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Abstract 

 

 

Small heat shock proteins (sHSPs) respond to many environmental stresses, stabilizing early 

unfolding protein intermediates and avoiding their irreversible aggregation. In plants, organellar 

sHSPs are a unique cellular feature. The primary structure of sHSPs includes a N-terminal 

sequence of variable sequence and length, a conserved domain known as α-crystallin domain 

(ACD) and a non-conserved C-terminal sequence. The ACD represents the conserved 

characteristic present in all sHSPs, although there are other proteins that contain an ACD but 

are not sHSPs. sHSPs belong to a big superfamily, and the functional and physiological 

relevance of the different sHSPs remains largely unknown. 

The objective of this study was to understand the role of mitochondrial sHSPs in Arabidopsis 

thaliana and Solanum lycopersicum under environmental stresses and to characterize putative 

bidirectional promoters driving the expression of ACD proteins with head-to-head orientation.   

This work covers aspects from the genomic organization and function of sHSPs-M in 

Arabidopsis to the role of sHSPs-M in chilling stress of tomato fruit. To perform all the 

experiments, Arabidopsis and tomato mutants using artificial microRNA technology were 

generated and analyzed in their proteome, metabolome, and lipidome.  

In the first part of this work, the functional characterization of head-to-head oriented genes 

encoding ACD proteins and the correspondent intergenic regions was performed. Four 

different bidirectional promoters in the A. thaliana genome, including the one of At5g51440 

that encodes a mitochondrial sHSP (sHSP23.5), were successfully identified and 

characterized. The data suggest that the bidirectional promoter contained in the pair 

At5g51430-At5g51440 is strongly heat induced in one direction but not in the other. The 

promoter of At1g06460-At1g06470 showed comparable high activity in both directions and 

thus has a great potential to be used in genetic engineering. The other two promoters showed 

greater strength in one side and can be considered as asymmetric bidirectional promoters. 

This functional study of the promoters revealed the biotechnological potential of them because 

they can be induced specifically in a certain condition (such as high temperature) in one or two 

directions when it is required. 

In the second part, functional characterization of the mitochondrial sHSPs under stress 

conditions and during A. thaliana development is presented. Three gene paralogues were 

found in Arabidopsis (At5g51440, At4g25200, and At1g52560), and artificial microRNA were 

used to generate knock-down mutants (single, double and triple amiR). The single and double 

amiRs (for sHSP23.5 and sHSP23.6) did not show evidently affected phenotype, probably 

because of functional compensation or redundancy of the mitochondrial sHSPs. On the other 

hand, the triple amiR23.5/23.6/26.5 mutants showed an altered phenotype in the vegetative 
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and reproductive stages. They have reduced leaves areas, but not number of epidermal cells 

per leaf, chlorotic leaves, shorter root, and reduced seed yield when compared to Col-0 plants. 

Plants of triple amiR were considerably small due to the alteration in the process of cell 

expansion but not in the cellular proliferation, which indicates a profound alteration in the plant 

developmental program. Proteomic analysis of the amiR mutants revealed significant 

upregulation of various metabolism-related proteins and alterations in the abundance of 

several proteins that are involved in translation and in the ribosome functioning and structure. 

Triple amiR mutant exhibited a higher number of proteins with differential abundance related 

to these processes compared to the other single and double amiR23.5/23.6 mutants. Such a 

wide change in ribosome-related proteins suggests a possible alteration in the proper ribosome 

function. The data exposed in this work provide evidence of the important roles that sHSPs-M 

may play, not only in the heat response but also in the plant development of Arabidopsis. 

Results demonstrate that a functional compensation might be responsible for the phenotype 

in mutants lacking single sHSPs-M. However, the reduction of the three sHSPs-M caused a 

profound disruption in the mitochondria and ribosome functionality that severely affected the 

energy metabolism and the overall cell homeostasis, leading to alterations in the correct plant 

development.  

In the last part of this work, the functional consequences of the down-regulation of sHSP23.8 

in tomato fruit were investigated and analyzed in their phenotype and in their susceptibility to 

chilling injury. Pre-chilled fruit of amiR23.8 mutant showed higher loss of water and increased 

ion leakage of pericarp tissue compared to WT fruit. The amiR23.8 fruit deterioration indicates 

that it is highly susceptible to cold stress and developed chilling injury symptoms. The lipidome 

of fruit after chilling of amiR23.8 showed altered amounts of glycerolipids, and the level of 

saturated lipids in amiR23.8 decreased, but not lower than the level in WT under normal 

conditions. The opposite was found in the relative percentage of unsaturated lipids, having 

amiR23.8 fruit significantly lower levels in normal conditions and after chilling. The results 

presented here indicate a differential degradation of extraplastidic and plastidic lipids in 

amiR23.8 fruit, and alterations in the remodeling of the lipidome after cold stress, which may 

lead to higher sensitivity to chilling injury. The results discussed here indicate that sHSP23.8 

may play an important role in the protection mechanisms against chilling stress in tomato fruit. 
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1. Introduction 

 

 

Plants, unlike animals, are immobile organisms. As a result, they suffer a wide variety of 

environmental stresses from germination to senescence. High-light, salinity, drought, high and 

low temperatures are a few situations that plants have to cope with for surviving. Under such 

adverse conditions, the photosynthetic antennas absorb photons at a rate that is higher than 

the capacity of the photosynthetic centres to channel electrons through the electron transport 

chain mechanisms, resulting in the generation of reactive oxygen species (ROS). Complex 

defense mechanisms have evolved in plants in response to multiple stressful situations. As a 

eukaryote, plants have a nuclear genome and two organellar genomes in mitochondria and 

chloroplasts. Most mitochondrial and chloroplast proteins are encoded in the nuclear genome, 

and when fully synthesized in the cytosol, proteins need to be imported into the organelles 

[Jarvis, 2008]. The analyses of transcription profiles in Arabidopsis thaliana, a model plant, 

revealed the presence of different ways of retrograde control over the nuclear gene expression 

for mitochondrial or chloroplast proteins [Leister, 2011]. Under different stress situations, the 

transcriptome of plants showed some common players from transcription factors to heat stress 

proteins (HSPs), upregulated in a wide variety of stressful situations [Nishizawa, 2006]. In 

particular, HSPs were highly upregulated under high light and oxidative stress generated in 

the chloroplast of Arabidopsis [Scarpeci, 2008a, 2008b]. Among them, small HSPs (sHSPs) 

were upregulated, and two of them were assigned to be localized in the mitochondria. 

Previously, Neta-Sharir group [Neta-Sharir, 2005] showed that the tomato (Solanum 

lycopersicum) chloroplast sHSP, HSP21, was induced in the leaves when heat treated, but 

also in developing fruit during the transition of chloroplasts to chromoplasts when growing 

under normal conditions. This evidence led to postulate the goal of the present work: to study 

the role of mitochondrial sHSP in Arabidopsis and tomato under stressful conditions. 

 

 

1.1. The small heat shock protein family. 

 

Functional proteins are the product of the highly efficient biosynthetic system, subjected to 

strict quality control, composed by chaperones, folding catalysts, and proteases. Protein 

quality controls are also crucial to eliminate detrimental misfolded/aggregated proteins. 

Cellular chaperones usually assist other proteins to acquire the final active and functional 

structures, although they are not part of it [Hartl, 2011]. The HSP families are classified after 

their molecular size: HSP100s, HSP90s, HSP70s, HSP60s, and the HSP20s or the small 

HSPs [Wang, 2004b]. The name HSP originates because they are induced on exposure to 
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high temperature and play critical roles in the so-called “heat shock response”. Upon high 

stressing temperatures, all organisms alter their gene expression patterns through the 

activation of the heat shock transcription factors (HSFs) and the binding of these HSFs to heat 

shock elements. The HSFs can thus up-regulate the heat shock genes leading to the 

production of heat shock proteins or HSPs [Scharf, 2012]. Although HSPs were first recognized 

for their up-regulation during heat shock, many reports showed that they are also found in 

unstressed cells as well as in abiotic and biotic stressed cells [Swindell, 2007].  

Most HSP families (the HSP60s, HSP70s, HSP90s, and HSP100s) are highly conserved in 

many distant organisms; and some of them are known as the most highly conserved protein 

families [Boorstein, 1994; Stechmann, 2003]. In contrast, the amino acid sequences of sHSPs 

are highly variable, being the sHSPs family the least conserved of the molecular chaperones 

[Waters, 1995; Kriehuber, 2010]. However, there are some conserved sHSP features. Firstly, 

they function as large oligomers although they are named after the size of the monomers 

(ranging from 15 to 42 kDa) [van Montfort, 2002]. Secondly, all sHSPs share a conserved α-

crystallin domain (ACD) of around 100 residues. Thirdly, the sHSPs share a compact β-sheet 

sandwich structure, which can dimerize creating the building block of the large oligomers 

[Haslbeck, 2015]. These features of the sHSP structure are based on analysis of the crystal 

structures of two sHSPs: one from wheat (Triticum aestivum), TaHsp16.9, and the other from 

an archaebacterium (Methanococcus jannaschii), MjHsp16.5 [Kim, 1998; van Montfort, 2001]. 

The sHSPs are ubiquitous proteins present in all living organisms. In plants, sHSPs are 

especially abundant and dissimilar, probably reflecting the need to rapidly adapt to changing 

environments (such as drought, temperature, light, chemical pollutants, and humidity). A 

comparative analysis of the sHSP sequences revealed that Arabidopsis has 19 sHSPs, rice 

(Oryza sativa) has 23, and poplar (Populus trichocarpa) has 36 [Waters, 2008b]. sHSPs have 

been grouped in 11 subfamilies based on nucleotidic sequence similarity, intracellular 

localization, and cross-reactivity in immunoblot analysis. From them, six subfamilies are 

cytoplasmic/nuclear localized (CI–CVI), and five subfamilies are localized in organelles. 

Among organellar sHSPs, some localize to the endoplasmic reticulum, to the peroxisome, to 

the chloroplast, and two subfamilies localize to the mitochondria (MTI and MTII) [Siddique, 

2008; Bondino, 2012]. The high diversity of plant sHSPs had probably arisen as a 

consequence of the stressful conditions that plants suffer during their life cycle.  

Plant sHSPs can be visualized in two processes, the stress response and the healthy 

development. During heat stress, most of the sHSPs are highly upregulated, which can assure 

the plant thermo-tolerance by protecting other proteins from irreversible denaturation. 

Additionally, the sHSPs were observed to respond to other stresses such as drought, salinity, 

cold, osmotic, and oxidative stress. Added to this, some plant sHSPs were observed at the 

typical development during embryogenesis, seed germination, pollen development, and fruit 
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maturation [Wang, 2004b; Sun, 2005]. Several members of the sHSP family have been 

associated with membranes suggesting that these proteins are probably interacting with 

specific lipids, helping to control the physical state, the bilayer stability and the integrity of the 

membranes. It has been suggested that under stressful conditions, sHSPs and other HSPs 

may contribute to the membrane quality control and the maintenance of membrane integrity 

[Nakamoto, 2007]. Under normal growth conditions, sHSPs are generally undetectable in 

vegetative tissues but can be highly induced by environmental stresses and developmental 

stimuli. 

 

 

1.1.1. Structure of sHSPs. 

 

The primary amino acid sequence of sHSP comprises a variable region at the N-terminal, a 

more conserved region at the C-terminal, often referred to as the ACD domain or the HSP20 

domain, and a C-terminal extension. The ACD is a region, highly conserved at the C-terminal, 

delimited from the β2-strand to the β9-strand. It is the core structure of the protein and is formed 

by two regions, CRI and CRII that form a sandwich of two pleated-sheets and are separated 

by a hydrophilic domain of variable length [Waters, 1996; Sun, 2002]. The ACD differentiates 

sHSPs from other small proteins induced by heat [Scharf, 2001]. The sHSPs that localize in 

particular cellular organelles, as most organellar proteins, have N-terminal transit peptide or 

signal sequences required to direct the sHSP to the proper cellular compartment. The length 

and sequence of the C-terminal extension are highly variable, and may also contain amino 

acid motifs addressing the specific organelle [Waters, 2013]. 

One particular feature of most sHSPs is their capability to form oligomers, which has been 

considered essential for their function. The majority of sHSPs form large ensembles usually 

ranging from 12 to more than 32 subunits, although some dimers have also been described 

[Basha, 2013]. These oligomers are often polydisperse indicating that several oligomeric states 

exist [Baldwin, 2011]. The regulation of the chaperone activity of sHSPs correlates with the 

ability to find an equilibrium between different oligomer populations [Basha, 2012]. The 

oligomeric sHSPs are all assembled from a fundamental dimeric structure which is the basic 

building block and the active form of the protein. The dimer is stabilized by the formation of a 

β-sheet between the β6-strand of one subunit and the β2-strand of the 4-pleated β-sheet of 

the other subunit. It is postulated that these three different regions existing in the protein 

contribute to sHSP oligomerization. While the ACD constitutes the basic dimeric building block, 

both flanking regions contribute to the assembly process. In particular, the C-terminal 

extension contains a conserved I-x-I motif that participates in the assembly of sHSP dimers 

into oligomers [Haslbeck, 2015]. 



Introduction 

 

4 

Plant sHSPs can also arrange into heat shock granules which are approximately 40 nm in 

diameter. When heat stress last for long-term, unfolded proteins bound to sHSP oligomers 

accumulate in the cytoplasm, surpassing the refolding capacity of the Hsp70/Hsp40 system. 

These complexes of denatured proteins-sHSP can then be transiently stored in heat shock 

granules that break down during the recovery period [Sun, 2002]. 

The ACD is an ancient and conserved domain found in almost all eukaryotes, bacteria, and 

archaea. The designation ‘alpha-crystallin domain’ derived from the eye lens alpha-crystallin 

protein, a chaperone that protects denatured proteins from aggregation, and prevents the 

formation of cataracts in the eyes of vertebrates [Horwitz, 1992]. More recently, it has been 

suggested that the ACD was incorporated into a large number of other proteins, usually called 

ACD-proteins [Scharf, 2001; Bondino, 2012]. Within this group, not all ACD-containing proteins 

have chaperone activity and work as sHSPs. For instance, two ACD-proteins have been shown 

to participate in the DNA demethylation and gene silencing in Arabidopsis [Qian, 2014; Zhao, 

2014]. 

The first two high-resolution crystal structures of sHSPs, MjHsp16.5 from Methanococcus 

jannaschii and TaHsp16.9 from wheat have in several common features. Both structures are 

composed of a β-sandwich of two antiparallel sheets, and the building blocks of both oligomers 

are dimers. Analysis of both crystal structures showed that MjHsp16.5 is formed by a hollow 

spherical complex composed of 24 subunits whereas the wheat TaHsp16.9 assembles into a 

dodecameric second disk containing six ACDs structured in a trimer of dimers [Kim, 1998; van 

Montfort, 2001]. To date, ten new high-resolution sHSP crystal have been published, but none 

of these is from plants. Moreover, all available sHSP structures lack full information of the N- 

terminal region structure, suggesting that this region might be intrinsically disordered, at least 

partially, or it may contain structural elements which are highly dynamic and oscillatory causing 

different contacts in diverse positions within the oligomer [Basha, 2012; Patel, 2014]. It has 

been proposed that the sHSP sequence at the N-terminal region participates in the binding to 

denatured proteins [Giese, 2005; Basha, 2006]. 

 

 

1.1.2. sHSPs functions. 

 

The functioning mechanism of sHSPs in cell defense is still under debate. As previously 

mentioned, the synthesis and accumulation of sHSPs in response to adverse and stressful 

conditions has been correlated with stress tolerance. One current model postulates that under 

conditions of extreme stress, sHSPs provide an energy-independent mechanism to buffer the 

increase in non-native proteins. Based on this model, sHSPs were postulated to function 

together with other chaperones to avoid irreversible protein aggregations and also acting on 
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protein aggregates to re-solubilize the protein components [Waters, 2013]. sHSPs accomplish 

their role as molecular chaperones by stabilizing initial unfolding intermediates of aggregation 

in an ATP-independent manner. Apart from showing activity independent from ATP, sHSPs 

show a high capacity for binding denatured substrates and can bind one substrate protein per 

sHSP subunit of equal molecular mass [McHaourab, 2009]. In vitro experiments have 

demonstrated that sHSPs are mainly useful in preventing thermal aggregation of well-known 

mitochondrial enzymes, such as citrate synthase, malate dehydrogenase and luciferase. 

sHSPs can bind partially unfolded proteins on their surface and keep them in a folding-

competent state [Lee, 1997]. 

At the moment, the resolved structure of an sHSP-substrate complex is lacking. It has been 

proposed that in this complex, sHSPs are rearranged from a previously dissociated form of the 

sHSPs oligomers, probably dimers, which re-assemble to a new oligomeric form holding the 

bound substrate. Thus, sHSPs can function as a buffering system for binding partially unfolded 

proteins upon stress and preventing them from irreversible aggregation [Haslbeck, 2015]. In 

vitro experiments showed that the unfolded protein enclosed in the sHSP/substrate complexes 

could be unbound and refolded when extra ATP-dependent chaperones are present [Lee, 

2000; Mogk, 2003; Lee, 2005]. 

 

 

1.1.3. Regulation of sHSPs and their role in stress response. 

 

Most sHSPs are not noticed in vegetative tissues under normal growth conditions, but, as their 

name implies, they are quickly synthesized in response to heat stress. After the stress ceases, 

sHSPs are somewhat stable showing long half-lives, up to 50 h, suggesting that they may also 

participate in the cell recovery as well [Sun, 2002]. Information of the sHSPs gene expression 

revealed that some of them are also produced in response to other abiotic and biotic stresses, 

and are expressed at specific developmental stages, indicating the existence of diverse 

patterns of gene expression for all the plant sHSP genes [Siddique, 2008; Waters, 2008b]. The 

specific functions of sHSPs are characterized by the intracellular localization, the expression 

at different stress situations or developmental stages in different cell types and the interactions 

with specific client proteins. 

In sunflowers, the HaHsp17.6 (class CI) and HaHsp17.9 (class CII) accumulated in response 

to osmotic stress. These two proteins were induced in stems and roots of water-stressed 

sunflowers, and their mRNA levels positively correlate with the dehydration degree 

[Almoguera, 1993]. In Arabidopsis, the cytosolic AtHsp17.7-CII expression was induced by 

heat and osmotic stress, and during seed development. However, no detectable protein was 

observed under osmotic stress, suggesting a stress‐induced post‐transcriptional regulation of 
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At‐HSP17.6A expression [Sun, 2001]. Previews reports have shown the expression of sHSPs 

in oxidative stress in tomato [Banzet, 1998] and Arabidopsis plants [Scarpeci, 2008b], and in 

response to drought, UV radiation and wounding [Siddique, 2008]. Cold stress can trigger the 

induction and accumulation of several sHSPs. The tobacco CaHSP26 protein plays an 

essential role in protecting the PSII by maintaining the antioxidative system and by increasing 

the fluidity of the thylakoid membrane during chilling stress [Li, 2012]. The induction of sHSPs 

has been associated with the acquisition of low-temperature tolerance in pre-treated banana 

fruit [He, 2012]. Also, there is a robust indication of the relationship between the accumulation 

of sHSPs and the protection against chilling injury in tomato fruit [Polenta, 2007]. In previews 

studies, tomato fruit in the mature green stage was pre-treated with a temperature of 38 ºC 

before preserving them at low temperatures. A strong induction of HSP70 proteins and sHSPs 

was observed even at low temperature, leading to an enhance chilling tolerance of the fruit 

[Lurie, 1997; Sabehat, 1998]. Besides this, different sHSPs were found and correlated with the 

differential resistance to chilling conditions of two contrasting tomato genotypes [Page, 2010]. 

Also in tomato, transgenic plants overexpressing a chloroplast-localized sHSP showed 

stronger chilling tolerance [Wang, 2005]. In more recent work using tomato fruit of two tomato 

varieties, Minitomato and Micro-Tom, it was shown the induction of sHSPs during ripening in 

fruit from both varieties. However, in response to cold temperatures of 4 ºC, accumulation of 

sHSPs was only observed in the more cold-tolerant Micro-Tom fruit, indicating the role of these 

sHSPs in the chilling tolerance [Ré, 2016]. 

In the absence of adverse environmental situations, synthesis of sHSPs in plants occurs during 

several developmental processes, such as embryogenesis, germination, pollen development, 

and fruit maturation. Some sHSPs are expressed during embryogenesis and seed maturation 

in pea seeds grown under non‐stress conditions [De Rocher, 1994], Arabidopsis [Wehmeyer, 

1996], Allium cepa, Crocus albiflorus and Solanum tuberosum [Lubaretz, 2002]. It has been 

reported the expression of sHSPs during pollen development and fruit maturation. The 

chloroplast sHSP (HSP21) of tomato has a protective role of photosystem II (PSII) from 

temperature-dependent oxidative stress but is also involved in the conversion of fruit 

chloroplasts to chromoplasts during ripening [Neta-Sharir, 2005]. In tobacco, different subsets 

of cytosolic class I and II sHSP were expressed during development at all stages of pollen 

grain formation, suggesting that specific sHSP genes may play precise roles in early and during 

later stages of pollen development [Volkov, 2005]. 

The expression and accumulation of sHSP are mainly regulated at the transcriptional level by 

the HSFs that act through the heat shock promoter element (HSE). HSEs share the consensus 

sequence of 5′-AGAAnnTTCT-3′ and are located upstream of the TATA box of heat stress-

inducible genes [Scharf, 2001]. Plant HSFs consist of three conserved evolutionary classes, 

A, B, and C. In tomato, HsfA1a, HsfA2, and HsfB1 would participate in a regulatory network 
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that promotes the expression of HS responsive genes. HsfA1a which is defined as a master 

regulator of HSR in tomato is constitutively expressed and regulates the expression of HsfA2 

and HsfB1, while HsfA2 in thermotolerant cells is the crucial HSF. HsfA1a is known to be a 

nuclear retention factor and co-activator of HsfA2 contributing to form a HsfA1a-HsfA2 

heterooligomeric complex. Class B HSFs would act as attenuators of class A HSFs, except for 

the HsfB1 that participates in a novel role as co-activator of class A HSFs and other 

transcription factors. In Arabidopsis, HsfA1a and HsfA1b may be necessary for the initial phase 

of heat response while HsfA2 may control the gene expression under prolonged stressing and 

recovery conditions [Kotak, 2007]. Under physiological conditions, various HSFs show 

differential expression in specific tissues and particular developmental processes. Under 

stress conditions, HsfA2 is exclusively expressed in vegetative tissues, and in the initial phases 

of pollen development [Sun, 2002]. 

 

 

1.2. Genomic organization of sHSPs and bidirectional promoters (BDPs). 

 

In eukaryotic, promoter regions usually consist of the main region of about 50 bp, known as a 

core promoter, nearby the transcription initiation site, and numerous distal DNA regulatory 

elements to control the final efficiency of the transcription process [Novina, 1996]. The 

importance of promoters in plant biotechnology and functional genomics research comes from 

the critical role they exert as the regulator of gene expression, and for their excellent potential 

application in genetic engineering. Nowadays, new genomes are available each month thanks 

to the development of sequencing techniques, making promising studies at the genome-scale 

sequence, such as the gene structure prediction, the gene organization in the genome and the 

gene regulation. 

Two neighboring genes can be located in the same or opposite strand, and in a divergent, 

convergent or parallel configuration. Bidirectional genes comprise two adjacent genes located 

divergently on opposite DNA strands. The sequence between the two transcription start sites 

(TSS) of the genes is generally considered to be a potential bidirectional promoter [Trinklein, 

2004; Yang, 2011b]. In silico and experimental analysis of the publicly accessible complete 

eukaryotes genome sequences from human to plants showed that bidirectional promoters are 

especially abundant and that bidirectional genes tend to be expressed similarly [Herr, 2004; 

Trinklein, 2004; Williams, 2004; Wang, 2009; Xu, 2009]. In humans, the distance between the 

two TSS in a bidirectional promoter is considered to be under 1,000 bp [Adachi, 2002; Trinklein, 

2004]. Plants, on the other hand, contain intergenic regions between two bidirectional TSS 

longer than 1 kbp [Mitra, 2009]. In Arabidopsis, about 13.3 % of genes are arranged in a 

bidirectional structure [Wang, 2009]. From them, 5 gene pairs encoding sHSPs or ACD 
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containing proteins were found head-to-head oriented with an intergenic region of less than 

500 bp (Bondino & Valle, personal communication). One of these pairs is the At5g51440-

At5g51430 encoding a mitochondrial sHPS (At5g51440). This fact makes interesting the study 

of BDPs of gene pairs encoding ACD containing proteins, and their potential uses in 

biotechnology. 

With different regulation and expression patterns, BDPs turn to be of much interest in plant 

research in recent years. One of the first studies reported in native bidirectional promoter was 

about the 955-bp intergenic region of CaTin1 and CaTin2 genes, which directed the expression 

of the two genes in response to tobacco mosaic virus (TMV) [Shin, 2003]. Later on, BDPs have 

been successfully cloned from other plants species such as Arabidopsis, rice and maize 

[Bondino, 2009; Liu, 2016; Wang, 2016]. Several in silico analysis in rice, Arabidopsis, and 

Populus have shown that bidirectional genes regulated by BDPs share similar characteristics, 

such as co-expression, functional association, and conserved arrangement [Krom, 2008; 

Dhadi, 2009; Wang, 2009]. Expression data of large-scale studies in Arabidopsis revealed that 

adjacent genes are co-expressed, and a model has been proposed in which the more extended 

the intergenic sequences, the less the chance of the transcribed gene to be epigenetically 

regulated by differential expression [Williams, 2004; Colinas, 2008]. In some examples, 

bidirectional genes displayed similar expression patterns. That is the case of the tissue-specific 

and light-inducible bidirectional promoter located between cab1 and cab2 genes [Mitra, 2009]. 

In other cases, different expression patterns and expression levels of the bidirectional genes 

have been reported [Bondino, 2009; Banerjee, 2013]. In rice, a vast intergenic region of 1.8 

Kbp located between the OCPI2 and OCPI1 (two members of the chymotrypsin protease 

inhibitor gene family) has been demonstrated to act as a bidirectional promoter [Singh, 2009]. 

In more recent research, RNA-seq and cDNA microarray data were combined to discover 

potential BDP in the rice genome, and four candidates showed bidirectional expression activity 

in various tissues. Two novel cis-sequences were found to be overrepresented and conserved 

in the four BDPs that can be associated with their bidirectionality. Interestingly, the bidirectional 

arrangement of the four gene pairs was shown to be conserved in six gramineous plants 

[Wang, 2016]. A recent promoter::GUS transgene approach in Arabidopsis has uncovered that 

the intergenic region between the genes At1g71850 and At1g71860 is an asymmetric 

bidirectional promoter, which exhibits a different expression profile depending on the 

orientation. The authors defined three functional regions within the BDP which regulated the 

expression in one or the other direction [Liu, 2015]. Similarly, the intergenic region between 

the maize defensin-like protein genes Def1 and Def2 show polarity and asymmetric strengths, 

functioning as an asymmetric bidirectional promoter that is specific to embryo [Liu, 2016]. 

Although these and other reports have extensively studied plant BDPs, it is still matters of 

debate how the epigenetic mechanisms regulate the bidirectional transcription and co-
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expression of gene pairs in plants. In a recent work, DNase-seq, RNA-seq, ChIP-seq, and 

MNase-seq data were integrated, and the effect of physical DNase I hypersensitive site (DHS) 

positions on the transcription of rice BDPs was elucidated. The metadata analysis indicated 

that the relative position of a DHS to the TSS of bidirectional gene pairs influences the 

expression of the corresponding head-to-head oriented genes, when the distance of a DHS to 

the TSS is short, the expression level of the genes is high [Fang, 2016b]. In another study, 

also in rice, several unique chromatin features were found in the BDPs but not in unidirectional 

promoters, including the overrepresentation of active histone marks (H3K4ac, H4K12ac, 

H4K16ac, H3K9ac, and H3K27ac), canonical nucleosomes and the underrepresentation of the 

repressive mark H3K27me3. The research indicates that histone acetylation may play 

important roles in the regulation of gene pairs and that coordination between active and 

repressive marks may exist to form a distinctive chromatin structure to enhance the co-

regulation of bidirectional gene pairs [Fang, 2016a]. These results demonstrate that combined 

arrangements of chromatin structures, histone modifications, and DHSs, which comprise 

functional cis-elements for interaction with the transcriptional machinery, may play an essential 

role in the regulation of the bidirectional transcription or co-expression in BDPs. 

Bidirectional promoters show greater potential for practical uses than unidirectional promoters 

in genetic improvement since they can direct the expression of two genes simultaneously, and 

hence help to save time in constructing expression vectors [Mitra, 2009; Banerjee, 2013; 

Kumar, 2015]. By activating the expression of several genes, bidirectional promoters represent 

an efficient way to save energy and regulate simultaneously multiple genes. BDPs can be used 

for co-expressing multi-gene traits, or regulating the co-expression of genes functioning in the 

same, similar or linked biological pathways, and create products containing proteins from two 

head-to-head linked genes in stoichiometric quantities, a fact that is of much relevance and 

biologically significant. Much still needs to be investigated to better understand the functionality 

of BDP and the complex transcriptional regulation of bidirectional genes. 

 

 

1.3. Mitochondrial small heat shock proteins. 

 

As it was previously mentioned, plants sHSP are especially abundant and diverse. In this 

regard, higher plants are exceptional compared to other eukaryotes because sHSPs are found 

mostly in all organellar compartments, apart from the cytosol. Only in Drosophila melanogaster 

and Toxoplasma gondii, organellar forms of sHSPs has been described to date [Morrow, 2000; 

de Miguel, 2005]. In plants, the nuclear multigene families show many genes encoding 

organellar sHSPs localized in mitochondria, chloroplasts, endoplasmic reticulum, and 

peroxisome [Bondino, 2012; Waters, 2013]. 
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It was formerly reported that, under heat stress, plants accumulate a greater amount of 

mitochondrial sHSPs (sHSP-M) compared to HSP60 and HSP70 [Lenne, 1994], and that the 

accumulation of sHSP-M positively correlated with the increase in tolerance of mitochondria at 

high temperatures [Chou, 1989]. Another study showed that the mitochondrial sHSP protected 

NADH: ubiquinone oxidoreductase (complex I) during heat stress in apple fruit of Pyrus pumila 

(P. Mill.) K. Koch var. McIntosh [Downs, 1998]. This evidence suggests that these 

mitochondrial proteins have a role in the adaptation of plants to heat stress. To date, the sHSP-

M has been investigated in rice [Mani, 2015], pea [Avelange-Macherel, 2015], tobacco [Kim, 

2011], tomato [Liu, 1999], Arabidopsis [Waters, 2008a] and maize [Lund, 2001]. However, 

much about the function of mitochondria-localized sHSPs is still unknown.  

In previous phylogenetic classifications of sHSPs in Arabidopsis, three members were 

predicted to be mitochondria-localized and were grouped into two different families, MTI and 

MTII [Siddique, 2008; Waters, 2013]. The sHSP23.5 and sHSP23.6 proteins were classified 

into the MTI family, while the sHSP26.5 belongs to the MTII family. In tomato, on the contrary, 

only one sHSP-M with a molecular weight of 23.8 kDa has been so far, described [Sabehat, 

1998]. The molecular chaperone function of sHSP23.8 was confirmed in vitro. The 

recombinant sHSP23.8 was able to promote the renaturation of denatured citrate synthase via 

chemicals and protected it from thermal inactivation [Shono, 2002]. A single copy of sHSP23.8 

was found in the tomato genomic DNA by Southern-blot analysis, and it was reported the 

higher expression of sHSP23.8 after heat treatment in tomatoes with a temperature threshold 

of 36 ºC [Liu, 1999; Shono, 2002]. sHSP23.8 is probably regulated by a negative feedback 

mechanism where the transcription of this sHSPs is regulated negatively by the accumulation 

of the protein. During the primary period of high heat stress at 40 °C, rapid synthesis of the 

sHSP23.8 transcripts results in a significant accumulation of sHSP23.8 protein. This 

accumulation in the initial period of the heat stress might be interpreted as a feedback signal 

to slow down the transcription rate [Liu, 1999]. The sHSP23.8 promoter was further 

characterized in transgenic tomato plants by using the b-glucuronidase (GUS) reporter gene 

system. Robust GUS staining was spotted in the roots, leaves, flowers, fruit and germinated 

seeds after heat shock. GUS activity was also detected under other stress conditions such as 

oxidative stress, low temperatures, γ-rays, exogenous ABA and heavy metals, indicating that 

sHSP23.8 is also up-regulated in these conditions, besides high temperatures [Yi, 2006]. 

It has been demonstrated that sHSP23.8 provides thermotolerance in transformed tobacco 

plants with the tomato sHSP23.8 gene. Tobacco transgenic plants overexpressing sHSP23.8 

showed high thermotolerance, while antisense plants were more susceptible to the heat 

treatment [Sanmiya, 2004]. In tomato, T0 and T1 overexpressing lines showed also increased 

thermotolerance under high temperature leading to the conclusion that sHSP23.8 is not just 

expressed by plants under heat-shock, but has a unique function in thermotolerance [Nautiyal, 
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2005]. In a different report, cycles of high temperature (37 ºC) and recovery at 21 ºC were used 

to evaluate the heat stress response and the photosynthetic activity of tomato Micro-Tom 

plants overexpressing the sHSP23.6-M from Arabidopsis. Plants with higher levels of 

sHSP23.6-M showed an increase in some parameters associated with the photosystem II 

activity and the net assimilation of CO2. The results suggest that in response to heat stress, 

the higher expression of sHSP23.6-M results in less damage to the photosynthetic system and 

that heat tolerance can be attributed, at least in part to these proteins [Hüther, 2013]. When 

the same mutant plants were exposed to flooding, MT-sHSP23.6 sense plants could maintain 

the connectivity and flow of energy between the units of the PSII during flooding and recovery, 

showing higher tolerance to the stress treatment. These data indicate that Arabidopsis 

sHSP23.6-M may play an important role not only in the heat but also in hypoxia stress in tomato 

[Hüther, 2016]. 

Furthermore, pre-treated tomato fruit with high temperature before being subjected to cold 

treatment showed the induction of sHSP23.8 after the heat-treatment, which persisted and 

prolonged the post-harvest life of fruit stored at low temperatures [Sabehat, 1996]. In a different 

approach, the chilling injury was investigated in tomato fruit cv. Micro-Tom which has been 

proposed to be a chilling-tolerant variety [Gonzalez, 2015]. Increased expression of the 

sHSP23.8 after cold treatment was observed in Micro-Tom fruit but not in Minitomato (a 

chilling-sensitive variety), what indicates that this protein may play central roles in the chilling 

tolerance of tomato fruit [Ré, 2016]. 

 

 

1.4. Cold stress and chilling injury in plants. 

 

To understand how plants cope with chilling stress, it is essential to know the molecules and 

pathways involved in the chilling tolerance or sensitivity in tomato fruit. Chilling stress is 

important during storage at low temperature, which is an appropriate strategy to prolong the 

market life of many vegetables [Kader, 2003]. This practice drops the functioning of metabolic 

pathways and reduces pathogenic events, making exportation more favorable for long distance 

shipment and consequently, a more regulated supply of fruit in the market arises. However, 

the outcome of storing the plant products at low, critical temperatures is chilling injury (CI) that 

generates high economic losses. Sensitive to low temperatures are not only fruits, but 

vegetables, and ornamentals of tropical or subtropical origin. Certain horticultural crops of 

temperate origin are also susceptible to chilling injury such as tomato. These temperate crops, 

in general, have lower threshold temperatures, around 5 °C [Wang, 2004a]. CI is the set of 

physiological alterations and dysfunction that appear during the exposure of plants to low 

temperatures above the freezing point (between 0 ºC and 15 ºC) [Lyons, 1973]. Many 
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physiological and biochemical consequences of chilling injury have been widely described. 

However, the molecular mechanisms behind the generation and tolerance to chilling stress in 

fruit remain to be understood. 

Under chilling temperatures, tissues deteriorate because they are incapable of carrying on 

regular metabolic processes. Chilling-sensitive species respond to chilling stress by altering 

numerous processes at physiological and biochemical levels and thus, the cells start to 

function anomaly [Wang, 2004a]. These disorders constitute one of the main limitations of the 

commercial life of many fruit and vegetable products. Reducing the effects of CI would lead to 

greater availability of food, smaller areas of land needed for cultivation and the possibility of 

exporting to new international markets. 

 

 

1.4.1. Symptoms of CI. 

 

In fruit, symptoms of CI are diverse and depend mainly on the cultivar, the temperature and 

time of exposure, the degree of maturity, the climatic characteristics of the growing area and 

the temperatures prior harvesting. Other factors can also affect the postharvest life of cold 

stored fruits and the development of CI, such as the relative humidity of the environment and 

the presence of ethylene in the storage atmosphere. Common symptoms of CI in fruits include 

depressions and surface wounds, pitting, internal colour alterations, water-soaking of the 

tissue, inability to typically ripen which causes lack of uniformity in the surface and pulp colour, 

higher susceptibility to microorganisms and pathogens and loss of water [Lyons, 1973; Wang, 

2010]. Besides, there is a decrease in the sweetness, aroma and characteristic flavor of the 

fruit, caused by a metabolic imbalance [Maul, 2000]. Surface pitting is one of the most common 

symptoms in many fruits and vegetables such as citrus fruits, cucumbers, eggplant, melons, 

and sweet potatoes. Failure to ripen was observed in chilled avocados, bananas, mangos, 

melons, and tomatoes. Also, it is usually the internal discoloration in avocados, pineapples, 

and sweet potatoes [Wang, 2010]. This diversity of CI symptoms of tropical and subtropical 

fruits and vegetables suggests multiple responses to low temperature. Products that are stored 

at chilling temperatures do not show CI symptoms when remaining in low temperatures. In 

some cases, these characteristics can develop progressively during the exposure to low 

temperatures but usually develop and become evident in a short time after products are 

transferred to room temperature [Malacrida, 2006; Gonzalez, 2015].  
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1.4.2. The theories of CI. 

 

In previews reports, some molecular mechanisms have been suggested to accommodate the 

physiological and biochemical changes associated with CI [Lukatkin, 2012]. One of the most 

discussed theory proposed that chilling sensitivity can be explained by a phase transition of 

cell membranes that occurs at low temperatures and converts the membranes from a flexible 

liquid-crystal state into a rigid state of gel-solid. These changes trigger severe alterations at 

the membrane and enzymatic membrane-binding system that culminate with adverse events 

such as membrane damage, loss of electrolytes, failure of respiration and the production of 

toxic compounds. This phase transition in even a small proportion of membrane lipids results 

in the formation of solid domains that can cause cell damage. When the exposure to cold is 

brief, the effect may be transient, and the cell survives. However, when stress is prolonged, 

necrosis and cell death occur [Lyons, 1973]. This hypothesis that proposed the phase 

transition of membrane lipids as the primary cause of CI has been discredited. The membrane 

changes do not happen instantly after the start of chilling and are more likely to be less critical 

syndromes. According to the phase transition hypothesis, the rise in membrane permeability 

occurring because of the low-temperature condition (causing membranes leakage) should be 

fast, recorded immediately (minute scale) after placing the tissue at chilling temperatures. 

Nevertheless, this is not observed, and frequently passive permeability is not augmented. 

However, there is no doubt that the physical properties of membranes are crucial for cell 

homeostasis, and that they may be especially deteriorated during the cellular response to 

chilling stress [Lukatkin, 2012].  

Another theory of CI is based on the metabolic disorder that occurs in cold temperature. In this 

case, cell death takes place due to the prevalence of disintegration over synthesis, and to the 

dissociation of enzymes and other proteins, which would result in changes in enzymatic 

kinetics and/or in structural changes of specific proteins such as tubulins [Graham, 1982]. Low 

temperatures would induce a decrease of hydrophobic binding forces, altering protein-protein 

and lipid-protein interactions. The overall disruption may cause the malfunction of soluble 

enzymes, dissociation of subunits and unfolding of the proteins [Parkin, 1989]. 

In other reports, special attention has been drawn to two different hypotheses to explain the 

induction of CI, one to a fast uprise in the free cytosolic Ca2+ level ([Ca2+]cyt) and the other to 

the occurrence of oxidative stress upon chilling [Minorsky, 1985; Prasad, 1994]. The quick rise 

in [Ca2+]cyt due to chilling, may work for as the primary physiological indication of cold 

exposure. Changes in [Ca2+]cyt activate cascade reactions in the cell, which leads to many 

disorders at all levels of organization. When changes in the compartmentation of calcium in 

the chilled plants occurred, they directed to an increase in [Ca2+]cyt, end cytoplasmic streaming 

and disturb the subcellular structures. For proposing the calcium hypothesis, it was taking into 
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account the oxidative stress during chilling that plays a crucial function in the transduction of 

the chilling signal. It was shown that [Ca2+]cyt changes and oxidative stress are intimately 

connected under chilling conditions. The increase of free radicals and ROS in chilling produce 

substantial alteration to membrane lipids and other cellular components [Suzuki, 2006]. 

 

 

1.4.3. CI in tomato fruit. 

 

The effect of cold storage in the ripening process of tomato fruit has been the subject of 

numerous studies [Rugkong, 2011; Ré, 2012; Tao, 2014; Cruz-Mendívil, 2015; Gonzalez, 

2015]. The global transcriptomic analysis in cold-stored tomato fruit revealed the down-

regulation of genes involved in color development, including phytoenesynthase1 and 

carotenoid isomerase, and in genes encoding the cell wall modifying proteins 

polygalacturonase, pectin esterase1, β-galactosidase, expansin1, and xyloglucan 

endotransglucosylase-hydrolase 5 [Rugkong, 2011]. Besides the reduction of color-related 

genes, the alteration described in the coloration of tomato fruit was explained by the inability 

to accumulate lycopene [Watkins, 1990; Malacrida, 2006]. To understand the mechanisms 

responsible for the tolerance to CI observed in Micro-Tom fruit, a recent study combined 

metabolomics and transcriptomics data of Micro-Tom fruit after chilling storage and the 

changes in the overall metabolome including primary metabolites, carotenoids, lycopene, 

soluble antioxidants, tocopherols, and tocotrienols, and transcriptome after chilling were 

investigated. The results showed alterations in the metabolism of reserves, fermentation and 

amino acids mobilization and photosynthesis, and the induction of defense mechanisms. After 

removing the fruit from refrigeration, the photosynthetic activities and the transcripts related 

showed a minor recovery. Transcriptional up-regulation of genes coding for proteins that 

accumulate in response to low temperatures, along with genes encoding antioxidant enzymes 

and sHSP was also observed. In addition to this, it was found a robust up-regulation of AOX 

gene transcription and a rise in pyruvate content which is a positive effector of AOX. Moreover, 

the level of ethanol and several genes involved in fermentation processes increased after 

chilling indicating a fermentative physiological response of the fruit [Gonzalez, 2019]. 

Proteomics studies have shown that the levels of proteins related to maturation of the fruit 

decreased with cold storage, while proteins related to the stress response increased [Page, 

2010]. It has been shown that storage at low temperatures also decreases respiration and 

ethylene synthesis, what could modify the expression of many genes that explain the following 

symptoms, although it has also been seen that ethylene is not essential for the appearance of 

symptoms of CI [Luengwilai, 2010]. 
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1.4.4. Oxidative stress and CI. 

 

All aerobic organisms require oxygen as an essential element of their metabolism. The 

oxygenic environment may, however, involve potential hazards for the cells. During normal 

metabolism, intermediary products of the reduction of oxygen that show a high reactivity are 

produced in various subcellular compartments. These intermediates are called ROS [Mittler, 

2002]. ROS species include superoxide anion (O2-), hydrogen peroxide (H2O2), hydroxyl 

radical (.OH) and singlet oxygen (1O2) produced by physical excitation of O2. In the course of 

evolution, plants have developed an intricate and efficient network to remove and mitigate the 

toxicity of ROS and started to use some of these toxic molecules as mediators in signal 

transduction [Mittler, 2004; Bailey-Serres, 2006]. It has been proposed that ROS action has a 

double effect in plants, acting as toxic compounds, and at the same time as crucial regulators 

of numerous pathways related with critical biological processes such as growth, cell cycle, 

programmed cell death, hormonal signalling, response to biotic and abiotic stress, and 

development [Mittler, 2004]. To maintain the dual role, there must be a delicate balance 

between the production and the removal of ROS. The term "oxidative stress" is usually used 

to describe situations in which the generation of ROS surpasses the cell capacity of keeping 

the redox homeostasis [Gill, 2010]. 

In plants, the production of ROS occurs in the apoplast and several subcellular compartments 

such as peroxisomes, chloroplasts, mitochondria and the nucleus [Toivonen, 2004]. Although 

chloroplasts are usually the primary site of ROS production in plants, in post-harvest fruit other 

organelles may become important sites for the generation of ROS. Due to their high oxygen 

consumption, mitochondria are the leading producers of ROS in non-photosynthetic tissues 

[Hodges, 2003]. 

ROS molecules can react producing lipid peroxidation, polysaccharides and protein 

degradation, and disruption of DNA molecules. When the intracellular ROS concentration 

increases uncontrollably, irreversible damage is produced leading to cell death [Gill, 2010]. A 

model has been proposed to describe the function of ROS signaling pathways in the chilling 

stress response. According to this model, CI probably start from a membrane receptor, still 

unknown, that would sense the change in the temperature and activate an NADPH membrane 

oxidase, causing a controlled increase in the levels of ROS, which would function as a 

regulatory signal for the expression of responsive genes [Einset, 2007].  

The oxidative stress produced during storage at low temperatures is one of the main factors 

that contribute to the generation of CI. The loss of integrity and fluidity of membranes may 

affect the protein functions either by the direct action of ROS, by alteration of the activity due 

to an unfavorable lipid context or by the conjunction of both situations. In this way, the alteration 

and dysfunction of critical enzymes lead to a metabolic imbalance that manifests at the tissue 
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level as a visible symptom of CI [Prasad, 1994; Shewfelt, 2000]. Many studies have linked the 

occurrence of post-harvest CI after storage of fruit at low temperatures with the generation of 

oxidative stress, and it has been postulated that the antioxidant capacity of the cell may play 

an essential role in the prevention of CI symptoms. It has been shown that cold-tolerant species 

produce fewer ROSs and more antioxidant compounds [Sala, 1999; Malacrida, 2006]. 
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2. Aims of this study 

 

 

Under the theoretical framework developed, the general objective of this thesis is to study the 

regulation of the expression of genes encoding putative sHSPs divergently orientated in the 

genome and their functionality under environmental stress in Arabidopsis thaliana. In addition, 

the aim of this work is to investigate the role of mitochondrial sHSPs in A. thaliana and Solanum 

lycopersicum.  

 

The specific aims of this work are: 

 

2.1. To study the expression of four genes encoding proteins with ACD and potential 

sHSPs with head-to-head orientation in the Arabidopsis genome, and the functionality of 

the intergenic regions, which are putative bidirectional promoters, under abiotic stress. 

 

2.2. To analyze the expression of genes encoding mitochondrial sHSPs in Arabidopsis 

and their in vivo functionality by generating transgenic Arabidopsis plants with altered 

expression (loss-of-function). 

 

2.3. To study the role of the mitochondrial sHSP23.8 in conferring chilling tolerance in 

tomato fruit by using transgenic tomato plants with reduced level of this protein. 
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3. Material and Methods 

 

 

3.1. Material 

 

 

3.1.1. Chemicals 

All chemicals and solvents were supplied by Sigma-Aldrich (St. Louis, USA), Merck KGaA 

(Darmstadt, Germany) and Carl Roth & Co. (Karlsruhe, Germany) unless stated otherwise. 

Solvents in LC-MS-grade like methanol, ethanol, and acetonitrile were obtained from Thermo 

Fisher Scientific (Waltham, USA).  

   

 

3.1.2. Kits, enzymes and commercial reagents  

 

Table 3.1. Molecular biological kits, enzymes and size markers used in this study. 

Kit, enzyme or marker Supplier 

CloneJETPCR Cloning Kit  Thermo Fisher Scientific (Waltham, USA) 
DNaseI  Thermo Fisher Scientific (Waltham, USA) 
GenElute Plasmid Miniprep Kit Sigma-Aldrich Co. (St. Louis, USA) 
Gene-Ruler 1kb DNA Ladder Thermo Fisher Scientific (Waltham, USA) 
GoTaq Polymerase Promega Corporation (Madison, USA) 
RedTaq Polymerase ready mix Sigma-Aldrich Co. (St. Louis, USA) 
Nucleospin Gel and PCR Clean-up Macherey-Nagel (Dueren, Germany) 
Phusion High-Fidelity Polymerase Thermo Fisher Scientific (Waltham, USA) 
Restriction endonuclease enzymes Thermo Fisher Scientific (Waltham, USA) 
RevertAid H Minus reverse transcriptase  Thermo Fisher Scientific, Waltham, USA 
T4-DNA-Ligase Thermo Fisher Scientific (Waltham, USA) 
Takyon No ROX SYBR Mastermix blue 
dTTP 

Kaneka Eurogentec S.A. (Seraing, 
Belgium) 

TLC Silica gel 60 Merck KGaA (Darmstadt, Germany) 

 

 

3.1.3. Media 

 

3.1.3.1. Media used for Escherichia coli growth 

The medium used for cultivation of Escherichia coli was Lysogeny Broth (LB) medium. The 

medium was autoclaved 20 min at 120 °C. For plates, 1.5 % (w/v) agar was added to the LB 

medium before autoclaving to obtain solid LB. For plates preparation and the addition of 

specific antibiotics, the medium was chilled to about 60 °C and used under sterile conditions. 
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Table 3.2. Lysogeny Broth (LB) medium [Bertani, 1951]. 

Component Amounts 

Tryptone 10 g/L 
Yeast extract 5 g/L 
NaCl 5 g/L 
Water Add to 1 L 

 

 

3.1.3.2. Media for plant cultivation 

Arabidopsis thaliana plants were cultivated under sterile conditions on plates with ½ Murashige 

Skoog (½ MS) medium [Murashige, 1962]. In some experiments, liquid ½ MS medium without 

agar was used. 

 

Table 3.3. ½ MS medium 

Component Amounts 

Murashige Skoog powder 2.2 g/L 
Agar 8 g/L (solid medium) 
Water Add to 1 L 

 

For Solanum lycopersicum cultivation and in vitro propagation under sterile conditions, the 

following media were used: 

 

Table 3.4. Germination media (GM) 

Component Amounts 

Murashige Skoog (MS) & Gamborg vitamins (B5) (Duchefa) 2.2 g/L 
Sucrose 15 g/L 
Agar 9 g/L 
Water Add to 1 L 
pH: 6   

 

Table 3.5. Co - Cultivation media (CM) 

Component Amounts 

Murashige Skoog (MS) & Gamborg vitamins (B5) (Duchefa) 4.4 g/L 
Sucrose 30 g/L 
Tiamine HCL 1 mg/L 
2,4-Dichlorophenoxyacetic acid (2,4 D) 1 mg/L 
Kinetin 0.2 mg/L 
Agar 9 g/L 
Water Add to 1 L 
pH: 6   

 

Table 3.6. Shoot induction media (SIM) 

Component  Amounts 

Murashige Skoog (MS) & Gamborg vitamins (B5) (Duchefa) 4.4 g/L 
Sucrose 30 g/L 
Indole-3-acetic acid (IAA) 0.175 mg/L  
6-Benzylaminopurine (BAP) 2.25 mg/L 
Ticarcillin/clavulanic acid 250 mg/L 
Cefotaxime  125 mg/L 
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Kanamycin 40 mg/L 
Agar 9 g/L 
Water Add to 1 L 
pH: 6   

 

Table 3.7. Rooting media (RM) 

Component  Amounts 

Murashige Skoog (MS) & Gamborg vitamins (B5) (Duchefa) 2.2 g/L 
Sucrose 15 g/L 
Agar 9 g/L 
1-Naphthaleneacetic acid [Rodriguez, 2010] 0.2 mg/L 
Water Add to 1 L 
pH: 6   

 

 

3.1.4. Antibiotics  

Different antibiotics were added to the LB or MS ½ media and used for bacteria or plant 

selection. Given are the final concentrations of the antibiotics. 

 

Table 3.8. Antibiotics 

Antibiotic Concentration (µg/mL) 

Ampicillin 100 
Carbenicillin 100 
Cefotaxime 125 
Gentamicin 25 
Kanamycin 25-40 (for plants), 100 (for bacteria) 
Rifampicin 25 
Spectinomycin 90 
Ticarcillin/clavulanic acid 250 

 

 

3.1.5. Sodium dodecyl sulfate-polyacrylamide gel electrophoresis (SDS-PAGE) 

 

Table 3.9. SDS-PAGE 

Stocks  Staking gel  Separative gel  

Final concentration  
of Acrylamide/Bis-acrylamide  

4 %  12 %  

Acrylamide/Bis-Acrylamide 
(Stock concentration = 30 %)  

1.3 mL  6.4 mL  

1.5 M TRIS pH 8.8  -  4.00 mL  
0.5 M TRIS pH 6.8  2.50 mL  -  
Water  6.1 mL  5.5 mL  
25 % Ammonium persulfate  0.040 mL  0.064 mL  
TEMED  0.010 mL  0.016 mL  
Total volume  10 mL  16 mL  
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3.1.6. Buffers 

 

Table 3.10. SDS running buffer, for 2.5 L   

Component Amounts 

TRIS/HCl, pH 8  3 g  
Glycerol  14.4 mL  
Sodium dodecyl sulfate (SDS)  1.0 g  

 

Table 3.11. TAE buffer 

Component  Final concentration  

TRIS/HCl, pH 7  40 mM  
Acetic acid  20 mM  
Ethylenediaminetetraacetic acid (EDTA)  1 mM  

 

Table 3.12. 2x Laemmli sample buffer 

Component Final concentration 

Tris/HCl, pH 6.8 100 mM 
DTT 200 mM 
SDS 4 % (w/v) 
Bromophenol blue 0.002 % (w/v) 
Glycerol 40 % (w/v) 

 

Table 3.13. 6x loading dye 

Component Final concentration 

Tris 40 mM 
EDTA 2 mM 
Glycerol 50 % (v/v) 
Bromophenol blue 0.4 % (w/v) 

 

Table 3.14. Cetyltrimethylammonium bromide (CTAB) extraction buffer 

Component  Amounts 

CTAB 2 % (w/v) 
Tris/HCl pH 8.0 100 mM 
EDTA 20 mM 
NaCl 1.4 M 

 

 

3.1.7. Plasmids 

Vectors are shown with their relevant features in Table 3.15. 

