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CHAPTER 1

Introduction

A problem well-stated is
half-solved.

Charles F. Kettering

In many fields, for example, classical mechanics and high-energy physics [30, 14], biological

signal processing [28], as well as medical [20], electrical [25, 49], and mechanical engineering

[41] , it is often necessary to decompose a complicated continuous time signal into a linear

combination of finitely many pieces. Those pieces, often called atoms, do not necessarily pos-

sess basis or frame properties, but need to have a clear interpretation in the considered setting

in the first place. Thereby and because in many cases only the parametric structures of the

superimposed atoms are known, the problem at hand is severely non-linear. Over the years,

several approaches were employed to solve this challenging task. The applied methods range

from classical non-linear least squares over greedy algorithms [7] up to the very recent atomic

norm minimization approach [6, 3].

The maybe most typical type of atoms used are complex exponential ones, because of their

interpretation as pure frequency components. A classical approach to solve this non-linear re-

construction problem is the Prony method [13]. It is well suited for the exact reconstruction

of a linear combination of complex exponentials, where the linear factors as well as the ex-

ponential frequencies are allowed to be complex; in particular, damped sinusoids are possible.

For this and several other reasons, during the last years the method has experienced a notable

renaissance in the signal processing community and beyond. Nonetheless, while most efforts

during this time were made to stabilize the numerical algorithms in the presence of noise and

to modify them for multivariate settings, only a few publications dealt with generalizations to-

wards other types of atoms besides complex exponentials.

This chapter first wants to introduce the classical Prony method in the usual form and give a

short history of further improvements. Afterwards it is shown how Peter & Plonka [32] reached

a first generalization for more generic atomic expansions and how their work motivated further

research and has finally led to the results in this thesis.

Although the major purpose of this work lies in the development of a new operator based

approach to Prony’s method, the classical derivation is chosen as a starting point in order to

emphasize the differences and motivate the successive generalizations step by step.



2 Introduction

1.1 The Classical Prony Method

The classical Prony method [13] was originally developed to reconstruct finite linear combina-

tions of complex exponentials f : R→ C such that

f (x) :=
M∑
j=1

c j exp(λ jx), (1.1)

where it is assumed that λ j ∈ R+ i[0, 2π) and c j ∈ C,0. Associated with this parametric signal

model is the so-called Prony polynomial

P(z) :=
M∏
j=1

(z − z j) =

M∑
k=0

pkzk, (1.2)

where z j := exp(λ j) and pM = 1 by definition of the polynomial. If the parametric function

in (1.1) is seen as a solution of a difference equation, the Prony polynomial is identical with

the characteristic polynomial of the corresponding equation. This can be easily seen by the

following calculation.

∀m ∈ N0 :
M∑

k=0

pk f (m + k) =

M∑
k=0

pk

M∑
j=1

c j exp(λ j(m + k)) =

M∑
j=1

M∑
k=0

pkc jzk
jz

m
j

=

M∑
j=1

c jzm
j

M∑
k=0

pkzk
j =

M∑
j=1

c jzm
j P(z j) = 0

(1.3)

Hence, for f holds that

∀m ∈ N0 :
M−1∑
k=0

pk f (m + k) = − f (m + M).

The key property in this derivation is the reproduction of the Prony polynomial inside the

sum and its specific definition, since it vanishes on all z j and only there. Based on this set of

equations, the minimal linear system

X̌p :=


f (0) f (1) . . . f (M − 1)

f (1) f (2) . . . f (M)
...

...
...

f (M − 1) f (M) . . . f (2M − 2)




p0

p1
...

pM−1


= −


f (M)

f (M + 1)
...

f (2M − 1)


(1.4)
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can be constructed to solve for the coefficients p := [pk]M−1
k=0 , and pM := 1. Indeed, this system

has a unique solution, since the matrix X̌ can be diagonalized by a Vandermonde matrix.

X̌ =



1 1 . . . 1

z1 z2 . . . zM

z2
1 z2

2 . . . z2
M

...
... . . .

...

zM−1
1 zM−1

2 . . . zM−1
M





c1 0 0 . . . 0

0 c2 0 . . . 0
...

...
. . .

...
...

0 0 . . . cM−1 0

0 0 . . . 0 cM





1 z1 z2
1 . . . zM−1

1

1 z2 z2
2 . . . zM−1

2
...

...
... . . .

...

1 zM−1 z2
M−1 . . . zM−1

M−1

1 zM z2
M . . . zM−1

M


(1.5)

This implies that the matrix X̌ itself has full rank because z j , zi for all j , i, which is sufficient

for non-singularity of both Vandermonde matrices, and all c j , 0 by definition.

Once the coefficients of the Prony polynomial are known, the zeros z j can be calculated by

any root finding algorithm. Since we assumed that Im
(
λ j

)
∈ [0, 2π), the actual parameters

λ j are uniquely defined by the zeros z j = exp(λ j) and their complex logarithm log(z j) = λ j.

In consequence, the active exponential atoms in (1.1) are no longer unknown and the linear

system 
1 1 . . . 1

z1 z2 . . . zM
...

...
...

zM
1 zM

2 . . . zM
M




c1

c2
...

cM


=


f (0)

f (1)
...

f (M)


(1.6)

can be constructed by a subset of the samples used in (1.4). Here the only unknowns are the

linear coefficients c j. Eventually, having solved this equation for the linear coefficients c j, all

parameters of the signal in (1.1) are exactly reconstructed from only 2M function values.

This is the classical Prony method as developed from Gaspard Clair Francois Marie Riche de

Prony [13] in the 18th century. Despite the rich theory, the method itself was slightly abandoned

due to the often involved large linear systems until the dawn of the computer age in the 1960s

and 70s.

Prony’s method is also known under the term annihilation filter method, in particular in the

field of electrical engineering. Still, in this case the formulation is sometimes slightly different

and based on the following equation system

X̌p :=


f (−2M + 1) f (−2M + 2) . . . f (−M) f (−M + 1)

f (−2M + 2) f (−2M + 3) . . . f (−M + 1) f (−M + 2)
...

...
...

...

f (−M) f (−M + 1) . . . f (−1) f (0)




p0

p1
...

pM


= 0, (1.7)

where the polynomial coefficients are interpreted as filter coefficients and the whole sampling

scheme is shifted in time by −2M + 1. It is obviously equivalent to (1.4) if we choose pM := 1

and rename the sampling accordingly. With basically the same arguments it is shown that this

system has a kernel of dimension one and therefore the polynomial coefficients are unique up to
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some multiplicative constant; for more details the interested reader is referred to [45]. Instead

of the normalization pM = 1, more often ‖p‖2 = 1 is used to fix a single vector in the kernel.

Beyond that, it was long known that the Prony method in its very basic version performs quite

poorly in the presence of noise, basically due to the instability of the involved root finding

algorithms and the potentially badly conditioned Vandermonde matrix. The first one who pro-

posed a more sophisticated error model to cope with the noise issues was Pisarenko [34] in

1973. He used the well-known covariance structure of the signal model to establish a set of

noise reduced samples; more details on covariance based refinements of the Prony method can

be found in [17]. Shortly after Pisarenko’s results, but with a more heuristical approach, the

famous MUSIC algorithm [42] followed, developed by Schmidt in 1986. In the same year a

first maximum likelihood method was proposed by Bresler & Macovski [5]. Once started, a

variety of new methods was developed, also a more geometrical approach by Roy and Kailath,

called the ESPRIT algorithm [40] in 1990, followed by the matrix pencil method [19] by Hua

& Sarkar one year later. In 1995 Osborne & Smyth [31] again used a more statistical point

of view to establish a theoretically justified error model. They incorporated generalized least

squares techniques to come up with an iterative maximum likelihood algorithm.

Although Prony-like methods were long established in signal processing since the first steps

in the 18th century, a real renaissance was induced by the invention of the so-called finite-rate-

of-innovation (FRI) principle in 2002 by Vetterli et al. [47]. The concepts and the derived al-

gorithms break the band limitations of the classical Whittaker-Kotelnikov-Shannon-sampling

theorem [44, 48] by using a locally parameterized signal model instead of the usual Hilbert

space approach. Basically, if the parameterization of the signal has only a finite number of

free parameters per unit of time, it is said to have a finite rate of innovation. The associated

algorithm is applicable if and only if the signal at hand can be locally reduced to the parametric

form (1.1) in a finite number of preprocessing steps and in turn be essentially reconstructed by

means of the classical Prony method or one of its offsprings.

Nevertheless, this new field of applications amplified the interest in the Prony method signifi-

cantly; one of the more recent results is the approximate Prony method [37] by Potts & Tasche

from 2010. Despite these vast improvements of the classical method in the presence of noise

and even some multivariate extensions in recent years as for example by Potts et al., Kunis et

al., and Cuyt et al. in [38, 23, 9], no systematic generalization for different types of atoms took

place. A first approach in this direction was the Generalized Prony Method [32] by Peter &

Plonka in 2013.

1.2 The Generalized Prony Method

Based on the classical Prony method and the knowledge of certain special applications of it,

for example, sparse expansions of Chebyshev polynomials of arbitrary degree [39], Peter &

Plonka developed the so-called Generalized Prony Method [32]. They directly reformulated

the classical approach as seen in Section 1.1 in operator terms and applied the results to several

groups of linear operators including scaling operators and those of Sturm-Liouville type. With
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this approach they basically solved the problem of reconstructing more general expansions of

the form

f (x) =

M∑
j=1

c jv j(x), (1.8)

where v j are eigenfunctions of certain linear operators and c j ∈ C,0 are constant complex

coefficients, both unknown. They were able to show that the classical Prony method as well as

the reconstruction algorithm for sparse expansions into Chebychev polynomials in [39] can be

derived by this generalization and further examples were given.

The first step to the Generalized Prony Method as derived in [32] is the observation that the

exponential functions v j(x) := exp(λ jx) are eigenfunctions of the shift operator S 1, i. e.,

S 1v j(x) := S 1 exp(λ jx) = exp(λ j(x + 1)) = exp(λ j) exp(λ jx) = z jv j(x),

with eigenvalues z j := exp(λ j). Now we take equally spaced samples based on the point

evaluation functional F f := f (0). We know from the classical Prony method that 2M samples

of the form

F
(
S k

1 f
)

= F ( f (· + k)) = f (k) , k ∈ {0, . . . , 2M − 1}

are sufficient for the reconstruction of any finite linear combination of complex exponentials if

the length M of the expansion (1.1) into exponential atoms exp(λ jx) is known. This observation

provokes the question whether this also works for more general expansions as in (1.8) and

corresponding samples

F
(
Ak f

)
,

where k ∈ {0, .., 2M − 1} and A is a suitable linear operator. As shown in [32], this is actually

possible in the following way. Let

A : V → V

be a linear operator on a vector space V with non-empty point spectrum, and in turn a non-

empty family of eigenfunctions exists such that

Av j = z jv j,

where z j are the pairwise different eigenvalues uniquely identifying the eigenfunctions v j. In

other words, the mapping λ j → v j has to be injective up to some scaling factor z ∈ C,0,

i. e., we have simple eigenvalues. This directly suggests that we define the corresponding

Prony polynomial similarly as before, but with the difference that we use the eigenvalues of the

operator A as zeros, that are active in the expansion (1.8).

P(z) :=
M∏
j=1

(z − z j) =:
M∑
`=0

pkz`.



6 Introduction

Following these definitions, basically the same calculation as in (1.3) can be done for functions

of the form (1.8), with the major difference that we additionally use an almost arbitrary linear

functional F for the evaluation,

∀m ∈ N0 :
M∑
`=0

p`F(Am+` f ) =

M∑
`=0

p`F

Am+`
M∑
j=1

c jv j

 =

M∑
j=1

M∑
k=0

p`c jzm
j z`jF(v j)

=

M∑
j=1

c jzm
j F(v j)

M∑
`=0

p`z`j =

M∑
j=1

c̃ jzm
j P(z j) = 0,

(1.9)

where c̃ j := c jF(v j). This again gives us a finite linear system to calculate the polynomial

coefficients pk, where pM = 1 already holds by definition of the polynomial. We obtain the

system

X̌p :=


F

(
A0 f

)
F (A f ) . . . F

(
AM−1 f

)
F

(
A1 f

)
F

(
A2 f

)
. . . F

(
AM f

)
...

...
...

F
(
AM−1 f

)
F

(
AM f

)
. . . F

(
A2M−2 f

)




p0

p1
...

pM−1


= −


F

(
AM f

)
F

(
AM+1 f

)
...

F
(
A2M−1 f

)


, (1.10)

that is solved to get p := [pk]M−1
k=0 . Again, the reduced sampling matrix X̌ can be factorized into

two Vandermonde-type matrices and a diagonal matrix with entries c̃ j := c jF(v j).

X̌ =



1 1 . . . 1

z1 z2 . . . zM

z2
1 z2

2 . . . z2
M

...
... . . .

...

zM−1
1 zM−1

2 . . . zM−1
M





c̃1 0 0 . . . 0

0 c̃2 0 . . . 0
...

...
. . .

...
...

0 0 . . . c̃M−1 0

0 0 . . . 0 c̃M





1 z1 . . . zM−1
1

1 z2 . . . zM−1
2

...
...

... . . .
...

1 zM−1 . . . zM−1
M−1

1 zM . . . zM−1
M


(1.11)

It is clear by the same arguments as before that the Vandermonde matrices have full rank and

the linear coefficients c j are non-zero by assumption. If we now additionally assume that the

functional F : V → C does not vanish on any eigenfunction of A, i. e.,

∀v j s. t. Av j = λ jv j : F(v j) , 0,

the sampling matrix has full rank and in turn (1.10) has a unique solution.

Once the polynomial coefficients are known and the zeros are extracted, we are able to construct

the further Vandermonde system
1 1 . . . 1

z1 z2 . . . zM
...

...
...

zM
1 zM

2 . . . zM
M




c̃1

c̃2
...

c̃M


=


F

(
A0 f

)
F

(
A1 f

)
...

F
(
AM f

)


, (1.12)
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that is also invertible by the same arguments as before. Solving this linear system, the vector[
c̃ j

]M

j=1
provides us in turn with the true parameters

c j =
c̃ j

F(v j)
.

Although this generalized approach was quite promising to open new fields of applications,

the majority of new reconstruction schemes was based on the sampling of very high signal

derivatives. For example, a Legendre polynomial expansion of length ten [33] demands the

sampling of each signal derivative up to order 19 at several points in time. Therefore, it became

clear that a deeper insight into the method itself is necessary in order to find a systematic way

to derive sampling schemes that can be realized more easily.

Contribution of this Thesis

This leads to the need for more research, for example, in the field of operator theory; in particu-

lar, on the theory of operator semi-groups as it can be found for instance in [15]. A completely

different starting point and a fully operator based reformulation of the basic Prony method

are given in Section 2 to reveal the fundamental ingredients which are necessary for the gen-

eralization. Based on these, the Generalized Operator based Prony Method is introduced in

Section 2.2 as one of the most general forms of this approach. First examples are sparse cosine

expansions and finite linear combinations of Stieltjes-Wigert polynomials, where the first one

demonstrates the embedding of an existing example and the second one gives a new one, that

is fully derived by means of the Generalized Operator based Prony Method.

In Chapter 3 a whole class of expansions is introduced which already covers almost all former

applications, namely, the generalized shifts in Section 3.2.1. Furthermore, by using the former

results, we derive a class of signals in Section 3.3 which generalizes the cosine expansion and

embeds the case of finite linear combinations of Chebychev polynomials into the Generalized

Operator based Prony Method approach.

Chapter 4 discusses the data acquisation process in more details. In particular, a method to cir-

cumvent the problem of sampling derivatives as mentioned above is given in the general form

of a dual sampling scheme.

It is emphasized that the major contribution of this dissertation is a theoretical framework to

systematically derive new reconstruction schemes for sparse expansions into eigenfunctions of

special linear operators.
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CHAPTER 2

Generalized Operator based Prony Method

Always begin with the simplest
examples.

David Hilbert

In this section we derive the major result of this thesis, by starting again at the basic Prony

method in order to extract its most important features which are necessary for further general-

izations. This time, we first regard the exponential atoms as eigenfunctions of the differential

operator d
dx , and give the connection to the shift operator approach. Second, the Generalized

Operator based Prony Method (GOProM) is systematically introduced with all necessary defi-

nitions and summarized in the central theorem of this dissertation.

2.1 Prony’s Method: The Operator Way

The basic Prony method as already mentioned is a way to reconstruct the parameters c j and λ j

of finite weighted sums of complex exponentials, i. e., as in (1.1)

f (x) :=
M∑
j=1

c j exp(λ jx).

First of all, we define for a fixed M ∈ N

MM :=

x 7→
M∑
j=1

c j eλ j x

∣∣∣∣∣∣∣∣ c j ∈ C,0, λ j ∈ R + i[0, 2π),∀ j , i : λ j , λi


the set of all finite linear combinations of complex exponentials of known length M. The first

simple observation is that all atoms exp(λ jx) are eigenfunctions of the ordinary differential

operator d
dx , i. e.,

d
dx

exp(λ jx) = λ j exp(λ jx) ⇐⇒
(
λ jI −

d
dx

)
exp(λ jx) = 0, (2.1)
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where the equation on the right side is used to define the polynomial

PΛ (z) :=
M∏
j=1

(
λ j − z

)
=

M∑
`=0

p`z`, (2.2)

corresponding to the expansion in (1.1) with respect to Λ := {λ1, . . . , λM}. Due to the fact that

∀ i, j ∈ N :
(
λ jI −

d
dx

) (
λiI −

d
dx

)
=

(
λiI −

d
dx

) (
λ jI −

d
dx

)
,

i. e., the operators in (2.1) mutually commute, and each one annihilates a specific atom in the

expansion (1.1), we have for all f ∈ MM with active eigenvalues λ j ∈ Λ,

PΛ

(
d
dx

)
f :=

M∏
j=1

(
λ jI −

d
dx

)
f =

 M∑
`=0

p`
d`

dx`

 f =

M∑
`=0

p` f (`) = 0. (2.3)

Furthermore, since this new operator PΛ

(
d
dx

)
already annihilates these functions, this relation

holds also true for all higher derivatives applied additionally from the left,

∀m ∈ N0 :
dm

dxm PΛ

(
d
dx

)
f = 0. (2.4)

Thereby, a possibly infinite homogeneous system of differential equations can be generated.

In particular, a finite system of linear equations is achieved by a projection to the complex

numbers using a suitable linear functional F,

F :MM → C such that ∀λ j ∈ C : F(exp(λ j·)) , 0.

For the moment, it will be sufficient to assume that F does not vanish on the eigenfunctions of
d
dx , otherwise the functional F projects to a smaller and therefore false signal model. Eventu-

ally, we get

∀m ∈ N0 : F
(

dm

dxm PΛ

(
d
dx

)
f
)

=

M∑
`=0

p` F
(

f (m+`)
)

= 0. (2.5)

It is noted that (2.4) are equations inMM, the signal model, and (2.5) are scalar linear equations

over C. The idea is now to identify the unknown atoms by finding the parameters λ j, which are

exactly the zeros of the polynomial in (2.2), and subsequently solve a Vandermonde system to

identify the linear coefficients c j in (1.1). Let for convenience the functional F :MM → C be

the point evaluation functional in zero, i. e., the samples are of the form

F
(

dm+`

dxm+`
f
)

:= f (m+`)(0),

but keep in mind that any functional non-vanishing on the eigenfunctions could be used. Ob-

viously, this point evaluation F does not vanish on any exponential because F
(
exp(λ j·)

)
= 1.
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Based on (2.5), the Hankel system

Xp =


f (0)(0) f (1)(0) . . . f (M)(0)

f (1)(0) f (2)(0) . . . f (M+1)(0)
...

...
...

f (M−1)(0) f (M)(0) . . . f (2M−1)(0)




p0

p1
...

pM


= 0, (2.6)

where p := [p`]M
`=0, can be constructed from 2M − 1 derivates evaluated at zero, where the

index m in (2.5) runs along the rows and ` along the columns. At this point it becomes clear

that the annihilation formulation, as mentioned before in the basic Prony method, is slightly

more general as the formulation in (1.4), since one can choose any proper norm to select a fixed

coefficient vector p by the side condition ‖p‖ = 1.

The only important property for unique identification is that the kernel of the sampling matrix

X has dimension one. This holds because it is possible (analogous to (1.11)) to factorize X into

two Vandermonde-type matrices and a diagonal matrix,

X =



1 1 . . . 1

λ1 λ2 . . . λM

λ2
1 λ2

2 . . . λ2
M

...
... . . .

...

λM−1
1 λM−1

2 . . . λM−1
M





c1 0 0 . . . 0

0 c2 0 . . . 0
...

...
. . .

...
...

0 0 . . . cM−1 0

0 0 . . . 0 cM





1 λ1 . . . λM
1

1 λ2 . . . λM
2

...
...

... . . .
...

1 λM−1 . . . λM
M−1

1 λM . . . λM
M


. (2.7)

The quadratic Vandermonde-type matrix on the left has full rank since all λ j are mutually

distinct. The diagonal matrix is non-singular due to c j , 0 by definition of the signal model

and the rectangular matrix on the right has exactly rank M since it is only the transposed

version of the left matrix if we delete the last column. This implies that the kernel of X has

exactly dimension one and a closer look reveals that the multiplication with p reproduces the

characteristic polynomial at the values λ j and annihilates in turn the whole system. Therefore,

the polynomial coefficients are uniquely determined up to some scaling factor by a non-zero

vector from the kernel of X. In case we choose the normalization pM = 1, the linear systems

(2.6) and (1.4) are equivalent concerning the set of solutions. Alternatively, we can also use the

restriction ‖p‖2 = 1 to get a unique coefficient vector up to some unitary factor, that of course

does not change the zeros of the corresponding polynomial.

If we now solve (2.6) with respect to some norm constraint, for example, ‖p‖2 = 1, we get

a coefficient vector, that generates a polynomial with the same zeros as PΛ in (2.2). These

polynomials are simply multiples of PΛ and therefore also denoted by PΛ.

Afterwards, any root finding algorithm can be used to determine the active eigenvalues in f
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which in turn uniquely identify the atoms. Thus, the Vandermonde system
1 1 . . . 1

λ1
1 λ1

2 . . . λ1
M

...
...

...

λM−1
1 λM

2 . . . λ2M−1
M




c1

c2
...

cM


=


f (0)(0)

f (1)(0)
...

f (M)(0)


(2.8)

can be constructed and solved to find the linear coefficients c j. The algorithm derived so far

can be summarized as follows:

Input: f (`)(0), ` = 0, . . . , 2M − 1

1. Solve (2.6) w. r. t. ‖p‖2 = 1.

2. Compute the zeros λ j of PΛ(z) =
∑M
`=0 p`z`.

3. Compute c j by solving (2.8).

Output: parameters λ j and c j, j = 1, . . . ,M

It is emphasized that in contrast to Prony’s method, that is based on the shift operator, the

current algorithm needs no restriction on the imaginary part of the frequencies λ j ∈ C because

the parameters are directly given as the zeros of the polynomial PΛ in (2.2).

Despite this advantage, the algorithm comes with the issue that we need to know derivatives

of the signal up to order 2M − 1, but in practice usually only direct samples of the original

signal are available. Any derivative has to be estimated by some difference scheme and the

numerical stability of this estimation is highly dependent on the smoothness and oscillatory

behavior of the functions inMM. In particular, the estimation usually becomes very unstable

with increasing derivative order. Therefore, we want to circumvent this problem by using the

fact that the differential operator d
dx and the shift operator S τ f := f (· + τ) with τ ∈ R,0 share

the same eigenfamily corresponding to different spectra, in particular

d
dx

exp(λx) = λ exp(λx) ⇒ S τ exp(λx) = exp(λτ) exp(λx). (2.9)

Implication (2.9) can be understood by the following considerations. First of all, a short cal-

culation gives us a representation of the shift operator on the monomials with respect to the

exponential power series, namely

exp
(
τ

d
dx

)
xm =

∞∑
k=0

τk

k!
dk

dxk xm =

m∑
k=0

τk

k!
m!

(m − k)!
xm−k =

m∑
k=0

(
m
k

)
τkxm−k

= (x + τ)m = S τxm.

Since this exponential operator is linear and the equation holds for any monomial, it is also true

for every analytic function. In particular, it holds for all f ∈ MM because the signal model is a
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subset of the analytic functions on R, i. e.,

exp
(
τ

d
dx

)
f (x) = f (τ + x). (2.10)

Equation (2.10), that was first introduced by Lagrange, implies that

S τ exp(λx) = exp
(
τ

d
dx

)
exp(λx) =

∞∑
k=0

τk

k!
dk

dxk exp(λx) =

∞∑
k=0

τk

k!
λk exp(λx) = exp(λτ) exp(λx)

which directly delivers implication (2.9). Since we are only interested in the parameters of

the expansion and want to choose the simplest operator which has the exponential functions as

eigenfunctions, a new equation system can be derived by using a slightly changed polynomial,

that we now explicitly call Prony polynomial. Plugging in the one-parametric shift operator S τ

yields

Pexp(τ·)
Λ

(S τ) :=
M∏
j=1

(
exp(λ jτ)I − S τ

)
=

M∑
`=0

p` S `
τ =

M∑
`=0

p` S τ`. (2.11)

The operator Pexp(τ·)
Λ

(S τ) annihilates the same functions as PΛ

(
d
dx

)
before, since it corresponds

to the same set of active eigenfunctions to different eigenvalues. Based on this knowledge

we derive a modified linear system by analogously employing further iterations of the shift

operator. For all f as in (1.1) with respect to a fixed Λ it holds that

∀m ∈ N0 : F
(
S m
τ Pexp(τ·)

Λ
(S τ) f

)
= F

(
S τmPexp(τ·)

Λ
(S τ) f

)
=

M∑
`=0

p` f ((m + `)τ) = 0 ∈ C,

(2.12)

where F( f ) := f (0) again. From this set of equations, a Hankel system different from (2.6) can

be constructed using only time discrete point evaluations of the original signal f , namely
f (0) f (τ) . . . f (Mτ)

f (τ) f (2τ) . . . f ((M + 1)τ)
...

