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The role of forest soils in carbon storage under global change

A global-scale climate change has been observed over several decades. The global mean of

ground-level air temperature has increased, with an accompanied enhanced melting of

mountain glaciers and decreasing snow cover. In addition, more frequent extreme weather

events, such as heavy rainfall, drought periods and heat waves have been observed. Since 1900

and with progressive industrialization, the increase of global average temperature has exceeded

1°C mainly due to greenhouse gas emissions. Among these gases, rising carbon dioxide (CO2)

concentration represents the largest factor (Hansen et al., 2017). Fifty years ago, atmospheric

CO2 increased by less than 1 ppm per year, while today the increase per year is more than 2

ppm resulting in a global CO2 concentration of currently c. 400 ppm (Betts et al., 2016). The

rapid increase of atmospheric CO2 concentration is mainly due to human activities like fossil

fuel combustion, deforestation and land-use change (Raupach & Canadell, 2008). Model

calculations assume that about 50% of the total emitted CO2 remains in the atmosphere, while

the other half is absorbed by oceans and terrestrial ecosystems (Bousquet et al., 2000). On

global scale, forests store more than half of the organic carbon (C) found in terrestrial

ecosystems, whereby European temperate forests represent a strong C sink with 34% of

accumulated C in living vegetation, 5% in dead wood, 3% in forest floor and the majority (58%)

of C stored in soil organic matter (SOM) (Goodale et al., 2002). Accordingly, soil C storage of

temperate forest ecosystems are major players in the global C cycles. To what extent organic C

is stored in soil depends on several factors. The sink and strength of soil organic C pools is

influenced  by  biotic  factors  like  tree  species  and  microbial  composition  (Finzi et  al., 1998;

Díaz-Pinés et al., 2011) and by abiotic factors like soil temperature (Melillo et al., 2011) and

precipitation (Jobbágy & Jackson, 2000). The increase in temperature as a consequence of

global change is also accompanied by changes in the world´s hydrological cycle (IPCC, 2013)

with consequences for global precipitation regimes. High temperature and reduced precipitation

have shown to reduce the content of organic C stored in soils (Jobbágy & Jackson, 2000). In

Central Europe, more frequently occurring and more severe droughts and heat waves are

predicted (Rowell & Jones, 2006; Fischer & Schär, 2009; Fischer et al., 2012), which can have

strong influences for SOC storages and C dynamics in temperate forest ecosystems.

Considering the aboveground C turnover, relevant processes of C cycling in forests comprise

C uptake via photosynthesis, C release via leaf respiration, C storage in biomass, and C loss by

litter and dead wood. Since forest soil is the major sink of C, belowground processes play a key

role in C cycles and dynamics of forest ecosystems. Taking the net photosynthetic carbon

fixation as a basis, estimated 30 to 60% are directly allocated to the roots (de Kroon & Visser,
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2003), hence roots represent a very important mediator between C uptake via photosynthesis

and C storage in forest soils. Kuzyakov & Domanski (2000) estimated - based on a review of

published data - that about 50% of the entire C that is allocated to the root is used for root

biomass production, about 33% is released via root respiration and microbial utilization and

about 17% represent C inputs to soil, which are incorporated in microbial biomass and soil

organic matter. The input of root-derived C into soil is also called rhizodeposition, and includes

root C release through root turnover and death, exudation, mucilage secretion and border cell

loss of living roots (Jones et  al., 2009). However, root dynamics and the associated input of

root-derived C via rhizodeposition into the soil are still poorly understood aspects of the forest

C cycle.

Root influences on carbon and nutrient cycling and the effect of changing

climatic conditions

Since roots do not only determine the release of C into soils but also the uptake of resources,

they play a decisive role in the biogeochemical cycles of forest ecosystems (Brunner &

Godbold, 2017). While roots with larger diameters primarily serve transport and storage

functions, fine roots are responsible for nutrient and water acquisition (Fitter, 1996; Pregitzer

et al., 2002) and thus determine nutrient cycling and resource uptake from soils. Traditionally,

fine and coarse roots have been categorized according to root diameter (<2 mm or >2mm) and

more recently according to root order (Pregitzer et al., 2002). The most distal and finest root

orders are the most absorptive root parts with high respiration rates (Rewald et al., 2011), high

resource uptake efficiency (Guo et  al., 2008b; McCormack et al., 2015) and rapid turnover

(Joslin et al., 2006). Since fine roots are the most active part in water acquisition, morphological

root traits like the proportion of roots with fine root diameter and root order structure (branching

patterns) can also influence the productivity of trees under drought (Wasson et al., 2012).

Accordingly, fine root morphology and the associated functions play an important role in

resource acquisition and SOM accumulation in forest soils especially under changing climatic

conditions, for example more frequently occurring droughts.

The input of fine root-derived C into soil and the influences on resource availabilities and

acquisition are primarily determined by root functions like fine root turnover and root

exudation. An accelerated root turnover increases C fluxes into forest soils and thus influences

the transformation into root-derived organic matter (Guo et al., 2004). Since a faster root

turnover also implies a shorter root lifespan, which have been linked with high respiration rates

(Burton et al., 2002), strong metabolic activities (Comas & Eissenstat, 2004), and increased
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resource uptake efficiencies (Volder et al., 2005), root lifespan is not only an important driver

in  C  dynamics  but  also  in  water  and  nutrient  uptake  capabilities.  The  effects  of  changing

climatic conditions for example more frequently occurring droughts and increasing

temperatures on fine root lifespans still remain poorly understood due to the limited number of

respective studies. While shorter root lifespans have been related to increased temperatures

(Leppälammi-Kujansuu et al., 2014; Wang et al., 2016), the effect of drought on root longevity

is not clarified due to inconsistent results of various studies (Anderson et al., 2003; Bauerle et

al., 2008; Meier & Leuschner, 2008). However, changing climate conditions may have

important implications for root lifespan and thus for nutrient acquisition of trees and the C input

into the soil.

Root C release via rhizodeposition also includes the exudation of organic compounds and

mucilage from fine roots (Jones et  al., 2009). C release via root exudation ranges between 5

and 10% of the entire photosynthetically fixed C (Jones et  al., 2004), representing a

considerable source of C entering forest soils. In addition, C-rich exudates have the capability

to increase microbial biomass and to stimulate microbial activity via a priming effect

(Kuzyakov et al., 2000), which lead to an accelerated microbial decomposition of recalcitrant

SOM (Hoosbeek et al., 2004; Joslin et al., 2006; Phillips et al., 2011; Phillips et al., 2012; Meier

et al., 2017). This process leads to an exudate driven acceleration of biogeochemical cycles and

nutrient mineralization through increased microbial activity (Herman et al., 2006; Finzi et al.,

2015). Besides this indirect effect of exudates on resource availability, exudates have also the

capability to enhance nutrient availabilities directly by the provision of chelating agents or by

alteration of the pH milieu and redox status in the rhizosphere (Grayston et al., 1997; Jones et

al., 2004). Root exudation is highly influenced by changing environmental and climatic

conditions. Previous studies found that C release through root exudation decreases with

increasing root depth (Tückmantel et al., 2017) and increasing N deposition (Phillips et  al.,

2009). With respect to climate change, root exudation is predicted to increase under elevated

CO2 (Phillips et al., 2009; Phillips et al., 2011) and increasing temperatures (Boone et al., 1998;

Yin et al., 2013; Yin et al., 2014; Zhang et al., 2016). Studies on the effect of drought on root

exudation are inconclusive: C release via root exudation has been found to increase (Reid &

Mexal, 1977; Preece et al., 2018), decrease (Brunner et  al., 2015), or to be unaffected by

drought (Karst et al., 2017). This represents the uncertainties in predicting exudate-derived C

input to the soil and resource acquisition through root exudation under changing precipitation

regimes. But not only the magnitude of C release with root exudation, but also the composition

and diversity of exudates are assumed to have great influences on the diversity and activity of
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soil microbes, biogeochemical processes, and nutrient availability in the rhizosphere (Prescott

& Grayston, 2013; Eisenhauer et al., 2017).

As a conclusion, fine root morphology and root functions represent considerable factors that

influence the C and nutrient cycle in forest soils and are important factors for the development

of  forest  ecosystems  under  the  impact  of  the  global  climate  change.  Despite  root-specific

influences, there is increasing evidence that the mycorrhizal symbiont associated to the root has

also a significant effect on SOC and nutrient availability in the rhizosphere (e.g. Finlay &

Söderström, 1992; Finlay et al., 2006; Jones et al., 2009; Averill et al., 2014; Soudzilovskaia

et al., 2015b). Mycorrhizal fungi represent a diverse community of species and strains. The

extent of infection of roots in forest ecosystems through the community and its individual

members is often largely unknown. In contrast, the relative abundances of the types of

mycorrhizal association represent a comparatively easily determinable property of diverse tree

species compositions in forest ecosystems. Furthermore, as in most symbiosis, the adaptability

of both partner to each other might strongly influence the mutual functioning. However, the

extent to which different types of mycorrhizal associations contribute to and influence the C

and nutrient dynamics in forest ecosystems remain largely unknown. This ‘black box’ might

turn out to be a key factor in understanding and possibly positively influencing the forest

ecosystem dynamics under the global climate changes currently and in the future. The here

presented work has the objective to contribute to this understanding.

Mycorrhizal associations in temperate forests

Mycorrhizal fungi are associated with almost all tree species in forests ecosystems, among

which the most widespread are arbuscular (AM) and ectomycorrhizal (ECM) associations

(Read, 1991). The symbiosis between plants and mycorrhizal fungi is possibly the world´s

primarily mutualism and is based on the exchange of photosynthetically fixed C from the host

as food source ensuring growth of the fungus, and in turn, enhanced provision of soil-derived

nutrients and water to the tree. AM and ECM associations differ in fundamental fungal

structures. ECM fungi are characterized by the intercellular Hartig net representing the interface

of resource exchange between the host and the fungus and by a thick hyphal mantel and a

extraradical mycelium increasing the absorbing area of roots and ensuring nutrient and water

uptake (Brundrett et al., 1996). In contrast, AM fungi have intracellular arbuscular structures

which are connected with hyphae and vesicles (Brundrett, 2002). In this form of the symbioses,

arbuscules ensure nutrient transfer between the host and the fungal symbiont, vesicles provide

nutrient storages, and hyphae emanating into the soil extend the absorbing surface (Leake et
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al., 2004). Beside functional differences in fungal structures, trees associated with AM and

ECM fungi in temperate forest ecosystems exhibit different biogeochemical variations, which

is due to the characteristic nutrient economy of the mycorrhizal association types (Read &

Perez-Moreno, 2003; Phillips et  al., 2013). The inorganic nutrient economy of forest

ecosystems dominated by AM tree species are characterized through the fact, that the majority

of nutrients is not bound organically but in the soil solution or comparatively weakly bound in

inorganic forms to the soil particles` surface. Nutrients in this status can mostly be absorbed

quickly by the plants, but are also subject to increased leaching. This interconnections apply in

particular to growth-limiting nutrients such as N (Phillips et al., 2013; Midgley & Phillips,

2014). Furthermore, AM dominated ecosystems are characterized by a rapid decomposition of

high-quality leaf litter of AM tree species (Cornelissen et al., 2001; Hobbie et al., 2006) and by

low saprotrophic properties of AM fungi (Read & Perez-Moreno, 2003). In contrast, the organic

nutrient economy of ECM dominated ecosystems tend to have higher rates of soil C retention

(Vesterdal et al., 2012; Averill et al., 2014), less N leaching losses (Midgley & Phillips, 2014),

and a higher proportion of nutrients bound in organic compounds (Phillips et al., 2013). This is

a consequence of the more slowly decomposing low-quality leaf litter of ECM trees

(Cornelissen et al., 2001; Hobbie et al., 2006). In contrast to AM fungi, ECM fungi have high

saprotrophic properties that release oxidative and hydrolytic extracellular enzymes to mine

nutrients from SOM (Read & Perez-Moreno, 2003). Based on these systematic differences in

nutrient economies of AM and ECM tree species the idea of a mycorrhizal-associated

framework for predicting C and nutrient couplings in temperate forests emerged (Phillips et al.,

2013). So far, there is increasing evidence that root functions (Phillips & Fahey, 2006; Smith

& Read, 2008; Yin et al.,  2014),  relevant  biogeochemical  processes  in  C,  N,  and  P  cycling

(Phillips & Fahey, 2006; Brzostek et  al., 2013; Yin et al., 2014), and root morphology

(Brundrett, 2002; Smith & Read, 2008; Comas & Eissenstat, 2009; Comas et al., 2014;

Eissenstat et al., 2015) are influenced by the mycorrhizal association. However, to this date, the

identification of systematic differences between AM and ECM association on root-rhizosphere

interactions is still not far developed.

Root-rhizosphere interactions of AM and ECM trees

The effect of fine roots and their associated mycorrhizal type on biogeochemical cycles starts

in the rhizosphere, representing the root surrounding soil, which is directly influenced by

rhizodeposition and associated soil microbes. The mycorrhizal colonization with AM or ECM

fungi may alter important root functions of the tree that influence biogeochemical processes in
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the rhizosphere. Since root lifespan and exudation have strong influences on root-rhizosphere

interactions, the effect of the mycorrhizal association type in these root functions is of particular

importance. The mycorrhizal status is known to influence root morphology (Smith & Read,

2008), which is linked with root lifespan. However, studies on the effect of the mycorrhizal

type on root lifespan are scarce and hitherto there is no evidence that the mycorrhizal

association type influences root lifespan (McCormack et al., 2012; Chen & Brassard, 2013). In

contrast,  root  exudation  has  been  related  to  the  associated  mycorrhizal  type  (Langley  &

Hungate, 2003; Meier et al., 2013) but also to the tree species (Grayston et al., 1997). Since

exudation is an important driver that regulates nutrient availability, systematic differences in

nutrient economies of AM and ECM tree species may be associated with differences in C

release  through root  exudation.  High  organic  N content  in  ECM ecosystems may result  in  a

stronger dependency on microbial decomposition of ECM trees and, thus, in an increase in C

release via root exudation to prime microorganisms that decompose N containing organic

compounds (Brzostek et al., 2013; Yin et  al., 2014). The influence of the mycorrhizal

association on exudation is also reinforced by the capability of mycorrhizal fungi to release

carbohydrates and extracellular enzymes that mineralize C, N and P from SOM (Tawaraya et

al., 2006; Meier et al., 2015; Zhang et al., 2016). It is already known that rhizosphere effects

(i.e., the relative difference in chemical, physical, and biological properties between

rhizosphere and bulk soil) in C, N and P cycling are differently pronounced in AM and ECM

dominated stands with higher capabilities of ECM trees to acquire nutrients from SOM (Phillips

& Fahey, 2006; Brzostek et al., 2013; Yin et al., 2014). Such effects have often been related to

the capability of ECM trees to release extracellular enzymes and to the magnitude of C release

via exudation that primes microorganisms that decompose nutrients from SOM. However, not

only the magnitude, but also differences in exudate composition between AM and ECM trees

may have great influences on nutrient acquisition from SOM, however, there are no direct

studies on that subject available. Even though the dominant functional mycorrhizal type could

play  a  key  role  in  rhizosphere  processes,  there  is  still  a  lack  of  understanding  how AM and

ECM associations differ in C and nutrient cycles. Furthermore, it remains largely unclear how

this is related to mycorrhiza-specific root exudation and root lifespan. This fact has turned out

to be an obstacle for the incorporation of belowground processes in ecosystem models.

Linkages of mycorrhiza-specific morphological root traits

Over  the  last  years  and  with  the  growing  need  and  interest  in  identifying  indicators  for

predicting forest ecosystem processes, the number of studies on key above- and belowground
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traits in forest ecosystem functioning increased. The identification of plant functional traits

represents a useful approach for simplifying complex plant characteristics, which can be

implemented in ecosystem and global models. During the last decade, aboveground plant traits

have been intensively studied (Poorter & Bongers, 2006; Cornwell et al., 2008; Ordoñez et al.,

2009; Díaz-Pinés et al., 2011). Based on these aboveground traits, conceptual frameworks for

ecosystem processes like nutrient cycling, decomposition, and resource acquisition were

included into modelling efforts, often in relation to their phylogenetic group (evergreen

gymnosperm vs. deciduous angiosperm). Due to the elaborated observations of aboveground

features, a global leaf economic spectrum has been developed, which describes the nutrient

return and biomass investments in leaves of fast, acquisitive or slow, conservative tree species

and operates largely independent of plant growth and functional types (Wright et al., 2004). In

comparison, less attention has been paid on root specific traits  and so far,  it  remains unclear

whether belowground traits correspond to aboveground traits. However, the correlation of

morphological and architectural root traits with functional trait syndromes in order to simplify

the complexity of ecosystems gained increasing interest. Morphological root traits like specific

root length (SRL), specific root area (SRA), root diameter, root order and root branching have

already been linked with resource acquisition and foraging strategies (Eissenstat et al., 2015).

The association with mycorrhizal fungi directly alter root morphology and chemistry (Smith &

Read, 2008) and has the potential to influences plant strategies in resource acquisition (Olsson

et al., 2003). ECM root systems are known to have higher branching intensities and thinner root

diameters than AM root systems (Eissenstat et al., 2000; Brundrett, 2002; Smith & Read, 2008;

Comas & Eissenstat, 2009). Small root diameters with accompanied high specific root length

(SRL) and high branching intensities have been linked with root proliferation and high abilities

in foraging strategies (Hodge, 2004; Eissenstat et al., 2015). An increase of C release via root

exudation in nutrient rich patches is also known to be linked with root morphological traits like

increasing root surface are (SRA), high number of root and mycorrhizal tips (Phillips et al.,

2008), and intense root branching (Groleau-Renaud et al., 1998; Badri & Vivanco, 2009). Roots

with small diameters and strong branching intensity, which are shown to be distinctive for ECM

root systems, have been related to decreased root lifespans (Wells & Eissenstat, 2001; Wang &

Qiu, 2006; Guo et al., 2008a; Gu et al., 2011; McCormack et al., 2012), high resource uptake

capabilities (McCormack et al., 2015) and high respiration rates (Rewald et al., 2011). Fine and

strongly branched root systems are also assigned to fast acquisitive growing species (Comas et

al., 2002; Comas & Eissenstat, 2004). In contrast, due to the fast decomposition of AM leaf

litter and the accompanied accelerated nutrient cycles (Phillips et al., 2013), AM tree species
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were proposed to be fast and acquisitive in comparison to ECM tree species. Despite the

differences in root morphology of AM and ECM trees, the effect of the mycorrhizal association

type on these linkages are hitherto poorly understood and largely not included in belowground

trait economies (Weemstra et al., 2016). However, systematic differences in root architecture

of AM and ECM associations imply that the mycorrhizal association type should be considered

as possible important belowground trait that influences resource acquisition, foraging and thus

C and nutrient dynamics in forest ecosystems.

AM and ECM associations under conditions of climate change

Changing climatic conditions will influence important root functions, and C and nutrient

dynamics in forest ecosystems, which are relevant for mycorrhizal associations. The most

important factor for climate change is the increase in atmospheric CO2, which is associated with

an increase in temperature and changes in rainfall distribution. This will lead to decreased soil

water availability in many areas of the world. Additionally, changes in rainfall distribution and

temperature are accompanied by a progressive N deposition that increases plant-available N in

forest soils, as a consequence of anthropogenic atmospheric N emission (Bobbink et al., 2010).

These changes taken together may have a great impact on the function of mycorrhizal

associations through an accompanied alteration in resource availabilities, in C allocation to the

roots, and in the distribution of mycorrhizal fungi and their hosts (Bellgard & Williams, 2011).

While elevated CO2 seems to stimulate AM and ECM colonization (Treseder, 2004; Alberton

et al., 2005; Garcia et al., 2008; O’Neill, 2008; Cheng et al., 2012), an increased N availability

has been shown to increase AM (Garcia et al., 2008), but to decrease ECM colonization

(Treseder, 2004). While studies on the effect of drought on mycorrhizal colonization are

contradictory (Swaty et  al., 2004; Clark et al., 2009; Querejeta et  al., 2009; Hawkes et  al.,

2011), Soudzilovskaia et al. (2015) showed on a global scale that ECM colonization is highly

influenced by seasonal precipitation, while AM colonization is strongly related to seasonal

temperature. Despite the influence of drought on the degree of AM and ECM colonization, it

remains an open question if the type of mycorrhizal association may improve water uptake of

their hosts. Water availabilities have been shown to be enhanced when mycorrhizal fungi form

filamentous  hyphae,  which  increase  the  soil  water  absorbing  surface  area,  by  exploiting

micropore water, which is not accessible for roots. Furthermore, an increased production of

aquaporin or osmotic metabolites by mycorrhizal fungi are known to decrease the water

potential of plants (Lehto & Zwiazek, 2011; Rapparini & Peñuelas, 2014; Phillips et al., 2016).

Whether AM or ECM trees are more tolerant to drought is uncertain due to inconsistent findings
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(Querejeta et al., 2009; Brzostek et al., 2014; Mohan et al., 2014), underlining that the role of

the mycorrhizal type for host plants under drought is not well understood. However, systematic

differences in drought tolerance between AM and ECM associations could result in a

compositional shift in the dominant mycorrhizal association type under more frequently

occurring droughts and may affect important root functions, belowground C allocation, and

nutrient dynamics on ecosystem scale.

Objectives of the study

For predicting future developments of forest ecosystems in respect to C dynamics and nutrient

cycling under climate change, it is of fundamental importance to understand the extent of effects

which arise from the type of mycorrhizal association. The distinction between AM and ECM

tree species may provide a powerful tool in framework predictions of global change impacts on

temperate forests (Phillips et al. 2013). A deeper understanding of functional differences in

root-rhizosphere interactions between AM and ECM trees is required to incorporate the type of

mycorrhizal association in forest ecosystem models.

The overarching hypothesis of this study was that the type of mycorrhizal association has a

strong influence on major root functions like nutrient acquisition, root exudation, and root

lifespan and mediates the plant-soil feedback especially under conditions of more frequently

occurring droughts.

 The objectives of this study were:

Ø identification of mycorrhiza-specific differences in morphological root traits, functional

root traits, and rhizosphere processes.

Ø evaluating the role of the type of mycorrhizal association in linkages of root functional

and morphological traits with nutrient acquisition and microbial activity in the

rhizosphere.

Ø investigation of drought effects on AM and ECM root functions and of the effect of the

mycorrhizal association type on drought sensitivity of trees.
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 Based on these objectives, the main hypothesis of the study were as follows (see Figure 1):

1. The fine and highly branched root system of ECM trees is linked with decreased root

lifespan and related to precision foraging and more acquisitive root traits.

2. The extent of C release through root exudation is higher in ECM than in AM trees,

resulting in higher acquisition of organic N as a consequence of the organic nutrient

economy of ECM ecosystems.

3. AM and ECM root exudates differ in their composition with strong impacts on microbial

activity and biogeochemical processes in the rhizosphere.

4. Drought leads to a stronger reduction in root exudation and root lifespan of ECM than

of AM trees, because of a higher drought sensitivity of ECM tree species.

Methodical approach

To answer the question how strong and to what relevance for the ecosystem rhizosphere

processes, root functions and root traits are influenced by the type of mycorrhizal association,

four tree species per mycorrhizal type were studied in a combination of two main projects:

1. A field study in a temperate broad-leaved mixed forest stand in Central Germany

representing a mature forest stand with natural occurrence of several AM and ECM

tree species (Chapter 2 and 3).

2. A factorial drought experiment in large-scale mesocosms with young trees of four

AM and four ECM tree species. The work was performed in the Göttingen Rhizolab

and its associated lysimeters (Chapter 4 and 5).

Figure 1 A simplified conceptual causal loop diagram for illustrating the relationships and interactions between the type of
mycorrhizal association, important root functions, and rhizosphere processes to elucidate the main hypothesis of this study.



CHAPTER 1

12

In both studies, eight tree species were selected which are frequently dominant or subdominant

trees of the natural forest vegetation in Central Europe and represent the two mycorrhizal types

(cf. Wang & Qiu, 2006): common ash (Fraxinus excelsior L.), Norway maple (Acer platanoides

L.), sycamore maple (Acer pseudoplatanus L.), and wild cherry (Prunus avium L.) are AM tree

species. European hornbeam (Carpinus betulus L.),  European  beech  (Fagus sylvatica L.),

pedunculate oak (Quercus robur L.), and small-leaved lime (Tilia cordata MILL.) are ECM

tree species.

I. Research project 1: Field study

Study area

The research was conducted in an old-growth mixed forest ‘Hainich National Park’ in Thuringia

in Central Germany (51°08’N, 10°51’E; see Figure 2), which represents with an area of 7,500

ha  one  of  the  largest  deciduous  broadleaf  forests  in  Central  Europe.  The  climate  can  be

characterized as semi-humid with an annual temperature of 7.7°C and a mean annual

precipitation of 590 mm (period 1973-2004; Deutscher Wetterdienst, 2005). Mineral soil (0-30

cm) texture of the study site is characterized by a low content of sand (<5%) and a high content

(about 74%) of silt (Guckland et  al., 2009). From a base-rich Pleistocene loess layer over

Triassic limestone (Middle Muschelkalk) a eutrophic Luvisols developed (IUSS, 2006) with a

vegetation classified as Stellario-Carpinetum (starwort-oak-hornbeam forest, interfused with

elm trees). The study area is a part of a large section of the ‘Hainich National Park’ that has

been unmanaged over the last 40 years and developed basically undisturbed and therefore

represents ancient woodland (Wulf, 2003). Soil manipulations like e.g. liming were absent. The

forest  stand has relatively high tree species richness with a total  of up to 14 tree species co-

occurring and contains an assemblage of AM and ECM tree species.

Experimental design

Circular plots with a diameter of 8 m were randomly selected and contained mature trees of the

eight selected tree species. Two to three neighboring trees or one tree with a dominant position

of the targeted tree species formed the center of the circular plots. This cluster scheme ensured

that bulk and rhizosphere soil of the fine roots belonged to the targeted tree species (cf. Kubisch

et al., 2016). To ensure comparability, only mature trees of similar age and crown structure on

level  to  slightly  inclined  terrain  were  selected.  Each  cluster  of  the  studied  tree  species  was

replicated  three  times,  resulting  in  24  plots  in  total.  All  plots  were  located  in  an  area  of

approximately 12 ha in the northeast of the national park and in similar landscape positions to
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minimize  topographic  effects.  This  experiment  was  sampled  over  a  12-month  period  from

September 2013 to August 2014.

Measured parameters

The focus of research project 1 was on the investigation of differences in root-rhizosphere

processes between AM and ECM tree species in order to identify effects of the mycorrhizal

type on root functions and biogeochemical dynamics in the rhizosphere. The following

parameters were measured during this study:

Ø Root functions: C release (quantity) and chemical richness (quality) of root exudates

Ø Root architecture and morphology: fine root diameter, root tissue density, specific root

length, specific root area, root branching intensity, degree of mycorrhizal colonization

Ø Rhizosphere processes: microbial biomass, potential activity of extracellular N and P

degrading  enzymes,  N  supply  (net  N  mineralization,  free  amino  acids,  C:N  ratio),  P

availability, and water availability

These measurements were accompanied by a parallel study that investigated several leaf traits

(specific leaf area, tissue density, N content and C:N ratio) and additional root traits in root

order morphology (separation of first and second root from third to fifth root order).

Figure 2 Location of the study area in the Hainich National Park in Thuringia, Germany (National Park Authority Hainich,
2018).
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II. Research project 2: factorial drought experiment in large-scale mesocosms

Plant material

About 25 young trees per species of this study were collected from the ‘Hainich National Park’

in Thuringia in Central Germany in two campaigns in September 2011 (AM: common ash and

sycamore maple; ECM: European beech and small-leaved lime) and September 2012 (AM:

Norway maple and wild cherry; ECM: pedunculate oak and European hornbeam). The selected

individuals were similar in tree height (about 30 cm) and crown dimensions and were colonized

by indigenous mycorrhizal communities. Eight young trees per species were planted at the

Göttingen Rhizolab and associated lysimeters.

Experimental design

The Göttingen Rhizolab is an outdoor facility designed for long-term investigations of root

growth and dynamics of trees and ensures full control of soil water by an automatic covering

of mobile Plexiglas rain shelters during precipitation while glasshouse effect are avoided (cf.

Meier & Leuschner, 2008). Eight young trees per species were planted in 16 drained large-scale

containers with the rims at ground level (according to a randomized block design). Each

container was divided by polyethylene plates into four plots, resulting in 64 plots (see Figure

3) in which each mini-rhizotrons were installed. Two soil moisture treatments were initiated

Figure 3 Experimental setup of research project 2.
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and replicated four times per tree species: a drought treatment (5% SWC, v/v) and a well-

watered treatment (10% SWC, v/v). The soil water content was measured continuously and

adjusted every other day by homogenous drip irrigation. The drought treatment was paused

during the non-growing seasons, where natural precipitation brought the soil water content back

to field capacity. The experiment was conducted from spring 2014 to autumn 2015 and thus

simulated two consecutive summer droughts of about 24 weeks each. Soil and air temperature

and humidity were recorded continuously as microclimatic data.

Measured parameters

The focus of research project 2 was on the influence of the type of the mycorrhizal association

on root functions, C cycling and N uptake under defined drought stress. The following

parameters were measured:

Ø Root functions: C release via root exudation, fine root lifespan (mini-rhizotrons),

organic and inorganic N absorption

Ø Root architecture and morphology: fine root diameter, root tissue density, specific root

length, specific root area, root branching intensity, rooting depth, degree of mycorrhizal

colonization

Ø Belowground and aboveground biomass production: total root biomass, coarse root

biomass, fine root biomass, total shoot biomass, stem biomass, leave biomass

Ø Aboveground properties: photosynthesis, leaf respiration, relative growth rates, C:N

ratios, foliar 13C and 15N signature
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Abstract

Global vegetation models use conceived relationships between functional traits to simulate

ecosystem responses to environmental change. In this context, the concept of the leaf economics

spectrum (LES) suggests coordinated leaf trait variation, and separates species, which invest

resources into short-lived leaves with a high expected energy return rate from species with

longer-lived leaves and slower energy return. While it has been assumed that being fast

(acquisitive) or slow (conservative) is a general feature for all organ systems, the translation of

the LES into a root economics spectrum (RES) for tree species has been hitherto inconclusive.

