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Acknowledgements

First of all I want to thank my supervisor Prof. Anita Schöbel for very fruitful dis-
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1 Introduction

Phylogenetic trees are diagrams with a tree structure that depict the relations of
evolutionary history between a certain set of existing species to be investigated.
Ever since Ernst Haeckel coined the term phylogeny in 1869 as ‘genesis and evolution
of a phylum’, where ‘genesis’ translates as ‘origin’ and ‘phylum’ as ‘race’, phyloge-
netic trees are a part of biologists’ attempts to classify existing species according to
their evolutionary history, see Figure 1.1 for an example. This classification is based
on shared characteristics and genes.

Figure 1.1: Tree of life according to Ernst Haeckel, cf.[Hae].

In contrast to Figure 1.1, a phylogenetic tree nowadays always comes with a topology,
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which is the tree structure as depicted, but also with positive edge weights, describing
the amount of mutations of genes between two nodes of the tree. Phylogenetics is
an active field of research because the evolutionary history of a given set of species
is often still not agreed upon by biologists. Hence, the so called species tree, which
is the phylogenetic tree depicting the actual evolution of a given set of species, is
usually unknown and is subject to study.

The Species Tree Problem

As there is no straightforward way to obtain the species tree, many methods have
been proposed that hypothesize how the species tree could look like. All of these
approaches use sets of phylogenetic trees as input in order to give a hypothesis for
the species tree, thereby trying to incorporate shared features of the given trees into
the species tree.

The phylogenetic trees that are used as data for such methods are called gene trees
and are obtained as follows: Specific genes that the investigated species share are
tagged with a biological marker. To this end one uses gene sequences that are em-
pirically known to be good guesses of the species tree. Then the gene sequences are
aligned to be as ‘parsimonious’ as possible. There exist many different approaches
to infer trees from these aligned gene sequences, e.g., bayesian methods or bootstrap
procedures that were introduced to the field of phylogenetics by [Fel85] marking a
milestone in phylogenetic inference. The result of such a method is a phylogenetic
tree depicting the relation between the investigated species based on the information
of a single gene. These trees are called gene trees.

Applying this method, one often obtains different trees for different genes which
shows that it is not possible to directly infer the species tree from a single gene tree.
[Mad97] show a specific case where the topology, i.e., the tree structure, of the gene
tree does not coincide with the topology of the species tree and [DR06] even show
that this need not be the case for the “most likely gene tree” as well. Nevertheless,
since it is impossible to directly determine the species tree, one tries to infer as
much information from these gene trees as possible in order to develop reasonable
hypotheses for the species tree.

Having performed this acquisition of gene trees for several genes, one receives a sam-
ple set of phylogenetic gene trees. Inferring the species tree from such a set of gene
trees is what is often referred to as the species tree problem, or ‘gene tree/species tree
problem’, as in [PC97]. One of the earliest works on this field is [AI72], where Adams
develops the notion of a consensus tree that is supposed to convey the information
of the gene trees as good as possible in order to get a reasonable candidate for the
species tree. After consensus trees have been introduced, many different methods to
find the species tree have been proposed, but they are mostly educated guesses or
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heuristic rules. Popular methods include the majority rule consensus tree [MM81]
and strict consensus methods [MMN83] that are probably widely used due to their
simple computation rules. For an overview of consensus trees and related methods
see [Bry03]. Naturally, these heuristic methods are limited in describing the actual
species tree, which is also discussed in the literature, see for example [BDS91] and
[Nel93] as a reply. Thus, there was an urgent need for more sophisticated techniques
which have been developed since then with the hope to better infer the species tree
from a given set of gene trees.

A lot of research in the younger history involves mathematical, mostly statistical
methods to find the species tree. A large part of this mathematical research is based
on [BHV01], since it provides the framework for a new systematic approach to phy-
logenetic tree related problems. Billera, Holmes and Vogtmann were able to define
the metric space Tn, which contains all possible phylogenetic trees for a fixed set
of existing species {1, . . . , n}. {1, . . . , n} are the leaves of the trees in Tn. In the
following we will refer to the space Tn as tree space. Tn is a metric space of ‘global
non-positive curvature’. This directly implies two important features for mathemat-
ical modeling: Firstly, it is a metric space containing all possible phylogenetic trees
on n leaves, i.e., it is a suitable model space for the species tree problem, since the
given data and the solution to the problem are contained in this space. Secondly,
there does not only exist a distance measure between any given pair T1, T2 of trees
in Tn, which is required by many algorithms, but there even exists a unique path
from X to T whose length equals the distance d(T1, T2), where d is the metric on
Tn. These are necessary properties to formulate and tackle the species tree problem
in Tn.
In this model setting, natural candidates for the species tree are some sort of ‘av-
erage’ or ‘centroid’ trees. The question of finding a centroid from a set of sample
trees has already been posed in [BHV01] and several possible notions of a centroid
of a sample set in a metric space with global non-positive curvature are mentioned.
Unfortunately, all given notions of center points actually require computing the
geodesic between two trees, or at least the distance of two trees. So even though
[BHV01] show that the above-mentioned shortest path between two trees, called
geodesic exists and is unique, they were not able to propose a method how to effi-
ciently calculate the distance between two points in Tn. This shortcoming strongly
encouraged follow-up research in this direction. The computation of the distance
and the geodesics in Tn has been extensively studied in [Owe08, Owe11] leading
to the milestone of a polynomial time algorithm calculating the distance and the
parametrization of the geodesic for two given trees, see [OP11].

Now, having the metric space Tn and the possibility to efficiently calculate geodesics
at hand one is able to use several of the concepts of centroids that [BHV01] intro-
duced to get new hypotheses on the species tree. For example, [MOP15] translate
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the algorithm of Sturm that was already mentioned by [BHV01] into the tree space
setting and applied it to several data sets. As it turns out, though, the computa-
tion of the center points remains an open problem in practice. Sturm’s algorithm
theoretically converges to the mean but for high-dimensional and large data sets
the method was not able to converge to a pre-specified termination condition since
its calculation time was exceeded. So there is still need for improved procedures
as the existing methods are of converge slowly (Sturm’s algorithm is sublinear, see
[MOP15]) and not tractable for larger instance sizes or even yield the wrong species
tree, [MOP15].
As an attempt to make the computation of the mean more efficient, [MOP15] further
investigated the structure of Tn and developed special algorithms, e.g., gradient
descent methods that are based on interior point or penalty methods. After all
there are still practical and theoretical problems of these approaches, since analytical
properties, such as optimality criterions and differentiability, do not exist on specific
subsets of Tn. An up-to-date review on Fréchet means in tree space is presented in
[BO17], both pointing out the strengths and weaknesses of the concept and giving
concrete numeric studies.
Another mathematical line of research that recently evolved is to find a different
model space for the phylogenetic problems. To this end, the so-called space of ultra-
metric trees, equipped with the tropical metric is investigated in [YZZ17, LMY18].
This research needs to be carried out in depth in order to evaluate which advantages
and disadvantages this model space has.

Contribution and Structure of the Thesis

As we have seen, there exists a lot of research in the field of phylogenetics includ-
ing numerous approaches on finding the species tree. Latest mathematical studies
mainly concentrate on finding new model spaces or different and faster ways to
compute the Fréchet mean to do statistics on the model spaces, but neither can the
outcome of these approaches be anticipated nor if the result of these approaches will
solve the species tree problem, at least to biologists’ satisfaction.
In this thesis we introduce a different point of view on the species tree problem by
incorporating “Location Theory”: We interpret the set of gene trees as facilities, as
usual for location problems. Facility Location problems are optimization problems
that are motivated from real-world and economic problems and are usually investi-
gated in Euclidean space. So on one hand this work extends the field of research of
Location Theory beyond its usual scope. On the other hand, we aim at exploiting
the specific local structure of Tn to receive some location problems which may be
solved within a Euclidean setting. By doing so we then can make use of known algo-
rithms and results from Location Theory in Euclidean space in order to try solving
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the original location problems in tree space, thereby connecting these two fields of
research.

The thesis is structured as follows (also confer to Figure 1.2). In Chapter 2 we
introduce the phylogenetic tree space Tn as defined in [BHV01]. In Section 2.2
we give a detailed description of the geodesic distance and the parametrization of
geodesics in tree space, which are the key tools to work with location problems in
Tn.
In Section 2.3 motivate our location theoretical point of view on the species tree
problem in more detail before we build the bridge from the species tree problem to
Location Theory in Chapter 3. We introduce three location problems in tree space
that yield different notions of ‘centroids’ of a given set of trees as hypotheses for the
species tree. We also formulate general results regarding optimal solutions for these
three problems in Subsection 3.2.1.
Chapter 4 illustrates first approaches to solve these tree space location problems by
providing reformulations and solution methods for special cases.
The central problem of the thesis is tackled in Chapter 5. The goal is to find
a median of a given set of points in tree space and we present an algorithm to
determine a median that is based on a local Euclidean improvement strategy. This
algorithm is called the Balance Point Algorithm, which is a heuristic, but for which
we prove convergence under certain assumptions in Section 5.3. As the Balance
Point Algorithm is a local improvement procedure, it is necessary to find a good
neighborhood in which the algorithm is started in order to obtain good results.
In order to find a good neighborhood, we develop bounds for specific subsets of
Tn in Section 5.1 to determine auspicious subsets of Tn, where the Balance Point
Algorithm may be applied. In Section 5.2 we formulate a heuristic that determines
such auspicious subsets in a preprocessing procedure and then applies the Balance
Point Algorithm for the remaining subsets.
Finally, we illustrate how the Balance Point Algorithm works on a real data set in
Chapter 6 and discuss its results in comparison to other methods before the thesis
is summarized in Chapter 7.
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Chapter 2:
Phylogenetic
tree space Tn

Chapter 1:
Species Tree
Problem

Chapter 3:
Location Prob-
lems in Tn

Chapter 5:
BPA for median
problems in Tn

Chapter 4:
Solutions via
Transformations

Chapter 6:
Real data example

Chapter 7:
Conclusion

Figure 1.2: Structure of the thesis.
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2 Construction and Properties of the
Tree Space

As mentioned in the introduction, we will refer to the space of phylogenetic trees
Tn as tree space. The construction of this space is given in a meticulous way to
ensure that all subtleties of the tree space and important tools required for proofs
are introduced carefully. Note, that since this is an introduction of the tree space
almost all definitions and results are known from literature and are always indicated
with the proper citation.

2.1 Splits, Compatibility and Orthants

We start by giving a concise mathematical definition for the elements of Tn, the phy-
logenetic trees. In the following, let n species {1, 2, . . . , n} be given whose evolution
is to be investigated. These species are leaves of the phylogenetic tree describing
their evolution, as they are present today and have no descendants. There is one
additional leaf in a phylogenetic tree which is the root node and is indexed by 0.
The root node models a known common ancestor of these species.
Due to the problem’s nature we are only interested in trees which do not contain
any node with degree two. If there exists a node with degree two, it can be removed
and its two incident edges may be merged into one, as this node does not convey
any information on a bifurcation or multifurcation of species. The edges of a tree
can be distinguished into edges which are incident with a leaf and edges which are
not. The latter are called interior edges. As already mentioned, phylogenetic trees
also carry information on how much mutation took place between two nodes, i.e.,
species in the tree, which is modeled by positive edge weights for all interior edges.
Now, with these properties of a phylogenetic tree in mind, we can formally define
our desired notion of trees.

Definition 2.1. [BHV01] A weighted graph T = (V,E,w) is called metric n−tree
if

• T = (V,E) is a tree,

• {0, 1, . . . , n} ⊆ V are the only leaves of V and 0 ∈ V is the root node,
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• does not have any node of degree two,

• satisfies we > 0 for all interior edges e of E ,i.e., w ∈ R|E|>0.

In the following the elements of the tree space, the metric n− trees are usually
referred to as trees in the following. If we want to reference a tree without edge
weights, we emphasize this by speaking of the topology of the tree or explicitly write
T = (V,E), omitting w.
The next result follows immediately from the definition of interior edges and the
property of metric n−trees not having nodes of degree two.

Lemma 2.2. [BHV01] The maximal number of interior edges for metric n−trees is
n− 2.

This maximal number of edges is attained when, every non-leaf node has degree
three. Then, regarding the tree from the root, 0, being the top, to the leaves,
{1, . . . , n}, at the bottom, each edge from the top splits up to two different edges;
this motivates the following name.

Definition 2.3. [BHV01] A tree with n− 2 interior edges is called binary tree.

Example 2.1.1. The tree topologies for n = 4:

For n = 4 species, all possible topologies of such trees are depicted in figures 2.1 -
2.4. Figure 2.1 contains the star tree as well as four different topologies which all
describe that three species have one common ancestor, and one species has developed
separately.

0

1 2 3 4

The star tree

0

1

2 3 4

0

2

1 3 4

0

3

1 2 4

0

4

1 2 3

Figure 2.1: Degenerate tree topologies for trees with 4 species.
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Figure 2.2 shows the cases of a degenerate tree topology where one pair of species
shares a common ancestor that developed after the split of the other two species.

0

1 2

3 4

0

3 4

1 2

0

1 3

2 4

0

2 4

1 3

0

1 4

2 3

0

2 3

1 4

Figure 2.2: Degenerate tree topologies for trees with 4 species.

Figure 2.3 shows the three binary tree topologies in which the species have developed
in pairs:

0

1 2 3 4

0

1 3 2 4

0

1 4 2 3

Figure 2.3: 3 of the 15 = (2 · 4− 3)!! = 5 · 3 · 1 binary tree topologies
for trees with 4 species.

Figure 2.4 shows the remaining twelve binary tree topologies where one species has
developed separately, while three of them have one common ancestor from which
another species developed separately.
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0

2 4

3

1

0

2 3

4

1

0

3 4

2

1

0

1 4

3

2

0

1 3

4

2

0

3 4

1

2

0

2 4

1

3

0

1 2

4

3

0

1 4

2

3

0

1 2

3

4

0

1 3

2

4

0

2 3

1

4

Figure 2.4: 12 of the 15 = (2 · 4− 3)!! = 5 · 3 · 1 binary tree topologies for trees with
4 species.

This enumeration of trees is in fact exhausting, i.e., all different tree topologies for
n = 4 have been depicted up to different planar embeddings of the graphs. Handling
phylogenetic trees via tree topologies (V,E) is very cumbersome, which is the reason
for the introduction of splits of trees in the next section.
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Splits

The figures above have show that there are many different topologies for trees. Our
goal now is to describe tree topologies in an easy way, as sets of splits. Note that the
number of interior nodes (non-leaf nodes) and the number of edges may differ from
tree to tree. Thus, a representation using nodes or edges does not seem appropriate.
Instead, trees will be described using partitions of its set of leaves that are induced
by the interior edges, which are edges of the tree that are not incident to any leaf.
Partitions are induced when removing edges, which is a well-known observation from
graph theory:
A tree T = (V,E) with vertices V and edges E gets disconnected and divided into
two trees if we remove any of its edges e ∈ E. More precisely, when removing any
edge e ∈ E the tree T is split into two connected components (V1(e), E1(e)) and
(V2(e), E2(e)) with V1(e) ∪ V2(e) = V and E1(e) ∪ {e} ∪ E2(e) = E.
In particular this yields a partition of the leaves {0, 1, . . . , n} ⊆ V of the tree into
two disjoint sets A(e) = V1(e) ∩ {0, 1, . . . , n} and A(e)c = V2(e) ∩ {0, 1, . . . , n} =
{0, 1, . . . , n} \ A(e). It is easily observed that removing an edge e incident to a leaf
i ∈ {0, 1, . . . , n} of the tree results in the partition {i} and {0, 1, . . . , n} \ {i}, and
that these partitions can be obtained for any tree T ∈ Tn. We can hence neglect
these trivial partitions when describing tree topologies. The other partitions are
formalized as follows:

Definition 2.4. [Owe11] A split s = (A|Ac) is a partition of {0, 1, . . . , n} into two
sets A,Ac such that |A| ≥ 2 and |Ac| ≥ 2. The set of all splits of the set {0, 1, . . . , n}
is denoted as S.

Note that (A|Ac) and (Ac|A) are considered to be the same split. Due to the sym-
metry of the union A∪Ac = Ac∪A they generate the same partition of {0, 1, . . . , n}.
We use the convention that the set which does not contain 0 is always denoted as
A, i.e., 0 ∈ Ac. Even though a split is already uniquely defined by choosing A, it
will help to also write down Ac when working with splits later on.
The most important thing about splits is that they represent interior edges of a tree
without the need of interior nodes to define them. That makes it more convenient
to represent trees and also to compare how similar trees are by just checking which
common splits they possess.

Example 2.1.2. Figure 2.5 illustrates how splits arise when removing an interior
edge. It is important to note that this justifies to use the words interior edge or split
interchangeably, since there is a one-to-one correspondence between these notions.
This fact is stressed again in Lemma 2.7

As shown in the example, one receives splits by removing interior edges e of a tree.
Doing this for all interior edges of the tree one receives a set of splits that, as we
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0

1 3

e 1
2

e 2

4

leaf set: {0, 1, 2, 3, 4, 5}

0

1 3

2

e 2

4

leaf sets: {1, 3}, {0, 2, 4, 5}
split: s1 = ({1, 3}|{0, 2, 4, 5})

0

1 3

e 1

2

e 2

4

leaf set: {0, 1, 2, 3, 4, 5}

0

1 3

e 1

2

4

leaf sets: {1, 2, 3}, {0, 4, 5}
split: s2 = ({1, 2, 3}|{0, 4, 5})

Figure 2.5: An interior edge of a metric n−tree induces a split on {0, 1, . . . , n}.

will see later, already completely defines the topology (V,E) of a tree (V,E,w).
The notion of topology is frequently used in the same sense as ‘the combinatorial
structure of the tree’ in the literature (see, e.g., [OP11]). Our definition here is a
little more specific.

Definition 2.5. For a tree T its induced set of splits, the topology of T , is defined
as

Split(T ) := {(A(e)|A(e)c) : e is an interior edge of T} ⊆ S.

As mentioned earlier we use splits as they offer a convenient and consistent way to
describe the topology of a tree by a set of splits. Nonetheless, not all sets of splits
S ⊂ S yield a tree topology since some pairs of partitions can not be present in the
same tree:

Example 2.1.3. Assume n = 4 and consider two splits on {0, 1, 2, 3, 4},

s1 = ({1, 2}|{0, 3, 4}) and s2 = ({1, 3}|{0, 2, 4}).
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There cannot exist a tree whose interior edges yield both of these splits as there
cannot be two edges in the same tree stating that {1, 2} are direct neighbors and
that {1, 3} are direct neighbors. More precisely, {1, 2} induces a subtree, where 1 is
contained in the subtree {1, 2} which does not contain 3. {1, 3}, however induces the
subtree {1, 3} which does not contain 2, which is a contradiction.

The concept of compatibility describes whether two splits may be contained in the
same tree and even more, if a set of splits yields a tree topology:

Definition 2.6. [BHV01] Two splits (A|Ac) and (B|Bc) are compatible if A ⊆ B
or A ⊆ Bc, B ⊆ A or Bc ⊆ A. A set of splits S ⊂ S is called compatible if every
pair si, sj ∈ S is compatible.

The definition of splits and compatibilities allows for the following nice representa-
tion of tree topologies, which implies the one-to-one correspondence between splits
and interior edges that we mentioned in Example 2.1.2.

Lemma 2.7 ([BHV01],[Vog07]). There exists a metric n−tree T with topology S =
Split(T ) if and only if all pairs of splits {s1, s2} ⊂ S are compatible.

As an example for this, the unweighted tree T = (V,E) or tree topology depicted
in Figure 2.5 has two interior edges which result in the two splits ({1, 3}|{0, 2, 4})
and ({1, 2, 3}|{0, 4}). These, in turn, uniquely define the tree topology of T .
Lemma 2.7 in particular implies that two splits are compatible if and only if they
can exist in the same tree.
Moreover, it justifies why we called the set of splits the topology of a tree in Defini-
tion 2.5 and why this fits the terminology chosen in Definition 2.1: The topology of
a tree (in the sense of Definition 2.1) T = (V,E,w) is uniquely characterized by its
set of splits Split(T ).
An immediate consequence of the one-to-one correspondance and Lemma 2.2 is the
following corollary.

Corollary 2.8. The maximal number of compatible splits is n− 2.

Embedding into RN
+

Now that we have defined splits and compatibilities, we can make use of the repre-
sentation of trees by split sets to embed the trees into a Euclidean space. To this
end, we construct vectors of the length of all splits; easy combinatorics show that
there are N := |S| = 2n − n − 2 splits on {0, . . . , n}. As the non-negative orthant
of RN , RN

+ , is defined inconsistently throughout literature, we specify

RN
+ = {x ∈ RN : xi ≥ 0 ∀i = 1, . . . , N}.
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Definition 2.9. Let the splits in S be given in a fixed order according to their
indices, say, S = {s1, . . . , sN}. Then we can describe every metric n−tree T by a
vector t ∈ RN

+ by defining

ti :=

{
we > 0 if si = (A(e)|(A(e)c) ∈ Split(T )
0 if si 6∈ Split(T ),

(2.1)

for i = 1, . . . , N .
Let Tn denote the set of all metric n-trees. Then the mapping

χ : Tn → RN
+ χ(T ) = t,

with t defined as above is called (canonical) embedding of Tn.

Note that the term ‘embedding’ implicitly requires injectiveness of the mapping.
That χ is injective is easy to see: When χ(T1) = t = χ(T2), then it follows that
T1 and T2 have the same set of splits, the ones that correspond to the non-zero
components of t. Moreover, they have the same weights tj for these splits, so T1 = T2.
We illustrate the embedding of Tn into RN

+ using metric 4−trees.

Example 2.1.4. For n = 4 the N = 2n − n − 2 = 24 − 6 = 10 possible splits on
{0, 1, 2, 3, 4} are

s1 = ({1, 2}|{0, 3, 4}) s2 = ({1, 3}|{0, 2, 4})
s3 = ({1, 4}|{0, 2, 3}) s4 = ({2, 3}|{0, 1, 4})
s5 = ({2, 4}|{0, 1, 3}) s6 = ({3, 4}|{0, 1, 2})
s7 = ({1, 2, 3}|{0, 4}) s8 = ({1, 2, 4}|{0, 3})
s9 = ({1, 3, 4}|{0, 2}) s10 = ({2, 3, 4}|{0, 1})

0

1 2

3.
2

3 4

1.8

0

1 2

2.
8

3

2

4

0

3 4

2.
5

1 2

0

1 2 3 4

Figure 2.6: Four trees of T4.
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The four metric 4−trees depicted in Figure 2.6 are hence given as

t1 =



3.2
0
0
0
0

1.8
0
0
0
0


, t2 =



2.8
0
0
0
0
0
2
0
0
0


, t3 =



0
0
0
0
0

2.5
0
0
0
0


, t4 =



0
0
0
0
0
0
0
0
0
0


.

The tree T 4 corresponding to t4 = 0 ∈ R10
+ is called the star tree and is depicted

on the rightmost in Figure 2.6. Note that not every vector in R10
+ has a pre-image.

Consider for example t5 = (2 3 0 0 0 0 0 0 0 0)t. This would translate to the split s1

having a weight of 2 and s2 having a weight of 3. But s1 and s2 are incompatible,
so there exists no tree that can contain both of these splits. This implies that there
is no pre-image for t5.

With this embedding, each metric n−tree T yields a vector t ∈ RN
+ , but, as explained

in the example, not every x ∈ RN
+ represents a metric n−tree, since the embedding

is not surjective. We now describe which x ∈ RN
+ are representatives of trees metric

n-trees, which follows directly from Lemma 2.7 and the definition of the embedding.
Recall, that it is crucial to first choose a fixed order of the splits in S and then to
embed all trees into RN

+ with respect to to this order.

Theorem 2.10. Let x ∈ RN
+ . Then x represents a tree if and only if all si, sj ∈ S

with xi 6= 0 and xj 6= 0 are compatible splits.

After having introduced the concept of splits and defined the embedding we will now
incorporate two possibilities to uniquely identify trees T = (V,E,w), without using
the (V,E,w) notation. The first is to specify a tuple T = ((s1, . . . , sk), (w1, . . . , wk))
of a vector of splits (s1, . . . , sk) that yields a compatible set of splits {s1, . . . , sk} ⊂ S
and the corresponding positive edge weights wi for si, i = 1, . . . , k, that are induced
by the translation of an interior edge to a split. The second possibility is to identify
a tree T ∈ Tn via the embedding, i.e., by its corresponding vector t ∈ RN

+ , such that
χ−1(t) = T .

Since we have these two possibilities we will always reference trees T ∈ Tn with a
capital letter and they consist of a tuple of splits and lengths , whereas the respective
lower-case letter t denotes the embedding of T into RN

+ .
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2.2 The Geodesic Distance

In the previous section we have introduced convenient ways of referencing trees and
have seen that compatible pairs of splits yield tree topologies. Having all possible
sets S of compatible splits we thus get all tree topologies. Considering all possible
weight vectors for these compatible split sets we are able to construct all metric n-
trees. The tree space Tn is the collection of all these trees. Next, we define a metric
on the set of Tn to make it a metric space.
This is achieved in two steps: First, we define a distance between two trees that are
contained in a common maximal orthant, a specific region of the tree space that we
define in Defintion 2.11. After we know how to measure distance in single orthants
we extend the distance to the whole space by investigating how one traverses from
one orthant into another.
We start by introducing orthants. The notion of orthants has already been men-
tioned in [BHV01]; here we define it in a slightly different manner, as regions of the
tree space instead of Euclidean orthants.

Definition 2.11. Let S ⊆ S be a set of compatible splits in Tn. Then

O(S) := {T ∈ Tn : Split(T ) ⊆ S}

is called the orthant of S. Moreover, for T ∈ Tn let O(T ) = O(Split(T )).
In case that S is a set of pairwise compatible splits with maximum cardinality of
n− 2, we call O(S) a maximal orthant.

By definition O(S1) ⊆ O(S2) holds for S1 ⊆ S2, so any set of splits S with |S| < n−2
is contained in some maximal orthant S ′, i.e., S ⊂ S ′, |S ′| = n− 2. Also note, that
a tree T whose set of splits Split(T ) is not maximal belongs to several maximal
orthants, which is illustrated in Figure 2.7. The most extreme example for this is
the star tree 0 ∈ Tn. Since Split(0) = ∅, the star tree is contained in every orthant
of Tn, since Split(0) = ∅ ⊂ S for all S ⊂ S.
Before defining the distance in single orthants we refer to a very important result.
The number of orthants of Tn is exponential n:

Theorem 2.12 ([BHV01]). There exist (2n−3)!! = (2n−3)·(2n−5)·. . .·3 maximal
orthants in Tn.

With the definition of orthants we now define the distance between trees that are
contained in a common orthant. To this end, let O = O(S) be an orthant that
contains T and X, i.e., Split(T ) ⊂ S and Split(X) ⊂ S. [BHV01] define the distance
for two such trees to be the Euclidean norm of their weight vectors. Now using the
embedding into RN

+ , i.e., using t, x ∈ RN
+ instead of T,X respectively, their distance

is given by
d(X,T ) := ‖t− x‖2.
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Figure 2.7: A degenerate tree topology with splits S = {s1, s2} (top) and the three
tree topologies with maximal split sets S1, S2, S3 that contain S.

Note, that all components of t and x that do not correspond to splits in Split(T ) ⊂ O
or Split(X) ⊂ O are 0 by definition of the embedding χ, Definition 2.9.

Before we continue to define the distance in Tn for two trees who are not contained
in a common orthant, we want to emphasize the local Euclidean structure, that is
implied by the definition of distance for two trees in an orthant.
Since d(T,X) = ‖t − x‖2 for two trees T,X that are in the same orthant, a single
maximal orthant with n−2 splits is isometric to the non-negative Euclidean orthant
Rn−2

+ :

Definition 2.13. Let a maximal orthant O = O(S) ⊂ Tn with S = {si1 , . . . , sin−2}
be given. Then the embedding ψO of orthant O into Rn−2

+ is given by the map onto
the length vectors, i.e., for a tree T = ((si1 , . . . , sin−2), (w1, . . . , wn−2)) ∈ O, define

ψO(T ) =

 w1
...

wn−2


and for non-binary trees T = ((sj1 , . . . , sjl), (w1, . . . , wl)) ∈ O(S), i.e., when l < n−2
and Split(T ) = {sj1 , . . . , sjl} ( S, define ψO(T ) coordinate-wise,

(
ψO(T )

)
m

=

{
wl if sjl = sim
0 else

for m = 1, . . . n− 2.
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Recall that we have also defined an embedding χ of Tn into RN
+ in Definition 2.9.

The orthant embedding ψ(O) is simply the projection of χ(T ) to the components
of RN

+ that correspond to splits in O.
Now, that we have defined the distance between trees that are contained in a common
orthant and understood the local Euclidean structure of the orthants, the second
step is to connect the orthants and measure distance for trees that are not contained
in a common orthant via paths through several connected orthants.
Assume now that T and X are not both contained in some orthant O. This implies,
that there exists some split s1 in Split(X) that is incompatible with a split s2 in
Split(T ), as we could otherwise take the compatible split set S̄ := Split(T )∪Split(X)
and T,X ∈ O(S̄) would show that T and X are contained in a common orthant.
Here, it does not make sense to define the distance by the Euclidean norm of the
embedded vectors ‖t − x‖2: For each point y = (1 − λ)x + λt, λ ∈ (0, 1) on the
Euclidean shortest path, i.e., the line segment connecting t and x in RN

+ , we would
have that yi > 0 whenever one of xi and ti is greater than 0 for some i ∈ {1, . . . , N}.
Hence the coordinates corresponding to the incompatible splits s1 and s2 are both
positive for y and Theorem 2.10 implies that y ∈ RN

+ is not a representative of a
tree, i.e., y 6∈ χ(Tn). This is easier to understand when looking at the example for
the embedding of T3 into R3

+ in Example 2.2.1.

Example 2.2.1. Consider T3. A maximal split set in T3 has n − 2 = 3 − 2 = 1
splits and there exist N = 23 − 3 − 2 = 3 splits in T3, compare p. 13. We take two
trees with a different topology:

T1 = (({2, 3}|{0, 1}), (2)) T2 = (({1, 3}|{0, 2}), (1))

Figure 2.8 depicts the embedding of T3 into R3, which is exactly the non-negative axes
that are drawn as solid lines. The Euclidean shortest path between T1 and T2 is the
dotted line. Clearly, the line is not contained in χ(T3), so it yields a distance between
the trees, but not a corresponding path through tree space. In general, the Euclidean
distance of the embedded vectors is the extrinsic distance when used for the subset of
trees, as it is the distance that is derived from the ambient space RN

+ , i.e., the space
into which Tn is embedded. This distance does not have any desirable properties for
the space of trees, which is why the distance needs to be defined differently.

What we actually want is a shortest path P from X to T in the tree space, i.e.,
P ⊆ Tn that traverses several orthants to connect X and T . To find such a path we
need to be able to transform one tree topology into a different tree topology. This
is done as follows: By definition, two trees T1, T2 with split sets Split(T1), Split(T2)
are in the orthant O(S), when Split(T1)∪Split(T2) = S is a compatible set of splits.
That means that we can search for a path from X to T by removing some splits of
X to get some tree T ′, such that Split(T ′) ⊂ Split(X) and then add some splits of
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({2, 3}|{0, 1})

({1, 3}|{0, 2})

({1, 2}|{0, 3})

Figure 2.8: Embedding of T3 into R3 and a Euclidean shortest path in R3 connecting
two trees of T3.

T to T ′ and repeat this procedure until we are only left with splits of X, hence the
topology of X. Thereby, it is important to remove and add splits in such a way that
two successive trees on the way from X to T are contained in a common orthant
and we can thus use the Euclidean distance for these pairs of trees. In this way, we
have connected X and T by a path through tree space.
Now that we have sketched the idea, we formalize the length of paths between two
trees, as it has already been described in [BHV01].

Definition 2.14. Let (T1, T2, . . . , Tk) be a sequence of trees in Tn such that for each
i = 1, . . . , k − 1 there exists an orthant Oi with Ti, Ti+1 ∈ Oi. Then define the path
P = (T1, . . . , Tk) ⊂ Tn to be the path that contains all trees Ti and for each Ti, Ti+1,
i = 1, . . . , k − 1 it contains all trees χ−1(λti + (1− λ)ti+1) for λ ∈ (0, 1).
P = (T1, T2, . . . , Tk) is called a path from T1 to Tk and its length is defined as

L(T1, T2, . . . , Tk) :=
k−1∑
i=1

‖ti+1 − ti‖.

It is crucial to understand that for each i = 1, . . . , k−1, Ti and Ti+1 are contained in
a common orthant Oi and the distance there is defined as the Euclidean distance of
their weight vectors. Note that then yλ = λti + (1− λ)ti+1 ∈ RN

+ always represents
a tree, i.e. yλ ∈ χ(Tn). This holds, as only splits that are in the common orthant
Oi may have non-zero components in the embedding. More precisely, yλ ∈ χ(Oi) ⊂
χ(Tn). As the measure in an orthant is the Euclidean distance, it follows that the
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shortest path between their weight vectors is just the straight line which is mapped
back to Tn by χ−1.
We illustrate the concept of orthants and paths in T4. First, we state all maximal
orthants and then we show an example of a path and a geodesic.

Example 2.2.2. In T4 it can be easily checked that no more than two splits can be
pairwise compatible. The maximal orthants in T4 hence all contain two compatible
splits. There exist 15 maximal orthants, namely

O1 = {({1, 2}|{0, 3, 4}), ({3, 4}|{0, 1, 2})} = {s1, s6}
O2 = {({1, 3}|{0, 2, 4}), ({2, 4}|{0, 1, 3})} = {s2, s5}
O3 = {({1, 4}|{0, 2, 3}), ({2, 3}|{0, 1, 4})} = {s3, s4}
O4 = {({1, 2}|{0, 3, 4}), ({1, 2, 3}|{0, 4})} = {s1, s7}
O5 = {({1, 2}|{0, 3, 4}), ({1, 2, 4}|{0, 3})} = {s1, s8}
O6 = {({1, 3}|{0, 2, 4}), ({1, 2, 3}|{0, 4})} = {s2, s7}
O7 = {({1, 3}|{0, 2, 4}), ({1, 3, 4}|{0, 2})} = {s2, s9}
O8 = {({1, 4}|{0, 2, 3}), ({1, 2, 4}|{0, 3})} = {s3, s8}
O9 = {({1, 4}|{0, 2, 3}), ({1, 3, 4}|{0, 2})} = {s3, s9}
O10 = {({2, 3}|{0, 1, 4}), ({1, 2, 3}|{0, 4})} = {s4, s7}
O11 = {({2, 3}|{0, 1, 4}), ({2, 3, 4}|{0, 1})} = {s4, s10}
O12 = {({2, 4}|{0, 1, 3}), ({1, 2, 4}|{0, 3})} = {s5, s8}
O13 = {({2, 4}|{0, 1, 3}), ({2, 3, 4}|{0, 1})} = {s5, s10}
O14 = {({3, 4}|{0, 1, 2}), ({1, 3, 4}|{0, 2})} = {s6, s9}
O15 = {({3, 4}|{0, 1, 2}), ({2, 3, 4}|{0, 1})} = {s6, s10}

The structure of T4 can be represented by a graph G = (S,O) whose node set S
contains the ten splits {s1, . . . , s10} of T4 and whose edges connect two splits (si, sj)
if and only if si and sj are compatible. Consequently, the edges belong to the maximal
sets of compatible splits in T4 and which are the orthants of T4, see Figure 2.9. Note,
that this compatibility graph actually is the Petersen graph.
Now consider the trees X = ({s2, s9}, (2, 2)) and T = ({s1, s6}, (1, 4)). Then Fig-
ure 2.10 depicts two different paths from X to T :

P1 = (X,T2, T3, T ) P2 = (X,T1, T )

Then, calculating the Euclidean distance between all pairs of trees on the path, we
receive

L(P1) = ‖t− t2‖2 + ‖t2 − t3‖2 + ‖t3 − x‖2

=
√

22 + (2− 1)2 +
√

22 + 12 +
√

(4− 2)2 + 12 ≈ 6.71,

L(P2) = ‖t− t1‖2 + ‖t1 − x‖2 = ‖t‖2 + ‖x‖2 =
√

8 +
√

17 ≈ 6.83.
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Figure 2.9: Compatibility Graph for T4. The three colored orthants are used for the
example for the paths below.

s1

s6

s9

s2

O1 O14

O7

X

T

T1

T3

T2

Figure 2.10: Example for two paths from X to T in a diagram of a part of T4. The
shortest path connecting X and T is the solid path.

In Definition 2.15, the distance between two trees X and T is now simply defined
as the length of the geodesic, i.e., a path in tree space from X to T with minimal
length. Before that, we provide a little bit of background knowledge about the term
geodesic in mathematics and how it relates to tree space.
The notion of geodesics originates from differential geometry and is used to gener-
alize the notion of straight lines to curved spaces and is, e.g., used for Riemannian
manifolds. Geodesics have later been generalized to metric spaces, thereby introduc-
ing the notion of a geodesic metric space. As a matter of fact Theorem 2.16 will show
that Tn is a geodesic metric space, which is why this shortest path is called geodesic.
Moreover, as geodesics were introduced as a generalization of straight lines it is in-
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teresting to note that the geodesics here are basically concatenations of straight lines
in single orthants and that the tree space actually has global non-positive curvature
(see [BHV01]).

Definition 2.15. [BHV01] Let T,X ∈ Tn. The geodesic distance between X and T
is given by

d(X,T ) = inf {L(T1, . . . , Tk) : (T1, . . . , Tk) is a path from X to T in Tn} .

A path P = (T1, . . . , Tk) from X to T , X = T1, T = Tk that attains this minimal
distance, i.e., L(P ) = d(T,X) is called geodesic.

Plugging in the length of a path from Definition 2.14 we get

d(X,T ) = inf

{
k∑
i=1

‖ti+1 − ti‖2 : (T1, . . . , Tk) is a path from X to T in Tn

}
.

Naturally, every path from X to T yields an upper bound on the geodesic distance.
A special path that connects any two trees in Tn is the path through the star tree
0 ∈ Tn and it is called cone path. Formally, the cone path for X,T ∈ Tn is (X, 0, T )
and its length is ‖t‖2 + ‖x‖2.
Due to the triangle inequality of ‖ · ‖2 that we may apply in every orthant O, we
can replace a sequence

(T1, . . . Ti, Ti+1, . . . , Tj, . . . , Tl)

of trees where Ti, Ti+1, . . . , Tj are contained in the same orthant O by

(T1, . . . , Ti, Tj, . . . , Tl)

and will thereby not increase the length of the path.

By the definition of geodesics it is not obvious that the infimum is always attained.
The existence of a unique geodesic that attains this infimum connecting any pair of
trees in Tn has been shown in [BHV01] by applying a result of [Gro87] concerning
metric spaces of global non-positive curvature, also called CAT(0) spaces. As we do
not need curvature in the following, but only need it to get existence and uniqueness
of geodesics we refer the interested reader to the appendix, Chapter 7.

Theorem 2.16 ([BHV01]). Tn is a CAT(0) space. In particular, the geodesic dis-
tance d is a metric on Tn.

For CAT(0) spaces, existence and uniqueness of geodesics are guaranteed:
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Theorem 2.17 ([BHV01]). Let T,X ∈ Tn. There exists a unique geodesic Γ(X,T )
from X to T .

As a final note concerning curvature we remark that a Hadamard space is defined
as a complete CAT(0) space. Since Tn is complete, this makes it a Hadamard space,
as mentioned in Chapter 7, or compare [Bac14b] for more details on the subject.
The fact that Tn is a Hadamard space will be of use later.

2.2.1 Support and Parametrization of a Geodesic

Now that the existence and uniqueness has been established, we want to actually
find the geodesic between X and T , which we denote with Γ(X,T ).
The key to finding and parametrizing the geodesic from a tree X to a tree T is the
concept of the support sequence or the support of a geodesic, that describes in which
order edges of the tree X are removed and edges of T are added. With this concept
it is possible to apply combinatorial methods to find the geodesic.
[BHV01] prove that splits that are contained in both X and T are contained in
every tree along the geodesic. Hence, we do not need to consider these splits when
searching for the topologies of trees along the geodesic. The same result holds for
splits that are contained in one tree and are compatible with all splits of the other
tree. These two types of splits are merged in the following definition.

Definition 2.18. Given two trees T,X ∈ Tn. A split s is called double compatible
if s is compatible with all splits in Split(X) as well as with all splits in Split(T ).
Let C = C(T,X) denote the set of double compatible splits for two trees.

Next we define a partition of the split sets that describes in which order we remove
splits from X and add splits from T on the path from X to T .

Definition 2.19. [OP11] With the notation introduced above, a support sequence
from X ∈ Tn to T ∈ Tn is a pair (A,B) = ((A1, . . . , Ak), (B1, . . . , Bk)) with Ai ⊂
Split(X), Bi ⊂ Split(T ) such that

A1 ∪ . . . ∪ Ak = Split(X) \ C
B1 ∪ . . . ∪Bk = Split(T ) \ C

is a partition, i.e., a disjoint union.

In order to define the support of a geodesic we introduce the following notation. Let
T = ((s1, . . . , sl), (w1, . . . , wl)) ∈ Tn. Then for a subset A ⊆ Split(T ) define

‖A‖2 =

√∑
si∈A

wsi .

23



Moreover, we also write wTs , w
X
s to indicate the weight of splits s in tree T or tree

X respectively for a split s ∈ Split(T ) ∩ Split(X).

Definition 2.20. [OP11] Let T,X ∈ Tn and let A = (A1, . . . , Ak),B = (B1, . . . , Bk)
be a support sequence from X to T . Then (A,B) is called a support of the geodesic
from X to T if it satisfies the following three properties:

(P1) For each i > j, Ai and Bj are compatible sets of splits.

(P2)
‖A1‖
‖B1‖

≤ . . . ≤ ‖Ak‖
‖Bk‖

(P3) For i = 1, . . . , k there is no non-trivial partition (C1, C2) of Ai and (D1, D2)

of Bi such that C2 is compatible with D1 and ‖C1‖
‖D1‖ <

‖C2‖
‖D2‖ .

In the following we describe what the three properties (P1), (P2) and (P3) actually
mean.
From the definition of the geodesic distance it can be seen that the geodesic consists
of “straight lines”, also called legs, one for each orthant that it traverses. This
follows from its property of being the shortest path connecting two trees together
with the definition of distance in the orthants, being the Euclidean distance.
Now, knowing that the geodesic is, roughly speaking, a piecewise Euclidean path
that may only bend when traversing a boundary of an orthant, we can use this
knowledge to interpret (P1), (P2) and (P3), where we stick to the notation of
Definition 2.20.
A support sequence as in Definition 2.19 generally defines a sequence of orthants
that a path traverses through. In case of the geodesic from X to T , the first orthant
on the geodesic is the orthant of X, O(X), so the trees on the straight line, the
leg, in this orthant have the splits Split(X). To get to the orthant of T we have
to remove the splits of X \ C and add splits of T ; that is the general idea of the
partitions of Split(X)\C into A1, . . . , Ak and Split(T )\C into B1, . . . , Bk. We want
to successively delete splits of X, starting with A1, then A2 and so on and add splits
of T starting at B1, then B2 and so forth.
(P1) ensures that this procedure of removing and adding splits actually yields an
orthant of Tn, i.e., that B1 ∪ . . . ∪Bi ∪Ai+1 ∪ . . . ∪Ak is a compatible set of splits.
Now, while (P1) cares about “feasibility”, (P2) and (P3) together ensure that the
split weights along the path through these orthants are chosen optimally.

Theorem 2.21. [OP11] Let T,X ∈ Tn, (A,B) be the support for the geodesic from
X to T and C be the set of double compatible splits. Define the path P (A,B) =
{γ(λ) : λ ∈ [0, 1]} via a parametrization γ : [0, 1] → Tn that consists of several
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legs Pl, which are different sections of the path that are straight lines in different
orthants:

Pl =


[
γ(λ) : λ

1−λ <
‖Al+1‖2
‖Bl+1‖2

]
l = 0[

γ(λ) : ‖Al‖2‖Bl‖2
≤ λ

1−λ <
‖Al+1‖2
‖Bl+1‖2

]
l = 1, . . . , k − 1[

γ(λ) : ‖Ak‖2‖Bk‖2
≤ λ

1−λ

]
l = k

The trees γ(λ) on each leg Pl, i.e., for λ ∈
[

‖Al‖2
‖Al‖2+‖Bl‖2

, ‖Al+1‖2
‖Al+1‖2+‖Bl+1‖2

)
have the set

of splits Split(γ(λ)) = B1 ∪ . . . ∪Bl ∪ Al+1 ∪ . . . ∪ Ak ∪ C with lengths

ws(λ) =


(1−λ)‖Aj‖2−λ‖Bj‖2

‖Aj‖2 · wXs , s ∈ Aj,
λ‖Bj‖2−(1−λ)‖Aj‖2

‖Bj‖2 · wTs , s ∈ Bj,

(1− λ)wXs + λwTs , s ∈ C.

The path P (A,B) is then the geodesic from X to T , i.e., P (A,B) = Γ(T,X) with
parametrization γ : [0, 1]→ Tn and the length of the path is

d(T,X) =

√√√√ k∑
l=1

(‖Al‖2 + ‖Bl‖2)2 +
∑
s∈C

(wTs − wXs )2.

Theorem 2.17 has already established that there always exists a unique geodesic be-
tween two trees T,X ∈ Tn, but Theorem 2.21 gives us a parametrization of this path.
Despite the uniqueness of the geodesic and the dependence of the parametrization
on the support, the support of a geodesic need not be unique. At first glance this
seems to be a contradiction, but the following example illustrates, that, if a geodesic
has more than one support they all yield the same parametrization.

Example 2.2.3. Consider the following four splits for n = 4:

s1 = ({1, 2}|{0, 3, 4}), s2 = ({1, 2, 3}|{0, 4}),
s3 = ({1, 3}|{0, 2, 4}), s4 = ({1, 3, 4}|{0, 2})

Now, let T = ((s1, s2), (2, 2)) and X = ((s3, s4), (1.5, 1.5)). The situation is depicted
in Figure 2.11, where the geodesic from X to T , Γ(X,T ), is indicated as the solid
black line. In O(X), all geodesics Γ(Y, T ) with Y on the upper side of the line
emanating from T through the origin (the blue region) have support

(A,B) = (({s3, s4}), ({s1, s2)}),

whereas for all trees Y below this line (the red region) the support for Γ(Y, T ) is

(A′,B′) = ((A′1, A
′
2), (B′1, B

′
2)) = (({s4}, {s3}), ({s2}, {s1})).
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X

T

s1

s2

s3

s4

O(X)

Figure 2.11: The geodesic from X to T does not have a unique support.

For X or any other tree on the ray from 0 through X, both supports satisfy (P1),
(P2) and (P3) and yield the same parametrization. We first show that (P1), (P2)
and (P3) hold for both supports:

We start with (A,B): For the ‘trivial’ support, (P1) and (P2) are satisfied au-
tomatically as there is only one pair A1, B1. For (P3) we need to check if there
exists a partition C1, C2, D1, D2 for A1 = {s3, s4} and B1 = {s1, s2} such that C2

and D1 are compatible and the ratio requirement holds. The only possibility to par-
tition them such that C2 and D1 are compatible is to set C1 = {s4}, C2 = {s3} and
D1 = {s2}, D2 = {s1}. Then the ratio is

‖C1‖2

‖C2‖2

=
1.5

1.5
=

2

2
=
‖D1‖2

‖D2‖2

,

so (A,B) satisfies (P3) as well and is a support for Γ(X,T ).

Now, for (A′,B′) (P1) holds because B′1 = {s2} is compatible with A′2 = {s3}. We
calculate the ratio sequence

‖A′1‖2

‖B′1‖2

=
1.5

2
=

1.5

2
=
‖A′2‖2

‖B′2‖2

and conclude that (P2) holds as well. (P3) holds trivially because there is no
non-trivial partition of the sets A′i, B

′
i because they only have one element each.

Note, that (P3) holds with equality for the trivial support (A,B) and that for the
other support (A′,B′), (P2) only holds with equality; this is the origin of the non-
uniqueness.
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As we have seen, supports need not be unique. However, a support of a geodesic yields
a parametrization for the geodesic and geodesics in the tree space are unique. This
implies that the parametrizations that we get from these supports have to coincide
and in the following we explain why this has to hold.
For support (A′,B′) the geodesic yields three legs through the orthants

O(X),O({s2, s3}),O(T ).

However, there exists no λ ∈ [0, 1] such that a tree is contained in leg P1, since λ
would have to satisfy

‖A′1‖2

‖B′1‖2

= 1 ≤ λ

1− λ
< 1 =

‖A′2‖2

‖B′2‖2

.

So the only two legs containing trees are the ones in O(X) and O(T ), just as for the
trivial support. However, it remains to show that the lengths of the splits coincide.
We start with the first leg in O(X). The lengths of the splits in A′1 ∪ A′2 are given
by

(1− λ)‖A′j‖2 − λ‖B′j‖2

‖A′j‖2

· wXs = (1− λ)wXs − λ
‖B′j‖2

‖A′j‖2

wXs

for j = 1, 2. We have seen that the sets A1, B1 can be partitioned into A′1, A
′
2, B

′
1, B

′
2

such that
‖A′1‖2
‖B′1‖2

=
‖A′2‖2
‖B′2‖2

holds. Then, using ‖A1‖2
2 = ‖A′1‖2

2 + ‖A′2‖2
2 and ‖B1‖2

2 =

‖B′1‖2
2 + ‖B′2‖2

2 we get

‖A′1‖2
2

‖B′1‖2
2

=
‖A′2‖2

2

‖B′2‖2
2

⇔ ‖A′2‖2
2 · ‖B′1‖2

2 = ‖A′1‖2
2 · ‖B′2‖2

2

⇔
(
‖A′1‖2

2 + ‖A′2‖2
2

)
· ‖B′1‖2

2 =
(
‖B′1‖2

2 + ‖B′2‖2
2

)
· ‖A′1‖2

2

⇔ ‖B′1‖2
2

(‖B′1‖2
2 + ‖B′2‖2

2)
=

‖A′1‖2
2

(‖A′1‖2
2 + ‖A′2‖2

2)
⇔ ‖A1‖2

2

‖B1‖2
2

=
‖A′1‖2

2

‖B′1‖2
2

.

With this it follows that for all λ it holds that

(1− λ)wXs − λ
‖B′j‖2

‖A′j‖2

wXs = (1− λ)wXs − λ
‖B1‖2

‖A1‖2

wXs

for j = 1, 2 and thus also

(1− λ)‖A′j‖2 − λ‖B′j‖2

‖A′j‖2

· wXs =
(1− λ)‖A1‖2 − λ‖B1‖2

‖A1‖2

· wXs

for j = 1, 2. The same calculation can be done for all s ∈ B′1 ∪ B′2 = B1 and one
gets

λ‖B′j‖2 − (1− λ)‖A′j‖2

‖B′j‖2

· wTs =
λ‖B1‖2 − (1− λ)‖A1‖2

‖B1‖2

· wTs
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for j = 1, 2. Thus for a fixed λ ∈ [0, 1] the lengths of all splits are the same for the
two parametrizations.
This sketches the reason that the choice of the support (in case of non-uniqueness)
does not influence the parametrization: as the ratios in (P2) and (P3) hold with
equality we have that the scalars for wXs , w

T
s are the same and the additional legs

given by one of the supports are actually empty.

At this point we mention an important aspect concerning the definition of the
geodesic and its parametrization. We have introduced the geodesic in a similar
fashion as in [OP11], who introduced the notions of supports and developed the
polynomial time algorithm to calculate the geodesic and the parametrization above.
Here, the geodesic is defined as the unique shortest path between two trees, i.e., the
path that attains the infimum in Definition 2.15. In literature about geodesic met-
ric spaces, however, a geodesic on a CAT(0) space (X , d̃) is usually defined as a
parametrized curve γ̃ : [0, 1]→ X that has the constant speed property, i.e., satisfies

d̃(γ̃(λ), γ̃(λ′)) = |λ′ − λ| · d̃(γ̃(0), γ̃(1)) ∀λ, λ′ ∈ [0, 1]. (2.2)

This in particular implies that the length of the geodesic equals the distance of its
start and end point ˜γ(0), ˜γ(1), but in comparison to the definition in [OP11], (2.2)
holds for the parametrization.
As the tree space is a CAT(0) space, it is clear that a parametrization satisfying
(2.2) exists. Moreover, since geodesics in CAT(0) spaces are unique it is also clear
that the parametrization of the geodesic in Theorem 2.21 in fact yields the correct
path. Nevertheless, it does not hold that any parametrization for the path of the
geodesic also satisfies (2.2)! In our opinion it is not immediately clear from the
definition that the parametrization from Theorem 2.21 satisfies the constant speed
property (2.2). Even though some papers implicitly use that the parametrization
satisfies this property, and we assume that the authors were aware that this property
holds, we have not found a proof for it and hence present it in the following.
Before we are able to prove the statement we prove several basic facts about the
geodesic and its parametrization from [Owe11], that are known, but for which we
could not find a proof as well.

Theorem 2.22. For i = 1, . . . , k define λi = ‖Ai‖2
‖Ai‖2+‖Bi‖2 and Ti = γ(λi). As usual,

let ti = χ(Ti) be the embedded vectors for i = 1, . . . , k.

(F1) Split(Ti) = B1 ∪ . . . ∪Bi−1 ∪ Ai+1 ∪ . . . ∪ Ak ∪ C.

(F2) d(X,T ) = ‖x− t1‖2 +
∑k−1

i=1 ‖ti+1 − ti‖2 + ‖t− tk‖2.

(F3) d(X,T ) = d(X,Z) + d(Z, T )⇔ Z ∈ Γ(X,T )
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(F4) If Y1 6= Y2 ∈ Γ(X,T ) then Γ(Y1, Y2) ⊂ Γ(X,T ).

Proof. (F1): Note that λi = ‖Ai‖2
‖Ai‖2+‖Bi‖2 ⇔

λi
1−λi = ‖Ai‖2

‖Bi‖2 . Then it holds, by definition

of the parametrization, that Ti = γ(λi) ∈ Pi and Split(Ti) = B1 ∪ . . . ∪ Bi ∪ Ai+1 ∪
. . . ∪ Ak ∪ C. Now we take s ∈ Bi and calculate the split length for the parameter
λi. As the denumerator

λi‖Bi‖2 − (1− λi)‖Ai‖2 =
‖Ai‖2

‖Ai‖2 + ‖Bi‖2

· ‖Bi‖2 +
‖Ai‖2

‖Ai‖2 + ‖Bi‖2

· ‖Ai‖2 − ‖Ai‖2

=
‖Ai‖2(‖Ai‖2 + ‖Bi‖2)

‖Ai‖2 + ‖Bi‖2

− ‖Ai‖2 = 0,

the split length of all splits in Bi are zero. This means, when being precise, s 6∈ Bi.
Thus, the split set of Split(Ti) is B1 ∪ . . . ∪ Bi−1 ∪ Ai+1 ∪ Ak ∪ C, as the other
denumerators are non-zero.
(F2): Follows from (F1). The Ti are by construction of the parametrization, exactly
the points of the geodesic from X to T that are contained in the intersection of
two legs, i.e., are contained in the intersection of two orthants. The length of the
legs is given by the Euclidean norms of the endpoints of the legs, i.e., ‖ti+1 − ti‖2,
by definition of the geodesic distance for two trees in a common orthant. Then
d(X,T ) =

∑k
i=1 ‖ti+1 − ti‖2 follows, as the length of the geodesic equals the sum of

the lengths of its legs, compare Definition 2.15.
(F3): “⇐”: If Z is one of the Ti, then it follows directly from (F2). Otherwise, Z
is on the leg between some Ti and Ti+1, and as the geodesic is locally the Euclidean
line segment, z = (1 − λ)ti + λti+1. Then ‖ti+1 − ti‖2 = ‖ti+1 − z‖2 + ‖z − ti‖2.
“⇒”: If Z 6∈ Γ(X,T ), then the concatenation of the geodesics Γ(X,Z) and Γ(Z, T )
would yield an alternative path from X to T than Γ(X,T ) with the same length,
contradicting the uniqueness of geodesics.
(F4): We first show that d(X,T ) = d(X, Y1) + d(Y1, Y2) + d(Y2, T ) holds. Note,
that when Y1 6= Y2 ∈ Γ(X,T ), then d(X, Y1) 6= d(X, Y2), as we would otherwise get
two geodesics from X to Y1 and X to Y2 of the same length, and this would either
contradict the uniqueness of the geodesic from X to T or imply that one of the
Yi 6∈ Γ(X,T ). Hence we may assume w.l.o.g. that d(X, Y1) < d(X, Y2). In the proof
of (F3) we have shown that, when Z ∈ Γ(X,T ), then Γ(X,T ) is the concatenation
of Γ(X,Z) and Γ(Z, T ), which we informally write as Γ(X,T ) = Γ(X,Z) + Γ(Z, T )
for the sake of brevity. Since Y1 ∈ Γ(X,T ) we get Γ(X,T ) = Γ(X, Y1) + Γ(Y1, T ).
Now, because d(X, Y2) > d(X, Y1), Y2 6∈ Γ(X, Y1), thus Y2 ∈ Γ(Y1, T ). Applying the
statement for Y2 we get Γ(Y1, T ) = Γ(Y1, Y2) + Γ(Y2, T ). This concludes the proof,
as Γ(Y1, Y2) ⊂ Γ(Y1, T ) ⊂ Γ(X,T ).

