 is	 nowadays	 possible	 to	 gain	 a	 good	
overview	on	basic	spliceosome	mechanics.	The	following	sections	will	accordingly	briefly	guide	
through	 the	 mechanics	 of	 spliceosomal	 pre-mRNA	 splicing	 and	 further	 introduce	 significant	
proteins	and	conserved	RNA	structures.	Even	though	yeast	spliceosomal	complexes,	so	far,	were	
found	to	be	largely	homologous	in	structure	and	function,	specific	differences	exist.	As	this	work	
elucidates	the	structure	and	function	of	human	spliceosomal	complexes,	the	explanations	below	
will	 largely	 focus	 on	 the	 human	 system.	 Nevertheless,	 wherever	 necessary	 details	 specific	 to	
yeast	may	sometimes	add	to	a	better	understanding	and	are	thus	occasionally	included.			

2.4.3.1 Substrate recognition and 5’ splice site definition 

The	splicing	of	pre-mRNA	is	classically	initiated	by	the	recognition	of	the	substrate	through	its	
5’	SS	and	BS.	Even	though	the	corresponding	nucleotide	sequences	are	later	on	handed	over	to	
other	molecular	components	of	the	assembled	spliceosome,	the	fidelity	of	the	entire	mechanism	
is	determined	at	this	earliest	step	of	assembly.	Components	of	the	U1	snRNP	are	responsible	for	
the	 recognition	 and	 binding	 of	 the	 5’	 SS.	 Nucleotides	 at	 the	 5’	 tail	 of	 the	 U1	 snRNA	 thereby	
directly	 base	 pair	with	 the	 correspondingly	 conserved	 nucleotide	 sequence	 on	 the	pre-mRNA	
(Stark	et	al.,	2001).	Supporting	this	interaction,	proteins	like	the	U1-70k	and	U1-C	additionally	
contact	the	splice	site	in	metazoans	and	aid	in	its	stable	integration	into	the	U1	snRNP	(reviewed	
by	 (Will	 and	 Lührmann,	 2006)).	 Once	 integrated	 into	 the	 snRNP,	 the	 faith	 of	 the	 5’	 SS	 is	
determined,	creating	Complex	E.	

Next,	the	recognition	of	the	BS	is	facilitated	by	pre-organized	factors	in	the	U2	snRNP.	Again,	the	
U2	 snRNA	 serves	 as	 molecular	 probe	 that	 identifies	 and	 binds	 the	 conserved	 branch	 site	
sequence	downstream	of	the	5’	SS	on	the	pre-mRNA.	Forming	a	characteristic	RNA	double	helix,	
the	branch-site	helix	(BSH),	the	central	BS-A	nucleotide	is	bulged	out	to	subsequently	serve	as	
the	 nucleophile	 during	 the	 initiation	 of	 step	 1	 of	 splicing	 (Wahl	 et	 al.,	 2009).	 Stabilizing	 this	
interaction,	 the	U2	snRNP-associated	protein	heterodimer	U2AF65/35	contacts	 the	pre-mRNA	
pY	tract	downstream	of	the	BS.	Proteins	of	the	SF3A	and	SF3B	families	additionally	interact	with	
the	intron	6	to	26	nucleotides	upstream	of	the	BS-A	(Gozani	et	al.,	1996),	stably	sequestering	the	
BS-A	nucleotide	midway.	Upon	productive	binding	of	 the	U2	snRNP	particle	 to	 the	pre-mRNA,	
the	snRNP	is	then	remodelled	by	the	DEAD-box	RNA	helicase	PRP5	(Liang	and	Cheng,	2015)	in	
order	to	associate	with	an	up-	or	downstream	situated	E	complex.	The	resulting	pre-spliceosome	
is	named	the	A	complex.			

2.4.3.2 Pre-catalytic spliceosome assembly 

Once	the	A	complex	is	formed	by	integration	of	the	pre-mRNA	and	the	U1/U2	snRNPs	into	the	
pre-spliceosome,	further	components	are	required	to	build	up	the	catalytic	centre.	Factors	of	the	
pre-formed	U4/U6.U5	tri-snRNP	are	essential	for	this	purpose	and	thus	have	to	be	incorporated	
into	the	complex.	The	U4/U6.U5	tri-snRNP	itself	is	comprised	of	its	three	snRNAs	in	addition	to	
more	than	25	distinct	proteins,	some	of	which	are	most	essential	 to	 the	spliceosomal	 function	
and	 assembly	 (Behrens	 and	 Lührmann,	 1991).	 In	 particular	 the	 U5	 snRNP	 derived	 proteins	
PRP8	 and	 BRR2	 as	 well	 as	 the	 U6	 snRNA,	 which	 eventually	 form	 the	 catalytic	 core	 of	 the	
spliceosome,	 play	 exceptional	 roles	 in	 the	 subsequent	 splicing	 procedure.	 PRP8	 thereby	
provides	the	general	scaffold	for	spliceosome	assembly	and	BRR2	represents	a	major	player	in	
spliceosome	 activation	 (see	 below).	 Specific	 nucleotides	 of	 the	U6	 snRNA	eventually	 facilitate	
catalysis	(Madhani,	2013;	Madhani	and	Guthrie,	1992).	Furthermore,	a	conserved	stretch	of	U4	
and	U6	snRNA	nucleotides	 is	 tightly	engaged	 in	a	duplex	helical	 structure	within	 the	 complex	
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(Agafonov	et	al.,	2016;	Bringmann	et	al.,	1984;	Hashimoto	and	Steitz,	1984).	The	latter	structural	
element	 is	 thus	 particularly	 characteristic	 for	 the	 pre-catalytic	 state	 of	 the	 assembly.	 As	
indicated	by	biochemical	and	structural	studies,	most	of	the	U6	snRNA	nucleotides	involved	in	
this	 duplex	 helix,	 however,	 are	 eventually	 required	 to	 participate	 in	 the	 formation	 of	 the	
catalytic	 centre	 of	 the	 spliceosome	 (Agafonov	 et	 al.,	 2016;	 Fica	 et	 al.,	 2013).	 The	 latter	 thus	
exemplarily	 illustrates	 the	 requirement	 for	 substantial	 rearrangements	 of	 the	 various	 (pre-)	
spliceosome	particles	during	the	process	of	catalytic	activation.		

In	 order	 to	 proceed	 with	 the	 assembly	 process,	 the	 pre-formed	 U4/U6.U5	 tri-snRNP	 loosely	
associates	with	the	A	complex	in	order	to	form	the	pre-catalytic	pre-B	complex	.	The	merger	is	
initiated	 by	 the	 formation	 of	 a	 short	 helix	 between	 the	 5’	 and	 3’	 ends	 of	 U2	 and	 U6	 snRNA	
(U2/U6	helix	II),	respectively,	functionally	fusing	both	complexes	together	(Boesler	et	al.,	2016).	
The	 resulting	 spliceosome	 now	 contains	 all	 snRNPs	 but	 is	 still	 in	 need	 of	 substantial	
rearrangements	in	order	to	prepare	for	catalytic	activity.		

Just	prior	to	catalytic	activation,	RNA	helicase	PRP28	initiates	the	transfer	of	the	pre-mRNA	5’	SS	
from	the	U1	snRNA	to	the	similarly	highly	conserved	U6	snRNA	ACAGA	box	sequence	(Boesler	et	
al.,	2016;	Staley	and	Guthrie,	1999).	In	consequence,	U1	snRNA	loses	contact	with	the	pre-mRNA	
and	 the	U1	 snRNP	 is	 significantly	destabilized,	ultimately	 leading	 to	 the	 formation	of	 the	pre-
catalytic	B	complex.	At	 the	same	time,	nucleotides	of	 the	characteristic	U5	snRNA	 loop	1	were	
identified	 to	 interact	 with	 those	 of	 the	 most	 3’-terminal	 end	 of	 the	 5’	exon	 (“exon	 1”)	
(Sontheimer	and	Steitz,	1993),	indicating	a	remodelling	event	that	leads	to	an	incorporation	of	
the	adjacent	5’	SS	into	the	U5	snRNP	within	the	B	complex.	A	recently	published	structure	of	the	
yeast	 B	 complex	 obtained	 by	 electron	 cryo-microscopy	 in	 fact	 reveals	 that	 the	 pre-
mRNA/U6	snRNA	comprised	ACAGA-box	helix	rests	particularly	close	to	the	U5	snRNA	loop	1,	
even	though	virtually	no	parts	of	the	5’	exon	itself	are	visualized	within	this	structure	(Plaschka	
et	 al.,	 2017).	 Furthermore,	 the	 yeast	 structure	 suggests	 that	 U5	 snRNP	 associated	 Ski2-like	
helicase	 Brr2	 has	 moved	more	 than	 200	Å	 away	 from	 its	 original	 position	 in	 the	 human	 tri-
snRNP.	In	the	yeast	B	complex,	Brr2	instead	contacts	its	U4	snRNA	substrate	(Laggerbauer	et	al.,	
1998),	primed	to	act	on	the	above-mentioned	U4/U6	duplex	helical	structure.		

Catalytic	 activation	 and	 the	 formation	 of	 the	 active	 centre	 is	 eventually	 achieved	 by	 further	
substantial	rearrangements,	ultimately	initiated	by	the	BRR2-catalysed	unwinding	of	the	U4/U6	
duplex	(Cordin	and	Beggs,	2013).	By	doing	so,	most	proteins	belonging	to	the	U4/U6	di-snRNP,	
B	complex-specific	proteins	and	the	U4	snRNA	are	substantially	destabilized	and	removed	from	
the	 assembly	 (Fabrizio	 et	 al.,	 2009).	 Where	 in	 humans	 about	 20	 proteins	 leave	 the	 stable	
association	with	 the	pre-catalytic	 spliceosome,	more	 than	25	are	added	 in	 return,	particularly	
those	that	belong	to	the	RES,	IBC	and	NTC	complexes	(Will	and	Lührmann,	2011).	The	resulting,	
still	pre-catalytic	but	now	activated	spliceosome	is	called	Complex	Bact.	

The	 rearrangements	 that	 facilitate	 the	 B-to-Bact	 complex	 transition	 are	 astounding	 and	 can	
nowadays	 be	 followed	 by	 a	 comparison	 of	 the	 recently	 published	 structures	 of	 the	 human	
(Haselbach	et	al.,	2018;	Zhang	et	al.,	2018)	and	yeast	(Rauhut	et	al.,	2016;	Yan	et	al.,	2016)	Bact	
complexes.	 Briefly	 summarizing	 its	 state	 of	 assembly,	 the	 complex	 is	 almost	 fully	 primed	 for	
subsequent	catalytic	activation.	The	catalytic	centre	was	thus	formed	by	an	intricate	network	of	
U2	 and	U6	 snRNA,	 amongst	 others	 involving	 the	 important	U2/U6	 snRNA	Helix	 I	 and	 the	U6	
snRNA	 internal	 stem-loop	 (ISL)	 structure,	which	 are	 snuggly	 embedded	 into	 basic	 pockets	 of	
PRP8.	Nevertheless,	 one	Mg2+	 ion	 that	 is	 essential	 for	 catalysis	 (Fica	 et	 al.,	 2013)	 has	 not	 yet	
bound	to	the	catalytic	U6	snRNA	moieties.	At	the	same	time,	exon	1	resides	tightly	enclosed	by	
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PRP8	 near	 the	 5’	SS.	 Hence,	 its	 important	 RT/EN-domain	 (PRP8RT/En)	 now	 adopts	 a	 closed	
conformation.	Additionally,	 the	3’-terminal	end	of	exon	1	 is	held	 in	place	by	U5	snRNA	loop	1.	
The	BSH	and	its	branched	out	BS-A	nucleotide,	albeit	still	sequestered	by	various	SF3B	proteins,	
is	at	 the	same	time	brought	 in	closer	 to	 the	5’	SS	 in	preparation	 for	step	1	of	splicing.	Several	
proteins	 from	 the	 PRP19	 complex	 furthermore	 contact	 and	 thus	 potentially	 stabilize	 the	
catalytic	RNA	network	and	PRP8,	amongst	others	for	example	the	TPR-containing	SYF3,	CWC15,	
PRLG1,	SKIP	or	CDC5L.	

2.4.3.3 Catalytic activation and step 1 of splicing 

The	final	progression	 in	 the	catalytic	activation	of	 the	spliceosome	is	eventually	dependent	on	
the	action	of	RNA	helicase	PRP2.	Specifically	binding	the	intron	25-30	nucleotides	downstream	
of	the	BS	(Liu	and	Cheng,	2012)	it	is	proposed	to	initiate	the	transition	from	the	Bact	complex	to	
the	 B*	complex.	 The	 latter	 then	 finally	 represents	 the	 fully	 catalytically	 activated	 form	 of	 the	
spliceosome	 that	 catalyses	 step	 1	 of	 the	 reaction.	 Even	 though	 no	 structural	 and	 little	
biochemical	 data	 is	 available	 describing	 this	 probably	 very	 transient	 complex,	 it	 seems	 likely	
that	SF3A	and	SF3B	proteins,	which	remained	in	contact	with	the	BSH	since	its	selection	by	the	
U2	snRNP,	are	removed	in	order	to	align	the	BS-A	at	the	catalytic	centre.	Indeed,	various	studies	
show	 that	 PRP2	 is	 involved	 in	 this	 process	 from	 a	 distance	 (Lardelli	 et	 al.,	 2010;	 Ohrt	 et	 al.,	
2012).			

Once	 step	1	of	 splicing	 is	 catalysed	by	 the	B*	 complex,	 the	 catalytically	 activated	 spliceosome	
progresses	to	a	post	step	1	state,	termed	the	C	complex.	As	for	the	structures	of	the	Bact	complex,	
yeast	and	human	C	complex	assemblies	were	recently	visualized	by	cryo-EM	(Galej	et	al.,	2016;	
Wan	et	al.,	2016a;	Zhan	et	al.,	2018).	Analysing	these	structures,	it	becomes	apparent	that	indeed	
the	 previously	 SF3	 protein	 sequestered	 BSH	 is	 now	 released	 from	 the	 U2	 proteins	 and	
integrated	at	the	heart	of	the	spliceosomal	core.	Contacted	by	the	step	1	splicing	factors	CCDC49,	
CCDC94	and	ISY1,	the	BSH	is	now	situated	in	close	proximity	to	the	catalytic	centre.	Within	the	
C	complex,	 the	most	 3’	 terminal	 nucleotide	 of	 exon	1	 thus	 only	 rests	 several	 angstroms	 away	
from	the	newly	formed	intron	lariat	structure	attached	to	the	BS-A,	close	to	the	former	5’	SS.	In	
order	 to	 facilitate	 step	2	of	 the	 reaction,	 the	BSH-intron	 lariat	 structure,	 including	a	wealth	of	
proximal	 protein	 factors,	 again	 need	 to	 be	 significantly	 rearranged.	 In	 contrast	 to	 the	
restructuring	 events	 that	 are	 observed	 in	 the	 pre-catalytic	 spliceosomes,	 however,	 the	
remodelling	of	the	catalytically	activated	complexes	is	generally	more	restricted	to	the	reactive	
RNA	components	 (e.g.	 the	BSH,	exon	2,	 etc.)	as	well	 as	very	peripheral	proteins.	The	catalytic	
core	of	the	assembly	–	which	is	comprised	of	the	proteins	PRP8,	SNU114,	the	U5	SM-core,	PRL1	
and	the	U5	and	U6	snRNAs	–	thus	generally	retains	its	overall	structure	while	forming	the	single	
catalytic	centre.		

A	progression	 in	 the	 catalytic	 cycle	 then	 eventually	 requires	 the	detachment	 and	 removal	 the	
BSH,	 including	 the	 attached	 intron	 lariat	 structure,	 from	 the	 catalytic	 site	 at	 the	 core	 of	 the	
spliceosome.	In	fact,	the	RNA	helicase	PRP16	is	reported	to	lead	to	the	destabilization	of	CCDC49	
and	CCDC94	as	well	 as	 a	 remodelling	of	 ISY1	 (Horowitz,	 2011),	which	allow	 the	BSH	and	 the	
associated	proteins	to	reposition	approximately	20	Å	away	from	their	previous	 location	at	 the	
catalytic	centre.	Being	primed	for	step	2	of	 the	reaction,	 the	spliceosome	has	now	reached	the	
C*	complex	configuration.	As	several	structures	in	yeast	(Fica	et	al.,	2017;	Yan	et	al.,	2017),	and	
recently	 also	 in	 humans	 (Zhang	 et	 al.,	 2017),	 indicate,	 the	 complex	 is	 in	 fact	 primed	 for	 exon	
ligation,	 even	 though	 exon	 2	 could	 not	 yet	 be	 visualized	 in	 any	 published	 model	 of	 the	 C*	
complex	state.	Besides	the	remodelling	events	introduced	above	and	a	wealth	of	others	that	are	
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not	 discussed	 here	 in	 detail,	 the	 characteristically	 ring-shaped	 WD40	 domain	 of	 PRP17	 is	
translocated	more	than	70	Å	between	the	C	and	C*	complex	states.	 In	the	 latter,	 it	now	tightly	
interacts	with	the	BSH	region	of	the	assembly,	stabilizing	its	position	and	therefore	the	pre-step	
2	configuration	of	the	complex.		

2.4.3.4 Step 2 of splicing and spliceosome disassembly 

The	C*	complex	appears	primed	to	complete	the	splicing	reaction	by	finally	excising	the	intron	
lariat	 structure	 and	 ligating	 both	 exons.	 How	 exactly	 this	 process	 is	 achieved	 in	 the	 human	
system,	however,	remains	poorly	understood.	Biochemically,	the	action	of	RNA	helicase	PRP22	
is	reported	to	be	involved	in	exon	ligation	and	pre-mRNA	release	(Fourmann	et	al.,	2013),	as	it	is	
already	present	at	the	periphery	of	the	C*	complex.	Unsurprisingly,	two	recently	published	cryo-
EM	studies	of	a	yeast	post-step	2	spliceosome,	the	P	complex,	revealed	an	overall	configuration	
that	 is	 substantially	 comparable	 to	 that	 of	 the	 C*	 complex	 (Liu	 et	 al.,	 2017;	Wilkinson	 et	 al.,	
2017).	 As	 consistently	 reported,	 the	 latter	 studies	 show	 that	 the	 yeast	 P	 complex	 utilizes	 the	
conserved	and	readily	positioned	5’	SS	and	BS-A	nucleotides	in	order	to	form	non-Watson-Crick	
base	pairs	with	the	3’	SS	adjacent	to	exon	2.	Once	positioned,	the	free	3’	OH	of	exon	1	may	then	
attack	 the	correspondingly	positioned	phosphate	of	exon	2,	ultimately	completing	 the	splicing	
reaction	by	exon	ligation	and	intron	removal.	Yeast	Prp22	is	then	found	to	act	on	exon	2,	15	–	21	
nucleotides	away	from	the	site	of	ligation,	potentially	aiding	in	the	removal	of	the	spliced	mRNA	
from	the	complex.	The	exact	situation	in	the	human	system,	however,	remains	to	be	elucidated,	
as	particularly	alternative	splicing	events	may	require	a	more	highly	sophisticated	regulation	of	
exon	ligation	during	step	2	of	the	reaction.		

Once	splicing	is	completed,	as	mentioned	above,	PRP22	is	likely	involved	in	removing	the	spliced	
mRNA	from	the	spliceosome.	The	remaining	intron-lariat	complex	(ILS	complex)	is	then	thought	
to	 be	 dissembled	 in	 order	 to	 recycle	 the	 involved	 splicing	 factors	 for	 subsequent	 rounds	 of	
splicing	 (Will	 and	 Lührmann,	 2011).	 Even	 though	 no	 structural	 model	 of	 a	 human	 or	 S.	
cerevisiae	 ILS	 complex	 are	 available	 to	 date,	 the	 corresponding	 structure	 of	 an	 S.	 pombe	
spliceosome	 was	 reported	 in	 the	 past	 (Yan	 et	 al.,	 2015).	 Besides	 the	 missing	 mRNA,	 its	
appearance	is	largely	comparable	to	that	of	the	yeast	P	complexes.		

The	 final	 disassembly	 and	 recycling	 procedures	 of	 the	 spliceosome	 are	 structurally	 poorly	
understood.	Nevertheless,	the	DEAH-box	helicase	PRP43	and	its	cofactors	NTR1	and	NTR2	play	
an	 important	 role	 (Fourmann	et	al.,	2017).	Acting	on	 the	 intron	 lariat	RNA	structure	near	 the	
U2-BSH	(Fourmann	et	al.,	2016),	the	ILS	complex	is	segregated	from	the	intron	lariat	and	then	
dismantled	into	smaller	snRNPs	or	protein	assemblies	(Arenas	and	Abelson,	1997;	Fourmann	et	
al.,	 2013;	 2017).	 Single	 snRNPs	 are	 then	 targeted	 to	 and	 recycled	 within	 Cajal	 bodies	 (CB)	
(Schaffert	 et	 al.,	 2004;	 Stanĕk	 et	 al.,	 2003).	 A	 subsequent	 release	 of	 the	 rearranged	 or	
restructured	snRNPs	may	then	result	in	their	participation	in	further	rounds	of	splicing.			
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2.5 Aim	of	the	study	
The	spliceosome-dependent	splicing	of	precursors	to	mature	mRNA	is	an	astonishingly	complex	
process	that	takes	place	in	the	nucleus	of	the	eukaryotic	cell.	Many	years	of	biochemical	studies,	
structural	probing	and	the	elucidation	of	individual	spliceosomal	components	by	means	of	X-ray	
crystallography	 or	 NMR	 have	 provided	 countless	 hints	 and	 a	 rough	 understanding	 of	 the	
involved	 mechanisms.	 It	 was	 thus	 shown	 that	 intricate	 networks	 of	 dynamically	 adjusted	
interactions	between	 the	 individual	 components	of	 the	 spliceosome	regulate	and	 facilitate	 the	
splicing	reaction	in	a	highly	coordinated	manner.	Even	though	much	could	be	learned	in	the	past	
about	the	separate	factors	that	constitute	the	molecular	machine	and	its	biochemical	behaviour,	
the	spliceosome,	assembled	from	up	to	hundreds	of	individual	components,	is	only	functional	as	
a	whole.	Examining	the	complex	structure	at	high	resolution	 in	 its	entirety,	not	separated	 into	
individual	 components,	 is	 thus	 a	 promising	 approach	 to	 reveal	 even	 more	 of	 the	 essential	
intermolecular	interactions	and	work	towards	a	better	understanding	of	the	dynamic	nature	and	
functional	 mechanics	 of	 the	 spliceosome.	 Since	 biochemical	 studies	 are	 unlikely	 to	 reach	 the	
spatial	resolution	that	is	required	for	this	purpose,	the	aim	of	this	study	is	to	elucidate	the	high-
resolution	structure	and	function	of	complete	human	spliceosomal	complexes.	

Utilizing	cryo-EM	as	a	 tool,	 this	 study	 targets	 the	recording	and	analysis	of	entirely	 functional	
spliceosomes	 at	 high	 resolution,	 not	 only	 individual	 parts	 of	 the	 assembly.	 Focussing	 on	 the	
human	pre-catalytic	B	complex	as	well	as	the	catalytically	activated,	pre-step	2	C*	complex,	we	
hope	to	contribute	towards	the	development	of	a	more	detailed	mechanistic	model	of	pre-mRNA	
splicing.		
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3 Publications	
	

Two	publications	elaborating	on	the	structure	and	function	of	a	human	spliceosomal	B	and	C*	
complex,	 respectively,	 represent	 the	major	body	of	 results	 in	 this	work.	Both	publications	are	
attached	as	they	were	originally	published	in	the	following	section.		
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Cryo-EM structure of a human 
spliceosome activated for step 2 of splicing
Karl Bertram1*, Dmitry E. Agafonov2*, Wen-Ti Liu1, Olexandr Dybkov2, Cindy L. Will2, Klaus Hartmuth2, Henning Urlaub3,4, 
Berthold Kastner2, Holger Stark1 & Reinhard Lührmann2

The spliceosome catalyses pre-mRNA splicing and is assembled by 
recruitment of U1 and U2 small nuclear (sn)RNPs to the 5′​ splice site 
and branch site, respectively, of the pre-mRNA intron, followed by inte-
gration of the preformed U4/U6.U5 tri-snRNP1. This generates the 
spliceosomal B complex, and after extensive RNP rearrangements, the 
pre-catalytic Bact complex is formed (Extended Data Fig. 1a). The latter 
is converted into the catalytically active B*​ complex by RNA helicase 
PRP2 (refs 2,3). During activation, a catalytic RNA–RNA network that 
resembles the catalytic core of group II self-splicing introns4–6, as well 
as the spliceosome’s active site, are established. The B*​ complex catal-
yses step one of splicing, in which the branch site adenosine (BS-A)  
carries out a nucleophilic attack at the 5′​ splice site. This yields the 
cleaved 5′​ exon and the lariat–3′​ exon, in which the 5′​ end of the intron 
is covalently attached to the BS-A, forming a branched intron structure. 
Concomitantly the spliceosomal C complex is formed. The branched 
intron region must be displaced from the catalytic centre of the splice-
osome after step one to allow juxtapositioning of the step-two reactants, 
the 3′​-OH of the 5′​ exon (the nucleophile for step two) and the 3′​ splice 
site. This remodelling is catalysed by RNA helicase PRP16 and leads to 
the C*​ complex7,8. The latter catalyses step two, during which mRNA 
and the spliced-out intron are generated. Efficient catalysis of step 
two requires additional proteins, including SLU7, PRP18 and PRP22  
(refs 9–13). However, the precise nature and dynamics of many splice-
osome structural rearrangements, especially those occurring just before 
or during step two, remain unclear.

Cryo-electron microscopy (cryo-EM) of a post-step-two intron–lariat 
spliceosome (ILS) from Schizosaccharomyces pombe provided the first 
molecular insight into the architecture of the spliceosomal catalytic RNP 
core5,14. Cryo-EM structures revealing the molecular architecture of the 
Saccharomyces cerevisiae and human U4/U6.U5 tri-snRNPs, and more 
recently of the S. cerevisiae Bact and C spliceosomal complexes, have also 
been reported15–22. However, to our knowledge, no high-resolution  
structures of human spliceosomal complexes are currently available. 
Here we report a 3D cryo-EM structure of a human spliceosomal  
C complex stalled after PRP16 action but before catalytic step two, which  

together with protein crosslinking, allows us to determine the spatial 
organization of its protein and RNA components.

Overview of the C*​ spliceosome structure
By lowering the pH of the in vitro splicing reaction, we were able 
to affinity-purify human spliceosomal complexes that were stalled 
before step two of splicing but after the action of PRP16 (denoted C*​)  
(Extended Data Fig. 1), and shown by chase experiments to be func-
tional (Extended Data Fig. 1). The 3D structure of the human C*​ com-
plex was determined by cryo-EM, with an overall resolution of 5.9 Å 
and approximately 4.5 Å in areas of the catalytic RNP core (Extended 
Data Fig. 2). A pseudo-atomic model was built for the more stable part 
of C*​, where the resolution sufficed for clear identification of structured 
protein domains and double-stranded RNA elements, allowing us to fit 
known X-ray structures or homology models of structured regions of 
C*​ components into the EM density map (Fig. 1, Supplementary Table 1,  
Supplementary Video 1). Chemical protein crosslinking coupled to 
mass spectrometry (CX–MS) (Supplementary Table 2), validated the 
locations of large proteins and facilitated the docking of smaller ones.

A comparison of the overall structure of the human C*​ complex with 
that of the S. cerevisiae Bact or C complex, and S. pombe ILS, reveals 
that the central domains of all four complexes possess similar size 
(approximately 20 ×​ 12 nm) and morphology14,19–22. Like in the yeast 
spliceosomes, the lower central domain of C*​ contains U5 snRNP com-
ponents, that is, the U5 snRNA, PRP8, SNU114, and U5-40K proteins, 
and the U5 Sm core (Fig. 1b, c). Furthermore, the catalytic U2–U6 
RNA structural element of the spliceosome (Fig. 2), together with the 
U6 ACAGA box/intron helix, is docked in a similar manner into the 
active site region of PRP8 (ref. 23) (Extended Data Fig. 3). The positions 
of the U6 5′​ stem-loop (close to the U5 Sm core) and of U2/U6 helix 
II (at the upper part of the main body) are also conserved, probably 
owing to their stabilization by similar sets of proteins (Extended Data 
Figs 3 and 4). For example, the human G10 protein interacts like its 
yeast counterpart (Bud31) with U6 snRNA close to the U6 5′​ stem-
loop and anchors it to the PRP8 NTD1 domain (Extended Data Fig. 4).  