 

Table 3.15. Plasmids 

Plasmid Selection Marker Reference 

pjet1.2/blunt Ampicillin  Thermo Fisher Scientific (Waltham, USA) 
Zero blunt Kanamycin  Promega Corporation (Madison, USA) 
MR202 Binary Vector Spectinomycin/Kanamycin Dr. Martin de Ré (IBR-UNR-CONICET) 
GF9 Binary Vector Spectinomycin/Kanamycin  Dr. Gisela Ferraro (IBR-UNR-CONICET) 
pCHF3 Binary Vector Spectinomycin/Kanamycin  Dr. Javier Palatnik (IBR-UNR-CONICET) 
NB147  Kanamycin Dr. Javier Palatnik (IBR-UNR-CONICET) 
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3.1.8. Bacterial strains 

Escherichia coli Top 10 (Agilent Technologies, Santa Clara, USA). 

Escherichia coli DH5-α (New England Biolabs, Ipswich, USA). 

Agrobacterium tumefaciens GV2260 and GV3101 pMP90. 

 

 

3.1.9. Plant material 

Plants from Arabidopsis thaliana ecotype Col-0 were used as a control in all experiments and 

for plant transformation. Seeds were obtained from Arabidopsis Biological Resource Center 

(ABRC, https://www.arabidopsis.org). For tomato experiments, seeds of the tomato cv. Micro-

Tom were used as a control and for the generation of transgenic plants. Seeds were provided 

by Gulf Coast Research and Education Center, University of Florida, USA. 

 

 

3.1.10. Oligonucleotides 

 

Table 3.16. Oligonucleotides 

Name Sequence (5´to 3´) Used in 
Restriction 

sites 
At4g660 prom-F GGTACCGGCGTTGTGTGGTGGTA Cloning  KpnI 

At4g660 prom-R GGATCCTGATTCTATCTTTACCAAG Cloning  BamHI 

At4g650 prom-F GGTACCTGATTCTATCTTTACCAAG Cloning  KpnI 

At4g650 prom-R GGATCCGGCGTTGTGTGGTGGTA Cloning  BamHI 

At5g440 prom-F GGTACCCCTTGATCCGATCACCCG Cloning  KpnI 

At5g440 prom-R GGATCCTTTTGGAAAGAGAAGAAG Cloning  BamHI 

At5g430 prom-F GGTACCTTTTGGAAAGAGAAGAAG Cloning  KpnI 

At5g430 prom-R GGATCCCCTTGATCCGATCACCCG Cloning  BamHI 

At2g500 prom-F GGTACCGGCCGATCTTTGTGTTCG Cloning  KpnI 

At2g500 prom-R GGATCCTGATGATTGATTTCAAAC Cloning  BamHI 

At2g490 prom-F GGTACCTGATGATTGATTTCAAAC Cloning  KpnI 

At2g490 prom-R GGATCCGGCCGATCTTTGTGTTCG Cloning  BamHI 

At1g470 prom-F GGTACCCTCTGATTGATTCGATCG Cloning  KpnI 

At1g470 prom-R GGATCCCAATAATCTGAACTCACC Cloning  BamHI 

At1g460 prom-F GGTACCCAATAATCTGAACTCACC Cloning  KpnI 

At1g460 prom-R GGATCCCTCTGATTGATTCGATCG Cloning  BamHI 

At1g850 prom-F GGTACCATCCTAAACACACAACAC Cloning  KpnI 

At1g850 prom-R GGATCCCGGAGACGATGTTTCAGA Cloning  BamHI 

At1g840 prom-F GGTACCCGGAGACGATGTTTCAGA Cloning  KpnI 

At1g840 prom-R GGATCCATCCTAAACACACAACAC Cloning  BamHI 

At4g200 prom-F CTGGTACCTTTCTTCTTTAATATATGACG  Cloning  KpnI 

At4g200 prom-R CTGGATCCTTGTAGAGAAACAGGAAGC  Cloning  BamHI 

At1g560 prom-F GGTACCTTAAAAAATGTATATGAGCA  Cloning  KpnI 

At1g560 prom-R GGATCCTGTTTTCAAATCGGTAAATTTC- Cloning  BamHI 

amiRNA200A 
AGAAGACGGCGTTCATTTATTTCACAG 
GTCGTGATATGA 

Cloning    

amiRNA200B 
AGGAGACGGCGTTGATTTATATCAAAG- 
AGAATCAATGAT 

Cloning    

amiRNA200C 
AATAAATGAACGCCGTCTTCTCTACATA- 
TATATTCCTA 

Cloning    

amiRNA200D 
TATAAATCAACGCCGTCTCCTCTCTCTT- 
TTGTATTCC 

Cloning    

amiRNA440A 
CAAGTAAGTGAAAACCCTTTTTCACAG- 
GTCGTGATATGA 

Cloning    
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amiRNA440B 
CAGGTAAGCGAAATCCCTTTATCAAA- 
GAGAATCAATGAT 

Cloning    

amiRNA440C 
AAAAGGGTTTTCACTTACTTGCTACA- 
TATATATTCCTA 

Cloning    

amiRNA440D 
TAAAGGGATTTCGCTTACCTGCTCTC- 
TTTTGTATTCC 

Cloning    

amiRNA560A 
TCATGAATTCATTGCAACTATTCACA- 
GGTCGTGATATGA 

Cloning    

amiRNA560B 
TCGTGAATCCATTCCAACTAATCAAA- 
GAGAATCAATGAT 

Cloning    

amiRNA560C 
ATAGTTGCAATGAATTCATGACTACA- 
TATATATTCCTA 

Cloning    

amiRNA560D 
TTAGTTGGAATGGATTCACGACTCTC- 
TTTTGTATTCC 

Cloning    

amiRNA440-200A 
CTAGTATCGGCTAGTCGTGGTTCACA- 
GGTCGTGATATGA 

Cloning    

amiRNA440-200B 
CTGGTATCAGCTACTCGTGGATCAAA- 
GAGAATCAATGAT 

Cloning    

amiRNA440-200C 
ACCACGACTAGCCGATACTAGCTACA- 
TATATATTCCTA 

Cloning    

amiRNA440-200D 
TCCACGAGTAGCTGATACCAGCTCTC- 
TTTTGTATTCC 

Cloning    

miRNA 194  
AGAACACGGGGGACGAGCTCGGTAC- 
CTAGGAATATATATGTAG 

Cloning  KpnI-BamHI  

miRNA 195 
AAAGCTCTGCAGGTCGACTCTAGAGG- 
ATCCGGAATACAAAAGAGAG 

Cloning  KpnI-BamHI  

KANA-F GCCCCTGATGCTCTTCGTC PCR   

KANA-R CTCTGATGCCGCCGTGTTCC PCR   

Actin8-F GGTTTTCCCCAGTGTTGTTG PCR   

Actin8-R CTCCATGTCATCCCAGTTGC PCR   

QPCR-At4g650-F GTTTAACAAGTACAGCGAGG q-PCR   

QPCR-At4g650-R GCAGTTCTCAACATGCGAC q-PCR   

QPCR-At4g660-F CAGCCTTGGAAGTAGCAGG q-PCR   

QPCR-At4g660-R CGAAAGGAAGCGATAAGCCA q-PCR   

QPCR-At5g430-F CAACGGCGATTCAAACAACG q-PCR   

QPCR-At5g430-R TGCTCCTCGGTCTGAAATG q-PCR   

QPCR-At5g440-F ACGGCGGCGATTTCTTCTC q-PCR   

QPCR-At5g440-R GATTTCGCTTACCTGGTCCA q-PCR   

QPCR-At2g490-F AGCCCTTTTGCAGACTTCTC q-PCR   

QPCR-At2g490-R GGTTTTAGCGTGCCTTCTTTG q-PCR   

QPCR-At2g500-F GACCCGACGCATGCAAAG q-PCR   

QPCR-At2g500-R ACGGCATCCCAAGCGTATG q-PCR   

QPCR-At1g460-F GCTACCAGGAGCCAGTATC q-PCR   

QPCR-At1g460-R GTGCCTGCATCAACTTTTTG q-PCR   

QPCR-At1g470-F TTACGTGGCTGAAAGGTGTG q-PCR   

QPCR-At1g470-R TTCCTCTGTTTTGTGCCCCT q-PCR   

QPCR-At1g840-F GCTTCCTGGTGTGAAAAGAG q-PCR   

QPCR-At1g840-R TTCCCGCCTGTTGTAGTG q-PCR   

QPCR-At1g850-F CTTTCGTGTTGCATTGCCTG q-PCR   

QPCR-At1g850-R GTTTGCAAACTGTCTGCTCC q-PCR   

QPCR-At1g560-F GCAAGACGACTGTTACAAGCTC q-PCR   

QPCR-At1g560-R TTTCTCTTCCTCCGCCTTGTG q-PCR   

QPCR-At4g200-F TTATCAGCTACTCGTGGCATGG q-PCR   

QPCR-At4g200-R TCCAAAGCCAGCTTCACATC q-PCR   

QPCR-PP2A_F CCTGCGGTAATAACTGCATCT q-PCR   

QPCR-PP2A_R CTTCACTTAGCTCCACCAAGCA q-PCR   

QPCR-RPL2-F CGTGGTGTTGCTATGAATCC q-PCR   

QPCR-RPL2-R GTCAGCTTTGGCAGCAGTAG q-PCR   

QPCR-Sl23.8M-F CGTGGCGTTGATGTTGAC q-PCR   

QPCR-Sl23.8M-R CAATTGGCTCACGCTCCT q-PCR   

Seq-At1g470-F GAATCTTTGCATCGGCGTAT Sequencing   

Seq-At1g470-R GGAGTCTGCAATGCAACTTG Sequencing   

Seq-At1g560-F GTTGCTTGTTAAGTATGAACC Sequencing   

Seq-At1g560-R GTTTCGATCCAAACTTCTAATG Sequencing   

pJET fwd CGACTCACTATAGGGAGAGCGGC Sequencing   

pJET rev AAGAACATCGATTTTCCATGGCAG Sequencing   

T7-F TAATACGACTCACTATAGGG Sequencing   
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T7-R GCTAGTTATTGCTCAGCGG Sequencing   

 

 

3.1.11. Equipment 

The following table lists the equipment used for this study. 

 

Table 3.17. Equipment  

Equipment  Supplier  

Ab Sciex 6500 QTRAP® tandem mass 
spectrometer 

AB Sciex, Framingham (MA, USA) 

Arium pro-Ultrapure Water System Sartorius AG (Goettingen, Germany) 
Avanti J-25 centrifuge Beckmann Coulter GmbH (Krefeld, Germany) 
Centrifuge 5415 D Eppendorf AG (Hamburg, Germany) 
Centrifuge 5417 R Eppendorf AG (Hamburg, Germany) 
Centrifuge 5810 R Eppendorf AG (Hamburg, Germany) 
Climate chambers  YORK Refrigeration, YORK Industriekaelte 

GmbH & Co. KG (Mannheim, Germany) 
Epoch Microplate Spectrophotometer  BioTek (Winooski, U.S.A) 
GC-2010 Plus equipment Shimadzu (Kyoto, Japan) 
JA10 rotor Beckman Coulter GmbH (Krefeld, Germany) 
JA25.50 rotor Beckman Coulter GmbH (Krefeld, Germany) 
Lyophilizer Leybold-Heraeus GmbH (Cologne, Germany) 
Mastercycler personal  Eppendorf AG (Hamburg, Germany) 
Mixer Ball Mill MM200 with stainless steel 
grinding jars or PTEE-jars 

Retsch GmbH (Haan, Germany) 

Mini‐PROTEAN3 Electrophoresis System Bio‐Rad, Hercules (CA, USA) 
NanoDrop 2000 spectrophotometer Thermo Fisher Scientific (Waltham, USA) 
PCR detection systems iQ5 real-time  Bio-Rad Laboratories GmbH (Munich, Germany) 
Percival CU-36L/D  Percival Scientific Inc. (Perry, USA) 
Premium Freezer Liebherr (Bulle, Switzerland) 
Quartz SUPERSIL cuvettes Hellma Analytics (Muellheim, Germany) 
Sterile bench Prettl-Telstar BioII-A Telstar (Terrassa, Spain) 
Microscope Leica MZ16F Leica Microsystems (Wetzlar, Germany) 
Olympus BH2 microscope Olympus Corporation (Tokyo, Japan) 
Conductometer Twin Compact Meter-Horiba (Northampton, UK) 
Electroporator Bio-Rad “Gene Pulser” (CA, USA) 

 

 

3.1.12. Software packages 

All software and web‐based services used in this study together with the correspondent 

reference are presented in Table 3.18. 

 

Table 3.18. Software programs used in the course of this study 

Software Reference/Manufacturer 

Microsoft Office 2016 Microsoft Corporation (Redmond, USA) 
CorelDRAW Corel Corporation 
Snapgene Software GSL Biotech 
Infostat version 2008 National University of Córdoba (Córdoba, 

Argentina) 
Tomato analyzer 3.0 [Rodriguez, 2010] 
Geneious 8.1 Biomatter Ltd. (Auckland, New Zealand) 
Proteome Discoverer Thermo Fisher Scientific (Waltham, USA) 
ImageJ 1.4 National Institutes of Health (Bethesda, USA) 
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GCMSsolution Software Shimadzu (Kyoto, Japan) 
National Center for Biotechnology Information NCBI (Bethesda, USA) 
Analyst software 1.6.2 Applied Biosystems (Darmstadt, Germany) 
NanoDrop Thermo Fisher Scientific (Waltham, USA) 
iQ5 Optical System Software Bio-Rad Laboratories GmbH (Munich, Germany) 
SigmaPlot Systat Software GmbH (Erkrath, Germany) 
Spectra Manager II Software JASCO Corporation (Hachioji, Japan) 
The Arabidopsis Information Resource (TAIR) http://www.arabidopsis.org/ 
The Bio-analytic Resource for Plant Biology 
database 

[Winter, 2007] 

The Universal Protein Resource (UniProt) The UniProt Consortium, 2018 
The PlantCare database [Lescot, 2002] 
PLACE [Higo, 1999] 
Ensembl Plants database [Kersey, 2018] 
The MEME Suite [Bailey, 2009] 
Plant-DHS database [Zhang, 2016] 
WMD - Web Micro RNA designer  http://wmd3.weigelworld.org/ 
Clustal Omega [Sievers, 2018] 
CLC Sequence Viewer 7.0.2 Qiagen (Venlo, Netherlands) 
Genomatix software suite v3.10 [Cartharius, 2005] 
STRING [Szklarczyk, 2015] 
Panther [Mi, 2016] 

 

 

 

3.2. Methods 

 

 

3.2.1. Plant growth conditions 

For sterile culture, A. thaliana seeds were first exposed to 70 % ethanol (v/v) for 15 min in a 

laminar flow hood. Immediately afterward, ethanol was discarded and 100 % ethanol was 

added to the reaction tubes containing the seeds. After 60 s, ethanol was removed and the 

open tubes were placed for several hours into the laminar flow hood to completely remove 

residual ethanol. The sterile and dry seeds were spread on ½ MS plates containing 0.8 % (w/v) 

agar (Duchefa Biochemie B.V, Haarlem, The Netherlands). To synchronize germination, 

sealed plates with surgical tape (3M Deutschland GmbH, Neuss, Germany) were incubated in 

the dark at 4 °C for 3 d. The plates were then transferred to a climate chamber with long day 

conditions (16 h light/8 h dark, 22 °C, 60 % humidity, and light intensity of 100 µmol m-2s-1) until 

seedlings were at the proper age for experiments or to be transferred to soil. The soil 

(Fruhstorfer Erde Typ T fein, Hawita Gruppe GmbH, Vechta, Germany) was steamed for 8 h 

at 80 °C and chilled before being used. Seedlings were carefully placed in soil, covered with a 

plastic hood for 4 to 5 days and transferred to the climate chamber. For plants transformation, 

more inflorescence meristems were induced by cutting the first inflorescence. For experiments 

where sterile conditions were not needed, seeds were directly placed in soil, stratified for 3 d 

at 4 °C in the dark and transferred to the climate chamber. 
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Tomato seeds were sterilized with sodium hypochlorite 50 % (v/v) in a laminar flow hood. After 

15 min, the solution was removed and seeds were washed three times with sterile distilled 

water. Finally, water was discarded and seeds were placed on Petri plates or Magenta boxes 

containing ½ MS and Gamborg’s B5 vitamins [Gamborg, 1968] with 0.9 % (w/v) agar. Other 

seeds were placed in soil without sterilization. Tomato growth conditions were set to 25 °C, 14 

h light/10 h dark and 70 % humidity. All plants were maintained under optimal irrigation and 

controlled conditions.  

 

 

3.2.2. Plant treatments 

A. thaliana Col-0 and transgenic plants were investigated at different development stages, from 

seeds, seedlings of 7- to 10-day old and during the complete growth cycle until senescence 

was reached. Unless otherwise is specified, the conditions of 150 mM sodium chloride (NaCl), 

300 mM Mannitol, 10 μM Methyl Viologen (Sigma-Aldrich Co., St. Louis, USA), 4 ºC and 37 ºC 

were applied to seedlings for 3 h. The response of genes, promoter activities, metabolites, and 

other measurements along with the phenotype of treated plants was investigated. 

Tomato WT and transgenic plants were studied at the fruit level. For that purpose, fruit ripening 

was investigated on the vine (fruit was allowed to ripen on the plant) and on prechilled fruit 

(fruit was harvested at the green mature stage, stored for 28 days at 4 ºC, and then transferred 

to the climate chamber for ripening). Fruit was collected for experiments at the green mature 

(GM) stage and prechilled (CH), which corresponds to prechilled fruit that was transferred for 

1 day to the climate chamber. Fruit was all in comparable age and size, between 1 and 2 g 

weight and harvested 3 h after the light period began. Pericarp tissue of harvested and treated 

fruit was obtained by removing the locule tissues, skin, and seeds and was immediately 

processed or frozen in liquid nitrogen and stored at −80 ºC until analysis.  

A minimum of three biological replicates was analyzed in all A. thaliana and tomato 

experiments. 

 

 

3.2.3. Molecular biological methods 

Unless otherwise is specified, all methods were developed by following the protocols described 

in [Maniatis, 1989] and [Sambrook, 2001]. 

 

3.2.3.1. Plasmids DNA extraction 

Bacterial clones were inoculated in 2 mL LB with the correspondent antibiotic and shaken 

overnight at 37 °C in the case of E. coli or at 28 ºC for A. tumefaciens. On the next day, cells 
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were centrifuged at 5,000 x g for 5 min and the pellet was used to isolate plasmids with the 

GenElute HP Plasmid Miniprep kit, following the manufacturer’s instructions. 

 

3.2.3.2. Isolation of DNA from A. thaliana and tomato plants 

For genomic DNA isolation, Arabidopsis and tomato leaves were placed in a 1.5 mL reaction 

tube and ground to a fine powder with a precooled pestle in liquid nitrogen. Two hundred and 

fifty μL of CTAB extraction buffer was added to the powder and incubated for 15 min at 65 °C. 

Two hundred and fifty μL of chloroform: isoamyl alcohol (24:1 v/v) were added, the mixture 

was then briefly shaken and centrifugated for 15 min at 7,500 x g and room temperature. After 

phase separation, 200 μL of the aqueous phase was transferred to a clean tube and 200 μL 

of isopropanol was added. Tubes were inverted 8-10 times, incubated at room temperature for 

20 min and centrifuged for 10 min at room temperature and 20,000 x g to sediment the DNA. 

The pellet was washed with 70 % ethanol and dried by leaving the open tubes inverted on a 

paper towel for 5 to 10 min. The DNA pellet was finally dissolved in 70 μL of distilled water.  

 

3.2.3.3. Isolation of RNA from tissues plants 

For total RNA isolation from vegetative tissue, 100 mg of plant material were collected, 

immersed in liquid nitrogen and pulverised to a fine powder with a precooled pestle. One mL 

of TriPure Isolation Reagent (Sigma-Aldrich Co., St. Louis, USA) was quickly added and the 

suspension was mixed roughly and incubated for 5 min at room temperature. Five hundred mL 

of cold chloroform were added to the tubes, the samples were then mixed and centrifuged at 

12,0000 x g and 4 °C for 15 min. The clarified supernatant was put into a new tube, 600 μL of 

isopropanol was added and the sample was mixed and incubated at room temperature for 30 

min to precipitate the RNA. The, it was centrifuged for 10 min at 12,000 x g and 4 °C and the 

pellet was washed with cold 70 % ethanol twice and air-dried before redissolving in 20 μL 

RNase-free water. RNA concentrations were measured by using a NanoDrop 2000 

spectrophotometer and the quality was confirmed by loading 1 μg of sample in a 1.5 % (w/v) 

agarose gel. RNA samples were stored at -80 °C. 

 

3.2.3.4. cDNA synthesis 

After RNA isolation, contaminant DNA was digested and removed from suspensions by using 

DNase I following the manufacturer’s instructions: 2 µL of 10x DNase buffer and 2 units of 

DNase I were incubated with 1 - 2 µg of RNA for 30 min at 37 °C. To stop the reaction 2 µL 50 

mM EDTA were added to the tube and incubated at 65 °C for 10 min. The reverse transcription 

of RNA into cDNA was performed by initially incubated the RNA with 1 µL 0.5 µg/µL oligo 

dT18-primer at 65 °C for 10 min. After this incubation, 4 µL of 5x buffer for the reverse 

transcriptase, 2 µL of 10 mM dNTP mix, and 1 µL (200 units) of RevertAid transcriptase were 
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added to a final volume of 20 µL. The reaction mixture was transferred to a thermocycler at 37 

°C for 1 h followed by 10 min at 70 °C. 

 

3.2.3.5. Quantitative real-time PCR (q-PCR) 

After cDNA was synthesized, samples were checked for contamination by genomic DNA 

(gDNA) with RedTaq PCR (see sections 3.2.3.6.), using primers specific for actin (Actin8). 

These primers produce an amplicon of 1134 base pairs (bp) when cDNA is amplified, but 1409 

bp is amplified if gDNA serves as a template. Quantitative real-time measurements of cDNA 

were performed by using the Takyon No Rox SYBR Core Kit blue dTTP following the 

manufacturers instructions and the iQ5 qPCR cycler. To design specific primers for the 

transcript of interest, the coding nucleotide sequence was first entered into the Primer3Prefold 

interface to find and exclude regions that can form secondary structures that may interfere in 

the amplification. Once these regions were excluded, the sequence was entered into the 

Primer3Plus interface [Untergasser, 2012] and specific oligonucleotides for q-PCR were 

selected. The software was set to get an amplicon length of 70-150 bp, primer length of 18-23 

bp and melting temperatures of 58-62 °C with a difference of less than 3 °C within the pair. For 

oligonucleotide sequences see section 3.1.10. The gene encoding ribosomal protein L2 

(RPL2) was chosen as a reference gene in tomato measurements. The protein phosphatase 

2A gene (PP2A) was used as a reference in A. thaliana. Genes expression was normalized to 

these references genes to exclude changes due to any efficiency in the cDNA synthesis or 

alterations in the overall transcription because of the growth stage and external factors. Data 

analysis were performed by using the iQ5 software. 

 

3.2.3.6. Polymerase chain reaction (PCR) 

DNA sequences were amplified by PCR. Depending on the purpose, different DNA 

polymerases were used to amplify the sequences of interest. For cloning, Phusion Polymerase 

was used while to check the presence of specific DNA sequences, GoTaq and RedTaq were 

chosen. To identified and select positive bacterial clones that were transformed with a plasmid, 

colony PCR was performed by picking a small amount of bacterial cells from the agar plate 

and adding them to the PCR reaction mixture. Reactions were prepared following the 

manufacturer instructions and incubated in Mastercycler Personal thermocyclers to ensure the 

specific thermal conditions necessary for DNA denaturing, oligonucleotide annealing and 

elongation. Oligonucleotides used in the different PCR reactions are listed in section 3.1.10. 
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Table 3.19. Thermocycler program for DNA amplification by PCR 

Temperature Time 

98 °C          5 min 
94 °C 30 s 
55 - 60 °C 30 s 
72 °C 30 s/kb 
72 ºC 5 min 

32 cycles 

 

3.2.3.7. Agarose gel electrophoresis 

RNA samples, PCR products and restriction digests were separated in horizontal gels of 1 to 

1.5 % (w/v) agarose. For this purpose, samples were mixed with 1 volume of 6 x DNA loading 

dye. Since GoTaq and RedTaq reaction buffers contain a loading dye, no additional dye was 

added before loading the samples into the agarose gel. Gels were completely submerged in 

TAE buffer, samples were loaded and separated by applying a voltage of 10 V/cm for 20 min. 

Gels were then incubated in TAE buffer containing 2 μg/mL ethidium bromide for 10 min and 

DNA bands were finally visualized under UV light. Fragments were identified by comparing the 

size with 1 kilobase pair Gene-Ruler DNA ladder. 

 

3.2.3.8. Restriction, ligation and subcloning of DNA 

Double-stranded DNA was digested in reaction volumes of 20 - 50 μL at 37 °C for 1 h up to 

overnight. The procedure was according to the manufacturer's instructions. Digested 

fragments were then separated by electrophoresis in agarose gels and analyzed by UV light. 

For cloning, PCR products and digested fragments of the correct size were excised from 

agarose gels and extracted using the NucleoSpin Gel and PCR Clean-up kit. PCR products 

with blunt ends that were amplified by using Phusion polymerase were directly ligated into the 

pJET1.2/blunt and Zero blunt subcloning vectors following the manufacturer’s instructions with 

some modifications. For ligations the final volume was 10 μL and they were incubated for 30 

min at room temperature. The fragment and the vector were used in a molar ratio of 3:1. After 

the incubation, the mixture was used to transform 100 μL of chemically competent E. coli cells 

(for generation and transformation of competent cells see sections 3.2.3.11 and 3.2.3.12). 

Colony PCR was performed in several colonies to find positives bacterial clones that were 

successfully transformed. The positive clones were then used to inoculate 2 mL LB and 

plasmids were isolated as described in 3.2.3.1. To verify the correct insertion, plasmids were 

digested with the correspondent enzymes and the lengths of the resulting DNA fragments were 

compare to the expected size fragments. Verified plasmids were submitted to GATC (Biotech 

AG, Konstanz, Germany) or to the University of Maine DNA Sequencing Facility (Maine, USA) 

for sequencing. Sequencing results were aligned with the correct sequence to confirm the 

correctness of the insertion by using Geneious R8 software. 
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Similarly, DNA fragments of interest were transferred from subcloning or entry vectors to other 

vectors such as binary vectors. In this case, the vector and the DNA fragment were digested 

with the same enzymes or with enzymes that generate compatible overhangs. The resulting 

DNA fragments were separated by gel electrophoresis in agarose and the bands were excised. 

Both the vector and the fragment to be inserted were purified, ligated and the ligation mixture 

was used for competent E. coli transformation as described in previous sections. 

 

3.2.3.9. Generation of microRNA silenced plants 

The generation of knock-down A. thaliana and tomato mutants were performed by using 

artificial microRNAs (amiR) according to [Schwab, 2006]. To design the amiR, the first step 

was to find conserved motifs in the transcripts of the genes to be silenced, by using The MEME 

suite. Adjacent regions to these motifs were also considered so as to obtain different 

sequences of 21 nucleotides length that could be used as amiR. All of these sequences were 

then deeply analyzed before choosing the best one that gave an amiR with the following 

requirements: 1- no mismatches with the target sequences in positions 10 and 11, sites where 

argonaut produces the cleavage of the target strand, 2- no more than two mismatches with the 

target sequences in the first 5 nucleotides and 3- it must start with U at the 5 'end. Once the 

amiR for the genes of interest was found, the miRNA* was designed to match the amiR in the 

same way as in the duplex miR-miR* of miRNA319. For A. thaliana mutants, the optimal amiR 

sequences were obtained from the WMD - Web Micro RNA designer tool. NB147 plasmid 

containing the MIR319a precursor was used to engineer the amiRs by replacing the original 

miR319a used as a template with the artificial sequence (21 nts), and the miR319a* with the 

sequence that pairs to the amiR with similar structural features as in the endogenous case. 

The amiR into the NB147 vector was sequenced and the correct fragment was subcloned into 

the binary vector pCHF3 for A. thaliana lines or MX202 for tomato. The binary vectors 

containing the amiRs were sequenced to confirm the insertion and used to transform A. 

tumefaciens cells by electroporation as described in section 3.2.3.13. Plants were transformed 

as stated in 3.2.4. A minimum of 3 independent transforming lines were isolated for each 

construct and used for further analysis.  

 

3.2.3.10. Construction of promoter-GUS fusion lines 

Promoter sequences were cloned in frame fused to the GUS reporter gene and GUS staining 

was performed as described in Arabidopsis: A Laboratory Manual [Weigel, 2002]. For this 

purpose, the 5′ genomic sequence upstream of the translation initiation codon of the query 

gene was amplified by PCR using specific primers (see section 3.1.10. for primers sequences). 

The promoter fragment was cloned into an entry vector as described in 3.2.3.8. The accuracy 

of the cloning was confirmed by sequencing and the fragment was then cloned in frame into 
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the GF9 vector which contains the GUS gene.. The construct was once again sequenced to 

verify the correct insertion and used to transform A. tumefaciens cells by electroporation as 

described in section 3.2.3.13. A. thaliana plants were transformed by floral dip infiltration and 

positives transformant seeds were isolated. 

 

3.2.3.11. Generation of competent bacteria 

Competent bacteria were prepared for transformation by chemical treatment. For E. coli, 100 

µL from overnight cultures of Top10 or DH5-α were used to inoculate 10 mL culture and shaked 

at 37 °C until reaching an optical density at 600 nm (OD600) of 0.45 - 0.6. The culture was 

then split into several 1.5 mL tubes and cells were sedimented at 5,000 x g and 4 °C for 5 min. 

The supernatant was removed and the pellet was resuspended in 500 µL of ice-cold 100 mM 

calcium chloride (CaCl). Cells were put on ice for 30 min and sedimented at 5,000 x g and 4 

°C for 5 min. Finally, cells were resuspended in 100 µL of ice-cold 100 mM CaCl for subsequent 

transformation (see section 3.2.3.12.).   

For the generation of A. tumefaciens competent cells, a GV2260 or GV3101 culture was used 

to inoculate a main culture that was shaken at 28 °C overnight until getting an OD600 of 0.6. 

The cells were then placed in ice for 20 min and afterward sedimented at 7,000 x g and 4 °C 

for 20 min. The supernatant was thrown away and the cells were washed three times with ice-

cold sterile water. After each wash, the cell suspension was centrifuged at 7,000 x g for 10 min 

at 4 °C, and the supernatant was removed. Cells were resuspended in sterile ice-cold 10 % 

(v/v) glycerol and split into 1.5 mL tubes. Tubes were stored at -80 °C. 

 

3.2.3.12. Transformation of E. coli 

E. coli competent cells were used for the amplification of DNA and plasmids and propagation 

of ligated DNA fragments. For transformations, 100 μL of chemically competent cells were 

mixed with approximately 200 ng of plasmid or with ligation mixtures. The cells and DNA were 

incubated 30 min on ice before being subject to a heat shock of 42 °C for 45 s. The cells and 

ligation mixture were then incubated on ice for 2 min and 900 μL of LB media was added to 

the cells. The cells were shaken for 1 h at 37 °C to recover. The cultures were then plated on 

LB agar plates with the appropriate antibiotic and incubated overnight at 37 °C. 

 

3.2.3.13. Transformation of Agrobacteria 

A. tumefaciens cells were transformed by electroporation. Two hundred μL competent cells 

were thawed on ice and mixed with 2 μg of plasmid. The mixture was transferred to prechilled 

electroporation cuvettes with 0.1 cm gap distance before being placed in an electroporator. 

The electroporator was set up to use 25 µF, 2,5 kV, 400 Ω. After the pulse, the cuvettes were 

removed from the electroporator, 1 mL of LB media was added and the mixture was then 
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transferred to a clean test tube. Cells were shaken at 28°C for 3 hours and then spread on LB 

agar plates with the correspondent antibiotics for clones selection. Plates were incubated for 

2 d at 28 °C. Positive individual colonies were confirmed by colony PCR and restriction 

digestion. 

 

 

3.2.4. Plant genetic transformation 

 

3.2.4.1. Agrobacterium-mediated transformation of A. thaliana 

Stable transformation of Arabidopsis plants was performed by flower dip with A. tumefaciens 

according to [Clough, 1998]. A 100 mL culture of transformed Agrobacteria in LB media with 

the correspondent antibiotics was shaken for 2 d at 28 °C until reaching an OD600 of 0.6. Cells 

were then centrifuged at 7,000 x g and 4 °C for 20 min using an Avanti J25 centrifuge with a 

JA-10 rotor and resuspended in 100 mL 5 % sucrose solution. 70 μL Silwet L-77 silicone 

surfactant (Momentive Performance Materials Inc., Waterford, USA) was added just before 

dipping the flowers. The flowering inflorescences (grown for approximately 4 - 5 weeks in long-

day conditions, 16 h light/8 h dark, 22 °C) were dipped and gently agitated for several seconds 

into this bacteria suspension. After transformation, plants were placed horizontally and covered 

with a plastic hood overnight before being transferred to the climate chamber.  

 

3.2.4.2. Agrobacterium-mediated transformation of tomato 

Micro-Tom seeds were sterilized as described in section 3.2.1. and planted in seed germination 

medium (GM) (Table 3.4.). The seeds were transferred to the climate chamber for one week. 

Cotyledons of the 7-day-old seedlings were used for Agrobacterium transformation. 

Agrobacterium cultures were initiated from glycerol stocks or grown agar plates. Positive 

colonies were transferred to 3 mL LB containing the appropriate antibiotics and shaken at 28 

ºC for 48 h. This saturated culture was then used to set a 1/1000 dilution in 100 mL LB which 

was shaken over night until an OD600 of 0.6 was reached. The bacterial cultures were 

centrifuged at 7,000 x g for 10 min using an Avanti J25 centrifuge with a JA-10 rotor and 

resuspended in 100 mL of 10 mM MgSO4 for the transformation of cotyledons. Cotyledons 

were divided into two halves across the midvein region and the edges were discarded. The 

resulting explants were completely dipped into the Agrobacterium suspension and gently 

shaken for 10 min. The inoculated explants were transferred to a sterile filter paper to dry and 

then placed in co-cultivation medium (CM) (Table 3.5.) supplemented with 200 μM 

acetosyringone (Sigma-Aldrich Co., St. Louis, USA) and incubated for 2 d. After two days of 

co-culture, the cotyledons were transferred onto shoot induction medium (SIM). The explants 

were sub-cultured in fresh SIM medium every 2 weeks for shoot regeneration and elongation. 
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When shoots were about 2-cm long, they were transferred to rooting media (RT) (Table 3.7.). 

The rooted plants were then transferred to soil and grown to maturity. One to three hundred 

explants were inoculated with every Agrobacterium construct to ensure a high number of 

transformant plants. 

 

3.2.4.3. Selection of transgenic plants 

After transformation, plants were grown as described in section 3.2.1. until senescence. Seeds 

were collected from Arabidopsis siliques and tomato fruit, surface sterilized and spread on ½ 

MS plates containing kanamycin for selection of transformants. Leaves from transformant 

plants were used for DNA extraction and the presence of the transgene was verified by PCR. 

Seeds were collected from these kanamycin-resistant plants that were confirmed by PCR and 

were identified as the T1 generation. Seeds from the following generations were also selected 

using kanamycin and PCR, and the T2 generation was used for further experiments. 

 

 

3.2.5. Bioinformatics analysis 

All genes and proteins sequences were obtained from TAIR. The following online resources 

were used to investigate gene expressions and obtain additional information about the proteins 

of interest: BAR, Ensembl Plants database, TAIR, and UniProt. Particularly, the BAR database 

was used to study the response of genes to abiotic stress treatments including cold, heat, 

oxidative, osmotic, salt and drought. To study bidirectional and other promoters, sequences 

located upstream of the translation initiation codon of genes were downloaded from the TAIR 

database. These regions were analyzed by using the MEME interface to find conserved motif 

and the PLACE and PlantCare databases for regulatory elements. The bidirectional 

arrangement of the gene pairs was searched in other plants species to find conserved 

bidirectionality by using the ENSEMBL database.  

 

 

3.2.6. Protein manipulation 

 

3.2.6.1. Protein isolation from A. thaliana plants 

Proteins were isolated from 15 day-old A. thaliana plants grown in ½ MS by using a phenol 

extraction protocol [Grimplet, 2009] with some modifications. Approximately 0.5 g of seedlings 

were ground in liquid nitrogen to produce a fine powder. Four mL of extraction buffer (0.7 M 

sucrose, 0.5 M Tris, 30 mM HCl, 50 mM EDTA, 0.1 M KCl, 10 mM Urea, 50 mM DTT and 2 

mM PMSF) was added to the plant material. Samples were incubated for 10 min at 4°C before 

centrifugation at 3,210 x g for 15 min at 4°C. The supernatant was transferred to a new clean 
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tube and 4 mL of extraction buffer saturated with phenol was added. Samples were then 

incubated on ice for 30 min. Phases separation was achieved by centrifugation at 3,210 x g, 

15 min, and 4°C. The top phase, containing phenol and proteins, was removed and transferred 

to a clean tube. An equal volume of extraction buffer was then added for re-extraction followed 

by another centrifugation at 3,210 x g, 15 min, and 4°C. The phenol phase containing the 

proteins was precipitated with 5 vol of 0.1 M ammonium acetate in methanol, at -20°C 

overnight. The precipitated was washed with 0.1 M ammonium acetate in methanol and with 

cold acetone, before completely air dry the pellet. For resuspending the pellet 150 μL of 6 M 

Urea, 5% SDS was used. 

 

3.2.6.2. Gel-based proteomic analysis 

60 μg of each protein sample were loaded on a 10 % SDS polyacrylamide gel and a subject 

to a current of 30 Milliamperes until samples had migrated 1 cm into the running gel. The gel 

was soaked into the staining solution of Coomassie Brilliant Blue G-250 [Neuhoff, 1988] and 

distained in water overnight. On the next day, gels were scanned and the bands were 

completely excised from the gels before being subjected to an in-gel tryptic digest as in 

[Shevchenko, 2007]. Briefly, gel pieces still blue were placed into Protein LoBind tubes and 

further distained with 50 % (v/v) acetonitrile containing 200 mM ammonium bicarbonate for 30 

min at 37 °C. Several times the destaining solution was changed until gel pieces were entirely 

colourless. To completely remove the rest of water, the gel was shaken for 10 min at room 

temperature in acetonitrile and then air dried for 15 min. One hundred and fifty μL of 10 mM 

dithiothreitol (DTT) was added to the gel pieces and incubated at 60 °C for 15 min to reduce 

disulfide bonds. After removing the DTT, cysteine residues were alkylated by incubation for 45 

min with 150 µl of 55 mM iodoacetamide at room temperature in the dark. Gel pieces were 

then washed twice with 150 µl 100 mM ammonium bicarbonate and 150 µl of acetonitrile, and 

air dried for 10 min under the hood. Two hundred µL of trypsin buffer (5 % acetonitrile and 50 

mM ammonium bicarbonate) containing trypsin (0.1 μg to every 10 μg of proteins) were added 

to the gel, incubated overnight at 37 °C, and then, centrifuged. The resulting supernatants 

were transferred to a new Protein LoBind tube. Peptides were extracted from the gel pieces 

with 100 μL of 20 mM ammonium bicarbonate and with 100 µl of 5 % (v/v) formic acid in 50 % 

acetonitrile at room temperature for 15 min each step. The extraction with acetonitrile/formic 

acid was repeated once and all supernatants of this and previews steps were combined in one 

tube. The supernatants were completely dry and the peptides were stored at -20°C until 

measurements.  

The peptides were analyzed with liquid chromatography-combined tandem mass spectrometry 

(LCMS) in the Service Unit LCMS Proteinanalytics at the University of Göttingen by the use of 

OrbitrapTM mass spectrometers coupled to UltiMate3000 RSLCnano systems. Unless 
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otherwise stated, all equipment and software used were obtained from Thermo Fisher 

Scientific, Waltham, USA. An Acclaim PepMapTM 100 pre-column was employed to trap and 

wash the peptides (C18 packing material, dimensions: 100 μm x 2 cm, 5 μm particle size, 100 

Å pore size) with 98 % water, 2 % acetonitrile, 0.07 % trifluoroacetic acid with a flow rate of 25 

μL/min for 6 min. Analytical separation of peptides was achieved by reverse phase 

chromatography using an Acclaim PepMapTM Rapid Separation Liquid Chromatography 

(RSLC) column (C18 packing material, dimensions: 75 μm x 15 cm, 2 μm particle size, 100 Å 

pore size) with a solvent gradient from 98 % solvent A (99.9 % water, 0.1 % formic acid) and 

2 % solvent B (80 % acetonitrile, 19.9 % water, 0.1 % formic acid) to 40 % solvent B within 40 

min at a flow rate of 0.3 μL/min. Online ionization was induced with a Nanospray FlexTM Ion 

Source at 2.4 kV. Mass over charge ratios of ionized peptides were determined using an 

OrbitrapTM Fourier Transformation Analyzer (mass over charge range: 300-1850, resolution: 

30000) with parallel collision-induced dissociation fragmentation in a linear ion trap analyzer 

(Velos ProTM). The XCalibur 2.2TM software was used for LCMS-method programming and data 

acquisition. Proteins were identified through peptide cross-correlation analyses against an A. 

thaliana database (Proteome ID UP000078284 obtained from UniProt) using the Proteome 

Discoverer 2.2TM software. The software was employed for data integration and analysis, and 

for the statistical quantitative comparisons between samples. Three biological replicates and 

two independent technical replicates were measured for control and mutant samples in each 

condition. Only proteins that showed significant fold change in respect to control samples were 

considered for further analysis. The overrepresented Gene Ontology in the list of proteins and 

the promising altered pathways were investigated by using STRING and Panther.  

 

 

3.2.7. Metabolite profiling by gas chromatography coupled to mass spectrometry 

(GC-MS) 

Metabolites were extracted from 100 mg of ground leaf material. 15 day- and 28 day-old 

Arabidopsis plants were collected for this purpose. According to an established GC-MS 

protocol [Lisec, 2006], extractions were done by using a methanol/chloroform protocol followed 

by samples derivatization and measurement of the metabolite levels. Metabolites were 

identified by comparing to databases of authentic standards [Schauer, 2005] and quantified 

based on the internal standard added. Values were expressed as fold changes of metabolites 

in each sample relative to Col-0. 
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3.2.8. Analysis of the tomato lipidome by UPLC-nanoESI-MS/MS 

Tomato fruit pericarp was ground in liquid nitrogen to a fine powder with mortar and pestle and 

lyophilized before the extraction. Total lipid extraction was carried on as stated in [Grillitsch, 

2014]. Briefly, 20 mg of lyophilized powder were immersed in 6 mL of a hot propan-2-

ol/hexane/water 60:26:14 (v/v/v) mixture at 60 °C in 8 mL glass tube. The reaction mixture was 

incubated for 30 min at 60 °C with shaking, samples were briefly vortexed and sonicated every 

10 min during incubation. Extracts were then centrifuged at 20 °C and 3,210 x g for 20 min and 

the clarified supernatant was collected in a new tube, dried under a stream of nitrogen and 

dissolved in 800 μl tetrahydrofuran/methanol/water 4:4:1 (v/v/v). Samples were stored under 

argon at - 20 °C until lipid measurements. In the case of PA and lyso-lipids analysis, 80 μL of 

the sample were completely dried under streaming nitrogen and resolved in 400 μL methanol. 

6.5 μL trimethylsilyl-diazomethane was added and the solution was shaken for 30 min at room 

temperature. 2 μL 10 % acetic acid was then added, the samples were mixed and dried under 

a stream of nitrogen. The dried pellet was finally dissolved in 80 μL 

tetrahydrofuran/methanol/water (4:4:1, v/v/v) and stored under argon at - 20 °C until being 

analyzed by LC-MS. 

Analysis of lipids by UPLC-nanoESI-MS/MS was done by Dr. Cornelia Herrfurth (University of 

Göttingen). UPLC-nanoESI-MS/MS molecular species analysis was performed as previously 

described [Tarazona, 2015]. The peak area integration was done by using the Analyst 

Software peak‐finding algorithm and a house-made software tool developed by Dr. Pablo 

Tarazona. The subsequent data analysis was carried on by calculating areas of lipid species 

within one lipid category relative to the total area in that group, and by comparing knockdown 

and WT results. Total peak areas of lipid categories and classes were also compared. 

 

 

3.2.9. Color and pigment content determinations 

For color evaluation of tomato, fruit was cleaned, dried with a clean paper towel and cut 

transversely through the center. Halves where immediately photographed by using a 

conventional scanner (Hewlett Packard) with the cut side down and a black background. The 

images were then analyzed by using the Tomato Analyzer 3.0 test. The software determines 

the colour parameters Red, Green, and Blue of the RGB color space. Besides this, the L*, a* 

and b* (numerical terms to express color from black to white, green to red, and blue to yellow 

axes, respectively) of the CIELAB color space and the Hue and Chroma color descriptors, 

were calculated. The scanner color calibration was achieved using Color Checker Munsell 

Color X-write. 

For pigment extractions from A. thaliana leaves, 20 mg of fresh material were used. Pigments 

were extracted two times with 80 % (v/v) and MES 10 mM pH 5.9. A third extraction was done 
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with 50 % (v/v) and MES 10 mM pH 5.9 before all supernatants were combined and measured. 

Absorbances measured at 645, 665 and 470 nm were used to calculate the ug of chlorophyll 

a, chlorophyll b and carotenoids per mg of fresh weigh [Lichtenthaler, 1986].   

 

 

3.2.10. Determination of proline content 

Proline was determined according to [Bates, 1973] with modifications. Twenty milligrams of A. 

thaliana leaves were extracted twice with 80 % (v/v) ethanol with 10 mM MES pH 5.9 and once 

with 50 % (v/v) ethanol with 10 mM MES pH 5.9. Each extraction step was performed for 30 

min at 80 °C and the supernatants were combined. For Pro determination, 100 µL of the 

ethanol extract or Pro standard were mixed with 100 µL ninhydrin reagent [1 % (w/v) ninhydrin 

in 60 % (v/v) acetic acid] and heated at 95 °C for 20 min. Absorbance measured at 520 nm 

was used to calculate µmol of Pro per gram of fresh weight tissue. 

 

 

3.2.11. Electrolyte leakage 

Fresh cubes of 5 mm2 from tomato pericarp and discs from A. thaliana leaves were thoroughly 

rinsed with deionized water, covered with 0.4 M mannitol and incubated at 25 ºC for 3 h. A 

conductance meter (Twin Compact Meter-Horiba, Northampton, UK) was used to measure the 

conductivity of the at 25 ºC directly after the three hours of incubation and again after 

autoclaving samples for 30 min at 120 ºC to release all the electrolytes. Electrolyte leakage 

was indicated as a percentage of total electrolytes. Measurements were carried out in several 

biological replicates. 

 

 

3.2.12. Enzyme activity analysis 

For enzyme activity measurements of catalase (CAT) and peroxidase (POX), 0.5 - 1 g of frozen 

tissues were ground in 0.6 mL of extraction buffer (50 mM K2PO4 pH 7.8 containing 20 % 

glycerol and 2 % polyvinylpolypyrrolidone) using mortar and pestle. Samples were transferred 

to a tube and centrifuged 10 min at 15,000 x g. The clean supernatant was desalted by filtration 

through Sephadex G-25 that was previously equilibrated with the same extraction buffer. All 

the steps were performed at 4 ºC. CAT activity was determined by the decrease in A240 of a 

mixture containing 10 mM H2O2 (extinction coefficient: 0.0394 mM-1 cm-1), 50 mM potassium 

phosphate pH 7.8 and 1 mM EDTA at 25 °C. POX activity was followed as the oxidation of 

guaiacol (extinction coefficient: 25.5 mM–1 cm–1) at 470 nm. The assay (1 mL) was carried out 

at 25 °C and contained 0.017 M guaiacol, 50 mM potassium phosphate pH 7.8, 1 mM EDTA. 
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The reaction was initiated by the addition of 0.1 mM H2O2. Rates were corrected by chemical 

control experiments. 

 

 

3.2.13. Histochemical staining in A. thaliana tissues 

 

3.2.13.1. GUS and Trypan blue staining 

GUS staining was performed according to the protocol described in Arabidopsis: A Laboratory 

Manual [Weigel, 2002]. To visualize GUS reporter activity under normal or stress conditions, 

transgenic plants were sampled and incubated in X-Gluc buffer containing 1 mmol/L X-Gluc, 

100 mmol/L sodium phosphate buffer, pH 7.0, 0.5 mmol/L potassium ferricyanide, 0.5 mmol/L 

potassium ferrocyanide and 0.1 % (v/v) Triton X-100. The tissues were then infiltrated by 

vacuum in 3 cycles of 1 min and finally incubated overnight at 37 °C. Tissues were washed 

with 70 % ethanol to remove pigments which may interfere with the proper display of dyed 

tissues. Pictures were taken by a binocular microscope Leica MZ16F. Trypan Blue staining 

was performed following a modified protocol [Fernández-Bautista, 2016]. Leaves from 28-days 

plants were incubated in trypan blue staining solution (85 % lactic acid 10 mL, phenol 10 mL, 

99 % glycerol 10 mL, distilled water 10 mL and trypan blue 40 mg). Time incubation was 

maximum 1 h before staining solution was completely removed. Seventy % ethanol was added 

repeatedly until green tissues became completely colorless.   

 

3.2.13.2. NBT and DAB Staining 

H2O2 and superoxide anion were detected as described in [Scarpeci, 2008a]. For superoxide 

anion detection, leaves from 28 day-old plants were vacuum-infiltrated with 50 mM sodium 

phosphate pH 7.5 containing 0.2 % (w/v) nitroblue tetrazolium (NBT; N6876, Sigma-Aldrich). 

Samples were incubated at room temperature for 2 h in the dark and then transferred to 70 % 

ethanol. The reaction of the NBT with O2•− produces a dark blue insoluble formazan 

compound. For the detection of H2O2, 28 day-old leaves were infiltrated with a solution of 1 

mg/mL 3,3′-diaminobenzidine (DAB). The DAB solution was freshly prepared prior incubation 

to avoid auto-oxidation. DAB was dissolved in H2O and adjusted to pH 3.8 with KOH. After 

incubation, leaves were cleared with 70 % (v/v) ethanol. H2O2 was visualized as a reddish-

brown coloration due to DAB polymerization.  

 

 

3.2.14. Cell areas determination 

Epidermal cells areas were measured following a protocol given by Dr. Martin Mayta (IBR-

UNR-CONICET). To obtain views of epidermal cells, leaves from 21 day-old A. thaliana plants 
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were incubated with lactic acid (85 %) at room temperature for 2 to 3 days, until tissues were 

completely cleared. Leaf cells were detected using differential interference contrast 

microscopy in an Olympus BH2 microscope. Photographs were taken along with a ruler that 

was used as a reference to calculate cells and total leaf area. To determine the mean areas, 

6 leaves and a minimum of 650 cells from each mutant line or Col-0 plants were measured by 

using the ImageJ 1.4 software.  

 

 

3.2.15. Statistical Analyses 

Statistical significance was estimated according to Student's t-test using the Microsoft Excel 

software. Only comparisons with a p-value < 0.05 were designated as statistically significant. 

One-way and two-way analysis of variance (ANOVA) followed by Fisher’s multiple comparison 

test was carried on by using InfoStat. 



Results and Discussion 

 

40 

4. Results and Discussion 

 

 

The results concerning the specific objectives of this study are presented and discussed 

separately in three independent chapters, which are found in the next sections:  

 

 

Chapter I:  

Putative bidirectional promoters regulate the expression of ACD genes in Arabidopsis thaliana 

under abiotic stress (section 4.1). 

 

Chapter II: 

Functional characterization of mitochondrial small heat shock proteins in Arabidopsis thaliana 

(section 4.2). 

 

Chapter III:  

Mitochondrial small heat shock protein and chilling tolerance in tomato fruit (section 4.3). 
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CHAPTER I 

 

 

4.1. Putative bidirectional promoters regulate the expression of 

ACD genes in Arabidopsis thaliana under abiotic stress. 

 

 

Plants exhibit a high complexity in the sHSPs with members that are localized in the nuclear-

cytosolic compartment, chloroplasts, mitochondria, endoplasmic reticulum, and peroxisomes, 

indicating that these proteins are involved in the thermotolerance of practically all cellular 

compartments [Kotak, 2007]. Genes encoding sHSPs are highly expressed during heat stress, 

but in other stressing conditions including osmotic and oxidative stress, and UV-B exposure 

[Scarpeci, 2008b; Waters, 2013]. One of the main characteristics of the sHSPs is that they all 

share the conserved alpha-crystallin domain (ACD), a conserved carboxy-terminal domain of 

about 90 amino acids. However, not all the proteins that contain an ACD (ACD proteins) are 

sHSPs, some ACD proteins were described to have different functions. Plants have a large 

number of genes encoding sHSPs. To the date, 19 open reading frames (ORFs) encoding 

proteins related to the different classes of plants sHSPs have been identified in the Arabidopsis 

genome [Scharf, 2001]. It is not clear yet whether all sHSPs identified in Arabidopsis are all 

that exist, or if any of the ACD containing proteins identified are sHSPs [Bondino, 2012]. 

Therefore, attributing specific effects on individual ACD proteins is a great challenge. In a 

previews work, several genes encoding ACD proteins were identified in the Arabidopsis 

genome, many of them have not been studied yet raising the possibility that they could function 

as sHSPs. Notably, some of these genes are head-to-head oriented in the genome, sharing 

putative bidirectional promoters with other genes of different function (Bondino and Valle, 

unpublished result). Coupled transcription from bidirectional promoters is used by the cells as 

an additional mechanism for the regulation of gene expression. In plants, examples of 

bidirectional promoters responsive to stress conditions were reported, they involve genes of 

the chloroplast antioxidant defense [Bondino, 2009] or salt stress response [Banerjee, 2013]. 

Plant bidirectional promoters have gained considerable attention in recent years since they 

can be used for co-expressing multigene traits and facilitating crop improvement. In the present 

work, a functional characterization of head-to-head oriented genes encoding ACD proteins and 

the correspondent intergenic regions was performed. The results combined data obtained from 

bioinformatic predictions and published data, along with experimental evidence. 
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4.1.1 Characterization of four genes encoding ACD proteins with head-to-head 

orientation in the Arabidopsis thaliana genome. 

