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Abstract 

Oil palm cultivation has vastly expanded in the last decades and led to high economic 

returns, but has also induced environmental problems including reduced biological 

diversity and impaired ecosystem services. One potential way of reconciling economic 

and ecological needs would be to foster oil-palm agroforests by planting native tree 

species with the objective to enhance biodiversity and ecosystem services. In Sumatra, 

Indonesia, such an oil palm agroforestry experiment was established and a series of 

studies evaluated tree performance, oil palm yields and biodiversity changes. In this 

context, spatial information was relevant as the survival of planted trees may be 

influenced by neighborhood or the occurrence of specific taxa in experimental 

treatments may be influenced by the distance of source habitats. Drone-based 

assessments offer opportunities to support such spatial-structure related ecological 

studies. In this study, I used low and high flying drones (1) to analyze crown metrics of 

trees and palms to predict plant water use, (2) to study canopy cover in oil palm 

agroforest and the effect of oil palm canopy cover on tree mortality, and (3) to assess 

land use types surrounding the experiment.  Objectives 1 and 2 were addressed with an 

octocopter drone, flying approximately 40 m above ground; while objective 3 was 

addressed by a fixed-wing drone, flying approximately 300 m above ground.    

For study objective 1, I collaborated with a colleague who measured the water-use rates 

of individual trees and palms within the agroforestry experiment. Transpiration is often 

estimated from direct water-use measurements in a limited number of plants and then 

scaled up to the stand-level by using plant size related variables for the remaining 

plants. Presently, drone-based methods offer new opportunities for plant size 

assessments. We tested crown variables, derived from drone-based photogrammetry, 

for predicting and scaling plant water use. Aerial images were taken from an octocopter 

equipped with an RGB camera and the structure-from-motion approach was used to 

compute several crown variables including crown length, width and volume. Crown 

volumes for both palms (69%) and trees (81%) explained much of the observed spatial 

variability in water use; however, the specific crown volume model differed between 

palms and trees and there was no single linear model that fit both. With respect to trees, 

crown volume explained more of the observed variability than stem diameter, and in 

consequence, uncertainties in stand level estimates resulting from scaling were largely 

reduced. For oil palms, an appropriate whole-plant size related predictor variable was 

currently not available. In conclusion, we consider drone-derived crown metrics very 

useful for scaling up to stand-level transpiration from single plant water use. 

For study objective 2, using a drone-based analysis, we compared oil palm canopy 

conditions in thinned and non-thinned plots and also examined how oil palm canopy 

cover affected the mortality rates of planted tree species. Three years after planting, 

canopy cover was assessed by drone-based photogrammetry using the structure-from-

motion technique. Additionally, these surveys were augmented with tree positions and 

mortality rates recorded by colleagues. Drone-derived canopy cover was highly 
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correlated with ground-based hemispheric photography along the equality line, 

indicating the usefulness and comparability of the approach. Canopy cover was further 

partitioned between oil palm and tree canopies. Oil palm canopy cover was then 

extracted at the level of individual trees and combined with ground-based mortality 

assessment for all 3819 planted trees. For three tree species (Archidendron pauciflorum, 

Durio zibethinus, Shorea leprosula), probability of mortality during the year of the 

study were dependent on the amount of oil palm canopy cover. Thinning of oil palms 

before tree planting created a more open and heterogeneous canopy cover. We regard 

the drone-based method for deriving and partitioning spatially explicit information as 

promising for many questions addressing canopy cover and the management of 

agroforestry systems. 

For study objective 3, I assessed land use types in the landscape surrounding the oil 

palm agroforestry experiment. In two consecutive years, 2015 and 2016, 1121 ha were 

analyzed where the experiment is in the center.  Beginning in 2015, oil palm covered 

81% of the area and the remaining 19% comprised other land use types including bare 

soil, rubber plantation, secondary forest, orchard, fallow, water and urban. During this 

time frame, the area under oil palm continued to expand. In just one year, 50% of bare 

soil (47 ha), 27% of fallow (10 ha), 18% of secondary forest (10 ha) and 15% of rubber 

plantation (3.2 ha) were converted to oil palm plantation. We found oil palm cultivation 

in large and continuous tracts with very little fragmentation. Secondary forests were 

found in relatively small patches, some of which occurred in close proximity to the 

northern plots of the agroforestry experiment, and possibly influenced the occurrence 

of some mobile taxa. We conclude that it was feasible to derive detailed land cover 

maps from drone-based assessments that enable the detection of even small-scale land 

use change in the oil palm landscape.   

Overall, drone-based assessments can play vital roles for ecological studies in oil palm 

landscapes and agroforests. The data from the photogrammetric approach, such as SfM 

point clouds and aerial imagery, can derive quality assessments of canopy structures. 

Specifically, such assessments can support the prediction of tree and oil palm water use, 

transpiration at the stand level, and the evaluation of oil palm canopy conditions 

between thinned and non-thinned plots. According to these drone-based assessments, 

oil palm canopy cover appeared to influence the mortality of some tree species in the 

oil palm agroforestry plots. In addition, drone-based monitoring could be used to detect 

the expansion of oil palm cultivation around the oil palm agroforest. Other applied 

workflows in forestry and agricultural studies can integrate our procedures to attain 

spatial information. I conclude that drone-based assessment is a well-suited tool for 

monitoring oil-palm agroforests, in both small scale and large areas. 
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Chapter 1 

1 Introduction 

 

1.1 Oil palm agroforest  

Oil palm (Elaeis guineensis) cultivation has been rapidly expanding over the past 

decades (FAO 2016). A particular area of expansion is Indonesia, where oil palm 

cultivation usually appears in monocultures (Abood et al. 2015) and is related to forest 

degradation (Koh and Wilcove 2008). Previously, there were concerns in oil palm 

plantation with focuses on environmental issue (Fitzherbert et al. 2008). The effects of 

rapid of oil palm expansion potentially caused widespread biodiversity loss (Koh and 

Wilcove 2008; Foster et al. 2011). Additionally, ecosystem functions were poor in oil 

palm plantations compared to the forests that formerly covered these areas (Dislich et 

al. 2017). So far, there are difficulties in policy planning to sustain biodiversity in oil 

palm monocultures (Padfield et al. 2016). In this way, planting other trees within 

plantations to create oil-palm agroforestry systems is one option for biodiversity 

enrichment (Teuscher et al. 2016). 

1.2 Drone application in oil palm agroforest 

Drones have been introduced as a remote sensing platform that can capture aerial 

imagery and valuable information from other sensors including light detection ranging 

(LiDAR), and cameras in multispectral bands (Tang and Shao 2015). The flexibility 

and advantages of drone application have caused the number of surveys in agricultural 

and forests areas to increase (Pádua et al. 2017). Focusing on oil palm plantations, there 

are many aspects of the rise drone technology that help to promote more sustainable oil 

palm plantations and establish a well-managed oil palm industry (Chong et al. 2017). 

On the other hand, many studies conducted in oil palm plantations have included well-

established methods using satellite imagery (Srestasathiern and Rakwatin 2014; 

Santoso et al. 2016; Santos et al. 2017). Drone-based surveys were originally invented 

for agricultural purposes and precision measurements, but are very promising for oil-

palm landscape monitoring and management (Sari et al. 2017; Tugi et al. 2015). 

However, the drone application in agroforest monitoring and management is not yet 

practical because of the lack of studies in specific research area.  

Drone application is a useful remote sensing tool for ecological monitoring in oil palm 

agroforestry. Pádua et al. (2017) reviewed the common aspects of using drones in 

agriculture and forestry settings and reported that drones are applicable in agroforestry 

systems; however, efficacy of drone applications and some of the limitations should be 

considered. Nevertheless, drones were recommended to be implemented in agroforestry 

areas for post-fire burn assessment, wildlife detection, and vegetation height maps 

(Pádua et al. 2017). Until now, there have been  relatively few developments towards a 

sustainable approach in oil palm agroforestry (Wicke et al. 2011) and studies with 
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drone-based monitoring for such systems are rarely found. In order to use drones to 

extract ecologically relevant information from oil-palm agroforests, the drone-related 

dataset should be first related to established method and validation parameters from 

ground-based measurements. 

1.3 Tree crown and canopy structure derivation from drone 

The measurements of tree crown structure usually involves vertical and horizontal 

views of canopy and there are many variables that can be evaluated from ground-based 

techniques (Pretzsch et al. 2015). Alternatively, vertical height of oil palms can be 

measured directly from canopy height model (CHM) (Nunes et al. 2017). After 

integrating horizontal parameters of single tree canopies to create a crown projection of 

forest stand, a canopy map is generated (Lang and Kurvits 2007) and used for canopy 

cover estimation (Avsar and Ayyildiz 2010). Previously, Zhang et al. (1999) measured 

transpiration rate for single of poplar trees (Populus spp.) per unit of crown projected 

area. Therefore, I regard drone derivation of individual tree and oil palm canopy 

structures as a supportive tool in the study of tree water use. However, the focus of 

water use prediction in relation to crown and canopy structure has not yet been 

investigated with drone methods. 

Cameras are an essential part of drone-equipped sensors and have been widely used for 

the measurement the tree canopy attributes (Chianucci et al. 2016; Birdal et al. 2017). 

Likewise, light weight LiDAR devices are also possible to install on drones (Lin et al. 

2011). The point clouds from both LiDAR and SfM enable algorithms for individual 

tree delineation, tree height estimation and crown structure determination (Lim et al. 

2015; Kallimani 2016; Trochta et al. 2017). Moreover, integration of the SfM point 

clouds to follow with well-established LiDAR workflows is very promising (Balcomb 

2015; Wallace et al. 2016). As a result, the high density point clouds produced highly 

accurate crown structures and characteristics, such as parameters of crown length, 

crown diameter, crown surface curvature (Kallimani 2016) and canopy density (Jensen 

and Mathews 2016). However, the drone-derived point clouds lack penetration in very 

dense tree canopies (Mohan et al. 2017). Consequently, the capacity of drone use for 

crown structure measurement should be validated with field measurements in order to 

contribute other biological-physical attributes. 

1.4 Canopy cover assessment from drone and relevant methods from ground-

based estimation  

Forest canopy cover is defined as the proportion of the forest floor covered by the 

vertical projection of the tree crowns (Jennings et al. 1999). To measure canopy cover, 

the method usually includes the small gaps between leaves in the calculation, but 

excludes dead branches of tree (Jennings et al. 1999). In general, canopy cover is 

slightly different to canopy closure, the latter of which  refers to a measured projection, 

with defined view angles, from a single point of view (Korhonen et al. 2006). The value 

from canopy cover can be directly converted to the gap fraction and canopy openness 
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(Tichý 2016) which are commonly used in the study of microhabitat environments 

within the forest stands (Nilson and Peterson 1991).  

There is an increasing trend to use light weight drones as a platform to attach an array 

of cameras and sensors (Dandois and Ellis 2013; Anderson and Gaston 2013). The 

aerial imagery from drones has emerged as a technique in the estimation of forest 

canopy cover with RGB images (Chianucci et al. 2016; Banu et al. 2017) and 

multispectral imagery (Shin et al. 2018). On the other hand, the three dimensional (3D) 

point clouds have been involved in canopy closure estimation (Zhang et al. 2016). In 

parallel, the SfM point clouds could also produce canopy cover map (Wallace et al. 

2016). However, the accuracy of canopy cover estimated from SfM point clouds might 

be poor in dense canopy conditions because the SfM technique could not reach the 

ground surface and canopy cover calculations require the terrain point clouds (Tomaštík 

et al. 2017). Furthermore, advanced satellite imagery has also been involved in tree 

canopy estimations. For example, the canopy closure was estimated from Ikonos 

satellite imagery (Chubey et al. 2006), and the canopy cover from a high resolution 

QuickBird (0.6 m) and panchromatic satellite imagery have been validated with field 

monitoring (Chopping 2011).  

So far, many traditional forest inventories have been focused on canopy cover 

estimation with ground-based tools. Utilizing photographs from indirect optical 

methods have been involved with canopy cover estimation, for example hemispherical 

photography using a fish-eye lens (Leblanc and Fournier 2017) and canopy 

photography using a typical lens (Chianucci et al. 2014). The angles of view are 

commonly between 40o and 60o, which are recommended for assessing canopy closer 

and gap fraction (Korhonen 2011; Weiss and Baret 2016; Leblanc and Fournier 2017). 

The high resolution photography can distinguish small gaps in the canopy with the 

background of sky (Beckschäfer et al. 2013). Therefore, the algorithms for calculating 

vertical canopy cover with the hemispherical photograph and canopy photography are 

well established (Weiss and Baret 2016). The advantage of using these photographs is 

due to the nature of angular field of view sampling, especially for the fish-eye lens 

(Korhonen et al. 2006). However, some limitations of method were noted in 

heterogeneous stands and very large areas that usually require a high amount of post 

processing time (Korhonen et al. 2006; Leblanc and Fournier 2017).  

Previously, the Canjanus sighting tube was the most suitable tool for measuring canopy 

cover at vertical projection; a simple cylinder mounted with a mirror for the user to look 

upward and determine the canopy cover within a top crosshair (Jennings et al. 1999; 

Korhonen et al. 2006). Another method is using tape measurement with the line 

intersect sampling (Korhonen 2011). Additionally, the crown relascope was used to 

measure crown width through a visual projection (Bitterlick 1984) and the spherical 

densitometer based on ocular estimation (Lemmon 1956) are both very feasible 

techniques to assess canopy cover from ground based measurements. Considering 

ground-based measurements, care should be taken when measuring because crown 
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projection is non-circular and overlapping, and these aspects require measurements in 

several radii from a single tree and require much time in a large observation area 

(Korhonen 2011). Alternatively, one can use model predictions of canopy cover that 

have been integrated with some parameters of more easily measurable tree 

characteristics such as stand basal area (Mitchell and Popovich 1997; Vaughn and 

Ritchie 2005).  

1.5 Monitoring oil palm dominated landscape with drone 

Drone-based aerial monitoring, image processing and methods of land use 

classification can provide accurate land use maps and also estimate area of oil palm 

plantation (Kalantar et al. 2017). Indeed, drone application is affordable in scale- and 

time-independent surveys depending on the aspects of study (Puliti et al. 2015). Thus 

far, the focus of drones in oil palm plantations are usually based on techniques from 

precision farming (Sari et al. 2017) and productivity (Shamshiri 2018). For example, 

oil palm counting from drone imagery have been evaluated by an automatic algorithm 

(Li et al. 2017). Additionally, healthy oil palm canopies could be detected from drone 

imagery with spectral reflectance (Tugi et al. 2015). In the context of oil palm landscape 

monitoring, using drones to detect landscape changes over time is possible. However, 

this application may present challenges; for example, drones can only fly within a 

limited distance from the operator, and also need an adequate power supply for long-

distance flying on a landscape scale (Puliti et al. 2015). In comparison to satellite 

datasets, analysis between regional and national scales from satellite imagery may 

present outputs that may not be compatible for analysis, such as different classes of 

land use and coarse spatial resolution. In this way, high resolution maps and accurate 

land use information from drone-based monitoring are important for filling data gaps 

of different data sources, qualities, and time frames. Moreover, accurate land use maps 

and high data quality are very helpful for land use policy development in oil palm 

dominated landscapes (Wicke et al. 2011).  

1.6 Objectives 

We conducted drone surveys with varying flight strategies in different scales of area, 

within and covering the biodiversity enrichment experiment (EFForTS-BEE) with a 

gap enrichment planting experiment in an oil palm plantation, which has been 

established since 2013 (Teuscher et al. 2016). Drone-based SfM point clouds were 

constructed from aerial image-matching following photogrammetric techniques 

(Westoby et al. 2012). The first two topics corresponded with utilizing 3D point clouds 

to generate crown metrics and canopy cover, which were further analyzed with 

available data of tree and oil palm water use, and tree mortality monitoring from filed-

based operations. The third topic was in focus of drone for landscape imagery, and land 

use change analysis. In particular, the following research objectives are addressed: 
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Objective 1: to test drone derived tree and oil palm crown variables for water use 

prediction from plant scale to stand-level transpiration and compare transpiration rates 

of an oil palm monoculture to an oil palm agroforest 

Objective 2: to generate high resolution maps of canopy cover from drone-based point 

clouds and integrate canopy cover of oil palm with the analysis of tree species mortality 

Objective 3: to evaluate land use change and extension area of oil palm plantation in 

and around area of oil-palm agroforestry experiment  

 

1.7 Author contribution  

The dissertation is substantiated by three manuscripts (Chapter 2-4) at different stages 

of the publication process (i.e. “Accepted manuscript”, “In revision” and “Advanced 

manuscript”). The status as well as the contributions of the co-authors to each 

manuscript are indicated. All chapters in dissertation were mainly written by the author 

(referred to as “WK”). 

