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Abstract

Granular matter is a collection of solid particles which inelastically collide with each other
with possible size range from 1 µm (like clays) to 1 km (like some asteroids). Due to the
characteristic of dissipation, a myriad of interesting phenomena are observed in granular
system, such as pattern formation, “Brazil nut effect”, and phase separations. Most of
them find a direct connection to our daily life or industrial processes. Additional cohesive
forces between grains may significantly change the behavior of the system. For granular
particles with sizes smaller than 100 µm, one adhesive interaction, the van der Waals
force, starts to play a role. It has been recognized that van der Waals interaction plays
an important role in the generation of asteroids. However, detailed explorations of the
influence by van der Waals interactions on granular materials are still lacking.

In this thesis we try to fill this gap and numerically study how van der Waals interactions
affect the collective behavior of excited granular gas. We perform time-driven molecular
dynamics simulations. The system we simulate is composed of monodisperse spherical
particles with a diameter of 70 µm, which are confined by two parallel walls separated by
a fixed distance. The restitution coefficient ε quantifies the dissipation, and the Hamaker
constant sets the strength of the van der Waals interaction. The whole system is vibrated
sinusoidally in the direction perpendicular to the walls, and the particles gain energy via
collisions with the two walls. Particles will feel conservative attractive forces when they
approach each other (modeled by the Hamaker theory) and inelastically collide with each
other when they touch (modeled by the spring-dashpot model).

We map the phase diagram of shaking amplitude A and average filling fraction φ̄, and a
new solid-like and gas coexistence regime is found, together with cluster and homogeneous
states. We characterize the different granular phases by means of a set of order param-
eters, such as bond orientational order parameter, coordination number, and connection
number. The solid-like part of the coexistence part could transform from a random close
packing state (with local filling fraction 0.64) to a poly-crystalline state (with hcp or fcc
local structures) with A increasing. The boundary line of the transition can be modulated
by the restitution coefficient ε and the Hamaker constant, but is independent of φ̄. We
show that the transition is due to different quenching speeds, a combined effect of the
energy dissipation during collisions and energy injection through the walls.
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1 Introduction

1.1 What is granular matter?

A granular material is a collection of discrete solid, macroscopic particles. The charac-
teristics of granular matter is that energy is dissipated during particles’ collisions.

Figure 1.1: The examples of granular matters. (a) sands1, (b) grains2, (c) icebergs3, (d)
asteroids4.

As shown in Fig. 1.1, the grains in a granular material could be sand, our daily food
including rice, coffee beans and pastas, or, at larger scales, icebergs in ice floes and
asteroids in the solar system. Granular matter is not a phase of matter. Its motion can
be described as gas-like, liquid-like or solid-like depending on the averaged kinetic energy

1



Chapter 1. Introduction 2

of the particles; granular matter exhibits its own unique properties in each of these states
which are different from the traditional ones for atomic or molecular systems.

Plant seeds can float in the wind as gas-like particles, and finally rest in random places
where new plants will grow. Industrial dust floats very easily and frequently causes smog
and air pollution in London, New York in 1950s, or Beijing nowadays. Sand can flow
like a liquid in the hourglass. On the other hand, mud-and-stone flow can take one’s
life away in seconds. Granular materials are handled every day in the pharmaceutical
industry, agriculture, and mining industry. It has been estimated that about 10% of
the global energy production is used to to keep and transport raw materials in granular
form. Granular matter is thus a field worth understanding more for both its practical
applications, but also because it is an ideal system to study generalizations of statistical
mechanics to nonequilibrium settings.

1.2 Classical questions in granular system

1.2.1 Angle of repose

Figure 1.2: Talus cones on north shore of Isfjord, Svalbard, Norway, showing angle of
repose for coarse sediment1.

When we pour a bucket of grains onto a horizontal surface, a pile will form. The steepest
inner angle of the pile relative to the horizontal plane without sliding is the angle of
repose, or critical angle of repose θc. In Fig. 1.2, we show an example the angle of repose
generated by nature. θc can range from 0◦ to 90◦. It can be affected by the morphology
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of the granular particles and additional solvents. The study of the angle of repose is very
important. For example, it can be used to design the equipment to process and install
the granular material. It can also be used to estimate if a slope will collapse or not. One
well-known case are the avalanches in mountainous areas.

A question that attracts interest about the angle of repose is: what would happen when
the inner angle between the pile surface and horizontal surface θ exceed θc. Such con-
figuration can be implemented, for example, if we tilt the container of a sand pile which
is at rest with the angle of repose. It turns out that the pile can still be stable as long
as θ < θmax, where θmax is the maximal stable slope angle. When the slope is increased
above θmax, particles will start to slide and an avalanche may occur till θ decrease to the
angle of repose θc(1). Experiments, theoretical predictions and numerical calculations
have improved our understanding of θmax and θc(2; 3; 4). However, to date no simple
way has been figured out to calculate these two angles.

Another important issue deals with the relaxation of granular piles by means of pertur-
bations. A granular pile is usually stable when the slope is smaller than the angle of
repose. However, it is still a metastable state, and the truly stable state must have a
horizontal surface in the field of gravity. One pile can be relaxed by perturbations till
it reaches the true stable state. Recently, D. Tsuji et al.(5) performed experiments on a
vertically vibrated pile and provided a nonlinear relaxation dynamics theory to explain
the observed relaxing process. The actual relaxation was successfully reproduced by the
continuity equations. They applied this relaxation dynamics model to the crater relax-
ation process caused by impact-induced seismic shaking. The maximum crater diameter
erased by the shaking they estimated is comparable with the actual grain size. However,
at present this relaxation dynamics model can be applied only in a restricted range and
to estimate the relaxation time more precise discusses and computations are needed.

1.2.2 Segregation

In nature and also in industrial application equally-sized grains are nearly non-existing.
Instead, mixtures of similar grains of different sizes are extremely common. Another
particular property of mixtures of granular media is their response to stirring or jostling.
Unlike a system of two miscible liquids, which can mix well with each other and can form
a homogeneous solution, a granular mixture system may separate according to particle
size when is shaken or stirred. This kind of demixing phenomena are generally referred
to as segregation (7; 8; 9). When a can containing one large ball and a number of smaller
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Figure 1.3: The diagrammatic of the Brazil-nut effect (left) and the reverse Brazil-nut
effect (right) in mixtures of granular particles of different sizes. Reprinted
from (6).

ones is shaken, the large ball may rise to the top. This is the well known “Brazil-nut
effect” (10; 11), in which the smaller particles infiltrate into the voids created underneath
larger ones.

In 1998, T. Shinbrot et al. (12) observed that the size segregation could happen in re-
verse. They performed experiments with deep beds filled with fine spheres and two larger
intruders; they applied rather large amplitude vibrations, with the typical amplitudes
encountered during transportation of solid mixtures in industrial processes. The two in-
truders have exactly the same size, shape and material but differ in weight. They found
that the heavy intruder rises to the top of the bed, while the lighter intruder sinks to the
bottom. They explained that inertia causes the heavier intruder to lift off the bed, per-
mitting smaller particles to infiltrate beneath; the lighter intruder could move more easily,
preventing the infiltration. In Fig. 1.3, we show two images illustrating the Brazil-nut
effect and the reverse Brazil-nut effect from (6).

Segregation is a very complicated process, and it can be effected in counterintuitive ways
by the size, shape, density, mixture ratios, applied driven and so on. It can also hap-
pen in the lateral direction in a 2D system (13; 14) and one concrete example is the
size sorting between the small pebbles and larger boulders on the surface of the aster-
oid Itokawa (15). A number of mechanisms have been proposed to explain different
segregation phenomena(16; 17), however, more inquiries are necessary. Understanding
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segregation is very important, especially for the material separation and the challenge of
mixing powders in industrial processes.

1.3 Granular systems as models

The abundant, complex phenomena and properties of granular systems have considerable
relevance also to other areas of physics where they are used as models of specific features.
A notable example is the work of Bernal (18) who in 1959 carried out his pioneering
work and experimentally investigated granular packing with the goal of modeling liquid
structures. In 1966, De Gennes (19) used sand pile avalanches as a macroscopic picture
for the motion of flux lines in superconductors. In 1990, Clauss et al. (20) found that the
nonlinear dynamical phenomena observed in granular system are relevant to the break-
down in semiconductors. The heterogeneous distribution of inter-particle forces within
the granular material, known as force chains, generate a complex force chain network
(see Fig. 1.4) (21), where each particle is considered as a node. Understanding the force
chain in granular system could open a window for achieving a better understanding of
complex networks. In additionally, the self-organization paradigm(22; 23; 24) and the
slow relaxation present in granular dynamics are considered to have a broad applicability
to a host of natural phenomena.

Figure 1.4: The force chains generated in a 2 dimension system. Reprinted from (21).

1.4 Current research points of interest

While a number of granular phenomena have been explained and even applied, an abun-
dant number are still lacking explanations and thorough investigations. Reviewing all
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recent work on granular systems is prohibitive, so here we only select some recent repre-
sentative works and give a short and simple review.

1.4.1 Granular system with non-spherical shapes

Figure 1.5: The packing for granular particles with special shapes. Top left: The prolate
ellipsoid; Top right: the 2D dimer; Bottom: tetrahedra. Reprinted from
(25; 26; 27), .

Plenty of work on granular materials, experimental or theoretically, are about systems
with spherical particles in 3D or disk in 2D. However, most of real world granular particles
have different shapes than rotational invariant shapes like a sphere or a disk. Crops in
agriculture, pills and capsules in pharmaceutics usually have elongated or flattened shapes.
It have been observed that the particle shape in granular media significantly affects their
collective behaviors (28; 29; 30). The study of packing made of particles with particular
shape, which is important for the industries involved in granular processing, emerged in
the 1940s. Since then, scientists found that non-spherical shapes can generally achieve
larger maximal packing densities than spheres, due to their complicated contact ways.
Simulations have found that the densest random packing fractions are at φ ≈ 0.735 for
prolate ellipsoids (26), at φ ≈ 0.885 for 2D dimers (26), and at φ ≈ 0.7858 for tetrahedra
(27). Examples for these packing structures are shown in Fig. 1.5. One exception to
these very efficient packings are the spaghetti-like thin rods, which pack randomly much
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worse than spheres. A generic theoretical investigation of this field needs to address the
complex issue of searching over the very large parameter space of object shapes.

Besides the direct studies on granular materials, particles with particular shape could
be used as discrete models to explain physical processes related to other systems. One
recent work reported by K. Asencio et al. (31) found a final state of cubic particles
resembling the phases observed in colloids. In their experiments, particles were poured
in a cylindrical container and the whole system was excited by twists. After a number
of sufficiently large intensive twists, a densest final state compatible with the boundary
conditions was reached: a series of concentric rings stacked in horizontal layers. Another
example is the work recently reported by B. Kou et al. (32). They found both correlation
and anti-correlation between different types of clusters in a granular system, which was
recognized as a possible approach to learn more about the relaxation dynamics in a system
with glassy dynamics. The system they experimentally studied was a 3D hard ellipsoid
granular packing driven by oscillatory shear. The elliptic grains had an aspect ratio of 1.5,
a shape that makes crystallization difficult in the system and allows for strong coupling
of translational and rotational degrees of freedom.

Recently, B. Nadller et al. (33) developed a purely kinematic continuum model to pre-
dict the averaged particle orientation and ordering based on the velocity field and the
particle shape. They use a second order orientational tensor A to describe statistically
the particle’s orientation at a given points of space and time. The tensor A has two
invariants based on its eigenvalues. One is named as ζ, representing the degree of particle
alignment, and the other one is α, the misalignment angle. The gradient of velocity field
is split into two parts. The symmetrical part D captures the rate of deformation, and
the anti-symmetrical part W describes the vorticity. A model for A includes D and W.
There are only two parameters in the model: λ which governs the tendency to align with
the rate of deformation D, and Ψ which is the relaxation parameter. For simplicity, both
of them are assumed to be only function of the shape ratio. Nadller et al. (33) compare
the results from the model with discrete element method simulations for a simple steady
state system under shear and the parameters in the model are set up by comparison with
the simulations. They found that the two-parameter model is sufficient to obtain the
full orientational tensor A and capture the essential transient features, which is in good
agreement with the simulations. The model provides a foundation to further develop-
ment of stress response model of the orientational tensor A for granular materials, and
generalize to other flow field. This treatment is not limited to granular system, it can be
also adopted to the study of, e.g., biological cells, and polymers.
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1.4.2 Methods to excit granular system

Because of the dissipative nature of the granular collisions, after sufficient time, a granular
system without any external stimulation will reach a steady state where all particles are
motionless. In order to study a granular material, scientists usually excite the system in
different ways, such as vibrating (34), shearing (35), rotating (36) and so on. A variety of
phenomena take place in the driven granular system, such as pattern formation, convective
flows, heaping instabilities , front propagation and so on (37; 38; 39).

