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Summary 

Parasite infections are ubiquitous throughout the animal kingdom, and increased risk of 

parasite transmission has been suggested as one of the major costs of group living. With bigger 

group size and higher interaction frequencies, transmission is expected to increase due to higher 

pathogen exposure. In contrast, social integration and close affiliative relationships are known 

predictors of increased health, longevity and reproductive success in social animals. Sociality is thus 

hypothesized to offer fitness benefits by improving health, including reduced susceptibility to 

infectious diseases. The underlying mechanisms mediating the health benefits of social interactions 

are still largely unclear, particularly in wildlife. Recent methodological and theoretical advances in 

the fields of disease ecology and eco-immunology make studying the links between host sociality 

and parasites more feasible. Consequently, understanding host-parasite dynamics and the role of 

sociality for health has received increasing attention in behavioural ecology and evolutionary biology.  

Gastrointestinal (GI) helminths are a powerful tool to study the links between sociality and 

health, as they can be assessed noninvasively. However, host-parasite interactions are complex and 

can function as feedback loops: parasites alter their host’s physiology and behaviour, which in turn 

predict exposure and susceptibility to parasite infection. Often the directionality of the links between 

host behaviour, sociality and physiology and infection isn’t clear due to the correlational nature of 

conducted studies. Additionally, host behaviour can contribute to both exposure and susceptibility 

simultaneously and both factors can be intertwined, so understanding the role of sociality for 

parasite transmission is challenging. 

In this thesis I investigate the host-parasite dynamic between GI helminth infections and a 

social primate, the Barbary macaque (Macaca sylvanus), aiming at understanding the causes and 

consequences of GI helminth infection. Capitalizing on strongyle nematode clearance by routine 

anthelmintic treatment in a semi-free ranging population, I can take a step beyond correlational 

studies and draw more causal inferences about the direction of host-parasite interactions, placing a 

special focus on social behaviour. I combine behavioural observation data (~ 3500 hours) with 

analyses of molecular markers of immune regulation (urinary neopterin, uNEO), physical condition 

(urinary C-peptide, uCP) and hypothalamic-pituitary-adrenal (HPA) axis activation and parasite 

status assessment. This enables me to assess the consequences of parasite clearance and investigate 

the predictors of reinfection with GI helminths. To account for uncertainty of noninvasively 

assessed parasite status, I use patch occupancy modelling to estimate infection probabilities and 

individual reinfection risk. I test whether infection-related behavioural changes are attributable to 

sickness behaviour or avoidance of infected conspecifics to extrapolate the impact of GI helminth 

infections on social behaviour and potentially evolution. With regard to parasite transmission, I test 

whether grooming predicts reinfection risk, indicating transmission due to social contact.  
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Strongyle nematode infections, mostly caused by Oesophagostomum spp., were ubiquitous within 

the study population, with generally low egg shedding and large inter-individual variation in 

reinfection risk. Infections did not cause overt symptoms or affect physical condition. They 

nonetheless elicited sickness behaviour responses, namely increased HPA axis activation in 

combination with reduced activity. Anthelmintic treatment did not alter uNEO levels, but uNEO 

increased with age, implying immunosenescence. As coinfections with further GI helminths 

occurred mostly in old individuals, immunosenescence might influence an individual’s ability to cope 

with GI helminth infections in general. Individual frequency to initiate proximity to others was not 

predicted by an individual’s, but by the potential partner’s infection status, indicating avoidance of 

infected individuals.  

Reinfection was predicted by measures of both susceptibility and exposure. The strongest 

predictor of earlier reinfection was coinfection with further GI helminth taxa. I found no evidence 

for HPA axis activation and immune function as strong predictors of reinfection. Being in good 

physical condition tended to increase reinfection risk, indicating the presence of parasite tolerance 

strategies in Barbary macaques. Time spent in areas likely contaminated with faeces, a measure of 

exposure to infective parasite stages, emerged as a predictor of increased infection risk, confirming 

the direct environmental transmission route of strongyle nematodes. High social bond strength with 

opposite sex partners decreased reinfection probability, probably due to reduced susceptibility 

resulting from immunomodulatory effects of affiliative interactions. In contrast, grooming a high 

number of partners and strong bonds with same sex partners emerged as predictors of increased 

infection probability, implying a social component of transmission. Social interactions can thus have 

an ambivalent effect, contributing to both protection from and increased risk of GI helminth 

infections. The discrepancy between same and opposite sex bond effects is likely attributable to 

differences in interaction patterns, resulting in different relative contributions of same and opposite 

sex bonds to exposure and susceptibility.  

In conclusion, the results suggest that GI parasite infections can influence social behaviour in 

nonhuman primates. Given the dual role of social interactions for GI helminth transmission, a 

possible strategy to maximize benefits while limiting costs of sociality could be selective formation 

of strong bonds with a small number of partners, with the caveat that particular interaction patterns 

might be more beneficial than others. My results lead to a range of questions which need to be 

addressed by future research, particularly whether primates mitigate costs of infection by employing 

tolerance strategies. Causally linking components of social behaviour to exposure and susceptibility 

will be important for understanding individual variation in infection risk and contribution to 

transmission through a population. Investigating whether variation in responses to GI helminth 

infections predict long-term health and fitness outcomes will be vital to assess the impact of host-

parasite dynamics on behaviour and potentially host social evolution.  
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Zusammenfassung 

Infektionen mit Parasiten sind im Tierreich allgegenwärtig, und ein erhöhtes Risiko für 

Parasitenübertragung gilt als einer der größten Nachteile des Gruppenlebens. Mit zunehmender 

Gruppengröße und Anzahl an Interaktionen sollte es zu häufigeren Kontakten mit 

Krankheitserregern und damit zu vermehrter Krankheitsübertragung kommen. Im Gegensatz dazu 

tragen soziale Integration und enge affiliative Beziehungen bei sozial lebenden Tierarten zu besserem 

Gesundheitszustand, höherer Lebenserwartung und höherem Reproduktionserfolg bei. Es wird 

daher angenommen, dass durch soziale Interaktionen positive Einflüsse auf die Gesundheit, unter 

anderem niedrigere Anfälligkeit für Krankheiten, entstehen, die zu Fitnessvorteilen führen. 

Besonders bei wildlebenden Tieren sind die Mechanismen, über die Sozialverhalten zu 

Gesundheitsvorteilen führt, noch weitestgehend unbekannt. Jüngste methodologische und 

theoretische Fortschritte auf den Gebieten der Krankheitsökologie und Öko-Immunologie 

erleichtern die Erforschung der Verbindungen zwischen Parasiten und dem Sozialverhalten des 

Wirts. Somit rückt die Erforschung der Dynamik zwischen Wirtstieren und Parasiten und die 

verbindung zwischen Sozialverhalten und Gesundheit zunehmend auch in den Fokus der 

Verhaltensökologie und Evolutionsbiologie. 

Gastrointestinale Parasiten sind ein vielversprechendes System, um die Zusammenhänge 

zwischen Sozialverhalten und Gesundheit zu untersuchen, da sie nicht-invasiv analysiert werden 

können. Allerdings sind Wirt-Parasitenbeziehungen komplex und beinhalten oft 

Rückkopplungsschleifen: Während Infektionen mit Parasiten das Verhalten des Wirtes beeinflussen, 

bestimmen Verhalten und Physiologie des Wirtes Kontaktraten mit Krankheitserregern und 

Anfälligkeit für Infektionen. Da zumeist Korrelationsstudien vorliegen, sind die kausalen 

Zusammenhänge zwischen den Interaktionen von Wirtsverhalten, Physiologie und 

Parasiteninfektionen weitestgehend unbekannt. Zusätzlich kann das Verhalten des Wirtes 

gleichzeitig zum Kontakt mit Krankheitserregern und der Infektionsanfälligkeit beitragen und beide 

Komponenten können miteinander verwoben sein, so dass es schwierig ist, die Rolle von sozialen 

Interaktionen für Parasitenübetragung zu entschlüsseln. 

Um die Ursachen und Konsequenzen von Infektionen mit gastrointestinalen Helminthen zu 

verstehen, werden in dieser Dissertation die Zusammenhänge zwischen gastrointestinalen Parasiten, 

Physiologie, Verhalten und sozialen Interaktionen bei sozialen Primaten, den Berberaffen (Macaca 

sylvanus) untersucht. Dabei mache ich mir die routinemäßige Entwurmung einer halbwilden 

Population zu Nutze, die zur Freiheit von Infektionen mit Strongiliden führt. Durch die 

experimentelle Veränderung des Parasitenstatuses können eher Schlüsse über 

Kausalzusammenhänge der Interaktionen zwischen Wirt und Parasiten, insbesondere im Bezug auf 

das Sozialverhalten, gezogen werden, als es in Korrelationsstudien möglich ist. Hierzu werden 
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Verhaltensdaten (ca. 3500 Stunden) mit Analysen von molekularen Marker der Immunregulation 

(Neopterin im Urin), der körperlichen Verfassung (C-Peptide im Urin) und der Aktivität der 

Hypothalamus-Hypophysen-Nebennieren-(HPA)-Achse und die Bestimmung des 

Infektionsstatuses verbunden. Um die methodische Ungenauigkeit der nicht-invasiver 

Parasitenanalysen zu berücksichtigen, werden Patch-Occupancy-Modelle zur Abschätzung der 

Infektionswahrscheinlichkeiten und des Risikos der Wiederansteckung genutzt. Zusätzlich wird 

analysiert, ob infektionsbezogene Verhaltensänderungen eine Folge von Krankheitsverhalten oder 

der Vermeidung infizierter Artgenossen sind. Dies lässt Rückschlüsse auf den Einfluss von 

Parasiteninfektionen auf das Sozialverhalten zu, die möglicherweise auf die soziale Evolution der 

Tiere übertragen werden können. Ich überprüfe auch, ob soziale Fellpflege als möglicher direkter 

Übertragungsweg das Risiko einer Ansteckung mit Darmparasiten vorhersagt. 

Infektionen mit Strongiliden, zumeist Oesophagostomum spp., waren in der Studiengruppe 

allgegenwärtig und zeigten meist geringe Ei-Ausscheidungsraten, aber große interindividuelle 

Unterschiede in der Wiederansteckungswahrscheinlichkeit. Diese Infektionen verursachten keine 

offensichtlichen Symptome oder eine Veränderung der körperlichen Verfassung. Sie riefen dennoch 

Anzeichen für Krankheitsverhalten hervor, messbar als stärkere Aktivität der HPA-Achse und 

geringere Aktivität infizierter Tiere. Die Entwurmung rief keine Veränderungen der Neopterinlevel 

hervor. Diese stiegen jedoch im Alter an, was auf Immunoseneszenz hindeutet. Da Infektionen mit 

weiteren Helminthen vorwiegend in älteren Individuen vorkommen, könnte dies darauf hindeuten, 

dass Immunoseneszenz die Fähigkeit der Tiere, Parasiteninfektionen einzudämmen, beeinflusst. Die 

Rate, mit der die Tiere sich Artgenossen annäherten, hing nicht mit dem eigenen Parasitenstatus, 

sondern dem des Partners zusammen, was auf eine Vermeidung infizierter Artgenossen hindeutet.  

Wiederansteckung wurde durch Marker für Parasitenanfälligkeit und -kontakt bestimmt. Der 

stärkste Prädiktor für eine schnellere Wiederansteckung war eine Ko-Infektion mit weiteren 

gastrointestinalen Helminthen. Es gab keine Hinweise darauf, dass HPA-Achsenaktivität oder 

Immunfunktion starke Prädiktoren für eine Wiederansteckung sind. Eine gute körperliche 

Verfassung führte zu einer tendenziellen Erhöhung des Ansteckungsrisikos, was wahrscheinlich ein 

Zeichen für Toleranz gegenüber Darmparasiteninfektionen in Berberaffen ist. Der Übertragunsweg 

von Strongyliden über die Umwelt wurde bestätigt: Tiere, die viel Zeit in Gebieten mit hoher 

Kotkontamination verbrachten, d.h. wahrscheinlich häufig Kontakt mit infektiösen Parasitenstadien 

hatten, hatten auch ein erhöhtes Ansteckungsrisiko. Starke soziale Bindungen zu Partnern des 

anderen Geschlechts verringerten das Infektionsrisiko, wahrscheinlich auf Grund positiver Effekte 

sozialer Interaktionen auf die Funktion des Immunsystems. Im Gegensatz dazu führten soziale 

Fellpflege mit einer Vielzahl an Partnern und enge Bindungen mit gleichgeschlechtlichen Partnern 

zu einer höheren Ansteckungswahrscheinlichkeit, was eine soziale Komponente bei der 

Parasitenübertragung nahelegt. Dabei deutet die Diskrepanz zwischen den Effekten von Bindungen 
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zu getrennt- und gleichgeschlechtlichen Partnern wahrscheinlich darauf hin, dass spezifische 

Verhaltensweisen unterschiedlich stark zum Kontakt mit Parasiten und der Infektionsanfälligkeit 

beitragen. 

Zusammenfassend legen die Ergebnisse nahe, dass Infektionen mit gastrointestinalen Parasiten 

das Sozialverhalten nichtmenschlicher Primaten beeinflussen können. In Anbetracht der 

zweischneidigen Rolle sozialer Beziehungen erscheint das Ausprägen weniger, starker Bindungen als 

mögliche Strategie, die Vorteile von Beziehungen voll auszukosten und gleichzeitig die Nachteile zu 

minimieren - mit dem Vorbehalt, dass einige Interaktionsmuster mehr Vorteile mit sich bringen 

können als andere. Durch meine Ergebnisse ergeben sich eine Reihe neuer Fragen, die in zukünftigen 

Studien beantwortet werden sollten, insbesondere ob Primaten Parasitentoleranzstrategien nutzen 

können, um die Kosten von Parasiteninfektionen einzudämmen. Zu entschlüsseln, welche 

Komponenten des Sozialverhaltens mit Kontakt zu Krankheitserregern und der Anfälligkeit für 

Infektionen zusammenhängen ist wichtig, um die Variation des Infektionsrisikos zwischen einzelnen 

Tieren und deren Beitrag zur Übertragung von Krankheiten innerhalb einer Population zu verstehen. 

Zu untersuchen, ob Unterschiede in der Reaktion auf Parasiteninfektionen Langzeitfolgen für 

Gesundheit und Fitness vorhersagen, ist ein wichtiger nächster Schritt, um den Einfluss der Wirt-

Parasitenbeziehung auf das Verhalten möglicherweise die soziale Evolution von Wirtstieren zu 

verstehen.  
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Chapter 1  

General Introduction 

“Friendship is unnecessary, like philosophy, like art.... It has no survival value; rather it is 

one of those things which give value to survival.”  

C.S. Lewis – The Four Loves  

While C.S. Lewis was undeniably right that friendship makes human life worth living, his 

observation that it does not contribute to survival could hardly be further from the truth. There is 

overwhelming support for the idea that social bonds and support are not only vital for personal 

fulfilment and wellbeing, but also for health and survival. Despite the evidence for the positive 

impact of sociality on health and longevity in social animals, our understanding of the underlying 

mechanisms and the evolutionary foundation of this link is still limited. To understand the adaptive 

value and evolution of human friendship, studying the relationship between social interactions, 

health and fitness in our phylogenetic brethren, the nonhuman primates, is vital. Investigating the 

role of health for social evolution has been largely neglected in the fields of behavioural ecology and 

evolutionary biology, but is attracting increasing attention recently.  

