
Architectural Support for Implementing
Service Function Chains in the Internet

Dissertation

zur Erlangung des Doktorgrades

Ph.D.

der Mathematisch-Naturwissenschaftlichen Fakultäten

der Georg-August-Universität zu Göttingen

im PhD Programme in Computer Science (PCS)

der Georg-August University School of Science (GAUSS)

vorgelegt von

Alessio Silvestro

Göttingen

im Juni 2018

Betreuungsausschuss: Prof. Dr. Xiaoming Fu,

Georg-August-Universität Göttingen

Prof. Dr. Jussi Kangasharju,

University of Helsinki, Finland

Prüfungskommission:

Referent: Prof. Dr. Xiaoming Fu,

Georg-August-Universität Göttingen

Korreferenten: Prof. Dr. Jussi Kangasharju,

University of Helsinki, Finland

Prof. Dr. Simon Pietro Romano,

University of Naples ”Federico II”, Italy

Weitere Mitglieder

der Prüfungskommission:

Prof. Dr. Dieter Hogrefe,

Georg-August-Universität Göttingen

Dr. Fabian Schneider,

NEC Laboratories Europe, Heidelberg

Dr. Mayutan Arumaithurai,

Georg-August-Universität Göttingen

Tag der mündlichen Prüfung: 25 Juni 2018

Acknowledgments

I am deeply honored to have been awarded with the prestigious Marie Sk lodowska-
Curie actions scholarship, within the ”EU Initial Training Network (ITN) CleanSky”
project. It gave me the opportunity to pursue a doctoral program while traveling
around the world and meeting the best researchers in academia and industry. It has
been one of the most insightful and thrilling experiences of my life.

I am thankful to my advisor Prof. Dr. Xiaoming Fu for his valuable guidance,
suggestions, and feedback throughout the past three years. His long experience
and international network of connections, in academia and industry, made him an
invaluable Ph.D. supervisor.

I am thankful to Dr. Fabian Schneider for his time, patient, the many meetings,
and brainstorming that steered and sharpened my research ideas.

I am thankful to my co-advisor Prof. Dr. Jussi Kangasharju. His many feedbacks,
insightful discussions, and his listening skills make working with him a real pleasure.

I would also like to thank Dr. Roberto Bifulco for his time, support, and many
challenging questions that helped me strengthen my critical skills.

I am thankful to Dr. Dirk Kutscher. Our career path diverged eventually, however,
I am grateful for our rich brainstorming sessions. His mixed experiences between
academia and industry have had an important contribution to my research attitude.

To all the professors and researchers cited above goes my greatest and most sincere
gratitude as all of you, in different time periods, with your own peculiar ways, and
rich experience have helped me being the researcher I am today.

Many thanks go to all the fellows and senior members of the CleanSky project. I
will always remember the many brainstorming sessions at the various project events,
along with the great leisure time we spend together. In particular, my thanks go to
Dr. David Koll, Nitinder Mohan, and Besmir Tola.

iv

Further, I could not have worked so hard without having a great atmosphere in
my personal life. To this regards, I would like to thank all the friends I have met
during the past years in Heidelberg. You made Heidelberg feels like my home, and
you became my second family: Roberto B., Patricia, Giuseppe, Martha, Flavio,
Ioanna, Jorge, Apostolos, Roberto G., Francesco, Fabio, Chiara, and Giulia.

Further, I would like to thank my friends Pantaleone and Alfonso because our
strong friendship makes me feel like I never left ”home”.

Valeria, deserves a special mention. Her unconditional support, presence, and
encouragement over these years have been crucial. Part of this success exists just
because of her.

Last but not least, I would like to thank my family: Antonio, Stefania, Dario, and
Sara. Having a place you call home, in which you feel safe, makes you feel you can
conquer the world!

Gottingen, June 2018 Alessio Silvestro

This research work has been funded by the joint EU FP7 Marie Curie Actions
CleanSky Project, Contract No. 607584.

Abstract

Network Functions (NFs) have a crucial role in today’s Internet infrastructure. They
provide additional services on top of plain connectivity such as content caching,
Network Address Translation (NAT), etc. However, standard IP networks staticity
hinders the possibility of a flexible deployment of NFs in the Internet. In fact,
initially, NFs were introduced in the network by hard-wiring the NF instances on
the network traffic’s path. This is unacceptable, especially when multiple NFs are
chained together to form the so-called Service Function Chain (SFC).

On these grounds, the SFC problem space has attracted the attention of the re-
search community. SFC solutions have proliferated to a great extent, especially with
the advance in Software-defined Networking (SDN) and Network Function Virtual-
ization (NFV). However, by comprehensively reviewing state of the art, this thesis
shows that Network Providers are reluctant towards state of the art SFC solutions,
as they target ”clean-state” system architecture i.e., they do not consider prior sys-
tem architecture and equipment, which translates to greater investment. Therefore,
this thesis introduces a ”ready-to-deploy” SFC solution that targets legacy Mobile
Networks. It aims to fill the gap of the current state of the art helping Network
Providers in the transition phase towards more complex and costly SFC solutions.

This thesis further investigates Internet-wide SFCs, in which multiple NF
providers are involved in the SFC provisioning. State of the art solutions use
plain IP routing to steer the traffic through the SFC i.e., each NF composing the
chain is identified by its IP address. However, there is no prior work on how to
effectively support the SFC Resolution in the Internet. In tackling these challenges,
this thesis proposes the Domain Name System (DNS) as a key element, in today’s
Internet infrastructure, to implement the SFC Resolution. The inefficiencies of the
current DNS when dealing with SFCs are highlighted. So, a collaborative SFC
Resolution process is proposed. It efficiently supports the SFC Resolution process
when multiple and independent NF providers are involved in the SFC provisioning.

Moreover, this thesis highlights the importance of NFs which are strategically
placed in the network, when dealing new application scenarios such as Internet of
Things (IoT), vehicular networks, etc. In fact, in such use cases, NFs are placed at
the network ”Edge”, in order to reduce the network latency required to reach the
NFs. In order to support more variegated use cases, this thesis proposes a Multi-tier
Edge Network architecture. It considers the case in which there is a large number
of heterogeneous edge resources, widely distributed in the network. Therefore, an
efficient placement algorithm is proposed. It exploits the multi-tier nature of the
proposed network providing an optimized NF placement.

Contents

Table of Contents v

List of Figures ix

Acronyms xi

1 Introduction 1
1.1 The Internet Eco-system . 1
1.2 High-level Research Challenges & Thesis Contributions 4

1.2.1 Single-domain SFC . 4
1.2.2 Internet-wide SFC . 6
1.2.3 Multi-tier Edge Networks . 8

1.3 Thesis Outline . 9

2 Background 11
2.1 Software Defined Networking (SDN) 11
2.2 Network Function Virtualization (NFV) 13
2.3 Service Function Chaining (SFC) . 15

2.3.1 Use Cases . 17
2.4 SDN & NFV & SFC . 20

3 Single-domain Service Function Chains 23
3.1 Introduction . 23

3.1.1 Contributions . 25
3.2 Background and Related Work . 26

3.2.1 Mobile networks . 26
3.2.2 Single-domain SFC in standards 28
3.2.3 Single-domain SFC in research 30

3.3 Design . 32
3.3.1 Architecture . 33
3.3.2 Two-classifiers deployment . 34
3.3.3 Single classifier deployment 35
3.3.4 Deployment . 36

3.4 Classifiers . 36
3.4.1 d-classifier design . 38
3.4.2 Offloading algorithms . 39
3.4.3 Learning packet headers . 41

3.5 Traffic Steering . 42
3.5.1 Upstream . 43

Contents viii

3.5.2 Downstream . 44
3.6 Evaluation . 45

3.6.1 Prototype . 45
3.6.2 Number of chains . 46
3.6.3 Number of flows . 48
3.6.4 Configuration time . 48
3.6.5 Flow forwarding delays . 49
3.6.6 Overheads . 49
3.6.7 Data plane scalability . 51

3.7 Discussion . 54
3.7.1 Legacy infrastructures . 54
3.7.2 Hardware network functions 55
3.7.3 Classification . 56
3.7.4 Metadata . 57

3.8 Conclusion . 57

4 Internet-wide Service Function Chains 59
4.1 Introduction . 59

4.1.1 Contributions . 61
4.2 Background . 62
4.3 Problem Statement . 63
4.4 Today’s DNS Resolution Strategies 65
4.5 Collaborative SFC Resolution . 66

4.5.1 Enabling collaborative SFC resolution 66
4.5.2 Extended Selection (ES) . 67
4.5.3 Client’s DNS answer . 69

4.6 Evaluation . 70
4.6.1 Number of DNS queries . 71
4.6.2 Resolution time . 72
4.6.3 TTFB evaluation . 73
4.6.4 Complexity analysis . 76
4.6.5 Results at a glance . 77

4.7 Related Work & Use Cases . 78
4.8 Conclusion & Future Work . 80

5 Mute: MUlti-Tier Edge networks 81
5.1 Introduction . 81

5.1.1 Contributions . 83
5.2 Architecture & Stakeholders . 84

ix Contents

5.3 Edge Platform Modelling and Deployment 85
5.3.1 Multi-Tier Edge . 86
5.3.2 Network Structure & Model Definition 87
5.3.3 Placing Services on the Edge 88
5.3.4 Tier-based Optimization . 91

5.4 Evaluation . 93
5.4.1 Experiment Setup . 94
5.4.2 Results . 95

5.5 Related Work & Use-Cases . 96
5.6 Conclusion . 97

6 Conclusion & Future Work 99
6.1 Thesis impact . 102

Bibliography 104

Curriculum Vitae 119

List of Figures

2.1 Simplified view of an SDN architecture 12
2.2 IETF SFC architecture . 15
2.3 IETF SFC architecture with proxy 16
2.4 (S)Gi-LAN in the Mobile Network 18
2.5 Multi-domain SFC . 19

3.1 LTE network architecture. 27
3.2 CATENAE’s architecture. 33
3.3 Forwarding tables configuration example 42
3.4 MAC address utilization . 47
3.5 SFC controller throughput . 50
3.6 Classifier scalability . 50

4.1 Example of a DNS architecture . 62
4.2 Example of a DNS architecture with SFC 64
4.3 Network abstraction . 68
4.4 Time To First Byte (TTFB) evaluation graph 74

5.1 SFCs over Edge Cloud . 82
5.2 Multi-tier Edge architecture & stakeholders 85
5.3 Multi-Tier Edge network architecture example 87
5.4 Network cost comparison . 93
5.5 Processing cost comparison . 93
5.6 Service deployment cost comparison 93
5.7 Time complexity evaluation graph 96

Acronyms

ISP Internet Service Provider

IP Internet Protocol

SFC Service Function Chain

IoT Internet of Thing

SDN Software-defined Networking

NFV Network Function Virtualization

IDS Intrusion Detection System

NSH Network Service Header

MNO Mobile Network Operator

CDN Content Delivery Network

OTT Over The Top

NF Network Function

OS Operating System

DNS Domain Name System

LTE Long-Term Evolution

UE User Equipment

SGW Serving Gateway

PGW Packet Data Network Gateway

PCRF Policy and Charging Rules Function

IGW Internet Gateway

RSP Rendered Service Path

SF Service Function

Acronyms xiv

SFP Service Function Path

SFF Service Function Forwarder

NAT Network Address Translation

QoS Quality of Service

MEC Mobile Edge Computing

ONF Open Networking Foundation

NDA Non-Disclosure Agreement

ETSI European Telecommunications Standards Institute

ISG Industry Specification Group

VNF Virtualized Network Function

FT Flow Table

FTEIR Flow Table Entry Installation Rate

ESP Edge Service Providers

CSP Cloud Service Providers

CS Cloud Server

CP Cloud Platform

PM Physical Machine

Chapter1
Introduction

1.1 The Internet Eco-system

The initial idea of the Internet was to build a robust, fault-tolerant communication

via computer networks [1]. In order to keep the network structure as simple as

possible, Internet has been designed using the end-to-end paradigm [2]. Network’s

intermediary nodes such as routers, switches, etc. have been designed to perform

pure network functions e.g., routing, etc. On the other hand, application logic re-

sides at the communication end-points, generally provided with more computational

capability. This design choice was motivated by two main reasons. First, communi-

cation end-points, usually x86-based machines, show a high level of programmability

provided by their Operating System (OS), especially when compared with hw-based

network elements such as routers and switches. Second, the fact that the application

logic – which includes the communication state – resides at the communication end-

points, make the communication network-failure agnostic i.e., a fault in the network

does not affect the application logic. This approach, also defined as “fate-sharing”,

suggests that is acceptable to lose the state information associated with any entity

if, at the same time, the entity itself is lost [1]. This aspect was set as top-priority

for the initial design, given that Internet was used in the military context.

The Internet eco-system has been constantly evolving ever since, adapting itself

and trying to satisfy a number of heterogeneous applications scenarios’ requirements.

In the very beginning, a limited number of devices (e.g., personal computers, servers)

Chapter 1 Introduction 2

were connected to the Internet. Their main goal was to communicate in an efficient,

robust, and fault-tolerant manner. However, use-cases and requirements are totally

changed. For instance, in the era of the Internet of Thing (IoT), besides standard

personal computer and servers, also smartphones, smartwatches, cars, and sensors

are constantly connected to the internet. A whole new set of application use cases

such as Industrial Automation, Virtual Reality, Content Delivery, Vehicular Net-

works, etc. have proliferated in the Internet to a great extent. Each use case is

peculiar in terms of the number of devices involved, their processing capability, and

network requirements. For example, Content Delivery Networks (CDNs) require to

provide a large amount of data (i.e., in the order of GB) with reduced latency to

end-users (e.g., computers, smartphones, etc.). With IoT scenarios, a large number

of devices need to send small and frequent data among them or with a central con-

troller. In Industrial Automation scenarios, human-to-machine interaction use-cases

require predictable and very low network latency (e.g., in the order of milliseconds)

between the connected machines and the central controller. The “Cisco Visual Net-

working Index Forecast” gives an idea of such a great heterogeneity. By 2021 the

annual global Internet Protocol (IP) traffic will reach 3.3 Zettabytes (1000 Exabytes

[EB]) per year. The number of devices connected to IP networks will be more than

3 times the global population. IP video traffic will be 82 percent of all consumer In-

ternet traffic [3]. Such variety of application use cases, their heterogeneity in terms

of the number of devices and requirements, are steering the decisional process of

Internet Service Providers (ISPs) and network operators, shaping the “Internet of

tomorrow”.

In particular, we can observe that there has been a twist in the economics of

the Internet. In former times, ISPs and network operators dominated the revenue

from Internet, having as a main income the market for telecommunication (e.g.,

3 1.1 The Internet Eco-system

phone, Internet, etc.). As of today instead, Over The Top (OTT) service providers

have a bigger share of the market in terms of revenue. The paradox lies in the

fact that OTT service providers (e.g., Netflix, Youtube, etc.) are generating an

enormous amount of the data in the network. For example, streaming services

such as Netflix, Youtube, and Facebook, account for over 70% of peak traffic in

North America [4]. Such important amount of data are forcing network operators

and ISPs to important investments in order to satisfy their customers’ requirement,

supporting those services. However, OTT service providers do not share any revenue

with network operators. The effects of this phenomenon on the industry have been

investigated from the IBM’s Institute for Business Value [5].

In the attempt to satisfy customer requirements and win back their share of the

market, network operators and ISPs are offering additional services – besides the

plain connectivity – that satisfy the customer’s quality requirements such as low

latency, high throughput, and additional security features. In fact, these additional

requirements have important impacts for OTT service providers. For instance, Ama-

zon reported that a latency increase of 100 ms causes 1% loss in their sales [6].

Further, security services are considered of utmost importance in many application

scenarios (e.g., industrial automation, IoT, etc.) and are facing significant growth [7].

However, in the attempt of deploying such services, network operators and ISPs

face the problem of the IP networks staticity. In fact, traditional IP networks are

characterized by a vertical integration between the control plane and the data plane,

both implemented at the networking devices. The former decides how to handle

network traffic, while the latter forwards traffic according to the decisions made

by the control plane. Such integration, bundled inside the networking devices, was

considered an important factor for the design of the Internet in the early days as

it seemed the best way to guarantee network resilience, which was a crucial design

Chapter 1 Introduction 4

goal at first. On the other hand, the outcome of such design choice is a very complex

and relatively static architecture, as often reported in the state of the art [8–12].

In fact, it is very difficult to add new functions, besides the standard ones. Even a

small change in a pre-existing function requires to change the control plane, that is

embedded in the data plane (i.e., in the network device). Therefore, usually, a change

implies the installation of new firmware and, in some cases, hardware upgrades.

Therefore, In order to introduce such functions within the Internet infrastructure,

network operators and ISPs carefully place Network Functions (NFs) in the network,

typically implemented via expensive, specialized and hard-to-configure equipment,

usually referred to as middleboxes 1, such as load balancers, Intrusion Detection

Systems (IDSs), and firewalls, among others. As of today, middleboxes still play a

crucial role in today’s networks and DC networks architectures as proved in [13].

Usually, multiple network functions are chained together to form the so-called Service

Function Chain (SFC). Users’ traffic is steered through the right SFC depending on

several parameters. For instance, in the mobile networks, users’ traffic is steered

through different SFCs depending on their subscription plan.

1.2 High-level Research Challenges & Thesis

Contributions

1.2.1 Single-domain SFC

Introduction The NFs composing a single-domain SFC are deployed within a

single administrative domain. The (S)Gi-LAN within the Mobile Networks and the

1the term refers to the physical appliances, often referred to as boxes, that are placed in the
network in order to augment end-to-end connections

5 1.2 High-level Research Challenges & Thesis Contributions

North-south or East-west SFCs within DC networks are among the most important

use cases. Such use cases are characterized by a full knowledge and control of the un-

derlying network topology. At times, single-domain SFCs are spanned over multiple

facilities, within the same administrative domain (e.g., multiple DCs), distributed

over the network.

On a deeper analysis of the state of the art, with the regards to Service Function

Chains (SFCs) techniques, we highlighted that most of such techniques target green-

field approaches i.e., they do not consider in their design choices, prior infrastructure

and network equipment, which represents an important limitation. In fact, network

operators and ISPs are reluctant towards such solutions as they are not cost-efficient

and involves important investments in terms of design, implementation, and testing

of new infrastructure.

Research Challenge The main challenge in the field of single-domain SFCs is

to provide efficient SFC systems, that satisfy the requirements such as traffic clas-

sification, high throughput, etc. Incremental solutions would foster the widespread

of such solutions and motivates infrastructure providers to gradually upgrade their

infrastructure.

Contribution The main contribution of this thesis in the research area of Single-

domain SFC, is Catenae [14], a ready-to-deploy SFC solution for Mobile Networks.

It exploits the (S)Gi-lan network and users’ traffic properties, to provide an effective

SFC solution, without affecting the network infrastructure. In fact, it only requires

to use software switches on each server where the NFs are deployed, and to insert a

software traffic classifier at the beginning of the chain.

Chapter 1 Introduction 6

In [15], we present a hybrid hardware-software SDN switch, to further increase

the system scalability, and meet the telecom operators requirements, in terms of

traffic throughput the SFC architecture can handle. In fact, the designed hardware-

software traffic classifier supports the traffic rate of 2015 (i.e., ∼1 GB/s) with zero

packet loss. Further, it is able to handle ∼29 GB/s, which corresponds roughly to

three times the expected traffic rate at the Packet Data Network Gateway (PGW)

of 2019 (i.e., ∼10 GB/s) – about 4 years after the paper submission.

1.2.2 Internet-wide SFC

Introduction Single-domain SFCs represent the predominant use case for SFCs in

the Internet. They are effective when applied within a single administrative domain,

such as Mobile networks or DC, and they assume that the stakeholder enforcing the

SFC has full control and visibility of the underlying network infrastructure. We

argue that such assumptions are hindering the wide adoption of SFC techniques

in more diverse scenarios, and the possibility to have multiple providers involved

in the SFC provisioning. In fact, the NFs composing the SFC might be provided

by different Service Providers. As a consequence, in a multi-providers SFC kind of

scenario, there is no single entity that has full control and visibility over the underly-

ing network infrastructure. Therefore, the different NF service providers implement

choices – which affect the whole SFC provisioning – with knowledge which is local

within their administrative domain. Each NF provider decision is independent of

the others service providers, and that might lead to several inefficiencies in the SFC

provisioning.

7 1.2 High-level Research Challenges & Thesis Contributions

Research Challenge In the area of Internet-wide SFC, there are three main

research questions that need to be addressed.

I Identify the limitation of current single-domain SFC techniques, when applied

to internet-wide SFCs;

II Identify the key characteristics of Internet-wide SFC systems;

III Design of internet-wide SFC systems, that can be incrementally deployed, and

nicely fit the current Internet infrastructure.

Contribution In Chapter 4, we present the state of the art of Internet-wide SFC,

in which the NFs composing a SFC are distributed in the Internet, and multiple

stakeholders are involved in the SFC provisioning. We highlight a shared limita-

tion among those solutions. They all use plain IP routing for the traffic steering

through the SFC i.e., each network node composing the chain is identified by an IP

address. However, they assume that the clients are aware of the IP addresses of the

nodes composing the chain, prior to the connection establishment. No prior work is

available in the state of the art regarding how client and server agree and share the

IP addresses of the NFs composing the chain i.e., SFC Resolution process. In our

opinion, this aspect is hindering the deployment of such SFC solutions in the wild.

As a first contribution of this thesis with regards to internet-wide SFCs, in Sec-

tion 4.4 we identify the Domain Name System (DNS) as a possible candidate to

enable internet-wide SFC solutions, given its wide deployment in the current In-

ternet architecture. Therefore, we evaluate the possible strategies that can be im-

plemented with the current DNS architecture and their inefficiencies. In fact, the

SFC Resolution process implemented using the current DNS architecture shows bad

Chapter 1 Introduction 8

performance in terms of NF instance selection. The main reason is that the current

DNS is optimized for standard end-to-end connections (i.e., client-server), whereas

with a SFC multiple nodes are involved (i.e., client, NFs, server).

As a second contribution, in Section 4.5 we propose MISE, an extension to the

current DNS that adapts the current behavior to support the resolution process for

a set of nodes (e.g., SFC’s NFs). We implement such adaption increasing, as little

as possible, the information shared among the multiple and independent domains,

which enables to achieve near-optimum NF instance selection.