Recently, A. K. Mukhopadhyay et al. (40) proposed a new scheme, using a periodically
shaken two-dimensional dissipative lattice to drive a multi-species system. The lattice is
defined by a periodic potential

V (x, y) = V cos kxx(1 + cos kyy), (1.1)

which is driven via external biharmonic forces

fx,y(t) = dx,y[cosωt+ 0.25 cos(2ωt+ π/2)] (1.2)

acting in the x, y directions. As the space parity and time-reversal symmetry are broken,
particle transport is possible. They found that one system driven by this lattice could
separate in a five-dimensional phase space (x, y, px, py, t). The separation depends on
the physical characteristics of the species in the mixtures, such as mass, size, shape and
so on. The mechanism suggested in (40) is based on a ideal periodic potential field.
According to their experience, localized perturbations and weak long-range interactions
may improve the segregation efficiency. This segregation mechanism could be applied
to the separation of multi-species mixture with particle ranging from atoms to granular
grains. More importantly, they supplied a new method to inject energy into the system
rather than walls, or any other regular containers. A granular system in other periodic
potential field could also show complex phenomena.

1.4.3 Phase transitions in granular system

The transition between the three classical regimes (gas-like, liquid-like and solid-like) are
driven by the change of density and external forces. In reality, mechanical vibrations can
induce transitions in granular systems; this fact is particularly related to phenomena such
as the common debris flow or avalanches after earthquakes. Plenty of works have been
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devoted to understand the influence by vibration on the transition from a liquid-like state
to solid-like and vice versa (41; 42).

The most recent effort was reported by A. Gnoli et al. (43). Following the numerical sim-
ulation results by Capozza et al. (44; 45), which suggested that viscosity is reduced when
the applied vibrating frequency is in a special range, they experimentally investigated
the fluidization of a granular material subject to mechanical vibrations. As the vibration
frequency is slowly increased, they observed a reentrant transition. A jammed system
will first be fluidized, and then will return to a frictional state. The first transition to
the fluidized state at low driving frequency regime is independent of the material prop-
erties and can be characterized by the detachment condition, which is estimated by the
theory introduced by Capozza et al. (44; 45). The viscosity recovery transition, however,
depends on the material properties. They suggested that the dependence originates from
the balance between the acting dissipation and the inertial force in the system. Their nu-
merical simulation results also support the former claims. The series of works introduced
in this paragraph opens the possibility of controlling the viscosity in granular media.

1.4.4 Phase separations in granular system

In driving regimes, the fluidized granular system could also evolve to coexistent states
from a homogeneous state. For example, in a vertically or horizontally vibrated 2D sys-
tem with beads vertically packed, the topper layers could be fully fluidized, while the
bottom parts still maintain crystalline structure (46; 47). In 2005, A. Götzendorfer and
his coauthors observed sublimation, coexistence of gas and solid, in a monolayer system
(48). The system was vertically vibrated and meanwhile rotated horizontally to demon-
strate that the coexistence state was not introduced by the inhomogeneous distribution
of forcing, or a tilt of the apparatus. Their MD simulations also confirmed their experi-
ment. In the coexistence state, density of the solid part is several times of the gas part,
while, the granular temperature is orders of magnitude lower. The most mysterious point
is that, after enough relaxation time, a unique, time independent state with a constant
solid fraction is established. However, why and how a constant fraction is established
was still an open question. In 2008, M. C. Clerc et al. detailedly studied the transition
process from liquid-like to solid-like in a 1D system (41). They found that the transition
is mediated by waves and triggered by a negative compressibility, as for van der Waals
phase coexistence. The phase separation is always concomitant with a pressure plateau,
and similar plateaus also existed in their MD simulation results for 2D and 3D systems.
Predominantly, a governing equation was derived in their work to describe the transition
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process. It exhibits similar dynamics to those shown by experiments and MD simulations.
Moreover, the mapping of model parameters enable them to explore the phase diagram
and observe richer phenomena. Later, Klaus Roeller first observed the liquid-gas phase
separation in a quasi 2D shaking dry granular system by MD simulations. This phe-
nomenon was confirmed by Jame Clewett in his experiments. Their results was presented
in the work (49). They found that the emergence of a liquid-gas coexistence state out of
a homogeneous initial condition is due to a process similar to spinodal decomposition in
equilibrium fluids, in the region of the phase diagram where the effective compressibility
becomes negative. The denser part is held by a surface tension resulting from the kinetic
energy part of the pressure tensor (50).

1.4.5 Granular system with extra interactions

A work reported by D. J. Scheeres et al. (51) proposed that van der Waals should be
the dominant force between the regolith grains on the surface of an asteroid. Asteroids
are normally recognized to be composed of aggregates of smaller bodies with a surface
being dominated by loose materials: grains and powders of different sizes. In the ex-
treme environment of space, surfaces are much ‘cleaner’ than on Earth due to the lack
of absorbed molecules on the surfaces of materials, allowing for closer effective distances
between the regolith grain surfaces. In the case of extremely close contact, the strength
of van der Waals forces can become quite strong and be greater than the electrostatic
and solar radiation pressure forces and so on. Hence, it should be the van der Waals
forces which prevent the materials on the surface from escape in regimes of extremely low
ambient gravitational acceleration (51).

As a wetting liquid is added into the dry granular system, a liquid surface may extend
from one particle to another and generate capillary bridges among particles. The capillary
bridges will act on particles as an attractive force when they want to separate. This kind
of bridge generates when two particles come into contact, and it can rupture at a certain
critical distance sc. Similarly to the dry case, the wet granular gas will cluster freely in
case of no external driving (52; 53). The difference is that wet grains cluster by directly
adhering to each other by capillary bridges as soon as the kinetic energy of involved grains
are below the capillary bridge energy Ecb. Instead of condensing in momentum space,
as is the case for dry granular gases, the wet granular gas condenses in real space (see
Fig. 1.6b). When driving is introduced, a wet granular system may undergo a force-
driven solid-fluid transition and an energy-driven fluid gas transition, with coexistence
states near the transition boundary lines (54; 55). With sufficient liquid fraction added,
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wet granular particles may construct a pile held together by the individual capillary
bridges (56). In the case of larger liquid content, most capillary bridges merge, forming
larger liquid clusters, and slurry. In many cases, the granular particles in slurries behave
as the dry ones except for the higher viscosity (57; 58). However, when an appropriate
secondary liquid is added, which creates capillary bridges among solid particles, the slurry
may acquire a pasty consistency and turn into an elastic gel (59).

Figure 1.6: The clustering phenomena in dry (left) and wet (right) granular gas.
Reprinted from (60; 52; 53).

1.5 Research methods

1.5.1 Theoretical

To develop a complete fundamental theory which could generally describe the phenomena
observed in granular systems, considerable efforts have been focused on attempting to
generalize the classical kinetic theory of gases to include dissipative collisions. Theories
for the velocity distribution function and generalization of the Navier-Stokes equations for
granular hydrodynamics have been well developed for low density, rapidly flowing granular
gases, where pair collisions are dominant. A large number of authors contributed to this
important theoretical advance. We refer the author to the book by N. V. Brilliantov and
T. Pöschel (61) for more details.
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1.5.2 Experimental

Experimental setups used in the investigation of granular materials can vary greatly in
different areas of experimental research. However, the usual means to detect the inner
configurations of a granular system typically involve high-frequency cameras, used to take
snapshots of the system which is visualized by X-ray or other lasers with appropriate fre-
quency; an image processing is also needed to extract detailed information about contacts,
volume fractions and so on. As it is enormously difficulty to visualize the internal state
of a granular system, specialized materials or slow scanning times are highly needed.

Recently one new means, acoustic monitor, was proposed by T. A. Brzinski III (62) which
can be used to perform 3D fast measurements without optical access to the system. The
idea is based on the following. The density of vibrational modes D(ω) could describe
important information of the state of the system. For example, the low-frequency modes
develop upon approaching the jamming transition (63). With acoustic monitoring, they
effectively measured the number of modes excited, instead of the the acoustic power
among the modes with different frequencies. They found that the mode distribution
broadens before and after a failure in granular system. Their results provide a possibility
to forecast a failure like earthquakes or brittle fracture.

1.5.3 Numerical

Since there is not yet a comprehensive theory of granular materials, numerical simula-
tions are one of the most reliable means to predict the behavior of such system. More
importantly they can also be used to directly compare with the experimental results and
help to improve the present theories.

One method based on a continuum approach and frequently used to study granular flows
is called granular hydrodynamics (GHD). This method directly simulates the hydrody-
namic equations and has a great power in predicting collective phenomena such as shocks,
vortices and clusters appearing in granular flows. Another numerical method can be used
to study granular system is the well known Direct Simulation Monte Carlo (DSMC). The
main ideal of DSMC is to decouple the particle motions and collisions. The propagation
of each particle is determined by its own position, velocity and the statistical distribution
of the properties of the whole system, which can be achieved by solving the Boltzmann
or Boltzmann-Enskog equation. Even though DSMC is more efficient than other meth-
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ods, it is still not frequently used in granular research as it is not always justified for
non-homogeneous systems.

The most popular numerical method in numerical simulations of granular matter is the
Discrete Element Method, also known as Molecular dynamics (MD). There are two ways
to do MD simulations: one is called ‘time-driven’ MD, the other one is ‘event-driven’ MD.
In the time-driven MD, the exact trajectory of each grain is computed based on Newton’s
equations of motion. This method allows us to simulate both dynamic and static systems,
and also systems with multi-particle contacts and complex-shaped particles, as long as
the interaction forces between particles are known. As the governing equations need to
be solved for each particle with small time intervals, this method is restricted to small
system sizes. Luckily, modern technological advances such as graphics processing unit
(GPU) make it possible to reach large systems. Compared to the time-driven MD, even-
driven MD is more efficient as only the states before and after a collision are considered
and the collisional details are ignored. This method, however, only applies to the system
where the dynamics are mainly determined by pair collision. The time-driven MD is the
method we implement in the work reported in this thesis; more details will be explained
in the following chapters.

1.6 Aims and scope of the thesis

1.6.1 Aims

For granular particles with sizes ranging from 1 to 100 µm, the van der Waals force, is
recognized as playing an important role. Different from the capillary bridge force which
is hysteretic and dissipative, the van der Waal interaction is conservative adhesive force.
The capillary bridges introduce both complexity, and significantly new properties into the
granular system. The 3D space extended by van der Waals interactions, as sketched in
Fig. 1.7 (64), may have more abundant phenomena which are worth exploring.

Recently works involving van der Waals interactions, however, mainly focus on the freely
cooling process of a system with attractive potentials(65), or on how a short-ranged
attractive potential influences the dissipation in a granular system(66). The van der
Waals interaction between macroscopic objects has been also considered in engineering
settings, but mainly in the context of the packing of fine grains. Little to no effort yet
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Figure 1.7: The sketch of the possible force space for granular system. Along the vertical
axis, standard statistical mechanics is valid. However, it will break down when
the inelasticity and hysteresis were introduced in. Reprinted from (64).
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has been directed to study the influence of the van der Waals interaction on a granular
gas system.