...
...

f ((M − 1)τ) f (Mτ) . . . f ((2M − 1)τ)




p0

p1
...

pM


= 0. (2.13)

Although this system is well-known from the introduction as part of the basic Prony method

[13], the essential difference is an additional sampling parameter τ ∈ R,0. We already know

that 2.13 has kernel-dimension one, the additional parameter does not change this property, and

we get a unique polynomial coefficient vector p by solving 2.13 with respect to some normal-

ization constraint. Given these polynomial coefficients, the zeros of the Prony polynomial can
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be calculated and the Vandermonde system
exp(λ1τ)0 exp(λ2τ)0 . . . exp(λMτ)0

exp(λ1τ)1 exp(λ2τ)1 . . . exp(λMτ)1

...
...

...

exp(λ1τ)M−1 exp(λ2τ)M . . . exp(λMτ)2M−1




c1

c2
...

cM


=


f (0)

f (τ)
...

f (Mτ)


(2.14)

can be constructed to recover the linear coefficients c j. Therefore, the Prony method can be

summarized as follows: First we identify the span of fixed length M of the active eigenfunc-

tions and afterwards the linear coefficients are determined.

Since we want to reconstruct the true exponential parameters λ j, but only have exponentials

exp(λ j) of the active eigenvalues as zeros, it is necessary to restrict the parameter space ofMM

in order to achieve uniqueness. In particular, we have to assume that Im
(
λ j

)
∈ [0, 2π/τ), oth-

erwise we cannot recover λ j uniquely.

To put it all in a nutshell, this delivers a similar algorithm as for the differential operator, but

with a sampling scheme that is much easier to realize:

Input: f (`τ), ` = 0, . . . , 2M − 1

1. Solve (2.13) w. r. t. ‖p‖2 = 1.

2. Solve Pexp(τ·), f
Λ

(z) = 0 and find the zeros exp(λ jτ).

3. Extract {λ j}
M
j=1 from {exp(λ j)}Mj=1.

4. Solve (2.14) to find c j.

Output: (λ j, c j), j = 1, . . . ,M

This algorithm is of course the well-known Prony method as seen before, with a slight general-

ization, namely the introduction of a sampling parameter τ ∈ R,0. Although this modification

is not new and often used in different other works, in this approach it comes very naturally and

without any additional effort as also for the Generalized Prony Method [32].

The second generalization is the use of a different evaluation functional. This is actually not a

real generalization from the operator point of view, because for convenience we have always

artificially restricted the sampling scheme to a point evaluation. It is emphasized that the choice

of the functional is quite arbitrary since we basically only need linearity. We could have used,

for example, another point evaluation functional at any point beside zero, or even integrals over

suitable compact intervals. For the evaluation at an arbitrary point x0 ∈ R, the linear system

2.13 would be almost the same with the only difference of using f (x0 + `τ) as samples instead

of f (`τ). In this special case the changed starting point x0 can be seen as a simple additional

shift applied after the actual annihilation already took place, i. e.,

F
(
S x0S mτP

exp(τ·)
Λ

(S τ) f
)

= 0.
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Later on we will see that it is quite natural in the generalized Prony context to interpret the

additional shift S x0 as part of the functional and not of the annihilating operator Pexp(τ·)
Λ

. Also

the Vandermonde system (2.14) is constructed slightly different by
exp(λ1x0) . . . exp(λM x0)

exp(λ1(x0 + τ)) . . . exp(λM(x0 + τ))
...

...
...

exp(λ1(x0 + (M − 1)τ)) . . . exp(λM(x0 + (2M − 1)τ))




c1

c2
...

cM


=


f (x0)

f (x0 + 1)
...

f (x0 + M)


. (2.15)

Moreover, concerning the construction of the sampling scheme, we are not even restricted to

the shift or derivative operator. Any operator which has the exponentials as eigenfunctions

can be used and every functional which does not vanish there is suitable. For example, every

convolution operator in combination with a point-evaluation in zero works as well, if we adjust

the algorithm accordingly.

Remark 2.1.1. The idea of using the product of suitable linear polynomial factors (λ j − z) in

combination with the differential operator to annihilate the signal at hand can be found in [43],

where this variation of Prony’s method is called Operator based Annihilation. The difference

to the present thesis is that in [43] this idea is only used for exponential eigenfunctions.

Although the examples concerning the differential and the difference operators with arbitrary

starting points are also developed in [43], the connection between these two schemes was not

given. Moreover, in [43] only point evaluation functionals were taken into account and the

results therein were already implied by the Generalized Prony Method of Peter & Plonka [32].

Before we employ the ideas above for a systematic generalization, we summarize the essential

properties which were used so far to reach a more abstract derivation of the basic Prony method

using an operator based approach.

1. linearity of the differential operator d
dx and the shift operator S τ

2. The operators d
dx and S τ share the same eigenfunctions to different eigenvalues.

3. The mapping λ→ exp(λ·) is injective on at least a restricted subset of the complex plane.

4. The signal is a finite linear combination of eigenfunctions exp(λ·) corresponding to dis-

tinct eigenvalues.

5. We can use any functional which does not vanish on this restricted set of eigenvalues to

get a finite sampling matrix.

In conclusion, it should be possible to reconstruct any atomic expansion defined by a linear

operator with non-empty point spectrum by the same ideas as above. Indeed, once the oper-

ator formulation of the classical Prony method is understood, we can derive the Generalized

Operator-based Prony Method within a few additional steps.
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2.2 Generalized Operator based Prony Method

So far, the presented results were already known albeit we derived them in a different because

operator based way. In this section we start by gradually generalizing the equation systems in

(2.5) and (2.12), by the generalization of the corresponding sampling schemes

F
(

dm

dxm PΛ

(
dm

dxm

))
and F

(
S m
τ Pexp(τ·)

Λ
(S τ)

)
,

in terms of the operator approach and we extract their common structure. Afterwards a strict

definition of the involved terms and the main result of this thesis follows.

2.2.1 Informal preparation for the Generalization

First of all, as it was seen before, the sampling scheme is the central object which the annihi-

lation system (2.13) and the Vandermonde system (2.14) are based on and in turn the key to

all Prony-like algorithms which can be derived. Those samples are, as we know, sufficient to

reconstruct functions f : R→ C such that

f (x) =
∑
λ∈Λ

cλ exp(λx),

where Λ := {λ1, . . . , λM} ⊂ C is the finite set of the M active eigenvalues. Since the relation

between eigenvalue λ and eigenfunction vλ is one to one by assumption, we slightly modified

the notation and indexed directly over the eigenvalues. Henceforth, we want to recover the

parameter sets Λ and {cλ}λ∈Λ corresponding to more general expansions

f =
∑
λ∈Λ

cλvλ.

For this purpose, we successively modify the sampling scheme similar as Peter & Plonka in

[32]. First, the atoms vλ must belong to an eigenfamily of a linear operator A which has a

non-empty point spectrum and it has to hold that the eigenvalues uniquely identify the eigen-

functions. This means for the Prony method that A = d
dx and vλ = exp(λ·). If we now define

the Prony polynomial as

PΛ(z) :=
∏
λ∈Λ

(λ − z) =

M∑
`=0

p`z`,

where M = |Λ| < ∞, this is the polynomial (2.2). Since the only property of A actually used

in the calculations later on is linearity, we think of it from now on as a general linear operator

A : V → V with non-empty point spectrum, where V is a vector space which contains the set

of all finite linear combinations of eigenfunctions of A, denoted byM (A).

Furthermore, the operator A basically determines the model M (A); thus, we call A the gen-

erator. As mentioned for the differential sampling scheme, the action of the generator can be

difficult to realize, but we are only interested in the identification of the active eigenfunctions,
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so we use a different operator Φϕ :M (A) →M (A), defined on the eigenfunctions vλ of A by

a function ϕ such that

Φϕvλ = ϕ(λ)vλ.

The use of Φϕ instead of A is a possible way to simplify the sampling scheme. In the operator

based derivation of the Prony method this was nothing else but the transition from A = d
dx to

Φϕ = S τ, where ϕ := exp(τ·). Furthermore, we had to restrict the point spectrum of A such

that the exponential ϕ is invertible. It is stressed that the sampling parameter τ ∈ R,0, which is

independent of the generator A, is a part of the function ϕ and not of the generator.

The operator Φϕ is called iteration operator, because it will be iterated over and over again to

recover the structure of the more general Prony polynomial Pϕ
Λ

: C→ C which is defined as

Pϕ
Λ

(z) :=
∏
λ∈Λ

(ϕ(λ) − z) =

M∑
`=0

p`z`.

This definition directly corresponds to the modification of PΛ in definition (2.2) to the Prony

polynomial Pexp(τ·)
Λ

in Definition (2.11). Thereby, we get the first general annihilation equation

for all f =
∑
λ∈Λ

cλvλ such that cλ ∈ C,0,

0 = Pϕ
Λ

(Φϕ) f =
∏
λ∈Λ

(ϕ(λ) I−Φϕ) f =

M∑
`=0

p`Φ`
ϕ f ,

where the annihilation takes place because the factors again mutually commute and

(ϕ(λ) I−Φϕ)vλ = 0

by assumption. The last step in a full generalization is the projection of this equation to a scalar

sampling, which is used to build the necessary linear systems for the parameter identification.

In (2.6) and (2.13) we used a sampling scheme based on the point evaluation functional F( f ) =

f (0) and iterated A = d
dx or Φϕ = S τ to achieve the corresponding annihilation equations to

generate a linear system of equations. Although this is quite straightforward, no one prevents

us from using any sequence Fm : V → V of functionals, as long as the sampling matrix still

has full rank. Therefore, the general sampling scheme is

∀m ∈ N0 : S m,` := Fm ◦ Φ`
ϕ,

which results in the sampling matrix

XN,M :=
[
S m,`

]N,M
m,`=0 ,

where N ∈ N, N ≥ M − 1, and M ∈ N are chosen accordingly.
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Remark 2.2.1. It is emphasized that the major innovations compared to the generalized Prony

method in [32] are

1. the discrimination between the generator A that defines the atoms and the iteration oper-

ator Φϕ that is actually used for the sampling scheme,

2. a strict separation of the operator based annihilation by Pϕ
Λ

(Φϕ) and the functional eval-

uation of the signal by the sequence Fm,

3. and in turn more freedom in choosing the sampling scheme S m,`.

2.2.2 Strict Generalization of Prony’s Method

After having clarified the basic ideas of the generalization by the rather informal discussion

above, we now start the strict derivation by defining the signal model.

Definition 2.2.2 (Sparse Signal Model). Let A : V → V be a linear operator on a vector space V

with non-empty point spectrum σP(A). Let further {vλ}λ∈σP(A) be the family of eigenfunctions

of A, i. e., Avλ = λvλ. Given a finite M ∈ N the sparse signal modelMM (A) ⊂ V is defined as

MM (A) :=

∑
λ∈Λ

cλvλ

∣∣∣∣∣∣∣ Λ ⊂ σ̂P(A) ∧ |Λ| = M ∧ cλ ∈ C,0

 ,
where σ̂P(A) ⊆ σP(A) is a subset of the point spectrum such that λ 7→ vλ is injective. The

operator A is called generator of the model. The signal model is called sparse because Λ will

always be a finite subset of the possibly uncountable point spectrum.

Although for the general algorithm below and all of its applications we will always focus on

one specific sparse signal model corresponding to a fixed and known order M, for theoretical

considerations we define the surrounding general vector space of all finite linear combinations

of eigenfunctions.

Definition 2.2.3 (Sparse Signal Space). Given a linear operator A : V → V as in Definition

2.2.2, we define

M (A) :=

∑
λ∈Λ

cλvλ

∣∣∣∣∣∣∣ Λ ⊂ σ̂P(A) ∧ |Λ| < ∞∧ cλ ∈ C,0

 ,
the vector space spanned by all finite linear combinations of eigenfunctions of A corresponding

to λ ∈ σ̂P(A). The sparsity refers again to the fact that we only have finitely many active

eigenvalues.

The observed major simplification of the sampling scheme in (2.13) was triggered by the tran-

sition from the differential operator to the shift operator. This transform is formalized in the

next definition.
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Definition 2.2.4 (Iteration Operator). Let A : V → V be a generator corresponding to the sparse

signal spaceM (A). Let further ϕ : σ̂ϕP(A)→ C be an injective function, where σ̂ϕP(A) ⊆ σ̂P(A)

is called the restricted point spectrum. We define the operator

Φϕ :M (A)→M (A)

such that it fulfills the spectral mapping property,

∀ λ ∈ σ̂
ϕ
P(A) : Φϕvλ = ϕ(λ)vλ.

The operator Φϕ is called the iteration operator for the new signal space

Mϕ (A) :=

 f =
∑
λ∈Λ

cλvλ

∣∣∣∣∣∣∣ Λ ⊂ σ̂
ϕ
P(A) ∧ |Λ| < ∞∧ cλ ∈ C,0

 .
As in Definition 2.2.2 we denote the restricted sparse signal model byMϕ

M (A).

This definition formalizes the fact that we always use the unique correspondence between

eigenvalues and eigenfunctions, as we have seen for the classical Prony method. Even if the

operator is transformed from A to Φϕ the unique correspondence of eigenvalues and eigenfunc-

tions has to be preserved. This may imply some further restrictions on the point spectrum to

ensure the identifiability of the true parameters after switching from A to Φϕ.

Moreover, the iteration operator is well-defined for all f ∈ M (A) as a direct consequence of

the spectral mapping property

Φϕ f =
∑
λ∈Λ

cλΦϕvλ =
∑
λ∈Λ

cλϕ(λ)vλ ∈ M (A) .

In particular, the spaceM (A) is invariant under the actions of A and Φϕ.

Remark 2.2.5. A special example for an iteration operator is the inverse Φϕ := A−1. If the

inverse A−1 for A as in Definition 2.2.2 exists, it holds that

Avλ = λvλ ⇔ Φϕvλ = ϕ(λ)vλ, (2.16)

where ϕ(z) := 1
z is injective on C,0.

Based on the definition of the signal model MM (A) for a known expansion length M ∈ N

and a given iteration operator Φϕ, the generalized Prony polynomial and the corresponding

annihilation operator are defined as follows.
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Definition 2.2.6 (Generalized Prony Polynomial and Annihilation Operator). Given a sparse

signal modelMϕ
M (A) with iteration operator Φϕ, the polynomial Pϕ

Λ
: C → C is defined for a

finite Λ ⊂ σ̂
ϕ
P(A) as

Pϕ
Λ

(z) :=
∏
λ∈Λ

(ϕ(λ) − z) :=
M∑

l=0

plzl,

where M := |Λ| < ∞, and it is called Prony polynomial with respect to ϕ and Λ. The corre-

sponding operator

Pϕ
Λ

(Φϕ) :M (A)→M (A)

Pϕ
Λ

(Φϕ) :=
∏
λ∈Λ

(
ϕ(λ)I − Φϕ

)
:=

M∑
l=0

plΦ
`
ϕ

is called annihilation operator for all f ∈ MM (A) corresponding to a fixed Λ.

The Prony polynomial depends on the iteration operator as well as on Λ, the set of all active

eigenvalues of the signal f ∈ MM (A), which has to be reconstructed. The annihilation operator

has by definition the important property that it annihilates only the functions f =
∑
λ∈Λ

cλvλ,

where cλ ∈ C,0 and Λ ⊂ σ̂P(A) are fixed,

Pϕ
Λ

(Φϕ) f =

M∑
l=0

plΦ
`
ϕ f =

∑
λ∈Λ

M∑
l=0

plΦ
`
ϕcλvλ

=
∑
λ∈Λ

cλvλ
M∑

l=0

pl (ϕ(λ))` =
∑
λ∈Λ

cλvλPϕ
Λ

(ϕ(λ)) = 0.

Since we want to end up with finite linear systems, we need a certain sequence of functionals

Fm as it was motivated in Section 2.2.1.

Definition 2.2.7 (Evaluation Scheme). We call a sequence of linear functionals

Fm :M (A)→ C with m ∈ N0

an evaluation scheme. Moreover, let EF := [Fm (vλ)]N
m=0,λ∈Λ, then the evaluation scheme is

called admissible if and only if for a given signal spaceM (A) holds

∀N ≥ |Λ| − 1∀ Λ ⊂ σ̂
ϕ
P(A) s.t. |Λ| < ∞ : rank (EF) = |Λ|. (2.17)

A special case of such a scheme is given by a sequence

Fm := F ◦ Bm,

with respect to suitable linear operators Bm : M (A) → M (A). In many cases this operator

sequence can be generated by powers of a single operator, i. e., Bm := Bm. This particular

evaluation scheme plays a central role for more specific admissibility conditions. A simple

example is given for the basic Prony method, where Fm := F ◦ S m
τ = F ◦ S τm.



2.2. Generalized Operator based Prony Method 21

Definition 2.2.8 (Generated Evaluation Scheme). Let Fm : M (A) → C with m ∈ N0 be

an evaluation scheme and B : M (A) → M (A) a linear operator. Let further F : M (A) → C

be a linear functional such that F(vλ) , 0 for all λ ∈ σ̂P(A). Then we call

Fm := F ◦ Bm

the evaluation scheme generated by B. If B is an iteration operator we call it a canonical

evaluation scheme.

Remark 2.2.9. Although it is sufficient to define the evaluation scheme only on the signal

model, i. e., Fm : M (A) → C, in most cases we can assume that the sequence Fm is defined

for all elements of V .

After these definitions we can give the first theorem about the admissibility of canonical eval-

uation schemes.

Theorem 2.2.10. A canonical evaluation scheme is always admissible.

Proof. Let Ψψ : M (A) → M (A) be an iteration operator, i. e., Ψψvλ = ψ(λ)vλ. Let further

Fm : M (A) → C be an evaluation scheme generated by Ψψ, i. e., Fm := F ◦ Ψm
ψ , then EF :=

[Fm (vλ)]N
m=0,λ∈Λ factorizes into

EF = [Fm (vλ)]N
m=0,λ∈Λ =

[
ψm(λ)F (vλ)

]N
m=0,λ∈Λ =

[
ψm(λ)

]N
m=0,λ∈Λ diag

(
[F(vλ)]λ∈Λ

)
.

The left factor matrix is a Vandermonde matrix with distinct entries because ψ is injective on

the restricted point spectrum; thus, the Vandermonde matrix has full rank. The diagonal matrix

on the right is invertible since F(vλ) , 0 by definition of a generated evaluation scheme. Thus,

the matrix EF has full rank for all finite choices of Λ ⊂ σ̂P(A) and N ∈ N. �

Eventually, we come to the central object of all further modifications of the Generalized Oper-

ator based Prony Method.

Definition 2.2.11 (Sampling Scheme and Realizability). Given an evaluation scheme Fm as in

Definition 2.2.7 with m ∈ N0 and an iteration operator Φϕ as in Definition 2.2.4 with respect

to a signal spaceM (A), the composition

S m,` := Fm ◦ Φ`
ϕ :M (A)→ C

is called a sampling scheme forM (A), where m, ` ∈ N0. A sampling scheme is called admissi-

ble if the corresponding evaluation scheme Fm is admissible. Additionally, a sampling scheme

is called realizable if it can be written as a sequence of linear functionals F̃m,` : M (A) → C

applied to the signal itself without using signal derivatives. The result of applying S m,` to a

signal is called sampling.

Although the definition of realizability sounds a bit strict here, in Chapter 4 it is actually shown

that under certain circumstances almost every sampling scheme can be realized in the sense
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above, even those based on differential operators, but for this purpose additional assumptions

on the evaluation scheme are necessary. In particular, the iteration operator and the evaluation

scheme do no longer only depend on the signal space, but also on each other.

Based on the definition of the sampling scheme we define the central object of every Prony-like

algorithm.

Definition 2.2.12 (Sampling Matrix). Given a sampling scheme S m,` as above, f ∈ MM (A),

and N,M ∈ N fixed and known such that N ≥ M − 1, the matrix valued mapping

XN,M :MM (A)→ CN+1×M+1

is called sampling matrix, where

XN,M( f ) :=
[
S m,`( f )

]N,M
m=0,`=0 =

[
Fm

(
Φ`
ϕ f

)]N,M

m=0,`=0
.

The following theorem summarizes the central statement of this thesis and the corresponding

proof subsequently gives rise to an algorithm.

Theorem 2.2.13 (Generalized Operator based Prony Method (GOProM)). Let S m,` = Fm ◦Φ`
ϕ

be an admissible sampling scheme and

M
ϕ
M (A) :=

∑
λ∈Λ

cλvλ

∣∣∣∣∣∣∣ Λ ⊂ σ̂
ϕ
P(A) ∧ |Λ| = M ∧ cλ ∈ C,0

 ,
where A : V → V is a generator of this model. Every f ∈ Mϕ

M (A) is uniquely determined by

the sampling matrix

XN,M( f ) =
[
Fm

(
Φ`
ϕ f

)]N,M

m,l=0
,

where M := |Λ| and N ≥ M − 1 are fixed and known natural numbers.

Proof. Let {vλ | λ ∈ σ̂
ϕ
P(A)} be a fixed family of atoms such that Avλ = λvλ. Let Φϕ be an

iteration operator. In particular, it holds for all f =
∑
λ∈Λ

cλvΛ, cλ ∈ C,0, by construction that

Pϕ
Λ

(Φϕ) f =
∏
λ∈Λ

(ϕ(λ)I − Φϕ) f = 0.

This is a direct consequence of λ ∈ Λ and (ϕ(λ)I − Φϕ)vλ = 0 because all factors mutually

commute. This implies for all evaluation schemes Fm that

0 = Fm
(
Pϕ

Λ
(A) f

)
=

M∑
`=0

p`Fm
(
Φ`
ϕ f

)
; m ∈ N.

The involved samplings Fm
(
Φ`
ϕ f

)
give rise to the sampling matrix

XN,M( f ) :=
[
Fm

(
Φ`
ϕ f

)]N,M

m,`=0
,
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where N ≥ M − 1. Using the sampling matrix, we get the following linear system for the

polynomial coefficients p :=
[
pk

]M
k=0:

XN,M( f )p =
[
Fm

(
Φ`
ϕ f

)]N,M

m,`=0

[
p`

]M
`=0 = 0. (2.18)

As a necessary and sufficient condition for a reconstruction of the polynom coefficients p` and

in turn of the unique active eigenvalues, the kernel of XN,M( f ) has to be one-dimensional and

p ∈ ker
[
XN,M( f )

]
\ {0}. To see this, we decompose the sampling matrix XN,M( f ) into

XN,M( f ) = EF DcVϕ, (2.19)

where

EF := [Fm(vλ)]N
m=0,λ∈Λ , Dc := diag ([cλ]λ∈Λ) , and Vϕ :=

[
ϕ`(λ)

]M

λ∈Λ,`=0
.

Now, the reduced matrix

V̌ϕ :=
[
ϕ`(λ)

]M−1

λ∈Λ,`=0
∈ CM×M

is invertible since it is a Vandermonde matrix for ϕ(Λ) = {ϕ(λ) | λ ∈ Λ}, all λ are distinct,

and ϕ : σ̂ϕP → C is injective. Thus, the extended matrix Vϕ has a kernel of exact dimension

one. Since Vϕp = 0 by construction of the Prony polynomial, it follows that p ∈ ker Vϕ \ {0}

is unique up to a complex factor, which of course does not change the zeros of the polynomial.

Since we actually need this property, it remains to ensure that both Dc and EF have full rank.

First, Dc has full rank because cλ ∈ C,0, and second EF has full rank because we assumed the

evaluation scheme Fm to be admissible. Therefore, it holds that

ker
(
XN,M( f )

)
= ker

(
Vϕ

)
= {αp : α ∈ C}.

Once the polynomial coefficients p` are known, we can calculate the zeros ϕ(λ) of the Prony

polynomial Pϕ
Λ

. Afterwards, it is possible to reconstruct the spectral parameters uniquely from

the zeros ϕ(λ), because of the injectivity of ϕ on the restricted point spectrum σ̂
ϕ
P(A).

For the rest of the proof it is assumed that we know the active eigenvalues λ ∈ Λ and in turn Vϕ
as well as EF . The remaining parameters cλ can be recovered by constructing a suitable linear

system. For this purpose it is sufficient to take M entries of the first column of the sampling

matrix XN,M( f ) denoted by [
Fm j( f )

]M

j=1
;

thus, we only take those sampling values into account where ϕ0(A) f = f . With these selected

sampling values at hand we can construct the following linear system,

[
Fm j( f )

]M

j=1
=

∑
λ∈Λ

cλFm j(vλ)

M

j=1

=
[
Fm j(vλ)

]M

j=1,λ∈Λ
· [cλ]λ∈Λ , (2.20)

where m j ∈ {0, 1, . . . ,N}. The left side of equation (2.20) is simply a subvector of the given



24 Generalized Operator based Prony Method

sampling matrix and the matrix on the right side is a submatrix of EF . Therefore, the only

unknowns are the linear coefficients cλ. Since EF has full rank it is always possible to find

a selection of indices m j ∈ {0, 1, . . . ,N}, j ∈ {1, . . . ,M}, such that the system has a unique

solution. �

Although it is sufficient for the proof to take only a suitable part of the actual sampling ma-

trix into account to recover the linear coefficients, the following lemma delivers an alternative

which is capable of using all the available information. In particular, this can be helpful in the

case of noisy samples because we use linear combinations of the rows of the sampling matrix.