While some parts of the picture linking social behaviour with physiology, health and fitness are 

well understood in wildlife, the complete picture remains elusive. In the following chapter, I will 

elaborate on the current state of knowledge on the sociality-health-fitness nexus, culminating in the 

identification of open questions and how this thesis can contribute to answering them. 

1.1 Sociality and health 

1.1.1 Evolution of group living 

One of the major transitions in evolution, changing the level of organization and consequently 

selection, (Maynard Smith et al. 1994) was the switch from solitary to group living (Szathmáry & 

Smith 1995). As general consensus, conspecifics of one group consistently aggregate and interact 

more with each other than with other conspecifics, although there are various definitions of what 

constitutes a group (Krause and Ruxton 2002). More than two thirds of mammal species are 

classified as solitary (Lukas & Clutton-Brock 2013), indicating that group living is not by default 

adaptive. Rather, specific benefits of associating with conspecifics, like protection from predation 

(Rubenstein 1978; Van Schaik 1983) or better access to and defensibility of resources (Wrangham 

1980; Packer & Ruttan 1988; Packer et al. 1990), can outweigh the costs of long-term associations 

(Sterck et al. 1997; Wrangham 1980; Krause & Ruxton 2002) and lead to the evolution of permanent 

group living.  
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Once arisen, group living individuals are subject to a range of trade-off between costs and 

benefits inherent to gregariousness, sometimes different from original drivers of selection for group 

living. Explaining the origins and ecology of sociality is a major aim of evolutionary ecology (Clutton-

Brock & Janson 2012; Thierry 2013). Consequently, selective forces shaping the evolution of group 

living are intensely studied (Emlen & Oring 1977; Van Schaik & Van Hooff 1983; Sterck et al. 1997) 

and ecological correlates of its costs and benefits are relatively well understood. Potential fitness 

costs of group living do not necessarily affect all individuals in the same manner and can depend on 

individual traits. As an example, mating competition in multi-male groups is considered a major cost 

for males (Emlen & Oring 1977), whereas female fitness can influenced by limited reproductive 

success due to feeding competition (Wrangham 1980; Janson & Van Schaik 1988) or the risk of 

infanticide (Sterck et al. 1997; Pusey & Packer 1994). Depending the environmental conditions, 

feeding competition and the subsequent energetic costs of traveling and foraging can become a 

limiting factor to group size, leading to markedly different group sizes within the same species 

(Brown 1982; Snaith & Chapman 2007; VanderWaal et al. 2009; Markham & Gesquiere 2017). 

Integrating various costs and benefits and their impact on shaping fitness in groups of different sizes 

gave rise to the formulation of optimal group size theory, predicting an optimal, often intermediate, 

group size to offer the best trade-off and highest fitness benefits (Brown 1982; Sibly 1983). Strategies 

beyond adapting group sizes to environmental conditions, like cooperation (Packer & Ruttan 1988; 

van Schaik et al. 2004; Henzi et al. 2010; Schülke et al. 2010) and forming strong affiliative relationships 

(Silk et al. 2003; Cameron et al. 2009; Archie et al. 2014) can further mitigate costs of group living and 

increase individual fitness.  

There is, however, another mechanism potentially driving social evolution, which has been 

largely neglected in behavioural ecology until recently: the link between sociality and health (Kappeler 

et al. 2015). Pathogens have been considered as a potential selective force for social evolution since 

the 1970s (Alexander 1974; Freeland 1976) and are almost universally present throughout the animal 

kingdom (Bordes & Morand 2011; Ezenwa 2016). Recognizing the impact of parasitism on 

individual fitness (Tompkins & Begon 1999; Pedersen & Greives 2008), evolutionary biologists 

increasingly study the determinants of individual parasite infection risk (Lloyd-Smith et al. 2005; 

Hawley & Altizer 2011; Vanderwaal & Ezenwa 2016) and how infections influence social systems 

(Chapman et al. 2009; Kappeler et al. 2015). In the following paragraphs, I will introduce the current 

state of knowledge of the interplay between social behaviour, health and pathogen infection and how 

sociality could impact individual fitness.  

1.1.2 The adaptive value of social relationships 

Individuals form differentiated relationships within their group in most social species 

throughout the mammalian kingdom, including equids (Cameron et al. 2009; Stanley et al. 2017), 

elephants (Moss et al. 2011; Goldenberg & Wittemyer 2017), cetaceans (Connor et al. 2000; Ellis et al. 
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2017; Louis et al. 2017), hyenas (Smith et al. 2010) and primates (Silk et al. 2003; Mitani 2009; Schülke 

et al. 2010; Wittig et al. 2016). If these relationships are characterized by affiliative interactions, biased 

towards specific partners, and stable over longer periods, they are referred to as social bonds (Silk 

2002). Non-random interactions between group members give rise to higher level organisation 

patterns within the social network (Krause et al. 2007; Wey et al. 2008; Kasper & Voelkl 2009). 

Consequently, social network analysis, i.e. investigating social structures through the use of networks 

constructed from interaction patterns, is increasingly used as a tool to study social behaviour (see for 

example Godfrey et al. 2009; Brent et al. 2013; VanderWaal et al. 2014). Social network analyses allows 

researchers to identify the role of network substructure for parasite and information transmission 

and assess the role of variation in individual network integration, centrality and connectedness on 

fitness correlates (Franz & Nunn 2009; Griffin & Nunn 2012; Brent 2015; White et al. 2017b).  

Individuals form social bonds despite temporal and energetic constraints and costs (Dunbar et 

al. 2009) and compete over valuable partners (Palombit et al. 2001; Mielke et al. 2017), indicating the 

importance of social bonds. Social bonds convey adaptive benefits beyond mere association within 

groups and potentially buffer against costs of group living. One of these benefits is support in 

agonistic encounters in female spotted hyenas (Crocuta crocuta) (Smith et al. 2010) and male nonhuman 

primates, where coalitionary support increases reproductive success (Schülke et al. 2010; Berghänel 

et al. 2011; Young et al. 2013, 2014b). Reproductive success is also increased in strongly bonded 

females in several species, including bottlenose dolphins (Tursiops truncates) (Frère et al. 2010), 

humpbacked whales (Megaptera novaeangliae) (Ramp et al. 2010), horses (Equus caballus) (Cameron et al. 

2009) and baboons (Silk et al. 2003, 2009), and female baboons with strong bonds benefited from 

higher longevity (Silk et al. 2010). Female-female bonds are usually formed with closely related kin 

(Silk et al. 2003, 2009), yet bonding with unrelated males can increase survival (Archie et al. 2014), 

offer protection from infanticide (Palombit et al. 1997) and reduce feeding competition (Haunhorst 

et al. 2017) in nonhuman primates.  

The relative importance of quality vs. quantity of social bonds is still debated (Silk et al. 2018). 

Alongside the evidence for bond quality predicting fitness correlates (Cameron et al. 2009; Silk et al. 

2010; Archie et al. 2014), high interaction partner numbers predicted increased survival during a harsh 

winter in Barbary macaques (Macaca sylvanus) (McFarland & Majolo 2013), better thermoregulation 

in vervet monkeys (Chlorocebus pygerythrus) (McFarland et al. 2015), and increased infant survival in a 

study on chacma baboons (Papio ursinus) (McFarland et al. 2017). Additionally, the importance of 

individual integration within the social network beyond dyadic relationships is increasingly 

recognized (Brent 2015). Measures of individual centrality, integration and importance for 

information transmission within a group (Wey et al. 2008; Kasper & Voelkl 2009; Farine & Whitehead 

2015) predict fitness correlates in primates (Brent et al. 2013; Brent 2015) and cetaceans (Stanton & 

Mann 2012; Ellis et al. 2017), sometimes with stronger signals than dyadic bonds (Cheney et al. 2016). 
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Similar patterns emerge in humans, where social integration and strong social bonds predict lower 

mortality (House et al. 1988; Holt-Lunstad et al. 2010), with effect sizes comparable to known 

predictors of mortality risk, like smoking or heavy alcohol consumption (Holt-Lunstad et al. 2010) 

Despite the relatively clear picture of adaptive benefits linked with sociality, strong bonds are 

not universally beneficial and can even be costly. In marmots (Marmota flaviventer), a facultative social 

species, winter survival was lower in individuals with higher partner numbers and network integration 

(Blumstein et al. 2018), suggesting different selection pressures on obligatory than facultative social 

species. In blue monkeys (Cercopithecus mitis stuhlmanni), consistent strong bonds increased survival, 

while inconsistent strong bonds had the opposite effect (Thompson & Cords 2018), and in tufted 

capuchins (Sapajus apella), infants of highly social females were at highest risk from infanticide upon 

alpha male takeovers (Kalbitzer et al. 2017). These findings point to context specificity of 

consequences of bonding and potential fitness trade-offs. The mechanisms linking sociality to fitness 

outcomes are still poorly understood to date (Uchino 2006; Thoits 2011; Hawkley & Capitanio 2015; 

Ostner & Schülke 2018). Immediate benefits of social bonding can be increased access to resources, 

especially food (Tiddi et al. 2011; Sabbatini et al. 2012; Haunhorst et al. 2017), or protection from 

predation (Micheletta et al. 2012). Improved health and consequently survival have been put forward 

as mediating positive effects of social interactions on fitness, with different mechanisms explaining 

the link between sociality and health, which will be discussed in detail in the next paragraphs. 

1.1.3 Sociality and health – some mechanisms 

In humans, the importance of social relationships for individual health and longevity and the 

detrimental effects of social isolation are well established (Berkman & Syme 1979; Uchino et al. 1996; 

Cacioppo & Hawkley 2003; Holt-Lunstad et al. 2010, 2015). Evidence is mostly correlational, yet 

longitudinal approaches allow the conclusion that sociality is causally connected to longevity (Uchino 

2006; Holt-Lunstad et al. 2010). Research aiming to explain this causal connection and the mediating 

mechanisms gave rise to the interdisciplinary field of “social neuroscience” (Cacioppo et al. 2000; 

Eisenberger & Cole 2012). With growing interest in the link between sociality, health and fitness, 

concepts of social neuroscience increasingly receive attention in behavioural ecology (Engh et al. 

2006a; Crockford et al. 2008; Demas & Carlton 2015; Wittig et al. 2016).  

Health and fitness are inextricably linked with social environment in gregarious animals, and 

social dominance status, similar to socio-economic status in humans, can predict health outcomes 

(Sapolsky 2004; Cavigelli & Chaudhry 2012; Muscatell et al. 2016; Marescot et al. 2018). Dominance 

rank predicts aggressive interactions and challenges of the dominance position. These stimuli evoke 

physiological stress responses, including the activation of the hypothalamic-pituitary-adrenal (HPA) 

axis which culminates in glucocorticoid (GC) release (Sapolsky 2005). Periods of rank instability or 

male immigration generally lead to such stress responses (Sapolsky 2005; Engh et al. 2006b; Wittig et 
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al. 2008), yet depending on the social system, higher or lower ranking individuals can be subject to 

more socially stressful conditions (Abbott et al. 2003; Sapolsky 2005). Instead of being costly per se, 

HPA axis activation is an adaptive response to challenges that contributes to survival (Romero 2004; 

Cavigelli & Chaudhry 2012). GCs have various immunomodulatory functions (Besedovsky et al. 

1986; Dhabhar 2009), including regulation and termination of inflammatory responses (Besedovsky 

et al. 1986; Eisenberger & Cole 2012). High GC levels can even enhance immune function under 

certain conditions, as in yellow baboons (Papio cynocephalus), where alpha males, but not lower ranking 

individuals, with high GC levels showed accelerated wound healing (Archie 2013). Social rank 

position also alters expression patterns of immune-related genes, linking social environment to 

immune function and disease susceptibility (Tung & Gilad 2013; Snyder-Mackler et al. 2016).  

While short term activation of the HPA axis is adaptive (Romero 2004), long-term activation is 

considered to have detrimental effects (Apanius 1998). Although the fitness costs of elevated GC 

levels in wildlife are currently disputed (Boonstra 2013; Beehner & Bergman 2017), human and 

laboratory animal studies describe a range of adverse physiological effects of repeated or chronic 

HPA axis activation (Apanius 1998; Yang & Glaser 2002; Glaser & Kiecolt-Glaser 2005). These 

include dysregulation of GC excretion, resulting in elevated baseline levels (Yang & Glaser 2002; 

Cole et al. 2009), uncoupling of immune cells from GC regulation (Cole et al. 2009), low level 

inflammation (Dhabhar 2009; Hawkley et al. 2013; Hawkley & Capitanio 2015) and a shift towards 

cell mediated T-helper type 2 (Th2) responses (Elenkov & Chrousos 1999). Experiencing social 

stressors also leads to sympathetic nervous system (SNS) activation, with negative health effects of 

repeated stress responses, profound changes in immune gene expression in rhesus macaques (Macaca 

mulatta) (Sloan et al. 2008; Capitanio & Cole 2015) and upregulation of inflammatory signalling 

resulting from increased lymph node innervation by SNS fibres (Sloan et al. 2007). These long-term 

effects of social stress can culminate in increased disease susceptibility (Capitanio et al. 1998; Glaser 

& Kiecolt-Glaser 2005; Dhabhar 2009). 

Social isolation, real or perceived, is another very potent stressor linked with adverse health 

outcomes in gregarious animals (Eisenberger & Cole 2012; Hawkley et al. 2013; Hawkley & Capitanio 

2015), also predicting worse health and lower life expectancy in humans (Hawkley & Capitanio 2015; 

Holt-Lunstad et al. 2015). Social isolation increases HPA axis activity and inflammatory signalling 

(Hawkley et al. 2013; Hennessy et al. 2014), resulting in detrimental health effects that include 

metabolic and cardiovascular disease and mental illness in humans (Dantzer et al. 2008; Kiecolt-

Glaser et al. 2010; Hawkley & Capitanio 2015). Isolation is thus a second pathway for social 

environment to shape individual health.  

In contrast, social relationships can alter individual physiology beyond the effects of social 

isolation and stressors: affiliative interactions and social support can profoundly increase health 

outcomes, also by attenuating responses to perceived threats and thus mitigating costs of social stress 
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(Cohen & Wills 1985; Kikusui et al. 2006; Kiyokawa & Hennessy 2018), referred to as social buffering 

(Cohen & Wills 1985). The social buffering hypothesis thus offers a mechanism explaining the health 

benefits of social relationships (Berkman & Syme 1979; House et al. 1988; Holt-Lunstad et al. 2010). 

Indeed, socially well integrated individuals have a lower risk of contracting infections and developing 

symptoms upon experimental exposure with respiratory viruses in humans (Cohen et al. 1991, 2003, 

2015) and long tailed macaques (Macaca fascicularis) (Cohen et al. 1997). Social buffering comes in two 

flavours: structural support, i.e. the integration of individuals within a social network (Cohen & 

Janicki-Deverts 2009; Holt-Lunstad et al. 2010) or being housed with social partners in case of 

experimental animals (Kikusui et al. 2006; Kiyokawa 2018), and direct support, i.e. the presence of 

or interaction with a conspecific in face of a stressor (Ishii et al. 2016; Kiyokawa 2018). Both 

mechanisms have distinct underlying principles by which they attenuate stress responses (reviewed 

in Kiyokawa 2018; Kiyokawa & Hennessy 2018): Structural support influences the initial reaction to 

a stressor, direct support the recovery from a stressor. Beyond lowering the perceived severity of a 

stressor if support is available, social buffering can alter individual physiology also in absence of an 

acute stressor (Kikusui et al. 2006), leading to beneficial health outcomes.  