With these properties at hand we are able to prove that the constant speed property
holds for the parametrization from Theorem 2.21.
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Theorem 2.23. Let T,X ∈ Tn and γ : [0, 1] → Tn the parametrization of the
geodesic from X to T as in Theorem 2.21. Then γ satisfies (2.2).

Proof. We start by proving the theorem for specific values of λ, λ′ ∈ (0, 1) and
gradually generalize the values of λ, λ′.
First of all, let (A,B) = ((A1, . . . , Ak), (B1, . . . , Bk)) be a support for the geodesic
from X to T with the set C of double compatible splits. Define the parameters for
the ’bending points’,

λi =
‖Ai‖2

‖Ai‖2 + ‖Bi‖2

,

as well as Ti := γ(λi) for i = 1, . . . , k. Moreover, set λ0 = 0, T0 = X and λk+1 =
1, Tk+1 = T . Then (F2) from Theorem 2.22 implies that d(X,T ) =

∑k+1
i=1 ‖ti−ti−1‖2.

We start by proving that for i = 0, . . . , k − 1 it holds that

d(γ(λi+i), γ(λi)) = |λi+1 − λi|d(γ(0), γ(1)) = d(X,T ) (2.3)

In the following we omit the absolute value, as λi+1 ≥ λi by properties of the support.
Now Ti and Ti+1 are contained in the same orthant and due to the parametrization
of the geodesic from X to T , this orthant contains the splits Si := B1 ∪ . . . ∪ Bi ∪
Ai+1 ∪ . . .∪Ak ∪C. So when omitting the common zeroes in the embedded vectors,
their distance is only the Euclidean distance of their weight vectors. In formulae

d(Ti, Ti+1) = ‖ti+1 − ti‖2 =√√√√ i∑
j=1

∑
s∈Bj

(wTis − wTi+1
s )2 +

k∑
j=i+1

∑
s∈Aj

(wTis − wTi+1
s )2 +

∑
s∈C

(wTis − wTi+1
s )2. (2.4)

Using the parametrization of γ we can compute the length of the splits Si in both
trees, which are wTis and w

Ti+1
s for s ∈ Si. Therefore we simply plug in λi and λi+1

in the parametrization and calculate the split lengths for the three cases s ∈ Aj,
s ∈ Bj or s ∈ C.
Consider s ∈ Aj for j ≥ i+ 1. Then

wTis =
(1− λi)‖Aj‖2 − λi‖Bj‖2

‖Aj‖2

· wXs

wTi+1
s =

(1− λi+1)‖Aj‖2 − λi+1‖Bj‖2

‖Aj‖2

· wXs

and subtracting yields

wTis − wTi+1
s = (λi+1 − λi) ·

‖Aj‖2 + ‖Bj‖2

‖Aj‖2

· wXs = (λi+1 − λi) ·
wXs
λj
. (2.5)
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Next, consider s ∈ Bj, j ≤ i. Then

wTis =
λi‖Bj‖2 − (1− λi)‖Aj‖2

‖Bj‖2

· wTs

wTi+1
s =

λi+1‖Bj‖2 − (1− λi+1)‖Aj‖2

‖Aj‖2

· wTs

and subtracting yields

wTis − wTi+1
s = −(λi+1 − λi) ·

‖Aj‖2 + ‖Bj‖2

‖Bj‖2

· wTs . (2.6)

We want to reformulate
‖Aj‖2+‖Bj‖2
‖Bj‖2 in terms of λj. With

‖Aj‖2

‖Aj‖2 + ‖Bj‖2

+
‖Bj‖2

‖Aj‖2 + ‖Bj‖2

= 1

⇔ ‖Bj‖2

‖Aj‖2 + ‖Bj‖2

= 1− λj

⇔ ‖Aj‖2 + ‖Bj‖2

‖Bj‖2

=
1

1− λj
,

we get

wTis − wTi+1
s = −(λi+1 − λi) ·

wTs
1− λj

.

As the third case, consider s ∈ C. Then

wTis = (1− λi) · wXs + λi · wTs
wTi+1
s = (1− λi+1) · wXs + λi+1 · wTs

and subtracting yields

wTis − wTi+1
s = (λi+1 − λi)(wXs − wTs ). (2.7)

Now, we plug in the results from (2.5),(2.6),(2.7) into (2.4) and factor out (λi+1−λi)2:

d(Ti, Ti+1) =√√√√ i∑
j=1

∑
s∈Bj

(
wTis − wTi+1

s

)2

+
k∑

j=i+1

∑
s∈Aj

(
wTis − wTi+1

s

)2

+
∑
s∈C

(
wTis − wTi+1

s

)2

=

√√√√(λi+1 − λi)2 ·
i∑

j=1

∑
s∈Bj

(
wTs

1− λj

)2

+
k∑

j=i+1

∑
s∈Aj

(
wXs
λj

)2

+
∑
s∈C

(wTs − wXs )2

=(λi+1 − λi) ·

√√√√ i∑
j=1

∑
s∈Bj

(
wTs

1− λj

)2

+
k∑

j=i+1

∑
s∈Aj

(
wXs
λj

)2

+
∑
s∈C

(wTs − wXs )2
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It turns out that the terms for Bj and Aj cancel out as well, after factoring out
1− λj or λj respectively:

∑
s∈Aj

(
wTs
λj

)2

=
1

λ2
j

∑
s∈Aj

(
wTs
)2

=
‖Aj‖2

2

λ2
j

= (‖Aj‖2 + ‖Bj‖2)2

∑
s∈Bj

(
wXs

1− λj

)2

=
1

(1− λj)2

∑
s∈Bj

(
wXs
)2

=
‖Bj‖2

2

(1− λj)2
= (‖Aj‖2 + ‖Bj‖2)2,

where we used that λj =
‖Aj‖2

‖Aj‖2+‖Bj‖2 and
∑

s∈Aj(w
X
s )2 = ‖Aj‖2 (for T and Bj

analogously) which hold by definition. Plugging this in yields the desired equality

d(Ti, Ti+1) =

(λi+1 − λi) ·

√√√√ i∑
j=1

∑
s∈Bj

(
wTs

1− λj

)2

+
k∑

j=i+1

∑
s∈Aj

(
wXs
λj

)2

+
∑
s∈C

(wTs − wXs )2

=(λi+1 − λi) ·

√√√√ k∑
j=1

(‖Aj‖2 + ‖Bj‖2)2 +
∑
s∈C

(wXs − wTs )2 =

=(λi+1 − λi) · d(X,T ) = |λi+1 − λi| · d(γ(0), γ(1)).

Next we show that (2.2) holds for λ = λ0 = 0 and λ′ = λi with i ∈ {1, . . . , k, k+ 1}.
For i = k + 1 we have λk+1 = 1 and the statement holds trivially. For i 6= k + 1,
we first divide the geodesic Γ(γ(0), γ(λi)) into Γ(γ(0), γ(λ1)), Γ(γ(1), γ(λ2)), . . .,
Γ(γ(λi−1), γ(λi)), using (F3) and (F4) of Theorem 2.22. After that we apply the
result (2.3) successively and receive

d(γ(0), γ(λi)) =
i∑

j=1

d(γ(λi), γ(λi+1)) =
i∑

j=1

|λi+1 − λi| · d(γ(0), γ(1))

= d(γ(0), γ(1)) ·
i∑

j=1

(λi+1 − λi) = (λi − λ0) · d(γ(0), γ(1))

= |λi| · d(γ(0), γ(1)).

We generalize once more and prove (2.2) for λ = 0 and λ′ ∈ (0, 1) arbitrary. Here it
is important to first recall how the parametrization behaves for two trees Y1, Y2 in
the same orthant. In this case, the splits of the trees are all contained in the set of
double compatible splits C(Y1, Y2) and we immediately see that the weight vectors
of the parametrization yield a Euclidean straight line segment, i.e., the constant
speed property holds, as the Euclidean norm and the straight line satisfy it.
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Recall that we consider λ′ ∈ (0, 1) arbitrary. When λ′ ∈ {λ0, . . . , λk+1}, then the
statement holds as we have shown above. When λ′ 6∈ {λ0, . . . , λk+1}, then there
exists an i ∈ {0, . . . , k} such that λ′ ∈ (λi, λi+1) and there exists a µ ∈ (0, 1) such
that (1 − µ)λi + µλi+1 = λ′. Since γ(λi) = Ti and γ(λi+1) = Ti+1 are contained
in the same orthant, the geodesic between them is a Euclidean line segment and
satisfies the constant speed property, as discussed above. Moreover, as Ti and Ti+1

are contained in the geodesic from T to X, Γ(T,X) ,the geodesic between Ti and
Ti+1, Γ(Ti, Ti+1), satisfies Γ(Ti, Ti+1) ⊂ Γ(T,X), see (F4) from Theorem 2.22. In
particular, this implies that γ(λ′) ∈ Γ(Ti, Ti+1).
Let γ′ : [0, 1] denote the parametrization of the geodesic from Ti to Ti+1. Then we
can calculate

d(Ti, γ(λ′)) = d(γ′(0), γ′(µ)) = µd(γ′(0), γ′(1))

= µ · d(Ti, Ti+1) = (µ · (λi+1 − λi)) · d(X,T ).

Using (F3) from Theorem 2.22, we get the desired equality,

d(γ(0), γ(λ′)) = d(γ(0), γ(λi)) + d(γ(λi), γ(λ′))

= λi · d(X,T ) + µ(λi+1 − λi) · d(X,T )

= (1− µ)λi + µ · λi+1d(T,X) = λ′ · d(X,T ).

With this we can finally prove that γ satisfies (2.2) for general λ, λ′ ∈ [0, 1]. W.l.o.g.
assume that λ < λ′. Then

d(γ(λ), γ(λ′)) = d(γ(0), γ(λ)) + d(γ(λ), γ(λ′))− d(γ(0), γ(λ))

= d(γ(0), γ(λ′))− d(γ(0), γ(λ)) = λ′ · d(X,T )− λ · d(X,T )

= (λ′ − λ) · d(X,T ) = |λ′ − λ| · d(γ(0), γ(1)).

Example 2.2.3 has shown that the support of a geodesic is not always unique. In
order to get a unique representation of the geodesic one needs to require more than
(P1),(P2),(P3). This motivates the notion of the minimal support :

Definition 2.24. [MOP15] A support (A,B) satisfying (P2) with strict inequalities
is called minimal support.

Moreover, [MOP12] show (Lemma 1.5) that there always exists a unique minimal
support for each geodesic. One receives a minimal support by combining two support
pairs who have equal ratios to one pair, i.e., when ‖Ai‖2

‖Bi‖2 = ‖Ai+1‖2
‖Bi+1‖2 , then set A′i :=

Ai∪Ai+1 and B′i := Bi∪Bi+1 and replace the two sets in the support by their union.
Repeating this process eventually yields a minimal support. Note, that combining
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two sets of equal ratios in this matter does not change the parametrization, and
splitting a set up to two different sets with equal ratio does not as well, as hinted
at in Example 2.2.3. This shows that the non-uniqueness arises from only requiring
(P2) to hold with equality. Nonetheless, it will at times be convenient to also work
with a support that is not minimal and since the path and the parametrization
coincide, the non-uniqueness is not a big issue.

Even when the support of the geodesic (A,B) is not explicitly known, it is often
helpful to work with it.
If a support sequence (not a support!) (A,B) satisfies the property (P1) then we
can find a path from X to T through these orthants. But we do not know the points
on the boundaries of the orthants yet, which give us the complete path, since the
remaining points are defined by straight lines through the orthants. Nonetheless,
when (P2) additionally holds, then there exists an exact parametrization for such
paths, that we call proper. The parametrization for this is given in Theorem 2.4 in
[OP11]. We slightly changed this to fit our notation.

Theorem 2.25. Let X,T ∈ Tn and let a support sequence (A,B) be given that
satisfies (P1) and (P2). Then the path P (A,B) parametrized as in Theorem 2.21
yields a path from X to T with length

L(PAB) =

√√√√ k∑
l=1

(‖Al‖2 + ‖Bl‖2)2 +
∑
s∈C

(wTs − wXs )2.

Example 2.2.4. We want to illustrate the concept of supports and the paths they
define. Therefore, we return to the paths shown in Example 2.2.2. Again, consider
the trees X = ({s2, s9}, (2, 2)) and T = ({s1, s6}, (1, 4)). Let us verify that the path
P1 in Example 2.2.2 is the geodesic by using the concept of supports.
Starting at X, the first removed split is s2, so A1 = {s2} and the first split of T to
be added is s6, so B1 = {s6}. The second removed split is s9, the second added split
s6, so A2 = {s9} and B2 = {s1}. We verify that (P1),(P2) and (P3) hold:

(P1) A2 only contains s9 and s9 is compatible with s6, the only split in B1.

(P2) The ratio sequence is

‖A1‖2

‖B1‖2

=
2

4
<

2

1
=
‖A2‖2

‖B2‖2

(P3) Since Ai and Bi all contain at most one element, there is no way to split them
up.
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Figure 2.12: Two paths from X to T that are defined by different partitions (A,B).
The geodesic is the solid path.

In contrast, let us now look at the partition belonging to the dashed path P2, the cone
path. First, all splits of X are removed, so A1 = Split(X) = {s2, s9} and then all
splits of T are added , so B1 = Split(T ) = {s1, s6}. The cone path trivially satisfies
(P1) and (P2): There exists no i > j ≥ 1 such that Ai needed to be compatible with

Bj and there is only one ratio ‖A1‖2
‖B1‖2 .

Since we have already verified that the solid line, P1 is the geodesic, it is clear that
(P3) can not be satisfied for (A,B) = ({s2, s9}, {s1, s6}). It fails since the partition
C1 = {s2}, D1 = {s6}, C2 = {s9}, D2 = {s1} satisfies C1

D1
= 0.5 < 2 = C2

D2
: We have

already calculated this above because that gives the partition for the geodesic.

The example in T4 above gives a good first intuition about how supports and
geodesics relate and work. Nonetheless, intuition of only the space T4 may be de-
ceitful: For Tn with n ≥ 5, there exist cases where the geodesic between X and
T traverses a non-maximal orthant, whereas this is not possible in T4. In order to
enter a non-maximal orthant, at least j ≥ 2 splits of X have to be removed in order
to be able to add at most j−1 splits of T (at least one must be added). In T4, when
two splits are removed, one already has the star tree and the geodesic hence has
to be the cone path. The following example shows a geodesic in T5 that traverses
a non-maximal orthant. This behavior of geodesics has already been mentioned in
[Owe11] where a similar example has been given.
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Example 2.2.5. Let

e1 = ({4, 5}|{0, 1, 2, 3}), e2 = ({1, 2}|{0, 3, 4, 5}), e3 = ({1, 2, 4, 5}|{0, 3})

X =

(
(e1, e2, e3),

(
8

10
,

√
18

10
,

√
18

10

))
,

f1 = ({({2, 5}|{0, 1, 3, 4}), f2 = ({3, 4}|{0, 1, 2, 5}), f3 = ({2, 3, 4, 5}|{0, 1})

T =

(
(f1, f2, f3),

(√
18

10
,

√
18

10
,

8

10

))
.

Then the support of the geodesic Γ(X,T ) is given by

(A,B) = ((A1, A2), (B1, B2)) = (({e2, e3}, {e1}), ({f3}, {f1, f2})).

Again, we check (P1), (P2) and (P3):

(P1) It holds that A2 and B1 are compatible as e1 = ({4, 5}|{0, 1, 2, 3}) ∈ A2 and
f3 = ({2, 3, 4, 5}|{0, 1}) ∈ B1 are the only splits the sets contain and they are
compatible because {0, 1} ⊂ {0, 1, 2, 3}.

(P2)

‖A1‖2

‖B1‖2

=

√
18
100

+ 18
100

8
10

=
3

4
<

4

3
=

8
10√

18
100

+ 18
100

=
‖A2‖2

‖B2‖2

(P3) There is no way split up A1, B1 into two subsets. First of all, a partition of B1

would be trivial and additionally no split in A1 is compatible with f3, the only
split in B1. The same argument holds for A2, B2. Here, e1 is incompatible
with f1 and f2.

The topology of the non-maximal orthant is depicted in the middle of Figure 2.13
and the splitset defining that orthant is {e1, f3}. Finally we want to give the path
of the geodesic. The sequence of trees defining the path is (X, I1, I2, T ), where
I1 = ((e1), (1

5
)) and I2 = ((f3), 1

5
), where the lengths may be calculated with the

parametrization of Theorem 2.21. Recalling Definition 2.11, we see that Split(I1) =
{e1} ⊂ O({e1, f3}) and Split(I2) = {f3} ⊂ O({e1, f3}) and any tree of the leg with
I1 and I2 as endpoints only contains these two splits. So the geodesic passes through
the two-dimensional, non-maximal orthant O({e1, f3}).
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Figure 2.13: The topologies of the trees X and T and the degenerate tree topology
on the geodesic Γ(X,T ).

2.3 Modeling the Species Tree Problem in Tree
Space

Now that the tree space and the geodesic distance are thoroughly defined, we give
a more formal description of our approach to the species tree problem in tree space.
First, recall the species tree problem: Given a set of sample trees (these samples are
usually gene trees), find the phylogenetic tree that depicts the correct evolutionary
history of the given set of species, i.e., the species tree. Of course there is no
proof that the correct tree has been found, so methods that yield candidates for the
species tree can generally only yield hypotheses that the resulting tree is the species
tree. In comparison to many ’heuristic’ rules to infer candidates for the species tree
from the set of given gene trees, the tree space Tn has one big advantage: It allows
for an underlying mathematical model to search for the species tree. Thus, when
conjecturing that the species tree is the minimizer of a certain function there is a
justification for the choice of the tree. Nevertheless, these justifications are limited
to the assumptions of the model space being the correct one.

When interpreting the given set of gene trees as samples in tree space, it is a nat-
ural thing to statistically investigate the sample (of trees) and try to determine
characteristics of this sample in this metric space as, e.g., the sample mean. As
we mentioned in the introduction, [OP11] have developed an algorithm to calculate
geodesics in polynomial time. With this algorithm at hand it is possible to calculate
a sequence converging to the barycenter of the given sample trees, which we denote
by T := {T1, . . . , TM}. The barycenter is the minimizer of the Fréchet variance F
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with respect to a given data set,

F (X) =
M∑
i=1

d(X,Ti)
2 for X ∈ Tn.

This minimizer is also called Fréchet mean. [Stu02] has developed an iterative
approach in metric spaces of global non-positive curvature that generates a sequence
(Xl)l∈N that converges to the barycenter, i.e.,

Xl → X∗, where f(X∗) = min
X∈Tn

f(X).

Note, that the barycenter always exists and is unique in metric spaces of global non-
positive curvature as noted in [Stu02]. [Bac14a] and [MOP15] have independently
considered the notion of the Fréchet mean in the tree space setting. [Bac14a] has
proven a convergence theorem of his algorithm to calculate the mean which is very
similar to Sturm’s algorithm [Stu03] but has different ‘step lengths’ in each iteration.
A lot of researchers attempt to find better algorithms to calculate the barycenter,
or investigate statistical properties of the space. The goal is to eventually be able
to define distributions on this space, prove central limit theorems, to do proper
statistics and hypothesis testing within the tree space, related papers are [Nye11,
BLO+13, Nye15, NTWY17].
Nevertheless, all of these lines of research heavily focus on statistics on the space
and on finding the barycenter, even though it is not clear, whether the barycenter
actually yields good hypotheses for the species tree.
In practice it has turned out that 0 ∈ Tn often is the unique barycenter and that
it still remains the unique minimizer even when perturbing the sample trees signifi-
cantly. This is a non-desirable property that lead to another research topic discussing
stickiness of barycenters, see [HHL+13].
One possible approach to try to get different results is to change the space and the
distance in which the problem is considered. This approach is taken for example
in [YZZ17], where the Fréchet mean has been calculated after applying principal
compenent analysis to the set of trees. The foundation to work out statistics on this
ultrametric space is attempted in [LMY18].
Unfortunately, the calculations of barycenters in this alternative modeling space
seem to be as challenging as for the tree space Tn, so that it is not clear until now if
this approach will turn out to be advantageous. Additionally it is not clear yet if the
phenomenon of stickiness is less present in this space. Nevertheless, the approach
is rather new and may yield good hypotheses for the species tree or better ways to
calculate barycenters with additional research.

Our approach to get different candidates for the species tree is to investigate the
problem in Tn but to take a step back and consider various minimization problems,
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not only minimizing the Fréchet variance. From the point of view of a researcher
in Location Theory a given set of points is a set of facilities ; one aims to find the
location in the space for which some objective function g, that is non-decreasing in
the distances to the given facilities, is minimized. Minimizing the Fréchet variance
is just a special kind of a location problem and our goal is to model two other classic
location problems in the tree space that yield different trees than the barycenter.
We want to find trees X∗1 , X∗2 that minimize

g1(X) =
M∑
i=1

d(X,Ti) for X ∈ Tn, or g2(X) = max
i=1,...,M

d(X,Ti) for X ∈ Tn,

respectively. Even though it is not clear whether the trees X∗1 , X∗2 perform better
than the barycenter X∗ in the sense of better inferring the species tree from the
set of given trees {T1, . . . TM}, there are two reasons for investigating them: Firstly,
it will turn out that the location problems in tree space have interesting relations
to specific Euclidean location problems and are hence interesting to study on their
own, disregarding the species tree problem as background. Secondly, since X∗ is
not guaranteed to be the species tree, it is good to have other methods or guesses
that somehow describe ’centroids’ of trees based on mathematical models, where
optimality of some sense may be proven.
Now that we have motivated the use of Location Theory in tree space we finally
formally introduce Location Theory and our location problems in tree space in the
next chapter.
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3 Location Theory in Tree Space

In the previous section we have thoroughly defined tree space Tn. In the introduction
we motivated the problem that we want to model and solve within the tree space.
We want to find a tree that, in some sense, incorporates the structure and similarities
of a given set of phylogenetic trees. The hope is that the trees that we get as solution
to our models describe the true species tree, which is hard to verify. Nevertheless,we
develop new approaches, so we also receive other trees as hypotheses for the species
tree, which may be presented to biologists as possible solutions.
The chapter is structured as follows: First we give a short introduction to the broad
field of Location Theory. Then we present our new approach to the problem: inter-
pret the given trees in tree space as facilities and model the species tree problem as
location problems. At the end of the section we give some general results concerning
the split sets of optimal trees.

3.1 Introduction to Location Theory

Location Theory, often times also referred to as Facility Location or Locational Anal-
ysis is a field of research in Optimization, Computational Geometry and Operations
research and has a broad range of applications.
Nowadays, problems in modern Location Theory are more often than not motivated
by an economic background asking for an optimal location of a facility to maximize
profit. These basic ideas go back to the 19th century and early 20th century where,
for example Alfred Weber wrote his book [Web22] about the location of industry,
thereby describing classic problems of Location Theory.
The very first problem of classic Location Theory dates back many centuries and
may be described as follows: Given three points in the plane, locate a point in the
plane such that the sum of Euclidean distances to the three given points is minimized.
This is the birth of the so-called median problem in the case of only three given
points. Even though there is a lot of discussion whether this median problem was
first introduced by Pierre de Fermat, Evangelista Torricelli or Battista Cavalieri it is
certain that the problem was stated as early as in the beginning of the 17th century.
The real awakening of Location Theory beyond such small problems took place
in the 20th century, when analytical approaches for classic location problems have
been developed with which these problems can be solved for more than three points.
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After that introduction of analytical methods to Location Theory many researchers
started to investigate several kinds of location problems. The basic description of
these problems is the following.

One is given a set of facilities F = {F1, . . . , FM} that are usually contained in the
Euclidean plane, oftentimes these facilities are also assigned weights w1, . . . , wM > 0
describing their importance.

The task is to locate a point, or, as a typical variant, a set of points, in R2 as to
minimize some measure of proximity. This measure of proximity is modeled by the
objective function, which is usually given by a function which is non-decreasing in the
weighted distances to the facilities. When research continued many of these problems
have been generalized and solved in Rn instead of only R2. Classical examples of
location problems are the Weber problem (LW ), where the sum of weighted distances
to the facilities is minimized and the center problem (Lmax), where the maximum of
the weighted distances to the facilities is minimized:

(LW ) min
M∑
i=1

wi · ‖x− Fi‖2 (Lmax) min max
i=1,...,M

wi · ‖x− Fi‖2

s.t. x ∈ Rn s.t. x ∈ Rn

Note, that the Weber problem is also referred to as the median problem in the
unweighted case. These problems have been generalized in numerous ways: one may
consider different spaces X instead of Rn and / or change the distance measure ‖ ·‖2

to specific distances d, including gauges, metrics and norms. Moreover, a common
variant is to find a minimizer within the set X \R where R is some forbidden region,
where one is neither allowed to place a facility nor may paths connecting a facility
and the located point cross this region.

In analogy to the standard location problems in Euclidean space we define and
investigate these classic location problems in the tree space in the next section.
This is an interesting new ansatz, because the vast majority of location problems is
studied in the Euclidean space or even only in the plane. Here we present and start
to solve location problems coming from an application that is very different from
these standard problems and stresses that Location Theory should not limit itself
to Euclidean settings.

Even though we tackle location problems in a much more complicated space, we
still benefit from the knowledge about Euclidean location problems, as some of
the subproblems that arise may be solved with algorithms for Euclidean location
problems.

There are two statements about the Euclidean Weber-problem (LW ) that we will
frequently use in the remainder of the thesis:
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Theorem 3.1 ([Kuh73]). (i) (LW ) does not have a unique optimal solution if and
only if there exists a line L ⊂ Rn such that {F1, . . . , FM} ⊂ L.

(ii) A facility Fk is optimal to (LW ) if and only if

Testk :=

∥∥∥∥∥∥∥
M∑
i=1
i 6=k

wi(Fi − Fk)
‖Fi − Fk‖2

∥∥∥∥∥∥∥
2

≤ wk.

3.2 Location Problem Models in Tree Space

Suppose we are given M trees in the phylogenetic tree space Tn for which we want
to determine the species tree. We interpret this set of trees T = {T1, . . . , TM} as
facilities. Therewith we define and investigate the following three tree space location
problems:

(PMed) min
M∑
i=1

d(X,Ti) (Pmax) min max
i=1,...,M

d(X,Ti) (PF) min
M∑
i=1

d(X,Ti)
2

s.t. X ∈ Tn s.t. X ∈ Tn s.t. X ∈ Tn,

Note that we only consider the unweighted versions of location problems here, as it
is unclear how to purposefully assign weights for a given set of gene trees.
The first two problems, the median problem (PMed) and the center problem (Pmax)
are the tree space versions of the classical location problems (LW ) and (Lmax), that
we introduced in Section 3.1.
The third problem (PF) is what we call the Fréchet problem. The Fréchet variance
is frequently used in statistics. The map that assigns x to the sum of squared

distances
M∑
i=1

d(x, yi)
2 to a given set of points {y1, . . . , yM} in some metric space

is called Fréchet variance. Its minimizer yields the barycenter, or Fréchet mean
of the sample {y1, . . . , yM}, which is a generalization of the arithmetic mean to
metric spaces. The Fréchet problem is not the most popular location problem but
is definitely of interest here: The barycenter, i.e., the sample mean of our given set
of trees is a natural thing to investigate when searching for the species tree and it
has been the most common approach for the species tree problem in tree space until
now.

Notation 3.2.1. We denote the objective functions of the three location problems
by

fMed =
M∑
i=1

d(X,Ti), fmax = max
i=1,...,M

d(X,Ti), fF =
M∑
i=1

d(X,Ti)
2.
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Most of the times we focus on one of the above problems (Pmax), (PMed) or (PF)
at a time and simply write f for the objective function. Whenever there might be
ambiguities we specify which objective function we talk about by using the above
notation.

In general, solving the problems (Pmax), (PMed), (PF) is extremely hard. We will
see that specific, easy cases of these location problems reduce to their Euclidean
counterparts, which implies that they are at least as hard to solve. But we do
not have a general approach for (Pmax), (PMed), (PF) as no one has studied Location
Theory in tree space yet.
In order to solve location problems one usually tries to use features of the space
or properties of the objective function like differentiability or convexity to design a
solution algorithm. For the tree space this is a lot harder than for Euclidean space
as it has a lot less structure to work with. For example, the tree space is not a vector
space, let alone an inner product space. Nonetheless, there exists recent literature
about Hadamard space optimization, [Bac14a], that tries to develop a general theory
and framework for optimization within these spaces. Hadamard spaces are complete
metric spaces of globally non-positive curvature, and as we mentioned in Section 2.2,
the tree space is a Hadamard space. This is why the approximation algorithms
from [Bac14b] that calculate the median and the mean in Hadamard spaces may
be applied in tree space and yield approximate solutions to the problems (PMed)
and (PF). Nonetheless, there are a lot of reasons to still study these problems as
the approximation algorithms converge rather slowly, as we will discuss later, and
do not incorporate any of the tree space specific structure. In comparison to a
general Hadamard space we have a local Euclidean structure in the orthants and
additionally our trees have splits sets that allow to investigate common features of
trees. We exploit these structures to state general results about optimal solutions
and use it to design solution methods. Later on we will of course compare our tree
space specific algorithms with the algorithm Bacak provides for general Hadamard
spaces.

3.2.1 Split Sets of Optimal Solutions

The first thing we establish for the tree space location problems are criteria for splits
of optimal solutions. In order to prove the correctness of the criteria we need the
following lemma that shows that the distance between two trees reduces when a
non-common split is removed from one of the trees.

Lemma 3.2. Suppose that for

X = ({e1, . . . , en1}, (w1, . . . , wn1)), T = ({f1, . . . , fn2}, (w1, . . . , wn2)) ∈ Tn

there exists a split fl such that fl ∈ Split(T ) \ Split(X).
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Let T ′ = ({f1, . . . , fl−1, fl+1, . . . , fn2}, (w1, . . . , wl−1, wl+1, . . . , wn2)) ∈ Tn, i.e., the
tree which is derived by taking X and removing fl. Then d(X,T ) < d(X,T ′).

Proof. Suppose that the geodesic Γ(X,T ) is given by the path

P = (X = T0, T1, . . . , Tk = T ),

i.e., d(X,T ) = L(Γ(X,T )) =
∑k

j=1 ‖tj − tj−1‖2. Since fl ∈ Split(T ) = Split(Tk) but
fl 6∈ Split(X) = Split(T0), there exists some i ∈ 1, . . . , k such that fl ∈ Split(Tj) for
j ≥ i and fl 6∈ Split(Tj) for j < i.
With this we define a path P ′ from X to T ′ by modifying the sequence of trees that
yield the geodesic path. Let P ′ = (X = T0, T1, . . . , Ti−1, T

′
i , T

′
i+1, T

′
k = T ′) where we

receive T ′j by removing the split fl, as it was done for T ′.
Now let l′ ∈ {1, . . . , N} be the component of the embedded vectors tj, t

′
j ∈ RN

+ that
corresponds to the length of the split fl. Then we have t′jl′ = 0 for all j = 1, . . . , k,
as T ′j was derived from Tj by removing fl. Moreover, the length of the split fl grows
monotonically from Ti, Ti+1, . . . to Tk = T , which follows from the parametrization
of the geodesic from X to T , and thus tjl′ > tj−1l′

for j > 1. Then it holds that

0 = |t′il′ − t
′
i−1l′
| ≤ |til′ − ti−1l′

| since til′ ≥ 0 = t′il′ = ti−1l′
,

0 = |t′jl′ − t
′
j−1l′
| < |tjl′ − tj−1l′

| since tjl′ > tj−1l′
> 0 = t′jl′ = t′j−1l′

∀j > i.

By definition of the T ′j , we have tjl = tj′l for all other components l 6= l′ ∈ {1, . . . , N}.
Together this yields

L(P ′) =
k∑
j=1

‖t′j − t′j−1‖2 =
i−1∑
j=1

‖tj − tj−1‖2 +
k∑
j=i

‖t′j − t′j−1‖2

<
i−1∑
j=1

‖tj − tj−1‖2 +
k∑
j=i

‖tj − tj−1‖2 =
k∑
j=1

‖tj − tj−1‖2

= L(P ) = d(X,T ).

This implies that we have found a path P ′ from X to T ′ that satisfies L(P ′) <
d(X,T ). Since d(X,T ′) is the infimum over the lengths of all paths from X to T ′ it
follows that d(X,T ′) ≤ L(P ′) < d(X,T ).

Having this auxiliary lemma we can show that there are certain splits that have to
be contained in Split(T ) for any optimal tree T .

Theorem 3.3. Let e ∈
M⋂
i=1

Split(Ti). Then e ∈ Split(X∗) for all optimal solutions

X∗ ∈ Tn to the median problem (PMed) and e ∈ Split(X∗) for all optimal solutions
X∗ ∈ Tn to the center problem (Pmax).
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Proof. In order to prove that any optimal solution X∗ to (PMed) or (Pmax) has to
satisfy e ∈ Split(X∗), we show that any tree X ∈ Tn with e 6∈ Split(X) is not
optimal.
First, assume that for X ∈ Tn there exists some split s ∈ Split(X) such that s is
incompatible with e. Apply Lemma 3.2 to X and X ′ where X ′ is derived from X
by removing s. This yields

d(X ′, Ti) < d(X,Ti) ∀i = 1, . . . ,M.

Thus,

M∑
i=1

d(X ′, Ti) <
M∑
i=1

d(X,Ti) and
M

max
i=1

d(X ′, Ti) <
M

max
i=1

d(X,Ti)

so X cannot be an optimal solution for (PMed) or (Pmax).
Now, let X = ((s1, . . . , sn1), (w1, . . . , wn1)) be a tree for which no s ∈ Split(X)
is incompatible with e. If e ∈ Split(X) then the statement holds, so we assume
that e 6∈ Split(X). As no split in Split(X) is incompatible with e this implies that
Split(X)∪{e} is a compatible set of splits and recalling Definition 2.18, e is a double
compatible split of X and Ti for all i = 1, . . . ,M .
Now define c := mini=1,...,M wTie > 0, i.e., c is the minimal length of the split e
among all Ti. We now construct a tree X ′ for which d(X ′, Ti) < d(X,Ti) for all
i = 1, . . . ,M . Let X ′ = ((s1, . . . , sn1 , e), (w1, . . . , wn1 , c)) and fix a tree Ti. As
e is a double compatible split of Ti and X as well as for Ti and X ′ it holds that
Split(X)\C = Split(X ′)\C. So if (A,B) = ((A1, . . . , Ak), (B1, . . . , Bk)) is a support
of the geodesic from X to T , i.e., satisfies (P1)−(P3), then it also is a support of the
geodesic from X ′ to T , as the weights of all splits s ∈ Split(X) \ C = Split(X ′) \ C
coincide. Now, apply the length formula for the geodesic from Theorem 2.21 for
both trees:

d(X,Ti) =

√√√√ k∑
l=1

(‖Al‖2 + ‖Bl‖2)2 +
∑
s∈C

(wTis − wXs )2

d(X ′, Ti) =

√√√√ k∑
l=1

(‖Al‖2 + ‖Bl‖2)2 +
∑
s∈C

(wTis − wX′s )2

As the support and all split lengths of X and X ′ are the same except for the split
e ∈ C, we get

d(X,Ti)
2 − d(X ′, Ti)

2 = (wTie − wXe )2 − (wTie − wX
′

e )2 > 0
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due to
(wTie − wXe )2 = (wTie )2 > (wTie − c)2 = (wTie − wX

′

e )2,

where (wTie )2 > (wTie − c)2 follows from the choice of c. Hence, we get d(X,Ti) >
d(X ′, Ti) for all i = 1, . . . ,M which implies

M∑
i=1

d(X ′, Ti) <
M∑
i=1

d(X,Ti) and
M

max
i=1

d(X ′, Ti) <
M

max
i=1

d(X,Ti),

so X cannot be an optimal solution for (PMed) or (Pmax).

We have seen that there are certain splits that are always in the split sets of optimal
trees. The counterpart of this idea is to ask which splits are never contained in the
split set of optimal trees.

Theorem 3.4. Let e 6∈ ∪Mi=1Split(Ti). Then e 6∈ Split(X∗) for any optimal solution
X∗ to (PMed) and e 6∈ Split(X∗) for any optimal solution X∗ ∈ Tn to (Pmax).

Proof. Let X = ((s1, . . . , snX ), (w1, . . . , wnX )) ∈ Tn be such that e ∈ Split(X), i.e.,
e = si for some i ∈ {1, . . . , nX}. Then define X ′ by removing si,

X ′ = ((s1, . . . , si−1, si+1, . . . , snX ), (w1, . . . , wi−1, wi+1, wnX )),

as in 3.2. By the prerequisite it holds that e 6∈ Split(Ti) for i = 1, . . . ,M . Applying
Lemma 3.2 then yields

d(X ′, Ti) < d(X,Ti) ∀i = 1, . . . ,M

so X cannot be optimal for (PMed) or (Pmax) as X ′ yields a lower objective.

The analogous statements are known for the Fréchet variance and have been shown
in [MOP12], Lemma 5.1. Additionally, the Fréchet problem has a unique optimal
solution, as shown in [Stu03]. We summarize this:

Theorem 3.5. [MOP12],[Stu03] (PF) has a unique optimal solution X∗. Moreover,

if e 6∈ ∪Mi=1Split(Ti) then e 6∈ Split(X∗) and if e ∈
M⋂
i=1

Split(Ti) it follows that e ∈

Split(X∗).
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4 Solving Tree Space Location
Problems by Transformations to
Euclidean Location Problems

In the previous chapter we have introduced Location Theory and modeled and de-
fined the location problems in tree space that we want to solve. We already men-
tioned that it is in general a very difficult task to solve these problems.
Therefore our approach is to first try to understand the structure of simple versions
of the problems (Pmax), (PMed), (PF), e.g., problems in low dimensions or problems
where we have strong assumptions on the given set of trees T{T1, . . . , TM}. This
helps to understand the key difficulties in solving these problems and, if possible,
we try to generalize the methods for these easy cases to a more general setting. We
start with the lowest-dimensional, non-trivial tree space, that is, T3.

4.1 Location Problems in T3

In this section we completely describe the solutions of the location problems (Pmax),
(PMed), (PF) in T3. The solutions to the problems are easy to obtain once we see
that the T3 is just a star graph with three infinitely long edges emanating from the
center vertex. Hence, the location problems in T3 boil down to well-known location
problems on networks.

First we investigatethe structure of T3: There are only three splits on the set of leaves
{0, 1, 2, 3}, these being s1 = ({2, 3}|{0, 1}), s2 = ({1, 3}|{0, 2}), s3 = ({1, 2}|{0, 3}).
Moreover, maximal orthants of Tn consist of n−2 splits; this means that a maximal
set of compatible splits has cardinality 1 in T3. These simple observations have
already been stated in Example 2.2.1, where the embedding of T3 into R3 was given.
Furthermore, geodesics in T3 are easy to obtain: If two trees X1, X2 are contained
in the same orthant, the geodesic is the straight line connecting the two. If X1 and
X2 are in different orthants then the geodesic is the cone path, since all three splits
in T3 are pairwise incompatible.

Denote Oi := O({si}) for i = 1, 2, 3 and Ti := {T ∈ T : T ∈ Oi} for i = 1, 2, 3,
which are the facilities in the respective orthants. Moreover, let li = maxT∈T∩Oi ‖t‖2
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for i = 1, 2, 3, where t ∈ R3
+ is the embedded vector of edge lengths, compare

Definition 2.9.

Theorem 4.1. Let T = {T1, . . . , Tm} ⊂ T3 and deploy the notation introduced
above. Then the solutions to the problem are characterized as follows:
(Pmax): Let i ∈ {1, 2, 3} be the index with li ≥ lj for j 6= i, then the optimal solution

is contained in Oi with the length of si being
li−lj

2
where lj is the second biggest value

among l1, l2, l3.
(PMed): If there exists no i ∈ {1, 2, 3} such that |Ti| ≥ |T \Ti| then 0 is the unique
optimal solution. Otherwise let i be that index and suppose that Ti = {Tj1 , . . . , Tjk}
is ordered such that ‖tji‖2 ≥ ‖tji+1

‖2 and let

d =

{
|Ti|−|T\Ti|

2
forT even

|Ti|−|T\Ti|+1
2

forT odd

Then for |T| odd, the unique optimal solution is Td and for |T| even the optimal
solution is every tree on the edge between Td+1 and Td, where T0 := 0 is the star
tree.
(PF): If there exists no i ∈ {1, 2, 3} such that

∑
T∈Ti ‖t‖2 ≥

∑
T∈T\Ti ‖t‖2 then 0 is

the unique optimal solution. Otherwise let i be that index, then the unique optimal
solution X is contained in Oi and the length of si ∈ Split(X) is

1

M

∑
T∈Ti

‖t‖2 −
∑

T∈T\Ti

‖t‖2

 .

These results may be obtained by calculating the objective of the above solutions and
showing that the objective value for all non-optimal trees is higher by estimations.
Instead of doing this we use this possibility to point out the equivalence of the
above location problems in T3 to specific location problems on networks. We refer
to [LPT95] for a nice overview over facility location on networks.
In [LPT95] one is given a set of facilities V = {v1, . . . , vM} that are contained in
the network N . Conveniently, [LPT95] defines networks as subsets of Rd with a
finite amount of vertices and the edges are the straight line segments connecting the
vertices. Our goal is to model our problems in this setup.
As all objective functions are non-decreasing in d(X,Ti), it is clear that there exists
no optimal solution in Oi with a weight greater than the maximal weight of trees in
this orthant li. This way, we may bound the star graph with infinitely long edges:
Let Oi := {T ∈ Oi : wTsi ≤ li} for i = 1, 2, 3 and let T3 := ∪i=1,2,3Oi.
Now simply setting N = χ(T3) and V = χ(T), we may apply Theorem 3.5 [LPT95]
to receive the solutions to the median problem and Theorem 4.4 [LPT95] to receive
the unique solution to the center problem as described in Theorem 4.1.
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In order to get the solution to the Fréchet problem, we note another connection of
T3 to a geometrical object called “open book”, [HHL+13]. The authors of [HHL+13]
mention T3 as one of the first examples for open books. Open books consist of
“pages” of dimension d, here the orthants, that are joined along a common “spine”
of dimension d − 1. Hence, the T3 is a very simple example of an open book. The
solution to the Fréchet problem as stated in Theorem 4.1 is then gained by applying
Theorem 2.9 in combination with Lemma 3.3 from [HHL+13].

4.2 Adjacent Orthants

In this section we do not restrict ourselves to the very simple low-dimensional case
n = 3. The approach here is to try to find an isometry to Rn−2 equipped with an
appropriate distance that yield us familiar and solvable location problems.
We show that there exists such an isometry under the following assumption: The
existing trees T = {T1, . . . , TM} satisfy T ⊂ O(S1)∪O(S2) for two adjacent maximal
orthants O(S1),O(S2).

Definition 4.2. Two maximal orthants O(S1),O(S2) in Tn are called adjacent if
|S1 ∩ S2| = n− 3.

So, if two maximal orthants are adjacent, there exists one split e ∈ S1 \ S2 and
one split f ∈ S2 \ S1, respectively. Note that e and f are incompatible, because
otherwise S2 ∪ {e} would be a set of compatible splits with n− 1 elements which is
not possible.
Let us abbreviate Oi = O(Si), i = 1, 2 in what follows. To further simplify no-
tation let us assume (w.l.o.g. after renumbering the splits in S) that S1 ∩ S2 =
{s1, s2, . . . , sn−3}, S1 \ S2 = {sn−2} and S2 \ S1 = {sn−1}. For two trees

T = ({s1, . . . , sn−2}, (w1, . . . , wn−2)) ∈ O(S1) and

X = ({s1, . . . , sn−3, sn−1}, (w′1, . . . , w′n−2)) ∈ O(S2)

we then have that the embedded vectors (compare Definition 2.9) χ(T ) = t, χ(X) =
x are given by

t =



w1
...

wn−2

0
...
0


, x =



w′1
...

w′n−3

0
w′n−2

0
...
0


. (4.1)
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This is a case where the two trees T and X have all but one split in common, so
{s1, . . . , sn−3} ⊂ C for the set of double compatible splits, compare Definition 2.18.
So the support (A,B) only needs to take care of the splits sn−2, sn−1 which are
incompatible. Hence, A = (A1) = ({sn−2}) and B = (B1) = ({sn−1}). Using the
distance formula from the parametrization in Theorem 2.21 we receive

d(X,T ) =

√
(‖A1‖2 + ‖B1‖2)2 +

∑
s∈C

(wTs − wXs )2

=

√
(wn−2 + w′n−2)2 +

∑
s∈C

(wTs − wXs )2.

Using the embedded vectors t, x ∈ RN
+ this yields the following formula:

Lemma 4.3. For T,X being two trees in adjacent orthants O1,O2 with their em-
bedded vectors t, x as in (4.1), the geodesic distance between them is

d(T,X) =

√√√√n−3∑
i=1

(ti − xi)2 + (tn−2 + xn−1)2

We now define the map ϕ : O1 ∪ O2 → Rn−2 by

ϕ(Y ) =


χ(Y )1

...
χ(Y )n−3

χ(Y )n−2

 for Y ∈ O1, ϕ(Y ) =


χ(Y )1

...
χ(Y )n−3

−χ(Y )n−1

 for Y ∈ O2,

where we again used that the embedded vectors have the form of (4.1). We want
to verify that ϕ : (O1 ∪ O2, d)→ (Rn−2, ‖ · ‖2) is an isometry: For A ∈ O1, B ∈ O2

and a = χ(A), b = χ(B) we have

‖ϕ(A)− ϕ(B)‖2 =

∥∥∥∥∥∥∥∥∥


a1
...

an−3

an−2

−


b1
...

bn−3

−bn−1


∥∥∥∥∥∥∥∥∥

2

=

√√√√n−3∑
i=1

(ai − bi)2 + (an−2 + bn−1)2 = d(A,B),

where the last equality follows from Lemma 4.3. For the case that we have two
trees A,B that are in the same orthant Oi for i ∈ {1, 2}, we have that the distance
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between them is the Euclidean distance by definition of the geodesic distance, so
‖ϕ(A)− ϕ(B)‖2 = d(A,B) holds as well.
This isometry allows to reduce (PMed), (Pmax) and (PF ) to equivalent location prob-
lems in Rn−2, where we call two problems equivalent if their objective values coincide
and there is a one-to-one map between their set of minimizers.

Theorem 4.4. Let T ⊂ O1 ∪ O2 and f be one of the three objective functions
{fMed, fmax, fF}. Then

(P ) min f(X) ⇔ (P̃ ) min f̃(x)
s.t. X ∈ Tn s.t. x ∈ Rn−2,

where f̃ depends on f and ϕ(T) as follows:

f = fmax → f̃(x) = max
i=1,...,M

‖x− ϕ(Ti)‖2

f = fMed → f̃(x) =
∑

i=1,...,M

‖x− ϕ(Ti)‖2

f = fF → f̃(x) =
∑

i=1,...,M

(‖x− ϕ(Ti)‖2)2

Proof. First, for X ∈ O(S1) ∪ O(S2) we define u = ϕ(X) ∈ Rn−2. Since ϕ is an
isometry it holds that d(X,Ti) = ‖ϕ(X)−ϕ(Ti)‖2 = ‖u−ϕ(Ti)‖2, and thus for any
choice of f ∈ {fMed, fmax, fF} we have f̃(u) = f(X).
We now show that ϕ and ϕ−1 (restricted on im(ϕ)) map a minimizer of one problem
to a minimizer of the other problem.
First, let u∗ be optimal for (P̃ ) and let T ∗ = ϕ−1(x∗). We want to show that T ∗ is
optimal for (P ). To this end, assume T ∗ is not an optimal solution for (P ) and let
T ′ be the minimizer.
Theorem 3.3 and the analogous statements for the Fréchet variance in [MOP12],
Lemma 5.1 (depending on which objective function {fMed, fmax, fF} is deployed)
imply that all optimal trees to (P ) have to contain all n− 3 splits in S1∩S2 in their
set of splits. Additionally, Lemma 3.2 implies that all optimal trees X ′ satisfy a
split Split(X ′) \ S1 ∪ S2. So any split s ∈ Split(X ′) other than s1, . . . , sn−3 is either
{e} = S1 \ S2 or {f} ∈ S2 \ S1.
Together this shows that the optimal solution T ′ has to be in O(S1)∪O(S2). Setting
u′ := ϕ(T ′) ∈ Rn−2, we derive

f̃(u′) = f(T ′) < f(T ∗) = f̃(u∗),

which is a contradition to the optimality of u∗. Thus, T ∗ is an optimal solution for
(P ).
For the other direction let T ∗ be optimal for (P ). We have seen above that this
implies T ∗ ∈ O(S1) ∪ O(S2), so we may define u∗ := ϕ(T ∗). Assume f̃(u′) <
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f̃(u∗) for some u′ ∈ Rn−2, i.e., that u∗ is not optimal. Since all objective functions
{fMed, fmax, fF} are convex it follows that the optimal solution to (P̃ ) is contained in
conv(ϕ(T)). Then u′ is a convex combination of the ϕ(Ti), hence u′1, . . . , u

′
n−3 ≥ 0,

as this holds for all Ti. This implies that u′ ∈ im(ϕ), so we may set T ′ := ϕ−1(u′).
Then f(T ′) = f̃(u′) < f̃(u∗) = f(T ∗), again a contradiction.

Theorem 4.4 allows for an easy solution procedure for our location problems in tree
space, when T ⊂ O1 ∪ O2:

1 Map the existing facilities T to ϕ(T) ⊂ Rn−2.

2 Use a solution algorithm for the Euclidean problem to get an optimal solution
u∗ to (P̃ ).

3 ϕ−1(u∗) ∈ O(S1) ∪ O(S2) is an optimal solution to (P ).

Hence, the location problems in tree space for the adjacent orthant case are as easy
to solve as their respective Euclidean versions. Naturally, step 2 depends on the
specific objective function f that we have given. For our investigated objective
functions, fMed, fmax, fF we can apply the Weiszfeld Algorithm, the Elzinga-Hearn
Algorithm or compute the arithmetic mean respectively to determine the optimal
solution to the Euclidean problem. For the center and the Fréchet problem exact
solutions are obtained with short computation times and for the median problem
there exist several fast algorithms that yield approximate optimal solutions, e.g.,
the Weiszfeld algorithm.

4.3 Completely Incompatible Orthants

After we have solved the adjacent orthant case, where the two maximal sets of
splits S1, S2 are the same but for one split we now consider the other extreme case.
Here we assume that we have κ ≥ 2 maximal orthants containing the data, i.e.,
T ⊂ O1 ∪ . . . ∪ Oκ ⊂ Tn, where the Oj are pairwise completely incompatible.

Definition 4.5. Two sets of splits S1, S2 are called completely incompatible if e
and f are incompatible splits for any e ∈ S1, f ∈ S2.
Moreover, two orthants O(S1),O(S2) are called completely incompatible if S1 and
S2 are completely incompatible.

Even though this case is somehow the opposite of the adjacent orthant case, the basic
approach is still the same. We use specific knowledge about the path of the geodesic
between two trees in completely incompatible orthants and formulate equivalent
location problems in Rn−2. Again we abbreviate Oi = O(Si), i = 1, 2, . . . , κ in what
follows.
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Lemma 4.6. [BHV01] If O1,O2 are completely incompatible, then for all X ∈ O1

and T ∈ O2 it holds that the geodesic is the cone path (compare p. 22) and

d(X,T ) = ‖x‖2 + ‖t‖2.

First we show that for the completely incompatible orthants we have easily verifiable
conditions that enable us to find an orthant that contains an optimal solution with
little effort. We start by providing conditions for (PMed) and (Pmax) and later for
(PF), for which we need some auxiliary lemmas.

Theorem 4.7. i) If there exists k ∈ {1, . . . , κ} such that |T∩Ok| > M
2

, then all
optimal solutions to (PMed) are contained in Ok. Otherwise 0 is an optimal
solution to (PMed).

ii) If there exists k ∈ {1, . . . , κ} such that all facilities in arg maxTi∈T ‖ti‖2 are in
one orthant, say Ok, then the optimal solution to (Pmax) is contained in Ok.
Otherwise 0 is the unique optimal solution to (Pmax).

Proof. We first prove that all optimal solutions to both of the problems have to
be contained in O1 ∪ . . . ∪ Oκ. Theorem 3.4 implies that for each of the three
objective functions it holds that every optimal solution X∗ ∈ Tn has to satisfy
Split(X∗) ⊂ Split(T1)∪ . . .∪Split(TM) ⊆ S1∪ . . .∪Sκ, where Si is the set of splits of
Oi. Since Si and Sj are incompatible for each i 6= j, Split(X∗) ⊂ S1∪ . . .∪Sκ implies
that Split(X∗) ⊂ Si for some i ∈ {1, . . . , κ}, i.e., X∗ ∈ Oi for some i ∈ {1, . . . , κ}.
We start with statement i): LetOk satisfy |T∩Ok| > M

2
. Then for 0 6= X ∈ Oi 6= Ok

the estimation

fMed(X) =
∑
T∈T

d(X,T ) =
∑

T∈T\Oi

(‖x‖2 + ‖t‖2) +
∑

T∈T∩Oi

‖t− x‖2

≥
∑

T∈T\Oi

(‖t‖2 + ‖x‖2) +
∑

T∈T∩Oi

‖t‖2 − |T ∩ Oi| · ‖x‖2

=
∑
T∈T

‖t‖2 + (|T \ Oi| − |T ∩ Oi|) · ‖x‖2

>
∑
T∈T

‖t‖2 =
∑
T∈T

d(0, T ) = fMed(0)

shows that the optimal solution has to be contained in Ok.
Next, we prove statement ii): If there exist two or more different orthants containing
a facility Tk ∈ arg maxT∈T ‖t‖2, then the unique optimal solution is X∗ = 0 ∈ Tn:
If 0 6= X ∈ Oi, then we can choose a facility with maximal norm Tk ∈ Oj with
j 6= i ∈ {1, . . . , κ} and

fmax(X) ≥ d(X,Tk) = ‖x‖2 + ‖tk‖2 > ‖tk‖2 = fmax(0), (4.2)
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showing that 0 yields a better objective value than any 0 6= X ∈ O with O arbitrary,
so 0 is the unique optimal solution in this case.

