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1.1 Forage species mixture in grassland farming 

 

Mixed cropping is an ancient practice involving two or more plant species or genotypes 

in proximity and coexisting for a time (Annicchiarico et al. 1994; Lüscher et al. 2014; 

Temperton et al. 2007). Before the 1940s, mixed cropping was commonly practiced in 

Europe and the United States (Machado 2009). It has declined drastically in developed 

countries due to the mechanization and the availability of synthetic fertilizer, which 

makes mono cropping an easy and efficient way to go (Horwith 1985; Machado 2009). 

In developing countries, where farmers have limited access to the mechanization and 

fertilizers mixed cropping is still widely used (Lithourgidis et al. 2011; Machado 2009). 

 

According to the ecological literature, species richness increases both ecological services 

and ecological functioning (Loreau et al. 2001; Tilman 1999). In this context, mixed 

cropping is not an exception and it has shown many advantages over mono crops such as 

improving resource utilization, increasing the forage yield and yield stability, increasing 

forage nutritive value and decreasing pests and diseases (Annicchiarico et al. 1994; 

Brooker et al. 2015; Cardinale et al. 2007; Lüscher et al. 2014). 

 

In the 21st century, grassland ecosystems are facing multiple challenges such as 

increasing world genotype and climate change (Rojas-Downing et al. 2017). A major 

challenge is to increase grassland productivity while reducing negative environmental 

impacts. Sustainable intensification is one way to tackle these problems (Tilman et al. 

2011). The goal of sustainable intensification is to increase crop production from existing 

resources while minimizing the environmental impact of agriculture. In this context, 

legumes play an important role due to their ability to fix the atmospheric nitrogen (N) and 

increase the soil N pool, which may reduce the mixtures reliance on synthetic nitrogen 

fertilization (Nyfeler et al. 2011). Findings of Brophy et al. (2017) from a continental-

scale experiment support the positive effect of including legumes in multi-species 

mixtures over the long-standing grass monoculture.  

 

In temperate regions, binary mixtures of grass and clover species have shown to produce 

high dry matter yield and increased yield stability compared to grass monocultures 

(Annicchiarico et al. 1994; Ergon et al. 2016; Franco et al. 2015; Sleugh et al. 2000; 

Temperton et al. 2007). Complementarity and facilitation among component species in a 
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mixture are the main mechanisms explaining the advantages of mixtures over 

monocultures (Duchene et al. 2017). Complementarity occurs when plant species utilize 

different resources, the same resources at different times or the same resources from 

different spaces (Hooper 1998; Duchene et al. 2017). Complementarity enables mixtures 

to exploit available resources more efficiently than corresponding monocultures 

(Duchene et al. 2017; Hoekstra et al, 2014; Hooper 1998). In ecology, if niches of two 

species are similar, the two species cannot coexist in the same community for a long time 

due to high interspecific competition for resources (Vandermeer 1992). If their niches are 

different, however, the species can coexist in a community because of complementary 

use of resources (Cardinale et al. 2011). Diverse plant communities containing species 

with a different shoot and root architecture can occupy a larger niche space and thus can 

acquire more unexploited soil resources compared to communities containing species 

with similar root distributions (Hooper 1998). Hoekstra et al. (2014) demonstrated that 

the inclusion of the deep-rooted species Cichorium intybus in grass-clover mixture 

increased the biomass production compared to grass-legume mixtures, especially under 

drought conditions. They showed that the inclusion of C. intybus in grass-legume 

mixtures improves vertical complementarity and increases the mixtures yield, since C. 

intybus has the potential for distinct vertical N capture compared to Lolium perenne with 

its shallow roots (Hoekstra et al. 2014). Species with different shoot architectures (tall-

erect and short-prostrate) in a mixture may use light more efficiently than an individual 

species in a monoculture by partitioning the light among species (Husse et al. 2016; 