 

Chapter 2: Drone-based photogrammetry derived crown metrics for predicting 

tree and oil palm water use 

Joyson Ahongshangbam*, Watit Khokthong*, Florian Ellsäßer, Hendrayanto, Dirk 

Hölscher, Alexander Röll 

 

In revision at Ecohydrology 

 

JA and WK equally contributed to the article (*). The experiment was designed by JA, 

WK and DH. WK conducted drone-based measurements and measured tree crown 

variables from ground-based measurements. JA and FA conducted the water use 

experiment with sap flux technique. The statistical portion was analyzed by JA and AR. 

The article was written by JA, WK, FA, AR and DH. In particular, WK wrote 

introduction and method sections and largely wrote a full drone methodology part in 

the chapter 2.8.  
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Chapter 3: Drone-based assessment of canopy cover for analyzing tree mortality 

in an oil palm agroforest 

Watit Khokthong, Delphine Clara Zemp, Bambang Irawan, Leti Sundawati, Holger 

Kreft, Dirk Hölscher  

 

Accepted manuscript in Frontiers in Forests and Global Change (2019).                                       

doi: 10.3389/ffgc.2019.00012 

 

Concepts of this study were conceived by DH, WK and DCZ. WK conducted drone-

derived canopy cover and filed experiment of hemispherical photographs. DCZ 

provided tree and oil palm from field monitoring data. WK conducted all the data 

analysis. WK, DCZ and DH wrote manuscript with comments and revision from HK. 

All authors contributed in the final approval for submission of the manuscript. 

 

 

 

Chapter 4: Land use and its short-term changes around the oil palm agroforestry 

experiment  

Watit Khokthong, Paul Magdon, Delphine Clara Zemp, Bambang Irawan, Leti 

Sundawati, Holger Kreft, Dirk Hölscher 

 

Advanced manuscript  

 

WK conducted the drone surveys. WK mainly contributed in all data analysis with 

software and additional supports from PM and HK. WK wrote the manuscript and 

figure-making. DH revised the manuscript. All authors have associated works and 

experiment in the EFForTS-BEE. 
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Abstract 

Transpiration at the stand level is often estimated from water use measurements on a 

limited number of plants and then scaled up by predicting the remaining plants of a 

stand by plant size related variables. Today, drone-based methods offer new 

opportunities for plant size assessments. We tested crown variables derived from drone-

based photogrammetry for predicting and scaling plant water use. In an oil palm 

agroforest and an oil palm monoculture plantation in lowland Sumatra, Indonesia, tree 

and oil palm water use rates were measured by sap flux techniques. Simultaneously, 

aerial images were taken from an octocopter equipped with an RGB camera. We used 

the structure from motion approach to compute several crown variables such as crown 

length, width and volume. Crown volumes for both palms (69%) and trees (81%) 

explained much of the observed spatial variability in water use; however, the specific 

crown volume model differed between palms and trees and there was no single linear 

model fitting for both. Among the trees, crown volume explained more of the observed 

variability than stem diameter, and in consequence, uncertainties in stand level 

estimates resulting from scaling were largely reduced. For oil palms, an appropriate 

whole-plant size related predictor variable was thus far not available. Stand level 

transpiration estimates in the studied oil palm agroforest were lower than those in the 

oil palm monoculture, which is probably due to the small-statured trees. In conclusion, 

we consider drone-derived crown metrics very useful for the scaling from single plant 

water use to stand-level transpiration.  

 

Keywords: agroforest, bootstrapping, sap flux, scaling, structure from motion, 

transpiration, uncertainty 
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2.1 Introduction 

Transpiration is a central flux in the ecosystem water cycle. In forests or similar 

vegetation types, it is often estimated from individual plant water use assessments, for 

example with sap flux techniques (Granier 1985; Wullschleger et al. 1998). In most 

studies, the number of plants directly analyzed for water use is lower than the number 

of plants in the stand. The individual plant water use rates are then scaled to stand-level 

transpiration by biometric variables. Scaling is thus a critical issue that needs to be 

optimized in order to improve transpiration estimates and to reduce associated 

uncertainties (Hatton and Wu 1995; Jarvis 1995; Moore et al. 2017).  

Candidate variables for scaling include tree diameter, crown metrics and leaf area. 

Among these, tree diameter and the number of trees (stand density) are often used, as 

they are easy to assess and often available from forest inventories. The relationships 

between tree water use and tree diameter often have R² values around 0.66 (Yue et al. 

2008; Schiller et al. 2007), but closer (Wang et al. 2006) and less close correlations 

(Kume et al. 2009) have also been observed. Stem diameter has some limitations that 

include a potentially slow response to concurrent dynamics in the stand such as crown 

damages or crown expansions into gaps. In addition, recently increasingly monocot 

species such as bamboos and palms came into the focus of transpiration studies (Röll 

et al. 2015; Mei et al. 2016), in which intra-specific diameter variation may be low but 

nonetheless variation in water use occurs. Leaf area index can be a very powerful 

variable for scaling (Hatton and Wu 1995; Vertessy et al. 1995; Medhurst et al. 2002), 

but it is often only available at the stand level and not at the tree level. In contrast, crown 

dimensions are easier to measure and thus more commonly available and yielded good 

results in mature oak (Quercus robur) forest (Čermák 1989). Similarly, in Taxodium 

distichum forest and olive orchard, crown structure correlated closely with tree water 

use (Oren et al. 1999; López-Bernal et al. 2010). Crown exposure also indirectly 

affected transpiration by influencing leaf wetness and dryness in a premontane forest 

of Costa Rica (Aparecido et al. 2016). 

Despite the long-recognized potential of crown variables for scaling up from tree water 

use to stand transpiration, diameter based approaches remain popular, as crown 

variables are more difficult and time consuming to assess in ground-based stand 

inventories. With the recent development of drone technologies and their application in 

ecological studies this might change. Drones equipped with optical detectors such as 

cameras capturing specific light wave lengths or laser-based approaches offer new 

opportunities for crown and canopy assessments (Díaz-Varela et al. 2015; Thiel and 

Schmullius 2016; Barnes et al. 2017). Crown variables such as crown length (Kallimani 

2016), crown diameter (Lim et al. 2015; Panagiotidis et al. 2016) or crown volume 

(Torres-Sánchez et al. 2015) were calculated using photogrammetric techniques. Even 

though drone technologies have previously been applied in ecohydrological studies 

(Vivoni et al. 2014), the applicability of drone-based photogrammetry for scaling up 

tree water use to stand-level transpiration has to our knowledge not yet been explored.  
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Uncertainties associated with sap flux measurements and stand level estimates of 

transpiration are manifold and include the assessment of sap flux variation in a given 

tree, the number of trees sampled, and the scaling (Peters et al. 2018). For a better 

understanding of ecohydrological consequences with land-use and land-cover change, 

it will be important to produce stand-level transpiration estimates with a high accuracy 

and thus, a low associated uncertainty. The basis for this is the further optimization of 

current sampling and scaling schemes, potentially also by employing innovative drone-

based methods. 

In our study, we assessed relationships between crown metrics and the water use of oil 

palms and trees in lowland Sumatra, Indonesia. In this region, natural forests have 

largely been converted and monoculture oil palm plantations are widespread (Drescher 

et al. 2016). The land cover change and the expansion of oil palm plantations are 

associated with losses of biodiversity and impaired ecosystem functions (Barnes et al. 

2014; Clough et al. 2016; Dislich et al. 2017). Transpiration rates from commercial oil 

palm plantations can be high and may exceed those of remaining forests (Röll et al. 

2015, Meijide et al. 2018). To test possibilities of alleviating the ecological impacts of 

oil palm cultivation, a biodiversity enrichment experiment, Efforts-BEE, was set up in 

a commercial oil palm plantation by planting native tree species and establishing oil 

palm agroforests (Teuscher et al. 2016). Within Efforts-BEE, we conducted our study 

on plant water use and scaling by crown variables. The objectives were (1) to test drone 

derived crown variables for the prediction of tree and palm water use, (2) to analyze 

uncertainties resulting from scaling plant water use to stand-level transpiration, and (3) 

to compare transpiration rates of an oil palm monoculture to an oil palm agroforest.  

 

2.2 Methods 

2.2.1 Study area and sites 

The study was conducted in Jambi province, Sumatra, Indonesia. The region is tropical 

humid, with mean annual precipitation of 2235 mm yr-1 and average annual temperature 

of 26.7° C (Drescher et al. 2016). The study sites were located just south of the equator 

(01.95 °S and 103.25 °E), within the commercial oil palm plantation PT Humusindo, 

near Bungku village. Mean elevation is 47 m asl. The biodiversity enrichment 

experiment (EFForts-BEE) was established in monoculture oil palm plantations. Oil 

palms were planted in a 9 m x 9 m triangular grid resulting in approx. 143 oil palms per 

hectare; the age of the oil palms at the time of study was approx. 9-15 years (Teuscher 

et al. 2016). The broad age range refers to the entire experiment with 56 plots that covers 

an area of about 150 ha. After thinning of oil palms, six native tree species were planted 

in a 2 m x 2 m grid. The tree species were mixed in a way to maximize the number of 

hetero-specific neighbors (i.e. no con-specific rows or groups) (Teuscher et al. 2016). 

There are 52 experimental plots varying in plot size and in tree species diversity level. 

In addition, there are also 4 control plots with oil palm management as usual, and no 

enrichment planting. Our main study site was at a 40 m by 40 m plot with six tree 
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species planted (Figure 2.1) and a nearby monoculture control plot of the same size. 

The agroforest plot was selected based on the criteria plot size (as big as possible, i.e. 

40 m by 40 m) and highest tree diversity level (six tree species). The monoculture 

control plot was located approx. 60 m away from the agroforest plot. At the selected 

agroforest and monoculture study plot, oil palms were of similar age. In the agroforest, 

the studied oil palms had an average meristem height of 6.8 ± 0.2 m (mean ± SD), while 

the sample trees had an average height of 4.7 ± 0.6 m (Appendix Table 1). The reported 

measurements were conducted between September and November 2016, which was the 

beginning of the rainy season.  

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 2.1. Aerial view of a studied oil palm agroforestry plot. Three years prior to the 

study, the stand was thinned with reduction in oil palm stems by 40%, and six tree 

species were planted. 

 

 

 



18 

 

 

2.2.2 Sap flux measurements  

Eight palms and 16 trees were equipped with sap flux sensors. Selected tree species 

were Archidendron pauciflorum, Parkia speciosa, Peronema canescens and Shorea 

leprosula. As Shorea leprosula did not perform well on the multi-species plot, it was 

measured on a nearby single tree species enrichment plot, under otherwise very similar 

conditions. One further tree species, Dyera polyphylla, was not included in the 

measurements because almost all individuals had died on the multi-species plot and no 

plot with well performing Dyera polyphylla trees was available nearby. Archidendron 

pauciflorum, Parkia speciosa and Peronema canescens are early successional and light 

demanding species (Aumeeruddy 1994; Lee et al. 2002; Orwa et al. 2009; Lawrence 

2001); Shorea leprosula is considered a gap opportunist (Ådjers et al. 1995; Bebber et 

al. 2002). Sap flux sensors were installed in four trees for each tree species and on four 

oil palms in an oil palm agroforest, and additionally on four oil palms in the oil palm 

monoculture. 

For trees, we used heat ratio method sensors (HRM, Burgess et al. 2001; ICT 

International, Australia). One HRM sensor per tree was installed radially into the xylem 

at breast height. To process raw data we used the software Sap Flow Tool, version 1.4.1 

(ICT International, Australia). The mean sap velocity output data was converted into 

‘sap flow’ (cm3 h-1) by multiplying it with the cross-sectional water conductive area Ac 

(cm²). As the studied trees were rather small (diameter at breast height, DBH < 11 cm), 

we considered Ac to be equal to the cross-sectional area at breast height. Estimation 

errors associated with assuming fully conductive cross-sectional areas of the relatively 

small trees for the up-scaling to tree water use are likely to be small; for similar sized 

trees Delzon et al. (2004) found a difference of approx. 4% with this assumption.  

For oil palms, we used thermal dissipation probes (TDP, Granier 1985) as this method 

had previously been tested on oil palm and a sampling scheme had been developed (Niu 

et al. 2015), which we followed closely. Like Niu et al. (2015), we installed the TDP 

sensors in leaf petioles rather than the stem of oil palms due to presumably higher vessel 

density and homogeneity in vascular bundle distribution. Niu et al. (2015) also tested 

the influence of leaf characteristics such as leaf orientation, inclination and horizontal 

shading on leaf water use for 56 oil palm leaves, but no statistically significant effects 

were observed. The authors argued that the examined factors partly counteract (Niu et 

al. 2015). We followed their suggested scheme in our study and selected four leaves 

per palm in the cardinal directions. Sap flux density Js (g cm-2 h-1) was calculated using 

the equation derived by Granier (1985), but with oil palm specific, calibrated equation 

parameters (Niu et al. 2015). Zero-flux conditions were examined following Oishi et 

al. (2008); it was found that zero-flux conditions were met during the early morning 

hours during our entire sap flux measurement period. Individual leaf water use rates 

(kg day-1) were calculated by multiplying Js daysums by Ac of the according leaf 

petioles. Those were derived from a previously presented linear relationship between 

petiole baseline length (which was measured with a caliper) and Ac at the location of 

the sensor (Niu et al. 2015). Individual daily leaf water use rates were averaged for each 
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palm and multiplied by the number of leaves per palm to derive palm water use rates 

(kg day-1). Water use rates were based on averages of three sunny days on which soil 

moisture was non-limiting in order to minimize the effects of varying environmental 

conditions; this approach is in accordance with previous research on oil palm water use 

(e.g. Niu et al. 2015; Röll et al. 2015). In the nomenclature across the applied sap flux 

methods, we follow Edwards et al. (1997) in expressing individual tree and oil palm 

water use as mass per time (kg day-1) and stand-scale transpiration in ‘mm day-1’. 

 

2.2.3 Drone image acquisition and processing 

At the time of the sap flux measurements, drone flights were conducted using an 

octocopter (MikroKopter OktoXL, HiSystems GmbH, Germany) equipped with a 

digital RGB camera (Nikon D5100, Japan). Flight routes were planned with 

MikroKopter-Tool V2.14b. Flight altitude was 39 m above ground, flight speed was 

7.2 km h-1 and one picture was taken per second (Appendix Table 2).   

The flight missions were performed in circular and grid pathways to get different 

perspectives and an overlap of 70% for the construction of 3D maps. After eliminating 

blurry pictures, 3D point clouds were created from an average of 600 geo-referenced 

images per study site with Agisoft Photoscan Professional 1.2.6 software (Agisoft LLC, 

Russia). The achieved point cloud density was 3 points cm-2. In the analysis, we used 

the pictures from one single flight to construct the 3D models. 

The workflow included image alignment, georeferencing, building dense point clouds, 

the generation of digital elevation models (DEM) and orthomosaic generation. Ground-

control points printed as 8-Bit barcodes and laid out during the flight campaigns were 

used to determine the overall positional accuracy of orthomosaic images. The 3D point 

clouds were generated using the Structure from Motion (SfM) technique (Westoby et 

al. 2012; Lowe 2004). Orthomosaic and digital elevation models (DEM) were created 

for each plot for further visualization and interpretation.  

In order to create canopy height models (CHM), digital terrain models (DTM) were 

generated from the point cloud data. For this, the three main parameters (maximum 

angle, maximum distance and cell size) were defined with Agisoft’s ground point 

classifier tool and used to differentiate ground and non-ground points. The classified 

ground points were converted to raster format as DTM. Further, we overlaid the DEM 

and DTM and applied smooth filters to derive the canopy height model. Subsequently, 

crown polygons were delineated for target trees and oil palms through visual 

interpretation and tree location information. One major challenge of using aerial 

imagery for delineating individual tree canopies is the overlapping of crowns. It was 

not a major issue in our study as the studied trees are young and located in gaps created 

by the previous thinning of oil palms. The 3D crown models of the studied palms and 

trees (extracted from the SfM point clouds) were derived from multiple shots at 

different angles and positions, thus allowing to delineate even overlapping canopies. 

Additionally, the very high point cloud density of 3 points cm-2 allowed modeling the 
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crown structures in great detail. However, for some sample trees we experienced 

difficulties with automatic 3D segmentation, e.g. when branches from different trees 

connect (Tao et al 2015). In such a case, we performed additional manual segmentation 

and processing and added clusters for the automatic approach (Trochta et al. 2017). The 

individual canopy height of trees and meristem height of oil palms were obtained by 

overlaying individual crown polygons with the CHM. For trees, the highest point in 

CHM within the individual crown polygon was considered as the canopy height of trees 

(Birdal et al. 2017), while the lowest point was taken as the meristem height of oil 

palms. As a ground-based reference, canopy height of each individual was measured 

using a pole, and canopy width and projection area were established with the vertical 

sighting method (Preuhsler 1979, also see Pretzsch et al. 2015) in the eight cardinal 

directions. The heights obtained by the drone-based and the ground-based methods 

were well correlated along a 1:1 line (R2 = 0.69, P < 0.001; Appendix Figure 1). Also, 

the canopy diameter obtained by terrestrial measurements and drone based analyses 

were highly correlated along a 1:1 line (R2 = 0.95, P < 0.001), suggesting the 

applicability of the drone based approach. The PolyClip function in Fusion software 

v3.6 (USDA, USA) was used to extract individual point clouds for each tree and oil 

palm crown. Crown variables of each individual were obtained using measurement 

marker functions in the same software. For crown volume and planar area, the point 

clouds were interpolated in R software v3.4.3 (R Development Core team, 2016) using 

the Alphashape3D (Lafarge and Pateiro-Lopez 2014) and rLiDAR (chullLiDAR2D, 

Silva et al. 2017) packages, respectively.  