The main system architecture and design have been also submitted as a patent

application [16].

1.2.3 Multi-tier Edge Networks

Introduction Network Functions have played a crucial role to enhance end-to-

end connections providing additional services on top of the plain connectivity. They

have been first introduced within specific domains, in order to provide additional

services to ISPs and internet providers. Thus, the same concept has been extended

to support further use-cases. For instance, internet-wide SFCs has been proposed in

order to enable the case in which multiple NF providers were involved in the SFC

provisioning. New application use-cases such as Internet-of-Things (IoT), vehicular

networks, etc. are pushing the boundaries even further. In fact, they are requiring

to off-load computational tasks with very stringent completion time. However, cloud

deployed NFs failed to support such stringent requirement given the possible high

network delay required to reach the central cloud location. Therefore, the Edge

Computing paradigm has been proposed promising to deploy NFs at the very ”Edge”

9 1.3 Thesis Outline

of the network, in order to reduce the network latency from the users.

Research Challenge In the scope of this thesis with regards to edge networks, we

propose three main research questions, which we consider important in this problems

space.

I Identify how the SFC techniques can enable Edge Resources deployments;

II Identify possible Edge deployment scenarios and their key requirements.

III Design of Edge-enabled solutions, open to third-party service providers, and

that can be incrementally deployed in the current Internet infrastructure.

Contribution In Chapter 5, we investigate the state of the art with a particular

focus on the link between current Internet-wide SFC techniques and Edge deploy-

ments. We propose a multi-tier edge cloud architecture, in which several heteroge-

neous edge resources are widely distributed in the Internet. We show how current

placement strategies fail to support such heterogeneous edge networks deployments.

Therefore, we propose Mute, a placement strategy optimized for multi-tier edge cloud

architecture. In fact, Mute achieves a significant reduction in edge network delay

and completion time when compared to state of the art solutions, when applied to

this kind of infrastructures.

1.3 Thesis Outline

The remainder of this thesis is organized as follows: in Chapter 2, we introduce

fundamental concepts of “Network Softwarization” such as Software-defined Net-

Chapter 1 Introduction 10

working (SDN), Network Function Virtualization (NFV), and Service Function

Chain (SFC), which represent the technological background for a thorough com-

prehension of the following chapters. In Chapter 3 we introduce a ready-to-deploy

solution for single domain SFCs. In Chapter 4 we explore the multi-domain prob-

lem space, find its limitation and propose an enhanced version of the DNS in order

to provide close-to-optimum instance selection. In Chapter 5 we define a model

of a multi-tier edge network. Thus, we design Mute, a placement algorithm which

leverages multi-tier edge architecture to find an edge server which best supports the

needs of a requested service. In Chapter 6 concludes and summarizes this thesis

work.

Chapter2
Background

2.1 Software Defined Networking (SDN)

Software-defined Networking (SDN) has been firstly introduced in 2009 by Nick

McKeown [17]. Its main goal is to break the vertical integration of traditional IP

networks by separating the network’s logic (the control plane) from the underlying

routers and switches that forward traffic (the data plane). With the separation of

the control and data planes, network switches become simple forwarding devices,

and the control logic is implemented in a logically centralized controller, simplifying

policy enforcement, network (re-)configuration and evolution [11]. In fact, this al-

lows network administrators to take and enforce network-wide decisions, by gaining

control of the logic of simple NFs such as a switches and routers. Further, in order

to guarantee adequate levels of performance, scalability, and reliability, production-

level SDN network designs rely on physically distributed control planes [18,19]. SDN

adoption has gained momentum since the introduction of the OpenFlow [20] pro-

tocol in 2008, with campus [21], wide area network [19, 22, 23], and datacenter [24]

deployments gradually replacing traditional network designs [25].

With the logical separation between the control plane and the data plane, it is

possible to abstract the network architecture as shown in Figure 2.1. It presents a

three layers network abstraction. The Network Infrastructure is composed of net-

work devices (e.g., SDN capable switches). The Controller Platform (e.g., the SDN

Chapter 2 Background 12

Figure 2.1: Simplified view of an SDN architecture

controller) is used to control the network devices. Thus, the Network Application

layer is meant to abstract all the network applications such as traffic engineering,

monitoring, etc. In fact, it enables a network application to express the desired

network behavior without being responsible for implementing that behavior itself.

The logical separation in layers introduces the need for well-defined Application

Programming Interfaces (APIs) between the layers. In particular, such model intro-

duces two APIs. Northbound API defines the interaction between the control plane

(e.g., the SDN controller) and the network applications. Whereas, the Southbound

API defines the interaction between the control plane (e.g., the SDN controller) and

the data plane (e.g., SDN-enabled switches). The Northbound APIs are generally

controller-specific. On the other hand, the Southbound APIs are switch-specific. In

fact, such APIs need to be supported at the hardware-level. The de-facto stan-

dard as Southbound API is represented by OpenFlow [20, 26]. OpenFlow-enabled

13 2.2 Network Function Virtualization (NFV)

switches have one or more tables of packet handling rules, that are defined as flow

tables. Each rule matches a subset of the network flows and performs certain ac-

tions (e.g., dropping, forwarding, modifying, etc.) on the flows. Depending on the

set of installed rules, an OpenFlow-enabled switch can behave like a router, switch,

firewall, or perform other roles (e.g., load balancer, traffic shaper, etc.).

2.2 Network Function Virtualization (NFV)

In 2012 a call for industrial and research action on NFV has been issued by the

world’s leading network operators with a white paper [27]. In particular, European

Telecommunications Standards Institute (ETSI) has been selected by network oper-

ators (i.e., AT&T, BT, Deutsche Telekom, Orange, Telecom Italia, Telefonica, and

Verizon) to form the Industry Specification Group (ISG) for NFV, which is named

ETSI ISG NFV [28]. ETSI is not the only standard entity dealing with NFV. In

fact, also the Open Networking Foundation (ONF) has been active in the area of

NFV. For instance, in [29] it is highlighted how an NFV deployment can benefit

from the dynamic SDN-enabled service provisioning.

The main idea of NFV – similarly to the concept applied with SDN – is to decouple

the logic of the network functions from the physical hw (e.g., server) that they run

on. In order to achieve such separation, there are a number of different techniques

which affect the way NFs are provisioned. We can summarize those differences as

follows [30]:

I Decoupling software from hardware: the separation of the the hardware mid-

dleboxes from the software control logic running on top of it allows to separate

the development timeline and the maintenance for software and hardware.

Chapter 2 Background 14

II Flexible NF deployment: NF service providers can flexibly assign the NF in-

stances to the shared hardware infrastructure.

III Dynamic scaling: the decoupling of NF software control logic from the underly-

ing hardware enables the NF software component to be instantiated on generic

hardware. As follows, it is easier for NF service providers to scale the num-

ber of NFs deployed in a more dynamic fashion according the current traffic

requirements.

It is worth to mention that the outcome from the NFV research trend does not

necessarily require to implement the NFs on virtualized hardware. In fact, NF

service providers, when high-performance are required, still deploy NFs on bare-metal

servers. The main advantage is represented by the fact that now it is possible to

deploy NFs on commodity off-the-shelf server, rather than on specialized hardware

middleboxes. Nonetheless, running the NFs in virtualized environments is a very

strong selling points of NFV, as it provides important improvements in terms of

flexibility, dynamic resource scaling, energy efficiency.

Further, it is also important to mention that even if NFV is proposed as a stand-

alone research trend, most of the flexibility claimed would not be possible without the

flexibility brought in the whole picture from the SDN research. For example, while

a NF can be easily migrated from a physical server to a second one, for scalability

reason, if the network does not react fast, it would not be so effective. For this

reason, we highlight that NFV and SDN present solutions which are complementary

to each other.

15 2.3 Service Function Chaining (SFC)

2.3 Service Function Chaining (SFC)

The IETF is the main standard organization that is dealing with SFC, stating the

SFC problem in [31] and defining the architecture of a SFC system in [32]. Figure 2.2

shows a graphical representation of the architecture proposed by the IETF.

Figure 2.2: IETF SFC architecture

A network function is relabeled Service Function (SF). Thus, a SFC is an abstract

definition of an ordered set of SFs. The incoming traffic, e.g., in the upstream direc-

tion, at the edge of an SFC-enabled domain, is classified by a service classification

function (classifier), to perform traffic steering through the correspondent chain.

The service classification function adds a SFC-encapsulation to the classified pack-

ets. Notice that the architecture defines the encapsulation format as independent

from the network encapsulation protocol used to interconnect the elements. This

way, the SFC system does not necessarily need an homogeneous network between

the chain’s functions and can instead support more complex scenarios that enable

service providers to use different technologies. The SFC-encapsulation is used by

another component of the architecture: the Service Function Forwarder (SFF). The

SFFs read the SFC-encapsulation to send network packets to directly attached SFs

or to forward them to the SFF to which the next function in the chain is attached.

Chapter 2 Background 16

For instance, a network switch may host an SFFs function if extended to read the

SFC-encapsulation format. Because the RFC7665’s [32] architecture assumes that

SFs can deal with the SFC-encapsulation format, SFC-unaware functions (eg, legacy

network functions) are supported by the usage of a SFC-proxy as shown in Figure 2.3.

An SFC-proxy removes the SFC-encapsulation at the ingress of a SFC-unaware area

and adds it again on the egress of that area. An end-of-chain classifier has the re-

sponsibility to remove the SFC-encapsulation when packets exit the SFC-enabled

domain and to classify the packets belonging to the downstream traffic.

Figure 2.3: IETF SFC architecture with proxy

Network Service Header While there are no standards defined for the SFC-

encapsulation format, an IETF draft is the Network Service Header (NSH). The NSH

is composed of a Base Header (32 bits), a Service Path Header (32 bits), and zero

or more Context Headers. The Base Header provides information about the Service

17 2.3 Service Function Chaining (SFC)

Path Header and the payload protocol. The Service Path Header is composed by

a Service Path ID to identify the chains and a Service Index to provide location

within the chain. Context Headers carry opaque metadata and variable length

encoded information. The NSH header is located between the original packet/frame

and the overlay network encapsulation protocol, if any. In fact, current NSH-based

prototypes usually assume that an overlay network, eg, based on VxLAN, connects

SFFs. The original data unit, eg, an L2 frame or an L3 packet, thus, is encapsulated

within different transport protocols such as VLAN, VxLAN, GRE, Ethernet, etc.

When an SF receives a Q5 packet coming from a service chain, it will decrement

the service index header to update the location of the packet within the chain. At

the end of the chain, an end-of-chain classifier will remove the NSH header and

forward the packet normally. NSH is transport independent because it can be used

with different encapsulation protocols. It provides information about the chain each

packet belongs to, through the Service Path ID header, and the location within the

chain, through the Service Index Header. Context Headers make possible to share

network and service metadata (L2-L7) that enable to reclassify the packets after an

SF.

2.3.1 Use Cases

Service Function Chains can be applied in different scenarios. In particular it is

possible to apply the following categorization.

Chapter 2 Background 18

2.3.1.1 Single-domain SFC

A Single-domain SFC is spanned within a single administrative domain boundaries.

There are several examples of such domains. (S)Gi-LAN is the place where Mobile

Network Operators (MNOs) place a set of services in order to enhance their users’

connection [33] as show in Figure 2.4. Within a single Data Center architecture

there are usually several SFCs [34]. For instance, there are North-South SFCs for

traffic destined or originated from a VM within a DC. Thus, there are East-West

SFCs for traffic originated and destined from within the same DC.

Definition 2.1 (Single-domain SFC) A single-domain SFC is defined as a SFC

instance in which there is a single entity (e.g., DC administrator) has full control

and visibility of the underlying network infrastructure including network elements

and servers.

Figure 2.4: (S)Gi-LAN in the Mobile Network

2.3.1.2 Inter-domain SFC

In several use cases, there is the need to go beyond a single domain boundaries. In

fact, several real use-cases combine intra-domain and inter-domain SFCs. It is a

common case, for instance the East-West SFCs within multiple DCs. Migrate a VM

19 2.3 Service Function Chaining (SFC)

from a DC to another DC – managed by a single administrator e.g., Amazon’s DC

in Germany to Amazon’s DC in the US. However, in this case, intra-domain SFC

techniques still work. Tunnells are then created to connect the various domains.

2.3.1.3 Internet-wide SFC

Steering techniques used with intra/inter-domain SFCs cannot be applied if there

is not a single entity which has full visibility and control on the underlying network

infrastructure. In fact, this is a limiting assumption when there are multiple NF

providers involved in the SFC provisioning as shown in Figure 2.5.

Figure 2.5: Multi-domain SFC

Definition 2.2 (Internet-wide SFC) An internet-wide SFC is defined as a SFC

instance in which the NFs composing the SFC are distributed int the Internet. No

further assumptions are defined regarding the ownership of the underlying infras-

tructure.

Such solutions cannot be applied in scenarios where there is no full control and/or

partial visibility of the underlying network infrastructure, for example when the

in-network services are outsourced to a third-party provider, e.g., deployed in the

cloud [13]. In order to overcome such limitations, other SFC techniques use plain

IP routing and steer the traffic through the SFC only based on the middleboxes’

IP addresses [35–37]. We refer to such SFCs as Internet-wide SFC. However, such

Chapter 2 Background 20

solutions share a common aspect: they assume the clients know middleboxes’ IP

addresses before the connection establishment.

2.4 SDN & NFV & SFC

SDN has also contributed to the virtualization of the network infrastructure, pro-

viding the foundation to isolate, abstract, and share the network resources. On

the other hand, NFV has been proposed to innovate in the service delivery by using

standard computing virtualization technology to consolidate in commodity hardware

(i.e., standard high volume servers, storage, and switches) the functions previously

performed by specific hardware appliances. Virtualized Network Functions (VNFs)

composing a service chain represent the basic elements to achieve the complete vir-

tualization of service delivery and are commonly based on computing resources. The

interconnection of VNFs, or traffic steering, is a challenging goal for the underlying

network infrastructure. The migration of VNFs and dynamic composition of services

make this task even harder than in legacy networks. Adapting the use of resources

to the actual demand is one of the main outcomes from a virtualized infrastructure,

providing elasticity of resources instead of over provisioning

SDN and NFV are complementary technologies, and each one can leverage off the

other to improve the flexibility and simplicity of networks and service delivery over

them. Initially, NFV has been introduced as a stand-alone project as well as an

SDN-agnostic initiative. SDN was tought to modify the network behaviour flexibly,

whereas the NFV initiative had the direction to enable to deploy network functions,

from proprietary middleboxes to commodity hardware (i.e., standard high-volume

servers, storage, and switches). However, SDN and NFV are complementary tech-

21 2.4 SDN & NFV & SFC

nologies, and each one can leverage off the other to improve the flexibility and

simplicity of networks and service delivery over them [38]. Therefore, the research

community is moving towards SDN-enabled NFV solutions. SDN-enabled NFV so-

lutions are particularly relevant when speaking about Service Function Chaining.

In such cases, NFV solutions are used to deploy the network functions. However,

SDN techniques are required, in order to efficiently steer the traffic towards the right

service chain.

Chapter3
Single-domain Service Function Chains

3.1 Introduction

As introduced in Section 1, network operators deploy network functions to enforce

their policies and to provide additional services on top of plain connectivity [39].

Content caching, Network Address Translation (NAT), TCP optimization, video

transcoding, HTTP header enrichment, are examples of such services. Despite their

ubiquitous usage [40], network functions deployment is still performed by modifying

the network topology. That is, network functions are hard-wired on the network

traffic’s path. The inflexibility and complexity of this approach are not acceptable

when network functions are implemented by means of software running in virtual

machines, as envisioned in the case of Network Function Virtualization (NFV) [41].

In fact, hard-wiring would hinder the benefits brought by the possibility of dy-

namically deploying virtual network functions (VNFs) on general purpose servers.

Therefore, there is a growing interest in Service Function Chain (SFC) systems [42],

which enable the flexible deployment of network functions while guaranteeing their

configurable and dynamic chaining.

In general, a SFC system assigns a network flow entering the managed network to a

chain of functions, and steers the flow through the functions of such chain, according

to the chain’s functions ordering [43]. A number of challenges arise when addressing

the design of a SFC system. First, assigning a network flow to its chain requires

Chapter 3 Single-domain Service Function Chains 24

network traffic classification, an operation that is critical for the system scalability

since it should be performed for all the handled traffic. Second, traffic forwarding

should be performed according to the chain the traffic belongs to, instead of following

the typical forwarding approach, e.g., based on IP routing. Third, network flows are

usually bi-directional, that is, there is an upstream and a downstream direction and

a network function, e.g., a firewall, may need to handle both of them. This requires

to perform a coordinated classification of upstream and downstream flows, and the

enforcement of symmetric paths for the two directions. Finally, network functions

may have dynamic and opaque behaviors that modify the network traffic in unknown

ways, which may introduce a need for traffic reclassification or even make the traffic

unclassifiable [44].

To address these challenges, a number of SFC systems have been already pro-

posed [44–48]. However, they usually target green field or long term deployments.

In fact, they require a number of changes either in the network hardware [44] or in

the network functions [48], or in both [45]. In other cases, they require modifications

to the network architecture [46]. Ready to deploy solutions, which don’t require such

changes, may instead not handle all the aforementioned challenges. For example,

some SFC systems are unable to deal with opaque network functions actions [44,47].

Regardless of the adopted solutions, the proposed systems address SFC in a general

way, supporting a broad range of deployment scenarios without considering their

specific properties and constraints. That is, they usually adopt a “one-size-fits-all”

approach. While we recognize the intrinsic value of such a general solution, we also

notice that not all the deployment scenarios share the same set of requirements, with

the final result of SFC systems that provide unnecessary features for the specific sce-

narios in which they are deployed. At the same time, such systems usually fail to

satisfy a critical requirement of many today’s production deployments, i.e., the SFC

25 3.1 Introduction

solution should introduce minimum impact on the legacy infrastructures [49,50].

We argue that it is possible to simplify the implementation of a SFC system, by

carefully tailoring the SFC solution to its specific deployment scenario. Our main

contribution is to demonstrate that this statement holds true for the practical case

of implementing SFC in mobile networks. To this aim, we present the design and

implementation of CATENAE, a system that supports SFC in today’s mobile net-

works without introducing new protocols, without changing the legacy infrastructure

and without changing network functions behavior. CATENAE leverages the unique

properties of a mobile network’s scenario to provide the desired functions chaining

features, including the handling of opaque network functions’ actions. Traffic for-

warding is performed by rewriting network packets’ header to steer network flows

from one function to the next one in the chain. Rewriting rules are configured using

SDN software switches, which are anyway deployed at the servers hosting VNFs [51].

Flow re-classification after a VNFs is done by creating per-VNF VLAN topologies,

using an approach conceptually similar to [52]. By implementing a proof of concept

prototype, we demonstrate that CATENAE does not add per-packet processing

overheads, it integrates nicely with legacy network management systems and it is

fully compatible with legacy network infrastructures and functions while supporting

millions of network flows.

3.1.1 Contributions

This chapter is structured as follows:

• Section 3.2 introduces background information on the mobile networks where

CATENAE is deployed, and introduces related work;

Chapter 3 Single-domain Service Function Chains 26

• Section 3.3 presents the CATENAE’s design, describing its architecture and

deployment options;

• Section 3.4 describes the design of the classifiers employed to assign network

traffic to service function chains;

• Section 3.5 presents the CATENAE’s traffic steering method and provides a

concrete example of the method applied to a network scenario;

• Section 3.6 reports the results of our prototype evaluation;

• Section 3.7 discusses our design in the light of the evaluation results and further

describes differences with related work.

We conclude this chapter in Section 3.8.

3.2 Background and Related Work

This section presents relevant background information about the mobile networks in

which CATENAE can be deployed, introduces the current work on Single-domain

SFC performed by standard organizations like IETF, and provides an overview of

the solutions proposed by the research community.

3.2.1 Mobile networks

Catenae focused on implementing SFC in Long-Term Evolution (LTE) cellular net-

works (cf. Fig. 3.1), one of the main use-case for Single-domain SFCs. An LTE

network gives connectivity to a User Equipment (UE) using a radio network pro-

vided by a set of eNode-Bs (eNBs), which are deployed by the operator over a geo-

graphic area. The eNB encapsulate UE’s network flows in a tunnel that, traversing

27 3.2 Background and Related Work

Figure 3.1: LTE network architecture.

the Serving Gateway (SGW), brings user’s IP packets to the Packet Data Network

Gateway (PGW). The PGW is the UE’s gateway towards IP networks, i.e., all the

IP traffic coming and going to the operator’s IP network (and to the Internet) goes

through the PGW. Also, the PGW is the point where the UE’s IP address actually

exists in the network. The Policy and Charging Rules Function (PCRF) provides

the PGW with the policies to handle users’ traffic, e.g., it provides the QoS con-

figuration. After the PGW, user’s packets are sent to the SGi-LAN, which is the

place where the operator provides additional services [53]. The SGi-LAN is usually

an Ethernet network, where network functions are deployed and wired together ei-

ther physically or logically (e.g., defining VLANs). Network functions can be either

transparent, i.e., they don’t modify packets’ header, or opaque, i.e., they modify

packets’ header. After the packets have been processed by the various functions,

they are finally delivered to an Internet Gateway (IGW), that forwards them to the

Internet.

Chapter 3 Single-domain Service Function Chains 28

We highlight a few points about LTE networks, which will help in understanding

the design decisions presented in Sec. 3.3. First, operators plan to replace legacy

network functions with virtualized ones, by deploying, in the SGi-LAN, a relatively

small number of servers (e.g., less than a hundred) that will host VNFs. Thus, we

expect a SFC system will deal with VNFs in the number of thousands and that these

VNFs are connected to each other by an L2 network, since the SGi-LAN is usually a

traditional Ethernet network. Second, the network traffic exposes properties which

are typical of LTE deployments. That is, the upstream flows (i.e., those generated

at the users) are usually much smaller in size than the downstream flows [54]. Also,

the connections are (almost) always initiated in the upstream direction.