The work reported in this thesis tries to fill this gap by focusing on how van der Waals
interactions influence the collective behavior of excited granular materials. In our system,
a number of identical granular spheres are confined between two separated walls in a zero
gravity environment, and the whole system is vibrated in the direction perpendicular to
walls. We numerically study the system with MD and the van der Waals interactions are
included based on the real size of the grains. We find a new interesting solid and gas
coexistence state induced by the van der Waals interactions; the solid component in the
coexisting state can be either random close packing or poly-crystalline (with fcc and hcp
local structures).

1.6.2 Scope

The thesis is organized as follows. Following this introduction about the physical back-
ground, Chapter 2 explains the details of the MD simulations we used in the reported
work and the quantities we selected to characterize the states. The detailed information of
the simulated system is also shown in this part. In Chapter 3 we show the phase diagrams
for a driven granular system without van der Waals interactions, the prediction of the
regime where van der Waals interaction may play a significant role, and some simulation
tricks to clearly determine the phase boundaries in an cohesive granular system. The
phase diagram for a driven system with van der Waals interactions are shown in Chapter
4 together with snapshots, and the characteristics of all possible phases in the explored
phase space. Chapter 5 explains the evolution processes of different phases and discussed
the detail structure and the stability of crystallized component in the coexistence state.
In Chapter 6 we focus on the two important physical factors: restitution coefficient and
the Hamaker constant, and show how they influence the boundary line between the two
different coexistence states. The last Chapter collects our conclusions and provides a brief
outlook for possible future work.





2 Theoretical and computational

methods

The collective behavior of granular materials stems from the interactions among individual
particles and the interactions with the surrounding environment. Therefore, a particle-
scale approach based on the detailed mechanism of particle interactions is crucial for a
quantitative understanding. Several computational techniques have been developed and
are widely used to support such research, including the direct numerical simulations of
the hydrodynamic equations, Monte Carlo methods, and the molecular dynamics(MD)
simulations.

There are two ways to do MD simulations, one is the time-driven MD, i.e., using a soft
model, the other is the event driven MD, i.e, using a hard sphere model. The soft-sphere
or time-driven MD method was developed by Cundall and Strack in 1979 (67). They
assumed that particles are ‘soft’ and can experience deformations. Particles repel each
other in response to the deformation and the stronger the deformation is, the harder they
will repel each other. So, the deformation can be used to describe interactions between
particles, such as elastic, inelastic or frictional forces. In this approach, multiple-particle
interactions can be easily handled and the method is not limited to perfect spherical
particles. For dilute or rapidly flowing systems, ‘hard core’ or event-driven MD models are
instead widely used (68). The interaction is assumed instantaneous and only one collision
at a time is considered. Because the forces affect the dynamics only upon mechanical
contact, the forces between particles do not need to be explicitly considered, and only
the outcome of the collision matters. Therefore, in this method, a sequence of collision
‘events’ is sequentially processed.

The system we studied in this thesis is comprised of granular particles with cohesive van
der Waals interactions, so it is prone to become dense and multi-particle interactions
may became dominant. Hence we choose to employ time-driven MD. In the remainder
of this Chapter, we will explain the details of time-driven MD method, including the
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governing equations we used, the forces models, and also some computational details.
Afterwards, we will introduce the geometrical and physical parameters of our system and
the observables used to characterize the phases.

2.1 Governing equations

A granular particle can have two types of motion: translational and rotational. During its
movement, it may collide with other particles, walls, be influenced by gravity, possibly a
surrounding fluid, and other potential fields such as electromagnetic field, van der Waals
interactions, and so on. To describe the motion of each individual particle, Newton’s
second law is needed. For a particle i with mass mi and moment of inertia Ii, the
governing equation can be written as

mi
dvi
dt

=
∑
j

Fcij +
∑
k

Fncik + Fwi + Ffi + Fgi (2.1a)

Ii
dωi
dt

=
∑
j

Mij (2.1b)

where vi and ωi are respectively the translational and angular velocities of particle i, Mij

is the torque acting on particle i, Fcij the contact force on particle i due to particle j,
Fncik is the non-contact force acting on particle i due to particle k, Fwi , Ffi and Fgi are the
force induced by the wall, by the surrounding fluid and gravity, respectively. In Fig. 2.1,
we give a sketch of possible forces acting on one particle.

In the MD method, during a small time interval δt, a perturbation by one particle cannot
reach the region outside its range of interaction. We call δt simulation time step. Once
all the forces in Eqs. (2.1) are known, the governing equations are numerically solvable
within one time step. Thus, the trajectories, velocities and all the forces acting on the
particles in the system can be determined.

The reported work in this thesis is about a granular system with van der Waals interaction
confined by walls in the zero gravity environment, so the governing equation can be
simplified to

mi
dvi
dt

=
∑
j

Fcij +
∑
k

Fncik + Fwi (2.2)
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Figure 2.1: Diagrammatic sketch of forces acting on a granular particle i. Reprinted from
(69)

2.2 The force models

2.2.1 Particle-particle contact force

The ‘soft’ sphere method assumes that two particles will slightly overlap with each other
during a collision. This is reasonable as the contact between two particles is not just
in one single point but on a finite surface due to the deformation. It is difficult to
trace the interaction details over the surface accurately and generally, as it is related to
many geometrical and physical factors such as the shape, material and kinematic state of
particles. Hence, to be computationally efficient and applicable in multi-particle systems,
simplified force models are generally used to describe the particle contacts for time-driven
MD simulations.

Considerable effort has been devoted to describe granular contact forces between spherical
particles. The most intuitive and simple one is the linear-dashpot model introduced by
Cundall and Strack in 1979 (67), where the spring accounts for the elastic deformations
and the dashpot for the viscous dissipation. A more complex model, Hertz-Mindlin and
Deresiewicz model has also been developed. The elastic contact between two spheres
in the normal direction was introduced by Hertz in 1882 (70). He considered that the
the dependence of normal force on the normal displacement is nonlinear. Mindlin and
Deresiewicz included also a tangential force in 1953 (71). They demonstrated that the
relationship between the force and displacement is history-dependent and depends on the
instantaneous rate of force and displacement variation. The details of this model were
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reviewed by Vu-Quic and Zhang (72) in 1999 and Di Renzo and Di Maio (73) in 2004.
Even though it is more practical, this model is not widely adopted in MD simulations as
it is too complicated and time-consuming for a granular system involving a large number
of particles.

Various simplified models based on The Hertz-Mindlin and Deresiewicz theories have
been developed. Walton and Braun (74) used a semi-latched spring force-displacement
model in the normal direction. In the tangential direction, they used the case constant
normal force in the Mindlin and Deresiewicz theory (71). Thornton and Yin (75) adopted
the Hertz theory for the normal direction, but a more complex model for the tangential
part. They assume the tangential displacement depends on the variation of the normal
force. Langston et al. (76) used a more intuitive model, in which the the Hertz theory is
used for the normal force and direct force-displacement relation is used for the tangential
force. The equations of the above force models for spherical particles can be found in the
review work by H.P. Zhu et al. (69).

The tangential force or asymmetrical normal forces on a particle will generate a torque
which induces rotations. The torque caused by the normal component, usually called
rolling friction, is still difficult to determine. The torque plays a significant role during
the transitions from static to dynamical states, such as the formation of shear band,
heaping and a moving particle on a plane. In most other cases, the frictional torque is
negligible.

The contact forces between non-spherical particles are far more complex. For the particle
with irregular shape, a feasible method is to assume that the particle’s surface is a collec-
tion of small node-particles. With this method, very complicated shapes can be handled,
and only one contact model for spherical particles is required. For a given well-known
regular shape, such as ellipsoid, cylinder or tetrahedron, solvable mathematical equations
can be used to determine if there is a contact or not between one particle and its neigh-
boring particles. Then the contact model for spherical particles can be used to calculated
the contact force. This approach is more accurate but still computationally expensive.

Theoretically, the non-linear models based on the Hertz and Mindlin-Deresiewicz theory
should be more accurate than the simple linear model. However, the investigation by Di
Renzo and Di Maio (73) showed that the simple linear model gives even better results
than the nonlinear ones in some cases. That’s probably because the theory is often based
on the geometrically ideal particle, which is not practical. Besides, the accuracy of the
model highly depends on the selection of parameters.
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The work reported in this thesis deals with a system composed of perfectly spherical
granular particles with diameter d. The system evolves from a dilute homogeneous gas,
so the effects of torques are neglected and only the head-on collisions are considered.
With considerations of computational efficiency in mind, the linear dashpot is chosen to
model the contact force. The collision force between particle i and j at positions ri and
rj is then written as follows

f cij = [−k (d− |rij |) + µvij · r̂ij ] r̂ij , (2.3)

where k is the spring constant, µ the damping coefficient, rij ≡ rj − ri, r̂ij ≡ rij/|rij |,
and vij ≡ vj − vi.

2.2.2 Particle-particle non-contact forces

In reality, the interactions between granular particles are not just dissipative collisions.
For grains of different sizes or physical properties, additional non-contact interactions
appear and can became dominant in certain conditions and change the collective behavior
of granular materials. The capillary bridges between particles in a wet granular system
make it possible to build up a sand sculpture, while grains can flow like a liquid when
the liquid component increases past a threshold. Importantly, electrostatic interactions
in flows composed of charged grains can enhance or suppress clustering effects. Some
empirical quantities such as the Hausner ratio (a measure of flowing ability for powders),
angle of repose, shear stress can be used to explain some behaviors of granular particles.
But general quantitative application is difficult. As a method which could includes the
information down to each particle, these non-contact forces can be also directly considered
by DEM.

In the work by Rumpf (77) in 1962, he compared how the relative importance of typical
non-contact forces varies with particle’s size, as illustrated in Fig. 2.2. Van der Waals force
and capillary force decrease with decreasing particle size. Nevertheless, the strengths of
gravity and electrostatics decrease even faster. Consequently, for the system with granular
size ranging from 1 to 100 µm, van der Waals interactions and capillary force become
dominant. That is the reason why powders (even the dry one) are said to be cohesive and
not easily fluidized. A lot of work has been done for wet granular system. Here we only
consider the van der Waals interactions in dry granular system, and the only non-contact
force is the van der Waals interaction.
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Figure 2.2: Comparison between several non-contact forces. Reprinted from (77).

The van der Waals force is also know as “charge-fluctuation” force or “electrodynamic”
force. It turns out that such forces are for more powerful within and between condensed
phases —liquids and solids— than they are in gases. In fact, they frequently create
condensed phases out of gases. In a material body or in a vacuum, transient electric
and magnetic fields always arise spontaneously, as in all matter positive and negative
charges are constantly fluctuating. These fluctuations in charge and in field occur not
only because of thermal agitation but also because of quantum-mechanical uncertainties
in the positions and momenta of particles and in the strengths of electromagnetic fields.
The momentary positions and electric currents of moving charges act on, and react to,
other charges and their fields. It is the collective coordinated interactions of moving
electric charges and currents, and fields, averaged over time, that create the van der
Waals interaction (78).

For both practical and fundamental reasons, there was the need to learn about the in-
teractions of bodies much larger than atoms and molecules. In 1937, H. C. Hamaker
(79) investigated the properties of van der Waals interactions between large bodies, based
on previous work dealing with molecular interactions. His theory, now known as the
Hamaker theory, is based on the assumption of “pairwise additivity”. The idea of this
approximation is that incremental parts of large bodies could interact via energies scaling
as −1/r6 as though the remaining material were absent. According to this theory, the
interaction energy of two spheres, approaches 1/r power near contact, and reverts to the
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power 1/r6 when the separation is much wider compared with their size. The coefficient
of the interaction came to be known as the Hamaker constant H.

A shortcoming of Hamaker’s theory is that it neglects many-body interactions and re-
tardation effects. In 1950s, Lifshitz (80) considered the van der Waals interaction acting
between macroscopic bodies rather than the summed interaction of atoms and molecules.
It used the relation between absorption spectra and fluctuations, considered the real ma-
terial between bodies and the retardation mechanism. This theory is rigorous only at the
separations larger than the atom or molecules of the interacting bodies. As each body is
treated as a continuum in this approach, the rigor comes at a price.