Spliceosome rearrangements facilitated by RNA helicase PRP16 before catalytic step two of splicing are poorly understood. 
Here we report a 3D cryo-electron microscopy structure of the human spliceosomal C complex stalled directly after 
PRP16 action (C*). The architecture of the catalytic U2–U6 ribonucleoprotein (RNP) core of the human C* spliceosome 
is very similar to that of the yeast pre-Prp16 C complex. However, in C* the branched intron region is separated from 
the catalytic centre by approximately 20 Å, and its position close to the U6 small nuclear RNA ACAGA box is stabilized 
by interactions with the PRP8 RNase H-like and PRP17 WD40 domains. RNA helicase PRP22 is located about 100 Å from 
the catalytic centre, suggesting that it destabilizes the spliced mRNA after step two from a distance. Comparison of the 
structure of the yeast C and human C* complexes reveals numerous RNP rearrangements that are likely to be facilitated 
by PRP16, including a large-scale movement of the U2 small nuclear RNP.
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While individual homologues of the yeast Cwc2 and Ecm2 proteins are 
absent in humans, the human RBM22 protein shares homology with 
both yeast Cwc2 and Ecm2, suggesting it is a fused version of both pro-
teins24. Indeed, some regions of human RBM22 that are homologous 
to regions of the S. cerevisiae Cwc2 and Ecm2 proteins, are located in 
similar positions near the U6 internal stem loop (ISL) in the human  
C*​ complex and the S. cerevisiae C complex (Extended Data Fig. 4). 
Thus, spliceosomal protein domains conserved in humans and yeast 
perform a similar function (that is, stabilizing critical snRNA struc-
tures), but are organized in a different manner in higher eukaryotes.

Like their orthologues in the yeast spliceosomes, the human HAT25 
(half a TPR) proteins SYF1 (also known as XAB2) and SYF3 (also 
known as CRNKL1) form long, curved α​-helical solenoids that cross 
one another close to U2/U6 helix II (Fig. 1, Extended Data Fig. 5a, b).  
Moreover, α​-helical elements of human SYF2 (GCIP p29) share 
an interface with SYF3 and U6 snRNA upstream of U2/U6 helix II 
(Extended Data Fig. 5). The N-terminal HAT repeats of SYF1 share a 
large interface with the aquarius protein, located at an equivalent posi-
tion at the top of the C*​ and ILS complexes, and extend to the nearby 
U2 Sm core domain, with its attached U2-A′​ and U2-B′​′​ proteins  
(Fig. 1, Extended Data Fig. 5d, e). SPF27, the C-terminal part of 
CDC5 and four copies of PRP19 form a helical bundle that fits into 
the elongated density element at the side of the C*​ main body, and is 
at an equivalent position in the S. pombe ILS (Fig. 1, Extended Data  
Fig. 5a).

Structure of U2–U6 catalytic RNP core
Consistent with previous biochemical studies26, the catalytic centre of 
the human C*​ complex contains a three-helical junction and is highly 
similar to the catalytic centre of the S. cerevisiae C complex. Indeed, the 
structure of the catalytic U2–U6 RNA of the latter fits well, with some 
adjustments, into an RNA-shaped element in our C*​ model (Figs 1c 
and 2, Extended Data Fig. 6a, b). The approximately 4.5 Å resolution 
in this part of the C*​ complex allows the unambiguous placement of 
the loop and kinked stem of the U6 ISL, the two U2/U6 helices Ia and 
Ib (which are stacked on each other), and the sharp turn separating the 
ACAGA box helix of U6 snRNA and U2/U6 helix Ia (Fig. 2, Extended 
Data Fig. 6a, b). The topography of U6 nucleotides U74 and G72, and 
of A53 and G54, is such that they could potentially coordinate Mg2+ 
ions 1 and 2 (which we cannot unambiguously discern at 4.5 Å resolu-
tion), respectively. This is consistent with biochemical studies showing 
metal ion coordination of the corresponding nucleotides in yeast U6 
(ref. 27). The similarity between the C and C*​ catalytic centres is also 
underscored by the conservation of protein–RNA interactions in the 
catalytic RNP core (Extended Data Figs 3b–f and 5b).

Following catalytic step one, the cleaved 5′​ exon remains tightly 
bound to the spliceosome. In C*​, the 3′​-terminal nucleotides of the 
5′​ exon, including the 3′​-OH of the exon (the step two nucleophile), 
are located close to the catalytic centre, with the 3′​ hydroxyl close 
to the putative position of the Mg2+ ion 1 (Fig. 2, Extended Data 
Fig. 6f). Exon nucleotides −​1 to −​3 are base-paired with U5 loop 
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nucleotides U40 to U42 (Extended Data Fig. 6f), consistent with previous  
studies28,29. We can trace an additional nine nucleotides of the exon 
RNA, which thread through a narrow tunnel between the linker region 
of the PRP8 reverse transcriptase/endonuclease (RT/En) domain and 
the PRP8 NTD1 domain, and then pass along the rearranged hairpin 
loop from the linker regions of PRP8 (the so-called switch loop) and the 
MA3 domain of CWC22 (Extended Data Fig. 7a, c). The 20 N-terminal 
amino acids of SRm300 are juxtaposed with the PRP8 switch loop 
(Extended Data Fig. 7a, c), similar to its probable yeast counterpart, 
Cwc21, in the C complex21,22. Thus, this conserved N-terminal region 
of SRm300, together with the switch loop, probably plays an evolution-
arily conserved role in stabilizing the 5′​ exon during splicing catalysis.

CWC22 straddles the exon binding channel, with its MA3 domain 
bound to the PRP8 RT/En domain and its N-terminal MIF4G domain 
attached to domain 1 of SNU114, as well as to the helicase eIF4AIII 
(Extended Data Fig. 7). eIF4AIII is located close to the likely position 
of nucleotides −​20 to −​25 of the 5′​ exon (Extended Data Fig. 7b) and 
is part of the exon junction complex (EJC) that is deposited at a later 
stage 20–24 nucleotides upstream of the exon–exon junction of spliced 
mRNAs in higher eukaryotes30. While the other EJC proteins are not 
stably recruited to the C*​ complex, our structure nonetheless provides 
the first direct evidence for the location of EJC proteins in human  
spliceosomes and how they potentially interact with the exon RNA.

Repositioning of branched intron region
Directly after step one of splicing, the branched intron structure—that 
is, the U2/branch site helix in which the BS-A is covalently linked 
to the 5′​ end of the intron—remains at the catalytic centre of the C 
complex, in part stabilized by the Cwc25, Yju2 and Isy1 proteins21,22. 
Consistent with our purified C*​ complex representing a post-PRP16 
stage, the branched intron structure is no longer positioned in the  
catalytic centre, but rather the phosphodiester bond between the BS-A 
and 5′​ end of the intron is located approximately 20 Å away (Fig. 3a, b).  

This displacement distance is highly conserved between group IIB 
introns and the spliceosome6. In the C*​ EM density map, a helical 
density element extends from the U2/branch site helix, indicating for-
mation of an extended, distorted helix between the U2 snRNA and nine 
intron nucleotides upstream of the branch site (that is, the extended 
U2/branch site helix) (Fig. 3b). The latter is also formed in the yeast 
Bact and C complexes and ILS14,20,22, and thus formation of this helix is 
a general feature, at least after spliceosome activation.

PRP8 and PRP17 stabilize the branch site position
The PRP8 RNase H-like (RH) domain is located at different positions 
in the Bact, C, C*​ and ILS complexes (Extended Data Fig. 8). In C*​, the 
RH domain interacts via its N-terminal α​-helical region with extended  
α​-helices close to the tip of the En domain of PRP8 (Fig. 3c). At the same 
time, the RH domain’s β​-hairpin loop is inserted between the groove of 
the U2/branch site helix and the U6 ACAGA box/intron helix, contacting  
nucleotides of the U2 snRNA and the backbone of the U6 ACAGA 
sequence (Fig. 3a). The branched intron structure rests on a basic 
region of the RH domain (Fig. 3c). Thus the RH domain appears to 
play an important part in stabilizing the conformation of the branched 
intron structure in C*​. Contact between the RH domain and the 
branched intron region also provides a potential structural basis for the 
suppression of BS-A mutations by RH domain mutants31–33 (Fig. 3d).  
Like the RH domain, the PRP8 α​-finger is also found in different posi-
tions in the Bact, C and C*​ complexes. In C*​ the α​-finger is located in 
the catalytic centre, suggesting that it may help to position the 3′​ splice 
site for step two or, alternatively, that it might have to be repositioned 
to allow step two catalysis (Extended Data Fig. 8a, b).

In the C*​ complex, the WD40 domain of the step-two factor PRP17 
lies at a strategically important position between the U2 Sm core and 
PRP8 RH domain, close to the catalytic centre (Fig. 3c, e). The WD40 
domain contacts C-terminal helices and the β​-hairpin loop of the PRP8 
RH domain (Fig. 3c, d), and the N-terminal region of CDC5 (Extended 
Data Fig. 9a, b). The PRP17 WD40 domain also contacts the extended 
U2/branch site helix and U2 nucleotides that connect the extended 
U2/branch site helix with the putative U2 helix IIc (Fig. 3e, Extended 
Data Fig. 9c, d). Consistent with its close interaction with U2 snRNA, 
mutations in the latter are lethal in the absence of Prp17 (ref. 34). As 
both the RH domain of PRP8 and the U2 Sm core domain undergo 
PRP16-mediated remodelling (see below), the Prp17 WD40 domain 
may help stabilize the second-step conformation of the spliceosome, 
explaining its function as a second-step splicing factor35.

Remodelling during the catalytic phase
Although the structure of the central domain of the spliceosome does 
not change substantially during the catalytic steps of splicing, the U2 
snRNP undergoes large-scale movements. In the C complex, the U2 
Sm core, together with its attached Lea1 and Msl1 (human U2-A′​ and 
U2-B′​′​, respectively) proteins, has rotated and moved approximately 
175 Å from its previous position in the Bact complex (Fig. 4a). This rear-
rangement requires destabilization of the U2 SF3a and SF3b proteins, 
which occurs during the Prp2-mediated catalytic activation of the Bact 
complex3,36,37, and allows the U2/branch site helix to dock in the cata-
lytic centre of the spliceosome. During PRP16-mediated transformation  
of the C complex into C*​, the branched intron region moves away from  
the active site and the U2 Sm core moves approximately 100 Å, accom-
panied by a rotational movement (Fig. 4b). The U2 snRNA contains 
four nucleotides (A29 to U32 in humans) located between the branch 
site interacting region and nucleotides that base pair with U6 to form 
U2/U6 helix Ia (Fig. 2b), which could act as a hinge and allow these 
movements. Proteins that potentially aid in the repositioning of the U2 
Sm core include SYF1 and SYF3. The N-terminal HAT repeats of SYF1 
contact the U2 core domain via the U2-A′​ protein both in C and C*​, 
and regions of both SYF1 and SYF3 undergo movements in a concerted 
manner with the U2 Sm core domain (Fig. 4c). The large-scale move-
ments of the U2 Sm core domain may be driven by the repositioning 
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of the U2/branch site helix, as the rotational movements of the latter 
closely mirror those of the U2 Sm core (Fig. 4a, b), with a similar dis-
tance between both elements observed at each stage (Fig. 4c).

A comparison of the cryo-EM structure of the S. cerevisiae C com-
plex (pre-Prp16 state) and the human C*​ complex (post-PRP16 state) 
reveals that an unexpectedly large number of RNA and protein domains 
are restructured during this PRP16-mediated transition of the spli-
ceosome (Extended Data Fig. 10), assuming that the observed struc-
tural differences are not species-specific differences. These include 

repositioning of: (1) the extended branched intron structure; (2) the 
PRP17 WD40 domain; (3) the entire 3′​ domain of U2 snRNP; (4) SYF1 
and SYF3; (5) The RH domain and α​-finger of PRP8; and (6) destabili-
zation of Yju2 (CCDC130 in human) and Cwc25 (CWC25 in human)  
(refs 8, 38). The high interconnectivity of these restructured domains 
suggests that their remodelling by PRP16 occurs in a coordinated  
manner. The PRP16-mediated movement of the branched intron 
away from the catalytic centre might initially be triggered by PRP16  
destabilizing or repositioning one or more proteins (for example, 
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Cwc25/CWC25 and Yju2/CCDC130), as opposed to acting directly 
on the branched RNA structure. The displacement of spliceosomal 
proteins probably creates new conformational space and enables the 
sampling of different RNP conformations within the spliceosome39. 
The resulting rearranged RNA/RNP conformation would then be 
stabilized by the formation of new protein–protein and protein–RNA 
interactions (for example, interaction of the branched intron with the 
PRP8 RH domain). A similar mechanistic principle can be envisioned 
for the RNP rearrangements in the spliceosome that are mediated by 
other spliceosomal helicases, such as PRP2 (ref. 19).

Insights into the role of helicase PRP22
We do not find density to accommodate nucleotides containing the 3′​ 
splice site, suggesting that it is flexible. For efficient positioning of the 
3′​ splice site in the catalytic centre, the second step factors SLU7, PRP18 
and PRP22 are required (reviewed in ref. 40). While SLU7 and PRP18 
are missing from our C*​ complex, PRP22 is stoichiometrically present. 
The helicase domain of PRP22 fits into UPD3 of the C*​ unmasked EM 
density (Fig. 1), where it is attached via its C-terminal oligonucleotide/ 
oligosaccharide-binding (OB) fold domain to the long α​-helix of 
Skip and to the PRP8 RT domain (Fig. 5a), consistent with earlier  
biochemical and genetic work41–43. As PRP22 contributes to step two 
of splicing in an ATP-independent manner11 and is located far from 
the C*​ catalytic centre (Fig. 5b), it probably plays an indirect role in 
positioning the 3′​ splice site for catalysis of step two. Following catalytic 
step two, PRP22 facilitates the release of the spliced mRNA in an ATP-
dependent manner44. To achieve this, PRP22 may have to undergo a 
conformational change in order to bind the spliced 3′​ exon, which is 
required for its activity45. As CWC22 is located on both sides of the 
exon-binding channel, its removal may be a prerequisite for release of 
the spliced mRNA from the latter. Indeed, during mRNA release from 
the post-step two spliceosome, there is nearly quantitative displacement 

of CWC22 (ref. 46). PRP22 is bound close to the region of the PRP8 
RT domain where the MA3 domain of CWC22 is located (Fig. 5b), 
and thus its action might potentially lead to displacement of CWC22. 
PRP2, PRP16 and PRP22, which bind transiently and in a sequential 
manner, are all located at the periphery of their respective spliceosomal 
complexes, at a distance from their presumed targets, which are located 
at or near the catalytic centre (Fig. 5c). Thus, all three helicases appear 
to act indirectly, at a distance, as recently proposed for PRP2 (ref. 19) 
and PRP16 (ref. 47).

A comparison of the cryo-EM structures of the human C*​ and  
S. pombe ILS indicates that the rearrangements accompanying this  
transition are more subtle than those occurring during the C to C*​ 
transition. However, determination of the structures of the human 
Bact, C and ILS complexes will be needed to clarify whether structural 
changes proposed to occur during splicing catalysis are indeed evolu-
tionarily conserved.

Online Content Methods, along with any additional Extended Data display items and 
Source Data, are available in the online version of the paper; references unique to 
these sections appear only in the online paper.
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METHODS
No statistical methods were used to predetermine sample size. The experiments 
were not randomized and the investigators were not blinded to allocation during 
experiments and outcome assessment.
In vitro splicing. Uniformly [32P]-labelled, m7G(5′​)ppp(5′​)G-capped MINX 
pre-mRNA was synthesized in vitro by T7 runoff transcription. HeLa S3 cells 
were obtained from GBF, Braunschweig (currently Helmholtz Zentrum für 
Infektionsforschung, Braunschweig) and tested negative for mycoplasma. HeLa 
nuclear extract was prepared essentially as previously described48, but without the 
final dialysis step. To isolate C*​ complexes, splicing was performed with 5 nM of 
32P-labelled pre-mRNA and 20% (v/v) HeLa nuclear extract, in buffer containing 
3 mM MgCl2, 50 mM NaCl, 4 mM HEPES-KOH pH 7.9, 12 mM MES-NaOH pH 
6.4, 2 mM ATP and 20 mM creatine phosphate, and was incubated at 30 °C for 
different time periods. Samples were analysed on a denaturing 4–12% NuPAGE 
gel (Life Technologies) and pre-mRNA and splicing intermediates and products 
were visualized with a Typhoon phosphorimager (GE Healthcare).
MS2 affinity selection of splicing complexes. Spliceosomal complexes were iso-
lated by MS2 affinity selection. In previous studies, affinity purified human C 
complexes were formed in vitro on mutated pre-mRNA substrates that are una-
ble to undergo the second step of splicing49–51. Here, we used the MINX pre-
mRNA substrate52 that contains an intron flanked by a 5′​ and 3′​ exon, allowing a 
functional analysis of complexes that assemble on it. In brief, MINX pre-mRNA 
containing three MS2 aptamers at its 3′​ end RNA was incubated with a tenfold 
molar excess of MS2–MBP fusion protein and then added to a splicing reaction. 
After incubating at 30 °C for 5 h and centrifuging to remove aggregates, the reac-
tion was loaded onto a MBP Trap HP column (GE Healthcare) after addition of 
5 mM HEPES-KOH pH 7.9. The column was washed with G-150 buffer (20 mM 
HEPES-KOH pH 7.9, 1.5 mM MgCl2, 150 mM NaCl) and complexes were eluted 
with G-150 buffer containing 1 mM maltose. Eluted complexes were loaded onto 
a 36 ml linear 10–30% (v/v) glycerol gradient containing G-150 buffer (20 mM 
HEPES-KOH pH 7.9, 1.5 mM MgCl2, 150 mM NaCl), centrifuged at 23,000 r.p.m. 
for 15 h at 4 °C in a Surespin 630 (Thermo Scientific) rotor and fractions were 
harvested from the bottom. The distribution of 32P-labelled MINX RNA across 
the gradient was determined by Cherenkov counting. Fractions were analysed 
by denaturing 4–12% NuPAGE (Life Technologies) followed by autoradiography. 
Peak fractions containing the first step splicing intermediates were pooled, concen-
trated by centrifugation with an Amicon 50 kD cut-off unit, diluted to decrease the 
glycerol concentration and reloaded on the same gradients with glutaraldehyde as 
fixative53. For biochemical sample validation, the same procedure was performed 
but without fixation in the second gradient. The RNA and protein compositions 
of purified complexes were determined by denaturing 1D PAGE and 2D gel  
electrophoresis.
2D gel electrophoresis and mass spectrometry. Two-dimensional gel-electro-
phoresis of affinity-purified spliceosomal complexes was performed as described 
in ref. 54, using a 7% acrylamide mono gel in the second dimension for analysis of 
proteins larger than 25 kDa, or 15% acrylamide for proteins smaller than 25 kDa. 
For mass spectrometry, coomassie-stained protein-spots were cut out of the 1D or 
2D gels, and proteins were digested in-gel with trypsin and extracted. The extracted 
peptides were analysed in a liquid-chromatography coupled electrospray ionization 
mass spectrometer (LTQ Orbitrap XL) under standard conditions. Proteins were 
identified by searching fragment spectra against the NCBI non-redundant (nr) 
database using Mascot as a search engine.
Chase of purified C* complexes with nuclear extract. Total IgGs against human 
PRP16 were purified as described previously55. Affinity-purified C*​ complexes 
formed on 32P-labelled MINX-MS2 pre-mRNA were incubated with splicing buffer 
alone (20 mM HEPES-KOH pH 7.9, 50 mM NaCl, 3 mM MgCl2, 2 mM ATP, 20 mM 
creatine phosphate) or additionally in the presence of 20% HeLa nuclear extract 
prepared according to ref. 48. For antibody inhibition experiments, the splicing 
mixture was pre-incubated with 3 μ​g μ​l−1 of anti-PRP16 antibody at 30 °C for 
15 min as described55. The splicing reaction was initiated by addition of 32P-labelled 
MINX-MS2 pre-mRNA or C*​ complex assembled on 32P-labelled MINX-MS2 
pre-mRNA. The reaction was incubated at 30 °C for 0–60 min. RNA was recov-
ered, separated by SDS–PAGE, and visualized with a Typhoon phosphorimager 
(GE Healthcare).
Crosslinking of the C* complex and crosslink identification. Following MS2 
affinity selection and the first density gradient centrifugation step, purified spli-
ceosomal complexes were crosslinked with 150 μ​M BS3 for 40 min at 20 °C and 
purified further by a second density gradient centrifugation step. Approximately 
25 pmol of C*​ complexes were pelleted by ultracentrifugation and analysed 
essentially as described before56 with the following modifications: precipitated 
material was dissolved in a solution containing 4 M urea and 50 mM ammonium 
bicarbonate, reduced with DTT, alkylated with iodoacetamide, diluted to 1 M 

urea and digested with trypsin (1:20 w/w). Peptides were reverse-phase extracted 
and fractionated by gel filtration on a Superdex Peptide PC3.2/30 column (GE 
Healthcare). 50-μ​l fractions corresponding to an elution volume of 1.2–1.8 ml were 
analysed in quadruplicate on a Thermo Scientific Q Exactive HF mass spectrome-
ter. Protein–protein crosslinks were identified by pLink 1.23 search engine (http://
pfind.ict.ac.cn/software/pLink) and filtered at FDR 1% according to the recom-
mendations of the developer57. For simplicity, the crosslink score is represented 
as a negative value of the common logarithm of the original pLink score, that is 
Score =​ –log10(pLink Score). For model building, a maximum distance of 30 Å 
between the Cα​ atoms of the crosslinked lysines was allowed. Approximately 97% 
of all crosslink-assigned spectra correspond to crosslink distances of 30 Å or less.
EM and image processing. Purified spliceosomes, stabilized by GraFix53, were 
allowed to adsorb on a thin carbon film before negative staining or rapid plunge 
freezing into liquid ethane at 100% humidity and 4 °C. Micrographs of negatively 
stained particles were recorded in a CM200 electron microscope (FEI/Phillips, the 
Netherlands) at room temperature and approximately 50,000 particles were picked 
by hand. The latter were then used to de novo build a negative stain starting struc-
ture that was refined to around 25 Å by using 3D maximum-likelihood alignment 
and 3D classification58. The resulting model was subsequently used as an initial 
reference in cryo-particle image processing and classification. Cryo-images were 
recorded at −​193 °C in a Titan Krios electron microscope (FEI Company, The 
Netherlands) on a Falcon II direct electron detector at a nominal 88,000×​ magnifi-
cation resulting in a calibrated pixel size of 1.59 Å on the specimen level. Seventeen 
frames were recorded for each micrograph with an average dose of 2.1 e− per frame 
per Å2. Motion correction and spatial frequency weighed frame summation was 
achieved using the unblur software suite59 (http://grigoriefflab.janelia.org/unblur). 
Summed micrograph images were then evaluated based on CTF parameters and 
only those revealing isotropic Thon rings were used for particle picking and extrac-
tion. Using the particle picking software Gautomatch (http://www.mrc-lmb.cam.
ac.uk/kzhang/) and 40° projections of the negative stain model filtered to 40 Å 
as a reference, we extracted approximately 2.5 million particle images from the 
pre-sorted cryo-micrographs and applied several particle sorting steps at the 2D 
and 3D level. 2D multivariate statistics and classification was first applied to the 
non-aligned particle images and subsequently to the aligned particles. In each 
round, particles contributing to bad classes were excluded from further processing. 
The remaining ~​1,708,000 particles were split into seven equally sized groups and 
subsequently applied to seven separate rounds of 3D classification in RELION fea-
turing six classes each. The ~​393,000 particles pooled from all satisfactory classes 
were then subjected to further rounds of 3D classification in RELION71. For the 
high resolution structure determination, the 136,534 particles finally contributing 
to the best 3D class were used for refinement revealing an 8.4 Å resolution structure 
(which we refer to as the unmasked EM density map). Roughly 20% of the splice-
osome density was not clearly defined at this level of resolution. As these densities 
largely disappear during the higher-resolution structure calculations, we excluded 
them with a mask in the final rounds of the refinement. A soft mask with a cut-off 
of 7 voxels was used for the refinement and for the determination of resolution. 
We obtained the final map with a resolution of 5.9 Å as determined by Fourier 
shell correlation calculated from two independent data sets with a threshold of 
0.143. A local resolution plot revealed that there are areas of higher resolution in 
the catalytic RNP core of the C*​ complex that approach 4.5 Å. Some peripheral 
regions have somewhat lower resolution (Fig. 1 and Extended Data Fig. 2c). More 
dynamic areas or those with components with non-stoichiometric occupancies 
are not visible in the 5.9 Å structure.
Model fitting and building. Available X-ray or homology models of proteins 
were fit into the EM density by Chimera60. Individual models of substructures 
(for example, domains or structural motifs) were further fitted as rigid bodies by 
Coot61. After visual inspection, the models were adjusted manually in the density, 
the disordered regions were removed and regions that were reorganized or were not 
present in the initial models (for example, loops and various elements of secondary 
structure) were built in Coot. Homology models of proteins were either obtained 
by using the respective functions of the SWISS-MODEL suite62 or directly adapted 
from the SpliProt3D database63. Initial human snRNA and intron models were 
obtained by using the S. cerevisae C complex spliceosomal RNA14,21 as reference, 
and homology modelled according to the human sequence using the ModeRNA 
package64 (http://genesilico.pl/moderna/). The snRNA fit was improved at rigid 
body level in Chimera and subsequently adjusted in Coot. The 5′​ stem loop of 
U6 and the U2/U6 helix II were generated by rigid-body fitting of idealized dou-
ble-stranded RNA helices. Exon 1 was modelled ab initio into available density in 
Coot and the resulting model later verified by comparison to the S. cerevisiae C 
spliceosome model22. Once the entire coordinate model was built up, all proteins 
were truncated to poly-alanine level and a global minimization real space refine-
ment was conducted against the 5.9 Å cryo-EM density using the real space refine 
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program from the PHENIX suite65. The RNA model was subsequently validated 
by the MolProbity server66 and had an all atom clash score of less than 12 and no 
bad bond lengths or angles. Final visualization was carried out with Chimera and 
PyMOL (http://www.pymol.org). See also Supplementary Table 1 for protein and 
model building information for all modelled human C*​ proteins.
Data Availability. All data generated or analysed during this study are included in 
this published article and its Supplementary Information files. The cryo-EM maps 
have been deposited in the Electron Microscopy Data Bank with accession codes 
EMD-3547 (8.4 Å map) and EMD-3545 (5.9 Å map). The atomic model has been 
deposited in the Protein Data Bank under accession code 5MQF.
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Extended Data Figure 1 | Compositional and functional 
characterization of affinity-purified, human C* complexes.  
a, Spliceosomal assembly pathway, starting with complex B. b, c, RNA 
(b) and protein (c) composition of MS2 affinity-purified, human 
C*​ complexes. Only high molecular weight proteins are labelled. C*​ 
complexes contained predominantly the first-step splicing intermediates 
(cleaved 5′​ exon and the lariat–3′​-exon), and U2, U5 and U6 snRNA. 
d, e, Abundant C*​ proteins (red) identified by 2D gel electrophoresis, 
summarized in e. Less abundant proteins, green. Upper and lower 
panel: proteins >​25 kDa or <​25 kDa, respectively. Proteins present in 
substoichiometric amounts in previous human C complex preparations 
(for example, SF3a and SF3b proteins)49,51 were lacking or present only 
in very low amounts. SRm300 does not migrate well into the second 
dimension of the 2D gel, but is clearly observed on a 1D gel. The step-
two factors SLU7 and PRP18 were not detected, which may explain why 
spliceosomes are stalled after step one at pH 6.4. All abundant proteins 
or domains/regions thereof were modelled into the C*​ EM density 

map, except BRR2, ISY1, NY-CO-10, CCD12, PPIL3, CBP80 and CBP20 
(Supplementary Table 1). As BRR2 could not be located in the C*​ EM 
density map, it is probably highly flexible in C*​. f, C*​ complexes formed 
on 32P-labelled MINX pre-mRNA at pH 6.4 were purified and incubated 
in HeLa nuclear extract at pH 7.9 or in buffer under splicing conditions. 
Splicing intermediates were efficiently chased into splicing products 
after 15 min in the presence of nuclear extract, but not buffer alone, 
indicating that our purified C*​ complexes are functional and not dead-end 
complexes. g, h, MINX pre-mRNA (g) or affinity-purified C*​ complexes (h)  
were incubated with HeLa nuclear extract with or without anti-PRP16 
antibodies. Efficient catalysis of step two of splicing was observed if 
purified C*​ complexes, but not pre-mRNA alone, were incubated in 
nuclear extract pre-incubated with PRP16 antibodies, indicating that the 
C*​ complexes are indeed stalled after the action of PRP16. All 2D analyses 
and in vitro splicing experiments were performed at least twice in two 
independent experiments.
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Extended Data Figure 2 | Cryo-EM and image processing of the human 
C* complex. a, Typical cryo-EM raw image of human C*​ spliceosomes 
recorded with a Titan Krios (FEI Company) electron microscope at a 
nominal magnification of 88,000×​ with a Falcon II direct electron detector 
resulting in a pixel size of 1.59 Å per pixel. b, Several representative class 
averages showing different views of the C*​ particle after 2D classification. 
c, Euler angle distribution of all particle images that contributed to the 
final 3D map. The coordinates describe the φ​ and θ​ angles. Size and 
colour of the plotted dots indicate the number of particles at any given 
Euler angle. Although several sets of particle orientations dominated, an 
almost complete angular coverage was obtained. d, Computational sorting 
scheme. Imaged micrographs were first evaluated and sorted according to 
the quality of their Thon rings in local power spectra. Roughly 2.5 million 
particle images were then selected from the remaining micrographs. In 
a second sorting step, particle images were again discarded based on 
the quality of Thon rings in classified, local power spectra. Following 
evaluations in Fourier space, particles were then excluded according to 
multiple rounds of 2D classifications. The remaining 1,708,164 particle 
images were split into seven subsets of approximately 244,000 particles, 