Lemma 2.2.14. Under the same assumptions as in Theorem 2.2.13, and Λ be given, the Van-

dermonde system

X>N,M−1( f )ω =
[
ϕ`(λ)

]M−1

`=0,λ∈Λ
Γ [cλ]λ∈Λ , (2.21)

uniquely determines the linear coefficients cλ of f ∈ MM (A) for all choices of ω = (ωm)N
m=0 ∈

CN+1
,0 such that Γ := diag

([
N∑

m=0
ωmFm(vλ)

]
λ∈Λ

)
is invertible and XN,M−1( f ) :=

[
S m,`

]N,M−1
m,`=0 .

Proof. Let be everything as in the proof before, we start with the knowledge of Λ and therefore

we also know EF = [Fm(vλ)]N
m=0,λ∈Λ and VΦ :=

[
ϕ`(λ)

]M−1

λ∈Λ,`=0
∈ CM×M. The sampling matrix

XN,M( f ) = [Fm(vλ)]N
m=0,λ∈Λ · diag ([cλ]λ∈Λ) ·

[
ϕ`(λ)

]M−1

λ∈Λ,`=0

has full rank because EF , Dc, and Vϕ have full rank as before. If we now choose an arbitrary

ω ∈ CN+1
,0 such that for all λ ∈ Λ holds that γ(λ) :=

N∑
m=0

ωmFm(vλ) , 0, which is always

possible, we get a new linear system

X>N,M−1( f )ω =

([
Fm(Φ`

ϕ f )
]N,M−1

m,`=0

)>
ω =

∑
λ∈Λ

N∑
m=0

cλωmFm(vλ)ϕ`(λ)


M−1

`=0

=

∑
λ∈Λ

cλ γ(λ)ϕ`(λ)

M−1

`=0

.

This system can equivalently be written as generalized Vandermonde system

X>N,M−1( f )ω =
[
ϕ`(λ)

]M−1

`=0,λ∈Λ
Γ [cλ]λ∈Λ ,

where Γ := diag
([
γ(λ)

]
λ∈Λ

)
. The diagonal matrix Γ is invertible because γ(λ) , 0 for all λ ∈ Λ

by the choice ofω. The linear system (2.21) has in turn a unique solution, because the quadratic

Vandermonde matrix
[
ϕ`(λ)

]M−1

`=0,λ∈Λ
on the right side has full rank since all ϕ(λ) are distinct by

the construction of the restricted signal modelMϕ
M (A) and the definition of ϕ. �

Remark 2.2.15. This Lemma gives us the possibility to incorporate all available information

in the sampling matrix into the reconstruction of the linear coefficients cλ. Depending on the

error model one can try to find a weight vector ω to reduce the influence of noise.
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The proof of Theorem 2.2.13 leads in summary to an algorithm based on the linear systems

(2.18) and (2.21). The GOProM can be summarized as follows:

Input: Fm
(
Φ`
ϕ f

)
, ` = 0, . . . ,M and m = 0, . . . ,N ≥ M − 1

• Solve (2.18) with respect to a suitable normalization, e. g. ‖p‖2 = 1.

• Identify the active eigenvalues λ ∈ Λ ⊂ σ̂
ϕ
P(A) from the zeros ϕ(λ) of the Prony polyno-

mial

Pϕ
Λ

(z) =

M∑
`=0

p`z`.

• Recover the linear coeffients cλ, λ ∈ Λ, by solving (2.20) or (2.21).

Output: parameter sets Λ and {cλ ∈ C,0 | λ ∈ Λ}

2.3 Analytic Sampling Schemes

It was shown in Section 2.1 how to employ the differential operator d
dx and the exponential

representation of the shift S τ = exp
(
τ d

dx

)
to derive the classical Prony method [13] from an

operator point of view. The key property was that we preserved the eigenfunctions and only

changed the eigenvalues. This corresponds to the change from the generator A to the iteration

operator Φϕ.

In this section a class of iteration operators is discussed, that includes the exponential case of

Section 2.1. First, we remember the definition of an analytic function.

Definition 2.3.1 (Analytic Function). A function ϕ : I → C on an open set I ⊆ C is analytic,

if for all z ∈ I holds that

ϕ(z) =

∞∑
n=0

φnzn,

where {φn}
NΨ

n=0 ⊂ C such that the sum converges absolutely for all z ∈ I.

Remark 2.3.2. Although for GOProM it is sufficient to assume that ϕ has a power series

representation on the restricted point spectrum σ̂
ϕ
P(A), in all examples given in this thesis we

will use analytic functions. It is noted that also polynomials fall into this category.

The following lemma delivers a class of iteration operators defined by analytic functions. In

particular, the spectral mapping property has a very intuitive form.

Lemma 2.3.3 (Analytic Iteration Operator). Let A : V → V be a generator ofM (A). Further-

more, let Φϕ : M (A) → M (A) be a linear operator with injective and analytic ϕ : I → C

such that σ̂ϕP ⊂ I, where I ⊆ C is open, and ϕ(z) :=
∞∑

k=0
φkzk. Then

Φϕ := ϕ(A) =

∞∑
k=0

φkAk
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is a well defined iteration operator called analytic iteration operator; in particular, the spectral

mapping property

Φϕvλ = ϕ(λ)vλ

holds for all λ ∈ σ̂ϕP .

Proof. Since Anvλ = λnvλ for all n ∈ N0, and all λ ∈ σ̂ϕP(A) ⊂ I are in the region of conver-

gence of ϕ, it holds directly that

Φϕvλ =

∞∑
k=0

φkAkvλ =

∞∑
k=0

φkλ
kvλ = ϕ(λ)vλ.

Furthermore, because ϕ is assumed to be injective on the restricted point spectrum σ̂
ϕ
P, it is an

iteration operator. �

In Section 2.1 we have seen that such analytic iteration operators, namely the exponential

representation of the shift, can have simpler actions as the corresponding generator. If such

a simple action is given, it is reasonable to use this analytic iteration operator to generate the

evaluation scheme.

Corollary 2.3.4 (Analytic Evaluation Scheme). Let Ψψ : M (A) → M (A) be an analytic

iteration operator . Let F : M (A) → C be a linear functional such that F(vλ) , 0 for all

λ ∈ σ̂
ψ
P(A) ⊂ I. Then the generated evaluation scheme

Fm := F ◦ Ψm
ψ

is admissible. In other words, every analytically generated sampling scheme is canonical.

Proof. This is a consequence of Lemma 2.3.3 and Theorem 2.2.10. �

Example 2.3.5. A simple example for a sampling scheme based on an analytic evaluation

scheme is a mixed sampling scheme of shift and differential operator for the reconstruction of

signals f (x) =
∑
λ∈Λ

cλ exp(λx). Let therefore Φϕ := A = d
dx be the iteration operator, where

ϕ(z) = z. Let further Ψψ := exp(τA) = S τ, where ψ(z) = exp(τz), be another analytic iteration

operator, that generates the evaluation scheme. Using the point evaluation F( f ) = f (0) we get

the following canonical and therefore admissible sampling scheme

Fm := F ◦ Ψm
ψ = F ◦ S τm.

Then

S m,` := Fm ◦ Φ`
ϕ = F ◦ S τm

d`

dx`

is an admissible sampling scheme with sampling matrix

XN,M( f ) =
[
f (`)(τm)

]N,M

m,`=0
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for all f ∈ Mϕ
M (A). This matrix is sufficient for the reconstruction of f by Theorem 2.2.13. The

advantage is that we have no further restrictions on the point spectrum σ̂
ϕ
P(A), since ϕ(z) = z.

The disadvantage is that we have to sample derivatives and therefore the sampling scheme is

not realizable, but we have reduced the order of the highest derivative to the minimum, namely

the length M of the signals inMϕ
M (A).

A particular case of Corollary 2.3.4 is provided by the Generalized Prony Method [32], which

corresponds to Ψψ := Φϕ := I. The following corollary summarizes the Generalized Prony

Method [32] in the new terms of this dissertation.

Corollary 2.3.6 (Generalized Prony Method). Let A : V → V be a generator of the model

MM (A), M ∈ N, and F : M (A) → C a linear functional such that |F(vλ)| > 0 for all

λ ∈ σ̂P(A). Then

S m,` := F ◦ Am+` :M (A)→ C

is an admissible sampling scheme and all f ∈ MM (A) can be reconstructed from the sampling

matrix

XN,M( f ) =
[
F

(
Am+` f

)]N,M

m,l=0
,

N ≥ M − 1, which is made of only 2M different samples and has Hankel structure.

Proof. The sampling scheme in this corollary is admissible by Corollary 2.3.4 because it is

generated be the generator A itself, i. e., Fm := F ◦ Am. This corresponds to ϕ(z) = z. The rest

is a direct consequence of Theorem 2.2.13. �

The Generalized Prony Method [32] is applicable if the given sampling scheme is already re-

alizable using the generator A as iteration operator; examples besides the classical exponential

expansion are the monomials, Stieltjes-Wigert polynomials and expansions into cosines, which

are given later in this section. Of course, if a sampling scheme as in Corollary 2.3.6 is already

realizable and known, the GOProM approach seems a bit cumbersome. In contrast, the di-

rect generalization of the basic form of Prony’s method [32], that already gives the result in

Corollary 2.3.6, left some structures hidden, which makes it more complicated to generate new

sampling schemes for given atomic decompositions.

Moreover, GOProM gives a clear constructive way from the defining operator equation of the

atoms to a realizable sampling scheme. Although GOProM is not a guarantee to find such

sampling schemes, it clearifies by its very detailed structure where we have to work to find new

realizable examples. In this sense, the GOProM approach also constitutes a search program for

the applications of the Prony principle. Especially in Chapter 4, this structure is used to intro-

duce a, for the Prony method, new way of data acquisation that makes almost every practically

relevant sampling scheme realizable.

The numerically useful minimal sampling property of the Generalized Prony Method in [32]

comes and goes with the Hankel and Toeplitz structure, which can be expressed as follows.
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Definition 2.3.7 (Hankel and Toeplitz structure). Let the sampling scheme be given as

S m,` := Fm ◦ Φ`
ϕ

and the sampling matrix XN,M := [S m,`]
N,M
m,`=0, N ≥ M − 1. Then

(i) S m,` only depends on m + `⇐⇒XN,M has Hankel structure,

(ii) S m,` only depends on |m − `| ⇐⇒ XN,M has Toeplitz structure.

The following lemma summarizes simple conditions for theses structures.

Lemma 2.3.8 (Conditions for Hankel and Toeplitz structure). Let the sampling scheme S m,` :=

Fm ◦ Φ`
ϕ be given as and the sampling matrix X := [S m,`]

N,M
m=0,`=0, N ≥ M − 1.

(i) If S m,` = F ◦ Ψm
ψΦ`

ϕ s. t. Ψψ = Φϕ ⇒ XN,M has Hankel structure.

(ii) If Φϕ = Ψψ and

∀ f ∈ MM (A) : Φ`−m
ϕ f = Φm−`

ϕ f

holds, then X has Toeplitz-structure.

Actually, 2M samples is the minimal number of needed samples. It is always achieved if the

matrix is a permutation of either a Hankel or a Toeplitz matrix. In special cases it is also

possible to employ symmetries to reduce the number of necessary samples to a minimum.

The next two sections are dedicated to the first examples for the application of the GOProM.
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2.3.1 Sparse Cosine Expansions

In the last few sections we have seen that the central objects to reconstruct signals f ∈ Mϕ
M (A)

are admissible sampling schemes and the corresponding sampling matrices.

In this section we demonstrate the details of GOProM on explicit examples of sparse atomic

expansions of several types; the first example is also considered in [35].

Let f be a linear combination of cosines of different frequencies α ∈ [0, π) and linear coeffi-

cients c j ∈ C that both have to be recovered, i. e.,

f (x) :=
M∑
j=0

c j cos(α jx).

Furthermore, let the generator A := d2

dx2 . It can be easily seen that

A cos(αx) = −α2 cos(αx),

which means that cos(α·) is an eigenfunction of A to the eigenvalue −α2.

The problem is that a sampling scheme directly based on the generator A is not realizable.

Thus, we have to find a suitable Φϕ to circumvent this issue. Therefore we define for a fixed

τ , 0

ϕ(z) :=
∞∑

k=0

τ2k

(2k)!
zk,

which is an analytic function on C. Moreover, the iteration operator Φϕ is given by

Φϕ = ϕ(A) =

∞∑
k=0

τ2k

(2k)!
Ak =

∞∑
k=0

τ2k

(2k)!

(
d2

dx2

)k

=
1
2

(
exp

(
τ

d
dx

)
+ exp

(
−τ

d
dx

))
=

1
2

(S τ + S −τ) ,

where S τ is the ordinary shift with parameter τ ∈ R,0. By Theorem 2.3.3 we directly know

that

Φϕ cos(αx) = ϕ(−α2) cos(αx) =

∞∑
k=0

(−1)kτ2k

(2k)!
α2k cos(αx) = cos(ατ) cos(αx).

Thus, we have found an analytical mapping ϕ such that the eigenfamily is preserved and the

mapping is injective for all α ∈ [0, π/τ]; thus, it defines an iteration operator. In turn, GOProM

can be applied; consequently, we have to evaluate the iteration of Φϕ explicitely. This is pos-

sible by the standard binomial law, since an operator obviously commutes with its inverse and

therefore

Φ`
ϕ =

[
1
2

(S τ + S −τ)
]`

=
1
2`

∑̀
k=0

(
`

k

)
S (`−k)
τ S k

−τ =
1
2`

∑̀
k=0

(
`

k

)
S (`−2k)τ.

This result can be used to formulate the following corollary for sparse cosine expansions.



30 Generalized Operator based Prony Method

Corollary 2.3.9 (Sparse Cosine Expansions). Let f ∈ Mϕ
M

(
d2

dx2

)
, M ∈ N, be a linear combi-

nation of cosine atoms with respect to frequencies α ∈ [0, πK) and τ ∈ (0, 1/K] ⊂ R, K ∈ N,

i. e.,

f (x) =

M∑
j=1

c j cos(α jx).

Then the following sampling scheme is realizable,

S m,` =
1
2`

∑̀
k=0

(
`

k

)
Fm ◦ S (`−2k)τ, m, ` ∈ N,

where Fm is an evaluation scheme. Let F( f ) = f (x0), x0 ∈ R, be a linear functional such

that |F(cos(αx0))| > 0 for all α ∈ [0, πK). The sampling matrix with respect to the canonical

evaluation scheme Fm := Fx0 ◦ S m
τ , Fx0( f ) := f (x0), is given by

XN,M( f ) :=
[
S m,`( f )

]N,M
m,`=0 =

 1
2m+`

m+∑̀
k=0

(
m + `

k

)
f (x0 + τ(m + ` − 2k))


N,M

m,`=0

and uniquely determines all cosine expansions f ∈ Mϕ
M

(
d2

dx2

)
. Actually, the matrix is made of

3M + N + 1 samples of the form F ( f (x0 + τn)), n ∈ {−2M, . . . ,M + N}.

Proof. The corollary is a consequence of Theorem 2.2.13, Corollary 2.3.4, and the calculations

above. The number of samples is

max(m + ` − 2k) −min(m + l − 2k) + 1 = N + M − (−2M) + 1 = 3M + N + 1.

In case N = M − 1, the minimal size of N, we have 4M samples to use. �

Remark 2.3.10. Since cosine is an even function, a clever evaluation can reduce the number

of necessary samples. For example, if we use the point evaluation at zero, F0( f ) = f (0), the

samples with respect to k and −k fulfill the equation f (τk) = f (−τk) and therefore we only

need to know half of the samples, i. e., 2M samples instead of 4M, in case N = M − 1.

Remark 2.3.11. Examples concerning trigonometric functions were already derived in [39, 32]

using the special properties of those expansions more directly. The advantage of the GOProM

is the constructive way in which the examples are generated, starting only with the defining

linear differential equation and ending up with a realizable sampling scheme. The operator ap-

proach has also revealed the connection of several examples sharing a common structure that

will be discussed in Section 3.3.

2.3.2 Sparse Polynomial Expansions

In this section we start with an example that is already known from the Generalized Prony

Method [32], namely sparse monomial expansions, and proceed with a new family of atoms,
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the so-called Stieltjes-Wigert polynomials.

Sparse Monomial Expansions

One of the simplest non-trivial examples for the Generalized Prony Method [32] are sparse

expansions f : R→ R into arbitrary monomials, i. e.,

f (x) :=
M∑
j=1

c jxn j ,

where n j ∈ N and c j ∈ C,0. The first step to identify a suitable GOProM is to find a generator

for the atoms. In this case, it is simply the dilation operator Dq : C(R) → C(R) with Dq f :=

f (q · ), q ∈ R+ \ {0, 1}. By (
Dq(·)n j

)
(x) = (qx)n j = qn j xn j

we see that the monomials are eigenfunctions of this operator with qn j as eigenvalues. Thus,

with the generator A := Dq the restricted point spectrum is σ̂P(A) = {qn | n ∈ N}. The family

of atoms is given by vλn = vqn = xn for n ∈ N. The next step in the GOProM approach is to

verify if the action of A and all of its powers A` are already realizable. Otherwise, it has to be

modified by a suitable mapping ϕ. Fortunately, for the dilation operator the iterated action is

simply

D`
q f = f (q`·).

This is clearly realizable and therefore we focus on the simplest version of possible sampling

schemes, namely the canonical sampling scheme

S m,` = Fm ◦ D`
q := F ◦ Dm+`

q ,

where F is a linear functional such that F(xn) , 0 for all n ∈ N, e. g., F(vqn) = 1n , 0. Based

on the considerations above, the following corollary is a direct application of Corollary 2.3.6.

Corollary 2.3.12 (Sampling Theorem for Sparse Monomial Expansions). Let f ∈ MM
(
Dq

)
be a linear combination of arbitrary monomials, i. e., f (x) =

M∑
j=1

c jxn j and F be a functional

such that |F(xn)| > 0 for all n ≤ N ∈ N, N ≥ M − 1. Then

S m,` = F ◦ Dqm+`

is a realizable and admissible sampling scheme with m + ` ∈ {0, 1, . . . ,N + M}. The sampling

matrix corresponding to the point evaluation functional F( f ) = f (1) is given by

XN,M( f ) :=
[
f
(
qm+`

)]N,M

m,`=0

and uniquely determines all sparse monomial expansions f ∈ MM
(
Dq

)
. Actually, the matrix

is made of only 2M samples of f for N = M − 1.
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Proof. It is a consequence of Corollary 2.3.6. �

Other possible choices for the functional F would be point evaluations in different x0 ∈ R,0.

In contrast, non-admissible choices for F are for example all symmetric integrals F( f ) =∫ a
−a f (x)dx, because those vanish on all odd monomials.

Stieltjes-Wigert Polynomials

Besides the monomials, in applications it is often more interesting to use orthogonal polyno-

mials as expansion atoms. Although later on general algorithms for sparse Tschebychev ex-

pansions and other Sturm-Liouville type eigenfamilies are given, as a first example of a set of

orthogonal atoms we discuss the so-called Stieltjes-Wigert polynomials. This example demon-

strates that the complicated part in finding realizable sampling schemes is the operator iteration

Φ`
ϕ. Afterwards, the evaluation scheme Fm can be chosen quite arbitrarily and it should not be

a problem to realize it.

Following the definition of the Stieltjes-Wigert polynomials in [24], a new example for the

application of the Generalized Prony Method in Corollary 2.3.6 can be given.

We first need some notation, let therefore k ∈ R+
,0 and

q := exp
(
−

1
2k2

)
.

Further we remember the definition of the q−shifted factorial for q ∈ (0, 1), namely

(a, q)0 := 1 and, (a, q)n :=
n−1∏
j=0

(1 − aq j), n ∈ N0.

With this notation, the Stieltjes-Wigert polynomials for a fixed q ∈ (0, 1) can be written as

pn(x) :=
n∑

j=0

q j2

(q, q) j(q, q)n− j
(−x) j.

These polynomials are orthogonal to each other with respect to the inner product

〈 f , g〉ω :=

∞∫
0

( f g)(x)ω(x)dx with ω(x) =
k
√
π

exp
(
−k2 log2(x)

)
.

Actually, there are other choices of inner products which preserve the orthogonality of these

polynomials.

Following Christiansen & Koelink [8], the Stieltjes-Wigert polynomials pn : R+
× → R can also

be defined as eigenfunctions of the linear operator

Lq = Dq −
1
x

(
I − D−1

q

)
,
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where Dq f (x) = f (qx) is again the dilation operator with respect to a fixed q as above. Thus,

we define pn by

Lq pn := λn pn,

where λn = qn and hence we choose the restricted point spectrum σ̂P(A) = {qn | n ∈ N}.

Since the simple action of this operator is directly realizable without any modification, we

choose ϕ(z) := z and in turn Φϕ = Lq. Now we want to reconstruct sparse expansions into

Stieltjes-Wigert polynomials by means of GOProM, i. e., we want to recover the parameters of

functions of the following form

f (x) :=
M∑
j=1

c j pn j(x).

From Corollary 2.3.6 it is known that we first have to find the explicit form of the sampling

scheme

S m,` = Fm ◦ L`q = F ◦ Lm
q L`q = F ◦ Lm+`

q ,

(m + l) ∈ {0, 1, . . . ,M + N}, that can be used to construct the concrete sampling matrices.

Although the simple action of the generator is already realizable in terms of the signal itself,

the iterated action Ln
q, n ∈ N0, is non-trivial because of the non-commutativity

Dq
1
x

(I − D−1
q ) =

1
xp

(Dq − I) ,
1
x

(I − D−1
q )Dq =

1
x

(Dq − I), q , 1.

Thus, the binomial formula cannot be employed to evaluate Ln
q and a direct expansion of such

non-commuting multinomials becomes intractable very quickly. In a first step to cope with this

problem, we calculate the commutator of both operators.

Definition 2.3.13 (Commutator). If X and Y are linear operators, their commutator is defined

as

[X,Y] := XY − YX.

They commute if and only if [X,Y] = 0.

For the example of Stieltjes-Wigert polynomials we choose X := Dq and Y := −1
x

(
I − D−1

q

)
;

thus, a short calculation delivers

[X,Y] =

(
1
q
− 1

)
YX

and in turn qXY = YX. Since we want to reduce the action of Ln
q = (X + Y)n to the iterated

actions of X and Y , we first prove a binomial law for this commutation relation.
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Lemma 2.3.14 (q-Binomial Law). If X and Y are linear operators and qXY = YX, then

(X + Y)n =

n∑
k=0

αn,k(q)Xn−kYk,

where the coefficient polynomials αn,k in q ∈ R are recursively defined by

αn,k(q) = qn−kαn−1,k−1(q) + αn−1,k(q),

with αn,k(q) = 0 for all k ∈ N \ {0, 1, . . . , n} and αn,k = 1 if k ∈ {0, n}.

Proof. By using the commutation relation qXY = YX, the first few coefficient polynomials can

be calculated.

(X + Y)0 = 1I (X + Y)1 = X + Y (X + Y)2 = X2 + (1 + q)XY + Y2 ;

thus,
α0,0 = 1

α1,0 = 1 α1,1 = 1

α2,0 = 1 α2,1 = 1 + q α2,2 = 1.

This gives the result for the base case. Furthermore, for all k < 0 or k > n the coefficient

polynomials have to be zero. The induction step is then

(X + Y)n+1 = (X + Y)
n∑

k=0

αn,k(q)Xn−kYk =

n∑
k=0

αn,k(q)Xn+1−kYk +

n∑
k=0

αn,k(q)qn−kXn−kYk+1

=

n∑
k=0

αn,k(q)Xn+1−kYk +

n+1∑
k=1

αn,k−1(q)qn+1−kXn+1−kYk

= αn,0(q)Xn+1 +

n∑
k=1

(
αn,k(q) + αn,k−1(q)qn+1−k

)
Xn+1−kYk + αn,n(q)Yn+1

= Xn+1 +

n∑
k=1

(
αn,k(q) + αn,k−1(q)qn+1−k

)
Xn+1−kYk + Yn+1

=

n+1∑
k=0

αn+1,k(q)Xn+1−kYk.

�

By using this lemma, the iterated action Ln
q can be reduced to the simpler actions of X and Y . In

particular, the iteration of X = Dq is given by Xn−k = Dqn−k and therefore obviously realizable.

In contrast, the action of

Y = −
1
x

(
I − D−1

q

)
=

1
x

D−1
q −

1
x

I

is a sum of two operators X′ := 1
x D−1

q and Y ′ := −1
x I. Following this notation, Y can be

expressed as

Y = X′ + Y ′.
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Fortunately, X′ and Y ′ commute also up to a factor by 1
q X′Y ′ = Y ′X′. Therefore, Lemma 2.3.14

can be applied again and we have

Yk = (X′ + Y ′)k =

k∑
s=0

αk,s

(
1
q

)
X′k−sY ′s.

The iteration of Y ′ is given by

Y ′s =

(
−

1
x

I
)s

= (−1)s 1
xs I

and is therefore realizable. Moreover, the iteration of X′ can be seen to be

X′k−s =

(
1
x

D−1
q

)k−s

= q
1
2 (k−s−1)(k−s) 1

xk−s Dq−(k−s)

by a short calculation. Since every action is now reduced to simply realizable scaling operators,

we get the final result for this type of polynomials.