3.2.2 Single-domain SFC in standards

The IETF is the main standard organization that is dealing with SFC, stating the

SFC problem in RFC7498 [31], and defining the architecture of a SFC system in

RFC7665 [32]. In the IETF architecture, a network function is relabeled Service

Function (SF). Thus, a Service Function Chain is an abstract definition of an

ordered set of SFs. To specify additional constraints about the chain, RFC7665

introduces the concepts of Service Function Path (SFP) and Rendered Service Path

(RSP). The former is a constrained specification of the previously defined Service

Function Chain. For example, it may specify requirements such as Quality of Service

(QoS), or it may limit the implementation of a chain to use only a subset of the

overall network infrastructure. An RSP, instead, describes how a chain is actually

realized in the network. For instance, while a Service Function Chain defines SFs

in terms of function types, an RSP defines the specific SF instances (including their

exact network location) traversed by the network packets assigned to such RSP.

29 3.2 Background and Related Work

The incoming traffic, e.g., in the upstream direction, at the edge of a SFC-enabled

Domain, is classified by a Service Classification Function, in order to perform traf-

fic steering through the correspondent chain. The Service Classification Function

adds a SFC-Encapsulation to the classified packets. Notice that the architecture

defines the encapsulation format as independent from the network encapsulation

protocol used to interconnect the elements. This way, the SFC system does not

necessarily need a homogeneous network between the chain’s functions, and can in-

stead support more complex scenarios that enable Service Providers to use different

technologies. The SFC-Encapsulation is used by another component of the archi-

tecture: the Service Function Forwarder (SFF). SFFs read the SFC-encapsulation

to send network packets to directly attached SFs, or to forward them to the SFF

to which the next function in the chain is attached. For instance, a network switch

may host an SFFs function if extended to read the SFC-encapsulation format. Since

the RFC7665’s architecture assumes that SFs can deal with the SFC-encapsulation

format, SFC-unaware functions (e.g., legacy network functions) are supported by

the usage of a SFC-Proxy. An SFC-Proxy removes the SFC-encapsulation at the

ingress of a SFC-unaware area and adds it again on the egress of that area. An

end-of-chain classifier has the responsibility to remove the SFC-encapsulation when

packets exit the SFC-enabled Domain, and to classify the packets belonging to the

downstream traffic.

Network Service Header While in RFC7665 the definition for the SFC-

Encapsulation format is left open, RFC8300 [48] defines the Network Service Header

(NSH). The NSH is composed by a Base Header (32 bits), a Service Path Header

(32 bits) and zero or more Context Headers. The Base Header provides information

about the Service Path Header and the payload protocol. The Service Path Header

is composed by a Service Path ID (24 bits, i.e., up to 16M RSP) to identify the

Chapter 3 Single-domain Service Function Chains 30

chains and a Service Index (8 bits, i.e., max 256 hops per chain) to provide the loca-

tion within the chain. Context Headers carry opaque metadata and variable length

encoded information. The NSH header is located between the original packet/frame

and the overlay network encapsulation protocol, if any. In fact, current NSH-based

prototypes usually assume that an overlay network, e.g., based on VxLAN, connects

SFFs. The original data unit, e.g., an L2 frame or an L3 packet, thus, is encapsu-

lated within different transport protocols such as VLAN, VxLAN, GRE, Ethernet,

etc. When a SF receives a packet coming from a Service Chain, it will decrement the

Service Index header in order to update the location of the packet within the chain.

At the end of the chain, an end-of-chain classifier will remove the NSH header and

forward the packet normally. NSH is transport independent because it can be used

with different encapsulation protocols. It provides information about the chain each

packet belongs to, through the Service Path ID header, and the location within the

chain, through the Service Index Header. Context Headers make possible to share

network and service metadata (L2-L7) that enable to re-classify the packets after a

SF.

3.2.3 Single-domain SFC in research

A number of proposals have been presented by the research community, in order to

address the challenges of Single-domain SFC.

SIMPLE [44] provides SFC using an SDN network. It implements inter-switch

tunnels to aggregate the traffic with common destinations, in order to reduce the

total number of forwarding rules in the SDN switches’ forwarding tables. When

such optimization is not required, hop-by-hop fine granular forwarding rules are

used instead. Traffic reclassification, after an opaque network function, is performed

31 3.2 Background and Related Work

using a dynamic module which analyzes the similarities between packets entering

and exiting the network function. However, such solution shows limited accuracy

and it introduces significant delays in the network flows.

To overcome such limitations, FlowTags [45] suggests the modification of the net-

work functions in order to provide contextual information, in the form of a tag, which

is added to the processed network packets, in order to perform traffic classification.

The tags are defined by a centralized controller and cached at the network functions,

using an approach similar to the handling of network packets at the controller in

OpenFlow networks [20]. Like in SIMPLE, packets forwarding is performed writing

appropriate forwarding rules in the SDN switches along the path.

Using an SDN network to perform traffic steering is the solution adopted also

by StEERING [47]. In this case, the authors leverage a smart encoding of the for-

warding rules in a multi-table switch’s pipeline, in order to scale the total number

of supported chains and network flows, still providing fine-grained traffic steering.

However, StEERING is not able to reclassify the traffic in presence of opaque net-

work functions.

Finally, SoftCell [55] presents a solution that takes into account the deployment

scenario’s properties to simplify the implementation of SFC in mobile networks. To

the best of our knowledge, and putting aside CATENAE, it is the only proposal

that explores such an approach. To be deployed, SoftCell requires a network of SDN

switches and a modification of the mobile network’s architecture. For instance, Soft-

Cell removes SGW and PGW functions, and therefore removes LTE’s mobility man-

agement introducing a custom solution instead. Traffic classification is performed

at switches co-located with the eNBs for the upstream direction, while classification

for downstream traffic is performed leveraging information encoded in the source IP

Chapter 3 Single-domain Service Function Chains 32

address/transport port of outgoing packets. In fact, traffic is assumed to be always

initiated in the upstream direction, thus, any downstream packet will carry in the

destination IP address/transport port the original upstream flow’s encoded value.

3.3 Design

This section presents our design choices, the CATENAE’s architecture, and provides

an overview of possible deployment options in LTE infrastructures.

The main objective of CATENAE’s design is to provide SFC while minimizing the

impact on current infrastructures. To this aim, our design decisions are taken in the

light of the properties characterizing the deployment scenario, i.e., the LTE network.

We make a few observations that motivate our design decisions. First, the main

and most important observation is that network functions are connected using an

Ethernet network, while user traffic is composed of IP packets, since the tunnel that

brings the traffic from eNBs to the PGW only transports IP packets. Thus, the user

traffic is agnostic to the L2 packets header and therefore we can manipulate the L2

header to perform traffic forwarding according to our needs. Second, the upstream

flow is always started before the downstream flow, and upstream traffic’s throughput

is usually orders of magnitude smaller than downstream one. Because of these two

observations, we can perform traffic classification in the upstream direction using

a software classifier. In fact, while the classifier is traversed by all the user traffic,

it could be still able to scale to handle millions of flows, if these flows contribute a

relatively small aggregated throughput.

The remainder of this section presents the way we capture these observations in

the designed architecture and in the corresponding traffic steering method.

33 3.3 Design

3.3.1 Architecture

CATENAE’s architecture (cf. Fig. 3.2) is composed of 4 elements: the classifiers,

which perform traffic classification on the packets entering the SGi-LAN; the VNFs’

switches, which are deployed at the servers and connect VNFs with the SGi-LAN;

the SGi-LAN itself, i.e., an Ethernet network, that connects classifiers and VNFs’

switches with each other; the SFC Controller, that configures classifier and VNFs’

switches in a coordinated way to enforce function chains. Both the classifiers and

the VNF’s switches are SDN switches (e.g., they implement OpenFlow), while the

SGi-LAN implements a typical MAC learning algorithm.

Thus, the SFC Controller does not change the SGi-LAN network’s operations, but

uses it as a mere transport network between VNFs located on the servers.

Figure 3.2: CATENAE’s architecture.

The SFC Controller offers a function chains configuration interface, which could

be connected to e.g., the PCRF of the LTE architecture. Upon reception of a

chain installation request, the SFC controller implements the chain by installing

forwarding entries at all the involved switches. Function chains are described by a

list of flow identifiers (FIDs) and a list of functions. Each FID includes one or more

Chapter 3 Single-domain Service Function Chains 34

of the following fields: IP addresses, transport ports, and the IP header’s DSCP

field. Also, while the FID always defines the upstream direction of a flow, it also

identifies the downstream direction as well. In fact, the downstream direction of a

flow can be identified by switching source IP addresses and transport ports values

with destination ones. The functions’ list contains the chain of network functions

for the flow identified by the FIDs, specified in the order in which the upstream flow

should traverse them. The last function in the list is the chain’s exit point, e.g., a

NAT. Each network function is further described by a network location. Network

locations can be both provided with a static configuration or the SFC system can

perform a lookup for the location using a different interface, e.g., connected to a

VMs management system.

CATENAE supports two different deployment models, depending on where classi-

fiers are deployed. In particular, the most general configuration assumes the presence

of both an upstream classifier (u-classifier) and a downstream classifier (d-classifier).

However, CATENAE can also employ just the u-classifier, by making a stronger as-

sumption on the deployment scenario, i.e., assuming the deployment of NATs as last

chains’ function. The next subsections describe the two deployment options.

3.3.2 Two-classifiers deployment

In a two classifiers configuration, CATENAE uses a classifier per network traffic

direction, i.e., upstream and downstream. Please notice that while conceptually

separated, the u-classifier and d-classifier can be implemented by one single device.

There are two important issues to be addressed with this configuration: first, the

classifiers have to handle the entire system’s network traffic, which impacts the

overall system scalability; second, the downstream classifier needs to dynamically

35 3.3 Design

learn packet headers for flows that have been processed by opaque network functions.

In Sec. 3.4 we further elaborate on these issues.

3.3.3 Single classifier deployment

In the majority of mobile network deployments, there is always a NAT function

employed in a chain [40], since private IP addresses are usually in use on the

UE-side [56]. In such cases, CATENAE can perform traffic classification in the

downstream direction without adding a dedicated d-classifier. This is accomplished

mandating the deployment of NAT functions as the last chain’s functions, which is

anyway already a common practice. A NAT function performs a mapping between

upstream traffic and corresponding downstream traffic, in order to apply address

translation. When an upstream’s packet traverses the NAT, its source IP address is

rewritten with a NAT’s routable IP address. Thus, any corresponding downstream

traffic’s packet will be delivered to the NAT, having the destination IP address set

to the NAT’s routable IP address. Since the NAT function is first hit by the already

classified upstream traffic, the NAT will associate any downstream traffic to its up-

stream flow [55]. In effect, the NAT is providing both address translation and traffic

classification, removing the need to deploy a dedicated classifier. Furthermore, as

NATs are virtual network functions, they can be scaled to match the workload ex-

perienced by the system, following the same procedures used for any other network

function.

Chapter 3 Single-domain Service Function Chains 36

3.3.4 Deployment

CATENAE can be deployed in legacy SGi-LANs. The deployment process requires

the configuration of SDN software switches in the servers connected to the SGi-LAN,

the deployment of the SFC controller and the redirection of the user traffic to the

CATENAE’s classifiers. While the former activities are a matter of software con-

figuration on the servers, the redirection of the traffic to the classifier is the actual

hook of the SFC system in the SGi-LAN. Such operation is as easy as changing the

default IP gateway address in the PGW’s configuration. In fact, the classifier is

implemented as a software switch running on a general purpose server connected to

the SGi-LAN. Of course, if a d-classifier is also employed, the CATENAE deploy-

ments involves also the installation of the hardware SDN switch used to implement

the classifier.

3.4 Classifiers

In this section, we present the design of the classifiers employed in CATENAE.

In general, a classifier is configured with rules that define the service chain a

network packet belongs to. In the most common case, a rule specifies a set of

packet headers, i.e., a network flow, and the corresponding classification action. In

CATENAE the classification action is as simple as forwarding the packet to the first

function in the chain for the upstream flows, or to the last one for the downstream

ones (for the downstream direction, the last chain’s function is, in fact, the first

function in such direction). CATENAE employs two types of classifiers, depending

on the direction of the flows being classified.

37 3.4 Classifiers

The u-classifier only performs classification for packets entering the SGi-LAN in

the upstream direction, in fact, CATENAE enforces symmetric paths for upstream

and downstream flows, in respect to the network functions, but only upstream flows

are processed by the u-classifier. In our architecture, this classifier is implemented

using an SDN software switch. Having a software switch handling all the traffic

coming from the PGW may rise scalability concerns, however, upstream flows are

contributing just a fraction of the overall load (cf. Sec. 3.6). On the other side, a

software switch guarantees very large forwarding tables, i.e., one could use a very

large number of rules to classify the network traffic. In particular, a software switch

typically employs various solutions that involve hash tables that leverage general

purpose servers’ memory hierarchy to achieve high throughput. This finally guar-

antees the possibility of using cheap DRAM to host most of the classification rules,

while a much faster cache, hosted in the CPU’s SRAM, provides high throughput

for the subset of highly used rules [57].

The second type of classifier is the d-classifier. In this case, the classifier has to

face a much more pressing scalability problem, since downstream traffic is usually

10 times bigger in volume than upstream one (cf. Sec.3.6). A software switch may

not scale to meet the system throughput requirements, thus, a hardware classifier

may be needed instead.

While one could rely on ad-hoc hardware for such purpose, we preferred main-

taining a consistent architecture and implement the classifier with a commodity

hardware SDN switch. The main advantage of such a decision is that the classifier

interface is always the same for both the software and hardware components, i.e.,

OpenFlow. However, current hardware SDN technology can only offer limited space

to host the classification rules [58]. Also, a strategy that capitalizes on the table

space, by installing entries only when a chain’s flow is actually active [45, 59], is

Chapter 3 Single-domain Service Function Chains 38

viable only in few cases. In fact, hardware switches could not support scenarios

that require high entries installation rates, being typically too slow at installing new

entries [60,61].

To tackle this issue, we developed HSwitch, taking inspiration from previous work

that combines a hardware switch with a software switch to extend the switch’s for-

warding table size [62]. The remainder of this section describes our implementation

of the d-classifier.

3.4.1 d-classifier design

Our d-classifier design [61] connects a hardware SDN switch with a server that

runs a software SDN switch2. A packet that does not match a hardware switch’s

forwarding entry is sent to the software switch, where the SFC controller installs all

the forwarding entries. The software switch is extended to implement a logic that

offloads entries to the hardware switch, depending on the network load. In effect, the

hardware switch is used as a micro-flow cache [57], i.e., the entries moved to hardware

match on all the header fields the switch can match on. Notice that a micro-flow

cache helps in avoiding the entries dependency issues which are typical in SDN

switches [62]. When the system is operative, the majority of the entries are installed

in the software switch, while the hardware hosts entries up to its maximum capacity.

The offloading algorithm should guarantee that the entries installed in hardware

handle the majority of the network packets, to avoid overloading the software switch.

2An alternative implementation we are currently exploring leverages the powerful CPU of
modern white box switches, such as the ones specified by the OpenCompute project
http://www.opencompute.org/projects/networking.

39 3.4 Classifiers

3.4.2 Offloading algorithms

Given the hardware switch’s Flow Table (FT) size and its Flow Table Entry Installa-

tion Rate (FTEIR) as constraints, an optimal caching algorithm for our d-classifier

design should maximize the traffic amount offloaded to the hardware switch. While

the optimal algorithm for populating the micro-flow caches is, generally, an NP-hard

problem (it can be demonstrated it reduces to a knapsack problem), we investigate

several heuristics which exploit the OpenFlow primitives (e.g. timeouts and coun-

ters) in a lightweight manner. We consider the three following approaches:

• FIFO1: the algorithm implements a generic FIFO flow caching strategy.

When a packet is handled by the software switch, a pointer to the matching

entry is added to a FIFO queue. Once there is a free space in the hardware

switch’s flow table, a pointer is taken from the offloading queue and the cor-

responding entry is installed in hardware. The algorithm implies a minimum

computational overhead, since it does not involve any additional logic or flow

statistics evaluation. If the flow size distribution is uniform over the time and

the Flow Arrival Rate (FAR): FAR ∼ FTEIR, the hardware switch can accom-

modate a constant share of incoming traffic limited by its table size and the

FTEIR, while the rest is handled by the software switch. If FAR >> FTEIR,

the FIFO offloading queue grows indefinitely. Taking into the account that

the majority of flows in a typical LTE network are short-lived flows [54], these

flows expire in the overloaded FIFO queue before being offloaded to the hard-

ware switch. In this case, the expired flows do not carry traffic anymore, the

load of the hardware switch vanishes and the effectiveness of the algorithm

degrades rapidly;

• FIFO2: to overcome the offloading queue thrashing problem of the previous

Chapter 3 Single-domain Service Function Chains 40

algorithm, we improve it in the following way. The flow entry is added into

the offloading FIFO queue only if a packet for such entry was received in the

last second. One of the ways to implement the described logic is to leverage

individual flow statistics [63] by polling the per-flow counters in the FIFO

queue with a one second interval. This additional logic allows cutting off

the expired flows, however, it still does not perform any optimization of the

offloaded traffic share;

• HH (Heavy Hitters): the algorithm identifies “heavy hitters” in the FIFO

queue allowing to increase the load of the hardware switch. This is done by

marking the entries in the queue that matched a number of packets above

a given threshold in the last second. As mentioned before, the logic can poll

individual statistics of the flows in the offloading queue. The threshold value is

derived from the analysis of the traffic traces and should be changed depending

on the specific deployment. Marked entries are selected first for offloading,

when there is free space in the hardware switch;

In any case, entries that are cached in hardware are removed when they do not match

packets for a period longer than 10 seconds. This guarantees protection from cache

trashing effects [64] and simplifies the implementation of the offloading algorithm, at

the cost of a less efficient offloading. Recall the offloading algorithm is implemented

by the software switch, which would require to poll hardware switch’s counters to

implement a more complex cached entries deletion. Instead, we leverage the SDN

switches idle timeout feature [63]. Decreasing the idle timeout on the one hand

enables evicting of the expired flows from the hardware cache faster and, on the other

hand, increases the churn of cache misses. In turn, cache misses increase per-packet

delay and jitter, since their packets need to be processed in the software switch again.

The optimal idle timeout value depends on the incoming traffic characteristics and

41 3.4 Classifiers

can be derived from flows duration distribution. The evaluation of the algorithms

is presented in Sec. 3.6.

3.4.3 Learning packet headers

When a network function modifies network packet headers, the downstream classifier

cannot be configured with the correct classification rules. In fact, an opaque network

function is applying an unknown modification to a packet, thus the classifier has to

first learn the new packet’s headers in order to specify the classification rule for

downstream flows. Luckily, the presence of a software switch helps our system

in dynamically learning the new headers for a given packet. In particular, the

software switch is configured to create a new forwarding entry for a downstream

flow, whenever a new upstream flow is detected3. The newly generated entry is

built in order to match on the upstream’s source and destination IP addresses and

transport ports, but switching their positions.

To correctly steer the downstream packet towards the corresponding chain, the

classifier looks at the upstream flow’s packets source MAC address. In fact, such

address corresponds to the last function in the chain, and in our traffic steering

method it also encodes the chain information. This point will be further clarified in

Sec. 3.5.

Notice that we can apply this packet headers learning technique because we deal

with flows that are always initiated in the upstream direction.

3For example, when using OpenvSwitch [57], the special learn() forwarding action can be used to
achieve this behavior.

Chapter 3 Single-domain Service Function Chains 42

3.5 Traffic Steering

Traffic steering is the process of defining the network paths for network flows, accord-

ing to an explicit policy. CATENAE performs traffic steering configuring each of the

managed switches (including the classifiers) to classify an incoming packet, retrieve

the chain it belongs to and forward it to the chain’s next function. Since Ethernet

networks perform packet switching based on Ethernet destination addresses, CATE-

NAE performs packets delivery to a given function, over the SGi-LAN, configuring

the switches to rewrite Ethernet addresses. In the remainder of this paragraph,

we describe the operations for upstream and downstream cases. Notice that for

the remainder of this section we assume a single classifier configuration. However, it

should be clear that the traffic steering method does not change (and is not affected)

when using a two-classifiers configuration instead.

Figure 3.3: Forwarding tables configuration example, for the steering of a flow with
FID “src IP=10.0.0.1”, which traverses the function chain F1, F2, F3.

43 3.5 Traffic Steering

3.5.1 Upstream

Upstream flows are first handled at the u-classifier, which uses the FIDs to classify

packets and send them to the respective first chain’s function. If the function is

transparent, the function’s switch delivers the packet directly to the function and

re-classifies it using the FIDs, after the function’s processing. When a function is

opaque, packets’ header values change, making the system unable to reclassify flows

using the FIDs. Also, all the functions coming after an opaque one are handled as

opaque functions by the system. In fact, once a packet’s header has been changed,

the original FIDs don’t match the flows anymore. In these cases, classification is

achieved by creating local virtual L2 networks between a function and its switch.

Since network functions typically separate flows received from different L2 networks,

a packet will not change its network after the function. Hence, a different (virtual)

L2 network per each chain traversing the function helps in associating a packet with

its chain. That is, packets belonging to a given chain are tagged with a VLAN

tag, which is maintained unchanged when the packet traverses the function4. The

VLAN tag is removed before sending a packet back to the SGi-LAN, since it is

meaningful only on the switch-function link. However, the classification information

is required also at the next function in the chain, thus, this information is encoded

in the packets’ source Ethernet address. Such an address is generated to be unique

for each couple chain/function, and it is generated when the next chain’s function is

attached to a different software switch. In fact, for functions attached to the same

switch, it is enough to read the VLAN tag value. When packets are received at the

next function’s switches, instead, classification is performed looking at the source

4In today’s network functions this feature is usually called VLAN separation. The tag
is maintained also for the new flows generated as a consequence of the reception of
tagged packets. Further information can be found in network functions’ manuals, e.g.,
https://techlib.barracuda.com/bwf/deplyvlan.

Chapter 3 Single-domain Service Function Chains 44

Ethernet address.

3.5.2 Downstream

Downstream flows are classified either by the d-classifier or by the NATs deployed as

chains’ last functions. The function chain is then traversed in reverse order. CATE-

NAE operations are again dependent on the type of function the packets traverse.

Until there are opaque functions traversed by the downstream flow, the function’s

switch performs flows classification using VLANs. As in the upstream case, when

required, the classification information is encoded in a MAC address value, which

this time is written in the packet’s Ethernet destination. Recall that this MAC ad-

dress was generated already for each chain and function during the handling of the

upstream flow. Hence, the location of the generated address was already learned by

the SGi-LAN. After the last opaque function (i.e., the first one in the perspective

of the upstream flow) has processed the downstream flow, the original FID is used

to perform packets classification5. Here, we assume an opaque function restores

the original packet header for the downstream flow. E.g., for downstream flows, a

NAT restores the original upstream flow headers, with switched source/destination

addresses and transport ports. Thus, the downstream flow coming from an opaque

function can be classified at a transparent function’s switch that receives it, using

the FID.