and each subset again separated into six classes by 3D classification in 
RELION. One of the results is shown as an example. Images contributing 
to the best defined spliceosome structure (around 23%) were then merged 
again into one particle subset. Further rounds of 3D classification in 
RELION led to a refinement of particle homogeneity within the final 
subset. The latter, now consisting of 136,534 particles was refined to 
a structure at 8.4 Å resolution without masking. The final structure at 
5.9 Å resolution was obtained by applying a soft mask during the final 
steps of the refinement process. To evaluate details at the core of the C*​ 
EM density, the unfiltered map obtained after the final 3D refinement 
was low-pass filtered to 4.5 Å and sharpened using a B-factor of −​350 
in RELION. e, Local resolution plot reveals a resolution distribution 
from approximately 4.5 to 10 Å with some less well-defined parts at the 
periphery of the complex. Higher resolution regions (in blue, up to 4.5 Å 
resolution) were obtained for the centrally located catalytic core of the 
spliceosome. f, Fourier-shell correlation function of two independently 
refined half data sets indicates a global resolution of 5.9 Å for the masked 
C*​ spliceosome comprising around 80% of the visible density of the whole 
spliceosome with respect to the unmasked density volume.
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Extended Data Figure 3 | Protein–RNA interactions in the catalytic 
RNP core of the C* complex. a, Domain structure of the human PRP8 
protein. b, c, The catalytic U2–U6 RNA core is shown docked into the 
active-site pocket of PRP8 (space filling model) in the human C*​ and  
S. cerevisiae C complex22. BS, branch site. d, Interaction of the N-terminal 
HAT repeats of SYF3 and the linker between PRP8 NTD1 and 2 with the 
U6 ISL in the C*​ complex. e, Interaction of the CDC5 Myb domain with 
U2/U6 helix Ia. f, Interaction of WD40 domain of PRL1 with U5 stem Ic 
and the loop of the U6 ISL. Not only is the docking of the U2–U6 RNA 

core within the active site pocket of PRP8 similar in C and C*​, but also 
the interaction of the linker between PRP8 NTD1 and 2 with the major 
groove of the U6 ISL, of SYF3 with the lower stem of the U6 ISL, and of 
the CDC5 Myb domain with the U2/U6 helix Ia. Moreover, the WD40 
domain of PRL1 interacts with U5 stem Ic and the U6 ISL loop in both 
organisms14,21,22 and α​-helix 2 of CDC5 runs along the groove of the U6 
ACAGA box helix (Extended Data Fig. 5b). N-terminal parts of Skip and 
Ad002 (amino acid positions are indicated) also contact the U6 ISL.
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Extended Data Figure 4 | Interactions of spliceosomal proteins with 
the U6 snRNA in the C* complex. a, Overview of the location of various 
proteins and functionally important regions of the U6 and U2 snRNAs in 
the C*​ complex. b, c, Close up of the fit of G10/BUD31, the PRP8 NTD1, 
and RBM22, as well as the U6 5′​ stem loop, into the EM density map of C*​.  
d, Comparison of the domain structure of human RBM22 with that of 
its apparent homologues in yeast, Cwc2 and Ecm2. e, Comparison of 
the organization of homologous domains between RBM22, and Ecm2 
and Cwc2, in the human C*​ and S. cerevisiae C complexes. The middle 
and right diagrams show different slices of the C complex EM density. 
Some regions of human RBM22 that are homologous to regions of the 
S. cerevisiae Cwc2 and Ecm2 proteins, are located near the U6 ISL in the 

human C*​ complex, similar to the situation in the S. cerevisiae C complex. 
For example, the N-terminal part of RBM22, comprising two zinc-finger 
domains that are homologous to those present in S. cerevisiae Ecm2, 
could be fit into a density element close to G10/BUD31, at a position 
similar to that in the S. cerevisiae C complex (and S. pombe ILS, not 
shown). The third zinc-finger domain of RBM22 (homologous to Cwc2) 
is located close to the 5′​ stem loop of U6 snRNA. The RRM domain of 
RBM22 (homologous to the RRM of Cwc2) fits into a less well-defined 
density element close to PPIL1, aquarius, and Skip, consistent with 
protein crosslinking data (Supplementary Table 2). Thus, the RRM of 
RBM22 is located at a different position compared to that of its likely yeast 
homologue (Cwc2/Cwf2) in the yeast spliceosomes.
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Extended Data Figure 5 | Molecular organization of the NTC and 
NTC-related proteins is similar in the C* complex and S. pombe ILS. 
a, Overview of the location of various proteins in the C*​ complex. The 
N-terminal HAT repeats of SYF1 share a large interface with the aquarius 
(Aqr) protein. At the interface between SYF1 and aquarius there is a 
density element that accommodates cyclophilin E (CypE), a spliceosomal 
protein not found in yeast (Fig. 1). In C*​, the density accommodating 
aquarius is less well-defined, presumably owing to flexibility of this  
part of the complex. Crosslinks between ISY1 and aquarius indicate  
that part of ISY1 is located at the top of C*​ (Supplementary Table 2).  
The meandering path of Skip (Prp45) and Ad002 (Cwc15) around the 
PRL1 WD40 domain is shown. N-terminal parts of Skip and Ad002 also 
contact the U6 ISL (see also Extended Data Fig. 3). The position of the 
PRP19 helical bundle (containing SPF27, the C-terminal part of CDC5 
and four copies of PRP19) is stabilized by interactions of the C-terminal 
end of CDC5 with the WD40 domain of the U5-40K protein, and by 
interactions with the cyclophilin PPIL1. The WD40 domains of PRP19 
are not visualized, presumably owing to their flexibility. N or C, N or C 
terminus. b, Magnified view showing the fit of parts of SYF1, SYF2 and 

SYF3 and their neighbouring proteins into the C*​ EM density map. In C*​,  
the C-terminal HAT repeats of SYF1 contact the N-terminal Myb domain 
of CDC5 (which in turn binds to the PRP8 RT domain). CDC5 α​-helix 2 
runs along the U6 ACAGA box/intron helix. c, Fit of Skip, PRL1, Ad002, 
SYF2 and their neighbouring proteins into the C*​ EM density map. Major 
parts of Skip (amino acid numbers shown in red) bridge the WD40 domain 
of PRL1 (Prp46 in S. cerevisiae) and SYF3 N-terminal HAT repeats 2–5 
with the PRP8 NTD2. SYF2 (amino acid numbers in blue) contacts U2/U6  
helix II. The N-terminal part of Ad002 (amino acid numbers in pink) 
contacts the PRL1 WD40 domain (see also panel f). d, e, Comparison 
of the structure/organization of SYF1 and SYF3 (shown as space filling 
models), aquarius and other NTC and NTC-related proteins in the human 
C*​ complex and the S. pombe ILS. The N-terminal region of CDC5, the 
N-terminal α​-helices of SYF3, WD40 domain of PRL1, major parts of Skip 
and Ad002, and PPIL1 (Ppi1 in S. pombe) have nearly the same structure 
and position as their yeast homologues (see also panels a–c). f, N-terminal 
amino acids of Skip interact with PPIL1, consistent with previous 
biochemical and structural studies67–69.
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Extended Data Figure 6 | 3D RNA network of the human C* complex. 
a, b, Fit of the catalytic core RNA into the 5.9 Å EM density map of C*​ (a) 
or into the EM density map low-pass filtered to 4.5 Å (b). The topography 
of the RNA density is consistent with formation of the catalytic triplex, as 
found in the C complex and ILS. That is, the Watson–Crick faces of U6 
nucleotides G46 and A47 are oriented towards the Hoogsteen faces of  
G54 and A53, respectively, and can potentially form two base triples.  
The bulged U74 of the U6 ISL would be in a position to stack on G46 
and may form the third triple with U6 C55 (Fig. 2). Black circle, catalytic 
centre. c, Overall similarity of the catalytic RNA network in the yeast C 
versus human C*​ complex. Superimposition of the core RNA elements 
from human C*​ with those from the S. cerevisiae C complex. Dark-
coloured RNAs are from C*​, whereas the lighter-coloured RNAs are from 
the C complex (PDB 5LJ3) and (PDB 5GMK). In the C*​ complex, the U6 
ACAGA box/intron helix is tilted slightly (compared to the C complex), 
such that the U6 snRNA moves 5–6 Å towards the core of the complex, 
which is probably due to the significantly different positions of the 
branched intron structures in the different spliceosomal complexes.  
d, The conformation of U6 nucleotide A48 (U54 in yeast U6) is 
significantly different in the yeast C and human C*​ complex. Whether 
U6 A48 adopts this distinct conformation in other human spliceosomal 
complexes or whether it represents an intermediate state following PRP16 
remodelling that subsequently adopts a conformation similar to U6 U54 in 
the yeast C complex before step two catalysis is unclear. e, U6 A48 is bound 
in a protein pocket comprised of amino acids from Skip and CDC5. Fit of 
U6 and U2 snRNA nucleotides, and amino acids of CDC5 and Skip into 
the C*​ EM density map. f, Interactions of the U5 loop 1 and PRP8 with 
the 5′​ exon, and location of the 3′​ end of the 5′​ exon close to the catalytic 
centre (black circle).
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Extended Data Figure 7 | Location and structure of CWC22 and its 
interaction partner, the EJC helicase eIF4AIII, in the C* complex. 
a, EM density fit of various proteins forming the channel in which the 
5′​ exon is bound. The MA3 domain of CWC22 binds the PRP8 RT/En 
domain and its N-terminal MIF4G domain is attached to domain 1 of 
SNU114. The MIF4G domain is only clearly visible in the unmasked 
EM density of the C*​ complex, and maps to UPD2 (panel a and b). The 
PRP8 switch loop is shown in light blue. Close to the PRP8 switch loop, 
there is a density element into which the approximately 20 N-terminal 
amino acids of SRm300 can be accommodated in a manner similar to the 
arrangement of the homologous sequence of Cwc21 in the C complex of 
S. cerevisiae (indicated in green colour). b, EM density fit of the CWC22 
MIF4G domain and the RecA domains of the eIF4AIII RNA helicase in 
the UPD2 density of the unmasked C*​ model. Consistent with crosslinks 
(Supplementary Table 2), the RecA2 domain contacts the MIF4G domain. 
In the C*​ complex, the relative orientation of the two RecA domains is 
such that they adopt a partially closed conformation, in contrast to their 
open (inactive) conformation in the MIF4G–eIF4AIII co-crystal structure 
(middle panel; PDB 4C9B) and their closed conformation in the crystal 
structure of the EJC complex, in complex with RNA (right most panel; 
PDB 2XB2). Shown is the poor fit of the RecA1 domain when in the open 

or completely closed conformation. Protein crosslinks between eIF4AIII 
and an N-terminal region of SRm300 indicate that part of this region is 
located in the neighbouring UPD1 density element of the unmasked C*​ 
complex map, adjacent to domain 4 of SNU114 (which is not a part of 
UPD1), consistent with the location of two α​-helical elements of Cwc21 
in an equivalent position in the S. cerevisiae C complex22. We cannot 
locate the RS domain of SRm300, probably because it is very flexible and 
located at the periphery of the C*​ complex. c, Model of the position of an 
extended 5′​ exon RNA (red) relative to the RecA domains of eIF4AIII in 
the C*​ complex. Extension of the 5′​ exon RNA to position −​26 (relative 
to the 5′​ splice site) was performed by inserting nucleotides −​26 to −​18 
based on the crystal structure of the isolated EJC bound to RNA and 
additionally modelling in exon nucleotides −​17 to −​13 (in an extended 
conformation), which we cannot clearly localize based on the EM density 
map. This suggests that eIF4AIII is already located at an optimal distance 
(that is, around 20 nucleotides upstream) from the 5′​ splice site (and thus 
also from the exon–exon junction that is formed after step two of splicing). 
Tight binding of eIF4AIII to the 5′​ exon probably occurs at a stage after 
formation of the C*​ complex, based on the observation that the RecA 
domains are not completely closed at this stage.
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Extended Data Figure 8 | Variable position of the PRP8 RH domain and 
α-finger in the Bact, C and C* complexes. a, Comparison of the position 
and structure of the PRP8 RH domain (magenta ribbon diagram) and  
α​-finger15 (purple) relative to the PRP8 RT/En domain (pink space filling 
model) that is oriented in the same manner in Bact, C, C*​ and the ILS. 
The position of the U2/branch site helix alone (Bact and ILS) or with the 
extended U2/branch site helix (as found in C and C*​) is also shown. In 
the yeast C complex, the RH domain interacts with the 3′​ part of the U2 
snRNP, Cwc25 and the extended region of the U2/branch site helix21,22, 
whereas in C*​ the RH domain interacts with extended α​ helices close 
to the tip of the En domain of PRP8 and its β​-hairpin loop is inserted 
between the groove of the U2/branch site helix and the U6-ACAGA  

box/intron helix. Repositioning of the RH domain from C to C*​ requires 
not only a translational, but also rotational movement that is coordinated 
with repositioning of the U2/branch site helix. Asterisk, position of the  
β​-hairpin loop of the RH domain. b, Position of the PRP8 α​-finger (shown 
in purple in the space filling model) in the human C*​ complex. In the 
latter, the α​-finger is found close to the proposed position of the catalytic 
Mg2+ ions (turquoise spheres). The PRP8 α​-finger could potentially aid 
in the placement of the 3′​ splice site for step two catalysis (indicated by a 
dashed blue line). Alternatively, it is conceivable that the α​-finger must be 
repositioned to allow proper positioning of the 3′​ splice site, which could 
be achieved by the interaction of a protein (for example, SLU7 or PRP18) 
or docking of the 3′​ splice site into the catalytic centre.
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Extended Data Figure 9 | Interaction of the WD40 domain of PRP17 
with the extended U2/branch site helix and U2 nucleotides linking 
the U2/branch site helix and U2 Sm core. a, b, Interaction of the PRP17 
WD40 domain with the extended U2/branch site helix, CDC5 helix 2 
and CypE. The fit of the aforementioned protein domains and RNA, plus 
additional neighbouring proteins, into the C*​ EM density map is shown. 
Consistent with our protein crosslinks (Supplementary Table 2), loops 
on the top-side of the WD40 domain interact with the N-terminal part 
of α​-helix 2 from the N-terminal region of CDC5, which in turn contacts 
the U6 loop between the ACAGA box and the U2/U6 helix Ia. CypE 
contacts SYF1, the WD40 domain of PRP17 and the U2 3′​ terminal RNP 
domain. c, d, Fit of the extended U2/branch site helix and U2 nucleotides 
linking the latter with the U2 Sm core domain into the C*​ EM density 
map. Intramolecular U2 snRNA helices IIa and IIc are mutually exclusive 

structures70, and it was recently shown that U2 helix IIc is formed in the 
S. cerevisae C complex21,22. In the human C*​ complex, U2 nucleotides 
88–95 can be fit in a helical conformation into a helical density element 
located directly adjacent to the U2 Sm core. This is consistent with the 
possibility that U2 intermolecular helix IIc is formed (at least partially) 
in the C*​ complex, as helix IIc formation involves U2 nucleotides directly 
upstream of the the U2 Sm site. While the density for these U2 nucleotides 
is well-defined, EM density for complementary U2 nucleotides that are 
potentially involved in the formation of a helix are observed only at a 
lower threshold. This suggests that U2 helix IIc is not very stable in our C*​ 
complex, and thus may be only partially formed. EM density that would 
accommodate U2 intra-molecular helix IIa or IIb is not detected in the C*​ 
map, suggesting that they are unstable or not formed.

© 2017 Macmillan Publishers Limited, part of Springer Nature. All rights reserved.
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Extended Data Figure 10 | Structural changes in the spliceosome that 
are probably mediated by the action of PRP16. a, b, Comparison of  
the position/orientation of the PRP8 RH domain, U2 Sm core plus U2-A′​  
(S. cerevisiae Lea1) and U2-B′​′​ (S. cerevisiae Msl1), SYF1 and SYF3 
HAT repeats, PRP17 WD40 domain and the catalytic RNA core, aligned 
relative to the PRP8 En/RT domain, in the S. cerevisiae C complex and 
the human C*​ complex. Black circle, catalytic centre. Asterisk, position 
of the β​-hairpin loop of the RH domain. Structural changes probably 

facilitated by PRP16 include: (1) repositioning of the extended branched 
intron structure away from the catalytic centre together with a similar 
movement of the PRP17 WD40 domain; (2) a large scale movement of 
the entire 3′​ domain of U2 snRNP and rearrangement of SYF1 and SYF3; 
(3) translocation of the PRP8 RH domain by approximately 35 Å (bottom) 
to 60 Å (tip of β​-hairpin loop) such that it interacts with the branched 
intron structure in the C*​ complex; (4) rearrangement of the PRP8 
α-finger; and (5) destabilization of Yju2/CCDC130 and Cwc25/CWC25.

© 2017 Macmillan Publishers Limited, part of Springer Nature. All rights reserved.
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SUMMARY

Little is known about the spliceosome’s structure
before its extensive remodeling into a catalytically
active complex. Here, we report a 3D cryo-EM struc-
ture of a pre-catalytic human spliceosomal B com-
plex. The U2 snRNP-containing head domain is
connected to the B complex main body via three
main bridges. U4/U6.U5 tri-snRNP proteins, which
are located in the main body, undergo significant re-
arrangements during tri-snRNP integration into the
B complex. These include formation of a partially
closed Prp8 conformation that creates, together
with Dim1, a 50 splice site (ss) binding pocket,
displacement of Sad1, and rearrangement of Brr2
such that it contacts its U4/U6 substrate and is
poised for the subsequent spliceosome activation
step. The molecular organization of several B-spe-
cific proteins suggests that they are involved in nega-
tively regulating Brr2, positioning the U6/50ss helix,
and stabilizing the B complex structure. Our results
indicate significant differences between the early
activation phase of human and yeast spliceosomes.

INTRODUCTION

The spliceosome forms stepwise on its pre-mRNA substrate by

sequential recruitment of snRNPs (small nuclear ribonucleopro-

teins) and numerous other proteins (Papasaikas and Valcárcel,

2016; Wahl et al., 2009). During early spliceosome assembly,

U1 and U2 snRNPs interact with the 50 splice site (ss) and branch

site (BS), respectively, of the intron, forming the spliceosomal

A complex. The pre-formed U4/U6.U5 tri-snRNP then joins the

A complex, generating the pre-B complex in which the tri-snRNP

is not yet stably bound (Boesler et al., 2016). After conformational

changes, including Prp28 RNA helicase-mediated exchange of

U1 with U6 at the 50ss, the pre-catalytic B complex with stably

associated tri-snRNP is formed (Boesler et al., 2016; Staley
and Guthrie, 1999). Complex B undergoes extensive composi-

tional and conformational rearrangements, including dissocia-

tion of U1 and U4, yielding the activated Bact complex. The

latter is converted into a catalytically active spliceosome

(designated B*) that catalyzes step I of splicing, yielding the

cleaved 50 exon and intron-30 exon lariat intermediates. At this

stage, the spliceosomal C complex is generated and after

additional rearrangements, the C* complex catalyzes step II, re-

sulting in ligation of the 50 and 30 exons and release of the

spliced-out intron.

During spliceosome assembly and activation a dynamic RNA-

RNA network involving snRNAs and the pre-mRNA is formed

(Staley and Guthrie, 1998). U4 and U6 snRNA are extensively

base paired in the tri-snRNP and B complex. During activation,

the U4/U6 helices are unwound and a highly structured RNA

network forms between the pre-mRNA and U2, U6, and U5

snRNAs, generating the spliceosome’s catalytic RNA core

(Fica et al., 2013; Staley and Guthrie, 1998). The U5 snRNP pro-

teins Prp8 and RNA helicase Brr2 play central roles during cata-

lytic activation. Prp8 is a major scaffolding protein that interacts

with Brr2 and Snu114 (Wahl et al., 2009) and also forms a pocket

that encompasses the catalytic RNA network of activated spli-

ceosomes (Galej et al., 2014; Hang et al., 2015). Brr2 initiates

spliceosome activation by unwinding the U4/U6 snRNA helices

(Laggerbauer et al., 1998; Raghunathan and Guthrie, 1998). As

Brr2 and its RNA substrate are present in the tri-snRNP and

B complex, its activity must be regulated to ensure that U4/U6

unwinding first occurs during activation. In contrast to the situa-

tion in the S. cerevisiae tri-snRNP, Brr2 is located in human tri-

snRNPs at a large distance from the U4/U6 helices, thereby

preventing their premature unwinding (Agafonov et al., 2016).

Whether Brr2 is repositioned and engages its substrate in the hu-

manB complex, and if so, howBrr2 is negatively regulated at this

stage of spliceosome assembly, is unclear.

Yeast and humans share a common set of core spliceosomal

proteins that are evolutionarily conserved, but human spliceo-

somes contain many additional proteins not present in

S. cerevisiae (Fabrizio et al., 2009). For example, human B com-

plexes contain a set of B-specific proteins, which include

hSnu23, RED, Smu1, hMFAP1, FBP21, hPrp38, NPW38, and
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NPW38BP (Agafonov et al., 2011). These proteins are conserved

in higher eukaryotes, but only hSnu23, hPrp38, and hMFAP1

have homologs in S. cerevisiae (Agafonov et al., 2011; Ulrich

and Wahl, 2017). B-specific proteins first bind during B complex

formation and are missing or much less abundant in Bact com-

plexes (Agafonov et al., 2011). The function of most of these pro-

teins remains unclear, but they are not required for tri-snRNP

recruitment to the B complex (Boesler et al., 2016). Instead,

they likely contribute to the activation process, as indicated for

Prp38 (Schütze et al., 2016; Xie et al., 1998), via currently un-

known mechanisms. Several B-specific proteins are implicated

in alternative splicing decisions, but the mechanisms whereby

they achieve this is unclear (Papasaikas et al., 2015; Spartz

et al., 2004).

3D electron cryo-microscopy (cryo-EM) structures of the

S. cerevisiae tri-snRNP, Bact, C, andC* complexes andS. pombe

post-splicing ILS spliceosomes (Galej et al., 2016; Nguyen et al.,

2016; Rauhut et al., 2016; Wan et al., 2016a, 2016b; Yan et al.,

2016, 2017; Fica et al., 2017), and of the human tri-snRNP and

C* complex were recently reported (Agafonov et al., 2016; Ber-

tram et al., 2017; Zhang et al., 2017). These studies revealed

the spliceosome’s molecular architecture during its activation

and catalytic activity. However, relatively little information is

available about the molecular organization of the spliceosome

at early assembly stages before its activation. The structural or-

ganization of the human U4/U6.U5 tri-snRNP revealed by cryo-

EM indicates that this major spliceosomal subunit is initially

maintained in an inactive state. Thus major rearrangements in

tri-snRNP components must occur to generate the functional

centers required to prime the B complex for the subsequent acti-

vation step. To elucidate these structural changes, we deter-

mined the 3D cryo-EM structure of the human spliceosomal

B complex at a core resolution of 4.5 Å and determined its spatial

organization with the aid of protein crosslinking.

RESULTS AND DISCUSSION

Structure Determination and Model Building
By lowering the Mg2+ concentration of the in vitro splicing reac-

tion, we could affinity-purify human spliceosomes containing

stoichiometric amounts of U2, U4, U5, and U6 snRNAs, but

which were essentially devoid of U1 snRNA, indicating that

they were stalled prior to Brr2-mediated activation and thus

are spliceosomal B complexes (Figure S1). Consistent with

this, highly abundant proteins in these complexes included U2

and tri-snRNP proteins (except RBM42, Prp28, and Sad1, which

were absent or present in low amounts), U2AF, B-specific pro-

teins, and pre-mRNA binding proteins, such as the CBPs.

Except for moderate amounts of Skip (hPrp45) and RBM22,

Prp19 complex proteins, or other proteins typically present in

activated spliceosomes were absent or present in very low

amounts (Figure S1D). Chase experiments with micrococcal

nuclease treated extract showed that our purified B complexes

are functional (Figure S1G). However, incubation of the latter

with ATP, did not induce significant displacement of U4 snRNP

(Figure S1F), indicating that Brr2 is still inhibited at this stage.

The 3D structure of the human B complex was determined by

cryo-EM (Figure S2), revealing a globular head domain and a
702 Cell 170, 701–713, August 10, 2017
triangular body with a central domain with adjacent ‘‘foot,’’

‘‘stump,’’ and ‘‘neck’’ domains (Figure 1; Movie S1). Three major

densities (B1-B3) bridge the head to the neck (B1) or stump (B2),

or run as an extended density element almost parallel to the cen-

tral axis of the main body (B3). Most of the triangular domain is

well-defined and its structure was determined at an overall res-

olution of 4.5 Å (Figures 1 and S2). However, the head and con-

necting bridges and some areas of the triangular body are more

dynamic or contain components with substoichiometric occu-

pancies and are thus less well resolved (Figures 1 and S2). By

fitting known X-ray structures or homology models of structured

regions of B complex components into the EM density map

(summarized in Table S1), and aided by chemical protein cross-

linking coupled with mass spectrometry (Table S2), we gener-

ated a pseudo-atomic model for the more stable parts of the

B complex (Figure 1).

U2 snRNP Is Located in the B Complex Head Domain
Several U2-SF3a and SF3b proteins contact the pre-mRNA at or

near the BS in A, B and Bact complexes, stabilizing the U2/BS

helix (Gozani et al., 1996). In the S. cerevisiae Bact complex the

U2/BS helix is sequestered between the terminal HEAT repeats

of the C-terminal HEAT domain of Hsh155 (SF3B1/SF3b155 in

human) (Rauhut et al., 2016; Yan et al., 2016). Consistent with

earlier immuno-EM studies (Wolf et al., 2009), we could fit the

core of the SF3b complex together with the U2/BS helix, in a

closed conformation as found in the Bact complex (Rauhut

et al., 2016; Yan et al., 2016), into the B complex head domain

(Figure 1). The SF3B3 WD40 domains are oriented toward the

stump and the circular SF3B1 HEAT domain is oriented toward

the neck of the body, while the U2 Sm core structure is located

close to bridge B3 (Figure 1). One end of the U2/BS helix is

located at the interface between the head and B3 (Figure 1).

Based on protein crosslinks, U2 SF3a proteins are also likely

located in this region, while the largely intrinsically unfolded

C-terminal region of U2 SF3A1 appears to extend from the

head through B3 into the lower part of the main body, where it

is crosslinked to Prp8 and U5-40K (Figure S1H).

Organization of U4, U6, and U5 snRNA and the 50ss
Region of the Pre-mRNA
We were able to trace most nucleotides (nts) of U4, U6, and U5

snRNA in the B complex body (Figure 1). The three-way helical

junction of the U4/U6 snRNA is located in the upper part close

to the neck. The U4 Sm and U6 LSm protein rings are located

in the stump or at the B1 bridge between U2 snRNP and the

neck, respectively. B1 contains, among others, U2/U6 helix II,

in which the 50 end of U2 and 30 end of U6 are base paired (Fig-

ures 1B and 3C). The major U5 stem-loop (SL) has a similar

conformation in B and the tri-snRNP, with the U5 Sm core

located in the foot of both (Figure 1B). However, in B, U5

loop 1 adopts a different conformation and loop 1 nucleotides

U41 and U43 are base paired with 30 terminal nucleotides of

the 50 exon, i.e., A-3 and G-1 (Figures 1C and S3A). An additional

RNA helical element comprising the U6 ACAGA box base paired

to several nucleotides near the 50 end of the intron is located ca

3–4 nm from the U5 loop 1/50 exon helix (Figures 1B and 1C),

confirming that the U6 ACAGA/50ss helix is formed in our



Figure 1. Cryo-EM Reconstruction of the Human B Complex

(A) Different views of the B complex EM density map (rotated around the vertical axis). Blue, better-resolved densities. Gray, masked regions not seen in the 4.5 Å

structure. B1, B2, B3, and density bridges connecting the head with the triangular body.