Hooper 1998). Phenological differences among species also improve the 

complementarity in mixtures, because they take up resources at different times (Hooper 

1998). Where resource availability is limited, mixtures can be more productive because 

they utilize the available resources more efficiently (Hooper 1998). Facilitation; a positive 

interaction among component species which plants enhance the environment of their 

neighbors, is another reason for the over-yielding of mixtures (Lüscher et al. 2014; 

Newton et al. 2009). An outstanding example of facilitation regarding mixed cropping is 

the facilitative interaction between legumes and non-legumes where non-legumes benefit 

from the nitrogen fixed by legumes (Dhamala et al. 2017; Temperton et al. 2007).  

 

Species belonging to different functional groups (e.g., legume and non-legume) are more 

likely to feature complementarity in mixtures (Hooper 1998). Grass-legume mixtures 

have been widely used in grassland farming and it has been shown that these more diverse 
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mixtures increase productivity (Sanderson et al. 2005). Cong et al. (2017) examined the 

effect of including different forb e.g., chicory, caraway, and plantain in a red clover- 

ryegrass mixture. They found that including plantain in a grass-clover mixture 

significantly increased herbage yield while adding chicory and caraway maintained 

similar yields to the grass-clover mixture  

 

Transgressive over-yielding, a phenomenon where mixtures’ forage yield exceed the 

production in best-performing monoculture, has been attributed to the complementarity 

in resource use and minimal niche overlap between species (Nyfeler et al. 2009). Nyfeler 

et al. (2009) demonstrated that four-species mixtures yielded more than doubled the yield 

of the corresponding average monocultures and 57% of the mixtures were more 

productive than the most productive monoculture. Cardinale et al. (2007), in a meta-

analysis summarizing 44 diversity experiments including non-agricultural systems found 

that the 79% of all mixtures were more productive than the average monoculture. 

However, in only 12% of the experiments, the mixtures were more productive than the 

most productive monocultures (transgressive overyielding). They also demonstrated that 

the probability of transgressive over-yielding of mixtures increased over time (Cardinale 

et al. 2007). 

 

Many studies have emphasized the importance of plant species functional group on the 

productivity of mixtures (Craine et al. 2002; Finn et al. 2013). However, plant species 

genotype and environmental factors both singly and interactively may notably affect the 

productivity of mixtures via alteration in plant-plant interaction (competition and/or 

complementarity) (Collins et al. 1989; Sanderson et al. 2002). Amongst environmental 

factors, competition for nitrogen is of prime importance in determining the balance 

between the competitive outcomes of a mixtures component (Collins et al. 1996). 

Considering the ability of legume to fix the atmospheric nitrogen, the inclusion of 

legumes in a mixture increases the mixtures productivity (Dhamala et al. 2017; Lüscher 

et al. 2008).  

 

In forage systems, it is desirable to achieve not only high yield, but also to obtain high 

forage nutritive value (Sturludotter et al. 2013). Legumes contain comparatively higher 

concentration of crude protein (CP) and lower concentration of fiber and water-soluble 

carbohydrate (WSC) than grasses (Brink et al. 2015; Lüscher et al. 2014). Therefore, 
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including legumes in a mixture may improve the forage nutritive value, in particular 

increase the concentration of CP compared to the non-legume species monoculture (Brink 

et al. 2015; Lüscher et al. 2014; Temperton et al. 2007; Zemechik et al. 2002). 

 

The maintenance of consistent forage yield and nutritive value under varying 

environmental conditions is as important as the overall yield of forage production 

(Sanderson 2010; Tracy et al. 2004). The varying responses of component species in a 

mixture to environmental fluctuation and disturbance can, over time, produce high yields 

and stable community dynamics (Brink et al. 2015). Higher stability of forage nutritive 

value in mixtures may partly be attributed to the forage reproductive development of 

component species in mixtures, which is distributed over a longer time span and balanced 

by the presence of species at a different stage of development  

(Ergon et al. 2016). 