This may be partly due to the assumption that the bulk of tree fine roots have similar uptake

functions as leaves, despite the heterogeneity of their environments and resources. In this study

we investigated well-established functional leaf and stature traits as well as a high number of

fine root traits (14 traits split by different root orders) of thirteen dominant or subdominant

temperate tree species of Central Europe, representing two phylogenetic groups (gymnosperms

and angiosperms) and two mycorrhizal associations (arbuscular and ectomycorrhizal). We

found reflected variation in leaf and lower-order root traits in some (surface areas and C:N) but

not all (N content and longevity) traits central to the LES. Accordingly, the LES was not

mirrored belowground. We identified significant phylogenetic signal in morphological lower-

order root traits, i.e. in root tissue density, root diameter, and specific root length. By contrast,

root architecture (root branching) was influenced by the mycorrhizal association type which

developed independent from phylogeny of the host tree. In structural equation models we show

that root branching significantly influences both belowground (direct influence on root C:N)

and aboveground (indirect influences on specific leaf area and leaf longevity) traits which relate

to resource investment and lifespan. We conclude that branching of lower order roots can be

considered a leading root trait of the plant economics spectrum of temperate trees, since it

relates to the mycorrhizal association type and belowground resource exploitation; while the

dominance of the phylogenetic signal over environmental filtering makes morphological root

traits less central for tree economics spectra across different environments.

Keywords: angiosperm trees, arbuscular mycorrhiza, ectomycorrhiza, fine root traits,

gymnosperm trees, precision foraging, root economics spectrum, root order
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Introduction

Plant functional trait spectra are valuable tools in simplifying floristic complexity to a level that

can be handled in models which scale ecosystem processes to landscape and global scales.

Theory on plant growth strategies suggests that plants characteristic of low- and high-resource

environments, respectively, evolved a common set of traits linking exploitation (root: shoot,

tissue turnover, and concentration of plant defences) with growth (resource uptake and growth

rates) (Grime, 1977; Chapin III et al., 1993; Bardgett et al., 2014). In continuation of this theory,

the leaf economics spectrum (LES) describes a universal spectrum on the return of nutrient and

dry mass investments in leaves (Wright et al., 2004): fast, acquisitive species with high

expected rate of energetic return on investment possess relatively large, fast growing leaves

with short lifespan, high N content per unit mass, high specific leaf area (SLA), and high

instantaneous rates of respiration and photosynthesis in comparison to slow species. This

suggests convergence of leaf traits of coexisting species under similar environmental

conditions, despite the great genotypic diversity among these species (Reich et al., 2003). The

LES seems to operate largely independent of growth form, plant functional type, or biome

(Wright et al., 2004), and has been successfully linked to plant performance (Reich et al., 1998;

Poorter & Bongers, 2006), species distribution and interactions (Sterck et al., 2006), and

ecosystem processes and services (Reich et al., 1997; Díaz et al., 2004; Grigulis et al., 2013;

Weemstra et al., 2016).

Despite the successful application of the LES and the translation into a correspondent wood

economics spectrum (WES; Chave et al., 2009), its translation into a root economics spectrum

(RES) for trees has been inconclusive so far and is still a matter of debate. By theory, being fast

or slow should be a general feature of species (Reich, 2014). Consequential, acquisitive species

with respect to their leaf traits should possess relatively small-diameter, fast-growing fine roots

with short lifespan, high N content, high specific root length (SRL), and high rates of respiration

and nutrient acquisition in comparison to slow, conservative species with long-term resource

retention. This theoretic RES has been partly confirmed for trees in some studies (Chen et al.,

2010; McCormack et al., 2012; Reich, 2014), but scrutinized by others (Comas & Eissenstat,

2004; Withington et al., 2006; Chen et al., 2013; Valverde-Barrantes et al., 2015; Weemstra et

al.,  2016).  Often,  not the whole set  of traits  for a RES for mature trees is  covered by single

studies using standardized methods, which makes overall conclusions difficult.

The complex architecture of root systems has traditionally been categorized according to root

diameter in fine and coarse roots, which may not reflect their functionality, especially among
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tree species with systematic differences in mean root diameter. More recent work, which

focused  on  the  classification  of  fine  roots  according  to  a  stream-based  ordering  system

(Pregitzer et al., 2002), has proved that only the most distal fine root orders serve (primarily)

water and nutrient acquisition (Guo et al., 2008b; Rewald et al., 2011; McCormack et al., 2015).

These distal fine root orders should have similar functionality across species and be a reflection

of the resource acquisition function of leaves, which makes their traits more suitable for an

inspection of the RES. However, resource uptake belowground differs vastly from aboveground

resource capture: light and CO2 are predictably available throughout the canopy while nutrients

and water are often highly heterogeneously distributed in the soil, which increases the

importance of traits related to precision foraging (prolific root branching and mycorrhizal

symbioses) over traits which maximize the surface area per se. The branching architecture is

an expression of the plastic responses of roots to their environment since it seems to be

independent from phylogeny, at least in subtropical trees (other than diameter-related root traits;

Kong et al., 2014). It has been demonstrated that species with high branching intensity are

capable of rapid and extensive proliferation into resource-rich patches (morphological

plasticity; reviewed by Hodge, 2004). Traits related to precision foraging of roots are missing

in the current version of the RES, though (Weemstra et al., 2016). In particular, the association

with mycorrhizal fungi may complement the foraging strategy of roots for limiting nutrients.

Trees associated with different mycorrhizal colonization types differ profoundly in root traits

related to precision foraging: ECM trees, which mainly occur in ecosystems dominated by

organic nutrients, have thinner roots and higher branching intensity than AM trees (Brundrett,

2002; Smith & Read, 2008; Comas & Eissenstat, 2009; Comas et al., 2014; Eissenstat et al.,

2015). Yet it is unknown if ECM trees belong systematically to the more acquisitive root

spectrum in comparison to AM trees.

In the work presented here, we analyzed sun leaf, stature, and fine root traits of the first to fifth

root order of thirteen important temperate tree species of the Central European tree flora, which

represented two phylogenetic groups (gymnosperms and angiosperms) and two mycorrhizal

association types (AM and ECM). Sun leaf and fine root samples were collected from three

mixed forest stands in the center of Germany. For the comparison of fine roots, which serve

similar functions among tree species, we separated fine root strands into two root order fractions

(first  to  second and  first  to  fifth  root  order).  We analyzed  fine  root  fractions  for  nine  traits,

including specific root area (SRA), SRL, tissue density, branching ratio, branching intensity,

root diameter, root Nmass, and root C:N, and obtained information on fine root longevity from

an accompanying comprehensive literature survey. We hypothesized that (i) fine root
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morphology is phylogenetically structured, (ii) the RES is not a mirrored analogy of the LES,

but centres around traits related to precision foraging, i.e. around root branching, in which trees

with intense root branching belong to the fast, acquisitive spectrum and trees with reduced root

branching belong to the slow, conservative spectrum, and (iii) ECM trees have higher branching

intensity and more acquisitive root traits in comparison to AM trees.

Materials and Methods

Study sites and tree species

Sampling from thirteen major Central European tree species was conducted in three mixed

forest stands in Central Germany, which represented characteristic, mesic mesotroph site

conditions for the investigated tree species: two study sites incorporated replicate sites for

angiosperm tree species (‘Hainich National Park’ at 340 m a.s.l., 51°08’N, 10°51’E and

‘Experimental Botanical Garden Göttingen’ at 200 m a.s.l., 51°55’N, 9°96’E) and one study

site covered the gymnosperm tree species (‘Moringen City Forest’ at 310 m a.s.l., 51°73’N,

9°86’E). Stands were mature and even-aged, and predominately hardwoods and hardwoods

interspersed with evergreens, respectively, in the case of the Moringen City Forest. All sites

had a mean annual temperature between 7.5 and 9.0°C and mean annual precipitation between

630 and 670 mm. Last forest management activities occurred at least a couple of decades ago

and soil manipulation activities such as liming were absent.

The selected major tree species of the Central European forest flora are either dominant species

of the natural forest vegetation or are frequently present in forest communities as subdominant

or admixed species. The 13 species represent a broad range of taxa, covering eleven genera,

eight families, and six orders (Supplementary Table 1). Among the thirteen species are four

conifers (family Pinaceae) and nine deciduous broad-leaved species from the families

Fagaceae, Sapindaceae, Malvaceae, Betulaceae, Oleaceae, and Rosaceae.  The species were

selected to represent two phylogenetic groups (gymnosperms and angiosperms) and two

mycorrhizal association types (AM and ECM; Supplementary Table 1).  The association to a

mycorrhizal association type was assigned to according to literature (Wang & Qiu, 2006), and

was confirmed by measurements of the arbuscular and ectomycorrhizal colonization rates in an

accompanying study (Liese, pers. communication).
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Leaf and fine root sampling and analyses

Leaf samples of angiosperm tree species were collected from the upper sun canopy with the

help of canopy walkways in mid-summer 2014 (n = five leaf samples each of five individuals

per tree species and study site). Leaf samples were stored at 6°C for no more than a week until

processing. All leaves were analyzed for leaf area using a flat-bed scanner and the computer

program WinFOLIA (2005b; Régent Instruments Inc., Canada). Subsequently, the total leaf

mass was dried (70°C, 48 h) and weighed and the SLA (cm2 g-1) calculated. Dried leaf samples

were ground and total carbon and nitrogen content analyzed using a C:N elemental analyzer

(vario EL III, elementar, Hanau, Germany). Sun leaf samples of gymnosperm trees were not

easily accessible and trait information was derived from a comprehensive literature survey

instead (see below; Supplementary Table 2).

Fine root samples of all tree species were carefully excavated from the uppermost 20 cm of the

soil profile in close surroundings (<50 cm) of mature canopy trees of the respective species,

which were growing in single-species tree clusters, and were traced towards their mother tree

(n = ten root samples each of at least five different individuals per tree species and study site).

Root samples were immediately transported to the laboratory and stored moist  at  6°C for no

longer than three weeks until processing. Root strands were cleared from soil particles with tap

water and the tree species identity was confirmed a second time under a stereomicroscope

(magnification x 40) with a site-specific morphological key based on periderm structure and

color, root ramification, and root tip morphology (cf. Meinen et al., 2009; Kubisch et al., 2015).

All vital, intact root strands were cut at the end of the fifth root order (stream-based ordering

system according to Pregitzer et al., 2002, with the most distal root segments being classified

as first root order) for comparability between tree species. We selected to cut root systems at

the end of the fifth root order, since the sixth and higher order roots occasionally comprised

roots with a diameter >2 mm, i.e. could not be classified as fine roots. The first to fifth root

orders were constituted of only fine roots (diameter <2 mm) in all investigated tree species. We

counted root tips of these intact root systems under a stereomicroscope.

Half of the intact root samples were analyzed for their morphology of the first to fifth root order

using a flat-bed scanner and the computer program WinRHIZO (2005c; Régent Instruments

Inc., Canada) (200 dpi; n = five root samples each of at least five different individuals per tree

species and study site) in order to determine root length, surface area, diameter, and volume.

Root systems comprising the first to fifth root order were analyzed intact for comparability with

other studies that are not separating between different root orders. Subsequently, root strands
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were dissected with scalpels under a stereomicroscope to separate the absorbing root orders,

i.e. the first and second order (Guo et  al., 2008b; Valenzuela-Estrada et  al., 2008) from the

transport root orders, i.e. third to fifth order. Dissected first and second root orders were scanned

again and analyzed for their morphology. The two root order fractions (first and second order

and third to fifth order) were dried (70°C, 48 h) and weighed. SRA (cm2 g-1),  SRL (cm g-1),

tissue density (g cm-3), and mean root diameter were calculated independently for (i) the first

and second root order and (ii) the first to fifth root order. The branching ratio was determined

from the number of first order roots growing out of second order roots (n n-1). Branching

intensity was calculated from the number of root tips per root length of first and second order

roots (tips cm-1). The absorptive to transport root ratio was calculated by dividing the mass of

the first and second root orders by the mass of the third to fifth root orders (g g-1).

The second half of the intact root samples was dried (70°C, 48 h), ground, and total carbon and

nitrogen content analyzed using a C:N elemental analyzer (vario EL III, elementar, Hanau,

Germany) (n = five root samples each of at least five different individuals per tree species and

study site). The analyzed C:N1-5 describes the C:N ratios of a representative fine root population

for all tree species, comprising the first to fifth root order.

Additional traits

Based on a comprehensive literature survey and additional data (SLA, leaf N, and maximum

tree height) from the TRY Plant Trait Database (Kattge et al., 2011), we assembled a database

of about 40 published and unpublished studies that contained information related to SLA and

leaf N (for the four gymnosperms of interest to this study), as well as information on leaf

longevity, maximum tree height, wood density, maximum tree age, and fine root longevity (for

all 13 tree species of interest to this study). Selection criteria for data were (a) study plot located

in the cool-temperate zone of Central Europe, (b) measurements taken in mature trees (>40

years  old)  in  monospecific  stands  with  closed  canopy,  (c)  last  forest  management  activities

occurred at least a decade ago, and (d) absence of soil manipulation such as liming. All data on

SLA referred to sun leaves in the upper sun canopy and mostly were taken using towers or

cranes.

Phylogenetic signal

The phylogenetic  signal  was  estimated  by  the  correlation  between the  phylogenetic  distance

and trait distance matrices among the investigated tree species. We attached our list of taxa to

the master phylogeny presented by Zanne et al. (2014) with the help of the software
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PHYLOMATIC v3 (a tool associated to PHYLOCOM 4.2; Webb et al., 2008), to generate the

initial phylogenetic tree in the Newick format. The simple pairwise matrix of phylogenetic

distances was calculated from the Newick code with the ‘phydist’ phylogeny tool in

PHYLOCOM  and  visualized  with  the  online  tool  iTOL  -  Interactive  Tree  Of  Life  v3.1

(Ciccarelli et al., 2006; Supplementary Fig. 1).

We identified major trait complexes explaining more than 75% of the variance for leaf, stature,

and root traits, respectively, by calculating three independent PCAs, using the package Canoco

5.03 (Biometris, Wageningen University and Research Centre, The Netherlands;

Supplementary Table 3). Independent trait distance matrices based on the PCA axes for leaf,

stature, and root traits, respectively, were calculated with the package SAS, version 9.3

(Statistical Analyses System, SAS Institute Inc., Cary, NC, USA). For the correlation between

the phylogenetic and trait distance matrices, a Mantel permutation test (Mantel, 1967; Mantel

& Valand, 1970) was computed with PAST 3.11 (Øyvind Hammer, Natural History Museum,

University of Oslo, Norway), and the Pearson correlation coefficient R and the one-tailed P

value from the comparison of the original R to the R computed in 9999 random permutations

were reported. Euclidean similarity indices were used for the Mantel permutation test.

As a second estimate of the phylogenetic signal, we conducted node-level analyses of traits and

of trait conservation. We determined the average standard deviation of values at daughter nodes

(‘divergence’) as a measure of trait radiation at this node (conservative: divergence <1,

divergent: divergence >1) with the ‘aot’ phylogenetic trait analysis algorithm in PHYLOCOM

(999 randomizations) and calculated the node age as branch length in percent of total

phylogenetic distance.

Statistical analyses

All data were tested for probability of fit to normal distribution by a Shapiro-Wilk test (SAS

9.3; SAS Institute Inc., Cary, NC, USA). Leaf and root longevity were log-transformed to

correct departures from normality. We tested for multicollinearity between traits by Pearson

correlations and identified collinearity for the correlation between leaf C:N and leaf longevity,

SRA1+2 and tissue density1+2, and SRL1+2 and tissue density1+2 (R > 0.90); all three were thus

excluded from further analyses. Means of the tree groups (AM angiosperms, ECM

angiosperms, and ECM gymnosperms) were compared by one-way analyses of variance

(ANOVA) followed by a Scheffé test. Mixed variance-covariance models for fixed and random

effects with the variables mycorrhizal association type (AM vs. ECM) and phylogenetic group

(gymnosperm vs. angiosperm) were calculated to test for significant effects. Data likelihood



CHAPTER 2

25

was maximized to estimate the model parameters. A canonical correspondence analysis (CCA)

was calculated for the stepwise forward selection of root traits that maximized the centroid

distances between ECM gymnosperms, ECM angiosperms, and AM angiosperms, using the

package Canoco 5.03 (Biometris, Wageningen University and Research Centre, The

Netherlands). A total of 499 random permutations were used.

We used SPSS Amos 24.0.0 software (IBM, Somers, NY, USA) to calculate structural equation

models (SEM). SEM was applied for identifying the direct and indirect effects of fine root

branching intensity and branching ratio (as indication of the mycorrhizal association type) on

leaf, stature, and fine root traits other than root branching intensity and branching ratio in the

investigated tree species. We started with an initial model that contained all plausible

interactions between root, stature, and leaf traits (Supplementary Fig. 2). Path coefficients were

determined as standardized regression weights using the maximum likelihood method.

Modification indices were used to evaluate potential modifications of the model, which were

plausible and minimized the χ2. Two goodness-of-fit indices were accounted for [Tucker-Lewis

Index TLI (Tucker & Lewis, 1973) and Root Mean Square Error of Approximation RMSEA

(Browne & Cudeck, 1993). Insignificant paths were eliminated from the model. The square of

the coefficient of multiple correlations R2 was calculated for all dependent variables.

Results

Above- and belowground trait relations

SLA, leaf C:N, and leaf longevity related to a number of root traits, while leaf N did not relate

to any of the investigated root traits (Supplementary Table 4). SLA mainly correlated with the

root morphology of the first and second root order (SRL1+2 and SRA1+2: positive correlation;

diameter and tissue density: negative correlation), as well as with the branching intensity (i.e.,

the number of root tips per lower order root length; positive correlation) of the root system and

its N content (positive correlation). In a direct comparison of the morphology of the absorbing

tissues, SLA significantly increased by 12 cm2 g-1 with an increase in SRL1+2 by  10  m  g-1

(Fig. 1a).
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In an opposite trend, an increase in the C:N in the root tissue by 10 g g-1 correlated to a decrease

in SLA by 32 cm2 g-1 (marginal significant; Fig. 1c). Yet the strongest (positive) correlation

with the root C:N had the leaf C:N ratio, which may hint to a whole plant trait coordination

with respect to C:N variation (Fig. 1b). Surprisingly, leaf longevity did not relate to root

longevity neither in the whole tree species data set nor in the subset of angiosperm tree species

(P = 0.99 and 0.38, respectively; Fig. 1d). Leaf longevity was strongly positively correlated

with root diameter and root tissue density1+2 (Supplementary Table 4).

Phylogenetic signal in root and leaf traits

In a comparison of the two investigated phylogenetic groups (gymnosperms and angiosperms)

it appears that there was a highly significant influence by phylogenetic group affiliation on the

mean root diameters of all roots and on the root tissue densities of lower order roots:

gymnosperms had a higher mean root diameter1-5 (0.53 vs. 0.39 mm) and a higher root tissue

density1+2 (0.24 vs. 0.15-0.18 g cm-3) than angiosperm tree species (Table 1).

Figure 1 Pearson’s correlation analyses between leaf and root traits of the ECM gymnosperm (red), ECM angiosperm (green),
and AM angiosperm (blue) tree species analyzed in this study.
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Table 1 Trait values for AM angiosperm (n = 5), ECM angiosperm (n = 4), and ECM gymnosperm (n = 4) tree species (given
are means and standard errors). Absorptive roots are defined as root orders 1+2, transport roots as root orders 3-5. Values in
parentheses are SD. Significant differences between the three tree groups are indicated by different upper case letters. The
coefficient of variation (CV) describes trait dissimilarity. CVs larger than 50% are written in bold. Asterisks denote a significant
effect of the mycorrhizal association type (AM vs. ECM) or phylogenetic group (gymnosperm vs. angiosperm) on the
respective trait according to mixed effects models. Significance is indicated as (*) P ≤ 0.1, * P ≤ 0.05, ** P ≤ 0.01, *** P ≤
0.001. a, literature data.

Consequently, SRL1+2 of lower root orders (25 vs. 49-53 m g-1) and branching intensity (3.3 vs.

5.4-9.6 tips cm-1) of the gymnosperm root systems were reduced. Our discriminant analysis

revealed that mean root diameter1-5 and root C:N1-5 were the most important root traits for the

discrimination between gymnosperm and angiosperm tree species, and explained together 45%

of the total variation (Fig. 2).

Aboveground, gymnosperms differed by lower SLAs (83 vs. 119-148 cm2 g-1) and wood

densities (470 vs. 598-653 kg m-3) from the hardwood species (Table 1). As a consequence of

the difference in their leaf xeromorphic structure and ecological function, phylogenetic group

affiliation had a significant effect on leaf longevity, which distinguished from the other traits

by the distinctly highest coefficient of variation (149%). By contrast, despite its moderately

high coefficient of variation (48%), mean fine root longevity did not significantly differ

between phylogenetic groups. Further, root N1-5 and root C:N1-5 of the first to fifth root order

Traits AM
angiosperm

ECM
angiosperm

ECM
gymnosperm CV [%] Mycorrhizal

association
Phylog.
group

LEAVES

SLA [cm2 g-1] 119 (8) AB 148 (12) A 83 (16) B 30 **

Leaf Nmass [mg g-1] 19 (1) 22 (1) 23 (4) 22

Leaf C:N [g g-1] 24 (1) 22 (1) 36 (7) 27 *

Leaf longevitya [yr] 0.5 (0.02) B 0.5 (0.04) B 4.9 (1.7) A 149 **

STATURE

Max. tree heighta [m] 34 (6) B 48 (7) AB 60 (6) A 35

Wood densitya [kg m-3] 598 (16) AB 653 (62) A 470 (32) B 18 **

Max. tree agea [yr] 230 (44) B 400 (54) AB 413 (38) A 37 *

ROOTS

SRL1+2 [m g-1] 49 (8) A 53 (1) A 25 (1) B 38 **

Tissue density1+2 [g cm-3] 0.18 (0.02) B 0.15 (0.01) B 0.24 (0.01) A 23 ***

Branching ratio [n n-1] 2.8 (0.2) 2.3 (0.2) 2.5 (0.3) 19 (*)

Branching intensity [tips cm-1] 5.4 (1.2) AB 9.6 (1.1) A 3.3 (0.9) B 53 * **

Absorptive : transport roots [g g-1] 1.0 (0.3) 0.5 (0.1) 0.7 (0.2) 55 (*)

Root diameter1+2 [mm] 0.41 (0.02) 0.42 (0.01) 0.47 (0.01) 9 *

Root diameter1-5 [mm] 0.39 (0.02) B 0.39 (0.02) B 0.53 (0.01) A 18 ***

Root Nmass, 1-5 [mg g-1] 13 (1) 14 (1) 12 (1) 13

Root C:N1-5 [g g-1] 30 (2) 31 (3) 37 (3) 18

Fine root longevitya [yr] 1.0 (0.3) 0.8 (0.1) 0.9 (0.1) 48
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varied only little between the investigated tree species (13-18%) and did not significantly differ

between phylogenetic groups.

The phylogenetic signal estimated by the correlation between the phylogenetic distance and the

trait distance matrices was highly significant for the first PCA axis calculated for root traits

(PCA Root 1), which was mainly related to tissue density1+2, SRL1+2, and root diameter1-5

(Table 2). About 56% of the variation of the trait distance matrix for PCA Root 1 was explained

by the relatedness of tree species (R =  0.75),  with  6% of  the  nodes  of  the  phylogenetic  tree

exhibiting significant trait conservatism towards PCA Root 1 (divergence SD 0.35, mean age

29% branch length of the total phylogenetic distance) and no significant divergence. Another

strong phylogenetic signal was detected for the first PCA axis calculated for leaf traits (PCA

Leaf 1), which was mainly related to SLA and leaf longevity (explained variation: 37%, R =

0.61), and a slightly weaker signal in the second axis for leaf traits (PCA Leaf 2), which was

mainly related to leaf Nmass (explained variation: 25%, R = 0.50). Both, the second PCA axis

for root traits (PCA Root 2; related to the root branching ratio, root C:N1-5, and root N1-5) and

the two PCA axes for stature traits were not significantly influenced by a phylogenetic signal.

Figure 2 Canonical correspondence analysis (CCA) for the stepwise selection of root traits for the discrimination between
ECM gymnosperms (red italic), ECM angiosperms (green), and AM angiosperms (blue) among 13 Central European tree
species. Solid squares mark the centroid of each group. Out of a total of eight preselected root traits, four discriminants were
needed to explain 65% of the variation, with the highest contribution by root diameter1-5 (P=0.01) and branching intensity
(P=0.08). For abbreviations of tree species refer to Supplementary Table 1.
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Influence of the mycorrhizal association type on root and leaf traits

The  mycorrhizal  association  type  (AM  and  ECM)  had  a  significant  effect  on  the  branching

intensity of root systems: AM angiosperm root systems had a lower branching intensity than

root systems of ECM angiosperms (5 vs. 10 tips cm-1; Table 1). The coefficient of variation

between tree species for root branching intensity was moderately high, since it was not only

influenced by the mycorrhizal association type but also by the phylogenetic group (the lowest

branching intensity was found in ECM gymnosperms: 3 tips cm-1). Trees of differential

mycorrhizal association type also differed in their maximum tree age, where AM angiosperms

had a significantly lower life expectancy than ECM angiosperm and ECM gymnosperm tree

species (230 vs. 390-415 years). The CCA discriminated between AM and ECM tree species

mainly by the root traits branching ratio and branching intensity, which explained together 23%

of the total variation (Fig. 2). The Mantel permutation test highlighted that there was no

phylogenetic signal in the root branching ratio (Table 2).

Table 2 Phylogenetic signal estimated by the correlation between the phylogenetic distance and the trait distance matrices
(Mantel permutation test). The trait distance matrices were based on principal components derived for leaf, stature, and fine
root traits of 13 Central European tree species (cf. Supplementary Table 3). Significant correlations (P ≤ 0.05) are in bold type.

Trait complex R P

Leaves, PCA axis 1 (SLA and leaf longevity) 0.61 0.003

Leaves, PCA axis 2 (Leaf Nmass) 0.50 0.01

Stature, PCA axis 1 (Max. tree height and age) -0.07 0.53

Stature, PCA axis 2 (Wood density) 0.27 0.08

Roots, PCA axis 1 (Tissue density1+2, SRL1+2, and root diameter1-5) 0.75 <0.001

Roots, PCA axis 2 (Branching ratio, root C:N1-5, and root Nmass, 1-5) -0.03 0.49

We chose an SEM approach to calculate complex path models of all hypothesized direct as well

as indirect effects of root branching on leaf, stature, and root traits (Supplementary Fig. 2).

From our previous analyses (see above) we assume that branching ratio and branching intensity

can be considered as indication of the mycorrhizal colonization type (cf. Brundrett, 2002; Smith

& Read, 2008; Comas & Eissenstat, 2009; Comas et al., 2014; Eissenstat et al., 2015). Since

leaf C:N and leaf longevity were closely related to each other (R = 0.92, P < 0.001) and leaf

C:N was only little variable, only leaf longevity entered the model. Subsequently, all

insignificant paths and variables were eliminated from the primary SEM. The final SEM (χ2 =

44.4, df = 33, P = 0.09) explained approximately 90% of the variation in root diameter1-5, 80%

of the variation in root C:N, and 45% of the variation in SRL1+2 (Fig. 3).
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The root branching ratio and intensity directly influenced root C:N (standardized direct negative

effects SDE: -0.77 and -0.45). Among the strongest indirect effects of the branching ratio were

its effects on SLA (standardized indirect positive effect SIE: 0.40) and leaf longevity (negative

SIE: -0.32), i.e. on two aboveground leaf traits. The branching intensity had also a direct

influence on SRL1+2 (positive SDE: 0.65). Consequently, the strongest indirect effects of the

branching intensity were two-directional, on belowground root diameter1-5 (negative SIE: -

0.59) and on aboveground SLA (positive SIE: 0.54).

Discussion

The LES describes the return on investment in leaves and is thought to better describe the leaf

economic variation at the global scale than groupings of plant species into plant functional types

(Wright et al., 2004). While the LES has been successfully translated into a wood economics

spectrum (WES; Chave et al., 2009), the transfer into a globally consistent RES is still

inconsistent. In the current study we could not identify an RES in analogy to the LES. We found

two main root trait dimensions that were either influenced by phylogeny (root morphology of

Figure 3 Structural equation model (χ2 = 44.4,  df = 33, P = 0.09) on the effect of fine root branching ratio and branching
intensity for  leaf,  stature,  and  root  traits  of  major  Central  European  tree  species.  The  direction  of  the  arrows  indicates  the
direction of the influence; the line width illustrates the strength of the path. Path coefficients are standardized regression
weights. The square of the coefficient of multiple correlations R2 is indicated at each variable. Regression weights of latent
variables are fixed at unity. Significance is indicated as * P ≤ 0.05, ** P ≤ 0.01, and *** P ≤ 0.001. Insignificant paths and
variables (leaf Nmass, root Nmass, 1-5, fine root longevity, and tissue density1+2) were eliminated from the final SEM. Data for leaf
longevity are log-transformed.
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lower order root traits) or by root branching. Root branching was also the leading belowground

trait that indirectly influenced (via root C:N) several aboveground traits.

The LES is not mirrored belowground

The physical, chemical, and biological selection pressures for leaves and roots are vastly

different. Soil resource uptake, i.e. water and nutrient uptake, is constrained among others by

(soil) climatic conditions, diffusion barriers, the soil matrix, bedrock chemistry, pore size, and

soil compaction. Yet in a simplification of environmental conditions and constraints acting on

leaves and roots, the RES is explored as analog of the aboveground trait axis between SLA, leaf

N content per unit mass, rates of respiration and photosynthesis, growth rate, and longevity

(Reich et al., 1997). According to this chain of thought, SRL should have a key position in the

RES  similar  to  SLA  in  the  LES,  and  correlate  positively  with  root  N  and  respiration  and

negatively with root longevity. Empirical evidence for such RES is contradictory, though. In

our study some leaf traits of the investigated tree species were reflected by their root

counterparts (surface areas and C:N) while others central to the RES were not (N content per

unit mass and longevity; Supplementary Table 4). Previously, SLA and SRL as well as leaf and

root  N and  P  contents  were  found positively  related  across  tree  species  (Reich et al., 1998;

Wright et al., 2004; Holdaway et al., 2011), but the generality of the coordinated variation of

above- and belowground morphological and chemical traits has been challenged (Valverde-

Barrantes et al., 2015; Weemstra et al., 2016). Further, the limited number of studies which

have compared the root longevities of different tree species seem to indicate that leaf and root

lifespans are generally uncorrelated (Withington et al., 2006; Espeleta et al., 2009; McCormack

et al., 2012).

In addition to the missing coordinated variation of above- and belowground traits, we could not

identify an RES with respect to relations between SRL or root diameter with root chemistry

(root Nmass)  or  function  (root  longevity).  Root  N concentration  was  also  not  correlated  with

morphological traits in other studies comparing different temperate tree species (Withington et

al., 2006; Comas & Eissenstat, 2009; Chen et al., 2013; Valverde-Barrantes et al., 2015), which

was explained by the greater cross-species variation in root morphology than in root N (Comas

& Eissenstat, 2009; this study; Chen et al., 2013). Root N content of lower-order roots of

temperate trees is generally less variable than its morphology since it is mainly located in

cortical tissues which have a relatively constant proportion across roots of different diameter

(Guo et al., 2008b). Studies in different biomes have found that root N and SRL of trees

correlated with root respiration (Reich et al., 1998; Reich et al., 2003; Chen et al., 2010), and
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all correlated with root lifespan (Withington et al., 2006; McCormack et al., 2012; Reich, 2014).