(B) Location in the unmasked density of the U2 SF3b protein core and U2 Sm core in the head, and the U4 and U5 Sm cores, U6 LSm core, and major RNA

elements in the main body. Inset, fit of the SF3B1 HEAT domain in complex with the U2/BS duplex.

(C) Fit of the U5 SL, 30 end of the 50 exon, 50ss nucleotides, and extended U6 ACAGA/50ss helix into the 4.5 Å EM density map.

(D) Path of B3 (in the unmasked density) from the U2/BS helix to the end of the extended U6 ACAGA/50ss helix. Stippled red line, possible path of the intron.

Distances between the branch adenosine and 50ss, and between the U2/BS helix and extended U6/50ss helix, are indicated.

See also Figures S1, S2, and S3, Tables S1 and S2, and Movie S1.
Bcomplexes. The 50ssGUnucleotides at the intron’s 50 end (G+1

and U+2) are positioned between both helical elements in an

extended conformation with the two bases pointing away from

each other (Figure 1C), which differs significantly from their

conformation in the activated spliceosome (Figure S3A).

Interestingly, U6 nucleotides 30 to 40, immediately upstream

of the ACAGA box, also form base pairs (including non-canonical
ones) with additional intron nucleotides downstream of the 50ss
(Figure 1C). As an extended U6 ACAGA/50ss helix is also present

in the human C* complex (Bertram et al., 2017; Zhang et al.,

2017), but is not observed in yeast spliceosomes (Figure S3B–

3D), it may be a structural feature of the spliceosome solely in

higher eukaryotes. Such extended helical elements may help

to stabilize short RNA helices, such as the human U6 ACAGA
Cell 170, 701–713, August 10, 2017 703



Figure 2. Substantial Prp8 and Brr2 Rearrangements and Formation of a 50ss Binding Pocket in the B Complex

(A and B) Open and partially closed conformation of Prp8 in the human tri-snRNP (A), and the B complex (B), respectively, aligned relative to the Prp8 NTD1

domain and Snu114. Black asterisks, amino acids in Prp8 linker loops close to G+1 of the 50ss in the B complex. For clarity, the Dim1 protein is only shown in the

inset of (B). Red asterisk, the b hairpin of the Prp8 RH domain. For a general overview of the position of U5 proteins in the B complex EM density map, see

Figure S4A.

(C) Fit of the 50ss nucleotides into the 4.5 Å EMdensitymap of the B complex. G+1 is bound in a pocket comprised of amino acids of Prp8 linker loops (indicated by

black asterisks). Base pairing of 50 exon nucleotides with U5 loop 1 is also shown.

(D) U+2 of the 50ss is located in a protein pocket comprised of loops of both Prp8 NTD1 and of Dim1. Amino acids of Prp8 NTD1 and Dim1 close to U+2 in the

B complex are indicated.

(E and F) Large-scale rotational movement of Brr2’s helicase domain from the Prp8 RT domain in the tri-snRNP (E) to the Prp8 En domain in the B complex (F),

aligned relative to the RT/En domain.

(G) Docking of Brr2’s NC onto the central single-stranded region of U4 snRNA close to U4/U6 helix I. SL, separator loop. U4 nucleotides betweenU62 andC69 are

flexible and are thus indicated by a stippled line.

See also Figures S3 and S4 and Tables S1 and S2.
box/50ss helix. The extended bridge B3 (spanning ca 15 nm) con-

nects the region where the U2/BS helix is located with the end of

the extended U6 ACAGA/50ss helix, suggesting B3 contains, in

addition to protein, the middle part of the intron that connects

these functionally important RNA helices (Figure 1D). The 50ss
and BS, which later must be juxtaposed for catalytic step 1 to

occur, are physically separated by ca 16 nm in the B complex

(Figure 1D). The 50SL of U6 is located in a position similar to

that observed in the yeast Bact or human C* complexes, close

to the U5 Sm core (Figures 1B and S3). As the U6 50SL and

ACAGA box are likely located in the upper part of the isolated

human tri-snRNP, they must be substantially repositioned

upon tri-snRNP integration into the spliceosome.

Prp8 Adopts a Partially Closed Conformation and,
Together with Dim1, Forms a 50ss Binding Pocket
The B complex central domain contains the U5 Prp8, Snu114,

U5-40K and Dim1 proteins (Figures 1A and S4A). Whereas the

positions and structures of the latter three, and of the Prp8 N-ter-

minal domain 1 (NTD1), are very similar in the human tri-snRNP

and B complex, the position of the Prp8 RT/En domain is clearly

different. In the tri-snRNP, Prp8 has an open conformation,
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whereby the RT/En domain points upward and the tip of the En

domain is separated from NTD1 by ca 5 nm (Figure 2A). In the

B complex, the RT/En domain has rotated by ca 20� around its

long axis compared to its position in the tri-snRNP, and moved

downward, such that several loops emanating from the RT/En

linker are juxtaposed with Prp8 NTD1 and Dim1 (Figures 2B

and S4). While Prp8 adopts a partially closed conformation in

the B complex, Prp8’s active site pocket (formed by the RT/En,

NTD1, and NTD2 domains), into which the catalytic U2/U6

RNA network docks during activation, is not completely closed,

as found in catalytically activated spliceosomes (Figure S4B).

The partial rearrangement of Prp8 after tri-snRNP integration

into the spliceosome, generates a protein pocket, comprised

of residues of the Prp8 RT/En linker region, Prp8 NTD1 and

Dim1, that binds the 50ss GU dinucleotide in an extended confor-

mation. That is, G+1 of the intron is sandwiched between loop re-

gions (containing amino acids [aa] K1306 and F1551 to K1565,

respectively) emanating from the Prp8 RT/En linker, while U+2

is contacted by a loop (aa 93–101) of Dim1, and by a helical re-

gion of Prp8 NTD1 (aa 532–537) (Figures 2B to 2D). Our structure

thus suggests that the evolutionarily conserved Dim1 protein

plays a direct, previously unknown role in 50ss recognition in



the B complex. Recognition of the extended 50ss by an intricate

network of RNA-RNA and RNA-protein interactions, as shown

here, provides the structural basis for sequestering the 50ss at

this pre-catalytic stage of splicing.

The Prp8 RH domain is located above the RT/En linker, in

both the B complex and human tri-snRNP, indicating that it

has undergone a similar downward shift as the RT/En domain.

However, the RH domain has rotated by ca 180� about its cen-

tral axis in B and thus its spatial orientation differs dramatically

between the two complexes (Figures 2A and 2B). The 50ss GU

can be crosslinked to Prp8’s RH domain at an early stage of

spliceosome assembly (Reyes et al., 1999). As the RH domain

is separated from the 50ss by ca 6 nm in our B complex (Fig-

ure 2B), the proposed RH-50ss interaction appears to take place

at an earlier assembly step, presumably before disruption of the

U1/50ss interaction.

Brr2 Is Dramatically Rearranged and Binds to Its RNA
Substrate in the B Complex
In human tri-snRNPs, Brr2 and the Prp8 Jab1 domain that tightly

binds to it, are located close to the RT end of the Prp8 RT/En

domain, and the active N-terminal helicase cassette (NC) of

Brr2 is located ca 10 nm away from the U4/U6 duplex and the

U4 Sm core structure (Figures 2E and S4A). In contrast, in the

B complex, Brr2 is positioned near Prp8’s En domain, ca

20 nm away from its position in the tri-snRNP, and the Prp8

Jab1 domain now contacts the tip of Prp8’s En domain (Figures

2F and S4A). This large-scale movement of Brr2 would require its

rotation by ca 180� around the long axis of the tri-snRNP part of

the B complex. Moreover, in the latter, the U4 Sm core is now

located at the interface between Brr2’s helicase cassettes,

such that Brr2’s NC is positioned between the U4 Sm core and

U4/U6 helix I, which are connected via the central single-

stranded region of U4 snRNA (Figures 2F, 2G, and S1). This re-

gion of U4 is required for U4/U6 duplex unwinding by Brr2

in vitro, indicating that it functions as a docking site for Brr2’s

NC (Mozaffari-Jovin et al., 2012). Consistent with this, the central

single-stranded region of U4 runs across the two RecA domains

of the NC, and RecA2 binds U4 nucleotides 69 to 73 downstream

of U4/U6 helix I and is thus positioned close to helix I (Figure 2G).

Thus in our B complex, Brr2 is bound to its RNA substrate and is

poised to unwind the U4/U6 duplex and initiate the spliceosome

activation process, but its helicase activity is still negatively regu-

lated (Figure S1F). Interestingly, Brr2 does not appear to contact

the double-stranded region of U4/U6 helix I (Figure 2G), which

would be required for its ultimate unwinding. As described

below, this contact is potentially prevented by the B-specific

protein FBP21.

Remodeling of the U4/U6 Di-snRNP and Prp6 during
B Complex Formation
Themajor domains of the U4/U6 proteins interacting with the U4/

U6 three-way junction are also located close to the B complex

neck (Figure 3). Snu13, which directly interacts with the U4

k-turn motif, is located between the U4 50SL and U4/U6

stem II, and also interacts with the C-terminal WD40 domain of

Prp4 (Figure 3B). The Prp31 Nop domain interacts with Snu13

and the U4 k-turn motif in a manner similar to that observed in
the co-crystal structure of Snu13, Prp31 and the U4 50SL (Liu

et al., 2007). The Prp31 coiled-coil domain, however, has rotated

ca 50� and is now closer to the Prp31 Nop domain in the B com-

plex, and thus adopts a more compact structure (Figure 3B, see

also below). The C-terminal part of Prp31 has an extended

conformation and runs between the phosphodiester backbone

of the U4 50SL and Dim1 (Figure 3B).

Prp3 interacts closely with various parts of the U4/U6 duplex.

Its C-terminal ferredoxin-like domain (FLD) binds to the 30 termi-

nal single-stranded region of U6 (Liu et al., 2015) and likely stabi-

lizes the neighboring U2/U6 helix II in bridge B1 (Figure 3C).

Three a helices (H1-H3), located N-terminal to Prp3’s FLD,

interact directly with U4/U6 helices I (H1 and H2) and II (H3) (Fig-

ure 3D). As both U4/U6 helices are subsequently unwound by

Brr2, Prp3 may contribute to Brr2 regulation at this stage. Based

on numerous protein-protein crosslinks, the N-terminal part of

Prp3 runs across the Prp4WD40 domain, and then passes along

bridge B1, where it crosslinks with several proteins of the U6

LSm core and finally contacts the U2 SF3A1 and SF3B1 proteins

in the head (Figure S5A). Thus, Prp3 may also play an important

role in stabilizing this major connection between U2 and the tri-

snRNP during early spliceosome assembly. Prp4 bridges several

U4/U6 proteins with each other. For example, its C-terminal

WD40 domain interacts with Snu13, Prp3’s FLD and Prp6, while

its N-terminal-most helical bundle (NHB) bridges cyclophilin H

(CypH) to a helix H1 of Prp3 (Figures 3B and 3D). Moreover,

the N-terminal region of Prp4 additionally interacts with U2

SF3A proteins and Brr2’s helicase domain, as indicated by mul-

tiple crosslinks (Figure S5B).

A comparison of the cryo-EM structures of the isolated tri-

snRNP and B complex reveals that in addition to Prp8 and

Brr2, several U4/U6 components and Prp6 also undergo signifi-

cant rearrangements upon/after tri-snRNP integration into the

spliceosome. For example, in the B complex, the U4 Sm and

U6 LSm core structures have undergone large-scale transloca-

tions (Figures 2E, 2F, 4A, and 4B). Moreover, the entire complex

of U4/U6 proteins, which includes Snu13, Prp4’s WD40, Prp31’s

Nop, and Prp3’s FLD domains, and the C-terminal TPR repeat

domain of Prp6, has rotated counter-clockwise by ca 20-30�

with respect to the Prp8 RT domain. Thus they, together with

the U4/U6 three-way junction, are shifted closer to the Prp8

RT/En domain in the B complex (Figure 4B). The Prp6 C-terminal

TPRs interact with Prp4, Snu13 and Prp3 in a very similar manner

in both complexes, but they additionally contact Prp31’s rear-

ranged coiled-coil domain only in B (Figure 3E, and see below).

After tri-snRNP integration into the spliceosome, a major rear-

rangement also occurs within the N-terminal-most TPR repeats

of Prp6, which are more extended in the B complex and whose

interaction with Prp8’s RT/En and RH domains has changed

substantially (Figures 4A and 4B). The rearranged Prp6-Prp8

interaction appears to be stabilized in the B complex by a-helical

regions of Snu66, which form a bridge stretching from Prp6’s

N-terminal TPRs to the Prp8 RT/En linker region, close to the

switch loop (Figure 4D). The remaining part of Snu66, which is

thought to be largely intrinsically unfolded, appears to be located

close to Brr2’s NC and CC, Prp8’s linker, En, RH, and Jab1

domains, and Smu1, as indicated by protein-protein crosslinks

(Tables S1 and S2).
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Figure 3. Location of U4/U6 Proteins and Their Interaction with the U4/U6 Three-Way Junction

(A) Location of the U4/U6 proteins in the B complex neck region.

(B) Fit of the indicated U4/U6 protein domains/regions and U4/U6 three-way junction into the 4.5 Å EM density map of the B complex.

(C) Location of U2/U6 helix II, Prp3’s FLD, and the U6 LSm domain in or close to the B1 bridge at the interface between the head and neck of complex B.

(D) A helical domain (NHB) of Prp4, located N-terminal of its WD40 domain, links CypH via Prp3 helix H1 to the U4/U6 three-way junction. This network is

connected via FBP21 to Brr2’s NC and the U6 ACAGA/50ss helix (see also Figure 5). Selected amino acids (black numbers) are indicated by asterisks.

(E) Fit of Prp6’s C-terminal TPR repeats into the 4.5 Å EM density of the B complex and their interactions with the major domains of U4/U6 proteins.

See also Figure S5 and Tables S1 and S2.
Location and Potential Functions of the B-Specific
Proteins
A number of B-specific proteins, whose domain organization is

shown in Figure 5A, could be located in the B complex EM den-

sity map (Figure 5B), providing first insights into their potential

functions. The B-specific protein Smu1 possesses an N-termi-

nal, ca 180-aa-long, structured helical region (NTR), that con-

tains LisH and CTLH domains, which is connected via a short

linker region to a C-terminal WD40 domain (Ulrich et al.,

2016a). In the B complex, Smu1’s C-terminal WD40 domain is

located at the interface between Brr2’s CC and the WD40

domain 2 of SF3B3. Moreover, based on crosslinks, we could

place Smu1’s NTR in a density element that bridges the WD40

domains of Smu1 and SF3B3 (Figure 5C). Thus, Smu1 and

SF3B3’s WD40 domains are the major constituents of the B2
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bridge, and Smu1 may help to stabilize the position of Brr2 after

its rearrangement. Smu1’s WD40 domain is positioned at the

interface of Brr2’s NC and CC (Figure 5D), and thus might influ-

ence the relative orientation of both helicase cassettes and

thereby potentially modulate the helicase activity of the NC (San-

tos et al., 2012). The strategically important position of Smu1 in

the B complex could explain why its mutation or deletion has

profound effects on pre-mRNA splicing (Papasaikas et al.,

2015; Spartz et al., 2004).

Smu1 forms a heterodimer with the B-specific RED protein,

stably binding a short region of the latter (i.e., aa 209–222) via

its NTR (Ulrich et al., 2016a). RED is largely intrinsically unfolded

and we could not locate its precise position in the B complex EM

density map. However, in our purified B complex, crosslinks

were detected between the Smu1 NTR and the short region of



Figure 4. U4/U6 snRNP and Prp6 Remodeling during B Complex

Formation

(A and B) Organization of the indicated U5 and U4/U6 protein domains, as well

as C-terminal TPR repeats of Prp6 in the human tri-snRNP (A) and the human

B complex (B). Both complexes are aligned relative to the Prp8 RT/En domain.

As they obscure the U4/U6 proteins, the LSm proteins were omitted from (B),

but instead are shown in the inset of (B). Inset in (A), Superposition of Prp6’s

TPR domain in the tri-snRNP (green) and B complex (red), aligned relative to

the Prp6 C-terminal TPR repeats.

(C) Superposition of the Brr2 helicase domain from the isolated human tri-

snRNP onto the B complex structure, aligned relative to the RT/En domain,

indicating a clash with the rearranged Prp6 TPR domain in the B complex in the

absence of Brr2 rearrangement. Superimposed regions of the tri-snRNP and

B complex are indicated by boxes in (A) and (B).

(D) N-terminal a helices of Snu66 connect the Prp6 N-terminal TPR repeats

with the Prp8 RT/En, RH, and NTD1 domains. SWL, switch loopwithin the Prp8

RT/En domain. Asterisks, selected amino acid positions of Snu66.

See also Tables S1 and S2.
RED that binds to it, and between the latter and Prp8’s RH

domain. Moreover, we observed numerous crosslinks between

the N-terminal part of RED and several U2 proteins in the

head, while its C-terminal region was crosslinked to the Prp8

RT/En domain and NTD1 (Figure S6A). Thus, like Smu1, RED

appears to play a role in bridging U2 with U5 proteins in the

B complex.

Several B-specific proteins contact the U6/50ss helix and may

aid in its repositioning within the spliceosome. The N-terminal

domain (NTD) of Prp38 interacts simultaneously with several

B complex proteins, and was crystallized in complex with short

helices of MFAP1 and Snu23 (Ulrich et al., 2016b). The Prp38

NTD is located close to the U6/50ss helix, and appears to interact

with the U6 ACAGA sequence (Figures 5B and 5E). The a helices

of Snu23 and MFAP1 that bind Prp38 fit into neighboring EM

densities, and the N-terminal Snu23 zinc finger (ZnF) also inter-

acts with the upper part of the extended U6 ACAGA/50ss helix

(Figures 5E and 5F). Prp38 is required to convert B into a Bact

complex (Schütze et al., 2016; Xie et al., 1998), but little is known

about the molecular mechanism whereby it contributes to the

activation process. A comparison of the position of the U6

ACAGA/50ss helix in B and Bact complexes indicates that it

must be repositioned during activation to ultimately juxtapose

the 50ss and U2/U6 catalytic center (Figure S3). As Prp38 and

Snu23 contact the U6 ACAGA/50ss helix, they may facilitate

the repositioning of the latter during activation. In addition, or

alternatively, they may help recruit proteins such as Cwc24 to

the 50ss during activation (Yan et al., 2016). MFAP1 appears to

play a role in connecting the head and main body of the B com-

plex, as indicated by protein crosslinks (Figure S6B).

Finally, in addition to Smu1, the B-specific protein FBP21 also

contacts Brr2 and thus potentially aids in maintaining Brr2 in an

inactive state in the B complex. The N-terminal region of FBP21

contains tandem WW domains (Huang et al., 2009), and is pre-

dicted to contain at its very N terminus a ZnF that appears to

be followed by a long a-helical element (Table S1). In the B com-

plex, FBP21’s N-terminal region indeed adopts a matrin-like ZnF

structure that binds across the minor groove of the U6 ACAGA/

50ss helix (Figure 5F). The adjacent a helix fits into a density

element that runs from the U6/50ss helix toward the RecA2

domain of Brr2’s NC and the CypH protein (Figures 3D and

5E). CypH interacts with Prp4, which in turn communicates via

Prp3 with U4/U6 helix I (Figure 3D). The position of FBP21’s

N-terminal a helix between Brr2’s NC (bound just upstream of

U4/U6 helix I) and CypH, which indirectly binds U4/U6 helix I

via Prp4 and then Prp3, suggests that it may act to maintain

U4/U6 helix I and its associated proteins at a sufficient distance

from Brr2’s NC (i.e., hold it at bay), thereby preventing Brr2 con-

tact with the double-stranded region of its substrate and poten-

tially maintaining it in an inactive state. Our crosslinking results

also suggest that the C-terminal region of FBP21 contacts

Brr2’s helicase domains and Prp4 (Figure S6C). Thus, a complex

interaction network involving FBP21, Brr2, and the U4/U6 snRNP

proteins potentially enables the tight regulation of Brr2 helicase

activity at this stage. Release of FBP21 during the B to Bact tran-

sition could play a key role in triggering Brr2 activity during spli-

ceosome activation. Consistent with this idea, FBP21 is the only

B-specific protein lost from spliceosomes that are blocked at an
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Figure 5. Organization of B-Specific Proteins in the Human B Complex

(A) Domain organization of the indicated human B-specific proteins. Domain boundaries are indicated. Protein regions for which high resolution structures are

available are indicated by PDB numbers. Structures derived from non-human species are marked with an asterisk.

(B) Overview of the location of major parts of various B-specific proteins.

(C) Location of the N-terminal region (NTR) and the C-terminal WD40 domain of Smu1 (in the unmasked density) at the interface between U2 SF3B3 and Brr2. The

short a helix of RED (aa 209–222) that binds Smu1’s NTR is shown.

(D) Smu1’s WD40 domain is located at the interface between Brr2’s NC and CC domains and contacts the WD40-2 domain of U2 SF3B3. WH, wing helix.

(E) Close up of the fit of the N-terminal helical domain of Prp38 and associated a helices of Snu23 and MFAP1, and the N-terminal a helix of FBP21, near the

extended U6 ACAGA/50ss helix. Black asterisks: amino acid positions of the indicated B-specific proteins.

(F) Interaction of the FBP21 N-terminal zinc finger (ZnF) with the U6 ACAGA/50ss helix and of Snu23’s ZnF with the extended region of the U6 ACAGA/50ss helix.
See also Figure S6 and Tables S1 and S2.
early stage of the B to Bact transition, but in which the U4/U6

duplex has been unwound (Sidarovich et al., 2017).

Tri-snRNP Rearrangements during Spliceosome
Assembly Likely Involve Coordinated Remodeling
Events
Comparison of the 3D structures of the B complex and human

U4/U6.U5 tri-snRNP reveals that most tri-snRNP proteins un-

dergo extensive repositioning and/or structural rearrangements

during B complex formation (Figure 6G). These rearrangements

likely occur in a highly coordinated and ordered manner, as the

interaction sites of several components in the tri-snRNP and

B complex are mutually exclusive. An intriguing question is

how these coordinated remodeling events are triggered. Initial

docking of the tri-snRNP to the A complex first generates a

37S pre-B complex. In the latter, U1 snRNA is still base paired

to the 50ss, and U2/U6 helix II has formed, but the tri-snRNP is

not yet stably bound (Boesler et al., 2016) (Figures 6G and S1).

Displacement of U1 from the 50ss and establishment of the U6

ACAGA/50ss interaction, which is mediated by the helicase

Prp28, leads to a substantial structural change that converts
708 Cell 170, 701–713, August 10, 2017
the 37S pre-B complex into a 50S B complex with stably associ-

ated tri-snRNP (Boesler et al., 2015, 2016). Thus many of the re-

arrangements in tri-snRNP proteins described here likely occur

during the pre-B to B transition, and formation of the U6

ACAGA/50ss helix likely plays a key role in tri-snRNP remodeling.

This suggests that Prp28 action may trigger or contribute to

tri-snRNP rearrangements, and would likely create new confor-

mational space and enable sampling of different RNP conforma-

tions within the spliceosome. The handover of U1 for U6 at the

50ss likely influences the movement of the RT/En domain toward

the Prp8 NTD1. In human tri-snRNPs, Prp28 is located between

Prp8’s RT/En and NTD1 (Figure 6A). The position of Prp28 in the

tri-snRNP, and both the partially closed conformation of

Prp8 and the formation/position of the U6 ACAGA/50ss helix in

the B complex, are mutually exclusive (Figures 6A and 6B).

Prp28-mediated rearrangements must thus be coordinated

with Prp28 displacement from the spliceosome. Interestingly,

displacement of Prp28 is likewise a prerequisite for subsequent

binding of the Prp38/Snu23/MFAP1 protein complex, whose

binding site close to the U6/50ss helix is also mutually exclusive

with that of Prp28 (Figures 5B, 6A, and 6B).



Figure 6. Coordinated Remodeling of Tri-snRNP Proteins and Displacement of Sad1 during B Complex Formation

(A and B) Overview of the location of various tri-snRNP proteins and snRNAs in the isolated human tri-snRNP (A) and B complex (B), aligned relative to Prp8 NTD1

and Snu114. Whereas Sad1 bridges Prp8, Brr2 (via Brr2’s PWI domain), and Prp31 in the tri-snRNP, it is missing in the B complex.

(C–F) Side (C and D) and top views (E and F) of the tri-snRNP and B complex, showing the remodeling of Prp31’s coiled-coil domain upon/after Sad1

displacement (C and E) and creation of new binding sites for Prp6’s C-terminal TPRs with the rearranged Prp31 domain in the B complex (D and F). In the tri-

snRNP (C and E), Prp31’s coiled-coil tip a-helices (light blue) bind to Sad1, whereas in the B complex (D and F) they interact with Prp8’s RT domain in a mutually

exclusive manner.

(G) Schematic overview of tri-snRNP rearrangements upon its integration into the spliceosome. Selected proteins and RNAs are shown schematically in the

human tri-snRNP (left panel), after initial docking of the tri-snRNP in the pre-B complex (middle panel) and after stable tri-snRNP integration in the pre-catalytic

B complex (right panel). Major protein domain movements occurring prior to/during B complex formation are indicated by black arrows in the middle panel.

See also Tables S1 and S2.
The Sad1 protein likely also plays a key role in triggering tri-

snRNP rearrangements. In the tri-snRNP (Figure 6A), Sad1 con-

tacts the Prp31 coiled-coil domain and the Prp8 NTD2 and RT

domains, as well as Snu114 and the Brr2 N-terminal PWI

domain, which in turn is associated with Brr2’s CC cassette

(Agafonov et al., 2016). This suggests that Sad1 not only plays

a role in stabilizing the interaction of the U4/U6 and U5 snRNPs,

but that it may also help to tether Brr2 in a pre-activation position,

i.e., away from the U4/U6 duplex. Strikingly, in the B complex

cryo-EM structure we cannot localize any density accommoda-
ting Sad1, consistent with its underrepresentation in our B com-

plex preparation. Thus Sad1 is clearly displaced from its original

position in the tri-snRNP, which would allow most of the rear-

rangements in tri-snRNP proteins observed upon B complex for-

mation. For example, in the B complex, the Prp31 coiled-coil

domain is rearranged and is now juxtaposed with Prp31’s Nop

domain, whereas the a helices at the coiled-coil tip now directly

interact with the Prp8 RT domain (Figures 6C and 6D). This cre-

ates new binding sites for Prp6’s C-terminal TPRs on Prp31,

which would then facilitate the observed shift of the U4/U6
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Figure 7. U4/U6.U5 Tri-snRNP Proteins Are Arranged in the

S. cerevisiae Tri-snRNP and Human B Complex in a Similar Manner

(A–C) Positions of various tri-snRNP proteins in the purified human B complex

(A), S. cerevisiae tri-snRNP (Nguyen et al., 2016) (B), and human tri-snRNP (C),

as revealed by cryo-EM. All complexes are aligned relative to Snu114 and Prp8

NTD1, whose structures are very similar in all of the cryo-EM models. Similar

results were obtained with the S. cerevisiae tri-snRNP cryo-EM structure from

Wan et al. (2016b). The organization of the tri-snRNP proteins is highly similar in

the yeast tri-snRNP and recently published yeast B complex (Plaschka

et al., 2017).

See also Figure S7 and Tables S1 and S2.
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protein complex with respect to the Prp8 RT domain (Figures 6E

and 6F). Moreover, Sad1 displacement and the major rearrange-

ments occurring within Prp6’s N-terminal most TPRs (Figure 4)

also disrupt interactions of these proteins with Brr2, which would

allow the large-scale movement of Brr2 to its RNA substrate.

Indeed, Prp6’s position in the B complex and the position of

Brr2’s helicase domain, as found in the tri-snRNP, would be

mutually exclusive in complex B (Figure 4C). As Sad1 is highly

abundant in the human pre-B complex (Boesler et al., 2016),

its displacement likely occurs during the pre-B to B transition,

which is consistent with the idea that most tri-snRNP rearrange-

ments occur after its initial docking with the A complex. These tri-

snRNP structural changes would thus appear to be only possible

within the context of the spliceosomewhere the interaction of U6

with the 50ss is first possible. Prp4 kinase, which is required for

human B complex formation, phosphorylates Prp6 and Prp31

(and possibly additional proteins) specifically during B complex

formation (Boesler et al., 2016; Schneider et al., 2010). Thus,

phosphorylation of Prp31 and Prp6 could also potentially play

an important role in tri-snRNP remodeling, by triggering confor-

mational changes (e.g., in the Prp31 coiled-coil domain) and/or

by stabilizing newly generated protein-protein and protein-RNA

interactions.