There are several different ways to compute crown volumes including convex hull and 

alpha shape algorithms (Colaço et al. 2017). In convex hull, it constructs an envelope 

by considering the number of input points belongs to the convex hull to represent the 

outward curving shape of tree crowns. In the alpha shape approach, a predefined and 

reduced alpha value serves as size criterion to construct more details, thus shrinking the 

corresponding convex hull closer down to the 3D point cloud (Pateiro-Lopez and 

Rodriguez-Casal 2010; Colaço et al. 2017). In our study, we calculated the crown 

volumes for both trees and oil palms with a convex hull algorithm and alpha shape 

algorithms, the latter using the alpha values 0.75, 0.50 and 0.25 (Appendix Figure 2). 

Two contrasting models (convex hull and alpha shape 0.25) are illustrated in Figure 2.2 

for a studied oil palm and a studied tree. 
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Figure 2.2. Canopy of an oil palm and a tree (Shorea leprosula) using point clouds 

from the drone missions and convex hull and alpha shape algorithms. Other tree species 

are shown in Appendix Figure 2. 
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2.2.4 Statistical analyses 

To test for differences in tree water use among species, and for differences in oil palm 

water use between oil palm agroforest and oil palm monoculture, we used ANOVAs, 

followed by Posthoc Tukey’s HSD; differences were assumed as significant at P < 0.05.  

Plant size related variables such as crown volumes as predictor of plant water use were 

tested by linear regressions. We tested the variance of residuals for normal distribution 

by the Shapiro-Wilk test and homoscedasticity with residual plot analysis. The null 

hypothesis of normality was rejected at P < 0.05.  

The linear regressions served as the basis for subsequent scaling of tree- and palm-level 

water use to stand-level transpiration. To compare the uncertainties associated with 

different scaling variables, we performed parametric bootstrapping with the linear 

relationships between water use and the predictor variables with 50,000 iterations using 

the R package ‘boot’ (Canty and Ripley 2017; Davison and Hinkley 1997). This yielded 

estimates of means and corresponding standard deviations as measures of uncertainty.  

All statistical analyses and plotting were performed with R version 3.4.3 (R 

Development Core team, 2016). 

 

 

2.3 Results 

2.3.1 Plant water use  

On sunny days, the daily water use per palm ranged between 158 and 249 kg day-1, and 

on average was by 32% higher in the agroforest than in the monoculture (ANOVA, P 

< 0.01). Daily water use of the inter-planted trees was much lower and per tree ranged 

from 1.1 to 19.8 kg day-1. There were species-specific differences among the trees (P < 

0.001) (Appendix Table 1). 

2.3.2 Drone-derived crown metrics and their relation with plant water use 

Crown volumes (convex hull) for the eight oil palms with sap flux measurements 

ranged between 332 and 831 m3, and on average were by 79% higher in the agroforest 

than in the monoculture. Crown volumes (convex hull) of the trees were much lower 

and ranged between 0.95 and 81.0 m3. There were species-specific differences among 

the trees (Appendix Table 1).  

Crown metrics were highly correlated with tree and palm water use (Table 2.1). For oil 

palm, crown volume convex hull explained 69% of the observed palm-to-palm 

variability in daily water use (P = 0.01). For trees, crown volume models with an alpha 

level 0.25 (Appendix Figure 2) explained 81% of tree-to-tree variability (P < 0.001) 

(Figure 2.3) across the studied species. Due to violated quality criteria (Shapiro-Wilk 

test, P = 0.000042), there was however no single linear crown volume model that fit 
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both oil palms and trees. Nonetheless, the single linear relationship crown volume alpha 

0.75 to tree/palm water use is depicted in Appendix Figure 3.  

For trees, stem diameter as measured in ground-based inventories explained 65% of the 

variability observed in daily tree water use (P < 0.01) while for oil palms no significant 

ground-based explanatory variables were available for comparison  

 

 

Table 2.1. Linear regressions between daily water use (kg day-1) and different aerial 

and ground based variables of oil palms (n=8) and trees (n=15). Only those linear 

regression which satisfy normality and homoscedasticity conditions are presented. 

 

 

 

 

 

 

 

 

 

 

 

Equation 

b0 - water use 

b1 - variables 

P value R2 

Drone based      

Crown volume (m3) Oil palms convex hull b0 = 0.14  b1 + 122 P = 0.010 0.69  

 alpha 0.75 b0 = 0.74  b1 + 49.1 P = 0.038 0.53  

Trees alpha 0.75 b0 = 0.39  b1 + 2.12 P < 0.001 0.73  

 alpha 0.5 b0 = 0.51  b1 + 1.84 P < 0.001 0.77  

 alpha 0.25 b0 = 0.82  b1 + 1.70 P < 0.001 0.81 

      

Ground based      

DBH (cm) Oil palms  - - - 

 Trees  b0 = 2.46  b1 - 8.42 P < 0.01 0.65 
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Figure 2.3. Daily water use of oil palms (a) and trees (b) versus crown volumes. Note 

the different crown volume models and scales.  

 

Figure 2.3. Daily water use of oil palms (a) and trees (b) versus crown volumes. Note 

the different crown volume models and scales. 
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2.3.3 Transpiration estimates and uncertainties 

Based on scaling with crown volumes, the stand-level transpiration estimate in the oil 

palm agroforest is 1.9 mm day-1 and 3.0 mm day-1 in the oil palm monoculture (Table 

2.2). Scaling with ground-based DBH measurements in trees resulted in only minor 

differences in stand transpiration estimates. For trees, bootstrapping suggests that the 

estimate based on crown volume is associated with an uncertainty due to scaling of 

28%. In contrast, using diameter for scaling results in an uncertainty of 100%. For the 

oil palms in the agroforest and the monoculture, the uncertainty estimates associated 

with crown volume scaling were 37% and 35%, respectively. 

 

Table 2.2. Transpiration of the oil palm agroforest and monoculture plot with 

uncertainties for the scaling from individual plants to the plot level by bootstrapping 

linear relationships. For uncertainty estimates from ground-based scaling in oil palm 

we used an approach by Niu et al. (2015), which is based on the number of leaves that 

measurements were performed on and the resulting cumulative coefficient of variation 

(marked with an *).  

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 Transpiration  

(mm day-1) 

Estimate ± uncertainty 

Drone-based   

Agroforest Trees 0.28 ± 0.08 

 Oil palms 1.61 ± 0.61 

 Total 1.89 ± 0.69 

 

Monoculture Oil palms 3.04 ± 1.05 

   

 

Ground-based 

  

Agroforest Trees 0.38 ± 0.38 

 Oil palms 1.67 ± 0.88* 

 Total 

 

2.05 ± 1.26 

Monoculture Oil palms 2.96 ± 0.78* 
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2.4 Discussion 

In our study, we found that drone-based assessments of oil palm and tree crowns 

predicted individual plant water use quite well and better than e.g. diameter in trees, 

and thus led to reduced uncertainties in spatial scaling and stand-level estimates of 

transpiration.  

A popular variable for the prediction of plant water use is stem diameter. In our study, 

DBH yielded an R2 of 0.65, which is quite similar to several recent studies (Yue et al. 

2008; Schiller et al. 2007; Granier et al. 2000). In our study as in many others, the 

relationship between DBH and tree water use was found to hold across species. In 

contrast, in a premontane forest in Costa Rica the correlation of water use to DBH 

showed differences among species (Moore et al. 2017). Likewise, species-specific 

trajectories were suggested from reforestations in the Philippines (Dierick and Hölscher 

2009). There are further general concerns in using diameter for scaling. As such, 

diameter integrates over large time spans and a tree may have achieved its diameter 

under conditions that no longer prevail at the time of study. Cases in point are damages 

by storm or lightning, or in the other direction crown expansion into a gap that was 

formed by the dieback of a neighbor.  

Our study also included oil palm, a monocot plant which lacks secondary diameter 

growth. Consequently, significant correlations between stem diameter and water use 

can hardly be expected. Thus far, to our knowledge no scaling scheme from an 

individual oil palm to the stand level had been established. Based on leaf level 

measurements in 56 oil palm leaves, Niu et al (2015) tested for relationships between 

leaf characteristics (e.g. orientation, inclination, horizontal shading) and leaf water use 

but did not find significant relationships. In contrast, the approach of our study with 

crown volume and whole plant water use resulted in an R2 of 0.69 (P = 0.01). Based on 

their results, Niu et al. (2015) suggested a non-stratified sampling scheme. Our results 

would suggest that a sampling scheme in oil palm would benefit from representing 

different crown dimensions.  

For trees and palms the best fitting (as based on high R2 and low P) crown volume 

model differed with alpha 0.25 for trees and convex hull for palms. There was however 

one single intermediate crown volume model, alpha 0.75, that appears suitable for both 

trees and palms (Table 2.1). However, applying this model for the pooled dataset of all 

trees and palms resulted in non-normality and too high heteroscedascity to be accepted 

(Shapiro-Wilk test, P = 0.000042), even though R2 was very high and the P value was 

low (Appendix Figure 3). Our dataset certainly lacks values in the mid-range of crown 

volume and water use for a further examination of this ‘universal’ crown model. Also, 

it can be seen that crown alpha 0.75 is not the best predictor for oil palm water use. 

However, the universal model may indicate that trees and oil palms do not differ 

significantly in water use per crown volume, even though more and more equally 

distributed data will be needed to further test this contention. On the other hand, it may 

also well be that a universal crown volume to plant water use relationship does not exist. 
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As such, across (tree) species, e.g. when comparing early successional and late 

successional species, substantial differences regarding crown shape, the occurrence of 

sun and shade leaves and leaf stomatal conductance exist (Bazzaz 1979; Poorter et al. 

2006).  

Sap flux measurements and subsequent scaling up to the stand level are associated with 

a multitude of uncertainties, including the positioning and number of a sensor in a given 

plant, methods of zero-flow conditions and sensor calibration (Peters et al. 2018), as 

well as the number of plants studied. Our study addresses the spatial scaling from the 

individual plant to the stand. The uncertainty estimates as the result of the applied 

bootstrapping are directly related to the explained variance in the linear relationships 

with water use. They suggest that for trees the uncertainty of the stand-level estimate is 

28% with drone-based imagery, whereas it is 100% with ground-based diameter 

measurements. The drone-based approach thus has at least one clear advantage. For oil 

palms, our reported uncertainty of 37% is the first estimate that to our knowledge 

addresses whole-plant to stand scaling. However, Niu et al. (2015) estimated that 

counting leaves per oil palm and oil palms per stand, and scaling based on sap flux 

measurements in 12 leaves, would result in uncertainty of stand-level transpiration of 

14%. For oil palms it thus seems that the previously proposed ground-based method 

has an advantage. Nonetheless, the crown dimension approach is still valuable, as it 

may also allow to estimate water use across different conditions. For example, in our 

case an oil palm stand was thinned and trees were inter-planted in gaps three years prior 

to the study (agroforest), whereas the control stand remained untreated (monoculture). 

We found significant differences in crown volume and water use of the studied oil 

palms, but the two variables were significantly related to each other across treatments. 

The ground-based leaf-count approach, on the other hand, was previously only tested 

in one single stand with homogenous conditions. Their applicability will have to be 

tested further in follow-up studies focusing on how to best assess (and reduce) such 

estimation uncertainties.  

The crown volumes in our study were derived from RGB images and a 

photogrammetric approach. Other drone-derived structural variables such as height and 

projected crown area show a high correlation with ground-based reference 

measurements along a 1:1 line, suggesting the applicability of the aerial method. The 

point cloud density in our study was 3 points cm-2, which can be regarded as quite high 

and compares to or is even higher than those that result from laser scanning (Vauhkonen 

et al. 2014). Drone-based imagery performs particularly well for the upper part of the 

canopy, which is also where a large part of the transpiration takes place. So far, we only 

tested this method in a relatively simply structured monoculture and an oil palm 

agroforest with relatively young trees. As we regard the results as promising, it will be 

interesting to test it in more heterogeneous stands in next step.  

Oil palm water use in the studied monoculture and the agroforest ranged between 158 

and 249 kg day-1. The studied monoculture is relatively intensively managed, with 

fertilizer application including 230 kg N ha-1 year-1 (Teuscher et al. 2016). The observed 
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water use rates exceed those of small-holder plantations of similar age (108 ± 8 kg day-

1, mean ± SE among eight sites) and compare to values from another intensively 

managed, commercial oil palm monoculture plantation in the region (178 ± 5 kg day-1) 

(Röll et al. 2015; Meijide et al. 2018). Thus, our data indicates that intensive oil palm 

management leads to high water use rates.  

The water use per oil palm in the agroforest was 31% higher than in the monoculture. 

This is likely due to the reduction of oil palm stand density by previous thinning in the 

agroforest, which leads to increases in light, soil water and nutrient availability for the 

remaining oil palms in the stand. This is also in line with a previous study showing 36% 

higher per-palm fruit yield in thinned agroforests than in untreated monocultures 

(Gérard et al. 2017). The mean individual tree water use in agroforest, on the other 

hand, was very low (1.1 - 19.8 kg day-1) compared to the water use of the surrounding 

oil palms. The large difference in tree water use is likely due to the substantial 

differences in tree size (4.2 cm vs 11 cm) and canopy volume (1.1 m3 vs 24 m3). 

However, tree size also coincides with species identity in our case, so ‘ultimate reasons’ 

cannot be disentangled. However, these low absolute rates of the inter-planted trees of 

relatively small-diameter (DBH range 4.2 – 11.0 cm) compare well to values provided 

for rubber trees of similarly small diameter in a previous study in the lowlands of 

Sumatra (Niu et al. 2017). The general observation of high water use per palm also 

corresponds with data from Amazonian fruit plantations, where it was found that palms 

consumed 3.5 times more water than trees (Kunert et al. 2015).  

Scaled to the stand-level based on our aerial approach, stand transpiration of the oil 

palm agroforest (1.9 mm day-1) was 37% lower than in the oil palm monoculture (3.0 

mm day-1). The higher per-palm water use in the oil palm agroforest thus did not 

compensate for the reduction in oil palm stand density when scaled to the stand level. 

The 3-year old, comparably small inter-planted trees in the agroforestry plot contributed 

rather little to overall stand transpiration (15%). The oil palm agroforestry experiment 

EFForTS-BEE was designed and established to test possibilities of reducing the impact 

of oil palm cultivation on biodiversity and ecosystem functioning. Oil palm 

monocultures are associated with ecohydrological problems arising from high 

transpiration rates and low soil water infiltration capacities (Merten et al. 2016). At the 

time of study, transpiration rates from the agroforest were substantially reduced in 

comparison to the commercial monoculture, which may help to alleviate some of the 

ecohydrological problems. However, restoring the integrity of the local hydrological 

cycle by means of oil palm agroforestry will also largely depend on whether soil 

infiltration capacities will increase due to the presence of the inter-planted trees. 
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2.5 Conclusions       

Crown volumes derived from drone-based imagery predicted tree and palm water use 

quite well. For oil palms, such a scaling variable at the whole-plant level was previously 

not available. For predicting individual water use, tree crown volumes performed better 

than the more conventionally used variable stem diameter. In consequence, stand-level 

transpiration estimates based on crown volumes were associated with reduced 

uncertainties. We therefore see great potential for future applications of our aerial 

method in studies scaling plant water use from individual plants to the stand level. 
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2.7 Appendix (Chapter 2) 

Appendix Table 1. Drone-derived crown metrics for oil palm and four studied tree species. Tree height as derived from the canopy height model 

and diameters as measured at breast height are further provided. Means ± standard deviations of the palms and trees where sap flux measurements 

were performed, with sample size n=4 for all groups. Crown volume was derived using convex hull and alpha shape algorithm for oil palms and 

trees, respectively.  
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Appendix Table 2. Equipment and flight details. 

 

Camera Nikon D5100  

Drone MikroKopter OktoXL 

Flight altitude 39 m 

Image overlap 70%  

Number of images 995 ha-1 

Focal length  35 mm 

Ground resolution 5 mm/pixel 

Point density 3 points cm-2 

 

Appendix Figure 1. Validation of drone-derived canopy heights and widths with 

ground reference measurements (n=99 trees and palms).  
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Appendix Figure 2. 3D visualization of oil palm and tree (four tree species) crowns 

derived from different crown volume models (convex hull and different alpha levels). 

