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Abstract 

A technique called the Finite Element Method is primarily utilized to numerically solve Partial 
Differential Equations, most commonly by the use iterative methods, over a compact domain. The 
partial differential equations domain is represented by a mesh of information which needs to be 
distributed among all available processors or cores in a parallel computer. Distributing the mesh, known 
as the mesh partitioning problem, is NP-complete. Much effort focuses on graph partitioning and 
parallelization to address it. 

An increasing variety of general purpose techniques and libraries has been and is being developed in 
recent time, many of which provide great effectiveness. However, the load balancing of the mesh is still 
an open problem; newer and larger simulations bring new requirements into play. These techniques have 
to scale linearly on large clusters of hundreds of thousands of processors. They have to be resource 
aware and take into consideration the heterogeneity of current processors and network infrastructures in 
the partitioning process. Equal size meshes, provided by traditional partitioning methods, no longer 
fulfill the main goals. 

New enhancements to existing libraries and algorithms are required to support even more complex 
applications and the constantly evolving hardware architectures. In this work, we give an overview of 
current graph partitioning techniques used on large-scale parallel machines for load balancing of finite 
element computations. We introduce a new vertex matching model called Directed Sorted Heavy Edge 
Matching to reduce the communication volume during FEM simulations and ensure efficient execution 
on a distributed system. Finally, we provide performance analysis of the proposed model and comment 
on its benefits. 
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Chapter 1.  

Background and Motivation 

The Finite Element Method (FEM), or Finite Element Analysis1 (FEA), is a technique used in different 
areas of scientific computation such as engineering and physics. It helps to analyze the behavior of real 
life objects, or physical phenomena, under different environmental conditions; i.e., heat, mechanical 
stress, vibrations, etc. To provide solutions with high accuracy, current FEM applications rely on large 
computational, memory and communication requirements; hence parallel systems are extensively used 
for FEM applications. The efficiency of parallel FEM applications is heavily affected by its dynamic 
nature and the load balancing problem must be addressed. One effective way to approach it is through 
graph partitioning; the main focus of the research presented in this thesis. 

This chapter gives a brief overview of the FEM and its applications, the use of parallel systems to 
address the intractability of current problems, how dynamic problems affect the efficiency of parallel 
implementations, how the current load balancing methods motivated this work, and finally, our approach 
to address the problem. 

1.1. General Overview 

The FEM, or FEA, is widely used in engineering and physics, among other disciplines. For example, a 
civil engineer can analyze how a bridge reacts under load or specific physical conditions. Base on this 
analysis, problems in the design can be identified and corrected before the actual construction begins; it 
prevents catastrophic failures during the service life of the bridge. Many other examples of applications 
can be cited such as the design of automobiles, aircrafts, buildings, etc. The FEA is of vital importance 
whether it used by a private company, government contractor or a scientist; it brings important benefits 
such as lowering design and manufacture costs. For example, the production of a new aircraft can bring 
a company into bankruptcy if the design has flaws; most importantly, the cost in lives could be high. 
FEA is a cost-effective way to ensure that the design of a new product is ready for manufacture. 

The accuracy of the numerical solutions, provided by the FEM applications, depends on the 
discretization of the model; and with higher accuracy, higher processing power is required. This 
situation makes sequential implementations useless in practice and parallel systems come into play, but 
they bring new challenges in terms of efficiency [1]. When parallel systems are employed, efficiency 
becomes an important concern; an efficient system reduces costs and time. 

The load balancing problem needs to be addressed in order to improve the efficiency of a parallel 
system. One effective approach is through graph partitioning where the load is modeled as a graph. The 

                                                      
1 It is commonly known as the practical application of the Finite Element Method. 
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graph is then partitioned and mapped into the processors; it defines the distribution of the load in the 
parallel system. It is a more difficult task with dynamic problems as redistribution must be performed 
regularly when the imbalance reaches a certain threshold. 

With the availability of hundreds of thousands of processors becoming cheaper every day, the load 
balancing problem shifts its focus to communication costs. The new technologies bring new challenges 
in terms of efficiency and current solutions become obsolete. We address the load balancing problem 
through graph partitioning, with a particular emphasis on the reduction of communication volume, to 
improve the efficiency of parallel FEM applications. 

1.1.1. FEA and FEM 

In FEM applications, the Partial Differential Equations (PDEs) are used to describe the problem. Its 
domain is discretized resulting in a mesh of information (triangles or rectangles for two dimensional 
objects, tetrahedra or hexahedra for three dimensional objects). Based on the elements of the mesh, the 
PDEs are then converted into a system of linear equations [2]. In general, iterative methods are 
employed to solve that linear system [3], [4]. The accuracy of the discretization influences the 
subsequent solution and its quality; the elements of the mesh need to be small enough to produce precise 
approximations. An extremely fine discretization may incur in extra computation, communication and 
memory costs. Adaptive techniques were introduced to mitigate this issue by allowing the solution error 
to be within certain limits while the costs are minimized [5]. 

Usually the parallel FEM simulations are divided into three main steps which are then repeated 
several times until the end of the simulation. The PDEs are solved during the computational step. 
According to the results, the mesh is refined in areas where needed. The refinement produces an 
imbalance in the system which is then reduced in the next step. Once the load has been balanced, the 
system is ready to perform the next computational step. 

1.1.2. Parallelization of Numerical Simulations 

FEA is a typical example of an application for High Performance Computing (HPC) systems. To 
provide solutions with high accuracy, current FEM applications rely on large computational, memory 
and communication requirements; making sequential implementations generally useless in practice. The 
introduction of parallel systems helps overcome this limitation; though, efficiency concerns become 
important. The efficiency of parallel applications is defined by the distribution of the mesh (the load) 
and the communication overhead among all subdomains. 

The PDEs domain is represented by a mesh of information which has to be distributed amongst all 
available processors in the parallel system. It generally employs an iterative approach to approximate the 
solution. Then, multiple processors execute the same code on different mesh elements to compute the 
final solution. With dynamic problems, the refinement step introduces an imbalance to the system and 
the mesh must be redistributed to keep the efficiency within an acceptable range. It is a difficult task to 
keep the workload in balance since it is not possible to know in advance what regions will be refined. 
The mesh partitioning problem is known to be NP-complete [6]–[8]. 
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1.1.3. Load Balancing through Graph Partitioning 

Load balancing is essential in parallel computations to improve its efficiency. Shivaratry et al. [9] 
describe and compares some common strategies. Due to the fact that the mesh of information can be 
characterized by a graph, as depicted in Figure 1.1, much effort focuses on graph partitioning algorithms 
to address the load balancing problem of parallel FEM simulations. Graph partitioning algorithms 
generate arrays of information containing the location for every graph vertex; i.e., what mesh element is 
assigned to which processor, see Figure 1.2. In addition, different types of graphs can be used according 
to the requirements of the problem. 

 

Figure 1.1.  Graph of an airfoil with flaps. 

An increasing variety of general purpose techniques and libraries has been, and is being, developed in 
recent time which provides great effectiveness; we refer the reader to the work by Buluç et al. [10] and 
Fjällström [11] for more information. However, the redistribution of the mesh is still an open problem; 
newer and larger simulations bring new requirements into play. These techniques have to scale on 
clusters of hundreds of thousands of processors. They have to be resource aware and take into 
consideration the heterogeneity of current processors and network infrastructures in the partitioning 
process. 

 

Figure 1.2.  Graph of an airfoil with flaps partitioned into 10 subdomains, each identified by a different color. 

1.1.4. Challenges 

Emerging applications and hardware architectures become more complex and heterogeneity shall be 
considered to improve efficiency. It has been established that current methods which optimize only the 
size of subdomains and the edge cut do not fulfill current requirements and the efficiency can drop 
drastically [12]. New techniques are needed to reduce the time spend on FEM simulations [13], [14]. 
Enhancements to existing libraries and algorithms are required to support more complex applications 
and the constantly evolving hardware architectures. Thus, the advantages brought by new HPC 
technologies will never be fully exploited unless efficient load balancing techniques are applied. 
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The reduction of communication volume, while keeping the balance in the partition, will reduce the 
overall runtime of parallel FEM computation. The transmission of data over network links is 
considerable slower than data processing. A trade between communication and computation is required 
to increase the efficiency of parallel computations [15], [16]. As stated by Jensen [17], “the most critical 
system control mechanisms in a distributed computer are clearly those involved with interprocess and 
interprocessor communication”. Over the years, several techniques propose to overlap the computation 
and communication in an attempt to hide overhead brought by the slow network links [18]–[22]. Others 
consider the hardware design and architecture to reduce the communication during parallel computations 
[23]–[25], just to mention a few. 

1.1.5. Current Trends 

Often, FEM libraries are designed for relatively small systems. When hundreds of thousands of 
processors are available their design becomes an important limitation in order to scale accordingly. This 
situation leads to an important inequality between the software and hardware; which translates into a 
decrease of efficiency. Heister et al. [26] propose new parallel data structures and adapted algorithms to 
benefit from large clusters during immensely parallel computations. They have improved the library 
deal.II to deal with the problem by addressing the most important bottlenecks of scalability: handling the 
mesh of information, the numerical linear algebra, and finally the degrees of freedom, its global 
numbering and distribution. ALPS [27] is another example of a library developed with massively 
parallel simulations in mind. ALPS is based on an existing library called p4est [28], but with some 
drawbacks compared to deal.II: the lack of the comprehensive infrastructure support, and not being 
publicly available. 

During the simulation, some regions of the mesh may be refined or coarsened between computational 
steps to increase the accuracy of the solution. Since the regions are not known beforehand, or can vary 
over the course of the simulation, the mesh changes unpredictable during the computations. After this 
refinement or coarsening process, the workload may become unbalanced and the imbalance has to be 
corrected. The load balancing step could incur in a large cost, it is performed only when the imbalance is 
high and its benefits overcomes its cost. Thus, it is of great importance to accurately determine the 
impact of the new imbalance on the simulation to decide if the mesh should be redistributed to increase 
the overall performance. Olas et al. [29] have introduced a dynamic load balancer to the existing library 
NuscaS [30] which includes a performance model of their own. The model accurately estimates the cost, 
measured in time, of every load balancing and computational step with or without a balanced workload. 

Many parallel systems are made as a collection of shared memory multiprocessors with an intricate 
and heterogeneous interconnection. One typical example is Grid computing which is a geographically 
dispersed system working together to perform large tasks. This distributed system introduces new and 
important challenges in resource management due to the heterogeneous nature. To efficiently allocate 
the data on these systems, new generation of load balancers requires being aware of the available 
resources. In other words, they have to consider the heterogeneity of the hardware employed during the 
simulations. Some attempts to address this issue are presented in [31]–[35]. 
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1.2. Motivation 

Current FEM applications heavily depend on large computational, memory and communication costs to 
provide high accurate solutions. Parallel systems help overcome the limitation of sequential 
implementations by bringing together the computational power of hundreds of thousands of processors. 
Emerging applications and new hardware architectures define the new challenges in efficiency of 
parallel applications. There are still many open problems in load balancing for parallel applications; the 
study and development of new techniques is essential to fully exploit the new HPC technologies. 

1.2.1. Opportunities 

In FEM simulations, when the quality of the solution is not within the acceptable limits, the density of 
the mesh of information must increase. The size of the elements in the mesh heavily impacts the 
precision of the approximation. Although this approach improves the accuracy of the final solution; it is 
not appropriate for all scenarios as the computational power required to compute the solution grows 
accordingly. Adaptive dynamic meshes help overcome this problem by keeping the processing cost at a 
minimum while providing accurate solutions. In some cases, the efficiency of the parallel application 
drops drastically with this type of meshes. The new generation of load balancers must follow the same 
philosophy: being adaptive and dynamic. Static counterparts no longer fulfill the requirements for 
parallel FEM applications on current HPC systems. 

Traditionally, the transmission of data over network interconnects is slow. Emerging technologies 
have been addressing this issue and have improved the speed. Nonetheless, communication continues to 
be slow with respect to the computing power. The new generation of load balancers must address this 
condition while making the decision on when and how the load should be distributed. It is not enough to 
have a perfect balance of the workload if it implies a large migration of elements between computational 
steps of the simulation; communication dependencies also define the overall efficiency of a parallel 
application. The load balancer must also take into account the underlying hardware architecture in order 
to better distribute the load along all available processors in the most efficient way. In the design of a 
comprehensive, adaptive and dynamic load balancer, all levels of the load balancing process should be 
considered. Another aspect to consider in the design of an effective load balancer is scalability. Many of 
the approaches are based on legacy methods which do not consider the current advances in HPC 
technologies. While adequate for small implementations, they do not scale well to systems of hundreds 
of thousands or processors in heterogeneous hardware architectures. 

1.2.2. Problem Statement 

The problem in question is simple, how to distribute the workload of parallel FEM simulations to 
improve the efficiency; and hence, to reduce the execution time. The solution, however, is not straight 
forward. Every use case is unique and the requirements differ from one to the other; one solution does 
not fit all. Why an appropriate balance of the workload is important in parallel applications? The overall 
efficiency of a parallel system during the execution of a simulation is closely related to monetary costs; 
the longer the execution time the higher the costs. With an adequate load balancer, the efficiency of the 
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system can be largely improved reducing costs. In an ideal word, where the load balancer generates 
perfect distributions of the load among the available processors, it would be possible to reduce the 
processor idle time to zero and obtain the results in the shortest time possible. In reality, the large 
number of conflicting requirements, and the nature of the problem, make impossible to solve the load 
balancing problem at all. 

Traditional methods do not fulfill current requirements, but they are still in use. The reason is simple; 
they are fast and good enough. Several approaches have been proposed over the years; however they 
were conceived in a time when massive amounts of resources were not available. They do not scale well 
and generate poor distributions when hardware heterogeneity is part of the equation. This brings us to 
ask another question. If previous approaches do not work well with current systems, what should be 
considered in the design of a load balancer? And the answer is not simple. Different use cases have 
different requirements; a perfect load balancer for a particular parallel application may not be good in 
other situations. The nature of the parallel application, the input data, the hardware architecture, among 
many other aspects, should be considered. 

It is not trivial to address the problem; several attempts have been made and they focus on particular 
issues. Many have as central objective to balance the workload of the parallel system, which deals with 
the original problem. Nonetheless, the redistribution of the load involves transmission of data. A perfect 
distribution of the workload is inefficient if it requires huge amounts of data to be migrated. In addition, 
communication dependencies among subdomains are important as they also affect the overall efficiency; 
partial solutions computed by a processor need to be transmitted to neighbors. The perfect distribution of 
the workload is also useless if it requires large amounts of time to compute. A trade between speed and 
accuracy is essential in the development of a load balancer. This leads us to ask some important 
questions: 

• Can a generic load balancer fulfill the current requirements of FEM applications? If so, how can it 
be achieved? 

• Many FEM applications rely on dynamic meshes to improve the accuracy of the results without 
incurring in extra computational cost. Can a similar approach be used in the design of a load 
balancer? 

Recent efforts have contributed to develop new techniques designed to address the load balancing 
problem of parallel FEM applications; many of them by focusing on the graph partitioning problem. The 
mesh of information in FEM applications can be characterized by a graph and different types can be 
used for this purpose according to the requirements. We focus our efforts on this direction and identify 
some key questions that need to be addressed. 

• Can a graph partition be improved and is it worth the effort? 

• If communication costs are important while generating a distribution of the load, can it be 
included in the partitioning process of the graph that represents the mesh of information? And 
how this new objective will affect the partitioning process? 
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1.3. Proposed Approach to the Load Balancing Problem 

The central efforts of this work focus on two key approaches: a low level generic strategy, and a 
multilevel hierarchical load balancer. Both combined can improve the overall efficiency of parallel FEM 
applications. The first approach is a graph partitioning algorithm with the aim of reducing the 
communication dependencies among the different subdomains, hence reducing the overall execution 
time. The second approach, in combination with the previous algorithm, is a comprehensive load 
balancer which uses idle processors to re-balance the load dynamically during the execution of the 
application. 

1.3.1. Graph Partitioning 

We propose a new vertex matching algorithm for the multilevel graph partitioning technique. Its aim is 
to reduce the communication volume by simulating a directed graph. The new model introduces 
information of the direction of the communication in the matching decisions to reduce the overall 
communication volume in the final partition. The algorithm takes advantage of the efficient data 
structures used to represent undirected graphs. Without incurring in extra memory requirements, the 
algorithm can simulate the direction of the communication within the graph. With the new directional 
information, the matching phase can improve the final partition of the graph. 

1.3.2. Load Balancer 

We propose a new multilevel hierarchical load balancer model. It is hardware aware and uses graph 
partitioning techniques. It improves the local load imbalance and reduces the overall execution time of 
parallel FEM applications. It uses a cost function that includes a comprehensive collection of 
information to better approximate the computation, communication and load balancing costs. A trade 
between speed and accuracy is fundamental in the development for the next generation of load 
balancers. The first level is responsible for the main load balancing steps over the entire system. It is 
performed within the main load balancing steps during the execution of the FEM application. The cost 
model defines the current imbalance and if the load balancing step should be performed; sometimes it is 
more efficient to keep a small imbalance and continue with the next computational step. The second 
level is in constant execution, monitoring the status of the current computational step. Processors that 
become available receive loads from neighbors to reduce their idle time. In this way, the workload is 
redistributed dynamically between the main load balancing steps. 

1.4. Justification and Scope 

It has been established that current methods do not fulfill the new requirements of FEM applications; the 
efficiency of parallel systems is not ideal. For instance, algorithms which only optimize the size of 
subdomains and the edge cut do not produce efficient partitions and the efficiency is degraded due to the 
communication dependencies. New techniques are needed to reduce the time spend on FEM 
simulations. Therefore, the advantages brought by new HPC technologies will never be fully exploited 
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unless effective load balancing techniques are applied. 
Processing power is becoming cheaper by the day with the technology evolving continuously; and 

yet, communication costs are still considered relatively high. The transmission of data over network 
links is considerable slower compared to data processing. It is vital to reduce the communication costs 
of parallel FEM computations to reduce the overall runtime, and hence improve its efficiency. Over the 
years, several techniques propose to overlap the computation and communication in an attempt to hide 
overhead brought by the slow network links. However, this approach only hides the source of the 
problem. The real communication costs shall be reduced. 

1.4.1. Delimitations of Scope 

One essential aspect of the research that needs to be defined in the first stages is its scope. This work is 
limited to the load balancing problem on FEM applications with an emphasis on graph partitioning. We 
use a new multi-level method to compute the partition and compare its performance with other well-
known strategies. The analysis is limited to an experimental study to statistically evaluate the 
performance with the use of different input data. The Scientific Compute Cluster located at Gesellschaft 
für wissenschaftliche Datenverarbeitung Göttingen mbH (GWDG) is used for the experimental 
evaluation. The analysis and comparison with other strategies are based on a collection of synthetic and 
real life graphs and a set of commonly used metrics. Some real life graphs have been converted from 
their original format to match that of METIS; however, no essential information is lost or modified. The 
coordinate information, included with the real life graphs, is only used to create the graphical 
representations included in this thesis. Although the focus of this work is improving the efficiency of 
FEM simulations, the proposed algorithm has been not evaluated with a FEM application. Nevertheless, 
its performance is evident with certain types of graphs and the efficiency of FEM applications is 
ensured. 

1.4.2. Key Assumptions 

The experimental results reflect the expected performance of the algorithm in real life scenarios; 
although the experiments are conducted with a limited set of synthetic and real life graphs. This claim 
arises from the fact that the graphs represent the different situations that may be encounter with diverse 
use cases. With new technologies developed continuously, processing power is cheaper every day; 
though, communication costs are still relatively high. Much work has been done to hide it by 
overlapping computations and communications in FEM applications. The partitions produced by the 
proposed algorithm reduce the communication volume among the subdomains, hence, reducing the 
overall execution time of FEM applications by increasing their efficiency. In addition, the comparison 
with other strategies is limited to those implemented in METIS. However, the improved partitions are an 
indication of the benefits of using the proposed strategy in different applications. It is also impossible to 
carry out a comprehensive and uniform evaluation of a wide range of algorithms to compare their 
performance. 
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Chapter 2.  

Contributions and Outline of this Thesis 

The main contributions are generic in the sense that the utility of the proposed algorithm encompass a 
wide variety of applications. It is a general algorithm used to create partitions whilst reducing the 
communication volume between the different subdomains. It is implemented in METIS [36], [37], a 
graph partitioning software that is broadly used; for instance, it could be applied to VLSI logic 
simulations [38]. In addition, the Multilevel Hierarchical Load Balancer presents a new idea on how to 
approach the load balancing problem in a more effective manner. 

This chapter presents a short summary of the main contributions of this research work and outlines 
the rest of the thesis. 

2.1. Contributions 

As a summary, the contributions of this thesis are listed next: 

• An optimized graph partitioning algorithm which reduces the communication volume between 
subdomains called DSHEM. It includes information of the direction of the communication in the 
matching decisions to reduce the overall communication volume; the idea behind is simple: to 
find the vertices which will reduce the amount of data to be transferred. DSHEM takes advantage 
of the efficient data structures to store the graphs in METIS and mimic the direction of the 
communication without incurring in extra memory or information from the user. Part of this 
research work has been submitted to the conference HPCS 2019 where DSHEM is described and 
evaluated [39]. 

• The implementation of DSHEM within the popular graph partitioning software METIS; this is of 
particular importance as described next. The software is free and broadly used around the globe; 
its efficiency has been established over the years. It is possible for the users to tweak or tune-up 
the behavior of DSHEM according to their own requirements because METIS is open source. The 
execution of DSHEM is also configurable by the use of execution parameters sent to METIS. 

• A comprehensive experimental analysis of the performance of the new proposed algorithm. The 
results show that DSHEM improves the communication volume of partitions with specific graph 
geometries and does not degrade it with the rest. The analysis includes two different approaches 
of DSHEM: a full (normal) DSHEM and a nested DSHEM partitioning. The description and 
evaluation of both approaches of DSHEM have been submitted to the conferences HPCS 2019 
and PPAM 2019 recently [39], [40]. 
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• A new concept in load balancing for FEM applications: the Multilevel Hierarchical Load 
Balancer. In combination with DSHEM, the new model can successfully be used as a starting 
point for a more complex load balancing strategy. This line of research is presented by the author 
in [13], [14]. 

2.1.1. Publications 

• J. L. González García, R. Yahyapour, and A. Tchernykh, “Load balancing for parallel 
computations with the finite element method,” in 3rd International Supercomputing Conference 
in Mexico, 2012, p. 9. 

• J. L. González García, R. Yahyapour, and A. Tchernykh, “Load balancing for parallel 
computations with the finite element method,” Comput. y Sist., vol. 3, no. 17, pp. 299–316, Sep. 
2013. 

• J. L. González García, R. Yahyapour, and A. Tchernykh, “Graph Partitioning for FEM 
Applications: Reducing the Communication Volume with DSHEM (under review),” in Submitted 
to HPCS 2019 - The 2019 International Conference on High Performance Computing & 
Simulation, 2019. 

• J. L. González García, R. Yahyapour, and A. Tchernykh, “Graph Partitioning for FEM 
Applications: Reducing the Communication Volume with Nested DSHEM (under review),” in 
Submitted to PPAM 2019 - 13th International Conference on Parallel Processing and Applied 
Mathematics, 2019. 

2.2. Outline 

This thesis is organized in four major parts which are divided in several chapters. Three appendices are 
also included to provide additional information to some chapters. The next paragraphs provide a short 
description of the different sections. 

• Part I, Introduction, gives a short overview of this work and is divided in two chapters. Chapter 1 
introduces the background and challenges. It identifies, as well, the focus of this work and the 
research problem to address. Chapter 2 presents the contributions of the thesis. 

• Part II, Literature Review, provides a detailed background, formally defines the problem and is 
divided in two chapters. Chapter 3 presents the FEM, introduces the load balancing problem and 
describes how to address it. Next, Chapter 4 presents a list of the main FEM frameworks and 
simulators, dedicated load balancing libraries, and the available graph partitioning software. 

• Part III, DSHEM and Evaluation, describes the proposed algorithm and presents its experimental 
evaluation; it is divided in five chapters. Chapter 5 introduces the central idea behind the 
algorithm DSHEM. Chapter 6 presents the algorithm in detail and its implementation. Chapter 7 
describes the methodology used to evaluate DSHEM. Chapter 8 presents its experimental 
evaluation. Chapter 9 presents experimental evaluation of a variation of the algorithm. 
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• Part IV, Discussion, concludes the thesis and consists of one chapter. Chapter 10 presents the 
conclusions of the research questions and problem, a description of the limitations and 
implications of this research work, and outlines the future perspective introducing a new 
multilevel load balancer. 

• Appendix A, HEM, SHEM and DSHEM, presents a detailed description of the original 
algorithms in METIS, as well as their evolution over time. It also describes the new algorithm 
DSHEM and highlights the differences with its predecessor. Appendix B, Graphs, gives a 
description of the different graphs utilized during the experimental evaluation. It also provides 
graphical representations and descriptions on how the synthetic graphs are created. 
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Chapter 3.  

The Load Balancing Problem in Parallel FEM 

Computations 

The FEM is a powerful technique widely used to predict the comportment of real life objects subject to 
specific conditions such as mechanical stresses, heat, vibrations, among others. In practice, the 
increasing cost of FEM applications, in terms of memory, communication and computations, renders 
them useless in sequential implementations. To address this problem, parallel systems come into play 
[1], but they bring as well new challenges in terms of efficiency. 

This chapter presents a detailed description of how the load balancing problem for parallel FEM 
applications is addressed and why it is not efficient. We mainly focus on load balancing through 
graph/mesh partitioning methods. 

3.1. FEA and FEM 

The FEM, or FEA, is widely used in engineering and physics, among other disciplines, because it is a 
cost-effective way to detect problems in designs or predict how real life objects react under certain 
circumstances. A model created with a finite number of discrete elements is adequate in many cases. In 
other circumstances infinitesimals are used to describe the problem leading to differential equations. To 
overcome its intractability, different discretization methods have been proposed to calculate a numerical 
solution. With the increasing processing power of current computers, the solutions become more 
accurate. Examples of typical areas of application are heat transfer, structural analysis, fluid flow, etc. 

Physical phenomena, such as the dissemination of temperature on an object, the propagation of a 
crack, the air flow around a wing, are usually modeled by PDEs [3], [41]. Unfortunately, they generally 
do not have an explicit solution making them hard to solve. However, a widely used technique to solve 
the PDEs is to discretize them into a mesh of information; the FEM adds some degree of smoothness 
over the original domain. A collection of cells (elements or nodes) therefore model the complex 
geometry of the real object. This discretization generally produces large and sparse matrices suitable for 
iterative methods such as Multigrid (MG) and Conjugate Gradient (CG) [3], [4]. 

3.1.1. Preconditioners and Solvers 

The FEM solver computes a collection of matrix equations to generate an approximation of the 
phenomena under analysis. The first introduced iterative methods were based on relaxation of the 
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coordinates like Jacobi, Gauss-Seidel, and SOR [4]. These methods are rarely used in our days. Other 
techniques utilize a projection process to approximate the solution. The Krylov subspaces methods are 
considered among the most important techniques. We can mention Arnoldi’s Method, CG, Lanczos 
Biorthogonalization, and Transpose-Free Variants [4], among others. Initially, MG methods were 
introduced to solve discretized elliptic PDEs. Later, they were enhanced to handle other PDEs problems 
as well as those not defined by PDEs. The performance of MG methods is superior to that achieved by 
Krylov subspace methods. However, they differ in an important aspect: MG methods require specific 
implementations for each problem while Krylov subspace methods are for general purpose. The CG 
method is suitable for a particular system of linear equations: symmetric positive definite matrices, 
based on an orthogonal projection onto a Krylov subspace. Iterative methods such as MG and CG are 
considered among the fastest [42]. 

As described in [4], preconditioners reduce the complexity of the solution with a given iterative 
method by introducing implicit or explicit modifications. It conditions the problem in order to make it 
more suitable for a numerical solution. The convergence of iterative methods increases by reducing the 
condition number of the matrix. It is the reason why preconditioners are important for Krylov subspace 
methods. 

3.1.2. Meshes 

The accuracy of the discretization largely impacts the quality of the final solution. The size of the 
elements of a mesh heavily affects the precision of the approximation. Unfortunately, it is not possible to 
identify in advance the regions with large gradient. Hence, meshes can be unstructured and periodically 
refined or coarsened in areas where it is required during calculations; or they can be structured with 
equal connectivity for each node. Structured meshes are not efficient in all scenarios, but they are much 
easier to handle. Its problem lies in the unnecessary small elements in those regions where not needed, 
increasing considerably the cost of the simulation. Obviously, the first variant is preferred and used for 
FEM; the solution has the same quality but the time needed for the computations is drastically reduced. 
Adaptive techniques allow keeping the solution error under control while computational costs are 
minimized [5]. 

Density 

The mesh density is an important topic in FEA because of the direct relationship with the solution and 
the computational costs associated. The accuracy of the solution improves with the increase of the 
number of elements in the mesh; i.e., its density. As the mesh elements get finer, the solution gets closer 
to the reality. However, the accuracy comes with a high cost; the computational power that is required to 
compute the solution increases exponentially with the mesh density, as well as the memory 
requirements. Several studies classify the mesh generation methods and the impact of its density and 
shape in the accuracy of the solution [43]–[49], among others. Ghavidel et al. [44] show that an 
inadequate mesh density affects the reliability of the model’s prediction. The authors compared four 
models with different mesh densities. Ashford and Sitar [45] give an overview of the development of the 
FEM over the last 30 years. 
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Static and Dynamic Meshes 

Static meshes are suitable for many Computational Fluid Dynamics (CFD) simulations where the 
physical geometry does not change over the course of the simulation. The mesh is generated prior to the 
computations and stays unchanged until the end of the simulation. However, static meshes are not 
suitable for all scenarios; certain problems would require a high density mesh, to keep the solution error 
within the limits, and would render it completely intractable. Adaptive Mesh Refinement (AMR) is a 
method to dynamically adapt the mesh, within certain regions, during the simulation. These regions are 
refined when higher precision is required, or coarsened to reduce computational costs. The numerical 
solution, given a desired accuracy, is calculated with the least amount of work. Different techniques 
have been proposed in literature over the years to dynamically refine and coarsen the mesh, allowing the 
solution error to be within certain limits while the costs are minimized [5], [28], [50]–[59]. The 
advantages of AMR are significant: increase of the accuracy of the solution, reduction in computational 
and memory costs. 

3.1.3. Multiphase Problems 

For certain applications the mesh elements may belong to more than one phase. Typically these 
applications arise from multiphysics or contact-impact modeling, and geometric partitioners are often 
preferred to compute the partitions. This kind of problems consists of various separate phases 
interrelated (e.g., crash simulations consist of two different phases: the calculation of forces then the 
contact detection). Frequently, each phase uses separate partitions and data communication is required 
between them [60]. 

As data needs to be communicated between phases, computing a single partition well with respect to 
all phases would reduce or, in the ideal scenario, remove communication. Each processor would have 
multiple workloads, which correspond to the different phases, making the computation of this single 
partition more complex. In short, the partitioning is done phase by phase and the computation of the 
current partition is affected by the results of previous phases [61]. 

3.2. The Problem of Load Balancing in Parallel Computations 

The FEM is a powerful technique widely utilized to predict the comportment of real life objects subject 
to specific conditions such as mechanical stresses, heat, vibrations, etc. [2], [3], [41], [51], [62]. 
However, current applications have large computational, communication and memory costs to be useful 
in practice in the form of sequential implementations. Parallel systems allow to overcome this problem 
by making available a large amount of resources to FEM applications [1], but they bring, as well, new 
challenges regarding system efficiency. 

The efficiency of parallel FEM applications is primarily defined by two important factors: the 
distribution of the data over all available processors and the communication overhead of the boundary 
mesh elements. When the mesh is refined and coarsened several times during the computations, the 
workload changes unpredictably and a redistribution of the mesh may be required. The FEM application 
has to be interrupted for a load balancing step. This interruption should be as short as possible and the 
new distribution of the mesh should keep to a minimum the number of elements changing their location. 
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Efficient load balancing techniques are required to maximize efficiency and fully profit from the 
potential of HPC systems. 

As parallel simulations, as well as environments, change and become more complex, partitioning 
techniques must be enhanced to fit the emerging requirements. Partitioning algorithms need to be aware 
of computer architectures, memory and communication resources. Additionally, FEM simulations must 
scale linearly with the problem size and available resources. 

3.2.1. Parallelization of Numerical Simulations 

FEM is now a typical example of an application for HPC systems due to the number of mesh elements 
required to obtain accurate approximations. The mesh of information is partitioned and distributed 
among all processors following the paradigm Single-Program Multiple-Data (SPMD) [41], [63]; 
multiple processors simultaneously execute the same code on different mesh elements. The mesh 
partitioning problem is the distribution of the mesh of information amongst all available processors in a 
parallel system and it was shown to be NP-complete [6]–[8], [64]. As the mesh can be easily represented 
as a graph, considerably effort focuses on developing proper heuristics based on the graph partitioning 
problem [65]–[72]. 

With dynamic problems, some regions of the mesh are refined or coarsened between computational 
steps. Since these regions are not known in advance, or can vary over time, the mesh changes 
unpredictable during the computations. This is the main source of imbalance in parallel FEM 
simulations. Hence, efficient load balancing techniques are essential to reduce the impact of this 
refinement-coarsening process on the efficiency of computations. It is essential to find new balanced 
partitions with an additional restriction to prevent too many elements migrating to other processor. 
Moving mesh elements is usually an expensive operation since huge amounts of information have to 
travel over the network. A number of solutions have been proposed over the time [73], [74]. 

Factors Leading to Imbalance 

The most important causes of load imbalance in parallel FEM applications are the dynamic nature of the 
problem through time (the cost of computation and communication), and the adaptive refinement or 
coarsening of the mesh during the simulation. Since it is not possible to know in advance what regions 
of the mesh will change, it is a difficult task to keep a balanced workload on all processors. The 
interference from other users in a shared system and the heterogeneity in either the hardware or in the 
solver can also affect the load balance and performance. 

Numerous static and dynamic methods have been developed for load balancing. The dynamic 
problem has not been extensively studied as the static one. Devine et al. [31] provide ideas to address the 
dynamic problem. Willebeek-LeMair and Reeves [75] provide a comparison study of dynamic load 
balancing strategies. Chen and Taylor [12] achieved improvements up to 36% when heterogeneity is 
considered in distributed systems. Furthermore, speed is commonly the main objective in dynamic load 
balancing while the quality of the partition (its balance) comes in second place. A less balanced 
distribution of work does not necessarily mean an increase in computing time; it may allow other 
metrics to improve such as communication overhead. 
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Refinement of the Dynamic Mesh 

The quality of the solution depends on the accuracy of the discretization of the mesh; however, a static 
mesh with high degree of refinement requires considerable computational power. Dynamic meshes 
address this problem and are used when the static counterparts do not fulfill the requirements. Over time, 
dynamic meshes are modified to increase, or decrease, the accuracy in certain regions while keeping the 
overall computational cost at a minimum. The refinement and coarsening process takes the original 
mesh and adds or subtracts vertices according to function 𝑓 producing a new mesh based on error 
estimates of the previous computational step. As the FEM application is govern by the size and 
distribution of the mesh, this process heavily affects its performance and efficiency in parallel 
implementations. 

Several techniques have been proposed in literature, they are classified into two broad categories: 
dynamic and static algorithms. Some of them use the Delaunay refinement [76], [77], but in practice this 
approach faces important problems such as handling small input angles and the tendency to produce 
slivers in three dimensions. Others techniques use ball-packing methods, which also have some 
drawbacks such as generating large meshes. Various other techniques have been proposed in literature, 
Hudson, in his doctoral work [52], provides extensive information on the topic. 

Element Migration 

Once the dynamic mesh has been refined adaptively, a load imbalance is introduced to the system; a new 
distribution of the elements is necessary to restore the balance. A cost function categorizes elements in 
boundary regions. Next, appropriate elements are moved to neighboring subdomains until the balance is 
restored. The migration tends to be localized, when elements are not moved between nonadjacent 
subdomains, in order to keep the quality of the partition from being degraded; however, it may be more 
difficult to achieve a balance. One key aspect to consider is the cost of this migration; it may be more 
efficient to keep a small imbalance when the cost of the migration is high. Migrating elements could be 
costly as large amounts of data have to be sent through network links. We refer the reader to [74], [78]–
[80] for more information. 

3.2.2. Approaches to Balance the Load 

Load balancing is important in parallel computations and an interesting area of research with a vast 
range of applications. It was first introduced by Shivaratry et al. [9] who described and compared some 
common strategies. It maximizes the overall performance of the application, in a parallel system, by 
reducing the processor idle time and communication. All the processors should have the same amount of 
work and the data dependencies between them should be reduced in order to minimize the overall 
computational cost. Hence, efficient load balancing techniques are required to fully exploit the 
advantages of HPC systems. 

To date, simulations may require weeks, months or even years to be performed. Load balancing 
techniques are an important part of FEM simulations; the load balancer is responsible of the overall 
efficiency during the execution of the simulation. However, the time required by the load balancer must 
be kept to a minimum. It is often preferred a fast partition of the mesh than a completely balanced one. 
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The nature and size of the problem make it unfeasible to search for an exact solution as the search space 
increases exponentially with the size of the problem [72]. 

There exist several classifications proposed in literature; we mention only a few of them, but refer the 
reader to the work of Bichot [81] for more information. The next paragraphs describe different 
approaches to address the load imbalance in parallel computations. 

Heuristics and Metaheuristics 

To address the load balancing problem, most of the efforts made in the past focus on heuristics and 
approximation algorithms due to the nature of the problem. These techniques provide fast and 
acceptable good solutions to keep the computational and communication cost under control [72], [74], 
[82]. Farhat et al. [83] have implemented a number of algorithms and demonstrated their efficiency in 
practical large-scale problems. They provide detailed descriptions with strong and week points of those 
algorithms. The list includes the greedy algorithm, the reverse Cuthill-McKee algorithm, the principal 
inertia algorithm, the recursive graph bisection algorithm, the ID topology frontal algorithm, and the 
recursive spectral bisection algorithm, just to mention some. Bichot [81], [84] proposed a method called 
fusion fission and compared its performance with several other algorithms such as simulated annealing 
and ant colony. 

Spectral Methods 

Spectral methods were widely used due to the quality of the solutions they provide. Later, they were 
eventually replaced by hierarchical methods which are considerable less expensive while provide 
solutions with comparable quality [81]. Examples of spectral algorithms can be found in literature such 
as the work by Hendrickson and Leland [67], Barnard and Simon [85], Pothen et al. [69], among others. 
We refer the reader to the doctoral work of Bichot [81] and Diekmann et al. [74] where more 
information on spectral methods is provided. 

Diffusive Methods 

Another approach to the load balancing problem uses diffusive methods such as the work by Walshaw et 
al. [86]. Their works is based on the algorithm proposed by Hu and Blake [87], which in turn is an 
improvement of previous methods studied by Cybenko [88]. 

Kernighan-Lin Based Algorithms 

The Kernighan-Lin (KL) algorithm [72], named after its authors, is not a partitioning algorithm, it 
refines an existing partition in a graph. The refinement is achieved by moving vertices between neighbor 
subdomains in order to improve the quality of the partition and stops when no further improvement is 
possible. Due to its complexity, 𝑂(𝑛2 log𝑛), Fiduccia and Mattheyses [71] proposed a linear-time 
variant with similar results. Other approaches, such as [89], [90], use these concepts to address the load 
balancing and the graph partitioning problems. Abou-Rjeili and Karypis [91] and Walshaw et al. [89] 
provide more information on this topic. 
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Graph Partitioning Techniques 

Recent efforts have contributed to develop new techniques designed to address the mesh partitioning 
problem on parallel computers; many of them by focusing on the graph partitioning problem. These new 
techniques have been implemented in numerous frameworks and graph partitioning libraries. However, 
the graph partitioning problem is not recent [72]. 

The mesh of information of FEM applications can be characterized by a graph and different types can 
be used for this purpose according to the requirements. With this in mind, efforts to address the mesh 
partitioning problem in parallel FEM simulations have been focused on graph partitioning techniques. 
The graph partitioning algorithms generate an array which contains the location information for every 
graph vertex; it indicates to which processor the vertex should be migrated. This information is then 
translated to the mesh. When dual or nodal graphs are used, the output of the partition libraries contains 
only the new distribution of the mesh elements and a separated distribution needs to be computed for the 
nodes. Fjällström [11] describes the graph partitioning problem, a number of algorithms and their 
applications. Buluç et al. [10] provide a survey of the most recent graph partitioning algorithms and their 
applications. 

The mesh of information is first converted into a weighted graph. The weights of vertices represent 
the calculation costs while the weights of edges the communication costs. A variety of graph types can 
be used for this purpose. The selection of the type is done according to the requirements of the 
application, the model to estimate the costs, and the desired precision to approximate the cost model. We 
refer the reader to the work published by Basermann et al. [92] for more details. 

The different types of graphs than can be used are: 

• Dual graph or element graph. In this type of graph, vertices represent mesh elements and their 
weight the computational costs of those elements. Edges, also weighted, symbolize the 
communication cost between the corresponding mesh elements. Vertices in the graph are 
connected by edges only when the respective mesh objects share and edge or face, in two 
dimensions or three dimensions respectively. 

• Extended dual graph. Some types of meshes cannot be accurately characterized by a dual or 
element graph. This is the case when the mesh elements have different dimensions; it is not 
possible to represent the potential communication. Extended dual graphs solve this problem by 
connecting vertices only if the mesh elements share one or more nodes. This approach maintains 
all connections even between different dimension elements that otherwise would be lost in a dual 
or element graph. However, extended dual graphs are in general more complex and its associated 
cost superior, especially for 3 dimensional meshes. 

• Generalized dual graph. This kind of graph is a compromise between the extended dual graph 
and the element graph making it also suitable for meshes with elements of different types. A key 
characteristic is that vertices are not always connected when the mesh elements share a node; they 
are connected by and edge depending on the local maximum number of shared nodes between 
those mesh elements. 

• Nodal graph. This type of graph uses a different approach. Vertices represent the nodes in the 
mesh and they are linked only when they share a mesh element. 
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• Combined graph. Vertices represent both the elements and the nodes making it easier to describe 
the different calculation costs. It is due to the fact that FEM applications use nodes to describe 
inter-process communication and the graph edges for the potential communication between 
elements and nodes. All kinds of connections such as element to element, element to node and 
node to node would be included. 

3.2.3. Load Balancing through Graph Partitioning 

FEM applications use a mesh of information to describe the object under analysis. Often, graphs are 
used to represent this mesh in order to address the load partitioning problem when the data (work) needs 
to be reallocated amongst the processors. The vertices of the graph describe the mesh elements (data or 
work) to be partitioned whereas the edges represent the potential communication between those mesh 
elements. The amount of communication required during the computation of the solution is estimated by 
the boundary edges (edges connecting vertices located in different subdomains). The weights of vertices 
and edges reflect, to a degree, the associated costs of computation and communication respectively. 
Thus, the aim is to create a balanced partition and keeping the edge cut to a minimum. It is vital to use 
the correct type of graph to represent the mesh of information; the accuracy of that representation 
heavily affects the final result of the simulation. Basermann et al. [92] provide detailed information on 
this regard. The graph partitioning libraries provide an array that indicates for each vertex the location 
(processor) it should be migrated. Though, this is usually not a perfect balance of the load since the 
vertex weights represent only an approximation of the work. In fact, the local subdomain solutions 
define the computational cost. 

Regardless the type of graph used for load balancing, they have limitations. There is always a 
compromise between its benefits and drawbacks when choosing the correct graph type for the problem. 
Graphs can only represent an approximation of the computation and communication costs and are 
limited to a type of system [93]. The graphs used to model the mesh of information are generally 
undirected. This implies symmetry in all relations between vertices, making them unsuitable for non-
symmetric matrices. To address these problems, hypergraphs have been also used in FEM applications. 
As in a standard graph, hyper vertices also represent the data. However, the hyper edges represent sets of 
related vertices making the hyper edges in the cut a precise characterization of communication costs, not 
just an approximation [94]. Hypergraph partitioning has proven to produce high quality solutions in 
many areas of application such as sparse matrix decompositions [94], [95], database storage and data 
mining [96], [97], and Very-Large-Scale Integration (VLSI) design [98]. However, it has been 
demonstrated that hypergraph partitioning is considerably slower than graph partitioning [99]. It is 
confirmed by the generalized use of graph partitioning algorithms and libraries to balance the workload 
in parallel FEM computations. 

Graph partitioning problems are important in various areas of engineering and computer science. 
Examples of applications are present in VLSI design, FEM, image segmentation, route planning, social 
networks, air traffic control, among others [81], [84], [100], [101]. Many of these applications use a 
graph, to represent the data, and employ a variety of techniques to dive it; with the final goal being the 
solution to the problem they treat. It is an essential part of FEM applications for the load balancing step; 
it balances the load while keeping the communication at a minimum in scientific simulations. 
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The Graph Partitioning Problem 

Briefly, the graph partitioning problem involves the creation of subdomains, or smaller groups, from a 
collection of vertices in a graph, according to some objectives such as the minimization of a cost 
function. The problem becomes more complex when the number of objectives increases or when they 
oppose to each other. We now formally define the graph partitioning problem and describe the most 
important metrics used to measure the quality of the partition. For the purposes of this work, and based 
on [79], [91], [102], [103], we define the k-way graph partitioning problem as follows: 

Let 𝐺 = (𝑉,𝐸) be an undirected graph with 𝑛 = |𝑉| vertices and |𝐸| edges. Both vertices and edges 
are weighted with positive integer values. The vertices represent the computational load by the 
corresponding mesh nodes, whereas the edges represent the data dependencies between them. The 
weight of vertex 𝑣𝑖 ∈ 𝑉 is denoted by ‖𝑣𝑖‖; similarly ‖𝑒𝑖‖ denotes the weight of edge 𝑒𝑖 ∈ 𝐸. 

Given that the graph has to be divided into 𝑘 different subdomains, a partition 𝜋 of 𝐺 is defined as the 
mapping of 𝑉 into 𝑘 disjoint subsets 𝑆1, 𝑆2, ⋯, 𝑆𝑘 such that 𝑆𝑖𝑖 ∩ 𝑆𝑗𝑗 = ∅ for 𝑖𝑖 ≠ 𝑗𝑗, ⋃ 𝑆𝑖𝑖1≤𝑖𝑖≤𝑘 = 𝑉 

and ‖𝑆𝑖𝑖‖ = 𝑆̅; where the weight of a subdomain is the sum of weights of its vertices, ‖𝑆𝑖𝑖‖ =
∑ ‖𝑣‖𝑣∈𝑆𝑖𝑖 , and the optimal subdomain weight is given by 𝑆̅ = ⌈∑ ‖𝑣‖𝑣∈𝑉 𝑘⁄ ⌉. The graph partitioning 

problem is to find a partition that balances the load whilst minimizes the communication costs. Note that 
a perfect balance is not always possible. 

The set of edges denoted by 𝐶 is called the edge cut; it is formally defined as the set 𝐶 =
��𝑣𝑖 ,𝑣𝑗��𝑣𝑖 ,𝑣𝑗 ∈ 𝑉 ∧ �𝑣𝑖 ,𝑣𝑗� ∈ 𝐸 ∧ 𝑣𝑖 ∈ 𝑆𝑖𝑖 ∧ 𝑣𝑗 ∈ 𝑆𝑗𝑗 ∧ 𝑖𝑖 ≠ 𝑗𝑗� with the edges having their vertices in 

different subdomains. If there are vertices 𝑣𝑖 ,𝑣𝑗 ∈ 𝑉, and there is an edge such that �𝑣𝑖 ,𝑣𝑗� ∈ 𝐸 with 

𝑣𝑖 ∈ 𝑆𝑖𝑖, 𝑣𝑗 ∈ 𝑆𝑗𝑗 for 𝑖𝑖 ≠ 𝑗𝑗, then it is said that the edge �𝑣𝑖 ,𝑣𝑗� ∈ 𝐶. The size of the edge cut is given 

by ‖𝐶‖ = ∑ ‖𝑒‖𝑒∈𝐶 ; the sum of weights of the edges in the cut. The vertices which have an edge in 𝐶 

are referred to as boundary vertices. The imbalance is defined as max1≤𝑖𝑖≤𝑘‖𝑆𝑖𝑖‖ 𝑆⁄ , which is the 
maximum subdomain weight divided by the optimal weight. A more precise definition of the graph 
partitioning problem is therefore to find 𝜋 such that ‖𝑆𝑖𝑖‖ ≤ 𝑆̅ and ‖𝐶‖ is minimized. Note that the 
number of edges in the cut is minimized when the edges have unitary weights (i.e., |𝐶| = ‖𝐶‖). A 
partition is represented by a vector 𝜋 of size 𝑛, where 𝜋[𝑣] = 𝑖𝑖 for all 𝑣 ∈ 𝑆𝑖𝑖. 