 

Overall, selecting the plant species for cultivation in mixtures needs to be strategically 

designed to include traits that maximize complementarity and minimize niche overlap to 

improve resource utilization and increase the yield of aboveground biomass  

(Brooker et al. 2015; Litrico et al. 2015).   

 

1.2 The role of breeding new genotypes in mixture performance 

 

In addition to plant functional group, the individual genotype of a plant species has the 

potential to affect mixture performance, as the competitive ability and persistence of 

genotypes may vary (Collins et al. 2003). Plant species genotypes may differ markedly 

in various morphological and physiological characters, which might reflect adaption in 

response to the different environmental condition, i.e., soil condition, water availability, 

temperature and neighboring other plant species (Annicchiarico et al. 2010; Rhodes 

1970). To stabilize the production of mixture, genetic improvement of an individual 

species may enhance the compatibility of a plant species in a mixture (Annicchiarico et 

al. 2010).  

 

Breeding programs seek to optimize key agronomic traits such as forage quality, biomass 

production and pest and disease resistance in monoculture without regard to the fact that 

forages are almost universally grown in mixtures (Collins et al. 1989; Helgadóttir et al. 
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2008; Litrico et al. 2015). The interactions between plants are considerably different in 

monoculture and mixture and the interspecific interaction in a mixture may affect the 

performance of a plant genotype (Maamouri et al. 2017). Thus, plant genotypes optimized 

for monocultures may not be those best suited for mixed-cropping systems (Litrico et al. 

2015). Many studies show the importance of choosing varieties in a mixture for their 

competitive ability (Annachiarico et al. 2010; Collins et al. 2003; Collins et al. 1996; 

Rhodes 1970). Understanding the performance of plant genotypes in mixtures could help 

to select appropriate genotypes for balanced and high yielding mixtures.  

 

While a large number of studies have shown that both, the number of species and the 

diversity of species functional group, would enhance productivity and stability of 

mixtures, the effect of genetic diversity and resource availability on mixtures is less well-

understood (Collins et al. 1996; Prieto et al. 2015; Rhodes 1970). So far, little information 

is available regarding the effect of different genotype combinations within mixed 

cropping systems (Helgadóttir et al. 2008; Annicchiarico et al. 1997). 

 

To investigate the effect of plant species genotype on mixtures performance, we 

established two different field experiments. We hypothesized that: 

 

I. Non-legume species genotype affects the mixtures’ production. 

II. Legume species genotype affects the mixtures’ production. 

III. Legume species genotype affects the mixtures’ forage nutritive value. 
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2.1 Abstract 

 

Forage plants have frequently shown higher yields and higher yield stability when grown 

in mixtures compared to monocultures, with complementarity of species traits as an 

important determinant of mixture performance. Not only species, but also genotypes can 

be expected to have different complementarity to their mixture partners, so that relative 

performance of genotypes may differ between monocultures and mixtures. To investigate 

genotype effects on yield and yield stability of mixtures, we grew four genotypes of 

perennial ryegrass (Lolium perenne) differing in two traits (growth form: prostrate or 

upright, phenology: early or late heading) in monoculture, in binary mixture with white 

clover (Trifolium repens) and in four-species mixture with white clover and two forb 

species (ribwort plantain, Plantago lanceolata and dandelion, Taraxacum officinale). We 

expected (1) that the total dry matter yield and between- and within-year yield stability  

of perennial ryegrass genotypes would differ between cultivation as monoculture and as 

mixture, and that the early and upright genotype would show higher compatibility with 

white clover due to greater trait differences, (2) that the traits of the perennial ryegrass 

genotype would also affect yields of the mixture components and 

(3) that perennial ryegrass genotype effects on any of these variables would be weakest 

in the four-species mixture due to niche saturation. When grown in monocultures, the 

accumulated total dry matter yields over four years were higher for perennial ryegrass 

genotypes with an upright growth form compared to the prostrate growth form. This effect 

did not occur in binary or four-species mixtures. Accumulated total dry matter yields of 

the four-species mixtures exceeded those of the monocultures, even though only the latter 

received nitrogen fertilizer. Of the mixture component yields, that of white clover, ribwort 

plantain and of perennial ryegrass itself were affected by perennial ryegrass growth form. 

