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Abstract 
Muscular dystrophies (MDs) are a group of diseases that cause muscular and neurological 

disorders in human patients. They are associated with a multi-component complex called the 

Dystrophin Glycoprotein Complex (DGC). The DGC connects the extracellular matrix to 

the cytoskeleton and is well-conserved in animals. Perturbation of this complex is associated 

with various kinds of MDs, leading to a diverse range of muscle and nervous system 

abnormalities. Dystroglycan (Dg) is a central DGC component, mutations of which are 

associated with a heterogeneous group of MDs also known as dystroglycanopathies.  

MiRNAs are small, noncoding RNAs that function in posttranscriptional gene regulation and 

often represses their target mRNAs. Previous work has shown that similar to MD, stress 

itself causes muscle degeneration, and altered miRNA expression profiles have been 

detected in dystrophic as well as stressed wild type flies. These results indicate that miRNAs 

influence a common regulatory pathway between stress and MD. Though much is known 

about the DGC and its relevance to MDs, the molecular and genetic pathways underlying 

MD pathogenesis remain largely unknown. 

To understand the role of miRNAs in DGC signaling and their contribution to MDs, in 

particular during stress, we screened several miRNAs that are predicted to target multiple 

components of the DGC study their potential roles in MD development, particularly upon 

various stresses. We found that miR-137, miR-966, and miR-927 affect muscle integrity upon 

stress and aging. Our study further reveals that miR-966 and miR-137 are required more 

during adult muscle maintenance than developing muscles. MiR-137, in particular, is a 

stress-responsive miRNA, as the severity of the phenotypes related to muscle maintenance 

progressed in a stress- and age-dependent manner. 

We further show that levels of Dg must be regulated to sustain healthy muscle, and this 

regulation includes targeting of Dg by miR-137. The Dg-miR-137 interaction is required to 

address negative effects of stress in adult muscle maintenance. Our results also demonstrate 

that a perturbed blood-testis barrier (BTB) in testes is a novel phenotype related to MD, and 

miR-137 regulates the expression of Dg in early somatic cells of Drosophila testes to 

maintain the BTB. Our results highlight the importance of miRNAs in the regulation of the 

DGC and MD, particularly on muscle maintenance that is accelerated upon stress.  
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1 Introduction  
Muscular Dystrophies (MDs) are a group of genetic disorders mostly characterized by 

progressive muscle degeneration and wasting. The condition often begins by affecting a 

particular group of muscles, such as the limb, facial, and axial muscles, as well as respiratory 

and cardiac muscles, before affecting the overall musculature to variable degrees. In some 

cases, the disorder can affect other tissues such as the brain, inner ear, eye, or even skin. 

More than 30 different types of MDs have been characterized so far. The severity, age of 

onset, consequences, and disease progression vary from patient to patient, as well as from 

the type of disorder. Unfortunately, there is neither a cure nor adequate treatments for this 

group of diseases, making it more critical to understand disease-specific complications and 

pathogenesis as well as the implementation of medical-related advances. Duchenne muscular 

dystrophy (DMD) is the most severe type of MD. It affects 1/3500 males worldwide and is 

an X-linked, fatal disorder. Loss of Dystrophin (Dys) is associated with DMD. Patients with 

DMD die in their early twenties because of respiratory or cardiac failure (Durbeej and 

Campbell, 2002). Dys is also associated with a less severe form of MD called Becker MD 

(BMD), which also affects males with mean age of onset of 12 years old, resulting in a loss 

of ambulation and cardiac defects (Wilson et al., 2017). Dys is the largest gene in the human 

genome at 2.5 Mb and is a part of a membrane-associated protein complex called the 

Dystrophin Glycoprotein Complex (DGC) (Hoffman et al., 1987; Kunkel et al., 1986). Mu-

tation in any of the components in the DGC (Chapter1.1) is associated with various kinds of 

MDs, namely limb-girdle MD (LGMD), congenital MD (CMD), DMD, BMD, muscle-eye-

brain disease (MEB), Walker-Warburg syndrome (WWS), and myotonic dystrophy. All of 

these diseases share the common symptoms of muscle degeneration, reduced lifespan, car-

diomyopathy, as well as some extent of neuronal disorders. The involvement of the DGC in 

MDs, affecting various tissues causing individual symptoms are due to mutations in different 

proteins of the DGC that share similar cellular functions. Most of the components of the 

DGC are well-conserved throughout the animal kingdom and are well-characterized, making 

them easier to study in different model organisms in order to highlight their molecular func-

tion and regulation in the disease state. 

 

1.1 The DGC 
The DGC is a large, oligomeric complex that connects the extracellular matrix to the cyto-

skeleton. In mammals, it is composed of transmembrane dystroglycan (α- and β-), 
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sarcoglycans (α-, β-, γ-, and δ-), cytoplasmic dystrophin, syntrophins (α1-, β1-, β2-, γ1-, and 

γ2-), α-dystrobrevin, and neuronal nitric oxide synthase (Durbeej and Campbell, 2002). α- 

and β-dystroglycan connect the extracellular matrix (ECM) component laminin-2 to the 

cytoskeleton via dystrophin, which in contractile muscle cells accounts for the mechanical 

stress resistance and the stability of the muscle sarcolemma (Ervasti and Campbell, 1993). 

Thus, the DGC in muscles has very important roles: 1) to account for the flexibility and the 

durability of the resilient plasma membrane to maintain its structure in each contraction and 

retraction; and 2) to act as a signal transduction platform to maintain the link between the 

inner and outer environments of the cell. Syntrophins, having various protein-protein 

interaction motifs, are famous as adaptor proteins capable of binding to heterotrimeric G 

proteins, adaptor protein Grb2, and neuronal nitric oxide synthase (nNOS) (Cacchiarelli et 

al., 2010; Xiong et al., 2009; Zhou et al., 2006) among other signaling molecules. Recently 

it has been shown that α-syntrophin can bind directly to multiple spectrin-like repeats in 

dystrophin and mediate its binding to nNOS (Adams et al., 2018).  

The DGC components are associated with various forms of MDs. α2-laminin is associated 

with CMD, sarcoglycan deficiency is linked to LGMD, and hypogycosylation of 

dystroglycan is associated with severe forms of congenital (Fukuyama CMD, FCMD; WWS; 

CMD type 1C/1D, MDC1C/MDC1D), and late-onset muscular dystrophies (MEB; heredi-

tary inclusion body myopathy (HIBM)) (Cohn, 2005). Progressive muscle degeneration is a 

hallmark of many of these MDs; however, clinical traits for these group of diseases are not 

limited to the muscles. They are also associated with structural brain defects, abnormal 

neuronal migration, as well as mental retardation (Balci et al., 2005; Muntoni et al., 2002; 

van Reeuwijk et al., 2006; Waite et al., 2012; Zhou et al., 2006). The main classes of proteins 

involved in MDs can be subdivided into groups: 1) extracellular matrix proteins, or external 

membrane proteins (laminin, collagen VI); 2) enzymes or proteins presumably with enzy-

matic function that are either involved in glycosylation of α- Dystroglycan, and those that 

are not involved in glycosylation of α-dystroglycan; 3) sarcolemma-associated proteins; a 

major subcomplex of the DGC (dystroglycan, dystrophin, and sarcoglycans); 4) nuclear 

membrane proteins (lamin A or C, emerin etc.), sarcomeric proteins (titin), and others 

(DUX4) (Mercuri and Muntoni, 2013). 

MDs, in general, affect various types of tissues causing individual symptoms among patients. 

Moreover, the genetic and molecular pathways underlying MDs’ pathogenesis remain poorly 

understood. Recent advances in the understanding of MDs’ pathogenesis suggests that vari-

able symptoms of MDs are due to the different components of the DGC and their isoforms 
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being expressed in many tissues. For example; Apo-dystrophins-1 and 3 are regulated by a 

promoter situated between the exons 62 and 63 of the dystrophin gene. It is expressed in 

tissues such as brain, lung, liver, and kidney. Apo-dystrophin-2 is regulated by a promoter 

positioned between exons 55 and 56 of the dystrophin gene and is expressed in peripheral 

nerves. α- and β-dystroglycan are also expressed in the brain, lung, liver, and kidney (Tinsley 

et al., 1994). Each of the five homologous isoforms of syntrophins has a unique tissue ex-

pression. α1-syntrophin is primarily expressed in skeletal muscles but also in heart, brain, 

and other mammalian tissues; β1- and β2-syntrophins are broadly distributed; γ1- and γ2-

syntrophins are highly expressed in brain, but the γ2 isoform also has a broader distribution 

in mammalian tissues (Bhat et al., 2013).  

Dystroglycan is one of the essential components of the DGC. Dg has two subunits, α- and β-

dystroglycan. α-dystroglycan connects extracellular matrix proteins to the muscle sarco-

lemma, and β-dystroglycan is a transmembrane subunit connecting α -dystroglycan to vari-

ous cytoskeletal adaptor proteins, such as dystrophins and syntrophins. Defects in glycosyl-

ation of α-dystroglycan is one of the major causes of CMD and LGMD. Disorders due to 

mutations in dystroglycan, or in the genes encoding the proteins and enzymes involved in 

the glycosylation of α-dystroglycan are collectively known as dystroglycanopathies. The 

dystroglycanopathies are described as a group of diseases caused by the loss or reduced 

binding of α-dystroglycan to its extracellular ligands, such as laminin, agrin, neurexins, 

perlecans, pikachurin, and Slit (Brown and Winder, 2017). Mutations in these proteins share 

the clinical features of dystroglycanopathies, which widens the horizons of how crucial and 

selective the role of Dg is in various kinds of MDs. α-Dystroglycan is glycosylated mostly 

by O-mannosylation (Mercuri and Muntoni, 2013). Glycosylation overall has many enzy-

matic steps that are regulated during development and in a tissue-specific manner. α-dystro-

glycan glycosylation has a fundamental role in muscles as well as in basal membrane mainte-

nance (Jimenez-Mallebrera et al., 2009). It is also required for the development of the central 

nervous system, as many MD patients experience cognitive impairment and learning disa-

bility and develop behavioral and neuropsychotic disorders (Waite et al., 2012).  

Neuromuscular junction (NMJ) shares a structural function, by stabilizing the muscle sarco-

lemma from various excitations and contractions through the coupling from neurons. Many 

motor neuron disorders such as in spinal muscular atrophy (SMA) and amyotrophic lateral 

sclerosis (ALS) can cause progressive degeneration of muscle fibers which occurs due to 

loss of innervation in muscle tissues (Kreipke et al., 2017). Dystrophin is found at 

extrasynaptic and synaptic regions of muscle fibers and is required for NMJ development, 
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and Dystroglycan is required for synaptic maturation as well as synaptic Utrophin, Laminin 

α5 and Laminin γ1 concentration (Grady et al., 2000). In Drosophila, proper localization of 

glutamate receptors is mediated by the binding of Dg to Coracle (Cora) (Bogdanik et al., 

2008; Marrone et al., 2011b).  

In mammals, it has been shown recently that Dystroglycan sequesters phosphorylated Yap 

(Yes-associated protein) to prevent the actions of activating phosphatase as a mechanism to 

regulate cardiomyocyte proliferation (Morikawa et al., 2017), broadening the role of Dys-

troglycan in muscle maintenance and muscle-related diseases. Trim32 (tripartite motif-

containing protein 32), a ubiquitin ligase, is critical for muscle atrophy. Mutations in the 

third repeat of Trim32 cause LGMD -2H (Frosk et al., 2002; Shieh et al., 2011), and inhibi-

tion of Trim32 enhanced plakoglobin binding and induced fiber growth, while down-

regulation of plakoglobin caused muscle atrophy (Cohen et al., 2014). Since muscle weak-

ness is often due to muscle atrophy, hypertrophy, or both, as seen in DMD patients, it is 

important to investigate the relationship between Trim-32, plakoglobin, and the DGC to 

identify further players in MDs and their disease relevance. 

 

1.2 Drosophila as a model for Muscular Dystrophy 
Drosophila melanogaster has many advantages as a model organism. Besides the relatively 

low cost of the cultivation, the forward and reverse genetic tools in Drosophila are much 

more advanced and sophisticated than in many other model organisms. The relatively fast 

life cycle (~ 9 days in ambient temperature and humidity), and short lifespan (~ 3 months) 

of Drosophila makes it easier to cultivate large numbers of flies in a short amount of time, 

which is a great advantage in studying the developmental aspects of disease progression, as 

well as in creating a large amount of basic material required for biochemical and molecular 

assays. There are fly homologs of more than 75% of human genes that are associated with 

various kinds of disorders ranging from bacterial infections, metabolic disorders to aging, 

and cancer. Therefore, Drosophila melanogaster is an ideal model for studying the DGC, 

identifying its novel functions, interacting components, and factors involved in the physio-

logical and molecular dynamics of its signaling and regulatory systems. Many of the core 

components of the DGC are evolutionarily conserved but with less diversity. Drosophila has 

only two syntrophins: syntrophin-like-1 (Syn1) homologous to α1/β1/β2-syntrophins, and 

syntrophin-like-2 (Syn2) homologous to γ1/γ2-syntrophins in mammals. Dystrophin (Dys) 

is a sole homolog to mammalian utrophin and dystrophin, and a single copy of Dystrobrevin 
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(Dyb) is homologous to α-, and β-dystrobrevin in mammals (Greener and Roberts, 2000). 

As in mammals, DGC components in Drosophila (Figure 1) are expressed not only in the 

muscle but also in the nervous tissues (Bhat et al., 2013; Bogdanik et al., 2008; Deng et al., 

2003; Marrone et al., 2011a; Shcherbata et al., 2007; van der Plas et al., 2006; Yatsenko et 

al., 2007). Many of the MD-related phenotypes in the muscle and nervous systems reported 

in mammals can be easily phenocopied in flies. Flies lacking Dg or Dys (further dystrophic 

flies) experience a shortened lifespan, age-dependent muscle degeneration, decreased mo-

bility, and defective photoreceptor path-finding (Shcherbata et al., 2007), hyperthermic sei-

zures (Marrone et al., 2011b), as well as decrease in presynaptic glutamate release at neuro-

muscular junctions (NMJs) (Bogdanik et al., 2008; van der Plas et al., 2006). Both Dg and 

Dys are required in both glial cells and neurons for correct neuronal migration (Muntoni et 

al., 2002; Shcherbata et al., 2007). In recent years, the roles of the DGC have not been limited 

to muscle or nervous tissues. Studies have shown that lack of the DGC complex, in particular 

Dg, in patients is associated with elevated levels of creatine kinase in the blood, ataxic gait, 

learning disabilities, dilated cardiomyopathy, complete lissencephaly (type II), and autism 

spectrum disorder and are diagnostic features of dystroglycanopathies (Astrea et al., 2018; 

Bonnemann et al., 2014), broadening the horizon of Drosophila as a model organism to study 

the pathogenesis of MDs.  

DMD is the most severe form of MD and has been studied quite extensively. As a 

consequence of muscle fiber damage in DMD, specific muscle-microRNAs (myo-miRs) are 

found to be released into the bloodstream of DMD patients, as well as in mammalian model 

of DMD (mdx mouse), and their levels correlate with the severity of the disease (Cacchiarelli 

et al., 2011b). The same study also proposed miR-1, miR-133, and miR-206 as valuable 

biomarkers for the diagnosis of DMD. In fly models of cobblestone lissencephaly (similar 

to type II lissencephaly in humans), miR-310s has been reported to play an important role as 

a buffering agent to establish the proper level of Dg level by targeting its alternative 

3’untranslated region (3’UTR) (Yatsenko et al., 2014). The same miRNA is also known to 

play an important role in Hedgehog signaling in response to nutritional changes (Cicek et 

al., 2016). Similarly, miR-9a has been shown to target Dg to maintain the precise level of Dg 

to establish myotendinous junction (MTJ) formation, and flies lacking miR-9a have defective 

muscle architecture (Yatsenko and Shcherbata, 2014). Overall, miRNAs targeting the DGC 

can influence many signaling pathways, illustrating a molecular mechanism by which 

miRNAs serve as a quick and robust response in many signaling pathways. These studies 

show that miRNAs play a fundamental role in MDs.  
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The Dystrophin Glycoprotein Complex (DGC) and its associated 

components in Drosophila melanogaster 

The transmembrane protein Dystroglycan (Dg) is a key component of the complex 
connecting the extra and intracellular environment by binding to laminins extracellularly and 
Dystrophin (Dys) intracellularly. The DGC acts as a scaffold for many signaling molecules 
such as syntrophin (Syn) and neuronal nitric oxide syntase (nNOS). nNOS produces nitric 
oxide (NO) which is involved in nitrosylation of histone deacetylases (HDACs), which in 
turn influences the gene expression. At the neuromuscular junction (NMJ), Dg is required 
for proper localization of glutamate receptor (GluR) which is mediated by Dg binding to Dys 
and coracle (Cora). Similar to the mammalian model, Dg sequester phosphorylated Yorkie 
(fly ortholog to Yap), and can influence muscle maintenance. Similarly, we also hypothesize 
that mei-P26 (Trim-NHL protein in fly) can ubiquitinate arm (armadillo, fly ortholog of 
plakoglobin) or Dg, promoting the DGC stability in skeletal muscle. 
 

1.3 MicroRNAs (miRNAs) 
MiRNAs are small, ~ 22bp long, endogenous, non-coding RNA molecules that regulate gene 

expression post-transcriptionally in diverse cellular and developmental processes in a tissue-

specific manner. They bind to 3’UTRs of targeted messenger RNAs (mRNAs) with partial 

complementarity and mediate gene expression via translation inhibition or mRNA decay 

(Bazzini et al., 2012; Djuranovic et al., 2012; Guo et al., 2010). Under certain conditions, 

they are also known to activate gene expression (Vasudevan, 2012). The miRNA field is 

relatively new with the discovery of the first miRNA just over two decades ago in the 

relatively simple eukaryote C. elegans (Lee et al., 1993; Wightman et al., 1993). They are 

the most abundant non-coding gene family, distributed widely in plants and animals. Since 
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the discovery, 253 miRNAs in C.elegans, 258 miRNAs in Drosophila, and 1917 miRNAs 

in humans have been annotated so far (www.miRBase.org, as of 2/11/2018). The number of 

miRNAs present in a species has been shown to positively correlated with organismal 

complexity (Grimson et al., 2008), suggesting that miRNA-dependent fine-tuning of gene 

expression was necessary for the evolution of higher organisms (Heimberg et al., 2008). 

MiRNAs’ functions can be extended from fine-tuning effects to significant alterations in the 

gene expression profile. They are known to control basic cellular processes such as cell 

growth, differentiation, proliferation, and apoptosis (Dhahbi, 2014), or to moderate 

physiological processes such as cell signaling, immune responses, tumorigenesis, 

development, and non-neoplastic disease pathogenesis (Koturbash et al., 2011). Some 

miRNAs are conserved in both their sequences and expression patterns across a wide range 

of animals, making them excellent models to better understand how similar processes are 

controlled in various organisms. 

 

1.3.1 MiRNA biogenesis 

MiRNA biogenesis begins with transcription by RNA polymerase II (Pol II), giving rise to 

a single-stranded RNA molecule called a primary miRNA (pri-miRNA) that is ≥ 1 kb long 

and has a stem-loop structure (Figure 2). Many pri-miRNAs are 3’polyadenylated and 

5’capped, similar to the mRNAs transcribed by the same RNA Pol II enzyme (Lee et al., 

2004; Winter et al., 2009). Pri-miRNAs then get processed by the Microprocessor Complex, 

which consists of the ribonuclease III enzyme, Drosha, and the RNA binding protein, Pasha 

(DGCR8 in mammals) (Denli et al., 2004; Ha and Kim, 2014). This complex further cleaves 

the hairpin resulting in the formation of a precursor-miRNA (pre-miRNA) of ~70bp with a 

2 nucleotides (nt) long 3’ overhang. The pre-miRNA is transported to the cytoplasm by the 

Exportin-5:RanGTP complex for further processing. This complex can recognize the 2 nt 3’ 

overhang to make transport possible through nuclear pores. Following the translocation of 

pre-miRNA through the nuclear pore, pre-miRNA is released into the cytosol (O'Brien et al., 

2018; Okada et al., 2009). 

The cytoplasmic pre-miRNA is further cleaved at the terminal loop by RNase III endonucle-

ase Dicer, and dsRBD Loquacious (Loqs) or TAR RNA-binding protein (TRBP) in humans, 

consequently producing the mature ~22 nt miRNA duplex (Jiang et al., 2005; Macrae et al., 

2006; Saito et al., 2005; Zhang et al., 2004). Pre-miRNA can give rise to abundant mature-

miRNAs strands from 5’ (left arm) or 3’ (right arm).Only one of the mature-miRNA strands 

http://www.mirbase.org/
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is loaded into an Argonaute (Ago) protein and facilitates the formation of RNA-induced 

silencing complex (RISC/miRISC). The choice of the 5p or the 3p miRNA complementary 

strand loaded to RISC is based partly on thermodynamic stability at 5’end. The strand with 

the lower stability that is loaded to the RISC is known as the “guide strand”, and the unloaded 

strand is called the “passenger strand,” which will eventually get degraded by cellular ma-

chinery (Broughton et al., 2016; Guo and Lu, 2010; Meijer et al., 2014). Although much 

progress has been made understanding their biogenesis and biological functions, the mech-

anisms allowing miRNAs to silence gene expression in animal cells are still under debate. 

 

 

The canonical pathway of miRNA biogenesis  

MiRNA biogenesis starts with the generation of pri-miRNA transcript. The microprocessor 
complex (Drosha and its binding partner Pasha) cleaves the pri-miRNA to pre-miRNA. The 
pre-miRNA is then exported to the cytoplasm via Exp5, followed by Dicer1 processing to 
produce a miRNA duplex. Either the 5p or the 3p strand of the miRNA duplex is then loaded 
to a complex containing Ago1 to form the miRISC, and the other strand gets degraded. 
MiRISC can bind to target mRNA to induce transitional inhibition. 
 

1.3.2 MiRNA mode of action  
MiRNAs can direct the RISC to affect gene expression, mainly via translational repression 

or mRNA degradation (resulting from mRNA decapping or deadenylation), or a mixture of 

both. This highly depends on miRNA-target mRNA complementarity. The full miRNA-tar-

get mRNA complementarity results in mRNA cleavage in a siRNA-like manner that is 

mostly observed in plants (Yekta et al., 2004). In a few cases, higher degrees of miRNA-
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mRNA complementary can lead to the destabilization of the miRNAs itself (Ameres et al., 

2010; Baccarini et al., 2011; Xie et al., 2012). In contrast, animal miRNAs recognize their 

target mRNAs through partial complementarity, resulting in recruitment of additional effec-

tor proteins, which induce translational repression and/or mRNA decay via deadenylation or 

decapping (Bartel, 2004; Behm-Ansmant et al., 2006; Wu et al., 2006). Not all miRISC tar-

geted mRNA are destined for degradation. MiRISC and targeted mRNA has been reported 

to be localized in different cellular compartments, such as rough endoplasmic reticulum, 

early and late endosomes, multivesicular bodies, as well as in stress granules (SG) to regulate 

miRISC and mRNA concentration over time to promote efficient gene regulation (Barman 

and Bhattacharyya, 2015; Bose et al., 2017; Gibbings et al., 2009; Kucherenko and 

Shcherbata, 2018b).  

 

1.3.3 MiRNA target identification and seed sequence  

The discovery of the first ever reported miRNA lin-4 also shed some light on the mechanism 

of miRNA target identification. The clues came from the observation that lin-4 has some 

sequence complementarity at 3’UTR to its target mRNA lin-14 (Lee et al., 1993; Wightman 

et al., 1993). Further studies on miRNAs revealed that canonical miRNA-target interactions 

is based on full complementarity to a 7-8 nt long sequence at 5’region of miRNA, also known 

as the “seed sequence”, together with partial complementarity of the rest of the miRNA to 

target mRNA (Brennecke et al., 2005; Doench and Sharp, 2004; Kloosterman et al., 2004; 

Lewis et al., 2003). However, a study in C. elegans has shown that both 5’, as well as 3’ 

regions of miRNA, are important for stable and specific miRNA target interaction 

(Broughton et al., 2016). The discovery of the seed sequence has made it possible to develop 

target prediction algorithms to generate databases to improve the prediction of target mRNAs 

for a given miRNA and prediction of regulatory miRNAs for a given mRNA (Enright et al., 

2003; Kheradpour et al., 2007; Ruby et al., 2007). Many miRNA families are not conserved 

between plants and animals. Similarly, poorly conserved are their biogenesis, mode of reg-

ulation, as well as cellular localization of miRNA processing, suggesting that miRNAs arose 

independently in plants and animals (Lee et al., 2003; Zhang et al., 2007). Some miRNAs 

are highly conserved during evolution (Bushati and Cohen, 2007; Liu et al., 2012; 

Pasquinelli et al., 2000), but their targeted mRNA can differ between species (Chen and 

Rajewsky, 2007). Even if the mature miRNA is itself not conserved, its seed sequence is 
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evolutionarily conserved, highlighting the relevance of the seed sequence in target recogni-

tion (Brennecke et al., 2005; Lewis et al., 2005; Lewis et al., 2003). Though much is known 

about their biogenesis, mode of action, and complexity, understanding the functions of indi-

vidual miRNAs still remains challenging. 