 

Among all genes encoding ACD proteins which are potential sHSPs, four genes were selected 

for this study considering the following criteria: the coding proteins should have an ACD domain 

in their sequences, they should share a putative bidirectional promoter (BDP) with another 

gene of different function and the intergenic region between them should be of no more than 

1500 bp long. The pair of genes selected in this way were: At4g25650-At4g25660, At5g51430-

At5g51440, At2g35490-At2g35500, At1g06460-At1g06470, where At4g25650, At5g51440, 

At2g35500 and At1g06460 encode for ACD proteins. The genes in each pair are located 

divergently and in opposite strands of the genome. As indicated by the gene identifier, the 

gene pairs are located in chromosomes 4, 5, 2 and 1, respectively. In the next paragraphs, a 

brief description of these genes is presented. Special attention was given to the responses of 

these genes to abiotic stresses. 

 

Pair At4g25650-At4g25660: At4g25650 (2434 bp) encodes for an ACD protein (ACD1-LIKE, 

also called PTC52), component of a protochlorophyllide-dependent translocon. It is located in 

chloroplasts. This translocon is highly expressed in etiolated plants and may be involved in 

protein translocation processes and chlorophyll metabolism, although it has been reported that 

PTC52 is not strictly required for protein import in chloroplast [Bartsch, 2008; Boij, 2009]. 

At4g25660 (2190 bp) encodes for a putative thiol peptidase (PPPDE) present in the cytoplasm. 

The Bio-analytic Resource for Plant Biology database - BAR  [Winter, 2007] was used to 

investigate the expression of the pair of genes in stress conditions, particularly in salt, osmotic, 

oxidative, high and low temperature. At4g25650 has a constitutive expression in the aerial 

parts of Arabidopsis plants. The expression increases after cold (12 h at 4 ºC), salt (3 h 150 

mM ClNa), osmotic (3 h 300 mM Mannitol) and oxidative (3 h 10 µM Methyl Viologen) stresses. 

No important changes were found after heat stress at 38 ºC. At4g25660, on the other hand, is 

expressed in roots and leaves. The expression increases after cold (12 h at 4 ºC), and slightly 

under salt (6 h with 150 mM ClNa), osmotic (12 h 300 mM Mannitol) and heat (6 h at 38 ºC) 

conditions (see Suppl. Fig. 4.1).  

 

Pair At5g51430-At5g51440: At5g51430 (4263 bp) encodes a protein homologous to Cog7 

(EYE), a subunit of the oligomeric Golgi (COG) complex. EYE is probably involved in the 

transport or retention of proteins that are located in the Golgi complex and in the maintenance 

of Golgi function and morphology [Ishikawa, 2008]. At5g51440 (1254 bp) encodes a 

mitochondrial small heat shock protein (sHSP23.5). It has been established that only two 

mitochondrial sHSPs exist in A. thaliana, sHSP23.5 and sHSP23.6 [Waters, 2008a]. The 
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information from the BAR database indicates that At5g51430 is expressed in roots and leaves 

of A. thaliana plants, it shows lower expression in cold (3 h at 4 ºC) and higher expression in 

salt (6 h 150 mM ClNa) and heat (1 h at 38 ºC) conditions. The other gene in the pair, 

At5g51440, has low basal expression in the whole plant but it is highly expressed under heat 

stress conditions (1 h at 38 ºC) (see Suppl. Fig. 4.2 for this section). 

 

Pair At2g35490-At2g35500: At2g35490 (1979 bp) encodes for a plastid-lipid associated 

protein, also named fibrillin2 (FIB2), which is located in chloroplasts. FIBs are thylakoid-

associated proteins and accumulate under biotic and abiotic stress conditions [Youssef, 2010]. 

At2g35500 encodes the chloroplastic shikimate kinase-like 2 protein (SKL2) which has 

sequence similarity to shikimate kinases, albeit SKL2 may be inactivated with no SK activity 

[Fucile, 2008]. This gene has 2732 bp and the coding protein is also annotated as HSP20-like 

chaperone for the presence of the ACD domain. According to the BAR database, the pair 

At2g35490-At2g35500 is expressed in Arabidopsis plants in leaves but not in roots. At2g35490 

shows high expression in normal conditions and it is not significantly affected by abiotic 

stresses. On the contrary, At2g35500 accumulates after cold (1 h at 4 ºC), oxidative (6 h 10 

µM Methyl Viologen) and heat stress (1 h at 38 ºC) treatments (see Suppl. Fig. 4.3). 

 

Pair At1g06460-At1g06470: At1g06460 (2570 bp) encodes the protein ACD32.1, an alpha-

crystallin domain-containing protein with homology to sHSPs. It is one of the two sHSPs 

present in the peroxisome matrix where it may prevent the aggregation of partially denatured 

proteins in physiological and stress conditions [Ma, 2006]. The neighbor gene, At1g06470 has 

a sequence of 4869 bp and encodes for a putative nucleotide/sugar transporter protein. The 

coding protein is located in the tonoplast. In Arabidopsis plants, At1g06460 exhibits high 

expression levels under salt (6 h 150 mM ClNa), osmotic (6 h 300 mM Mannitol), oxidative (6 

h 10 µM Methyl Viologen) and heat stress (1 h at 38 ºC) conditions, as can be found in the 

BAR database. At1g06470 is highly expressed in roots and leaves. The gene expression 

increases in salt (12 h 150 mM ClNa), oxidative (6 h 10 µM Methyl Viologen) and high 

temperature (4 h at 38 ºC) conditions (Suppl. Fig. 4.4). 

 

 

4.1.2. Expression analysis of bi-directional genes under abiotic stress conditions. 

 

Based on the in-silico expression data, we designed experiments to study the expression of 

the selected genes in vivo. Quantitative analysis of the gene expressions in A. thaliana Col-0 

plants was performed by q-PCR using cDNA, obtained from RNA isolated from 7 day-old 

seedlings. These plants were grown under normal conditions and exposed for 1 h to low 
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temperature (4 ºC), and 3 h to high temperature (37 ºC), salinity (150 mM ClNa), osmotic (300 

mM Mannitol) and oxidative (10 µM Methyl Viologen, Sigma-Aldrich Co., St. Louis, USA) 

conditions. Samples from plants not exposed to stress were also taken and used as a control. 

The reference gene for the quantification analysis was protein phosphatase 2 (PP2a), a stress-

unrelated control gene. For each gene, the obtained data were normalized to the expression 

of the respective gene at control conditions. Expression of the genes sharing the same putative 

bidirectional promoter was always measured together to ensure the exact experimental 

conditions and comparable results.  

 

Expression of At4g25650 and At4g25660: After 3 h under NaCl and Mannitol treatments, 

At4g25650 showed a 2.5-fold and 1.5-fold lower significant level in the expression, respectively 

(Fig. 4.1). Similarly, a significant reduction in the expression of this gene was found after the 

heat treatment (1.7-fold lower). In oxidative and cold conditions, no significant changes were 

observed, albeit a tendency to lower expression levels could be noticed (Fig. 4.1). While 

At4g25650 had lower expression levels in the abiotic stresses applied, At4g25660 presented 

the opposite behavior with an accumulation of transcripts under the same conditions, except 

for heat stress (Fig. 4.1). At4g25660 showed significant accumulation with 3.7-fold and 3-fold 

enrichment in salt and osmotic treatments, respectively. In the oxidative environment, the 

expression rates of At4g25660 also accumulated significantly with 2-fold higher expression, 

whereas no significant changes in the expression were obtained after heat and cold conditions 

(Fig. 4.1). Furthermore, the expression levels of the two genes were compared between each 

other. In this case, the raw quantitative data obtained of both genes was normalized to the 

basal expression of the At4g25650 gene in control conditions, and the relative gene expression 

of At4g25660 was calculated. In seedlings grown under normal conditions and not exposed to 

any external abiotic stress, At4g25660 already had a significantly higher (about 33-fold) 

expression compared to At4g25650. Under stress conditions, the same tendency was seen: 

At4g25660 transcripts highly accumulated compared to At4g25650 transcripts in all of them 

(data not shown). 
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Figure 4.1. Expression of ACD1-like and PPPDE in A. thaliana seedlings. Quantitative real-time 
PCR of ACD1-like and PPPDE after salt, osmotic, oxidative, low and high temperature. Plants were 
grown for 7 days at 22 °C under long day conditions and exposed for 3 h to the different treatments. All 
expression values were first normalized to the PP2A expression taken as a reference. Relative 
expression of the transcripts was then normalized to their expression levels at control conditions. The 
experiment was performed twice, obtaining comparable results. Each point corresponds to the mean 
value + SD of three biological replicates of one experiment. Twenty plants were pooled for one replicate. 
Asterisks mean significance by one-sided t-test with *p<0.05, **p<.0.01. 

 

 

Expression of At5g51430 and At5g51440: The transcript levels of the genes in the pair 

At5g51430-At5g51440 displayed several changes in the tested conditions (Fig. 4.2). In the 

case of At5g51430, the expression rates significantly decreased under osmotic conditions 

(about 2-fold lower) while in the other stresses it showed similar expression levels to control 

plants. Two conditions affected the expression levels of At5g51440, salinity and high 

temperature. Under salt stress, a 2-fold reduction in the expression level was seen. The highest 

amount of transcripts for At5g51440 was observed upon heat stress, it accumulated to more 

than 400 times after 3 h at 37 ºC. In another analysis, the raw quantitative data obtained of 

both genes was normalized to the basal expression of the At5g51430 gene in control 

conditions (now used as reference), and the relative gene expression of At5g51440 was 

calculated. The relative expression level between the two genes of the pair showed a 

considerable high expression for At5g51430 compared to At5g51440, it had 7-fold higher 

levels of transcripts already under normal conditions of growth. The only exception was at high 

temperature where At5g51440 was greatly expressed and accumulated at higher rates 

compared to its neighbor (data not shown).  

* * 
* 

* 

** 

** 



Results and Discussion 

 

46 

EYE sHSP23.5

R
e

la
ti
v
e

 e
x
p

re
s
s
io

n

0

2

4

350

400

450 Control 

Salinity 

Osmotic 

Oxidative 

Cold 

Heat 

 

Figure 4.2. Expression of EYE and sHSP23.5 in A. thaliana seedlings. Quantitative real-time PCR 
of EYE and sHSP23.5 after salt, osmotic, oxidative, low and high temperature. Plants were grown for 7 
days at 22 °C under long day conditions and exposed for 3 h to the different treatments. All expression 
values were first normalized to the PP2A expression taken as a reference. Relative expression of the 
transcripts was then normalized to their expression levels at control conditions. The experiment was 
performed twice, obtaining comparable results. Each point corresponds to the mean value + SD of three 
biological replicates of one experiment. Twenty plants were pooled for one replicate. Asterisks mean 
significance by one-sided t-test with *p<0.05, **p<.0.01. 

 

 

Expression of At2g35490 and At2g35500: The quantification of the expression levels of 

At2g35490 and At2g35500 in seedlings after the abiotic stresses showed similar expression 

patterns for both genes (Fig. 4.3). The transcripts of At2g35490 and At2g35500 significantly 

accumulated under low and high temperature: the expression levels were 1.4- to 1.8-fold 

higher at 4 ºC and 1.3- to 1.8-fold higher at 37 ºC, respectively.  Beside this, At2g35500 had a 

slight, but significant, decrease of expression under oxidative stress. The same tendency was 

observed for At2g35490 but only when considering a statistical p-value of 0.1. For the rest of 

the conditions that were analyzed no significant changes were noticed. In addition, the 

expression levels of the two genes were compared between each other. To do this, the raw 

quantitative data obtained of both genes measurements were normalized to the basal 

expression of the At2g35490 gene in control conditions, and the relative gene expression of 

At2g35500 was calculated. By performing this analysis, it was evident the higher relative 

expression of At2g35490 under control conditions and after the stress treatments (with fold 

changes from 4.4 in control and 37 ºC to 5.8 in osmotic stress) (data not shown). 

* 

** 

* 
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Figure 4.3. Expression of FIB2 and SKL2 in A. thaliana seedlings. Quantitative real-time PCR of 
FIB2 and SKL2 after salt, osmotic, oxidative, low and high temperature. Plants were grown for 7 days 
at 22 °C under long day conditions and exposed for 3 h to the different treatments. All expression values 
were first normalized to the PP2A expression taken as a reference. Relative expression of the transcripts 
was then normalized to their expression levels at control conditions. The experiment was performed 
twice, obtaining comparable results. Each point corresponds to the mean value + SD of three biological 
replicates of one experiment. Twenty plants were pooled for one replicate. Asterisks mean significance 
by one-sided t-test with *p<0.05, **p<.0.01. 
 

 

Expression of At1g06460-At1g06470: The gene pair At1g06460-At1g06470 also displayed 

stress-induced responses in some of the tested conditions (Fig. 4.4). Under salinity, both genes 

exhibited a significant reduction of the expression. Under osmotic conditions, the expression 

levels of At1g06470 were reduced, but At1g06460 expression showed no significant change. 

Under high temperature condition, the expression response of seedlings was the opposite for 

these genes. That is, the expression of At1g06460 was reduced after the heat treatment while 

At1g06470 had a 1.5-fold enrichment. In the other stress conditions, both genes showed 

expression levels that were similar to the control conditions. Moreover, a comparison between 

the expression of both genes was performed by calculating the expression of At1g06470 

relative to At1g06460. For this purpose, the raw quantitative data obtained of both genes 

measurements were normalized to the basal expression of the At1g06460 gene in control 

conditions. Under normal conditions of growth, At1g06460 displayed significantly higher 

expression in comparison to the At1g06470 expression, it accumulated to about 9-fold higher. 

This difference in the expression of the genes under control conditions was also found in the 

abiotic stress conditions (data not shown).  

** 
** 

** 
** 

* 
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Figure 4.4. Expression of ACD32.1 and At1g06470 in A. thaliana seedlings. Quantitative real-time 
PCR of ACD32.1 and At1g06470 after salt, osmotic, oxidative, low and high temperature. Plants were 
grown for 7 days at 22 °C under long day conditions and exposed for 3 h to the different treatments. All 
expression values were first normalized to the PP2A expression taken as a reference. Relative 
expression of the transcripts was then normalized to their expression levels at control conditions. The 
experiment was performed twice, obtaining comparable results. Each point corresponds to the mean 
value + SD of three biological replicates of one experiment. Twenty plants were pooled for one replicate. 
Asterisks mean significance by one-sided t-test with *p<0.05, **p<.0.01. 

 

 

4.1.3. Analysis of four putative bidirectional promoters in A. thaliana. 

 

The intergenic regions between the genes At4g25650-At4g25660, At5g51430-At5g51440, 

At2g35490-At2g35500, and At1g06460-At1g06470 were examined to identify regulatory 

motifs and transcription factor sites by using the PlantCare and PLACE databases. The 

PlantCare database is a useful resource for the in silico analysis of promoter sequences 

[Lescot, 2002]. Similarly, the PLACE database allows the identification of cis-acting regulatory 

DNA element in promoters [Higo, 1999].  

 

Intergenic region between At4g25650 and At4g25660 

The region located between these genes is 523 bp long. The analysis of the promoter 

sequence by using the PlantCare database has revealed the presence of different putative cis 

elements such as CAAT and TATA-BOXES, ABRE, Box II, G-Box, GA-motif, GATA-motif, 

GT1-motif, I-box and MYB recognition sites (Table 4.1). The CAAT and TATA boxes are 

common cis-acting elements that are essential for the transcription initiation and were identified 

in the positive and negative strand of the sequence. Several light responsive cis-elements were 

found in both directions of the sequence including the motifs Box II, G-Box, GA-motif, GATA-

motif, GT1-motif, and I-box. The water stress related site MYB is present in the negative strand 

* ** * ** 

** 
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while two abscisic acid responsive elements, ABRE and ABRE2 are putatively located in the 

positive strand of the intergenic region. The promoter sequence also revealed several potential 

TFBs (Table 4.2). Among them, 18 water stress, 3 low temperature, and 7 light regulated TFBs 

were recognized. Interestingly, the promoter contains 14 TFBs related to plant hormones such 

as auxin, gibberellin, and cytokinin (SURECOREATSULTR11, ARR1AT, and WRKY71OS). 

Two TFBs present in the sequence were related to heat stress regulation (CCAATBOX1) and 

salinity stress (GT1GMSCAM4), both conditions affecting the expression of At4g25650 and 

At4g25660 (Fig. 4.1). 

 

 

Table 4.1. List of putative cis-acting regulatory elements present in the putative BDP of 
At4g25650-At4g25660 (from Plant CARE). 
 

Site Organism Position Strand Sequence Function 

ABRE 
  

A. thaliana 242 + ACGTG Abscisic acid 
response  A. thaliana 241 + CACGTG 

ABRE2 Zea mays 240 + CCACGTGG 
Abscisic acid 
response 

Box II 
Petroselinum 
crispum 

240 + CCACGTGGC Light response 

CAAT-box 
  
  

Nicotiana 
glutinosa 

425 - CAAT 
Common cis-
acting element  
  

Nicotiana 
glutinosa 

197 + CAAT 

Pisum sativum 24 + CAAAT 

CCAAT-box Hordeum vulgare 353 + CAACGG 
MYBHv1 binding 
site 

G-Box 
  
  
  
  

Triticum aestivum 239 + TCCACATGGCA 

Light response 
  
  

Pisum sativum 241 + CACGTG 

A. thaliana 241 + CACGTG 

A. thaliana 237 + CTTCCACGTGGCA 

A. thaliana 239 - GCCACGTGGA 

GA-motif A. thaliana 208 + ATAGATAA Light response 

GATA-motif A. thaliana 215 + AAGATAAGATT Light response 

GT1-motif 
  

A. thaliana 323 - GGTTAA 
Light response 

Avena sativa 322 - GGTTAAT 

I-box A. thaliana 270 + GATAAGGGT Light response 

MYB 
recognition 
site 

A. thaliana 353 - CCGTTG 
Water stress 
response 

TATA-box 
  
  
  
  
  
  
  
  
  

A. thaliana 65 - TATATAA Core promoter 
element 
  
  
  
  
  
  
  
  

Brassica napus 437 + ATTATA 

A. thaliana 68 + TATA 

A. thaliana 441 - TATATA 

A. thaliana 66 + TATATA 

A. thaliana 439 - TATATA 

Brassica oleracea 123 + ATATAA 

A. thaliana 443 - TATA 
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Brassica napus 64 + ATTATA   
  
  
  

A. thaliana 438 - TATATAA 

A. thaliana 110 + TATA 

Brassica napus 440 - ATATAT 

Brassica napus 67 + ATATAT 

A. thaliana 124 + TATA   

 

 

Table 4.2. List of putative transcriptional factor binding sites (TFBs) present in the BDP of 
At4g25650-At4g25660 (from PLACE database). 
 

Place ID Function 
Copy 

number 
Strand Sequence 

Place 
Accession 

SURECOREATSULTR11 Auxin response 1 (+) GAGAC S000499 

EVENINGAT 
Circadian control 
associated element  

1 (+) AAAATATCT S000385 

CAATBOX1 Common cis-acting element 7 (-)(+) CAAT S000028 

TATABOX2 Common cis-acting element 1 (-) TATAAAT S000109 

ARR1AT Cytokinin response 12 (-)(+) NGATT S000454 

DOFCOREZM Endosperm specific 11 (-)(+) AAAG S000265 

WRKY71OS Gibberellin specific 1 (+) TGAC S000447 

CCAATBOX1 Heat shock response 2 (+) CCAAT S000030 

GT1CONSENSUS Light-regulated 5 (-)(+) GRWAAW S000198 

IBOXCORE Light-regulated 2 (+) GATAA S000199 

LTREATLTI78 Low temperature response 1 (-) ACCGACA S000157 

LTRECOREATCOR15 Low temperature response 2 (-) CCGAC S000153 

CACTFTPPCA1 Mesophyll Specific 8 (-)(+) YACT S000449 

GT1GMSCAM4 Salt-induced element 1 (-) GAAAAA S000453 

ACGTATERD1 Water stress response 2 (-)(+) ACGT S000415 

CBFHV Water stress response 2 (-) RYCGAC S000497 

DRECRTCOREAT Water stress response 2 (-) RCCGAC S000418 

MYB1AT Water stress response 3 (-)(+) WAACCA S000408 

MYB2CONSENSUSAT Water stress response 1 (+) YAACKG S000409 

MYBCORE Water stress response 4 (-)(+) CNGTTR S000176 

MYCCONSENSUSAT Water stress response 4 (-)(+) CANNTG S000407 

 

 

Intergenic region between At5g51430 and At5g51440 

A 446 bp sequence is located between At5g51430 and At5g51440. The region contains the 

CAAT and TATA boxes and other cis-regulatory elements as was predicted by the PlantCare 

database (Table 4.3). The Box 4 at site -405 (ATTAAT), the HSE at site +378 (AAAAAATTTC), 

the TC-rich repeats at site +342 (ATTCTCTAAC) and GAG-motif at sites -295, -322 

(AGAGAGT) are stress related cis-elements. Two methyl jasmonate sites were predicted in 

this sequence, CGTCA-motif, and TGACG-motif. In addition to this, water stress (CBFHV, 

DRECRTCOREAT, MYB1AT, MYBCORE, and MYCCONSENSUSAT) and light stress 

(GATABOX, GT1CONSENSUS, IBOXCORE, SORLIP2AT, TBOXATGAPB) related TFBs 
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were predicted in the sequence (Table 4.4). Other putative TFBs that are associated with high 

temperature (PRECONSCRHSP70A), salinity (GT1GMSCAM4) and low temperature 

(LTRECOREATCOR15) were also identified in several sites along the sequence.  

 

 

Table 4.3. List of putative cis-acting regulatory elements present in the putative BDP of 
At5g51430-At5g51440 (from Plant CARE). 
 

Site Organism Position Strand Sequence Function 

ARE 
  
  

Zea mays 107 + AAACCA Cis-acting regulatory 
element essential for 
the anaerobic 
induction 

Zea mays 152 + AAACCA 

Zea mays 147 + AAACCA 

Box 4 
Petroselinum 
crispum 

405 - ATTAAT Light response 

CAAT-box 
  
  

Pisum sativum 111 + CAAAT Common cis-acting 
element  
  

Pisum sativum 180 + CAAAT 

Pisum sativum 133 + CAAAT 

CGTCA-motif 
Hordeum 
vulgare 

206 + CGTCA MeJA response 

HSE 
Brassica 
oleracea 

378 + AAAAAATTTC Heat stress response 

TATA-box 
  
  
  

A. thaliana 332 - TATATA 

Core promoter 
element 

A. thaliana 334 - TATA 

Brassica 
oleracea 

333 + ATATAA 

A. thaliana 374 - TATA 

TC-rich repeats 
Nicotiana 
tabacum 

342 + ATTCTCTAAC Stress response 

TGACG-motif 
Hordeum 
vulgare 

206 - TGACG MeJA response 

GAG-motif 
  

A. thaliana 295 - AGAGAGT 
Light response  

A. thaliana 322 - AGAGAGT 

 

 

Table 4.4. List of putative TFBs present in the BDP of At5g51430-At5g51440 (from PLACE 
database). 
 

Place ID Function 
Copy 

number 
Strand Sequence 

Place 
Accession 

SURECOREATSULTR11 Auxin response 1 (+) GAGAC S000499 

EVENINGAT 
Circadian control 
associated element  

1 (+) AAAATATCT S000385 

TATABOX4 
Common cis-acting 
element 

1 (+) TATATAA S000111 

TATABOX5 
Common cis-acting 
element 

3 (-)(+) TTATTT S000203 

ARR1AT Cytokinin response 2 (-)(+) NGATT S000454 

DOFCOREZM Endosperm specific 13 (-)(+) AAAG S000265 

WRKY71OS Gibberellin specific 1 (-) TGAC S000447 

PRECONSCRHSP70A Heat response 8 (+) SCGAYNRNNNHD S000506 

GATABOX Light-regulated 3 (-)(+) GATA S000039 
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GT1CONSENSUS Light-regulated 8 (-)(+) GRWAAW S000198 

IBOXCORE Light-regulated 1 (+) GATAA S000199 

SORLIP2AT Light-regulated 3 (-)(+) GGGCC S000483 

TBOXATGAPB Light-regulated 1 (-) ACTTTG S000383 

LTRECOREATCOR15 
Low temperature 
response 

1 (+) CCGAC S000153 

CACTFTPPCA1 Mesophyll Specific 7 (-)(+) YACT S000449 

GT1GMSCAM4 Salt-induced element 4 (-)(+) GAAAAA S000453 

CBFHV Water stress response 1 (+) RYCGAC S000497 

DRECRTCOREAT Water stress response 1 (+) RCCGAC S000418 

MYB1AT Water stress response 3 (+) WAACCA S000408 

MYBCORE Water stress response 1 (-) CNGTTR S000176 

MYCCONSENSUSAT Water stress response 2 (-)(+) CANNTG S000407 

 

 

Intergenic region between At2g35490 and At2g35500 

This is the smallest intergenic region (240 bp) studied in this work. As in the previews promoter 

analysis, the sequence between At2g35490 and At2g35500 has the conserved CAAT and 

TATA boxes in both positive and negative strands (Table 4.5). Besides this, one cis element 

that is related to heat stress (HSE) is found in the positive strand at site +28 and one motif 

related to low temperature (LTR) is located in the negative strand at the site -33. Furthermore, 

a high number of light-regulated TFBs were identified in the sequence including the GATABOX, 

GT1CONSENSUS, IBOX, IBOXCORE, IBOXCORENT, SORLIP2AT, SORLIP5AT and 

TBOXATGAPB sites (Table 4.6). The sequence has one TFBs associated with salt stress 

(GT1GMSCAM4) and one with low temperature (LTRE1HVBLT49). Several copies of the 

NTBBF1ARROLB, SURECOREATSULTR11, ARR1AT, ERELEE4, and WRKY71OS sites 

were also found, all of them related to different plant hormone regulation. 

 

 

Table 4.5. List of putative cis-acting regulatory elements present in the putative BDP of 
At2g35490-At2g35500 (from Plant CARE). 
 

Site Organism Position Strand Sequence Function 

CAAT-box 
  
  

Nicotiana glutinosa 100 + CAAT 
Common cis-acting 
element  

Nicotiana glutinosa 231 + CAAT 

Pisum sativum 166 - CAAAT 

LTR Hordeum vulgare 33 - CCGAAA 
Low temperature 
response 

TATA-box 
  
  

Brassica napus 157 + ATTATA 

Core promoter element A. thaliana 159 - TATA 

A. thaliana 158 - TATAA 

HSE Brassica oleracea 28 + AAAAAATTTC Heat stress response 
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Table 4.6. List of putative TFBs present in the putative BDP of At2g35490-At2g35500 (from 
PLACE database). 
 

Place ID Function 
Copy 

number 
Strand Sequence 

Place 
Accession 

NTBBF1ARROLB Auxin response 1 (+) ACTTTA S000273 

SURECOREATSULTR11 Auxin response 1 (-) GAGAC S000499 

CAATBOX1 Common cis-acting elem. 2 (+) CAAT S000028 

ARR1AT Cytokinin response 5 (-)(+) NGATT S000454 

DOFCOREZM Endosperm specific 4 (-) AAAG S000265 

ERELEE4 Ethylene response 1 (-) AWTTCAAA S000037 

WRKY71OS Gibberellin specific 2 (+) TGAC S000447 

GATABOX Light-regulated 2 (-)(+) GATA S000039 

GT1CONSENSUS Light-regulated 4 (+) GRWAAW S000198 

IBOX Light-regulated 1 (-) GATAAG S000124 

IBOXCORE Light-regulated 1 (-) GATAA S000199 

IBOXCORENT Light-regulated 1 (-) GATAAGR S000424 

SORLIP2AT Light-regulated 2 (-)(+) GGGCC S000483 

SORLIP5AT Light-regulated 2 (+) GAGTGAG S000486 

TBOXATGAPB Light-regulated 1 (+) ACTTTG S000383 

LTRE1HVBLT49 Low temperature response 1 (-) CCGAAA S000250 

CACTFTPPCA1 Mesophyll Specific 5 (-)(+) YACT S000449 

GT1GMSCAM4 Salt-induced element 1 (+) GAAAAA S000453 

 

 

Intergenic region between At1g06460 and At1g06470 

The sequence contained between these genes has 1311 bp. Apart from the conserved CAAT 

and TATA boxes, the analysis of the putative BDP by using PlantCare resulted in different cis-

elements (Table 4.7). The Box 4, G-box, GATA-motif and MRE elements are all light regulated 

and are present in both directions of the sequence. Also in this region, low temperature and 

water stress elements were found as well as hormone-related motifs such as ABRE, TATC-

box, and TGA-element. The analysis of the sequence by using the Place tool revealed several 

light, low temperature, and water stress-regulated TFBs. In addition, two heat responsive TFBs 

are found in this region, PRECONSCRHSP70A and CCAATBOX1. The presence of a 

considerable high number of hormone-regulated TFBs was predicted in the sequence between 

At1g06460 and At1g06470 as is stated in Table 4.8. 

 

 

Table 4.7. List of putative cis-acting regulatory elements present in the putative BDP of 
At1g06460-At1g06470 (from Plant CARE). 
 

Site Organism Position Strand Sequence Function 

ABRE A. thaliana 716 + ACGTG Abscisic acid response 

ARE Zea mays 785 - AAACCA 
Cis-acting regulatory 
element essential for 
the anaerobic induction 
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Box 4 
  

Petroselinum 
crispum 

264 + ATTAAT 
Light response 
  Petroselinum 

crispum 
751 - ATTAAT 

CAAT-box 
  
  
  
  
  
  
  

Nicotiana glutinosa 
5; 49; 218; 391; 
 739; 798; 1066 

- CAAT 

Common cis-acting 
element  
  
  
  
  
  

Pisum sativum 85; 281; 1133 + CAAAT 

A. thaliana 191 - CCAAT 

Nicotiana glutinosa 
316; 584; 588; 

641; 903 
- CAAT 

Nicotiana glutinosa 
925; 1032; 1242; 

1307 
- CAAT 

Pisum sativum 656; 1111 - CAAAT 

A. thaliana 738 + CCAAT 

A. thaliana 1096 - CCAAT 

CAT-box A. thaliana 91 - GCCACT Meristem expression 

CGTCA-
motif 

Hordeum vulgare 745 - CGTCA MeJA response 

G-box A. thaliana 715 + TACGTG Light response 

GATA-motif Pisum sativum 504 - GATAGGG Light response 

LTR Hordeum vulgare 1278 + CCGAAA 
Low temperature 
response 

MBS A. thaliana 1258 - CAACTG Water stress response 

MRE 
Petroselinum 
crispum 

1052 - AACCTAA Light response 

TATA-box 
  
  
  
  
  
  
  

A. thaliana 186 - ccTATAAAaa Core promoter element 

A. thaliana 1137 - TATA 

  
  
  
  
  
  

A. thaliana 285 + TATA 

Oryza sativa 788 - TACATAAA 

Brassica oleracea 284 + ATATAA 

Brassica oleracea 1136 + ATATAA 

A. thaliana 726 - ccTATAAAaa 

A. thaliana 1203 - TATTTAAA 

TATC-box Oryza sativa 1078 - TATCCCA Gibberellin response 

TC-rich 
repeats 

Nicotiana tabacum 776 - ATTCTCTAAC Stress response 

TCA-
element 

Nicotiana tabacum 706 + CCATCTTTTT Salicylic acid response 

TGA-
element 

Brassica oleracea 177 + AACGAC Auxin response 

TGACG-
motif 

Hordeum vulgare 745 + TGACG MeJA response 

 

 

Table 4.8. List of putative TFBs present in the BDP of At1g06460-At1g06470 (from PLACE 
database). 
 

Place ID Function 
Copy 

number 
Strand Sequence 

Place 
Accession 

DPBFCOREDCDC3 
Abscisic acid 
response 

4 (-)(+) ACACNNG S000292 

DRE2COREZMRAB17 
Abscisic acid 
response 

1 (-) ACCGAC S000402 

CATATGGMSAUR Auxin response 2 (-)(+) CATATG S000370 

SURECOREATSULTR11 Auxin response 1 (-) GAGAC S000499 
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ASF1MOTIFCAMV 
Auxin, salicylic 
acid, light 
response 

1 (+) TGACG S000024 

EVENINGAT 
Circadian control 
associated 
element  

2 (-)(+) AAAATATCT S000385 

CAATBOX1 
Common cis-
acting element 

1 (-) CCAAT S000030 

ARR1AT 
Cytokinin 
response 

29 (-)(+) NGATT S000454 

CPBCSPOR 
Cytokinin 
response 

1 (+) TATTAG S000491 

DOFCOREZM 
Endosperm 
specific 

27 (-)(+) AAAG S000265 

PYRIMIDINEBOXOSRAMY1A 
Gibberellin 
response 

2 (-) CCTTTT S000259 

WRKY71OS 
Gibberellin 
specific 

8 (-)(+) TGAC S000447 

PRECONSCRHSP70A Heat response 1 (-) SCGAYNRNNNHD S000506 

CCAATBOX1 Heat response 2 (-)(+) CCAAT S000030 

GATABOX Light-regulated 6 (-)(+) GATA S000039 

GT1CONSENSUS Light-regulated 12 (-)(+) GRWAAW S000198 

IBOX Light-regulated 1 (-) GATAAG S000124 

IBOXCORE Light-regulated 1 (-) GATAA S000199 

IBOXCORENT Light-regulated 1 (-) GATAAGR S000424 

INRNTPSADB Light-regulated 3 (-)(+) YTCANTYY S000395 

SORLIP2AT Light-regulated 3 (-) GCCAC S000482 

SORLIP5AT Light-regulated 1 (-) GAGTGAG S000486 

TBOXATGAPB Light-regulated 1 (-) ACTTTG S000383 

LTRE1HVBLT49 
Low temperature 
response 

1 (+) CCGAAA S000250 

LTREATLTI78 
Low temperature 
response 

1 (-) ACCGACA S000157 

LTRECOREATCOR15 
Low temperature 
response 

1 (-) CCGAC S000153 

CACTFTPPCA1 
Mesophyll 
Specific 

16 (-)(+) YACT S000449 

HEXMOTIFTAH3H4 
Pathogen, salt 
response 

1 (-) ACGTCA S000053 

PREATPRODH 
Pro or 
hypoosmolarity 
response 

1 (-) ACTCAT S000450 

GT1GMSCAM4 
Salt-induced 
element 

2 (-) GAAAAA S000453 

ABRELATERD1 
Water stress 
response 

1 (+) ACGTG S000414 

ACGTATERD1 
Water stress 
response 

4 (-)(+) ACGT S000415 

CBFHV 
Water stress 
response 

1 (-) RYCGAC S000497 

DRECRTCOREAT 
Water stress 
response 

1 (-) RCCGAC S000418 

MYB1AT 
Water stress 
response 

1 (-) WAACCA S000408 

MYB2CONSENSUSAT 
Water stress 
response 

1 (-) YAACKG S000409 

MYBCORE 
Water stress 
response 

1 (+) CNGTTR S000176 
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To gain more information about the putative BDP, sequences were investigated for the 

presence of DNase I hypersensitive sites (DHSs) by using the Plant-DHS database [Zhang, 

2016]. DHSs are genomic regions that exhibit hypersensitivity to cleavage by DNase I 

endonucleases. These sites are considered to be open chromatin and cis-regulatory enriched 

regions in eukaryotic genomes. For the 4 putative BDP studied, specific DHSs with a high 

score were found upstream of the transcription start sites (TSS) in leaf and flower tissues: 

TAIRchr4:13083001-13083505, TAIRchr5:20890477-20891503, TAIRchr2:14913640-

14914117, TAIRchr1:1969299-1969821 (Fig. 4.5, see yellow arrows for DHSs). In addition, 

there is a depletion of nucleosome occupancy at these sites in the leaf and flower tissues (data 

not shown). This indicates that the regions are open chromatin sites and thereby have 

accessibility to transcription factors.  

Additionally, the conservation of these putative bidirectional promoters in other species was 

explored. The conserved arrangement of the genes in 13 other species of dicotyledons was 

determined with information obtained from the Ensembl Plants database, Plant Compare 

(Orthologous) [Kersey, 2018]. Homologous genes were considered to be regulated by a 

conserved BDP (c-BDP) if they were arranged in a bidirectional architecture with the same or 

with a different gene, and by non-conserved BDP (n-BDP) when they were regulated by a 

unidirectional promoter (Table 4.9). Following these criteria, it was found that the putative BDP 

between At4g25650-At4g25660 and At5g51430-At5g51440 were the most conserved BDP in 

the other plant species, although the gene pairs were not always conserved together.  

 

 

Table 4.9. Conservation analysis of putative BDPs.  
 

 At4g25650 At4g25660 At5g51430 At5g51440 At2g35490 At2g35500 At1g06460 At1g06470 

Beta vulgaris n-BDP n-BDP c-BDP n-BDP n-BDP n-BDP n-BDP n-BDP 

Brassica 
napus 

c-BDP c-BDP c-BDP c-BDP n-BDP n-BDP c-BDP c-BDP 

Brassica 
oleracea 

c-BDP c-BDP c-BDP c-BDP n-BDP n-BDP c-BDP c-BDP 

Brassica 
rapa 

c-BDP c-BDP c-BDP c-BDP n-BDP n-BDP c-BDP c-BDP 

Glycine max c-BDP n-BDP c-BDP c-BDP n-BDP n-BDP n-BDP n-BDP 

Medicago 
truncatula 

c-BDP n-BDP c-BDP c-BDP n-BDP n-BDP n-BDP n-BDP 

Populus 
trichocarpa 

n-BDP n-BDP c-BDP c-BDP n-BDP n-BDP n-BDP n-BDP 

Prunus 
persica 

n-BDP n-BDP n-BDP n-BDP n-BDP n-BDP n-BDP n-BDP 

Solanum 
lycopersicum 

c-BDP n-BDP c-BDP n-BDP c-BDP n-BDP n-BDP n-BDP 

Solanum 
tuberosum 

n-BDP n-BDP c-BDP n-BDP n-BDP n-BDP n-BDP n-BDP 

Theobroma 
cacao 

n-BDP c-BDP c-BDP c-BDP c-BDP n-BDP n-BDP n-BDP 

Trifolium 
pratense 

c-BDP n-BDP c-BDP c-BDP c-BDP n-BDP n-BDP n-BDP 

Vitis vinifera n-BDP n-BDP n-BDP n-BDP n-BDP n-BDP n-BDP n-BDP 
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Figura 4.5. Distribution of DNase I hypersensitive sites in the BDPs. DHSs (yellow arrows) were 
identified by using the Plant-DHS database [Zhang, 2016]. Leaf and flower scores are presented. A) 
At4g25650-At4g25660,B) At5g51430-At5g51440, C) At2g35490-At2g35500, D) At1g06460-At1g06470. 
Access 25.01.2018. 
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4.1.4. The activity of the putative bidirectional promoters in A. thaliana seedlings. 

 

In order to investigate the in vivo activity of the selected BDPs in physiological and stress 

conditions, the 4 intergenic regions were isolated from the A. thaliana genome by PCR. The 

fragments were then cloned in both directions to a GUS reporter vector (GF9) and the 8 

resulting constructs were transformed into Arabidopsis Col-0 plants. For each construct, 5 

independent lines were isolated and used in GUS staining experiments. GUS staining was 

performed in 7 days Arabidopsis seedlings as described in Materials and Methods section. 

The results obtained from the GUS assays of the transgenic plants indicate that all the 

intergenic regions showed bidirectional activity (Fig. 4.6). Except for the region between 

At1g06460 and At1g06470, all the promoter regions showed stronger activity in one direction 

compared to the other side. The BDP in the par At4g25650-At4g25660 exhibited stronger 

activity in the PPPDE direction, with expression in leaves and roots. To the other side (ACD1-

like), the promoter activity was lower and only in leaves. Something similar happened for the 

BDP of At5g51430-At5g51440, where the promoter activity in leaves and roots showed 

stronger intensity in the sHSP23.5 side. The GUS assays for PromSKL2::GUS gave a strong 

activity in leaves, while the activity for PromFIB2::GUS was extremely low in the same 

conditions. The activity of the last BDP located in the middle of At1g06460 and At1g06470 

showed comparable intensity in both directions. Further, GUS assays were performed in the 

transgenic plants exposed to several abiotic stress conditions. The same stress conditions as 

for the q-PCR experiments were tested, plants were grown under normal conditions and 

exposed for 1 h to low temperature (4 ºC), and 3 h to high temperature (37 ºC), salinity (150 

mM ClNa), osmotic (300 mM Mannitol) and oxidative (10 µM Methyl Viologen) conditions. 

Compared to the control situation, the promoter activity for ACD1-like further accumulated only 

in cold conditions and it was reduced at high temperature. The activity of the same promoter 

but in the other direction, showed stronger activity under salt, osmotic and oxidative stresses. 

The BDPs of EYE and sHSP23.5 had apparently less activity in the osmotic, oxidative, low and 

high temperature treatments compared to control conditions in the minus strand (in the 

At5g51430 direction), whereas, in the positive strand (PromsHSP23.5::GUS, At5g51440 

direction), the activity had a strong accumulation at high temperature. Interestingly, the activity 

of the BDPs between FIB2 and SKL2 showed reduced levels under the abiotic stress 

conditions in both directions. The only special case was the GUS activity in cold conditions for 

the PromSKL2::GUS. The promoter for At1g06460 showed a particularly increased activity in 

oxidative and cold treatments and it was slightly reduced in salt and osmotic stresses. No 

significant changes were observed for this BDP in the other direction (for At1g06470) in the 

tested conditions.  
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Figure 4.6. Histochemical analysis of GUS activity in A. thaliana seedlings. Plants were grown for 
7 days under normal conditions and then exposed for 3 h to high (37 ºC) and low (4 ºC) temperature, 
salinity (150 mM ClNa), osmotic (300 mM Mannitol) and oxidative (10 µM Methyl Viologen) conditions. 
GUS staining was performed as stated in Materials and Methods. Five independent transforming lines 
and a minimum of 20 plants per line were tested for each construct and condition. Pictures correspond 
to one representative line; comparable pattern staining was found in all the lines of each construct.  
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ACD1-like ↓ nd ↓ nd nsd nd nsd ↑ ↓ ↓ 

PPPDE ↑ ↑ ↑ ↑ ↑ ↑ nsd ↑ nsd nd 

EYE nsd nd ↓ ↓ nsd ↓ nsd ↓ nsd ↓ 

HSP23.5 ↓ nd nsd nd nsd nd nsd nd ↑ ↑ 

FIB2 nsd ↓ nsd ↓ nsd ↓ ↑ ↓ ↑ ↓ 

SKL2 nsd ↓ nsd ↓ ↓ ↓ ↑ ↑ ↑ ↓ 

ACD32.1 ↓ ↓ nsd ↓ nsd ↑ nsd ↑ ↓ nd 

At1g06470 ↓ nd ↓ nd nsd nd nsd nd ↑ nd 

 
Table 4.10. Summary of genes expression by q-PCR and promoters activity by GUS staining of 
bidirectional genes. Plants were grown for 7 days under normal conditions and then exposed for 3 h 
to high (37 ºC) and low (4 ºC) temperature, salinity (150 mM ClNa), osmotic (300 mM Mannitol) and 
oxidative (10 µM Methyl Viologen) conditions. q-PCR and GUS staining experiments were performed 
as previously described. Arrows indicate increase (up red arrows) and decrease (down blue arrows) in 
the gene expression or GUS activity. Nd means no qualitative difference in the GUS activity. Nsd means 
no significant difference in the expression by one-sided t-test.  
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4.1.5. Discussion 

In recent years sequencing technologies made possible the accessibility to more complete 

genomes and more genetic and genomic resources. This allowed the discovery of particular 

gene arrangements and promoters in the genome that can be used in the study of plants and 

crop improvement, to drive specific transgenes. In the genome sequence, different genes 

arrangements can be found, two neighboring genes can be distributed in a divergent, 

convergent or parallel configuration [Yang, 2011a]. In the divergent or bidirectional distribution, 

genes are located in opposite strands of the genome and with head-to-head orientations. The 

pair of genes arranged in this way is called bidirectional genes, while the intergenic region 

between them is defined as a bidirectional promoter. This divergent structure has been 

demonstrated to be quite common in the A. thaliana genome, about 13.3 % of the genes are 

arranged in this distribution [Wang, 2009]. The most probable function of these arrangements 

is the co-regulation of two adjacent genes by only one promoter. In recent years, bidirectional 

promoters have received considerable attention because they can initiate transcription in two 

directions and thus express simultaneously two downstream genes [Wei, 2011; Banerjee, 

2013; Wang, 2016].  

In this work, the functional activity of four putative bidirectional promoters from Arabidopsis 

was critically analyzed. The study was not only centered on the characteristics of the intergenic 

regions but also on the neighbor divergent genes. An initial search for genes coding for ACD 

proteins which have a divergent orientation with other genes in the A. thaliana genome was 

performed and the pairs At4g25650-At4g25660, At5g51430-At5g51440, At2g35490-

At2g35500, At1g06460-At1g06470 were selected. In previews genome-wide studies, it has 

been proposed that bidirectional genes are usually correlated in expression and are involved 

in similar functions [Wang, 2009]. However, a broad range of functions and expression patterns 

were observed in the genes considered in this work. The genes in the first pair (At4g25650-

At4g25660) include a protein that may be implicated in translocation processes in chloroplasts 

(ACD1-like) and a peptidase located in the cytoplasm (PPPDE). The genes At5g51430 and 

At5g51440 are both located in organelles (Golgi complex and mitochondria) while the pair 

At2g35490-At2g35500 codes for chloroplastic proteins, a fibrillin protein and a kinase. Finally, 

the genes of the fourth pair At1g06460-At1g06470 code for an ACD protein present in 

peroxisomes and for a transporter protein located in the tonoplast of cells. The expression of 

the genes in the four pairs was demonstrated by q-PCR to be higher in one direction. 

Transcripts of At4g256660, At5g51430, At2g35490, and At1g06460 strongly accumulated 

compared to the level of the correspondent adjacent gene in Col-0 plants. In some pairs, genes 

displayed similar or opposite responses to the tested abiotic stresses what indicates a common 

but complex regulation of the genes expression. In Col-0 plants, At4g25650 had reduced 

expression in salinity, osmotic and heat conditions while the adjacent At4g25660 gene showed 
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exactly the opposite response to the same treatments. On the contrary, the expression of the 

genes in the pair At2g35490 and At2g35500 exhibited the same pattern in low and high 

temperature, they both accumulated in these conditions. Exclusive expression pattern was 

also observed for At1g06460 and At1g06470. These genes showed the same expression 

response to salinity and the opposite to heat stress conditions. To better understand the 

complexity in the regulation of bi-directional genes, the intergenic regions between them were 

in silico and in vivo analyzed. The in vivo activity of the four putative BDP was evaluated by 

successfully cloning these regions in opposite orientation to the β-glucuronidase (GUS) 

reporter gene and by exposing the transgenic Arabidopsis plants to various stress situations. 

The four intergenic regions displayed GUS activity in both directions in all the tested lines 

proving that they are all indeed bidirectional promoters. That is the same genomic sequence 

coordinates and initiates the expression of the two divergent genes. Promoter activities were, 

nevertheless especially different in the positive and in the negative directions, as well as in the 

tested stresses. In only one BDP, located between At1g06460 and At1g06470, the GUS 

staining was similar in the 5 independent lines of both contructs and thus the activity could be 

considered to be divergently the same. In addition to this, the promoter activities tested by 

GUS staining did not always reflect what was found in the gene expression experiments by q-

PCR in Col-0 plants (Table 4.10). The activity of the BDP in At4g25650-At4g25660 pair was 

stronger in the PPPDE direction, as it could be seen from GUS assays and q-PCR 

experiments. Same patterns were also found for this promoter under abiotic stress conditions. 

On the contrary, the higher expression of At5g51430 compared to At5g51440 obtained by q-

PCR could not be reproduced when the activity of this BDP fused to the GUS gene was tested, 

GUS staining was considerably stronger for the sHSP23.5 strand in all the 5 isolated lines. 

Both, gene expression of At5g51440 and GUS assays in this direction accumulated under high 

temperature. The same discordance between q-PCR and GUS experiments was observed for 

the third BDP, between At2g35490 and At2g35500 genes. The results of genes expression 

and promoters activities were not always comparable in the tested conditions. The behavior of 

the BDP::GUS in At1g06460-At1g06470 pair showed no notable changes in response to the 

abiotic stress treatments, making it difficult the comparison to the q-PCR data. These particular 

expression patterns found in the genes and promoters suggest that more intricated 

mechanisms are involved in the bidirectional transcriptional regulation, and further experiments 

will be necessary to a better understanding of this complexity. 

DNase I hypersensitive sites (DHSs) were found in all the four BDPs indicating that this sites 

of open chromatin may be cis-regulatory enriched and transcriptionally active regions. To 

identify putative cis-elements involved in the co-regulatory function of the BDPs, the four 

intergenic regions were investigated using the PlantCare and PLACE databases. This analysis 

revealed the presence of CAAT and TATA boxes in both strands of the four BDP which have 
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an important role in the transcription initiation. Furthermore, numerous stress-related elements 

were located in the identified BDPs. The low responsive LTREATLTI78 and 

LTRECOREATCOR15 elements were predicted in the minus strand of BDP At4g25650-

At4g25660. In this strand, the promoter GUS activity was stronger under cold treatments. Also, 

in this strand, one cis- salt related element was identified (GT1GMSCAM4), which could be 

involved in the salt stress response of At4g25650 (a reduction in the expression was observed 

after 3 h of 150 mM ClNa). Special interest has the BDP of At5g51430 and At5g51440 since it 

regulates the expression of a mitochondrial small heat shock protein. As it was formerly 

postulated, the expression of sHSPs is transcriptionally regulated by highly conserved cis-

elements named Heat Shock Element (HSE) [Sun, 2002]. In this BDP, 8 HSE sites were 

localized in the positive strand, in which the GUS staining and q-PCR experiments showed 

strong heat response. The intergenic region between At2g35490 and At2g35500 has the LTR 

cis-element and the LTRE1HVBLT49 binding site in the minus direction. These regulatory 

motifs may be responsible for the induction of At2g35490 in response to low temperatures. In 

the opposite strand, heat and salt stress related motifs were allocated to this BDP and could 

explain the response of At2g35500 to the mentioned stresses. Asides from salt-related cis-

elements, the sequence of the BDP located between At1g06460 and At1g06470 includes low 

and high temperatures responsive motifs probably controlling the expression of the divergent 

genes in this abiotic stress situations. It is worth mentioning the identification of several light 

regulated elements in the 4 BDP that were analyzed. Additional studies need to be performed 

in plants exposed to high or low luminosity in order to gain insight into the role of these cis-

regulatory elements.  

The conservation of a bi-directional arrangement in other species suggests that this kind of 

structure may be beneficial for plants and indicates a possible co-evolution of bi-directional 

genes and BDP. 

Here, 4 different bidirectional promoters in the A. thaliana genome were successfully identified 

and characterized. Among them, the promoter of At1g06460-At1g06470 showed comparable 

high activity in both directions what represents a useful tool to be used in genetic engineering. 

The rest of the promoters showed greater strength in one side and can be considered as 

asymmetric bidirectional promoters. The data suggest that the BDP in the pair At5g51430-

At5g51440 is strongly heat induced in one direction but not considerably stress induced in the 

other. These promoters are extremely useful because they can drive the simultaneous 

expression of two genes and at the same time, they have the potential to induce specifically 

one of them in a certain condition (high temperature) when it is required. 
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CHAPTER II 

 

 

4.2 Functional characterization of mitochondrial small heat 

shock proteins in Arabidopsis thaliana. 

 

 

sHSPs are small molecular chaperones present in all kingdoms of life. The roles of sHSPs 

have been largely studied in previous reports [Haslbeck, 2015; McLoughlin, 2016; Bernfur, 

2017]. Nevertheless, their biological relevance in the response to stress conditions and during 

plant development has not been elucidated. In addition to this, organellar forms of sHSPs are 

a unique characteristic of plants with the exception of the mitochondrial sHSP present in 

Drosophila melanogaster and Toxoplasma gondii [Morrow, 2000; de Miguel, 2005], raising the 

interest in this kind of sHSPs. In this chapter, functional characterization of the mitochondrial 

small heat shock proteins under stress conditions and during A. thaliana development is 

presented.  

 

 

4.2.1. sHSP23.5, sHSP23.6 and sHSP26.5 are putative mitochondrial sHSPs in A. 

thaliana. 

 

In formerly phylogenetic studies, two mitochondrial small heat shock proteins were identified 

in Arabidopsis, sHSP23.5 and sHSP23.6 [Scharf, 2001]. Later, classifications of sHSPs in 

plants have proposed two distinct mitochondrial-localized subfamilies, called MTI and MTII. In 

this new categorization, sHSP23.5 and sHSP23.6 proteins are grouped into the MTI family 

whereas a third mitochondrial small heat shock protein, sHSP26.5, was assigned to the MTII 

family [Siddique, 2008; Waters, 2013]. More recently, the phylogenetic tree of 91 plant 

mitochondrial proteins identified these three Arabidopsis sHSP in two subgroups, with 

sequences of the N-terminal domain more intrinsically disordered, but very similar ACD and 

C-terminal domains [Jaspard, 2016]. In this study, a first search for mitochondrial small heat 

shock proteins was done by using the Ensembl database and sequence comparisons of the 

Plant Compare tool. For this purpose, sHSP23.5 and sHSP23.6 genes were used as a query 

to identify all possible paralogues in Arabidopsis. Both genes showed sequence homology with 

sHSP26.5 which belongs to the MTII subfamily and with the chloroplastic At4g27670 (Table 

4.11). The homologs genes found for At1g52560 in Arabidopsis were At5g51440, At4g25200 

and again At4g27670. These results confirm the three mitochondrial sHSP so far reported.  
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AT5G51440 - Paralogues Target % identity Query % identity 

AT4G25200, mitochondrial 57.14 57.14 

AT1G52560, mitochondrial 21.98 24.29 

AT4G27670, chloroplastic 29.07 31.43 

AT4G25200 - Paralogues Target % identity Query % identity 

AT5G51440, mitochondrial 57.14 57.14 

AT1G52560, mitochondrial 22.84 25.24 

AT4G27670, chloroplastic 30.40 32.86 

AT1g52560 - Paralogues Target % identity Query % identity 

AT4G25200, mitochondrial 22.84 25.24 

AT5G51440, mitochondrial 21.98 24.29 

AT4G27670, chloroplastic 24.57 25.11 

 
Table 4.11. Paralogues of mitochondrial small heat shock proteins. Homologs of sHSP-M were 
identified by the sequence comparison tool from the Ensembl Plants database [Kersey, 2018], and 
filtered for A. thaliana species. Access 18.10.2016. 