To simplify our calculations, we choose the Hamaker theory which is commonly used in
MD simulations to model the van der Waals interaction. The van der Waals force between
two macroscopic spheres i and j with the same diameter d can be calculated as

fncij = fvdwij = − Hd

24h2
ij

r̂ij , for hij <
d

4 , (2.4)

where hij is the surface-to-surface separation between particles i and j in the normal
direction. Because the force drops off rapidly with increasing separation, we ignore the
van der Waals force when hij > d/4. The Hamaker constant H is geometry and material
dependent. It is usually given in units of zeptojoules (zJ): 1 zJ = 10−21J = 10−14erg.
This coefficient, calculated in natural units, typically ranges from 1 to 100 times the
thermal energy kBTroom = 1.3807× 10−23 (J/K) ×293 K ≈ 4.05 zJ.

The divergence of the van der Waals force in Eq. (2.4) for vanishing distances derives
from the macroscopic treatment of dispersion forces under which it was derived (79); to
remove this divergence, the force is cut off at h0 = 1 nm (81; 82; 83); then for distances
h ≤ h0, fncij (h) = fncij (h0).

2.2.3 The particle-wall forces

The system we study here is a dry granular gas, with no interstitial fluid and no gravity.
The only interaction with the environment is through the collisions with confining solid
walls. Energy is injected into the system to maintain a steady state via the collisions
between particles and walls.

Here we assume the walls are infinitely deep and hard with infinite mass, so that the
particles cannot penetrate them and only the particles are deformed during the collisions.
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Friction with the walls can be neglected when the walls shake rapidly. We again use the
spring-dashpot model to describe the collisional force between a particle i and one of the
walls w.

fwi = kδ

[
d

2 − |zw − zi|
]
ẑ + µ (vw − vi) · ẑ , (2.5)

where zi and vi are the z coordinate and velocity of particle i upon collision with the
wall, zw and vw are the z coordinate and velocity of the wall, and δ = −1(+1) for the
top (bottom) wall.

According to the Hamaker theory, the van der Waals interaction between particle and
wall can be modeled as

fvdwpw = −Hd12l , for l <
d

2 (2.6)

where l is the particle-wall surface separation.

As we know, the van der Waals field is conservative. Two cases may happen when a
particle with kinetic energy Ekin enters a van der Waals field with potential energy U .
It may be trapped and cannot escape from the field when Ekin < U , or it will just go
through the field and come out with the same Ekin. The maximum kinetic energy Eckin
one particle can gain after a collision with a shaking wall (whose position changes with
time according to A sin(ωt)) is 1

2m(Aω)2. For a realistic choice of parameters, this is
much larger than the potential energy obtained from the Eq. (2.6), hence we can neglect
the van der Waals interaction between particle and wall.

2.3 Structure of the simulation algorithm

In Fig. 2.3, we give a schematic structure of the MD program used to simulate a driven
granular system with van der Waals interactions. The simulation starts from time t0
and ends at tmax, with a time step δt. ts is a quarter of the driving cycle. r and v are
the position and velocity of any given particle in the system. The neighboring particles
which may act on the selected particle are determined through a linked list. All the
states of particles are propagated to the next time step according to the position Verlet
algorithm. As shown in the sketch map, we output one snapshot each ts for the calculation
of statistical averages.
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Initiallization t0

divide simulation boxes to grids for ti

make neighbor list for ti

calculate forces for ti

propagate particles to
r(tj), v(tj), tj = ti + δt

tj%ts = 0? output Snapshot

tj ≤ tmax?

exit

measurement

no

yes

yes

no

ti = tj

initialize the p, v

use link list

include fcpp,f
vdw
pp ,fcpw

PBC in x and y,
Position Verlet

local φ distribu-
tion, RDF, q6,...

Figure 2.3: The schematic structure of our MD program to simulate a driven granular
system with van der Waals interactions.
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(a) Position Verlet.
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(b) Velocity Verlet.

Figure 2.4: Position and velocity forms of the Verlet algorithm.

2.3.1 The particle propagation

For one particle i, with position ri, velocity vi and acceleration ai, the basic numerical
scheme to propagate the particle’s position from step n to next time step n + 1 is the
Euler method.

rn+1
i = rni + vni δt , (2.7)

vn+1
i = vni + ani δt , (2.8)

The Euler method (84) is a first-order approximation method, which means that the local
error per step is proportional to the square of the step size. It is known to be numerically
unstable.

Two well-known, more stable algorithms were developed by Verlet (85; 86), and are
schematically shown in Fig. 2.4. The first one is the position-Verlet algorithm (shown
in Fig. 2.4a); this updates the positions of particles according to the rule

rn+1
i = 2rni − rn−1

i + ani δt2 , (2.9)

that is, the new position rn+1
i only depends on the acceleration ani and the two previous

positions rni and rn−1
i . The new velocity can be calculated from

vn+1
i = rn+1

i − rni
δt

(2.10)
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The second scheme is the velocity-Verlet (shown in Fig. 2.4b). The standard implemen-
tation scheme of this algorithm is as follows. The new position is calculated from

rn+1
i = rni + vni δt+ 1

2ani δt2 . (2.11)

Next, the new acceleration an+1
i is calculated from the interaction potential using the

updated positions rn+1
i . Then the new velocity is derived from

vn+1
i = vni + ani + an+1

i

2 δt . (2.12)

Note that this algorithm assumes that the acceleration an+1
i only depends on position

rn+1
i , and does not depend on the velocity vn+1

i .

In our simulations of granular systems with the soft-sphere model, the collision forces
between particles always depend on the particle’s velocity. So for our simulation, the
position-Verlet algorithm is chosen to propagate particles.

2.3.2 The neighbor list

In MD simulations, generally we need to consider a particle i and search over all other
particle j to calculate the separations and determine whether they are within the range of
interaction. If two particles are separated by a distance larger than the interaction range
cutoff, the program will skip to next pair. The number of operations required to examine
all pair separations scales as N2. This can become prohibitively costly for large systems.
In 1967, Verlet (85) proposed a technique to speed up the computation by building a list of
neighbors for each particle, which is updated at intervals. During this time interval, only
the separation between particles within the same group in the neighbor list are checked.
The number of distances that have to be considered is thus significantly reduced.

The Verlet neighbor list

In the Verlet method, given the range of the interaction rc, a cutoff rl ≥ rc, is set before
the simulation starts, see Fig. 2.5. For a given particle i, all the particles within a sphere
of radius rl around i are included into the neighbor list of i. The neighbor lists for all
particles will be stored in a large array, named as LIST. A second array POINT of size
N (which is the total particle number in the system) is constructed at the same time.
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Figure 2.5: Diagrammatic sketch of neighbor list construction for particle i. rc is the
interaction potential range. rl is the cutoff for the neighbor search. At the
time when the list is constructed, particle 2, 3 are within the interaction range.
Particle 4, 5 and 6, 7 are either outside the interaction sphere and within the
cutoff sphere, or at the boundary line. They still have a chance to enter the
interaction range, so they must be included in the neighbor list. Particle
8, 9 are outside the cutoff sphere, they can’t enter into the interaction sphere
within the time interval before the list is updated.
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POINT[i] points to the first neighbor of particle i. All the neighbors of i are stored in
the entries from LIST[POINT[i]] to LIST[POINT[i] - 1].

The neighbor list is updated from time to time, usually after 10 − 20 time steps. The
cutoff rl is selected to make sure that, during the update interval no particle outside the
neighbor list will crash into the inner sphere with radius rc. The neighbor list can also be
updated automatically. A vector S can be used to record the total displacement of each
particle since last update. When the sum of the two largest number in S exceed rl − rc,
the neighbor list should be updated again.

The linked list

For large system, another more efficient way to build a neighbor list is the cell index
method combined with a linked list (87; 88). The whole simulation domain is divided
into small cells with a uniform grid. One 3D simulation domain of size Lx, Ly, Lz will
be divided into cells of size Lx

Bx
,
Ly

By
, Lz

Bz
where the size of the cell must be greater than

the interaction range of individual particle. Bx, By, Bz are the numbers of grid cells in
the x, y, and z directions, so that each cell has an index number between 0 and Nb − 1,
where Nb = BxByBz in the total number of cells in the grid. A 2D example is shown in
Fig. 2.6a.

First, all particles in the system have to be sorted into their proper cells. Then two arrays,
called head with dimension Nb and list with dimension N , are defined and initialized.
We loop through all particles and meet the first particle i in box b, then the head[b] will
be set as i and list[i] will be set as 0xff. When the second particle j comes, head[b]

will be set to j and list[j] will be set to i (see Fig. 2.6c and Fig. 2.6d). After the
loop, each cell b has its corresponding head particle head[b] and all other particles in the
cell can be found one by one through the array list starting from list[head[b]] (see
Fig. 2.6b). head[b]=0xff means that the cell is empty and list[i]=0xff means that
all particles in the cell have been found.

In this method, the neighbor list of any given particle consists of all particles in the same
cell and all its nearest neighbor cells (26 cells in 3D case). The linked list algorithm is
so fast at sorting all the particles into cells and building their neighbor lists, that it may
be executed every time step. The system studied in this work includes from 1 × 104 to
2 × 104 particles, so the cell method combined with the linked list is used to construct
the neighbor list.
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Figure 2.6: The diagrammatic sketch of the cell index method and linked list in 2D. (a)
The simulation grids and their serial numbers. (b) The linked list inside the
6th grid cell where particle 5 is the head. (c)-(d) Part of the head and list
arrays corresponding to (b).
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2.4 Choice of parameters

The system we study in this thesis is a confined granular system initially in a gas-like
state. The granular particles have diameter d = 70µm, density ρ = 8.9 g/cm3 (the
density of bronze) and are confined in the z direction by two flat, parallel walls separated
by a distance L = 18.5d. The whole system is vibrated sinusoidally with amplitude
A and frequency ν along the z direction. The simulated domain has dimensions Lx =
160.0d, Ly = 20.0d, Lz = L, and periodic boundary condition are used along the x, y
directions. The filling fraction φ is used to describe the averaged filling condition inside
the simulated domain. It is defined as φ = Nvp

LxLyLz
, where N is the total particle number

and vp is the volume of an individual particle.

The energy dissipation during particle pair-collisions is described by the restitution coef-
ficient ε, which is the ratio of the final to initial relative velocity between two particles.
For the head-on collision considered in this thesis ε ranges from 0 to 1, where 1 would be
a perfectly elastic collision.

In the spring-dashpot model, each particle is treated as a damped harmonic oscillator.
The governing equation for the deformation is

mẍ = −kx− µẋ (2.13)

where, x is the deformation, k is the Hooke’s constant and µ describes the damping. The
solution for Eq. (2.13) is

x = e−γtsin(ωt) (2.14)

where γ = µ
2m , and ω = γ2 − k

m . During a collision which starts at ts and finishes at te,
the restitution coefficient is

ε =
∣∣∣∣ ẋ(ts)
ẋ(te)

∣∣∣∣ (2.15)

with
ts = 0, te = π

ω
, x(ts) = x(te) = 0 . (2.16)

Then, we can find the follow relation between ε and the damping parameter,

ε = eγte = eγπ/ω . (2.17)

Equation (2.17) means that once we assign the experimentally accessible ε and k, we can
find the corresponding µ.
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Figure 2.7: The two-particle van der Waals force from simulation (the blue histogram)
and theory (red solid line). The blue shaded area is the absolute value of
potential energy captured by the simulation.

The time step δt we use is 10−6s, and all simulations presented here are run for 108δt. The
driving frequency f = 50Hz. The restitution coefficient ε is set to 0.9 and the Hamaker
constant H = 8.0 × 10−20J if not otherwise mentioned. The spring constant is k = 0.5
N/m for both particle-particle and particle-wall collisions. With this choice of model
parameters particles may experience a maximum overlap of 10% their radius.