Corollary 2.3.15 (Sampling Theorem for Stieltjes-Wigert Polynomials). Let f ∈ MM
(
Lq

)
,

q ∈ (0, 1), be a finite linear combination of arbitrary Stieltjes-Wigert Polynomials pn j , i. e.,

f (x) :=
M∑
j=1

c j pn j(x).

Let further F be a linear functional such that 0 < |F(pn)| < ∞ for all n ≤ N ∈ N, N ≥ M − 1.

Then an admissible sampling scheme is given by

S m,` := F ◦ Ln
q =

n∑
k=0

k∑
s=0

ωn,k,s(q)
1

xk+s−1 F ◦ Dqn−2k+s ,

where n := m + ` ∈ {0, . . . ,M + N}, and

ωn,k,s(q) := αn,k(q)αk,s

(
1
q

)
(−1)sqκn,k,s ,

with κn,k,s := 1
2 (k− s−1)(k− s)+ s(2k− s−n)−(k−1)(n−k). The sampling matrix corresponding

to the point evaluation functional F( f ) := F1( f ) = f (1) is given by

XN,M( f ) :=

 n∑
k=0

k∑
s=0

ωn,k,s(q)
1

xk+s−1 f
(
qn−2k+s

)
N,M

m,`=0

and uniquely determines all sparse Stieltjes-Wigert expansions f ∈ MM
(
Lq

)
. Actually, the

matrix is made of only 2M samples of f if N = M − 1.

Proof. This is a direct consequence of Corollary 2.3.6 and a backwards substitution of the

results above. The number of samples is determined by 0 ≤ n−2k + s ≤ n, where k ∈ {0, . . . , n}
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and s ∈ {0, . . . , k}. It is clear that 2M samples of the form F(Dq` f ) with ` ∈ {0, 1, . . . , 2M − 1}

are enough for reconstruction, which is achieved for N = M − 1. �

It is emphasized that this is only one possible sampling theorem, since we have quite a bit of

freedom in choosing the evaluation scheme. In particular, the monomial and Stieltjes-Wigert

example demonstrate again that any expansion generated by a finite linear combination of op-

erators with realizable actions can be directly handled with the Generalized Prony Method. In

principle, it is always possible to calculate an explicit expression for the iteration of superim-

posed operators Xk, k ∈ N, i. e.,

An :=

∑
k=1

Xk

n

.

The problem is that these expressions become very quickly intractable in length and complexity

if n gets bigger. The sampling schemes based on a very high number of different operator

combinations are likely to be difficult to handle in practice, which makes it complicated to

realize the sampling scheme. In terms of implementability this is not desirable and we should

always try to find the simplest expression available.

The commutation relation in the Stieltjes-Wigert example is only a special case of a more

general commutation by an arbitrary monomial power of a known parameter, i. e., qsXY = YX.

In this case we always have a binomial law type expansion in terms of the so called q-binomial

coefficient or Gaussian polynomials
(
n
k

)
q
. Their iterated actions can be even explicitly given for

all powers in the following form

(X + Y)n =

n∑
k=0

(
n
k

)
q
XkYn−k.

A detailed definition and discussion of this and other useful expansions of non commuting op-

erators can be found in [16, 21]. Many other possible atoms defined by difference equations

are discussed in [22].

Once those samples are realized, the linear systems, which are the heart of GOProM, can be

constructed and the algorithm can be applied. Therefore, the main problem is always how to

get those samples.

In summary, the crucial point which distinguishes GOProM from all former approaches is the

clear separation of the following steps.

1. Define a signal spaceM (A) based on the eigenfunctions of the generator A.

2. Determine whether this generator already has a realizable action.

3. If it has no such simple action, try to find a modification Φϕ which has one, and determine

the restricted signal spaceMϕ (A).

4. Find a law for the iterated action Φ`
ϕ.
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5. Choose a realizable and admissible evaluation scheme Fm to get an admissible sampling

scheme S m,` = Fm ◦ Φ`
ϕ.

6. Determine the order M of the signal model and

7. construct the sampling matrix XN,M according to the sampling scheme S m,`.

8. Apply GOProM to recover f ∈ Mϕ
M (A).

After having seen that the most complicated steps are finding the explicit action of the iteration

operator and the iteration law, the next section introduces a wide class of atoms which has

suprisingly simple actions and easily tractable iteration laws. This class already covers all

realizable examples which have been known so far.



38 Generalized Operator based Prony Method



CHAPTER 3

Generalized Exponential Prony Method

All truths are easy to understand
once they are discovered; the point
is to discover them.

Galileo Galilei

This section presents a class of applications for GOProM which is a natural generalization

of Prony’s method. Although examples for this class are already known, e. g., finite linear

combinations of monomials, in the Prony context they were not considered as part of the class

of exponential atoms before. With the theory of Chapter 2 at hand, the corresponding signal

model can be easily derived and the algorithms are particularly simple to implement.

As a motivation we start again with the basic Prony method. The signal model is the set of all

finite linear combinations of complex exponentials, i. e., functions of the form

f (x) =

M∑
j=1

c j exp(λ jx) =
∑
λ∈Λ

cλvλ(x),

where Λ = {λ1, . . . , λM}. The generator A = d
dx is the ordinary derivative, the analytical

mapping ϕ = exp(τ·), where τ ∈ R,0 is a sampling parameter, and an admissible evaluation

scheme Fm = F ◦ Φm
ϕ is simply generated by the iteration operator Φϕ = exp

(
τ d

dx

)
= S τ

with respect to the point evaluation functional F := Fx0 , x0 ∈ R. This leads to the canonical

sampling scheme

S m,` = Fm ◦ Φ`
ϕ = F ◦ Φm

ϕΦ`
ϕ = Fx0 ◦ S (k+`)τ,

as seen in former sections. Besides this concrete example, we can ask for more general linear

operators and their exponential actions. As a first step in this direction, we make the following

formal calculation,

exp(τA) f = exp(τA)
∑
λ∈Λ

cλvλ =
∑
λ∈Λ

cλ exp(τA)vλ =
∑
λ∈Λ

cλ exp(λτ)vλ.

This looks quite promising, since it reproduces the classical Prony form up to the functions

vλ. Nevertheless, the major issue in the examples given so far was the action of the iteration

operator for an arbitrary integer power ` ∈ N, namely Φ`
ϕ. Especially in the Stieltjes-Wigert
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example, the iteration law was non-trivial and one can easily imagine that this gets even more

complicated for other commutators besides the relatively simple case of commutation up to a

constant. Fortunately, for exponential operators this iteration is as simple as for exponential

functions, i. e.,

Φ`
ϕ = (exp(τA))` = exp(`τA).

Therefore, if we use a suitable evaluation scheme Fm, for example Fm = F ◦ Φm
ϕ , we get the

following equation as a consequence of Lemma 2.3.3,

S m,`( f ) = F
(
Φm
ϕΦ`

ϕ f
)

= F
(
exp(τA)m exp(τA)` f

)
= F

(
exp(τmA) exp(τ`A) f

)
= F

(
exp(τ(m + `)A) f

)
=

∑
λ∈Λ

cλF(vλ) exp(λτ(m + `)) =
∑
λ∈Λ

c̃λ exp(λτ(m + `)),

where c̃λ := cλF(vλ). In this sense, the classical Prony problem is restored by using the expo-

nential of the generator. As long as the action of this exponential iteration operator is known,

we can reconstruct Λ and {cλ}λ∈Λ and thereby identify the function f =
∑
λ∈Λ

cλvλ. Moreover, let

t ∈ R be interpreted as a variable instead of a fixed sampling parameter like τ before. Then it

also holds that

ρt( f ) := F
(
exp(tA) f

)
=

∑
λ∈Λ

c̃λ exp(λt), (3.1)

where the coefficients c̃λ are defined as above. This can be seen as a parametric transform

ρt :M (A)→M
(

d
dt

)
ρt

∑
λ∈Λ

cλvλ

 =
∑
λ∈Λ

c̃λ exp(λt),

where we map a general sparse signal spaceM (A), parameterized by t ∈ R, to a basic expo-

nential signal space with t as the variable.

The identifiability is guaranteed under the same restrictions as for the classical Prony method

and the assumption that the functional F exists and does not vanish on the eigenfunctions of A

for all λ ∈ σ̂exp
P (A).

Actually, this kind of transform is implicitly used by Mourrain in [29] to derive a Prony-like

algorithm. There the mapping ρt is called the generating sequence

ρn( f ) = F(exp(nA) f ) for n ∈ N

of f if it is evaluated at the integers. Mourrain developed a multivariate Prony method for

the reconstruction of sparse atomic signals including also generalized eigenfunctions. The

approach is intrinsically connected with Hankel operators and their corresponding matrices.

Therefore, it is not clear how to generalize it directly to sampling schemes where the Hankel

structure is missing, for example, the cosine or the new Stieltjes-Wigert expansions.
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3.1 Exponential Operators and Operator Semi-Groups

Before introducing the Generalized Exponential Prony Method (GEProM) formally, we discuss

some issues concerning exponential operators in general, following [15]. In particular, this

section shows that parametric iteration operators as above always have an exponential form

and are well behaved.

The major obstacle on the way to a realizable sampling scheme, even for trivial actions Φϕ, is

the iteration law for Φ`
ϕ. Despite this issue for other examples, we have learned from the basic

Prony method that an exponential iteration operator can yield very simple iterative actions. In

particular, the motivating calculation before has shown that the key property which makes it

possible to simplify the iteration in many cases can be formulated in the following terms:

∀n ∈ N0 : Φn
ϕ = ϕ(nA). (3.2)

This means that instead of finding a decomposition of the operator Φϕ into a sum of realizable

operators, just to get a possibly untractable multinomial law for the iterations Φn
ϕ afterwards,

we only need to know the parametric action of ϕ(nA). Of course, this may be also challenging,

but in some cases we are thereby able to simplify the iteration tremendously. Although we

know that Φϕ = exp(τA) fulfills this property, it is not obvious whether the special form of the

iteration law in (3.2) already determines that Φϕ has an exponential representation.

Therefore, at first let Φϕ be an iteration operator with parametric iteration law as in (3.2). If we

also want to rescale with a sampling parameter τ ∈ R arbitrarily, we have to assume that

∀h ∈ R+ : Φ(hA)n = ϕnh(A) = ϕ(nhA),

which is implied by

∀t ∈ R+ : Φt
ϕ = ϕ(tA). (3.3)

Substituting t := x + y ∈ R+, this can also be written as

∀x, y ∈ R+ : Φx
ϕΦ

y
ϕ = ϕx(A)ϕy(A) = ϕx+y(A) = ϕ((x + y)A).

If we now substitute Tt := Φt
ϕ we get

∀x, y ∈ R+ : Tx+y = TxTy = TyTx, (3.4)

which is one of the defining properties of a semi-group of operators. Moreover, from a sampling

point of view it seems quite natural to define T0 := I. This leads to the well-known concept of

a semi-group of operators.



42 Generalized Exponential Prony Method

Definition 3.1.1 (One-parametric Semi-Group of Operators). A family of linear operators
(Tt)t≥0 on a Banach space is called one-parametric semi-group, if

Tx+y = TxTy ;∀ x, y ∈ R+ and T (0) := I.

It is called one-parametric group if the factorization even holds for all x, y ∈ R.

Since we derived this definition from a property of the exponential iteration operator, the two

following questions are natural.

1. For which generators are exponential iteration operators well-defined?

2. Can we use other ϕ besides the exponential power series to yield the same parametric

sampling structure as in (3.2)?

To answer these questions we have to assume from now on that V is at least a Banach space

equipped with

‖A‖ := sup
‖ f ‖=1

‖A f ‖,

the operator norm.

Definition 3.1.2 (Bounded Operators). An operator A : V → V is called bounded if and only

if

‖A‖ := sup
‖ f ‖=1

(‖A f ‖) < ∞.

Furthermore, for all bounded operators we can define uniform continuity as follows.

Definition 3.1.3 (Uniform Continuity). A one-parametric semi-group of operators Tt, t ∈ R+,

is uniformly continuous if

lim
h→0
‖Tt+h − Tt‖ = 0,

with respect to the operator norm.

With these definitions at hand, both questions above can be answered.

Theorem 3.1.4. Let V be a Banach space, then the following holds.

1. If A : V → V is bounded,
(
exp(tA)

)
t≥0 is a uniformly continuous semi-group.

2. If (Tt)t≥0 is a uniformly continuous semi-group, a linear bounded operator A exists such

that

Tt = exp(tA).

Proof. We only prove the first assertion because the second one would need theory which is

not in the scope of this thesis. The second assertion is a consequence of Theorem 3.5 and 3.7
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in [15].

First we show that exp(tA) =
∞∑

k=0

tk
k! Ak is well-defined which is true since A is bounded:

‖ exp(tA)‖ = ‖

∞∑
k=0

tk

k!
Ak‖ ≤

∞∑
k=0

tk

k!
‖A‖k = exp(t‖A‖) < ∞.

Therefore,

‖(exp((t + h)A) − exp(tA))‖ = ‖ exp(tA)(exp(hA) − I)‖ ≤ exp (t · ‖A‖) ‖(exp(hA) − I)‖,

and in turn it is sufficient to show that ‖ exp(hA) − I‖ → 0 for h→ 0, which is true since

‖ exp(hA) − I‖ =

∥∥∥∥∥∥∥
∞∑

k=1

hk

k!
Ak

∥∥∥∥∥∥∥ ≤ exp(|h| · ‖A‖) − 1
h→0
−→ 0.

The semi-group property can be assured by using the Cauchy product:

exp(tA) exp(hA) =

∞∑
k=0

k∑
s=0

tk−sAk−s

(k − s)!
hkAk

k!
=

∞∑
k=0

(t + h)kAk

k!
= exp((t + h)A).

�

This actually answers two questions. First, if we have a bounded generator, the exponential

iteration operator is defined for all non-negative real powers and we can easily construct a sam-

pling matrix with a Hankel structure by using the canonical sampling scheme. The Hankel

structure of this specific sampling matrix is a consequence of Lemma 2.3.8. Second, if we

already have a realizable iteration operator which is uniformly continuous, it possesses expo-

nential structure and we can find a corresponding bounded generator. Moreover, the theorem

shows that we even have a group structure, since the exponential operator is actually defined

for all real powers t ∈ R. Although a bounded operator A can be singular, the exponential

iteration operator is always invertible due to

exp(−tA) exp(tA) = exp(tA) exp(−tA) = exp(0A) = I.

Remark 3.1.5. In the theory of operator semi-groups and dynamical systems, the iteration

operator Φϕ = exp(A) is called evolution operator, since it determines the time-evolution of a

linear system by formally solving a generalized Cauchy boundary value problem. In particular,

exponential operators play an important role in quantum mechanics where they are used to

investigate solutions of generalized difference equations, as for example done in [10, 12, 11].

Particularly, the special exponential operators discussed in the next section are of interest in

this field.
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3.2 Generalized Exponential Prony Method

Following the discussion in Section 2.2, the Generalized Exponential Prony Method (GEProM)

can be easily derived by setting Φϕ := exp(τ·) for a fixed τ ∈ R,0, and subsequently choosing

the other terms accordingly. So far, the discussion of this special case revealed a few advan-

tages:

1. a smooth structure of the sampling scheme

2. parametric iteration laws

3. invertibility of the iteration operator and therefore group structure

4. reduction of an arbitrary model to the classical exponential problem

5. possibility of using all existing Prony-like algorithms for the reconstruction

Since all results are consequences of Theorem 2.2.13 or even explicitly discussed in the intro-

duction, we summarize the GEProM in the following theorem.

Theorem 3.2.1 (Generalized Exponential Prony Method). Let A : V → V be a generator of

the signal model MM (A) with non-empty point spectrum σ̂P(A) ∩ R × i [0, 2π) , ∅, Φϕ :=

exp(τA) be a realizable iteration operator with sampling parameter τ ∈ R,0. Furthermore, the

restricted point spectrum is σ̂exp
P (A) ⊆ R × i

[
0, 2π

τ

)
. Then the sampling scheme

S m,` := Fm ◦ exp(`τA)

is admissible and realizable, if Fm is an admissible evaluation scheme. If we choose the canon-

ical evaluation scheme Ft := F ◦ exp(tA) such that |F(vλ)| > 0 and t ∈ R,0, we get the

transform

ρt :M (A)→M
(

d
dt

)
ρt

∑
λ∈Λ

cλvλ

 =
∑
λ∈Λ

c̃λ exp(λt),

where c̃λ = cλF(vλ). The sampling matrix for the canonical sampling scheme is given by

XN,M( f ) =
[
F

(
exp(τ(m + `)A

)
f )
]N,M
m,`=0

which uniquely determines all sparse expansions f ∈ Mexp
M (A). The matrix size is determined

by the signal order M ∈ N and the number of rows N ∈ N, N ≥ M−1. If we choose N = M−1,

we only need 2M samples.

Proof. Although all assertions are implied by Theorem 2.2.13, we shortly discuss the assump-

tions in the theorem above. The first one is

σ̂P(A) ∩R × i [0, 2π) , ∅.
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This property guarantees that we always find a non-empty subset of eigenvalues and injectively

corresponding eigenfunctions such that

∀λ ∈ σ̂
exp
P (A) ⊆ σ̂P(A) ∩R × i [0, 2π) : λ→ ϕ(λ) is injective .

In turn, we can uniquely identify the active λ by the zeros ϕ(λ) = exp(τλ) of the generalized

Prony polynomial. The admissibility of Fm := F ◦ exp(τmA) is guaranteed by Theorem 2.3.4

under the assumption that 0 < |F(vλ)|. The transform ρτm+l is the same as in equation (3.1),

where t := τm + l. �

In the following examples of this section, we focus on analytical schemes. Although this

sounds very straightforward, the difficult part is actually to find the explicit expressions of the

iteration operator and its iterated action. The rest of the chapter is devoted to examples where

these actions are realizable and it is shown that most of the classical applications of the Prony

method are already covered by these terms.

3.2.1 Generalized Shift Operators

Section 3.1 gave a general result for bounded operators which shows the importance of ex-

ponential operators concerning natural sampling schemes. Still, many of the interesting cases

we will see are based on unbounded generators. In general, the theory for semi-groups be-

comes slightly more complicated in this case. Fortunately, we are only interested in functions

f ∈ M (A), and as discussed before, A and all possible iteration operators Φϕ are well-defined

on this set.

In this section we want to use a specific analytic sampling scheme to reconstruct sparse expan-

sions f : [x0, x1]→ C, with x0, x1 ∈ R, such that

f (x) :=
∑
λ∈Λ

cλ
exp (λG(x))

H(x)
, (3.5)

where cλ ∈ C and λ ∈ R × i[0, 2π). This signal model generalizes the classical Prony method,

where it held that G(x) = x and H(x) ≡ 1. We assume that the function G : [x0, x1] → R is of

the form

G(x) :=
∫ x

x0

1
g(y)

dy, (3.6)

where g : [x0, x1] → R is continuous and non-zero. Thus, the so-called phase function G is

differentiable and monotone. The function 1/g can be seen as the change in phase and therefore

it is called instantaneous phase function. In addition, we assume that H : [x0, x1] → R is

defined by

H(x) := exp
(∫ x

x0

a(y)
g(y)

dy
)
, (3.7)

where g is the same function as in the definition of G and a : [x0, x1]→ R is assumed to be in-

tegrable and chosen such that H is non-zero. Actually, by these assumptions the atoms vλ(x) :=
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exp λG(x)
H(x) form a one-parametric eigenfamily of the generator A : C1[x0, x1]→ C[x0, x1]

A :=
(
g(x)

d
dx

+ a(x)I
)
,

since

Avλ(x) =

(
g(x)

d
dx

+ a(x)I
)

exp (λG(x))
H(x)

=

(
g(x)

d
dx

+ a(x)I
)

exp

λG(x) −

x∫
x0

a(y)
g(y)

dy


= g(x)

(
λ

1
g(x)

−
a(x)
g(x)

)
exp

λG(x) −

x∫
x0

a(y)
g(y)

dy

 + a(x) exp

λG(x) −

x∫
x0

a(y)
g(y)

dy


= (λ − a(x) + a(x)))

exp(λG(x))
H(x)

= λvλ(x).

By using ϕ := exp(τ·), we get an analytic iteration operator, which is well-defined since exp is

an entire function. In contrast to the case of a bounded operator A, the iteration operator

Φϕ := ϕ(A) = exp (τA) ,

where τ ∈ R,0, does not have to be uniformly continuous anymore. It is not even clear that

exp(τA) exists on the whole domain of A. Therefore, we restrict ourselves to the signal space

M (A), because there the iteration operator is always well-defined.

Eventually, it remains to evaluate the parametric action of the semi-group exp(τA), that is given

for all f ∈ M (A) by the following lemma.

Lemma 3.2.2 (Generalized Shift Operators). Let the generator A :=
(
g d

dx + aI
)

on V :=

C1[x0, x1] with x0 < x1 ∈ R and a, g : [x0, x1] → R be given as in (3.6) and (3.7). The

action of exp(tA) on all f ∈ M (A) ⊂ V is given by

exp(tA) f (x) =
H

(
G−1 (t + G(x))

)
H(x)

f
(
G−1 (t + G(x))

)
for all t ∈ R.

Proof. It is sufficient to prove the action for an arbitrary element f ∈ M (A). Let us first

consider the exponential action of the simpler operator

Ǎ := g(x)
d
dx
,

where a ≡ 0, i. e., for the eigenfunctions v̌λ(x) = H(x) vλ(x) = exp(λG(x)). By Lemma 2.3.3

for analytic functions, we know that

exp(τǍ) v̌λ = exp(λτ) v̌λ,
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and thus

exp(τǍ) v̌λ(x) = exp(λτ) exp(λG(x)) = exp(λ(τ + G(x)))

= exp
(
λG

(
G−1 (τ + G(x))

))
= v̌λ

(
G−1 (τ + G(x))

)
.

The same calculation can now be done for the generator A

exp(τA) vλ(x) = exp(λτ) vλ(x) = exp(λτ)
exp(λG(x))

H(x)
=

1
H(x)

exp(λ(τ + G(x)))

=
1

H(x)
exp

(
λG

(
G−1 (τ + G(x))

))
=

1
H(x)

exp(τǍ)(H(x) · vλ(x))

=

exp
(
τǍ

)
H(x)

H(x)

 exp(τǍ)vλ(x),

which proves the lemma for all vλ with λ ∈ C and in turn for all f ∈ M (A). �

Remark 3.2.3. If there is a dense subfamily of vλ in C[x0, x1] the action is actually the same

for all f ∈ C[x0, x1].

The action of generalized shift operators is obviously realizable and can directly be used to

define an admissible sampling scheme S m,` := F ◦ exp ((m + `)τA) , where F is a linear func-

tional such that 0 < |F(vλ)| < ∞. Since the action of the iteration operator is quite simple,

it is reasonable to use a canonical evaluation scheme Fm := F ◦ exp(τmA). The results are

summarized in the following theorem.

Theorem 3.2.4 (Sparse General Exponential Expansions). Let

g : [x0, x1]→ R and a[x0, x1]→ R

be functions as in (3.6) and (3.7), respectively. Furthermore, let A := g d
dx + aI be a generator

of

M
exp
M (A) :=

∑
λ∈Λ

cλ
exp (λG(x))

H(x)

∣∣∣∣∣∣∣ cλ ∈ C ∧ Λ ⊂ σ̂
exp
P (A) ∧ |Λ| = M ∈ N

 ,
with H(x) = exp

(∫ x
x0

a(y)
g(y) dy

)
and G(x) =

∫ x
x0

1
g(y) dy, then Φϕ := exp(τA), with τ ∈ R,0, is

an iteration operator with the restricted point spectrum σ̂
exp
P (A) = R × i[0, 2π/τ]. Given a

canonical evaluation scheme Fm := F ◦ exp(τmA) such that 0 < |F(vλ)| < ∞ for all λ ∈ σ̂P(A),

then

S m,` = F ◦

H
(
G−1(τ(m + `) + G(·))

)
H(·)

f
(
G−1(τ(m + `) + G(·))

)
is an admissible sampling scheme. Using the point evaluation in x0, it holds for the sampling

matrix

XN,M( f ) :=
[
F

(
H

(
G−1(τ(m + `))

)
f
(
G−1(τ(m + `))

))]N,M

m,`=0
,

where N ≥ M − 1, is sufficient for the reconstruction of f ∈ Mexp
M (A) by GEProM.
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Proof. The existence of the inverse G−1 is ensured because G is strictly monotone and continu-

ously differentiable by definition of g. Lemma 3.2.2 and Theorem 2.2.13 provide the rest. The

sampling matrix is achieved by using the point evaluation of exp(τ(m + `)A) f , f ∈ Mexp
M (A)

and A as in (3.2.4), in the lower bound x0 of the definition of G in (3.6), i. e., Fx0 f = f (x0).

|x0| < ∞, of the integral G(x) =
∫ x

x0

1
g(y) dy, because G(x0) = 0 holds by definition for any choice

of g.

The great advantage of the point evaluation in the lower bound is that it guarantees admissibility

due to

F (vλ) = F
(
exp (λG(x0))

)
= 1 , 0.

�

In particular, XN,M( f ) has Hankel structure and therefore it is possible to get a minimal sam-

pling matrix, with only 2M distinct entries if we set N = M − 1.

Table 3.1 summarizes some examples for several functions G. For convenience, the function

H is set constant to one, i. e., a(x) = 0 for all x. The evaluation functional F( f ) = f (x̃) was

chosen to be the point evaluation at x̃ ∈ [x0, x1] ⊆ R.