Differences in the Activation Pathways of Human and
S. cerevisiae Spliceosomes
A comparison of the cryo-EM structures of human and yeast

U4/U6.U5 tri-snRNPs surprisingly revealed extensive differ-

ences, foremost in the position of Brr2 relative to its substrate,

which already interacts with the U4/U6 duplex in the yeast tri-

snRNP (Agafonov et al., 2016; Nguyen et al., 2015, 2016; Wan

et al., 2016b). While our B complex structure shows that in hu-

mans the large-scale rearrangements that lead to loading of

Brr2 onto its RNA substrate occur first during B complex forma-

tion, cryo-EM structures of purified S. cerevisiae tri-snRNPs sug-

gest that these rearrangements already occur in isolated yeast

tri-snRNPs. This suggests that either there is a fundamental

difference in the structural organization of the yeast and human

tri-snRNP, which is unlikely given the high conservation of their

protein components, or that the human and yeast tri-snRNP

structures represent different conformational states. Intriguingly,

the structural organization of Prp8, Brr2, Prp6, and the U4/U6

proteins is highly similar in the yeast tri-snRNP and human

B complex (Figures 7 and S7). This suggests that yeast tri-

snRNPs analyzed by cryo-EM potentially could be derived

from endogenous B complexes and thus represent a spliceo-

some dissociation product. Consistent with this, one of the yeast

tri-snRNP preparations analyzed by cryo-EM was reported to

contain not only pre-mRNA but also U2 proteins (Wan et al.,

2016b). Furthermore, purified yeast tri-snRNPs appear to be

activated pre-maturely, as they dissociate in the presence of

ATP in a Brr2-dependent manner into U5, U4, and U6 snRNPs

(Nguyen et al., 2015, 2016; Wan et al., 2016b), while purified hu-

man tri-snRNPs and B complexes remain stable (Agafonov et al.,

2016) (Figure S1F).

Alternatively, in yeast the tri-snRNPmay readily be rearranged

prior to its docking with the spliceosomal A complex, and

thus not require additional protein or RNA contacts to trigger a



structural rearrangement. Consistent with this, Sad1 is no longer

present in the purified yeast tri-snRNP, which could potentially

shift the equilibrium between different conformational states

toward the B complex structural organization (Huang et al.,

2014). This would imply that the tri-snRNP rearrangement that

leads to the loading of Brr2 onto its U4/U6 RNA substrate is

more highly regulated in higher eukaryotes. Consistent with

this idea, Prp4 kinase, which is essential for B complex formation

in higher eukaryotes, is absent from S. cerevisiae.

Our results indicate that there are significant differences be-

tween the activation pathways of human and yeast spliceo-

somes. The presence of a number of additional proteins in the

human B complex, which have no counterparts in S. cerevisiae

and appear to function first during activation, is a first indication

that the transformation of B into an activated Bact complex is

likely to be more complex in higher eukaryotes. Our cryo-EM

structure of the human B complex further reveals that at least

two of these proteins, namely, FBP21 and Smu1, contact Brr2

and potentially play important roles in regulating its helicase

activity. Thus, the initial steps toward the formation of an

activated spliceosome, namely, triggering U4/U6 duplex un-

winding, appear to be different in the S. cerevisiae versus human

spliceosome.

After submitting this paper, a cryo-EM structure of the

S. cerevisiae spliceosomal B complex was reported (Plaschka

et al., 2017). A comparison of the molecular architecture of the

human and yeast B complexes, reveals that the structure and

organization of most proteins common to the yeast and human

B complexes are conserved. The location of most human B com-

plex proteins in our model that have homologs in S. cerevisiae,

for which only short pieces of structural information were avail-

able, e.g., MFAP1 (Spp381 in S. cerevisiae) or whose position

was supported mainly by protein-protein crosslinking, is consis-

tent with the position of their homologs in the yeast B complex

structure. A notable difference between the yeast and human

B complex structures is the lack of a U6 ACAGA/50ss interaction
in the yeast B complex despite that U1 snRNP is largely absent,

which may indicate that the yeast complex is stalled at an earlier

stage, but after release of U1.

Conclusions
Our cryo-EM structure of the human B complex provides impor-

tant insights into the organization of the spliceosome prior to its

activation. The B complex possesses a U2-containing head

domain attached via three main bridges (B1-B3) to the main

body where the U4/U6.U6 tri-snRNP and B-specific proteins

are located. B1, which contains U2/U6 helix II, is likely involved

in the initial docking of the tri-snRNP to the spliceosomal A com-

plex. B2 may be important for stabilizing the association of the

tri-snRNPwithin the B complex, whereas B3 allows communica-

tion between the U2/BS helix in the head and the extended U6

ACAGA/50ss helix in the main body of the B complex. One of

the most striking observations in this work is how tri-snRNP inte-

gration into the B complex leads to extensive rearrangements

and/or repositioning of the majority of its proteins. These rear-

rangements lead, among others, to a partially closed conforma-

tion of Prp8 such that its RT/En andNTD1 domains, together with

Dim1, form a protein pocket that binds the 50ss. This is likely fol-
lowed by the movement of the U4/U6 snRNP and Brr2 helicase,

such that the latter now contacts its U4/U6 substrate and is

poised for the subsequent spliceosome activation step. Thus,

these rearrangements generate the functional centers required

to prime the B complex for the subsequent activation step. In

addition, they create binding sites for the B-specific proteins,

ensuring that they are first recruited at this specific stage of spli-

ceosome assembly. Our structure also reveals how several of

the human B-specific proteins are organized in the B complex,

and suggests they are involved in negatively regulating Brr2,

positioning the U6/50ss helix and/or stabilizing the B complex

structure. Finally, our work solidifies the intriguing idea that there

is a significant difference between the early events of the activa-

tion pathways of human and yeast spliceosome. Consistent with

the large exchange of spliceosomal proteins and major rear-

rangements in the RNA network that occur during the B to Bact

transition, the general architecture of the B and Bact complex

are dramatically different (Fabrizio et al., 2009). The exchange

of more than 40 proteins in the human system will likely occur

in multiple steps, with multiple intermediate complexes formed

during the transformation of B to an activated Bact complex, hin-

dering conclusions about the direction or trajectory of most pro-

tein rearrangements, as well as about the sequence of remodel-

ing events at the atomic level, during the B to Bact transition.

Future elucidation of the molecular architecture of the human

Bact complex, as well as complexes at intermediate stages of

activation, will thus greatly aid in elucidating the RNP remodeling

events during spliceosome activation in higher eukaryotes.
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EXPERIMENTAL MODEL AND SUBJECT DETAILS

For in vitro splicing and purification of spliceosomes, nuclear extract from HeLa S3 cells was used. HeLa cells were grown in DMEM/

F12 (1:1) medium supplemented with 5% NCS serum in a 30l fermenter (Applikon Biotek) at a density of 6.5 3 106 cells/ml and har-

vested using a Sorvall BIOS 16 centrifuge.

MBP-MS2 fusion protein was expressed in the Escherichia coli strain Rosetta 2 (DE3) (Novagen) which was grown in 2YT medium

at 37�C.

METHOD DETAILS

In vitro splicing
Uniformly [32P]-labeled, m7G(50)ppp(50)G-capped MINX pre-mRNA was synthesized in vitro by T7 runoff transcription. HeLa S3 cells

were obtained from GBF, Braunschweig (currently Helmholtz Zentrum für Infektionsforschung, Braunschweig) and tested negative

for mycoplasma.

To prepare splicing active nuclear extracts, HeLa cells were grown to a density of 6.53 106 cells/ml and harvested by centrifuging

for 10 min at 2000 rpm in a 8 3 2000 mL BIOS rotor (Thermo Scientific). Cells were washed twice with ice cold PBS (pH 7.4) and

resuspended in 1.25 volumes of MC buffer [10 mM HEPES-KOH, pH 7.6, 10 mM KOAc, 0.5 mM Mg(OAc)2, 0.5 mM DTT] supple-

mented with 2 protease inhibitor cocktail tablets (Roche) per 50mL of the buffer. They were then incubated for 5 min on ice and lysed

with 18 strokes of a Dounce homogenizer at 4�C. Nuclei were pelleted for 5 min at 10000 rpm in a F14-14x50cy rotor (Thermo

Scientific). After removing the supernatant, 1.3 volumes of Roeder C buffer [25% (v/v) glycerol, 20 mM HEPES-KOH, pH 7.6,

0.2 mM EDTA pH 8.0, 420 mM NaCl] supplemented with 0.5 mM DTT and 0.5 mM PMSF were added per gram of nuclei. The latter

were then lysedwith 20 strokes of a Dounce homogenizer. Themixture was stirred slowly for 40min at 4�C, followed by centrifugation

for 30 min at 12300 rpm in a F14-14x50 rotor (Thermo Scientific). The supernatant was recovered and was immediately used for

B complex assembly as described below without dialysis or freezing.

To isolate B complexes, splicing was performed with 5 nM of 32P-labeled pre-mRNA and 20% (v/v) HeLa nuclear extract, in buffer

containing 0.3 mMMgCl2, 0.2 mM EDTA, 50 mMNaCl, 20 mMHEPES-KOH pH 7.9, 2 mM ATP and 20 mM creatine phosphate, and

was incubated at 30�C for 2 hr.

MS2 affinity selection of splicing complexes
Spliceosomal complexes were isolated by MS2 affinity selection. MINX pre-mRNA containing three MS2 aptamers at its 30 end RNA

was incubated with a tenfold molar excess of MBP-MS2 fusion protein and then added to a splicing reaction. After incubating at

30�C for 2 h, centrifuging to remove aggregates, and adding 100 mM NaCl, the reaction was loaded onto a MBP Trap HP column

(GE Healthcare). The column was washed with G-150 buffer (20 mM HEPES-KOH pH 7.9, 1.5 mM MgCl2, 150 mM NaCl) and com-

plexes were eluted with G-150 buffer containing 1 mM maltose. Eluted complexes were loaded onto a 36 ml linear 5%–20% (w/v)

sucrose gradient containing G-150 buffer, centrifuged at 25,000 rpm for 10 h at 4�C in a Surespin 630 (Thermo Scientific) rotor,

and gradient fractions were harvested from the bottom. The distribution of 32P-labeled MINX pre-mRNA across the gradient was
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determined by Cherenkov counting. Fractions were analyzed by denaturing 4%–12%NuPAGE (Life Technologies) followed by auto-

radiography and SYBR Gold staining to detect RNA. Peak fractions containing B complexes were pooled, concentrated by centri-

fugation with an Amicon 50 kD cut-off unit, diluted to decrease the sucrose concentration and reloaded on the same gradients with

glutaraldehyde as fixative (Kastner et al., 2008). The GraFix gradient contained 0%–0.15% of glutaraldehyde and fractions were

quenched with 100 mM aspartate immediately after harvesting. For biochemical sample validation, the same procedure was per-

formed but without fixation in the second gradient. The RNA and protein compositions of purified complexes were determined by

denaturing PAGE and two-dimensional (2D) gel electrophoresis.

2D gel electrophoresis and mass spectrometry
2D gel electrophoresis of affinity-purified spliceosomal complexes was performed as described previously (Agafonov et al., 2011)

using a 7.5% acrylamide mono gel in the second dimension for analysis of proteins larger than 50 kDa, or 15% acrylamide for pro-

teins smaller than 50 kDa. For mass spectrometry, Coomassie-stained protein-spots were cut out of the 1D or 2D gels, and proteins

were digested in-gel with trypsin and extracted. The extracted peptides were analyzed in a liquid-chromatography coupled electro-

spray ionization mass spectrometer (LTQ Orbitrap XL) under standard conditions. Proteins were identified by searching fragment

spectra against the NCBI non-redundant (nr) database using Mascot as a search engine.

ATP sensitivity of purified B complexes
Affinity-purified B complexes formed on 32P-labeled MINX-MS2 pre-mRNA were incubated with or without 2mM ATP at 30�C for

30 min. The integrity of the complexes was checked by sedimentation in a 5%–20% (w/v) sucrose gradient containing G-150 buffer

followed by Bradford assay of gradient fractions to determine the peak. Aliquots of peak fractions were separated by denaturing

4%–12% NuPAGE (Life Technologies) and RNA was visualized by SYBR Gold staining.

Chase of purified B complexes with nuclear extract
Affinity-purified B complexes formed on 32P-labeled MINX-MS2 pre-mRNA were incubated with splicing buffer alone (20 mM

HEPES-KOH pH 7.9, 50 mM NaCl, 3 mMMgCl2, 2 mM ATP, 20 mM creatine phosphate) or additionally in the presence of 20% un-

treated HeLa nuclear extract or extract pre-treated with micrococcal nuclease (NEB) as described previously (Bertram et al., 2017).

The splicing reaction was initiated by addition of 32P-labeled MINX-MS2 pre-mRNA or purified B complexes, and then incubated at

30�C for 0–90 min. Time point aliquots were analyzed by SDS–PAGE, and the 32P-labeled RNA was visualized with a Typhoon phos-

phorimager (GE Healthcare).

Crosslinking of the B complex and crosslink identification
After gradient centrifugation, MS2 affinity-purified spliceosomal complexes were crosslinked with 150 mM BS3 for 30 min at 20�C
and further purified by a second gradient centrifugation step. Approximately 25 pmol of B complexes were pelleted by ultracentri-

fugation and analyzed essentially as described before (Bertram et al., 2017). After digestion with trypsin, peptides were reverse-

phase extracted and fractionated on a Superdex Peptide PC3.2/30 column (GE Healthcare). 50 mL fractions corresponding to an

elution volume of 1.2–1.8 ml were analyzed on Thermo Scientific Q Exactive HF, Orbitrap Fusion Tribrid or Orbitrap Fusion Lumos

Tribrid mass spectrometers. Protein–protein crosslinks were identified by pLink 1.23 search engine (http://pfind.ict.ac.cn/

software/pLink) and filtered at FDR 1% as recommended by the developer (Yang et al., 2012). For simplicity, the crosslink score

is reported as a negative value of the common logarithm of the original pLink score, i.e., Score = –log10(pLink Score). For model build-

ing, a maximum distance of 30 Å between the Ca atoms of the crosslinked lysines was allowed.

EM and image processing
A negative-stain starting model was built and refined essentially as described previously (Bertram et al., 2017; Singer et al., 2010).

8,168 cryo-images were recorded at �193�C in a Titan Krios electron microscope (FEI Company, the Netherlands) on a Falcon III

direct electron detector at 120,700x magnification resulting in a pixel size of 1.16 Å at the specimen level. 20 frames were recorded

for each micrograph with an average dose of 1.5 e� per frame per Å2. Motion correction and spatial frequency weighted frame sum-

mation was achieved using the MotionCor2 software (Zheng et al., 2017) (http://www.msg.ucsf.edu/em/software/index.html).

Summed micrograph images were then evaluated based on real space appearance and CTF parameters and only ca 6,000 with

good contrast and isotropic Thon rings were used for particle picking and extraction. Using the particle picking software Gautomatch

(http://www.mrc-lmb.cam.ac.uk/kzhang/) and 40� projections of the negative stain model filtered to 40 Å as a reference, we ex-

tracted �550,000 particle images from the pre-sorted, dose-weighted cryo-micrographs and applied several particle sorting steps

at the 2D and 3D level. 2D multivariate statistics and classification were first applied to the non-aligned particle images and subse-

quently to the aligned particles. In each round, only particles comprising better resolved classes were included in further processing.

The remaining�407,000 particles were then re-extracted using RELION 2.0 and coarsed 2x in the process. 3D classification of these

particles in RELION, featuring ten classes, resulted in �49,000 particles in the overall best defined class. Subsequent rounds of 3D

refinement followed by 2D classifications, where particles from the most poorly defined class-sums in RELION were discarded,

yielded a 2x coarsed model at 9.9 Å. For the highest resolution structure, the �44,600 remaining particles were re-extracted at their

native pixel size using coordinates refined by previous rounds of classification and consequently utilized for an additional round of
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refinement yielding a 9.3 Å resolution unmasked structure. A soft mask (soft mask 1, Figure S2) that included the density harboring

Brr2 helicase and the U4 Sm core, with a cut-off of 7 voxel was then used for the refinement and for the determination of resolution.

Amapwith a resolution of 5.4 Å as determined by Fourier shell correlation calculated from two independent datasets with a threshold

of 0.143, was obtained. A second soft mask, that excluded the more flexible density region of Brr2 helicase and the U4 Sm core (soft

mask 2, Figure S2) was applied during refinement in a similar way as described above and yielded an additional map of this area with

a resolution of 4.5 Å as determined by Fourier shell correlation calculated from two independent datasets with a threshold of 0.143.

A local resolution plot revealed that there are indeed areas of higher resolution at the RNP core of the B complex that approach 3.5 Å.

Some peripheral regions have somewhat lower resolution (Figures 1 and S2). To obtain themost complete B complex structure at the

overall highest possible resolution, sorting schemes were adjusted accordingly. Using a starting model that did not include the head

of the B complex during 3D classification, the�407,000 2x coarsed particles (see above) were split into six equally sized groups and

3D classified accordingly, with three classes each. Particles from all classes yielding a (partially) defined structure, regardless of the

appearance of the head, were pooled and split again into two subsets of�120,000 particles each. Both particle sets were then again

3D classified into 6 classes each and inspected visually. Particles from the two best defined classes were then pooled and 3D refined

without masking in RELION, yielding a model revealing the best achievable head definition at 9.9 Å resolution according to the FSC

0.143 criterion (which we refer to as the unmasked EM density map).

Model fitting and building
Available X-ray or homology models of proteins were fit into the EM density using Chimera (Pettersen et al., 2004). Individual models

of substructures (e.g., domains or structural motifs) were further fitted as rigid bodies using Coot (Emsley and Cowtan, 2004). The

models were adjusted manually to fit into the EM density after visual inspection. Disordered regions were removed and regions

that were reorganized or were not present in the initial models (e.g., loops and secondary structure elements) were built using

Coot. Homology models of proteins were either obtained using the SWISS-MODEL suite (Guex and Peitsch, 1997), or were directly

adapted from the SpliProt3D database (Korneta et al., 2012). Details of the processing of protein models incorporated into the

B structure are described in Table S1. An initial model of the human U5 snRNA was obtained from the C* complex (PDB: 5MQF, Ber-

tram et al., 2017) and fitted into the 4.5 Å EM density using Coot. MINX pre-mRNA intron bases A56 and G58 could subsequently be

modeled as base-pairing with U5 loop 1 bases U41 and U43. This then allowed the placement of all other modeled pre-mRNA bases

by tracing in the EM density. U4 snRNA A1-C16 were initially modeled as an idealized double helix base paired with U6 snRNA

G59-U74 (helix II) and subsequently refined in Coot. U4 snRNA nucleotides A20-U52 were modeled in a similar manner, based on

its crystal structure (PDB: 2OZB, Liu et al., 2007). Missing U4 bases up to U62 were then modeled in Coot by tracing the EM density.

The remaining U4 snRNAbases up to A68weremodeled from its 30 terminal helix (whichwasmodeled as an idealized helix) by tracing

their path in the EM density. U6 snRNA bases preceding U4/U6 stem II and comprising the helical ACAGA and extended ACAGA box

elements, weremodeled tracing their path in the EMdensity using Coot beginning at A30. The U6 50 terminal loop and adjacent bases

were adapted from the human C* reference structure (PDB: 5MQF, Bertram et al., 2017). Once the entire coordinate model was built,

all proteins were truncated to poly-alanine and a global minimization real space refinement was conducted against the 4.5 Å or 5.4 Å

cryo-EM density, respectively, using the real space refine program from the PHENIX suite (Adams et al., 2010) (https://www.

phenix-online.org/documentation/reference/real_space_refine.html). The RNA model was validated using the MolProbity server

(Davis et al., 2007) and exhibited an all atom clash score of less than 12 and no bad bond-lengths or -angles. The scores for individual

RNA nucleotides shown in the final B complex model are provided in a separate HTML file. Final visualization was performed with

Chimera and PyMOL (http://www.pymol.org).

DATA AND SOFTWARE AVAILABILITY

The cryo-EM maps have been deposited in the Electron Microscopy Data Bank with accession codes EMDB: 3766 (4.5 Å map),

EMDB: 3767 (5.4 Å map), and EMDB: 3769 (unmasked 9.9 Å map). A sharpened version of the unmasked map is deposited under

EMDB: 3768. The atomic model has been deposited in the Protein Data Bank under accession code PDB: 5O9Z.
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Supplemental Figures

Figure S1. Compositional and Functional Characterization of Affinity-Purified Human B Complexes, Related to Figure 1

(A) Spliceosome assembly pathway, starting with complex A.

(B) RNA–RNA rearrangements occurring during spliceosome activation and catalysis of splicing.

(C) Schematic representation of the secondary structure of RNA in the spliceosomal B complex. The complete secondary structure of the U4/U6 duplex is shown.

Only selected regions of the pre-mRNA, U2 and U5 snRNAs are shown.

(D) Identification of abundant B complex proteins by 2D gel electrophoresis followed by mass spectrometry. Upper and lower panel: proteins > 30 kDa

or < 30 kDa, respectively.

(E) Summary of proteins in purified, human B complexes. Proteins, or domains thereof, that were modeled into the B complex EM density map are indicated by a

bullet point.

(F) Purified B complexes are stable in the presence of ATP. Affinity-purified B complexes formed on 32P-labeled MINX-MS2 pre-mRNA were incubated with (red

line) or without 2 mM ATP (black line) at 30�C for 30 min and fractionated by sedimentation on a 5%–20% (w/v) sucrose gradient. RNA in peak fraction #13 was

separated by denaturing 4%–12% NuPAGE and visualized by SYBR Gold staining. B complexes incubated with ATP not only exhibit the same sedimentation

behavior as the control B complexes, but also the same RNA composition, indicating that Brr2 helicase is negatively regulated in the purified B complexes and

does not displace U4 from U6 snRNA in the presence of ATP.

(G) Chase of purified B complexes with nuclear extract. Affinity-purified B complexes formed on 32P-labeled MINX-MS2 pre-mRNA were incubated with

untreated HeLa nuclear extract (lanes 1-4) or extract pre-treated with micrococcal nuclease (MN) (lanes 5-8), or with splicing buffer alone (lanes 9-12). The pre-

mRNA was efficiently chased into mRNA in the presence of both types of nuclear extract, but not buffer alone, indicating that our purified B complexes are

functional and not dead-end complexes. As a control, 32P-labeled MINX-MS2 pre-mRNA was incubated in the presence of extract pre-treated with MN (lanes

13-15). The pre-mRNA was not spliced with nuclear extract pre-treated with MN, confirming that the vast majority of snRNAs in the MN treated nuclear extract

were destroyed. All 2D analyses and in vitro splicing experiments were performed at least twice in two independent experiments.

(H) Network of crosslinks between U2 SF3A1 and proteins in the head and the central part of the B complex body. Overview of the positions of selected proteins

and RNA in the B complex EM density map (shown is the front view of the B complex; see Figure 1A, left panel), with a schematic diagram showing intermolecular

crosslinks between U2 SF3A1 and other indicated proteins, and the likely path of SF3A1. Numbers indicate the positions of crosslinked lysine residues (con-

nected by black lines) in each protein. Numbers in ovals with black borders indicate the residues in the modeled regions of the proteins, whereas those in ovals

without borders are residues within non-modeled regions. The latter are arbitrarily placed close (less than 30 Å) to their crosslinking partners observed in our

model. The ovals share the same color as that of the crosslinked protein’s name. The crosslinking pattern suggests a path for U2 SF3A1 from the head region

along the central axis of the main body close to its foot region, via bridge B3.



Figure S2. Cryo-EM and Image Processing of the Human B Complex, Related to Figure 1

(A) Typical cryo-EM raw image of H. sapiens B spliceosomes recorded with a Titan Krios (FEI Company) electron microscope at a nominal magnification of

120,700x with a Falcon III direct electron detector resulting in a pixel size of 1.16 Å.

(B) Several representative class averages showing different views of the B complex after reference free 2D classification.

(C) Euler angle distribution of all particle images that contributed to the final high resolution 3Dmap. The coordinates describe the phi and theta angles. The color

and size of the dots reflect the number of particles at any given Euler angle.

(D) Computational sorting scheme. Imaged micrographs were first evaluated according to their real space appearance and the Thon ring quality of local power

spectra. Roughly 550,000 particle images were then selected from the remaining micrographs. In a second sorting step, particle images were again discarded

based on the quality of Thon rings in classified, local power spectra. After evaluations in Fourier space, particles were subsequently excluded according to

multiple rounds of 2D classifications. The remaining ca 407,000 particles were then coarsed 2x to undergo further classification in RELION 2.0. A 3D classification

featuring 10 classes was then performed and 48,704 particles were extracted from the dataset. In subsequent rounds of RELION 2D and 3D refinement, only

those particles comprising well resolved classes were selected from the dataset, resulting in a 3D volume reconstructed from 44,629 particles at 9.9 Å. To achieve

a reconstruction at maximum resolution, only those particles contributing to this final 3Dmodel were re-extracted from their micrographs at the native pixel size of

1.16 Å, using coordinates refined by previous rounds of classification. A further round of 3D refinement in RELION revealed a final, unmasked structure with 9.3 Å

overall resolution. To improve details in the more stable areas of the complex, two soft masks (1 & 2) were applied separately, each during one subsequent round

of 3D refinement, yielding a final model at 4.5 Å resolution according to the FSC 0.143 criterion. To find the overall best defined structure of the entire complex

(including its head region), a modified sorting and classification scheme was applied. Using the 2x coarsed, pre-processed 407,000 single particle images and a

3D starting model lacking the head, the particle dataset was split into 6 equally sized groups and 3D classified into three classes each in RELION. After pooling all

particles from the best defined classes, the particle dataset was split again into two equally sized datasets. Subsequent 3D classification of each individual

particle dataset, using six classes each, followed by 3D refinement finally yielded the overall best defined structure at 9.9 Å.

(E) Local resolution plot of the complex refined with soft mask 1 reveals a resolution distribution from approximately 3.5 to 10 Å with some less well-defined areas

at the periphery of the complex. Higher resolution regions (in blue, up to 3.5 Å resolution) were obtained for the centrally-located core of the spliceosome.

(F) Fourier-shell correlation function of two independently refined half datasets calculated during the 3D Refinement or PostProcessing procedure in RELION

indicates a global resolution of 9.9 Å for the unmasked B complex. The same function calculated for the volumes refined with soft mask 1 and 2 reveals a

resolution of 5.4 Å and 4.5 Å, respectively.



Figure S3. Arrangements of U6 snRNA and the U6 ACAGA/50ss Helix in Various Spliceosomal Complexes, Related to Figures 1 and 2

(A) Substantial differences between the conformations of the first two nucleotides of the 50ss and the positions of the U6 ACAGA/50ss helices in the human

B complex (upper panel) and the yeast Bact complex (lower panel).

(B–D) An extended U6 ACAGA/50ss helix is present in the human B (B) and C* (C) complexes, but not in the yeast Bact complex (D). Complexes in (B) and (D) are

aligned relative to Snu114 and Prp8’s NTD1. In panel C, the extended U6 ACAGA/50ss helix from the human B complex was fit into the corresponding density of

the C* cryo-EM map. Panels B and D also show that the 50 stem-loop of U6 snRNA adopts already in the B complex a position very similar to its position at later

functional stages of the spliceosome.



Figure S4. Differential Arrangements of Selected U5 and U4/U6 Proteins in the Human Tri-snRNP, B and C* Complex, Related to Figure 2

(A) Location of major U5 proteins in the isolated human tri-snRNP and the human B complex. While the U5 protein Snu114 and Prp8’s NTD1 domain are

structurally organized in a very similar manner in the tri-snRNP (left) and B complex (right), the helicase domain of Brr2 is located at radically different positions and

is found at opposite ends of Prp8’s RT/En domain in the two complexes. The domain organization of human Prp8 and Brr2 is shown at the bottom of panel A.

Amino acids at the domain boundaries are indicated by numbers.

(B) Prp8 adopts significantly different conformations in the human tri-snRNP, B andC* complexes. (Left panel) Open conformation of Prp8 in the humanU4/U6.U5

tri-snRNP, where the En end of the elongated RT/En domain is well-separated from the upper region of the NTD1 domain (see also Agafonov et al., 2016). (Middle

panel) Partially closed conformation of Prp8 in the human B complex. To achieve the B complex conformation, the RT/En domain must move toward the NTD1

domain, such that the En domain just touches the upper region of the NTD1 domain. (Right panel) Closed conformation of Prp8 in the human, catalytically-active

C* complex. To achieve this conformation, the RT/En domain must move even closer to the NTD1 domain, generating a large interface between the Prp8 NTD1

and RT/En domains, which now clamps the 50 exon instead of the 50ss. In the closed conformation of Prp8, the pocket that accommodates the rearranged

catalytic U2/U6 RNA network is generated (see also Bertram et al., 2017). All complexes are aligned relative to Snu114 and the Prp8 NTD1 domain. Prp8 also

adopts a very similar closed conformation in the S. cerevisiae Bact, C, and C* complexes, as well as in the S. pombe intron-lariat spliceosome (Fica et al., 2017;

Galej et al., 2016; Hang et al., 2015; Rauhut et al., 2016; Wan et al., 2016a; Yan et al., 2016, 2017).