2.5 Van der Waals force shift

As the van der Waals force increases sharply when the two particles come very close to
contact with each other, it becomes very difficult to correctly integrate the equations
of motion due to the discrete time interval (see the example of two particle collision
in Fig.2.7). In Table 2.1a we show the potential energy ratios between the simulation
results and the theoretical integration. Correct integration would give a result of one in
the ratio. Obviously, the simulations with smaller time steps will give a more accurate
potential energy. However, from the results following in this thesis, we know that it takes
a long time for our system to converge to a steady state. It is then impractical to use a
time step as small as 10−10 to carry out our simulations.
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δt Usim/U
10−5 8.059676×10−7

10−6 2.056143×10−5

10−7 8.061747×10−5

10−8 2.046325×10−3

10−9 1.420558×10−2

10−10 1.437130×10−1

(a) The original van der Waals force.

δt Usim/U
10−5 9.987851×10−1

10−6 9.999584×10−1

10−7 9.999878×10−1

10−8 9.999996×10−1

10−9 9.999999×10−1

10−10 1.000000×100

(b) The shifted van der Waals force.

Table 2.1: The potential energy ratios between simulation Usim and theory U change with
the simulation time step δt.

To overcome this problem, we employ a shifted van der Waals force, that reads

fvdwshift = −Hshiftd/2
(h+ d/c)2 ,

Hshift = hcH
2 (2 + c)

c2 , (2.18)

where hc is the near surface cutoff for the force slope before shifting. The Hamaker
constant H is modified to Hshift, such that the total potential energy is identical with
the original one. We can see from Table 2.1b that the simulation with the shifted force
gives the correct potential energy to a very good approximation already with a time step
of 10−6s, which is our choice in the simulations.

2.6 Observables

To characterize the states observed in our system, we use the following observables: the
radial distribution function g(r), the order parameter q6, the coordination number Z and
the connection number ξ.

2.6.1 The radial distribution function g(r)

In a system of particles, the radial distribution function (RDF) g(r), also known as pair
correlation function, describe how the density varies as a function of distance from a
reference particle. It is a measure of the probability to find a particle at distance of r
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away from a reference particle. It is defined as

g(r) = V

N2

〈∑
i

N∑
j 6=i

δ(r − rij)
〉
, (2.19)

where V is the volume of the system, and δ(x) is the Dirac distribution.

In granular systems, as the filling fraction increases, four typical structures can be ob-
served: loose packing, random close packing, and two crystalline forms, as shown in
Fig. 2.8 (89). At φ = 0.55, the system is in a loose packing state as the second peak of
g(r) at r =

√
3d shows. φ = 0.64 is the maximum filling fraction for randomly packed

hard perfect spheres and it is called random close packing (RCP). The second peak at
r =
√

3d will split into two, one at r =
√

3d and the other one at r =
√

2d. This typical
structure is used in the following work to detect if the system exhibits random close pack-
ing or not. Above φ = 0.64, crystalline structures will arise. At φ = 0.67, g(r) plot shows
more tiny peaks, and that is the signal of crystallizing inside the system. Approaching
φ = 0.74, which is the maximum possible close-packing for equal sized hard spheres, more
and more peaks appear.

2.6.2 The coordination number Z

The average number of nearest neighbors for each particle is known as the coordination
number Z. Conventionally, the search range for nearest neighbors is limited to the second
peak of the g(r) plot. The typical Z number for random close packing of hard spheres is 6.
This number will however be slightly larger than 6 for soft spheres. For a gaseous system
Z will be zero, while for a liquid Z is non-zero but smaller than 6. It is easy to determine
the coordination number for crystalline structure, such as Z = 12 for the hexagonal close
packing and face-centered cubic structure. Besides the hexagonal structures, Z will also
be used to distinguish the liquid from the gas state.

2.6.3 The bond orientational order parameters: local q6 and global Q6

The q6 number is one of a series bond order parameters introduced by Paul J. Steinhardt et
al. (90) . They are sensitive to the differences between the various crystalline structures
and insensitive to the orientation of the crystal in space. In a liquid they will vanish
rapidly but they are large enough in the solid.
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Figure 2.8: The radial distribution function g(r) for different average filling fractions φ
Reprinted from (89).
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To measure the bond orientational order parameters (91), one first needs to find the list
of neighbors of each particle, which consists of all particles within a radial distance rc
of each particle. The local structure around one particle i is characterized by the set of
numbers

ql,m(i) = 1
Nb(i)

Nb(i)∑
j=1

Yl,m(r̂i,j) , (2.20)

where ri,j is the distance vector between particle i and one of its neighbors j. The unit
vector r̂i,j uniquely determines the polar and azimuthal angles θ(i) and φi,j , which are
needed to calculate the spherical harmonics Yl,m.

The number ql,m is however dependent on the reference frame used. A reference-invariant
quantity associated to i can be defined as

ql(i) =
(

4π
2l + 1

l∑
m=−l

|ql,m(i)|2
)1/2

. (2.21)

By averaging ql,m(i) over all the particles in the system, we can obtain a global order
parameter Ql,m.

Ql,m =
∑N
i=1 Nb(i)ql,m(i)∑N

i=1 Nb(i)
. (2.22)

Again, Ql,m depends on the reference frame. Rotationally invariant combinations can be
constructed as

Ql =
(

4π
2l + 1

l∑
m=−l

|Ql,m|2
)1/2

. (2.23)

This set of bond order parameters include Q4, Q6, Ŵ4, Ŵ6. In Table. 2.2, we show the
typical values of these parameters for some specific geometries. For our system, which
turns out to have local hexagonal order, Q6 is the best choice.

As examples we show in Fig. 2.9 the calculation of q6 for some ordered arrangements of
particles; they are in perfect match with the numbers in Table. 2.2. For simple cubic,
hexagonal close packing and face-centered cubic, there is no difference between the local
order parameter q6 and the global Q6. For body-centered cubic, the local q6 number varies
with the neighbor cutoff rc, and it is equal to the global Q6 number only for rc ≥ 1.5d.
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Table 2.2: Bond orientational order parameters for geometries. Reproduced the data from
(91)

Q4 Q6 Ŵ4 Ŵ6

fcc 0.191 0.575 -0.159 -0.013
hcp 0.097 0.485 0.134 -0.012
bcc 0.036 0.511 0.159 0.013
sc 0.764 0.354 0.159 0.013
Icosahedral 0 0.663 0 -0.170
liquid 0 0 0 0

2.6.4 The connection number ξ

The connection number ξ (92) is a quantity based on the bond orientational order pa-
rameter ql,m(i) and used to differentiate between liquid-like and solid-like particles. Fur-
thermore, it is used to identify solid clusters. For one particle i, ξ is defined as

ξ(i) =
Nb(i)∑
j=1

H(dl(i, j)− dc) , (2.24)

where H is the Heaviside step function and

dl(i, j) =
∑l
m=−l ql,m(i)q∗l,m(j)(∑l

m=−l |ql,m(i)|2
)1/2 (∑l

m=−l |ql,m(j)|2
)1/2 (2.25)

and dc is a threshold value. Solid-like particles are identified as particles with connection
number ξ ≤ ξc. A cluster consists of solid-like particles with at least one solid-like neighbor
in the same cluster.

The measurement of the connection number ξ relies on three parameters: the neighbor
list cutoff rc, the dot-product cutoff dc and the index for the bond orientational order
parameter l. For our system, we choose rc = 1.01d, dc = 0.8 and l = 6. Additionally,
ξc = 6 is chosen to identify the solid-like particles.
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(a) Simple cubic. (b) Body-centered cubic.

(c) Hexagonal close packing. (d) Face-centered cubic.

Figure 2.9: The calculations of the local order parameter q6 for four regular packings of
identical spheres. Particles colors correspond to the local q6 number.

2.7 Conclusion

In this Chapter, we have explained the details of our time-driven MD algorithm. The force
models for the included interactions, inelastic collision and van der Waals interaction are
explained in detail. We have also discussed the basic structure of the algorithm, together
with the details of methods to search neighbors and propagate particles. At the end of
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this Chapter, we have defined the system parameters and observables used to characterize
the observed states.





3 System with vdW interaction

3.1 Collisions between two particles with van der Waals

interactions

Two granular particles without any cohesive interaction will fly away from each other
after a collision. With van der Waals interaction, when the total kinetic energy after
collision Eakin is smaller than the van der Waals potential energy Uvdw, two particles will
be trapped inside the potential well. They will bounce back and forth inside the well, till
all the energy is dissipated. The final state is the two particles are rest at contact with
each other but with no overlap. In Fig. 3.1, we show a diagrammatic sketch of a pair
collision, together with the plots of the velocity of one particle, the mutual distance, and
the acceleration of one particle for two cases with different initial velocities. The first case
is with Eakin < Uvdw shown in Fig. 3.1b, and the other one is with Eakin > Uvdw shown in
Fig. 3.1c.

3.2 The system without van der Waals interaction

To fully understand the influence of van der Waals interactions in a granular system,
we first need to understand the system without van der Waals interactions. The work
reported by K. Roeller et al. in 2010 (49) studied a confined granular gas system driven
by sinusoidally vibrating walls. They varied the filling fraction and driving amplitude,
and found a liquid-gas phase coexistence region (shown in Fig. 3.2). We performed similar
simulations and sparsely mapped the same phase spaces for the system without van der
Waals interaction, and furthermore checked how this coexistence region vary with the
dissipation levels. In Fig. 3.3 we show the phase diagrams for ε = 0.6, 0.7, 0.8 and 0.9.
We obtain the same coexistence regions (the region marked with red dots). the coexistence
region will shrink as ε increases and approaches 1. Beside the coexistence state, we also

41
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0 1h

v0 v1

(a)

(b) (c)

Figure 3.1: (a) The diagrammatic sketch for pair collision. (b) The case for two particles
trap each other after collision. (c) The case for two particles fly away from
each other after collision.
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find a state characterized by waves traveling through the system (marked as blue dots
in the phase diagrams), where two density peaks keep propagating through the system
in the opposite directions perpendicular to the walls. The filling fraction distribution in
x-direction and the the histogram of local filling fraction for steady states of three selected
parameter groups are shown in Fig. 3.4, which are respectively for the homogeneous state,
the coexistence state and the traveling wave. In the coexistence state, the denser part
will became denser and denser as ε decreases, but never reach the value 0.64 where the
solid-like state begins.

3.3 Theoretical prediction

Before we start to explore the phase space, we first try to predict in which region of the
phase diagram the van der Waals interaction may become relevant. We suppose that
region will lie where the van der Waals potential energy is comparable with the granular
temperature of the non-cohesive granular system.

For a system confined by walls, the collisions frequency with walls, fwall, is related to the
pair collision rate fcoll in the system via

fwall = 2lm
h
fcoll = 2fcollKn , (3.1)

where lm = R/6φ̄ is the mean free path of particle, and Kn = lm/L is the Knudsen
number of granular gas in a box with height L. The energy injection rate (i.e. the energy
injected per unit time) einj is

einj = fwallEvib . (3.2)

According to kinetic theory, the energy dissipation rate ediss in a gas-like granular system
is

ediss = fcoll(1− ε2)Tg , (3.3)

where Tg is the granular temperature. In the steady state, the total energy of the system
should be dynamically balanced, i.e. ediss = einj . Then, we can obtain the granular
temperature as (64)

Tg = 2KnEvib
1− ε2 . (3.4)

The van der Waals potential energy Uvdw is found by integrating the van der Waals force
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based on the Hamaker theory, with the near surface cutoff hcut = 10−10 and the minimum
force truncation at h = 0.25d

Uvdw = 1010HR

6 . (3.5)

We define a number re as the ratio of the two energy scales, granular temperature Tg and
Uvdw. We assume the vibration energy Evib = 1

2m(Aω)2 which is the maximum energy
one particle can attain after a collision with the wall. Then

re = Tg
Uvdw

= C0
A2R3

φ
, (3.6)

C0 = 4.0× 10−10πρω2

3.0L(1− ε2)H . (3.7)

In our system, C0 is a constant, with all the parameters ρ, ω, L, ε and H fixed. In Fig. 3.5,
we show the contour plots of ln(re) in the space of A/d and φ̄ for different particle sizes.
We could see that there is a region in the phase spaces where the two energy scales are
comparable (with −1.0 ≤ ln(re) ≤ 1.0), and it will expand and shift towards a regime
of stronger driving as the particle diameter decreases. That is reasonable as the van der
Waals interaction plays a more and more important role when the particle size grows
smaller. When the particle diameter is above 100µm, the van der Waals potential energy
becomes negligible (see Fig. 3.5f). Keeping in mind considerations of computational
feasibility of our simulations, we choose to perform simulations for a system composed of
particles with d = 70 µm.