There are several physiological mechanism by which social buffering can impact susceptibility 

to infectious and non-infectious diseases. In humans, these include lower SNS activation (Cacioppo 

& Hawkley 2003; Eisenberger & Cole 2012; Inagaki 2018), lower baseline blood pressure (Uchino et 

al. 1996), lower levels of inflammation (Cacioppo & Hawkley 2003; Kiecolt-Glaser et al. 2010), better 

sleep quality and overall higher maintenance function (Cacioppo et al. 2002; Cacioppo & Hawkley 

2003). Many of these mechanisms are difficult to assess in natural populations, yet correlates of HPA 

axis activation and oxytocin release, which both play important roles for stress buffering (Crockford 

et al. 2017; Kiyokawa & Hennessy 2018), can reliably be measured in wildlife to study social buffering 

effects (Crockford et al. 2013, 2017; Young et al. 2014a; Beehner & Bergman 2017). 

In primates, grooming has been linked with endorphin (Keverne et al. 1989) and oxytocin 

release (Crockford et al. 2013) and reduced HPA activation (Shutt et al. 2007; Aureli & Yates 2010), 

illustrating the potential for social interactions to buffer against the adverse effects stressors. Whether 

social interactions lower overall activation or improve HPA axis regulation is currently under debate, 

and both processes are not necessarily mutually exclusive. While male Barbary macaques with 

stronger bonds had lower faecal GC metabolite (fGCM) levels when faced with social and 

environmental stressors (Young et al. 2014a), strongly bonded chimpanzees showed overall lower 

HPA activity across every day and challenging contexts (Wittig et al. 2016). Oxytocin, which can 

downregulate HPA axis activity (Kikusui et al. 2006; Li et al. 2017), is increased in socio-positive 

interactions and intergroup conflicts in chimpanzees (Crockford et al. 2013; Samuni et al. 2016). 

Besides anxiolytic effects and HPA axis regulation (Uvnäs-Moberg 1998; Crockford et al. 2017), 

oxytocin can also facilitate social interactions (Witt et al. 1992). This indicates that faced with certain 
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stressors, e.g. the threat of an intergroup encounter (Samuni et al. 2016), physiological mechanisms 

mediate active support seeking, which could functionally alleviate the threat posed by the stressor. 

Similar patterns were observed in baboons, where individuals reacted to stressors (male rank 

instability and loss of a bonded partner) not only with increased HPA axis activation, but 

subsequently focused their grooming network, resulting in fGCM levels or quicker fGCM level 

return to baseline (Engh et al. 2006a; Wittig et al. 2008). This interplay between physiology and 

behaviour could be the evolutionary root of social buffering (Kiyokawa & Hennessy 2018). In 

summary, social interactions induce various physiological changes that can influence health outcomes 

and thus predict variance in survival and fitness based on social interaction patterns. 

1.1.4 Sociality’s role for pathogen exposure 

Social contacts may be beneficial for individual health due to improved immune function and 

lower susceptibility, but also carry risks. Increased exposure to infectious diseases has been suggested 

as one of the major costs of group living (Freeland 1976), with evidence for higher infection risk in 

bigger groups (Altizer et al. 2003; Patterson & Ruckstuhl 2013). Interactions within a group are 

usually non-random, and higher level organisation patterns, like subgrouping within a social network, 

can modulate individual exposure and the transmission of pathogens through the network (Cross et 

al. 2004; Salathé & Jones 2010) and predict transmission more precisely than group size alone (Griffin 

& Nunn 2012; Nunn et al. 2015). Depending on their network position and disease susceptibility, 

individuals can contribute disproportionally to disease transmission (Woolhouse et al. 1997; Lloyd-

Smith et al. 2005; Hawley & Altizer 2011). Identifying these highly vulnerable individuals is 

particularly important in the light of conservation and medical interventions, which can require 

targeting specific individuals to succeed (Smith et al. 2009; Rushmore et al. 2013). 

One strategy to handle this cost of social aggregation and interaction is social immunity (Cremer 

et al. 2007; Schmid-Hempel 2017), mostly employed by colony living insects. Social insects are 

particularly vulnerable to pathogen invasion due to the high spatial proximity of closely related 

individuals (Cremer et al. 2007; Schmid-Hempel 2017), and defence against pathogens is usually 

considered on a colony rather than an individual level. Strategies to prevent pathogen invasion of 

the colony are the isolation of heavily (Cremer et al. 2007) or support of mildly infected individuals 

(Konrad et al. 2012). Grooming individuals with fungal infections can be mutual beneficial in ants, 

simultaneously alleviating infection and transferring immunity to the respective pathogen (Konrad et 

al. 2012). Similar patterns can be observed in vertebrates if low level exposure to pathogens leads to 

development of adaptive immunity without developing serious infections (Burnet et al. 1972; Hart 

2011). Given the close relatedness of individuals within a colony and the subsequent inclusive fitness 

benefits of giving support, this strategy is generally more common in insects than mammals (Cremer 

et al. 2007; Schmid-Hempel 2017), where intragroup-competition for mates and resources is often 

harsh (Koenig 2002; van Schaik et al. 2004) and individuals do not usually adapt their behaviour to 
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benefit the group. Thus, insect immunity offers a valuable model system for understanding the 

evolution of immune responses and social strategies to counter disease risk (Schmid-Hempel 2003), 

although patterns cannot be directly applied to mammal sociality.  

Transmission pathways can be vastly different between pathogens, so social interactions can 

shape infection risk differently. Sleep site choice, as an example, has been suggested as a defence 

strategies against contracting vector borne diseases (Nunn & Heymann 2005). Grooming reduces 

ectoparasite load and subsequent exposure to vector borne diseases, exemplified by lower lice loads 

in Japanese macaques grooming with many partners (Macaca fuscata) (Duboscq et al. 2016). In case of 

diseases transmitted via contact or close proximity, social contacts can have immediate impacts on 

infection risk. The spread of viral infections in humans closely follows the social network structure 

(Mossong et al. 2008) for influenza, human immunodeficiency virus (HIV) and Hepatitis C (Klovdahl 

& Australian 1985; Klovdahl et al. 1994; Rothenberg et al. 1998; Romano et al. 2010; Cauchemez et al. 

2011), and from insects to mammals, highly connected individuals are more likely to be infected with 

bacteria or viruses (Vicente et al. 2007; Godfrey et al. 2009; Craft et al. 2011; Konrad et al. 2012). Close 

contact is not always a strong predictor of infection risk, as not all interactions contribute equally to 

pathogen transmission: in meerkats (Suricata suricatta), not the most connected, but the individuals 

giving grooming and receiving aggression are most vulnerable to tuberculosis infection (Drewe 

2009), and in Tasmanian devils (Sarcophilus harrisii), the transmission of an infectious tumour disease 

is closely linked to aggressive behaviours (Hamede et al. 2013).  

Social interactions can also predict acquisition of environmentally transmitted bacteria 

(VanderWaal et al. 2014; Tung et al. 2015; Springer et al. 2016; Balasubramaniam et al. 2018) and 

gastrointestinal (GI) parasites (Fenner et al. 2011; MacIntosh et al. 2012; Rimbach et al. 2015). High 

numbers of interaction partners (Wren et al. 2016) and central network positions (VanderWaal et al. 

2013; Rimbach et al. 2015; Friant et al. 2016a) are the most common predictors of high infection risk. 

Although predominantly transmitted via the environment, close social contact can contribute to 

transmission to GI parasites, (Hernandez & Sukhdeo 1995; MacIntosh et al. 2012; González-

Hernández et al. 2014; Friant et al. 2016b), leading to heterogeneous results in assigning social 

behaviours to parasite exposure. The contributions of environmental and social factors to the 

transmission of GI parasites depend on the parasite in question, yet are difficult to identify, as often 

environmental exposure is not measured (Pebsworth et al. 2012; Grear et al. 2013). In this thesis, I 

aim to disentangle these two components of GI parasite transmission. 

1.2 Gastrointestinal parasites 

Parasitism is rather the norm than the exception in the animal kingdom (Grencis et al. 2014). 

Pathogens causing severe diseases, e.g. AIDS, tuberculosis, anthrax and malaria receive high levels 

of attention in humans and wildlife (Rothenberg et al. 1998; Nunn & Heymann 2005; Leendertz et al. 
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2006, 2010; Vicente et al. 2007; Di Fiore et al. 2009; Drewe 2009; Deeks 2011). In comparison, mild 

diseases, like helminth infections, are often neglected (Hotez et al. 2005; Bethony et al. 2006; Ghai et 

al. 2014), despite their strong implications for host health and evolution (Freeland 1976; Hawley & 

Altizer 2011; Ezenwa & Jolles 2015; Ezenwa et al. 2016). Helminths is a general term describing a 

large group of parasitic worms within the phyla nematoda and platyhelmintha (Díaz & Allen 2007). Here, 

I will restrict myself to discussing environmentally transmitted GI helminths, including, Ascaris spp. 

and Trichuris spp. and strongyle nematodes like hookworms (Ancylostoma spp. and Nercator spp.), 

Trichostrongylus spp. and Oesophagostomum spp.. 

GI helminth infections are highly prevalent in humans, with an estimated 2 billion people 

infected (Nutman 2015), yet are surprisingly neglected in human medical research (Bethony et al. 

2006; Ojha et al. 2014). Infections can cause morbidity, developmental retardation and serious 

complications in severe infections (Degarege et al. 2014; Nutman 2015), yet often do not cause overt 

symptoms (Nutman 2015). Sharing long co-evolutionary histories, host immune systems evolved in 

GI-helminths presence (Yazdanbakhsh et al. 2002; Carvalho et al. 2009; Jackson et al. 2009). The 

hygiene hypothesis proposes that absence of infections leads to immune dysregulation 

(Yazdanbakhsh et al. 2002; Carvalho et al. 2009), culminating in allergies and asthma (Kitagaki et al. 

2006; Briggs et al. 2016). The immunomodulatory potential of helminths (Nutman 2015) has even 

resulted in infections being used as therapeutic intervention for inflammatory, autoimmune and 

allergy-related diseases (Cooper 2002; Lopes et al. 2016; Hansen et al. 2017). As a consequence, their 

status as a pathogen is still debated. Similar to infection in humans, GI helminths usually do not 

cause overt symptoms in wildlife (Stien et al. 2002; Krief et al. 2008). Nonetheless, GI helminth 

infections can severely impact hosts on individual and population levels (Tompkins et al. 2011), and 

are a powerful tool to study behavioural and evolutionary host-parasite feedback loops (Tompkins 

& Begon 1999; Tompkins et al. 2011), which led to their increasing importance for the study of 

wildlife health (Hawley & Altizer 2011; Martin et al. 2011; Pedersen & Babayan 2011). 

1.2.1 Studying GI helminth infections: Chances and challenges 

Soil transmitted helminths have complex, often host specific, life cycles, yet share an essential 

environmental life cycle stage: eggs are shed in the faeces of infected host and develop into infective 

stages in the environment, with the time to infectivity depending on species and environmental 

conditions (Dash 1973; Bethony et al. 2006; Viney 2017). Infective stages can be mobile, like strongyle 

nematode larvae (Dash 1973; Ojha et al. 2014), or immobile, like embryonated Trichuris eggs 

(Stephenson et al. 2000a). The most common infection route is ingestion of infective stages upon 

contact with contaminated soil or food. Hookworm and strongyloides larvae can also pierce the skin 

of the host to initiate infections (Loukas et al. 2005; Bethony et al. 2006; Viney 2017). Within hosts, 

helminths develop into adult worms, sometimes passing through multiple organ systems (Hotez et 
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al. 2004; Bethony et al. 2006), and begin producing eggs to be shed in faeces, completing the life 

cycle.  

GI helminth infections can be assessed noninvasively via standardized, routinely used 

coproscopic methods for detection and quantification of egg shedding (Gillespie 2006). As egg 

morphology can be highly similar between different taxa, identification beyond the genus or taxon 

level can be challenging. Molecular methods like genotyping (Gasser et al. 1999; McLean et al. 2012; 

Roeber et al. 2013), identification based on larval morphology (Ota et al. 2015), and combined 

coproscopic and molecular approaches (Budischak et al. 2015a; Ota et al. 2015) complement 

microscopic approaches. Egg shedding patterns can be closely correlated to actual worm burden 

(Roberts & Swan 1981; Seivwright et al. 2004), but are not always (Christensen et al. 1995; Roepstorff 

et al. 1996). Additionally, infected individuals do not consistently excrete eggs, but characteristics, 

like age, sex, and reproductive status (Klein 2004) can alter egg shedding patterns. Microscopic 

analyses are subject to uncertainty due to e.g. detection sensitivity leading to statistical non-detection 

of low egg numbers in faeces. Consequently, reliable infection assessment requires multiple samples 

per individual (Gillespie 2006).  

1.2.2 Host-parasite interactions 

1.2.2a Parasites and host physical condition 

Infections with GI helminths correlate with poorer nutritional status from mice to men 

(Stephenson et al. 2000a; Ezenwa 2004b; Irvine et al. 2006; Szyszka & Kyriazakis 2013). Mounting 

immune responses is energetically costly (Ing et al. 2000; Bonneaud et al. 2003; Derting & Compton 

2003; Forbes et al. 2016), and failing to meet the energetic demands of immune reactions can increase 

infection susceptibility. Poorer nutritional status increases GI helminth susceptibility in e.g. rodents 

(Ing et al. 2000; Forbes et al. 2016), ruminants (Coop & Kyriazakis 1999) and ungulates (Ezenwa 

2004b). Diet also influences susceptibility, with a major role of low protein availability, increasing the 

risk of GI helminth infections (Chandra 1997; Ing et al. 2000; Koski & Scott 2001). 

Infections with GI helminths in turn impact host nutritional status due to energy demands of 

immune responses, reduced food intake (Sykes & Coop 1976; Crompton & Nesheim 2002), impaired 

nutrient absorption (Coop & Holmes 1996; Koski & Scott 2001; Greer et al. 2005) and dietary 

changes (Kyriazakis et al. 1998). Infections can have detrimental effects on hosts, measurable as 

slower development (Sykes & Coop 1976; Adams et al. 1994; Greer et al. 2005), lower reproductive 

success (Coop & Holmes 1996), decreased survival (Gulland 1992; Murray 2002; Pedersen & Greives 

2008), and impaired cognitive development in human children (Eppig et al. 2010; Degarege et al. 

2014). Feedback-loops between infection status and host condition can give rise to vicious circles 

(Koski & Scott 2001) and make determining the directionality of the nutrition-parasite link 

challenging (Coop & Kyriazakis 1999; Beldomenico & Begon 2010). 
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1.2.2b Parasite-immune interactions 

GI helminth infections profoundly affect the host’s immune systems via multiple pathways. 

HPA axis activation, vital for regulating energy metabolism and inflammatory immune reactions 

(Hart 1988; Konsman et al. 2002), is often linked with GI helminth infections (Pedersen & Greives 

2008; Friant et al. 2016b). The directionality of the relationship is often unclear, as acute GI helminth 

infections can induce HPA axis activation, while immunoregulatory effects of HPA dysregulation 

can increase susceptibility to infections (Apanius 1998; Glaser & Kiecolt-Glaser 2005; Beldomenico 

& Begon 2016). Similar to nutritional status, the negative effects of stress and infection can 

exacerbate each other (Beldomenico & Begon 2016).  