 

1.3.4 MiRNAs role in gene regulation 

Due to their peculiar nature of the small size and numerous possibility of target identification 

via seed sequences, it is no doubt that one miRNA can target several different mRNAs and 

each mRNA can be targeted by several different miRNAs, generating a complex network of 

gene expression and regulation. They are known to canalize gene expression, which is con-

trary to their paradoxical properties of strongly conserved but with not so similar in function 

or not so conserved but functionally similar. Though they are known to down-regulate their 

target mRNA in many cases, downregulation of the target gene has been found at a modest 

level mostly exceeding not more than 50% (Baek et al., 2008; Selbach et al., 2008). The 

latter study also showed that miRNAs can directly repress translation of many genes con-

tributing to the fine-tuning of protein synthesis from various other genes. They often have 

the dual function of expression tuning and expression buffering of their target genes (Wu et 

al., 2009). These two mechanisms are somewhat independent and are achieved by feedfor-

ward and feedback regulatory loops. Fine-tuning ensures the precise amounts of target gene 

expression required for biological processes, which cannot be achieved by transcriptional 

control alone whereas, expression buffering reduces the variance of highly expressed target 

gene. There are many ways to achieve the expression-tuning and expression-buffering 

modes. Expression tuning can be achieved by: 1) directly down-regulating the target gene 

(Cacchiarelli et al., 2011a; Xiao et al., 2007; Yatsenko and Shcherbata, 2014), 2) a coherent 

feed-forward loop in which two pathways work coherently to ensure the silencing of the 

target gene (Hornstein et al., 2005; Makeyev and Maniatis, 2008), and 3) a double-negative 

feedback loop where a miRNA can down-regulate a target gene that is coupled with second 

gene, and either one of the genes – but not both – will be expressed due to their target miRNA 

(Li et al., 2006). Similarly, expression buffering can be achieved through: 1) an incoherent 

feed-forward loop wherein the expression of one gene is dependent on the expression of a 

second gene directly or indirectly due to the presence of miRNA. The presence of miRNA 

is directly proportional to the increase in level of the first gene (O'Donnell et al., 2005), 2) a 
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negative feedback loop in which both miRNA and its target gene buffer each other’s expres-

sion (Adams et al., 2018; Martinez et al., 2008; Yatsenko et al., 2014), and 3) an incoherent 

feedforward loop in which more than one gene can buffer the expression of another gene 

against the fluctuations in miRNA expression (Choi et al., 2007). Though miRNAs play an 

important role in buffering and regulating gene expression, they are highly dispensable. 

Their loss results in very mild or no phenotype in well-controlled laboratory environments 

(Li and Carthew, 2005; Miska et al., 2007). However, the evolutionary conservation of many 

miRNAs as well as their functional effectiveness and fast response demonstrate that they are 

important regulators of spatial and temporal expression patterns of their targeted genes, their 

downstream targets, and their cofactors. 

 

1.3.5 MiRNAs as biomarkers 
MiRNA biogenesis is under tight temporal and spatial control, and deregulation in this pro-

cess is associated with many human diseases. And many of the miRNA implications have 

been made to diagnostic and therapeutic application in human diseases. The first identified 

miRNAs in a human-related disease was the polycistronic miRNA cluster miR-17~92. 

Haploinsufficiency of these miRNAs is responsible for microcephaly, short stature, and dig-

ital abnormalities in both humans and mice (de Pontual et al., 2011). The same cluster miR-

NAs were found to be downstream of an oncogene (c-Myc), and upstream of their target 

gene (E2F1), which promotes the cell cycle (O'Donnell et al., 2005). The implication of 

miRNAs in cancer is emerging, and many miRNAs are known to be altered in cancer patients 

(Koturbash et al., 2011; Munker and Calin, 2011; Tufekci et al., 2014). Downregulation of 

miR-15a/16-1 is associated with multiple myeloma in humans (Li et al., 2015), and miR-1 

and miR-133a promote prostate cancer by down-regulating purine nucleoside phosphorylase 

(PNP) (Kojima et al., 2012). Methylation of the miR-137 promoter is also associated with 

derepression of Cyclin-dependent kinase 6 (Cdk6) causing squamous cell carcinoma of head 

and neck in humans (Langevin et al., 2011). In humans, loss of miR-137 is also associated 

with intellectual disability (ID) (Willemsen et al., 2011). MiRNAs are also studied exten-

sively as a biomarker for aging (Dhahbi, 2014). MiR-34a was found to be increased recipro-

cal to the age of the mouse and was directly proportional to the decrease of its target SIRT1 

(Li et al., 2011). The same miRNA in Drosophila (miR-34) has been reported to cause aging 

and neurodegeneration (Liu et al., 2012). Many miRNAs are associated with age-related 

diseases. MiR-21 is highly expressed in patients with cardiovascular disease (Olivieri et al., 



Introduction 

Shruti Chhetri 22 

2012), whereas miR-433 is associated with Parkinson’s disease by negatively regulating fi-

broblast growth factor 20 (FGF20) (Wang et al., 2008).  

Many miRNAs also have implication in Muscular Dystrophy. Their expression levels are 

altered in primary muscular disorders including various kinds of MDs (Eisenberg et al., 

2007; Greco et al., 2009). Muscle miRNAs are found to be enriched in the serum of DMD 

patients; particularly miR-1, miR-133, and miR-206 have been proposed as diagnostic mark-

ers for DMD, as the disease severity correlates with the miRNAs’ expression (Cacchiarelli 

et al., 2011b).  

Due to their multiple targeting capacities as well as involvement in multiple biological pro-

cesses, miRNAs represent promising therapeutic targets, and several pharmaceutical com-

panies are already exploring miRNA in therapeutic development. One such example is the 

invention by MIRagen Therapeutics of chemically modified structures of miR-15/195 and 

miR-29 that have reached preclinical development in pathologies of metabolic as well as 

cardiovascular disease (Shah et al., 2016). The same company has three more miRNAs in 

their drug discovery pipeline, namely Cobomarsen (MRG-106), an inhibitor of miR-155 for 

treatment of blood cancer (Phase I, and II clinical trial), a synthetic miRNA mimic of miR-

29b (MRG-201 in Phase II clinical trial), and miR-92 (MRG-110) for pathologic fibrosis and 

heart failure (www.miragen.com). 

 

1.3.6 MiRNAs as stress regulators 
Stress can range from prolonged disease conditions to short-term changes in environmental 

or physiological cellular conditions. To adjust to harsh environments, cells can turn certain 

pathways on or off to maintain cellular homeostasis. MiRNAs are ideal candidates for stress 

response regulators as each one can target multiple mRNAs, which can be part of multiple 

signaling cascades. Under stress conditions, both miRNA and Ago protein are localized to 

stress granules where mRNAs bound by stalled 40S ribosomes accumulate due to stress-

induced repression of translation initiation (Leung and Sharp, 2007). Moreover, miRISCs 

are detected in many membrane-less structures, e.g. ribonucleoprotein (RNP) granules such 

as stress granules (SG), processing bodies (PBs), GW bodies, and neuronal granules 

(Kucherenko and Shcherbata, 2018a, b). In flies, miRNAs are known to mediate immediate 

as well as reversible stress responses to maintain cellular homeostasis (Cicek et al., 2016; 

Edeleva and Shcherbata, 2013). In many other model organisms, including mice and flies, 

miRNA knock-outs do not, in most cases, show gross developmental or viability phenotypes, 

http://www.miragen.com/
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but the same miRNA mutants can exhibit noticeable phenotypes under stress conditions 

(Leung and Sharp, 2007, 2010). All these examples lead to a common notion, that miRNAs 

are profound agents of stress-response pathways. Recently, miRNAs have been implicated 

as major stress-response factors in many organisms and are known to contribute to disease 

relevance (Leung and Sharp, 2010; Mendell and Olson, 2012). Yet, signaling systems con-

necting stress and changes in miRNA expression patterns remain to be discovered. 

 

1.4 Stress and Muscular Dystrophies 
MiR-1 has been reported to target Glucose-6-phosphate dehydrogenase (G6PD) to control 

oxidative stress, and oxidative stress is known to cause progression of DMDs (Cacchiarelli 

et al., 2010). ER stress is associated with patients with SMA, which is known to cause muscle 

degeneration similar to MDs (Ng et al., 2015). In flies, it was shown that stresses such as 

high temperature, low-sugar foods (further sugar starvation), oxidative stress, and aging can 

cause muscle degeneration in wild-type flies, and this phenotype is accelerated in dystrophic 

flies (Kucherenko et al., 2011). This indicates that both stress and MDs can act via a common 

pathway, and dystrophic phenotypes can be recapitulated simply by inducing stress. The 

same study identified many novel interactors of the DGC that are involved in mechano-

signaling and cellular stress response, indicating that the DGC may act as a sensor in 

mechanical stress-response pathways. Since many miRNAs are deregulated in MDs and they 

have emerged as diagnostic biomarkers (Chapter 1.3.5), miRNAs can be good candidates for 

common molecular agents between stress and muscular dystrophies. Hence, it is important 

to understand the molecular circuits of how stress can modulate levels of miRNAs that 

contribute to disease pathogenesis. 

 

1.5 MiRNAs profiles in Muscular Dystrophies 
In DMD, the Dys-Syn-nNOS pathway is known to regulate the miRNA expression by S-

nitrosylation of HDAC2 (Cacchiarelli et al., 2010), and altered miRNAs expression also 

correlates with the severity of MDs (Chapter 1.3.5). Similarly, miRNAs are also found to 

regulate the DGC (Cacchiarelli et al., 2011a; De Arcangelis et al., 2010), indicating the 

important role of miRNAs in balancing the epigenetic network in MDs. In a mdx mouse, an 

animal model of human DMD, miR-1 and miR-133 are downregulated in differentiating 

myoblasts in the absence of Dys (Greco et al., 2009; McCarthy and Esser, 2007). miR-1, in 

particular, is evolutionarily conserved and has been shown to act in a positive feedback loop 
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by modulating epigenetic profiles of muscle genes, e.g. Mef2 and Twist, by targeting HDAC4 

(Chen et al., 2006; Sokol and Ambros, 2005). Not only does the DGC regulate miRNAs, but 

many miRNAs are also found to regulate the DGC. MiR-222 is known to regulate the Dys-

Syn-nNOS pathway by targeting the 3’UTR of β1-Syntrophin (De Arcangelis et al., 2010), 

while miR-31 is known to inactivate the Dys-Syn-nNOS pathway by targeting the 3’UTR of 

Dys (Cacchiarelli et al., 2011a). MiR-206, which positively regulates muscle differentiation, 

can target Utrophin, a Dys homolog in flies and, like miR-1/133, is a diagnostic biomarker 

of MDs (Chapter 1.3.5). All of these studies indicate the important role of miRNAs in MD 

development. A miRNA microarray screen in Dg and Dys mutant flies, as well as 

hyperthermia in dystrophic and wild-type flies revealed groups of miRNAs that were 

deregulated under differential stress or dystrophy or in both stress and dystrophic conditions 

(Marrone et al., 2012). Of 110 miRNAs identified in the screen, 65% (28 out of 43) of the 

miRNAs that are defined in all functional groups were found to be common to more than 

one group. This study also reported miR-956, miR-980, and miR-252 are regulated via the 

Dg-Dys-Syn1 dependent pathway. The study also showed tissue-specific expression patterns 

of all three miRNAs that were either in muscle, brain, or both, indicating the diverse roles of 

the DGC. The study also highlighted important links of miRNA expression profiles to stress, 

muscular dystrophy, and DGC signaling. In particular, the third category revealed the 

miRNAs that do not change normally under stress but are upregulated in dystrophic mutants 

and the miRNAs that are downregulated as a normal stress response but do not change in 

dystrophic mutants. Since there are similarities in stress and dystrophy, these miRNAs are 

good candidates to be involved in regulating the DGC signaling in response to stress. Though 

this implies flies are an excellent model to determine novel factors that can potentially play 

a role in the pathogenesis of MDs including miRNAs as potential therapeutic targets, much 

work is needed to fully understand the molecular mechanism of the DGC-dependent 

miRNAs to monitor the pathological progression of the disease. 

 

1.6 Architecture of adult Drosophila muscle 
The DGC provides mechanical stabilization of the muscle sarcolemma by anchoring the 

ECM to the cytoskeleton. It also provides signal transduction platform between the inner and 

outer membranes of the muscle cell, and providing a scaffold responsible for the membrane 

localization of signaling proteins, such as Syn and nNOS. nNOS can nitrosylates the HDACs 

to regulate gene transcription that includes muscle progenitor cells. Muscle degeneration is 
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a hallmark of MDs. It can occur due to various reasons, such as physiological and patholog-

ical stimuli (e.g., fasting, cachexia) or genetic disorders (e.g. inherited or acquired myopa-

thies). Starvation usually results in muscle atrophy, which is loss of muscle mass due to an 

increase in protein degradation or a decrease in protein synthesis (Piccirillo et al., 2014). 

Any prolonged disease state is immense stress to the organismal system to withstand the 

daily requirement of the fully functional active state. Muscles can withstand laborious and 

continual mechanical stress, and when damaged they can be repaired by the progeny of sat-

ellite cells. In response to disease conditions like MDs, muscle fibers are replaced with fat 

and fibrotic tissues. In the mammalian model, lack of Dys causes the muscle sarcolemma to 

deteriorate, leading to damage that cannot be easily repaired via response to muscle satellite 

cells. This results in chronic inflammation, which eventually results in replacement of the 

muscle fibers by adipose or fibrotic tissues (Porter et al., 2002). Importantly, similar mech-

anisms can also be seen in flies. 

Just like in humans, adult fly muscles are specialized to perform various specific functions, 

such as flying, jumping, and walking. Fly muscles share structural and functional similarity 

with vertebrate muscles. Similar to mammals, flies have both oxidative as well as glycolytic 

muscles. Both the direct and indirect flight muscles are oxidative muscles in flies, whereas 

leg muscles are glycolytic muscles in flies (Taylor, 2006). Individual muscle groups are 

made from the same fiber type, but the fiber types can differ for different muscles that are 

destined for similar functions (Bryantsev et al., 2012; O'Donnell et al., 1989).  

One of the distinct and the largest muscle groups in adult Drosophila is the indirect flight 

muscle (IFM). The IFMs are oxidative muscles resembling Type I muscles in mammals that 

are sensitive to nutrient supply as well as loss of muscle stimulus by nerves or NMJ disorders 

such as ALS. Adult Drosophila has two groups of IFMs, namely DLMs (dorsal-longitudinal 

muscles) and DVMs (dorsal-ventral muscles) (Figure 3). The IFMs function as a single 

contractile unit, generating momentum during flight (Dutta et al., 2004). In humans, adult 

satellite cells allows regeneration of muscle tissue following the injury. Muscle satellite cells 

are recently discovered in flies, and muscle regeneration upon certain injuries have been 

reported, there are still more room to explore in muscle regeneration upon genetic disorders 

in flies (Chaturvedi et al., 2017; Gunage et al., 2017). Fly muscles are also arranged in a 

stereotyped manner, making them easy to identify and quantify ranges of phenotypes that 

can be spotted in each individual group. Fly muscles also degenerate in dystrophic as well 

as in other stress conditions. For this project, DLMs of fly muscles were scored and 

quantified for muscle degeneration phenotypes.  
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Drosophila Indirect Flight Muscles  

(A) Schematic representation of a cross-section of indirect flight muscles (IFMs) of 
Drosophila melanogaster. (B) IFMs of fly consists of dorsal longitudinal muscles (DLMs) 
consisting of twelve fibers in total, and three groups of dorsal-ventral muscles (DVM-I/-II/-
III) in the thorax. These muscles function as a single until during flight. 
 

1.7 Sterility and Muscular Dystrophy 
Though there is no direct evidence for sterility in MD patients, several DGC components are 

associated with genes and proteins contributing to infertility in male (Rouillard et al., 2016). 

Mutation in a gene related to LGMD type 2B in C.elegans (fer-1) is known to cause sterility 

(Bashir et al., 1998). Similarly, Dg mutant in C.elegans (dgn-1) are known to be viable, but 

sterile (Johnson et al., 2006). They show severe disorganization of somatic gonadal 

epithelium and motor neuron axon guidance defects (Johnson et al., 2006). The DMD-null 

male mouse is also reported to be sterile (Kudoh et al., 2005). Additionally, some studies 

indicated that flies lacking POMT expression (required for glycosylation of Dg) are sterile 

and non-viable at elevated temperatures (Cooley et al., 1988; Ueyama et al., 2010). POMT 

is a critical enzyme required for glycosylation of Dg and is associated with CMD and 

Walker- Warnurg Syndrome. Studies from flies have shown that glycosylation is a critical 

step for a mature sperm to fertilize eggs (Perotti et al., 2001). Both Dg and Dys are found to 

have stage-specific expressions in Sertoli cells in mammals (Zimmermann et al., 2015). 

Sertoli cells are somatic cells that form the occluding barrier between two somatic cells to 

provide a unique environment for germline differentiation in each cyst cells. This soma-

germline barrier is also called the Sertoli cell barrier (SCB) or the blood-testis barrier (BTB) 

(Cheng and Mruk, 2012; Franca et al., 2012). BTB is a selective permeability barrier 

maintained by tight junction (in mammals) or septate junction in Drosophila. The BTB 

separates the early phases of spermatogenesis. Disruption of BTB in vertebrates is reported 
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to result in failure in germline differentiation and ultimately leading to sterility (Mazaud-

Guittot et al., 2010; Mok et al., 2012). Similarly, in Drosophila, knockdown of the soma-

specific gene (chic) is known to cause sterility due to defective encapsulation (Fairchild et 

al., 2015). Core septate junction components such as Cora and Nrx-IV are found to localize 

between the two somatic cells surrounding the germline throughout the spermatogenesis. 

Knock-down of these components perturbs permeability barrier and gives rise to 

rudimentary testes (Fairchild et al., 2015). In larval NMJ of Drosophila muscle, core septate 

junction protein Cora and Nrx-IV have been shown to interact with Dg. Dg and Cora 

reciprocally control each other’s concentration at larval NMJs (Bogdanik et al., 2008; 

Marrone et al., 2011b). In addition, it has been reported that localization of Nrx-IV is also 

dependent on Dg in follicular epithelium of fly ovaries (Schneider et al., 2006). Overall, the 

role of the DGC, in particularly Dg, exceeds beyond the nervous and muscle systems. 

Therefore, it is interesting to investigate roles of the Dg in spermatogenesis to better 

understand its broad biological and cellular functions. 

 

1.7.1 Spermatogenesis in Drosophila melanogaster 
Adult Drosophila has a pair of testes that are coiled tube-like structures producing sperm 

throughout the male gametogenesis. Spermatogenesis starts at the apical tip of the testis that 

contains a pool of stem cells of two separate origins, namely germline stem cells (GSCs) and 

somatic stem cells (CySCs). Both of these cell types reside in a specialized 

microenvironment called the stem cell niche. Niche provides architecture and signaling 

regulation for stem cell maintenance and division. It is composed of the hub (cluster of 10-

12 somatic cells), GSCs (a cluster of approximately 8 germline cells), and the CySCs (the 

number of which approximately match the number of GSCs) (Demarco et al., 2014; Hardy 

et al., 1979). Hub is a signaling center for both, GSCs and CySCs. Under homeostatic 

conditions, both GSCs and CySCs divide asymmetrically producing two cells; one attached 

to the hub that maintains the stem cell characteristics and the other daughter cell that 

differentiates to give rise to gonialblast (GB) and somatic cyst cells (CySC). The progeny of 

GSCs give rise to GB and the progeny of CySCs differentiate to somatic cyst cell. 

Differentiating GBs are encapsulated with two somatic cells and undergoes four rounds of 

mitotic and two rounds of meiotic division to produce spermatogonia. Spermatogonia then 

differentiate into spermatocytes that undergo elongation and maturation and eventually form 

the mature sperm (Figure 4). Proper encapsulation is required for proper germline 
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differentiation and production of functional gametes. Encapsulation of germline cells by 

somatic cells also establishes a barrier that is essential for correct germline differentiation 

(Fairchild et al., 2015). The same study also found that the permeability barrier (BTB) in 

vertebrates is dependent on septate junction proteins such as NrxIV and Cora. Interestingly, 

in larval Drosophila NMJ, localization of both of these proteins are found to be dependent 

on Dg (Bogdanik et al., 2008). In fly ovaries, it has been shown that Dg is expressed in both 

somatic as well as in germline cells (Deng et al., 2003; Yatsenko et al., 2007). Since 

spermatogenesis is a dynamic developmental process that requires precisely timed transition 

between several distinct stages, it is important to investigate further the involvement of DGC 

components and in particular Dg, regulating cellular mechanism relying on Drosophila 

spermatogenesis. 
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Spermatogenesis in adult Drosophila melanogaster 

(A) Adult Drosophila male gonad consists of a pair of blunt coiled structures called testes, 
each of which is attached to seminal vesicles and conjoined at a common ejaculatory duct. 
Spermatogenesis starts at the apical portion of the testes known as a hub and is marked with 
an asterisk. (B) The apical portion of a testis consists of a hub (marked with asterisk), 
germline cells (green), and somatic cells (blue). During asymmetric cell division, cells in 
contact with hub maintain the stem cell characteristics, while the daughter cell differentiates. 
The differentiating germline cells are called gonialblast, which gets encapsulated with a pair 
of somatic cells and care called spermatocyst. Within the spermatocyst each gonialblast 
undergoes 4 rounds of mitotic and two rounds of meiotic division to generate 64 bundles of 
haploid spermatids. These spermatids go through various steps such as elongation and 
maturation and finally proceeds to individualization process to make a mature sperm which 
gets transported to seminal vesicles.  
  



Introduction 

Shruti Chhetri 30 

1.8 Aims of the study 
The first goal of this project was to identify miRNAs that target the DGC components and 

influence muscle maintenance. Since most of the MDs’ phenotypes can be recapitulated even 

in wild-type animals under stress conditions, for example, high temperature, starvation and 

aging, the second goal of this project was to identify miRNAs that act in common pathway 

shared between stress and MD pathway that controls muscle maintenance and MD develop-

ment. The final goal of this project was to dissect the role of one identified miRNA targeting 

DGC components (miR-137), and reveal its biological functions contributing to the DGC 

regulation and pathogenesis of MDs.  
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2 Materials and Methods 

2.1 Fly work 

2.1.1 Fly stocks and maintenance 
Drosophila melanogaster stocks were raised in standard Drosophila food medium with 

yeast, cornmeal and agar prepared by the fly facility of the MPI for Biophysical Chemistry. 

All the fly stocks were maintained at well-controlled environment in isolated rooms with a 

constant humidity of 65%, temperature of 18°C, and 12-12 h daily light-dark cycle. All the 

experimental analyses were carried out on standard Drosophila food media, on standard 

temperature and humidity condition at 25°C or unless otherwise stated. Food vials were 

replaced with fresh ones every two days throughout the experiments. Food vials used for the 

experiments were clear plastic vials of small (28 ml), or medium (68 ml) size (Greiner Bio-

One). All the fly strains used for this project were obtained from the Bloomington 

Drosophila Stock Center (BDSC) and are summarized in Table 1.  

MiR-137ko fly stock, in particular, was backcrossed to 8 generations in the w1118 background 

and was particularly used in analyses made from Chapter 3.2 

Table 1.  Fly Stock List 

Genotype BDSC Stock number 

w1118+ BL 6326 

Oregon-R-C BL 5 

Canton-S Gift from Patrick O'Farrell lab 

w1118;miR-137ko BL 58893 

w1118;miR-252ko BL58901 

w1118;KT40 (miR-310 ko ) (Tsurudome et al., 2010) 

w1118,miR-927KO  BL 58935 

w1118;miR-956ko BL 58941 

w1118;miR-959-960-961-962 ko BL 58944 

w1118;miR-966 ko BL 58947 

w1118,miR-975-976-977 ko BL 58954 

w1118;miR-1000 ko BL 58882 

w1118;miR-1011 ko BL 58887 

w1118;miR-137Df BL 8915 
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w1118,miR-927Df BL 26567 

w1118;miR-956Df BL 26579 

w1118;miR-966Df BL 9612 

w1118;miR-959-960-961-962-963-964 Df BL 7724 

w1118,miR-975-976-977 Df BL 23171 

w1118; UAS-mir-137 BL 59881 

w1118;UAS-mCherry.miR-137.sponge BL 61395 

w1118;UAS-DsRed-miR-927 BL 60599 

w1118; UAS-LUC-miR-966 BL 41211 

w1118;UAS-mCherry.scramble.sponge BL 61501 

w1118;pUASt-Dg (Deng et al., 2003) 

w1118;UAS-DgRNAi (Deng et al., 2003) 

w1118;Dg1.10G Unpublished stock (Shcherbata Lab) 

w1118, Mhc-GAL4 BL 55132 

w1118;how24B-GAL4 BL 1767 

w1118; tj-Gal4 Kyoto 104055 

 

2.1.2 Standard Drosophila food media 
6.25 g/l agar (Serva) 

18 g/l dry yeast (Saf-Instant)  

80 g/l corn flour (Zieler & Co) 

22 g/l beet syrup (Ferdinand Kreutzer Sabamühle GmbH) 

80 g/l malt (Ulmer Spatz) 

0.625% propionic acid (Merck) 

0.3% nipagin (Sigma) 
Note: The food was cooled down to 55°C and then nipagin and propionic acid were added as antifungal and 

antibacterial agents, respectively. 

 

2.1.3 Temperature and nutritional stress 

For temperature stress, flies were kept at 33°C, 48 h post eclosion on standard fly food until 

desired age. For nutritional stress, i.e. sugar starvation and protein starvation, solid food 

media was prepared using 1% agar-agar (Serva) with 0.3% nipagin (Sigma), and 0.03% 

propionic acid (Merck). Flies were raised in this medium 48 h post eclosion with a small 
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quantity of fresh yeast paste prepared from dry yeast and H2O up to 5 days. Similarly, for 

protein starvation, fly food was prepared with (apple juice plate) with 3% nipagin (Sigma) 

and 0.03% propionic acid. Flies were raised in this medium 48 h post eclosion up to 5 days. 

Both male and female flies were used for these experiments. 

 

2.1.4 Aging & lifespan analysis 

Lifespan experiments were carried out at 25°C with 200 male and female flies per genotype. 

To standardize the age of the experimental flies, parental flies were crossed in plastic cages 

with apple juice agar plate with fresh yeast paste. After 12 h of egg-laying time, eggs were 

washed in PBS and transferred from apple agar plates into falcon tubes. Eggs were allowed 

to sediment. All the supernatant was removed and 10 μl of compact egg/PBS solution was 

dispensed in medium food vials resulting between 100-150 enclosed flies per vials. Flies 

were transferred into new food vials after 48 h of post-eclosion. Both female and male flies 

were sorted into small food vials separately (10 flies/vial). Flies were tipped onto new food 

three times a week and deaths were scored at the same time. For statistical analysis, P values 

were calculated using the log-rank survival test. 