Metrics to Evaluate the Partition 

Frequently, the edge cut is used by graph partitioning algorithms to evaluate the quality of the partition 
as it is much easier to optimize compared with others. However, this metric reflects only an 
approximation of the potential communication costs during the simulation and it is affected by the type 
of graph selected to model the mesh of information. It is well known, and has been demonstrated, that 
the edge cut is not the best metric to optimize when used to balance the workload of parallel FEM 
applications [104], [105]. Including information related to the solver during the partitioning process can 
reduce the potential communication volume [82]. Minimizing the boundary vertices can lead to better 
results, but unfortunately this metric is much harder to optimize [93]. 

Other metrics have been used to try to improve the quality of the partitions. Primarily, the 
characteristics and requirements of the FEM application dictate the best metric to optimize. Among the 
most used we can mention the amount of vertices to be migrated to a different subdomain, the volume of 
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information to be sent by each subdomain, the volume of information to be received by each subdomain, 
the diameter of the resulting subdomains. 

The Problem is NP 

Graph partitioning problems are typically NP-hard [64], [82], [101]; the complexity grows exponentially 
with the problem size. However, other graph partitioning problems are NP-complete, as it has been 
demonstrated by Gary et al. [6]–[8]. Consequently, solutions to these problems focus on heuristics and 
approximation algorithms to keep the computational cost under control [82]. As an example, the work 
by T. N. Bui and C. Jones [64] demonstrates that finding a good vertex and edge partition is NP-hard. 

3.3. Graph Partitioning Algorithms 

During the years, an increasing number of techniques and methods to deal with the load balancing 
problem of FEM applications have been proposed. These methods have been implemented in a number 
of graph partitioning libraries. Fjällström [11] describes the graph partitioning problem, a number of 
algorithms and their applications. Buluç et al. [10] provide a survey of the most recent graph partitioning 
algorithms and their applications. Schulz [106] presents a list of graph partitioning techniques in his PhD 
dissertation. Next, we summarize and describe the most common techniques. 

3.3.1. Genetic Methods 

Genetic algorithms are metaheuristics used to generate high quality solutions to optimization problems. 
They are inspired in the process of natural selection. While they may provide good solutions, often they 
require higher processing power to generate same quality solutions compared to other methods. In 
addition, genetic algorithms do not scale well with complexity. A survey of genetic approaches, 
presented by Kim et al. [107], has a much deeper analysis. 

3.3.2. Diffusive Methods 

As its name suggests, this technique mimics the physical process of diffusion. It is easy to visualize the 
similarity between them; the work is spreading among all processors such as the heat in a block of 
metal. These methods are simple, well studied with several examples in the literature, and designed for 
dynamic balancing. Much work has been done in this area [66], [88], [108]–[114]. 

3.3.3. Spectral Methods 

More elaborate methods, called spectral methods, utilize eigenvalues of the Laplacian matrix of the 
graph. These methods are, in general, much more expensive [69], [115], but with the proper 
optimization they became state-of-the-art for the graph partitioning problem [116], [117]. The Multilevel 
Spectral Bisection (MSB) is an optimization of the original Spectral Bisection (SB). MSB produces 
partitions of the same quality as SB in a fraction of the time, one or two orders of magnitude [85]. Other 
approaches using spectral methods can be found in [78], [108], [110], [113]. 
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3.3.4. Greedy Methods 

Greedy approaches are considered among the fastest and easiest to implement. They use the graph 
connectivity to create the subdomains. In order to create a subdomain, an initial seed is taken then 
further adjacent vertices are added until the appropriate size for the subdomain is attained. New 
subdomains are generated following the same principle until all vertices are assigned to a subdomain. 
The way of choosing an adjacent vertex, in order to assign it to a subdomain, influence the quality of the 
partition. Several possibilities exist such as vertices that reduce edge cut [65], [70], following the breath-
first method [66], etc. The initial subdomains are, in general, very compact, but the final subdomain is 
composed by the left-over vertices, reducing the quality of the partition. Different methods try to solve 
this problem [70], [89], [118], [119]. 

Bubble [108] is a well-known algorithm fast and easy to implement. Unfortunately there is no 
guarantee on the quality of the partition; its major drawback. Even though, after several iterations the 
seeds could be uniformly distributed, the resulting subdomains may not be of the same size. To address 
this problem, a number of optimizations have been suggested over the years. 

3.3.5. Geometric Methods 

These methods are known for their simplicity and speed, but can only be used when vertices have 
coordinate information. Furthermore, the quality of the partitions is worse compared with other more 
expensive methods such as spectral [120], [121]. They use the geometric locality to create subdomains; 
very important when this is the main goal. However, they may induce a high volume of communication 
between subdomains due to the lack of explicit control over this metric. Examples of this approach are 
presented in [31], [70], [83], [122], [123]. 

3.3.6. Multilevel Methods 

Recently, researches have focused on an efficient method for graph partitioning. It provides higher 
quality partitions, even compared with spectral methods, with a reasonable computational complexity 
[68], [115], [124]. The idea behind this method is simple and consists of four phases called Coarsening, 
Matching, Initial Partition, and Uncoarsening. For more details, the reader should refer to [68]. 

First, the graph is reduced until a point where it is easy to handle. The reduction produces a series of 
progressively smaller graphs by matching vertices and collapsing them together. Then, the smallest, and 
coarsest, graph is divided creating an initial partition. It is then projected back to the original, and finer, 
graph. The projection constantly refines the partition as finer graphs offer more opportunities to improve 
its quality. The main matric used to define the quality of the partition is the edge cut; an estimate of the 
total communication induced by the partition. 

According to the results in [68], [115], multilevel methods generate partitions of good quality with a 
variety of unstructured graphs. However, only experimental analysis has been presented, the theoretical 
analysis to explain the effectiveness of these methods is missing. 

Next, we describe in detail the different phases of multilevel methods by using the definitions in [79], 
[90], [124], [125]: 
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• Coarsening phase. A series of progressively smaller and coarser graphs, 𝐺𝑖 = (𝑉𝑖 ,𝐸𝑖), is created 
from the original graph 𝐺0 = (𝑉0,𝐸0) such that |𝑉𝑖| > |𝑉𝑖+1|. The coarser graph 𝐺𝑖+1 is 
constructed from graph 𝐺𝑖 by finding a maximal matching 𝑀𝑖 ⊆ 𝐸𝑖 of 𝐺𝑖 and collapsing together 
the vertices that are incident to each edge of the matching. Vertices that are not incident to any 
edge of the matching are simply copied to 𝐺𝑖+1. When vertices 𝑣,𝑢 ∈ 𝑉𝑖 are collapsed to form 
vertex 𝑤 ∈ 𝑉𝑖+1, the weight of vertex 𝑤 is |𝑤| = |𝑣| + |𝑢|, while the edges incident to 𝑤 is set 
equal to the union of the edges incident to 𝑣 and 𝑢 minus the edge (𝑣,𝑢). In the case where vertex 
𝑧 in 𝐺𝑖 contains edges to both 𝑣 and 𝑢, such that (𝑧, 𝑣) and (𝑧,𝑢), then the weight of the resulting 
edge in 𝐺𝑖+1 is set to |(𝑧, 𝑣)| + |(𝑧,𝑢)|. Thus, during this process, the weights of vertices and 
edges, in the successive smaller graphs, increase with every level. 

• Matching Phase. Some authors do not consider the matching as a separate phase, but part of the 
coarsening one. There are different ways to generate the matchings during the coarsening phase 
[68], [79], [91]. They have an important effect on the quality of the final partition and the total 
execution time of the partitioning process [124], [125]. Here, we just mention some of them. 
Random matching (RM) uses a randomized algorithm to generate a very fast matching [102], 
[115], [124], [125]. Heavy Edge Matching (HEM) [68], [90], [102], [124], [125], computes a 
matching 𝑀𝑖, such that the weight of the edges in 𝑀𝑖 is high. The Modified Heavy Edge Matching 
(HEM*) [90] is an optimization of HEM to minimize the average degree of the graph on every 
subsequent coarsening level. Walshaw and Cross [79] implemented a variation of the method 
proposed in [115] by Hendrickson and Leland. 

• Initial Partitioning Phase. A partition of the coarsest graph 𝐺𝑘 = (𝑉𝑘 ,𝐸𝑘) is computed. Diverse 
methods can be applied for this purpose due to the size of 𝐺𝑘. Expensive methods can even be 
used without incurring in significant increase of the execution time. An study and comparison of a 
number of algorithms is presented in [68]. 

• Uncoarsening phase. The initial partition of the coarsest graph 𝐺𝑘 is projected back towards the 
original graph 𝐺0 by going through the graphs 𝐺𝑘−1,𝐺𝑘−2,⋯ ,𝐺1, refining the partition at each 
graph level. Even if the partition of 𝐺𝑖 is at a local minima, the partition of 𝐺𝑖−1, obtained by the 
projection, may not be at a local minima. Hence, local refinement heuristics must be applied to 
improve the partition of 𝐺𝑖−1. Several algorithms for this purpose are presented and analyzed in 
[68]. 

Within multilevel methods, the graph partitioning problem is generally addressed by the use of 
recursive bisection. The original graph is first bisected, and then each half is recursively bisected again. 
The process is followed until the desired amount of subdomains is attained. George Karypis uses this 
approach in METIS [37] to compute all the partitions. It is also possible to directly compute a k-way 
partition, but the coarsening phase may become more expensive to perform. Nevertheless, there are 
some advantages such as the fact that the coarsening phase is performed only once, and that recursive 
bisection can lead to much worse partitions in some cases [126]. 
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3.4. Most Common Approach 

The literature reveals that the most common approach to address the load balancing problem in parallel 
FEM applications is through graph partitioning techniques. They do not, however, provide solutions 
with the highest quality compared with other methods. Graphs have numerous limitations when used to 
represent the mesh of information of FEM applications. None the less, the trade between speed and 
accuracy makes graph partitioning the best option to address the load balancing problem. It is more 
important to have an acceptable solution in the fastest way possible. 

The next chapter provides information on a selection of software and libraries which address the load 
balancing problem through graph partitioning. It also sets the grounds for the development of DSHEM. 
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Chapter 4.  

Current Solutions 

An increasing number of frameworks and libraries have been developed over the years to address the 
load balancing problem in FEM simulations. They provide different functionalities and performance for 
a variety of requirements. Some of them are free while others are only commercially available. Whether 
it is a FEM framework or a fully integrated simulator, they all require a load balancing module to 
improve their performance in parallel systems. However, the vast majority delegate this task to external 
libraries. 

In this chapter we give an overview of the available software. We refer the reader to the website of 
swMATH [127] for more information on mathematical software, or the corresponding references of the 
software presented here. 

4.1. FEM Frameworks 

A large variety of FEM frameworks and tools have been introduced in the last years [26], [27], [29], 
[30], [53], [128]–[145]. While some provide effective results for particular problems, others are more 
suitable for general purposes. We mention the most relevant tools including their main features. 

Charm++ [128] is a framework created at the University of Illinois. It gives scientists the opportunity 
to focus on modeling the problem and not on parallelization details. It is based on a data driven 
execution and multi-partition decomposition to increase the efficiency of the simulation. The application 
is divided into a set of small parts called objects. The objects are then distributed amongst all available 
processors and the communication is defined between them and not between processors. The framework 
separates the numerical algorithms from the parallel implementation. One example of FEM simulators 
based on the Charm++ framework is NAMD2 described in [146]. The authors give the analysis of its 
performance on some benchmark applications. 

Recent effort is being focused on massively parallel programming due to the increasing use of clusters 
of thousands of processors. Heister et al. [26] focus on the design of efficient data structures and 
algorithms to fit these new requirements. They have enhanced the library deal.II [145] to profit from the 
large amount of processing power of clusters. The library utilizes new method in order to reduce, into 
smaller blocks, the finite element implementations by using data encapsulation and object oriented 
techniques. deal.II is a mature library with a large support of different applications including various 
scientific areas, application-specific algorithms, and programming methodologies. 

Dolfin [131] employs new techniques in order to generate code automatically. First, mathematical 
notations express the Finite Element (FE) variational forms, and then low-level code is generated and 
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compiled. Afterwards, linear algebra and computational meshes are integrated with the code. Dolfin 
differs from many other projects such as Sundance [134] and Life [137], [138], among others, for the 
simple reason that it focuses on code generation. As a result, Dolfin supports an extensive range of FE 
since it may assemble FE variational forms on FE spaces supported by the FE backend and the form 
compiler. The latter automatically generates code according to the high level characterization of the FE 
variational form provided by the users [131]. 

FEAST [132] is a FE based solver for the computations of PDE problems and it is designed to fully 
exploit the advantages of the large processing power of parallel HPC systems. It was created at the 
Technische Universität Dortmund and it is the successor of the established FE packages FEAT and 
FEATFLOW [147]. The next version, FEAST2, is currently under development and will include new 
features such as 3D support. 

SIERRA [129] is a framework developed at the Sandia National Laboratories aimed to help write 
parallel applications. SIERRA is a comprehensive heavyweight framework that is continuously 
evolving. It is designed for massive parallel simulations of multiphysics applications. It includes a set of 
parallel data structures and software services that facilitate code development. Developers of mechanics 
code focus on the mechanics algorithms instead of parallelism, data structures, load balancing, etc. The 
framework allows developers to use different programing languages such as FORTRAN and C. 

Diffpack [133], [140], [148] is a framework for the numerical solution of PDEs. From the point of 
view of a programmer, Diffpack is a set of libraries with a collection of classes written in C++. First 
appeared in the early 1990s and still actively developed. It is currently a commercial software 
maintained by inuTech GmbH [149]. The main libraries of Diffpack are BasicTools, LaTools, DpKernel 
and DpUtil. 

FreeFEM++ [136], [144] is another framework oriented to solve PDEs using the FEM. It is currently 
being developed and maintained by the Université Pierre et Marie Curie and the Laboratoire Jacques-
Louis Lions. It is a multi-platform, free software, written in C++ that provides a high level programming 
language. 

All frameworks focus on facilitating the creation of parallel FEM applications without the hassle of 
parallelization details; the application programmer can now focus all the attention on modeling problem. 
The parallelization, and inherent load balancing, of every framework is already integrated and hidden 
from the user. Frequently, the load balancing part is handled by external libraries such as METIS, Jostle 
and Chaco which are described in Section 4.4. Charm++, FreeFEM++ and deal.II rely on METIS for 
balancing the load in parallel systems. SIERRA uses the Charm++ load balancing module, which in turn 
relies on METIS. Diffpack does not include a specific load balancing module; it gives the option to use 
external partitioning libraries such as METIS and Jostle. It is not clear how Dolfin and FEAST handle 
parallel systems. 

4.2. Simulators 

While FEM frameworks focus on the low level layers of the development of applications, ready-to-use 
software is also available [41], [150]–[155]. Due to the scope of this work we just mention a few of 
them with a brief description. 

Analysis3D [153] is a FEA software designed for structural engineering of steel construction of frame 
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and truss design. It comes with a Microsoft Windows user interface to facilitate the creation of models, 
as well as a library with the most commonly used sections such as AISC, British steel, DIN and 
Euronorm. A free educational version is available. 

PadFEM [41] is an easy to use interface for parallel FEM simulations on distributed memory systems. 
It combines different methods to support scalable massively parallel numerical simulations with a 
modular structure. 

ESI Group [151] develops a wide selection of software for different applications such as casting, 
electromagnetic, crash, biomechanics, and fluid dynamics, among others. 

ANSYS, Inc. [150] provides a set of commercial solutions for a wide variety of applications. ANSYS 
multiphysics applications include thermal analysis, electronics cooling, fluid structure interaction, heat 
transfer, among others. ANSYS CFD is designed to simulate the behavior of fluids flows. ANSYS 
structural mechanics focuses on impact analysis, strength analysis, vibration, curability, etc. ANSYS 
electronic solutions focus on the analysis of electric motors, low-frequency electromagnetics, radio 
frequency and microwave, signal integrity, among others. 

Commercial software is difficult to evaluate due to the fact that the source code is not available. ESI 
Group and ANSYS, Inc. do not share any information on how parallel applications are handled to 
improve the efficiency of the system. Analysis3D provides only a sequential implementation, rending it 
useless for HPC systems. PadFEM uses direct partitioning heuristics. 

4.3. Load Balancing Libraries 

A number of load balancing libraries have been proposed over the years; each of them with a particular 
problem in mind to address. This section presents the most representative of them, namely DRAMA 
[92], [156], Zoltan [157], [158], DRUM [159], [160], and UMPAL [161]. We refer the reader to the 
respective literature for more details on each of them. 

The Dynamic Re-Allocation of Meshes for parallel finite element Applications (DRAMA) [92], [156] 
is a library designed to address the load balancing problem in FEM applications. It is the result of a 
European Commission project involving several countries. It is intended to be a general purpose library, 
but much emphasis was made to fit the requirements of two commercial FEM frameworks: PAM-
CRASH/PAM-STAMP by ESI Group [151] and FORGE3 by Transvalor [152]. DRAMA is a library 
designed to be used in parallel MPI applications. It can directly reallocate the mesh elements or call 
ParMETIS and Jostle, two graph partitioning libraries, to accomplish the task. It uses the DRAMA cost 
model [156] to reallocate the mesh elements during the load balancing steps of FEM computations. The 
model is well suited for the inherent dynamic changes of computations and communications. It fulfills 
additional requirements due to its dynamic nature: parallel execution, the current partition is taken into 
account, interacts with the FEM application. A study by Basermann et al. [92] shows that FORGE3 and 
PAM-CRASH/PAM-STAMP benefit from the dynamic load balancing provided by DRAMA. 

The Zoltan Parallel Data Services Toolkit [157], [158] is another library created by Center for 
Computing Research (CCR) at the Sandia National Laboratories. It is a collection of utilities to address 
load balancing, data migration, matrix ordering, and graph coloring among others. Zoltan has a unique 
design which allows it to support a wide range of applications; it uses a neutral data structure approach. 
FEM applications are not forced to implement a certain type of data structure in order to use Zoltan 
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during the load balancing process. Zoltan offers a callback interface to interact with the applications 
which provide the required data. DRAMA, in contrast, can only be called by mesh based applications. 
However, DRAMA performs better when data migration is critical due to the knowledge of the data 
structures used by the FEM application. Another advantage of Zoltan is the ability to add new 
algorithms to the toolkit; its source code is available on the website. It is easy to test new heuristics and 
compare them with the existing ones. 

Dynamic Resource Utilization Model (DRUM) [159], [160] is the result of the PhD dissertation by 
Jamal Faik. It makes use of the execution environment in order to improve the load balancing process. 
The library is not publicly available as it is not yet ready for general use. DRUM is a parallel library 
developed in C and MPI. It requires information of the execution environment; part inferred at run time 
and the rest provided manually. In combination with Zoltan, it achieves good results during the load 
balancing process. There is a graphical user interface called DrumHead that helps during the initial 
configuration of DRUM. DRUM is not a load balancer per se; it encapsulates the hardware and network 
topologies and uses that information in conjunction with existing load balancers to improve their results. 
A model is first created to describe the execution environment and includes network and nodes 
capabilities; LINPACK [162], [163] is used to assess the hardware capabilities. 

UMPAL [161] is a library that includes five different tools: a web interface to use UMPAL, a 
visualization tool to view the mesh once partitioned, a simulator, a load balancer with different 
algorithms, and a partitioner that uses Jostle, METIS and PARTY. It is an effort from the TungHai 
University in Taiwan. The partitioner within UMPAL uses three libraries: Jostle, METIS and PARTY. 
The characteristics of the graphs influence the results of those libraries. In order to obtain better results, 
all three libraries are executed independently and the best partition is chosen. That partition is then 
optimized with the Directed Diffusion Method (DD) [87], the Dynamic Diffusion Method (DDM) [111], 
or the Multilevel Diffusion Method (MD) [164]. The load balancer includes two different algorithms, 
the Prefix Code Matching Parallel Load Balancing (PCMPLB) and the Binomial Tree Based Parallel 
Load Balancing (BINOTPLB), both by Liao [111]. 

With a wide variety of load balancing libraries, it is curious that few of the FEM frameworks or 
simulators make use of them; perhaps an interesting detail contributes. The load balancing libraries rely 
on external graph partition libraries to distribute the load in a parallel system. DRAMA offers several 
mesh partitioners based on mesh migration, coordinate partitioning and graph partitioning. The first two 
are custom design whilst the last uses parallel versions of METIS and Jostle. Zoltan uses a similar 
approach delegating the graph partitioning to METIS and Jostle. DRUM interacts with Zoltan for the 
load balancing part adding support for heterogeneity. UMPAL relies on METIS, Jostle and PARTY for 
the partitioner. 

4.4. Graph Partitioning Software 

To date, there is a wide variety of libraries designed to improve the efficiency of parallel systems during 
FEM simulations. A number of them are free of charge for academic use, such as METIS [36], [37], 
Chaco [116], [117], and SCOTCH [165]–[167]. We refer the reader to [168] which provides more 
details on each of them. Over the years, a number of studies compares the software [74], [79], [90], 
[169]. However, it is difficult to reach a clear conclusion due to the different execution parameters and 
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input graphs available. 
Jostle [164], [170], [171] is a multilevel graph partitioning library for undirected unstructured graphs 

in parallel computers. It was first introduced in 1995 and recently became NetWorks [172], a 
commercial software. Jostle provides superior results in successive repartitions (balance existing 
partitions) compared to METIS [36], [37]. It employs a modified version of the KL algorithm [72], with 
a balance flow, for the refinement process in order to optimize the partitions. The coarsening phase 
reduces the original graph until 𝑘 vertices remain, where 𝑘 equals the number of desired subdomains. 
This is possible because the refinement is performed during both the coarsening and uncoarsening 
phases. Jostle is suitable for a dynamic load balance of the constantly changing mesh during the FEM 
simulations. It also includes a number of execution parameters to fit a variety of requirements. 

Chaco [116], [117] was first released in 1993 and it is being maintained by the CCR at the Sandia 
National Laboratories. It includes a variety of methods to produce high quality partitions. Chaco 
provides five types of partitioning heuristics: linear, inertial, spectral, KL, and multilevel-KL. Some of 
them were created by the authors while the others are optimization of existing methods; we refer the 
reader to [117] for more details. The Chaco development focuses on three main tasks: graph partitioning 
with a variety of methods, matching the partitions to the hardware topology, and sequencing graphs to 
preserve locality by the use of spectral methods. It includes several features such as the ability to read an 
existing partition from a file to optimize it. It may be difficult to use for a beginner as it contains a large 
number of parameters designed to optimize the partitions. However, many of those parameters are 
already set to reasonable defaults values. 

PARTY [173]–[175] is an effort, from the Institut für Informatik of the Universität Paderborn, to 
provide a free, and easy to use, library with a number of different methods for partitioning graphs. It was 
first available in 1996 with version 1.1. PARTY is a versatile library able to be embedded into an 
existing application or used as a stand-alone tool. It can also interact with the Chaco library by providing 
interfaces that allow the user to call Chaco’s methods within PARTY. In addition, a default execution 
configuration is provided to enable new users a quick start. The PARTY library implements several 
methods to generate the initial partition, among them we can mention random, linear, and Farhat 
techniques. The refinement is done with KL or Helpful Sets (HS) [65], [176], a method by their own. 
The local refinement in PARTY differs from other implementations; it uses an approach based on a 
theoretical analysis to improve the partitions [177], [178]. The HS heuristic moves sets of vertices 
instead of single vertices during the refinement process. It is only possible to apply HS to bisections; 
however, the common way to address the k-way partitioning problem is by the use of recursive 
bisection. More information is available on the PARTY website [175]. 

SCOTCH [165]–[167] is developed at the Laboratoire Bordelais de Recherche en Informatique 
(LaBRI) of the Université Bordeaux I in France. Its development started in 1992 and currently version 
6.0 is available. SCOTCH is a library for graph and mesh partitioning, reordering of sparse matrices, and 
static mapping. It uses the mapping algorithm called Dual Recursive Bipartitioning (DRB) and also 
includes other heuristics [179]. Recently, developers have introduced hypergraph partitioning algorithms 
extending some of SCOTCH capabilities such as support for native mesh structures. They also 
introduced parallel heuristics for graph ordering which are available in Parallel Threaded SCOTCH (PT- 
SCOTCH). 

METIS [36], [37], [68], [99] is a library for partitioning graphs developed by George Karypis at the 
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Department of Computer Science & Engineering of the University of Minnesota. Current available 
version is 5.1.0 and its development goes back more than 20 years. It is a mature and wide used library 
for load balancing FEM applications. METIS is extremely fast creating partitions of graphs with 
millions of vertices in only seconds. It takes advantage of the multilevel paradigm [68], [90], [115], 
[180] to reduce the graph and create fast and high quality partitions. It consistently produces superior 
partitions, up to 50% better, compared to spectral methods. Furthermore, there is a parallel version of the 
library called ParMETIS based on the Message Passing Interface (MPI). METIS is a collection of 
various serial programs for partitioning graphs and meshes as well as reordering sparse matrices. Several 
algorithms have been implemented like recursive bisection [68], multilevel k-way [103], and multi-
constraint methods. METIS, as well as Jostle, uses the algorithm by Hu et al. [181] to determine the best 
balancing flow for shifting elements. METIS is able to partition meshes by converting them into graphs. 
It currently supports four mesh element types: triangles, tetrahedra, hexahedra, and quadrilaterals. 

As mentioned before, a concrete and concise conclusion comparing the different graph partitioning 
libraries cannot be established. Many comparisons between them have been published [74], [79], [90], 
[169] with different results. Karypis and Kumar [90] pointed out some differences on the refinement 
phase between Chaco and METIS, leading to a more expensive partitioning process in the former. 
Diekmann et al. [74] showed that Jostle and METIS are not suitable for use in long periods of time 
without a complete repartitioning from time to time, when AR is a metric of importance. The 
experimental results by Walshaw and Cross [79] show a degraded performance of METIS compared to 
Jostle due the coarsening phase. METIS coarsens to 2000 vertices while Jostle coarsens until the number 
of vertices is the number of required subdomains. Usually, Jostle generates better partitions than METIS 
but it takes longer to compute them. Furthermore, some solvers have constraints, such as straight 
partition boundaries and connectivity, which cannot be addressed by Jostle and METIS. 

4.5. Hypergraph Partitioning Software 

Graph partitioning libraries are widely used to address the load balancing problem in parallel FEM 
applications. It has been shown that hypergraphs can represent, more accurately, FEM meshes than 
regular graphs providing better results; however, they are more expensive in terms of computational 
time. Nevertheless, hypergraph partitioning libraries have been available to fulfill stricter demands when 
execution time is not an issue. Among the most popular libraries we can mention hMETIS [182], [183], 
PaToH [184], [185], and Mondriaan [186]; which are all serial implementations. Zoltan [157], [158], a 
load balancing library, also includes a hypergraph partitioner. 

hMETIS [99], [182], [183] is a library for partitioning hypergraphs also developed by George Karypis 
at the Department of Computer Science & Engineering of the University of Minnesota. The latest stable 
version is 1.5.3, version 2.0pre1 still experimental, and its development goes back more than 20 years. 
First introduced in 1997 by Karypis et al. [187], hMETIS is a collection of various serial programs for 
partitioning hypergraphs. It is a library suited for partitioning hypergraphs modeling VLSI circuits, data 
mining, among other applications. Similarly to METIS, it uses the multilevel paradigm to generate the 
bisections. It is fast and robust while creating bisections of hypergraphs; and with multiple runs on the 
same hypergraph, it outperforms the previously known algorithms and benchmarks. According to the 
author, hMETIS produces bisections of much higher quality compared to other widely used algorithms; 
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up to 30% on average. 
The Partitioning Tools for Hypergraphs (PaToH) [184], [185] is a library developed by Çatalyürek at 

Bilkent University to address the hypergraph partitioning problem; the development started in 1994 
during his doctoral studies. The current stable version is 3.2. It is distributed for multiple platforms such 
as Linux, macOS, Solaris, and AIX, but it can also be used via Zoltan [158] and Mondriaan [186]; it is a 
very small library compared to hMETIS. PaToH is fast and stable with some important features: multi-
constraint and fixed cells partitioning. It uses the multilevel paradigm to create the partitions, as well as 
recursive bisection to generate a k-way partition. It provides an interface with functions for initialization 
purposes, memory management and the actual partitioning. 

Mondriaan [95], [186] is being developed by the Department of Mathematics of Utrecht University in 
the Netherlands. The current version is 4.2, released in September of 2017; its development goes back to 
2002. Mondriaan employs the multilevel paradigm with recursive bisection to generate a k-way partition 
of a hypergraph. It generates horizontal and vertical divisions similar to the paintings by Mondriaan, 
according to an author’s analogy. It is a sequential library written in C with the main focus on matrix 
partitioning. However, it is possible to use it with hypergraphs. 

UMPa is being developed at the Ohio State University by Çatalyürek et al. [188]; however, the library 
is not publicly available. Similar to the libraries previously mentioned, UMPa is based on the multilevel 
paradigm and recursive bisection. It provides improved partitions with a directed hypergraph model and 
a novel k-way refinement heuristic that handles multiple communication metrics. It minimizes the 
communication that causes excessive network use and bottlenecks. 

4.6. Limitations of Current Approaches 

It becomes clear that the load balancing problem in parallel FEM applications is addressed by the use of 
graph partitioning methods. Graph partitioning libraries are widely used by FEM applications to 
improve the efficiency of parallel systems. Hence, all limitations of graphs and graph partitioning 
techniques are inhered by the FEM applications; those limitations are described earlier in Section 3.2.3, 
Load Balancing through Graph Partitioning. It is then important to study and improve current graph 
partitioning techniques if we expect efficient parallel FEM applications. With that goal in mind, we 
propose a novel idea to address the load balancing limitations of current parallel FEM applications. 
Chapter 5 introduces the general concept and how new information is incorporated to the graph in order 
to improve the quality of partitions when the communication volume is considered. Chapter 6 presents 
the new vertex matching algorithm called DSHEM as a result of the previous analysis; a novel idea that 
entirely changes the paradigm. 

Based on the information presented in this chapter, we focus our effort on METIS. It is used by a 
majority of the available software making it the perfect candidate. It is open source and free for 
educational purposes too. Improving the partitions generated by METIS brings benefits not only to the 
users of this library but to all parallel FEM applications that rely on it. 
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Chapter 5.  

Analysis and Concept 

Undirected graphs are widely used to represent FE meshes. Efficient data structures have been proposed 
to store the graphs as well as many partitioning libraries. We propose a new matching model for the 
multilevel graph partitioning technique which aims to reduce the communication volume by simulating 
a directed graph. The main work of this research focuses on METIS, primarily because it is an open 
source library that allows a clear and fair comparison of results. 

This chapter examines the problem of current graph partitioning techniques. Not considering the 
communication dependencies of the subdomains leads to poor partitions that degrades the efficiency of 
parallel FEM applications. 

5.1. Analysis 

One of the fist metrics to optimize in graph partitioning techniques was the edge cut; it is fast and easy 
to implement. Unfortunately, undirected graphs used to characterize FE meshes do not represent the 
communication costs properly leading to inefficient partitions. This can be depicted easily with an 
example; Figure 5.1 shows two different partitions for the same graph, both of them with three edges in 
the cut. It could be assumed that both partitions have the same communication cost due the number of 
edges in the cut, however this is far from being true. Assuming that the weight for each edge is 1, the 
edge cut is 3 in both cases. But the communication volume differs due to the fact that each boundary 
vertex, represented by dotted lines, has to send and receive data. 

 

Figure 5.1.  Reduction of communication volume with an edge cut of the same size; a) has a communication volume of 6 
whereas b) a communication volume of 4. 

It can be seen in Figure 5.1 that vertices 1, 2 and 3 in a) send data from 𝑃𝑃𝑃𝑃𝑒𝑃𝑃𝑃𝑃 1 to 
𝑃𝑃𝑃𝑃𝑒𝑃𝑃𝑃𝑃 2; the same applies for vertices 4, 5 and 6. A different scenario is shown in b) where the 
communication volume is reduced to only 4 with the same edge cut value. Vertex 2 sends data from 
𝑃𝑃𝑃𝑃𝑒𝑃𝑃𝑃𝑃 1 to 𝑃𝑃𝑃𝑃𝑒𝑃𝑃𝑃𝑃 2 only once, regardless of its two edges in the cut. When vertex 2 sends data 
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to vertex 3, there is no need to send the same information twice; the data is already in 𝑃𝑃𝑃𝑃𝑒𝑃𝑃𝑃𝑃 2 and 
vertex 5 can just fetch it locally. The same logic is valid when vertex 5 sends its data to 𝑃𝑃𝑃𝑃𝑒𝑃𝑃𝑃𝑃 1 
only once. This particular case reduces the communication volume to only 4 units. 

 

Figure 5.2.  Communication volume with the same number of boundary vertices. a) has an edge cut of 3 while b) an edge 
cut of 5; however, both a) and b) have a communication volume of 6. 

 

Figure 5.3.  Three different graph partitions and their characteristics. a) shows a small regular graph. A balanced 
partition with 7 boundary vertices, an edge cut of 8 and a communication volume of 10 is depicted in b). A second 
partition in c) with 8 boundary vertices, and edge cut of 6 and a communication volume of 10. The third partition 

consisting of 9 boundary vertices, and edge cut of 6 and a communication volume of 12 in d). 

The previous example leads us to think that the reduction of boundary vertices also reduces the 
communication volume and Figure 5.2 supports the hypothesis. Having the same number of boundary 
vertices, but different number of edges in the cut, the communication volume remains the same. An 
increment of 30% in the edge cut does not affect the amount of data to be transferred. However, 
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reducing the number of boundary vertices does not always reduce the communication volume as 
depicted next. Figure 5.3 shows some examples with different metrics. In b) the number of boundary 
vertices is 7 and the communication volume is 10 as in c), but c) has 8 boundary vertices. c) and d) have 
the best edge cut with only 6 edges; however, d) has the highest communication volume of all. 

The right vertices and edges must be in the boundary in order to reduce the communication volume. 
The edge cut is not an accurate metric to reduce the communication volume. A novel idea is proposed to 
address the limitations of undirected graphs based on the previous analysis.  The next section describes 
the main concept of the proposed approach. 

5.2. Concept 

The idea is simple: to find the correct vertices which reduce the amount of data to be transferred. In 
order to achieve this goal, it is necessary to use a new approach; the communication dependencies must 
be included into the partition process. 

Using the data structures in METIS, which are designed for undirected graphs, we can simulate 
directed versions of them. This is possible due to the fact that each edge and its weight are stored twice; 
i.e., (𝑢, 𝑣) is stored independently of (𝑣,𝑢). We can take advantage of this situation to mimic the 
direction and source of the communication between every pair of vertices connected by an edge during 
the coarsening process. By using independent values for edges (𝑢, 𝑣) and (𝑣,𝑢), we can designate the 
amount and direction of the communication. This is more evident in the coarsest graph, and affects the 
initial partition. Later, when the partition is projected to the original graph, the benefits of this 
bidirectional graph are evident. 

We follow the original process to partition a graph in METIS with some key differences. When two 
vertices are matched, the communication dependencies are considered in the decision. This new 
condition is implemented in combination with the coarsening process, where the weights of the edges 
and the direction of communication are calculated for the coarser graph. The values for the new edges, 
in the coarser graph, are calculated based on the communication dependencies. In the next coarsening 
level, these values are used to create the matching and the new coarser graph. A full description of the 
process is presented in the next chapter. 

5.3. Challenges 

There exist common challenges in the design, implementation and use of new graph partitioning 
methods; those are not the scope of this thesis. We, however, focus on the particular challenges of the 
concept mentioned earlier. An undirected graph, by nature, cannot represent directional communication. 
This brings an important question. How can directional communication be introduced while partitioning 
an undirected graph? An option is the use of a new data structure to store the information, but this comes 
with a cost: higher memory requirements. With a deep analysis of the data structures in METIS, and 
how they are used, it is possible to device a method to embed the new information within the original 
data structures. 

Being able to store information related to directional communication within the same data structure is 
only part of the challenge. The next question is about the type of information that should be stored. 
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There is a limited amount of data that can be included without incurring in extra memory cost. The most 
basic, yet significant communication dependencies information shall be selected. 

It is always possible to include as much information as possible for the partitioning process; better 
partitions can be obtained if more information is available in the decision process. As stated before, the 
complexity and time to generate a partition is largely increased. The inclusion of the new information 
should not reduce the performance of the partitioning process, and yet, improve the quality of the result. 

5.4. Proposed Model 

To address the limitations of METIS, and the inadequate undirected graphs, we propose a novel 
matching model called DSHEM; the main contribution of this thesis. It is designed around the idea 
presented in Section 5.2 and addresses the challenges in Section 5.3. A brief description is provided 
next; we refer the reader to Chapter 6 for a full description. 

The data structures used by METIS store each edge twice, but with the exact same weight; i.e., (𝑢, 𝑣) 
is stored independently of (𝑣,𝑢). DSHEM takes advantage of this situation and processes each edge in 
an independent manner. This new method allows the possibility of different values for edge (𝑢, 𝑣) and 
(𝑣,𝑢), adding information of directional communication to the undirected graph. In addition, the origin 
of the communication can also be identified during the coarsening process. With the new information, 
the utility function in DSHEM can generate more accurate decisions and improve the quality of the 
partition. The rest of the partitioning process remains untouched. 

The next chapters provide a detailed description of DSHEM and a comprehensive analysis of its 
performance. 
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Chapter 6.  

Directed Sorted Heavy Edge Matching 

This chapter proposes a new vertex matching model for the multilevel graph partitioning technique 
which aims to reduce the communication volume by simulating a directed graph. Based on the SHEM 
strategy implemented in METIS, the new model includes information of the direction of the 
communication in the matching decisions to reduce the overall communication volume. It is the result of 
a comprehensive analysis of current solutions and their limitations presented in Part II, Literature 
Review. It is a novel approach as it entirely changes the paradigm in METIS by introducing 
bidirectional communication to an undirected graph. By doing so, more information is available to 
improve the quality of partitions. It, however, does not increase the memory requirements of METIS. 

Section 6.1 illustrates, with a small example, how HEM2 and SHEM create the series of coarser 
graphs during the matching and coarsening phases. Next, in Section 6.2, the idea behind DSHEM and 
how it simulates a directed graph to produce more efficient partitions, in terms of communication 
volume, is presented; it addresses the limitations of SHEM. It is then compared to SHEM following all 
the steps of the coarsening and matching phases with another small graph. The rest of the sections 
provide implementation details as well as an analysis of the algorithm. 

6.1. Sorted Heavy Edge Matching 

First introduced in [124], [125], HEM removes the heaviest edges during the matching and subsequent 
creation of the coarser graphs; this helps ensure a smaller edge cut in the final partition. SHEM is a 
variation of HEM with the key difference that the vertices are visited in a sorted order based on their 
degrees instead of doing it randomly. Studies [68], [90], [91], [102], [103], [124], [125] have shown the 
superiority of SHEM over HEM and eventually HEM was dropped from METIS since version 5.0. 
SHEM has been improved over the time and became the de facto algorithm in METIS. The complete 
description of these algorithms can be found in [68] and in Appendix A where HEM and SHEM are 
presented in detail. 

6.1.1. Description 

Karypis and Kumar [124], [125] have demonstrated that removing the heaviest edges, while generating 
the series of coarser graphs, decreases considerably the edge cut of the initial partition in the coarsest 

                                                      
2 Heavy Edge Matching (HEM) is an earlier implementation, later replaced by SHEM. The key difference is that SHEM visits 

the vertices in a sorted order based on their degree while HEM does it in a random manner. 
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graph. HEM visits the vertices in random order. Vertex 𝑢 is matched with an unmatched vertex 𝑣 such 
that the weight of the edge (𝑢, 𝑣) is maximum over all valid incident edges. Since the coarser graph has 
smaller edge weight, it has a smaller edge cut. The reduction of boundary vertices is performed during 
the uncoarsening phase in METIS. METIS uses efficient data structures to store the graph and the series 
of coarser graphs for the partitioning process; we refer the reader to [36], [37] for more details. These 
data structures are designed for undirected graphs with each edge and its weight being stored twice; i.e., 
(𝑢, 𝑣) is stored independently of (𝑣,𝑢), but always with the same value. 

An example of the matching process of HEM is depicted in Figure 6.1. The original graph in a) 
contains 7 vertices and 11 edges; the vertices are numbered and the values next to every edge represent 
their weight. If vertex 4 is randomly visited, after analysis, the heaviest incident edge is (4,7); hence, 
HEM matches vertex 4 to vertex 7, as depicted in b). The matched vertices are enclosed by doted lines. 
Assuming vertex 6 is visited next, its heaviest incident edge is (6,4), however, vertex 4 is already 
matched to vertex 7. In fact, only vertex 1 is available, therefore vertex 6 is matched to it; as depicted in 
c). Finally, when vertex 3 is visited the heaviest incident edge is (3,5), producing the matching in d). 
The remaining vertex 2 cannot be matched due to the lack of available unmatched vertices. 

After the maximal matching has been computed, METIS collapses the edges and creates a coarser 
graph; with the new smaller graph, the matching process starts all over again. Once a threshold is 
reached and the coarsest graph is generated, METIS creates the initial partition. 

 

Figure 6.1.  Matching process with HEM. A sample graph with weighted edges is shown in a). When vertex 4 is visited, 
its heaviest edge produces the match with vertex 7 as shown in b). Next, in c), vertex 6 is visited and matched to the only 

available adjacent vertex, 1. Finally in d), vertex 3 is matched to vertex 5 due to its heaviest incident edge. Vertex 2 
remains unmatched. 

SHEM follows the same principle visiting the vertices and matching them with the adjacent vertex 
having the heaviest edge. The difference, between them, is the order in which the vertices are visited. 
Hence, a description on how SHEM works is not necessary; though, it is important to understand the 
complete coarsening process. Figure 6.2 presents a suitable example to explain the full matching and 
coarsening process in METIS. a) shows the original graph which is, as a matter of fact, stored by METIS 
as depicted in c) using the data structures for undirected graphs. The values in parenthesis represent the 
weights of the edges; the weight of edge (1,2) is 1, as well as that of edge (2,1). With this 
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representation, the graph can also be seen as a directed graph as shown in b), with edges (𝑢, 𝑣) and 
(𝑣,𝑢) always having similar weights. One possible matching produced by SHEM is shown in d); the 
matched vertices are enclosed by doted lines. Once the maximal matching has been computed, the 
matched vertices are collapsed together to form a coarser graph. Vertices 1 and 2 are collapsed to form a 
new coarse vertex, called super vertex 𝐴 in this case. All incident edges to both vertices are preserved in 
e), only edge (1,2) is removed. The same process applies to vertices 5 and 6 to obtain the coarse graph 
in f). It can be seen that super vertex 𝐴 in g) has three edges; one from the original vertex 1 and two 
from the original vertex 2 in d). Super vertex 𝐵 has similar characteristics. Now, the matching process 
can continue with the new coarser graph generating the matching in h). This leads to the final, and 
coarsest, graph in i). The new edge (𝐶,𝐷) has a weight of 3 due to the combine weights of edges (𝐴, 3), 
(𝐴,𝐵) and (4,𝐵) in f). With the same logic, edge (𝐷,𝐶) has a weight of 3; consistent with an undirected 
graph. 

 

Figure 6.2.  Coarsening process with SHEM. A sample graph with weighted edges is shown in a). The actual way of 
storing the graph is depicted in b) and c). The first matching can be seen in d). The first coarsening phase of the graph, 
with the directional weights, is shown in e) and f). The coarsening process continues in g). h) depicts a SHEM matching. 

i) shows the coarsest, and final, graph with an edge cut of 3 (communication volume of 6). 

Once the coarsest graph is generated, METIS can calculate the initial partition of the graph. If the 
coarsest graph in i) is bisected, the resulting edge cut will be 3 as the coarse edge represents 3 individual 
edges in the original graph in a). The next step performed by METIS is the refinement process and the 
projection of the initial partition back to the original graph. 

6.1.2. Algorithm 

HEM, shown in Table 6.1, is one of the first algorithms implemented in METIS. It is simple and fast at 
creating partitions with a small edge cut. Improvements to the algorithm have resulted in SHEM, the de 
facto algorithm in METIS. The information required by HEM is the structure of the graph and the 
maximum weight that is allowed for a vertex during the coarsening process. 
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HEM first initializes the array 𝑝𝑒𝑃𝑝 with a random permutation of the vertices; line 2 of the 
algorithm. Next, the for loop of lines 3 to 15 visits all vertices according to the order of the random 
permutation in 𝑝𝑒𝑃𝑝. If the current vertex 𝑖 from 𝑝𝑒𝑃𝑝 is 𝑈𝑈𝑀𝐴𝑈𝐶𝑈𝐸𝐷 then a match has to be found; 
lines 4 to 14. The first step is to match vertex 𝑖 to itself; it is done in line 5, bearing in mind the 
possibility that no appropriate match could be found. All adjacent vertices are evaluated with the 
purpose of finding the best match for vertex 𝑖 in lines 6 to 12. The decision to match vertex 𝑖 to adjacent 
vertex 𝑗 is defined by the conditional in lines 7 to 11. If adjacent vertex 𝑗 is 𝑈𝑈𝑀𝐴𝑈𝐶𝑈𝐸𝐷, and the 
weight of edge (𝑖, 𝑗) is maximum, and the combined weight of vertices 𝑖 and 𝑗 does not exceed the 
maximum weight of a coarse vertex, then vertex 𝑖 is matched to vertex 𝑗. After all adjacent vertices have 
been evaluated and vertex 𝑖 is matched, the number of coarse vertices is updated in line 13. Finally, 
when all vertices have been matched, the algorithm returns the maximal matching in line 16. 

Table 6.1:  HEM simplified algorithm 

Algorithm  Heavy Edge Matching 

Input: Maximum weight allowed for a vertex 
Structure with information of the graph 

Output: Array with maximal matching of the graph 
Number of new coarse vertices 

1: procedure MATCH_HEM 
2:  initialize 𝑝𝑒𝑃𝑝 with a random permutation of the vertices 
3:  for each vertex 𝑖 in 𝑝𝑒𝑃𝑝 do 
4:   if vertex 𝑖 is 𝑈𝑈𝑀𝐴𝑈𝐶𝑈𝐸𝐷 then 
5:    match vertex 𝑖 to itself 
6:    for each adjacent vertex 𝑗 of vertex 𝑖 do 
7:     if adjacent vertex 𝑗 is 𝑈𝑈𝑀𝐴𝑈𝐶𝑈𝐸𝐷 and 
8:     weight of adjacent edge is increased and 
9:     maximum weight of a coarse vertex is not exceeded then 

10:      match vertex 𝑖 to adjacent vertex 𝑗 
11:     end if 
12:    end for 
13:    increase the number of coarse vertices 
14:   end if 
15:  end for 
16:  return 
17: end procedure 

 

SHEM is a modified version of HEM, which has been improved over the time on each release of 
METIS. SHEM visits the vertices in a sorted manner according to their degree, which is calculated in 
advance. The first release of SHEM visited the vertices with highest degree first, however recent 
implementations do it in reverse order: vertices with the lowest degree first. 