Figure S5. Crosslinks of Prp3 and Prp4 with Other Proteins in the Human B Complex, Related to Figure 3

(A and B) Overview of the position of selected proteins and RNA in the B complex EM density map (shown is the front view of the B complex in both panels;

see Figure 1A, left panel), with a schematic diagram showing intermolecular crosslinks between Prp3 (A) or Prp4 (B) and other proteins, as indicated. The likely

paths of both proteins in the B complex are indicated by a thick line. Numbers indicate the positions of crosslinked lysine residues (connected by black lines)

in each protein. Numbers in ovals with black borders indicate the residues in the modeled regions of the proteins, whereas those in ovals without borders are

residues within non-modeled regions. The latter are arbitrarily placed close (less than 30 Å) to their crosslinking partners observed in our model. The ovals

share the same color as that of the crosslinked protein’s name. Black numbers with asterisks (*) in (A) represent residues of Prp3 a helices that are modeled in

the high resolution B complex structure.



Figure S6. Crosslinks of RED, MFAP1, and FBP21 with Other Proteins in the Human B Complex, Related to Figure 5

(A–C) Overview of the position of selected proteins and RNA in the B complex EM density map, with a schematic diagram showing intermolecular crosslinks

between RED (panel A), MFAP1 (panel B), FBP21 (panel C) and other indicated proteins, and the likely paths of RED,MFAP1 and FBP21 (thick lines), respectively,

in the B complex. The back view of the B complex is shown in panels A and B (see Figure 1A, right panel), whereas the front view is shown in panel C (see Figure 1,

left panel). Numbers indicate the positions of crosslinked lysine residues (connected by black lines) in each protein. Numbers in ovals with black borders indicate

the residues in the modeled regions of the proteins, whereas those in ovals without borders are residues within non-modeled regions. The latter are arbitrarily

placed close (less than 30 Å) to their crosslinking partners observed in our model. The ovals share the same color as that of the crosslinked protein’s name.



Figure S7. Comparison of the Molecular Architecture of the S. cerevisiae U4/U6.U5 Tri-snRNP and Human B Complex, Related to Figure 7

Overview of the structure and organization of proteins in the purified S. cerevisiae tri-snRNP as reported by Wan et al. (2016b) (left) or Nguyen et al. (2016) (right),

and in the human spliceosomal B complex (middle) as determined by cryo-EM. All complexes are aligned relative to Snu114 and the Prp8 NTD1 domain. The

coloring of proteins (labeled in themiddle panel) is conserved in all three panels. The structural organization of Prp8, Brr2, Prp6 and the U4/U6 proteins in the yeast

tri-snRNP is highly similar to their organization in the human B complex, consistent with the idea that the purified yeast tri-snRNPs are either activated at an early

stage, i.e., before they join the spliceosome to form the B complex, or that they might potentially be derived by dissociation of spliceosomal B complexes. In

addition, unlike human tri-snRNPs, purified yeast tri-snRNPs contain Prp38 and Snu23, but lack Prp28. Interestingly, one of the cryo-EM structures of a yeast tri-

snRNP exhibits density elements, into which the yeast Prp38 NTD in complex with a helices of Snu23 and Spp381 (the yeast likely homolog of MFAP1) would fit

nicely. While this density was tentatively assigned to helical regions of yeast Snu66 by Nguyen et al. (2016), they more likely contain the yeast Prp38 complex, as

they are located at the equivalent positon as the hPrp38 complex in the human B complex and can be even superimposed. Indeed, in the recently published yeast

B complex structure (Plaschka et al., 2017), this density was shown to comprise the yeast Prp38/Snu23/Spp381 protein complex.
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4 Discussion	
The	spliceosome-dependent	splicing	of	pre-mRNA	is	a	highly	conserved	process	of	exceptional	
relevance	 to	 eukaryotic	 life.	 An	 understanding	 of	 the	 mechanistic	 details	 that	 underlie	 the	
procedure,	 in	 particularly	 regarding	 the	 human	 system,	 is	 therefore	 of	 critical	 importance.	
Facilitated	 by	 an	 exceptionally	 dynamic	 macromolecular	 machine,	 splicing	 is	 achieved	 in	 a	
stepwise	manner	that	involves	a	wealth	of	structurally	and	compositionally	diverse	spliceosome	
complexes	during	different	stages	of	the	catalytic	cycle.	The	mechanism	of	catalysis	itself,	as	well	
as	the	molecular	architecture	specifically	of	the	human	spliceosome,	however,	remained	poorly	
understood	and	elusive	for	decades	following	the	discovery	of	the	spliceosome.	As	the	structure	
of	 any	 macromolecular	 machine	 is	 tightly	 coupled	 to	 its	 function,	 high-resolution	 models	 of	
individual	 spliceosome	 assemblies	 (snapshots)	 that	 participate	 in	 the	 splicing	 cycle	 are	 thus	
likely	to	contribute	towards	a	better	understanding	of	the	mechanistic	details	and	regulation	of	
pre-mRNA	splicing.	

This	 study	 presents	 the	 first	 high-resolution	 structures	 of	 the	 human	 spliceosome	 at	 the	 pre-
catalytic	 and	 catalytically	 activated	 stage	 of	 the	 splicing	 cycle.	 Utilizing	 cryo-EM	 as	 a	 tool	 for	
molecular	imaging,	3D	electron	density	maps	of	the	human	B	and	C*	complexes	were	solved	and	
refined	 to	 overall	 resolutions	 of	 4.5	Å	 and	 5.9	 Å,	 respectively.	 In	 combination	 with	 mass	
spectrometry-coupled	 crosslinking	 experiments,	 the	 EM	 densities	 enabled	 an	 unambiguous	
modelling	of	the	most	significant	protein	and	snRNA	factors	involved	in	spliceosome	assembly	
and	catalysis.	Compared	to	the	3D	models	of	the	corresponding	complexes	in	yeast	(Fica	et	al.,	
2017;	 Plaschka	 et	 al.,	 2017;	 Yan	 et	 al.,	 2017),	 the	 human	 spliceosome,	 particularly	 in	 its	 pre-
catalytic	state,	reveals	possible	differences	in	regulation	and	assembly	between	both	species.	

Utilizing	the	multitude	of	molecular	spliceosome	architectures	that	have	been	recently	unveiled	
(see	text	below),	it	has	furthermore	become	possible	to	reclassify	or	validate	the	interpretation	
of	 many	 biochemical	 studies	 of	 the	 past.	 Due	 to	 the	 dynamic	 nature	 of	 the	 macromolecular	
machine,	 numerous	 important	 findings	 that	 were	 difficult	 to	 interpret	 without	 the	 structural	
knowledge	of	 today	 can	now	be	 reconciled.	The	 combination	of	 biochemical	 characterisations	
and	 structural	 relationships	 is	 thus	 a	 particularly	 powerful	 approach	 in	 interpreting	 either	
results,	as	elucidated	in	the	following	sections.			

4.1 The	Pre-catalytic	human	spliceosome		
The	structure	of	the	human	B	complex	presented	in	this	work	(Bertram	et	al.,	2017a)	allows	for	
an	 in-depth	 functional	 analysis	 of	 a	 pre-catalytic	 human	 spliceosome	 for	 the	 first	 time.	 Even	
though	its	general	architecture	in	humans	(Wolf	et	al.,	2009)	and	yeast	(Rigo	et	al.,	2015)	as	well	
as	 its	 protein	 composition	 (Deckert	 et	 al.,	 2006)	 was	 proposed	 some	 time	 before,	 the	 high-
resolution	3D	cryo-EM	model	presented	here	now	allows	for	the	unambiguous	specification	and	
evaluation	 of	 the	 location,	 composition	 and	 appearance	 of	 functionally	 important	 units	 of	 the	
macromolecular	 machine.	 The	 following	 analysis	 in	 particular	 includes	 the	 BSH	 that	 is	
sequestered	by	components	of	the	U2	snRNP;	the	putative	location	of	the	catalytic	centre	that	is	
formed	 in	 later,	 catalytically	activated	complexes;	 the	position	of	BRR2	and	other	 functionally	
important	protein	 factors	and	 the	 location	and	potential	mode	of	operation	of	 the	B	complex-
specific	(B-specific)	proteins.			
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4.1.1 U2	snRNP	components		

The	 major	 building	 blocks	 of	 the	 pre-catalytic	 spliceosome	 are	 spatially	 separated	 in	 the	
B	complex,	even	though	their	structural	integration	is	in	progress.	Arranged	in	a	rhombohedral	
configuration,	components	of	the	U2	snRNP	and	the	BS-A	nucleotide	of	the	pre-mRNA	intron	are	
situated	at	the	upper	part	of	the	body	(the	head),	while	the	tri-snRNP	constituents	and	exon	1	
reside	at	the	opposing	end,	as	generally	proposed	before	(Boesler	et	al.,	2015;	Wolf	et	al.,	2009).	
The	 HEAT	 repeat	 containing	 C-terminal	 domain	 of	 U2-SF3B1/SF3b155	 (SF3B1HEAT),	 as	 also	
observed	in	the	corresponding	yeast	spliceosome	(Plaschka	et	al.,	2017),	tightly	sequesters	the	
U2/pre-mRNA	 BSH.	 This	 configuration	 clearly	 accounts	 for	 the	 pre-catalytic	 state	 of	 the	
spliceosome.	Although	the	local	resolution	of	the	map	at	this	area	is	not	sufficient	to	evaluate	the	
atomic	 details,	 the	 SF3B1/BSH	model	 from	 the	 human	 Bact	 complex	 (Haselbach	 et	 al.,	 2018)	
could	 be	 snuggly	 fit	 into	 the	 corresponding	 B	 complex	 density	 without	 further	 adjustments.	
Thus,	besides	the	coherent	large-scale	rearrangements	of	the	U2	snRNP	components	in	the	B	to	
Bact	 complex	 transition,	 it	 appears	 that	 relatively	 little	 restructuring	 occurs	 in	 this	 area	 at	 the	
molecular	 level.	 In	 consequence,	 the	mechanistically	 important	BS-A	nucleotide	 appears	 to	be	
shielded	from	the	catalytic	core	area	of	the	spliceosome	until	its	presence	is	actually	required	to	
initiate	step	1	of	 the	reaction.	Supporting	 this	 theory,	mutations	of	 the	U2	snRNP	components	
like	 for	example	the	SF3B	protein	 family	are	 frequently	reported	to	play	a	significant	role	 in	a	
variety	 of	malignancies	 and	 other	 diseases.	 These	 include	 for	 example	 leukaemia,	 breast	 and	
pancreatic	cancers	as	well	as	some	kinds	of	melanomas	(Yoshida	and	Ogawa,	2014).	Structural	
studies	on	the	isolated	SF3B	complex	in	fact	revealed	that	it	is	able	to	switch	between	an	open	
and	 closed	 conformation	when	 sequestering	 the	 RNA	 in	 its	 central	 cavity	 (Cretu	 et	 al.,	 2016;	
Finci	et	al.,	2018).	The	conformation	of	 the	wild	 type	SF3B1	protein	 in	 the	B	complex	 thereby	
matches	 the	 RNA	 bound,	 closed	 conformation	 that	 was	 previously	 reported	 in	 the	 isolated	
structures.	As	further	discussed	in	section	4.2.3,	the	SF3B	assembly	and	in	particular	SF3B1	may	
therefore	in	general	act	as	a	switchable	clamp	that	releases	the	reactive	BS-A	nucleotide	to	the	
catalytic	procedure	at	 the	precise	moment	 it	 is	 required	 to	participate	 in	 the	activation	of	 the	
spliceosome.	Mutations	 that	modify	 or	 impair	 this	 regulatory	 function	may	 cause	 a	 change	 in	
splicing	 kinetics	 or	 even	 entirely	 aberrant	 splicing	 products	 (Wan	 and	 Wu,	 2013),	 which	
inevitably	 leads	towards	an	unregulated	alteration	of	the	cellular	proteome	and	disease.	As	an	
example,	 specific	hotspot	mutations	of	 the	SF3B1	HEAT	domain	(e.g.	K700E)	were	 repeatedly	
reported	to	promote	aberrant	splicing	and	cancer	(Alsafadi	et	al.,	2016;	Wu,	2012).	Stunningly,	
most	 of	 the	 mutated	 amino	 acids	 in	 fact	 reside	 incorporated	 into	 the	 solenoid	 structures	 of	
SF3B1HEAT,	where	they	are	prone	to	influence	the	overall	stability	of	the	clamp.		

In	 the	 past,	 these	 correlations	 could	 only	 be	 interpreted	 on	 the	 basis	 of	 spatially	 ill-resolved	
biochemical	studies	(Cazzola	et	al.,	2013;	Wu,	2012).	The	analysis	of	the	corresponding	protein	
factors	in	the	integral	spliceosome	structures	now	allows	to	propose	a	specific	mechanism	that	
explains	 the	 phenotypic	 observations.	 Further	 analysis	 and	 a	 potentially	 better	 resolved	
structure	of	the	SF3B	and	associated	proteins	in	the	human	B	complex	may	thus	aid	in	proposing	
even	more	sophisticated	mechanisms	of	splicing	malfunction	and	disease	in	the	future.			

4.1.2 Dramatic	restructurings	after	tri-snRNP	integration	

The	 spliceosome	 is	 significantly	 restructured	 during	 the	 incorporation	 of	 the	 U4/U6.U5	 tri-
snRNP	into	the	A	complex.	A	characteristic	gap	at	the	centre	of	the	particle	then	distances	both	
major	U2	 snRNP	 and	 tri-snRNP	 functional	 units	 in	 the	B	 complex.	While	 the	U2	 snRNP	 likely	
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undergoes	 little	 intrinsic	 restructuring	 during	 its	 incorporation,	 the	 tri-snRNP	 structure	
(Agafonov	et	al.,	2016)	 is	significantly	remodelled	during	B	complex	formation.	Within	the	tri-
snRNP	particle,	as	well	as	in	all	later	spliceosomes	of	the	catalytic	cycle,	PRP8,	the	neighbouring	
proteins	SNU114,	U5-40k,	DIM1	and	the	U5	snRNA	represent	the	core	of	the	spliceosome.	PRP8	
eventually	 accommodates	 the	 catalytic	 centre	 of	 the	 complex	 and	 thus	 generally	 acts	 as	 a	
binding	site	and	platform	for	many	spliceosomal	factors	and	functions.	Its	dynamic	nature	was	
described	biochemically	(Schellenberg	et	al.,	2013)	and	many	of	its	pre-catalytic	interactions	can	
be	elucidated	 in	the	B	complex	structure.	Amongst	others,	 the	PRP8	Jab1	domain	(PRP8Jab1)	 is	
tightly	associated	with	the	N-terminal	helicase	cassette	(NC)	of	BRR2	(Nguyen	et	al.,	2013).	This	
interaction	 appears	 to	 anchor	 the	mobile	 helicase	BRR2	 to	 the	PRP8	 core	 of	 the	 spliceosome,	
allowing	BRR2	to	abruptly	rearrange	its	position	depending	on	the	state	of	catalytic	activation	of	
the	spliceosome.	 In	 fact,	BRR2	dramatically	changes	 its	position	upon	 incorporation	of	 the	 tri-
snRNP	 into	 the	 fully	 assembled	 pre-catalytic	 spliceosome.	While	 residing	 in	 an	RNA-unbound	
state	 at	 the	 tip	 of	 PRP8’s	RT	domain	 (PRP8RT)	 in	 the	 tri-snRNP	 that	 is	 located	 approximately	
10	nm	away	from	its	U4	snRNA	substrate,	BRR2	engages	the	nucleotides	in	the	correspondingly	
predicted	 region	 of	 the	 U4	snRNA	 (Hahn	 et	 al.,	 2012;	 Mozaffari-Jovin	 et	 al.,	 2012)	 in	 the	 B	
complex	 state.	 This	 study	 thus	 for	 the	 first	 time	 captures	 BRR2	 in	 its	 substrate-bound	 state	
within	 a	 functional	 spliceosome,	 ready	 to	 act	 in	 unwinding	 the	 pre-catalytic	 U4/U6	 snRNA	
duplex	helix.	After	the	incorporation	into	the	B	complex,	BRR2	is	then	situated	next	to	the	tip	of	
the	 PRP8	EN	 domain	 (PRP8EN),	 rotated	 by	 180°	 and	 located	more	 than	 20	 nm	 away	 from	 its	
original	position	in	the	human	tri-snRNP.		

Besides	BRR2,	other	 constituents	of	 the	pre-catalytic	 spliceosome	are	 significantly	 rearranged	
during	 B	 complex	 formation.	 While	 PRP8	 does	 not	 contact	 the	 pre-mRNA	 in	 the	 tri-snRNP	
particle	(Agafonov	et	al.,	2016),	it	tightly	sequesters	the	first	nucleotides	of	exon	1	upstream	of	
the	5’	SS	between	its	N-terminal	domain	(PRP8NTD)	and	PRP8RT/EN	in	the	B	complex.	Compared	to	
its	 “open”	 conformation	 in	 the	 tri-snRNP	 and	 the	 more	 tightly	 “closed”	 conformation	 in	 the	
catalytically	 activated	 spliceosome	 (Haselbach	 et	 al.,	 2018),	 PRP8	 thus	 adopts	 a	 “partially-
closed”	conformation	 in	 the	 intermediate,	pre-catalytic	B	complex	state	of	 the	spliceosome.	As	
the	 catalytic	 centre	 has	 not	 yet	 formed	 there,	 in	 particular	 because	 the	 relevant	 catalytic	 U6	
snRNA	moieties	are	still	bound	and	thus	retained	in	the	U4/U6	snRNA	duplex	helix,	the	partially-
closed	 conformation	 of	 PRP8	 represents	 a	 structurally	 feasible	 intermediate	 state	 in	 the	
stepwise	formation	of	the	catalytically	activated	spliceosome.		

The	 tight	 incorporation	 of	 the	 exon	1	 pre-mRNA	by	 the	U5	 snRNP	protein	PRP8	 furthermore	
indicates	a	definite	transfer	of	the	5’	SS	from	the	U1	snRNA	to	the	core	of	the	spliceosome	at	this	
stage	 of	 assembly,	 as	 predicted	 biochemically	 (Konarska,	 1998).	 The	 spatial	 configuration	 of	
exon	1	is	then	preserved	at	the	core	of	the	spliceosome	throughout	all	later	stages	of	the	splicing	
cycle	 that	are	known	 to	date	 (Bertram	et	al.,	 2017b;	Haselbach	et	 al.,	 2018;	Zhan	et	 al.,	 2018;	
Zhang	et	al.,	2017).	Additionally,	DIM1	clearly	contacts	the	GU	dinucleotide	of	the	5’	SS	in	the	B	
complex.	 The	 latter	 may	 indicate	 a	 potential,	 previously	 unknown	 role	 of	 the	 protein	 in	 the	
selection	of	the	5’	SS.		

The	 observed,	 functionally	 significant	 rearrangements	 thus	 contribute	 towards	 providing	 the	
first	structurally-guided	understanding	of	the	remarkably	dynamic	nature	of	the	(pre-catalytic)	
human	 spliceosome.	 The	 latter	 thereby	 in	 general	 represents	 a	 unique	 aspect	 of	 spliceosome	
formation	and	function,	as	no	other	large	macromolecular	machine	known	to	date	exhibits	this	
degree	of	structural	dynamics	during	its	catalytic	cycle.				
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4.1.3 Functional	insights	into	the	role	of	B-specific	proteins	

Several	proteins	associate	with	the	spliceosome	exclusively	during	the	pre-catalytic	state	of	the	
assembly.	 Accordingly,	 these	 factors	 are	 termed	 B-specific	 proteins	 and	 their	 characteristic	
function	within	the	spliceosomal	context	is	largely	unknown.	Besides	PRP38,	SNU23	and	MFAP1	
(Spp381	in	yeast)	all	other	B-specific	proteins	do	not	have	orthologs	in	yeast	and	are	thus	found	
to	be	specific	to	the	metazoan	system	(Ulrich	and	Wahl,	2017).	Within	the	B	complex	structure	
presented	in	this	work,	PRP38,	SNU23,	MFAP1,	SMU1,	RED	and	FBP21	could	be	 identified	and	
localized.	The	elucidation	of	their	spatial	organization	thus	aids	in	evaluating	the	purpose	of	B-
specific	 proteins	 during	 the	 spliceosomal	 assembly.	 PRP38,	 SNU23	 and	 MFAP1,	 for	 example,	
were	 identified	 adjoined	 in	 a	 previously	 reported	 bundle	 (Ulrich	 et	 al.,	 2016b)	 that	 contacts	
PRP8NTD	 and	 the	 U6	snRNA/ACAGA	 helix.	 The	 Zn-finger	 domain	 of	 SNU23	 thereby	
characteristically	 interacts	with	the	5’SS	pre-mRNA	at	 the	ACAGA	box	helix,	whereas	PRP38	is	
reported	to	be	essential	during	pre-catalytic	spliceosomal	remodelling	(Schütze	et	al.,	2016;	Xie,	
1998).	In	addition	to	that	of	SNU23,	the	Zn-finger	region	of	the	multi	domain	B-specific	protein	
FBP21	(Huang	et	al.,	2009)	likewise	contacts	the	ACAGA	box	region	further	downstream	of	the	
U6	snRNA.	Interestingly,	the	latter	region	and	the	adjacently	positioned	characteristic	U6	snRNA	
5’	 stem	 loop	 structure	 already	 reside	 in	 a	 configuration	 that	 is	 then	 conserved	 throughout	 all	
later	 stages	 of	 the	 catalytically	 activated	 spliceosome	 (Bertram	et	 al.,	 2017b;	Haselbach	 et	 al.,	
2018;	Zhan	et	al.,	2018;	Zhang	et	al.,	2017).	PRP38,	SNU23,	MFAP1	and	FBP21	may	therefore	act	
as	transient	structural	scaffolds	that	temporarily	hold	the	ACAGA	box	helix	and	the	5’	SS	in	its	
predestined	 place	 during	 catalytic	 activation	 until	 the	 corresponding	 RNA	 elements	 are	
eventually	 fully	 integrated	 into	 the	 catalytic	 core	 of	 the	 spliceosome	 during	 later	 stages	 of	
activation.	Furthermore,	MFAP1	 is	 found	 to	contact	both	 the	head	and	body	domains	of	 the	B	
complex,	 potentially	 participating	 in	 the	 regulation	 of	 this	 remodelling	 activity.	 Due	 to	 the	
conserved	nature	of	 the	proteins’	structural	configuration	 in	both	yeast	(Plaschka	et	al.,	2017;	
Wan	et	al.,	2016b)	and	metazoan	spliceosomes,	it	appears	likely	that	the	presence	of	the	PRP38,	
SNU23	and	MFAP1	bundle	is	ubiquitously	required	across	species	to	regulate	the	formation	of	
the	catalytic	centre.		

Focussing	on	the	role	of	the	B-specific	proteins	that	are	absent	in	lower	eukaryotes,	SMU1	may	
play	a	significant	role	in	regulating	the	activity	of	the	RNA	helicase	BRR2	once	it	is	engaged	to	its	
U4	snRNA	substrate	in	the	B	complex.	As	partially	introduced	above,	BRR2	represents	an	ATP-
binding	RNA	helicase	that	is	essential	for	spliceosome	activation	(Will	and	Lührmann,	2011).	It	
is	comprised	of	an	unusual	configuration	of	two	ring-like	helicase	cassettes	(N-terminal,	NC,	and	
C-terminal,	CC)	that	are	situated	side-by-side	and	act	in	tandem	to	stimulate	the	RNA	unwinding	
activity	 of	 the	NC	 only	 (Santos	 et	 al.,	 2012).	 Due	 to	 its	 robust	 attachment	 to	 the	 spliceosome	
through	PRP8Jab1	 (section	4.1.2),	 the	activity	of	BRR2	needs	 to	be	 tightly	 regulated	 in	order	 to	
prevent	 premature	 activation.	 Multiple	 pathways	 have	 thus	 been	 proposed	 in	 the	 literature,	
ranging	from	an	inhibition	by	the	PRP8	RNase	H	like	domain	(PRP8RNase	H)	(Mozaffari-Jovin	et	al.,	
2012),	 PRP8’s	 very	 C-terminal	 tail	 (Mozaffari-Jovin	 et	 al.,	 2013),	 several	 regions	 of	 FBP21	
(Henning	et	al.,	2017)	as	well	as	the	N-terminal	tail	of	BRR2	itself,	comprising	a	PWI	and	some	
other	plug-like	domains	that	are	situated	at	the	interface	of	both	helicase	cassettes	(Absmeier	et	
al.,	 2015).	 Interestingly,	 in	 the	 human	 tri-snRNP	 assembly	 (Agafonov	 et	 al.,	 2016),	where	 the	
inhibition	 of	 BRR2	 is	 essential	 to	 maintain	 the	 structural	 integrity	 of	 the	 complex,	 the	 PWI	
domain	resides	at	the	same	interface	that	was	previously	reported	to	down	regulate	the	activity	
of	BRR2	(Absmeier	et	al.,	2015).	 In	 the	human	B	complex,	however,	 the	PWI	domain	of	BRR2	
could	 not	 be	 visualized.	 Hence,	 it	 is	 likely	 detached	 from	 the	 complex	 or	 significantly	
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destabilized,	whereas	its	NC	and	CC	are	clearly	structured.	Instead,	the	WD40	domain	of	the	B-
specific	protein	SMU1	binds	to	the	CC	of	BRR2	close	to	the	NC/CC	interface	on	the	one	side	and	
to	the	SF3B3	WD40	core	at	 the	head	region	of	 the	B	complex	at	 the	other	side.	 In	conjunction	
with	 its	 adjacently	 located	 LisH	 and	 CTLH	 domains	 (Ulrich	 et	 al.,	 2016a),	 SMU1	 is	 therefore	
likely	 to	 inhibit	 and	 regulate	 BRR2	 functionality.	 Its	 subsequent	 destabilisation	 by	 the	
restructuring	of	the	U2	snRNP	head	of	the	B	complex,	which	is	observed	during	later	stages	of	
catalytic	activation,	may	then	lead	to	the	detachment	of	SMU1	from	the	critical	BRR2	interface	
and	thus	ultimately	to	an	activation	of	the	helicase.	SMU1	is	thus	prone	to	act	as	a	key	player	in	
regulating	the	metazoan	spliceosome	activation.		

4.1.4 Differences	in	human	and	yeast	spliceosome	activation	

A	 comparison	 of	 the	 currently	 available	 yeast	 and	 human	 spliceosomal	 complex	 structures	
reveals	a	potentially	more	intricate	activation	pathway	for	the	metazoan	spliceosome.	Studying	
the	available	U4/U6.U5	tri-snRNP	structures	from	both	species,	it	appears	that	BRR2	resides	in	
diametrically	opposite	conformations,	whiles	most	other	protein	and	RNA	entities	are	arranged	
in	 a	 similar	manner	 (Agafonov	 et	 al.,	 2016;	Nguyen	 et	 al.,	 2015;	Wan	 et	 al.,	 2016b).	Whereas	
BRR2	 resides	 at	 the	 tip	 of	 PRP8RT	 in	 the	 human	 tri-snRNP,	 inhibited	 by	 SAD1,	 the	 helicase	 is	
positioned	at	a	roughly	equivalent	position	to	that	found	in	the	human	B	complex,	lacking	SAD1,	
in	 the	 yeast	 tri-snRNP	 assemblies.	 In	 particular	 because	 one	 of	 the	 reported	 yeast	 tri-snRNP	
preparations	 also	 contains	 components	 of	 the	 U2	 snRNP	 and	 even	 pre-mRNA	 (Wan	 et	 al.,	
2016b),	 it	 could	 be	 argued	 that	 the	 structures	 that	 were	 published	 as	 yeast	 tri-snRNPs	may	
actually	 represent	 dissociated	 B	 complexes.	 A	 comparison	 to	 the	 recently	 revealed	 yeast	 B	
complex	structure	(Plaschka	et	al.,	2017)	supports	this	 idea,	as	the	tri-snRNP	portions	of	both	
complexes	are	largely	similar	in	molecular	composition	and	structure	to	the	isolated	tri-snRNP.	
Further	supporting	this	idea,	both	purifications	of	the	yeast	tri-snRNP	structures	were	reported	
to	dissociate	upon	ATP	treatment	(Nguyen	et	al.,	2015;	Wan	et	al.,	2016a),	whereas	the	human	
tri-snRNP	purification	does	not	(Agafonov	et	al.,	2016).	The	observed	dissociation	of	the	yeast	
complexes	 in	a	physiological	ATP	environment	 is	 thus	 likely	promoted	by	the	absence	of	Sad1	
(Huang	et	al.,	2014),	where	the	latter	protein	inhibits	any	premature	activation	in	the	human	tri-
snRNP	 counterpart.	 The	 yeast	 tri-snRNP	 therefore,	 if	 not	 inhibited	 in	 any	 other	 way	 in	 vivo,	
could	likely	be	a	dissociation	product	of	the	B	complex.		