The other case is that there exists an orthant Ok such that all facilities with maximal
norm are contained in Ok and let Tl be one of them. Then for any orthant Oi 6= Ok
and an arbitrary point 0 6= X ∈ Oi it holds that

fmax(0) = max
i=1,...,M

‖ti‖2 = ‖tl‖2 < ‖tl‖2 + ‖x‖2 = fmax(X),

so X cannot be optimal. Hence, the optimal solution has to be in Ok.

As we mentioned we want to show a similar result for (PF). To simplify notation,
we write f for fF in the following. In order to prove the condition if an optimal
solution is contained in an orthant we need the directional derivatives of f at 0 in
the directions of a fixed orthant Oj. To this end we use that the objective in each
orthant Oj, j = 1, . . . , κ may be written as

f(X) =
∑
T∈T

d(T,X)2 =
∑

T∈T∩Oj

‖t− x‖2
2 +

∑
T∈T\Oj

(‖t‖2 + ‖x‖2)2 ∀X ∈ Oj.

Hence, restricted to a fixed orthant, the objective only depends on the embedding
x, so we may calculate directional derivatives as in Euclidean space.

Lemma 4.8. Consider an orthant Oj. Let V ∈ Oj be s.t. ‖v‖2 = 1, where v =
ψOj(V ) ∈ Rn−2

+ . Then

∇V d(·, Ti)(0) = 1 if Ti 6∈ Oj,
∇V d(·, Ti)(0) ≥ −1 otherwise.

Proof. For any V ∈ Oj and λ > 0 we define λ · V := ψ−1
Oj (λ · ψOj(V )), basically

scaling the weight vector v of V in Rn−2
+ by λ.

We start with the case where Ti 6∈ Oj. Then, applying the distance formula from
Lemma 4.6 and the definition of directional derivatives we have

∇V d(·, Ti)(0) = lim
h→0

(
d(h · V, Ti)− d(0, Ti)

h

)
= lim

h→0

(
‖h · v‖2 + ‖ti‖2 − ‖ti‖2

h

)
= lim

h→0

(
|h|‖v‖2

h

)
= lim

h→0

(
h

h

)
= 1.
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Now, let Ti ∈ Oj. Then

∇V d(·, Ti)(0) = lim
h→0

(
d(h · V, Ti)− d(0, Ti)

h

)
= lim

h→0

(
‖h · v − ti‖2 − ‖ti‖2

h

)
≥ lim

h→0

(
‖h · ti

‖ti‖2 − ti‖2 − ‖ti‖2

h

)

= lim
h→0

(
‖(1− h

‖ti‖2 )ti‖2 − ‖ti‖2

h

)

= lim
h→0

(
|(1− h

‖ti‖2 )|‖ti‖2 − ‖ti‖2

h

)

= lim
h→0

(
|‖ti‖2 − h| − ‖ti‖2

h

)
= lim

h→0

(
−h
h

)
= −1.

where the “≥” in the second line holds because v∗ = ti
‖ti‖2 minimizes ‖h · v − ti‖2

amongst all v with ‖v‖2 = 1, when h is sufficiently small such that h
‖ti‖2 ≤ 1.

With this we can calculate the directional derivative of f = fF. To simplify notation,
define Tj = T ∩ Oj for j = 1, . . . , κ.

Lemma 4.9. Consider an orthant Oj for some j = 1, . . . , κ and let V ∈ Oj be s.t.
‖v‖2 = 1. Then

∇V f(0) = 2 ·
M∑
i=1

∇V d(·, Ti)(0) · d(0, Ti)

≥ 2 ·
∑

Ti∈T\Tj

‖ti‖2 − 2 ·
∑
Ti∈Tj

‖ti‖2

Proof. This result is an immediate consequence of Lemma 4.8 and the chain rule.

With these two statements we are able to prove a reduction result that reduces the
problem to one orthant for the Fréchet problem (PF). Recall that (PF) always has
a unique solution, as established in Theorem 3.5.
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Theorem 4.10. If there exists k ∈ {1, . . . , κ} such that∑
Ti∈Tk

‖ti‖2 ≥
∑

Ti∈T\Tk

‖ti‖2,

then the optimal solution to (PF) is contained in Ok. If such an orthant does not
exist, 0 is the unique optimal solution to (PF).

Proof. We first show∑
T∈Tj

‖t‖2 ≤
∑

T∈T\Tj

‖t‖2 ⇒ 6 ∃ optimal solution in Oj \ {0} (4.3)

Using the explicit form of f on Oj we receive

f(X) =
∑
Ti∈Tj

‖ti − x‖2
2 +

∑
Ti∈T\Tj

(‖ti‖2 + ‖x‖2)2.

Note, that on Oj, f only depends on the embedded vector ψ(X) = x ∈ Rn−2
+ , and

that the right hand side is convex in x, as it is a sum of convex functions. Now
suppose there exists some X∗ ∈ Oj, X∗ 6= 0, such that X∗ is a minimizer of f on
Oj. Let V = ψ−1

Oj (
x∗

‖x∗‖2 ). By construction ‖ψOj(V )‖2 = 1. Since∑
T∈Tj

‖t‖2 ≤
∑

T∈T\Tj

‖t‖2,

Lemma 4.9 implies that ∇V f(0) ≥ 0, i.e., V is a direction of ascent at 0. Thus,
there exists some ε > 0 such that f(δV ) > f(0) for all 0 < δ ≤ ε, where δV :=
ψ−1
Oj (δψ(V )). In particular we have that f(εV ) > f(0) and it holds that f(εV ) ≥

f(X∗), since X∗ is the supposed minimizer. Hence

f(ε · V ) > µf(X∗) + (1− µ)f(0) for all µ ∈ (0, 1). (4.4)

Now, define λ = ε
‖x∗‖2 > 0, such that εv = ε

‖x∗‖2x
∗ = λx∗. If λ ≥ 1, we have

ε ≥ ‖x∗‖2 which yields

f(X∗) = f

(
‖x∗‖2

‖x∗‖2

X∗
)

= f(‖x∗‖2 · V ) > f(0)

as we have just established that δV is a direction of ascent at 0 for δ ≤ ε. This
contradicts optimality of X∗ when λ ≥ 1.
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Let now λ ∈ (0, 1). Then we apply convexity of f for εv = λx∗ + (1− λ) · 0:

f(ε · V ) =
∑
Ti∈Tj

‖ti − ε · v‖2
2 +

∑
Ti∈T\Tj

(‖ti‖2 + ‖εv‖2)2

=
∑
Ti∈Tj

‖ti − (λx∗ + (1− λ) · 0)‖2
2 +

∑
Ti∈T\Tj

(‖ti‖2 + ‖(λx∗ + (1− λ) · 0)‖2)2

≤ λ

∑
Ti∈Tj

‖ti − x∗‖2
2 +

∑
Ti∈T\Tj

(‖ti‖2 + ‖x∗‖2)2


+ (1− λ)

∑
Ti∈Tj

‖ti − 0‖2
2 +

∑
Ti∈T\Tj

(‖ti‖2 + ‖0‖2)2


= λf(X∗) + (1− λ)f(0).

This contradicts (4.4). Hence, there cannot exist a minimizer 0 6= X∗ in Oj.

With this we have proven (4.3) and we now prove the claim of the theorem that
either the unique optimal solution is 0 or that some orthant satisfies the optimality
condition. First note that, in analogy to the proof of Theorem 4.7 it holds that any
optimal solution X∗ to (PF) has to satisfy Split(X∗) ⊂ Split(O1) ∪ . . . ∪ Split(Oκ)
which again implies Split(X∗) ⊂ Split(Ol) for some l ∈ {1, . . . , κ} due to the com-
plete incompatibility of the orthants.
Now, suppose that for k ∈ {1, . . . , κ} it holds that

∑
Ti∈Tk ‖ti‖2 ≥

∑
Ti∈T\Tj ‖ti‖2.

Then we get ∑
Ti∈Tj

‖ti‖2 ≤
∑
Ti∈Tk

‖ti‖2 ≤
∑

Ti∈T\Tj

‖ti‖2

for all j 6= k. (4.3) then implies that no optimal solution can be contained in Oj \{0}
with j 6= k, so all optimal solutions are contained in Ok.
The case that such an orthant Ok does not exist, directly implies that for all j it
holds that there cannot be an optimal solution in Oj \{0} for all j, so 0 is the unique
optimal solution to the problem.

For all three problems we have now established conditions when 0 is the optimal
solution and in the case that 0 is not the optimal solution we know in which orthant
to search for the optimal solution. Let us assume w.l.o.g. that the orthant containing
the optimal solution is O1. With this knowledge we can treat all other trees in the
orthants O2, . . . ,Oκ in the same way, since the geodesic distance does not depend
on their split sets, but only the norm of their weight vectors, as

d(X,T ) = ‖x‖2 + ‖t‖2 for X ∈ O1, T ∈ Oj, j = 2. . . . , κ.
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Therefore it makes no difference when we replace the given trees Ti ⊂ Oi, i ≥ 3,
by trees in O2 which have a weight vector with the same norm. To this end, for
Tk = ((sk1, . . . , s

k
nk

), (wk1 , . . . , w
k
nk

)) ∈ T \T1, define

τ2 : T \T1 → O2 : τ2(Tk) = ((s′1, . . . , s
′
nk

), (wk1 , . . . , w
k
nk

)),

where the s′i are the splits of the maximal orthantO2, i.e., Split(O2) = {s′1, . . . , s′n−2}.
Since the weight vectors are identical we have ‖χ(Tk)‖2 = ‖χ(τ2(Tk))‖2, and since
s′i ∈ Split(O2) it follows that τ2(Tk) ∈ O2.
With this map at hand we can state equivalent problem formulations for all problems
(PMed), (Pmax), (PF) where we only have facilities in two orthants: We keep the
facilities T1 and replace the facilities Ti in all other orthants by τ2(Ti) ∈ O2, so that
we end up with data in only two orthants.

Theorem 4.11. For all three problems assume that O1 is the orthant containing all
optimal solutions to the problem. Define T′ = T1 ∪ τ2(T \T1). Then

i)

(PMed)(T) = min
∑
T∈T

d(X,T ) ⇔ (PMed)(T′) = min
∑
T∈T′

d(X,T )

s.t. X ∈ O1 s.t. X ∈ O1

ii)

(Pmax)(T) = min max
T∈T

d(X,T ) ⇔ (Pmax)(T′) = min max
T∈T′

d(X,T )

s.t. X ∈ O1 s.t. X ∈ O1

iii)

(PF)(T) = min
∑
T∈T

d(X,T )2 ⇔ (PF)(T′) = min
∑
T∈T′

d(X,T )2

s.t. X ∈ O1 s.t. X ∈ O1

Proof. We only need to show that the objectives of the problems coincide in all three
cases. This, however, is an immediate consequence of the distances being the same
for all facilities or the transformed facilities, respectively: T1 is contained in T as
well as in T′. For T ∈ T \T1 we have

d(X,T ) = ‖x‖2 + ‖t‖2 = ‖x‖2 + ‖χ(T )‖2 = ‖x‖2 + ‖χ(τ2(T ))‖2 = d(X, τ2(T ))

which is the corresponding transformed tree in T ′. Thus, the objectives of all prob-
lems are identical for each X ∈ O1.
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Now having the formulation of the equivalent problems where data is only contained
in two orthants it is possible to formulate equivalent problems in Rn−2. This is not
necessarily possible for data in κ ≥ 3 orthants: As an example, in T4 there exist
exactly five triplets of incompatible orthants. Assume that the data is contained
in one of these triplets. Without the reduction to two orthants, there is no way to
isometrically embed the three orthants into R2. The image of every orthant of T4 is a
closed orthant in R2, thus, one pair of the orthants has to intersect in a line segment
of an axis. The problem is, that the trees of the different orthants that would be
mapped to this axis would not be the same, so this map can not be isometric.

This problem is solved after applying Theorem 4.11. When we only have data of
two orthants in Tn, we can map one orthant to Rn−2

+ and the other one to Rn−2
− ,

so that the intersection of the orthants in tree space, as well as in Euclidean space
after the transformation is only the origin.

Just as for the adjacent orthant case in Section 4.2, we use the specific form of the
geodesic distance to define an isometry to Rn−2, where Rn−2 is equipped with a
special distance measure. We define the map ϕ : O1 ∪ O2 → Rn−2 by

ϕ(Y ) = ψO1(Y ) ∈ Rn−2
+ for Y ∈ O1, ϕ(Y ) = −ψO2(Y ) ∈ Rn−2

− for Y ∈ O2. (4.5)

Our goal is again to find an isometry to (Rn−2, d0) so that d(X,T ) = d0(ϕ(X), ϕ(T ))
holds for all X,T ∈ O1 ∪ O2. To this end, define d0 on im(ϕ) = I1 ∪ I2 ⊂ Rn−2,
where I1 := Rn−2

+ and I2 := Rn−2
− as d0 : im(ϕ)× im(ϕ)→ [0,∞) with

d0(y1, y2) =

{
‖y1 − y2‖2 if ∃ j ∈ {1, 2} : {y1, y2} ⊂ Ij,

‖y1‖2 + ‖y2‖2 otherwise.

With Lemma 4.6 it follows by definition of d0 that ϕ : (O1 ∪ O2, d) → (im(ϕ), d0)
is an isometry. With this transformation at hand, we define the Euclidean facilities
Ai via

Ai := ϕ(Ti) i = 1, . . . ,M and set A = ϕ(T) and Ai = ϕ(Tj) for j = 1, 2. (4.6)

Now we can state the equivalent problems in the Euclidean space, just as in Theo-
rem 4.4.

Theorem 4.12. Let T ⊂ O1 ∪ O2 and f be one of the three objective functions
fMed, fmax, fF. Then

(P ) min f(X) ⇔ (P̃ ) min f̃(x)
s.t. X ∈ Tn s.t. x ∈ im(ϕ),
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where f̃ depends on f and A = ϕ(T) as follows:

f = fMed → f̃(x) =
∑

i=1,...,M

d0(x,Ai)

f = fmax → f̃(x) = max
i=1,...,M

d0(x,Ai)

f = fF → f̃(x) =
∑

i=1,...,M

d0(x,Ai)
2

Proof. The only thing we need to show is that we may restrict Tn to O1 and O2,
because then the problems are exactly the same, just that we transformed them by
a bijective isometry.

Using Theorem 3.4 and Theorem 3.5, we get that for each of the three objective
functions it holds that every optimal solution X∗ ∈ Tn has to satisfy Split(X∗) ⊂
Split(T1)∪. . .∪Split(TM) ⊆ S1∪S2. Since every split in S1 is incompatible with every
split in S2 this implies that either X∗ ∈ O1 or X∗ ∈ O2, which was to show.

Note that, in contrast to Theorem 4.4 we have to restrict the variables to im(ϕ),
because it is otherwise possible that the optimal solution is contained in Rn−2\im(ϕ),
since im(ϕ) is not convex. Moreover, we do not have the Euclidean distance in the
resulting problems in Rn−2, it actually is the intrinsic distance of ‖ · ‖2 restricted to
the subset im(ϕ).

On the one hand, this means that we did not really gain many additional insights
by this reformulation, because the metric d0 is not the standard Euclidean norm
and we cannot apply standard algorithms from Facility Location as in the adjacent
orthant case in Section 4.2.

On the other hand, the reformulated versions belong to a special class of Location
Theory problems which are problems with barrier distances or forbidden regions,
see [KC81] or [AP94] for early works on this subject. Since the problems may
be interpreted as special cases of these problems, and some familiar problems are
studied in the field of Location Theory, we also formulated and solved the problems
in the Euclidean setting.

The Euclidean problems with the distance d0 that arise from the isometry ϕ (4.5)
are what we call fixed gate point location problems. The origin 0, may be interpreted
as the single point in the orthants where one is allowed to traverse from one orthant
to another, hence the name ‘gate’. In the following we first describe the origin of
gate point problems in Location Theory and related research in Location Theory
before we develop solution methods for each objective function. The results and the
solution methods for the fixed gate point problems are submitted for publication
and a preprint [Bot18] is available.
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4.4 Location Problems with a Fixed Gate Point at
the Origin

Fixed gate point problems are a specific kind of location problems that we introduce
in this paper. [BKW05] coined the term gate point. Gate points introduce a devi-
ation to classical location problems by introducing new distance measures. These
distance measures arise when a space is partitioned into several regions that are
equipped with different distance measures or when forbidden regions are introduced
that connections between facilities and the placed location may not cross.
The gate point variant we present here was introduced in [BKW03] and [FVGA12],
as it is the closest variant to our specific fixed gate point version.
Given a line R in R2, let the two half-spaces H+, H− induced by R carry different
`p norms, `p1 ,`p2 , respectively. Then the distance between two points in the same
half-space is the respective `p distance, and the distance between point x ∈ H+,
y ∈ H− is given by

min
z∈R
{dp1(x, z) + dp2(z, y)} , (4.7)

and the minimizer z∗ ∈ R of (4.7), where one traverses from one half space into the
other, is called the gate point for x and y.
An early work of the problem of calculating different distances in subdivisions of the
plane is [MP91], where they calculate distances in a bounded part of the plane that
is subdivided into bounded polygonals, each equipped with the Euclidean distance
with a different positive scaling factor. For the specific distance (4.7) induced by the
two hyperplanes, H+, H−, [BKW03] investigate general properties and several cases
of the problem and develop solution procedures for the investigated cases. [FVGA12]
solved the optimization problem analytically for p2 = ∞ and p1 > 1 under slight
assumptions and have given several theoretical statements in which segments of R
the gate point has to be contained.
More general variants of the distance (4.7) where the regions are not restricted to
half-spaces have been studied before, see e.g. [BKW05], [Par94], where the Weber
problem is investigated for this distance.
A possible application for gate point problems is presented in [BKW03] and [Par94]:
Traveling within a city is only possible using the `1 distance due to the street layout,
whereas distances outside the city are considered to be Euclidean, for example when
traveling with a helicopter, or via straight highways.
Nonetheless, instead of considering regions where one is allowed to traverse anywhere
on their shared boundary, one could also think of applications, where there is only
a prespecified set of what we call fixed gate points G ⊂ R, where one is allowed
to traverse from one region into the other. For example, these gate points may
model bridges over a river or bridges and tunnels for pedestrians that want to cross
highways.
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Of course, our motivation originates from the location problems in tree space, more
specifically from the case where data is contained in completely incompatible or-
thants. In this case we only have a single fixed gate point at the origin. Recall that
the given facilities are denoted by A = {A1, . . . , AM}, compare (4.6), in contrast to
the data for location problems in tree space for which we used T = {T1, . . . , TM}.
In Theorem 4.11 we reformulate general problems to equivalent problems where the
data is only contained in two orthants, so we focus on solving these problems in
Euclidean space and use A = A1 ∪ A2, with A1,A2 defined as in (4.6). We denote
the fixed gate point problems, as stated in Theorem 4.12 by

(GMed) min
M∑
i=1

d0(x,Ai) s.t. x ∈ Rn−2
+ ∪ Rn−2

− ,

(Gmax) min max
i=1,...,M

d0(x,Ai) s.t. x ∈ Rn−2
+ ∪ Rn−2

− ,

(GF) min
M∑
i=1

d0(x,Ai)
2 s.t. x ∈ Rn−2

+ ∪ Rn−2
− .

and study them in the following sections. As we only focus on solving these problems
in the Euclidean setting, we simplify notation and write n instead of n−2, d instead
of d0 for the remainder of Chapter 4. Then,

(GMed) min
M∑
i=1

d(x,Ai) s.t. x ∈ Rn
+ ∪ Rn

−,

(Gmax) min max
i=1,...,M

d(x,Ai) s.t. x ∈ Rn
+ ∪ Rn

−,

(GF) min
M∑
i=1

d(x,Ai)
2 s.t. x ∈ Rn

+ ∪ Rn
−.

are the formulations with which we work in the following sections.

4.4.1 Median Problem

At first, we consider the median problem (GMed). Denote ki = |Ai| for i = 1, 2.
We first characterize the set of optimal solutions in the case k1 = k2, and then
reformulate the problem for the case k1 6= k2. Recall that A1 ⊂ Rn

+ and A2 ⊂ Rn
−.

Lemma 4.13. Suppose k1 = k2. Then 0 is an optimal solution. Moreover, if
Ai ⊂ {λvi|λ ≥ 0} for some vi ∈ Rn with ‖vi‖2 = 1, then all elements of Li =
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{λv|λ ∈ [0, c]} are optimal solutions, where c = minAj∈Ai ‖Aj‖2 and no other optimal
solution exists.

Proof. Define k := k1 = k2. Then for any x ∈ Rn
+

f(0) =
∑
A∈A

‖A‖2 =
∑
A∈A1

(‖A‖2 − ‖x‖2) + k‖x‖2 +
∑
A∈A2

‖A‖2

(∗)
≤
∑
A∈A1

‖x− A‖2 +
∑
A∈A2

(‖x‖2 + ‖A‖2) = f(x).

The same estimate may be done for x ∈ Rn
− by simply exchanging roles of A1 and

A2. It follows that f(0) ≤ f(x) for all feasible x, so 0 is an optimal solution. Even
more, we see from (∗) that 0 is the unique optimal solution if and only if (∗) is strict
for i = 1, 2. In the case of equality we have that x satisfies

“=” holds in (∗)⇔ x = λA · A with 0 ≤ λA ≤ 1 ∀A ∈ Ai
⇔ x ∈ L1 and Ai ⊂ {λvi|λ ≥ 0}

with Li and vi as in the statement of the lemma.

The remaining case is k1 6= k2 and w.l.o.g. assume k1 > k2.

Theorem 4.14. If k1 > k2, (GMed) is equivalent to

min
∑

A∈A1
‖x− A‖2 + k2 · ‖x‖2

s.t. x ∈ Rn
+

Proof. This follows from Theorem 4.7: The optimal solution has to be in O1, which
translates to Rn

+ after the reformulation. Then plugging in the explicit distances for
x ∈ Rn

+ into the objective we get∑
A∈A1

‖x− A‖2 +
∑
A∈A2

(‖A‖2 + ‖x‖2) =
∑
A∈A1

‖x− A‖2 + k2 · ‖x‖2 +
∑
A∈A2

‖A‖2

and we simply omit the constant part to get the objective∑
A∈A1

‖x− A‖2 + k2 · ‖x‖2.
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k2 = 3

Figure 4.1: Example for the transformation of the fixed gate point median problem
to a classical median problem.

This is now a standard Weber problem with a facility at 0 with weight of k2 and it
can hence be solved with, e.g., the Weiszfeld algorithm. Note that in cases where k2

is rather big (but still, k2, k1) it might happen that 0 is the unique optimal solution
to the reformulated standard median problem and the Weiszfeld algorithm might
not detect it. This is no problem, since Theorem 3.1 (ii) gives an easily verifiable
optimality criterion. 0 is the optimal solution to the problem if and only if∥∥∥∥∥

k1∑
i=1

−Ai
‖Ai‖2

∥∥∥∥∥
2

≤ k2.

With the reformulation to a standard median problem for the case k2 < k1 and the
explicit description of the set of optimal solutions in the case k1 = k2 we are able to
solve the problem (GMed) in all cases and proceed with the next problem.

4.4.2 Center Problem

In this subsection we turn our attention towards the center problem (Gmax):

min max
i=1,...,M

d(x,Ai)

s.t. x ∈ Rn
+ ∪ Rn

−

Theorem 4.7 states that 0 is the unique optimal solution in the case that two orthants
contain a facility with maximal norm. As this case is solved we suppose that there
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exists only one such orthant and assume w.l.o.g. that the facility with maximal
norm is contained in A1 ⊂ Rn

+. Then we can reformulate the problem to

(Gmax)′ min max {maxA∈A1(‖x− A‖2),maxA∈A2(‖x‖2 + ‖A‖2)}
s.t. x ∈ Rn

+,

as Theorem 4.7 states that the optimal solution is contained in Rn
+ in this case.

To simplify notation, define r2 := maxA∈A\O ‖A‖2 and assume w.l.o,g, that A1 =
{A1, . . . , Ak}, A2 = {Ak+1, . . . , AM}.
A commonly used notion in the context of center problems is the smallest enclosing
ball for a set of points B1, . . . , Bm ⊂ Rd:

Definition 4.15. The smallest enclosing ball of B1, . . . , Bm ⊂ Rd is the ball Br(x) =
{y ∈ Rd : ‖x − y‖2 ≤ r} s.t. Bi ∈ Br(x) for i = 1, . . . ,m and there exists no other
ball Br′(x

′) such that r′ ≤ r.

In the definition it is implicitly stated that the ball is unique. That can easily be
seen by assuming there were two such balls with center points x1 6= x2 and then the
ball centered at x1+x2

2
has a smaller radius. We will use the term smallest enclosing

ball for fixed gate point center problems as well, where the only difference is that
the balls are with respect to the fixed gate point distance d.

Theorem 4.16. Consider the problem

(Pr2) min r
s.t. ‖Ai − x‖2 ≤ r i = 1, . . . , k

‖x‖2 + r2 ≤ r
x ∈ Rn

+

r ∈ R.

x∗ is an optimal solution to (Gmax) if and only if (x∗, r∗) is an optimal solution to
(Pr2) with

r∗ = max

{
max
i=1,...,k

(‖Ai − x‖2), ‖x‖2 + r2

}
.

Proof. The problem (Pr2) is obtained from (Gmax) by introducing the bottleneck
variable r. Note that (x, r) is feasible if and only if

r ≥ max

{
max
i=1,...,k

‖Ai − x‖2, r2 + ‖x‖2

}
.
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Hence, for any x ∈ Rn
+ the lowest attainable objective value is

max

{
max
i=1,...,k

‖Ai − x‖2, r2 + ‖x‖2

}
= max

{
max
A∈A1

(‖x− A‖2),max
A∈A2

(‖x‖2 + ‖A‖2)

}
= max

A∈A
d(x,A)

which is the objective value of x for (Gmax). This concludes the proof as the feasible
sets for x for the two problems coincide.

For the remainder of the section, we choose a fixed A0 ∈ arg max
A∈A2

‖A‖2. A0 models

an active facility in A2..
The goal is to to find structural parallels of (Pr2) to a standard center problem. We
start with the helpful and intuitive concept of active facilities.

Definition 4.17. Let x∗ be the optimal solution to (Pr2) with optimal objective value
r∗. Then a facility Ai, i = 1, . . . , k that satisfies ‖Ai − x∗‖2 = r∗ is called active.
A0 is called active if ‖A0‖2 + ‖x∗‖2 = r∗.

The next theorem proves that the optimal solution to our problem is unique, thereby
justifying that we only spoke of active facilities in general, not with respect to a
specific optimal solution.

Theorem 4.18. The problem (Pr2) has a unique optimal solution (x∗, r∗).

Proof. We start by showing existence. For any x ∈ Rn
+ we may choose r > 0 such

that (x, r) is feasible, as A1 is bounded and r2 is finite. The objective is continuous
and bounded from below so it follows that an optimal solution exists.
Now, we show uniqueness of the optimal solution. To this end, suppose there were
two optimal solutions x∗1 6= x∗2 with objective value r∗. We show that x∗ := 1

2
(x∗1 +

x∗2) ∈ Rn
+ yields a lower objective value. For i = 1, . . . , n it holds that

‖x∗ − Ai‖2 =

∥∥∥∥1

2
(x∗1 − Ai) +

1

2
(x∗2 − Ai)

∥∥∥∥
2

≤ 1

2
(‖x∗1 − Ai‖2 + ‖x∗2 − Ai‖2) ≤ r∗ (4.8)

and

‖x∗‖2 + ‖A0‖2 ≤
1

2
(‖x∗1‖2 + ‖A0‖2) +

1

2
(‖x∗2‖2 + ‖A0‖2) ≤ r∗ (4.9)

where feasibility of (x∗j , r
∗), j = 1, 2 is used in the last inequalities. This shows that

(x∗, r∗) is a feasible solution. Now investigate the above terms in more detail:
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• Suppose Ai is active for x∗1 and x∗2, i.e., ‖x∗1 − Ai‖2 = r∗ = ‖x∗2 − Ai‖2.

‖x∗ − Ai‖2 =

∥∥∥∥1

2
(x∗1 − Ai) +

1

2
(x∗2 − Ai)

∥∥∥∥
2

≤ 1

2
(‖x∗1 − Ai‖2 + ‖x∗2 − Ai‖2)

(4.10)
holds with equality ⇔ (x∗1 − Ai) = λ(x∗2 − Ai) for λ ≥ 0. If equality in (4.10)
would hold, then λ = 1 follows, as their distance to Ai is equal. But then
x∗1 = x∗2 yields a contradiction, so (4.10) is a strict inequality.

• If Ai is not active for one of the x∗j , then using ‖x∗j −Ai‖2 < r∗ in (4.8) implies
‖x∗ − Ai‖2 < r∗.

• If A0 is active for x∗1 and x∗2, then it follows that ‖x∗1‖2 = ‖x∗2‖2, which implies
‖x∗‖2 < ‖x∗1‖2 = ‖x∗2‖2 by strict convexity of the norm ball. Then ‖x∗‖2 +
‖A0‖2 < ‖x∗1‖2 + ‖A0‖2 = r∗.

• If A0 is not active for at least one of the x∗j , then using ‖x∗j‖2 + ‖A0‖2 < r∗ in
(4.9) implies ‖x∗‖2 + ‖A0‖2 < r∗.

Altogether these cases prove ‖x∗−Ai‖2 < r∗ for i = 1, . . . , k and ‖x∗‖2 +‖A0‖2 < r∗.
Thus, r′ := max {maxi=1,...,k {‖x∗ − Ai‖2} , ‖x∗‖2 + r2} < r∗. Then (x∗, r′) is feasible
and r′ < r∗, which contradicts optimality of the x∗j .

The activity of the A0 plays an important role for the problem (Pr2). Suppose A0

was not active for an instance {A0, A1, . . . , Ak}. Then (Pr2) reduces to

(Sr2) min r
s.t. ‖Ai − x‖2 ≤ r ∀i = 1, . . . , k

x ∈ Rn
+

r ∈ R.

This is the easier case, as we receive a standard center problem which can be solved
via different methods, compare [Meg83],[FGK03], [KMY03]. It is to be mentioned
here, that to our knowledge there exists no genuinely polynomial algorithm that
yields an exact solution to the center problem in dimension n ≥ 3. [Meg83] is
not polynomial in the dimension, [KMY03] only provides an (1 + ε) approximation
and [FGK03] is not guaranteed to terminate after a polynomial number of steps.
Nevertheless, [FGK03] show that their exact solver performs well in practice even
for high dimensions. In case that their algorithm does not solve an instance in a
reasonable running time one might still refuge to the approximation algorithm of
[KMY03] or to [Meg83], when the dimension is not too big.
In the other case, where A0 is active and we do not end up with a standard center
problem, we make use of this a priori knowledge. So the general approach for a
solution algorithm is as follows:
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• Solve the relaxation of (Sr2) and obtain (x̃, r̃) as unique optimal solution.

• Check if ‖A0‖2 + ‖x̃‖2 ≤ r̃:

- If so, then (x̃, r̃) is optimal to (Pr2).

- Otherwise, solve the problem (Pr2), but with the constraint ‖x‖2 +r2 = r
instead of ‖x‖2 + r2 ≤ r, as A0 has to be active.

Since there exist several solution methods to the standard Euclidean center-problem,
the main problem is the version of (Pr2) where A0 is active. Thus, we concentrate
on solving this problem in what follows.
It turns out that it is not necessary to use the relaxation (Sr2) to check if A0 is
active when n = 2:

Theorem 4.19. In R2, A0 is always active.

Proof. Our goal is to show that the smallest enclosing ball Br∗(x
∗) of the points

{A1, . . . , Ak} satisfies Br∗(x
∗) ∩ R2

− ⊂ {0}. Then ‖x∗‖2 ≥ r∗ and ‖A0‖2 + ‖x∗‖2 >
‖x∗‖2 ≥ r∗, so that A0 has to be active in that case.
In R2, a sphere is uniquely generated by at most three points on its boundary, so
any smallest enclosing ball is generated by two or three active facilities. We consider
these two cases for Br∗(x

∗). First, suppose that exactly two facilities are active and
call them A,B. Then,

x∗ =
A+B

2
, r∗ =

∥∥∥∥A−B2

∥∥∥∥
2

.

Since A,B ∈ {A1, . . . , Ak} ⊂ R2
+, it follows directly that

‖x∗‖2 =

∥∥∥∥A+B

2

∥∥∥∥
2

≥
∥∥∥∥A−B2

∥∥∥∥
2

= r∗.

since we have Ai +Bi ≥ Ai −Bi in both coordinates i = 1, 2.
Now suppose that three facilities are active and call them A,B,C. If A,B,C are
all translated by some vector x ∈ R2, then their smallest enclosing ball is just the
translated ball Br∗(x

∗+x). We use this to consider the “worst-case scenario”, where
Br∗(x

∗) has the biggest intersection with R2
−. Therefore, translate A,B,C by

s := −

 min
(x1,x2)∈{A,B,C}

x1

min
(x1,x2)∈{A,B,C}

x2

 ∈ R2
−.

Note that by the definition of s it holds that A + s, B + sC + s ∈ R2
+. For any

y ∈ R2
− it holds that if Br(x + y) ∩ R2

− ⊂ {0} it follows that Br(x) ∩ R2
− ⊂ {0}, so
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it suffices to consider this case where we shift the ball as far as possible by using s.
Now there are two different cases. First assume there exists one point, say A, for
which A + s = 0. Since A + s, B + s, C + s are in R2

+ the center of the optimal
solution x∗ + s is also in R2

+, since it has to lie in conv{A+ s, B + s, C + s} ⊂ R2
+.

Now consider the unique supporting hyperplane of Br∗(x
∗ + s) at A+ s = 0. It has

the normal vector x∗ + s ∈ R2
+, so the components of the orthogonal vector have

different signs. Thus, this supporting hyperplane is a line through 0 with negative
slope, so it is a separating hyperplane of Br∗(x

∗+ s) and R2
− ⇒ Br∗(x

∗)∩R2
− = {0}.

In the second case the situation is that one of the three points A+ s, B+ s, C + s is
contained in {0} × R+ and another one is contained in R+ × {0}. W.l.o.g. let this
be A+ s ∈ {0} ×R+, B + s ∈ R+ × {0}. To simplify notation, set A′ = A+ s, B′ =
B + s, C ′ = C + s, compare Figure 4.2 for a depiction after the translation. We
additionally know that all three points are active, so C ′ may not be contained in
the smallest enclosing ball of A′ and B′ which is given by Br̃(x̃). In formulae, we
have C ′ ∈ R2

+ \Br̃(x̃), with r̃ =
∥∥A′−B′

2

∥∥
2

and x̃ = A′+B′

2
.

B′

A′

x̃

C ′

x∗

Figure 4.2: Depiction of the smallest enclosing ball for {A′, B′} and the perpendic-
ular bisector which contains the center of the smallest enclosing ball for
{A′, B′, C ′}.

x∗ and x̃ both have to be on the equidistant line of A′ and B′, which is given by the
orthogonal vector v ⊥ (A′ − B′) which can be chosen such that ‖v‖2 = 1, v ∈ R2

+.
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Then it follows that there exists a δ ∈ R such that x∗ = x̃+ δ · v. If δ > 0, then

‖x∗‖2
2 = ‖x̃+ δ · v‖2

2 =

∥∥∥∥A′ +B′

2

∥∥∥∥2

2

+ δ2 · ‖v‖2
2 + 2〈x̃, δ · v〉

>

∥∥∥∥A′ +B′

2

∥∥∥∥2

2

+ δ2 · ‖v‖2
2 = ‖A− x∗‖2

2 = r∗2,

using the Pythagorean theorem in the second but last equation. Thus, ‖x∗‖2 > r∗,
so Br∗(x

∗) ∩ R2
− = ∅.

So it remains to be shown that δ > 0 for the representation x∗ = x̃+ δ · v. As A′, B′

and 0 are all in Br∗(x
∗) it follows that the triangle ∆(A′, B′, 0) is a subset of Br∗(x

∗),
i.e., ∆(A′, B′, 0) ⊂ Br∗(x

∗). As C ′ ∈ R2
+ \ Br∗(x

∗) this implies C ′ 6∈ ∆(A′, B′, 0).
Thus the minimal distance from C ′ ∈ R2

+ to the perpendicular bisector of A,B is
attained for x̃+ t · v for some t > 0. Since ‖C ′ − x∗‖2 = r∗ < ‖C ′ − x̃‖2 this implies
that x∗ = x̃+ δ · v with δ > 0.

Theorem 4.19 does not generalize to higher dimensions, i.e., in Rn, for any n ≥ 3,
it is not guaranteed that A0 is active. We show this with the following example:

Example 4.4.1. First, consider the problem in R3 with facilities

A0 =

 0
0
−1

 , A1 =

9
0
0

 , A2 =

0
9
0

 , A3 =

0
0
9

 .

We want to find the smallest enclosing ball for A1, A2, A3. Since for no pair of
Ai, Aj, i, j ∈ {1, 2, 3} it holds that Al, l 6= {i, j}, is in the smallest enclosing ball of
Ai, Aj, it follows that all of the three facilities have to be active. Thus, the optimal
solution lies on the line L of equal distance of those three points, which is given by

L =

λ ·
1

1
1

 ∈ R3 : λ ∈ R

 .

Then the point x∗ ∈ L with minimal distance to A1, A2, A3 is the center of the
smallest enclosing ball of A1, A2, A3. Computing the minimal squared distance of A1

to L, we receive

min
λ∈R


∥∥∥∥∥∥
9

0
0

−
λλ
λ

∥∥∥∥∥∥
2

2

 = min
λ∈R

{
3λ2 − 18λ+ 81

}
= 54 =: r∗2,

which is attained for λ = 3 with x∗ = (3 3 3)t as optimal solution and the unique
smallest enclosing ball for A1, A2, A3 is Br∗(x

∗). As d(x∗, A0) = ‖x∗‖2 + ‖A0‖2 =
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√
32 + 32 + 32 + 1 =

√
27 + 1 < 7 <

√
54 = r∗ it follows that A0 ∈ Br∗(x

∗). So
(x∗, r∗) is the optimal solution to (Pr2) and A0 is not active.
This counterexample can be generalized to Rn, n > 3, by adding additional zeros to
the vectors A1, A2, A3. It is clear that the optimal solution to these three points has
to have zeros in all components that are added (otherwise, removing them yields a
better solution), so the optimal solution coincides with the one in R3 with additional
zeros. Then the optimal solution still satisfies ‖x∗‖2 + ‖A0‖2 < r∗, i.e., A0 is not
active.

An Exact Solution Algorithm in the Plane

Our goal is now to develop a solution algorithm in the plane, where Theorem 4.19
gives us the a priori knowledge that A0 is active. There are several solution ap-
proaches to solve the center problem in the plane, but here we will focus on adapting
the Elzinga-Hearn algorithm [EH72] which makes use of active facilities for which
our a priori knowledge is useful. First, recall that a ball in R2 is uniquely deter-
mined by three points on its boundary. Then any optimal solution to the center
problem either has two or three active facilities whose smallest enclosing ball is the
ball about the optimal solution with minimal radius. The Elzinga-Hearn algorithm
uses this idea and searches for the subset of cardinality two or three that determines
the optimal solution.
In order to apply this idea to our setting we need to show that for the fixed gate
point center version, i.e., for the balls with respect to the fixed gate point distance
d, it also holds that three points on the boundary suffice to uniquely determine a
ball. Before we prove the result for three points we investigate the case that only
two points are active. Then the optimal solution is given as follows:

Lemma 4.20. Let x1 ∈ R2
+, x2 ∈ R2

− and suppose that ‖x1‖2 ≥ ‖x2‖2. Then the
smallest enclosing ball of x1 and x2 is Br̄(x̄) with

x̄ =
‖x1‖2 − ‖x2‖2

2‖x1‖2

· x1 r̄ =
‖x1‖2 + ‖x2‖2

2

Proof. First we check if Br̄(x̄) contains both points:

d(x1, x̄) = ‖x̄− x1‖2 =

∣∣∣∣(‖x1‖2 − ‖x2‖2

2‖x1‖2

− 1

)∣∣∣∣ · ‖x1‖2

=

∣∣∣∣(‖x1‖2 − ‖x2‖2 − 2‖x1‖2

2‖x1‖2

)∣∣∣∣ · ‖x1‖2 =
‖x1‖2 + ‖x2‖2

2

and

d(x2, x̄) = ‖x2‖2 + ‖x̄‖2 = ‖x2‖2 +
‖x1‖2 − ‖x2‖2

2
=
‖x1‖2 + ‖x2‖2

2
.
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Data: Facilities A = {A1, . . . , AM} ⊂ R2

Initialization: Active set S = {A1, A
2}, xmax = 0 ∈ R2, rmax = 0

x = A1+A2

2
, r = ‖A1−A2‖2

2
;

if (x, r) feasible for A then
return (x, r)

end
else

S = S ∪ {Ak}, for Ak that is farthest away from x.
end
while 1 do

xmax = (0, 0), rmax = 0
x = (0, 0), r = 0
for Ac = {Ai, Aj, Ak} ⊂ S do

Construct the optimal solution x with objective value r for Ac.
if r > rmax then

xmax = x, rmax = r, S ′ = {Ai, Aj, Ak}
end

end
if (xmax, rmax) feasible then

return (xmax, rmax)
end
else

S = S ′ ∪ {Ak}, for Ak that is farthest away from xmax.
end

end
Output: xmax ∈ R2, with optimal objective value rmax.

Algorithm 1: Algorithm of Elzinga-Hearn.

As d(x1, x2) = ‖x1‖2+‖x2‖2 it follows that the radius of a ball containing both points

has to be greater or equal ‖x1‖2+‖x2‖2
2

. Thus, the radius r̄ is minimal. Moreover, this
is the unique ball with this radius, as there does not exist a point z ∈ R2

+, s.t.
d(x1, z) = r̄ as well as ‖z‖2 = r̄ − ‖x2‖2.

Knowing the solution for this case we can prove that three points determine a unique
smallest enclosing ball.

Lemma 4.21. Let x, y ∈ R2
+, z ∈ R2

− be such that ‖x‖2 ≥ max{‖y‖2, ‖z‖2}. More-
over, assume that the smallest enclosing ball with respect to the distance d for no
two of those points contains the third one.
Then there exists a unique circle C = ∂Br̄(x̄) such that x, y, z ∈ C.
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Proof. First, assume ‖x‖2 = ‖z‖2. Lemma 4.20 implies that the smallest enclosing
ball of x and z is x̄ = 0, r̄ = ‖x‖2. Then y ∈ Br̄(x̄), so the smallest enclosing
ball assumption is not met. Thus ‖z‖2 < ‖x‖2. Moreover, this implies that the
center x̄ has to be contained in R2

+. If it was in R2
−, ‖z‖2 < ‖x‖2 would imply that

‖x̄− z‖2 < ‖x̄‖2 + ‖x‖2, so the two points cannot be equidistant to x̄.

Consider the problem (Pr2) with r2 = s and facilities A = {x, y}. According to
Theorem 4.18 this problem has a unique optimal solution (x∗, r∗), where x, y, z
all have distance r∗ to the point x∗, i.e., x, y, z ∈ ∂Br∗(x

∗). This already proves
existence of such a circle C = ∂Br∗(x

∗) and we now show its uniqueness. Assume
there exists another ball Br′(x

′) such that x, y, z ∈ ∂Br′(x
′). Then r′ > r∗, due to

the uniqueness of the optimal solution to (Pr2). Since ‖x−x′‖2 = ‖y−x′‖2, it holds
that x′ ∈ F = {u ∈ R2 : ‖u− x‖2 = ‖u− y‖2}, the perpendicular bisector of x and
y.

For F we can give the following representation: F = {M + λv : λ ∈ R} where
M := x+y

2
and v ⊥ (x − y) such that x∗ = M + µv with µ < 0. We show that

v ∈ R2
+.

v only depends on x and y, so we first carefully investigate the relationship between
x and y. Consider the following cases:
1) y ≥ x, where ≥ means ≥ in both components. This is impossible, since x 6= y
and ‖x‖2 > ‖y‖2.
2) y ≤ x. The smallest enclosing ball for z and x is given by Br̃(x̃) as in Lemma 4.20.
In particular, x̃ ∈ R2

+ and x′ ≤ x, so ‖y − x̃‖2 < ‖x − x̃‖2 which implies that y is
contained Br̃(x̃), violating the prerequisites of the lemma.

3) The only remaining case is x1 ≥ y1 and y2 ≥ x2 or x1 ≤ y1 and y2 ≤ x2. In both
cases, one of the two orthogonal vectors to x− y(

y2 − x2

x1 − y1

)
,

(
x2 − y2

y1 − x1

)
.

is contained in R2
+ and we choose v (for the definition of F ) as the version above

such that v ∈ R2
+ holds. Because z is not contained in the smallest enclosing ball

of x and y, which is Br̃(x̃), with r̃ = ‖x‖2+‖y‖2
2

due to Lemma 4.20, it automatically
follows that x∗ = M + µv with µ < 0, since the distance to z gets smaller in this
direction.

We now get back to Br′(x
′), the ball which is not the unique smallest enclosing ball

for x, y, z but for which we assumed x, y, z ∈ ∂Br′(x
′).

We already know that x′ ∈ F ∩ R2
+. Furthermore,

‖z‖2 + ‖x′‖2 = r′ > r∗ = ‖z‖2 + ‖x∗‖2,
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so ‖x′‖2 > ‖x∗‖2. Our goal is to show that d(x, x′) 6= d(z, x′) and we do this for two
different cases: First, assume x′ = M + tv with t > 0. Then

‖x′‖2
2 > ‖x− x′‖2

2 ⇔ ‖M + λv‖2
2 > ‖x−M‖2

2 + ‖x′ −M‖2
2

⇔‖M‖2
2 + λ2‖v‖2

2 + 2λ〈M, v〉 <
(
‖x− y‖2

2

)2

+ λ2‖v‖2
2

⇔‖M‖2
2 + 2λ〈M, v〉 > ‖x− y‖

2
2

4

⇔4

∥∥∥∥x+ y

2

∥∥∥∥2

2

+ 8λ〈M, v〉 > ‖x‖2
2 + ‖y‖2

2 − 2〈x, y〉

⇔2〈x, y〉+ 8λ〈M, v〉 > 0

and the latter inequality holds since λ > 0 and x, y,M, v ∈ R2
+ with non-zero

components. Hence, d(z, x′) = ‖z‖2 + ‖x′‖2 > ‖x′‖2 > ‖x − x′‖2 = d(x, x′), what
was to show.
The second case is that x′ = M + tv with t ≤ 0. As ‖x′‖2 > ‖x∗‖2, x′ = M + tv
may be expressed as x′ = λx∗ + (1− λ)M ∈ F for some λ ∈ [0, 1). Note that λ 6= 1
as x′ 6= x∗. Using v ∈ R2

+ and the fact that the distance of any point p on F to x is√
‖x−M‖2

2 + ‖M − p‖2
2 we get

r′
2

= ‖x− x′‖2
2 = ‖x−M‖2

2 + ‖M − x′‖2
2

= ‖x−M‖2
2 + ‖M − (λx∗ + (1− λ)M)‖2

2 = ‖x−M‖2
2 + ‖λ(M − x∗)‖2

2

< ‖x−M‖2
2 + ‖M − x∗‖2

2 = ‖x− x∗‖2
2 = r∗2,

so d(x, x′) = ‖x− x′‖2 < r∗. Moreover,

d(z, x′) = ‖z‖2 + ‖x′‖2 > ‖z‖2 + ‖x∗‖2 = r∗,

so d(z, x′) > r∗ > d(x, x′).
So for both cases we get that d(z, x′) 6= d(x, x′) contradicting x, z ∈ ∂Br′(x

′) and
thus implying uniqueness of Br∗(x

∗).

Lemma 4.21 implies that at most three active facilities suffice to find an optimal
solution to (Pr2) within R2

+. Additionally, we know by Theorem 4.19 that there
always exists exactly one active facility, A0, in R2

−. Such an a priori knowledge of
an active facility does not exist in the standard center problem and we make use of
that in the adapted Elzinga-Hearn algorithm.
The next lemma shows that the smallest enclosing ball condition of Lemma 4.21
can easily be checked by only looking at one pair of facilities; in the case where the
condition is not satisfied, this pair already yields the optimal solution. Recall that
A1 = {A1, . . . , Ak} is sorted descendingly with respect to the norms of the facilities
Ai.
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Lemma 4.22. Let r1 = ‖A1‖2. Then either xA := r1−r2
2r1

A1 is the optimal solution
or three facilities are active.

Proof. Take any facility Aj other than A1. Then rj := ‖Aj‖2 ≤ r1 and the small-
est enclosing ball for Aj and A0 is centered at

rj−r2
2rj

Aj with radius
rj+r2

2
due to

Lemma 4.20. Moreover, ‖ rj−r2
2rj

Aj‖2 =
rj−r2

2
. Then we can calculate the distance of

A1 to the center of this ball,∥∥∥∥A1 −
rj − r2

2rj
Aj

∥∥∥∥
2

≥
∣∣∣∣‖A1‖2 −

∥∥∥∥rj − r2

2rj
Aj

∥∥∥∥
2

∣∣∣∣ =

∣∣∣∣r1 −
rj − r2

2

∣∣∣∣
= r1 −

rj − r2

2
≥ r1 −

r1 − r2

2
=
r1 + r2

2
≥ rj + r2

2
,

which is at least
rj+r2

2
. Furthermore we know that A1 6= Aj so we either have rj < r1

or A1 6= λAj for all λ ∈ R. If rj < r1, then the last inequality holds strictly and

if A1 6= λAj, the first inequality holds strictly. ⇒
∥∥∥A1 − rj−r2

2rj
Aj

∥∥∥
2
>

rj+r2
2

, so the

optimal ball corresponding to A0 and Aj does not contain A1. Thus, xA is the only
possible candidate for x∗ defined by two active facilities on ∂Br∗(x

∗). In all other
cases it must be defined by three points on its boundary.

Lemma 4.22 implies that we can simply check, whether B r1+r2
2
xA contains all Aj

and is optimal. If it does, xA is optimal and in the case where it does not, we
know that three facilities are active. Thus, the essential problem that remains to
be solved is a fixed gate point center problem with one given facility A0 ∈ R2

− and
two facilities A, B ∈ R2

+, where no two facilities yield an optimal solution, i.e.,
no smallest enclosing ball of two facilities contains the third one. We denote this
problem as (Pess) = (Pess)(A0, A,B), where w.l.o.g. let r1 = ‖A‖2 ≥ ‖B‖2.

(Pess)(A0, A,B) min maxA∈{A0,A,B} d(x,A)
s.t. x ∈ R2

+

When no smallest enclosing ball of two facilities yields an optimal solution, then all
three facilities are active. Then the center of the smallest enclosing ball of A0, A,B,
x∗ satisfiesd(x,A0) = d(x,A) = d(x,B). We use this fact to characterize the optimal
solution. As x∗ ∈ R2

+, we can rewrite the distances d to get ‖x‖2 + ‖A0‖2 =
‖x− A‖2 = ‖x−B‖2. and define the sets

E = {x ∈ R2 : ‖x‖2 + r2 = ‖A− x‖2}, and F = {x ∈ R2 : ‖A− x‖2 = ‖B − x‖2}.

Lemma 4.23. Assume ‖A‖2 = r1 > r2. Then E = {x ∈ R2 : ‖A−x‖2 = ‖x‖2 +r2}
is a branch of a hyperbola.
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Proof. A hyperbola in R2 is given by{
x ∈ R2 : |‖F1 − x‖2 − ‖F2 − x‖2| = 2 · a

}
,

where F1, F2 ∈ R2 are the two foci of the hyperbola. Setting a = r2
2
, F1 = A,F2 = 0

this reformulates to {
x ∈ R2 : |‖A− x‖2 − ‖x‖2| = r2

}
.

Taking the branch of the hyperbola where ‖A− x‖2 ≥ ‖x‖2 holds, we get exactly{
x ∈ R2 : ‖A− x‖2 = r2 + ‖x‖2

}
= E.

Notation 4.4.2. We use the following notation:

H =
{
x ∈ R2 : |‖A− x‖2 − ‖x‖2| = r2

}
, the hyperbola containing E as a branch

F =
{
x ∈ R2 : ‖A− x‖2 = ‖B − x‖2

}
the perpendicular bisector of A,B.

Corollary 4.24. The optimal solution x∗ is contained in D := {x ∈ R2 : ‖A−x‖2 =
‖x‖2 + r2 = ‖B − x‖2} = E ∩ F and |D| ≤ 2.

Proof. We already know that there exists a unique optimal solution x∗ ∈ R2
+ to our

fixed gate point center problem, that satisfies d(x∗, A0) = d(x∗, A) = d(x∗, B), so
x∗ ∈ D. The intersection of a line and a hyperbola is given by a quadratic equation,
thus |H ∩ F | ≤ 2. For our branch E ⊂ H this implies |E ∩ F | ≤ |H ∩ F | ≤ 2.

In order to calculate the intersection of E and F , we need a convenient representation
of the hyperbola H. First of all, let us clarify notation: Let P be the midpoint of
the two foci A and 0. Then the distance of P to the intersection of the hyperbola
with the major axis M = {λA : λ ≥ 0} is a = r2

2
and the linear eccentricity e of the

hyperbola is given by e = ‖A‖2
2

. The values a and e are invariant under translations
and rotations of the hyperbola, so when we transform the hyperbola H such that the
midpoint of the two foci is 0 and the major axis is the x-axis, then the transformed
version H of H can be represented as

H =

{(
x
y

)
∈ R2 :

x2

a2
− y2

b2
= 1

}
, (4.11)

which is the standard equation form of a hyperbola. We now determine σ, the
transformation of the hyperbola to this standard form. σ consists of two maps.
First, a rotation is applied, then a translation applied. An example for the rotation
and the translation afterwards is depicted in the Figures 4.3 , 4.4 , 4.5. The figures
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A

B

x∗

M+

M−M

E

Figure 4.3: Initial Position: The perpendicular bisector of A and B (red) intersects
both branches of the hyperbola (blue) yielding the optimal solution x∗

in the branch E.

also show the perpendicular bisector F of A and B, to which we also apply the
transformation. Then the intersection of the correct branch of the transformed
hyperbola σ(H) = H̃ and the transformed bisector σ(F ) contains the transformed
optimal solution σ(x∗) and when we invert the transformation we get the optimal
solution x∗. First of all we rotate the branch, such that its major axis M is the
x-axis. Since the major axis is {λA : λ ∈ R}, we rotate by θ = −ϕA, where ϕA is

determined by A = ‖A‖2 ·
(

cos(ϕA)
sin(ϕA)

)
and denote the map as

Rθ

((
z1

z2

))
=

(
cos(θ) − sin(θ)
sin(θ) cos(θ)

)(
z1

z2

)
.

After applying Rθ to E, we only need to translate the rotated midpoint of the foci
to the origin. The rotated midpoint is the midpoint of the two rotated foci, thus

given by

(‖A‖2
2

0

)
and the translation T of this point to the origin is

T

((
z1

z2

))
=

(
z1

z2

)
+

(
−‖A‖2

2

0

)
.

After having applied the rotation and the translation, the branch of the hyperbola
fits the standard form as in (4.11), and our transformation σ can be expressed as
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A′

B′

x∗
′

Figure 4.4: The points and sets from Figure 4.3 after applying σ = T ◦Rθ.