It is worth mentioning that the original version of SHEM, depicted in Table 6.2, is actually a newer 
version of the algorithm. It is, however, more adequate for the purpose of describing and comparing 
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SHEM and DSHEM. This version is referred as the original version of the SHEM algorithm throughout 
this work. The computation of vertex degrees, the subsequent ordering of the vertices, and the matching 
of islands3 are the core differences with HEM. Contrary to HEM, these islands are now properly 
matched leading to better partitions. The information required by SHEM is similar to HEM, the structure 
of the graph and the maximum weight that is allowed for a vertex during the coarsening process. Two 
vertices will only be matched if their combined weight does not exceed the specified maximum weight; 
nonetheless, the islands are excluded from this restriction with the aim of improving the final maximal 
matching by not leaving isolated vertices. The light gray text in Table 6.2 is the shared code between 
HEM, in Table 6.1, and SHEM, and the black text represents the new or modified code present in 
SHEM. 

Table 6.2:  SHEM simplified algorithm (original version) 

Algorithm  Sorted Heavy Edge Matching (original version) 

Input: Maximum weight allowed for a vertex 
Structure with information of the graph 

Output: Array with maximal matching of the graph 
Number of new coarse vertices 

1: procedure MATCH_SHEM 
2:  initialize 𝑝𝑒𝑃𝑝 with a sorted permutation of the vertices according to degree 
3:  initialize 𝑃𝑝𝑒𝑃𝑝 with a reversed permutation of 𝑝𝑒𝑃𝑝 
4:  for each vertex 𝑖 in 𝑝𝑒𝑃𝑝 do 
5:   if vertex 𝑖 is 𝑈𝑈𝑀𝐴𝑈𝐶𝑈𝐸𝐷 then 
6:    if vertex 𝑖 is not 𝐼𝑆𝐼𝐴𝑈𝐷 then 
7:     break 
8:    end if 
9:    match vertex 𝑖 to itself 

10:    for each vertex 𝑗 in 𝑃𝑝𝑒𝑃𝑝 do 
11:     if vertex 𝑗 is 𝑈𝑈𝑀𝐴𝑈𝐶𝑈𝐸𝐷 and 
12:     vertex 𝑗 is not 𝐼𝑆𝐼𝐴𝑈𝐷 then 
13:      match vertex 𝑖 to vertex 𝑗 
14:      break 
15:     end if 
16:    end for 
17:    increase the number of coarse vertices 
18:   end if 
19:  end for 
20:  for each vertex 𝑖 in 𝑝𝑒𝑃𝑝 do 
21:   if vertex 𝑖 is 𝑈𝑈𝑀𝐴𝑈𝐶𝑈𝐸𝐷 then 
22:    match vertex 𝑖 to itself 
23:    for each adjacent vertex 𝑗 of vertex 𝑖 do 

                                                      
3 Islands are vertices with a degree equal to zero (0). They do not have incident edges or adjacent vertices. 
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24:     if adjacent vertex 𝑗 is 𝑈𝑈𝑀𝐴𝑈𝐶𝑈𝐸𝐷 and 
25:     weight of adjacent edge is increased and 
26:     maximum weight of a coarse vertex is not exceeded then 
27:      match vertex 𝑖 to adjacent vertex 𝑗 
28:     end if 
29:    end for 
30:    increase the number of coarse vertices 
31:   end if 
32:  end for 
33:  return 
34: end procedure 

 

The first step performed by SHEM, in line 2, is to calculate the degree of each vertex. The degree 
values are limited to a maximum of 70% of the actual average degree in the graph; it translates into 
equal treatment for all vertices with high degree. Then the array 𝑝𝑒𝑃𝑝 is populated with a sorted 
permutation of the vertices according to the degrees previously computed. Line 3 of the algorithm 
reverses the permutation and stores it in 𝑃𝑝𝑒𝑃𝑝; it is required during the matching of islands. The for 
loop of lines 4 to 19 treats the islands if they exist. All vertices are visited according to the permutation 
in 𝑝𝑒𝑃𝑝; if vertex 𝑖 is 𝑈𝑈𝑀𝐴𝑈𝐶𝑈𝐸𝐷 then a match is needed. The conditional of lines 6 to 8 guarantees 
that the current vertex 𝑖 is an island, otherwise the loop is terminated. The array 𝑝𝑒𝑃𝑝 is sorted and, if 
islands exist, they are located in the first positions due to their degree being zero. Once it is confirmed 
that vertex 𝑖 is an island and 𝑈𝑈𝑀𝐴𝑈𝐶𝑈𝐸𝐷, it is first matched to itself, in line 9, in case no other option 
is available. The vertices are then visited, using the for loop of lines 10 to 16, in order to find a proper 
match for vertex 𝑖, the island. Vertices with the highest degrees are located in the first positions of array 
𝑝𝑃𝑒𝑃𝑝. The first 𝑈𝑈𝑀𝐴𝑈𝐶𝑈𝐸𝐷 and non island vertex 𝑗 is selected to match with vertex 𝑖 in the 
conditional of lines 11 to 15. There is no restriction of the combined weight of vertices 𝑖 and 𝑗. Once 
vertex 𝑖 has been matched, the number of coarse vertices is updated in line 17. 

The rest of the algorithm follows the same logic as HEM with the only difference being the 
permutation order in 𝑝𝑒𝑃𝑝. All the vertices are visited, if vertex 𝑖 is 𝑈𝑈𝑀𝐴𝑈𝐶𝑈𝐸𝐷 then all adjacent 
vertices 𝑗 are evaluated to find a match according to the conditions in lines 24 to 28. 

The release of version 5 of METIS brought important enhancements to SHEM; the entire partitioning 
library was redesigned. The logic behind SHEM remains, nonetheless the majority of the code is new. 
The method to match islands was optimized; multi-constraint support and 2-hop matching were added as 
well. It is referred as multi-constraint when a vertex has multiple weights. 2-hop matching allows vertex 
𝑖 to match with a non-adjacent vertex 𝑘, as long as vertex 𝑖 is adjacent to vertex 𝑗 and vertex 𝑗 is 
adjacent to vertex 𝑘. 

The light gray text in Table 6.3 is the shared code between the original and the enhanced version of 
SHEM, the black text represents the new or modified code existing in the enhanced version of SHEM. 
Lines 2 to 6 calculate the 2-hop keys for the eligible vertices. Lines 12 to 14 find suitable matches for 
the islands. The rest of the code is divided in two main sections, one for a single constraint and the other 
for multiple constraints; the code of these two sections is almost identical. The next paragraphs describe, 
in detail, the enhanced version of the SHEM algorithm. 
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Table 6.3:  SHEM simplified algorithm (enhanced version) 

Algorithm  Sorted Heavy Edge Matching (enhanced version) 

Input: Maximum weight allowed for a vertex 
Structure with information of the graph 

Output: Array with maximal matching of the graph 
Number of new coarse vertices 

1: procedure MATCH_SHEM 
2:  for each vertex 𝑖 in the graph do 
3:   if maximum degree for 2-hop matching is not exceeded then 
4:    compute 2-hop key for vertex 𝑖 
5:   end if 
6:  end for 
7:  initialize 𝑝𝑒𝑃𝑝 with a sorted permutation of the vertices according to degree 
8:  for each vertex 𝑖 in 𝑝𝑒𝑃𝑝 do 
9:   if vertex 𝑖 is 𝑈𝑈𝑀𝐴𝑈𝐶𝑈𝐸𝐷 then 

10:    match vertex 𝑖 to itself 
11:    if maximum weight of a coarse vertex is not exceeded then 
12:     if vertex 𝑖 is 𝐼𝑆𝐼𝐴𝑈𝐷 then 
13:      match vertex 𝑖 to next available 𝑈𝑈𝑀𝐴𝑈𝐶𝑈𝐸𝐷 vertex 𝑗 
14:     else /*Current vertex is not island*/ 
15:      if number of constraints is 1 then 
16:       for each adjacent vertex 𝑗 of vertex 𝑖 do 
17:        if adjacent vertex 𝑗 is 𝑈𝑈𝑀𝐴𝑈𝐶𝑈𝐸𝐷 and 
18:        weight of adjacent edge is increased and 
19:        maximum weight of a coarse vertex is not exceeded then 
20:         match vertex 𝑖 to adjacent vertex 𝑗 
21:        end if 
22:       end for /*Goes through all adjacent vertices*/ 
23:       if vertex 𝑖 is matched to itself and 
24:       maximum degree for 2-hop matching is not exceeded then 
25:        for each adjacent vertex 𝑗 of vertex 𝑖 do 
26:         for each adjacent vertex 𝑘 of vertex 𝑗 do 
27:          if vertex 𝑘 is not vertex 𝑖 and 
28:          adjacent vertex 𝑘 is 𝑈𝑈𝑀𝐴𝑈𝐶𝑈𝐸𝐷 and 
29:          both 2-hop keys are similar and 
30:          both degrees are similar and 
31:          maximum weight of a coarse vertex is not exceeded then 
32:           match vertex 𝑖 to adjacent vertex 𝑘 
33:           break 
34:          end if 
35:         end for 
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36:         if vertex 𝑖 is not matched to itself then 
37:          break 
38:         end if 
39:        end for /*Goes through all adjacent vertices*/ 
40:       end if /*2-hop matching*/ 
41:      else /*Multiple constraints*/ 
42:       for each adjacent vertex 𝑗 of vertex 𝑖 do 
43:        if adjacent vertex 𝑗 is 𝑈𝑈𝑀𝐴𝑈𝐶𝑈𝐸𝐷 and 
44:        (weight of adjacent edge is increased or 
45:        (weight of adjacent edge is preserved and 
46:        partition balance is improved)) and 
47:        maximum weight of a coarse vertex is not exceeded then 
48:         match vertex 𝑖 to adjacent vertex 𝑗 
49:        end if 
50:       end for /*Goes through all adjacent vertices*/ 
51:       if vertex 𝑖 is matched to itself and 
52:       maximum degree for 2-hop matching is not exceeded then 
53:        for each adjacent vertex 𝑗 of vertex 𝑖 do 
54:         for each adjacent vertex 𝑘 of vertex 𝑗 do 
55:          if vertex 𝑘 is not vertex 𝑖 and 
56:          adjacent vertex 𝑘 is 𝑈𝑈𝑀𝐴𝑈𝐶𝑈𝐸𝐷 and 
57:          both 2-hop keys are similar and 
58:          both degrees are similar and 
59:          maximum weight of a coarse vertex is not exceeded then 
60:           match vertex 𝑖 to adjacent vertex 𝑘 
61:           break 
62:          end if 
63:         end for 
64:         if vertex 𝑖 is not matched to itself then 
65:          break 
66:         end if 
67:        end for /*Goes through all adjacent vertices*/ 
68:       end if /*2-hop matching*/ 
69:      end if /*One constraint*/ 
70:     end if /*Current vertex is island*/ 
71:    end if /*Current vertex weight not big*/ 
72:    increase the number of coarse vertices 
73:   end if /*Current vertex not matched*/ 
74:  end for /*Goes through all vertices*/ 
75:  return 
76: end procedure 
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The for loop of lines 2 to 6 computes the 2-hop keys for each vertex if their degree does not exceed a 
predefined value, i.e., if the vertices meet the requirements for 2-hop matching. Then the array 𝑝𝑒𝑃𝑝 is 
populated with a sorted permutation of the vertices according to their degrees in line 7. The for loop, 
lines 8 to 74, visits the vertices of the graph according to the sorted permutation in 𝑝𝑒𝑃𝑝. If vertex 𝑖 is 
𝑈𝑈𝑀𝐴𝑈𝐶𝑈𝐸𝐷, in line 9, then it is first matched to itself in line 10; this contemplates the possibility that 
no other vertex could be available for the match. If the weight of vertex 𝑖 does not exceed the maximum 
allowed for a coarse vertex, in line 11, then the process to find a suitable match for vertex 𝑖 continues. 
To prevent oversized coarse vertices, vertex 𝑖 stays matched to itself when the maximum allowed weight 
is exceeded. This verification handles vertices with one or multiple constraints. The lines 12 to 14 match 
the islands, if they exist, to the first available vertex 𝑗; there is no restriction of the combined weight of 
vertices 𝑖 and 𝑗. The code from lines 15 to 69 is divided into two main sections: lines 16 to 40 for single 
constraint and 42 to 68 for multiple constraints. The two sections follow the same logic and share most 
of the code. The single constraint section is described next. 

The adjacent vertices of vertex 𝑖 are then visited, using the for loop in lines 16 to 22, in order to select 
the adjacent vertex 𝑗 with the heaviest edge to match with vertex 𝑖. If adjacent vertex 𝑗 is 
𝑈𝑈𝑀𝐴𝑈𝐶𝑈𝐸𝐷, and the weight of the edge (𝑖, 𝑗) is maximum, and the combined weight of vertices 𝑖 and 
𝑗 does not exceed the maximum allowed for a coarse vertex then vertex 𝑖 is matched to vertex 𝑗; as 
defined in lines 17 to 21. If no match was found with the normal process, then 2-hop matching is 
employed when vertex 𝑖 meets the requirements. The verification is done in lines 23 and 24, vertex 𝑖 is 
matched to itself and it is suitable for 2-hop matching. The adjacent vertices of vertex 𝑖 are then visited 
again, using the for loop in lines 25 to 39, in order to select a vertex 𝑘 suited to match with vertex 𝑖. 
Vertex 𝑘 is adjacent to vertex 𝑗, which in turn is adjacent to vertex 𝑖; this is the idea behind 2-hop 
matching. The adjacent vertices of vertex 𝑗 are then visited, using the for loop in lines 26 to 35, in order 
to select a vertex 𝑘 to match with vertex 𝑖. If vertex 𝑘 is not vertex 𝑖, and vertex 𝑘 is 𝑈𝑈𝑀𝐴𝑈𝐶𝑈𝐸𝐷, 
and both vertices have the same 2-hop key, and they have the same degree, and the combined weight of 
vertices 𝑖 and 𝑘 does not exceed the maximum allowed then vertex 𝑖 is matched to vertex 𝑘 and the 
search ends; lines 27 to 34. Finally, in lines 36 to 38, the 2-hop matching process is terminated if vertex 
𝑖 is not matched to itself anymore. 

The multi-constraint section is similar to that of a single constraint described earlier. The difference 
lies in the two conditions of lines 43 to 47 and 55 to 59. The first condition matches vertex 𝑗 to vertex 𝑖 
if adjacent vertex 𝑗 is 𝑈𝑈𝑀𝐴𝑈𝐶𝑈𝐸𝐷, and the weight of the edge (𝑖, 𝑗) is maximum, or the edge has the 
same weight but it leads to a better balance, and the combined weight of vertices 𝑖 and 𝑗 does not exceed 
the maximum allowed for a coarse vertex for all constraints. The second condition is practically similar; 
it just considers the multiple constraints of vertices. 

The final and definitive matching of vertex 𝑖 is done after all its adjacent vertices have been examined 
and the 2-hop matching process completed; the number of coarse vertices is updated in line 72. Finally, 
line 75 returns the array with the matching information and the number of coarse vertices in the resulting 
coarse graph. 

6.1.3. Limitations 

The initial design of SHEM optimizes the edge cut, its only purpose. The subsequent refinement process 
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improves the initial partition and keeps its quality throughout the projection toward to the original graph. 
It has been demonstrated that the edge cut does not accurately represent the communication 
dependencies between subdomains. To address this issue, later releases of METIS introduce a new 
partitioning objective adding the ability to optimize the total communication volume. However, it has 
important limitations derived from the fact that it optimizes an edge-cut-based partition. 

Based on the inherent limitations of SHEM, we propose a new matching model that better emulates 
the communications dependencies. It follows the ideas presented in Chapter 5 to address the limitations 
of METIS and produce higher quality partitions. The next sections describe the proposed model and an 
overview of its implementation and performance. 

6.2. Directed Sorted Heavy Edge Matching 

DSHEM is based on SHEM, and therefore on HEM, with a few important additions. DSHEM introduces 
the concept of bidirectional communication to the matching phase. The aim is to represent more 
accurately the communication between the subdomains while creating the final partition of the graph. 
The utility function uses this new data to create a more efficient matching which leads, in the end, to a 
better partition. DSHEM includes a mechanism to further improve the results by changing a few 
parameters during the execution of METIS. The complete description of the algorithm can be found in 
Appendix A where HEM and SHEM are also presented in detail. 

6.2.1. Description 

DSHEM is designed to improve the communication volume in partitions of undirected graphs. The idea 
behind is simple: to find the vertices which will reduce the amount of data to be transferred, as described 
earlier. It is based on SHEM and implemented in METIS. As previously stated, the data structures in 
METIS are designed for undirected graphs, but they can be used to simulate directed versions of them. 
Each edge and its weight are stored twice; i.e., (𝑢, 𝑣) is stored independently of (𝑣,𝑢). DSHEM takes 
advantage of this situation to mimic the direction and source of the communication between every pair 
of vertices connected by an edge. 

As in SHEM, all vertices are visited in a sorter manner in DSHEM. Vertex 𝑢 is matched with an 
unmatched vertex 𝑣 such that the weight of the edge (𝑢, 𝑣) is maximum over all valid incident edges and 
the communication volume is reduced. This new condition is implemented in combination with the 
coarsening process, where the weights of the edges and the direction of communication are calculated 
for the coarser graph. 

An example of the matching and coarsening process of DSHEM is depicted in Figure 6.3. The 
original graph in a) can be represented as in c) based on the real bidirectional communication shown in 
b). The values in parenthesis represent the weights of the edges. Vertex 1 sends a communication 
volume of 1 to vertex 2, and vertex 2 sends a volume of 1 to vertex 1. METIS stores the weight of each 
edge twice; therefore, we do not incur in extra memory usage or extra computation for this new 
representation. Having the simulated directed graph, the matching and coarsening process can be 
performed. The first matching produced by DSHEM, in d), would be similar to that produced by SHEM. 
The matched vertices are enclosed by doted lines. At this point, the simulated graph does not have full 
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direction or source information of communications. Vertices 1 and 2 are collapsed to form a new coarse 
vertex, called super vertex 𝐴. All incident edges to both vertices are preserved to form the coarser graph 
in e), only edge (1,2) is removed; similar process is done to collapse vertex 5 and 6 as shown in f). 
Now, the coarsening process updates the weight of all edges in the coarser graph by adding information 
concerning to direction and source. To clarify how this new information is calculated, the arrows 
originated from each super vertex are grouped into two categories according to their real origin. In e), 
observing the arrows originated from super vertex 𝐴, one can appreciate that some are solid black and 
others are white. Solid black arrows are those belonging to the original vertex 1, while white arrows 
belong to vertex 2. This grouping is translated into f); note that some edges have negative values. This 
minus sign (-) is used to identify the real source of the edge, and not to indicate a negative value. 
DSHEM collapses two vertices, and only two, to form a new super vertex in the coarser graph. This 
makes it easy to indicate the source without using extra memory during the coarsening process. The 
edge (1,4) incident to vertex 1 in d) is preserved as edge (𝐴, 4) in e); its communication volume 
remains the same. To differentiate the edges incident to vertex 2 in d) which are preserved in e), the 
minus sign is added to their communication volume. The resulting values are then stored in the coarser 
graph f) as edges (𝐴, 3) and (𝐴,𝐵). To collapse vertices 5 and 6 in e) the same process is followed. The 
new coarser graph g) includes all the necessary information to reduce the communication volume in the 
next step of the partitioning process. It can be seen that super vertex 𝐴 in g) has three edges; one from 
the original vertex 1 and two from the original vertex 2 in d) as it is indicated by the minus signs. In 
fact, the real source cannot be established, only the fact that one edge comes from one vertex and the 
other two edges from the other vertex in the finer graph. Vertex 𝐵 in f) has similar characteristics. 

 

Figure 6.3.  Coarsening process with DSHEM. A sample graph with weighted edges is shown in a). A bidirectional 
communication is adapted to the graph in b) and c). The first matching can be seen in d). The first coarsening phase of 

the graph, with the new directional weights according to the source, is shown in e) and f). The coarsening process 
continues in g), but now with directional and source information. h) depicts a DSHEM matching reducing the 

communication volume. i) shows the coarsest, and final, graph with a communication volume of 4. 

The final matching depicted in h) is important as it describes the idea behind DSHEM. With the 
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complete information of direction and source, we can improve the partition reducing the volume of 
information to be transferred. If SHEM were used then all edges would have a weight of 1; their current 
weight is (1,1) with source information (the minus signs). If we visit vertex 𝐴 to find a match, in h), all 
three neighbors are inspected (vertices 3, 4 and 𝐵). If vertex 𝐴 is matched with vertex 3 or 𝐵, it can be 
seen that the resulting edges incident to the collapsed vertex will have three or four different sources 
(two sources from vertex 𝐴, and one from vertex 3 or two from vertex 𝐵), but if vertex 𝐴 is matched to 
vertex 4 the resulting edges will have only two sources (one source from vertex 𝐴 and one from vertex 
4). DSHEM will match vertex 𝐴 to vertex 4 reducing the number of sources in the resulting coarser 
vertex; SHEM would match vertex 𝐴 with any vertex because it only considers the weight of the edge 
that will be removed. 

If we take vertex 4 in h) as reference, DSHEM will match it with vertex 𝐴 while SHEM would choose 
any of the neighbors resulting in a degradation of the communication volume. The next coarsening step 
produces the coarsest graph shown in i) with a communication volume of 4. Vertices 𝐴 and 4 in h) are 
collapsed to form super vertex 𝐶 in i). The edges incident to vertex 𝐴 are also collapsed and their 
weights added. Due to the fact that both edges incident to vertex 𝐴 have the same source, we just count 
them as one edge going out from it. The resulting weight for that edge (𝐶,𝐷) is 2 (1 from the edge 
incident to vertex 𝐴 and 1 from the edge incident to vertex 4). The same process is done for the 
contraction of vertices 3 and 𝐵. 

6.2.2. Algorithm 

DSHEM shares the majority of the code with the enhanced version of SHEM. The fundamental 
difference lies on the condition that decides when the adjacent vertex 𝑗 is matched to vertex 𝑖. Most of 
the new code in DSHEM gathers information necessary to the conditional mentioned above. 

The algorithm in Table 6.4 distinguishes the new or modified code in DSHEM, the black text, from 
the inherited code from SHEM, the light gray text. We refer the reader to the previous section for the 
description of this share code. The information required by DSHEM is the structure of the graph, the 
maximum weight that is allowed for a vertex during the coarsening process, and three percentage values. 
These percentages are used to fine tune how much the weight of the edge, combined with the number of 
sources, affects the decision to match vertex 𝑗 to vertex 𝑖. The algorithm returns the array with the 
matching information and the number of coarse vertices. 

The for loop in lines 2 to 5 computes the number of positive and negative edges incident to every 
vertex in the graph. This information is later required to determine the number of sources that would be 
generated as a result of vertex 𝑖 being matched to adjacent vertex 𝑗; with fewer sources the total amount 
of communication is also reduced. Further in the code, the same two sections from SHEM are present: 
the first one for the single constraint case, lines 20 to 51, and the second one for the multi-constraint 
case, lines 53 to 87. These two sections share most of the code and only the single constraint is 
described here; the multi-constraint section uses a similar approach. It is important to note that DSHEM 
keeps the same code for islands and 2-hop matching from SHEM. 

The line 21 finds the edge (𝑗, 𝑖), i.e., edge (𝑖, 𝑗) in the opposite direction. These edges have different 
values in DSHEM, as opposed to SHEM where their values are always identical. Line 22 computes the 
number of sources for the case of vertex 𝑗 matching vertex 𝑖. The conditional in lines 23 to 32 decides 



6.2. Directed Sorted Heavy Edge Matching 

57 

whether vertex 𝑗 is matched to vertex 𝑖 taking into consideration the new collected information. With the 
data acquired previously, DSHEM can make a more informed decision whether vertices 𝑖 and 𝑗 should 
be matched together. It considers the three possible scenarios: the number of sources is reduced, 
preserved or increased. The weight of the edge, in combination with the percentages, affects the decision 
whether increasing the number of sources is preferred over reducing them. It could be more beneficial to 
remove an over weighted edge, at the cost of increasing the sources, rather than removing a very light 
edge. Removing heavy edges in the coarsening process also reduces the overall communication in the 
coarsest graph. The conditional in lines 23 to 30 is that of SHEM with the addition of the three different 
scenarios described earlier. Instead of considering only the weight of the edge, the number or sources 
and percentage are included. 

Table 6.4:  DSHEM simplified algorithm 

Algorithm  Directed Sorted Heavy Edge Matching 

Input: Maximum weight allowed for a vertex 
Structure with information of the graph 
Structure with matching percentages for DSHEM 

Output: Array with maximal matching of the graph 
Number of new coarse vertices 

1: procedure MATCH_DSHEM 
2:  for each vertex 𝑖 in the graph do 
3:   count all positive edges of vertex 𝑖 
4:   count all negative edges of vertex 𝑖 
5:  end for 
6:  for each vertex 𝑖 in the graph do 
7:   if maximum degree for 2-hop matching is not exceeded then 
8:    compute 2-hop key for vertex 𝑖 
9:   end if 

10:  end for 
11:  initialize 𝑝𝑒𝑃𝑝 with a sorted permutation of the vertices according to degree 
12:  for each vertex 𝑖 in 𝑝𝑒𝑃𝑝 do 
13:   if vertex 𝑖 is 𝑈𝑈𝑀𝐴𝑈𝐶𝑈𝐸𝐷 then 
14:    match vertex 𝑖 to itself 
15:    if maximum weight of a coarse vertex is not exceeded then 
16:     if vertex 𝑖 is 𝐼𝑆𝐼𝐴𝑈𝐷 then 
17:      match vertex 𝑖 to next available 𝑈𝑈𝑀𝐴𝑈𝐶𝑈𝐸𝐷 vertex 𝑗 
18:     else /*Current vertex is not island*/ 
19:      if number of constraints is 1 then 
20:       for each adjacent vertex 𝑗 of vertex 𝑖 do 
21:        find edges (𝑖, 𝑗) and (𝑗, 𝑖) 
22:        compute the number of sources for vertices 𝑖 with 𝑗 
23:        if adjacent vertex 𝑗 is 𝑈𝑈𝑀𝐴𝑈𝐶𝑈𝐸𝐷 and 
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24:        ((number of sources is reduced and 
25:        weight of adjacent edge is increased by percentage 1) or 
26:        (number of sources is preserved and 
27:        weight of adjacent edge is increased by percentage 2) or 
28:        (number of sources is increased and 
29:        weight of adjacent edge is increased by percentage 3)) and 
30:        maximum weight of a coarse vertex is not exceeded then 
31:         match vertex 𝑖 to adjacent vertex 𝑗 
32:        end if 
33:       end for /*Goes through all adjacent vertices*/ 
34:       if vertex 𝑖 is matched to itself and 
35:       maximum degree for 2-hop matching is not exceeded then 
36:        for each adjacent vertex 𝑗 of vertex 𝑖 do 
37:         for each adjacent vertex 𝑘 of vertex 𝑗 do 
38:          if vertex 𝑘 is not vertex 𝑖 and 
39:          adjacent vertex 𝑘 is 𝑈𝑈𝑀𝐴𝑈𝐶𝑈𝐸𝐷 and 
40:          both 2-hop keys are similar and 
41:          both degrees are similar and 
42:          maximum weight of a coarse vertex is not exceeded then 
43:           match vertex 𝑖 to adjacent vertex 𝑘 
44:           break 
45:          end if 
46:         end for 
47:         if vertex 𝑖 is not matched to itself then 
48:          break 
49:         end if 
50:        end for /*Goes through all adjacent vertices*/ 
51:       end if /*2-hop matching*/ 
52:      else /*Multiple constraints*/ 
53:       for each adjacent vertex 𝑗 of vertex 𝑖 do 
54:        find edges (𝑖, 𝑗) and (𝑗, 𝑖) 
55:        compute the number of sources for vertices 𝑖 with 𝑗 
56:        if adjacent vertex 𝑗 is 𝑈𝑈𝑀𝐴𝑈𝐶𝑈𝐸𝐷 and 
57:        (((number of sources is reduced and 
58:        weight of adjacent edge is increased by percentage 1) or 
59:        (number of sources is preserved and 
60:        weight of adjacent edge is increased by percentage 2) or 
61:        (number of sources is increased and 
62:        weight of adjacent edge is increased by percentage 3)) or 
63:        ((number of sources is preserved and 
64:        weight of adjacent edge is preserved) and 
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65:        partition balance is improved)) and 
66:        maximum weight of a coarse vertex is not exceeded then 
67:         match vertex 𝑖 to adjacent vertex 𝑗 
68:        end if 
69:       end for /*Goes through all adjacent vertices*/ 
70:       if vertex 𝑖 is matched to itself and 
71:       maximum degree for 2-hop matching is not exceeded then 
72:        for each adjacent vertex 𝑗 of vertex 𝑖 do 
73:         for each adjacent vertex 𝑘 of vertex 𝑗 do 
74:          if vertex 𝑘 is not vertex 𝑖 and 
75:          adjacent vertex 𝑘 is 𝑈𝑈𝑀𝐴𝑈𝐶𝑈𝐸𝐷 and 
76:          both 2-hop keys are similar and 
77:          both degrees are similar and 
78:          maximum weight of a coarse vertex is not exceeded then 
79:           match vertex 𝑖 to adjacent vertex 𝑘 
80:           break 
81:          end if 
82:         end for 
83:         if vertex 𝑖 is not matched to itself then 
84:          break 
85:         end if 
86:        end for /*Goes through all adjacent vertices*/ 
87:       end if /*2-hop matching*/ 
88:      end if /*One constraint*/ 
89:     end if /*Current vertex is island*/ 
90:    end if /*Current vertex weight not big*/ 
91:    increase the number of coarse vertices 
92:   end if /*Current vertex not matched*/ 
93:  end for /*Goes through all vertices*/ 
94:  return 
95: end procedure 

 

The multi-constraint section is similar to that of a single constraint described earlier. The difference 
lies in the conditional of lines 56 to 66 which considers the multiple constraints of vertices. 

6.3. Implementation Overview 

METIS employs a multilevel approach to generate the partitions; Table 6.5 presents a simplified version 
of the partitioning process. Once the initial configuration of the environment is done, the graph is 
contracted until a point where it is easy to handle; it involves matching the vertices that will collapse 
together to generate the next level: a coarser graph. This method generates a series of gradually smaller 
graphs. Then, the smallest, and coarsest, graph is divided by recursive bisection to create the initial 
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partition. The partition is refined, to improve its quality, and projected back to the previous level. The 
refinement and projection process continues until it reaches the original graph; it offers more 
opportunities to improve the quality by constantly refining the partition on finer graphs. 

Table 6.5:  Partitioning process overview 

METIS  Partitioning process 

1: procedure Partition graph k-way 
2:  initializes environment 
3:  initializes graph 
4:  coarsens graph to produce a series of smaller graphs 
5:  computes initial partition on coarsest graph by recursive bisection 
6:  refine initial partition on coarsest graph and projects it back to original graph 
7: end procedure 

 

6.3.1. DSHEM and METIS 

As stated before, DSHEM produces a different set of values for the edges (𝑢, 𝑣) and (𝑣,𝑢) in the 
matching and coarsening process; it is, by far, the major change within METIS. Though DSHEM is only 
executed in step 4: (coarsens graph to produce a series of smaller graphs) of Table 6.5, it impacts the 
entire process. This means that all steps require changes to be able to handle the new values produced by 
DSHEM. By using independent values for edges (𝑢, 𝑣) and (𝑣,𝑢), DSHEM changes the paradigm 
within METIS and complicates its implementation. The code is adapted to handle new values for edges 
(𝑢, 𝑣) and (𝑣,𝑢) and new parameters are added to control the execution of METIS. 

The cost function of DSHEM uses three values to modify its performance. They are percentages that 
affect the matching according to the number of sources and the weight of the edges in three different 
scenarios: number of sources is reduced/maintain/increased and the weight of adjacent edge is increased. 

Debug code is also included in the implementation to track the progress of the partitioning process. In 
some cases a new compilation is required to disable some of the code. This approach is less practical but 
more efficient as the executable does not contain the unwanted code making it faster. 

Currently, the refinement follows the original method throughout the projection back to the original 
graph. It has been, however, adapted to handle the new weights of edges in the coarser graphs produced 
by DSHEM. The impact of the refinement process on DSHEM and its performance is an interesting 
focus for future research. The refinement type can be selected by the means of a new parameter. The 
initial purpose of this implementation is to analyze and understand the effect of DSHEM, and only 
DSHEM, in the partitioning process. 

Methods Optimized for DSHEM 

New changes have also been implemented on METIS to enhance, configure, and analyze the impact of 
DSHEM on every step of the partitioning process. Among the modifications we can mention the 
selection of refinement type, the coarsening process limit, and the nested partitioning. 

The coarsening limit brings a new idea to METIS: to contract the graph until 𝑛 coarse vertices are 
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available. Contracting the graph up to this point eliminates the need to compute the initial partition as 
every vertex is assigned to a different subdomain. It is similar to JOSTLE, where the contraction always 
reaches 𝑛𝑝𝑛𝑃𝑛𝑃 vertices. Some conditions are relaxed to efficiently attain the coarsest level and not fall 
into a point were more than 𝑛𝑝𝑛𝑃𝑛𝑃 vertices are still available but cannot be matched. 

The nested partition involves tracking two graphs in the partitioning process: one with the original 
SHEM values and a second one with DSHEM values. One graph is used for the coarsening process and 
the other for the initial partitioning and refinement. More information is provided in Section 6.3.3 where 
Nested DSHEM Partitioning is described. 

A new parameter controls the maximum vertex weight; originally hardcoded in METIS. During the 
coarsening process the vertices are matched and a condition limits their weight preventing super heavy 
vertices. It is used to relax the conditions when the coarsening process generates a graph with 𝑛𝑝𝑛𝑃𝑛𝑃 
vertices. 

6.3.2. Full DSHEM Partitioning 

It is the implementation of the original idea behind DSHEM as described in Appendix A, where HEM 
and SHEM are also presented in detail. DSHEM shares the majority of the code with the enhanced 
version of SHEM and follows the original process to partition a graph in METIS. The fundamental 
difference is the condition that determines if the adjacent vertex 𝑗 is matched to vertex 𝑖. Most of the 
new code in DSHEM gathers information necessary to the conditional mentioned above. Hence, the 
matching strategy is added to METIS and the rest of the code adapted to cope with the new directed 
graph generated by DSHEM. 

This implementation neither increases the memory requirements nor execution time of METIS. It 
takes full advantage of the data structures to describe the communication within the graph without 
performance degradation. 

Three main arguments are received by DSHEM; specifically 𝑝𝑛𝑚𝑣𝑤𝑚𝑛, 𝑚𝑃𝑛𝑝ℎ and 𝑝𝑒𝑃𝑃𝑒𝑛𝑛𝑛𝑚𝑒𝑃. 
𝑝𝑛𝑚𝑣𝑤𝑚𝑛 specifies the maximum weight allowed for a coarse vertex. 𝑚𝑃𝑛𝑝ℎ is the structure containing 
all information related to the graph. 𝑝𝑒𝑃𝑃𝑒𝑛𝑛𝑛𝑚𝑒𝑃 contains three percentage values employed to fine 
tune the algorithm. The algorithm returns the array 𝑝𝑛𝑛𝑃ℎ with the matching information and 𝑃𝑛𝑣𝑛𝑚𝑃 
with the number of coarse vertices. 

6.3.3. Nested DSHEM Partitioning 

Nested DSHEM is a variation of the original algorithm where a joint effort by SHEM and DSHEM is 
used to generate the partitions. It uses independent SHEM or DSHEM values for the coarsening process 
and for the initial partition. Four different combinations are possible: 

• DSHEM+DSHEM: During the coarsening process, DSHEM creates the matching used to contract 
the graph. Once the contraction is done and a coarser graph is created, the weights of the edges on 
the coarser graph have the new independent values produced by DSHEM. A second coarse graph 
is created based on the one produced by DSHEM; with the same adjacencies but different edge 
weights. This new graph is an undirected version of the original one: think of a graph produced by 
SHEM but with DSHEM utility function. At this point two series of “equal” coarser graphs are 
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produced with the only difference that one is directed and the other undirected. During the initial 
partitioning, as well as the refinement, the directed graph produced by DSHEM is used until the 
end of the partitioning process. In this execution the undirected version of the graph is never used 
and the final partition is that of a full DSHEM partitioning. 

• DSHEM+SHEM: During the coarsening process, DSHEM creates the matching used to contract 
the graph. Once the contraction is done and a coarser graph is created, the weights of the edges on 
the coarser graph have the new independent values produced by DSHEM. A second coarse graph 
is created based on the one produced by DSHEM; with the same adjacencies but different edge 
weights. This new graph is an undirected version of the original one: think of a graph produced by 
SHEM but with DSHEM utility function. At this point two series of “equal” coarser graphs are 
produced with the only difference that one is directed and the other undirected. During the initial 
partitioning, as well as the refinement, the undirected graph “produced” by SHEM is used until 
the end of the partitioning process. The first half of the partitioning process uses the directed 
graph while the second half uses the undirected version of the graph. 

• SHEM+DSHEM: During the coarsening process, SHEM creates the matching used to contract the 
graph. Once the contraction is done and a coarser graph is created, the weights of the edges on the 
coarser graph have the normal values produced by SHEM. A second coarse graph is created based 
on the one produced by SHEM; with the same adjacencies but different edge weights. This new 
graph is the directed version of the original one: think of a graph produced by DSHEM but with 
SHEM utility function. At this point two series of “equal” coarser graphs are produced with the 
only difference that one is directed and the other undirected. During the initial partitioning, as 
well as the refinement, the directed graph “produced” by DSHEM is used until the end of the 
partitioning process. The first half of the partitioning process uses the undirected graph while the 
second half uses the directed version of the graph. 

• SHEM+SHEM: During the coarsening process, SHEM creates the matching used to contract the 
graph. Once the contraction is done and a coarser graph is created, the weights of the edges on the 
coarser graph have the normal values produced by SHEM. A second coarse graph is created based 
on the one produced by SHEM; with the same adjacencies but different edge weights. This new 
graph is the directed version of the original one: think of a graph produced by DSHEM but with 
SHEM utility function. At this point two series of “equal” coarser graphs are produced with the 
only difference that one is directed and the other undirected. During the initial partitioning, as 
well as the refinement, the undirected graph produced by SHEM is used until the end of the 
partitioning process. In this execution the directed version of the graph is never used and the final 
partition is that of a full SHEM partitioning 

This implementation has an impact in the memory requirements as a second graph is kept in memory 
during the complete process. The execution time is not noticeable impacted as the matching, coarsening 
and refinement steps use only one graph at a time. 
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6.4. Expected Performance 

It is possible to deduce the performance of DSHEM through the analysis of its design. The quality of the 
partition is improved or kept intact as DSHEM includes the cost function used by SHEM; this produces 
a partition with a minimal edge cut, but with a possible reduction in communication volume. Refinement 
techniques remain intact in METIS and the inherent reduction in boundary vertices. DSHEM improves 
efficiency in parallel FEM computations without incurring in extra computations or memory 
requirements. The reduction of communications leads to faster parallel FEM computations. 

DSHEM takes advantage of the original data structures that are used in METIS and no extra memory 
is required. By using independent values for edges (𝑢, 𝑣) and (𝑣,𝑢), it is possible to better emulate the 
amount and direction of the communication dependencies. The fundamental difference is the data stored 
in such data structures. The nested version of DSHEM, a variation of the original algorithm, has higher 
memory requirements. It keeps track of two versions of the same graph during the coarsening and 
uncoarsening phases. However, the second graph requires a smaller amount of memory; only the 
weights of the edges are stored and the rest of the information is shared with the first graph. 

DSHEM is based on the original SHEM and inherits its basic behavior. A different cost function is 
added to reduce the communication in the resulting partition. The vertices are visited in the same 
manner as in SHEM, but the data to analyze are different. The modifications to the coarsening phase are 
minimal due the introduction of the direction and source of communication. Only a few extra 
computations are added to deal with the new information. The resulting running time should not increase 
more than 5% and the memory requirements are unchanged. 

DSHEM and the modified coarsening process produce a better partition if the communication volume 
is considered. The extra computations are minimal and do not affect the overall running time because 
the uncoarsening and refining process has a better partition to work with. The direction and source of 
communication are only tracked between two levels in the coarsening process without incurring extra 
memory usage. The real weights of vertices and edges are maintained in the finest graph. 

To confirm the initial assessment of the performance of DSHEM, Chapter 8 and Chapter 9 provide 
detailed information on the experimental evaluation of the new model. It assesses its performance in 
controlled and real use cases based on the methodology described in Chapter 7. 
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Chapter 7.  

Evaluation Methodology 

The experimental environment, and its correct design, is important during the evaluation of any 
algorithm. It is of extreme importance to correctly select the correct setup to assess the performance and 
comparison with other methods. This chapter presents in detail the metrics, the real life and synthetic 
graphs, as well as the hardware and software setup used to evaluate DSHEM. 

7.1. Evaluation Metrics 

A number of metrics exist to evaluate the quality of a partition; the edge cut is traditional among them. 
Depending on the application, some of the metrics might be more important than others. In practice, it is 
common to find a partition that minimizes or maximizes only one metric or objective. Among the most 
studied in literature is the edge cut; however, it has been demonstrated that it is not adequate for certain 
types of problems. It is well known that the edge cut it is only an approximation of the communication 
costs. The communication volume metrics measure more accurately the performance of DSHEM. 

This section introduces the different metrics used to evaluate the performance of DSHEM. We refer 
the reader to The Graph Partitioning Problem in Section 3.2.3, Load Balancing through Graph 
Partitioning, to understand the definitions in this section. 

7.1.1. Total Edge Cut 

Among the most employed and studied metrics in literature is the edge cut; relatively easy to optimize 
and with many applications. The edge cut is useful for some types of problems such as VLSI, where the 
reduction of the number of edges in the cut is desired. However, it is not optimal for FEM problems due 
to the inaccurate approximation of the communication costs. Karypis and Kumar [124], [125], among 
others, present an analysis of the edge cut for multilevel graph partitioning. 

The total edge cut is given by ‖𝐶‖ = ∑ ‖𝑒‖𝑒∈𝐶 . It is the sum of the weights of the edges in 𝐶. If the 
edges have unitary weights (i.e., |𝐶| = ‖𝐶‖) then the number of edges in the cut is minimized. The 
partition is optimal if there is no partition with smaller edge cut. 

7.1.2. Total Communication Volume 

As stated before in Section 5.1 Analysis, and by studies such as [100], [189], the edge cut is not the best 
choice for certain problems. For example, it does not model the real communication costs in FEM 
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applications; the actual communication can differ significantly [93]. Studies such as [104], [188]–[190] 
focuses on this metric. This metric is important due to the fact that often the bottleneck of parallel 
applications is the communication. Hence, it is related to network bandwidth usage and total execution 
time. 

Let 𝐵𝑣𝑖 = �𝑗𝑗��𝑣𝑖 ,𝑣𝑗� ∈ 𝐶 ∧ 𝑣𝑗 ∈ 𝑆𝑗𝑗� the boundary subdomains of vertex 𝑣𝑖. The amount of data to 

be transferred by vertex 𝑣𝑖 to a neighboring subdomain is given by |𝑣𝑖|, its size. Then, the 
communication volume coming from vertex 𝑣𝑖, going into all its neighboring subdomains, is given by 
𝐶𝑃𝑝𝑝𝑉𝑃𝐶𝑣𝑖 = |𝑣𝑖| × �𝐵𝑣𝑖�. Hence, the total communication volume induced by the partition 𝜋 is 

defined as 𝐶𝑃𝑝𝑝𝑉𝑃𝐶𝜋 = ∑�|𝑣𝑖| × �𝐵𝑣𝑖��, the sum of the communication from all vertices. Note that 

�𝐵𝑣𝑖� = 0 for non boundary vertices. 

7.1.3. Maximum Communication Volume of all Subdomains 

The reduction of the total communication volume is not necessarily the best approach in FEM 
applications; the different subdomains may have an unbalanced volume of communication. If a 
subdomain holds a large percentage, the efficiency decreases as the rest of the subdomains have larger 
idle times. We use the maximum communication volume of all subdomains to determine that imbalance. 

Let 𝐵𝑆𝑖𝑖 = �𝑣𝑖��𝑣𝑖 , 𝑣𝑗� ∈ 𝐶 ∧ 𝑣𝑖 ∈ 𝑆𝑖𝑖� be the boundary vertices in 𝑆𝑖𝑖. Then the communication 

volume produced by subdomain 𝑆𝑖𝑖 is given by 𝐶𝑃𝑝𝑝𝑉𝑃𝐶𝑆𝑖𝑖 = ∑ 𝐶𝑃𝑝𝑝𝑉𝑃𝐶𝑣𝑣∈𝐵𝑆𝑖𝑖
, the sum of the 

communication of all its boundary vertices, and the maximum of the communication volume of all 
subdomains is then given by max1≤𝑖𝑖≤𝑘 𝐶𝑃𝑝𝑝𝑉𝑃𝐶𝑆𝑖𝑖. 

7.1.4. Minimum Communication Volume of all Subdomains 

Less important, but a good indicator of the efficiency of the algorithm, is the minimum of the 
communication volume of all subdomain. Even though a small amount of communication coming from 
a subdomain has less impact in the overall execution time of the application, it is an indicator that the 
algorithm used to create the partition is not optimal. This metric is defined as min1≤𝑖𝑖≤𝑘 𝐶𝑃𝑝𝑝𝑉𝑃𝐶𝑆𝑖𝑖. 

7.1.5. Average (Desired) Communication Volume of a Subdomain 

It is the optimal value to achieve, a balanced communication per subdomain. The desired 
communication volume per subdomain is given by the average of all subdomains 𝐶𝑃𝑝𝑝𝑉𝑃𝐶������������� =
�∑ 𝐶𝑃𝑝𝑝𝑉𝑃𝐶𝑆𝑖𝑖1≤𝑖𝑖≤𝑘 𝑘⁄ � or by the total communication volume divided by the number of subdomains 

𝐶𝑃𝑝𝑝𝑉𝑃𝐶������������� = ⌈𝐶𝑃𝑝𝑝𝑉𝑃𝐶𝜋 𝑘⁄ ⌉. 

7.1.6. Total Communication Cost 

The total communication cost is obtained based on the communication volume when the weights of the 
edges are also taken into account. Let 𝐶𝑣𝑖 = ��𝑣𝑖 ,𝑣𝑗���𝑣𝑖 ,𝑣𝑗� ∈ 𝐶� be the set of edges incident to 𝑣𝑖 that 
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belong to the cut, and 𝐶𝑣𝑖𝑆𝑗𝑗 = ��𝑣𝑖 ,𝑣𝑗���𝑣𝑖 , 𝑣𝑗� ∈ 𝐶𝑣𝑖 ∧ 𝑣𝑗 ∈ 𝑆𝑗𝑗� a subset of 𝐶𝑣𝑖 with vertex 𝑣𝑗 in 

subdomain 𝑆𝑗𝑗. 

Then, the total communication cost by vertex 𝑣𝑖 is given by 𝐶𝑃𝑝𝑝𝐶𝑃𝑃𝑛𝑣𝑖 = ∑ �|𝑣𝑖| ×𝑗𝑗∈𝐵𝑣𝑖

min𝑒∈𝐶𝑣𝑖𝑆𝑗𝑗|𝑒|�. When the edges have unitary weights, the communication cost is then reduced to 

𝐶𝑃𝑝𝑝𝐶𝑃𝑃𝑛𝑣𝑖 = ∑ (|𝑣𝑖| × 1)𝑗𝑗∈𝐵𝑣𝑖
, and 𝐶𝑃𝑝𝑝𝐶𝑃𝑃𝑛𝑣𝑖 = |𝑣𝑖| × �𝐵𝑣𝑖�. Which in turn leads to 

𝐶𝑃𝑝𝑝𝐶𝑃𝑃𝑛𝑣𝑖 = 𝐶𝑃𝑝𝑝𝑉𝑃𝐶𝑣𝑖. Hence, the total communication cost induced by the partition 𝜋 is defined 

as 𝐶𝑃𝑝𝑝𝐶𝑃𝑃𝑛𝜋 = ∑𝐶𝑃𝑝𝑝𝐶𝑃𝑃𝑛𝑣𝑖 , the sum of the communication cost of all vertices. Note that 

�𝐵𝑣𝑖� = 0 for non boundary vertices. 