Oil palm (Elaeis guineensis Jacq.) 
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Archidendron pauciflorum 
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Parkia speciosa 
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Peronema canescens     
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Shorea leprosula 
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Appendix Figure 3. Daily water use across trees and oil palms versus crown volumes 

alpha shape 0.75. The quality criterion of normality and homeoscedascity was 

however violated (Shapiro Wilk test, P = 0.000042).   
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2.8 A full methodology description of drone image acquisition and crown metric 

processing (Chapter 2) 

2.8.1 Flight plan  

The octocopter drone (MikroKopter OktoXL; Mikrokopter, Germany), with a payload 

capacity of 5.5 kg, carried a high-grade commercial camera and battery compartment.  

The camera (NIKON DSLR D5100, lens AF-S NIKKOR 18-55 mm) was mounted on 

a gimbal stabilized platform (MK HiSight SLR1; Mikrokopter Inc., Germany), which 

can balance the camera pose both in horizontal and vertical direction for taking RGB 

images during the missions. I set image quality at a resolution of 4928 x 3264 pixels 

with white balance and focus in automatic mode. 

Before flying, the mission plan was set up using Mikrokopter-Tool (version 2.14b). In 

general, the waypoint parameters were set by fixed parameters; 35 meter flight altitude, 

2 meter per second flying speed. The camera triggering mechanism was set at 35 mm 

focal length, capture rate of one photo per second to achieve image forward and side 

overlap of 70 percent. I designed two types of mission plans (circular and grid pathway) 

with two different camera directions (nadir angle and oblique angle from nadir 45o) in 

order to create a perfect 3D model. For the circular pathway, a difference of 10-m radius 

between the two circular pathways (radius sizes from 35 to 40 m) was established to 

obtain a sufficient number of photos for matching in the oblique direction (pointing 45o 

to plot center). The grid pathway covered the entire plot and also extended beyond the 

plot at least two plantation rows of oil palm (around 10 m from plot boundary). In each 

plot, circular and grid flying were conducted around midday and with the same mission. 

Before take-off, all flight parameters were transferred by Bluetooth signal to the drone 

mainboard and the GPS position of drone was spatially detected by at least 5 satellites 

during the mission. Autopilot mode facilitated the mission plan after take-off and 

camera began automatically taking photos.  

2.8.2 Point clouds reconstruction and drone-related outputs 

After landing, the spatial location and time of flight path (GPX file) were recorded in 

the onboard SD card, and images were downloaded. All images were then geo-

referenced by GPX file with GPX Viewer software (version 0.66) and exported as 

compatible photo-log files before processing in Agisoft Photoscan Professional 

(version 1.2.6). The drone images were aligned and constructed in 3D point clouds with 

four main workflows (image alignment, build dense point cloud, generation of digital 
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elevation model (DEM), and orthomosaic generation). At the step of image alignment, 

high quality image settings were used, while ground-control points (GCPs) printed at 

8-Bit barcodes were used to determine the overall positional accuracy. Then, 3D point 

clouds were generated within multiple images and orthophotos were produced using 

structure-from-motion (SfM) techniques. The final RGB point clouds were possible to 

export as a Log ASCII Standard (LAS) file for visualization and interpretation with 

RGB orthophoto. The output RGB orthomosaic shows merged image sets for each 

study site, which can easily delineate tree crown boundary through visual interpretation 

and tree coordinates by drawing the crown polygon in Qgis software (version 2.14). 

Moreover, one must geo-register the point clouds to orthophoto as reference image. I 

co-registered SfM point clouds at each GCP in Cloud Compare software (version 2.6.1).  

Classifying terrain is compulsory to generate digital terrain model (DTM). This 

algorithm can run with SfM point clouds in “classify ground points” tool in Agisoft 

Photoscan. There are three parameters to classify ground and non-ground points; 

maximum angle, maximum distance, and cell size into. All ground points were 

generated into a DTM raster, which only shows elevation from the ground terrain. 

2.8.3 Tree crown parameter estimations 

The CHM was implemented in SAGA GIS software (version 2.0.6) by overlay of DEM 

with DTM with a smooth filter applied. The individual canopy height of trees (the 

highest point from local maxima) and meristem height of oil palms (lowest point at 

meristem part from local minima) were obtained from CHM overlaid by the individual 

crown polygons in SAGA GIS software. The tree canopy heights and oil palm meristem 

heights derived from the CHM were further compared to reference height 

measurements from the ground using a measurement pole.  

After export of point cloud data in LAS format, it is necessary to delete aggregated 

points and noises automatically and manually in Cloud Compare software. To extract 

single trees and oil palms from the 3D point cloud, the PolyClip function can be used 

for individual tree segmentation by crown polygons in Fusion software (version 3.6). 

Crown variables of each individual were obtained using the Tree Measurement tool in 

the same software, which is capable of measuring 3D crown projection. Measurements 

including crown length (vertical projection) and crown diameter (horizonal projection) 

of target tree and oil palm were conducted. The measured tree crown variables from 
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ground-based measurements were conducted by the vertical sighting method (Pretzsch 

et al. 2015). However, the certain reference of crown volume was not conducted in the 

field.  

To estimate crown volume of trees and oil palms from point cloud data, the trunk parts 

must be removed manually in Cloud Compare software. Then, the center part of SfM 

point clouds must be moved from the original xyz coordinate axis (in UTM) to the zero 

xyz axis (x = 0, y = 0, z = 0), but this shifting does not affect the original spatial 

information of point clouds. Finally, the main canopy portion of individual trees and 

oil palms were interpolated in R version 3.4.3 (R Development Core team, 2016). I 

estimated crown volume (m3) using a triangulation algorithm of 3D point data with the 

varying point density approach and illustrated crown figures by Alphashape3D 

(Lafarge and Pateiro-Lopez 2017). This approach was adapted from LiDAR point 

clouds processing and is possible to execute with high density SfM point clouds. The 

closer the alpha parameter to 1.0 is the more likely the optimizing shape equally to the 

convex hulls. Moreover, I calculated crown volumes by reducing alpha value to 0.75, 

0.50 and 0.25, respectively (Colaço et al. 2017). If the alpha value reduces, it optimizes 

the volume estimation by forming a more tight shape around the original points 

(Vauhkonen et al. 2016). To select which alpha value presented the highest correlation 

with tree water use, the coefficient of determination of linear regression (R2) was 

determined and compared among crown volumes from different alpha values and 

convex hulls. Moreover, 2D Convex hulls of individual point clouds were calculated to 

measure the crown planar area in R, library rLiDAR, function chullLiDAR2D (Silva et 

al. 2017).  
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Abstract 

Oil palm monocultures are highly productive, but there are widespread negative 

impacts on biodiversity and ecosystem functions. Some of these negative impacts might 

be mitigated by mixed-species tree interplanting to create agroforestry systems, but 

there is little experience with the performance of trees planted in oil palm plantations. 

We studied a biodiversity enrichment experiment in the lowlands of Sumatra that was 

established in a six to twelve year-old oil palm plantation by planting six tree species 

in different mixtures on 48 plots. Three years after tree planting, canopy cover was 

assessed by drone-based photogrammetry using the structure-from-motion technique. 

Drone-derived canopy cover estimates were highly correlated with traditional ground-

based hemispherical photography along the equality line, indicating the usefulness and 

comparability of the approach. Canopy cover was further partitioned between oil palm 

and tree canopies. Thinning of oil palms before tree planting created a more open and 

heterogeneous canopy cover. Oil palm canopy cover was then extracted at the level of 

oil palms and individual trees and combined with ground-based mortality assessment 

for all 3819 planted trees. For three tree species (Archidendron pauciflorum, Durio 

zibethinus, Shorea leprosula), the probability of mortality during the year of the study 

was dependent on the amount of oil palm canopy cover. We regard the drone-based 

method for deriving and partitioning spatially explicit information as a promising way 

for many questions addressing canopy cover in ecological applications and the 

management of agroforestry systems. 

 

Keywords: agroforestry, photogrammetry, structure from motion, SfM, Sumatra, 

Indonesia, unmanned aerial vehicle, UAV 
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3.1 Introduction 

The area of oil palm (Elaeis guineensis) cultivation has strongly increased over the past 

decades (FAO 2016; Vijay et al. 2016) and its cultivation generates high economic 

returns (Rist et al. 2010; Clough et al. 2016; Euler et al. 2016). In conventional 

plantations, oil palm is usually grown in monocultures (Azhar et al. 2017). In 

comparison with other land use systems, and in particular with forests, such plantations 

present severely reduced biodiversity and impaired ecosystem functions (Foster et al. 

2011; Barnes et al. 2014; Drescher et al. 2016; Dislich et al. 2017). Agroforestry 

systems that combine agricultural crops and trees often harbor higher biodiversity and 

provide more diverse ecosystem functions than mono-agricultural land uses (Bhagwat 

et al. 2008; Jose 2012; Tscharntke et al. 2012; Barrios et al. 2017; Ashraf et al. 2018). 

Including agroforestry zones and also forest reserves in oil palm dominated landscapes 

has been proposed as a way to better balance economic and ecological needs (Koh et 

al. 2009). However, there is very little experience with the management of oil palm 

agroforestry. 

Planting multiple native tree species into existing oil palm plantations may be one 

option for the establishment of such agroforestry systems (Teuscher et al. 2016). Mature 

oil palms possess a height advantage and would likely be less affected by competition 

from planted trees (Gérard et al. 2017). The trees thus need to cope with the light 

conditions beneath the oil palm canopy, which, however, could be influenced by 

thinning. In evaluation of planted tree performance, mortality is a central variable, but 

light requirements differ between tree species (Davidson et al. 2002). A heterogeneous 

oil palm canopy cover may offer varied light conditions that may meet the light 

requirements of different species. So far, knowledge on species-specific site matching 

under such conditions is limited. 

Canopy cover of oil palms is usually strongly related to the height of the oil palm stand 

and this has been used to predict aboveground carbon (Nunes et al. 2017) and animal 

abundance of the oil palm plantation (Konopik et al. 2014). In the context of an oil palm 

agroforest, dense canopy cover of oil palm could reduce the light intensity received by 

understory trees passing through canopy layers (Prastyaningsih and Azwin 2017). For 

an adequate assessment of oil palm canopy cover, ground-based methods such as a 

Cajanus sighting tube and line canopy edges intersect by tape-measures could be used 

(Jennings et al. 1999; Korhonen et al. 2006; Ma et al. 2017). Other well-established 

methods include measurements of leaf area index e.g. with instruments like the LAI-

2000 plant canopy analyzer (Awal and Wan Ishak 2008), and hemispherical 

photography with fish-eye lens camera (Awal et al. 2010; Mailly 2017). However, these 

ground-based methods are usually time consuming or impractical over the large area of 

an oil palm plantation. 

Drone-based surveys of canopy cover offer new opportunities and are capable of 

producing results from multi-plot assessment (Shin et al. 2018). Sensors may include 

light detection and ranging (LiDAR) techniques (Guo et al. 2017), or multispectral 
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imaging capturing red, green and blue (RGB) spectral information (Nevalainen et al. 

2017). RGB images are useful to estimate vegetation canopy cover from a canopy 

height model (CHM) (Zhang et al. 2016), and for image classification through a 

photogrammetric approach using the structure-from-motion (SfM) technique (Torres-

Sánchez et al. 2014; Chianucci et al. 2016; Banu et al. 2017; Ivosevic et al. 2017). Based 

on the segmentation method, using a normalized difference vegetation index and CHM, 

a 10 m resolution of canopy cover map could be produced (Shin et al. 2018). LiDAR 

processing workflows, in conjunction with SfM point clouds derived from RGB 

images, should be sufficient to generate a canopy cover map (Wallace et al. 2016). 

The present study was conducted in an experimental oil palm agroforest in the lowlands 

of Sumatra, Indonesia, where oil palm monocultures have expanded rapidly over the 

last decades (Drescher et al. 2016). Within such a monocultural landscape, a 

biodiversity enrichment experiment (EFForTS-BEE) was established in 2013 by 

planting six native tree species within six to twelve-year-old oil palm stands, usually 

after thinning oil palms in the planting area (Teuscher et al. 2016). In the first years of 

the experiment, initial results of the thinning oil palm experiment showed that the net 

oil palm yield at plot level did not change or even increased, and that tree planting did 

not impair oil palm yield (Gérard et al. 2017). In contrast, tree growth was negatively 

affected by the proximity to oil palms (Zemp et al. in revision). In 2016, we applied a 

drone-based photogrammetric approach to the study area, using a low-flying octocopter 

equipped with an RGB camera, in order to analyze the canopy cover. The main 

objectives were (1) to generate high resolution maps of canopy cover, (2) to partition 

the canopy into oil palm and tree components, and (3) to apply the methodology to 

compare oil palm canopy conditions of thinned and non-thinned plots as well as to 

analyze the effect of oil palm canopy cover on tree mortality. We expect that such a 

drone-based approach offers a new way of analyzing the canopy cover in agroforestry 

systems. 

 

3.2 Methods 

3.2.1 Study site 

The study was conducted in the lowlands of Jambi in Sumatra, Indonesia on the land 

of the company PT. Humusindo Makmur Sejati (01.95 °S and 103.25 °E). The mean 

annual precipitation in the region is 2235 mm/annum and the mean annual temperature 

is 26.7 °C (Drescher et al. 2016). The main soil type is loamy Acrisol (Allen et al. 2015) 

and the average altitude at the study site is 47 m a.s.l. (Teuscher et al. 2016). In 2013, 

the biodiversity enrichment experiment (EFForTS-BEE) was established in six to 

twelve-years-old oil palm plantations with a mean palm density of 143 palms per 

hectare (Teuscher et al. 2016). The experiment comprises 56 plots distributed over 150 

hectares. Trees were planted in 48 plots of variable sizes (25, 100, 400, 1600 m2). 

Before planting, oil palm stand density was thinned by 40%, excluding plots of 25 m2 

area that remained unthinned (Teuscher et al. 2016). Six native multi-purpose tree 
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species were planted: Archidendron pauciflorum, Durio zibethinus, Dyera polyphylla, 

Parkia speciosa, Peronema canescens and Shorea leprosula (Table 3.1). Trees were 

planted at a distance of 2 m by 2 m, and in different biodiversity levels of one, two, 

three and six species per plot (Appendix Table 1). At the time of the study, the average 

height of oil palm meristems was 536 cm, and the average tree height per species ranged 

from 88 cm in D. polyphylla to 403 cm in P. canescens. 

 

Table 3.1. Planted tree species and some main ecological characteristics and purpose 

of uses. 

Tree species Family 

Name in 

Bahasa 

Indonesia 

Main use 
Light characteristics 

at early life stage 

Archidendron 

pauciflorum 

Fabaceae Jengkol  Food, edible 

seed 

Light demanding 

(Aumeeruddy 1994)  

Durio zibethinus 

 

Malvaceae Durian Food, edible 

fruit  

Shade tolerant 

(Harja et al. 2012; 

Nguyen et al. 2014) 

Dyera polyphylla 

 

Apocynaceae Jelutung  Latex and 

wood  

Pioneer, light 

demanding (Graham 

et al. 2017) 

Parkia speciosa Fabaceae Petai  Food, edible 

seed  

 

Pioneer, light 

demanding (Lee et 

al. 2002; Orwa et al. 

2009) 

Peronema 

canescens 

Lamiaceae Sungkai Wood  Pioneer, light 

demanding 

(Lawrence 2001)  

Shorea leprosula 

 

Dipterocarpaceae Meranti  Wood  

 

Gap opportunist 

(Ådjers et al. 1995) 

and light demanding  

(Bebber et al. 2002)   
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3.2.2 Drone missions and photography  

From September to October 2016, the 56 plots were assessed with an octocopter drone 

(MikroKopter OktoXL; Mikrokopter, Inc., Germany) equipped with an RGB camera 

(Nikon D5100, lens AF-S DX NIKKOR 35 mm; Nikon, Japan). The camera was 

mounted on a gimbal stabilized platform (MK HiSight SLR1; Mikrokopter, Inc., 

Germany). The optical parameters, such as white balance and focus, were set as 

automatic mode with an image resolution of 4928 × 3624 pixels. The software 

Mikrokopter-Tool (version 2.14b) was used for planning the drone flight patterns. All 

missions took place at altitude of 35 m to 40 m above ground, i.e. approximately 25 m 

above the canopies and were implemented in automatic waypoint mode with a velocity 

of 2 m per second and a camera shutter interval of 1 per second in automatic trigger 

mode. All images were captured with 70% overlap (end and forward). The drone was 

set to follow two different flight patterns; one circular and one grid pathway. Two 

circular flights were conducted with a difference in diameter of 10 m; the radius varied 

between 26 m and 40 m, with the plot center as the central point (Appendix Figure 1 

and Appendix Table 2). Within the circular pathway, the camera was automatically 

pointed 45o from the nadir angle to the plot center. After completing the circular 

pathway, the drone automatically flew in the grid pathway and the camera angle was 

set to the nadir angle (Appendix Figure 1). After landing, all recorded images were 

quality-checked, and unfocused images were deleted. Flight-geo data (GPX-Log files) 

were processed in GPX Viewer software (version 0.66) and exported as compatible 

photo-log files with drone images.  

