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Abstract

Let A be a C*-algebra that is the norm closure A =
∑

β∈α Iβ of an arbitrary sum
of C*-ideals Iβ ⊆ A. We construct a homological spectral sequence that takes as
input the K-theory of

⋂
j∈J Ij for all finite nonempty index sets J ⊆ α and converges

strongly to the K-theory of A.
For a coarse space X, the Roe algebra C∗X encodes large-scale properties. Given

a coarsely excisive cover {Xβ}β∈α of X, we reshape C∗Xβ as input for the spectral
sequence. From the K-theory of C∗

(⋂
j∈J Xj

)
for finite nonempty index sets J ⊆ α,

we compute the K-theory of C∗X if α is finite, or of a direct limit C*-ideal of C∗X
if α is infinite.
Analogous spectral sequences exist for the algebra D∗X of pseudocompact finite-

propagation operators that contains the Roe algebra as a C*-ideal, and for Q∗X =

D∗X/C∗X.
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1 Introduction

1.1 Our result for abstract C*-algebras

C*-algebras arise in mathematics and theoretical physics alike. K-theory is a funda-
mental tool to study and classify these highly-structured algebras.
As a covariant Z-graded functor of C*-algebras over C, K-theory is continuous,

is additive, admits suspension isomorphisms KsSA ∼= Ks+1A, and admits a cyclic
6-term exact sequence induced by C*-ideal inclusions I ⊆ A via boundary maps and
Bott periodicity β : KsA ∼= Ks+2A. Furthermore, for a sum A = I0 + I1 of two
C*-ideals, there is a Mayer-Vietoris exact sequence,

K0(I0 ∩ I1) K0I0 ⊕K0I1 K0A

K1A K1I0 ⊕K1I1 K1(I0 ∩ I1).

∂MV
2 ◦ β∂MV

1

In algebraic topology, a similar Mayer-Vietoris sequence computes the homology or
cohomology of a space X from a cover X = X◦0 ∪X◦1 by relating the (co)homology
of X0, X1, and X0 ∩X1. This topological Mayer-Vietoris sequence generalizes to a
spectral sequence: Given a suitable cover {Xβ}β∈α of a topological space, the spectral
sequence takes as input the (co)homology of

⋂
j∈J Xj for all finite nonempty J ⊆ α

and converges to the (co)homology of X, the full space.
It is natural to seek analogous spectral sequences for the K-theory Mayer-Vietoris

exact sequence. This is our first main result:

Theorem 6.7.1 (Spectral sequence for arbitrary sums). Let α be an arbitrary index
set: finite, countable, or uncountable. Let A =

∑
β∈α Iβ be the norm closure of a

sum of |α|-many C*-ideals Iβ ⊆ A. There is a spectral sequence {Erp,q, dr}r,p,q with

E1
p,q
∼=


⊕
|J |=p+1

Kq

( ⋂
j∈J

Ij

)
for p ≥ 0,

0 for p < 0,

where J ranges over all nonempty finite index subsets J ⊆ α. In general, this is a
half-page spectral sequence, any term E1

p,q with p ≥ 0 may be nonzero.
This spectral sequence converges strongly to K∗A. It is functorial with respect to
∗-homomorphisms that preserve α-indexed ideal decompositions.

To prove this, we begin with the finite case A = I0 + I1 + · · · + In and construct

1



1 Introduction

C*-algebras of continuous functions from the standard simplex ∆n to A, interlocking
allowed ranges in the Ij ⊆ A on different regions of the simplex.

Sums of these function algebras become a chain of ideals Q0 ⊆ Q1 ⊆ · · · ⊆ Qn.
This chain of ideals fits into an already-known spectral sequence that converges
strongly to K∗Qn ∼= K∗(S

nA), the K-theory of the n-fold suspension of A. This
spectral sequence for ideal inclusions has been described by C. Schochet in [Sch81];
we reprove it to highlight its inner workings, its differentials, and its filtration that
guarantees strong convergence. Compared to that spectral sequence, our Theorem
6.7.1 relaxes the input conditions: We do not require that the Ij form a chain of
inclusions.
For countable index sets α, we link the spectral sequences for n ideals and n + 1

ideals – this is only possible on the level of K-theory, not on the level of C*-algebras
– and construct a filtration on the spectral sequence via a suitable direct limit. For
uncountable sets α, we adapt our direct limit construction to the directed system of
finite subsets of α.

1.2 Our application in coarse geometry

Coarse geometry studies the large-scale structure of metric spaces. If two spaces
differ only within a compact set, coarse invariants will not detect any difference.
For a coarse space X, i.e., a metric space (X, d), the Roe algebra C∗X encodes such

large-scale properties. This C*-algebra and the larger algebra D∗X are introduced,
e.g., by N. Higson and J. Roe in [HR00], or by J. Roe in [Roe96]. Via these algebras,
the K-homology of X and further invariants of contemporary research are defined,
such as the coarse index when X is a Riemannian manifold. For our work, it suffices
to define Q∗X = D∗X/C∗X; we will not formulate our results in the language of
K-homology.
For certain sets X0 and X1 with X0 ∪ X1 = X, there is a coarse Mayer-Vietoris

exact sequence: It relates the K-theory of C∗X0, C∗X1, and C∗(X0 ∩ X1) to the
K-theory of C∗X. Its proof, e.g., in [Roe96], relies on the Mayer-Vietoris sequence
for two abstract C*-ideals.
We generalize to arbitrarily many regions. A decomposition X =

⋃
β∈αXβ is

called coarsely excisive if, for all nonempty finite subcollections J ⊆ α and R > 0,
there exists S > 0 such that the intersection of the R-neighborhoods is contained in
the S-neighborhood of the intersection according to the metric d on X:⋂

j∈J
Nd(Xj , R) ⊆ Nd

( ⋂
j∈J

Xj , S
)
.

This leads to our second main result:

2



1.3 Relations to other research

Theorem 7.2.1 (Spectral sequence for coarsely excisive covers). Let (X, d) be a
coarse space and let {Xβ}β∈α be a coarsely excisive cover of (X, d). Let F∗ be either
the functor C∗ from the coarse category to C∗A or one of the functors D∗ or Q∗ from
the coarse-continuous category to C∗A. There is a spectral sequence {Erp,q, dr}r,p,q
with

E1
p,q
∼=


⊕
|J |=p+1

KqF
∗
( ⋂
j∈J

Xj

)
for p ≥ 0,

0 for p < 0,

where J ranges over all nonempty finite subcollections of indices in α. For finite
α, this spectral sequence converges strongly to K∗F∗X. In general, the spectral se-
quence converges strongly to the K-theory of

⋃
J

∑
j∈J F

∗(Xj ⊆ X), a C*-ideal of
F∗X, where J ranges over all finite subcollections of indices in α. The spectral se-
quence is functorial with respect to morphisms (coarse maps for C∗, or coarse and
continuous maps for D∗ and Q∗) to other coarse spaces with compatible coarsely
excisive covers (Definition 5.1.4).

As an example, we recompute the known K-theory of C∗Rn. Also, we find an
infinite coarsely excisive cover of Z∞ under many metrics, then show that the K-
theory of the direct limit ideal of Roe algebras for this cover in C∗Z∞ vanishes.
Furthermore, we compute the K-theory of the direct limit of Roe algebras for a
countable wedge sum

∨
N [0,∞[ in a single application of the spectral sequence; this

obviates inductive proofs with the Mayer-Vietoris exact sequence.

1.3 Relations to other research

Early motivation for this project was the Partitioned Manifold Index Theorem [Sie12,
Proposition 4.9]: Given certain Riemannian manifolds N ⊆ M with G-equivariant
covers, the classes of their Dirac operators – elements in K-homology – map to
the same element in K∗C

∗
rG, the K-theory of the group C*-algebra for G, via the

coarse index maps. P. Siegel proves this by induction with the coarse Mayer-Vietoris
principle for two regions. Our idea was to reprove this theorem by a single application
of our Theorem 7.2.1.
Spectral sequences, however, do not construct specific maps on their targets; even

strong convergence only leads to isomorphism theorems. Still, if the spectral sequence
cannot compute the equality for the Partitioned Manifold Index Theorem, it can
classify related C*-algebras for coarse spaces in this setting and decide about the
structure of possible morphisms between them.
Sums or inclusion chains of abstract C*-ideals also arise in other settings. In

[MM18], D. Mukherjee and R. Meyer construct a gauge-invariant C*-algebra T0 of

3



1 Introduction

the Toeplitz algebra T for partial product systems. By [MM18, Theorem 4.5], T0 is
a direct limit along N ∈ N of images of maps from

⊕
n<N KEn into T0 where the En

are the compact opreators of correspondences. These images are C*-subalgebras of
T0. With our spectral sequences, to compute the K-theory of T0, we may examine
the K-theory of quotients or intersections of these subalgebras.

1.4 Structure of this thesis

Section 2, Fundamentals, establishes the notation and gives an overview of the basic
tools. The reader will likely be familiar with several constructions. For a metric
space X, we present the coarse algebras C∗X, D∗X, and Q∗X = D∗X/C∗X.

In Section 3, Ideal inclusions, we show a spectral sequence that takes a chain of
C*-ideal inclusions I0 ⊆ I1 ⊆ I2 ⊆ · · · ⊆ Ip ⊆ · · · across all p ∈ N. Similar to
the material in Section 2, this spectral sequence is known theory. Nonetheless, we
reprove it in detail. This will be the basis for the research work in the following
sections.
In Section 4, Finite sums of ideals, we construct our spectral sequence that takes

intersections
⋂
j∈J Ij of C*-ideals Ij from a finite sum A = I0 + I1 + · · ·+ In.

In Section 5, Finite coarse excision, we define coarsely excisive covers and relative
coarse algebras. For finite subcollections of a coarsely excisive cover, we show that
these relative algebras behave well under intersections and unions. This leads to a
version of our spectral sequence for finite coarsely excisive covers. As an example,
we recompute the K-theory of C∗Rn.
In Sections 6 and 7, Infinite sums of ideals and Infinite coarse excision, we relax the

condition that A = I0 +I1 + · · ·+In needs to be a finite sum: Now A =
∑

β∈α Iβ may
be a direct limit of sums of arbitrarily many C*-ideals. The spectral sequences from
Sections 4 and 5 first generalize to countable ideal decompositions as input instead
of only finite decompositions, then to uncountable decompositions. As examples, we
compute the K-theory of direct limits of Roe algebras for Z∞ and

∨
N [0,∞[.

In Section 8, Generalizations, we list ideas for real KO-theory and equivariant
spaces.

4



2 Fundamentals

We will rehearse well-known constructions to establish notation and conventions,
beginning with C*-algebras and their K-theory. We introduce the basics of coarse
geometry and spectral sequences.
The set N of natural numbers includes 0.

2.1 C*-algebras

Definition 2.1.1 (Complex Banach algebra). Let (A, ‖−‖) be a normed associative
algebra over C that is topologically complete according to its norm. For all x, y ∈ A,
the following inequality shall hold: ‖xy‖ ≤ ‖x‖ ‖y‖. Then we call A a complex
Banach algebra.

Definition 2.1.2 (C*-algebra, C*-ideal). Let A be a complex Banach algebra. Let
A carry an involution ∗, i.e., a map A→ A, x 7→ x∗, satisfying x∗∗ = x, (λx+ y)∗ =

λx∗ + y∗, and (xy)∗ = y∗x∗ for all x, y ∈ A and λ ∈ C. Furthermore, ∗ shall satisfy
the C*-identity ‖xx∗‖ = ‖x‖2. Then (A, ∗) is a C*-algebra.
A closed two-sided ideal in a C*-algebra is called a C*-ideal.

Remark 2.1.3. The zero algebra 0 is a C*-algebra. The complex numbers C them-
selves are a C*-algebra with z 7→ |z| as the norm and z 7→ z as the ∗-operation.
For a C*-algebra A with a C*-ideal I ⊆ A, the quotient A/I is a well-defined

C*-algebra.
Let α be an arbitrary index set and let Aβ be a C*-algebra for each β ∈ α. The

norm completion
⊕

β∈αAβ of the algebraic direct sum is again a C*-algebra with the
norm ‖(aβ)β∈α‖ = sup {‖aβ‖ : β ∈ α} and component-wise addition, multiplication,
and involution.

Definition 2.1.4 (Category C∗A of C*-algebras). A bounded algebra homomor-
phism f : A→ B between two C*-algebras is called a ∗-homomorphism if it preserves
the involution: f(x∗) = f(x)∗ shall hold for all x ∈ A.

The category C∗A encompasses all C*-algebras as objects, together with all ∗-ho-
momorphisms as arrows.

Definition 2.1.5 (Homotopy of C*-algebras). Let f , g : A → B be ∗-homomor-
phisms between C*-algebras. A homotopy in the category of C*-algebras between f
and g is a map H : (A× [0, 1])→ B that satisfies:

• For all a ∈ A, H(a, 0) = f(a) and H(a, 1) = g(a).

• For all a ∈ A, the map [0, 1]→ B, t 7→ H(a, t) is continuous.

5



2 Fundamentals

• For all t ∈ [0, 1], the map A→ B, a 7→ H(a, t) is a ∗-homomorphism.

If such a homotopy exists, then f and g are called homotopic, denoted by f ∼ g.
A ∗-homomorphism f : A → B is a homotopy equivalence if there exists a ∗-ho-

momorphism g : B → A such that g ◦ f ∼ id(A) and f ◦ g ∼ id(B). Existence of
a homotopy equivalence A → B is denoted by A ' B; then A is called homotopy
equivalent to B.
A C*-algebra A is called contractible if A ' 0.

Homotopy equivalence as C*-algebras is a stronger condition than topological ho-
motopy equivalence.

Lemma 2.1.6. Let A be a contractible C*-algebra and p = p∗ = p2 a projection in
A. Then p = 0.

Proof. Let H : A × [0, 1] → A be the contracting homotopy. For all t ∈ [0, 1], we
have ‖H(p, t)‖ = ‖H(pp∗, t)‖ = ‖H(p, t)‖2 ∈ R≥0 because x 7→ H(x, t) is a ∗-ho-
momorphism. This implies ‖H(p, t)‖ ∈ {0, 1} and, because of continuity, this norm
stays constant across all t ∈ [0, 1]. By construction, H(p, 1) = 0, thus ‖H(p, 0)‖ = 0

and p = 0.

Corollary 2.1.7. The C*-algebra C is contractible as a topological space, but not
contractible as a C*-algebra.

Proof. One possible topological homotopy is (z, t) 7→ tz. Lemma 2.1.6 precludes a
C*-contraction because 1 = 1 = 1 · 1 is a nonzero projection in C.

Definition 2.1.8 (Cone). Let A be a C*-algebra. The cone of A is the C*-algebra

CA = {f : [0, 1]→ A : f is continuous, f(0) = 0}.

It carries the uniform norm ‖f‖ = sup {‖f(x)‖ : x ∈ [0, 1]}; this is well-defined be-
cause [0, 1] is compact. Algebra multiplication on CA is given by pointwise multi-
plication of functions. The involution on the cone is defined by f∗(x) = f(x)∗.

Let g : A → B be a ∗-homomorphism. The cone map Cg : CA→ CB is given by
(Cg)(f) = g ◦f : [0, 1]→ B. This construction turns C : C∗A→ C∗A into a covariant
functor.

This is still basic theory of C*-algebras, but it is reasonable to agree on whether
the functions f in the cone must vanish at 0 or vanish at 1. In later sections, we will
construct a spectral sequence for C*-algebras; some technical lemmas require cones
of algebras.

6



2.2 C*-algebras for spaces

Proposition 2.1.9. Let A be a C*-algebra. Then the cone CA is contractible; the
zero algebra is a strong deformation retract of CA.

Proof. Define a homotopy H : CA × [0, 1] → CA by H(f, t)(x) = f(tx). This is
continuous because f is continuous. It is the desired deformation retraction because
H(f, 0) = 0 and H(f, 1) = f for all f ∈ CA. Since H(0, t)(x) = 0 for all t and
x ∈ [0, 1], it is even a strong deformation retraction.

Definition 2.1.10 (Suspension). Let A be a C*-algebra and CA its cone. The
suspension of A is the subalgebra

SA = {f ∈ CA : f(1) = 0}.

The suspension SA inherits its C*-algebra structure from CA. Likewise, ∗-homomor-
phisms ϕ : A → B induce Sϕ : SA → SB via Sϕ = (Cϕ) � SA, making S : C∗A →
C∗A another covariant functor.

2.2 C*-algebras for spaces

Definition 2.2.1 (C (X,A), CX). Let X be a compact Hausdorff space and A a
C*-algebra. Then C (X,A) denotes the C*-algebra of A-valued continuous functions
on X with the sup-norm ‖f‖C (X,A) = sup {‖f(x)‖A : x ∈ X}, pointwise addition
and multiplication, and f∗(x) = f(x)∗. If A is unital, C (X,A) contains the constant
function that maps all points in X to 1 ∈ A; this function is then a unit.

Often, A = C; we abbreviate by setting CX = C (X,C).

When X fails to be compact, CX is not a normed algebra because some A-
valued functions on X are unbounded. More interesting function algebras impose
boundedness:

Definition 2.2.2 (C(X,A), CX). Let X be a locally compact Hausdorff space, A
a C*-algebra. A continuous function f : X → A vanishes at infinity if, for all ε > 0,
there exists a compact set K ⊆ X with

{x ∈ X : ‖f(x)‖ > ε} ⊆ K.

The set of all such functions f is denoted C(X,A). In the common case A = C, we
shall write CX = C(X,C).
Again, C(X,A) carries a C*-algebra structure under pointwise multiplication and

the sup-norm ‖f‖ = sup {‖f(x)‖ : x ∈ X}.

7



2 Fundamentals

Remark 2.2.3. The sup-norm is well-defined because functions in C(X,A) are
necessarily bounded. The C*-algebra C(X,A) has a unit if and only if X is compact
and A is unital. For compact X, the algebra C(X,A) coincides with C (X,A).

Equivalent definitions of C(X,A) embed X into an arbitrary compactification Y ,
then define C(X,A) as the subset of all continuous functions f : Y → A such that
f � (Y −X) = 0, then restrict these functions to X.

Taking A-valued functions that vanish at infinity is a contravariant functor from
Hausdorff spaces with proper continuous maps into C∗A: Let X and Y be Hausdorff
spaces and let f : X → Y be a proper continuous map. Then (− ◦ f) : C(Y,A) →
C(X,A) maps g : Y → A to g ◦ f : X → A. The composition g ◦ f vanishes at
infinity because f is proper.

2.3 K-theory of C*-algebras

The exact constructions of the K-theory K∗A for a C*-algebra A are lengthy and
shall be omitted; several textbooks, e.g., [WO93] or [RLL00], cover all technical
details. The zeroth K-theory group K0A is the Grothendieck group of equivalence
classes of projections in a ring of matrices over A modulo homotopy equivalence. The
first K-theory group K1A results from a similar construction with unitary elements
of the matrix ring instead of projections.

BothK0 andK1 become continuous covariant functors from C∗A to abelian groups:
For a morphism f : A → A′, the resulting morphism K∗f : K∗A → K∗A

′ applies f
to all matrix entries before taking equivalence classes.

Theorem 2.3.1 (Suspension isomorphism). For a C*-algebra A, there is an iso-
morphism σ : K0SA → K1A. This allows N-graded K-theory by defining KsA as
Ks−1SA inductively; some authors even define K1A this way instead of via unitary
matrix elements.

Theorem 2.3.2 (Bott isomorphism). For all s ∈ N, there are Bott isomorphisms
β : KsA→ Ks+2A. This allows Z-graded K-theory by defining KsA = Ks+2A induc-
tively for all s < 0.

Theorem 2.3.3 (Six-term exact sequence). Let I ⊆ A be a C*-ideal. For all s ∈
Z, K-theory admits boundary maps ∂s : Ks(A/I) → Ks−1I that make the following
six-term sequence exact; the horizontal arrows are induced by ideal inclusion and

8



2.4 Roe algebras

projection:

K0I K0A K0(A/I)

K1(A/I) K1A K1I.

∂2 ◦ β∂1

Theorem 2.3.4 (Abstract Mayer-Vietoris exact sequence). Let A be a C*-algebra
such that I0, I1 ⊆ A are two C*-ideals with I0 + I1 = A. There is an exact sequence
with Mayer-Vietoris boundary morphisms:

K0(I0 ∩ I1) K0I0 ⊕K0I1 K0A

K1A K1I0 ⊕K1I1 K1(I0 ∩ I1).

∂MV
2 ◦ β∂MV

1

2.4 Roe algebras

Definition 2.4.1 (Ample representation). Let A be a separable C*-algebra. Let
% : A → BH be a representation of C*-algebras on a separable Hilbert space H,
where BH denotes the C*-algebra of all bounded linear operators H → H. Then %
is called ample if

• % is nondegenerate, and

• %(0) = 0 is the only compact operator in im(%) ⊆ BH.

Definition 2.4.2 (Very ample representation). Let A be a separable C*-algebra. A
representation % : A → BH of C*-algebras is called very ample if it is a countably
infinite sum of ample representations.

Remark 2.4.3. To admit ample representations, the Hilbert space H must be both
separable and infinite-dimensional. Then suitable ample representations % always
exist. According to [HR00], because H is separable, the constructions in Section 2.4
do not depend on the particular choice of H or % up to isomorphy.
Every very ample representation is ample. Most constructions require ample rep-

resentations. Some isomorphism theorems call for very ample representations, but,
because H ∼=

⊕
NH, requiring very ample representations is merely a technical con-

venience, not a fundamental restriction.

Definition 2.4.4 (Pseudolocal operator). Let X be a locally compact Hausdorff
space. For the C*-algebra CX, let % : CX → BH be an ample representation. Let

9



2 Fundamentals

T ∈ BH be an operator such that %(f)T − T%(f) is a compact operator in BH for
all f ∈ CX. Then T is called pseudolocal.

Definition 2.4.5 (Finite propagation). Let (X, d) be a locally compact metric space
and % : CX → BH an ample representation. An operator T ∈ BH has finite
propagation if there exists a constant R > 0 such that for all f , g ∈ CX with
d(supp f, supp g) ≥ R, the product %(f)T%(g) ∈ BH is zero.

Definition 2.4.6 (D∗A). Let (X, d) be a locally compact metric space. Fix an
ample representation % : CX → BH. The norm closure of the set of all pseudolocal
operators in BH with finite propagation forms a C*-algebra, denoted by D∗X.

Remark 2.4.7. The norm closure turnsD∗X into a sub-C*-algebra of BH. Without
the norm closure, the operators with finite propagation do not form a closed subset.
Pseudolocal operators by themselves already form a sub-C*-algebra in BH without
additional closure.

Definition 2.4.8 (Locally compact operator). Let (X, d) be a locally compact metric
space and % : CX → BH an ample representation. Let T ∈ BH be an operator
such that, for all f ∈ CX, both %(f)T and T%(f) are compact operators in BH.
Then T is called locally compact.

Remark 2.4.9. Given % : CX → BH ample for a locally compact metric space
(X, d), the locally compact operators form a C*-ideal in the algebra of pseudolocal
operators.

Definition 2.4.10 (C∗X, Roe algebra). For a locally compact metric space (X, d)

and an ample representation % : CX → BH, the translation algebra or Roe algebra
C∗X is the norm closure of the operators T ∈ BH that are both locally compact and
have finite propagation.

Remark 2.4.11. The Roe algebra C∗X is a C*-ideal in D∗X.

Remark 2.4.12 (K-homology). Let A be a C*-algebra and A+ the C*-algebra with a
unit adjoined. It is possible to define an abstract dual algebra D∗A+ by representing
A amply and taking all pseudolocal operators, without defining finite propagation.
For s ∈ Z, we may define the s-th K-homology group of A as

KsA = K1−sD
∗A+.

K-theory of C*-algebras is a covariant functor; K-homology becomes a contravariant
functor of C*-algebras. Were we concerned only with abstract C*-algebras, we could

10



2.5 Coarse spaces

consider “K-homology” a bad name for a contravariant functor and to rename it to
“K-cotheory”. But K-homology becomes a covariant functor for topological spaces:
Let X be a locally compact metric space and s ∈ Z. The abelian group

KsX = K−sCX

is the K-homology of the space X; this defines a covariant functor from locally com-
pact metric spaces to abelian groups. By [HR00, Lemma 12.3.2], there is an isomor-
phism KsX = Ks+1(D∗X/C∗X).

We will not need K-homology and will instead formulate all results in the language
of K-theory and Roe algebras. Thus we introduce a notation similar to [Sie12]:

Notation 2.4.13 (Q∗X). Let X be a locally compact metric space. We write

Q∗X = D∗X/C∗X.

2.5 Coarse spaces

The most general definition of a coarse space X uses entourages or controlled sets
– collections of subsets of X × X with axioms to capture a notion of closeness.
Following [Roe96, Chapter 2], we will instead work with proper metric spaces, a
modest restriction. If our spaces are manifolds, both methods bring the same results.

Definition 2.5.1 (Coarse space). A coarse space X = (X, d) is a proper metric
space; i.e., a metric space where closed d-bounded sets are compact.

Definition 2.5.2 (Coarse map). Let f : (X, dX)→ (Y, dY ) be a map between coarse
spaces. f is called coarse if

• f is uniformly expansive: For R > 0, there exists S > 0 such that for all x,
x′ ∈ X with dX(x, x′) ≤ R, we have dY (fx, fx′) ≤ S.

• f is proper as a map between the metric spaces X and Y : For each bounded
set B ⊆ Y , the preimage f−1(B) is bounded in X.

Coarse maps are not required to be continuous.

Remark 2.5.3. The identity id(X) : (X, d) → (X, d) is coarse. Compositions of
coarse maps are coarse.

Definition 2.5.4 (Coarse category, coarse-continuous category). The coarse cate-
gory has as objects all coarse spaces and as morphisms all coarse maps.

11



2 Fundamentals

The coarse-continuous category is the subcategory of the coarse category that still
comprises all coarse spaces, but that has as morphisms only the coarse maps that
are also continuous.

Definition 2.5.5 (Closeness). Let f , f ′ : (X, dX) → (Y, dY ) be two maps between
coarse spaces. We call f close to f ′, or coarsely equivalent to f ′, if there exists S > 0

such that for all x ∈ X, we have dY (fx, f ′x) ≤ S.

Definition 2.5.6 (Coarse equivalence). Let X and Y be coarse spaces with coarse
maps f : X → Y and g : Y → X such that g ◦ f is close to id(X) and f ◦ g is close
to id(Y ). We call X, Y coarsely equivalent and f , g coarse equivalences.