7.1.7. Maximum Communication Cost of all Subdomains 

As other maximum values, it is used calculate the imbalance among the different subdomains. The 
communication cost of subdomain 𝑆𝑖𝑖 is given by 𝐶𝑃𝑝𝑝𝐶𝑃𝑃𝑛𝑆𝑖𝑖 = ∑ 𝐶𝑃𝑝𝑝𝐶𝑃𝑃𝑛𝑣𝑣∈𝐵𝑆𝑖𝑖

, the sum of the 

communication cost of all its boundary vertices, and the maximum of the communication cost of all 
subdomains is max1≤𝑖𝑖≤𝑘 𝐶𝑃𝑝𝑝𝐶𝑃𝑃𝑛𝑆𝑖𝑖. 

7.1.8. Minimum Communication Cost of all Subdomains 

A less important, but still necessary metric, is the minimum communication cost of all subdomains. This 
metric is defined as min1≤𝑖𝑖≤𝑘 𝐶𝑃𝑝𝑝𝐶𝑃𝑃𝑛𝑆𝑖𝑖. 

7.1.9. Maximum Weight of all Subdomains 

The weight of a vertex represents the processing requirements of the respective mesh element. The most 
over weighted subdomain is used to calculate the imbalance of the load induced by the partition. The 
maximum weight of all subdomains is given by max1≤𝑖𝑖≤𝑘‖𝑆𝑖𝑖‖. 

7.1.10. Minimum Weight of all Subdomains 

It is also a good indicator of the efficiency of the algorithm used to create the partition. The minimum 
weight of all subdomains is given by min1≤𝑖𝑖≤𝑘‖𝑆𝑖𝑖‖. 

7.1.11. Average (Desired) Weight of a Subdomain 

It is the optimal value to achieve, a perfect distribution of the load among the processors. The desired 
weight of a subdomain is given by the total sum of the weights of all vertices divided by the number of 
subdomains 𝑆̅ = ⌈∑ ‖𝑣‖𝑣∈𝑉 𝑘⁄ ⌉, or by the average weight of all subdomains 𝑆̅ = ⌈∑ ‖𝑆𝑖𝑖‖1≤𝑖𝑖≤𝑘 𝑘⁄ ⌉. 
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7.2. Graphs and Statistics 

The selection of data for experimentation is of high importance and has to consider multiple factors; 
among them, the design and purpose of the algorithm. The wrong data could lead to a false evaluation of 
the algorithm under investigation. All possible scenarios need to be incorporated in order to correctly 
assess its performance. This is the reason why a collection of real life, as well as synthetic, graphs have 
been used for the experimental analysis of DSHEM and comparison with SHEM. 

The set of real life graphs comes from The SuiteSparse matrix collection of the Texas A&M 
University [191], the 10th DIMACS Implementation Challenge [192] contributed by Siew Yin Chan et 
al. [193], the METIS distribution [36], the Internet parallel computing archive [194], and the Graph 
partitioning archive [195]. It includes a wide variety of graphs used in FEM applications, including 2D 
and 3D models. 

Synthetic graphs are used, as well, to provide a more controlled output. They are valuable to 
categorize the performance of DSHEM with the different types of graphs. They are divided into regular 
and irregular, 2D and 3D instances. The next sections describe the different graphs used for the 
experimental analysis of DSHEM. 

A detailed description of the graphs can be found in Appendix B, where the real life graphs are 
presented and the construction of the synthetic graphs is also described. 

7.2.1. Real Life Graphs 

The SuiteSparse matrix collection4 has a wide variety of spare matrices that arise from real life 
applications. It is maintained in a regular basis and new matrices are constantly incorporated. The 
collection is frequently used by the community to evaluate the performance of new algorithms. 
Examples of graphs for structural engineering, fluid dynamics, thermodynamics, among others, can be 
found. The three real life graphs used in this work are available at the SuiteSparse matrix collection; 
however, they originally come from other sources such as the Internet parallel computing archive. 

2D Graphs 

One 2D graph has been selected for the experimental evaluation of DSHEM. The graph contains the 
most common geometry utilized in FE computations. The size is classified as small with thousands of 
vertices. The next paragraphs give a brief description; the reader should refer to the appendix and the 
source of the graph for more information. 

 

Figure 7.1.  Area of interest of the graph of an airfoil with flaps. 

Figure 7.1 shows a section of the graph of an airfoil with front slat and rear flaps; this is a small 
                                                      
4 Originally known as the University of Florida sparse matrix collection [204], which is now available at the Texas A&M 

University web site [191]. 
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triangular graph. It contains around 15 thousand vertices and 45 thousand edges. The dark areas 
represent a concentration of vertices and edges in the graph. More details are presented in the appendix. 

3D Graphs 

Two 3D graphs have been used for the experimental evaluation of DSHEM. The graphs have a 
quadrangular and a triangular geometry; medium and small size respectively. The next paragraphs give a 
brief description. 

 

Figure 7.2.  Some area of the graph of the ocean. 

Figure 7.2 shows a mall section of the graph of the oceans; a medium size quadrangular graph. It 
contains over 140 thousand vertices and 400 thousand edges. More details are presented in the appendix. 

 

Figure 7.3.  Some area of the graph of a sphere. 

Figure 7.3 presents a mall section of the graph of a sphere; a small triangular graph used for the 
analysis of DSHEM. It has around 16 thousand vertices and 49 thousand edges. More details are 
presented in the appendix. 

7.2.2. Synthetic Graphs 

Several methods designed to generate synthetic graphs have been proposed in literature. They produce 
graphs with different properties, depending on its intended use. Some of the most important methods are 
described next. Gilbert [196] propose a method to create a Random plane network by employing a 
Poisson process to place vertices with a density 𝐷 in a given area. Then those vertices are connected 
together in pairs when their distance does not exceed a given range 𝑅. Barabási and Albert [197], [198] 
propose a method to build random networks. It is based on the observation that diverse networks expand 
continuously by adding new vertices and those new vertices are most likely attached to well connected 
vertices. The Yule process, or Preferential Attachment, [199], [200] can also be used to generate random 
graphs. The idea behind this method is that new edges will likely be placed with vertices with high 
degrees. Newman et al. [201] propose several models to create social network graphs such as unipartite 
networks and bipartite networks with very good approximations. The Erdős-Rényi model has two 
variants 𝐺(𝑛,𝑝) [202] and 𝐺(𝑛,𝑀) [203], The first variant creates a graph connecting the 𝑛 vertices 
randomly with a probability 𝑝. The second variant chooses a random graph from the set of graphs with 𝑛 
nodes and 𝑀 edges. The Delaunay, or Delone, triangulation [76], [77] creates a triangular graph by 
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connecting a set 𝑃 of vertices such as no other vertex is located inside the circumcircle generated by any 
triangle in the graph. 

The experimental evaluation of DSHEM does not include any synthetic random graph generated by 
the methods presented above. They are not suited for the evaluation of DSHEM because it is essential to 
have full control over the graph geometry to investigate how it influences the quality of the partition and 
performance of the algorithm. The previous methods generate synthetic random graphs which emulate 
their real word counterparts. They are generally used when no real data, or a limited amount of it, is 
available. In this case, a big collection of real life graphs is publicly available making the synthetic 
random graphs redundant. The decision to not use this type of graphs was driven by these factors. 

Thus, to have a controlled environment to assess the performance of DSHEM, several synthetic 
graphs with specific characteristics have been used. The synthetic graphs used for this work are based on 
the most common geometries found in FEA. Triangular and quadrangular geometry graphs are created 
in several ways to evaluate the performance of DSHEM. They are divided into regular and irregular, as 
well as 2D and 3D graphs. It is possible to control the degree of randomness with these synthetic graphs 
and evaluate how it affects the partitions generated by DSHEM. The range of sizes varies from small to 
large, as with the real life graphs. A description is presented next. 

Regular 

The regular synthetic graphs are used to perform a controlled evaluation of the comportment of DSHEM 
under several conditions. It is more evident how the geometry and size of the graph may affect its 
behavior, as well as the execution time. With that in mind, three different types of graphs have been 
selected to evaluate DSHEM; one quadrangular and two triangular geometries. The first type is a square 
graph, composed of regular squares as depicted in Figure 7.4. It size is measured by the number of 
vertices per side and it is given by 𝑛 × 𝑛, in this example 3 × 3. 

 

Figure 7.4.  Square graph with 3 vertices per side. 

Figure 7.5 depicts the second type of synthetic graph with a triangular geometry. Its size is also 
measured by the number of vertices per side, i.e., 𝑛 × 𝑛. 

A second triangular graph with a modified geometry is also employed for the experimental analysis. 
Figure 7.6 presents a 3 × 3 dense triangular square graphs; (𝑛 − 1) × (𝑛 − 1) extra vertices have been 
added, and connected with edges, to the triangular square mesh to create the dense graph. Its size is 
given by the number of external vertices per side: 𝑛 × 𝑛. 

3D versions of all three regular graphs are also created to evaluate DSHEM. Figure 7.7 shows the 
process to create a 3D square graph with a size of 2 × 2. It starts with the original graph as shown in a). 
Next, in b), the graph is replicated to have 𝑛 copies. Finally, edges are generated between the vertices of 
the different copies of the graph as depicted in c). 
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Figure 7.5.  Triangular square graph with 3 vertices per side. 

 

Figure 7.6.  Dense triangular square graph with 3 vertices per side. 

 

Figure 7.7.  Creation of a 3D square graph with 2 vertices per side. 

The creation of the 3D versions of the triangular square and dense triangular square graphs is 
described in detail in the appendix. It is important to note that the coordinate information is not used 
during the partitioning process; it is useful only for visualization purposes. 

Irregular 

Introducing irregularity to the graphs helps understanding the robustness of the algorithm during the 
partitioning process. The irregular synthetic graphs are based on the regular synthetic versions. All the 
edges in the graph are visited and removed with a given uniform probability. Several probabilities have 
been used to build different irregular graphs, giving them a degree or randomness. The resulting graph is 
then used for the experimental analysis to assess the performance of DSHEM and compare it with 
SHEM. It is important to understand how the edges are removed from the graph. Once a regular graph is 
created, all edges are duplicated; it is the normal way the graph is stored. All edges are visited in a 
sequential order and removed with a given probability. This method, visits edges (𝑢, 𝑣) and (𝑣,𝑢) 
independently; one edge could be removed while the other remains. After visiting all edges, the graph 
may be corrupted due to the fact that some of the edges are no longer duplicated; the graph is then 
corrected by duplicating those edges. The final result is a correct graph with some of the edges being 
removed. If the initial probability to remove an edge was 10%, the resulting graph will have about 5% 
(final probability) of the edges removed. 

Throughout this work, the probability values for irregular graphs refer to the initial probability unless 
it is otherwise stated. Figure 7.8 shows an irregular dense triangular square graphs. It is built after the 
regular version by removing edges with a final probability of 25%. The same procedure is applied to the 

a) b) c)
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other two types of graphs: square and triangular square. The 3D graphs have also undergone the same 
process to create an irregular version of them. 

 

Figure 7.8.  Dense triangular square graph with 3 vertices per side. Edges were removed with a final probability of 25%. 

7.2.3. Statistics 

Table 7.1 shows the properties of the real life graphs used for the experimental evaluation in this thesis. 
A medium size graph with quadrangular geometry is included and two small graphs with triangular 
geometries are also part of the experiments. 

Table 7.1:  Properties of the real life graphs. 

Graph Vertices Edges Description Source 

ef_4elt 15,606 45,878 A 2D triangular mesh around an airfoil 
with flaps 

[36], [191], 
[194], [195] 

ef_ocean 143,437 409,593 A 3D quadrangular mesh of the ocean [36], [191], 
[194], [195] 

ef_sphere 16,386 49,152 A 3D triangular mesh of a sphere [36], [191], 
[194], [195] 

 

Due to the regularity of the synthetic graphs used in this work, Table 7.2 shows their general 
properties. The number of vertices and edges can be calculated according to the size of the graph. In the 
case of the irregular graphs, the number of edges is an approximation due to the probability 𝑝 used to 
remove edges from the base regular graph. 2D and 3D graphs with triangular and quadrangular 
geometries are part of the experiments, with their size ranging from small to large. 

Table 7.2:  Properties of the synthetic graphs. 

Graph Vertices Edges Description 

sm_2d 𝑛2 2�𝑛(𝑛 − 1)� A synthetic regular 2D 
quadrangular mesh 

tsm_2d 𝑛2 2�𝑛(𝑛 − 1)� + (𝑛 − 1)2 A synthetic regular 2D 
triangular mesh 

dtsm_2d 𝑛2 + 
(𝑛 − 1)2 

2�𝑛(𝑛 − 1)� + 4(𝑛 − 1)2 A synthetic regular 2D 
triangular mesh 

sm_3d 𝑛3 2�𝑛(𝑛 − 1)�𝑛 + 𝑛2(𝑛 − 1) A synthetic regular 3D 



7.2. Graphs and Statistics 

73 

quadrangular mesh 
tsm_3d 𝑛3 �2�𝑛(𝑛 − 1)� + (𝑛 − 1)2�𝑛 + 

𝑛2(𝑛 − 1) + (𝑛 − 1)3 

A synthetic regular 3D 
triangular mesh 

dtsm_3d 𝑛3 + 
(𝑛 − 1)3 

�2�𝑛(𝑛 − 1)� + 4(𝑛 − 1)2�(𝑛 − 1) + 

4(𝑛 − 1)3 + 2�𝑛(𝑛 − 1)� + 𝑛2(𝑛 − 1) 

A synthetic regular 3D 
triangular mesh 

sm_2d 
_perc 

𝑛2 2�𝑛(𝑛 − 1)� 
Minus approximately (100 − 𝑝 2⁄ )% of the edges 

A synthetic irregular 
2D quadrangular mesh 

tsm_2d 
_perc 

𝑛2 2�𝑛(𝑛 − 1)� + (𝑛 − 1)2 
Minus approximately (100 − 𝑝 2⁄ )% of the edges 

A synthetic irregular 
2D triangular mesh 

dtsm_2d 
_perc 

𝑛2 + 
(𝑛 − 1)2 

2�𝑛(𝑛 − 1)� + 4(𝑛 − 1)2 
Minus approximately (100 − 𝑝 2⁄ )% of the edges 

A synthetic irregular 
2D triangular mesh 

sm_3d 
_perc 

𝑛3 2�𝑛(𝑛 − 1)�𝑛 + 𝑛2(𝑛 − 1) 
Minus approximately (100 − 𝑝 2⁄ )% of the edges 

A synthetic irregular 
3D quadrangular mesh 

tsm_3d 
_perc 

𝑛3 �2�𝑛(𝑛 − 1)� + (𝑛 − 1)2�𝑛 + 

𝑛2(𝑛 − 1) + (𝑛 − 1)3 
Minus approximately (100 − 𝑝 2⁄ )% of the edges 

A synthetic irregular 
3D triangular mesh 

dtsm_3d 
_perc 

𝑛3 + 
(𝑛 − 1)3 

�2�𝑛(𝑛 − 1)� + 4(𝑛 − 1)2�(𝑛 − 1) + 

4(𝑛 − 1)3 + 2�𝑛(𝑛 − 1)� + 𝑛2(𝑛 − 1) 
Minus approximately (100 − 𝑝 2⁄ )% of the edges 

A synthetic irregular 
3D triangular mesh 

 

All real life graphs are strongly connected, symmetric undirected graphs; as can be appreciated in 
Table 7.3. Based on Euler’s formula5 for planar (2D) graphs, the average degree of a vertex is strictly 
less than 6. With a triangular geometry, the average degree of a vertex tend to be 6, the vertices in the 
external limits of the graph reduce that average. This situation is evident with the graph ef_sphere 
having an average of almost 6, as it does not have outer limit vertices due to its three dimensions. The 
graph ef_ocean, not planar, has the lowermost average degree due to the large amount of vertices in the 
external limit of the graph. It is evident that the geometry of the graph does not have big influence in the 
average degree of this collection of graphs. The most important factor is the ratio of vertices in the 
external limits of the graph and its total. 

Table 7.3:  Detailed statistics of the real life graphs. 

Graph Average degree Strongly 
connected 

components 

Symmetric Kind 

ef_4elt 5.880 1 Yes Undirected graph 
ef_ocean 5.711 1 Yes Undirected graph 
ef_sphere 5.999 1 Yes Undirected graph 
 

The same analysis for the synthetic graphs is presented in Table 7.4. The average degree of all 2D 
                                                      
5 Planar graphs obey the inequality 2𝑒 ≥ 3𝑓 based on 𝑣 − 𝑒 + 𝑓 = 2, Euler’s formula. 
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graphs does not exceed 6; their 3D counterparts have an average degree of up to 11. That average is 
affected by the number of edges removed in the irregular instances, as well as the number of strongly 
connected components. 

Table 7.4:  Detailed statistics of the synthetic graphs. 

Graph Average degree Strongly 
connected 

components 

Symmetric Kind 

sm_2d 2.000 to 4.000 1 Yes Undirected graph 
tsm_2d 2.500 to 6.000 1 Yes Undirected graph 
dtsm_2d 3.200 to 6.000 1 Yes Undirected graph 
sm_3d 3.000 to 6.000 1 Yes Undirected graph 
tsm_3d 3.750 to 10.000 1 Yes Undirected graph 
dtsm_3d 4.444 to 11.000 1 Yes Undirected graph 
sm_2d _perc Up to 4.000 1 or more Yes Undirected graph 
tsm_2d _perc Up to 6.000 1 or more Yes Undirected graph 
dtsm_2d _perc Up to 6.000 1 or more Yes Undirected graph 
sm_3d_perc Up to 6.000 1 or more Yes Undirected graph 
tsm_3d_perc Up to 10.000 1 or more Yes Undirected graph 
dtsm_3d_perc Up to 11.000 1 or more Yes Undirected graph 
 

None of the previous graphs have either vertex or edge weights and it is assumed that all weights are 
unitary; this kind of information is not widely available. 

7.3. Environment 

A full overview of the experimental environment is presented in the next subsections. They detail the 
software, hardware and input data used to evaluate DSHEM and compare its performance with SHEM 
and Random. 

7.3.1. Graph Partitioning Software 

METIS version 5.0.2 is the base for the implementation of DSHEM; the latest release at the moment of 
the coding. The current version, at the moment of writing, is 5.1.0, however the new changes are 
minimal and without impact to DSHEM. The 2-hop matching strategy is extended and a few bugs are 
corrected; yet, it only affects graphs with variable degree distribution, not graphs derived from FE 
meshes. 

The standalone serial METIS program is gpmetis which receives two obligatory parameters, the graph 
and number of parts, and a set of noncompulsory options. Table 7.5 lists the relevant available options 
and the values used for the experimentation. 
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Table 7.5:  List of execution options for METIS. 

Option Description and possible values Values used 

-ptype Scheme to compute the partition kway 
rb Multilevel recursive bisection 
kway Multilevel k-way partitioning 

-iptype Scheme to compute the initial partition in the coarsest graph grow 
random Random based 
grow Greedy based 

-ctype Matching algorithm for the coarsening phase rm 
shem 
dshem 

rm Random 
shem Sorted heavy edge 
dshem Directed sorted heavy edge 

-cltype Coarsening limit type. normal 
nparts normal Normal coarsening limit 

nparts The coarsening process stops only when nparts 
vertices remain 

-objtype Objective function to minimize cut 
vol cut Edge cut 

vol Total communication volume 
-rtype Algorithm used for refinement norefinement 

greedy norefinement No refinement at all 
fm FM based edge cut refinement 
greedy Greedy based edge cut and volume refinement 

 

It is important to note that new options were added to METIS in order to fine tune its execution; 
shown in bold in Table 7.5. 

Justification 

Being open source, METIS is an important candidate for the implementation of new algorithms based on 
the multilevel paradigm. New matching algorithms, as well as refinement strategies, can be added with 
relative ease instead of being implemented from scratch. In addition, METIS uses efficient data 
structures and it is a mature library with years of optimization and improvement. DSHEM takes 
advantage of those data structures to emulate the directional communication and improve the quality of 
the partition. The obvious choice to implement the algorithm, and test its performance, is METIS; the 
comparison between SHEM and DSHEM is also simplified. 

7.3.2. Graphs 

Section 7.2 presents detailed information of the input graphs. Each graph has been partitioned with the 
options described in Table 7.5 and Table 7.11. The small 2D synthetic graphs have 30 to 40 vertices per 
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side and the 3D counterparts, 9 to 13. This variation in size produces 3D graphs with approximately the 
same amount of vertices than the 2D graphs. Table 7.6 presents the list of small synthetic graphs, their 
size, their edge percentage and the number of subdomains for the first set of experiments; a total of 240 
graphs are part of this initial set. 

Table 7.6:  Partitioning information for the first set of small synthetic graphs. 

Graph Size Percentage of edges Subdomains Objective 

sm_2d[_perc] 30 to 40 75, 90, 95, 98, 100 2 to 32 cut, vol 
tsm_2d[_perc] 30 to 40 75, 90, 95, 98, 100 2 to 32 cut, vol 
dtsm_2d[_perc] 30 to 40 75, 90, 95, 98, 100 2 to 32 cut, vol 
sm_3d[_perc] 9 to 13 75, 90, 95, 98, 100 2 to 32 cut, vol 
tsm_3d[_perc] 9 to 13 75, 90, 95, 98, 100 2 to 32 cut, vol 
dtsm_3d[_perc] 9 to 13 75, 90, 95, 98, 100 2 to 32 cut, vol 
 

The second set of graphs is shown in Table 7.7; the graphs are slightly bigger than the previous set 
and it is composed of 150 graphs. This set is used to focus the analysis of DSHEM with more specific 
ranges of values for the parameters. 

Table 7.7:  Partitioning information for the second set of small synthetic graphs. 

Graph Size Percentage of edges Subdomains Objective 

sm_2d[_perc] 40 to 50, step 2 75, 90, 95, 98, 100 2 to 32 cut, vol 
tsm_2d[_perc] 40 to 50, step 2 75, 90, 95, 98, 100 2 to 32 cut, vol 
dtsm_2d[_perc] 40 to 50, step 2 75, 90, 95, 98, 100 2 to 32 cut, vol 
sm_3d[_perc] 11 to 14 75, 90, 95, 98, 100 2 to 32 cut, vol 
tsm_3d[_perc] 11 to 14 75, 90, 95, 98, 100 2 to 32 cut, vol 
dtsm_3d[_perc] 11 to 14 75, 90, 95, 98, 100 2 to 32 cut, vol 
 

Table 7.8 lists the set of medium size synthetic graphs. They have around 1 million vertices and up to 
5.5 million edges. This set is used to measure the scalability of DSHEM with larger input graphs. 

Table 7.8:  Partitioning information for the set of medium size synthetic graphs. 

Graph Size Percentage of edges Subdomains Objective 

sm_2d[_perc] 1000 95 64 cut, vol 
tsm_2d[_perc] 1000 95 64 cut, vol 
dtsm_2d[_perc] 710 95 64 cut, vol 
sm_3d[_perc] 100 95 64 cut, vol 
tsm_3d[_perc] 100 95 64 cut, vol 
dtsm_3d[_perc] 80 95 64 cut, vol 
 

The set of real graphs, in Table 7.9, includes 3 instances with different geometries and sizes. The 
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graphs are used to assess the performance of DSHEM with real world data. Due to the time limitations, 
some graphs have been partitioned with a limited amount of subdomains. 

Table 7.9:  Partitioning information for the set of real life graphs. 

Graph Vertices Edges Subdomains Objective 

ef_4elt 15,606 45,878 2 to 32 cut, vol 
ef_ocean 143,437 409,593 2 to 32 cut, vol 
ef_sphere 16,386 49,152 2 to 32 cut, vol 
 

Justification 

The first set of experiments is designed to limit the amount of processing power, storage and time that is 
required for the execution. Nevertheless, its purpose is also to give an overview of the performance of 
DSHEM with an extended range of values for the main parameters. With these extended experiments, it 
is possible to design a more accurate analysis for bigger instances of the input graphs and confirm, or 
refute, the initial results. The second set of small graphs is used to focus the study of DSHEM with more 
specific ranges of values used for the parameters. These new values are the product of the analysis of the 
experimental results from the first set. The set of medium size synthetic graphs is designed to measure 
the scalability of DSHEM with much bigger input graphs. The number of subdomains used during 
experimentation is reduced due to time constraints. Finally, DSHEM is evaluated with a set of real world 
graphs, from small to medium sizes and different geometries. The four sets of graphs provide accurate 
information on the performance of DSHEM. 

7.3.3. Hardware Setup 

The Scientific Compute Cluster located at GWDG offers a comprehensive range of resources. It uses the 
Platform Load Sharing Facility (Platform LSF) as job scheduler to distribute the jobs into several 
queues. Table 7.10 details the hardware resources available for the general purpose queue mpi. This 
queue is suited for serial and parallel jobs. The list includes, as well, the fat queue for jobs with high 
memory demand; nodes with at least 256 GB of memory. Once a job is submitted to the queue, Platform 
LSF will start the job according to its requirements and the available resources. 

Table 7.10:  Hardware overview of the HPC cluster at GWDG. 

Nodes CPU Cores Frequency Memory Interconnect 

168 Ivy-Bridge Intel E5-2670 v2 2×10 2.5 GHz 64 GB InfiniBand 
Quad data rate 

160 Sandy-Bridge Intel E5-2670 2×8 2.6 GHz 64 GB InfiniBand 
Quad data rate 

76 Broadwell Intel E5-2650 v4 2×12 2.2 GHz 128 GB InfiniBand 
Fourteen data rate 
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48 Abu-Dhabi AMD Opteron 6378 4×16 2.4 GHz 256 GB InfiniBand 
Quad data rate 

15 Broadwell Intel E5-2650 v4 2×12 2.2 GHz 512 GB InfiniBand 
Fourteen data rate 

5 Haswell Intel E5-4620 v3 4×10 2.0 GHz 1.5 TB InfiniBand 
Fourteen data rate 

1 Haswell Intel E7-4809 v3 4×8 2.0 GHz 2 TB InfiniBand 
Quad data rate 

 

The set of jobs submitted to the mpi queue during experimentation are all serial. They were assigned 
to different nodes according to the node availability at the moment of execution; some of them were 
executed in nodes belonging to the fat queue. 

7.3.4. DSHEM Parameters 

In order to optimize the partition, a set of options are available; they are all related to DSHEM and its 
nested structure. Table 7.11 shows the list of possible parameters that can be used to tune up the 
execution. 

Table 7.11:  List of DSHEM execution options for METIS. 

Option Description and possible values Values used 

-dshem_p1 First percentage for the utility function that matches vertices with 
DSHEM. Only available for DSHEM. 

Varies for each set 
of experiments. 

Numeric value Percentage for the weight of the first part of 
the utility function 

-dshem_p2 Second percentage for the utility function that matches vertices 
with DSHEM. Only available for DSHEM. 

Varies for each set 
of experiments. 

Numeric value Percentage for the weight of the second part 
of the utility function 

-dshem_p3 Third percentage for the utility function that matches vertices with 
DSHEM. Only available for DSHEM. 

Varies for each set 
of experiments. 

Numeric value Percentage for the weight of the third part of 
the utility function 

-nctype Nested coarsening process. It uses independent SHEM/DSHEM 
values for the coarsening process and for the initial partition. Only 
available for DSHEM. 

dshem+dshem 
dshem+shem 
shem+dshem 
shem+shem dshem+dshem DSHEM for coarsening and 

DSHEM for partitioning 
dshem+shem DSHEM for coarsening and 

SHEM for partitioning 
shem+dshem SHEM for coarsening and 
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DSHEM for partitioning 
shem+shem SHEM for coarsening and 

SHEM for partitioning 
-maxvwtm Maximum vertex weight multiplier. During the coarsening 

process the vertices are matched. One of the conditions limits the 
size of the coarsest vertex. It is originally hardcoded in METIS. 

Varies for each set 
of experiments. 

Numeric value Percentage of the maximum weight of a 
vertex 

 

These options are received by gpmetis and used exclusively for the execution of DSHEM. The values 
for the experiments depend on the specific set of experiments; details are available in Chapter 8 and 
Chapter 9 where the individual experiments and their results are presented. 

7.4. Organization of the Evaluation 

The analysis is designed to evaluate different aspects of the execution and behavior of DSHEM to 
effectively assess its performance. With a wide range of execution parameters for METIS and DSHEM, 
it is necessary to understand their impact on the final partition. With that in mind, the experimental 
evaluation is divided in 5 independent major parts: 

• The effect of the multiplier -maxvwtm on the quality of partitions 

• The effect of percentages -dshem_p1, -dshem_p2, and -dshem_p3 on the quality of partitions with 
different types of graphs 

• The impact of different degrees of irregularity on the quality of partitions 

• The impact of the refinement process on DSHEM and subsequent quality of partitions 

• The impact of DSHEM on the execution time (partitioning time) of METIS 

To understand the comportment of DSHEM under different conditions it is necessary to evaluate the 
partitions produced with a wide range of values for the execution parameters. The range of values 
utilized for the different parameters depend on the individual experiment. They are initially selected to 
provide a general overview of the performance of DSHEM. Subsequent sets of experiments are based on 
the results of the previous sets; they provide a more detailed view of DSHEM. 

With this evaluation method, it is possible to identify which set of parameters improve the quality of 
the partition for a certain type of graph. This is of vital importance as performance of any graph 
partitioning library can be drastically impacted by the incorrect parameters. 
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Chapter 8.  

Experimental Analysis of DSHEM 

This chapter presents the initial evaluation of DSHEM with four different sets of experiments as 
described in Chapter 7. First, DSHEM is executed with small graphs and a wide range of values for the 
parameters -maxvwtm, -dshem_p1, -dshem_p2, and -dshem_p3. Based on the previous results, a new set 
of experiments is performed with more precise parameters to tune up the algorithm. The third set of 
experiments is designed to evaluate the scalability of DSHEM with larger graphs. The final set of 
experiments, with real life graphs, helps confirm the evaluation results. The next sections present a 
detailed evaluation of the full implementation of DSHEM. 

8.1. Full DSHEM Partitioning 

The first evaluation of DSHEM is based on the original implementation of the strategy as described in 
Appendix A and Section 6.3.2, Full DSHEM Partitioning; hence, it considers the main idea behind 
DSHEM. The fundamental change is the condition that determines if the adjacent vertex 𝑗 is matched to 
vertex 𝑖. This implementation is designed to neither increases the memory requirements nor execution 
time and takes full advantage of the data structures without performance degradation. 

8.2. First Experiments on Small Synthetic Graphs 

This particular set of experiments uses the graphs presented in Table 7.6 of Chapter 7. It is a set of small 
synthetic graphs which are designed to evaluate the performance of DSHEM and compare it with SHEM 
and Random. 

8.2.1. Execution Parameters 

Four main parameters are used to tune up DSHEM, namely -maxvwtm, -dshem_p1, -dshem_p2, and -
dshem_p3. The values chosen for the first set of experiments are presented in Table 8.1. This particular 
set produces 1715 different combinations of values, giving a wide view of the performance of DSHEM. 
The subsequent experiments are designed based on the results of these initial experiments. 
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Table 8.1:  DSHEM parameters for the first set of small synthetic graphs. 

-maxvwtm -dshem_p1 -dshem_p2 -dshem_p3 

140 to 160, step 5 91 to 109, step 3 91 to 109, step 3 91 to 109, step 3 
 

8.2.2. Analysis of Results 

The experimental results presented in this section are organized in a manner to understand how the 
different execution parameters affect the partitions. First, the effect of the multiplier -maxvwtm is 
evaluated. Next, the three percentages -dshem_p1, -dshem_p2, and -dshem_p3 are examined to 
understand their influence. The robustness of DSHEM is also evaluated with different degrees of 
irregularity introduced to the synthetic graphs. The refinement and its influence on DSHEM are also 
studied. Finally, the execution time is also examined to estimate the degradation, if any, brought by 
DSHEM. 

The analysis is carried out with the two partitioning objectives available in METIS: cut and vol; the 
edge cut and the total communication volume respectively. Only three metrics are presented in this 
thesis: total edge cut, total communication volume, and maximum communication volume of all 
subdomains. 

Multiplier -maxvwtm 

The multiplier -maxvwtm limits the size of vertices during the coarsening process. Reducing its value 
produces more balanced initial partitions and the refinement process is also optimized. However, a low 
value may have also undesired effects such as the inability to match vertices that could lead to an infinite 
loop trying to contract the graph without success. 

Edge cut 
DSHEM (Evaluating) versus SHEM (Reference) 

 

 

Figure 8.1.  DSHEM vs. SHEM: effect of -maxvwtm on the edge cut with synthetic graphs. Partitioning objective: edge 
cut on the left, communication volume on the right. 
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Communication volume 
DSHEM (Evaluating) versus SHEM (Reference) 

 

 

Figure 8.2.  DSHEM vs. SHEM: effect of -maxvwtm on the communication volume with synthetic graphs. Partitioning 
objective: edge cut on the left, communication volume on the right. 

From Figure 8.1, Figure 8.2 and Figure 8.3, it is possible to deduce a pattern on the role of the 
multiplier -maxvwtm; it is more common to obtain better results by reducing its value. It is also evident 
that the type of graph has a great influence too, being the 3D square graph (sm3d100p) and the 3D 
triangular square graph (tsm3d100p) with the highest improvements, and the 2D triangular square graph 
(tsm2d100p) with the worst results. 

Maximum communication volume of all subdomains 
DSHEM (Evaluating) versus SHEM (Reference) 

 
 

Figure 8.3.  DSHEM vs. SHEM: effect of -maxvwtm on the maximum communication volume of all subdomains with 
synthetic graphs. Partitioning objective: edge cut on the left, communication volume on the right. 

Percentages -dshem_p1, -dshem_p2 and -dshem_p3 

Percentages -dshem_p1, -dshem_p2, and -dshem_p3 are used to modify the behavior of the cost function 
in DSHEM. It may improve the results by selecting the right values according to the type of graph to 
partition. 
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Maximum communication volume of all subdomains 
DSHEM (Evaluating) versus SHEM (Reference) 

 
 

Figure 8.4.  DSHEM vs. SHEM: effect of -dshem_p1 on the maximum communication volume of all subdomains with 
synthetic graphs. Partitioning objective: edge cut on the left, communication volume on the right. 

Maximum communication volume of all subdomains 
DSHEM (Evaluating) versus SHEM (Reference) 

 

 

Figure 8.5.  DSHEM vs. SHEM: effect of -dshem_p2 on the maximum communication volume of all subdomains with 
synthetic graphs. Partitioning objective: edge cut on the left, communication volume on the right. 

Maximum communication volume of all subdomains 
DSHEM (Evaluating) versus SHEM (Reference) 

 
 

Figure 8.6.  DSHEM vs. SHEM: effect of -dshem_p3 on the maximum communication volume of all subdomains with 
synthetic graphs. Partitioning objective: edge cut on the left, communication volume on the right. 

Percentage -dshem_p1 seems to have no influence based on the results from Figure 8.4. This 
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comportment is present for all metrics and all graphs. Percentage -dshem_p3 has a similar output as 
shown in Figure 8.6. However, Figure 8.5 shows that percentage -dshem_p2 changes the quality of the 
partitions generated by DSHEM; some types of graphs present a bigger impact by this percentage. Based 
on the results, it is possible to conclude that lower values for -dshem_p2 produce better results. 

After a deeper analysis of the execution of DSHEM, it was found that the conditional, which includes 
the three percentages, only evaluates to 𝑈𝑅𝑈𝐸 for -dshem_p1 and -dshem_p3 the first time it is 
executed. The rest of the execution, only -dshem_p2 may evaluate to 𝑈𝑅𝑈𝐸 according to the conditions 
of the current matching vertices. 

Graph Irregularity 

The performance of DSHEM is also studied with irregular graphs. Sizes 𝑛 to 𝑒, in Figure 7.2, Figure 7.3 
and Figure 7.4, represent the five biggest 2D and all 3D graphs of the set. 

Edge cut 
DSHEM (Evaluating) versus SHEM (Reference) 

 

Figure 8.7.  DSHEM vs. SHEM: effect of irregularity on the edge cut with synthetic graphs and communication volume 
as partitioning objective. 

Communication volume 
DSHEM (Evaluating) versus SHEM (Reference) 

 

Figure 8.8.  DSHEM vs. SHEM: effect of irregularity on the communication volume with synthetic graphs and 
communication volume as partitioning objective. 

From the results, it is possible to see that some types of graphs have greater impact than others. One 
of the most stable types is the 2D dense triangular square graph (dtsm2d) when evaluating the edge cut. 
While others may show some spikes, there is not a clear pattern. The introduced regularity in the graphs 
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has an impact, but the percentage of irregularity is not necessarily proportional to the impact on the 
quality of the partition. 

Regarding the communication volume and maximum communication volume of all subdomains, 
similar behavior can be seen. The irregularity impacts the final partition, but it does not degrade or 
improves it with a clear pattern. 

Maximum communication volume of all subdomains 
DSHEM (Evaluating) versus SHEM (Reference) 

 

Figure 8.9.  DSHEM vs. SHEM: effect of irregularity on the maximum communication volume of all subdomains with 
synthetic graphs and communication volume as partitioning objective. 

Refinement 

METIS is executed without refinement for both, SHEM and DSHEM, to analyze the effect on the 
partitioning process. Whether the partitioning objective is the edge cut or the communication volume, 
the results remain the same; SHEM and DSHEM perform the matching without a partitioning objective 
and without the refinement process no objective is optimized. 

Edge cut 
DSHEM (Evaluating) versus SHEM (Reference) 

 

 

Figure 8.10.  DSHEM vs. SHEM: effect of refinement on the edge cut with synthetic graphs. Partitioning objective: edge 
cut on the left, communication volume on the right. 

Figure 8.10 shows the effect of the refinement when the edge cut is evaluated. It is clear that the 2D 
and 3D square graphs (sm2d100p and sm3d100p) benefit from -dshem_p2 with values from to 100. The 
3D triangular square graph (tsm3d100p) has a similar pattern, however in the negative side of the plot. 
The rest of the graphs have a more stable behavior. 
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Communication volume is a different story. Figure 8.11 shows that the 2D and 3D square graphs 
(sm2d100p and sm3d100p) and the 3D triangular square graph (tsm3d100p) have a clear benefit from 
DSHEM; it is stable for all values of -dshem_p2. 

Communication volume 
DSHEM (Evaluating) versus SHEM (Reference) 

 
 

Figure 8.11.  DSHEM vs. SHEM: effect of refinement on the communication volume with synthetic graphs. Partitioning 
objective: edge cut on the left, communication volume on the right. 

Maximum communication volume of all subdomains 
DSHEM (Evaluating) versus SHEM (Reference) 

 

 

Figure 8.12.  DSHEM vs. SHEM: effect of refinement on the maximum communication volume of all subdomains with 
synthetic graphs. Partitioning objective: edge cut on the left, communication volume on the right. 

Regarding the maximum communication volume of all subdomains, Figure 8.12 shows that the 2D 
square graph (sm2d100p) keeps an almost constant positive behavior. The 3D counterpart performs 
better with -dshem_p2 values lower than 100. 

Execution Time 

The graphs for these experiments are small enough to make virtually impossible to evaluate the impact 
of DSHEM on the execution time. The majority of the running times does not even reach one second. 

8.3. Second Experiments on Small Synthetic Graphs 

This particular set of experiments uses the graphs presented in Table 7.7 of Chapter 7. It is a set of small 
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synthetic graphs which are designed to evaluate the performance of DSHEM and compare it with SHEM 
and Random. 

8.3.1. Execution Parameters 

Two main parameters are used to tune up DSHEM for this set of experiments, namely -maxvwtm and -
dshem_p2. The other two parameters have a fix value of 100. The values chosen for the second set of 
experiments are presented in Table 8.2. This particular set produces 441 different combinations of 
values, giving a more focused view of the performance of DSHEM. This set of experiments is designed 
based on the results of the first set. 

Table 8.2:  DSHEM parameters for the second set of small synthetic graphs. 

-maxvwtm -dshem_p1 -dshem_p2 -dshem_p3 

140 to 160 100 90 to 110 100 
 

8.3.2. Analysis of Results 

The experimental results presented in this section are organized in a manner to understand how the 
different execution parameters affect the partitions. Based on the results of the first set of experiments, 
the effect of the multiplier -maxvwtm is evaluated with greater detail, as well as the percentage -
dshem_p2. Percentages -dshem_p1 and -dshem_p3 are set to 100 as they do not influence the outcome. 

Again, the robustness of DSHEM is also evaluated with different degrees of irregularity introduced to 
the synthetic graphs. The refinement and its influence on DSHEM are also studied. Finally, the 
execution time is also examined to estimate the degradation, if any, brought by DSHEM. 

The analysis is carried out with the two partitioning objectives available in METIS: cut and vol; the 
edge cut and the total communication volume respectively. Only three metrics are presented in this 
thesis: total edge cut, total communication volume, and maximum communication volume of all 
subdomains. 

Multiplier -maxvwtm 

A closer analysis of the multiplier -maxvwtm brings a different scenario of that from the first set of 
experiments. Reducing its value produces more balanced initial partitions and the refinement process is 
also optimized. However, a balanced partition does not necessarily mean a smaller edge cut or reduction 
in communication volume; it only means that the subdomains are more equal in size. 
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Edge cut 
DSHEM (Evaluating) versus SHEM (Reference) 

 

Figure 8.13.  DSHEM vs. SHEM: effect of -maxvwtm on the edge cut with synthetic graphs and communication volume 
as partitioning objective. 

Communication volume 
DSHEM (Evaluating) versus SHEM (Reference) 

 

Figure 8.14.  DSHEM vs. SHEM: effect of -maxvwtm on the communication volume with synthetic graphs and 
communication volume as partitioning objective. 

Maximum communication volume of all subdomains 
DSHEM (Evaluating) versus SHEM (Reference) 

 

Figure 8.15.  DSHEM vs. SHEM: effect of -maxvwtm on the maximum communication volume of all subdomains with 
synthetic graphs and communication volume as partitioning objective. 
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From the results in Figure 8.13, Figure 8.14 and Figure 8.15, it is not possible to find a discernible 
pattern as suggested from the first set of experiments. It is evident that the multiplier -maxvwtm plays a 
role, but only after trial and error it would be possible to adapt it to specific needs. 

It is also confirmed that the type of graph has an influence, being the 3D square graph (sm3d100p) 
and the 3D triangular square graph (tsm3d100p) with the highest improvements, and the 2D triangular 
square graph (tsm2d100p) and the 3D dense triangular square graph (dtsm3d100p) with the worst 
results. 

Percentages -dshem_p1, -dshem_p2 and -dshem_p3 

Percentages -dshem_p1 and -dshem_p3 are excluded from a deeper analysis as previous results suggest 
they do not play a role at all in the partitioning process. Percentage -dshem_p2 is used to modify the 
behavior of the cost function in DSHEM and improve the partition. 

Edge cut 
DSHEM (Evaluating) versus SHEM (Reference) 

 

Figure 8.16.  DSHEM vs. SHEM: effect of -dshem_p2 on the edge cut with synthetic graphs and communication volume 
as partitioning objective. 

Communication volume 
DSHEM (Evaluating) versus SHEM (Reference) 

 

Figure 8.17.  DSHEM vs. SHEM: effect of -dshem_p2 on the communication volume with synthetic graphs and 
communication volume as partitioning objective. 
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Maximum communication volume of all subdomains 
DSHEM (Evaluating) versus SHEM (Reference) 

 

Figure 8.18.  DSHEM vs. SHEM: effect of -dshem_p2 on the maximum communication volume of all subdomains with 
synthetic graphs and communication volume as partitioning objective. 

Depending on the metric and partitioning objective, percentage -dshem_p2 has different effects on the 
output of the partitioning process. Figure 8.16 shows that the influence is more erratic for the edge cut; 
being the 3D square graph (sm3d100p) and the 3D triangular square graph (tsm3d100p) the most 
affected. With communication volume in mind, the same types of graphs benefit from the percentage -
dshem_p2 being lower than 100; see Figure 8.17. Finally, when the maximum communication volume 
of all subdomains is evaluated, Figure 8.18 shows that values over 100 benefit some graph types. 

Graph Irregularity 

The performance of DSHEM is also studied with irregular graphs. Sizes 𝑛 to 𝑑, in Figure 8.19, Figure 
8.20 and Figure 8.21, represent the four biggest 2D and all 3D graphs of the set. 

Edge cut 
DSHEM (Evaluating) versus SHEM (Reference) 

 

Figure 8.19.  DSHEM vs. SHEM: effect of irregularity on the edge cut with synthetic graphs and communication volume 
as partitioning objective. 

From the results of the second set of experiments, it is possible to conclude that the results are 
consistent with the first set or experiments. One of the most stable types is the 2D dense triangular 
square graph (dtsm2d) when evaluating the edge cut. The introduced regularity in the graphs clearly has 
an impact, but the amount of irregularity does not reflect a proportional impact on the quality of the 
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partition. 

Communication volume 
DSHEM (Evaluating) versus SHEM (Reference) 

 

Figure 8.20.  DSHEM vs. SHEM: effect of irregularity on the communication volume with synthetic graphs and 
communication volume as partitioning objective. 

Maximum communication volume of all subdomains 
DSHEM (Evaluating) versus SHEM (Reference) 

 

Figure 8.21.  DSHEM vs. SHEM: effect of irregularity on the maximum communication volume of all subdomains with 
synthetic graphs and communication volume as partitioning objective. 

With respect to the communication volume and maximum communication volume of all subdomains, 
similar behavior can be seen. The irregularity impacts the final partition, but it does not degrade or 
improves it with a clear pattern. 

Refinement 

To analyze the effect of the refinement process on the partitions produced by DSHEM, METIS is 
executed without it; without the refinement process no objective is optimized. 

Figure 8.22 shows similar results as those from the first set of experiments: the 2D and 3D square 
graphs (sm2d100p and sm3d100p) benefit from -dshem_p2 with values from 100 and higher. However, 
the 3D triangular square graph (tsm3d100p) presents a less visible pattern as that from the first set. The 
3D dense triangular square graph (dtsm3d100p) is also affected. 
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Edge cut 
DSHEM (Evaluating) versus SHEM (Reference) 

 

Figure 8.22.  DSHEM vs. SHEM: effect of refinement on the edge cut with synthetic graphs and communication volume 
as partitioning objective. 

Communication volume 
DSHEM (Evaluating) versus SHEM (Reference) 

 

Figure 8.23.  DSHEM vs. SHEM: effect of refinement on the communication volume with synthetic graphs and 
communication volume as partitioning objective. 

Maximum communication volume of all subdomains 
DSHEM (Evaluating) versus SHEM (Reference) 

 

Figure 8.24.  DSHEM vs. SHEM: effect of refinement on the maximum communication volume of all subdomains with 
synthetic graphs and communication volume as partitioning objective. 

Communication volume remains quite stable. Similar as the first set of experiments, Figure 8.23 
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shows that the 2D and 3D square graphs (sm2d100p and sm3d100p) and the 3D triangular square graph 
(tsm3d100p) benefit from DSHEM. The percentage -dshem_p2 has an influence too, with an inflection 
point in 100. 

With respect to the maximum communication volume of all subdomains, Figure 8.24 shows that the 
2D square graph (sm2d100p) still keeps an almost constant positive benefit. The 2D triangular square 
graph (tsm2d100p) performs better with -dshem_p2 values lower than 100. 