σ = T ◦Rθ. The standard parametrization of H is

H =

{(
x
y

)
∈ R2 :

x2

a2
− y2

b2
= 1

}
=

{(
−a · cosh(t)
b · sinh(t)

)
: t ∈ R

}
. (4.12)

One branch of the standard parametrized H corresponds to a · cosh(t) and the other
branch to −a · cosh(t). Since σ(E) is the branch of the hyperbola where

‖σ(A)− x‖2 =

∥∥∥∥(‖A‖22

0

)∥∥∥∥
2

≥
∥∥∥∥(−‖A‖22

0

)∥∥∥∥
2

= ‖σ(0)− x‖2

holds, we get the branch with negative values of x, i.e.,

σ(E) =

{(
−a · cosh(t)
b · sinh(t)

)
: t ∈ R

}
.

When we apply σ to the line F as in the figures, we can calculate the intersection
of σ(F ) and σ(E) and obtain the optimal solution to our problem by applying σ−1.
An important observation is, that |E ∩F | = 2 might hold. In this case, one point of
E ∩ F is contained in M+ and one is contained in M−, where M+,M− are the half
spaces induced by the major axis M . The next lemma states a condition, which of
the two points in E ∩ F yields the optimal solution in case that |E ∩ F | = 2.
Recall, that A 6= B ∈ R2

+, ‖A‖2 ≥ ‖B‖2 and that if B = λA with 0 ≤ λ < 1 it
follows that B ∈ BrA(xA), the smallest enclosing ball of A and A0 as in Lemma 4.20.
For (Pess) we assumed that no facility is contained in the smallest enclosing ball of
the other two. Thus, B 6= λA for λ ∈ R.
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Ā

B̄

x̄∗

Figure 4.5: The points and sets from Figure 4.3, after applying Rθ and then σ.

Lemma 4.25. Let ϕB ∈ [0, π
2
] be such that B = ‖B‖2 ·

(
cos(ϕB)
sin(ϕB)

)
and let ϕA ∈ [0, π

2
]

be determined analogously. Then

{x∗} = D ∩M+ ⇔ ϕB > ϕA and {x∗} = D ∩M− ⇔ ϕB < ϕA,

where D = E ∩ F .

Proof. Since the hyperbola H is symmetric to its major axis M (the line through 0
and A) we consider w.l.o.g. the case where ϕB > ϕA. If ϕB < ϕA we may reflect
B on the major axis to receive this situation and reflect back the optimal solution
resulting from A and the reflected B.
We have already shown that the optimal solution x∗ is contained in D = E ∩F . So
we need to show that x∗ ∈M+.
As D is the intersection of a line with a hyperbola it follows that |D| ≤ 2. We
explicitly construct the point y 6= x∗ in D. Let R denote the reflection upon the
major axis M . As reflections are bijective, there exists a unique point y such that
R(x∗) = y. It follows from the definition of the reflection and the half spaces that
y ∈ M− ⇔ x∗ ∈ M+ and vice versa. Moreover, x∗ ∈ E ⇔ y ∈ E holds due to the
symmetry of the branches of the hyperbola with respect to the major axis M . Thus,
D = {x∗, y}. (On a side note, |D| = 1⇔ x∗ = R(x∗).)
Now in order to show x∗ ∈ M+ we simply prove that the objective of the point
w ∈ D ∩M− is bigger than the objective of the point v ∈ M+. This suffices, as we
already know that the optimal solution is contained in D.
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Consider the transformed versions σ(v), σ(w). The major axis σ(M) is the x-axis,
so for the coordinates of the vectors we have σ(v)1 = σ(w)1, σ(v)2 = −σ(w)2, as R
is simply the reflection upon the x-axis. Since w ∈ D ∩M− we have σ(w)2 < 0, as
σ(M−) = R× R−. Moreover, ϕ(B) > ϕ(A) implies σ(B) ∈ R× R+. Then

(σ(B)2 + σ(w)2)2 < (σ(B)2 − σ(w)2)2

and we can calculate

‖σ(B)− σ(v)‖2
2 = (σ(B)1 − σ(v)1)2 + (σ(B)2 − σ(v)2)2

= (σ(B)1 − σ(w)1)2 + (σ(B)2 + σ(w)2)2

< (σ(B)1 − σ(w)1)2 + (σ(B)2 − σ(w)2)2

= ‖σ(B)− σ(w)‖2.

‖σ(B)− σ(v)‖2
2 < ‖σ(B)− σ(w)‖2 is equivalent to

(1) d(w,B) = ‖B − w‖2 > ‖B − v‖2 = d(v,B)

as σ = T ◦Rθ and rotations and translations are distance preserving. Furthermore,
σ(w)1 = σ(v)1, σ(w)2 = −σ(v)2 imply that ‖w‖2 = ‖v‖2, so

(2) d(w,A0) = ‖w‖2 + r2 = ‖v‖2 + r2 = d(v,A0).

As w, v ∈ E we have ‖w‖2 + r2 = d(w,A0) = d(w,A) and ‖v‖2 + r2 = d(v, A0) =
d(v, A). Together with (2) we receive

(3) d(w,A) = d(v,A).

Now, (1), (2), (3) imply

max(d(A0, w), d(A,w), d(B,w)) ≥ max(d(A0, v), d(A, v), d(B, v)).

If equality would hold then we would have two optimal solutions to (Pess), which
contradicts the uniqueness proven in Theorem 4.18. Thus, it follows that

max(d(A0, w), d(A,w), d(B,w)) > max(d(A0, v), d(A, v), d(B, v))

and the optimal solution has to be v = x∗. As w ∈M−, v ∈M+ by choice it follows
that x∗ ∈ {D ∩M+}.
That |D ∩M+| = 1 follows from |D ∩M | ≤ |D| ≤ 2 and |{w}| = |D ∩M−| = 1.
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In the next theorem we combine the gathered knowledge: The optimal solution is
found in E∩F and in case that |E∩F | = 2 we know which point yields the optimal
solution. Now, we basically plug in y = mx + d gained from the line σ(F ) into the
standard equation form (4.11) of the hyperbola

H =

{(
x
y

)
∈ R2 :

x2

a2
− y2

b2
= 1

}
and then only need to re-transform the obtained solution.

Theorem 4.26. Let a, b, d,m ∈ R be such that

σ(F ) =

{(
x
y

)
∈ R2 : y = mx+ d)

}
, σ(E) =

{(
−a · cosh(t)
b · sinh(t)

)
: t ∈ R

}
.

Consider the quadratic equation

x2

a2
− (mx+ d)2

b2
= 1. (4.13)

If ϕB > ϕA, there exists a unique solution x̄ to (4.13) such that

((
x̄

mx̄+ d

))
∈

σ(D) ∩ R × R+. If ϕB < ϕA, there exists a unique solution x̄ to (4.13) such that((
x̄

mx̄+ d

))
∈ σ(D) ∩ R× R−.

In both cases the optimal solution to (Pess) is given by x∗ = σ−1

((
x̄

mx̄+ d

))
.

Proof. Consider the case ϕB > ϕA. Lemma 4.25 states that the unique optimal
solution to (Pess) is D ∩M+ = {x∗}, so σ(x∗) ∈ σ(D) ∩ σ(M+) = σ(D) ∩ R × R+

holds. Since σ(x∗) ∈ σ(D) = σ(E) ∩ σ(F ) it follows that σ(x∗) =

(
x′

mx′ + d

)
,

so x′ satisfies all requirements. In the proof of Lemma 4.25 we have shown that
D = D ∩ M+ ∪ D ∩ M− = {x∗} ∪ {R(x∗)}, where R is the reflection upon the

major axis M . Let y = R(x∗) ∈ D ∩M−. y ∈ D implies σ(y) =

(
y′

my′ + d

)
and

y ∈M− implies σ(y) ∈ σ(D)∩R×R−. There are two cases: If σ(y) ∈ R× (−∞, 0),
then y 6∈ R × R+ and x′ is the sought unique solution of (4.13). In the other case
σ(y) ∈ R × {0} ⊂ R × R+. But then R(y) = x∗ and |D| = 1 so x′ is again the
sought unique solution of (4.13).
By definition, x∗ is the unique optimal solution of (Pess), and thus

σ(x∗) =

(
x′

mx′ + d

)
⇔ x∗ = σ−1

((
x′

mx′ + d

))
holds as required.
The case ϕB < ϕA works analogously by interchanging roles of M− and M+.
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Example 4.4.3. In this example we depict a case, where |E ∩ F | = 2 (contrary to
figures above, where |E ∩ F | = 1) and demonstrate how to calculate the intersection
σ(E) ∩ σ(F ) and obtain the optimal solution to (Pess). Let

A =

(
8
0

)
, B =

(
0.2
7.8

)
, r2 = 7.5.

Now we calculate the intersection of the transformed versions of F and E. As

ϕ(A) = 0 already, we only need to shift the hyperbola by

(
−4
0

)
to obtain a hyperbola

in standard form.

After shifting we get

σ(A) =

(
4
0

)
, σ(B) =

(
−3.8
7.8

)
.

Now we calculate the parameters for the hyperbola in standard form by using our
original hyperbola in the other representation

σ(H) =

{(
x
y

)
∈ R2 :

x2

a2
− y2

b2
= 1

}
H = {x ∈ R2 : |‖A− x‖2 − ‖x‖2| = r2}

Thus, a = r2
2

= 3.75 and b is calculated via the linear eccentricity c = ‖σ(A)‖2 = 4
and a = 3.75:

b =
√
c2 − a2 =

√
42 − 3.752 ≈ 1.39

Thus, the parametrization of the branch σ(E) is given by

σ(E) =

{(
−a · cosh(t)
b · sinh(t)

)
: t ∈ R

}
≈
{(
−3.75 · cosh(t)
1.39 · sinh(t)

)
: t ∈ R

}
,

σ(F ) is given as the perpendicular bisector of σ(A), σ(B):

F =

{(
0.1
3.9

)
+ λ ·

(
1
1

)}
, with

(
1
1

)
⊥ σ(A)− σ(B).
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σ(A)

σ(B)

σ(x∗)

Figure 4.6: An example where the the perpendicular bisector of σ(A) and σ(B)
intersects the branch σ(E) of the hyperbola twice.

Then computing the intersection σ(E) ∩ σ(F ) we get λ = −0.1 − 3.75 · cosh(t)
from the first coordinate and plugging into the second coordinate we receive 3.8 =
3.75 · cosh(t) + 1.39 · sinh(t). There are two solutions for this equation, t1 ≈ −0.813,
t2 ≈ 0.034, thus |E ∩ F | = 2. Plugging t1 and t2 into the parametrization

p(t) =

(
−3.75 · cosh(t)
1.39 · sinh(t)

)
we get

p(t1) ≈
(
−5.06
−1.26

)
p(t2) ≈

(
−3.75
0.05

)
The optimal solution x∗ is contained in M+, as ϕ(B) > 0 = ϕ(A). So σ(x∗) ∈
σ(M+) which holds for σ(x∗) = p(t2). The retransformation is given by simply

shifting with

(
4
0

)
, so

x∗ =

(
0.25
0.05

)
.

Now that we have found purely algebraic ways to determine the optimal solution
to (Pess), the fixed gate point center problem for only three facilities including A0,
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we can come back to solving the general fixed gate point center problem. Recall
that the idea is to search for the active facilities Ai, Aj ∈ A1 such that the smallest
enclosing ball of A0, Ai, Aj (determined by solving (Pess)) is the solution to the whole
problem. Since the idea of searching the correct active set of facilities is the same as
for the Elzinga-Hearn algorithm we adapt its structure, but based on our gathered
knowledge we need to implement three changes:

i) Theorem 4.19: A0 is always active. ⇒ We only need to find active sets of
cardinality at most two out of the remaining facilities in R2

+.

ii) Lemma 4.22: A1 (the facility with maximal norm) is the only possible facility
to yield an active set of cardinality two including A0.

iii) The subproblem (Pess)(A,B,A0) is solved with Theorem 4.26. a, b can directly
be calculated using ‖A‖2 and ‖A0‖2 = r2. m, d are calculated after the trans-
formation σ has been applied to the line F . The transformation is determined
by ϕA and ‖A‖2.

Implementing these changes, we state our adapted Elzinga-Hearn algorithm, see
Algorithm 2.
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Data: Facilities A = {A1, . . . , Ak} ⊂ R2
+ ordered descendingly with respect

to their norm values, A0 ∈ A2 with maximal norm ‖A0‖2 = r2 > 0 of
all facilities in A2

Initialization: Active set S = {A1}, r1 = ‖A1‖2.
x = r1−r2

2·r1 · A1, r = r1−r2
2

. if (x, r) feasible then
xmax = x, rmax = r1−r2

2
return

end
else

S = S ∪ {Al}, for Al that is farthest away from x.
end
while 1 do

xmax = (0, 0), rmax = 0
x = (0, 0), r = 0
for {Ai, Aj} ⊂ S do

Solve (Pess) for Ai, Aj, A0 with optimal solution x and objective value
r.
if r > rmax then

xmax = x, rmax = r, S ′ = {Ai, Aj}
end

end
if (xmax, rmax) feasible then

return
end
else

S = S ′ ∪ {Al}, for Al that is farthest away from x.
end

end
Output: The optimal solution xmax ∈ R2

+ to (Gmax) with optimal objective
value rmax.

Algorithm 2: The adapted Elzinga-Hearn algorithm for the fixed gate point center
problem.

We repeat some of the earlier arguments to cleanly prove correctness of the algo-
rithm:

Theorem 4.27. Algorithm 2 returns the optimal solution to (Gmax).

Recall, that the term active is always related to the unique optimal solution.

Proof. First of all, Theorem 4.18 ensures existence of a unique optimal solution x∗

to (Gmax). We consider two different cases:
Case 1: There is one active facility in R2

+. Lemma 4.22 states that this can only
be A1. This is checked in the initialization step, so if they are active, the optimal
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solution is found there and the optimal solution is returned.
Case 2: There are at least two active facilities in R2

+. Additionally, Theorem 4.19
states that A0 is always active, so we have three active facilities. Lemma 4.21 implies
that three points on the boundary of a ball with respect to distance d, i.e., our three
active facilities, suffice to uniquely determine Bd

r∗(x
∗), the optimal ball which is the

smallest enclosing ball for the three active facilities.
Hence, it suffices to search for two facilities {Ai, Aj} in R2

+ that determine this
ball, which is done in the while loop. The unique optimal solutions of the (Pess)
subproblems in the while loop are determined by applying Theorem 4.26.
It remains to be shown that the while loop terminates, i.e., that the correct active set
is found. To this end we show that the radius increases in every iteration. Consider
a fixed iteration and let S ′ = {Ai, Aj} be the two facilities that yield (xmax, rmax) for
this iteration. If the optimality check for xmax, rmax does not fail, it is an optimal
solution and we are done. Otherwise, let Ak be the facility which is farthest away
from xmax, i.e., not contained in Brmax(xmax). Then let (x̃, r̃) denote the unique
optimal solution to the problem with facilities {A0, Ai, Aj, Ak} which is the problem
that is solved in the next iteration, i.e., S = {Ai, Aj, Ak}. We now need to show
that r̃ > rmax. Since the first iteration does not yield an optimal solution it follows
that ‖Ak − xmax‖2 > rmax, so (xmax, rmax) 6= (x̃, r̃), so the active set for (x̃, r̃) can
not be {A0, Ai, Aj}, so S ′ 6= {Ai, Aj}. Thus, Ak has to be active and there exists
A ∈ {Ai, Aj} such that {A0, A,Ak} is the active set for (x̃, r̃). Now, if x̃ = xmax,
then r̃ > rmax, because Ak 6∈ Brmax(xmax), but Ak ∈ Br̃(xmax). If x̃ 6= xmax, then
r̃ > r. Otherwise, if r̃ ≤ rmax would hold, then (x̃, r̃) was optimal to {A0, Ai, Aj},
and contradicts (xmax, rmax) being the unique optimal solution for the active set
{A0, Ai, Aj}.
Thus, r̃ > rmax and the value of rmax increases in every iteration. Since there only
is a finite number of subsets {Ai, Aj} ⊂ A1, the algorithm terminates after a finite
amount of steps.

Approximations for the Center Problem in Higher Dimensions

In the previous section we developed an exact solution algorithm based on active
facilities for the fixed gate point center problem in R2. This method, however, does
not generalize to higher dimensions. The first problem is the increased amount of
“degenerate” cases (where 2 ≤ k < n+ 1 facilities are active). The second one is to
find the solution to the non-degenerate case where n + 1 facilities are active, since
there is no trivial generalization of hyperbolas and their parametrizations to higher
dimensions.
Therefore we propose an approach to approximately solve the fixed gate point center
problem for n ≥ 3. Unfortunately, the counterexample of Theorem 4.19 has shown
that with n ≥ 3 we lose the a priori knowledge that A0 is active. Recall that in order
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to determine whether or not A0 is active, we may solve the standard Euclidean center
problem (Sr2) (p.69) for {A1, . . . , Ak}, simply disregarding A0. Note that, since we
may work in higher dimensions it may not be trivial to solve these standard center
problems for very large instances.
Theorem 4.16 has given the reformulation that we heavily used in the previous sec-
tion and in order to avoid solving the fixed gate point center problem in n-dimensions
we state another equivalent reformulation of the problem. The reformulation itself
is not useful for solving the problem since it introduces an uncountable amount of
constraints, but it is an auxiliary problem that we use to develop an approximation
algorithm.

Lemma 4.28. Let CS := ∂Br2(0)∩Rn
− be the boundary of the sphere with radius r2

in Rn
−. Then the following two problems are equivalent.

(Pr2) min r
s.t. ‖Ai − x‖2 ≤ r ∀i = 1, . . . , k

‖x‖2 + r2 ≤ r
x ∈ Rn

+

(PCS) min r
s.t. ‖Ai − x‖2 ≤ r ∀i = 1, . . . , k

‖x− A‖2 ≤ r ∀A ∈ CS
x ∈ Rn

+

Proof. Since the objective functions of both problems are identical, it suffices to
show that the feasible sets coincide. Let (x′, r′) be feasible for (Pr2). Then for any
A ∈ CS we have that ‖x′ − A‖2 ≤ ‖x′‖2 + ‖A‖2 = ‖x′‖2 + r2 ≤ r′ where the latter
inequality holds because x′ is feasible. Thus, (x′, r′) is feasible for (PCS).
Let now x′ be feasible for (PCS) with radius r′. Define y := −r2

‖x′‖2 ·x
′. Then ‖y‖2 = r2

and y ∈ Rn
−, so y ∈ CS. Then it follows that r′ ≥ ‖x − y‖2 = ‖(1 + r2

‖x′‖2 ) · x′‖2 =

‖x′‖2 + r2 and (x′, r′) is feasible for (Pr2).

An important implication of the proof is the following.

Corollary 4.29. Let y∗ := −r2
‖x∗‖2 · x

∗. Then the following problems are equivalent:

(Py∗) min r
s.t. ‖Ai − x‖2 ≤ r ∀i = 1, . . . , k

‖x− y∗‖2 ≤ r
x ∈ Rn

+

(PCS) min r
s.t. ‖Ai − x‖2 ≤ r ∀i = 1, . . . , k

‖x− A‖2 ≤ r ∀A ∈ CS
x ∈ Rn

+
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Obviously we do not know y∗ before we have found the optimal solution (x∗, r∗).
The idea is to generate specific points on CS that approximate y∗, thereby getting
an approximate solution to (PCS). More precisely, we construct a finite subset D of
CS such that the distance of some facility in D to y∗ is as small as possible and then
solve the relaxation

(PD) min r
s.t. ‖Ai − x‖2 ≤ r ∀i = 1, . . . , k

‖x− A‖2 ≤ r ∀A ∈ D
x ∈ Rn

+

A simple way to get such a subset D ⊂ CS is to construct a grid using Cartesian
coordinates in Rn. All points A ∈ CS satisfy ‖A‖2 = r2 so we consider

Ψ : [0, 2π)× [0, π)n−2 → Br2(0) ⊂ Rn

Ψ(ϕ1, ϕ2, . . . , ϕn−1) =



r2 cos(ϕ1)
r2 sin(ϕ1) cos(ϕ2)

r2 sin(ϕ1) sin(ϕ2) cos(ϕ3)
...

r2 sin(ϕ1) · · · · · sin(ϕn−2) cos(ϕn−1)
r2 sin(ϕ1) · · · · · sin(ϕn−1)


.

By construction, Ψ([π, 3
2
π] × [π

2
, π]n−1) = CS. Let Dm ⊂ CS be defined as Dm =

Ψ(Im), with Im being a uniform segmentation of the intervals for the ϕi, i.e., Im =
Cm

1 × . . .× Cm
n−1 with

Cm
1 =

{
kπ

2m
+ π : k = 0, . . . ,m

}
,

Cm
i =

{
kπ

2m
+
π

2
: k = 0, . . . ,m

}
, for i = 2, . . . , n− 1.

If we use our relaxation (PDm) for a specific m, we actually get a fully polynomial-
time approximation scheme when the dimension is fixed and an additional slight
assumption holds. A fully polynomial-time approximation scheme is an ε approxi-
mation algorithm that has a polynomial running time when ε is considered a con-
stant.

Theorem 4.30. Let an instance {A0, A1, . . . , Ak} be given, where r1 = ‖A1‖2 =

maxi=1,...k ‖Ai‖2. Let ε > 0 and set m =
⌈
πr2
√
nr1
ε

⌉
. Moreover, let (x∗, r∗) be the

optimal solution to (Pr2). If r2 ≥ 1√
2
, then the solution (x∗m, r

∗
m) to (PDm) satisfies

(1 + ε)r∗ ≥ maxi=0,...,k d(Ai, x
∗
m) and is found in polynomial running time when ε is

considered a constant.
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Figure 4.7: Illustration of the grid Dm on the surface of the scaled unit ball in R3

and the approximate solution x∗m. The optimal solution of the center
problem is x∗.

91



Proof. First we show (1 + ε)r∗ ≥ maxi=0,...,k d(Ai, x
∗
m). Since x∗m is the optimal

solution to (PDm) we know that ‖x − Ai‖2 ≤ r∗m for i = 1, . . . ,m. Hence, we only
need to calculate the distance d(A0, x

∗
m) = ‖x∗m‖2 + r2. For y∗m := −r2

‖x∗m‖2
·x∗m it holds

that ‖x∗m − y∗m‖2 = ‖x∗m‖2 + r2 = d(A0, x
∗
m) and then

‖x∗m − y∗m‖2 ≤ min
z∈Dm

(‖x∗m − z‖2 + ‖z − y∗m‖2)

≤ min
z∈Dm

(r∗m + ‖z − y∗m‖2) = r∗m + min
z∈Dm

‖z − y∗m‖2

Since y∗m ∈ CS we can bound the distance of y∗m to one of the grid points. Let
y∗m = Ψ(ϕ̃1, ϕ̃2, . . . , ϕ̃n−1). Then by definition of Dm = Ψ(Im) there exist ϕi ∈ Cm

i

such that |ϕi − ϕ̃i| ≤ π
4m

for i = 1, . . . , n− 1. Then we can estimate

‖y∗m − x‖2 = ‖Ψ(ϕ̃1, . . . , ϕ̃n−1)−Ψ(ϕ1, ϕ2, . . . , ϕn−1)‖2

≤ 2r2 ·

∥∥∥∥∥∥∥
 ϕ̃1 − ϕ1

...
ϕ̃n−1 − ϕn−1


∥∥∥∥∥∥∥

2

≤ 2r2 ·

∥∥∥∥∥∥∥


π
4m
...
π

4m


∥∥∥∥∥∥∥

2

=
πr2

√
n

2m
,

because Ψ is differentiable and its derivative is bounded by 2r2, so Ψ is Lipschitz
continuous with constant 2r2 therewith yielding the last estimate.

Recall the definition of m =
⌈
πr2
√
nr1
ε

⌉
. Thus, m ≥ πr2

√
nr1
ε

, so

‖y∗m − x‖2 ≤
πr2

√
n

2m
≤ επr2

√
n

2πr1r2

√
n

=
ε

2r1

.

Thus, we can bound the distance of A0 to x∗m by

d(A0, x
∗
m) = ‖x∗m − y∗m‖2 ≤ r∗m + min

z∈Dm
‖z − y∗m‖2 ≤ r∗m +

ε

2r1

and using that d(Ai, x
∗
m) ≤ r∗m we get the same bound for the objective value of x∗m,

max
i=0,...,k

d(Ai, x
∗
m) ≤ r∗m +

ε

2r1

.

We now show that (1 + ε)r∗ ≥ maxi=0,...,k d(Ai, x
∗
m). Using r1 ≥ r2 and the assump-

tion r2 ≥ 1√
2
, we have

r∗ ≥ r1 + r2

2
≥

1√
2

+ 1√
2

2
=

1√
2

=
1

2 · 1√
2

≥ 1

2r1

,

where the first inequality is a lower bound on r∗ derived by the radius of the smallest
enclosing ball for A0, A1. Moreover, recall that (PDm) is a relaxation of (P ), hence
r∗m ≤ r∗. With these inequalities we get

max
i=0,...,k

d(Ai, x
∗
m) ≤ r∗m +

ε

2r1

≤ r∗ +
ε

2r1

≤ r∗ + εr∗ = (1 + ε)r∗.
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Now it only remains to show that this algorithm has a polynomial running time with
respect to the input parameters k, r1, r2, where the dimension n and ε are considered
to be constants. For the standard center problem in dimension n, the running time
of Megiddo’s algorithm on an instance with k facilities is O((n+ 1)(n+ 1)!k). Since
the dimension does not depend on k, this is linear with respect to k. For our instance
{A0, . . . , Ak} we have the set of facilities Dm ∪{A1, . . . , Ak} when solving (PDm). It
holds that

|Dm| = (m+ 1)n−1 =

⌈
πr2

√
nr1

ε

⌉n−1

,

which is polynomial in r1, r2 and even independent of k. Thus, applying Megiddo’s
algorithm we receive a running time of

O

(
(n+ 1)(n+ 1)!

(
k +

⌈
πr2

√
nr1

ε

⌉n−1
))

,

which is polynomial in k, r1, r2 for fixed n and ε. The generation of the grid is also

done in linear time with respect to
⌈
πr2
√
nr1
ε

⌉n−1

, so we get

O

(
(n+ 1)(n+ 1)!

(
k +

⌈
πr2

√
nr1

ε

⌉n−1
))

as the polynomial overall running time for our approximation.

Even though it is theoretically possible to approximate the problem up to any fixed
precision, there are two drawbacks. The first one is a general flaw of any sort of
fully polynomial-time approximation schemes: The running time is polynomial in 1

ε
,

which results in bad practical computation times when a very small tolerance ε > 0
is chosen. The second problem is that the running time depends on r1 and r2. There
is no a priori bound on these radii beforehand and when working in higher dimen-
sions n, (r1r2)n−1 might also be problematically big. Note that we use Megiddo’s
algorithm and the argument of a fixed dimension to get a polynomial running time
for the algorithm. There are several algorithms (approximations or exact solvers)
for the standard center problem that claim to perform well in practice even for
high dimensions. However, an exact solver for the problem that has a guaranteed
polynomial running time taking the dimension into account is not available to our
knowledge. Thus, it makes sense to choose specific algorithms to solve the relaxation
PDm depending on the instance (and dimension of the space) that one has given.

4.4.3 Fréchet Problem

In this section we consider Fréchet problem (GF) of the fixed gate point problem:
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(GF) min
∑

A∈A d(x,A)
s.t. x ∈ Rn−2

+ ∪ Rn−2
− .

In the following theorem we provide a necessary and sufficient condition for 0 to be
the optimal solution to (GF). Note that the condition that we state in the theorem
slightly differs from the one in Theorem 4.10. Moreover we give a closed formula for
the unique optimal solution, in case that it is not 0.

Theorem 4.31. 0 is the unique optimal solution to (GF) if and only if∥∥∥∥∥∑
A∈Ai

A

∥∥∥∥∥
2

≤
∑
A∈Aj

‖A‖2 for i 6= j ∈ {1, 2}. (4.14)

If 0 is not the optimal solution, let i ∈ {1, 2} be the index such that∥∥∥∥∥∑
A∈Ai

A

∥∥∥∥∥
2

>
∑
A∈Aj

‖A‖2 (4.15)

where j 6= i ∈ {1, 2}. Then

x∗ =
1

M
·

1−

∑
A∈Aj

‖A‖∥∥∥∥ ∑
A∈Ai

A

∥∥∥∥
 ·∑

A∈Ai

A.

is the optimal solution to (GF).

Proof. Before proving the statements we collect several properties of the objective
function. Consider a point x in Rn

+. Then the objective function of (GF) is given by

f(x) =
∑
A∈A1

‖x− A‖2
2 +

∑
A∈A2

(‖x‖2 + ‖A‖2)2.

Analogously, for a point x in Rn
−, we get

f(x) =
∑
A∈A2

‖x− A‖2
2 +

∑
A∈A1

(‖x‖2 + ‖A‖2)2.

In both cases we have that, as a sum of convex functions, f is convex. Moreover,
‖x−A‖2

2 is differentiable on Rn and (‖x‖2 + ‖A‖2)2 = ‖x‖2
2 + 2‖A‖2‖x‖2 + ‖A‖2

2 is
differentiable everywhere except at 0.
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To find an optimum of f restricted to an orthant, it suffices to find a local optimum
due to its convexity, which we calculate in what follows. We look for x∗ such that
∇f(x∗) = 0 holds and we already know that the gradient exists for x∗ 6= 0. Now,
for x ∈ Rn

+ \ {0}, ∇f(x) is given by

∇f(x) = 2 ·

(∑
A∈A1

(x− A) +
∑
A∈A2

x

‖x‖
· (‖A‖+ ‖x‖)

)
.

Setting ∇f(x) = 0 and rearranging yields

∇f(x) = 0⇔
∑
A∈A1

x+
∑
A∈A2

(
x+
‖A‖
‖x‖
· x
)

=
∑
A∈A1

A

⇔
(
M +

∑
A∈A2

‖A‖
‖x‖

)
· x =

∑
A∈A1

A, (4.16)

showing that, if ∇f(x) = 0, there exists a λ > 0 such that λx =
∑

A∈A1
A holds.

Considering this equality and scaling the lengths of both vectors to 1 we receive

x

‖x‖
=

λ · x
λ‖x‖

=

∑
A∈A1

A

‖
∑

A∈A1
A‖

.

Rearranging terms of (4.16) and then plugging in, we get that

∇f(x) = 0⇔
(
M +

∑
A∈A2

‖A‖
‖x‖

)
· x =

∑
A∈A1

A

⇔M · x+
∑
A∈A2

‖A‖ ·
( ∑

A∈A1
A

‖
∑

A∈A1
A‖

)
=
∑
A∈A1

A

⇔M · x =
∑
A∈A1

A−
∑

A∈A2
‖A‖

‖
∑

A∈A1
A‖
·
∑
A∈A1

A

⇔ x =
1

M
·
(

1−
∑

A∈A2
‖A‖

‖
∑

A∈A1
A‖

)
·
∑
A∈A1

A.

This formula can analogously be established for x ∈ Rn
− by simply exchanging A1

with A2 and vice versa.
With this formula for a local minimizer at hand we prove the theorem. First, assume
0 is not optimal. As (GF) is obtained as an equivalent formulation for (PF) in a
special case, Theorem 3.5 implies that we have a unique optimal solution x∗. Then
we know that f is differentiable at the optimal solution x∗ 6= 0. W.l.o.g. consider
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the case x∗ ∈ Rn
+ (otherwise use the formula and exchange A1 with A2). As x∗ 6= 0

it satisfies the local optimality condition,

x∗ =
1

M
·

1−
∑

A∈A2
‖A‖∥∥∥∥ ∑

A∈A1

A

∥∥∥∥
 · ∑

A∈A1

A.

That
∑

A∈A1
A ∈ Rn

+ follows from A1 ⊂ Rn
+. As x∗ ∈ Rn

+, this implies that the
scalar

1

M
·
(

1−
∑

A∈A2
‖A‖

‖
∑

A∈A1
A‖

)
> 0.

Thus, ∑
A∈A2

‖A‖ <

∥∥∥∥∥∑
A∈A1

A

∥∥∥∥∥ .
so A1 does not satisfy condition (4.14). For the case x∗ ∈ Rn

− the argumentation is
the same and we get that A2 does not satisfy condition (4.14). Thus, when 0 is not
optimal it follows that one of the sets Ai does not satisfy condition (4.14).
Now we need to prove the other direction. Assume that one of the sets Ai does
not satisfy condition (4.14). W.l.o.g. let this be A1. When A1 does not satisfy
(4.14), it satisfies (4.15) and it follows that A2 cannot satisfy (4.15). In particular,
A2 cannot satisfy the condition from Theorem 4.10, so the optimal solution to (GF)
is not contained in Rn

− \ {0}. As A1 satisfies (4.14) it follows again that the scalar
on the right hand side of the formula

x∗ =
1

M
·
(

1−
∑

A∈A2
‖A‖

‖
∑

A∈A1
A‖

)
·
∑
A∈A1

A

is positive, hence we have a local minimum at 0 6= x∗ ∈ Rn
+. As Rn

− \ {0} does
not contain a minimizer for the problem, the minimizer over Rn

+ yields the optimal
solution. Due to convexity the local optimality of x∗ implies that x∗ is a minimizer
over the convex set Rn

+ and due to uniqueness of the minimizer 0 cannot be optimal.

With this theorem at hand, the fixed gate point problem is easily solved: Simply
check if one of the two Ai satisfies condition (4.14). If this is not the case, 0 is the
unique optimal solution and otherwise the closed formula yields the optimal solution
in the respective orthant.

Altogether we have now shown how to solve the fixed gate point center problems
(GMed), (Gmax), (GF), which solve problems in tree space where the data is contained
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in several pairwise incompatible orthants. This is another example that a nice
reformulation of the tree space problems enables algorithms for Facility Location in
Rn to solve specific location problems in tree space.
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5 Balance Point Algorithms for the
Median Problem in Tree Space

The main problem we address in this thesis is the median problem (PMed), defined in
Chapter 3. We have already seen some solutions to the median problem in specific
cases in Chapter 4, but here we tackle it in general: Given T = {T1, . . . , TM}, we
want to find T ∗ ∈ Tn such that T ∗ minimizes

∑M
i=1 d(Ti, X) amongst all X ∈ Tn.

Until now we have seen that in some cases we may reduce the problem to some sort of
Euclidean median problem variant, but in general this is tough to do. Even though
one can use the canonical embedding ϕ into RN

+ and use the intrinsic metric of ‖ · ‖2

on im(ϕ), this does not simplify the problem, as there are no known polynomial (in
n) algorithms to solve this problem. Hence, we have to find a new ansatz to tackle
the problem, as there is no straightforward reformulation to a solvable Euclidean
location problem.

An existing algorithmic approach to find the median in Hadamard spaces has been
developed in [Bac14a]. Hadamard spaces are complete spaces of global non-positive
curvature, so these methods may in particular be applied to the tree space. For
the median problems on Hadamard spaces Bacak shows that his proximal point
algorithm (PPA) converges to a median for any given starting point. Nonetheless,
in some cases convergence is quite slow. We define the PPA in Section 5.2.4 and
investigate its convergence behavior in the experiment sections, Section 5.2.4 and
Chapter 6 and compare the PPA to our method, we develop in the following. That
the convergence rate is rather slow is not too surprising since it is the median
analogue to Sturm’s algorithm [Stu03]. Sturm’s algorithm is an iterative scheme
converging to the Fréchet mean in spaces of global non-positive curvature. Even
though it converges to the optimal solution and it is known that its convergence
rate is sublinear [MOP15] and hence not satisfying.

Our approach is to develop a heuristic approach that strongly uses the local Eu-
clidean structure of the tree space to try to improve convergence behavior in com-
parison to Bacak’s PPA. Moreover it is desirable to find an algorithm that allows
for a better interpretation of the determined solution, as the PPA only yields ap-
proximate solutions and we have no measure to find out how far away this solution
is from an actual median.

It seems unintuitive to develop a heuristic, when there exists an approximation

99



algorithm that converges to the optimal solution, but we justify why the method
has practical relevance due to its advantageous use of the tree space structures.

Since the chapter is rather extensive we briefly sketch its structure: We develop a
heuristic for the median problem (PMed), which is based on a local improvement
strategy called the Balance Point Algorithm (BPA) which operates on orthants.
Since there is an exponential amount of orthants, we start by developing lower and
upper bounds in Section 5.1 in order to rule out several orthants beforehand. After
we have investigated the bounds we state the Global Balance Point Heuristic in
Section 5.2, including the definition of the BPA as well as experiments. After this
we investigate the convergence of the BPA in Section 5.3 before depicting some
cases that justify and explain the importance of the assumptions needed for the
convergence of the BPA in Section 5.4.

5.1 Bounds for the Median Problem

Bounds for the median problem in Tn have already been investigated by [Coh17] in
a bachelor’s thesis. The lower bounds zL1, zL2 and upper bounds zU1, zU2 we define
in the following, have been introduced in [Coh17]. The other bounds we develop in
the following improve these known bounds: zL3 is always better than zL1 and zL2,
see Theorem 5.2, and zU3, zU4 provide practically improved results, as can be seen
in the experiments of Section 5.1.

Lower Bounds

We start by calculating lower bounds. Recall the definition of complete incompati-
bility, Definition 4.5. With this we introduce the notation

Tc
O := {T ∈ T : Split(T ) completely incompatible with Split(O)}. (5.1)

Now, for a fixed orthant O we show that the optimal objective values of the opti-
mization problems

(L1) zL1 := min
X∈O

∑
T∈T

‖t− x‖2

(L2) zL2 := min
X∈O

( ∑
T∈T∩O

‖t− x‖2 + |Tc
O| · ‖x‖2

)
+
∑
T∈TcO

‖t‖2

(L3) zL3 := min
X∈O

 ∑
T∈T\T cO

‖t− x‖2 + |Tc
O| · ‖x‖2

+
∑
T∈TcO

‖t‖2
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yield lower bounds on the objective min
X∈O

M∑
i=1

d(X,Ti). We refer to the respective

optimization problems by L1,L2, L3.

Theorem 5.1. zL1, zL2, zL3 are lower bounds for min
X∈O

M∑
i=1

d(X,Ti) for any O ⊂ Tn.

Proof. zL1 For each T ∈ T it holds that ‖t − x‖2 ≤ d(T,X), so it also holds for
the sum, i.e., the objective value zL1 satisfies zL1 ≤ minX∈O

∑
T∈T d(T,X).

zL2 For any X ∈ O it holds that∑
T∈T∩O

‖t− x‖2 + |Tc
O| · ‖x‖2 +

∑
T∈TcO

‖t‖2

=
∑

T∈T∩O

‖t− x‖2 +
∑
T∈TcO

(‖t‖2 + ‖x‖2)

=
∑

T∈T∩O

d(T,X) +
∑
T∈TcO

d(T,X)

≤
∑

T∈T∩O

d(T,X) +
∑
T∈TcO

d(T,X) +
∑

T∈T\(O∪TcO)

d(T,X) =
∑
T∈T

d(T,X)

so it also holds for the minimum, zL2 ≤ minX∈O
∑

T∈T d(T,X).

zL3 Similarly as for zL2 we have that for any X ∈ O it holds that∑
T∈T∈T\T cO

‖t− x‖2 + |Tc
O| · ‖x‖2 +

∑
T∈TcO

‖t‖2

=
∑

T∈T\T cO

‖t− x‖2 +
∑
T∈TcO

(‖t‖2 + ‖x‖2)

≤
∑

T∈T∩O

d(T,X) +
∑
T∈TcO

d(T,X) =
∑
T∈T

d(T,X),

hence, zL3 ≤ minX∈O
∑

T∈T d(T,X).

Theorem 5.2. zL3 is the strongest of the three bounds.

Proof. First of all, note that any tree T ∈ T∩O is not in T cO. Thus, T∩O ⊂ T\T cO
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which implies that

zL2 = min
X∈O

( ∑
T∈T∩O

‖t− x‖2 + |Tc
O| · ‖x‖2

)
+
∑
T∈TcO

‖t‖2

≤min
X∈O

 ∑
T∈T\T cO

‖t− x‖2 + |Tc
O| · ‖x‖2

+
∑
T∈TcO

‖t‖2 = zL3.

Now, consider L1 and L3. We use ‖t− x‖2 ≤ d(T,X) once more to get

zL1 = min
X∈O

∑
T∈T

‖t− x‖2

= min
X∈O

 ∑
T∈T\T cO

‖t− x‖2 +
∑
T∈T cO

‖t− x‖2


≤ min

X∈O

 ∑
T∈T\T cO

‖t− x‖2 +
∑
T∈T cO

d(T,X)


= min

X∈O

 ∑
T∈T\T cO

‖t− x‖2 +
∑
T∈T cO

‖x‖2 + ‖t‖2


= min

X∈O

 ∑
T∈T\T cO

‖t− x‖2 + |Tc
O| · ‖x‖2

+
∑
T∈TcO

‖t‖2 = zL3.

The last thing we have to take care of is actually computing the bounds in order to
implement them in our heuristic. Therefore we need to solve median problems in
the tree space restricted to the orthant O. To be able to solve these problems and
compute the bounds, we will transform the problem to RN and then reduce it to a
lower dimension.

The following theorem states an equivalent formulation that

Theorem 5.3. Let T = {T1, . . . , TM} and O be given. W.l.o.g. assume that for
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X ∈ O and for T ∈ Tn arbitrary we have the representations

x =



x1
...

xn−2

0
...
0


=:


x′

0
...
0

 ∈ RN , x′ ∈ Rn−2, t =:

(
t′

t′′

)
∈ RN , t′ ∈ Rn−2, t′′ ∈ RN−n+2.

Then for all T ∈ Tn it holds that

‖t− x‖2 =
(
‖t′ − x′‖2

2 + ‖t′′‖2
2

) 1
2
.

Moreover,

min
X∈O

∑
T∈T

‖t− x‖2 ⇔ min
x′∈Rn−2

+

M∑
i=1

(
‖t′i − x′‖2

2 + ‖t′′i ‖2
2

) 1
2

are equivalent optimization problems.

Proof. Choose X ∈ O and T ∈ Tn arbitrary and define x
′′

:= 0 ∈ RN−(n−2). Then
we have that

‖t− x‖2 =
(
‖t′i − x′‖2

2 + ‖t′′i − x
′′‖2

2

) 1
2 =

(
‖t′i − x′‖2

2 + ‖t′′i ‖2
2

) 1
2

by the Pythagorean theorem in RN . Hence, finding minX∈O
∑M

i=1 ‖ti−x‖2 is equiv-

alent to finding minx′∈Rn−2
+

∑M
i=1

(
‖t′i − x′‖2

2 + ‖t′′i ‖2
2

) 1
2 .

Note that ‖t′′i ‖2
2 does not depend on x′, and that the problem resembles a median

problem in Rn−2. If t
′′
i = 0 for all i, it even is a standard median problem. So

we actually have a generalized version of a median problem. Thus, it is natural to
try solve the problem via an adaptation of an algorithm for the standard median
problem. In the following we adapt the so-called Weiszfeld algorithm. The Weiszfeld
algorithm, introduced by [Wei37], is an iterative procedure and is often described
as ’long-step’ gradient descent method, where the step size is calculated implicitly
in the formula for the next iteration point.
Our goal is to calculate the bounds zL1, zL2, zL3, i.e., to solve the respective opti-
mization problems L1,L2, L3. Note that L2, L3 are weighted median problems,
where all facilities T in the first sum have weight 1 and the facility 0 has weight |T cO|.
Thus, when we reformulate L1,L2, L3 using Theorem 5.3 we get an optimization
problem with the following structure

(MF ) min
∑M

i=1wi (‖Ai − x‖2
2 + ci)

1
2

s.t. x ∈ Rn,
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where facilities A = {A1, . . . , AM} ⊂ Rn are given with weights wi ≥ 0 and some
’fixed costs’ ci ≥ 0. So when we are able to solve (MF ), then we may calculate all
lower bounds.

We now follow the structure in [Kuh73]. The results are the same as in Kuhn’s proof
of convergence for the Weiszfeld algorithm for the Euclidean median problem, but
we adapt all results and proofs to this generalized version of the median problem.
The only difference are the terms

ηi(x) :=
(
‖Ai − x′‖2

2 + ci
) 1

2 =
(
(Ai1 − x1)2 + . . .+ (Ain − xn)2 + ci

) 1
2

≥
(
(Ai1 − x1)2 + . . .+ (Ain − xn)2

) 1
2 = ‖Ai − x‖2,

for i = 1, . . . ,M that depend on ci.
We denote the objective function of (MF ) by

g(x) =
M∑
i=1

wi
(
‖Ai − x‖2

2 + ci
) 1

2 .

With the ηi terms we may rewrite g as g(x) =
∑M

i=1wiηi(x). From the first result
on, our set of facilities is divided into two subsets that behave differently; let A+ =
{Ai : i = 1, . . . ,M s.t. ci > 0} and A0 = {Ai : i = 1, . . . ,M s.t. ci = 0}.
Lemma 5.4. The objective function g is convex on Rn and differentiable on Rn\A0,
with

∇g(x) =
M∑
i=1

wi(x− Ai)
ηi(x)

where existent.

Proof. We start by showing convexity. g is the weighted sum of the ηi. As the
weights are positive, convexity boils down to convexity of the ηi. To show that these
are convex, we reformulate the term to

(
‖Ai − x′‖2

2 + ci
) 1

2 =


∥∥∥∥∥∥∥∥∥


A1 − x1

...
An − xn
c

1
2


∥∥∥∥∥∥∥∥∥

2

2


1
2

=

∥∥∥∥∥∥∥∥∥


A1 − x1

...
An − xn
c

1
2


∥∥∥∥∥∥∥∥∥

2

.

The right hand side is convex if and only if h(x) =

∥∥∥∥(xc
)∥∥∥∥

2

is convex, as it is only

a translation. Choose x, y ∈ Rn and λ ∈ (0, 1), then

h(λx+ (1− λ)y) =

∥∥∥∥(λx+ (1− λ)y
c

)∥∥∥∥
2

=

∥∥∥∥λ(xc
)

+ (1− λ)

(
y
c

)∥∥∥∥
2

≤ λ

∥∥∥∥(xc
)∥∥∥∥

2

+ (1− λ)

∥∥∥∥(yc
)∥∥∥∥

2

= λh(x) + (1− λ)h(y)
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due to to the triangle inequality, so h is convex. That implies convexity of ηi which
in turn implies convexity of g.
As a composition of differentiable functions, we get that g is differentiable on Rn\A,
i.e., all points where ‖ · −Ai‖2 is differentiable. For the facilities in A+ we check
differentiability by investigating the partial derivatives

∂g

∂xi
(x) =

M∑
j=1

wj(xi − Aji)
ηj(x)

.

Take x = Ak ∈ A+. Then ∂g
∂xi

(x) =
∑M

j=1
wj(xi−Aji)

ηj(x)
. Since ck > 0, and hence

ηk(x) > 0, the partial derivatives are continuous functions for all i at x = Ak, Thus,
g is totally differentiable at Ak ∈ A+ with gradient

∇g(x) =
M∑
i=1

wi(x− Ai)
ηi(x)

as for all other x 6∈ A0.

In order to apply a gradient descent method, we’d like to rule out the case that
some facility in A0 is optimal, so that we can use the sufficient optimality criterion
∇g(x) = 0 (since g is convex). The following lemma enables us to check optimality
of the facilities A0 a priori.

Lemma 5.5. Ak ∈ A0 is an optimal solution to (MF ) if and only if

Testk :=

∥∥∥∥∥∥∥
M∑
i=1
i 6=k

wi(Ak − Ai)
‖ηi(Ak)‖2

∥∥∥∥∥∥∥
2

≤ wk.

Proof. For Ak ∈ A0, define g̃k(x) =
∑

i 6=k wiηi(x) and gk(x) = wkηk(x) = wk‖x −
Ak‖2, yielding g(x) = g̃k(x) + gk(x). Now, set

t = −
M∑
i=1
i 6=k

wi(Ak − Ai)
‖ηi(Ak)‖2

= −∇g̃k(Ak),

the direction of steepest descent for g at Ak. For gk(Ak), consider all directions t′

with ‖t′‖2 = ‖t‖2. Then for all ε > 0:

gk(Ak + εt′) = wk‖εt′‖2 = wk‖εt‖2 = gk(Ak + εt),
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so t belongs to the directions of steepest descent for gk, so together, t is the direction
of steepest descent for g at Ak. Since g is convex, local optimality is sufficient for
global optimality, thus

Ak is optimal ⇔ g(Ak + εt) ≥ g(Ak)∀ε > 0 (5.2)

We want to find an equivalent characterization for the right hand side, therefore we
apply a Taylor-expansion of g̃k at Ak in direction εt:

g̃k(Ak + εt) = g̃k(Ak) + ε∇g̃k(Ak)tt+O(ε2).

Since ∇g̃k(Ak) = −t, the second term equals −ε‖t‖2
2. Therewith we calculate

g(Ak + εt)− g(Ak) = g̃k(Ak + εt)− g̃k(Ak) + gk(Ak + εt)− gk(Ak)
⇔ g(Ak + εt)− g(Ak) = −ε‖t‖2

2 + wk‖εt‖2 +O(ε2)

⇒ g(Ak + εt) ≥ g(Ak)⇔ −ε‖t‖2
2 + wkε‖t‖2 ≥ 0⇔ wk ≥ ‖t‖2

which holds for all ε > 0 sufficiently small. Together with (5.2) we conclude that
Ak is optimal if and only if wk ≥ ‖t‖2.

So, first we can check if there exists an optimal solution Ak ∈ A0 and whenever this
is not the case, we know that for any optimal solution x∗ it holds that ∇g(x∗) = 0.
Then we rearrange terms:

∇g(x) = 0⇔
M∑
i=1

wi(x− Ai)
ηi(x)

= 0

⇔x ·
M∑
i=1

wi
ηi(x)

=
M∑
i=1

wiAi
ηi(x)

⇔x =

∑M
i=1

wiAi
ηi(x)∑M

i=1
wi
ηi(x)

=:
Q(x)

P (x)

The idea of Andrew Vázsonyi, also known as Endre Weiszfeld, was to use this
equation as iterative procedure, and set xi+1 = Q(xi)

P (xi)
, for all xi, where the objective

is differentiable. This yields the mapping

T (x) :=

{
Q(x)
P (x)

if x 6∈ A0,

Ai if x = Ai ∈ A0.
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This already describes the iterative algorithm, that we call adapted Weiszfeld algo-
rithm, see Algorithm 3.

Data: x0 ∈ Rn \ A
for l = 1, 2, . . .
do

xl = T (xl−1)
end

Algorithm 3: The adapted Weiszfeld algorithm.

We now investigate properties of optimal solutions and T (x) in more detail:

Lemma 5.6.

i) If x is an optimal solution to (MF ), then T (x) = x.

ii) If x 6∈ A0 and T (x) = x, then x is an optimal solution to (MF ).

iii) Let x∗ be an optimal solution to (MF ), then x∗ ∈ conv(A).

iv) For x 6∈ A0, T (x) = x− h(x)∇g(x) with

h(x) =

∏M
i=1 ηi(x)∑M

k=1wk
∏

i 6=k ηi(x)
.

Proof. i) and ii) follow directly by the definition of T (x) = Q(x)
P (x)

and their derivation.

iii): If x∗ = Ak for Ak ∈ A then x∗ ∈ conv(A). Otherwise,

x∗ = T (x∗) =

∑M
i=1

wiAi
ηi(x∗)∑M

i=1
wi

ηi(x∗)

,

so x∗ is a convex combination of the Ai, because the scalars are
wj

ηj(x∗)∑M
i=1

wi
ηi(x∗)

≥ 0 and
M∑
j=1

wj
ηj(x∗)∑M
i=1

wi
ηi(x∗)

= 1.

iv): Note first, that h(x) ≥ 0 and that ∇g(x) = xP (x) − Q(x). For x 6∈ A0 (we
need ηi(x) > 0 for all i)

h(x)P (x) =
M∑
i=1

wih(x)

ηi(x)
=

M∑
i=1

wi
∏M

j=1 ηj(x)

ηi(x)
∑M

k=1 wk
∏

j 6=k ηj(x)

=

∑M
i=1 wi

∏
j 6=i ηj(x)∑M

k=1 wk
∏

j 6=k ηj(x)
= 1,
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Since P (x) > 0 this also implies h(x) = 1
P (x)

, and plugging everything in we get

T (x) =
Q(x)

P (x)
= x− x+

Q(x)

P (x)
= x− h(x)P (x)x+ h(x)Q(x) = x− h(x)∇g(x).

Lemma 5.7. If T (x) 6= x, then g(T (x)) < g(x).

Proof. T (x) 6= x implies that x 6∈ A0, so

T (x) =

∑M
i=1

wiAi
ηi(x)∑M

i=1
wi
ηi(x)

,

and in Lemma 5.6 iii) we have established that this is a convex combination of the

Ai ∈ A. This implies that T (x) is the unique minimizer of ϕ(y) =
∑M

i=1
wiηi(y)2

ηi(x)
.

This can be seen by rewriting ϕ(y):

ϕ(y) =
M∑
i=1

wi
ηi(x)

‖y − Ai‖2
2 +

M∑
i=1

wi
ηi(x)

ci,

where T (x) is the unique minimizer of the weighted sum of squares and the second
sum is independent of y, so T (x) is the unique minimizer of ϕ(y). This implies

ϕ(T (x)) < ϕ(x) =
M∑
i=1

wi
ηi(x)

ηi(x)2 = g(x)

With this we estimate

g(x) > ϕ(T (x)) =
M∑
i=1

wi
ηi(x)

(
ηi(T (x))− ηi(x) + ηi(x)

)2

=
M∑
i=1

wi
ηi(x)

(
ηi(x)2 + 2ηi(x)(ηi(T (x))− ηi(x)) + (ηi(T (x))− ηi(x))2

)
= 2g(T (x))− g(x) +

M∑
i=1

wi
ηi(x)

(ηi(T (x))− ηi(x))2

⇒ 2g(x) > 2g(T (x)) +
M∑
i=1

wi
ηi(x)

(ηi(T (x))− ηi(x))2

⇒ g(x) > g(T (x)),

where the last implication holds since
∑M

i=1
wi
ηi(x)

(ηi(T (x))− ηi(x))2 ≥ 0.
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The next two lemmata are slightly technical but are crucial to ensure convergence
of the iterative procedure to the optimal solution rather than converging to some
non-optimal facility Ak ∈ A0.

The first lemma states that when the iteration gets close to a non-optimal facility
Ak, but does not hit it, then it is repelled and leaves a certain neighborhood of this
facility after a finite amount of steps.

Lemma 5.8. Let Ak be not optimal. Then there exists some δ > 0 such that the
following holds: If x ∈ Bδ(Ak), x 6= Ak, then there exists some s ∈ N satisfying
‖T s(x)− Ak‖2 > δ and ‖T s−1(x)− Ak‖2 ≤ δ.

Proof.