Example 2.5.7. Fix n ∈ N. The lattice Zn is coarsely equivalent to Euclidean
space Rn under the metric d∞ with d∞(x, x′) = supj<n |xj−x′j | on both spaces. The
inclusion f : Zn → Rn and

g : Rn → Zn, g(x0, x1, . . . , xn−1) = (bx0c, bx1c, . . . , bxn−1c)

serve as coarse equivalences. For all z ∈ Zn and x ∈ Rn, the distances d∞(z, gfz)

and d∞(x, fgx) are uniformly bounded by the constant 1.
This map g is proper, but it is not continuous.

Coarse equivalences induce isomorphisms on the K-theory of Roe algebras:

Lemma 2.5.8 ([Roe96, Lemma 3.5]). Let X, Y be coarse spaces, f : X → Y a coarse
map. Then f induces a functorial homomorphism f∗ : K∗C

∗X → K∗C
∗Y . Coarsely

equivalent maps induce the same homomorphism.

Remark 2.5.9. Similarly, the constructions D∗ and Q∗ are functorial, but these
functors are merely well-defined on the coarse-continuous category. Only C∗ is well-
defined for coarse non-continuous maps.
All three of C∗, D∗, and Q∗ are covariant functors to C∗A: Passing from spaces X

and Y to function algebras CX and CY is contravariant, and passing from function
algebras to locally compact or pseudocompact operators with finite propagation is
again contravariant.

Corollary 2.5.10. Let f : X → Y and g : Y → X be coarse equivalences. Then
KpC

∗X ∼= KpC
∗Y for all p ∈ Z.

Proof. The compositions g ◦f and f ◦g are close to the identities on X and Y . They
induce identities in K-theory, thus both KpC

∗f and KpC
∗g are isomorphisms.
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2.6 Coarsely excisive pairs

2.6 Coarsely excisive pairs

We will recapitulate coarse excision as defined by J. Roe in [Roe96]. Later, we will
define coarsely excisive covers to generalize this idea.

Definition 2.6.1 (R-neighborhood). Let (X, d) be a metric space and Y ⊆ X a
subspace. For a real number R > 0, define the R-neighborhood of Y as

Nd(Y,R) = {x ∈ X : inf {d(x, y) : y ∈ Y } ≤ R}.

When d is a standard metric such as the 1-metric d1, the Euclidean metric d2, or the
sup-metric d∞ on Rn or Zn, we will also write N1 = Nd1 or, similarly, N2 or N∞.

Definition 2.6.2 (Coarsely excisive pair). Let (X, d) be a metric space. Let U and
V be subspaces of X with U ∪ V = X.

The pair (U, V ) is called a coarsely excisive pair for X if, for every distance R > 0,
there exists a distance S > 0 such that the intersection of the R-neighborhoods is
contained in the S-neighborhood of the intersection:

Nd(U,R) ∩Nd(V,R) ⊆ Nd(U ∩ V, S).

Example 2.6.3. For the metric space R with its standard metric d, the pair of
subspaces (R≤0,R≥0) is coarsely excisive: The R-neighborhoods are Nd(R≤0, R) =

]∞, R] and Nd(R≥0, R) = [−R,∞[. Their intersection is [−R,R], which, for S = R,
is the S-neighborhood of R≤0 ∩ R≥0 = {0}.

In the same vain, Rn+1 admits the coarsely excisive pair (Rn × R≤0,Rn × R≥0)

under d1, d2, or d∞.

Example 2.6.4. For all S > 0, the S-neighborhood of ∅ is again ∅. This imposes
restrictions on eligible coarsely excisive pairs: In any metric space (X, d), disjoint
nonempty sets U and V cannot form a coarsely excisive pair. Choose R larger than
inf {d(x, y) : x ∈ U , y ∈ V }, then N(U,R) ∩N(V,R) contains points. This is never
a subset of N(U ∩ V, S) = N(∅, S) = ∅.

Theorem 2.6.5 ([HRY93, Section 5]). For a coarsely excisive pair (U, V ) of (X, d),
there is an exact Mayer-Vietoris sequence:

K0C
∗(U ∩ V ) K0C

∗U ⊕K0C
∗V K0C

∗X

K1C
∗X K1C

∗U ⊕K1C
∗V K1C

∗(U ∩ V ).
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Boths proofs in [HRY93] and [Roe96] reduce this to the Mayer-Vietoris principle
for abstract C*-ideals I0, I1 ⊆ A, Theorem 2.3.4.
The goal of this thesis is to construct a spectral sequence extending that abstract

Mayer-Vietoris principle and Theorem 2.6.5 alongside.

2.7 Spectral sequences

A good introduction to spectral sequences is [McC01]. We will give the basic defini-
tions to establish notation. We require no cohomological spectral sequences or ring
structures on the pages.

Definition 2.7.1 (Spectral sequence). A spectral sequence (of homological type,
of abelian groups) is a system of bigraded differential abelian groups Erp,q for all
0 6= r ∈ N and p, q ∈ Z with differentials dr : Erp,q → Erp−r,q+r−1 for all r, p, q such
that each Er+1

p,q is the homology of dr at Erp,q.

We define convergence of spectral seuqences with notation similar to [Boa99, Sec-
tion 5]; that exposition does not assert any common origin of the target group and
the Er∗,∗-terms of the spectral sequence. We re-index to match our spectral sequences
of homological type and make explicit the grading of the Z-graded target group.

Definition 2.7.2. Let G be an abelian group with an increasing filtration

· · · ⊆ F pG ⊆ F p+1 ⊆ · · · ⊆ G

for p ∈ Z. We call the filtration {F pG}p∈Z

• Hausdorff if
⋂
p∈Z F

pG = 0,

• exhaustive if
⋃
p∈Z F

pG = G, and

• complete if the right-derived functor of taking the inverse limit yields the zero
group for the inverse system F pG for p→ −∞.

Definition 2.7.3 (Strong convergence). Let {Erp,q, dr}r,p,q be a spectral sequence.
For r ≥ 1 and p, q ∈ Z, write

Zrp,q = ker dr : Erp,q → Erp−r,q+r−1,

Br
p,q = im dr : Erp+r,q−r+1 → Erp,q.

Because Er∗,∗ for r ≥ 2 is the homology of Er−1
∗,∗ under dr−1, an element in Erp,q may

be written as x+Br−1
p,q with x ∈ Er−1

p,q . Recursively, this allows us to treat Zrp,q and
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Br
p,q as subgroups of E1

p,q and define

E∞p,q =
( ⋂
r≥1

Zrp,q

) / ( ⋃
r≥1

Br
p,q

)
.

Let G =
⊕

s∈ZGs be a Z-graded abelian group. The spectral sequence {Erp,q, dr}r,p,q
converges strongly to G if there exist increasing filtrations {F pGs}p∈Z of each sum-
mand Gs such that these filtrations are Hausdorff, exhaustive, complete, and allow
isomorphisms

E∞p,q
∼= F pGp+q/F

p−1Gp+q.

Definition 2.7.4 (Morphism of spectral sequences). Given two spectral sequences
{Erp,q, dr}r,p,q and {Ērp,q, d̄r}r,p,q and (p′, q′) ∈ Z2, a morphism of spectral sequences
of bidegree (p′, q′) is a system of morphisms of abelian groups,

f =
{
f rp,q : Erp,q → Ērp+p′,q+q′

}
r,p,q

,

such that

• the group morphisms commute with the differentials; i.e., f r∗,∗ ◦ dr = d̄r ◦ f r∗,∗
for all pages r, and

• each map f r∗,∗ induces f r+1
∗,∗ by passing to homology on {Er∗,∗, dr}r,p,q and

{Ēr∗,∗, d̄r}r,p,q.

Remark 2.7.5. Spectral sequences with these morphisms form a category.
By describing a morphism of spectral sequences on the R-th page, all subsequent

f r∗,∗ for r > R and r =∞ are implicitly defined because the Er∗,∗-terms are iterative
homologies of the earlier ER∗,∗-term. In our setting, we will construct morphisms of
spectral sequences only for the E1

∗,∗-terms.
In particular, if fR∗,∗ is an isomorphism between the differential graded abelian

groups ER∗,∗ and ĒR∗,∗, then all f r∗,∗ for r > R and r =∞ become isomorphisms.
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3.1 Main theorem

Theorem 3.1.1 (Spectral sequence for ideal inclusions). Let A =
⋃
p∈N Ip be a C*-

algebra, where the I0 ⊆ I1 ⊆ I2 ⊆ · · · ⊆ Ip ⊆ · · · form a chain of closed two-sided
ideals. There is a spectral sequence {Erp,q, dr}r,p,q with

E1
p,q = Kp+q(Ip/Ip−1).

This spectral sequence converges strongly to K∗A; i.e., given s ∈ Z, the groups E∞p,q
along the diagonal s = p+ q pose an extension problem to reconstruct KsA.

In [Sch81], C. Schochet gave a proof of Theorem 3.1.1.

Nonetheless, we will reprove Theorem 3.1.1 based on very general theory from
[CE73]. This extra work reveals the inner mechanisms of the spectral sequence,
shows that the convergenge is strong, and highlights naturality of all constructions:
The morphisms in K-theory arise from natural inclusions of C*-ideals, quotients of
C*-ideals, and boundary maps.

This spectral sequence serves as groundwork for the Mayer-Vietoris results in later
sections.

3.2 Abstract H-systems

In [CE73], H. Cartan and S. Eilenberg construct an abstract spectral sequence from
a bigraded system of groups, but they omit some details during their proof of con-
vergence. Their construction uses cohomological differentials: On the E∗,∗r -page, the
differential has the degree (r, 1−r). For homological spectral sequences, they suggest
the renumbering Erp,q = E−p,−qr . We will state the main theorem of [CE73] in this
renumbered notation, then prove it with all details.

Definition 3.2.1 (Ungraded H-system). Let H(p, p′) be abelian groups for p′ ≤ p

from the range Z ∪ {±∞}. We introduce the shorthand notations

H(p) = H(p,−∞),

H = H(∞) = H(∞,−∞).

For each (p, p′) and (q, q′) with −∞ ≤ p ≤ q ≤ ∞ and p′ ≤ p ≤ ∞ and q′ ≤ q ≤ ∞,
let there be a morphism

i : H(p, p′)→ H(q, q′).
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For each −∞ ≤ p′′ ≤ p′ ≤ p ≤ ∞, let

∂ : H(p, p′)→ H(p′, p′′)

be a connecting homomorphism. We call this collection of groups together with the
above morphisms an ungraded H-system if the following axioms are satisfied:

1. i : H(p, p′)→ H(p, p′) is the identity.

2. All triangle and square diagrams built with the morphisms i commute.

3. For all p′′ ≤ p′ ≤ p, there is an exact sequence

· · · ∂−→ H(p′, p′′)
i−→ H(p, p′′)

i−→ H(p, p′)
∂−→ H(p′, p′′)→ · · · . (3.2.1.1)

4. For each index p′ ∈ Z ∪ {−∞}, the group H(∞, p′) is the direct limit of the
morphisms i : H(p, p′)→ H(p+ 1, p′) along p′ ≤ p.

In [CE73], the indices of these H-systems are denoted by (p, q) instead of (p, p′).
To avoid confusion with the bigrading (p, q) of the pages Erp,q later, we shall use
H(p, p′).

Definition 3.2.2 (Graded H-system). Let {H(p, p′), i, ∂}p,p′ be an ungraded H-
system as in Definition 3.2.1. We call this a graded H-system if it satisfies the
following extra axioms:

5. All H(p, p′) carry a Z-grading: H(p, p′) =
⊕

s∈ZHs(p, p
′).

6. All morphisms i : H(p, p′)→ H(q, q′) are degree-preserving.

7. All morphisms ∂ : H(p, p′)→ H(p′, p′′) have degree −1; i.e.,

im
(
∂ � Hs(p, p

′)
)
⊆ Hs−1(p′, p′′).

Notation 3.2.3. Let H(p, p′) for −∞ ≤ p′ ≤ p ≤ ∞ form a graded H-system. For
r ≥ 0 and q ∈ Z, write

Zrp,q = im i : Hp+q(p, p− r − 1)→ Hp+q(p, p− 1),

Br
p,q = im ∂ : Hp+q+1(p+ r, p)→ Hp+q(p, p− 1),

Er+1
p,q = Zrp,q/B

r
p,q.

In this way, we define Erp,q only for r ≥ 1, not for r ≥ 0. Compared to [CE73], we
have shifted the index r in Zr∗,∗ and Br

∗,∗ by 1 to match our Definition 2.7.3 of these
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groups as closely as possible; e.g., we write Z0
p,q for what would be denoted by Z1

p,q

in [CE73].

Lemma 3.2.4. We have B0
p,q = 0 and

E1
p,q
∼= Z0

p,q = Hp+q(p, p− 1).

Proof. In the long exact sequence

· · · → Hp+q+1(p, p)
∂−→ Hp+q(p, p− 1)

i−→ Hp+q(p, p− 1)
i−→ Hp+q(p, p)→ · · · ,

the central map i : H(p, p − 1) → H(p, p − 1) is the identity by Definiton 3.2.1. Its
image is Z0

p,q, which is all of Hp+q(p, p − 1). The exactness of the sequence forces
the preceding map ∂ to vanish. The group B0

p,q is the image of ∂, therefore it is the
trivial group.

The main statement in [CE73] becomes:

Theorem 3.2.5. With Notation 3.2.3, there is a spectral sequence {Erp,q, drp,q}r,p,q of
homological type. Its differentials drp,q : Erp,q → Erp−r,q+r−1 are defined as the compo-
sition

Erp,q Erp−r,q+r−1

Zr−1
p,q /B

r−1
p,q Zr−1

p,q /Z
r
p,q
∼= Br

p−r,q+r−1/B
r−1
p−r,q+r−1 Zr−1

p−r,q+r−1/B
r−1
p−r,q+r−1,

drp,q

where the three maps at the bottom are all constructed in [CE73, Chapter XV, Para-
graph 1]: The bottom-left map arises from factoring out the larger group Zrp,q ⊇ Br−1

p,q ,
the central map is an isomorphism, and the last map arises from the inclusion
Br
p−r,q+r−1 → Zr−1

p−r,q+r−1. The homology of Er∗,∗ under dr at (p, q) is isomorphic
to Er+1

p,q .

We will first look at our application to K-theory of C*-algebras, then return to the
full proof of convergence.

3.3 Application: K-theory

We construct a graded H-system to compute the K-theory of a C*-algebra, taking
a chain of ideals as data. This is a Z-graded theory. Bott periodicity forces KsA =
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Ks+2A for all C*-algebras A over the complex numbers, leaving only two different
K-groups to be computed.
Throughout the remainder of Section 3, let

0 ⊆ I0 ⊆ I1 ⊆ · · · ⊆ Ip ⊆ · · ·

be an increasing chain of C*-ideals for p ∈ N and set

A =
⋃
p∈N

Ip.

For convenience, set Ip = 0 for p < 0, obtaining a Z-graded chain of ideals (Ip)p∈Z.
Commonly, the chain of ideals will stabilize after finitely many steps; i.e., there

exists n ∈ N with In = In+1 = In+2 = · · · . Still, we develop the spectral sequence
for the general case without assuming stabilization. The extra work is marginal and
the final results of this thesis will rely on that general case.

Definition 3.3.1. For all Z-indices p′ ≤ p and K-theory degrees s ∈ Z, define

Hs(p, p
′) = Ks(Ip/Ip′),

Hs(p) = KsIp,

Hs = KsA.

The morphisms i : Hs(p, p
′) → Hs(p + 1, p′) in K-theory are induced by inclusions

of ideals. The morphisms of the form i : Hs(p, p
′) → Hs(p, p

′ + 1) are induced by
the natural projection Ip/Ip′ → Ip/Ip′+1; this projection is well-defined because
Ip′ ⊆ Ip′+1. All these morphisms commute with each other and preserve the degree
in K-theory.
The assignment Hs(p, p

′) = Ks(Ip/Ip′) satisfies the direct limit axiom from Defi-
nition 3.2.1 regarding H(p) and H:

Ks(A/Iq) = colim
p→∞

Hs(p, p
′) = Hs(∞, p′),

KsA = colim
p→∞

Hs(p,−∞) = Hs.

For i : Hs(p) → Hs(p, p
′) and i : Hs(p) → Hs, we use the respective limit maps.

Because K-theory is a continuous functor, these are induced by inclusions and pro-
jections of A. Again, these limit maps preserve the degree s as desired.

Notation 3.3.2. We will deal with two kinds of boundary maps: The K-theoretic
boundary map and the connecting homomorphism of the resulting H-system. To
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distinguish these, throughout Section 3, we shall denote the K-theoretic map by ∂K
and the connecting homomorpism by ∂.

Definition 3.3.3. Let p′′ ≤ p′ ≤ p be indices in Z. We implement the connecting
homomorphisms ∂ in the diagram

· · · → Hs(p, p
′′)

i−→ Hs(p, p
′)

∂−→ Hs−1(p′, p′′)
i−→ Hs(p, p

′′)→ · · · (3.3.3.1)

by a composition of maps in K-theory, making this diagram commutative:

Hs(p, p
′) Hs−1(p′, p′′)

Ks(Ip/Ip′) Ks−1Ip′ Ks−1(Ip′/Ip′′).

∂

∂K Ks(pr : Ip′ → Ip′/Ip′′ )

Lemma 3.3.4. This choice of connecting homomorphism ∂ in Definition 3.3.3 makes
the sequence 3.3.3.1 exact.

Proof. Let p′′ ≤ p′ ≤ p be indices in Z and Ip′′ ⊆ Ip′ ⊆ Ip be a chain of ideals in
A. According to Definition 3.3.1, we can rewrite the long exact sequence 3.3.3.1 into
the top row of the following commutative diagram:

Ks

(
Ip/Ip′′

)
Ks

(
Ip/Ip′

)
Ks−1

(
Ip′/Ip′′

)
Ks−1

(
Ip/Ip′′

)

KsIp Ks

(
Ip/Ip′

)
Ks−1Ip′ Ks−1Ip.

i ∂ i

f∗ g∗ h∗

pr∗ ∂K incl∗

The vertical arrows f∗, g∗, h∗ arise from natural projections: They are induced in
K-theory from factoring out Ip′′ . The identity arrow is also of this type because

Ip′′ ⊆ Ip′ =⇒
Ip/Ip′′

Ip′/Ip′′
∼= Ip/Ip′ .

The top row – except possibly at ∂ – matches the long exact sequence in K-theory
that corresponds to the short exact sequence 0 → Ip′/Ip′′ → Ip/Ip′′ → Ip/Ip′ → 0.
We wish to prove that ∂ turns the upper row into a long exact sequence.
We recognize ∂K as the boundary map in K-theory for the short exact sequence

0 → Ip′ → Ip → Ip/Ip′ → 0. By naturality of the exact sequence with respect to
factoring out Ip′′ , the composition g∗ ◦ ∂K is the K-theoretic connecting homomor-
phism to make the upper row exact. By Definition 3.3.3, we have ∂ = g∗ ◦ ∂K . Thus
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3 Ideal inclusions

∂ is the correct arrow to construct the H-system.

3.4 Filtration

Definition 3.4.1. For s ∈ Z, the chain of ideals leads to a Z-indexed increasing
filtration {F pKsA}p∈Z of KsA,

F pHs = F pKsA = im(i : KsIp → KsA) ⊆ KsA.

To discuss this filtration, we will continue to write s ∈ Z for the index in K-theory.
Afterwards, the K-theory groups will be indexed by (p + q) to show convergence of
the spectral sequence.

Proposition 3.4.2. For all s ∈ Z, the filtration {F pKsA}p∈Z in Definition 3.4.1 is
Hausdorff, exhaustive, and complete according to Definition 2.7.2.

Proof. The Hausdorff property is immediate because Ip′ = 0 for p′ < 0, therefore
F p
′
Hs = im(i : 0→ KsA) = 0 ⊇

⋂
p∈Z F

pHs.

For exhaustion, consider the input of the spectral sequence: An inclusion chain of
C*-ideals I0 ⊆ I1 ⊆ I2 ⊆ · · · ⊆ Ip ⊆ · · · with

⋃
p∈N Ip = A. This closure is the direct

limit object of the system of ideal inclusions (Ip → Ip+1)p∈N in C∗A. K-theory is a
continuous functor, rendering the K-theory of the limit object A isomorphic to the
limit of the system of K-theory groups along the morphisms i : KsIp → KsIp+1. By
Definition 3.3.1, these are exactly the morphisms that appear in Definition 3.4.1 of
the filtration {F pHs}p∈Z. Finally, universality of the limit object KsA guarantees
that the above system of morphisms i exhausts KsA.

Completeness is trivially satisfied because F pHs = 0 for all p < 0. Both the inverse
limit and its right derivative vanish for this system.

Remark 3.4.3. Even when one C*-ideal I0 ⊆ I1 is included in another, the K-
theory groups need not be connected by a system of injections K∗I0 ↪→ K∗I1 ↪→ · · · ;
for example, let H be an infinite-dimensional Hilbert space, then KH, the compact
operators of H, have K0KH = Z, but KH ⊆ BH is an inclusion of ideals and
K0BH = 0.

Nonetheless, the filtration {F pHs}p∈Z = {F pKsA}p∈Z satisfies F pHs ⊆ F p+1Hs

for all p ∈ Z: The group im(i : KsIp → KsA) is a subgroup of im(i : KsIp+1 → KsA)

because, by definition of an H-system, the morphisms i factor through each other,
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3.5 Convergence

making this diagram commutative:

KsIp

KsA = colimpKsIp = Ks colimp Ip.

KsIp+1

i

i

i

3.5 Convergence

We would like to show that this filtration makes the K-theory spectral sequence
converge strongly to K∗A. Here we replace the K-theoretic degree s by p+ q.

Notation 3.5.1 (Z∞p,q, B∞p,q). With Zrp,q and Br
p,q as in Notation 3.2.5, write

Z∞p,q =
⋂
r≥1

Zrp,q, B∞p,q =
⋃
r≥1

Br
p,q.

For each q ∈ Z, the filtration {F pKp+qA}p∈Z from Definition 3.4.1 leads to suc-
cessive quotients F pKp+qA/F

p−1Kp+qA across all p ∈ Z. We have to show that this
(p, q)-indexed collection of quotients coincides with

E∞p,q = Z∞p,q/B
∞
p,q =

( ⋂
r≥1

Zrp,q

) / ( ⋃
r≥1

Br
p,q

)
.

Because the filtration has already been proven Hausdorff, exhaustive, and complete,
the convergence will then be strong.
We have shaped our input according to the most general axioms in [CE73]. Even

though convergence for more specialized input is proven in that source, convergence
is merely claimed for our input. Henceforth, we shall give a full proof.

Lemma 3.5.2. If there exists n ∈ N with A = In = In+1 = In+2 = · · · , then the
spectral sequence collapses at page n + 1: We have Er∗,∗ = Er+1

∗,∗ for all r ≥ n + 1,
thus E∞p,q = En+1

p,q .

Proof. Fix p and q ∈ Z. If p < 0, then Br
p,q and Zrp,q vanish by definition for all r ≥ 0

because Ip = 0 and we have Er+1
p,q = 0 here.

Consider the case p ≥ 0. For all r ≥ n, we have

Br
p,q = im ∂ : Kp+q+1(Ip+r/Ip)→ Kp+q(Ip/Ip−1),

where Ip+r = In = A for all r ≥ n + 1. Thus all Br
p,q coincide for such high page

numbers r. In similar fashion, all Zrp,q become im i : Kp+qIp → Kp+q(Ip/Ip−1). The

23



3 Ideal inclusions

collapse follows from the definition Er+1
p,q = Zrp,q/B

r
p,q for all r ∈ Z.

This collapsing lemma reveals some structure of the pages Er∗,∗ when the chain of
ideals stabilizes. The following convergence theorem holds with or without stabiliza-
tion of the ideals.

Theorem 3.5.3. The E∞-term admits the desired filtration; i.e.,

E∞p,q
∼= F pHp+q/F

p−1Hp+q.

Substituting the definitions lets us rewrite the claim like this, denoting the yet-
undefined isomorphism in the middle by f :

E∞p,q =
Z∞p,q
B∞p,q

=
im i : Kp+qIp → Kp+q(Ip/Ip−1)

im ∂ : Kp+q+1(A/Ip)→ Kp+q(Ip/Ip−1)

f∼=
im i : Kp+qIp → Kp+qA

im i : Kp+qIp−1 → Kp+qA
=

F pHp+q

F p−1Hp+q
. (3.5.3.1)

Our strategy is to construct the central isomorphism f in 3.5.3.1 explicitly. After
giving its construction, we show that f is well-defined, injective, and surjective. That
will constitute the proof of Theorem 3.5.3.

Definition 3.5.4. For x+B∞p,q, an element in Z∞p,q/B∞p,q, we must define f(x+B∞p,q).
Find y ∈ Kp+qIp with i(y) = x. Define

f(x+B∞p,q) = ipA(y) + F p−1Kp+qA,

where ipA : Kp+qIp → Kp+qA denotes the standard map from our H-system, induced
by the inclusion of algebras.

Lemma 3.5.5. The morphism f is well-defined: The construction in Definition 3.5.4
is independent of the choice of y ∈ Kp+qIp with i(y) = x.

Proof. Let y and y′ ∈ Kp+qIp with i(y − y′) ∈ B∞p,q. We have to show that f(y) =

f(y′), equivalently, that f(y − y′) ∈ F p−1Kp+qA = im i : Kp+qIp−1 → Kp+qA.

Because i(y − y′) ∈ B∞p,q = im ∂ : Kp+q+1(A/Ip) → Kp+q(Ip/Ip−1), we find z ∈
Kp+q+1(A/Ip) with ∂(z) = i(y − y′). This ∂ belongs to the exact sequence

· · · → Kp+q+1(A/Ip−1)
i′−→ Kp+q+1(A/Ip)

∂−→ Kp+q(Ip/Ip−1)
i′−→ Kp+q(A/Ip−1)→ · · · .
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3.5 Convergence

Onto this exact sequence, we draw a commutative square, and then extend the right-
hand side of the square to a vertical exact sequence in K-theory.