Execution Time 

The graphs for these experiments are small enough to make virtually impossible to evaluate the impact 
of DSHEM on the execution time. The majority of the running times does not even reach one second. 

8.4. Experiments on Medium Size Synthetic Graphs 

This particular set of experiments uses the graphs presented in Table 7.8 of Chapter 7. It is a set of 
medium size synthetic graphs which are designed to evaluate the performance of DSHEM with larger 
graphs and compare it with SHEM and Random. 

8.4.1. Execution Parameters 

Two main parameters are used to tune up DSHEM for this set of experiments, namely -maxvwtm and -
dshem_p2. The other two parameters have a fix value of 100. The values chosen for the third set of 
experiments are presented in Table 8.3. This particular set produces 441 different combinations of 
values, giving a more focused view of the performance of DSHEM. This set of experiments is designed 
based on the results of the first and second sets. 

Table 8.3:  DSHEM parameters for the set of medium size synthetic graphs. 

-maxvwtm -dshem_p1 -dshem_p2 -dshem_p3 

140 to 160 100 90 to 110 100 
 

8.4.2. Analysis of Results 

Based on the results of the first two sets of experiments, the effect of the multiplier -maxvwtm is 
evaluated with detail, as well as the percentage -dshem_p2. Percentages -dshem_p1 and -dshem_p3 are 
set to a fixed value of 100 as they do not influence the outcome. The experimental results presented in 
this section are organized in a manner to understand how the different execution parameters affect the 
partitions. 

DSHEM is evaluated with a degree of irregularity introduced to the synthetic graphs. The refinement 
and its influence on DSHEM are also studied. Finally, the execution time is also examined to estimate 
the degradation, if any, brought by DSHEM. 

The analysis is carried out with the two partitioning objectives available in METIS: cut and vol; the 
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edge cut and the total communication volume respectively. Only three metrics are presented in this 
thesis: total edge cut, total communication volume, and maximum communication volume of all 
subdomains. 

Multiplier -maxvwtm 

The analysis of the multiplier -maxvwtm follows that of the second set of experiments; a detailed view of 
its impact. Reducing its value produces more balanced initial partitions and the refinement process is 
also optimized. However, a balanced partition does not necessarily mean a smaller edge cut or reduction 
in communication volume; it only means that the subdomains are more equal in size. 

Edge cut 
DSHEM (Evaluating) versus SHEM (Reference) 

 

Figure 8.25.  DSHEM vs. SHEM: effect of -maxvwtm on the edge cut with synthetic graphs and edge cut as partitioning 
objective. 

Communication volume 
DSHEM (Evaluating) versus SHEM (Reference) 

 

Figure 8.26.  DSHEM vs. SHEM: effect of -maxvwtm on the communication volume with synthetic graphs and 
communication volume as partitioning objective. 

From the results in Figure 8.25, it is evident that the 3D square graph (sm3d095p) benefits from 
DSHEM when the edge cut is evaluated. The same pattern was found with the first and second sets of 
experiments. However, the 2D square graph (sm2d095p) shows significant degradation, contrary to the 
first two sets; this could be due to the fact that the graphs in this set of experiments have a degree or 
irregularity introduced. Regarding the total communication volume, the 2D square graph (sm2d095p) 
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presents the best results, see Figure 8.26. It is consistent with the findings of previous experiments. The 
3D triangular square graph (tsm3d100p), contrary to the previous sets of experiments, presents 
degradation in the partition quality that could be attributed to the degree or irregularity introduced to the 
graph. There is not a clear pattern when the maximum communication volume of all subdomains is 
evaluated, as seen in Figure 8.27. 

Maximum communication volume of all subdomains 
DSHEM (Evaluating) versus SHEM (Reference) 

 

Figure 8.27.  DSHEM vs. SHEM: effect of -maxvwtm on the maximum communication volume of all subdomains with 
synthetic graphs and communication volume as partitioning objective. 

In summary, multiplier -maxvwtm does not provide a clear advantage or disadvantage by modifying 
its value during the partitioning process. It has a clear effect, but it is not predictable. 

Percentages -dshem_p1, -dshem_p2 and -dshem_p3 

Percentages -dshem_p1 and -dshem_p3 are excluded from a deeper analysis as previous results suggest 
they do not play a role at all in the partitioning process. Percentage -dshem_p2 is used to modify the 
behavior of the cost function in DSHEM and improve the partition. 

Edge cut 
DSHEM (Evaluating) versus SHEM (Reference) 

 

Figure 8.28.  DSHEM vs. SHEM: effect of -dshem_p2 on the edge cut with synthetic graphs and edge cut as partitioning 
objective. 

The results from the previous sets of experiments suggest that the percentage -dshem_p2 could be 
used to tune up DSHEM and obtain better results according to the type of graph being used. This 
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particular set of experiments, with only synthetic irregular graphs, does not provide the same pattern 
when the value of the multiplier varies. Figure 8.28, Figure 8.29 and Figure 8.30 depict the effects of the 
percentage -dshem_p2 with a range of 90 to 110. It is possible to see that the 2D square graph 
(sm2d095p) and the 3D triangular square graph (tsm3d100p) show the best results in different 
circumstances, as it has been with previous experiments. 

Communication volume 
DSHEM (Evaluating) versus SHEM (Reference) 

 

Figure 8.29.  DSHEM vs. SHEM: effect of -dshem_p2 on the communication volume with synthetic graphs and 
communication volume as partitioning objective. 

Maximum communication volume of all subdomains 
DSHEM (Evaluating) versus SHEM (Reference) 

 

Figure 8.30.  DSHEM vs. SHEM: effect of -dshem_p2 on the maximum communication volume of all subdomains with 
synthetic graphs and communication volume as partitioning objective. 

It is not possible to establish a discernible pattern on the effect of the percentage -dshem_p2 with this 
particular set of experiments; this situation could be attributed to the degree of irregularity in the graphs. 

Graph Irregularity 

The performance of DSHEM is studied with irregular graphs. This set of experiments utilizes only 
graphs with 95% of the edges. It has been done this way to mimic the real life graphs in a more 
controlled way. 
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Refinement 

Once more, METIS is executed without the refinement process to analyze its impact on the quality of 
the final partitions. Once the refinement is removed from the partitioning process, no objective is 
optimized and the real impact of DSHEM is shown. 

Edge cut 
DSHEM (Evaluating) versus SHEM (Reference) 

 

Figure 8.31.  DSHEM vs. SHEM: effect of refinement on the edge cut with synthetic graphs and edge cut as partitioning 
objective. 

Figure 8.31 suggests that the 3D square graph (sm3d095p) may benefit from -dshem_p2 with values 
from 100 and higher; it could also be true for the 2D version. The 3D dense triangular square graph 
(dtsm3d095p) is also affected in the same way. However, it is not completely clear, but based on the 
results of previous sets of experiments this is more evident. 

Communication volume 
DSHEM (Evaluating) versus SHEM (Reference) 

 

Figure 8.32.  DSHEM vs. SHEM: effect of refinement on the communication volume with synthetic graphs and 
communication volume as partitioning objective. 

The communication volume, in Figure 8.32, provides not pattern. The experiments with regular 
graphs suggest that this metric remains stable and this results point in that direction. The 2D and 3D 
square graphs (sm2d095p and sm3d095p) continue on the top of the chart with better results compared to 
the rest. 

Figure 8.33 shows that the 3D square graph (sm3d095p) benefits from DSHEM with an improvement 
of around 5% over all values of the percentage -dshem_p2. The graph in second place is the 3D dense 
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triangular square graph (dtsm3d095p) with just above the improvement line. 

Maximum communication volume of all subdomains 
DSHEM (Evaluating) versus SHEM (Reference) 

 

Figure 8.33.  DSHEM vs. SHEM: effect of refinement on the maximum communication volume of all subdomains with 
synthetic graphs and communication volume as partitioning objective. 

Without the refinement process, it is possible to deduce that the graphs with quadrangular-like 
geometries benefit from DSHEM. Nonetheless, the benefits greatly depend on the particular instance of 
the problem. 

Execution Time 

When METIS is executed without the refinement process, the execution time is mainly defined by the 
coarsening process and projection of the initial partition towards to the original graph. Only the time 
spent in the coarsening process may vary depending on the algorithm that is selected for the task. In this 
way, it is possible to accurately evaluate the expected degradation of the execution time by DSHEM. 
Without the refinement process, the execution time of METIS increases in a lower rate with the number 
of subdomains but varies with the matching algorithm; being Random and DSHEM the slowest. The 
type of graph also influences the partitioning time as demonstrated by the results. 

DSHEM is slower compared to SHEM due to the extra time spend on the search of the opposite 
edges. However, the difference on time is only a few seconds in this set of experiments. If we consider 
that the overall execution time, including the refinement process, can reach up to 200 minutes, the extra 
time spent by DSHEM does not have any influence at all. The execution time without refinement is not 
presented in this section as it does not bring any contribution to the overall execution when the 
refinement is performed. 

The partitioning time can be affected significantly according to the type of graph and partitioning 
objective as can be seen in Figure 8.34; being the 2D square graph the graph that brings a wider gap 
between the edge cut and communication volume. In general, Random is the slowest strategy of all. The 
difference of time between SHEM and DSHEM, with the 2D square graph, is around 1%. With the 2D 
triangular square graphs, DSHEM is 7% faster with the edge cut as partitioning objective and remains 
the same with the communication volume. With the 2D dense triangular square graph, DSHEM is 10% 
faster when the edge cut is the partitioning objective and remains constant with communication volume. 
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Partitioning time with 2D synthetic graphs 
 

Greedy refinement 

  

 

Figure 8.34.  Partitioning time of 2D synthetic graphs with 64 subdomains and greedy refinement. Type of graph: square 
on the left, triangular square on the middle, dense triangular square on the right. 

The 3D counterparts show a similar behavior of DSHEM, see Figure 8.35. For the 3D square graph, 
DSHEM is 5% faster with the edge cut and remains constant for the communication volume as 
partitioning objective. The 3D triangular square graph is different; DSHEM is 5% faster with the edge 
cut, but 9% slower with the communication volume. Finally, the 3D dense triangular square graph, 
DSHEM is 4% faster with the edge cut and remains constant with the communication volume. 

Partitioning time with 3D synthetic graphs 
 

Greedy refinement 

  

 

Figure 8.35.  Partitioning time of 3D synthetic graphs with 64 subdomains and greedy refinement. Type of graph: square 
on the left, triangular square on the middle, dense triangular square on the right. 

The refinement process is dependent of the partitioning objective; optimizing the communication 
volume could be up to 3.5 times slower as shown in Figure 8.35. The only graph that reverts the 
tendency is the 3D dense triangular square graph, when the optimization of the communication volume 
is faster than the edge cut. The two graphs with triangular geometries, in Figure 8.34, keep a balance 
time whether the edge cut or communication volume is optimized during the refinement process. 

8.5. Experiments on Real Life Graphs 

This particular set of experiments uses the graphs presented in Table 7.9 of Chapter 7. It is a set of real 
life graphs chosen to evaluate the performance of DSHEM and compare it with SHEM and Random. 
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8.5.1. Execution Parameters 

Four main parameters are used to tune up DSHEM, namely -maxvwtm, -dshem_p1, -dshem_p2, and -
dshem_p3. The values chosen for the fourth set of experiments are presented in Table 8.4. This 
particular set produces 1715 different combinations of values, giving a wide view of the performance of 
DSHEM. They are based on the results from previous experimental results, and used to confirm the 
findings with the synthetic graphs. 

Table 8.4:  DSHEM parameters for the set of real life graphs. 

-maxvwtm -dshem_p1 -dshem_p2 -dshem_p3 

140 to 160, step 5 91 to 109, step 3 91 to 109, step 3 91 to 109, step 3 
 

8.5.2. Analysis of Results 

The experimental results presented in this section are organized in a manner to understand how the 
different execution parameters affect the partitions. First, the effect of the multiplier -maxvwtm is 
evaluated. Next, the three percentages -dshem_p1, -dshem_p2, and -dshem_p3 are examined to 
understand their influence. The values used for this particular set of experiments are based on the results 
of the previous three sets; they help validate the initial findings. The refinement and its influence on 
DSHEM are also studied to confirm the previous results obtained from the synthetic graphs. Finally, the 
execution time is also examined to estimate the degradation, if any, brought by DSHEM. 

The analysis is carried out with the two partitioning objectives available in METIS: cut and vol; the 
edge cut and the total communication volume respectively. Only three metrics are presented in this 
thesis: total edge cut, total communication volume, and maximum communication volume of all 
subdomains. 

Multiplier -maxvwtm 

The multiplier -maxvwtm limits the size of vertices during the coarsening process. Reducing its value 
produces more balanced initial partitions and the refinement process is also optimized. However, a low 
value may have also undesired effects such as the inability to match vertices that could lead to an infinite 
loop trying to contract the graph without success. 

Based on the results obtained from the experiments with synthetic graphs, the values chosen for the 
multiplier -maxvwtm are designed to match those of the first set. They provide a wide view and reduce 
the number of experiments in the set. 
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Edge cut 
DSHEM (Evaluating) versus SHEM (Reference) 

  

Figure 8.36.  DSHEM vs. SHEM: effect of -maxvwtm on the edge cut with real life graphs. Partitioning objective: edge 
cut on the left, communication volume on the right. 

From the results shown in Figure 8.36 with real life graphs, it is possible to confirm the findings with 
the synthetic counterparts. The graph ef_ocean has a similar geometry to that of the 3D square graph and 
presents similar behavior: improvement over most of the values of multiplier -maxvwtm. The graphs 
ef_4elt and ef_sphere have a triangular geometry, as the 2D triangular square graph, and DSHEM 
produces poor results with them too. 

Figure 8.37 and Figure 8.38 present the evaluation of the total communication volume and the 
maximum communication volume of all subdomains respectively. It is also evident that the graph 
ef_ocean has a clear improvement with DSHEM. The other two graphs, with triangular geometry, show 
degradation in the quality of the partition, as initially found with the synthetic graphs. 

Communication volume 
DSHEM (Evaluating) versus SHEM (Reference) 

 

 

Figure 8.37.  DSHEM vs. SHEM: effect of -maxvwtm on the communication volume with real life graphs. Partitioning 
objective: edge cut on the left, communication volume on the right. 
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Maximum communication volume of all subdomains 
DSHEM (Evaluating) versus SHEM (Reference) 

 
 

Figure 8.38.  DSHEM vs. SHEM: effect of -maxvwtm on the maximum communication volume of all subdomains with 
real life graphs. Partitioning objective: edge cut on the left, communication volume on the right. 

The results may suggest that smaller values for the multiplier -maxvwtm improve the results. Though, 
the results with the second set of experiments demonstrate that variations on the quality of the partition 
depend on the instance of the problem and not the multiplier. 

Percentages -dshem_p1, -dshem_p2 and -dshem_p3 

Percentages -dshem_p1 and -dshem_p3 are excluded from the analysis as they do not play any role in 
the partitioning process. Percentage -dshem_p2 is used to modify the behavior of the cost function in 
DSHEM and improve the partition. 

Values inferior to 100 for the percentage -dshem_p2 produce better results with the graph ef_ocean, 
as shown in Figure 8.39, Figure 8.40 and Figure 8.41. Whether the partitioning objective is the edge cut 
or communication volume, the graph ef_ocean indisputably presents a benefit from DSHEM. The 
graphs ef_4elt and ef_sphere remain with little improvement or degradation. 

Edge cut 
DSHEM (Evaluating) versus SHEM (Reference) 

 

 

Figure 8.39.  DSHEM vs. SHEM: effect of -dshem_p2 on the edge cut with real life graphs. Partitioning objective: edge 
cut on the left, communication volume on the right. 
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Communication volume 
DSHEM (Evaluating) versus SHEM (Reference) 

 

 

Figure 8.40.  DSHEM vs. SHEM: effect of -dshem_p2 on the communication volume with real life graphs. Partitioning 
objective: edge cut on the left, communication volume on the right. 

Maximum communication volume of all subdomains 
DSHEM (Evaluating) versus SHEM (Reference) 

 

 

Figure 8.41.  DSHEM vs. SHEM: effect of -dshem_p2 on the maximum communication volume of all subdomains with 
real life graphs. Partitioning objective: edge cut on the left, communication volume on the right. 

These results confirm the initial findings with the synthetic graphs that suggest the performance of 
DSHEM is superior with graphs having a quadrangular-like geometry. 

Refinement 

METIS is executed without refinement for both, SHEM and DSHEM, to analyze its effect on the 
partitions. This process is responsible of the majority of the execution time; it improves the initial 
partition according to the partitioning objective. 
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Edge cut 
DSHEM (Evaluating) versus SHEM (Reference) 

 

 

Figure 8.42.  DSHEM vs. SHEM: effect of refinement on the edge cut with real life graphs. Partitioning objective: edge 
cut on the left, communication volume on the right. 

Communication volume 
DSHEM (Evaluating) versus SHEM (Reference) 

  

Figure 8.43.  DSHEM vs. SHEM: effect of refinement on the communication volume with real life graphs. Partitioning 
objective: edge cut on the left, communication volume on the right. 

It is interesting to note that the quality of the partition, when the edge cut is evaluated, improves when 
values for the percentage -dshem_p2 are lower than 100, see Figure 8.42; it is the opposite with 
synthetic graphs and square geometry. It is not clear why DSHEM presents this behavior with the graph 
ef_ocean. The graphs with triangular geometry have a similar output to the synthetic 2D triangular 
square graph. 

Regarding the total communication volume and the maximum communication volume of all 
subdomains, Figure 9.31 and Figure 9.32 depict a congruent scenario with the synthetic graphs. The 
total communication volume improves with values for the percentage -dshem_p2 being 100 or higher. 
The maximum communication volume of all subdomains is more irregular, but in general, lower values 
produce better results. 
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Maximum communication volume of all subdomains 
DSHEM (Evaluating) versus SHEM (Reference) 

 

 

Figure 8.44.  DSHEM vs. SHEM: effect of refinement on the maximum communication volume of all subdomains with 
real life graphs. Partitioning objective: edge cut on the left, communication volume on the right. 

Execution Time 

The two graphs with triangular geometries confirm that this type keeps the partitioning time balanced 
between edge cut and communication volume, as depicted in Figure 8.45 and Figure 8.46. There is 
virtually no difference in execution time whether the edge cut or communication volume is optimized by 
the refinement process. 

 

Figure 8.45.  Partitioning time with graph ef_4elt and greedy refinement. 

 

Figure 8.46.  Partitioning time with graph ef_sphere and greedy refinement. 

The experimental results confirm that the time spent on the refinement process greatly depends on the 
number of subdomains; from a few seconds for 2 subdomains to some minutes for 32 subdomains with 
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the graph ef_ocean. In addition, it is possible to deduce that the partitioning objective has also an effect 
on the execution time; communication volume could be up to four times slower than edge cut for 32 
subdomains, as shown in Figure 8.47. The matching strategy affects the refinement process too; it takes 
around 35% longer when Random and communication volume are used instead of SHEM or DSHEM. 
When METIS is executed with 32 subdomains with the graph ef_ocean, the refinement process takes 
around than 99% of the total time of execution. 

 

Figure 8.47.  Partitioning time with graph ef_ocean and greedy refinement. 

The results show that DSHEM does not increase the partitioning time regardless the number of 
subdomains or the type of graph. It depends on the particular situation whether SHEM or DSHEM is 
faster, by a marginal value, compared to the counterpart. 

8.6. Discussion 

The initial study of DSHEM provides important information of its efficiency and performance. The 
discussion is divided in the same way as the experiments. Next, a general overview of the different 
executions of DSHEM is presented. 

8.6.1. Impact of Multiplier -maxvwtm 

The initial results suggest that the multiplier -maxvwtm could help improve the partitions generated by 
DSHEM when its value is reduced from the default 150. Subsequent experiments show that there is not 
a clear pattern on how the multiplier affects the performance of DSHEM. It greatly depends on the type 
of graph, objective to optimize and metric to consider. 

Despite the lack of correlation between the value of the multiplier and the quality of the final 
partition, it seems that DSHEM produces better results more frequently when the multiplier is smaller 
than 150. It would be advisable to test the graph and subsequently adjust the value to improve the 
partitions for a particular graph. 

8.6.2. Impact of Percentages -dshem_p1, -dshem_p2 and -dshem_p3 

The original design of DSHEM contemplates three different percentages that work together to improve 
the partitions according to the type of graph being partitioned. The initial results show that the two 
percentages -dshem_p1 and -dshem_p3 do not modify the behavior of the algorithm. It is also confirmed 
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with subsequent experiments, even though the results are not presented in this thesis. A close analysis 
was also performed with a clear conclusion, the conditionals that use these two percentages evaluate to 
true only the first time, rendering them superfluous. 

When the refinement is not part of the partitioning process, the percentage -dshem_p2 has a 
measurable and predictable impact on DSHEM. The value 100 is an inflexion point for most of the 
synthetic graphs, some showing improvement when the percentage is 100 or higher and others when 
lower. When the refinement is performed, that pattern is modified and less evident; nonetheless, it is still 
possible to infer a change around the value 100. 

8.6.3. Impact of Graph Irregularity on DSHEM 

Upon the study of the experimental results, there is not a clear correlation between the irregularity of the 
graphs and the quality of partitions DSHEM produces. The irregularity introduced to the synthetic 
graphs affects in a similar way to Random, SHEM and DSHEM without a clear pattern; it is more the 
instance of the problem that changes the results than the amount of irregularity. 

It is reasonable to assume that if the degree of irregularity reaches a threshold, it will affect DSHEM 
in a direct way. As the results show, DSHEM tends to perform better with certain types of geometries. If 
the degree of irregularity reaches the point when the geometry of the graph is lost, then DSHEM will no 
longer guarantee a good partition. Based on the results presented in this chapter, DSHEM can perform 
well within a reasonable degree of irregularity introduced to the graphs. 

8.6.4. Impact of Refinement on DSHEM 

The refinement plays an important role in the partitioning process. It improves the initial partition of the 
coarsest graph and keeps the quality during the projection of that partition back to the original graph. 
The two partitioning objectives that can be optimized by the refinement are the edge cut and the 
communication volume; in most cases, optimizing the edge cut is much cheaper. 

The results from the synthetic graphs show that DSHEM can improve the quality of the partitions 
when the graph has a quadrangular-like geometry, and in certain circumstances with triangular-like 
geometries. Some patterns emerge from the synthetic graphs that can be used to ensure a higher quality 
in the partition according to the type of graph. 

Once the refinement process is included in the partitioning process, those patterns are distorted, and in 
some cases replaced. This leads as to believe that the refinement process does not efficiently interact 
with the coarsening process. Random and SHEM were originally designed to reduce the number of 
edges in the cut and the refinement process designed accordingly. In a later release of METIS, the 
optimization of the communication volume was introduced. The refinement process tries to optimize one 
objective when the graph was contracted with a different one; the original coarsening process remains 
the same, focused on the edge cut. 

DSHEM changes the focus of the coarsening process in order to improve the partitions when the 
communication volume is considered, but the refinement process is still not designed to interact with the 
new objective and in some cases it degrades the quality of the partitions. 
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8.6.5. Impact of DSHEM on the Execution Time 

The two steps in the partitioning process that contribute the most to the execution time is the coarsening 
process and, in greater degree, the refinement process. The coarsening process contracts the graph to a 
size that is easier to work with. The refinement process improves the initial partition throughout the 
projection back to the original graph; it optimizes the partitioning objective. 

From the experimental analysis, it is possible to estimate the overall impact of the coarsening process 
on the time required to partition a graph. It is evident that the time required by the three strategies, 
namely Random, SHEM and DSHEM, varies with the type of geometry present in the graph. DSHEM is 
the most complex algorithm and evidently the slowest too. Nonetheless, it would be incorrect to state 
that DSHEM is in disadvantage do to the longer processing time required to contract the graph; the 
structure of the contracted graph affects the refinement process too. 

The refinement process can take up to 99% of the execution time and it is heavily affected by the 
coarsening algorithm. Random produces poor coarse graphs and the refinement process requires longer 
time to improve the partition. SHEM and DSHEM require longer time to contract the graph, but the 
refinement process is faster as the contracted graphs have a much higher quality and less time is 
necessary to improve the partitions. In many cases, the overall partitioning time is reduced up to 7% 
when DSHEM contracts the graph compared to SHEM. 

8.6.6. Global Evaluation of DSHEM 

In general, it can be concluded that DSHEM can improve the quality of the partitions when the 
communication volume is considered. Under certain circumstances the improvement is guaranteed; 
especially when the graph has a quadrangular-like geometry, whether it is a 2D or 3D variation. 

It is still not completely clear how the refinement process affects the performance of DSHEM, but the 
experimental analysis suggests that its design is not ideal for the type of coarse graph produced by 
DSHEM. This is clear when the refinement is not part of the process and DSHEM constantly produces 
better results compared to SHEM. Once the refinement is included, the benefits of DSHEM are 
degraded or even wiped out. Still, tuning up the algorithm with the different execution parameters may 
help keep that improvement when DSHEM is used to contract the graph. It is also evident that 
optimizing the communication volume is more expensive than the edge cut; attributed to the fact that the 
initial design of the coarsening process in METIS focuses on the edge cut. 

Although DSHEM is slower during the coarsening process, due to the search of the opposite edges, 
the overall execution time of METIS is not affected, and in many cases reduced. This is due to the 
structure of the coarsest graph generated by DSHEM and the refinement process spending less time 
improving the partition throughout the projection back to the original graph. 

The irregularity introduced to the graphs has no clear effect on the efficiency of DSHEM. The results 
remain stable when the degree or irregularity is reasonable; when the geometry of the graph is kept. 

Finally, the analysis performed with the real life graphs confirms the findings with the synthetic 
counterparts. DSHEM brings clear benefits when the geometry of the graph is quadrangular. 
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Chapter 9.  

Experimental Analysis of Nested DSHEM 

This chapter presents the second evaluation of DSHEM, using the nested version, with four different 
sets of experiments as described in Chapter 7. Similar to the previous evaluation, nested DSHEM is 
executed with small graphs and a wide range of values for the parameters -maxvwtm, -dshem_p1, -
dshem_p2, and -dshem_p3. Based on those results, a new set of experiments is performed with more 
precise parameters to tune up the algorithm. The third set is designed to evaluate the scalability of nested 
DSHEM with large graphs. The final set of experiments helps confirm the evaluation results. The next 
sections present a detailed evaluation of the nested version of DSHEM. 

9.1. Nested DSHEM Partitioning 

The evaluation of nested DSHEM is based on the implementation of the strategy described in Chapter 6, 
Section 6.3.3, Nested DSHEM Partitioning; a joint effort by SHEM and DSHEM to generate the 
partitions. This implementation increases the memory requirements as a second graph is created and 
kept in memory during the partitioning process. 

9.2. First Experiments on Small Synthetic Graphs 

This particular set of experiments uses the graphs presented in Table 7.6 of Chapter 7. It is a set of small 
synthetic graphs which are designed to evaluate the performance of nested DSHEM and compare it with 
SHEM and Random. 

9.2.1. Execution Parameters 

Five main parameters are used to tune up nested DSHEM, namely -nctype, -maxvwtm, -dshem_p1, -
dshem_p2, and -dshem_p3. The values chosen for the first set of experiments are presented in Table 9.1. 
This particular set produces 3430 different combinations of values, giving a wide view of the 
performance of nested DSHEM. The subsequent experiments are designed based on the results of these 
initial experiments. 
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Table 9.1:  Nested DSHEM parameters for the first set of small synthetic graphs. 

-nctype -maxvwtm -dshem_p1 -dshem_p2 -dshem_p3 

dshem+shem 
shem+dshem 

140 to 160, step 5 91 to 109, step 3 91 to 109, step 3 91 to 109, step 3 

 

9.2.2. Analysis of Results 

The experimental results presented in this section are organized in a manner to understand how the 
different execution parameters affect the partitions. First, the effect of the multiplier -maxvwtm is 
evaluated. Next, the three percentages -dshem_p1, -dshem_p2, and -dshem_p3 are examined to 
understand their influence. The robustness of nested DSHEM is also evaluated with different degrees of 
irregularity introduced to the synthetic graphs. The refinement and its influence on nested DSHEM are 
also studied. Finally, the execution time is also examined to estimate the degradation, if any, brought by 
nested DSHEM. 

The analysis is carried out with the two partitioning objectives available in METIS: cut and vol; the 
edge cut and the total communication volume respectively. Only three metrics are presented in this 
thesis: total edge cut, total communication volume, and maximum communication volume of all 
subdomains. 

Multiplier -maxvwtm 

The multiplier -maxvwtm limits the size of vertices during the coarsening process. Reducing its value 
produces more balanced initial partitions and the refinement process is also optimized. However, a low 
value may have also undesired effects such as the inability to match vertices that could lead to an infinite 
loop trying to contract the graph without success. 

Communication volume 
DSHEM+SHEM (Evaluating) versus SHEM (Reference) 

 
 

Figure 9.1.  DSHEM+SHEM vs. SHEM: effect of -maxvwtm on the communication volume with synthetic graphs. 
Partitioning objective: edge cut on the left, communication volume on the right. 

Regarding the total communication volume, Figure 9.1 suggests that multiplier -maxvwtm does not 
have a discernible pattern on how it influences the final partition with the nested DSHEM executed as 
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DSHEM+SHEM. Similar results can be found with SHEM+DSHEM in Figure 9.2; however the 
improvement achieved with some types of graphs is reduced. 

Communication volume 
SHEM+DSHEM (Evaluating) versus SHEM (Reference) 

 
 

Figure 9.2.  SHEM+DSHEM vs. SHEM: effect of -maxvwtm on the communication volume with synthetic graphs. 
Partitioning objective: edge cut on the left, communication volume on the right. 

Maximum communication volume of all subdomains 
DSHEM+SHEM (Evaluating) versus SHEM (Reference) 

 

 

Figure 9.3.  DSHEM+SHEM vs. SHEM: effect of -maxvwtm on the maximum communication volume of all subdomains 
with synthetic graphs. Partitioning objective: edge cut on the left, communication volume on the right. 

When the maximum communication volume of all subdomains is considered, Figure 9.3 shows that in 
some cases -maxvwtm has an important impact when nested DSHEM is executed as DSHEM+SHEM 
with some types of graphs: the 3D square graph (sm3d100p) and the 3D triangular square graph 
(tsm3d100p). When nested DSHEM is executed as SHEM+DSHEM, a similar scenario is shown in 
Figure 9.4. 
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Maximum communication volume of all subdomains 
SHEM+DSHEM (Evaluating) versus SHEM (Reference) 

 

 

Figure 9.4.  SHEM+DSHEM vs. SHEM: effect of -maxvwtm on the maximum communication volume of all subdomains 
with synthetic graphs. Partitioning objective: edge cut on the left, communication volume on the right. 

Percentages -dshem_p1, -dshem_p2 and -dshem_p3 

Percentages -dshem_p1, -dshem_p2, and -dshem_p3 are used to modify the behavior of the cost function 
in nested DSHEM. It may improve the results by selecting the right values according to the type of 
graph to partition. 

Percentages -dshem_p1 and -dshem_p3 have no impact in the partitioning process of nested DSHEM, 
as found in the experimental analysis of the full DSHEM implementation in the previous chapter. For 
this reason, the results are not included in this chapter. 

Communication volume 
DSHEM+SHEM (Evaluating) versus SHEM (Reference) 

 

 

Figure 9.5.  DSHEM+SHEM vs. SHEM: effect of -dshem_p2 on the communication volume with synthetic graphs. 
Partitioning objective: edge cut on the left, communication volume on the right. 

With nested DSHEM executed as DSHEM+SHEM, shown in Figure 9.5, percentage -dshem_p2 has a 
clear impact in total communication volume of the final partition, with an inflection point in the value 
100. The types of graphs with the biggest impact are the 3D triangular square graph (tsm3d100p), the 3D 
square graph (sm3d100p) and the 3D dense triangular square graph (dtsm3d100p) when the edge cut is 
the partitioning objective. The 2D dense triangular square graph (dtsm2d100p) is also affected when the 
partitioning objective is the communication volume. With nested DSHEM executed as SHEM+DSHEM, 
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shown in Figure 9.6, the pattern is more unpredictable. The 3D triangular square graph (tsm3d100p) is 
heavily impacted by the percentage -dshem_p2 when the partitioning objective is the edge cut; the rest 
of the types of graphs have little or no impact. The total communication volume remains stable with the 
communication volume as partitioning objective. This situation can be attributed to the fact that the 
coarsening process was performed by SHEM, and the subsequent partitioning and refinement of the 
coarsest graph with DSHEM values could not improve the results. 

Communication volume 
SHEM+DSHEM (Evaluating) versus SHEM (Reference) 

 

 

Figure 9.6.  SHEM+DSHEM vs. SHEM: effect of -dshem_p2 on the communication volume with synthetic graphs. 
Partitioning objective: edge cut on the left, communication volume on the right. 

Maximum communication volume of all subdomains 
DSHEM+SHEM (Evaluating) versus SHEM (Reference) 

 

 

Figure 9.7.  DSHEM+SHEM vs. SHEM: effect of -dshem_p2 on the maximum communication volume of all subdomains 
with synthetic graphs. Partitioning objective: edge cut on the left, communication volume on the right. 

Figure 9.7 and Figure 9.8 show the impact of percentage -dshem_p2 on the maximum communication 
volume of all subdomains when nested DSHEM is executed as DSHEM+SHEM and SHEM+DSHEM 
respectively. It is possible to see that the results are similar to those of the total communication volume. 
It appears that the best results can be achieved with DSHEM+SHEM; and more predictable too. 
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Maximum communication volume of all subdomains 
SHEM+DSHEM (Evaluating) versus SHEM (Reference) 

 

 

Figure 9.8.  SHEM+DSHEM vs. SHEM: effect of -dshem_p2 on the maximum communication volume of all subdomains 
with synthetic graphs. Partitioning objective: edge cut on the left, communication volume on the right. 

Graph Irregularity 

The performance of nested DSHEM is also studied with irregular graphs. Sizes 𝑛 to 𝑒, in Figure 9.9, 
Figure 9.10, Figure 9.11 and Figure 9.12, represent the five biggest 2D and all 3D graphs of the set. 

Communication volume 
DSHEM+SHEM (Evaluating) versus SHEM (Reference) 

 

Figure 9.9.  DSHEM+SHEM vs. SHEM: effect of irregularity on the communication volume with synthetic graphs and 
communication volume as partitioning objective. 

From the results in Figure 9.9 and Figure 9.10, the impact on the total communication volume seems 
to have a random pattern. However, a closer analysis shows that some types of graphs suffer more than 
others. For example 2D and 3D triangular square graphs (tsm2d and tsm3d) and the 2D square graph 
(sm2d) are the most impacted; nevertheless, the degree of the irregularity in the graphs is not 
proportional to the impact on the quality of the partition. 

Regarding the maximum communication volume of all subdomains, similar behavior can be seen in 
Figure 9.11 and Figure 9.12. The irregularity impacts the final partition, but it does not degrade or 
improves it with a clear pattern; it is dependent of the instance of the problem. 
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Communication volume 
SHEM+DSHEM (Evaluating) versus SHEM (Reference) 

 

Figure 9.10.  SHEM+DSHEM vs. SHEM: effect of irregularity on the communication volume with synthetic graphs and 
communication volume as partitioning objective. 

Maximum communication volume of all subdomains 
DSHEM+SHEM (Evaluating) versus SHEM (Reference) 

 

Figure 9.11.  DSHEM+SHEM vs. SHEM: effect of irregularity on the maximum communication volume of all 
subdomains with synthetic graphs and communication volume as partitioning objective. 

Maximum communication volume of all subdomains 
SHEM+DSHEM (Evaluating) versus SHEM (Reference) 

 

Figure 9.12.  SHEM+DSHEM vs. SHEM: effect of irregularity on the maximum communication volume of all 
subdomains with synthetic graphs and communication volume as partitioning objective. 
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Refinement 

METIS is executed without refinement for both, SHEM and nested DSHEM, to analyze the effect on the 
partitioning process. Whether the partitioning objective is the edge cut or the communication volume, 
the results remain the same; SHEM and nested DSHEM perform the matching without a partitioning 
objective and without the refinement process no objective is optimized. 

Communication volume 
DSHEM+SHEM (Evaluating) versus SHEM (Reference) 

 

 

Figure 9.13.  DSHEM+SHEM vs. SHEM: effect of refinement on the communication volume with synthetic graphs. 
Partitioning objective: edge cut on the left, communication volume on the right. 

Communication volume 
SHEM+DSHEM (Evaluating) versus SHEM (Reference) 

 

 

Figure 9.14.  SHEM+DSHEM vs. SHEM: effect of refinement on the communication volume with synthetic graphs. 
Partitioning objective: edge cut on the left, communication volume on the right. 

It is possible to see the real advantage of nested DSHEM when METIS is executed without 
refinement. There is always an improvement on the total communication volume when nested DSHEM 
is executed as DSHEM+SHEM; shown in Figure 9.13. If executed as SHEM+DSHEM, the partitions of 
the 2D square graph (sm2d100p) have the greatest improvement, see Figure 9.14; the rest of the types of 
graphs suffer a negative impact compared to DSHEM+SHEM. 

With respect to the maximum communication volume of all subdomains, Figure 9.15 and Figure 9.16 
illustrate an analogous scenario as that of total communication volume; the 2D square graph (sm2d100p) 
benefits more from SHEM+DSHEM that DSHEM+SHEM. 
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Maximum communication volume of all subdomains 
DSHEM+SHEM (Evaluating) versus SHEM (Reference) 

  

Figure 9.15.  DSHEM+SHEM vs. SHEM: effect of refinement on the maximum communication volume of all 
subdomains with synthetic graphs. Partitioning objective: edge cut on the left, communication volume on the right. 

Maximum communication volume of all subdomains 
SHEM+DSHEM (Evaluating) versus SHEM (Reference) 

  

Figure 9.16.  SHEM+DSHEM vs. SHEM: effect of refinement on the maximum communication volume of all 
subdomains with synthetic graphs. Partitioning objective: edge cut on the left, communication volume on the right. 

It is interesting to notice that the 2D square graph (sm2d100p) is heavily affected by the refinement 
process. The higher quality of the partitions with SHEM+DSHEM is degraded when the refinement is 
performed. This is evident when comparing these results to those of the percentage -dshem_p2. 

Execution Time 

The graphs for these experiments are small enough to make virtually impossible to evaluate the impact 
of nested DSHEM on the execution time. The majority of the running times does not even reach one 
second. 

9.3. Second Experiments on Small Synthetic Graphs 

This particular set of experiments uses the graphs presented in Table 7.7 of Chapter 7. It is a set of small 
synthetic graphs which are designed to evaluate the performance of nested DSHEM and compare it with 
SHEM and Random. 
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9.3.1. Execution Parameters 

Three main parameters are used to tune up nested DSHEM, namely -nctype, -maxvwtm and -dshem_p2. 
Based on the previous experiments, the two parameters -dshem_p1 and -dshem_p3 have a fix value of 
100. The values chosen for the second set of experiments are presented in Table 9.2. This particular set 
produces 882 different combinations of values, giving a detailed view of the performance of nested 
DSHEM. 

Table 9.2:  Nested DSHEM parameters for the second set of small synthetic graphs. 

-nctype -maxvwtm -dshem_p1 -dshem_p2 -dshem_p3 

dshem+shem 
shem+dshem 

140 to 160 100 90 to 110 100 

 

9.3.2. Analysis of Results 

The experimental results presented in this section are organized in a manner to understand how the 
different execution parameters affect the partitions. Based on the results of the first set of experiments, 
the effect of the multiplier -maxvwtm is evaluated with greater detail, as well as the percentage -
dshem_p2. Percentages -dshem_p1 and -dshem_p3 are set to 100 as they do not influence the outcome. 

Again, the robustness of nested DSHEM is also evaluated with different degrees of irregularity 
introduced to the synthetic graphs. The refinement and its influence on nested DSHEM are also studied. 
Finally, the execution time is also examined to estimate the degradation, if any, brought by nested 
DSHEM. The analysis is carried out with the two partitioning objectives available in METIS: cut and 
vol; the edge cut and the total communication volume respectively. Only three metrics are presented in 
this thesis: total edge cut, total communication volume, and maximum communication volume of all 
subdomains. 

Multiplier -maxvwtm 

A closer analysis of the multiplier -maxvwtm brings a different scenario of that from the first set of 
experiments. Reducing its value produces more balanced initial partitions and the refinement process is 
also optimized. However, a balanced partition does not necessarily mean a smaller edge cut or reduction 
in communication volume; it only means that the subdomains are more equal in size. 

Figure 9.17 and Figure 9.18 show that nested DSHEM executed as DSHEM+SHEM produces better 
results when the total communication volume is evaluated; being the 3D square graph (sm3d100p) and 
the 3D triangular square graph (tsm3d100p) with the highest improvements and the 2D square graph 
(sm2d100p) with some improvement. Also, the benefit of using DSHEM+SHEM is more stable than that 
of SHEM+DSHEM. These results suggest that the multiplier -maxvwtm plays some role in the 
partitioning process, but only after trial and error it would be possible to adapt it to specific needs; more 
precisely with SHEM+DSHEM. 
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Communication volume 
DSHEM+SHEM (Evaluating) versus SHEM (Reference) 

 

Figure 9.17.  DSHEM+SHEM vs. SHEM: effect of -maxvwtm on the communication volume with synthetic graphs and 
communication volume as partitioning objective. 

Communication volume 
SHEM+DSHEM (Evaluating) versus SHEM (Reference) 

 

Figure 9.18.  SHEM+DSHEM vs. SHEM: effect of -maxvwtm on the communication volume with synthetic graphs and 
communication volume as partitioning objective. 

Maximum communication volume of all subdomains 
DSHEM+SHEM (Evaluating) versus SHEM (Reference) 

 

Figure 9.19.  DSHEM+SHEM vs. SHEM: effect of -maxvwtm on the maximum communication volume of all subdomains 
with synthetic graphs and communication volume as partitioning objective. 
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With respect to the maximum communication volume of all subdomains, Figure 9.19 and Figure 9.20 
confirm that results produced by DSHEM+SHEM are more stable and predictable. Again the 3D 
triangular square graph (tsm3d100p) presents the highest improvements. The irregularity of the results 
produced by SHEM+DSHEM could be attributed to the fact that once the graph has been contracted by 
SHEM, the initial partition with DSHEM values, and the subsequent refinement, could not improve the 
results due to the restrictions posed by the coarsest graph. 

Maximum communication volume of all subdomains 
SHEM+DSHEM (Evaluating) versus SHEM (Reference) 

 

Figure 9.20.  SHEM+DSHEM vs. SHEM: effect of -maxvwtm on the maximum communication volume of all subdomains 
with synthetic graphs and communication volume as partitioning objective. 

The multiplier -maxvwtm may improve the balance of the initial partition when its value is low, 
however, it is not possible to determine when and how it improves the quality of the final partition as the 
refinement process plays an important role in this regard. 

Percentages -dshem_p1, -dshem_p2 and -dshem_p3 

Percentages -dshem_p1 and -dshem_p3 are excluded from a deeper analysis as previous results suggest 
they do not play a role at all in the partitioning process. Percentage -dshem_p2 is used to modify the 
behavior of the cost function in nested DSHEM and improve the partition. 

The effect of percentage -dshem_p2 on the total communication volume is evident from the results 
presented in Figure 9.21, when nested DSHEM is executed as DSHEM+SHEM. Three types of graphs 
have a clear improvement when the percentage value is smaller than 100, the other three produce better 
results when the value is 100 or higher. When nested DSHEM is executed as SHEM+DSHEM, as 
depicted in Figure 9.22, the pattern seen before is replaced by a more constant behavior over all the 
values used for the percentage. The quality of the partitions is also degraded over all types of graphs. 
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Communication volume 
DSHEM+SHEM (Evaluating) versus SHEM (Reference) 

 

Figure 9.21.  DSHEM+SHEM vs. SHEM: effect of -dshem_p2 on the communication volume with synthetic graphs and 
communication volume as partitioning objective. 

Communication volume 
SHEM+DSHEM (Evaluating) versus SHEM (Reference) 

 

Figure 9.22.  SHEM+DSHEM vs. SHEM: effect of -dshem_p2 on the communication volume with synthetic graphs and 
communication volume as partitioning objective. 

Maximum communication volume of all subdomains 
DSHEM+SHEM (Evaluating) versus SHEM (Reference) 

 

Figure 9.23.  DSHEM+SHEM vs. SHEM: effect of -dshem_p2 on the maximum communication volume of all subdomains 
with synthetic graphs and communication volume as partitioning objective. 
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Again, a similar behavior can be appreciated when the maximum communication volume of all 
subdomains is evaluated; Figure 9.23 and Figure 9.24 confirm that nested DSHEM executed as 
DSHEM+SHEM produces a discernible pattern in terms of quality of the final partition. Though, in this 
case some types of graphs, such as the 2D square graph (sm2d100p), remain constant over all values of 
the percentage -dshem_p2. 

When nested DSHEM is executed as SHEM+DSHEM the results are more predictable, see Figure 
9.24. The graphs that benefit from this type of execution are the 2D and 3D square graph (sm2d100p and 
sm3d100p respectively) and the 3D dense triangular square graph (dtsm3d100p). 

Maximum communication volume of all subdomains 
SHEM+DSHEM (Evaluating) versus SHEM (Reference) 

 

Figure 9.24.  SHEM+DSHEM vs. SHEM: effect of -dshem_p2 on the maximum communication volume of all subdomains 
with synthetic graphs and communication volume as partitioning objective. 

The influence of percentage -dshem_p2 on the quality of the partitions is more evident with 
DSHEM+SHEM. In this case DSHEM has a better opportunity to have an impact and not being eclipsed 
by SHEM. 

Graph Irregularity 

The performance of nested DSHEM is also studied with irregular graphs. Sizes 𝑛 to 𝑑, in Figure 9.25, 
Figure 9.26, Figure 9.27 and Figure 9.28, represent the four biggest 2D and all 3D graphs of the set. 

Figure 9.25 and Figure 9.26 confirm the results obtained with the first set of experiments. With the 
total communication volume in mind, both types of execution of nested DSHEM are not proportionally 
affected by the degree of irregularity introduced to the synthetic graphs. It is obvious that the irregularity 
impacts the quality of the final partition, but it is dependent on the specific case of graph type, size and 
irregularity. A higher degree of irregularity in the graph does not mean a higher improvement or 
degradation of the quality of the final partition. 
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Communication volume 
DSHEM+SHEM (Evaluating) versus SHEM (Reference) 

 

Figure 9.25.  DSHEM+SHEM vs. SHEM: effect of irregularity on the communication volume with synthetic graphs and 
communication volume as partitioning objective. 

Communication volume 
SHEM+DSHEM (Evaluating) versus SHEM (Reference) 

 

Figure 9.26.  SHEM+DSHEM vs. SHEM: effect of irregularity on the communication volume with synthetic graphs and 
communication volume as partitioning objective. 

Maximum communication volume of all subdomains 
DSHEM+SHEM (Evaluating) versus SHEM (Reference) 

 

Figure 9.27.  DSHEM+SHEM vs. SHEM: effect of irregularity on the maximum communication volume of all 
subdomains with synthetic graphs and communication volume as partitioning objective. 
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Maximum communication volume of all subdomains 
SHEM+DSHEM (Evaluating) versus SHEM (Reference) 

 

Figure 9.28.  SHEM+DSHEM vs. SHEM: effect of irregularity on the maximum communication volume of all 
subdomains with synthetic graphs and communication volume as partitioning objective. 

A similar scenario is shown by Figure 9.27 and Figure 9.28 when the maximum communication 
volume of all subdomains is evaluated; the role of the irregularity does not affect the quality of the 
results in a proportional amount. 

Refinement 

To analyze the effect of the refinement process on the partitions produced by nested DSHEM, METIS is 
executed without it; without the refinement process no objective is optimized. 

Communication volume 
DSHEM+SHEM (Evaluating) versus SHEM (Reference) 

 

Figure 9.29.  DSHEM+SHEM vs. SHEM: effect of refinement on the communication volume with synthetic graphs and 
communication volume as partitioning objective. 