 

2.2 Genetic screen of miRNAs 
miRNA genetic screen was done by comparing miRNAs loss-of-function along with its over-

expression and downregulation using the UAS/Gal4 system in Drosophila (Brand and 

Perrimon, 1993). Muscle-specific Gal4 lines, such as Mhc-Gal4 and how24B-Gal4 (further 

how-Gal4) were used to drive UAS-miRNA line to overexpress miRNAs, UAS-miRNA-

sponge to downregulated miRNAs, and pUASt-Dg was used to overexpress Dg in fly 

muscles. Progenies of w1118 virgin females crossed to Oregon-R males, and tissue-specific-

Gal4 virgin females crossed to w1118 males and used as controls. All the crosses were done 

at standard Drosophila conditions (chapter 2.1.1), or unless otherwise stated. For muscle 

analysis, flies at young (7 day old at 25°C), aged (30 day old at 25°C), temperature stress (5 

day at 33°C, 48 h post eclosion), sugar starvation (5 day at sugar starvation, 48 h post 

eclosion), and protein starvation (30 day on protein starvation at 25°C) were analyzed as 

mentioned in Chapter2.3. Similarly, for the analysis of the miRNA function in the somatic 

cell of Drosophila testes, tj-Gal4 was used as early somatic cell-specific driver line and was 

crossed to pUASt-Dg, UAS-miRNA, or UAS-miRNA-sponge to compare the severity of the 

phenotypes. 
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2.3 Muscle Analysis 
Adult Drosophila muscle tissues were prepared for analysis by placing the flies into collars 

and fixing them in Carnoy fixative solution (6:3:1 = Ethanol: Chloroform: Acetic Acid) at 

4°C overnight. Fly tissues were dehydrated and paraffinized as described by (Kucherenko et 

al., 2010). Histological sections of 8 μm of indirect flight muscles (IFMs) were prepared 

using Hyrax M25 (Zeiss) microtome and stained with Hematoxylene and Eosin staining. All 

the chemicals used for this procedure were obtained from Sigma Aldrich. Muscle analysis 

was done using a light microscope and the frequency of muscle degeneration was quantified 

as a ratio of degenerated muscles to the total number of muscles that were analyzed per 

genotype. The analyzed IFM sections were located at the position 200-250 μm from the 

posterior of the fly thorax.  

2.4 Phenotypic Classification 

2.4.1  Muscle Degeneration Phenotypes 

The severity of muscle degeneration was categorized into two categories for the simplicity 

of quantification. Muscles were scored as “strong” muscle degeneration in cases, where all 

the muscle was deteriorated (absence of fly muscle in the respective area) or substituted with 

non-muscle tissue. “Moderate” muscle degeneration in cases, where some parts of individual 

muscle was deteriorated and “mild” muscle degeneration was used as the third category 

where the muscle showed minor sign of degeneration as punctate-like structures.  

Muscle “atrophy” was scored as a separate category for any symptoms of muscles showing 

loss of muscle integration ranging from the detachment of muscle sarcolemma to low muscle 

fiber composition. 

 

2.4.2  Septate junction phenotype 

In elongated spermatids, septate junctions morphology appear as “H” or “Z” like structure 

in wild type flies forming the bridge between the two membranes. Both of these shapes were 

scored as “normal”. Any morphological deviation from these shapes, such as a “dot” like 

structure or an elongated line with no connection to the neighboring cell were scored as 

“abnormal” septate junction structure. Phenotype was scored beyond 2/3rd from the anterior 

part of the testes were cells enter meiosis and starts to proceeds through the elongation and 

the differentiation process to form individual sperms.  
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2.5 Gene ontology analysis of predicted miRNA targets 
Conserved Drosophila predicted targets of miRNAs were determined using TargetScan, 

Release 6.2 (www.targetscan.org). The Generic Gene Ontology (GO) Term Finder tool 

hosted by the Lewis-Sigler Institute for Integrative Genomics, Princeton University (Boyle 

et al., 2004) was used to find GO component terms related to predicted targets of each 

miRNA with a p-value cutoff at 0.01. Visualization was done with the help of Revigo 

software (Supek et al., 2011) with similarity allowed equal to 0.5  

 

2.6 Immunohistochemistry 
Fly testes were dissected in cold phosphate buffered saline (PBS/145 mM NaCl, 7.5 mM 

Na2HPO4, 2.5 mM NaH2PO4 pH adjusted to 7.4) and fixed using 4% paraformaldehyde 

(PFA) for 20 min. Samples were then washed 4 times 15 min each with PBT (0.2% TritonTM 

x-100 (Sigma) in PBS). Fixed tissue was then blocked with PBTB (2 g/l Bovine Serum 

Albumin (BSA) (AppliChem), 5% Normal Goat Serum (NGS) (Abcam), and 0.5 g/l sodium 

azide (Sigma)) for 1 h at room temperature (RT). Primary antibodies (Table 2) were then 

added and incubated overnight at 4°C. Samples were washed again the following day 4 times 

15 min each with PBT and were blocked in PBTB for 1 h at RT followed by the addition of 

secondary antibody solution (Table 2) for 2-3 h at RT. Samples were washed twice in PBT 

and the procedure was continued with the addition of 10 mg/l DAPI (Sigma) in PBT for 10 

min. Samples were washed twice again with PBT and finally, the solution was replaced with 

mounting medium (70% glycerol (Sigma), 3% n-propylgallate (Sigma) in 1x PBS) and left 

at 4°C overnight to equilibrate. Finally, the tissues were mounted on whole slides (76X26 

mm, Thermo Scientific) and were analyzed with Zeiss LSM700 confocal laser scanning 

microscope.  

Table 2.  Antibodies used for immunohistochemistry 

Antibody Dilution Source Host 
anti-Adducin 
(Add) 

1:50 DSHB Mouse 
monoclonal  

anti-β-Gal 1:25 DSHB Mouse 
monoclonal  

anti-PH3 1:10000 Upstate Biotechnology Rabbit polyclonal 
anti-GFP 1:5000 Abcam Chicken 

polyclonal 
anti-Vasa 1:5000 Gift from Herbert Jäckle 

MPI-BPC, Göttingen 
Rabbit polyclonal 

http://www.targetscan.org/
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anti-Dystroglycan 
(Dg) 

1:2000 Gift from Hannele Ruohola-Baker 
UW, Seattle  

Rabbit polyclonal 

anti-Armadillo 
(Arm) 

1:50 DSHB Mouse 
monoclonal  

anti-Traffic Jam 
(Tj) 

1:10000 Gift from Dorothea Godt 
UToronto, Toronto 

Guinea pig 
polyclonal 

anti-Eyes Absent 
(Eya) 

1:50 DSHB Mouse 
monoclonal  

anti-Disc large 
(Dlg) 

1:200 DSHB Mouse 
monoclonal  

anti-Mega 1:300 Gift from Reinhard Schuh 
MPI-BPC, Göttingen 

Mouse 
monoclonal 

anti-β3 Tubulin 
(β3tub) 

1:2000 Gift from Renate Renkawitz-Pohl 
PUM, Marburg 

Guinea pig 
polyclonal 

anti-Coracle 
(Cora) 

1:25 DSHB Mouse 
monoclonal  

Alexa 568 anti-
mouse 

1:500 Invitrogen Secondary, goat 

Alexa 488 anti-
rabbit 

1:500 Invitrogen Secondary, goat 

Alexa 488 anti-
chicken 

1:500 Invitrogen Secondary, goat 

Alexa 568 anti-
guinea pig 

1:500 Invitrogen Secondary, goat 

 

2.6.1 Permeability assay 

Permeability assay was performed as described in (Fairchild et al., 2015). Adult Drosophila 

testes were dissected in Schneider’s Drosophila Medium (Gibco®) and transferred in 

medium containing 10 kDa Dextran Dye conjugated to Texas Red® (molecular probes). The 

final concentration of the dye was 0.2 μg/ml. Images were analyzed with Zeiss LSM700 

confocal laser scanning microscope. 

 

2.7 In situ hybridization (ISH) 
Fly tissues were dissected in cold 1x modified Ephrussi-Beadle Ringer’s solution (EBR) (for 

10XEBR: 1.3 M NaCl (Merck), 47 mM KCl (Merck), 19 mM CaCl2 (Merck), and 100 mM 

HEPES (Roth)) and fixed in 4% PFA in PBS. Fixation time varied depending on the type of 

tissues (see below). Subsequent procedures were followed as described in (Zimmerman et 

al., 2013). Flies tissue were then dehydrated and stored at -20°C overnight. Next, tissues 

were rehydrated and permeabilized for 1 h in RT with Proteinase K solution (50 μg/ml 

Proteinase K (AppliChem) in 50 mM Tris–HCl (VWR) pH 7.5, 50 mM EDTA (Roth)) 
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followed by the post-fixation at 4% PFA in PBT for 30 min at RT. Primary fixation and 

permeabilization varied between the tissues (Table 2). Samples were then rinsed and pre-

hybridized in hybridization buffer (50% formamide (VWR), 25% 20 x SSC, 5 mg/ml Torula 

yeast RNA (Sigma), and 0.1% Tween 20) for 1 h at 60°C. Hybridization was carried out 

overnight at 60°C with a 40 nM miRCURY LNA probe (Exiqon; dme-miR-137-3p product 

# 619638-360) in hybridization buffer. Post-hybridization was done for 1 h with three 

subsequent washes of 20 min with hybridization wash solution (no yeast RNA), 50/50 v/v 

hybridization wash solution/PBT, and PBT at 62°C. Tissues were then blocked for 1 h in 

Western Block (Sigma) and anti-digoxigenin (DIG) conjugated with Alkaline Phosphatase 

that was diluted 1:2000 in the block and incubated with tissues overnight at 4°C. 

Colorimetric detection was done with 10 μl/ml NBT (Roche) in staining buffer (0.05 M Tris 

pH 9.5, 0.05 M MgCl2, 0.1 M NaCl, 0.1% Tween 20) for ~30–45 min. Samples were washed 

3 more times and let to equilibrate in 80% glycerol in PBS overnight. Finally, tissues were 

mounted on whole slides (76X26mm, Thermo Scientific), and analysis was done using Zeiss 

Axiophot microscope. 

Table 3.  Duration of tissue fixation and permeabilization  

Tissue Primary Fixation Permeabilization 
Testes 1 h - 
Brain 30 min - 
NMJ 5 min 10 min 

 

2.7.1 Fluorescence in situ hybridization (FISH)  

All the procedures were followed similar to regular ISH up until blocking of the sample in 

Western Block (Sigma) for 1 h at RT. Samples were then incubated overnight at 4°C in 

biotin-conjugated anti-DIG antibody (Jackson Immuno Research) diluted in 1:500 in 

Western Block. Samples were then washed 6 times for 10 min each and incubated 1 h in 

1:1000 streptavidin-HRP (TSA kit, PerkinElmer) in the block at RT. For nuclear staining, 1 

μg ml-1 (final concentration) of DAPI was added during the last wash. Tyramide (TSA kit, 

PerkinElmer) was diluted in 1:50 and added to the sample and incubated overnight at 4°C in 

dark. Samples were washed 3 more times and let to equilibrate in mounting medium (70% 

glycerol (Sigma), 3% n-propylgallate (Sigma) in 1x PBS) overnight at 4°C. Finally, tissues 

were mounted on whole slides (76x26 mm, Thermo Scientific), and analysis was done using 

Zeiss LSM700 confocal laser scanning microscope. 
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2.8 Genomic DNA extraction from fly leg and the whole fly 
The middle leg was dissected and then transferred in ice-cold PCR tubes containing 

squishing buffer (10 mM Tris-HCl, 1mM EDTA, 25 mM NaCl, and 200 μg/ml Proteinase K 

(AppliChem) with pH adjusted to 8.2). Similarly, the whole fly body was transferred in ice-

cold PCR tubes containing squishing buffer and homogenized using the pestle. Genomic 

DNA was extracted under the following conditions in a thermocycler (Bio-Rad T100TM). 

Table 4.  Conditions used for genomic DNA extraction 

Fly Leg Whole Fly 
65°C 60 min 37°C 30 min 
95 C 10 min 97 C 3 min 
4°C until removal 

 
4°C 15 min high-speed 

centrifugation (13000 rpm) 
 

2.9 Polymerase chain reaction (PCR) 
For genotyping, PCR from extracted DNA was performed by using HotStart Taq Plus DNA 

Polymerase (Qiagen). 0.5 µM of each primer pair were mixed with HotStarTaq Plus Master 

Mix (2x), and 150 ng of template DNA with a final volume of to 20 μl. All the procedures 

were followed per the manufacturer’s instructions. The primer pairs were designed using 

Primer3: WWW primer tool (http://biotools.umassmed.edu/bioapps/primer3_www.cgi). 

The amplicons were designed as intron spanning pairs and were ordered from Microsynth 

unless otherwise stated. Primers are summarized in Table 5. 

Table 5.  Primers used for qPCR 

Gene Orientation Sequence Purpose 
Rpl32 Forward AAGATGACCATCCGCCCAGC qPCR 
Rpl32 Reverse GTCGATACCCTTGGGCTTGC qPCR 
Dg Forward ACTCAAGGACGAGAAGCCGC qPCR 
Dg Reverse ATGGTGGTGGCACATAATCG qPCR 
Dys Forward GTTGCAGACACTGACCGACG qPCR 
Dys Reverse CGAGGGCTCTATGTTGGAGC qPCR 
Syn_1 Forward GGCATTGAACCAGACGAGGG qPCR 
Syn_1 Reverse AATCTCAAATACATCGACCC qPCR 
2S rRNA TGCTTGGACTACATATGGTTGAGGGTTGTA qRT-

PCR 
miR-137-3p mature-

miRNA 
UAUUGCUUGAGAAUACACGUAG qRT-

PCR 
mini white Reverse TTTGTGCGATTGCGGTTTG PCR 
miR-137 Reverse CCTCAGGCCCGTTTAAATGAGCTGGAA PCR 
Gal4 Forward GGCTAGAAAGACTGGAACAGCT PCR 
Gal4 Reverse AGGGCAAGCCATCCGACATG PCR 

http://biotools.umassmed.edu/bioapps/primer3_www.cgi
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pUAST Forward AGCAACCAAGTAAATCAACTGC PCR 
pUAST Reverse TTAAATCTCTGTAGGTAGTTTGTCC  PCR 

 

2.9.1 Agarose gel electrophoresis 

DNA fragments were separated by length by running linear DNA (PCR products) in 1% and 

1.5% agarose gel (Sigma) in TAE (40 mM Tris-acetate, 1 mM EDTA with pH adjusted to 

8.2). Samples were then mixed with DNA loading dye (6x, New England BioLabsR Inc.) 

containing bromophenol blue as a visual marker. Gels were post-stained with Midori green 

advance (Nippon Genetics) and based on the size of the PCR product, Hyper Ladder 50 bp 

and 100 bp (New England Bio Labs) were used to determine DNA size. 

 

2.10 RNA extractions and cDNA synthesis 
Total RNA was extracted from the whole body of 5 male flies or 50 testes per genotype by 

homogenizing in 200 μl Trizol reagent (Ambion). Further procedures were followed as per 

the manufacturer’s protocol. Quantification of total RNA concentration was done using the 

Nano Drop (ND-1000 Spectrophotometer, Peqlab Biotechnologie GmbH). Total cDNA was 

reverse transcribed using random primers with High Capacity Reverse Transcriptase 

(Applied Biosystems) with 1.5 µg of total RNA template in a 20 µl reaction with following 

conditions at thermocycler (Bio-Rad T100TM). 

 

2.11 Quantitative PCR (qPCR) 
Fast SYBR Green reagents in Step One Plus Real-Time PCR System (Applied Biosystems) 

was used according to the manufacturer’s instructions to perform qPCR. Each reaction was 

set up with forward and reverse primer of 300 nM concentrations and 100 ng cDNA as 

template in the 15 µl total reaction volume. Amplification was done using StepOne Plus 

thermocycler (Applied Biosystems). CT values were acquired from StepOne Software 

(Applied Biosystems), and technical replicate average CT values of respective genes were 

normalized to the endogenous control (housekeeping gene, Rpl32) to achieve ΔCT value. 

qPCR data were validated using the ΔΔCT method that was achieved by subtraction of ΔCT 

value of each genotype to the control genotype. Relative expression of the gene of interest 

was calculated using the formula: 2-ΔΔCT. For statistics, two-tailed Student’s t-test was used 

for the calculation of p values. 
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2.11.1 Quantitative miRNA expression analysis 

TaqMan® microRNA assays (Applied Biosystems) were used to determine miRNA levels. 

2S rRNA was used as an endogenous control for this procedure. Reverse transcription was 

done as described in chapter 2.9, and amplification was done using StepOne Plus 

thermocycler (Applied Biosystems). Subsequent procedures were carried out as per the 

manufacturer’s protocol. The assay involved reverse transcribing the mature miRNA of 

interest in a reaction and subsequently detecting the quantity via PCR coupled with 

fluorescence-labeled oligonucleotide probes.10 ng of total RNA was used for 20 μl reaction 

volume, and 1.33 μl of resulting reaction was loaded for the qPCR. The amplicons were 

ordered from Thermo Fisher Scientific and are summarized in Table.5. The calculation of 

the relative miRNA expression levels and statistics were done using the respective CT values 

as described in chapter 2.10. 

 

2.12 Transfection of Drosophila cell lines (S2R+ cell lines) 
Drosophila S2R+ cells (DGRC) were cultivated in Schneider’s Drosophila medium 

(Gibco®) with 10% heat-inactivated fetal bovine serum (FBS, GE healthcare) and 100 

units/ml penicillin and 100 μg/ml streptomycin (Gibco®) in 25 cm2 culture flasks in the 6 

ml medium at 25ºC. Cells were split into 96 wells plate (polystyrene black plate, costar) and 

incubated overnight to achieve confluency of 60-70%. Transfection mixes were prepared 

using Effectene® transfection reagent (Qiagen) as per manufacturer’s protocol. Following 

amounts of the reporter and constructs were added on the transfection mixes: 50 ng of empty 

psiCHECKTM-2 or 50 ng of psiCHECKTM-2-Dg-3’UTR plasmid fragments (Yatsenko et al., 

2014) containing miRNA binding sites, 25 ng of act-Gal4, and 50ng of the pUAST-miRNA 

plasmid (Gift from Eric Lai). Transfection mix without reporter constructs was used as 

background control. 
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2.13 Luciferase reporter assay 
To measure firefly and renilla luciferase activity, the Dual-Glo® luciferase assay kit 

(Promega) was used approximately 72 h of post-transfection. All the procedures were 

followed as per the manufacturer’s instructions. Luciferase activity was measured as 

luminescence using Wallac 1420 luminometer (PerkinElmer). To calculate relative 

downregulation of reporter luciferase values, signals by miRNAs, raw readouts of Renilla to 

Firefly luciferase values were measured. Next, background values (transfection with empty 

psiCHECKTM-2 with no reporter construct) were subtracted from the respective values. 

Obtained values were then normalized to empty psiCHECKTM-2 to the values of 

psiCHECKTM-2-Dg-3’UTR in presence of miRNAs. 

All transfections were done in triplicates. Data observed from triplicates were used to 

determine an average downregulation and standard deviation of the data. Student’s two-

tailed t-test was used for the statistical analysis.  

 

   

Schematic representation of luciferase assay  

S2R+ cells were transfected with psiCHECKTM-2 with or without Dg-3’UTR fragments 
together with act-Gal4, as well as, pUAST-miRNA plasmids. When all three constructs are 
transfected, miRNA will bind to the Dg-3’UTR resulting in mRNA destabilization or 
translation repression of reporter gene can be detected as no to less luciferase signal. pUAST-
miRNA plasmids transfected with psiCHECKTM-2-Dg-3’UTR that doesn’t have predicted 
binding site, or with empty psiCHECKTM-2 will have no effect on transcription of the 
luciferase reporter. Hence, resulting in normal or high luciferase signal as compared to the 
miRNA inhibition.   
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2.14 Bacterial transformation 
Respective psiCHECKTM-2 vectors together with pUAST-miRNA plasmids were transformed 

into chemically competent bacteria (DH5α Escherichia coli cells, Invitrogen) following the 

manufacturer’s protocol. Cells were heat shocked at 42°C for 45 sec followed by incubation 

on ice for 2 min. Transformed bacteria were then incubated in SOC medium at 37°C for 1 h 

with a slow shake of 100 rpm in an incubator shaker (Infors AG) and plated on Lysogeny 

Broth (LB, Invitrogen) agar plate containing 100 μg/ml ampicillin. Plates were incubated 

overnight at 37°C. The following day, a single colony was picked using sterile pipette tip 

and dropped into liquid LB medium with ampicillin at 250 rpm in an incubator shaker (Infors 

AG) for overnight culture, and were subjected for midi-preparation the next day. 

 

2.15 Midi-preparation of plasmid DNA 
Bacterial cultures were harvested by centrifuging at 6000x g for 15 min at 4°C. To obtain 

high purity DNA, Plasmid Plus Midi Kit (Qiagen) was used according to the manufacturer’s 

protocol. The purified DNA was eluted in 200 μl of EB buffer (Plasmid Plus Midi Kit). For 

quality control, total DNA concentration was measured using the Nano Drop (ND-1000 

Spectrophotometer, Peqlab Biotechnologie GmbH). 

 

2.16 Image processing and quantification 
Somatic cell quantification and digital processing of all the microscope images were done 

using ImageJ-win64 or Adobe Photoshop. Schematic illustrations were done using 

CorelDRAW X6, and Microsoft PowerPoint. All the heatmaps were drawn using R program 

version 3.2.3.  

 

2.17 Bioinformatical analyses 
To find human homologs of the proteins, STRING v10 database (Szklarczyk et al., 2015) 

with a medium confidence score (0.4) and prediction methods that included neighborhood, 

gene fusion, co-occurrence, co-expression, experiments, databases, and text mining were 

used. To assign molecular function and involvement in biological processes of genes, 

FB2018_05 release FlyBase was applied. To search for the human disease association the 

http://www.flyrnai.org (Hu et al., 2011) and http://www.genecards.org were used.  

  

http://www.flyrnai.org/
http://www.genecards.org/
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3 Results 

3.1 Screen of miRNAs that are predicted to target the DGC  

3.1.1 The DGC components are predicted to be targeted by 
multiple miRNAs  

A single gene can be targeted by multiple miRNAs, at the same time, a single miRNA can 

target multiple genes. Such genes can be positive or negative regulators of the same 

pathways. To investigate miRNAs that can potentially play a role in MD pathogenesis by 

targeting the DGC components, we selected miRNAs based on whether or not they are 

predicted to target the core DGC components.  

In Drosophila model of MD, Dg have been shown to be localized postsynaptically at the 

NMJ and are required for appropriate homeostatic control of neurotransmitter release and 

proper localization of Cora and Nrx-IV (Bogdanik et al., 2008). It has also been reported that 

in the absence of Dg, GluR are improperly localized causing insufficient muscle response 

(Marrone et al., 2011b). Importantly, mutation in any of these components are also associated 

with phenotypes similar to MD. Therefore, core components of the DGC as well as the 

proteins known to interact with Dg were taken together to extract miRNAs that are predicted 

to target the extended DGC components. Such components consists of multiple protein, 

among which are Dg, Dys, Syn1/2, nNOS, Scg, Nrx-IV, Cora, Yki, GluR, Lan A/B, Arm, 

Hts, and Mei-P26 (Chapter 1.1, Figure 1). Several target-prediction tools were utilized to 

find miRNAs that can target the DGC, namely TargetScan, Release 6.2 

(www.targetscan.org), miRBase, Release 20 (www.mirbase.org), and Diana Tools 

(http://diana.imis.athena-innovation.gr/DianaTools/index.php). This search yielded a group 

of 72 miRNAs, both conserved and non-conserved, that are predicted to target the transcripts 

of DGC components (Figure 6).  

Interestingly, among these miRNAs, around 20% (17 out of 72) are known to be DGC- or 

stress-dependent (Marrone et al., 2012), indicating that they can play an integral role in stress 

response and in MD pathogenesis. Many of these miRNAs can target more than one 

component of the DGC; however, we were not able to alienate a single group of miRNAs 

targeting common components of the DGC. Previously it has been shown that miRNAs often 

regulate multiple components of the same signaling pathway to assure quick and robust 

response to changes in external conditions and in internal cellular environment (Cicek et al., 

http://www.targetscan.org/
http://www.mirbase.org/
http://diana.imis.athena-innovation.gr/DianaTools/index.php
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2016; Yatsenko and Shcherbata, 2014). Since Dg is an integral membrane receptor linking 

the ECM to the actin-based cytoskeleton and is required for correct localization of the 

majority of the DGC components, we decided to study miRNAs that can target Dg and any 

three other components of the complex. As a result, a much narrower miRNA group was 

formed which possibly would ensure the dynamic, efficient, and fast control over the DGC 

pathway activity (Figure 7A).  
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Multiple miRNAs are predicted to target the DGC components 

MiRNAs that are predicted to target any component of the DGC, identified using the online 
tools TargetScan, miRBase, and DIANA/microT-CDS, are grouped in the heatmap based on 
their ability to target DGC components. Red indicates a predicted target and blue indicates 
no target. In total, 72 miRNAs are predicted to target any one of the DGC components.  
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3.1.2 MiRNA mutants have deregulated mRNA levels of Dg, Dys, 
and Syn1 

To validate that the miRNAs from this group (Figure 7A) can indeed be involved in 

regulation of the DGC complex, mRNA levels of the major DGC components were tested 

in some miRNA mutants. Since the Dg-Dys-Syn1 signaling pathway has been shown to be 

regulated by miRNAs (Marrone et al., 2012; Yatsenko et al., 2014), we tested the mRNA 

levels of these three major DGC components via qRT-PCR in ten miRNA mutants. These 

miRNAs were selected based on the availability of the loss-of-function mutants at the time 

of the screen and are highlighted with black arrow (Figure 7A). RNA was extracted from the 

whole body of 1-week old male flies and were normalized to control. MiR-956 is not 

predicted to target the DGC and therefore, was used as a negative control. Most of the 

miRNA mutants revealed deregulated mRNA levels of the DGC components. Since this 

group of miRNA has been selected firstly, by their ability to target Dg, we analyzed Dg 

levels in these mutants. MiR-137, miR-252, miR-959C, miR-966, and miR-1000 had Dg 

mRNA levels upregulated by more than three folds, suggesting that Dg can be their direct 

target. Some miRNAs such as miR-966 showed upregulated mRNA levels of all three 

components with approximately 2.5-5 fold increase relative to the control. In addition to Dg 

and Dys levels were also upregulated in most of these mutants. Such miRNAs were miR-

137, miR-252, miR-310s, and miR-966 even though, Dys was predicted to be a direct target 

only for miR-252, the increase in Dys level in these miRNA mutants can be explained 

because it has been previously shown that Dys stability depends on the levels of Dg 

(Bogdanik et al., 2008; Marrone et al., 2012). Since miRNA mutants have Dg levels 

increased possibly due to direct targeting of Dg, Dys levels would be upregulated. Analysis 

of miR-310s mutants showed approximately 2.5 fold increase in mRNA levels of Syn1 

relative to control, suggesting that miR-310s can target Syn1 as predicted (Figure 7B). 