However, a literature review and meta-analysis found little evidence for a relationship between

root N and N uptake rates, which was explained by the fact that N uptake rates are less limited

by the number of nutrient uptake transporters (which contain only a small fraction of N) than

by the availability of N in the soil matrix and the extension of the mycorrhizal hyphae

(Weemstra et al., 2016). These authors could also not reveal a consistent evidence for an RES

mirroring an LES and argued that the reason is that root traits are under multidimensional

restrictions: root traits are simultaneously constrained by various environmental drivers not

necessarily related to resource uptake, function differently than aboveground traits, and are

offset by mycorrhizal interactions (Weemstra et al., 2016). In conclusion, the key functional

traits determining uptake acquisition of belowground resources may not be included in the

current RES analogy of LES. Conceivable root traits for soil resource acquisition are the

number of superficial adventitious roots, length and density of root hairs or hyphae, cluster root

formation, and rooting depth, which relate to the branching of the root system and it’s rooting

density in the soil.

Root morphology is phylogenetically selected

Both, the mixed variance-covariance model and the Mantel permutation test revealed a

significant phylogenetic signal (as an indication of selective pressure) for morphological root

traits, i.e. for root tissue density1+2, root diameter1-5, and SRL1+2. Root diameter was also the

most important root trait discriminating between gymnosperm and angiosperm tree species in

the CCA (higher mean root diameter in gymnosperms: 0.53 mm; angiosperms: 0.39 mm). The

higher root diameter in gymnosperms than in angiosperms can be explained by anatomical

differences in their xylem where more tracheids in gymnosperm roots are needed to achieve a

similar transport capacity as in angiosperm vessels (Sperry et  al., 2006). But the systematic

difference in root diameter between gymnosperms and angiosperms may also give an indication

of the divergence time for these morphological root traits and be explanation for the significant

conservatism in these traits: the emergence of colder and drier climate during the mid to late

Cretaceous has been hypothesized as a cause of adaptation and root trait diversity in

angiosperms (Comas et al., 2012; Chen et al., 2013; Zanne et al., 2014); increases in SRL and

tissue lignification and decreases in diameter probably increased the efficiency of root systems

in an environment with lower N availability, slower decomposition rates, and adverse climatic

conditions (Pittermann et al., 2012; Chen et al., 2013). Our study has shown that SRL1+2 had

comparably high cross-species variability despite the conservatism of the root morphology trait
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complex (38%; Table 1), which may be indication of its plasticity towards different

environmental conditions.

A high root diameter and a long root lifespan are considered as conservative root traits which

are often assigned to conifer trees independent from their leaf habit: in a common garden

experiment with different tree species, the deciduous conifer Larix decidua had acquisitive leaf

traits, i.e., high SLA, high leaf N content, and short lifespan, similar to the deciduous broadleaf

trees, but conservative root traits similar to the other evergreen conifers (Withington et  al.,

2006). Our study only partly confirmed the classification of root traits of L. decidua to  the

conservative trait spectrum, as it resembled the conservative root characteristics of the other

conifer species with respect to its root diameter1-5, SRL1+2, and tissue density1+2, but not with

respect to root N content and lifespan. Root N content and lifespan were generally root traits

not discriminating between broadleaf trees and conifers.

Earlier studies have also found that common ancestry has strong impact on root traits such as

diameter and tissue density (Comas & Eissenstat, 2009; Chen et al., 2013; Kong et al., 2014):

it was concluded that ecological filtering acts stronger on leaf than on root traits (Ackerly &

Reich, 1999; Reich et al., 2003; Whitman & Aarssen, 2010; Valverde-Barrantes et al., 2015)

and that this is the reason why the RES (with SRL and root diameter as the key traits) is stronger

supported by data collected from more closely related than from more distant tree species (e.g.

Comas & Eissenstat, 2009; McCormack et al., 2012; Weemstra et al., 2016). Our study does

not  fully  support  this  conclusion  since  we found (i)  no  impact  of  common ancestry  on  root

architecture, but (ii) significant phylogenetic signal in leaf morphology (SLA), longevity, and

chemistry  (leaf  Nmass) - yet even though with lower correlation coefficients than for root

morphology (R = 0.50-0.61 vs. 0.79). The missing phylogenetic signal in the branching ratio of

the root system hints to a stronger impact by the environment and ecological filtering on root

branching than by common ancestry.

Increased root branching is a response to the environment

The root branching ratio was not influenced by phylogeny in our study. Root branching patterns

are thought to largely affect root functioning (Pregitzer et al., 2002; Guo et  al., 2008b): the

branching ratio of first to second order roots gives an indication of the plasticity of the

absorptive root system to proliferate into locally or temporarily resource-rich patches (Hodge,

2004; Kong et al., 2014). In a study with subtropical forest species, the branching intensity and

ratio showed weak phylogenetic conservatism, and were negatively correlated with soil P and

N contents, suggesting that higher branching intensity may be required at low-fertility sites
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(Kong et al., 2014). Increased root branching is typical for ECM fungal associations (Brundrett,

2002; Smith & Read, 2008; Comas & Eissenstat, 2009; Comas et al., 2014; Eissenstat et al.,

2015), which are occurring in ecosystems dominated by organic nutrients and comparably low

fertility (Phillips et al.,  2013).  By  contrast,  the  colonization  with  AM  fungi  has  only  subtle

effects on root architecture (Maherali, 2014), even though it can significantly change root

diameter (Comas et al., 2012; Kong et al., 2014). This difference in root architecture between

ECM and AM roots was confirmed by our study when comparing only angiosperm tree species:

ECM trees had a slightly lower branching ratio of first to second order roots than AM trees, but

much higher branching intensity (root tips per lower order root length), i.e. ECM root tips were

more clustered. However, while the branching intensity of the investigated angiosperm tree

species was significantly influenced by the mycorrhizal association type and was next to the

branching ratio the key trait discriminating AM from ECM angiosperm tree species, it was also

a secondary factor for the discrimination between angiosperm and gymnosperm root traits. Soil

nutrients in gymnosperm forests are nearly homogenously distributed due to the accumulation

of their recalcitrant leaf litter over many years (Chen et al., 2016), which decreases the

importance of root proliferation and leads to the lower branching intensity in gymnosperms as

observed in our study.

The influence of the mycorrhizal association type on root branching is also the reason for the

missing phylogenetic signal in this root trait: the mycorrhizal association type is not related to

the phylogenetic relatedness of the tree host, but in contrast is phylogenetically highly diverse,

both with respect to the plant host (particularly AM) and the fungal symbiont (particularly

ECM). The ancestral AM symbiosis has been stably inherited since its establishment, but there

have been many independent conversions of AM to ECM symbioses (>>12 independent

origins) in derived lineages of some major plant clades (Brundrett, 2002; Wang & Qiu, 2006).

These independent conversions were probably a consequence of the emergence of new lineages

in fungi and plants as an adaptation to a change in the environment to more seasonal and arid

climate approximately 135 MYA (Malloch et al., 1980; Moyersoen, 2006) and to nutrient-

poorer environments. Due to their saprotrophic capabilities, ECM fungi can access recalcitrant

nutrient  pools  that  are  inaccessible  to  AM  fungi  (Chalot  &  Brun,  1998;  Blum et al., 2002;

Courty et al., 2010) and, thus, are better adapted to nutrient deficiency. Increased root branching

of ECM trees adds to this by supporting the proliferation and nutrient uptake from locally or

temporarily resource-rich patches in the nutrient-poor ECM ecosystems.

Increased branching is a measure for a higher proportion of lower order roots with presumed

fast respiration rates (Rewald et al., 2014) and high resource uptake activity (Guo et al., 2008b;
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Rewald et al., 2011; McCormack et al., 2015). Our SEM revealed significant negative direct

effects of both root branching ratio and intensity on root C:N, and negative indirect effects on

SLA and leaf longevity, which may give hint on a whole plant economics spectrum with root

branching as the key trait: the fast, acquisitive strategy of nutrient uptake is characterized by

intensive root branching in resource-rich patches and corresponds with a tight root C:N (viz.

relatively low C and high N content, which may be explained by lower suberin content of first

order roots and faster N uptake rates), high SLA which is favorable for fast C uptake, and short

leaf longevity, while the slow spectrum is characterized by the opposite set of traits.

Additionally, intensive root branching also increases SRL of the pool of first and second order

roots and decreases the average and lower order root diameter, which are both thought to be

essential traits for fast resource acquisition.

In a comparison of the two major mycorrhizal association types in temperate forests, AM tree

species have been proposed as fast in comparison to ECM species, due to the more rapid

colonization of AM hyphae into N-rich patches (Hodge & Fitter, 2010), the faster turnover and

decomposition of AM hyphal, root, and leaf litter (Read & Perez-Moreno, 2003; Hobbie et al.,

2006; Anderson & Cairney, 2007), and the quicker soil nutrient cycling rates (Vesterdal et al.,

2012; Phillips et  al., 2013). The current study makes clear that part of the fast/slow trait

difference between AM and ECM tree species is also due to the occurrence of gymnosperms in

the ECM association type in temperate regions, which can be assigned to the conservative

(slow) trait family. When considering only angiosperms, deciduous ECM trees have to be rather

assigned to the acquisitive trait family, since they have significantly higher root branching

intensity and higher SLA, but do not differ significantly from AM trees with respect to their

root C:N or leaf longevities. This classification to the fast/slow trait spectrum does not relate to

the absolute growth rates of trees though, as the majority of the investigated AM species were

early-successional, fast-growing species, while the majority of the ECM angiosperms were late-

successional, slow-growing species, which become dominant at later stages of ecosystem

succession. But the dominance of these latter species, i.e. of European beech, is probably due

to better resource exploitation both aboveground (highest SLA) and belowground (comparably

high root branching ratio and intensity).
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Conclusion

We conclude that root branching relates to the mycorrhizal association type and to precision

foraging into resource-rich patches and, thus, is a key belowground trait that influences resource

uptake rates and function, which should be central to a revised root or whole plant economics

spectrum. The dominating phylogenetic signal in root morphology, i.e. on SRL and root

diameter, makes morphological traits less plastic and therefore less central for the description

of economics spectra of temperate tree species across different environments - even though they

may be useful for the separation of functional groups. Current investigations of the RES may

have been inconclusive so far since they focused on those root traits which were in analogy to

the LES, but may have disregarded the key functional trait for belowground resource

acquisition. Inclusion of root branching as leading root trait of a whole plant economic spectrum

may greatly improve modeled growth response of forest communities to environmental change.
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Supplementary Material

Supplementary Figure 1 Phylogenetic tree of 13 Central European tree species based on Zanne et al. (2014).

Leaf traits

Stature traits

Root traits

Supplementary Figure 2 Conceptual model on plausible interactions between root, stature, and leaf traits of temperate tree
species.
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Supplementary Table 1 Taxonomy, phylogenetic group, leaf habit, and mycorrhizal association type of the 13 major Central
European tree species of this study.

Species Code Common name Family Phylogenetic
group Leaf habit Mycorrhizal

association

Pinus
sylvestris

Pisy Scots pine Pinaceae Gymnosperm evergreen ECM

Larix
decidua

Lade European larch Pinaceae Gymnosperm summer-
green

ECM

Acer
campestre

Acca Field maple Sapindaceae Angiosperm summer-
green

AM

Prunus
avium

Prav Wild cherry Rosaceae Angiosperm summer-
green

AM

Fraxinus
excelsior

Frex European ash Oleaceae Angiosperm summer-
green

AM

Quercus
robur

Quro Pedunculate oak Fagaceae Angiosperm summer-
green

ECM

Acer
platanoides

Acpl Norway maple Sapindaceae Angiosperm summer-
green

AM

Acer
pseudoplatanus

Acps Sycamore maple Sapindaceae Angiosperm summer-
green

AM

Carpinus
betulus

Cabe European hornbeam Betulaceae Angiosperm summer-
green

ECM

Picea
abies

Piab Norway spruce Pinaceae Gymnosperm evergreen ECM

Abies
alba

Abal Silver fir Pinaceae Gymnosperm evergreen ECM

Tilia
cordata

Tico Little-leaved lime Malvaceae Angiosperm summer-
green

ECM

Fagus
sylvatica

Fasy European beech Fagaceae Angiosperm summer-
green

ECM
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Pisy Lade Acca Prav Frex Quro Acpl Acps Cabe Piab Abal Tico Fasy

Succession
status e e e e e-m  m m-l m-l m-l l l l l

Mycorrhizal
association ECM ECM AM AM AM ECM AM AM ECM ECM ECM ECM ECM

Phylogenetic
group G G A A A A A A A G G A A

LEAVES

SLA
  [cm2 g-1]

57 126 127 146 103 121 113 105 134 88 62 167 169

Leaf Nmass

  [mg g-1]
14 31 17 16 20 19 22 22 20 27 18 25 23

Leaf C:N
  [g g-1]

45 26 27 28 23 24 22 21 24 n/d n/d 19 21

Leaf longevitya

  [yr]
3.7 0.5 0.5 0.5 0.4 0.5 0.5 0.5 0.6 7.1 8.2 0.4 0.5

STATURE

Max. tree
heighta

  [m]
50 50 15 25 49 60 40 40 30 70 68 45 56

Wood densitya

  [kg m-3]
490 550 610 550 650 650 590 590 790 430 410 490 680

Max. tree agea

  [yr]
450 450 100 150 300 500 300 300 250 300 450 400 450

ROOTS

SRL1+2

  [m g-1]
26 28 44 60 29 55 37 76 54 25 22 52 53

Tissue
density1+2

  [g cm-3]
0.23 0.22 0.17 0.19 0.21 0.16 0.21 0.12 0.17 0.26 0.24 0.15 0.13

Branching ratio
  [n n-1]

1.6 2.9 2.4 2.7 3.5 1.9 3.0 2.7 2.3 2.6 2.8 2.2 2.8

Branching
intensity
  [tips cm-1]

4.3 1.8 8.5 4.5 1.8 12.9 4.9 7.3 8.4 5.5 1.8 8.7 8.6

Absorptive :
transport  roots
  [g g-1]

0.3 1.0 0.7 0.5 2.1 0.4 1.2 0.7 0.6 0.7 0.8 0.4 0.7

Root
diameter1+2

  [mm]
0.46 0.46 0.41 0.36 0.46 0.42 0.42 0.39 0.38 0.44 0.50 0.43 0.44

Root
diameter1-5

  [mm]
0.53 0.52 0.43 0.34 0.46 0.36 0.40 0.34 0.34 0.53 0.54 0.45 0.40

Root Nmass1-5

  [mg g-1]
10 13 13 12 15 12 13 14 12 12 13 16 16

Root C:N1-5

  [g g-1]
46 33 27 36 25 38 31 32 33 35 32 27 26

Fine root
longevitya

  [yr]
0.7 1.1 1.7 0.3 0.6 1.0 1.6 1.7 0.8 0.7 1.1 0.6 0.6

Supplementary Table 2 Trait values of the 13 major Central European tree species of this study. Succession status: e = early,
m = mid, l = late. Mycorrhizal association type: AM, arbuscular mycorrhiza; ECM, ectomycorrhiza. Phylogenetic group: A,
angiosperm; G, gymnosperm. a, literature data. n/d, no data.
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Supplementary Table 3 Three individual principal components analyses (PCA) for the identification of major leaf, stature,
and root trait gradients, respectively, among the 13 tree species. The most characteristic variables (according to their loading)
of each PCA axis are in bold type.

PCA axis 1 PCA axis 2

Leaf PCA  Leaf 1  Leaf 2

Eigenvalue  0.590  0.325

Explained variation (cumulative)  59.0  91.5

SLA -0.933 -0.132

Leaf Nmass -0.486  0.868

Leaf longevity  0.823  0.427

Stature PCA  Crown 1  Crown 2

Eigenvalue  0.880  0.09

Explained variation (cumulative)  88.0  97.0

Max. tree height -0.969  0.170

Wood density  0.331 -0.880

Max. tree age -0.976 -0.178

Root PCA  Root 1  Root 2

Eigenvalue  0.491  0.350

Explained variation (cumulative)  49.1  84.1

SRL1+2 -0.927  0.187

Tissue density1+2  0.962 -0.006

Branching ratio  0.063 -0.912

Branching intensity -0.748  0.459

Root diameter1-5  0.859 -0.156

Root Nmass, 1-5 -0.454 -0.812

Root C:N1-5  0.410  0.841

Fine root longevity -0.042 -0.022
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Supplementary Table 4 Pearson’s correlation matrix between leaf and fine root traits. Only significant correlations are shown.
Significance is indicated as (*) P ≤ 0.1, * P ≤ 0.05, and ** P ≤ 0.01.

Root trait Root order SLA Leaf Nmass Leaf C:N Log (leaf longevity)

SRL 1+2 0.59* -0.62*

1-5 -0.58(*) -0.66*

SRA 1+2 0.61* -0.54(*) -0.63*

1-5 -0.59* -0.61*

Diameter 1+2 -0.51(*) 0.55*

1-5 -0.56* 0.71**

Tissue density 1+2 -0.68* 0.61* 0.70**

1-5

Branching ratio 1+2 -0.56(*)

Branching intensity 1+2 0.49(*)

Absorptive: transport roots 1-5

Root Nmass 1-5 0.56* -0.78**

Root C:N 1-5 -0.53(*) 0.80**

Log (fine root longevity)
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Abstract

The interaction of plants with soil microbes via root exudation is an important determinant of

tree productivity and forest ecosystem function. However, the question whether the quantity or

chemical diversity of root exudates is regulating soil functions remains unresolved. In a field

study with arbuscular (AM) and ectomycorrhizal (ECM) trees in a mixed forest stand, we show

that the type of mycorrhizal association explained a significant part (c. 53%) of the variation in

exudate-rhizosoil feedbacks. Root exudates of AM trees showed a higher chemical richness

than those of ECM trees. Reduced chemical richness of root exudates exerted positive feedback

with rhizosoil functions in ECM trees, while the quantity of exuded C displayed a secondary

factor for root-rhizosphere relationships across similar abiotic environments. These results

suggest that the mycorrhizal type is a crucial factor determining the chemical composition of

root exudates. Differences in exudate chemical richness affect soil C and N cycles, which

ultimately determines ecosystem productivity of temperate forests.

Introduction

The release of C-rich substrates into the soil via root exudation is a process that is increasingly

recognized as a major driver of soil organic matter (SOM) dynamics (Keiluweit et al., 2015)

and forest feedbacks to climate change (Phillips et  al., 2011; Finzi et al., 2015; Meier et  al.,

2017). Yet in comparison to other processes of the terrestrial C cycle, root exudation is still

poorly understood, and it remains unknown if the mere quantity of soluble organic C or rather

the chemical composition and diversity of root exudates is determining the ‘rhizosphere effect’

(i.e., the relative difference in chemical, physical, and biological properties between

rhizosphere and bulk soil) and plant-soil feedbacks. It is assumed that both the quantity and

chemical diversity of root exudates have similar function, by increasing the biomass and

diversity of soil microbes in the rhizosphere (Eisenhauer et al., 2017). The enhanced release of

easily degradable C compounds from roots is thought to stimulate the biomass of rhizosphere

microbes and trigger microbes to co-metabolize recalcitrant SOM. This change in native C

mineralization in response to increased labile C input is defined as the ‘microbial priming

effect’ (Kuzyakov, 2010). Microbial priming effects can be sufficient in magnitude to delay

‘progressive N limitation’ (sensu PNL hypothesis; Luo et al., 2004) and sustain high rates of

net primary productivity under elevated CO2 (Phillips et  al., 2011). With respect to the

importance of exudate quantity or quality for the microbial activity in the rhizosphere (viz. for

rhizosphere and microbial priming effects), two contradictory relations are conceivable. First,

the response of soil microbes to the release of organic C by root exudation is independent of
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exudate chemical composition. This implies that the majority of the exuded compounds are

easily degradable, which makes their chemical identity a subordinate factor for rhizosoil

microbes. Alternatively, chemical composition of root exudates may also be major factor since

it decreases competition and niche overlap between microbial species leading to microbial

diversity and niche complementarity in resource use. This may happen when individual

microbes in the rhizobiome respond differentially to compounds in the exudates. Indeed, it has

been observed that differences in exudate composition result in differential microbial

communities (Steinauer et al., 2016; Pétriacq et al., 2017). Complementarity in microbial use

of exudate C may then even lead to retarded SOM decomposition (i.e. to a negative priming

effect) if diverse exudates are used as primary C and energy source instead of recalcitrant soil C.

The majority of terrestrial plant species are associated with mycorrhizal fungi. Mycorrhizal

symbiosis is an important component of the plant-soil feedback (Bennett et  al., 2017):

mycorrhizae increase the accessibility and availability of soil nutrients and water to plants in

exchange for carbohydrates, which the fungus needs to grow. Mycorrhizae are also known to

influence soil carbon storage (Averill et al., 2014) and terrestrial C cycling in forests (Vicca et

al.,  2012).  The two main types of mycorrhizae of temperate trees -  AM and ECM - seem to

differ in their ability to stimulate microbial decomposition of soil organic C (Terrer et al., 2016).

Recently it has been suggested that the type of mycorrhizal symbiosis provides an integrated

index of biogeochemical transformations relevant to C cycling and nutrient retention of

temperate forests, since AM and ECM trees differ systematically in their nutrient economy

(Phillips et al., 2013; Fisher et al., 2016; Liese et al., 2017b). Yet the impact of the mycorrhizal

type on the quantity or chemical composition of root exudation in temperate forests has not

been tested sufficiently, despite some evidence of enhanced root exudation in ECM trees (Yin

et al., 2014; Liese et  al.,  2017b)  and  of  the  influence  of  mycorrhizal  colonization  or  ECM

species identity on exudate composition (Jones et al., 2004). Colonization by mycorrhizal fungi

alters the carbohydrate metabolism and root respiration of the host (Bago et al., 2003; Douds et

al., 2010), which leads to decreases in the amount of carbohydrates, increases in the amount of

phenolics and gibberellins, and changes in the composition of amino acids in the excreted root

exudates (Jones et al., 2004; Martin et al., 2008). We assumed that differences in the quantity

or composition of root exudates are decisive for rhizosphere effects. Within this broad

framework, we tested the specific hypotheses that (i) ECM colonization of roots lead to stronger

control of root exudation, that is, the chemical diversity of ECM exudates is decreased in

comparison to AM exudates; and (ii) ECM roots increase the microbial activity and

biogeochemical cycles in the rhizosphere more than AM roots.
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Using a nested design with tree species considered as replicates for mycorrhizal association

types (n = 4 tree species per mycorrhizal type; where each tree species was replicated by six

samples located in three study plots and was re-sampled in four sampling events), we analyzed

the influence of the mycorrhizal type on root exudation and rhizosphere effects in AM and ECM

trees in a mixed forest stand, which represents one of the largest old-growth hardwood forests

in Central Europe (‘Hainich National Park’ in Thuringia, Germany, 51°08’N, 10°51’E). For the

in situ collection of root exudates, we used a culture-based cuvette method (Phillips et al., 2008)

and quantified the exuded organic C by combustion catalytic oxidation. The chemical

composition of root exudates was analyzed taking an untargeted liquid chromatography

quadrupole time-of-flight mass spectrometry (LC-qToF-MS)-based metabolomics approach.

As potential rhizosphere responses to exudation, we considered organic C and microbial

biomass C as representatives of soil C cycling; amino-acid N, N-acetylglucosaminidase (NAG)

activity, and net N mineralization as representatives of soil N cycling; and plant-available P and

acid phosphatase (AP) activity as representatives of soil P cycling.

Materials and Methods

Study Site

The research was conducted in an old-growth mixed forest stand in Central Germany (‘Hainich

National Park’; 51°08’N, 10°51’E), which represents one of the largest deciduous forests in

Central Europe. The forest is located on eutrophic Luvisols (FAO, 2006), which have developed

from a base-rich Pleistocene loess layer over Triassic limestone (Middle Muschelkalk). Soil

manipulations such as liming are absent. The mineral soil texture (0-30 cm soil depth) is

characterized by low sand (<5%) and high silt contents (Guckland et al., 2009) The climate is

semi-humid with mean annual temperature of 7.7°C and mean annual precipitation of 590 mm.

During the study period between October 2013 to September 2014, average temperature was

10°C and the sum of precipitation 490 mm, with pronounced summer drought periods being

absent. The studied forest is unmanaged and has forest continuity for at least the last 200 years

(Schmidt et al., 2009) and therefore represents ancient woodland (Wulf, 2003). The vegetation

can be classified as Stellario-Carpinetum (starwort-oak-hornbeam forest, interfused with elm

trees) with up to 14 tree species co-occurring in this mixed hardwood stand. We selected eight

tree species for our study, which are frequently dominant or subdominant trees of the natural

forest vegetation in Central Europe and represent two mycorrhizal types (cf.  Wang  &  Qiu,

2006): common ash (Fraxinus excelsior L.),  Norway maple (Acer platanoides L.),  sycamore
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maple (Acer pseudoplatanus L.),  and  wild  cherry  (Prunus avium L.)  are  AM  tree  species.

European beech (Fagus sylvatica L.), pedunculate oak (Quercus robur L.), small-leaved lime

(Tilia cordata MILL.) and European hornbeam (Carpinus betulus L.)  are ECM tree species.

The classification to a mycorrhizal association type was assigned to according to literature

(Wang & Qiu, 2006), and was confirmed by measurements of the AM and ECM colonization

rates (see below). For each tree species, we randomly selected three single-species circular plots

(two to three individuals of the target tree species or one tree with a dominant position; plot

diameter 8 m). For comparability, only mature trees of similar age and crown structure on level

to slightly inclined terrain were selected.

Root Exudate Collection and Analysis

Root exudates were collected during four sampling campaigns in the growing seasons 2013 and

2014 (October 2013, May 2014, July 2014, and September 2014) from the middle of each

single-species plot (n = 24 single-species plots). For the collection of root exudates, a culture-

based cuvette method was used (Phillips et  al., 2008). For this purpose, terminal fine root

strands (<2 mm) attached to a mature target tree were carefully excavated from the upper 10

cm of mineral soil and all adhering soil particles were carefully rinsed off with demineralized

water  to  maintain  the  integrity  of  the  mycorrhizal  root  tips  (n =  6  fine  root  strands  per  tree

species, i.e., two root strands per study plot, and sampling campaign). Intact root strands were

placed into cuvettes filled with sterile glass beads and moistened with C-free dilute nutrient

solution (0.5 mM NH4NO3,  0.1  mM  KH2PO4, 0.2 mM K2SO4, 0.15 mM MgSO4, 0.3 mM

CaCl2). Sterile cuvettes with glass beads and nutrient solution were included as controls. After

a short equilibration period, fresh nutrient solution was flushed through each cuvette to remove

soluble C. After 48 h, trap solution containing exudates were collected from each cuvette, the

exact volume determined, the solution filtered through sterile syringe filters (pore size: 0.7 µm;

GE Healthcare Life Sciences Whatman, Glass Microfiber Filters, Grade GF/F), and kept frozen

at -20°C. Trap solution was immediately analyzed for non-particulate organic C on a total

organic carbon (TOC) analyzer (Shimadzu TOC-L CPH/CPN; Shimadzu Scientific

Instruments, Germany). Net mass-specific exudation rates (gross root exudation minus

reabsorption and microbial consumption) were calculated as the total amount of C flushed from

each root system over the incubation period divided by the root mass (mg C g-1
root d-1). Annual

exudation rates (in g C m-2
soil yr-1) were estimated for six tree species by multiplying the average

mass-specific exudation rate by the species-specific fine root biomass in the forest  stand (cf.

Kubisch et al., 2015). Photosynthetic C cost of exudation (%) was estimated from the share of
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annual C release by root exudation in annual C uptake by photosynthesis in the forest stand (cf.

Schmidt et al., 2015).

Metabolomics of Root Exudates

Root exudates from the summer sampling campaign (July 2014) were kept frozen at -20°C until

further processing. Samples were enriched according to a method modified from (Strehmel et

al., 2014). Approximately 30 ml of the root exudate solution were evaporated in falcon tubes

until dryness using a freeze dryer. The residue was then suspended in 2 ml water/methanol

(95%/5% (v/v%)). The samples were sonicated at ambient temperature for 10 min and the

supernatant was transferred to a 2 ml Safe-Lock tube. After 10 min of centrifugation at 6000 g,

1.5 ml of the sample solution was loaded on a SPE cartridge (Chromabond Hydra C18 -200

mg/3 ml for SPE (Marchery and Nagel) that was previously conditioned with 1 ml pure

methanol and 1 ml water/formic acid (98%/2% (v/v%)). The cartridge was washed with 1 ml

pure water and the sample was eluted with 1 ml methanol/formic acid (98%/2% (v/v%)) into 2

ml Safe-Lock tubes. The samples were reduced to dryness in vacuum centrifuge at 40°C and

reconstituted in 150 µl methanol/water (70%/30% (v/v%)). After sonication for 10 min at

ambient temperature and centrifugation for 10 min at 6000 g, the supernatant was transferred

to a glass vial and subjected to LC-qToFMS analysis.

Enriched  root  exudate  samples  were  run  twice  on  LC-qToFMS  and  were  analyzed  with  an

Ultimate 3000 UHPLC system (Thermo Scientific Dionex) equipped with an Acclaim RSLC

120 column (150×2.1 mm, particle size 2.2 μm; Thermo Fischer Scientific) using the following

gradient at a flow rate of 0.5 ml/min: 0-2 min isocratic 95% A (water/formic acid 99.95/0.05

(v/v%)), 5% B (acetonitrile/formic acid 99.95/0.05 (v/v%)); 2-25 min, linear from 5% to 95%

B; 25-30 min, isocratic 95% B; 30-34 min, linear from 95% to 5% B; 35-42 min, isocratic 5%

B. Compounds were detected with a maXis impact – quadrupole time-of-flight (qToF) mass

spectrometer (Bruker Daltonics, Bremen, Germany) applying the following conditions in

negative mode: scan range 50-1400 mz; acquisition rate 3 Hz; end plate offset 500 V; capillary

voltage 2500 V; nebulizer pressure 3 bar; dry gas 11 L min-1; dry temperature 240°C. Mass

calibration was performed using sodium formate clusters (10 mM solution of NaOH in 50/50

(v/v%) isopropanol water containing 0.2 % formic acid. Every ten samples a mixture of all the

samples was injected as a quality control sample.
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Phylogenetic signal

The phylogenetic signal in root exudation was estimated by the correlation between the

phylogenetic distance and trait distance matrices among the investigated tree species. We

attached our list of taxa to the master phylogeny presented by (Zanne et al., 2014) with the help

of the software PHYLOMATIC v3 (a tool associated to PHYLOCOM 4.2; Webb et al., 2008),

to generate the initial phylogenetic tree in the Newick format. The simple pairwise matrix of

phylogenetic distances was calculated from the Newick code with the ‘phydist’ phylogeny tool

in PHYLOCOM and visualized with the online tool iTOL - Interactive Tree Of Life v3.1

(Ciccarelli et al., 2006). Independent trait distance matrices based on root exudation rates,

chemical richness of exudation, and chemical diversity of exudation, respectively, were

calculated with the package SAS, version 9.3 (Statistical Analyses System, SAS Institute Inc.,

Cary, NC, USA). For the correlation between the phylogenetic and trait distance matrices, a

Mantel permutation test (Mantel, 1967; Mantel & Valand, 1970) was computed with PAST

3.11 (Øyvind Hammer, Natural History Museum, University of Oslo, Norway), and the Pearson

correlation coefficient R and the one-tailed P value from the comparison of the original R to the

R computed in 9999 random permutations were reported. Euclidean similarity indices were

used for the Mantel permutation test.