Similar to the previous results, the percentage -dshem_p2 heavily impact the results. It is evident 
when nested DSHEM is executed as DSHEM+SHEM, as depicted in Figure 9.29 and Figure 9.31. 
SHEM takes over with the type of execution being SHEM+DSHEM as no refinement process is 
performed, see Figure 9.30 and Figure 9.32. 

When nested DSHEM is executed, the algorithm used for the coarsening process seems to have the 
greatest impact in the final partition. This is clear when the refinement process is taken out of the 
equation, as the real effects of the coarsening process become visible and not hidden when a partitioning 
objective is optimized. 
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Communication volume 
SHEM+DSHEM (Evaluating) versus SHEM (Reference) 

 

Figure 9.30.  SHEM+DSHEM vs. SHEM: effect of refinement on the communication volume with synthetic graphs and 
communication volume as partitioning objective. 

Maximum communication volume of all subdomains 
DSHEM+SHEM (Evaluating) versus SHEM (Reference) 

 

Figure 9.31.  DSHEM+SHEM vs. SHEM: effect of refinement on the maximum communication volume of all 
subdomains with synthetic graphs and communication volume as partitioning objective. 

Maximum communication volume of all subdomains 
SHEM+DSHEM (Evaluating) versus SHEM (Reference) 

 

Figure 9.32.  SHEM+DSHEM vs. SHEM: effect of refinement on the maximum communication volume of all 
subdomains with synthetic graphs and communication volume as partitioning objective. 
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Execution Time 

The graphs for these experiments are small enough to make virtually impossible to evaluate the impact 
of nested DSHEM on the execution time. The majority of the running times does not even reach one 
second. 

9.4. Experiments on Medium Size Synthetic Graphs 

This particular set of experiments uses the graphs presented in Table 7.8 of Chapter 7. It is a set of 
medium size synthetic graphs which are designed to evaluate the performance of nested DSHEM with 
larger graphs and compare it with SHEM and Random. 

9.4.1. Execution Parameters 

Three main parameters are used to tune up nested DSHEM, namely -nctype, -maxvwtm and -dshem_p2. 
Based on the previous sets of experiments, the two parameters -dshem_p1 and -dshem_p3 have a fix 
value of 100. The values chosen for the third set of experiments are presented in Table 9.3. This 
particular set produces 882 different combinations of values, giving a detailed view of the performance 
of nested DSHEM. 

Table 9.3:  Nested DSHEM parameters for the set of medium size synthetic graphs. 

-nctype -maxvwtm -dshem_p1 -dshem_p2 -dshem_p3 

dshem+shem 
shem+dshem 

140 to 160 100 90 to 110 100 

 

9.4.2. Analysis of Results 

The experimental results presented in this section are organized in a manner to understand how the 
different execution parameters affect the partitions. Based on the results of the first two sets of 
experiments, the effect of the multiplier -maxvwtm is evaluated with detail, as well as the percentage -
dshem_p2. Percentages -dshem_p1 and -dshem_p3 are set to 100 as they do not influence the outcome. 
The refinement and its influence on nested DSHEM are also studied. Finally, the execution time is also 
examined to estimate the degradation, if any, brought by nested DSHEM. 

The analysis is carried out with the two partitioning objectives available in METIS: cut and vol; the 
edge cut and the total communication volume respectively. Only three metrics are presented in this 
thesis: total edge cut, total communication volume, and maximum communication volume of all 
subdomains. 

Multiplier -maxvwtm 

A close analysis of the multiplier -maxvwtm is presented with this set of experiments, similar to the 
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second set. From the results in Figure 9.33 and Figure 9.34, it is evident that nested DSHEM, executed 
as SHEM+DSHEM, brings better results for the edge cut. Nonetheless, the multiplier -maxvwtm does 
not bring a conclusive impact on the results when its value varies from 140 to 160. 

Edge cut 
DSHEM+SHEM (Evaluating) versus SHEM (Reference) 

 

Figure 9.33.  DSHEM+SHEM vs. SHEM: effect of -maxvwtm on the edge cut with synthetic graphs and edge cut as 
partitioning objective. 

Edge cut 
SHEM+DSHEM (Evaluating) versus SHEM (Reference) 

 

Figure 9.34.  SHEM+DSHEM vs. SHEM: effect of -maxvwtm on the edge cut with synthetic graphs and edge cut as 
partitioning objective. 

With respect to the communication volume, the results seem to be more stable when nested DSHEM 
is executed as SHEM+DSHEM, as seen in Figure 9.35 and Figure 9.36. The multiplier -maxvwtm does 
not affect the results in a discernible pattern. In both cases, nested DSHEM provides improvements to 
the 2D square graph (sm2d095p); the graphs with triangular geometries are adversely affected. 

The maximum communication volume of all subdomains, Figure 9.37 and Figure 9.38, is different in 
this case. The results seem random and without a clear advantage or disadvantage with DSHEM+SHEM 
or SHEM+DSHEM and different values for the multiplier. The only difference is that SHEM+DSHEM 
is more stable when the maximum communication volume of all subdomains is evaluated. 
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Communication volume 
DSHEM+SHEM (Evaluating) versus SHEM (Reference) 

 

Figure 9.35.  DSHEM+SHEM vs. SHEM: effect of -maxvwtm on the communication volume with synthetic graphs and 
communication volume as partitioning objective. 

Communication volume 
SHEM+DSHEM (Evaluating) versus SHEM (Reference) 

 

Figure 9.36.  SHEM+DSHEM vs. SHEM: effect of -maxvwtm on the communication volume with synthetic graphs and 
communication volume as partitioning objective. 

Maximum communication volume of all subdomains 
DSHEM+SHEM (Evaluating) versus SHEM (Reference) 

 

Figure 9.37.  DSHEM+SHEM vs. SHEM: effect of -maxvwtm on the maximum communication volume of all subdomains 
with synthetic graphs and communication volume as partitioning objective. 
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Maximum communication volume of all subdomains 
SHEM+DSHEM (Evaluating) versus SHEM (Reference) 

 

Figure 9.38.  SHEM+DSHEM vs. SHEM: effect of -maxvwtm on the maximum communication volume of all subdomains 
with synthetic graphs and communication volume as partitioning objective. 

Percentages -dshem_p1, -dshem_p2 and -dshem_p3 

Percentages -dshem_p1 and -dshem_p3 are excluded from a deeper analysis as previous results suggest 
they do not play a role at all in the partitioning process. Percentage -dshem_p2 is used to modify the 
behavior of the cost function in nested DSHEM and improve the partition. 

Edge cut 
DSHEM+SHEM (Evaluating) versus SHEM (Reference) 

 

Figure 9.39.  DSHEM+SHEM vs. SHEM: effect of -dshem_p2 on the edge cut with synthetic graphs and edge cut as 
partitioning objective. 

As depicted in Figure 9.39, when nested DSHEM is executed as DSHEM+SHEM and the edge cut is 
evaluated, with the irregularity introduced to the synthetic graphs, the percentage -dshem_p2 has a 
modified pattern. With regular graphs, the behavior of the percentage is predictable, with an inflection 
point in 100. The change, when dshem_p2 is set to 100, is still evident and the influence of the 
percentage remains stable when it is close to 100. It becomes more scattered as it is further away from 
the inflection point. In the case of SHEM+DSHEM, Figure 9.40 shows a more irregular behavior, 
following the results of previous sets of experiments. 
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Edge cut 
SHEM+DSHEM (Evaluating) versus SHEM (Reference) 

 

Figure 9.40.  SHEM+DSHEM vs. SHEM: effect of -dshem_p2 on the edge cut with synthetic graphs and edge cut as 
partitioning objective. 

Communication volume 
DSHEM+SHEM (Evaluating) versus SHEM (Reference) 

 

Figure 9.41.  DSHEM+SHEM vs. SHEM: effect of -dshem_p2 on the communication volume with synthetic graphs and 
communication volume as partitioning objective. 

Communication volume 
SHEM+DSHEM (Evaluating) versus SHEM (Reference) 

 

Figure 9.42.  SHEM+DSHEM vs. SHEM: effect of -dshem_p2 on the communication volume with synthetic graphs and 
communication volume as partitioning objective. 
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The communication volume is also affected by the irregularity introduced to the graphs. Again, 
DSHEM+SHEM is more stable and predictable than SHEM+DSHEM; see Figure 9.41 and Figure 9.42. 
Further away from the value 100 the results are less predictable. Based on the results from previous 
experiments, it is still possible to see that for some types of graphs, such as the 2D square graph 
(sm2d095p), a lower value for the percentage dshem_p2 may produce better results when nested 
DSHEM is executed as DSHEM+SHEM. 

Maximum communication volume of all subdomains 
DSHEM+SHEM (Evaluating) versus SHEM (Reference) 

 

Figure 9.43.  DSHEM+SHEM vs. SHEM: effect of -dshem_p2 on the maximum communication volume of all subdomains 
with synthetic graphs and communication volume as partitioning objective. 

Maximum communication volume of all subdomains 
SHEM+DSHEM (Evaluating) versus SHEM (Reference) 

 

Figure 9.44.  SHEM+DSHEM vs. SHEM: effect of -dshem_p2 on the maximum communication volume of all subdomains 
with synthetic graphs and communication volume as partitioning objective. 

Figure 9.43 and Figure 9.44 shows that the maximum communication volume of all subdomains is 
also affected by the irregularity introduced to the synthetic graphs. The original pattern is modified in 
the same way as described before. This situation leads as to think that values closer to 100 bring a more 
predictable result with this type of graph. 

Graph Irregularity 

The performance of DSHEM is studied with irregular graphs. This set of experiments utilizes only 
graphs with 95% of the edges. 
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Refinement 

To analyze the effect of the refinement process on the partitions produced by nested DSHEM, METIS is 
executed without it. When the refinement process is not performed, no objective is optimized. 

Edge cut 
DSHEM+SHEM (Evaluating) versus SHEM (Reference) 

 

Figure 9.45.  DSHEM+SHEM vs. SHEM: effect of refinement on the edge cut with synthetic graphs and edge cut as 
partitioning objective. 

Edge cut 
SHEM+DSHEM (Evaluating) versus SHEM (Reference) 

 

Figure 9.46.  SHEM+DSHEM vs. SHEM: effect of refinement on the edge cut with synthetic graphs and edge cut as 
partitioning objective. 

When the edge cut is evaluated, Figure 9.45 and Figure 9.46 show that nested DSHEM executed as 
SHEM+DSHEM produces better results. Again, the irregularity introduced to the synthetic graphs 
affects the behavior of the percentage -dshem_p2 when nested DSHEM is executed as DSHEM+SHEM. 
The 3D square graph (sm3d095p) is the type of graph with the best results, followed by the 3D dense 
triangular square graph (dtsm3d095p). 

With the total communication volume in mind, nested DSHEM, executed as DSHEM+SHEM, 
produces better results with the 2D and 3D square graphs (sm2d095p and sm3d095p). If executed as 
SHEM+DSHEM, the 2D and 3D square graphs (sm2d095p and sm3d095p) and the 3D triangular square 
graph (tsm3d095p) show improvements. This is depicted in Figure 9.47 and Figure 9.48 where the 
irregularity of the graphs affects the final results. 
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Communication volume 
DSHEM+SHEM (Evaluating) versus SHEM (Reference) 

 

Figure 9.47.  DSHEM+SHEM vs. SHEM: effect of refinement on the communication volume with synthetic graphs and 
communication volume as partitioning objective. 

Communication volume 
SHEM+DSHEM (Evaluating) versus SHEM (Reference) 

 

Figure 9.48.  SHEM+DSHEM vs. SHEM: effect of refinement on the communication volume with synthetic graphs and 
communication volume as partitioning objective. 

Maximum communication volume of all subdomains 
DSHEM+SHEM (Evaluating) versus SHEM (Reference) 

 

Figure 9.49.  DSHEM+SHEM vs. SHEM: effect of refinement on the maximum communication volume of all 
subdomains with synthetic graphs and communication volume as partitioning objective. 
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Figure 9.49 and Figure 9.50 present the effect of the refinement process when the maximum 
communication volume of all subdomains is evaluated. The graphs with quadrangular geometries show 
better results in general; this is consistent with the results from previous experiments. However, the 
degree of irregularity in the graphs creates a different scenario of that from the second set of 
experiments where the results are more stable and predictable in both cases, DSHEM+SHEM and 
SHEM+DSHEM. 

Maximum communication volume of all subdomains 
SHEM+DSHEM (Evaluating) versus SHEM (Reference) 

 

Figure 9.50.  SHEM+DSHEM vs. SHEM: effect of refinement on the maximum communication volume of all 
subdomains with synthetic graphs and communication volume as partitioning objective. 

In the case of DSHEM+SHEM, the 3D square graph (sm3d095p) and 3D dense triangular square 
graph (dtsm3d095p) have improvement up to 9%; in contrast, the 2D square graph (sm2d095p) presents 
a degradation of up to 10%, see Figure 9.50. 

Execution Time 

When METIS is executed without the refinement process, nested DSHEM is slower compared to SHEM 
due to the extra time spend on the search of the opposite edges. Nevertheless, the difference is minimal, 
only a couple seconds. In a normal execution, when the partitioning time reaches minutes or hours, the 
disadvantage of DSHEM can be disregarded. The execution time of nested DSHEM executed as 
DSHEM+SHEM and SHEM+DSHEM are very similar; only the partitioning times of DSHEM+SHEM 
are presented in here. 

Based on the results presented in Figure 9.51 and Figure 9.52, the execution time of nested DSHEM 
is similar to that of the full implementation of DSHEM. The graphs with quadrangular geometries show 
a bigger gap when the refinement process optimizes the edge cut or the communication volume. In most 
of the cases, nested DSHEM is faster than SHEM or Random. 
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Partitioning time with 2D synthetic graphs 
 

Nested coarsening type: DSHEM+SHEM 
Greedy refinement 

  

 

Figure 9.51.  Partitioning time of 2D synthetic graphs with 64 subdomains and greedy refinement. Type of graph: square 
on the left, triangular square on the middle, dense triangular square on the right. Nested DSHEM is executed as 

DSHEM+SHEM. 

Partitioning time with 3D synthetic graphs 
 

Nested coarsening type: DSHEM+SHEM 
Greedy refinement 

  
 

Figure 9.52.  Partitioning time of 3D synthetic graphs with 64 subdomains and greedy refinement. Type of graph: square 
on the left, triangular square on the middle, dense triangular square on the right. Nested DSHEM is executed as 

DSHEM+SHEM. 

9.5. Experiments on Real Life Graphs 

This particular set of experiments uses the graphs presented in Table 7.9 of Chapter 7. It is a set of real 
life graphs chosen to evaluate the performance of nested DSHEM and compare it with SHEM and 
Random. 

9.5.1. Execution Parameters 

Five main parameters are used to tune up nested DSHEM, namely -nctype, -maxvwtm, -dshem_p1, -
dshem_p2, and -dshem_p3. The values chosen for the fourth set of experiments are presented in Table 
9.4. This particular set produces 3430 different combinations of values, giving a wide view of the 
performance of nested DSHEM. They are based on the results from previous experimental results, and 
used to confirm the findings with the synthetic graphs. 

Ra
nd

om
Cu

t

Ra
nd

om
Vo

l

SH
EM

Cu
t

SH
EM

Vo
l

DS
HE

M
Cu

t

DS
HE

M
Vo

l0.00
10.00
20.00
30.00
40.00
50.00
60.00

Partitioning method

Ti
m

e
m

in
s.

Ra
nd

om
Cu

t

Ra
nd

om
Vo

l

SH
EM

Cu
t

SH
EM

Vo
l

DS
HE

M
Cu

t

DS
HE

M
Vo

l0.00
5.00

10.00
15.00
20.00
25.00
30.00

Partitioning method
Ti

m
e

m
in

s.

Ra
nd

om
Cu

t

Ra
nd

om
Vo

l

SH
EM

Cu
t

SH
EM

Vo
l

DS
HE

M
Cu

t

DS
HE

M
Vo

l0.00

10.00

20.00

30.00

40.00

50.00

Partitioning method

Ti
m

e
m

in
s.

SH
EM

Cu
t

SH
EM

Vo
l

DS
HE

M
Cu

t

DS
HE

M
Vo

l0.00

50.00

100.00

150.00

200.00

250.00

Partitioning method

Ti
m

e
m

in
s.

Ra
nd

om
Cu

t

Ra
nd

om
Vo

l

SH
EM

Cu
t

SH
EM

Vo
l

DS
HE

M
Cu

t

DS
HE

M
Vo

l0.00
20.00
40.00
60.00
80.00

100.00
120.00

Partitioning method

Ti
m

e
m

in
s.

Ra
nd

om
Cu

t

Ra
nd

om
Vo

l

SH
EM

Cu
t

SH
EM

Vo
l

DS
HE

M
Cu

t

DS
HE

M
Vo

l0.00

20.00

40.00

60.00

80.00

100.00

Partitioning method

Ti
m

e
m

in
s.



Chapter 9. Experimental Analysis of Nested DSHEM 
 

138 

Table 9.4:  Nested DSHEM parameters for the set of real life graphs. 

-nctype -maxvwtm -dshem_p1 -dshem_p2 -dshem_p3 

dshem+shem 
shem+dshem 

140 to 160, step 5 91 to 109, step 3 91 to 109, step 3 91 to 109, step 3 

 

9.5.2. Analysis of Results 

The experimental results presented in this section are organized in a manner to understand how the 
different execution parameters affect the partitions. First, the effect of the multiplier -maxvwtm is 
evaluated. Next, the three percentages -dshem_p1, -dshem_p2, and -dshem_p3 are examined to 
understand their influence. The values used for this particular set of experiments are based on the results 
of the previous three sets; they help validate the initial findings. The refinement and its influence on 
nested DSHEM are also studied to confirm the previous results obtained from the synthetic graphs. 
Finally, the execution time is also examined to estimate the degradation, if any, brought by nested 
DSHEM. 

The analysis is carried out with the two partitioning objectives available in METIS: cut and vol; the 
edge cut and the total communication volume respectively. Only three metrics are presented in this 
thesis: total edge cut, total communication volume, and maximum communication volume of all 
subdomains. 

Multiplier -maxvwtm 

The multiplier -maxvwtm limits the size of vertices during the coarsening process. Reducing its value 
produces more balanced initial partitions and the refinement process is also optimized. However, a low 
value may have also undesired effects such as the inability to match vertices that could lead to an infinite 
loop trying to contract the graph without success. 

Based on the results obtained from the experiments with synthetic graphs, the values chosen for the 
multiplier -maxvwtm are designed to match those of the first set. They provide a wide view and reduce 
the number of experiments in the set. 
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Communication volume 
DSHEM+SHEM (Evaluating) versus SHEM (Reference) 

 

 

Figure 9.53.  DSHEM+SHEM vs. SHEM: effect of -maxvwtm on the communication volume with real life graphs. 
Partitioning objective: edge cut on the left, communication volume on the right. 

The total communication volume is improved when nested DSHEM is executed as DSHEM+SHEM 
with the graph ef_ocean, see Figure 9.53. However, the value of multiplier -maxvwtm does not play a 
predictable role; it depends on the instance of the problem. Results are poor for the two graphs with 
triangular-like geometries. When nested DSHEM is executed as SHEM+DSHEM, see Figure 9.54, the 
results are inferior; as found with the synthetic graphs. 

The maximum communication volume of all subdomains presents a similar performance as the total 
communication volume, see Figure 9.55 and Figure 9.56; DSHEM+SHEM produces better results than 
SHEM+DSHEM with the graph ef_ocean. The quality of the partition is heavily degraded with the 
graph ef_4elt; it is not clear why this degradation as the synthetic graphs performed better. Nonetheless, 
the triangular geometries do not perform as well as the quadrangular ones. 

Communication volume 
SHEM+DSHEM (Evaluating) versus SHEM (Reference) 

 

 

Figure 9.54.  SHEM+DSHEM vs. SHEM: effect of -maxvwtm on the communication volume with real life graphs. 
Partitioning objective: edge cut on the left, communication volume on the right. 

 

14
0,1

00
,09

1,1
00

14
5,1

00
,09

1,1
00

15
0,1

00
,09

1,1
00

15
5,1

00
,09

1,1
00

16
0,1

00
,09

1,1
00

2.00

1.00

0.00

1.00

2.00

3.00

Value of percentages

Im
pr

ov
em

en
t

Obj.: Edge cut

ef 4elt

ef sphere

ef ocean

Average

14
0,1

00
,09

1,1
00

14
5,1

00
,09

1,1
00

15
0,1

00
,09

1,1
00

15
5,1

00
,09

1,1
00

16
0,1

00
,09

1,1
00

1.00
0.50
0.00
0.50
1.00
1.50
2.00

Value of percentages

Im
pr

ov
em

en
t

Obj.: Comm. vol.

14
0,1

00
,09

1,1
00

14
5,1

00
,09

1,1
00

15
0,1

00
,09

1,1
00

15
5,1

00
,09

1,1
00

16
0,1

00
,09

1,1
00

2.00
1.50
1.00
0.50
0.00
0.50
1.00

Value of percentages

Im
pr

ov
em

en
t

Obj.: Edge cut

ef 4elt

ef sphere

ef ocean

Average

14
0,1

00
,09

1,1
00

14
5,1

00
,09

1,1
00

15
0,1

00
,09

1,1
00

15
5,1

00
,09

1,1
00

16
0,1

00
,09

1,1
00

1.50

1.00

0.50

0.00

0.50

1.00

Value of percentages

Im
pr

ov
em

en
t

Obj.: Comm. vol.



Chapter 9. Experimental Analysis of Nested DSHEM 
 

140 

Maximum communication volume of all subdomains 
DSHEM+SHEM (Evaluating) versus SHEM (Reference) 

 

 

Figure 9.55.  DSHEM+SHEM vs. SHEM: effect of -maxvwtm on the maximum communication volume of all subdomains 
with real life graphs. Partitioning objective: edge cut on the left, communication volume on the right. 

Maximum communication volume of all subdomains 
SHEM+DSHEM (Evaluating) versus SHEM (Reference) 

  

Figure 9.56.  SHEM+DSHEM vs. SHEM: effect of -maxvwtm on the maximum communication volume of all subdomains 
with real life graphs. Partitioning objective: edge cut on the left, communication volume on the right. 

Percentages -dshem_p1, -dshem_p2 and -dshem_p3 

Percentages -dshem_p1 and -dshem_p3 are excluded from the analysis as they do not play any role in 
the partitioning process. Percentage -dshem_p2 is used to modify the behavior of the cost function in 
nested DSHEM and improve the partition. 
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Communication volume 
DSHEM+SHEM (Evaluating) versus SHEM (Reference) 

 

 

Figure 9.57.  DSHEM+SHEM vs. SHEM: effect of -dshem_p2 on the communication volume with real life graphs. 
Partitioning objective: edge cut on the left, communication volume on the right. 

Communication volume 
SHEM+DSHEM (Evaluating) versus SHEM (Reference) 

 
 

Figure 9.58.  SHEM+DSHEM vs. SHEM: effect of -dshem_p2 on the communication volume with real life graphs. 
Partitioning objective: edge cut on the left, communication volume on the right. 

From Figure 9.57 and Figure 9.58 it is possible to confirm that DSHEM executed as DSHEM+SHEM 
performs better and more stable than SHEM+DSHEM when the total communication volume is 
evaluated. Also, when the optimization objective is vol, the communication volume, the results are better 
as expected. 

Again, the graph ef_ocean has better results, than the other two, with the maximum communication 
volume of all subdomains, see Figure 9.59 and Figure 9.60. Nested DSHEM, executed as 
DSHEM+SHEM, improves the quality of the partition when the percentage -dshem_p2 is lower than 
100 for the synthetic 3D square graph, however, it seems to be the opposite for the graph ef_ocean, with 
a similar geometry. 
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Maximum communication volume of all subdomains 
DSHEM+SHEM (Evaluating) versus SHEM (Reference) 

  

Figure 9.59.  DSHEM+SHEM vs. SHEM: effect of -dshem_p2 on the maximum communication volume of all subdomains 
with real life graphs. Partitioning objective: edge cut on the left, communication volume on the right. 

Maximum communication volume of all subdomains 
SHEM+DSHEM (Evaluating) versus SHEM (Reference) 

  

Figure 9.60.  SHEM+DSHEM vs. SHEM: effect of -dshem_p2 on the maximum communication volume of all subdomains 
with real life graphs. Partitioning objective: edge cut on the left, communication volume on the right. 

Still, nested DSHEM executed as DSHEM+SHEM seems to produce better, a more stable, results 
than SHEM+DSHEM according to the results. 

Refinement 

METIS is executed without refinement for both, SHEM and nested DSHEM, to analyze its effect on the 
partitions. This process is responsible of the majority of the execution time; it improves the initial 
partition according to the partitioning objective. 

The refinement plays a significant role in the partitioning process. It is evident, from the results in 
Figure 9.61, that nested DSHEM executed as DSHEM+SHEM improves the quality of the partitions 
when the total communication volume is evaluated. However, once the refinement is included, the 
results are degraded. The results produced by SHEM+DSHEM are more stable, but with lower quality, 
see Figure 9.62. From Figure 9.63 and Figure 9.64, it is possible to see that the maximum 
communication volume of all subdomains presents a similar picture to the total communication volume. 
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Communication volume 
DSHEM+SHEM (Evaluating) versus SHEM (Reference) 

  

Figure 9.61.  DSHEM+SHEM vs. SHEM: effect of refinement on the communication volume with real life graphs. 
Partitioning objective: edge cut on the left, communication volume on the right. 

Communication volume 
SHEM+DSHEM (Evaluating) versus SHEM (Reference) 

 

 

Figure 9.62.  SHEM+DSHEM vs. SHEM: effect of refinement on the communication volume with real life graphs. 
Partitioning objective: edge cut on the left, communication volume on the right. 

Maximum communication volume of all subdomains 
DSHEM+SHEM (Evaluating) versus SHEM (Reference) 

 

 

Figure 9.63.  DSHEM+SHEM vs. SHEM: effect of refinement on the maximum communication volume of all 
subdomains with real life graphs. Partitioning objective: edge cut on the left, communication volume on the right. 
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Maximum communication volume of all subdomains 
SHEM+DSHEM (Evaluating) versus SHEM (Reference) 

 

 

Figure 9.64.  SHEM+DSHEM vs. SHEM: effect of refinement on the maximum communication volume of all 
subdomains with real life graphs. Partitioning objective: edge cut on the left, communication volume on the right. 

Execution Time 

The evaluation of nested DSHEM provides similar results as the full implementation of DSHEM. There 
is virtually no difference in the execution time when nested DSHEM is used with the graph ef_4elt, as 
depicted by Figure 9.65. Again, there is a connection between the number of subdomains and the 
partitioning time; the more subdomains the longer to partition the graph. 

 

Figure 9.65.  Partitioning time with graph ef_4elt greedy refinement. Nested DSHEM is executed as DSHEM+SHEM. 

 

Figure 9.66.  Partitioning time with graph ef_sphere and greedy refinement. Nested DSHEM is executed as 
DSHEM+SHEM. 

Figure 9.66 and Figure 9.67 also confirm the results from the full implementation of DSHEM. The 
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triangular geometries keep the partitioning time balanced whether the refinement process optimizes the 
edge cut or the communication volume. SHEM and nested DSHEM keep a close gap in terms of 
partitioning time. 

 

Figure 9.67.  Partitioning time with graph ef_ocean and greedy refinement. Nested DSHEM is executed as 
DSHEM+SHEM. 

The execution time without the refinement process is not included in this section. It proves that nested 
DSHEM is slower than SHEM, but a few extra seconds have no influence when the overall partitioning 
time is in the range of minutes. 

9.6. Discussion 

DSHEM was first evaluated with a full implementation using the original idea. The initial results are 
promising; however, the refinement process is far from perfect and needs to be adapted for the new type 
of graph generated by DSHEM. A new idea to overcome this problem is the nested DSHEM that 
combines both strategies, SHEM and DSHEM, to try to improve the partitions. The general discussion 
presented in this section is divided in the same way as the experiments; it helps to understand the results. 

9.6.1. Impact of Multiplier -maxvwtm 

Whether nested DSHEM is executed as DSHEM+SHEM or SHEM+DSHEM the influence of the 
multiplier -maxvwtm is invariant. Similar to the full implementation of DSHEM, the multiplier modifies 
the execution and brings different results, but no clear pattern can be inferred from the results. It is also 
clear that it is more frequent to obtain better results when the value of the multiplier -maxvwtm is 
reduced from the default 150. 

The quality of the partition also depends on the type of graph, for example the 2D triangular square 
graph (tsm2d100p) benefits from the multiplier when its value is smaller than 150 and nested DSHEM is 
executed as SHEM+DSHEM. When executed as DSHEM+SHEM, the quality of the partition for this 
type of graph remains constant with different values for the multiplier. The results show that the real life 
graphs have also a similar behavior when the value of the multiplier is modified; they follow the same 
trends according to the geometry of the graph. 

The execution of nested DSHEM as DSHEM+SHEM gives more stable results when the 
communication volume and the maximum communication volume of all subdomains are evaluated; 
SHEM+DSHEM is steadier when the edge cut is evaluated. 
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9.6.2. Impact of Percentages -dshem_p1, -dshem_p2 and -dshem_p3 

The percentages -dshem_p1, -dshem_p2 and -dshem_p3 present a similar behavior with the full 
implementation of DSHEM and nested DSHEM; -dshem_p1, and -dshem_p3 do not have any influence 
in the execution of nested DSHEM as well. The impact of percentage -dshem_p2 is more evident when 
nested DSHEM is executed as DSHEM+SHEM; this is due to the fact that the first strategy has more 
influence in the outcome. 

Yet again, an inflexion point is visible when the value of the percentage -dshem_p2 is set to 100. 
When nested DSHEM is executed as SHEM+DSHEM, this point fades out as the influence of SHEM 
dominates the final partition. The percentage -dshem_p2 has a stable and predictable impact on DSHEM 
when the refinement is not part of the partitioning process. 

The graphs with a quadrangular-like geometry benefits from the percentage -dshem_p2 and values 
smaller than 100 when DSHEM is executed as DSHEM+SHEM; triangular geometries with 
SHEM+DSHEM. 

9.6.3. Impact of Graph Irregularity on Nested DSHEM 

The results of nested DSHEM confirm those from the full implementation of DSHEM; there is not a 
clear correlation between the degree of irregularity introduced to the synthetic graphs and the quality of 
the partitions generated by nested DSHEM. All three algorithms, Random, SHEM and DSHEM are 
affected in the same way and the results suggest that the quality of the partition depends on greater 
measure on the particular instance of the graph. 

Another conclusion can be established from the results, the performance of nested DSHEM is not 
affected when the degree of irregularity does not drastically modify the original geometry of the graph. 
It is the same conclusion with the full implementation of DSHEM based on the previous results. 
DSHEM, and nested DSHEM, will provide the same partition quality with the different geometries 
when the degree of irregularity introduced to the graphs remains reasonable. 

9.6.4. Impact of Refinement on Nested DSHEM 

When the refinement process is not part of the partitioning process, METIS does not optimize the 
objectives edge cut or communication volume; the quality of the partition is then defined solely by the 
coarsening strategy. To evaluate the impact of nested DSHEM on the partition, the refinement process is 
taken out of the partitioning process. Based on the results from the full implementation of DSHEM and 
nested DSHEM, it is clear that in most cases the refinement process is much slower when the 
optimization objective is the communication volume. A rational assumption dictates that the reason for 
this disparity is because METIS was originally designed to reduce the edge cut; the coarsening and 
refinement process were designed with this in mind. Later, the optimization of the communication 
volume was introduced to the refinement process, but the coarsening process still focuses on the edge 
cut. Now, with the introduction of DSHEM optimizing the communication volume within the 
coarsening process, the refinement process needs to be redesigned to take advantage of the new type of 
coarse graph. 
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The results obtained with the synthetic graphs show that nested DSHEM can improve the quality of 
the partitions when the graph has a quadrangular-like geometry, and in certain circumstances with 
triangular-like geometries. The improvement is more evident when nested DSHEM is executed as 
DSHEM+SHEM; it is more irregular when executed as SHEM+DSHEM. 

Some patterns emerge from the synthetic graphs that can be used to ensure a higher quality in the 
partition according to the type of graph, but once the refinement process is included those patterns are 
distorted. The same conclusion can be attaint; the refinement process does not efficiently interact with 
the coarsening process and needs to be redesigned to effectively optimize the communication volume. 

9.6.5. Impact of Nested DSHEM on the Execution Time 

The results show that there is virtually no difference between the full implementation of DSHEM and 
nested DSHEM with respect to the execution time. From the initial results with the full implementation 
of DSHEM, it becomes evident that the time spent in the coarsening process is minimal and can even 
been discarded from the overall execution time; conversely, the refinement process dictates the final 
partitioning time. 

Whether nested DSHEM is executed as DSHEM+SHEM or SHEM+DSHEM, the execution time has 
essentially no variations. The same patterns emerge with nested DSHEM: optimizing the edge cut is up 
to 4 times faster than the communication volume with quadrangular geometries. Similar to the full 
implementation of DSHEM, nested DSHEM could be faster than SHEM with some types of graphs. 

9.6.6. Global Evaluation of Nested DSHEM 

The full implementation of DSHEM and nested DSHEM are different in two key aspects: nested 
DSHEM combines the graphs generated by SHEM and DSHEM to create the partition, and nested 
DSHEM requires a second data structure to store the second graph. This makes nested DSHEM more 
expensive in memory consumption. Concerning the execution time, nested DSHEM remains as 
competitive as the full implementation of DSHEM. 

A general conclusion can be achieved from the experimental analysis: nested DSHEM can improve 
the quality of partitions under certain circumstances when the communication volume is considered. The 
type of geometry present in the graph has a great influence on the final partition and nested DSHEM, as 
well as the full implementation of DSHEM, provides better results with quadrangular geometries. 

The refinement process impacts the performance of nested DSHEM in a similar way as the full 
implementation of DSHEM. The results suggest that the refinement process is not well suited for the 
type of graph generated by DSHEM, and its performance is degraded when the communication volume 
is optimized. Further work on the refinement process is necessary to ensure that it will improve the 
partitions instead of degrade them, when the communication volume is optimized. 

Nested DSHEM is slower than SHEM due to its design; nonetheless, the impact on the overall 
execution time is irrelevant as the coarsening process takes a negligible part of it. The refinement 
process is affected by the coarsest graph generated by SHEM or DSHEM; it may increase the time spent 
on the refinement process. If the series of coarse graphs generated during the coarsening process have a 
low quality, the refinement process will take longer to optimize the partitioning objective and generate a 
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good partition at the end of the process. 
Similar to the full implementation of DSHEM, the irregularity introduced to the graphs has no clear 

effect on the partitions generated by the nested DSHEM. The results remain steady when the degree or 
irregularity is reasonable and the geometry of the graph does not change. 

The analysis of nested DSHEM with the real life graphs confirms the conclusions with the synthetic 
ones. Nested DSHEM can bring benefits with certain types of graphs. 
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Chapter 10.  

Conclusions and Future Perspectives 

Current FEM applications heavily rely on large computational, memory and communication costs to 
provide high accurate solutions. Much work has been done to improve the efficiency on parallel 
systems; however, new hardware architectures bring new challenges for parallel applications. This 
chapter presents the final conclusions of this research work, as well as future perspectives; it also 
summarizes the highlights of the research. 

10.1. Conclusions about the Research Questions 

This work was motivated by the need of more efficient FEM simulations on parallel systems. The main 
objectives are planned around two central approaches: a high and a low level method to improve the 
efficiency. The high level approach involves a new multilevel hierarchical load balancer designed to 
dynamically balance the load of parallel FEM applications. The low level approach focuses on the graph 
partitioning problem which changes the paradigm with the aim to improve the partitions when the 
communication volume is considered. 

10.1.1. Load Balancing 

The first questions are related to the load balancing problem on FEM simulations. This problem is not 
new and, with emergent technologies, keeps evolving during the years. New approaches to existing 
problems are necessary to improve the efficiency of parallel FEM applications. Some questions arise 
since the beginning of this work, and based on the subsequent study and research, they need to be 
addressed. 

Can a generic load balancer fulfill the current requirements of FEM applications? And if so, 
how can it be achieved? 

The initial focus of the research is the load balancing problem for FEM simulations. Many of the 
previous approaches use methods optimized for specific scenarios to increase its performance; they are 
efficient but cannot address other use cases due to its nature. Generic load balancers may be less 
effective in specific cases, but provide good results for a wide range of problems. 

The hierarchical approach on many problems, such as in graph partitioning, has proven to be highly 
efficient and fast; it is natural to assume that a similar approach could be beneficial for the load 
balancing problem. The multilevel hierarchical load balancer, presented in Section 10.4.2, provides an 
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insight on how a generic load balancer could be designed to efficiently distribute the load on parallel 
FEM applications. Further investigation is necessary to assess its viability and effectiveness. 

Many FEM applications rely on dynamic meshes to improve the accuracy of the results 
without incurring in extra computational cost. Can a similar approach be used in the design 
of a load balancer? 

A dynamic behavior within a load balancer can improve its efficiency, but at a cost; dynamic problems 
are often more difficult to handle. Despite this disadvantage, a simple approach can be used to minimize 
the cost and improve the load distribution in parallel FEM applications. Section 10.4.2 describes how the 
load balancer can dynamically move elements during the processing steps during the computations of a 
parallel FEM simulation. 

The first level of the hierarchical load balancer generates the main distribution of the load during the 
load balancing steps of the parallel FEM simulation. Throughout the computational step, the second 
level of the load balancer is active and detects the imbalance according to the status of all processors. It 
is then able to move mesh elements from heavily loaded processors to those becoming idle. 

10.1.2. Graph Partitioning 

The main topic of the research work is the graph partitioning problem and how it can improve the 
distribution of the load in parallel FEM applications. Much effort has been focused on the graph 
partitioning problem to address the load balancing problem. Some areas of improvement have been 
identified throughout this work and some questions arise. 

Can a graph partition be improved and is it worth the effort? 

Hierarchical graph partitioning is fast and generates competitive partitions compared with more 
expensive methods. It is obvious that this approach is a good candidate to improve the partitions without 
the extra computational cost seen with other methods. The proposed algorithm DSHEM is an example of 
how the quality of partitions can be improved without incurring in extra computational costs. While the 
algorithm requires additional time to contract the graph, this is only a minimal percentage of the overall 
partitioning time. Still, work is necessary to improve further the partitions when the communication 
volume is important; the refinement process requires additional examination to adapt it to the new 
partitioning objective. The initial results are promising and suggest that the effort to continue the 
research is worth the final results. 

If communication costs are important while generating a distribution of the load, can it be 
included in the partitioning process of the graph that represents the mesh of information? 
And how this new objective will affect the partitioning process? 

Different types of graphs can be used to characterize the mesh of information used by the FEM 
applications; some provide higher accuracy, but require more computational power to be processed. 
With the appropriate graph, the computational cost can be reduced while the quality of the partition can 
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be kept under control. Nonetheless, it is necessary to find a compromise between the type of graph and 
the partitioning method to achieve the best results. 

DSHEM demonstrates that with the same type of graph, or input data, the partitions can be improved 
without an increase on the overall partitioning time. With a precise change in the way the weight of the 
edges is calculated, it is possible to better emulate the communication costs of the different subdomains. 
This approach has an effect on the refinement process which was originally designed to optimize the 
edge cut. Further study is necessary in order to improve the interaction of the coarsening and refinement 
process and enhance the quality of partitions. 

10.2. Conclusions about the Research Problem 

In this thesis, we have presented an overview of improvements on graph partitioning techniques for load 
balancing, and efficiency of FEM simulations on large-scale parallel machines. Much work has been 
done in the field, but requirements of emerging technologies are not fulfill by state-of-the-art libraries. 
We also introduced a new vertex matching model called DSHEM aimed to reduce the communication 
volume during FEM simulations. It is based on the sorted heavy-edge matching implemented in the 
graph partitioning library METIS. We also introduced a new hierarchical load balancer for parallel FEM 
applications which can improve their efficiency. Our new model can be successfully used as a starting 
point for a more complex strategy. The study can be extended to a number of directions including the 
inclusion of other cost functions and multi-objective cost functions. 

DSHEM improves partitions generated from undirected graphs if the communication volume is 
considered. The extra time needed to generate the partition is negligible compared to the original 
algorithm SHEM. No use of extra memory is needed to emulate the directed graph. DSHEM can 
improve the system efficiency of parallel FEM computations under certain circumstances. 

We continue the development and implementation of the proposed vertex matching model to improve 
its performance regarding running times and quality of the partition. The refinement process needs to be 
further studied and adapted to the new data generated by DSHEM. From the results of the full 
implementation of DSHEM, and nested DSHEM, it is evident that the refinement process can hide the 
advantages brought by DSHEM. 

10.3. Implications and Limitations 

To fully exploit the benefits of any piece of technology is important to understand its strengths and 
limitations. This also applies to the problem in hand; if not understood correctly, the proposed solutions 
may not fulfill all expectations. Important considerations that should be taken into account while using 
DSHEM to partition a graph are provided next. 

Although the implementation of DSHEM is mature enough and the experimental analysis proves its 
efficiency, several factors heavily influence its performance. We would not advice to blindly use 
DSHEM without prior examination of the use case. 

Important insights come from the evaluation of the algorithm. The geometry of the graph affects the 
quality of the partition; however, tuning up the execution of DSHEM helps to improve it. It is advised to 
experiment with the execution parameters of METIS to identify the set of values that provide the best 
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results. Default values may be good in general, but specific use cases can benefit from custom values. 
It is also evident that DSHEM inherits METIS characteristics as it is based on SHEM and 

implemented within the partition library. The use cases suitable for METIS are consequently appropriate 
for DSHEM. It is up to the user to decide when and how to utilize the algorithms in METIS for better 
results. 

10.3.1. Graph Type 

The type of the graph is an important consideration while selecting a graph partitioning tool. Each graph 
type is designed for a particular set of requirements and several tools may not be suitable, or even 
capable, to partition them. A complete understanding of the graph and partitioning tool is essential for 
obtaining high quality results. 

DSHEM, as part of METIS, shares all capabilities and limitations of this library. It is designed to 
partition irregular graphs and meshes that arise from FEM simulations. In addition, the format of the 
graph is also important; METIS uses undirected graphs as input. We refer the reader to [36], [37] for 
more details. 

10.3.2. Graph Geometry 

The graph geometry plays an important role in the quality of the partition. While some algorithms are 
optimized for a particular set of graphs, they may not perform well with others. 

DSHEM is designed for partitioning graphs arising from FEM simulations. The experimental analysis 
shows that the quality of the partitions is higher with certain graph geometries; however, it is not 
degraded with the rest. 

10.3.3. Current Implementation 

Though the current implementation is fully operational, it is not ready for production use. There exists 
debugging code to monitor and control its behavior during execution. The most significant disadvantage 
is its execution time which is increased by the extra code. However, it is not considerably larger 
compared with the original SHEM algorithm. It would be incorrect to state that DSHEM is in 
disadvantage do to the longer processing time required to contract the graph; the structure of the 
contracted graph affects the refinement process too and the overall execution time is not affected. 

10.4. Future Research 

The research presented in this thesis focuses on a new matching strategy to produce optimized partitions 
in terms of communication volume. However, METIS is a collection of different algorithms used in the 
different stages of the partitioning process. A closer inspection of the effects of the refinement 
algorithms on DSHEM is still needed. 

Much work has already been done in the field, nonetheless the requirements of new emerging 
technologies are not entirely fulfill by current state-of-the-art libraries. We propose a multilevel 
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hierarchical load balancer which improves the local load imbalance [14]. It is based on graph 
partitioning algorithms and takes into account the hardware architecture of the underlying system. The 
enhancement to the cost function presented by Olas et al. [29], including new information, helps to 
better approximate the computations and load balancing costs of the next FEM computation step. The 
new model can successfully be used as a starting point for a more complex load balancing strategy. The 
research can be extended to a number of directions including the development of a more intricate cost 
function, and prediction model into the multilevel load balancer. 

10.4.1. Effect of the Refinement Process on DSHEM 

METIS uses a multilevel approach to generate the partition of a graph and every phase of the process 
affects the overall result. The current implementation of DSHEM focuses on the matching phase, during 
the contraction of the graph. Several KL based algorithms [68] help to improve the partition during the 
uncoarsening phase. This set of algorithms is not designed to use the new directional communication 
generated by DSHEM; they have only been adapted to use the information in the new format. 

It is an interesting direction for the research the effect of the refinement process of METIS on 
DSHEM. The quality of partitions can improve if optimized versions of the refinement algorithms are 
implemented. These algorithms need to include the new model of the graph into their cost function in 
order to make proper decisions. 

10.4.2. Multilevel Hierarchical Load Balancer 

As previously stated, new hardware architectures bring new capabilities and new problems in resource 
management. New approaches and algorithms have to be developed in order to overcome these issues. 
To this end, we propose a new multilevel load balancing model, which aims to reduce the local 
imbalance, while tries to reduce the global communication overhead. The use of resource information 
and a cost function is important to achieve a good load balance. 

Compute time has to scale linearly with respect to the problem and the number of processors. 
Additionally, local memory requirements should only depend on the local, not the global problem size. 
To efficiently distribute data on the underlying system, we need to gather information about the 
computing environment (e.g., processors, network topology and memory). A perfect balanced partition 
is worthless if it cannot be efficiently mapped. Such partitions have to be computed based on the 
knowledge of the system. A non balanced partition could fit better to specific hardware architectures 
(e.g., when processor speeds differ between them). The system information is gathered before the actual 
FEM simulation begins using a configuration step. In case of dynamic resources, this step has to be 
performed before each computation step within the simulation. There exist libraries, such as LINPACK 
[162], that can be used for this purpose. 

Our model works as follows. The first level is responsible for the main load balancing steps. It 
performs the load distribution over the entire system, such as traditional models, before each 
computation step. We use additional information to compute the mesh partitioning and mapping. A 
graph is built from the available hardware information which represents the underlying system. Vertices 
represent processors and edges network links; both can be weighted to mimic the heterogeneity. 
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Therefore, we use two graphs, one representing the mesh, and one the system. With the extra 
information, a partition that better fits the system can be found. In this way, we are able to better 
distribute the load among the processors using well-known libraries such as METIS in combination with 
the Directed Sorted Heavy Edge Matching. 

A similar cost model to the one proposed by Olas et al. [29] can be used to determine if a balancing 
step is required or not. If the time required by the load balancing step is smaller to the time that will be 
saved with a new distribution, then it is performed. We enhanced the model by adding additional 
information and handling the system heterogeneity. Instead of computing the communication time by 
only multiplying the amount of data to be transferred and the network speed, we take into account the 
speed of each network link independently; the same is applied to the computing time. In this way, we 
have a more accurate prediction, and, thus, the second level of load balancing will provide better results. 

The second level uses hardware information to perform a local load balancing. It is not a separate 
step; instead it is performed during computations. First, we identify clusters of processors (groups of 
processors joint by high speed network links). This can be done during the configuration step before the 
FEM simulation (or during each configuration step before each computation step in a dynamic system). 
Second, we identify the mesh cells with numbers. These numbers represent the gain of moving the cell 
to a neighbor processor in the case of imbalance. This is done during the last global load balancing step 
when the partition is refined. We keep these values and use them to improve local imbalance in this 
balancing level. As previously mentioned, the graph model does not represent the exact real workload. 
Thus, the imbalance may become evident during a computation step. According to the progress in 
solving PDEs by each processor, we can decide to move some mesh cells to a neighboring processor 
within the cluster of processors with high speed network links. Overloaded processors migrate mesh 
cells to neighbors during the computation step. This is done only if local predictions assure a gain in 
performance. As these communications are done concurrently and locally, the performance of the whole 
system is not degraded. 

This approach solves some of the problems we have described before. We believe that tuning-up the 
cost functions, used in predictions during the simulation, we can achieve better results. Including more 
information in the partitioning process may add complexity to the problem; but if used efficiently, a 
good improvement in performance can be achieved. 