Kp+qIp−1

Kp+qIp Kp+qA

· · · Kp+q+1(A/Ip) Kp+q(Ip/Ip−1) Kp+q(A/Ip−1) · · · .

ip−1
A

ipA

i i

i′ ∂ i′ i′ (3.5.5.1)

Chasing y − y′ ∈ Kp+qIp through this diagram, we obtain

(i′ ◦ i)(y − y′) = (i′ ◦ ∂)(z) = 0 ∈ Kp+q(A/Ip−1)

because the bottom row is exact. Then (i◦ ipA)(y−y′) = 0 due to the commutativity
of the square. With ipA(y − y′) ∈ ker i : Kp+qA → Kp+q(A/Ip−1), we conclude from
the exactness of the vertical sequence that ipA(y − y′) ∈ im ip−1

A = F p−1Kp+qA.

This shows that f : E∞p,q → F pKp+qA/F
p−1Kp+qA is well-defined.

Lemma 3.5.6. The morphism f is injective.

Proof. Let x+B∞p,q be a class in E∞p,q that vanishes under f . We have to show that
x ∈ B∞p,q. This proof looks like the proof of Lemma 3.5.5 in reverse.

Select y ∈ Kp+q(Ip) with i(y) = x ∈ im i : Kp+qIp → Kp+q(Ip/Ip−1). From
f
(
i(y) + B∞p,q

)
= 0 and the definition of f , we know ipA(y) ∈ im ip−1

A : Kp+qIp−1 →
Kp+qA. Consider diagram 3.5.5.1 again: By exactness of the vertical sequence,
(i ◦ ipA)(y) = 0. Commutativity of the square shows that (i′ ◦ i)(y) = 0. Exactness of
the bottom row gives i(y) ∈ im ∂ : Kp+q+1(A/Ip)→ Kp+q(Ip/Ip−1).

After substituting i(y) = x and im ∂ = B∞p,q, we have shown x ∈ B∞p,q and therefore
the injectivity of f .

Lemma 3.5.7. The morphism f is surjective.

Proof. Let z+ im ip−1
A be in F pKp+qA/F

p−1Kp+qA. For this z ∈ F pKp+qA = im ipA,
we may find a lift y ∈ Kp+qIp with ipA(y) = z. Then i(y) ∈ Z∞p,q already satisfies
f
(
i(y) +B∞p,q

)
= z + im ip−1

A by definition of f . Thus f is surjective.

These lemmas conclude the proof of Theorem 3.5.3.
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3 Ideal inclusions

3.6 Summary

We recall the main theorem of Section 3:

Theorem 3.1.1 (Spectral sequence for ideal inclusions). Let A =
⋃
p∈N Ip be a C*-

algebra, where the I0 ⊆ I1 ⊆ I2 ⊆ · · · ⊆ Ip ⊆ · · · form a chain of closed two-sided
ideals. There is a spectral sequence {Erp,q, dr}r,p,q with

E1
p,q = Kp+q(Ip/Ip−1).

This spectral sequence converges strongly to K∗A; i.e., given s ∈ Z, the groups E∞p,q
along the diagonal s = p+ q pose an extension problem to reconstruct KsA.

The theorem is plausible: Fix n ∈ N, choose Ip = 0 for p < n and In = A. The
spectral sequence begins with E1

p,q = 0 for p 6= n and E1
n,q
∼= Kn+qA. In the only

nonzero column E1
n,∗
∼= E∞n,∗, we see the expected KsA ∼= E∞n,q for n+ q = s.

Proof of Theorem 3.1.1. The computation of E1
p,q is straightforward:

E1
p,q =

Z0
p,q

B0
p,q

=
im id : Kp+q(Ip/Ip−1)→ Kp+q(Ip/Ip−1)

im ∂ : Kp+q+1(Ip/Ip)︸ ︷︷ ︸
=0

→ Kp+q(Ip/Ip−1)
∼= Kp+q(Ip/Ip−1).

The differentials dr : Er∗,∗ → Er∗,∗ were defined in Theorem 3.2.5 and have the correct
bidegrees (−r, r − 1) on page r. The strong convergence of this spectral sequence
follows from Proposition 3.4.2 and Theorem 3.5.3.

Remark 3.6.1. Even though this is a half-plane spectral sequence, its convergence
is provable like the convergence of a single-quadrant spectral sequence because we
have exiting differentials: For each a bidegree (p, q) ∈ Z2, all except finitely many
differentials drp,q : Erp,q → Erp−r,q+r−1 exit the half-plane Erp′,∗ for p′ ≥ 0 of nonzero
groups.
There are more intricate results for half-plane spectral sequences with entering

differentials or for whole-plane spectral sequences; these will not arise in our setting.
Besides the classic reference [McC01], a good resource for convergence theorems is
[Boa99].
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4 Finite sums of ideals

Let A be a C*-algebra. There is a K-theory spectral sequence for ideals I0 ⊆ I1 ⊆
I2 ⊆ · · · ⊆ In = A. We will postulate a new spectral sequence that weakens the “⊆”
to a mere “+”: For ideals I0, I1, I2, . . ., In with

∑n
j=0 Ij = A, there is a spectral

sequence that relates the K-theory of their intersections to the K-theory of A.

4.1 Ideal decompositions

Even though Section 4 deals only with the finite case, we will define ∗-homomor-
phisms that preserve arbitrarily-sized ideal decompositions in light of later sections.

Definition 4.1.1 (Preservation of ideal decompositions). Let α and α′ be arbitrary
index sets with α ⊆ α′. Let A be the norm closure A =

∑
β∈α Iβ of the sum of

|α|-many C*-ideals Iβ . Let A′ =
∑

β∈α′ I
′
β be another C*-algebra written as the sum

of |α′|-many C*-ideals I ′β .

A ∗-homomorphism f : A→ A′ preserves the ideal decomposition if f(Iβ) ⊆ I ′β for
every β ∈ α. Both f and the specific decompositions {Iβ}β∈α and {I ′β}β∈α′ are part
of the input data.

Remark 4.1.2 (Naturality w.r.t. ideal decompositions). It is conceivable to define
a category of C*-ideal decompositions and decomposition-preserving ∗-homomor-
phisms, e.g., with cardinal numbers α as index sets to ensure α ⊆ α′ wherever
|α| ≤ |α′|. But it will be enough to work in C∗A, the standard category of C*-
algebras, because all natural constructions here will already be natural will w.r.t.
ideal decompositions of C*-algebras:

Let C be any category. Let F , G : C∗A → C be functors of C*-algebras and let
η : F → G be a natural transformation. Let f : A→ A′ be a ∗-homomorphism that
preserves an |α|-fold ideal decomposition as in Definition 4.1.1. Since f(Iβ) ⊆ I ′β for
all β ∈ α and ∗-homomorphisms are compatible with sums, the following diagram
commutes in C:

F (A) = F
(∑

β∈α Iβ
)

G(A) = G
(∑

β∈α Iβ
)

F (A′) = F
(∑

β∈α I
′
β

)
G(A′) = G

(∑
β∈α I

′
β

)
.

η(A)

η(A′)

F (f) = F
(∑

β∈α f � Iβ
)

G(f) = G
(∑

β∈α f � Iβ
)
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4 Finite sums of ideals

4.2 Cake pieces

To construct the spectral sequence for finite ideal decompositions, we will define
function algebras over certain subsets of the standard simplex.

Definition 4.2.1 (Cake piece). Fix n ∈ N. The standard n-simplex is the topological
space

∆n =

{
(x0, x1, . . . , xn) ∈ [0, 1]n+1 :

n∑
i=0

xi = 1

}
.

Its boundary ∂∆n shall be the subset of points with at least one zero entry. Let
j ∈ N be an index with j ≤ n. This index defines the j-th cake piece

∆n
j = {(x0, x1, . . . , xn) ∈ ∆n : xj ≤ xi for all i ≤ n}.

Let J ⊆ {0, 1, . . . , n} be a nonempty subset of the n+ 1 indices. This determines an
intersection of cake pieces:

∆n
J =

⋂
j∈J

∆n
j .

We will see how ∆n
J behaves very much like a j-th cake piece, and therefore also call

it a cake piece.

(1, 0, 0) (0, 1, 0)

(0, 0, 1)

∆2
{0}

Figure 4.2.2: The simplex ∆2 with the cake piece ∆2
{0} = ∆2

0 ⊆ ∆2 marked

Cake pieces are closed subsets of ∆n. The central point
(

1
n+1 ,

1
n+1 , . . . ,

1
n+1

)
of the

n-simplex is part of every cake piece; this point is the only element of ∆n
J for the full

set J = {0, 1, . . . , n}.
Arbitrary index subsets J 6= ∅ make ∆n

J look like ∆n+1−|J |:

Proposition 4.2.3. For a nonempty J ⊆ {0, 1, . . . , n}, the subset ∆n
J is the image

of ∆n+1−|J | × {0}|J |−1 under a nondegenerate affine transformation in Rn+1.

Proof. We will analyze several cases explicitly by cardinality of J .
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4.2 Cake pieces

Full set. For J = {0, 1, . . . , n}, the full set of (n + 1) elements, we have already
argued how ∆n

J contains only a single point. This is an image of ∆0×{0}n ⊆ Rn+1.

One element. For n ≥ 2 and J = {j}, we have ∆n
J = ∆n

j . Without loss of
generality, choose J = {0}. The affine transformation of Rn+1 to get ∆n

0 from the
standard n-simplex is

f = (f0, f1, . . . , fn) : Rn+1 → Rn+1,

f0(x) =
x0

n+ 1
, fi(x) = xi +

x0

n+ 1
for i 6= 0.

The purpose of fi(x) is to equally distribute among the n other coordinates the value
nx0
n+1 that has been taken away from x0.
The fi are nontrivial linear maps, and their direct product f = (f0, . . . , fn) is an

affine automorphism of Rn+1. Its inverse is

f−1 = g = (g0, g1, . . . , gn) : Rn+1 → Rn+1,

g0(x) = (n+ 1) · x0, gi(x) = xi − x0 for i 6= 0.

Even though these maps are defined in Rn+1, they restrict well to maps on the sim-
plex: For x = (x0, . . . , xn) ∈ ∆n, we have

∑n
i=0 xi = 1 =

∑n
i=0 f(xi). Furthermore,

f � ∆n maps into ∆n
0 because all points x ∈ ∆n satisfy fi(x) ≥ f0(x). The restricted

inverse f−1 � ∆n
0 maps into ∆n: Positive coordinates stay positive because xi ≥ x0

for all 0 ≤ i ≤ n.

Several elements. For 1 < |J | ≤ n, observe how |J | coordinates in ∆n
J remain equal

to each other at all times, and are always the smallest. Without loss of generality,
let J be {0, 1, . . . , |J | − 1}, the |J | first coordinates. We will construct an affine
isomorphism

h : ∆
n+1−|J |
{0} → ∆n

J

by defining h on the (n+ 2−|J |) corners of ∆
n+1−|J |
{0} , then extending h to the entire

cake piece by preserving convex combinations. Thereby, h reduces the case of ∆n
J to

the already-proven case |J | = 1.
The central point of ∆n+1−|J | is a corner of ∆

n+1−|J |
{0} . Have h map this point to

the center of ∆n, this is extremal in ∆n
J . Biject the remaining (n+ 1− |J |) corners

of ∆
n+1−|J |
{0} to the corners in ∆n that belong to the coordinates in {0, 1, . . . , n}− J ;

these points remain extremal in ∆n
J . This bijection can even be chosen to preserve

the order of coordinates.
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4 Finite sums of ideals

Corollary 4.2.4. Let J ⊆ {0, 1, . . . , n} be nonempty. Then ∆n+1−|J | ∼= ∆n
J
∼=

Dn+1−|J |, where Dn+1−|J | denotes the (n+ 1− |J |)-dimensional unit disk.
In particular, if J = {j}, then ∆n

j
∼= Dn.

Proof. This follows from ∆n ∼= Dn and Proposition 4.2.3.

These technical constructions relate various subspaces of simplices to disks. The
boundaries of disks are spheres. This will become useful once we consider C*-algebras
of functions on these subspaces of simplices: When we force functions to vanish on
the boundaries, the C*-algebras can be viewed as suspensions of other algebras.

4.3 Cake algebras

Definition 4.3.1 (Cake algebra). Fix n ∈ N. Let A be a C*-algebra and Ij ⊆ A be
closed two-sided ideals for j ∈ {0, 1, . . . , n} with A =

∑n
j=0 Ij . This gives rise to a

suspension-like C*-algebra, the cake algebra

B = B(I0, I1, . . . , In)

=

f : ∆n → A =
n∑
j=0

Ij : f continuous, f � ∂∆n = 0, f(∆n
j ) ⊆ Ij for all j

.
For J ⊆ {0, 1, . . . , n}, define the sub-C*-algebra BJ ⊆ B, again called a cake algebra,
by

BJ =
{
f ∈ B : for each j′ /∈ J , f(∆n

j′) = 0
}
.

Remark 4.3.2. We observe B{0,1,...,n} = B and B∅ = 0. Larger index sets mean
larger function algebras because fewer restrictions apply. Whenever J ′ ⊆ J is a
subset, then BJ ′ ⊆ BJ is a subalgebra. For J = {j}, we can characterize B{j}:

Proposition 4.3.3. B{j} is isomorphic to the n-fold C*-algebra suspension of Ij.

Proof. By ∂∆n
j , we denote the topological boundary of ∆n

j as a subset of Rn+1. A
point x ∈ ∂∆n

j lies in ∂∆n if xj = 0. Otherwise, we have xj = xj′ for an index j′ 6= j

and x then lies in ∆n
j′ .

Understanding this, we simplify the above definition for BJ = B{j}:

B{j} =
{
f : ∆n → A : f � ∂∆n = 0, f(∆n

j ) ⊆ Ij , f(∆n
j′) = 0 for all j′ 6= j

}
=
{
f : ∆n → A : f � ∂∆n = 0, f(∆n

j ) ⊆ Ij , f(∆n −∆n
j ) = 0

}
∼=
{
f : ∆n

j → Ij : f � ∂∆n
j = 0

}
.

Because ∆n
{j}
∼= Dn, the algebra B{j} is isomorphic to the n-fold C*-algebra suspen-

sion of Ij ; i.e., the A-valued functions on Dn that vanish on the boundary ∂Dn.
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4.3 Cake algebras

Remark 4.3.4. As subsets of functions that vanish on a given set, the BJ are closed
two-sided ideals in B. For J ′ ⊆ J , BJ ′ is a closed two-sided ideal in BJ .

Lemma 4.3.5. For subsets J and J ′ of {0, 1, . . . , n}, we have BJ ∩BJ ′ = BJ∩J ′ .

Proof. This is immediate from the definition of BJ :

BJ ∩BJ ′ =
{
f ∈ B : f(∆n

j′) = 0 for j′ /∈ J
}
∩
{
f ∈ B : f(∆n

j′) = 0 for j′ /∈ J ′
}

=
{
f ∈ B : f(∆n

j′) = 0 for j′ with j′ /∈ J or j′ /∈ J ′
}

= BJ∩J ′ .

Definition 4.3.6 (Cake sums Qp for p ∈ Z). Let A and B(I0, I1, . . . , In) be as in
Definition 4.3.1. For p ∈ Z, define the C*-algebra Qp, called a cake sum, by

Qp =
∑
|J |≤p+1

BJ ,

where J ranges over all subsets of {0, 1, . . . , n} that have cardinality (p+ 1) or less.

Remark 4.3.7 (Cake sums for p < 0 or p ≥ n). For p < 0, the sum Qp is either B∅

or an empty sum; both of these are the zero algebra Qp = 0.
For p ≥ n, the sum Qp is taken over all BJ for all possible subsets J ⊆ {0, 1, . . . , n}

including {0, 1, . . . , n} itself. By Remark 4.3.2, for all J ⊆ {0, 1, . . . , n}, the cake
algebra BJ is already a subalgebra of B{0,1,...,n}. Thus Qp is identical to B{0,1,...,n} =

B for p ≥ n.

Remark 4.3.8 (Inclusions Qp−1 ⊆ Qp). We have well-defined inclusions Qp−1 ⊆ Qp
for all p ∈ Z because Qp collects at least the cake algebras from Qp−1, possibly more.
If p ≤ n, the relation BJ ′ ⊆ BJ for J ′ ⊆ J allows another characterization of Qp

by summing over fewer sets:

Qp =
∑
|J |≤p+1

BJ =
∑
|J |=p+1

BJ . (4.3.8.1)

For p > n, this characterization would be false because there are no subsets of
cardinality (n+ 2) in {0, 1, . . . , n}.

Lemma 4.3.9. For all p′ ≤ p ∈ Z, the cake sum Qp′ is a C*-ideal in Qp. Thus we
have well-defined quotients Qp/Qp′ , in particular Qp/Qp−1.

Proof. For p′ ≥ n, we trivially have Qp′ = Qp = B.
We will prove the case p′ < n. Qp′ and Qp are sub-C*-algebras of the same

commutative C*-algebra B and we have Qp′ ⊆ Qp. It remains to show that Qp′ is
an algebraic ideal.
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4 Finite sums of ideals

For f ∈ Qp′ and g ∈ Qp, find J ⊆ {0, 1, . . . , n} such that f ∈ BJ and |J | = p′ + 1;
such a J exists according to the characterization 4.3.8.1.

By Definition 4.3.1 of BJ , the function f must vanish on at least (n− p′) different
cake pieces. For any g ∈ Qp, the pointwise product fg must vanish on the same cake
pieces, therefore fg ∈ Qp′ .

Remark 4.3.10. The algebra Qp is defined by summing over all BJ with |J | ≤ p+1,
not merely over those with |J | ≤ p. This index shift is deliberate: We are going to
define a spectral sequence with the K-theory of quotients of Qp/Qp−1 as input. The
index shift will affect the layout of the first page {E1

p,q}p,q∈Z.
Consider the trivial input n = 0 and A = I0. Here Qp = B{0} for p ≥ 0 and

Qp = 0 for p < 0. This leads to a spectral sequence with E1
0,q
∼= KqA and E1

p,q = 0

for p 6= 0. This is the most desirable layout; the K-theory of the lone ideal A = I0 is
not shifted in any way:

2 0 K2A 0 0

1 0 K1A 0 0

0 0 K0A 0 0

−1 0 K−1A 0 0

−1 0 1 2
p.

q

4.4 K-theory of cake algebras

We started with a sum of ideals I0, I1, . . ., In and have developed a chain of ideals
· · · ⊆ Qp ⊆ Qp+1 ⊆ · · · . The main theorem of Section 4.4 relates the K-theory of
this chain to the K-theory of the original ideals:

Theorem 4.4.1. For A = I0 + I1 + · · ·+ In and the cake sums Qp defined as before,
given p ∈ {0, 1, . . . , n} and q ∈ Z, the K-theory of Qp/Qp−1 decomposes as

Kp+q (Qp/Qp−1) ∼=
⊕
|J |=p+1

Kq+n

( ⋂
j∈J

Ij

)
.

Remark 4.4.2. For p /∈ {0, 1, . . . , n}, the K-theory K∗(Qp/Qp−1) vanishes because
Qp = Qp−1.

Example 4.4.3. Before we prove Theorem 4.4.1 for all p ∈ {0, 1, . . . , n}, we look
at the simplest case, p = 0. One-fold intersections of ideals are merely the ideals
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4.4 K-theory of cake algebras

themselves. The above formula reduces to

Kq (Q0/Q−1) ∼=
⊕
j≤n

Kq+nIj .

Inserting the definitions Q−1 = 0 and Q0 =
∑

j≤nB{j}, we rewrite our claim to

Kq

(∑
j≤n

B{j}

)
∼=
⊕
j≤n

Kq+nIj .

Lemma 4.3.5 implies that B{j} and B{j′} overlap trivially as algebras for j 6= j′; i.e.,
B{j} ∩ B{j′} contains only the zero function. The sum

∑
j≤nB{j} on the left-hand

side is therefore isomorphic to a direct sum
⊕

j≤nB{j} of the function spaces B{j}.
In Proposition 4.3.3, we have shown that B{j} is isomorphic to the n-fold suspen-

sion of Ij , providing the desired shift by n degrees, KqB{j} ∼= KqS
nIj ∼= Kq+nIj .

Because taking K-theory commutes with taking direct sums, we have shown the
theorem for p = 0.

The main ingredient B{j} ∩ B{j′} = B∅ = 0 must now be generalized to prove
Theorem 4.4.1 for p > 0.

Lemma 4.4.4. Let J ′ 6= J ′′ be nonempty (p+1)-element subsets of {0, 1, . . . , n} and
let f ∈ Qp lie in the intersection BJ ′ ∩BJ ′′ . Then f lies already in the next-smaller
ideal,

f ∈ Qp−1 =
∑
|J |=p

BJ .

Proof. By Lemma 4.3.5, BJ ′ ∩BJ ′′ = BJ ′∩J ′′ . The algebra BJ ′∩J ′′ is a summand of
Q|J ′∩J ′′| This algebra is equal to or a subset of Qp−1 because |J ′ ∩ J ′′| ≤ p.

Lemma 4.4.5. Fix an index subset J ⊆ {0, 1, . . . , n}. Let p ∈ N be a cardinality.
Let f ∈ BJ vanish on all (p+ 1)-fold intersections of cake pieces: f � ∆n

L = 0 when
|L| = p+ 1.
Then f is a finite sum of functions fL with each fL ∈ BL for L ⊆ J and each

occurring set L has cardinality |L| ≤ p.

Remark 4.4.6. It follows that f is in Qp−1, but the claim is stronger: Only sum-
mands BL with L ⊆ J are required to construct f in Qp−1.

Proof of Lemma 4.4.5. We prove this by induction along p. The base case is p = 0:
One-fold intersections of cake pieces – where f vanishes by assumption – are the
cake pieces themselves, thus f = 0, the only function in the zero algebra B∅. This
concludes the base case.
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4 Finite sums of ideals

For the induction hypothesis, assume that all functions that vanish on p-fold in-
tersections are sums of functions from BL with L ⊆ J and |L| ≤ p− 1. We will show
the claim for p: Let f ∈ BJ vanish on (p+ 1)-fold intersections of cake pieces.
Consider all subspaces ∆n

L for L ⊆ J with |L| = p. We may treat each as a
topological submanifold of Rn+1 on its own and consider its boundary ∂∆n

L. Each
point x ∈ ∂∆n

L lies on the boundary ∂∆n of the entire simplex ∆n or in a cake piece
∆n
j with j 6= L, see Figure 4.4.7. If x ∈ ∂∆n, then f(x) = 0 by definition of B.

If x ∈ ∆n
j with j 6= J , then also f(x) = 0 because now x ∈ ∆n

L∪{j}, a (p + 1)-fold
intersection of cake pieces. Thus f � ∂∆n

L = 0.
On the interior ∆n

L− ∂∆n
L, f assumes values in

⋂
j∈L Ij by definition of BJ . From

this and the restriction f � ∂∆n
L = 0, we can find a function gL ∈ BL such that

f � ∆n
L = gL � ∆n

L. After defining gL for each L ⊆ J of cardinality p, consider the
function

f ′ = f −
∑
L⊆J
|L|=p

gL.

This f ′ still lies in the C*-algebra BJ because BL ⊆ BJ for each L. Furthermore,
f ′ vanishes on all p-fold intersections of cake pieces, not merely on the (p + 1)-fold
intersections.
By our induction hypothesis, f ′ is a finite sum of functions from BL for L ⊆ J

of cardinality |L| ≤ p − 1. Each gL is in BL with L ⊆ J and |L| = p. Since
f = f ′ +

∑
L gL, we have shown the induction case for cardinality p.

(1, 0, 0) (0, 1, 0)

(0, 0, 1)

∆2
{0,2}

Figure 4.4.7: The two-fold intersection ∆2
{0,2} and its two-point boundary: one point

in ∂∆2, one in the three-fold intersection ∆2
{0,1,2}

Lemma 4.4.8. Let J ⊆ {0, 1, . . . , n} be a nonempty index set.

• Let f be a function in
∑

L$J BL. Then f � ∆n
J = 0.

• Conversely, let g be a function in BJ with g � ∆n
J = 0. Then g ∈

∑
L$J BL.
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4.4 K-theory of cake algebras

Proof. We have f ∈
∑

L$J BL. Each L $ J lacks at least one index j ∈ J , therefore
f � ∆n

j = 0 by definition of BL. Since ∆n
J is contained in the boundary ∂∆n

j , we
conclude f � ∆n

J = 0.
Conversely, let g ∈ BJ vanish on ∆n

J . All functions in BJ vanish on (|J |+ 1)-fold
intersections of cake pieces. Furthermore, ∆n

J is the only |J |-fold intersection that
touches the interior of the support of g. Thus g vanishes on all |J |-fold intersections.
By Lemma 4.4.5, g is a sum of functions gL from BL with |L| < |J | and L ⊆ J .

In the following technical proposition, A and B are general C*-algebras; they need
not coincide with B(I0, I1, . . . , In) that we defined before. Nonetheless, we choose
the names A and B here because we will later apply this result to the BJ from
Theorem 4.4.1.

Proposition 4.4.9. Let X ⊆ Rn be a compact set and let D ⊆ X be a compact
subspace of X. Let A be a C*-algebra, B ⊆ C (X,A) a C*-ideal of functions from X

to A, and VanD ⊆ B the vanishing ideal of D; i.e., the ideal of functions f ∈ B with
f � D = 0.
Then B/VanD is isomorphic as a C*-algebra to B′ = {f � D : f ∈ B}.

This is plausible: When we enlarge D, then functions in VanD are allowed less
variation, thus VanD becomes smaller and the quotient space B/VanD becomes
larger.

Proof. Define the operator T : B/VanD → B′ by T [f ] = f � D. This is a well-defined
linear map because for f and f ′ ∈ [f ] ∈ B/VanD, we have f − f ′ ∈ VanD, therefore
f � D = f ′ � D.
T is a continuous operator with norm

‖T‖ = sup {‖f � D‖ : f ∈ B with ‖[f ]‖ ≤ 1},

where ‖[f ]‖ = inf {‖f − g‖ : g ∈ VanD}. From ‖f � D‖ ≤ ‖[f ]‖ ≤ ‖f‖, we see that
T is continuous with norm ‖T‖ ≤ 1.
T is bijective: If T [f ] = 0, then f � D = 0, therefore f ∈ VanD and [f ] = 0 ∈

B/VanD. On the other hand, given f � D ∈ B′ with f ∈ B, surely [f ] is a preimage
of f � D under T .
As a restriction of functions, T preserves products and the C*-involution. Together

with bijectivity of T , we conclude that ‖T‖ = 1 and that T is an isometric *-
isomorphism by [Dav96, Theorem I.5.5].