Mycorrhizal Colonization and Root Morphology

After exudate collection, root strands were cut off the tree and stored at 6°C for no longer than

one week until processing. Tree species identity was confirmed a second time under a

stereomicroscope (magnification ×40) with a site-specific morphological key based on periderm

structure and color, root ramification, and root tip morphology (cf. Meinen et al., 2009; Kubisch

et al., 2015). We analyzed root morphology by optical surface area measurements with a flatbed

scanner and the software WinRHIZO 2013e (Régent Instruments Inc., Canada). The degree of

AM colonization was quantified with the gridline-intersect method (Giovanetti & Mosse, 1980)

after bleaching the root strands in 10% KOH (24 h, 80°C) and staining in an ink-based solution

(5% ink in 5% acetic acid; Vierheilig et al., 2005). The degree of ECM colonization of root tips

was determined from unstained roots by examining the size, color, and morphology of fungal

structures (Agerer, 1991, Goodman et al., 1996).

Soil Sampling and Chemical Analyses

Parallel to the root exudate collections, soils were sampled in the upper 10 cm of the mineral

soil. We used a steel corer (35-mm diameter) and combined each three replicate cores per study
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plot to a mixed sample to ensure that fine roots had sufficient mass of adhering rhizosphere soil

(n = 3 mixed soil samples per tree species and sampling campaign). Soil samples were stored

at 4°C for no longer than 1 week until fine roots with adhering soils were separated from non-

adhering soil. Soil adhering to fine roots was dislodged with fine forceps and was operationally

defined as rhizosphere soil (cf. Weaver et al., 1994), while non-adhering soil was considered

bulk soil. All soil was sieved to 2 mm. Soil subsamples for chemical analyses were stored at

4°C. The fraction of plant available P was determined by resin bag extraction (anion exchange

gel: Dowex 1 x 8-50; Dow Water & Process Solutions, USA). The resin was placed for 16 h in

a solution of 1 g field-moist soil suspended in 30 ml water (Sibbesen, 1978). P was re-exchanged

by  10%  NaCl  and  2%  NaOH  solutions  and  analyzed  by  color  reaction  with  5  mM

hexaammonium heptamolybdate (Murphy & Riley, 1962) and photometric measurement at 712

nm against water (spectrophotometer; Libra S 21, Biochrom, UK). The concentration of free

amino acids was analyzed according to the ninhydrin colorimetric analysis by (Rosen, 1957)

following K2SO4 extraction (see below). Amino acid concentrations were measured

spectrophotometrically at 570 nm (GENESYS 20 Visible Spectrophotometer; Thermo Fisher

Scientific, USA) and compared with a glycine standard curve (0 to 0.75 mM). Total C and N

were  determined  in  samples  dried  at  70°C (48  h)  with  an  elemental  analyzer  (Vario  EL III;

Elementar,  Germany).  Rhizosphere effects (RE, in %) for all  variables were calculated from

the difference between bulk and rhizosoil pools or fluxes, and were standardized by the

respective bulk soil pool or flux. Accordingly, a positive RE illustrates a greater pool or flux in

the rhizosphere soil and negative RE a greater pool or flux in bulk soil (Phillips & Fahey, 2006).

Microbial Activities

Soil subsamples for the analyses of microbial activities were stored at -20°C. Soil microbial

biomass C was determined by the chloroform fumigation extraction method (Vance et  al.,

1987). The extracted organic C was analyzed on a TOC analyzer. We calculated microbial

biomass C from the difference between fumigated and non-fumigated samples by using a kEC

factor of 0.45 (Joergensen, 1996). The potential activities of two extracellular enzymes involved

in the depolymerization of N and P from soil were assayed. The two enzymes – β-1,4-N-acetyl-

glucosaminidase (NAG) and acid phosphatase (AP) – were analyzed according to the

approaches by (Eivazi & Tabatabai, 1977) and (Verchot & Borelli, 2005). The activities of

NAG and AP were measured spectrophotometrically as absorbance at 400 nm (AP) and 410

nm (NAG), respectively, using 4-nitrophenyl phosphate (NPP) as the substrate. Enzyme

activities were expressed in units of substrate cleaved g-1 d-1. The rate of potential net N
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mineralization was measured under field-moist conditions: one 5 g-subsample was extracted

immediately in 20 mL 0.5 M K2SO4, while the second 5 g-subsample was incubated for seven

days in the dark before K2SO4 extraction. The amount of NH4
+ (Berthelot reaction) and NO3

-

(copper-cadmium reduction method) was measured by flow injection analysis (Cenco/Skalar

Instruments, Breda, Netherlands) and the net N mineralization potential calculated as the

difference in the amount of ammonium and nitrate between day one and seven.

Statistical Analyses

Statistical analyses were conducted with the package SAS, version 9.4 (Statistical Analyses

System, SAS Institute Inc., USA). Significance was determined at P ≤ 0.05. Means and standard

errors were calculated from the mean of four tree species per mycorrhizal association type and

sampling campaign, while the replicate plots for each tree species were considered as pseudo-

replication. The probability of fit to a normal distribution was tested using a Shapiro–Wilk test.

Means were compared by one-way Kruskal-Wallis single factor analyses of variance and non-

parametric multiple comparison tests after Wilcoxon to analyze the differences between tree

species, mycorrhizal types, and soil types. Additionally, data were analyzed by applying two-

factorial nested ANOVAs with sampling date as random effect to test for significant effects of

the mycorrhizal type (main effect) and tree species identity (nested effect) in root exudation and

rhizosphere effects in N, C and P dynamics (see Table S6). We summarized the rhizosphere

effects by calculating a small-sample bias corrected response ratio based on the ‘Linearity of

Expectation’ rule (cf. Lajeunesse, 2015).

The LC-qToFMS raw data were converted to the mzXML format by using the CompassXport

utility  of  the  DataAnalysis  software  (Bruker  Daltonic).  Peak  picking,  feature  alignment  and

feature grouping was done in R v3.4.0 (R Core Team) using the Bioconductor (Huber et al.,

2015) packages ‘xcms’ v1.52.0 (Smith et  al., 2006; Tautenhahn et al., 2008; Benton et  al.,

2010) and ‘CAMERA’ v1.32.0 (Kuhl et  al., 2012). For preprocessing with ‘xcms’ and

‘CAMERA’ all samples were sorted into tree species-specific folders and were then loaded and

processed at once. The following ‘xcms’ parameters were applied: peak picking method

“centWave” (snthr = 10; ppm = 10; peakwidth = 4, 15); peak grouping method “density”

(minfrac = 0.7; bw = 3; mzwid = 0.05); retention time correction method “peakgroups” (family

= symmetric). ‘CAMERA’ was used to annotate adducts, fragments, and isotope peaks with the

following parameters: extended rule set (www.github.com/stanstrup/chemhelper/tree/master

/inst/extdata); perfwhm = 0.6; calcIso = TRUE; calcCaS = TRUE. CAMERA additionally sorts

these adducts/fragments into pseudo compound (PC) groups whereas each group potentially
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represents a metabolite. Lastly, we collapsed each PC group (hereafter referred to as

‘metabolite’) using an in-house “maximum heuristic” approach, i.e., the intensity values of the

fragment,  which  most  often  displayed  the  highest  intensity  across  all  respective  samples

represents the PC group. We visualized the differences in metabolome between tree species and

between different mycorrhiza by computing partial least squares-discriminant analyses (PLS-

DA) using the r package ’mixOmics’ v6.2.0 (Le Cao et al., 2017). The r package ’vegan’ v2.4-

4 (Oksanen et  al., 2017) was used to test for significant differences in the metabolome

composition between different mycorrhiza types by using multi-response permutation

procedures (MRPP) on log +1-transformed data. The MRPP dissimilarity matrix was Euclidian

and each analysis was permuted 10,000 times. The ’vegan’ package was additionally used to

compute the chemical richness (CR) (per sample), which is the number (n) of metabolites with

abundances > 0 and the chemical diversity (CD) (per sample), which is implemented as

Shannon diversity (H´).

After the determination of the chemical composition of root exudates, we tested for the

relationship between root exudation and rhizosphere effects. We conducted linear regressions

of root exudation rates, chemical richness of root exudates, and chemical diversity of root

exudates with rhizosphere effects, and adjusted P values by the Benjamini-Hochberg procedure

to correct for multiple comparisons.

Results

Partial least squares-discriminant analysis (PLS-DA) revealed that the chemical richness of root

exudates significantly differed between the mycorrhizal association types (P <  0.03  multi-

response permutation procedure; Fig. 1b). The difference between the mycorrhizal types was

mainly due to chemical richness of root exudates (α diversity): chemical richness of root

exudates was larger in AM trees (as many as 390 operational chemical units) than in ECM trees

(343 operational chemical units, P = 0.02; Fig. 1c). When the operational chemical units of AM

and ECM exudates were compared, an intersection of 507 chemical units was found (Fig. 1d),

which corresponded to 53% of all operational chemical units. This difference in chemical

richness  of  root  exudates  had  no  phylogenetic  signal  (Table  S4),  since  the  ECM association

type developed independent from the phylogenetic relatedness of the host tree and, thus, is

phylogenetically highly diverse (Fig. S1). Larger chemical richness of AM root exudates did

not result in significantly higher chemical diversity, though (Fig. S2), since the relative
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frequency of individual operational chemical units was reduced with an increase in chemical

richness in AM trees.

By contrast, the quantity of root exudation was influenced neither by the mycorrhizal

association type (Fig. 1a) nor by tree species identity (Table S3). Root exudation rates varied

considerably between individual trees of a species (average coefficients of variation 52-85%

across sampling events), much more than between tree species (21%) and mycorrhizal types

(10%). It is surprising that root exudation rates did not differ between mycorrhizal association

types, since both root morphology (specific root area, P = 0.02) and root architecture (branching

Figure 1 Mycorrhizal control of root exudation. (A to D) Control of (A) the quantity and (B, C, D) the chemical richness of
root exudation of arbuscular mycorrhizal (AM, white) and ectomycorrhizal (ECM, black) trees in a mixed forest stand.
Exudation rate values represent means of AM and ECM trees (n = 4 tree species per mycorrhiza type; each tree species is
represented as an average of four sampling campaigns, during which six replicate samples from three study plots were sampled;
significant differences between mycorrhiza types are indicated by asterisks). Mycorrhizal effects for chemical richness were
identified by (B) a multi-response permutation procedure following a partial least squares-discriminant analysis (PLS-DA), by
(C) a comparison of means between AM and ECM trees (n = 4 tree species per mycorrhiza type; each tree species is represented
as an average of six replicate samples from three study plots) and by (D) a Venn diagram showing the number of equal and
differentiated operational chemical units in AM and ECM exudates.
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intensity, P = 0.004) differentiated the mycorrhizal types (Table S1) – both of which were

shown to correlate with root exudation in other studies (Tückmantel et al., 2017). In this study,

ECM trees had significantly higher branching intensity (4 tips cm-1) and lower specific root

area (SRA; 254 cm2 g-1) than AM trees (2.5 tips cm-1 and 300 cm2 g-1). In addition, ECM roots

were almost completely colonized by mycorrhizal fungi (99%), while root colonization was

less complete in AM roots (84%).

ECM symbioses exerted a positive influence on the rhizosphere effects on C, N, and P cycling,

while the influence of AM symbioses was either less strong or even negative in some cases (for

the rhizosphere effect on amino-acid N, plant-available P, and microbial C; Fig. 2).

Accordingly,  the mean rhizosphere effect  (average of all  rhizosphere effects on C, N, and P

cycling) was much stronger in ECM trees (77 %) than in AM trees (38 %, P = 0.02; Table S3).

AA-N

NAGase

Ammonific.

Net Nmin

Corg

Microb. C

AM
ECM

-0.5 0 0.5 1.0 1.5

Presin

APase

Rhizosphere reponse ratio

N
cycling

C
cycling

P
cycling

A

B

C

Figure 2 Mycorrhizal control of the rhizosphere response. (A to C) Control of (A) the rhizosphere C cycle, (B) N cycle, and
(C) P cycle of arbuscular mycorrhizal (AM, white) and ectomycorrhizal (ECM, black) trees in a mixed forest stand. Values
represent means of four sampling campaigns (n = 4 tree species per mycorrhiza type; each tree species is represented as an
average of four sampling campaigns, during which six replicate samples from three study plots were sampled). Meta-analysis
was conducted to summarize rhizosphere effects on biogeochemical cycles, where the biogeochemical cycles in the rhizosphere
were considered as ‘treatment group’ and the biogeochemical cycles in bulk soil as ‘control group’. We calculated mean small-
sample bias corrected response ratios based on the ‘Linearity of Expectation’ rule (cf. Lajeunesse, 2015) and the approximate
variances of the bias corrected response ratios.
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The strongest positive rhizosphere influence had ECM trees on net ammonification and net

mineralization rates (that is on N cycling), which had response ratios of +1.1 and +0.6,

respectively: net ammonification increased threefold from 0.8 µg N in bulk soil to 2.4 µg N g-

1 d-1 in  ECM rhizosoil  (Table  S2).  The  increase  in  net  nitrification  related  negatively  to  the

chemical diversity of root exudates (Table S5, P = 0.02). Generally, the chemical richness of

exudates related negatively to the rhizosphere effects. Both mean and the Corg rhizosphere

effects levelled off with an increase in chemical richness to more than 500 operational chemical

units in AM trees (Fig. 3a, b). Surprisingly, chemical richness had the strongest negative

relationship with the rhizosphere effect for soil moisture: the chemical richness increased

beyond 370 operational chemical units (mostly) in AM trees when the soil moisture in rhizosoil

decreased relative to bulk soil (Fig. 3c), while the quantity of root exudation decreased

concurrently. The chemical diversity of exudates related negatively to the rhizosphere effects

for pH(H2O) and net nitrification (Table S5).
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Figure 3 Rhizosphere effects (RE) as a function of root exudates. (A to C) Linear regressions between the chemical richness
of root exudates with (A) the mean rhizosphere effect, (B) the rhizosphere effect for organic C, and (C) the rhizosphere effect
for soil moisture of arbuscular mycorrhizal (AM, white) and ectomycorrhizal (ECM, black) trees in a mixed forest stand (n =
24 plots; each plot is represented as an average of four sampling campaigns). RE were calculated from the differences between
bulk and rhizosoil pools or fluxes, and were standardized by the respective bulk soil pool or flux. P values were adjusted by
the Benjamini-Hochberg procedure to correct for multiple comparisons.
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Discussion

Despite the accepted importance of root exudation for ecosystem-scale processes, the

understanding of the chemical communication between tree roots and rhizosoil functions is still

in its infancy: our study is the first to identify systematic differences in root exudation patterns

between trees colonized by different mycorrhizal types by a combining in situ exudate

collection from mature forest trees with untargeted ecometabolomics. By taking the unique

approach, we show for the first time that the chemical composition, i.e. the chemical richness,

of root exudates coherently differs between AM and ECM forest trees, while tree species

identity has no significant effect in the nested ANOVAs. It is generally expected that the

mycorrhizal symbiosis influences root exudation patterns since the fungal symbiont is rewarded

by photosynthates from the plant, which alters the carbohydrate metabolism and root respiration

of the host (Bago et al., 2003; Douds et al., 2010). Following mycorrhizal colonization, some

(inconsistent) reductions in the release of carbohydrates, alterations in the composition of amino

acids, and increases in the release of phenolics and gibberellins have been observed so far (Jones

et al., 2004; Martin et al., 2008). It appears that the chemical composition of root exudates is

also regulated to communicate with mycorrhizal fungi and other soil microbes. In other

investigations it has been shown that roots less completely colonized by mycorrhizal fungi

increased the chemical richness of their exudates as a consequence of the production of signal

molecules for the attraction of propagules and defense substances against pathogens (Meier et

al., 2015). Accordingly, the chemical composition of AM root exudates can be expected to

differ from ECM exudates, since AM trees are frequently less completely colonized - as was

the case in our study.

Root exudate diversity has been shown to influence the abundance of specific microbes and

community shifts in microbes (Steinauer et al., 2016; Pétriacq et al., 2017). Diverse microbial

communities are assumed to be functionally complementary in their ability to acquire and

utilize labile exudate C, i.e. in their ecological niche (sensu niche complementarity hypothesis,

Fargione et al., 2007). Higher chemical richness of AM root exudates should accordingly lead

to more complete resource exploitation of the exuded C and reduced niche overlap among

rhizosoil microbes. If diverse rhizosoil microbes of AM trees are less dependent on recalcitrant

SOM decomposition and mainly meet their C needs from root exudates, this explains the

reduced rhizosphere effects in AM soils.

Differences in the chemical composition of rhizodeposits between AM and ECM trees have

been invoked to affect root-rhizosphere couplings and ecosystem nutrient economy. Higher
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chemical quality of AM litter and root exudates is thought to accelerate mineralization of plant-

derived C, causing inorganic ‘nutrient economy’ (i.e., the primary forms of nutrients utilized

by plants and microbes are inorganic) in AM forests (Smith, 1976; Phillips et  al., 2013). By

contrast, ECM fungi are a greater C cost to the host plant (Smith & Read, 2008) and ECM tree

litter is of lower quality, which enhances the importance of soil mining for N-bearing

compounds and tight root/rhizosphere couplings. As a consequence, ECM fungi have the ability

to exude significant amounts of extracellular enzymes to degrade SOM (Phillips et al., 2013;

Averill et al., 2014). Enhanced rhizosphere effects in ECM rhizosoils of our study may thus be

explained by a combination of (i) accumulation of soil N in organic forms as a result of slow

bulk SOM decomposition and nitrification rates, (ii) increased capability to produce hydrolytic

enzymes that degrade fast-cycling N pools (amino sugars), and (iii) reduced chemical richness

in root exudates. The latter can be speculated to lead to niche overlap and enhanced competition

between rhizosphere microbes for the exuded labile C. Increased exudate niche overlap among

rhizosphere microbes may then enforce the co-metabolism of less bioavailable SOM, which

should be at the attention of future research. From this, we conclude that the exudate richness

– rhizosphere function relationship may be considered as negative feedback between

mycorrhizal trees and soil microbes, whereas the quantity of exuded C is a secondary factor

across similar environments.

Acknowledgements

The authors wish to thank the German Research Foundation (Deutsche Forschungs-

gemeinschaft DFG) for financial support from a research grant awarded to I.C.M. [grant number

ME 4156/2-1]. Y.P., A.W., and N.M.v.D. gratefully acknowledge the support of the German

Centre for Integrative Biodiversity Research (iDiv) Halle-Jena-Leipzig funded by DFG (FZT

118). We appreciate H. Eichner, R. Helbig, G. Kuchenbuch, U. Nüsse-Hahne, and U. Schlonsog

for field and laboratory assistance. Data reported in this paper will be made available in the fine

root ecology database FRED (http://roots.ornl.gov) and on MetaboLights (www.ebi.ac.uk

/metabolights). I.C.M. conceived and designed the research project. R.L. and A.W. performed

research. Y.P. developed the maximum heuristic approach. R.L., A.W., and Y.P. analyzed data.

All authors contributed to the writing and approved the final version of the manuscript.



CHAPTER 3

59

Supplementary Material

Supplementary Figure 1 Phylogenetic relatedness. Phylogenetic tree of four arbuscular mycorrhizal (grey letters) and four
ectomycorrhizal (black letters) tree species based on (Zanne et al., 2014). The tree scale represents 10 nucleotide substitutions
per 100 residues. Points illustrate nodes where at least one leaf branches off. The root of the displayed phylogenetic tree
originates in the Eudicotyledonae.
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Supplementary Figure 2 Mycorrhizal influence of root exudation. Influence on the chemical diversity of root exudates of
arbuscular mycorrhizal (AM; white) and ectomycorrhizal (ECM; black) trees in a mixed forest stand (n = 4 tree species per
mycorrhiza type; each tree species is represented as an average six replicate samples from three study plots were sampled).
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Supplementary Table 1 Mycorrhizal control of root exudation and root morphology. Control of root exudation, root
morphology, and mycorrhizal colonization of arbuscular mycorrhizal (AM) and ectomycorrhizal (ECM) trees in a mixed forest
stand (means and standard errors in parentheses of n = 4 tree species per mycorrhizal type (or n = 3 tree species per mycorrhizal
type for the annual exudation flux); each tree species is represented as an average of four sampling campaigns, during which
six replicate samples from three study plots were sampled). Exudation data represent the average values of four sampling
campaigns between October 2013 and September 2014. Significant differences between the mycorrhizal types are indicated by
asterisks (***, **, and * for P ≤ 0.001, 0.01 and 0.05; n.s., not significant). n/a, not applicable.

AM ECM P

Exudation rate [mg C g-1root yr-1] 171 (25) 156 (27) n.s.

Annual exudation flux [g C m-2soil yr-1] 32.6 (5.9) 44.8 (10.7) n.s.

Photosynthetic C cost of root exudation [%] 4.1 (0.8) 5.7 (1.4) n/a

Fine root diameter [mm] 0.55 (0.03) 0.54 (0.02) n.s.

Tissue density [g cm-3] 0.31 (0.03) 0.34 (0.02) n.s.

SRL [m g-1] 19 (1) 15 (1) n.s.

SRA [cm2 g-1] 300 (10) 254 (13) *

Branching intensity [tips cm-1] 2.6 (0.4) 4.1 (0.7) **

Mycorrhizal colonization [%] 84 (3) 99 (1) ***

SRL, specific root length; SRA, specific root area
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Supplementary Table 2 Rhizosphere effects. Nutrient cycling in the rhizosoil and bulk soil of arbuscular mycorrhizal (AM)
and ectomycorrhizal (ECM) trees in a mixed forest stand (means and standard errors in parentheses of n = 4 tree species per
mycorrhizal type; each tree species is represented as an average of four sampling campaigns, during which six replicate samples
from three study plots were sampled). Significant differences (P ≤ 0.05) of a mixed effect model with sampling campaign as
random effect across soil types are indicated by different superscript letters and significant differences between the mycorrhizal
types by bold letters.

Rhizosoil Bulk soil

AM ECM AM ECM

C CYCLING

Corg [mg C g-1] 41.5 (2.1) a 45.7 (2.5) a 36.1 (1.6) b 34.0 (2.9) b

Microbial biomass C [mg C g-1] 0.57 (0.03) 0.60 (0.05) 0.61 (0.03) 0.57 (0.04)

N CYCLING

Ntotal [mg N g-1] 33.3 (1.0) a 34.6 (1.8) a 30.5 (0.8) b 28.9 (3.4) b

Namino acid [µg N g-1] 16.0 (0.3) b 24.1 (2.9) a 19.3 (1.7) ab 18.3 (1.3) ab

Corg/Nt [mol C mol N-1] 14.2 (0.2) b 15.2 (0.3) a 13.9 (0.1) a 14.7 (0.3) b

NAG activity [mg N g-1 d-1] 12.6 (0.4) bc 19.7 (2.4) a 11.4 (0.4) b 14.0 (0.8) c

Net ammonification [µg N g-1 d-1] 1.5 (0.2) ab 2.4 (0.9) a 0.8 (0.2) b 0.8 (0.4) b

Net nitrification [µg N g-1 d-1] 2.1 (0.2) a 1.0 (0.4) b 1.6 (0.4) ab 1.0 (0.5) b

Net N mineralization [µg N g-1 d-1] 3.5 (0.2) a 3.4 (0.7) a 2.4 (0.6) ab 1.8 (0.3) b

P CYCLING

Presin [µg P g-1] 5.1 (0.7) 7.0 (1.0) 5.9 (0.8) 5.0 (1.4)

AP activity [mg P g-1 d-1] 12.9 (0.1) 14.6 (2.2) 13.3 (0.8) 12.9 (0.9)

OTHER SOIL PROPERTIES

Soil moisture content [%] 32.2 (0.7) b 32.1 (1.3) b 37.3 (0.5) a 35.8 (1.3) a

pH(KCl) 4.5 (0.1) 4.4 (0.3) 4.4 (0.1) 4.3 (0.2)

Base saturation [%] 94.9 (0.6) a 90.3 (4.2) ab 92.5 (0.7) b 82.5 (6.8) b
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Supplementary Table 3 Mycorrhizal control of root exudation and rhizosphere effects. Results of two-factorial nested
ANOVAs on the significance of the effects of mycorrhizal type (n = 2, df = 1) and tree species identity (n = 8, df = 6) on the
variance of root exudation and rhizosphere effects of eight tree species from a mixed forest stand. Given are results of F tests
of a mixed effects model, with mycorrhizal type as main effect, tree species identity as nested effect, and sampling date as
random effect (***, **, and * for P ≤ 0.001, 0.01 and 0.05). RE were calculated from the differences between bulk and rhizosoil
pools or fluxes, and were standardized by the respective bulk soil pool or flux.

Supplementary Table 4 No phylogenetic signal in root exudation. Phylogenetic signal estimated by a permutation test for the
correlation between two distance matrices (Mantel test): here we show Pearson’s correlation coefficient R and the probability
of error P for the correlation between the phylogenetic distance matrix (on the basis of the relative nucleotide substitutions)
and each one of three independent trait distance matrices (on the basis of the root exudation rate, chemical richness of root
exudates, and chemical diversity of root exudates) of eight tree species from a mixed forest stand.

Mycorrhizal
type

Tree
species

ROOT EXUDATION Exudation rate 0.3 2.0

Chemical richness (exudates) 20.6 *** 3.4**

Chemical diversity (exudates) 0.03 2.5*

RHIZOSPHERE
EFFECTS Mean rhizosphere effect 8.1 * 1.7

C cycling Corg 8.1 * 1.3

Microbial biomass C 8.6 ** 1.9

N cycling Ntotal 64.3 *** 11.7 **

Namino acid 0.06 0.3

NAG activity 5.4 * 1.6

Net ammonification 11.6 ** 2.4

Net nitrification 5.5 * 0.8

Net N mineralization 0.3 0.2

P cycling Presin 2.0 0.7

AP activity 0.8 0.6

Trait R P

Exudation rate -0.07 0.72

Chemical richness (exudates) 0.06 0.33

Chemical diversity (exudates) 0.20 0.12
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Supplementary Table 5 Rhizosphere effects as a function of root exudates. Linear regressions between rhizosphere effects
and root exudation rates, chemical richness of root exudates, and chemical diversity of root exudates (n = 24). Given are
correlation coefficients of simple linear regressions with single explanatory variables (***, **, and * for P ≤ 0.001, 0.01 and
0.05. P values were adjusted by the Benjamini-Hochberg procedure to correct for multiple comparisons). RE were calculated
from the differences between bulk and rhizosoil pools or fluxes, and were standardized by the respective bulk soil pool or flux.

Exudation
rate

Chemical
richness

Chemical
diversity

RHIZOSPHERE
EFFECTS

Mean rhizosphere
effect 0.49 ** -0.37 * -0.07

C cycling Corg 0.35 -0.40 * -0.007

Microbial biomass C 0.27 -0.38 -0.18

N cycling Namino acid -0.07 -0.04 0.30

NAG activity 0.33 -0.19 0.07

Net ammonification 0.42 -0.24 0.003

Net nitrification -0.17 0.09 -0.49 *

Net N mineralization -0.22 0.41 -0.45

P cycling Presin 0.60 ** -0.14 0.32

AP activity -0.23 -0.47 ** -0.27

Other soil
properties Soil moisture 0.44 -0.68 *** -0.05

pH -0.30 -0.21 -0.62 ***

Base saturation -0.18 -0.40 -0.10
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Supplementary Table 6 Traits used in the study for statistical analyses.

Trait Description Unit

ROOT EXUDATION

Exudation rate Rate of C release via root exudation mg C g-1
root yr-1

Annual exudation flux Estimated annual rate of C release via exudation g C m-2
soil yr-1

Photosynthetic C cost of root exudation Estimated percentage of C exudation from NPP %

Chemical richness (exudation) Total number of different exudate compounds n

Chemical diversity (exudation) Diversity of exudate compounds H´

ROOT MORPHOLOGY

Fine root diameter Average diameter of fine roots mm

Tissue density Root mass per unit root volume g cm-3

Specific root length (SRL) Root length per unit root mass m g-1

Specific root area (SRA) Root area per unit root mass cm2 g-1

Branching intensity Root tips per unit root length tips cm-1

Mycorrhizal colonization Degree of mycorrhizal colonized roots %

RHIZOSPHERE PROPERTIES

Corg Mass of organic C per unit soil mass mg C g-1

Microbial biomass C Mass of microbial C per unit soil mass mg C g-1

Ntotal Mass of total N per unit soil mass mg N g-1

Namino acid Mass of Glycine N per unit soil mass µg N g-1

Corg/Ntotal Ratio of organic C and total N in soil mol C mol N-1

NAG activity Potential activity of NAGase per unit soil mass mg N g-1 d-1

Net ammonification Changes of NH4
+-N pool sizes over time per unit

soil mass µg N g-1 d-1

Net nitrification Changes of NO3
--N pool sizes over time per unit

soil mass µg N g-1 d-1

Net N mineralization Net release of inorganic N over time per unit soil
mass µg N g-1 d-1

Presin Mass of plant available P per unit soil mass µg P g-1

AP activity Potential activity of APase per unit soil mass mg P g-1 d-1

Soil moisture content Percentage of water contained in soil mass %

pH(KCl) Negative decimal logarithm of hydrogen ions -lg c(H+)

Base saturation Percentage of potential cation exchange capacity
occupied by cations %
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Abstract

Even though the two dominant mycorrhizal associations of temperate tree species differentially

couple carbon (C) and nitrogen (N) cycles in temperate forests, systematic differences between

the biogeochemical cycles of arbuscular (AM) and ectomycorrhizal (ECM) tree species remain

poorly described. A classification according to the mycorrhizal type offers the chance, though,

to develop a global frame concept for the prediction of temperate ecosystem responses to

environmental change. Focusing on the influence of mycorrhizal types on two key plant

processes of biogeochemical cycling (root exudation and N acquisition), we investigated four

temperate deciduous tree species per mycorrhizal type in a drought experiment in large

mesocosms. We hypothesized that (H1) C loss by root exudation is higher in ECM than in AM

trees, (H2) drought leads to higher reductions in root exudation of drought-sensitive ECM trees,

and (H3) inorganic N uptake is higher in AM than in ECM trees. In contradiction to H2, we

found no systematic difference in root exudation between the mycorrhizal types at ample soil

moisture, but almost two-fold higher exudation in ECM trees when exposed to soil drought. In

addition, photosynthetic C cost of root exudation strongly increased by approximately ten-fold

in drought-treated ECM trees, while it only doubled in AM trees, which confirms H1. With

respect to H3, we corroborated that AM trees had both higher absolute and relative inorganic

N  acquisition  rates  than  ECM  trees,  while  the  organic  N  uptake  did  not  differ  between

mycorrhizal types. We conclude that ECM trees are less efficient in inorganic N uptake than

AM trees, but increase root C release in dry soil potentially as an adaptive response to increase

hydraulic conductivity and/or nutrient availability. These systematic differences in key

biogeochemical processes supports hints on the key role of the mycorrhizal types in coupling

C and N cycles in temperate forests.