3.2.3 Raster datasets and canopy cover generation 

The Agisoft Photoscan Professional software (version 1.2.6) was used for orthophoto 

generation, geo-referencing, and point cloud construction through the SfM-

photogrammetric approach. In each plot, images with their corresponding photo-log file 

were processed following standardized steps (including image alignment, building 

dense point clouds, digital surface model (DSM) and orthophoto generation). The 

ground control points were used to measure the accuracy of the orthophoto by geo-

referencing (Appendix Table 2). Subsequently, the RGB orthophoto and DSM were 

exported in geo-TIFF format, whereas the SfM point clouds were exported in LAS 

format (Agisoft 2016). This SfM technique provided RGB point clouds with an average 

density of 2750 points per m2 (standard deviation, SD ±1320). 

LiDAR360 software (version 2.1, GreenValley International, lnc. 2018) was used to 

compute canopy cover metrics. We derived canopy cover from SfM point clouds. In 

order to obtain the canopy cover of each plot, we first classified SfM point clouds as 

“ground” (class 2) and “never-classified” (class 0) with the Classify Ground tool. The 

never-classified points were expressed as vegetation (Mathews and Jensen 2013). Then, 

we used the ground points to generate a digital terrain model (DTM) by combining 

building size, maximum terrain, iteration angle, and distance. After that, all the 

classified point clouds were normalized by DTM. Furthermore, canopy cover was 

computed from the normalized point clouds at 1-m height threshold to distinguish 
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vegetation parts from ground areas, in the package Forest Stat as equation (1). Finally, 

a CHM was resampled by subtracting different elevations (m) between DSM and DTM. 

All raster file outputs were saved in TIFF format with 1-m spatial resolution. We 

followed these workflows for all 56 plots. We calculated canopy cover with the 

equation of the LiDAR first return point clouds as: 

Canopy cover = N vegetation/ N total         (1)  

                         

With N vegetation = number of point clouds intersecting the vegetation above the height 

threshold, N total = total number of point clouds (Morsdorf et al. 2006; Ma et al. 2017). 

3.2.4 Hemispheric photography 

Ground-based hemispherical photographs were captured at the center of the 56 plots 

(Figure 3.1a). Coordinate of plot centers were taken by Garmin GPS device (GPSmap 

62; Garmin International, Inc., USA). The circular fish-eye lens (SIGMA 4.5 mm F2.8 

EX DC HSM, field of view 180°) and camera (Nikon D5100) were set on a tripod at 

1.2 m height, with the lens pointing exactly zenith. The flash socket was always 

positioned to the north using a compass (Beaudet and Messier 2002). To avoid 

overestimation of the canopy gap fraction caused by over-exposure from auto-exposed 

photographs, we progressively reduced exposure values incrementally by 0.3 until no 

overexposed pixels presented in the camera screen (Beckschäfer et al. 2013). The 

selected non-overexposed photographs were processed in Can_Eye software (version 

6.47) to identify the vegetation cover fraction in vertical projection as canopy cover 

(Weiss and Baret 2016). The standard canopy cover was determined using a two-classes 

method (vegetation and sky without mixed pixels) with zenith angles 60° (Weiss and 

Baret 2016).  
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Figure 3.1. Overview of the biodiversity enrichment experiment (EFForTS-BEE) 

experimental plot number 23 (6 planted tree species, 40 m × 40 m): (a) RGB orthophoto 

map (5 mm pixel-size) overlaid by oil palm canopy segmentations and referenced oil 

palm. The plot center is shown, where the ground-based hemispherical photograph was 

taken. (b) Oil palm canopy cover at 1-m resolution; higher values indicate more close 

canopy, while lower values indicate more open canopy, and  (c) extraction of oil palm 

canopy cover at single tree level with buffers (2 m diameter). 

 

 

 

 

(a) 

(b) 

(c) 
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3.2.5 Validation of canopy cover  

Drone-derived vegetation canopy cover in each plot was compared with its respective 

ground-based hemispherical photograph. We considered that tree and oil palm height 

could affect the size of view of fish-eye images. The average tree and oil palm heights 

from the CHMs differed (Appendix Table 2). Thus, we estimated the radius (r) of fish-

eye images from average height CHM with buffer in 10-m diameter, θ = zenith angles 

60° as equation (2) (Riaño et al. 2004; Leblanc and Fournier 2017).  

r = tanθ × average CHM in 10-m diameter buffer      (2) 
 

In each plot, the circular buffer area (πr2) of drone-derived canopy cover was calculated. 

We assumed that sampling size between canopy cover from drone and hemispherical 

photographs in each plot were equal. The weighted average was used for extracting 

pixel values of drone-derived canopy cover (Fieber et al. 2015). The association of 

drone-derived canopy cover estimates with canopy cover estimates from hemispherical 

photography were tested using the Pearson correlation coefficient (R) and comparing 

the estimates to the equality line using coefficient of determination (R2) (Figure 3.2). 

Finally, the significant difference between means of canopy cover from two methods 

was evaluated using the paired two-sample t test. All raster calculations were done in 

R program (R Development Core team 2016), with the libraries raster (Hijmans 2016) 

and rgdal (Bivand et al. 2017). 

3.2.6 Oil palm canopy segmentation 

In each plot, CHM at 1-m spatial resolution was used for oil palm canopy segmentation. 

We followed the local maximum algorithm with a fixed window size. Firstly, the CHM 

was smoothed by a Gaussian filter with smoothing-window size at 3x3 pixels using the 

FindTreesCHM function in the library rLiDAR (Silva et al. 2017), using the library 

raster (Hijmans 2016), and rgeos (Bivand and Rundel 2017). Then, a fixed window 

size at 5x5 pixels, a specified height threshold at 1 m, and a maximum crown radius at 

12 m were applied in order to retrieve automatically delineated crown polygons with 

the function ForestCAS in the library rLiDAR (Silva et al. 2017). All steps were 

conducted in R program (R Development Core team 2016). 

We partitioned oil palm canopy from other tree canopies by manual selecting the oil 

palm crown polygons within the RGB orthomosaic overlay, following semi-individual 

tree-crown approach (Breidenbach et al. 2010). All selected polygons were merged and 

categorized as segmented oil palm canopy (Figure 3.1a), and the other polygons were 

categorized as tree canopy and open area. The accuracy was assessed using equations 

3-5 after matching objects with manual-referenced oil palm polygons using the 

Intersect tool in ArcGIS (version 10.4, Clinton et al. 2010; Kumar 2012). Moreover, oil 

palm canopy cover from thinned and non-thinned plots were compared by quantifying 

the frequency of pixels within interval of 20% for oil palm canopy cover classes (0-

20%, 20-40%, 40-60%, 60-80% and 80-100%, Figure 3.3).  
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Over segmentation = 1-
area( referenced oil palm ⋂ segmented oil palm)

area (referenced oil palm)
            (3)   

 

Under segmentation = 1-
area(referenced oil palm ⋂ segmented oil palm)

area (segmented oil palm)
         (4)         

 

Error (%) =
√over segmentation

2
+under segmentation

2

√2
  × 100             (5)      

3.2.7 Oil palm canopy cover extraction at individual tree level 

We manually co-registered the coordinates of living trees from 2016 within their 

corresponding RGB orthophoto. For each living tree, we systematically designed 

circular buffers of 2 m diameter, consistent with the initial distances between planted 

trees, as sampling area for oil palm canopy cover extraction (Figure 3.1c). The mean 

value of oil palm canopy cover was quantified for each living tree. Due to the shape of 

the circular buffers, raster cells on edges were not totally covered by polygons; a 

weighted function was then used to calculate the mean value proportionally (Fieber et 

al. 2015). Data processing was done in R program (R Development Core team 2016) in 

library raster (Hijmans 2016) and rgdal (Bivand et al. 2017).  

3.2.8 Tree mortality assessments 

Living trees were recorded in the 48 plots by annual field inventory in January 2016, 

and again in January 2017. Mortality was monitored by bark scratching and visual 

inspection. Erroneous mortality diagnostics revealed from the inventory conducted in 

2018 were corrected (30 trees in total). The total number of living trees in 2016 was 

3819 (Appendix Table 1 and Appendix Table 3), and number of trees that died between 

2016 and 2017 was 507 (Appendix Table 1). The percentage of one-year species 

mortality (2016-2017) in each oil palm canopy cover class ‘s’ was calculated as 

equation (6).  

Mortality
 s

 (%)=
N_dead

 s

N_alive
 s
+ N_dead

 s

× 100        (6) 

  

Where ‘s’ indicates canopy cover class, N_dead = number of trees that died and N_alive 
= number of trees that survived between 2016 and 2017. 

The dependency of tree mortality on oil palm canopy cover class could not be tested 

using a standard contingency test because tree mortality in many classes was too low 

(Figure 3.4). We thus used Fisher's Exact and pairwise tests to address the dependency 

between oil palm canopy cover class and the number of trees that died and survived 
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between 2016 and 2017. The null hypothesis is that the proportion of trees that died and 

survived is independent of oil palm canopy cover class. 

 

3.3 Results 

3.3.1 Canopy cover estimation at plot level 

At the plot center, canopy cover derived from drone-based point clouds ranged from 

0% to 99% across the 56 experimental plots (Figure 3.2). Drone-derived canopy cover 

estimates (y) were highly correlated with ground-based hemispherical photography (x) 

with R = 0.94 (p < 0.01). The equality line (y = x) fitted well to the data (R2 = 0.84, p 

< 0.01) and no significant differences were found between the two estimates (t-value = 

-0.05, p > 0.05) with root mean squared error (RMSE) = 10.83%. However, there was 

a deviation between low to mid ranges of canopy cover (20% to 50%), where the drone-

based method estimated higher canopy cover than the ground-based estimation (Figure 

3.2).  

Based on drone estimates with resolution scale of 1 m covering 48 agroforestry plots, 

the mean vegetation canopy cover was 70% (SD ±11%). The canopy cover from the oil 

palms was 56% (SD ±17%) and the canopy cover from the planted trees was 15%      

(SD ±13%). The accuracy of oil palm canopy segmentation is estimated to be 91%    

(SD ±5%). The frequency of pixels across canopy cover classes followed a U-shape 

distribution in both thinned and non-thinned plots (Figure 3.3). Pixels with 0 to 20% of 

oil palm canopy cover were twice more frequent in thinned plots than non-thinned plots 

(Figure 3.3). On the other hand, pixels with dense oil palm canopy cover (80-100%) 

were 37% less frequent in non-thinned plots than in thinned plots (Figure 3.3).  
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Figure 3.2. Drone-derived canopy cover compared to ground-based hemispherical 

photography at plot center (N = 56 plots) with a correlation coefficient (R) = 0.94, 

RMSE = 10.83%. The equality line (black dashed line) indicates 1:1 relationship with 

R² = 0.84, p < 0.01.  

 

 

 

 

Figure 3.3. Distribution of oil palm canopy cover in thinned and non-thinned plots 

where trees were planted (N thinned = 24870 pixels and N non-thinned = 307 pixels, in 48 

plots).  
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3.3.2 Oil palm canopy cover related to tree mortality  

Field-based inventory indicated that the overall mortality of the six tree species between 

2016 and 2017 was 13% but differed significantly among species. D. zibethinus and S. 

leprosula had high mortality rates (39% yr-1 and 47% yr-1, respectively), while A. 

pauciflorum, D. polyphylla, P. speciosa and P. canescens had low mortality rates (less 

than 10% yr-1, Appendix Table 3). 

The proportion of trees that died and survived for the three tree species, A. pauciflorum, 

D. zibethinus and S. leprosula, was dependent on oil palm canopy cover class (Figure 

3.4), whereas no significant dependency was detected for the other three tree species 

(Fisher exact test, two-tailed p > 0.05). A. pauciflorum and S. leprosula presented higher 

mortality rates with increasing oil palm canopy cover, while D. zibethinus presented 

decreasing mortality rates with increasing oil palm canopy cover (Figure 3.4). 

 

 

 



62 

 

 

 
 

 

Figure 3.4. Tree mortality (% yr -1) between January 2016 and January 2017 within oil 

palm canopy cover. ‘*’ indicates tree species with proportions of trees that died and 

survived between 2016 and 2017 dependent on oil palm canopy cover class  (two-tailed 

p < 0.05, Fisher's Exact test). The number of trees that died (N_dead) and survived 

(N_alive) are indicated above the bars (N_dead:N_alive) and the letters represent 

differences among oil palm canopy cover classes (p < 0.05, pairwise test of 

independence). The total number of living trees in 2016 and number of dead trees in 

2017 were 3819 and 507, respectively. 
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3.4 Discussion  

We generated canopy cover maps at a high spatial resolution in oil-palm agroforests 

using drone-based photogrammetry, partitioned canopy cover into oil palms and trees, 

and analyzed the relationship between oil palm canopy cover and tree mortality.  

We integrated different flight patterns and camera angles to generate high density point 

clouds following a well-documented photogrammetry procedure (Cunliffe et al. 2016; 

Vacca et al. 2017). The employed SfM technique resulted in a very high density of 

photogrammetric point clouds (mean = 2,750 points per m2). In a previous study 

observing canopy cover with LiDAR point clouds, the density of 10 points per m2 

already yielded reasonable results when compared with ground-based measurements 

using a Cajanus sighting tube (Ma et al. 2017). Therefore, it is clear that point cloud 

density from SfM technique is high enough to derive reliable canopy cover estimates. 

We found a high correlation between drone-derived canopy cover and ground-based 

hemispherical photography. Despite the high correlation, drone-derived canopy cover 

estimates were higher than ground-based estimates at 20% to 50% of canopy cover 

(Figure 3.2). The SfM point clouds resulted in overestimated canopy cover compared 

to the LiDAR point clouds estimates probably due to limited penetration ability; 

however, mean canopy cover derived from the two different methods did not differ 

significantly (99% confidence level) in a previous study (Jayathunga et al. 2018) and 

in our own. A similar deviation was observed by Chianucci et al. (2016) who found that 

canopy cover from drone-based RGB image classification was higher than ground-

based photography estimation. We assume that small canopy gaps might be 

undetectable from SfM point clouds, as it was also the case in canopy analyses from 

LiDAR point clouds (Vaccari et al. 2013). A single picture of the aerial photography 

may potentially have similar resolution as the ground-based pictures, but the SfM 

approach includes numerous pictures from different angles with a certain overlap. Such 

methodological differences might explain the observed difference in estimations at low 

to intermediate canopy cover. Nevertheless, the high correlation between the SfM 

technique and ground-based hemispherical photography strongly suggests 

comparability of our approach. 

Based on semi-individual tree-crown approach (Breidenbach et al. 2010), the oil palm 

canopy segmentation is a crucial step to partition the canopy cover into oil palms by 

overlaying oil palm crown polygons with RGB orthophotos. This procedure resulted in 

useful and precise data but leaves room for further optimization, because using only the 

automatic crown segmentation of the CHM did not always differentiate oil palm canopy 

from trees. Furthermore, in order to improve the accuracy of crown segmentation, 

different window sizes relative to image resolutions and varying tree-crown sizes could 

be tested (Wulder et al. 2000; Silva et al. 2016; Mohan et al. 2017). One advantage of 

our method was that we could retrieve oil palm canopy cover at the level of individual 

trees using their spatial coordinates, and this was possible even when planted trees were 
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invisible from RGB images because they grew under neighbor trees and oil palm 

canopies.  

An analysis of our map of oil palm canopy cover suggests that thinning oil palms 

created more variable canopy cover conditions. Specifically, thinned plots presented 

twice as many pixels in open areas (0% to 20% oil palm canopy cover class) and 37% 

less pixels in shaded areas (80% to 100% oil palm canopy cover) compared to non-

thinned plots.  

The probability of mortality rates of A. pauciflorum, D. zibethinus and S. leprosula 

depended on the amount of oil palm canopy cover (Figure 3.4). The relationship 

between oil palm canopy cover and mortality can be related to light requirements of 

each species (Table 3.1); however, a clear relationship between oil palm shading and 

tree mortality was not present for other tree species. Long-term monitoring of tree 

mortality may be required to elucidate relationship for these remaining species. 

Moreover, further analysis of other potentially important control factors affecting 

mortality should be conducted. For example, planted trees might have also suffered 

from the extreme drought period associated with El Niño event in 2015 (Meijide et al. 

2018), even though the drought ended several months before our study period 

(Nieuwstadt and Sheil 2005).  

Oil palm companies have only begun to utilize remote sensing monitoring technology 

for developing more sustainable management schemes (Chong et al. 2017). Our drone-

based methods efficiently differentiated oil palm from tree canopies and clearly 

depicted the canopy structure of dominant oil palms. Furthermore, we were able to 

show with our method that thinning created heterogeneous oil palm canopy cover and 

that oil palm canopy conditions partly influenced mortality of some tree species in the 

biodiversity enrichment experiment. 