Figure 3.3 shows a chain example and the switches’ forwarding entries generated to

implement such chain for a network flow, in the case of a single classifier deployment.

The entries are expressed in an OpenFlow-like format, with a match part, which

5Actually, the FID is modified to switch source address and transport ports with the destination
ones, to match the downstream flow.

45 3.6 Evaluation

identifies the flow, and an action part, which specifies the actions that should be

applied to the matched packets. A few details can be captured by looking at these

entries. First, notice that after a function, the packet’s Ethernet source is rewritten

to the function’s MAC address. This rewriting is required to guarantee the correct

SGi-LAN’s MAC learning. Second, when flows are received from an opaque function,

the flow’s direction is detected looking at the destination MAC address. We assume

that any opaque function is configured to always use IGW and PGW as forwarding

gateways for the upstream and downstream directions, respectively [46]. Thus, if

the value is the IGW’s MAC address, then the direction is upstream; if the value is

the PGW’s MAC address, the direction is downstream.

3.6 Evaluation

This section describes a CATENAE’s proof of concept implementation and its eval-

uation.

3.6.1 Prototype

We implemented the SFC Controller on top of Ryu6. The core traffic steering al-

gorithm is implemented in less than 100 lines of python code. We use OpenvSwitch

(OVS) as VNFs’ switches, and OpenFlow as the protocol for the switches configu-

ration. We emulate VNFs running either click [65] or node.js in Linux containers.

Finally, we implemented HSwitch by combining a NEC PF5240 OpenFlow switch

with a server running OVS. The server runs also a user-space program which im-

plements the micro-flow caching logic. In all the tests, the SFC Controller runs on
6http://osrg.github.io/ryu

Chapter 3 Single-domain Service Function Chains 46

a single core of an Intel i5-2540M CPU @ 2.60GHz, using the Python 2.7.3 inter-

preter shipped with the Ubuntu 12.04.5 LTS distribution. OVS (v. 2.3) and VNFs

instances run on servers equipped with an Intel CPU E31220 (4 cores @ 3.10GHz).

3.6.2 Number of chains

CATENAE generates new MAC addresses to support opaque functions. It is unlikely

to define a number of chains that could consume the entire MAC address space,

however, there is an actual limitation on the number of distinct MAC addresses one

can use in an Ethernet network. In fact, Ethernet switches have limited memory to

store the associations (address↔ switch’s port) generated during the MAC learning

process [66]. For instance, consider chains that include 4 opaque functions on average

(excluding the NAT function at the end, for which no MAC address is generated),

and assume that a switch can learn 100k associations (e.g., this is the case of the

Broadcom Trident switching chip [66]). In this case, the system could support 25k

chains (actually slightly less, considering that some MAC addresses are required

for, e.g., physical servers and VNFs). Also, each opaque function can be traversed

by 4095 chains at most, since VLAN tags are used to correlate function’s entering

and exiting flows. While this is a strict limitation, one should consider our initial

assumption of supporting VNFs in the number of thousands and notice that the

same chain may be applied to several network flows. In fact, operators typically

define a single chain for a group of users (e.g., premium users), or services (e.g.,

web traffic). Furthermore, the actual total number of possible distinct chains is

perhaps limited to only a few thousand in practice. In fact, consider the case in

which a user can pick her services out of a bucket of 10 possible services. If the

operator will define a predefined order for the application of such services, such

47 3.6 Evaluation

as, anomaly detection is applied before the web proxy, only 1024 distinct chains

could be defined (i.e., 210 chains, since each function can be either included or not).

Finally, notice that there is no such limitation when dealing only with transparent

functions. In such cases, CATENAE does not need to generate any additional MAC

address. Moreover, if multiple opaque functions are connected to the same switch, no

additional MAC addresses are generated. With K representing the average number

of chain’s functions attached to the same switch, and recalling that after the first

opaque function all the remaining chain’s functions are handled as opaque ones, in

Fig. 3.4 we show the number of required MAC address for a chain’s implementation.

Notice that an early positioning of an opaque function requires more MAC addresses,

while the co-location of functions reduces such requirement.

#Functions4 5 6 7 8 9 10 11 12

First opaque function 2
4

6
8

10
12

M
AC addresses used

2

4

6

8

10

12 k=1
k=2
k=3

Figure 3.4: Number of required MAC address for the implementation of a chain,
when varying the number of chain’s functions and the position of first
opaque function in the chain, for different values of K. Where K is the
average number of chain’s functions attached to the same switch.

Chapter 3 Single-domain Service Function Chains 48

3.6.3 Number of flows

The total number of flows supported by the system defines the number of supported

users and how granular their policies can be. CATENAE assigns flows to chains

performing classification at the SDN switches. The switch’s entries are installed

in advance, when a chain is first configured, thus, a switch has to host the entries

for all the flows that may traverse it. The number of forwarding entries required to

configure a flow in CATENAE scales linearly with the number of functions contained

in the chain assigned to the flow. In particular, transparent and opaque functions

require 2 and 4 entries each, respectively, per-flow. Since we rely on software switches

(HSwitch also includes a software switch) we can easily scale to millions of entries per

switch. Assuming that an entry requires 50B of memory (including all the header

values [67] and rewriting actions), storing 10 million entries requires 500MB of RAM.

Such numbers should be sufficient to support millions of users, even considering

several policies per user, e.g., distinct chains per users and per user’s flows carrying

web, voice, video, etc. Also, notice that per flow entries are required only at the

classifier and when dealing with transparent functions. In fact, flows that traverse

the same chain are identified in an aggregated manner after an opaque function (i.e.,

they share the same generated MAC address value).

3.6.4 Configuration time

The system configuration time depends on the number of entries the SFC controller

has to install. The number of entries scales with the product of the number of

flows and number of functions per flow’s chain. Our SFC controller prototype is

developed in python and can send only about 2200 entry configuration messages per

second, limiting the flow configuration performance. Figure 3.5 shows the rate of

49 3.6 Evaluation

flow configurations per second, for chains of lengths between 2 and 5 functions, when

functions are either all transparent (but the last one, which is anyway a NAT) or all

opaque. In order to confirm that this poor performance is a limitation of the Ryu-

based implementation, we re-implemented the core algorithm of the SFC controller

using the faster Beacon controller [68]. This second implementation achieved, on

the same hardware, a flow configuration rate of more than 16k flows per second, in

case of chains with 5 opaque functions.

3.6.5 Flow forwarding delays

Forwarding entries in CATENAE are installed beforehand, thus, no delay is intro-

duced by the traffic steering method, even when new flows are initiated. This is an

advantage when compared to alternative solutions (e.g., [45, 55]) that may instead

introduce delays on (few) flows’ packets. Also, notice that packets processed by

HSwitch may have a slightly higher delay when the corresponding forwarding entry

is hosted in the HSwitch’s software layer. However, the additional delay is typically

in the microsecond time scale, being comparable to that of any other software switch.

Thus, even in this last case, the introduced forwarding delay is usually negligible.

3.6.6 Overheads

It is well known that tunneling protocols increase the cost of processing packets at

VNFs’ switches [69] and VNFs themselves [45]. Furthermore, it is expected that

the average packet size in mobile networks will decrease to 384B [70] in future. For

some tunneling technologies, such as VXLAN, this would mean the introduction of

more than 14% overhead in terms of on wire transferred bytes (54B are required

Chapter 3 Single-domain Service Function Chains 50

for VXLAN encapsulation over IPv4). CATENAE does not use any extra header

in the packets, avoiding these overheads which are common to other solutions (e.g.,

NSH [48]).

2 3 4 5
Functions per chain

0

100

200

300

400

T
h

ro
u

g
h

p
u

t
(f

lo
w

s/
s)

transparent

opaque

transparent

opaque

0

500

1000

1500

2000

2500

T
h

ro
u

g
h

p
u

t
(e

n
tr

ie
s/

s)
Figure 3.5: SFC Controller throughput in configured flows/s (bars) and generated

switch’s entries/s (lines).

10 15 20 25 30 35 40
Number of base stations

0

10

20

30

40

50

60

70

T
h

ro
u

g
h

p
u

t
a
t

P
G

W
 (

G
b

it
/s

)

HSwitch FIFO1

HSwitch FIFO2

HSwitch HH

Classifier

Figure 3.6: U-classifier and HSwitch scalability when increasing the number of base
stations and the aggregated throughput handled by the PGW.

51 3.6 Evaluation

3.6.7 Data plane scalability

The main CATENAE’s bottlenecks for the system’s data plane scalability are the

classifiers. In fact, the servers running SDN switches and VNFs, which also handle

data plane traffic, could be increased in number to scale with the offered load. Scaling

the u-classifier, instead, would require the introduction of additional components,

such as load balancers, between the PGW and the u-classifier. Such components

would increase the deployment complexity of CATENAE and work against our aim of

minimizing the impact on the legacy infrastructure. Likewise, the d-classifier, when

present and implemented using HSwitch, may provide limited forwarding throughput

if the implemented offloading algorithm is not effective.

Therefore, we built a trace-driven simulator for the classifiers, in order to ana-

lyze their performance under different traffic loads. We validated our simulator by

comparing the reported performance with the one measured with our prototype,

when running a small-scale experiment with synthetic traffic. The validation test

shows that for relevant performance metrics, such as the system’s throughput, the

simulator reports values with a general difference below 1% from those measured on

the real system.

Lacking access to real traffic traces, we extracted relevant traffic properties from

[54,55] and designed a flow-level trace generator to feed our simulator. The generated

traffic trace reproduces the distributions of flow sizes and rates, for the network

traffic seen at the PGW, as extracted from [54]. Fixing these parameters, we derive

corresponding flow durations. As a correctness check, we verify that the CDFs of the

generated flow durations as well as the flow’s correlation coefficients between size,

rate and duration match the ones reported in [54]. The dynamics of the network

flows, e.g., flows arrival rate and a number of concurrent flows per second, are

Chapter 3 Single-domain Service Function Chains 52

extracted from [55], which provides base station’s statistics in terms of average

active users and data connections created per second. As a last check, we compared

the numbers of concurrent flows reported in [54] with the numbers counted in our

trace. Here, notice that the numbers of concurrent flows in our trace depend both

on the generated flow durations, computed earlier, and the flows dynamics reported

in [55].

We fed our simulator with the generated traffic trace, to verify if the classifier and

HSwitch were able to handle the offered load with zero packet loss. Notice that,

in the scenario presented in [54], the PGW is connected to 22 base stations and

handles an aggregated traffic of less than 1 Gbit/s. Considering an average packet

size of 512B [70], the system has to handle ∼0.23 million packets per second (Mpps).

We configured the simulator to cap the software switch forwarding performance at

1 Mpps. This is a very conservative assumption since current software switches can

forward several Mpps [57, 71]. For HSwitch simulation, we assumed the hardware

switch could host 100k micro-flow entries in its forwarding table. Also, we assumed

that it could sustain a rate of 700 entry installation/s. Both values are slightly

below the actual performance of the NEC PF5240 [72]. With this configuration, we

simulated 30 minutes of system operations, generating 4.6M flows, in which the u-

classifier and HSwitch achieved zero packet loss, i.e., they did not become overloaded

with the provided workload.

Considering that a 10x increase in load is expected in 2014-2019 [73], which would

correspond to an aggregated throughput of ∼10 Gbit/s in our simulation, we decided

to scale the workload to match such numbers. Thus, we performed new simulations

to push the system to a corner case and understand its limits. We scaled the offered

load in two directions: we increased the number of base stations connected to the

PGW and the per-flow load. Fig. 3.6 shows the results, plotting the points after

53 3.6 Evaluation

which an increase in any of the two directions would introduce packet drops. The

number of base stations affects the rate of new flows created per second as well as

their total number (with 40 base stations, we create up to 8.6M flows). This may

impact the distribution of the system load peaks. This impacts HSwitch since only

700 flows per second can be offloaded to hardware. Here, as expected, a smarter

caching algorithm, like HH (with a threshold value of 43 pps), can increase the system

scalability. The u-classifier, instead, is not influenced by the rate of incoming flows,

having a software cache that can be updated fast.

Our test results show that the u-classifier can handle up to 29Gbit/s of aggregated

PGW’s throughput: a value three-times bigger than the 2019’s forecast. In fact, the

classifier handles only the upstream flows, which in the worst case account for the

15% of the overall throughput, in our trace. I.e., 4.35 Gbit/s, which is about 1 Mpps

if the packet size is 512B.

The performance of HSwitch is instead influenced by the adopted offloading al-

gorithm. When scaling to 40 base stations and more than 8M flows, HSwitch can

handle only about 8 Gbps of traffic if the FIFO offloading strategies are imple-

mented. The reason is that the system is subject to a significant cache trashing

effect, i.e., the flows that are cached from in the HSwitch’s hardware layer do not

persist for a long time in the cache. This is a combined effect of the big number

of flows and the way the algorithms select them. In fact, in the FIFO algorithms

case, a flow is moved to the hardware layer just in dependence of the time in which

it appears in the network. When employing a smarter algorithm that tries to select

the flows to cache, in dependence of their contributed throughput, HSwitch perfor-

mance improves, enabling the system to handle up to about 22 Gbps with 40 base

stations.

Chapter 3 Single-domain Service Function Chains 54

3.7 Discussion

This section discusses the implication of our design choices and provides a few con-

sideration stemming out from our evaluation results.

3.7.1 Legacy infrastructures

CATENAE matches our original aim of minimizing the impact on legacy infrastruc-

tures in several ways. First, it can be seamlessly deployed in the LTE architecture.

When using the single classifier configuration, CATENAE requires only the installa-

tion of software components in the general purpose server attached to the SGi-LAN

(cf. Sec. 3.3), and without requiring any architectural change. This is a unique

feature when compared to the related work presented earlier. When employing also

a d-classifier, there is still only one single hardware switch to deploy in the infras-

tructure, while all the previous considerations remain valid. Second, it does not use

any tunneling protocol, be it an L2 tunneling protocol, such as VLAN, or a higher

level ones, such as VxLAN. This provides a number of advantages and it is another

clear distinction point in comparison with the previously mentioned related work.

When considering tunneling protocols at the higher network layers, the introduced

processing overheads in the servers may be high, unless hardware offloading mech-

anisms are implemented in the network interface cards (NICs). While it is fair to

expect that the most successful protocols, e.g., VxLAN, will be soon offloaded by

the majority of the NICs, this is still not the case [74]. Thus, we expect CATENAE

will be more efficient in using the server’s processing power in the next few years,

when servers will be facing a limited tunneling offloading support. In the case of

protocols such as VLAN, for which the offloading is already well established in the

55 3.7 Discussion

NICs, CATENAE provides perhaps an even bigger advantage. In fact, VLAN-like

protocols are extensively used to perform logical network separation by a number

of systems. In effect, as it became clear in several discussions with network op-

erators, using, e.g., VLANs, in most of the cases, is not an option since it would

require very complex, time-consuming and error-prone integrations with the systems

that deal with the VLANs management. With CATENAE the coordination with

such systems is not required, in fact, CATENAE operations deal with VLANs only

on the link between software switches and VNFs. Third, while other solutions re-

quire modifications to the network functions [45, 48], CATENAE supports current

network functions with no modifications, leveraging features that are already exten-

sively used, such as VLAN separation. That is, VNFs are considered as black boxes,

helping in decoupling the deployment and configuration of network functions from

their composition in a chain [75]. Finally, CATENAE nicely integrates with systems

that provide the VNFs deployment, such as OpenStack, which in turn can perform,

e.g., optimal VNFs placement.

3.7.2 Hardware network functions

While CATENAE seamlessly supports software legacy functions, hardware network

functions can be only supported if directly attached to an SDN switch. Hence, two

options are actually viable. In a first case, the hardware function may be attached

back-to-back to a server running a software switch. However, the network function

may overload the software switch, which, unlike the case of the classifier, should

handle both upstream and downstream flows. An alternative solution is to deploy

a hardware SDN switch. In this second option, a limitation could be the size of

the hardware switch forwarding table. In fact, the issue in this case is the same

Chapter 3 Single-domain Service Function Chains 56

we faced with the design of the d-classifier, hence, a switch technology like the one

implemented for HSwitch could be used to address it. Anyway, please notice that

this is a common issue for all the solutions presented in Sec. 3.2, furthermore,

unlike other solutions that modify L3 headers [76], CATENAE only rewrites MAC

addresses, which is an operation commonly supported in hardware switches.

3.7.3 Classification

In our proof of concept prototype, we implemented the u-classifier using a software

OpenFlow switch. Such a decision may limit the ability of CATENAE to perform

complex classification functions that may require Deep Packet Inspection (DPI).

However, please notice that CATENAE design does not limit the options for the

implementation of a more complex classifier, provided that it exposes an SDN-like

interface for configuring the MAC address rewriting operations. In effect, in the

evaluation of Sec. 3.6, we performed our data plane scalability simulations using a

particularly low forwarding capacity for the classifier, with the purpose of evaluating

the system in the case in which the classifier is performing complex operations. In

fact, the 1 Mpps throughput cap is better suited for a complex network function [51],

while a software switch is usually capable of forwarding packets in the order of

10 Mpps [71]. Similar considerations can be applied for the d-classifier and our

HSwitch implementation. In fact, the HSwitch’s software layer could be improved

to implement a DPI engine instead of a simple software switch.

57 3.8 Conclusion

3.7.4 Metadata

CATENAE does not support the delivery of metadata to the network functions. For

instance, a user’s wireless link quality information has to be delivered to the network

functions that may need it, e.g., transcoders, using out-of-bound channels. Other

solutions support metadata delivery requiring modifications to the VNFs [45,48].

3.8 Conclusion

We presented CATENAE, a SFC system for the SGi-LAN. CATENAE can be de-

ployed on legacy infrastructures, introducing effective SFC without paying the over-

heads of additional packet header fields, but still scaling to provide fine-grained poli-

cies for millions of network flows. Given that service function chain configurations

are performed proactively and do not require any dynamic action on the data plane,

the only CATENAE’s throughput bottlenecks are in the classifiers used to classify

upstream and downstream traffic. We presented both an architectural solution and

a technological solution to address the two cases, respectively. For the upstream di-

rection, we ensure only upstream traffic is handled by the upstream classifier. Given

that upstream traffic typically contributes just the 10% of the overall system work-

load, this allows us to support the traffic growth expected in the mid-term using a

state of the art software switch as classifier. For the downstream direction, instead,

we presented HSwitch, a hybrid software/hardware classifier based on commodity

SDN switches. HSwitch caches the heavier flows in its hardware layer, while the

software layer guarantees the possibility to install the big number of flows required

to support the CATENAE’s traffic steering method.

CATENAE lacks some advanced features provided by related work, e.g., support

Chapter 3 Single-domain Service Function Chains 58

for network functions’ metadata. However, the lack of such features is traded with

the possibility of deploying the system today, on legacy infrastructures. In effect,

our design experience shows that those desired features may be still lacking in other

system’s components as well. For example, network functions do not support meta-

data exchange yet. Thus, CATENAE provides support for service function chaining

with today’s technologies, while the mentioned advanced features could be eventu-

ally introduced as the legacy infrastructure gradually evolves, when they are actually

needed.

As a final remark, our experience suggests that a design tailored to the problem

can help in solving issues that otherwise would require much more expensive solu-

tions. Notice that, in the past, highly-specialized solutions in networking were not

considered economically convenient. Traditionally, a network operator would buy

an expensive hardware box, which was required to support a number of different

deployment scenarios, since its monolithic design would not allow for modifications.

Today, we have to observe that the landscape is considerably changed with the

introduction of software-based networks. In fact, the “swiss-knife” solution is not

required anymore since the solution now runs on a programmable infrastructure.

That is, the solution is not a monolithic design that cannot be changed anymore,

instead, it can evolve overtime to meet the changing requirements and constraints.

Chapter4
Internet-wide Service Function Chains

4.1 Introduction

Since the early stage, the research community has been mainly focused on Single-

domain SFCs. Mobile networks and DC networks are the most notable use-cases in

such problem space. Their constraints, technical specifications, and requirements,

have steered the Single-domain SFC solutions of the research community. At high-

level, we can characterize single-domain SFC systems as follows:

I Full visibility of the network topology where the NFs are deployed;

II Full control of the underlying network topology i.e., they assume to have the

ability to make changes to the network infrastructure, for instance with SDN;

III SFC enforced transparently to users’ traffic i.e., users are SFC-unaware.

The full visibility and control of the underlying network topology properties orig-

inate from the fact that NFs provider and consumer are represented by the same

stakeholder in the main use cases (e.g., mobile network, DC network). In fact, Mo-

bile Network Operators (MNOs) and DC operators represent the entity defining the

SFC, and at the same time, enforcing it. Further, in single-domain SFCs users are

generally SFC-unaware because the NFs are introduced by the content server and/or

the infrastructure operator (e.g., MNO, DC), and do not provide any explicit service

to the clients.

Chapter 4 Internet-wide Service Function Chains 60

We argue that the above-mentioned assumptions are hindering the wide adoption

of SFC techniques in more diverse scenarios. Therefore, in this chapter, we explore

the more general case of Internet-wide SFCs, in which multiple stakeholders are

involved in the SFC provisioning, and the NFs are not constrained within a single

domain and are rather distributed in the network. Several SFC systems, that respect

the proposed definition of Internet-wide SFC, have been proposed by the research

community [35–37, 77]. Such solutions enable to distribute the NFs in the network,

without any particular constraint. Further, they do not require any change to the

network control plane, as they use plain IP routing to steer the users’ traffic through

the SFC. As follows, each NF is identified in the network by its IP address i.e., a

SFC instance is identified by a set of IP addresses.

On the other hand, the mentioned internet-wide solutions share a similar as-

pect, that in our opinion, limits their the wide deployment in the network. In fact,

[35–37, 77] assume that the client – which is the entity initializing the connection

establishment – is aware of the NFs’ IP address prior the connection establishment.

Likewise, they consider the NFs’ IP address discovery as an orthogonal problem to

the SFC provisioning. Currently, and to the best of our knowledge, there is no prior

work available on how to approach the SFC resolution problem, and which are the

challenges involved when dealing with real-world deployments of a SFC Resolution

process.