Keywords: arbuscular mycorrhiza, carbon cycling, deciduous tree species, drought,

ectomycorrhiza, inorganic nitrogen uptake, organic nitrogen uptake, rhizodeposition
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Introduction

A fundamental question for the development of global change models is to what degree shifts

in tree species and their associated microbes influence biogeochemical cycles (Johnson et al.,

2013; Phillips et al., 2013; Terrer et al., 2016). The increasing evidence that tree species identity

is critical for important biogeochemical processes like nutrient cycling (e.g. Binkley &

Giardina, 1998; Phillips & Fahey, 2006; Hobbie, 2015) and soil carbon (C) sequestration from

root inputs (Eviner & Chapin III, 2003; van der Heijden et al., 2015) calls for an integrated

framework for different tree species, which can be implemented into Earth system models. It

has been recently suggested that the relative abundance of AM and ECM trees may provide an

integrated index of biogeochemical transformations relevant to C cycling and nutrient retention

in temperate forests, since the two types of mycorrhizal fungi differ in their mode of nutrient

acquisition (Phillips et al., 2013; Fisher et al., 2016).

The majority of tree species are associated with mycorrhizal fungi, among which symbiotic

associations with either AM or ECM fungi are the most widespread. The association with

mycorrhizal fungi influences plant growth (Vicca et al., 2012), nutrient cycling (Johnson et al.,

2013; Terrer et  al., 2016), and soil C storage (Averill et al., 2014). So far, some systematic

differences in important ecosystem processes between the two major mycorrhizal types have

already been revealed: ECM root associations are linked with low and AM associations with

high ecosystem C turnover due to differences in key C cycling traits, i.e. differences in relative

growth rate of plants and in litter decomposability (Cornelissen et al., 2001; Read & Perez-

Moreno, 2003). The soil C storage in ecosystems dominated by ECM associations (i.e., cold

coniferous and many temperate forests) is consequently 70% greater than in ecosystems where

AM associations dominate (i.e., in tropical forests and in grassland) (Averill et al., 2014). By

implication, the distribution and evolutionary development of AM and ECM dominated

systems  is  associated  with  the  quantity  and  quality  of  soil  C  and  nutrients  (Read  &  Perez-

Moreno, 2003).

In terrestrial ecosystems, soil organic matter (SOM) is the largest C pool (Fontaine et al., 2007).

The size and sink strength of SOM is determined by rhizodeposition, since the release of easily

degradable C-rich substrates from roots drive microbial decomposition processes and

stimulates microbes via a priming effect (Kuzyakov et al., 2000) to decompose less bioavailable

soil organic C (SOC; Hoosbeek et al., 2004; Joslin et al., 2006; Phillips et al., 2011; Phillips et

al., 2012; Meier et al., 2017). Greater C inputs by root exudation, e.g. as consequence of

elevated CO2 (Phillips et al., 2011) or warming (Boone et al., 1998; Yin et al., 2013; Zhang et
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al., 2016), do not only increase the decomposition of recalcitrant C, but may also enhance soil

N-cycling (Phillips et  al., 2011; Phillips et al., 2012; Meier et  al., 2017). By contrast, N

enrichment from N deposition decreases belowground C allocation and root exudation (Phillips

et al., 2009), and consequently reduces the priming effects (Phillips & Fahey, 2006). Next to

priming effects, root exudates also enhance nutrient availabilities directly by alteration of pH

milieus or provision of chelating agents (Grayston et al., 1997; Jones et al., 2004). The amount

and composition of root exudates also depends on plant species (Grayston et al., 1997), and on

the type of fungi colonizing the roots (Langley & Hungate, 2003; Meier et al., 2013). In

addition, it is known that fungal hyphae also exude carbohydrates and extracellular enzymes

into the hyphosphere (Tawaraya et al., 2006; Meier et al., 2015; Zhang et al., 2016). In a pulse

labeling experiment with potted saplings, Phillips & Fahey (2006) found that roots of ECM

yellow birch released more C than roots of AM sugar maple. In two New England forests,

Brzostek et al. (2013) could not prove any systematic difference in root exudation between two

AM and two ECM tree species, even though ECM beech had the highest and AM ash the lowest

rhizosphere effect. Reinforcing this result, a study in a deciduous hardwood forest in the US

Midwest showed that exudation rates and rhizosphere effects on nutrient cycling were nearly

two  times  higher  in  two  ECM  than  in  two  AM  tree  species  (Yin et al., 2014). While these

studies conform in their general tendency, it remains unclear whether trait variations of specific

tree species (and of specific mycorrhizal species, respectively) are driving these differences, or

if they can be generalized to other mycorrhizal tree species, ecosystems, and larger scales.

The two major mycorrhizal types seem to differ in their nutrient acquisition strategies and

nutrient economy (Phillips et al., 2013; Averill et al., 2014): N acquisition of ECM tree species,

which occur mainly in habitats with high organic N content (Smith & Smith, 2011), seems to

be dominated by organic N acquisition, at least at high elevation (Averill & Finzi, 2011).

Organic N acquisition increases the C cost of N uptake, since C is invested not only in the

production of extracellular enzymes to decompose polymeric Norg molecules rendering

monomeric forms of organic N for direct absorption by the tree (Read & Perez-Moreno, 2003),

but also in enhanced root C exudation to induce microbial priming effects. AM tree species also

can access both inorganic (Govindarajulu et al., 2005) and organic N forms (Whiteside et al.,

2012). Yet given the limited saprotrophic capabilities of AM fungi and the dominance of

inorganic N forms in the habitats in which they occur, it is believed that AM tree species

primarily utilize inorganic N forms (Gallet-Budynek et al., 2009; Smith & Smith, 2011).

However, even though the dominant functional mycorrhizal type could play a key role in N



CHAPTER 4

69

dynamics in forest ecosystems, systematic differences between mycorrhizal types in organic

and inorganic N acquisition remain poorly understood so far.

Apart from their potential role in C and N cycling, mycorrhizal associations may also diminish

the sensitivity of plants to drought (Lehto & Zwiazek, 2011; Kivlin et al., 2013; Mohan et al.,

2014), mainly due to physiological and morphological properties of the fungi (Phillips et al.,

2016), but also due to physiological changes in the host. Drought tolerance mediated by AM

fungi can be fostered by enhanced accumulation of osmotic metabolites, which lowers the water

potential of the host plant (Rapparini & Peñuelas, 2014; Latef et al., 2016). In case of ECM

fungi, modified aquaporin expression and melanin concentration in cell walls under reduced

water supply may help to ensure higher tolerance of plants to soil desiccation (Lehto &

Zwiazek, 2011; Groppa et al., 2012; Fernandez & Koide, 2013; Brunner et al., 2015; Phillips

et al., 2016). However, whether AM or ECM associations provide higher drought resistance for

their host trees appears to be uncertain due to contrasting findings (Querejeta et  al., 2009;

Brzostek et al., 2014; Mohan et al., 2014). Hypothetically, the higher drought sensitivity of

ECM trees (Querejeta et al., 2009) could result in stronger down-regulation of photosynthetic

C gain and root growth, thus, leading to stronger reductions in the C loss via root exudation

than in AM trees (Brunner et al., 2015). However, the response of root exudation of forest trees

to soil drought is unknown so far and evidence for this line of thought remains absent.

In the current study, we investigated systematic differences in C and N turnover between AM

and ECM trees in a factorial drought experiment with four AM and four ECM tree species in

large-scale mesocosms. Among the major biogeochemical processes, we focused on the C flux

via root exudation, photosynthesis, and leaf respiration, as well as on N acquisition rates from

organic and inorganic N sources. Tree saplings of the experiment originated from ancient

woodland and were colonized by indigenous mycorrhizal communities. We assumed that the

mycorrhizal type has greater influence on key processes of biogeochemical cycling (root

exudation and N acquisition strategies) than differences in tree species identity. We

hypothesized that (H1) C loss by root exudation is higher in ECM than in AM tree species as a

consequence of the organic nutrient economy in ECM ecosystems and enhanced

root/rhizosphere couplings, (H2) drought leads to higher reductions in root exudation of

drought-sensitive ECM tree species, and (H3) inorganic N uptake is higher in AM than in ECM

tree species, whereas organic N acquisition is greater in ECM tree species.
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Materials and Methods

Plant material

Saplings of eight major Central European deciduous tree species were collected from an old-

growth mixed forest (‘Hainich National Park’ in Thuringia, Germany, 51°08’N, 10°51’E). The

forest is located at sub-montane elevation (340 m a.s.l.) on eutrophic Luvisols (IUSS, 2006),

which have developed from a base-rich Pleistocene loess layer over Triassic limestone (Middle

Muschelkalk). Soil manipulation activities such as liming were absent. The climate is

characterized by a mean annual temperature of 7.7°C and mean annual precipitation of 590 mm.

During summer, irregular drought periods of two to three weeks are the rule. Over the last 40

years, few individuals have been extracted from the stand, which has continuity as a forest for

at least the last 200 years (Schmidt et  al., 2009) and therefore represents ancient woodland

(Wulf, 2003). The forest stand is a mature mixed hardwood stand with up to 14 tree species co-

occurring. The vegetation is classified as Stellario-Carpinetum (starwort-oak-hornbeam forest,

interfused with elm trees). The selected tree species for this study are frequently dominant or

subdominant trees of the natural forest vegetation in Central Europe and represent two

mycorrhizal  types  (cf.  Wang  &  Qiu,  2006):  common  ash  (Fraxinus excelsior L.), sycamore

maple (Acer pseudoplatanus L.), Norway maple (Acer platanoides L.), and wild cherry (Prunus

avium L.) are AM tree species. European beech (Fagus sylvatica L.), pedunculate oak (Quercus

robur L.), small-leaved lime (Tilia cordata MILL.), and hornbeam (Carpinus betulus L.) are

ECM tree species. About 25 saplings per tree species were collected in two campaigns in

September 2011 (AM: ash and sycamore; ECM: beech and lime) and September 2012 (AM:

Norway maple and cherry; ECM: oak and hornbeam). The selected individuals were similar in

tree height (about 30 cm) and crown dimensions. Saplings were excavated and adherent soil

material was carefully removed from the roots. Saplings were stored in moist plastic bags to

minimize transpiration, kept cool, and transported to the greenhouse immediately. Saplings

were re-planted in 5 L plastic pots filled with sterilized sand, placed in a randomized array in

the Experimental Botanical Garden Göttingen, and kept well-watered.

Experimental design

The eight saplings for each tree species were planted into the Göttingen Rhizolab, which is an

outdoor facility designed for the investigation of root growth dynamics of woody plants (cf.

Meier & Leuschner, 2008), as well as into neighboring lysimeters. In total, sixteen drained,

large-scale containers (volume 7 m3) arranged in four rows in belowground facilities, with the
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rims of the containers at ground level, were included in the experiment. Each container was

divided by polyethylene plates into four plots, resulting in 64 plots in total. These facilities were

automatically covered by a mobile Plexiglas rain shelter during precipitation events, thus

allowing full control of the soil water while glasshouse artifacts were avoided. Tree saplings

were fertilized during the growing seasons (June 2012 to August 2015) every second week with

2 L of a 0.1% NPK fertilizer solution containing trace elements (concentrations of undiluted

NPK fertilizer: 2.5 M NH4, 0.5 M NO3, 0.4 M CH4N2O, 0.7 M P2O5, 0.8 M K2O, 11.5 mM B,

0.8 mM Cu, 4.4 mM Fe, 2.7 mM Mn, 0.13 mM Mo, 0.8 mM Zn).

Tree saplings were arranged in a randomized block design, with two AM tree species and two

ECM tree species planted together into one container, at a spacing of 1 m between individuals.

Planting occurred in two subsequent campaigns for the Rhizolab (May 2012; AM: ash and

sycamore; ECM: beech and lime) and the lysimeters (June 2013; AM: Norway maple and

cherry; ECM: oak and hornbeam). In our experiment, saplings were grown in mineral sand with

a particle size of ≥ 2 mm. We maintained two soil water contents (SWC) among the containers:

a  drought  treatment  (5%  SWC,  v/v)  and  a  well-watered  treatment  (10%  SWC,  v/v),  each

treatment replicated four times per tree species. Soil water content was measured throughout

the  profile  to  a  depth  of  1.1  m:  one  access  tube  was  inserted  vertically  in  each  plot  and  the

volumetric soil water content measured every second day by frequency domain reflectometry

(FDR; Diviner2000, Sentek Sensor Technologies, Australia). Water loss by transpiration or

evaporation was quantified based on soil water measurements to a depth of 40 cm and was

replaced every day by irrigating the soil surface homogeneously and at a slow rate (drip

irrigation). The drought treatment was initiated in May 2014 after complete leaf expansion and

was paused during the non-growing season to allow natural precipitation to bring the soil back

to field capacity. The experiment simulated two summer droughts of about 24 weeks each (May

to September in 2014 and 2015, respectively).

Air temperature and air humidity were recorded continuously at 10-min intervals with a Hobo

Pro RH/Temp data logger (Onset Computer, USA). Soil temperature was measured with several

negative temperature coefficient (NTC) thermistors arranged in 16 horizontal lines at 10-cm

soil depth and in four vertical profiles to a depth of 1 m.

Photosynthesis and leaf respiration

Leaf gas exchange measurements were conducted during mid and late season 2015 on one

canopy leaf per plant with an infrared CO2 analyzer (LI-6400; LI-COR Biosciences, Lincoln,

NE, USA) during the middle of an overcast day. We measured leaf photosynthesis



CHAPTER 4

72

(A; µmol m- 2 s-1) at ambient photosynthetically active radiation (PAR: 873 ± 40 µmol m-2 s-1)

and leaf respiration in the dark (PAR: 0.7 ± 0.03 µmol m-2 s-1). For each light level, the leaves

were allowed to equilibrate for three minutes before data were logged. While leaf

photosynthesis was already in equilibrium with the respective ambient PAR, the measurement

of leaf respiration included the acclimation of the leaf to a change in light, i.e. to zero PAR.

Even though we did not observe any further increases in leaf respiration rates after the

equilibration time, we cannot completely rule out that further slight increases in leaf respiration

may have had occurred after this equilibration time and that leaf respiratory rates are

underestimated to a certain extent. During the measurement in July 2015, measurement

conditions were slightly warmer and drier (average leaf temperature 32 ± 0.2ºC, relative

humidity 33 ± 1%, vapor pressure deficit 33 ± 1 hPa), while in September conditions were

slightly cooler and moister (average leaf temperature 22 ± 0.3ºC, relative humidity 44 ± 1%,

vapor pressure deficit 15 ± 0.3hPa). CO2 concentrations were ambient [CO2] during both

measurement periods (400 and 393 µmol CO2 mol-1 air, respectively). Absolute leaf

photosynthesis and respiration of the whole plant (in mol CO2 h-1) were calculated by

multiplying the specific photosynthetic and leaf respiration rate, respectively, by the total leaf

area.

Root exudate collection

In five sampling campaigns during the growing seasons 2014 and 2015 (i.e., May 2014, August

2014, May 2015, July 2015, and September 2015), intact fine root strands still attached to a tree

sapling were carefully extracted from the soil and sand adhering to the root system was

cautiously removed with deionized water and fine forceps to maintain the integrity of the root.

Living root systems were then placed into root cuvettes filled with sterile 2-mm diameter glass

beads (cf. Phillips et al., 2008), which were moistened with C-free nutrient solution (0.5 mM

NH4NO3,  0.1  mM KH2PO4,  0.2  mM  K2SO4, 0.15 mM MgSO4,  and  0.3  mM CaCl2). Sterile

cuvettes with glass beads and nutrient solution were included as controls. Roots were allowed

to equilibrate in the cuvette environment for 24 h before being flushed with dilute nutrient

solution using a low-pressure vacuum. New nutrient solution was added and the root was

allowed to equilibrate for another 48 h. We collected these trap solutions containing exudates

from each cuvette, determined their exact volume by high-precision weighing, and filtered the

solution through sterile syringe filters (pore size: 0.7 µm; GE Healthcare Life Sciences

Whatman, Glass Microfiber Filters, Grade GF/F). The trap solution was stored at -20°C until

analysis. The solutions were analyzed for dissolved organic C on a total organic carbon analyzer



CHAPTER 4

73

(Shimadzu TOC-L CPH/CPN; Shimadzu Scientific Instruments, Duisburg, Germany). Root

area-specific exudation rates (gross root exudation minus reabsorption and microbial

consumption; in µmol C m-2 h-1) were calculated as the total amount of C flushed from each

root system over the incubation period divided by the root surface of the investigated root

strand, and hereafter referred to as specific exudation rate. Absolute exudation C flux of the

whole plant (in mmol C h-1) was estimated by multiplying the root area-specific exudation rate

by the total fine root surface, which was determined at the end of the experiment. Photosynthetic

C cost of root exudation (%) was calculated by the share of absolute C loss by root exudation

in absolute C uptake by photosynthesis.

Root morphology

After root exudate collection, root strands were clipped off the tree and stored at  6°C for no

longer than one week until processing. Fine root morphology (length, surface area, and

diameter) was analyzed for all fine root samples by optical surface area measurement with a

flatbed scanner and the program WinRHIZO 2013e (Régent Instruments Inc., Québec, Canada).

Subsequently, root biomass was determined by drying (48 h, 70°C) and weighing. Specific root

area (SRA, in cm2 g-1), specific root length (SRL, in m g-1), and root tissue density (RTD, in

mg cm-3) were calculated from these measurements.

The degree of AM colonization was investigated by bleaching the root strands in 10% KOH

(24 h, 80°C) and staining in an ink-based solution (5% ink in 5% acetic acid; Vierheilig et al.,

2005). Stained root samples were stored in 50% glycerol solution (Brundrett et al., 1996) for

no longer than one week until processing. The degree of AM colonization of roots was

quantified by examining vesicles, arbuscules, and internal hyphae with the gridline-intersect

method (Giovanetti & Mosse, 1980). The degree of ECM colonization of root tips was

determined from unstained roots according to differences in their color, thickness, texture, and

branching patterns.

Inorganic and organic 15N uptake

In early September 2015, towards the end of the study, we conducted an isotope labeling

experiment in the containers of the well-watered treatment. Before the application of the tracer

solution, topsoil samples were collected with a soil corer for determination of the background

pool of inorganic and organic N sources (n = 4 soil samples per species): the contents of NH4
+

and NO3
- were measured by extraction with 0.5 M K2SO4 and analysis with a continuous flow

injection colorimetry auto-analyzer (Cenco/Skalar Instruments, Breda, Netherlands).
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Subsequently, the concentration of free amino acids in the K2SO4 extracts were determined by

a colorimetric approach (cf. Rosen, 1957): amino acids were reduced with 3% ninhydrin

solution and the optical absorbance at 570 nm (GENESYS 20 Visible Spectrophotometer;

Thermo Fisher Scientific, Waltham, MA, USA) was compared to a glycine standard curve.

Within each container quadrant, four randomly selected sub-quadrants (0.25 x 0.25m) around

each tree received equal volumes of either 98% atom-enriched 15NH4Cl, 98% atom-enriched

K15NO3, 98% atom-enriched C2H5
15NO2,  or  water  (control)  (225  ml  aliquots  of  the  labeling

solution or water). Tracer solutions were distributed evenly across the soil surface of the sub-

quadrant. The leaching depth of these tracer solutions was experimentally determined

previously by the application of an ink solution and measurement of the leaching front line,

which was found at a soil depth of at most 10 cm. We added 15N at tracer level and increased

the background N pool by no more than 15% to avoid fertilization effects and the switch of

roots to low-affinity transporters (Näsholm et al., 2009). Given the rapid turnover time of amino

acids in soil (Finzi & Berthrong, 2005) we sampled fine root strands 1 h following isotope

addition, to observe intact uptake of amino acids, and to avoid 15NH4
+ losses by nitrification

and axial efflux of 15N with the xylem flow out of the investigated fine root segment. Fine root

strands were carefully extracted from the topsoil, rinsed in 0.5 M CaCl2 to remove remaining
15N adsorbed to the root cortex, followed by a rinse with water, and were then immediately

frozen at -20°C to prevent further metabolism. The frozen samples were dried (48 h, 70°C) and

ground. The nitrogen (well-watered treatment: tracer 15N; drought treatment: natural-abundance
15N) and carbon (natural-abundance 13C) isotope signatures as well as the N and C contents of

fine roots (< 2 mm) were determined by elemental analysis (NA 1108; Fisons-Instruments,

Rodano, Milano, Italy) coupled with isotope mass ratio spectroscopy (Delta plus,

ThermoFinnigan, USA) at the Centre for Stable Isotope Research and Analysis (KOSI) of the

University of Göttingen.

The mass-specific rate of 15N uptake after 1 h was calculated as the product of the N content of

fine roots and the atom% 15N excess of the bulk fine root sample (U15N; in µg 15N g root-1 h-1;

cf. Gallet-Budynek et  al., 2009). The isotope dilution of each N form was determined by

dividing the concentration of each N form in the soil (Cavailable N;  in  µmol  N g  soil-1) by the

concentration of applied 15N label (C15N label; in µmol15N g soil-1). The root area-specific rate of

N uptake (UN; in µmol N m-2 root h-1) for each N form was computed by dividing Cavailable N

with  C15N label and multiplying the quotient with U15N (viz. specific N uptake). Under the

assumption that the uptake of different N forms was unaffected by the label, total inorganic N

uptake was calculated as the sum of the specific 15NH4
+ and 15NO3

- uptake rates, while organic
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N uptake equaled the specific 15N-glycine uptake rates. Ratios of organic to inorganic N uptake

(µmol m-2 h-1) were calculated by dividing specific rates of organic N with specific rates of

inorganic N. The absolute N uptake rate of the whole plant (in mmol N h-1) was estimated by

multiplying the specific N uptake rate by the total fine root surface.

Despite the limited volume of the labeling solution, the addition of the liquid may have imposed

a wetting event in dry soil and, thus, we refrained from conducting a labeling experiment in the

drought treatment of our experiment. To reveal differences in (inorganic) N uptake by the trees

in the drought treatment (cf. Gallet-Budynek et al., 2009; Averill & Finzi, 2011), we analyzed

the natural-abundance δ15N signature of their sun leaf dry mass by isotope mass ratio

spectroscopy. In addition, differences in photosynthetic C uptake between tree species and

treatments were analyzed from the natural-abundance δ13C signature of leaves. Natural-

abundances of 15N and 13C, respectively, are reported in ‰ and are calculated by dividing the

heavy to light isotope abundance ratios of samples by the respective isotope ratio of a reference

standard.

Biomass production

In September 2015, all tree saplings were harvested within a two-week period following a

rotating harvesting scheme. The trees were divided into aboveground and belowground biomass

and carefully extracted from the soil, while the root system was divided into topsoil (0-40 cm)

and  subsoil  (>  40  cm)  segments.  Additionally,  the  maximum  depth  of  the  root  system  was

determined. To remove all soil particles, the roots were carefully washed under tap water and

subsequently sorted by diameter (fine roots ≤ 2 mm, coarse roots > 2 mm). SRA was determined

for all trees from each one randomly selected, intact branch root system (15 cm in length) per

soil layer, and was multiplied by fine root mass to compute total fine root surface area. Leaf

size and specific leaf area (SLA, in cm2 g-1) were determined for all leaves of each tree. Root

and leaf area measurements were conducted by optical surface measurement with a flatbed

scanner and the programs WinRHIZO and WinFOLIA, respectively (Régent Instruments).

After analysis, leaves, shoots, coarse roots, and fine roots were dried (72 h, 70°C) and weighed.

Dried  subsamples  were  ground and  analyzed  for  total  C  and  N using  an  elemental  analyzer

(vario EL III; elementar, Hanau, Germany).

Statistical analyses

Statistical analyses were conducted with the package SAS, version 9.3 (Statistical Analyses

System, SAS Institute Inc., Cary, NC, USA). Significance was determined at P ≤ 0.05. Means
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and standard errors were calculated from the mean of four individuals per tree species and soil

moisture treatment. The probability of fit to a normal distribution was tested using a Shapiro–

Wilk test (P ≤ 0.05). Non-normally distributed data were log-transformed to resemble

normality. Means were compared by one-way Kruskal-Wallis single factor analyses of variance

and non-parametric multiple comparison tests after Wilcoxon to analyze the differences

between tree species and soil moisture treatments. Normally distributed data were analyzed by

applying two-factorial nested ANOVAs to test for significant effects of mycorrhizal type (main

effect) and tree species identity (nested effect) on a selection of the investigated variables (i.e.,

specific photosynthetic and leaf respiration rates, natural-abundance foliar 13C and 15N

signatures, specific root exudation rates, specific uptake rates for ammonium, nitrate, and

organic N, and the ratios of organic to inorganic N uptake rates). We calculated linear

correlations of inorganic and organic N uptake rates and tree biomass for the eight tree species.

Results

Roots traits, plant morphology and biomass production of AM and ECM tree species

Root morphology and the degree of mycorrhizal colonization were significantly different

between the two mycorrhizal types: AM trees had a significantly higher average root diameter

(2.3 vs. 0.8 mm), lower SRA (297 vs. 391 cm2 g-1), lower SRL (18 vs. 38 m g-1), lower

branching intensity (1.4 vs. 3.2 tips cm-1), and lower degree of mycorrhizal colonization (85 vs.

99%) than ECM trees (Table 1). The two mycorrhizal types also differed significantly in their

aboveground and belowground size and biomass: AM trees were bigger-sized and had more

biomass than ECM trees (Table S1). AM trees also had a higher fine root to leaf biomass ratio,

but  smaller  root  C  to  leaf  C  ratio  than  ECM  trees  under  ambient  water  supply.  AM  trees

responded to drought by significantly reduced total shoot and stem biomass, tree height, and

coarse root diameter, and increases in the taproot to shoot length ratio and in root tissue density,

while there was no significant difference in leaf and fine root biomass. By contrast, ECM trees

did not respond to drought with significant reductions in stem, leaf, and fine root biomass,

decreases in coarse root diameter, or changes in root morphology. The only drought response

of ECM trees was a significant reduction of tree height and an increase in the fine root to leaf

biomass ratio.
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The effect of the mycorrhizal type on the leaf and root C flux

During the early growing season, we found significant influences by the mycorrhizal type on

specific photosynthetic and leaf respiration rates in both the well-watered and drought treatment

(highly significant for the mycorrhizal type; Table 2). Similarly, specific root exudation was

significantly influenced by the mycorrhizal associates (and not by tree species identity), but

only at reduced soil moisture conditions. During the late growing season, tree species identity

lost its influence on aboveground C fluxes, while the significant influence of the mycorrhizal

type on both above- and belowground C fluxes remained. However, the influence of the

mycorrhizal type occurred for different physiological processes in different soil moisture

conditions in the late growing season: the mycorrhizal type influenced leaf respiration and root

exudation at ample soil moisture conditions, but had no effect on leaf and root C loss in dry

soil. By contrast, C uptake by photosynthesis was only in dry soil influenced by the mycorrhizal

type and not in well-watered soil. Long-term reductions in stomatal conductivity, i.e. the leaf

foliar δ13C signature, were in both soil moisture conditions influenced by both, the mycorrhizal

type and tree species identity.

ROOT TRAIT
AM ECM

well-
watered drought well-

watered drought

Root diameter [mm] 2.3 (0.2)
a

2.2 (0.2)
a

0.8 (0.1)
b

1.0 (0.1)
b

RTD [g cm-³] 0.9 (0.1)
a

1.2 (0.08)
b

1.0 (0.09)
ab

1.1 (0.25)
ab

SRA [cm²g-1] 297 (21)
a

265 (10)
a

391 (17)
b

368 (25)
b

SRL [m g-1] 18 (2)
a

17 (1)
a

38 (4)
b

34 (2)
b

Branching intensity [tips cm-1] 1.4 (0.3)
a

1.3 (0.1)
a

3.2 (0.5)
b

3.8 (0.6)
b

Mycorrhizal colonization [%] 83 (5)
a

74 (5)
a

99 (1)
b

98 (1)
b

Table 1 Root morphology and architecture of well-watered and drought-treated arbuscular mycorrhizal (AM) and
ectomycorrhizal (ECM) tree species (four tree species per mycorrhizal type and soil moisture treatment with standard errors in
parentheses. Significant differences between the mycorrhizal types and water treatments are indicated by different lower case
letters.
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Across  spring  and  fall,  we  found  a  significant  seasonal  decrease  in  root  C  loss  by  specific

exudation in both well-watered AM and ECM trees by 37 and 61%, respectively (AM:

reduction from 57 to 36 µmol C m-2 h-1
; ECM: 54  to  21  µmol  C m-2 h-1, Fig. 1). Similarly,

absolute C loss by root exudation and leaf respiration decreased seasonally by 60 and 70% in

AM and ECM trees, respectively

(Fig. 2a). The photosynthetic C cost

of root exudation at ample soil

moisture was similar between AM

and ECM tree species in the early

season, but decreased in ECM trees

in the late season (1.6 vs. 0.6%;

Fig. 2b).