In addition to acute responses to tissue damage caused by GI helminths, infections elicit specific 

immune responses, which are generally characterised by strong Th2 activation and anti-inflammatory 

in nature (Loukas et al. 2005; Carvalho et al. 2009). Preferential Th1 or Th2 responsiveness is a genetic 

trait (Else & Grencis 1991; Ezenwa et al. 2010), and individuals failing to mount strong Th2 responses 

generally suffer from chronic rather than transient GI helminth infections (Else & Grencis 1991). 

More mixed Th1-Th2 responses have been described (Anthony et al. 2007) in humans (Pit et al. 2001) 

and experimental studies on pigs (Andreasen et al. 2015, 2016), emphasizing the specificity of host 

immune responses to GI helminths. The two arms of the immune system are mutually inhibitory 

(Long & Nanthakumar 2004), so a shift towards Th2 type responses decreases Th1 response 

efficiency. GI helminths are therefore powerful immune modulators (Jackson et al. 2009) that can 

affect hosts’ immune efficiency against various parasites (Cox 2001; Lello et al. 2004; Graham 2008; 

Vaumourin et al. 2015). GI helminths also actively manipulate host immune signalling in their favour 

by excreting secretory products (Hsieh et al. 2004; Hewitson et al. 2009; Grencis et al. 2014). Human 

hookworms and murine Trichuris, for example, increase host γ-interferon (IFNγ) signalling, inducing 

Th1 prone responses (Grencis & Entwistle 1997; Hsieh et al. 2004; Hewitson et al. 2009). 

Immunomodulatory effects of GI helminth infections can even persist after parasite clearance 

(Wright et al. 2009) and thus influence hosts beyond acute infections (Jackson et al. 2009). 

1.2.2c Parasites and host behaviour 

Given the profound impact of GI helminth infections on host physiology, their influence on 

host behaviour is unsurprising. Injuries and infections induce sickness behaviour (Hart 1988), a range 

of behavioural changes aimed at limiting infection costs and increasing survival chances (Hart 1988; 

Kyriazakis et al. 1998; Konsman et al. 2002; Dantzer 2004). Sickness behaviour is mediated by 

inflammatory cytokine signalling (Dantzer 2001; Konsman et al. 2002), induced by e.g. tissue damage 

in the gut mucosa in the case of GI helminth infections (Dash 1973; Hotez et al. 2004; Hsieh et al. 

2004). Behavioural changes include lethargy and reduced activity, social withdrawal, heat conserving 

body postures, and anorexia, all contributing to energy conservation and immune response efficiency 

(Kyriazakis et al. 1998; Konsman et al. 2002; Hennessy et al. 2014). There is ample evidence for 
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sickness behaviour responses to GI helminths, e.g. reduced activity in cattle (Szyszka & Kyriazakis 

2013) and primates (Ghai et al. 2015; Chapman et al. 2016; Friant et al. 2016b), reduced food intake 

in ruminants (Sykes & Coop 1976; Greer et al. 2005) and reduced foraging in infected red-capped 

mangabeys (Cercocebus torquatus) (Friant et al. 2016b).  

Hosts employ several behavioural strategies to avoid infections (Hart 2011; Curtis 2014), like 

adapting foraging behaviour (Keymer et al. 1983; Hutchings et al. 2002; Gunn & Irvine 2003), 

alternating between territoriality and roaming (Ezenwa & Snider 2016) and avoiding contact with 

faecal contamination (Curtis 2014; Sarabian & MacIntosh 2015; Amoroso et al. 2017; Weinstein et al. 

2018) to avoid exposure to infective parasite stages. Individuals also avoid direct contact to 

conspecifics likely to transmit parasites (Curtis 2014): mice express preferences for non-parasitized 

mating partners (Ehman & Scott 2002), and mandrills (Mandrillus sphinx) avoid grooming individuals 

infected with unicellular GI parasites (Poirotte et al. 2017). Infection status is likely assessed via 

olfactory cues (Ehman & Scott 2002; Olsson et al. 2014; Poirotte et al. 2017). Contracting GI helminth 

infections directly from infected conspecifics is unlikely due to their environmental transmission, yet 

avoiding infected individuals can be adaptive when GI helminth infections correlate with more 

directly transmissible infections.  

1.2.2d Coinfection 

GI helminth infections can protect from infection with other helminth taxa as a result of cross-

immunity and within host competition (Cox 2001; Lello et al. 2004; Vaumourin et al. 2015), or 

increase host susceptibility to infection via immunosuppression (Lello et al. 2004). In pigs coinfected 

with Trichuris and Oesophagostomum, for example, antibody responses against Oesophagsotomum were 

markedly increased compared to single infections. Within host helminth-helminth interactions can 

be quite complex, with multiple species impacting each other, including positive feedback loops 

(Lello et al. 2004). GI helminths can also alter host susceptibility to a variety of microparasites and 

influence duration, severity and transmission of infections (Vaumourin et al. 2015), like in the cases 

of the three of the most important diseases with regard to global human health (Salgame et al. 2013), 

malaria (Hartgers & Yazdanbakhsh 2006), tuberculosis (Rafi et al. 2012) and HIV/AIDS (Borkow et 

al. 2007). These interactions are mostly mediated by the immunomodulatory properties of GI 

helminth infections (Maizels & Yazdanbakhsh 2003; Long & Nanthakumar 2004; Anthony et al. 

2007), which can impair anti-microparasite immune control (Cox 2001; Graham 2008; Jackson et al. 

2009). GI helminths can also limit microparasite transmission, underlining the importance of 

considering GI helminths for disease epidemiology in wildlife: long-term experimental parasite 

clearance increases Th1 immune function and individual survival in African buffaloes (Syncerus caffer). 

(Ezenwa et al. 2010; Ezenwa & Jolles 2015), yet simultaneously accelerates the spread of Mycobacterium 

bovis through the population due to prolonged contribution of treated individuals to M. bovis 

transmission (Ezenwa et al. 2010; Ezenwa & Jolles 2015). Similarly, anthelmintic treatment increases 
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shedding of protozoan Eimeria spp. in wild mice (Knowles et al. 2013; Pedersen & Antonovics 2013), 

and malaria burdens (Budischak et al. 2018), as blood sucking worms compete with Plasmodia for red 

blood cells as a resource (Graham 2008; Budischak et al. 2018). Consequently, coinfections need to 

be considered to understand the full impact of GI helminth infections on individual and population 

levels (Ezenwa & Jolles 2011; Martin et al. 2011; Tompkins et al. 2011; Ezenwa 2016). 

1.2.2e Parasite defence strategies 

Considering the effects of GI helminth infections on host physiology and behaviour, 

developing resistance, i.e. the reduction of parasite burden via efficient immune responses, appears 

to be an adaptive strategy. There is, however, an alternative strategy to manage infections, namely 

parasite tolerance, i.e. decreasing the costs of infection without affecting parasite burden (Råberg et 

al. 2009; Medzhitov et al. 2012). Mounting immune responses has considerable energetic costs 

(Colditz 2008, but see above) and can cause immunopathology in case of too strong or inadequate 

responses. Immunopathology can have more severe results than the damage resulting from 

infections, like autoimmune reactions, allergies, and severe tissue damage (Graham et al. 2005; 

Maizels et al. 2009). Consequently, damage rather than parasite control might be the most important 

goal of anti GI helminth defences (Read et al. 2008; Medzhitov et al. 2012; Råberg 2014), with optimal 

trade-off between costs of infection and costs of immunopathology (Medzhitov et al. 2012) 

depending on parasite pathogenicity (Greer 2008).  

Tolerance to infections is measured as the slope of health costs against parasite intensity 

measures, i.e. weight loss with increasing egg counts, with more tolerant individuals suffering lower 

costs with higher infection intensity (Hayward et al. 2014b; Jackson et al. 2014). In wild Soay sheep 

(Ovis aries), tolerance is related to increased reproductive success (Hayward et al. 2014b), whereas 

females with resistance prone immune responses are characterized by increased survival of harsh 

winters at the expense of lower fecundity (Graham et al. 2010), a pattern that extends to GI helminth 

specific immune responses (Hayward et al. 2014a). There are similar trade-off between high tolerance, 

increasing body condition and survival at the expense of reproductive success in wild mice, with 

individuals shifting their strategy from resistance to tolerance as they age (Jackson et al. 2014). 

Understanding the causes and physiological correlates of resistance vs. tolerance strategies can thus 

profoundly contribute to our understanding of wildlife health and the impact of infections on fitness. 

1.3 Study aims and approach 

1.3.1 Study site and species 

To assess the GI helminth related costs and benefits of sociality, I conducted my study on two 

groups of semi-free ranging Barbary macaques at Affenberg Salem (de Turckheim & Merz 1984) in 

Southwest Germany. Barbary macaques are the phylogenetically most basal species of the genus 
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Macaca, most closely resembling ancestral macaque species (Purvis 1995; Morales & Melnick 1998). 

In their natural habitat, the Atlas Mountains of Morocco and Algeria (Fooden 2007), populations are 

declining, and Barbary macaques are considered “Endangered” by the IUCN (van Lavieren & Wich 

2010). Like macaques in general, Barbary macaques form multi-male multi-female groups with 

female phylopatry and male dispersal (Mehlman 1986; Aureli et al. 1997; Thierry 2007) with a 

relatively tolerant social style (Thierry et al. 1999). They are seasonal breeders with promiscuous 

mating by both sexes (Small 1990; Kuester & Paul 1992) and a mating season in winter (~October 

to February), followed by birth season in early summer, peaking around June (Ménard & Vallet 1997; 

Brauch et al. 2007). Like most primates, Barbary macaques differentiated social relationships 

(Berghänel et al. 2011; Young et al. 2014a). Males form linear dominance hierarchies, with male 

relationships predicting support in the frequently occurring coalitions, which are particularly frequent 

during the mating season (Paul et al. 1992; Widdig et al. 2000; Berghänel et al. 2011; Young et al. 

2014b). Socio-positive interactions can decrease physiological stress in Barbary macaques (Shutt et 

al. 2007), yet frequent agonistic interactions and prolonged male associations with infants increase 

HPA axis activity (Henkel et al. 2010; Young et al. 2014a). Strong social bonds attenuate stress 

responses to intense aggression and cold stress in males (Young et al. 2014a), and social integration 

as well as a high number of grooming partners increase survival under harsh climate conditions 

(McFarland & Majolo 2013; Lehmann et al. 2016; Campbell et al. 2018), making the Barbary macaque 

an interesting system to study the effects of sociality on health and fitness. 

The study site was Affenberg Salem, a 20 ha large outdoor enclosure of beech/spruce mixed 

forest (see de Turckheim & Merz 1984 for a detailed account of the population and study site). 

Macaques live outdoors year round under climatic conditions similar to their natural habitat. They 

are provided once daily with fresh fruits and vegetables and have ad libitum access to commercial 

monkey chow and water, but frequently forage on natural food sources like insects, leaves and 

beechnuts. Intergroup interactions are frequent and males can migrate between the groups. Two 

groups have daily contact with park visitors, who are restricted to a path while macaques can move 

freely within the entire enclosure, and all individuals are fully habituated to human presence. Semi-

free ranging housing conditions with minimal human impact (de Turckheim & Merz 1984; Paul & 

Kuester 1988), and similar group structure and dispersal behaviour as displayed by wild individuals 

(Paul & Kuester 1985, 1988; Ménard & Vallet 1993; Ménard 1996) allow for studying macaque 

behaviour closely resembling that wild Barbary macaques. 

GI parasite infections are routinely monitored in the population. Trichuris spp. and strongyle 

nematode infections are detected regularly, with Oesophagostomum spp. infections confirmed by 

presence of intestinal nodules in necropsies (Dr. Roland Hilgartner, personal communication; 

analyses performed by the “Staatliches Tierärztliches Untersuchungsamt Aulendorf”). The study 

population routinely receives anthelminthic treatment twice per year, offering an ideal opportunity 
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to study host-parasite dynamics in a nonhuman primate. Host-parasite interactions have mostly been 

studied using correlational and cross-sectional study designs (Godfrey et al. 2009; Fenner et al. 2011; 

MacIntosh et al. 2012; Rimbach et al. 2015), so the directionality of the links between parasite 

infections, host physiology and behaviour is largely unclear. Correlational studies are valuable in their 

own right, yet to draw causal inferences, experimental studies are needed (Pedersen & Greives 2008; 

Ezenwa et al. 2010; Ezenwa & Jolles 2015; Pedersen & Fenton 2015; Chapman et al. 2016; Friant et 

al. 2016a, b). Capitalizing on parasite treatment, I can investigate both directions of the relationships 

between host behaviour, physiology, and GI helminth infection risk to contribute to our current 

understanding of the links between host sociality, parasites and health. 

1.3.2 Assessing health in wildlife  

Assessing host physiological status and immune function under natural conditions is a vital step 

for studying wildlife health (Jackson 2015), yet in contrast laboratory studies, reliable markers of 

individual condition, stress responsiveness (beyond HPA axis activity) and immune function are not 

always available. Endocrinological parameters, like steroid hormones, are already routinely measured 

in field studies (Pedersen & Greives 2008; Muehlenbein & Watts 2010; Young et al. 2014a), and a 

multitude of immune system parameters can be assessed from blood samples, like immune cell 

reactivity (Ezenwa et al. 2010), cytokine levels (Vandeleest et al. 2016), antibody levels (Graham et al. 

2010), blood parasite presence (Springer et al. 2015), and immune gene expression (Tung & Gilad 

2013). However, handling of wild animals is not always possible for ethical and feasibility reasons, 

so noninvasive markers of immune function and physical condition are needed.  

Recent advances in the fields of medical diagnostics and wildlife endocrinology led to the 

validation of several promising markers of immune function (Peterson et al. 2002; Reimert et al. 2008; 

Higham et al. 2015; Behringer & Deschner 2017) and energy balance (Deschner et al. 2008; Emery 

Thompson et al. 2009; Girard-Buttoz et al. 2011; Schaebs et al. 2016) from urine and faeces, two of 

which are employed here: urinary neopterin (uNEO), a marker of immune function, and urinary C-

Peptide (uCP) immune function, a marker of physical condition.  

1.3.2a Measuring immune function: urinary neopterin 

The pteridin neopterin is released by macrophages, monocytes and dendritic cells in response 

to IFNγ stimulation and activates Th1-helper cells (Murr et al. 2002; Plata-Nazar et al. 2010). It is a 

general marker of Th1 immune activation and responses against intracellular pathogens (Widner et 

al. 1999; Murr et al. 2002) widely used in human medical diagnostics. Serum, urinary and faecal levels 

are linked to various diseases, including gastrointestinal infections and inflammation (Ledochowski 

et al. 2001; Husain et al. 2013), viral infections like HIV (Fuchs et al. 1988) and viral hepatitis 

(Reibnegger et al. 1988a), bacterial infections like tuberculosis (Fuchs et al. 1984), and non-infectious 

diseases like cancer (Unal et al. 2009; Sucher et al. 2010), autoimmune and coronary heart disease 
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(Berdowska & Zwirska-Korczala 2001). High NEO levels indicate higher disease severity and worse 

prognosis (Unal et al. 2009; Sucher et al. 2010). NEO is also elevated in response to acute stress 

(Breinekova et al. 2007) and physical strain (Moser et al. 2008), potentially due to cellular immune 

system activation.  