In this chapter, we first envision, in the current Internet landscape, the Domain

Name System (DNS) system to be a candidate for the SFC Resolution process. In

fact, for each client’s request, it selects a serving node, among a pool of service

instances, based on multiple properties e.g., network location, availability, etc. Fur-

ther, it returns to the client the IP address of the selected instance, which is then

used by the client to initiate the end-to-end connection – as required by [35–37,77].

61 4.1 Introduction

Nonetheless, the current DNS resolution process is optimized for standard end-to-

end connections. In fact, it assumes that the domain name to resolve represents the

communication’s end-host e.g., content server. Whereas when dealing with SFCs,

the resolution of the server’s domain name represents only one case. Thus, it includes

the resolution of the domain names associated with the NFs composing the SFC.

And in such cases, the serving instance has to be selected based on the client’s

location – as with the standard DNS – as well as on the next hop within the SFC.

However, no prior work is available how to approach the SFC Resolution process in

the current Internet architecture, likewise, the efficiency of the current DNS system

when dealing with SFCs.

4.1.1 Contributions

In Section 4.2 we introduce DNS background information, important for a thorough

comprehension of the design choice implemented in the following sections. In Sec-

tion 4.3 we formulate the SFC Resolution in detail, highlighting the properties and

the challenges that a SFC Resolution process show in practice. In Section 4.4, we

present the possible SFC Resolution strategies and their inefficiencies, when imple-

mented with the current DNS architecture. So, in Section 4.5 we present a Col-

laborative SFC Resolution process. Two DNS extensions are proposed enabling to

share minimal information among multiple and independent providers. They enable

to enhance the instance selection for each NF provider, allowing close-to-optimum

results as proved in Section 4.6. We present related work in Section 4.7 and conclude

the chapter in Section 4.8.

Chapter 4 Internet-wide Service Function Chains 62

4.2 Background

When a client connects to a web server (e.g., www.example.edu), she needs to resolve

the related domain name before establishing the connection as shown in Figure 4.1.

Therefore, the client sends a DNS query to its local DNS. The local DNS acts as

a recursive DNS – it resolves the domain name hierarchy (i.e., Root, .edu) and

then returns the result to the client. In our example, Root, .edu and the content

server DNS act as iterative DNS. They return either the best answer based on their

responsibility zone (e.g., content server DNS) or refer to a DNS server of a lower

level of the domain name space (e.g., Root and .edu DNS). The server’s authoritative

DNS selects the serving node(s) – among the others parameters – based on the client

(or its local DNS) network location.

Figure 4.1: Example of a DNS architecture

63 4.3 Problem Statement

4.3 Problem Statement

State of the art internet-wide SFC techniques [35–37, 77] target standard client-

server connections. The client is the communication end-host starting the connection

establishment. So, a SFC is established from the client, to the server, through the

introduced NFs. It is worth mentioning that, in order to establish the connection, the

client needs to be aware of the NFs’ IP address prior to the connection establishment.

As it has happened for single-domain SFCs, we abstract a general use-case – which

we consider as target use-case in this chapter – starting from technical constraints

and requirements imposed by the state of the art internet-wide SFC techniques [35–

37,77]. In the most general case, a client (C) connects to her bank’s website (B). B

enriches its client’s connection with some cloud-provided application-level NFs such

as a Content Delivery Network (Service A) and a DDoS protection service (Service

B). Commonly, we can assume that each NF provider deploys multiple NF instances,

distributed in the network. Each NF is identified by its IP address. Given that the

NF provider wants to use the best instance for the specific SFC, we can further

assume that each NF service is identified by a domain name (e.g., serviceA.edu,

serviceB.edu). Therefore, as shown in Figure 4.2, each NF provider implements an

authoritative DNS that maps the NF domain name to the right instance’s IP address

according to the specific request – which is then returned to the client that can start

the connections establishment.

We highlight that the SFC Resolution process shares many aspects with today’s

DNS, whereas it shows one important difference as shown in the following property.

Chapter 4 Internet-wide Service Function Chains 64

Figure 4.2: Example of a DNS architecture with SFC

SFC Resolution Property: end-to-end-through-many paradigm

The SFC Resolution process takes into account the end-to-end-through-many

nature of the network flows. In fact, the NF instances are selected in order to

optimize the entire SFC path, which originates from the client, passes through

the NFs, and terminates to the server.

The previous SFC resolution property highlights the fact that today’s DNS deals

with standard end-to-end connections. Therefore, the domain name to resolve is

usually represented by one end-host (i.e., server), and the resolution process is opti-

mized, among other parameters, based on the other end-host (i.e., client) location in

the network. However, when dealing with the NFs within a SFC, each NF’s domain

name has to be resolved by taking into account the location of the NF within the

chain. So, each NF instance is selected based on the previous hop in the chain, as

well as the next hop in the chain.

65 4.4 Today’s DNS Resolution Strategies

4.4 Today’s DNS Resolution Strategies

When considering today’s DNS, it is possible to implement two SFC Resolution

strategies, as we examine in [78].

I – Client Selection (CS): the client sends a DNS query for each node composing

the SFC (e.g., NFs and server). The serving instance, at each hop, is selected to

be the closest to the client. The selection process is optimized for the client-server

paradigm – the node to be resolved is the end host of the communication.

II – Hop-by-hop Selection (HS): the client uses the EDNS0 client-subnet extension

of the DNS protocol [79], which enables to specify an IP prefix in a query in order

to provide the DNS server with a hint about the client’s location. Such extension is

used to optimize the path selection based on the previous hop. Thus, at each hop,

the serving node is selected to be the closest to the node selected at the previous

hop.

The previous approaches are then compared to the Global Selection (GS), in

which we assume to have full visibility of all middlebox instances and their locations.

Therefore, the problem is modeled as a shortest path problem. GS represents the

best case. A preliminary evaluation has been performed on simulated network graphs

for SFCs composed of 5 in-network services. CS and HS show end-to-end network

delay +49% and +28% greater than GS, respectively. These poor results are rooted

in the uncoordinated decision performed by multiple and independent parts (e.g., in-

network services authoritative DNS). In fact, a serving instance, identified by its IP

address, is usually selected among the available instances by the in-network service

provider, according to a number of optimization criteria7. Since each in-network

7For the sake of our discussion and without loss of generality, we will assume that a serving instance

Chapter 4 Internet-wide Service Function Chains 66

service provider selects its instance independently from the instances selected by the

other providers, there is no chance to provide an instances selection that is optimized

for an end-to-end global optimum [80].

4.5 Collaborative SFC Resolution

In Section 4.4 we highlighted the inefficiencies when using the current DNS architec-

ture for the SFC Resolution process. We showed that such inefficiencies are rooted

in an uncoordinated decision performed by multiple and independent parts.

In this section, we present a Collaborative SFC Resolution which enables

to achieve close-to-optimum NF instance selection, by sharing a minimum amount

of information among the different parties. We implemented a system prototype,

performing minimal changes to the current DNS architecture, in order to evaluate its

impact on the NF instance selection. In our evaluation in Section 4.6, we show that

the proposed Collaborative SFC Resolution process enables to find solutions that

show up to 30% improvement, in terms of end-to-end network delay, when compared

to solutions that do not share information and perform the NF instance selection

independently. Likewise, they also represent near-optimal solutions, as they are only

4.8% worse compared to the global optimum.

4.5.1 Enabling collaborative SFC resolution

We increase the information shared among the parties defining 2 additional sections:

the Next Service and Source sections.

is selected to be the closest to the client’s location. For example, this is a common approach for
the selection of a service instance for a CDN-like service.

67 4.5 Collaborative SFC Resolution

The Next Service section includes the domain name of the next service of the

chain. It enables the in-network services authoritative DNS to optimize the mid-

dlebox selection considering also the next hop of the chain, whereas before it was

optimized based only on the source (e.g., CS, HS).

During the design phase, also the case of including further hops ahead (e.g., 2

hops, 3 hops, etc.) has been considered. However, in order to narrow down the

number of information shared among authoritative DNSs, in Section 4.6.3 we prove

a single hop ahead to be the right trade-off. It improves notably the SFC Resolution

while sharing as little information as possible.

In the most general case, a DNS answer includes one or multiple IP addresses

in order to be resilient to a node failure. In fact, if the node corresponding to the

first IP address returned fails, the client can use one of the following IP addresses

included within the answer. In order to enhance the DNS functionalities while

reducing the number of changes to the current architecture, we enrich the semantic

of DNS answers while keeping the structure unchanged. In particular, we embed

the selection preference in the IP addresses order. Therefore, the whole set of IP

addresses received at one hop, is used to define the Source section of the next query.

Thus, the selection preference embedded in the Source section is considered for the

next hop resolution.

4.5.2 Extended Selection (ES)

Fig 4.3 shows the network abstraction. Extended Selection (ES) is the process of

selecting the shortest path on the SFC Network, which is composed of the client,

the in-network services, and the content server. However, the in-network services

Chapter 4 Internet-wide Service Function Chains 68

;; QUESTION SECTION:
www.example.edu. IN A

;;;; SOURCE SECTION:
www.previous hop.edu. 300 IN A 199.99.22.X
www.previous hop.edu. 300 IN A 199.99.23.X
www.previous hop.edu. 300 IN A 199.99.24.X
www.previous hop.edu. 300 IN A 199.99.25.X
www.previous hop.edu. 300 IN A 199.99.26.X

;;;; NEXT SERVICE SECTION:
www.next hop.edu.

It represents the extended DNS query, sent from the content server to the in-network services, which includes
the Source and Next Service section.

Listing 1: Extended DNS Query Example

Figure 4.3: Network abstraction

are provisioned by multiple and independent domains and their distribution in the

network is known only locally at each service provider. Therefore, ES aims first

to extract a Sub-network, relevant for the specific SFC. Then, it models the SFC

Resolution as a shortest path problem on the extracted sub-network, on which it

has full visibility.

69 4.5 Collaborative SFC Resolution

Implementation Details ES can be implemented, seamlessly, on the local DNS

or on the content server authoritative DNS. However, the former requires changes to

the current DNS architecture, whereas the latter requires changes only to the content

server – which is the main stakeholder that benefits from an optimized middleboxes

selection. Therefore, in order to foster the implementation of our solution within

the today’s DNS, we implement ES on the content server.

Extended Selection Phases (I) Middlebox Discovery: the content server uses an

approach similar to HS. In particular, it resolves the whole SFC using the extended

DNS query defined in Section 4.5.1. For the first service, the client is defined as

the source and the second service of the chain as the Next Service. Therefore, the

answer is used to define the next query extended Source section and the third service

is defined as Next Service. And so on. In the end, the content server extracts a Sub-

network from the SFC Network (Fig. 4.3).

(II) Cost Discovery: it represents the process of finding the weights of the Extracted

Sub-network. The weights represent the network delay between any couple of nodes

(i.e., middleboxes). The weights can be evaluated either with monitoring actions or

through state of the art techniques such as [81].

(III) Path Selection: the content server authoritative DNS has now full visibility on

the Extracted Sub-network. Therefore, it models the SFC Resolution as a shortest

path problem, and uses state of the art algorithms (e.g., Dijkstra).

4.5.3 Client’s DNS answer

We include the SFC related information within the answer returned to the client

from the content server authoritative DNS. In particular, we define the SFC Answer

Chapter 4 Internet-wide Service Function Chains 70

;; −>>HEADER<<− opcode: QUERY, status: NOERROR, id: 25778
;; QUERY: 1, ANSWER: 1, AUTHORITY: 1, SFC ANSWER: 2, SFC AUTHORITY: 2
;; QUESTION SECTION:
www.example.edu. IN A

;; ANSWER SECTION:
www.example.edu. 00300 IN A 199.99.22.39

;; SFC ANSWER SECTION:
www.A.edu. 00300 IN A 199.99.22.37
www.B.edu. 00300 IN A 199.99.22.38

;; AUTHORITY SECTION:
www.example.edu. 93375 IN NS ns1.www.example.edu.

;; SFC AUTHORITY SECTION:
www.A.edu. 93375 IN NS ns1.a.edu.
www.B.edu. 93375 IN NS ns1.b.edu.

Listing 2: Extended Client DNS Answer Example

and Authority sections. As for a standard DNS answer, the former includes the IP

addresses of the in-network services composing the SFC. While the latter includes

the corresponding authoritative DNSs. Moreover, we keep the original DNS answer

structure unchanged. A client, that does not support the extension, is still able to

connect to the content server using the IP address in the answer section.

4.6 Evaluation

In our evaluation, we consider the scenario of a SFC composed of the client, five

in-network services (Nservices = 5) and the content server – which we assume to be

deployed in a single network location. The selected number of in-network services has

been selected to reproduce a real use case. When the number of in-network services

increases, some performance metrics might be severely impacted. For instance, in

71 4.6 Evaluation

[35] the Time To First Byte (TTFB) for a SFC composed of 5 services is 1500 ms,

which in some cases might already be considered unacceptable. In Section 4.6.1,

we evaluate the overall number of DNS Query, and in Section 4.6.2 the Resolution

Time (RT) required to resolve the SFC. Thus, in Section 4.6.3, we evaluate the

impact of the Collaborative SFC Resolution on the connection establishment (i.e.,

Time To First Byte). In Section 4.6.4, we consider the overhead introduced by the

proposed solution in the Domain Name System (DNS) architecture. We conclude

the evaluation in Section 4.6.5, comparing ES against state of the art solutions

considering all the evaluated aspects.

4.6.1 Number of DNS queries

We define Ntot =Nservices +1 = 6 the number of nodes to be resolved. CS, HS, and

ES are compared against the case of a standard Single Domain Resolution – which

we assume as a baseline – evaluating the number of DNS queries sent (M).

In our evaluation, a simple caching strategy is considered. The local DNS caches

Top Level Domains (TLD) such as .com, .net, .edu, etc. Whereas, the content

server DNS caches the in-network services authoritative DNSs. We claim this to be

a realistic assumption because the content server resolves a single service chain i.e.,

the one it defines.

Single Domain Resolution (SD): Ms = 3. The client sends a DNS query to its

local DNS. The local DNS resolves the content server authoritative DNS sending a

query to the TLD authoritative DNS (i.e., .edu) – using its cached value of it. Thus,

it forwards the client’s query to the content server authoritative DNS, which finally

resolves the domain name.

Chapter 4 Internet-wide Service Function Chains 72

Client Selection (CS): Mcs = Ms ∗NT ot = 18. The client sends NT ot queries to

resolve each in-network service and the content server with a total of 18 queries.

Hop-by-hop Selection (HS): Mhs =Mcs = 18. HS, similarly to CS, needs to resolve

NT ot domain names.

Extended Selection (ES): Mes = Ms + (1∗Nservices) = 8. Ms queries are required

by the client to resolve the content server authoritative DNS. Therefore, the content

server resolves Nservices in-network services. However, only a single query is needed

to resolve each in-network service, as we assume the content server uses the cached

values of the in-network services authoritative DNSs.

Please note that in order to enable each in-network service authoritative DNS to

optimize the middlebox selection also for the next service, an additional resolution

is required. However, each service of a defined SFC steers the traffic to the same

service i.e., its next hop. Therefore, we assume that an important optimization can

be done here and, for this reason, the mentioned additional resolution is not included

in the evaluation of the overall number of DNS queries.

4.6.2 Resolution time

The Resolution Time (RT) is the time interval, observed by a client, to receive

a DNS answer after a DNS query has been issued. Several factors condition the

RT e.g., Round-Trip Time (RTT) among authoritative DNSs, the time required

by each DNS to generate the answer, etc. However, most of these factors depend

on the specific implementation and/or current network conditions. We perform

a quantitative analysis on the RT considering the number of queries evaluated in

Section 4.6.1. More in detail, we consider the number of DNS queries as a comparison

73 4.6 Evaluation

metric, as we assume that a higher number of queries corresponds to a higher RT. We

can observe similar results for the Single Domain Resolution (SD): RTs = Ms = 3.

For the Client Selection (CS) instead, we can make the following consideration;

each query is independent from the others enabling the client to send them in a

parallel fashion. Therefore, we assume that CS, even if generates more queries than

SD, shows RT similar to it: RTcs = RTs = 3. The same consideration cannot be

applied for HS, because each query is dependent on the previous one – the result

of a query is used to define the next query. Therefore, the resulting resolution

time is: RThs = Mhs = 18. No further optimization can be applied also for ES:

RTes =Mes = 8.

4.6.3 TTFB evaluation

The Time To First Byte (TTFB) is the time required for a client to receive the first

byte of a content server’s response, consequent to its issued request. We evaluate

the impact of different SFC Resolution strategies on the TTFB. We assume that

TCP is used to establish the connection throughout the SFC. Assuming the service

chain end-to-end delay (D), TTFB is proportional to it by a factor four (TTFB =

4D) [82].

The SFC Network (Fig. 4.3) is composed of the client, the in-network services’

middleboxes, and the content server. It represents an Overlay Network over the

Underlay Network. The SFC Network is not a full mesh. The client can select one

of the first service’s deployed middleboxes. Thus, the first service can select one of

the second service’s deployed middleboxes. And so on. As follows, assuming the

links in the Underlay Network are symmetric, we can model the SFC Network as a

non-complete Directed Acyclic Graph (DAG).

Chapter 4 Internet-wide Service Function Chains 74

Figure 4.4: Time To First Byte (TTFB) Graph. SFC Composed of 5 In-
network Services The left and white part represents the experiments
performed on Rocket Fuel topologies. The right and light grey part
represents the experiments performed on simulated network graphs.

Experiment Global Selection (GS) is considered as a comparison metric for our

experiment. It represents the ideal case because it assumes to have full visibility on

the SFC Network, which enables to apply a shortest path algorithm (e.g., Dijkstra).

We generated underlying network graphs using Rocket Fuel [81] topologies, which

also provide per-link delays. We assume each node in the underlying network to be a

potential location for placing an instance of the in-network services (e.g., middlebox).

In total, we generate 61 underlying networks with a number of nodes varying between

27 and 115. Then, we generated different SFC Networks (overlay network) with a

number of nodes varying from 27 (i.e., 5 middleboxes per service) to 82 nodes (i.e., 20

middleboxes per service). An increased number of middleboxes deployed represents

a wider distribution of the in-network services in the network. The mapping of

the SFC network to the underlying network is performed placing each middlebox

on a random assigned underlying network’s node. For each underlying network,

we performed 100 different placements, resulting in 100 different SFC networks. In

total, we generated 24400 SFC networks. The distance between two middlebox on

75 4.6 Evaluation

the overlay network, which are not adjacent in the underlying network, is evaluated

as the sum of link’s delays on the shortest path between such nodes. We implemented

CS, HS and ES, while we use the NetworkX Dijkstra implementation for GS.

Scalability In order to evaluate the impact of a wider distribution of the services

(more than 20 middleboxes per service), we performed further experiments on sim-

ulated network graphs generated using Python. We generated SFC Networks with

a number of nodes varying from 152 to 452 (from 30 to 90 middleboxes per service).

Each node is placed randomly on a 100x100 coordinate grid, and the Euclidean dis-

tance between any two nodes is considered as network delay. For each experiment,

we generated 1000 different SFC Networks and all the algorithms are evaluated on

the same graph.

Results The experiments results are shown in the box plot of Fig. 4.4. The left

and white part represents the experiments performed on Rocket Fuel topologies.

Whereas, the right and light grey part represents the ones performed on simulated

network graphs. The x-axis represents the number of middleboxes deployed by

each in-network service in the network. The y-axis represents the TTFB (in %)

normalized to GS.

Observing Fig. 4.4 it is possible to make the following observations. (I): the

experiments performed on Rocket Fuel topologies and simulated network graphs

show results that are coherent with each other. (II): For a number of middleboxes

deployed per service between 5 and 20, ES shows a median equal to 0 i.e., 50% of the

samples show end-to-end network delays which are comparable with GS, even with a

partial visibility on the SFC network graph. (III): CS, HS, and ES – considering the

average of the median – show end-to-end network costs increase of +51.7%, +27.7%

Chapter 4 Internet-wide Service Function Chains 76

CS HS ES
SFC IPs 7 7 3

RT 3 18 8
DNS Query 18 18 8

TTFB +51.7% +27.7% +4.8%
Local DNS Θ(Nser + 1) Θ(Nser + 1) Θ(1)
Server DNS Θ(1) Θ(1) Θ(Nser + 1)

Table 4.1: Results at a glance
The table shows an overview of the evaluation section which compares all the

approaches considering all the results

and +4.8%, respectively, when compared to GS.

4.6.4 Complexity analysis

Each in-network service authoritative DNS selects the serving node based on a set

of source locations and the next hop of the service chain, whereas before the se-

lection was based only on the query’s source location. We claim this increase in

complexity to be negligible. The content server instead, has the overhead to run ES

– which is composed of 3 phases. The Middlebox Discovery overhead is evaluated in

Section 4.6.1. The Cost Discovery overhead instead, can be performed off-line and

therefore it does not have a direct impact on the resolution process. The Path Se-

lection is modeled as a single-source single-destination shortest path problem (i.e.,

from the client to the server) on a non-complete, Directed Acyclic Graph (DAG)

i.e., Extracted Sub-Network (Fig. 4.3). Therefore, it can be efficiently solved using

topological sort with a resulting time complexity of O(|V |+ |E|) [83].

77 4.6 Evaluation

4.6.5 Results at a glance

Table 4.1 shows a comparison of all the proposed approaches. Please note that CS

and HS are used as a comparison metric to evaluate the impact of SFC Resolution

on the system. However, they don’t represent solutions which are ready-to-deploy,

because they assume the client knowledge of the SFC – which would require an

additional handshake phase – prior to the resolution process. Likewise, GS is only

used as a comparison metric of the global optimum.

End-to-end Network Delay CS, HS and ES show end-to-end network delay

+51,7%, +27.8% and +4.8%, respectively. However, consider that those are rel-

ative values, compared to GS, evaluated assuming TCP is used to establish the

connection. Therefore, end-to-end delay increases have a different impact on differ-

ent protocols. For instance, when establishing an encrypted connection using TLS,

additional RTTs, on top of the TCP handshake, are required to establish the secure

connection. Moreover, we would like to emphasize that increased network delay

might severely impact user experience and service providers’ revenue. For instance,

injecting just 400 ms of artificial delay into Google search results caused the delayed

users to perform 0,74% fewer searches after 4-6 weeks [84].