  

3.5 Conclusions 

Drone-based photogrammetry and subsequent partitioning of dominant oil palm 

canopies present advantages in canopy cover analyses of oil palm agroforestry. In the 

case of transforming oil palm monocultures into agroforestry systems, drone-derived 

canopy cover can be utilized to address many other questions with respect to 

agroforestry system management and ecological study.  
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3.7 Appendix (Chapter 3) 

 

 

 

Appendix Figure 1. Example flight pattern at plot number 23 (plot size 1600 m2). Two 

circular flights were conducted with the first circular flight (P2 to P16) at a radius of 35 

m from the plot center (P1), and the second circular flight (P17 to P32) at a radius of 

40 m. After that, the grid pathway automatically began by flying between P33 and P52.  
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Appendix Table 1. Summary table of plot information and recorded trees in 2016 

and 2017. 

Plot 

ID 

Plot size 

(m2) 

Tree 

diversity 

level 

Remaining 

oil palms 

Thinned 

oil palms 

Height at 

meristem of 

remaining oil 

palm in 2017 

Living trees 

in 2016 

Living trees 

in 2017 

Dead trees 

between         

2016 and 

2017 

1 1600 1 13 7 5.20 ± 0.70 387 378 9 

2 400 3 1 3 4.60 ± 0.00 57 46 11 

3 400 2 2 3 5.65 ± 0.21 49 42 7 

4 100 1 0 1 not applicable  11 2 9 

5 1600 1 12 8 5.08 ± 0.78 376 367 9 

6 25 1 0 0 not applicable  6 6 0 

7 1600 3 11 8 4.64 ± 0.54 279 220 59 

8 25 1 0 0 not applicable  1 0 1 

9 100 3 1 1 5.70 ± 0.00 18 18 0 

10 400 0 1 3 4.90 ± 0.00 0 0 0 

11 100 1 0 1 not available 1 1 0 

12 400 1 2 1 4.65 ± 0.78 21 15 6 

13 100 1 0 1 not applicable  25 25 0 

14 100 1 0 1 not applicable  7 7 0 

15 400 1 2 2 4.75 ± 0.07 100 100 0 

16 25 3 0 0 not applicable  3 2 1 

17 400 1 2 3 6.00 ± 0.14 67 40 27 

18 25 2 0 0 not applicable  3 3 0 

19 400 6 3 2 3.80 ± 0.61 54 48 6 

20 100 1 1 1 5.90 ± 0.00 23 19 4 

21 100 6 0 1 not applicable 18 15 3 

22 25 2 0 0 not applicable 3 3 0 

23 1600 6 12 8 5.32 ± 0.45 254 222 32 

24 1600 2 11 6 5.81 ± 1.15 215 201 14 

25 25 1 0 0 not applicable 6 5 1 

26 1600 2 12 6 6.01 ± 0.62 45 12 33 

27 100 2 0 1 not applicable 24 23 1 

28 25 1 0 0 not applicable 6 6 0 

29 1600 3 20 8 5.54 ± 0.92 184 166 18 
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Appendix Table 1. (Cont.) Summary table of plot information and recorded trees in 

2016 and 2017 

Plot 

ID 

Plot size 

(m2) 

Tree 

diversity 

level 

Remaining 

oil palms 

Thinned 

oil palms 

Height at 

meristem of 

remaining oil 

palm in 2017 

Living trees 

in 2016 

Living trees 

in 2017 

Dead trees 

between        

2016 and 

2017 

30 400 1 2 2 6.10 ± 0.99 100 100 0 

31 25 1 0 0 not applicable 5 4 1 

32 100 2 1 1 5.40 ± 0.00 5 3 2 

33 400 3 4 3 7.00 ± 0.37 68 67 1 

34 100 2 1 1 5.30 ± 0.00 11 11 0 

35 1600 0 16 5 5.25 ± 0.48 0 0 0 

36 400 2 1 3 5.70 ± 0.00 54 51 3 

37 100 0 1 1 4.30 ± 0.00 0 0 0 

38 400 1 3 4 5.93 ± 0.57 47 44 3 

39 25 2 0 0 not applicable 4 3 1 

40 25 0 0 0 not applicable 0 0 0 

41 

42 

43 

100 

25 

1600 

1 

1 

1 

0 

0 

11 

1 

0 

7 

not applicable 

not applicable 

5.89 ± 0.78 

22 

5 

141 

22 

5 

75 

0 

0 

66 

44 25 3 0 0 not applicable 3 3 0 

45 1600 1 14 4 4.76 ± 0.85 396 379 17 

46 1600 2 17 8 4.69 ± 0.95 351 270 81 

47 400 2 5 1 6.06 ± 0.58 96 86 10 

48 100 3 0 1 not applicable 18 17 1 

49 1600 1 15 5 5.39 ± 0.64 136 71 65 

50 25 6 0 0 not applicable 5 3 2 

51 400 1 3 2 6.50 ± 0.35 95 94 1 

52 1600 1 13 7 5.59 ± 1.09 14 12 2 

53 100 control 1 0 3.60 ± 0.00 0 0 0 

54 100 control 1 0 5.90 ± 0.00 0 0 0 

55 100 control 1 0 5.80 ± 0.00 0 0 0 

56 100 control 1 0 5.60 ± 0.00 0 0 0 
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Appendix Table 2. Summary of drone multi-plot assessment.  
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Appendix Table 3. Initial number of planted trees in December 2013, number of living 

trees in January 2016, and mortality of planted trees between January 2016 and January 

2017 from field inventory (48 plots).  

Species 

Living trees    

in 2013          

(n) 

Living trees    

in 2016          

(n) 

Mortality between 

2016 and 2017      

(% yr-1) 

Archidendron pauciflorum 1061 990 8 

Durio zibethinus 1057 276 39 

Dyera polyphylla 1061 129 7 

Parkia speciosa 1057 978 9 

Peronema canescens 1057 1031 3 

Shorea leprosula 1061 415 47 

 

Appendix Table 4. P-values of Fisher’s exact test and number of trees that died and 

survived between 2016 and 2017. ‘*’ indicates the probability of mortality during the 

year of the study dependent on oil palm canopy cover class (two-tailed p < 0.05, Fisher's 

Exact test).  

Species Fisher’s exact test 

(p-value) 

Dead tree 

(N) 

Living tree 

(N) 

Archidendron pauciflorum 0.0045* 76 914 

Durio zibethinus 0.0184* 109 167 

Dyera polyphylla 0.8110 9 120 

Parkia speciosa 0.2976 84 894 

Peronema canescens 0.5510 26 1005 

Shorea leprosula 0.0005* 194 221 
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Abstract 

Mono-cultural and large-scale oil palm cultivation is associated with impaired 

ecosystem services and reduced biodiversity in many taxa. Agroforestry has been 

suggested as an option to restore these deficiencies, but its success will also depend on 

the landscape context. An oil palm agroforestry experiment was established in the 

lowland of Jambi, Sumatra, with the main goal of biodiversity enrichment by planting 

trees in oil palm plantations. The objectives of this study were to map the land cover 

and land use in the area surrounding this experiment, and analyze short-term changes 

in the landscape. A fixed-wing drone equipped with cameras (red, green, blue and near 

infrared) was used to survey an area of 1121 ha with the experimental plots in its center. 

Survey images were gathered in two consecutive years then processed using supervised 

classification and post-processing steps into eight land use types. In 2015, oil palm 

plantation covered 81% of the landscape, whereas the remaining 19% comprised bare 

soil (9%), secondary forest (5%), fallow (3%), rubber plantation (2%) and others (less 

than 1%). From 2015 to 2016, the land cover of oil palm plantation increased 2%, 

transforming from areas of bare soil (50%), fallow (27%), secondary forest (18%) and 

rubber plantations (15%). Oil palm occurred in large-continuous tracts while other land 

cover types were mainly dispersed small patches. So far, we conclude that the 

experimental agroforest is situated in an oil palm dominated landscape, and that the 

land use change of the area is effectively moving towards more oil palms. 

 

Keywords: oil palm landscape; unmanned aerial vehicle; UAV; EFForTS-BEE;       

land use change 
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4.1 Introduction 

Oil palm cultivation has expanded during last decades, and this trend is likely to 

continue in the coming years (Wicke et al. 2011). Oil palm cultivation is highly 

productive and generates high economic returns (Sayer et al. 2012; Clough et al. 2016). 

However, the expansion of oil palm plantations is associated with biodiversity loss and 

impaired ecosystem functions (Koh and Wilcove 2008; Dislich et al. 2017). Worldwide, 

Indonesia is the country with the largest area of palm oil cultivation (FAO 2016). In 

Jambi province, Sumatra, Indonesia, the palm oil industry has developed through large-

scale monocultural oil palm plantations (Baudoin et al. 2017). Analysis of land use 

maps in Jambi from 1990 to 2013 displays a rapid expansion of oil palm plantations by 

77%, whereas the area of primary and secondary forest in Jambi decreased 35% (Melati 

2017). In 2013, oil palm plantations covered 4.9 Mha in Jambi province (Melati 2017), 

mainly occurring in large continuous blocks.  

Land use maps are usually derived from satellite data, and with the rise in drone 

applications, the use of drone-based imagery is also used to produce land use maps in 

oil palm landscapes (Kalantar et al. 2017). Drone-equipped cameras have been widely 

used for landscape mapping because they provides more fine-spatial resolution images 

and are more cost effective and less influenced by cloud coverage than satellite 

photography (Pádua et al. 2017; Iizuka et al. 2018).  

An oil palm agroforestry experiment was established in the lowland of Jambi, Sumatra, 

with the main goal of biodiversity enrichment by planting trees in oil palm plantations 

(Teuscher et al. 2016). The success of biodiversity enrichment will also partly depend 

on the landscape context. For example, remnants of secondary forest may act as source 

areas for certain taxa. On landscape scale, such potential source areas are distributed in 

varying distances to specific experimental plots, potentially having different influence 

on the biodiversity in particular plots. Moreover, the landscape configuration around 

the experimental area may also change over time and that also may induce temporal 

changes on biodiversity dynamics. The objectives of this study were to map the land 

use in the landscape surrounding this agroforestry experiment, and to analyze its short-

term changes. 

 

4.2 Methods 

4.2.1 Study site 

We studied an area of 1121 ha (about 3.3 km x 3.3 km) containing the 56 plots of the 

agroforestry experiment EFForTS-BEE (Teuscher et al. 2016) in the center of the study 

area. The study area is located near Bungku village, Jambi, Indonesia (Appendix Figure 

1 and 2). Total area of agroforestry plots is about 150 ha, which were established in the 

area of PT. Humusindo Makmur Sejati company (Teuscher et al. 2016).  
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4.2.2 Image acquisition 

The software APM Mission Planner (version 1.3.16) was used with Google Satellite 

Map interface to mission fixed-wing drone flights from the center of EFForTS-BEE 

(01.95 °S and 103.25 °E). The area of interest (AOI) was divided into five separate 

missions (Appendix Figure 2). The auto-flying waypoints were generated inside the 

AOI and the drone turning points were set outside AOI (Appendix Figure 2). In October 

2015 and again in October 2016, the fixed-wing drone (Aero M, 3D Robotics, USA) 

and cameras (Canon PowerShot SX260 HS, Japan) were used for capturing aerial 

imagery in red, green, blue (RGB) and near infrared (NIR) spectrums. The drone 

automatically flew above 300 m a.s.l. with image overlap of 50% sideward and 50% 

forward, which were set by Naumann (2015). Due to limitation of payload space, flights 

with RGB and modified-NIR cameras were conducted separately, but with the same 

mission plan and around midday. All cameras took images every three seconds using 

the Canon Hack Development Kit setting (Mitchell 2013). After landing, the mission 

log files were downloaded and recorded in shape format with DNRGPS software 

(version 6.0.0.15).  

4.2.3 Image preparation 

All unfocussed images were removed as quality check. Although image acquisition in 

2015 was carried out during a haze period, the conditions only present a small effect to 

NIR band (Sun et al. 2017). For this reason, we only performed dehazing for RGB 

images derived in 2015. The batch-processing in Dehaze function (Camera Raw tool) 

in Photoshop CC 2015 was used for haze removal (Weinmann and Lourekas, 2016). 

After that, all images in 2015 and 2016 were registered with their corresponding time 

stamps from mission shape files and exported as compatible-logs images with software 

ExifToolGUI (version 5.16).  

4.2.4 Seamless-orthorectified map generation  

The Agisoft Photoscan Professional (version 1.2.6) was used to generate orthophoto 

and geo-referencing. All images from each mission were processed following these 

steps; image alignment, building dense point clouds, generation of digital surface 

model, and orthomosaic generation. In each mission from 2016, four rectangular 

ground control points (GCPs) in size 1.5 m by 1.5 m were visually tracked and geo-

referenced. In five missions, the spatial accuracy was determined with twenty 

referencing GCPs that were recorded from Garmin GPSmap 62 (Garmin International, 

Inc., USA), more details in Appendix Table 1. We co-registered orthophotos (five 

missions of RGB and NIR bands) in 2016 by conducting georeferencing from the third 

mission, which yielded the lowest GCPs error (mean= 1.2 m ± 0.3 standard deviation, 

Appendix Table 1). Although GCPs were not established in 2015, we co-registered all 

orthophotos (RGB and NIR band) from 2015 with georeferenced orthophotos from 

2016. We assume that all orthophotos have the same accuracy. 

We performed color balancing by using the bundled adjustment approach and adaptive 

filter for orthophotos in 2015 and 2016. These steps enhance homogeneity and maintain 
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original color bands of the orthophoto (Hruby et al. 2016). Moreover, the Dodging tools 

optimized pixels of neighboring scenes between two overlapping images and at specific 

areas, adjusting the contrast and brightness of RGB orthophotos. All processing steps 

were carried out using PCI Geomatica software (2017) with Automatic and Manual 

Mosaicking tools (PCI Geomatics Enterprises, Inc., 2017). Then seamless orthophotos 

from each year were composited into one raster with 4 bands (RGB+NIR) and exported 

in TIFF format (0.1 m resolution). 

4.2.5 Land use type classification with supervised classification  

The supervised classification with the maximum likelihood classifier was used to 

classify land use types following the pixel-based approach in ArcGIS (version 10.4). 

Training polygons samples were collected based on identification of land use type after 

ground truthing. One hundred ground truths were conducted based on a filed based 

survey in 2015 using random sampling in area of approximately 624 ha. Additional 

information regarding the land use types nearby the ground truth points were also 

recorded. Both RGB and false-color composite bands (NIR, R and G) were visualized 

during training polygon creation with a minimum pixel level of 750 pixels per polygon 

(Noi and Kappas, 2018). Firstly, the seamless orthophoto (0.1 m resolution) in 2016 

was classified by supervised classification in 7 land use classes: secondary forest, oil 

palm plantation, rubber plantation, other vegetation (bushes, grass and orchards), water, 

urban, and bare soil (see definition of 7 classes in Appendix Table 2). However, haze 

was not completely removed from the orthomosaic raster in 2015 (Appendix Figure 

1b). In order to make the orthomosaic rasters from both years comparable, we generated 

two-additional training classes for 2015 by adding polygons of oil palm plantation and 

secondary forest covered by haze. After supervised classification, the two additional 

classes were reclassified into oil palm plantation and secondary forest. Following these 

steps, all classified maps in 2015 and 2016 contained 7 classes with 0.1 m of resolution 

(TIFF format). 

4.2.6 Post processing for land use maps (8 classes) 

Misclassified pixels and noise pose a great influence on land use change detection. After 

supervised classification with 7 classes, we applied post-processing steps to reduce 

misclassified classes and noise pixels in land use maps (0.1 m resolution). All small 

pixel groups, less than 5000 pixels, were optimized following these steps: majority 

filter, boundary clean, region group, set null and nibble (Mattupalli et al. 2018), with 

subsequent steps from 1000, 2000, 3000, 4000 to 5000 pixels. These post- processing 

steps were limited at 5000 pixels because portions of area classified as bare soil became 

invisible after these steps. 

Supervised classification was not carried out for all classes in this study because the 

increasing number of classes may reduce the overall land use map accuracy (Ma et al. 

2017). In addition, fallow may indicate to area that will change into oil palm plantation 

in the future (Wicke et al. 2008). We reclassified the misclassified land use types and 

separated other vegetation into fallow and orchard. As a result, land use maps contained 
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8 classes of land use: secondary forest, oil palm plantation, rubber plantation, fallow, 

orchard, water, urban, and bare soil (see definition of 8 classes in Appendix Table 2). 

Finally, we decided to decrease map resolution to 10 m in order to remove small pixel 

groups from single objects, individual oil palms and trees. The 10-m resolution land 

use maps containing 8 classes for 2015 and 2016 were generated in TIFF format. All 

processing steps were done in the ArcGIS (version 10.4). 

4.2.7 Accuracy tests 

Accuracy assessment was tested with land use maps in 2015 and in 2016 (8 classes, 10-

m resolution) by creating reference points (total 504 points) using equalized-stratified-

random point sampling in ArcGIS (version 10.4). For each reference point, a certain 

land use type was extracted from the land use map as classification data. All reference 

points were manually defined based on land use type for each year by on-screen 

identification. Moreover, 100 ground-truth points in 2015 were displayed to cross-

reference the land use information to further support the identification of land use type. 