We could have obtained ‖T‖ = 1 from an analytical argument, too: Given f � D,
force f : X → A to decay rapidly outsideD ⊆ X by multiplying with bump functions.
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4 Finite sums of ideals

B is an ideal in C (X,A), and A admits an approximate unit.
We shall now return to the setting where A = I0 + I1 + · · ·+ In is a sum of ideals

and B = B(I0, I1, . . . , In) is the function algebra constructed over the n-simplex.

Lemma 4.4.10. Let J ⊆ {0, 1, . . . , n} be a nonempty index set of cardinality |J | =
p+ 1. Then

BJ/(BJ ∩Qp−1) ∼= Sn−p
( ⋂
j∈J

Ij

)
,

where Sn−p denotes the (n− p)-fold suspension of C*-algebras.

Recall that Qp was a sum over all BL with index sets L of cardinality |L| = p+ 1,
thus BJ ⊆ Qp and dividing by the intersection (BJ ∩Qp−1) ⊆ Qp is meaningful.

Proof. All functions in BJ are supported in
⋃
j∈J ∆n

j . Write D = ∆n
J =

⋂
j∈J ∆n

j for
the subset of

⋃
j∈J ∆n

j where functions in BJ may take nonzero values in all Ij for
j ∈ J simultaneously. Now

BJ ∩Qp−1 =
∑
L$J

BL,

and, by Lemma 4.4.8, functions in BJ ∩Qp−1 are exactly those functions in BJ that
vanish on D. We can apply Proposition 4.4.9 to the function algebra BJ on the base
space X =

⋃
j∈J ∆n

j and its subset D to get

BJ/(BJ ∩Qp−1) ∼= {f � D : f ∈ BJ}. (4.4.10.1)

Considering D = ∆n
J an (n + 1 − |J |)-dimensional topological manifold on its own,

∆n
J itself has a boundary ∂∆n

J and a nontrivial interior (∆n
J − ∂∆n

J). In the edge
case where J = {0, 1, . . . , n} is the full set, ∆n

{0,1,...,n} is a single point, which is a
zero-dimensional manifold with empty boundary ∂∆n

{0,1,...,n} = ∅.
The boundary ∂∆n

J is contained in the boundary of the original domain
⋃
j∈J ∆n

j .
Therefore functions in BJ , even when restricted to D as in 4.4.10.1, must still vanish
on this new boundary ∂∆n

J .
On the interior of D = ∆n

J , functions in BJ must take values in
⋂
j∈J Ij by

definition of BJ , but no further restrictions apply. We can rewrite 4.4.10.1 as

BJ/(BJ ∩Qp−1) ∼=

f : ∆n
J →

⋂
j∈J

Ij : f is continuous and f � ∂∆n
J = 0

.
Finally, by Lemma 4.2.4, ∆n

J
∼= ∆n+1−|J | = ∆n−p is homeomorphic to the (n − p)-

dimensional unit disk. This allows us to further rewrite the algebra BJ/(BJ ∩Qp−1)
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4.4 K-theory of cake algebras

as the (n− p)-fold suspension in the claim.

We are now ready to prove the main theorem about the K-theory of the chain of
ideals Qp.

Proof of Theorem 4.4.1. Fix p ∈ {0, 1, . . . , n} and q ∈ Z. With Qp =
∑
|J |=p+1BJ

according to the characterization 4.3.8.1, we have to show:

Kp+q (Qp/Qp−1) ∼=
⊕
|J |=p+1

Kq+n

( ⋂
j∈J

Ij

)
.

First, we will show that the quotient Qp/Qp−1 decomposes as a direct sum. Let
f ∈ Qp lie in the images of different inclusions BJ → Qp and BJ ′ → Qp for |J | =

|J ′| = p+ 1. By Lemma 4.4.4, we have f ∈ Qp−1 and therefore [f ] = 0 ∈ Qp/Qp−1.
This shows that Qp/Qp−1 is a direct sum. Each summand corresponds to one BJ
with |J | = p+ 1:

Qp/Qp−1 =
⊕
|J |=p+1

BJ/(BJ ∩Qp−1).

For each J , we computed BJ/(BJ ∩Qp−1) ∼= Sn−p
(⋂

j∈J
)
in Lemma 4.4.10. Passing

to K-theory, we can replace the (n−p)-fold suspension with a degree shift by (n−p):

Kp+q

(
BJ/(BJ ∩Qp−1)

) ∼= Kp+q

(
Sn−p

( ⋂
j∈J

Ij

))
∼= Kq+n

( ⋂
j∈J

Ij

)
.

The claim follows because taking K-theory commutes with taking direct sums.

Theorem 4.4.11. The inclusion of algebras B → {f : ∆n → A : f � ∂∆n = 0} in-
duces an isomorphism in K-theory.

The following Lemmas 4.4.12 to 4.4.15 will prove this theorem. Define the following
intermediate algebras:

R0 = {f : ∆n → A : f � ∂∆n = 0},

R1 = R0 ∩ {f : f(∆n
0 ) ⊆ I0},

R2 = R1 ∩ {f : f(∆n
1 ) ⊆ I1},

...

B = Rn+1 = Rn ∩ {f : f(∆n
n) ⊆ In}.

To show that B → R0 is an isomorphism in K-theory, we show that each inclusion

incl : Rk → Rk−1
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4 Finite sums of ideals

induces an isomorphism for k ∈ {n+ 1, n, . . . , 2, 1}.

Lemma 4.4.12. For k > k′, the algebra Rk is a C*-ideal in Rk′ .

Proof. The additional restrictions to the set of functions in Rk over Rk′ forces the
functions to map points into the given C*-ideals of A instead of anywhere in A. Be-
cause all I0, . . . , In are C*-ideals and the multiplication of functions happens point-
wise, Rk becomes a C*-ideal in Rk′ .

Lemma 4.4.13. The pair of topological spaces (∆n
k , ∂∆n ∩∆n

k) is homeomorphic to
(Dn−1 × [0, 1], Dn−1 × {1}).

Proof. ∂∆n ∩∆n
k is exactly the k-th face of the n-simplex. In Proposition 4.2.3, we

have seen how ∆n
n
∼= ∆n. In particular, for one-element sets J = {n}, the proof shows

how ∆n
J and ∆n are diffeomorphic via a stretch by the factor (n + 1). This stretch

has ∂∆n ∩∆n
n as a set of fixed points. ∆n

n and ∆n
k are certainly homeomorphic.

The cake piece ∆n
k is a compact, convex n-dimensional manifold within Rn+1 and

∂∆n ∩∆n
k is a convex (n− 1)-dimensional hypersurface within ∂∆n

k . Corollary 4.2.4
relates the simplices to the desired disks.

Lemma 4.4.14. For all k ∈ {1, 2, . . . , n + 1}, the quotient Rk−1/Rk has trivial
K-theory.

Proof. The subset ∆n −∆n
k−1 is open in the entire space ∆n. With the convention

that {0, 1, . . . ,−1} denotes the empty set and that {0, 1, . . . , 0} = {0}, we compute:

Rk−1/Rk =

{
f : ∆n → A : f(∂∆n) = 0 and f(∆n

j ) ⊆ Ij for j ∈ {0, 1, . . . , k − 2}
}

{
f : ∆n → A : f(∂∆n) = 0 and f(∆n

j ) ⊆ Ij for j ∈ {0, 1, . . . , k − 1}
}

∼=
{
f : ∆n

k−1 → A : f(∂∆n ∩∆n
k−1) = 0

}{
f : ∆n

k−1 → A : f(∂∆n ∩∆n
k−1) = 0 and f(∆n

k−1) ⊆ Ik−1

}
∼=
{
f : ∆n

k−1 → A/Ik−1 : f(∂∆n ∩∆n
k−1) = 0

}
.

Because of Lemma 4.4.13, the quotient Rk−1/Rk is isomorphic to the algebra

R′ =
{
f : Dn−1 × [0, 1]→ A/Ik−1 : f

(
Dn−1 × {1}

)
= 0
}
.

This is a contractible algebra: The homotopy h : R′ × I → R′,

h(f, t)(x, t′) = f(x, t′ · t),

defines a ∗-homomorphism for each fixed t. This construction is analogous to the
proof of Proposition 2.1.9 for the contractibility of cone algebras. Since K-theory
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4.5 Review of developed theory

is homotopy invariant and h(f, 0) = 0 for all f , we conclude that K∗(Rk−1/Rk) =

K∗R
′ = 0.

Lemma 4.4.15. incl : Rk → Rk−1 induces an isomorphism in K-theory.

Proof. We examine the six-term exact sequence associated to the inclusion of the
ideal.

K0Rk K0Rk−1 K0(Rk−1/Rk)

K1(Rk−1/Rk) K1Rk−1 K1Rk.

incl0 pr0

∂2 ◦ β

incl1pr1

∂1

Since Kp(Rk−1/Rk) vanishes for both even and odd p as shown in Lemma 4.4.14,
inclp is an isomorphism for all p. This also concludes the proof of Theorem 4.4.11,
which is an n-fold application of these lemmas.

4.5 Review of developed theory

Let A be a C*-algebra that can be written as a finite sum I0 + I1 + · · ·+ In = A of
closed two-sided ideals Ij ⊆ A. For the cake pieces ∆n

j ⊆ ∆n, we have constructed
in Definition 4.3.1 a new C*-algebra B of functions into A,

B = B(I0, I1, . . . , In)

=

f : ∆n → A =
n∑
j=0

Ij : f continuous, f � ∂∆n = 0, f(∆n
j ) ⊆ Ij for all j

.
We worked with arbitrary index subsets J ⊆ {0, 1, . . . , n}. For such a J , we have
defined

BJ =
{
f ∈ B : for each j′ /∈ J , f(∆n

j′) = 0
}
.

These cake algebras BJ are closed two-sided ideals in B = B{0,1,...,n}. For p ∈ Z, we
defined the cake sums

Qp =
∑
|J |≤p+1

BJ .

There are inclusions Qp−1 → Qp and quotients of C*-ideals, Qp/Qp−1. This inclusion
chain of C*-ideals is the decisive structure: We can later feed these algebras into the
spectral sequence for ideal inclusions.
For p ∈ {0, 1, . . . , n}, Theorem 4.4.1 computes

Kp+q (Qp/Qp−1) ∼=
⊕
|J |=p+1

Kq+n

( ⋂
j∈J

Ij

)
.
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4 Finite sums of ideals

This expression continues to hold for p > n where Kp+q(Qp/Qp−1) = 0: There are
no subsets J with |J | = n + 2. But the expression fails for p = −1: To avoid
intersections over the empty set, we must explicitly mention Kp+q(Qp/Qp−1) = 0 for
p = −1 whenever we extend Theorem 4.4.1 to all p ∈ Z.

Theorem 4.4.11 shows that the inclusion B → {f : ∆n → A : f � ∂∆n = 0} in-
duces an isomorphism in K-theory. The C*-algebra on the right-hand side is iso-
morphic to the n-fold suspension SnA, therefore KpB ∼= Kp+nA. With this, we can
go back to A, the algebra of original interest, even though the quotients Qp encode
information about B.

4.6 Main theorem

Theorem 4.6.1 (Spectral sequence for finite sums of C*-ideals). Let A be a C*-
algebra and I0, I1, . . ., In be (n + 1) C*-ideals in A with I0 + I1 + · · · + In = A.
There is a spectral sequence {Erp,q, dr}r,p,q with

E1
p,q
∼=


⊕
|J |=p+1

Kq

( ⋂
j∈J

Ij

)
for 0 ≤ p ≤ n,

0 for p < 0 or p > n.

(4.6.1.1)

This spectral sequence converges strongly to K∗A.

This spectral sequence is functorial for ∗-homomorphisms that preserve ideal de-
compositions; this will be the next theorem.

Proof of Theorem 4.6.1. For the C*-ideals I0, I1, . . ., In, define cake algebras B =

B(I0, I1, . . . , In) and cake sums Qp ⊆ B for p ∈ Z as reviewed in Section 4.5. We
have Qp = B for p ≥ n by Remark 4.3.7. For the series of inclusions

· · · = 0 = 0 ⊆ Q0 ⊆ Q1 ⊆ · · · ⊆ Qn = B = Qn+1 = Qn+2 = · · · ,

Theorem 3.1.1 gives a spectral sequence {Ērp,q, d̄r}r,p,q with

Ē1
p,q
∼= Kp+q(Qp/Qp−1), (4.6.1.2)

converging to K∗(B). By Theorem 4.4.1, we can replace the K-theory of these
quotients by the K-theory of a more immediate intersection,

Ē1
p,q
∼= Kp+q(Qp/Qp−1) ∼=


⊕
|J |=p+1

Kq+n

( ⋂
j∈J

Ij

)
for 0 ≤ p ≤ n,

0 for p < 0 or p > n.

(4.6.1.3)
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This spectral sequence converges strongly to K∗
(⋃

p∈ZQp
)

= K∗Qn = K∗B. By
Theorem 4.4.11, KqB ∼= Kq+nA. To simplify, we will shift down by n all degrees in
K-theory, both in 4.6.1.3 and in the expression for the convergence. As a result, we
obtain a new spectral sequence {Erp,q, dr}r,p,q with

E1
p,q
∼=


⊕
|J |=p+1

Kq

( ⋂
j∈J

Ij

)
for 0 ≤ p ≤ n,

0 for p < 0 or p > n.

This spectral sequence converges strongly to K∗A.

Theorem 4.6.2 (Functoriality of the spectral sequence from Theorem 4.6.1). The
spectral sequence {Erp,q, dr}r,p,q from Theorem 4.6.1 is functorial with respect to ∗-
homomorphisms that preserve (n+ 1)-fold ideal decompositions (Definition 4.1.1):
For n′ ≥ n, let A′ = I ′0 + I ′1 + · · · + I ′n′ be a C*-algebra and let f : A → A′ be a
∗-homomorphism such that f(Ij) ⊆ I ′j for all j ≤ n. Let {Erp,q, dr}r,p,q be the spectral
sequence from Theorem 4.6.1 that converges to A and let {Ērp,q, d̄r}r,p,q be the spectral
sequence that converges to A′.
Then f induces a morphism {f rp,q}r,p,q of spectral sequences (Definition 2.7.4) of

bidegree (0, 0) with
f rp,q : Erp,q → Ērp,q

for all r ≥ 1 and p, q ∈ Z that commutes with the differentials and, in turn, induces
K∗f : K∗A→ K∗A

′ on the convergence targets.

Proof. All constructions since Section 4.3 on the level of C*-algebras have been
functorial with respect to ideal decompositions: Cake algebras, sums of cake algebras,
cones, suspensions.
Likewise, taking K-theory and constructing direct sums of K-theory groups for

each nonempty J ⊆ {0, 1, . . . , n} are functorial in the same way. Thus {f rp,q}r,p,q
exists and induces the correct morphism {f∞p,q}p,q : {E∞p,q} → {Ē∞p,q}, which induces
the desired K∗f : K∗A→ K∗A

′ on the convergence targets.

41





5 Finite coarse excision

We generalize coarsely excisive pairs from Definition 2.6.2 to coarsely excisive covers
of arbitrary cardinality. Later in this section, we will apply the spectral sequence
from Theorem 4.6.1 for finitely many C*-ideals to C*-algebras obtained from finite
coarsely excisive covers.

5.1 Coarsely excisive covers

Definition 5.1.1 (Coarsely excisive cover). Let (X, d) be a coarse space. Let
{Xβ}β∈α be a cover of X of arbitrary cardinality |α| such that each Xβ is a closed
subset in X.
The cover {Xβ}β∈α is called coarsely excisive if, for all nonempty finite sets J ⊆ α

and for all distances R > 0, there exists a distance S > 0 such that the intersection of
the |J |-many R-neighborhoods lies in the S-neighborhood of the |J |-fold intersection:⋂

j∈J
Nd(Xj , R) ⊆ Nd

( ⋂
j∈J

Xj , S
)
. (5.1.1.1)

Remark 5.1.2. The distance S may be chosen depending both on R and the par-
ticular finite subcollection {Xj}j∈J at hand. It is not required that, given R, a single
S > 0 satisfies 5.1.1.1 uniformly for all subcollections of the cover, or even only for
all subcollections of a given cardinality |J |.

Remark 5.1.3. This is a straightforward generalization of coarsely excisive pairs.
These covers will yield C*-ideals in the Roe algebra of X suitable for our spectral
sequence. They behave as expected:

• A coarsely excisive pair of closed sets is a two-set coarsely excisive cover.

• The extra requirement that each Xβ be closed in X does not affect any coarse
properties. An arbitrary subset Y ⊆ X and its closure Y have the same
neighborhoods Nd(Y,R) = Nd(Y ,R) ⊆ X for any given R > 0 because d is a
metric.

• Provided ∅ is not a member of a coarsely excisive cover, all intersections of
finitely many sets in the cover must contain at least one point. Assume {Xj}j∈J
are |J | sets in the cover with empty intersection. Then {Xj}j∈J does not satisfy
5.1.1.1. This can be seen in a similar way as Example 2.6.4: In a metric space,
any two nonempty sets have finite distance from each other, and thus R can
be chosen as the maximum of the pairwise distances among the Xj , producing
a nonempty

⋂
j∈J Nd(Xj , R) that is not a subset of Nd(∅, S) = ∅.
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5 Finite coarse excision

Definition 5.1.4 (Compatible coarsely excisive covers). Let (X, d) and (X ′, d′) be
coarse spaces and f : X → X ′ a coarse map. Let {Xβ}β∈α be a finite or infinite
coarsely excisive cover of X and {X ′β}β∈α′ a coarsely excisive cover of X ′ with α ⊆ α′

such that f(Xβ) ⊆ X ′β for every β ∈ α.
Then the two covers are called compatible with f , or, when f is clear from the

context, simply compatible.

5.2 Relative Roe algebras

Before we can use our spectral sequence for abstract C*-ideals on coarsely excisive
covers, we have to shape our data accordingly – we don’t have sums and intersections
of C*-ideals, but rather unions and intersections of subspaces Xj . We connect the
coarse world to the world of abstract C*-ideal intersections via relative Roe algebras
and relative D∗-algebras.

Notation 5.2.1. In Sections 5.2 through 5.4, let (X, d) be a metric space. Fix a
very ample representation % : CX → BH for a separable Hilbert space H to define
D∗X and C∗X.
Let {Xβ}β∈α be a coarsely excisive cover of (X, d) for an arbitrary index set α.

Let J ⊆ α be a nonempty finite subset of indices.

Definition 5.2.2 (Support near a subset). Let Y ⊆ X be a subspace. An operator
T ∈ C∗X is supported near Y if there exists a constant R > 0 (that may depend on
T ) such that all f ∈ CX with d(supp f, Y ) > R satisfy %(f)T = T%(f) = 0 ∈ BH.

Definition 5.2.3 (Relative Roe algebra). For Y ⊆ X closed, the relative Roe algebra
of Y in X, denoted C∗(Y ⊆ X), is defined as the norm closure of all operators in
C∗X that are supported near Y .

Definition 5.2.4 (Relative D∗ algebra). Let Y ⊆ X be a subspace. The C*-algebra
CX contains C(X−Y ) as a C*-ideal: The inclusion morphism C(X−Y )→ CX

extends functions by zero on Y .
Let T ∈ D∗X be an operator such that, for all f ∈ C(X−Y ) ⊆ CX, both %(f)T

and T%(f) are compact operators. Then T is called locally compact outside Y .
For Y ⊆ X closed, the relative D∗ algebra D∗(Y ⊆ X) is the norm closure of all

operators in D∗X that are supported near Y and locally compact outside Y .

Remark 5.2.5. The algebra C∗(Y ⊆ X) is a C*-ideal in C∗X; the algebra D∗(Y ⊆
X) is a C*-ideal in D∗X. As subalgebras of C∗X and D∗X, all operators in these
ideals are locally compact or pseudocompact, respectively. Each operator has finite
propagation or is a norm limit of operators with finite propagation.
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5.2 Relative Roe algebras

For Y = X, we have C∗(X ⊆ X) = C∗X and D∗(X ⊆ X) = D∗X. Operators in
D∗(Y ⊆ X) act with three strengths on represented functions: pseudocompactly on
Y , in a locally compact way near Y , and trivially far away from Y .

Our guideline is [Roe96, Theorem 9.2]: If the coarsely excisive cover {X0, X1} has
only two sets, then there are isomorphisms C∗(X0 ⊆ X) + C∗(X1 ⊆ X) ∼= C∗X and
C∗(X0 ⊆ X) ∩ C∗(X1 ⊆ X) ∼= C∗(X0 ∩X1).
Besides for C∗, we prove a similar result for D∗ and Q∗ = D∗/C∗; especially D∗

requires extra work over the proofs for C∗. Also, finite subsets {Xj}j∈J of arbitary
coarsely excisive covers {Xβ}β∈α require more care than an inductive application of
the result for two regions. Even when

⋃
j∈J Xj happens to be a small subset of X,

our C*-algebras still arise from representations of CX in its entirety. Our proofs
must safely ignore regions of X far away from

⋃
j∈J Xj .

Theorem 5.2.6. For all closed subsets Y ⊆ X and K-theory degrees s ∈ Z, there
are natural isomorphisms of K-theory groups:

KsC
∗(Y ⊆ X) ∼= KsC

∗Y,

KsD
∗(Y ⊆ X) ∼= KsD

∗Y.

Remark 5.2.7. The proof for C∗ in [Roe96, Theorem 9.2] passes from Y ⊆ X to
the coarsely equivalent Nd(Y, n) ⊆ X for n ∈ N and takes the direct limit in K-
theory along n → ∞. The isomorphism is induced by the inclusion Y → X. The
construction for C∗ is natural with respect to coarse maps. The construction for D∗

is natural with respect to maps that are both coarse and continuous.
A proof for D∗ is in [Sie12, Proposition 3.8]. This construction calls for a very

ample representation % : CX → BH as we have required in Notation 5.2.1, not
merely for an ample representation.

Lemma 5.2.8. The representation % : CX → BH can be extended to all Borel
functions on X.

Proof. This follows from [Dav96, Theorem II.1.1] and [Dav96, Proposition II.1.2]:
As a nondegenerate representation of CX, the given % is equivalent to a direct sum⊕

γ∈Γ %γ of cyclic representations %γ , each unitarily equivalent to pointwise multipli-
cation with a continuous function fγ that depends only on the cyclic representation
%γ , on the Hilbert space L2(X) of H-valued functions using a regular Borel proba-
bility measure. Now extend by pointwise multiplication.
The topological space in this construction is compact, but continuous functions on

a compact space differ, as an algebra, from CX of a noncompact space X merely
by the value at the extra point of the one-point compactification of X.
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5 Finite coarse excision

Lemma 5.2.9. Let ψ : X → [0, 1] be a Borel function. Extend % to all Borel functions
as in Lemma 5.2.8 such that %(ψ) makes sense. Let Y ⊆ X be a closed subset. Let
T be an operator in D∗(Y ⊆ X). Then the following statments hold.

• We have %(ψ)T ∈ D∗(Y ⊆ X).

• Let Rsupp be a distance constant for the support of T near Y ; i.e., for functions
f ∈ CX with d(supp f, Y ) > Rsupp, the operators %(f)T and T%(f) vanish.
Then %(ψ)T is supported near Y with the same distance constant Rsupp.

• If T has finite propagation with distance constant Rprop, then %(ψ)T has finite
propagation with distance constant Rprop. (If T does not admit such an Rprop,
then T is in the norm completion of operators that do.)

• If T ∈ C∗(Y ⊆ X), then also %(ψ)T ∈ C∗(Y ⊆ X).

The main idea is that the support of a pointwise product of functions fψ for
f ∈ CX must be a subset of supp f within X. Later in this section, ψ will be a
function from a Borel partition of unity and supp(fψ) may be much smaller than
supp f .

Proof of Lemma 5.2.9. We show the claim for all finite-propagation operators. The
absolute algebras D∗X and C∗Y are norm completions of such operators; the general
claim follows because the relative algebras D∗(Y ⊆ X) and C∗(Y ⊆ X) carry the
same norm as subalgebras of the absolute algebras.

Let Rprop > 0 be a constant of finite propagation for T ; i.e., for f , g ∈ CX

with d(supp f, supp g) ≥ Rprop, the product %(f)T%(g) ∈ BH is zero. For such f ,
g ∈ CX with d(supp f, supp g) ≥ Rprop, we have supp(fψ) ⊆ supp f , therefore

d
(
supp(fψ), supp g

)
≥ d(supp f, supp g) ≥ Rprop

and %(f)%(ψ)T%(g) = %(fψ)T%(g) = 0. Thus %(ψ)T has finite propagation with the
same constant Rprop.

Fix Rsupp > 0 such that all f ∈ CX with d(supp f, Y ) > R satisfy %(f)T =

T%(f) = 0 ∈ BH; such an Rsupp exists because T is supported near Y . Given
f ∈ CX with d(supp f, Y ) > R, we have supp(fψ) ⊆ supp f , thus %(f)%(ψ)T =

%(fψ)T = 0. Furthermore, %(ψ)T%(f) = 0 because T%(f) = 0. Thus %(ψ)T is
supported near Y with the same distance constant Rsupp.

For pseudocompactness, given f ∈ CX, we must show that the following operator
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5.3 Intersections of relative algebras

is compact:

%(f)%(ψ)T − %(ψ)T%(f) = %(fψ)T − %(ψ)T%(f)

= %(ψf)T − %(ψ)T%(f)

= %(ψ)
(
%(f)T − T%(f)

)︸ ︷︷ ︸
compact since T ∈ D∗X

,

which is compact as a product with a compact operator. Thus %(ψ)T is pseudolocal.
For local compactness of %(ψ)T outside Y , let f be a function in C(X − Y )

Because T is already locally compact outside Y , %(f)T and T%(f) are compact
operators. Then %(f)%(ψ)T = %(ψ)%(f)T and %(ψ)T%(f) are also compact. Thus
%(ψ)T is locally compact outside Y .

Additionally, if T ∈ C∗(Y ⊆ X), the same argument applied to arbitrary f ∈ CX

shows that %(f)%(ψ)T and %(ψ)T%(f) are compact for all f ∈ CX. Thus %(ψ)T is
locally compact if T is.

5.3 Intersections of relative algebras

Notation 5.3.1. Throughout Section 5.3, in addition to Notation 5.2.1 that defines
the finite nonempty subset {Xj}j∈J of the coarsely excisive cover {Xβ}β∈α, write

Z =
⋂
j∈J

Xj .

Lemma 5.3.2. Let F∗ denote either the functor C∗ or D∗. Then

F∗(Z ⊆ X) ⊆
⋂
j∈J

F∗(Xj ⊆ X).