  

 

Protein sequences were aligned using the Clustal2.1 program (EMBL-EBI) and the percentage 

of identity between them was determined (Table 4.12). sHSP23.5 and sHSP23.6 proteins have 

210 aa and share high sequence homology between each other (68.29 % identity). sHSP26.5 

with 232 aa presents about 30 % homology with the other two mitochondrial sHSP.   

 

 sHSP26.5 sHSP23.5 sHSP23.6 

sHSP26.5 100.00 32.99 33.51 

sHSP23.5 32.99 100.00 68.29 

sHSP23.6 33.51 68.29 100.00 
 
Table 4.12. Percent identity Matrix. Proteins sequences were aligned and the identity matrix was 
created by Clustal2.1. 

 

 

Figure 4.7 represents the sequence alignment of the three proteins by using the CLC 

Sequence Viewer 7.0.2. In the graph, the percentage of conservation represents the level of 

conservation at a particular position in the alignment, which is also given by the height of the 

pink bars. If one position is 100 % conserved in the three sequences, the bar is full height. 

Middle height bars indicate conserved residues in only two of the three sequences. Middle 

height bars were found in several positions of the alignment and reflect high conservation 

between sHSP23.5 and sHSP23.6, but not with sHSP26.5.  
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Figure 4.7. Sequence alignment of mitochondrial sHSP. Protein sequences were aligned using the 
CLC Sequence Viewer 7.0.2 software. Colors were used to distinguish common residues and the 
consensus indicates amino acid present in at least two sequences. Pink bars represent the percentage 
of conservation of one position in the alignment. 

 

 

4.2.2. sHSP23.5, sHSP23.6 and sHSP26.5 are regulated by abiotic stresses.  

 

Considering that most of the small heat shock proteins are heat inducible [Waters, 2013], a 

quantitative analysis of the sHSP23.5, sHSP23.6 and sHSP26.5 expressions in A. thaliana 

plants after heat shock was performed by q-PCR. Additionally, other stressful conditions were 

applied to the plants to evaluate the expression of the three genes in these abiotic stresses. 

The q-PCR experiments were performed with cDNA, obtained from RNA of whole seedlings. 

Plants were grown for 7 days under normal conditions and then exposed to different 

treatments: low and high temperature (1 h at 4 ºC and 3 h at 37 ºC, respectively), salinity (3 h 

to 150 mM ClNa), osmotic (3 h to 300 mM Mannitol) and oxidative (3 h to 10 µM Methyl 

Viologen) conditions. For the heat treatment, seedlings were incubated 3 h at high temperature 

(37 ºC) followed by 1 h of recovery in the climate chamber at normal growth conditions (22 ºC). 

Plants not exposed to the stressful conditions were used as a control. The reference gene, 

protein phosphatase 2 (PP2a), was used for the quantification since it is a stable expressed 

gene under development and stressful conditions [Czechowski, 2005]. For each gene, the 

obtained data were normalized to the basal expression of the respective gene at control 

conditions. 
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After heat treatment, the expression of sHSP23.5, sHSP23.6 and sHSP26.5 showed strong 

accumulation with more than 400-fold enrichment, indicating that the three genes are heat 

responsive (Fig. 4.8). Among them, the sHSP26.5 exhibited the highest expression after heat, 

followed by sHSP23.6. Concerning the other stressful conditions, statistically significant 

differences were observed in the expression of the genes in two cases: a reduction in the 

number of transcripts of sHSP23.5 under salinity and an increase of sHSP26.5 expression at 

low temperature compared to control conditions.  
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Figure 4.8. Expression of sHSP23.5, sHSP23.6, and sHSP26.5 in A. thaliana seedlings. 
Quantitative real-time PCR of sHSP23.5, sHSP23.6, and sHSP26.5 was performed after salt, osmotic, 
oxidative, low and high temperature. Plants were grown for 7 days at 22 °C under long day conditions 
and then exposed to different treatments. Experiments were performed twice with comparable results. 
All expression values were first normalized to the PP2A expression taken as a reference. Relative 
expression of the transcripts was then normalized to their expression levels at control conditions. Each 
data point consists of the mean value + SD of four biological replicates obtained in one representative 
experiment. Twenty plants were pooled for one replicate. Asterisks indicate significance by one-sided t-
test with *p<0.05, **p<.0.01. 

 

 

The promoter activity of the three genes was also analyzed in the same physiological and 

stressful conditions as for the q-PCR experiments. Promoter regions of sHSP23.5, sHSP23.6 

and sHSP26.5 were isolated from the A. thaliana genome by PCR and cloned to a GUS 

reporter vector (GF9) which was used to transform Arabidopsis Col-0 plants. For each of the 

three constructs, 5 independent transgenic lines were isolated. GUS staining was performed 

in 7 days transforming seedlings as described in Materials and Methods section, and the same 

treatments of heat, cold, salinity, osmotic and oxidative conditions that were described for the 

q-PCR assays, were applied. Results obtained from the GUS assays demonstrate the heat 

induction of the three promoters. As can be observed for the deep blue color in Fig. 4.9, higher 

GUS activity was found after the heat treatment in all the isolated promoters. The bidirectional 
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promoter of sHSP23.5 was further studied in Chapter I. In control and some abiotic conditions, 

the sHSP23.5 promoter activity mostly localized in the leaves edges whereas after heat 

treatment it was highly increased and extended to the whole seedling. The low activity of the 

sHSP23.6 promoter in most of the conditions contrasted with the strong activity after 37 ºC 

treatment. Unlike sHSP23.5 and sHSP23.6, the GUS activity of the sHSP26.5 promoter was 

high after heat stress but it was found exclusively in roots. 

 

 

 

Figure 4.9. Histochemical analysis of GUS activity in A. thaliana seedlings. Plants were grown for 
7 days under normal conditions and then exposed for 1 h at low temperature (4 ºC), and for 3 h to high 
temperature (37 ºC), salinity (150 mM ClNa), osmotic (300 mM Mannitol) and oxidative (10 µM Methyl 
Viologen) conditions. GUS staining was performed as stated in Materials and Methods. Five 
independent transformed lines and a minimum of 20 plants per line were tested for each construct and 
condition. Pictures correspond to one representative line; comparable patterns staining were found in 
all the lines of each construct. 

 

 

As the relative expression of sHSP23.5, sHSP23.6, and sHSP26.5 under heat stress in A. 

thaliana seedlings were more pronounced, heat-related transcription factor binding sites 

common to the three promoter sequences were analyzed. The Common TFs tool available in 

the Genomatix software suite v3.10 [Cartharius, 2005] was used. The search was done against 

the Matrix Family Library Version 11.0 (September 2017) - A. thaliana, selected groups of 

Plants and General Core Promoter Elements, a core similarity of 0.75 and optimized matrix 

similarity. A sequence of 1100 bp was chosen for the At1g52560 promoter. The search 

identified different motifs of the HEAT family in several positions of the promoters (p< 0.05) 

(Fig. 4.10). These cis- elements may be important for the gene regulation and expression at 

high temperature. 
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Figure 4.10. HEAT transcription factor binding sites in promoters of mitochondrial sHSPs. 
Promoter sequences were analyzed for the presence of heat-related transcription factor binding sites 
by using the Genomatix software suite v3.10 [Cartharius, 2005]. 

 

 

4.2.3. Artificial microRNAs were designed for the sHSPs-M genes. 

 

The in vivo functionality of the mitochondrial sHSPs was firstly analyzed in transfer DNA (T-

DNA) insertion lines of sHSP23.5 and sHSP23.6. However, the available mutants of sHSP23.5 

did not show evidently affected phenotype probably because of functional compensation. On 

the other hand, the homozygous mutation in sHSP23.6 did not affect the abundance of the 

correspondent gene (data not shown). Considering the possible functional redundancy of the 

mitochondrial sHSPs, a different strategy was developed, in which the three genes were 

simultaneously targeted and silenced by an artificial microRNA (amiR) strategy. Triple 

knockdown mutant plants, from now on refer to as amiR23.5/23.6/26.5 or amiR-T, were 

obtained by using the design shown in Fig. 4.11. Single knockdown mutants for the individual 

sHSPs-M (from now on refer to as amiR23.5, amiR23.6, amiR26.5), and a double knockdown 

mutant for sHSP23.5 and sHSP23.6 (from now on refer to as amiR23.5/23.6) were in parallel 

generated.  

 

 

 

 
Figure 4.11. Design of amicroRNA targeting sHSP-M. Site-directed mutagenesis and overlapping 
PCR were used to modify the MIR319a precursor and generate amiR for the sHSPs-M genes. In each 
construct, amiRs were designed to target a specific sequence (red lines) in the gene transcripts. 
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After plant transformation, kanamycin resistant T1 seedlings were selected and propagated. 

Approximately 10 independent positive lines were isolated in each construct for further 

analysis. In order to confirm the expression reduction of the genes that were target of amiRs, 

a quantitative analysis of the sHSP23.5, sHSP23.6 and sHSP26.5 expressions in A. thaliana 

transgenics plants was performed by q-PCR. Considering the low basal expression of the three 

genes under control conditions and that they are all up-regulated by heat (section 4.2.2.), a 

treatment of 3 h at 37 ºC was required before the quantification. The q-PCR analysis was 

performed with cDNA obtained from one leaf of 20 day-old plants. Several T1 plants were 

screened for the identification of knockdown lines (data not shown). In every single mutant, the 

expression of individual genes was determined, while in the double mutant lines both 

sHSP23.5 and sHSP23.6 expression was measured. In the triple mutant lines, the expression 

of all three genes was quantified. The results indicated that target genes were successfully 

silenced by the designed amiRs (data not shown). Independent lines with the lowest 

expression of the target genes were chosen for seed propagation (T2 generation): 4 lines of 

amiR23.5 and amiR23.6, 3 lines of amiR26.5, 4 lines of amiR23.5/23.6 and 4 lines of 

amiR23.5/23.6/26.5. All experiments showed in this work were performed with the T2 plants.  

The reduction in the gene expression of the knockdown mutants compared to the control plants 

was further confirmed in the T2 plants by q-PCR. In this generation, the analysis was 

performed with cDNA obtained from RNA of 7 day-old seedlings. These kanamycin-resistant 

along with Col-0 plants were grown under control conditions and then incubated 3 h at high 

temperature (37 ºC) to up-regulate the expression. Col-0 plants were used as a control. The 

reference gene protein phosphatase 2 (PP2a) was added as a stress-unrelated control gene 

for the quantification. For each gene, data was normalized to the basal expression of the 

respective gene in Col-0 plants. Fig. 4.12 illustrates the lower expression levels on the genes 

in the isolated lines silenced by artificial microRNAs, compared to control plants. 
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Figure 4.12. Expression of sHSP23.5, sHSP23.6 and sHSP26.5 in knockdown mutants. T2 
kanamycin resistant and Col-0 plants were grown for 7 days at 22 °C under long day conditions and 
then exposed 3 h to 37 ºC for expression induction before sampling. Experiments were performed twice 
and for each construct, 3 to 4 independent transgenic lines were evaluated. All expression values were 
first normalized to the PP2A expression taken as a reference. Relative expression of the transcripts in 
the amiR plants was then normalized to their respective expression in Col-0 plants. Each data point 
corresponds to the mean value + SD of four biological replicates of one experiment. Letters indicate 
significance by one-sided t-test with a: p<.0.01 and b: p<0.05. 

 

 

4.2.3.1. Knockdown mutants display altered growth phenotype. 

Mutant plants were phenotypically evaluated during the complete growth cycle in order to find 

possible effects of the silencing process. Single and double amiR T2 plants did not display 

severe growth phenotypes. amiR23.5 and amiR23.6 together with the double amiR23.5/23.6 

resulted in bigger size plants compared to WT. Seven day-old seedlings and 15 day-old plants 

of these mutants were equal in size to those of the control Col-0 plants (Fig. 4.13-A). Soon 

after, 20 day-old plants of the single and double mutants of sHSP23.5 and sHSP23.6 evidently 

produced bigger rosettes than control plants (Fig. 4.13-B). Figure 4.13-C shows representative 

25 day-old rosettes where it is clear the difference in size of these mutants. The same was 

observed in 28- and 40-day-old plants (Fig. 4.13-D and -E). As can be seen in the lateral view 

of the plants in Fig. 4.13-E, amiR23.5, amiR23.6, and the double amiR 23.5/23.6 are taller 

compared to the Col-0 plants. In senescent 55 day-old plants, all amiR lines had the Col-0 size 

except for the amiR-T (Fig. 4.13-F). The single amiR26.5 lines, on the other hand, developed 

control-like phenotype. No significant differences were observed at the vegetative and 

reproductive growth stages in these lines (Fig. 4.13). The most extreme phenotype was found 
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in the triple amiR23.5/23.6/26.5 where the complete development was affected. These plants 

were significantly smaller than Col-0 plants in the complete growth cycle. Although amiR-T 

mutants developed fully expanded rosettes, their size was considerably smaller as can be 

observed in Fig. 4.13 and the dwarf growing mutants reached an only half height of the control 

plants. In addition to the dwarf phenotype and the small size of leaves, amiR-T plants produced 

narrower leaves than Col-0 plants, and a chlorotic and reticulated phenotype (Fig. 4.13-D and 

Fig. 4.14-A). 

Expanded rosettes of 28 day-old plants were dissected to better evaluate leaves phenotype in 

mutants (Fig. 4.14-B). Unlike Col-0 plants with leaves that are flat and completely expanded, 

both single amiR23.5 and amiR23.6 produced curved down leaves. This phenotype was even 

stronger in the double amiR23.5/23.6 where sHSP23.5 and sHSP23.6 are simultaneously 

down-regulated. As it was mentioned before, leaves of amiR26.5 did not display any difference 

to Col-0 plants. It was evident when dissecting rosettes, the small size of the leaves in the 

amiR-T lines, indicating an alteration in the correct development and growth of these plants. 

In light of the phenotype observed in the triple knockdown lines, the question of whether the 

small plant size is due to small cells or to a reduced number of cells, or to both, arose. Leaf 

cells from amiR-triple and Col-0 plants were observed using differential interference contrast 

microscopy. For this purpose, second leaves of 21 day-old plants were first incubated with 

lactic acid to obtain clear epidermal cell views, and the cell number and areas were measured. 

Besides the reduced leaves areas, epidermal cell areas were significantly smaller in the amiR-

T. However, the estimated number of epidermal cells per leaf was the same for mutants and 

Col-0 plants, suggesting that the phenotype in the leaves is mostly due to the smaller cells but 

not to a less number of them (Fig. 4.15). 
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Figure 4.13. Phenotypes of amiR mutants. Plants 15 day- (A), 20 day- (B), 25 day- (C), 28 day- (D), 
40 day- (E) and 55 day-old (F). In each picture, from left to right Col-0 plants are followed by 
representative plants of three independent transgenic lines.  
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Figure 4.14. (A) View of the small chlorotic leaves of amiR-T mutants. (B) Leaf series of the amiR 
knockdown mutants. Twenty-eight days-old rosettes were dissected and the individual leaves 
arranged to generate the series views.  

 

 

  

    

     

 
Figure 4.15. Epidermal cell areas of amiR23.5/23.6/26.5 and Col-0 plants. Leaves from 21 day-old 
plants were incubated with lactic acid at room temperature until tissues were completely cleared and 
leaf epidermal cells were observed using differential interference contrast microscopy. (A) and (B) are 
views of leaves and epidermal cells. (C) and (D) are the measured leaf and cell areas, respectively, in 
Col-0 and three amiR-T independent lines. Data points represent mean areas of 6 leaves and a 
minimum of 650 cells per transgenic line or Col-0. Asterisks illustrate significance by one-sided t-test 
with *p<0.01. 
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Besides the phenotype observed in the vegetative tissues of mutants, including the altered 

development of the triple amiR23.5/23.6/26.5 and the leaf shapes of two singles and the double 

amiR23.5/23.6, these plants were investigated for any alteration in the reproductive stages. All 

mutants showed no differences in the aspect of flowers and siliques compared with Col-0 

plants. Nevertheless, seed yield was significantly reduced in the triple knockdown lines (Fig. 

4.16).  

 

 

Figure 4.16. Seed production of knockdown mutants. Seeds from senescent plants were collected 
and weighed. For each mutant, seeds from 3 independent transgenic lines and 3 plants per line were 
measured. Data points correspond to the mean value + SD of the 3 independent lines. Asterisks mean 
statistical significance by one-sided t-test with *p<0.01. 

 

 

4.2.3.2. Roots as the main altered tissue in amiR26.5 plants. 

Since the three sHSP-M can be expressed in certain circumstances in roots, the growth of 

these organs was evaluated in the knockdown lines. Transgenic and Col-0 plants were 

vertically grown under normal conditions for 15 days and the length of the roots was everyday 

measured. Roots were all similar in aspect and the length of them in amiR23.5, amiR23.6 and 

amiR23.5/23.6 were the same as in control plants. Surprisingly, amir26.5 produced shorter 

roots in all the evaluated lines. Roots were also shorter in the 14 independent amiR-T lines 

that were measured (Fig. 4.17). 
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Figure 4.17. Root length of amiR knockdown plants. Plants were vertically grown and roots were 
periodically photographed and measured. Pictures (A) and values (B) correspond to the length after 15 
days of growth. Fourteen independent amiR-T lines were evaluated and three independent lines in the 
rest of the mutants. Data points represent the mean value + SD of 8 replicates. Asterisks mean 
significance by one-sided t-test with *p<0.01. 

 

 

4.2.3.3. Analysis of knockdown mutants at the protein level.  

To explore the consequences of reduced levels of sHSP-M at the whole-plant level, 

comparative proteome analyses of control and knockdown mutants was performed. Plants 

were harvested at a comparable growth stage and differential protein abundances were 

compared with a comparative quantitative shotgun LCMS analysis. Plants were grown in ½ 

MS under normal conditions for 15 days, a moment in which the samples, which consisted of 

whole seedlings, were taken. A second experiment of heat-treated samples was carried on in 

parallel: half of the 15 day-old plants were briefly exposed for 3 h at 37 ºC followed by 1 h of 

recovery at normal conditions before samples were stored. The experiments were based on 

three biological replicates corresponding to three independent lines of each mutant. Samples 

consisted of a pool of 50 plants. Besides, two technical replicates of the same experiment were 

measured. Using shotgun MS/MS-based proteomic analysis 5942 different proteins were 

identified. The quantitative analysis of the identified proteins was carried out by using the 

Proteome Discoverer 2.2TM software. Protein lists were first assembled according to the group-

master proteins with high FDR confidence that derive from cross-correlating fragmentation 

spectra of at least two unique peptides, yielding in a total list of 2405 proteins. For 
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quantification, technical and biological replicates were combined and several pair-based 

comparisons between mutants and controls were done. In each case, abundance ratios were 

filtered for a fold change cutoff >2 and <0.5 and a significant p-value of less than 0.05 (t-test 

analysis). In Table 4.13, the number of differentially abundant proteins in the amiR mutants 

compared to control seedlings is presented. The proteins that showed statistically significant 

alterations in their abundances between control and amiR plants were selected for further data 

analysis. They are provided in Supplementary Tables 4.1-4.8. 

 

 

Abundance Ratios 
Nº of proteins that 

significantly changed 
(p<0.05) 

Upregulated 
≥ 2-fold 

Downregulated 
≥ 2-fold 

amiR23.5/Control 57 51 6 
amiR23.6/Control 17 9 8 
amiR26.5/Control 224 217 7 
amiR23.5/23.6/Control 243 230 13 
amiR23.5/23.6/26.5/Control 238 227 11 
amiR23.5/Control-H 148 144 4 
amiR23.6/Control-H 25 12 13 
amiR26.5/Control-H 159 150 9 
amiR23.5/23.6/Control-H 171 156 15 
amiR23.5/23.6/26.5/Control-H 145 129 16 

 
Table 4.13. Number of proteins with differential abundance in the amiRs knockdown compared 
to control plants. In each comparison, total proteins were filtered for a fold change cutoff >2 and <0.5 
in the abundance ratios and a significant p-value of less than 0.05 by t-test analysis. Letter H means 
heat-treated samples.  

 

 

4.2.3.3.1. Overview of the proteomes of Arabidopsis amiRsHSP-M plants. 

Comparative analysis of the protein abundances between the amiR and control plants at a fold 

change cutoff >2 and <0.5 and a p < 0.05 revealed that the number of proteins that significantly 

changed in amiR23.5/23.6 and in amiR-T was larger in comparison to single amiR mutants 

under normal growing conditions (Table 4.13). When plants were heat-treated, the double 

amiR23.5/23.6 showed the largest number (171) of proteins significantly changed compared 

to control plants.  

Surprisingly, most of the regulated proteins (around 90 %) were increasingly abundant in the 

mutant (Table 4.12). Only in amiR23.6, a comparable number of proteins were up and down-

regulated in both conditions, normal growth and heat-treated plants. Furthermore, the 

significantly changed proteome of amiR23.6 was extremely small, 17 and 25 proteins changed 

in normal and heat conditions, respectively. It must be mentioned that the low number of 

changed proteins in heat-treated amiR23.6/control ratios is probably due to the low number of 

total proteins detected in the heat treated-samples of amiR23.6. Fifty-seven proteins showed 

a change in their abundances in amiR23.5 plants in normal conditions, while in the single 
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amiR26.5 and in the double amiR23.5/23.6 and triple mutants, the number of differentially 

expressed protein was much higher (Table 4.12). This may indicate that sHSP26.5 deficiency, 

as well as reduced levels of both sHSP23.5 and sHSP23.6, and of all the three sHSP-M, has 

a broader influence on the Arabidopsis basal proteome. Moreover, when comparing normal 

and heat stress conditions, the induction of the proteomes in amiR23.5 and amiR23.6 after the 

treatment is evident. A higher number of proteins with significant fold-change was observed in 

these treated knockdown mutants. The opposite was found in the treated single amiR26.5, in 

the amiR23.5/23.6 and in the amiR-T where the number of changed proteins was smaller 

compared to the number of changed proteins in normal conditions. These data might indicate 

that the abiotic condition produces a bigger response in the proteome of Arabidopsis plants 

with deficiency of sHSP23.5 and sHSP23.6 individually.  

 

 

4.2.3.3.2. Deficiency of individual sHSPs generates distinct proteome response. 

As it was previously mentioned the number of differentially expressed proteins was especially 

different in the single mutants amiR23.5, amiR23.6, and amiR26.5. In order to functionally 

classify the filtered proteins, known and predicted functional associations and gene ontology 

(GO) annotation according to biological process (BP), molecular function (MF) and cellular 

compartment (CC) was discovered by using STRING [Szklarczyk, 2015] and Panther [Mi, 

2016] databases and software resources.  

Panther analyses of the differential proteomes of single amiR23.5, amiR23.6, and amiR26.5 

at the 1st level of ontology revealed that these mutants did not substantially differ in the number 

of detected GO annotations. Nevertheless, some interesting differences were discovered, like 

the developmental processes found only in amiR23.5 and amiR23.6 mutants but not in 

amiR26.5 (Fig. 4.18-A), the signal transducer activity term found in amiR23.5 and amiR23.6 

mutants, the translation regulator activity term in amiR23.5and amiR26.5 and the presence of 

an antioxidant activity term exclusively in amiR26.5 (Fig. 4.18-B). 

A Venn diagram was used to discover proteins whose abundances were commonly changed 

in the three single mutants compared to control plants (Fig. 4.19- D and E). Five proteins 

showed common changes, with three proteins increased while the other two decreased. 

Among them, changes were observed in three ribosomal proteins located in the cytosol and 

chloroplasts, one chloroplastic lipoxygenase and one calcium-binding related protein from 

vacuoles. After heat shock, five common proteins increased in the three single amiR mutants, 

including one cytosolic ribosomal protein, one nuclear protein belonging to the histone 

superfamily and one kinase located in the cytosol (see Suppl. Table 4.11 and 4.12). These 

small numbers of commonly regulated proteins in the three sHSP-M mutants show that their 

proteomes are quite different and that a deeper analysis should be done individually. 
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Figure 4.18. Comparison of gene ontology classification by Panther of amiR23.5, amiR23.6 and 
amiR26.5 mutants in normal conditions of growth according to (A) biological process, (B) molecular 
function and (C) cellular compartment at the first level of ontology. Access 06.12.18. 
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Figure 4.19. Venn diagrams showing numbers of differentially expressed proteins in amiR 
mutants compared to control plants by using Venny2.1 [Oliveros, 2007]. Number of significantly 
changed proteins in the normal proteome and in the heat-treated proteome of amiR23.5 (A), amiR23.6 
(B) and amiR26.5 (C) mutants. Number of common changed proteins in the three single amiR mutants 
under normal conditions (D) and after heat stress treatment (E).  

 

 

In the proteome of amiR23.5, 51 proteins significantly accumulated while only 6 showed 

reduced levels compare to control plants. Assignment of proteins differing in amount between 

control and these mutant plants to functional categories was carried out according to STRING. 

Most of the obtained GO terms in amiR23.5 are related to the biosynthesis of proteins and 

ribosome biogenesis (Fig. 4.20-blue bars.). Some of the most significant GO terms include 

translation, organonitrogen compound biosynthetic process, and protein metabolic process. 

The ribosome compartment (GO:0005840) appeared to be over-represented in the set of 

proteins, and the term GO:0003735 (structural constituent of ribosome) showed significance 

at the molecular function level. Interestingly, a cytochrome c related protein (AT1G22840) 

showed an increase in the mutants (highlighted in Suppl. Table 4.1). The number of proteins 

with differential expression in amiR23.5 plants was higher after heat treatment, 144 proteins 

increased and 4 proteins decreased. A Venn diagram was used to exclude proteins that were 

A B 

D 

C 

E 



Results and Discussion 

 

81 

already identified and showed significant change under normal conditions, and a total of 130 

proteins from the heat-treated proteome were selected for further analysis (Fig. 4.19- A). The 

proteins with lower levels include the PGR7 (AT3G21200) that has been proposed to be 

important in the photosynthetic electron transport of chloroplasts [Jung, 2010] and one plasma 

membrane H+ ATPase (AT5G62670) (highlighted in Suppl. Table 4.6). The STRING analysis 

of the changed proteins revealed again enrichment of processes related to ribosomes and 

protein biosynthesis (Fig. 4.20-yellow bars). The protein metabolic process (GO:0043043), 

translation (GO:0006412), organonitrogen compound biosynthetic process (GO:1901566) are 

some of the most significant GO terms. Several ribosome-related GO cellular compartment 

terms were also found.  
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Figure 4.20. GO enrichment of proteins differentially expressed in amiR23.5 relative to control 
plants in normal and after heat treatment by using STRING. BP: biological process, MF: molecular 
function, CC: cellular compartment. Access 08.12.18. 
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Among the 17 proteins that significantly changed in amiR23.6, 9 proteins increased and 8 

decreased. Apart from ribosomal proteins, one purple acid phosphatase PAP2 (AT1G13900) 

showed higher amount in this mutant than in control plants (highlighted in Suppl. Table 4.2). 

Like other PAPs, PAP2 can hydrolyze phosphorus compounds and thus it is involved in the 

acquisition and redistribution of phosphorus in the cell. It has been demonstrated that 

Arabidopsis transgenic lines overexpressing PAP2 have higher sucrose phosphate synthase 

(SPS) activity and show increased growth rate and higher seed yield [Sun, 2012]. A lectin-like 

protein LLP (AT5G03350) involved in salicylic acid (SA)-mediated processes that occur in the 

effector-triggered immunity (ETI) response [Armijo, 2013], showed also high level in the mutant 

(highlighted in Suppl. Table 4.2). Similarly, MAM1 (AT5G23010) which is involved in aliphatic 

glucosinolate biosynthesis [Textor, 2004], significantly accumulated (highlighted in Suppl. 

Table 4.2). Aliphatic glucosinolates are secondary metabolites that participate in the plant 

defense. Another increased protein was MKK5 (AT3G21220) that participates in the hydrogen 

peroxide generation during hypersensitive response-like cell death (highlighted in Suppl. Table 

4.2). It has been suggested that prolonged activation of MEKK4 and MEKK5 and the MAPK 

pathway in cells could lead to the generation of ROS and cell death [Ren, 2002]. The proteins 

that showed decreased include one aquaporin, TIP1-2 (AT3G26520), one thioredoxin 

(AT5G65840), a calcium-binding protein-like (AT1G62480), one endosomal protein CHMP1B 

(AT1G73030) that is required for the plant development [Spitzer, 2009] and the DEAD-Box 

RNA helicase RH7 (AT5G62190) which is important  in the plant growth and development 

(highlighted in Suppl. Table 4.2). Knockout mutants of RH7 displayed morphological alterations 

like disturbed vein pattern, pointed leaves, and short roots, resembling ribosome-related 

mutants of Arabidopsis [Huang, 2016]. STRING enrichment analysis of the changed proteins 

resulted in no enriched GO terms in the biological processes and molecular function, while for 

the cellular components level, plastid-related GO terms showed enrichment (Fig. 4.21-blue 

bars). Upon heat shock, 12 proteins significantly accumulated and 13 decreased in the 

amiR23.5 mutants (Suppl. Table 4.7). Proteins of normal and heat shock conditions in this 

single mutant showed no overlap as it can be observed in Fig. 4.19-B. As it was expected, 

STRING analysis of the changed proteins revealed enrichment of stress-related GO terms 

such as response to heat, response to oxidative stress, response to temperature stimulus (Fig. 

4.21-yellow bars) 
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Figure 4.21. GO enrichment of proteins differentially expressed in amiR23.6 relative to control 
plants in normal and after heat treatment by using STRING. BP: biological process, MF: molecular 
function, CC: cellular compartment. Access 08.12.18. 

 

 

The proteome analysis in amiR26.5 identified 217 proteins that significantly accumulated and 

7 proteins that decreased in this mutant compared to control plants (Table 4.12).  Interestingly, 

PRXIIF (AT3G06050), GPX6 (AT4G11600) and PRXIIB (AT1G65980), three peroxidases that 

are important in the cell protection against oxidative stress [Bréhélin, 2003; Finkemeier, 2005], 

are increased in this mutant (highlighted in Suppl. Table 4.3). The results from STRING 

analysis gave similar enriched GO terms to those found in the amiR23.5, including translation 

and cellular protein metabolic process (Fig. 4.22-blue bars). STRING results also searched for 

the cellular components finding out that the most overrepresented GO terms are ribosome 

related. When amiR26.5 was exposed to the high-temperature treatment, 150 proteins 

increased and 9 decreased compare to the proteome of heat-treated control plants (Suppl. 

Table 4.8). After leaving out the proteins that changed also under normal conditions, the 

analysis focused on the 53 proteins that specifically changed after the heat shock (Fig. 4.19-

C). Several GO terms of peptides synthesis and ribosome compartment are enriched in this 

set of proteins (Fig. 4.22-yellow bars). Among the 8 decreased proteins, RFS2 (AT3G57520) 

a probable galactosyltransferase involved in the synthesis of raffinose which is found in seeds, 

roots, and tubers; one plasma membrane H+ ATPase (AT5G62670), and the peroxidase 

PER16 (AT2G18980), were found (highlighted in Suppl. Table 4.8).  

 

 

 

0 1 2 3 4 5

cytoplasm

ribosome

intracellular part

chloroplast

response to temperature stimulus

response to heat

response to hydrogen peroxide

response to oxidative stress

-LOG10 FDR

Basal proteome

Heat-treated proteome

BP 

CC 



Results and Discussion 

 

85 

 

 
Figure 4.22. GO enrichment of proteins differentially expressed in amiR26.5 relative to control 
plants in normal and after heat treatment by using STRING. BP: biological process, MF: molecular 
function, CC: cellular compartment. Access 08.12.18. 
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4.2.3.3.3. Proteome of the double amiR23.5/23.6 mutant widely differs from the 

proteome of single amiR23.5 and amiR23.6 mutants. 

The differential expressed proteome of the amiR23.5/23.6 included 230 up- and 13 down-

regulated proteins (Table 4.12). Notably, 201 proteins changed specifically in the double 

mutant compared to the single mutants amiR23.5 and amiR23.6 (Fig. 4.23-A.). Apart from 

protein synthesis and ribosome-related GO terms, in this double mutant, the Gene Ontology 

by STRING analysis resulted in some metabolism-related enriched terms (Fig. 4.24-blue bars). 

Several proteins that participated in redox reactions and oxidative stress showed accumulation 

in amiR23.5/23.6 such as the DHAR2 (AT1G75270) that has been proposed to be important 

in the maintenance of the redox homeostasis by scavenging of ROS under oxidative stresses 

[Dixon, 2002] (Suppl. Table 4.4). Also, proteins belonging to the thioredoxin superfamily 

protein, At5g65840, T20H2.2 (AT1G20225), TRXM2 (AT4G03520) and TRXM4 (AT3G15360) 

(Suppl. Table 4.4).  Different peroxidases which play a role in detoxifying peroxides and thus 

protecting cells against oxidative stress like PRXIIF (AT3G06050), PRXIIB (AT1G65980), 

GPX6 (AT4G11600) and PRXIIE (AT3G52960) were increased [Bréhélin, 2003; Finkemeier, 

2005]. And two superoxide dismutase, CSD2 (AT2G28190) and FSD1 (AT4G25100) (Suppl. 

Table 4.4). In the heat-treated double mutant, 171 proteins were differentially expressed 

compared to the heat-treated control plants. From these 171 proteins, 60 changed exclusively 

after heat shock compared to normal conditions in amiR23.5/23.6 (Fig. 4.23-B). Protein 

synthesis and translation GO terms are over-represented in this set of proteins. Three HSP20 

chaperones increased after the heat shock including the sHSP17.6, sHSP17.8, and sHSP17.4 

(Suppl. Table 4.9). 

 

 

Figure 4.23. Venn diagrams showing numbers of differentially expressed proteins in amiR 
mutants compared to control plants by using Venny2.1. (A) Number of commonly changed proteins 
in amiR23.5, amiR23.6, and amiR23.5/23.6. (B) Number of significantly changed proteins in the normal 
proteome of amiR23.5/23.6 and in the heat-treated proteome. 
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Figure 4.24. GO enrichment of proteins differentially expressed in amiR23.5/23.6 relative to 
control plants in normal and after heat treatment by using STRING. BP: biological process, MF: 
molecular function, CC: cellular compartment. Access 08.12.18. 
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4.2.3.3.4. Common changes in the proteome of amiR23.5/23.6/26.5 and single amiR 

mutants. 

Protein abundances were determined in the triple knockdown mutants under normal conditions 

and under high temperature. A number of 238 and 145 proteins differentially expressed before 

and after the heat treatment, respectively. The functional enrichment of the 238 proteins was 

investigated by STRING (Fig. 4.25). Several protein synthesis-related GO terms and 

translation were found. Besides this, in the amiR-T mutants metabolism pathways were 

enriched, especially those related to the primary metabolism. The photosynthesis term showed 

also over-representation, with 16 protein probably involved in this process (Table 4.15). Venn 

diagram was carried on with proteins changing in the triple knockdown mutant and in each of 

the single mutant amiR23.5, amiR23.6, and amiR26.5. The obtained graph shows the overlap 

of proteins differentially expressed in the mutants and the 42 proteins that changed only in the 

triple mutant (Fig. 4.26-A). Three photosynthesis-related proteins were exclusively found in the 

triple mutant with higher abundances: a subunit of the photosystem I PSAE1 (AT4G28750), 

PSBP1 (AT1G06680) which may be involved in the regulation of photosystem II and the ClpR2 

protein (AT1G12410) that is required for the chloroplast development and integrity (highlighted 

in Suppl. Table 4.5). In addition to these proteins, one protein probably involved in defense 

response T26J12_10 (AT1G23130) and one thioredoxin AtTrxm1 (AT1G03680) increased in 

the triple knockdown (highlighted in Suppl. Table 4.5). Among the 42 proteins, the dehydrin 

ERD14 (AT1G76180) involved in cold and other abiotic stresses response [Kovacs, 2008], 

DIT2-1 (AT5G64290) which is a glutamate/malate translocator [Renné, 2003], PMDH2 

(AT5G09660) a peroxisomal NAD-malate dehydrogenase [Tomaz, 2010] and a serine 

protease that cleaves phytosulfokines SBTI1.1 (AT1G01900) [Srivastava, 2008], showed lower 

abundance compared to control plants (highlighted in Suppl. Table 4.5). Most of the GO terms 

found in the triple amiR in physiological conditions were also present in the proteome of heat-

treated samples. A set of 52 proteins showed change particularly after the heat shock as it can 

be observed in a Venn diagram (Fig. 4.26-B). Among these, two peroxidases, PER69 

(AT5G64100) and PER16 (AT2G18980) were downregulated after treatment, while two 

proteins involved in the photosystem I PSAN (AT5G64040) and photosystem II PSB27-1 

(AT1G03600) function, were upregulated. Only one HSP-like protein was increased 

(AT1G54050) (highlighted in Suppl. Table 4.10). 
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Figure 4.25. GO enrichment of proteins differentially expressed in amiR23.5/23.6/26.5 relative to 
control plants in normal and after heat treatment by using STRING. BP: biological process, MF: 
molecular function, CC: cellular compartment. Access 08.12.18. 
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Figure 4.26. Venn diagrams showing numbers of differentially expressed proteins in amiR 
compare to control plants by using Venny2.1. (A) Number of commonly changed proteins in 
amiR23.5, amiR23.6, amiR26.5 and in the triple amiR23.5/23.6/26.5. (B) Number of significantly 
changed proteins in the normal proteome of triple amiR23.5/23.6/26.5 and in the heat-treated proteome. 

 

 

4.2.3.4. Reduction in the sHSP-M content leads to profound metabolic alterations. 

The differential proteomic analysis of the knockdown mutants and controls seedlings revealed 

significant upregulation of various metabolism-related proteins. In the double mutant 

amiR23.5/23.6, 128 proteins probably involved in metabolic pathways were differentially 

expressed. At least 140 metabolism-related proteins changed in the proteome of the triple 

mutant amiR23.5/23.6/26.5 compared to control proteome. In order to test whether the 

decreased abundance of sHSP-M lead to alteration in the primary metabolism of amiR 

mutants, metabolic profiling by GC-MC analysis was performed in Col-0 and mutant plants. 

Double amiR23.5/23.6 and triple amiR23.5/23.6/26.5 mutants were evaluated by this 

approach. Metabolite extraction of 15- and 28-day-old mutants and Col-0 plants grown under 

normal conditions were performed. Experiments using 15-day-old plants were based on three 

biological replicates corresponding to three independent lines of each mutant. Replicates 

consisted in a pool of 50 plants. In the experiment with 28-day-old plants, three independent 

lines of each mutant were evaluated, each of them with three biological replicates. In this case, 

replicates consisted in a pool of 3 plants. A total of 25 and 23 metabolites were identified and 

quantified in every chromatogram of 15- and 28-day-old plants, respectively. These included 

amino acids, organic and fatty acids, and sugars.  

In 15-day-old plants, double amiR23.5/23.6 and triple mutants accumulated several amino 

acids (Table 4.14). Serine, methionine, glutamine, and proline showed higher levels in both 

mutants. It is worth mentioning that methionine accumulated to a 3.5-fold level in the double 

mutant amiR23.5/23.6 and to a 45-fold in the triple mutant plants. Besides these, asparagine 

and threonine accumulated in the double mutants and aspartic acid in the triple amiR mutant. 

Asparagine showed high levels in amiR-T but considerable variability in the results lead to no 

statistical significance. Among the pool of organic acids, both double and triple mutants 

B A 
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showed increased levels of fumaric acid with more than 3.3-fold level in double mutant 

amiR23.5/23.6 and citrate which showed a significant accumulation of 13.2-fold change in the 

triple amiR-T. Maleic and phosphoric acids were differentially increased in the double mutant. 

Of note, amiR-triple lines showed a reduction of oxalic acid and stearic acid. Fructose and 

galactose highly accumulated in the triple amiR mutant while sucrose showed accumulation 

mainly in the double amiR mutant. Lyxose, on the other hand, significantly increased in both 

knockdown lines, reaching a 5.4-fold and 5.7-fold higher accumulation in amiR-double and 

amiR-triple, respectively. The levels of myo-inositol were also altered, this small molecule that 

is crucial in the regulation of growth and development [Donahue, 2010] increased in both 

mutants. Ascorbic acid showed significant accumulation (8.5- fold) in the triple amiR mutant. 

 

 
amiR23.5/23.6 amiR-triple 

 
Amino acids 

Serine 1.405 1.760 

Threonine 2.844 1.181 

Aspartic acid 1.571 2.309 

L-Methionine 3.266 45.095 

L-Proline 1.844 2.190 

Glutamine 1.849 3.177 

Asparagine 3.521 22.065 

DL-Ornithine 0.756 2.393 

 Organic acids 

Fumaric acid 3.306 2.045 

Maleic acid 1.634 1.383 

Malic acid 1.579 2.880 

Citrate 1.614 13.287 

Cinnamic acid  1.279 0.526 

Lactic acid 2.652 0.641 

 Oxalic acid 1.301 0.220 

Phosphoric acid 1.629 1.297 

 Fatty acids 

Palmitic acid 1.047 0.924 

Stearic acid 0.844 0.735 

 Sugars 

Fructose 1.428 3.317 

Galactose 1.150 4.706 

Glucose 0.861 0.457 

Sucrose 1.462 1.427 

Lyxose 5.422 5.734 

 Others 

Myo-Inositol 4.757 5.656 

Ascorbic acid 1.201 8.541 

 
Table 4.14. Metabolic profiling of amiR23.5/23.6 and amiR23.5/23.6/26.5 by GC-MS. Metabolites 
were extracted from 15 day-old mutants and Col-0 plants. Numbers indicate fold changes relative to 
Col-0 values. Significant up-regulated (red) and down-regulated (blue) metabolites are shown (p=0.05 
by t-test analysis). White color was used to indicate no statistical significance.  
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To gain more insight into the metabolic modifications observed in double amiR23.5/23.6 and 

triple mutants, 28 day-old plants were examined by GC-MS and a list of altered metabolites 

was obtained (Table 4.15). Most of the detected metabolites suffered a significant reduction in 

the triple mutant lines (blue color). Except for maleic acid which exhibited non-significant 

change, the rest of the organic acids decreased in these mutants. Down-regulation of amino 

acids, fatty acids, and sugars was observed for the amiR-T. In the mutant with double reduction 

of sHSP23.5 and sHSP23.6, the metabolic pattern was more variable. Among the detected 

amino acids, serine and threonine significantly accumulated whereas aspartic acid and proline 

decreased. From the organic acid group, succinic, fumaric, cinnamic, and glyceric acids 

showed significant accumulation in at least two independent lines. On the other side, citric, 

lactic and oxalic acids suffered a reduction in these lines. Both fatty acids, palmitic and stearic 

acid increased in the double amiR23.5/23.6 mutant as well as the myo-inositol and glycerol. 

Sugars presented distinct patterns: some like sucrose and lyxose accumulated and at the 

same time, others like fructose, galactose, and glucose, decreased. 

 

 

amiR- 
double-1 

amiR- 
double-2 

amiR- 
double-3 

amiR-
triple-1 

amiR-
triple-2 

amiR-
triple-3 

 
Amino acids 

Serine 5.589 5.944 4.167 0.276 0.291 0.338 

Threonine 6.507 3.659 2.072 0.134 0.233 0.124 

Aspartic acid 0.037 0.066 0.038 0.134 0.120 0.120 

Proline 0.602 0.696 0.361 0.325 0.288 0.422 

 Organic acids 

Succinic acid 1.096 1.760 2.231 0.168 0.118 0.149 

Fumaric acid 2.784 4.446 4.577 0.079 0.105 0.147 

Maleic acid 0.258 0.411 0.244 1.082 0.605 0.672 

Malic acid 0.944 0.844 0.906 0.297 0.230 0.230 

Citrate 0.545 0.747 0.486 0.335 0.157 0.245 

Cinnamic acid 1.188 1.811 1.511 0.748 0.489 0.606 

Lactic acid 0.691 0.277 0.436 0.311 0.362 0.330 

Oxalic acid 0.493 0.595 0.412 0.303 0.290 0.272 

Phosphoric acid 0.807 1.195 1.056 0.248 0.220 0.258 

Glyceric acid 1.616 2.330 2.559 0.222 0.149 0.167 

  Fatty acids 

Palmitic acid 1.955 2.184 2.779 0.343 0.536 0.509 

Stearic acid 2.001 2.463 3.471 0.398 0.529 0.602 

  Sugars 

Fructose 0.417 0.638 0.523 0.223 0.165 0.179 

Galactose 0.521 0.568 0.871 0.430 0.174 0.286 

Glucose 0.441 0.694 0.811 0.188 0.167 0.184 

Sucrose 1.756 3.759 2.789 0.388 0.239 0.254 

Lyxose 1.889 3.075 2.420 0.622 0.513 0.824 

  Others 

Myo-Inositol 1.412 1.936 1.803 0.380 0.284 0.353 

Glycerol 3.215 4.388 2.106 0.268 0.230 0.220 
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Table 4.15. Metabolic profiling of amiR23.5/23.6 and amiR23.5/23.6/26.5 by GC-MS. Metabolites 
were extracted from 28 day-old mutants and Col-0 plants. Numbers indicate fold changes relative to 
Col-0 values. Significant up-regulated (red) and down-regulated (blue) metabolites are shown (p=0.05 
by t-test analysis). White color was used to indicate no statistical significance.  

 

 

To further confirm the reduction of proline observed in the 28-days triple mutants, free proline 

content was also determined by spectrophotometry (Fig. 4.27). The amiR-triple mutant had 

significantly lower levels of free proline in the three independent lines that were analyzed 

compared to Col-0 plants.  

 

 

 

Figure 4.27. Free Proline content in amiR-triple and Col-0 plants. Proline was extracted from adult 
28 day-old plants grown under normal conditions. Three independent transgenic lines were measured. 
Each data point corresponds to the mean values + SD of four biological replicates. Each replicate 
consisted of a pool of 3 plants. Asterisks represent significance by one-sided t-test with p<0.05.  

 

 

4.2.3.5. amiR-triple mutant exhibited up-regulation of several photosynthetic related 

proteins. 

As it was previously described, triple amiR mutant plants produce small and chlorotic leaves. 

Figure 4.28-A. shows 28 day-old mutants and Col-0 plants. It can be seen the pale green 

leaves in the triple mutants and the veins which are especially evident in these plants. 

Furthermore, several proteins which are related to photosynthesis differentially accumulated 

in the proteome of amiR-triple mutant (Table 4.16). In order to test if the downregulation of 

sHSP-M produced an alteration of the photosynthetic processes, chlorophylls, and other 

pigments were determined. The small measurable area in amiR-triple leaves made difficult the 

evaluation of the activity of photosystem I and II and of other important photosynthetic 

parameters. For pigments determination, samples were taken from 28 day-old plants grown 

under normal conditions. Four independent triple knockdown lines were evaluated and 8 plants 

were measured in each line. Among the quantified pigments, the levels of chlorophyll a showed 

a significant reduction in all the triple mutant lines (Fig. 4.28-B). Chlorophyll b and carotenoids 

and xanthophylls exhibited reduced levels in only one triple mutant line.  
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Accession 
Uniprot 

code 
Description 

Fold change 
(log2) 

Adj. P-Value 

AT1G77090 O49292 
Mog1/PsbP/DUF1795-like photosystem II 
reaction center PsbP family protein 

6.64 6.70E-17 

AT4G03280 Q9ZR03 photosynthetic electron transfer C 6.64 6.70E-17 

AT3G60370 Q0WRJ7 
FKBP-like peptidyl-prolyl cis-trans isomerase 
family protein 

6.64 6.70E-17 

AT4G28750 Q9S831 
Photosystem I reaction center subunit IV / 
PsaE protein 

6.64 6.70E-17 

AT1G76450 Q9S720 
Photosystem II reaction center PsbP family 
protein 

6.64 6.70E-17 

AT2G20260 Q9S714 photosystem I subunit E-2 6.64 6.70E-17 

AT5G38430 P10796 
Ribulose bisphosphate carboxylase (small 
chain) family protein 

5.61 6.70E-17 

AT4G02770 Q9S7H1 photosystem I subunit D-1 4.35 6.70E-17 

AT5G38410 B3H5S2 
Ribulose bisphosphate carboxylase (small 
chain) family protein 

4.1 6.70E-17 

AT4G12800 Q9SUI4 photosystem I subunit l 3.74 6.70E-17 

AT1G06680 Q42029 photosystem II subunit P-1 3.64 2.94E-15 

AT1G67090 F4HRR5 
ribulose bisphosphate carboxylase small 
chain 1A 

3.52 2.60E-14 

AT4G21280 Q9XFT3 photosystem II subunit QA 2.91 4.96E-10 

AT4G28660 F4JM05 photosystem II reaction center PSB28 protein 2.89 1.06E-08 

AT1G54780 Q9ZVL6 thylakoid lumen 18.3 kDa protein 2.62 2.78E-08 

AT3G55330 P82538 PsbP-like protein 1 2.39 5.76E-07 

 
Table 4.16. List of photosynthesis-related proteins in the amiR-triple mutant showing significant 
level changes relative to control plants. 

 

 

 

 

 

Figure 4.28. A) Chlorotic and dwarf phenotype of triple amiR mutants compared to Col-0 (the first 
on the left). B) Pigments content in amiR-triples and Col-0 plants. Chlorophyll a, chlorophyll b, and 
xanthophylls and carotenoids (x+c) were extracted from adult 28 day-old plants. Four independent 
transgenic lines were measured. The data points in the graph correspond to the mean value + SD of 8 
biological replicates. Asterisks mean statistical significance by one-sided t-test with p<0.05.  
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4.2.3.6. Up-regulation of ROS detoxifying enzymes in the amiR mutants. 

Proteomic data revealed several enriched GO terms and proteins that are related to oxidative 

stress and to the detoxification of reactive oxygen species (ROS) in the mutants. As it was 

presented in Fig. 4.18-B, Panther analysis at the 1st level of ontology showed specific over-

representation of antioxidant activity in the single mutant amiR26.5 unlike the other single 

amiR23.5 and amiR23.6 mutants. Nine proteins with essential roles in ROS detoxification were 

upregulated in the amiR26.5 mutant when compared to control plants (Table 4.17). Among 

them, the peroxiredoxin IIF (PRXIIF), glutathione peroxidase 6 (GPX6), and 2-cysteine 

peroxiredoxin B (PRXIIB) were found. Some proteins related to oxidative stress were also 

increased in the proteome of double amiR and triple amiR mutants (Suppl. Table 4.4-4.5). In 

the triple amiR, four protein were increased including three peroxidases (PRXIIF, PRXIIB, 

PRXIIE) (highlighted in Suppl. Tables 4.5). This increased antioxidant capacity in the 

amiR26.5, amiR23.5/23.6, and triple mutants should be reflected in alleviated levels of ROS. 

To prove this hypothesis, the production of reactive oxygen species in adult plants was 

determined according to standard histochemical detection. The level of O2
.- and H2O2 in leaves 

of 28 day-old plants were evaluated in Col-0 and mutant plants. Accumulation of H2O2 was 

found in leaves of single amiR23.5 and amiR23.6, and in the double amiR23.5/23.6 as it can 

be concluded from the dark brown color in these mutants (Fig. 4.29-A). On the other side, a 

reduced amount of the dark brown color was observed in the single amiR26.5 and in the amiR-

triples mutants. Leaves exhibited a pain color staining what indicates less amount of H2O2. The 

results of NBT staining assays revealed a slight O2
.- increase in amiR23.6 and in the double 

mutant amiR23.5/23.6 while leaves from amiR23.5 lines appeared to have control-like O2
.- 

levels (Fig. 4.29-B). Triple mutant lines seem to strongly accumulate superoxide anion leading 

to a deep blue coloration. amiR26.5 showed again no accumulation of the O2
.- molecule. 

Together, these histochemical and proteomic data indicate that amiR26.5 mutant may have 

increased capacity to decompose ROS eventually leading to better tolerance to oxidative 

stress conditions.  

 

Accession 
Uniprot 

code 
Description 

Fold change 
(log2) 

Adj. P-Value 

AT3G06050 Q9M7T0 peroxiredoxin IIF(PRXIIF) 6.64 6.29E-17 

AT1G65980 Q9XEX2 thioredoxin-dependent peroxidase 1 6.64 6.29E-17 

AT4G03520 Q9SEU8 thioredoxin superfamily protein 6.64 6.29E-17 

AT4G11600 O48646 glutathione peroxidase 6 (GPX6) 6.64 6.29E-17 

AT3G15360 Q9SEU6 thioredoxin M-type 4 4.87 6.29E-17 

AT5G06290 Q9C5R8 2-cysteine peroxiredoxin B (PRXIIB) 2.93 6.29E-17 

AT3G52960 Q949U7 thioredoxin superfamily protein (PRXIIE) 1.67 1.26E-08 

AT3G11630 Q96291 thioredoxin superfamily protein 1.58 2.50E-06 

AT3G26060 Q9LU86 thioredoxin superfamily protein 1.42 1.34E-05 

Table 4.17. List of ROS-related proteins in the ami26.5 mutant showing significant level changes 
relative to control plants. 
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Figure 4.29. Histochemical detection of reactive oxygen species in amiR knockdown plants. 

Detection of H2O2 by DAB-staining (A) and O2
.- by NBT staining (B) was performed in leaves from 28 

day-old plants.  

 

 

4.2.3.7. Cell membranes are highly affected in the knockdown sHSP-M mutants. 

High levels of ROS can be extremely harmful to cells by causing lipid peroxidation in cellular 

membranes, protein and carbohydrate oxidation, DNA damage and cell death [Gill, 2010]. The 

ion permeability of cell membranes, which is considered an indicator of cell damage induced 

by ROS was evaluated in the knockdown mutant plants. Mutants and Col-0 plants were grown 

under normal conditions and 28 day-old plants were subjected for 3 h to 37 º C followed by 1 

h of recovery in the climate chamber. Leaf disks were cut from these plants before the 

treatment and directly after the recovery period and used to determine the electrolyte leakage. 