Inst. Phase: g Phase Fct.: G Atoms: vλ Sampling Scheme: S m,`

−1/x − 1
2 x2 exp

(
−λ2 x2

)
f
( √

x̃2 − τ(m + `)
)

1 x exp(λx) f (τ(m + `) + x̃)

x log(x) xλ f
(
eτ(m+`) x̃

)
−
√

1 − x2 arccos x exp(λ arccos x) f (cos(τ(m + `) + arccos(x̃)))
√

1 − x2 arcsin x exp(λ arcsin x) f (sin(τ(m + `) + arcsin(x̃)))
1

cos(x) sin x exp(λ sin x) f (arcsin(τ(m + `) + sin(x̃)))

− 1
sin(x) cos x exp(λ cos x) f (arccos(τ(m + `) + cos(x̃)))

Table 3.1: Examples concerning the GEProM with sampling parameter h

The function H can be seen as an almost arbitrary amplitude function, that is known and can

therefore be removed before the actual group action takes place. In the basic Prony method the

evaluation functional is simply the point evaluation in zero, which yields the simplest sampling

scheme. Such a simplification can often be derived by using a suitable point evaluation func-

tional. A reasonable example is given in the proof of Theorem 3.2.4.

The rest of the section is devoted to several examples, including cosine expansions from a more

general point of view and linear combinations of arbitrary Chebychev polynomials.

Sparse Exponential Cosine Expansions

Atomic decompositions into linear combinations of functions exp(λ cos(x)) as in Table 3.1 play

an important role in the field of electromagnetic engineering, e. g., [26]. Therefore, they are

worth a closer investigation by means of GEProM in Theorem 3.2.4. In this example it is shown
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how to reconstruct functions f : R→ C of the type

f (x) =
∑
λ∈Λ

cλ exp(λ cos(x))

in terms of generalized shift operators. The corresponding signal model is

M
exp
M (A) :=

∑
λ∈Λ

cλ exp(λ cos(x))

∣∣∣∣∣∣∣ cλ ∈ C \ {0} ∧ Λ ⊂ σ̂
exp
P (A) ∧ |Λ| = M ∈ N

 ,
where τ ∈ R,0 is a sampling parameter and σ̂exp

P (A) = R × i[0, 2π/τ). The atoms are defined

as

vλ(x) := exp (λ cos(x)) : R→ C.

The first derivative of vλ using the chain rule delivers the corresponding generator

A := −
1

sin(x)
d
dx

: C1
[
π

2
, π

)
→ C

[
π

2
, π

)
,

that is the generator of a generalized shift, as in Lemma 3.2.2, with 1/g(y) = − sin(y) and a ≡ 0.

Thus,

G(x) =

x∫
x0

1
g(y)

dy =

x∫
π/2

− sin(y)dy = cos(x).

Furthermore, since a ≡ 0 we have that H(x) = exp
(∫ x
π/2

0
g(y) dy

)
= 1. The inverse of G : [0, π]→

[−1, 1] is given by

G−1 : [−1, 1]→ [0, π]

G−1(x) = arccos(x)

From Theorem 3.2.4 it is known that the following sampling matrix is sufficient for reconstruc-

tion of f ∈ Mexp
M (A),

XN,M( f ) :=

F
H

(
G−1(τ(m + `))

)
H(·)

f
(
G−1(τ(m + `))

)


N,M

m,`=0

=
[
f (arccos(τ(m + l))

]N,M
m,`=0 .

Here we used the point evaluation Fπ/2 f (x) = f (π/2) as evaluation functional and the evalua-

tion scheme Fm := Fπ/2 ◦ exp(τA). This evaluation scheme is admissible since

0 < Fπ/2(vλ) = 1 < ∞.

Eventually, we know that τ(m + `) ∈ [−1, 1] has to be fulfilled and therefore τ ∈ [−1/N̂, 1/N̂],

N̂ = M + N − 1, but τ is assumed to be positive; thus τ ∈ (0, 1/N̂]. This implies that we can

reconstruct any λ ∈ [0, 2πN̂] and in turn GEProM can reconstruct any f ∈ Mexp
M

(
− 1

sin(x)
d
dx

)
by

adjusting the sampling parameter τ.
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Piecewise Equidistant Sampling

If we forget the theory behind the generalized shift operators for a moment, we can think of

more general examples for G and H than only differentiable functions. The only properties

which have to be imposed on them to achieve the eigenstructure necessary for the reconstruc-

tion of

f (x) =
∑
λ∈Λ

cλ
exp (λG(x))

H(x)
: I → C

are continuity and monotonicity, that are sufficient for the existence of G−1. The function H

only has to be continuous and unequal to zero over the whole interval I ⊆ R and in turn either

strictly smaller or greater than zero. We define the generalized shift operator for all t ∈ R

directly by

Tt,G,H f (x) :=
H

(
G−1 (t + G(x))

)
H(x)

f
(
G−1 (t + G(x))

)
.

Thus, it is clear by

Tt,G,H vλ(x) = Tτ,G,H
exp (λG(x))

H(x)
=

H
(
G−1(τ + G(x))

)
H(x)

exp
(
λG(G−1(τ + G(x)))

)
H

(
G−1(τ + G(x))

)
=

exp (λG(x))
H(x)

exp(λτ) = exp(λτ)vλ(x)

that the atoms in the expansion above are eigenfunctions of Tτ,G,H and the action is realizable.

This enables for instance the use of piecewise defined polynomials, for example,

G(x) :=



x x ∈ (−∞, 0]

0.8x x ∈ (0, 1]

2x − 1.2 x ∈ (1, 2]

0.1x + 2.6

G−1(x) :=



x x ∈ (−∞, 0]
5
4 x x ∈ (0, 1]
1
2 (x + 1.2) x ∈ (1, 2]

10(x − 2.6) x ∈ (2,∞) .

This corresponds to a change in the sampling frequency during the measurement process which

has to be compensated afterwards.

Remark 3.2.5 (Mixed Generalized Shift Generators). If we assume that for all j ∈ {1, 2, . . . , d}

the operators

g j
d
dx

: C1[x0, x1]→ C[x0, x1],

x0, x1 ∈ R, are the generators of generalized shifts, a j ∈ C[x0, x1], and the linear combination

Ã :=
d∑

j=1

α j exp
(
g j

d
dx

)

is well-defined with known eigenfamily vλ, then we always get a realizable sampling scheme

by

S m,` = Fm ◦ Ã`,
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since it is made of operators with realizable actions. Operators of the form of Ã include, for

instance, all difference operators with constant coefficients. Another example of this form are

the Stieltjes-Wigert polynomials from Corollary 2.3.15, which have the generator

Lq := Dq +
1
x

D−1
q −

1
x

I = exp
(
τx

d
dx

)
+

1
x

exp
(
−τx

d
dx

)
−

1
x

exp
(
0x

d
dx

)
,

where q := exp(τ). The connection of the dilation operator and its exponential representation

can be seen in Table 3.1.

In the last examples we always already knew the generators to the desired atoms. In the follow-

ing section we give an example with a non-trivial and in some sense non-intuitive generator,

that has to be found first.

3.2.2 Sparse Expansions into Gaussian Chirps

A signal model which is often encountered in signal processing and other fields of electrical

engineering are sparse sums of so called Gaussian chirps, i. e., atoms vµ,ω : R→ C of the form

vµ,ω(x) := exp
(
−

1
2σ2 (x − µ)2

)
exp (iω(x − µ)) ,

where σ2 ∈ R+
× is a known scale parameter, µ ∈ R is an unknown time-shift, and ω ∈ [0, 2π)

an unknown frequency parameter determining the imaginary and real oscillation pattern of the

signal. In this section we want to reconstruct sparse expansions into those atoms, namely

f (x) :=
M∑

k=1

ck exp
(
−

1
2σ2 (x − µk)2

)
exp (iωk(x − µk)) ,

where ck, µk and ωk are the unknown parameters. They are used to model signals of damped

complex oscillations, for example, to describe natural speech signals [27, 46].

First of all, we define λ := µ + iσ2ω to write these atoms in a more compact form,

vµ,ω(x) : = exp
(
−

1
2σ2 (x − µ)2 + iω(x − µ)

)
= exp

(
−

1
2σ2

(
x2 − 2µx + µ2

)
+ iω(x − µ)

)
= exp

(
−

1
2σ2

(
x2 − 2µx + µ2 − 2iσ2ωx + 2iσ2ωµ

))
= exp

(
−

1
2σ2

(
x2 − 2µx + µ2 − 2iσ2ωx + 2iσ2ωµ − σ4ω2 + σ4ω2

))
= exp

(
−

(σω)2

2

)
exp

(
−

1
σ2

(
x2 − 2(µ + iσ2ω)x + (µ + iσ2ω)2

))
= exp

(
−

(σω)2

2

)
exp

(
−

1
σ2

(
x2 − 2λx + λ2

))
= exp

(
−

(σω)2

2

)
exp

(
−

1
2σ2 (x − λ)2

)
.
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Thus, we can rewrite the Gaussian chirps more compactly as

vµ,ω = exp
(
−

(σω)2

2

)
vλ,

where vλ(x) := exp
(
− 1

2σ2 (x − λ)2
)
. Since we are only interested in the reconstruction of linear

combinations we can rewrite f (x) as

f (x) :=
M∑

k=1

ck exp
(
−

1
2σ2 (x − µk)2

)
exp (iωk(x − µk)) =

M∑
k=1

c̃k exp
(
−

1
2σ2 (x − λk)2

)
,

where c̃k := ck exp
(
−

(σω)2

2

)
∈ C. In contrast to the cosine and piecewise polynomial example,

it is not obvious which generator corresponds to these atoms. Therefore we start by deriving

the generator. For this reason, the first derivative of vλ is calculated, that is

d
dx

exp
(
−

1
2σ2 (x − λ)2

)
= −

1
σ2 (x − λ) exp

(
−

1
2σ2 (x − λ)2

)
−σ2 d

dx
vλ = xvλ − λvλ,

and a rearrangement yields the equation(
σ2 d

dx
+ x I

)
vλ = λvλ.

This means that the operator A :=
(
σ2 d

dx + xI
)

has the atoms vλ as eigenfunctions. It is appar-

ently the generator of a generalized shift operator. Therefore, Theorem 3.2.4 can be applied to

get the following corollary.

Corollary 3.2.6 (Sampling theorem for sparse Expansion of Gaussian Chirps). Let A := σ2 d
dx +

xI, Φϕ := exp(τA), and

f (x) :=
M∑
λ∈Λ

cλ exp
(
−

1
2σ2 (x − λ)2

)
,

where σ2 ∈ R+
,0 is a known scale parameter. The parameters cλ ∈ C and λ ∈ R × i[0, 2π/τ)

are unknown. Let k(x) := exp
(
xτ` + 1

2σ
2τ2`2

)
, the corresponding sampling scheme is given by

S m,` = Fm ◦ Φ`
ϕ = Fm ◦

(
k · exp

(
σ2τ`

d
dx

))
.

The corresponding sampling matrix with Fm := F ◦ exp(τmA) as evaluation scheme, where

F( f ) := f (0), is given by

XN,M( f ) =

[
exp

(
1
2
σ2τ2(m + l)2

)
f
(
σ2τ(m + `)

)]N,M

m,`=0
,

The sampling matrix XN,M( f ) is sufficient for the reconstruction of f by GEProM.
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Proof. Since A :=
(
σ2 d

dx + xI
)

is the generator of a generalized shift as in Lemma 3.2.2, we

first calculate G and H. Due to g(x) = σ2 and a(x) = x we get

G(x) :=

x∫
0

1
g(y)

dy =
1
σ2 x⇐⇒ G−1(x) = σ2x

and

H(x) = exp
(∫ x

0

a(y)
g(y)

dy
)

= exp
(

1
2σ2 x2

)
.

With these integrals we already know the actions of the iteration operator Φϕ := exp(τA) and

all of its powers Φ`
ϕ = exp(τ`A) from Theorem 3.2.2, which is

Φ`
ϕ f (x) = exp (τ`A) f (x) =

H
(
G−1 (τ` + G(x))

)
H(x)

f
(
G−1 (τ` + G(x))

)
,

where τ ∈ R+
× is an arbitrary sampling parameter. With G−1(τ` + G(x)) = x + σ2τ` it follows

that

Φ`
ϕ f (x) = exp (τ`A) f (x) =

H
(
x + σ2τ`

)
H(x)

f
(
x + σ2τ`

)
.

Furthermore,

H
(
x + σ2τ`

)
H(x)

= exp
(

1
2σ2

[
(x + σ2τ`)2 − x2

])
= exp

(
xτ` +

1
2
σ2τ2`2

)
,

which gives with k as above the sampling scheme

S m,` = Fm ◦ Φ`
ϕ = Fm ◦ exp(τ`A) = Fm ◦

(
k · exp

(
σ2τ`

d
dx

))
.

If we now use the evaluation scheme Fm := F ◦ Φm
ϕ , with F( f ) = 0, we get as a consequence

the sampling matrix

XN,M( f ) =
[
S m,`( f )

]N,M
m,`=0 =

[
exp

(
1
2
σ2τ2(m + l)2

)
f
(
σ2τ(m + `)

)]N,M

m,`=0
.

This matrix has full rank and is therefore sufficient for the reconstruction of f , because the

sampling scheme S m,` is admissible by Theorem 2.3.4 due to

∀ λ ∈ C : 0 < |F(vλ)| =

∣∣∣∣∣∣exp
(
−

1
2σ2λ

2
)∣∣∣∣∣∣ < ∞.

�

If we use GEProM to reconstruct the parameters λ and cλ of f in Corollary 3.2.6, we can extract

the complete information about the time shift and frequency parameter in the Gaussian chirp
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model, since

Re (λ) = µ
1
σ2 Im (λ) = ω.

We can also think of a slight generalization of the signals in Corollary 3.2.6. Let therefore be

vλ(x) := exp
(

1
2σ2 (k(x) − λ)2

)
,

where k : R → R is a continuously differentiable strictly monotone function. A generator for

those atoms is

Ak =

(
σ2

k′
d
dx

+ k I
)
.

Then it holds for G and H analogously to the proof above that

G(x) =
1
σ2 k(x)⇐⇒ G−1(x) = k−1(σ2x) and H(x) = exp

(
1

2σ2 k2(x)
)
.

A short calculation delivers the corresponding sampling scheme; first, we easily see that

H
(
G−1(t + G(x)

)
H(x)

= exp
(
1
2
σ2t2 + tk(x)

)
,

for all t ∈ R. By using the point evaluation F f (x) = f (x0), x0 ∈ R, and based on the evaluation

scheme Fm( f ) = F
(
expm(A) f

)
, we get for t = τ(m + `) the following sampling matrix of a

signal f ∈ Mexp
M (Ak),

S m,`( f ) = exp
(
τ(m + l)k(x0) +

σ2

2
τ2(m + `)2

)
f
(
k−1

(
σ2τ(m + l) + k(x0)

))
.

Depending on the function k it can be necessary to restrict the point spectrum even further to

ensure its invertibility.

Numerical examples for Gaussian Chirps

Now, we give a small numerical example to demonstrate that the approach works. Therefore,

we want to reconstruct a linear combination of Gaussian chirps of order five, i. e.,

f (x) =
∑
λ∈Λ

cλ exp
(
−

1
2σ2 (x − λ)2

)
,

where |Λ| = 5 and the eigenvalues λ and the linear coefficients are drawn randomly.

For a concrete example we draw five realizations of cλ ∼ U[−10, 10] + iU[−10, 10], where

U denotes the uniform distribution. Furthermore, we draw the complex shift parameters λ

uniformly from [1, 15] + i [−π, π). The used realizations are summarized in Table 3.2. If we
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Re(λ) 12.011 12.549 8.112 3.787 2.675
Im(λ) 1.101 2.913 −1.984 1.410 0.560

Re(cλ) −2.444 −9.723 −3.223 −6.578 9.195
Im(cλ) 1.773 −4.966 −4.111 9.068 1.878

Table 3.2: Shift parameters λ and the corresponding linear coefficients

now sample with the canonical sampling scheme

S m,`( f ) = exp
(
1
2
σ2τ2(m + l)2

)
f
(
σ2τ(m + `)

)
,

where σ2 = 2, x0 = 0, and use GEProM we can exactly recover the function f , which is

depicted in Figure 3.1. We sample equidistantly over [0, 7], thus τ = 0.7. The approximated

mean squared error over the interval [−5, 15] is 3.319 × 10−7. Since we only used noiseless

samples, we set N = M = 5, i. e., we take only 10 samples S m,`( f ) into account, with m + ` ∈

{0, . . . , 2M − 1}. Thus, the sampling matrix has the form

X5,5 =


S 0,0( f ) S 0,1( f ) S 0,2( f ) S 0,3( f )

S 1,0( f ) S 1,1( f ) S 1,2( f ) S 1,3( f )

S 2,0( f ) S 2,1( f ) S 2,2( f ) S 2,3( f )

 .
This kind of example was also given in [35], the above sampling scheme for Gaussian chirps

was derived therein in a slightly different way, but with the same final sampling matrix.

−5 0 5 10 15

−10

0

10
real part

−5 0 5 10 15

−10

0

10
imaginary part

Figure 3.1: ground truth in blue, reconstruction red, and samples as blue crosses
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3.3 Squared Operators as Generators

A further interesting example for the GEProM are generators which can be written as squares

of simpler operators.

In Section 2.3.1 it was demonstrated how to reduce a certain generator of the cosine model to

a linear combination of ordinary shifts. In this section the ideas of the cosine example are gen-

eralized to generators that can be written as squares of operators with a realizable exponential

action. Principally, there are two possible approaches, the first one is a direct generalization of

the cosine example and the second one includes a certain convolution operator.

3.3.1 Symmetric Generalized Shift Approach

Before we start with the direct generalization of the idea in Section 2.3.1, the following theorem

gives a more general result concerning the representation of squared operators.

Lemma 3.3.1 (Symmetric Generalized Shift Operators). Let B : V → V be a linear operator

on a vector space V such that the point spectrum σP(B) , ∅ and exp(B) : M (A) → M (A)

is well-defined. If A := B2, then the point spectrum of A is not empty. Furthermore, let

ϕ(z) :=
∞∑

n=0

τ2n

(2n)! z
n, z ∈ C, and Φϕ := ϕ(A). Then

Φϕ =
1
2

(
exp(τB) + exp(−τB)

)
and for all ` ∈ N it holds that

Φ`
ϕ =

1
2`

(
exp(τB) + exp(−τB)

)`
=

1
2`

∑̀
k=0

(
`

k

)
exp (τ(` − 2k)B) .

Furthermore, for all ω ∈ σP(A) it holds that

ΦϕvA
ω = ϕ(ω)vA

ω,

where vA
ω is the eigenfunction of A to the eigenvalue ω.

Proof. Let A := B2 and further ϕ(z) as above, than it holds that

Φϕ =

∞∑
n=0

τ2n

(2n)!
An =

∞∑
n=0

τ2n

(2n)!
(B2)n =

∞∑
n=0

τ2n

(2n)!
B2n =

1
2

(
exp(τB) + exp(−τB)

)
.

Assume that the point spectrum σP(B) is non-empty. Since

AvB
λ = B2vB

λ = λ2vB
λ ,

where vB
λ is the eigenfunction of B to the eigenvalue λ, it follows that{

λ2
∣∣∣ λ ∈ σP(B)

}
⊆ σP(A)
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and therefore the point spectrum of A is not empty either. In turn, we get by Lemma 2.3.3

Φϕvω = ϕ(ω)vω.

The iteration law for Φ`
ϕ is simply the binomial law since exp(τB) and exp(−τB) commute. �

This lemma enables us to reduce the action of a generator A to the possibly simpler exponential

action of the operator B. In particular, if B has a realizable exponential action, Lemma 3.3.1

delivers a suitable iteration operator to construct a realizable sampling scheme. The following

theorem gives a concrete example, that includes the cosine example of Section 2.3.1.

Theorem 3.3.2 (Squared Generalized Shifts I). Let the operator A : C2[x0, x1]→ C[x0, x1] be

defined as

A :=
(
g

d
dx

)2

= g2 d2

dx2 + gg′
d
dx
, (3.8)

where g ∈ C1[x0, x1] as in (3.6), then A has the point spectrum σP(A) = C. Furthermore, let

be ϕ(z) :=
∞∑

n=0

τ2n

(2n)! z
n for all z ∈ σP(A) as in Lemma 3.3.1, then the sampling scheme

S m,` = Fm ◦ Φ`
ϕ =

1
2`

∑̀
k=0

(
`

k

)
Fm ◦ exp

(
(` − 2k)τg

d
dx

)

is realizable. It is admissible if we choose the canonical evaluation scheme Fm := F ◦Φm, such

that 0 < |F(vλ)| < ∞ for all λ ∈ σ̂P(A).

Thus, the sampling matrix

XN,M =

 1
2m+`

m+∑̀
k=0

(
m + `

k

)
f
(
G−1((m + ` − 2k)τ + G(x0))

)
N,M

m,`=0

,

where N ≥ M − 1 ∈ N and F f (x) := f (x0) such that ∞ > |vλ(x0)| > 0, is sufficient for the

reconstruction of all f ∈ Mϕ
M (A).

Proof. We first prove that the point spectrum of A is equal to C. We remember that B := g d
dx is

actually a generator of a generalized shift as in Theorem 3.2.4. Thus, it has vB
λ (x) = exp(λG(x)))

as eigenfunctions for all λ ∈ C as eigenvalues. Since A := B2 and in turn AvB
λ = λ2vB

λ , it holds

that

C = σP (B) =
{
λ2

∣∣∣ λ ∈ σP (B)
}
⊆ σP(A) ⊆ C.

Furthermore, we know from Lemma 3.3.1 that

Φ`
ϕ =

1
2

(
exp(τB) + exp(−τB)

)
=

1
2`

m+∑̀
k=0

(
`

k

)
exp (τ(` − 2k)B) .

Applying an evaluation scheme Fm : C2[x0, x1] → C yields the sampling scheme in Theorem
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3.3.2 above,

S m,` = Fm ◦ Φ`
ϕ =

1
2`

∑̀
k=0

(
`

k

)
Fm ◦ exp

(
(` − 2k)τg

d
dx

)
.

The sampling matrix is found by choosing the canonical sampling scheme S m,` := F ◦ Φm+`
ϕ ,

i. e.,

F ◦ Φm+`
ϕ =

1
2`

m+∑̀
k=0

(
m + `

k

)
F ◦ exp (τ(m + ` − 2k)B) ,

where 0 < |F(vλ)| < ∞. This condition is fulfilled by any point evaluation F f (x) = f (x0)

such that 0 < |vλ(x0)| < ∞. Using the point evaluation and applying this sampling scheme to a

function f for all m ∈ {0, . . . ,N} and ` ∈ {0, . . . ,M}, N ≥ M − 1, we get

XN,M =

 1
2m+`

m+∑̀
k=0

(
m + `

k

)
f
(
G−1((m + ` − 2k)τ + G(x0))

)
N,M

m,`=0

,

where we used the known action of the generalized shift operator. This sampling matrix is

sufficient for the reconstruction of f , since the sampling scheme is admissible by Lemma 2.3.4

and the point spectrum is, in dependence on vλ, restricted such that

λ→ vλ and ϕ(z) : σ̂ϕP(A)→ C

are injective, because we only work with functions f ∈ Mϕ
M (A). �

The restriction of the point spectrum σ̂P(A) in Theorem 3.3.2 depends on the concrete choice of

eigenfunctions vλ which are used as atoms. In the next section we demonstrate how to employ

the results on squared generalized shift operators to reconstruct sparse expansions into Cheby-

chev polynomials of arbitrary degree. In particular, it is clarified in which way the restriction

of the point spectrum corresponds to the choice of a certain family of atoms.

Sparse Expansions of Chebychev Polynomials

Besides the cosine expansions, that were the motivation for the generalized symmetric shift

approach, we can also reconstruct sparse functions f : [−1, 1]→ C of the form

f (x) :=
∑
λ∈Λ

cλTλ(x), (3.9)

where Tλ : [−1, 1] → R is defined by Tλ(x) := cos(λ arccos(x)), i. e., the Chebychev polyno-

mials for λ ∈ N. The linear coefficients cλ ∈ C are arbitrary complex numbers. We focus in

this example only on sparse expansions into Chebychev polynomials. The generator for these

atoms is given by A : C2[−1, 1]→ C[−1, 1],

A f (x) :=
(
1 − x2

) d2

dx2 f (x) − x
d
dx

f (x),



3.3. Squared Operators as Generators 59

which is of the form of a squared generalized shift as in equation (3.8). This can be seen if we

define B := −
√

1 − ( · )2 d
dx : C1[−1, 1]→ C[−1, 1]; thus,

B2 f (x) =
√

1 − x2 d
dx

√
1 − x2 d

dx
f (x) =

(
1 − x2

) d2

dx2 f (x) − x
d
dx

f (x) = A f (x).

Therefore, we can apply Theorem 3.3.2.

The point spectrum of B is σP(B) = C, because of Theorem 3.3.2. If we define

vn(x) := exp(in arccos(x)) = cos(n arccos(x)) + i sin(n arccos(x)) = Tn(x) + i
√

1 − T 2
n (x),

we observe that

Bvn(x) = −in vn(x),

i. e., vn are eigenfunctions of B to the eigenvalue −in. This implies that

Avn(x) = B2vn(x) = −n2vn(x).