Though miR-927 and miR-975C are predicted to target all three components, the loss of miR-

927 and miR-975C had no influence in the expression levels of Dg, Dys, or Syn1. 

Intriguingly, some of the miRNA mutants had deregulated levels of the DGC components 

that they are not predicted to target. Since DGC components are known to have 

compensatory effects on each other levels of expressions, the more rigorous screen is 

required to find out the miRNAs that could directly target DGC components or indirectly via 

targeting other factors, leading to MD development. This preliminary screen identified 
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miRNAs that have abnormal expression levels of major DGC components and could be 

involved in maintenance of muscle health via regulation of the DGC.  

 

Candidate miRNA mutants have deregulated mRNA levels of the DGC 

components 

(A) Clustering of miRNAs targeting Dg as well as any three other components of the DGC 
results in 16 different miRNAs. Red indicates predicted target and blue indicates no target. 
The black arrow indicates the availability of loss-of-function miRNA mutants at the time of 
the screen. (B) qRT- PCR performed on 1-week old male flies revealed altered mRNA levels 
of Dg, Dys, and Syn1 shown in red, blue and green bars, respectively. Relative mRNA levels 
of miRNA mutant flies were normalized to the control flies (Canton- S/OR). MiR-137 and 
miR-252 mutants have an increase in mRNA levels of Dg and Dys, while miR-310s mutants 
have an increase in mRNA levels of Dys and Syn1. Loss of miR-959C and miR-1000 
influence Dg level only and miR-966 mutants show an increase in mRNA levels of all three 
components of the DGC. Error bars represent AVE±SD, and statistical significance was 
determined by two-tailed Student’s t-test (*P<0.05, **P<0.01, ***P<0.001). See also 
Supplementary Table 1. 
 

3.1.3 Loss of miRNA causes muscle degeneration phenotypes 

Among ten candidate miRNAs, the expression levels of six miRNAs (miR-137, miR-252, 

miR-310s, miR-959C, miR-927, and miR-975C) have been shown to be downregulated in 

hyperthermia-stressed wild type and/or in dystrophic flies. To study their potential roles in 

MD development, we decided to test whether the loss of these miRNAs can affect muscle 

architecture in normal and in stress conditions. We analyzed muscle integrity in miRNA 

mutants kept at the following conditions: young (7 day old at 25°C), aged (30 day old at 

25°C), temperature stress (5 day at 33°C), sugar starvation (5 day at 25°C), and protein 
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starvation (30 day at 25°C). As expected, most of the miRNA mutants showed progressive 

muscle degeneration phenotypes (Figure 8). Muscle degeneration phenotypes were 

quantified as mild, moderate, and strong degeneration as shown in quantification panel 

(Figure 8A). miRNA mutants, such as miR-959C and miR-1000 showed an increase in 

muscle degeneration phenotypes as early as in young age (approximately 15% and 17.5% of 

muscle degeneration as compared to 5% in control flies), indicating these miRNAs can be 

already involved in muscle formation during developmental stages. Most miRNA mutants, 

such as miR-137, miR-310s, miR-959C, miR-966, and miR-975 were sensitive to more than 

one type of stress. Interestingly, only miR-137 mutants were responsive to all stress 

conditions with more than five times increase in the frequency of muscle degeneration at 

temperature stress, sugar starvation, protein starvation, and aging, when compared to the 

young non-stressed animals (Figure 8B). We also noticed that wild type flies itself were 

sensitive to stress and aging, as they showed stress- and age-dependent muscle degeneration 

compared to the young age, albeit at the lower than miRNA mutants frequency. Stress- and 

age-dependent muscle degeneration in wild type flies have also been reported before 

(Kucherenko et al., 2011). MiR-927 and miR-959C mutants were more responsive to protein 

starvation with an average muscle degeneration of 20-30% compared to 4-15% in young 

flies of the same genotype. A similar case was observed for miR-966 with 15% of muscle 

degeneration compared to 4% in young flies. 

MiR-959C and miR-975C though had stress-dependent muscle degeneration, these mutants 

were dropped to follow up further, since these miRNAs are in a complex of more than three 

different miRNAs, each with unique seed sequence and to follow up these miRNAs, an 

individual miRNA mutants must be generated. MiR-1000 and miR-1011 were not followed 

up due to the low survival rate, indicating that their role is broader than just muscle 

maintenance in animals.  

Interestingly, loss of muscle degeneration phenotype during stress or aging was also noted 

in some miRNA mutants when compared to them at young age. Such miRNAs were miR-

310s, miR-966, miR-975C, miR-1000, and miR-1011. This can be due to the fact that animals 

with severe phenotype could be dying and the animals that survived would have normal 

muscles. Contrarily, the expression of these miRNAs could have a negative effect on muscle 

maintenance and their loss could have a protective role, which would be interesting to study 

in greater detail in the future. Based on the severity of the muscle phenotypes and stress 

response, only miR-137, miR-927, and miR-966 were followed further to dissect their roles 

in MDs and DGC signaling.  
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MiRNA mutants show muscle degeneration phenotype that is enhanced upon 

stress  

(A) Representative images of muscle degeneration phenotype in IFMs of adult Drosophila. 
Blue, green and red arrows show mild, moderate and strong muscle degeneration. (B) A bar 
graph showing muscle degeneration due to miRNA loss at young, temperature stress, sugar 
starvation, protein starvation, and aging. Muscle degeneration mainly starts as early as in 
young flies and the phenotypes are accelerated upon stress even in control flies (Canton-
S/OR). MiR-137, miR-927, and miR-966 were responsive to most stress conditions (grey 
arrows on bar graph). MiR-1000 mutants have the least tolerance for the temperature stress 
and sugar starvation and had a low survival rate in general, while miR-959C responded only 
to the protein starvation. Statistical significance was determined by χ2test with Yate’s 
correction (*P<0.05, **P<0.01, ***P<0.001 when compared to control flies at same 
condition), (*P<0.05, **P<0.01, ***P<0.001 when compared to the same genotype at a 
young age). Protein starvation was compared to the aged flies. D7= young, 7 day old, TS= 
temperature stress, SS= sugar starvation, PS= protein starvation, and D30= aging, 30 day 
old. Scale bar 100 μm. See also Supplementary Table 3. 
 

3.2 Validation of muscle degeneration due to miRNA loss 
The progression of muscle degeneration phenotypes upon stress, due to miRNA loss was 

further followed up in greater detail for three miRNAs (miR-137, miR-927, and miR-966). 

The experiment was done in three independent biological replicates and the appearance of 

MD phenotypes was quantified in miRNA mutants as mild and strong muscle degeneration 

(Figure 9A).  
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Additionally, muscle atrophy was scored in these animals at normal and different stress 

conditions. Muscle atrophy, in general, is described as a loss of muscle mass that is driven 

by an increase in protein degradation or a decrease in protein synthesis. It is an integral 

feature of systemic diseases including cancer, cachexia, cardiac failure, AIDS, and sepsis. 

Loss of muscle mass due to aging, also known as sarcopenia is often associated with muscle 

disuse, fasting (starvation), extrinsic changes in innervation, stem cell function, and 

endocrine regulation of muscle homeostasis (Demontis et al., 2013). Since most miRNA 

mutants were responsive to various stresses, including aging, muscle atrophy was also 

studied in miRNA mutants to dissect miRNA involvement in muscle maintenance.  

The frequency of muscle degeneration and muscle atrophy in miRNA mutants kept at normal 

and different stress conditions, such as young, temperature stress, sugar starvation, and aging 

were normalized to the frequency of muscle degeneration and atrophy of young control 

animals. Muscle degeneration phenotypes were scored as mild and strong muscle 

degeneration as shown with blue and red arrows, respectively and muscle atrophy was scored 

as shown in green arrows (Figure 9A). As observed before, all animals, miRNA mutants and 

control were sensitive to stress and develop muscle degeneration and muscle atrophy in 

response to unfavorable conditions. However, the severity of stress-dependent muscle 

maintenance defects was different in different mutants. Interestingly, even change in genetic 

background in controls resulted in different frequencies of muscle degeneration, implying 

that in general, the muscle tissue is extremely sensitive to stress. For example in Figure 8, 

heterozygous Canton-S/OR were used as control and the frequency of muscle degeneration 

was never higher than 10%, while in this experiment (Figure 9), we used w1118 mutants 

crossed to wildtype OR as control. This resulted in the dramatic increase in muscle 

degeneration phenotypes. A similar observation was made on miR-137 mutants that were 

back-crossed in the w1118 genetic background for 8 generations.  

Upon stress and aging, controls themselves showed approximately 1.5-2.5 fold increase in 

the incidence of muscle degeneration relative to young non-stressed animals. MiR-137 

mutants had approximately 2 fold increase in muscle degeneration already at young age 

when compared to control flies of the same age. This phenotype was even more enhanced 

upon temperature stress and aging. Similarly, miR-966 mutants showed muscle degeneration 

phenotypes as early as in young age (1.5 fold higher than control) and the phenotype was 

enhanced upon aging (3.5 fold compared to 2.5 fold in control). However, miR-927 and miR-

966 mutants did not show temperature stress or sugar starvation response (Supplementary 
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Table 4). MiR-927 mutants were responsive only to aging with approximately 4 fold increase 

in muscle degeneration compared to control flies (Figure 9B).  

A comparison of muscle atrophy showed that upon various stresses control flies had an 

increase in the frequency of muscle atrophy when compared to young non-stressed animals 

(approximately 2.5-4 fold increase). Young miRNA mutants had muscle atrophy already at 

7 day, the frequency of which was approximately three times higher than in control. In 

addition, miRNA mutants showed loss of muscle integrity in response to sugar starvation 

and during aging, and the frequency of atrophic muscle appearance was six times higher than 

in young controls. This tendency of being extremely sensitive to aging was also observed in 

miR-927 and miR-966 mutants that also showed 6-fold increase in the frequency of atrophic 

muscle appearance in comparison to young controls (Supplementary Table 4). The frequency 

of muscle atrophy was observed in higher rate compared to the frequency of muscle 

degeneration. MiR-927 and miR-966 mutants did not show any differences in muscle 

degeneration phenotypes during temperature stress and sugar starvation, while an increase 

in 3-4 fold difference of atrophic muscles was observed compared to young control. Since 

miR-137 mutants showed an increase in muscle degeneration and muscle atrophy phenotypes 

already in young animals and these phenotypes were significantly progressing during aging, 

it indicates that this miRNA can be an especially good candidate to study further in order to 

elucidate the common mechanisms between MD and age-dependent muscle loss.  

  



Results 

Shruti Chhetri 52 

 

Loss of miRNA affects muscle maintenance  

(A) Representative images of muscle degeneration and atrophic muscle phenotypes in adult 
Drosophila IFMs. Blue and the red arrows represent mild and strong muscle degeneration, 
while the green arrows represent muscle atrophy. (B) A bar graph representing relative 
muscle degeneration and (C) relative muscle atrophy in different stresses compared to young 
control flies (w1118/OR). Stress enhances muscle degeneration and atrophy even in wild type 
flies. Control and miR-137 mutants were responsive to all stresses when compared to young 
age (significance shown by red stars). In general, miR-137 mutants had ~2 times more 
muscle degeneration in young and sugar starvation and ~3 times more muscle degeneration 
in temperature stress and aging compared to young controls. Similarly, an increase in muscle 
atrophy by ~3-5.5 fold was observed in miR-137 mutants when compared to young controls. 
Values are obtained from the averages of 3 biological replicates. Error bars represent 
AVE±SEM and statistical significance was determined by two-tailed Student’s t-test. 
*P<0.05, **P<0.01, ***P<0.001 represent comparisons to control at the same condition, 
while *P<0.05, **P<0.01, ***P<0.001 represent comparisons within the same genotype at 
a young age. D7= young, 7 day old, TS= temperature stress, SS= sugar starvation, and D30= 
aging, 30 day old. Scale bar 100 μm. See also Supplementary Table 4. 
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3.3 Conserved predicted targets of miRNAs are associated 
with multiple biological functions 

To verify whether miR-137, miR-927, and miR-966 have muscle-related target genes to have 

function in muscle maintenance, we combined their putative conserved targets by 

TargetScan, release 6.2 (www.targetscan.org) to predict their possible biological roles 

related to muscle maintenance. Individual lists of predicted targets of all three miRNAs were 

processed separately in Generic Gene Ontology term finder tool (Boyle et al., 2004). MiR-

137 having the largest number of conserved targets (252 targets in total), which were found 

to be involved in the processes associated with multiple biological terms including synapse, 

neuromuscular junction, neuron, voltage-gated potassium complex, as well as transporter 

complex. Majority of miR-137 target genes were found to be associated with functions 

related to cell periphery and plasma membrane protein complex (Figure 10A). MiR-927 and 

miR-966 having 120 and 30 conserved targets, respectively, which were found to be involved 

in processes related to the cell periphery and cell membrane function (Figure 10B-C). 

Interestingly, among many genes that share similar associations, Dg is well known for its 

role in all of these processes that are coined for these miRNA predicted targets. 
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GO term for component processes for each miRNA targets 

(A) Putative miR-137 targets are involved in plasma membrane protein complex, cell 
periphery or voltage-gated potassium channel complex and in neuronal functions related to 
the synapse and neuromuscular junction. (B-C) Putative targets of both miR-927 and miR-
966 are involved in the cell membrane- and cell periphery-related functions. 
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3.4 Ectopic expression of candidate miRNA affects muscle 
maintenance  

Our previous data showed that muscle integrity upon miRNA loss was severely 

compromised, indicating these miRNAs are required for normal muscle functions. The GO 

component terms further indicated that these miRNAs are required in majority of the 

functions related to the cell membrane and cell periphery related processes. In IFMs of 

Drosophila, Dg has been shown to be localized in muscle membrane (sarcolemma) and loss 

of Dg cause muscle degeneration and the phenotype is accelerated upon stress (Kucherenko 

et al., 2011). The study further identified genes that interact with the DGC components and 

shared functional similarity in the development of MDs. To further elucidate miRNAs 

affecting muscle maintenance by targeting muscle-specific target genes, we over-expressed 

our candidate miRNAs in muscle and scored for the muscle degeneration and atrophy 

phenotypes similar to its loss-of-function.  

Over-expression of miRNAs in muscle was achieved by the UAS/Gal4 system. Two muscle-

specific-Gal4 lines were chosen to overexpress candidate miRNAs, one that drives the 

expression in adult muscle only and one that is active throughout the development: Mhc-

Gal4 and how-Gal4, respectively. Male flies of UAS-miRNA lines with virgin females of 

Mhc-Gal4 lines were crossed and the IFMs of progenies were analyzed. Mhc-Gal4 resides 

in X-chromosome; therefore, only females were analyzed for this experiment to reduce the 

dosage compensation effect on muscles. Using these two driver lines, we over-expressed 

miR-137, miR-927, and miR-966 in muscles. Over-expression of miR-137 and miR-927 

during development caused lethality at various developmental stages of flies (Supplementary 

Table 4). Ectopic expression of miR-137 with Mhc-Gal4 was semi-lethal and few escapers 

that were analyzed showed severe muscle degeneration and muscle loss, appearing as the 

complete absence of individual muscle (Figure 11). Over-expression of miR-927 and miR-

966 in adult muscle were not lethal for flies, however, the muscle integrity was severely 

compromised (Figure 12). On average, over-expression of miR-927 and miR-966 in adult 

muscle showed an increase in muscle degeneration (35-85% and 22-60%) compared to 

control flies (10-40%) at young, temperature stress, sugar starvation, and aging (Figure 12A). 

Ectopic expression of miR-966 using how-Gal4 resulted in 22-65% cases of average muscle 

degeneration at young and various stresses compared to 10-40% cases observed in controls. 

In general, miR-966 over-expression with how-Gal4 ensued in much milder phenotype 

compared to Mhc-Gal4.  
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Over-expression of miR-137 results in strong muscle degeneration and 

muscle loss  

Ectopic expression of miR-137 in adult fly muscle is semi-lethal to flies and few escapers 
that were analyzed show severe muscle degeneration or complete absence of an individual 
muscle (black arrow) as compared to control flies of genotype Mhc>w1118, indicating level 
of miR-137 in adult muscle must be maintained at the proper level. Scale bar 100 μm. See 
also Supplementary Table 4. 
 

Over-expression of miRNAs also showed muscle atrophy phenotype. Over-expression of 

miR-927 and miR-966 in adult muscle caused a significant increase in muscle atrophy (70-

90% and 28-74% cases of atrophic muscles) compared to control (10-50% cases of atrophic 

muscle) (Figure 12B). Over-expression of miR-966 during developmental stage resulted in 

relatively milder phenotype compared to over-expression during adult stage similar to the 

observation on muscle degeneration phenotypes (21-63% atrophic muscle when over-

expressed during development compared to 70-90% in adult over-expression). Together with 

the muscle degeneration and muscle atrophy phenotypes observed upon over-expression of 

miR-966, it was concluded that miR-966 is required more for adult muscles maintenance. 

Similar to muscle degeneration, flies of all genotypes were sensitive to aging, indicating 

aging in general affects muscle maintenance. Altogether the data show that over-expression 

of identified miRNAs in our screen specifically in the muscle tissue resulted in severe 

phenotypes, indicating all of these candidate miRNAs can control at least one or more targets 

that are required for muscle maintenance and development. 
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Over-expression of candidate miRNAs affects muscle maintenance 

Bar graphs showing muscle degeneration (A) and muscle atrophy (B) phenotypes in adult 
IMFs. Over-expression of miR-927 in adult muscle caused 35-85% of degenerated muscle 
and 70-90% of atrophic muscle, while over-expression of miR-966 caused 20-60% of 
degenerated muscle and 20-80% atrophic muscle. Over-expression of miR-966 was more 
detrimental to flies at adult stage compared to over-expression during developmental stage. 
Values are obtained from the averages of 3 biological replicates. Error bars represent 
AVE±SEM and statistical significance was determined by two-tailed Student’s t-test. 
*P<0.05, **P<0.01, ***P<0.001 represent comparisons to control at the same condition, 
while *P<0.05, **P<0.01, ***P<0.001 represent comparisons within the same genotype at 
a young age. D7= young, 7 day old, TS= temperature stress, SS= sugar starvation, and D30= 
aging, 30 day old. See also Supplementary Table 4. 
 

3.5 Candidate miRNAs target Dg-3’ UTR in vitro 
In order to validate that miRNAs identified in our screen (miR-137, miR-927, and miR-966) 

can indeed regulate Dg by targeting its 3’UTR, Drosophila S2 cell-based luciferase reporter 

assay was carried out. According to FlyBase, a database for Drosophila gene and genome 

(http://flybase.org/), Dg transcript has two different 3’UTRs: the long 3’UTR is 2102 bp long 

(Figure 10A) and the short 3’UTR is 1609 bp long. About 60% of Dg transcripts had been 

shown to contain long 3’UTR (Yatsenko et al., 2014). To study all miRNA based regulation 

possibilities, the long 3’UTR was divided into four smaller fragments (S1-S4). This made 

cell culture analyses easier and made it accessible to study individually selected miRNAs 

based on the predicted position of the miRNA binding sites.  

MiR-927 is predicted to have a binding site on long Dg-3’UTR, while both miR-137 and miR-

966 have predicted binding sites on short Dg-3’UTR. Importantly, miR-137 and miR-927 are 

predicted to have multiple binding sites in Dg-3’UTR (highlighted with marron box and blue 

box, Figure 13A), while miR-966 is predicted to have only one binding site (highlighted with 

yellow box). To test if all three miRNAs can target Dg in vitro, plasmid containing sequence 

http://flybase.org/
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that include individual miRNA predicted binding sites were transfected in S2R+ cell lines. 

S3 fragment of Dg-3’UTR did not contain any predicted binding sites for these three 

miRNAs; therefore, S3 fragment was used as a negative control and was transfected with the 

empty psiCHECKTM-2 vector. In addition, miR-956 was chosen as a negative control as it is 

not predicted to have any binding sites on Dg 3’UTR. Both renilla and firefly luminescence 

light signals encoded by the constructed plasmid transcripts with and without miRNA 

binding sites were measured. The relative signal intensity values showed the significant 

downregulation of corresponding Dg transcripts by all three miRNAs (miR-137, miR-927, 

and miR-966), indicating that Dg can be targeted by all these miRNAs in vitro (Figure 10B). 

As a negetive control, miR-956 that is not predicted to have any binding sites on Dg-3’UTR 

was used. It failed to downregulate the luciferase signal, supporting in silico predictions for 

miRNA binding sites.  

 

 

Selected miRNAs can target Dg in vitro  

(A) Predicted miRNA binding sites in Dg 3’UTR, which is subdivided into four regions 
corresponding to constructs used in the luciferase assay (S1-S4). Out of all the miRNAs that 
are predicted to target Dg, miR-137 is predicted to have 3 binding sites (highlighted in 
marron), miR-927 has 2 binding sites (highlighted in light blue), and miR-966 has 1 binding 
site (highlighted in yellow) in Dg 3’UTR. (B) To calculate relative downregulation by 
miRNAs, a reporter luciferase values were calculated from raw readouts of Renilla to Firefly 
luciferase values. The background control values (transfection with empty psiCHECKTM-2 
with no reporter construct) were subtracted from respective readouts. Obtained values were 
then normalized to empty psiCHECKTM-2 to the values of psiCHECKTM-2-Dg-3’UTR (S1-
S4) in the presence of miRNAs. Error bars represent AVE±SEM, and statistical significance 
was determined by two-tailed Student’s t-test (*P<0.05, **P<0.01, ***P<0.001). See also 
Supplementary Table 5. 
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3.6 Downregulation of Dg affects muscle maintenance 
The precise level of Dg has been implicated in many neuronal and muscular dysfunctions 

(Yatsenko et al., 2014; Yatsenko and Shcherbata, 2014). Our in vitro data demonstrated that 

all three miRNAs (miR-137, miR-927, and miR-966) can target Dg 3’UTR and the analysis 

of GO component terms of conserved targets further suggests their involvement in processes 

related to the cell membrane and cell periphery.We have also shown that over-expression of 

miRNAs resulted more severe phenotype compared to their loss, indicating these miRNA 

can regulate muscle-specific genes. Altogether, we hypothesized that the precision of Dg 

expression in adult muscle especially in repsonse to stress is maintained by these miRNAs. 

The previous study has shown that complete loss of Dg causes muscle degeneration and this 

phenomenon is enhanced upon stress conditions (Kucherenko et al., 2011). However, 

phenotypes caused by downregulation of a gene often results in milder phenotypes than its 

complete loss. Therefore, to further verify the role of Dg in muscle maintenance, we 

downregulated Dg specifically in adult muscle and scored for muscle degeneration and 

muscle atrophy phenotypes in young and aged flies as described in chapter 3.1.3.  

Downregulation of Dg in adult muscle caused muscle degeneration and muscle atrophy 

already in young flies and the phenotype was enhanced during aging (Figure 14A). IMFs 

analyzed in young and aged flies of Mhc>DgRNAi genotype had approximately 1.5-2 times 

increase in muscle degeneration when compared to the control genotype (Mhc/OR). Similar 

increase in muscle atrophy was observed in young and aged flies upon downregulation of 

Dg. As observed before, both genotypes were sensitive to aging and showed an increase in 

muscle degeneration and atrophy phenotypes (Figure 12B). Overall, this result further 

concluded that downregulation of Dg is causing muscle degeneration similar to its loss of 

function and also affects muscle maintenance. Both phenotypes progress in an age-

dependent manner. 

 



Results 

Shruti Chhetri 60 

 

Downregulation of Dg shows age-dependent loss of muscle integrity 

(A) IMFs of adult Drosophila showing mild and strong muscle degeneration phenotypes 
(indicated by blue and red arrows) and muscle atrophy phenotype (indicated by green 
arrows) in control (Mhc/OR) and Mhc>DgRNAi flies. Bar graphs showing the frequency of 
muscle degeneration (B) and muscle atrophy (C). On average, 1.5-2 times increase in muscle 
degeneration and muscle atrophy was observed upon downregulation of Dg in young and 
aged animals compared to control. Both genotypes show age-dependent muscle maintenance 
phenotypes with an average of two fold increase as compared to young animals. Values are 
obtained from the averages of 3 biological replicates. Error bars represent AVE±SEM and 
statistical significance was determined by two-tailed Student’s t-test. *P<0.05, **P<0.01, 
***P<0.001 represents comparisons to control at the same condition, while *P<0.05, 
**P<0.01, ***P<0.001 represent comparisons within the same genotype at a young age. D7= 
young, 7 day old, TS= temperature stress, SS= sugar starvation, and D30= aging, 30 day old. 
Scale bar 100 μm. See also Supplementary Table 4. 
 