NEO is cleared via the kidneys unchanged (Berdowska & Zwirska-Korczala 2001) and can 

reliably be measured from urine samples. NEO is relatively stable under field conditions, making it 

a promising marker for immune system monitoring in wildlife (Heistermann & Higham 2015; 

Higham et al. 2015; Behringer et al. 2017). Urinary NEO levels have been shown to track simian 

immunodeficiency virus infections in rhesus macaques (Fendrich et al. 1989; Higham et al. 2015) and 

acute respiratory disease in bonobos (Pan paniscus) (Behringer et al. 2017), providing the biological 

validity of NEO levels as markers of immune activation. I aimed to assess the feasibility of uNEO 

as a noninvasive marker of immune regulation in relation to GI helminth infections. Given the cross-

inhibition of Th1 and Th2 immune responses (Long & Nanthakumar 2004) and the usually 

predominant Th2 response against GI helminths (Carvalho et al. 2009; Grencis et al. 2014), uNEO 

level variations could indicate infection with or susceptibility to GI helminth infections. These 

hypotheses were tested in detail in Chapter 2 and Chapter 4 of this thesis.  

1.4.2b Measuring physical condition: urinary C-peptide 

Physical condition, nutritional status and energy availability are important variables to consider 

for individual health, yet assessing them wild animals is not straightforward. Current methods include 

assessment of body weight and weight changes (Hayward et al. 2014a), relating body mass to body 

length (Peig & Green 2009), use of a combination of visual markers, such as pelage condition and 

visually assessed body fat (Borg et al. 2014; Friant et al. 2016b), or manual palpation, often used in 

combination with visual assessment (Ezenwa et al. 2009). While some of the scores have been 

validated against invasive measures of body conditions (Ezenwa et al. 2009), assessment based on 

visual cues can be unreliable if handling study animals is not possible. Measuring physiological 

markers of individual energetic status, like thyroid hormones linked to energy metabolism and 

growth (Behringer et al. 2014; Schaebs et al. 2016), and uCP, a measure of nutritional status and 

energy balance (Deschner et al. 2008), can be valid alternatives.  

C-peptide, a small polypeptide of pro-insulin, is enzymatically cleaved off pro-insulin during 

insulin synthesis in pancreatic β-cells (Horwitz et al. 1975; Bonser et al. 1984) and released into the 

bloodstream in equimolar numbers with insulin. C-peptide is cleared via the kidneys (Bonser et al. 

1984) and urinary levels closely resemble plasma insulin levels (Goetz et al. 2002; Tsai et al. 2006). 

uCP levels have been experimentally validated as a measure of energetic status in macaques, with 

levels decreasing under fasting and increasing under re-feeding conditions (Girard-Buttoz et al. 2011; 

Higham et al. 2011). They also track food availability, energy intake (Emery Thompson & Knott 
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2008; Emery Thompson et al. 2009), and energy expenditure (Grueter et al. 2014) in nonhuman 

primates. Consequently, uCP levels can be employed to assess individual physical condition. 

Measuring uCP could readily be applied for this project to address the open questions with regard 

to the directionality of the relationship between host nutrition and parasite infections.  

1.3.2c Aging and immunosenescence 

Age is one major predictor of heterogeneity in parasite distribution within a host population 

(Wilson et al. 2002; MacIntosh et al. 2010; Poirotte et al. 2016). Susceptibility to infections can be 

influenced by age, with the acquisition of protective immunity being a prominent example (reviewed 

in Wilson et al. 2002). If hosts develop protective immunity against a pathogen infection, infection 

prevalence or intensity displays a U-shaped distribution: it peaks at a young age, followed by a rapid 

decrease upon acquisition of protective immunity. If infections are chronic, parasites can accumulate 

in individuals that fail to elicit efficient immune responses (Else & Grencis 1991; Else et al. 1992). 

Immune function can be flexible and change according to individual condition and life history 

(Jackson et al. 2014). Physiological correlates of aging and senescence have attracted much attention 

in studies of human health, but are still largely neglected wildlife (Nussey et al. 2013; Reichard 2016).  

Aging has profound effects on immune system regulation and efficiency, resulting from age 

related physical decline referred to as immunosenescence. These changes occur consistently in both 

the innate and adaptive immune system and include altered cytokine profiles, like increases in IFN-y 

and NEO levels (Frick et al. 2004; Murr et al. 2004; Leng et al. 2011), depletion of naïve T-cell 

population with simultaneous increase in differentiated T-cell population (Faria et al. 2008; Deeks 

2011), changes of monocyte phenotypes (Hearps et al. 2012; Martin et al. 2013) and decline in innate 

immune response and natural killer cell function (Hawkley & Cacioppo 2004; Goodwin et al. 2006; 

Deeks 2011; Li et al. 2011; Solana et al. 2012). Another major correlate of immunosenescence is 

chronic low level inflammation (Fulop et al. 2010; Li et al. 2011; Solana et al. 2012), which can also be 

induced by social and physiological stress (Hawkley & Cacioppo 2004; Kiecolt-Glaser et al. 2010).  

The changes corresponding to immunosenescence predict lower vaccination efficiency 

(Goodwin et al. 2006; Čičin-Šain et al. 2010) and thus indicate higher disease susceptibility. 

Immunosenescence is also linked to morbidity, frailty and cognitive decline in humans (Li et al. 2011; 

Parker et al. 2013; Wang & Casolaro 2014). Immune physiology and immune aging are comparable 

between humans and nonhuman primates (Haberthur et al. 2010; Messaoudi et al. 2011; Meyer et al. 

2012; Didier et al. 2016). The study population at Affenberg Salem provides an excellent system to 

study age related variation in health and parasite susceptibility, as semi-free ranging conditions, 

including food provisioning and absence of predation) result in the opportunity to study a high 

number of senescent individuals. I focus specifically on the feasibility of uNEO levels as a marker 

of immunosenescence in Chapter 2 of this thesis.  
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1.3.3 Behaviour and pathogen transmission 

For successful transmission, susceptible host must be exposed to the respective pathogen 

(Hawley et al. 2011). For many host traits and behaviours, their roles and relative contribution to 

either component of transmission are not clear-cut. Physiological processes can simultaneously 

determine host susceptibility and behavioural patterns relating to pathogen exposure, creating either 

positive or negative covariation (Hawley et al. 2011). Dominance rank serves as an intuitive example: 

high ranking individuals usually express specific endocrinological patterns, often characterized by 

high levels of GCs and testosterone (Sapolsky 2005; Muehlenbein & Watts 2010; Archie 2013), and 

specific social behaviour patterns, like occupying central positions in a social network and frequently 

participating in agonistic or affiliative interactions (Sapolsky 2005; Drewe 2009; MacIntosh et al. 2012; 

Tiddi et al. 2012). Covariation between susceptibility and exposure can also explain variation of 

infection risk based on individual characteristics, like sex and rank (Habig & Archie 2015; Habig et 

al. 2018).  

Both components of transmission and their respective links with behaviour have been intensely 

studied (Altizer et al. 2003; Cohen et al. 2003; Ezenwa 2004a; Sapolsky 2004, 2005; Pedersen & 

Greives 2008; Muehlenbein & Watts 2010), yet studies assessing both processes simultaneously are 

relatively rare (MacIntosh et al. 2012; Friant et al. 2016a), and covariation between exposure and 

susceptibility has been largely neglected (Hawley et al. 2011). Consequently, to which extend certain 

behaviours contribute to exposure, susceptibility, or both, is still largely unclear. Here, I investigate 

the role of several exposure and susceptibility measures on GI helminth transmission simultaneously 

to provide a more complete picture of the interplay between host physiology, behaviour and parasite 

infections in Chapter 4.  

1.3.4 Specific aims and contributions to the field  

The overall aim of this study is to provide a comprehensive picture of the relationship between 

GI helminths and their host, the Barbary macaque (illustrated in Figure I), with special focus on the 

role of social relationships. Taking advantage of experimental strongyle nematode clearance, I test 

the directionality of the relationships between host physiology, behaviour and strongyle nematodes, 

assessing costs of infections and predictors of reinfection. 

In study 1 (Chapter 2), I focus on assessing the feasibility of uNEO as a marker for immune 

function in semi-free ranging Barbary macaques at Affenberg Salem. I take two predictors of uNEO 

levels into account: Anthelmintic treatment, as parasite clearance could shift Th1/Th2 immune 

balance towards Th1-type responses, and aging, as NEO levels correspond with a range of markers 

of immunosenescence in humans and nonhuman primate models of aging.  

In study 2 (Chapter 3), I investigate the consequences and potential health costs of strongyle 

nematode infection linking host physiology and behaviour to parasite infections. To account for 
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uncertainty in noninvasively assessed infection status, I estimate infection probabilities using patch 

occupancy modelling. I test if individual infection probability affects HPA axis activation (fGCM 

levels), body condition (uCP levels) and activity (proportion of time individuals spent active vs. 

resting) as estimates of sickness behaviour. I also test whether social behaviour is influenced by 

parasite clearance and which underlying process, sickness behaviour or avoidance of infected 

conspecifics, explains these changes by including both own and partner infection status as predictors 

of individual proximity initiations.  

In study 3 (Chapter 4), I assess the predictors of reinfection after strongyle parasite clearance. 

I include measures of exposure and susceptibility and use a combination of patch occupancy 

modelling and information theoretic model selection to find the models best predicting reinfection 

patterns. To test whether social bonds protect from infection via reduced susceptibility, I include a 

measure of social bond strength for same and opposite sex partners. I include fGCM, uCP and 

uNEO levels and coinfection with further helminths as physiological measures of susceptibility. To 

disentangle environmental and social components of transmission, I include measures of 

environmental exposure (individual space use and exposure to faecal contaminations on the soil), 

and social contact (grooming) simultaneously.  

 

    

 

Figure I: Flowchart illustrating the links investigated in this thesis, with solid lines indicating the 

host to parasite and dashed lines the parasite to host direction. Arrowheads ending at the 

respective boxes indicate the entire aspect is potentially influenced, while arrowheads crossing 

into the boxes represent a link to a specific measure. Parasite clearance after anthelmintic 

treatment allows me to test the connections in both directions. 
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Abstract 

Studying host parasite interactions and their implications for evolution and ecology recently 

received increasing attention, particularly with regard to host physiology and immunity. Here we 

assess variation of urinary neopterin (uNEO), a marker of cellular immune activation and 

immunosenescence, in response to age and anthelmintic treatment in semi-free ranging Barbary 

macaques (Macaca sylvanus). Urinary NEO levels were measured via enzyme-immunoassay from 179 

urine samples of 43 individuals between 5-29 years of age. Efficiency of treatment was assessed by 

Mc Master flotation on repeated faecal samples, including 18 untreated individuals as control group. 

We used linear mixed models with age and parasite status as main effects, controlling for sex and 

physical condition, assessed through urinary C-peptide levels, with social group and ID as random 

factors. Urinary NEO levels significantly increased with age, suggesting that changes in aging Barbary 

macaque immune responses are consistent with immunosenescence described in humans and 

nonhuman primates and can be detected via uNEO measurements. Anthelmintic treatment, 

however, had no influence on uNEO levels, potentially due to quick reinfections or attenuated 

immune responses in repeated infections. We conclude that uNEO is a potential non-invasive 

marker for immune function and particularly immunosenescence in wildlife. 
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Abstract 

Gastrointestinal nematodes are intensely studied models for host–pathogen interactions in 

wildlife, yet consequences of infections are not fully understood. Among the potential costs of 

nematode infection are physiological changes caused by immune system activation, reduction or 

reallocation of available energy, as well as potential social consequences in terms of decreased social 

activity or avoidance of infected individuals. We used experimental anthelmintic treatment to 

investigate effects of strongyle nematode infection in Barbary macaques (Macaca sylvanus), comparing 

56 treated to 17 untreated individuals. Deworming success was monitored by coproscopy and 

infection probability estimated from patch occupancy models. Increasing strongyle infection 

probabilities were associated with increased fecal glucocorticoid metabolite levels and slightly 

decreased activity and had no significant effect on energy balance quantified as urinary C-Peptide 

levels. The frequency to approach into close spatial proximity of a partner was predicted by the 

partner’s, but not focal individual’s infection status, with a tendency toward infected individuals being 

approached less frequently. Although effects were weak, they suggest a co-occurrence of sickness 

behavior and avoidance of infected conspecifics, both possibly shaping social interaction patterns 

with potential consequences for an individual’s social relationships. This study adds to the growing 

body of research on the complex interactions of sociality, health, and fitness in a group living species. 

Keywords: avoidance behavior, parasites, physiology, primates, sickness behavior 
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Abstract  

1. Increased risk of infectious disease transmission has been proposed as one major cost of 

group living. While factors corresponding to transmission via exposure to infectious stages 

and susceptibility to contracting infections upon contact are relatively well understood, both 

aspects are rarely investigated simultaneously.  

2. Here, we assessed the influence of exposure and susceptibility measures on strongyle 

nematode reinfection after experimental deworming of Barbary macaques (Macaca sylvanus) 

(n=57). We investigated impacts of behaviour (social bonds, grooming and ground use) and 

physiology (faecal glucocorticoids, urinary C-Peptides, urinary neopterin, gastrointestinal 

[GI] helminth coinfection) on the likelihood of reinfection, using patch occupancy modelling 

and information theoretic model selection to determine the best models predicting 

reinfection patterns.  

3. Coinfection was the most consistent risk factor, spending time on presumably contaminated 

soil, interacting with many partners and forming strong same sex bonds also tended to 

increase infection risk. In contrast, strong social bonds with opposite sex partners had a 

consistently protective effect.  

4. Our results indicate that coinfections could serve as an integrative measure of individual 

disease susceptibility. Furthermore, we show that social contact contributes to both exposure 

and susceptibility to environmentally transmitted parasites, with the outcome depending on 

specific interactions patterns. 

Keywords: anthelmintic treatment, exposure, gastrointestinal parasites, nonhuman primate, 

reinfection, susceptibility, social relationships 
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Chapter 5 

General Discussion 

In the following chapter, I will summarize and discuss the host-parasite interactions between 

Barbary macaques and strongyle nematodes with a specific focus on the role of sociality. Having 

established the effectiveness of treatment against strongyle nematodes in Chapters 2, 3 and 4, I will 

discuss causes and effects of infections, drawing stronger causal inferences than possible in 

correlational studies. I will set the results in context with the current knowledge of the connections 

between parasites, behaviour and physiology in wildlife, particularly primates. To this end, I will 

discuss the impact of GI helminths on health related parameters and the factors predicting 

reinfections, with regard to both physiology and behaviour. I will briefly discuss the connection 

between aging and GI helminth infections and the role of aging for individual health parameters. 

Drawing on results on the relationship between social behaviour and parasite infections, I will discuss 

how GI helminths can influence sociality and impact social evolution. I will end with an outlook on 

steps for future research needed to disentangle the roles of social interactions for exposure and 

susceptibility and to further our understanding of host-behaviour-physiology relationships and their 

evolutionary implications in wildlife. 

5.1 Consequences of GI helminth infections 

To ensure their own reproductive success and transmission, GI nematodes usually do not cause 

overt sickness in their hosts (Greer 2008; Krief et al. 2008). In our study population, infection with 

strongyle nematodes, most prominently Oesophagostomum spp., was the norm rather than the 

exception, with generally low egg counts and comparably low variation in egg shedding (see Figure 

II). As individuals are likely faced with trickle infections and constant reinfection, persistent egg 

shedding does not necessarily represent chronic infection, but can also result from a balance between 

parasite clearance and becoming reinfeced (Wilson et al. 2002). Faecal egg counts are not always 

related to actual worm burden in Oesophagostomum infections (Christensen et al. 1995; Roepstorff et al. 