T (x)− Ak = x− h(x)∇g(x)− Ak = h(x)
M∑
i=1

wi
ηi(x)

(Ai − x)− (Ak − x)

= h(x)
∑
i 6=k

wi
ηi(x)

(Ai − x) +

(
h(x)wk
ηk(x)

− 1

)
(Ak − x)

Since Ak is not optimal, Lemma 5.5 states that∥∥∥∥∥∑
i 6=k

wi
ηi(Ak)

(Ai − Ak)

∥∥∥∥∥
2

> wk,

so there exist δ′ > 0, ε > 0 such that∥∥∥∥∥∑
i 6=k

wi
ηi(Ak)

(Ai − x)

∥∥∥∥∥
2

≥ (1 + 2ε)wk for all x with ‖Ak − x‖2 ≤ δ′. (5.3)

Moreover,

h(x)wk
ηk(x)

=
wk
∏

i 6=k ηi(x)∑M
l=1wl

∏
i 6=l ηi(x)

→ 1 as x→ Ak, since
∏
i 6=l

ηi(x)→ 0 for all l 6= k

because the product then contains ηk(x) = ‖x − Ak‖2 → 0 when x → Ak, and all
other terms are bounded. Hence, there exists some δ′′ > 0, such that∣∣∣∣ h(x)wk

‖x− Ak‖2

− 1

∣∣∣∣ < ε

2(1 + ε)
for all x with 0 < ‖x− Ak‖2 ≤ δ′′. (5.4)
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Let δ = min{δ′, δ′′}, then for all x 6= Ak with ‖x− Ak‖2 ≤ δ we have

‖T (x)− Ak‖2 =

∥∥∥∥∥h(x)
∑
i 6=k

wi
ηi(x)

(Ai − x) +

(
h(x)wk
ηk(x)

− 1

)
(Ak − x)

∥∥∥∥∥
2

≥

∥∥∥∥∥h(x)
∑
i 6=k

wi
ηi(x)

(Ai − x)

∥∥∥∥∥
2

−
∥∥∥∥(1− h(x)wk

ηk(x)

)
(Ak − x)

∥∥∥∥
2

= h(x)

∥∥∥∥∥∑
i 6=k

wi
ηi(x)

(Ai − x)

∥∥∥∥∥
2

−
∣∣∣∣1− h(x)wk

‖x− Ak‖2

∣∣∣∣ ‖x− Ak‖2

(5.3),(5.4)
> h(x)wk(1 + 2ε)− ε

2(1 + ε)
‖x− Ak‖2

=

(
h(x)wk
‖x− Ak‖2

− 1 + 1

)
(1 + 2ε)‖x− Ak‖2 −

ε

2(1 + ε)
‖x− Ak‖2

>

(
1− ε

2(1 + ε)

)
(1 + 2ε)‖x− Ak‖2 −

ε

2(1 + ε)
‖x− Ak‖2

= (1 + ε)‖x− Ak‖2.

Since ‖x − Ak‖2 > 0, there exists some t ∈ N such that (1 + ε)t‖x − Ak‖2 > δ.
Using the above estimation we get ‖T l(x) − Ak‖2 > (1 + ε)l‖x − Ak‖2, so the
existence of t guarantees the existence of s ∈ N such that ‖T s(x) − Ak‖2 > δ and
‖T s−1(x) − Ak‖2 ≤ δ, because for T 0(x) = x, 0 < ‖x − Ak‖2 < δ holds and the
distance monotonically increases.

Lemma 5.9. For Ak ∈ A0 it holds that

lim
x→Ak

‖T (x)− Ak‖2

‖x− Ak‖2

=
Testk
wk

.

Proof. For x 6∈ A0

T (x) =

∑M
i=1

wi
ηi(x)

Ai∑M
i=1

wi
ηi(x)

=

∑
i 6=k

wi
ηi(x)

(Ai − Ak) + Ak
∑M

i=1
wi
ηi(x)∑M

i=1
wi
ηi(x)
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Thus

T (x)− Ak =

∑
i 6=k

wi
ηi(x)

(Ai − Ak)
wi
ηi(x)

,

⇒ T (x)− Ak
‖x− Ak‖2

=

∑
i 6=k

wi
ηi(x)

(Ai − Ak)

wk

(
1 + ‖x−Ak‖2

wk

∑
i 6=k

wi
ηi(x)

)
⇒ lim

x→Ak

‖T (x)− Ak‖2

‖x− Ak‖2

= lim
x→Ak

∥∥∥∥∥∥
∑

i 6=k
wi
ηi(x)

(Ai − Ak)

wk

(
1 + ‖x−Ak‖2

wk

∑
i 6=k

wi
ηi(x)

)
∥∥∥∥∥∥

2

⇔ lim
x→Ak

‖T (x)− Ak‖2

‖x− Ak‖2

=
Testk
wk

Finally, we have gathered all tools to prove the convergence theorem for Algorithm 3.

Theorem 5.10. Given x0 ∈ Rn, define xl = T l(x0) for l ∈ N. If (xl)l∈N ∩ A0 = ∅,
then liml→∞ xl = x∗, where x∗ is an optimal solution to (MF ).

Proof. For l ≥ 1 we have that xl ∈ conv(A), which is compact. Hence, by Bolzano-
Weierstraß there exists x̃ ∈ conv(A) and some subsequence xlr → x̃. We need
to show that x̃ = x∗. Whenever xl+1 = T (xl) for some l, we have optimality by
Lemma 5.6 ii), because xl 6∈ A0 by assumption. Otherwise, Lemma 5.7 states that

g(x0) > g(x1) > . . . ≥ g(x∗)

the xl yield a strictly decreasing and bounded sequence. Hence (g(xl))l∈N converges,
and using continuity of g and T we see that for the limit it holds that

g(x̃) = lim
l→∞

g(xl) = lim
l→∞

g(T (xl)) = g(T ( lim
l→∞

xl)) = g(T (x̃)).

From g(x̃) = g(T (x̃)) we get x̃ = T (x̃), because there is no decrease in g. Then, if
x̃ 6∈ A0, x̃ = x∗ follows by Lemma 5.6.
If x̃ = Ak for some Ak ∈ A0 and Ak is optimal, we are done. So the only remaining
case is x̃ = Ak for some Ak ∈ A0 and Ak is not optimal. Then Lemma 5.8 guarantees
the existence of a subsequence (xlr)r∈N, such that ‖T (xlr)− Ak‖2 > δ for all r ∈ N.
Then

‖T (xlr)− Ak‖2

‖xlr − Ak‖2

≥ δ

‖xlr − Ak‖2

→∞

because x̃ = Ak, implying ‖xlr −Ak‖2 → 0. This, however, yields a contradiction to
Lemma 5.9:

lim
x→Ak

‖T (x)− Ak‖2

‖x− Ak‖2

=
Testk
wk

.

Thus x̃ 6→ Ak for Ak not optimal.
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With Theorem 5.10 at hand, we may now calculate the optimal solutions to the
optimization problems L1, L2, L3, by applying Algorithm 3 to the reformulated
problems that we get after applying Theorem 5.3. We complete this section by
demonstrating the reformulation and application of the algorithm with a very small
example in T4.

Example 5.1.1. Consider the following five splits on {0, 1, 2, 3, 4}

s1 = ({1, 2}|{0, 3, 4}), s2 = ({1, 3}|{0, 2, 4}), s3 = ({1, 4}|{0, 2, 3})
s7 = ({1, 2, 3}|{0, 4}), s9 = ({1, 3, 4}|{0, 2})

which are labeled according to the canonical embedding in T4, see Example 2.1.4. We
have three sample trees T = {T1, T2, T3} with

T1 =
(
(s1, s7), (2, 3)

)
, T2 =

(
(s2, s7), (4, 3)

)
, T3 =

(
(s3, s8), (3, 4)

)
and want to exemplary calculate bounds for the orthant O that has the split set
{s1, s7}.
Now let us calculate zL1 for ort1. Hence, we have to solve

(L1) zL1 := min
X∈O

∑
T∈T

‖t− x‖2.

First we reformulate the embedded vectors according to Theorem 5.3. Note that
we need to switch coordinates 2 and 7 of all canonically embedded (Definition 2.9)
vectors, to meet the requirements of Theorem 5.3. Thus we have

ψ(T1) =



2
0
0
0
0
0
3
0
0
0


→



2
3
0
0
0
0
0
0
0
0


, ψ(T2) =



0
4
0
0
0
0
3
0
0
0


→



0
3
0
0
0
0
4
0
0
0


, ψ(T3) =



0
0
3
0
0
0
0
0
4
0


→



0
0
3
0
0
0
0
0
4
0


and by taking the first two coordinates of the renumbered vectors we receive

t′1 =

(
2
3

)
, t′2 =

(
0
3

)
, t′3 =

(
0
0

)
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and ‖t′′1‖2
2 = 0, ‖t′′2‖2

2 = 9, ‖t′′3‖2
2 = 25. Now we can solve the optimization problem

min
x′∈Rn−2

+

M∑
i=1

(
‖t′i − x′‖2

2 + ‖t′′i ‖2
2

) 1
2
,

which has the same structure as (MF ). When we want to fit the notation of the
definition of (MF ), we simply set c1 = 0, c2 = 16, c3 = 25 and Ai = t′i for i =
1, 2, 3 and we may apply the adapted Weiszfeld algorithm, Algorithm 3 to find the
optimal solution to the problem. Naturally, as the adapted Weiszfeld algorithm is an
approximation algorithm, we only determine an approximate optimal solution and
in practice stop when some precision threshold has been reached.
The reformulation of L2 and L3 is very similar so we will only demonstrate it for
L3 as it yields the stronger bound. Recall, that

(L3) zL3 := min
X∈O

 ∑
T∈T\T cO

‖t− x‖2 + |Tc
O| · ‖x‖2

+
∑
T∈TcO

‖t‖2.

Here it is important to mention that we omit the constant part
∑

T∈TcO
‖T‖2 in

the optimization process, so that we are left with a weighted median problem. In
comparison to the reformulation of L1 we now additionally need to see whether
T ∈ T \ T cO, before reformulating the facilities. T1 ∈ O, so T1 6∈ T cO and s7 ∈
Split(T2) ∩ Split(O), so T2 6∈ T cO as well. T3 was chosen such that Split(T3) and
Split(O) are completely incompatible, thus, T3 ∈ T cO. Thus, when plugging in, we
get the following optimization problem

zL3 = min
X∈O

(‖t1 − x‖2 + ‖t2 − x‖2 + ‖x‖2) + ‖t3‖2,

We define T4 = 0 ∈ T4 to simplify notation and receive

zL3 = min
X∈O

( ∑
i=1,2,4

‖ti − x‖2

)
+ ‖t3‖2.

This implies that we have a different optimization problem than for zL1 as T3 is
’represented’ by T4 = 0 in the optimization problem and ‖t3‖2 is added after the
optimization step. Now we apply the reformulation of Theorem 5.3 and receive

t′1 =

(
2
3

)
, t′2 =

(
0
3

)
, t′4 =

(
0
0

)
,

and ‖t′′1‖2
2 = 0, ‖t′′2‖2

2 = 16, ‖t′′4‖2
2 = 0. So we actually get the same representatives,

but note that the constant changes, as ‖t′′4‖2
2 = 0. Again, to fit notation of (MF )
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we set c1 = 0, c2 = 9, c4 = 0 and Ai = t′i for i = 1, 2, 4 and then start the adapted
Weiszfeld algorithm to find the optimal solution. Note that in contrast to zL1, we
now need to add ‖t3‖2 after having calculated the optimal objective value for (MF ).

The bounds that we calculated for the two reformulated problems using Algorithm 3
are

zL1 = 10.85, zL3 = 12.91

and we see that zL3 is a lot stronger in this case.

Upper Bounds

Recall the definition of Tc
O (5.1) and define the following four upper bounds:

(U1) zU1 :=
∑
T∈T

d(T, T a), where T a ∈ arg min
X∈O

∑
T∈T

‖t− x‖2

(U2) zU2 :=
∑
T∈T

d(T, T b), where T b ∈ arg min
X∈O

( ∑
T∈T∩O

‖t− x‖2 + |Tc
O| · ‖x‖2

)

(U3) zU3 :=
∑
T∈T

d(T, T c), where T c ∈ arg min
X∈O

 ∑
T∈T\T cO

‖t− x‖2 + |Tc
O| · ‖x‖2


(U4) zU4 :=

∑
T∈T

d(T, T d), where T d ∈ arg min
X∈O

( ∑
T∈T∩O

‖t− x‖2 + |T \ O| · ‖x‖2

)

Note, that the optimization problems for U1, U2, U3 on the right hand side are the
optimization problems L1, L2, L3. Thus, we only need to calculate the objective
values in order to get these bounds. Technically, Li are optimization problems, and
the Ui are not. We only gave the upper bound these names to simply refer to them.

Remark 5.1.2. It is important to note that the upper bounds depend on the choice
of the minimizers T a, T b, T c, T d and that the resulting values may differ. So, in
order to make them well defined we either have to take the minimum over all possible
minimizers of the optimization problems, which would yield the best bound, or denote
U1(T a), U2(T b), U3(T c),U4(T d), respectively. In practice we do not care for this
technicality for two reasons: First of all, the minimizers on the right hand side are
unique most of the time. Secondly, we still have an upper bound to work with, even
if there are several minimizers and one of those yields a better bound. Trying to find
the best bound is a big computational effort with very little benefit. In order to ease
notation, we will write U1 instead of U1(T a) in what follows (and the same holds
for U2 - U4).
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Theorem 5.11. For any fixed orthant O ⊂ Tn zU1, zU2, zU3, zU4 are upper bounds
for O and also global upper bounds.

Proof. All four bounds evaluate feasible solutions, namely T a, T b, T c, T d, for the
median problem, naturally yielding global upper bounds. Hence they are also upper
bounds for O itself.

At first glance it looks a bit arbitrary why we choose these specific upper bounds,
as the objective

∑
T∈T d(X,T ) of any tree X ∈ Tn yields an upper bound. For U1

- U3 we already mentioned that zU1, zU2, zU3 are the objective values of the trees
T a, T b, T c that we receive as optimal solutions when calculating the lower bounds,
i.e., by solving L1 - L3. So for these bounds the computational effort reduces to
simply evaluating the objective function of these trees.

An upper bound which we did not receive in this fashion is U4. Actually we first
established

zU ′ =
∑

T∈T\O

‖t‖2 + min
X∈O

( ∑
T∈T∩O

‖x− t‖2 + |T \ O| · ‖x‖2

)
,

as an upper bound. It actually is an upper bound, since d(X,T ) ≤ ‖x‖2 + ‖t‖2 and
thus

∑
T∈T

d(X,T ) =
∑

T∈T∩O

‖x− t‖2 +
∑

T∈T\O

d(X,T )

≤
∑

T∈T\O

‖t‖2 +
∑

T∈T∩O

‖x− t‖2 + |T \ O| · ‖x‖2

holds for all X ∈ O, so it also holds for the minimum. We disregarded zU ′ since zU4

is a better bound:

Lemma 5.12. zU4 ≤ zU ′.

Proof. By definition of zU4, T d is a minimizer of the right hand side, so we may plug
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this minimizer in:

∑
T∈T\O

‖t‖2 + min
X∈O

( ∑
T∈T∩O

‖x− t‖2 + |T \ O| · ‖x‖2

)
=
∑

T∈T\O

‖t‖2 +
∑

T∈T∩O

‖td − t‖2 + |T \ O| · ‖td‖2

=
∑

T∈T\O

(
‖t‖2 + ‖td‖2

)
+
∑

T∈T∩O

‖td − t‖2

≥
∑

T∈T\O

d(T, T d) +
∑

T∈T∩O

‖td − t‖2

=
∑
T∈T

d(T, T d).

As mentioned above, T a, T b, T c are calculated when we compute the lower bounds,
but T d is not. Hence we need to solve

min
X∈O

( ∑
T∈T∩O

‖x− t‖2 + |T \ O| · ‖x‖2

)
.

This can, analogously to the lower bounds, be solved by using our reformulation,
Theorem 5.3, and then applying Algorithm 3.

Experiments

In this section we demonstrate that the bounds we have given in the previous subsec-
tions are easy, i.e., fast to calculate and examine how well they perform for different
sizes and types of instances. All bounds have been calculated in a self implemented
framework for tree space algorithms which include classes for splits, orthants, trees
and several helpful functions and methods. This framework is also used for all other
experiments to follow. In particular we stress that the calculation of all our lower
bounds includes solving an optimization problem; In order to solve these we have
implemented the Weiszfeld algorithm, as well as our adapted version of the Weiszfeld
algorithm that we developed in Section 5.1.
Regarding the technicial specifications, we have implemented all algorithms and
methods in Python 3, the calculations have been executed on a single core of an
Intel(R) Core(TM) i3-2350M and with 4GB RAM.
There are numerous interesting features of the bounds we could investigate here but
since they are not of main importance, but rather a helpful tool for the heuristic
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we develop in the next section, we only focus on two things. Firstly, we examine
how big the gap between the bounds is to get an idea of how good our solutions for
the median problem will be. Secondly, we want to find out how many orthants we
can eliminate or reject by finding an upper bound for some orthant that is lower or
equal than the lower bound for this orthant.
In general, however, it will be hard to depict all results of the bounds. This is due to
the combinatorics of the tree space: Recall that for Tn there exist (2n−3)!! orthants
for which we have to calculate each of the bounds. Naturally, we do not show the
values of the bounds for each orthant, as the size of tables and amount of values of
different bounds is unmanageable.
So in the following we repeatedly conduct experiments for a fixed parameter setting
and average the results of the bounds over all orthants and all instances. Moreover,
we always pick single generic instances and extreme instances to show how the
bounds look like when simply averaged over the orthants of a single instance instead
of averaging over all instances.
As mentioned earlier, we calculate the bounds for (2n− 3)!! orthants. The highest
dimension for which we are able to do this is n = 7 and this is very time consuming
already, so as a performance test we run an experiment on a single instance simply
for the purpose of investigating the computation time, rather than interpreting the
results. Otherwise we perform and compare results of the bounds in detail for
n = 4, 5.

Generation of Data

We use the following parameters to describe and generate instances:

n dimension of the tree space
m number of repeated runs for a fixed parameter setting
o number of orthants to sample the trees from
M number of trees in an instances
W maximal weight of splits

We will always use W = 20 and sample an integer in [0,W ] for the weight of a
split using the uniform distribution. o is the value of orthants to which we restrict
ourselves when sampling trees; this gives a handle on how widely spread the instances
are. When o = 1, we obviously have only a single orthant and a resulting Euclidean
location problem and when o = (2n− 3)!!, then we sample from all orthants of Tn.
The values in between, however, are far more interesting, as the trees are sampled
in ,say, o = 15 of 105 = (10− 3)!! orthants, then it is much more likely that the 15
orthants share a specific split or that one orthant contains a very high number of
trees. The o orthants are a random sample from the (2n−3)!! orthants with respect
to the uniform distribution.
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o ∅ gap in % ∅ rej. orthants ∅ time per instance
5 14.02 7 0.3s
10 10.89 4.4 0.3s
15 10.10 2.5 0.3s

Table 5.1: Bounds experiment in T4 for M = 5 trees, averaged over m = 10 runs
with different numbers of sample orthants o.

o gap in % rej. orthants total time
5 5.71 1.1 3s
10 2.30 1.6 3.8s
15 1.32 2.9 3.9s

Table 5.2: Bounds experiment in T4 for M = 50 trees, averaged over m = 10 runs
with different numbers of sample orthants o.

Finally, the M trees are generated as follows: First choose one of the o sampled
orthants, again with respect to the uniform distribution, and then when the orthant
is chosen, sample the weights for each of the splits of the orthant as described earlier.

Results

We start with the experiments for n = 4. Table 5.1 summarizes the outcomes over
all m = 10 runs for M = 5 for o ∈ {5, 10, 15} and Table 5.2 depicts the outcomes
for m = 10 and M = 50 for o ∈ {5, 10, 15}.
As all experiments we conduct show common trends for the quality of bounds, the
size of the gap, etc., we interpret them after the last experiment. The only thing
we hint at here is that the average computation time in T4 is 0.3s or about 3.5s,
respectively, which is very affordable.
From the 60 instances of the above experiments we picked out three to illustrate
a ‘generic’, a ‘good’ and a ‘bad’ case. These may be found in Figure 5.1. The
illustrations for each instance include the global lower bound (‘globalL’) and the
best upper bound, hence the best global upper bound (‘bestUp’) we determined.
The rightmost bar indicates how many of all orthants could be rejected by the
bounds, i.e., the orthants in which it is clear that they do not contain an optimal
solution.
The topmost instance in Figure 5.1 is a ‘generic’ instance with M = 50 trees in
the sense that its gap and the number of orthants that are rejected are around the
average values from Table 5.2. For M = 50, most of the instances were more or
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Figure 5.1: Generic and extreme instances from the bounds experiments in T4. Both
extreme cases are with M = 5 trees, for M = 50, the results were stable.
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o ∅ gap in % ∅ rej. orthants ∅ total time
5 11.27 28.4 1.9s
25 10.41 7.4 2.1s
75 6.99 3.2 2.0s
105 9.75 11.1 2.0s

Table 5.3: Bounds experiment in T5 for M = 5 trees, averaged over m = 10 runs
with different numbers of sample orthants o.

o ∅ gap in % ∅ rej. orthants ∅ total time
5 5.97 9.9 18.0s
25 2.18 6.8 23.8s
75 1.59 3.8 24.4s
105 1.56 4.0 23.5s

Table 5.4: Bounds experiment in T5 for M = 50 trees, averaged over m = 10 runs
with different numbers of sample orthants o.

less consistently close to these average values. For M = 5, there are more extreme
examples, which is not very surprising, since it is more likely for the trees not to
be spread out too evenly across the sample orthants. The second instance in the
picture depicts an extraordinary ‘good’ case, where only two out of fifteen orthants
remain as candidates to contain the optimal solution. The last instance shows a
rather ‘bad’ case, where the gap is high and not a single orthant could be rejected.
For most of the instances where the gap is considerably higher than 10% it was
usually the case that some orthants could be rejected, which is unfortunately not
the case here.

Now we investigate the bounds for T5. Here, we adapt the amount of orthants in
which the trees are sampled, since there are seven times as many orthants now and
we always want to have one case where the 50 trees are sampled over the whole
space. Moreover, we conduct the experiments for four different values of o, since the
span of values naturally becomes a lot wider.
Table 5.3 summarizes the outcomes over all m = 10 runs for M = 5 for o ∈
{5, 25, 75, 105} and Table 5.4 depicts the outcomes for m = 10 and M = 50 for
o ∈ {5, 25, 75, 105}.
Again, we showcase some of the results for specific instances in Figure 5.2.
Simlilarly to Figure 5.1, in Figure 5.2, the topmost instance is a ‘generic’ instance,
for which the gap and the number of rejected orthants is close to the average values.
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Figure 5.2: Generic and extreme instances from the bounds experiments in T5.
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o gap in % rej. orthants total time
5 2.68 20 2377.6s

10395 0.71 47 3575.8s

Table 5.5: Bounds experiment in T7 for M = 50 trees for two exemplary instances.

The second instance in the picture shows an extraordinary ‘good’ case, where only
under 20% of the orthants remain as candidates to contain the optimal solution, as
86/105 orthants were rejected. The last instance shows an extreme case in the sense
that the relative gap dropped below 1%, showing that margins that are to be gained
by optimization are rather small here and the tree whose objective yields the global
upper bound is a pretty good solution.

As we pronounced earlier, as a performance test we want to compute all bounds on
two exemplary instances, for which the results will, of course, not be representative.
We note that, before starting to calculate the bounds, our framework needs to
generate all splits and orthants for T7 and that there are 10395 orthants in T7.
Surely, there is a faster way to do this, but when implemented in a straightforward
way, the generation of these splits and orthants for T7 already takes several minutes
and the file that stores all orthants is already 2.5MB big. This is why we refrain
from trying to lift this up to even higher dimensions as this would force us to use
computing clusters, which is unnecessary to investigate the behavior of the bounds.
The results of the two runs are shown in Table 5.5
As we may see, the computation times stack up considerably due to the high amount
of orthants. Nonetheless, calculation of bounds in single orthants is in average less
than 0.1s, i.e., extremely low. So in a practical setting one may calculate zL3 for
all orthants and only calculate a few reasonable upper bounds for high dimensional
problems when it is too time consuming to calculate all bounds.

Now that we have seen several experiments we can interpret the influence of dimen-
sion, number of trees and number of orthants.
The most obvious results are obtained for higher numbers of trees. For all dimen-
sions we observe a proportional connection between the number of trees and the
computation times. This is not surprising, since all lower bounds are calculated by
solving optimization problems; these problems are solved by the Weiszfeld algorithm
or by our adapted Weiszfeld algorithm from Section 5.1. Both algorithms depend
linearly on the number of trees in each iteration, so the proportional connection was
to be expected.
Another observation that we can make for different number of trees is that the
gap gets distinctly lower when the number of trees is higher. This insight is very
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important and intertwined with a lot of other results and interpretations:
The gap actually gets smaller with a higher number of trees and when the instance
is more spread, i.e., sampled over a higher number of instances. This is due to the
structure of the space and the problem. Due to incompatibilities of splits and the
non-positive curvature it is very likely, and often the case in the experiments, that
the star tree is the optimal solution to the problem for very spread instances. This
then results in the optimal solutions to many of the optimization problems also
being the origin in Rn−2

+ . Take for example zL3 and zU3 and assume that 0 is the
minimizer for L3. This is not a very rare case, as the weight |Tc

O| of the facility at 0
is the only weight of the Wever problem that is greater than 1. If 0 is the minimizer,
then the gap of these two bounds is

zU3 − zL3 =
M∑
i=1

d(0, Ti)−

 ∑
T∈T\T cO

‖t− 0‖2 + |Tc
O| · ‖0‖2 +

∑
T∈TcO

‖t‖2

 = 0,

and is thus the optimal objective for this orthant. Of course, there may be different
orthants, for which the lower bounds are smaller than that and make the global
lower bound smaller as well. Then the gap may not be 0 any more, but it seems to
be pretty small in most of these cases.

All in all the experiments show that the bounds perform pretty well: the relative
gap is around 10% or even considerably lower, which was not to be expected a priori.
Moreover, the calculation of the bounds in single orthants is extremely fast and it is
still affordable to calculate them for the whole T7. Unfortunately as the number of
orthants is (2n−3)!!, Theorem 2.12, the calculation of the bounds will at some point
take too long, no matter how fast the bounds for single orthants are implemented.
Also, the number of rejected orthants varies heavily. Of course, this depends on the
instance, but there is a big variance in the number of rejected orthants even for the
instances that are sampled with respect to the same parameters. Thus, one may
not rely on the bounds to consistently reject orthants for all cases. Nevertheless, for
specific instances, where the data is very homogeneous, the bounds are able to rule
out a big amount of orthants.
As for the practical use of the bounds it would make no sense to use zL1 and zL2,
due to Theorem 5.2. Thus, when we use the bounds we only calculate zL3, which
implies that we then only get zU3 as well, as we have to calculate the minimizers for
zL1 and zL2 to calculate zU1 and zU2. Then we are left with zU3 and zU4 as upper
bounds. An interesting observation is that zU4 seems to provide a very reasonable
and stable upper bound for an instance. In all experiments we performed above it
very rarely happened that zU4 has differed for different orthants of a fixed instance.
Additionally, it still yielded the best upper bound for many instances. Hence, when
one needs to rigorously save time one could only calculate zU4 for a single orthant
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and use it as the global upper bound. Nevertheless, in order to reject orthants we
need to calculate zL3 anyways, so calculating zU3 is not the biggest effort as well, as
we only need to calculate the objective value of the minimizer of L3.

5.2 The Global Balance Point Heuristic

In the following we introduce the Global Balance Point Heuristic (GBPH) for the
median problem, which is based on a local improvement strategy, which is called the
Balance Point Algorithm (BPA). The BPA may be applied to all orthants of Tn but
it works on a single fixed orthant at a time and requires a lot of careful handling of
notation. To this end we introduce some conventions for notation to avoid confusion
in the following.

Firstly, the fixed orthant on which the BPA is applied will always be denoted by
O. The orthant embedding ψO : O → Rn−2

+ , compare Definition 2.13, is also
always meant to be defined for O, so we write ψ = ψO. Moreover, we usually
write ‖z − y‖2 = d(Y, Z), when Y, Z ∈ Tn are in the same orthant, but we have
that y = χ(Y ), z = χ(Z) ∈ RN

+ are the canonical embeddings of Y, Z, compare
Definition 2.9. The goal is to reformulate the median problem to Rn−2

+ = ψ(O).
Hence, we use ψ(Y ), ψ(Z) ∈ Rn−2

+ instead and write ‖ψ(Z)−ψ(Y )‖2. This does not
matter since only the zero entries are omitted and ‖ψ(Z)−ψ(Y )‖2 = ‖z−y‖2 holds.
Moreover, the BPA is an algorithm that involves iterates xj ∈ Rn−2

+ , i.e., xj 6∈ RN
+ is

not the canonical embedding of a tree Xj. So for this section it is important to keep
in mind, that the usual relation of capital and lowercase letters via the canonical
embedding does not always hold.

Idea

Before jumping into technical definitions we want to state the idea of the Global
Balance Point Heuristic that we develop in this section. The heuristic consists of
two parts. The first part is a preprocessing strategy with which we discard as many
orthants as possible for which we can show that they do not contain an optimal
solution. Then we are left with several “candidate” orthants that may contain an
optimal solution. The second part of the heuristic is an iterative local improvement
procedure, the BPA, that we apply in each candidate orthant. For each orthant
the BPA yields a solution and in the end we choose the best solution that has been
found as the solution for the GBPH. Now we want to outline the general idea of the
BPA in a fixed orthant. One step of the iteration is depicted in Figure 5.3. The
main idea of the BPA is to replace facilities that are not contained in the orthant O,
where we apply the procedure, by representatives in the orthant. Since each orthant
in Tn is isometric to Rn−2

+ , we can then work within a Euclidean setting.
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Figure 5.3: A sketch of one step of the iterative procedure in a fixed orthant O with
starting point Xs (red). First, choose Bi ∈ O (blue) on Γ(Xs, Ti), that
is farthest away from Xs, then calculate the median Xm (orange) of the
Bi, which are all contained in O.

Suppose now that Xj ∈ O is our current iterate. Then its objective value is∑M
i=1 d(Xj, Ti). We denote the representatives of the facilities Ti by Bi. When

Ti ∈ O we simply set Bi = Ti. Otherwise, the geodesic Γ(Xj, Ti) , parametrized by
γ, has to leave O at some point Bi = γ(ei(Xj)) ∈ ∂O, where ei(Xj) ∈ [0, 1] is the
maximal value such that γ(ei(Xj)) ∈ O. This “exit point” Bi is the representative
for Ti.

With this we can divide the distance d(Xj, Ti) in two parts. The first d(Ti, Bi) is
the part of the geodesic that is outside the O and the second part d(Bi, Xj) is the
part inside O, i.e.,

M∑
i=1

d(Xj, Ti) =
M∑
i=1

d(Ti, Bi) +
M∑
i=1

d(Bi, Xj).

Note, that when Ti ∈ O, we have an ’outside’ contribution of 0 as Ti = Bi. Now, to
improve the objective we will keep the Bi as is, hence the outside part

∑M
i=1 d(Ti, Bi)

will be constant. Recall once more that the key is, that all of the Bi are in O.
Hence, we can just use the Euclidean distance ‖ψ(Bi) − ψ(Xj)‖2 = d(Xj, Bi) and
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the isometric embedding ψ into Rn−2
+ to transform

∑M
i=1 d(Bi, Xj) to a Euclidean

median problem
∑M

i=1 ‖ψ(Bi)− ψ(Xj)‖2.

Now, the minimizer xj+1 of the Euclidean median problem
∑M

i=1 ‖ψ(Bi)− ψ(Xj)‖2

is either a new point Xj+1 = ψ−1(xj+1) with xj+1 6= xj or we terminate the iterative
procedure when xj+1 = xj.

5.2.1 The Balance Point Algorithm

In the previous subsection we have sketched the idea of the heuristic and especially
of its central part, the BPA. We want to formalize this now and start by introducing
the concept of exit points for the representatives of the facilities within the orthant
O. To this end, recall that there exists a unique geodesic connecting two points
Y, Z ∈ Tn and that there is a unique parametrization with constant speed from
[0, 1]→ Tn, compare Theorem 2.21.

Definition 5.13. Given an orthant O, T ∈ Tn\O and x ∈ Rn−2
+ , let γx : [0, 1]→ Tn

denote the parametrization of the geodesic from ψ−1(x) to T . With this, define the
maps

eT : Rn−2
+ → [0, 1], eT (x) = max{λ ∈ [0, 1] : γx(λ) ∈ O} (5.5)

ET : Rn−2
+ → O, ET (x) = γx(eT (x)) (5.6)

and we say that ET (x) is the exit point of the geodesic from ψ−1(x) to T in O.

With this we can define the central notion of balance points :

Definition 5.14. Given T = {T1, . . . , TM} ⊂ Tn and an orthant O, we call X ∈ O
a balance point if for x = ψ(X) it holds that

x ∈ arg min
y∈Rn−2

+

M∑
i=1

‖Bi(x)− y‖2, where Bi(x) =

{
ψ(Ti) if Ti ∈ O,
ψ(ETi)(x) if Ti 6∈ O.

We now formalize the iterative procedure described above and call it Balance Point
Algorithm (BPA) because it terminates when a balance point as defined in Defini-
tion 5.14 is found.
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Data: T = {T1, . . . , TM}, O ⊂ Tn, x0 ∈ intRn−2
+

Result: A balance point XB in O.
for j = 0, 1, 2, . . . do

Set Bi(xj) =

{
ψ(Ti) if Ti ∈ O
ψ(ETi(xj)) if Ti 6∈ O

as in Definition 5.14.

Find xj+1 ∈ arg min
y∈Rn−2

+

∑M
i=1 ‖Bi(xj)− y‖2

if xj+1 = xj then
return ψ−1(xj)

end
Algorithm 4: The Balance Point Algorithm alternates between finding the me-
dian xj of the facilities Bi and calculating new exit points Bi with respect to to
the newly calculated iterate xj until xj = xj−1.

First of all, having formally described the algorithm, we prove that the objective of
the iterates does not increase:

Lemma 5.15. Let xj, xj+1 be successive iterates of the BPA. Then f(ψ−1(xj+1)) ≤
f(ψ−1(xj)).

Proof. Let Xj+1 = ψ−1(xj+1) and Xj = ψ−1(xj). By definition we have that
ψ−1(Bi(xj)) = ETi(xj) is on the geodesic between Xj and Ti, so ‖xj − Bi(xj)‖2 +
d(ETi(xj), Ti) = d(Xj, Ti). Moreover, recall that xj+1 is the minimizer of the Eu-
clidean median problem with respect to Bi(xj) by definition. These two statements
and the application of the triangle inequality (used in the first line) combined yield

f(Xj+1) =
M∑
i=1

d(Xj+1, Ti) ≤
M∑
i=1

d(Xj+1, ETi(xj)) +
M∑
i=1

d(ETi(xj), Ti)

=
M∑
i=1

‖xj+1 −Bi(xj)‖2 +
M∑
i=1

d(ETi(xj), Ti)

= min
y∈Rn−2

+

M∑
i=1

‖y −Bi(xj)‖2 +
M∑
i=1

d(ETi(xj), Ti)

≤
M∑
i=1

‖xj −Bi(xj)‖2 +
M∑
i=1

d(ETi(xj), Ti) = f(Xj),

what was to show.

The question is how Algorithm 4 behaves, when there are several minimizers of

min
y∈Rn−2

+

M∑
i=1

‖Bi(xj)− y‖2.
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There are two cases: The first is that the minimizer is not unique but we get a
solution xj+1 that yields a lower objective than xj. In this case cycling is impossible,
since we can never get xj as a solution again. Hence, the interesting case is what
happens when the objective stays the same:

Lemma 5.16. Let xj ∈ Rn−2
+ be the current iterate of the BPA and let

xj+1 ∈M := arg min
y∈Rn−2

+

M∑
i=1

‖Bi(xj)− y‖2.

If f(ψ−1(xj+1)) = f(ψ−1(xj)), then it holds that Bi(xj) = Bi(xj+1) for i = 1, . . . ,M .

Proof. First assume that Ti ∈ O. Then Bi(x) = ψ(Ti) for all x ∈ Rn−2
+ , in particular

for x = xj and x = xj+1. Now consider Ti 6∈ O. If ψ−1(Bi(xj)) 6∈ Γ(ψ−1(xj+1), Ti),
then

d(ψ−1(xj+1), Ti) < d(ψ−1(xj+1), ψ−1(Bi(xj))) + d(ψ−1(Bi(xj)), Ti)

and continuing the calculations of the proof of Theorem 5.15 we get a contradiction
as it follows that f(ψ−1(xj+1)) < f(ψ−1(xj)). Thus, ψ−1(Bi(xj)) ∈ Γ(ψ−1(xj+1), Ti),
but then Bi(xj) ∈ ∂Rn−2

+ is also the exit point of Γ(ψ−1(xj+1), Ti), i.e., Bi(xj) =
Bi(xj+1).

The essence of Lemma 5.16 is the following: When we use a deterministic algorithm
MA for the Euclidean median problem that takes a set of facilities as input and
returns a median, then we get that

xj+1 =MA({B1(xj), . . . , BM(xj)}) =MA({B1(xj+1), . . . , BM(xj+1)}) = xj+2

and the BPA terminates. This culminates in the following:

Theorem 5.17. If a deterministic procedure is used to solve the Euclidean median
problem in each step, then the BPA does not cycle.

5.2.2 Preprocessing

As we have pointed out earlier, the BPA only works in a fixed orthant of Tn, and
improves the given start solution within the orthant O in each step. However, we do
not know beforehand in which orthant the optimal solution T ∗ is contained, which
brings us back to the problem of finding the “candidate” orthants.
The brute-force approach to tackle this problem is to apply this iterative method for
some starting point in each orthant and then take the best solution of all orthants.
However, this approach is not practical, because the number of orthants is (2n−3)!!,
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hence exponential in n. The better approach is to tackle this problem by discarding
orthants O′ which do not contain an optimal solution. This can be done via a
preprocessing strategy.
The first part of the preprocessing is based on our results from Subsection 3.2.1.
With this we know that we may discard all orthants that contain at least one split
s such that s 6∈

⋃
T∈T

Split(T ), see Theorem 3.4. Additionally we may also discard all

orthants that do not contain all splits s ∈ S∗ =
⋂
T∈T

Split(T ), see Theorem 3.3.

The second part of the preprocessing is based on the bounds on the objective function
that we developed in Section 5.1. For this we use the lower bound zL3 and the upper
bounds zU1, zU2, zU3, zU4 that we established in Section 5.1.
We calculate these bounds for all orthants that are not already discarded after the
split preprocessing we described above. In the end, we check if an orthant O′ has a
lower bound L′ such that L′ ≥ U∗, where U∗ is the smallest upper bound we have
found.If L′ ≥ U∗ we may discard O′, because it contains no optimal solution.
These two preprocessing approaches are implemented in the algorithmic scheme of
our heuristic, that we formulate in the next section.

5.2.3 Pseudocode Formulation of the Heuristic

In order to simplify notation, define n̄ = (2n− 3)!! and let the maximal orthants of
Tn denoted by O1 ∪ . . . ∪ On̄ = Tn. The algorithmic scheme of the GBPH is given
in Algorithm 5.
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Data: T = {T1, . . . , TM}, C = {O1, . . . ,On̄}
Result: The best balance point XB of all orthants.
Initialization: XB = 0 ∈ Tn.

Let W := max
i=1,...,M

{
max

s∈Split(Ti)
wTis

}
and define xs := W

3
· 1 ∈ Rn−2

+

Split Preprocessing:

Let SF =
M⋂
i=1

Split(Ti) be the set of “forced splits” and

let SP =
M⋃
i=1

Split(Ti) be the set of “possible splits”.

for Oi ∈ C do
if SF 6⊂ Split(Oi) OR Split(Oi) 6⊂ SP then
C := C \ {Oi}.

end

Bound Preprocessing:
for Oi ∈ C do

Calculate zL3,zU1,zU2,zU3,zU4 for Oi and let
X l
i ∈ Oi be the minimizer of the optimization problem of L3.

li := L3, ui := min{zU1, zU2, zU3, zU4}
end
Set u∗ = minOi∈C ui
for Oi ∈ C do

if li ≥ u∗ then
C := C \ {Oi}

end

Main Loop:
for Oi ∈ C do

Let Xi be the solution of Algorithm 4 for orthant Oi with starting point
xs.
if f(Xi) < f(XB) then

XB = Xi

end
Output: XB

Algorithm 5: The Global Balance Point Heuristic applies the BPA in each or-
thant that has not been discarded in the preprocessing and yields a balance point
for each orthant. XB is the best balance point that has been found.
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5.2.4 Experiments

In this section the goal is to illustrate how the heuristic works, how good the solutions
of the heuristic are and how big the computational effort is. We investigate these
questions for several types of instances.
We start with a detailed analysis in T4, where we investigate specifically constructed
types of instances, for which we check if the algorithm returned the optimal solu-
tion. We then present experiments for T5 where we investigate computational effort
depending on the type and size of instance and finally provide a performance test
in T6.

The Proximal Point Algorithm

As we do not know the optimal solutions to the instances we randomly generate, we
need a method to compare our results. To this end, we introduce Bacak’s Proximal
Point Algorithm [Bac14a] in the cyclic order version. In the paper, Bacak develops
algorithms to compute the median and the mean in Hadamard spaces. Since the
tree space is a Hadamard space, these algorithms may be deployed here. Instead of
stating the algorithms and the theorem from [Bac14a] in the general and original
versions, we already translate them to our specific tree space setting. To this end, let
T = {T1, . . . , TM} as always, let γ(Y,Z) denote the geodesic from Y ∈ Tn to Z ∈ Tn
and for a given sequence (λk)k∈N0 of positive reals define

tηk(X) = min

{
1,

λk
d(X,Tη)

}
for η = 1, . . . ,M, k ∈ N0.

The formal definition of the cyclic order PPA is given in Algorithm 6.

Data: X0 ∈ Tn, (λk)k∈N s.t.
∑∞

i=0 λk =∞,
∑∞

i=0 λ
2
k <∞,

for k = 0, 1, 2, . . . do

XkM+1 := γ(XkM ,T1)(t
1
k(XkM))

XkM+2 := γ(XkM+1,T2)(t
2
k(XkM+1))

...

XkM+M := γ(XkM+M−1,TM )(t
M
k (XkM+M−1))

end
Algorithm 6: Bacak’s Proximal Point Algorithm in the cyclic order version, see
[Bac14a].

Even though Algorithm 6 looks a bit technical it is a surprisingly simple method: In
each cycle, which consists of calculating the M iterates for a fixed k, the iterate XkM
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is shifted a bit towards T1 resulting in XkM+1 which in turn is shifted a bit towards
T2 and so on and so forth. The shift of the iterates is actually described by moving
on the geodesic between the two points. The sequence (λk) was chosen in such a
way that it is decreasing eventually and hence the parameters tnk that are plugged
into the geodesic are also decreasing eventually, so that there only is a infinitesimal
change from the current iterate XkM+i−1 towards a given tree Ti for big k.
Just as for the algorithm, we also state the convergence theorem, Theorem 3.4,
[Bac14a], in the tree space setting. Furthermore Theorem 3.4, [Bac14a] actually
proves convergence for a class of objective functions with certain properties. In
particular the theorem holds for fMed so we also state it specifically for the median
objective here.

Theorem 5.18 ([Bac14a]). Let (λk)k∈N0 be a sequence of positive reals satisfy-
ing

∑∞
i=0 λk = ∞,

∑∞
i=0 λ

2
k < ∞. Then for any starting point X0 ∈ Tn the se-

quence defined as in Algorithm 6 converges to a minimizer of fMed, i.e., a median
of {T1, . . . , TM}.

In the following we simply refer to the cyclic order version of the PPA as PPA. We
will use the PPA with the sequence (λk)k∈N0 with λk = 1

k+1
for k ∈ N0, or we use

a scaled version of the sequence, i.e., c · λk for k ∈ N0, where c > 0. Independent
of the scaling factor, these sequences all satisfy the requirements of Theorem 5.18,
which implies that PPA converges to a median.
Nonetheless the theorem neither yields a rate of convergence nor a nice stopping
criterion. Due to its cyclic, iterative nature it is really hard to gain some sort of
insight how close one is to the optimal solution. For example, when already starting
the algorithm at the optimal solution it will simply start to circle around it.

Setup and Implementation

The generation of the random instances for the experiments is the same as described
in Section 5.1, just that we use W = 100 as the maximal weight of splits here.
Sometimes we use a specific subset of orthants in, which the trees are sampled, but
will always mention this beforehand. This is to show the behavior of the algorithm
for problems with a special underlying structure.
All algorithms are implemented in Python 3, this includes the preprocessing as well
as the BPA. The BPA in particular includes the calculation of geodesic distances
and the parametrization of the geodesic. We implemented these routines on our
own, since the interface to the Java implementation for the geodesic distance that
was made available by the authors of [OP11] was not sufficient for us to calculate
the parametrizations. Moreover, when testing our algorithm, we realized that there
is a significant speedup in distance calculation, which is probably due to the well
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implemented max-flow problem solvers in the “networkx” library [HSSC08] that we
used. Max-Flow problems arise as the crucial subproblems in the calculation of
the geodesic distance and the parametrization of the geodesic, see [Owe11] for more
details on the algorithm.

Two more important points to mention are the choice of the starting point as well
as the termination condition.
The starting point is chosen such that is is the same for all orthants of a given
instance. The starting point depends on the weights of the trees of an instance and
is defined as

xs :=
W

3
· 1 ∈ Rn−2

+ , with W = max
i=1,...,M

{
max

s∈Split(Ti)
wTis

}
.

Obviously, there is no profound explanation to choose xs other than that it is in
the “middle” of the orthant, i.e., that it is equidistant to all hyperplanes Hi = {x ∈
Rn−2 : xi = 0}. As W is the maximum weight of all splits it is clear that the values
of W · 1 would be far bigger than the ones of the optimal solution, so we scaled by
a factor of 3. Of course, one might develop more sophisticated ways of choosing the
starting point, but good choices heavily depend on the instance. Thus, we simply
chose to fix some simplistic rule that determines the starting point and use it for all
instances in order to get somewhat comparable results.

As the BPA is an iterative scheme we need to bound the number of steps it performs.
Empirically we see that the BPA converges to a point in the orthant and does not
cycle or jump, but it very rarely terminates at an actual balance point. We use two
straightforward ways to terminate the BPA in a reasonable time or at a reasonable
point. The first termination criterion is a cap on the number of maximal iterations,
that we set to 500 for all experiments. The second termination criterion is that the
BPA yields successive iterates whose distance is smaller than 10−9, so we stop the
algorithm when its progress gets marginal.

Note that we also increase efficiency of the preprocessing as follows: Theorem 5.2
implies that we only need to calculate zL3, since it is always at least as good as
zL1 and zL2. Moreover, after having performed the bounds experiments, we decided
to omit the bounds zU1, zU2, as zU1, zU2, zU3 have practically proven to yield rather
similar results in average. We use zU3 as it is easy to obtain when we have solved
L3. Additionally, we calculate zU4, as this was the upper bound that fluctuated
very little but showed good results, compare Section 5.1.

In order to interpret the results of the algorithms, we additionally calculate the
objective of the star tree for every instance, and see if it yields a better solution
than all other balance points. We did this since the star tree tends to be an optimal
solution for very ‘heterogeneous’ or ‘spread’ data and we want to be able to detect,
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when the star tree is better than any balance point solution and if so, if the BPA is
converging towards it or towards a boundary of the orthant at least.
Just as the experiments in Section 5.1, the calculations have been executed on a
single core of an Intel(R) Core(TM) i3-2350M and 4GB RAM.

Experiments in T4

In T4, we conduct two different kinds of experiments. First, we investigate the
behavior of the heuristic on small problems for specific types of instances, after that
we investigate the computation times and the performance on instances of bigger
sizes.

The reason to start with specific types of instances is to showcase how the prepro-
cessing works and how the heuristic behaves in general. To this end we investi-
gate characteristics as the computation time, the size of the gap to the calculated
lower bound and the average amount of orthants that remain after the preprocess-
ing. These trends are already present for small, easily interpretable instances with
M = 10 sample trees.
The four types of instances we want to look at are the following: The first two types
are the neighboring orthant (‘NO’) case and the completely incompatible (‘CI’) case.
We have already defined these cases and developed optimal solution strategies for
those in Chapter 4.
The third type of instance is another interesting special case, where data is contained
in a triple of neighboring orthants, what we call the one-compatible-edge (‘1C’)
case. In this case, we consider three orthants O1,O2,O3 with split sets S1, S2, S3,
respectively, such that

i) O1 and O2 are neighboring orthants

ii) O2 and O3 are neighboring orthants

iii) There exists one split s ∈ S1 and one split s′ ∈ S3 such that s and s′ are
compatible. For all other pairs s̃ ∈ S1, s̃

′ ∈ S3, s̃ is incompatible with s̃′.

We have already seen such a case in Figure 2.12, when looking at examples for
geodesics in T4 but we depict the situation once more in Figure 5.4.
Note that the upper left orthant in Figure 5.4 is not the image of an orthant of tree
space due to the incompatibilities of the splits.
The last type of instance we look at is where trees are randomly spread in T4, i.e.,
we simply sample random trees from all 15 orthants of T4.
The results of the GBPH on these four types of instances are summarized in Ta-
ble 5.6.
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O3 O2

O1

T

X

T2

T3

s1 = ({1, 2}|{0, 3, 4})

s2 = ({1, 3}|{0, 2, 4})

s7 = ({1, 2, 3}|{0, 4})s8 = ({1, 2, 4}|{0, 3})

Figure 5.4: The depiction of the image of an isometric embedding of the three
orthants that yield a “one-compatible-edge” case with an exemplaric
geodesic.

Instance Type ∅ time in s ∅ orthants ∅ gap in % star tree best
NO 12.5 1.5 12.6 0/10
CI 0.1 0 0 0/10
1C 11.9 1.8 15.7 0/10
RND 102.0 7.7 5.6 9/10

Table 5.6: Averaged results of the GBPH on 10 instances of neighboring orthant
sampled sets of 10 trees in T4.

First of all, we note some general trends of the results. One immediately sees, that
the preprocessing is immensely helpful in determining the special structures of the
instances. The average number of orthants that remained after the preprocessing is
very low for the cases where the trees are only sampled in two or three orthants - in
fact, the average number of remaining orthants is notably smaller than the number
of orthants in which the trees have been sampled. Another relation the experiments
emphasize is that the average computation time is strongly dependent on the av-
erage number of orthants. This is not surprising at all, since the computational
effort basically reduces to the BPA: The preprocessing is actually saving a huge
computational effort by discarding orthants in which the BPA has to be applied
and it terminates in a split second. After the preprocessing is done, the computa-
tional effort is to apply the BPA in each orthant. So it was to be expected that
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the relation between computation time and the number of remaining orthants is
rather proportionate. The last general observation is, that, except for the randomly
generated instances, the star tree is never the optimal solution to the problem and
the GBPH solutions are better. This is due to the specific types of instances, where
it is very unlikely that the star tree is the optimal solution to the problem. For
the randomly generated instances, however, it is not very surprising that the star
tree was optimal 9/10 times. But in seven of the nine cases the GBPH found the
star tree as the optimal solution and in the two remaining cases the relative gap of
the solution of the GBPH to the star tree solution was < 10−9%, so the randomly
generated instances have been solved really good as well.

We now proceed to interpret the specific results of the experiments for each type of
instance.

For the ‘NO’-case, the split preprocessing yields exactly the two neighboring or-
thants as remaining orthants, as it identifies the n− 3 common splits and then only
two orthants are left that have splits that are contained in trees. The bound pre-
processing is executed after this. If a lot of trees are contained in one orthant, the
calculated upper bound of that particular orthant is actually lower than the upper
bound of the other orthant in 50% of the cases and the other orthant gets discarded.
Nonetheless, the average gap is rather high for these instances, which is probably
due to the gap of the lower and upper bound in the orthant containing the optimal
solution.

A very interesting case is the ‘CI’-case; it is actually solved by the preprocessing.
This is because zL3 = zU3, thus the optimization problem L3 actually yields the
optimal solution in each orthant. Thus, every orthant that does not contain the
optimal solution is discarded and the optimal solution to the problem is the optimal
solution to L3. The preprocessing is actually implemented such that the orthant
discards itself as its lower bound is greater or equal to its upper bound and it
returns the optimal solution of L3 in the orthant with the lowest upper bound. So
the GBPH finds the optimal solution in the preprocessing step which implies that 0
orthants remain in average.

The ‘1C’-case is slightly more general as the ‘NO’-case and it is not directly solvable
by a Euclidean location problem, as a geodesic from O1 to O3 may actually be the
cone path or a straight line, so that a simple embedding into (R2, ‖·‖2) may not solve
this case. Even though trees are sampled within three orthants (and four different
splits, which is relevant for the split preprocessing), the preprocessing reduced the
number of orthants that may contain an optimal solution to 1.8 in average.

The random case does not carry any specific structure we could investigate here.
Note, that the trend from the experiments for the bounds in Section 5.1 continues
here, as the gap tends to get low, when the instance is very spread across the tree
space. Since the number of trees was only ten, i.e., not every of the 15 orthants
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contains a tree, the preprocessing still works pretty well and reduces the number of
orthants by about 50% in average.
Note that fluctuations in computation times arises from the varying number of
iterations the BPA performs before terminating: In each iteration of the BPA M =
10 geodesic parametrizations are calculated and a Euclidean median problem is
solved. Hence, an orthant for which the BPA performs the maximal amount of
iterations takes significantly longer than in an orthant where the BPA converges to
an optimal solution in the interior and rather quickly terminates to the precision
threshold.

Table 5.6 summarizes several relevant characteristics of the of the GBPH on these
instances, but we have, except for the gap, no verification, how good the results
are. Thus we compare the results of the GBPH with the results of the PPA in
another run on the same instances (we saved the randomly generated instances for
this experiment). Recall, that the PPA converges to the optimal solution. The PPA
was set to terminate after 5000 cycles and was started at the star tree (which is a
good heuristic starting point, as it is equally close to all orthants, and hence never
too far away from an optimal solution).
It turns out that the GBPH yields a better objective value than the PPA in all
instances. Of course, the solution of the PPA could be improved by letting it run
for more cycles, but 5000 is already a respectable number of cycles and the progress
of the algorithm is rather slow. We will discuss this behavior of the PPA in more
detail in Section 6.2.1. Nonetheless, after 5000 cycles, the PPA yields a very good
approximate solution to the median problem.
The distance between the trees the PPA and the GBPH yield was usually very
low and deviated around 10−1. Surprisingly, the maximal distance between the
determined trees of the two methods was as high as 4.2. However, the objective of
the PPA was only 620.23−620.10

620.10
≈ 0.02% higher than the objective of the GBPH, even

though it was quite far away from the BPA solution. Altogether, we see that the
GBPH may in fact compete with the PPA, especially in terms of solution quality,
even though we have no convergence theorem for the GBPH, yet.

Now we turn to the aforementioned second experiment in T4, concerning the com-
putation times. Here we do not compare the results to the PPA, as we are only
interested in the computation times of the algorithm.
Theoretically we would expect the computational effort of the algorithm to grow
linearly in M , as the Weiszfeld-algorithm iterations grow linearly with M , as well
as the number of geodesic parametrizations that need to be calculated. In order
to keep computational effort reasonable, we perform the experiments for the one-
compatible-edge case, where one is usually left with two to three remaining orthants
after the preprocessing. The choice of the one-compatible-edge case does not also
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limit the number of orthants in which we have to apply the BPA, it also offers a
setting where the median will most likely not be the star tree in all cases. The
results (averaged over 100 instances) of this may be found in Table 5.7.

number of trees ∅ time in s ∅ orthants max. iterations
5 5.1 1.77 22
10 17.66 2.22 39
20 21.7 2.48 24
40 28 2.71 9

Table 5.7: Averaged results over 100 instances of the GBPH in T4. We see monotone
behavior of the computation time with respect to the number of trees per
instance, which is strongly effected by the number of orthants for which
the BPA reaches the maximal amount of iterations.