In both the early and late growing

seasons, drought increased specific

root exudation by 1.7 times in ECM

trees (early: significant increase;

late: not significant), while it had no

Early season Late season

Well-watered Drought Well-watered Drought

SPEC MYC SPEC MYC SPEC MYC SPEC MYC

Photo-
synthesis mol C-CO2 m-2 h-1 1.6 14.8*** 3.5* 10.3** 0.9 1.7 0.9 9.5**

Leaf
respiration mol C-CO2 m-2 h-1 3.2* 15.9*** 1.6 16.3*** 2.4 4.7* 1.2 2.7

Leaf δ13C ‰ 3.9** 11.3** 3.9** 5.8*

Leaf δ15N ‰ 1.5 1.2

Root
exudation mol Corg m-2 h-1 0.9 1.2 1.2 7.6** 1.2 3.6* 1.8 0.3

NH4+

uptake mol NH4+-N m-2 h-1 37.5*** 1.9

NO3-

uptake mol NO3--N m-2 h-1 10.2*** 4.4

Norg

uptake mol AA-N m-2 h-1 22.6*** 0.8

Norg: Ninorg mol mol-1 4.6** 6.1*

Table 2 Significance of the effects of tree species identity (SPEC) and mycorrhizal  type (MYC) on leaf and root C and N
uptake rates of well-watered and drought-treated arbuscular mycorrhizal and ectomycorrhizal tree species during the early
(June) and late (September) growing season 2015. Values given are F-values of two-factorial nested ANOVAs with
mycorrhizal type as main effect and tree species identity as nested effect (significance: *, P ≤ 0.05, **, P ≤ 0.01, ***, P ≤
0.001).
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significant effect in AM trees (Fig. 1). In both seasons, soil drought caused a reduction in

absolute C uptake and absolute C release of the two mycorrhizal types (difference not

significant; Fig. 2a). With drought, both mycorrhizal types increased the percentage of

photosynthates invested into root exudation (Fig. 2b). The increased photosynthetic C cost of

root exudation due to drought was significant during the early growing season in AM trees

(significant increase from 2.2 to 5.0%), and occurred in both the early (increase from 3.0 to

28.5%, not significant) and late growing season (significant increase from 0.6 to 6.8%) in ECM

tree species.
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Figure 2 Carbon flux by leaf photosynthesis, leaf respiration, and root exudation of well-watered (amb) and drought-treated
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Nitrogen uptake of AM and ECM tree species

Specific ammonia, nitrate, or organic N uptake rates were not significantly different between

the two mycorrhizal types (Fig. 3a), but were influenced by tree species identity (Table 2).

However, the ratio of specific organic to inorganic N uptake rates was influenced by both the

mycorrhizal type and tree species identity (Table 2) and significantly reduced in AM trees (0.5

mol mol-1) in comparison to ECM trees (1.0 mol mol-1,  Fig.  3b),  i.e.  AM trees had a higher

relative inorganic N uptake. AM trees also had significantly higher absolute inorganic N uptake

rates than ECM trees (AM: 1.2 mmol N tree-1 h-1; ECM: 0.2 mmol N tree-1 h-1; Fig. 3c), while

organic N uptake rates on a per tree basis were not significantly different between mycorrhizal

types.

VARIABLE NO3-uptake NH4+uptake NINORG uptake NORG uptake Tree biomass [g]

R P R P R P R P R P

Exudation
[µmol C g-1 h-1] -0.44 0.03 -0.29 0.14 -0.42 0.04 -0.45 0.02  0.4 0.03

NO3-uptake
[µmol NO3--N g-1 h-1] 0.81 <0.001 0.96 <0.001 0.9 <0.001 -0.11 0.59

NH4+uptake
[µmol NH4+-N g-1 h-1] 0.94 <0.001 0.83 <0.001 -0.05 0.79

NINORG uptake
[µmol NINORG g-1 h-1] 0.91 <0.001 -0.13 0.52

NORG uptake
[µmol AA-N g-1 h-1] -0.14 0.48

Table 3 Correlation of root exudation with nitrogen uptake and total biomass of each four well-watered arbuscular mycorrhizal
and ectomycorrhizal tree. Given are Pearson's correlation coefficients R and probabilities of error P. Significant correlations
are shown in bold.
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Tree biomass did not correlate with specific N uptake rates, which remained comparably

constant despite large differences in final tree biomass (Table 3). Surprisingly, specific root

exudation rates were significantly negatively correlated with specific inorganic N uptake rates

(R = -0.42) as well as individually with NO3-N and glycine-N uptake rates (nitrate: R = -0.44;

glycine: R = -0.45), but did not correlate with NH4-N uptake rates (Table 3). All specific N

uptake rates of the three different N forms were highly positively correlated (P < 0.001).

Discussion

The distinction between AM and ECM root associations may provide a powerful tool in

framework predictions of global change impacts on temperate forests (Phillips et al., 2013). In

this study, we found evidence that summer droughts, which are predicted to increase in

frequency and duration in Central Europe, lead to higher photosynthetic C costs of root

exudation in ECM tree species than in AM tree species. ECM trees also differed by higher

organic to inorganic N acquisition ratios than in AM tree species, which suggests that the

mycorrhizal associates have the capability to influence the C and N economies of their host

trees.

Carbon release by root exudation of AM and ECM tree species

Photosynthetic C cost of root exudation of well-watered saplings of this study was 1-3%, which

is comparable to the C cost of root exudation in a Midwest hardwood forests (3%; Yin et al.,

2014), and marginally surpassed by estimations from labeling studies (5-12%; Jones et al.,

2004; Phillips & Fahey, 2006). Root mass-specific exudation rates measured in this study were

approximately 10-23 µg C g-1 h-1 in well-watered trees, which is similar to those reported for

black locust (10-22 µg C g-1 h-1; (Uselman et al., 2000), loblolly pine saplings (12-26 µg C g-1

h-1; Meier et al., 2013), and a temperate hardwood forests (8-20 µg C g-1 h-1; Yin et al., 2014).

Up to four times higher root exudation was reported for mature European beech trees (33-82

µg  C  g-1 h-1; Tückmantel et al., 2017) and a mixed hardwood forest (29-100 µg C g-1 h-1;

Brzostek et  al., 2013), which may be a consequence of differences in plant age and/or

differences in soil organic matter (SOM) content. Topsoils which have developed from glacial

deposits are SOM-dominated with comparably low N availability mainly from organic N forms

(Brzostek et al., 2013; Tückmantel et al., 2017), which may explain enhanced topsoil exudation

rates in these studies (Tückmantel et al., 2017).

Contrary to our first hypothesis, specific root exudation rates of well-watered AM and ECM

tree species did not differ significantly, which might be due to the homogeneity of their soil



CHAPTER 4

82

environment composed of fertilized mineral sand. However, several studies suggested that

ECM trees have higher specific exudation rates than AM tree species (e.g. Phillips & Fahey,

2006; Yin et  al., 2014), which is interpreted to reflect differences in N availability between

these two major mycorrhizal types, with the majority of soil N contained in SOM rather than in

mineral-associated C forms in ECM forests (Brzostek et al., 2014; Yin et al., 2014). Differences

in  the  specific  root  exudation  rates  between  AM  and  ECM  trees  could  be  a  result  of  either

physiological acclimation or genotypic adaptation to their contrasting natural environments

(Yin et al., 2014).

The missing differences in the quantity of specific root exudation between well-watered AM

and ECM trees reported in this study hint to phenotypic acclimation to the amount of organic

matter driving the rate of root exudation of (at least) ECM tree species. Such acclimation is in

accordance with a strategy to maximize whole-tree carbon-use efficiency, as C loss by

exudation  is  reduced  in  soil  spots  where  positive  priming  effects  are  unlikely.  Moreover,  C

exudation is enhanced where microbes can mine less bioavailable SOM (Tückmantel et  al.,

2017). This assumption is further supported by the fact that ECM trees reduced their investment

of photosynthates into root exudation from the early to the late growing season significantly

more than AM trees, which may indicate a potential of short- to mid-term acclimation to

seasonal differences in growth demands, nutrient availability, and climate. Some authors

suggested that seasonal patterns in soil temperature influence root exudation rates (Phillips et

al., 2011; Yin et al., 2013) due to temperature dependent changes in the speed of metabolic

processes (Neumann & Römheld, 2007), while others contradicted a dominant temperature

effect on root exudation (Tückmantel et al., 2017). Future studies should focus on the potential

role of soil temperature and organic matter content in increasing root exudation of ECM trees.

Elevated C cost of root exudation in drought-treated ECM trees

Root exudation of ECM trees increased with drought both in terms of specific rates (increase

by 1.7 times) and in terms of photosynthetic C costs (increase by ten times), while exudation of

AM  trees  did  not,  which  is  in  contrast  to  hypothesis  (2).  This  difference  has  important

implications for the C cycle in AM and ECM ecosystems exposed to increasing intensity and

frequency of summer droughts under climate change as predicted for many parts of Europe and

eastern North America, since ECM trees will probably have increasing investments into root

exudation and soil C inputs. The acclimation of root exudation of ECM trees to dry soil could

be interpreted (i) as a stress response due to increased friction in dry soil (Boeuf-Tremblay et

al., 1995; Walker et al., 2003), which could lead to damage of the root cortex and leakier roots
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(Phillips & Fahey, 2006; Neumann & Römheld, 2007). Increased root exudation may also be

(ii) an adaptive response to low water availability via the active secretion of mucilage to

increase hydraulic conductivity of the rhizosphere (Carminati, 2013) or accompany hydraulic

lift (Kroon et al., 1998; Querejeta et al., 2007). Finally, increased root exudation could also be

(iii)  a  response  to  low nutrient  availability  in  dry  soils  and  the  implementation  of  a  priming

effect. Results on the effect of drought on root exudation in the literature are contradictory so

far: some studies found an increase in root exudation in wheatgrass (Henry et al., 2007) and

ECM pine seedlings (Reid & Mexal, 1977), while others found no drought effect in non-

mycorrhizal aspen seedlings (Karst et al., 2017), which is generally in line with the results of

our study. However, in reviews it is assumed that the amount of photosynthates and, thus, root

exudation decrease with drought (Lehto & Zwiazek, 2011; Brunner et al., 2015). Here we show

that it is not a fixed portion of photosynthates that is invested into root exudation, but a variable

amount that changes with season, soil moisture conditions, and mycorrhizal type.

In AM trees, drought did not significantly influence root exudation but had a distinct negative

effect on growth-related traits of AM trees. Limited soil water supply significantly reduced

stem biomass production and tree height (reductions by 50 and 48%, respectively, in AM trees

and by 15 and 25% in ECM trees), as well as fine root biomass production and mycorrhizal

colonization rates (reductions by 32 and 10%, respectively, in AM vs. no reduction in ECM).

These results imply that elevated root exudation in ECM trees exposed to drought can be

interpreted as an adaptive response to alleviate drought-induced reductions in the productivity

of ECM trees. Elevated root exudation under drought may significantly add to the effect by the

extension of the absorbing root surface area (as suggested by Lehto & Zwiazek, 2011) in

enhancing the water and nutrient status of ECM trees. This adaptability of root exudation in

ECM tree species is further supported by the increased branching intensity of ECM root

systems, which is linked to the fast, acquisitive spectrum of functional traits (Liese et al.,

2017a): high branching intensities have been related to high root respiration rates (Rewald et

al., 2014) and high resource uptake activities (Guo et  al., 2008b; Rewald et al., 2011;

McCormack et al., 2015), but may also support enhanced root exudation of ECM trees in dry

soil. It remains an open question, though, whether the main function of increased root exudation

in  dry  soil  is  to  increase  hydraulic  conductivity  or  the  nutrient  availability  in  the  ECM

rhizosphere.

In addition to greater root exudation, the investigated ECM root systems had greater C sink

strength in their biomass, potentially due to the higher mycorrhizal colonization and the

generally higher C costs of the ECM fungi (Smith & Read, 2008). Both mycorrhizal
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colonization and association type are thought to have cascading effects on C cycling processes

like litter decomposition, soil respiration, soil C:N ratio (Cornelissen et  al., 2001;

Soudzilovskaia et al., 2015a, b), and ecosystems C storage (Averill et al., 2014). Our results

further indicate that C fluxes via specific root exudation are influenced by the mycorrhizal type

and not by the tree species identity. Altogether, these results highlight the importance of

distinguishing between the two major mycorrhizal types when predicting root C cycles.

Higher inorganic N uptake in AM than in ECM trees

Specific rates of inorganic N uptake were not different between the two mycorrhizal types, but

absolute and relative inorganic N uptake were higher in AM than in ECM trees, which may

reflect the inorganic environment in which they naturally occur. It has been suggested that the

mycorrhizal type is an important factor in predicting forest N fluxes (Midgley & Phillips, 2014).

In contrast, other studies demonstrated a greater effect on N dynamics by tree species identity

than by the mycorrhizal type (Templer & Dawson, 2004; Jacob & Leuschner, 2014). AM

hyphae can take up and transport both inorganic (Govindarajulu et al., 2005) and organic N

forms (Hodge et  al., 2001; Whiteside et al., 2012). Yet given the limited saprotrophic

capabilities of most AM fungi and the high availability of inorganic N in AM ecosystems, it is

assumed that AM trees are specialized in inorganic N uptake (Smith & Read, 2008), which is

supported by the results of our study. In conclusion, a higher absolute inorganic N uptake and

lower organic to inorganic N uptake rate ratio of AM tree species in our study are in accordance

with hypothesis (H3). This specialization could be caused by a genetic adaption to their natural

habitats  e.g.  by  the  production  of  a  higher  density  or  affinity  of  membrane  transporters  for

ammonium and nitrate in AM root systems (see Guether et al., 2009; Pérez-Tienda et al., 2011).

Several studies suggest a link between N availability or uptake and exudate release (Phillips et

al., 2009; Fransson & Johansson, 2010; Yin et al., 2013; Yin et al., 2014). For example, Yin et

al. (2014) found that in natural habitats AM tree species had lower organic to inorganic N ratios

in rhizosphere soil than ECM tree species, and lower root exudation. These authors assumed

that increased root exudation in ECM trees is linked with high organic N contents in the soil.

In addition, Fransson & Johansson (2010) found that low-molecular-weight organic compound

exudation was negatively affected by inorganic N in ECM trees. However, to our knowledge,

specific root exudation rates have not been directly correlated with specific N uptake rates so

far.  In  our  study  with  SOM  poor  soil  conditions,  correlation  analyses  showed  that  specific

exudation rates were negatively correlated with specific rates of nitrate and glycine uptake,

whereas the correlation with ammonium was also negative but not significant. Wojtaszek et al.
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(1993) have previously demonstrated in a greenhouse experiment that root exudation of

phenolic compounds in white lupine is negatively related to the concentration of inorganic N

in the growing medium, and that nitrate had a greater effect on exudation than ammonium. The

negative correlation might possibly indicate that roots (i) react to low uptake rates of N with

higher exudation rates in order to optimize nitrogen acquisition, and/or (ii) decrease exudation

during high N uptake rates to prevent unproductive C losses. Since we measured net specific

exudation it is also possible that low contents of exudates must not be considered as a general

reduction in exudation, but can also indicate effects of bidirectional C fluxes. In this context, it

is conceivable that (iii) low specific exudation rates with simultaneously high specific N uptake

rates may represent high C investments of the tree in the release of chelators which mobilize

soil N followed by a combined (re)absorption of both, N and C, and thus a low net C release by

root exudation. While all three processes seem plausible, it warrants further investigations to

decide on their actual (independent or concurrent) contribution to the observed negative

relationship between root exudation and N uptake.

Conclusion

This study contributes to the key challenge of a mycorrhiza-based framework in order to predict

ecosystem processes under global change. Here we present evidence of systematic differences

between AM and ECM trees in some key biogeochemical processes like root exudation and the

organic to inorganic acquisition ratio, and the lesser role of tree species identity in determining

root C release. Photosynthetic C cost of root exudation in ECM trees is increased with soil

drought, despite their limited biomass response, which may hint at an adaptive increase of root

exudation in dry soil to increase either hydraulic conductivity (via the secretion of mucilage or

as a consequence of hydraulic lift) or nutrient availability (via a priming effect). We further

prove that AM trees are specialized in inorganic N uptake, which does not align to their root

exudation. While our study has demonstrated some process-based evidence, it remains a

challenge to translate these important root functions into the context of their natural habitats in

mature forest stands. Despite this open challenge, our results suggest that the mycorrhizal type

can be a key trait for predictions of biogeochemical cycles that warrants further investigations

across different ecosystems.
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Supplementary Material

Supplemental Table 1 Aboveground and belowground size, biomass, and relative growth rates (RGR) of well-watered and
drought-treated arbuscular mycorrhizal (AM) and ectomycorrhizal (ECM) tree species (4 tree species per mycorrhizal
colonization type and soil moisture treatment with standard errors in parentheses). Significant differences between the
mycorrhizal association types and water treatments are indicated by different lower case letters.

AM ECM

Well-watered Drought Well-watered Drought

ABOVEGROUND

Total shoot [g] 545 (179)
a

294 (79)
b

76 (26)
c

61 (16)
c

Leaves [g] 151 (46)
a

98 (24)
a

23 (6)
b

16 (7)
b

SLA [cm² g-1] 123 (7)
a

122 (7)
a

162 (13)
b

163 (12)
b

Leaf C:N [g g-1] 24 (2)
a

21 (1)
a

20 (1)
a

19 (2)
a

Leaf δ13C [%O] -30.2 (0.2)
b

-29.6 (0.7)
b

-31.2 (0.5)
a

-30.7 (0.6)
ab

Leaf δ15N [%O] n/a 6 (5)
a n/a 11 (4)

a

Stem [g] 395 (133)
a

196 (58)
b

53 (20)
c

45 (12)
c

Tree height [cm] 227 (27)
a

152 (31)
b

86 (11)
c

65 (9)
d

RGR tree height [mm d-1] 0.04 (0.01)
ab

0.02 (0.01)
b

0.06 (0.01)
a

0.03 (0.01)
b

BELOWGROUND

Total root [g] 812 (285)
a

543 (188)
a

93 (38)
b

71 (32)
b

Coarse roots [g] 473 (181)
a

313 (106)
a

63 (29)
b

39 (17)
b

Coarse root diameter [mm] 36 (5)
a

27 (4)
b

17 (1)
c

14 (2)
c

RGR coarse root diameter [mm d-1] 0.006 (0.002)
a

0.004 (0.001)
b

0.005 (0.001)
ab

0.003 (0.001)
c

Max. rooting depth [cm] 128 (28)
a

123 (27)
a

78 (18)
b

71 (11)
b

Fine roots [g] 343 (105)
a

234 (80)
a

33 (11)
b

34 (17)
b

Root C:N [g g-1] 32 (2)
a

35 (3)
a

37 (5)
a

37 (2)
a

RATIOS

Fine root: leaf biomass [g g-1] 2.09 (0.28)
a

2.15 (0.20)
a

1.40 (0.16)
b

3.41 (1.16)
a

Root: shoot length [m m-1] 0.61 (0.09)
b

1.19 (0.31)
a

0.93 (0.10)
a

1.13 (0.10)
a

Root C: leaf C [g g-1] 1.4 (0.1)
b

1.7 (0.2)
ab

1.9 (0.2)
a

2.1 (0.3)
a
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Abstract

· Fine roots play a key role in carbon (C), nutrient, and water cycling, with fine root

lifespan controlling a major source of soil organic C and regulating plant resource

acquisition. Yet, measuring root lifespan remains a technical challenge, which impedes

predictions of root lifespan across plant functional types.

· We explored differences in fine root lifespan between four arbuscular mycorrhizal (AM)

and four ectomycorrhizal (ECM) trees using mini-rhizotrons in a factorial drought

experiment in large mesocosms.

· Median root lifespan of AM and ECM trees differed fundamentally in its response to

soil moisture and seasonality: ECM root lifespan was reduced by half in dry soil (from

176 to 81 d), independent of season. By contrast, AM root lifespan was less responsive

to drought, but decreased by a third from early to mid-season (from 185 to 127d). In

both mycorrhiza types, root lifespan was positively related to root diameter and

negatively to the proportion of lower-order roots.

· While our results indicate morphological and architectural traits that predict root

lifespan across tree species, they also indicate principal differences in the environmental

response  of  root  lifespan  in  AM  and  ECM  trees,  which  may  reduce  uncertainties  in

global predictions of root lifespan.

Keywords: arbuscular mycorrhiza, deciduous tree species, drought, ectomycorrhiza, fine root

longevity, mini-rhizotrons, root morphology, season
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Introduction

The root system of forest ecosystems represents a major sink for C fixed by photosynthesis. It

has been estimated that up to 30% of the annual C gain of forests can be consumed by root

growth and root respiration, especially by the highly dynamic fine root fraction (Scarascia-

Mugnozza et al., 2000; Leuschner & Ellenberg, 2017). Fine root turnover, i.e. the growth of

new roots and the shedding of senesced roots, represents a major component of net primary

production and an important source of soil organic C (Eissenstat & Yanai, 2002; Matamala et

al., 2003). Fine root longevity, which is the inverse of the fine root turnover rate, determines

how rapidly newly formed roots are transferred to necromass and thus enter the soil as organic

matter. This root trait therefore partly controls the amount of root-borne C which is entering the

soil (Guo et al., 2004), with consequences for microbial activity in the rhizosphere through

priming effects and total soil C storage. Root longevity may also influence the fluxes of water

and nutrients in forest ecosystems, as uptake rates have been found to decrease with root ageing

(Volder et  al., 2005) and root systems with a larger proportion of young roots may be more

active. Despite the assumed key role of fine root lifespan in the C, nutrient and water cycles of

forest ecosystems, studies investigating the survival of tree fine roots are still rare, which limits

our ability to integrate this important root trait into models predicting the functioning of trees

and forests under global change. Owing to the difficulty in accessing and observing root

longevity directly, various researchers have attempted to identify root morphological proxies

of lifespan. In several studies, a positive relation between root diameter and root lifespan has

been reported (Wells & Eissenstat, 2001; Anderson et al., 2003; Joslin et al., 2006; McCormack

et al., 2012). Lifespan also increases with increasing root order (Gu et al., 2011). However, it

must be kept in mind that both fine root diameter and branching patterns are influenced by root

colonization with mycorrhizal fungi (Smith & Read, 2008).

In temperate forests, the majority of trees is associated with ectomycorrhizal (ECM) or

arbuscular mycorrhizal (AM) fungi (Read, 1991). It has been suggested that ecosystems

dominated either by AM or by ECM tree species are characterized by different nutrient

economies. In systems with abundant AM species, inorganic nutrients should be more readily

available than in systems dominated by ECM species, where nutrients are predominantly bound

in organic form (Phillips et al., 2013). Furthermore, there is evidence that root morphology

(Brundrett, 2002; Comas & Eissenstat, 2009; Comas et al., 2014; Eissenstat et al., 2015), root

architecture (Liese et  al., 2017a), root functioning (Phillips & Fahey, 2006; Smith & Read,

2008; Yin et  al., 2014; Liese et al., 2017b), and biogeochemical fluxes in the rhizosphere

(Phillips & Fahey, 2006; Brzostek et al., 2013; Yin et al., 2014) differ between the two
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mycorrhizal associations. Several studies reported smaller fine root diameters (Guo et  al.,

2008b; Smith & Read, 2008; Comas et al., 2014) and higher branching intensity (Liese et al.,

2017a) in ECM trees as compared to AM trees, and this could affect root lifespan. According

to the described differences in root diameter and branching intensity, one would expect a

generally higher fine root lifespan in AM trees than in ECM trees. However, no conclusive

evidence of principal differences in the lifespan of AM and ECM tree roots does yet exist

(McCormack et al., 2012; Chen & Brassard, 2013).

Apart from root morphology and architecture, environmental conditions have been found to

influence fine root lifespan (Comas et al., 2005; Brunner et al., 2015). Various studies have

reported a change in root survivorship with season (Johnson et al., 2000; Anderson et al., 2003;

Wang et al., 2016), which might in many cases be caused by temperature variation. Not only

cold temperatures in winter, but also warm summer temperatures may reduce root longevity, as

was observed in trembling aspen and Norway spruce (King et al., 1999; Leppälammi-Kujansuu

et al., 2014). Root survivorship may also decrease in periods with lowered photosynthetic C

gain, when C assimilation is limited by reduced photosynthetic active radiation (PAR) flux

densities or drought, and less carbohydrates are available for root growth (Reich et al., 1998).

Soil desiccation can influence root longevity also directly through turgor loss and dehydration

of root cells and subsequent dieback of root segments (Brunner et al., 2015) or hydraulic failure

in the root xylem and the shedding of fine roots (Chenlemuge et al., 2013; Kotowska et al.,

2015). As a consequence, various studies reported a reduction in root lifespan in dry soil

(Mainiero & Kazda, 2006; Peek et al., 2006; Meier & Leuschner, 2008; Leppälammi-Kujansuu

et al., 2014; McCormack & Guo, 2014). By contrast, other studies reported no change in root

lifespan with drought (Anderson et al., 2003; Bauerle et al., 2008), which has been suggested

to depend on the degree of soil desiccation (McCormack & Guo, 2014). In severely dry soil,

the reduction of root longevity through the shedding of roots or root segments may represent a

strategy to save resources under conditions when costs of root maintenance are not covered by

the amount of water and nutrients that can be taken up (Eissenstat et al., 2000). Investment into

new root growth when resources become available again may then even increase resource use

intensity, as young roots generally have higher resource uptake rates than older ones (Volder et

al., 2005). However, it is not known if the response of root lifespan to temperature and soil

moisture differs between AM and ECM trees, even though some studies reported temperature

sensitivity in AM fungi (Lingfei et al., 2005; Soudzilovskaia et al., 2015) and drought

sensitivity in ECM fungi (Soudzilovskaia et al., 2015).



CHAPTER 5

91

In this study, we investigated systematic differences in root lifespan between four temperate

AM and four ECM tree species that were colonized by indigenous mycorrhizal communities

and were cultivated under controlled soil conditions. Trees were grown for two seasons in large

outdoor containers, in which two soil moisture treatments were established (moist and dry) to

explore the effect of soil desiccation on root survival. We used the mini-rhizotron technique for

directly observing and comparing fine root lifespan between AM and ECM trees. For

identifying possible morphological determinants of root lifespan in the two mycorrhizal

association types, several root morphological and architectural traits were investigated. Based

on the existing information about morphological and functional differences between the root

systems of AM and ECM trees, we hypothesized that (H1) AM tree species have on average

larger fine root diameters and longer fine root lifespan than ECM trees; (H2) AM root lifespan

responds stronger to seasonal changes than ECM root lifespan; and (H3) the drought-induced

decrease in root lifespan is greater in ECM than AM trees (H3).

Materials and Methods

Plant material

Tree saplings of eight major Central European deciduous tree species were collected from an

old-growth mixed forest stand in Central Germany (‘Hainich National Park’ in Thuringia, ,

51°08’N, 10°51’E). The forest is located at sub-montane elevation (340 m a.s.l.) on eutrophic

Luvisols (IUSS, 2006), which have developed from a base-rich Pleistocene loess layer over

Triassic limestone (Middle Muschelkalk). Soil manipulation activities such as liming have not

been conducted in the past. The climate is semi-humid with mean annual temperature of 7.7°C

and mean annual precipitation of 590 mm. The stand is a mature mixed hardwood forest with

up to 14 co-occurring tree species. The eight tree species selected for this study represent

dominant or subdominant trees of the natural forest vegetation of Central Europe (Leuschner &

Ellenberg, 2017) and belong to two different mycorrhiza types (cf. Wang & Qiu, 2006):

common ash (Fraxinus excelsior L.), sycamore maple (Acer pseudoplatanus L.), Norway maple

(Acer platanoides L.), and wild cherry (Prunus avium L.) are AM tree species. European beech

(Fagus sylvatica L.), pedunculate oak (Quercus robur L.), small-leaved lime (Tilia cordata

MILL.), and hornbeam (Carpinus betulus L.) are ECM tree species.

In  two  campaigns  in  September  2011  (AM:  ash  and  sycamore;  ECM:  beech  and  lime)  and

September 2012 (AM: Norway maple and cherry; ECM: oak and hornbeam), we collected about

25 young trees per species with similar tree height (about 30 cm) and crown dimensions.
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Saplings were excavated with their entire mycorrhizal root system, stored in moist plastic bags

to minimize transpiration, kept cool, and transported to the glasshouse immediately. The young

trees were re-planted in 5 L plastic pots filled with sterilized sand, placed in a randomized array

in the Experimental Botanical Garden Göttingen, and kept well-watered.

Experimental design

Eight young trees of each species were planted into the Göttingen Rhizolab, an outdoor facility

designed for studies of root growth dynamics of woody plants (cf. Meier & Leuschner, 2008),

as well as in nearby tanks filled with soil (lysimeters). The facility included in total 16 large-

scale, drained containers (volume 7 m3 each) that were arranged in four rows with the rims of

the containers at ground level. Each container was divided by polyethylene plates into four

plots, resulting in 64 plots in total. Saplings were grown in mineral sand with a particle size of

≥ 2 mm; a soil texture which facilitates root studies. To establish different soil moisture

treatments, the container facilities were automatically covered by mobile Plexiglas rain shelters

during precipitation events, thus allowing full control of soil moisture while glasshouse

microclimate artifacts were avoided. During the growing seasons, tree saplings were fertilized

every  second  week  with  2  L  of  a  0.1%  NPK  fertilizer  solution  containing  trace  elements

(concentrations of undiluted NPK fertilizer: 2.5 M NH4,  0.5 M NO3,  0.4 M CH4N2O, 0.7 M

P2O5, 0.8 M K2O, 11.5 mM B, 0.8 mM Cu, 4.4 mM Fe, 2.7 mM Mn, 0.13 mM Mo, 0.8 mM

Zn).

In a randomized block design, each two AM and two ECM tree species were planted together

into one container at a spacing of 1 m between individual trees. Planting occurred in two

subsequent campaigns in the Rhizolab (May 2012; AM: ash and sycamore; ECM: beech and

lime) and the lysimeters (June 2013; AM: Norway maple and cherry; ECM: oak and hornbeam).

In April 2014, we established two soil water contents (SWC) in the containers: a dry treatment

(5% SWC, v/v) and a well-watered treatment (10% SWC, v/v), with each treatment being

replicated four times for each tree species. One access tube was inserted vertically in each plot

and the volumetric soil water content measured every second day by frequency domain

reflectometry (FDR; Diviner2000, Sentek Sensor Technologies, Stepney, Australia). Soil water

contents were quantified based on soil moisture measurements to a depth of 40 cm and adjusted

for plant water consumption by irrigating the soil surface homogeneously. The drought

experiment was started in April 2014 and 2015, respectively, but was paused during the non-

growing season 2014/2015 to allow natural precipitation to bring the soil back to field capacity.