Impact on the System Local DNSs are affected by the proposed solution as

they are required to forward the extended client answer received from the content

servers. Further changes are required on the content server and the in-network

services, which need to support ES and the extended DNS queries, respectively.

However, we claim this to be acceptable trade-off since only the stakeholders that

benefit from an optimized middleboxes selection are affected.

Chapter 4 Internet-wide Service Function Chains 78

Impact on the Scalability While CS and HS do not require changes to the

DNS architecture, they generate an increased workload on the local DNSs ((i.e.,

Θ(Nser + 1))) which harms the current DNS scalability. On the other hand, ES

requires almost no changes to the DNS infrastructure, and it does not introduce

overhead on any level of the DNS infrastructure (i.e., Θ(1)), because it distributes

the increased overhead on the content server authoritative DNS. We claim that this

aspect to be an important factor while incrementally introducing our approach in

today’s Internet.

4.7 Related Work & Use Cases

In the context of the Domain Name System, DNS redirection [85] is a state of the

art technique adopted by service providers to redirect the clients’ requests to the

closest CDN node. However, a CDN node acts as a surrogate server and it does not

define a service chain. IP anycast [86] instead, is used to route the traffic to the

nearest node in a group of identical resources. For instance, it is used to route the

Google DNS (e.g., 8.8.8.8) traffic to the nearest instance from the client. However,

also in this case, IP anycast is optimized for the client-server paradigm and cannot

be adapted for the context of a service chain composed of multiple nodes.

Dysco is a session-level protocol that steers the traffic of a TCP session through

a SFC [37]. It can dynamically re-configure the SFC without requiring any changes

to TCP stacks, IP routing, and middleboxes. However, it requires the middleboxes’

IP address to establish the TCP connections.

Multi-context TLS (mcTLS) is a pluggable TLS extension [35]. It enables a

client and a server to introduce a set of in-network services within TLS connections.

79 4.7 Related Work & Use Cases

A handshake phase is used to agree on the SFC – defined by the client – and

distribute different encryption keys to the communication nodes. However, the

server cannot introduce in-network services. It can either accept the SFC defined by

the client or refuse it. Moreover, it assumes that the client has the list of middleboxes

– defined by their IP addresses – prior to initiating a handshake (see § 6.1 in [35]).

Segment Routing (SR) is a source routing architecture developed within the

IETF [36]. It allows packets to follow non-shortest paths towards the destination by

specifying a list of waypoints defined as segments. The list of segments is transported

in a new type of Routing Extension Header called SR Header (SRH) [87]. In [88] the

authors proposed to leverage SFC using the IPv6 version of Segment Routing (SR-

IPv6). Only the nodes that actually process SR-enabled packets need to support

SR-IPv6. Whereas intermediate nodes, that are on the path of a segment, forward

the packets as regular IPv6 packets. However, their solution is limited to network

functions which are SR-aware. In [89] the authors propose to leverage SFC using

SR-IPv6 also for network functions which are unaware of SR. However, SR-IPv6

assumes that the client, prior to the connection establishment, is aware of the list

of segments (i.e., IPv6 addresses).

Middleboxes selection itself is an orthogonal problem compared to SFC traffic

steering. However, it represents the groundwork that can foster the wide-spread im-

plementation of such techniques in today’s Internet. The proposed solution provides

the means to resolve the middleboxes’ IP addresses, related to a specific SFC, that

can be used for example to define the mcTLS handshake or the SR Header (SRH).

Chapter 4 Internet-wide Service Function Chains 80

4.8 Conclusion & Future Work

In this chapter, we addressed the SFC Resolution problem in the context of Internet-

wide SFCs. We sketched a Collaborative SFC Resolution that enables to share a

minimum amount of information among multiple and independent in-network service

providers. We implemented a prototype using the current Domain Name System

(DNS) infrastructure. Through an extensive evaluation on real network topologies

and simulated network graphs, our solution, on average, shows 30 % improvement,

in terms of end-to-end network delay, when compared to solutions that do not share

any information and perform the NF instance selection independently. At the same

time, they represent near-optimal solutions, as they show only 4.8 % higher end-to-

end network delay, on average, when compared to the global optimum.

The proposed SFC Resolution, applied using the DNS, aims to provide the basis

and to foster the wide deployment of Internet-wide SFC steering techniques that use

plain IP routing for steering the traffic through the SFC in today’s Internet.

As future work, we plan to take into account a case in which client and server

can actively negotiate the list of services to introduce within the end-to-end path.

Therefore, an efficient negotiation phase needs to be designed.

Chapter5
Mute: MUlti-Tier Edge networks

5.1 Introduction

In recent years, several application use-cases, requiring high data availability and

quick computation, such as Internet-of-Things (IoT), vehicular networks, etc. have

proliferated to a great extent. Such applications require computational resources

that can handle highly variable data with stringent completion time requirements.

The traditional centralized cloud model is unable to support these use cases due to

possibly high network delays encountered while offloading data to the location of

cloud data centers. Researchers have proposed decoupling the traditional cloud

model to several smaller computation resources installed closer to data genera-

tors [90]. Due to their proximity to the network ”edge”, these collections of resources

are termed as Edge cloud [91].

In the past, several edge cloud models have been proposed [92–95] to decouple

network delay from computation time in concrete deployments. Telecom operators

have also adopted such models, for instance, models such as Mobile Edge Com-

puting (MEC) enable edge servers and cellular base stations to be operated simul-

taneously [96]. Recently, significant improvements in MEC have enabled Mobile

Network Operator (MNO) to integrate 5G telecommunication in the cloud platform

itself [91]. However, at this stage, only proprietary edge services can be deployed

by MNOs MEC instances, and the platforms are not open to third-party providers.

Chapter 5 Mute: MUlti-Tier Edge networks 82

SFC 1

SFC 2

Figure 5.1: SFCs over Edge Cloud

Other research proposals have considered open-to-all edge cloud instances to be com-

posed of possible community driven compute resources which drastically increase the

density and variability of the edge. For instance, Mohan et al. [97] present a model

where the edge cloud is composed of a combination of voluntary compute resources

such as mobile phones, workstations, etc. and managed micro-cloud instances such

as mini-datacenters.

Existing service/task placement and resource selection algorithms attempt to map

multiple services on a set of homogeneous cloud resources with a consistent network

delay from the clients [98]. Figure. 5.1 shows an end-to-end SFC deployment on the

edge. However, the significant heterogeneity of the edge resources, regarding pro-

cessing capability and network distribution, necessitates re-designing such placement

algorithms, to make them match better with edge computing environments.

In this chapter, we provide the following contributions.

83 5.1 Introduction

1) We define a use case scenario for the Edge where Edge Platform Providers

open their infrastructure to third-party Service Providers as shown in Figure 5.2.

Building on the success of other open systems, with the Internet and Web being

prime examples, we conjecture that a similarly open approach will enable edge com-

puting to flourish. Existing solutions, such as auctioning strategies [99] can be used

to allow platform providers to run their systems for profit.

2) We define a model of a multi-tier edge network in which edge resources are log-

ically clustered into distinct tiers, based on their characteristics such as processing

capabilities, network delay from the client, etc. as shown in Figure 5.2. This charac-

terization enables Edge Service Providers, to efficiently manage their governed edge

resources, and to find more granular solutions optimized for multi-tier scenarios.

3) We design Mute, a placement algorithm which leverages multi-tier edge archi-

tecture to find an edge server which best supports the needs of a requested service.

4) We perform an extensive set of simulations using real network topologies [100].

We show that the Mute algorithm achieves 66% reduction in network cost, when

compared to state of the art non-edge aware placement algorithms. Additionally,

Mute leverages the multi-tier structure to achieve the service placement up to 50%

faster, when compared to non-tier aware placement algorithms.

5.1.1 Contributions

The rest of the chapter is organized as follows. We discuss the architecture and

stakeholders in an edge network in Section 5.2, and present Multi-Tier Edge archi-

tecture and Mute algorithm in Section 5.3. In Section 5.4, we evaluate Mute with

state of the art algorithms on realistic topologies. In Section 5.5, we present related

Chapter 5 Mute: MUlti-Tier Edge networks 84

work and use-cases of proposed edge architecture. We conclude in Section 5.6.

5.2 Architecture & Stakeholders

In Figure 5.1, we show the architecture and the stakeholders of an edge cloud.

We envision a model where several edge platforms co-exist on the network. An

end-to-end connection is established between the client and the cloud platform.

Multiple services can be deployed on the edge servers which can enrich client’s

connection with the cloud (e.g., video transcoder, web proxy, etc.). The resulting

Service Function Chain (SFC) is routed through deployed services which can either

be placed on servers co-located in the same facility or in different platforms and

location. Based on the ownership of resources, the edge cloud model has three

primary stakeholders: Clients, Edge Service Providerss (ESPs) and Cloud Service

Providerss (CSPs) (shown in Figure 5.2).

Clients establish the connection with a Cloud Server (CS) in a Cloud Platform

(CP). The clients and/or cloud can request to include virtualized services deployed

at the edge via SFC. The client can have either an active or a passive role in the SFC

traffic steering depending if the SFC is transparently enforced [14], for instance by

the network operator, or is explicitly defined by the client or the server [35,37].

Cloud Service Providers (CSPs) consolidates several CSs deployed on a CP.

Individual CSs are grouped together in Data Centers (DCs) facilities, which are

distributed at various locations in the network [101]. Upon arrival of a connection

request from a client, the CSP re-routes the request to one of the available CSs in

the CP.

85 5.3 Edge Platform Modelling and Deployment

Edge Service Providers (ESPs) act as an intermediate entity between clients

and CSPs. An ESP hosts several computation and storage capable Edge Servers

(ES) federated into Edge Data Centers (Edge DCs). Unlike the cloud DCs, the

Edge DCs are spread over a broader geographic region and have a significantly

lower latency to connect to a client in proximate location.

Figure 5.2: Multi-tier Edge architecture & stakeholders

5.3 Edge Platform Modelling and Deployment

The edge cloud model discussed in Section 5.2 considers the interaction between the

involved stakeholders. In this section, we discuss the techniques by which the ESPs

can model its governed Edge Platform and select the best ES to deploy requested

service functions.

Chapter 5 Mute: MUlti-Tier Edge networks 86

5.3.1 Multi-Tier Edge

Past state of the art research has proposed grouping ESs in an EP wherein all servers

have similar characteristics [94]. The ESP can then employ a selection algorithm

which ”picks” the best ES capable of supporting the processing and number of users8

required by the requested service.

We propose multi-tier edge platform, which further categorizes resources within a

platform in tiers depending on their network delay from the edge. Fig. 5.2 illustrates

platform’s architecture. The properties of the ESs in resulting architecture varies

from tier-to-tier.

I) Network Delay: the network delay to the edge is the primary attribute for

classifying ES in tiers. The tiers which are closer to the network edge are composed

of ESs with lower network delay to clients than higher tiers. However, the network

delay of ES to end-client is location-dependent; e.g. Tier 1 ESs in New York and

California will have the least network delay to clients located in their proximate

locations but will have a very high delay for the other’s location.

II) Bandwidth and Processing Power: edge servers in lower tiers have limited

processing capability and can only support a restricted number of users simultane-

ously. However, their proximity to the network edge makes them desirable to deploy

virtualized services. Tiers closer to the cloud are composed of ESs with higher

processing capability.

III) Number of Servers: lower tiers are characterized by a greater number of

small edge servers, that show limited resource capability. On the other hand, tiers

8We denote the number of users that can be supported by a server as its bandwidth throughout
the paper.

87 5.3 Edge Platform Modelling and Deployment

which are closer to the cloud, have a small number of more powerful servers.

5.3.2 Network Structure & Model Definition

Dconn (c,1) =
 3

Client

Dconn (c,2) = 2

D
conn (c,3) = 6

D
conn (1,CP) = 5

Dconn (2,CP) = 6

Dconn (3,CP) =
 2

Figure 5.3: Multi-Tier Edge network architecture example

Here we formulate the problem of placing services on an Edge Platform (EP).

Figure 5.3 shows the network architecture of a multi-tier Edge Platform composed

of three ES with different bandwidth and processing capability. Each server has a

network connection to the client and the cloud platform of a certain weight. The

EP is composed of multiple Edge Servers (ES) of different attributes, i.e. EST =

ES1, . . . ,ESr where EST denotes set of all ES physical machines. As discussed in

Figure 5.3.1, the Edge Service Provider (ESP) categorize ES into tiers t= t1, . . . , tn

wherein each ES in EST ∈ t . The resulting ES are grouped as:

ESn = {ESn
q ,ES

n
q+1,ES

n
q+2 . . . ,ES

n
r } Edge Servers Tier n

where

EST = ES1∪ES2∪ . . .∪ESn

Chapter 5 Mute: MUlti-Tier Edge networks 88

The Edge tier ES1 lies closest to clients C = C1,C2, ...,Cm and the last tier ESn

is closer to the end server/cloud. Each ES physical machine has a maximum re-

source utilization denoted by ESproc =ESp
1 ,ES

p
2 , . . . ,ES

p
r and maximum bandwidth

as ESbw = ESbw
1 ,ESbw

2 , . . . ,ESbw
r . As shown in Figure 5.1, ES in lower tiers have

smaller processing and bandwidth capability but also have a significantly lower net-

work cost to clients.

5.3.3 Placing Services on the Edge

Let S = S1 . . . ,Sm denote the set of ′m′ services to be placed on EST . The service

providers want to enrich the experience of their clients and overall end-to-end con-

nections by deploying services on ES closest to the client. We define services to

have different processing requirements (in terms of the number of CPU-cycles) re-

quired for their execution denoted as Sproc = Sp
1 ,S

p
2 , . . . ,S

p
m. Similarly, according to

the Service Level Agreement (SLA), each service must support a bandwidth quota

denoted as Sbw = Sbw
1 ,Sbw

2 , . . . ,Sbw
m .

Furthermore, every Edge server ES has an associated cost for deploying service

Sj on a Physical Machine (PM) ESi per unit time denoted as cij . The cost is

dependent on ES’s capability (regarding processing and networking) for running the

service and the tier-level it belongs.

EST c = {ESc
1,ES

c
2, . . . ,ES

c
r} ES deployment cost

The resulting pricing model assigns more cost to low tier ESs due to their limited

processing capabilities and lower network delays.

We denote variable x to indicate whether a service Si is deployed on the edge

89 5.3 Edge Platform Modelling and Deployment

server ESTj .

xij =


1, if Si deployed on ESj .

0, otherwise.

Considering the placement requirements, the deployment algorithm can optimize

the following attributes, i) the networking delay between client and the service, and

ii) operational cost of deploying a service on ES with certain processing capability.

5.3.3.1 Minimizing Operational Cost

As discussed in Section 5.3.1, a low tier ES is likely to have a higher cost of deploy-

ment compared to a higher tier server. The operational cost of deploying service S

on the Edge Platform EST can be formulated as

C(λ) =
m∑

i=1

n∑
j=1

Sproc
i

ESproc
j

ESc
j xij (5.3.1)

subject to

0<
m∑

i=1

n∑
j=1

Sproc
i

ESproc
j

< 1 (5.3.2)

n∑
j

xij = 1 ∀ii ∈ S = S1, . . . ,Sm (5.3.3)

The deployment algorithm minimizes Equation 5.3.1 to optimize total cost of

processing a virtualized service on an ES. The constraint in Equation 5.3.2 ensures

Chapter 5 Mute: MUlti-Tier Edge networks 90

that the ES has enough processing capability to host the requested. Equation 5.3.3

guarantees deployment of all requested services.

5.3.3.2 Minimizing Network Delay

Considering that the requested service is to be deployed on an ES member of an EP

(shown in Figure 5.3), the resulting end-to-end connection between client and cloud

will be composed of the nodes client, ES and cloud. We denote network link between

client to Edge Server (ESi) hosting the service and ES to the cloud as denoted as

dconn(c,ESi) and dconn(ESi, cloud) respectively. The end-to-end network cost can

be denoted as

N(Sj) =
m∑
i

[dconn(c,ESi) +dconn(ESi−1,ESi)+ (5.3.4)

dconn(ESi, cloud)]xij (5.3.5)

subject to

m∑
i

Sbw
i xij ≤ ESbw

j ∀j ∈ ES = ES1, . . . ,ESn (5.3.6)

n∑
j

xij = 1 ∀i ∈ S = S1, . . . ,Sm (5.3.7)

The network optimizing deployment algorithm minimizes network cost presented

in Equation 5.3.5. The constraint in Equation 5.3.6 ensures that the selected ES is

91 5.4 Evaluation

able to support the bandwidth by the service.

The algorithm can be further modified to minimize only the network cost between

client and the Edge Server. i.e.

N(Sedge
j) =

m∑
i

(dconn(c,ESi))xij (5.3.8)

5.3.4 Tier-based Optimization

The processing and network optimizing algorithms iterate over the entire search

space (read Edge Platform) to find the ES satisfying the requirements. As discussed

in Section 5.1, an EP can be composed of hundreds of ESs. The algorithms discussed

above imposes significantly large compute time to find the optimal solution.

In Algorithm 1 we present the pseudo-code of Mute. It exploits the multi-tier edge

to find a server with optimal network cost to edge and near-optimal processing cost.

The algorithm exploits the network cost trend of the tiers, i.e., the Edge servers

in lower tiers have a lower network cost to clients than higher tiers. The ESP asso-

ciates EST bw
tier and EST proc

tier with each tier, which denotes the maximum supported

bandwidth and maximum processing capability of the tier respectively. The algo-

rithm approximates the location of the ideal ES by utilizing tier parameters and

prioritizes lower tiers for placement. It further iteratively searches for ES only in

the tier whose processing and bandwidth best satisfy the requirements imposed by

the service.

Chapter 5 Mute: MUlti-Tier Edge networks 92

Algorithm 1: Mute
Input :

Total number of tiers tiers∈ {tier1, . . . ,tiern}
Available Edge servers in tiers
EST∈ {ESTtier1∪ . . .∪ESTtiern}
EST bw ∈ {ESTbw

tier1, . . . ,ESTbw
tiern}

EST proc ∈ {ESTproc
tier1, . . . ,ESTproc

tiern}
Initialize:

selectedServer ← NONE
1 //This function returns Edge Server ES for deploying Service S for each

t ∈ tiers do
2 if ESTbw

t ≥ Sbw and ESTproc
t ≥ Sproc then

3 lowestNetworkCost ←∞
4 for each ES ∈ ESTt do
5 if ESproc ≥ Sbw andESTproc

t ≥ Sproc then
6 Optimize network cost as equation 5.3.8
7 if networkCost ≤ lowestNetworkCost then
8 lowestNetworkCost ← networkCost
9 selectedServer ← ES

10 end
11 end
12 end
13 if selectedServer 6= NONE then
14 break
15 end
16 end
17 end

93 5.4 Evaluation

Figure 5.4: Network cost comparison

Figure 5.5: Processing cost comparison

Figure 5.6: Service deployment cost comparison between Proc, Netw, EdgeNetw and
Mute algorithms

5.4 Evaluation

In this section, we analyze the performance achieved by Mute and compare it with

the Netw, Proc, and EdgeNetw. Netw and Proc are state of the art placement

algorithms, applied on edge networks whereas EdgeNetw is an iterative-variant of

Mute.

I) Network Optimizing Server Selection (Netw) iteratively searches for ES

with least associated network cost of deployment (as modeled in Equation 5.3.5) in

an Edge Platform.

II) Processing Optimizing Server Section (Proc) selects ES with least

processing cost of service deployment (as modeled in Equation 5.3.1).

Chapter 5 Mute: MUlti-Tier Edge networks 94

III) Edge-Network Optimizing Server Selection (EdgeNetw), similarly

to Mute, selects the server with least network cost to the client (as modeled in

Equation 5.3.8). However, unlike Mute, EdgeNetw is not aware of the multi-tier

structure of the edge network and iteratively searches for the optimal server in the

search space.

5.4.1 Experiment Setup

We implemented Mute and the selection algorithms discussed above in a custom

Python-based simulator. The simulator considers Edge network graphs based on

Rocket Fuel topologies [100] which also provides per-link delays between graph

nodes. Overall, we generated 61 network graphs with ≈ 25− 115 nodes. Edge

networks are generated by assigning Edge Servers (e.g., from 10 to 100) on the

generated network graphs, which we assume as underlying network topology. The

network cost between any two ESs is defined as the sum of the link’s delay on the

shortest path between such nodes in the underlying network. We provide process-

ing and bandwidth capabilities to each ES in the edge network and cluster them

in tiers, as discussed in Section 5.3.1. For each network graph, we perform 100

placements, resulting in 100 different edge networks. Therefore, we generate ≈ 6000

edge networks throughout the experiments. For the sake of simplicity, we only con-

sider placing a single service on the network in the current evaluation and leave the

analysis of multiple services as future work.

95 5.4 Evaluation

5.4.2 Results

Figure 5.4 and Figure 5.5 present the box plot results of network and processing cost

respectively and capture data distribution throughout all our experiments. The top

and the bottom of the boxes represent the first and third quartile respectively, and

the red waist represents the median.

Proc, as expected, performs the best in terms of processing cost but has the worst

performance for network cost. It does not represent a practical solution as it always

selects an ES on tiers that show the least processing cost. ESs within such tiers have

significantly higher network delay from the edge and thus show the worst networking

cost.

Netw performs significantly better than Proc and selects an ES with much lower

networking cost. However, it performs worse than EdgeNetw and Mute. Netw selects

an ES with the least end-to-end delay which encompasses the delay from the client

to the ES and the delay from the ES to the cloud. The algorithm does not optimize

edge placement as it is unable to make a distinction between servers with similar end-

to-end network cost but significantly different path delays between client to the ES.

Considering the median of the experiment results, EdgeNetw and Mute (which show

similar results) achieve 66% reduction in network cost on average when compared to

Netw. However, as discussed in Figure 5.3.1, ESs in lower tiers are not processing

capable which reflects in the processing cost achieved by both the algorithms. Both

EdgeNetw and Mute show an increase of 20% in associated processing cost, on

average, when compared to Netw.