Single, double and triple amiR mutant plants showed higher electrolyte leakage compare to 

Col-0 plants as it is presented in Fig. 4.30-A. This higher amount of electrolytes in solution may 

be possible due to the loss of cell membrane stability and integrity. It is known that high and 
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low temperature altered cell membrane ion permeability of plants leading to considerable loss 

of electrolyte. Figure 4.30-B shows the increase in the electrolyte leakage especially in 

amiR23.5 and amiR23.6 heat-treated mutants. Accumulation of electrolytes leaked was also 

observed in triple mutants while in amiR26.5 only one independent line showed a similar 

increase. Double amiR mutant showed no significant changes although a tendency to higher 

levels of electrolyte leaked can be seen.  

 

 

 

 

Figure 4.30. Electrolyte leakage in amiR knockdown and Col-0 plants. Determinations were 
performed on 28 day-old plants before (A) and after being exposed for 3 h at 37º C followed by 1h of 
recovering at normal temperature (B). Three independent transgenic lines were measured for each 
mutant. Results are presented as relative to Col-0 values. Data points represent the mean value + SD 
of three biological replicates. Asterisks mean significance by one-sided t-test with p<0.05. 

 

 

The high loss of membrane integrity may cause severe damage and cell death. To visualize 

cell death in amiR mutant lines trypan blue staining was performed. Mutants and Col-0 plants 

were grown under normal conditions and leaf number 8 was cut out from 28-day-old plants 
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and stained with tryphan blue. While in single and double mutants tryphan blue staining did 

not show accumulation, the staining was significantly higher in the triple amiR. It can be 

appreciated in Fig. 4.31, the deep blue color in the leaves of the triple mutant plants. 

 

 

 

 

Figure 4.31. Cell death visualization with trypan blue staining in amiR mutant plants. Staining was 
performed on leaves from 28 day-old plants grown under normal conditions. Note the strong staining of 
the triple amiR23.5/23.6/26.5 leaves.  
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4.2.4. Discussion 

The function of organellar sHSPs in plants under stress conditions and during normal 

development is to date largely unknown. In this work, functional characterization of the 

mitochondrial small heat shock proteins under stress conditions and during A. thaliana 

development was presented.  

Firstly, paralogous of the sHSPs-M were investigated to discover other proteins that were 

closely related and could function as mitochondrial sHSP. Apart from the already mentioned 

sHSPs-M, only one additional protein appeared, the HSP21 located in chloroplasts (Table 

4.10). Sequence comparison between these proteins revealed that sHSP23.5 and sHSP23.6 

share high similarity in their sequences (around 70%) (Table 4.11). Far from this, sHSP26.5 

which is also 22 amino acids longer, show no more than 35 % of sequence similarity compared 

to the others sHSP-M. Subcellular localization of these three proteins to mitochondria has been 

predicted and confirmed in previews studies [Siddique, 2008; Van Aken, 2009]. Mitochondria 

perform many essential functions in the cell and thus disruption or alterations in their metabolic 

activities may affect the cell viability. sHSPs-M were formerly associated with the protection of 

mitochondrial proteins and with the thermotolerance of mitochondria [Chou, 1989; Sanmiya, 

1989]. Considering these findings and the fact that three sHSP are located in mitochondria in 

A. thaliana, it can be speculated that these proteins might play crucial roles in the cell 

homeostasis. 

Analysis of the sHSPs-M expression by q-PCR under normal conditions clearly showed the 

low basal expression of these genes. On the other hand, the three sHSPs-M were strongly 

induced by the heat shock treatment with more than 400-fold enrichment. sHSP26.5 was also 

up-regulated by cold (4 °C) and sHSP23.5 down-regulated by salinity. Similar up-regulation by 

high temperatures has been previously reported for sHSP23.5 and sHSP23.6 [Waters, 2008a]. 

Promoters activities corroborated up-regulation of the three sHSP-M upon heat shock, but 

sHSP23.5 promoter was responsive to other stresses (Fig. 4.9). Notably, the promoter activity 

of sHSP26.5 appeared to be restricted to roots while the other two promoters exhibited 

increased activity in all tissues. Once again, sHSP26.5 differentiates from the sHSP23.5 and 

sHSP23.6. Moreover, various cis-regulatory motifs belonging to the HEAT family were found 

in the three promoter sequences, although in a different location, in sHSP23.5 promoter three 

HEAT elements are in the proximal region of transcription initiation while in sHSP23.6 and 

sHSP26.5 promoters, most HEAT elements are in a distal region (Fig. 4.10). All these data 

indicate that mitochondrial sHSPs may be mainly regulated by high temperature, probably at 

a different level.  

To further explore the function of sHSPs-M single, double and triple knockdown mutants 

(amiR23.5/23.6/26.5) of A. thaliana were examined. Numerous transgenic lines were 

successfully generated and evaluated at the phenotypic, molecular and biochemical level. 
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Single knockdown mutants of sHSP23.5 and sHSP23.6 displayed similar phenotype. They 

grew normally but produced rosettes of bigger sizes compare to Col-0 plants. Apart from being 

bigger, leaves of these mutants appeared to be curved indicating an alteration during leaf 

development. Knockdown mutants of sHSP26.5 did not show any of these characteristics. 

These mutants exhibited normal growth and do not seem to have compromised their vegetative 

and reproductive development showing a Col-0-like phenotype. Nevertheless, when root 

growth was evaluated the only single amiR mutant that displayed alterations in this tissue was 

amiR26.5: their roots were significantly shorter than Col-0 plants. Roots of single mutants 

amiR23.5 and amiR23.6 did not differentiate from Col-0 roots. This is in concordance with the 

pattern of expression of the genes as it can be speculated from the promoter activity analysis. 

The promoter of sHSP23.5 and sHSP23.6 was stronger in the aerial parts of seedlings while 

the promoter of sHSP26.5 showed higher activity only in roots. Thus, single mutants amiR23.5 

and amiR23.6 were mainly affected in leaves while single mutant amiR23.6 showed alterations 

in roots. The phenotype observed in single mutants amiR23.5 and amiR23.6 was also found 

in mutants where both genes were simultaneously down-regulated. Double mutant 

amiR23.5/23.6 produced rosettes with bigger leaves than Col-0 plants. Beside this, leaves 

showed the same curvatures as those found in the single mutants. However, double mutants 

amiR23.5/23.6 do not exhibit an exacerbated phenotype compared to the singles amiR 

mutants. These may indicate a probable redundancy of function and compensation given by 

the third sHSP26.5. The triple knockdown amiR mutant displayed, unlike double and single 

mutants, a strongly affected phenotype. Plants were considerably smaller indicating a profound 

alteration in the plant development. A comparison between leaves from triple amiR mutant and 

Col-0 plants showed a clear difference in size, with more than 4-fold smaller leaves in the triple 

amiR mutant. Epidermal cells areas were evaluated in order to investigate the possible reasons 

for having small leaves. Epidermal cells of amiR-T plants were significantly smaller than Col-0 

whereas no differences in the cell number were found. Considering the results obtained from 

the cell areas observation, it can be concluded that the small size of amiR-T plants is mainly 

due to the alteration in the process of cell expansion but not in the cellular proliferation. Apart 

from being small, leaves of amiR-T were narrower, chlorotic and showed a mildly reticulated 

phenotype. These mutants exhibited lower levels of chlorophyll a and up-regulation of several 

photosynthesis-related proteins in the amiR-T proteome. Not only leaves were smaller but also 

whole plants showed smaller size compared to Col-0 plants. Rosettes were tiny as a 

consequence of the leaf size and stems were shorter resulting in dwarf plants. Additionally, 

these mutants showed decreased seed production with 12-fold lower seed yield than control 

plants. Like amiR26.5, triple amiR produced significantly shorter roots that reached no more 

than 2.5 cm after 15 days of growth. This altered phenotype can be explained by the 

expression pattern of the sHSPs-M, sHSP23.5 and sHSP23.5 are mostly expressed in leaves 
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and sHSP26.5 in roots. Moreover, in single and double mutants, functional redundancy may 

probably compensate for the effects of the genes down-regulation. When the three sHSP-M 

are knocked down functional compensation is no longer possible and the consequences in the 

phenotype became evident as seen in the triple amiR mutant.   

OMICS technologies such as proteomics and metabolomics are highly useful techniques to 

elucidate and explore changes occurring at a more global scale [Feussner, 2015]. These 

techniques provide a huge amount of data about metabolites and proteins being modified and 

thus can be extremely informative in the study of sHSP-M functions. The present work provides 

information on the differential protein and metabolites abundance between knockdown 

mutants and Col-0 plants. Down-regulation of the mitochondrial sHSPs produced profound 

proteome-wide changes as it can be assumed from the high number of proteins that 

significantly changed. Interestingly, most of the proteome accumulated to higher levels and 

only a few proteins decrease in the mutants. In seedlings grown under normal conditions, 

amiR26.5, amiR23.5/23.6, and amiR23.5/23.6/26.5 showed differential accumulation of more 

than 200 proteins compared to control plants. The number of changing proteins was 

considerably smaller in the amiR23.5 and amiR23.6. This indicates that, although no major 

changes were observed in the phenotype of amiR26.5, reduced level of sHSP26.5 produced 

wide effects on protein homeostasis. Similarly, simultaneously reduction of two and the three 

mitochondrial sHSPs lead to important changes in the basal proteome and consequently in the 

phenotype. On the other hand, individual reduction of sHSP23.5 and sHSP23.6 appeared to 

produce less severe effects in the proteome of the mutants. However, when compared the 

differential basal proteome with the differential proteome of heat-treated mutants, the number 

of proteins with modified abundances increased after heat only in the amiR23.5 and amiR23.6. 

In the rest of the analyzed mutants, a smaller number of differential proteins were observed in 

the treated compared to non-treated plants. These results imply that proteomes of single 

mutants amiR23.5 and amiR23.6 are more vulnerable and responsive to the heat shock stress, 

not like the other mutants. Proteomic analysis of the single amiR showed similarities in the 

gene ontology annotation of the changed proteins at the first level of ontology of Panther and 

by using String. It can be speculated though, from the low number of common changed 

proteins between single amiRs, that low abundance of the individual sHSP-M produced distinct 

proteomes response.  

All amiR mutants displayed alterations in the abundance of several proteins related to 

translation and to the ribosome functioning and structure. Triple amiR mutant exhibited a higher 

number of proteins with differential abundance involved in these processes compared to the 

other single and double amiR23.5/23.6 mutants. Such a wide change in ribosome-related 

proteins may indicate a possible alteration in the proper ribosome function. It has been reported 

that dysfunction of ribosomes can affect the translation of certain transcripts that are important 
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in the leaf development [Horiguchi, 2011]. Several studies have shown that mutants deficient 

in different ribosome proteins have abnormal phenotypes suggesting that ribosomes have 

specialized developmental functions in addition to their role in translation. Interestingly, 

different aspects of the triple amiR phenotype were also found in these r‐proteins mutants. For 

example, a mutation in the cytoplasmic ribosomal protein RPS13A produced narrow pointed 

leaves and inhibition of root growth like in the amiR-T mutant [Ito, 2000]. The mutation also 

affects the cell division activity leading to small leaves. Mutants of the ribosomal proteins 

RPL7B and RPS6A produce chlorotic and reticulated leaves, similar to amiR-T leaves. Other 

r-proteins mutants that were characterized displayed also comparable phenotype in leaves 

[Horiguchi, 2011; Carroll, 2013]. In some of them, reductions in both cell division and cell 

expansion contributed to the small leaf size while others were mainly affected by only one of 

these two processes [Horiguchi, 2011]. In this work, amiR-T displayed small narrow leaves 

resembling the phenotype of r-proteins mutants. Even though the leaf cell number in this 

mutant was not altered, cell areas were considerably smaller indicating that the cell elongation 

process is controlling the leaf size. It can be hypothesized that the alteration of several 

ribosome-related proteins due to the down-regulation of the three sHSPs-M, lead to a partial 

or complete dysfunction of ribosomes and the perturbation in the leaf development.  

Apart from the correct function of ribosomes, plant development requires the optimal 

functioning of mitochondria and chloroplasts. Disruption in the mitochondrial function, for 

instance, can result in serious changes in the energy metabolism. Proteome analysis revealed 

the accumulation of a high number of proteins involved in the primary metabolism and several 

biosynthetic processes. Analysis of the metabolome of double and triple amiR mutants by GC-

MS showed altered levels of numerous metabolites including amino acids, organic and fatty 

acids, and sugars. Nevertheless, the metabolic state of 15 day-old amiR mutants differed from 

the one found in 28 day-old plants. In 15 day-old plants, most of the detected metabolites 

accumulated in both double and triple mutants. amiR plants showed enrichment of several 

amino acids such as serine, glutamine methionine, and proline. Of special interest is the 

accumulation of proline which has important functions in energy utilization, reactive oxygen 

species (ROS) generation, development and stress resistance. Proline metabolism includes 

the interconversion of proline and glutamate thanks to two mitochondrial enzymes, in a process 

that affects cellular energetics through the respiratory electron transport chain [Zhang, 2015]. 

There was also increased in some TCA cycle intermediates including fumaric acid and citrate, 

and in several sugars. This accumulation of organic acids and amino acids implicates an 

alteration at the central metabolism level. Accumulation of metabolites was previously reported 

in mutants with loss of mitochondrial function [Meyer, 2009; Tomaz, 2010]. Mutants defective 

in prohibitin 3, a protein of the inner mitochondrial membrane and in the organellar RNA 

polymerase important for the mitochondrial activity, showed the same accumulation of 
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metabolites [Van Aken, 2016]. These mutants with mitochondrial defect showed reduction in 

the rosette size, growth retardation, lower seed production, and shorter roots. Although double 

amiR23.5/23.6 mutant did not exhibit these alterations, triple amiR mutants phenocopied 

almost all of them. The accumulation of several intermediates suggests that photosynthesis 

may be functioning properly in these mutants producing enough substrates for glycolysis. On 

the other hand, limited and slow processing of these metabolites into growth-supporting 

compounds may lead to their accumulation, as it was observed. Metabolites profiles were 

nearly the opposite in the 28 day-old triple amiR mutant. While at this age double amiR mutants 

showed accumulation of certain metabolites and reduction of others, triple amiR suffered a 

significant reduction of all of them. The depletion of metabolites in the triple amiR mutant 

suggests a constriction of primary metabolism and profound mitochondrial dysfunction. In 

concordance with this, it has been proved that the inhibition of complex I in A. thaliana by 

rotenone induced a significant alteration in the mitochondria function, reduced cell respiration 

and the depletion of several metabolites [Garmier, 2008]. Along with the reduction of several 

sugars, amino and organic acids, the molecule myo-Inositol showed significantly lower levels 

in the amiR-T lines. Since an oxidized form of inositol is the most common and important sugar 

involved in the production of cell walls polysaccharide, this molecule is essential in the cell wall 

biosynthesis [Loewus, 2000]. Two fatty acids, palmitic and stearic were also reduced in the 

triple amiR mutant. These fatty acids are found in almost all lipids classes of cell membranes. 

This may suggest that the overall membrane fluidity is changed in the triple mutant. 

The proteomic approach used in this work also revealed the up-regulation of several proteins 

involved in redox processes and ROS response. In particular, the differential proteome of 

amiR26.5 analyzed by Panther showed an overrepresentation of the antioxidant activity 

process. In addition to this, histochemical staining showed that leaves from amiR26.5 lines did 

not accumulate O2
.- and H2O2. This may indicate that, compared to Col-0 plants, amiR26.5 

may better tolerate and mitigate the effects of ROS leading to a lower amount of these reactive 

molecules. Additional experiments should be performed in order to confirm this hypothesis. 

The abundance of several peroxidases in the triple amiR as it was found in the proteomic 

analysis, might be responsible for the reduction in H2O2 levels, albeit accumulation of O2
.- could 

not be avoided. Although showing an increase of ROS-related proteins, double amiR23.5/23.6 

mutants accumulated a considerable amount of O2
.- and H2O2 indicating that the scavenging 

system in these plants was probably not enough to reduce the ROS levels.  

To estimate the cell death, electrolyte leakage from dead or damaged cells was quantified. 

According to the results presented in this work, amiR plants appeared to be more disturbed 

regarding the membrane integrity compared to Col-0 plants. All amiR lines showed increase 

electrolyte leakage under normal conditions and after being exposed to high temperature. 

Additionally, trypan blue does not pass through intact cell membranes of live cells, therefore it 
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selectively stains dying dead cells and can be used to measure cell death [van Wees, 2008]. 

Visual analysis revealed deep staining of amiR-T leaves. These assays suggest that the 

integrity of membranes in amiR lines may be compromised leading to cell death in the triple 

amiR mutants. 

The data described in this work provided evidence of the important roles that sHSPs-M may 

play not only in the heat response but also in the plant development. Results demonstrate that 

a functional compensation might be responsible for the phenotype in mutants lacking single 

sHSPs-M. However, the reduction of the three sHSPs-M produces a profound disruption in the 

mitochondria and ribosome functionality, severely affects the energy metabolism and the 

overall cell homeostasis, and leads to alterations in the correct plant development. It remains 

to be investigated the specific processes in which sHSPs-M are involved and which seem to 

be disrupted in the amiR-T. Elucidating the role of these sHSPs-M in the mitochondria would 

also provide a significant contribution to the understanding of the function and regulation of 

organellar sHSPs.  
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CHAPTER III 

 

 

4.3. Mitochondrial small heat shock protein and chilling tolerance 

in tomato fruit 

 

 

Chilling injury (CI) is a physiological disorder that appears when plants and plant organs are 

exposed to low, but non-freezing temperatures. In tomato fruit, low temperature is used as a 

strategy to extend the commercialization period after harvesting. But this procedure can lead 

to CI affecting the production yield and quality. However, genetic variability in the low-

temperature sensitivity is found within different tomato varieties. A comparative study showed 

contrasting postharvest chilling tolerance between two tomato varieties, cv. Micro-Tom and cv. 

Minitomato [Gonzalez, 2015]. While cv. Micro-Tom was more tolerant to postharvest chilling, 

cv. Minitomato showed susceptibility to CI, demonstrated that cv. Micro-Tom can be 

considered as a model system to study postharvest chilling tolerance. 

It was previously reported the existence of various genes related to different stress responses 

that may be involved in the acquirement of chilling tolerance [Sanchez-Bel, 2012; Cruz-

Mendívil, 2015]. Among them, the sHSP genes may have a role in conferring chilling tolerance. 

For instance, heat-treated tomato fruit showed acquired tolerance to CI and it was related to 

the accumulation of heat shock proteins [Polenta, 2007]. Proteomic analysis in the fruit of two 

contrasting tomato lines showed that four sHSPs were increased in the more tolerant genotype 

in response to cold storage [Page, 2010]. In another proteomic study in tomato fruit stored at 

chilling and non-chilling temperatures, two sHSPs were up-regulated in response to the cold 

stress [Sanchez-Bel, 2012]. sHSPs expression after chilling was also analyzed in the pericarp 

of Micro-Tom and Minitomato fruit. These two varieties exhibited clear different expression of 

sHSPs, with an increase of sHSPs in Micro-Tom. Interestingly, among them, one mitochondrial 

sHSPs (sHSP23.8) showed higher expression in Micro-Tom green mature fruit after cold 

storage. On the contrary, the more susceptible Minitomato fruit showed down-regulation of all 

sHSPs analyzed during cold storage [Ré, 2016]. These data indicate a potential correlation 

between the accumulation of sHSP23.8 and the amelioration of chilling symptoms in tomato 

fruit. Unlike A. thaliana where three mitochondrial sHSPs were described [Waters, 2013], 

tomato has only one mitochondria-located sHSP. Considering that this unique protein may 

participate in the protection mechanisms against chilling stress, the functional consequences 

of the down-regulation of sHSP23.8 in tomato fruit was investigated by using knockdown 

mutants of cv. Micro-Tom. Transgenic fruit was analyzed in their phenotype and in their 

susceptibility to chilling injury. The results are presented in the current section.  
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4.3.1. Generation of knockdown mutants of sHSP23.8. 

 

sHSP23.8 gene was targeted and silenced by a specific artificial microRNA (amiR). The amiR 

design and constructs were developed by Dr. Martin Ré. To focus on the effects on fruit, a fruit-

specific promoter (PPC2pro) [Fernandez, 2009] was used to drive the amiR construction. In 

this study, constructs were used to transform cv. Micro-Tom cotyledons to propagate in vitro 

and to generate T0 kanamycin-resistant plants. The T1 seeds obtained from these plants were 

selected in kanamycin-containing MS (½) and resistant plants were confirmed by PCR with 

specific oligonucleotides. The expression reduction of the sHSP23.8 was tested by q-PCR in 

these T1 transgenics lines. Since a fruit-specific promoter was employed, the q-PCR analysis 

was performed with cDNA synthesized from green mature fruit. This analysis allowed the 

identification of several T1 knockdown lines (data not shown) which were propagated to obtain 

the T2 generation. All experiments showed in this work were performed in the T2 plants, from 

now on refer to as amiR23.8 lines. Figure 4.32 illustrates the lower expression levels of 

sHSP23.8 measured by q-PCR in the isolated T2 lines. Green mature fruit from Micro-Tom 

WT plants was used as a control. The reference gene ribosomal protein L2 (RPL2) was added 

as a control gene for the quantification. The data obtained from q-PCR experiments were 

normalized to the basal expression of sHSP23.8 in WT plants.  

 

 

 

 
 
 
 
 
 
 
 
 
 
 
 
 

Figure 4.32. Expression of sHSP23.8 in WT 
and amiR23.8 fruit. Quantitative real-time PCR 
of sHSP23.8 in Micro-Tom transgenic fruit. Fruit 
of 5 independent T2 lines were collected at the 
green mature stage and used for q-PCR 
determinations. All expression values were first 
normalized to the RPL2 expression taken as a 
reference. Relative expression of transcripts was 
then normalized to their respective expression 
levels in WT fruit. Each data point consists of the 
mean value + SD of three biological replicates. 
Asterisks were used to show statistical 
significance by one-sided t-test with p<0.05. 
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4.3.2. amiR23.8 fruit is more susceptible to chilling injury than WT fruit. 

 

To evaluate the effects of the down-regulation of sHSP23.8 in the chilling tolerance, transgenic 

fruit was collected at the green mature stage and evaluated after cold treatment. Fruit ripening 

was studied in two conditions: on the vine (fruit that ripens on the plant), and prechilled (fruit 

that was harvested at the green mature stage, stored for 28 days at 4 ºC, and then transferred 

back to the climate chamber). Under normal conditions of ripening, transgenic fruit showed 

WT-like phenotype. Immediately after cold treatment fruit was still green and showed only slight 

signs of injury. Evidence of CI was seen in the following days after being returned to growth 

temperature. Ripening of fruit was visually checked during 15 days. Although amiR23.8 fruit 

did not completely decay, they developed visible symptoms of chilling injury after 15 days of 

ripening (Fig. 4.33). Most of the amiR23.8 fruit failed to ripen normally, they showed wilting and 

skin wrinkles, partial discoloration and did not reach full red color. Fifteen days after chilling, 

fruit was internally analyzed by using the “Tomato Analyzer Color Test” to quantify the color 

parameters R (red), G (green), and B (blue) of the RGB color space. Besides this, the L*, a* 

and b* values of the CIELAB color space along with the Hue and Chroma color descriptors 

were calculated. Color data of WT and 5 amiR23.8 lines are exposed in Table 4.18. Since fruit 

did not differ in B, the values of this parameter were excluded from the table. Compare to WT, 

amiR23.8 fruit exhibited lower “Red” and greater “Green” values, which is consistent with more 

green-yellow fruit as it can be observed in Fig. 4.33-B. The lightness value L* was higher in 

amiR23.8 fruit indicating the brighter color of the fruit. a* value represents the green-red 

component: a*<0 indicates green and a*>0 indicates red. On the other hand, b* represents the 

blue-yellow component, indicating blue when b*<0 and yellow when b*>0. As it was expected, 

amiR23.8 fruit showed lower a* and higher b* values compared to WT fruit. Similarly, Hue 

values were greater in amiR23.8 lines which is associated with the green color. No differences 

were found in Chroma. 

Since a well-known symptom of chilling injury is the loss of water, amiR23.8 and WT fruit was 

weighed after being harvested and once again directly after the chilling treatment (28 days at 

4 ºC). The loss of weight was used as an estimation of water loss. Fruit of amiR23.8 showed 

higher loss of water compared to WT fruit (Fig. 4.34). Furthermore, electrolyte leakage was 

evaluated in the pericarp of fruit exposed to chilling temperatures and allowed to recover for 1 

day in the climate chamber. The pericarp tissue of amiR23.8 pre-chilled fruit showed increased 

ion leakage compare to WT fruit (Fig. 4.35). The fruit deterioration indicates that knockdown 

mutants of sHSP23.8 are highly susceptible to cold stress and developed chilling injury 

symptoms. 

 

 



Results and Discussion 

 

108 

 Red Green L* a* b* Hue Chroma 

WT 185.56      138.54  57.23 9.41 33.93 74.35 37.40 

amiR23.8-1 174.37 * 149.39 * 59.46 * 2.09 * 36.40 * 87.26 * 36.38 

amiR23.8-2 174.34 * 153.47 * 60.02 * -1.52 * 37.12 * 91.32 * 37.83 

amiR23.8-3 177.63 * 147.35 * 58.75 * 2.53 * 36.37 * 87.93 * 37.06 

amiR23.8-4 178.20 * 152.30 * 60.62 * 1.99 * 38.78 * 87.09 * 39.19 

amiR23.8-5 173.57 * 146.42 * 58.92 * 1.68 * 35.70 * 87.78 * 34.78 

 
Table 4.18. Color parameters of WT and amiR23.8 fruit after chilling treatment. Cross section fruit 
was used for color analysis through Tomato Analyzer 3.0. Values in the table correspond to the mean 
value + SD of at least ten biological replicates. Asterisks were employed to indicate statistical 
significance by one-sided t-test with p<0.05. 

 

 

 

Figure 4.33. Fruit of WT and amiR23.8 plants after chilling treatment. Fruit was harvested at the 
green mature stage, stored for 28 days at 4 ºC and transferred to the climate chamber with normal 
temperature for ripening. Pictures were taken 15 days after chilling. (A) WT fruit. (B) amiR23.8 fruit (4 
representative fruits from 5 independent lines). 
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Figure 4.34. Water loss rates of WT and 
amiR23.8 fruit. Green mature fruit was 
weighed before and directly after cold storage 
(28 days at 4 ºC). Values represent weight 
losses as a percentage relative to the starting 
weight. Data point represents the mean value 
and SD of at least 8 biological replicates. 
Asterisks mean significance by one-sided t-test 
with p<0.05. 

 

 

 

 
Figure 4.35. Electrolyte leakage in amiR23.8 
and WT fruit after chilling treatment. Fruit 
was collected at the green mature stage and 
stored at 4 ºC for 28 days before returned to the 
climate chamber for recovery. Measurements 
were performed after 24 h of recovery. Data 
points correspond to the mean value and SD of 
at least 4 biological replicates. Asterisks mean 
significance by one-sided t-test with p<0.05. 

 

 

4.3.3. Antioxidant system of amiR23.8 fruit is slightly altered after chilling storage. 

 

Oxidative stress has been previously linked to the occurrence of chilling injury symptoms in 

fruit. In this regard, the antioxidant system may play a role in the protection of fruit against 

chilling [Sala, 1999]. To evaluate the antioxidant capacity of the amiR23.8 and WT fruit, 

activities of guaiacol peroxidase (GPOX) and catalase (CAT) were measured in pre-chilled fruit 

(fruit was exposed for 28 days at 4 ºC and then allowed to recover for 1 day in the climate 

chamber). GPOX showed significant changes in fruit of amiR23.8 lines after chilling storage, 

with lower activity in 8-3 and 8-5 lines and higher activity in 8-2 and 8-4 lines. On the other 

hand, CAT activity showed significant changes in line 8.1 and not significant changes in the 

other lines, although a tendency to lower enzyme activity was found in the amiR23.8 mutants 

(Fig 4.36-B).  
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Figure 4.36. Activity of guaiacol peroxidase (A) and catalase (B) in amiR23.8 and WT fruit after 
chilling treatment. Fruit was collected at the green mature stage and stored at 4 ºC for 28 days before 
returned to the climate chamber for recovery. Determinations were performed after 24 h of recovery. 
Data points correspond to the mean value + SD of three biological replicates. Asterisks were used to 
indicate significance by one-sided t-test with p<0.05. 

 

 

4.3.4. Lipid composition of amiR23.8 fruit after chilling stress differs from WT fruit. 

 

An UPLC-ESI-MS/MS-based lipid profiling approach was used to investigate changes in the 

amiR23.8 and WT fruit lipid profiles under normal conditions and after chilling treatment. Fruit 

lipid profile was analyzed in the pericarp tissue at the stage of green mature and after low-

temperature treatment (fruit harvested at the green mature stage were stored for 28 days at 4 

ºC, and then transferred to the climate chamber for 1 day before pericarp was isolated). Fruit 

of five independent transgenic lines and two replicates per line were analyzed. Samples 

consisted of a pool of three fruits from three individual plants. This profile included lipid species 

belonging to 5 lipid categories, glycerophospholipids, glyceroglycolipids, neutral lipids, sterol 

lipids, and sphingolipids. Lyso-lipids survey was also performed, although these species were 

difficult to detect in the samples. Measurements did not include internal standards that can be 

used as references to determine absolute lipid amounts. Results are shown as relative peak 

area of every lipid species compared to the total peak area of all species measured in one lipid 

category. To compare changes happening at the class level relative peak areas of all lipid 

species of one class were combined. Alterations in lipid categories after chilling stress were 

also studied by combining the total peak area of all lipid species within one category and by 

comparing the resulting total areas between WT and amiR23.8 fruit. Data analysis was mainly 

focused on the differential response of the fruit lipidome to the chilling treatment in WT and 

amiR23.8 samples separately.  
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Lipidomic analysis of tomato fruit after chilling stress revealed alterations in the level of some 

individual lipid species but no clear patterns were observed. Probably differences in the 

lipidome response between WT and amiR23.8 fruit can be better observed at a more general 

scale when combining all lipid species, instead of single lipid species. Therefore, results are 

mainly presented at the lipid classes and categories levels. 

 

 

4.3.4.1. amiR23.8 fruit had altered amounts of glycerolipids and showed differential 

response to chilling stress. 

The glycerolipidome which includes glycerophospholipids and glyceroglycolipids was 

evaluated in the amiR23.8 and WT fruit before and after chilling stress. The detected 

glycerolipids species can be found in Suppl. Fig. 4.5-4.13. Lyso-lipids are molecules with one 

fatty acid moiety instead of two. Lyso-lipids were measured for all glycerolipid classes, but due 

to the very low signal intensities, only a few species were used for data analysis (Suppl. Fig 

4.14-4.15). In Fig. 4.37 and 4.39 the total levels of the phospholipid classes phosphatidyl-

choline (PC), phosphatidyl-ethanolamine (PE), phosphatidyl-glycerol (PG), phosphatidyl-

inositol (PI), and phosphatidyl-serine (PS), and glycolipids classes 

monogalactosyldiacylglycerol (MGDG), digalactosyldiacylglycerol (DGDG), and 

sulfoquinovosyldiacylglycerols (SQDG) are presented. Since methylation of samples is 

necessary for PA and lyso-PA measurements, data of these molecules are presented 

separately (see Suppl. Fig 4.14 and 4.15 for lyso-PA and other lyso-lipids). Compared to 

control fruit, both amiR23.8 and WT accumulated PC but showed a reduction of PE after 

chilling stress. Besides this, amiR23.8 fruit exhibited lower levels of PE in control and chilling 

conditions. Even though PG did not suffer significant changes after cold treatment, the basal 

levels of these lipids were significantly higher in amiR23.8 fruits. Furthermore, the correlation 

between specific lipid markers and cold sensitivity of plants has been reported [Zheng, 2016]. 

That is the case for PG molecules with the composition of 16:0/16:0 which have high melting 

points. Significant higher amounts of PG (16:0/16:0) were found in amiR23.8 fruit in both 

normal and treated conditions (Suppl. Fig. 4.7). PI and PS were both reduced in amiR23.8 fruit 

after being cold-treated while no changes were observed for these molecules in WT fruit. The 

total peak area of phosphatidic acid (PA) corresponding to 13 detected species was calculated 

and presented in Fig 4.38 (see Suppl. Fig 4.10 for individual PA species). Interestingly, total 

PA significantly decreased in WT-treated fruit whereas no level alteration was observed in 

amiR23.8 fruit after cold treatment. None of the glycolipids showed differential changes in the 

amiR23.8 treated fruit. After the chilling treatment, WT fruit showed an increase of DGDG and 

decrease of MGDG molecules, while SQDG did not show significant changes. 
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Figure 4.37. Lipid profile of glycerophospholipids in WT and amiR23.8 fruit. Classes include: 
phosphatidyl-choline (PC), phosphatidyl-ethanolamine (PE), phosphatidyl-glycerol (PG), phosphatidyl-
inositol (PI), and phosphatidyl-serine (PS). Data are shown as the relative peak area of each class 
compared to the total peak area of all molecules measured in the phospholipid category. Samples of 
five independent amiR23.8 lines and two replicates per line were analyzed and the 10 samples were 
then combined to calculate mean and SD values. Six WT samples were also measured and taken as 
control. Samples consisted of a pool of three fruits from three individual plants. Asterisks indicate 
significance between normal and chilling conditions by one-way ANOVA, LSD Fisher test with p<0.05. 

 

 

 

Figure 4.38. Total peak area of phosphatidic acid (PA) in WT and amiR23.8 fruit. Peak areas of all 
molecules detected in the PA class were combined. Samples of five independent amiR23.8 lines and two 
replicates per line were analyzed and the 10 samples were then combined to calculate mean and SD 
values. Six WT samples were also measured and taken as control. Samples consisted of a pool of three 
fruits from three individual plants. Asterisks mean significance between normal and chilling conditions by 
one-way ANOVA, LSD Fisher test with p<0.05. 
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Figure 4.39. Lipid profile of glyceroglycolipids in WT and amiR23.8 fruit. Classes include 
monogalactosyldiacylglycerol (MGDG), digalactosyldiacylglycerol (DGDG), sulfoquinovosyl-
diacylglycerol (SQDG). Data are shown as the relative peak area of each class compared to the total 
peak area of all molecules measured in the glycolipids category. Samples of five independent amiR23.8 
lines and two replicates per line were analyzed and the 10 samples were then combined to calculate 
mean and SD values. Six WT samples were also measured and taken as control. Samples consisted of 
a pool of three fruits from three individual plants. Asterisks indicate significance between normal and 
chilling conditions by one-way ANOVA, LSD Fisher test with p<0.05. 

 

 

When considering the total peak area of all phospholipids and glycolipids, an accumulation of 

total phospholipids in WT and amiR23.8 fruit after chilling stress was observed (Fig. 4.40-A). 

However, it was higher in WT fruit with a 17 % increase compared to amiR23.8 fruit that 

showed an increase of only 12 %. Total glycolipids, on the other hand, decreased in both WT 

and amiR23.8 fruit after being exposed to the cold treatment, with 28 % and 24 % fewer 

glycolipids in WT and amiR23.8, respectively (Fig. 4.40-B). Notably, amiR23.8 fruit exhibited a 

higher amount of overall glycerolipids in basal and stress conditions. The ratio of phospholipids 

to glycolipids in green mature fruit was 8.16 in WT and 6.80 in amiR23.8, whereas after cold-

treatment it was 13.41 and 10.14 in WT and amiR23.8, respectively. Among glycerolipids, 

MGDG and DGDG have head groups of different size and the proportion of these molecules 

influences the integrity of membranes under stress. The same has been assumed to PC and 

PE molecules. Thus, the ratio of DGDG/MGDG and PC/PE can be useful to evaluate the 

membrane stability after cold stress. In green mature fruit, the ratio of DGDG/MGDG was 0.38 

in WT and 0.42 in amiR23.8. After cold stress, this ratio increased considerably to 0.55 in WT 

while in amiR23.8 reached only a ratio of 0.43 (Fig. 4.41). The ratio of PC/PE in WT and 

amiR23.8 was rather similar with 0.52 and 0.59, respectively. In response to chilling treatment, 

PC/PE increased slightly to 0.59 in WT but it was especially higher in amiR23.8 (ratio of 0.8). 

Double bond index (DBI) and acyl chain length index (ACLI) are good estimators of the degree 

of unsaturation of glycerolipids and membrane fluidity. A higher DBI and a lower ACLI has 

been associated with more fluid membranes at low temperatures. To investigate these two 
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indexes in the membrane lipids, all glycerolipids in each sample were combined and relative 

peak areas of each lipid species calculated. The DBI was calculated as ∑ [N × mol % lipid])/100 

where N is the total number of double bonds present in the two fatty acid chains contained in 

each glycerolipid species. The ACL was considered as ∑ [n × mol % lipid])/100 where n is the 

total number of carbons in the two fatty acid chains present in each glycerolipid molecule. In 

addition to this, all glycerolipids with no double bonds in their structure were combined to 

determine the relative percentage of saturated lipids. In the same way, all glycerolipids with at 

least one double bond were taken together to estimate the relative percentage of unsaturated 

membrane lipids. While DBI increased after chilling treatment in both WT and amiR23.8, ACLI 

showed only a small reduction in amiR23.8 (Table 4.19). Besides this, the basal relative 

amount of saturated lipids was significantly higher in amiR23.8 fruit compared to WT. In 

response to chilling, the level of saturated lipids in amiR23.8 decreased, not lower than the 

level in WT under normal conditions. The opposite was found in the relative percentage of 

unsaturated lipids, having amiR23.8 fruit significantly lower levels in normal conditions and 

after chilling.  

 

 

  
Figure 4.40. Total peak areas of glycerolipids in WT and amiR23.8 fruit. Peak areas of all molecules 
detected in the phospholipid (A) and glycolipid (B) categories were combined. Samples of five 
independent amiR23.8 lines and two replicates per line were analyzed and the 10 samples were then 
combined to calculate mean and SD values. Six WT samples were also measured and taken as control. 
Samples consisted of a pool of three fruits from three individual plants. Asterisks indicate significance 
between normal and chilling conditions by one-way ANOVA, LSD Fisher test with p<0.05. 
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Figure 4.41. PC/PE and DGDG/MGDG in WT and amiR23.8 fruit. Relative peak areas of all molecules 
detected in each class were combined and ratios were calculated. Samples of five independent 
amiR23.8 lines and two replicates per line were analyzed and the 10 samples were then combined to 
calculate mean and SD values. Six WT samples were also measured and taken as control. Samples 
consisted of a pool of three fruits from three individual plants. Asterisks indicate significance between 
normal and chilling conditions by one-way ANOVA, LSD Fisher test with p<0.05.  
 
 
 

 DBI ACLI Saturation (%) Unsaturation (%) 

WT 2,86 a 34,93 ab 2,46 ab 97,54 ab 

amiR23.8 2,94 ab 34,89 a 4,27 c 95,73 c 

CHWT 3,02 bc 34,96 b 1,44 a 98,56 a 

CHamiR23.8 3,05 c 34,83 d 2,77* b 97,23 b 

 
Table 4.19. Double bond and acyl chain length index of the glycerolipidome of WT and amiR23.8 
fruit. All glycerolipids species were combined and used to calculate DBI and ACLI (see formulas in the 
text). Saturation (%) and Unsaturation (%) refer to the relative percentage of all lipid species with no 
double bond or with at least one double bond in their molecules, respectively. Values in the same column 
indicated with different letters are significantly different by two-way ANOVA, LSD Fisher test with p<0.05. 

 

 

4.3.4.2. Lipidome response of WT and amiR23.8 fruit differed depending on the lipid 

class. 

Neutral lipids were measured in the lipid classes of diacylglycerides (DAG) and 

triacylglycerides (TAG), showing no significant changes between WT and amiR23.8 fruit and 

after the chilling treatment (Fig. 4.42). Sphingolipids are molecules with a backbone of a long-

chain base (LCB) that can have attached a fatty acid moiety forming a ceramide (Cer). When 

a sugar moiety is connected, the resulting molecule is a glycosyl-ceramide (GlcCer). On the 

other hand, when a complex head group consisting of sugars and phosphate is added, the 

sphingolipid molecule is called glycosylinositolphospho-ceramide (GIPC). In addition to this, 

free LCBs that do not have a FA attached can be found but only in small amounts. Among the 

group of sphingolipids, free LCB, Cer, and GlcCer were analyzed. GIPC could not be clearly 

detected in the fruit samples due to their low signals. Free LCBs were only detected for 18:0;2, 

18:0;3 and 18:1;3 (Suppl. Fig. 4.20). Similar sphingolipids response to the cold stress were 

found in WT and amiR23.8 fruit. Both significantly accumulated Cer and LCB but showed 

reduced levels of GlcCer (Fig 4.43). Sterol lipids in WT and amiR23.8 fruit were detected as 
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the lipid classes sterol-esters (SE), sterol-glycosides (SG) and acylsterol-glycosides (ASG). 

Sterols molecules consist of a steroid backbone connected in its hydroxyl-group to another 

residue such as a FA moiety in SE, a sugar moiety in SG or both in ASG. Overall ASG 

decreased in amiR23.8 fruit while SG accumulated in these mutant samples. SE did not show 

alterations in response to chilling in WT and amiR23.8 (Fig. 4.44).  

 

 

 

Figure 4.42. Lipid profile of neutral lipids in WT and amiR23.8 fruit. Classes include triacylglycerides 
(TAG) and diacylglycerides (DAG). Data are shown as the relative peak area of each class compared 
to the total peak area of all molecules measured in the neutral lipid category. Samples of five 
independent amiR23.8 lines and two replicates per line were analyzed and the 10 samples were then 
combined to calculate mean and SD values. Six WT samples were also measured and taken as control. 
Samples consisted of a pool of three fruits from three individual plants. Asterisks mean significance 
between normal and chilling conditions by one-way ANOVA, LSD Fisher test with p<0.05. 

 

 

 
Figure 4.43. Lipid profile of sphingolipids in WT and amiR23.8 fruit. Classes include ceramides 
(Cer), glucosyl-ceramides (GlcCer) and free LCB. Data are shown as the relative peak area of each 
class compared to the total peak area of all molecules measured in the sphingolipid category. Samples 
of five independent amiR23.8 lines and two replicates per line were analyzed and the 10 samples were 
then combined to calculate mean and SD values. Six WT samples were also measured and taken as 
control. Samples consisted of a pool of three fruits from three individual plants. Asterisks indicate 
significance between normal and chilling conditions by one-way ANOVA, LSD Fisher test with p<0.05. 
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Figure 4.44. Lipid profile of sterolipids in WT and amiR23.8 fruit. Classes include 
acylsterylglucosides (ASG), sterolester (SE) and sterylglucoside (SG). Data are shown as the relative 
peak area of each class compared to the total peak area of all molecules measured in the sterol 
category. Samples of five independent amiR23.8 lines and two replicates per line were analyzed and 
the 10 samples were then combined to calculate mean and SD values. Six WT samples were also 
measured and taken as control. Samples consisted of a pool of three fruits from three individual plants. 
Asterisks indicate significance between normal and chilling conditions by one-way ANOVA, LSD Fisher 
test with p<0.05.
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4.3.5. Discussion  

The accumulation of small heat shock proteins and acquired chilling tolerance in plants has 

been subject of several previews reports [Polenta, 2007; Page, 2010; Ré, 2016]. However, the 

particular functions that sHSPs may have in the response to chilling are largely unknown. In 

this work, the correlation between the accumulation of the mitochondrial sHSP23.8 and chilling 

injury resistance in tomato fruit was assessed in a detail that has not been reported to date. 

The data shown here provide evidence of the protecting role that sHSP23.8 may play against 

chilling stress.  

Fruit of tomato cv. Micro-Tom has been proposed to be tolerant to chilling postharvest injury 

when comparing with cv. Minitomato, which is susceptible [Gonzalez, 2015]. After chilling, 

Micro-Tom fruit completes the ripening process and reach the red stage [Malacrida, 2006]. 

Furthermore, accumulation of the sHSP23.8 was observed in Micro-Tom but not in Minitomato 

fruit after chilling storage [Ré, 2016]. These results make Micro-Tom a suitable model to study 

the effects of the down-regulation of sHSP23.8 in the chilling resistance. Knockdown fruit of 

sHSP23.8 was evaluated in their susceptibility to chilling injury directly after and during several 

days after chilling treatments. Symptoms of chilling injury were especially evident in amiR23.8 

fruit after 15 days of recovery. Compared to WT, amiR23.8 fruit showed partial discoloration, 

wilting and wrinkles at the surface. Color parameters determination confirmed the more green-

yellow color observed in amiR23.8. Most of the amiR23.8 fruit were not able to reach the red 

color as WT did. Besides this, the loss of water is a common symptom found in tissues after 

being exposed to cold temperature. Membrane permeability and surface organization of 

tissues are disrupted due to the extreme temperatures, leading to the greater flux of water 

through the damaged area and causing fruit dehydration [Lyons, 1973]. amiR23.8 fruit showed 

higher loss of water and electrolyte leakage after chilling storage, indicating that membrane 

permeability and stability was especially compromised in this fruit. 

Membranes, especially the plasma and chloroplast membranes, can sense external stimuli 

and are vulnerable to environmental stresses. Several studies have investigated the effect of 

low temperature in membranes and it has been proposed that membrane damage is the main 

cause of chilling injury induced by low-temperature in plants [Welti, 2002; Wang, 2006; Zheng, 

2016]. Phospholipids and galactolipids are the main glycerolipids and are the principal 

constituents of plasma and chloroplast membranes, respectively. In order to evaluate the 

composition and response of amiR23.8 membranes, the complete lipidome of WT and 

amiR23.8 fruit was evaluated. Previews studies have described the specific changes in 

membrane composition after exposure to low temperature [Guschina, 2006]. These changes 

include lipid class alterations, increase in fatty acid unsaturation, chain shortening and the 

increase of glycerolipids harboring large polar head groups. Alterations at the lipid class levels 

were found for almost all classes evaluated in the glycerolipidome. After chilling stress, both 
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fruits accumulated PC, but only WT fruit accumulated DGDG. PC and DGDG are bilayer lipids 

with large polar head groups that may increase membrane stability. On the contrary, MGDG 

and PE are lipids with small head groups that can lead to the transition to non-bilayer HII-type 

structures. The decrease of PE was observed in WT and amiR23.8 fruit while MGDG only 

decreased in WT after chilling stress. Our data demonstrated an increase in the ratio PC/PE 

in WT and amiR23.8 fruit after chilling, while ratio DGDG/MGDG increased only in WT 

samples. Increases in the ratio PC/PE and DGDG/MGDG have been previously reported in 

plants in response to low temperatures and are associated with more stable and fluid 

membranes [Welti, 2002; Zheng, 2016]. MGDG and DGDG are the major lipids in chloroplast 

membranes and the adjustment of the ratio DGDG to MGDG in response to chilling stress 

highly influences the physical state of thylakoid membranes. The fact that DGDG/MGDG did 

not increase in amiR23.8-treated fruit can be due to the unchanged levels of these two 

molecules and indicates a disruption in the glycolipid remodeling in response to chilling.  

PG is the main phospholipid in plastidic membranes and high levels of these molecules have 

been previously related to cold sensitivity in plants [Zheng, 2016]. With a high melting point, 

PG accumulation leads to a decrease in the membrane fluidity [Sakamoto, 2004]. Higher levels 

of PG were found in amiR23.8 fruit in basal conditions and after chilling. The lipid species PG 

32:0, which is considered a marker of cold sensitivity, showed especially higher amounts in 

amiR23.8 fruit. This particular PG composition of amiR23.8 fruit might prevent tolerance to 

chilling temperature. Although PI functions under freezing stresses are largely unknown, it has 

been proposed that its accumulation may positively correlate with an enhance chilling 

tolerance. No PI alterations were observed in WT fruit after chilling. On the contrary, PI was 

significantly reduced in the more sensitive amiR23.8 fruit. PA are small molecules that show a 

propensity to form hexagonal II phase in the presence of Ca2+. Increased levels of PA in the 

membranes of Arabidopsis promotes the non-bilayer phase formation and were associated 

with less tolerance to freezing [Welti, 2002]. Low temperatures induced an increase of PA level 

in Arabidopsis and rice, which is then reduced during the recovery period [Zheng, 2016]. After 

1 day of recovery, WT fruit suffered a similar reduction in the total levels of PA, which were 

lower than the amount in basal conditions. amiR23.8 fruit did not show such a reduction 

indicating an inability to remove PA during recovery that can compromise the membrane 

integrity.  

In addition to this, previews studies have reported that during post-freezing recovery 

phospholipids increased and glycolipids decreased, probably due to the higher galactolipase 

activity and hydrolysis in plastidic lipids [Li, 2008]. It was observed in this work that the 

proportion of phospholipids increased in both WT and amiR23.8 fruit while glycolipids 

decreased after cold stress. However, data indicated that the increase of phospholipids was 

smaller and the degradation of glycolipids was lower in amiR23.8 fruit after cold stress. The 
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relation between the degree of saturation of membrane lipids and temperature determines the 

fluidity status of membranes [Zheng, 2011]. A similar response was found in the degree of fatty 

acid unsaturation in WT and amiR23.8, DBI increased after chilling. The number of saturated 

lipids decreased while more unsaturated species accumulated after chilling. Increase in the 

fatty acid unsaturation under cold temperature has also been proved for tomato plants 

[Spicher, 2016]. Of particular interest was the higher amount of saturated lipid species in 

amiR23.8 what correlates with less fluid membranes. In addition to the changes in 

phospholipids and galactolipid contents, a comparable increase in Cer and LCBs, and a 

decrease in GlcCer contents after cold stress was observed in WT and amiR23.8 fruit. Similar 

sphingolipids responses were found in leaves of several Arabidopsis accession after cold 

acclimation [Degenkolbe, 2012]. No considerable modifications in neutral and sterol lipids was 

observed after chilling, although amiR23.8 showed a slight increase of ASG and SG. Overall, 

the results presented here indicate a differential degradation of extraplastidic and plastidic 

lipids in amiR23.8 fruit, and alterations in the remodeling of the lipidome after cold stress, which 

may lead to higher sensitivity to chilling injury. 

In a previews study using tomato Micro-Tom fruit exposed to chilling, it was observed an 

increase in CAT activity during the first day of recovery. This high antioxidant activity might be 

responsible for the removal of H2O2 produced during the first hours after cold stress and it is 

in concordance with the higher tolerance of Micro-Tom fruit to chilling injury [Malacrida, 2006]. 

amiR23.8 and WT fruit showed variable alteration in the activity of GPOX and CAT in response 

to chilling. However, a clear tendency to lower CAT activity was found in amiR23.8 fruit with a 

significant reduction in one transformant line. 

Storage at low temperatures is a common practice used to extend the commercialization period 

of many important cultivated plants, but it is also responsible for the chilling injury caused by 

this procedure. The symptoms of the chilling injury highly affect and reduce the fruit quality and 

consumer acceptability conducting to important economic loss. Elucidating the molecular 

mechanisms and the key factors beyond chilling tolerance is, in this regard, critical for 

maintaining fruit quality and diminishing postharvest losses. In this work, the effects of the 

down-regulation of the mitochondrial sHSP on the chilling resistance of tomato fruit were 

presented. Micro-Tom fruit with lower levels of sHSP23.8 showed clear symptoms of chilling 

injury, not only in their external phenotype but also at the plasma membrane and antioxidant 

system levels. The results discussed here indicate that sHSP23.8 may be directly involved in 

the protection mechanisms against chilling stress in tomato fruit.  
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5. Conclusions 

 

 

The main goal of this work was to understand the role of sHSP-M under stressful conditions in 

Arabidopsis and tomato. 

 

- The gene pair At5g51430-At5g51440 is head-to-head orientated in the Arabidopsis 

thaliana genome and they encode a protein that is homologous to Cog7 (EYE), a 

subunit of the Golgi complex (At5g51430) and a mitochondrial small heat shock protein 

(sHSP23.5) (At5g51440). They included a bidirectional promoter (446 bp) that is 

strongly heat induced in the direction of At5g51440 but not considerably stress induced 

in the other one. Other bidirectional promoters of ACD encoding genes were also 

analyzed under stress situations, and they were also upregulated by stress conditions. 

Altogether, these bidirectional promoters have a great potential to be used for 

biotechnological purposes. 

 

- Three paralogous genes encoding sHSP-M were found in Arabidopsis (At5g51440, 

At4g25200, and At1g52560). To understand the role of SHSP-M in Arabidopsis, the 

single, double and triple knock-down mutants were generated by artificial microRNA 

technology. The triple mutant (amiR23.5/23.6/26.5) showed the most prominent altered 

phenotype at vegetative and reproductive stages. All amiR mutants displayed 

alterations in the abundance of several proteins related to translation and to the 

ribosome functioning and structure. Triple amiR mutant exhibited a higher number of 

proteins with differential abundance involved in these processes compared to the other 

single and double amiR23.5/23.6 mutants. Results demonstrated that a functional 

compensation might be responsible for the phenotype in mutants lacking single sHSPs-

M. However, the reduction of the three sHSPs-M caused a profound disruption in the 

mitochondria and ribosome functionality that severely affected the energy metabolism 

and the overall cell homeostasis, leading to alterations in the correct plant 

development.   

 

- Unlike A. thaliana, tomato has only one mitochondria-localized sHSP. The functional 

consequences of the down-regulation of sHSP23.8 in tomato fruit were investigated by 

using knockdown mutants of cv. Micro-Tom. Transgenic fruit was analyzed in their 

phenotype and in their susceptibility to chilling injury. Pre-chilled fruit of amiR23.8 

mutant showed higher loss of water and increased ion leakage of pericarp tissue 

compared to WT fruit. The amiR23.8 fruit deterioration indicates that it is highly 
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susceptible to cold stress and developed chilling injury symptoms. Differential 

degradation of extraplastidic and plastidic lipids in amiR23.8 fruit and alterations in the 

remodeling of the lipidome after cold stress may lead to the high sensitivity of amiR23.8 

fruit to chilling injury. The results discussed here indicate that sHSP23.8 may be crucial 

in the chilling stress tolerance in tomato fruit. 

 

Future studies will be directed to elucidate the physiological substrates of the sHSPs-M and 

the motif involved in substrate interaction. 
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7. Supplemental data 

 

 

 

   

 
Supplemental figure 4.1. Expression of At4g25650 and At4g25660 after abiotic stresses. Gene 
expression analysis after cold, osmotic, salt, oxidative and heat stress, from 0 to 24 hours after the 
stimulus. A) Expression pattern of At4g25650. B) Expression pattern of At4g25660. The graphics were 
obtained from Arabidopsis eFP-Browser [Winter, 2007]. Access 19.11.2018. 