1996), with lowest egg shedding in pigs infected with the highest number of larvae in an experimental 

study (Christensen et al. 1995). Thus, it is difficult to assess parasite resistance in my dataset, but the 

absence of natural parasite clearance is not necessarily suggestive of a lack of protective immunity 

(Grencis et al. 2014). Despite the overall low egg counts and absence of obvious behavioural signs 

of infections, infections are not arbitrary to Barbary macaques, as became apparent upon closer 

investigation of the physiological and behavioural consequences relating to infection.  
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Treatment did not influence Th1 immunity, measured as uNEO (Chapter 2), but fGCM levels 

were associated with infection (Chapter 3), with higher levels in infected individuals (Fleming 1997; 

Pedersen & Greives 2008; Friant et al. 2016b), indicating that GI helminths lead to HPA axis 

activation (Friant et al. 2016b). Given the ubiquity of strongyle infections and the low likelihood of 

natural parasite clearance in the study population (see Chapter 3 Figure 1), it is likely that infections 

lead to higher baseline fGCM levels. As chronic HPA axis activation and GI helminth infection 

generally lead to suppression of immune function and lowered Th1 responses (Maizels & 

Yazdanbakhsh 2003; Glaser & Kiecolt-Glaser 2005; Grencis et al. 2014), this could be considered a 

health cost with potentially detrimental consequences (Apanius 1998; Glaser & Kiecolt-Glaser 2005). 

Individuals infected with strongyle nematodes were less active (Chapter 3), which, like elevated 

fGCM levels, can be a sign of inflammatory cytokine induced sickness behaviour (Hart 1988; Dantzer 

2009). Inflammatory responses due to tissue damage are common in GI helminth infections 

(Stephenson et al. 2000a; Loukas et al. 2005; Bethony et al. 2006), resulting also from larval encystation 

in the gut mucosa in case of Oesophagostomum infections (Dash 1973; Krief et al. 2008; Terio et al. 

2016). Similar associations of GI helminth infections and reduced activity have been described in 

correlational (MacIntosh et al. 2011; Ghai et al. 2014) and experimental studies (Adams et al. 1994; 

Chapman et al. 2016; Friant et al. 2016b) and interpreted as an attempt to conserve energy (Hart 1988; 

Dantzer 2001; Konsman et al. 2002), or as a result of decreased physical condition due to infection 

(Coop & Kyriazakis 1999; Ezenwa 2004b). In the present study, physical condition, monitored by 

uCP levels, was not affected by strongyle nematode infections (Chapter 3). The results closely 

resemble those of a recent parasite clearance study on semi-free ranging, provisioned mangabeys, 

reporting increased GC levels and decreased activity prior to treatment, but no relationship between 

GI nematodes and body condition (Friant et al. 2016b), maybe suggestive of a general primate-

parasite interaction pattern. The absence of an effect of parasites on physical condition may be the 

result of provisioning, allowing ample access to high quality food and buffering against nutritional 

costs of GI nematode infection in both studies, or effectiveness of energy conservation via reduced 

activity. Considering the suggested effect of high uCP levels leading to increased reinfection risk in 

the study population at Affenberg (Chapter 4), I suggest the alternative interpretation that good 

physical condition during persisting infections can result from parasite tolerance as a defence strategy 

to mitigate the costs of GI parasite infections.  

Faced with GI helminth infections and the likelihood of chronic infections (Grencis et al. 2014), 

there are essentially three available strategies: avoidance, which I will discuss in detail below, 

resistance, and tolerance (Råberg et al. 2009; Hart 2011; Medzhitov et al. 2012; Curtis 2014). The 

overall picture in the study population is suggestive of the presence of tolerance mechanisms in 

response to strongyle infections, which is not mutually exclusive with resistance (Hayward et al. 

2014a). Considering the low pathogenicity of GI helminths under normal conditions (Greer 2008; 
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Krief et al. 2008), the idea that health costs do not necessarily result from infections, but are 

consequences of immunopathology and unchecked immune responses (Graham et al. 2005; Colditz 

2008), has been put forward. Experimental GC level elevations led to higher egg counts, but 

prevented reduction in weight gain in an experimental study in lambs (Greer et al. 2005), indicating 

a potentially beneficial role of HPA axis activity induced immunomodulation. Similarly, Soay sheep 

mounting strong resistance responses to GI helminth infections suffered from poorer physical 

condition than those more tolerant of GI infections (Hayward et al. 2014a, b). My results suggest that 

individuals with high uCP levels prior to treatment become reinfected quicker (Chapter 4). Evidence 

from both humans and ungulates suggests that parasite burdens after anthelmintic treatment return 

to levels similar to those before treatment (Grencis et al. 2014; Budischak et al. 2016), indicating some 

predisposition to infections. Assuming similar processes in Barbary macaques, high pre-treatment 

physical condition predicting earlier reinfection can be interpreted as a sign of tolerance rather than 

higher susceptibility to strongyle infections.  

There was no evidence for parasite induced suppression of Th1 immune responses, i.e. lower 

uNEO levels in infected individuals (Murr et al. 2002; Ezenwa et al. 2010). This suggests that 

individuals did not mount strong Th2 responses (Long & Nanthakumar 2004), which could lead to 

chronic rather than transient GI nematode infections (Else & Grencis 1991; Urban et al. 1992; Else 

& Finkelman 1998). A possible benefit is the mitigation of the energetic costs of mounting an 

immune response (Bonneaud et al. 2003; Derting & Compton 2003) and prevention of increased 

susceptibility to microparasite infections as a result of parasite induced Th2 immune dominance 

(Graham 2008; Salgame et al. 2013; Ezenwa & Jolles 2015). Testing whether strongyle infections 

indeed contribute to microparasite transmission or disease progression is beyond the scope of this 

thesis, but instead of being detrimental, the immunomodulatory effects of GCs could be a sign of 

parasite tolerance and advantageous, with higher levels in infected individuals leading to increased 

long-term fitness and health.  

The relationship between parasite infection and tolerance is likely not as straightforward as 

presented here, and distinguishing tolerance from resistance is difficult as mechanisms mediating 

parasite resistance and tolerance can result in very similar physiological outcomes. Tolerance is 

typically measured by assessing the costs of infection in relation to infection severity, with tolerant 

individuals characterized by lower health costs of higher pathogen burdens (Råberg et al. 2009; 

Medzhitov et al. 2012; Hayward et al. 2014b). Intriguingly, the levels of tolerance vs. resistance 

displayed by the host could play a role in explaining why GI helminth infections in primates are 

usually subclinical, but can be detrimental and even cause mortality (Hotez et al. 2005; Bethony et al. 

2006; Krief et al. 2008; Degarege et al. 2014; Terio et al. 2016). Additionally, there is likely not one 

optimal strategy to handle GI helminth infections: tolerance has been linked to a trade-off between 

reproduction and physical condition repeatedly (Hayward et al. 2014a, b; Jackson et al. 2014), with 
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increased chances of survival after investing in physical condition coming at costs for reproductive 

success (Graham et al. 2010; Hayward et al. 2014b). Understanding the health and fitness 

consequences of employing different defence strategies and under which conditions tolerating 

infections is more advantageous than mounting immune responses aimed at parasite clearance will 

be important steps in future research on the impact of GI helminth infections on host evolution. 

Parasites can change host behaviour via social withdrawal connected to sickness behaviour, and 

behavioural strategies of infection avoidance (Dantzer 2004; Medzhitov et al. 2012; Hennessy et al. 

2014; Eisenberger et al. 2017). In past studies on nonhuman primates, reduced sociality has been 

attributed to avoidance of infected individuals (Chapman et al. 2016; Friant et al. 2016b) rather than 

sickness behaviour. Both mechanisms are not mutually exclusive and can even reinforce each other, 

i.e. infected individuals avoiding others likely to be infected in order to avoid exposure to further, 

especially directly transmitted, pathogens (Curtis 2014; Eisenberger et al. 2017). To test whether social 

behavioural changes result from sickness behaviour or avoidance, I analysed behavioural changes in 

response to GI helminth infection on a dyadic level, accounting for both individual and potential 

partner infection status.  

Despite the reduced activity in response to infection, individuals did not initiate proximity less 

often or depart more often from others if they were infected with GI helminths (Chapter 3). This 

illustrates the importance of maintaining social bonds for social animals like nonhuman primates 

(Silk et al. 2009; Micheletta et al. 2012; Ostner & Schülke 2014), even in situations where energy needs 

to be allocated away from overall activity. Instead, individuals seemed to avoid infected conspecifics, 

as they were less likely to approach infected partners. Avoiding infected individuals is frequently 

reported for directly transmitted unicellular parasites (Kavaliers & Choleris 2011; Curtis 2014; 

Poirotte et al. 2017) and GI helminths (Kavaliers & Colwell 1995). Avoidance is likely mediated by 

olfactory cues (Kavaliers & Colwell 1995; Hennessy et al. 2014; Poirotte et al. 2017) corresponding 

to innate immune system activation (Olsson et al. 2014). Therefore, it is probably not directed 

towards GI helminth infected conspecifics, but rather to individuals displaying general signs of 

sickness and infection (Hart 2011; Curtis 2014). Although Th1 responses were not obviously 

influenced in my study population (Chapter 2), strongyle infections could be predictive of infections 

with microparasites (Cox 2001; Fenton et al. 2008; Graham 2008) transmitted via physical contact 

(Balasubramaniam et al. 2016; Poirotte et al. 2017; Springer et al. 2017), with avoidance as a viable 

strategy to minimize the risk of disease transmission. 

At first sight, given the overall tendency of reduced social contact linked to inflammatory 

cytokine mediated sickness behaviour (Hennessy et al. 2014; Eisenberger et al. 2017) and infection 

with GI parasites (Chapman et al. 2016; Friant et al. 2016b), the absence of social withdrawal as part 

of sickness behaviour in the study population seems counterintuitive. However, the expression of 

sickness behaviour in response to inflammatory cytokines is context dependent in laboratory studies 
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and can be suppressed in e.g. mating or pup rearing context (Hennessy et al. 2014). Furthermore, in 

both rodents and rhesus macaques, inflammatory signalling can lead to increased social contact 

(Willette et al. 2007; Hennessy et al. 2014; Eisenberger et al. 2017), especially with familiar partners. 

Faced with infection, seeking out social support may be beneficial for survival and even contribute 

to enhanced immune efficiency (Hennessy et al. 2014), e.g. if social interactions convey 

thermoregulatory benefits (McFarland et al. 2015). Consequently, individuals could adapt their social 

behaviour to their own infection status and their social environment, i.e. infection status of available 

partners, simultaneously, creating complex interactions between sociality and GI nematode infection. 

If individuals with similar social environments are also experience similar exposure and susceptibility 

to infections (Hawley et al. 2011; Ezenwa et al. 2016), parasite infections could contribute to 

sub-structuring within a social group. High clustering within networks can reduce transmission of 

pathogens and overall parasite prevalence within a group (Griffin & Nunn 2012; Nunn et al. 2015), 

adding a further level of complexity. 

Strongyle infections did not appear to alter immune function in Barbary macaques, but immune-

parasite interactions could be influenced by individual aging. In the study population, uNEO levels 

increased with age (Chapter 2), resembling patterns in humans (Hawkley & Cacioppo 2004; Murr et 

al. 2004; Deeks 2011; Didier et al. 2016) and indicative of decreasing immune function in older 

individuals (Murr et al. 2004). Older Barbary macaques did not only suffer from decreased immune 

function, but also experienced increased fGCM levels, reduced activity and poorer physical 

condition, observations often made in aging primates and humans (Fulop et al. 2010; Didier et al. 

2016). These findings are also in line with increased low level inflammation in older individuals 

(Hawkley & Cacioppo 2004; Deeks 2011).  

Lacking longitudinal data, I can only speculate on the directionality between GI parasite 

infection and age related physiological changes, yet want to argue that parasite infections were likely 

the result, not the cause of age-related decline of immune function. Egg shedding patterns in 

individuals aging a few months to almost 30 years were age dependent (see Figure II). For strongyle 

nematodes, egg counts remained largely constant after increasing for the first few years of life, with 

higher variation and counts in aged individuals. For the concomitant GI helminth taxa at Affenberg, 

Capillaria spp. and Trichuris spp., egg shedding patterns roughly followed a U-shaped distribution. 

Egg shedding peaked early in life, ceased by the time individuals reach adulthood and resumed in old 

individuals, with increasing egg counts as aging progressed.  

Increased GI parasite richness with older age is common in primates and reported for e.g. 

Japanese macaques (MacIntosh et al. 2010) and Capuchin monkeys (Cebus capucinus) (Parr et al. 2013). 

The absence of parasite eggs throughout most of adult life suggests that the Barbary macaques of 

my study population developed protective immunity or strong immune responses capable of clearing 
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Capillaria and Trichuris infections (Else et al. 1992; Wilson et al. 2002; Grencis et al. 2014; Andreasen 

et al. 2015). Immunosenescence leads to increased Th1 signalling and a decline in adaptive immune 

system function (Murr et al. 2004; Faria et al. 2008; Bauer et al. 2009), potentially leading to the failure 

of protective immunity against GI helminths. Given the similar effects of aging and GI helminth 

infections on physiology, like increased HPA axis activity and inflammation, helminths could 

exacerbate the negative effects of aging, potentially leading to vicious circles and accelerating age 

related health deterioration (Hawkley & Cacioppo 2004; Beldomenico & Begon 2016). The study of 

 

Figure II: Overview over eggs per gramm faces (epg), including 1436 samples analysed for focal 

individuals and additional 46 samples of infant to subadult individuals not included in the study. 

Data represent the age range of the Barbary macaques at Affenberg Salem, ranging from infants 

(individuals younger than one year coded as 0) to 29 years of age. Datapoints represent individual 

samples, lines mean eggs per gram faeces (epg) shaded areas the corresponding standard 

deviations of epg. 
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physiological correlates of aging and age related mortality under natural condition has only recently 

attracted the attention of evolutionary ecologists (Hayward et al. 2009; Nussey et al. 2013; Reichard 

2016), yet considering senescence and its drivers and effects has great potential to further our 

understanding of the interaction between ecology, life-history, physiology, parasites and health, 

especially in long-lived species like nonhuman primates. 

5.2 GI helminth transmission: Determinants of exposure  

Understanding parasite transmission pathways and how they relate to individual behaviour is 

vital for explaining inter-individual variance in infection risk as well as disease epidemiology. Despite 

the wealth of studies linking social network positions and behaviour to parasite transmission (Vicente 

et al. 2007; Drewe 2009; Godfrey et al. 2009; Fenner et al. 2011; VanderWaal et al. 2013, 2014; Weber 

et al. 2013), the exact mechanisms for GI helminth transmission in nonhuman primates remain 

elusive. Depending on the species, higher transmission risk has been described for individuals central 

in grooming (MacIntosh et al. 2012) or contact networks (Rimbach et al. 2015). Other studies report 

grooming partner diversity (Wren et al. 2016), high integration in proximity networks (Friant et al. 

2016a), or combinations of partner numbers and spatial association (González-Hernández et al. 2014) 

to predict infection, but no impact of contact network integration (Friant et al. 2016a). Based on 

findings presented in Chapter 4, I will discuss how these discrepant findings could be explained and 

reconciled. 

Strongyle nematodes have direct life cycles with mobile infective L3 larvae and their 

transmission usually occurs upon contact with contaminated soil or food (Dash 1973; Bethony et al. 