In particular, if vn is a solution to the differential equation A f = −n2 f , the real part Re (vn) =

cos(n arccos(x))) = Tn(x) is also a solution, i. e., the Chebychev polynomial of degree n over

the interval [−1, 1]. Thus, we know that

ATn = −n2Tn

and therefore A is a generator for the model of all finite linear combinations of Chebychev

polynomials, because λ := −n2 → Tn is obviously injective if we restrict the point spectrum to

σ̂P(A) :=
{
−n2

∣∣∣ n ∈ N}
.

Moreover, we want to apply GOProM for the reconstruction of functions f as in equation (3.9)

to circumvent the problem of iterating the differential operator A directly. Therefore, we define

ϕ(z) :=
∞∑

k=0

τ2k

(2k)!
zk,

as in Lemma 3.3.1. Since A = B2 we get also by Lemma 3.3.1 that the iteration operator

Φϕ = 1
2
(
exp(τB) + exp(−τB)

)
. This implies

ΦϕTn =

∞∑
k=0

τ2k

(2k)!
AkTn =

∞∑
k=0

τ2k

(2k)!
(−n2)kTn = Φ(−n2)Tn = cos(τn)Tn,

for all λ ∈ σ̂P(A), where τ ∈ R+
× is a sampling parameter. Since we only have injectivity of the

mapping

n 7→ Φ(−n2) = cos(τn)
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for n ∈ [0, π/τ], the sampling parameter τ has to be bounded from above by 0 < τ ≤ π/n̂, where

n̂ is the maximum degree of the potentially active Chebychev polynomials. In other words, by

using this approach, we are only able to reconstruct signals based on finite alphabets made of

Chebychev polynomials of at most degree n̂. Nevertheless, the following corollary provides a

first reconstruction procedure for finite sparse Chebychev expansions.

Corollary 3.3.3 (Sparse Chebychev Expansions I). Let

A :=
(
−

√
1 − x2 d

dx

)2

= (1 − x2)
d2

dx2 − x
d
dx

be as above. With the restricted point spectrum σ̂P(A) :=
{
−n2

∣∣∣ n ≤ n̂ ∈ N
}

it is a generator

for all signals of the form

f =
∑
λ∈Λ

cλvλ,

where vλ = v−n2 = Tn is the Chebychev polynomial Tn of degree n. Furthermore, let the iter-

ation operator be defined as Φϕ :=
∞∑

k=0

τ2k

(2k)! Ak, where τ ∈ (0, π/n̂], then a realizable sampling

scheme is given by

S m,` =
1
2`

∑̀
k=0

(
`

k

)
Fm ◦ exp

(
(` − 2k)τ

√
1 − x2 d

dx

)
.

If we choose the canonical evaluation scheme Fm = F ◦ Φm
ϕ , such that 0 < |F(vλ)| < ∞, the

sampling scheme S m,` is also admissible. Using the point evaluation F f (x) = f (1), we get an

admissible sampling matrix

XN,M :=

 1
2m+`

m+∑̀
k=0

(
m + `

k

)
f (cos((m + ` − 2k)τ))


N,M

m,`=0

,

N ≥ M − 1 ∈ N, which is sufficient for the reconstruction of f by GOProM.

Proof. From the discussion above it is clear that A = B2 =
(
−
√

1 − x2 d
dx

)2
is a generator

for sparse Chebychev expansions and it explains why the restriction of the point spectrum to{
−n2

∣∣∣ n ≤ n̂ ∈ N
}

is necessary. The sampling scheme S m,` is derived by using Theorem 3.3.2

and the known exponential action of B, which is for all linear combinations of Chebychev

polynomials and all t ∈ R given by Lemma 3.2.2

exp
(
−t

√
1 − x2 d

dx

)
f (x) = f (cos(t + arccos(x)) ,

where g(x) = −
√

1 − x2. Based on this sampling scheme and in connection with the canonical

evaluation scheme Fm := F ◦ Φm(A), where F( f ) = f (1), we get the sampling matrix XN,M as

given above. It is admissble, since for all vλ(x) = cos(λ arccos(x)) it holds that

0 < |F (vλ) | = 1 < ∞,
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which is sufficient for the admissibility of the canonical sampling scheme by Corollary 2.3.4.

�

This example for the application of the Prony method was first introduced in [39] and reformu-

lated in the context of the Generalized Prony Method in [32]. In particular, in [32] the idea of

the so-called symmetric shift operator

1
2

(S τn + S −τn)

was introduced, where S τn f (x) = f (cos(arccos(x) + τn)), with τ ∈ R and n ∈ N. It was

shown that this operator has the Chebychev polynomials as eigenfunctions and afterwards the

Generalized Prony Method was applied.

The symmetric shift operator corresponds to the decomposition of the iteration operator

Φϕ =
1
2

(
exp(τB) + exp(−τB)

)
,

as in Theorem 3.3.2 for the special case of B = −
√

1 − x2 d
dx . In contrast to these former ap-

proaches, the derivation in this section started directly at the defining differential equation for

the Chebychev polynomials and gave a constructive way of finding a suitable sampling scheme.

3.3.2 Integral Operator Approach

In the last section it was demonstrated that generators with a certain structure can be decom-

posed by a suitable mapping into operators with simpler exponential actions. In contrast, in

this section we show how the same generator structure can be used to directly evaluate the

exponential action.

We start with a general result concerning the exponential action of squared operators.

Lemma 3.3.4 (One-parametric Exponential Squared Operators). Let A : V → V be a linear

operator on a vector space V overR, such that it can be written as A = B2, where B : V → V is

also linear and has a non-empty point spectrum. Then A also has a non-empty point spectrum.

Furthermore, let

f (x) :=
∑
λ∈Λ

cλvλ(x),

where vλ is the eigenfunction of A to the eigenvalue λ ∈ Λ. Then the following equation holds

exp(τA) f (x) =
1

2
√
πτ

∫
R

exp
(
−

t2

4τ

)
g(t, x)dt, (3.10)

where g(t, x) := exp(−tB) f (x).

Proof. We first show that

exp
(
x2

)
=

1
√

4π

∫
R

exp
(
−
ξ2

4

)
exp(−ξx)dξ
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for all x ∈ R. By using the exponential power series and the linearity of the integral it holds

that

1
√

4π

∫
R

exp
(
−
ξ2

4

)
exp(−ξx)dξ =

∞∑
k=0

(−1)kxk

k!
1
√

4π

∫
R

exp
(
−
ξ2

4

)
ξkdξ

=

∞∑
k=0

(−1)kxk

k!
µk (0, 2) ,

where

µk̃ (0, 2) =

 0 ; k̃ ∈ 2N − 1,

2k̃/2(k̃ − 1)!! ; k̃ ∈ 2N0

is the well known kth central moment of the normal distribution with variance σ2 = 2, expecta-

tion value 0, and !! denotes the double faculty, i. e., in this case the product of all odd numbers

smaller than k − 1. By substituting 2k = k̃ ∈ 2N0 we get that

µ2k(0, 2) = 2k(2k − 1)!! =
(2k)!

k!

and since µk̃ = 0 for all odd indices, it follows for all even indices

1
√

4π

∫
R

exp
(
−
ξ2

4

)
exp(−ξx)dξ =

∞∑
k=0

(−1)kxk

k!
µk(0, 2) =

∞∑
k=0

(−1)2kx2k

(2k)!
µ2k(0, 2)

=

∞∑
k=0

x2k

(2k)!
(2k)!

k!
=

∞∑
k=0

(
x2

)k

k!
= exp

(
x2

)
.

By defining x :=
√
τ z and substituting t := ξ

√
τ we get

exp
(
x2

)
= exp

(
τz2

)
=

1
√

4π

∫
R

exp
(
−
ξ2

4

)
exp

(
−ξ
√
τx

)
dξ =

1
√

4πτ

∫
R

exp
(
−

t2

4τ

)
exp(−tz)dt.

If we now formally substitute B for z, which is possible since we are inM (A), we get

exp(τA) f = exp(τB2) f =
1

2
√
πτ

∫
R

exp
(
−

t2

4τ

) [
exp(−tB) f

]
dt

for all f as in the Lemma. This substitution is justified by the fact that z is constant with respect

to the integral over all t ∈ R. �

Remark 3.3.5. The result on the representation of exponentiated square operators was also

used in [12] for the solution of Cauchy problems concerning certain exponential operators but

it was surely known long before.

The parameter 4τ = 2σ2, whereσ is the standard deviation of the normal distribution, describes

the width of the Gaussian kernel. Thus, we gather information about the signal f over a range

of different scales.
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It must be emphasized that one has to be very careful with this kind of equation as often

in the case of exponential operators. Intrinsically we always think of exp(τA) as the formal

exponential power series

exp(τA) :=
∞∑

k=0

τ

k!
Ak,

where convergence can only be guaranteed if A is bounded. In contrast, if A is unbounded

exp(τA) is only defined for certain functions. Even worse, there exist functions such that the

integral on the right side of equation (3.10) is defined, but the formal power series on the left

side does not converge for any τ except τ = 0.

Fortunately, we have already seen that the generator and the iteration operator are always well-

defined for all f ∈ M (A). In particular, it is sufficient that the restricted point spectrum σ̂(A) is

in the region of convergence of ϕ. This is always the case, because the exponential power series

converges on the whole complex plane. In turn, we have no essential restriction concerning the

convergence of both sides of equation (3.10) and therefore the proof above is complete.

Using Lemma 3.3.4 and the results on generalized shift operators, we can extend the set of

applications of GEProM to the class of generators known from Theorem 3.3.2, but with a

different sampling scheme.

Corollary 3.3.6 (Squared Generalized Shifts II). Let the operator A : C2[x0, x1] → C[x0, x1],

x0 < x1 ∈ R, be defined as

A :=
(
g

d
dx

)2

= g2 d2

dx2 + gg′
d
dx
,

where g ∈ C1[x0, x1], then A has the point spectrum σP(A) = C. A realizable exponential

sampling scheme S m,` := Fm ◦ exp(τ`A), for τ ∈ R,0, is given by

S m,`( · ) :=
1

2
√
π`τ

Fm

(∫
R

exp
(
−

t2

4`τ

)
exp

(
−tg

d
dx

)
( · )dt

)
,

with respect to an admissible evaluation scheme Fm : C2[x0, x1] → C. Using the canonical

evaluation scheme Fm := F ◦ exp(τmA) and the point evaluation F( f ) = f (x0), x0 ∈ R such

that 0 < |vλ(x0)| < ∞ for all λ ∈ σ̂P(A),

XN,M( f ) :=
[

1
2
√
π(m + `)h

∫
R

exp
(
−

t2

4(m + `)h

)
f
(
G−1 (−t + G(x0))

)
dt

]N,M

m,`=0

is admissible, and sufficient for the reconstruction of all f ∈ MM (A).

Proof. The argumentation for the spectrum of A is the same as in Theorem 3.3.2. The sampling

scheme S m,` is a direct consequence of Lemma 3.3.4 and the composition with an admissible
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sampling scheme Fm. If we choose Fm := F◦exp(τmA) and F( f ) := f (x0) we get the samplings

S m,`( f ) = F
[
exp(τ(m + l)A) f

]
=

1
2
√
π(m + `)τ

∫
R

exp
(
−

t2

4(m + `)τ

)
F

[
exp

(
−τ(m + `)g

d
dx

)
f
]

dt

=
1

2
√
π(m + `)τ

∫
R

exp
(
−

t2

4(m + `)τ

)
f
(
G−1(−t + G(x0)

)
dt.

This leads to an admissible sampling matrix if we choose x0 such that 0 < |vλ(x0)| < ∞, for all

λ. �

Sparse Cosine Expansions

One of the first examples of this thesis was the embedding of the sparse cosine expansions into

the GOProM framework. In the last section we have seen that this type of expansion is actually

only a special case of GOProM, based on linear combinations of generalized shift operators.

In a second approach it was shown that we can also use certain types of integral operators to

reconstruct sparse expansions into eigenfunctions of squared generalized shift operators. In

this section we revisit the cosine expansions under this new integral operator approach.

Therefore, let

A :=
d2

dx2 : C2[x0, x1]→ C[x0, x1]

be the generator for the space of all finite linear combinations of cosine as well as sine func-

tions. In this example we focus on sparse cosine expansions, i. e., functions f : R → R of the

form

f (x) :=
∑
λ∈Λ

cλvλ(x),

where the atoms are defined by vλ(x) := cos
(√
λx

)
: R → R with ω :=

√
λ ∈ (0, 2πT ] and

T ∈ R+. Using Lemma 3.3.4 we know the action of exp(τA), which is

exp(tA) f =
1

2
√
πτ

∫
R

exp
(
−

t2

4τ

)
exp

(
−t

d
dx

)
f dt =

1
2
√
πτ

∫
R

exp
(
−

t2

4τ

)
f ( · − t)dt, (3.11)

and thus it is realizable. In this special case it is obviously the convolution of f with a Gaussian

kernel. This kind of transformation is called Weierstrass transform [4] or Gaussian filter and

denoted by

Wτ f :=
1

2
√
πτ

∫
R

exp
(
−

t2

4τ

)
f ( · − t)dt.

Although Corollary 3.3.9 can directly be derived from Theorem 3.3.6, we first give an addi-

tional lemma on the eigenfunctions ofWτ.
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Lemma 3.3.7 (eigenfunctions of the Weierstrass Transform). Let be vλ ∈ {cos(ωx), sin(ωx), exp(ωx)},

λ ∈ {−ω2, ω2}. For all τ ∈ R+
× it holds that

∀ ω ∈ C : Wτ exp(ωx) = exp(ω2τ) exp(ωx), (3.12)

∀ ω ∈ R : Wτ cos(ωx) = exp(−ω2τ) cos(ωx), (3.13)

∀ ω ∈ R : Wτ sin(ωx) = exp(−ω2τ) sin(ωx). (3.14)

Proof. We first prove the eigenfunction property for vλ(x) := exp(ωx): A = d2

dx2 , and λ := ω2,

exp(τA)vλ(x) = exp
(
τ

d2

dx2

)
exp(ωx) =

1
2
√
πτ

∫
R

exp
(
−

t2

4τ

)
exp

(
−t

d
dx

)
exp(ωx)dt

=
1

2
√
πτ

∫
R

exp
(
−

t2

4τ

)
exp(ω(x − t))dt =

1
2
√
πτ

∫
R

exp
(
−

t2

4τ

)
exp(−ωt)dt vλ(x)

=
1

2
√
πτ

∫
R

exp

− ( t
2
√
τ

)2

+ 2
t

2
√
τ
ω
√
τ + ω2τ

 dt exp
(
ω2τ

)
vλ(x)

=
1

2
√
πτ

∫
R

exp

− [
t

2
√
τ

+ ω
√
τ

]2 dt exp
(
ω2τ

)
vλ(x)

=
1

2
√
πτ

∫
R

exp
(
−

1
2(2τ)

[t + 2ωτ]2
)

dt exp
(
ω2τ

)
vλ(x)

The last equation implies that the integral, seen as integral over the density of a normal distri-

bution, has variance σ2 := 2τ which implies that τ = σ2/2. The constant in front of the integral

is
1

2
√
πτ

=
1√

4πσ2/2
=

1
√

2πσ2
,

which is exactly the normalization constant of the normal distribution, and thus the integral and

the constant multiply to one, i. e., exp(τA)vλ = exp
(
ω2τ

)
vλ(x).

The cosine and sine case can be proven by Euler’s formula, which holds for all ω ∈ R, and the

linearity of the Weierstrass transform

Wτ cos(ωx) =
1
2

(
Wτ exp(iωx) +Wτ exp(−iωx)

)
=

1
2

(
exp(−ω2τ) exp(iωx) + exp(−ω2τ) exp(−iωx)

)
= exp(−ω2τ) cos(ωx).

The eigenfunction property for the sinus can be derived analogously. �

Remark 3.3.8 (Sparse Hermitian Expansions). Another interesting property of the Weierstrass

transform is that it maps Hermite polynomials Hn defined by the differential equation

d2

dx2 Hn(x) − 2x
d
dx

Hen(x) = −2n Hn(x)

to monomials of degree n [4], i. e., W0.5 (Hn(x)) = xn. Thus, we can employ Theorem 3.2.4

with g(x) = x and a(x) = 0 to reconstruct sparse expansions into Hermite polynomials. For this
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reason we first apply the Weierstrass transform as above to get

W0.5

 M∑
j=0

cn j Hn j(x)

 =

M∑
j=0

cn j x
n j ,

i. e., an expansion of monomials of arbitrary degree and in turn we use Theorem 3.2.4 with

g(x) = x and a(x) = 0 to reconstruct it.

Having the Lemma 3.3.7 at hand there are actually two ways to derive realizable and admissi-

ble sampling matrices for the reconstruction of sinus, cosine or exponential expansions.

Either, we can simply use Theorem 3.3.6 choosing g(x) ≡ 1 and restricting the point spec-

trum accordingly, or we use Lemma 3.3.7 in connection with the Generalized Prony Method

from Peter & Plonka described in Corollary 2.3.6 to get an admissible and realizable sampling

scheme. We choose the first approach for the cosine example yielding the following Corollary.

Corollary 3.3.9 (Sparse Cosine Expansions II). Let the operator A : C2(R)→ C(R) be defined

as A := d2

dx2 , then A has the point spectrum σP(A) = C. We define the restricted point spectrum

as σ̂P(A) := (−∞, 0]. Let the signals f : R→ C be of the form

f (x) =
∑
ω∈Ω f

cω cos(ωx),

where Ω f ⊂ R
+ is finite and the eigenvalues λω = −ω2 ∈ σ̂P(A). A realizable exponential

sampling scheme S m,` := Fm ◦ exp(τ`A) to recover f is given by

S m,` := Fm ◦Wτ`,

with respect to an evaluation scheme Fm : C2(R) → C and the Weierstrass transform Wτ`.

Using the canonical evaluation scheme Fm := F ◦ exp(τmA) and the point evaluation F( f ) =

f (0), the sampling matrix

XN,M( f ) :=
[

1
2
√
π(m + `)τ

∫
R

exp
(
−

t2

4(m + `)τ

)
f (t) dt

]N,M

m,`=0

is admissible, and sufficient for the reconstruction of all f .

Proof. By equation (3.11) we know that the `th power of the exponential iteration operator

Φϕ := exp(τA), of the generator A = d2

dx2 , is given by

Φ`
ϕ = exp(τ`A) =Wτ`,

` ∈ N, and τ ∈ R,0. Thus, using an evaluation scheme Fm : C2(R) → C we get a sampling

scheme S m,` := Fm ◦Wτ`. Furthermore, since we have

∀ ω ∈ R : Wτ cos(ωx) = exp(−ω2τ) cos(ωx),
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the relation λ 7→ ω, with λ := −ω2, where λ is the eigenvalue to vλ(x) = cos(ωx), is injective

for all ω ∈ R+. This is a consequence of the bijectivity of the exponential function on R and

ω =
√
−λ. If we now choose the canonical sampling scheme Fm := F ◦Φm

ϕ , with F( f ) = f (0),

we get the sampling matrix XN,M =
[
S m,`

]N,M
m,`=0 by

S m,` = Fm ◦ Φ`
ϕ := F ◦ Φm+`

ϕ = F ◦Wτ(m+`)

applied to a signal f and evaluated at zero, which gives by equation (3.11) the samples

S m,`( f ) =
1

2
√
π(m + `)τ

∫
R

exp
(
−

t2

4(m + `)τ

)
f (−t)dt,

but f (−x) = f (x), since the cosine is an even function. Thus, we yield the sampling matrix as

in the corollary above. This sampling matrix is admissible, because

0 < |F(cos(ω · ))| = 1 < ∞.

�

The major difference to the former results on the reconstruction of cosine expansions is that we

have no longer a band limitation. This advantage is accompanied with slightly more difficult

sampling values. We have to evaluate the Weierstrass transform of the signal over the whole

real line, which of course can only be done approximatively in real applications; but, since

the Gaussian term in the Weierstrass transform decays exponentially and we integrate bounded

signals, this can be done with high accurracy even for compact sampling intervals.
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Sparse Chebychev Expansions

As we have already seen, also the Chebychev polynomials can be written as eigenfunctions

of the squared generator of a certain generalized shift. In this section we apply the integral

operator approach to reconstruct sparse expansions of those atoms.

Corollary 3.3.10 (Sparse Chebychev Expansions II). Let

A :=
(
−

√
1 − x2 d

dx

)2

= (1 − x2)
d2

dx2 − x
d
dx

be given as in Corollary 3.3.3. With the restricted point spectrum σ̂P(A) :=
{
−n2

∣∣∣ n ∈ N}
the

operator A is a generator for all signals of the form

f =
∑
λn∈Λ

cλnvλn ,

where vλn = v−n2 = Tn is the Chebychev polynomial Tn : [−1, 1]→ R of degree n. A sampling

scheme is given by

S m,` := Fm ◦ exp(τ`A) =
1

√
4πτ`

Fm

(∫
R

exp
(
−

1
4τ`

t2
)

f (cos(−t + arccos(·)))dt
)
,

where Fm : C2[−1, 1] → C is an evaluation scheme. Using the canonical evaluation scheme

Fm = F ◦ exp(τmA), where F( f ) = f (1), we get the admissible sampling matrix

XN,M( f ) :=
[

1
2
√
π(m + `)τ

∫
R

exp
(
−

t2

4(m + `)τ

)
f (cos(t)) dt

]N,M

m,`=0
.

Proof. We first prove that the Chebychev polynomials are eigenfunctions of exp (yA), for all

y ∈ R,

exp (yA) Tn(x) =
1√
4πy

∫
R

exp
(
−

1
4y

t2
)

exp
(
−t

(
−

√
1 − x2

) d
dx

)
Tn(x)dt

=
1√
4πy

∫
R

exp
(
−

1
4y

t2
)

Tn (cos(−t + arccos(x))) dt

=
1√
4πy

∫
R

exp
(
−

1
4y

t2
)

cos(−nt + n arccos(x))dt

=
1√
4πy

∫
R

exp
(
−

1
4y

t2
)

(cos(nt) cos(n arccos(x)) + sin(nt) sin(n arccos(x))) dt

=
1√
4πy

∫
R

exp
(
−

1
4y

t2
)

cos(nt)dt cos(n arccos(x))

=Wy(cos(n · ))Tn(x) = exp(−n2y)Tn(x).
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The first line is a consequence of Lemma 3.3.4 and A =
(
−
√

1 − x2 d
dx

)2
. The second line is

given by the action of the generalized shift operator exp
(
−t

(
−
√

1 − x2
)

d
dx

)
, which is known

from Lemma 3.2.2. Afterwards, we use the identity of the Chebychev polynomials Tn(cos(x)) =

cos(nx), that holds for all n ∈ N and x ∈ R, and apply the addition theorems to decompose the

remaining sum under the cosine. Since the integral over the sine term is zero, we finally get the

Weierstrass transform of the cosine times the Chebychev polynomial Tn. The last equation is a

consequence of Lemma 3.3.7.

This calculation shows that the Chebychev polynomials are actually eigenfunctions of the iter-

ation operator exp(yA) and in turn a sampling scheme is given by

S m,` := Fm ◦ exp(τ`A),

where τ ∈ R+
,0 and ` ∈ N0. We explicitly allow ` = 0 because it is well-defined on the

eigenfunctions Tn as the point evaluation at zero. This is a consequence of the fact that the

Gaussian term approximates the delta distribution for y → 0. The sampling scheme and the

sampling matrix are achieved by using Theorem 3.3.6 with g = −
√

1 − x2 and x0 = 1. This

sampling matrix is admissible since 0 < |Tn(1)| = 1 < ∞. �

Since this is a GEProM approach with canonical sampling scheme, the sampling matrix has

already Hankel structure. Moreover, the exponential function is bijective on the whole real line

and in turn no restriction on the point spectrum has to be imposed. This implies that we can even

use infinite dictionaries of Chebychev polynomials. Of course, as in the cosine case, it may

be more difficult to realize the sampling scheme since we have no longer compact sampling

support, but with the same arguments as above it is possible to approximate the integral over

a compact interval for an arbitrary given accuracy. The last theorem of this section concerns a

combination of the results on exponential operators as presented before.

Theorem 3.3.11 (Quadratic Polynomials of Generators). Let A : V → V be a generator defined

as

A := α2C2 + α1C + α0I

with respect to a second operator C : V → V such that the exponential iteration operator

exp(τC), τ ∈ R+
×, is well-defined and realizable for αi ∈ C. The sampling scheme

S m,` := Fm ◦ exp(τ`A) = exp(α0) Fm ◦ exp
(
τα2C2

)
exp (τα1C)

is realizable and also admissible as long as Fm : V → C is an admissible evaluation scheme.

For all f ∈ M (A) and the canonical sampling scheme Fm := F ◦ exp(τmA)

S m,` :=
eα0

2
√
πα2(m + l)τ

F
(∫
R

exp
(
−

t2

4α2(m + l)h

)
exp (−t(α1 + α2)(m + l)τC) f dt

)
.

is admissible if 0 < |F(vλ)| < ∞.

Proof. Assume that we are interested in the reconstruction of f ∈ MM (A), i. e., linear com-
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binations of atoms defined as eigenfunctions of A. We have seen how the exponential action

of every single operator in this sum can be iterated. The only remaining part is to show that

exp(τA) factorizes so that we can apply the single iterative action successively. But this is

trivially given, since all αi ∈ C are constant and therefore the summation terms commute,

which implies that we can factorize the exponential iteration operator. Since it is assumed

that we know the action of exp (τα1C) from the discussion above, we also know the action of

exp
(
τα2C2

)
. The only action we have to find is exp(α0 I), which is

exp(α0 I) f =

∞∑
k=0

α0

k!
Ik f =

 ∞∑
k=0

α0

k!

 f = exp(α0) f ,

i. e., only the multiplication operator. �

At this point we have finished the central part of this thesis. We derived the currently most gen-

eral form of the Prony method in Theorem 2.2.13 and gave several examples for its application.