Proof. For T ∈ F∗(Z ⊆ X), there exists R > 0 such that %(f)T = T%(f) = 0 for all
f ∈ CX with d(supp f, Z) > R by definition of T being supported near Z.
Given j ∈ J , let fj ∈ CX be a function with d(supp fj , Xj) > R. Then

d(supp fj , Z) > R because Z ⊆ Xj , therefore T is supported near Xj . This holds for
all j ∈ J . For F∗ = C∗, this finishes the proof: T is in C∗(Xj ⊆ X) for all j ∈ J .

For F∗ = D∗, we must show, in addition, that T is locally compact outside Xj for
the given j ∈ J ; this holds because Z ⊆ Xj and T ∈ D∗(Z ⊆ X) is locally compact
outside Z.

Notation 5.3.3. For a subset Y ⊆ X, let

χ(Y ) : X → {0, 1}
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5 Finite coarse excision

denote the charateristic function of Y on X; i.e., χ(Y )(x) = 1 if and only if x ∈ Y .

Lemma 5.3.4. For F∗ = C∗ or F∗ = D∗, we have

F∗(Z ⊆ X) ⊇
⋂
j∈J

F∗(Xj ⊆ X);

i.e., the inclusion from Lemma 5.3.2 is an equality of sets.

Proof. Fix T ∈
⋂
j∈J F

∗(Xj ⊆ X). We will show that T ∈ F∗(Z ⊆ X).

Support of T near Z. Since T is supported nearXj for all j ∈ J , there are constants
Rj > 0 such that whenever f ∈ CX satisfies d(supp f,Xj) > Rj for at least one
j ∈ J , then %(f)T = T%(f) = 0. (It is not necessary that d(supp f,Xj) > Rj holds
for all j ∈ J . It is enough if this holds for one j ∈ J because “support near a subset”
states what happens on the complement of the subset, not on the subset itself.)
The cover {Xβ}β∈α is coarsely excisive. In particular, for the constant R =

(maxj∈J Rj) + 1 and for the chosen finite index set J , there exists S > 0 with⋂
j∈J Nd(Xj , R) ⊆ Nd(Z, S) or, reformulating with complement sets,

(
X −Nd(Z, S)

)
⊆
⋃
j∈J

(
X −Nd(Xj , R)

)
.

This constant S depends on T and the Xj , but not on any function in CX. To
finish the proof, choose f ∈ CX with d(supp f, Z) > S + 1. We must show that
%(f)T = T%(f) = 0.
The support of this f lies within X − Nd(Z, S), thus there exists a j ∈ J with

supp f ⊆
(
X − Nd(Xj , R)

)
and therefore d(supp f,Xj) ≥ R > Rj . Because T is

supported near Xj , we conclude that %(f)T = T%(f) = 0 as desired. Thus T is
supported near Z.

Local compactness of T outside Z. If F∗ = C∗, the proof is finished because T is
locally compact everywhere in X.

If F∗ = D∗, we must show that T is locally compact outside Z. Fix a function
g ∈ C(X − Z) ⊆ CX. We must show that %(g)T and T%(g) are compact.
The support of g may still overlap each Xj . To remedy this, decompose X into

2|J | regions: Given L ⊆ J , write

YL =
( ⋂
j∈L

Xj

)
−
⋃
j /∈L

Xj

= {x ∈ X : x ∈ Xj if and only if j ∈ L}.
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5.3 Intersections of relative algebras

For all L ⊆ J , the set YL is a Borel set as a finite union, intersection, and set
difference of closed sets Xj . For L 6= L′ ⊆ J , the regions YL and YL′ are disjoint.
Furthermore,

X =
⋃
L⊆J

YL, Z = YJ =
⋂
j∈J

Xj .

Decompose g into 2|J | Borel functions on X by multiplying with indicator functions:

g =
∑
L⊆J

χ(YL)g.

Extend % from CX to all Borel functions on X. Lemma 5.2.9 shows that the
operators %

(
χ(YL)

)
T and T%

(
χ(YL)

)
remain in

⋂
j∈J D

∗(Xj ⊆ X) because the YL
are Borel sets.

For each L ⊆ J , examine χ(YL)g: For L = J , we have χ(YJ)g = χ(Z)g = 0

since g ∈ C(X −Z). Both %
(
χ(YJ)g

)
T and T%

(
χ(YJ)g

)
are the zero operator, thus

compact. For L 6= J , fix an index j ∈ J − L. Then χ(YL)g vanishes on Xj because
YL contains no points from Xj by definition. We have T ∈ D∗(Xj ⊆ X), therefore T
is locally compact outside Xj , making both %

(
χ(YL)g

)
T and T%

(
χ(YL)g

)
compact.

This shows that the decomposition g =
∑

L⊆J χ(YL)g allows %(g)T and T%(g) to
be written as finite sums of 2|J | compact operators each. Such sums are compact.
Thus T is locally compact outside Z.

Proposition 5.3.5. Let s ∈ Z be a degree for K-theory. Then for the nonempty
finite index set J ⊆ α, there are natural isomorphisms

KsC
∗
( ⋂
j∈J

Xj

)
∼= Ks

( ⋂
j∈J

C∗(Xj ⊆ X)
)
,

KsD
∗
( ⋂
j∈J

Xj

)
∼= Ks

( ⋂
j∈J

D∗(Xj ⊆ X)
)
.

Proof. Combine Lemma 5.3.2 with Lemma 5.3.4 for Z =
⋂
j∈J Xj :

C∗(Z ⊆ X) =
⋂
j∈J

C∗(Xj ⊆ X),

D∗(Z ⊆ X) =
⋂
j∈J

D∗(Xj ⊆ X).

Theorem 5.2.6 relates the K-theory of relative algebras with the K-theory of absolute
algebras. This yields the claimed isomorphisms.

Proposition 5.3.6. Write Q∗X = D∗X/C∗X as in Notation 2.4.13. Let s ∈ Z be a

49



5 Finite coarse excision

degree in K-theory. Then there is a natural isomorphism

KsQ
∗
( ⋂
j∈J

Xj

)
∼= Ks

( ⋂
j∈J

Q∗(Xj ⊆ X)
)
,

Proof. For closed Y ⊆ X, consider the following commutative diagram. Its rows
are long exact sequences in K-theory. Its vertical isomorphisms are induced by the
inclusion of metric spaces Y ⊆ X as in Remark 5.2.7. The third vertical morphism is
well-defined as follows because the rows are exact: For an operator T ∈ D∗(Y ⊆ X)

whose K-theory class [T ] maps to [T ′] ∈ D∗Y under the second vertical morphism,
the third morphism maps [T ] +KsC

∗(Y ⊆ X) to Ks

(
[T ′] +KsC

∗Y
)
.

· · · KsC
∗(Y ⊆ X) KsD

∗(Y ⊆ X) KsD∗(Y⊆X)
KsC∗(Y⊆X) Ks−1C

∗(Y ⊆ X) · · ·

· · · KsC
∗Y KsD

∗Y KsQ
∗Y Ks−1C

∗Y · · · .

∼= ∼= ∼=

All squares commute because C∗Y → D∗Y is a C*-ideal inclusion and because the
vertical isomorphisms arose from taking natural direct limits.
By the five lemma, the vertical arrow to KsQ

∗Y must also be an isomorphism. It
is natural by construction. With the isomorphisms from Propositions 5.3.5, we have

KsQ
∗
( ⋂
j∈J

Xj

)
∼=
KsD

∗(⋂
j∈J Xj

)
KsC∗

(⋂
j∈J Xj

) ∼= Ks

(⋂
j∈J D

∗(Xj ⊆ X)
)

Ks

(⋂
j∈J C

∗(Xj ⊆ X)
)

∼= Ks

( ⋂
j∈J

Q∗(Xj ⊆ X)
)
.

5.4 Sums of relative algebras

Notation 5.4.1. Throughout Section 5.4, in addition to Notation 5.2.1, write

Z =
⋃
j∈J

Xj .

For a subset Y ⊆ X, again, denote the indicator function by χ(Y ) : X → {0, 1}.

Lemma 5.4.2. Let F∗ be either the functor C∗ or D∗. Then

F∗(Z ⊆ X) ⊆
∑
j∈J

F∗(Xj ⊆ X).

Proof. By definition, F∗(Y ⊆ X) and F∗X for closed subsets Y ⊆ X are norm
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5.4 Sums of relative algebras

completions of finite-propagation operator algebras. It suffices to check the inclusion
for finite-propagation operators in F∗(Z ⊆ X); passing to norm completions will
then prove the claim.

In this light, let T ∈ C∗(Z ⊆ X) be an operator with finite propagation. We will
construct operators Tj for j ∈ J such that Tj ∈ F∗(Xj ⊆ X) and

∑
j∈J Tj = T .

Because T has finite propagation, find Rprop > 0 such that %(f)T%(g) = 0 ∈ BH
whenever f , g ∈ CX satisfy d(supp f, supp g) ≥ Rprop. Find Rsupp > 0 such that T
is supported in the R-neighborhood of Z.

Cover Z =
⋃
j∈J Xj by the following sets Yj for j ∈ J and their union Y :

Yj = Nd(Xj , Rprop +Rsupp + 1) = {x ∈ X : d(x,Xj) ≤ Rprop +Rsupp + 1},

Y =
⋃
j∈J

Yj .

Each Yj is closed in X. Certainly, T is supported in Y , again a closed set.

Choose a linear order ≺ on the finite set J . Define a partition {Pj}j∈J of Y via

Pj =
{
x ∈ Z : x ∈ Xj and there are no j′ ≺ j with x ∈ Xj′

}
∪
{
x ∈ Y − Z : x ∈ Yj and there are no j′ ≺ j with x ∈ Yj′

}
;

this is a partition of Y because, given either x ∈ Z or x ∈ Y − Z, exactly one Pj is
eligible to contain x. Furthermore, each Pj is a Borel set because it may be written
as a finite union, intersection, and difference of Borel sets Xj′ and Yj′ .

Extend the representation % : CX → BH to the Borel functions of X according
to Lemma 5.2.8. For all j ∈ J , define operators Tj ∈ BH by

T̃ =
%
(
χ(X − Y )

)
T

|J |
, Tj = %

(
χ(Pj)

)
T + T̃ .

By Lemma 5.2.9, T̃ and all Tj are in F∗(Z ⊆ X). The Tj sum to

∑
j∈J

Tj =
∑
j∈J

%
(
χ(Pj)

)
T +

∑
j∈J

%
(
χ(X − Y )

)
T

|J |
= %
(
χ(Y ) + χ(X − Y )︸ ︷︷ ︸

= 1 on X

)
T = T.

(5.4.2.1)
The summand T̃ of Tj merely clarifies

∑
j∈J Tj = T ; it has no deeper meaning. For

all functions g ∈ CX, the products %(g)T̃ and T̃ %(g) vanish because χ(X − Y ) is
supported further than Rprop + Rsupp away from Z, whereas T̃ ∈ F∗(Z ⊆ X) has
the same propagation constant Rprop and support distance constant Rsupp as T by
Lemma 5.2.9.
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5 Finite coarse excision

Support of Tj near Xj. For a given j ∈ J , let f ∈ CX have support far enough
away from Xj :

d(supp f,Xj) > Rprop +Rsupp + 1.

We will show %(f)Tj = Tj%(f) = 0. For %(f)Tj = 0, we have

%(f)Tj = %
(
fχ(Pj)

)
T + %(f)T̃︸ ︷︷ ︸

= 0

= 0 (5.4.2.2)

because the pointwise product fχ(Pj) is zero in CX: The function f is supported
more than Rprop +Rsupp +1 away from Xj , but Pj ⊆ Yj = Nd(Xj , Rprop +Rsupp +1).
For Tj%(f) = 0, we similarly show that

Tj%(f) = %
(
χ(Pj)

)
T%(f) + T̃ %(f)︸ ︷︷ ︸

= 0

= 0; (5.4.2.3)

to see this, observe that d(Xj , X − Pj) ≤ Rsupp + 1 by construction of Pj and
d(Xj , supp f) > Rprop+Rsupp+1 by the choice of f . The difference between these two
values is more than Rprop, the propagation constant of T , thus %

(
χ(Pj)

)
T%(f) = 0.

Local compactness of Tj outside Xj. Let f be a function in C(X −Xj) ⊆ CX.
We will show that %(f)Tj and Tj%(f) are compact.

Recall that %(f)Tj = %
(
fχ(Pj)

)
T + 0, thus it suffices to examine the pointwise

product fχ(Pj): It may assume nonzero values only in (Yj − Z) ∪Xj by definition
of Pj . Because Xj ⊆ Z, each point from Pj falls either into Xj or into Y − Z. We
may decompose fχ(Pj) as

fχ(Pj) = fχ(Pj ∩Xj) + fχ(Pj − Z).

The left summand is the zero function because f vanishes onXj . The right summand
may be nonzero, but vanishes on Z. Outside Z, the original T is locally compact,
therefore %

(
fχ(Pj − Z)

)
T is compact. Since fχ(Pj − Z) = fχ(Pj) and furthermore

%
(
fχ(Pj)

)
T = %(f)Tj , the desired operator %(f)Tj is compact.

The difference %(f)Tj − Tj%(f) is compact because Tj ∈ D∗(Z ⊆ X) is pseudo-
compact. With %(f)Tj already proven compact, Tj%(f) must be compact, too.

Summary. The claim follows from 5.4.2.1, 5.4.2.2, 5.4.2.3, and from the local com-
pactness of Tj outside Z: We have decomposed T into a sum

∑
j∈J Tj with each Tj

in F∗(Xj ⊆ X).
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Lemma 5.4.3. For F∗ = C∗ or F∗ = D∗, we have

F∗(Z ⊆ X) ⊇
∑
j∈J

F∗(Xj ⊆ X);

i.e., the inclusion from Lemma 5.4.2 is an equality of sets.

Proof. For each j ∈ J , let Tj be an operator in F∗(Xj ⊆ X) such that Tj is supported
in an Rj-neighborhood of Xj . Define T =

∑
j∈J Tj . This T is supported in the

(maxj∈J Rj)-neighborhood of Z =
⋃
j∈J Xj .

For F∗ = D∗, given f ∈ C(X − Z) ⊆ CX and j ∈ J , we know that f is also in
C(X −Xj). The operators %(f)Tj and Tj%(f) are compact since Tj ∈ F∗(Xj ⊆ X).
The finite sums %(f)T and T%(f) of compact operators are again compact.

Proposition 5.4.4. For all s ∈ Z, there are natural isomorphisms

KsC
∗
( ⋃
j∈J

Xj

)
∼= Ks

(∑
j∈J

C∗(Xj ⊆ X)
)
,

KsD
∗
( ⋃
j∈J

Xj

)
∼= Ks

(∑
j∈J

D∗(Xj ⊆ X)
)
.

Proof. Combine Lemma 5.4.2 with Lemma 5.4.3 for Z =
⋃
j∈J Xj :

C∗(Z ⊆ X) =
∑
j∈J

C∗(Xj ⊆ X),

D∗(Z ⊆ X) =
∑
j∈J

D∗(Xj ⊆ X).

Theorem 5.2.6 yields the claimed isomorphisms.

Proposition 5.4.5. Let s ∈ Z be a degree in K-theory. There is a natural isomor-
phism

KsQ
∗
( ⋃
j∈J

Xj

)
∼= Ks

(∑
j∈J

Q∗(Xj ⊆ X)
)
.

Proof. In the proof of Proposition 5.3.6, we constructed a natural isomorphism for
closed subsets Y ⊆ X,

KsD
∗(Y ⊆ X)

KsC∗(Y ⊆ X)

∼=−→ Q∗Y.

53



5 Finite coarse excision

Combine this isomorphism with the natural isomorphisms from Proposition 5.4.4:

KsQ
∗
( ⋃
j∈J

Xj

)
∼=
KsD

∗(⋃
j∈J Xj

)
KsC∗

(⋃
j∈J Xj

) ∼= Ks

(∑
j∈J D

∗(Xj ⊆ X)
)

Ks

(∑
j∈J C

∗(Xj ⊆ X)
)

∼= Ks

(∑
j∈J

Q∗(Xj ⊆ X)
)
.

5.5 Main theorem

We may summarize Propositions 5.3.5, 5.3.6, 5.4.4, and 5.4.5 in a single theorem.

Theorem 5.5.1. Let (X, d) be a metric space. Let {Xβ}β∈α be a finite or infinite
coarsely excisive cover of X and let J ⊆ α be a finite nonempty subset.
Let F∗ be either the functor C∗ from the coarse category to C∗A or one of the

functors D∗ or Q∗ from the coarse-continuous category to C∗A. Let s be a degree in
K-theory. Then

KsF
∗
( ⋂
j∈J

Xj

)
∼= Ks

( ⋂
j∈J

F∗(Xj ⊆ X)
)
,

KsF
∗
( ⋃
j∈J

Xj

)
∼= Ks

(∑
j∈J

F∗(Xj ⊆ X)
)
.

These isomorphisms are natural with respect to morphisms (coarse maps for C∗, or
coarse and continuous maps for D∗ and Q∗) to other coarse spaces with compatible
coarsely excisive covers (Definition 5.1.4).

When the cover {Xβ}β∈α has a finite index set α, the algebras become suitable
for our spectral sequence for finite ideal inclusions.

Theorem 5.5.2. Let (X, d) be a metric space with a finite coarsely excisive cover
{Xβ}β∈α. Let F∗ be either the functor C∗ from the coarse category to C∗A or one
of the functors D∗ or Q∗ from the coarse-continuous category to C∗A. There is a
spectral sequence {Erp,q, dr}r,p,q with

E1
p,q
∼=


⊕
|J |=p+1

KqF
∗
( ⋂
j∈J

Xj

)
for 0 ≤ p < |α|,

0 for p < 0 or p ≥ |α|,

where J ranges over all nonempty subsets of α. This spectral sequence converges
strongly to K∗F∗X and is functorial with respect to morphisms (coarse maps for C∗,
or coarse and continuous maps for D∗ and Q∗) to other coarse spaces with compatible
coarsely excisive covers (Definition 5.1.4).
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5.6 Application: K∗C∗Rn

Proof. Apply the spectral sequence from Theorem 4.6.1 about finite sums of abstract
C*-algebras to the algebras from Theorem 5.5.1 for coarse spaces.
Both properties from Theorem 5.5.1 are required here: The intersection property

guarantees that the E1-term looks as stated. The sum property of the relative
C*-algebras guarantees that the spectral sequence converges to the non-relative C*-
algebra of the entire space.
Functoriality of the spectral sequence follows from functoriality of the spectral

sequence from Theorem 4.6.1 for finite sums of abstract C*-ideals and from the
naturality of the isomorphisms in Theorem 5.5.1.

5.6 Application: K∗C
∗Rn

Let d1 and d∞ denote the usual 1-metric and sup-metric on Rn: For x, y ∈ Rn, we
have

d1(x, y) =
∑
j<n

|xj − yj |, d∞(x, y) = max
j<n
|xj − yj |.

Theorem 5.6.1. For the n-dimensional Euclidean space Rn, metrized either with
the 1-metric d1 or the sup-metric d∞, the Roe algebra has the following K-theory:

KsC
∗Rn =

Z for s− n even,

0 for s− n odd.

This is known, but we reprove this with our K-theory spectral sequence for finite
coarsely excisive covers.

Remark 5.6.2. Towards the end of Section 5.6, some claims and proofs might look
like straightforward geometry of Rn. In particular, since d1 and d∞ are equivalent
metrics on Rn, they must induce equivalent coarse structures; it would suffice to look
at only one of them.
Nonetheless, we will conduct these proofs in detail for both d1 and d∞ because

these results will serve as lemmas for Section 7.3 to compute the K-theory of a
C*-ideal of C∗Z∞ under different metrics.

Definition 5.6.3 (Flasque). Let (X, d) be a metric space. X is flasque if there is a
coarse map f : X → X satisfying the following conditions:

• The map f is coarsely equivalent to id(X).

• For all K ⊆ X, there exists N ∈ N such that for all n ≥ N , fn(X) ∩K = ∅.

• The powers of f are uniformly coarse: For all R > 0, there exists S > 0 that,
for all n ∈ N at once and x, y ∈ X with d(x, y) ≤ R, we have d(fnx, fny) ≤ S.
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5 Finite coarse excision

Lemma 5.6.4. For a metric space X, the product X × R≥0 is flasque.

Proof. Consider the self-map f on X ×R≥0 with f(x, t) = (x, t+ 1). Shifting points
by a constant distance, f is coarsely equivalent to the identity, yet the powers fn

eventually shift points out of any given bounded set. As an isometry, f is uniformly
coarse: Choose S = R for the third condition in Definition 5.6.3.

Proposition 5.6.5. Let X be a flasque space. Then K∗C∗X = 0.

Proposition 5.6.5 is proven in [Roe88, Proposition 9.4]. To prove Theorem 5.6.1
about K∗C∗Rn with a coarsely excisive cover of Rn, it is helpful to have many flasque
intersections.

Definition 5.6.6 (Block decomposition of Rn). Cover Rn with n + 1 overlapping
subsets, or blocks, X0, X1, . . ., Xn, where

Xj =


]−∞, 0]× Rn−1 for j = 0,

[0,∞[i × ]−∞, 0]× Rn−j−1 for 0 < j < n,

[0,∞[n for j = n.

Example 5.6.7. In the simplest case, R1 is covered with two overlapping rays, one
extending into either direction. R2 is covered with three pieces, a left-hand half-
space X0, a bottom-right-hand quadrant X1, and a top-right-hand quadrant X2, as
in Figure 5.6.8:

X0

X1

X2

X0 X1 X2

X3

Figure 5.6.8: Decomposition of R2 into 3 blocks and of R3 into 4 blocks

Remark 5.6.9. In the block decomposition Rn = X0∪X1∪· · ·∪Xn, eachXj contains
at least one flasque factor, therefore K∗C∗Xj = 0. Likewise, intersecting fewer than
all n + 1 segments produces a flasque intersection with trivial K-theory of the Roe
algebra. Only the (n+ 1)-fold intersection is not flasque; it is the compact one-point
set. Its Roe algebra has K-theory Z in even degrees and zero in odd degrees.
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5.6 Application: K∗C∗Rn

Definition 5.6.10 (Blocky subset of Rn). Let X be a subset of Rn. We call X
blocky if both of these conditions hold:

• The origin 0 ∈ Rn is part of X.

• For all x ∈ X, all n coordinates xj of x, and all λ ≥ 0, varying xj by λ doesn’t
leave X; i.e., this point is a part of X:

(x0, x1, . . . , xj−1, λxj , xj+1, . . . , xn−1)

Example 5.6.11. Blocky subsets of Rn are conical, but not all conical subsets are
blocky. Consider the upper-right quadrant in R2: This is blocky. It remains conical,
but not blocky, after rotating around the origin by an eighth-turn.

Remark 5.6.12. For a nonempty collection of blocky subsets {Xβ}β∈α of Rn, the
intersection

⋂
β∈αXβ is again blocky.

All sets of the block decomposition {Xj}j≤n of Rn and all their intersections⋂
j∈J Xj for nonempty J ⊆ {0, 1, . . . , n} satisfy this definition of blocky. This is the

motivation behind the following Lemma 5.6.13.

Lemma 5.6.13. Let Xβ, Xγ ⊆ Rn be blocky sets. Choose R > 0. Then

N∞(Xβ, R) ∩N∞(Xγ , R) = N∞(Xβ ∩Xγ , R), (5.6.13.1)

where N∞ denotes the R-neighborhood under the sup-metric d∞.

Proof. The direction “⊇” is immediate: If a point y ∈ Rn is at most R away from
Xβ ∩Xγ , then it is at most R away from both Xβ and Xγ independently.
To show “⊆”, fix y ∈ N∞(Xβ, R) ∩ N∞(Xγ , R). We will show that this y is

already in N∞(Xβ ∩ Xγ , R). For each coordinate yδ, by definition of d∞, we have
infx∈X |yδ − xδ| ≤ R for both X = Xβ and X = Xγ . In particular, for both X = Xβ

and X = Xγ ,

inf
x∈X
|yδ − xδ| =


0 if yδ > 0 and {0}δ × [0,+∞[× {0}n−δ−1 ⊆ X,

0 if yδ < 0 and {0}δ × ]−∞, 0]× {0}n−δ−1 ⊆ X,

|yδ| ≤ R otherwise.

Certainly, Xβ ∩Xγ is nonempty; at least the origin is part of this intersection. To
finish the proof, assume that d∞(y,Xβ∩Xγ) > R. Then there exists a δ-th coordinate
such that

inf {|yδ − xδ| : x ∈ Xβ ∩Xγ} > R. (5.6.13.2)
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5 Finite coarse excision

Then |yδ| > R because Xβ ∩Xγ is blocky. This forbids the “otherwise”-case for both
X = Xβ and X = Xγ . Both of the remaining two cases force the ray from the origin
in the δ-th dimension that contains (0, . . . , 0, yδ, 0, . . . , 0) to be a subset of both Xβ

and Xγ . But now, setting yδ to zero will not affect the distance to the blocky set
Xβ ∩Xγ :

d∞
(
(y0, . . . , yδ−1, yδ, yδ+1, . . . , yn−1), Xβ ∩Xγ

)
= d∞

(
(y0, . . . , yδ−1, 0, yδ+1, . . . , yn−1), Xβ ∩Xγ

)
.

After setting yδ to 0, if there are still coordinates remaining that satisfy 5.6.13.2,
repeat this argument and set those coordinates to 0, too, without altering the dis-
tance to Xβ ∩Xγ . Eventually, we find that no coordinates satisfy 5.6.13.2 anymore.
Therefore the assumption d∞(y,Xβ ∩Xγ) > R is false and y ∈ N∞(Xβ ∩Xγ , R).

Corollary 5.6.14. Let {Xβ}β∈α be a collection of blocky subsets of Rn such that⋃
β∈αXβ = Rn. Then {Xβ}β∈α is coarsely excisive with respect to the sup-metric

d∞. In particular, for a nonempty finite index set J ⊆ α and R > 0, we have⋂
j∈J

N∞(Xj , R) = N∞

( ⋂
j∈J

Xj , R
)
.

Proof. For |J | = 1, the claim is trivial. For a |J |-fold intersection with |J | > 1, use
induction along the cardinality of J : Choose β ∈ J and set J ′ = J − {β} for which
the claim already holds. Then⋂

j∈J
N∞(Xj , R) = N∞(Xβ, R) ∩

⋂
j∈J ′

N∞(Xj , R)

= N∞(Xβ, R) ∩N∞
( ⋂
j∈J ′

Xj , R
)

= N∞

( ⋂
j∈J

Xj , R
)
,

applying Lemma 5.6.13 at the end because
⋂
j∈J ′ Xj is blocky.