2006; Viney 2017), yet a social component of transmission via direct contact to conspecifics has been 

suggested (MacIntosh et al. 2012; González-Hernández et al. 2014; Wren et al. 2016). Transmission 

could be linked to specific behaviours, like aggressive encounters in infectious tumour transmission 

in Tasmanian devils (Hamede et al. 2013) and receiving aggression and giving grooming in 

tuberculosis transmission in meerkats (Drewe 2009). To test for both environmental and social 

transmission pathways, I utilized measures of ground use and time in areas of high contamination as 

estimators of environmental exposure and active grooming as the most likely behaviour to contribute 

to transmission via social contact, based on the frequent hand to mouth contact (see Chapter 4). 

While ground use per se did not predict reinfection after treatment, spending time on contaminated 

soil did. Frequent social contact can contribute to GI helminth transmission (MacIntosh et al. 2012; 

Rimbach et al. 2015; Friant et al. 2016a), and infection risk increased with high grooming partner 

numbers and strong same sex bonds (Chapter 4), suggestive of a social component of strongyle 

nematode transmission. 

Faecal contamination of the soil or water-source is widely recognized as a major source of 

exposure to GI helminths (Pebsworth et al. 2012; González-Hernández et al. 2014), yet rarely tested 
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specifically. I suggest that proximity effects like detected for mangabeys (Friant et al. 2016a) are not 

mediated by the shared use of space per se, but result from a correlation between sharing space with 

conspecifics and spending time on contaminated soil. This argument can also explain the lack of 

proximity predicting infection risk in other studies (Rimbach et al. 2015), if contact with infective 

stages does not coincide with spatial proximity to others in the study groups. In Eastern chipmunks 

(Tamias striatus), not current, but past association networks, considering the time-gap between egg 

shedding and larvae becoming infective, predicted infection risk (Grear et al. 2013), illustrating the 

importance to consider parasite life cycles for studying transmission. In my study, ground use was 

not correlated with time spent in contaminated areas and did not predict infection risk, illustrating 

that rough approximations of exposure may not adequately capture the actual process underlying 

parasite transmission.  

Various strongyle nematodes actively attempt to increase their transmission by positioning 

themselves in locations with higher likelihood of ingestion by their target host (Stromberg 1997), 

leading to host counterstrategies, like avoiding to forage in highly contaminated areas (Hutchings et 

al. 2002). Mobile hookworm larvae actively follow host cues and cling to dog hair (Granzer & Haas 

1991), and grooming can facilitate transmission of H. polygyrus larvae from mouse fur (Hernandez & 

Sukhdeo 1995). Thus, transmission via contaminated fur can be an additional strongyle nematode 

transmission route. Grooming with a high number of partners increased infection risk in Barbary 

macaques (Chapter 4) and vervet monkeys (Wren et al. 2016), indicating higher risk to encounter 

infective larvae when grooming more different individuals. Grooming duration did not predict 

infection, but to which extent fur contamination is random or connected to certain partner attributes 

cannot be tested in the current dataset. 

5.3 GI helminth transmission: Determinants of susceptibility 

I found two major susceptibility measures predicting reinfection patterns, which will be 

discussed in the following: Infection with further GI helminths prior to treatment, and strong social 

bonds with opposite sex partners (Chapter 4).  

Infections with multiple parasites are considered to be the norm rather than the exception 

(Graham 2008; Bordes & Morand 2011; Ezenwa 2016). Double infections can aggravate infection 

intensity and duration: Mice coinfected with Nippostrongylus brasiliensis and H. polygyrus bakeri, show 

significantly higher egg counts and egg shedding duration of N. brasiliensis than single infected 

individuals (Budischak et al. 2015b). Coinfections can decrease susceptibility to GI helminths based 

on competition for resources (Lello et al. 2004; Budischak et al. 2015b; Vaumourin et al. 2015) or 

changes in the host immune system, including the production of cross-reactive antibodies (Cox 2001; 

Lello et al. 2004) and parasite excretion of cytokine-like substances (Grencis & Entwistle 1997; 

Grencis et al. 2014). An example is the significantly increased anti-Oesophagostomum antibody response 
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in Oesophagostomum-Trichuris infected vs. single infected pigs (Andreasen et al. 2015). With inhibitory 

and enhancing effects operating simultaneously, interactions between multiple parasites can be 

complex, as demonstrated by a study of wild rabbits: Mosgovoyia pectinate or Trichostrogylus retortaeformis 

infections were linked with lower Graphidium strigosum burden, whereas Cittotaenia denticulata and G. 

strigosum infections both increased likelihood of T. retortaeformis infections (Lello et al. 2004).  

In my study population, I detected three morphotypes of two parasite orders: Strongyle 

nematodes of the order Strongylida, and the enoplid parasites Capillaria spp. and Trichuris spp. of the 

order Trichurida. Given the distant relatedness, cross-immunity reactions are unlikely, yet Trichuris 

infections have been shown to enhance anti-Oesophagostomum infections in pigs (Andreasen et al. 

2015). However, coinfection with Capillaria, Trichuris, or both, led to higher reinfection risk with 

strongyle nematodes. Coinfections were largely limited to aged individuals likely to be subject to 

immunosenescence, so the presence of Capillaria and Trichuris could be an integrative signal of overall 

poorer host condition and immunocompetence. Prevalence of intestinal inflammatory and infectious 

diseases increases with age due to immunosenescence-related changes in the gut mucosal immune 

system (Mabbott et al. 2015). Young mice infected with Trichuris muris develop efficient immune 

responses with worm expulsion, whereas older individuals become susceptible to chronic infection 

(Humphreys & Grencis 2002), with the underlying changes possibly extending to overall GI helminth 

susceptibility.  

Immunosenescence probably contributes to coinfection and strongyle infection risk, but is 

likely not the only process involved, demonstrated by the lack of evidence for an impact of urinary 

NEO levels on reinfection. In Soay sheep, experiencing adverse environmental conditions earlier in 

life explained variation in egg counts beyond chronological age (Hayward et al. 2009), indicating that 

life history contributes to individual capacity to manage infections and age related changes in parasite 

responses. In the study population, increasing age was implied to reduce reinfection risk (Chapter 

4), suggesting protective immunity against strongyle nematodes (Wilson et al. 2002). I suggest that in 

the case of Barbary macaques, infection with enoplid parasites could be a signal of increased 

susceptibility beyond uNEO, uCP and fGCM levels or chronological age, capturing individual life 

history, senescence and health deterioration. Coinfections are intensely studied to understand 

parasite communities and transmission dynamics (Salgame et al. 2013; Ezenwa & Jolles 2015; 

Rynkiewicz et al. 2015; Ezenwa 2016), but are rarely considered as potential signals of overall host 

susceptibility (Pedersen & Fenton 2015; Friant et al. 2016a).  

The second strong predictor of reinfection was social bonds with opposite sex partners 

(Chapter 4), which reduced reinfection risk. There was no evidence of sex specific effects (Chapter 

4), suggesting similar effects for both sexes. The protective effect probably resulted from lower 

susceptibility rather than lower exposure, as strong social bonds are inextricably linked with high 
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levels of affiliative interactions. Lower susceptibility is likely mediated by better immune function 

and defence against pathogens in strongly bonded or socially well integrated individuals, i.e. social 

buffering (Cohen & Wills 1985; Cohen et al. 1991, 1997; Kikusui et al. 2006; Cohen & Janicki-Deverts 

2009; Kiyokawa & Hennessy 2018), with the well described protective effect against infectious 

diseases extending to GI helminths. The physiological processes mediating the buffering effect can 

be rooted in several pathways, which I will briefly discuss here. 

The social buffering mechanism receiving most attention from behavioural ecologists is 

attenuation of HPA axis activity in face of a stressor. Socio-positive interactions and support from 

conspecifics reduce HPA axis activation from mouse to men (Shutt et al. 2007; Hennessy et al. 2009; 

Eisenberger & Cole 2012; Kiyokawa & Hennessy 2018), whereas social isolation, social instability 

and repeated exposure to severe stressors lead to increased HPA activity, dysregulation of HPA 

signalling and ultimately detrimental health effects (Capitanio et al. 1998; Cole et al. 2009; Hennessy 

et al. 2009; Hawkley et al. 2013). HPA axis activity is frequently linked to GI helminth infections 

(Chapman et al. 2006; Muehlenbein 2006; Pedersen & Greives 2008; Muehlenbein & Watts 2010; 

Setchell et al. 2010), and strong bonds have been demonstrated to attenuate physiological stress 

responses in wild male Barbary macaques (Young et al. 2014a) and chimpanzees (Wittig et al. 2016). 

In a range of studies (Barnard et al. 2003; MacIntosh et al. 2012; Friant et al. 2016a), including this 

one, HPA axis activation was not correlated with GI parasite infection risk, indicating that HPA axis 

regulation might not be the main mechanism linking sociality to decreased parasite infection risk. An 

influence of HPA axis activation cannot be excluded, yet my results suggest the presence of other 

mechanisms underlying the protective effect of social bonds.  

A second signalling pathway for stress responses is the SNS, which has been largely neglected 

in studies of social buffering in natural populations due to the limits of noninvasive assessment. SNS 

activation often occurs in parallel to HPA axis activation and is similarly important for immune 

signalling, e.g. via nervous signalling to lymphatic tissue (Elenkov et al. 2000; Sloan et al. 2008; 

Eisenberger & Cole 2012; Capitanio & Cole 2015). Socio-positive interactions reduce SNS activation 

(Eisenberger & Cole 2012; Inagaki & Eisenberger 2016), facilitating the stress reducing effects of 

social buffering (Kiyokawa & Hennessy 2018) and offering an alternative route of social interactions 

to affect health. Additionally, release of oxytocin and endorphins in responses to both stressors and 

socio-positive interactions could play a role for social buffering (Keverne et al. 1989; Curley & 

Keverne 2005; Kikusui et al. 2006; Uchino 2006; Eisenberger & Cole 2012; Li et al. 2017; Plein & 

Rittner 2017). Oxytocin can improve health outcomes by HPA axis downregulation (Kikusui et al. 

2006; Li et al. 2017), and enhanced wound healing (Archie 2013; Li et al. 2017), and is suggested to 

play a role in mediating the anti-inflammatory effects of endorphins (Eisenberger & Cole 2012; 

Hennessy et al. 2014). Both signalling pathways can contribute to immunomodulation, facilitating 

later reinfection in individuals with strong opposite sex bonds, which could be a mechanism linking 
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strong bonds and social integration to increased longevity and reproductive success (Silk et al. 2003, 

2010; Uchino 2006; Cameron et al. 2009; Holt-Lunstad et al. 2010). However, social interactions can 

contribute to exposure, and social bonding is not universally beneficial with regard to GI helminth 

infections. Quite contrary, strong bonds with same sex partners increased reinfection risk. In the 

following section, I will explain this discrepancy and assess the costs and benefits of sociality with 

regard to parasite infections in the study population, extending to the implications for social 

evolution in a wormy world. 

5.4 Costs and benefits of sociality – or: how to not get cut by 

sociality’s double-edged sword 

Social relationships, albeit crucial for both sexes, are connected to a whole range of challenges 

and benefits traded off against each other. Both same and opposite sex bonds can increase 

reproductive success and survival (Silk et al. 2003, 2009; Schülke et al. 2010; Archie et al. 2014), 

implying similar beneficial effects of bonding for both sexes. In my study, contrary to the protective 

effect of strong opposite sex bonds, same sex bonds increased reinfection risk, irrespective of 

individual sex (Chapter 4). I want to offer several, non-mutually exclusive explanations for this 

finding.  

Faced with intense stressors, the presence of unfamiliar conspecifics can attenuate fear and 

stress responses in laboratory rodents (Ishii et al. 2016; Kiyokawa et al. 2018). However, buffering 

effects can be partner dependent, like oxytocin release in chimpanzees, which occurs when grooming 

with bonded, but not non-bonded partners (Crockford et al. 2013). Attenuated stress responses could 

result from a lower perceived threat of the stressor in presence of conspecifics, as the danger of 

confronting the stressor might be reduced with increasing numbers (Kikusui et al. 2006; Kiyokawa 

& Hennessy 2018; Kiyokawa et al. 2018). Depending on the situation, buffering effects should be 

specific to partners able to mitigate the threat of the stressors (Kikusui et al. 2006; Kiyokawa & 

Hennessy 2018), like access to strongly bonded partners who reliably provide support in agonistic 

interactions (Schülke et al. 2010; Berghänel et al. 2011), which reduces HPA axis activation in male 

macaques (Young et al. 2014a). Depending on the situation, different partner characteristics might 

be capable of facilitating buffering effects, explaining the different effects of same and opposite sex 

bonds.  

A second explanation is that despite using the same measure, sum of the top three dyadic CSI 

(Silk et al. 2006), to social bonds, same and opposite sex bonds could be linked to different mediators 

of exposure and susceptibility. Social behaviour is inextricably linked with both exposure to 

pathogens and changes in physiology that can mediate susceptibility (Hawley et al. 2011; Ezenwa et 

al. 2016; White et al. 2017a), and disentangling the precise exposure and susceptibility correlates of 
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behaviour is challenging. Same sex bonds could be linked with the costs of higher exposure rather 

than the benefits of reduced susceptibility, as bond strength with same, but not opposite sex partners, 

was weakly correlated with number of grooming partners (Chapter 4), implying that forming strong 

same sex bonds is linked with higher overall sociability (Brent et al. 2013; Seyfarth et al. 2014). 

Additionally, as interaction patterns between the sexes are very different, the mechanisms mediating 

increased reinfection risk in individuals with strong same sex bonds could be different for males and 

females, although the effect on infection could be similar.  

Female cercopithecine primates are more socially active than males (Haunhorst et al. 2016), and 

showed higher rates of affiliation, particularly body contact and grooming, in the study population 

(see Figure III), with male-male dyads usually grooming ten time less frequently than female-female 

             

Figure III: Comparison of social interactions used for dyadic CSI construction in relation to 

average female-female interaction rates. Values for male-female dyads are coloured light blue, 

values for male-male dyads in dark blue. Displayed are average interaction rates (dots = duration, 

triangles = frequency) divided by average female-female value of the respective interaction in the 

same study group (i.e. values above 1 signify higher interactions rates than found on average for 

female-female dyads). In both male-male and male-female dyads, both body contact and 

grooming are much less frequent than in female-female dyads, and grooming is markedly lower 

in male-male dyads than dyads with female partners.  
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dyads, and male-female dyads grooming roughly half as much as female-female dyads. Physical 

contact, particularly grooming, triggers the physiological responses leading to enhanced immune 

function and attenuated stress responses (Shutt et al. 2007; Aureli & Yates 2010; Eisenberger & Cole 

2012), yet carries the risk of contracting GI helminth infections from grooming partners (Granzer 

& Haas 1991; Hernandez & Sukhdeo 1995). High rates of grooming, seen in female-female bonds, 

could thus increase exposure beyond a level that can be compensated by the lowered susceptibility, 

while males groom other males too rarely to induce immunomodulatory changes that decrease 

susceptibility. Additionally, bond formation and maintenance could be a stressor for males, as triadic 

male-infant interactions elementary for bond formation in male Barbary macaques (Berghänel et al. 

2011) require stressful infant interactions (Henkel et al. 2010). In contrast to same sex bonds, 

opposite sex bonds could offer the best balance between exposure and susceptibility.  