A typical HPC environment for FEM simulations may contain thousands of processors with around 8 
GB of memory and 20 GB of HDD per core. InfiniBand is widely used to interconnect nodes within the 
system. Our model also takes into account the Grid computing model which enables the use of 
geographically distributed systems as a single resource. 
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Appendix A.  

HEM, SHEM and DSHEM 

HEM, SHEM and DSHEM are all algorithms designed to generate a maximal matching of a graph. They 
have many points in common since DSHEM is based on SHEM, which in turn is based in HEM. A 
number of algorithms were implemented in the first release of METIS; HEM among them. Theoretical 
and experimental studies have shown the efficiency of HEM and SHEM making them the two main 
algorithms in later versions of METIS. Finally, SHEM demonstrated its superiority over HEM and has 
been the de facto algorithm in METIS. DSHEM takes the advantages of SHEM and incorporates new 
ideas to trick the matching process in order to obtain better partitions for FEM applications. It considers 
bidirectional edges to represent more accurately the communication involved during FEM simulations. 
The rest of this section describes in detail all three algorithms. 

A.1. HEM Detailed Algorithm 

HEM is simple, effective and very fast; important characteristics in graph partitioning software. It was 
implemented in METIS since its inception and produced good results during the matching process. It 
was part of the partition library until version 5.0 when it was finally replaced by the enhanced version of 
SHEM, the next generation of the algorithm. SHEM produces consistently better partitions compared to 
its predecessor; the reason why HEM was abandoned. The next paragraphs describe, in detail, the HEM 
algorithm in Table A.1. 

Table A.1:  HEM detailed algorithm 

Algorithm  Heavy Edge Matching 

Input: Maximum weight allowed for a vertex 𝑝𝑛𝑚𝑣𝑤𝑚𝑛 
Structure with information of the graph 𝑚𝑃𝑛𝑝ℎ 

Output: Array with maximal matching of the graph 𝑝𝑛𝑛𝑃ℎ 
Number of new coarse vertices 𝑃𝑛𝑣𝑛𝑚𝑃 

1: procedure MATCH_HEM(𝑝𝑛𝑚𝑣𝑤𝑚𝑛, 𝑚𝑃𝑛𝑝ℎ) 
2:  𝑛𝑣𝑛𝑚𝑃 ← 𝑚𝑃𝑛𝑝ℎ.𝑛𝑣𝑛𝑚𝑃 
3:  𝑚𝑛𝑑𝑗 ← 𝑚𝑃𝑛𝑝ℎ. 𝑚𝑛𝑑𝑗 
4:  𝑣𝑤𝑚𝑛 ← 𝑚𝑃𝑛𝑝ℎ. 𝑣𝑤𝑚𝑛 
5:  𝑛𝑑𝑗𝑛𝑃𝑎 ← 𝑚𝑃𝑛𝑝ℎ.𝑛𝑑𝑗𝑛𝑃𝑎 
6:  𝑛𝑑𝑗𝑤𝑚𝑛 ← 𝑚𝑃𝑛𝑝ℎ.𝑛𝑑𝑗𝑤𝑚𝑛 
7:  𝑝𝑛𝑛𝑃ℎ ← INITIALIZE(𝑛𝑣𝑛𝑚𝑃, 𝑈𝑈𝑀𝐴𝑈𝐶𝑈𝐸𝐷) 
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8:  𝑝𝑒𝑃𝑝 ← RANDOM_PERMUTE(𝑛𝑣𝑛𝑚𝑃) 
9:  𝑃𝑛𝑣𝑛𝑚𝑃 ← 0 

10:  for 𝑖𝑖 ← 0 to 𝑛𝑣𝑛𝑚𝑃 − 1 step 1 do 
11:   𝑖 ← 𝑝𝑒𝑃𝑝[𝑖𝑖] 
12:   if 𝑝𝑛𝑛𝑃ℎ[𝑖] = 𝑈𝑈𝑀𝐴𝑈𝐶𝑈𝐸𝐷 then 
13:    𝑝𝑛𝑚𝑖𝑑𝑚 ← 𝑖 
14:    𝑝𝑛𝑚𝑤𝑚𝑛 ← 0 
15:    for 𝑗 ← 𝑚𝑛𝑑𝑗[𝑖] to 𝑚𝑛𝑑𝑗[𝑖 + 1] − 1 step 1 do 
16:     𝑘 ← 𝑛𝑑𝑗𝑛𝑃𝑎[𝑗] 
17:     if 𝑝𝑛𝑛𝑃ℎ[𝑘] = 𝑈𝑈𝑀𝐴𝑈𝐶𝑈𝐸𝐷 and 
18:     𝑝𝑛𝑚𝑤𝑚𝑛 < 𝑛𝑑𝑗𝑤𝑚𝑛[𝑗] and 
19:     (𝑣𝑤𝑚𝑛[𝑖] + 𝑣𝑤𝑚𝑛[𝑘]) ≤ 𝑝𝑛𝑚𝑣𝑤𝑚𝑛 then 
20:      𝑝𝑛𝑚𝑖𝑑𝑚 ← 𝑘 
21:      𝑝𝑛𝑚𝑤𝑚𝑛 ← 𝑛𝑑𝑗𝑤𝑚𝑛[𝑗] 
22:     end if 
23:    end for 
24:    𝑃𝑛𝑣𝑛𝑚𝑃 ← 𝑃𝑛𝑣𝑛𝑚𝑃 + 1 
25:    𝑝𝑛𝑛𝑃ℎ[𝑖] ← 𝑝𝑛𝑚𝑖𝑑𝑚 
26:    𝑝𝑛𝑛𝑃ℎ[𝑝𝑛𝑚𝑖𝑑𝑚] ← 𝑖 
27:   end if 
28:  end for 
29:  return 𝑝𝑛𝑛𝑃ℎ, 𝑃𝑛𝑣𝑛𝑚𝑃 
30: end procedure 

 

Two main arguments are received by the algorithm; namely 𝑝𝑛𝑚𝑣𝑤𝑚𝑛 and 𝑚𝑃𝑛𝑝ℎ. 𝑝𝑛𝑚𝑣𝑤𝑚𝑛 
specifies the maximum weight allowed for a coarse vertex; two vertices will only be matched if their 
combined weight does not exceed 𝑝𝑛𝑚𝑣𝑤𝑚𝑛. 𝑚𝑃𝑛𝑝ℎ is a structure which contains all information 
related to the graph, such as the number of vertices and edges, their weights and adjacency information, 
among others. The algorithm returns the array 𝑝𝑛𝑛𝑃ℎ with the matching information and 𝑃𝑛𝑣𝑛𝑚𝑃 with 
the number of coarse vertices. 

The first part of the algorithm is for initialization purposes. Lines 2 to 6 initialize local variables with 
information of the graph; 𝑛𝑣𝑛𝑚𝑃 contains the number of vertices, 𝑚𝑛𝑑𝑗 and 𝑛𝑑𝑗𝑛𝑃𝑎 the adjacency 
information, 𝑣𝑤𝑚𝑛 the weights of the vertices and 𝑛𝑑𝑗𝑤𝑚𝑛 the weights of the edges. Line 7 initializes 
the array 𝑝𝑛𝑛𝑃ℎ with 𝑈𝑈𝑀𝐴𝑈𝐶𝑈𝐸𝐷; all vertices are unmatched at this point of the execution. Then the 
array 𝑝𝑒𝑃𝑝 is also initialized, in line 8; it contains a random permutation used to visit all vertices in that 
particular sequence. Finally, the last initialization is that of 𝑃𝑛𝑣𝑛𝑚𝑃 that will contain the number of 
coarse vertices after the matching process. 

The for loop of lines 10 to 28 visits the vertices of the graph according to the random permutation in 
𝑝𝑒𝑃𝑝. If vertex 𝑖 is 𝑈𝑈𝑀𝐴𝑈𝐶𝑈𝐸𝐷, in line 12, then an adjacent vertex is going to be chosen to match 
with it. Vertex 𝑖 is first matched to itself in lines 13 and 14, in case no other option is available; this is, 
vertex 𝑖 is provisionally matched to vertex 𝑝𝑛𝑚𝑖𝑑𝑚 (itself) and the weight of the edge between them 
𝑝𝑛𝑚𝑤𝑚𝑛 is 0 (as no edge links the vertex to itself). The adjacent vertices of vertex 𝑖 are then visited, 
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using the for loop in lines 15 to 23, in order to select the adjacent vertex 𝑘 with the heaviest edge to 
match with vertex 𝑖. In lines 17 to 19 a decision is made, if adjacent vertex 𝑘 is 𝑈𝑈𝑀𝐴𝑈𝐶𝑈𝐸𝐷 and the 
edge (𝑖, 𝑘) is heavier than the current weight in 𝑝𝑛𝑚𝑤𝑚𝑛 and the combined weight of vertices 𝑖 and 𝑘 
does not exceed the maximum allowed specified by 𝑝𝑛𝑚𝑣𝑤𝑚𝑛 then vertex 𝑖 is matched to vertex 𝑘 in 
lines 20 and 21. The final and definitive matching of vertex 𝑖 is done after all its adjacent vertices have 
been evaluated in the loop; the number of coarse vertices is updated in line 24, vertex 𝑖 is matched to the 
vertex in 𝑝𝑛𝑚𝑖𝑑𝑚, and vice versa, in lines 25 and 26. Finally, line 29 returns the array with the matching 
information and the number of coarse vertices in the resulting coarse graph. 

A.2. SHEM Detailed Algorithm 

SHEM has been improved over the time on every release of METIS. It is a modified version of HEM 
with one key difference: the vertices are visited in a sorted manner according to their degree. The very 
first implementation of SHEM visited the vertices with the highest degree first, whereas more recent 
versions do it in the opposite order. Upgrades to the algorithm have been gradually implemented to 
boost the quality of the partition. The original version of SHEM, depicted in Table A.2, is in fact a 
newer version of the algorithm; however, more suited for the purpose of describing SHEM and 
DSHEM. This version is referred as the original version of the SHEM algorithm throughout this work. 
The computation of vertex degrees, the subsequent sorting of the vertices, and the matching of islands 
are the core differences with HEM. The light gray text in Table A.2 is the shared code between HEM 
and SHEM, the black text represents the new or modified code present in SHEM. Lines 8 to 17 calculate 
the vertex degrees and sort the vertices using that information. Lines 19 to 38 find suitable matches for 
the island vertices. The next paragraphs describe, in detail, the original version of the SHEM algorithm. 

Table A.2:  SHEM detailed algorithm (original version) 

Algorithm  Sorted Heavy Edge Matching (original version) 

Input: Maximum weight allowed for a vertex 𝑝𝑛𝑚𝑣𝑤𝑚𝑛 
Structure with information of the graph 𝑚𝑃𝑛𝑝ℎ 

Output: Array with maximal matching of the graph 𝑝𝑛𝑛𝑃ℎ 
Number of new coarse vertices 𝑃𝑛𝑣𝑛𝑚𝑃 

1: procedure MATCH_SHEM(𝑝𝑛𝑚𝑣𝑤𝑚𝑛, 𝑚𝑃𝑛𝑝ℎ) 
2:  𝑛𝑣𝑛𝑚𝑃 ← 𝑚𝑃𝑛𝑝ℎ.𝑛𝑣𝑛𝑚𝑃 
3:  𝑚𝑛𝑑𝑗 ← 𝑚𝑃𝑛𝑝ℎ. 𝑚𝑛𝑑𝑗 
4:  𝑣𝑤𝑚𝑛 ← 𝑚𝑃𝑛𝑝ℎ. 𝑣𝑤𝑚𝑛 
5:  𝑛𝑑𝑗𝑛𝑃𝑎 ← 𝑚𝑃𝑛𝑝ℎ.𝑛𝑑𝑗𝑛𝑃𝑎 
6:  𝑛𝑑𝑗𝑤𝑚𝑛 ← 𝑚𝑃𝑛𝑝ℎ.𝑛𝑑𝑗𝑤𝑚𝑛 
7:  𝑝𝑛𝑛𝑃ℎ ← INITIALIZE(𝑛𝑣𝑛𝑚𝑃, 𝑈𝑈𝑀𝐴𝑈𝐶𝑈𝐸𝐷) 
8:  𝑛𝑝𝑒𝑃𝑝 ← RANDOM_PERMUTE(𝑛𝑣𝑛𝑚𝑃) 
9:  𝑛𝑣𝑚𝑑𝑒𝑚𝑃𝑒𝑒 ← 0.7 ∗ (𝑚𝑛𝑑𝑗[𝑛𝑣𝑛𝑚𝑃] 𝑛𝑣𝑛𝑚𝑃⁄ ) 

10:  for 𝑖 ← 0 to 𝑛𝑣𝑛𝑚𝑃 − 1 step 1 do 
11:   if (𝑚𝑛𝑑𝑗[𝑖 + 1] − 𝑚𝑛𝑑𝑗[𝑖]) > 𝑛𝑣𝑚𝑑𝑒𝑚𝑃𝑒𝑒 then 
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12:    𝑑𝑒𝑚𝑃𝑒𝑒𝑃[𝑖] ← 𝑛𝑣𝑚𝑑𝑒𝑚𝑃𝑒𝑒 
13:   else 
14:    𝑑𝑒𝑚𝑃𝑒𝑒𝑃[𝑖] ← 𝑚𝑛𝑑𝑗[𝑖 + 1] − 𝑚𝑛𝑑𝑗[𝑖] 
15:   end if 
16:  end for 
17:  𝑝𝑒𝑃𝑝 ← BUCKET_SORT_KEYS_INC(𝑛𝑣𝑛𝑚𝑃, 𝑑𝑒𝑚𝑃𝑒𝑒𝑃, 𝑛𝑝𝑒𝑃𝑝) 
18:  𝑃𝑛𝑣𝑛𝑚𝑃 ← 0 
19:  for 𝑖𝑖 ← 0 to 𝑛𝑣𝑛𝑚𝑃 − 1 step 1 do 
20:   𝑖 ← 𝑝𝑒𝑃𝑝[𝑖𝑖] 
21:   if 𝑝𝑛𝑛𝑃ℎ[𝑖] = 𝑈𝑈𝑀𝐴𝑈𝐶𝑈𝐸𝐷 then 
22:    if 𝑚𝑛𝑑𝑗[𝑖] < 𝑚𝑛𝑑𝑗[𝑖 + 1] then 
23:     break 
24:    end if 
25:    𝑝𝑛𝑚𝑖𝑑𝑚 ← 𝑖 
26:    for 𝑗 ← 𝑛𝑣𝑛𝑚𝑃 − 1 to 𝑖𝑖 + 1 step −1 do 
27:     𝑘 ← 𝑝𝑒𝑃𝑝[𝑗] 
28:     if 𝑝𝑛𝑛𝑃ℎ[𝑘] = 𝑈𝑈𝑀𝐴𝑈𝐶𝑈𝐸𝐷 and 
29:     𝑚𝑛𝑑𝑗[𝑘] < 𝑚𝑛𝑑𝑗[𝑘 + 1] then 
30:      𝑝𝑛𝑚𝑖𝑑𝑚 ← 𝑘 
31:      break 
32:     end if 
33:    end for 
34:    𝑃𝑛𝑣𝑛𝑚𝑃 ← 𝑃𝑛𝑣𝑛𝑚𝑃 + 1 
35:    𝑝𝑛𝑛𝑃ℎ[𝑖] ← 𝑝𝑛𝑚𝑖𝑑𝑚 
36:    𝑝𝑛𝑛𝑃ℎ[𝑝𝑛𝑚𝑖𝑑𝑚] ← 𝑖 
37:   end if 
38:  end for 
39:  for 𝑖𝑖 ← 𝑖𝑖 to 𝑛𝑣𝑛𝑚𝑃 − 1 step 1 do 
40:   𝑖 ← 𝑝𝑒𝑃𝑝[𝑖𝑖] 
41:   if 𝑝𝑛𝑛𝑃ℎ[𝑖] = 𝑈𝑈𝑀𝐴𝑈𝐶𝑈𝐸𝐷 then 
42:    𝑝𝑛𝑚𝑖𝑑𝑚 ← 𝑖 
43:    𝑝𝑛𝑚𝑤𝑚𝑛 ← 0 
44:    for 𝑗 ← 𝑚𝑛𝑑𝑗[𝑖] to 𝑚𝑛𝑑𝑗[𝑖 + 1] − 1 step 1 do 
45:     𝑘 ← 𝑛𝑑𝑗𝑛𝑃𝑎[𝑗] 
46:     if 𝑝𝑛𝑛𝑃ℎ[𝑘] = 𝑈𝑈𝑀𝐴𝑈𝐶𝑈𝐸𝐷 and 
47:     𝑝𝑛𝑚𝑤𝑚𝑛 < 𝑛𝑑𝑗𝑤𝑚𝑛[𝑗] and 
48:     (𝑣𝑤𝑚𝑛[𝑖] + 𝑣𝑤𝑚𝑛[𝑘]) ≤ 𝑝𝑛𝑚𝑣𝑤𝑚𝑛 then 
49:      𝑝𝑛𝑚𝑖𝑑𝑚 ← 𝑘 
50:      𝑝𝑛𝑚𝑤𝑚𝑛 ← 𝑛𝑑𝑗𝑤𝑚𝑛[𝑗] 
51:     end if 
52:    end for 
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53:    𝑃𝑛𝑣𝑛𝑚𝑃 ← 𝑃𝑛𝑣𝑛𝑚𝑃 + 1 
54:    𝑝𝑛𝑛𝑃ℎ[𝑖] ← 𝑝𝑛𝑚𝑖𝑑𝑚 
55:    𝑝𝑛𝑛𝑃ℎ[𝑝𝑛𝑚𝑖𝑑𝑚] ← 𝑖 
56:   end if 
57:  end for 
58:  return 𝑝𝑛𝑛𝑃ℎ, 𝑃𝑛𝑣𝑛𝑚𝑃 
59: end procedure 

 

Similar to HEM, two main arguments are received by SHEM; namely 𝑝𝑛𝑚𝑣𝑤𝑚𝑛 and 𝑚𝑃𝑛𝑝ℎ. 
𝑝𝑛𝑚𝑣𝑤𝑚𝑛 specifies the maximum weight allowed for a coarse vertex; two vertices will only be matched 
if their combined weight does not exceed 𝑝𝑛𝑚𝑣𝑤𝑚𝑛. Nevertheless, the islands are excluded from this 
restriction. 𝑚𝑃𝑛𝑝ℎ is a structure which contains all information related to the graph, such as the number 
of vertices and edges, their weights and adjacency information, among others. The algorithm returns the 
array 𝑝𝑛𝑛𝑃ℎ with the matching information and 𝑃𝑛𝑣𝑛𝑚𝑃 with the number of coarse vertices. 

The first part of the algorithm is for initialization purposes. Lines 2 to 6 initialize local variables with 
information of the graph; 𝑛𝑣𝑛𝑚𝑃 contains the number of vertices, 𝑚𝑛𝑑𝑗 and 𝑛𝑑𝑗𝑛𝑃𝑎 the adjacency 
information, 𝑣𝑤𝑚𝑛 the weights of the vertices and 𝑛𝑑𝑗𝑤𝑚𝑛 the weights of the edges. Line 7 initializes 
the array 𝑝𝑛𝑛𝑃ℎ with 𝑈𝑈𝑀𝐴𝑈𝐶𝑈𝐸𝐷; all vertices are unmatched at this point of the execution. Then the 
temporal array 𝑛𝑝𝑒𝑃𝑝 is also initialized, in line 8; it contains a random permutation used to sort the 
vertices later in line 17. The constrained average degree in 𝑛𝑣𝑚𝑑𝑒𝑚𝑃𝑒𝑒 is limited to 70% of the actual 
value; all vertices with a degree over 𝑛𝑣𝑚𝑑𝑒𝑚𝑃𝑒𝑒 are treated equally. The for loop, in lines 10 to 16, 
computes the degrees for all vertices limiting their values to a maximum of 𝑛𝑣𝑚𝑑𝑒𝑚𝑃𝑒𝑒. Then, in line 
17, the array 𝑝𝑒𝑃𝑝 is populated with a sorted permutation of the vertices according to their degree 
previously computed. Finally, the last initialization, in line 18, is that of 𝑃𝑛𝑣𝑛𝑚𝑃 that will contain the 
number of coarse vertices after the matching process. 

The for loop of lines 19 to 38 treats the islands if they exist; i.e., vertices without edges. Contrary to 
HEM, these vertices are now properly matched leading to better partitions. The islands would be located 
in the first positions of the array 𝑝𝑒𝑃𝑝. Line 21 checks if vertex 𝑖 is 𝑈𝑈𝑀𝐴𝑈𝐶𝑈𝐸𝐷, if so, a vertex with 
high degree will be selected to match with it. If vertex 𝑖 is not an island, i.e., its degree is not 0, then the 
for loop ends as the rest of the vertices have higher degrees in the array 𝑝𝑒𝑃𝑝; this verification is 
performed in lines 22 to 24. Vertex 𝑖 is first matched to itself in line 25, in case no other option is 
available; in other words, vertex 𝑖 is provisionally matched to vertex 𝑝𝑛𝑚𝑖𝑑𝑚 (itself). The vertices are 
then visited, using the for loop in lines 26 to 33, in order to select a vertex 𝑘 with high degree to match 
with vertex 𝑖. The vertices with the highest degrees are located in the last positions of array 𝑝𝑒𝑃𝑝. Lines 
28 and 29 verify that vertex 𝑘 is 𝑈𝑈𝑀𝐴𝑈𝐶𝑈𝐸𝐷 and not an island; there is no restriction of the 
combined weight of vertices 𝑖 and 𝑘. Once this is confirmed, vertex 𝑖 is matched to vertex 𝑘 in line 30 
and the for loop is terminated in line 31. The final and definitive matching of vertex 𝑖 is done after the 
loop; the number of coarse vertices is updated in line 34, vertex 𝑖 is matched to the vertex in 𝑝𝑛𝑚𝑖𝑑𝑚, 
and vice versa, in lines 35 and 36. 

The for loop of lines 39 to 57 visits the vertices of the graph according to the sorted permutation in 
𝑝𝑒𝑃𝑝, it starts from the first non island vertex. If vertex 𝑖 is 𝑈𝑈𝑀𝐴𝑈𝐶𝑈𝐸𝐷, in line 41, then an adjacent 
vertex is going to be chosen to match with it. Vertex 𝑖 is first matched to itself in lines 42 and 43, in case 
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no other option is available; this is, vertex 𝑖 is provisionally matched to vertex 𝑝𝑛𝑚𝑖𝑑𝑚 (itself) and the 
weight of the edge between them 𝑝𝑛𝑚𝑤𝑚𝑛 is 0 (as no edge links the vertex to itself). The adjacent 
vertices of vertex 𝑖 are then visited, using the for loop in lines 44 to 52, in order to select the adjacent 
vertex 𝑘 with the heaviest edge to match with vertex 𝑖. In lines 46 to 48 a decision is made, if adjacent 
vertex 𝑘 is 𝑈𝑈𝑀𝐴𝑈𝐶𝑈𝐸𝐷 and the edge (𝑖, 𝑘) is heavier than the current weight in 𝑝𝑛𝑚𝑤𝑚𝑛 and the 
combined weight of vertices 𝑖 and 𝑘 does not exceed the maximum allowed specified by 𝑝𝑛𝑚𝑣𝑤𝑚𝑛 then 
vertex 𝑖 is matched to vertex 𝑘 in lines 49 and 50. The final and definitive matching of vertex 𝑖 is done 
after all its adjacent vertices have been examined in the loop; the number of coarse vertices is updated in 
line 53, vertex 𝑖 is matched to the vertex in 𝑝𝑛𝑚𝑖𝑑𝑚, and vice versa, in lines 54 and 55. Finally, line 58 
returns the array with the matching information and the number of coarse vertices in the resulting coarse 
graph. 

Improvements were made when SHEM was rewritten in version 5 of METIS; the entire partitioning 
library was redesigned. The process to match islands was optimized; multi-constraint support and 2-hop 
matching were added to improve SHEM as well. Multi-constraint means that a vertex has multiple 
weights and 2-hop matching is used to match a vertex with a non-adjacent one. Not much of the original 
code was preserved, however, the core idea behind SHEM remains. The light gray text in Table A.3 is 
the shared code between the original and the enhanced version of SHEM, the black text represents the 
new or modified code present in the enhanced version of SHEM. Lines 9 to 17 calculate the 2-hop keys 
for the vertices. Lines 36 to 45 find suitable matches for the islands. The rest of the code is divided into 
two main sections, one for a single constraint and the other for multiple constraints; the code of these 
two sections is almost identical. The next paragraphs describe, in detail, the enhanced version of the 
SHEM algorithm. 

Table A.3:  SHEM detailed algorithm (enhanced version) 

Algorithm  Sorted Heavy Edge Matching (enhanced version) 

Input: Maximum weight allowed for a vertex 𝑝𝑛𝑚𝑣𝑤𝑚𝑛 
Structure with information of the graph 𝑚𝑃𝑛𝑝ℎ 

Output: Array with maximal matching of the graph 𝑝𝑛𝑛𝑃ℎ 
Number of new coarse vertices 𝑃𝑛𝑣𝑛𝑚𝑃 

1: procedure MATCH_SHEM(𝑝𝑛𝑚𝑣𝑤𝑚𝑛, 𝑚𝑃𝑛𝑝ℎ) 
2:  𝑛𝑣𝑛𝑚𝑃 ← 𝑚𝑃𝑛𝑝ℎ.𝑛𝑣𝑛𝑚𝑃 
3:  𝑛𝑃𝑃𝑛 ← 𝑚𝑃𝑛𝑝ℎ.𝑛𝑃𝑃𝑛 
4:  𝑚𝑛𝑑𝑗 ← 𝑚𝑃𝑛𝑝ℎ. 𝑚𝑛𝑑𝑗 
5:  𝑣𝑤𝑚𝑛 ← 𝑚𝑃𝑛𝑝ℎ. 𝑣𝑤𝑚𝑛 
6:  𝑛𝑑𝑗𝑛𝑃𝑎 ← 𝑚𝑃𝑛𝑝ℎ.𝑛𝑑𝑗𝑛𝑃𝑎 
7:  𝑛𝑑𝑗𝑤𝑚𝑛 ← 𝑚𝑃𝑛𝑝ℎ.𝑛𝑑𝑗𝑤𝑚𝑛 
8:  𝑝𝑛𝑛𝑃ℎ ← INITIALIZE(𝑛𝑣𝑛𝑚𝑃, 𝑈𝑈𝑀𝐴𝑈𝐶𝑈𝐸𝐷) 
9:  𝑣𝑘𝑒𝑎𝑃 ← INITIALIZE(𝑛𝑣𝑛𝑚𝑃, 0) 

10:  for 𝑖 ← 0 to 𝑛𝑣𝑛𝑚𝑃 − 1 step 1 do 
11:   if (𝑚𝑛𝑑𝑗[𝑖 + 1] − 𝑚𝑛𝑑𝑗[𝑖]) > 𝑀𝐴𝑀𝐷𝐸𝐺𝑅𝐸𝐸𝑀𝑂𝑅2𝑈𝑂𝑃 then 
12:    continue 
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13:   end if 
14:   for 𝑗 ← 𝑚𝑛𝑑𝑗[𝑖] to 𝑚𝑛𝑑𝑗[𝑖 + 1] − 1 step 1 do 
15:    𝑣𝑘𝑒𝑎𝑃[𝑖] ← 𝑣𝑘𝑒𝑎𝑃[𝑖] + 𝑛𝑑𝑗𝑛𝑃𝑎[𝑗] 
16:   end for 
17:  end for 
18:  𝑛𝑝𝑒𝑃𝑝 ← RANDOM_PERMUTE(𝑛𝑣𝑛𝑚𝑃) 
19:  𝑛𝑣𝑚𝑑𝑒𝑚𝑃𝑒𝑒 ← 0.7 ∗ (𝑚𝑛𝑑𝑗[𝑛𝑣𝑛𝑚𝑃] 𝑛𝑣𝑛𝑚𝑃⁄ ) 
20:  for 𝑖 ← 0 to 𝑛𝑣𝑛𝑚𝑃 − 1 step 1 do 
21:   if (𝑚𝑛𝑑𝑗[𝑖 + 1] − 𝑚𝑛𝑑𝑗[𝑖]) > 𝑛𝑣𝑚𝑑𝑒𝑚𝑃𝑒𝑒 then 
22:    𝑑𝑒𝑚𝑃𝑒𝑒𝑃[𝑖] ← 𝑛𝑣𝑚𝑑𝑒𝑚𝑃𝑒𝑒 
23:   else 
24:    𝑑𝑒𝑚𝑃𝑒𝑒𝑃[𝑖] ← 𝑚𝑛𝑑𝑗[𝑖 + 1] − 𝑚𝑛𝑑𝑗[𝑖] 
25:   end if 
26:  end for 
27:  𝑝𝑒𝑃𝑝 ← BUCKET_SORT_KEYS_INC(𝑛𝑣𝑛𝑚𝑃, 𝑑𝑒𝑚𝑃𝑒𝑒𝑃, 𝑛𝑝𝑒𝑃𝑝) 
28:  𝑃𝑛𝑣𝑛𝑚𝑃 ← 0 
29:  𝐶𝑛𝑃𝑛_𝑢𝑛𝑝𝑛𝑛𝑃ℎ𝑒𝑑 ← 0 
30:  for 𝑝𝑖 ← 0 to 𝑛𝑣𝑛𝑚𝑃 − 1 step 1 do 
31:   𝑖 ← 𝑝𝑒𝑃𝑝[𝑝𝑖] 
32:   if 𝑝𝑛𝑛𝑃ℎ[𝑖] = 𝑈𝑈𝑀𝐴𝑈𝐶𝑈𝐸𝐷 then 
33:    𝑝𝑛𝑚𝑖𝑑𝑚 ← 𝑖 
34:    𝑝𝑛𝑚𝑤𝑚𝑛 ← −1 
35:    if ALL_LESS_THAN(𝑛𝑃𝑃𝑛, 𝑣𝑤𝑚𝑛[𝑖 ∗ 𝑛𝑃𝑃𝑛], 𝑝𝑛𝑚𝑣𝑤𝑚𝑛) then 
36:     if 𝑚𝑛𝑑𝑗[𝑖] = 𝑚𝑛𝑑𝑗[𝑖 + 1] then 
37:      𝐶𝑛𝑃𝑛_𝑢𝑛𝑝𝑛𝑛𝑃ℎ𝑒𝑑 ← 1 + MAX(𝑝𝑖, 𝐶𝑛𝑃𝑛_𝑢𝑛𝑝𝑛𝑛𝑃ℎ𝑒𝑑) 
38:      for 𝐶𝑛𝑃𝑛_𝑢𝑛𝑝𝑛𝑛𝑃ℎ𝑒𝑑 ← 𝐶𝑛𝑃𝑛_𝑢𝑛𝑝𝑛𝑛𝑃ℎ𝑒𝑑 to 𝑛𝑣𝑛𝑚𝑃 − 1 step 1 do 
39:       𝑗 ← 𝑝𝑒𝑃𝑝[𝐶𝑛𝑃𝑛_𝑢𝑛𝑝𝑛𝑛𝑃ℎ𝑒𝑑] 
40:       if 𝑝𝑛𝑛𝑃ℎ[𝑗] = 𝑈𝑈𝑀𝐴𝑈𝐶𝑈𝐸𝐷 then 
41:        𝑝𝑛𝑚𝑖𝑑𝑚 ← 𝑗 
42:        break 
43:       end if 
44:      end for 
45:     else /*Current vertex is not island*/ 
46:      if 𝑛𝑃𝑃𝑛 = 1 then 
47:       for 𝑗 ← 𝑚𝑛𝑑𝑗[𝑖] to 𝑚𝑛𝑑𝑗[𝑖 + 1] − 1 step 1 do 
48:        𝑘 ← 𝑛𝑑𝑗𝑛𝑃𝑎[𝑗] 
49:        if 𝑝𝑛𝑛𝑃ℎ[𝑘] = 𝑈𝑈𝑀𝐴𝑈𝐶𝑈𝐸𝐷 and 
50:        𝑝𝑛𝑚𝑤𝑚𝑛 < 𝑛𝑑𝑗𝑤𝑚𝑛[𝑗] and 
51:        (𝑣𝑤𝑚𝑛[𝑖] + 𝑣𝑤𝑚𝑛[𝑘]) ≤ 𝑝𝑛𝑚𝑣𝑤𝑚𝑛[0] then 
52:         𝑝𝑛𝑚𝑖𝑑𝑚 ← 𝑘 
53:         𝑝𝑛𝑚𝑤𝑚𝑛 ← 𝑛𝑑𝑗𝑤𝑚𝑛[𝑗] 
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54:        end if 
55:       end for /*Goes through all adjacent vertices*/ 
56:       if 𝑝𝑛𝑚𝑖𝑑𝑚 = 𝑖 and 
57:       (𝑚𝑛𝑑𝑗[𝑖 + 1] − 𝑚𝑛𝑑𝑗[𝑖]) ≤ 𝑀𝐴𝑀𝐷𝐸𝐺𝑅𝐸𝐸𝑀𝑂𝑅2𝑈𝑂𝑃 then 
58:        for 𝑗 ← 𝑚𝑛𝑑𝑗[𝑖] to 𝑚𝑛𝑑𝑗[𝑖 + 1] − 1 step 1 do 
59:         𝑖𝑖 ← 𝑛𝑑𝑗𝑛𝑃𝑎[𝑗] 
60:         if (𝑚𝑛𝑑𝑗[𝑖𝑖 + 1] − 𝑚𝑛𝑑𝑗[𝑖𝑖]) < 50 then 
61:          𝑗𝑗𝑖𝑛𝑃 ← 1 
62:         else 
63:          𝑗𝑗𝑖𝑛𝑃 ← 1 + RANDOM((𝑚𝑛𝑑𝑗[𝑖𝑖 + 1] − 𝑚𝑛𝑑𝑗[𝑖𝑖]) 10⁄ ) 
64:         end if 
65:         for 𝑗𝑗 ← 𝑚𝑛𝑑𝑗[𝑖𝑖] to 𝑚𝑛𝑑𝑗[𝑖𝑖 + 1] − 1 step 𝑗𝑗𝑖𝑛𝑃 do 
66:          𝑘 ← 𝑛𝑑𝑗𝑛𝑃𝑎[𝑗𝑗] 
67:          if 𝑘 ≠ 𝑖 and 
68:          𝑝𝑛𝑛𝑃ℎ[𝑘] = 𝑈𝑈𝑀𝐴𝑈𝐶𝑈𝐸𝐷 and 
69:          𝑣𝑘𝑒𝑎𝑃[𝑖] = 𝑣𝑘𝑒𝑎𝑃[𝑘] and 
70:          (𝑚𝑛𝑑𝑗[𝑖 + 1] − 𝑚𝑛𝑑𝑗[𝑖]) = (𝑚𝑛𝑑𝑗[𝑘 + 1] − 𝑚𝑛𝑑𝑗[𝑘]) and 
71:          (𝑣𝑤𝑚𝑛[𝑖] + 𝑣𝑤𝑚𝑛[𝑘]) ≤ 𝑝𝑛𝑚𝑣𝑤𝑚𝑛[0] then 
72:           𝑝𝑛𝑚𝑖𝑑𝑚 ← 𝑘 
73:           break 
74:          end if 
75:         end for 
76:         if 𝑝𝑛𝑚𝑖𝑑𝑚 ≠ 𝑖 then 
77:          break 
78:         end if 
79:        end for /*Goes through all adjacent vertices*/ 
80:       end if /*2-hop matching*/ 
81:      else /*Multiple constraints*/ 
82:       for 𝑗 ← 𝑚𝑛𝑑𝑗[𝑖] to 𝑚𝑛𝑑𝑗[𝑖 + 1] − 1 step 1 do 
83:        𝑘 ← 𝑛𝑑𝑗𝑛𝑃𝑎[𝑗] 
84:        if 𝑝𝑛𝑛𝑃ℎ[𝑘] = 𝑈𝑈𝑀𝐴𝑈𝐶𝑈𝐸𝐷 and 
85:        (𝑝𝑛𝑚𝑤𝑚𝑛 < 𝑛𝑑𝑗𝑤𝑚𝑛[𝑗] or 
86:        (𝑝𝑛𝑚𝑤𝑚𝑛 = 𝑛𝑑𝑗𝑤𝑚𝑛[𝑗] and 
87:        BETTER_BALANCE(𝑛𝑃𝑃𝑛, 𝑣𝑤𝑚𝑛[𝑖 ∗ 𝑛𝑃𝑃𝑛], 
88:        𝑣𝑤𝑚𝑛[𝑝𝑛𝑚𝑖𝑑𝑚 ∗ 𝑛𝑃𝑃𝑛], 𝑣𝑤𝑚𝑛[𝑘 ∗ 𝑛𝑃𝑃𝑛]))) and 
89:        ALL_SUMS_LESS_OR_EQUAL_TO(𝑛𝑃𝑃𝑛, 
90:        𝑣𝑤𝑚𝑛[𝑖 ∗ 𝑛𝑃𝑃𝑛], 𝑣𝑤𝑚𝑛[𝑘 ∗ 𝑛𝑃𝑃𝑛], 𝑝𝑛𝑚𝑣𝑤𝑚𝑛) then 
91:         𝑝𝑛𝑚𝑖𝑑𝑚 ← 𝑘 
92:         𝑝𝑛𝑚𝑤𝑚𝑛 ← 𝑛𝑑𝑗𝑤𝑚𝑛[𝑗] 
93:        end if 
94:       end for /*Goes through all adjacent vertices*/ 
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95:       if 𝑝𝑛𝑚𝑖𝑑𝑚 = 𝑖 and 
96:       (𝑚𝑛𝑑𝑗[𝑖 + 1] − 𝑚𝑛𝑑𝑗[𝑖]) ≤ 𝑀𝐴𝑀𝐷𝐸𝐺𝑅𝐸𝐸𝑀𝑂𝑅2𝑈𝑂𝑃 then 
97:        for 𝑗 ← 𝑚𝑛𝑑𝑗[𝑖] to 𝑚𝑛𝑑𝑗[𝑖 + 1] − 1 step 1 do 
98:         𝑖𝑖 ← 𝑛𝑑𝑗𝑛𝑃𝑎[𝑗] 
99:         if (𝑚𝑛𝑑𝑗[𝑖𝑖 + 1] − 𝑚𝑛𝑑𝑗[𝑖𝑖]) < 50 then 

100:          𝑗𝑗𝑖𝑛𝑃 ← 1 
101:         else 
102:          𝑗𝑗𝑖𝑛𝑃 ← 1 + RANDOM((𝑚𝑛𝑑𝑗[𝑖𝑖 + 1] − 𝑚𝑛𝑑𝑗[𝑖𝑖]) 10⁄ ) 
103:         end if 
104:         for 𝑗𝑗 ← 𝑚𝑛𝑑𝑗[𝑖𝑖] to 𝑚𝑛𝑑𝑗[𝑖𝑖 + 1] − 1 step 𝑗𝑗𝑖𝑛𝑃 do 
105:          𝑘 ← 𝑛𝑑𝑗𝑛𝑃𝑎[𝑗𝑗] 
106:          if 𝑘 ≠ 𝑖 and 
107:          𝑝𝑛𝑛𝑃ℎ[𝑘] = 𝑈𝑈𝑀𝐴𝑈𝐶𝑈𝐸𝐷 and 
108:          𝑣𝑘𝑒𝑎𝑃[𝑖] = 𝑣𝑘𝑒𝑎𝑃[𝑘] and 
109:          (𝑚𝑛𝑑𝑗[𝑖 + 1] − 𝑚𝑛𝑑𝑗[𝑖]) = (𝑚𝑛𝑑𝑗[𝑘 + 1] − 𝑚𝑛𝑑𝑗[𝑘]) and 
110:          ALL_SUMS_LESS_OR_EQUAL_TO(𝑛𝑃𝑃𝑛, 
111:          𝑣𝑤𝑚𝑛[𝑖 ∗ 𝑛𝑃𝑃𝑛], 𝑣𝑤𝑚𝑛[𝑘 ∗ 𝑛𝑃𝑃𝑛], 𝑝𝑛𝑚𝑣𝑤𝑚𝑛) then 
112:           𝑝𝑛𝑚𝑖𝑑𝑚 ← 𝑘 
113:           break 
114:          end if 
115:         end for 
116:         if 𝑝𝑛𝑚𝑖𝑑𝑚 ≠ 𝑖 then 
117:          break 
118:         end if 
119:        end for /*Goes through all adjacent vertices*/ 
120:       end if /*2-hop matching*/ 
121:      end if /*One constraint*/ 
122:     end if /*Current vertex is island*/ 
123:    end if /*Current vertex weight not big*/ 
124:    𝑃𝑛𝑣𝑛𝑚𝑃 ← 𝑃𝑛𝑣𝑛𝑚𝑃 + 1 
125:    𝑝𝑛𝑛𝑃ℎ[𝑖] ← 𝑝𝑛𝑚𝑖𝑑𝑚 
126:    𝑝𝑛𝑛𝑃ℎ[𝑝𝑛𝑚𝑖𝑑𝑚] ← 𝑖 
127:   end if /*Current vertex not matched*/ 
128:  end for /*Goes through all vertices*/ 
129:  return 𝑝𝑛𝑛𝑃ℎ, 𝑃𝑛𝑣𝑛𝑚𝑃 
130: end procedure 

 

Two main arguments are received by the enhanced version of SHEM; namely 𝑝𝑛𝑚𝑣𝑤𝑚𝑛 and 𝑚𝑃𝑛𝑝ℎ. 
𝑝𝑛𝑚𝑣𝑤𝑚𝑛 specifies the maximum weight allowed for a coarse vertex with single or multi-constraint; 
two vertices will only be matched if their combined weight does not exceed 𝑝𝑛𝑚𝑣𝑤𝑚𝑛. However, the 
islands are partially excluded from this restriction. 𝑚𝑃𝑛𝑝ℎ is a structure which contains all information 
related to the graph, such as the number of vertices and edges, their weights and adjacency information, 
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among others. The algorithm returns the array 𝑝𝑛𝑛𝑃ℎ with the matching information and 𝑃𝑛𝑣𝑛𝑚𝑃 with 
the number of coarse vertices. 

The first part of the algorithm is for initialization purposes. Lines 2 to 7 initialize local variables with 
information of the graph; 𝑛𝑣𝑛𝑚𝑃 contains the number of vertices, 𝑛𝑃𝑃𝑛 contains the number of 
constraints, 𝑚𝑛𝑑𝑗 and 𝑛𝑑𝑗𝑛𝑃𝑎 the adjacency information, 𝑣𝑤𝑚𝑛 the weights of the vertices and 𝑛𝑑𝑗𝑤𝑚𝑛 
the weights of the edges. Line 8 initializes the array 𝑝𝑛𝑛𝑃ℎ with 𝑈𝑈𝑀𝐴𝑈𝐶𝑈𝐸𝐷; all vertices are 
unmatched at this point of the execution. Line 9 initializes the array 𝑣𝑘𝑒𝑎𝑃 used during the 2-hop 
matching. The for loop, in lines 10 to 17, computes the 2-hop keys for each vertex if their degree does 
not exceed the value established by 𝑀𝐴𝑀𝐷𝐸𝐺𝑅𝐸𝐸𝑀𝑂𝑅2𝑈𝑂𝑃, i.e., if the vertices meet the requirements 
for 2-hop matching. Then the temporal array 𝑛𝑝𝑒𝑃𝑝 is also initialized, in line 18; it contains a random 
permutation used to sort the vertices later in line 27. The constrained average degree in 𝑛𝑣𝑚𝑑𝑒𝑚𝑃𝑒𝑒 is 
limited to 70% of the actual value; all vertices with a degree over 𝑛𝑣𝑚𝑑𝑒𝑚𝑃𝑒𝑒 are treated equally. The 
for loop, in lines 20 to 26, computes the degrees for all vertices limiting their values to a maximum of 
𝑛𝑣𝑚𝑑𝑒𝑚𝑃𝑒𝑒. Then, in line 27, the array 𝑝𝑒𝑃𝑝 is populated with a sorted permutation of the vertices 
according to their degree previously computed. 𝑃𝑛𝑣𝑛𝑚𝑃 is initialized in line 28; it will contain the 
number of coarse vertices after the matching process. Finally, the last initialization, in line 29, is that of 
𝐶𝑛𝑃𝑛_𝑢𝑛𝑝𝑛𝑛𝑃ℎ𝑒𝑑 that will keep track of the last unmatched non-island vertex during the matching 
process of island vertices. 

The for loop of lines 30 to 128 visits the vertices of the graph according to the sorted permutation in 
𝑝𝑒𝑃𝑝. If vertex 𝑖 is 𝑈𝑈𝑀𝐴𝑈𝐶𝑈𝐸𝐷, in line 32, then it is first matched to itself in lines 33 and 34, in case 
no other option is available; this is, vertex 𝑖 is provisionally matched to vertex 𝑝𝑛𝑚𝑖𝑑𝑚 (itself) and the 
weight of the edge between them 𝑝𝑛𝑚𝑤𝑚𝑛 is set to −1 (as no edge links the vertex to itself). If the 
weight of vertex 𝑖 does not exceed the maximum allowed for a coarse vertex, in line 35, then the process 
to find a suitable vertex to match with it continues; if vertex 𝑖 is too big, it matches to itself to prevent 
oversized coarse vertices. This verification handles vertices with one or multiple constraints. The lines 
36 to 45 match the islands if they exist, i.e., vertices without edges; the search for a match starts from the 
last unmatched vertex, defined line 37. The for loop finds the first available vertex 𝑗, lines 38 to 44; 
vertex 𝑖 is matched to vertex 𝑗 if the latter is 𝑈𝑈𝑀𝐴𝑈𝐶𝑈𝐸𝐷 and the search ends, lines 40 to 43. There is 
no restriction of the combined weight of vertices 𝑖 and 𝑗. The code from lines 46 to 121 is divided into 
two main sections: lines 47 to 80 for single constraint and 82 to 120 for multiple constraints. The two 
sections follow the same logic and share most of the code; the single constraint is described next. 

The adjacent vertices of vertex 𝑖 are visited, using the for loop in lines 47 to 55, in order to select the 
adjacent vertex 𝑘 with the heaviest edge to match with vertex 𝑖. In lines 49 to 51 a decision is made, if 
adjacent vertex 𝑘 is 𝑈𝑈𝑀𝐴𝑈𝐶𝑈𝐸𝐷 and the edge (𝑖, 𝑘) is heavier than the current weight in 𝑝𝑛𝑚𝑤𝑚𝑛 
and the combined weight of vertices 𝑖 and 𝑘 does not exceed the maximum allowed specified by 
𝑝𝑛𝑚𝑣𝑤𝑚𝑛 then vertex 𝑖 is matched to vertex 𝑘 in lines 52 and 53. If no match was found with the 
normal process, then 2-hop matching is employed when vertex 𝑖 meets the requirements; the verification 
is done in lines 56 and 57, vertex 𝑖 is matched to itself and its degree does not exceed 
𝑀𝐴𝑀𝐷𝐸𝐺𝑅𝐸𝐸𝑀𝑂𝑅2𝑈𝑂𝑃. The adjacent vertices of vertex 𝑖 are visited again, using the for loop in lines 
58 to 79, in order to select a vertex 𝑘 suited to match with vertex 𝑖. Vertex 𝑘 is adjacent to vertex 𝑖𝑖, 
which in turn is adjacent to vertex 𝑖; this is the idea behind 2-hop matching. Lines 60 to 64 define how 
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many vertices 𝑘 are visited according to the degree of vertex 𝑖𝑖. The adjacent vertices of vertex 𝑖𝑖 are 
then visited, using the for loop in lines 65 to 75, in order to select a vertex 𝑘 to match with vertex 𝑖. If 
vertex 𝑘 is not vertex 𝑖, and vertex 𝑘 is 𝑈𝑈𝑀𝐴𝑈𝐶𝑈𝐸𝐷, and both vertices have the same 2-hop key, and 
they have the same degree, and the combined weight of vertices 𝑖 and 𝑘 does not exceed the maximum 
allowed specified by 𝑝𝑛𝑚𝑣𝑤𝑚𝑛 then vertex 𝑖 is matched to vertex 𝑘 and the search ends in lines 67 to 
74. Finally, in lines 76 to 78, if vertex 𝑖 is not matched to itself anymore the 2-hop matching process is 
terminated. 