 

 

 

   

 
Supplemental figure 4.2. Expression of At5g51430 and At5g51440 after abiotic stresses. Gene 
expression analysis after cold, osmotic, salt, oxidative and heat stress, from 0 to 24 hours after the 
stimulus. A) Expression pattern of At5g51430. B) Expression pattern of At5g51440. The graphics were 
obtained from Arabidopsis eFP-Browser [Winter, 2007]. Access 19.11.2018. 
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Supplemental figure 4.3. Expression of At2g35490 and At2g35500 after abiotic stresses. Gene 
expression analysis after cold, osmotic, salt, oxidative and heat stress, from 0 to 24 hours after the 
stimulus. A) Expression pattern of At2g35490. B) Expression pattern of At2g35500. The graphics were 
obtained from Arabidopsis eFP-Browser [Winter, 2007]. Access 19.11.2018. 

 

 

 

 

 
Supplemental figure 4.4. Expression of At1g06460 and At1g06470 after abiotic stresses. Gene 
expression analysis after cold, osmotic, salt, oxidative and heat stress, from 0 to 24 hours after the 
stimulus. A) Expression pattern of At1g06460. B) Expression pattern of At1g06470. The graphics were 
obtained from Arabidopsis eFP-Browser [Winter, 2007]. Access 19.11.2018. 
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Supplemental figure 4.5. Lipid profile of phosphatidyl-choline (PC) in WT and amiR23.8 fruit. Only 
lipid species detected with a relative peak area > 0.05 % were included in the dataset. Five independent 
amiR23.8 lines and two replicates per line were analyzed and the 10 samples were then combined to 
calculate mean and SD values. Six WT samples were also measured and taken as control. Samples 
consisted of a pool of three fruits from three individual plants. Asterisks indicate significance between 
normal and chilling conditions by one-way ANOVA, LSD Fisher test with p<0.05. 
 
 
 

 
Supplemental figure 4.6. Lipid profile of phosphatidyl-ethanolamine (PE) in WT and amiR23.8 
fruit. Only lipid species detected with a relative peak area > 0.05 % were included in the dataset. Five 
independent amiR23.8 lines and two replicates per line were analyzed and the 10 samples were then 
combined to calculate mean and SD values. Six WT samples were also measured and taken as control. 
Samples consisted of a pool of three fruits from three individual plants. Asterisks indicate significance 
between normal and chilling conditions by one-way ANOVA, LSD Fisher test with p<0.05. 
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Supplemental figure 4.7. Lipid profile of phosphatidyl-glycerol (PG) in WT and amiR fruit. Only 
lipid species detected with a relative peak area > 0.02 % were included in the dataset. Five independent 
amiR23.8 lines and two replicates per line were analyzed and the 10 samples were then combined to 
calculate mean and SD values. Six WT samples were also measured and taken as control. Samples 
consisted of a pool of three fruits from three individual plants. Asterisks indicate significance between 
normal and chilling conditions by one-way ANOVA, LSD Fisher test with p<0.05. 

 

 

Supplemental figure 4.8. Lipid profile of phosphatidyl-inositol (PI) in WT and amiR fruit. Only lipid 
species detected with a relative peak area > 0.006 % were included in the dataset. Five independent 
amiR23.8 lines and two replicates per line were analyzed and the 10 samples were then combined to 
calculate mean and SD values. Six WT samples were also measured and taken as control. Samples 
consisted of a pool of three fruits from three individual plants. Asterisks indicate significance between 
normal and chilling conditions by one-way ANOVA, LSD Fisher test with p<0.05. 
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Supplemental figure 4.9. Lipid profile of phosphatidyl-serine (PS) in WT and amiR fruit. Only lipid 
species detected with a relative peak area > 0.01 % were included in the dataset. Five independent 
amiR23.8 lines and two replicates per line were analyzed and the 10 samples were then combined to 
calculate mean and SD values. Six WT samples were also measured and taken as control. Samples 
consisted of a pool of three fruits from three individual plants. Asterisks indicate significance between 
normal and chilling conditions by one-way ANOVA, LSD Fisher test with p<0.05. 
 
 
 

 
 
Supplemental figure 4.10. Lipid profile of phosphatidic acid (PA) in WT and amiR fruit. Only lipid 
species detected with a relative peak area > 0.3 % were included in the dataset. Five independent 
amiR23.8 lines and two replicates per line were analyzed and the 10 samples were then combined to 
calculate mean and SD values. Six WT samples were also measured and taken as control. Samples 
consisted of a pool of three fruits from three individual plants. Asterisks indicate significance between 
normal and chilling conditions by one-way ANOVA, LSD Fisher test with p<0.05. 
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Supplemental figure 4.11. Lipid profile of monogalactosyldiacylglycerol (MGDG) in WT and amiR 
fruit. Only lipid species detected with a relative peak area > 0.1 % were included in the dataset. Five 
independent amiR23.8 lines and two replicates per line were analyzed and the 10 samples were then 
combined to calculate mean and SD values. Six WT samples were also measured and taken as control. 
Samples consisted of a pool of three fruits from three individual plants. Asterisks indicate significance 
between normal and chilling conditions by one-way ANOVA, LSD Fisher test with p<0.05. 
 
 

 
Supplemental figure 4.12. Lipid profile of digalactosyldiacylglycerol (DGDG) in WT and amiR 
fruit. Only lipid species detected with a relative peak area > 0.1 % were included in the dataset. Five 
independent amiR23.8 lines and two replicates per line were analyzed and the 10 samples were then 
combined to calculate mean and SD values. Six WT samples were also measured and taken as control. 
Samples consisted of a pool of three fruits from three individual plants. Asterisks indicate significance 
between normal and chilling conditions by one-way ANOVA, LSD Fisher test with p<0.05. 
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Supplemental figure 4.13. 
Lipid profile of 
sulfoquinovosyldiacylglycerol
s (SQDG) in WT and amiR fruit. 
Only lipid species detected with 
a relative peak area > 0.001 % 
were included in the dataset. 
Five independent amiR23.8 lines 
and two replicates per line were 
analyzed and the 10 samples 
were then combined to calculate 
mean and SD values. Six WT 
samples were also measured 
and taken as control. Samples 
consisted of a pool of three fruits 
from three individual plants. 
Asterisks indicate significance 
between normal and chilling 
conditions by one-way ANOVA, 
LSD Fisher test with p<0.05. 

 
 

 

 
 
 
Supplemental figure 4.14. 
Lyso-PA composition in WT 
and amiR fruit. Only lipid 
species detected with a relative 
peak area > 3 % were included in 
the dataset. Five independent 
amiR23.8 lines and two 
replicates per line were analyzed 
and the 10 samples were then 
combined to calculate mean and 
SD values. Six WT samples were 
also measured and taken as 
control. Samples consisted of a 
pool of three fruits from three 
individual plants. Asterisks 
indicate significance between 
normal and chilling conditions by 
one-way ANOVA, LSD Fisher 
test with p<0.05
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Supplemental figure 4.15. Lyso-lipid composition in WT and amiR fruit. Only lipid species detected 
with a relative peak area > 0.06 % were included in the dataset. Five independent amiR23.8 lines and 
two replicates per line were analyzed and the 10 samples were then combined to calculate mean and 
SD values. Six WT samples were also measured and taken as control. Samples consisted of a pool of 
three fruits from three individual plants. Asterisks indicate significance between normal and chilling 
conditions by one-way ANOVA, LSD Fisher test with p<0.05. 
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Supplemental figure 4.16. Lipid profile of diacylglycerides (DAG) in WT and amiR fruit. Only lipid 
species detected with a relative peak area > 0.08 % were included in the dataset. Five independent 
amiR23.8 lines and two replicates per line were analyzed and the 10 samples were then combined to 
calculate mean and SD values. Six WT samples were also measured and taken as control. Samples 
consisted of a pool of three fruits from three individual plants. Asterisks indicate significance between 
normal and chilling conditions by one-way ANOVA, LSD Fisher test with p<0.05. 
 
 

 

Supplemental figure 4.17. Lipid profile of triacylglycerides (TAG) in WT and amiR fruit. Only lipid 
species detected with a relative peak area > 0.5 % were included in the dataset. Five independent 
amiR23.8 lines and two replicates per line were analyzed and the 10 samples were then combined to 
calculate mean and SD values. Six WT samples were also measured and taken as control. Samples 
consisted of a pool of three fruits from three individual plants. Asterisks indicate significance between 
normal and chilling conditions by one-way ANOVA, LSD Fisher test with p<0.05. 
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Supplemental figure 4.18. Lipid profile of ceramides (Cer) in WT and amiR fruit. Only lipid species 
detected with a relative peak area > 0.1 % were included in the dataset. Five independent amiR23.8 
lines and two replicates per line were analyzed and the 10 samples were then combined to calculate 
mean and SD values. Six WT samples were also measured and taken as control. Samples consisted of 
a pool of three fruits from three individual plants. Asterisks indicate significance between normal and 
chilling conditions by one-way ANOVA, LSD Fisher test with p<0.05. 
 
 

 

Supplemental figure 4.19. Lipid profile of glucosyl-ceramides (GlcCer) in WT and amiR fruit. Only 
lipid species detected with a relative peak area > 0.1 % were included in the dataset. Five independent 
amiR23.8 lines and two replicates per line were analyzed and the 10 samples were then combined to 
calculate mean and SD values. Six WT samples were also measured and taken as control. Samples 
consisted of a pool of three fruits from three individual plants. Asterisks indicate significance between 
normal and chilling conditions by one-way ANOVA, LSD Fisher test with p<0.05. 
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Supplemental figure 4.20. Lipid 
profile of (LCB) in WT and amiR 
fruit. Only lipid species detected with a 
relative peak area > 0.1 % were 
included in the dataset. Five 
independent amiR23.8 lines and two 
replicates per line were analyzed and 
the 10 samples were then combined to 
calculate mean and SD values. Six WT 
samples were also measured and 
taken as control. Samples consisted of 
a pool of three fruits from three 
individual plants. Asterisks indicate 
significance between normal and 
chilling conditions by one-way 
ANOVA, LSD Fisher test with p<0.05. 

 
 

 
Supplemental figure 4.21. Lipid profile of acylsterylglucosides (ASG) in WT and amiR fruit. Only 
lipid species detected with a relative peak area > 0.02 % were included in the dataset. Five independent 
amiR23.8 lines and two replicates per line were analyzed and the 10 samples were then combined to 
calculate mean and SD values. Six WT samples were also measured and taken as control. Samples 
consisted of a pool of three fruits from three individual plants. Asterisks indicate significance between 
normal and chilling conditions by one-way ANOVA, LSD Fisher test with p<0.05. 
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Supplemental figure 4.22. Lipid profile of sterolester (SE) in WT and amiR fruit. Only lipid species 
detected with a relative peak area > 0.01 % were included in the dataset. Five independent amiR23.8 
lines and two replicates per line were analyzed and the 10 samples were then combined to calculate 
mean and SD values. Six WT samples were also measured and taken as control. Samples consisted of 
a pool of three fruits from three individual plants. Asterisks indicate significance between normal and 
chilling conditions by one-way ANOVA, LSD Fisher test with p<0.05. 
 

 
 

 

 
Supplemental figure 4.23. Lipid 
profile of sterylglucoside (SG) in 
WT and amiR fruit. Five 
independent amiR23.8 lines and 
two replicates per line were 
analyzed and the 10 samples were 
then combined to calculate mean 
and SD values. Six WT samples 
were also measured and taken as 
control. Samples consisted of a pool 
of three fruits from three individual 
plants. Asterisks indicate 
significance between normal and 
chilling conditions by one-way 
ANOVA, LSD Fisher test with 
p<0.05. 
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Suppl. Table 4.1. List of proteins that are differentially expressed in amiR23.5 compared to 
control plants. 
 

Accession Description 
Coverage 

[%] 
# Unique 
Peptides 

Fold 
change 

Fold 
change 
(log2) 

Adj. P-
Value 

AT1G04510 MOS4-associated  complex 3A 11 2 100 6.64 6.4E-17 

AT3G09680 Ribosomal protein S12/S23 family protein 35 3 100 6.64 6.4E-17 

AT5G47190 Ribosomal protein L19 family protein 19 4 100 6.64 6.4E-17 

AT4G09650 ATP synthase delta-subunit gene 15 3 100 6.64 6.4E-17 

AT1G21720 proteasome beta subunit C1 25 3 100 6.64 6.4E-17 

AT1G74970 ribosomal protein S9 31 6 100 6.64 6.4E-17 

AT5G39730 AIG2-like (avirulence induced gene) family protein 28 4 100 6.64 6.4E-17 

AT2G22170 Lipase/lipooxygenase, PLAT/LH2 family protein 21 4 100 6.64 6.4E-17 

AT1G11750 CLP protease proteolytic subunit 6 31 5 100 6.64 6.4E-17 

AT5G27390 
Mog1/PsbP/DUF1795-like photosystem II reaction center PsbP family 
protein 

16 4 
100 

6.64 
6.4E-17 

AT3G08740 elongation factor P (EF-P) family protein 38 9 100 6.64 6.4E-17 

AT5G18420 unknown protein 5 2 100 6.64 6.4E-17 

AT3G47810 Calcineurin-like metallo-phosphoesterase superfamily prot 17 3 100 6.64 6.4E-17 

AT3G46000 actin depolymerizing factor 2 24 2 100 6.64 6.4E-17 

AT2G19740 Ribosomal protein L31e family protein 8 2 100 6.64 6.4E-17 

AT5G56260 
Ribonuclease E inhibitor RraA/Dimethylmenaquinone 
methyltransferase 

13 2 
100 

6.64 
6.4E-17 

AT2G06050 oxophytodienoate-reductase 3 6 2 100 6.64 6.4E-17 

AT5G23010 methylthioalkylmalate synthase 1 7 3 100 6.64 6.4E-17 

AT1G63970 isoprenoid F 17 3 100 6.64 6.4E-17 

AT5G61970 signal recognition particle-related / SRP-related 6 2 100 6.64 6.4E-17 

AT5G64040 
photosystem I reaction center subunit PSI-N, chloroplast, putative / 
PSI-N, putative (PSAN) 

11 2 
100 

6.64 
6.4E-17 

AT3G21220 MAP kinase kinase 5 4 2 100 6.64 6.4E-17 

AT5G48760 Ribosomal protein L13 family protein 34 2 100 6.64 6.4E-17 

AT3G05590 ribosomal protein L18 52 3 100 6.64 6.4E-17 

AT1G53670 methionine sulfoxide reductase B 1 10 2 100 6.64 6.4E-17 

AT3G46630 Protein of unknown function (DUF3223) 9 2 100 6.64 6.4E-17 

AT1G24020 MLP-like protein 423 36 6 100 6.64 6.4E-17 

AT5G28050 Cytidine/deoxycytidylate deaminase family protein 21 3 100 6.64 6.4E-17 

AT4G34870 rotamase cyclophilin 5 42 5 41.32 5.37 6.4E-17 

AT5G38430 Ribulose bisphosphate carboxylase family protein 69 7 30.00 4.91 6.4E-17 

AT1G22840 CYTOCHROME C-1 17 2 8.31 3.05 1.2E-11 

AT1G48350 Ribosomal L18p/L5e family protein 25 4 7.62 2.93 2.6E-13 

AT2G19760 profilin 1 43 4 7.33 2.87 1.7E-09 

AT5G65350 histone 3 11 42 2 6.72 2.75 1.8E-11 

AT4G12800 photosystem I subunit l 19 3 6.37 2.67 4.7E-09 

AT1G14410 ssDNA-binding transcriptional regulator 21 3 5.74 2.52 5.7E-07 

AT1G62290 Saposin-like aspartyl protease family protein 16 3 5.07 2.34 1.6E-07 

AT1G54780 thylakoid lumen 18.3 kDa protein 20 5 4.61 2.21 3.4E-07 

AT3G55330 PsbP-like protein 1 43 8 3.91 1.97 1.2E-09 

AT3G45140 lipoxygenase 2 59 39 3.86 1.95 2.8E-13 

AT3G63540 
Mog1/PsbP/DUF1795-like photosystem II reaction center PsbP family 
protein 

50 5 
3.25 

1.7 
1.1E-04 

AT2G25070 Protein phosphatase 2C family protein 5 2 3.22 1.69 4.8E-03 

AT5G14670 ADP-ribosylation factor A1B 63 13 3.19 1.67 9.6E-09 

AT3G14210 epithiospecifier modifier 1 47 13 3.13 1.65 3.3E-10 

AT5G25980 glucoside glucohydrolase 2 42 17 3.00 1.59 6.3E-09 

AT5G20630 germin 3 64 7 2.98 1.57 6.2E-07 

AT3G54600 Class I glutamine amidotransferase-like superfamily protein 8 2 2.68 1.42 1.0E-02 

AT5G51110 Transcriptional coactivator/pterin dehydratase 12 2 2.54 1.35 2.1E-02 

AT4G30140 GDSL-like Lipase/Acylhydrolase superfamily protein 10 3 2.39 1.26 1.1E-02 

AT1G52400 beta glucosidase 18 22 5 2.37 1.24 2.0E-03 

AT4G36700 RmlC-like cupins superfamily protein 16 6 2.27 1.18 1.5E-03 

AT5G23900 Ribosomal protein L13e family protein 33 2 0.18 -2.45 4.8E-06 

AT4G23570 phosphatase-related 11 3 0.01 -6.64 6.4E-17 

AT2G01720 Ribophorin I 8 2 0.01 -6.64 6.4E-17 

AT1G62480 Vacuolar calcium-binding protein-related 38 2 0.01 -6.64 6.4E-17 

AT5G34940 glucuronidase 3 5 2 0.01 -6.64 6.4E-17 

AT3G10090 Nucleic acid-binding, OB-fold-like protein 23 2 0.01 -6.64 6.4E-17 

 
 
Suppl. Table 4.2. List of proteins that are differentially expressed in amiR23.6 compared to 
control plants. 
 

Accession Description 
Coverage 

[%] 
# Unique 
Peptides 

Fold 
change 

Fold 
change 
(log2) 

Adj. P-
Value 

AT5G65220 Ribosomal L29 family protein 27 5 100 6.64 1.1E-16 

AT1G13900 Purple acid phosphatases superfamily protein 5 3 100 6.64 1.1E-16 

AT5G47190 Ribosomal protein L19 family protein 19 4 100 6.64 1.1E-16 

AT2G21620 Adenine nucleotide alpha hydrolases-like superfamily protein 47 7 100 6.64 1.1E-16 

AT1G74970 ribosomal protein S9 31 6 100 6.64 1.1E-16 

AT5G03350 Legume lectin family protein 20 4 100 6.64 1.1E-16 
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AT5G23010 methylthioalkylmalate synthase 1 7 3 100 6.64 1.1E-16 

AT3G21220 MAP kinase kinase 5 4 2 100 6.64 1.1E-16 

AT3G45140 lipoxygenase 2 59 39 2.20 1.14 3.0E-08 

AT3G26520 tonoplast intrinsic protein 2 17 3 0.40 -1.32 5.5E-11 

AT5G23900 Ribosomal protein L13e family protein 33 2 0.31 -1.67 2.4E-06 

AT2G20560 DNAJ heat shock family protein 35 8 0.01 -6.64 1.1E-16 

AT1G62480 Vacuolar calcium-binding protein-related 38 2 0.01 -6.64 1.1E-16 

AT1G73030 SNF7 family protein 10 2 0.01 -6.64 1.1E-16 

AT5G62190 DEAD box RNA helicase (PRH75) 3 2 0.01 -6.64 1.1E-16 

AT5G66550 Maf-like protein 15 2 0.01 -6.64 1.1E-16 

AT5G65840 Thioredoxin superfamily protein 8 2 0.01 -6.64 1.1E-16 

 
 
Suppl. Table 4.3. List of proteins that are differentially expressed in amiR26.5 compared to 
control plants. 
 

Accession Description 
Coverage 

[%] 
# Unique 
Peptides 

Fold 
change 

Fold 
change 
(log2) 

Adj. P-
Value 

AT3G10940 dual specificity protein phosphatase (DsPTP1) family prot. 7 2 100 6.64 6.3E-17 

AT5G05270 Chalcone-flavanone isomerase family protein 10 2 100 6.64 6.3E-17 

AT4G18100 Ribosomal protein L32e 31 3 100 6.64 6.3E-17 

AT5G65220 Ribosomal L29 family protein 27 5 100 6.64 6.3E-17 

AT3G09680 Ribosomal protein S12/S23 family protein 35 3 100 6.64 6.3E-17 

AT2G04690 Pyridoxamine 5'-phosphate oxidase family protein 15 2 100 6.64 6.3E-17 

AT5G47190 Ribosomal protein L19 family protein 19 4 100 6.64 6.3E-17 

AT5G19140 Aluminium induced protein with YGL and LRDR motifs 46 6 100 6.64 6.3E-17 

AT4G09650 ATP synthase delta-subunit gene 15 3 100 6.64 6.3E-17 

AT5G14030 translocon-associated protein beta (TRAPB) family protein 47 4 100 6.64 6.3E-17 

AT2G27720 60S acidic ribosomal protein family 76 3 100 6.64 6.3E-17 

AT1G79850 ribosomal protein S17 31 4 100 6.64 6.3E-17 

AT2G21620 Adenine nucleotide alpha hydrolases-like superfamily prot. 47 7 100 6.64 6.3E-17 

AT5G13780 Acyl-CoA N-acyltransferases (NAT) superfamily protein 11 2 100 6.64 6.3E-17 

AT1G32470 Single hybrid motif superfamily protein 51 2 100 6.64 6.3E-17 

AT2G21060 glycine-rich protein 2B 24 2 100 6.64 6.3E-17 

AT1G17860 Kunitz family trypsin and protease inhibitor protein 30 4 100 6.64 6.3E-17 

AT1G09560 germin-like protein 5 15 3 100 6.64 6.3E-17 

AT1G20810 FKBP-like peptidyl-prolyl cis-trans isomerase family protein 11 2 100 6.64 6.3E-17 

AT1G21720 proteasome beta subunit C1 25 3 100 6.64 6.3E-17 

AT4G17530 RAB GTPase homolog 1C 32 3 100 6.64 6.3E-17 

AT1G77090 
Mog1/PsbP/DUF1795-like photosystem II reaction center PsbP family 
protein 

31 5 
100 6.64 6.3E-17 

AT3G63170 Chalcone-flavanone isomerase family protein 21 5 100 6.64 6.3E-17 

AT1G74970 ribosomal protein S9 31 6 100 6.64 6.3E-17 

AT4G03280 photosynthetic electron transfer C 14 2 100 6.64 6.3E-17 

AT4G14800 20S proteasome beta subunit D2 20 2 100 6.64 6.3E-17 

AT3G06050 peroxiredoxin IIF-PRXIIF 45 7 100 6.64 6.3E-17 

AT5G39730 AIG2-like (avirulence induced gene) family protein 28 4 100 6.64 6.3E-17 

AT1G72610 germin-like protein 1 30 4 100 6.64 6.3E-17 

AT2G22170 Lipase/lipooxygenase, PLAT/LH2 family protein 21 4 100 6.64 6.3E-17 

AT1G65980 thioredoxin-dependent peroxidase 1-PRXIIB 62 8 100 6.64 6.3E-17 

AT2G47910 chlororespiratory reduction 6 26 5 100 6.64 6.3E-17 

AT3G59870 unknown protein 19 2 100 6.64 6.3E-17 

AT1G20580 Small nuclear ribonucleoprotein family protein 13 2 100 6.64 6.3E-17 

AT5G58060 SNARE-like superfamily protein 14 3 100 6.64 6.3E-17 

AT3G08740 elongation factor P (EF-P) family protein 38 9 100 6.64 6.3E-17 

AT3G10520 haemoglobin 2 27 4 100 6.64 6.3E-17 

AT5G27390 
Mog1/PsbP/DUF1795-like photosystem II reaction center PsbP family 
protein 

16 4 
100 6.64 6.3E-17 

AT3G52560 ubiquitin E2 variant 1D-4 32 2 100 6.64 6.3E-17 

AT2G33120 synaptobrevin-related protein 1 16 3 100 6.64 6.3E-17 

AT1G11750 CLP protease proteolytic subunit 6 31 5 100 6.64 6.3E-17 

AT3G07470 Protein of unknown function, DUF538 20 3 100 6.64 6.3E-17 

AT1G26550 FKBP-like peptidyl-prolyl cis-trans isomerase family protein 15 2 100 6.64 6.3E-17 

AT5G54600 Translation protein SH3-like family protein 28 6 100 6.64 6.3E-17 

ATCG00670 plastid-encoded CLP P 21 2 100 6.64 6.3E-17 

AT5G26667 
P-loop containing nucleoside triphosphate hydrolases superfamily 
protein 

23 3 
100 6.64 6.3E-17 

AT3G59400 enzyme binding;tetrapyrrole binding 14 3 100 6.64 6.3E-17 

AT1G13280 allene oxide cyclase 4 17 2 100 6.64 6.3E-17 

AT3G46000 actin depolymerizing factor 2 24 2 100 6.64 6.3E-17 

AT3G47810 Calcineurin-like metallo-phosphoesterase superfamily prot. 17 3 100 6.64 6.3E-17 

AT3G53990 Adenine nucleotide alpha hydrolases-like superfamily prot. 46 5 100 6.64 6.3E-17 

AT5G13410 FKBP-like peptidyl-prolyl cis-trans isomerase family protein 29 5 100 6.64 6.3E-17 

AT5G27670 histone H2A 7 45 3 100 6.64 6.3E-17 

AT1G24020 MLP-like protein 423 36 6 100 6.64 6.3E-17 

AT3G62530 ARM repeat superfamily protein 43 7 100 6.64 6.3E-17 

AT2G06050 oxophytodienoate-reductase 3 6 2 100 6.64 6.3E-17 

AT2G34160 Alba DNA/RNA-binding protein 15 2 100 6.64 6.3E-17 

AT1G03600 photosystem II family protein 28 4 100 6.64 6.3E-17 

AT1G21065 unknown protein 9 2 100 6.64 6.3E-17 
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AT5G56260 
Ribonuclease E inhibitor RraA/Dimethylmenaquinone 
methyltransferase 

13 2 
100 6.64 6.3E-17 

AT2G07707 Plant mitochondrial ATPase, F0 complex, subunit 8 protein 13 2 100 6.64 6.3E-17 

AT3G56070 rotamase cyclophilin 2 25 4 100 6.64 6.3E-17 

AT4G29350 profilin 2 32 3 100 6.64 6.3E-17 

AT2G43945 unknown protein 18 2 100 6.64 6.3E-17 

AT1G15930 Ribosomal protein L7Ae/L30e/S12e/Gadd45 family protein 42 3 100 6.64 6.3E-17 

AT1G11430 plastid developmental protein DAG, putative 17 2 100 6.64 6.3E-17 

AT3G22230 Ribosomal L27e protein family 34 2 100 6.64 6.3E-17 

AT4G03520 Thioredoxin superfamily protein 23 3 100 6.64 6.3E-17 

AT5G62350 Plant invertase/pectin methylesterase inhibitor superfamily protein 34 6 100 6.64 6.3E-17 

AT1G75950 S phase kinase-associated protein 1 29 3 100 6.64 6.3E-17 

AT5G48760 Ribosomal protein L13 family protein 34 2 100 6.64 6.3E-17 

AT5G28050 Cytidine/deoxycytidylate deaminase family protein 21 3 100 6.64 6.3E-17 

AT1G76450 Photosystem II reaction center PsbP family protein 36 5 100 6.64 6.3E-17 

AT4G11600 glutathione peroxidase 6-GPX6 22 4 100 6.64 6.3E-17 

AT2G19740 Ribosomal protein L31e family protein 8 2 100 6.64 6.3E-17 

AT4G02530 chloroplast thylakoid lumen protein 20 3 100 6.64 6.3E-17 

AT3G46630 Protein of unknown function (DUF3223) 9 2 100 6.64 6.3E-17 

AT1G73230 Nascent polypeptide-associated complex NAC 41 3 100 6.64 6.3E-17 

AT2G35810 unknown protein 13 2 100 6.64 6.3E-17 

AT5G08410 ferredoxin/thioredoxin reductase subunit A 2 8 2 100 6.64 6.3E-17 

AT2G21530 SMAD/FHA domain-containing protein 12 2 100 6.64 6.3E-17 

AT1G16890 ubiquitin-conjugating enzyme 36 10 2 100 6.64 6.3E-17 

AT1G63970 isoprenoid F 17 3 100 6.64 6.3E-17 

AT3G60370 FKBP-like peptidyl-prolyl cis-trans isomerase family protein 14 3 100 6.64 6.3E-17 

AT2G16600 rotamase CYP 3 38 4 100 6.64 6.3E-17 

AT4G34120 Cystathionine beta-synthase (CBS) family protein 16 3 100 6.64 6.3E-17 

AT5G64040 
photosystem I reaction center subunit PSI-N, chloroplast, putative / 
PSI-N, putative (PSAN) 

11 2 
100 6.64 6.3E-17 

AT3G25220 FK506-binding protein 15 kD-1 16 2 100 6.64 6.3E-17 

AT5G13120 cyclophilin 20-2 22 4 100 6.64 6.3E-17 

AT1G20225 Thioredoxin superfamily protein 19 3 100 6.64 6.3E-17 

AT2G20260 photosystem I subunit E-2 46 2 100 6.64 6.3E-17 

AT2G36145 unknown protein 9 2 100 6.64 6.3E-17 

AT4G23680 Polyketide cyclase/dehydrase and lipid transport superfamily prot. 21 3 100 6.64 6.3E-17 

AT3G05590 ribosomal protein L18 52 3 100 6.64 6.3E-17 

AT1G73260 kunitz trypsin inhibitor 1 26 4 100 6.64 6.3E-17 

AT1G17880 basic transcription factor 3 28 2 100 6.64 6.3E-17 

AT1G53670 methionine sulfoxide reductase B 1 10 2 100 6.64 6.3E-17 

AT5G35620 Eukaryotic initiation factor 4E protein 15 3 100 6.64 6.3E-17 

AT5G08180 Ribosomal protein L7Ae/L30e/S12e/Gadd45 family protein 16 2 100 6.64 6.3E-17 

AT1G29250 Alba DNA/RNA-binding protein 37 2 100 6.64 6.3E-17 

AT1G44790 ChaC-like family protein 13 2 100 6.64 6.3E-17 

AT4G17560 Ribosomal protein L19 family protein 16 3 100 6.64 6.3E-17 

AT1G78630 Ribosomal protein L13 family protein 42 7 89.40 6.48 6.3E-17 

AT5G52650 RNA binding Plectin/S10 domain-containing protein 25 5 52.29 5.71 6.3E-17 

AT5G38430 Ribulose bisphosphate carboxylase family protein 69 7 47.36 5.57 6.3E-17 

AT5G65840 Thioredoxin superfamily protein 8 2 46.34 5.53 6.3E-17 

AT2G43560 FKBP-like peptidyl-prolyl cis-trans isomerase family protein 31 6 43.36 5.44 6.3E-17 

AT5G10860 Cystathionine beta-synthase (CBS) family protein 43 8 36.46 5.19 6.3E-17 

AT4G34870 rotamase cyclophilin 5 42 5 32.29 5.01 6.3E-17 

AT4G39260 cold, circadian rhythm, and RNA binding 1 51 5 30.26 4.92 6.3E-17 

AT3G15360 thioredoxin M-type 4 26 4 29.21 4.87 6.3E-17 

AT4G09320 Nucleoside diphosphate kinase family protein 58 8 29.18 4.87 6.3E-17 

AT2G44650 chloroplast chaperonin 10 37 4 26.32 4.72 6.3E-17 

AT3G56240 copper chaperone 60 5 26.06 4.7 6.3E-17 

AT5G38410 Ribulose bisphosphate carboxylase family protein 69 7 25.26 4.66 6.3E-17 

AT5G23820 MD-2-related lipid recognition domain-containing protein 20 5 25.15 4.65 6.3E-17 

AT3G16640 translationally controlled tumor protein 82 12 24.25 4.6 6.3E-17 

AT2G04390 Ribosomal S17 family protein 30 5 22.58 4.5 6.3E-17 

AT4G12800 photosystem I subunit l 19 3 21.13 4.4 6.3E-17 

AT4G15000 Ribosomal L27e protein family 43 4 20.77 4.38 6.3E-17 

AT3G11940 ribosomal protein 5A 56 12 19.63 4.29 6.3E-17 

AT1G09310 Protein of unknown function, DUF538 52 9 19.60 4.29 6.3E-17 

AT2G34480 Ribosomal protein L18ae/LX family protein 36 5 18.06 4.17 6.3E-17 

AT2G28720 Histone superfamily protein 23 3 17.79 4.15 6.3E-17 

AT1G09590 Translation protein SH3-like family protein 45 8 17.71 4.15 6.3E-17 

AT2G35370 glycine decarboxylase complex H 30 2 17.56 4.13 6.3E-17 

AT5G57290 60S acidic ribosomal protein family 22 2 17.40 4.12 6.3E-17 

AT2G27710 60S acidic ribosomal protein family 68 3 17.13 4.1 6.3E-17 

AT4G40030 Histone superfamily protein 36 2 17.01 4.09 6.3E-17 

AT1G07820 Histone superfamily protein 50 8 16.82 4.07 6.3E-17 

AT5G15200 Ribosomal protein S4 53 8 16.55 4.05 6.3E-17 

AT5G10160 Thioesterase superfamily protein 37 7 16.21 4.02 6.3E-17 

AT3G62030 rotamase CYP 4 39 9 15.77 3.98 6.3E-17 

AT4G21280 photosystem II subunit QA 52 15 14.34 3.84 6.3E-17 

AT1G67090 ribulose bisphosphate carboxylase small chain 1A 64 15 14.14 3.82 6.3E-17 

AT2G21660 cold, circadian rhythm, and rna binding 2 44 4 13.64 3.77 6.3E-17 

AT1G33140 Ribosomal protein L6 family 64 12 13.43 3.75 6.3E-17 

AT5G53490 Tetratricopeptide repeat (TPR)-like superfamily protein 39 9 13.31 3.73 6.3E-17 

AT5G65350 histone 3 11 42 2 12.22 3.61 6.3E-17 

ATMG00070 NADH dehydrogenase subunit 9 17 3 12.11 3.6 6.3E-17 
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AT5G61170 Ribosomal protein S19e family protein 48 5 11.64 3.54 6.3E-17 

AT4G02770 photosystem I subunit D-1 42 8 11.36 3.51 6.3E-17 

AT1G48350 Ribosomal L18p/L5e family protein 25 4 11.33 3.5 6.3E-17 

AT1G08110 lactoylglutathione lyase/glyoxalase I family prot. 20 5 11.04 3.46 6.3E-17 

AT3G60770 Ribosomal protein S13/S15 46 9 10.75 3.43 6.3E-17 

AT5G59870 histone H2A 6 52 5 10.55 3.4 6.3E-17 

AT5G16130 Ribosomal protein S7e family protein 49 12 10.38 3.38 6.3E-17 

AT4G16720 Ribosomal protein L23/L15e family protein 35 8 10.17 3.35 6.3E-17 

AT3G27830 ribosomal protein L12-A 20 4 10.12 3.34 6.3E-17 

AT3G44890 ribosomal protein L9 47 10 9.90 3.31 6.3E-17 

AT5G27850 Ribosomal protein L18e/L15 superfamily protein 59 5 9.64 3.27 6.3E-17 

AT4G12880 early nodulin-like protein 19 11 2 9.61 3.26 2.6E-14 

AT5G11770 NADH-ubiquinone oxidoreductase 20 kDa subunit, 9 2 9.56 3.26 3.8E-11 

AT1G05190 Ribosomal protein L6 family 62 20 9.49 3.25 6.3E-17 

ATCG00380 chloroplast ribosomal protein S4 68 10 9.21 3.2 6.3E-17 

AT4G28660 photosystem II reaction center PSB28 protein 12 2 9.10 3.19 2.1E-10 

AT1G22840 CYTOCHROME C-1 17 2 9.03 3.18 6.2E-12 

AT1G78370 glutathione S-transferase TAU 20 38 10 8.42 3.07 6.3E-17 

AT3G55330 PsbP-like protein 1 43 8 7.89 2.98 6.3E-17 

AT5G06290 2-cysteine peroxiredoxin B-PRXIIB 58 4 7.62 2.93 6.3E-17 

AT3G02560 Ribosomal protein S7e family protein 54 8 7.59 2.92 6.3E-17 

AT5G18380 Ribosomal protein S5 domain 2-like superfamily protein 50 2 7.56 2.92 6.3E-17 

AT2G19760 profilin 1 43 4 7.23 2.85 7.8E-10 

AT3G48930 Nucleic acid-binding, OB-fold-like protein 49 6 6.97 2.8 6.3E-17 

AT4G27090 Ribosomal protein L14 56 6 6.86 2.78 6.3E-17 

AT4G01310 Ribosomal L5P family protein 57 15 6.39 2.68 6.3E-17 

AT4G11010 nucleoside diphosphate kinase 3 31 6 6.35 2.67 6.3E-17 

AT3G63190 ribosome recycling factor, chloroplast precursor 26 6 6.05 2.6 4.2E-15 

AT2G42740 ribosomal protein large subunit 16A 64 13 6.02 2.59 6.3E-17 

AT5G52840 NADH-ubiquinone oxidoreductase-related 24 3 5.97 2.58 4.8E-09 

AT1G15820 light harvesting complex photosystem II subunit 6 19 5 5.96 2.57 6.4E-09 

AT1G13060 20S proteasome beta subunit E1 34 7 5.66 2.5 6.2E-11 

AT3G04400 Ribosomal protein L14p/L23e family protein 48 7 5.47 2.45 5.6E-13 

AT5G63310 nucleoside diphosphate kinase 2 43 9 5.41 2.44 6.3E-17 

AT4G39730 Lipase/lipooxygenase, PLAT/LH2 family protein 22 3 5.21 2.38 1.8E-12 

AT1G27400 Ribosomal protein L22p/L17e family protein 26 5 5.02 2.33 4.2E-15 

AT1G69620 ribosomal protein L34 29 2 4.89 2.29 5.6E-12 

AT3G17020 Adenine nucleotide alpha hydrolases-like superfamily prot. 37 5 4.70 2.23 1.1E-06 

AT1G14410 ssDNA-binding transcriptional regulator 21 3 4.60 2.2 1.4E-05 

AT3G24830 Ribosomal protein L13 family protein 47 6 4.58 2.19 6.8E-11 

AT3G09500 Ribosomal L29 family protein 31 5 4.48 2.16 1.8E-08 

AT1G54780 thylakoid lumen 18.3 kDa protein 20 5 4.48 2.16 8.4E-07 

ATCG00900 Ribosomal protein S7p/S5e family protein 46 8 4.47 2.16 2.7E-13 

AT3G49910 Translation protein SH3-like family protein 41 7 4.39 2.13 1.4E-10 

AT4G10300 RmlC-like cupins superfamily protein 22 3 4.26 2.09 2.5E-06 

ATCG00750 ribosomal protein S11 28 5 4.18 2.06 2.1E-08 

AT2G28490 RmlC-like cupins superfamily protein 24 8 4.16 2.06 2.2E-05 

AT5G20630 germin 3 64 7 4.06 2.02 8.5E-10 

AT1G48830 Ribosomal protein S7e family protein 57 11 4.00 2 9.5E-10 

AT1G32990 plastid ribosomal protein l11 48 10 3.98 1.99 2.3E-09 

AT3G18820 RAB GTPase homolog G3F 34 5 3.91 1.97 3.5E-09 

AT1G22780 Ribosomal protein S13/S18 family 39 6 3.90 1.96 1.3E-09 

AT1G35680 Ribosomal protein L21 44 10 3.82 1.93 6.6E-11 

AT3G05560 Ribosomal L22e protein family 64 2 3.74 1.9 2.2E-07 

AT1G59860 HSP20-like chaperones superfamily protein 60 4 3.54 1.82 5.2E-08 

AT1G14320 Ribosomal protein L16p/L10e family protein 32 2 3.49 1.8 8.1E-10 

AT4G34620 small subunit ribosomal protein 16 68 6 3.48 1.8 1.1E-06 

AT4G39890 RAB GTPase homolog H1C 14 2 3.32 1.73 9.0E-04 

AT3G52960 Thioredoxin superfamily protein-PRXIIE 53 12 3.18 1.67 1.3E-08 

AT3G45140 lipoxygenase 2 59 39 3.13 1.65 1.8E-08 

AT3G11630 Thioredoxin superfamily protein 59 4 2.99 1.58 2.5E-06 

AT1G41880 Ribosomal protein L35Ae family protein 16 2 2.96 1.57 6.9E-04 

AT5G13510 Ribosomal protein L10 family protein 45 7 2.86 1.52 2.1E-07 

ATCG01120 chloroplast ribosomal protein S15 47 5 2.82 1.49 1.4E-03 

AT4G33350 Tic22-like family protein 20 5 2.75 1.46 8.9E-03 

ATCG00780 ribosomal protein L14 52 5 2.67 1.42 2.3E-05 

AT3G26060 Thioredoxin superfamily protein 44 11 2.67 1.42 1.3E-05 

AT5G59880 actin depolymerizing factor 3 60 5 2.63 1.39 1.6E-05 

AT3G18740 Ribosomal protein L7Ae/L30e/S12e/Gadd45 family protein 48 3 2.53 1.34 4.4E-06 

AT2G39460 ribosomal protein L23AA 42 11 2.45 1.29 9.2E-06 

AT2G02740 ssDNA-binding transcriptional regulator 23 4 2.43 1.28 7.5E-03 

AT3G44100 MD-2-related lipid recognition domain-containing protein 18 2 2.43 1.28 4.6E-03 

AT1G31330 photosystem I subunit F 36 6 2.41 1.27 5.4E-04 

AT1G70600 Ribosomal protein L18e/L15 superfamily protein 43 6 2.37 1.24 8.2E-04 

AT4G01480 pyrophosphorylase 5 13 2 2.32 1.22 5.0E-03 

AT3G26450 Polyketide cyclase/dehydrase and lipid transport superfamily prot. 78 8 2.28 1.19 1.1E-02 

AT3G04920 Ribosomal protein S24e family protein 31 3 2.21 1.15 7.8E-04 

AT3G61260 Remorin family protein 25 3 0.38 -1.38 1.5E-02 

AT4G23570 phosphatase-related 11 3 0.01 -6.64 6.3E-17 

AT2G20560 DNAJ heat shock family protein 35 8 0.01 -6.64 6.3E-17 

AT1G62480 Vacuolar calcium-binding protein-related 38 2 0.01 -6.64 6.3E-17 

AT5G23900 Ribosomal protein L13e family protein 33 2 0.01 -6.64 6.3E-17 

AT5G56870 beta-galactosidase 4 12 3 0.01 -6.64 6.3E-17 



Supplemental data 

 

150 

AT1G34760 general regulatory factor 11 32 4 0.01 -6.64 6.3E-17 

 
 
Suppl. Table 4.4. List of proteins that are differentially expressed in amiR23.5/23.6 compared to 
control plants. 
 

Accession Description 
Coverage 

[%] 
# Unique 
Peptides 

Fold 
change 

Fold 
change 
(log2) 

Adj. P-
Value 

AT4G18100 Ribosomal protein L32e 31 3 100 6.64 6.7E-17 

AT4G39460 S-adenosylmethionine carrier 1 13 2 100 6.64 6.7E-17 

AT5G05270 Chalcone-flavanone isomerase family protein 10 2 100 6.64 6.7E-17 

AT3G09680 Ribosomal protein S12/S23 family protein 35 3 100 6.64 6.7E-17 

AT5G47190 Ribosomal protein L19 family protein 19 4 100 6.64 6.7E-17 

AT1G31860 histidine biosynthesis bifunctional protein (HISIE) 22 3 100 6.64 6.7E-17 

AT5G14030 translocon-associated protein beta (TRAPB) family protein 47 4 100 6.64 6.7E-17 

AT2G27720 60S acidic ribosomal protein family 76 3 100 6.64 6.7E-17 

AT1G79850 ribosomal protein S17 31 4 100 6.64 6.7E-17 

AT2G21620 Adenine nucleotide alpha hydrolases-like superfamily prot. 47 7 100 6.64 6.7E-17 

AT5G13780 Acyl-CoA N-acyltransferases (NAT) superfamily protein 11 2 100 6.64 6.7E-17 

AT1G32470 Single hybrid motif superfamily protein 51 2 100 6.64 6.7E-17 

AT2G21060 glycine-rich protein 2B 24 2 100 6.64 6.7E-17 

AT1G17860 Kunitz family trypsin and protease inhibitor protein 30 4 100 6.64 6.7E-17 

AT1G09560 germin-like protein 5 15 3 100 6.64 6.7E-17 

AT1G20810 FKBP-like peptidyl-prolyl cis-trans isomerase family protein 11 2 100 6.64 6.7E-17 

AT1G21720 proteasome beta subunit C1 25 3 100 6.64 6.7E-17 

AT4G17530 RAB GTPase homolog 1C 32 3 100 6.64 6.7E-17 

AT1G77090 
Mog1/PsbP/DUF1795-like photosystem II reaction center PsbP family 
protein 

31 5 
100 6.64 6.7E-17 

AT3G63170 Chalcone-flavanone isomerase family protein 21 5 100 6.64 6.7E-17 

AT1G74970 ribosomal protein S9 31 6 100 6.64 6.7E-17 

AT4G03280 photosynthetic electron transfer C 14 2 100 6.64 6.7E-17 

AT1G78630 Ribosomal protein L13 family protein 42 7 100 6.64 6.7E-17 

AT1G02930 glutathione S-transferase 6 64 6 100 6.64 6.7E-17 

AT4G14800 20S proteasome beta subunit D2 20 2 100 6.64 6.7E-17 

AT1G75270 dehydroascorbate reductase 2 39 7 100 6.64 6.7E-17 

AT3G06050 peroxiredoxin IIF-PRXIIF 45 7 100 6.64 6.7E-17 

AT5G39730 AIG2-like (avirulence induced gene) family protein 28 4 100 6.64 6.7E-17 

AT1G72610 germin-like protein 1 30 4 100 6.64 6.7E-17 

AT2G22170 Lipase/lipooxygenase, PLAT/LH2 family protein 21 4 100 6.64 6.7E-17 

AT1G65980 thioredoxin-dependent peroxidase 1-PRXIIB 62 8 100 6.64 6.7E-17 

AT5G65840 Thioredoxin superfamily protein 8 2 100 6.64 6.7E-17 

AT2G47910 chlororespiratory reduction 6 26 5 100 6.64 6.7E-17 

AT3G59870 unknown protein 19 2 100 6.64 6.7E-17 

AT1G11750 CLP protease proteolytic subunit 6 31 5 100 6.64 6.7E-17 

AT2G19730 Ribosomal L28e protein family 25 3 100 6.64 6.7E-17 

AT5G58060 SNARE-like superfamily protein 14 3 100 6.64 6.7E-17 

AT3G52560 ubiquitin E2 variant 1D-4 32 2 100 6.64 6.7E-17 

AT4G28750 Photosystem I reaction centre subunit IV / PsaE protein 47 2 100 6.64 6.7E-17 

AT2G16600 rotamase CYP 3 38 4 100 6.64 6.7E-17 

AT3G47810 Calcineurin-like metallo-phosphoesterase superfamily prot. 17 3 100 6.64 6.7E-17 

AT1G26550 FKBP-like peptidyl-prolyl cis-trans isomerase family protein 15 2 100 6.64 6.7E-17 

AT3G46000 actin depolymerizing factor 2 24 2 100 6.64 6.7E-17 

AT5G27390 
Mog1/PsbP/DUF1795-like photosystem II reaction center PsbP family 
protein 

16 4 
100 6.64 6.7E-17 

AT1G16890 ubiquitin-conjugating enzyme 36 10 2 100 6.64 6.7E-17 

AT3G07470 Protein of unknown function, DUF538 20 3 100 6.64 6.7E-17 

AT3G10520 haemoglobin 2 27 4 100 6.64 6.7E-17 

AT3G09270 glutathione S-transferase TAU 8 17 3 100 6.64 6.7E-17 

ATCG00670 plastid-encoded CLP P 21 2 100 6.64 6.7E-17 

AT5G26667 
P-loop containing nucleoside triphosphate hydrolases superfamily 
prot. 