3.4 Simulation details

We mapped the phase space where the van der Waals potential energy is comparable with
the granular temperature. There, we find a new coexistence state (one snapshot thereof
is shown in Fig. 3.6). The denser part appears to be solid-like. In the following chapters
we will carefully characterize this phase.

3.4.1 Energy convergence

Compared to simulations for a system without van der Waals interaction, it takes a much
longer time to reach a steady state for the system with van der Waals interaction. In Fig.
3.7 we show how the kinetic energy changes with simulation time for both cases, using
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the same filling fraction and driving amplitude. Actually, the system does not converge
to a steady state where the kinetic energy reaches a constant value. The interesting
phases (dense packing or crystals) start to appear after 107 simulation time steps when
the kinetic energy starts to show small scale oscillations. So, all statistical averages should
be performed afterwards.

3.4.2 Hysteresis

Because of the cohesive forces when the van der Waals interactions are considered, the
system exhibits hysteretic effects, that is, it retains a memory of its history. These effects
make it difficult to establish the boundary of the coexistence state. Especially near the
metastable regime between the binodal curve and the spinodal curve, the system prefers
evolving to the coexistence state when the initial configuration is not carefully prepared
in a homogeneous state. For some of the simulations, mostly with relatively high filling
fractions, two kinds of simulations with different initial conditions are needed to decide
what is the real steady state. The first type o initial condition is one where all particles are
randomly arranged in the box, and that is the normal way we initialize our system. The
second type is one where we start from a homogeneous steady state previously simulated
at the same filling fraction but with a higher driving amplitude. If the final states we
obtain from these two types of initial conditions are different, this state point is classified
as belonging to the metastable regime.

3.4.3 Stabilization of the phases

In the solid-gas coexistence regime, some driving amplitudes could make the system crys-
tallize. However, in some cases, the solid plug oscillates up and down between two walls
(shown in Fig. 3.8a). The crystal structure may break or even disintegrate after several
impacts with the walls. It is not clear why this sometimes happens but it needs to be
monitored otherwise statistical averages may show spurious effects. when such a situation
was detected, we performed additional simulations with the same driving and filling pa-
rameters but longer simulation box. We find that the case is improved at x = 480d, where
the solid plug has a vanishing average velocity in the z direction (see Fig. 3.8b). However,
it oscillates even more for a system with x = 640d (see Fig. 3.8c). Obviously, increasing
the system size does not improve the situation, so this problem is not introduced by fi-
nite size effects. For this kind of state points in the phase diagram, we need to redo the
simulations with special care to the initial configuration. One choice is to initialize with a
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non-oscillating steady-state configuration from a different simulation with the same filling
fraction but different amplitude. A second method is to initialize the system with the
crystalline structure we observe as being stable in the neighborhood of the phase diagram
under consideration.

3.5 Conclusion

In this chapter, we reproduced the phase diagrams for the sinusoidally driven granular
system without van der Waals interactions, as a reference for the following study about
the impact of van der Waals interactions. Instead of focusing on one restitution coefficient,
we also explored how the phase regimes vary with different dissipation levels and we found
a new traveling wave regime at relatively strong dissipated system. Before exploring the
phase space for a system with van der Waals interactions, we theoretically predicted the
region where the van der Waals interaction may play a role. And indeed, we found an
interesting new coexistence phase in that region. Finally, we explained several difficulties
we met during the simulations of the cohesive system and show how we tackled them.
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Figure 3.2: The phase diagram in the space of A/d and φ̄, and with ε = 0.9. The black
triangles delimit a region (orange shaded) where the phase separation occurs.
The black circle form the “binodal line”. The colored inset is one snapshot for
the coexistent state. The denser part is blue and the dilute part is orange.
Reprinted from (49).
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(a) ε = 0.60 (b) ε = 0.70

(c) ε = 0.80 (d) ε = 0.90

Figure 3.3: Phase diagram for system without van der Waals interaction for different
restitution coefficients. The red, black and blue dots mark a coexistence state,
x-direction homogeneous state, and traveling waves state, respectively.
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(a) ε = 0.90, A = 2.0d, φ = 0.16

(b) ε = 0.70, A = 2.5d, φ = 0.12

(c) ε = 0.70, A = 3.5d, φ = 0.22

Figure 3.4: The local filling fraction profile in the x-direction (left column) and the the his-
togram of local filling fraction (right column) for three representative systems
exhibiting (a) a homogeneous state, (b) coexisting phases, and (c) traveling
wave.
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(a) d = 10µm (b) d = 30µm

(c) d = 50µm (d) d = 70µm

(e) d = 100µm (f) d = 200µm

Figure 3.5: The contour plots of the energy-scale ratio re of the granular temperature to
van der Waals interaction for different particle sizes. Only the regions where
−1.0 ≤ ln(re) ≤ 1.0 are shown in the plots.
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Figure 3.6: Snapshot of a system exhibiting the solid-gas coexistence state with A =
0.46d, φ = 0.12.

Figure 3.7: Comparison of the temporal evolution of the kinetic energy between a system
with van der Waals interactions and without them. Much longer simulation
times are necessary when van der Waals interactions are present.
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(a) The system with x = 160d. The gas part is from 80d to 160d and the rest
is solid.

(b) The system with x = 480d. The gas part is from 150d to 450d and the
rest is solid.

(c) The system with x = 640d. The gas part is from 360d to 640d and the
rest is solid.

Figure 3.8: Dependence of the average z-direction velocity on the x direction for the solid-
gas coexistence state. Different system lengths are shown.



4 Phase diagram

According to the theoretical prediction discussed in Chap. 2, we explored the region
where the van der Waals potential energy is comparable with the granular temperature.
That is where ln re ranges from −1 to 1 in the averaged filling fraction φ̄ and driving
amplitude A space. In this Chapter, we show the phase diagram together with repre-
sentative snapshots, characteristic of all states observed in the explored region. Further
calculations to characterize different phases are shown afterwards.

4.1 Phase diagram with Snapshots

In Fig. 4.1, we show the phase diagram obtained from our simulation results. The black
filled triangles form the “spinodal line”, which delimits the region where the homoge-
neously initialized system will separate along the x-direction into a dense, solid like region
and a dilute, gas-like one. The denser part shows poly-crystallization in the orange shaded
region and random close packing in the aqua region. The black x-marks are the specific
simulations at the boundary of the poly-crystal and gas coexistence (PC-G) state and
random close packing and gas coexistence (RCP-G) state, and the black dashed line is
the fitting of the boundary line. Outside the coexistence regime, at low amplitude A, the
energy injection into the system is too weak to overcome the combined effect of attractive
van der Waals interactions and the energy dissipation during collisions, so all particles
stick together. We call it a “clustered state”. The cluster state will turn to translationally
invariant gas state as A grows at small φ̄, and turns to homogeneous liquid as A grows
at large φ̄. In Fig. 4.2, we show the snapshots for all the possible states.

Apart from the coexistence regime, the clustered states are not always the same. In
Fig. 4.3 we show several snapshots of different clustered states with the same averaged
filling fraction but different driving amplitudes. When the driving is relative weak, the
cluster extends through the whole simulation domain along the x direction. They continu-
ously grow more compact as the amplitude A increases. At the transition to RCP-G, some

53



Chapter 4. Phase diagram 54

Figure 4.1: The phase diagram in the space of A/d and φ̄ for system with van der Waals
interaction and ε = 0.9.

Figure 4.2: The snapshots for system with φ̄ = 0.10 and A from top to bottom 0.10d,
0.32d, 0.46d and 0.50d, and they are respectively cluster, RCP-G state, PC-
G state and homogeneous state. The system is viewed laterally, while the
vibration is imposed in the vertical direction.
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particles escape from the solid-like plug to form a gas, and the system shows coexistence
state.

Figure 4.3: The clustered state snapshots with φ̄ = 0.10 and A from top to bottom 0.10d,
0.20d, 0.24d, 0.26d, 0.28d.

4.2 Characterization of phases

4.2.1 Local filling fraction

The local filling fraction φloc is measured for all different states using Voronoi tessellation.
For each snapshot, we calculate the local filling fraction φloc for all particles from their
own Voronoi volumes, then compute the probability distribution of the φloc by averaging
over 20 independent, steady-state snapshots for each simulation. The maximum of the
distribution φpmax

is chosen to mark the state of the system.

In Fig. 4.4, we show how the φpmax
varies with the driving amplitude A for different

averaged filling fractions φ̄. Two typical φpmax
can be seen in the plot. One is around

0.64 which is the filling fraction for random close packing, the other one is 0.74 which is
the filling fraction for hcp and fcc structures.
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Figure 4.4: The φpmax change with the A/d for different φ̄.

4.2.2 RDF

In Fig. 4.5, we shows the radial distribution function (RDF) g(r) plots for different φ̄.
For each φ̄, we only picked three plots with different A which represent different states.

For φ̄ = 0.16 (shown in Fig. 4.5a), the g(r) plot shows the typical structure of random close
packing at A = 0.40d. More peaks arise at A = 0.50d which shows that crystallization
occurs in the system at this driving amplitude. Above the coexistence regime, at A =
0.60d, only one peak at r = d appears and that is the homogeneous gas state.

For φ̄ = 0.20 (shown in Fig. 4.5b), at A = 0.36, which is at the clustered regime, the g(r)
plot shows the typical split second peak of g(r) that characterizes random close packing.
More peaks arise at A = 0.50d which shows that a crystal structure emerges in the system.
At A = 0.42d, near the boundary line between PC-G state and RCP-G state, small peaks
starts to arise on the basis of the random close packing g(r) structure.

For φ̄ = 0.23 (shown in Fig. 4.5c), the case is rather similar to the φ̄ = 0.16 case and it
shows signals of RCP at A = 0.40d and crystallizing at A = 0.50d. Another small peak
starts to grow at A = 0.60d and it says that the homogeneous state above the coexistence
regime for this filling fraction is liquid state rather than gas.
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(a) φ̄ = 0.16 (b) φ̄ = 0.20

(c) φ̄ = 0.23 (d) φ̄ = 0.26

Figure 4.5: The RDF for systems with selected A and φ̄.
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For φ̄ = 0.26 (shown in Fig. 4.5d), crystallization happens at A = 0.60d. Below the
coexistence region, the g(r) plot shows the typical structure for random close packing. As
the driving amplitude increasing, the cluster will start to melt to liquid as at A = 0.55d
before the system starts to crystallize at A = 0.60d.

To sum up, below the coexistence regime, the system shows random close packing struc-
ture inside the cluster too. Above the coexistence regime, the system are homogeneous
but go slowly from gas to liquid state as the averaged filling fraction increases. With
higher φ̄ for example 0.26, the system will go first from clustered state to homogeneous
liquid, before reach the coexistence regime.

From the radial distribution function, we know that the structure of coexistence part
with φpmax around 0.64 is RCP. It is, however, difficult to distinguish this regime from
the clustered state based only on knowledge of g(r). Besides, it is hard to obtain the
exact structure of the crystalline solid. To make progress, we will go to more specialized
order parameters: the coordination number Z and the q6 number.

4.2.3 q6 and coordination number Z

To detect the detailed structure of the solid plug, we calculate the local q6 number and
coordination number Z for each particle, and then compute the probability distribution
of the local q6 and Z for the whole system. These order parameters are shown in Fig. 4.6
and Fig. 4.7 in the space of driving amplitude A and q6(or Z) for selected filling fractions.
These plots not only clearly show the boundaries between different phases, but also show
that there are fcc and hcp crystals in the solid part of PC-G state.