First of all, we recognize the general trend that the computational effort increases
with the number of trees. The theoretical explanation would suggest that it should
grow proportional with the number of trees. Nevertheless, the results show that
there are other indicators that may disrupt a clear proportional behavior. The
column to the most right contains the number of orthants for which the BPA has
reached its maximal amount of 500 iterations. As explained earlier, this strongly
effects the computation time, as the BPA often times stops at about iteration 40
to 50 when it reaches the precision threshold, so the number of iterations is more
than 10 times higher. This explains why the factor of the computation time from
the M = 5 tree instances to M = 10 tree instances is so high. Even though we
calculated 100 instances for each number of trees, it seems as though there was an
usual high number of ‘unlucky’ cases for 10 tree instances where the BPA reached
the maximal amount of iterations.
On the other hand we see a pretty good example of the proportional behavior for
the instances for 5 and 20 trees. The average computation time has increased only
slightly more than by the expected factor of 4. We conjecture that this is due to
the number of maximal iteration instances to be rather equal and that the slight
increase comes from the additional average orthants for which the BPA has to be
applied, since the preprocessing is less effective with more trees present.
Even though many of the above-mentioned arguments for the influences on the com-
putation times are a little bit speculative it seems clear that the computational effort
does not explode with an increased number of trees. Contrary to the expectation,
the computational effort seems to grow a little less than proportionally. This ten-
dency creates the hope, that bigger, real life instances may be tackled with the BPA
and maybe also the GBPH. For the BPA we show the application to a real data set
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in Chapter 6.

We summarize and interpret the key observations of the conducted experiments.
First of all we noticed a tendency that the BPA reaches the maximal number of 500
iterations when it converges to boundary, but very rarely when it converges to a
point in the interior. In the latter case it terminates due to the precision threshold.
This is particularly helpful as it allows us to drastically reduce the computational
effort for smaller instances by simply reducing the maximal number of iterations.
This way, the boundary solutions that yield bad objective values anyways are not
calculated too precisely. The downside of this would be that the result of the GBPH
may get worse when the optimal solution is contained in the boundary of an orthant,
as the BPA may perform less iterations and thus yields a worse result.
In the cases where the BPA terminated due to the precision threshold and has
found a solution in the interior of the orthant, this balance point was always the
best balance point. Combined with the fact that thethe GBPH always yielded a
better solution than the PPA in the first experiment, we might conjecture that the
GBPH actually yields an approximate optimal solution in this case. Hence, there
is hope that the BPA converges to an optimal solution, when starting it in the
orthant that contains a median in its interior. This empirical observation has led
to a convergence analysis of the BPA, when started in the orthant of the optimal
solution, see Section 5.3.

Experiments in T5 and T6

In this section we investigate the GBPH in T5. The behavior of the GBPH did not
change in comparison to T4 in preliminary test runs, it simply took a lot longer, as
the number of orthants is 7 times higher. Thus we restrict ourselves to only two
parameter setting with 5 instances each, but we consider somewhat bigger instances
to see how the heuristic performs on somewhat bigger problems.

sample orthants trees ∅ time in s ∅ orthants ∅gap in %
5 20 367.3 15.4 7.36
20 50 2503 78.6 1.2

Table 5.8: Results of the GBPH on in T5 for two differently spreading sample set-
tings, both averaged over 5 instances.

We sum up the main insights of the experiments, as for T4, but keep it short as the
general trends coincide. The gap is especially low, when the star tree is found to be
the best solution. This happens frequently, when the data is widely spread across
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T5; 20 sample orthants of the 105 total orthants already suffice to depict this trend.
On the other hand, the gap tends to be high when the solution of the GBPH is
contained in the interior of an orthant.

As for the computational effort, we see that the preprocessing still plays a major role
in keeping it reasonable, as it rules out many of the 105 orthants. The computation
time in a single orthant is not too high, as the BPA only takes about 20 to 30
seconds in average to determine an optimal solution in an orthant. So it definitely
takes longer than in T4 for a similar amount of trees, but the main problem is not
the computation time of the BPA in a single orthant rather than the sheer amount
of orthants in which it has to be applied. We continue to investigate this trend of
computational effort in T6.

We have just seen that, depending on the spread or heterogeneity of the sample
trees, the GBPH can already take a rather long time to solve an instance. Since T6

has 9 · 7 · 5 · 3 = 945 orthants, Theorem 2.12, which is 9 times as many as T5, we
only solve two instances with 50 trees each, as the repetition of these experiments
and averaging over them takes too long.

As we have 945 orthants and consider 50 trees, we start to challenge the algorithm
in terms of computational effort.

Similarly to T5, we take one widely spread and one rather ‘centered’ instance. The
trees of the first instance are randomly sampled from all orthants and the 50 trees
of the other instance are sampled in 5 randomly picked orthants.

Instance remaining orthants time in s gap in %
spread 373 19100 0.66

centered 16 520 9.45

Table 5.9: Results of the GBPH on a widely spread sample set of 50 trees in T6 and
of a more homogeneous data set of 50 trees.

After having conducted the experiments in T4 and T5 we do not have too much to
add in terms of interpretation here, especially as the interpretation of two randomly
generated data sets is not too reliable. We rather take note of the continuous trends,
that have already been sketched in the other experiments. Again, the gap for the
spread data set is exceptionally low. The BPA has determined the star tree as the
best solution in a lot of orthants and the lower bounds for the orthants coincide with
the objective value of the star tree, when 0 is the minimizer of L3. This happens
quite frequently, but the global lower bound is the minimum of the lower bounds of
all orthants and for some orthants 0 is not the the minimizer of L3, thereby creating
a gap.
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Moreover, we hint at the computation times which are on the one hand already quite
time consuming with 5.3h for the spread instance. On the other hand this is still
acceptable, as this translates to an average of about 50s of computation time for
the BPA per orthant. This is still reasonable as for a real data set as in Chapter 6
one also only solves a single instance, so with enough time the GBPH should also
terminate for data sets in n = 7. For n = 8, however, it gets close to impossible to
even generate all orthants and do the preprocessing on them as the combinatorics
start to kick in heavily at this point. But as we will see for the real data set, the
BPA, in comparison to the GBPH, still works pretty well for n = 8 and should
continue to do so for slightly larger n.

Evaluation of the GBPH

As a small resumee we point out one major advantage and one disadvantage of
the GBPH. The disadvantage is that it is simply too slow for tree spaces Tn with
n ≥ 7. The exponential amount of orthants could only be somewhat controlled by
the preprocessing and the number of remaining orthants will be overwhelming for
higher dimensions if the data sets do not have a very specific structure. Hence, it is
necessary to combine the GBPH with additional heuristic rules or other methods.
One possibility is to apply heuristic rules that determine which orthants may yield
good solutions. This could for example be an orthant rating function, where an
orthant gets a high rating if its splits are contained in many of the sample trees.
Another idea is to radically change the approach and only use the BPA for a very
specific orthant, namely the orthant that contains the solution of the PPA after
applying it for a prespecified amount of cycles. We apply this hybrid algorithmic
strategy in Chapter 6 on a real data set. Naturally, both of the above-mentioned
strategies might yield cases, where the BPA is not applied in the orthant containing
the optimal solution.

So the disadvantage of the GBPH is its limitation to tree spaces of rather low dimen-
sions. The advantage of the GBPH is the BPA: the BPA did not take unreasonably
long to converge when only applied in a single orthant, so it is likely that it still
works well in higher dimensions. Moreover, it determined approximate optimal so-
lutions (when applied in the orthant that contains them) for all cases where we
verified it via the PPA. This is why we meticulously investigate the convergence
behavior of the BPA, when applied in an orthant that contains an optimal solution,
in the following section.
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5.3 Local Convergence of the BPA

In Subsection 5.2.1 we introduced the BPA and have established that it does not
cycle and that the objective of its iterates does not increase. In this section we have
two goals: In Subsection 5.3.2 we show that the sequence of iterates actually yields
a cluster point and that the sequence of the objective of the iterates converges. The
second goal is to show optimality under certain conditions. If the BPA is started
in an orthant that contains an optimal solution and if the cluster point X∗ of the
iterates satisfies certain, mild conditions, we can prove optimality of X∗, i.e., that
X∗ is a global minimizer of f . This is investigated in Subsection 5.3.3. In order to
get these results we use the framework of the Block-wise Coordinate Descent Method,
that we introduce in Subsection 5.3.1 where we also reformulate BPA in such a way
that we can apply this method.

Note that we talk about local convergence of the BPA: naturally we can only get
convergence to an optimal solution if we apply the BPA in an orthant O ⊂ Tn that
contains an optimal solution to (P ), the median problem in tree space.

5.3.1 The Block-wise Coordinate Descent Method

The block-wise coordinate descent method is a known algorithmic scheme that exists
in several variants. Here, we adopt the setup from [War63].

Given Euclidean spaces E1, . . . , En, let X1, . . . , Xn be compact and convex sets in
E1, . . . , En, respectively. Moreover let X = X1 × . . . × Xn and ϕ : X → R be a
convex function. The goal is to find a global minimizer of ϕ, to which end [War63]
introduces the block-wise coordinate descent method, see Algorithm 7.

Algorithm 7 returns u(`) when no further progress is made. These points are called
stationary points :

Definition 5.19. A point u ∈ X that satisfies

ui ∈ arg min
x∈Xi

ϕ
(
(u0, u1, . . . , ui−1, x, ui+i, . . . , uM)t

)
for i = 1, . . . , n (5.7)

is called a stationary point of ϕ.

In the following theorem we combine the central statements concerning the conver-
gence of the block-wise coordinate descent method to a global minimizer:

Theorem 5.20 ([War63]). Let X and ϕ be as above. Additionally, suppose that the
following two assumptions hold:
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Data: u(0) = (u
(0)
1 , u

(0)
2 , . . . , u

(0)
n ) ∈ X = X1 × . . .×Xn.

Result: A stationary point.
for ` = 0, 1, 2, . . . do

u
(`+1)
1 = arg min

x∈X1

ϕ
(

(x, u
(`)
2 , . . . , u(`)

n )t
)
,

u
(`+1)
2 = arg min

x∈X2

ϕ
(

(u
(`+1)
1 , x, u

(`)
3 , . . . , u(`)

n )t
)
,

...

u(`+1)
n = arg min

x∈Xn
ϕ
(

(u
(`+1)
1 , u

(`+1)
2 , . . . , u

(`+1)
n−1 , x)t

)
.

if u(`+1) = u(`) then
return u(`)

end
Algorithm 7: The block-wise coordinate descent method.

W1 ϕ is continuously differentiable in some neighborhood of every stationary point
x of ϕ.

W2 For every k = 1, . . . , n, and every x̄j ∈ Xj for j = 1, . . . , n, j 6= k denote
x̄−k := (x̄1, . . . , x̄k−1, x̄k+1, . . . , x̄n). Then the function

ϕk(x̄−k) : Xk → R, ϕk(x̄−k)(xk) = ϕ(x̄1, . . . , x̄k−1, xk, x̄k+1, . . . , x̄n)

is strictly convex.

Then, any stationary point x̃ of ϕ is a minimizer of ϕ over X. Moreover, when x′

is an accumulation point of (u(`))`∈N0 (as in Algorithm 7), then x′ is a minimizer of
ϕ over X.

We use notations and definitions close to [War63]. Unfortunately we will see later,
when defining our specific ϕ, that we neither have strict convexity nor do we have
continuous differentiability over the whole set of definition. As this is required for
Theorem 5.20, we cannot apply it. Thus, the remainder of the section is dedicated
to adapting the analysis of the proofs of the convergence from [War63] with the
prerequisites we have.

We first check, that we may restrict ourselves to a compact subset of the tree space
to search for an optimal solution. Then, a single orthant is also restricted to a
compact subset, which is isometric to a Euclidean compact subset as required for
the Xi.
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Theorem 5.21. Let T = {T1, . . . , TM} be an instance of the median problem (P ) in
tree space. Then for any optimal solution X∗ = {(s1, . . . , sk), (w1, . . . , wk)} to (P )
it holds that wi ≤ U for i = 1, . . . , k, where U = maxi=1,...,M

{
maxs∈Split(Ti) w

Ti
s

}
.

Proof. Assume that X =
(
(s1, . . . , sl), (w1, . . . , wl)

)
∈ Tn and that at least one split

si0 satisfies wi0 > U . Now, define the tree X ′ =
(
(s1, . . . , sl), (w

′
1, . . . , w

′
l)
)
, where the

weights w′j = wj for j 6= i0 and w′i0 = U . We want to show that d(Ti, X
′) < d(Ti, X)

for i = 1, . . . ,M implying that f(X ′) =
∑M

i=1 d(Ti, X
′) <

∑M
i=1 d(Ti, X

′) = f(X)
and X cannot be optimal. So let i ∈ {1, . . . ,M} be arbitrary.

First assume that si0 is a double compatible split of X and Ti, recalling Defini-
tion 2.18, and that (A,B) is the minimal support for the geodesic. Then (A,B) is
also the minimal support for X ′ and Ti because the subtrees for which the support is
determined does not depend on double compatible splits. Then the length formula
from Theorem 2.21 applied to the two geodesics yields

d(X,Ti) =

√√√√ k∑
l=1

(‖Al‖2 + ‖Bl‖2)2 +
∑
s∈C

(wXs − w
Ti
s )2

>

√√√√ k∑
l=1

(‖Al‖2 + ‖Bl‖2)2 +
∑
s∈C

(wX′s − w
Ti
s )2 = d(X ′, Ti),

because all terms are the same except for the one corresponding to si0 in the sum
for the double compatible splits. Since wTisi0 ≤ U and wXsi0 = wi0 > U it follows that

(wXsi0 − w
Ti
si0

)2 > (U − wTisi0 )2 = (wX
′

si0
− wTisi0 )2, which implies the strict inequality.

The other case is that si0 is not a double compatible split. Then let Γ(X,Ti) be
given by the path that corresponds to the sequence of trees (Y0, Y1, . . . , Yk−1, Yk) with
Y0 = X, Yk = Ti. Recall the canonical embedding χ : Tn → RN

+ (from Definition 2.9)
of trees into Euclidean space and define yj := χ(Yj) for j = 0, . . . , k. Then

d(X,Ti) =
k∑
j=1

‖yj − yj−1‖2.

Our goal is to construct a path from X ′ to Ti that is shorter than that. To this end
let j0 ≥ 1 be the smallest index such that si0 6∈ Split(Yj0), i.e., si0 ∈ Split(Yj) for
j ≤ j0 − 1. Then define the path (Y ′0 , . . . , Y

′
k) as follows: For j ≥ j0 set Y ′j = Yj.

For j ≤ j0 − 1 we define the trees Y ′j through their embeddings into RN
+ , i.e.,

Y ′j := χ−1(y′j) with

y′j :=

{
yjl , if l 6= k0

U
wi0
yji1 , if l = k0

,
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where k0 is the coordinate of RN
+ corresponding to si0 . Since wi0 > U it follows that

y′k0 < yk0 and moreover y′k0 > 0 since yk0 > 0. This yields

‖y′j − y′j−1‖2 =

√√√√ N∑
l=1

(y′jl − y
′
j−1l

)2

=

√√√√k0−1∑
l=1

(yjl − yj−1l)
2 +

(
U

wi0
yjk0 −

U

wi0
yj−1k0

)2

+
N∑

l=k0+1

(yjl − yj−1l)
2

<

√√√√ N∑
l=1

(yjl − yj−1l)
2 = ‖yj − yj−1‖2

for j = 1, . . . , j0, because of the strict inequality(
U

wi0
yjk0 −

U

wi0
yj−1k0

)2

=

(
U

wi0

)2

· (yjk0 − yj−1k0
)2 < (yjk0 − yj−1k0

)2.

Moreover ‖y′j − y′j−1‖2 = ‖yj − yj−1‖2 for j = j0 + 1, . . . , k. Since j0 ≥ 1 there is at
least one strict inequality so we get

d(X,Ti) =
k∑
j=1

‖yj − yj−1‖2 >
k∑
j=1

‖y′j − y′j−1‖2 ≥= d(X ′, Ti),

because (Y ′0 , . . . , Y
′
k) is a path from X ′ to Ti and the geodesic distance is the infimum

over the lengths of all paths from X ′ to Ti.

This shows d(X,Ti) > d(X ′, Ti) for i = 1, . . . ,M since i was arbitrary. Thus

M∑
i=1

d(X,Ti) >
M∑
i=1

d(X ′, Ti),

so X cannot be optimal.

Now, in order to reformulate the BPA in a way that it fits into the framework of
the block-wise coordinate descent method we introduce a new objective function. It
depends on auxiliary variables, that model the representatives of facilities outside
the orthants (compare Figure 5.3) that are determined by several auxiliary maps
that we introduce later. Note that the representatives of the facilities will be the
weight vectors of the exit points, see Definition 5.13, which we need for the BPA.
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We consider elements u of Rn′
+ with n′ = (n − 2) · (M + 1) and denote them as a

vector of blocks

u =


u0

u1
...
uM

 , where each ui ∈ Rn−2
+ .

Recall, that by definition,
Rn′

+ = R+ × . . .× R+︸ ︷︷ ︸
n′ times

,

but as we consider blocks here and do not want to extensively use the space con-
suming vector notation above, we interpret it as

Rn′

+ = Rn−2
+ × . . .× Rn−2

+︸ ︷︷ ︸
M+1 times

,

so that we may write

u = (u0, u1, . . . , uM) ∈ Rn−2
+ × . . .× Rn−2

+ = Rn′

+ ,

which is frequently used in the following.

In the notation of the block-wise coordinate descent method, each block ui corre-
sponds to an element in Xi = Rn−2

+ and we have M+1 of such blocks. Theorem 5.21
states that for an optimal solution X∗ = ((s1, . . . , sl), (w1, . . . , wl)) in tree space, it
holds that wi ≤ U for i = 1, . . . , l. That implies that when we are in a maxi-
mal orthant O∗ that contains the optimal solution X∗, we may restrict ourselves to
[0, U ]n−2 ⊂ ψO∗ , since the optimal solution has to be contained in that subset. On
a side note, the proof of Theorem 5.21 actually shows that it is possible to restrict
to this compact subset for any maximal orthant O′.
With this restriction to the compact subset we define our new objective function for
the blockwise-coordinate descent method on the compact set [0, U ]n

′
:

ϕ : [0, U ]n
′ → R, ϕ(u) =

M∑
i=1

d(ψ−1(ui), Ti) +
M∑
i=1

‖ui − u0‖2. (5.8)

Thereby we also restrict the auxiliary variables corresponding to the blocks 1, . . . ,M
to [0, U ]n−2, though this is no real restriction: Similar as to the proof of Theorem 5.21
one easily sees that the length wi of the splits si of any point

Y = ((s1, . . . , sl), (w1, . . . , wl)) ∈ Γ(X,Ti)

satisfies
wi ≤ max

Z∈{X,Ti}
{ max
s∈Split(Z)

{wZs }} ≤ U,
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when X ∈ ψ−1([0, U ]n−2).
Hence, for the optimal solution X∗ we also have that the representatives Bi, with
ψ−1(Bi) ∈ Γ(X,Ti), on the boundary of the orthant only have weights of splits that
are all bounded by U .

Of course, ϕ is not a randomly chosen function, but it rose by a specific construction
idea that comes from the block-wise-coordinate descent approach. In each step of the
method one fixes all blocks but one and searches for the minimizer for the variable
block. So it is important to note that for all ui with ψ−1(ui) ∈ Γ(ψ−1(u0), Ti) and
any x ∈ Rn−2

+ the relation d(ψ−1(x), Ti) = d(ψ−1(x), ψ−1(ui)) + d(ψ−1(ui), Ti) =
‖x−ui‖2 +d(ψ−1(ui), Ti) holds, i.e., the triangle inequality is satisfied with equality.
For all points that are not on the geodesic the triangle equality is strict. This is
why points on the geodesic will automatically be chosen later, when minimizing for
some block i = 1, . . . ,M .
The following lemma describes this relation between f and ϕ.

Lemma 5.22. For all u = (u0, . . . , uM) ∈ Rn′
+ it holds that ϕ(u) ≥ f(ψ−1(u0))

and equality holds if and only if for all i ∈ {1, . . . ,M} it holds that ψ−1(ui) ∈
Γ(ψ−1(u0), Ti).

Proof. First we show that the inequality holds. For i = 1, . . . ,M we have that
d(ψ−1(u0), Ti) ≤ d(ψ−1(u0), ψ−1(ui)) + d(ψ−1(ui), Ti) = ‖u0 − ui‖2 + d(ψ−1(ui), Ti).
So for the sum this inequality also holds and we get

f(ψ−1(u0)) =
M∑
i=1

d(ψ−1(u0), Ti) ≤
M∑
i=1

‖u0 − ui‖2 + d(ψ−1(ui), Ti) = ϕ(u).

For the geodesic distance, the triangle inequality d(X,T ) ≤ d(X, Y ) + d(Y, T ) holds
with equality if and only if Y ∈ Γ(X,T ), because otherwise we would get a contradic-
tion to the uniqueness of the geodesic Γ(X,T ). This implies that f(ψ−1(u0))) = ϕ(u)
holds if and only if ψ−1(ui) ∈ Γ(ψ−1(u0), Ti) for all i = 1, . . . ,M .

After we have introduced ϕ we check if the prerequisites of Theorem 5.20 hold. One
important assumption is the onvexity of ϕ. Naturally it makes sense to hope for
the block-wise coordinate descent method to converge to a global minimum if our
objective function is convex; otherwise, the most likely outcome is to simply get
stuck in a local minimum. In order to prove convexity of ϕ, we establish the notion
of convexity on Hadamard-spaces.

Definition 5.23 ([Bac14b]). Let (H, d) be a Hadamard-space. We say that a func-
tion f : H → (−∞,∞] is convex, if for each geodesic γ : [0, 1] → H, the function
f ◦ γ satisfies

f(γ(t)) ≤ (1− t) · f(γ(0)) + t · f(γ(1)),
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for every t ∈ (0, 1). We say f is strictly convex if the inequality is strict, whenever
γ(0) 6= γ(1).

Lemma 5.24 ([Bac14b]). Let (H, d) be a Hadamard-space. For any point x0 ∈ H,
d(·, x0) is a convex function.

We come back to convexity of ϕ. The function ϕ consists of two different kinds of
summands, which we separate in order to analyze them. Therefore we introduce for
i = 1, . . . ,M

gi : Rn′

+ → R, gi(u) := d(ψ−1(ui), Ti)

hi : Rn′

+ → R, hi(u) := ‖ui − u0‖2

and we may decompose ϕ into the parts ϕ(u) =
∑M

i=1 gi(u) +
∑M

i=1 hi(u).

Proposition 5.25. ϕ is a convex function.

Proof. ϕ is given as the sum of the hi and gi and we prove the convexity of these
functions. For any i ∈ {1, . . . ,M} we show that hi is convex in u = (u0, . . . , uM):
Take λ ∈ (0, 1) and x, y ∈ Rn′

+ . Then

hi(λx+ (1− λ)y) = ‖λxi + (1− λ)yi − λx0 − (1− λ)y0‖2

≤ ‖λxi − λx0‖2 + ‖(1− λ)yi − (1− λ)y0‖2

= λhi(x) + (1− λ)hi(y).

Now we show that gi is convex in u = (u0, . . . , uM). Take λ ∈ (0, 1) and x, y ∈ Rn′
+ .

Moreover, let γ : [0, 1] → Tn be the parametrization of Γ(ψ−1(xi), ψ
−1(yi)). In a

single orthant, the distance between two points is the Euclidean distance of the
weight vectors and this implies that the geodesics are Euclidean shortest paths,
i.e., line segments. Since ψ−1(xi) and ψ−1(yi) are in the same orthant, this implies
that the weight vector of a point on the geodesic is simply the convex combination
of xi and yi, ψ(γ(1 − λ)) = λxi + (1 − λ)yi. Note, that γ(0) = ψ−1(x), so we
have λxi + (1 − λ)yi and not (1 − λ)xi + λyi. Now applying ψ−1 on both sides of
ψ(γ(1− λ)) = λxi + (1− λ)yi yields γ(1− λ) = ψ−1(λxi + (1− λ)yi). With this

gi(λx+ (1− λ)y) = d(ψ−1(λxi + (1− λ)yi), Ti) = d(γ(1− λ), Ti)

≤ λd(γ(0), Ti) + (1− λ)d(γ(1), Ti)

= λd(ψ−1(xi), Ti) + (1− λ)d(ψ−1(yi), Ti) = λgi(x) + (1− λ)gi(y),

where we applied convexity of d(·, Ti) on Tn, which was established in Lemma 5.24.
Thus, all summands of ϕ are convex and so is ϕ.
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In order to prove optimality of our algorithm we need the directional derivatives
of ϕ. These are easy to find using the total differentiability that we establish on a
certain region of int (Rn′

+ ).

Proposition 5.26. ϕ is differentiable on int (Rn′
+ ) \ (V ∪W ), where V = {u ∈ Rn′

+ :
∃i ∈ {1, . . . ,M} : ψ−1(ui) = Ti} and W = {u ∈ Rn′

+ : ∃i ∈ {1, . . . ,M} : ui = u0}.

Proof. As a sum of functions, ϕ is differentiable at all points u ∈ int (Rn′
+ ) where

each summand is differentiable, so we consider the functions gi and hi, i = 1, . . . ,M
separately.

hi(u) = ‖ui − u0‖2 is differentiable at u ∈ int (Rn′
+ ) except for Wi = {u ∈ int (Rn′

+ ) :
ui = u0}. That implies that the sum of the hi is differentiable on int (Rn′

+ ) except
on ∪Mi=1Wi = W .

Now consider the gi. Let us start with the easy case of Ti ∈ O. Then gi(u) =
d(ψ−1(ui), Ti) = ‖ui − ψ(Ti)‖2, which is differentiable for all ui 6= ψ(Ti). So in this
case gi is differentiable on int (Rn′

+ ) \ Vi with Vi = {u ∈ int (Rn′
+ ) : ui = ψ(Ti)}.

Suppose now that Ti 6∈ O, so ψ−1(ui) and Ti are not in the same orthant. To
avoid double indexing, let x = ui ∈ Rn−2

+ and ψ−1(x) = X ∈ Tn with X =
((s1, . . . , sn−2), (x1, . . . , xn−2)). Recall the parametrization of the geodesic and the
maximal set of splits C that is compatible with Split(X) and Split(Ti). We prove
continuous differentiability of the partial derivatives but we need to distinguish be-
tween two different types of coordinates xk.

First, consider a component xk, k ∈ {1, . . . , n− 2} such that the corresponding split
sk 6∈ C. Let Aj(x) be the subset of a support 1

(A(x),B) = ((A1(x), . . . , Ak(x)), (B1, . . . , Bk))

of the geodesic Γ(X,Ti) that contains sk. We write Al(x), to stress that the support
and the values of ‖Al(x)‖2 depend on x. In particular, Aj(x) depends on xk, whereas
the other sets Al, l 6= j do not, as they do not contain sk. Then we use the distance

1[MOP15] have considered derivatives of the geodesic distance and have shown that the derivative
is independent of the support that is chosen. This holds, because in the case that there are

multiple possible supports one has that the fractions ‖Ai‖2
‖Bi‖2 = ‖Ai+1‖2

‖Bi+1‖2 are identical, which leaves

the derivative unchanged, as one may see in the resulting derivative.
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formula from Theorem 2.21:

∂gi
∂xk

(x) =
∂(d(ψ(x), Ti))

∂xk
(x) =

∂

(√∑k
l=1(‖Al(x)‖2 + ‖Bl‖2)2 +

∑
s∈C(wsψ(x)− ws(Ti))2

)
∂xk

(x) =

1

2d(ψ(x), Ti)
·
∂
(∑k

l=1(‖Al(x)‖2 + ‖Bl‖2)2 +
∑

s∈C(wsψ(x)− ws(Ti))2
)

∂xk
(x) =

1

2d(ψ(x), Ti)
· ∂ (‖Aj(x)‖2

2 + 2‖Aj(x)‖2 · ‖Bj‖2)

∂xk
(x) =

=
2xk

(
1 +

‖Bj‖2
‖Aj(x)‖2

)
2d(ψ(x), Ti)

=
xk

(
1 +

‖Bj‖2
‖Aj(x)‖2

)
d(ψ(x), Ti)

Hence, the partial derivative of gi at ui = x in direction xk exists and is continuous
if ψ−1(ui) 6= Ti.

For the second case consider a component xk that corresponds to a split sk ∈ C.
Let the length of a split s in Ti be denoted by wTis and for X denote wXs analogously.
This means, that for sk ∈ C, wXsk = xk and for all other splits s ∈ Split(X) \ {sk},
wXs = xj for some j 6= k, which is independent from xk. Then, once again, the
partial derivative for coordinate xk can be derived via the distance formula from
Theorem 2.21:

∂gi
∂xk

(x) =
∂(d(ψ(x), Ti))

∂xk
(x) =

∂

(√∑k
l=1(‖Al‖2 + ‖Bl‖2)2 +

∑
s∈C(wsψ(x)− ws(Ti))2

)
∂xk

(x) =

1

2d(ψ(x), Ti)
·
∂
(∑k

l=1(‖Al‖2 + ‖Bl‖2)2 +
∑

s∈C(wsψ(x)− ws(Ti))2
)

∂xk
(x)

=
2wsk(ψ(x))− 2wsk(Tk)

2d(ψ(x), Ti)
=
xk − wsk(Tk)
d(ψ(x), Ti)

Again, the partial derivative of gi at ui = x in direction xk exists and is continuous if
ψ(ui) 6= Ti. Thus we have that for all cases, the partial derivative at x = ui exists and
is continuous if ψ(ui) 6= Ti, i.e., gi is differentiable on the set int (Rn′

+ )\Vi with Vi :=
{u ∈ int (Rn′

+ ) : ψ(ui) 6= Ti}. Then the sum of the gi is differentiable on all of int (Rn′
+ )

except for ∪Mi=1Vi =: V . Altogether, ϕ is differentiable on int (Rn′
+ ) \ (V ∪W ).
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Proposition 5.26 shows that the facilities Ti that are in orthant O yield non-dif-
ferentiabilities of ϕ. Because we want to check for optimality of a point using the
gradient, we need to take care of these specifically. The following Lemma gives us
an easily verifiable necessary condition for such a facility to be optimal. Recall, that
in this whole section, O is a fixed orthant that contains an optimal solution in which
we model the BPA and for which ψ is defined, in particular O, is not arbitrary.

Lemma 5.27. Let k ∈ {1, . . . ,M} be such that Tk ∈ O. Moreover, define Bi =
PTi(Tk) for i = 1, . . . ,M . Then, if

Testk =

∥∥∥∥∥∥∥
M∑
i=1
i6=k

Bk −Bi

‖Bk −Bi‖2

∥∥∥∥∥∥∥
2

> 1,

where Testk is defined as in Theorem 3.1, Tk is not optimal for (P ).

Proof. We show that from optimality of Tk for (P) it follows that Testk ≤ 1. First
note that, if Tk is optimal for (P ), then Bk has to be optimal for the problem

min
∑M

i=1 ‖x−Bi‖2

s.t. x ∈ Rn−2
+ .

Otherwise, if Bk is not optimal, then we can estimate for an optimal solution x

M∑
i=1

d(ψ−1(x), Ti) ≤
M∑
i=1

‖x−Bi‖2 +
M∑
i=1

d(ψ−1(Bi), Ti)

<
M∑
i=1

‖Bk −Bi‖2 +
M∑
i=1

d(ψ−1(Bi), Ti) =
M∑
i=1

d(Tk, Ti),

which contradicts optimality of Tk.
Now, Theorem 3.1 implies that Bk is optimal to the unweighted median problem if
and only if

Testk =

∥∥∥∥∥∥∥
M∑
i=1
i6=k

Bk −Bi

‖Bk −Bi‖2

∥∥∥∥∥∥∥
2

≤ 1.

The problematic cases are where the algorithm stops at some facility ψ−1(Tk), where
we can’t check for optimality using the gradient. Nevertheless, in practice we may
start the algorithm with several different starting points. When it always hits the
facility ψ−1(Tk), this is an indication, that it is an optimal solution: Otherwise, if
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ψ−1(Tk) was not the optimal solution then there exists a neighborhood N around
the optimal solution for which the objective value is less than for ψ−1(Tk), due to
continuity of the objective. Since the BPA may not increase the objective, this guar-
antees that it cannot converge to ψ−1(Tk) for any starting point y ∈ Rn′

+ such that
y ∈ N . This idea is later (Corollary 5.53) used to construct a convex neighborhood
of the optimal solution for which the BPA converges.

O

Rn−2
+ Rn′

+

R

[0, 1]

ψ−1ψ

ei

f

ϕ

B

γ i

Figure 5.5: Commutative diagram for the most important involved maps for mod-
eling the BPA with the block-wise coordinate descent method with the
auxiliary map B, where B(u0) = (u0, PT1(u0), . . . , PTM (u0))t.

After we have seen several features of the objective function ϕ we now come back
to modeling the BPA using ϕ as objective for the block-wise coordinate descent
method. We want to have representatives of all our facilities T ⊂ Tn in the orthant
O. The easy ones are the Ti ∈ O, where we can simply use ψ(Ti) as a Euclidean
representative. Now we define the representatives for Ti ∈ T\O, so let i be an index
such that Ti 6∈ O. For x ∈ Rn−2

+ let γi(x) : [0, 1] → Tn denote the parametrization
of the geodesic Γ(ψ−1(x), Ti) from ψ−1(x) to Ti. Then, we use the map (5.5), see
Definition 5.13, and set ei(x) = eTi(x). This implies γi(x)(λ) ∈ O for 0 ≤ λ ≤ ei(x)
and γi(x)(λ) 6∈ O for 1 ≥ λ > ei(x).
Thus, it always holds that γi(x)(ei(x)) ∈ ∂O. Note, that whenever x ∈ intRn−2

+ , it
holds that Γ(ψ−1(x), Ti)∩∂O = {γi(x)(ei(x))}, compare Figure 5.6 for an illustration
of different ’cases’ of exit points.
Now we define a map that unifies the choice of representatives for all Ti ∈ T:

PTi : Rn−2
+ → Rn−2

+ , PTi(x) =

{
ψ(γi(x)(ei(x))), if Ti 6∈ O
ψ(Ti), if Ti ∈ O

(5.9)
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T1

T2

T3

P (T1)(x1)

P (T2)(x2)

P (T3)(x3)

x1

x2

x3

O

Figure 5.6: An example for several exit points (marked by squares) and a non-unique
intersection with the boundary of O (dashed red line).

Note, that we emphasize the term “choice” here. The problem is that we have to
make a choice for the auxiliary variables for blocks i = 1, . . . ,M instead of having
unique minimizers.

At the beginning of the section we noted that [War63] makes two specific assump-
tions in order to show that his algorithm converges to the optimal solution. In
particular he supposes that W2 holds that guarantees that the minimizers for each
of the corresponding minimization subproblems, i.e., for each block, are unique. Our
specific ϕ, (5.8), does not meet the assumption W2:

Take any point u ∈ [0, U ](n−2)·(M+1). Then we define

ϕi(u−i) : [0, U ]n−2 → R, ϕi(u−i)(y) = ϕ(u0, . . . , ui−1, y, ui+1, . . . , uM)

for i = 0, 1, . . . ,M as in W2.
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It actually holds that all x, y ∈ ψ(Γ(ψ−1(u0), Ti)) are minimizers, because

ϕi(u−i)(x) = ϕ(u0, . . . , ui−1, x, ui+1, . . . , uM)

= d(ψ−1(x), Ti) + ‖x− u0‖2 +
∑
l 6=i

d(ψ−1(ul), Tl) +
∑
l 6=i

‖ul − u0‖2

= d(ψ−1(u0), Ti) +
∑
l 6=i

d(ψ−1(ul), Tl) +
∑
l 6=i

‖ul − u0‖2

= d(ψ−1(y), Ti) + ‖y − u0‖2 +
∑
l 6=i

d(ψ−1(ul), Tl) +
∑
l 6=i

‖ul − u0‖2

= ϕ(u0, . . . , ui−1, y, ui+1, . . . , uM) = ϕi(u−i)(y),

implying that the ϕi(u−i) have no unique minimizers and are thus also not strictly
convex. The strict convexity is not actually required for the proofs of [War63], he
just demands it in order to ensure uniqueness of minimizers.

Nonetheless, we want to apply the iterative method from [War63], so we have to
adapt the analysis to our situation. Because we do not have unique minimizers of ϕ
with respect to its block coordinates, i.e., no unique solutions for the subproblems,
we have to work around this in all proofs always keeping in mind that we made a
specific choice for the minimizers with (5.9).

That we do not have unique minimizers is bad news for the analysis of the method.
On the other hand, from an algorithmic point of view, the minimization steps for
coordinates 1, . . . ,M are trivial in our case: for a fixed i any point x ∈ Rn−2

+ with

ψ−1(x) ∈ Γ(u
(`+1)
0 , Ti) is optimal. This is where we need to make a specific choice for

the minimizer and we take the exit points PTi(u
(`+1)
0 ). We have to show convergence

of the method with respect to this specific choice and cannot simply apply Warga’s
theorem.

Before we formulate the BPA in the framework of the block-wise coordinate descent
method, we reformulate the block minimization problems by plugging in our ex-
plicit ϕ. Recall that minimization is performed with respect to a single block ui,
where (u1, . . . , ui−1, ui+1, . . . , un) are fixed. The general versions of the minimization
problems are:

arg min
x∈X1

ϕ ((x, u2, . . . , un)) ,

arg min
x∈X2

ϕ ((u1, x, u3, . . . , un)) ,

...

arg min
x∈Xn

ϕ ((u1, u2, . . . , un−1, x)) .
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Now, recall that ϕ(u) =
∑M

i=1 d(ψ−1(ui), Ti) +
∑M

i=1 ‖ui − u0‖2 and Xi = Rn−2
+ for

our blocks i = 0, . . . ,M . Plugging this in we receive

arg min
x∈Rn−2

+

(
M∑
i=1

d(ψ−1(ui), Ti) +
M∑
i=1

‖ui − x‖2

)
,

arg min
x∈Rn−2

+

(
d(ψ−1(x), T1) +

M∑
i=2

d(ψ−1(ui), Ti) + ‖u1 − u0‖2 +
M∑
i=2

‖ui − u0‖2

)
,

...

arg min
x∈Rn−2

+

(
M−1∑
i=1

d(ψ−1(ui), Ti) + d(ψ−1(x), TM) +
M−1∑
i=1

‖ui − u0‖2 + ‖x− u0‖2

)
.

Leaving out constants we get

arg min
x∈Rn−2

+

M∑
i=1

‖x− ui‖2,

arg min
x∈Rn−2

+

(
d(ψ−1(x), T1) + ‖x− u0‖2

)
...

arg min
x∈Rn−2

+

(
d(ψ−1(x), TM) + ‖x− u0‖2

)
.

Then plugging in our choice PTi for the minimization problem with respect to the
blocks i = 1, . . . ,M we are able to describe the BPA in the framework of the block-
wise coordinate descent method, see Algorithm 8.

With the definition of ϕ and the choice of PTi we prove a simple, but important
connection between balance points and stationary points:

Theorem 5.28. X ∈ O is a balance point of f if and only if

v = (ψ(X), PT1(ψ(X)), . . . , PTM (ψ(X)))

is a stationary point of ϕ.

Proof. Let v = (ψ(X), PT1(ψ(X)), . . . , PTM (ψ(X))) for some X ∈ O be a stationary
point. Then the stationary point condition (5.7) for our first block, i = 0, implies

ψ(X) ∈ arg min
y∈Rn−2

+

(
M∑
i=1

‖y − PTi(ψ(X))‖2

)
,
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Data: T = {T1, . . . , TM}, x0 ∈ intRn−2
+ .

Result: A stationary point.
Initialization u(0) = (x0, PT1(u0), . . . , PTM (u0))t.

for ` = 0, 1, 2, . . . do

u
(`+1)
0 = arg min

x∈Rn−2
+

M∑
i=1

‖x− u(`)
i ‖2,

u
(`+1)
1 = PT1

(
u

(`+1)
0

)
...

u
(`+1)
M = PTM

(
u

(`+1)
0

)
if u(`+1) = u(`) then

return u(`)

end
Algorithm 8: The block-wise coordinate descent method with the specific func-
tions to model the BPA and the choice of PTi(u0) as minimizers for the blocks
i = 1, . . . ,M .

so X is a balance point by definition.

Now, let X be a balance point. Again, by definition,

ψ(X) ∈ arg min
y∈Rn−2

+

(
M∑
i=1

‖y − PTi(ψ(X))‖2

)
.

This implies that the stationary point condition (5.7) holds for i = 0. For i =
1, . . . ,M , the stationary point condition holds as well, as vi = PTi(ψ(X)) ∈ Γ(X,Ti)
and is thus a minimizer of (d(ψ−1(y), Ti) + ‖y − ψ(X)‖2) , the optimization problem
with respect to block i.

Note, for the block-wise coordinate descent method in general, one is allowed to pick
any starting point in X and converges to a minimizer of ϕ over X. Here we define
a specific starting point u(0), whose 0-th coordinate x0 is in the interior of Rn−2

+ .
This is to model the BPA as it was defined in Algorithm 4 and it also avoids some
unfortunate cases, where the BPA directly stops at a balance point at the boundary.
Why boundary points are problematic will be described in detail in Section 5.4.
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Moreover, we have set

u
(`+1)
0 = arg min

x∈Rn−2
+

M∑
i=1

‖x− u(`)
i ‖2.

But when the u
(`)
i , i = 1, . . . ,M are collinear, the minimizer is not unique, see

Theorem 3.1. Later, we will rule out non-uniqueness, so that this does not matter
for the proof of convergence. Until then, we choose a deterministic algorithm MA
that solves the Euclidean median problem, so that u

(`+1)
0 is well-defined by setting

u
(`+1)
0 =MA(u

(`)
1 , . . . , u

(`)
M ).

With the formulation of the BPA in the block-wise coordinate descent method frame-
work at hand we prove that this version actually is the same as the BPA, i.e., that
Algorithm 4 and Algorithm 8 yield the same result.

Proposition 5.29. Assume we are given the input data T = {T1, . . . , TM} and
x0 ∈ intRn−2

+ . Let u(`) be the output of Algorithm 8 and X(l) be the output of
Algorithm 4, where both methods use the same deterministic algorithmMA to solve
the Euclidean median problem. Then ψ(X(l)) = u

(`)
0 .

Proof. The algorithms follow the exact same steps: For the given starting point
x0, the minimizer u

(1)
0 = x1 of

∑M
i=1 ‖y − PTi(x0)‖2 is calculated by MA for both

algorithms, then the exit points are calculated with respect to u
(1)
0 = x1 and the

procedure is repeated. Hence, for each j = 1, . . . ,M it holds that u
(j)
0 = xj. When

xl = xl−1, the BPA (Algorithm 4) stops. This implies that u
(l)
0 = u

(l−1)
0 , and that in

turn implies that u
(l)
i = PTi(u

(l)
0 ) = PTi(u

(l−1)
0 ) = u

(l−1)
i for i = 1, . . . ,M . Thus we

have u(l) = u(l−1) and Algorithm 8 stops as well. The same argumentation can be
made when Algorithm 8 stops, to get that Algorithm 4 stops as well.
This proves that the algorithms terminate in the same loop, and that xl = u

(l)
0 =

u
(l−1)
0 = xl−1 holds. Algorithm 4 then returns ψ−1(xl−1), and ψ(ψ−1(xl−1)) = u

(l−1)
0 ,

which is the 0-th coordinate of the returned u(l−1) of Algorithm 8.

The following lemma is the analogue to Lemma 5.15 and points out the relation of
the objective functions f and ϕ for the iterates of the algorithm. It is an immediate
consequence of Proposition 5.29, as the algorithms perform the same iteration steps.

Lemma 5.30. Let u(`), u(`+1) be successive iterates of Algorithm 8. Then

f(ψ−1(u
(`+1)
0 )) = ϕ(u(`+1)) ≤ ϕ(u(`)) = f(ψ−1(u

(`)
0 ).

With Proposition 5.29 we have shown that we are able to model the BPA in the
framework of the block-wise coordinate descent method. Nonetheless, there are still
a lot of problems to tackle - the block-wise coordinate descent method only yields
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a subsequence converging to the optimal solution if we are able to work around the
missing prerequisites: We have to show that the choice of PTi as optimal solution
for the respective optimization problems does not create problems in the analysis as
well as that the non-uniqueness of the Euclidean median problem for a given set of
collinear points does not destroy convergence.

5.3.2 Convergence to a Stationary Point

After we have formulated the BPA as a variant of the block-wise coordinate descent
method, compare Algorithm 8, we show that this algorithm yields a sequence whose
cluster points are optimal solutions of ϕ under certain conditions. As mentioned
at the end of Section 5.3.1, we need to adapt the analysis done by [War63] to our
setting.
In the following we prove two important but very technical propositions (Proposi-
tion 5.39, Proposition 5.41), that are required in order to prove Theorem 5.44 that
states that all cluster points of the iterates the BPA yields are stationary points.
Since it is not straightforward to prove these two propositions we have to prove sev-
eral auxiliary results beforehand. We present a graph of implications in Figure 5.7
that shows the structure of the results of this subsection:

Lemma 5.31

Lemma 5.33

Supports in
Neighborhoods

Lemma 5.35

Lemma 5.34

Lemma 5.36

Lemma 5.37

Proposition 5.38
Continuity ei

Proposition 5.39
Continuity PTi

Lemma 5.40
Proposition 5.41
Continuity ξ

Theorem 5.44
Convergence

Figure 5.7: Results of Subsection 5.3.2 in a graph.

In both propositions we prove continuity of the maps that define the next iteration
points u

(`+1)
i for i = 0, 1, . . . ,M . We start with continuity of PTi for i = 1, . . . ,M ,

which is very tricky to prove. Before we present the proof of continuity we first need
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to gain more insights about parametrizations of geodesics and how they change in
certain neighborhoods.

Lemma 5.31. Let T ∈ Tn \ O and x ∈ ∂Rn−2
+ . Then X is the exit point, i.e.,

Γ(X,T ) ∩ O = {X} if and only if there exists a split s ∈ Split(T ) \ Split(O) such
that Split(X) ∪ {s} is a compatible set of splits.

Proof. First, let s ∈ Split(T ) \ Split(O) be compatible with all splits in Split(X).
Note that this is only possible when |Split(X)| < n − 2, which follows from x ∈
∂Rn−2

+ . Otherwise we would get a set of compatible splits of cardinality greater
than n − 2, which is impossible. Let γ : [0, 1] → Tn be the parametrization of the
geodesic from X to T as in Theorem 2.21. Then s ∈ C and the length of the split
s changes linearly from 0 for γ(0) to wTs , the weight of split s in T , for γ(1). Hence

for all λ > 0 it follows that w
γ(λ)
s > 0. Since s 6∈ Split(O) it follows that γ(λ) 6∈ O,

so X is the exit point of the geodesic from O.
For the other direction let X be the exit point, i.e., Γ(X,T ) ∩ O = {X}. Theo-
rem 2.21 implies that every tree on the geodesic from X to T only contains splits
from Split(X) ∪ Split(T ). If there was no split in Split(T ) \ Split(O) that was com-
patible with all splits in Split(X), this would imply that a split of X has to be
removed before adding another split of Split(T ). More formally, this means that

C ⊂ Split(X) and then the first leg of the geodesic γ([0, ‖A1‖2
‖A1‖2+‖B1‖2 ]) will have the

splits A1∪ . . .∪Ak ∪C ⊂ Split(X) ⊂ Split(O), where A1 6= ∅ and ‖A1‖2 > 0. Thus,

{X} = {γ(0)} ( γ([0, ‖A1‖2
‖A1‖2+‖B1‖2 ]) ⊂ O, which is a contradiction.

A useful concept that we use in the following proof is to partition a fixed orthant O
into sets that describe the minimal supports from all trees in O to some given tree
T 6∈ O. The concept was introduced in [MOP15], Definition 3.3:

Definition 5.32. Given a source tree T ∈ Tn, a maximal orthant O ⊆ Tn, a support
(A,B) and a set C of double compatible splits, let V(T,O;A,B, C) be the closure of
the set of trees X ∈ O for which the geodesic joining X to T has support (A,B)
satisfying (P2) and (P3) (see Definition 2.20) with strict inequalities and for which
C is the set of double compatible splits of T and X. A previstal facet is any nonempty
set V(T,O;A,B, C) of this form.

In contrast to the original definition in [MOP15], we have added the set of double
compatible splits C, because we handle these in another way then they are handled
in [MOP15], where double compatible splits are taken care of in support pairs Ai, Bi

with artificially introduced negative ratios ‖Ai‖2‖Bi‖2 . This is only a technicality and we
receive the same previstal facets, just with different notation.
Note, that a support satisfying (P2) with inequalities always is a minimal support as
introduced in Definition 2.24. For trees in the interior of a previstal facet it is addi-
tionally required that (P3) holds with strict inequalities. This implies that (A,B) is
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the unique support for the geodesic Γ(X,T ) for the trees X ∈ int (V(T,O;A,B, C)).
By definition a previstal facet contains all trees in the closure of this set of trees
with the unique support (A,B) from X to T . Thus, it also contains all trees X for
which (A,B) parametrizes the geodesic Γ(X,T ), but for which some inequalities in
(P2) or (P3) are satisfied with equality.
It is important to note that the closure of some previstal facets also contains trees
in the boundaries of the orthant O with split set S , i.e., O = O(S). In other words,
a previstal facet V(T,O;A,B, C) may contain trees Y ∈ ∂O so that Split(Y ) ( S.
Then, (A,B) is not a support for such a tree Y , as some set Al ⊂ Split(O) contains
a split s̄ that is not contained in Split(Y ) and logically this split cannot be removed
from Split(Y ), as the support sequence (A,B) describes. We will establish what the
supports look like for these specific cases in the following , but first we provide an
easy example of previstal facets in T4 to get used to the concept.

Example 5.3.1. We consider the same setup as in Example 2.2.3 with the following
four splits for n = 4:

s1 = ({1, 2}|{0, 3, 4}), s2 = ({1, 2, 3}|{0, 4}),
s3 = ({1, 3}|{0, 2, 4}), s4 = ({1, 3, 4}|{0, 2})

Now, let Split(O) = {s3, s4} and T = ((s1, s2), (2, 2)) ∈ T4. Then O consists of two
previstal facets:

V1 = V
(
T,O; ({s3, s4}), ({s1, s2}), ∅

)
V2 = V

(
T,O; ({s4}, {s3}), ({s2}, {s1}), ∅

)
The situation is depicted in Figure 5.8, where one tree and its geodesic to T are
given for each previstal facet. It is important to note that the trees in V1∩V2 may be
parametrized using both supports. Even though they seem to yield different results,
they actually do not. This is because some legs of the geodesic (in the example the
one from X to T passing through the orthant having splits s2, s3) disappear because

at the boundary ‖A1‖2
‖B1‖2 = ‖A2‖2

‖B2‖2 holds, which implies that[
‖A1‖2

‖A1‖2 + ‖B1‖2

,
‖A2‖2

‖A2‖2 + ‖B2‖2

)
= ∅,

i.e., the leg passing through this orthant contains no points and the other two legs
are joined at its boundary, which is the origin in this case.
In Figure 5.9 we show that the number of previstal facets that partition an or-
thant changes with the chosen orthant and that a previstal facet may even yield
the whole orthant, as it is often the case in T4. Suppose now that instead of
s3 = ({1, 3}|{0, 2, 4}) we have s′3 = ({1, 4}|{0, 2, 3}) and all other splits remain

160



X

Y

T

s1

s2

s3

s4

V1
V2

Figure 5.8: The orthant with splits {s3, s4} is partitioned into two previstal facets
with respect to T = ((s1, s2), (2, 2)).

the same. We now consider the orthant O′ with Split(O′) = {s′3, s4}. In this case
all splits of T are incompatible with all splits in Split(O′), hence there is only one
previstal facet

V ′1 = V
(
T,O′; ({s′3, s4}), ({s1, s2}), ∅

)
.

Lemma 5.33. Let a tree T ∈ Tn and any maximal orthant O be given. Then O is
covered by a finite number of previstal facets.

Proof. Proposition 3.6 in [MOP15] states that the so-called vistal facets cover Tn.
The vistal facets are the images of the previstal facets after squaring the coordinates
of the weight vector of a tree. As the tree space orthants have non-negative weight
vectors, this is a bijective map and it follows that the previstal facets cover Tn as
well.
So it only remains to show that the number of previstal facets covering O is finite.
To this end, consider a support (A,B) = ((A1, . . . , Ak), (B1, . . . , Bk)) with the set of
double compatible splits C for Γ(X,T ). Since the Ai and Bi partition the split sets
of the trees, A1 ∪ . . . ∪ Ak ∪ C = Split(X) and B1 ∪ . . . ∪ Bk ∪ C = Split(T ), there
is only a finite amount of such partitions. This implies that the number of different
combinations of supports (A,B) and double compatible splits C is finite and thus,
the number of previstal facets is finite as well.

Lemma 5.34. Let T ∈ Tn and a maximal orthant O ⊂ Tn be given and consider
a non-empty previstal facet W = V(T,O;A,B, C), with A = (A1, . . . , Ak), B =
B1, . . . , Bk.
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X

T

s1

s2

s′3

s4

V ′1

Figure 5.9: The orthant with splits {s′3, s4} is consists of one previstal facet with
respect to T .

Consider X ∈ (∂O)∩W and define AX = (AX1 , . . . , A
X
k ), where AXi = Ai∩Split(X).

If AX1 6= ∅, then (AX ,B) is a support for Γ(X,T ).

Proof. We show that (P1), (P2), (P3) hold. Since AXi ⊂ Ai it follows that B1 ∪
. . . ∪Bi−1 is compatible with AXi for each i = 2, . . . , k ⇒ (P1).

For (P2) we use that X ∈ (∂O) ∩ W , which implies that X ∈ ∂W . This holds
because Split(X) ( Split(O), hence (A,B), C cannot describe the geodesic from X
to T , i.e., X is not in the interior of W . Thus, there exists a sequence X1, X2, . . . ⊂
int (W) such that Xη → X. We have W ⊂ O, so we may apply our isometry
ψ : O → Rn−2

+ to get that for xη := ψ(Xη) we have xη → x = ψ(X). In particular
this implies that xηj → xj for j = 1, . . . , n − 2 and xηj → 0 when coordinate j
corresponds to a split s ∈ Split(O) \ Split(X). For s ∈ Split(X) we may also write
this as wsXη → wsX and for the other splits s ∈ Split(O) \ Split(x), wsXη → 0. Then
it holds for all i = 1, . . . , k that

‖Aηi ‖2 :=‖Ai(Xη)‖2 =

√∑
s∈Ai

wsXη
2 =

√ ∑
s∈Ai∩Split(X)

wsXη
2 +

∑
s∈Ai\Split(X)

wsXη
2 (5.10)

→
√∑

s∈AXi

wsX
2 + 0 = ‖AXi ‖2.

Now, for each η ∈ N we have that (A,B) satisfies (P2) with inequalities, i.e., for
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i = 1 . . . , k − 1,
‖Aηi ‖2

‖Bi‖2

<
‖Aηi+1‖2

‖Bi+1‖2

,

and thus
‖AXi ‖2

‖Bi‖2

≤
‖AXi+1‖2

‖Bi+1‖2

for i = 1, . . . , k − 1. ⇒ (P2).
For (P3) we can use the exact same argumentation with the sequence Xη. (P3)
holds with strict inequality for each partition Cη

1 ∪C
η
2 of Aηi , D1 ∪D2 of Bi with C2

being compatible with D1, i.e.,

‖Cη
1‖2

‖D1‖2

<
‖Cη

2‖2

‖D2‖2

.

Then it follows that for ci := limη→∞ ‖Cη
i ‖2 for i = 1, 2 we have

c1

‖D1‖2

≤ c2

‖D2‖2

holds with equality in the limit. ⇒ (P3).

For the preceding lemma we supposed that AX1 6= ∅ holds. Now we investigate what
happens when AXj = ∅ for some j.

Lemma 5.35. Assume T,O, X are given and AX defined as in Lemma 5.34. If
AXl = ∅ for some l ∈ {1, . . . , k}, then AXj = ∅ for all j = 1, . . . , l.