Proposition 5.6.15. The block decomposition {Xj}j≤n of Rn from Definiton 5.6.6
is coarsely excisive under the sup-metric d∞: For a nonempty J ⊆ {0, 1, . . . , n} and
R > 0, we have ⋂

j∈J
N∞(Xj , R) = N∞

( ⋂
j∈J

Xj , R
)
.

Proof. Each Xj is blocky as a cartesian product of copies of ]−∞, 0], [0,∞[, and R.
The result follows from Corollary 5.6.14.
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5.6 Application: K∗C∗Rn

Lemma 5.6.16 (Relating 1-metric and sup-metric). Let X ⊆ Rn be arbitrary and
choose R > 0. Denote by N1(X,R) the neighborhood of X under the 1-metric d1 and
by N∞(X,R) its neighboorhood under the sup-metric d∞. Then

N1(X,R) ⊆ N∞(X,R) ⊆ N1(X,nR). (5.6.16.1)

Proof. For x, y ∈ Rn arbitrary, we always have

d1(x, y) =
∑
j<n

|xj − yj | ≥ sup
j<n
|xj − yj | = d∞(x, y)

and
nd∞(x, y) =

∑
j<n

sup
j′<n

∣∣xj′ − yj′∣∣ ≥∑
j<n

|xj − yj | = d1(x, y).

These estimates continue to hold when we take infx∈X for each term instead of a
single point x, yielding the distance to X. Passing to neighborhoods, since larger
metrics mean smaller neighborhoods, we get for the inclusion on the right-hand side
of 5.6.16.1:

N∞(X,R) = {y ∈ Rn : d∞(X, y) ≤ R}

= {y ∈ Rn : nd∞(X, y) ≤ nR}

⊆ {y ∈ Rn : d1(X, y) ≤ nR}

= N1(X,nR).

A similar estimate holds for the inclusion on the left-hand side of 5.6.16.1.

Proposition 5.6.17. The block decomposition {Xj}j≤n is coarsely excisive under
the 1-metric d1: Given a nonempty J ⊆ {0, 1, . . . , n} and R > 0, we can set S = nR

to ensure ⋂
j∈J

N1(Xj , R) ⊆ N1

( ⋂
j∈J

Xj , nR
)
.

Proof. Combining Proposition 5.6.15 with Lemma 5.6.16, we get⋂
j∈J

N1(Xj , R) ⊆
⋂
j∈J

N∞(Xj , R)

= N∞

( ⋂
j∈J

Xj , R
)

⊆ N1

( ⋂
j∈J

Xj , nR
)
.

This finishes the preparations for our proof of Theorem 5.6.1: We would like to
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5 Finite coarse excision

show

KsC
∗Rn =

Z for s− n even,

0 for s− n odd.

Proof of Theorem 5.6.1. The block decomposition {Xj}j≤n of Rn into n + 1 pieces
from Definition 5.6.6 is coarsely excisive under either the sup-metric by Proposition
5.6.15 or the 1-metric by Proposition 5.6.17.
Intersecting fewer than n + 1 blocks Xj yields a flasque space Y with trivial

K∗C
∗Y = 0. Intersecting all n + 1 points gives the compact one-point set {0}

with KsC
∗{0} = Z for s even and KsC

∗{0} = 0 for s odd.
These results fit into our spectral sequence from Theorem 5.5.2 for coarsely excisive

covers, letting J range over all nonempty subsets of {0, 1, . . . , n}: The first page is

E1
p,q
∼=


⊕
|J |=p+1

KqC
∗
( ⋂
j∈J

Xj

)
for 0 ≤ p ≤ n,

0 for p < 0 or p > n,

and the spectral sequence converges to K∗C∗Rn. The E1-term has only one nonzero
column E1

n,∗ from intersecting all n+ 1 pieces:

2 0 · · · 0 Z 0 0

1 0 · · · 0 0 0 0

0 0 · · · 0 Z 0 0

−1 0 · · · 0 0 0 0

0 · · · n− 1 n n+ 1 n+ 2
p.

q

This spectral sequence collapses on the first page. There is no extension problem to
solve. We may read KsC

∗Rn directly from the s-th diagonal p + q = s of E1
∗,∗: If

s− n is even, this K-theory is Z; otherwise, it vanishes.
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6 Infinite sums of ideals

For A = I0 +I1 + · · ·+In, we have a spectral sequence. What happens when A is the
norm closure of a sum over countably many C*-ideals instead of over finitely many?
Now A is a direct limit C*-algebra,

A =
∑
j∈N

Ij =
⋃
n∈N

(∑
j<n

Ij

)
=
⋃
J⊆N
|J |∈N

(∑
j∈J

Ij

)
.

Can we replace ∆n by an infinite simplex in the underlying construction? Or can
we take the existing spectral sequence for a subalgebra A(n) =

∑
j<n Ij , then use

the inclusion of algebras A(n) → A(n + 1) to link the spectral sequences together?
Does the direct limit of these spectral sequences converge to K∗A, or can we at least
salvage some information about K∗A from this construction?

After developing a spectral sequence for A =
∑

j∈N Ij , Section 6.7 will generalize
the result to direct limits A =

∑
β∈α Iβ of sums of uncountably many C*-ideals Iβ

for arbitrary index sets α.

6.1 Naïve approaches

Let A =
∑

j∈N Ij be a C*-algebra with the Ij ⊆ A closed two-sided ideals. For n ∈ N
and j ≤ n, we have defined the cake piece ∆n

j in Definition 4.2.1 as a subset of the
standard simplex ∆n. We form C*-algebras B = B(I0, . . . , In) based on the first
n+ 1 ideals like in Definition 4.3.1:

B = B(I0, I1, . . . , In)

=

f : ∆n → A =

n∑
j=0

Ij : f continuous, f � ∂∆n = 0, f(∆n
j ) ⊆ Ij for all j

.
This leads to algebras B(I0, . . . , In)J for J ⊆ {0, 1, . . . , n}. But everything depends
on our initial choice of the simplex ∆n.

One immediate idea is to generalize the underlying function algebras BJ :

Definition 6.1.1. We define the infinite simplex

∆N =

(xj)j ∈ [0, 1]N :
∞∑
j=0

xj ≤ 1

.
This becomes a topological space with the usual product topology.
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6 Infinite sums of ideals

Let A =
∑

j∈N Ij be a C*-algebra. Even if we succeed in defining a function space
∆N
J for J ⊆ N and function algebras BJ ⊆ B of certain functions ∆N → A, it will

be hard interpret the function algebras appropriately. In the finite case with n + 1

ideals, the algebra
{f : ∆n → A : f � ∂∆n = 0}

is isomorphic to the n-fold suspension of A. The suspension isomorphism allowed
us to relate the K-theory of ideals to the K-theory of A. When we replace ∆n with
∆N, we lose the suspension isomorphism and cannot give a convergence theorem for
a spectral sequence.

For another approach, recall the spectral sequence for ideal inclusions, constructed
both in Section 3 and by C. Schochet in [Sch81]:

Theorem 3.1.1 (Spectral sequence for ideal inclusions). Let A =
⋃
p∈N Ip be a C*-

algebra, where the I0 ⊆ I1 ⊆ I2 ⊆ · · · ⊆ Ip ⊆ · · · form a chain of closed two-sided
ideals. There is a spectral sequence {Erp,q, dr}r,p,q with

E1
p,q = Kp+q(Ip/Ip−1).

This spectral sequence converges strongly to K∗A; i.e., given s ∈ Z, the groups E∞p,q
along the diagonal s = p+ q pose an extension problem to reconstruct KsA.

In our setting, we do not have A =
⋃
p∈N Ip but merely A =

∑∞
j=0 Ij . A plausible

adaption to our setting might be:

• Compute K∗
(∑n

j=0 Ij
)
from I0, I1, I2, . . ., In using our spectral sequence that

takes finite sums of ideals.

• For each n, compute K∗
(∑n

j=0 Ij/
∑n−1

j=0 Ij
)
with the six-term exact sequence.

• Feed these results at once into the spectral sequence from Theorem 3.1.1 to
compute K∗A.

The downside is the multilayered computation: We build many spectral sequences,
solve an extension problem for every single one, and then fit the results into yet
another spectral sequence. This is unlikely to work except in trivial cases where
K∗
(∑∞

j=0 Ij
)
would have been straightforward to compute by other means, or when

the K-theory would already equal K∗
(∑n

j=0 Ij
)
for an n ∈ N. Instead, we would

like a more robust approach featuring a single spectral sequence {Erp,q, dr}r,p,q with
terms E1

p,q that are easier to describe and compute.
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6.2 Linking two chains of ideals

6.2 Linking two chains of ideals

Notation 6.2.1. Fix a C*-algebra A =
∑∞

j=0 Ij where the Ij are closed two-sided
ideals of A. We denote by E(n)rp,q the (p, q)-th module in the r-th page of the spectral
sequence for the sum of the first n ideals I0 + I1 + · · ·+ In−1: Each of these spectral
sequences {E(n)rp,q, d(n)r}r,p,q is constructed according to our main Theorem 4.6.1
about finite sums of C*-ideals.

We will construct a morphism of spectral sequences from E(n) to E(n+ 1). This
requires several technical propositions. Each spectral sequence arises from a chain of
ideals Q0 ⊆ Q1 ⊆ Q2 ⊆ · · · that strongly depends on a fixed number of ideals I0, I1,
. . ., Ij , . . . chosen in the beginning of the construction – see Section 4.3. To relate
E(n) with E(n+ 1), we first construct morphisms between the two chains of ideals
that lead to these two spectral sequences.
Along this way, we diligently track naturality with respect to ∗-homomorphisms

that preserve ideal decompositions (Definition 4.1.1 and Remark 4.1.2).

Lemma 6.2.2. Let I0, . . . , In be C*-ideals. Fix k ∈ {0, 1, . . . , n}. Define I ′k = 0,
moreover I ′j = Ij for j 6= k. Fix J ⊆ {0, 1, . . . , n} − {k}. Then

B(I0, . . . , In)J = B(I ′0, . . . , I
′
n)J = B(I ′0, . . . , I

′
n)J∪{k}.

Proof. The first equality holds because functions inB(I0, . . . , In)J andB(I ′0, . . . , I
′
n)J

are never allowed to take nonzero values in Ik or I ′k, the only ideals that differ in the
construction.
The second equality holds because BJ and BJ∪{k} differ at most by conditions

enforced on the subspace ∆n
k ⊆ ∆n, but on ∆n

k , functions map to I ′k = 0 anyway.

Proposition 6.2.3. Let I0, . . ., In be C*-ideals that sum to A. Construct the cake
algebra B(I0, . . . , In) as in Definition 4.3.1. Now include the zero algebra 0 = In+1

as an extra ideal, leading to a different cake algebra B(I0, . . . , In, 0):

B(I0, . . . , In) ⊆ C (∆n, A),

B(I0, . . . , In, 0) ⊆ C (∆n+1, A).

Let J ⊆ {0, 1, . . . , n} be an index set. There is a suspension isomorphism

S
(
B(I0, . . . , In)J

) ∼= B(I0, . . . , In, 0)J∪{n+1}.

Figure 6.2.4 gives the geometric idea. Functions on the line vanish on its two end
points. Functions on the grey four-sided shape vanish on the continuously drawn
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6 Infinite sums of ideals

boundary lines but not on the dashed line.
We claim that the suspension algebra of the functions on the line is isomorphic to

the function algebra on the grey shape.

(1, 0) (0, 1)( 1
2
, 1
2
)

I1 I0

(1, 0, 0) (0, 1, 0)

(0, 0, 1)

I1 I0

I2 = 0

Figure 6.2.4: Geometric idea of Proposition 6.2.3

Proof of Proposition 6.2.3. By Lemma 6.2.2, we can reduce the case of arbitrary J
to J = {0, 1, . . . , n} by replacing Ij with 0 for all j /∈ J , completing the construction
in this proof, then re-inserting the original ideals Ij .
Define

X =
n⋃
j=0

∆n+1
j , Y = X ∩ ∂∆n+1, Z = X ∩∆n+1

n+1.

The set X corresponds to the grey area in the example figure above, Y to the grey
area’s ceiling, Z to its floor. Functions in B(I0, . . . , In, 0) vanish on Y and Z, but
they may assume nontrivial values in I0, . . ., In on the interior X − Y − Z.
The points x in X have n+ 2 barycentric coordinates (x0, . . . xn+1). For functions

in B(I0, . . . , In, 0), the relative values of the first n + 1 of these coordinates select
ideals among I0, . . ., In as the function’s range. The final coordinate xn+2 does not
affect that choice, but xn+2 is not well-suited to see that B(I0, . . . , In, 0) is isomorphic
to a suspension algebra. Instead, we show this with a reparametrization ϕ of X. Set

ymin = min {yj : yj is a barycentric coordinate of y = (y0, . . . , yn)},

ϕ : ∆n ×
[

1

n+ 2
, 1

]
→ ∆n+1,

ϕ(y0, . . . , yn, t) = (y0 − tymin, . . . , yn − tymin, (n+ 1)tymin).

This function ϕ maps continuously to X: ϕ distributes (n+1) portions of tymin from
the first (n+ 1) coordinates to the last coordinate. Thus the sum of all coordinates
remains 1. Furthermore, ϕ cannot map to the interior of ∆n+1

n+1 because the last
coordinate cannot be the uniquely smallest: With t ≥ 1

n+2 by definition of ϕ, we
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6.2 Linking two chains of ideals

have
(n+ 1)tymin ≥ ymin − tymin.

Equality holds exactly for t = 1
n+2 .

The map ϕ is surjective onto X: Construct a preimage of (y0, . . . , yn, yn+1) by
distributing yn+1

n+1 onto each of the first n+1 coordinates, then choose t. Furthermore,
ϕ is injective on the interior of ∆n × [ 1

n+2 , 1].

On the simplex boundaries, we need not check injectivity. Because B(I0, . . . , In)

or B(I0, . . . , In, 0) must vanish on the simplex boundaries, it suffices to verify that
all points of ∂∆n × [ 1

n+2 , 1] map to ∂∆n+1. This holds because ymin = 0, thus
ymin − tymin = 0 regardless of the value t ∈ [ 1

n+2 , 1].

On the interior of X, that is, on the interior of ϕ
(
(∆n)◦ × ] 1

n+2 , 1[
)
, functions in

B(I0, . . . , In, 0) are subject to the restrictions from the relations of the first n + 1

barycentric coordinates, but not to any restriction from the final zero ideal or from the
coordinate t ∈ [ 1

n+2 , 1]. On ϕ
(
(∆n)◦ ×

{
1

n+2 , 1
})

, the functions must be zero. Thus
via ϕ, we see that B(I0, . . . , In, 0) is isomorphic to the suspension of B(I0, . . . , In).

It suffices to parametrize X instead of the entire simplex ∆n+1 because every
considered C*-function living on X has only one possible extension – by zero – to a
function in B(I0, . . . , In, 0).

Remark 6.2.5. The isomorphism from Proposition 6.2.3 is natural with respect
to finite ideal decompositions: A collection of ∗-homomorphisms ij : Ij → I ′j for
j ∈ {0, 1, . . . , n} on the input C*-ideals, together with the constructed isomorphisms
on either side, leads to a commutative diagram

S
(
B(I0, . . . , In)J

)
B(I0, . . . , In, 0)J∪{n+1}

S
(
B(I ′0, . . . , I

′
n)J
)

B(I ′0, . . . , I
′
n, 0)J∪{n+1}.

∼=

∼=

S
(
B(i0, . . . , in)

)
B(i0, . . . , in, 0)

Proposition 6.2.6. Let A = I0 + I1 + · · ·+ In be a sum of C*-ideals. The function
algebras BJ = B(I0, . . . , In)J for J ⊆ {0, 1, . . . , n} give rise to cake sums Qp =∑
|J |≤p+1BJ by Definition 4.3.6.

Let In+1 = 0 be an extra zero ideal. The function algebras B̃J = B(I0, . . . , In, 0)J

for this larger set of ideals and J ⊆ {0, 1, . . . , n, n+1} give rise to Q̃p =
∑
|J |≤p+1 B̃J .

Then Q̃p ∼= SQp for p ∈ Z and Q̃n+1 = Q̃n. In other words, the chains of ideal

65



6 Infinite sums of ideals

inclusions Qp → Qp+1 and Q̃p → Q̃p+1 fit into this commutative diagram:

SQ0 SQ1 · · · SQn

Q̃0 Q̃1 · · · Q̃n Q̃n+1.

∼= ∼= ∼=
∼=

Proof. Our index sets will sometimes contain indices in {0, 1, . . . , n}, sometimes in
{0, 1, . . . , n, n+ 1}. For clarity, given p ∈ Z, we define these collections of index sets:

A (p) = {J ⊆ {0, 1, . . . , n} : |J | ≤ p},

B(p) = {J ⊆ {0, 1, . . . , n+ 1} : |J | ≤ p}.

For p < 0, A (p) and B(p) are empty and Qp is the zero algebra.

The following argument will work without modification for all p ∈ Z. For a given
p ∈ Z, we may write the collection B(p + 1) as the disjoint union of A (p + 1) and
{J ∪ {n+ 1} : J ∈ A (p)}. Applying this to the definition of Q̃p, we obtain

Q̃p =
∑

B(p+1)

B̃J =
∑

A (p+1)

B̃J +
∑
A (p)

B̃J∪{n+1}.

By Lemma 6.2.2, the index n + 1 can be dropped from BJ∪{n+1} with no change
because In+1 = 0:

Q̃p =
∑

A (p+1)

B̃J +
∑
A (p)

B̃J .

By definition of A (p) as a collection of all index sets up to cardinality p, we have
A (p) ⊆ A (p+ 1). The sum simplifies to

Q̃p =
∑

A (p+1)

B̃J .

None of the sets in A (p + 1) contain the index n + 1. This allows us to rewrite
B̃J as SBJ via a natural isomorphism according to Proposition 6.2.3. Taking sums
commutes with suspensions:

Q̃p =
∑

A (p+1)

B̃J ∼=
∑

A (p+1)

SBJ = SQp.

This shows the main result. The extra result Q̃n+1 = Q̃n follows from Q̃n ∼= SQn =

SQn+1
∼= Q̃n+1.
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6.3 Compatibility of suspensions

Remark 6.2.7. The constructed isomorphism is natural: It is a composition of
equalities and the natural isomorphism from Proposition 6.2.3.

6.3 Compatibility of suspensions

Lemma 6.3.1. Let I be a C*-ideal in A. Then S(A/I) ∼= SA/SI. Explicitly, there
is an isomorphism Φ: SA/SI → S(A/I) with

Φ(f + SI)(t) = f(t) + I for f : [0, 1]→ A with f(0) = f(1) = 0.

Later, we show naturality of Φ in a separate lemma; first, we construct this iso-
morphism.

Proof of Lemma 6.3.1. The function Φ is well-defined, additive, and multiplicative
because I is an ideal; it preserves the involution because I is a C*-ideal. If I contains
the range of Φ(f), then f was already in SI, therefore Φ is injective.

For surjectivity, we will use A′ ⊗ C]0, 1[ ∼= SA′ for arbitrary C*-algebras A′ and
the nuclearity of C]0, 1[ as proven, e.g., in [WO93]. As a result, the top two rows of
this commutative diagram become exact:

0 I ⊗ C]0, 1[ A⊗ C]0, 1[ A/I ⊗ C]0, 1[ 0

0 SI SA S(A/I) 0

0 SI SA SA/SI 0.

∼= ∼= ∼=

Φ

The square in the bottom right commutes by our explicit construction of Φ. Since
the bottom row is the standard quotient exact sequence for the inclusion SI → SA,
the ∗-homomorphism Φ is an isomorphism by the five lemma.

Lemma 6.3.2. The isomorphism Φ: SA/SI → S(A/I) constructed in Lemma 6.3.1
is natural with respect to ∗-homomorphisms h : A → A′ that map I into I ′, where
I ′ ⊆ A′ is a given C*-ideal.

Proof. Construct Φ′ : SA′/SI ′ → S(A′/I ′) for the C*-ideal I ′ ⊆ A′ according to
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6 Infinite sums of ideals

Lemma 6.3.1. Then h : A→ A′ gives rise to a diagram:

SA/SI S(A/I)

SA′/SI ′ S(A′/I ′).

Φ

Sh/S(h � I)

Φ′

S
(
h/(h � I)

)

This diagram commutes: Consider (f +SI) ∈ SA/SI for a given f : [0, 1]→ A with
f(0) = f(1) = 0. The upper right path through the diagram maps this to t 7→ f(t)+I

and then to the class containing t 7→ (h ◦ f)(t) + h(I), which is t 7→ (h ◦ f)(t) + I ′ in
S(A′/I ′).
The lower left path maps f+SI first to h◦f+h(SI)+SI ′, which is h◦f+SI ′ since

h(I) ⊆ I ′, and then onwards also to t 7→ (h ◦ f)(t) + I ′ according to the construction
of Φ′.

Proposition 6.3.3. Let 0 → A → B → C → 0 be a short exact sequence of C*-
algebras. Then for each s ∈ Z, the following diagram is commutative:

Ks+1(C) Ks(A)

Ks(SC) Ks−1(SA).

∂s+1(C,A)

σs+1(C) ∼=

∂s(SC, SA)

σs(A)∼=

Here σ denotes suspension isomorphisms and ∂ denotes the boundary maps in the
long exact K-theory sequences that arise from the original short exact sequence and
from its suspension 0→ SA→ SB → SC → 0.

Even though ∂ is natural with respect to ∗-homomorphisms, the claim does not
follow immediately from functoriality because the suspension isomorphisms σ arise
only in K-theory, not on the level of C*-algebras.

Proof of Proposition 6.3.3. The Bott isomorphism

β(C) : K0(C) K1(SC) K2(C),
∼= σ2(C)−1

which is a composition of two isomorphisms, and the exponential map

δ0 : K0(C) K2(C) K1(A)
β(C) ∂2(C,A)

68



6.4 Linking spectral sequences

are constructed in [RLL00, Chapters 11–12] explicitly to make the two outermost
paths σ1(A) ◦ δ0 and ∂1(SC, SA) ◦ σ2(C) ◦ β(C) in the following diagram commute:

K0(C) K2(C) K1(A)

K1(SC) K0(SA).

β(C)

∼=

δ0

∂2(C,A)

σ2(C) ∼=

∂1(SC, SA)

σ1(A)∼=

Because β(C) is an isomorphism, commutativity of the square follows from commu-
tativity of the two outermost paths. This commuting square proves the claim for
n = 1, the lowest n of interest.

For higher s, the claim follows from this base case by composing the entire diagram
with an (s−1)-fold suspension isomorphism. The higher boundary maps in K-theory
are defined precisely to agree with such a suspension. The claim for lower s follows
from composing with Bott isomorphisms.

6.4 Linking spectral sequences

Having linked the chain of ideal inclusions Qp → Qp+1 with Q̃p → Q̃p+1, we can
now link the spectral sequences that arise from the first n ideals along increasing
cardinalities n ∈ N.

Proposition 6.4.1. Let A = I0 + I1 + · · ·+ In−1 be a sum of C*-ideals. Construct
the spectral sequence {Er∗,∗, dr}r for this n-fold sum as in Theorem 4.6.1.

Alternatively, add an extra ideal In = 0 and construct a second spectral sequence
{Ẽr∗,∗, d̃r}r for the (n+ 1)-fold sum I0 + I1 + · · ·+ In−1 + 0.

Then there are isomorphisms Erp,q ∼= Ẽrp,q−1 for all r ≥ 1 and p, q ∈ Z with the
following properties:

• They are natural with respect to ∗-homomorphisms that preserve the ideal de-
compositions: ∗-homomorphisms h : A → A′ for a C*-algebra A′ = I ′0 + I ′1 +

· · ·+ I ′n−1 + 0 such that, for all j < n, we have h(Ij) ⊆ I ′j.

• They commute with the differentials dr and d̃r.

Proof. Recall the first page of the spectral sequence from the main statement of
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6 Infinite sums of ideals

Theorem 4.6.1, adapted to n instead of n+ 1 ideals:

E1
p,q
∼=


⊕
|J |=p+1

Kq

( ⋂
j∈J

Ij

)
for 0 ≤ p < n,

0 for p < 0 or p ≥ n.

Suspend Qp/Qp−1 and compensate for this suspension by a degree shift in K-theory
to maintain isomorphy. Apply our isomorphism results from above:

E1
p,q
∼= Kq(Qp/Qp−1)

∼= Kq−1

(
S(Qp/Qp−1)

)
∼= Kq−1(SQp/SQp−1)

∼= Kq−1(Q̃p/Q̃p−1)

∼= Ẽ1
p,q−1.

All isomorphisms come from our earlier propositions and are therefore natural. We
do not have to show anything new here for naturality with respect to h : A→ A′ of
the isomorphism between the two spectral sequences.
Commutation of isomorphisms and differentials follows from the definition of the

differentials according to Theorem 3.2.5 and Definition 3.3.3: The differentials are
compositions of maps induced by ideal inclusions, maps induced by natural quotient
projections, and boundary maps from long exact sequences in K-theory that arise
from ideal inclusions. All these maps commute individually with all isomorphisms
applied above; in particular, Proposition 6.3.3 guarantees that the differentials be-
have well with suspensions.

Definition 6.4.2 (Link between spectral sequences for increasingly-many ideals).
Let A(n + 1) = I0 + I1 + · · · + In be a sum of n + 1 C*-ideals and denote by
A(n) ⊆ A(n+ 1) the sum of the first n ideals, I0 + I1 + · · ·+ In−1.

For all pages r ≥ 1 and p, q ∈ Z, let {grp,q} : {E(n)rp,q, d(n)r} → {Ẽrp,q−1, d̃
r} be the

isomorphism constructed in Proposition 6.4.1 from the spectral sequence for A(n)

into the spectral sequence for I0 + I1 + · · ·+ In−1 + 0. The ideal inclusions

I0 = I0, I1 = I1, . . . , In−1 = In−1, 0→ In

induce a morphism {irp,q} that preserves all degrees,

{irp,q} : {Ẽrp,q} → {E(n+ 1)rp,q},

of spectral sequences between the intermediate {Ẽrp,q, d̃r}r,p,q and the desired spectral
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6.4 Linking spectral sequences

sequence {E(n+ 1)rp,q, d(n+ 1)}r,p,q for A(n+ 1).
The link between the spectral sequences for A(n) and A(n+ 1) is

`(n) = {`(n)rp,q} = {irp,q−1 ◦ grp,q} : {E(n)rp,q} → {E(n+ 1)rp,q−1}.