In particular, we demonstrated that there is a whole subclass of algorithms, namely GEProM,

which includes already almost all existing examples. Those not included were shown to be of

GOProM type.

The central mathematical object of every GOProM approach is the sampling matrix XN,M. The

sampling scheme S m,` was only a mean to construct these matrices and most of the time we

simply assumed the admissibility of S m,` or it was given because we used the canonical evalu-

ation scheme in connection with a suitable point evaluation.

The next chapter is therefore devoted to a discussion of several aspects of the realizability and

admissibility of the sampling scheme. In particular, we give conditions under which almost

every differential generator can be used to generate a realizable sampling scheme.



CHAPTER 4

Dual Sampling Schemes

What I cannot create, I do not
understand.

Richard Feynman

So far, GOProM has been theoretically established and first examples have demonstrated the

large freedom in constructing old and new sampling schemes and matrices for several atomic

expansions. Thereby, it has become clear that the key element to new applicable examples is

always a realizable sampling scheme; the mere theoretical construction of the same is often

quite simple. Given a certain atomic expansion, the reconstruction problem can only be con-

sidered to be completely solved if we have found such a scheme, which gives us the necessary

linear measurements to construct the sampling matrix.

In this section different ways of the data acquisition are presented, concerning the difficulties

arising from the realizability of the general sampling scheme as in Definition 2.2.11,

S m,` := Fm
(
Φ`
ϕ f

)
,

which is the central object of this chapter. Choosing a suitable mapping Φ to get a realiz-

able sampling scheme often includes a restriction of the point spectrum that we are able to

recover. Examples of such restrictions are finite a priori known alphabets like in the case of the

Chebychev polynomials. Therefore, in some instances it would be more advantageous to use

the generator A directly as the iteratation operator, for example, as in the Generalized Prony

Method of Peter & Plonka [33]. The basic problem of this approach in applications where the

generator A is a differential operator is that one has to sample derivatives of very high orders.

Therefore, in this section we demonstrate how the evaluation scheme Fm can be employed to

simplify the sampling process by using dual sampling schemes. This approach enables us to

cope, at least theoretically, with actually all linear differential operators which are used as gen-

erators. Moreover, we can combine it with GEProM to construct new realizable variants of this

method; for instance, if the direct evaluation of the sampling scheme S m,` = exp(τ(m + `)A)

is not possible, the dual approach can help to find realizable versions of this scheme. This ap-

proach combines the advantages of GEProM, above all the reproduction of the classical Prony

problem as seen in (3.1), with the flexibility of the dual approach developed in this section.
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4.1 Dual Sampling

The ideas for the dual data acquisition are explained best by examples, but before we start with

the derivation of dual sampling schemes for linear differential operators, we need some nota-

tion concerning dual spaces. Throughout this chapter we assume that the considered vector

spaces are normed.

Definition 4.1.1 (Dual Space). Let V be a vector space overK ∈ {R,C}. The space of all linear

functionals

V∗ := {F : V → K | F linear }

is called the dual space. The natural pairing of an element f ∈ V and φ ∈ V∗ is denoted by

〈·, ·〉 : V × V∗ → K,

which is a linear form.

This implies that we can write the evaluation scheme as

Fm := 〈·, φm〉 : V → C

with respect to a sequence φm ∈ V∗. We emphasize that we do not need to know the complete

dual space for the purpose of this work. We only need suitable elements of the dual space

that fulfill some conditions explained later on, so we can use them as representations of the

evaluation functionals. Moreover, in the concrete instances given below we always use integrals

with suitable kernels as evaluation functionals. Nevertheless, the only properties we need to

define the general dual sampling scheme is the linearity of the evaluation scheme, i. e., it has to

be a linear form with respect to some elements in the dual, and the existence of an explicitely

constructable adjoint operator.

Definition 4.1.2 (M (A)-Adjoint Operator). Given a linear operator A : V → V on a linear

space V with dual V∗, a second operator B : V∗ → V∗ is called an adjoint operator for A with

respect to φ ∈ V∗ if for all f ∈ V and all φ ∈ V∗ holds that

〈A f , φ〉 = 〈 f , Bφ〉 ,

where 〈·, ·〉 is the natural pairing on V and V∗. We denote the adjoint B by A∗.

Although an adjoint of A is usually only denoted by A∗ if it is unique, in a slight abuse of

notation we always use this symbol for the adjoint operators. This is justified because for

every sampling scheme we will choose a certain evaluation scheme in advance and calculate

an explicit adjoint for the iteration operator.

With these two definitions at hand we are able to define a dual sampling scheme that will be

used to derive sampling schemes for linear differential operators.
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Theorem 4.1.3 (Dual Sampling Scheme). Let A : V → V be a generator of the signal model

MM (A) and V a linear space with dual V∗. Further, let Φϕ : M (A) → M (A) be a corre-

sponding iteration operator with an adjoint

Φ∗ϕ : (M (A))∗ → (M (A))∗ ,

and Fm :M (A)→ C an admissible evaluation scheme induced by φm ∈ (M (A))∗ such that〈
Φ`
ϕ · , φm

〉
=

〈
· , (Φ∗ϕ)`φm

〉
for all ` ∈ N, ` ≤ M ∈ N, and m ∈ N, m ≤ N ∈ N, N ≥ M − 1. Then

S m,` = Fm ◦ Φ`
ϕ =

〈
Φ`
ϕ · , φm

〉
=

〈
· , (Φ∗ϕ)`φm

〉
is an admissible and realizable sampling scheme. We call

〈
· , (Φ∗ϕ)`φm

〉
a dual sampling

scheme. The corresponding sampling matrix for all f ∈ MM (A) is

XN,M( f ) =
[〈

f , (Φ∗ϕ)`φm
〉]N,M

m,`
,

where N ≥ M − 1, N ∈ N.

Proof. The admissibility of the dual sampling scheme is directly inherited from the admissi-

bility of the evaluation scheme Fm, since

S m,` = Fm ◦ Φ`
ϕ =

〈
Φ`
ϕ · , φm

〉
=

〈
· , (Φ∗ϕ)`φm

〉
coincides with the dual scheme for all f ∈ MM (A). The dual sampling scheme is realizable

because
〈
· , (Φ∗ϕ)`φm

〉
is a given sequence of kernels and therefore Fm,`( f ) :=

〈
f , (Φ∗ϕ)`φm

〉
are linear measurements of the signal itself. �

Since we are only able to calculate an explicit adjoint for the iteration operator Φϕ with respect

to a certain evaluation scheme Fm, they are no longer as independent as before. For the sam-

pling schemes in GOProM and GEProM the only connection between evaluation scheme and

iteration operator was the admissibility condition based on the eigenfunctions of A as given

in Definition 2.2.7. In the dual setting they are connected more directly, since we can only

define an adjoint iteration operator for GOProM with respect to a certain evaluation scheme or

in certain cases for classes of these schemes.
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Corollary 4.1.4. Let A : V → V be a generator of the signal modelMM (A) and V a linear

space with dual V∗. Further, let Φϕ : M (A) → M (A) be a corresponding iteration operator

with an adjoint

Φ∗ϕ : (M (A))∗ → (M (A))∗ .

Moreover, let Fm : V → C be an evaluation scheme induced by φ ∈ (M (A))∗ and

∀ λ ∈ σ̂
ϕ
P(A) : 0 < |F(vλ)| = |〈vλ, φ〉| < ∞

such that 〈
Φm+`
ϕ · , φ

〉
=

〈
· , (Φ∗ϕ)m+`φ

〉
for all m+` ≤ (N + M−1) ∈ N, N ≥ M−1. Then, the following sampling scheme is admissible

S m,` := F ◦ Φm+`
ϕ =

〈
· , (Φ∗ϕ)m+`φ0

〉
=

〈
· , φm,`

〉
,

where φm,` := (Φ∗ϕ)m+`φ0.

Proof. This is a reformulation of the results in Theorem 2.3.4 using the admissibility of the

canonical sampling scheme in terms of the adjoint iteration operator. It is sufficient to assume

the admissibility condition for λ ∈ σ̂
ϕ
P(A), i. e., the restricted point spectrum, such that the

mappings λ → vλ and λ → ϕ(λ) are both injective. Thus, we can uniquely identify the active

eigenvalues and in turn the active eigenfunctions by GOProM. �

Although we basically only need the linearity of the evaluation scheme, the assumption that V

is a Hilbert space, i. e., the dual notation of the evaluation functional can be chosen to be an

inner product, delivers a geometrical interpretation of the admissibility condition

|Fm (vλ) | = | 〈 f , φm〉 | > 0.

The admissible functional kernels φm ∈ (M (A))∗ necessarily satisfy that they are not orthog-

onal to any atom vn ∈ M (A). In particular, if {vn}
∞
n=0 := {vλn}

∞
n=0, with λn ∈ σ̂

ϕ
P(A), is

an orthonormal basis for the Hilbert space V , we can always construct an admissible kernel

φ :M (A)→ C for the canonical dual sampling scheme as in Corollary 4.1.4 by

φ(x) :=
∞∑

k=0

βkvk(x),

where |βn| > 0 for all n ∈ N such that
∞∑

k=0
|βk|

2 < ∞, because

∀ λn ∈ σ̂
ϕ
P(A) : |F(vn)| = |〈vn, φ〉| =

∣∣∣∣∣∣∣
∞∑

k=0

βk〈vn, vk〉

∣∣∣∣∣∣∣ = |βn| > 0.

As an example we can always think of spaces spanned by orthonormal polynomials, for in-

stance the space of all square integrable functions over [−1, 1] with respect to a certain inner
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product such that there is an orthonormal polynomial basis.

In general, the convergence of φ demands that βk has to be a null sequence and although it

does not identically vanish by construction on any atom vn, there is an infinite number of atoms

such that the corresponding coefficients βk are smaller than any a priori given bound. This is a

clear issue with this type of kernels and it seems that we can only circumvent it by employing

some information about the possible active atoms. In other words, we have to assume a finite

alphabet again. If a finite alphabet A with cardinality M is given, we can simply take the null

sequence

ϕk :=

αk , 0 vk ∈ A

αk = 0 vk < A ,

with arbitrary large coefficients αk. This means we can choose

φ(x) =

M∑
k=1

αkvk(x),

i. e., a finite linear combination of the possibly active eigenfunctions with linear coefficients αk

bounded away from zero.

Furthermore, in the case of finite alphabets of orthonormal functions it is even possible to con-

struct more general admissible evaluation schemes Fm, beyond the canonical one. This can be

seen by the following calculation. Given a signal modelMM (A), such that the eigenfunctions

vλ are orthonormal for all λ ∈ σ̂P(A), the set of all eigenvalues to eigenfunctions inA, we have

for

Fm = 〈 · , φm〉 :=
〈
· ,

M∑
k=1

αm
k vk

〉
and all f ∈ MM (A), restricted to the finite alphabetA, that

EF := [Fm(vn)]N,M
m,n=0 =

[
〈vn, φm〉

]N,M
m,n=0 =

 M∑
k=1

αm
k 〈vn, vk〉


N,M

m,n=0

=
[
αm

n
]N,M
m,n=0 ,

where vn are the currently active eigenfunctions, i. e., a subset of the alphabetA. At this point

we remember the exact definition for admissibility in Definition 2.2.7, namely, for a given

signal modelMM (A) it must hold that

∀N ∈ N∀ Λ ⊆ σ̂
ϕ
P(A) s.t. |Λ| = M̃ : rank (EF) = M̃. (4.1)

Compared to the calculation above for finite alphabets this means that

∀N ∈ N∀ Λ ⊆ σ̂P(A) s.t. |Λ| = M̃ : rank
([
αm

n
]N,M
m,n=0

)
= M̃,

where σ̂P(A) is as above the set of finitely many eigenvalues corresponding to the alphabetA.

If we assume that all eigenfunctions in A are active, the matrix EF = ÊF , the biggest matrix

possible, with respect to M = |A| has to have full rank. If we only take a finite subset of



76 Dual Sampling Schemes

A as active eigenfunctions, this corresponds to a submatrix of ÊF made of the corresponding

columns and all rows. This means, for admissibility of an evaluation scheme as above it is

sufficient to find a matrix ÊF such that every selection of columns is linear independent.

Remark 4.1.5. An interesting observation is the formal connection of the dual GOProM ap-

proach and the field of dynamical sampling [1, 2]. Dynamical sampling is a recently developed

framework for the reconstruction of signals f that evolve over time by a given law, i. e., we can

only observe samples of the form [〈
B` f , φm

〉]
m,`∈N

,

where B is an operator that governs the evolution of f and φm is a possibly countable set of

sampling kernels. If we now assume that the function f , which is to be reconstructed, is a

sparse linear combination of eigenfunctions of the evolution operator B and φm constitutes an

admissible sampling scheme, GOProM can be interpreted as a dynamical sampling method to

reconstruct sparse initial states of the observed signals.

4.1.1 Linear Differential Operators

In the examples given so far we have often used the iteration operator Φϕ together with the

generalized Prony polynomials to establish the annihilation equations as well as to generate

the evaluation scheme and called the resulting sampling scheme canonical. This was possible

since this sampling scheme was already realizable, i. e., it was possible to write it down as

linear functionals applied to the signal itself without using signal derivatives.

In this section we discuss the example of linear differential operators that are used as generators

of sparse expansions into their eigenfunctions. In the previous chapters we already considered

examples of such differential generators, for instance, the ordinary derivative d
dx as generator

of finite expansions into complex exponentials in Section 2.1 or
(√

1 − x2 d
dx

)2
as generator of

sparse linear combinations into Chebychev polynomials in Section 3.3. In contrast to these

special cases, it is in general not always obvious how to find suitable mappings Φ to construct a

simple iteration operator for differential generators. Thus, we want to apply the dual approach

to get sampling schemes for all linear differential operators, that are defined as follows.

Definition 4.1.6 (Linear Differential Operator). Given real-valued functions αn ∈ C[x0, x1] we

define Dd : Cd[x0, x1]→ C[x0, x1] with

Dd f (x) :=
d∑

n=0

αn(x)
dn

dxn f (x),

for f ∈ Cd[x0, x1] and call it a linear differential operator of order d, where x0, x1 ∈ R.

The eigenfunctions of these differential operators, if the operator has eigenfunctions, are in-

finitely often differentiable and can be used to form new families of atoms. Vice versa, a

possible first approach to derive a generator A := Dd for a given smooth eigenfamily is to try
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to deduce a defining differential operator, for example, as it was done in Section 3.2.2 for the

Gaussian chirp model.

A direct use of such a differential operator as annihilation operator or for the generation of

the evaluation scheme leads to non-realizable sampling schemes based on high signal deriva-

tives. Thus, we have to find suitable elements in the dual space of Cd[x0, x1] with respect to an

admissible evaluation scheme

Fm : Cd[x0, x1]→ C,

to construct an admissible and realizable sampling scheme S m,`. For all practical reasons and

in order to avoid unnecessary technicalities, in this section we define the evaluation scheme Fm

always by using a sufficiently smooth kernel function φ.

We first focus on canonical evaluation schemes, i. e., generated by the iteration operator itself,

Φϕ := A = Dd. Therefore,

Fm := F ◦ Φm
ϕ = 〈Dm

d (·), φ〉.

The complexity of linear differential operators Dd makes it in general very difficult to find a

mapping ϕ to get a realizable iteration operator ϕ(Dd); remember, the choice Φϕ := Dd, where

ϕ(z) = z, is not realizable in the sense of this thesis because we have to use signal derivatives.

To circumvent this issue, we use the following classical result for differential operators to

construct a very general adjoint operator concerning a certain evaluation functional F.

Lemma 4.1.7 (Formal Adjoint). Let Dd : Cd[x0, x1] → C[x0, x1], x0, x1 ∈ R̄, be a linear

differential operator as in Definition 4.1.6 with αn ∈ Cd[x0, x1] real-valued for all integers

n ≤ d ∈ N0 and let φ ∈ Cd[x0, x1] such that

∀k ≤ d − 1 : lim
x→x0

dk

dxk φ(x) = lim
x→x1

dk

dxk φ(x) = 0,

then the formal adjoint of Dd with respect to the linear functional 〈 · , φ〉 :=
∫ x1

x0
(·)φ(x)dx is

D∗d =

d∑
n=0

(−1)n dn

dxnαnI =

d∑
n=0

(−1)n
n∑

k=0

(
n
k

)
α(n−k)

n
dk

dxk .

Proof. First we show that A∗ :=
d∑

n=0
B∗n is an adjoint for A =

d∑
n=0

Bn, given that B∗n is an adjoint

for Bn. Let φ be an arbitrary element of Cd[x0, x1], then

〈A f , φ〉 =

〈 d∑
n=0

Bn f , φ
〉

=

d∑
n=0

〈Bn f , φ〉 =

d∑
n=0

〈
f , B∗nφ

〉
=

〈
f ,

d∑
n=0

B∗nφ
〉

=
〈

f , A∗φ
〉
.

This shows that A∗ is a dual operator for A. We now define the differential generator as

Dd :=
d∑

n=0

Bn with Bn := αn
dn

dxn .
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Since the adjunction is linear, we only need to calculate the dual of Bn. This can be done by

the extended chain rule

〈Bn f , φ〉 =

x1∫
x0

(Bn f )(x)φ(x)dx =

x1∫
x0

αn(x) f (n)(x)φ(x)dx =

x1∫
x0

f (n)(x)un(x)dx,

where we substituted un := αn · φ. Integration by parts delivers

〈Bn f , φ〉 =

x1∫
x0

f (n)(x)un(x)dx =

n−1∑
k=0

(−1)k f (n−1−k)(x)u(k)
n (x)


x1

x0

+ (−1)n

x1∫
x0

f (x)u(n)
n (x)dx.

Since we assumed that f and αn are d−times continuously differentiable and the kernel and all

its derivatives up to order d vanish at the boundaries, it follows by the Leibniz rule that

lim
x→x0

n−1∑
k=0

(−1)k f (n−1−k)(x)u(k)
n (x) = lim

x→x0

n−1∑
k=0

(−1)k f (n−1−k)(x)u(k)
n (x)

= lim
x→x0

n−1∑
k=0

(−1)k f (n−1−k)(x)(αn · φ)(k)(x)

= lim
x→x0

n−1∑
k=0

(−1)k f (n−1−k)(x)
k∑

s=0

(
k
s

)
α(k−s)

n (x)φ(k)(x)

=

n−1∑
k=0

(−1)k
k∑

s=0

(
k
s

)
lim
x→x0

f (n−1−k)(x)α(k−s)
n (x)φ(k)(x) = 0

and analogously it works for lim
x→x1

. This directly implies

〈Bn f , φ〉 =

x1∫
x0

f (n)(x)un(x)dx = (−1)n

x1∫
x0

f (x)u(n)
n (x)dx =

〈
f , B∗nφ

〉
,

where

B∗nφ(x) := (−1)n dn

dxn (αnφ)(x) = (−1)n
n∑

k=0

(
n
k

)
α(n−k)

n (x)φ(k)(x),

which yields the assertion, since D∗d =
d∑

n=0
B∗n as shown before. �

Furthermore, it is emphasized that we have got a new restriction to the set of suitable evaluation

functionals F := 〈·, φ〉, namely

φ ∈
{
φ ∈ Cd−1[x0, x1]

∣∣∣∣∣ ∀k ≤ d − 1 : lim
x→x0

φ(k)(x) = lim
x→x1

φ(k)(x) = 0
}
.

This is a necessary condition to guarantee that the operator D∗d in Lemma 4.1.7 is an adjoint of

Dd, but for GOProM we also need powers (Φ∗ϕ)` of this operator, which is a simple consequence
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of the definition of the canonical sampling scheme in this section, namely

S m,` =
〈
Dm+`

d · , φ
〉

=
〈
· , (D∗d)m+`φ

〉
.

Thus, the kernel φ that defines the evaluation functional F for signals f ∈ MM (Dd) has to be

even smoother,

φ ∈
{
φ ∈ Cd(N+M)[x0, x1]

∣∣∣∣∣ ∀k ≤ d(N + M) : lim
x→x0

φ(k)(x) = lim
x→x1

φ(k)(x) = 0
}
,

where N + 1 ≥ M is the number of columns of the sampling matrix XN,M.

The following lemmata present four types of suitable kernels inducing admissible dual sam-

pling schemes. The first type of kernels has the advantage that it is infinitely often differentiable

on the real line and all derivatives are compactly supported.

Lemma 4.1.8 (Bump kernels for arbitrary intervals). Let Dd : Cd[x0, x1] → C[x0, x1] be a

linear differential operator as in Definition 4.1.6 with αn ∈ C∞[x0, x1]. Let the restricted point

spectrum of Dd be denoted by σ̂P(Dd) , ∅ with corresponding eigenfunctions vλ. Moreover,

let I := [x0, x1] ⊂ R and κ ∈ R+
× be a scale parameter. Then the kernel

φ(x) :=

exp
(
− κ

(x−x0)2

)
exp

(
− κ

(x−x1)2

)
x ∈ I

0 x < I

fulfills the vanishing property of Lemma 4.1.7

lim
x→x0

dk

dxk φ(x) = lim
x→x1

dk

dxk φ(x) = 0,

for all k ∈ N0 and is infinitely often differentiable. Moreover, it is assumed for all λ ∈ σ̂P(Dd)

that 0 < | 〈vλ, φ〉 | < ∞ holds, i. e., φ is the kernel of an admissible evaluation scheme. Then the

sampling scheme based on the generator Dd and the evaluation scheme Fm :=
〈
· , (D∗d)mφ

〉
,

where D∗d is as in Lemma 4.1.7, is given by S m,` :M∞ (Dd)→ C,

S m,` :=
〈
· ,D∗d

m+`φ
〉
.

This sampling scheme is admissible and realizable for all f ∈ MM (Dd).

Proof. Since the support of the derivative of a function is a subset of the support of the function

itself, it is sufficient to prove that the derivatives of φ are all well-defined and vanish at the

boundaries x0 and x1. The first derivative of φ in I is

d
dx

exp
(
−

α

(x − x0)2

)
exp

(
−

α

(x − x1)2

)
=

(
2α

(x − x0)3 +
2α

(x − x1)3

)
φ(x).

Therefore, any further derivative is given by the product rule and the chain rule and is of the
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form

dk

dxk exp
(
−

α

(x − x0)2

)
exp

(
−

α

(x − x1)2

)
= Rk(x) exp

(
−

α

(x − x0)2

)
exp

(
−

α

(x − x1)2

)
,

where Rk is a rational function with poles of finite order at x0 and x1. Since the exponential

function dominates every polynomial of finite degree and the product φ(x) vanishes for x→ x0

and x → x1, also φ(k)(x0) and φ(k)(x1) vanish for all k and φ(k) is bounded on I. Moreover,

the condition 0 < | 〈vλ, φ〉 | < ∞ implies that the evaluation functional F := 〈 vλ , φ〉 does not

vanish for any λ ∈ σ̂P(A) and therefore it is an admissible evaluation functional. The dual

scheme inherits the admissibility directly. The realizability is obvious, since S m,` is a linear

function onMM (Dd). �

We can often choose a symmetric interval I := [−x0, x0]. Although the kernel in Lemma 4.1.8

is also suitable for this situation, a slightly different kernel can be used, too.

Lemma 4.1.9 (Bump Kernels for symmetric Intervals). Let Dd : Cd[−x0, x0]→ C[−x0, x0] be

a linear differential operator as in Definition 4.1.6 with αn ∈ C∞[−x0, x0]. Let the restricted

point spectrum of Dd be denoted by σ̂P(Dd) , ∅ with corresponding eigenfunctions vλ. More-

over, let I := [−x0, x0] ⊂ R and κ ∈ R+
× a scale parameter. Then the kernel

φ(x) :=

exp
(
− κ

x0−x2

)
x ∈ I

0 x < I

fulfills the vanishing property of Lemma 4.1.7

lim
x→x0

dk

dxk φ(x) = lim
x→x1

dk

dxk φ(x) = 0,

for all k ∈ N and is infinitely often differentiable. Moreover, it is assumed for all λ ∈ σ̂P(Dd)

that 0 < | 〈vλ, φ〉 | < ∞ holds, i. e., φ is the kernel of an admissible evaluation scheme. Then the

sampling scheme based on the generator Dd and the evaluation scheme Fm :=
〈
· , (D∗d)mφ

〉
,

where D∗d is as in Lemma 4.1.7, is given by S m,` :M∞ (Dd)→ C,

S m,` :=
〈
· ,D∗d

m+`φ
〉
.

This sampling scheme is admissible and realizable for all f ∈ MM (Dd).

Proof. The same arguments as in the proof of Lemma 4.1.8 can be used. �

Although these kernels are infinitely often continously differentiable and have in turn the ad-

vantage that they need no a priori knowledge of the order M of the modelMM (Dd) or a prede-

fined sampling size, they behave very badly for high derivatives. The higher derivatives show

a severe oscillation pattern with very rapid sign changes. Thus, for theoretical purposes these

kernels are ideal, but impractical if we use them in connection with adjoint differential opera-

tors. The next family of kernels provides a compromise in a sense. They also vanish outside
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a compact interval but they show a much better oscillation pattern. This is achieved by losing

some generality and incorporating the knowledge about the model order M. Before concrete

examples will be given, we formulate the basic properties of these kernels in the following

lemma.