Consequently, the experiment simulated two consecutive summer droughts of ~24 weeks each.
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Air temperature and air humidity were recorded continuously at 10-min intervals with a Hobo

Pro RH/Temp data logger (Onset Computer, Bourne, MA, USA). Soil temperature was

measured with NTC thermistors arranged in 16 horizontal lines at 10 cm soil depth. During the

period of fine root observations (April to September 2015), the early season was colder and less

humid (air temperature: 13°C, soil temperature: 15°C, air humidity: 62%) than the mid-season

(air temperature: 18°C, soil temperature: 19°C, air humidity: 74%). Photosynthetically active

radiation was measured during the early (mean: 884 µmol m-2 s-1) and the mid-season (630

µmol m-2 s-1) with a PAR sensor of the LI-6400 system (LI-COR Biosciences, Lincoln, NE,

USA) (Table S1).

Mini-rhizotron imaging and root growth analysis

In the Rhizolab, twelve Plexiglas mini-rhizotron tubes (length 2.05 m, diameter 7 cm) were

installed horizontally in each container at 15.0, 30.5, and 46.0 cm soil depth. In the lysimeters,

four mini-rhizotron tubes were installed vertically in each tank to a depth of 40 cm. The

protruding part of all mini-rhizotron tubes (128 tubes in total) was covered by light-

impermeable foil and sealed with a removable plastic cover.

Fine root observations started in April 2015 (in the second year of the drought experiment) and

were continued until September 2015. Images were recorded every fourth week over the entire

surface of the mini-rhizotron tubes with a mobile scanner system (CI-600, CID Inc., Camas,

WA). To determine temporal changes in root diameter and root architecture (branching

patterns), image sequences where analyzed with the program WinRHIZOTron (Régent

Instruments, Quebec City, Canada). Root order, as defined by Pregitzer et  al. (2002), was

determined visually and was used for the calculation of branching ratios (number of first order

roots growing out of second order roots; n n-1) and the proportion of lower order roots. We used

the date of disappearance as the date of assumed root death. To obtain precise dates, root birth

and death events were assumed to have occurred midway between two successive imaging

dates. Individual root lifespan was calculated as the number of days from root birth to root

death. Using Weibull distribution for right-censored data, root survivorship curves were

calculated from the recorded birth and death events or from birth events and the time until the

end of the experiment. We differentiated between root cohorts born in the early (April to June)

and mid (July to September) growing season 2015.

Root morphology and biomass production

In September 2015, all tree saplings were harvested and the roots were carefully washed under

tap water and subsequently sorted by diameter (fine roots ≤ 2 mm, coarse roots > 2 mm). Root
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architecture, morphology, and the degree of mycorrhizal colonization were analyzed for all

trees  from each  one  randomly  selected,  intact  fine  root  system of  15  cm length.  From these

subsamples, branching intensity was determined as the number of tips per total root length.

Root morphology was analyzed by optical surface area measurement with a flatbed scanner and

the program WinRHIZO (Régent Instruments Inc., Quebec, Canada). The degree of AM

colonization was investigated by bleaching and staining the root strands in an ink-based solution

(cf. Vierheilig et al., 2005) and quantifying AM colonization by examining vesicles, arbuscules,

and internal hyphae with the gridline-intersect method (Giovanetti & Mosse, 1980). The degree

of ECM colonization of root tips was determined from unstained roots according to differences

in their color, thickness, texture, and branching patterns. After analysis, fine and coarse roots

were dried (72 h, 70°C) and weighed. Root diameter, specific root length (SRL), specific root

area (SRA), and root tissue density (RTD) were calculated from these measurements.

Statistical analyses

Statistical analyses were conducted with the package SAS, version 9.3 (Statistical Analyses

System, SAS Institute Inc., Cary, NC, USA). Significance was determined at P ≤ 0.05. Means

and standard errors were calculated from the mean of four tree species per mycorrhizal type

and soil moisture treatment, while the replicates for each tree species were considered as

pseudo-replications. Means were compared by one-way Kruskal-Wallis single factor analyses

of variance and non-parametric multiple comparison tests after Wilcoxon to analyze the

differences between mycorrhiza types and soil moisture treatments. To test for significant

effects of mycorrhizal type (main effect) and tree species identity (nested effect), the data were

analyzed by applying a mixed model with the soil moisture treatment as random effect.

Root survivorship curves were calculated by using Weibull distribution for right-censored data

(n = 4 tree species per mycorrhizal type). For identifying root traits with significant influence

on individual root lifespan, we used the Cox proportional hazard regression, allowing the

evaluation of the effects of each covariate, while controlling for the effects of other covariates

(Cox, 1972). Tested covariates in the stepwise regression model included the mycorrhizal type,

drought treatment, season, portion of lower-order roots, branching ratio, root order, and root

diameter. The hazard risk ratio of categorical covariates, which were coded as 0 and 1, can be

interpreted as the estimated hazard for roots with a code of 1 in comparison to those for roots

coded 0 (Table S2). We tested the relationship between abiotic conditions (i.e., soil temperature,

soil humidity, and PAR) and root lifespan by conducting linear regressions.
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Results

The effect of the mycorrhizal type on root traits

Despite considerable variation among the four AM and four ECM species (Table 1), the

influence of the mycorrhizal type on mean fine root diameter, SRL, SRA, and root branching

intensity was stronger (significant) than the influence by tree species identity (not significant)

in the mixed model (Table 2).

Table 1 Mean fine root diameter (fraction <2 mm in diameter), specific root length (SRL), specific root area (SRA), root tissue
density, branching intensity (fine root tips per cm root length), mycorrhizal colonization, and fine root lifespan in early and
mid-season  for  the  eight  studied  tree  species  in  the  moist  and  dry  treatments  (means  ±  SE  of  four  trees  per  species  and
treatment).

Fine root

diameter

[mm]

SRL

[m g-1]

SRA

[cm2 g-1]

Tissue

density

[g m-3]

Branching

intensity

[tips cm-1]

Mycorrhizal

colonization

[%]

Early

season

median

lifespan

[d]

Mid-

season

median

lifespan

[d]

TREE SPECIES

AM tree species

MOIST

  Fraxinus excelsior 0.55 (0.03) 13.3 (1.1) 241 (13) 1.18 (0.15) 0.90 (0.07) 96 (2) 268 257

  Acer pseudoplatanus 0.46 (0.05) 23.0 (1.5) 335 (28) 0.75 (0.07) 1.69 (0.05) 84 (5) 214 162

  Acer platanoides 0.52 (0.01) 19.4 (2.6) 320 (40) 0.84 (0.19) 2.05 (0.77) 80 (7) 92 48

  Prunus avium 0.49 (0.03) 17.2 (1.3) 291 (17) 0.79 (0.08) 0.95 (0.04) 73 (11) 157 94

DRY

   Fraxinus excelsior 0.55 (0.01) 13.2 (1.0) 237 (23) 1.26 (0.16) 1.09 (0.05) 90 (2) 192 391

  Acer pseudoplatanus 0.39 (0.03) 19.9 (3.3) 266 (21) 1.29 (0.31) 1.60 (0.18) 68 (9) 175 171

  Acer platanoides 0.56 (0.03) 16.7 (1.9) 285 (29) 1.11 (0.25) 1.33 (0.17) 67 (6) 213 50

  Prunus avium 0.47 (0.02) 17.0 (1.9) 271 (11) 0.96 (0.11) 1.02 (0.06) 69 (16) 107 43

ECM tree species

MOIST

  Fagus sylvatica 0.30 (0.03) 45.0 (6.8) 403 (40) 0.99 (0.16) 2.79 (0.65) 100 (0) 172 391

  Tilia cordata 0.36 (0.03) 27.5 (2.5) 340 (36) 0.97 (0.11) 5.98 (1.28) 100 (0) 181 149

  Quercus robur 0.33 (0.02) 40.3 (4.2) 413 (37) 0.90 (0.05) 2.17 (0.63) 99 (1) 229 43

  Carpinus betulus 0.35 (0.02) 37.8 (3.8) 340 (36) 0.87 (0.24) 3.27 (0.15) 100 (0) 86 215

DRY

  Fagus sylvatica 0.31 (0.03) 32.4 (6.9) 301 (34) 1.88 (0.24) 3.99 (0.45) 100 (0) 222 139

  Tilia cordata 0.38 (0.02) 37.7 (4.8) 434 (31) 0.87 (0.24) 2.49 (0.77) 100 (0) 127 81

  Quercus robur 0.36 (0.06) 37.1 (9.1) 381 (69) 1.00 (0.25) 5.25 (1.27) 99 (1) 83 48

  Carpinus betulus 0.37 (0.06) 37.7 (4.8) 423 (31) 0.81 (0.15) 3.39 (0.24) 94 (6) 36 82
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The AM species had on average higher fine root diameters (0.50 vs. 0.33 mm), lower SRL (18

vs. 38 m g-1), lower SRA (297 vs. 391 cm2 g-1), lower branching intensity (1.4 vs. 3.2 tips cm- 1),

and a lower degree of mycorrhizal colonization (85 vs. 99%) than the ECM species (Table 2).

Table  2 Morphology and biomass of the entire root system of well-watered (moist) and drought-treated (dry) arbuscular
mycorrhizal (AM) and ectomycorrhizal (ECM) tree species (n=4 tree species per mycorrhizal colonization type and soil
moisture treatment with standard errors in parentheses). Significant differences between the mycorrhizal association types and
soil moisture treatments are indicated by different lower case letters. Significance of the effects of tree species identity (SPEC)
and mycorrhizal type (MYC) on fine root traits of the entire root system of arbuscular mycorrhizal and ectomycorrhizal tree
species. Given are the F-values of a mixed model with mycorrhizal type (n = 2) as main effect, tree species identity (n = 8) as
nested effect, and drought as random effect (significance: *, P ≤ 0.05, **, P ≤ 0.01, ***, P ≤ 0.001).

AM ECM

moist dry moist dry SPEC MYC

ROOT

MORPHOLOGY

Fine root

diameter [mm]

0.50 (0.02)

a

0.49 (0.04)

a

0.33 (0.01)

b

0.36 (0.02)

b
1.8 75.1***

SRL [m g-1]
18 (2)

b

17 (1)

b

38 (4)

a

34 (2)

a
1.4 79.1***

SRA [cm²g-1]
297 (21)

b

265 (10)

b

391 (17)

a

368 (25)

a
0.9 27.6***

Root tissue

density [g cm-³]

0.9 (0.1)

b

1.2 (0.08)

a

1.0 (0.09)

ab

1.1 (0.25)

ab
1.4 0.2

Branching

intensity [tips cm-1]

1.4 (0.3)

b

1.3 (0.1)

b

3.2 (0.5)

a

3.8 (0.6)

a
0.3 34.9***

Mycorrhizal

colonization [%]

83 (5)

b

74 (5)

b

99 (1)

a

98 (1)

a
2.9* 48.1***

ROOT

BIOMASS

Fine root

biomass [g]

343 (105)

a

234 (80)

a

33 (11)

b

34 (17)

b
6.63*** 52.2***

Coarse root

biomass [g]

473 (181)

a

313 (106)

a

63 (29)

b

39 (17)

b

Total root

biomass [g]

812 (285)

a

543 (188)

a

93 (38)

b

71 (32)

b

Total fine root biomass was much larger in the AM species, while the degree of mycorrhizal

infection was higher in the ECM species. The influence of soil moisture (well-watered vs. dry
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treatment)  on  root  morphology,  architecture,  and  biomass  was  weaker  than  the  effect  of  the

mycorrhizal type (Table 2). In contrast, root tissue density was only weakly influenced by the

mycorrhizal type and tree species identity, but increased significantly upon soil drought in the

AM species.

The effect of seasonality and soil moisture on root lifespan in AM and ECM species

According to the Cox proportional hazards regression analysis of individual roots, the

mycorrhizal association type had a significant influence on root survivorship in the eight species

in both seasons and both soil moisture treatments: the mortality risk of roots of ECM species

strongly deceased upon drought, while the lifespan of AM species varied primarily with season

(Table 3).

Table 3 Summary of proportional hazard fits for the effects of mycorrhizal type, soil drought and season of root birth on root
lifespan. Values given are hazard ratios and the percentage change in the risk of root mortality of proportional hazards
regression analyses for the individual root lifespan of four tree species per mycorrhiza type (significance: *, P ≤ 0.05, **, P ≤
0.01, ***, P ≤ 0.001). Only significant hazard ratios are presented.

All tree species

Hazard risk Risk of mortality

EFFECT OF MYCORRHIZAL TYPE

  mid-season 1.45*** +45% Mortality risk increased in AM

  soil moisture 0.68*** -32% Mortality risk increased in ECM

AM ECM

Hazard risk Risk of mortality Hazard risk Risk of mortality

EFFECT OF SOIL MOISTURE

    early season 1.88*** +88%

    mid-season 2.49*** +149% 3.59*** +259%

EFFECT OF SEASON

    moist 2.51*** +151% 0.41*** -59%

    dry 8.06*** +706% 5.55*** +455%

In well-watered soil, the roots of AM species born early in the season had a somewhat longer

median lifespan than ECM species roots (185 d in AM vs. 176 d in ECM), while roots born in

mid-season lived longer in the ECM species (127 vs. 182 d; Fig. 1). In dry soil, the roots of AM

species lived longer than ECM species roots in the early (184 vs. 105 days) and the mid-season

(111 vs. 81 days; Fig. 1), and the mortality risk increased stronger in ECM roots than in AM
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roots (P>0.0001; Table 3). Drought reduced the root lifespan of the AM tree species slightly by

0.5% in the early and by 13% in mid-season, but strongly affected ECM root lifespan in both

seasons (reduction by 40% and 56%; Fig. 1), with a mortality risk increase by 88% in the early

and by 259% in the mid-season (Table 3).

When comparing the two seasons with respect to root lifespan under well-watered conditions,

lifespan strongly decreased from early to mid-season in the AM species (from 185 to 127 d),

while it slightly increased in the ECM species (from 176 to 182 d). According to the Cox

proportional hazard regression analysis, the mortality risk of well-watered trees increased by

151% AM roots and decreased by 59% in ECM roots compared to the early season (Table 3),

resulting in a shorter mean root lifespan in AM than in ECM trees in the late season. In contrast,

both mycorrhiza types reduced root lifespan in the dry treatment toward mid-season (from 184

to 111 d in AM, from 105 to 81 d in ECM), in which the mortality risk of roots increased by

706% in AM roots and by 455% in ECM roots. Accordingly, the effect of season on the risk of

mortality was always higher in the dry than in the well-watered soil treatment.
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Figure 1 Root survivorship curves derived from mini-rhizotron data of moist (solid line) and drought-treated (dashed line)
roots of AM (A) and ECM (B) tree species (n=4 tree species per mycorrhizal association, soil moisture treatment and season).
Roots born in the early season are depicted by grey, and roots born in mid-season by black lines. Root initiation and death
events were assumed to have occurred midway between successive sampling dates. Root survivorship curves were calculated
from presence/absence data using the Weibull distribution for right-censored data.
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According to the linear regression analyses, the lifespan of ECM roots was positively related to

soil moisture (P=0.001; Fig. 2a), while the lifespan of AM roots increased with decreasing soil

temperature (P=0.002) and increasing PAR flux density (P=0.006; Fig. 2b, c).

Relationship between root structural traits and the root lifespan of AM and ECM species

Root lifespan increased with root diameter in both AM and ECM species. The risk of root

mortality decreased in AM species by 94% and in ECM species by 62% with a 1 mm increase

in root diameter (P<0.001; Table 4). Lifespan was in both groups also negatively correlated

with the proportion of lower order roots (mortality risk increase with 1% increase in the portion

of lower order roots by 16 % in AM and by 15% in ECM trees; P<0.001). In the AM roots, the

Figure 2 Linear regressions between root lifetime and (A) soil moisture, (B) soil temperature, and (C) photosynthetically active
radiation (PAR) for arbuscular mycorrhizal (AM, white) and ectomycorrhizal (ECM, black) tree species (n=4 tree species per
mycorrhizal type). Given are means per season (early and mid) and soil moisture treatment (moist and dry).
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mortality risk increased also with an increasing branching ratio (+2% with a one unit increase

in the ratio of root branching; P=0.003), resulting in a shorter lifespan with higher branching.

Higher root orders had a significant longer lifespan in AM trees, but not in ECM trees.

Table 4 Summary of proportional hazard fits for the effects of AM and ECM root traits on root survivorship. Values given are
hazard ratios and the percentage change in the risk of root mortality of proportional hazards regression analyses for the
individual root lifespan of four tree species per mycorrhiza type (significance: *, P ≤ 0.05, **, P ≤ 0.01, ***, P ≤ 0.001). Only
significant hazard ratios are presented. The percentage mortality risk gives the change with an increase of one unit of the
quantitative covariate (see Table S2).

AM ECM

Hazard risk Risk of mortality Hazard risk Risk of mortality

EFFECT OF ROOT TRAITS

Root diameter 0.06*** -94% 0.38*** -62%

Portion of lower

order roots
1.16*** 16% 1.15*** 15%

Branching ratio 1.02** 2%

Root order 0.77* -23%

Discussion

Root longevity is a key functional trait with large influence on the root-borne C flux to the soil

(Eissenstat & Yanai, 2002) and probably also the nutrient and water cycles of ecosystems.

However,  information  on  the  root  longevity  of  different  tree  species  is  still  scarce  (e.g.

Withington et al., 2006), and systematic data on putative root lifespan differences between AM

and ECM trees are virtually non-existent. In this study, we explored the response of fine root

lifespan of AM and ECM tree species to seasonality and variation in soil moisture and found

largely different responses between the two mycorrhiza types. In a comparison of the average

root lifespan of each four AM and four ECM trees during the early season and in the well-

watered treatment, it appears that median lifespan of AM trees was only about 5% higher than

in ECM trees. However, larger differences appeared between AM and ECM root lifespan as a

consequence  of  soil  drought  and  season:  while  root  lifespan  of  ECM  trees  was  mainly

determined by soil moisture conditions (decrease by 48% in dry soil), root lifespan of AM trees

was mainly a function of season (decrease by 36% from early to mid-season). In addition, root

architecture (proportion of lower-order roots, negative effect) and root morphology (root

diameter, positive effect) influenced root lifespan independent of the mycorrhizal types.
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The influence of mycorrhiza type on root morphological traits and root survivorship

Several studies indicate that AM and ECM tree species differ in various root morphological

properties, when co-occurring in the same habitat (Brundrett, 2002; Comas & Eissenstat, 2009;

Comas et al., 2014; Eissenstat et al., 2015; Liese et al., 2017a; but see Kubisch et al. 2015).

Our results from saplings grown under defined soil conditions indicate that AM trees developed

fine root systems with higher average root diameters, but lower SRL, SRA, and branching

intensity  than  ECM  trees.  These  differences  in  root  morphology  can  be  due  to  systematic

differences between morphological root traits between AM and ECM trees, but may also be

partly consequence of different growth rates between the investigated AM and ECM trees. In

our species sample, AM species (genera Acer, Fraxinus, Prunus) were characterized by faster

tree growth than ECM species (Fagus, Quercus, Tilia, Carpinus).

Root morphology is a key to understand root lifespan. Numerous studies across a wide range

of species have revealed a linkage between various root traits and root survivorship. A central

role is likely played by root diameter (Wells & Eissenstat, 2001; Anderson et al., 2003; Joslin

et al., 2006; McCormack et al., 2012), with thicker roots typically having a longer lifespan.

This is in line with resource optimization theory, which postulates that higher C and nutrient

investment required to build thicker roots should be compensated by a greater root lifespan, so

that the additional resource consumption for root construction is balanced by a longer period of

resource capture (Eissenstat & Yanai, 1997; McCormack et  al., 2012). Our mini-rhizotron

observations show a significant effect of the mycorrhizal type on fine root survival in the eight-

species sample, which is linked to the significantly smaller mean fine root diameter of the ECM

species. AM fine roots lived significantly longer than ECM roots in the early season in both the

moist  and  dry  treatment,  which  is  in  accordance  with  the  greater  diameter  of  AM  roots.  In

contrast, ECM roots born in mid-season were in the moist treatment longer-lived than AM tree

roots. This suggests that the root diameter influence is overlain by other, under certain

conditions more influential, factors. Cox proportional hazard regressions showed that the root

diameter effect on root lifespan was stronger in the AM species than in the ECM species. The

AM trees developed in the experimental period larger root systems with in most cases thicker

and longer-lived roots, which indicates that the smaller root systems of the ECM species are

not only a result of slower root growth, but also of higher fine root turnover. Our data further

show that the lifespan of AM and ECM roots is not only influenced by root diameter, but also

by the proportion of 1st and 2nd order roots. While this is expected from the generally negative

relationship between root diameter and the proportion of lower-order roots in fine root mass

(Fitter et al., 1991; Pregitzer et al., 1997; Wells et al., 2002), the influence of the proportion of
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lower-order roots on root lifespan has not yet been reported. Since the change in root mortality

risk was greater for a root diameter change than for a change in the proportion of lower-order

roots, we assume that root diameter is a more important determinant of root lifespan. A possible

explanation is that root diameter may be more directly related to a root’s sensitivity to physical

and biological hazards that threaten its integrity. Our results suggest that the thinner ECM tree

roots generally were suffering more from live-reducing hazards than the AM roots.

While root diameter and the portion of lower root orders influenced the lifespan of both AM

and ECM roots, branching ratio and the individual root order were determinants of root lifespan

only in AM species. Although branching ratio was significantly negatively related to AM root

lifetime, this effect was negligible with a 2% change in the risk of mortality. In contrast, the

root order to which a segment was assignable, showed a stronger and positive relation to root

lifespan. This relation might be due to order-specific root functions, where low-order roots have

their main function in resource uptake and high-order roots in storage and transport (Pregitzer

et al., 2002). Longer root lifespan in higher root orders have been reported for other AM plant

species as well, e.g. for sugar maple (Eissenstat et al., 2000), peach trees (Wells et al., 2002),

and alpine meadow grasses (Wang et  al., 2016). This seems to support the influence of root

order on root lifespan found in the AM trees of our study. The non-existent root order effect in

ECM trees of our study may have been consequence of the Hartig net produced in lower-order

ECM roots, which protects against physical hazards and pathogen attack.

Decreased lifespan of drought-exposed ECM roots

Root systems may adopt two different strategies in response to drought, (i) producing longer-

lived, more robust roots, which are often thicker and better protected against desiccation, or (ii)

increasing the production of tender, short-lived roots with high turnover. In the first strategy,

the plant uses resources primarily for building and maintaining durable belowground structures,

while more C and nutrients will be lost with the acceleration of fine root turnover in the second

strategy (Eissenstat et al., 2000; Brunner et al., 2015).

Since new short-lived roots have been shown to have higher resource uptake efficiencies

(Volder et al., 2005) and hydraulic conductivities, roots with short lifespan should be more

effective in absorbing water and nutrients, which may maximize total plant productivity under

drought (Eissenstat & Yanai, 2002) and compensate for the higher resource consumption of

short-lived roots. Our results show a marked reduction in the lifespan of ECM tree roots in the

dry treatment and an associated close positive relation between soil water content and lifespan,

which is not found in the AM species. This is in support of our second hypothesis and matches
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with observations in several  ECM trees in the field,  even though comparison to AM trees is

lacking. With decreasing water availability in drought periods or along precipitation gradients,

a decreasing root lifespan was found in European beech (Mainiero & Kazda, 2006; Meier &

Leuschner, 2008), Douglas fir (Marshall, 1986) and in trees of a mixed North American

hardwood forest (Pregitzer et al., 1993). In contrast, two studies with woody AM species did

not detect a significant change in root longevity with decreasing water availability (grape:

Anderson et al., 2003; grapevine: Bauerle et al., 2008). Espeleta et al. (1999) found under

drought a lower fine root mortality in AM-colonized than in uncolonized roots of red grapevine,

which may point at a drought sensitivity reduction with the infection by AM-forming fungi.

Our results may be the first to show a greater reduction in root longevity in ECM than AM trees

upon drought. If this difference is of more general validity for temperate ECM and AM trees,

it would indicate contrasting drought response strategies of the two mycorrhizal association

types. While ECM trees may lean stronger towards a strategy, which increases fine root

turnover upon drought, the strategy of AM trees may rely more on the formation of more

durable root structures. Since shorter root lifespan has been related to higher metabolic activity

and faster resource acquisition (Comas & Eissenstat, 2004; Volder et al., 2005), the shorter-

lived roots of ECM tree species under drought may possibly represent a response to alleviate

drought stress by improving root water uptake efficiencies. Such a strategy could increase root

water uptake by expanding the active surface area and increasing resource acquisition. It will

also influence C cycling in the soil, as higher root turnover in ECM species under drought will

increase the root-borne C input to the soil. The AM species in our experiment seemed to respond

differently by avoiding increased C investment into root turnover. Their total biomass

production showed a stronger reduction upon drought than in the ECM species, either due to a

higher overall  drought sensitivity of the plant or as a consequence of a different root system

response to drought.

The effect of season on AM root lifespan

Seasonal differences in fine root lifespan have been observed in various studies investigating

trees or herbaceous plants (Johnson et al., 2000; Anderson et al., 2003; Kern et al., 2004; Gu

et al., 2011; Wang et al., 2016). Our results show that the root lifespan of AM and ECM tree

species is differently influenced by season. While ECM root lifespan only slightly increased

toward mid-season, AM trees responded stronger and decreased root lifespan by 31%. In

accordance, Gu et al. (2011) found a stronger effect of season on root lifespan in the AM species

Manchurian ash (102% change) than in the ECM species Dahurian larch (52%). By contrast,
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studies on root dynamics in AM concord grape and alpine meadow grasses found a longer

lifespan in roots borne later in the season (Anderson et al., 2003; Wang et al., 2016).

We speculate that the marked root lifespan decrease in AM trees later in the season could be

related to higher temperatures, even though the ECM species did not respond in a similar way.

Effects of season on root survivorship have been linked to assumed temperature effects by

several authors (King et al., 1999; Johnson et al., 2000; Leppälammi-Kujansuu et al., 2014;

Wang et al., 2016). In the AM tree Acer saccharum, Hendrick & Pregitzer (1993) found that

warmer temperatures are indeed linked to higher root mortality. Among the possible causes are

carbohydrate shortage as a consequence of elevated respiration rates and accelerated root

senescence due to the formation of free oxygen radicals (Burton et al., 2002; Wang et al., 2016).

In our study, the strong decrease in AM root lifespan was accompanied by a soil temperature

increase during mid-season by 4°C, resulting in a negative relation between root lifespan and

temperature in the AM species, which was not detected in the ECM species. Whether this

difference is caused by differences in the temperature response of root physiology in ECM and

AM species, must remain open.

Seasonal variation in carbohydrate supply may also have influenced root lifespan. In their

review, Norby & Jackson (2000) found a close dependence of root longevity on photosynthetic

activity and thus carbohydrate supply to the roots. The positive relation between PAR and root

lifespan observed for the AM species in our experiment points to an important influence of

carbohydrate supply in this group. A possible explanation could be the generally higher above-

and belowground growth rates of the AM trees compared to the ECM species in the experiment,

which must have caused a higher carbohydrate demand of the AM tree root systems. Our results

confirm the idea that root longevity is determined by various abiotic as well as biotic factors,

among them plant age, carbohydrate supply and growth rate, and root symbioses.
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Conclusion

Our experiment with saplings of eight temperate tree species belongs to the very few studies,

which investigated systematic differences in root longevity between AM and ECM tree species

growing under the same environmental conditions. Knowledge about the determinants of tree

root longevity is needed to increase our capability of predicting the effects of climate change

and management alteration on forest ecosystem functioning and related biogeochemical fluxes.

Root lifespan of ECM tree species was strongly reduced by drought, while the lifespan of AM

roots was found to be less drought-sensitive, but showed a strong seasonality, which was related

to changes in temperature and PAR across the seasons.  Root diameter and the proportion of

lower-order roots in fine root biomass were identified as determinants of root lifespan in both

mycorrhiza types, while branching ratio and root order were only related to the root lifespan in

AM species. When interpreting these results in a wider context, two facts have to be taken into

account: First, since the study was conducted with young trees, the findings can be transferred

to adult trees only with great care. Second, it is likely that part of the differences found between

AM and ECM tree species in terms of fine root morphology and dynamics are caused by the

different growth rates of the investigated AM and ECM trees. Yet, our study has produced first

evidence that AM and ECM trees may differ systematically in root traits that determine fine

root dynamics. Thus, the mycorrhizal type could be of high relevance when predicting the fate

of temperate forests under changing climate. Further studies on root longevity with other tree

species and conducted under different environmental conditions are needed to deepen our

understanding of possible systematic differences between the lifespan of AM and ECM tree

roots and the abiotic and biotic determinants of root longevity in the two groups.
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Supplementary Material

Table S1 Seasonal means of air an soil temperature (ambient water supply, 10% SWC, v/v; drought, 5% SWC, v/v), relative
air humidity and photosynthetic active radiation in the Göttingen Rhizolab facility for the year 2014 and the year 2015.

2014 2015 (mini-rhizotron observations)

Early season Mid-season Early season Mid-season

Apr - June Min - Max July - Sep Min - Max Apr - June Min - Max July - Sep Min - Max

Air temperature
[°C] 15.0 12.5 – 16.8 17.6 15.3 – 20.6 13.0 9.2 – 20.6 18.4 14.3 – 20.7

Soil temperature of
well-watered plots
[°C]

18.2 14.0 – 21.2 19.7 16.4 – 23.2 14.9 11.7 – 17.8 18.4 14.2 – 20.8

Soil temperature of
drought-treated plots
[°C]

18.4 14.5 – 21.5 20.2 16.5 – 23.7 15.4 11.8 – 18.7 19.1 14.8 – 21.6

Relative air humidity
[%] 70.4 68.0 – 72.3 78.5 73.2 – 86.1 62.3 67.2 – 54.8 74.0 69.2 – 81.9

PAR
[µmol m-2 s-1] 884 649 - 1133 630 406 - 977

PAR, photosynthetically active radiation

Table S2 Variables tested in proportional hazards stepwise regression analyses of individual root lifetimes.

Variable Coding and description

  Mycorrhizal type   0 = ECM, 1 = AM

  Drought   0 = ambient water supply, 1 = drought

  Cohort   0 = cohort 1 (early season), 1 = cohort 2 (mid-season)

  Portion of lower order roots   Portion of 1st and 2nd order roots in all root orders

  Branching ratio   Number of first order roots growing out of second order roots

  Root order   Number of root order, as defined by Pregitzer et al. (2002)

  Root diameter   Average diameter (mm)
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Differences in morphological root traits of AM and ECM trees and the

relationship to nutrient acquisition

The association with mycorrhizal fungi influences the morphology of tree roots and

complements the resource acquisition strategies of trees. Trees that belong to the fast and

acquisitive strategy have a high capability in acquiring resources and therefore high growth

potentials. In contrast trees that are assigned to the slow and conservative strategy have long-

term resource retentions and slow growth rates. ECM root systems are often described as fine

and strongly branched (e.g. Hodge, 2004; Smith & Read, 2008), which is assigned to root traits

of fast and acquisitive species (Comas et al., 2002; Comas & Eissenstat, 2004).