Lemma 6.4.3 (Faithfulness of the link `(n)). Given n ∈ N and p, q ∈ Z, consider
a set of indices J ⊆ {0, 1, . . . , n− 1} with |J | = p + 1 and the direct summand
V = Kq

(⋂
j∈J Ij

)
for J in the group E(n)1

p,q.
Then `(n)1

p,q maps V isomorphically onto V ′ = Kq−1

(⋂
j∈J Ij

)
in E(n+1)1

p,q−1 No
other summand of E(n)1

p,q besides V maps onto V ′ nontrivially. No other summand
in E(n+ 1)1

p,q−1 besides V ′ is a nontrivial image of V .

Proof. We examine the components of `(n)1
p,q in the notation of Definition 6.4.2.

The first component of `(n)1
p,q is g1

p,q : E(n)1
p,q → Ẽ1

p,q−1. As a suspension isomor-
phism, it agrees with quotients, direct sums, and other suspensions. Because it is
natural with respect to ∗-homomorphisms that preserve ideal decompositions, g1

p,q

cannot permute V with other direct summands for different choices of ideals than J
among the first n ideals. Again by naturality, it cannot map to Kq−1

(
In ∩

⋂
j∈J Ij

)
within Ẽ1

p,q−1 either: This K-theory group must always vanish regardless of A be-
cause, by definition, {Ẽ1

p,q}r,p,q is the spectral sequence for In = 0.
On all ideals Ij with j 6= n, the second component i1p,q−1 : Ẽ1

p,q−1 → E(n+ 1)1
p,q−1

is induced by the identity. It maps g1
p,q(V ) necessarily to V ′ because n /∈ J and hits

no other summands besides V ′.
Thus `(n)1

p,q = i1p,q−1 ◦ g1
p,q has the claimed isomorphy property and hits no other

summands besides V ′. It follows that no other summand in E(n + 1)1
p,q−1 besides

V ′ may be a nontrivial image of V .

Proposition 6.4.4. The link `(n) between the spectral sequences {E(n)rp,q, d(n)r}r,p,q
and {E(n+ 1)rp,q, d(n+ 1)r}r,p,q is natural with respect to ∗-homomorphisms h : A→
A′ for another C*-algebra A′ = I ′0 + I ′1 + · · · + I ′n′ that is a sum of n′ + 1 ≥ n + 1

C*-ideals, as long as h(Ij) ⊆ I ′j for all j ≤ n.

Proof. We have constructed `(n) as a composition of two maps that already satisfy
this desired naturality with respect to h as shown in the various earlier lemmas.
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6 Infinite sums of ideals

6.5 Main theorem for countably many ideals

Theorem 6.5.1 (Spectral sequence for countable sums). Let A be the direct limit C*-
algebra I0 + I1 + · · ·+ Ij + · · · of sums of countably many C*-ideals Ij ⊆ A. There
is a spectral sequence {Erp,q, dr}r,p,q with

E1
p,q
∼=


⊕
|J |=p+1

Kq

( ⋂
j∈J

Ij

)
for p ≥ 0,

0 for p < 0,

(6.5.1.1)

where J ranges over all nonempty finite subsets of indices. In general, this is a
half-page spectral sequence, any term E1

p,q with p ≥ 0 may be nonzero.
This spectral sequence converges strongly to K∗A. It is functorial with respect to
∗-homomorphisms that preserve countable ideal decompositions.

We prove Theorem 6.5.1 in two steps: First, in Proposition 6.5.4, we prove exis-
tence, that the spectral sequence is well-defined, that it is functorial, and that its
E1
∗,∗-term matches the description 6.5.1.1. Later, in Proposition 6.6.12, we prove the

strong convergence.
Our strategy is to take the direct limit along a directed system of links `(n) for

n→∞, but these links `(n) do not connect the spectral sequences E(n) and E(n+1)

perfectly. There is an index shift from E(n)rp,q to E(n + 1)rp,q−1. As shown before,
the shifted index affects the degree of the K-theory; it has no other effect on equation
6.5.1.1.
Complex K-theory admits Bott isomorphisms β,

· · ·
β∼= Ks−2

( ⋂
j∈J

Ij

) β∼= Ks

( ⋂
j∈J

Ij

) β∼= Ks+2

( ⋂
j∈J

Ij

) β∼= · · · ;

their naturality allows us to work around the index shift.

Remark 6.5.2. The Bott isomorphisms β are natural with respect to ∗-homomor-
phisms and commute with the suspension isomorphisms σ for any C*-algebra A:

Ks(A) Ks+2(A)

Ks−1(SA) Ks+1(SA).

β

β

σs σs+2

Definition 6.5.3 (Degree-amending link λ(n)). Compose two links with the Bott
isomorphism to create a morphism λ(n) of bidegree (0, 0), called the degree-amending

72



6.5 Main theorem for countably many ideals

link, between two spectral sequences:

λ(n) = β ◦ `(n+ 1) ◦ `(n) : {E(n)rp,q}r,p,q → {E(n+ 2)rp,q}r,p,q.

Proposition 6.5.4. Let A = I0 + I1 + · · ·+ Ij + · · · be a sum of C*-ideals. The
spectral sequence postulated in Theorem 6.5.1 with

E1
p,q
∼=


⊕
|J |=p+1

Kq

( ⋂
j∈J

Ij

)
for p ≥ 0,

0 for p < 0,

exists and is functorial with respect to ∗-homomorphisms that preserve countable ideal
decompositions.

Proof. Take the direct limit along λ(2n) for n → ∞. This yields again a spectral
sequence. Functoriality of this spectral sequence with respect to ideal inclusions fol-
lows from all earlier constructions that, as we have remarked repeatedly, are natural
with respect to ∗-homomorphisms that preserve countable ideal decompositions.

It remains to show that the choice of offset, i.e., 2n or 2n+ 1, and the position of
β among the links ` have no effect on the direct limit of degree-amending links; i.e.,
the following system λ′(2n) of morphisms produces the same direct limit:

λ′(n) = `(n+ 1) ◦ β ◦ `(n) : {E(n)rp,q} → {E(n+ 2)rp,q}.

The position of β is irrelevant because the Bott isomorphism is natural with respect
to both ∗-homomorphisms and suspension isomorphisms. In Definition 6.4.2, we have
defined `(n) as a composition of several suspension isomorphisms and several direct
morphisms between C*-algebras. Thus for n → ∞, the systems λ(2n) and λ′(2n)

produce naturally isomorphic direct limits, without even requiring index shifts.

To compare the systems λ(2n) and λ(2n+ 1) for n→∞, unroll the compositions
λ into their definitions, and take the direct limit – necessarily yielding the same limit
as before – across the unrolled system:

colim
n→∞

λ(2n+ 1) = colim
(
· · · → • `(n+1)−→ • `(n+2)−→ • β−→ • `(n+3)−→ • → · · ·

)
= colim

(
· · · → • `(n+1)−→ • β−→ • `(n+2)−→ • `(n+3)−→ • → · · ·

)
= colim

(
· · · → • `(n+2)−→ • `(n+3)−→ • β−→ • → · · ·

)
= colim

n→∞
λ(2n),

because the morphisms ` commute with β and because removing the first element of
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a directed system will not change the limit.

Thus our limit spectral sequence is well-defined as colimn λ(2n). Finally, because

E(n)rp,q
∼=


⊕
|J |=p+1
max J<n

Kq

( ⋂
j∈J

Ij

)
for 0 ≤ p < n,

0 for p < 0 or p ≥ n,

and because the links `(n) preserve all structure due to their faithfulness (Lemma
6.4.3), the direct limit Erp,q along the K-theory morphisms λ(2n) for n → ∞ is
the desired direct sum of K-theory groups over all nonempty subsets J ⊆ N with
|J | = p+ 1 without restrictions about any maximum of J .

6.6 Convergence

To prove the convergence of the spectral sequence for countable sums of ideals, we
will define a filtration of K∗A via direct limits of existing filtrations.

Even though the following lemma about direct limits is known theory, we reprove
it with attention to detail, tracking the naturality of all constructions.

Lemma 6.6.1 (Continuity of inclusion chains of abelian group quotients). Let
(Gn)n∈N be a directed system of abelian groups along inclusions in : Gn ⊆ Gn+1.
For all n ∈ N, let Hn ⊆ Gn be a subgroup such that Hn ⊆ Hn+1. Write

G = colim
n→∞

(Gn, in), H = colim
n→∞

(Hn, in � Hn).

Then there is an isomorphism

Φ: G/H ∼= colim
n→∞

(Gn/Hn)

that is natural with respect to morphisms between systems (Gn)n∈N and (G̃n)n∈N that
preserve their inclusions and their respective systems of subgroups (Hn ⊆ Gn)n∈N and
(H̃n ⊆ G̃n)n∈N.

Proof. For each n ∈ N, consider the following diagram Dn. All of the horizontal
arrows in Dn are natural projections and the square commutes due to naturality of
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the projections:

Gn Gn/Hn

G G/Hn G/H.

αn

γn/Hnγn

δn πn

To construct a direct limit of the sequence of entire diagrams (Dn)n∈N, link two
diagrams Dn and Dn+1 by the following system of morphisms:

• in : Gn → Gn+1;

• the composition (τn+1 ◦ in/Hn) : Gn/Hn → Gn+1/Hn → Gn+1/Hn+1 where
the natural projection τn+1 : Gn+1/Hn → Gn+1/Hn+1 is well-defined because
Hn ⊆ Hn+1;

• the natural projection G/Hn → G/Hn+1 from dividing by Hn+1/Hn; and

• the identities on G and G/H, respectively.

All squares that arise from linking two diagrams Dn and Dn+1 via these morphisms
commute due to naturality of projections; e.g., αn+1 ◦ in = τn+1 ◦ in/Hn ◦ αn. Take
the direct limit along (Dn)n∈N; the limit object is again a commutative diagram:

G colimn(Gn/Hn)

G colimn(G/Hn) G/H.

colimn αn

colimn(γn/Hn)

colimn δn colimn πn (6.6.1.1)

Furthermore, for each n ∈ N, there is a short exact sequence

0→ Hn → Gn
αn−→ Gn/Hn → 0.

Taking direct limits of abelian groups is an exact functor, resulting in a short exact
sequence of direct limits which fits into the following diagram as the top row:

0 H G colimn(Gn/Hn) 0

0 H G G/H 0.

colimn αn

colimn(πn ◦ δn)

colimn(πn ◦ γn/Hn)
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The right square commutes because its morphisms already commuted in the earlier
diagram 6.6.1.1 of direct limits.
Finally, because both rows are short exact sequences, the five lemma guarantees

that colimn(πn ◦ γn/Hn) is the desired isomorphism Φ. Naturality of Φ follows from
the constructions in this proof: Both taking direct limits and taking quotients is
natural.

Notation 6.6.2. For a sum A = I0 + I1 + · · ·+ Ij + · · · of C*-ideals, write

A(n) = I0 + I1 + · · ·+ In−1

for the sum of the first n ideals and let, for s ∈ Z,

a(n)s : KsA(n)→ KsA(n+ 1)

be the map induced in K-theory by the inclusion of C*-algebras A(n) ⊆ A(n+ 1).
Given A(n), define the cake algebras B(n)J = B(I0, I1, . . . , In−1)J for index sets

J ⊆ {0, 1, . . . , n − 1} as in Definition 4.3.1 and the sums of cake algebras as in
Definition 4.3.6,

Q(n)p =
∑
|J |≤p+1

B(n)J

for p ∈ Z and J ⊆ {0, 1, . . . , n− 1}.

Remark 6.6.3. By Lemma 4.3.9, we have a chain of ideals Q(n)p ⊆ Q(n)p+1 across
all p ∈ Z. The chain stabilizes with Q(n)p = 0 for p < 0 and Q(n)p = B(n){0,1,...,n−1}

for p ≥ n− 1.
Furthermore,

∑n−1
p=0 Q(n)p = B(n){0,1,...,n−1} ∼= Sn−1A(n) by Theorem 4.4.11.

Notation 6.6.4 (i(n, p)s). We recall the filtrations on the spectral sequences for
finitely many ideals: The convergence target of {E(n)rp,q, d(n)r} is K∗A(n), filtered
by

F pKsA(n) ∼= im i : Ks−n+1Q(n)p → Ks−n+1S
n−1A(n) (6.6.4.1)

∼= im i(n, p)s : Ks−n+1Q(n)p → KsA(n) (6.6.4.2)

as in Definition 3.4.1 for p, s ∈ Z. In the construction of the spectral sequence in
Section 3, the symbol i may also stand for various other maps in K-theory.
Here in Section 6.6, we will write i(n, p)s for the maps in 6.6.4.2 that define a

filtration of KsA(n), not of Ks−n+1S
n−1A(n), for a given p. Normally, we would

index maps in K-theory with the degree of the domain, but for i(n, p)s, it will be
easiest to track the K-theory degree s of the desired convergence target KsA(n).
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6.6 Convergence

We reserve i (without annotation in parentheses) to discuss internals of Section 3.

Remark 6.6.5. Because Q(n)p is an ideal in Sn−1A(n), not in A(n), we have shifted
the K-theoretic degree from KsQ(n)p to Ks−n+1Q(n)p to compensate. This shift is
similar to the shift in the proof of Theorem 4.6.1 about the spectral sequence for
sums of finitely many C*-ideals.

Definition 6.6.6 (Link between filtrations). Fix n ∈ N and p ∈ Z. Besides Q(n)p,
recall the C*-algebra Q̃(n)p for the n+ 1 ideals I0, I1, . . ., In−1, 0 as in Proposition
6.2.6. For all s ∈ Z, define the link between the filtrations of K∗A(n) and K∗A(n+1),

ψ(n, p)s : Ks−n+1Q(n)p → Ks−nQ(n+ 1)p,

as the composition

Ks−n+1Q(n)p Ks−nSQ(n)p Ks−nQ̃(n)p, Ks−nQ(n+ 1)p;

ψ(n, p)s

∼= ∼= a(n) + 0

here the left arrow is the suspension isomorphism, the middle arrow is the natural
isomorphism constructed in Proposition 6.2.6, and the right arrow is induced by the
inclusion of the (n+ 1)-fold ideal decomposition A(n) + 0 into A(n+ 1).

Lemma 6.6.7. For all n ∈ N and p, s ∈ Z, the following diagram commutes:

Ks−n+1Q(n)p Ks−nQ(n+ 1)p

KsA(n) KsA(n+ 1).

ψ(n, p)s

i(n, p)s i(n+ 1, p)s

a(n)s (6.6.7.1)

Proof. Replace ψ(n, p)s by its definition as a composition of three maps to get the
top row of the following diagram where i′ denotes the map induced by the ideal
inclusion Q(n)p ⊆ Sn−1A(n) with appropriate K-theoretic degree shifts:

Ks−n+1Q(n)p Ks−nSQ(n)p Ks−nQ̃(n)p, Ks−nQ(n+ 1)p

KsA(n) KsA(n) KsA(n+ 1).

∼= ∼= a(n)s + 0

i(n, p)s i′ i(n+ 1, p)s

a(n)s
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6 Infinite sums of ideals

The left square commutes by definition of i′ because the top arrow is the suspension
isomorphism.

The right side commutes because, by Remark 6.2.7, the isomorphism at the top
is natural with respect to ∗-homomorphisms that preserve (n+ 1)-fold ideal decom-
positions: The two ∗-homomorphisms here are the ideal inclusion that induces a(n)

and the ideal inclusion Q(n+ 1)p → SnA(n+ 1) that induces i′ and i(n+ 1, p)s and
restricts to Q̃(n)p; these two ideal inclusions commute with each other already on
the level of C*-algebras.

Definition 6.6.8 (Filtration of K∗A). Fix p, s ∈ Z and compose diagram 6.6.7.1
with itself across all n ≥ 1:

KsQ(1)p Ks−1Q(2)p Ks−2Q(3)p · · ·

KsA(1) KsA(2) KsA(3) · · · .

i(1, p)s i(2, p)s i(3, p)s

a(1)s a(2)s a(3)s

ψ(1, p)s ψ(2, p)s ψ(3, p)s

The direct limit of KsA(n) for n→∞ along a(n) is KsA by continuity of K-theory.
Take the direct limit of Ks−n+1Q(n)p for n → ∞ along ψ(n, p)s and consider, by
functoriality of the direct limit, the direct limit of the vertical arrows i(n, p)s,

colim
n→∞

i(n, p)s :
(

colim
n→∞

Ks−n+1Q(n)p

)
→ KsA.

With this map, define the filtration of K∗A, {F pK∗A}p∈Z, by

F pKsA = im
(

colim
n→∞

i(n, p)s

)
⊆ KsA.

Lemma 6.6.9. The filtration {F pKsA}p∈Z of KsA from Definition 6.6.8 is an in-
creasing filtration.

Proof. For all p ≤ p′, we have Q(n)p ⊆ Q(n)p′ . Using i as in the notation of Section
3, i
(
Ks−n+1Q(n)p

)
⊆ Ks−n+1Q(n)p′ . Because the i(n, p)s arise from the directed

system of morphisms i from Remark 3.4.3,

KsQ(n)p
i−→ KsQ(n)p+1

i−→ · · · i−→ KsQ(n)n = KsQ(n)n+1 = · · · ,

merely via isomorphisms that implement a K-theoretic degree shift, we may pull
back our direct limit construction for colimn i(n, p)s via these isomorphisms to the

78



6.6 Convergence

system of i. Passing to the direct limit morphism along n→∞ gives(
colim
n→∞

i
)(

colim
n→∞

Ks−n+1Q(n)p

)
⊆ colim

n→∞
Ks−n+1Q(n)p′ .

Thus the filtration is increasing:

F pKsA =
(

colim
n→∞

i(n, p)s

)(
colim
n→∞

Ks−n+1Q(n)p

)
⊆
(

colim
n→∞

i(n, p′)s

)(
colim
n→∞

Ks−n+1Q(n)p′
)

= F p
′
KsA.

Lemma 6.6.10. The p-indexed filtration of K∗A from Definition 6.6.8 is Hausdorff,
exhaustive, and complete according to Definition 2.7.2.

Proof. For p < 0, all terms Ks−n+1Q(n)p vanish regardless of s and n, thus their
direct limit also vanishes. This renders the filtration Hausdorff and complete.
For any class [x] ∈ KsA, there is n ∈ N such that KsA(n) contains the preimage

of [x]. We can choose p = n to make i(n, n)s : Ks−n+1Q(n)n → KsA(n) surjective,
thereby including that preimage of [x] in the range of i(n, n)s. Commutativity of the
diagram in Definition 6.6.8 shows that [x] is in the range of colimn i(n, p)s. Thus the
filtration is exhaustive.

Remark 6.6.11. The biggest problem in passing to direct limits for n → ∞ were
the iterated suspensions Sn−1, but these have already been handled by the degree-
amending links λ(2n) from Definition 6.5.3 via degree shifts and Bott isomorphisms.
Thus throughout Section 6.6, we may rest assured that any direct limits of modules
or differentials on Erp,q for r ≥ 1 or r = ∞ remain well-defined for the spectral
sequence {Erp,q, dr}r,p,q for countably many C*-ideals.

Proposition 6.6.12 (Convergence of the limit spectral sequence). Let A be a C*-
algebra with A = I0 + I1 + · · ·+ Ij + · · ·, a sum of C*-ideals. The limit spectral
sequence constructed in Theorem 6.5.1, defined as the direct limit along the system
λ(2n) with

Erp,q = colim
n→∞

(
β ◦ `(2n+ 1) ◦ `(2n) : {E(2n)rp,q} → {E(2n+ 2)rp,q}

)
,

converges strongly to K∗A.

Proof. For all n ∈ N, the spectral sequence {E(n)rp,q, d(n)r} converges strongly:

E(n)∞p,q
∼= F pKp+qA(n)/F p−1Kp+qA(n).
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6 Infinite sums of ideals

The terms E∞p,q are the direct limits of these E(n)∞p,q along the morphisms induced on
E(2n)∞p,q by the λ(2n) because these λ(2n) had all desirable properties – naturality
with respect to ∗-homomorphisms that preserve countable ideal decompositions and
commutativity with the differentials. Furthermore, K-theory is continuous. Along
the system of λ(2n),

colim
n→∞

(
F pKp+qA(2n)/F p−1Kp+qA(2n)

) ∼= colim
n→∞

(
E(2n)∞p,q, λ(2n)

) ∼= E∞p,q.

The filtration {F pK∗A}p∈Z ofK∗A is Hausdorff, exhaustive, and complete by Lemma
6.6.9 and E∞p,q is isomorphic to F pKp+qA/F

p−1Kp+qA by Lemma 6.6.1. Therefore
the limit spectral sequence {Erp,q, dr}r,p,q converges strongly to K∗A.

This concludes the proof of Theorem 6.5.1 about the existence, well-definedness,
functoriality, and strong convergence of the limit spectral sequence for countably
many C*-ideals.

6.7 Uncountable sums of ideals

In most geometrical applications, if a C*-algebra may be written as a sum of easily
computable ideals, this sum will be a countable sum. We have described a spectral
sequence for this case. Still, it seems reasonable to generalize the cardinality of the
algebra decomposition.

Theorem 6.7.1 (Spectral sequence for arbitrary sums). Let α be an arbitrary index
set: finite, countable, or uncountable. Let A =

∑
β∈α Iβ be the norm closure of a

sum of |α|-many C*-ideals Iβ ⊆ A. There is a spectral sequence {Erp,q, dr}r,p,q with

E1
p,q
∼=


⊕
|J |=p+1

Kq

( ⋂
j∈J

Ij

)
for p ≥ 0,

0 for p < 0,

where J ranges over all nonempty finite index subsets J ⊆ α. In general, this is a
half-page spectral sequence, any term E1

p,q with p ≥ 0 may be nonzero.

This spectral sequence converges strongly to K∗A. It is functorial with respect to
∗-homomorphisms that preserve α-indexed ideal decompositions.

This generalizes Theorem 6.5.1 about countable α. To prove Theorem 6.7.1 for
uncountable α, we will adapt our construction for countable index sets to suitable
direct limits that capture all of α.
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6.7 Uncountable sums of ideals

Definition 6.7.2 (Directed system of finite sets). For a set α, we define its directed
system of finite sets,

Fin(α) = {J ⊆ α : |J | is finite};

this system is partially ordered by the subset relation ⊆.

Remark 6.7.3. This is indeed a directed system: Given arbitrary J , J ′ ∈ Fin(α),
both are equal to or smaller than their union J ∪ J ′, still a finite set.

The direct limit of Fin(α) in the category of sets is α. All chains, i.e., linear
subsystems, in Fin(α) are either finite or have the order type of (N,≤).
We may consider the partially ordered set Fin(α) itself a thin category: Its ele-

ments become objects. Comparable sets J ⊆ J ′ are linked with a unique morphism
J → J ′.

Notation 6.7.4 (Algebras for subsets J ⊆ α). For the C*-algebra A =
∑

β∈α Iβ as
in the statement of Theorem 6.7.1 and J ∈ Fin(α), define a subalgebra A(J) of A
by

A(J) =
∑
j∈J

Ij .

Let J ′ ∈ Fin(α) be another subset with J ⊆ J ′. For s ∈ Z, let

a(J, J ′)s : KsA(J)→ KsA(J ′)

be the map induced in K-theory by the inclusion of C*-algebras A(J) ⊆ A(J ′).

Remark 6.7.5 (Directed system in K-theory). For each s ∈ Z, consider the functor
from Fin(α) to abelian groups that maps J to KsA(J) and a comparable pair of
sets J ⊆ J ′ to a(J, J ′)s : KsA(J) → KsA(J ′). This turns {KsA(J) : J ∈ Fin(α)}
with the system of morphisms {a(J, J ′)s : J ⊆ J ′ ∈ Fin(α)} into a directed system.
Because K-theory is continuous,

colim
J∈Fin(α)

KsA(J) = KsA.

Notation 6.7.6 (Spectral sequence for J). For J ∈ Fin(α), the finite sum of ideals
A(J) has a spectral sequence {E(J)rp,q, d(J)r}r,p,q according to Theorem 4.6.1 that
converges strongly to A(J) and has first-page terms of the form

E(J)1
p,q
∼=


⊕
|L|=p+1
L⊆J

Kq

( ⋂
j∈L

Ij

)
for 0 ≤ p < |J |,

0 for p < 0 or p ≥ |J |,
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6 Infinite sums of ideals

where L ranges over all nonempty subsets of J .

Remark 6.7.7 (Directed system of spectral sequences). Let J ⊆ J ′ ∈ Fin(α) be two
sets such that |J | and |J ′| differ by an even number. Then the spectral sequences
{E(J)rp,q, d(J)r}r,p,q and {E(J ′)rp,q, d(J ′)r}r,p,q fit into a directed system of spectral
sequences connected by degree-amending links shaped like λ(2n) from Definition
6.5.3. These morphisms have bidegree (0, 0).
Let F ⊆ Fin(α) be the subsystem of Fin(α) of all sets J ∈ Fin(α) with even

cardinality. Then F and Fin(α) have the same direct limit α in the category of sets.
Consider the category of spectral sequences of the form {E(J)rp,q, d(J)r}r,p,q for

J ∈ F with morphisms shaped like λ(2n): Passing from J ∈ Fin(α) to the spectral
sequence {E(J)rp,q, d(J)r}r,p,q becomes a functor between directed systems.

Remark 6.7.8. It does not matter whether the sets J ∈ F have even or odd cardi-
nalities. As we have seen in the proof of Proposition 6.5.4, the limit spectral sequence
along (N,≤) does not depend on whether we consider the subsystem linked by λ(2n)

or that linked by λ(2n+ 1).

Lemma 6.7.9. Let F ⊆ Fin(α) be the subsystem of Fin(α) of all sets J ∈ Fin(α)

with even cardinality. Fix p ∈ Z with p ≥ 0 and fix q ∈ Z.
Consider all groups E(J)1

p,q for J ∈ F : This is a directed system of abelian groups;
the morphisms are restrictions of degree-amending links of the shape of λ(2n) from
Definition 6.5.3. Then

colim
J∈F

E(J)1
p,q = colim

J∈F

⊕
|L|=p+1
L⊆J

Kq

( ⋂
j∈L

Ij

)
=

⊕
|L|=p+1
L⊆α

Kq

( ⋂
j∈L

Ij

)
.