Additionally, we analyze the average time required by each algorithm to complete

the service placement, the results of which are shown in Figure 5.7. As evident

Chapter 5 Mute: MUlti-Tier Edge networks 96

from the figure, Mute completes its placement in ≈ 50% lesser time (37.5% average

reduction) when compared to the other algorithms. Mute, unlike the other algo-

rithms, searches over a significantly reduced problem space as it utilizes EST bw and

EST proc to estimate the tier which hosts the optimal ES. Therefore, the proposed

Mute algorithm can discover the ES which can support the requirements imposed

by Service Provider while ensuring least network delay to the client. Furthermore,

it efficiently utilizes the multi-tier architecture of an Edge Platform to achieve a

deployment time significantly lower than the state of the art.

Figure 5.7: Time complexity graph

5.5 Related Work & Use-Cases

An increasing number of application use-cases such as Internet-of-Things (IoT),

industrial automation, Augmented Reality (AR), smart cities, autonomous trans-

portation systems, etc., are warranting the need for edge compute clouds [102–104].

Several other research areas, such as Industry 4.0 utilize edge clouds to provide

97 5.6 Conclusion

efficient solutions to several open questions. For example, researchers have pro-

posed automated collaborative robots which require time-critical processing with

extremely low latency (in order of milliseconds) to create a safety zone for their op-

erators [92, 105]. Augmented Reality glasses can assist operators in a continuously

varying production environment by performing markerless object recognition and

accurate tracking in a factory. However, such use-cases can only be fulfilled if the

required data is cached and computed at closely located servers.

State of the art solutions in the fields of virtualization, Software Defined Network-

ing (SDN) and Network Function Virtualization (NFV) represents key technologies

to deploy virtualized services at the very edge of the network in a flexible way and

on cheap commodity hardware [91]. In this paper, we envisioned the case in which

clients have control over which services will be included in their network path using

state of the art Service Function Chaining (SFC) techniques such as [35,37]. In an

open market of choosing services, the client can discover specific edge servers which

are hosting the required service by utilizing Domain Name System (DNS) based

techniques [78, 106]. The clients can significantly enhance their connectivity with

the end-server by using services with very low network delay.

5.6 Conclusion

In this chapter, we proposed Mute, a multi-tier edge cloud architecture which enables

edge cloud providers to efficiently deploy services at the edge. Mute categorizes

edge servers into groups based on their network delay from the client. Due to its

unique architecture abstraction, Mute can efficiently deploy service function chains

on edge servers across multiple edge platforms. Through our extensive simulation-

Chapter 5 Mute: MUlti-Tier Edge networks 98

based evaluation on RocketFuel topologies, we show that Mute achieves a significant

reduction in edge network delay and completion time when compared to state of the

art.

In our future work, we plan to investigate the impact of different edge resources

clustering strategies on the service placement.

Chapter6
Conclusion & Future Work

In this thesis, we explored the solutions available in the state of the art with regards

to SFC systems, analyzing their characteristics and limitation. Along these lines, we

introduced a high-level categorization of SFC systems based on their requirements

and target use-case: single-domain and internet-wide SFCs. The former targets SFC

systems typically deployed within a single administrative domain, such as Mobile

Networks and Data Centers, which are characterized by the fact that the SFC is

defined and enforced by the same stakeholder. The latter instead, are characterized

by the fact that multiple stakeholders are included in the SFC provisioning. Such

logical separation helps in finding solutions which are optimized for the specific

use-case requirements and specifications.

We observed that single-domain SFC solutions were characterized by a ”clean-

state” approach, when considering the SFC system design and implementation. In

fact, they do not consider prior system architecture and network equipment. In

Chapter 3, we propose Catenae, a ready-to-deploy SFC solution that can be de-

ployed on legacy Mobile Networks infrastructure. It provides an effective SFC sys-

tem without requiring important changes in the network infrastructure. Further,

Catenae scales to provide fine grained policies for millions of network flows. We

proved it can handle three times the expected traffic rate at the PGW of 2019 (5

years later the publication).

In Chapter 4, we explored the state of the art for internet-wide SFC solutions,

Chapter 6 Conclusion & Future Work 100

highlighting their main characteristics and requirements. We identified an impor-

tant limitation, shared among the state of the art solutions. They assume that the

clients have the knowledge of the IP addresses of NFs composing the SFC prior to

the connection establishment. However, no prior work is available in the state of

the art regarding how it is possible to retrieve those information, and which are the

challenges in such process in the current Internet scenario. Therefore, in Section 4.4,

we proposed to use the current Domain Name System (DNS) to retrieve the IP ad-

dresses related to a SFC, highlighting its properties and inefficiencies. In Section 4.4,

we proposed a collaborative SFC Resolution approach. It requires minimal changes

to the current DNS architecture, enabling to achieve close-to-optimum NF instance

selection. The presented solution, implemented using a wide deployed system such

as the DNS, represents the basis to foster the wide deployment of internet-wide SFC

techniques. The presented system has been submitted as a Patent application [16]

and is currently under review.

The DNS is a well established Internet service, however, at the same time, it

is always evolving and optimizing itself as its role is crucial within the Internet

architecture. In fact, the DNS resolution time affects the connection establishment

time for all the web traffic. Further, it has been proved that the DNS traffic accounts

for more than 50% of the overall web traffic [107]. Therefore, as future work, we

envision to deploy an efficient implementation of the collaborative SFC Resolution

presented in Section 4.4.

New application scenarios such as Internet-of-Things (IoT), vehicular networks,

etc. have proliferated to a great extent in the Internet scenario. Such applications

are requiring to offload computational resources with stringent completion time re-

quirements. This is the case of devices not equipped with enough computation

power on-board (e.g., sensors, electrical appliance, etc.) or when the task to per-

101

form is too computational intensive (e.g., autonomous driving). In either cases, the

traditional cloud model might fail to support those use cases due to possibly high

network delays encountered while offloading data to the location of cloud data cen-

ters. Therefore, traditional cloud resources are being decoupled in smaller resources,

deployed closer to the users, Due to their proximity to the network ”edge”, these

collections of resources are termed as Edge cloud.

We investigated the state of the art with regards to edge computing solutions. SFC

and Edge Computing are related by the fact that a SFC is usually implemented from

the client (e.g., IoT device, car, etc.), through an edge deployed service, to the cloud

deployed server. However, the state of the art with regards to the service placement

on the edge is very limited, as it is only consider the case in which there are homo-

geneous edge resources distributed in few location in the network. In Chapter 5, we

proposed Mute, a multi-tier edge cloud architecture in which several heterogeneous

edge resources are widely distributed in the network. Mute enables edge cloud

providers to efficiently deploy services on such network architecture, categorizing

edge servers into groups, based on their characteristics (e.g., network delay from the

client, resource availability, etc.). Due to its unique architecture abstraction, Mute

achieves a significant reduction in edge network delay and completion time when

compared to state-of- the-art solutions, when applied to this infrastructure. In the

context of multi-tier edge networks, we plan to investigate the impact of different

edge resources clustering strategies on the service placement.

Chapter 6 Conclusion & Future Work 102

6.1 Thesis impact

Scientific Publications The work on designing, implementing and evaluating

Catenae has been published in the following peer-reviewed international conference

proceeding.

• Roberto Bifulco, Anton Matsiuk, and Alessio Silvestro. ”Ready-to-deploy

service function chaining for mobile networks.” NetSoft Conference and Work-

shops (NetSoft). IEEE, 2016 [14].

An extension of Catenae that includes the hw-sw switch design and implementa-

tion has been published in the following peer-reviewed international journal.

• Roberto Bifulco, Anton Matsiuk, and Alessio Silvestro. CATENAE: A scal-

able Service Function Chaining system for legacy mobile networks. Interna-

tional Journal of Network Management, 27(2), 2017 [15].

The preliminary work and the full system architecture on enabling Internet-wide SFC

has been published in the following peer-reviewed international conference proceed-

ings.

• Alessio Silvestro, Roberto Bifulco, Fabian Schneider, Xiaoming Fu, and

Jussi Kangasharju. ”Is today’s DNS the right solution for middleboxes se-

lection?”. Proceedings of the 4th Workshop on CrossCloud Infrastructures &

Platforms. ACM, 2017. [Poster] [78].

• Alessio Silvestro, Roberto Bifulco, Fabian Schneider, Xiaoming Fu, and

Jussi Kangasharju. ”MISE: MIddleboxes SElection for multi-domain service

function chains.” Proceedings of the 2nd Workshop on Cloud-Assisted Net-

103 6.1 Thesis impact

working. ACM, 2017 [106].

Thus, the work on enabling Multi-tier Edge Networks has been published in the

following peer-reviewed international conference proceeding.

• Alessio Silvestro, Nitinder Mohan, Jussi Kangasharju, Fabian Schneider,

and Xiaoming Fu. MUTE: MUlti-Tier Edge networks. In Proceedings of the

5th Workshop on CrossCloud Infrastructures & Platforms (CrossCloud’18).

ACM, 2018. [108]

Patent Applications Further, related to the broad topic of this dissertation,

preliminary results and ideas have been published as patent applications.

• Alessio Silvestro, Dirk Kutscher, and Fabian Schneider. Method and System

for Introducing In-Network Services in an End-To-End Communication Path.

Publication number: WO 2017/194168 A1. Application date: 2016-05-13.

Publication date: 2017-11-16. [109]

• Fabian Schneider, Alessio Silvestro, and Thomas Dietz. Software Defined

Network and Method for Operating the same. Application date: 2016-12-22.

A method to flow installation time sensitive network control [110].

• Alessio Silvestro, Fabian Schneider, and Roberto Bifulco. Explicit Service

Function Chaining (SFC) using DNS extensions. Application date: 2017-03-

10. [16]

The text of [109] is publicly available. [16,110] instead, are still under review and

the Patent applications text cannot be made public. However, I would like to invite

Ph.D. committee members, who are interested in accessing those documents, to sign

an Non-Disclosure Agreement (NDA) with NEC Laboratories Europe in order to

Chapter 6 Conclusion & Future Work 104

obtain a copy of the Patents application text.

Bibliography

[1] David Clark. The design philosophy of the darpa internet protocols. ACM

SIGCOMM Computer Communication Review (CCR), 18(4):106–114, 1988.

[2] Jerome H Saltzer, David P Reed, and David D Clark. End-to-end arguments in

system design. ACM Transactions on Computer Systems (TOCS), 2(4):277–

288, 1984.

[3] Cisco Visual Networking Index: Forecast and Methodology, 2016–2021.

September 15, 2017. [Online]. Available: https://www.cisco.com/c/en/us/

solutions/collateral/service-provider/visual-networking-index-

vni/complete-white-paper-c11-481360.html.

[4] [Published: 07.12.2015]. [On-line accessed: 22.05.2018]. [Online]. Avail-

able: https://venturebeat.com/2015/12/07/streaming-services-now-

account-for-over-70-of-peak-traffic-in-north-america-netflix-

dominates-with-37/.

[5] IBM Institute for Business Value, “Five telling years, four future scenarios,”

2010.

[6] Jim Liddle. Amazon found every 100ms of latency cost them 1% in sales. The

GigaSpaces, 27, 2008.

[7] Ibrar Yaqoob, Ejaz Ahmed, Muhammad Habib ur Rehman, Abdelmuttlib

Ibrahim Abdalla Ahmed, Mohammed Ali Al-garadi, Muhammad Imran, and

Mohsen Guizani. The rise of ransomware and emerging security challenges in

the Internet of Things. Computer Networks, 129:444–458, 2017.

https://www.cisco.com/c/en/us/solutions/collateral/service-provider/visual-networking-index-vni/complete-white-paper-c11-481360.html
https://www.cisco.com/c/en/us/solutions/collateral/service-provider/visual-networking-index-vni/complete-white-paper-c11-481360.html
https://www.cisco.com/c/en/us/solutions/collateral/service-provider/visual-networking-index-vni/complete-white-paper-c11-481360.html
https://venturebeat.com/2015/12/07/streaming-services-now-account-for-over-70-of-peak-traffic-in-north-america-netflix-dominates-with-37/
https://venturebeat.com/2015/12/07/streaming-services-now-account-for-over-70-of-peak-traffic-in-north-america-netflix-dominates-with-37/
https://venturebeat.com/2015/12/07/streaming-services-now-account-for-over-70-of-peak-traffic-in-north-america-netflix-dominates-with-37/

Bibliography 106

[8] Theophilus Benson, Aditya Akella, and David A Maltz. Unraveling the Com-

plexity of Network Management. In NSDI, pages 335–348, 2009.

[9] Ali Ghodsi, Scott Shenker, Teemu Koponen, Ankit Singla, Barath Raghavan,

and James Wilcox. Intelligent design enables architectural evolution. In Pro-

ceedings of the 10th ACM Workshop on Hot Topics in Networks (HotNETs’11),

page 3. ACM, 2011.

[10] Raghavan, Barath and Casado, Mart́ın and Koponen, Teemu and Ratnasamy,

Sylvia and Ghodsi, Ali and Shenker, Scott. Software-defined internet archi-

tecture: decoupling architecture from infrastructure. In Proceedings of the

11th ACM Workshop on Hot Topics in Networks (HotNETs’12), pages 43–48.

ACM, 2012.

[11] Hyojoon Kim and Nick Feamster. Improving network management with soft-

ware defined networking. IEEE Communications Magazine, 51(2):114–119,

2013.

[12] Jianli Pan, Subharthi Paul, and Raj Jain. A survey of the research on future

internet architectures. IEEE Communications Magazine, 49(7), 2011.

[13] Justine Sherry, Shaddi Hasan, Colin Scott, Arvind Krishnamurthy, Sylvia

Ratnasamy, and Vyas Sekar. Making middleboxes someone else’s problem:

network processing as a cloud service. ACM SIGCOMM Computer Commu-

nication Review (CCR), 42(4):13–24, 2012.

[14] Roberto Bifulco, Anton Matsiuk, and Alessio Silvestro. Ready-to-deploy ser-

vice function chaining for mobile networks. In NetSoft Conference and Work-

shops (NetSoft), 2016 IEEE, pages 175–183. IEEE, 2016.

107 Bibliography

[15] Roberto Bifulco, Anton Matsiuk, and Alessio Silvestro. Catenae: A scalable

service function chaining system for legacy mobile networks. International

Journal of Network Management (IJNM’17), 27(2), 2017.

[16] Alessio Silvestro, Roberto Bifulco, and Fabian Schneider. Explicit Service

Function Chaining (SFC) using DNS extensions. Patent. Application date:

2017-03-10, 2017.

[17] Nick McKeown. Software-defined networking. INFOCOM keynote talk,

17(2):30–32, 2009.

[18] Teemu Koponen, Martin Casado, Natasha Gude, Jeremy Stribling, Leon

Poutievski, Min Zhu, Rajiv Ramanathan, Yuichiro Iwata, Hiroaki Inoue,

Takayuki Hama, et al. Onix: A distributed control platform for large-scale

production networks. In OSDI, volume 10, pages 1–6, 2010.

[19] Sushant Jain, Alok Kumar, Subhasree Mandal, Joon Ong, Leon Poutievski,

Arjun Singh, Subbaiah Venkata, Jim Wanderer, Junlan Zhou, Min Zhu, et al.

B4: Experience with a globally-deployed software defined WAN. 43(4):3–14,

2013.

[20] Nick McKeown, Tom Anderson, Hari Balakrishnan, Guru Parulkar, Larry Pe-

terson, Jennifer Rexford, Scott Shenker, and Jonathan Turner. Openflow:

enabling innovation in campus networks. ACM SIGCOMM Computer Com-

munication Review (CCR), 38(2):69–74, 2008.

[21] Masayoshi Kobayashi, Srini Seetharaman, Guru Parulkar, Guido Appenzeller,

Joseph Little, Johan Van Reijendam, Paul Weissmann, and Nick McKeown.

Maturing of openflow and software-defined networking through deployments.

Computer Networks, 61:151–175, 2014.

Bibliography 108

[22] Chi-Yao Hong, Srikanth Kandula, Ratul Mahajan, Ming Zhang, Vijay Gill,

Mohan Nanduri, and Roger Wattenhofer. Achieving high utilization with

software-driven wan. In ACM SIGCOMM Computer Communication Review

(CCR), volume 43, pages 15–26. ACM, 2013.

[23] Arpit Gupta, Laurent Vanbever, Muhammad Shahbaz, Sean P Donovan, Bran-

don Schlinker, Nick Feamster, Jennifer Rexford, Scott Shenker, Russ Clark,

and Ethan Katz-Bassett. Sdx: A software defined internet exchange. ACM

SIGCOMM Computer Communication Review (CCR), 44(4):551–562, 2015.

[24] Arjun Singh, Joon Ong, Amit Agarwal, Glen Anderson, Ashby Armistead,

Roy Bannon, Seb Boving, Gaurav Desai, Bob Felderman, Paulie Germano,

et al. Jupiter rising: A decade of clos topologies and centralized control in

google’s datacenter network. In ACM SIGCOMM Computer Communication

Review (CCR), volume 45, pages 183–197. ACM, 2015.

[25] Georgios P Katsikas. Realizing high performance NFV service chains. PhD

thesis, KTH Royal Institute of Technology, 2016.

[26] Open networking foundation. https://www.opennetworking.org/.

[27] R Guerzoni et al. Network functions virtualisation: an introduction, benefits,

enablers, challenges and call for action, introductory white paper. In SDN and

OpenFlow World Congress, volume 1, pages 5–7, 2012.

[28] Rashid Mijumbi, Joan Serrat, Juan-Luis Gorricho, Niels Bouten, Filip

De Turck, and Raouf Boutaba. Network function virtualization: State-of-

the-art and research challenges. IEEE Communications Surveys & Tutorials,

18(1):236–262, 2016.

109 Bibliography

[29] OpenFlow-enabled SDN and Network Functions Virtualization. Open Net-

working Foundation (ONF) Solution Brief. February 17, 2014.

[30] ETSI GS NFV 002 V1.2.1: Network Functions Virtualisation (NFV); Ar-

chitectural Framework. ETSI Ind. Spec. Group (ISG) Netw. Functions Vir-

tualisation (NFV), Sophia-Antipolis Cedex, France, Dec. 2014. [Online].

Available: http://www.etsi.org/deliver/etsi_gs/NFV/001_099/002/01.

02.01_60/gs_NFV002v010201p.pdf.

[31] Paul Quinn and Tom Nadeau. Problem Statement for Service Function Chain-

ing. RFC 7498, April 2015.

[32] Joel Halpern and Carlos Pignataro. Service Function Chaining (SFC) Archi-

tecture. RFC 7665, October 2015.

[33] W. Haeffner et al. SFC Use Cases in Mobile Networks IETF Draft.

[34] S. Kumar et al. SFC Use Cases In Data Centers. IETF Draft.

[35] David Naylor, Kyle Schomp, Matteo Varvello, Ilias Leontiadis, Jeremy Black-

burn, Diego R López, Konstantina Papagiannaki, Pablo Rodriguez Rodriguez,

and Peter Steenkiste. Multi-context TLS (mcTLS): Enabling secure in-network

functionality in TLS. In ACM SIGCOMM Computer Communication Review

(CCR), volume 45, pages 199–212. ACM, 2015.

[36] C. Filsfils, S. Previdi, L. Ginsberg, B. Decraene, S. Litkowski, and R. Shakir.

Segment Routing Architecture. IETF Draft.

[37] Pamela Zave, Ronaldo A Ferreira, Xuan Kelvin Zou, Masaharu Morimoto,

and Jennifer Rexford. Dynamic service chaining with dysco. In Proceedings of

the Conference of the ACM Special Interest Group on Data Communication,

http://www.etsi.org/deliver/etsi_gs/NFV/001_099/ 002/01.02.01_60/gs_NFV002v010201p.pdf
http://www.etsi.org/deliver/etsi_gs/NFV/001_099/ 002/01.02.01_60/gs_NFV002v010201p.pdf

Bibliography 110

pages 57–70. ACM, 2017.

[38] Jon Matias, Jokin Garay, Nerea Toledo, Juanjo Unzilla, and Eduardo Jacob.

Toward an sdn-enabled nfv architecture. IEEE Communications Magazine,

53(4):187–193, 2015.

[39] Michio Honda, Yoshifumi Nishida, Costin Raiciu, Adam Greenhalgh, Mark

Handley, and Hideyuki Tokuda. Is It Still Possible to Extend TCP? In ACM

IMC ’11, 2011.

[40] Zhaoguang Wang, Zhiyun Qian, Qiang Xu, Zhuoqing Mao, and Ming Zhang.

An untold story of middleboxes in cellular networks. In ACM SIGCOMM ’11.

[41] ETSI. Network Functions Virtualisation - White Paper. [Online]. Available:

https://portal.etsi.org/Portals/0/TBpages/NFV/Docs/NFV_White_

Paper3.pdf.

[42] IETF. Service Function Chaining working group. SFC.

[43] Sevil Mehraghdam, Matthias Keller, and Holger Karl. Specifying and placing

chains of virtual network functions. In Cloud Networking (CloudNet), 2014

IEEE 3rd International Conference on, pages 7–13. IEEE, 2014.

[44] Zafar Ayyub Qazi, Cheng-Chun Tu, Luis Chiang, Rui Miao, Vyas Sekar, and

Minlan Yu. SIMPLE-fying middlebox policy enforcement using SDN. ACM

SIGCOMM computer communication review. 43(4):27–38, 2013.

[45] Seyed Kaveh Fayazbakhsh, Luis Chiang, Vyas Sekar, Minlan Yu, and Jeffrey C

Mogul. Enforcing Network-Wide Policies in the Presence of Dynamic Middle-

box Actions using FlowTags. In NSDI, volume 14, pages 533–546, 2014.

https://portal.etsi.org/Portals/0/TBpages/NFV/Docs/NFV_White_Paper3.pdf
https://portal.etsi.org/Portals/0/TBpages/NFV/Docs/NFV_White_Paper3.pdf

111 Bibliography

[46] J. Blendin, J. Ruckert, N. Leymann, G. Schyguda, and D. Hausheer. Position

paper: Software-defined network service chaining. In IEEE EWSDN ’14.

[47] Ying Zhang, Neda Beheshti, Ludovic Beliveau, Geoffrey Lefebvre, Ravi

Manghirmalani, Ramesh Mishra, Ritun Patneyt, Meral Shirazipour, Ramesh

Subrahmaniam, Catherine Truchan, et al. Steering: A software-defined net-

working for inline service chaining. In Network Protocols (ICNP), 2013 21st

IEEE International Conference on, pages 1–10. IEEE, 2013.