23 3 
100 6.64 6.7E-17 

AT1G24020 MLP-like protein 423 36 6 100 6.64 6.7E-17 

AT3G59400 enzyme binding;tetrapyrrole binding 14 3 100 6.64 6.7E-17 

AT5G27670 histone H2A 7 45 3 100 6.64 6.7E-17 

AT1G20580 Small nuclear ribonucleoprotein family protein 13 2 100 6.64 6.7E-17 

AT1G13280 allene oxide cyclase 4 17 2 100 6.64 6.7E-17 

AT2G35810 unknown protein 13 2 100 6.64 6.7E-17 

AT3G08740 elongation factor P (EF-P) family protein 38 9 100 6.64 6.7E-17 

AT3G53990 Adenine nucleotide alpha hydrolases-like superfamily prot. 46 5 100 6.64 6.7E-17 

AT5G13410 FKBP-like peptidyl-prolyl cis-trans isomerase family protein 29 5 100 6.64 6.7E-17 

AT5G54600 Translation protein SH3-like family protein 28 6 100 6.64 6.7E-17 

AT2G34160 Alba DNA/RNA-binding protein 15 2 100 6.64 6.7E-17 

AT1G17880 basic transcription factor 3 28 2 100 6.64 6.7E-17 

AT1G76450 Photosystem II reaction center PsbP family protein 36 5 100 6.64 6.7E-17 

AT5G28050 Cytidine/deoxycytidylate deaminase family protein 21 3 100 6.64 6.7E-17 

AT1G73230 Nascent polypeptide-associated complex NAC 41 3 100 6.64 6.7E-17 

AT2G20260 photosystem I subunit E-2 46 2 100 6.64 6.7E-17 

AT2G36145 unknown protein 9 2 100 6.64 6.7E-17 

AT4G23680 Polyketide cyclase/dehydrase and lipid transport superfamily prot. 21 3 100 6.64 6.7E-17 

AT3G22230 Ribosomal L27e protein family 34 2 100 6.64 6.7E-17 

AT3G05590 ribosomal protein L18 52 3 100 6.64 6.7E-17 
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AT1G73260 kunitz trypsin inhibitor 1 26 4 100 6.64 6.7E-17 

AT1G15930 Ribosomal protein L7Ae/L30e/S12e/Gadd45 family protein 42 3 100 6.64 6.7E-17 

AT2G43945 unknown protein 18 2 100 6.64 6.7E-17 

AT3G56070 rotamase cyclophilin 2 25 4 100 6.64 6.7E-17 

AT2G07707 Plant mitochondrial ATPase, F0 complex, subunit 8 protein 13 2 100 6.64 6.7E-17 

AT1G53670 methionine sulfoxide reductase B 1 10 2 100 6.64 6.7E-17 

AT5G35620 Eukaryotic initiation factor 4E protein 15 3 100 6.64 6.7E-17 

AT5G56260 
Ribonuclease E inhibitor RraA/Dimethylmenaquinone 
methyltransferase 

13 2 
100 6.64 6.7E-17 

AT1G21065 unknown protein 9 2 100 6.64 6.7E-17 

AT1G03600 photosystem II family protein 28 4 100 6.64 6.7E-17 

AT1G11430 plastid developmental protein DAG, putative 17 2 100 6.64 6.7E-17 

AT4G11600 glutathione peroxidase 6-GPX6 22 4 100 6.64 6.7E-17 

AT2G01520 MLP-like protein 328 30 2 100 6.64 6.7E-17 

AT1G20225 Thioredoxin superfamily protein 19 3 100 6.64 6.7E-17 

AT5G13120 cyclophilin 20-2 22 4 100 6.64 6.7E-17 

AT5G08180 Ribosomal protein L7Ae/L30e/S12e/Gadd45 family protein 16 2 100 6.64 6.7E-17 

AT2G33120 synaptobrevin-related protein 1 16 3 100 6.64 6.7E-17 

AT5G08410 ferredoxin/thioredoxin reductase subunit A 2 8 2 100 6.64 6.7E-17 

AT1G29250 Alba DNA/RNA-binding protein 37 2 100 6.64 6.7E-17 

AT2G06050 oxophytodienoate-reductase 3 6 2 100 6.64 6.7E-17 

AT5G23740 ribosomal protein S11-beta 49 5 100 6.64 6.7E-17 

AT1G63970 isoprenoid F 17 3 100 6.64 6.7E-17 

AT3G60370 FKBP-like peptidyl-prolyl cis-trans isomerase family protein 14 3 100 6.64 6.7E-17 

AT4G03520 Thioredoxin superfamily protein 23 3 100 6.64 6.7E-17 

AT5G62350 Plant invertase/pectin methylesterase inhibitor superfamily protein 34 6 100 6.64 6.7E-17 

AT5G48760 Ribosomal protein L13 family protein 34 2 100 6.64 6.7E-17 

AT5G03350 Legume lectin family protein 20 4 100 6.64 6.7E-17 

AT4G34120 Cystathionine beta-synthase (CBS) family protein 16 3 100 6.64 6.7E-17 

AT3G25220 FK506-binding protein 15 kD-1 16 2 100 6.64 6.7E-17 

AT3G62530 ARM repeat superfamily protein 43 7 100 6.64 6.7E-17 

AT3G46630 Protein of unknown function (DUF3223) 9 2 100 6.64 6.7E-17 

AT2G19740 Ribosomal protein L31e family protein 8 2 100 6.64 6.7E-17 

AT1G44790 ChaC-like family protein 13 2 100 6.64 6.7E-17 

AT4G17560 Ribosomal protein L19 family protein 16 3 100 6.64 6.7E-17 

AT5G52650 RNA binding Plectin/S10 domain-containing protein 25 5 71.11 6.15 6.7E-17 

AT5G38430 Ribulose bisphosphate carboxylase family protein 69 7 51.39 5.68 6.7E-17 

AT4G34870 rotamase cyclophilin 5 42 5 40.23 5.33 6.7E-17 

AT4G09320 Nucleoside diphosphate kinase family protein 58 8 38.08 5.25 6.7E-17 

AT5G38410 Ribulose bisphosphate carboxylase family protein 69 7 35.82 5.16 6.7E-17 

AT1G78370 glutathione S-transferase TAU 20 38 10 33.58 5.07 6.7E-17 

AT2G04390 Ribosomal S17 family protein 30 5 32.62 5.03 6.7E-17 

AT1G67090 ribulose bisphosphate carboxylase small chain 1A 64 15 32.00 5 6.7E-17 

AT3G16640 translationally controlled tumor protein 82 12 31.75 4.99 6.7E-17 

AT2G43560 FKBP-like peptidyl-prolyl cis-trans isomerase family protein 31 6 31.25 4.97 6.7E-17 

AT3G15360 thioredoxin M-type 4 26 4 28.41 4.83 6.7E-17 

AT2G27710 60S acidic ribosomal protein family 68 3 27.40 4.78 6.7E-17 

AT4G39260 cold, circadian rhythm, and RNA binding 1 51 5 27.23 4.77 6.7E-17 

AT2G34480 Ribosomal protein L18ae/LX family protein 36 5 22.39 4.48 6.7E-17 

AT1G33140 Ribosomal protein L6 family 64 12 22.27 4.48 6.7E-17 

AT1G09590 Translation protein SH3-like family protein 45 8 22.20 4.47 6.7E-17 

AT5G57290 60S acidic ribosomal protein family 22 2 21.73 4.44 6.7E-17 

AT2G21660 cold, circadian rhythm, and rna binding 2 44 4 20.56 4.36 6.7E-17 

AT5G40950 ribosomal protein large subunit 27 23 4 20.32 4.34 6.7E-17 

AT3G56240 copper chaperone 60 5 20.21 4.34 6.7E-17 

AT3G11940 ribosomal protein 5A 56 12 19.98 4.32 6.7E-17 

AT1G09310 Protein of unknown function, DUF538 52 9 19.34 4.27 6.7E-17 

AT5G15200 Ribosomal protein S4 53 8 18.77 4.23 6.7E-17 

AT5G10860 Cystathionine beta-synthase (CBS) family protein 43 8 18.28 4.19 6.7E-17 

AT4G15000 Ribosomal L27e protein family 43 4 18.27 4.19 6.7E-17 

AT2G28190 copper/zinc superoxide dismutase 2 24 3 17.81 4.15 6.7E-17 

AT2G28720 Histone superfamily protein 23 3 17.54 4.13 6.7E-17 

AT3G27830 ribosomal protein L12-A 20 4 17.03 4.09 6.7E-17 

AT5G23820 MD-2-related lipid recognition domain-containing protein 20 5 16.95 4.08 6.7E-17 

AT3G62030 rotamase CYP 4 39 9 16.53 4.05 6.7E-17 

AT4G40030 Histone superfamily protein 36 2 16.38 4.03 6.7E-17 

AT3G60770 Ribosomal protein S13/S15 46 9 16.15 4.01 6.7E-17 

AT3G44890 ribosomal protein L9 47 10 16.02 4 6.7E-17 

AT2G35370 glycine decarboxylase complex H 30 2 15.10 3.92 6.7E-17 

AT1G15820 light harvesting complex photosystem II subunit 6 19 5 14.79 3.89 1.5E-15 

AT4G21280 photosystem II subunit QA 52 15 14.35 3.84 6.7E-17 

AT1G06680 photosystem II subunit P-1 59 10 14.16 3.82 6.7E-17 

ATMG00070 NADH dehydrogenase subunit 9 17 3 13.97 3.8 1.5E-15 

AT4G27150 seed storage albumin 2 12 2 13.85 3.79 1.5E-15 

AT4G12880 early nodulin-like protein 19 11 2 13.81 3.79 2.9E-15 

AT5G27850 Ribosomal protein L18e/L15 superfamily protein 59 5 13.77 3.78 6.7E-17 

AT5G59870 histone H2A 6 52 5 13.75 3.78 6.7E-17 

AT5G53490 Tetratricopeptide repeat (TPR)-like superfamily protein 39 9 13.67 3.77 6.7E-17 

AT1G05190 Ribosomal protein L6 family 62 20 13.39 3.74 6.7E-17 

AT5G11770 NADH-ubiquinone oxidoreductase 20 kDa subunit 9 2 13.15 3.72 3.9E-14 

AT3G02560 Ribosomal protein S7e family protein 54 8 12.83 3.68 6.7E-17 

AT5G61170 Ribosomal protein S19e family protein 48 5 12.51 3.65 6.7E-17 

AT5G18380 Ribosomal protein S5 domain 2-like superfamily protein 50 2 12.12 3.6 6.7E-17 
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AT5G65350 histone 3 11 42 2 11.13 3.48 6.7E-17 

AT4G02770 photosystem I subunit D-1 42 8 10.87 3.44 6.7E-17 

AT4G12800 photosystem I subunit l 19 3 10.31 3.37 6.5E-12 

AT3G04400 Ribosomal protein L14p/L23e family protein 48 7 10.28 3.36 6.7E-17 

AT1G08110 lactoylglutathione lyase family protein / glyoxalase I family protein 20 5 9.84 3.3 1.3E-12 

AT4G27090 Ribosomal protein L14 56 6 9.41 3.23 6.7E-17 

AT4G16720 Ribosomal protein L23/L15e family protein 35 8 9.22 3.2 6.7E-17 

AT4G28660 photosystem II reaction center PSB28 protein 12 2 9.05 3.18 4.7E-09 

AT5G06290 2-cysteine peroxiredoxin B-PRXIIB 58 4 8.99 3.17 6.7E-17 

AT1G27400 Ribosomal protein L22p/L17e family protein 26 5 8.96 3.16 6.7E-17 

AT2G28490 RmlC-like cupins superfamily protein 24 8 8.68 3.12 1.6E-10 

AT5G16130 Ribosomal protein S7e family protein 49 12 8.64 3.11 6.7E-17 

AT5G10160 Thioesterase superfamily protein 37 7 8.11 3.02 1.0E-13 

AT3G55330 PsbP-like protein 1 43 8 7.92 2.99 8.6E-14 

AT3G09500 Ribosomal L29 family protein 31 5 7.81 2.96 6.9E-12 

AT4G39730 Lipase/lipooxygenase, PLAT/LH2 family protein 22 3 7.79 2.96 5.8E-13 

AT5G23140 nuclear-encoded CLP protease P7 17 3 7.78 2.96 3.1E-10 

AT3G48930 Nucleic acid-binding, OB-fold-like protein 49 6 7.40 2.89 6.7E-17 

AT1G22840 CYTOCHROME C-1 17 2 7.21 2.85 4.9E-09 

AT5G59880 actin depolymerizing factor 3 60 5 6.88 2.78 2.0E-12 

AT5G52840 NADH-ubiquinone oxidoreductase-related 24 3 6.77 2.76 1.0E-08 

AT4G24930 thylakoid lumenal 17.9 kDa protein, chloroplast 25 5 6.73 2.75 2.7E-08 

AT2G30860 glutathione S-transferase PHI 9 65 13 6.53 2.71 3.5E-14 

AT3G49910 Translation protein SH3-like family protein 41 7 6.48 2.7 3.7E-11 

AT1G12410 CLP protease proteolytic subunit 2 47 8 6.47 2.69 6.5E-11 

AT1G69620 ribosomal protein L34 29 2 6.44 2.69 3.5E-11 

AT2G42740 ribosomal protein large subunit 16A 64 13 6.41 2.68 6.1E-14 

AT1G54780 thylakoid lumen 18.3 kDa protein 20 5 6.26 2.65 9.4E-08 

ATCG00380 chloroplast ribosomal protein S4 68 10 6.04 2.59 3.7E-13 

AT4G25100 Fe superoxide dismutase 1 26 3 5.91 2.56 1.1E-10 

AT1G07820 Histone superfamily protein 50 8 5.86 2.55 1.4E-10 

AT2G19760 profilin 1 43 4 5.64 2.5 2.0E-05 

AT2G44650 chloroplast chaperonin 10 37 4 5.60 2.49 9.0E-06 

AT4G10300 RmlC-like cupins superfamily protein 22 3 5.32 2.41 5.3E-06 

ATCG00750 ribosomal protein S11 28 5 5.21 2.38 2.5E-07 

AT1G14410 ssDNA-binding transcriptional regulator 21 3 5.11 2.35 2.4E-05 

ATCG00900 Ribosomal protein S7p/S5e family protein 46 8 5.00 2.32 7.9E-11 

AT5G63310 nucleoside diphosphate kinase 2 43 9 4.88 2.29 3.8E-09 

AT3G56650 
Mog1/PsbP/DUF1795-like photosystem II reaction center PsbP family 
protein 

39 7 
4.84 2.28 1.5E-07 

AT3G45140 lipoxygenase 2 59 39 4.59 2.2 7.6E-10 

AT1G13930 Involved in response to salt stress. 15 2 4.59 2.2 3.7E-06 

AT1G48350 Ribosomal L18p/L5e family protein 25 4 4.58 2.2 6.3E-06 

AT3G24830 Ribosomal protein L13 family protein 47 6 4.51 2.17 3.0E-08 

AT3G18820 RAB GTPase homolog G3F 34 5 4.50 2.17 1.1E-07 

AT1G13060 20S proteasome beta subunit E1 34 7 4.48 2.16 1.9E-06 

AT2G30620 winged-helix DNA-binding transcription factor family protein 3 2 4.13 2.05 1.5E-04 

AT3G24500 multiprotein bridging factor 1C 33 4 4.08 2.03 3.7E-05 

AT4G05180 photosystem II subunit Q-2 46 10 4.07 2.02 6.2E-07 

AT5G25980 glucoside glucohydrolase 2 42 17 3.95 1.98 3.1E-08 

AT3G05560 Ribosomal L22e protein family 64 2 3.94 1.98 1.2E-06 

AT1G48830 Ribosomal protein S7e family protein 57 11 3.88 1.96 2.3E-06 

AT3G17020 Adenine nucleotide alpha hydrolases-like superfamily prot. 37 5 3.88 1.96 1.1E-04 

ATCG01120 chloroplast ribosomal protein S15 47 5 3.86 1.95 7.1E-05 

AT3G54600 Class I glutamine amidotransferase-like superfamily protein 8 2 3.79 1.92 8.4E-04 

AT1G70600 Ribosomal protein L18e/L15 superfamily protein 43 6 3.75 1.91 4.7E-06 

AT3G14210 epithiospecifier modifier 1 47 13 3.59 1.84 8.8E-07 

AT1G14320 Ribosomal protein L16p/L10e family protein 32 2 3.54 1.82 1.1E-06 

ATCG00780 ribosomal protein L14 52 5 3.51 1.81 7.0E-06 

AT4G34620 small subunit ribosomal protein 16 68 6 3.35 1.75 6.0E-05 

AT1G61520 photosystem I light harvesting complex gene 3 27 5 3.30 1.72 6.8E-04 

AT4G39890 RAB GTPase homolog H1C 14 2 3.26 1.7 3.8E-03 

AT3G04920 Ribosomal protein S24e family protein 31 3 3.25 1.7 2.8E-05 

AT3G18740 Ribosomal protein L7Ae/L30e/S12e/Gadd45 family protein 48 3 3.23 1.69 4.5E-06 

AT1G77940 Ribosomal protein L7Ae/L30e/S12e/Gadd45 family protein 36 2 3.19 1.67 3.0E-03 

AT1G44575 Chlorophyll A-B binding family protein 34 7 3.05 1.61 7.4E-05 

AT1G41880 Ribosomal protein L35Ae family protein 16 2 3.04 1.6 1.8E-03 

AT2G34430 light-harvesting chlorophyll-protein complex II subunit B1 81 3 2.91 1.54 1.5E-02 

AT3G52960 Thioredoxin superfamily protein-PRXIIE 53 12 2.89 1.53 2.1E-05 

AT4G02520 glutathione S-transferase PHI 2 81 14 2.88 1.53 2.2E-05 

AT4G30140 GDSL-like Lipase/Acylhydrolase superfamily protein 10 3 2.85 1.51 2.7E-03 

AT5G38940 RmlC-like cupins superfamily protein 48 3 2.82 1.5 1.1E-02 

AT3G63540 
Mog1/PsbP/DUF1795-like photosystem II reaction center PsbP family 
protein 

50 5 
2.58 1.37 8.1E-03 

AT3G26450 Polyketide cyclase/dehydrase and lipid transport superfamily prot. 78 8 2.56 1.35 9.8E-03 

AT4G31300 N-terminal nucleophile aminohydrolases superfamily protein 32 7 2.52 1.33 2.9E-03 

AT3G03920 H/ACA ribonucleoprotein complex, subunit Gar1/Naf1 prot. 14 2 2.51 1.32 2.3E-02 

AT2G30870 glutathione S-transferase PHI 10 60 13 2.43 1.28 4.4E-04 

AT1G35680 Ribosomal protein L21 44 10 2.40 1.26 3.1E-03 

AT5G01600 ferretin 1 33 6 2.15 1.11 2.0E-02 

AT1G03090 methylcrotonyl-CoA carboxylase alpha chain 40 21 0.47 -1.09 4.0E-02 

AT3G06850 2-oxoacid dehydrogenases acyltransferase family protein 16 6 0.41 -1.29 3.3E-02 

AT4G33150 lysine-ketoglutarate reductase/saccharopine dehydrogenase 12 9 0.35 -1.5 1.6E-02 
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AT1G11260 sugar transporter 1 6 3 0.35 -1.51 3.0E-02 

AT5G14450 GDSL-like Lipase/Acylhydrolase superfamily protein 12 4 0.34 -1.56 1.0E-02 

AT4G23570 phosphatase-related 11 3 0.01 -6.64 6.7E-17 

AT5G12110 
Glutathione S-transferase, C-terminal-like;Translation elongation  
factor EF1B/ribosomal protein S6 

23 2 
0.01 -6.64 6.7E-17 

AT1G62480 Vacuolar calcium-binding protein-related 38 2 0.01 -6.64 6.7E-17 

AT2G21370 xylulose kinase-1 13 4 0.01 -6.64 6.7E-17 

AT5G19460 nudix hydrolase homolog 20 7 2 0.01 -6.64 6.7E-17 

AT1G34760 general regulatory factor 11 32 4 0.01 -6.64 6.7E-17 

AT1G70290 trehalose-6-phosphatase synthase S8 10 2 0.01 -6.64 6.7E-17 

AT4G35470 plant intracellular ras group-related LRR 4 4 2 0.01 -6.64 6.7E-17 

 
 
Suppl. Table 4.5. List of proteins that are differentially expressed in amiR23.5/23.6/26.5 compared 
to control plants. 
 

Accession Description 
Coverage 

[%] 
# Unique 
Peptides 

Fold 
change 

Fold 
change 
(log2) 

Adj. P-
Value 

AT4G18100 Ribosomal protein L32e 31 3 100 6.64 6.7E-17 

AT5G05270 Chalcone-flavanone isomerase family protein 10 2 100 6.64 6.7E-17 

AT2G25950 Protein of unknown function (DUF1000) 19 2 100 6.64 6.7E-17 

AT3G10940 dual specificity protein phosphatase (DsPTP1) family protein 7 2 100 6.64 6.7E-17 

AT3G09680 Ribosomal protein S12/S23 family protein 35 3 100 6.64 6.7E-17 

AT5G47190 Ribosomal protein L19 family protein 19 4 100 6.64 6.7E-17 

AT1G31860 histidine biosynthesis bifunctional protein (HISIE) 22 3 100 6.64 6.7E-17 

AT3G49870 ADP-ribosylation factor-like A1C 10 2 100 6.64 6.7E-17 

AT3G62840 Small nuclear ribonucleoprotein family protein 25 3 100 6.64 6.7E-17 

AT5G14030 translocon-associated protein beta (TRAPB) family protein 47 4 100 6.64 6.7E-17 

AT2G27720 60S acidic ribosomal protein family 76 3 100 6.64 6.7E-17 

AT1G79850 ribosomal protein S17 31 4 100 6.64 6.7E-17 

AT2G21620 Adenine nucleotide alpha hydrolases-like superfamily prot. 47 7 100 6.64 6.7E-17 

AT5G13780 Acyl-CoA N-acyltransferases (NAT) superfamily protein 11 2 100 6.64 6.7E-17 

AT1G32470 Single hybrid motif superfamily protein 51 2 100 6.64 6.7E-17 

AT2G21060 glycine-rich protein 2B 24 2 100 6.64 6.7E-17 

AT1G17860 Kunitz family trypsin and protease inhibitor protein 30 4 100 6.64 6.7E-17 

AT1G09560 germin-like protein 5 15 3 100 6.64 6.7E-17 

AT1G20810 FKBP-like peptidyl-prolyl cis-trans isomerase family protein 11 2 100 6.64 6.7E-17 

AT1G21720 proteasome beta subunit C1 25 3 100 6.64 6.7E-17 

AT4G17530 RAB GTPase homolog 1C 32 3 100 6.64 6.7E-17 

AT1G77090 
Mog1/PsbP/DUF1795-like photosystem II reaction center PsbP family 
protein 

31 5 
100 6.64 6.7E-17 

AT3G63170 Chalcone-flavanone isomerase family protein 21 5 100 6.64 6.7E-17 

AT1G74970 ribosomal protein S9 31 6 100 6.64 6.7E-17 

AT4G10450 Ribosomal protein L6 family 33 3 100 6.64 6.7E-17 

AT4G03280 photosynthetic electron transfer C 14 2 100 6.64 6.7E-17 

AT4G14800 20S proteasome beta subunit D2 20 2 100 6.64 6.7E-17 

AT3G06050 peroxiredoxin IIF-PRXIIF 45 7 100 6.64 6.7E-17 

AT5G39730 AIG2-like (avirulence induced gene) family protein 28 4 100 6.64 6.7E-17 

AT1G72610 germin-like protein 1 30 4 100 6.64 6.7E-17 

AT2G22170 Lipase/lipooxygenase, PLAT/LH2 family protein 21 4 100 6.64 6.7E-17 

AT1G65980 thioredoxin-dependent peroxidase 1-PRXIIB 62 8 100 6.64 6.7E-17 

AT3G59870 unknown protein 19 2 100 6.64 6.7E-17 

AT2G33120 synaptobrevin-related protein 1 16 3 100 6.64 6.7E-17 

AT5G13410 FKBP-like peptidyl-prolyl cis-trans isomerase family protein 29 5 100 6.64 6.7E-17 

AT3G10520 haemoglobin 2 27 4 100 6.64 6.7E-17 

AT1G13280 allene oxide cyclase 4 17 2 100 6.64 6.7E-17 

AT1G26550 FKBP-like peptidyl-prolyl cis-trans isomerase family protein 15 2 100 6.64 6.7E-17 

AT3G59400 enzyme binding;tetrapyrrole binding 14 3 100 6.64 6.7E-17 

AT3G60370 FKBP-like peptidyl-prolyl cis-trans isomerase family protein 14 3 100 6.64 6.7E-17 

AT3G47810 Calcineurin-like metallo-phosphoesterase superfamily protein 17 3 100 6.64 6.7E-17 

AT1G63970 isoprenoid F 17 3 100 6.64 6.7E-17 

AT5G28060 Ribosomal protein S24e family protein 31 2 100 6.64 6.7E-17 

AT5G26667 
P-loop containing nucleoside triphosphate hydrolases superfamily 
protein 

23 3 
100 6.64 6.7E-17 

AT3G52560 ubiquitin E2 variant 1D-4 32 2 100 6.64 6.7E-17 

AT3G46000 actin depolymerizing factor 2 24 2 100 6.64 6.7E-17 

AT2G21530 SMAD/FHA domain-containing protein 12 2 100 6.64 6.7E-17 

AT5G54600 Translation protein SH3-like family protein 28 6 100 6.64 6.7E-17 

AT5G23740 ribosomal protein S11-beta 49 5 100 6.64 6.7E-17 

AT3G08740 elongation factor P (EF-P) family protein 38 9 100 6.64 6.7E-17 

AT2G06050 oxophytodienoate-reductase 3 6 2 100 6.64 6.7E-17 

AT3G07470 Protein of unknown function, DUF538 20 3 100 6.64 6.7E-17 

AT2G19730 Ribosomal L28e protein family 25 3 100 6.64 6.7E-17 

AT1G11750 CLP protease proteolytic subunit 6 31 5 100 6.64 6.7E-17 

AT5G27390 
Mog1/PsbP/DUF1795-like photosystem II reaction center PsbP family 
protein 

16 4 
100 6.64 6.7E-17 

AT3G53990 Adenine nucleotide alpha hydrolases-like superfamily prot. 46 5 100 6.64 6.7E-17 

AT5G14910 Heavy metal transport/detoxification superfamily protein 15 2 100 6.64 6.7E-17 

AT4G34120 Cystathionine beta-synthase (CBS) family protein 16 3 100 6.64 6.7E-17 

AT2G19740 Ribosomal protein L31e family protein 8 2 100 6.64 6.7E-17 

AT3G46630 Protein of unknown function (DUF3223) 9 2 100 6.64 6.7E-17 
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AT4G02530 chloroplast thylakoid lumen protein 20 3 100 6.64 6.7E-17 

AT1G60000 RNA-binding (RRM/RBD/RNP motifs) family protein 12 2 100 6.64 6.7E-17 

AT5G48760 Ribosomal protein L13 family protein 34 2 100 6.64 6.7E-17 

AT5G62350 Plant invertase/pectin methylesterase inhibitor superfamily protein 34 6 100 6.64 6.7E-17 

AT4G03520 Thioredoxin superfamily protein 23 3 100 6.64 6.7E-17 

AT1G29250 Alba DNA/RNA-binding protein 37 2 100 6.64 6.7E-17 

AT5G08410 ferredoxin/thioredoxin reductase subunit A 2 8 2 100 6.64 6.7E-17 

AT5G08180 Ribosomal protein L7Ae/L30e/S12e/Gadd45 family protein 16 2 100 6.64 6.7E-17 

AT4G11600 glutathione peroxidase 6-GPX6 22 4 100 6.64 6.7E-17 

AT1G17880 basic transcription factor 3 28 2 100 6.64 6.7E-17 

AT3G09270 glutathione S-transferase TAU 8 17 3 100 6.64 6.7E-17 

AT2G16600 rotamase CYP 3 38 4 100 6.64 6.7E-17 

AT2G35810 unknown protein 13 2 100 6.64 6.7E-17 

AT1G20580 Small nuclear ribonucleoprotein family protein 13 2 100 6.64 6.7E-17 

AT5G27670 histone H2A 7 45 3 100 6.64 6.7E-17 

ATCG00670 plastid-encoded CLP P 21 2 100 6.64 6.7E-17 

AT1G24020 MLP-like protein 423 36 6 100 6.64 6.7E-17 

AT5G37475 Translation initiation factor eIF3 subunit 20 3 100 6.64 6.7E-17 

AT5G58060 SNARE-like superfamily protein 14 3 100 6.64 6.7E-17 

AT4G28750 Photosystem I reaction centre subunit IV / PsaE protein 47 2 100 6.64 6.7E-17 

AT5G23010 methylthioalkylmalate synthase 1 7 3 100 6.64 6.7E-17 

AT1G76450 Photosystem II reaction center PsbP family protein 36 5 100 6.64 6.7E-17 

AT5G28050 Cytidine/deoxycytidylate deaminase family protein 21 3 100 6.64 6.7E-17 

AT3G25220 FK506-binding protein 15 kD-1 16 2 100 6.64 6.7E-17 

AT3G62530 ARM repeat superfamily protein 43 7 100 6.64 6.7E-17 

AT5G13120 cyclophilin 20-2 22 4 100 6.64 6.7E-17 

AT1G20225 Thioredoxin superfamily protein 19 3 100 6.64 6.7E-17 

AT2G20260 photosystem I subunit E-2 46 2 100 6.64 6.7E-17 

AT2G36145 unknown protein 9 2 100 6.64 6.7E-17 

AT4G23680 Polyketide cyclase/dehydrase and lipid transport superfamily prot. 21 3 100 6.64 6.7E-17 

AT3G05590 ribosomal protein L18 52 3 100 6.64 6.7E-17 

AT1G73260 kunitz trypsin inhibitor 1 26 4 100 6.64 6.7E-17 

AT1G53670 methionine sulfoxide reductase B 1 10 2 100 6.64 6.7E-17 

AT5G35620 Eukaryotic initiation factor 4E protein 15 3 100 6.64 6.7E-17 

AT5G61970 signal recognition particle-related / SRP-related 6 2 100 6.64 6.7E-17 

AT1G23130 
Polyketide cyclase/dehydrase and lipid transport superfamily 
protein 

21 3 
100 6.64 6.7E-17 

AT1G03680 thioredoxin M-type 1 22 3 100 6.64 6.7E-17 

AT1G75950 S phase kinase-associated protein 1 29 3 100 6.64 6.7E-17 

AT1G73230 Nascent polypeptide-associated complex NAC 41 3 100 6.64 6.7E-17 

AT3G22230 Ribosomal L27e protein family 34 2 100 6.64 6.7E-17 

AT1G15930 Ribosomal protein L7Ae/L30e/S12e/Gadd45 family protein 42 3 100 6.64 6.7E-17 

AT2G43945 unknown protein 18 2 100 6.64 6.7E-17 

AT3G56070 rotamase cyclophilin 2 25 4 100 6.64 6.7E-17 

AT2G07707 Plant mitochondrial ATPase, F0 complex, subunit 8 protein 13 2 100 6.64 6.7E-17 

AT5G56260 
Ribonuclease E inhibitor RraA/Dimethylmenaquinone 
methyltransferase 

13 2 
100 6.64 6.7E-17 

AT1G21065 unknown protein 9 2 100 6.64 6.7E-17 

AT2G34160 Alba DNA/RNA-binding protein 15 2 100 6.64 6.7E-17 

AT1G11430 plastid developmental protein DAG, putative 17 2 100 6.64 6.7E-17 

AT5G47520 RAB GTPase homolog A5A 16 2 100 6.64 6.7E-17 

AT1G44790 ChaC-like family protein 13 2 100 6.64 6.7E-17 

AT4G17560 Ribosomal protein L19 family protein 16 3 100 6.64 6.7E-17 

AT1G78630 Ribosomal protein L13 family protein 42 7 84.97 6.41 6.7E-17 

AT5G52650 RNA binding Plectin/S10 domain-containing protein 25 5 75.90 6.25 6.7E-17 

AT5G38430 Ribulose bisphosphate carboxylase family protein 69 7 48.82 5.61 6.7E-17 

AT2G43560 FKBP-like peptidyl-prolyl cis-trans isomerase family protein 31 6 43.96 5.46 6.7E-17 

AT4G34870 rotamase cyclophilin 5 42 5 43.68 5.45 6.7E-17 

AT4G39260 cold, circadian rhythm, and RNA binding 1 51 5 41.85 5.39 6.7E-17 

AT5G65840 Thioredoxin superfamily protein 8 2 39.06 5.29 6.7E-17 

AT4G09320 Nucleoside diphosphate kinase family protein 58 8 37.68 5.24 6.7E-17 

AT5G10860 Cystathionine beta-synthase (CBS) family protein 43 8 34.27 5.1 6.7E-17 

AT3G16640 translationally controlled tumor protein 82 12 34.02 5.09 6.7E-17 

AT2G04390 Ribosomal S17 family protein 30 5 29.07 4.86 6.7E-17 

AT3G11940 ribosomal protein 5A 56 12 25.96 4.7 6.7E-17 

AT4G15000 Ribosomal L27e protein family 43 4 25.83 4.69 6.7E-17 

AT2G27710 60S acidic ribosomal protein family 68 3 24.95 4.64 6.7E-17 

AT3G56240 copper chaperone 60 5 24.66 4.62 6.7E-17 

AT2G34480 Ribosomal protein L18ae/LX family protein 36 5 24.44 4.61 6.7E-17 

AT5G15200 Ribosomal protein S4 53 8 23.60 4.56 6.7E-17 

AT3G15360 thioredoxin M-type 4 26 4 21.58 4.43 6.7E-17 

AT2G28720 Histone superfamily protein 23 3 20.99 4.39 6.7E-17 

AT5G57290 60S acidic ribosomal protein family 22 2 20.98 4.39 6.7E-17 

AT4G02770 photosystem I subunit D-1 42 8 20.46 4.35 6.7E-17 

AT1G33140 Ribosomal protein L6 family 64 12 20.19 4.34 6.7E-17 

AT1G09590 Translation protein SH3-like family protein 45 8 19.95 4.32 6.7E-17 

AT2G21660 cold, circadian rhythm, and rna binding 2 44 4 18.04 4.17 6.7E-17 

AT5G38410 Ribulose bisphosphate carboxylase family protein 69 7 17.21 4.1 6.7E-17 

AT4G16720 Ribosomal protein L23/L15e family protein 35 8 16.04 4 6.7E-17 

AT3G60770 Ribosomal protein S13/S15 46 9 16.02 4 6.7E-17 

AT4G40030 Histone superfamily protein 36 2 15.79 3.98 6.7E-17 

AT5G27850 Ribosomal protein L18e/L15 superfamily protein 59 5 14.83 3.89 6.7E-17 

AT5G23820 MD-2-related lipid recognition domain-containing protein 20 5 14.76 3.88 6.7E-17 
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AT5G61170 Ribosomal protein S19e family protein 48 5 14.38 3.85 6.7E-17 

AT5G10160 Thioesterase superfamily protein 37 7 14.21 3.83 6.7E-17 

AT3G62030 rotamase CYP 4 39 9 14.19 3.83 6.7E-17 

AT2G28190 copper/zinc superoxide dismutase 2 24 3 14.17 3.82 6.7E-17 

AT5G40950 ribosomal protein large subunit 27 23 4 14.07 3.81 6.7E-17 

AT1G09310 Protein of unknown function, DUF538 52 9 14.07 3.81 6.7E-17 

AT1G78370 glutathione S-transferase TAU 20 38 10 13.91 3.8 6.7E-17 

ATMG00070 NADH dehydrogenase subunit 9 17 3 13.82 3.79 6.7E-17 

AT4G12800 photosystem I subunit l 19 3 13.33 3.74 6.7E-17 

AT1G05190 Ribosomal protein L6 family 62 20 13.32 3.74 6.7E-17 

AT5G16130 Ribosomal protein S7e family protein 49 12 13.26 3.73 6.7E-17 

AT1G06680 photosystem II subunit P-1 59 10 12.45 3.64 2.9E-15 

AT2G35370 glycine decarboxylase complex H 30 2 11.89 3.57 1.0E-14 

AT5G11770 NADH-ubiquinone oxidoreductase 20 kDa subunit, 9 2 11.69 3.55 1.6E-14 

AT4G12880 early nodulin-like protein 19 11 2 11.65 3.54 1.7E-14 

AT1G67090 ribulose bisphosphate carboxylase small chain 1A 64 15 11.47 3.52 2.6E-14 

AT5G53490 Tetratricopeptide repeat (TPR)-like superfamily protein 39 9 11.47 3.52 2.6E-14 

AT3G44890 ribosomal protein L9 47 10 11.46 3.52 2.6E-14 

AT2G44120 Ribosomal protein L30/L7 family protein 66 4 10.80 3.43 1.2E-13 

AT5G18380 Ribosomal protein S5 domain 2-like superfamily protein 50 2 10.77 3.43 1.3E-13 

AT5G65350 histone 3 11 42 2 10.66 3.41 1.7E-13 

AT2G44650 chloroplast chaperonin 10 37 4 10.36 3.37 3.3E-13 

AT1G22840 CYTOCHROME C-1 17 2 10.35 3.37 3.4E-13 

AT3G27830 ribosomal protein L12-A 20 4 10.04 3.33 7.2E-13 

AT1G27400 Ribosomal protein L22p/L17e family protein 26 5 9.99 3.32 8.1E-13 

AT5G59870 histone H2A 6 52 5 9.80 3.29 1.3E-12 

AT1G08110 lactoylglutathione lyase family protein / glyoxalase I family protein 20 5 9.79 3.29 1.3E-12 

AT3G02560 Ribosomal protein S7e family protein 54 8 9.35 3.22 3.9E-12 

AT4G27090 Ribosomal protein L14 56 6 9.30 3.22 4.4E-12 

AT3G04400 Ribosomal protein L14p/L23e family protein 48 7 8.81 3.14 1.5E-11 

AT2G42740 ribosomal protein large subunit 16A 64 13 8.76 3.13 1.7E-11 

AT3G09500 Ribosomal L29 family protein 31 5 8.14 3.02 9.1E-11 

AT3G48930 Nucleic acid-binding, OB-fold-like protein 49 6 7.54 2.91 4.7E-10 

AT4G21280 photosystem II subunit QA 52 15 7.52 2.91 5.0E-10 

AT4G28660 photosystem II reaction center PSB28 protein 12 2 7.40 2.89 1.1E-08 

ATCG00380 chloroplast ribosomal protein S4 68 10 7.28 2.86 9.8E-10 

AT5G52840 NADH-ubiquinone oxidoreductase-related 24 3 6.91 2.79 2.9E-09 

AT4G39730 Lipase/lipooxygenase, PLAT/LH2 family protein 22 3 6.64 2.73 6.4E-09 

AT1G54780 thylakoid lumen 18.3 kDa protein 20 5 6.17 2.62 2.8E-08 

AT3G24830 Ribosomal protein L13 family protein 47 6 6.13 2.62 3.1E-08 

AT1G69620 ribosomal protein L34 29 2 6.06 2.6 3.9E-08 

AT2G19760 profilin 1 43 4 5.83 2.54 9.3E-07 

AT3G49910 Translation protein SH3-like family protein 41 7 5.71 2.51 1.2E-07 

AT1G07820 Histone superfamily protein 50 8 5.57 2.48 1.9E-07 

AT5G06290 2-cysteine peroxiredoxin B-PRXIIB 58 4 5.23 2.39 5.7E-07 

AT3G55330 PsbP-like protein 1 43 8 5.23 2.39 5.8E-07 

AT1G15820 light harvesting complex photosystem II subunit 6 19 5 5.04 2.33 1.1E-06 

AT1G17170 glutathione S-transferase TAU 24 11 2 4.90 2.29 1.8E-06 

AT2G30620 winged-helix DNA-binding transcription factor family protein 3 2 4.89 2.29 1.8E-06 

ATCG00750 ribosomal protein S11 28 5 4.89 2.29 1.8E-06 

AT1G48830 Ribosomal protein S7e family protein 57 11 4.78 2.26 2.6E-06 

AT1G14410 ssDNA-binding transcriptional regulator 21 3 4.69 2.23 4.8E-06 

AT1G13060 20S proteasome beta subunit E1 34 7 4.68 2.23 3.7E-06 

AT3G63190 ribosome recycling factor, chloroplast precursor 26 6 4.62 2.21 4.7E-06 

ATCG00900 Ribosomal protein S7p/S5e family protein 46 8 4.62 2.21 4.7E-06 

AT5G63310 nucleoside diphosphate kinase 2 43 9 4.62 2.21 4.7E-06 

AT1G22780 Ribosomal protein S13/S18 family 39 6 4.53 2.18 6.4E-06 

AT1G14320 Ribosomal protein L16p/L10e family protein 32 2 4.42 2.14 9.3E-06 

AT3G14210 epithiospecifier modifier 1 47 13 4.32 2.11 1.3E-05 

AT1G12410 CLP protease proteolytic subunit 2 47 8 4.31 2.11 1.4E-05 

AT3G17020 Adenine nucleotide alpha hydrolases-like superfamily prot. 37 5 4.29 2.1 1.5E-05 

AT4G39890 RAB GTPase homolog H1C 14 2 4.26 2.09 2.4E-05 

AT4G34620 small subunit ribosomal protein 16 68 6 4.13 2.05 2.6E-05 

AT1G70600 Ribosomal protein L18e/L15 superfamily protein 43 6 3.90 1.97 6.1E-05 

AT3G18820 RAB GTPase homolog G3F 34 5 3.79 1.92 9.3E-05 

AT1G02780 Ribosomal protein L19e family protein 29 5 3.72 1.89 1.2E-04 

AT3G54600 Class I glutamine amidotransferase-like superfamily protein 8 2 3.50 1.81 5.7E-04 

AT5G25980 glucoside glucohydrolase 2 42 17 3.41 1.77 3.9E-04 

AT3G04920 Ribosomal protein S24e family protein 31 3 3.32 1.73 5.5E-04 

ATCG01120 chloroplast ribosomal protein S15 47 5 3.32 1.73 5.7E-04 

AT3G53460 chloroplast RNA-binding protein 29 32 7 3.28 1.72 6.4E-04 

AT1G41880 Ribosomal protein L35Ae family protein 16 2 3.28 1.71 6.4E-04 

AT1G77940 Ribosomal protein L7Ae/L30e/S12e/Gadd45 family protein 36 2 3.25 1.7 7.3E-04 

ATCG00780 ribosomal protein L14 52 5 3.03 1.6 1.7E-03 

AT1G71500 Rieske (2Fe-2S) domain-containing protein 42 9 3.00 1.58 1.9E-03 

ATCG00650 ribosomal protein S18 33 3 2.77 1.47 4.8E-03 

AT3G13120 Ribosomal protein S10p/S20e family protein 15 3 2.76 1.46 5.0E-03 

AT4G10300 RmlC-like cupins superfamily protein 22 3 2.75 1.46 8.1E-03 

AT3G52960 Thioredoxin superfamily protein-PRXIIE 53 12 2.72 1.44 5.8E-03 

AT3G18740 Ribosomal protein L7Ae/L30e/S12e/Gadd45 family protein 48 3 2.67 1.42 7.1E-03 

AT4G17170 RAB GTPase homolog B1C 56 3 2.60 1.38 9.3E-03 

AT4G33350 Tic22-like family protein 20 5 2.55 1.35 1.1E-02 

AT4G14710 RmlC-like cupins superfamily protein 30 6 2.31 1.21 3.0E-02 
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AT4G01480 pyrophosphorylase 5 13 2 2.26 1.17 3.6E-02 

AT3G07110 Ribosomal protein L13 family protein 41 5 2.25 1.17 3.6E-02 

AT1G74050 Ribosomal protein L6 family protein 58 7 2.21 1.14 4.3E-02 

AT1G30730 FAD-binding Berberine family protein 30 10 0.42 -1.25 2.1E-02 

AT1G76180 Dehydrin family protein 25 2 0.42 -1.27 1.8E-02 

AT5G64290 dicarboxylate transport 2.1 7 3 0.41 -1.28 1.7E-02 

AT5G09660 peroxisomal NAD-malate dehydrogenase 2 66 13 0.32 -1.65 9.9E-04 

AT1G01900 subtilase family protein 6 4 0.31 -1.68 1.6E-03 

AT5G45690 Protein of unknown function (DUF1264) 16 2 0.30 -1.74 1.4E-03 

AT5G16620 hydroxyproline-rich glycoprotein family protein 8 3 0.28 -1.84 1.8E-04 

AT4G23570 phosphatase-related 11 3 0.01 -6.64 6.7E-17 

AT1G62480 Vacuolar calcium-binding protein-related 38 2 0.01 -6.64 6.7E-17 

AT3G08010 RNA binding 14 3 0.01 -6.64 6.7E-17 

AT4G35470 plant intracellular ras group-related LRR 4 4 2 0.01 -6.64 6.7E-17 

 
 
Suppl. Table 4.6. List of proteins that are differentially expressed in amiR23.5 compared to 
control plants after heat treatment. 
 

Accession Description 
Coverage 

[%] 
# Unique 
Peptides 

Fold 
change 

Fold 
change 
(log2) 

Adj. P-
Value 

AT4G18100 Ribosomal protein L32e 31 3 100 6.64 8.2E-17 

AT1G54050 HSP20-like chaperones superfamily protein 54 10 100 6.64 8.2E-17 

AT3G56290 unknown protein 17 2 100 6.64 8.2E-17 

AT5G35680 Nucleic acid-binding, OB-fold-like protein 25 3 100 6.64 8.2E-17 

AT2G04690 Pyridoxamine 5'-phosphate oxidase family protein 15 2 100 6.64 8.2E-17 

ATCG00820 ribosomal protein S19 40 4 100 6.64 8.2E-17 

AT3G02080 Ribosomal protein S19e family protein 45 4 100 6.64 8.2E-17 

ATCG00810 ribosomal protein L22 40 5 100 6.64 8.2E-17 

AT3G57180 
P-loop containing nucleoside triphosphate hydrolases superfamily 
protein 

3 2 
100 6.64 8.2E-17 

AT2G27720 60S acidic ribosomal protein family 76 3 100 6.64 8.2E-17 

AT4G03280 photosynthetic electron transfer C 14 2 100 6.64 8.2E-17 

AT4G12800 photosystem I subunit l 19 3 100 6.64 8.2E-17 

AT5G53490 Tetratricopeptide repeat (TPR)-like superfamily protein 39 9 100 6.64 8.2E-17 

AT2G21530 SMAD/FHA domain-containing protein 12 2 100 6.64 8.2E-17 

AT1G63970 isoprenoid F 17 3 100 6.64 8.2E-17 

AT3G53990 Adenine nucleotide alpha hydrolases-like superfamily protein 46 5 100 6.64 8.2E-17 

AT4G28750 Photosystem I reaction centre subunit IV / PsaE protein 47 2 100 6.64 8.2E-17 

AT3G46000 actin depolymerizing factor 2 24 2 100 6.64 8.2E-17 

AT5G28060 Ribosomal protein S24e family protein 31 2 100 6.64 8.2E-17 

AT3G10520 haemoglobin 2 27 4 100 6.64 8.2E-17 

AT2G44920 Tetratricopeptide repeat (TPR)-like superfamily protein 36 5 100 6.64 8.2E-17 

AT3G07470 Protein of unknown function, DUF538 20 3 100 6.64 8.2E-17 

AT3G52560 ubiquitin E2 variant 1D-4 32 2 100 6.64 8.2E-17 

AT1G26550 FKBP-like peptidyl-prolyl cis-trans isomerase family protein 15 2 100 6.64 8.2E-17 

AT1G75350 Ribosomal protein L31 32 4 100 6.64 8.2E-17 

ATCG00670 plastid-encoded CLP P 21 2 100 6.64 8.2E-17 

AT1G11430 plastid developmental protein DAG, putative 17 2 100 6.64 8.2E-17 

AT4G38600 HEAT repeat ;HECT-domain (ubiquitin-transferase) 1 2 100 6.64 8.2E-17 

AT5G61970 signal recognition particle-related / SRP-related 6 2 100 6.64 8.2E-17 

AT1G76450 Photosystem II reaction center PsbP family protein 36 5 100 6.64 8.2E-17 

AT5G51110 Transcriptional coactivator/pterin dehydratase 12 2 100 6.64 8.2E-17 

AT1G29250 Alba DNA/RNA-binding protein 37 2 100 6.64 8.2E-17 

AT1G17880 basic transcription factor 3 28 2 100 6.64 8.2E-17 

AT1G20580 Small nuclear ribonucleoprotein family protein 13 2 100 6.64 8.2E-17 

AT1G08880 Histone superfamily protein 45 2 100 6.64 8.2E-17 

AT3G22230 Ribosomal L27e protein family 34 2 100 6.64 8.2E-17 

AT3G10090 Nucleic acid-binding, OB-fold-like protein 23 2 100 6.64 8.2E-17 

AT3G25220 FK506-binding protein 15 kD-1 16 2 100 6.64 8.2E-17 

AT2G36145 unknown protein 9 2 100 6.64 8.2E-17 

AT4G23680 Polyketide cyclase/dehydrase and lipid transport superfamily prot. 21 3 100 6.64 8.2E-17 

AT3G05590 ribosomal protein L18 52 3 100 6.64 8.2E-17 

AT2G33530 serine carboxypeptidase-like 46 4 2 100 6.64 8.2E-17 

AT4G28660 photosystem II reaction center PSB28 protein 12 2 100 6.64 8.2E-17 

AT2G34160 Alba DNA/RNA-binding protein 15 2 100 6.64 8.2E-17 

AT1G03600 photosystem II family protein 28 4 100 6.64 8.2E-17 

AT1G21065 unknown protein 9 2 100 6.64 8.2E-17 

AT5G14910 Heavy metal transport/detoxification superfamily protein 15 2 100 6.64 8.2E-17 

AT4G29350 profilin 2 32 3 100 6.64 8.2E-17 

AT1G15930 Ribosomal protein L7Ae/L30e/S12e/Gadd45 family protein 42 3 100 6.64 8.2E-17 

AT1G23130 Polyketide cyclase/dehydrase and lipid transport superfamily prot. 21 3 100 6.64 8.2E-17 

AT2G38540 lipid transfer protein 1 22 2 100 6.64 8.2E-17 

AT1G31860 histidine biosynthesis bifunctional protein (HISIE) 22 3 74.10 6.21 8.2E-17 

AT4G09320 Nucleoside diphosphate kinase family protein 58 8 73.67 6.2 8.2E-17 

AT5G65840 Thioredoxin superfamily protein 8 2 58.76 5.88 8.2E-17 

AT3G44890 ribosomal protein L9 47 10 38.08 5.25 8.2E-17 

AT1G07820 Histone superfamily protein 50 8 33.02 5.05 8.2E-17 

AT1G67090 ribulose bisphosphate carboxylase small chain 1A 64 15 27.98 4.81 8.2E-17 

AT1G79850 ribosomal protein S17 31 4 26.25 4.71 8.2E-17 



Supplemental data 

 

157 

AT3G15360 thioredoxin M-type 4 26 4 25.58 4.68 8.2E-17 

AT5G38430 Ribulose bisphosphate carboxylase (small chain) family protein 69 7 24.92 4.64 8.2E-17 

AT4G40030 Histone superfamily protein 36 2 22.90 4.52 8.2E-17 

ATCG00770 ribosomal protein S8 63 10 22.90 4.52 8.2E-17 

AT2G27710 60S acidic ribosomal protein family 68 3 21.97 4.46 8.2E-17 

AT5G38410 Ribulose bisphosphate carboxylase (small chain) family protein 69 7 21.78 4.44 8.2E-17 

AT5G40950 ribosomal protein large subunit 27 23 4 21.24 4.41 8.2E-17 

AT3G05560 Ribosomal L22e protein family 64 2 20.09 4.33 8.2E-17 

AT5G61170 Ribosomal protein S19e family protein 48 5 15.92 3.99 8.2E-17 

AT4G15000 Ribosomal L27e protein family 43 4 14.95 3.9 8.2E-17 

AT5G54600 Translation protein SH3-like family protein 28 6 14.86 3.89 8.2E-17 

AT3G04400 Ribosomal protein L14p/L23e family protein 48 7 13.64 3.77 8.2E-17 

AT2G01720 Ribophorin I 8 2 12.77 3.67 8.2E-17 

AT3G09500 Ribosomal L29 family protein 31 5 12.47 3.64 8.2E-17 

AT4G27090 Ribosomal protein L14 56 6 12.26 3.62 8.2E-17 

ATCG00650 ribosomal protein S18 33 3 12.13 3.6 8.2E-17 

AT2G19760 profilin 1 43 4 11.87 3.57 8.2E-17 

ATCG00660 ribosomal protein L20 45 6 10.39 3.38 1.8E-15 

AT3G24500 multiprotein bridging factor 1C 33 4 10.19 3.35 1.8E-15 

AT1G69620 ribosomal protein L34 29 2 10.18 3.35 1.8E-15 

AT4G21280 photosystem II subunit QA 52 15 9.90 3.31 5.4E-15 

AT4G23670 Polyketide cyclase/dehydrase and lipid transport superfamily prot. 64 9 9.40 3.23 2.3E-14 

AT3G60770 Ribosomal protein S13/S15 46 9 9.39 3.23 2.5E-14 

AT2G19740 Ribosomal protein L31e family protein 8 2 9.07 3.18 6.3E-14 

AT4G34620 small subunit ribosomal protein 16 68 6 8.82 3.14 1.3E-13 

AT4G34870 rotamase cyclophilin 5 42 5 8.52 3.09 3.2E-13 

ATCG00750 ribosomal protein S11 28 5 8.36 3.06 5.3E-13 

AT2G04390 Ribosomal S17 family protein 30 5 8.36 3.06 5.3E-13 

AT5G14670 ADP-ribosylation factor A1B 63 13 8.30 3.05 6.4E-13 

AT5G18380 Ribosomal protein S5 domain 2-like superfamily protein 50 2 8.14 3.03 1.0E-12 

ATCG00900 Ribosomal protein S7p/S5e family protein 46 8 8.03 3.01 1.5E-12 

AT2G44650 chloroplast chaperonin 10 37 4 7.94 2.99 2.0E-12 

ATCG00065 ribosomal protein S12A 31 2 7.93 2.99 2.0E-12 

AT4G39260 cold, circadian rhythm, and RNA binding 1 51 5 7.88 2.98 2.3E-12 

AT5G52650 RNA binding Plectin/S10 domain-containing protein 25 5 7.12 2.83 2.9E-11 

AT1G74970 ribosomal protein S9 31 6 6.97 2.8 4.7E-11 

AT2G39460 ribosomal protein L23AA 42 11 6.83 2.77 7.7E-11 

AT5G11770 NADH-ubiquinone oxidoreductase 20 kDa subunit 9 2 6.71 2.75 2.9E-10 

AT4G10300 RmlC-like cupins superfamily protein 22 3 6.58 2.72 1.8E-10 

AT1G73230 Nascent polypeptide-associated complex NAC 41 3 6.21 2.64 6.7E-10 

AT5G13410 FKBP-like peptidyl-prolyl cis-trans isomerase family protein 29 5 6.19 2.63 7.4E-10 

AT3G04920 Ribosomal protein S24e family protein 31 3 6.13 2.62 9.1E-10 

AT1G70600 Ribosomal protein L18e/L15 superfamily protein 43 6 6.02 2.59 1.4E-09 

AT4G11010 nucleoside diphosphate kinase 3 31 6 5.93 2.57 1.9E-09 

AT5G59870 histone H2A 6 52 5 5.72 2.52 4.1E-09 

ATCG01120 chloroplast ribosomal protein S15 47 5 5.69 2.51 4.6E-09 

AT2G34480 Ribosomal protein L18ae/LX family protein 36 5 4.94 2.3 8.7E-08 

ATCG00780 ribosomal protein L14 52 5 4.92 2.3 9.4E-08 

AT4G05180 photosystem II subunit Q-2 46 10 4.90 2.29 1.0E-07 

AT2G20260 photosystem I subunit E-2 46 2 4.75 2.25 1.9E-07 

AT5G63310 nucleoside diphosphate kinase 2 43 9 4.64 2.21 2.9E-07 

AT3G62030 rotamase CYP 4 39 9 4.62 2.21 3.1E-07 

AT5G65350 histone 3 11 42 2 4.61 2.2 3.4E-07 

AT3G49910 Translation protein SH3-like family protein 41 7 4.57 2.19 3.9E-07 

AT3G48930 Nucleic acid-binding, OB-fold-like protein 49 6 4.54 2.18 4.5E-07 

AT5G13120 cyclophilin 20-2 22 4 4.53 2.18 4.6E-07 

AT2G16600 rotamase CYP 3 38 4 4.43 2.15 7.0E-07 

AT3G54210 Ribosomal protein L17 family protein 20 4 4.18 2.06 2.0E-06 

AT5G08410 ferredoxin/thioredoxin reductase subunit A (variable subunit) 2 8 2 4.08 2.03 3.1E-06 

AT2G42740 ribosomal protein large subunit 16A 64 13 4.00 2 4.4E-06 

AT1G22780 Ribosomal protein S13/S18 family 39 6 4.00 2 4.4E-06 

AT5G41520 RNA binding Plectin/S10 domain-containing protein 41 8 3.98 1.99 4.9E-06 

AT5G23820 MD-2-related lipid recognition domain-containing protein 20 5 3.97 1.99 5.0E-06 

AT2G07707 Plant mitochondrial ATPase, F0 complex, subunit 8 protein 13 2 3.64 1.87 2.1E-05 

AT5G57290 60S acidic ribosomal protein family 22 2 3.60 1.85 6.4E-05 

AT2G22170 Lipase/lipooxygenase, PLAT/LH2 family protein 21 4 3.52 1.82 3.7E-05 

AT1G59860 HSP20-like chaperones superfamily protein 60 4 3.46 1.79 4.9E-05 

AT5G52840 NADH-ubiquinone oxidoreductase-related 24 3 3.44 1.78 5.4E-05 

AT3G56340 Ribosomal protein S26e family protein 50 5 3.31 1.73 9.7E-05 

AT3G52960 Thioredoxin superfamily protein-PRXIIE 53 12 3.22 1.69 1.5E-04 

AT1G27400 Ribosomal protein L22p/L17e family protein 26 5 3.11 1.64 2.5E-04 

AT2G30140 UDP-Glycosyltransferase superfamily protein 6 2 3.07 1.62 4.3E-04 

AT5G27850 Ribosomal protein L18e/L15 superfamily protein 59 5 3.07 1.62 3.0E-04 

AT4G17560 Ribosomal protein L19 family protein 16 3 3.05 1.61 3.3E-04 

AT1G15820 light harvesting complex photosystem II subunit 6 19 5 2.88 1.53 7.2E-04 

AT3G18740 Ribosomal protein L7Ae/L30e/S12e/Gadd45 family protein 48 3 2.85 1.51 8.5E-04 

AT5G59880 actin depolymerizing factor 3 60 5 2.83 1.5 9.3E-04 

AT1G11750 CLP protease proteolytic subunit 6 31 5 2.81 1.49 1.0E-03 

AT1G09590 Translation protein SH3-like family protein 45 8 2.69 1.43 1.8E-03 

AT1G77940 Ribosomal protein L7Ae/L30e/S12e/Gadd45 family protein 36 2 2.67 1.42 1.9E-03 

AT3G44100 MD-2-related lipid recognition domain-containing protein 18 2 2.64 1.4 2.3E-03 

AT1G67700 unknown protein 41 6 2.58 1.36 3.1E-03 

AT5G23740 ribosomal protein S11-beta 49 5 2.50 1.32 4.4E-03 



Supplemental data 

 

158 

AT3G47810 Calcineurin-like metallo-phosphoesterase superfamily protein 17 3 2.40 1.26 9.7E-03 

AT3G60245 Zinc-binding ribosomal protein family protein 35 3 2.34 1.23 9.2E-03 

AT1G05190 Ribosomal protein L6 family 62 20 2.33 1.22 9.9E-03 

AT1G13900 Purple acid phosphatases superfamily protein 5 3 0.01 -6.64 8.2E-17 

AT3G21200 proton gradient regulation 7 12 3 0.01 -6.64 8.2E-17 

AT4G30810 serine carboxypeptidase-like 29 4 2 0.01 -6.64 8.2E-17 

AT5G62670 H(+)-ATPase 11 12 2 0.01 -6.64 8.2E-17 

 
 
Suppl. Table 4.7. List of proteins that are differentially expressed in amiR23.6 compared to 
control plants after heat treatment. 
 