Proof. For J ⊆ J ′ ∈ F , the morphisms E(J)1
p,q → E(J ′)1

p,q are well-defined because
degree-amending links have bidegree (0, 0).
These morphisms were defined as compositions of Bott isomorphisms and links

(Definition 6.4.2) between spectral sequences; they preserve all information: Given
L ⊆ J of cardinality p + 1, the direct summand Kq

(⋂
j∈L Ij

)
from E(J)1

p,q maps
isomorphically onto its copy in the direct sum E(J ′)1

p,q. Given L ⊆ J ′ such that L
is not a subset of J , the direct summand Kq

(⋂
j∈L Ij

)
is not in the range.

In the category of abelian groups, the direct limit may be constructed from a large
direct sum of all objects, dividing by relations according to the morphisms. Here the
links behave like inclusions, enforcing trivial relations.
Finally, F is cofinal in Fin(α): For any given set J ⊆ α, the system F contains a

set J ′ with J ⊆ J ′. Therefore the desired direct limit is the direct sum taken over
all subsets of α that have cardinality p+ 1.
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6.7 Uncountable sums of ideals

With these preparations, we may now prove our main theorem.

Proof of Theorem 6.7.1. Let F ⊆ Fin(α) be the subsystem of Fin(α) of all sets
J ∈ Fin(α) with even cardinality.
Consider the directed system of spectral sequences {E(J)rp,q, d(J)r}r,p,q along all

J ∈ F from Remark 6.7.7. Lemma 6.7.9 guarantees that the page E1
∗,∗ of the limit

spectral sequence has the desired structure.
All constructions in earlier sections behaved well with the differentials d(J)r. Here

in Section 6.7, we have applied various functorial direct limit constructions. There-
fore the limit spectral sequence has the desired differentials.
Likewise, functoriality of the spectral sequence with respect to ideal decomposi-

tions follows from all earlier sections and the functoriality of direct limits.
Finally, we must prove the strong convergence. All direct limit results from Section

6.6 about strong convergence along the directed system (N,≤) continue to hold for
our directed system F because all infinite chains in F have the order type (N,≤):
Whenever the symbol n ∈ N determines a K-theoretic degree shift in Section 6.6,
this may be replaced with n = |J | for J ∈ F . Even though the diagram in Definition
6.6.8 of the morphism colimn i(n, p)s relies on the linearity of (N,≤), the construction
itself is worded purely with direct limits: Objects in this category are morphisms of
the form i(n, p)s and morphisms in this category are commutative diagrams. This
construction does not require linearity of the underlying system, yet provides the
desired filtration on E∞∗,∗.
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7 Infinite coarse excision

7.1 Direct limits of coarse algebras

The spectral sequence for infinite sums of C*-ideals allows us to strengthen Theorem
5.5.2, the spectral sequence for finite coarsely excisive covers, to infinite coarsely
excisive covers.

Proposition 7.1.1. Let (X, d) be a coarse space and let {Xβ}β∈α be a coarsely exci-
sive cover of (X, d). The index set α may be finite, countably infinite, or uncountable.
Let F∗ be either the functor C∗ from the coarse category to C∗A or one of the functors
D∗ or Q∗ from the coarse-continuous category to C∗A. For each β ∈ α, consider the
C*-ideal F∗Xβ

∼= F∗(Xβ ⊆ X) of F∗X.

Then the direct limit of finite sums of ideals,

⋃
J⊆α
|J |∈N

(∑
j∈J

F∗(Xj ⊆ X)
)
, (7.1.1.1)

is a C*-ideal of F∗X.

Proof. Let A denote the C*-algebra in expression 7.1.1.1.
For each β ∈ α, the algebra F∗(Xβ ⊆ X) is a C*-ideal in F∗X. The inclusion

F∗(Xβ ⊆ X)→ F∗X factors through any finite sum
∑

j∈J F
∗(Xj ⊆ X) when β ∈ J ,

and the inclusion of that finite sum in F∗X factors again through A; thus the closed
A is a sub-C*-algebra of F∗X.
To check that A is a C*-ideal in F∗X, it remains to show that A is an algebraic

two-sided ideal. Given a ∈ A and b ∈ F∗X, find a sequence of finite sets (Jn)n∈N

with Jn ⊆ α and a sequence (an)n∈N with an ∈
∑

j∈Jn F
∗(Xj ⊆ X) that converges

to a. Finite sums of C*-ideals F∗(Xj ⊆ X) are again C*-ideals, thus both (anb)n∈N

and (ban)n∈N stay within the closed A. These sequences converge in A to ab and ba
respectively because multiplication is continuous.

Remark 7.1.2. For finite decompositions, the direct limit of finite sums from ex-
pression 7.1.1.1 equals F∗X by Theorem 5.5.1.

7.2 Corollaries for coarsely excisive covers

Theorem 7.2.1 (Spectral sequence for coarsely excisive covers). Let (X, d) be a
coarse space and let {Xβ}β∈α be a coarsely excisive cover of (X, d). Let F∗ be either
the functor C∗ from the coarse category to C∗A or one of the functors D∗ or Q∗ from
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7 Infinite coarse excision

the coarse-continuous category to C∗A. There is a spectral sequence {Erp,q, dr}r,p,q
with

E1
p,q
∼=


⊕
|J |=p+1

KqF
∗
( ⋂
j∈J

Xj

)
for p ≥ 0,

0 for p < 0,

where J ranges over all nonempty finite subcollections of indices in α. For finite
α, this spectral sequence converges strongly to K∗F∗X. In general, the spectral se-
quence converges strongly to the K-theory of

⋃
J

∑
j∈J F

∗(Xj ⊆ X), a C*-ideal of
F∗X, where J ranges over all finite subcollections of indices in α. The spectral se-
quence is functorial with respect to morphisms (coarse maps for C∗, or coarse and
continuous maps for D∗ and Q∗) to other coarse spaces with compatible coarsely
excisive covers (Definition 5.1.4).

Proof. Apply the spectral sequence from Theorem 6.7.1 about arbitrary sums of
abstract C*-algebras to the algebras from Theorem 5.5.1 for coarse spaces.

By Theorem 6.7.1, the spectral sequence converges strongly to the K-theory of the
norm closure of finite sums of the input ideals. These ideals are F∗Xβ

∼= F∗(Xβ ⊆ X)

and we have described the norm closure of their finite sums in Proposition 7.1.1.

The special case for finite coarsely excisive covers follows from Remark 7.1.2.

Remark 7.2.2 (Warning about uncountable decompositions). Let (X, d) be a coarse
space. The important C*-algebras C∗X, D∗X, and Q∗X are defined via very ample
representations % : CX → BH for a separable Hilbert space H. Separability of
the Hilbert space is crucial for several isomorphism theorems. Ampleness of the
representation guarantees that no two functions f 6= f ′ ∈ CX may be represented
on that separable Hilbert space by operators %(f) and %(f ′) that differ only by a
compact operator.

If the coarsely excisive cover {Xβ}β∈α of (X, d) has an uncountable index set α,
the separability requirement may force F∗Xβ = F∗Xβ′ for many β 6= β′, or may force
outright triviality of ideals. It appears hard to construct interesting examples for
uncountable coarse excision.

With Theorem 7.2.1, we can strengthen the following Mayer-Vietoris result. Let
(X, d) be a coarse space and X0, X1 ⊆ X such that {X0, X1} is a coarsely excisive
cover. All rows and columns in the following diagram are long exact sequences; the

86



7.2 Corollaries for coarsely excisive covers

index j in
⊕

j ranges over {0, 1}:

· · · Ks+1C
∗X KsC

∗(X0 ∩X1)
⊕

jKsC
∗Xj KsC

∗X · · ·

· · · Ks+1D
∗X KsD

∗(X0 ∩X1)
⊕

jKsD
∗Xj KsD

∗X · · ·

· · · Ks+1Q
∗X KsQ

∗(X0 ∩X1)
⊕

jKsQ
∗Xj KsQ

∗X · · ·

· · · KsC
∗X Ks−1C

∗(X0 ∩X1)
⊕

jKs−1C
∗Xj Ks−1C

∗X · · · .

The columns are exact by definition of C∗, D∗, and Q∗. Commutativity follows from
the naturality of the Mayer-Vietoris sequence.

Proposition 7.2.3. Let (X, d) be a coarse space and let {Xβ}β∈α be a coarsely exci-
sive cover of (X, d). Consider the following diagram with exact columns; horizontal
arrows are induced by (direct sums of) inclusions, and unions range over all finite
index sets J ⊆ α:

⊕
β∈αKsC

∗Xβ Ks

(⋃
J

∑
j∈J C

∗(Xj ⊆ X)
)

KsC
∗X

⊕
β∈αKsD

∗Xβ Ks

(⋃
J

∑
j∈J D

∗(Xj ⊆ X)
)

KsD
∗X

⊕
β∈αKsQ

∗Xβ Ks

(⋃
J

∑
j∈J Q

∗(Xj ⊆ X)
)

KsQ
∗X

⊕
β∈αKs−1C

∗Xβ Ks−1

(⋃
J

∑
j∈J C

∗(Xj ⊆ X)
)

Ks−1C
∗X.

Then this diagram commutes.

Proof. The columns are exact again by definition of C∗, D∗, and Q∗. Commutativity
follows from continuity of K-theory – the algebras in the center column are direct
limits – and from functoriality of the spectral sequence in Theorem 6.5.1 with respect
to morphisms between C*-algebras; here, direct sums of inclusion morphisms.
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7 Infinite coarse excision

7.3 The coarse space Z∞

Consider the free Z-module Z∞ =
⊕

N Z of N-indexed tuples (x0, x1, . . . , xn, . . .) with
only finitely many entries different from 0. This space can be metrized in different
ways.

Definition 7.3.1 (Weight functions, weighted 1-metric). Let w : N → R>0 be an
arbitrary function, for example

w : n 7→ n+ 1, w : n 7→ 1, or w : n 7→ 1

n+ 1
.

We call w a weight function. Given a weight function w, define a metric dw on Z∞:

dw
(
(x0, x1, . . . xn, 0, 0, . . .), (y0, y1, . . . , yn′ , 0, 0, . . .)

)
=

∞∑
j=0

w(j) |xj − yj | .

Example 7.3.2. For the constant weight function w : n 7→ 1, the metric dw coincides
with the usual 1-metric d1.

Remark 7.3.3 (Topological properties of Z∞). For w : n 7→ n+ 1, the metric dw is
proper: With minimum distance k+1 between points in the k-th dimension, any ball
of finite diameter is finite, thus compact. For w : n 7→ 1 or w : n 7→ 1

n+1 , closed dw-
balls with finite radius larger than 1 are not compact anymore. Under w : n 7→ 1

n+1 ,
the space (Z∞, dw) is not even locally compact.

More than with the topological properties of these spaces, we are concerned with
their coarse properties.

The identity on any coarse space is a coarse map: Choose S = R in Definition
2.5.2. But the identity Z∞ → Z∞ fails to be a coarse map when the two spaces are
metrized according to two different weight functions among n 7→ n+ 1, n 7→ 1, and
n 7→ 1

n+1 . The identity ceases to be uniformly expansive: Points with distance 1

in dimension n may have distance n + 1 or even (n + 1)2 in the target space. No
constant S > 0 can serve as an upper bound across all dimensions n.

If the identity fails as a coarse equivalence, can other maps substitute? The answer
is no, for a similar reason:

Proposition 7.3.4 (Coarse properties of Z∞). The weight functions n 7→ n+ 1 and
n 7→ 1 generate different coarse structures on Z∞; i.e., there is no coarse equivalence
according to Definition 2.5.6.
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7.3 The coarse space Z∞

Proof. Assume that there is a pair of coarse equivalences

f : (Z∞, dn7→n+1)→ (Z∞, dn7→1),

g : (Z∞, dn7→1)→ (Z∞, dn7→n+1).

Then let S > 0 satisfy all of these conditions:

• For all x ∈ Z∞, we have dn7→n+1(x, gfx) ≤ S, this is possible because f and g
are a pair of coarse equivalences.

• Whenever x, x′ ∈ Z∞ with dn7→1(x, x′) ≤ 1, then dn7→n+1(gx, gx′) ≤ S, this is
possible because g is a coarse map.

• For simplicity, S ∈ N.

Let x and x′ have dn7→1(x, x′) ≤ 1. Then dn7→n+1(gx, g0) ≤ S and in all dimensions
S, (S + 1), (S + 2), . . ., the coordinates of g(x) and g(x′) must be identical.
Any two points y, y′ can be linked by a finite sequence of hops between two points

each with dn7→1-distance ≤ 1. By induction, g(y) and g(y′) agree in all coordinates
from dimension S onwards.

Let z ∈ (Z∞, dn7→n+1) have different coordinates than g(y) in dimension S. Then
(g ◦ f)(z) and z have distance at least S + 1. This is not allowed when f and g are
coarse equivalences.

Remark 7.3.5. When we replace the weight function n 7→ 1 with n 7→ 1
n+1 , the

same argument shows that the coarse structure induced by that weight function is
not equivalent to (Z∞, dn7→n+1) either.

Notation 7.3.6. Let X ⊆ Z∞ be a set. For a metric dw as above and R > 0, we
write Nw(X,R) instead of Ndw(X,R) for the R-neighborhood of X under the metric
dw according to Definition 2.6.1.

Lemma 7.3.7. For all three weight functions w : n 7→ n+ 1, w : n 7→ 1, and w : n 7→
1

n+1 , the decomposition {Xj}j∈N with

Xj = Zj≥0 × Z≤0 × Z∞

defines a coarsely excisive cover of (Z∞, dw).

The block decomposition of Rn from Definition 5.6.6 was similar, but covered only
a finite-dimensional space.
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7 Infinite coarse excision

Proof of Lemma 7.3.7. Consider a finite nonempty index set J ⊆ N and the finite
subcollection {Xj}j∈J of the decomposition {Xj}j∈N. We have to show that, for
R > 0, there exists S > 0 with⋂

j∈J
Nw(Xj , R) ⊆ Nw

( ⋂
j∈J

Xj , S
)
.

Let n denote the highest index in J . We may write⋂
j∈J

Xj = Y0 × Y1 × . . .× Yn−1 × Z≤0 × Z∞,

where Yj = {0} for j ∈ J , otherwise Yj = Z≥0. For easier notation, we will write Yn
for Z≤0.

We are interested in the R-neighborhood of each Xj for R > 0 and in the S-
neighborhood of the intersection for a suitable S. Let x = (x0, x1, x2, . . .) be a
point in Z∞. The coordinates after the n-th coordinate do not matter anymore: For
the intersection

⋂
j∈J Xj , the distance of x to

⋂
j∈J Xj depends only on the early

coordinates up to the n-th.

Since the metric dw on Z∞ is a weighted 1-metric – distance is the weighted sum of
the dimension-wise distances – it makes sense to decompose (Z∞, dw) into a product
of metric spaces, Zn+1 × Z∞, of the first n + 1 dimensions and the remainder Z∞

that is irrelevant for the chosen J . Let p and q be the projections for this product
decomposition,

p : Z∞ → Zn+1, p(x0, x1, x2, . . .) = (x0, x1, . . . , xn),

q : Z∞ → Z∞, q(x0, x1, x2, . . .) = (xn+1, xn+2, . . .).

Both projections admit one-sided inverse by padding all other coordinates with zeros.
We pull back the metric dw to either factor along these inverses. For x ∈ Z∞ and a
space Y that is either Y = Xj for a j ∈ J or Y =

⋂
j∈J Xj , we then have

dw(x, Y ) = dw
(
px, p(Y )

)
+ dw

(
qx, q(Y )

)︸ ︷︷ ︸
= 0

; (7.3.7.1)

the rightmost summand vanishes because both q(Xj) and q
(⋂

j∈J Xj

)
are the entire

range q(Z∞) by construction. On the finite-dimensional remainder Zn+1, the weight
function w admits an upper and a lower bound: There is a constant M ≥ n+ 1 such
that 1

M ≤ w(k) ≤M for all k < n+ 1. For x, y ∈ Zn+1, Lemma 5.6.16 shows

dw(x, y) ≤Md1(x, y) ≤Md∞(x, y) ≤M2d1(x, y) ≤M3dw(x, y). (7.3.7.2)
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7.3 The coarse space Z∞

The finite-dimensional space Zn+1 embeds isometrically into Rn+1. This embedding
is not necessarily the inclusion Zn+1 ⊆ Rn+1; rather, depending on w, its image
lattice is scaled differently per dimension. Still, we can now apply Proposition 5.6.15
for the sup-metric d∞ on Rn+1:⋂

j∈J
N∞

(
p(Xj), R

)
= N∞

( ⋂
j∈J

p(Xj), R
)
.

Together with 7.3.7.1 and 7.3.7.2, we conclude that S = M3R certifies the desired
coarse excisiveness in the infinite-dimensional space Z∞:⋂

j∈J
Nw(Xj , R) ⊆ Nw

( ⋂
j∈J

Xj ,M
3R
)
.

Proposition 7.3.8. Let {Xj}j∈N be the coarsely excisive cover of Z∞ as in Lemma
7.3.7 and let A denote the direct limit C*-algebra

A =
⋃
J⊆N
|J |∈N

∑
j∈J

C∗(Xj ⊆ Z∞) =
∑
j∈N

C∗(Xj ⊆ Z∞).

Under any of the three considered weight functions, the algebra A then has trivial
K-theory: K∗A = 0.

Proof. We may use our spectral sequence from Theorem 6.5.1 because the cover
{Xj}j∈N is coarsely excisive.

Each Xj is flasque (Definition 5.6.3) because it contains the flasque factor Z≤0.

For finite J ⊆ N, the intersection
⋂
j∈J Xj is again flasque: Let n be the largest

index in J . We may describe this intersection by listing its one-dimensional factors:
First, there are n factors that we may ignore. Then there is the flasque factor Z≤0.
All further factors form a copy of Z∞. Because of the flasque factor, we conclude
that K∗C∗

(⋂
j∈J Xj

)
= 0.

Since this holds for all finite J ⊆ N, Theorem 6.5.1 gives a spectral sequence with
first page E1

∗,∗ = 0, converging to K∗A = 0.

The countable intersection
⋂
j∈NXj is a single point, but infinite intersections do

not appear in the spectral sequence.
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7 Infinite coarse excision

7.4 Wedge sum of rays

Let α be either N or a finite cardinality with α > 0. Let Xβ = (R≥0, 0) be a ray for
all β ∈ α, pointed at the origin. Define

X =
∨
β∈α

Xβ,

a finite or countable wedge sum of the half-open rays glued together at their origins.
Define a coarse structure on X by the metric

d(x, y) =

|x− y| if x and y lie in the same ray,

|x|+ |y| otherwise.

If local compactness were desired, we could remove the common point 0. This would
not change any large-scale properties of X. But in this example, local compactness
is irrelevant.

Lemma 7.4.1. Let Yβ = X0 ∪Xβ for all β ∈ α. Cover X by {Yβ : β ∈ α}.
This is a coarsely excisive cover of the wedge sum X.

Proof. We have to check: For all finite {Yβ(0), Yβ(1), . . . , Yβ(n−1)} and all R > 0,
there exists S > 0 such that the n-fold intersection of the R-neighborhoods lies in
the S-neighborhood of the intersection:⋂

j<n

Nd(Yβ(j), R) ⊆ Nd

( ⋂
j<n

Yβ(j), S
)
.

For n = 1, this is trivial with S = R. For n > 1, consider n pairwise different Yβ(j):
The intersection

⋂
j<n Yβ(j) is always Y0 = X0.

The common point 0 joins all rays Xβ , its R-neighborhood Nd({0}, R) is therefore
the union of the intervals [0, R] from all rays Xβ . Thus:⋂

j<n

Nd(Yβ(j), R) = X0 ∪Nd({0}, R),

Nd

( ⋂
j<n

Yβ(j), S
)

= Nd(X0, S) = X0 ∪Nd({0}, S).

Choose S = R to see that the cover {Yβ}β∈α is coarsely excisive.

Proposition 7.4.2. For the wedge sum X =
∨
β∈αXβ with each Xβ = (R≥0, 0) a

ray pointed at the origin and the coarsely excisive cover {Yβ}β∈α from Lemma 7.4.1,
let A be the direct limit C*-algebra of sums

∑
j∈J C

∗(Yj ⊆ X) over finite sets J ⊆ α.
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7.4 Wedge sum of rays

Then

KsA =


0 for s even,⊕
β∈α
β 6=0

Z for s odd.

Proof. The set Y0 remains a flasque ray. Each other Yβ is coarsely equivalent to
R and therefore has K-theory K0C

∗Yn = 0 and K1C
∗Yn = Z. This determines the

column E1
0,∗ of the first page.

Each finite intersection of at least two different Yn is the flasque space Y0 = X0.
The K-theory of its Roe algebra vanishes. Therefore the E1

∗,∗-term looks as follows:

3 ...

2 0

1
⊕
β∈α
β 6=0

Z

0 0

−1
⊕
β∈α
β 6=0

Z

−1 0 1 2
p.

q

This spectral sequence collapses on the first page. We may read the K-theory of
A ⊆ C∗X from the only nonzero column: If α is countably infinite, the dimension of
the free Z-module in odd degrees is countably infinite; if α is finite, the dimension is
α− 1.

For finite α, an alternative proof to compute A = C∗X by induction repeats the
Mayer-Vietoris principle α − 1 times for two-fold coverings: Glue single rays, one
after another, to the wedge sum that starts with a single ray.
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8 Generalizations

8.1 KO-theory

Instead of K-theory of C*-algebras over C, we may examine KO-theory for a C*-
algebra A over R, denoted KO∗A. All basic definitions carry over without change,
turning KO∗ into a Z-graded covariant continuous functor into abelian groups.
The major difference is the degree of the Bott isomorphism: Instead of KsA ∼=

Ks+2A, real Bott periodicity admits a natural isomorphism β : KOsA ∼= KOs+8A

for all s ∈ Z. As a result, for C*-ideals I ⊆ A, the six-term exact sequence

· · · → K0I → K0A→ K0(A/I)
∂2◦β−→ K1I → K1A→ K1(A/I)

∂1−→ K0I → · · ·

becomes a 24-term exact sequence in the real case:

· · · → KO0A→ KO0(A/I)
∂8◦β−→ KO7I → KO7A→ KO7(A/I)

∂7−→ KO6I → · · · .

Looking back to the constructions of the various spectral sequences, we relied on
the Bott isomorphism merely for the construction of the degree-amending links
λ(n) : E(n)rp,q → E(n + 2)rp,q from Definition 6.5.3. These morphisms and Proposi-
tion 6.5.4 about the existence of the limit spectral sequence can be adapted to work
with KO-theory: Define

λR(n) : E(n)rp,q → E(n+ 8)rp,q

by chaining 8 links {`(n)rp,q}r,p,q from Definition 6.4.2 – instead of only 2 such links in
the case of K-theory – with the real Bott isomorphism. The direct limit along these
λR(8n) for n→∞ does not depend on the position of the Bott isomorphism within
the chain nor on whether we consider the directed system along λR(8n), λR(8n+ 1),
. . ., or λR(8n+ 7).
Convergence is proven as in Section 6.6 and generalized to uncountable ideal de-

compositions as in Section 6.7. This yields a well-defined spectral sequence that
computes the KO-theory of C*-ideal sums: The statement from Theorem 6.7.1 holds
when we replace K-theory with KO-theory.

8.2 Group actions

Let (X, d) be a metric space. Let G be a countable discrete group that acts on
X freely and properly by d-isometries. This action extends to CX via (gf)(x) =

f(g−1x) for g ∈ G, f ∈ CX, and x ∈ X. In addition to a very ample representa-
tion % : CX → BH for a separable Hilbert space H, let U : G → H be a unitary
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8 Generalizations

representation with U(g)%(f) = %(gf)U(g).
This gives rise to C*-algebras C∗GX and D∗GX by changing the usual definitions

of C∗X and D∗X: The norm closure is taken of only the G-invariant operators in
BH that satisfy all other requirements of C∗X and D∗X, respectively. Furthermore,
define Q∗GX = D∗GX/C

∗
GX.

In [Sie12, Definition 3.6], for a G-invariant subspace Y ⊆ X that we may assume to
be closed, P. Siegel constructs the relative C*-algebras C∗G(Y ⊆ X) and D∗G(Y ⊆ X)

by imposing on operators in C∗GX and D∗GX the conditions from Section 5.2 for
support near Y and local compactness outside Y . Finally, define Q∗G(Y ⊆ X) as the
quotient D∗G(Y ⊆ X)/C∗G(Y ⊆ X). There is a long exact sequence for s ∈ Z,

· · · → KsC
∗
GX → KsD

∗
GX → KsQ

∗
GX → Ks−1C

∗
GX → · · · .

Furthermore, Q∗GX ∼= Q∗XG. The sequence may thus be rewritten with the K-
homology of XG instead of Q∗GX according to Remark 2.4.12.
Let the functor F ∗G stand for either C∗G, D

∗
G, or Q

∗
G. According to [Sie12, Propo-

sitions 3.8, 3.9], for closed G-invariant subspaces Y ⊆ X and s ∈ Z, we have

KsF
∗
G(Y ⊆ X) ∼= KsF

∗
GY.

For G-invariant coarsely excisive covers {X0, X1} of X, we have

F ∗G(X0 ⊆ X) + F ∗G(X1 ⊆ X) = F ∗GX,

F ∗G(X0 ⊆ X) ∩ F ∗G(X1 ⊆ X) = F ∗G(X0 ∩X1 ⊆ X).

This leads to a Mayer-Vietoris exact sequence. We may expect a generalization of
our spectral sequence to arbitrary G-invariant coarsely excisive covers {Xβ}β∈α of
X. The definitions of C∗G(Y ⊆ X) and D∗G(Y ⊆ X) treat the G-invariance in the
least intrusive way possible. There should be no difficulty in adapting the equations
to finite selections J ⊆ α of the coarsely excisive cover:

Ks

(∑
j∈J

F ∗G(Xj ⊆ X)
)
∼= KsF

∗
G

( ⋃
j∈J

Xj

)
,

Ks

( ⋂
j∈J

F ∗G(Xj ⊆ X)
)
∼= KsF

∗
G

( ⋂
j∈J

Xj

)
,

with F ∗G standing for C∗G, D
∗
G, or Q

∗
G. The constructions will be similar to those

leading to our Theorem 5.5.1 for these equations where G is trivial.
This provides a G-invariant version of our spectral sequence from Theorem 7.2.1

for coarsely excisive covers.
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