[48] P.Quinn, U.Elzur, and C.Pignataro. Network Service Header. IETF RFC8300.

January 2018.

[49] Mohamed Boucadair, Christian Jacquenet, Yuanlong Jiang, Ron Parker, and

Kengo. Requirements for service function chaining (sfc). Internet-Draft draft-

boucadair-sfc-requirements-06, IETF Secretariat, February 2015.

[50] Dan Levin, Marco Canini, Stefan Schmid, and Anja Feldmann. Incremen-

tal sdn deployment in enterprise networks. In ACM SIGCOMM Computer

Communication Review (CCR), volume 43, pages 473–474. ACM, 2013.

[51] Joao Martins, Mohamed Ahmed, Costin Raiciu, Vladimir Olteanu, Michio

Honda, Roberto Bifulco, and Felipe Huici. ClickOS and the Art of Network

Function Virtualization. In USENIX NSDI ’14, 2014.

[52] Stefano Vissicchio, Laurent Vanbever, and Jennifer Rexford. Sweet little lies:

Fake topologies for flexible routing. In Proceedings of the 13th ACM Workshop

on Hot Topics in Networks, page 3. ACM, 2014.

[53] Xing Xu, Yurong Jiang, Tobias Flach, Ethan Katz-Bassett, David Choffnes,

and Ramesh Govindan. Investigating Transparent Web Proxies in Cellular

Bibliography 112

Networks. In PAM. Springer, 2015.

[54] Junxian Huang, Feng Qian, Yihua Guo, Yuanyuan Zhou, Qiang Xu, Z. Morley

Mao, Subhabrata Sen, and Oliver Spatscheck. An in-depth study of LTE:

Effect of network protocol and application behavior on performance. In ACM

SIGCOMM ’13.

[55] Xin Jin, Li Erran Li, Laurent Vanbever, and Jennifer Rexford. Softcell: Scal-

able and flexible cellular core network architecture. In Proceedings of the ninth

ACM conference on Emerging networking experiments and technologies, pages

163–174. ACM, 2013.

[56] Philipp Richter, Mark Allman, Randy Bush, and Vern Paxson. A primer on

ipv4 scarcity. ACM SIGCOMM Computer Communication Review (CCR),

45(2):21–31, 2015.

[57] Ben Pfaff, Justin Pettit, Teemu Koponen, Ethan Jackson, Andy Zhou, Jarno

Rajahalme, Jesse Gross, Alex Wang, Joe Stringer, Pravin Shelar, Keith Ami-

don, and Martin Casado. The design and implementation of open vswitch. In

USENIX NSDI ’15.

[58] Nanxi Kang, Zhenming Liu, Jennifer Rexford, and David Walker. Optimiz-

ing the ”one big switch” abstraction in software-defined networks. In ACM

CoNEXT’13.

[59] Maurizio Dusi, Roberto Bifulco, Francesco Gringoli, and Fabian Schneider.

Reactive logic in software-defined networking: Measuring flow-table require-

ments. In Proceedings of the 5th International Workshop on TRaffic Analysis

and Characterization (TRAC), 2014.

113 Bibliography

[60] Aggelos Lazaris, Daniel Tahara, Xin Huang, Li Erran Li, Andreas Voellmy,

Y. Richard Yang, and Minlan Yu. Tango: Simplifying SDN Programming

with Automatic Switch Behavior Inference, Abstraction, and Optimization.

In ACM CoNEXT’14.

[61] Roberto Bifulco and Anton Matsiuk. Towards scalable sdn switches: Enabling

faster flow table entries installation. In ACM SIGCOMM Computer Commu-

nication Review (CCR), volume 45, pages 343–344. ACM, 2015.

[62] Naga Katta, Omid Alipourfard, Jennifer Rexford, and David Walker. Infinite

cacheflow in software-defined networks. In Proceedings of the third workshop

on Hot topics in Software Defined Networking (HotSDN’14), pages 175–180.

ACM, 2014.

[63] Open Networking Foundation. Openflow specification 1.4.0.

[64] Nadi Sarrar, Steve Uhlig, Anja Feldmann, Rob Sherwood, and Xin Huang.

Leveraging zipf’s law for traffic offloading. ACM SIGCOMM Computer Com-

munication Review (CCR), 42(1):16–22, 2012.

[65] Eddie Kohler, Robert Morris, Benjie Chen, John Jannotti, and M. Frans

Kaashoek. The click modular router. ACM Trans. Comput. Syst., 18(3):263–

297, August 2000.

[66] Brent Stephens, Alan Cox, Wes Felter, Colin Dixon, and John Carter. Past:

Scalable ethernet for data centers. In Proceedings of the 8th international

conference on Emerging networking experiments and technologies, pages 49–

60. ACM, 2012.

[67] Jeffrey C. Mogul, Jean Tourrilhes, Praveen Yalagandula, Puneet Sharma, An-

Bibliography 114

drew R. Curtis, and Sujata Banerjee. Devoflow: cost-effective flow manage-

ment for high performance enterprise networks. In ACM SIGCOMM HotNets

’10.

[68] David Erickson. The beacon openflow controller. In Proceedings of the sec-

ond ACM SIGCOMM workshop on Hot topics in software defined networking,

pages 13–18. ACM, 2013.

[69] Ryota Kawashima, Shin Muramatsu, Hiroki Nakayama, Tsunemasa Hayashi,

and Hiroshi Matsuo. Sclp: Segment-oriented connection-less protocol for high-

performance software tunneling in datacenter networks. In IEEE NetSoft ’15.

[70] Stoke, Inc. LTE equipment evaluation: Considerations and selection criteria,

2012.

[71] Michio Honda, Felipe Huici, Giuseppe Lettieri, and Luigi Rizzo. mSwitch:

a highly-scalable, modular software switch. In Proceedings of the 1st ACM

SIGCOMM Symposium on Software Defined Networking Research, page 1.

ACM, 2015.

[72] NEC. Programmableflow pf5240 switch.

[73] Cisco. Visual networking index: Global mobile data traffic forecast update

2014–2019 white paper.

[74] Sergey Guenender, Katherine Barabash, Yaniv Ben-Itzhak, Anna Levin, Eran

Raichstein, and Liran Schour. Noencap: Overlay network virtualization with

no encapsulation overheads. In ACM SOSR, 2015.

[75] W. John, K. Pentikousis, G. Agapiou, E. Jacob, M. Kind, A Manzalini,

F. Risso, D. Staessens, R. Steinert, and C. Meirosu. Research directions in

115 Bibliography

network service chaining. In IEEE SDN4FNS ’13.

[76] Vittorio Manetti, Pasquale Di Gennaro, Roberto Bifulco, Roberto Canonico,

and Giorgio Ventre. Dynamic virtual cluster reconfiguration for efficient iaas

provisioning. In Proceedings of the 2009 International Conference on Parallel

Processing, Euro-Par’09, pages 424–433, Berlin, Heidelberg, 2010. Springer-

Verlag.

[77] David Naylor, Richard Li, Christos Gkantsidis, Thomas Karagiannis, and Pe-

ter Steenkiste. And then there were more: Secure communication for more

than two parties. In Proceedings of the 13th International Conference on

emerging Networking EXperiments and Technologies (CoNEXT), pages 88–

100. ACM, 2017.

[78] Alessio Silvestro, Roberto Bifulco, Fabian Schneider, Xiaoming Fu, and Jussi

Kangasharju. Is today’s DNS the right solution for middleboxes selection? In

Proceedings of the 4th Workshop on CrossCloud Infrastructures & Platforms,

in ACM EuroSys’17, page 6. ACM, 2017.

[79] C. Contavalli et al. Client Subnet in DNS Queries. RFC 7871.

[80] A.Silvestro et al. Issues in Supporting Third-Partys In-Network Services in

the Internet, NetSys’17.

[81] R.Mahajan et al. Inferring link weights using end-to-end measurements. In

ACM SIGCOMM IMW 2002.

[82] Giuseppe Siracusano, Roberto Bifulco, Simon Kuenzer, Stefano Salsano,

Nicola Blefari Melazzi, and Felipe Huici. On the Fly TCP acceleration with

miniproxy. In Proceedings of the 2016 workshop on Hot topics in Middleboxes

Bibliography 116

and Network Function Virtualization. In ACM SIGCOMM’16, pages 44–49.

ACM, 2016.

[83] Single-Source Shortest Paths in Directed Acyclic Graphs. [Online]. Available:

http://www.utdallas.edu/˜sizheng/CS4349.d/l-notes.d/L17.pdf.

[84] J. Brutlag. Speed matters for Google web search, June 2009.

[85] Bruce M Maggs and Ramesh K Sitaraman. Algorithmic nuggets in content de-

livery. ACM SIGCOMM Computer Communication Review (CCR), 45(3):52–

66, 2015.

[86] Matt Calder, Ashley Flavel, Ethan Katz-Bassett, Ratul Mahajan, and Jitendra

Padhye. Analyzing the performance of an anycast cdn. In Proceedings of the

2015 Internet Measurement Conference (IMC), pages 531–537. ACM, 2015.

[87] Previdi et al. IPv6 Segment Routing Header (SRH). IETF Draft.

[88] David Lebrun. Leveraging IPv6 Segment Routing for Service Function Chain-

ing. In CoNEXT 2015 student workshop, 2015.

[89] Ahmed AbdelSalam, Francois Clad, Clarence Filsfils, Stefano Salsano,

Giuseppe Siracusano, and Luca Veltri. Implementation of virtual network

function chaining through Segment Routing in a linux-based NFV infrastruc-

ture. In Network Softwarization (NetSoft), 2017 IEEE Conference on, pages

1–5. IEEE, 2017.

[90] Abhishek Chandra, Jon Weissman, and Benjamin Heintz. Decentralized Edge

Clouds. IEEE Internet Computing, 17(5):70–73, 2013.

[91] ETSI MEC-IEG004. Mobile-Edge Computing (MEC): Service Scenarios.

http://www.utdallas.edu/~sizheng/CS4349.d/l-notes.d/L17.pdf

117 Bibliography

[92] Nitinder Mohan, Pengyuan Zhou, Keerthana Govindaraj, and Jussi Kan-

gasharju. Managing Data in Computational Edge Clouds. Proceedings of the

Workshop on Mobile Edge Communications (MECOMM’17). pages 19–24.

ACM, 2017.

[93] Kirak Hong, David Lillethun, Umakishore Ramachandran, Beate Ottenwälder,

and Boris Koldehofe. Mobile fog: A programming model for large-scale appli-

cations on the internet of things. In Proceedings of the second ACM SIGCOMM

workshop on Mobile Cloud Computing (MCC’13), pages 15–20. ACM, 2013.

[94] Flavio Bonomi, Rodolfo Milito, Jiang Zhu, and Sateesh Addepalli. Fog com-

puting and its role in the internet of things. In Proceedings of the first edition

of the MCC workshop on Mobile Cloud Computing (MCC), pages 13–16. ACM,

2012.

[95] Mahadev Satyanarayanan, Paramvir Bahl, Ramón Caceres, and Nigel Davies.

The case for vm-based cloudlets in mobile computing. IEEE pervasive Com-

puting, 8(4), 2009.

[96] Hu et al. Mobile edge computing – A key technology towards 5G. ETSI white

paper, 2015.

[97] Nitinder Mohan and Jussi Kangasharju. Edge-Fog cloud: A distributed cloud

for Internet of Things computations. In Cloudification of the Internet of Things

(CIoT), pages 1–6. IEEE, 2016.

[98] Xu et al. Multi-objective virtual machine placement in virtualized data center

environments. In IEEE GreenCom, 2010.

[99] Abhinandan S Prasad, Mayutan Arumaithurai, David Koll, and Xiaoming Fu.

Bibliography 118

Raera: A robust auctioning approach for edge resource allocation. In Pro-

ceedings of the Workshop on Mobile Edge Communications (MECOMM’17),

pages 49–54. ACM, 2017.

[100] Mahajan et al. Inferring link weights using end-to-end measurements. In ACM

SIGCOMM Internet Measurement Workshop (IMW) 2002.

[101] Md Faizul Bari, Raouf Boutaba, Rafael Esteves, Lisandro Zambenedetti

Granville, Maxim Podlesny, Md Golam Rabbani, Qi Zhang, and Mo-

hamed Faten Zhani. Data center network virtualization: A survey. IEEE

Communications Surveys & Tutorials, 15(2):909–928, 2013.

[102] Andrea Zanella, Nicola Bui, Angelo Castellani, Lorenzo Vangelista, and

Michele Zorzi. Internet of things for smart cities. IEEE Internet of Things

(IoT) journal, 1(1):22–32, 2014.

[103] CISCO. Fog Computing and IoT (Whitepaper). 2015.

[104] Kirak Hong, David Lillethun, Umakishore Ramachandran, Beate Ottenwälder,

and Boris Koldehofe. Mobile fog: A programming model for large-scale appli-

cations on the internet of things. In Proceedings of the second ACM SIGCOMM

workshop on Mobile Cloud Computing (MCC’13), pages 15–20. ACM, 2013.

[105] Robert Bosch GmbH Bosch APAS description. [Online]. Available: https://

www.bosch-apas.com/produkte-und-services/apas-assistant-mobile/.

[106] Alessio Silvestro, Roberto Bifulco, Fabian Schneider, Xiaoming Fu, and Jussi

Kangasharju. MISE: MIddleboxes SElection for multi-domain service function

chains. In Proceedings of the 2nd Workshop on Cloud-Assisted Networking, in

ACM CoNEXT’17, pages 37–42. ACM, 2017.

https://www.bosch-apas.com/produkte-und-services/apas-assistant-mobile/
https://www.bosch-apas.com/produkte-und-services/apas-assistant-mobile/

119 Bibliography

[107] Mario Almeida, Alessandro Finamore, Diego Perino, Narseo Vallina-

Rodriguez, and Matteo Varvello. Dissecting dns stakeholders in mobile net-

works. 2017.

[108] Alessio Silvestro, Roberto Bifulco, Jussi Kangasharju, Fabian Schneider, and

Xiaoming Fu. MUTE: MUlti-Tier Edge networks. In Proceedings of the 5th

Workshop on CrossCloud Infrastructures & Platforms (CrossCloud), in ACM

EuroSys’18. ACM, 2018.

[109] Alessio Silvestro, Dirk Kutscher, and Fabian Schneider. Method and system for

introducing in-network services in an end-to-end communication path. Patent,

2017. Publication number: WO 2017/194168 A1. Publication date: 2017-11-

16. Application date: 2016-05-13.

[110] Fabian Schneider, Alessio Silvestro, and Thomas Dietz. Software Defined Net-

work and Method for Operating the same. Patent. Application date: 2016-12-

22, 2017.

Alessio Silvestro
Via Domenico Zampieri, 34

40121, Bologna, Italy
H +39 (0) 338 8917706

B Alessi.Silvestro@gmail.com
alessiosilvestro

Energetic, ambitious and strongly motivated Network Engineer with deep technical experience on Cloud & Edge
Computing, Software Defined Networking (SDN), Network Function Virtualization (NFV) and High Performance
Networking Stack. I co-authored several scientific publications at top-tier conferences and patent applications.
Additionally, I have been involved in project management tasks for several European and NEC Japan driven
projects. Great communication skills and strong orientation towards team building.

Experience
June’18–Present Engineer, Philip Morris International, Operations Excellence.

Feb–July’17 Visiting Researcher, COllaborative NEtworking (CONE) Group at Univesity of Helsinki,
Finland (headed by Prof. Jussi Kangasharju).

Apr’15–Apr’18 Early Stage Researcher, Software Defined Networking (SDN) Group, Network Research
Division, NEC Europe Ltd., Germany.
Keywords, Software Defined Networking (SDN), Cloud & Edge Computing, Network
Function Virtualization (NFV), High-performance Networking Stack.

Mar–Dec’14 Research Intern, IoT Group, NEC Europe Ltd., Germany.
Keywords, Context Management, Multi-device, Web Applications. EU FP7 MediaScape.

Education
Sep’15–Present Ph.D. Fellow, Marie SkÅĆodowska-Curie Actions Research Fellowship, Computer Network

Group (headed by Prof. Xiaoming Fu), Georg-August-Universität Gőettingen (Germany).
Mar’12– Apr’15 Master Degree in Computer Engineering –110/110 cum Laude,

University of Naples Federico II, (Italy).
Sep’08-Jan’12 Bachelor Degree in Computer Engineering – 109/110,

University of Naples Federico II, (Italy).

Languages
Italian Native English Full professional working proficiency

German Basic communication skills French Basic communication skills
Spanish Basic communication skills

Computer Skills
Program. Lang. C/C++, Java, JavaScript, JQuery, Python, Bash Scripting
Cloud Platforms Amazon EC2, Amazon S3, OpenStack, Microsoft Azure, VMware, KVM
SDN Controller ONOS, OpenDaylight, Ryu, Floodlight

Fast Packet Proc. Vector Packet Processing (VPP), Data Plane Development Kit (DPDK), PKTGEN-DPDK
Network TCP/IP, Linux Networking Stack, DNS, SmartNIC (Netronome NFP-4/6XXX), FTP,

HTTP, HTTPS, UDP, SSH, VLAN, VxLAN, OpenVSwitch, Libvirt, QEMU/KVM
DBMSs MySQL,Oracle, SQLite

Office Automation MS Office
Softwares Matlab/Simulink, JMP Statistical Discovery, Sharpe, LT Spice, LabView, SIS, LaTex, Shell

Middleware Corba

OS Unix, Linux, MS Windows, Mac OS, Linux RTAI

Relevant Projects
Mar-Jun’17 Big Data Frameworks

Keywords: Resilient Distributed Datasets (RDD), Map Reduce, Spark, Machine Learning
2015-Present A Network for the Cloud Computing Eco-System

EU Fundings: EU FP7 ITN CleanSky
Keywords: Cloud Computing, Cross-Datacenter Cloud, Virtualization, NFV, SDN, High-
performance Networking Stack

2014 A Rule Based Adaptation Engine for Multi-Device Context-Aware Web Applica-
tions (Master Thesis)
EU Fundings: EU FP7 MediaScape
Keywords: Multi-device application, Context-management, Data Analytics

2014 Workload Characterization - Performance Analysis - Capacity test
Keywords: Workload Characterization (Application & System Level), Analysis of Variance
(ANOVA), Principal Component Analysis (PCA), Clustering, Linear Regression Model,
Experimental Design and Analysis, Benchmarking of Virtualized System (SciMark V2.0,
IOzone), Apache JMeter, Jmp Statistical Discovery

2013 Live Migration of Entire Virtual Networks on OpenVSwitches
Keywords: SDN, OpenFlow, Floodlight, OpenVSwitch, Libvirt, QEMU/KVM, iSCSI,
Apache Tomcat

2013 CoDesign Software and Hardware of an Electronic Embedded System
Keywords: VHDL, Xilinx ISE, ARM Cortex based SoC, FPGA, Device Drivers for Leon3-
SPARC processor, Design and Development of SPI (Serial Peripheral Interface) HW-
Controller for Leon3-SPARC,

2011 Monitoring of Distributed Infrastructure Systems (Bachelor Thesis)
Description: Monitoring of a distributed installation of OpenStack using Nagios.
Keywords: Distributed Systems, OpenStack, Nagios, Unix, Shell Scripting

Publications
2017 A. Silvestro, R. Bifulco, F. Schneider, Xiaoming Fu, Jussi Kangasharju: MISE: MIddleboxes

SElection for Multi-Domain Service Function Chains. In Proceedings of Cloud Assisted
Network (CAN’17)– ACM CoNEXT 2017.

2017 A. Silvestro, R. Bifulco, F. Schneider, X. Fu, J. Kangasharju: Is today’s DNS the right
solution for middleboxes selection?. ACM CrossCloud’17 – ACM EuroSys’17.

2017 A. Silvestro, R. Bifulco, S. Sharma, F. Schneider, J. Kangasharju, X. Fu: Issues in
Supporting Third-Partys In-Network Services in the Internet. In Proceedings of NetSys’17.

2017 R. Bifulco, A. Matsiuk, A. Silvestro: CATENAE: A scalable service function chaining
system for legacy mobile networks. International Journal of Network Management.

2016 R. Bifulco, A. Matsiuk, A. Silvestro: Ready-to-deploy service function chaining for mobile
networks, In Proceedings of the 2nd IEEE Conference on Network Softwarization (NetSoft).

Interests
Photography Movies
Guitar Reading
Sports (e.g., basketball, beach volley, bowling, table tennis, etc.)

	Table of Contents
	List of Figures
	Acronyms
	Introduction
	The Internet Eco-system
	High-level Research Challenges & Thesis Contributions
	Single-domain SFC
	Internet-wide SFC
	Multi-tier Edge Networks

	Thesis Outline

	Background
	Software Defined Networking (SDN)
	Network Function Virtualization (NFV)
	Service Function Chaining (SFC)
	Use Cases

	SDN & NFV & SFC

	Single-domain Service Function Chains
	Introduction
	Contributions

	Background and Related Work
	Mobile networks
	Single-domain SFC in standards
	Single-domain SFC in research

	Design
	Architecture
	Two-classifiers deployment
	Single classifier deployment
	Deployment

	Classifiers
	d-classifier design
	Offloading algorithms
	Learning packet headers

	Traffic Steering
	Upstream
	Downstream

	Evaluation
	Prototype
	Number of chains
	Number of flows
	Configuration time
	Flow forwarding delays
	Overheads
	Data plane scalability

	Discussion
	Legacy infrastructures
	Hardware network functions
	Classification
	Metadata

	Conclusion

	Internet-wide Service Function Chains
	Introduction
	Contributions

	Background
	Problem Statement
	Today's DNS Resolution Strategies
	Collaborative SFC Resolution
	Enabling collaborative SFC resolution
	Extended Selection (ES)
	Client's DNS answer

	Evaluation
	Number of DNS queries
	Resolution time
	TTFB evaluation
	Complexity analysis
	Results at a glance

	Related Work & Use Cases
	Conclusion & Future Work

	Mute: MUlti-Tier Edge networks
	Introduction
	Contributions

	Architecture & Stakeholders
	Edge Platform Modelling and Deployment
	Multi-Tier Edge
	Network Structure & Model Definition
	Placing Services on the Edge
	Tier-based Optimization

	Evaluation
	Experiment Setup
	Results

	Related Work & Use-Cases
	Conclusion

	Conclusion & Future Work
	Thesis impact

	Bibliography
	Curriculum Vitae