Proof. Again we use that X ∈ ∂W and let X1, X2, . . . ⊂ W be the sequence
converging to X. In the proof of Lemma 5.34 (5.10), we have established that
‖Aηi ‖2 → ‖AXi ‖2 for i = 1, . . . , k, which holds for l in particular.
Now assume that there exists some j < l such that AXj 6= ∅. That implies that
‖AXj ‖2 = c > 0 and ‖Aηj‖2 → c, so there exists some η′ ∈ N such that for η > η′

‖Aηj‖2 >
c
2
. Moreover, we have that that AXl = ∅, so ‖Aηl ‖2 → 0, hence there exists

some η̃ ∈ N such that for all η > η̃ it holds that ‖Aηl ‖2 <
c·‖Bl‖2
2·‖Bj‖2 , which is equivalent

to c
2
>
‖Aηl ‖2·‖Bj‖2
‖Bl‖2

, because ‖Bl‖2, ‖Bj‖2 > 0. Then for all η > max{η′, η̃} we have
that

‖Aηj‖2

‖Bj‖2

>
c

2 · ‖Bj‖2

>
‖Aηl ‖2 · ‖Bj‖2

‖Bj‖2 · ‖Bl‖2

=
‖Aηl ‖2

‖Bl‖2

with j < l which is a contradiction to (A,B) being the support for Xη, because
(P2) does not hold.
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Lemma 5.35 implies that there exists a maximal index jmax ∈ {0, 1, . . . , k} s.t.
AXi = ∅ for i ≤ jmax. It is important to note that jmax = k is possible, however, this
implies that Split(X) ⊂ Split(T ) and the support is trivial in this case.

Lemma 5.36. In the situation of Lemma 5.34, let jmax ∈ {1, . . . , k} be the max-
imal index such that AXjmax

= ∅. Then for i = 1, . . . , jmax, Bi ⊂ CX (the set of

double compatible splits for T and X, depending on X) and (ÃX , B̃) with ÃX =
(AXjmax+1, . . . , A

X
k ), B̃ = (Bjmax+1, . . . , Bk) is a support for the geodesic Γ(X,T ).

Proof. If jmax = k, then the minimal support (A,B) for Γ(X,T ) is trivial, (A,B) =
(∅, ∅), since Split(X) ⊂ Split(T ) holds, which implies Split(X) ⊂ CX . So suppose in
the following that jmax < k. Now, since AXi = ∅ for i = 1, . . . , jmax, it follows that the
splits in B1, . . . , Bjmax are immediately added, because B1, . . . , Bjmax are compatible
with Ajmax+1, . . . , Ak and thus also with AXjmax+1, . . . , A

X
k ⇒ B1∪. . .∪Bjmax are double

compatible splits and are contained in CX . For i > jmax we know that AXi 6= ∅ due
to Lemma 5.35 and the choice of jmax. The proof that (ÃX , B̃) satisfies (P1), (P2),
(P3) is the same as in the proof of Lemma 5.34.

With Lemmas 5.34,5.35 and 5.36 we have established how supports in specific
neighborhoods behave. This knowledge is crucial for the proof that the parame-
ter λ ∈ [0, 1] where a geodesic Γ(X,T ) parametrized by γX : [0, 1] → Tn behaves
continuously when X changes. In order to prove the continuity this parameter we
need the following lemma.

Lemma 5.37. For t ≥ tmin > 0 consider the family of functions

Ptmin
= {pt}t≥tmin

with pt : R+ → [0, 1], pt(u) =
u

u+ t
.

Then Ptmin
is uniformly equicontinuous on R+.

Proof. We need to show that for all ε > 0 there exists a δ > 0 such that ∀pt ∈
Ptmin

,∀u, v ∈ R+ with |u− v| < δ it holds that |pt(u)− pt(v)| ≤ ε.
In order to show that we prove that the functions are continuously differentiable on
the domain R+ and thereby receive a Lipschitz-constant for each t:

p′t(u) =
t

(u+ t)2
and max

u∈R+

p′t(u) =
1

t
is attained at u = 0.

Thus, we get a Lipschitz-constant of 1
t

for each pt. Now, let an ε > 0 be given and
set δ = ε · tmin. Then for all t ≥ tmin and all u, v ∈ R+ with |u− v| < δ it holds that

|pt(u)− pt(v)| ≤ δ · 1

t
≤ δ · 1

tmin

≤ ε,

which was to show.
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Proposition 5.38. ei(x) is continuous.

Proof. Let x ∈ Rn−2
+ and as always ψ−1(X) ∈ O. Let ε > 0 be given. First we

specify δ > 0 for which |ei(x)− ei(y)| < ε holds for all y ∈ Bδ(x). δ is chosen as the
minimum of three different values that guarantee different conditions. We define

δ :=
1

2
·min{ε · tmin, dv, xmin},

where

xmin = min
i=1,...,n−2

{xi : xi > 0},

tmin = min
j=1,...,n−2

{tij : tij > 0},

dv = min{d(X,Vi) : Vi ⊂ O is a previstal facet that does not contain X}.

For any y ∈ Bδ(x) we have that δ ≤ xmin

2
. This implies

|xi − yi| =
√

(xi − yi)2 ≤

√√√√n−2∑
i=1

(xi − yi)2 = ‖x− y‖2 < δ ≤ xmin

2
.

Suppose now that yi <
xmin

2
. Then xi ≥ xmin > yi and with this

|xi − yi| = xi − yi ≥ xmin − yi > xmin −
xmin

2
=
xmin

2
≥ δ > |xi − yi|,

which yields a contradiction. Hence, yi ≥ xmin

2
for all i with xi > 0 and this

proves that each split in Split(X) is also contained in Y . So δ ≤ xmin

2
ensures that

Split(X) ⊂ Split(Y ).
δ < dv ensures that Y is not contained in a facet that does not also contain X and
tmin is the lower bound for the family of functions pt as in Lemma 5.37, that we
apply for ei(x) > 0 because then ei(x) = ‖A1‖2

‖A1‖2+‖B1‖2 and ‖B1‖2 ≥ tmin by definition,

since B1 ⊂ Split(T ).
We divide the proof into three parts for different locations of X. Lemma 5.33 states
that the previstal facets cover O, but the inequalities for (P2) and (P3) are only
strict, when a tree is contained in the interior of such a facet. That is why distinguish
the following three cases:

(1) X ∈ int (W) for some previstal facet W

(2) X ∈ int (O) but 6 ∃ a previstal facet V such that X ∈ intV

(3) X ∈ ∂O
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(1): If X is contained in int (W), then dv guarantees that Y ∈ int (W) as well,
because d(X, Y ) = ‖x− y‖2 < δ < dv ≤ d(X,V) = infZ∈V d(X,Z) for any previstal
facet V other than W . In order for the above to hold, we have to show that dv > 0.
Due to their definition we know that previstal facets are closed so when X ∈ O
and V ⊂ O such that X 6∈ V , then d(X,V) = infZ∈V d(X,Z) > 0. Moreover there
only exists a finite amount of previstal facets in O, it is for example bounded by the
amount of all possible supports (A,B). Thus the minimum over this finite amount of
distances dv = min{d(X,Vi) : Vi ⊂ O is a previstal facet that does not contain X}
is greater than 0.
Now, letW = V(T,O;A,B), and since X, Y ∈ W , (A,B) is the support for Γ(X,Ti),
Γ(Y, Ti) respectively, where we denote the dependence of the parametrization on the
weights in A by A(x) = (A1(x), . . . , Ak(x)), A(y) = (A1(y), . . . , Ak(y)) respectively.

By definition ‖A1(X)‖2 =
√∑

s∈A1
wXs

2 and

‖x‖2 =

√√√√n−2∑
i=1

x2
i =

√ ∑
s∈Split(X)

wXs
2.

This also implies that √√√√ k∑
i=1

‖Ai(x)‖2
2 = ‖x‖2,

and moreover we have that

δ > d(X, Y ) = ‖x− y‖2 =

√√√√n−2∑
i=1

(wXs − wYs )2.

This implies that |wXs −wYs | < δ for each split s in Split(O), where wXs = 0, wYs if s
is not in X or Y respectively.
Now, using the reversed triangle inequality and our inequalities established above
we get ∣∣‖A1(x)‖2 − ‖A1(y)‖2

∣∣ ≤ ‖A1(x)− A1(y)‖2 =

√∑
s∈A1

(wXs − wYs )2

≤

√√√√ k∑
i=1

∑
s∈Ai

(wXs − wYs )2 = ‖x− y‖2 ≤ δ

Now we apply the uniform equicontinuity of the {pt}t≥tmin
where we use the map

p‖B1‖2 and ‖B1‖2 ≥ tmin > 0 by definition. We have that
∣∣‖A1(x)‖2−‖A1(y)‖2

∣∣ ≤ δ
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so it follows that

|p‖B1‖2(A1(x))− p‖B1‖2(A1(y))| < ε

and then

ε >|p‖B1‖2(A1(x))− p‖B1‖2(A1(y))|

=

∣∣∣∣ ‖A1(x)‖2

‖A1(x)‖2 + ‖B1‖2

− ‖A1(y)‖2

‖A1(y)‖2 + ‖B1‖2

∣∣∣∣ = |ei(x)− ei(y)|

what was to show.

(2) Now, let X ∈ int (O) but 6 ∃ a previstal facet V such that X ∈ intV . We have
seen above that the amount of previstal facets of O is finite. Since previstal facets
cover O, there exist previstal facets Vi such that X ∈

⋂nx
i=1 ∂Vi with nx ≥ 1. For

all other previstal facets V with X 6∈ V we know again that d(X, Y ) < δ < d(X,V),
so Y ∈

⋃nx
i=1 ∂Vi as well. That implies that there exists a V ′ = V(T,O;A,B) ∈

{V1, . . . ,Vnx} such that X ∈ V ′ and Y ∈ V ′. Thus, both have support (A,B) where
weights only differ in A(x),A(y). The same argument as in (1) shows that then
|ei(x)− ei(y)| < ε.

(3) The last remaining case is X ∈ ∂O. In this case, we need Lemmas 5.34, 5.36
to get supports for X and Y . Just as in (2), the choice of δ < dv ensures that
there exists a previstal facet V ′ = V(T,O;A,B) that contains X and Y . We use
Lemmas 5.34, 5.36 to get supports for X and Y respectively. Split(X) ⊂ Split(Y )
thereby guarantees that AXi ⊂ AYi for i = 1, . . . , k. We consider three cases:

i) AX1 = ∅, AY1 = ∅

ii) AX1 = ∅, AY1 6= ∅

iii) AX1 6= ∅, AY1 6= ∅

The first case, i), is the easiest, since the splits A1 ⊂ Split(O) are neither contained
in Split(X), Split(Y ). Moreover, B1 ∪ A2 . . . ∪ Ak is a compatible set of splits with
B1 ⊂ Split(T ). Since AX1 = ∅, AY1 = ∅ that implies that B1 belongs to the set
of double compatible splits and these splits are added immediately. Thus, B1 ⊂
Split(Z) for each Z 6= X ∈ Γ(X,Ti) and ei(x) = 0. The same holds for Y , thus
ei(y) = 0 and |ei(x)− ei(y)| = 0 < ε.
In the second case, ii), we have ei(x) = 0, but ei(y) > 0, because AY1 6= ∅. ⇒ ei(y) =
‖AY1 ‖2

‖AY1 ‖2+‖B1‖2
. Now, all splits that are in A1 are not in Split(X), so the coordinates in

Rn−2
+ that correspond to these splits are 0. Together with ‖x − y‖2 < δ this yields
‖AY1 ‖2 < δ and thus |0 − ‖AY1 ‖2| = ‖AY1 ‖2 < δ, so we can now use continuity of
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x
y

ψ(Ti)

PTi
(x)

PTi
(y)

ψ(γy(ei(x)))

Figure 5.10: Illustration of the bound used in the proof of Proposition 5.39.

p‖B1‖2 , as in (1) :

|ei(x)− ei(y)| =
∣∣∣∣ 0

0 + ‖B1‖2

− ‖AY1 ‖2

‖AY1 ‖2 + ‖B1‖2

∣∣∣∣ = |p‖B1‖2(0)− p‖B1‖2(A1(y))| < ε.

In the last case, iii), we have that ei(x) =
‖AX1 ‖2

‖AX1 ‖2+‖B1‖2
> 0 and ei(y) =

‖AY1 ‖2
‖AY1 ‖2+‖B1‖2

>

0. Again, from ‖x− y‖2 < δ we get that |‖AX1 ‖2−‖AY1 ‖2 < δ and |ei(x)− ei(y)| < ε
follows from continuity of p‖B1‖2 as in the other cases.

Next we prove that PTi is continuous, which is one of the two key propositions that
we need for the proof of convergence for Theorem 5.44. The idea for this is depicted
in Figure 5.10. Using the triangle inequality we bound the distance of PTi(x) and
PTi(y) (red) by the sum of the lengths of the two blue line segments, whose lengths
we can control.

Proposition 5.39. For i = 1, . . . ,M , PTi is continuous.

Proof. In the case that Ti ∈ O, we have that PTi(y) = ψ(Ti) for all y ∈ Rn−2
+ ,

which is constant, hence continuous. Let now Ti 6∈ O, so we prove continuity
of PTi(y) = ψ(γi(y)(ei(y))). For this proof we make use of two properties of our
geodesic and its parametrization:

(i) For a fixed tree T ∈ Tn and a fixed parameter t ∈ (0, 1) the map νt : Tn → Tn,
νt(X) = γX(t) is continuous, where γX is the parametrization of the geodesic
from X to T (Lemma 1.2.2. in [Bac14b]).
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(ii) For the parametrization γ : [0, 1] → Tn of a geodesic from X1 to X2 it holds
that

d(γ(s), γ(t)) = |s− t| · d(X1, X2) ∀s, t ∈ [0, 1],

see Theorem 2.23.

Now we choose x ∈ Rn−2
+ and prove continuity of PTi at x: Let ε > 0 be given.

Due to (i), there exists some δ1 > 0 such that d(νei(x)(X), νei(x)(Y )) < ε
2

for all
Y with d(X, Y ) < δ1. In a similar fashion we choose δ2 > 0, which exists due to
the continuity of ei(x) that was established in Lemma 5.38: Let δ2 > 0 be such
that |ei(x) − ei(y)| < ε

4d(Ti,X)
for all y with ‖x − y‖2 < δ2. Now we combine these

estimates. Let δ = min{δ1, δ2, d(X,Ti)} and let y ∈ Bδ(x) ∩ Rn−2
+ . Then

‖PTi(x)− PTi(y)‖2 = ‖ψ(γX(ei(x)))− ψ(γY (ei(y)))‖2

≤ ‖ψ(γX(ei(x)))− ψ(γY (ei(x)))‖2 + ‖ψ(γY (ei(x)))− ψ(γY (ei(y)))‖2

∗
= d(νei(x)(X), νei(x)(Y )) + |ei(x)− ei(y)| · d(Y, Ti)

<
ε

2
+ |ei(x)− ei(y)| · (d(X,Ti) + δ)

≤ ε

2
+ |ei(x)− ei(y)| · 2d(X,Ti)

<
ε

2
+

ε

4d(X,Ti)
· 2d(X,Ti)

=
ε

2
+
ε

2
= ε,

where we use (ii) at the equality marked with ∗. This proves continuity of PTi(x)
for an arbitrary x ∈ Rn−2

+ .

Figure 5.11 depicts the structure of the subsection once more, where we marked all
results that are proven until now. As we can see, all results in the upper part of
the figure have successfully been proven and the continuity of the PTi is established.
We now need to prove the continuous behaviour of ξ, which is the map yielding
the minimizers of the Euclidean median problems in block 0 for given facilities
u1, . . . , uM .
Since the Euclidean median problem may not have a unique solution when the given
points are collinear, compare Example 5.3.2, we even have a problem with defining
this map. Therefore, we make slight assumptions to rule out this unfortunate case
and thereby force uniqueness of the minimizers of the Euclidean median problems
for the relevant cases. We start with a lemma that will later on ensure uniqueness
on a compact neighborhood.

Lemma 5.40. Let m ≥ 3 and p1, . . . , pm ∈ Rd be such that p1, . . . , pm are not
collinear. Then there exists a δ > 0 such that for all v = (v1, . . . , vm)t ∈ Rd·m,
v ∈ Bδ((p1, . . . , pm)t) it holds that v1, . . . , vm are not collinear.
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Lemma 5.31 X

Lemma 5.33 X

Supports in
Neighborhoods

XLemma 5.35 X

Lemma 5.34 X

Lemma 5.36 X

Lemma 5.37 X

Proposition 5.38
Continuity ei X

Proposition 5.39
Continuity PTi

X

Lemma 5.40
Proposition 5.41
Continuity ξ

Theorem 5.44
Convergence

Figure 5.11: Progress of proven results of Subsection 5.3.2.

Proof. Suppose w.l.o.g. that the points p1, p2 satisfy

‖p1 − p2‖2 ≥ ‖pi − pj‖2 for 1 ≤ i < j ≤ m.

Since p1, . . . , pm are not collinear, there exists at least one pi, i ≥ 3 that does not
lie on the line through p1 and p2. Thus, the triangle inequality is strict:

‖p1 − p2‖2 < ‖p1 − pi‖2 + ‖pi − p2‖2.

Let d = ‖p1 − pi‖2 + ‖pi − p2‖2 − ‖p1 − p2‖2 > 0 and define ε := d
4
, so that

‖p1−p2‖2 + 3ε = ‖p1−p2‖2 +
3

4
d < ‖p1−p2‖2 +d = ‖p1−pi‖2 +‖pi−p2‖2. (5.11)

Now, since the norm ‖·‖2 : Rd×Rd → R is a continuous function, there exists δ1 > 0
such that for all (v1, v2)t ∈ Bδ1((p1, p2)t), it holds that ‖v1 − v2‖2 ≤ ‖p1 − p2‖2 + ε.
Analogously there exists such a δ2 > 0 for (v1, vi)

t ∈ Bδ2((p1, pi)
t) and δ3 > 0 for

(v2, vi)
t ∈ Bδ3((p2, pi)

t). Then, setting δ′ = min{δ1, δ2, δ3} > 0 we get that for any
v1, v2, vi satisfying (v1, v2) ∈ Bδ′(p1, p2), (v1, vi) ∈ Bδ′(p1, pi) and (v2, vi) ∈ Bδ′(p2, pi)
it holds that

‖v1− v2‖2 ≤ ‖p1− p2‖2 + ε < ‖p1− pi‖2 + ‖pi− p2‖2− 2 · ε ≤ ‖v1− vi‖2 + ‖vi− v2‖2,
(5.12)

where the strict inequality is implied by (5.11). This proves that vi 6∈ {v1 +λ · (v2−
v1) : λ ∈ R}, so v1, . . . , vm are not collinear.
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Now we need to show that there also exists a δ ball about p = (p1, . . . , pm) so that
v1, . . . , vm are not collinear when v = (v1, . . . , vm) ∈ Bδ(p). We may simply choose
δ = δ′: For v ∈ Bδ′(p) and any pair of indices i < j ∈ {1, . . . ,m} it holds that

δ′
2
> ‖v − p‖2

2 =

∥∥∥∥(vivj
)
−
(
pi
pj

)∥∥∥∥2

2

+
∑
l∈Ii,j

(vl − pl)2 ≥
∥∥∥∥(vivj

)
−
(
pi
pj

)∥∥∥∥2

2

where Ii,j = {1, . . . ,m} \ {i, j}. Thus,∥∥∥∥(vivj
)
−
(
pi
pj

)∥∥∥∥
2

< δ′

and hence Equation (5.12) holds.

We use Lemma 5.40 to get uniqueness of minimizers: The solution to the median
problem with facilities v1, . . . , vM is unique if and only if v1, . . . , vM are not collinear,
due to the strict convexity of the objective in this case (as stated in [VZ00]).
Thus, we get uniqueness of minimizers of the Euclidean median problems with re-
spect to the points (v1, . . . , vM) on some δ-ball, say Bδ

(
u
)
. Then, on this ball we

may define the map

ξ : Bδ

(
u
)
→ Rn−2

+ , ξ
(
(v1, . . . , vM)

)
:= arg min

y∈Rn−2
+

M∑
i=1

‖y − vi‖2 (5.13)

and we want to show its continuity.

Proposition 5.41. Assume that for all u0 ∈ Rn−2
+ it holds that PT1(u0), . . . , PTM (u0)

are not collinear. Then for any u0 ∈ Rn−2
+ there exists a δ > 0 such that for all

v = (v1, . . . , vM) ∈ Bδ(u) with u = (PT1(u0), . . . , PTM (u0)) it holds that

min
y∈Rn−2

+

M∑
i=1

‖y − vi‖2

has a unique minimizer. Then

ξ : Bδ

(
u
)
→ Rn−2

+ , ξ
(
(v1, . . . , vM)

)
:= arg min

y∈Rn−2
+

M∑
i=1

‖y − vi‖2

is continuous.

Proof. Take u0 ∈ Rn−2
+ arbitrary. The prerequisite implies that PT1(u0), . . . , PTM (u0)

are not collinear and Lemma 5.40 states that there exists a δ > 0 such that for all
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v = (v1, . . . , vM)t ∈ Bδ(u) it holds that v1, . . . , vM are not collinear. [VZ00] states
that non-collinearity implies that there exists a unique minimizer of

min
y∈Rn−2

+

M∑
i=1

‖y − vi‖2

due to the strict convexity of the objective in this case. So for all v ∈ Bδ(u) we have
a unique minimizer, so we may define the map

ξ : Bδ(u) ∩ Rn−2
+ → Rn−2

+ , ξ
(
(v1, . . . , vM)

)
:= arg min

y∈Rn−2
+

M∑
i=1

‖y − vi‖2.

Our goal is to show that ξ is continuous. To this end we want to apply Theorem
3.2 of [War83], that states the following:

Given a continuous map g : V ×W , where V ⊂ Rd1 is a compact and W ⊂ Rd2

arbitrary, define X(w) as the set of minimizers of g(·, w) over V for each w ∈ W .
Then the set-valued map ξ̄ : W ⇒ V, ξ′(w) := X(w) is upper semicontinuous.

The notion of upper semicontinuity is defined as follows: A set-valued map F :
X ⇒ Y is called upper-semicontinuous at x if and only if for all neighbordhoods U
of F (x), there exists a δ > 0 such that for all x′ ∈ Bδ(x) it holds that F (x′) ⊂ U .
Here, Bδ(x) is the ball centered at x with respect to the distance defined on X.
However, if the images F (x) are singletons for all x, this notion of upper semiconti-
nuity translates into the usual continuity of the point-valued map F (x).
Now we want use this theorem to show continuity for ξ. To this end we first have to
define the corresponding map g and the sets V,W . In order to define V , we recall
Theorem 5.21, that states that may restrict the orthant Rn−2

+ to the set [0, U ]n−2

when searching for an optimal solution. With this we set V := [0, U ]n−2, which is
compact. For the set of parameters W , on which the minimizers X(w) depend, we
use W := Bδ(u) and define

g : V ×W → R, g(v, w) =
M∑
i=1

‖v − wi‖2 where w = (w1, . . . , wM).

g is continuous because d2 : R2·(n−2) → R, d2(x) := ‖x1 − x2‖2 with x = (x1, x2)t ∈
R2·(n−2) is continuous. We have shown above that for a fixed w ∈ W = Bδ(u),
X(w) = arg minv∈[0,U ]n−2

∑M
i=1 ‖v − wi‖2 has a unique minimizer and that X(w) =

ξ(w) holds by definition of ξ. Then we have verified that all requirements for The-
orem 3.2 of [War83] are satisfied and it follows that ξ is continuous.

In the following example we clarify why the condition on the points PTi , i = 1, . . . ,M
not to lie on a line segment is necessary.
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Example 5.3.2.

Let u =


u1

u2

u3

u4

 , with u1 =

(
1
1

)
, u2 =

(
2
1

)
, u3 =

(
3
1

)
, u4 =

(
4
1

)

and consider the median problem P (u) = minx∈R2

∑4
i=1 ‖x − ui‖2. Now for any

δ ∈ (0, 1) define

ũ(δ) =


ũ1(δ)
u2

u3

u4

 with ũ1(δ) =

(
1

1 + δ
2

)
,

û(δ) =


u1

u2

u3

û4(δ)

 with û4(δ) =

(
4

1 + δ
2

)
.

Figure 5.12 depicts the minimizers of P (u) in red, the minimizer of P (û) in blue
and the minimizer of P (ũ) in orange:

Figure 5.12: Example for the non-continuous behavior of minimizers in the case of
non-unique minimizers.

The Euclidean median problem with four given facilities, is well studied (see [Pla05]
for a survey). In our cases at hand we have that one point is contained in the
triangle spanned by three other points, which is the so called ’absorbed case’. In this
case, the point inside the triangle is the optimal solution. Thus, the minimizer for
P (ũ(δ)) is x̃ = u3 and the unique minimizer for P (û(δ)) is x̂ = u2. The minimizers
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are independent of δ, so the distance between the minimizers is ‖x̂− x̃‖2 = 1 for all
δ ∈ (0, 1).
But by definition we have ũ, û ∈ Bδ(u), so we see that there is no continuous behavior
of the minimizers with respect to parameter u in this case in the ’usual’, not set-
valued, sense: The distance to the minimizers x̃ and x̂ gets arbitrarily small when δ
tends to zero, but the distance between the image of the minimizers is 1 as explained
above.
We want to stress that we actually do have upper semi-continuity in the sense of
[War83]. But what we require in the proof for Theorem 5.41 is that we have a
unique minimizer for the problem, since we cannot use a set of minimizers as ξ is
not a set-valued map. The example above depicts a case where the minimizer is not
unique and where there is no choice of a minimizer for P (u) on the line such that ξ
is continuous in the end. Hence, we have to rule out these cases via the prerequisite
of the theorem.

An easily verifiable, sufficient condition for the prerequisites of Proposition 5.41 is
non-collinearity of the facilities that are in O.

Lemma 5.42. Suppose that |T∩O| ≥ 3 and that ψ(T∩O) are not collinear. Then
PT1(u0), . . . , PTM (u0) are not collinear for any u0 ∈ Rn−2

+ .

Proof. For Ti ∈ T ∩ O it holds that PTi(u0) = ψ(Ti) for all u0 ∈ Rn−2
+ . Hence,

ψ(T ∩ O) ⊂ {PT1(u0), . . . , PTM (u0)} for all u0 ∈ Rn−2
+ and as ψ(T ∩ O) is not

collinear, it follows that PT1(u0), . . . , PTM (u0) are not collinear.

Before we finally prove the convergence of a subsequence of the BPA to a stationary
point, we provide a useful lemma required in the proof.

Lemma 5.43. Let (u(`))`∈N be the sequence of iterates of the BPA and let (u(`m))m∈N
be a subsequence of (u(`))`∈N converging to ū = (ū0, ū1, . . . , ūM). Then

ūi = PTi(ū0) for i = 1, . . . ,M.

Proof. When u(`m) → ū it follows that we in particular have convergence for the
blocks

u
(`m)
i → ūi for i = 0, 1, . . . ,M. (5.14)

Proposition 5.39 states that PTi is continuous for i = 1, . . . ,M . Now, use (1) for
i = 0, i.e.,

u
(`m)
0 → ū0

Then continuity of the PTi implies that

PTi(u
(`m)
0 )→ PTi(ū0). (5.15)
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Due to the definition of the sequence (u(`))`∈N it holds that

u
(`m)
i = PTi(u

(`m)
0 ).

Using (5.14) for i = 1, . . . ,M we get u
(`m)
i → ūi and plugging in u

(`m)
i = PTi(u

(`m)
0 )

on the left hand side yields
PTi(u

(`m)
0 )→ ūi. (5.16)

Combining (5.15) and (5.16) it follows that ūi = PTi(ū0) for i = 1, . . . ,M .

Now we are finally able to prove convergence of a subsequence of the iterates of the
BPA.

Theorem 5.44. Assume that for all u0 ∈ Rn−2
+ it holds that PT1(u0), . . . , PTM (uM)

are not contained in a line segment. Moreover, let W := [0, U ]n
′
, where

U = max
i=1,...,M

{
max

s∈Split(Ti)
wTis

}
.

Then, for any starting point u(0) ∈ W , let u(`) be defined as in Algorithm 8. Then
(u(`))`∈N has a cluster point and any cluster point of u(`) is a stationary point.

Proof. Before we start with the actual proof we rule out the case M = 2, due to the
assumption: When only two trees T1, T2 are given, then {PT1(u), PT2(u)} is contained
in a line segment for any u, so we may assume M ≥ 3 in the following, which is of
importance when applying Lemma 5.40.
In order to find a convergent subsequence of (u(`))`∈N we show that (u(`))`∈N ⊂ W
holds. By definition of U , the weights of all PTi are less or equal U . Since u(0) ∈ W
it holds in particular that u0 ∈ [0, U ]n−2. Now, since the weights of all splits s ∈
Split(Y ) of a tree Y on a geodesic Γ(X,T ) are always linear combinations of the split
lengths of the input trees T and X, (compare the parametrization in Theorem 2.21),
it follows that wYs ∈ [0,max{maxs∈Split(X) w

X
s ,maxs∈Split(T ) w

T
s }]. In particular, this

holds for the exit points ψ−1(PTi(y)) ∈ Γ(ψ−1(y), Ti): if y ∈ [0, U ]n−2, it holds that
PTi(y) ∈ [0, U ]n−2 as all split lengths of Ti are less or equal U . Moreover, when
PTi(y) ∈ [0, U ]n−2 for i = 1, . . . ,M then conv(PT1(y), . . . , PTM (y)) ⊂ [0, U ]n−2 and
thus

arg min
x∈Rn−2

+

(
M∑
i=1

‖x− PTi(y)‖2

)
∈ conv(PT1(y), . . . , PTM (y)) ⊂ [0, U ]n−2.

Applying these results iteratively we get the following: for a starting point u(0) ∈ W
it holds that u

(0)
0 ∈ [0, U ]n−2; this implies u

(0)
i = P

Ti(u
(0)
0 )
∈ [0, U ]n−2 for i = 1, . . . ,M

which in turn implies that u
(1)
0 ∈ [0, U ]n−2 and so on and so forth. Hence, the iterates
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satisfy u(`) ∈ W for ` = 0, 1, 2, . . .. So (u`)`∈N is a sequence in the compact set W
and thus it has at least one cluster point.
Now, let ū be a cluster point of u` and let (u(`m))m∈N be the subsequence that
converges to ū. Our goal is to show that ū is a stationary point and we assume to
the contrary that it was no stationary point. Then we have

u(`m) 6= u(`(m+1)),m ∈ N (5.17)

because otherwise one u(`m′ ) would be a stationary point and

u(`m′ ) = u(`m′+1) = . . . = u(`(m′+1)) = . . . = . . . = ū.

The tricky part now is to construct a neighborhood of ū such that ξ, see (5.13), is
well-defined and continuous.
To this end we first apply Lemma 5.43, that shows that ūi = PTi(ū0) for i = 1, . . . ,M .
Then the prerequisite ensures that PT1(ū0), . . . , PTM (ū0) are not collinear, and thus
ū1, . . . , ūM are not collinear. Now, Lemma 5.40 provides a δ′ > 0 such that for
any v ∈ Bδ(ū) we have that v1, . . . , vM are not collinear. Choosing 0 < δ < δ′

we have that this holds for the closed ball as well which we denote by D = {v ∈
Rn′ : ‖v − u‖2 ≤ δ}. Now we define another compact set C ′ = {u(`m) : m ∈ N},
which is the closure of our subsequence iterates. Since ū is the cluster points of our
subsequence, the closure implies that ū ∈ C ′ as well. The convergence of u(`m) to ū
implies that there exists some m′ ∈ N such that ‖u − u(`m)‖2 < δ for all m ≥ m′,

i.e., u(`m) ∈ D for m ≥ m′. Hence we have that {u(`m) : m ≥ m′} ⊂ D and define

C = {u(`m) : m ≥ m′}, which is compact.
Now, we introduce an auxiliary map that describes the sequence of iterates of the
BPA:

g : Bδ(u)→ W, g(w) =


ξ(w1, . . . , wM)

PT1(ξ(w1, . . . , wM))
...

PTM (ξ(w1, . . . , wM))

 .

Note, that g is only well defined, when ξ is well-defined, i.e., when there is a unique
choice for the minimizer of the Euclidean median problem. This is ensured as
we have just shown that we have uniqueness of minimizers on D = Bδ(u). This
implies that g is a well-defined map on C ⊂ D. Moreover, g is continuous on C
due to Proposition 5.39 and Proposition 5.41, as it is a composition of continuous
functions.
Using g we now construct a continuous map F for which F (u(`m)) → −∞, i.e., we
construct a continuous map that is unbounded on a compact set if the assumption
that ū is no stationary point holds.
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Continuity of g implies that F : C → R, F (w) = ϕ(g(w)) − ϕ(w) is continu-
ous, because ϕ is continuous as well. Furthermore F (w) < 0 holds if and only if
ϕ(g(w)) < ϕ(w): On C, minimizers to the Euclidean median problems are unique,
so we know that for any w ∈ C

M∑
i=1

‖g(w)0 − wi‖2 <

M∑
i=1

‖w0 − wi‖2. (5.18)

With this it follows that for any w ∈ C

ϕ(g(w)) =
M∑
i=1

d(ψ−1(g(w)i), Ti) +
M∑
i=1

‖g(w)0 − g(w)i‖2 =
M∑
i=1

d(ψ−1(g(w)0), Ti)

≤
M∑
i=1

d(ψ−1(wi), Ti) +
M∑
i=1

‖g(w)0 − wi‖2

<
M∑
i=1

d(ψ−1(wi), Ti) +
M∑
i=1

‖w0 − wi‖2 = ϕ(w),

so F (w) < 0.
Since C is compact and F is continuous, F attains its minimum c = minv∈C F (v)
on C, which has to be smaller than 0, because F (w) < 0 for all w ∈ C. Thus
F (w) ≤ c < 0 and therewith

F (u(`m)) = ϕ(g(u(`m)))− ϕ(u(`m)) = ϕ(u(`m+1))− ϕ(u(`m)) ≤ c for m = 1, 2, . . . .

Moreover, (ϕ(u`))`∈N is a non-increasing sequence and `m+1 ≥ `m + 1, so

ϕ(u(`m+1))− ϕ(u(`m)) ≤ ϕ(u(`m+1))− ϕ(u(`m)) ≤ c for m = 1, 2, . . . .

Applying the inequality for `m, `m−1 successively until we arrive at `1 we receive

ϕ(u(`m)) ≤ ϕ(u(`1)) + (m− 1) · c.

So, when m → ∞, ϕ(u`m) → −∞, which is a contradiction as ϕ is a continuous
function and is bounded over the compact set W .
Thus, the assumption that ū is no stationary point yields a contradiction.

Proposition 5.45. Let ū be a cluster point of the iterates u(`) of Algorithm 8. Then
lim`→∞ ϕ(u(`)) exists and ϕ(u(`))→ ϕ(ū).

Proof. Let (u(`m))m∈N be the subsequence converging to ū. Since ϕ is continuous,
this implies that (ϕ(u(`m)))m∈N converges to ϕ(ū).
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First assume, that there exists some u(`′) such that ϕ(u(`′)) < ϕ(ū). But then there
exists some m′ ∈ N such that `m ≥ `′ for all m ≥ m′ and since (ϕ(u(`))) is non-
increasing that yields

ϕ(u(`m)) ≤ ϕ(u(`′)) < ϕ(ū), ∀m ≥ m′

which is a contradiction. Hence, ϕ(u`) ≥ ϕ(ū).
Now let ε > 0 be given. Then there exists m′ ∈ N such that

‖ϕ(ū)− ϕ(u(`m))‖2 < ε ∀m ≥ m′.

Lemma 5.30 states that ϕ is non-increasing and since ϕ(u`) ≥ ϕ(ū) we have that
‖ϕ(ū)− ϕ(u(`m′ ))‖2 ≥ ‖ϕ(ū)− ϕ(u(`))‖2 for ` ≥ `m′ , so

‖ϕ(ū)− ϕ(u(`))‖2 ≤ ‖ϕ(ū)− ϕ(u(`m))‖2 < ε ∀` ≥ `m′ .

Note that Proposition 5.45 holds even without the further assumptions of Theo-
rem 5.44, it only requires the existence of a cluster point and the sequence not to
increase.
The reason why we proved it after stating Theorem 5.44 is that the theorem does
not prove actual convergence of the iterates u(`) to some u∗ for the whole sequence.
However, we can ensure that the sequence of objective values converges and in the
next section we will prove that stationary points yield optimal solutions under some
assumptions - so when we prove optimality of a cluster point of u(`) we know that
the whole sequence converges to the optimal objective.
Obviously it would be more convenient, when

5.3.3 Optimality of Stationary Points and Balance Points

Theorem 5.44 in Subsection 5.3.2 guarantees us that we end up in a stationary point,
when the stated assumption holds. This was the first goal that we proclaimed at
the start of the section. But eventually we want to find a minimizer of ϕ - so we
want to prove that, under slight assumptions, the stationary points the BPA yields
are optimal. Luckily, ϕ is a convex function so it suffices to show that we have a
local optimum. To this end, we want to calculate the directional derivatives of ϕ.
We have seen in Proposition 5.26 that ϕ is not differentiable on our whole set of
definition. So once more, we have to check one of the assumptions of [War63] by
hand, namely if ϕ is differentiable at the stationary point for which we want to show
optimality.
Unfortunately, when ū is a stationary point that is an accumulation point of the
sequence of iterates u(`) of the BPA, then ϕ is not differentiable at ū: Lemma 5.43
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implies that ūi = PTi(ū0) ∈ ∂(S). But the geodesic distance d is not differentiable
at the boundary of an orthant, so ϕ is not differentiable at ū.
This observation once more complicates the matter, as we cannot prove optimality
for the stationary points the BPA yields by showing that all directional derivatives
at a stationary point are ≥ 0. But, a crafty trick allows us to still prove optimality
in a similar fashion. To this end, choose a fixed ε ∈ (0, 1) and define

RTi(u0) = εu0 + (1− ε)PTi(u0) for i = 1, . . . ,M. (5.19)

Then we have that for any u0 ∈ int (S) it holds that

ϕ(u0, PT1(u0), . . . , PTM (u0)) = ϕ(u0, RT1(u0), . . . , RTM (u0)),

as RTi(u0) ∈ Γ(ψ−1(u0), Ti).
So when we are able to prove optimality for (u0, RT1(u0), . . . , RTM (u0)), then it
follows that (u0, PT1(u0), . . . , PTM (u0)) is optimal as well. The next result shows
that ϕ is differentiable at (u0, RT1(u0), . . . , RTM (u0)) under a mild condition.

Lemma 5.46. Let u0 ∈ intRn−2
+ and a fixed ε ∈ (0, 1) be given. Then ϕ is differ-

entiable at u = (u0, RT1(u0), . . . , RTM (u0)), if ψ(u0) 6∈ {T1, . . . , Tm},.

Proof. Assume u0 ∈ W . That implies that there exists some k ∈ {1, . . . ,M} such
that u0 = uk. Additionally we have uk = εu0 + (1 − ε)PTk(u0), hence u0 = εu0 +
(1− ε)PTk(u0). There are two cases now that both lead to the same contradiction.
Firstly, if Tk ∈ intO, then PTk(u0) = ψ(Tk) 6= u0 due to the assumption ψ−1(u0) 6∈
{T1, . . . , Tm}. Thus u0 6= εu0 + (1 − ε)PTk(u0). Secondly, if Tk 6∈ intO, then
PTk(u0) ∈ ∂O. Since u0 ∈ intO this implies again u0 6= PTk(u0) and we receive the
same contradiction.
Assume u0 ∈ V . That implies that there exists some k ∈ {1, . . . ,M} such that
ψ−1(uk) = Tk. Since ψ : O → Rn−2

+ , this already implies that Tk ∈ O. We have
uk = εu0 + (1 − ε)PTk(u0) and together with ψ−1(uk) = Tk this yields ψ(Tk) =
εu0 + (1 − ε)PTk(u0). Since u0 is in intRn−2

+ , this implies that Tk ∈ intO, so
PTk(u0) = ψ(Tk). The prerequisite states u0 6∈ {ψ−1(T1), . . . , ψ−1(TM)} so we have
u0 6= ψ(Tk) = PTk(u0). Thus ψ(Tk) 6= εu0 + (1− ε)PTk(u0).
These two results show that u 6∈ V ∪W . Moreover, when u0 ∈ intS, then uk =
εu0 +(1−ε)PTk(u0) ∈ intRn−2

+ for all k ∈ {1, . . . ,M} and that implies u ∈ int (Rn′
+ ).

Finally, Proposition 5.26 implies that ϕ is differentiable at u.

As we mentioned [War63] proves the optimality of stationary points using differen-
tiability. Lemma 5.46 has given us a point v ∈ Rn′

+ with the same objective value as
the BPA stationary point, ϕ is differentiable at v. But in order to use the optimality
criterion we still need to show that v is a stationary point.
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Proposition 5.47. Let ū be a stationary point determined by the BPA. Then

v = (ū0, RT1(ū0), . . . , RTM (ū0))

is a stationary point of ϕ as well.

Proof. First, recall that Lemma 5.43 implies ū = (ū0, PT1(ū0), . . . , PTM (ū0)). By the
definition of stationary points, Definition 5.19, a point u ∈ Rn′

+ is a stationary point
if

ui ∈ arg min
x∈Rn−2

+

ϕ
(

(u
(`+1)
0 , u

(`+1)
1 , . . . , u

(`+1)
i−1 , x, u

(`)
i+i, . . . , u

(`)
M )t
)

for i = 0, 1, . . . ,M.

(5.20)

In the following we deduce that v is a stationary point by using that u is a stationary
point. We first verify (5.20) for the easy cases of i = 1, . . . ,M . We know that
PTi(ū0) ∈ Γ(ψ−1(ū0), Ti) and as RTi(ū0) = εū0 + (1 − ε)PTi(ū0) we have RTi(ū0) ∈
Γ(ψ−1(ū0), Ti) as well. Thus

vi = RTi(ū0) ∈ arg min
x∈Rn−2

+

ϕ
(

(u
(`+1)
0 , u

(`+1)
1 , . . . , u

(`+1)
i−1 , x, u

(`)
i+i, . . . , u

(`)
M )t
)
,

as

arg min
x∈Rn−2

+

ϕ
(

(u
(`+1)
0 , u

(`+1)
1 , . . . , u

(`+1)
i−1 , x, u

(`)
i+i, . . . , u

(`)
M )t
)

= {x ∈ Rn−2
+ : ψ−1(x) ∈ Γ(ψ−1(ū0), Ti)}.

Now we need to check the condition for i = 0. Since ū is a stationary point it holds
that

ū0 ∈ arg min
y∈Rn−2

+

M∑
i=1

‖y − PTi(ū0)‖2. (5.21)

Condition (5.20) for i = 0 is

v0 ∈ arg min
y∈Rn−2

+

M∑
i=1

‖y −RTi(ū0)‖2. (5.22)

Because v0 = ū0, we need to show that

ū0 ∈ arg min
y∈Rn−2

+

M∑
i=1

‖y −RTi(ū0)‖2.
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We prove that ū0 is a minimizer for two different cases. First, assume that ū0 = ūk
for some k ∈ {1, . . . ,M}. Since ūk = PTk(ū0), this implies that the facility PTk(ū0)
is optimal. Theorem 3.1 (ii) implies that then

‖
∑
i=1
i 6=k

ū0 − PTi(ū0)

‖ū0 − PTi(ū0)‖2

‖2 ≥ 1.

By definition, RTi(ū0) = εu0 + (1− ε)PTi(ū0), so

ū0 − PTi(ū0)

‖ū0 − PTi(ū0)‖2

=
ū0 −RTi(ū0)

‖ū0 −RTi(ū0)‖2

.

Applying Theorem 3.1 (ii) to the right hand side now implies that ū0 = v0 is optimal
to (5.22), what was to show.
The other case is that ū0 6∈ {PT1(ū0), . . . , PTm(ū0)}. As the PTi(ū0) are the facili-
ties of the Euclidean median problem in (5.21), it follows that g(y) :=

∑M
i=1 ‖y −

PTi(ū0)‖2 is differentiable at ū0 and the gradient is

∇g(y) =
M∑
i=1

y − PTi(ū0)

‖y − PTi(ū0)‖2

.

Due to the optimality of ū0, ∇g(ū0) = 0. Then

0 = ∇g(ū0) =
M∑
i=1

y − PTi(ū0)

‖y − PTi(ū0)‖2

=
M∑
i=1

ū0 −RTi(ū0)

‖ū0 −RTi(ū0)‖2

implies that ū0 = v0 is optimal to the optimization problem in (5.22), which finishes
the proof.

Finally we have constructed a specific stationary point at which ϕ is differentiable.
So we have checked that all prerequisites of the proof of optimality from [War63]
hold and now only present a last auxiliary lemma before proving optimality.
To this end, we introduce additional ’sub’functions of ϕ. Recall that n′ = (M + 1) ·
(n − 2) and for i = 0, . . . ,M , u ∈ Rn′

+ denote (ui, u−i) ∈ Rn−2
+ × RM ·(n−2), where

u−i = (u0, . . . , ui−1, ui+1, . . . , uM). With this notation define for a given u−i

ϕi(·, u−i) : Rn−2
+ → R, ϕi(x, u−i) = ϕ((u0, . . . , ui−1, x, ui+1, . . . , uM)).

The following lemma states a helpful relationship of the directional derivates of ϕ
and the directional derivatives of the ϕi that we will use to prove local optimality
of stationary points.
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In order to calculate the directional derivatives we calculate partial derivatives, so
we need to differentiate with respect to a single coordinate of u = (u0, u1, . . . , uM).
This is the only time we need single coordinates, so in order to avoid confusion we
introduce a specific notation. We denote single coordinates by uij , so that for each
i = 1, . . . ,M

ui =

 ui1
...

uin−2

 and u =


u0

u1
...
uM

 =



u01
...

u0n−2

u11
...

u1n−2

u21
...

uMn−2


.

Lemma 5.48. Let ϕ be continuously differentiable at u. Denote the directional
derivative in direction y at u by Dy(ϕ)(u) and use the according notation for the ϕi
as well. Then

Dy(ϕ)(u) =
M∑
i=0

〈∇(ϕi(·, u−i))(ui), yi〉.

Proof. We have continuous differentiability of ϕ at u so we can rewrite the directional
derivative as the sum of the partial derivatives of all coordinates

Dy(ϕ)(u) = 〈∇ϕ(u), y〉 =
M∑
i=0

n−2∑
j=1

∂ϕ

∂uij
(u) · yij , (5.23)

Now, consider the partial derivatives with respect to the blocks i ∈ {1, . . . ,M} and
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some coordinate j ∈ {1, . . . , n− 2} of the block ui:

∂ϕ(u)

∂uij
=

∂

∂uij

(
M∑
k=1

d(ψ(uk), Tk) +
M∑
k=1

‖u0 − uk‖2

)
(u)

=
∂d(ψ(ui), Ti)

∂uij
(u) +

∂‖u0 − ui‖2

∂uij
(u)

=
∂d(ψ(ui), Ti)

∂uij
(ui) +

∂‖u0 − ui‖2

∂uij
(ui)

=
∂

∂uij

(
M∑
k=1

d(ψ(uk), Tk) +
M∑
k=1

‖u0 − uk‖2

)
(ui)

=
∂ϕi(·, u−i)

∂uij
(ui)

We want to verify this for i = 0 as well:

∂ϕ(u)

∂u0j

=
∂

∂u0j

(
M∑
k=1

d(ψ(uk), Tk) +
M∑
k=1

‖u0 − uk‖2

)
(u)

=
M∑
i=1

∂ (‖u0 − ui‖2)

∂u0j

(u) =
M∑
i=1

∂ (‖u0 − ui‖2)

∂u0j

(u0)

=
∂

∂u0j

(
M∑
k=1

d(ψ(uk), Tk) +
M∑
k=1

‖u0 − uk‖2

)
(u0)

=
∂ϕ0(·, u−0)

∂u0j

(u0)

So it turns out that the partial derivatives for a coordinate uik are independent of
all other blocks uj, j 6= i and thus, the partial derivatives of ϕ with respect to
some coordinate of block i are the same as the partial derivative for the respective
coordinate of the ϕi(·, u−i). In particular, the continuity of all partial derivatives of
the ϕi(·, u−i) implies that

M∑
i=0

n−2∑
j=1

∂ϕi(·, u−i)
∂uij

(ui) · yij =
M∑
i=0

〈∇(ϕi(·, u−i))(ui), yi〉 (5.24)
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Now, combining (5.23) and (5.24) we get

Dy(ϕ)(u) =
M∑
i=0

n−2∑
j=1

∂ϕ

∂uij
(u) · yij

=
M∑
i=0

n−2∑
j=1

∂ϕi(·, u−i)
∂uij

(ui) · yij =
M∑
i=0

〈∇(ϕi(·, u−i))(ui), yi〉.

With this formula for the directional derivatives, we can prove optimality for certain
stationary points.

Theorem 5.49. Let u∗ ∈ int (Rn′
+ ) be a stationary point of ϕ such that ϕ is contin-

uously differentiable at u∗. Then u∗ is a minimizer of ϕ.

Proof. The structure of this proof follows [War63], Theorem 2.3.
Since u∗ is a stationary point, we have that for i = 0, 1, . . . ,M and for all y ∈ Rn−2

+

ϕi(u
∗
i , u
∗
−i) = ϕ(u∗) ≤ ϕ(u∗0, . . . , u

∗
i−1, y, u

∗
i+1, . . . , u

∗
M) = ϕi(y, u

∗
−i). (5.25)

Let now v be an arbitrary point of Rn′
+ . ϕ is convex, hence for some point u ∈ Rn′

+

it holds that

gu : (0, 1)→ R, gu(δ) :=
ϕ(u∗ + δ(u− u∗))− ϕ(u∗)

δ

is a non-decreasing function of δ. Since ϕ is continuously differentiable at u∗, we
can use Lemma 5.48 and get

ϕ(v)− ϕ(u∗) ≥ lim
δ↘0

ϕ(u∗ + δ(v − u∗))− ϕ(u∗)

δ

= Dv−u∗(ϕ)(u∗) = 〈∇(ϕ)(u∗), v − u∗〉

=
M∑
i=0

〈∇(ϕi(·, u−i))(ui), vi − u∗i 〉. (5.26)

Now, for i = 0, . . . ,M plug y = u∗i + δ(vi − u∗i ) into (5.25). Then

lim
δ↘0

ϕi(u
∗
i + δ(vi − u∗i ), u∗−i)− ϕi(u∗i , u∗−i)

δ
≥ 0

and thus

〈∇(ϕi(·, u−i))(ui), vi − u∗i 〉 = lim
δ↘0

ϕi(u
∗
i + δ(vi − u∗i ), u∗−i)− ϕi(u∗i , u∗−i)

δ
≥ 0

Plugging this into (5.26) for i = 0, . . . ,M it follows that ϕ(v)− ϕ(u∗) ≥ 0.
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Theorem 5.49 gives us convergence to a minimizer of ϕ. However, ϕ was solely
constructed with the purpose of finding a minimizer of f in the orthant O ⊂ Tn that
contains an optimal solution to (PMed). The following corollary builds the bridge
from our auxiliary Euclidean function ϕ to our objective function f in tree space.

Corollary 5.50. Let u∗ ∈ int (Rn′
+ ) be a stationary point of ϕ such that ϕ is con-

tinuously differentiable at u∗. Then ψ−1(u∗0) is a minimizer of f .

Proof. Assume U := ψ−1(u∗0) is not a minimizer of f . We know that f is a geodesi-
cally convex function and that a minimizer of f exists. Let X∗ be a minimizer of f
and γ : [0, 1] → Tn parametrize the geodesic from U to X∗, Γ(U,X∗). Due to the
geodesic convexity of f (Definition 5.23), we get that for any λ ∈ (0, 1)

f(γ(λ)) ≤ (1− λ)f(γ(0)) + λf(γ(1)) = (1− λ)f(U) + λf(X∗) < f(U) (5.27)

since f(X∗) < f(U). Due to Theorem 5.49, u∗ is a minimizer of ϕ, so it is in
particular a local minimizer. Thus, there exists an ε > 0 such that for all w ∈ Bε(u

∗)
we have ϕ(w) ≥ ϕ(u∗). Moreover it holds that u∗ ∈ int (Rn′

+ ), so there exists a λ̄ > 0,
such that ψ(γ(λ)) ∈ int (Rn−2

+ ) for all λ ∈ [0, λ̄).
Now, define v = (v0, PT1(v0), . . . , PTM (v0)) where v0 = ψ(γ(λ′)), where λ′ ∈ [0, λ̄)
can be chosen small enough such that v ∈ Bε(u

∗), because the PTi are continuous.
Then we use (5.27) for λ′ to get

f(U) > f(γ(λ′)) = f(ψ−1(v0)) = ϕ(v) ≥ ϕ(u∗) = f(ψ−1(u∗0)) = f(U),

contradicting that U is no minimizer of f .

Now, we are finally able to state a theorem for convergence of the BPA to an optimal
solution for the problem (PMed). Therefor we still need all assumptions that ensure
convergence to a stationary point of the BPA from Theorem 5.44 and moreover we
need to make sure that the block-wise coordinate descent version of the BPA does
not converge to a non-optimal stationary point in the boundary of the orthant.

Theorem 5.51. Assume that there exists a unique optimal solution X∗ to (PMed)
in int (O) and that {T1, . . . , TM} contains no balance point. Moreover, assume that
for all u0 ∈ Rn−2

+ it holds that PT1(u0), . . . , PTM (u0) are not collinear. Denote UB :=
minX∈∂O f(X) and let u(0) be the starting point of the BPA. Then, if ∃`′ ∈ N0 such
that an iterate of the BPA u(`′) satisfies ϕ(u(`)) < UB, then u(`) → u∗ ∈ Rn′

+ such
that ψ−1(u∗0) = X∗

Proof. First of all, since all assumptions of Theorem 5.44 hold, it follows that (u(`))
has a subsequence (u(`m))m∈N that converges to a stationary point ū. Since ϕ(u(`)) is
non-increasing in `, u(`′) < UB holds for all ` ≥ `′, thus ϕ(ū) < UB. This implies, that
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ϕ(ū) 6∈ ∂(O). Since ū is a stationary point it follows that ψ−1(ū0) is a balance point
due to Theorem 5.28. Hence, the prerequisites imply that ψ−1(ū0) 6∈ {T1, . . . , TM}.
Since ū is a stationary point determined by the BPA, Proposition 5.47 implies that
v = (ū0, RT1(ū0)), . . . , RTM (ū0)) ∈ int (Rn′

+ ) is a stationary point as well. Moreover,
we have established that ψ−1(ū0) 6∈ {T1, . . . , TM}, so Lemma 5.46 implies that ϕ
is continuously differentiable at v. Finally, Corollary 5.50 implies that ψ−1(v0) =
ψ−1(ū0) is a minimizer of f .
It remains to be shown that not only the subsequence, but the whole sequence of
iterates (u(`))`∈N converges. As X∗ is the unique minimizer of f it follows that only

points u ∈ Rn′
+ with u0 = ψ(X∗) can be optimal for ϕ. As u

(`m)
0 → ψ(X∗) and the

whole sequence ϕ(u(`)) is non-increasing in ` it follows that u
(`)
0 → ψ(X∗) = ū0 and

as PTi(ū0) = ūi, Lemma 5.43 implies that u(`) → ū.

To conclude the section we want to state a theorem that offers a neighborhood for
which the BPA is guaranteed to converge when all prerequisites of Theorem 5.51
are satisfied. To this end we need the notion of (lower) level sets:

Definition 5.52 ([Roc15]). The (lower) level set of a function g : X → R with
respect to level α ∈ R is defined as

levα(g) := {x ∈ X : g(x) ≤ α}.