For φ̄ = 0.14, 0.16 and 0.20, there are two sharp peaks at about q6 = 0.485 and 0.575
when A > 0.40d in the q6 histogram plot (Fig. 4.6b, Fig. 4.6c and Fig. 4.6d), together
with another peak at q6 = 0.0. Correspondingly, the coordination number Z is about
12 in this region (Fig. 4.7b, Fig. 4.7c and Fig. 4.7d) and together with another peak at
Z ≤ 2. These plots show evidence of coexistence between fcc, hcp structure and gas state.
The value of A where the two sharp q6 peaks end and the Z drops down below 6 marks
the boundary between the coexistence regime and the homogeneous state.

In Fig. 4.6d for φ̄ = 0.20, the bottom peak at q6 = 0.0 for gas starts from A = 0.39d which
is the boundary between the clustered state and coexistence state. Meanwhile, from the
none zero peak we can see the difference between the clustered state and the RCP part
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in the coexistent state. In the clustered state, the peak distribution is wider, from 0.30
to 0.70. This difference cannot be seen from the Z distribution (see Fig. 4.7d).

In the q6 histogram plot for φ̄ = 0.08 (Fig. 4.6a), there is one peak at the bottom for all
the A shown. The other peak range from 0.40 to 0.60 will disappear as A increases. In
the Z histogram plot (Fig. 4.7a), the first peak lies below 1. The second one lies from 7
to 10 and it will disappear too as A increases. It means the system goes directly from
RCP-G state to the homogeneous gas.

For φ̄ = 0.14 and 0.16, from both the q6 and Z plots in Fig. 4.6b, Fig. 4.6c, Fig. 4.7b and
Fig. 4.7c we can see that the system first goes from the RCP-G state to PC-G state, then
it enters the homogeneous state. Furthermore, we can see from Fig. 4.7b and Fig. 4.7c
that, the coordination number Z distribution is slightly wider for φ̄ = 0.16 than it is for
φ̄ = 0.14. That give the information that the system is slowly going from the homogeneous
gas to the homogeneous liquid as the averaged filling fraction increases.

For higher filling fraction φ = 0.23, where the “spinodal” curve is above the boundary line
between RCP-G state and the PC-G state, the system goes directly from the clustered
state to the PC-G state(see fig 4.6e).

For φ = 0.26, there is still a homogeneous region (see Fig. 4.6f) between clustered and
PC-G state, which is more like the liquid (see Fig. 4.7f) with a wider distribution of Z.
As the spinodal curve at high filling fraction lies at much higher driven amplitude, the
cluster will melt to liquid first before it reaches the PC-G state.

The information we gather from q6 and Z matches well with that from the RDF. Fur-
thermore, we know that the crystal structures in the coexisting regime are hcp and fcc,
and the clustered state has a wider q6 distribution than RCP-G state. The next question
is that is RCP a typical solid? In the following part we use the connection number ξ
calculations to answer this question.

4.2.4 Connection number ξ

We use the connection number ξ, as defined in the method part, to differentiate between
the gas-like, liquid-like and solid-like particles. In Fig. 4.8 we show the heat maps of the
ξ distribution, for comparison, with the same spots in the phase diagram as we did for
q6 and Z. In the PC-G state, the ξ distribution shows a peak at around 12, which is
consistent with the information from Z and q6. The peak around 7 to 9 in the heat map
of Z for the RCP-G state and clustered state does not show again in that of ξ. The only
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(a) φ = 0.08 (b) φ = 0.14

(c) φ = 0.16 (d) φ = 0.20

(e) φ = 0.23 (f) φ = 0.26

Figure 4.6: The q6 distribution heat maps with driving A for selected φ.
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(a) φ = 0.08 (b) φ = 0.14

(c) φ = 0.16 (d) φ = 0.20

(e) φ = 0.23 (f) φ = 0.26

Figure 4.7: The Z distribution contour plot with driving A for selected φ.
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(a) φ = 0.08 (b) φ = 0.14

(c) φ = 0.16 (d) φ = 0.20

(e) φ = 0.23 (f) φ = 0.26

Figure 4.8: The ξ distribution heat maps with driving A for selected φ.

peak at this regime in the plot of ξ stays below ξ = 2 for the gas part. It means that
RCP and clustered state are not the traditional solid we thought.
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4.3 Conclusion

To sum up, we use maximum weighted local filling fraction φpmax
, radial distribution

function g(r), local six-fold bond orientational order parameter q6, coordination number
Z and connection number ξ to characterize the phases we meet in the phase space we
explored and the boundaries lines between them. The local structure of the clustered state
is random close packing, shown by the g(r) plot. The solid part in the coexistence state
exhibits either random close packing (shown by the g(r) plot) or poly-crystal (hcp and fcc)
structures, as shown by the q6 and Z plots. The boundary between clustered state and
RCP-G state can be characterized by the q6 distribution. Furthermore, the distribution
of Z shows the transfer from homogeneous gas to liquid, and the ξ distribution shows
that the random close packing is not a traditional solid.





5 Dynamics

From the phase diagram we discussed in the previous chapter we know that there are three
main regimes in the phase space we explored, and we characterized and distinguished all
phases. In this chapter, we focus on how the coexisting states evolve with time. Then
we will show how the crystal structure grows with time and compare it with the crystal
structure discussed in the literatures about sheared granular systems. The stabilization
of the crystalline structure is discussed later, where we consider the influence of driving
amplitude and the gravity.

5.1 The time evolution of coexistence phases

To understand the process leading to phase separation in our system, we calculated the
temporal evolution of the local filling fraction φloc distribution. For a given configuration
of the grains, we calculate the local filling fraction φloc(i) for each particle i based on its
Voronoi volume. Then the local filling fraction distribution is the histogram of φloc(i) of
all particles in the system.

In Fig. 5.1, we show the time evolution of the local filling fraction distribution for three
selected states in the phase diagram, which are representative for the RCP-G state, the
PC-G state, and one spot at the boundary line between the former two phases. As a
reference, the evolution of the total energy for these systems are shown alongside.

For the RCP-G state, with A = 0.36d, φ̄ = 0.16 (shown in Fig. 5.1a), two peaks in φloc
appear quickly after about t/δt = 2× 106 (100 shaking cycles), where the kinetic energy
starts to exhibit oscillations. The bottom peak stays near φloc = 0.0 which is for gas part
and the higher one lies around φloc = 0.64 which is for the random close packing.

For the PC-G state, with A = 0.50d, φ̄ = 0.16 (shown in Fig. 5.1c), similarly, two peaks
appear soon after about t/δt = 5 × 106 (250 shaking cycles). However, even though the
total energy has already converged to a steady state, the higher φloc peak moves up to
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(a) A = 0.36d

(b) A = 0.42d

(c) A = 0.50d

Figure 5.1: The temporal evolution of the energy and local filling fraction φloc distribution
for systems with fixed φ̄ = 0.16 and selected A.
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above φ = 0.70 and be narrowed around the t/δt = 107 time step (1000 shaking cycles).
At that point, the energy starts to slightly vibrate and the system starts to crystallize.

Near the boundary line between RCP-G state and PC-G state, the third peak above
φloc = 0.70 shows by chance but the most weighted peak still stays at around φloc = 0.64
(Fig. 5.1b). We choose one snapshot at t/δ = 3× 107 and do cluster analysis for it. Only
13 small nuclei are found and each of them includes no more than 60 particles. We will
discuss their features below.

Figure 5.2: The absolute value of potential energy scaled by the initial value for system
with A = 0.50d and φ̄ = 0.16.

5.2 Crystal structure growth

In the left part of Fig. 5.1c, the total energy varying with time is shown for A = 0.50d, φ̄ =
0.16, which is at the PC-G coexistence regime. Four points in the plot are marked with
green, magenta, cyan and red circles, respectively for t/δt = 8× 106, 1× 107, 2× 107 and
9 × 107. The snapshots for these four time steps are shown in Fig. 5.3, where only the
solid-like particles (with connection number ξ = 12) are shown. Following the q6 color
map, the yellow particles have fcc local structure and the green ones have hcp structure.
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The total energy converges to a steady state through a sequence of two steps. The first
one is between t/δt = 106 and 107 and the other one is after t/δt = 107 where the
crystallization mainly takes place. However, as shown in Fig. 5.2, the potential energy
does not converge at the same regime. From the snapshots shown in Fig. 5.3a, only
few particles crystallized at t/δt = 8 × 106. More crystallized particles build up to form
clusters at t/δt = 107 (see Fig. 5.3b). Until t/δt = 2 × 107 (see Fig. 5.3c), 8 clusters
have appeared and the largest one consists of 1259 particles. At t/δt = 9 × 107 (see
Fig. 5.3d), close to the final state we simulated, five clusters aggregate into a big strip,
and the biggest one includes up to 2736 particles. From the snapshots of the system we
can see that the crystalline structures observed in our system do not have a preferential
orientation.

(a) t/δt = 8 × 106

(b) t/δt = 1 × 107

(c) t/δ = 2 × 107

(d) t/δ = 9 × 107

Figure 5.3: Snapshots for the selected time steps in Fig. 5.1c. Only particles with ξ = 12
are shown in the snapshots and the particle colors are scaled with the local q6
numbers.

Crystallization in granular systems have been reported in the literature recently, however,
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most of them happened in sheared granular packings. In the work by A. Panaitescu
et al.(93), a polycrystalline phase with domains of fcc and hcp order is observed after
hundreds of thousands of shear cycles. Unlike our results, the crystal structure in their
system prefer to lie parallel to the walls. F. Rietz et al.(94) studied nucleation in sheared
granular system within a rough inner surface container to avoid artificial nucleation.
The crystalline clusters observed in those systems do not have a preferential orientation,
however, the largest cluster they measured in their experiments only includes up to 100
spheres.

5.3 The stability of the crystal structure

Crystallizing in our system happens with proper driving amplitudes and zero gravity. One
inescapable question is whether the crystal structure generated in our system is stable or
not under moderate perturbations. To answer this question, we checked the stability of
the crystal structure in two cases. The first case is that we continue to drive a steady
state PC-G state system with a driving amplitude A lying in the random close packing
regime, and vise versa. The other one is that we slowly switch on the gravity to see if the
crystallizing still happens.

5.3.1 Irreversibility

To check if the boundary between RCP-G state and PC-G state are reversible or not, we
run the following set of simulations. We start with a system with φ̄ = 0.16, A = 0.50d, and
a second one with with φ̄ = 0.16, A = 0.35d. These systems are initialized with a random,
homogeneous distribution of particles’ positions and brought to their respective steady
states. Two additional systems are also simulated using the final particles’ configurations
from the above systems, but now the driving amplitudes are swapped around. These other
two systems are also brought to their steady states. The steady-state pair correlation
functions for all four of them are shown in Fig. 5.4.

Starting from a homogeneous initial state, the system driven with A = 0.35d reaches
a RCP-G state (see Fig. 5.4b) after 108 time steps runs, and the system driven with
A = 0.50d shows signals of crystallizing (Fig. 5.4a) after the same amount of simulation
time. This is consistent with the expectation based on the phase diagram in Chap. 3. We
then extend the simulation at A = 0.50d with 107 additional time steps but now at the
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lower amplitude A = 0.35d. The pair correlation function of the final state we obtain is
shown in Fig. 5.4d. We can see that the crystal structure still survives when we suddenly
decrease the driving amplitude. However, when the system previously equilibrated at
A = 0.35d (in a random close packing state) is now driven for an additional 107 time
steps with A = 0.50d, crystal structure will arise (see Fig. 5.4c).

(a) random distribution initial state (b) random distribution initial state

(c) initialized by steady state of A = 0.35d (d) initialized by steady state of A = 0.50d

Figure 5.4: The poly-crystal structure and random close packing stability check by swap-
ping the driving amplitude for φ̄ = 0.16. We show the RDF to characterize
the structure of the system. See the main text for details about the simulation
protocol.

We can then conclude the following: the crystal structure appearing in our phase diagram
is irreversible and will not be destroyed by decreasing the driving amplitude. However,
the random close packing state could crystallize when we increase the driving amplitude
to PC-G state regime.
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5.3.2 Influence of gravity

All the results shown until now are from simulations with zero gravity. This is an ex-
tremely artificial situation; hence we perform additional simulations with gravity too, to
detect how the gravity will influence our phase diagram. The added gravity is along the z
direction of the simulation domain. Four different gravity accelerations are selected and
they are respective g = 0.0001 m/s2, 0.01 m/s2 and 0.1 m/s2. The q6 and coordination
number Z distributions in the space of amplitude and q6(or Z) are shown in Fig. 5.5. The
main conclusion from an inspection of the results is that our solid phases survive with
weak gravity.