3.7 Dissecting biological roles of miR-137  
MiR-137 was further followed up to decipher its role in MDs with various reasons: 1) miR-

137 mutants had an increase in Dg and Dys mRNA levels, 2) the severity of muscle 

maintenance phenotypes were ameliorated in miR-137 mutants as well as upon its over-

expression compared to miR-927 and miR-966, indicating miR-137 is a better candidate to 

have role in regulating muscle-specific genes, 3) miRNA-137 mutants were responsive to 

various stresses, indicating it is required to address negative effects of stress, 4) it can target 

Dg in vitro, and 5) miR-137 is predicted to have multiple functions including neuronal, cell 

membrane and cell periphery related biological processes, for which the precision of Dg 

expression has been shown to essential.  
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3.7.1 MiR-137 is conserved among higher eukaryotes 

MiR-137 is well conserved among animal kingdom (Figure 15). Drosophila miR-137 is 

predicted to have 252 conserved targets (TargetScanFly, Release 6.2), among which 

dystroglycan and sarcoglycan are common predicted targets in higher eukaryotes, including 

humans, mouse, zebrafish, and worms, which implies that miR-137 can share similar 

functions in these organisms. Besides Dg, mei-P26, N-methyl-D-aspartate (NMDA) receptor 

(NMdar2), dopamine receptor (D2R), and γ-aminobutyric acid (GABA) receptor (GABA-B-

R3) are among other verified targets (in vitro) of miR-137 in flies (Herranz et al., 2010; Kong 

et al., 2015). 

 

 

MiR-137 has conserved seed as well as mature miRNA sequences 

The mature Drosophila miRNA together with its human, mouse, zebrafish, and worm 
orthologues shows the conservation of the seed sequence and the mature miRNA sequence 
among different animal species. 
 

3.7.2 MiR-137 is expressed in larval muscle, brain, and testis 

MiRNAs are known for expression tuning and expression buffering of their target mRNAs. 

In Drosophila, it has been shown previously that miR-310s buffers the expression of Dg in 

in larval brain and influence the proper formation of nervous tissue (Yatsenko et al., 2014). 

Similarly, it has been reported that precise level of Dg to form myotendious junction (MTJs) 

in fly embryo is regulated by miR-9a (Yatsenko and Shcherbata, 2014). Studies have shown 

that Dg is virtually expressed in all tissues, indicating its function is much more diverse and 

complex in the whole organism. Therefore, we further investigated the biological roles of 

miR-137 and characterized its function in relation to diverse phenotypes observed in MD and 

dystroglycanopathies. 
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First, we analyzed its expression patterns in different tissues. In situ hybridization as well as 

fluorescence in situ hybridization (FISH) was performed using miR-137-3p LNA probe. 

Abdominal segments A3-A5 of muscle 5, 6, and 7 were analyzed to check the miR-137 

expression in larval muscle. FISH showed that miR-137 is expressed in larval muscle and its 

expression was concentrated more at the edge of the muscle wall, possibly at the NMJ 

(Figure 16 A-A’). In the miR-137ko mutants, used as a negative control, no expression pattern 

in muscle was observed, verifying the specificity of LNA probe (Figure 16 B-B’). 

In situ hybridization showed the expression of miR-137 in nervous system. It is expressed in 

several cell types presumably in type I/II neuroblasts, Kenyon cells of the mushroom body, 

abdominal neuromeres, and dorsal cell bodies of the larval brain (Figure 16C). The 

expression pattern in the larval brain suggests that miR-137 also could have a role in neuronal 

processes. MiR-137 expression was also detected in the apical portion of the adult fly testis 

(Figure 16E-E’). The apex of adult fly testes is composed of a pool of germline as well as 

somatic cells surrounding the hub. Cells next to the hub are stem cells in nature, while the 

cells away from the hub are differentiating gonialblast encapsulated with two somatic cells. 

Since miR-137 LNA probe was concentrated only on a subset of the cells in the apex and 

appeared as dots (Figure 16E’), it was assumed that miR-137 is possibly expressed in early 

somatic cells of fly testes. The expression patterns of miR-137 further suggest the 

involvement of miR-137 in the neuronal, cell membrane and cell periphery related processes 

as coined by GO component terms of its predicted mRNA targets.  

The role of Dg has been well studied in larval NMJs and brain. It will be interesting to study 

further the relationship between miR-137 and Dg and their shared function not only in the 

muscle, but also in the nervous system and in spermatogenesis.  
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MiR-137 expression patterns  

In situ hybridization (ISH) and Fluorescence in situ hybridization (FISH) in wild type flies 
using LNA probe for mature miR-137 shows that miR-137 is expressed in larval muscle and 
brain as well as in adult testis (indicated by yellow arrows) (A-C-E). FISH shows that miR-
137 is expressed in larval muscle; in particular in neuromuscular junctions (NMJs). 
Calorimetric reaction of miR-137 LNA probe shows expression of miR-137 in L3 larval brain 
(C) presumably in type I/II neuroblasts, Kenyon cells of the mushroom body, abdominal 
neuromeres, and dorsal cell bodies as well as in adult fly testes (E-E’), particularly, in early 
somatic cells at the apex of the testis. Contrary, the absence of fluorescence as well as 
calorimetric signal was noted in miR-137 mutants (B-D-F). Scale bar 50 μm. 
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3.7.3 MiR-137 affects muscle maintenance 

3.7.3.1 Downregulation of miR-137 is more detrimental for adult 
muscle maintenance 

To confirm the specificity of role of miR-137 in adult muscles to maintain its integrity during 

adulthood and in response to stress, we down-regulated miR-137 in fly muscle. Muscle 

degeneration, as well as muscle atrophy phenotype, was scored as described in Figure 9A. 

Down-regulation of miR-137 was achieved using UAS-miR-137sponge. Sponge contains 

multiple miRNA binding sites with central bulges to stably sequester the miRNA in vivo. 

For most miRNAs, sponge had been shown to produce accurate but milder version of loss-

of-function phenotype (Cohen, 2009). 

Downregulation of miR-137 resulted in phenotypes similar to its loss-of-function. This 

further favored that miR-137 is important for muscle maintenance. Mhc-Gal4>miR-137sponge 

flies showed 1.5-3 times increase in incidence of muscle degeneration and 3-5 times 

increases in incidence of muscle atrophy under young and stress conditions. Similar 

comparison was made on how>miR-137sponge flies. The calculated phenotype showed about 

1.5 times increase in incidence of muscle degeneration and about 2 times increase in muscle 

atrophy compared to controls. It was also noted that down-regulation of miR-137 during 

developmental stage resulted in relatively milder phenotype compared to its downregulation 

in adult muscle, indicating miR-137 contributes to muscle maintenance during adult stage. 

Over-expression of Dg in adult muscle was relatively milder compared to downregulation 

of miR-137. The calculated phenotype showed about 1.5-2 times increase in muscle 

degeneration and muscle atrophy compared to controls (Figure 17). However, over-

expression of Dg during development using how-Gal4 driver was semi-lethal and few 

escapers that were analyzed showed fused muscle phenotype (Supplementary Figure 1) 

rather than the muscle degeneration or atrophy phenotypes, indicating over-expression of Dg 

during developmental stage does not cause MD development. Overall, it was concluded that 

both over-expression and downregulation of miR-137 is detrimental for muscle maintenance, 

indicating miR-137 is required for muscle maintenance. Similarly, both loss-of-function and 

downregulation, as well as over-expression of Dg, are detrimental to flies, indicating, the 

precise level of Dg needs to be maintained for healthy musculature.  

The experiment further showed that phenotypes caused in adult muscle due to 

downregulation of miR-137 can be partially rescued by Dg over-expression.  
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MiRNA-137 regulates Dg levels for muscle maintenance  

Bar graphs showing frequency of muscle degeneration (A) and muscle atrophy (B) in IFMs 
of Drosophila. Downregulation of miR-137 specifically in muscle leads to muscle 
degeneration as well as muscle atrophy phenotype. Both phenotypes were more severe as 
compared to over-expression of Dg in muscle. Downregulation of miR-137 using Mhc-Gal4 
also resulted in an increase in muscle and atrophy phenotypes as compared to the control 
indicating, miR-137 is required for regulation of genes expressed in muscles. Values are 
obtained from the averages of 3 biological replicates. Error bars represent AVE±SEM and 
statistical significance was determined by two-tailed Student’s t-test. *P<0.05, **P<0.01, 
***P<0.001 represents comparison to control at the same condition, while *P<0.05, 
**P<0.01, ***P<0.001 represents comparison within the same genotype at a young age. D7= 
young, 7 day old, TS= temperature stress, SS= sugar starvation, and D30= aging, 30 day old. 
See also Supplementary Table 4. 
 

3.7.3.2  Downregulation of Dg in miR-137 loss-of-function mutants 
rescues the muscle maintenance phenotypes 

To further verify that Dg level must be regulated in adult muscle to maintain healthy 

musculature, we analyzed miR-137 heterozygous mutants (miR-137ko/Df) that have reduced 

level of Dg by one copy. MiR-137 resides on the second chromosome, 16 kbs away from Dg 

genomic locus (http://flybase.org/). The deficiency line available at BDSC (Df (2R) ED2457) 

referred as miR-137Df apart from removing miR-137, also has genomic locus of Dg deleted 

(Figure 18). The miR-137ko line, however, only affects miR-137 locus and replaces with mini-

white gene (Chen et al., 2014). Hence, miR-137ko/Df lines have one Dg copy loss compared 

to homozygous miR-137ko lines that have both Dg copies intact. Therefore, I analyzed and 

compared muscle maintenance phenotypes in miR-137ko and miR-137ko/Df to further pinpoint 

that Dg is regulated by miR-137.  

As expected, miR-137ko/Df flies had a much milder phenotype compared to miR-137ko lines. 

The calculated phenotype include average muscle degeneration of 12-35% in control at 

young and stress conditions, while miR-137ko flies had up to 35-55% of muscle degeneration. 

http://flybase.org/
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This phenotype was relatively reduced in miR-137ko/Df lines with an average frequency of 

muscle degeneration ranging 30-45%. The effect of muscle maintenance upon reduced level 

of Dg was not visible in young flies, however upon stress the phenotypes were relatively 

milder in miR-137ko/Df compared to miR-137ko lines (35-55% in miR-137ko compared to 30-

45% (Figure 19A). The severity of the phenotypes in miR-137ko/Df were statistically lower 

than miR-137ko flies under stress conditions, indicating a partial rescue of muscle 

maintenance phenotype due to one copy loss of Dg. Interestingly, downregulation of Dg by 

one copy in miR-137 loss-of-function background could not rescue muscle atrophy 

phenotype suggesting that other than Dg, more miR-137 dependent targets could be involved 

in regulation of muscle size upon stress (Figure 19B).  

qRT-PCR on thoraces of young flies further revealed 2-3 times increase in Dg mRNA levels 

in miR-137ko/Df and miR-137ko lines compared to control. The level of Dg in miR-137ko/Df was 

relatively lower as compared to miR-137ko (Figure 19C). Overall, this experiment indicates 

that that Dg is a bona fide target miR-137 in muscles.  

 

 

Genomic locus of miR-137 

MiR-137 is located on the minus strand of chromosome 2R, and the miR-137ko line was made 
using pRMCE (recombinase-mediated casette exchange), which replaces miR-137 with mini-
white gene. MiR-137Df genomic locus Df(2R)ED2457, available from BDSC, uncovers a 
large genomic region including miR-137 and Dg. For use in all phenotypic analyses, the miR-
137ko line was backcrossed in the w1118 background for 8 generations, and the final stocks 
were verified using primers that detect mini-white and the miR-137 locus (yellow arrows). 
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Dg is a bona fide target of miR-137 in muscle 

A bar graph showing muscle degeneration (A) muscle degeneration and (B) muscle atrophy 
phenotypes in miR-137 mutants and control. MiR-137ko/Df lines can rescue muscle 
degeneration as well as muscle atrophy phenotypes of miR-137ko. (C) qRT-PCR shows that 
the mRNA level of Dg is significantly increased in miR-137ko and miR-137ko/Df lines. No 
significant difference is detected between the homozygous and trans-heterozygous knockout 
lines. (D) Representative images of IMFs of control, miR-137ko, and miR-137ko/Df lines 
showing mild and strong muscle degenerations (blue and red arrows, respectively) as well 
as, muscle atrophy (green arrows) phenotypes in young, temperature stress, sugar starvation, 
and aging conditions. Values are obtained from the averages of three biological replicates. 
Error bars represent AVE±SEM and statistical significance was determined by two-tailed 
Student’s t-test. *P<0.05, **P<0.01, ***P<0.001 represents comparison to control at the 
same condition, while *P<0.05, **P<0.01, ***P<0.001 represents comparison within the 
same genotype at a young age. D7= young, 7 day old, TS= temperature stress, SS= sugar 
starvation, and D30= aging, 30 day old. See also Supplementary Table 4. 
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3.7.4 MiR-137 mutants have perturbed spermatogenesis 

3.7.4.1 MiR-137 affects early somatic cell numbers in adult fly testis 

The somatic cells of testes provide essential support to the germline and have been 

implicated in proper spermatogenesis. Due to the expression pattern of miR-137, 

presumptively detected in early somatic cells of the adult testis (Figure 16), we investigated 

whether the loss of miR-137 causes defective spermatogenesis. Adult testes of 8-12 day old 

flies were dissected and stained with an early somatic cell marker Traffic jam (Tj) as well as 

a late somatic cell marker Eyes absent (Eya). We found that control animals maintain 

constant early somatic cell population (56.3 ± 2.0) and a late somatic cell population (84.0 ± 

1.2) per testis, whereas miR-137 mutants have significantly more early somatic cells (82.2 ± 

1.5) and nearly the same number of late somatic cells (80.4 ± 0.5) per testis (Figure 20C). 

Both Tj and Eya can be visualized in 4-8 cell stage spermatocysts. However, quantification 

of cells co-stained with both anti-Tj and anti-Eya antibodies revealed statistically 

insignificant population of early somatic cells (6.4 ± 0.5 compared to 11.1 ± 2.0) between 

the control and miR-137 mutants, respectively. The visible differences were seen in a total 

somatic cell population in miR-137 mutants (151.6 ± 0.1) compared to control (134.2 ± 2.9). 

The total increase in somatic cells was therefore solely due to an increase in early somatic 

cell numbers, while late somatic cell numbers do not change (Figure 20B-B’). Therefore, for 

further analysis, only early somatic cells, found at the apical region approximately 145 μm 

away from the hub, were counted. The increase in the early somatic cell population can be 

due to either an increase in proliferation or a delay in differentiation. Among somatic cells, 

only CySCs proliferate in wild type testes. Therefore, we stained control and mutant testes 

with the mitotic marker Phospho-Histone H3 (PH3). Proliferating somatic cells were found 

only near the hub therefore, no obvious difference in increase in proliferation in miR-137 

mutant testes was concluded (data not shown). We further stained the control and mutant 

testes with spectrosome and fusome marker, Adducin (Add) to mark mitotically active cells 

and found increase in differentiating germline, further supporting our latter hypothesis of 

delayed differentiation (Supplementary Figure 2).  

 



Results 

Shruti Chhetri 69 

 

MiR-137ko mutants have an increase in somatic cell population 

Representative images of the apex of control testis (A) and miR-137 testis (B) stained with 
early and late somatic cell markers Tj and Eya. In miR-137 mutants, higher number of early 
somatic cells are visibly concentrated at the apex (B’) compared to control (A’). (C) 
Quantification of the somatic cell population in control and miR-137 showing an increase in 
an early somatic cell population in miR-137 resulting in a total increase in somatic cell count. 
No significant difference was observed in somatic cell numbers co-stained with anti-Tj and 
anti-Eya. Values are obtained from an average of 3 biological replicates. Error bars represent 
AVE±SEM and statistical significance was determined by two-tailed Student’s t-test. 
*P<0.05, **P<0.01, ***P<0.001 Scale bar 50 μm. See also Supplementary Table 7. 
 

Studies from the Drosophila ovary have shown that Dg is required to maintain epithelial-

cell polarity (Schneider et al., 2006) and is expressed in both germline and soma (Deng et 

al., 2003). In adult fly testes, Dg is also expressed in germline and soma (Figure 21). To 

further investigate the role of Dg in adult fly testes and to verify a miR-137-Dg interaction, 

we quantified the early somatic cell population in miR-137ko (68.6 ± 2.9) and miR-137ko/Df 

(36.7 ± 2.9) flies. Furthermore, downregulation of miR-137 specifically in early somatic cells 

by crossing tj-Gal4 with UAS-miR-137sponge causes an increase in the number of early 

somatic cells (70.9 ± 4.5), similar to the miR-137ko phenotype. In addition, we also compared 

the downregulation of miR-137 with the over-expression of Dg in early somatic cells and 

found that upon over-expression of Dg, the early somatic counts were statistically irrelevant 

to controls (42.2 ± 1.5 and 52.9 ± 2.1, respectively). tj-Gal4 lines used in this experiments 

were reported to be hypomorphic allele of tj, therefore, we suspected that the increased in 

early somatic cell counts in our controls (tj/w1118) is due to the reported mutation in the region 

of tj transcription (Panchal et al., 2017). Further, we also over-expressed miR-137 and scored 
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for early somatic cell numbers and found no subsequent increase (50.2 ± 0.9) compared to 

controls. Similar quantification was also analyzed in lines that had downregulation of miR-

137 in early somatic cells along with one copy loss of Dg in the background 

(Dg1.10G׃׃tj>UAS-miR-137sponge) and found no increase in Tj-positive cell counts (39.1 ± 2.5) 

(Figure 21). From this experiment we concluded that miR-137 regulates Dg to maintain early 

somatic cell population in fly testes, further indicating Dg is a relative target in testes.  

We further verified the rescue of phenotype upon derepression of Dg in miR-137ko by qRT-

PCR. RNA was extracted from 25-30 pairs of fly testes and normalized to control. We found 

increase in Dg mRNA levels in miR-137ko testes (4 fold increase) compared to miR-137ko/Df 

(1.5 fold increase) relative to control, indicating the rescue of phenotype in miR-137ko/Df was 

due to repression of Dg level. Consistent with these results, we found an increase in Dg 

mRNA level (2.5 fold) in tj>UAS-miR-137sponge mutants. When we remove one copy of Dg 

in this genetic background, we have only 1.5 fold increase in Dg levels. Our data suggest 

that miR-137 can efficiently regulate Dg level in testes. Consistent with our in vitro data, we 

propose that miR-137 is required to regulate Dg level to maintain early somatic cell numbers. 

A recent study has shown that knockdown of the soma-specific gene chic results in an 

increase in early somatic cell number and causes defective encapsulation of spermatocysts 

(Fairchild et al., 2015). We were further interested to know whether an increase in early 

somatic cell number leads to delayed differentiation that affects spermatogenesis in miR-137 

mutant testes.  
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The early somatic cell population is maintained by downregulating Dg in 

miR-137 mutants  

(A) Dg staining in the apex of the control fly (w1118/OR) testis showing Dg is expressed in 
both soma and germline. (B) Quantification of the early somatic cell population in the apex 
of the adult fly testis shows an increase in early somatic cell numbers in miR-137ko which 
was rescued in miR-137ko/Df. No significant differences in early somatic cell population is 
detected upon over-expression of Dg as well as miR-137. However, downregulation miR-
137 in early somatic cells phenocopied the loss of function phenotype which is further 
rescued when one copy loss of Dg is maintained in the background. (C) A bar graph showing 
Dg mRNA levels in testes. Almost 4 fold increase in Dg mRNA level in miR-137ko, which 
is reduced to 1.5 fold in miR-137ko/Df. Similar observations are made with 2.5 fold increase 
upon down regulation of miR-137 compared to 1.5 fold increase when one copy loss of Dg 
is maintained in the background. Values are obtained from averages of 2 biological 
replicates. Error bars represent AVE±SEM and statistical significance was determined by 
two-tailed Student’s t-test. *P<0.05, **P<0.01, ***P<0.001 Scale bar 50 μm. See also 
Supplementary Table 8. 
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3.7.5 MiR-137 is essential to maintain permeability barrier 

Proper gametogenesis requires continuous interaction between soma and germline. Soma 

encapsulates germline ensuring cell integrity, supply with nutrients and signaling cues 

required for proper differentiation. Isolation of germline is maintained via a permeability 

barrier that is formed by soma. Previous research has reported that alteration in somatic cell 

differentiation perturbed this barrier. Since miR-137 mutants have a higher number of early 

somatic cells and possibly abnormal differentiation (Figure 20), we were interested to know 

whether this affects the permeability barrier during spermatogenesis. Therefore, we 

performed a permeability assay with 10 kDa Dextran dye. Permeability assay is a non-

invasive assay that asses isolated germline from the outer environment surrounding somatic 

cells (Fairchild et al., 2015). After incubating the dissected testis in dye for 30 min, we found 

that in control testis, dye was trapped around the barrier surrounding the 8- to 16-cell cyst, 

while in miR-137 mutants majority of the testes that were analyzed had dye detected inside 

the germline indicating defective blood-testis barrier (BTB). Almost 90% of the analyzed 

testes were found to have defective BTB while only 28% of defective BTB was scored in 

control flies (Figure 22B).  

Our previous data suggests that Dg is a bona fide target of miR-137. To further investigate, 

whether miR-137-Dg interaction is also required to maintain BTB, we performed the 

permeability assay in both miR-137ko/Df and Dg mutant allele (Dg 1.10G). We found that not 

only Dg 1.10G has the perturbed BTB phenotype (86% defective BTB compared to control) 

but this phenotype was rescued in miR-137ko/Df flies (38% of defective BTB similar to 30% 

in control). Downregulation of miR-137 in early somatic cell causes defective BTB (70%) 

similar to over-expression of Dg. However, no effect was noted on BTB upon over-

expression of miR-137. Consistent to our previous data, it further indicated that miR-137 

repressed Dg to maintain BTB. To further verify our rescue due to miR-137-Dg interaction, 

first, we analyzed over-expression of miR-137 in early somatic cells with homozygous miR-

137ko background. Second, we analyzed downregulation of miR-137 in early somatic cells 

with a heterozygous Dg 1.10G allele in the background. In both cases, we observed an intact 

BTB, similar to controls. This is consistent with the results of the rescue experiments that 

demonstrates that downregulation of Dg in males that have miR-137 levels reduced 

specifically in early somatic cells, fully rescues the frequencies of the defective BTB 

phenotype. This further indicates, miR-137 is required in early somatic cells to maintain the 

BTB; in particular, miR-137 is required to maintain the adequate level of ECM receptor Dg 
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in early somatic cells to maintain proper formation of cellular junction, possibly septate 

junctions (SJs). 

 

Permeability barrier is maintained by miR-137  

(A) Schematic of differentiating gonialblasts encapsulated with two somatic cells forming 
spermatocyst in adult testes. The septate junction (SJ) are formed between two somatic cyst 
cells within the same cyst shown red in both early cyst cells (8- to 16-cell cyst) and in 
elongated spermatids. (B) Quantification of BTB phenotype in fly testes. Dg1.10G, as well as 
over-expression of Dg, shows perturbed BTB. MiR-137 loss-of-function and its 
downregulation in early somatic cells also have perturbed BTB which is rescued upon miR-
137 overexpression in the homozygous miR-137ko background, similar to Dg1.10G׃׃ tj>miR-
137sponge, indicating downregulation of Dg level partially rescues the BTB phenotype. (C) 
Representative images of permeability assays showing loss of BTB in miR-137ko, Dg1.10G, 
tj>Dg, and tj>miR-137sponge. Values are obtained from averages of 3 biological replicates. 
Error bars represent AVE±SEM and statistical significance was determined by two-tailed 
Student’s t-test. *P<0.05, **P<0.01, ***P<0.001 Scale bar 50 μm. See also Supplementary 
Table 9. 
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3.7.6 MiR-137 mutants have abnormal septate junction (SJ) mor-
phology 

The major septate junction (SJ) proteins, such as Nrx-IV, Cora and Dlg have been well 

characterized in establishing the permeability barrier (also known as blood-brain barrier i.e. 

BBB) in invertebrate brain (Hindle and Bainton, 2014). Studies have also shown that these 

proteins are localized around spermatocysts and knockdown of SJ proteins also leads to 

perturbed permeability barrier in fly testes (Fairchild et al., 2015). To further investigate the 

cause of an increase in perturbed permeability barrier in early spermatocysts in miR-137 

mutants, we further stained the adult fly testis with antibodies for SJ marker: anti-Dlg and 

anti-Mega and analyzed their morphology. In elongated spermatids, SJ proteins maintain the 

bridge between the two somatic cells appearing “H” or “Z” like structure (Figure 23 A-A’, 

pointed by yellow arrows). When this morphology is compromised, the immune staining 

appeared more like a “dot” or a “dashed line” (Figure 23 A-A’, pointed by white arrows). In 

miR-137 mutants, we found that approximately 50% of SJ had abnormal morphology 

compared to 20% in control. A similar case had been observed upon downregulation of miR-

137 in early somatic cells compared to the control with an average of 45% abnormal SJ 

compared to 15% in controls (Figure 23B). Further quantification on flies with genotypes: 

tj>miR-137 and miR137ko/Df showed a decrease in number of abnormal SJ morphology (18% 

and 30%, respectively) compared to 50% of abnormal SJ in miR137ko. Importantly, no 

significant change was observed in average number of SJ counted per testis in all animals 

(Supplementary Table 10), which suggests that the occurrence of SJ formation is normal in 

miR-137 mutants, while the morphology of their SJs is abnormal. Statistical analysis was not 

performed on tj>miR-137 and miR137ko/Df due to lack of biological replicates.  

Altogether our data indicates that loss of miR-137 can cause increase in early somatic cell 

numbers leading to defective SJ formation and defective BTB. Since our data also show that 

miR-137 is required for regulation of Dg levels in somatic cells in testis, it would be 

interesting to study further, if interaction between miR-137 and Dg is also necessary for 

proper SJ morphology. 
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MiR-137 mutants have defective septate junction phenotype 

(A) Septate junction protein Dlg staining in adult control (w1118/OR) testis showing a 
normal septate junction morphology in elongated spermatids (yellow arrowheads) and 
abnormal septate junction morphology (white arrowheads). (B) Quantification of abnormal 
septate junction morphology and (C) quantification of the average number of SJ count per 
testis. About 50% of the septate junction in miR-137 have abnormal morphology and no 
significant difference on the average numbers of SJ present in elongated spermatids per testis 
is found. Black star represents values obtained from averages of two biological replicates. 
Error bars represent AVE±SEM and statistical significance was determined by two-tailed 
Student’s t-test. *P<0.05, **P<0.01, ***P<0.001. Red star represents statistical significance 
determined by χ2test with Yate’s correction (*P<0.05, **P<0.01, ***P<0.001). Scale bar 
100μm. See also Supplementary Table 10. 
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4 Discussion 
MDs are a group of diseases having diverse phenotypes related to neuronal and muscular 

systems in humans. MDs are genetically linked to the DGC and various animal models for 

the DGC have contributed significantly to understanding the variability of phenotypes in 

MDs, however, questions regarding the pathogenesis still remain unanswered.  