As the level sets of convex functions are convex for all α ∈ R ([Roc15]), we get a
convex neighborhood of the unique optimal solution for which the BPA converges:

Corollary 5.53. Assume that there exists a unique optimal solution X∗ to (PMed)
in int (O) and that {T1, . . . , TM} contains no balance point. Moreover, assume that
for all u0 ∈ Rn−2

+ it holds that PT1(u0), . . . , PTM (u0) are not collinear. Denote UB :=
minX∈∂O f(X) and let u(0) be the starting point of the BPA. Then, if u(0) ∈ levα(ϕ)
with α < UB, then u(`) → u∗ ∈ Rn′

+ such that ψ−1(u∗0) = X∗

Proof. UB > α ≥ ϕ(u(0)) = f(ψ−1(u
(0)
0 )), so we may apply Theorem 5.51 with

`′ = 0.

After having proven a convergence result for the BPA, we briefly come back to the
GBPH and discuss its convergence. Besides any other assumptions for Theorem 5.51,
we always require to know the orthant containing an optimal solution, in which we
then apply the BPA.
The GBPH is designed in such a way, that we are guaranteed to apply the BPA
in an orthant containing an optimal solution, as the preprocessing of the GBPH
only rules out orthants that do not contain an optimal solution. Thus, when all
assumptions of Theorem 5.51 hold, then the GBPH yields the optimal solution to
the problem:
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Theorem 5.54. Let T = {T1, . . . , TM} be given. Suppose there exists a unique
optimal solution X∗ ∈ int (O) ⊂ Tn and that T and O satisfy the prerequisites of
Theorem 5.51. Then the GBPH yields the optimal solution.

Proof. It is clear, that the preprocessing of the GBPH does not discard O. Thus,
O is one of the candidate orthants for which the BPA gets applied. Theorem 5.51
then implies that the BPA yields the unique optimal solution in O. Thus, this
balance point is also found by the GBPH as it is the balance point with the minimal
objective value.

Obviously, Theorem 5.51 and Theorem 5.54 require a lot of assumptions. Some of
the assumptions rule out rather unlikely special cases, e.g., PT1(u0), . . . , PTM (u0) will
seldom be collinear when M is big and the dimension of tree space n > 4, as for
n > 4 the boundaries of orthants are already two-dimensional. Also, the case that
the BPA converges to a non-optimal stationary point at the boundary seems not
to be to likely: When started in the “middle” of the orthant, i.e., equidistant from
all bounding hyperplanes, then there is a good chance that the BPA iterates into a
convex level set as in Corollary 5.53 and then converges to the optimal solution.

The crucial assumption that is most likely to be violated, is that the unique optimal
solution is contained in the interior of an orthant, which is rarely the case, when
the data is very spread and the number of facilities is high, as discussed in the
Experiment Section 5.2.4. Nonetheless, the results of the heuristic for such instances
were pretty good.

Of course, it is practically impossible to check if all assumptions of Theorem 5.54
hold. So when applying the GBPH, we do not know whether it yields the optimal
solution or not. Nonetheless, whenever the BPA or the GBPH output a solution,
that is contained in the interior of an orthant and is not a facility, then we know
that it is an optimal solution to (PMed).

5.4 Restrictions of the BPA

In the previous sections we have tediously proven a convergence result for the BPA
under specific assumptions. Moreover, we have seen in the experiments in Sec-
tion 5.2.4 that the BPA seems to perform quite well, even in cases where it con-
verges to the boundary. Still, there is no theoretical justification or guarantee that
the BPA performs well for the boundary cases. In this section we sketch why the
above-mentioned assumptions are necessary for the convergence theorem of the BPA
and show how and why the BPA fails, when the assumptions do not hold.
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O1

O2

O3

T1

T2

T3

ψ−1(u0)

Z

X∗

Figure 5.13: An instance where the BPA in O1 with starting point u0 converges to
the non-optimal balance point Z ∈ ∂O1.

Example 5.4.1. Consider the four splits on {0, 1, 2, 3, 4}

s1 = ({1, 2}|{0, 3, 4}), s2 = ({1, 3}|{0, 2, 4}),
s3 = ({2, 3}|{0, 1, 4}), s4 = ({1, 2, 3}|{0, 4})

with which we define the three orthants Oi, for i = 1, 2, 3, that have the split sets

S1 = {s1, s4}, S2 = {s2, s4}, S3 = {s3, s4},

respectively. The three orthants form a sort of ’open book’ (see [HHL+13]) structured
subset of T4 , see Figure 5.13 for an illustration. In each orthant Oi we have one
sample tree Ti, so T = {T1, T2, T3} with

T1 =
(
(s1, s4), (2, 3)

)
, T2 =

(
(s2, s4), (2, 3)

)
, T3 =

(
(s3, s4), (2, 3)

)
.

The optimal solution to the problem is T ∗ =
(
(s4), (3)

)
, which is contained in the

boundary of all of the three orthants. We want to apply the BPA in orthant O1

with the starting point u
(0)
0 = (0.5, 0.5)t. The geodesic from ψ−1

O1
(u

(0)
0 ) to T2 and T3

always contains the split s4, since it is contained in all splits. Its length changes
with constant speed, so the exit point is Z =

(
(s4), (1)

)
for both T2 and T3, due
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to the symmetry. This implies that PT2(u
(0)
0 ) = (0, 1)t = PT3(u

(0)
0 ). Since T1 ∈

O1 we have PT1(u
(0)
0 ) = ψ(T1) = (2, 3)t. Now, by definition of the BPA, u

(1)
0 =

arg miny∈R2
+

∑3
i=1 ‖y−PTi(u

(0)
0 )‖2. Since (0, 1)t has weight 2, it is the unique optimal

solution to this problem, so u
(1)
0 = (0, 1)t. Thus, ψ−1

O1
(u

(1)
0 ) = Z.

But then we have that Z is the exit point for T2 and T3 once more and we still have
PT1(u

(1)
0 ) = ψO1(T1). Hence we have the same representatives and the same opti-

mization problem, that leads to u
(2)
0 = u

(1)
0 being the optimal solution. That means

that we have found a balance point and of course it follows that u
(2)
i = PTi(u

(2)
0 ) =

Z = PTi(u
(1)
0 ) = u

(1)
i holds, so we also arrive at a stationary point.

Unfortunately, this balance point (1, 0) is not the optimal solution, which would be
(3, 0).

This example does not only show, that there is no guarantee for convergence to the
optimal solution when it is contained in the boundary, it also shows that the BPA
does depend on the starting point, when the optimal solution is contained in the
boundary: If one would choose to start in O1 with the tree with weight vector (1, 3),
then one would get the optimal solution in the first step of the iteration, as the
geodesics to T2 and T3 would exit O1 exactly at X∗. Hence, it is necessary to take
caution when interpreting results of the BPA when it converged to the boundary of
an orthant.

Another interesting idea to improve/generalize the BPA is to continue to search in
lower-dimensional orthants, i.e., to apply the BPA in a non-maximal orthant. The
hope is that, when the BPA converges to the boundary of a maximal orthant, one
can improve the solution when continuing the procedure in this lower-dimensional
orthant. Since we may still easily define exit points in these orthants and the
minimizer of the Euclidean median problem would also be contained in the lower-
dimensional orthant in each step, it is theoretically no problem to apply the method.
In fact, we will do this in Chapter 6 in order to further improve solutions in lower-
dimensional orthants. The next example, however, shows that we cannot guarantee
an improvement and even less convergence with this approach as the next example
shows.

Example 5.4.2. We give an example for a non-optimal balance point in a non-
maximal orthant in T4. Consider the following five splits for n = 4:

s1 = ({1, 2}|{0, 3, 4}), s2 = ({3, 4}|{0, 1, 2})
s3 = ({1, 2, 3}|{0, 4}), s4 = ({1, 3}|{0, 2, 4}) s5 = ({2, 4}|{0, 1, 3})
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Assume we want to find the median for the points {T1, T2, T3}, where

T1 = ((s1, s2), (4, 2))

T2 = ((s1, s3), (4, 2))

T3 = (s4, s5), (2, 2).

We show that the tree P = ((s1), (4)) is a balance point in the non-maximal orthant
defined by split s1, but P is not optimal. The situation is illustrated in Figure 5.14.
That P is not optimal can immediately be seen by comparing objectives with, for

T1 T2

T3

B3

X∗

PO1 O2

O3O4

s1

s2 / s5 s3

s4

Figure 5.14: An example for a non-optimal balance point in a non-maximal orthant
in T4.

example, X = ((s1), (2)):

fMed(P ) = 2 + 2 + (4 +
√

8) ≈ 10.83 > 10.49 ≈
√

8 +
√

8 + (2 +
√

8) = fMed(X)

So it remains to show that P is a balance point, when we apply the BPA in the non-
maximal orthant O that satisfies Split(O) = {s1}. Since s2 and s3 are compatible
with s1 it follows that the exit point for both T1 and T2 is P itself. Due to the
incompatibility of s1 with s4, the exit point for T3 is B3. The median of {P, P, T3},
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or to be more precise, the weighted median of {P, T3}, where P has weight 2 and T3

weight 1, is P itself. Thus, P is the median of its exit points, i.e., a balance point.

This example is designed to show the possibility of such non-optimal balance points
but it does not really yield problems for the BPA in general: When starting the BPA
in O1 or O2, it actually yields the optimal solution, which is X∗ = ((s1), (2.85)).

The example does not only show that the existence of a non-optimal balance point
in a non-maximal orthant, i.e., the boundary of an orthant, but it also gives some
intuition as to why the BPA fails here. The reason are the double compatible splits.
For a tree Y in a lower-dimensional orthant it may happen that a lot of sample trees
Ti contain splits that are compatible with Split(Y ), which results in Y being the exit
point, which we simply call Bi here, with respect to these trees Ti, i.e., Y = Bi.
Then the optimality condition for the weighted median problem

Testk :=

∥∥∥∥∥∥∥
M∑
i=1
Bi 6=Y

(Y −Bi)

‖Y −Bi‖2

∥∥∥∥∥∥∥
2

≤ |{Ti ∈ T : Bi = Y }|,

(see [Kuh73]) can easily be met when the number of trees Ti for which Bi = Y holds
is high. This then results in Y being a balance point.

Another problematic case is, where the BPA actually converges to a non-optimal
solution in the boundary of an orthant, even when the unique optimal solution to
the problem is contained in the interior of that orthant:

Example 5.4.3. Figure 5.15 depicts a situation, where non-optimal stationary
points may also exist in the boundary of the orthant that contains the unique op-
timal solution in its interior. In fact, every tree T that is contained in the lower-
dimensional orthant O({s2}) is a balance point, as the exit point will be ψ(T ) itself
with a weight of 2, so ψ(T ) will solve the resulting Euclidean median problem.
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s2

s1s3

O
T1

T2

T3

T4

X

S

Figure 5.15: Non-optimal stationary points may also exist in the boundary of the
orthant that contains the unique optimal solution in its interior.

In Figure 5.15, the unique optimal solution to the problem is marked by X, which
is the intersection of the diagonals of the polygon, see [Pla05]. In the unlucky case
that the BPA is started at ψ(S), or any other point on the dotted line in O, then the
exit points for T3 and T4 will coincide and the BPA yields a non-optimal stationary
point in ∂(O).

Example 5.4.2 and Example 5.4.1 show where the BPA might fail and we also explain
what causes this. Of course it would have been desirable to have a proof that the
BPA also finds the best solution in the boundary of the orthant. Even though
the examples show that this does not work, the BPA is still able to yield sensible
information in these cases. First of all, when we converge to the boundary, we do not
know if we have found an optimal solution; but we do know that the optimal solution
is not contained in the interior of that orthant. If this behavior shows for several
maximal orthants and the BPA always yields the same lower-dimensional orthant,
then this is a strong hint that the optimal solution is contained within this orthant,
which is a valuable information on its own. Secondly, having found this tendency
one may use the BPA in the determined lower-dimensional orthant. Again, as the
exit points may tend to be clutched at a single point as in Example 5.4.1 it is not
clear if an improvement may be found, but it is also not ruled out. In Chapter 6 we
show that the BPA significantly improves the solution in lower-dimensional orthants
for the given real data set.
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6 Real Data Example

6.1 Data Set

In this chapter we calculate the median of a real data set. The Apicomplexa data
set was introduced in [KWK08] and consists of 268 phylogenetic trees with eight
species. Seven of these species are in the Apicomplexa phylum, “whose most in-
famous members [...] are the causative agents of Malaria” ([KWK08]), one other
species, a ‘free-living ciliate’ is included as an ‘outgroup’.
[WYH17] investigated this data set with a normalizing kernel algorithm in tree space
that detected 16 of the 268 gene trees as outliers that we exclude from the data set
as in [YZZ17]. Thus, we are left with 252 phylogenetic trees. The names of the eight
species of which we would like to find the species tree may be found in the table in
Table 6.1 together with their labels and abbreviations.

Label Abbreviation Name
1 Bb Babesia bovis
2 Cp Cryptosporidium parvum
3 Et Eimeria tenella
4 Pf Plasmodium falciparum
5 Pv Plasmodium vivax
6 Ta Theileria annulata
7 Tg Toxoplasma gondii
8 Tt Tetrahymena thermophila

Table 6.1: The abbreviations and labels of the Apicomplexa data set.

First we give a very rough depiction of the tree topologies in the data set, thereby
omitting any information about the weights of the splits of the given trees, to keep
the depiction as clear as possible. According to [KWK08], the data set consists of 32
tree topologies. When analyzing the data set we found a lot of splits with a length of
0, which probably comes from a specific setup and choice of species, with ’Tt’ being
a so-called free living species, which does not belong to the phylum Apicomplexa.
As Tn does not really contain trees with split lengths of 0, we removed these to
get a better picture of the data set. On a side note, let T be a tree that contains
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some artificially added splits of length 0 and let T ′ be the tree that is obtained
when removing the splits of length 0 from T . Then d(T, T ′) = 0 (by the Euclidean
distance formula), so T = T ′. To avoid such ambiguities, Tn is defined so that every
split s ∈ Split(T ) also has a positive weight assigned to it.

It turns out that after removing these splits we end up with a total of 57 tree
topologies. This may seem counter intuitive at first glance, but when removing
these splits with 0 length this may result in two topologies for two trees that shared
a topology before removing the split. This case occurs when the splits that had
length 0 were different splits.

In Figure 6.1 we have depicted the four most common tree topologies. The tree
topologies do not depict any indication on the edge weights, the lengths of the edges
are simply chosen to let the trees look as neat as possible.

Tt Cp Et Tg Bb Ta Pf Pv

0

Tree Topology 1

Tt Cp Et Tg Bb Ta Pf Pv

0

Tree Topology 2

Tt CpEt Tg Bb Ta Pf Pv

0

Tree Topology 3

Tt Cp Et Tg Bb TaPf Pv

0

Tree Topology 4

Figure 6.1: The four most common tree topologies of the sample trees from the
Apicomplexa data set.
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The whole data set may be found in Chapter 7, where trees are given in the Newick
format, which includes the lengths of the splits.

6.2 Experiments

The experiments we conduct in this section pursue the objective of evaluating how
good the BPA performs on a real data set. Not only does this show whether or
not the algorithm performs well on a reasonably big data set in comparison to the
rather small examples in Section 5.2.4 but also it allows for a first interpretation
what the median incorporates from the structure of the data set, i.e., if the median
is a helpful concept.
It is important to mention here, that we do not know the median of the presented
Apicomplexa data set, as this has not yet been calculated to our knowledge. So, in
order to be able to compare the results of our algorithm we implemented the cyclic
order version of the Proximal Point Algorithm (PPA) from [Bac14a]. The PPA is
a method that calculates medians in Hadamard spaces, thus it may also be applied
in tree space and to our knowledge, this is the only other algorithm to determine
medians in tree space.
In order to reasonably compare PPA and BPA we first investigate how to best choose
starting points and parameters that may influence the outcomes of the algorithms.
Then we compare their best runs and overall results for varying parameters. Note
that we do not aim for finding the absolute best parameters in order to show how
well the algorithms perform, we rather try to find parameters that enable us to
carefully investigate and interpret the results.
To this end we apply the algorithms with several different settings and summarize
what the best choice of settings is for each algorithm. Furthermore we conjecture
how to best choose such parameters in a more general setting, when we are not
bound to the present data set. Last but not least, the following experiments aim for
finding an approximate median for the data set so we try to find the best method
and setting to determine the best solution we can find.

6.2.1 PPA Experiments

We start with the Proximal Point Algorithm of [Bac14a], which we stated in Algo-
rithm 6, Section 5.2.4.
In the following we carry out three different kinds of experiments for the PPA. We
investigate the influence of the amounts of cycles, Table 6.2, the influence of different
starting points, Tables 6.3 - 6.5, and the influence of the sequence (λk) in Table 6.6.
The first and most obvious feature to investigate is how the amount of cycles influ-
ences the outcome of the algorithm. To this end we use a fixed starting point and
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a fixed sequence (λk) and compare the objectives and the computation times after
different amounts of cycles. The starting point we chose has the most common tree
topology of the trees in the data set, which is Tree Topology 1 from Figure 6.1. The
split set of this topology is

S1 =
{

({4, 5}, {0, 1, 2, 3, 6, 7, 8}), ({1, 6}, {0, 2, 3, 4, 5, 7, 8}),
({3, 7}, {0, 1, 2, 4, 5, 6, 8}), ({1, 4, 5, 6}, {0, 2, 3, 7, 8}),
({1, 3, 4, 5, 6, 7}, {0, 2, 8})

}
,

and the weight vector of the tree we use is

w̄ = (0.214165, 0.239492, 0.114332, 0.083201, 0.061012)t.

We denote the starting point as X̄ = (S1, w̄). The results of the experiments are
summarized in Table 6.2. It can be seen quite nicely that due to the cyclic nature
of the algorithm, the computation time is proportionate to the amounts of cycles.

# of cycles time in s objective value
10 4.14 76.401
100 38.68 72.297
1000 373.28 72.203
10000 3735.40 72.182

Table 6.2: Results of the PPA for the Apicomplexa data set. The sequence that was
used for the PPA is λk = 10−3

k+1
, the starting point is X̄.

It may be seen that the algorithm makes significant progress in the beginning,
whereas from 100 cycles to 1000 cycles as well as from 1000 to 10000 cycles the
progress is rather small, especially in relation to the additional amount of computa-
tional effort.
It is important to note that the tree topology does not change at all. That is
probably due to the Tree Topology 1 actually being an optimal tree topology, i.e.,
there exists a median that has this topology, or at least it is very close to it. So the
tree topology that we have after each cycle is the most common among the input
trees, i.e., it is Tree Topology 1 from Figure 6.1.
Having tested a starting point that has a different topology we realized that the
topology also stagnates after a few cycles. We use the sequence λk = 10−3

k+1
and the

starting point Ȳ = (S4, v) with the split set

S4 =
{

({4, 5}, {0, 1, 2, 3, 6, 7, 8}), ({1, 6}, {0, 2, 3, 4, 5, 7, 8}),
({3, 7}, {0, 1, 2, 4, 5, 6, 8}), ({3, 4, 5, 7}, {0, 2, 3, 7, 8}),
({1, 3, 4, 5, 6, 7}, {0, 2, 8})

}
,

196



which is the split set of Tree Topology 3 from Figure 6.1 and the weight vector

v̄ = (0.393798, 0.273573, 0.206168, 0.104214, , 0.249161)t.

It turns out that the topology of the trees also reaches Tree Topology 1 after only
three cycles and does not change after that.
That the topology does not seem to change anymore after a certain amount of cycles
is a very important observation for the BPA. When the topology is fixed from some
point on it is very likely that the optimal solution is contained within this orthant.
We may then use that topology to choose certain starting trees for the BPA. We
will make use of this observation in Section 6.2.2.

In the next series of experiments the objective is to find out, how strongly Algo-
rithm 6 depends on the given starting point. This question turns out to be somewhat
intertwined with the choice of a reasonable scaling factor for the step size, as we
will explain in the following. We perform experiments for a fixed set of five different
starting points and show the influence on the results when choosing different step
sizes. As for the starting points, we choose representatives from the data set of the
four most common tree topologies, compare Figure 6.1, to get reasonably good, but
still different starting points.
As earlier, for Tree Topology 1 and 4 we formally state the topologies of Tree Topol-
ogy 2 and Tree Topology 3 as split sets:

S2 =
{

({4, 5}, {0, 1, 2, 3, 6, 7, 8}), ({1, 6}, {0, 2, 3, 4, 5, 7, 8}),
({3, 7}, {0, 1, 2, 4, 5, 6, 8}), ({1, 4, 5, 6}, {0, 2, 3, 7, 8}),
({2, 3, 7}, {0, 1, 4, 5, 6, 8})

}
,

S3 =
{

({4, 5}, {0, 1, 2, 3, 6, 7, 8}), ({1, 6}, {0, 2, 3, 4, 5, 7, 8}),
({3, 7}, {0, 1, 2, 4, 5, 6, 8}), ({1, 4, 5, 6}, {0, 2, 3, 7, 8}),
({1, 2, 4, 5, 6}, {0, 3, 7, 8})

}
,

The weights that we use for the starting points stem from representatives of this
topology in the data set:

w1 = (0.214165, 0.239492, 0.114332, 0.083201, 0.061012)t

w2 = (0.427082, 0.23773, 0.074412, 0.10792, 0.045042)t

w3 = (0.397007, 0.18038, 0.225526, 0.199062, 0.05536)t

w4 = (0.393798, 0.273573, 0.206168, 0.104214, 0.249161)t
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With this, we define our starting points as Xi := (Si, wi), i = 1, . . . , 4. We will also
use 0 ∈ Tn as an additional starting point and reference.

The first try for this experiment was conducted with the sequence λk = 1
k+1

. We
received the same result for all starting points, as may be seen in Table 6.3 which
is actually due to all starting points returning the exact same tree.

starting point time in s objective value
X1 37.5 72.297
X2 37.9 72.297
X3 38.2 72.297
X4 37.3 72.297
0 37.5 72.297

Table 6.3: Results of the PPA for the Apicomplexa data set. The sequence that was
used is λk = 1

k+1
, the number of cycles was set to 100.

This phenomenon results from the structure of the data set and the definition of tηk:
Since the weights of all trees in the data set are rather small, their distance is small
as well, because it is bounded by d(Ti, Tj) ≤ ‖ti‖2 + ‖tj‖2. The maximal distance
between two trees in the data set is actually only 1.17 and the majority of pairwise
distances is smaller than 1.

That makes it so that t10 = min
{

1, λ0
d(X,T1)

}
= min

{
1, 1

d(X,T1)

}
= 1, as 1

d(X,T1)
≥ 1

holds for all investigated starting points. Thus, the algorithm yields the same results
for all starting points.

In order to rule this out, so that our different starting points actually have an
influence on the algorithm, we scale down the λk by a factor c > 0. As a rather
extreme try to get rid of this independent behavior of the starting points, we choose

c = 10−5 such that t01(X) = min
{

1, 10−5

d(X,T1)

}
< 1.

Table 6.4 contains the results of this experiment and shows that the resulting step
sizes are way too small:
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starting point time in s objective value
X1 3511 80.498
X2 3801 84.984
X3 3871 96.217
X4 3798 105.483
0 3617 115.422

Table 6.4: Results of the PPA for the Apicomplexa data set. The sequence that was
used is λk = 10−5

k+1
, the number of cycles was set to 10000.

Theorem 5.18 states that the sequences of iterates do converge, no matter how small
the scaling factor c > 0 becomes, but here we can see how slow the convergence may
get, as we let the PPA run for 10000 cycles for each starting point and still have
very bad objective values. Comparing these results to the run with 10000 cycles in
Table 6.2 we can see that the choice of such a small step size is extremely maleficial.
That shows, that it is not that easy to improve the result of PPA by only choosing
different starting points, one also needs to be in the right range of scaling factors.

After having conducted several different runs of the algorithm for varying starting
points and step sizes, it seems that a scaling factor of c = 10−3 works best empirically
to compare different starting points. This is for two reasons, the first one being that
for c = 0.01, c = 0.1 etc. we have t01(X) = 1 for X ∈ {X1, X2, X3, X4, 0} and they
all yield the same result. The other reason is that for c = 10−4 we get the same slow
converging behavior as for c = 10−5, just not as extreme.

The results for our five starting points, a scaling factor of c = 10−3 and a maximum
number of cycles of 10000 are summarized in Table 6.5.

starting point time in s objective value
X1 3666 72.180626
X2 3684 72.180629
X3 3674 72.180630
X4 3673 72.180635
0 3675 72.180666

Table 6.5: Results of the PPA for the Apicomplexa data set. The sequence that was
used for the PPA is λk = 10−3

k+1
, the number of cycles was set to 10000.

The results clearly point out, that when taking a reasonable step size and a large
number of cycles, the results are close to independent from the starting point. In
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order to be able to depict the different outcomes we give six decimal places, so all
resulting objective values are really close.

All in all, the influence of different starting points is not too big for this data set
and the three experiments have shown that the step size has a much bigger impact
on the outcome.

Thus we try to compare varying scaling factors c for the step size. We investigate
the range from c = 10−4 to c = 103, always multiplying c by 10. We execute
the experiment with a fixed starting point, the origin, and a fixed number of 100
maximum cycles. One may see in Table 6.6 that it turns out that the best scaling

factor c time in s objective value
0.0001 36.02 98.920
0.001 36.83 72.212
0.01 36.83 72.182
0.1 37.42 72.203
1 37.12 72.297
10 37.74 76.401
100 36.73 125.444
1000 36.41 125.444

Table 6.6: Results of the PPA for the Apicomplexa data set. The number of cycles
was set to 100, the starting point was the origin Xs = 0.

factor seems to be around c = 0.01 for the data set at hand. When the scaling
factor gets bigger, then the first cycles should only jump from one sample tree to

another as the bigger λk = c
k+1

implies that tηk = min
{

1, λk
d(X,Tη)

}
is bigger; hence

we get tηk = 1 for a lot of k in the beginning before something starts to happen.
This behavior culminates in the same objective value for c = 100 and c = 1000; the
scaling factors are so big that t100

M = 1 which results in the output of the sample tree
TM and its objective 125.444 for both values of c.

A last important point to notice is that the ‘optimal’ choice of the step size also
strongly depends on the starting point. When one does not care for the structure
of the data set and chooses an outlier as a starting point, one may not make any
progress at all when the scaling factor is as small as c = 0.01. When we applied
the PPA with this scaling factor and a maximal number of cycles of 1000 to the
starting tree Xb = (S1, (100, 100, 100, 100, 100)) we received an objective of 51521
for the output tree

Xb
o = (S1, (91.581, 91.57, 91.563, 91.552, 91.553)),
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so we are still light years away from an optimal solution after 1000 cycles. Hence,
it is important to look at the data set before choosing a starting point and also
choosing a fitting step size factor for the corresponding starting point.

We want to briefly summarize the results. The experiments have shown that for
the data set at hand the most crucial factor for the performance of the algorithm
was the step size. Without the correct step size, the algorithm makes very little
progress, even when massively increasing the computational effort. The influence of
different starting points may even be nullified by the step size, when it is not chosen
suitably, as we have seen in Table 6.3.
It is, however, crucial to notice the dependence of the step size and the given data
set. Our data set carries a lot of structure. The splits

({4, 5}|{0, 1, 2, 3, 6, 7, 8}),
({1, 6}|{0, 2, 3, 4, 5, 7, 8}),
({3, 7}|{0, 1, 2, 4, 5, 6, 8})

are contained in nearly all input trees and the split lengths from the trees are rather
small, so the trees are not extremely far apart from each other. The maximal dis-
tance between two trees is actually only 1.17, as mentioned earlier. Thus it is not too

surprising that a scaling factor c = 10−2 is the best choice, as min
{

1, c
(k+1)·d(X,Tη)

}
is more likely to be 1 for smaller k, when d(X,Tη)� 1 and c is not sufficiently small
to balance this out.
So for our data set it is reasonable that c < 1 yield faster convergence than other c.
For data sets, where the sample trees have big distances of, say 1000 in average, it is
better to take a scaling factor c > 1, as one otherwise observes the same phenomenon
as for our outlier example. This shows that there is no universal rule in choosing a
good factor for the step size, the data set at hand needs to be investigated first.

6.2.2 BPA Experiments

In this subsection we conduct experiments for the BPA on the Apicomplexa data
set. The first thing that needs to be clarified is that the BPA itself cannot solve
this problem as it is a local improvement procedure that only operates on a fixed
orthant. Hence, the BPA needs a starting point in a fixed orthant and since the
BPA only yields trees in the orthant it was given, it even needs a starting point
which is contained in an orthant with an optimal solution in order to perform well.
This is also the reason why we started with the PPA experiments - the PPA yields an
orthant with a very good solution if not an orthant containing the optimal solution.
So the experiments we perform in this subsection are only sensible when the BPA
is started after one has a result of the PPA, which we will assume in the following.
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The best run of the PPA was found with starting point X1 in the experiment sum-
marized in Table 6.5. It returned the tree

XP = (S1, (0.30847421, 0.18800566, 0.1120948, 1.7 · 10−7, 2.3 · 10−7)),

i.e., a tree with the most common Tree Topology 1, which has an objective of
72.180626. The most important thing to notice here is that the tree structure is
unresolved. This immediately raises the question where the BPA should be started
since we only developed theory for maximal orthants. Moreover, there may exist
non-optimal balance points in non-maximal orthants, so it is not sensible to simply
trust the outcome of the algorithm in non-maximal orthants, as we have already
shown in Example 5.4.2.

The problems with the analysis of the BPA in a non-maximal orthant and the
conjecture that an optimal solution of the median is to be found in a non-maximal
orthant seem to suggest that the method fails. But in the following we will show
that BPA performs quite well on such instances for several reasons. We show this
via three different experiments. First, we simply apply the BPA to one tree for
each of the three maximal orthants that resolve Tree Topology 1 that contains the
median according to the PPA results, see Table 6.7. ‘Resolving’ means that we add
compatible splits to the split set, such that we end up with a maximal split set,
and thus in a maximal orthant. The second experiment investigates the influence
of different starting points in a fixed maximal orthant, see Table 6.8. The third and
most interesting experiment is to apply the BPA in non-maximal orthants, trying
to improve solutions that the PPA yielded, see Table 6.9.

We start with the three topologies that resolve Tree Topology 1, which is the topol-
ogy that the best output trees of PPA yield. Recall, that the split set of Tree
Topology 1 is

S1 =
{

({4, 5}, {0, 1, 2, 3, 6, 7, 8}), ({1, 6}, {0, 2, 3, 4, 5, 7, 8}),
({3, 7}, {0, 1, 2, 4, 5, 6, 8}), ({1, 4, 5, 6}, {0, 2, 3, 7, 8}),
({1, 3, 4, 5, 6, 7}, {0, 2, 8})

}
.

Now the three splits that are compatible with all five splits of S1 are

sc1 = ({1, 2, 3, 4, 5, 6, 7}, {0, 8}),
sc2 = ({1, 3, 4, 5, 6, 7, 8}, {0, 2}),
sc3 = ({2, 8}, {0, 1, 3, 4, 5, 6, 7}).

With this we define three resolved tree topologies

Ri = S1 ∪ {sci} for i = 1, 2, 3.
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We apply the BPA for one tree for each of these topologies and we use the weights

weq =

(
1

6
,
1

6
,
1

6
,
1

6
,
1

6
,
1

6

)
for all three topologies. So our starting trees are given by Y s

i = (Ri, weq) for i =
1, 2, 3. The BPA is, just as the PPA, an iterative algorithm which converges to a
balance point. In most cases it does not really reach it. Hence, we also give the
BPA a maximal amount of iterations to control the computation time, just as for
the PPA. One iteration consists of calculating one Euclidean median problem for
the respective representatives of the current iterate. The results for our starting
points in the three different orthants with a maximal number of iterations of 1000
are given in Table 6.7.

starting point time in s objective value
Y 1
s 9111 72.202
Y 2
s 8252 72.189
Y 3
s 8123 72.189

Table 6.7: Results of the BPA for the Apicomplexa data set with a cap on the
number of iterations of 1000.

In the second experiment we choose only one orthant to see how sensitive the BPA is
to different starting points. We choose the resolving tree topology R3, as it yielded
the best result in our first experiment. We compare the outcomes for the following
five weight vectors:

ws1 = (0.3, 0.12, 0.1, 0.01, 0.01, 0.01)

ws2 = (0.1, 0.1, 0.1, 0.1, 0.1, 0.1)

ws3 = (0.1, 0.1, 0.1, 0.1, 0.1, 0.5)

ws4 = (1, 1, 1, 1, 1, 1, 1)

ws5 = (100, 100, 100, 100, 100, 100)

We chose the above weight vectors for the following reasons. ws1 is a weight vector
that is close to weights that PPA yielded as output, so it might be a good starting
point. Another interesting investigation is to find the differences in the outcome
of ws2 and ws3: They are identical except for the weight for the last split, which is
exactly the one that is not contained in S1. We expect this weight to tend to zero
for all weight vectors, so we investigate here, how fast this happens and what the
difference is when choosing a bigger value for this split. Last but not least, we chose
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two weight vectors ws4 and ws5 that has slightly bigger or exceptionally big weights
to see how the BPA copes with starting points that are ’outliers’, i.e., far away from
any tree in the data set and from a median.
Table 6.8 summarizes the outcomes for the starting points Yi = (R3, w

s
i ) for i =

1, . . . , 5. We can see that even though the optimal solution is not contained in the

starting point time in s objective value
Ȳ1 833 72.348
Ȳ2 851 72.218
Ȳ3 871 72.191
Ȳ4 829 72.199
Ȳ5 834 72.212

Table 6.8: Results of the BPA for the Apicomplexa data set with a cap on the
number of iterations of 100.

interior of the orthant and we have no optimality analysis, it does not really matter
too much with what weight one starts the algorithm in a given orthant. There are
notable differences in the objective values, but when looking at the weights of the
output trees we see that the resulting weight vectors are quite similar:

wo1 = (0.305, 0.169, 0.108, 7 · 10−7, 8 · 10−7)t

wo2 = (0.299, 0.184, 0.111, 1 · 10−6, 1 · 10−6)t

wo3 = (0.304, 0.186, 0.112, 1 · 10−6, 1 · 10−6)t

wo4 = (0.312, 0.192, 0.117, 8 · 10−7, 8 · 10−7)t

wo5 = (0.314, 0.193, 0.117, 7 · 10−7, 7 · 10−7)t

For all starting weights the algorithm converged to the same boundary, which is the
unresolved tree topology S1, i.e., the split sc3 gets thrown out. This also very well
suits the conjecture that this tree topology contains a median, since the BPA always
decreases the objective and also converges to this tree topology in our experiments
so far.
That the BPA seems to be rather independent of the weight with which it is started
is a helpful observation: It is no problem to start the BPA close to the boundary
of the orthant (Y1) or with weights that are far higher than the ones of the given
sample trees (Y5). Surprisingly, it seems that the BPA performs better, when it is not
immediately started next to the boundary to which it converges. This is probably
because once one gets close to this boundary, the Euclidean median problem has a
lot of representative facilities in this boundary that are close to each other, so that
the steps of the BPA are not that big early on and continue to get smaller.
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Altogether the experiments suggest that starting points do not influence the BPA
too much. The experiment shows that we get a reasonable result when simply taking
a starting weight vector which is not too close to a boundary already. Moreover, it
is nice to see that the method is robust to a seemingly bad choice of starting weights
(Y5), as the PPA does not perform too well in such a case.

As mentioned, the last experiment aims for improving the PPA solutions by applying
the BPA on the output trees. The trees that we use for this are the output trees
from Table 6.5. All outputs of the PPA from Table 6.5 have the Tree Topology 1
from Figure 6.1, whose splits are given by S1. The output trees from Table 6.5 have
the following weight vectors, which we now use as input weights

wP1 = (0.30847421, 0.18800566, 0.1120948, 1.7 · 10−7, 2.3 · 10−7)t

wP2 = (0.30862393, 0.18805914, 0.11213941, 1.7 · 10−7, 2.3 · 10−7)t

wP3 = (0.30863274, 0.18805648, 0.11216363, 1.7 · 10−7, 2.3 · 10−7)t

wP4 = (0.30866245, 0.18809296, 0.11217955, 1.7 · 10−7, 2.3 · 10−7)t

wP5 = (0.30823681, 0.18787339, 0.11199423, 1.7 · 10−7, 2.3 · 10−7)t

Note that the weight vectors are really similar, which is due to the fact that the
PPA eventually converges to a median. The similarities indicate that we are not too
far away from a median.

Nevertheless, we now use these output trees from the PPA as starting points for
the BPA in order to improve the solutions and look for changes. Since the BPA is
guaranteed not to increase the objective we may try to improve any solution from the
PPA like this, however, it might be that the BPA immediately returns the starting
point, when a scenario as in Example 5.4.2 occurs.

The hope of is that we get a bigger decreases in the objective or a faster convergence
to a median than by simply letting the PPA execute more cycles, as Table 6.2
suggests that the convergence gets really slow at some point.

Now, in order to finally present the results of the experiment, denote the start trees
as XP

i = (S1, w
P
i ) for i = 1, . . . , 5. Table 6.9 shows the results of the BPA.

Due to the nature of the BPA, the resulting trees have to have a split set that is a
subset of the starting tree, i.e., a subset of the splits of the orthant in which it is
started. For all five given trees, the length of the split s̄ = ({1, 3, 4, 5, 6, 7}, {0, 2, 8})
reached 0 at some point and it remained 0. So the resulting topology of the five
output trees is

Sr =
{

({4, 5}, {0, 1, 2, 3, 6, 7, 8}), ({1, 6}, {0, 2, 3, 4, 5, 7, 8}),
({3, 7}, {0, 1, 2, 4, 5, 6, 8}), ({1, 4, 5, 6}, {0, 2, 3, 7, 8})

}
.
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starting point time in s objective value
XP

1 452 72.180624
XP

2 448 72.180628
XP

3 461 72.180629
XP

4 454 72.180634
XP

5 452 72.180665

Table 6.9: Results of the BPA for the Apicomplexa data set. Improving the PPA
solutions from Table 6.5 by applying BPA to the output trees.

The respective weight vectors of the output trees are

w′1 = (0.30847421, 0.18800566, 0.11209484, 6.5 · 10−10)t,

w′2 = (0.30862391, 0.18805914, 0.11213941, 6.5 · 10−10)t,

w′3 = (0.30863273, 0.18805648, 0.11216362, 6.5 · 10−10)t,

w′4 = (0.30866244, 0.18809295, 0.11217954, 6.4 · 10−10)t,

w′5 = (0.30823681, 0.18787340, 0.11199424, 6.5 · 10−10)t.

Even though all output trees decrease the objective of the respective starting trees,
the improvements are only marginal. That was to be expected, since it is quite
likely that all starting points are already pretty close to an optimal solution as the
PPA has already been performed with 10000 cycles with a good step length and
reasonable starting trees. Nevertheless, the BPA actually decreased the objective
for all five starting trees, even though it was applied in a lower-dimensional orthant
where no guarantee of convergence to an optimal solution exists.

The more important observation is that the BPA strongly suggests that the opti-
mal solution is to be found in an even lower-dimensional orthant: It removed the
split s̄ = ({1, 3, 4, 5, 6, 7}, {0, 2, 8}) and it seems as though the length of the split
({1, 4, 5, 6}, {0, 2, 3, 7, 8}) also tends to 0. The weight vectors the PPA determined,
i.e., the weight vectors of the starting trees already suggest, that these weights
might converge to 0, but after 10000 cycles they still have weights of about 10−7. In
contrast to that the BPA has actually removed a split and the other weight seems
to converge to 0 faster as for the PPA. In fact, the objective seems to further de-
crease when removing the split s̃ = ({1, 4, 5, 6}, {0, 2, 3, 7, 8}). We take the best
solution of the five BPA output trees, which is X̄ = (Sr, w′1), remove the split s̃
and keep the other splits with the same weights as in w′1. The resulting tree is
X ′ = (Sr \ (s̃), (0.30847421, 0.18800566, 0.11209484)). Then we actually have

f(X̄) = 72.1806242978 > 72.1806242901 = f(X ′).
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These are extremely small improvements, which would usually be practically irrel-
evant when only searching for a minimum. But in this case the structure of the
minimizer changes: The comparison suggests that the optimal solution is contained
in the orthant with only the splits

({4, 5}, {0, 1, 2, 3, 6, 7, 8}),
({1, 6}, {0, 2, 3, 4, 5, 7, 8}),
({3, 7}, {0, 1, 2, 4, 5, 6, 8}).

The BPA has reached values of about 6.5 · 10−10 for the length of s̃ and stopped
since the employed exactness threshold of 10−15 has been reached, i.e., two successive
iterates of the BPA had a distance of less than 10−15. Even though the BPA has
not deleted the split s̃ it still shows the right tendency to converge to solutions in
the lower-dimensional orthants and it has done so faster than the PPA.

To wrap up the results of the section we want to stress that the main insight is
that the BPA handles the real data set better than expected. Not only did it give
reasonably good results, when started in maximal orthants, but it also showed a
nice behavior when applied to non-maximal orthants, which allowed for a better
interpretation of the results than with the PPA outputs. Also the computation
times for the BPA are still manageable here. As a final note we mention that
quite some computational effort of the BPA is put into the optimality test for the
Euclidean median problem as well as into the Weiszfeld-iterations. It is hence an
interesting future line of research to practically explore how to improve the BPA
algorithmically and to see which algorithms for the Euclidean median problem may
outperform the Weiszfeld algorithm to be able to gain a significant speed up for the
BPA.

6.3 Summary of Results and Comparison to other
Algorithms

In this section we extract the essence of the BPA and PPA experiments on the real
data set. First it needs to be said that the BPA strongly relies on a good starting
solution that is produced by the PPA. When the BPA is started in some random
orthant, there would not be a lot of reasonable results, so the BPA is dependent on
the PPA. Nevertheless, the BPA has proven to be a very useful tool in combination
with the PPA, even if the optimality analysis of balance points may not be applied in
the lower-dimensional orthants. This is for two reasons. Firstly the BPA guarantees
not to increase the objective, so we cannot ‘lose’ anything by applying it to a solution
of the PPA. Practice has shown that we even get a decrease in the objective. The
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second reason is that the BPA provides a better insight as to where the median is
probably located: in an even lower-dimensional orthant. The PPA was not able to
converge to the boundary of the orthant with Tree Topology 1 as quickly as the BPA,
see Table 6.9. This convergence to the boundary enables a better interpretation of
the results and it is quite likely that a median is contained in that lower-dimensional
orthant the BPA hints at, which is important to know.

In contrast to many other algorithms in tree space that use the local Euclidean struc-
ture to determine the Fréchet mean, the BPA may also be applied at the boundary
of the orthants, i.e., in lower-dimensional orthants. Most of the other algorithms
make use of the differentiability and other features that do not hold at the bound-
ary of the orthants. This is also an issue for our optimality analysis. Nevertheless,
the algorithmic scheme of the BPA may be applied to lower-dimensional orthants
and we can hence search for better solutions in lower-dimensional orthants that
seem to contain an optimal solution. This works as the iterative scheme does not
need differentiation and only requires the calculation of the geodesics and Euclidean
medians. That is a big upside in comparison to other algorithms, for which the iter-
ative scheme may not be applied to lower-dimensional orthants, as e.g., the descent
methods in [MOP15].

Besides the comparison of BPA and PPA we also want to interpret our results and
compare them with other insights from the literature. Therefor we first need to
settle on what the actual tree topology of a median looks like. Since the lowest
objective value we were able to find was the tree

X ′ = (Sr \ (s̃), (0.30847421, 0.18800566, 0.11209484))

with only three splits, and the PPA and BPA have very low weights on the splits
that are not in Sr \ (s̃) we conjecture that this topology is the most likely to be the
topology of a median.

One of the probably easiest obtainable hypotheses for the species tree are consensus
trees. [KWK08] were the first to work with this Apicomplexa data set and have
used several methods to obtain the set of gene trees. With the set of gene trees at
hand they calculate the extended majority rule consensus tree with the method con-
sensus of the widely used PHYLIP package. The extended majority rule consensus
calculates a consensus tree using the following criteria: Any split that appears in
more than 50% of the trees is included. The program then considers the other splits
in order of their frequency with which they have appeared, adding to the consensus
tree any of them which are compatible with it until the tree is fully resolved. The
resulting tree topology is on the left hand side in Figure 6.2, on the right hand side
is the presumed tree topology of a median.
One immediately notices that the Median Tree Topology contains less splits than
the Consensus Tree Topology. As we know, split sets uniquely describe the tree
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Tt Cp Et Tg Bb Ta Pf Pv

0

Consensus Tree Topology

Tt Cp Et Tg Bb Ta Pf Pv

0

Median Tree Topology

Figure 6.2: The tree topology of the extended majority rule consensus tree (left)
and the topology of the approximate solution to the median problem
determined by PPA and BPA (right).

topologies, and we have that the consensus tree contains three additional splits,
that the Median Tree Topology does not contain. These splits are

({1, 4, 5, 6}|{0, 2, 3, 7, 8}), ({1, 3, 4, 5, 6, 7}|{0, 2, 8}), ({1, 2, 3, 4, 5, 6, 7}|{0, 8}).

So, three of the six splits of the Consensus Tree Topology are also contained in the
Median Tree Topology and the Median Tree Topology does not contain a split that
is not contained in the Consensus Tree Topology. This hints that the Median Tree
Topology seems to extract only the splits with the highest consent from a data set,
even though it may not be too many.
We do not try to give a practical biological interpretation of the difference between
the two trees, as this is best to be left to experts, though we note that from a
biological perspective it is not the most desirable result to have topologies that
have few splits. But on the other hand, it does not really seem reasonable to
enforce resolvedness of trees, when the model does not allow for it. This is also
why it is difficult to fairly compare the majority rule consensus tree to median trees
or the Fréchet mean tree, as the median and the mean tree might very likely be
unresolved as there is no artificially added constraint in the method forcing them to
be unresolved.
Moreover we emphasize that it is plausible that the split ({1, 2, 3, 4, 5, 6, 7}|{0, 8})
that distinguishes the species Cryptosporidium parvum (’Cp’, label 2) from the origin
is not contained in the Median Tree Topology and should also not be contained
in the species tree topology; our conjecture is that this split is only included in
the Consensus Tree Topology as the extended majority rule enforces resolved tree
topologies. We noted in Section 6.1, that we removed splits of length 0 from the
trees in the data set, as these do not carry any information in the tree space and may
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be omitted. After that transformation many trees did not distinguish the species
Cryptosporidium parvum (’Cp’) from the origin anymore and it is hence not very
surprising that the Median Tree Topology does not depict this distinction as well.
From our perspective, that also arises the question how sensible it is to calculate
consensus trees on a set of trees where edges of length 0 are present, since this
may heavily influence the result. As edge lengths are not taken into account in the
method, these 0 weight edges have a big influence on the outcome of the consensus
tree method, whereas they should actually not be considered at all.

Another paper that dealt with the Apicomplexa data set is [YZZ17], where they
investigated the data set in the space of ultrametric trees. The space of ultrametric
trees is another metric space in which phylogenetic tree problems may be modeled,
as already mentioned in Section 2.3. [YZZ17] calculated two-dimensional Stiefel
tropical linear spaces which are the analogon of principal components in this space
using a randomized search heuristic. Since they calculated these special principal
components which relate more to variance minimization and hence the Fréchet mean
than the median we may not really compare the results. Nevertheless, after apply-
ing their PCA method and projecting the tree topologies they conclude that their
topologies are ‘largely congruent with the accepted phylogeny’ as [YZZ17] describe
it. The ’accepted phylogeny’ groups ’Pf’ and ’Pv’ together, as well as the four
species ’Bb’, ’Ta’, ’Et’, ’Tg’, whereas ’Tt’ is an isolated species. The Median Tree
Topology does not meet all of these three requirements as it does not group ’Bb’,
’Ta’, ’Et’, ’Tg’ together. Nevertheless, it is at least possible to resolve the tree to
meet the requirements of the accepted phylogeny, as the split that groups ’Bb’, ’Ta’,
’Et’, ’Tg’, together is compatible with the Median Tree Topology. This is not the
case for the Consensus Tree Topology, where the split ’Bb’,’Ta’,’Pf’,’Pv’ is actually
conflicting with ’Bb’, ’Ta’, ’Et’, ’Tg’.

Altogether, the conducted experiments on the real data set have shown promising
results. We see that the median may be a helpful concept in the following sense:
Even if it may yield unresolved trees, the resulting tree seems to incorporate the
most important shared features of the sample trees. The three splits that have been
included in nearly all sample trees have also been contained in our approximate
solutions of a median. In this way the median seems to yield similar tree topologies
as majority rule consensus trees, for which it is not forced that the consensus tree
is unresolved. From that point of view the median is a concept that is close to
majority consensus trees but additionally includes edge weights in its analysis.
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7 Conclusion

The thesis consists of three major contributions. The first and probably most im-
portant contribution is to merge two different fields of research by introducing opti-
mization methods, Facility Location methods in particular, to the phylogenetic tree
related research. Facility Location is a research field which is often restricted to
business applications and therefore most of the research restricts to the Euclidean
plane. With our application of Facility Location in tree space we have found a non-
business application for the field. Moreover we motivate future research by showing
that Facility Location can be applied to metric spaces such as the tree space thereby
yielding promising results.

The second contribution is based on connecting the tree space problems and known
location problems. We point out a connection of special cases of tree space location
problems to Euclidean fixed gate point location problems. Since we are able to find
solutions for these fixed gate point location problems in many cases this also implies
that we can solve the special cases of the location problems in tree space from which
the problems originated from.

The third and theoretically biggest contribution is the development and in-depth
analysis of the BPA. The BPA is designed in such a way that it exploits the local
Euclidean structure which enables the use of known methods of Facility Location.
The idea of improving a given solution by local Euclidean methods seems to only
provide a rough heuristic at first glance. Nevertheless, when experimenting with the
method, see Section 5.2, we realized that the GBPH, that is based on the BPA yields
surprisingly good solutions in average. That motivated the convergence analysis of
the method, resulting in the proof of convergence in Section 5.3. The clear drawback
of the BPA is that there is no guarantee for it to converge when the set of medians
is contained in a lower-dimensional orthant and practice shows that it is often the
case that medians are contained in lower-dimensional orthants. Nonetheless, the
experiments in T4 and T5 as well as the real data example have shown that the
algorithm is still very useful. First of all, it yields valuable information about the
orthants we apply it in; when the BPA converges to the boundary, it is an indicator
that the optimal solution is probably contained in the lower-dimensional orthant the
BPA converges to. This way it is possible to identify lower-dimensional orthants that
are likely to contain an optimal solution and the BPA may be applied in these lower-
dimensional orthants as well. Even though there is no guarantee for convergence
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to an optimal solution in lower-dimensional orthants, the experiments in Chapter 6
show that the BPA works well in lower-dimensional orthants for the data set at hand
and was able to improve any given solution.

In the introduction we motivated the research undertaken in this thesis by the
species tree problem. We pointed out that there are various methods and different
approaches on how to produce a guess or a hypothesis for the species tree when
given a set of sampled gene trees. The thesis focuses on calculating the median of
such a set of trees. Therewith we add a another approach to the list of calculating
hypotheses for the species tree, but since none of the approaches so far is generally
accepted by biologists to always infer the correct species tree, it does no harm to
offer a new candidate. In Chapter 6 we applied the BPA and received a tree that is
very close to the median of the data set and we have seen that the result is not far off
the species tree that is agreed upon, or at least the most likely species tree according
to biologists. This may both be seen as an advantage as well as a disadvantage. It
is certainly a good validation of the concept and the model assumptions when the
median yields reasonable or expectable results. On the other hand, when the results
are too close to known or expected results, then our method does not offer a real
new hypothesis.
In general, it is hard to evaluate methods for species tree problems as there is
little to no possibility to actually prove or validate results for these problems due
to the reverse engineering nature of the problem. Moreover, we do not aim for
overinterpreting the results here, as interpretation of phylogenetic trees should be
left to experts.

In conclusion, the thesis has pointed out the potential of introducing methods from
Facility Location to tree space. On one hand, the achieved results show that we have
a good solution approach for the median problem, but that there is further research
left to explore how to precisely solve cases with optimal solutions in the boundary.
Theoretically one might, for example, try to find optimality conditions for boundary
cases using directional derivatives, similar to the conditions that [MOP15] develop
for the mean problem. Such conditions could be used to improve the BPA by calcu-
lating directional derivatives at balance points that are located in boundaries. Then
the directional derivatives might be used to tackle two central problems: Firstly, they
naturally yield an optimality criterion for points on the boundary, so it is possible
to evaluate the solutions found by the BPA and secondly the directional derivatives
may hint at a specific lower-dimensional orthant in which one could continue the
search for the optimal tree.
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Appendix

CAT(0) spaces

We have referred to this section for a brief and concise introduction of geodesic
metric and CAT(0) spaces. We start with the definition of geodesic metric spaces.

Definition 7.1 ([Bac14b]). We say that a metric space (X, d) is a geodesic space
if for every two points x, y ∈ X there exists a path γ : [0, 1]→ X such that

d(γ(s), γ(t)) = |s− t|d(γ(0), γ(1)),

where γ(0) = x, γ(1) = y. The path γ is called geodesic from x to y.

As uniqueness of geodesics has a lot of important implications we define uniquely
geodesic spaces :

Definition 7.2 ([Bac14b]). A geodesic metric space (X, d) is uniquely geodesic if
for every two points x, y ∈ X there exists a unique geodesic from x to y.

The concept of curvature may be introduced in a much more general than in our
summary here. We restrict to only defining the required CAT(0) instead of general
CAT(k) spaces in order to avoid unnecessary technicalities. Curvature is measured
by comparing distances of particularly parametrized points on opposing sides of
triangles in the metric space with the distance between particularly parametrized
points on opposing sides of a triangle in Euclidean space:

Definition 7.3 ([Bac14b]). Consider a geodesic metric space (X, d) and let γ1, γ2,
γ3 : [0, 1] → X be geodesics. γ1, γ2, γ3 form a geodesic triangle with vertices x, y, z
if

γ1 : [0, 1]→ X, γ1(0) = x, γ1(1) = y,

γ2 : [0, 1]→ X, γ2(0) = x, γ2(1) = z,

γ3 : [0, 1]→ X, γ3(0) = y, γ3(1) = z.

A comparison triangle ∆(x′, y′, z′) for the geodesic triangle with vertices x, y, z is
given by x′, y′, z′ ∈ R2 such that

‖x′ − y′‖2 = d(x, y) ‖y′ − z′‖2 = d(y, z) ‖z′ − x′‖2 = d(z, x).
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With this we may define CAT(0) spaces.

Definition 7.4 ([Bac14b]). Let (X, d) a geodesic metric space. (X, d) is CAT(0) if
for a geodesic triangle with respect to geodesics γ1, γ2, γ3 with vertices x, y, z and a
comparison triangle ∆(x′, y′, z′) it holds that:

d(γ1(λ), γ2(µ)) ≤ ‖(1− λ) · x′ + λ · y′ − ((1− µ) · x′ + µ · z′)‖2,

for λ, µ ∈ [0, 1].

A key feature of CAT(0) spaces is the following:

Theorem 7.5 ([Bac14b]). Let (X, d) be a CAT(0) space. Then (X, d) is uniquely
geodesic.

We have mentioned a few times that the tree space Tn is a Hadamard space.

Definition 7.6 ([Bac14b]). A Hadamard space is a complete CAT(0) space.

Since Theorem 2.16 states that Tn is a CAT(0) space, it is clear that Tn is also a
Hadamard space, since the Euclidean orthants of which it consists are complete.

Apicomplexa Data Set

The data set contains 252 trees that are given in the widely used Newick format.
The names and abbreviations of the investigated species may be found in the table
below (compare Section 6.1). The abbreviations are used in the Newick-trees on the
following pages.

Abbreviation Name
Bb Babesia bovis
Cp Cryptosporidium parvum
Et Eimeria tenella
Pf Plasmodium falciparum
Pv Plasmodium vivax
Ta Theileria annulata
Tg Toxoplasma gondii
Tt Tetrahymena thermophila

In order to depict the trees in a single line per tree, we use the landscape format.
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