Lemma 4.1.10 (Gaussian Modulated Polynomial Kernels). Let Dd : Cd[x0, x1]→ C[x0, x1] be

a linear differential operator as in Definition 4.1.6 with αn ∈ C∞[x0, x1]. Let the restricted point

spectrum of Dd be denoted by σ̂P(Dd) , ∅ with corresponding eigenfunctions vλ. Moreover,

let I := [x0, x1] ⊂ R and α, β ∈ R+
× be scale parameters such that βxi < I for i ∈ {0, 1}, where

K ≥ d(N + M). Then the kernel

φP(x) :=

(x − x0)K(x − x1)K exp
(
−α(x − βx0)2(x − βx1)2

)
x ∈ I

0 x < I

is K−times continously differentiable and fulfills the vanishing property of Lemma 4.1.7

lim
x→x0

dk

dxk φP(x) = lim
x→x1

dk

dxk φP(x) = 0,

for all k ≤ K − 1. Moreover, it is assumed for all λ ∈ σ̂P(A) that 0 < | 〈vλ, φG〉 | < ∞ holds,

i. e., φ is the kernel of an admissible evaluation scheme. Then the sampling scheme based on

the generator Dd and the evaluation scheme Fm :=
〈
· , (D∗d)mφG

〉
, where D∗d is as in Lemma

4.1.7, is given by S m,` :M∞ (Dd)→ C,

S m,` :=
〈
· ,D∗d

m+`φ
〉
.

This sampling scheme is admissible and realizable for all f ∈ MM (Dd).

Proof. The admissibility and realizability are inherited from the canonical sampling scheme

as already seen in the proof of Lemma 4.1.8. Therefore, we only show the differentiability

and the vanishing property in detail. We start by calculating the kth-derivative of p(x) :=

(x − x0)K(x − x1)K over I by using the Leibniz rule,

p(k)(x) =
dk

dxk (x − x0)K(x − x1)K =

k∑
s=0

(
k
s

)
K!2

(K − k + s)!(K − s)!
(x − x0)K−k+s(x − x1)K−s.

The continous derivatives exist for all k ≤ K − 1 and they obviously vanish outside R \

(x0, x1). This implies that also p(k)(x)1I(x) is k-times continously differentiable. Further-

more, the exponential term is infinitely often differentiable and therefore also the product

p(x) exp
(
−α(x − βx0)2(x − βx1)2

)
. In turn, the function φα,β is (K − 1)-times continously dif-

ferentiable. �

A fourth type of kernels, that are also encountered in other applications, are cardinal B−splines.

A cardinal B−spline is a piecewise polynomial which can be calculated by the following iter-

ation. Let φ0 := 1[0,1) be per definition the B-spline of degree zero, i. e. the characteristic
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function of the interval [0, 1). The nth cardinal B-spline is defined by successive convolutions

of φ0 with itself, i. e.,

φn(x) := (φn−1 ∗ φ0) (x) =

∫
R

φn−1(x − s)φ0(s)ds.

The first two B-splines are

φ1(x) =


x, x ∈ [0, 1)

2 − x x ∈ [1, 2)

0, otherwise

and φ2(x) =



1
2 x2, x ∈ [0, 1)
1
2 + (x − 1)(2 − x) x ∈ [1, 2]
1
2 + 1

2 (x − 2)(x − 4) x ∈ [2, 3)

0, otherwise .

The most interesting property of those kernels from the GOProM perspective is the fact that

they give rise to non-canonically generated evaluation schemes. In order to see this let a con-

vulotion operator B with respect to φ0 for all g ∈ C(R) be defined as

B f := φ ∗ g =

∫
R

g(· − t)φ(t)dt.

With this operator at hand, we define the following evaluation scheme for all f ∈ C(R) by

Fm :=
〈
· , Bm−1φ0

〉
= 〈 · , φm〉 ,

where φm is the mth cardinal B-spline as defined above, since φm = (φm−1 ∗ φ0) = Bm−1φ0.

This means that Fm is an evaluation scheme, generated by the successive convolution of the

characteristic function of the interval [0, 1) with itself.

Lemma 4.1.11 (B-Spline kernels). Let Dd : Cd[x0, x1] → C[x0, x1] be a linear differential

operator as in Definition 4.1.6 with αn ∈ C∞[x0, x1]. Let the restricted point spectrum of Dd

be denoted by σ̂P(A) , ∅ with corresponding eigenfunctions vλ. Moreover,

Bg :=
∫
R

g(t)φ0(· − t)dt,

where φ0(x) := 1[x0,x1)(x) and g ∈ C[x0, x1]. Then the sampling scheme S m,` :M∞ (Dd)→ C,

S m,` :=
〈
· ,D∗d

`Bm−1φdM
〉

=

∫
R

(·)(x)(D∗d)`φdM+m(x)dx =
〈
· , (D∗d)`φdM+m

〉
,

where φn is the nth cardinal B-spline over [x0, x1), is admissible if EF =
[
〈vλ, φm〉

]N
m=0,λ∈Λ has

full rank for all choices of Λ ∈ σ̂P(A), N ≥ M − 1, is realizable, and the formal adjoint D∗d is

well-defined since all derivatives of φm vanish outside the interval I.

Proof. It holds that

S m,` f =
〈
D`

d f , Bm−1φ0
〉

=
〈

f , (D∗d)`Bm−1φ0
〉

=
〈

f , (D∗d)`φm
〉
,



4.2. Application of the Dual Sampling Approach 83

where φm is by definition the mth B-spline supported on the interval [x0,m + 1 + x1). The

result follows by substituting φ0 by φdM, to have sufficiently smooth kernels; they have to be

at least d`-times differentiable, which is ensured by the choice φdM. The admissibility is just a

reformulated version of the usual one, because Fm(vλ) = 〈vλ, φm〉. �

Of course, we could have used analogously to the polynomial example any B-spline with suf-

ficiently high degree K and use the sampling scheme

S m,` =
〈
· , (D∗d)m+`φK

〉
.

This sampling scheme is admissible under the same conditions as for the polynomial kernel.

The advantage of the splines over this scheme is that we keep the coefficients of the resulting

kernels smaller. Instead, if we iterate a differential operator on a polynomial of high degree,

the coefficients of the resulting polynomial quickly become very large.

Remark 4.1.12. Besides the fact that the convolution operator B∗ f :=
∫
R

f (· − t)φ(t)dt and the

correlation operator B f :=
∫
R

f (t)φ(·+ t)dt can be used to generate certain evaluation schemes,

they also have the exponentials as eigenfunctions. This holds analogously for both by

B exp(λx) =

∫
R

exp(λ(x − t))φ0(t)dt =

∫
R

exp(−λt)φ0(t)dt exp(λx) = ϕ(λ) exp(λx),

as long as ϕ(λ) :=
∫
R

exp(−λt)φ0(t)dt < ∞. This implies that we could use them directly as

iteration operators for f ∈ M∞
(

d
dx

)
if λ → ϕ(λ) is one to one. In particular, the convolution

operator commutes with the shift operator; but not only that, if an operator commutes with the

shift, it is already a convolution. This implies that we can switch between the shift and the

convolution operator to get an iteration operator or to generate the evaluation scheme.

4.2 Application of the Dual Sampling Approach

4.2.1 Exponential Expansions

We again consider as a first example for the dual sampling approach sparse exponential sums,

i. e., f : R→ C such that

f (x) =
∑
λ∈Λ

cλvλ(x),

where vλ(x) := exp(λx) are the eigenfunctions of the generator A = d
dx and Λ is a finite subset

of the restricted point spectrum σ̂P(A) = R × i[0, 2π), with |Λ| = M. A possible sampling

scheme for these expansions based on some evaluation functional F : C(R)→ C is

S m,` = Fm ◦ A` = F ◦
dm+`

dxm+`
, m + ` ∈ {0, 1, . . . ,N + M − 1},

which is admissible if 0 < |F (vλ) | < ∞ for all λ ∈ σ̂P(A). In the introduction the connection to

the shift operator was used to get a realizable sampling scheme. Now we use the dual approach;
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therefore, we need the formal adjoint of the ordinary differential operator provided by Lemma

4.1.7, i. e.,

(A∗)n =

(
dn

dxn

)∗
= (−1)n dn

dxn =⇒ S m,` =

〈
· , (−1)m+` dm+`

dxm+`
φ

〉
,

where φ is a kernel as in Lemma 4.1.7 and A := d
dx : C1(R) → C(R). From Corollary 4.1.4

we also know that this sampling scheme is admissible as long as 0 < |〈vλ, φ〉| < ∞ for all

λ ∈ σ̂P(A).

A kernel which satisfies these properties is by Lemma 4.1.10 the polynomial kernel for α = 0

defined by φ(x) := xK
(

1
2 − x

)K
1[

0, 1
2 )(x) , where M := |Λ|, and K := N + M − 1, because it

holds that

F(vλ) :=

1
2∫

0

exp(λx)xK
(
1
2
− x

)K

dx , 0

for all k ∈ N0 and λ ∈ σ̂P(A). This can be seen by

F(vλ) :=

1
2∫

0

exp(uλx) cos(wλx)xK
(
1
2
− x

)K

dx + i

1
2∫

0

exp(uλx)xK sin(wλx)
(
1
2
− x

)K

dx,

where λ := uλ + iwλ with uλ ∈ R and wλ ∈ [0, 2π). Due to the fact that the imaginary part

of F(vλ) is an integral over a strictly positive function over (0, 0.5) for all λ ∈ σ̂P(A), the

functional F does not vanish for any λ, i. e. |F(vλ)| > 0.

The sampling scheme applied to a function f ∈ MM (A) is then given by Lemma 4.1.10 and

the Leibniz rule. We substitute for convenience k := m + ` and get

S m,` ( f ) =

〈
f , (−1)m+` dm+`

dxm+`
φ

〉
= (−1)k

1
2∫

0

f (x)

xN+M−1
(
1
2
− x

)N+M−1(k)

dx

=

k∑
s=0

K−s∑
j=0

αK,k,s, j

1
2∫

0

f (x)xK−k+s+ jdx,

where αK,k,s, j := (−1)k+ j
(

1
2

)K−s− j (k
s

)(
K

k−s

)(
K
s

)(
K−s

j

)
s!(k − s)! and K = N + M. This means we

essentially have to sample at most N + M − 1 moments of f , N ≥ M − 1. In the case of N = M

we need 2M − 1 moments of f , where we start with the moment to the power of zero and

calculate all moments up to the power of 2M − 1. Eventually, this yields the sampling matrix

XN,M( f ) =

m+∑̀
s=0

K−s∑
j=0

αK,m+`,s, j

1
2∫

0

f (x)xK−m−`+s+ jdx


N,M

m,`=0

,

where N ≥ M − 1 ∈ N.
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4.2.2 Sparse Sturm-Liouville Expansions

In this section we discuss expansions into eigenfunctions of Sturm-Liouville-type differential

operators. We follow the notation in [18] with the boundary conditions

R1 f := α1 f (a) + α2 f (1)(a) = 0 and R2 f = β1 f (b) + β2 f (1)(b) = 0,

defined by operators R1 := α1 I +α2
d
dx and R2 := β1 I +β2

d
dx and the assumptions that for the

real functions p, q, and r it holds that

1. p ∈ C1[a, b] and q, r ∈ C[a, b]

2. p(t) > 0 and r(t) > 0 for all t ∈ [a, b]

3. α1, α2, β1 , β2 ∈ R,0.

The corresponding Sturm-Liouville operator is defined as L : C2[a, b]→ C[a, b],

L :=
1
r

(
d
dx

p
d
dx

+ q I
)
.

Using this notation, the following eigenvalue problem can be formulated

Lvλn = λnvλn .

From the theory of Sturm-Liouville problems it is known that this equation has countably many

orthonormal solutions for certain λn ∈ N for n ∈ N. These solutions form a basis for the Hilbert

space L2([a, b], rdx) equipped with the inner product

〈 f , g〉r :=

b∫
a

( f g)(x) · r(x)dx.

In particular, the eigenvalues uniquely identify the eigenfunctions and therefore GOProM can

be applied. Unfortunately, a direct iteration leads to non-realizable sampling schemes and an

exponential iteration is not explicitly realizable since the terms in L generally do not commute

in a simple way. Thus, we employ the dual approach to come up with realizable sampling

schemes. A useful property of the Sturm-Liouville operator is that it is self-adjoint with respect

to kernels φ ∈ L2([a, b], rdx) ∩C1[a, b], where φ : [a, b]→ R such that (R1φ)(a) = (R2φ)(b) =

0, i. e.,

〈L f , φ〉r = 〈 f ,Lφ〉r

for all f ∈ L2([a, b], r(x)dx). This is a consequence of

φrL f − f rLφ = φ
d
dx

p f (1) + φq f − f
d
dx

pφ(1) − f qφ = φ
d
dx

p f (1) − f
d
dx

pφ(1)

=
d
dx

[
p
(
φ f (1) − φ(1) f

)]
.
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Taking integrals on both sides gives

b∫
a

r(x)(L f )(x)φ(x) − r(x) f (x)(Lφ)(x)dx = 0,

and because of R1φ = R2φ = 0 it holds that

b∫
a

d
dx

[
p
(
φ f (1) − φ(1) f

)]
dx = p(b)

(
f (1)(b)φ(b) − f (b)φ(1)(b)

)
− p(a)

(
f (1)(a) − f (a)φ(1)(a)

)
= p(b) f (1)(b)

(
φ(b) +

β2

β1
φ(1)(b)

)
− p(a) f (1)(a)

(
Φϕ +

α2

α1
φ(1)(a)

)
= p(b) f (1)(b)R2φ − p(a) f (1)(a)R1φ = 0.

Thus, we have

〈L f , φ〉r =

b∫
a

(L f )(x)φ(x)r(x)dx =

b∫
a

f (x)(Lφ)(x)r(x)dx = 〈 f ,Lφ〉r .

In contrast, this well-known result for Sturm-Liouville operators imposes a different condition

on suitable evaluation kernels φ than in Lemma 4.1.7. Instead of a certain number of vanishing

derivatives, it is sufficient to assume that the boundary conditions R1 and R2 are fulfilled for

all Lm+`φ, m + ` = 0, . . . ,N + M − 1. In principle, this is a weaker condition as in Lemma

4.1.7 in the sense that all kernels therein fulfill it automatically. In general, this is a non-trivial

assumption, since R1 and R2 do not commute with L and therefore we have to impose this

boundary condition on every iteration Lm+`φ.

Fortunately, in the special case of kernels

φ(x) :=
∞∑

n=0

αnvλn(x),

where {vλn | n ∈ N0} is an orthonormal basis for L2([a, b], r(x)dx) which solves the Sturm-

Liouville problem, it holds that(
R1L

m+`φ
)

(a) =
(
R2L

m+`φ
)

(b) = 0.

This can be seen by the following calculation, using the linearity of R1 and R2. For i ∈ {1, 2} it

holds that

RiL
m+`φ = RiL

m+`
∞∑

n=0

αnvn = Ri

∞∑
n=0

αnλ
m+`
n vn =

∞∑
n=0

αnλ
m+`
n Rivn ;
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therefore, they vanish on the boundary points

(R1L
m+`φ)(a) = (R2L

m+`φ)(b) = 0

for all (m + l) ∈ N. Thus, for these kernels the Sturm-Liouville operator and all its iterations

are self-adjoint.

Although this is a nice result, the issues of this type of kernels discussed shortly after Corollary

4.1.4 are evident. Either we assume a finite alphabet or we accept the fact that F := 〈 · , φ〉 gets

arbitrarily close to zero. Since we want to have no restriction on the alphabet in the upcoming

example, we use the symmetric polynomial kernel from Lemma 4.1.10.

This kernel fulfills the boundary conditions R1 and R2 since it simply vanishes for all derivatives

in a and b. Therefore, the assumptions in Lemma 4.1.7 are given and the following calculation

shows that L is also self-adjoint with respect to this type of kernels.(
d
dx

p
d
dx

+ q I
)∗

=

(
p

d2

dx2 + p(1) d
dx

+ q I
)∗

=
d2

dx2 p −
d
dx

p(1) + q I

=
d
dx

(
p(1) I +p

d
dx

)
− p(2) I−p(1) d

dx
+ q I

= p(2) I +p(1) d
dx

+
d
dx

p
d
dx
− p(2) I−p(1) d

dx
+ q I

=
d
dx

p
d
dx

+ q I

Thus, we proceed using the sufficiently differentiable and compactly supported sampling ker-

nels of Lemma 4.1.10 to demonstrate the dual approach for Sturm-Liouville type expansions,

namely, finite linear combinations of Legendre polynomials.

Remark 4.2.1. A special type of Sturm-Liouville operators and polynomials was already dis-

cussed from different perspectives, namely the Chebychev polynomials, which are defined as

eigenfunctions of

(1 − x2)
d2

dx2 − x
d
dx

= (1 − x2)
d2

dx2 − 2x
d
dx

+ x
d
dx

=
d
dx

(1 − x2)
d
dx

+ x
d
dx
.

Sparse Legendre-Expansions

In this section we construct a sampling scheme for sparse expansions into Legendre polynomi-

als of arbitrary degree. This problem was already considered in [33]. The great advantage of

the new dual approach is that the sampling scheme can be formulated without any use of signal

derivatives.

First, we note that the Legendre polynomial Ln can be defined by using the following operator

as generator,

A := (1 − x2)
d2

dx2 − 2x
d
dx

=
d
dx

(1 − x2)
d
dx
.
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This operator is obviously of Sturm-Liouville type and has the Legendre polynomials Ln as

eigenfunctions, i. e.,

ALn = −n(n + 1)Ln,

where λn = −n(n + 1). Therefore, the restricted point spectrum in this case is σ̂P(A) = {−n(n +

1) | n ∈ N0}. The goal is to reconstruct sparse linear combinations of Legendre polynomials,

i. e.,

f (x) =

M∑
j=1

cn j Ln j(x).

The operator A is by the considerations above formally self-adjoint with respect to a suitable

vanishing kernel. A possible choice is delivered by Lemma 4.1.10.

φP(x) :=

(x − x0)K(x − x1)K exp
(
−α(x − β0)2(x − β1)2

)
x ∈ I

0 x < I

Here,we choose the interval I := [−0.5, 0.75], β0 = β1, and K := d(N + M), where M is the

a priori known model order, N + 1 the number of rows of the sampling matrix, and d = 2 the

order of the differential operator A. Let

F( f ) :=
∫ 0.75

−0.5
f (x)φP(x)dx , 0

be the evaluation functional based on the kernel above. We will use the canonical sampling

scheme S m,` := F ◦ Am+`; thus, we have to check the admissibility condition. Since the kernel

is an asymmetric function concerning the y-axis and no pure polynomial term, the integral does

not vanish on any Legendre polynomial Ln, i. e.,

∀ n ∈ N : F(Ln) =

∫ 0.75

−0.5
Ln(x)φP(x)dx , 0.

In turn, the dual sampling scheme based on the canonical one is also admissible.

If we now assume that the given signal is

f (x) :=
3∑

j=1

cn j Ln j(x),

i. e., a three sparse linear combination of arbitrary Legendre polynomial, we need five iterations

of AnφP, n ∈ {0, 1, 2, 3, 4, 5}, to generate the sampling matrix based on the canonical sampling

scheme, where n := m + `. Furthermore, we fix N := M, α = 0.1, and −β0 = β1 = 2. As a

result we have a sampling kernel of the form

φP(x) :=

(x + 0.5)12(x − 0.75)12 exp
(
− 1

10 (x2 − 4)2
)

x ∈ I

0 x < I
.
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The parameters of the sampling kernel are chosen such that the amplitude of AnφP stays in a

tractable range for all n ∈ {0, 1, 2, 3, 4, 5}. Since the kernels are not really demonstrative, we

depict them in Figure 4.1 by their graphs on [−1, 1]. They correspond, starting at the top left,

to the kernels A0φP, A1φP, A2φP (upper row), A3φP, A4φP, and A5φP (lower row).

Actually, this type of sampling kernels reminds of wavelets, and in a sense they also gather
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Figure 4.1: Sampling kernels for a Legendre Expansion

information over multiple scales of the signal at hand. Of course, there are fundamental dif-

ferences between the sampling kernels here and wavelets of any kind, but it gives a hint that

Prony’s method could be interpreted as a sort of multiscale analysis in its own right, at least in

the dual approach for sparse signals.

These kernels can now be used for any kind of 3−sparse linear combination of arbitrary Leg-

endre polynomials. For a concrete example we choose as maximum degree n̂ = 20, but we

could have taken any other higher natural number. Furthermore, we draw without replacement

three distinct numbers n ∈ {0, 1, . . . , n̂}, that define the active atoms of the exemplarily signal.

Moreover, the linear coefficients are drawn uniformely from the interval [1, 10]. The concrete

realizations in this example are shown in Table 4.1. The signal with these parameters is

n j 1 4 9

cn j 1.703 3.193 3.710

Table 4.1: Polynomial degrees n and the corresponding linear coefficients cn

depicted in Figure 4.2. For the reconstruction we take samples

S m,` =
〈

f , Am+`φP
〉
.
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Figure 4.2: 3-sparse Legendre Expansion

and apply the GOProM approach with the sampling matrix

X3,3 =


S 0,0( f ) S 0,1( f ) S 0,2( f ) S 0,3( f )

S 1,0( f ) S 1,1( f ) S 1,2( f ) S 1,3( f )

S 2,0( f ) S 2,1( f ) S 2,2( f ) S 2,3( f )

 .
The reconstructed parameters can be seen in Table 4.2. Due to rounding errors the polynomial

n 1.00008823 4.00001099 9.00000026

cn 1.703 3.193 3.710

Table 4.2: Polynomial degrees n and the corresponding linear coefficients cn

degrees are not exactly recovered. Therefore, we round to the closest natural number and

get the exact values. Although this is a quite heuristic estimation procedure, in the noiseless

scenario it works quite well because of the small rounding errors. In contrast, in the presence

of noise, where we cannot expect that we are always closer to the true parameter than to any

other integer, more work has to be done to achieve a realiable reconstruction.

Despite the fact that we usually use a Vandermonde system based on the same samples as for

the reconstruction of the active eigenvalues, we recover the linear parameters in a different

way. Instead of solving the Vandermonde system, we use the orthonormality of the Legendre

polynomials with respect to 〈g, h〉 =
∫ 1
−1 g(x)h(x)dx, for all functions g and h square integrable

over [−1, 1] and get

cλ = (n + 0.5)〈 f , Ln〉.

This leads to a perfect reconstruction as seen above.

An issue with this approach is the very high amplitude of the last iterations Am+`φ, 0 � m + `,

compared to the amplitude of the kernel φ. A clever choice of the parameters of φ can help to

control these amplitudes, but a systematic way of finding suitable sampling kernels with small

amplitude ranges over several iteration is an open problem.
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4.3 Conclusion and ongoing Research

In this thesis, an operator based formulation of Prony’s method was introduced and systemati-

cally generalized to the GOProM framework. Thereby, we defined the concepts of a generator

A, iteration operator Φϕ, evaluation scheme Fm and sampling scheme S m,`, and the sampling

matrix XN,M as a preparation for GOProM. Based on these terms, an identifiable signal model

MM (A) was defined and embedded in the signal spaceM (A) of all finite linear combinations

of eigenfunctions. In a second step, we further restricted this model with respect to the iteration

operator Φϕ to the final signal modelMϕ
M (A), in order to preserve the identifiability also for

the modified sampling schemes.

Afterwards, based on the sampling scheme S m,` and matrix XN,M, it was shown how the exist-

ing applications of the Prony method fit into this framework. Explicit examples were given, for

instance, sparse expansions into cosine functions or Stieltjes-Wigert polynomials, where the

last one was a completely new application of the generalized Prony method.

Later on, a whole class of examples was discussed in more detail, namely sparse expansions

into eigenfunctions of exponential operators, in particular the generalized shifts, which already

cover almost all former applications. It was shown how to employ the GEProM approach to re-

construct a variety of exponential atoms and even get a way to recover the parameters of signals

based on squared operators. Two particular cases were the cosine and Chebychev expansions,

that were treated from two different points of view, namely the symmetric shift approach as

an example of the GOProM and more specifically the integral approach, that is an example of

GEProM.

In the last section we discussed a new point of view of data acquisitation in the context of gen-

eralized Prony methods. By the decomposition of iteration operator and evaluation scheme we

have seen that a suitable choice of adjoint operators can be used to formally derive sampling

schemes for all linear differential operators. These schemes are no longer realized by sampling

derivatives, but by linear measurements and are therefore in our terms realizable. Examples

for this approach were the classical problem of reconstructing sparse expansions of complex

exponentials and linear combinations of Legendre polynomials. It is emphasized that the used

techniques are the same for all linear differential equations. First, we fix an admissible eval-

uation scheme Fm, deriving the adjoint of the iteration operator Φϕ, in this case often simply

A, and evaluate the orbit of (Φ∗ϕ)`φm dependent on the model order M and the intended total

number of sampels. Of course, we could use this approach also for GEProM or in general for

every GOProM. It has to be decided in the individual cases if something is gained by changing

the sampling from the direct to the dual.

The topics discussed in this thesis do not cover all possibilities opened by GOProM. Fields

of active research are approximative sampling schemes, which make it possible to include the

work of Wischerhoff & Plonka [36] and some cases of the FRI-approach similar to it. It seems

also possible to include the FRI approach in total, but this is an open question as well. Another

possible research direction is the already mentioned field of dynamical sampling and the ques-

tion about deeper connection besides a mere reinterpretation of GOProM. Last but not least, as
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often for Prony methods, the stabilization of the envolved algorithms in the presence of noise

has to be adressed in further work. Due to current results, it seems possible to generalize the

autocovariance approach in [17] for orthogonal eigenfunctions and the Maximum-Likelihood

method in [31] for certain error models based on the GOProM signal space.
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