The DGC involves a major transmembrane protein Dg that connects ECM to cytoskeleton 

accounting for the flexibility and durability of the plasma membrane providing signal 

transduction platform to many signaling molecules like Syn and nNOS. Hypoglycosylation 

of Dg is involved in various forms of dystroglycanopathies, CMD, and LGMD. In flies, 

studies have shown that loss of Dg cause muscle degeneration and the phenotype is enhanced 

upon stress (Kucherenko et al., 2011). Similarly, flies with Dg mutation are shown to have 

a low survival rate, delayed in development, altered metabolism, decrease mobility and age-

dependent muscle degeneration (Shcherbata et al., 2007). Reduced level of metabolic rate is 

also linked to miRNA expression (Biggar and Storey, 2011). MiRNAs are also implicated 

in the stabilization of diverse biological processes and to contribute to the consequences of 

normal development and physiological conditions and disease in different animals systems 

(Ebert and Sharp, 2012). MiRNAs having the ability to target multiple genes at once can 

regulate a complex network of genes influencing signaling required to maintain proper 

cellular homeostasis. Similarly, any imbalance in cellular homeostasis caused by stress or 

disease state can further influence miRNAs expression. Therefore, gene expression and 

miRNA levels are reciprocally regulated. The expression of miRNAs profile has been shown 

to be altered in Duchenne muscular dystrophy. The expression of certain miRNAs (miR-1, 

miR-133, and miR-206) have been shown to correlate with severity of the diseases and was 

proposed as diagnostic markers for DMD (Cacchiarelli et al., 2011b). In flies, Dg-Dys-Syn1 

signaling has been reported to regulate miRNA profile (Marrone et al., 2012). Importantly, 

the study also showed that a similar level of miRNA profiles was altered upon stress in wild 

type animals indicating stress and MD share a common regulatory pathway to overcome 

negative effect in animal health. This study further reports the role of miRNAs in DGC 

signaling and their contribution to MDs and its pathogenesis in greater detail. 
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4.1 MiRNAs are required for muscle maintenance 
In this study, we have shown that the absence of miRNAs that are predicted to target multiple 

components of the DGC (Dg plus any three other components) affects muscle maintenance 

in flies. Dg was chosen as a baseline targeting component while grouping these miRNAs as 

Dg is associated with multiple pathways. Besides Dg-Dys-Syn1 pathway , it has been 

reported that Dg interacts with Hippo-signaling pathway component Yap to prevent 

cardiomyocyte proliferation (Morikawa et al., 2017). Inhibition of ubiquitinates ligase 

Trim32 has been shown to enhance plakoglobin binding to affect muscle atrophy (Cohen et 

al., 2014) and we further postulated that it can interact with Dg similar to plakoglobin to 

promote muscle maintenance. Therefore, miRNAs targeting the DGC importantly, Dg can 

influence more likely muscle maintenance phenotype associated with MDs. Further, Dg is 

required for correct localization of many other proteins such as Nrx-IV, Cora and GluRs 

mutations of which are also associated with MD-like phenotypes.  

miRNAs are known to mediate stress response in animals to maintain cellular homeostasis. 

The expression of many of the miRNAs predicted to target the DGC components have been 

reported to be deregulated under hyperthermia stress in wild-type animals and/or in absence 

of Dg or Dys (Marrone et al., 2012). A prolong disease state can display immense stress for 

organismal health. Therefore, it was interesting to investigate miRNAs regulating a common 

pathway between stress and MD to decipher MD-related pathogenesis. This study, in 

particular, determines that in absence of miR-137, miR-927, and miR-966 the muscle 

integrity in animals was severely compromised. This study further validates various stresses 

and aging can affect muscle degeneration even in control flies. Further, we were able to show 

that besides muscle degeneration, muscle atrophy is also increased in control animals during 

different stress conditions such as temperature stress, sugar starvation, and aging. All 

miRNA mutants were responsive to stress similar to control animals, indicating long term 

stress i.e. aging is more detrimental than a short term stresses such as hyperthermia stress 

and nutrition amelioration. Muscle atrophy was affected more than muscle degeneration in 

all genotypes in both stress and aging. This further highlights the importance of muscle 

maintenance in aging or in a prolonged disease state such as cancer that leads to cachexia. 

Not only miRNA loss was found to affect muscle integrity, but downregulation of Dg was 

also detrimental for healthy musculature. Previous studies have shown loss of Dg and Dys 

cause muscle degeneration and the phenotype is accelerated upon stress (Kucherenko et al., 

2011). We further showed that upon downregulation of Dg specifically in adult muscle, 
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cause muscle degeneration and atrophy in flies. Muscle atrophy was more detrimental as the 

frequency of muscle atrophy was higher than the frequency of muscle degeneration 

compared to control indicating, a proper level of Dg is required to maintain a healthy 

musculature in young and aged animals. Apart from its role in muscle maintenance, number 

of studies have reported that precise level of Dg is required to maintain energy homeostasis, 

establishment of NMJ, photoreceptor differentiation, and cellular polarity (Bogdanik et al., 

2008; Marrone et al., 2011a; Shcherbata et al., 2007; Yatsenko et al., 2009). In flies, miR-9a 

and miR-310s had been shown previously to serve as a regulatory molecule to maintain the 

proper level of Dg to canalize myotendinous junction formation and to buffer MD related 

type II lissencephaly phenotype. miR-137, miR-927, and miR-966 can further play a similar 

role in maintaining Dg levels in muscle to protect animals from stress- or age-related 

muscular dysfunction.  

qRT-PCR on miR-137and miR-966 mutants showed upregulated mRNA levels of either, Dys 

and/or Syn1 even though they were not the predicted to target these genes while miR-927 

mutants had either no change in mRNA levels or showed downregulation of Dg, Dys, and 

Syn1 even though it is predicted to target all three components. There can be a number of 

reasons following this discrepancy: 1) many miRNAs can have a tissue or sex-specific 

expression; since qRT-PCR was performed on the whole body of the organism, tissue-

specific miRNA expression can be easily masked when normalized to whole body of control 

genotype. In the future, tissue-specific qRT-PCR could resolve this issue to validate the 

prediction based miRNA targeting in vivo. 2) The DGC signaling had been shown to have 

compensatory effects (Cote et al., 2002; Gao and McNally, 2015; Hughes et al., 2018), the 

fluctuation of mRNA levels between its predicted and non predicted targets could simply be 

the mimic of compensatory mechanisms of the DGC components.  

MiR-137 and miR-966 mutants showed muscle degeneration as early as young age 

indicating, these miRNAs are required in muscle during development. The severity of 

muscle degeneration upon aging was more prominent for miR-966 mutants compared to 

temperature stress and sugar starvation. This further indicated that miR-966 is required to 

maintain healthy muscle in aging. MiR-966 is also reported to be enriched in hemolymph in 

old flies (Dhahbi et al., 2016). We have also shown from lifespan analysis that miR-966 

mutants, in general, had a higher survival rate compared to control (Supplementary Figure 

3). Altogether, these findings further suggest that loss of miR-966 can be more responsive to 

physiological changes related to aging. Muscle atrophy was also observed in all miRNA 
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mutants at a young age. This further indicates that all three miRNAs are required during 

developmental stage to maintain muscle integrity. 

Muscle degeneration phenotype can be caused by muscles as well as neuronal defects. GO 

component term analyzed on conserved predicted mRNA targets of all three candidate 

miRNAs implied that these miRNA can be involved in the cell membrane and cell periphery 

related processes. MiR-137 having the most predicted targets, in addition, can be associated 

with neuronal processes like synapse and NMJs. GO terms for predicted miRNAs targets are 

in agreement with Dg functions. Luciferase reporter assay further confirmed that all three 

miRNAs miR-137, miR-927, and miR-966 can downregulate Dg in vitro. Therefore, an in 

vivo screen on miRNAs gain-of-function was performed to further confirm all three selected 

miRNAs can downregulate Dg and/or any other muscle-specific target genes. As expected, 

over-expression of miRNAs gave stronger phenotypes as compared to their loss-of-function 

mutants. Over-expression of miR-137 was the most severe in flies as its over-expression 

during developmental stage cause embryonic lethality, while over-expression in adult 

muscle resulted in strong muscle degeneration or complete absence of individual muscle. 

The experiment further confirmed that miR-927 is required more during developing muscle 

as over-expression of miR-927 with how-Gal4 was lethal during the embryonic stage. 

Though the severity of phenotype can also depend on the strength of the UAS-miR-lines used, 

we observed that over-expression of miR-966 in adult muscle resulted in more severe 

phenotype compared to developing muscle. Over-expression in developing muscle also 

affected the muscle maintenance at young age but the effect of aging was prominent in flies. 

This further indicates, miR-966 can regulate age-dependent gene expression to maintain 

healthy muscles in animals. Many muscle-specific miRNAs (myomiRs) have been proposed 

as biomarkers for pathological and physiological muscle processes. myomiRs such as miR-

1, miR-133, miR-206, miR-208, and miR-499 have been proposed as a diagnostic marker for 

DMD (Cacchiarelli et al., 2011b; Jeanson-Leh et al., 2014; Li et al., 2014). This study further 

suggests, miR-137, miR-927, and miR-966 can act as a regulatory molecule to regulate Dg 

level in respons to stress to maintain healthy muscle in flies. 
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4.2 MiR-137 is required cell autonomously for muscle 
maintenance 

This study further deciphers the role of newly emerged miR-137 in MD development. MiR-

137 is highly conserved miRNA. Not only the seed sequence of miR-137 is conserved, but 

the mature miRNA itself is conserved from flies to humans. It is also predicted to target Dg 

and Scg, the major transmembrane components of the DGC in all higher eukaryotes. We 

further confirmed that Dg is the direct target of miR-137 in vitro. MiR-137 is a stress-

dependent miRNAs as its expression was downregulated upon hyperthermia stress in wild- 

type flies (Marrone et al., 2012). Dg mutants are known to have preference for low 

temperature (18°C) (Takeuchi et al., 2009), and in microarray screen, miR-137 level remain 

unchanged in dystrophic flies at hyperthermia stress suggesting; 1) temperature fluctuation 

alone can cause a decreased level of miR-137 in wild type flies and this downregulation relies 

on the DGC and 2) Dg mutants already have deregulated miR-137 and temperature stress 

doesn’t affect its level on the DGC mutants. Compared to all the candidate miRNA mutants 

in our screen, the severity of phenotypes was observed higher in miR-137 mutants at young 

and stress conditions, indicating it is required during developmental stage as well as for 

normal stress response. This was further confirmed by phenotypes observed upon 

downregulation of miR-137 during developing and adult muscle. Regardless of the activity 

of the drivers used (Mhc-Gal4 and how-Gal4), muscle maintenance was severely 

compromised. Though the severity of phenotypes was observed stronger upon its 

downregulation in adult muscle compared to developing muscle, it was also noted that upon 

stress, the phenotypes were accelerated by more than two-fold when compared to young 

animals. This further confirmed, in adult muscle, miR-137 is required to address the negative 

effect of stress. The over-expression of miR-137 caused stronger phenotype leading to 

lethality and complete absence of muscle. Therefore, the study also confirms that miR-137 

levels must be maintained to have proper muscle function. Besides muscle maintenance 

phenotype, miR-137 mutant flies have climbing defects and increased variance in zygotic 

PGCs (Chen et al., 2014). In addition, they have a low survival rate (Supplementary Figure 

2) and are developmentally delayed (data not shown). miR-137 is enriched in adult brain in 

mammals (He and Hannon, 2004) and is studied extensively in many retrospect involving 

schizophrenia, intellectual disability, neurodegeneration disorders such as Parkinson’s 

Disease, synaptic development and dendritic arborization, and cancer profiling (Kong et al., 

2015; Langevin et al., 2011; Ma et al., 2018; Munker and Calin, 2011; Olde Loohuis et al., 



Discussion 

Shruti Chhetri 81 

2012; Silber et al., 2008; Smrt et al., 2010; Verma et al., 2015; Willemsen et al., 2011). In 

Drosophila, we were able to show its expression in neuronal and muscle tissues as well as 

in early somatic cell of adult fly testes. The previous study has also detected its expression 

in the adult fly thorax (Fulga et al., 2015). It will be interesting to further investigate the 

neuronal involvement of miR-137 to further explore its function in MDs or in other 

neurological disorders.  

 

4.3 MiR-137 is required to maintain a precise level of Dg in 
adult muscle 

We have shown that the level of Dg in adult muscle affects muscle integrity in age-dependent 

manner. To investigate if this effect can be ameliorated by over-expression of Dg in adult 

muscle, over-expression of Dg in adult muscle was analyzed at young, aged, and stressed 

animals. Surprisingly, it was found that not only its downregulation affects muscle 

maintenance, its over-expression also had a negative effect on normal muscle function. 

Muscle degeneration was seen in flies already at a young age, while muscle atrophy was not 

affected. This further indicated that over-expression of Dg is protective for flies to reduce 

atrophy upon aging. However, during temperature stress and sugar starvation, flies had more 

incidence of muscle degeneration and atrophy compared to control flies, indicating flies with 

over-expression of Dg can respond differently to different stress conditions. This study 

further implied that a proper level of Dg is required to maintain healthy adult muscle; 

therefore, it is interesting to investigate further how levels of Dg can affect muscle integrity 

in general. 

To further investigate whether miR-137 can regulate Dg level in muscle, miR-137 mutants 

with one copy loss of Dg in the background were further analyzed. If Dg is a direct target in 

muscle, the level of Dg in miR-137ko/Df should be normalized to endogenous level, hence, the 

severity of phenotype should be reduced in miR-137ko/Df lines compared to miR-137ko lines. 

Analysis of IMFs of flies showed that in general, miR-137ko/Df flies had stronger phenotype 

compared to control, however, this was reduced almost by two times when compared to miR-

137ko. Our data suggests that miR-137 regulates Dg levels and affects adult muscle 

maintenance. The difference in severity of phenotype was not visible in flies at a young age 

further suggesting a precise level of Dg is more important to overcome muscle loss upon 

stress. qRT-PCR performed on adult fly thoraces further confirmed relatively low Dg mRNA 

levels on miR-137ko/Df lines compared to miR-137ko. Therefore, only partial rescue of muscle 
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maintenance phenotype was observed during various stresses upon one copy loss of Dg in 

miR-137 mutants. At normal condition, over-expression, as well as loss of Dg, posed a 

negative effect on muscles. A similar case was observed upon miR-137 over-expression and 

loss-of-function. The down-regulation of miR-137 was not as severe as over-expression of 

Dg and over-expression of miR-137 was more severe than phenotypes reported for Dg loss-

of-function at ambient condition. Taken together, we propose that miR-137 can target more 

muscle-specific genes other than Dg and influence MD development. Based on the 

prediction tool and qRT-PCR on miRNA mutants showed that miR-137 can further target 

Dys, Scg, NOS, Nrx-IV, and Mei-P26 as DGC components. It will be interesting to 

investigate in future how miR-137 can affect the expression of the DGC components to 

contribute to MD development.  

 

 

Mode of action of miR-137 in muscle 

During stress, miR-137 is downregulated upon which its target mRNAs in muscle, including 
Dg, are upregulated. This affects muscle maintenance such as muscle degeneration and 
muscle atrophy. Stress itself induces Dg expression that can further affect muscle 
maintenance.  
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4.4 MiR-137 is required in somatic cells to maintain 
permeability barrier  

This project further identifies the role of miR-137 in Drosophila spermatogenesis. The in 

situ hybridization in wild type testis suggested that miR-137 is possibly expressed in early 

somatic cells. Analysis of miR-137 mutant testes further showed an abnormal number of 

early somatic cell population at the apex of the testis (stained with anti-Tj) compared to 

control flies. We also observed similar phenotype upon miR-137 knock-down in early 

somatic cells. Our analysis showed that in male gametogenesis, miR-137 is required 

specifically in somatic cells. This was further supported by the total rescue of abnormal early 

somatic cell counts upon over-expression of miR-137 in early somatic cells. The latter 

experiment also suggests that the endogenous level of miR-137 can efficiently downregulate 

its target gene specifically in soma. The expansion of Tj-positive cells can be either due to 

an increase in proliferation or delayed in differentiation. However, we did not observe an 

abnormal number of CySCs stained with anti-PH3 (mitotic cell marker) in control and 

mutant testes. Further staining with anti-Add (spectrosome and fusome marker) showed an 

increase in differentiating germline cells in mutant testes supporting our latter hypothesis of 

delayed differentiation in miR-137 mutants. Though both the possibilities are not conclusive 

from our experiments, further staining with Edu together with anti-Zfh1 (a marker for CySCs 

and its early daughter cells) or staining with cell cycle marker like anti-Cyclin can further 

shed lights to the pinpoint increase in somatic proliferation or differentiation process. 

We have shown from our data from fly muscle that Dg is a relative target of miR-137. We 

have further shown that Dg is also expressed in germline and soma in fly testis. To further 

investigate whether the interaction between miR-137-Dg is also required to establish cellular 

homeostasis during male gametogenesis, we analyzed the effect on early somatic cell 

numbers on miR-137ko/Df lines first. We did not find abnormal early somatic cell numbers in 

miR-137ko/Df testes. The reduced level of Dg in miR-137ko lines fully rescued the abnormal 

somatic cell number phenotype. A similar observation was made on genetic rescue achieved 

by downregulating miR-137 with one copy loss of Dg in the background (Dg1.10G׃׃tj>miR-

137sponge). A significant difference in early somatic cells population as observed in genetic 

rescue compared to down-regulation of miR-137 further supports the idea that miR-137 is 

required in early somatic cells in adult fly testis and regulates the Dg level in order to 

maintain proper spermatogenesis. Therefore, in testis, Dg is the relative target of miR-137. 
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4.5 Dg levels must be regulated to maintain the permeability 
barrier 

In male gametogenesis, somatic cells are required to encapsulate differentiating germlines 

and maintain a barrier around them. Each spermatocyst (germline enveloped with two 

somatic cells) is connected with neighboring spermatocysts by their outer somatic membrane 

maintaining a closed barrier between inner-membrane of the somatic cell and the germline. 

This barrier is also known as the permeability or blood-testis barrier (BTB). Genes required 

in somatic cells in Drosophila testis have been shown to have an important function in 

spermatogenesis (Fairchild et al., 2017). Knockdown of the soma-specific gene (chic) has 

been shown to regulate cell proliferation and affect the permeability barrier (Fairchild et al., 

2015). Consistent with this study, we also found that miR-137 mutants have perturbed BTB 

and this phenotype was rescued upon one copy loss of Dg in miR-137 mutants. Our data 

further verified the increase in early somatic cells can cause perturbed BTB. Interestingly, 

both loss and over-expression of Dg caused perturbed BTB. Knock-down of miR-137 in 

early somatic cell recapitulated the BTB phenotype of Dg over-expression in early somatic 

cells and this phenotype was rescued upon downregulation of miR-137 with one copy loss 

of Dg in the background as well as with over-expression of miR-137 in homozygous miR-

137ko background (miR-137ko׃׃tj>miR-137׃׃miR-137ko). Taken together, these results show 

that miR-137 is required to regulate Dg level in soma to maintain permeability barrier. This 

study further claims the scope of perturbed BTB as a MD related phenotype and miRNAs 

are required to regulate the level of the DGC components in Drosophila spermatogenesis. 

 

4.6 MiR-137 acts in soma to regulate Dg in septate junctions 
Studies have shown that the permeability barrier is dependent on the function of septate 

junction proteins. Septate junction (SJ) proteins like Cora and Nrx-IV have been shown to 

be concentrated at the sites of contact between two somatic cells that encapsulates the 

germline (Fairchild et al., 2015). The study also reported that knock-down of these 

components cause the BTB phenotype. Recent progression made on understanding 

Drosophila spermatogenesis also showed that loss of Dg cause mislocalization of SJ proteins 

Cora and Nrx-IV resulting in perturbed BTB (unpublished data). The study also showed that 

downregulation of Dg in soma, as well as germline, caused perturbed BTB, indicating Dg is 

required in both soma and germlines to maintain BTB. Our study further showed that over-

expression of Dg in somatic cells and its loss caused perturbed BTB. And this phenotype 
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was recovered upon reducing the level of Dg in miR-137ko flies. The observed phenotype of 

perturbed BTB was rescued not only in miR-137ko/Df lines but also in miR-137ko׃׃tj>miR-

 tj>miR-137sponge lines that have reduced the level of Dg׃׃miR-137ko and Dg1.10G׃׃137

compared to miR-137ko. Our qRT-PCR data further showed that Dg mRNA levels in these 

genetic backgrounds varied vastly. Complete loss of miR-137 and its downregulation on 

early somatic cells caused an increase in Dg mRNA levels which was reduced by two-fold 

in miR-137ko/Df and one copy loss of Dg in tj>miR-137sponge. This further concluded that miR-

137 regulates Dg level in soma and maintains the BTB.  

Many SJ related proteins and genes that are required in soma are predicted targets of miR-

137. Such protein includes Nrx-IV, Dlg, and Chic. It will be further interesting to study how 

miR-137 influence the expression and their possible interaction with Dg to maintain 

spermatogenesis in Drosophila testis. 

 

   

Mode of action of miR-137 in testis 

Loss of miR-137 caused upregulation of Dg that increases somatic cell population and affect 
BTB. miR-137 also affects septate junction morphology and it has been shown that upon Dg 
loss core components of septate junction protein are mislocalized. The possible interaction 
of miR-137 and Dg to maintain septate junction morphology is yet to be defined (grey arrow). 
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5 Conclusions 
During this study, we identified a set of miRNAs that regulate muscle maintenance upon 

various stresses. Furthermore, our study demonstrates a novel role for miRNAs miR-137, 

miR-927 and miR-966 in regulation of major DGC components including Dg. We propose 

that these miRNA can be involved in fine-tuning of DGC signaling and MD development. 

In this study, a highly conserved miR-137 was found to target Dg 3’UTR and regulate its 

levels specifically in muscles and in testicular soma. Deregulation of miR-137 and Dg 

expression lead to stress dependent muscle degeneration and atrophy. Therefore, we propose 

that miR-137 potentially can be used as a biomarker and a candidate for MD therapeutics.  

Moreover, we found that miR-137 is required for proper blood-testis barrier (BTB) 

establishment which also requires proper levels of the ECM receptor Dg. Since, MDs in 

general, have multiple phenotypic characteristics in patients which show abnormalities not 

only in muscle but other systems, this study further implies that perturbed spermatogenesis 

could be a novel MD-related phenotype. 
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7 Supplementary Figures 

 

Supplementary Figure 1. Over-expression of Dg in muscle during development results 

in fused muscle phenotype 

Dg over-expression during the developmental stage is semi-lethal and few escapers that are 
analyzed have fused muscle. No muscle degeneration or the muscle atrophy was observed 
in these flies. Scale bar 100μm. See also Supplementary Table 4. 
 

 

Supplementary Figure 2. MiR-137 mutants have delayed in differentiation 

Antibody staining showing dividing germline in control (A) and in miR-137 mutant testis. 
Anti-Add staining was more prevalent in miR-137 mutant testis compared to control flies 
indicating, germline cells are possibly differentiating slower than it has been observed for 
the control. Scale bar 100 μm. 
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Supplementary Figure 3. Lifespan analysis on miRNA mutants 

Lifespan analysis on candidate miRNA mutants showing reduced lifespan on miR-137 (blue 
dashed line) and miR-927 (red dashed line) with median survival of 44 and 56 days compared 
to control genotype w1118>OR (solid black line) with median survival of 65 days. Though, 
miR-966 (green dashed line) on the other hand showed extended lifespan with median 
survival of 70 days it is not statistical significant compared to controls. Statistics were 
analyzed using Log Rank Test, p-value ***<0.001). 