Finally, overall accuracy, user’s accuracy, and producer’s accuracy were calculated 

from the confusion matrix (Appendix Table 5-6).  

4.2.8 Land use change detection  

Polygons of all land use types between 2015 and 2016 were overlaid and intersected. 

The spatial data of each land use class such as intersect area and non-intersect area were 

exported in a pivot table to calculate transformation areas. A change detection map 

depicting land use transformation between 2015 and 2016 (Figure 4.1c) was created 

with ArcGIS (version 10.4) using the Intersect tool and pivot table analysis.  
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Figure 4.1. The land use maps in 2015 (a) and 2016 (b) with 10 m resolution are shown 

with the 8 land use types and marked agroforestry plots. Overall accuracy of land use 

map in 2015 and in 2016 was 84% and 82%, respectively. The change detection map 

(c) depicts unchanged areas in white and changed land use areas in the color of the new 

classes.  

(a) (b) 

(c) 

2015 2016 

Bare soil 

Plots 
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4.2.9 Spatial pattern analysis by class and landscape indices 

Indices of eight land use types as “class indices” and landscape level as “landscape 

indices” were calculated in FRAGSTAT software (version 4.2.1) (McGarigal 2015). 

For the class indices, we mainly compared number of patches in percentage, mean patch 

area, edge density, and landscape shape index (see definitions in Appendix Table 4). 

To analyze landscape fragmentation we calculated: Euclidean nearest neighbor distance 

(ENN), clumpiness index, and landscape division index (DIVISION, Jaeger 2000) (see 

definitions in Appendix Table 4). For landscape indices, Shannon’s diversity index and 

evenness, and Simpson’s diversity index and evenness were computed (see definitions 

in Appendix Table 4).  

 

Table 4.1. Transformation of land use types from 2015 to 2016 in the total area 1121 

ha. In each class, percentages of area (%) showed the proportion of the land use 

transformation in 2016 from the total class area in 2015. Bold values represent the stable 

area (%) without transformation to other classes. 

 

4.3 Results 

4.3.1 Land use types and change detection  

The land use map area for both 2015 and 2016 was 1121 ha. In 2015, oil palm plantation 

covered 81% (907 ha) of the total area and the other classes covered about 19% (Figure 

4.2). Minority land uses in 2015 included bare soil (9%), secondary forest (5%), fallow 

(3%), rubber plantations (2%); and the smallest were orchard, water and urban, which 

covered less than 1% (Figure 4.2). From 2015 to 2016, the analysis of land use change 

suggests that, of the total map area, the area of secondary forest decreased by 1% (10 

ha), and bare soil decreased by 4% (47 ha), whilst fallow increased by 3% (29 ha, Figure 

4.2 and 4.3). Areas of rubber plantation, orchard, water and urban did not change much 

within one year (Figure 4.3). From 2015 to 2016, the analysis of land use transformation 

Land use class                               

Year 2016 

Secondary 

forest 

Oil palm 

plantation 

Rubber 

plantation 
Orchard Fallow Water Urban 

Bare 

soil 
Total 

Y
ea

r 
2

0
1
5
 

Secondary forest 66 18 2 0 10 0 0 3 100 

Oil palm plantation 1 94 0 0 2 0 0 2 100 

Rubber plantation 2 15 76 0 3 0 0 4 100 

Orchard 0 16 0 76 0 3 0 5 100 

Fallow 1 27 0 0 62 0 0 9 100 

Water 1 18 0 0 7 71 0 3 100 

Urban 1 6 0 1 2 0 73 17 100 

Bare soil 1 50 1 1 15 0 1 31 100 
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showed that 18% of secondary forest area, 15% of rubber and 16% of orchard were 

converted to oil palm plantation (Table 4.1). Moreover, about half of bare soil (50%) 

was transformed to new oil palm plantation (Table 4.1 and Appendix Table 3).  

 

 

 

Figure 4.2. Percent coverage area (%) and total area (ha) by land use types in 2015 and 

2016 summarized for the entire total area of 1121 ha. 

 

Figure 4.3. Area change (%) of land use between 2015 and 2016 was estimated from 

initial area of land use type in 2015.  
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4.3.2 Landscape patterns 

All 8 classes from the final land use maps were in clumped pattern: clumpiness index’s 

ranging from 0.3 (water) to 0.9 (secondary forest and rubber plantation) in 2015 (Table 

4.2). Oil palm plantation likely formed in one patch (DIVISION in 2016 = 0.3 and 

DIVISION in 2015= 0.4) with the largest mean patch area (Figure 4.4) and connected 

in short distance, indicating by low ENNs (Table 4.2). Whereas, other land use types 

were maximally subdivided (DIVISION= 1.0, Table 4.2). Comparison between 2015 

and 2016, secondary forest, oil palm plantation, rubber plantation and orchard had very 

few differences in percentage number of patches, mean patch area, edge density, and 

landscape shape index (Figure 4.4). Oil palm plantation showed the highest mean patch 

area compared to other land uses and the decrease of mean patch size was found in 2016 

(Figure 4.4). Fallow presented the highest percentage number of patches, also an 

increase, and distinct change in edge density and landscape shape index (Figure 4.4). 

In contrast, percentage number of patches and edge density of bare soil decreased but 

change in their landscape shape index was very little (Figure 4.4). On the landscape 

level, all indices did not notably change within one year (Table 4.3).  

Table 4.2. Class level indices explained spatial patterns of land use in the study area. 

Mean of Euclidean nearest neighbor distance (ENN), clumpiness index, and landscape 

division index (DIVISION) of land use types were compared between 2015 and 2016. 

Land use types 

Year 2015 Year 2016 

ENN 

(m) 

Clumpiness 

index 
DIVISION 

ENN 

(m) 

Clumpiness 

index 
DIVISION 

Secondary forest 73.4 0.9 1.0 38.9 0.8 1.0 

Oil palm plantation 24.9 0.7 0.4 23.9 0.7 0.3 

Rubber plantation 112.9 0.9 1.0 131.5 0.8 1.0 

Orchard 25.9 0.8 1.0 22.1 0.8 1.0 

Fallow 60.2 0.8 1.0 46.4 0.7 1.0 

Water 75.0 0.3 1.0 61.5 0.3 1.0 

Urban 103.2 0.5 1.0 97.3 0.4 1.0 

Bare soil 28.1 0.5 1.0 31.3 0.4 1.0 
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Table 4.3. Landscape level indices were analyzed in order to explain spatial pattern of 

landscape in 2015 and 2016. 

Landscape indices Year 2015 Year 2016 

Shannon's diversity 0.8 0.7 

Shannon's evenness 0.4 0.4 

Simpson's diversity 0.3 0.3 

Simpson's evenness 0.4 0.4 

 

  

 

Figure 4.4. Comparison of four class level indices from land use types between 2015 

and 2016; percentage number of patches (a); number of patches indicated above the 

bars of each land use type, mean area of patch (b), edge density (c) and landscape shape 

index (d). 

 

 

 

 

(a) (b) 

(c) (d) 
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4.4 Discussion 

This study conducted a drone-based assessment over a one year period for the propose 

of studying land use distribution, change of land use, and landscape patterns around oil 

palm agroforests and in oil palm dominated landscape. Some of the methodological 

developments discussed may benefit further works in drone-based imagery for 

landscape monitoring. 

4.4.1 Problems with drone-based data processing and method improvement 

The short flying distance of drones usually limit the coverage area of image acquisition 

(Puliti et al. 2015). Five of drone flight missions covered all areas of the total 1121 ha. 

However, light inconsistency from cloud shadow and different image acquisition time 

led to imbalanced colors within orthophotos. In this case, construction of high quality 

landscape maps typically requires seamless algorithms (Tian et al. 2016). We followed 

the methods of image brightness and saturation adjustment (Hruby et al. 2016) that 

could generate seamless orthophotos. There were some focal points that still required 

other more robust methods such as Wallis dodging and Gaussian distance weight 

enhancement (Tian et al. 2016). Furthermore, haze removal is required for the 

orthophoto in 2015 because there was haze covering Jambi from land-clearing fires. 

The effect of haze was reduced but not completely removed. Alternatively, by applying 

radiometric calibrations, it is possible to remove haze components (Gehrke and Beshah 

2016; Bahari et al. 2018).  

In the initial land use maps, using the pixel-based approach with supervised 

classification to generate high resolution of land use maps (0.1 m resolution) was very 

challenging. The land use maps showed many misclassified pixels, small spots of noise 

and isolated pixels (salt and pepper effect), which could influence the overall accuracy 

of land use maps (Cui et al. 2018; Müllerová et al. 2017). In other cases, lower accuracy 

land use maps were generated when using high resolution images with supervised 

classification (Amalisana et al. 2017) and object-based classification (Lu and He, 

2017). Importantly, post-processing steps were highly recommended (Lu and Weng 

2007). In this way, methods from Mattupalli et al. (2018) could reduce small pixel 

groups from being misclassified and reclassification could correct the proper land use 

types based on user’s visual interpretation. Alternatively, using supervised sub-pixel 

technique (Li et al. 2014), unsupervised classification (Pradhan et al. 2014), texture 

analysis with image segmentation (Baudoin et al. 2017), and object-based analysis (Arif 

et al. 2017; Mafanya et al. 2017; Müllerová et al. 2017) may have enough capacity to 

generate a land use map from a high-resolution orthophoto.  
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4.4.2 Landscape change and patterns of land use transformation  

Previous land use maps derived from satellite imagery (Melati 2017), depicted oil palm 

plantation covering only 23% and 40% of this study area in 1990 and 2013, 

respectively. We used drone-derived land use maps (10 m) from 2015 to 2016 to 

determine land use change and area transformation. In 2016, oil palm plantation 

dominated 83% of the landscape area and this monoculture plantation increased in area 

by replacing secondary forest and bare soil areas. Additionally, we found that fallow 

areas were frequently transformed to oil palm plantation, and a small area of rubber 

plantation was also converted to oil palm plantation; however, the total area of rubber 

plantation remained stable. This detection of land use change, but stable total area for 

rubber plantation, may be attributed to the moderate accuracy (overall accuracy about 

82% and 84%) of the land use maps. These findings provide evidence that oil palm 

expanded into fallow and rubber plantation areas (Gatto 2015). On the other hand, local 

people might have an interest in maintaining rubber plantations because they offer an 

alternative income source during the low season of oil palm harvest (Meijaard and Sheil 

2013) despite the fact that oil palm harvest takes place year round (Teuscher et al. 2016; 

Gérard et al. 2017). In our study area, we also found that orchard area remained in one 

area and experienced very little change to other land uses. We expect that the orchard 

area may fulfill local peoples’ needs without expanding, similar to the rubber plantation 

area. In the case of water area, the small apparent increase in area between 2015 and 

2016 might be due to the El Niño dry event in 2015 (Meijide et al. 2018). 

Different land use types had varying patterns of change from 2015 to 2016. Compared 

with other land use types, fallow increased in percentage number of patches, edge 

density, and landscape shape index, while bare soil greatly decreased in percentage 

number of patches and edge density. Moreover, secondary forest, rubber plantation, 

orchard and fallow were more fragmented in a clumped distribution. While water, urban 

and bare soil were more disaggregated in a random distribution. Oil palm plantation 

showed a decreased mean patch area and distributed in a single patch while other land 

use types were totally fragmented. We assume that reduction of mean patch area of oil 

palm plantation is probably related to the moderate accuracy of the land use maps and 

the increase of the small patch areas of oil palm, transformed from other land use types. 

In comparison, Melati (2017) discovered slightly increasing mean patch area of oil palm 

plantation in Jambi province between 2000 and 2013. However, the scale of our study 

area is relatively too small to realistically compare to the macro scale of Jambi province.  

4.4.3 Implications for conservation 

In Jambi province, oil palm intensification and land use transformation were potentially 

linked to urban development (Feintrenie et al. 2010) and oil palm smallholders mainly 

focused on economic benefits from oil palm production rather than sustainable 

management (Wicke et al. 2008). Land use assessment clearly revealed the 

transformation of the high conservation value areas, such as secondary forests around 

agroforestry plots, which could be linked to oil palm expansion. In order to maintain 

forest areas in this landscape, we recommend presenting the current land use 
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information to encourage public awareness and promote collaboration between local 

people and oil palm stakeholders.  

Spatial information of the landscape surrounding the experimental plots can support 

other biodiversity studies. In other oil palm dominated landscapes, presence of intact 

forests affected diversity of birds (Bennett et al. 2018) and mammal species (Pardo et 

al. 2018). In our study site, patches of secondary forest, present near the northern 

experimental agroforestry plots, possibly containing certain tree species, may have also 

influenced biodiversity of these plots. In the future, biodiversity studies could benefit 

from the high accuracy maps generated from drone-based monitoring for conservation 

purposes, especially inside the oil palm agroforestry landscape.  

4.5 Conclusions 

Drone-based assessment for aerial image acquisition is relatively easy to conduct and 

repeat for temporal and long-term analysis. The land use maps demonstrate that the oil 

palm agroforestry experiment is located in a landscape largely dominated by oil palm 

monocultures. Within one year, oil palm cultivation increased in area at the expense of 

fallow, secondary forest, bare soil areas.    
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4.7 Appendix (Chapter 4) 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Appendix Figure 1. RGB map in 2015 without haze removal (a), RGB seamless 

orthophoto in 2015 applied haze removal (b), original RGB map in 2016 (c) and RGB 

seamless orthophoto in 2016 (c). Locations of tree islands in agroforestry experiment 

(EFForTS-BEE) are showed (b, d). 

 

 

(a) (b) 

(c) (d) 
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Appendix Figure 2. Overview flight plan divided into 5 missions for aerial imagery 

acquisition in the area of interest about 1100 ha.  
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Appendix Table 1. Spatial accuracy measured in error (m) from ground control points 

(GCPs) from the RGB mission 2016 and mission 3 was used for co-registration with 

other orthomosic maps in 2015 and 2016. 

 

Mission 
GCP 

number 
Longitude Latitude 

Altitude 

(m) 

X error 

(m) 

Y error 

(m) 

Z error 

(m) 

Total 

error 

(m) 

 

1 

 

1 

 

103.249663 

 

-1.936042 

 

59.42 

 

0.92 

 

-2.26 

 

-0.78 

 

2.56 

1 2 103.244566 -1.935497 58.66 -0.51 -0.01 1.18 1.29 

1 3 103.240963 -1.934016 59.76 0.21 1.22 -0.30 1.28 

1 4 103.259398 -1.931341 51.19 -1.00 1.21 -0.54 1.67 

2 5 103.247429 -1.938993 67.47 3.72 -0.68 -1.58 4.10 

2 6 103.258504 -1.939779 53.00 0.11 5.64 -1.37 5.80 

2 7 103.260404 -1.942976 52.53 1.62 -4.56 -0.66 4.89 

2 8 103.254118 -1.940232 42.58 -5.85 -0.61 4.77 7.57 

3 9 103.256134 -1.946491 49.28 -0.33 0.36 -0.54 0.73 

3 10 103.251293 -1.945966 63.39 0.33 -1.15 0.24 1.22 

3 11 103.253197 -1.950383 44.66 1.09 0.51 0.74 1.41 

3 12 103.247863 -1.951263 46.47 -1.40 0.56 -0.12 1.51 

4 13 103.240795 -1.954103 52.30 -1.72 -1.50 -0.12 2.28 

4 14 103.244304 -1.955141 43.25 2.01 2.36 -0.09 3.10 

4 15 103.250580 -1.955235 48.26 0.02 -0.60 0.15 0.62 

4 16 103.259020 -1.952972 36.78 -0.32 -0.29 -0.10 0.44 

5 17 103.240112 -1.958876 59.84 -0.02 -0.80 -0.91 1.21 

5 18 103.244396 -1.960172 56.04 2.11 0.04 -0.05 2.11 

5 19 103.251285 -1.958364 53.35 -3.70 2.10 1.42 4.49 

5 20 103.260004 -1.957801 60.57 1.66 -1.30 -0.81 2.26 
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Appendix Table 2. Definition of classes observed from ground based survey for 

classification with drone data and visualization. 

  

Major class  

(supervised classification) 

Subclass 

(manual reclassification) 

Definition 

Secondary forest - 

Patches of forest and disturbed 

forest, which are bigger than 0.5 ha 

(FAO 2006). From the prior 

classification maps in 2013, forest 

area in Bungku village and study site 

were indicated as the secondary 

forest (Melati 2017)  

Oil palm plantation - 

Cultivated area for palm-oil 

agriculture. Young oil palms were 

defined as oil palm plantation that 

should have canopy size at least 1 m 

in the same homogeneous filed. 

Rubber plantation - 

The agricultural land use for planting 

rubbers and partial mixed with tree 

species. Some other tree species’ 

canopy could be seen where rubbers’ 

canopy are dominant.  