Accession Description 
Coverage 

[%] 
# Unique 
Peptides 

Fold 
change 

Fold 
change 
(log2) 

Adj. P-
Value 

AT1G03860 prohibitin 2 13 3 100 6.64 8.4E-17 

AT5G64040 
photosystem I reaction center subunit PSI-N, putative / PSI-N, 
putative (PSAN) 

11 2 
100 6.64 8.4E-17 

AT5G59720 heat shock protein 18.2 52 5 7.97 2.99 9.0E-11 

AT4G40030 Histone superfamily protein 36 2 6.54 2.71 1.2E-09 

AT4G34870 rotamase cyclophilin 5 42 5 5.64 2.49 4.1E-12 

AT4G09320 Nucleoside diphosphate kinase family protein 58 8 4.21 2.07 7.8E-05 

AT3G46230 heat shock protein 17.4 74 6 4.02 2.01 1.3E-08 

AT5G52650 RNA binding Plectin/S10 domain-containing protein 25 5 3.65 1.87 3.1E-06 

AT5G41520 RNA binding Plectin/S10 domain-containing protein 41 8 3.20 1.68 4.5E-04 

AT4G10250 HSP20-like chaperones superfamily protein 32 8 2.79 1.48 2.7E-05 

AT1G69620 ribosomal protein L34 29 2 2.76 1.47 2.6E-03 

AT2G29500 HSP20-like chaperones superfamily protein 44 4 2.19 1.13 1.1E-02 

AT1G26480 general regulatory factor 12 19 2 0.23 -2.1 2.4E-03 

AT5G20230 blue-copper-binding protein 21 3 0.16 -2.62 2.5E-10 

AT4G25200 mitochondrion-localized small heat shock protein 23.6 59 12 0.09 -3.42 8.4E-17 

AT5G11720 Glycosyl hydrolases family 31  protein 4 2 0.01 -6.64 8.4E-17 

AT3G09640 ascorbate peroxidase 2 21 3 0.01 -6.64 8.4E-17 

AT3G54360 zinc ion binding 6 2 0.01 -6.64 8.4E-17 

AT4G19006 Proteasome component (PCI) domain protein 24 2 0.01 -6.64 8.4E-17 

AT5G47860 Protein of unknown function (DUF1350) 15 3 0.01 -6.64 8.4E-17 

AT3G12490 cystatin B 15 3 0.01 -6.64 8.4E-17 

AT5G39080 HXXXD-type acyl-transferase family protein 8 3 0.01 -6.64 8.4E-17 

AT3G61260 Remorin family protein 25 3 0.01 -6.64 8.4E-17 

AT1G22360 UDP-glucosyl transferase 85A2 10 3 0.01 -6.64 8.4E-17 

AT2G18980 Peroxidase superfamily protein 24 3 0.01 -6.64 8.4E-17 

 
 
Suppl. Table 4.8. List of proteins that are differentially expressed in amiR26.5 compared to 
control plants after heat treatment. 
 

Accession Description 
Coverage 

[%] 
# Unique 
Peptides 

Fold 
change 

Fold 
change 
(log2) 

Adj. P-
Value 

AT4G18100 Ribosomal protein L32e 31 3 100 6.64 1.0E-17 

AT1G54050 HSP20-like chaperones superfamily protein 54 10 100 6.64 1.0E-17 

ATCG00820 ribosomal protein S19 40 4 100 6.64 1.0E-17 

AT3G02080 Ribosomal protein S19e family protein 45 4 100 6.64 1.0E-17 

ATCG00810 ribosomal protein L22 40 5 100 6.64 1.0E-17 

AT2G27720 60S acidic ribosomal protein family 76 3 100 6.64 1.0E-17 

AT4G03280 photosynthetic electron transfer C 14 2 100 6.64 1.0E-17 

AT2G20450 Ribosomal protein L14 44 2 100 6.64 1.0E-17 

AT4G12800 photosystem I subunit l 19 3 100 6.64 1.0E-17 

AT5G53490 Tetratricopeptide repeat (TPR)-like superfamily protein 39 9 100 6.64 1.0E-17 

AT1G75350 Ribosomal protein L31 32 4 100 6.64 1.0E-17 

AT3G46000 actin depolymerizing factor 2 24 2 100 6.64 1.0E-17 

AT5G28060 Ribosomal protein S24e family protein 31 2 100 6.64 1.0E-17 

AT1G29250 Alba DNA/RNA-binding protein 37 2 100 6.64 1.0E-17 

AT3G10520 haemoglobin 2 27 4 100 6.64 1.0E-17 

AT3G53990 Adenine nucleotide alpha hydrolases-like superfamily protein 46 5 100 6.64 1.0E-17 

AT4G03520 Thioredoxin superfamily protein 23 3 100 6.64 1.0E-17 

AT1G23130 Polyketide cyclase/dehydrase and lipid transport superfamily prot. 21 3 100 6.64 1.0E-17 

AT1G16890 ubiquitin-conjugating enzyme 36 10 2 100 6.64 1.0E-17 

AT1G20580 Small nuclear ribonucleoprotein family protein 13 2 100 6.64 1.0E-17 

ATCG00670 plastid-encoded CLP P 21 2 100 6.64 1.0E-17 

AT3G07470 Protein of unknown function, DUF538 20 3 100 6.64 1.0E-17 

AT3G52560 ubiquitin E2 variant 1D-4 32 2 100 6.64 1.0E-17 

AT1G26550 FKBP-like peptidyl-prolyl cis-trans isomerase family protein 15 2 100 6.64 1.0E-17 

AT1G66240 homolog of anti-oxidant 1 25 2 100 6.64 1.0E-17 

AT1G11430 plastid developmental protein DAG, putative 17 2 100 6.64 1.0E-17 

AT1G64230 ubiquitin-conjugating enzyme 28 20 2 100 6.64 1.0E-17 

AT4G28660 photosystem II reaction center PSB28 protein 12 2 100 6.64 1.0E-17 

AT2G34160 Alba DNA/RNA-binding protein 15 2 100 6.64 1.0E-17 

AT1G03600 photosystem II family protein 28 4 100 6.64 1.0E-17 

AT1G21065 unknown protein 9 2 100 6.64 1.0E-17 
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AT2G33530 serine carboxypeptidase-like 46 4 2 100 6.64 1.0E-17 

AT5G14910 Heavy metal transport/detoxification superfamily protein 15 2 100 6.64 1.0E-17 

AT3G05590 ribosomal protein L18 52 3 100 6.64 1.0E-17 

AT4G23680 Polyketide cyclase/dehydrase and lipid transport superfamily prot. 21 3 100 6.64 1.0E-17 

AT2G36145 unknown protein 9 2 100 6.64 1.0E-17 

AT5G51110 Transcriptional coactivator/pterin dehydratase 12 2 100 6.64 1.0E-17 

AT1G15930 Ribosomal protein L7Ae/L30e/S12e/Gadd45 family protein 42 3 100 6.64 1.0E-17 

AT4G29350 profilin 2 32 3 100 6.64 1.0E-17 

AT2G01520 MLP-like protein 328 30 2 100 6.64 1.0E-17 

AT3G22230 Ribosomal L27e protein family 34 2 100 6.64 1.0E-17 

AT2G21660 cold, circadian rhythm, and rna binding 2 44 4 100 6.64 1.0E-17 

AT2G21530 SMAD/FHA domain-containing protein 12 2 100 6.64 1.0E-17 

AT1G63970 isoprenoid F 17 3 100 6.64 1.0E-17 

AT3G60370 FKBP-like peptidyl-prolyl cis-trans isomerase family protein 14 3 100 6.64 1.0E-17 

AT2G44920 Tetratricopeptide repeat (TPR)-like superfamily protein 36 5 100 6.64 1.0E-17 

AT3G10090 Nucleic acid-binding, OB-fold-like protein 23 2 100 6.64 1.0E-17 

AT1G08880 Histone superfamily protein 45 2 100 6.64 1.0E-17 

ATCG01060 
iron-sulfur cluster binding;electron carriers;4 iron, 4 sulfur cluster 
binding 

27 2 
100 6.64 1.0E-17 

AT5G64040 
photosystem I reaction center subunit PSI-N, chloroplast, putative / 
PSI-N, putative (PSAN) 

11 2 
100 6.64 1.0E-17 

AT2G38540 lipid transfer protein 1 22 2 100 6.64 1.0E-17 

AT1G07820 Histone superfamily protein 50 8 92.09 6.53 1.0E-17 

AT1G31860 histidine biosynthesis bifunctional protein (HISIE) 22 3 85.75 6.42 1.0E-17 

AT5G65840 Thioredoxin superfamily protein 8 2 79.80 6.32 1.0E-17 

AT4G09320 Nucleoside diphosphate kinase family protein 58 8 77.28 6.27 1.0E-17 

AT3G44890 ribosomal protein L9 47 10 57.05 5.83 1.0E-17 

AT1G67090 ribulose bisphosphate carboxylase small chain 1A 64 15 39.07 5.29 1.0E-17 

AT5G38430 Ribulose bisphosphate carboxylase (small chain) family prot. 69 7 32.15 5.01 1.0E-17 

AT4G28706 pfkB-like carbohydrate kinase family protein 17 6 31.28 4.97 1.0E-17 

ATCG00770 ribosomal protein S8 63 10 28.76 4.85 1.0E-17 

AT1G79850 ribosomal protein S17 31 4 28.47 4.83 1.0E-17 

AT5G38410 Ribulose bisphosphate carboxylase (small chain) family prot. 69 7 26.75 4.74 1.0E-17 

AT4G40030 Histone superfamily protein 36 2 24.65 4.62 1.0E-17 

AT5G40950 ribosomal protein large subunit 27 23 4 24.20 4.6 1.0E-17 

AT4G15000 Ribosomal L27e protein family 43 4 23.47 4.55 1.0E-17 

AT3G05560 Ribosomal L22e protein family 64 2 22.37 4.48 1.0E-17 

AT3G15360 thioredoxin M-type 4 26 4 21.41 4.42 1.0E-17 

AT2G27710 60S acidic ribosomal protein family 68 3 18.90 4.24 1.0E-17 

AT5G61170 Ribosomal protein S19e family protein 48 5 18.50 4.21 1.0E-17 

AT4G23670 Polyketide cyclase/dehydrase and lipid transport superfamily prot. 64 9 18.33 4.2 1.0E-17 

AT3G09500 Ribosomal L29 family protein 31 5 17.82 4.16 1.0E-17 

AT3G04400 Ribosomal protein L14p/L23e family protein 48 7 16.41 4.04 1.0E-17 

AT2G19760 profilin 1 43 4 16.27 4.02 1.0E-17 

AT2G44650 chloroplast chaperonin 10 37 4 14.38 3.85 1.0E-17 

ATCG00660 ribosomal protein L20 45 6 14.11 3.82 1.0E-17 

AT1G69620 ribosomal protein L34 29 2 14.09 3.82 1.0E-17 

AT2G01720 Ribophorin I 8 2 11.63 3.54 1.3E-15 

ATCG00750 ribosomal protein S11 28 5 11.52 3.53 1.0E-17 

ATCG00065 ribosomal protein S12A 31 2 11.32 3.5 2.2E-16 

AT3G60770 Ribosomal protein S13/S15 46 9 11.24 3.49 1.0E-17 

AT4G39260 cold, circadian rhythm, and RNA binding 1 51 5 11.13 3.48 1.0E-17 

ATCG00900 Ribosomal protein S7p/S5e family protein 46 8 10.59 3.4 1.0E-17 

AT4G11010 nucleoside diphosphate kinase 3 31 6 10.44 3.38 1.0E-17 

ATCG00650 ribosomal protein S18 33 3 9.70 3.28 1.0E-17 

AT4G34620 small subunit ribosomal protein 16 68 6 9.55 3.26 1.0E-17 

AT1G74970 ribosomal protein S9 31 6 8.95 3.16 1.0E-17 

AT3G24500 multiprotein bridging factor 1C 33 4 8.94 3.16 1.0E-17 

AT5G18380 Ribosomal protein S5 domain 2-like superfamily protein 50 2 8.92 3.16 1.0E-17 

AT4G10300 RmlC-like cupins superfamily protein 22 3 8.27 3.05 1.8E-14 

AT2G19740 Ribosomal protein L31e family protein 8 2 8.22 3.04 1.0E-17 

AT2G04390 Ribosomal S17 family protein 30 5 8.05 3.01 1.0E-17 

AT4G27090 Ribosomal protein L14 56 6 7.64 2.93 1.0E-17 

ATCG01120 chloroplast ribosomal protein S15 47 5 7.59 2.92 1.8E-15 

AT5G14670 ADP-ribosylation factor A1B 63 13 7.19 2.85 1.0E-17 

ATCG00780 ribosomal protein L14 52 5 7.00 2.81 1.0E-17 

AT5G54600 Translation protein SH3-like family protein 28 6 6.36 2.67 1.3E-13 

AT4G21280 photosystem II subunit QA 52 15 6.35 2.67 1.0E-17 

AT1G06650 
2-oxoglutarate (2OG) and Fe(II)-dependent oxygenase superfamily 
protein 

19 5 
6.20 2.63 5.4E-07 

AT4G05180 photosystem II subunit Q-2 46 10 6.08 2.6 1.2E-12 

AT5G63310 nucleoside diphosphate kinase 2 43 9 5.96 2.57 1.0E-17 

AT5G08410 ferredoxin/thioredoxin reductase subunit A (variable subunit) 2 8 2 5.84 2.55 3.7E-09 

AT5G57290 60S acidic ribosomal protein family 22 2 5.74 2.52 1.5E-09 

AT1G73230 Nascent polypeptide-associated complex NAC 41 3 5.59 2.48 4.6E-08 

AT5G13410 FKBP-like peptidyl-prolyl cis-trans isomerase family protein 29 5 5.40 2.43 2.0E-08 

AT2G20260 photosystem I subunit E-2 46 2 5.34 2.42 3.2E-12 

AT3G25920 ribosomal protein L15 36 10 5.10 2.35 1.0E-17 

AT2G30140 UDP-Glycosyltransferase superfamily protein 6 2 5.03 2.33 1.0E-07 

AT1G70600 Ribosomal protein L18e/L15 superfamily protein 43 6 4.95 2.31 4.6E-11 

AT3G54210 Ribosomal protein L17 family protein 20 4 4.91 2.3 9.1E-12 

AT5G23820 MD-2-related lipid recognition domain-containing protein 20 5 4.91 2.29 4.4E-16 

AT3G04920 Ribosomal protein S24e family protein 31 3 4.89 2.29 2.6E-12 
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AT3G48930 Nucleic acid-binding, OB-fold-like protein 49 6 4.82 2.27 6.7E-16 

AT5G59870 histone H2A 6 52 5 4.67 2.22 2.4E-15 

AT2G42740 ribosomal protein large subunit 16A 64 13 4.62 2.21 3.6E-15 

AT2G35370 glycine decarboxylase complex H 30 2 4.58 2.2 1.5E-09 

AT2G34480 Ribosomal protein L18ae/LX family protein 36 5 4.58 2.2 4.9E-15 

AT4G34870 rotamase cyclophilin 5 42 5 4.49 2.17 1.1E-14 

AT1G41880 Ribosomal protein L35Ae family protein 16 2 4.45 2.15 3.4E-09 

AT5G52840 NADH-ubiquinone oxidoreductase-related 24 3 4.45 2.15 1.9E-08 

AT4G17560 Ribosomal protein L19 family protein 16 3 4.43 2.15 5.5E-08 

AT2G22170 Lipase/lipooxygenase, PLAT/LH2 family protein 21 4 4.31 2.11 6.0E-10 

AT1G22780 Ribosomal protein S13/S18 family 39 6 4.17 2.06 1.5E-13 

AT4G34260 1,2-alpha-L-fucosidases 3 2 4.13 2.04 3.1E-07 

AT5G41520 RNA binding Plectin/S10 domain-containing protein 41 8 4.04 2.02 2.1E-07 

AT3G60245 Zinc-binding ribosomal protein family protein 35 3 4.04 2.01 6.9E-09 

AT5G13120 cyclophilin 20-2 22 4 3.80 1.92 9.3E-07 

AT5G11770 NADH-ubiquinone oxidoreductase 20 kDa subunit 9 2 3.72 1.9 1.3E-05 

AT3G56340 Ribosomal protein S26e family protein 50 5 3.70 1.89 1.2E-10 

AT3G55330 PsbP-like protein 1 43 8 3.67 1.88 2.2E-08 

AT5G27850 Ribosomal protein L18e/L15 superfamily protein 59 5 3.67 1.87 1.3E-11 

AT1G09590 Translation protein SH3-like family protein 45 8 3.55 1.83 3.7E-11 

AT3G52960 Thioredoxin superfamily protein-PRXIIE 53 12 3.31 1.73 3.1E-10 

AT1G77940 Ribosomal protein L7Ae/L30e/S12e/Gadd45 family protein 36 2 3.25 1.7 3.1E-05 

AT1G27400 Ribosomal protein L22p/L17e family protein 26 5 3.25 1.7 5.5E-10 

AT3G62030 rotamase CYP 4 39 9 3.24 1.7 5.8E-10 

AT5G65350 histone 3 11 42 2 3.19 1.67 2.0E-07 

AT5G23740 ribosomal protein S11-beta 49 5 3.07 1.62 2.0E-06 

AT4G39730 Lipase/lipooxygenase, PLAT/LH2 family protein 22 3 2.98 1.57 6.6E-07 

AT3G62840 Small nuclear ribonucleoprotein family protein 25 3 2.95 1.56 1.4E-04 

AT3G44100 MD-2-related lipid recognition domain-containing protein 18 2 2.95 1.56 2.9E-05 

AT3G18740 Ribosomal protein L7Ae/L30e/S12e/Gadd45 family protein 48 3 2.85 1.51 2.3E-08 

AT2G16600 rotamase CYP 3 38 4 2.84 1.51 2.1E-05 

AT2G07707 Plant mitochondrial ATPase, F0 complex, subunit 8 protein 13 2 2.76 1.47 5.4E-04 

AT5G59880 actin depolymerizing factor 3 60 5 2.73 1.45 7.4E-08 

AT4G09650 ATP synthase delta-subunit gene 15 3 2.63 1.39 8.2E-03 

AT5G10860 Cystathionine beta-synthase (CBS) family protein 43 8 2.55 1.35 1.7E-04 

ATCG00330 chloroplast ribosomal protein S14 27 3 2.51 1.33 1.5E-04 

AT1G11750 CLP protease proteolytic subunit 6 31 5 2.40 1.26 2.4E-03 

AT3G15190 chloroplast 30S ribosomal protein S20, putative 31 8 2.40 1.26 1.9E-06 

AT2G04039 unknown protein 16 2 2.33 1.22 3.8E-03 

AT1G54860 Glycoprotein membrane precursor GPI-anchored 12 2 0.25 -2.01 6.7E-06 

AT3G57520 seed imbibition 2 6 4 0.01 -6.64 1.0E-17 

AT5G19460 nudix hydrolase homolog 20 7 2 0.01 -6.64 1.0E-17 

AT5G62670 H(+)-ATPase 11 12 2 0.01 -6.64 1.0E-17 

AT5G05000 translocon at the outer envelope membrane of chloroplasts 34 12 3 0.01 -6.64 1.0E-17 

AT5G42100 beta-1,3-glucanase_putative 12 4 0.01 -6.64 1.0E-17 

AT2G18980 Peroxidase superfamily protein 24 3 0.01 -6.64 1.0E-17 

AT4G12880 early nodulin-like protein 19 11 2 0.01 -6.64 1.0E-17 

AT5G63190 MA3 domain-containing protein 6 2 0.01 -6.64 1.0E-17 

 
 
Suppl. Table 4.9. List of proteins that are differentially expressed in amiR23.5/23.6 compared to 
control plants after heat treatment. 
 

Accession Description 
Coverage 

[%] 
# Unique 
Peptides 

Fold 
change 

Fold 
change 
(log2) 

Adj. P-
Value 

AT4G18100 Ribosomal protein L32e 31 3 100 6.64 7.7E-17 

AT1G54050 HSP20-like chaperones superfamily protein-HSP17.4B 54 10 100 6.64 7.7E-17 

AT3G56290 unknown protein 17 2 100 6.64 7.7E-17 

AT5G35680 Nucleic acid-binding, OB-fold-like protein 25 3 100 6.64 7.7E-17 

ATCG00820 ribosomal protein S19 40 4 100 6.64 7.7E-17 

AT1G65220 ARM repeat superfamily protein 13 2 100 6.64 7.7E-17 

AT3G02080 Ribosomal protein S19e family protein 45 4 100 6.64 7.7E-17 

ATCG00810 ribosomal protein L22 40 5 100 6.64 7.7E-17 

AT1G16700 Alpha-helical ferredoxin 7 2 100 6.64 7.7E-17 

AT1G03860 prohibitin 2 13 3 100 6.64 7.7E-17 

AT2G27720 60S acidic ribosomal protein family 76 3 100 6.64 7.7E-17 

AT4G03280 photosynthetic electron transfer C 14 2 100 6.64 7.7E-17 

AT2G20450 Ribosomal protein L14 44 2 100 6.64 7.7E-17 

AT4G12800 photosystem I subunit l 19 3 100 6.64 7.7E-17 

AT5G53490 Tetratricopeptide repeat (TPR)-like superfamily protein 39 9 100 6.64 7.7E-17 

AT3G05590 ribosomal protein L18 52 3 100 6.64 7.7E-17 

AT3G46000 actin depolymerizing factor 2 24 2 100 6.64 7.7E-17 

AT5G28060 Ribosomal protein S24e family protein 31 2 100 6.64 7.7E-17 

AT4G03520 Thioredoxin superfamily protein 23 3 100 6.64 7.7E-17 

AT3G10520 haemoglobin 2 27 4 100 6.64 7.7E-17 

AT1G29250 Alba DNA/RNA-binding protein 37 2 100 6.64 7.7E-17 

AT3G53990 Adenine nucleotide alpha hydrolases-like superfamily protein 46 5 100 6.64 7.7E-17 

AT1G17880 basic transcription factor 3 28 2 100 6.64 7.7E-17 

AT5G23010 methylthioalkylmalate synthase 1 7 3 100 6.64 7.7E-17 

AT1G20580 Small nuclear ribonucleoprotein family protein 13 2 100 6.64 7.7E-17 
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AT3G07470 Protein of unknown function, DUF538 20 3 100 6.64 7.7E-17 

ATCG00670 plastid-encoded CLP P 21 2 100 6.64 7.7E-17 

AT3G52560 ubiquitin E2 variant 1D-4 32 2 100 6.64 7.7E-17 

AT1G26550 FKBP-like peptidyl-prolyl cis-trans isomerase family protein 15 2 100 6.64 7.7E-17 

AT4G28660 photosystem II reaction center PSB28 protein 12 2 100 6.64 7.7E-17 

AT1G75350 Ribosomal protein L31 32 4 100 6.64 7.7E-17 

AT1G76450 Photosystem II reaction center PsbP family protein 36 5 100 6.64 7.7E-17 

AT4G23680 Polyketide cyclase/dehydrase and lipid transport superfamily prot. 21 3 100 6.64 7.7E-17 

AT2G36145 unknown protein 9 2 100 6.64 7.7E-17 

AT1G23130 Polyketide cyclase/dehydrase and lipid transport superfamily prot. 21 3 100 6.64 7.7E-17 

AT3G25220 FK506-binding protein 15 kD-1 16 2 100 6.64 7.7E-17 

AT5G64040 
photosystem I reaction center subunit PSI-N, putative / PSI-N, 
putative (PSAN) 

11 2 
100 6.64 7.7E-17 

AT1G11430 plastid developmental protein DAG, putative 17 2 100 6.64 7.7E-17 

AT1G64230 ubiquitin-conjugating enzyme 28 20 2 100 6.64 7.7E-17 

AT2G34160 Alba DNA/RNA-binding protein 15 2 100 6.64 7.7E-17 

AT1G08880 Histone superfamily protein 45 2 100 6.64 7.7E-17 

AT1G03600 photosystem II family protein 28 4 100 6.64 7.7E-17 

AT1G21065 unknown protein 9 2 100 6.64 7.7E-17 

AT4G11600 glutathione peroxidase 6-GPX6 22 4 100 6.64 7.7E-17 

AT2G44920 Tetratricopeptide repeat (TPR)-like superfamily protein 36 5 100 6.64 7.7E-17 

AT1G63970 isoprenoid F 17 3 100 6.64 7.7E-17 

AT3G22230 Ribosomal L27e protein family 34 2 100 6.64 7.7E-17 

AT2G01520 MLP-like protein 328 30 2 100 6.64 7.7E-17 

AT3G10090 Nucleic acid-binding, OB-fold-like protein 23 2 100 6.64 7.7E-17 

AT3G60370 FKBP-like peptidyl-prolyl cis-trans isomerase family protein 14 3 100 6.64 7.7E-17 

AT4G29350 profilin 2 32 3 100 6.64 7.7E-17 

AT2G21660 cold, circadian rhythm, and rna binding 2 44 4 100 6.64 7.7E-17 

AT2G06050 oxophytodienoate-reductase 3 6 2 100 6.64 7.7E-17 

AT2G21530 SMAD/FHA domain-containing protein 12 2 100 6.64 7.7E-17 

AT1G15930 Ribosomal protein L7Ae/L30e/S12e/Gadd45 family protein 42 3 100 6.64 7.7E-17 

AT3G59540 Ribosomal L38e protein family 35 2 100 6.64 7.7E-17 

AT5G12020 17.6 kDa class II heat shock protein 41 3 100 6.64 7.7E-17 

AT4G09320 Nucleoside diphosphate kinase family protein 58 8 75.18 6.23 7.7E-17 

AT1G07820 Histone superfamily protein 50 8 73.00 6.19 7.7E-17 

AT1G31860 histidine biosynthesis bifunctional protein (HISIE) 22 3 56.40 5.82 7.7E-17 

AT3G44890 ribosomal protein L9 47 10 44.89 5.49 7.7E-17 

AT5G65840 Thioredoxin superfamily protein 8 2 43.13 5.43 7.7E-17 

AT5G38430 Ribulose bisphosphate carboxylase family protein 69 7 35.68 5.16 7.7E-17 

AT3G15360 thioredoxin M-type 4 26 4 28.15 4.82 7.7E-17 

AT5G40950 ribosomal protein large subunit 27 23 4 25.65 4.68 7.7E-17 

AT1G79850 ribosomal protein S17 31 4 24.79 4.63 7.7E-17 

AT4G40030 Histone superfamily protein 36 2 23.64 4.56 7.7E-17 

AT3G05560 Ribosomal L22e protein family 64 2 22.38 4.48 7.7E-17 

AT2G27710 60S acidic ribosomal protein family 68 3 21.73 4.44 7.7E-17 

AT5G38410 Ribulose bisphosphate carboxylase family protein 69 7 21.09 4.4 7.7E-17 

AT1G67090 ribulose bisphosphate carboxylase small chain 1A 64 15 20.91 4.39 7.7E-17 

AT4G15000 Ribosomal L27e protein family 43 4 19.85 4.31 7.7E-17 

AT3G04400 Ribosomal protein L14p/L23e family protein 48 7 19.26 4.27 7.7E-17 

ATCG00770 ribosomal protein S8 63 10 18.89 4.24 7.7E-17 

AT5G61170 Ribosomal protein S19e family protein 48 5 18.77 4.23 7.7E-17 

AT4G23670 Polyketide cyclase/dehydrase and lipid transport superfamily prot. 64 9 14.22 3.83 7.7E-17 

AT5G54600 Translation protein SH3-like family protein 28 6 13.28 3.73 7.7E-17 

AT3G09500 Ribosomal L29 family protein 31 5 13.00 3.7 7.7E-17 

AT5G18380 Ribosomal protein S5 domain 2-like superfamily protein 50 2 12.40 3.63 1.0E-14 

AT3G60770 Ribosomal protein S13/S15 46 9 12.22 3.61 7.7E-17 

AT2G01720 Ribophorin I 8 2 12.18 3.61 9.0E-12 

AT1G69620 ribosomal protein L34 29 2 11.65 3.54 7.7E-17 

AT3G24500 multiprotein bridging factor 1C 33 4 11.18 3.48 5.6E-14 

ATCG00660 ribosomal protein L20 45 6 10.78 3.43 3.8E-13 

AT4G34870 rotamase cyclophilin 5 42 5 10.01 3.32 7.7E-17 

AT5G59720 heat shock protein 18.2 52 5 10.01 3.32 8.5E-13 

AT4G39260 cold, circadian rhythm, and RNA binding 1 51 5 9.94 3.31 1.9E-12 

AT2G19760 profilin 1 43 4 9.82 3.3 3.2E-10 

ATCG00900 Ribosomal protein S7p/S5e family protein 46 8 9.16 3.2 3.4E-15 

ATCG00065 ribosomal protein S12A 31 2 8.80 3.14 9.0E-10 

AT5G52650 RNA binding Plectin/S10 domain-containing protein 25 5 8.42 3.07 1.9E-10 

AT2G04390 Ribosomal S17 family protein 30 5 8.39 3.07 1.1E-10 

AT2G44650 chloroplast chaperonin 10 37 4 8.39 3.07 1.3E-09 

ATCG00750 ribosomal protein S11 28 5 8.38 3.07 8.6E-11 

AT2G19740 Ribosomal protein L31e family protein 8 2 7.93 2.99 6.4E-10 

AT1G74970 ribosomal protein S9 31 6 7.87 2.98 7.0E-11 

AT1G73230 Nascent polypeptide-associated complex NAC 41 3 7.57 2.92 2.0E-07 

AT4G11010 nucleoside diphosphate kinase 3 31 6 7.49 2.91 6.4E-10 

ATCG00650 ribosomal protein S18 33 3 7.46 2.9 1.0E-09 

AT5G14670 ADP-ribosylation factor A1B 63 13 7.41 2.89 5.8E-10 

AT5G57290 60S acidic ribosomal protein family 22 2 7.16 2.84 4.9E-08 

AT4G21280 photosystem II subunit QA 52 15 6.81 2.77 1.4E-11 

AT2G39460 ribosomal protein L23AA 42 11 6.61 2.72 2.9E-11 

AT4G34620 small subunit ribosomal protein 16 68 6 6.42 2.68 1.9E-08 

ATCG01120 chloroplast ribosomal protein S15 47 5 6.36 2.67 2.5E-07 

AT3G04920 Ribosomal protein S24e family protein 31 3 6.25 2.64 3.0E-08 

AT1G70600 Ribosomal protein L18e/L15 superfamily protein 43 6 6.17 2.62 3.1E-08 
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AT4G10300 RmlC-like cupins superfamily protein 22 3 6.03 2.59 1.7E-06 

AT5G08410 ferredoxin/thioredoxin reductase subunit A (variable subunit) 2 8 2 5.91 2.56 6.1E-06 

AT5G63310 nucleoside diphosphate kinase 2 43 9 5.88 2.56 1.5E-08 

AT4G27090 Ribosomal protein L14 56 6 5.74 2.52 8.9E-10 

AT4G05180 photosystem II subunit Q-2 46 10 5.57 2.48 1.1E-08 

AT2G42740 ribosomal protein large subunit 16A 64 13 5.12 2.36 1.2E-08 

AT2G34480 Ribosomal protein L18ae/LX family protein 36 5 4.87 2.28 3.5E-08 

AT3G49910 Translation protein SH3-like family protein 41 7 4.85 2.28 2.7E-07 

AT3G46230 heat shock protein 17.4 74 6 4.80 2.26 4.8E-08 

AT3G48930 Nucleic acid-binding, OB-fold-like protein 49 6 4.59 2.2 1.2E-07 

AT1G78370 glutathione S-transferase TAU 20 38 10 4.52 2.18 9.4E-06 

AT5G59870 histone H2A 6 52 5 4.50 2.17 6.0E-06 

AT5G13120 cyclophilin 20-2 22 4 4.44 2.15 8.5E-05 

AT5G52840 NADH-ubiquinone oxidoreductase-related 24 3 4.41 2.14 5.3E-05 

ATCG00780 ribosomal protein L14 52 5 4.27 2.1 1.3E-05 

AT5G13410 FKBP-like peptidyl-prolyl cis-trans isomerase family protein 29 5 4.25 2.09 1.1E-04 

AT1G22780 Ribosomal protein S13/S18 family 39 6 4.20 2.07 6.7E-07 

AT1G27400 Ribosomal protein L22p/L17e family protein 26 5 4.16 2.06 8.2E-07 

AT2G16600 rotamase CYP 3 38 4 4.14 2.05 2.3E-05 

AT5G41520 RNA binding Plectin/S10 domain-containing protein 41 8 4.10 2.03 1.4E-04 

AT2G35370 glycine decarboxylase complex H 30 2 3.92 1.97 3.3E-05 

AT2G20260 photosystem I subunit E-2 46 2 3.89 1.96 1.2E-05 

AT3G62030 rotamase CYP 4 39 9 3.83 1.94 3.8E-06 

AT2G29500 HSP20-like chaperones superfamily protein-HSP17.6B 44 4 3.80 1.92 2.1E-04 

AT2G07707 Plant mitochondrial ATPase, F0 complex, subunit 8 protein 13 2 3.80 1.92 1.2E-03 

AT5G23820 MD-2-related lipid recognition domain-containing protein 20 5 3.76 1.91 2.2E-04 

AT1G77940 Ribosomal protein L7Ae/L30e/S12e/Gadd45 family protein 36 2 3.73 1.9 6.2E-04 

AT1G07400 HSP20-like chaperones superfamily protein-HSP17.8 64 7 3.57 1.84 1.3E-05 

AT5G27850 Ribosomal protein L18e/L15 superfamily protein 59 5 3.51 1.81 1.8E-05 

AT3G25920 ribosomal protein L15 36 10 3.50 1.81 2.3E-04 

AT5G65350 histone 3 11 42 2 3.49 1.8 5.0E-04 

AT3G52960 Thioredoxin superfamily protein-PRXIIE 53 12 3.38 1.76 3.4E-05 

AT4G17560 Ribosomal protein L19 family protein 16 3 3.35 1.74 1.5E-03 

AT3G54210 Ribosomal protein L17 family protein 20 4 3.22 1.69 2.2E-04 

AT1G61520 photosystem I light harvesting complex gene 3 27 5 3.08 1.62 2.1E-02 

AT3G56340 Ribosomal protein S26e family protein 50 5 2.96 1.56 2.7E-03 

AT5G59880 actin depolymerizing factor 3 60 5 2.90 1.54 3.7E-04 

AT1G15820 light harvesting complex photosystem II subunit 6 19 5 2.89 1.53 1.7E-02 

AT3G62840 Small nuclear ribonucleoprotein family protein 25 3 2.84 1.5 9.1E-03 

AT5G27670 histone H2A 7 45 3 2.79 1.48 1.4E-02 

AT3G60245 Zinc-binding ribosomal protein family protein 35 3 2.75 1.46 5.1E-03 

AT5G23740 ribosomal protein S11-beta 49 5 2.74 1.45 5.6E-03 

AT3G44100 MD-2-related lipid recognition domain-containing protein 18 2 2.72 1.44 1.1E-02 

AT3G08740 elongation factor P (EF-P) family protein 38 9 2.69 1.43 1.7E-02 

AT1G09590 Translation protein SH3-like family protein 45 8 2.64 1.4 9.8E-03 

AT1G67700 unknown protein 41 6 2.58 1.37 1.1E-02 

AT1G05190 Ribosomal protein L6 family 62 20 2.44 1.29 4.0E-03 

AT1G32470 Single hybrid motif superfamily protein 51 2 2.39 1.26 4.6E-02 

AT3G11940 ribosomal protein 5A 56 12 2.27 1.18 9.9E-03 

AT5G20250 Raffinose synthase family protein 29 20 0.45 -1.15 3.8E-02 

AT4G15530 pyruvate orthophosphate dikinase 53 35 0.43 -1.21 2.4E-02 

AT5G49360 beta-xylosidase 1 41 24 0.39 -1.37 6.8E-03 

AT5G64100 Peroxidase superfamily protein 44 14 0.38 -1.38 6.3E-03 

AT1G29940 nuclear RNA polymerase A2 1 2 0.36 -1.48 2.8E-03 

AT4G34030 3-methylcrotonyl-CoA carboxylase 14 4 0.33 -1.6 3.8E-02 

AT3G09220 laccase 7 5 2 0.31 -1.71 4.8E-03 

AT3G13750 beta galactosidase 1 35 16 0.30 -1.74 1.2E-03 

AT1G54860 Glycoprotein membrane precursor GPI-anchored 12 2 0.23 -2.13 4.0E-04 

AT1G33610 Leucine-rich repeat (LRR) family protein 5 2 0.21 -2.22 4.1E-03 

AT3G57520 seed imbibition 2 6 4 0.16 -2.62 2.0E-04 

AT4G30810 serine carboxypeptidase-like 29 4 2 0.01 -6.64 7.7E-17 

AT5G62670 H(+)-ATPase 11 12 2 0.01 -6.64 7.7E-17 

AT3G54360 zinc ion binding 6 2 0.01 -6.64 7.7E-17 

AT2G18980 Peroxidase superfamily protein 24 3 0.01 -6.64 7.7E-17 

 

Suppl. Table 4.10. List of proteins that are differentially expressed in amiR23.5/23.6/26.5 
compared to control plants after heat treatment. 
 

Accession Description 
Coverage 

[%] 
# Unique 
Peptides 

Fold 
change 

Fold 
change 
(log2) 

Adj. P-
Value 

AT4G18100 Ribosomal protein L32e 31 3 100 6.64 7.4E-17 

AT1G54050 HSP20-like chaperones superfamily protein 54 10 100 6.64 7.4E-17 

AT5G35680 Nucleic acid-binding, OB-fold-like protein 25 3 100 6.64 7.4E-17 

ATCG00820 ribosomal protein S19 40 4 100 6.64 7.4E-17 

AT3G02080 Ribosomal protein S19e family protein 45 4 100 6.64 7.4E-17 

ATCG00810 ribosomal protein L22 40 5 100 6.64 7.4E-17 

AT1G03860 prohibitin 2 13 3 100 6.64 7.4E-17 

AT2G27720 60S acidic ribosomal protein family 76 3 100 6.64 7.4E-17 

AT4G03280 photosynthetic electron transfer C 14 2 100 6.64 7.4E-17 

AT2G20450 Ribosomal protein L14 44 2 100 6.64 7.4E-17 
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AT4G12800 photosystem I subunit l 19 3 100 6.64 7.4E-17 

AT5G53490 Tetratricopeptide repeat (TPR)-like superfamily protein 39 9 100 6.64 7.4E-17 

AT3G10520 haemoglobin 2 27 4 100 6.64 7.4E-17 

AT3G53990 Adenine nucleotide alpha hydrolases-like superfamily protein 46 5 100 6.64 7.4E-17 

AT1G29250 Alba DNA/RNA-binding protein 37 2 100 6.64 7.4E-17 

AT1G17880 basic transcription factor 3 28 2 100 6.64 7.4E-17 

AT1G20330 sterol methyltransferase 2 6 2 100 6.64 7.4E-17 

AT3G07470 Protein of unknown function, DUF538 20 3 100 6.64 7.4E-17 

AT2G35810 unknown protein 13 2 100 6.64 7.4E-17 

AT3G52560 ubiquitin E2 variant 1D-4 32 2 100 6.64 7.4E-17 

AT1G20580 Small nuclear ribonucleoprotein family protein 13 2 100 6.64 7.4E-17 

AT1G26550 FKBP-like peptidyl-prolyl cis-trans isomerase family protein 15 2 100 6.64 7.4E-17 

AT1G23130 Polyketide cyclase/dehydrase and lipid transport superfamily prot. 21 3 100 6.64 7.4E-17 

AT5G28060 Ribosomal protein S24e family protein 31 2 100 6.64 7.4E-17 

AT3G05590 ribosomal protein L18 52 3 100 6.64 7.4E-17 

ATCG00670 plastid-encoded CLP P 21 2 100 6.64 7.4E-17 

AT4G23680 Polyketide cyclase/dehydrase and lipid transport superfamily prot. 21 3 100 6.64 7.4E-17 

AT2G36145 unknown protein 9 2 100 6.64 7.4E-17 

AT1G11430 plastid developmental protein DAG, putative 17 2 100 6.64 7.4E-17 

AT2G34160 Alba DNA/RNA-binding protein 15 2 100 6.64 7.4E-17 

AT5G64040 
photosystem I reaction center subunit PSI-N, chloroplast, 
putative / PSI-N, putative (PSAN) 

11 2 
100 6.64 7.4E-17 

AT1G03600 photosystem II family protein 28 4 100 6.64 7.4E-17 

AT4G28660 photosystem II reaction center PSB28 protein 12 2 100 6.64 7.4E-17 

AT1G08880 Histone superfamily protein 45 2 100 6.64 7.4E-17 

AT1G15930 Ribosomal protein L7Ae/L30e/S12e/Gadd45 family protein 42 3 100 6.64 7.4E-17 

ATCG01060 
iron-sulfur cluster binding;electron carriers;4 iron, 4 sulfur cluster 
binding 

27 2 
100 6.64 7.4E-17 

AT2G21530 SMAD/FHA domain-containing protein 12 2 100 6.64 7.4E-17 

AT3G10090 Nucleic acid-binding, OB-fold-like protein 23 2 100 6.64 7.4E-17 

AT3G22230 Ribosomal L27e protein family 34 2 100 6.64 7.4E-17 

AT4G29350 profilin 2 32 3 100 6.64 7.4E-17 

AT1G07820 Histone superfamily protein 50 8 94.88 6.57 7.4E-17 

AT4G09320 Nucleoside diphosphate kinase family protein 58 8 81.46 6.35 7.4E-17 

AT3G44890 ribosomal protein L9 47 10 41.58 5.38 7.4E-17 

AT1G31860 histidine biosynthesis bifunctional protein (HISIE) 22 3 34.62 5.11 7.4E-17 

AT5G65840 Thioredoxin superfamily protein 8 2 32.79 5.04 7.4E-17 

AT4G40030 Histone superfamily protein 36 2 32.30 5.01 7.4E-17 

AT1G79850 ribosomal protein S17 31 4 30.62 4.94 7.4E-17 

AT3G04400 Ribosomal protein L14p/L23e family protein 48 7 28.06 4.81 7.4E-17 

AT3G05560 Ribosomal L22e protein family 64 2 27.79 4.8 7.4E-17 

AT5G40950 ribosomal protein large subunit 27 23 4 27.45 4.78 7.4E-17 

AT2G44050 
6,7-dimethyl-8-ribityllumazine synthase / DMRL synthase / lumazine 
synthase / riboflavin synthase 

22 4 
24.11 4.59 7.4E-17 

AT5G61170 Ribosomal protein S19e family protein 48 5 23.35 4.55 7.4E-17 

AT4G15000 Ribosomal L27e protein family 43 4 21.97 4.46 7.4E-17 

AT2G27710 60S acidic ribosomal protein family 68 3 21.51 4.43 7.4E-17 

AT3G15360 thioredoxin M-type 4 26 4 20.97 4.39 7.4E-17 

AT3G09500 Ribosomal L29 family protein 31 5 19.13 4.26 7.4E-17 

AT5G38430 Ribulose bisphosphate carboxylase family protein 69 7 17.71 4.15 7.4E-17 

AT1G69620 ribosomal protein L34 29 2 15.77 3.98 7.4E-17 

AT3G60770 Ribosomal protein S13/S15 46 9 15.76 3.98 7.4E-17 

AT2G01720 Ribophorin I 8 2 15.60 3.96 7.4E-17 

ATCG00065 ribosomal protein S12A 31 2 13.09 3.71 6.5E-15 

AT2G19760 profilin 1 43 4 12.73 3.67 1.3E-14 

AT2G19740 Ribosomal protein L31e family protein 8 2 12.48 3.64 2.3E-14 

ATCG00660 ribosomal protein L20 45 6 12.15 3.6 4.3E-14 

AT5G18380 Ribosomal protein S5 domain 2-like superfamily protein 50 2 12.14 3.6 4.5E-14 

AT4G39260 cold, circadian rhythm, and RNA binding 1 51 5 11.74 3.55 1.0E-13 

AT5G38410 Ribulose bisphosphate carboxylase family protein 69 7 11.58 3.53 1.4E-13 

ATCG00750 ribosomal protein S11 28 5 11.36 3.51 2.2E-13 

AT2G44650 chloroplast chaperonin 10 37 4 11.25 3.49 2.7E-13 

AT1G67090 ribulose bisphosphate carboxylase small chain 1A 64 15 11.18 3.48 3.2E-13 

ATCG00650 ribosomal protein S18 33 3 10.78 3.43 7.5E-13 

AT3G24500 multiprotein bridging factor 1C 33 4 10.42 3.38 1.6E-12 

AT4G17560 Ribosomal protein L19 family protein 16 3 10.39 3.38 1.8E-12 

ATCG00900 Ribosomal protein S7p/S5e family protein 46 8 10.14 3.34 3.1E-12 

AT4G28706 pfkB-like carbohydrate kinase family protein 17 6 10.01 3.32 4.1E-12 

AT5G11770 NADH-ubiquinone oxidoreductase 20 kDa subunit 9 2 8.99 3.17 4.5E-11 

AT5G14670 ADP-ribosylation factor A1B 63 13 8.79 3.14 7.3E-11 

AT1G41880 Ribosomal protein L35Ae family protein 16 2 8.30 3.05 2.5E-10 

AT5G57290 60S acidic ribosomal protein family 22 2 8.24 3.04 2.8E-10 

AT2G19730 Ribosomal L28e protein family 25 3 8.24 3.04 2.8E-10 

AT1G74970 ribosomal protein S9 31 6 8.19 3.03 3.2E-10 

AT4G23670 Polyketide cyclase/dehydrase and lipid transport superfamily prot. 64 9 7.95 2.99 5.8E-10 

AT2G04390 Ribosomal S17 family protein 30 5 7.80 2.96 8.5E-10 

AT2G20260 photosystem I subunit E-2 46 2 7.80 2.96 8.7E-10 

AT4G27090 Ribosomal protein L14 56 6 7.59 2.92 1.5E-09 

AT3G04920 Ribosomal protein S24e family protein 31 3 6.93 2.79 8.8E-09 

AT2G39460 ribosomal protein L23AA 42 11 6.93 2.79 8.8E-09 

AT2G34480 Ribosomal protein L18ae/LX family protein 36 5 6.84 2.77 1.1E-08 

AT4G34870 rotamase cyclophilin 5 42 5 6.73 2.75 1.5E-08 

ATCG00780 ribosomal protein L14 52 5 6.66 2.74 1.9E-08 
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AT1G70600 Ribosomal protein L18e/L15 superfamily protein 43 6 6.56 2.71 2.5E-08 

AT2G42740 ribosomal protein large subunit 16A 64 13 6.43 2.69 3.6E-08 

AT4G34620 small subunit ribosomal protein 16 68 6 5.62 2.49 4.0E-07 

AT5G63310 nucleoside diphosphate kinase 2 43 9 5.61 2.49 4.1E-07 

AT3G48930 Nucleic acid-binding, OB-fold-like protein 49 6 5.54 2.47 5.2E-07 

AT4G10300 RmlC-like cupins superfamily protein 22 3 5.51 2.46 5.6E-07 

AT5G23820 MD-2-related lipid recognition domain-containing protein 20 5 5.43 2.44 7.3E-07 

AT3G25920 ribosomal protein L15 36 10 5.20 2.38 1.5E-06 

AT5G52650 RNA binding Plectin/S10 domain-containing protein 25 5 5.20 2.38 1.5E-06 

AT5G65350 histone 3 11 42 2 5.16 2.37 1.7E-06 

AT3G49910 Translation protein SH3-like family protein 41 7 5.02 2.33 2.6E-06 

AT1G22780 Ribosomal protein S13/S18 family 39 6 4.99 2.32 2.9E-06 

AT5G59870 histone H2A 6 52 5 4.96 2.31 3.2E-06 

AT1G73990 signal peptide peptidase 3 2 4.83 2.27 1.3E-04 

AT4G34260 1,2-alpha-L-fucosidases 3 2 4.70 2.23 7.4E-06 

AT5G13120 cyclophilin 20-2 22 4 4.70 2.23 7.6E-06 

AT5G13410 FKBP-like peptidyl-prolyl cis-trans isomerase family protein 29 5 4.67 2.22 1.2E-05 

AT3G60245 Zinc-binding ribosomal protein family protein 35 3 4.56 2.19 1.2E-05 

AT5G23740 ribosomal protein S11-beta 49 5 4.52 2.18 1.4E-05 

ATCG01120 chloroplast ribosomal protein S15 47 5 4.47 2.16 1.6E-05 

AT3G54210 Ribosomal protein L17 family protein 20 4 4.37 2.13 2.3E-05 

AT5G41520 RNA binding Plectin/S10 domain-containing protein 41 8 4.25 2.09 3.4E-05 

AT3G56340 Ribosomal protein S26e family protein 50 5 4.21 2.07 3.9E-05 

AT2G30140 UDP-Glycosyltransferase superfamily protein 6 2 4.15 2.05 9.1E-05 

AT1G27400 Ribosomal protein L22p/L17e family protein 26 5 3.91 1.97 1.1E-04 

AT5G27850 Ribosomal protein L18e/L15 superfamily protein 59 5 3.82 1.93 1.5E-04 

AT3G62030 rotamase CYP 4 39 9 3.47 1.79 5.4E-04 

AT3G52960 Thioredoxin superfamily protein-PRXIIE 53 12 3.42 1.77 6.6E-04 

AT5G08410 ferredoxin/thioredoxin reductase subunit A (variable subunit) 2 8 2 3.39 1.76 1.7E-03 

AT5G52840 NADH-ubiquinone oxidoreductase-related 24 3 3.26 1.71 1.1E-03 

AT1G77940 Ribosomal protein L7Ae/L30e/S12e/Gadd45 family protein 36 2 3.21 1.68 1.4E-03 

AT2G35370 glycine decarboxylase complex H 30 2 3.19 1.67 1.5E-03 

AT1G73230 Nascent polypeptide-associated complex NAC 41 3 3.17 1.67 5.5E-03 

AT3G44100 MD-2-related lipid recognition domain-containing protein 18 2 3.17 1.66 1.6E-03 

AT2G16600 rotamase CYP 3 38 4 3.16 1.66 1.7E-03 

AT2G46910 Plastid-lipid associated protein PAP / fibrillin family protein 8 2 2.96 1.57 2.0E-02 

AT3G02730 thioredoxin F-type 1 14 2 2.79 1.48 1.2E-02 

AT3G15190 chloroplast 30S ribosomal protein S20, putative 31 8 2.47 1.31 2.2E-02 

AT1G02560 nuclear encoded CLP protease 5 14 3 2.45 1.29 2.4E-02 

AT3G19390 Granulin repeat cysteine protease family protein 11 4 0.39 -1.34 1.5E-02 

AT1G20440 cold-regulated 47 29 3 0.38 -1.39 1.1E-02 

AT5G20230 blue-copper-binding protein 21 3 0.31 -1.7 9.9E-04 

AT5G23900 Ribosomal protein L13e family protein 33 2 0.30 -1.72 8.4E-04 

AT5G64100 Peroxidase superfamily protein 44 14 0.29 -1.78 5.2E-04 

AT1G47600 beta glucosidase 34 23 2 0.01 -6.64 7.4E-17 

AT4G30810 serine carboxypeptidase-like 29 4 2 0.01 -6.64 7.4E-17 

AT3G57520 seed imbibition 2 6 4 0.01 -6.64 7.4E-17 

AT4G08950 Phosphate-responsive 1 family protein 9 2 0.01 -6.64 7.4E-17 

AT3G54360 zinc ion binding 6 2 0.01 -6.64 7.4E-17 

AT1G33610 Leucine-rich repeat (LRR) family protein 5 2 0.01 -6.64 7.4E-17 

AT2G28190 copper/zinc superoxide dismutase 2 24 3 0.01 -6.64 7.4E-17 

AT2G30170 Protein phosphatase 2C family protein 21 5 0.01 -6.64 7.4E-17 

AT5G60360 aleurain-like protease 13 3 0.01 -6.64 7.4E-17 

AT2G18980 Peroxidase superfamily protein 24 3 0.01 -6.64 7.4E-17 

AT5G63190 MA3 domain-containing protein 6 2 0.01 -6.64 7.4E-17 

 
 
Suppl. Table 4.11. Proteins detected as differentially abundant in the three single amiR mutants under 
normal conditions. 

 

  amiR23.5 amiR23.6 amiR26.5 

Locus Protein name 
Fold 

change 
(log2) 

Adj. P-
Value  

Fold 
change 
(log2) 

Adj. P-
Value  

Fold 
change 
(log2) 

Adj. P-
Value 

AT5G47190 
Ribosomal protein 
L19 family protein 

6.64 1.1E-16 6.64 6.4E-17 6.64 6.3E-17 

AT1G74970 ribosomal protein S9 6.64 1.1E-16 6.64 6.4E-17 6.64 6.3E-17 

AT3G45140 lipoxygenase 2 1.14 3.0E-08 1.95 2.8E-13 1.65 1.8E-08 

AT5G23900 
Ribosomal protein 
L13e family protein 

-1.67 2.4E-06 -2.45 4.8E-06 -6.64 6.3E-17 

AT1G62480 
Vacuolar calcium-
binding protein-
related 

-6.64 1.1E-16 -6.64 6.4E-17 -6.64 6.3E-17 
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Suppl. Table 4.12. Proteins detected as differentially abundant in the three single amiR mutants after 
heat shock treatment. 
 

  amiR23.5 amiR23.6 amiR26.5 

Locus Protein name 
Fold 

change 
(log2) 

Adj. P-
Value 

Fold 
change 
(log2) 

Adj. P-
Value 

Fold 
change 
(log2) 

Adj. P-
Value 

AT4G40030 
Histone superfamily 
protein 

2.71 1.2E-09 4.52 8.2E-17 4.62 7.0E-17 

AT4G34870 
rotamase cyclophilin 
5 

2.49 4.1E-12 3.09 3.2E-13 2.17 7.4E-14 

AT4G09320 
Nucleoside 
diphosphate kinase 
family protein 

2.07 7.8E-05 6.2 8.2E-17 6.27 7.0E-17 

AT5G41520 
RNA binding 
Plectin/S10 domain-
containing protein 

1.68 4.5E-04 1.99 4.9E-06 2.02 1.2E-06 

AT1G69620 
ribosomal protein 
L34 

1.47 2.6E-03 3.35 1.8E-15 3.82 7.0E-17 
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