The multi-constraint section is similar to that of a single constraint described earlier. The difference 
lies in the two conditions of lines 84 to 90 and 106 to 111. The first condition matches vertex 𝑘 to vertex 
𝑖 if adjacent vertex 𝑘 is 𝑈𝑈𝑀𝐴𝑈𝐶𝑈𝐸𝐷, and the edge (𝑖, 𝑘) is heavier than the current weight in 
𝑝𝑛𝑚𝑤𝑚𝑛, or the edge has the same weight but it leads to a better balance, and the combined weight of 
vertices 𝑖 and 𝑘 does not exceed the maximum allowed specified by 𝑝𝑛𝑚𝑣𝑤𝑚𝑛 for all constraints. The 
second condition is practically similar; it just considers the multiple constraints of vertices. 

The final and definitive matching of vertex 𝑖 is done after all its adjacent vertices have been analyzed 
and the 2-hop matching process completed; the number of coarse vertices is updated in line 124, vertex 𝑖 
is matched to the vertex in 𝑝𝑛𝑚𝑖𝑑𝑚, and vice versa, in lines 125 and 126. Finally, line 129 returns the 
array with the matching information and the number of coarse vertices in the resulting coarse graph. 

A.3. DSHEM Detailed Algorithm 

DSHEM is based on the enhanced version of SHEM; they share the majority of the code. The key 
difference is the condition used to decide when vertex 𝑘 is matched to vertex 𝑖. Much of the new code in 
DHSEM gathers information, which is then used in the condition mentioned above. DSHEM takes 
advantage of the data structures, utilized by METIS to store the graph information, in order to simulate 
the bidirectional communication that would rise during the FEM simulations. It introduces the concept 
of sources and, in combination with the new directed edges, generates a better approximation of the real 
communication between the different parts. 

The detailed version of DSHEM depicted in Table A.4 differentiates the new or modified code, in 
black, from the inherited SHEM code, in light gray. We refer the reader to the SHEM Detailed 
Algorithm in the previous section of the appendix for the description of this share code. 

The for loop in lines 14 to 22 computes the number of positive and negative edges incident to every 
vertex in the graph. This information is later used to calculate the number of sources produced if vertex 𝑖 
is matched to vertex 𝑘; with fewer sources the total amount of communication is also reduced. The for 
loop in lines 64 to 68 finds the edge (𝑘, 𝑖), i.e., edge (𝑖, 𝑘) in the opposite direction. These edges have 
different values in DSHEM as opposed to SHEM where their values are always equal. Lines 69 to 99 
compute the number of sources for the case of vertex 𝑘 matching vertex 𝑖. The conditional in lines 101 
to 112 decides whether vertex 𝑘 is matched to vertex 𝑖 taking into consideration the new gathered 
information. The same process is also implemented for the multi-constraint section of the algorithm. 

Three main arguments are received by DSHEM; namely 𝑝𝑛𝑚𝑣𝑤𝑚𝑛, 𝑚𝑃𝑛𝑝ℎ and 𝑝𝑒𝑃𝑃𝑒𝑛𝑛𝑛𝑚𝑒𝑃. 
𝑝𝑛𝑚𝑣𝑤𝑚𝑛 specifies the maximum weight allowed for a coarse vertex with single or multi-constraint; 
two vertices will only be matched if their combined weight does not exceed 𝑝𝑛𝑚𝑣𝑤𝑚𝑛, but the islands 
are partially excluded from this restriction. 𝑚𝑃𝑛𝑝ℎ is a structure which contains all information related to 
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the graph, such as the number of vertices and edges, their weights and adjacency information, among 
others. 𝑝𝑒𝑃𝑃𝑒𝑛𝑛𝑛𝑚𝑒𝑃 contains three percentage values employed to fine tune the algorithm. The 
algorithm returns the array 𝑝𝑛𝑛𝑃ℎ with the matching information and 𝑃𝑛𝑣𝑛𝑚𝑃 with the number of coarse 
vertices. 

Table A.4:  DSHEM detailed algorithm 

Algorithm  Directed Sorted Heavy Edge Matching 

Input: Maximum weight allowed for a vertex 𝑝𝑛𝑚𝑣𝑤𝑚𝑛 
Structure with information of the graph 𝑚𝑃𝑛𝑝ℎ 
Structure with matching percentages for DSHEM 𝑝𝑒𝑃𝑃𝑒𝑛𝑛𝑛𝑚𝑒𝑃 

Output: Array with maximal matching of the graph 𝑝𝑛𝑛𝑃ℎ 
Number of new coarse vertices 𝑃𝑛𝑣𝑛𝑚𝑃 

1: procedure MATCH_DSHEM(𝑝𝑛𝑚𝑣𝑤𝑚𝑛, 𝑚𝑃𝑛𝑝ℎ, 𝑝𝑒𝑃𝑃𝑒𝑛𝑛𝑛𝑚𝑒𝑃) 
2:  𝑛𝑣𝑛𝑚𝑃 ← 𝑚𝑃𝑛𝑝ℎ.𝑛𝑣𝑛𝑚𝑃 
3:  𝑛𝑃𝑃𝑛 ← 𝑚𝑃𝑛𝑝ℎ.𝑛𝑃𝑃𝑛 
4:  𝑚𝑛𝑑𝑗 ← 𝑚𝑃𝑛𝑝ℎ. 𝑚𝑛𝑑𝑗 
5:  𝑣𝑤𝑚𝑛 ← 𝑚𝑃𝑛𝑝ℎ. 𝑣𝑤𝑚𝑛 
6:  𝑛𝑑𝑗𝑛𝑃𝑎 ← 𝑚𝑃𝑛𝑝ℎ.𝑛𝑑𝑗𝑛𝑃𝑎 
7:  𝑛𝑑𝑗𝑤𝑚𝑛 ← 𝑚𝑃𝑛𝑝ℎ.𝑛𝑑𝑗𝑤𝑚𝑛 
8:  𝑝1 ← 𝑝𝑒𝑃𝑃𝑒𝑛𝑛𝑛𝑚𝑒𝑃. 𝑃_𝑑𝑃ℎ𝑒𝑝_𝑝1 100⁄  
9:  𝑝2 ← 𝑝𝑒𝑃𝑃𝑒𝑛𝑛𝑛𝑚𝑒𝑃. 𝑃_𝑑𝑃ℎ𝑒𝑝_𝑝2 100⁄  

10:  𝑝3 ← 𝑝𝑒𝑃𝑃𝑒𝑛𝑛𝑛𝑚𝑒𝑃. 𝑃_𝑑𝑃ℎ𝑒𝑝_𝑝3 100⁄  
11:  𝑝𝑛𝑛𝑃ℎ ← INITIALIZE(𝑛𝑣𝑛𝑚𝑃, 𝑈𝑈𝑀𝐴𝑈𝐶𝑈𝐸𝐷) 
12:  𝑣𝑛𝑚𝑛𝑑𝑗𝑝 ← INITIALIZE(𝑛𝑣𝑛𝑚𝑃, 0) 
13:  𝑣𝑛𝑚𝑛𝑑𝑗𝑛 ← INITIALIZE(𝑛𝑣𝑛𝑚𝑃, 0) 
14:  for 𝑖 ← 0 to 𝑛𝑣𝑛𝑚𝑃 − 1 step 1 do 
15:   for 𝑗 ← 𝑚𝑛𝑑𝑗[𝑖] to 𝑚𝑛𝑑𝑗[𝑖 + 1] − 1 step 1 do 
16:    if 𝑛𝑑𝑗𝑛𝑃𝑎[𝑖] ≥ 0 then 
17:     𝑣𝑛𝑚𝑛𝑑𝑗𝑝[𝑖] ← 𝑣𝑛𝑚𝑛𝑑𝑗𝑝[𝑖] + 1 
18:    else 
19:     𝑣𝑛𝑚𝑛𝑑𝑗𝑛[𝑖] ← 𝑣𝑛𝑚𝑛𝑑𝑗𝑛[𝑖] + 1 
20:    end if 
21:   end for 
22:  end for 
23:  𝑣𝑘𝑒𝑎𝑃 ← INITIALIZE(𝑛𝑣𝑛𝑚𝑃, 0) 
24:  for 𝑖 ← 0 to 𝑛𝑣𝑛𝑚𝑃 − 1 step 1 do 
25:   if (𝑚𝑛𝑑𝑗[𝑖 + 1] − 𝑚𝑛𝑑𝑗[𝑖]) > 𝑀𝐴𝑀𝐷𝐸𝐺𝑅𝐸𝐸𝑀𝑂𝑅2𝑈𝑂𝑃 then 
26:    continue 
27:   end if 
28:   for 𝑗 ← 𝑚𝑛𝑑𝑗[𝑖] to 𝑚𝑛𝑑𝑗[𝑖 + 1] − 1 step 1 do 
29:    𝑣𝑘𝑒𝑎𝑃[𝑖] ← 𝑣𝑘𝑒𝑎𝑃[𝑖] + 𝑛𝑑𝑗𝑛𝑃𝑎[𝑗] 
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30:   end for 
31:  end for 
32:  𝑛𝑝𝑒𝑃𝑝 ← RANDOM_PERMUTE(𝑛𝑣𝑛𝑚𝑃) 
33:  𝑛𝑣𝑚𝑑𝑒𝑚𝑃𝑒𝑒 ← 0.7 ∗ (𝑚𝑛𝑑𝑗[𝑛𝑣𝑛𝑚𝑃] 𝑛𝑣𝑛𝑚𝑃⁄ ) 
34:  for 𝑖 ← 0 to 𝑛𝑣𝑛𝑚𝑃 − 1 step 1 do 
35:   if (𝑚𝑛𝑑𝑗[𝑖 + 1] − 𝑚𝑛𝑑𝑗[𝑖]) > 𝑛𝑣𝑚𝑑𝑒𝑚𝑃𝑒𝑒 then 
36:    𝑑𝑒𝑚𝑃𝑒𝑒𝑃[𝑖] ← 𝑛𝑣𝑚𝑑𝑒𝑚𝑃𝑒𝑒 
37:   else 
38:    𝑑𝑒𝑚𝑃𝑒𝑒𝑃[𝑖] ← 𝑚𝑛𝑑𝑗[𝑖 + 1] − 𝑚𝑛𝑑𝑗[𝑖] 
39:   end if 
40:  end for 
41:  𝑝𝑒𝑃𝑝 ← BUCKET_SORT_KEYS_INC(𝑛𝑣𝑛𝑚𝑃, 𝑑𝑒𝑚𝑃𝑒𝑒𝑃, 𝑛𝑝𝑒𝑃𝑝) 
42:  𝑃𝑛𝑣𝑛𝑚𝑃 ← 0 
43:  𝐶𝑛𝑃𝑛_𝑢𝑛𝑝𝑛𝑛𝑃ℎ𝑒𝑑 ← 0 
44:  for 𝑝𝑖 ← 0 to 𝑛𝑣𝑛𝑚𝑃 − 1 step 1 do 
45:   𝑖 ← 𝑝𝑒𝑃𝑝[𝑝𝑖] 
46:   if 𝑝𝑛𝑛𝑃ℎ[𝑖] = 𝑈𝑈𝑀𝐴𝑈𝐶𝑈𝐸𝐷 then 
47:    𝑝𝑛𝑚𝑖𝑑𝑚 ← 𝑖 
48:    𝑝𝑛𝑚𝑤𝑚𝑛 ← −1 
49:    𝑝𝑖𝑛𝑃𝑃𝑢𝑃𝑃𝑒𝑃 ← 5 
50:    if ALL_LESS_THAN(𝑛𝑃𝑃𝑛, 𝑣𝑤𝑚𝑛[𝑖 ∗ 𝑛𝑃𝑃𝑛], 𝑝𝑛𝑚𝑣𝑤𝑚𝑛) then 
51:     if 𝑚𝑛𝑑𝑗[𝑖] = 𝑚𝑛𝑑𝑗[𝑖 + 1] then 
52:      𝐶𝑛𝑃𝑛_𝑢𝑛𝑝𝑛𝑛𝑃ℎ𝑒𝑑 ← 1 + MAX(𝑝𝑖, 𝐶𝑛𝑃𝑛_𝑢𝑛𝑝𝑛𝑛𝑃ℎ𝑒𝑑) 
53:      for 𝐶𝑛𝑃𝑛_𝑢𝑛𝑝𝑛𝑛𝑃ℎ𝑒𝑑 ← 𝐶𝑛𝑃𝑛_𝑢𝑛𝑝𝑛𝑛𝑃ℎ𝑒𝑑 to 𝑛𝑣𝑛𝑚𝑃 − 1 step 1 do 
54:       𝑗 ← 𝑝𝑒𝑃𝑝[𝐶𝑛𝑃𝑛_𝑢𝑛𝑝𝑛𝑛𝑃ℎ𝑒𝑑] 
55:       if 𝑝𝑛𝑛𝑃ℎ[𝑗] = 𝑈𝑈𝑀𝐴𝑈𝐶𝑈𝐸𝐷 then 
56:        𝑝𝑛𝑚𝑖𝑑𝑚 ← 𝑗 
57:        break 
58:       end if 
59:      end for 
60:     else /*Current vertex is not island*/ 
61:      if 𝑛𝑃𝑃𝑛 = 1 then 
62:       for 𝑗 ← 𝑚𝑛𝑑𝑗[𝑖] to 𝑚𝑛𝑑𝑗[𝑖 + 1] − 1 step 1 do 
63:        𝑘 ← 𝑛𝑑𝑗𝑛𝑃𝑎[𝑗] 
64:        for 𝑖𝑛𝑑𝑗 ← 𝑚𝑛𝑑𝑗[𝑘] to 𝑚𝑛𝑑𝑗[𝑘 + 1] − 1 step 1 do 
65:         if 𝑛𝑑𝑗𝑛𝑃𝑎[𝑖𝑛𝑑𝑗] = 𝑖 then 
66:          break 
67:         end if 
68:        end for 
69:        𝑛𝑃𝑃𝑢𝑃𝑃𝑒𝑃 ← 0 
70:        if 𝑛𝑑𝑗𝑤𝑚𝑛[𝑗] ≥ 0 then 
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71:         if 𝑣𝑛𝑚𝑛𝑑𝑗𝑝[𝑖] > 1 then 
72:          𝑛𝑃𝑃𝑢𝑃𝑃𝑒𝑃 ← 𝑛𝑃𝑃𝑢𝑃𝑃𝑒𝑃 + 1 
73:         end if 
74:         if 𝑣𝑛𝑚𝑛𝑑𝑗𝑛[𝑖] > 0 then 
75:          𝑛𝑃𝑃𝑢𝑃𝑃𝑒𝑃 ← 𝑛𝑃𝑃𝑢𝑃𝑃𝑒𝑃 + 1 
76:         end if 
77:        else 
78:         if 𝑣𝑛𝑚𝑛𝑑𝑗𝑛[𝑖] > 1 then 
79:          𝑛𝑃𝑃𝑢𝑃𝑃𝑒𝑃 ← 𝑛𝑃𝑃𝑢𝑃𝑃𝑒𝑃 + 1 
80:         end if 
81:         if 𝑣𝑛𝑚𝑛𝑑𝑗𝑝[𝑖] > 0 then 
82:          𝑛𝑃𝑃𝑢𝑃𝑃𝑒𝑃 ← 𝑛𝑃𝑃𝑢𝑃𝑃𝑒𝑃 + 1 
83:         end if 
84:        end if 
85:        if 𝑛𝑑𝑗𝑤𝑚𝑛[𝑖𝑛𝑑𝑗] ≥ 0 then 
86:         if 𝑣𝑛𝑚𝑛𝑑𝑗𝑝[𝑘] > 1 then 
87:          𝑛𝑃𝑃𝑢𝑃𝑃𝑒𝑃 ← 𝑛𝑃𝑃𝑢𝑃𝑃𝑒𝑃 + 1 
88:         end if 
89:         if 𝑣𝑛𝑚𝑛𝑑𝑗𝑛[𝑘] > 0 then 
90:          𝑛𝑃𝑃𝑢𝑃𝑃𝑒𝑃 ← 𝑛𝑃𝑃𝑢𝑃𝑃𝑒𝑃 + 1 
91:         end if 
92:        else 
93:         if 𝑣𝑛𝑚𝑛𝑑𝑗𝑛[𝑘] > 1 then 
94:          𝑛𝑃𝑃𝑢𝑃𝑃𝑒𝑃 ← 𝑛𝑃𝑃𝑢𝑃𝑃𝑒𝑃 + 1 
95:         end if 
96:         if 𝑣𝑛𝑚𝑛𝑑𝑗𝑝[𝑘] > 0 then 
97:          𝑛𝑃𝑃𝑢𝑃𝑃𝑒𝑃 ← 𝑛𝑃𝑃𝑢𝑃𝑃𝑒𝑃 + 1 
98:         end if 
99:        end if 

100:        𝑏𝑖𝑑𝑖𝑃𝑛𝑑𝑗𝑤𝑚𝑛 ← ABS(𝑛𝑑𝑗𝑤𝑚𝑛[𝑗]) + ABS(𝑛𝑑𝑗𝑤𝑚𝑛[𝑖𝑛𝑑𝑗]) 
101:        if 𝑝𝑛𝑛𝑃ℎ[𝑘] = 𝑈𝑈𝑀𝐴𝑈𝐶𝑈𝐸𝐷 and 
102:        ((𝑛𝑃𝑃𝑢𝑃𝑃𝑒𝑃 < 𝑝𝑖𝑛𝑃𝑃𝑢𝑃𝑃𝑒𝑃 and 
103:        (𝑝𝑛𝑚𝑤𝑚𝑛 ∗ 𝑝1) < 𝑏𝑖𝑑𝑖𝑃𝑛𝑑𝑗𝑤𝑚𝑛) or 
104:        (𝑛𝑃𝑃𝑢𝑃𝑃𝑒𝑃 = 𝑝𝑖𝑛𝑃𝑃𝑢𝑃𝑃𝑒𝑃 and 
105:        (𝑝𝑛𝑚𝑤𝑚𝑛 ∗ 𝑝2) < 𝑏𝑖𝑑𝑖𝑃𝑛𝑑𝑗𝑤𝑚𝑛) or 
106:        (𝑛𝑃𝑃𝑢𝑃𝑃𝑒𝑃 > 𝑝𝑖𝑛𝑃𝑃𝑢𝑃𝑃𝑒𝑃 and 
107:        (𝑝𝑛𝑚𝑤𝑚𝑛 ∗ 𝑝3) < 𝑏𝑖𝑑𝑖𝑃𝑛𝑑𝑗𝑤𝑚𝑛)) and 
108:        (𝑣𝑤𝑚𝑛[𝑖] + 𝑣𝑤𝑚𝑛[𝑘]) ≤ 𝑝𝑛𝑚𝑣𝑤𝑚𝑛[0] then 
109:         𝑝𝑛𝑚𝑖𝑑𝑚 ← 𝑘 
110:         𝑝𝑛𝑚𝑤𝑚𝑛 ← 𝑏𝑖𝑑𝑖𝑃𝑛𝑑𝑗𝑤𝑚𝑛 
111:         𝑝𝑖𝑛𝑃𝑃𝑢𝑃𝑃𝑒𝑃 ← 𝑛𝑃𝑃𝑢𝑃𝑃𝑒𝑃 
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112:        end if 
113:       end for /*Goes through all adjacent vertices*/ 
114:       if 𝑝𝑛𝑚𝑖𝑑𝑚 = 𝑖 and 
115:       (𝑚𝑛𝑑𝑗[𝑖 + 1] − 𝑚𝑛𝑑𝑗[𝑖]) ≤ 𝑀𝐴𝑀𝐷𝐸𝐺𝑅𝐸𝐸𝑀𝑂𝑅2𝑈𝑂𝑃 then 
116:        for 𝑗 ← 𝑚𝑛𝑑𝑗[𝑖] to 𝑚𝑛𝑑𝑗[𝑖 + 1] − 1 step 1 do 
117:         𝑖𝑖 ← 𝑛𝑑𝑗𝑛𝑃𝑎[𝑗] 
118:         if (𝑚𝑛𝑑𝑗[𝑖𝑖 + 1] − 𝑚𝑛𝑑𝑗[𝑖𝑖]) < 50 then 
119:          𝑗𝑗𝑖𝑛𝑃 ← 1 
120:         else 
121:          𝑗𝑗𝑖𝑛𝑃 ← 1 + RANDOM((𝑚𝑛𝑑𝑗[𝑖𝑖 + 1] − 𝑚𝑛𝑑𝑗[𝑖𝑖]) 10⁄ ) 
122:         end if 
123:         for 𝑗𝑗 ← 𝑚𝑛𝑑𝑗[𝑖𝑖] to 𝑚𝑛𝑑𝑗[𝑖𝑖 + 1] − 1 step 𝑗𝑗𝑖𝑛𝑃 do 
124:          𝑘 ← 𝑛𝑑𝑗𝑛𝑃𝑎[𝑗𝑗] 
125:          if 𝑘 ≠ 𝑖 and 
126:          𝑝𝑛𝑛𝑃ℎ[𝑘] = 𝑈𝑈𝑀𝐴𝑈𝐶𝑈𝐸𝐷 and 
127:          𝑣𝑘𝑒𝑎𝑃[𝑖] = 𝑣𝑘𝑒𝑎𝑃[𝑘] and 
128:          (𝑚𝑛𝑑𝑗[𝑖 + 1] − 𝑚𝑛𝑑𝑗[𝑖]) = (𝑚𝑛𝑑𝑗[𝑘 + 1] − 𝑚𝑛𝑑𝑗[𝑘]) and 
129:          (𝑣𝑤𝑚𝑛[𝑖] + 𝑣𝑤𝑚𝑛[𝑘]) ≤ 𝑝𝑛𝑚𝑣𝑤𝑚𝑛[0] then 
130:           𝑝𝑛𝑚𝑖𝑑𝑚 ← 𝑘 
131:           break 
132:          end if 
133:         end for 
134:         if 𝑝𝑛𝑚𝑖𝑑𝑚 ≠ 𝑖 then 
135:          break 
136:         end if 
137:        end for /*Goes through all adjacent vertices*/ 
138:       end if /*2-hop matching*/ 
139:      else /*Multiple constraints*/ 
140:       for 𝑗 ← 𝑚𝑛𝑑𝑗[𝑖] to 𝑚𝑛𝑑𝑗[𝑖 + 1] − 1 step 1 do 
141:        𝑘 ← 𝑛𝑑𝑗𝑛𝑃𝑎[𝑗] 
142:        for 𝑖𝑛𝑑𝑗 ← 𝑚𝑛𝑑𝑗[𝑘] to 𝑚𝑛𝑑𝑗[𝑘 + 1] − 1 step 1 do 
143:         if 𝑛𝑑𝑗𝑛𝑃𝑎[𝑖𝑛𝑑𝑗] = 𝑖 then 
144:          break 
145:         end if 
146:        end for 
147:        𝑛𝑃𝑃𝑢𝑃𝑃𝑒𝑃 ← 0 
148:        if 𝑛𝑑𝑗𝑤𝑚𝑛[𝑗] ≥ 0 then 
149:         if 𝑣𝑛𝑚𝑛𝑑𝑗𝑝[𝑖] > 1 then 
150:          𝑛𝑃𝑃𝑢𝑃𝑃𝑒𝑃 ← 𝑛𝑃𝑃𝑢𝑃𝑃𝑒𝑃 + 1 
151:         end if 
152:         if 𝑣𝑛𝑚𝑛𝑑𝑗𝑛[𝑖] > 0 then 
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153:          𝑛𝑃𝑃𝑢𝑃𝑃𝑒𝑃 ← 𝑛𝑃𝑃𝑢𝑃𝑃𝑒𝑃 + 1 
154:         end if 
155:        else 
156:         if 𝑣𝑛𝑚𝑛𝑑𝑗𝑛[𝑖] > 1 then 
157:          𝑛𝑃𝑃𝑢𝑃𝑃𝑒𝑃 ← 𝑛𝑃𝑃𝑢𝑃𝑃𝑒𝑃 + 1 
158:         end if 
159:         if 𝑣𝑛𝑚𝑛𝑑𝑗𝑝[𝑖] > 0 then 
160:          𝑛𝑃𝑃𝑢𝑃𝑃𝑒𝑃 ← 𝑛𝑃𝑃𝑢𝑃𝑃𝑒𝑃 + 1 
161:         end if 
162:        end if 
163:        if 𝑛𝑑𝑗𝑤𝑚𝑛[𝑖𝑛𝑑𝑗] ≥ 0 then 
164:         if 𝑣𝑛𝑚𝑛𝑑𝑗𝑝[𝑘] > 1 then 
165:          𝑛𝑃𝑃𝑢𝑃𝑃𝑒𝑃 ← 𝑛𝑃𝑃𝑢𝑃𝑃𝑒𝑃 + 1 
166:         end if 
167:         if 𝑣𝑛𝑚𝑛𝑑𝑗𝑛[𝑘] > 0 then 
168:          𝑛𝑃𝑃𝑢𝑃𝑃𝑒𝑃 ← 𝑛𝑃𝑃𝑢𝑃𝑃𝑒𝑃 + 1 
169:         end if 
170:        else 
171:         if 𝑣𝑛𝑚𝑛𝑑𝑗𝑛[𝑘] > 1 then 
172:          𝑛𝑃𝑃𝑢𝑃𝑃𝑒𝑃 ← 𝑛𝑃𝑃𝑢𝑃𝑃𝑒𝑃 + 1 
173:         end if 
174:         if 𝑣𝑛𝑚𝑛𝑑𝑗𝑝[𝑘] > 0 then 
175:          𝑛𝑃𝑃𝑢𝑃𝑃𝑒𝑃 ← 𝑛𝑃𝑃𝑢𝑃𝑃𝑒𝑃 + 1 
176:         end if 
177:        end if 
178:        𝑏𝑖𝑑𝑖𝑃𝑛𝑑𝑗𝑤𝑚𝑛 ← ABS(𝑛𝑑𝑗𝑤𝑚𝑛[𝑗]) + ABS(𝑛𝑑𝑗𝑤𝑚𝑛[𝑖𝑛𝑑𝑗]) 
179:        if 𝑝𝑛𝑛𝑃ℎ[𝑘] = 𝑈𝑈𝑀𝐴𝑈𝐶𝑈𝐸𝐷 and 
180:        (((𝑛𝑃𝑃𝑢𝑃𝑃𝑒𝑃 < 𝑝𝑖𝑛𝑃𝑃𝑢𝑃𝑃𝑒𝑃 and 
181:        (𝑝𝑛𝑚𝑤𝑚𝑛 ∗ 𝑝1) < 𝑏𝑖𝑑𝑖𝑃𝑛𝑑𝑗𝑤𝑚𝑛) or 
182:        (𝑛𝑃𝑃𝑢𝑃𝑃𝑒𝑃 = 𝑝𝑖𝑛𝑃𝑃𝑢𝑃𝑃𝑒𝑃 and 
183:        (𝑝𝑛𝑚𝑤𝑚𝑛 ∗ 𝑝2) < 𝑏𝑖𝑑𝑖𝑃𝑛𝑑𝑗𝑤𝑚𝑛) or 
184:        (𝑛𝑃𝑃𝑢𝑃𝑃𝑒𝑃 > 𝑝𝑖𝑛𝑃𝑃𝑢𝑃𝑃𝑒𝑃 and 
185:        (𝑝𝑛𝑚𝑤𝑚𝑛 ∗ 𝑝3) < 𝑏𝑖𝑑𝑖𝑃𝑛𝑑𝑗𝑤𝑚𝑛)) or 
186:        ((𝑛𝑃𝑃𝑢𝑃𝑃𝑒𝑃 = 𝑝𝑖𝑛𝑃𝑃𝑢𝑃𝑃𝑒𝑃 and 
187:        𝑝𝑛𝑚𝑤𝑚𝑛 = 𝑏𝑖𝑑𝑖𝑃𝑛𝑑𝑗𝑤𝑚𝑛) and 
188:        BETTER_BALANCE(𝑛𝑃𝑃𝑛, 𝑣𝑤𝑚𝑛[𝑖 ∗ 𝑛𝑃𝑃𝑛], 
189:        𝑣𝑤𝑚𝑛[𝑝𝑛𝑚𝑖𝑑𝑚 ∗ 𝑛𝑃𝑃𝑛], 𝑣𝑤𝑚𝑛[𝑘 ∗ 𝑛𝑃𝑃𝑛]))) and 
190:        ALL_SUMS_LESS_OR_EQUAL_TO(𝑛𝑃𝑃𝑛, 
191:        𝑣𝑤𝑚𝑛[𝑖 ∗ 𝑛𝑃𝑃𝑛], 𝑣𝑤𝑚𝑛[𝑘 ∗ 𝑛𝑃𝑃𝑛], 𝑝𝑛𝑚𝑣𝑤𝑚𝑛) then 
192:         𝑝𝑛𝑚𝑖𝑑𝑚 ← 𝑘 
193:         𝑝𝑛𝑚𝑤𝑚𝑛 ← 𝑏𝑖𝑑𝑖𝑃𝑛𝑑𝑗𝑤𝑚𝑛 
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194:         𝑝𝑖𝑛𝑃𝑃𝑢𝑃𝑃𝑒𝑃 ← 𝑛𝑃𝑃𝑢𝑃𝑃𝑒𝑃 
195:        end if 
196:       end for /*Goes through all adjacent vertices*/ 
197:       if 𝑝𝑛𝑚𝑖𝑑𝑚 = 𝑖 and 
198:       (𝑚𝑛𝑑𝑗[𝑖 + 1] − 𝑚𝑛𝑑𝑗[𝑖]) ≤ 𝑀𝐴𝑀𝐷𝐸𝐺𝑅𝐸𝐸𝑀𝑂𝑅2𝑈𝑂𝑃 then 
199:        for 𝑗 ← 𝑚𝑛𝑑𝑗[𝑖] to 𝑚𝑛𝑑𝑗[𝑖 + 1] − 1 step 1 do 
200:         𝑖𝑖 ← 𝑛𝑑𝑗𝑛𝑃𝑎[𝑗] 
201:         if (𝑚𝑛𝑑𝑗[𝑖𝑖 + 1] − 𝑚𝑛𝑑𝑗[𝑖𝑖]) < 50 then 
202:          𝑗𝑗𝑖𝑛𝑃 ← 1 
203:         else 
204:          𝑗𝑗𝑖𝑛𝑃 ← 1 + RANDOM((𝑚𝑛𝑑𝑗[𝑖𝑖 + 1] − 𝑚𝑛𝑑𝑗[𝑖𝑖]) 10⁄ ) 
205:         end if 
206:         for 𝑗𝑗 ← 𝑚𝑛𝑑𝑗[𝑖𝑖] to 𝑚𝑛𝑑𝑗[𝑖𝑖 + 1] − 1 step 𝑗𝑗𝑖𝑛𝑃 do 
207:          𝑘 ← 𝑛𝑑𝑗𝑛𝑃𝑎[𝑗𝑗] 
208:          if 𝑘 ≠ 𝑖 and 
209:          𝑝𝑛𝑛𝑃ℎ[𝑘] = 𝑈𝑈𝑀𝐴𝑈𝐶𝑈𝐸𝐷 and 
210:          𝑣𝑘𝑒𝑎𝑃[𝑖] = 𝑣𝑘𝑒𝑎𝑃[𝑘] and 
211:          (𝑚𝑛𝑑𝑗[𝑖 + 1] − 𝑚𝑛𝑑𝑗[𝑖]) = (𝑚𝑛𝑑𝑗[𝑘 + 1] − 𝑚𝑛𝑑𝑗[𝑘]) and 
212:          ALL_SUMS_LESS_OR_EQUAL_TO(𝑛𝑃𝑃𝑛, 
213:          𝑣𝑤𝑚𝑛[𝑖 ∗ 𝑛𝑃𝑃𝑛], 𝑣𝑤𝑚𝑛[𝑘 ∗ 𝑛𝑃𝑃𝑛], 𝑝𝑛𝑚𝑣𝑤𝑚𝑛) then 
214:           𝑝𝑛𝑚𝑖𝑑𝑚 ← 𝑘 
215:           break 
216:          end if 
217:         end for 
218:         if 𝑝𝑛𝑚𝑖𝑑𝑚 ≠ 𝑖 then 
219:          break 
220:         end if 
221:        end for /*Goes through all adjacent vertices*/ 
222:       end if /*2-hop matching*/ 
223:      end if /*One constraint*/ 
224:     end if /*Current vertex is island*/ 
225:    end if /*Current vertex weight not big*/ 
226:    𝑃𝑛𝑣𝑛𝑚𝑃 ← 𝑃𝑛𝑣𝑛𝑚𝑃 + 1 
227:    𝑝𝑛𝑛𝑃ℎ[𝑖] ← 𝑝𝑛𝑚𝑖𝑑𝑚 
228:    𝑝𝑛𝑛𝑃ℎ[𝑝𝑛𝑚𝑖𝑑𝑚] ← 𝑖 
229:   end if /*Current vertex not matched*/ 
230:  end for /*Goes through all vertices*/ 
231:  return 𝑝𝑛𝑛𝑃ℎ, 𝑃𝑛𝑣𝑛𝑚𝑃 
232: end procedure 

 

The first part of the algorithm is for initialization purposes. Lines 8 to 10 initializes the three 
percentages 𝑝1, 𝑝2 and 𝑝3. These percentages are used to fine tune how much the weight of the edge, 
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combined with the number of sources, affects the decision to match vertex 𝑘 to vertex 𝑖. The lines 12 
and 13 initialize the two arrays used to store the number of positive and negative edges that each vertex 
has. The for loop of lines 14 to 22 visits all the vertices of the graph, while the for loop of lines 15 to 21 
visits the adjacent vertices of the current vertex 𝑖 of the outer loop. The amount of positive and negative 
edges of current vertex 𝑖 is then computed in lines 16 to 20. When vertex 𝑖 is matched with some vertex 
𝑘, the number of sources produced by that match has to be kept to a minimum. 

Once in the matching process, the variable 𝑝𝑖𝑛𝑃𝑃𝑢𝑃𝑃𝑒𝑃 is initialized every time a new vertex 𝑖 is 
going to be treated; this is done in line 49. 𝑝𝑖𝑛𝑃𝑃𝑢𝑃𝑃𝑒𝑃 is set to 5 due to the nature of the matching 
process; a maximum of 4 sources could result from any matching of two vertices. Further in the code, 
the same two sections from SHEM are present: the first one for the single constraint case, lines 62 to 
138, and the second one for the multi-constraint case, lines 140 to 222. These two sections share most of 
the code and only the single constraint is described here; the multi-constraint section uses a similar 
approach. It is important to note that DSHEM keeps the same code for islands and 2-hop matching. 

The edge (𝑖, 𝑘) is already available to DSHEM when vertex 𝑖 is treated and its adjacent vertex 𝑘 is 
visited; however, the edge (𝑘, 𝑖) is yet to be found. DSHEM uses directed edges to better approximate 
the communication volume, the reason why both edges may have different values. SHEM uses 
undirected edges, both always with the same value, without the need to find that second edge. The for 
loop of lines 64 to 68 visits the adjacent vertices of vertex 𝑘 and once the location of vertex 𝑖 is found, 
the edge (𝑘, 𝑖) is available. With both edges, (𝑖, 𝑘) and (𝑘, 𝑖), the number of sources can be computed. 
First, the number of sources in 𝑛𝑃𝑃𝑢𝑃𝑃𝑒𝑃 is initialized in line 69. Then the two conditionals, lines 70 to 
84 and 85 to 99, calculate the number of sources for the provisional matching of vertices 𝑖 and vertex 𝑘. 
The total communication going through the edge linking both vertices is calculated next; line 100 
computes the bidirectional communication. Note that the minus sign (-) in the weights of edges is used 
to indicate the origin of that communication and not its amount. 

With the new data obtained previously, DSHEM can now make a more informed decision whether 
vertices 𝑖 and 𝑘 should be matched together. It takes into consideration the three different scenarios that 
are possible: the number of sources is reduced, preserved or increased. It depends on the weight of the 
edge, in combination with the percentages, if increasing the number of sources is preferred than 
reducing them. It could be more beneficial to remove an over weighted edge, at the cost of increasing 
the sources, than removing a very light edge. Removing heavy edges in the coarsening process also 
reduces the overall communication in the coarsest graph. The conditional in lines 101 to 108 is that of 
SHEM with the addition of the three different scenarios described earlier. Instead of considering only 
the weight of the edge (i.e., 𝑝𝑛𝑚𝑤𝑚𝑛 < 𝑛𝑑𝑗𝑤𝑚𝑛[𝑗]), the number of sources and percentage are included 
(e.g., 𝑛𝑃𝑃𝑢𝑃𝑃𝑒𝑃 < 𝑝𝑖𝑛𝑃𝑃𝑢𝑃𝑃𝑒𝑃 and (𝑝𝑛𝑚𝑤𝑚𝑛 ∗ 𝑝1) < 𝑏𝑖𝑑𝑖𝑃𝑛𝑑𝑗𝑤𝑚𝑛). 

The multi-constraint section is similar to that of a single constraint described earlier. The difference 
lies in the conditional of lines 179 to 191 which considers the multiple constraints of vertices. 

The final and definitive matching of vertex 𝑖 is done after all its adjacent vertices have been analyzed 
and the 2-hop matching process completed; the number of coarse vertices is updated in line 226, vertex 𝑖 
is matched to the vertex in 𝑝𝑛𝑚𝑖𝑑𝑚, and vice versa, in lines 227 and 228. Finally, line 231 returns the 
array with the matching information and the number of coarse vertices in the resulting coarse graph. 

 
 



 

 

Appendix B.  

Graphs 

It is important to understand the geometry of the set of graphs used for the experimentation and how it 
affects the performance of the algorithms under investigation. For that purpose, a more detailed 
description of the real life and synthetic graphs is provided in this appendix. The creation of the 
synthetic graphs is also explained here. 

B.1. Real Life Graphs 

The collection of real life graphs represents the most common types of geometries found in FE meshes. 
Their size is also considered to measure the performance degradation, if any, of the algorithm under test. 
Small and medium size graphs have been used for the experimentation phase. Coordinate information is 
only used to plot the graphs and not for the purpose of the partitioning process. This information helps 
understand the geometry of the graph by visual inspection. 

B.1.1. 2D Graphs 

One 2D triangular graph has been chosen. It is a small graph with 15 thousand vertices and 45 thousand 
edges. 

ef_4elt 

This small 2D graph is based on a triangular mesh around an airfoil with front slat and rear flaps, see 
Figure B.1. 

 

Figure B.1.  Graph of an airfoil with flaps. 

The darker areas around the airfoil, slat and flaps represent the concentration of elements of the mesh, 
as shown in detail in Figure B.2. 
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Figure B.2.  Detailed view of the graph of an airfoil with flaps. 

The mesh has an irregular distribution of the elements as depicted in Figure B.3; the wing is located 
on the center of the graph. It can be seen that the mesh elements are limited to a close area around the 
airfoil. 

 

Figure B.3.  Full graph of an airfoil with flaps. 

When the graph is plotted without coordinate information, the elements of the mesh are distributed 
uniformly making more evident the concentration of elements around the wing; see Figure B.4. 
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Figure B.4.  Full graph of an airfoil with flaps without coordinate information. 

A large percentage of the edges are located around the wing and flaps, close to 90% of them. 

B.1.2. 3D Graphs 

Two 3D graphs have been used for the experiments; one medium size quadrangular graph with 140 
thousand vertices and 400 thousand edges, and a small triangular graph with 16 thousand vertices and 49 
thousand edges. 

ef_ocean 

This 3D graph represents the oceans of the world, the empty areas belong to the continents; Figure B.5 
shows a small section of the entire plot. 

 

Figure B.5.  Graph of the ocean. 

A detailed view of the graph is depicted in Figure B.6. 
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Figure B.6.  Detailed view of the graph of the ocean. 

This graph has all its elements distributed in a regular manner, see Figure B.7; the darker areas are 
due to the overlay of the different sections of the graph in the 2D image. It can be seen that the size of 
the mesh elements vary according to their proximity to the poles. 

 

Figure B.7.  Full graph of the ocean. 

When the graph is plotted without coordinate information, the irregularity shown in Figure B.8 comes 
from the size of the mesh elements. 
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Figure B.8.  Full graph of the ocean without coordinate information. 

ef_sphere 

This 3D graph represents a sphere with one layer of mesh elements. Figure B.9 shows a small section of 
the entire plot. 

 

Figure B.9.  Graph of a sphere. 

A detailed view of the graph is depicted in Figure B.10. 

 

Figure B.10.  Detailed view of the graph of a sphere. 

This graph has all its elements distributed in a regular manner, see Figure B.11; the darker areas are 
due to the overlay of the different sections of the graph in the 2D image. 
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Figure B.11.  Full graph of a sphere. 

When the graph is plotted without coordinate information, it is evident that not much irregularity is 
present; this indicates the regular pattern of the mesh elements as showing in Figure B.12. 
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Figure B.12.  Full graph of a sphere without coordinate information. 

B.2. Synthetic Graphs 

A set of synthetic graphs was created to study the behavior of the algorithm with greater detail. They 
include the different geometries present in the real life graphs, but in a regular, and predictive, pattern. 
In addition, some random irregularity is introduced in order to analyze the performance of the 
partitioning process. The next paragraphs describe the different synthetic graphs and their structure. 

B.2.1. Regular 

Regular graphs are designed to establish how the geometry affects the partition. For this purpose, 2D 
graphs, and their respective 3D version, are part of the set. Three different geometries are used: one 
quadrangular and two triangular geometries. 

Square 

This is a graph with a quadrangular geometry. Its size is measured by the number of vertices per side; 
being always a regular square of 𝑛 × 𝑛 vertices. Figure B.13 depicts a square graph with 5 vertices per 
side (5 × 5). 
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Figure B.13.  Square graph with 5 vertices per side. 

The 3D version of the square graph is generated by adding a third dimension with 𝑛 layers (copies) of 
the original square graph and connecting them together. The result of this process is a graph with a size 
of 𝑛 × 𝑛 × 𝑛 vertices. 

 

Figure B.14.  Creation of a 3D square graph with 2 vertices per side and 3 levels. 

Figure B.14 shows the process used to create a 3D version of a square graph. It is a simplification of 
the process to better understand how the graph is created. In this case, the resulting graph has a size of 
2 × 2 × 3, and not 2 × 2 × 2 as previously mentioned. The process starts with the original graph as 
shown in a); subsequent copies of the graph are generated in b), in this case 3 copies in total. Finally, all 
layers are connected with edges, creating the cubes, by linking all vertices. 

Triangular-Square 

This is a graph with a triangular geometry. Its size is measured by the number of vertices per side; being 
always a regular square of 𝑛 × 𝑛 vertices. Figure B.15 depicts a triangular square graph with 5 vertices 
per side (5 × 5). 

a) b) c)



B.2. Synthetic Graphs 

li 

 

Figure B.15.  Triangular square graph with 5 vertices per side. 

The 3D version of the triangular square graph is generated by adding a third dimension with 𝑛 layers 
(copies) of the original triangular square graph and connecting them together. The result of this process 
is a graph with a size of 𝑛 × 𝑛 × 𝑛 vertices. 

 

Figure B.16.  Creation of a 3D triangular square graph with 2 vertices per side and 3 levels. 

Figure B.16 shows the process used to create a 3D version of a triangular square graph. It is a 
simplification of the process to better understand how the graph is created. In this case, the resulting 
graph has a size of 2 × 2 × 3, and not 2 × 2 × 2 as previously mentioned. The process starts with the 
original graph as shown in a); subsequent copies of the graph are generated in b), in this case 3 copies in 
total. Next, all layers are connected with edges by linking all vertices; similar to the 3D square graph. 
Finally, a new edge is added to every cube linking the vertices having already 4 incident edges. 

Dense Triangular-Square 

This is a graph with a triangular geometry. Its size is measured by the number of vertices per side; being 
always a regular square of 𝑛 × 𝑛 vertices. However, the total number of vertices is not given by its size, 
as described next. Figure B.17 depicts a dense triangular square graph with 5 vertices per side (5 × 5). 
Besides the regular square graph it is based on, (𝑛 − 1) × (𝑛 − 1) vertices are added and linked to the 
original 𝑛 × 𝑛 vertices. This creates a dense graph with triangular geometry. 

a) b) c) d)
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Figure B.17.  Dense triangular square graph with 5 vertices per side. 

The 3D version of the dense triangular square graph is generated by adding a third dimension with 𝑛 
layers (copies) of the original dense triangular square graph and connecting them together. The result of 
this process is a graph with a size of 𝑛 × 𝑛 × 𝑛. 

 

Figure B.18.  Creation of a 3D dense triangular square graph with 2 vertices per side and 3 levels. 

Figure B.18 shows the process used to create a 3D version of a dense triangular square graph. It is a 
simplification of the process to better understand how the graph is created. In this case, the resulting 
graph has a size of 2 × 2 × 3, and not 2 × 2 × 2 as previously mentioned. The process starts with the 
original graph as shown in a); subsequent copies of the graph are generated in b), in this case 3 copies in 
total. Note that the last copy is a square graph, not a dense triangular graph. Next, all layers are 
connected with edges by linking the vertices; similar to the 3D square graph. Finally, the vertex in the 
center of every square is linked to the vertices of the square in the next level. 

B.2.2. Irregular 

The regular synthetic graphs are used as base to build the irregular graphs. Edges are randomly removed 
from the regular graph, with uniform probability, to create an irregular version of it. Different 
probabilities are used to see the effect of the irregularity in the partition results. 

Square 

This is a graph with an irregular quadrangular geometry. Its size is measured by the number of vertices 
per side; being always a square of 𝑛 × 𝑛 vertices. Figure B.19 depicts an irregular square graph with 5 
vertices per side (5 × 5); all edges are visited and removed with a probability of 25% for this example. 

a) b) c) d)
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Figure B.19.  Square graph with 5 vertices per side. Edges were removed with a probability of 25%. 

The 3D version of the irregular square graph follows the same process. It starts from a regular 3D 
square graph, and then all edges are visited and removed with a given probability. The resulting irregular 
3D graph is used for the evaluation of the partitioning algorithm. 

Triangular-Square 

This is a graph with an irregular triangular geometry. Its size is measured by the number of vertices per 
side; being always a square of 𝑛 × 𝑛 vertices. Figure B.20 depicts an irregular triangular square graph 
with 5 vertices per side (5 × 5); all edges are visited and removed with a probability of 25% for this 
example. 

 

Figure B.20.  Triangular square graph with 5 vertices per side. Edges were removed with a probability of 25%. 

The 3D version of the irregular triangular square graph follows the same process. It starts from a 
regular 3D triangular square graph, and then all edges are visited and removed with a given probability. 
The resulting irregular 3D graph is used for the evaluation of the partitioning algorithm. 

Dense Triangular-Square 

This is a graph with an irregular triangular geometry. Its size is measured by the number of vertices per 
side; being always a square of 𝑛 × 𝑛 vertices. However, the total number of vertices is not given by its 
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size, similar to the regular version. Figure B.21 depicts an irregular dense triangular square graph with 5 
vertices per side (5 × 5); all edges are visited and removed with a probability of 25% for this example. 

 

Figure B.21.  Dense triangular square graph with 5 vertices per side. Edges were removed with a probability of 25%. 

The 3D version of the irregular dense triangular square graph follows the same process. It starts from 
a regular 3D dense triangular square graph, and then all edges are visited and removed with a given 
probability. The resulting irregular 3D graph is used for the evaluation of the partitioning algorithm. 
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