Other vegetation 

Orchard Rambutan plantation 

Fallow 

Predominant grasses or shrubs where 

natural vegetation growth may take 

place after disturbance (Wicke et al. 

2008). 

Water - 
Stream, canal and non-flowing water 

as lake. 

Urban - 

Area of intensive houses in village. 

Individual household structures. The 

residential area and construction site 

are included in this class. 

Bare soil 

 

- 

Barren soil without tree cover or 

pathway for transportation. 
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Appendix Table 3. The transformation matrix of land use change in the total area of 

1121 ha. The land use class area (ha) in 2015 was compared with the status in 2016. 

Bold values represent the stable area (ha). 

 

 

Land use class                                            

Year 2016 

Secondary 

forest 

Oil palm 

plantation 

Rubber 

plantation 
Orchard Fallow Water Urban Bare soil Total 

Y
ea

r 
2

0
1
5
 

Secondary 

forest 
37.6 10.2 1.2 0 5.9 0.1 0 1.7 56.7 

Oil palm 

plantation 
7.7 852.2 2.3 0.7 21.4 1.6 0.5 20.4 906.8 

Rubber 

plantation 
0.5 3.2 16.0 0 0.6 0 0 0.8 21.2 

Orchard 0 0.5 0 2.4 0 0.1 0 0.2 3.2 

Fallow 0.2 9.5 0.1 0 21.7 0.2 0.1 3.2 34.9 

Water 0 0.3 0 0 0.1 1.0 0 0 1.4 

Urban 0 0.2 0 0 0.1 0 2.1 0.5 2.9 

Bare soil 0.8 47.3 1.2 0.7 13.9 0.4 0.8 28.9 94.0 

Total 46.9 923.3 20.8 3.8 63.7 3.2 3.6 55.7 1121.1 
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Appendix Table 4. Details of landscape indices for landscape level and class (patch) 

level and descriptions (Jaeger 2000; McGarigal 2015; Frate et al. 2014). 

 

Indices Level Unit Description 

Euclidean nearest 

neighbor distance 

(ENN) 

Class m The distance from a patch to the 

nearest neighboring patch of the 

same land use type. 

Clumpiness index 

 

Class None 

Range; 

-1< CLUMPY <1 

Index equals -1 when the patch type 

is maximally disaggregated, equals 0 

when the focal patch type is 

distributed randomly, and equals 1 

when the patch type is maximally 

clumped. 

Landscape division 

index (DIVISION) 

 

Class None 

Range; 

0< DIVISION <1 

Probability that two randomly 

chosen places in the landscape are 

not situated in the same area 

DIVISION = 0, when the landscape 

consists of single patch. DIVISION = 

1, when the landscape is maximally 

subdivided. 

Number of patch 

 

Class Number (N) Number of patches at the class or 

landscape level. 

Mean patch area 

 

Class ha The average area of patches 

comprising a landscape mosaic. 

Edge density 

 

Class m/ha The total length of all class edges per 

area.  

Landscape shape 

index 

 

Class None 

Range; 

1  without limit 

A standardized measure of total edge 

or edge density that adjusts for the 

size of the landscape. Index was 

calculated from 0.25 times of total 

edge length divided total landscape 

area. Landscape shape index equal 1 

when the landscape consists of a 

single square patch. 

Shannon's diversity 

index 

 

Landscape None 

0  without limit 

Increasing as the number of different 

patch types increases and/or the 

proportional distribution of area 

among patch types becomes more 

equitable. Index equals 0 when the 

landscape contains only 1 patch or no 

diversity. 
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Appendix Table 4. (Cont.) Details of landscape indices for landscape level and class 

(patch) level and descriptions (Jaeger 2000; McGarigal 2015; Frate et al. 2014). 

 

Indices Level Unit Description 

Shannon's evenness 

index 

Landscape None 

0 index 1 

Index equals 0 when the landscape 

contains only 1 patch (no diversity). 

Index equals 1 when an even 

distribution of area among patch 

types results in maximum evenness. 

Simpson's diversity 

index  

Landscape None 

0 index 1 

Simpson's index is less sensitive to 

the presence of rare types than 

Shannon's index. Index equals 0 

when the landscape contains only 1 

patch (no diversity). Index equals 1 

when the number of different patch 

(richness) increases and the 

proportional distribution of area 

among patch types become more 

equitable.  

Simpson's evenness 

index 

 

Landscape None 

0 index 1 

An even distribution of area among 

patch types results in maximum 

evenness. Index equals 0 when the 

landscape contains only 1 patch (no 

diversity). Index equals 1 when 

distribution of area among patch 

types is perfectly even or 

proportional abundances are the 

same. 
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Appendix Table 5. Map accuracy assessment performing in confusion matrix table of 

land use map in 2015, which has overall accuracy 84%.  

 

 

 

 

 

 

 

 

 

 

 

 

  
Reference data   

 Land use 

types in 

2015 

Secondary 

forest 

Oil palm 

plantation 

Rubber 

plantation 
Orchard Fallow Water Urban Bare soil Total  

User's 

accuracy 

(%) 

C
la

ss
if

ic
a

ti
o
n

 d
a

ta
  

Secondary 

forest 
51 5 0 0 7 0 0 0 63 80.95 

Oil palm 

plantation 
4 57 0 0 1 0 0 1 63 90.48 

Rubber 

plantation 
11 3 45 0 4 0 0 0 63 71.43 

Orchard 0 1 0 52 0 2 0 8 63 82.54 

Fallow 6 4 0 0 51 1 0 1 63 80.95 

Water 1 2 0 0 4 56 0 0 63 88.89 

Urban 0 0 0 0 0 0 59 4 63 93.65 

Bare soil 1 6 0 0 4 0 1 51 63 80.95 

Total  74 78 45 52 71 59 60 65 504 
 

 
Producer's 

accuracy 

(%) 

68.92 73.08 100 100 71.83 94.92 98.33 78.46 
  

 
Overall 

accuracy 

(%) 

83.73 
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Appendix Table 6. Map accuracy assessment performing in confusion matrix table of 

land use map in 2016, which has overall accuracy 82%.  

 

 

 

 

 

 

 

 

 

 

 

 

  
Reference data   

 Land use 

types in 

2016 

Secondary 

forest 

Oil palm 

plantation 

Rubber 

plantation 
Orchard Fallow Water Urban Bare soil Total  

User's 

accuracy 

(%) 

C
la

ss
if

ic
a

ti
o
n

 d
a

ta
  

Secondary 

forest 
51 4 0 0 8 0 0 0 63 80.95 

Oil palm 

plantation 
0 58 0 0 2 0 0 3 63 92.06 

Rubber 

plantation 
0 3 54 0 6 0 0 0 63 85.71 

Orchard 6 5 0 41 1 1 0 9 63 65.08 

Fallow 7 8 1 0 39 4 0 4 63 61.90 

Water 1 0 0 1 1 58 0 2 63 92.06 

Urban 0 1 0 0 0 1 59 2 63 93.65 

Bare soil 0 4 1 0 4 0 0 54 63 85.71 

Total  65 83 56 42 61 64 59 74 504 
 

 
Producer's 

accuracy 

(%) 

78.46 69.88 96.43 97.62 63.93 90.63 100 72.97 
  

 
Overall 

accuracy 

(%) 

82.14          
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Chapter 5 

5 Synthesis 

The use of dense photogrammetric point clouds and high resolution of orthophotos 

affirmed the advantages of drone-assisted remotes sensing for ecological and landscape 

studies in the oil palm agroforest and the extensive oil palm landscape. The estimations 

of crown metrics and oil palm canopy cover from the low flying octocopter were very 

successful in predicting tree and oil palm water use and transpiration. Additionally, 

these estimations helped describe the influence of oil palm shading conditions on the 

mortality of three interplanted tree species in an oil palm agroforestry experiment. 

Moreover, the imagery obtained from the fixed-wing drone could be used to produce a 

landscape map, classify land use, and analyze patterns of land use change. Overall, this 

study can share the benefits and conclusions of using drones in these research fields, 

and also provide suggestions for methodological improvements that could be developed 

in the future.  

5.1 Usefulness of drone-based data for crown metrics and canopy cover 

analyses 

The mission design of the low flying drone is a crucial step in acquiring fine resolution 

orthophotos and high density SfM point clouds (Chapter 2 and 3). The quality of SfM 

point clouds is affected by the design of camera angles (nadir and oblique) and high 

proportion of image overlapping (Vacca et al. 2017). Additionally, both orthophotos 

and SfM point clouds were generated from image acquisition in grid and circular 

patterns (Chapter 2 and 3). Consequently, the RGB orthophotos had a very fine 

resolution, and the SfM point clouds were very dense, presenting clear details of tree 

and oil palm crowns in 3D (Chapter 2 and 3). The drone-based point clouds showed 

high capacity in the measurement of crown metrics and were comparable to ground-

based crown measurements (Chapter 2). Similarly, the drone-derived canopy cover had 

high correlation with the estimates from hemispherical photography (Chapter 3).  

The drone-derived CHM and RGB orthophoto were very useful for tree and oil palm 

height estimation (Chapter 2), canopy partitioning (Chapter 3), and comparing canopy 

cover with hemispherical photograph estimates (Chapter 3).  Nevertheless, the crown 

segmentation with CHM could not always partition oil palm canopies from tree 

canopies (Chapter 3). To overcome this limitation, fine resolution of RGB orthophotos 

and delineated crown polygons were used for the manual selection of oil palm canopy 

from other clumped canopies (Chapter 3). As in the equation of respective buffer sizes 

to compare canopy cover measured from drone with such estimates from hemisphere 

photographs (equation 2 in Chapter 3), average height of vegetation from CHM was 

used to calculated buffer area at the plot center. Moreover, coordinates of planted trees 

and high resolution RGB orthophotos were used to locate invisible trees (Chapter 3). 

However, some steps also required manual operation through on-screen visualization. 
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All in all, every main step to derive crown metrics and canopy cover required a high 

quality of RGB orthophotos, SfM point clouds, and CHM.  

5.2 Success of using drone-based variables in oil palm agroforestry 

experiments  

Drone-derived crown volumes presented the best fitting variable related to sap flux 

measurement, enabling prediction of tree and oil palm water use (Chapter 2). Compared 

to the variable of stem diameter, tree crown volumes derived from drone-based imagery 

reduced the uncertainty of estimated transpiration (Chapter 2). For oil palms, 

uncertainty of drone-based approach was higher than ground-based method (Chapter 

2). Therefore, drone-based application offered a new and promising measurement 

method in plant water use analysis, from individual plants to the stand level of 

transpiration.  

The effect of oil palm thinning inside agroforest plots could be evaluated from the oil 

palm canopy cover distribution estimated from low altitude drone flights over both 

thinned and non-thinned plots (Chapter 3). Since the oil palm thinning at the onset of 

the agroforestry experiment, more open oil palm canopy conditions were sustained 

compared to non-thinned plots (Chapter 3). In order to enhance provision of ecosystem 

services from oil palm agroforests, management oil palm density through thinning may 

benefit mixed-species tree planting. This study found that more open oil palm shading 

environments reduced mortality rates of light demanding trees (A. pauciflorum and S. 

leprosula), and dense oil palm shadings reduced mortality rates of a shade tolerant 

species (D. zibethinus) (Chapter 3). As a result, the drone-based canopy cover analysis 

can be a useful approach for matching planted tree species in varying oil palm shade 

conditions.  

5.3 Landscape context analysis with spatial data from fixed-wing drone 

Since the oil-palm agroforest (EFForTS-BEE) was established in 2013 (Teuscher et al. 

2016) the previous land use map from satellite imagery was compiled in that same year 

(Melati 2017),  but the land use maps generated in 2015 and 2016 are the most updated 

spatial maps in the study area (Chapter 4). Land use maps from these two years 

informatively explain the rate of land use change and land use pattern transformation 

(Chapter 4). For example, areas of bare soil and fallow represented a transitional area 

to new oil palm cultivation (Chapter 4). Additionally, secondary forest decreased and 

mainly transformed to oil palm plantation and fallow (Chapter 4).  The utilization of 

aerial imagery from fixed-wing drone surveys and spatial analyses demonstrate the 

expansion of oil palm cultivation, and highlight recent land use transformations in the 

area. Considering current land use policy regarding oil palm management, land use 

maps present clear landscape features that can assist data interpretation and ground-

based investigations.  
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5.4 Disadvantage of fixed-wing drone and limitation of methods  

I attribute the success of low flying octocopter drone for crown metric and canopy cover 

measurements to the fine resolution orthophotos and high density of point clouds it 

obtained (Chapter 2 and 3). Due to 300-m flight altitude of fixed-wing drone, the grid 

pattern included 50% image overlap in only the nadir direction (Chapter 4). 

Orthophotos from the fixed-wing drone have a coarser resolution (0.1 m) than the 

octocopter (0.05 m) and some parts are blurred. Theoretically, low altitude flight 

mission plans may be helpful to compensate for these problems, but this requires more 

flying time to cover the entire area (Puliti et al. 2015). Besides, image acquisition from 

fixed-wing drone was performed during the vast haze phenomenon in Sumatra in 2015 

(Chapter 4). Although fixed-wing drone missions could be performed in the severe haze 

conditions, it was mandatory to improve map quality by haze removal and seamless 

orthomosaic methods (Chapter 4). Still, I found that the haze could not be completely 

removed (Chapter 4). Moreover, the RGB orthophotos showed inconsistency of light 

conditions, possibly from cloud shadows (Chapter 4). After running the supervised 

classification for the land use map, post-processing (reduction of misclassified classes 

from small pixel groups) and manual reclassification were necessary (Chapter 4). The 

poor results from the supervised classification might be partly explained by insufficient 

spectral bands in orthophotos, high numbers of land use classes, using fine resolution 

images, and low performance of the pixel-based approach. Hence, these are the 

limitations and weak points of the fixed-wing drone given the methods I implemented. 

5.5 Future outlook 

Crown metric estimates from SfM point clouds may be informative for tree and oil palm 

productivity in these types of agroforestry systems. Particularly for biomass, this 

variable is understudied with respect to crown volume. A previous study used height 

estimates from different digital terrain models (Kachamba et al. 2016) and tree crown 

metrics (e.g. crown height and crown width) from LiDAR point clouds (Jaafar et al. 

2018) to estimate biomass in a forest.  In oil palm agroforests, crown volume, or other 

crown metrics, may have potential to address this type of prediction, but several 

variables in such model equations need to be established. However, in dense 

agroforestry stands, it might be difficult to derive crown metrics of understory trees 

because drone-based photography could not detect trees under neighboring canopies. 

In the context of dense stands, terrestrial laser scanners possess a higher capability to 

capture data in the lower canopy and ground areas, providing detailed LiDAR point 

clouds (Roᶊca et al. 2018). SfM point clouds and terrestrial-LiDAR point clouds can be 

co-registered in order to estimate canopy structures in dense and heterogeneous forest 

stands (Kallimani 2016). In this way, a combination of these datasets will be one of the 

integrative measures that would possess the capacity for biomass prediction. 

The canopy of planted tree species may be different in shape and size, and partitioned 

tree canopy cover can differ among tree species. The influence that canopy cover of 
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neighboring trees has on planted tree performance still needs to be evaluated. Currently, 

the segmented tree canopy cover (Chapter 3) is ready to use for this analysis. 

Furthermore, the drone-based assessment can be conducted in multi-year plan for 

monitoring tree height. I would recommend using drone data for tree height monitoring, 

which could be estimated from SfM point clouds (Trochta et al. 2017). Alternatively, 

CHM from drone-based method is highly possible for tree height estimation in the 

forest stands (Ota et al. 2017). However, the presence of ground vegetation may affect 

height estimations of trees, indicating from the ground surface. Since the last weeding 

in EFForTS-BEE stopped in 2015 (Teuscher et al. 2016), the ground areas may be 

invisible, possibly leading to inaccurate tree height measurement from drone surveys. I 

suggest measuring tree height through drone assessment in moderate and open canopy 

conditions, where plots present clear details of terrain area. 

To improve the pixel-based classification approach, hyperspectral cameras and other 

image classifiers could be alternatively implemented (Lu and Weng 2007). For 

supervised classification, I suggest using a coarser resolution for orthophotos, such as 

5-10 m resolution, instead of 0.1 m resolution (Chapter 4). This might reduce small-

isolated, and misclassified classes, and may not require post-processing steps. 

Recently, assessments of animal and plant biodiversity in EFForTS-BEE were 

conducted. It is possible to observe species and community distributions inside 

experimental plots then compare these taxonomic data with the nearest secondary forest 

and other land use types. Relationships drawn from these comparisons could produce a 

spatial proximity link of biodiversity variation between the oil palm agroforest and the 

surrounding landscape. Drones could be suitable tools for routine monitoring and I 

recommend using drone-based imagery to produce a current land use map in 2019 for 

comparison to previous land use maps. Moreover, assessing trees outside forests at this 

scale is possible and high-resolution drone images can be used for this purpose. These 

data comparisons from the last four years would be valuable for landscape analysis 

regarding the increasing trend of oil palm cultivation. 
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