On	the	contrary,	spliceosome	activation	may	be	entirely	different	in	humans	and	yeast.	Several	
arguments	 account	 for	 this	 idea,	 as	 in	 particular	 the	 presence	 of	 the	 metazoan	 exclusive,	
regulatory	B-specific	proteins	that	are	reported	here	could	potentially	allow	for	a	more	complex,	
or	entirely	different	activation	pathway.	 Interestingly,	comparing	another	suggested	tri-snRNP	
structure	and	the	B	complex	from	yeast	(Nguyen	et	al.,	2016;	Plaschka	et	al.,	2017),	 it	appears	
that	in	neither	assembly	the	most	3’	terminal	nucleotides	of	exon	1	are	enclosed	by	PRP8,	like	it	
is	observed	in	the	human	B	complex	reported	in	this	work	(also	see	section	4.1.2).	Whereas	the	
pre-mRNA	is	bound	at	the	SF3B	sequestered	BSH	in	both	yeast	and	human	B	complexes,	Prp8NTD	
and	Prp8RT/En	in	yeast	likewise	reside	in	a	partially	closed	conformation,	however,	not	enclosing	
the	 pre-mRNA	 but	 instead	 parts	 of	 the	 5’	 terminal	 U6	snRNA.	 Given	 the	 otherwise	 similar,	
species	 independent	 spatial	 configuration	 of	 PRP8	 in	 the	 B	complex,	 the	 partially	 closed	
configuration	 of	 Prp8	 would	 require	 an	 additional	 extensive	 remodelling	 step	 of	 the	 yeast	
B	complex	in	order	to	eventually	arrange	the	pre-mRNA	for	catalytic	activation,	as	i.e.	observed	
in	the	yeast	Bact	complex	(Rauhut	et	al.,	2016;	Yan	et	al.,	2016).	The	reported	yeast	B	complex	
structure	 thus	 either	 represents	 an	 earlier,	 general	 assembly	 state	 of	 the	 B	 complex,	 that	
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likewise,	maybe	more	 transiently	 also	 exists	 in	 the	human	 system,	 or	 the	 comparison	of	 both	
structures	 reveals	 a	 significantly	 different	 activation	 pathway	 regarding	 the	 human	 and	 yeast	
splicing	machinery.							

4.2 The	catalytically	activated	human	spliceosome		
The	 various	 structures	 of	 catalytically	 activated	 spliceosomes	 that	 are	 available	 to	 date	 have	
greatly	 contributed	 towards	 revealing	 the	 biochemical	 mechanism	 of	 pre-mRNA	 splicing.	 By	
supplying	 the	 first	 high-resolution	 structure	 of	 a	 human	 spliceosome	 (Bertram	 et	 al.,	 2017b),	
this	work	substantially	participated	in	this	process.	In	combination	with	the	additional	models	
of	human	spliceosome	complexes	that	were	published	in	the	meantime	(Haselbach	et	al.,	2018;	
Zhan	et	al.,	2018;	Zhang	et	al.,	2017),	a	more	detailed	analysis	of	the	involved	procedures	may	
now	be	performed.			

4.2.1 Molecular	architecture	and	structural	conservation	between	
species	

The	structure	of	the	human	C*	complex	presented	here	revealed	the	molecular	architecture	of	a	
catalytically	activated	human	spliceosome	for	the	first	time.	Even	though	the	occurrence	of	this	
particular	assembly	state	was	generally	expected	within	the	splicing	cycle	(Ohrt	et	al.,	2013),	the	
actual	existence	of	the	C*	complex	as	a	structurally	stable	intermediate	was	poorly	understood	
and	 hardly	 characterized.	 The	 structure	 of	 the	 post-PRP16-	 but	 pre-PRP22	 action	 C*	complex	
thus	generally	introduced	a	new,	stable	splicing	intermediate	to	the	metazoan	splicing	cycle.	The	
somewhat	 elongated	 molecular	 architecture	 of	 the	 complex	 thereby	 consists	 of	 three	 major	
multi-component	 domains:	 The	 central	 domain,	 harbouring	 the	 catalytic	 core	 of	 the	
spliceosome;	 the	 top	 region,	 containing	 mostly	 U2	 snRNP	 and	 associated	 proteins;	 and	 an	
elongated	helical	bundle	region	that	contacts	both	top	and	central	domain.	The	areas	in	between	
these	 regions	are	often	populated	with	proteins	 that	are	more	 transiently	associated	with	 the	
spliceosome,	depending	on	its	position	in	the	catalytic	cycle.		

The	central	domain	of	the	assembly	is	approximately	12	x	20	nm	in	size	and	includes	most	of	the	
essential	components	that	are	required	to	form	the	catalytic	centre	of	the	spliceosome.	PRP8NTD,	
PRP8RT/En,	SNU114,	the	WD40	domain	of	PLR1,	the	U5	Sm-core,	the	U5	snRNA	and	parts	of	the	
U2	and	U6	snRNA	thereby	contribute	as	the	molecular	building	blocks.	The	latter	arrangement	
of	protein	and	snRNA	domains	is	found	to	be	particularly	stable	and	conformational	conserved	
across	 species	 in	 the	 catalytically	 activated	 spliceosome	 (Fica	 et	 al.,	 2017;	 Galej	 et	 al.,	 2016;	
Haselbach	et	al.,	2018;	Liu	et	al.,	2017;	Rauhut	et	al.,	2016;	Wan	et	al.,	2016a;	Wilkinson	et	al.,	
2017;	Yan	et	al.,	2016;	2017;	Zhan	et	al.,	2018;	Zhang	et	al.,	2017;	2018).	The	structure	of	 the	
human	 C*	 complex	 thus	 provided	 the	 initial	 evidence	 for	 a	 conserved	 catalytic	 core	 of	 the	
spliceosome,	which	serves	as	a	rigid	molecular	platform	to	which	other	essential	factors	bind.		

Some	 of	 these	 factors	 are	 organized	 in	 the	 top	 region	 of	 the	 human	 C*	 complex,	 which	 is	
populated	 by	 the	 remaining	 U2	snRNP	 components	 that	 stay	 stably	 associated	 with	 the	
spliceosome	after	 its	catalytic	activation.	 In	particular	 the	U2	Sm-core,	 large	parts	of	 the	3’	U2	
snRNA	 including	 its	 stem	 II	 (Perriman	 and	Ares,	 2007)	 and	U2	snRNP	proteins	A’	 and	B’’	 are	
included.	Proteins	of	the	SF3	family	that	are	still	stably	attached	in	the	Bact	complex	(Haselbach	
et	al.,	2018),	however,	are	lost	presumably	by	the	action	of	RNA	helicase	PRP2	(King	and	Beggs,	
1990;	Schmitt	et	al.,	2018).	Compared	to	the	corresponding	structures	in	yeast	(Fica	et	al.,	2017;	
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Yan	 et	 al.,	 2017),	 the	 location	 and	 composition	 of	 the	 top	 region	 is	 essentially	 conserved	
between	species;	thus,	providing	further	evidence	for	the	high	degree	of	structural	conservation	
of	 the	 catalytically	 activated	 spliceosome.	 Contacting	 this	 region,	 the	 equally	 well	 conserved	
alpha	helical	half	a	TPR	(HAT)	domain	of	the	SYF1	protein	(Chan	and	Cheng,	2005;	Chen,	2002)	
contacts	 the	 U2	 Sm-core	 and	 likely	 guides	 its	 remodelling	 during	 progression	 through	 the	
catalytic	cycle	(section	4.2.3).	Not	conserved	and	thus	absent	 in	yeast	 is	 the	metazoan	specific	
IBC	RNA	helicase	Aquarius	 (IBP160),	which	 is	docked	at	 the	 central	 region	of	 the	 SYF1	alpha	
helical	 solenoids.	 Aquarius	 is	 specifically	 involved	 in	 binding	 the	 intron	 several	 nucleotides	
upstream	of	the	ACAGA	Box	sequence	(De	et	al.,	2015),	which	appears	structurally	plausible	in	
the	 human	 C*	complex	 structure.	 However,	 the	 intron	 nucleotides	 that	 are	 involved	 in	 the	
speculated	binding	to	Aquarius	cannot	be	traced	 in	the	cryo-EM	density	due	to	a	drop	in	 local	
resolution	at	the	corresponding	position.		

The	 helical	 bundle	 region	 is	 attached	 to	 the	 central	 domain	 of	 the	 C*	 complex.	 It	 comprises	
several	proteins	that	initially	interact	with	the	spliceosome	pre-organized	in	the	PRP19/CDC5L	
complex	(NTC	in	yeast).	As	suggested	before,	based	on	biochemical	evidence	(Grote	et	al.,	2010),	
the	 long	 alpha	 helical	 elements	 of	 PRP19,	 CDC5L	 and	 SPF27	 in	 fact	 stably	 interact	with	 each	
other	while	being	attached	to	 the	core	of	 the	catalytically	activated	spliceosome.	 Interestingly,	
the	central	domain	of	CDC5L,	as	well	as	the	N-terminal	region	of	Skip	(or	SNW1)	even	seem	to	
be	intrinsically	disordered	in	solution	(Wang	et	al.,	2010).	The	corresponding	amino	acids	that	
interact	 with	 the	 catalytically	 activated	 spliceosome,	 however,	 are	 distinctively	 threaded	
through	 the	 main	 body	 of	 the	 complex,	 highly	 structured	 and	 stably	 contacting	 a	 wealth	 of	
different	spliceosomal	factors.	Given	the	dynamic	nature	of	the	early	spliceosome	assembly	this	
may	be	a	prime	example	of	how	proteins	that	are	intrinsically	disordered	in	solution	can	locally	
regain	a	specific	3D	structure	to	facilitate	and	modulate	the	binding	of	other	protein	factors.		

4.2.2 Catalytic	centre	

The	catalytic	centre	of	the	spliceosome	was	biochemically	predicted	to	contain	a	characteristic	
three-	or	four-way	snRNA	helical	junction	comprised	of	nucleotides	from	the	U2	and	U6	snRNA	
(Anokhina	 et	 al.,	 2013).	 Whether	 a	 three-way	 snRNA	 junction	 is	 solely	 utilized	 by	 the	 yeast	
spliceosome	 (Madhani	 and	Guthrie,	 1992)	 and	 a	 four-way	helical	 junction	 by	 the	mammalian	
spliceosome	 instead	 (Sashital	 et	 al.,	 2004;	 Sun	 and	 Manley,	 1995),	 remained	 unclear.	 The	
structure	 of	 the	 human	 C*	complex	 then	 revealed	 a	 universally	 conserved	 three-way	 snRNA	
helical	 junction	 at	 the	 core	 of	 the	 complex.	As	predicted	 (Anokhina	 et	 al.,	 2013;	Madhani	 and	
Guthrie,	1992),	the	U2	and	U6	snRNA	thereby	indeed	form	Helix	Ia	and	Ib	as	well	as	Helix	II	with	
one	 another,	 which	 are	 interconnected	 by	 the	 corresponding	 nucleotides	 of	 the	 U6	snRNA	
internal	stem	loop	(ISL)	structure.	Embedded	 in	 this	 intricate	3D	RNA	network	the	phosphate	
backbones	 of	 the	 U6	 snRNA	 nucleotides	 A53,	 G54,	 G72	 and	 U74	 (A59,	 G60,	 G78	 and	 U80,	
respectively	 in	yeast)	 are	 spatially	 arranged	 to	putatively	bind	 the	 two	catalytic	Mg2+	 ions,	 as	
predicted	 from	 biochemical	 evidence	 (Fica	 et	 al.,	 2013).	 Although	 the	 cryo-EM	 map	 was	
determined	 at	 a	 (local)	 resolution	 of	 ~4.5	 Å	 at	 that	 area,	 the	 resolution	 is	 not	 sufficient	 to	
unambiguously	identify	metal	ions	in	the	density.	A	comparison	to	the	subsequently	published	
human	C*	complex	structure	at	~3.8	Å	(Zhang	et	al.,	2017),	however,	reveals	that	the	putatively	
assigned	catalytic	Mg2+	ion	binding	sites	and	the	adjacent	RNA	moieties	were	indeed	modelled	
in	great	accordance	to	the	higher	resolved	model.	Interestingly,	the	general	area	that	constitutes	
the	 active	 centre	 in	 the	 catalytically	 activated	 spliceosome	 is	 remarkably	 conserved	 between	
species,	as	revealed	by	a	comparison	of	the	corresponding	yeast	structures	(Fica	et	al.,	2017;	Yan	
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et	 al.,	 2017).	 The	 dispute	whether	 the	metazoan	 spliceosome	 potentially	 relies	 on	 a	 different	
catalytic	mechanism	than	that	utilized	by	lower	eukaryotes	thus	appears	to	be	resolved.		

4.2.3 Large-scale	structural	rearrangements	modulate	splicing	
activity	

The	 spliceosome	 is	 significantly	 remodelled	 not	 only	 during	 its	 pre-catalytic	 state	 of	 the	
assembly	 (section	4.1.2),	 but	 also	 during	 the	 catalytically	 activated	 phase	 of	 the	 reaction.	
Complex	macromolecular	domains	that	are	comprised	of	protein,	RNA	or	both	are	restructured	
accordingly	 in	order	to	 facilitate	splicing.	A	precise	guidance	of	 the	 involved	reactants	(i.e.	 the	
BS-A	 or	 the	 splice	 site	 nucleotides)	 is	 thereby	 of	 superior	 importance	 for	 the	 success	 of	 the	
splicing	reaction,	as	the	smallest	aberration	in	splice	site	selection	or	the	misprocessing	of	RNA	
in	general	causes	shifts	in	the	open-reading	frame,	aberrant	mRNA	products	and	disease	(Solis	
et	al.,	2008).		

In	particular	the	U2	snRNP	components	that	initially	chaperone	the	pre-catalytic	BS	area	of	the	
pre-mRNA	 are	 drastically	 restructured	 upon	 catalytic	 activation	 of	 the	 spliceosome.	 Enabling	
these	 rearrangements,	 several	 hundred	 kilodaltons	 of	 protein	 and	 RNA	 components	 are	
repeatedly	 repositioned	 and	moved	 across	 large	 distances.	 Tracing	 for	 example	 the	 dynamic	
nature	of	the	U2	snRNP	components	at	the	B	complex	stage	of	assembly,	the	BSH	has	formed	but	
is	 fully	 embedded	 in	 protein,	 particularly	 by	 the	 alpha	 helical	 solenoids	 of	 the	 SF3B1	 HEAT	
domain	(SF3B1HEAT).	In	the	B	complex,	the	assembly	that	includes	the	BS-A	is	located	more	than	
15	nm	away	from	the	future	site	of	catalysis	(Bertram	et	al.,	2017a),	effectively	preventing	any	
kind	of	pre-mature	interaction	of	the	essential	step	1	reactant	with	the	pre-mRNA	substrate	by	
spatial	 separation.	 The	 functionally	 important	 BSH	 element	 is	 then	 progressively	 brought	 in	
closer	to	the	designated	active	site	of	the	spliceosome,	which	thus	eventually	transitions	into	the	
Bact	complex	 configuration.	Here,	 the	 access	 to	 the	BSH	 is	 still	modulated	by	 the	 SF3B	protein	
family	and	the	bulged	out	BS-A	nucleotide	is	tightly	sequestered	by	SF3B1HEAT	(Haselbach	et	al.,	
2018).	Even	though	the	catalytic	centre	of	the	complex	has	almost	entirely	formed	and	is	thus	
primed	for	catalysis,	the	reactive	BS-A	nucleotide	is	still	kept	out	of	reach	and	safeguarded,	now	
situated	approximately	5	nm	away	from	the	active	site.	A	characteristic	hyperphosphorylation	of	
SF3B1	is	then	required	to	progress	with	step	1	of	the	reaction	(Wang	et	al.,	1998),	even	though	
the	 necessary	 structural	 rearrangements	 are	 poorly	 understood	 (section	2.4.3.3.).	 The	
phosphorylation	of	SF3B1,	however,	likely	alters	the	binding	characteristics	of	the	protein	to	the	
BS-A	nucleotide.	Hence,	 the	 spatial	 separation	and	adjustable	 shielding	of	 the	 essential	 step	1	
reactant	may	 represent	 a	major	 regulatory	 checkpoint	 during	 spliceosome	 activation.	 The	U2	
SF3	 protein	 family	 may	 therefore	 act	 as	 a	 significant	 signal	 integration	 hub	 that	 particularly	
coordinates	and	controls	the	initiation	of	splicing.	

The	potential	to	precisely	rearrange	and	spatially	separate	important	reactants	from	each	other	
seems	 to	 appear	 as	 a	 subordinate	 theme	 in	 pre-mRNA	 splicing	 regulation	 and	 enables	 the	
spliceosome	to	effectively	modulate	its	catalytic	activity	as	well	as	its	fidelity.	External	kinases	or	
helicases	(section	4.3.2)	are	thereby	likely	to	influence	the	splicing	reaction	from	a	distance	by	
interfering	 with	 the	 coordinated	 spliceosomal	 rearrangements	 at	 characteristic	 stages	 of	
catalysis.			

Once	 step	 1	 of	 the	 reaction	 is	 performed	 and	 the	 spliceosomal	 rearrangements	 are	 leading	
towards	a	transition	into	the	C	complex	(Zhan	et	al.,	2018),	the	U2	snRNP–BSH	components	are	
again	restructured	significantly	with	respect	to	their	spatial	organization	in	the	Bact	complex.	At	
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this	stage	of	 the	assembly,	 the	SF3B	proteins	are	not	only	stripped	off	 the	 functional	BSH	unit	
itself,	but	seem	to	be	released	from	their	stable	association	with	the	spliceosomal	core	entirely.	
The	residual	components	of	 the	U2	snRNP,	such	as	 the	U2	snRNA	or	 the	Sm-core	and	directly	
associated	 proteins,	 however,	 remain.	 As	 the	 SF3B	 proteins	 are	 detached,	 the	 BSH	 is	 now	
connected	to	the	intron	lariat	structure	and	instead	stabilized	by	various	domains	of	the	step	1	
associated	 splicing	 factors	 CCDC49,	 CCDC94	 and	 ISY1	 (Zhan	 et	 al.,	 2018).	 Nevertheless,	 the	
formerly	reactive	BS-A	nucleotide	is	still	situated	at	the	catalytic	centre	of	the	spliceosome.	The	
entire	BSH	thus	needs	to	be	relocated	in	order	for	step	2	of	the	reaction	to	occur.	Interestingly,	
the	remaining	U2	snRNP	components	again	seem	to	be	utilized	as	a	macromolecular	handle	to	
perform	this	task,	as	initially	revealed	by	the	C*	complex	structure	presented	here.	In	particular	
the	 nucleotides	 that	 reside	 towards	 the	 3’	 end	 of	 the	 U2	snRNA	 thereby	 serve	 as	 a	 rod-like	
element	that	translates	large-scale	conformational	changes	at	the	exterior	of	the	spliceosome	to	
small-scale	 restructurings	 of	 e.g.	 the	 BSH	 at	 the	 core	 of	 the	 complex.	 At	 the	 same	 time,	 the	
significant	 rearrangements	 of	 the	 involved	 U2	 snRNP	 components	 again	 provide	 a	 fair	
opportunity	 for	 regulatory	 factors	 to	 modulate	 these	 transitions.	 The	 sheer	 size	 and	
accumulated	 mass	 of	 the	 more	 peripherally	 situated	 mobile	 components	 thereby	 provide	 a	
substantially	larger	area	for	molecular	interactions	than	that	of	the	relatively	small	(catalytically	
active)	 components	 at	 the	 core	 of	 the	 molecular	 machine.	 The	 modulation	 of	 the	 required	
restructuring	events	can	thus	be	more	decisive	when	external	factors	are	able	to	target	the	large	
peripheral	 domains	 of	 the	 spliceosome.	 A	 mechanical	 coupling	 between	 these	 functional	
components,	 like	 that	of	 the	U2	snRNP	components	and	 the	BSH,	 then	 conveys	 the	peripheral	
signalling	to	the	catalytic	centre.		

Based	 on	 the	 structural	 observations,	 the	 peripheral	 U2	 Sm-core	 is	 in	 fact	 significantly	
rearranged	during	the	Bact-to-C	and	the	subsequent	C-to-C*	complex	transition.	The	BSH	likewise	
matches	 the	 corresponding	 rearrangement	 vectors	 of	 the	 U2	 Sm-core	 and	 is	 thus	 itself	
repositioned	accordingly	(Haselbach	et	al.,	2018;	Zhan	et	al.,	2018).	As	soon	as	the	BSH	is	guided	
away	from	the	catalytic	centre	in	the	C*	complex,	it	is	stabilized	by	the	RNaseH	domain	of	PRP8	
(PRP8RNaseH)	and	 the	WD40	domain	of	 the	step	2-specific	protein	PRP17	(PRP17WD40).	Both	of	
the	 latter	 have	 been	 previously	 associated	 with	 splicing	 regulation	 at	 various	 steps	 of	 the	
reaction	 (Jones	 et	 al.,	 1995;	 Mozaffari-Jovin	 et	 al.,	 2012;	 Pena	 et	 al.,	 2008).	 The	 large-scale	
rearrangements	that	eventually	relay	their	trajectories	to	the	much	smaller	functional	entities	at	
the	catalytic	core	of	 the	molecular	machine	 thus	seem	to	be	a	universal	 theme	 in	spliceosome	
regulation.	Modulating	 these	 rearrangements,	 factors	 like	 kinases	 or	 RNA	 helicases	may	 then	
take	 advantage	 of	 the	 extensive	 target	 area	 that	 is	 provided	 by	 acting	 on	 multi	 subunit	
complexes	 like	 the	SF3	protein	 family	or	 the	U2	Sm-core.	Once	 the	 (large-scale)	 restructuring	
process	 is	 triggered,	 binding	 sites	 for	 smaller	 factors	 like	 those	 belonging	 to	 the	 step-1	 or	 -2	
specific	protein	families	seem	to	emerge	rather	transiently.	A	temporary	binding	of	these	factors	
may	then	further	stabilize	specific	structural	states	in	the	splicing	cycle.	Tracing	the	large-	and	
small-scale	 rearrangements	of	 the	 spliceosome	by	 structural	 analysis	 thus	enables	a	 thorough	
analysis	of	its	catalytic	mechanism	and	the	specific	modes	of	regulation.				

4.2.4 Extended	ACAGA	and	BSH	helices	in	the	human	system	

The	 ACAGA	 box	 and	 BS	 helices	 are	 structural	 elements	 that	 fulfil	 essential	 functions	 in	 the	
spliceosome.	Their	appearance	was	probed	biochemically	and	predicted	accordingly	(Will	and	
Lührmann,	 2011)	 and	 a	 general	 structural	 conservation	 between	 species	 was	 somewhat	
expected.	As	revealed	by	the	structural	models	of	the	human	spliceosome,	however,	the	essential	
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RNA	double	helices	formed	around	the	ACAGA	box	and	BS	area	are	significantly	elongated	in	the	
5’	 direction	of	 the	U6	 snRNA	and	 the	3’	 direction	of	 the	U2	snRNA,	 respectively,	 compared	 to	
their	counterparts	in	yeast.	The	functional	reason	for	this	extension	in	the	human	(and	likely	the	
metazoan)	 system	 is	 poorly	 understood,	 even	 though	 a	 more	 abstract	 comparison	 between	
higher	and	lower	eukaryotes	may	aid	in	revealing	a	purpose	for	this	deviation.			

Importantly,	 the	 consensus	 sequence	 of	 the	 intron	 nucleotides	 that	 participate	 in	 ACAGA	 box	
and	BSH	binding	is	significantly	more	degenerate	in	higher	eukaryotes	than	in	lower	members	
of	the	domain	like	for	example	yeast	(Burge	et	al.,	1999).	A	high	level	of	conservation	allows	the	
formation	 of	 canonical	 base	 pairs	 between	 nucleotides	 of	 the	 intron	 and	 the	 snRNA,	 which	
usually	 results	 in	 the	 formation	 of	 a	 stable,	 classical	 B-form	 RNA	 double	 helix.	 Within	 the	
spliceosome,	 these	 helices	 may	 not	 only	 serve	 as	 structurally	 important	 entities	 in	 the	
mechanics	of	splicing	(i.e.	section	4.2.3)	but	are	likewise	also	capable	of	mechanically	locking	the	
comprised	intron	nucleotides	into	place,	hence,	ultimately	determining	their	faith	in	the	splicing	
procedure	and	ensuring	a	reliable	splice	site	selection.	Due	to	the	lack	of	canonical	base	pairing	
in	the	metazoan	system,	however,	ACAGA	box	and	BS	helices	with	a	comparable	stabilityto	that	
observed	 in	 yeast	 (Fica	 and	 Nagai,	 2017)	 cannot	 be	 formed	 by	 a	 helix	 comprised	 of	 7-8	
nucleotides	only.	To	compensate	this	lack	of	stability,	an	extension	of	the	helical	arrangement	by	
1-2	turns	may	effectively	restore	the	functional	stability	of	the	helical	unit.	In	fact,	all	available	
structures	of	 the	catalytically	activated	human	spliceosome	reveal	a	rather	non-canonical	base	
pairing	 in	 the	 characteristically	distorted,	 extended	RNA	helices	at	 the	 corresponding	 regions.	
Surprisingly,	 the	backbone	structure	of	 these	helices	 is	remarkably	conserved,	despite	 the	 fact	
that	some	spliceosomes	have	been	assembled	on	differing	pre-mRNA	substrates	(Haselbach	et	
al.,	 2018;	 Zhan	 et	 al.,	 2018;	 Zhang	 et	 al.,	 2017)	 with	 different,	 non-conserved	 nucleotide	
sequences	at	 the	corresponding	regions.	The	observed	 level	of	structural	conservation	may	be	
achieved	 by	 a	 further	 stabilization	 of	 the	 extended	 ACAGA	 box	 and	 BS	 helices	 through	
characteristic	 interactions	with	 proteins,	 such	 as	 a	 Zn-finger	 domain	 of	 the	metazoan	 specific	
protein	 RBM22	 or	 various	 other	 proteins	 (i.e.	 PRP8RH	 and	 PRP17WD40	 in	 the	 C*	 complex),	
respectively.	Supporting	this	hypothesis	by	biochemical	evidence	particularly	the	interactions	of	
RNA	with	RBM22	were	suggested	to	promote	a	stable	spliceosome	configuration	(Rasche	et	al.,	
2012).		

The	degeneracy	of	metazoan	splice	sites	may	be	required	for	alternative	splicing	(Stepankiw	et	
al.,	2015)	and	has	thus	 likely	developed	during	the	evolutionary	differentiation	 from	the	basic	
group	 II	 self-splicing	 intron	 ancestor	 (section	 4.3.1).	 However,	 once	 the	 splice	 sites	 are	
determined	by	an	altered,	more	transient	interaction	with	the	corresponding	initiation	factors,	
they	have	to	be	reintroduced	to	the	evolutionarily	conserved	catalytic	mechanism	for	splicing.	A	
stable	 incorporation	 of	 these	 sites	 into	 the	 catalytically	 activated	 spliceosome	 is	 thus	 a	
prerequisite	 for	 the	 efficient	 catalysis	 of	 the	 splicing	 reaction.	 As	 it	 seems,	 the	 metazoan	
spliceosome	employed	a	mixture	of	molecular	approaches	to	achieve	this	task	and	compensate	
for	 the	 degenerate	 intron	 sequences	 that	 are	 nevertheless	 eventually	 destined	 to	 bind	 to	 the	
corresponding	nucleotides	of	the	U6	snRNA	ACAGA	box	and	the	U2	snRNA	BS	sequence	in	order	
to	be	spliced	correctly.		
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4.3 General	aspects	of	splicing	&	utilizing	cryo–EM	as	a	tool	to	
reveal	its	mechanism	

The	 splicing	of	pre-mRNA	requires	 an	 incredibly	 complex	but	well	 orchestrated	 succession	of	
remodelling	events	in	the	spliceosome.	Since	it	is	comprised	of	hundreds	of	different	molecular	
building	blocks,	 the	assembly	pathway	has	 to	be	well	orchestrated	and	 is	 critical	 for	proper	a	
proper	 splicing	 functionality.	 In	 order	 to	 decipher	 the	 underlying	 mechanisms,	 cryo-EM	 on	
carefully	 purified	 spliceosome	 samples	 currently	 represents	 the	 most	 promising	 method	 of	
structural	 visualisation.	 Besides	 the	 answering	 of	mechanistic	 questions,	 however,	 it	 becomes	
increasingly	 interesting	 to	 investigate	 the	 evolutional	 origins	 of	 splicing	 on	 the	 basis	 of	
structural	 conservation.	 The	 following	 section	 will	 thus	 briefly	 discuss	 the	 above-mentioned	
implications	in	more	detail.		