With g = 0.0001 m/s2 (Fig. 5.5a), the histogram of q6 and Z do not show any significant
difference from the zero-gravity results. The g = 0.01 m/s2 gravity (Fig. 5.5b) will
completely destroy the phase separation and from the histogram of coordination number
Z we could see the system will stay at homogeneous gas state at our simulation regime.
With gravity up to g = 0.1 m/s2, stronger driven will fluidized the granular particles
and all the particles will collapse to the bottom wall(see Fig. 5.6) at relatively weaker
amplitude.

5.4 Conclusion

To sum up, the system starts to crystallize when the driving amplitude is above a threshold
value of the driving amplitude: the boundary line between the RCP-G state and the PC-
G state. The crystallization happens at the time when the potential energy starts to
converge to a steady state, which is much later then the time when total energy starts to
converge. This was made possible only because of the considerable long simulation times
we were able to carry out. The crystallization is not introduced by the confinement of
walls, and it starts from within the solid plug rather than from the boundaries between
particles and the walls. The crystallizing process is irreversible. With gravity, the phase
separation to PC-G state can arise only when gravity is very weak.
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(a) g = 0.0001

(b) g = 0.01

(c) g = 0.1

Figure 5.5: Heat maps for q6 and Z for systems at fixed φ̄ = 0.16 and with varying
strength of gravity.
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Figure 5.6: One steady state snapshot for system with A = 0.30d, φ̄ = 0.16 and g = 0.1
m/s2.





6 Coexistence regions

The coexistence states we observed in the phase diagram we explored only exist in the
granular system with van der Waals interactions, especially the PC-G state. In a granular
system without van der Waals interactions, the denser part in the coexistence state can
not reach the filling fraction of random close packing even with a coefficient of restitution
as low as ε = 0.6. In the van der Waals gas, liquid-gas coexistence can be seen when the
equilibrium temperature is low enough (95). Therefore, the phase separation occurring in
our system is caused by the combined effect of van der Waals interaction and dissipation
in granular system.

In this chapter, we study how the dissipation and the strength of van der Waals interaction
influence the boundary line position between RCP-G state and PC-G state.

6.1 Influences of dissipation

In Fig. 6.1, we show the phase diagram in the ε and A space at a fixed filling fraction
φ = 0.16. When ε decreases, i.e. increasing the dissipation, the interval of driving
amplitudes where phase separation occurs will expand and shift to a stronger driving
regime. Two kinds of coexistence states appear in the separation regime. The RCP-G
state will change into PC-G state as the driving amplitude increases. The crystalline solid
block in the coexistence state may melt into liquid with small enough ε and large driving
amplitude.

To determine the boundary line between the RCP-G state and the PC-G state in the
space of ε and A, we carried out more simulations with different filling fractions. The
results are shown in Fig. 6.2. We found that the boundary lines from different filling
fraction converge to one line. The result can be fitted by the equation c1A

c2 = 1 − ε2

(plotted together with the simulations in Fig. 6.2). The fitting line converges to A = 0
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Figure 6.1: The phase diagram in the ε-A space.

Figure 6.2: The boundary line of RCP-G state and PC-G state in the space of ε-A.
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as ε → 1, which is consistent with the argument that there is no PC-G state appearing
in the equilibrium van der Waals gas system.

As the phase separation occurs in a region where the driving is quite gentle, at the very
beginning of a simulation the injected energy is not enough to balance the dissipation
by collisions. The system effectively experiences a moderate dissipative cooling process
before phase separation. We find that the boundary between RCP-G state and PC-G
state is decided by E , which is defined as the ratio between the energy injection rate einj
and the energy dissipation rate ediss.

Recently, A. Sack et al. (96) investigated the energy dissipation rate for a sinusoidally
vibrated granular system in zero gravity environment. They identified that there are
two different dissipation modes in a driving granular system, depending on the driving
amplitude.

One threshold A0 is defined as
A0 = Lg

π
(6.1)

where Lg, named as clearance, is the width of the gap between the solid walls in the
driving direction and the thickness of the packed layer of particles in the box. For intense
driving A > A0, the center of mass of the granulate moves synchronously with the driven
container. This regime is called collect and collide mode. While for weak driving A < A0,
the granular particle exhibit gas-like behavior. The dissipation mechanisms in the two
regimes are different, leading to different dissipation rates dependence on the exciting
amplitude.

The filling fractions in our explored phase diagram reaches up to 0.30. Compared with
the simulation box size, the Lg of our system is roughly three times the particle diameter.
The driving amplitudes we used here are always much smaller than Lg, so our system is
in the weak driving mode. During the cooling process, the system is in a gas-like state.

If we assume the system with homogeneous density, the walls always feel a constant
pressure P from the confined granular gas. The pressure P is proportional to the particle-
wall collision rate fpw. The energy injection over one period of oscillation is the work
walls have done to the granular gas. So, the energy injection rate can be written as

einj ∝ fpwA (6.2)

where einj is assumed independent of the driving frequency. This is consistent with the
experimental results by A. Sack et al. (96) . All their measurements were performed
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in the steady state, so the energy dissipation rate is equivalent to the energy injection
rate.

Again as the system remains in the gas state, based on the kinetic theory, the dissipation
rate for a homogeneous granular gas is

ediss = fpp(1− ε2) (6.3)

where fpp is the particle-particle collision frequency. The relationship between fpp and
fpw is

fpw = Cfpp (6.4)

where C is a constant depending on the system length in the driving direction.

So the ratio E can be written as
E ∝ A

1− ε2 , (6.5)

The fit to the data in Fig. 6.2 is in good agreement with E = const, which supports the
picture that a characteristic value of E is required to turn the RCP-G state into a PC-G
state. This should be physically linked to the nucleation barrier of the crystalline states.
However, this kind of analysis is prohibitive in our granular system, so we cannot directly
probe the nucleation barrier. For increasing dissipation (1−ε), stronger driving amplitudes
are then necessary to overcome the dissipative ‘trap’ and lead to reorganization into a
crystalline structure. Interestingly, we note an analogy to the quenching of an equilibrium
liquid: very rapid cooling may avoid the crystal nucleation and result in a metastable
supercooled liquid. Similarly, in our granular system, a rapid cooling may avoid ordered
structures and result in a metastable RCP state.

6.2 The influence by the van der Waals interaction

strength

According to our results, the solid-gas phase separation shown above does not exist in a
vibrated granular system without van der Waals interaction. Hence, the van der Waals
interaction is another prerequisite for the present phase separation. The attractive in-
teractions trap the particles with energy below a material-dependent threshold within
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Figure 6.3: The phases boundaries vary with the Hamaker constant for a system with
φ̄ = 0.16 and ε = 0.9. The blue line is the boundary between the homogeneous
state and crystalline-gas coexistence state. The black line is the boundary
between the PC-G and RCP-G state. Circles are from simulation data and
the solid lines are fits.
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potential wells. This would imply that stronger attractive forces should increase the do-
main of stability of the PC-G state. Figure 6.3 confirms this expectation. We show the
phase boundaries in the space of Hamaker constant and driving amplitude A. For a given
material, there will be a corresponding interval of A where the system shows a PC-G
state. As the Hamaker constant increases, i.e., the strength of attractive interactions
increases, the PC-G state regime will expand and shift to higher driving values.



7 Conclusion

7.1 Summary

The work reported in this thesis is devoted to study how the collective behavior of a driven
granular gas changes when van der Waals interactions among the grains are introduced.

On the one hand, in the equilibrium van der Waals gas, a well-known liquid-gas coexistence
state can be seen when the equilibrium temperature is low enough (95). On the other
hand, in a granular system with not van der Waals forces a liquid-gas coexistence state
may emerge as the system is vibrated (49). One question then arises: how would a driven
granular system behave when van der Waals interactions are included? Does it still show
the liquid-gas coexistence state, or new phases will appear?

To answer these questions, we numerically simulated a sinusoidally driven granular sys-
tem with van der Waals interactions among the particles. The geometrical and physical
characteristics of the simulations were selected in close connections to the noncohesive
granular system where liquid-gas coexistence was observed (49). The granular particles
are identical spheres with radius 70 µm, a size for which van der Waals interactions are rec-
ognized to play a role. The van der Waals interactions are described by the well-known
Hamaker theory, which are normally used to describe the van der Waals interactions
among macroscopic objects.

We explore the phase diagram spanned by the average filling fraction and driving ampli-
tude. Surprisingly, a solid-like and gas coexistence regime is found in the region where
the van der Waals potential energy is comparable with the granular temperature. The
liquid-gas coexistence regime is still there at larger driving amplitudes, as the van der
Waals potential is too weak to influence that region, and the new solid-like and gas co-
existence lies below it and remains at the relatively weak driving regime in the phase
diagram. That is consistent with the properties of van der Waals interaction, frequently
creating condensed phases out of a gas. Furthermore, we find that the solid-like part of
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the coexistence state can be either random close packing or exhibit a poly-crystal struc-
ture depending on the driving amplitude. The boundary line between the coexistence of
random close packing and gas and the coexistence of poly-crystal and gas are parallel to
the filling fraction axis, which means the transition between these two coexistence states
are energy-driven.

Dissipative collisions and van der Waals interactions are two essential ingredients for the
separation, as the solid-like and gas phase separation happen neither in the equilibrium
van der Waals gas nor in the ‘dry’ driven granular system. Hence, we then focus on how
the restitution coefficient (used to describe the dissipation) and the Hamaker constant
(used to describe the van der Waals strength) influence the coexistence region, especial
the boundary line between the random close packing and gas coexistence and the poly-
crystal and gas coexistence . We found that the coexistence regime expands and shifts
to stronger driving regimes when either the dissipation increases or the van der Waals
forces among particles become stronger. And the boundary line between the two different
coexistence regimes lies on the locus of constant E . E is defined as the ratio between the
energy injection rate einj and the energy dissipation rate ediss.

As the phase separation takes place in a region where the driving is quite gentle, at the
very beginning the injected energy is not enough to balance the dissipation by collision
and the system effectively undergoes a granular cooling process before separation. The
ratio of energy injection rate and the energy dissipation rate during the cooling process
determines the final state of the denser part in the coexistence state. Analogous to the
quenching of an equilibrium liquid, higher energy injection rate, i.e. slow cooling, allows
the system to crystallize to fcc or hcp structure, while the rapid dissipation, i.e. rapid
cooling, restrains the nucleation so that the denser part will rest on a metastable state
random close packing.

Furthermore, we find the location of the poly-crystal and gas coexistence regime in the
Hamaker constant and driving amplitude space. As a reference, it can be used to de-
termine the necessary driven energy for a specific material, and vice versa, we could
predict the material inside a crystallized bulk which was generated in a specific driving
environment.
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7.2 Discussion and outlook

The work reported in this thesis considers an ideal case, in which all particles are identical
in size, shape and material properties. All the interactions are described by the simplest
models. The external driving is only at the boundary of the system and the driving
frequency is unique. More practical condition should be considered.

7.2.1 Polydispersity

It is common to use slightly polydisperse spheres in simulations to avoid crystallization.
If the crystal structure we have seen in our system will survive in a system consisting of
polydisperse spheres, and how the polydispersity will influence the collective behavior of
granular system with van der Waals interaction are important questions we need to study
in future.

7.2.2 Frequency influence

In the work reported by K. Roeller et al. (49), it was found that the phase separation only
appears at some special driven frequency regime. Their explanation is that if the resonant
motion of a single particle is suppressed the collective coherent motion is destroyed and
the phase separation disappears.

The phase separation we see in our system appears in the region where the van der Waals
potential energy is comparable with the granular temperature. The question whether the
resonance with the driving frequency is again a crucial reason for the the separation or
not is also important for understanding the mechanism of separation in our system and
worth further study.
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