There are further points to consider for assessing the full picture. Cercopithecine females 

preferentially bond with closely related female (Silk et al. 2003, 2009, 2010), leading to a connection 

between bonding and genetics. Traits of parasite tolerance and resistance have heritable components 

(Graham et al. 2010; Hayward et al. 2014a, b). As individuals using a parasite tolerance strategy 

generally have higher egg counts (Hayward et al. 2014b), those individuals contribute more to 

transmission (Medzhitov et al. 2012) and potentially increase infection risk for closely bonded 

partners. Infections should also be detected earliest in these individuals due to higher egg shedding, 

even if they have similar exposure and susceptibility to individuals using a parasite resistance strategy. 

Additionally, closely bonded females could face similar exposure to infective stages if socially 

inheriting network positions linked with exposure risk (Ilany & Akçay 2016). Consequently, social 

bonds, especially between females, could be linked to reinfection via shared genetic traits, possibly 

confounded with shared social environment. Assessing the role of relatedness for exposure, 

susceptibility and tolerance strategies is beyond the scope of this thesis in the absence of relatedness 

information.  

Reinfection risk could also be linked to social interactions beyond the dyadic level. Opposite 

effects of social interactions on parasite transmission are not limited to this study in macaques: 

Balasubramaniam et al. (2016) found low infection risk with Shigella, a bacterial pathogen, in central 

individuals of two groups of rhesus macaques, but high infection risk in central individuals in a third 

group, potentially resulting from different group sub-structure. Group structure and clustering can 

limit parasite transmission (Salathé & Jones 2010; Nunn et al. 2015), so transmission patterns can 

differ between groups of similar sizes. In my study population, the effect of same sex social bonds 

is most prominent in the study group with higher interaction rates, group cohesion and lower 

clustering (unpublished data). Lower levels of sub-structuring could increase overall exposure to 

infective parasite stages, intensifying the effect of social transmission (Salathé & Jones 2010; Griffin 

& Nunn 2012; Nunn et al. 2015). Considering the proposed mechanisms explaining the discrepancy 
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between same and opposite sex bond strength und GI helminth infection risk, concluding that same 

sex bonds are risk and opposite sex bonds are protective factors for GI helminth transmission is 

premature. Rather, we need to disentangle the underlying mechanisms and the relative contributions 

of social behaviours on exposure and susceptibility. Also, GI helminth infection risk does not negate 

the benefits of strong social bonds with same sex partners unrelated to infection (Cameron et al. 

2009; Schülke et al. 2010; Silk et al. 2010; Smith et al. 2010; Haunhorst et al. 2017), so forming strong 

same sex bonds could be favourable even if connected to the costs of GI helminth infections. 

In accordance with the longstanding hypothesis that pathogens are one of the main driving 

forces of social evolution in primates (Freeland 1976) and recent work, both empirical and theory 

building, emphasising the potential for behaviour-parasite-feedback loops (Poulin 2010; Ezenwa & 

Snider 2016; Ezenwa et al. 2016), GI helminths impacted host social behaviour, and host sociality 

simultaneously predicted infection risk. Sickness behaviour responses implied costs of infections, 

although determining possible long-term costs of infections and differences in individual parasite 

defence strategies (Hayward et al. 2009; Medzhitov et al. 2012; Jackson et al. 2014) is beyond the scope 

of the study. Given the dual effect of social behaviour, individuals could be expected to alter their 

behaviour to minimize infection risk while optimizing the buffering effects of social bonding. I will 

discuss how Barbary macaques could achieve this in the following paragraphs. 

 Considering the potential role for partner diversity increasing GI helminth transmission risk 

(Rimbach et al. 2015; Friant et al. 2016a; Wren et al. 2016), forming strong bonds with few partners 

and avoiding the space commonly used by infected conspecifics (Grear et al. 2013) seems to be the 

ideal strategy. Forming strong bonds can increase transmission risk, so likely there is a trade-off 

between interaction quality and quantity, with facilitation of enhanced immune function by affiliative 

interactions, especially grooming (Keverne et al. 1989; Shutt et al. 2007; Crockford et al. 2017). 

Assuming an optimal balance between exposure costs and susceptibility benefits of sociality, the 

question how these behavioural strategies of bond formation and avoidance of infected conspecifics 

could be mediated arises. Inflammatory cytokines are strong candidates for neuro-endocrine signals 

linking social environment with immune function and mediating behavioural responses to both, 

stressors and infection (Eisenberger & Cole 2012; Hennessy et al. 2014; Eisenberger et al. 2017). 

Inflammatory cytokines are not only released in the context of acute infections (Hart 1988; Dantzer 

2001; Konsman et al. 2002), but also in social isolation (Cacioppo & Hawkley 2003; Hawkley & 

Capitanio 2015), most likely as an adaptive response: Inflammatory cytokines prime the immune 

system for inflammatory responses in anticipation of higher likelihood of injury in individuals 

separated from the protection of the group (Eisenberger & Cole 2012; Eisenberger et al. 2017). 

Inflammatory signalling generally leads to avoidance of conspecifics, but increases social interactions 

with familiar partners (Willette et al. 2007; Hennessy et al. 2014). Contact with bonded partners in 

turn initiates anti-inflammatory signalling (Hennessy et al. 2014; Crockford et al. 2017; Kiyokawa 
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2018). Consequently, inflammatory cytokines could play a part in facilitating the maintenance of 

social bonds and interactions in individuals infected with GI helminths.  

Oxytocin signalling could play a role in detection and avoidance of infections. From mice to 

men, olfactory signals are used to identify infections in conspecifics (Kavaliers & Colwell 1995; 

Olsson et al. 2014) and sources of contamination (Poirotte et al. 2017). Oxytocin contributes to social 

recognition, potentially playing a role for processing the olfactory signals needed for recognition and 

avoidance of infected individuals (Kavaliers & Choleris 2011). With oxytocin and inflammatory 

signalling contributing to immunoregulation (Uvnäs-Moberg 1998; Hennessy et al. 2014; Kiyokawa 

& Hennessy 2018), they are likely part of a feedback loop mediating both social behaviour and 

immune function to facilitate adaptive responses to individual social environment. These 

mechanisms could include seeking out support in case of severe stressors, infections and social 

isolation (Hennessy et al. 2014) and avoiding exposure to pathogens. If these processes translate into 

fitness effects, parasite infections could well contribute to the evolution of differentiated 

relationships and be a driver of social evolution, even if they are not immediately linked to health or 

reproductive costs. 

This general rule to optimize the costs and benefits of interactions might not apply equally to 

all individuals and pathogen, especially when considering life-history trade-offs between maintenance 

and reproduction (Archie 2013; Hayward et al. 2014a; Jackson et al. 2014). An obvious example is the 

case of sexually transmitted diseases, where exposure and potential reproductive success are 

intimately linked (Klovdahl & Australian 1985; Hawley et al. 2011), but similar covariation can be 

expected between behaviours correlating with exposure and individual susceptibility. High ranking 

males, particularly alpha males, are often characterized by high testosterone and GC levels linked to 

high susceptibility to infection (Muehlenbein & Bribiescas 2005; Muehlenbein & Watts 2010; 

Gesquiere et al. 2011; Archie et al. 2012), yet are apparently better able to tolerate the challenges of 

their endocrine status without overt negative health effects (Archie et al. 2012; Muscatell et al. 2016). 

Some individuals might thus be capable of occupying high exposure or susceptibility behavioural 

niches, with different social strategies being more advantageous for these individuals.  

Forming strong and selective bonds may be advantageous in relation to pathogen transmission 

in general and GI helminth transmission in particular, but different social strategies might be more 

beneficial under certain environmental circumstances. The question whether quality or quantity of 

social bonds matters most is still debated (Cohen & Wills 1985; Cohen & Janicki-Deverts 2009; Holt-

Lunstad et al. 2010; Ostner & Schülke 2018; Silk et al. 2018), yet having high numbers of interaction 

partners can be literally life-saving: Faced with harsh environmental conditions, survival in Barbary 

macaques was best predicted by high numbers of grooming relationships, possibly as a result of 

better opportunity for social thermoregulation in face of extreme temperatures (McFarland & Majolo 
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2013; Lehmann et al. 2016; Campbell et al. 2018). In rhesus macaques on Cayo Santiago, the number 

of living kin predicted survival in adult females (Brent et al. 2017), and having more weak bonds 

increased infant survival in chacma baboons (McFarland et al. 2017). Similarly, high network 

centrality or a vital position for information transmission is simultaneously linked with parasite risk 

(Fenner et al. 2011; Godfrey 2013; VanderWaal et al. 2013; Rimbach et al. 2015; Friant et al. 2016a; 

White et al. 2017b), and increased fitness (Brent 2015; Cheney et al. 2016; Firth et al. 2017), although 

the underlying mechanisms are not well understood to date.  

Expanding beyond the health effects of GI helminths, being overly selective with regard to 

interaction partners could also have negative consequences. Being socially selective can help to 

defend against adverse effects of directly transmitted helminths, but might not offer much protection 

from transmission of pathogens using different transmission routes, exemplified by the network 

independent infection patterns with unicellular intestinal parasite infections in spider monkeys (Ateles 

hybridus) and mangabeys (Rimbach et al. 2015; Friant et al. 2016a). Additionally, social immunity 

usually described in social insects (Cremer et al. 2007), has been suggested to occur in social mammals: 

if exposure to low levels of a pathogen can induce the development of acquired immunity (Hart 

2011), frequent close contact and “sampling” of group pathogens becomes an adaptive strategy 

(Burnet et al. 1972; Hart 1990) with benefits potentially outweighing those of protection from GI 

helminth infections. In short, assuming one general optimal strategy might be a gross 

oversimplification, as depending on environmental condition, individual life history and physiology, 

alternative strategies could yield the biggest health and fitness benefits, especially in light of non-

parasite selective pressures operating on the interface between social behaviour. 
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Chapter 6  

Conclusion and future directions 

 

“There is nothing like looking, if you want to find something. You certainly usually find 

something, if you look, but it is not always quite the something you were after.”  

J.R.R. Tolkien – The Hobbit 

 

Setting out to investigate the host-parasite dynamics between Barbary macaques and GI 

helminths and contribute to the current understanding of the interplay between social behaviour, 

physiology, infection and health, I indeed found several unexpected results, alongside answers to my 

research questions. Here, I want to briefly summarize my findings, assess how they contribute to the 

fields of eco-immunology, disease ecology and wildlife health, and point out possible future research 

directions.  

 

Figure IV: Flow chart illustrating the host-parasite relationship between Barbary macaques and 

strongyle nematodes as by the results of the thesis. Solid lines indicate the predictors influencing 

reinfection after parasite clearance, dashed lines the effects of parasite infections. Increases in 

behavioural and physiological measures and reinfection probability are indicated by a plus sign, 

decreases by a minus sign next to the respective line. The semi-dashed line indicates plausible 

links between host immune system and strongyle infection, which were not tested explicitly in the 

study. Age emerged as a strong predictor of host physiology and behaviour and was thus added 

to the chart to complete the picture. 
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Assessing the effects of GI helminth infection on Barbary macaques, I found effects of sickness 

behaviour in response to infections, suggesting that infections lead to health costs. Despite the body 

of knowledge we have on primate-helminth interactions, the immediate costs of infection and how 

they translate into long-term effects on survival and reproduction is still unclear for many primate-

helminth pairs, especially with regard to causes and consequences of inter-individual variance. Body 

condition was not influenced by treatment and individuals with high body condition were implied to 

have higher reinfection risk, which could be suggestive of parasite tolerance in the study population. 

Assessing parasite tolerance and the consequences of employing resistance vs. tolerance strategies 

opens an intriguing research avenue, calling for long-term studies incorporating specific measures of 

parasite tolerance under natural conditions. This might also help to assess whether sickness responses 

to GI helminth infections are the expression of health costs or can mitigate costs and thus even be 

beneficial. If this was the case, individuals with higher amplitudes of sickness behaviour responses 

are expected to benefit from increased fitness in the long run. 

Helminth coinfections were the strongest risk factors for strongyle nematode reinfection. This 

finding is likely not generalizable, as within-host parasite dynamics are complex and species specific. 

Based on the finding that coinfections were largely limited to aged individuals, I suggest that this 

result is best explained by failing protective immunity against enoplid parasites in older individuals, 

resulting in health deterioration and increased susceptibility to GI helminths in general. I found no 

evidence for interactions between Barbary macaque immune balance and helminth infections, but 

demonstrate the usefulness of uNEO as a marker of immunosenescence. Immunosenescence, 

decreasing the capability to handle GI helminth infections, and similar effects of age related 

physiological changes and GI helminth infections, suggest the possibility of vicious circles between 

immune system deterioration, parasite infection and physical decline. Which factors contribute to 

“healthy” aging and how these are influenced by parasite infections are interesting question to 

address in future, longitudinal studies, particularly in light of life-history trade-offs.  

Concerning the interplay between social behaviour and parasite transmission, I found evidence 

of both avoidance of infected individuals and social interactions predicting parasite transmission. 

While social interactions contribute to susceptibility and exposure simultaneously, the level at which 

sociality translates into exposure and susceptibility depends on the nature and frequency of 

interactions. Interaction frequencies and partner numbers most likely feed into exposure, whereas 

bond quality and socio-positive interactions most likely contribute to buffering effects on 

susceptibility. In case of the Barbary macaques, HPA axis activation does not appear to be the main 

mechanism linking sociality to susceptibility. The role of alternative routes, which could not be 

assessed in this thesis, offers potential explanations for the discrepancy between the protective effect 

of opposite sex bonds and risky same sex bonds. Additionally, there might be physiological traits 

underlying both social bond formation and susceptibility. The offered explanations are not mutually 
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exclusive, and disentangling which aspects of sociality correlate with exposure and susceptibility as 

well as the extent of covariation between both transmission components remain open questions. 

Another interesting question is whether social interactions can play a role in mitigating costs of 

infections via endocrine signalling impacting the extent to which tolerance or resistance strategies 

are employed. 

Considering the dual role of social relationships for parasite transmission, it is not surprising 

that I found indications of avoidance of infected individuals. How individuals identify infected 

conspecifics and if these avoidance strategies are effective in reducing infection risk remains to be 

determined. Intriguingly, the physiological mechanisms facilitating sickness behaviour and the 

beneficial effects of social interactions could also contribute to avoiding infected or non-bonded 

individuals. This suggests that mechanisms operate on the reinforcement of social selectivity and 

relationship differentiation while simultaneously regulating immune function and adapting it to social 

environment in social animals. Assessing the roles of oxytocin and inflammatory cytokines for 

regulating social behaviours, susceptibility and immune responses to parasites are thus important 

tasks for future studies aiming at understanding the costs and benefits of sociality in an infection and 

health context.  

In summary, I found costs of sociality via increased exposure, and benefits via reduced 

susceptibility, to GI helminth infections and the potential of GI helminth infections to contribute to 

social evolution, particularly the formation of differentiated bonds. It seems that “quality over 

quantity” is a good rule of thumb when it comes to social bonds and reducing costs of parasite 

infections, while preserving health related benefits of sociality. However, GI helminths and their 

transmission are just one piece of the jigsaw puzzle, with many more factors like personality, social 

isolation, life-history, early life adversity, microbiome composition and of course further pathogens, 

like bacteria and viruses, contributing to the sociality-health-fitness nexus. In light of rapid advances 

in molecular and statistical methods for the analyses of these complex interactions, future studies 

hold great potential for major contributions to our understanding of wildlife health, eco-

immunology, disease ecology and host-parasite dynamics. Investigating how sociality translates into 

health, healthy aging and fitness will not only be important in understanding the evolution of 

sociality, but also offer insights for human medical studies, social medicine, the evolutionary roots 

of human social relationships, ultimately allowing us to understand why friendship does not only 

give value to survival, but might be a key for it as well.  
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