 

 

8 Supplementary tables 
Supplementary Table 1. The DGC components of Drosophila and its functions 

Drosophila 

DGC 

components 

Gene Function Human 

homolog(s) 

Disease 

association 

%
 

id
en

tit
y 

%
 

sim
ila

ri
ty

 

%
 

ga
ps

 

Dg Actin cytoskeleton reorganization, axon guidance, 

establishment or maintenance of cell polarity, egg 

chamber formation, wing vein specification, muscle 

cell cellular homeostasis, regulation of glycolytic 

process, miRNA involved gene silencing, sarcomere 

organization, cytoskeleton anchoring at the plasma 

membrane, regulation of synaptic activity 

DAG1 Limb-Girdle muscular dystrophy 

Congenital muscular dystrophy 

Pediatric autoimmune diseases 

24% 35% 28% 

Dys Establishment of cell polarity, wing vein 

morphogenesis, wing vein specification, muscle cell 

cellular homeostasis, muscle organ development, 

neuromuscular synaptic transmission, regulation of 

neurotransmitter secretion, regulation of short-term 

neuronal synaptic plasticity 

DMD 

UTRN 

Dilated cardiomyopathy 

Duchenne muscular dystrophy 

Becker muscular dystrophy 

29% 

29% 

47% 

47% 

20% 

17% 

Syn1 Locomotion, regulation of synaptic growth at NMJ SNTB1 

SNTB2 

Myopia, Periodontitis 39% 

37% 

55% 

52% 

18% 

20% 
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Syn2 locomotion, eye development, rhabdomere 

development, regulation of synaptic growth at NMJ 

SNTG1 Chronic obstructive pulmonary 

disease  

40% 59% 2% 

Nos Nervous system development, regulation of heart 

rate, imaginal disc development, synapse assembly, 

response to hormone/lipopolysaccharide, regulation 

of organ Growth, negative regulation of cell 

proliferation and DNA replication 

NOS1 Colorectal cancer 

Hypertension 

Psoriasis 

Alzheimer 

44% 59% 12% 

Scg α - SGCE Myoclonic dystonia 25% 45% 16% 

Scg β Muscle organ development SGCB Limb-Girdle muscular dystrophy  27% 45% 27% 

Scg δ Heart contraction, mesoderm development, 

sarcomere organization, cytoskeletal anchoring to 

the plasma membrane 

SGCD Limb-Girdle muscular dystrophy 

Dilated cardiomyopathy  

39% 60% 3% 

Cora adult somatic muscle development, dorsal closure, 

cell adhesion in heart morphogenesis, embryonic 

development, establishment of the blood-brain 

barrier, wing hair orientation, regulation of tracheal 

tube size, open tracheal system, cell polarity, cell-

cell junction, septate junction assembly  

EPB41L3 

EPB41L1 

EPB41L2 

Amyotrophic lateral sclerosis 

Colorectal cancer 

Mental retardation 

25% 

27% 

36% 

35% 

41% 

50% 

43% 

29% 

22% 
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Nrx IV Axon ensheathment, cell adhesion in heart 

morphogenesis, dorsal closure, the establishment of 

the glial blood-brain barrier, nerve maturation, 

presynaptic membrane assembly, septate junction 

assembly, regulation of tube size, an open tracheal 

system, synaptic vesicle docking and targeting, 

establishment of membrane cell polarity 

CNNAP2 

CNTNAP5 

Alzheimer 

Bipolar disorder  

Schizophrenia 

Autism 

Cortical dysplasia-Focal epilepsy 

syndrome 

Rohn's disease 

33% 

32% 

51% 

51% 

10% 

9% 

Yki Border cell  migration, cell proliferation, cell fate 

specification, Hippo-signaling, negative regulation 

of the apoptotic process, positive regulation of glial 

cell proliferation, growth, histone H3-K4 

methylation, H3-K4 trimethylation, imaginal disc 

growth, stem cell proliferation 

YAP1 Coloboma, ocular, with or 

without hearing impairment 

cleft lip/palate, and/or mental 

retardation  

MRI atrophy measures,  

Polycystic ovary syndrome 

Pubertal anthropometrics 

31% 45% 34% 

LanA Axon guidance, cell adhesion, dorsal trunk growth, 

an open tracheal system, heart development, 

mesoderm development,  regulation of cell adhesion, 

cell migration and embryonic development, negative 

regulation of synaptic growth at NMJ 

LAMA5 Colorectal cancer 

Amyotrophic lateral sclerosis 

Cardiomyopathy 

Congenital muscular dystrophy 

32% 47% 15% 
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LanB2 Basement membrane assembly, cell adhesion, 

endodermal digestive tract morphogenesis, 

extracellular matrix assembly, salivary gland 

morphogenesis 

LAMC1 Colorectal cancer 

Cortical malformations 

Coronary heart disease 

Systemic lupus erythematosus 

Epidermolysis bullosa 

42% 59% 6% 

Mei-P26 Gamete generation, germ cell development, meiotic 

cell cycle, spermatogenesis 

TRIM56 

TRIM2 

 
21% 

21% 

34% 

35% 

30% 

27% 

Arm Cell adhesion, wing disc and cell morphogenesis, 

dorsal closure, heart formation and development, 

long-term memory, oogenesis, delamination, 

photoreceptor cell differentiation, segment polarity, 

somatic stem cell population maintenance, 

neuroblast development, nervous system 

development, cuticle pattern formation 

CTNNB1 

JUP 

Hepatocellular carcinoma, 

Ovarian cancer 

Mental retardation 

Colorectal cancer 

Exudative vitreoretinopathy 

Medulloblastoma 

67% 77% 9% 

Hts Actin filament organization, adult somatic muscle 

development, axon guidance, centrosome cycle, 

cystoblast cycle, oogenesis, female germline ring 

cancal formation, meiotic spindle organization, 

photoreceptor axon guidance, sarcomere 

organization, testicular fusome organization 

ADD1 Cerebral palsy,  

spastic quadriplegia 

Hypertension 

33% 

63% 

49% 

76% 

21% 

4% 



 

 

Supplementary Table 2. Relative transcript levels of Dg, Dys, and Syn1 due to miRNA 

loss 

Genotype CT Rpl32 
AVE±STDEVa,b 

CT Dg 
 

Δ CT 
 

ΔΔ CT 
 

Relative mRNA levela,b 
AVE± SEMa,b 

Canton-S/ORa 21.247 
± 0.030 

25.482 
± 0.079 4.196 0 1.000 

± 0.07 

Canton-S/ORb 16.856 
± 0.064 

21.640 
± 0.206 4.784 0 1.000 

± 0.154 

miR-137b 25.002 
± 0.027 

27.922 
± 0.112 2.921 -1.863 3.638 

± 0.253 

miR-252a 20.905 
± 0.083 

23.475 
± 0.293 2.570 -1.628 3.09 

± 0.099 

miR-310sb 15.820 
± 0.194 

20.371 
± 0.084 4.555 -0.229 1.172 

± 0.141 

miR-927b 23.734 
± 0.135 

29.578 
± 0.135 5.843 1.059 0.479 

± 0.093 

miR-956a 18.634 
± 0.061 

24.515 
± 0.080 5.880 1.682 0.311 

± 0.099 

miR-959Ca 23.242 
± 0.230 

25.536 
± 0.077 2.294 -1.904 3.743 

± 0.111 

miR-966b 18.277 
± 0.310 

21.176 
± 0.163 3.536 -1.248 2.375 

± 0.531 

miR-975Cb 23.889 
± 0.135 

28.754 
± 0.126 4.865 0.089 0.945 

± 0.091 

miR-1000b 25.455 
± 0.158 

28.065 
± 0.079 2.610 -2.174 4.513 

± 0.103 

miR-1011/+b 11.466 
± 0.653 

14.912 
± 1.185 5.437 0.656 0.636 

± 0.129 
      

Genotype CT Rpl32 
AVE±STDEVa,b 

CT Dys 
 

Δ CT 
 

ΔΔ CT 
 

Relative mRNA levela,b 
AVE± SEMa,b 

Canton-S/ORa 16.167 
± 0.040 

21.891 
± 0.040 5.438 0 1.000 

± 0.011 

Canton-S/ORb 21.268 
± 0.030 

25.482 
± 0.077 4.214 0 1.00 

± 0.070 

miR-137a 17.931 
± 0.0126 

25.482 
± 0.077 3.836 -1.641 3.118 

± 0.034 

miR-137b 24.229 
± 0.386 

27.501 
± 0.149 3.216 -0.998 1.998 

± 0.120 

miR-252a 18.571 
± 0.105 

23.524 
± 0.166 5.094 -0.383 1.304 

± 0.108 

miR-252b 21.234 
± 0.029 

24.265 
± 0.059 3.059 -1.155 2.227 

± 0.108 

miR-310sa 19.805 
± 0.205 

23.794 
± 0.106 3.917 -1.559 2.947 

± 0.04 

miR-927a 17.546 
± 0.049 

23.221 
± 0.342 5.532 0.055 0.963 

± 0.266 

miR-956b 24.003 
± 0.031 

28.451 
± 0.856 4.448 0.233 0.851 

± 0.227 

miR-959Cb 18.340 
± 0.110 

23.209 
± 0.119 4.926 0.712 0.645 

± 0.046 
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miR-966a 20.720 
± 0.159 

23.703 
± 0.327 3.143 -2.334 5.042 

± 0.174 

miR-975Cb 19.706 
± 0.073 

23.787 
± 0.079 4.081 -0.133 1.097 

± 0.079 

miR-1000b 18.099 
± 0.121 

22.459 
± 0.225 4.359 0.149 0.905 

± 0.159 

miR-1011/+a 16.493 
± 0.244 

20.065 
± 0.040 3.479 -1.999 3.996 

± 0.213 
 

Genotype CT Rpl32 
AVE±STDEVa,b 

CT Syn1 
 

Δ CT 
 

ΔΔ CT 
 

Relative mRNA levela,b 
AVE± SEMa,b 

Canton-S/ORa 25.442 
± 0.119 

26.557 
± 0.097 1.049 0 1.000 

± 0.177 

Canton-S/ORb 16.183 
± 0.266 

21.119 
± 0.175 4.939 0 1.000 

± 0.138 

miR-137a 27.914 
± 0.286 

29.786 
± 0.157 1.121 0.163 0.893 

± 0.719 

miR-137b 17.646 
± 0.191 

24.171 
± 0.098 6.525 1.586 0.333 

± 0.065 

miR-252a 20.823 
± 0.193 

23.031 
± 0.099 2.208 1.158 0.448 

± 0.187 

miR-310sb 19.368 
± 0.137 

23.831 
± 0.287 3.796 -1.14 2.209 

± 0.070 

miR-927a 26.992 
± 0.066 

28.458 
± 0.174 1.918 0.868 0.548 

± 0.528 

miR-927b 17.419 
± 0.291 

24.067 
± 0.021 6.647 1.707 0.306 

± 0.128 

miR-956a 24.724 
± 0.182 

28.898 
± 0.310 3.931 2.882 0.136 

± 0.095 

miR-959Ca 21.889 
± 0.177 

27.581 
± 0.538 6.025 4.975 0.032 

± 0.078 

miR-966b 20.593 
± 0.099 

24.260 
± 0.075 3.641 -1.298 2.460 

± 0.123 

miR-975Ca 26.054 
± 0.257 

28.173 
± 0.918 2.119 1.069 0.477 

± 0.174 

miR-1000a 23.397 
± 0.464 

27.631 
± 0.485 4.197 3.147 0.113 

± 0.116 

miR-1011/+b 15.755 
± 0.161 

21.192 
± 0.066 5.428 0.488 0.713 

± 0.178 
a and b represent separate qPCR runs. The relative mRNA levels were calculated using the 

formula 2-ΔΔCT. An average of two runs when applied was plotted in the graph. Average. 

Standard deviation (AVE±STDEV) values are based on three replicates. P values are 

calculated using two-tailed non-paired Student’s t-test for significance testing 

Supplementary Table 3. Percentage of muscle degeneration in miRNA mutants  

Genotype % of muscle degeneration n χ2 test with  
Yate’s correction Mild Moderate Strong 

Canton-S/ORD7 3.870 - - 155 - - 

Canton-S/ORTS 2.817 3.521 1.408 142 - 9.655* 

Canton-S/ORSS 4.167 3.333 2.500 120 - 11.534** 

Canton-S/ORPS 4.167 - 0.684 144 - 5.165 
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Canton-
S/ORD30 

4.109 1.369 0.684 146 
- 7.356 

miR-137D7 3.597 - - 139 0.114 - 

miR-137TS 10.126 6.329 3.797 79 8.065* 17.191*** 

miR-137SS 18.103 2.586 - 116 14.743** 18.799*** 

miR-137PS 4.762 5.952 11.905 168 21.963*** 9.429* 

miR-137D30 9.957 4.762 3.030 231 11.484** 20.256*** 

miR-252D7 7.395 0.965 - 311 5.2 - 

miR-252TS 6.944 1.389 - 144 5.847 0.399 

miR-252SS 12.307 0.769 3.846 130 8.053* 0.399 

miR-252PS 7.692 1.183 0.592 169 2.621 9.746* 

miR-252D30 5.556 3.472 3.472 144 5.913 21.387*** 

miR-310sD7 12.903 - - 124 7.671 - 

miR-310sTS 4.00 2.667 1.667 300 35.523*** 14.378** 

miR-310sSS lethal N/A N/A 

miR-310sPS 14.110 4.294 1.226 163 12.933** 11.885** 

miR-310sD30 5.833 0.833 - 120 3.778 5.556 

miR-927D7 3.333 - - 120 0.179 - 

miR-927TS 3.086 3.704 0.617 162 0.507 7.196 

miR-927SS 7.547 0.943 2.830 106 3.079 9.636* 

miR-927PS 18.717 1.069 2.139 187 18.518*** 16.144** 

miR-927D30 7.291 5.208 2.083 96 3.282 12.624** 

miR-956D7 4.167 - - 144 0.167 - 

miR-956TS 1.389 4.167 - 72 0.101 6.984 

miR-956SS 9.090 1.515 1.515 132 3.876 9.262* 

miR-956PS 3.125 3.906 2.343 128 3.639 7.791* 

miR-956D30 1.667 - 0.833 120 13.231** 3.985 

miR-959C D7 13.559 0.847 0.847 236 14.963** - 

miR-959CTS 5.833 - - 120 7.35 10.983* 

miR-959CSS 1.923 4.807 - 104 4.615 19.802*** 

miR-959CPS 12.962 4.321 12.963 162 31.226*** 32.874*** 

miR-959CD30 2.586 - - 116 9.319* 16.903*** 

miR-966D7 2.778 1.389 - 144 2.96 - 

miR-966TS 10.949 2.189 - 137 9.358* 8.262* 

miR-966SS 3.677 2.206 5.147 136 1.843 12.425** 

miR-966PS 15.2 2.7 - 224 14.632** 69.911*** 

miR-966 D30 3.333 - - 120 8.415* 4.815 

miR-975CD7 - 1.438 6.475 139 3.763 - 

miR-975CTS 5.699 2.591 11.917 193 14.018** 16.358*** 

miR-975CSS 2.500 5.833 8.333 120 3.122 9.941* 

miR-975CPS - - 24.432 176 29.68*** 64.277*** 

miR-975CD30 3.097 1.327 2.212 226 10.719* 7.138 

miR-1000D7 10.823 5.628 1.299 231 19.072*** - 

miR-1000TS 3.125 - 6.250 96 7.409 84.873*** 

miR-1000SS 8.3 0.9 - 108 6.456 64.826*** 

miR-1000PS lethal N/A N/A 

miR-1000D30 lethal N/A N/A 

miR-1011/+D7 5.464 2.732 0.546 183 7.349 - 

miR-1011/+TS 6.818 5.114 2.273 176 3.634 19.635*** 
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The frequency of muscle degeneration results was compared using the χ2 test with 3 degrees 
of freedom and Yate’s correction 

n= number of muscles analyzed 

*p<0.05, **p<0.01, ***p<0.001 represents comparison to the control at the same condition, 
whilst *p<0.05, **p<0.01, ***p<0.001 represents comparison within the same genotype to 
young age 

D7 = 7 day old flies, TS= temperature stress, SS= sugar starvation, PS= protein starvation, 
D30= 30 day old flies 

 

 

miR-1011/+SS 8.333 0.269 - 108 3.412 5.172 

miR-1011/+PS 15.657 0.926 - 198 13.974** 13.513** 

miR-1011/+D30 5.263 4.386 0.877 114 2.854 15.489** 



 

 

Supplementary Table 4. Percentage of muscle degeneration in selected miRNA mutants  
Condition Genotype Experiment % of muscle  

degeneration  n % of muscle  
atrophy 

 
n 

AVE± SEM 

Mild Strong Mild Strong Atrophy 
Young 

(D7, 25°C) 
 

 

 

 

w1118/OR 

I 11.009 0.000 109 10.092 109 10.675 
± 1.533 

0.00 
± 1.052 

10.370 
± 0.660 II 10.000 0.000 132 10.000 132 

III 11.017 0.000 130 11.017 130 
Temperature 

stress  
(D5, 33°C) 

I 15.789 5.263 114 25.439 114 20.553 
± 2.653 

P** 

4.512 
± 1.019 
P*** 

28.153 
± 1.890 
P*** 

II 20.588 5.882 102 27.451 102 
III 17.391 3.804 184 21.739 184 

Sugar 
Starvation 
(D5, 25°C) 

I 12.418 1.961 153 30.065 153 15.842 
± 1.560 

 

5.621 
± 1.249 
P*** 

29.660 
± 1.754 
P*** 

II 14.407 2.542 118 24.576 118 
III 14.583 2.778 144 24.306 144 

Aging 
(D30, 25°C) 

I 31.818 6.180 178 37.640 178 27.999 
± 3.246 

P** 

9.920 
± 3.147 

P** 

46.896 
± 3.061 
P*** 

II 21.472 12.270 163 51.534 163 
III 25.490 8.824 204 42.647 204 

Young 
(D7, 25°C) 

 

 

 

 

miR-137 

I 17.308 10.577 104 28.155 103 20.291 
± 1.699 

P** 

10.571 
± 1.231 

P** 

35.546 
± 2.190 

P** 
II 15.436 8.725 149 21.127 142 
III 15.789 6.579 76 26.316 76 

Temperature 
stress  

(D5, 33°C) 

I 37.086 29.139 151 69.388 147 33.208± 
4.671 

P* 
P** 

20.016± 
2.270 

P* 
P* 

55.694 
± 3.772 

P*** 
P*** 

II 32.877 16.438 73 59.459 74 
III 26.190 18.254 126 55.556 126 

Sugar 
Starvation 
(D5, 25°C) 

I 13.609 6.509 169 36.095 169 19.541 
± 1.289 

P** 

8.357 
± 2.90 
P*6 

38.157 
± 1.392 

P** 
P** 

II 16.279 1.550 129 35.659 129 
III 18.902 4.878 164 36.585 164 

Aging 
(D30, 25°C) 

I 38.650 24.540 163 65.644 163 30.627 
± 5.281 
P*** 

20.206 
± 2.800 

P* 

53.153 
± 2.463 
P*** 

II 30.726 13.966 179 63.128 179 
III 37.121 22.727 132 68.939 132 

Young I 21.774 4.839 124 44.355 124 14.889 3.429 26.955 
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(D7, 25°C) 

 

 

 

 

miR-927 

II 15.104 2.604 192 30.729 192 ± 3.532 ± 2.782 
P** 

± 8.111 
P* III 12.179 3.205 156 19.231 156 

Temperature 
stress  

(D5, 33°C) 

I 17.424 5.303 132 20.455 132 16.178 
± 3.422 

8.627 
± 2.839 

31.438 
± 6.813 

 
II 9.333 2.000 150 17.333 150 
III 17.910 2.985 67 43.077 65 

Sugar 
Starvation 
(D5, 25°C) 

I 14.167 0.833 120 45.833 120 13.621 
± 0.355 

1.201 
± 0.490 

P* 
P* 

40.252 
± 3.216 

P* 
II 14.054 1.622 185 34.694 196 
III 12.644 1.149 174 40.230 174 

Aging 
(D30, 25°C) 

I 43.262 16.312 141 57.447 141 45.255 
± 4.096 

P* 
P** 

11.845 
± 2.527 

P* 

64.955 
± 0.951 

P* 
P* 

II 53.846 12.500 104 70.192 104 
III 38.655 6.723 119 67.227 119 

Young 
(D7, 25°C) 

 

 

 

 

miR-966 

I 12.717 1.734 173 23.699 173 14.872 
± 5.385 

3.333 
± 3.777 

P** 

38.750 
± 6.285 

P* 
II 15.179 2.679 112 37.500 112 
III 17.500 1.250 80 25.000 80 

Temperature 
stress  

(D5, 33°C) 

I 22.308 5.385 130 46.154 130 15.132 
± 1.310 

1.888 
± 1.381 

28.733 
± 4.399 II 12.308 4.615 130 43.846 130 

III 10.000 0.000 80 26.250 80 
Sugar 

Starvation 
(D5, 25°C) 

I 17.683 0.610 164 42.073 164 6.533 
± 4.096 

P* 

1.730 
± 2.527 

P** 
P* 

43.967 
± 0.951 
P*** 
P** 

II 19.255 0.000 161 44.767 172 
III 25.926 0.617 162 45.062 162 

Aging 
(D30, 25°C) 

I 48.780 31.098 164 79.268 164 36.897 
± 6.304 

P** 

32.910 
± 6.174 

P* 
P** 

67.989 
± 7.431 

P* 
P** 

II 28.049 43.293 164 70.732 164 
III 33.862 24.339 189 53.968 189 

Young 
(D7, 25°C) 

 

 

 

I 14.953 2.804 107 16.822 107 10.887 
± 2.232 

2.221 
± 2.055 

13.073 
± 2.500 II 9.375 2.344 128 14.063 128 

III 8.333 1.515 132 8.333 132 
Temperature 

stress  
I 20.611 1.527 131 22.727 132 20.002 

± 2.014 
3.181 

± 1.776 
27.853 
± 2.564 II 22.727 4.545 110 30.275 109 
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(D5, 33°C)  

Mhc-Gal4/+ 

III 16.667 3.472 144 30.556 144 P** P** 
Sugar 

Starvation 
(D5, 25°C) 

I 24.113 1.418 141 33.333 141 19.006 
± 2.319 

P* 

1.969 
± 2.556 

36.705 
±4 .330 

P** 
II 16.667 2.778 108 31.481 108 
III 16.239 1.709 117 45.299 117 

Aging 
(D30, 25°C) 

I 34.932 6.164 146 45.205 146 32.227 
± 4.972 

P** 

8.628 
± 4.280 

P** 

49.220 
± 8.037 

P** 
II 37.908 11.111 153 64.706 153 
III 23.841 8.609 151 37.748 151 

Young 
(D7, 25°C) 

 

 

 

 

Mhc>Dg 

I 35.938 7.031 128 39.844 128 22.856 
± 3.158 

4.800 
± 6.878 

P* 

34.334 
± 1.657 II 12.632 4.211 95 20.000 95 

III 20.000 3.158 95 43.158 95 
Temperature 

stress  
(D5, 33°C) 

I 35.821 10.448 134 42.857 133 30.977 
± 5.535 

P* 

6.315 
± 4.858 

39.829 
± 1.692 

P* 
II 35.849 3.774 106 39.623 106 
III 21.260 4.724 127 37.008 127 

Sugar 
Starvation 
(D5, 25°C) 

I 28.846 0.000 156 66.667 156 22.497 
± 5.747 

0.673 
± 5.113 

P* 

67.619 
± 11.746 

P* 
II 26.263 2.020 99 66.667 99 
III 12.381 0.000 105 31.429 105 

Aging 
(D30, 25°C) 

I 37.815 21.008 119 64.706 119 43.057 
± 0.777 

P* 

12.714 
± 3.498 

59.509 
± 3.235 

P* 
II 41.667 5.952 84 53.571 84 
III 49.689 11.180 161 60.248 161 

Young 
(D7, 25°C) 

 

 

 

 

Mhc>miR-137 

I Semi-lethal 
 escapers with no muscles 
 escapers had erect wing 

- - - 
II 
III 

Temperature 
stress  

(D5, 33°C) 

I Semi-lethal 
 escapers with no muscles 
 escapers had erect wing 

- - - 
II 
III 

Sugar 
Starvation 
(D5, 25°C) 

I Semi-lethal 
 escapers with no muscles 
 escapers had erect wing 

- - - 
II 
III 

Aging 
(D30, 25°C) 

I Semi-lethal 
 escapers with no muscles 
 escapers had erect wing 

- - - 
II 
III 



Supplementary tables 

Shruti Chhetri 115 

Young 
(D7, 25°C) 

 

 

 

 

Mhc>miR-927a 

I 18.493 19.178 146 73.288 146 18.303 
± 0.883 

P* 

15.854 
± 0.442 

P** 

70.346 
± 2.163 
P*** 

II 18.954 15.686 153 71.622 148 
III 17.460 12.698 63 66.129 62 

Temperature 
stress  

(D5, 33°C) 

I 39.634 23.780 164 86.806 144 38.583 
± 4.901 

P* 
P* 

28.191 
± 6.093 
P*** 
P** 

89.343 
± 1.582 
P*** 
P*** 

II 27.545 32.934 167 88.976 127 
III 48.571 27.857 140 92.248 129 

Sugar 
Starvation 
(D5, 25°C) 

I 29.358 18.349 109 82.569 109 33.227 
± 0.355 

P* 
P** 

13.207 
± 3.869 

76.768 
± 5.801 

P** 
II 37.097 8.065 62 70.968 62 

Aging 
(D30, 25°C) 

I 47.059 58.170 153 77.124 153 45.364 
± 4.818 
P*** 

39.799 
± 2.501 

P* 
P* 

77.438 
± 2.776 

P* 
II 40.441 32.353 136 72.794 136 
III 48.592 28.873 142 82.394 142 

Young 
(D7, 25°C) 

 

 

 

 

Mhc>miR-966 

I 17.483 3.497 143 26.573 143 19.699 
± 1.728 

P* 

2.010 
± 1.923 

29.235 
± 1.404 

P** 
II 18.085 1.064 94 29.787 94 
III 23.529 1.471 68 31.343 67 

Temperature 
stress  

(D5, 33°C) 

I 33.824 32.353 136 95.041 121 26.230 
± 9.861 

27.072 
± 3.841 
P*** 

P* 

79.652 
± 7.669 

P** 
P** 

II 23.438 36.719 128 72.381 105 
III 21.429 12.143 140 71.533 137 

Sugar 
Starvation 
(D5, 25°C) 

I 31.618 12.500 136 55.882 136 28.791 
± 3.333 

P* 
P** 

8.065 
± 1.422 

P* 
P* 

52.231 
± 3.776 

P* 
P** 

II 27.660 4.965 141 44.681 141 
III 27.097 10.968 155 56.129 155 

Aging 
(D30, 25°C) 

I 37.097 16.129 124 69.355 124 40.365 
± 4.632 
P*** 

20.016 
± 3.908 

P** 
P*** 

73.194 
± 7.663 

P** 
II 48.148 22.222 108 87.963 108 
III 35.849 21.698 106 62.264 106 

Young 
(D7, 25°C) 

 

 

I 7.692 1.282 78 23.077 78 8.022 
± 0.665 

1.152 
± 0.665 

20.730 
± 1.417 

 
II 7.071 1.010 99 18.182 99 
III 9.302 1.163 86 20.930 86 
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Temperature 
stress  

(D5, 33°C) 

 

 

Mhc>scramblesponge 

I 11.538 7.692 104 35.577 104 14.866 
± 1.081 

P* 

6.374 
± 2.294 

P** 

31.161 
± 2.228 

P** 
II 13.793 7.759 116 29.464 112 
III 19.266 3.670 109 28.440 109 

Sugar 
Starvation 
(D5, 25°C) 