The results of the present study confirm a higher branching of the ECM root system, which was

independent from phylogeny, while root diameter had a significant phylogenetic signal and was

not different between the mycorrhizal types in their natural habitat (Chapter 2). Several studies

have suggested that root diameter is one of the key morphological traits that is closely related

to root lifespan (e.g. Joslin et  al., 2006; McCormack et al.,  2012).  The  results  of  the  mini-

rhizotron observations (Chapter 5) are consistent with these studies and showed that root

diameter is a good indicator that can be used to predict root lifespan across tree species of the

two mycorrhizal association types. However, this study also revealed that the relation of root

diameter with root lifespan can be overlain by other influential factors like drought.

In contrast to root diameter, root branching was constantly increased in ECM trees in this study

and a key feature for discriminating AM from ECM tree species, but not related to individual

ECM root lifespans (Chapter 5). In principle, a decreased root lifespan might be expectable to

occur with increased root branching. Since increased root branching is a measure for a high

proportion of lower order roots, the death of a higher-order root would entail the death of its

branches. In accordance, the proportion of higher order roots was significantly and negatively

correlated with root lifespan in this study. However, both root branching and root lifespan can

vary strongly under the influence of several factors like nutrient status, the type and degree of

mycorrhizal colonization. Nevertheless, root branching and root lifespan not necessarily are

concurrently and evenly strong affected what might hide an actually existing interdependence.

However, root branching was directly or indirectly (via root C:N) related to acquisitive

aboveground traits (high SLA, short leaf lifespan) and belowground traits (high SRL of 1st and

2nd root order and small root diameter; Chapter 2). In addition, high root branching intensity

has also been related to high resource uptake capabilities (McCormack et al., 2015) and high

capabilities of proliferation into resource-rich patches (Hodge, 2004). The latter in combination
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with the missing phylogenetic signal in root branching indicates the plasticity of this root trait,

which is further supported by increased branching of ECM roots under drought (Chapter 4).

Due to the relation of root branching with nutrient acquisition and proliferation capabilities

reported in the literature and due to the relation to other acquisitive traits described in this study

(Chapter 2), ECM trees should in fact rather be assigned to the acquisitive trait family. In

contrast, ECM trees are often suggested to assign to the slow/conservative family due to the

dominance of ECM trees in nutrient-poorer ecosystems, while AM tree species have been

proposed to be fast in terms of resource acquisition and thus also in plant growth because of the

more rapid decomposition of AM leaf litter and accelerated soil nutrient cycling (Cornelissen

et al., 2001; Read & Perez-Moreno, 2003; Hobbie et al., 2006; Vesterdal et al., 2012; Phillips

et al., 2013).

In general, being fast or having acquisitive traits can only be advantageous if the investment of

resources that is needed to build and deploy such traits is returned by high resource acquisition

(Reich, 2014; Weemstra et al., 2016). This interdependence also implies that under nutrient

scarcity in soils, acquisitive root traits may not be viable. In this sense, the soil environment of

ECM trees, where nutrients are primarily bound in organic forms, is rather represented by soils

with high nutrient mineralization potential or soils with nutrient-rich patches than nutrient-poor

soils. Keeping this in mind, less root branching of AM trees would not lead to a slower growth

potential, but simply indicates less need for an adaptation in this trait to a more inorganic soil

environment, where nutrients can be absorbed quickly by the plant. It is reasonable to assume

that an optimized uptake of different nutrients (organic and immobile vs. inorganic and mobile

nutrients) requires different root traits. For example, the uptake of N in the AM rhizosphere

with high nitrate content and the uptake of N in ECM rhizosphere with high amino acid content

(Chapter 3, Table S2) may not be equally increased by a higher branching of roots, even when

both N sources being exploited. The acquisition of more homogenously distributed, mobile,

and plant-available nutrients such as nitrate may not require an increased root branching,

whereas a high branching intensity can be profitable in the often patchy-distribution of

immobile and organic nutrients. In accordance, root branching has been negatively related to

the availability of plant-available nutrients in soil (Holdaway et al., 2011). In this sense, AM

trees would be less dependent on increased root branching as an acquisitive root trait, since

their high quality and fast decomposing leaf litter provides higher amounts of plant available

nutrients in comparison to the low quality and decomposition-recalcitrant nature of ECM leaf

litter. Based on these facts, it is reasonable to assume that the higher branching in ECM root

systems represents an adaption that improves the acquisition of organic nutrients via
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exploitation of resource-rich patches in ECM ecosystems. Accordingly, AM and ECM trees

seem to differ in the trade-off between resource investment for building and using acquisitive

traits and resource return by an improved resource uptake. The investment of resources for an

acquisitive root trait is beneficial for ECM trees through an improved exploitation of less-

available nutrients. In contrast, such a costly adaption is less profitable in the mainly inorganic

AM soil environment, where AM trees grow rapidly and acquire nutrients efficiently, despite

their less acquisitive root traits.

Even though root branching has been assigned to the acquisitive trait spectrum, nutrient

availability in the soil environment (organic and immobile vs. inorganic and mobile) must be

considered as an important factor that may be highly important for a correct interpretation of

the acquisition potential of a root trait and the incorporation in a whole plant economic

spectrum. In this sense, morphological root traits should (i) not be strictly categorized into

fast/acquisitive or slow/conservative spectra because an improved acquisition of different

resources can be differently manifested and (ii) also be related to precision foraging strategies

(Weemstra et al., 2016). However, the study revealed that root branching is related to the

mycorrhizal  type  and  gives  information  about  the  strategies  of  resource  exploitation  and

precision foraging (e.g. into resource rich patches) and, thus, represents an important

belowground trait. To transfer these findings to a global scale, more detailed knowledge of

differences in morphological root traits between AM and ECM trees roots across different

biomes, different soil conditions, and changing climatic gradients are necessary.

Root-rhizosphere interactions of AM and ECM trees

Based on the differences in the nutrient economy between AM and ECM tree species as

suggested by Phillips et  al. (2013), several studies focused on possible differences in

rhizosphere processes between the mycorrhizal association types. In the study of Yin et al.

(2014), ECM trees had a stronger rhizosphere effect (i.e., the relative difference in chemical,

physical, and biological properties between rhizosphere and bulk soil) than AM trees. It was

furthermore shown that the higher C release through root exudation of ECM trees and a

consequently induced priming effect is closely linked with this phenomenon. The present study

partly confirms these results since ECM trees showed an in general stronger rhizosphere effect

and a higher amount of microbial C in the rhizosphere. However, AM and ECM trees released

comparable amounts of C through root exudation, consequently this cannot be the reason for

the observed results.
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In theory, due to the high proportion of nutrients bound in SOM in ECM ecosystems, a greater

need to exude organic C compounds of ECM trees to prime microorganisms that accelerate

nutrient transformation from SOM is reasonable to expect. In this sense, a high amount of

exuded C of ECM trees would deliver the benefit of an increased nutrient availability in the

rhizosphere due to accelerated microbial SOM decomposition. In contrast, a high C release

through AM root exudates would be less beneficial, since AM ecosystems are dominated by

inorganic nutrients that can be absorbed directly by the plant. However, this relationship would

also imply that the majority of all exuded compounds are equally easy degradable, independent

of the exudate composition. In contrast, this study observed a significant difference in the

chemical richness (i.e. number of different compounds found in exudates) between AM and

ECM exudates, which was strongly correlated to the rhizosphere effect (Chapter 3). In

conclusion, the results of this study suggest that not only the amount of C that is released by

root exudation, but also the composition of the exudates can cause different rhizosphere

processes, as it occurs in AM and ECM trees. Since the mycorrhizal association types exuded

equal amounts of C, but AM exudation had a greater chemical richness, it is logical that ECM

associations exude higher amounts of the individual compounds found in ECM exudates. Such

a mycorrhiza-specific release of a lower number but a higher individual amount of exudate

compounds exerted a positive effect on rhizosphere processes.

Based on these outlined evidence, there is a direct and indirect way of how the composition of

root exudates of ECM trees can drive positive effects in the rhizosphere. It is already known

that ECM fungi have a great capability in directly releasing extracellular enzymes that

accelerate SOM decomposition (Read & Perez-Moreno, 2003). In accordance, a greater activity

of enzymes that degrade N and P from SOM were found in ECM rhizosoil of this study.

However, not only mycorrhizal fungi, but also rhizosphere microbes have the capability of

releasing extracellular enzymes (Kuzyakov, 2010). Based on a higher amount of microbial C

and considering the multifaceted effects on C, N, and P cycling in ECM rhizosoil, it is

reasonable to assume that enhanced microbial activity in the ECM rhizosphere is driving the

positive effects (indirect way), despite the equal amount of provided C through root exudation

of AM and ECM trees. In this sense, the lower chemical richness in ECM exudates must be

related to enhanced microbial activity and to the priming of microbes. Thus, the reduced

chemical richness in ECM root exudates may lead to an enhanced niche overlap and thus to

enhanced competition between the microbes for the exuded C as a food source. This would

result in a higher need of microbes to decompose SOM and thus in a generally enhanced

rhizosphere effect. In contrast, the higher chemical richness of AM exudates may lead to a
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reduced niche overlap and thus to reduced competition among rhizosphere microbes. In such a

situation the exuded C might cover the microbes demand. This would result in a lower need to

decompose recalcitrant SOM and would explain a less rhizosphere effect in AM soils (see

Figure 1).

An adaptation of exudate composition in ECM trees to the conditions of a dominantly organic

nutrient  economy  of  ECM  ecosystems  provides  a  strategy,  best  suited  to  the  prevailing

conditions of the soil environment of their natural habitats. Not only the composition of root

exudates, but also the high capability to exude extracellular enzymes and the observed higher

branching intensities of ECM root systems are factors contributing to an adapted strategy. These

factors represent additive traits that have evolved for a best possible adaptation to the greater

proportion of nutrients bound in SOM. In contrast, in AM ecosystems less need for such

adaptations exists due to the high content of plant available nutrients. This is consistent with

the higher inorganic N uptake of AM tree species when compared to ECM tree species observed

in research project 2 of this study (Chapter 4). The preference in the uptake of inorganic N of

AM trees may reflect the limited capabilities of exuding extracellular enzymes of AM fungi

and could be caused by a genetic adaptation to the inorganic environment in which AM trees

occur naturally. In conclusion, AM trees seem to be specialized in the uptake of inorganic

nutrients while ECM in the uptake of organic nutrients with a high dependency on microbial

decomposition.

Figure 1 Schematic relationship between chemical composition of exudates, microbial decomposition, and rhizosphere effects
in AM and ECM soils.
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The results of this study show that AM and ECM trees have distinct strategies adapted to their

respective nutrient economies, representing an optimal exploitation of the available resources.

Root exudate composition seem to play a key role in mediating rhizosphere processes, where

mycorrhiza-specific differences in the chemical richness of exudates affect microbial activity,

enzyme activity and nutrient availability in the rhizosphere. Such adaptations to the prevailing

form of nutrients in the respective ecosystems can have important implications for the

mycorrhizal  distribution  under  N deposition.  It  is  reasonable  to  assume that  with  increasing

contents of inorganic N in forest ecosystems due to deposition of ammonium and nitrate, AM

associations with high capabilities in the uptake of inorganic N have advantages in comparison

to ECM associations, which are more adapted to an environment with higher contents of organic

nutrients. This can lead to shifts in species composition and changes in mycorrhizal distribution

in temperate forest ecosystems. The results of this study emphasize the importance of

considering the mycorrhizal type when predicting biogeochemical processes of temperate

forests. Furthermore, the findings show that beyond the effect of the mycorrhiza type, root

rhizosphere interactions are determined by a complex relationship of soil properties, microbial

activity, microbial competition and root exudate composition.

The effect of drought on root functions of AM and ECM trees

Roots evolved several strategies to avoid or tolerate drought stress, including adjustments in

root biomass production, morphological root traits, functional root traits, and rooting strategies

(Brunner et  al., 2015). How tree roots respond to drought can be profoundly affected by the

associated mycorrhizal type. A study that focused on the tree growth response showed that

ECM trees species had a lower sensitivity to drought than AM trees (Brzostek et al., 2014).

One hypothesis to explain such findings has been that differences between the mycorrhizal type

responses to drought are possibly caused by differences in root functions and belowground C

allocation of AM and ECM tree species (Phillips et al., 2013). The results of this study

confirmed that AM and ECM trees differ in root functions and belowground C allocations under

drought (Chapter 4 and 5; main results of the effect of drought summarized in Figure 2).

Since biomass production and the degree of mycorrhizal colonization were significantly less

reduced in ECM than in AM trees under drought, it is reasonable to assume that higher root

exudation, a decreased root lifespan, and increased root branching of ECM associations are

adaptive responses that alleviate drought effects in dry soils. In the line of this thought, high C

release through root exudation of ECM trees under drought might be explained by an active

secretion of mucilage that increases hydraulic conductivity or accompany hydraulic lift (Kroon
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et al., 1998; Querejeta et al., 2007; Carminati, 2013), which would result in an improved water

uptake capability. The role of exudates in water acquisition was further supported by the results

of project 1 of this study. A strong relationship between exudate composition and soil moisture

in the rhizosphere of the natural habitats of AM and ECM trees could be shown (Chapter 3).

ECM tree species had a strong positive effect on the moisture content of rhizosphere soil, which

was highly correlated with the chemical richness of the exudates. The fact that drought induced

a decrease in ECM fine root lifespan with a simultaneously unaffected fine root biomass may

also increase water absorption potential. Young roots with high turnover rates have a higher

resource the uptake capability than older roots (Volder et al., 2005) and are thus more efficient

in water and nutrient acquisition. These adaptive responses in root functions might strongly

support total plant productivity of ECM trees under drought.

These outlined evidences combined suggest that the ECM trees allocate their carbohydrate

resources in dry soils to support both, increased exudation and increased production of short-

lived fine roots. In contrast, AM trees allocate less C belowground when soil moisture decreases

and keep the C investment moderate by maintaining durable and robust roots that are better

protected against desiccation. Furthermore, the increased fine root: leaf ratio of ECM trees is

in accordance with an optimal C partitioning strategy, where plants allocate more C to roots

under drought and nutrient shortages in the soil (Bloom et al., 1985). According to Eissenstat

et al. (2000), C allocation to roots under drought is dependent on the cost: benefit ratio of C

investment  and  resource  acquisition,  where  C  is  invested  until  the  efficiency  of  resource

acquisition is maximized. In this sense, higher C allocation to roots of ECM trees is increasing

Figure 2 Drought response ratio of AM (red) and ECM (green) associations. Values are the means of two seasons (n = 4 tree
species per mycorrhiza type). A meta-analysis was conducted summarizing drought effects on root exudation, root lifespan,
root branching intensity, and on fine root: leaf biomass ratio. The drought treatment was considered as ‘treatment group’ and
the treatment with ambient water supply as ‘control group’.
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resource acquisition. In doing so, ECM trees seem to invest C for root functions (e.g. in young

acquisitive roots) that increase uptake capabilities up to the point when the optimal acquisition

potential is surpassed. In conclusion, ECM trees seem to respond to drought by investing high

amounts of C (increasing costs) to improve resource uptake (increasing benefits), while AM

trees seem to avoid C investments (decreasing costs) and accept as a consequence lower

resource uptake (decreasing benefits) with simultaneously decreasing biomass and

accompanied reduced demand. Accordingly, the root systems of AM and ECM trees may adopt

two contrasting strategies to balance C investment and resource acquisition in response to

drought. AM trees tend more to the strategy that tolerate drought by avoiding C and resource

losses and by biomass reduction, while ECM tree species adapt a strategy that improve resource

uptake under drought conditions by investing C and other resources into belowground parts

(see Figure 3). However, the strategy of ECM trees under drought does not necessarily lead to

an improved drought tolerance under all conditions. A high C investment with a concurrently

reduced C assimilation in ECM trees under drought might lead to a negative C balance in ECM

trees, especially during long lasting drought periods, which could make them more vulnerable

for tree mortality. Accordingly, the strategy of AM trees during long periods of drought might

increase the survival propability by saving C and by a decreased resource demand due to

biomass reduction.

Figure 3 Illustration of two different survival strategies under drought.
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Different  strategies  under  drought  of  AM  and  ECM  tree  species  that  affect  belowground  C

allocation to roots have important implications for root derived C input into the soil. According

to the results of this study, one can generally expect higher input of C into soils through

increased root exudation and accelerated root turnover of ECM trees under drought. Dead fine

roots represent an input of organic material to soil which is not rapidly decomposed in dry soils.

Since drought-treated ECM trees show a simultaneous increased release in root exudates which

can drive microbial decomposition processes of SOM and stimulate microbes via a priming

effect (Kuzyakov et al., 2000), less-bioavailable SOM might be decomposed, even under

drought conditions. Since in dry soils, not only water but also nutrients can be a limiting factor,

an accelerated decomposition of dead root material through enhanced provision of exudates as

food source for microbes could increase nutrient acquisition and thus productivity of ECM trees

under drought.

The results of research project 2 support earlier studies that attributed a key role in maintaining

tree productivity under drought to mycorrhizal associations. Furthermore, the study revealed

new findings that indicate that AM and ECM roots have evolved different strategies to maintain

tree productivity and survival under drought by adapting physiological root functions and C

distribution. The differences in root functions of the two mycorrhizal types under drought found

in this study may further explain the inconsistent findings of root exudation and root lifespan

of a variety of tree species under drought as reported in the literature (e.g. Brunner et al., 2015).

Systematic differences in AM and ECM trees under more frequent and intense drought stress

in temperate forests would have important implications for nutrient and C cycling in forest

ecosystems under global change. Furthermore, differences in drought sensitivity of AM and

ECM trees would also influence the trees’ mortality and thus affect shifts in tree species and

fungal composition in temperate forests. However, for a reliable knowledge whether AM or

ECM trees have a better chance of survival under drought, a detailed study on the effect of

intensity and duration of drought periods on the two mycorrhizal associations in their natural

habitats is necessary.
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Conclusions

From the present study on the effect of the mycorrhizal type on root-rhizosphere processes the

following conclusions can be drawn:

I. Root branching is influenced by the mycorrhiza association type and represents a key

discriminant between AM and ECM trees. Furthermore, increased root branching in

ECM trees may reflect a beneficial trade-off between resource investment for a higher

branching intensity and resource return by an improved resource uptake in the organic

ECM soil environment.

II. AM trees have high capabilities in the uptake of inorganic N, while ECM trees enhance

the exploitation of organic nutrients through high enzyme activities and microbial

decomposition. These differences in resource acquisition may represent an adaptation

to the respective nutrient economies of AM and ECM trees.

III. Rhizosphere processes are distinctly influenced by the mycorrhiza-specific composition

of exudates even under equal C release through root exudation. The lower chemical

richness of ECM exudates exerts strong effects in the rhizosphere through high microbe

activities.

IV. Under drought, ECM trees invest a high amount of C to optimize acquisitive root

functions (i.e. increased root exudation and decreased root lifespan), while AM trees

avoid high C investment in roots and reduce the entire biomass production to tolerate

limited resource uptake by low input and a reduced demand. These processes represent

two different strategies in the trees’ response to drought.

V. Differences in C partitioning and acquisitive root traits and functions between AM and

ECM trees under changing environmental conditions are crucial for predicting

biogeochemical processes and compositional shifts of temperate forests under global

change. Accordingly, the type of mycorrhizal association should be considered as

important belowground trait for trees in temperate forests.
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Summary
Based on the two main types of mycorrhizal associations in temperate forests, which are

arbuscular (AM) and ectomycorrhiza (ECM), the idea of a mycorrhizal-associated nutrient

economy framework developed (Phillips et  al., 2013). This framework predicts that AM

dominated forests, with fast decomposition of high chemical quality litter, have an inorganic

nutrient economy. In contrast, forests dominated by ECM trees have low chemical quality litter

and slow decomposition rates, resulting in a dominantly organic nutrient economy. The

acquisition of nutrients from soil and as a result also tree productivity, is distinctly determined

by fine roots and the associated mycorrhizal fungi, which concertedly play not only a key role

in resource acquisition but also in C and nutrient dynamics of forest ecosystems under global

change. However, only few studies addressed a direct comparison of several AM and ECM

trees in morphological and functional root traits. Accordingly, information about mycorrhiza

based differences in root functions and how they relate to resource acquisition and

biogeochemical processes in the rhizosphere are scarce.

In the present study, two research projects were conducted that had the objective to answer the

question how root morphological and functional traits of eight different tree species (four per

mycorrhizal  type;  AM: Acer platanoides L., Acer pseudoplatanus L., Fraxinus excelsior L.,

and Prunus avium L.; ECM: Fagus sylvatica L., Quercus robur L., Tilia cordata MILL., and

Carpinus betulus L.) are influenced by the mycorrhizal association type and to what extent this

influences rhizosphere processes. The first research project was conducted in the natural

habitats of the tree species, an old mixed broad-leaved forest, and focused on mycorrhiza-

specific differences in root morphology, root exudation, and rhizosphere processes. The second

research project, a factorial drought experiment in large-mesocosms in the Göttingen Rhizolab

Facility, aimed to study root morphology, root functions (i.e. root exudation, root longevity,

and N absorption), biomass production and aboveground properties like photosynthetic rates of

the studied four AM and four ECM tree species under drought conditions.

Consistent with the mycorrhiza-associated framework that suggest a classification of temperate

forests according to the two mycorrhizal association types, the present study revealed

significant influences of the mycorrhizal association type on root-rhizosphere interactions (i.e.

in some morphological and architectural root traits, at least under drought in the majority of

root functional traits, and in the majority of rhizosphere processes).

When transferring the mycorrhizal-associated nutrient economy framework to the revealed

differences in root-rhizosphere interactions of AM and ECM trees of this study, the respective
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nutrient economy of AM and ECM trees is reflected in root properties, root functions and also

in the rhizosphere, and led to different acquisition strategies between the mycorrhizal

associations types: AM trees adapt to the inorganic nutrient economy by high capability and

efficiency in the uptake of inorganic N. In contrast, ECM trees adapt to the organic nutrient

economy by several traits (i.e. by strongly branched roots, stronger mycorrhizal colonization,

and lower chemical richness of root exudates), that increase their acquisition potential and

prime microbial activities in the rhizosphere (as proven by accelerated enzyme activity, high

amounts of microbial C, and strong positive rhizosphere effects on C, N, and P cycles). Even

though roots of AM and ECM trees released equal amounts of C by exudation, the reduced

chemical richness of ECM exudates distinctly accelerated rhizosphere processes and microbial

SOM decomposition. These facts underline that the two mycorrhizal types differ in their

strategy for resource exploitation.

Under drought, root functions of AM and ECM trees were differently affected, representing

two different strategies in root functioning under soil desiccation: ECM trees invested a high

amount of C to optimize acquisitive root functions (i.e. increased root exudation and decreased

root lifespan) under drought, while AM trees avoided high C investment in roots and reduced

the biomass production to tolerate limited resource uptake by low investments and a reduced

demand.

The results of the present study suggest that differences in C partitioning and acquisitive root

traits and root functions between AM and ECM trees are crucial for biogeochemical processes

and possible compositional shifts in tree species and their associated microbes in temperate

forests under global change. In accordance with the mycorrhiza-associated framework, a

classification of temperate forests according to the mycorrhizal association type enables more

precise predictions of present and future developments of forest ecosystems in response to

climate  change.  Consequently,  the  mycorrhizal  association  type  should  be  considered  as  an

important belowground trait for trees in temperate forests.
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Zusammenfassung
Die zwei dominierenden Mykorrhizierungstypen in gemäßigten Wäldern sind die arbuskuläre

Mykorrhiza (AM) und die Ektomykorrhiza (ECM). Basierend auf den jeweilig dominierenden

Mykorrhizierungstyp in gemäßigten Wäldern, wurde die Idee eines Mykorrhiza-basierten

Nährstoffökonomiekonzepts entwickelt (Phillips et al., 2013). Dieses Rahmenkonzept besagt,

dass AM-dominierte Wälder durch eine schnelle Zersetzung von nährstoffreichem Laub eine

anorganische Nährstoffökonomie aufweisen. Im Gegensatz dazu haben Wälder, die von ECM-

Bäumen dominiert werden, eine geringe Streuqualität mit langsamer Zersetzungsrate, was zu

einer organischen Nährstoffökonomie führt. Die Aufnahme von Nährstoffen aus dem Boden

und damit auch die Produktivität der Bäume werden maßgeblich von den Feinwurzeln und

deren assoziierten Mykorrhizapilze bestimmt. Gemeinsam spielen diese nicht nur eine

Schlüsselrolle beim Ressourcenerwerb, sondern auch bei der C- und Nährstoffdynamik von

Waldökosystemen, insbesondere unter den Bedingungen des globalen Klimawandels. Dennoch

haben sich bisher nur wenige Studien mit einem direkten Vergleich von morphologischen und

funktionellen Wurzelmerkmalen zwischen mehreren AM- und ECM-Baumarten befasst.

Dementsprechend liegen nur begrenzt Informationen über Mykorrhiza-spezifische

Unterschiede in den Wurzelfunktionen vor und es ist noch unklar, wie diese mit dem

Ressourcenerwerb und den biogeochemischen Prozessen in der Rhizosphäre im

Zusammenhang stehen.

In der vorliegenden Studie wurden zwei Forschungsprojekte durchgeführt, um die Frage zu

beantworten, wie morphologische und funktionelle Wurzelmerkmale von acht verschiedenen

Baumarten (vier pro Mykorrhizatyp; AM: Acer platanoides L., Acer pseudoplatanus L.,

Fraxinus excelsior L., and Prunus avium L.; ECM: Fagus sylvatica L., Quercus robur L., Tilia

cordata MILL., and Carpinus betulus L.) durch den Mykorrhizatyp beeinflusst werden und in

welchem Ausmaß dies die Rhizosphärenprozesse bestimmt. Das erste Forschungsprojekt wurde

in dem natürlichen Lebensraum der Baumarten, einem alten gemischten Laubwald,

durchgeführt und untersuchte Mykorrhiza-spezifische Unterschiede in der Wurzelmorphologie,

Wurzelexsudation und den Rhizosphärenprozessen. Das zweite Forschungsprojekt, stellte ein

Trockenheitsexperiment mit faktoriellem Design in großen Mesokosmen des Göttinger

Wurzellabors dar. Im Rahmen dieses Experiments wurde die Wurzelmorphologie,

Wurzelfunktionen (i.e. Wurzelexsudation, Wurzellanglebigkeit und N-Absorption), Biomasse-

produktion und oberirdische Eigenschaften wie die Fotosyntheserate der vier AM- und vier

ECM-Baumarten unter Trockenheit untersucht.
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Übereinstimmend mit dem Mykorrhiza-basierten Rahmenkonzept, das eine Klassifikation

gemäßigter Wälder in die beiden Mykorrhizatypen nahelegt, zeigte die vorliegende Studie

signifikante Einflüsse des Mykorrhizierungstyps auf Wurzel-Rhizosphären-Interaktionen (i.e.

auf einige morphologische und strukturelle Wurzelmerkmale, auf die Mehrheit der

funktionellen Merkmale der Wurzel, zumindest unter Trockenheit, und auf die meisten

Rhizosphären-prozesse).

Bei der Übertragung des Mykorrhiza-basierenden Nährstoffkonzeptes auf die in dieser Studie

aufgedeckten Unterschiede in der Wurzel-Rhizosphären-Interaktionen von AM- und ECM-

Bäumen konnte festgestellt werden, dass sich die jeweilige Nährstoffökonomie darin

widerspiegeln. Die unterschiedlichen Wurzeleigenschaften, Wurzelfunktionen und

Rhizosphärenprozesse zwischen AM- und ECM-Bäumen stellen dabei verschiedene

Akquisitionsstrategien zwischen den Mykorrhizatypen dar: AM-Bäume sind durch großes

Potential in der anorganischen N-Aufnahme an die anorganische Nährstoffökonomie angepasst.

Im Gegensatz dazu passen sich ECM-Bäume durch verschiedene Merkmale (durch stark

verzweigte Wurzeln, stärkere Mykorrhiza-Besiedlung, geringere chemische Vielfalt der

Exsudate) an die organische Nährstoffökonomie an. Diese Anpassungen erhöhen Aufnahme-

potentiale und fördern die mikrobiellen Aktivitäten in der Rhizosphäre (gezeigt durch eine

verstärkte Enzymaktivität, hohe Mengen an mikrobiellem C und starke Ankurbelung der

Rhizosphärenprozesse in C-, N- und P-Kreisläufen). Selbst bei gleicher C-Freisetzung durch

Wurzelexsudation zwischen AM- und ECM-Bäumen beschleunigte die stoffliche Zusammen-

setzung der Exsudate (i.e. geringere chemische Vielfalt) von ECM-Bäumen deutlich die

Rhizosphärenprozesse und die mikrobielle Zersetzung. Dies unterstreicht, dass sich die beiden

Mykorrhizatypen in ihren Strategien der Ressourcenausnutzung unterscheiden.

Die Wurzelfunktionen von AM- und ECM-Bäumen wurden zudem in unterschiedlicher Weise

durch Trockenheit beeinflusst und stellen zwei verschiedene Strategien bei der Anpassung an

Bodenaustrocknung da: ECM-Baumarten investieren eine große Menge an C, um die

Ressourcen-erschließenden Wurzelfunktionen unter Trockenheit zu optimieren (i.e. erhöhte

Wurzelexsudation und verringerte Wurzellebensdauer), während hingegen AM-Bäume hohe

C-Investitionen in Wurzeln vermeiden und gleichzeitig ihre Biomasseproduktion reduzieren,

um eine begrenzte Ressourcenaufnahme durch niedrigeren Aufwand und einen verringerten

Bedarf zu tolerieren.

Die Ergebnisse der vorliegenden Studie zeigen, dass Unterschiede in der Partitionierung von C

und in den Ressourcen-erschließenden Wurzelmerkmalen und -funktionen zwischen AM- und
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ECM-Bäumen ausschlaggebend für biogeochemische Prozesse sind. Darüber hinaus können

die Mykorrhiza-spezifischen Unterschiede in der Nährstofferschließung und der Reaktion auf

Trockenheit zu einer Veränderung der Zusammensetzung von Baumarten und deren

assoziierter Mikroben in gemäßigten Wäldern im Zuge des globalen Klimawandels führen. In

Übereinstimmung mit dem Mykorrhiza-basierten Rahmenkonzept ermöglicht eine

Klassifizierung gemäßigter Wälder anhand des Mykorrhizierungstyps genauere Vorhersagen

der gegenwärtigen und zukünftigen Entwicklung von Waldökosystemen. Daher sollte der

Mykorrhizatyp als wichtiges unterirdisches Merkmal für Bäume in gemäßigten Wäldern in

Betracht gezogen werden.
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