4.3.1 Evolutionary	conservation	of	RNA	splicing		

The	 splicing	 of	 (m)RNA	 from	 precursors	 does	 likely	 represent	 an	 ancient	 process	 in	 life,	
evolutionarily	matured	over	millions	of	years.	Originating	in	the	RNA	world,	self-splicing	introns	
entirely	 comprised	of	RNA	once	participated	 in	 the	procedure	by	 catalysing	 the	 characteristic	
transesterification	reaction	in	cis	or	trans	(Moore	et	al.,	1993).	The	splicing	of	pre-mRNA	by	the	
spliceosome,	 however,	 is	 catalysed	 by	 a	 large	 snRNP	particle,	 and	 its	 evolutionary	 origin	was	
initially	unclear.	Analysing	this	reaction	and	its	nucleic	acid	products,	it	was	then	revealed	that	a	
strikingly	 similar	 intron	 lariat	 structure	 was	 formed	 in	 both	 spliceosomal	 and	 Group	 II	 self-
splicing	 intron	 (GII	 intron)	dependent	 splicing	 (Padgett	 et	 al.,	 1984;	Ruskin	 et	 al.,	 1984).	 The	
high	conservation	of	 this	reaction	product	 lariat	structure	consequently	 led	 to	 the	assumption	
that	 the	 spliceosome	 may	 have	 actually	 originated	 from	 its	 GII	 intron	 ancestor	 (Cech,	 1986;	
Sharp,	1985).	Clear	evidence	for	this	theory,	however,	remained	elusive	at	that	time,	as	a	specific	
structural	understanding	of	the	catalytic	sites	of	both	splicing	machineries	was	lacking.			

An	 in-depths	 comparison	 of	 the	 latter	 is	 nowadays	 possible	 and	 in	 fact	 reveals	 striking	
similarities	 in	 the	 composition	 of	 the	 catalytically	 active	 centre	 between	 the	 solely	 RNA	
comprised	GII	intron	and	the	spliceosome.	The	structure	of	the	GII	intron	thereby	possesses	six	
characteristic	RNA	domains,	some	of	which	are	specifically	conserved	in	the	snRNA	and	protein	
structures	 of	 the	 spliceosome	 (Galej	 et	 al.,	 2018).	 Beginning	 at	 the	 catalytic	 centre,	 Domain	V	
(DV)	 is	 actually	 the	 most	 conserved	 entity	 in	 RNA	 composition	 and	 structure	 between	 GII	
introns	and	the	U6	snRNA	of	the	spliceosome	(Boulanger	et	al.,	1995).	The	DV	of	the	GII	intron	is	
structurally	resembled	by	the	U6	ISL	in	the	spliceosome	(e.g.	 in	the	C*	complex)	and	thus	also	
harbours	 the	 catalytic	 triad	 and	 the	 Mg2+	 ions	 at	 the	 active	 site.	 The	 level	 of	 conservation	
regarding	the	structural	fold	and	partially	also	the	nucleotide	sequence	is	astounding	(Robart	et	
al.,	 2014),	 making	 a	 parallel,	 independent	 evolution	 of	 both	 structural	 entities	 particularly	
unlikely.	The	sequence	of	the	U6	snRNA	is	furthermore	best	conserved	amongst	all	spliceosomal	
snRNAs	from	various	species	(Brow	and	Guthrie,	1988).		

DV	is	directly	connected	to	Domain	VI	(DVI),	which	provides	the	adenosine	nucleophile	for	the	
first	 step	of	 the	 reaction	 (Lambowitz	 and	Zimmerly,	 2011).	 Its	 characteristic	 helical	 structure	
thus	functionally	resembles	the	BSH	of	the	spliceosome.	Comparing	the	structure	of	a	eukaryotic	
GII	 intron	 (Robart	 et	 al.,	 2014)	 and	 that	 of	 the	 catalytically	 activated	 spliceosome	 (e.g.,	 the	
C*	complex	presented	 in	 this	work),	 the	highly	conserved	appearance	and	position	of	 the	 first	
exon	 (exon	 1)	 becomes	 likewise	 apparent.	 Parts	 of	 the	 GII	 intron	 Domain	 I	 (DI),	 more	
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specifically	 its	 exon	binding	 sequence	 (EBS),	 thereby	participate	 in	 the	binding	of	 the	most	3’	
exon	 1	 nucleotide	 in	 a	 similar	 fashion	 to	 that	 observed	 for	 the	 U5	snRNA	 loop	 1	 in	 the	
spliceosome	 (Costa	 et	 al.,	 2000).	Most	 of	 the	 remaining	DI	 nucleotides,	 however,	 provide	 the	
general	structural	scaffold	and	framework	of	the	GII	intron,	fully	embedding	its	catalytic	centre	
(Zhao	et	al.,	2015).	In	evolutionary	terms,	transitioning	from	the	GII	intron	to	the	spliceosome,	it	
thus	 seems	 that	 the	 size	 of	 the	 DI	 region	 has	 been	 substantially	 reduced	 in	 the	 spliceosome,	
where	 the	 interaction	of	DI	nucleotides	with	exon	1	 is	now	 facilitated	by	 the	U5	snRNA.	Most	
importantly,	 however,	 the	 scaffolding	 function	 of	 DI	 nucleotides	 in	 GII	 introns	 seems	 to	 have	
eventually	 been	 handed	 over	 to	 protein	 moieties	 (PRP8	 in	 particular)	 in	 the	 spliceosome,	
leading	to	the	assumption	that	large	parts	of	the	GII	intron	RNA	was	replaced	by	protein	during	
the	 evolutionary	 development	 of	 the	 spliceosome.	 As	 most	 components	 of	 the	 modern	
spliceosome	are	comprised	of	proteins,	it	may	be	assumed	that	the	general	process	of	replacing	
RNA	with	 protein	 is	 still	 on	 going.	 In	 particular	 the	 observation	 that	 more	 highly	 developed	
metazoan	spliceosomes	contain	an	even	 larger	number	of	proteins	compared	to	 those	of	 their	
less	developed	yeast	counterparts	supports	this	assumption.	The	catalytic	core	of	the	assembly,	
however,	is	remarkably	conserved	between	species	(Fabrizio	et	al.,	2009),	and	eventually	even	
amongst	different	splicing	machineries	in	general.	

4.3.2 RNA	helicases	that	modulate	splicing	activity	from	a	distance	

As	 elucidated	 in	 sections	 4.1.2	 and	 4.2.3	 the	 assembly	 and	 catalytically	 active	 phase	 of	 the	
spliceosome	 is	 compellingly	 modulated	 by	 large-scale	 structural	 rearrangements.	 The	
spliceosome	 thereby	 never	 enters	 a	 processive	 phase,	 as	 it	 is	 observed	 for	 numerous	 other	
macromolecular	 machines	 such	 as	 the	 RNA	 polymerases	 or	 the	 ribosome,	 but	 is	 assembled	
repeatedly	on	an	altering	substrate	for	every	round	of	splicing.	A	wealth	of	proteins	regulate	this	
functionality,	where	RNA	helicases	are	found	to	be	of	particular	importance	during	the	process	
(Cordin	 and	Beggs,	 2013).	 	 In	 particular	 a	 family	 of	 three	DEAD-box,	 four	DEAH-box	 and	one	
Ski2-like	 helicase	 is	 reported	 to	 be	 essential	 for	 all	 spliceosome	 functionality	 in	 eukaryotes	
(Cordin	et	al.,	2012).	The	Ski2-like	helicase	BRR2	thereby	engages	its	substrate	(the	U4	snRNA)	
directly,	 as	 elucidated	by	 the	B	 complex	 structure,	 and	 thus	 likely	 acts	 on	 the	 spliceosome	by	
exerting	a	classic	unwindase	activity.	Other	essential	RNA	helicases,	however,	must	act	on	 the	
remodelling	of	the	spliceosome	from	a	distance,	as	the	structures	of	the	molecular	machine	that	
are	available	 to	date	often	reveal	 the	missing	engagement	of	a	recruited	RNA	helicase	with	 its	
supposed	RNA	substrate.	A	prime	example	of	the	latter	is	represented	by	the	DEAH-box	helicase	
PRP16,	which	resides	at	the	periphery	of	the	C	complex	(Zhan	et	al.,	2018)	(and	is	absent	in	the	
C*	complex)	but	distanced	from	any	RNA	substrate.	Instead,	it	was	biochemically	proposed	that	
the	helicase	promotes	the	dissociation	of	Cwc25	and	Yju2	(CCDC49	and	CCDC94,	respectively	in	
humans)	in	an	ATP-dependant	manner	in	yeast	(Tseng	et	al.,	2011).	The	latter	two	factors	do	in	
fact	interact	with	the	BSH	and	PRP16	in	the	post	step-1	spliceosome	(Zhan	et	al.,	2018)	but	how	
a	potential	RNA	helicase	activity	of	PRP16	could	remodel	these	interactions	remains	unclear.		

Another	 example	 for	 an	 essential	 RNA	 helicase	 that	 is	 situated	 at	 the	 periphery	 of	 the	
spliceosome	is	represented	by	PRP22,	which	again	belongs	to	the	DEAH	family	and	resides	more	
than	100	Å	away	from	its	proposed	pre-mRNA	target	in	the	C*	complex.	PRP22	is	reported	to	be	
the	 first	 helicase	 that	 is	 involved	 in	 the	 disassembly	 of	 the	 spliceosome	 (Cordin	 and	 Beggs,	
2013),	however,	its	ATPase	activity	seems	dispensable	for	the	second	step	of	splicing	(Company	
et	al.,	1991;	Schneider	et	al.,	2004).	Yeast	structures	of	the	P	complex	then	revealed	that	Prp22	is	
eventually	 docked	 to	 exon	 2	 of	 the	 pre-mRNA	 close	 to	 the	 3’	 SS	 at	 this	 subsequent	 stage	 of	
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spliceosome	assembly	(Liu	et	al.,	2017;	Wilkinson	et	al.,	2017).	Why	it	is	nevertheless	recruited	
to	the	C*	complex,	disengaged	from	its	substrate	RNA,	and	if	PRP22	acts	similarly	in	the	human	P	
complex	can	not	be	determined	at	this	time.			

In	general,	RNA	helicases	 frequently	seem	to	act	on	the	spliceosome	from	a	distance.	Whether	
they	exclusively	serve	as	a	structural	scaffold	in	remodelling	other	protein	factors	or	actually	act	
as	 processive	 RNA	 helicases	 does	 nevertheless	 often	 remain	 unclear.	 As	 their	 action	 on	 the	
spliceosome	is	absolutely	essential	and	seemingly	not	talking	place	at	the	catalytic	centre,	RNA	
helicases	represent	a	significant	class	of	proteins	that	modulate	the	activity	of	the	spliceosome	
from	a	distance.		

4.3.3 Completeness	of	the	reconstructed	spliceosome	structures	

Reconstructed	 cryo-EM	 density	maps	 of	 large	macromolecular	machines	 rarely	 represent	 the	
entire	appearance	of	 the	complex.	 	For	 instance,	 in	 the	map	of	 the	C*	 complex	 it	 appears	 that	
several	peripheral	regions	of	the	assembly	(e.g.	the	Aquarius	binding	site	(section	4.2.1)	or	the	
PRP19/CDC5L	helical	bundle)	are	much	more	poorly	resolved	than	those	regions	at	the	centre	
of	 the	 complex.	 As	 the	 spliceosome	 possesses	 a	 particularly	 stable	 catalytic	 core	
(section	2.4.3.3),	 this	 section	 is	 usually	 the	 best	 resolved	 portion	 of	 the	 structure;	 whereas	
factors	that	are	situated	in	more	peripheral	regions	seem	to	be	less	stably	associated	and	thus	
frequently	 blur	 out	 during	 averaging	 and	 reconstruction.	 Often,	 the	most	 dynamic	 parts	 of	 a	
structure	cannot	be	visualized	at	all.	As	a	further	example,	both	the	B	as	well	as	the	C*	complex	
reveal	 large	 density	 elements	 that	 are	 particularly	 badly	 resolved	 and	 thus	 usually	 omitted	
during	 an	 interpretation	 of	 the	 data.	 Some	 of	 these	 peripheral	 factors	 are	 expected	 to	 fulfil	
regulatory	 functions	 in	 the	 splicing	 procedure	 and	 sometimes	 harbour	 large	 intrinsically	
unstructured	 domains,	 as	 for	 example	 the	 300	 kDa	 SRM300	 protein	 in	 the	 C*	 complex	
(Blencowe	 et	 al.,	 2000;	 Eldridge	 et	 al.,	 1999).	 Others,	 however,	 like	 the	 equally	 large	 RNA	
helicase	 protein	 BRR2,	 are	 usually	 well	 structured	 and	 stably	 associated	 to	 other	 known	
intermediate	 states	 of	 the	 spliceosome	 but	 not	 clearly	 identifiable	 in	 the	 density	 of	 the	
C*	complex	 that	 is	presented	here.	As	a	general	 theme,	 the	estimated	mass	of	all	proteins	 that	
are	 biochemically	 purified	 during	 sample	 preparation	 and	 those	 that	 can	 eventually	 be	
visualized	in	the	cryo-EM	reconstruction	differs	by	20-40	%.	Hence,	the	spliceosome	structures	
that	we	analyse	today	are	far	from	complete	in	their	molecular	architecture.				

To	 tackle	 the	difficulties	 that	are	caused	by	 the	structural	 inhomogeneity	(or	 “flexibility”)	of	a	
macromolecular	 complex	 it	 is	 thus	 important	 to	 improve	 the	 purity	 and	 quality	 of	 the	
biochemical	 preparation	 itself.	 Improved	 sample	 handling	 routines	 may	 aid	 in	 preventing	 a	
deterioration	of	 the	specimen	on	 the	grid	or	 the	upstream	biochemical	pipeline.	Furthermore,	
the	physical	 stability	of	 a	 specimen	 can	be	 improved	by	 the	mild	 chemical	 crosslinking	of	 the	
macromolecular	 complexes	 (Kastner	 et	 al.,	 2008).	 The	 latter	 in	 particular	 proved	 to	 be	 a	
valuable	tool	in	enhancing	the	structural	homogeneity	of	a	typical	cryo-EM	sample.		

4.3.4 Non-uniform	resolution	estimates	in	cryo-EM	

Cryo-EM	is	currently	utilized	to	elucidate	the	structures	of	large	macromolecular	machines	and	
enzymatic	 complexes	 at	 resolutions	 that	 almost	 match	 those	 of	 crystallographic	 experiments	
(Vonck	and	Mills,	2017).	To	achieve	a	particularly	high	resolution,	the	biochemical	preparation	
of	the	specimen,	however,	must	be	of	excellent	quality	and	great	homogeneity	(Zhou,	2011).	In	
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particular	 the	 latter	 requirement	 for	 an	 exceptional	 structural	 homogeneity	 of	 the	 sample	 is	
nevertheless	hard	 to	 achieve	 in	practice.	As	 introduced	 in	 section	2.3.4.1,	 the	most	 frequently	
communicated	 resolution	 value	 of	 a	 cryo-EM	 reconstruction	 is	 usually	 estimated	 as	 a	 single	
value	 at	 an	 arbitrary	 FSC	 cut-off	 level	 in	 a	 “gold-standard”	 procedure.	 Even	 though	 this	
estimation	routine	is	broadly	accepted	and	utilized	in	the	field	to	quantify	the	resolved	detail	of	
a	 reconstructed	 3D	 EM	 map,	 real	 density	 maps	 are	 rarely	 structurally	 homogeneous	
(section	4.3.3)	and	thus	do	not	poses	a	single	value	for	resolution	either.		The	typical	FSC	based	
resolution	estimation	then	averages	the	stable	core	of	the	map	with	those	areas	that	are	more	
flexible	 (or	 blurred	 out	 entirely).	 The	 one,	 single	 resolution	 value	 obtained	 through	 the	 gold-
standard	 FSC	 procedure	 thus	 generally	 solely	 reflects	 a	 not	 further	 specified	 “average”	
resolution,	 where	 some	 parts	 of	 the	 map	 are	 often	 resolved	 better	 and	 others	 significantly	
worse.	 Conclusions	 that	 are	based	on	 this	 average	 resolution	 value	 alone	 should	 therefore	be	
treated	with	caution	and	only	serve	as	a	 first	guideline	when	assessing	the	overall	quality	and	
information	content	of	a	reconstructed	3D	density	map.	Only	a	careful	visual	 inspection	of	 the	
map	 ensures	 that	 any	 kind	 of	 resolution-based	 conclusion	 may	 be	 tested	 and	 evaluated	
appropriately	(Penczek,	2010b).	

To	reduce	resolution	inhomogeneities	in	any	kind	of	EM	density	map	thorough	3D	classification	
and	low-pass	filtering	may	be	employed	(Penczek,	2010b).	In	this	regard,	performing	extended	
classification	routines	may	aid	in	improving	the	homogeneity	of	the	sample	(or	particle	dataset)	
in-silico.	 A	 reasonable	 filtering	 of	 the	 map	 then	 prevents	 overfitting	 during	 the	 refinement	
procedure	and	aids	in	equalizing	the	display	thresholds	of	the	map	during	visual	inspection	and	
analysis.	The	success	of	these	measures,	however,	 is	hardly	quantifiable	and	should	thus	again	
be	evaluated	with	caution	by	the	experimentalist	and	all	others	who	assess	the	results.	 In	this	
study,	 the	 maps	 of	 the	 B	 and	 C*	 complex	 were	 deliberately	 filtered	 to	 4.5	 Å	 and	 5.9	 Å,	
respectively,	in	order	to	prevent	a	major	distortion	of	the	estimated	vs.	the	actual	resolution.	

4.3.5 Anisotropic	resolution	due	to	preferred	particle	orientations	in	
Cryo–EM	

The	 anisotropic	 distribution	 of	 projection	 angles	 during	 a	 back	 projection	 procedure	 can	
significantly	 limit	 the	 resolution	 of	 a	 structural	 model	 that	 was	 obtained	 by	 cryo-EM.	 As	
introduced	in	section	2.3,	an	isotropic	recording	of	2D	sample	projections	at	as	many	projection	
angles	as	possible	is	important,	in	particular	if	the	sample	molecule	is	non-symmetric.	The	latter	
is	 usually	 routinely	 achieved	 during	 standard	 sample	 preparation,	 as	 particles	 are	 ideally	
adsorbed	to	 the	grid	 in	a	random	fashion	during	the	preparative	phase	of	grid	preparation.	 In	
certain	 scenarios,	 however,	 the	 corresponding	 particles	 instead	 interact	 in	 a	 defined	 (or	
preferred)	way	with	the	substrate	that	is	provided,	or	the	air-water	interface	of	the	grid.	In	these	
cases,	 the	 specimen	 is	 often	 adsorbed	 to	 the	 substrate	 in	 a	 preferred	 orientation,	which	may	
consequently	 impair	 the	 results	 of	 the	 3D	 reconstruction	 process	 during	 image	 processing	
(Ludtke,	 2016).	 As	 the	 spatial	 information	 of	 essential	 projection	 angles	 is	 missing	 in	 these	
reconstructions,	the	resolution	of	the	corresponding	3D	volume	is	anisotropic.	The	magnitude	of	
resolution	anisotropy	is	thereby	greatest	for	(imagined)	projection	angles	that	are	normal	to	the	
angle	 of	 the	 projection	 in	 the	 preferred	 orientation.	 Several	 examples	 exist	 in	 the	 literature	
where	 cryo-EM	 specimen	 displayed	 a	 severe	 angular	 preference	 in	 the	 recoded	 images	
(Campbell	 et	 al.,	 2015;	 Ludtke	 et	 al.,	 2001).	 The	 3D	 reconstructions	 in	 the	 previously	 given	
examples	 were	 nevertheless	 successful,	 as	 the	 high	 intrinsic	 symmetry	 of	 the	 particles	
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eventually	allowed	to	virtually	occupy	the	entire	projection	sphere.	Thus,	only	a	very	limited	set	
of	 angular	 orientations	 need	 to	 be	 recorded	 in	 these	 special	 cases.	 Unfortunately,	 symmetry	
related	expansion	strategies	do	not	apply	to	asymmetric	particles	in	the	C1	space	group.		

In	this	study,	the	3D	reconstruction	of	the	asymmetric	spliceosomal	B	complex	was	significantly	
affected	by	its	preferential	adsorption	to	the	grid.	Trying	to	cope	with	the	negative	consequences	
of	this	effect	it	was	first	attempted	to	record	a	large	dataset	and	particularly	classify	the	latter	in	
2D	 or	 3D	 for	 occasionally	 appearing	 rare	 views	 in	 the	 actual	 raw	 data.	 As	 particles	 in	 the	
preferential	 view	 were,	 however,	 approximately	 500x	 more	 prominent	 than	 others,	 little	
isotropic	resolution	was	gained	and	the	3D	refinement	and	reconstruction	of	the	particle	had	to	
be	aborted	once	 reaching	approximately	20	Å.	As	no	other	 satisfactory	 computational	method	
exists	 to	 treat	 the	 anisotropy	 in	 the	dataset	 (Ludtke,	 2016)	 it	was	 consequently	 attempted	 to	
improve	the	degree	of	preferential	adsorption	of	the	particle	by	modifying	its	surface	chemistry.		
In	 the	 following,	 the	 specimen	was	quenched	with	variously	 charged	chemicals	 like	aspartate,	
lysine	or	amylamide	after	crosslinking,	grids	were	deliberatly	glow	discharged	in	air	atmosphere	
and	the	sample	buffer	treated	with	detergents	like	Lauryl	Maltose	Neopentyl	Glycol	(LMNG),	as	
in	parts	described	elsewhere	(Glaeser	et	al.,	2016;	Zhang	et	al.,	2010).	Furthermore,	recording	a	
dataset	 at	 substantial	 tilt	 angles	 is	 suggested	 as	 a	 solution	 to	 address	 a	 preferred	 specimen	
orientation	on	the	grid	(Tan	et	al.,	2017).	The	latter	was	likewise	attempted	here	at	a	tilt	angle	of	
both	30°	and	40°.	However,	the	experiment	did	not	yield	feasible	improvements	in	resolution	as	
tilting	a	cryo-EM	specimen	to	high	angles	inevitably	induces	other	artefacts	to	the	data	such	as	
an	 increased	 sample	 drift	 or	 charging	 effects.	 Instead,	 new	 datasets	were	 recorded	 for	 every	
chemical	modification	listed	above	and	the	data	could	eventually	be	refined	to	a	final	resolution	
of	 4.5	Å	 (Bertram	 et	 al.,	 2017a).	 The	 angular	 preference	was	 thus	 improved	 compared	 to	 the	
initial	attempts,	but	was	not	entirely	eliminated.	The	preferential	view	is	still	prominent	in	the	
final	reconstruction	and	thus	 limits	 the	maximum	resolution	that	 is	 isotropically	attainable.	 In	
the	future,	even	more	chemical	modifications	or	an	entirely	different	purification	protocol	could	
be	utilized	in	order	to	try	eliminating	the	preferential	orientation	of	the	particle	entirely.	

4.4 Perspectives	
The	spliceosome	structures	presented	in	this	work	have	greatly	improved	the	understanding	of	
human	 pre-mRNA	 splicing.	 Significant	 discoveries	 include	 the	 mapping	 of	 the	 dramatic	
restructuring	 events	 that	 are	 required	 to	 assemble	 and	 activate	 the	 human	 pre-catalytic	
spliceosome.	 Furthermore,	 the	 role	 of	 the	 U2	 snRNP	 components	 and	 the	 B	 specific	 protein	
family	could	be	elucidated	in	unprecedented	detail,	ultimately	revealing	an	intricate	network	of	
regulatory	 and	 functional	 interactions	 among	 a	 wealth	 of	 different	 splicing	 factors.	 A	 direct	
comparison	 of	 the	 yeast	 and	 human	 pre-catalytic	 spliceosome	 structures	 then	 revealed	 a	
previously	unexpected,	significant	difference	 in	the	general	 initiation	of	the	splicing	procedure	
between	species,	even	though	further	studies	(ideally	in	the	pre-catalytic	yeast	system)	must	be	
conducted	to	make	such	comparisons	more	robust.		

Concerning	 the	 catalytically	 activated	 human	 spliceosome,	 the	 C*	 complex	 revealed	 the	
generally	conserved	catalytic	core	of	 the	spliceosome	for	 the	 first	 time.	 In	contrast	 to	 the	pre-
catalytic	configurations,	the	core	of	the	catalytically	activated	spliceosome	appears	to	be	entirely	
conserved	between	higher	and	lower	eukaryotes.	The	structure	further	elucidated	the	catalytic	
configuration	of	 the	corresponding	U2	and	U6	snRNA	nucleotides	 that	 finally	position	the	 two	
catalytic	 Mg2+	 ions.	 The	 5’	 SS	 as	 well	 as	 the	 BS	 nucleotides	 are	 thereby	 held	 in	 place	 by	
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characteristically	extended	RNA	double	helices	–	a	concept	of	potential	evolutionary	adaptation	
in	 higher	 eukaryotes	 that	was	 generally	 unknown	before	 and	 thus	 first	 described	here	 in	 the	
human	system.		

Even	though	both	models	of	the	B	and	C*	complexes	revealed	intriguingly	new	insights	into	the	
mechanics	of	splicing,	neither	assembly	eventually	represented	a	complete	representation	of	the	
spliceosome	with	all	of	its	peripheral	factors.	As	in	particular	the	peripheral	factors	are	poorly	
resolved,	it	will	be	necessary	to	improve	the	protocols	that	are	used	for	biochemical	purification,	
sample	preparation	and	image	processing	to	enhance	the	overall	completeness	of	the	structures	
in	the	future.		

Besides	 improving	 the	 level	 of	 structural	 completeness,	 many	 more,	 potentially	 unknown	
functional	 states	 of	 the	 spliceosome	 likely	 exist.	 The	 biochemical	 and	microscopic	 search	 for	
novel	snapshots	of	 this	molecular	machine	will	 therefore	continue.	The	discoveries	of	 the	past	
have	largely	revealed	the	mechanism	of	how	the	splicing	reaction	is	actually	catalysed	once	the	
splice	 sites	 were	 identified	 on	 the	 pre-mRNA	 substrate.	 How	 exactly,	 however,	 the	 pre-
spliceosomal	components	are	dedicated	 towards	a	specific	 splice	site,	and	how	this	process	 is	
regulated,	 is	 unknown.	 In	particular	when	 considering	 the	 alternative	 splicing	 events	 that	 are	
essential	 to	higher	 eukaryotes	 it	will	 become	a	 crucial	 task	 improve	 the	understanding	of	 the	
underlying	splice	site	selection	procedures	 in	the	 future.	Further	structural	models	of	 the	pre-
catalytic	spliceosome	such	as	the	metazoan	A	complex	or	even	earlier	assemblies	thus	likely	aid	
in	answering	these	questions.		

The	unparalleled	large-scale	rearrangements	that	productively	drive	the	catalytic	activity	of	the	
molecular	 machine	 prevail	 in	 both	 pre-catalytic	 and	 catalytically	 activated	 states	 of	 the	
spliceosome.	 How	 these	 rearrangements	 mechanistically	 modulate	 the	 splicing	 reaction,	
however,	 is	 only	 partially	 understood.	 In	 particular	 the	 question	 of	 how	 specific	 factors	 like	
helicases	at	the	periphery	of	the	assembly	can	influence	the	splicing	reaction,	or	even	proofread	
its	 fidelity,	 at	 the	 heart	 of	 the	 complex	 is	 far	 from	 fully	 answered.	 Learning	 more	 about	 the	
spliceosome’s	dynamic	mode	of	 operation	may	 therefore	eventually	 lead	 to	 a	 generally	better	
understanding	of	the	assembly,	regulation	and	function	of	large	macromolecular	machines	in	the	
cell.	A	precisely	targeted	interference	with	these	procedures	can	then	be	utilized	to	specifically	
manipulate	the	enzymatic	productivity	of	such	machines,	opening	the	potential	to	cure	diseases	
or	other	malfunctioning.							

The	 research	of	 splicing	mechanics	has	 thus	 just	 arrived	 at	 an	 intermediate	 level	 of	maturity.	
Future	 structural	 studies	 of	whole	 spliceosome	 complexes	 –	 in	 combination	with	 biochemical	
optimization	 of	 the	 underlying	 purification	 procedures	 –	 will	 therefore	 contribute	 to	 a	
progressively	 deeper	 understanding	 of	 RNA	 splicing	 in	 particular	 and	 the	 function	 of	
macromolecular	machines	in	general.	
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