I 8.594 1.563 128 12.500 128 17.268 
± 4.403 

P* 

1.516 
± 4.337 

17.619 
± 4.997 II 21.642 2.985 134 27.612 134 

III 21.569 0.000 102 12.745 102 
Aging 

(D30, 25°C) 
I 20.492 7.377 122 69.672 122 30.441 

± 6.712 
P** 

9.787 
± 5.191 

P** 

71.722 
± 3.792 
P*** 

II 32.847 8.029 137 66.423 137 
III 37.984 13.953 129 79.070 129 

Young 
(D7, 25°C) 

 

 

 

 

Mhc>miR-137sponge 

I 20.000 3.571 140 21.429 140 24.938 
± 3.536 

P** 

4.724 
± 3.356 

P** 

26.294 
± 4.394 II 23.469 6.122 98 35.065 77 

III 31.343 4.478 67 22.388 67 
Temperature 

stress  
(D5, 33°C) 

I 24.719 8.989 89 71.910 89 25.644 
± 1.081 

P** 

8.601 
± 2.294 

P** 

68.684 
± 2.228 

P** 
P** 

II 24.779 8.850 113 58.036 112 
III 27.434 7.965 113 76.106 113 

Sugar 
Starvation 
(D5, 25°C) 

I 28.472 13.194 144 63.194 144 31.420 
± 2.563 

P* 

10.317 
± 2.851 

P** 
P** 

60.550 
± 6.616 

P** 
P** 

II 37.121 9.091 132 70.455 132 
III 28.667 8.667 150 48.000 150 

Aging 
(D30, 25°C) 

I 38.462 23.846 130 60.656 122 37.618 
± 4.776 

P** 

27.169 
± 1.337 

P** 
P** 

67.643 
± 4.976 

P** 
II 39.394 34.091 132 77.273 132 
III 35.000 23.571 140 65.000 140 

Young 
(D7, 25°C) 

 

 

 

 

how-Gal4/+ 

I 9.649 1.754 114 17.544 114 9.524 
±1.773 

 

1.385 
± 1.467 

19.725 
± 1.423 II 6.923 0.000 130 19.231 130 

III 12.000 2.400 125 22.400 125 
Temperature 

stress  
(D5, 33°C) 

I 17.714 1.714 175 32.571 175 17.491 
± 0.618 

P** 

1.748 
±0.137 

37.029 
±2.352 

P** 
II 17.518 1.460 137 37.956 137 
III 17.241 2.069 145 40.559 143 

Sugar 
Starvation 

I 13.907 4.636 151 21.854 151 12.840 
± 2.628 

3.505 
± 2.355 

25.028 
± 2.992 II 8.333 2.778 180 22.222 180 
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(D5, 25°C) III 16.279 3.101 129 31.008 129  P*  
Aging 

(D30, 25°C) 
I 32.639 8.333 144 40.972 144 31.484 

± 0.537 
P*** 

9.667 
± 1.807 

P** 

47.212 
± 3.188 
P*** 

II 27.941 14.216 204 51.471 204 
III 33.871 6.452 124 49.194 124 

Day 7 
(D7, 25°C) how>Dg  I Semi-lethal (escapers with fused muscle) - - - 

Day 7 
(D7, 25°C) how>miR-137  II Embryonic lethal - - - 

Day 7 
(D7, 25°C) how>miR-927  III Pupal lethal - - - 

Young 
(D7, 25°C) 

how>miR-966 

I 18.056 0.000 72 13.889 72 20.741 
± 2.381 

P** 

1.852 
± 1.606 

 

21.019 
± 4.171 

 
II 23.611 0.000 72 20.833 72 
III 20.556 5.556 180 28.333 180 

Temperature 
stress  

(D5, 33°C) 

I 12.308 2.308 130 26.923 130 16.678 
± 3.962 

 

3.396 
± 2.922 

 

30.622 
± 3.220 

P* 
II 22.222 5.556 54 37.037 54 
III 15.504 2.326 129 27.907 129 

Sugar 
Starvation 
(D5, 25°C) 

I 20.313 0.000 64 45.313 64 19.633 
± 1.608 

P* 

2.288 
± 0.697 

P** 
P** 

35.401 
± 9.911 

P** 
II 18.954 4.575 153 25.490 153 

Aging 
(D30, 25°C) 

I 47.436 23.718 156 69.231 156 40.385 
± 10.18 

20.986 
± 5.101 

62.393 
± 6.838 II 33.333 18.254 126 55.556 126 

Young 
(D7, 25°C) 

 

 

 

 

how>scramblesponge 

I 14.365 1.657 181 23.316 193 13.333 
± 1.003 

 

1.306 
± 0.633 

25.179 
± 2.677 

 
II 12.183 0.508 197 30.457 197 
III 13.450 1.754 171 21.765 170 

Temperature 
stress  

(D5, 33°C) 

I 11.364 1.515 132 18.182 132 14.492 
± 1.915 

 

1.503 
± 2.230 

17.982 
± 0.957 

P* 
II 13.281 2.344 128 19.531 128 
III 18.831 0.649 154 16.234 154 

Sugar 
Starvation 
(D5, 25°C) 

I 17.886 3.252 123 16.260 123 18.772 
± 0.087 
P*** 

2.487 
± 0.507 

18.418 
± 1.815 

P* 
II 18.788 2.424 165 16.970 165 
III 19.643 1.786 168 22.024 168 

Aging I 27.586 9.483 116 54.310 116 26.368 7.856 54.617 
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(D30, 25°C) II 25.203 7.317 123 56.911 123 ± 1.471 
P*** 

± 0.688 ± 1.245 
III 26.316 6.767 133 52.632 133 

Young 
(D7, 25°C) 

 

 

 

 

how>miR-137sponge 

I 17.606 2.817 142 30.282 142 18.928 
± 1.003 

P* 

2.463 
± 0.633 

28.221 
± 2.667 II 16.892 0.000 148 20.667 150 

III 22.286 4.571 175 33.714 175 
Temperature 

stress  
(D5, 33°C) 

I 24.211 8.947 190 58.201 189 24.719 
± 3.802 

P* 
P* 

7.199 
± 1.964 

P* 

51.826 
± 7.126 

P** 
II 28.346 9.449 127 59.677 124 
III 21.600 3.200 125 37.600 125 

Sugar 
Starvation 
(D5, 25°C) 

I 20.968 6.452 124 29.839 124 22.420 
± 1.080 

P* 

4.995 
± 0.752 

23.792 
± 3.034 II 23.485 1.515 132 21.212 132 

III 22.807 7.018 114 20.325 123 
Aging 

(D30, 25°C) 
I 43.636 12.727 165 38.182 165 38.089 

± 2.871 
P* 

P** 

15.584 
± 3.000 

P* 

46.548 
± 4.191 
P* 

II 37.297 10.811 185 50.270 185 
III 33.333 23.214 168 51.190 168 

 
Young 

(D7, 25°C) 
 

 

 

 

w1118/OR 

I 11.538 1.923 156 5.128 156 21.241 
± 3.289 

4.041 
± 0.188 

5.064 
± 0.064 II 10.833 0.833 120 5.000 120 

Temperature 
stress  

(D5, 33°C) 

I 21.428 3.571 168 32.317 164 23.183 
± 3.728 

4.041 
± 0.627 

P* 

30.820 
± 1.497 

P** 
II 21.053 4.511 133 29.323 133 

Sugar 
Starvation 
(D5, 25°C) 

I 20.513 7.692 156 32.692 156 17.882 
± 2.186 

8.815 
± 1.804 

P** 

39.088 
± 2.398 
P*** 

II 14.428 7.960 201 30.348 201 
III 18.705 10.791 139 35.971 139 

Aging 
(D30, 25°C) 

I 22.513 6.283 191 36.126 191 27.867± 
4.674 

P* 

9.871 
± 2.688 

P** 

49.852 
± 2.060 
P*** 

II 30.952 10.317 252 37.302 252 
III 30.137 13.014 146 43.836 146 

Young 
(D7, 25°C) 

 

 

I 25.676 12.838 148 40.541 148 24.404 
± 1.467 

12.516 
± 1.887 
P*** 

37.207 
± 2.042 
P*** 

II 20.690 13.300 203 33.498 203 
III 26.846 11.409 149 37.584 149 
I 31.847 17.197 157 47.134 157 34.364 18.755 49.921 
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Temperature 
stress  

(D5, 33°C) 

 

 

miR-137ko 

II 36.552 21.379 145 56.738 141 ± 2.806 
P** 
P** 

± 1.368 
P** 
P** 

± 3.427 
P* III 34.694 17.687 147 45.890 146 

Sugar 
Starvation 
(D5, 25°C) 

I 26.389 10.417 144 48.6111 144 22.817 
± 1.031 

12.401 
± 4.285 

44.367 
± 6.333 II 27.778 12.500 144 49.306 144 

III 14.286 14.286 119 35.185 108 
Aging 

(D30, 25°C) 
I 19.444 16.667 36 47.222 36 25.755 

± 5.324 
20.000 
± 3.173 

P* 
P* 

52.489 
± 3.173 II 29.487 25.000 156 51.079 139 

III 28.333 18.333 120 59.167 120 

Young 
(D7, 25°C) 

 

 

 

 

miR-137ko/Df 

I 16.326 11.224 98 30.612 98 20.765± 
3.382 
P** 

10.794± 
2.220 
P** 

27.689 
± 3.002 
P*** 

II 23.077 5.495 182 30.769 182 
III 22.892 15.663 166 21.687 166 

Temperature 
stress  

(D5, 33°C) 

I 16.667 8.333 96 34.375 96 20.046 
± 2.650 

9.398 
± 1.925 
P*** 

39.038 
± 3.856 

 
II 20.139 9.028 144 38.571 140 
III 23.333 10.833 120 44.167 120 

Sugar 
Starvation 
(D5, 25°C) 

I 26.316 6.015 133 39.850 133 24.649 
± 1.489 

P** 

5.831 
± 1.913 

 

41.592 
± 1.145 II 26.797 5.229 153 41.177 153 

III 20.833 6.250 48 43.750 48 
Aging 

(D30, 25°C) 
I 33.898 8.475 112 44.915 118 34.137 

± 1.209 
9.446 

± 0.238 
46.416 
± 1.501 II 34.375 10.417 96 47.917 96 

 
Young 

(D7, 25°C) Mhc-Gal4/+ 
I 12.698 1.587 126 16.667 126 14.031 

± 0.513 
0.529 

± 0.407 
18.005 
± 0.515 II 14.394 0.000 132 18.182 132 

III 15.000 0.000 120 19.167 120 
Aging 

(D30, 25°C) Mhc-Gal4/+ 
I 16.197 5.634 142 35.915 142 23.102 

± 2.658 
6.101 

± 0.666 
P** 

39.731 
± 2.793 

P** 
II 28.916 7.831 166 46.988 166 
III 24.194 4.839 124 43.046 124 

Young 
(D7, 25°C) Mhc>DgRNAi 

I 29.286 5.000 151 34.416 151 28.680 
± 0.233 
P*** 

3.528 
± 0.608 

P** 

35.518 
± 2.898 

P** 
II 28.571 1.948 154 29.091 154 
III 28.182 3.636 110 43.046 110 
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Values were obtained from the averages of 3 biological replicates. Error bars represent AVE±SEM and statistical significance was determined by 
two-tailed Student’s t-test. *P<0.05, **P<0.01, ***P<0.001 represents comparison to control at the same condition, while *P<0.05, **P<0.01, 
***P<0.001 represents comparison within the same genotype at young age. 

n= number of muscles analyzed 
a (Mhc >miR-927) male flies with erect wing phenotype 

 

Aging 
(D30, 25°C) Mhc>DgRNAi 

I 34.409 23.118 186 77.957 186 33.373 
± 0.399 

P* 
P** 

18.530 
± 2.289 

P* 
P** 

67.781 
± 3.917 

P** 
P** 

II 33.113 12.583 151 63.758 149 
III 32.597 19.890 181 61.628 172 



 

 

Supplementary Table 5. Candidate miRNAs can target Dg in vitro 
Dg-3’UTR  
Reporter 

Luciferase Signal (Renilla/Firefly) 
AVE±SEM 

Relative Luciferase Signal 
AVE±SEM 

Plate 1 
S3+miR-137 1.082 ± 0.039 1.000 ± 0.036 

S3+miR-956 0.129 ± 0.007 0.499 ± 0.018 
P=5.907E-02 

S2+miR-137 0.163 ± 0.021 0.151 ± 0.018 
P=3.0628E-05 

Plate 2 
Control 0.258 ± 0.006 1.000 ± 0.022 

S2+miR-927 0.129 ± 0.007 0.499 ± 0.018 
P=2.68604E-06 

Control 0.209 ± 0.010 1.000 ± 0.049 

S2+miR-966 0.0798 ± 0.006 0.383 ± 0.033 
P=4.43802E-05 

Control 0.211 ± 0.012 1.000 ± 0.056 

S1+miR-137 0.093 ± 0.006 0.443 ± 0.032 
P=1.361E-04 

Values obtained for averages of three biological replicates. Error bars represent AVE±SEM, 
and statistical significance was determined by two-tailed Student’s t-test (*P<0.05, 
**P<0.01, ***P<0.001).  

Control readings from respective plates were used to normalize the luciferase signals. 

 



 

 

Supplementary Table 6. Relative Dg mRNA levels in adult fly muscle and testes 

 Genotype Rpl32 CT 
AVE±SEM 

Dg CT 
AVE±SEM 

Δ CT 
AVE±SEM 

Average 
ΔΔ CT 

Relative mRNA level  
AVE± SEM 

T
ho

ra
x 

w1118/OR 
1.64E+01 ± 3.06E-01 2.11E+01 ± 1.11E-01 4.62 ± 1.7E-01 0.93 1.000 ± 5.3E-02 

 
 

1.68E+01 ± 2.5E-02 2.11E+01 ± 4.9E-02 4.25 ± 9.9E-02 1.09 
2.24E+01 ± 4.41-02 2.88E+01 ± 5.82E-02 6.48 ± 4.0E-02 0.93 

miR-137ko 
1.79E+01 ± 2.06E-02 2.11E+01 ± 4.9E-02 3.25 ± 1.3E-02 -1.37 2.97 ± 8.0E-02 

P= 7.121E-04 2.15E+01 ± 6.57E-02 2.39E+01 ± 1.20E-01 2.37 ± 4.8E-02 -2.09 
2.21E+01 ± 2.25-01 2.76E+01 ± 1.58E-01 5.24 ± 1.3E-02 -1.25 

miR-137ko/Df 
2.36E+01 ± 2.22E-01 2.79E+01 ± 2.63E-01 4.00 ± 4.5E-02 -0.61 2.10 ± 1.1E-01 

P= 1.577E-03 
P=6.426E-02 

2.11E+01 ± 1.58E-0q 2.41E+01 ± 1.22E-01 2.99 ± 2.5E-02 -1.47 
2.06E+01 ± 2.33-01 2.59E+01 ± 4.66E-02 5.35 ± 1.1E-01 -1.13 

T
es

te
s 

w1118/OR 
2.08E+01 ± 2.49E-01 2.36E+01 ± 2.22E-01 1.63E ± 7.77E-02 0.01 1.000 ± 7.35E-02 
2.23E+01 ± 3.05E-01 2.42E+01 ± 3.68E-01 1.46E ± 2.13E-02 0.17 
2.37E+01 ± 4.19E-01 2.53E+01 ± 3.86E-01 1.58E ± 9.66E-02 0.05 

miR-137ko 
2.24E+01 ± 2.36E-01 2.37E+01 ± 2.24E-01 1.31 ± 9.13E-02 -0.33 3.96 ± 3.36E-02 

P=1.020E-02 2.13E+01 ± 2.88E-01 2.29E+01 ± 2.43E-01 1.53 ± 1.61E-02 -0.05 
2.63E+01 ± 3.02E-01 2.75E+01 ± 1.34E-01 1.08 ± 3.76E-02 -0.40 

miR-137ko/Df 
2.25E+01 ± 3.23E-01 2.51E+01 ± 3.03E-01 2.62 ± 5.83E-02 0.99 1.67 ± 2.25E-02 

P=5.580E-03 
P=2.035E-03 

2.22E+01 ± 2.51E-01 2.55E+01 ± 3.35E-01 3.33 ± 5.09E-02 1.64 
2.46E+01 ± 2.46E-02 2.73E+01 ± 1.29E-02 2.68 ± 8.01E-03 1.05 

tj>scramblesponge 
2.19E+01 ± 3.58E-01 2.32E+01 ± 3.08E-01 2.01 ± 4.49E-02 -0.07 1.000 ± 6.45E-02 
2.15E+01 ± 2.72E-01 2.35E+01 ± 4.74E-01 2.14 ± 1.52E-01 -0.06 
2.35E+01 ± 2.59E-01 2.53E+01 ± 4.41E-02 2.09 ± 1.39E-01 -0.01 

Dg1.10G׃׃tj>miR-137sponge 
2.18E+01 ± 2.57E-01 2.35E+01 ± 3.40E-01 1.64 ± 4.01E-02 -0.37 1.376 ± 3.54E-02 

P=2.743E-03 
P=3.926E-03 

2.18E+01 ± 2.46E-02 2.35E+01 ± 1.29E-02 1.73 ± 4.78E-02 -0.40 
1.69E+01 ± 3.10E-02 1.84E+01 ± 4.52E-02 1.48 ± 1.48E-02 -0.60 

tj>miR-137sponge 2.46E+01 ± 4.14E-02 2.63E+01 ± 1.29E-02 2.46 ± 4.66E-02 0.45 2.33 ± 1.23E-02 
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2.16E+01 ± 3.34E-01 2.47E+01 ± 5.35E-01 3.18 ± 1.16E-01 1.04 P=1.734E-02 
2.19E+01 ± 3.38E-01 2.48E+01 ± 5.35E-01 3.18 ± 1.11E-01 1.09 

tj>Dg 
2.28E+01 ± 2.63E-01 2.44E+01 ± 5.05E-01 1.47 ± 1.43E-01 -0.55 5.68 ± 1.48E-02 

P=2.582E-04 
P=7.645E-03 

2.32E+01 ± 3.89E-02 2.55E+01 ± 5.52E-01 1.53 ± 7.56E-02 -0.60 
2.29E+01 ± 2.33E-02 2.49E+01 ± 5.01E-02 1.97 ± 7.56E-02     -0.12 

Values obtained for averages of three biological replicates. Error bars represent AVE±SEM, and statistical significance was determined by two-
tailed Student’s t-test (*P<0.05, **P<0.01, ***P<0.001).  

 



 

 

Supplementary Table 7. Early somatic cell counts per testes 

Genotype Tj+ cells  

AVE±SEM 

Eya+ cells 

AVE±SEM  

(Tj+Eya)+ cells  

AVE±SEM 

Total cells 

AVE±SEM 

n 

w1118/OR 
56.322 

± 2.023 

84.011 

± 1.204 

6.389 

± 0.405 

134.253 

± 3.054 

24 

miR-137ko 

82.204 

± 1.488 

P=1.381E-02 

80.438 

± 0.451 

P=1.885E-01 

11.062 

± 1.953 

P=2.246E-01 

151.581 

± 0.163 

P=5.566E-02 

24 

Two-tailed Student’s t-test with averages of three independent biological replicates was used 
to determine P values. *P<0.05, **P<0.01, ***P<0.001.  

n= number of testes analyzed 

Supplementary Table 8. Early somatic cell counts at the apical portion of testes 

Genotype 
Tj-positive 
cells 

n P value 

w1118/OR 43.800 ± 1.110 32 - 

miR-137ko 68.559 ± 2.909 34 
1.337E-03 

miR-137ko/Df 36.721 ± 2.849 31 
7.736E-01 

tj/ w1118 52.877 ± 2.133 28 - 

tj>Dg 42.150 ± 1.520 22 8.093E-02 
tj>miR-137 50.236 ± 0.944 27 7.736E-01 

tj>scramblesponge 39.155 ± 1.600 35 - 

tj>miR-137sponge 70.939 ± 4.521 37 
3.845E-02 

Dg1.10G,tj>miR-
137sponge 

39.092 ± 2.345 
29 

1.317E-02 
Two-tailed Student’s t-test with averages of three independent biological replicates was used 
to determine P values. *P<0.05, **P<0.01, ***P<0.001.  

n= number of testes analyzed 
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Supplementary Table 9. Percentage of permeable testes 

Genotype % of permeable testes (AVE±SEM) n P value 

Control 27.92 ± 2.5 46 - 

miR-137ko 88.51 ± 1.46 40 1.57E-06 

miR-137ko/Df 37.78 ± 4.70 26 4.60E-04 

Dg1.10G 85.94 ± 3.47 31 2.6E-05 

tj>w1118 38.83 ± 1.09 41 - 

tj>Dg 69.40 ± 4.0 32 5.88E-03 

tj>miR-137 41.26 ± 0.62 39 2.40E-01 

miR-137ko/ko,tj>miR-137 48.48 ± 4.67 33 1.35E-03 

tj>scramblesponge 38.89 ± 7.48 30 - 

tj>miR-137sponge 72.50 ± 0.41 40 2.85E-02 

Dg1.10G,tj>miR137sponge 49.47 ± 2.55 24 3.46E-03 

Two-tailed Student’s t-test with averages of three independent biological replicates was used 
to determine P values. *P<0.05, **P<0.01, ***P<0.001.  

n= number of testes analyzed 

 

Supplementary Table 10. SJ counts and morphology on elongated spermatids  

Genotype SJ counts (AVE±SEM) % of abnormal SJ n 

Control 18.253 ± 1.214 18.264 ± 0.024 59 

miR-137ko 17.309 ± 2.154 

P=8.379E-01 

51.540 ± 0.078 

P=1.542E-03 

45 

miR-137k/Dfo 21.583 30.685 8 

tj>scramblesponge 22.759 ± 2.059 15.184 ± 0.006 22 

tj>miR-137sponge 18.909 ± 0.545 

P=1.00E-03a 

48.446 ± 0.070 

P=1.00E-03a 

21 

tj>w1118 17.438 16.076 16 

tj>miR-137 16.500 18.002 12 

Two-tailed Student’s t-test with averages of three independent biological replicates was used 
to determine P values. *P<0.05, **P<0.01, ***P<0.001. 
a χ2 test with Yate’s correction in 1 degree of freedom was analyzed to calculate significance. 
*P<0.05, **P<0.01, ***P<0.001. 

n= number of testes analyzed 
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9 Appendix  

List of abbreviations 
Technical abbreviations 

A  ampere 

AVE  average 

BCA  bicinchoninic acid 

bp  base pair 

BSA  bovine serum albumin 

CT  threshold cycle 

DAPI  4’, 6-diamidino-2-phenylindole 

DGRC  Drosophila Genomics Resource Center 

DSHB  Developmental Studies Hybridoma Bank 

ECL  enhanced chemiluminescence 

EDTA  ethylenediaminetetraacetic acid 

FISH fluorescence in situ hybridization  

NGS  normal goat serum 

nt  nucleotide 

PBS  phosphate buffered saline 

PBT  PBS-Tween (buffer) 

PBTB  PBT-blocking (buffer) 

PCR  polymerase chain reaction 

PFA  paraformaldehyde 

qPCR  quantitative PCR 

qRT-PCR quantitative reverse transcription PCR 

Rpm  revolutions per minute 

RT  reverse transcriptase 

RT  room temperature 

S2 cells Schneider 2 cells 

SD  standard deviation 

SEM  standard error of the mean 

Tris tris-hydroxymethyl-aminomethane 
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Biological abbreviations 

AMPK  AMP-activated protein kinase 

A-P axis anterior-posterior axis 

BTB  blood-testis barrier 

C-terminus carboxyl-terminus 

cDNA  complementary DNA  

DNAse deoxyribonuclease 

CySCs  somatic stem cells 

DGC  Dystrophin-associated Glycoprotein Complex 

Dme  Drosophila Melanogaster 

DNA  deoxyribonucleic acid 

Dre  Danio rerio 

Drosophila Drosophila melanogaster 

dsRBD  double stranded RNA binding domain protein 

E.Coli  Escherichia coli 

ECM  extracellular matrix 

GB  gonial blast 

GO  Gene Ontology 

GSCs  germline stem cells 

hsa  homo sapiens 

mGFP  membrane GFP 

miRNA microRNA 

mmu  mus musculus 

mRNA  messenger RNA 

MTJ  myotendinos junction 

PKA  cAMP-dependent protein kinase  

Pol  polymerase 

Pre-miRNA precursor microRNA 

Pri-miRNA primary microRNA 

RNA  ribonucleic acid 

RISC  RNA-induced silencing complex 

RNAi  RNA interference 

RNase   ribonuclease 
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rRNA  ribosomal RNA 

siRNA small interfering RNA 

SV seminal vesicle 

UAS  upstream activation sequence 

UTR  untranslated region 

 

Gene and protein names 

act  actin 

Add  adducin 

Arm  armadillo 

Cora  coracle 

Chic  chickadee 

Dg  dystroglycan 

Dlg  discs large 

Dys  dystrophin 

Eya  eyes absent 

GluR  glutamate receptor IIA 

Hts  hu lo tai shao 

How  held out wings 

LanA/B laminin A 

Mega  mega trachea 

Mei-P26 meiotic P26 

MHC  myosin heavy chain 

mir-310s refers to miR-310, miR-311, miR-312, and miR-313 together 

miR-975C refers to miR-975, miR-976, miR-977 together 

miR-959C refers to miR-959, miR-960, miR-961, miR-962 together 

Nrx-IV neurexin IV 

nNOS nitric oxide synthase 

PH3  Phospho-Histone H3 

Scg  sarcoglycan 

Syn1  syntrophin-like 1  

Tj  traffic jam 

Yki  yorkie 
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Zfh-1  zinc finger protein 1 

 

Symbols 

°C   degree celsius 

CO2   carbon dioxide 

G   gram 

μg   microgram 

μl   microliter 

μM   micromolar 

h   hour 

kbp   kilo base pair 

kDa   kilodalton 

Mb   mega base 

ml   milliliter 

min   minute 

mM   milli molar 

NaCl   sodium chloride 

NaH2PO4  monosodium phosphate 

Na2HPO4  disodium phophate 

NaOH   sodium hydroxide 

ng   nanogram 

V   volt 
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