Between- and within-year yield stability was generally highest in the four-species 

mixtures and lowest in the monocultures, without consistent perennial ryegrass genotype 

effects. It is concluded that breeding perennial ryegrass for mixtures is likely to be less 

relevant the more complex the mixtures are and that breeding for yield stability rather 

than annual herbage yield is more promising. 

 

Keywords: Grassland, White clover, Monoculture, Mixed stands, Forbs, Herbage yield, 

Yield stability  
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2.2 Introduction 

 

Compared to grass monocultures, binary mixtures of one grass and one legume species 

have many advantages, most notably increased forage yield under reduced nitrogen 

fertilizer application (Annicchiarico and Piano 1994; Temperton et al. 2007; Sanderson 

et al. 2012; Lüscher et al. 2014; Brooker et al. 2015; Ergon et al. 2016). As a consequence, 

their use for forage production is relatively common. More recently it has been shown 

that adding more components to such binary mixtures may further increase yields (Assaf 

and Isselstein 2009; Finn et al. 2013; Sanderson et al. 2016; Jingying et al. 2017). While 

legumes increase the availability of nitrogen for the mixture through symbiotic nitrogen 

fixation, yield increases through addition of non-legume mixture partners can be 

attributed to a more efficient use of nutrients and other available resources (Hooper et al. 

2005; Brooker et al. 2015). Compatibility in resource use has been shown to strongly 

depend on species differences in traits that are relevant for resource capture, such as 

rooting depth, growth form or phenology (Berendse 1982; Hill 1990; Frankow-Lindberg 

and Wrage-Mönnig 2015; Brooker et al. 2015;  

Husse et al. 2016; Ravenek et al. 2016). Besides increasing absolute yields, trait diversity 

between species may also lead to higher yield stability, as species responses to 

environmental fluctuations and disturbances vary (Loreau and de Mazancourt 2013).  

 

In an agronomic context, not only the choice of crop species, but also that of genotypes 

can be expected to affect the yield and yield stability of mixed cropping systems. In binary 

mixtures, competition will be decreased and total resource use will be increased, if a 

genotype is chosen which traits are more complementary to its mixture partner (Figure 

2.1). It has been shown that genotype mixtures could improve productivity and minimize 

the yield fluctuation (Lopez and Mundt 2000). Current breeding efforts, however, are 

generally based on monoculture performance, which is linked to traits that maximize 

resource acquisition without interspecific competition. As plant genotypes optimized for 

monocultures may not be those best suitable for mixed cropping, a new breeding 

framework with a focus on interaction traits would be essential (Litrico and Violle 2015). 

This is particularly true for binary mixtures. In more complex mixtures, niche saturation 

leads to a decreasing productivity gain with each added species (Hooper et al. 2005). This 

process may also make “fine-tuning” mixtures through the choice of genotypes with 

complementary traits less important. 
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To investigate genotype effects on yield and yield stability of mixtures we established a 

field experiment where different genotypes of perennial ryegrass were grown in 

monoculture, binary mixture with white clover or four-species mixture with white clover 

and two forb species over four years. The four perennial ryegrass genotypes were factorial 

combinations of different growth form (prostrate and upright) and phenology (early and 

late heading). We hypothesized (1) that relative performance of perennial ryegrass 

genotypes, in terms of total dry matter yield and yield stability, would differ between 

cultivation as monoculture and as mixture. Specifically, we expected the early and upright 

genotype to be most compatible with white clover due to the greatest trait differences, 

and therefore to cause the highest and most stable mixture yields. We also expected (2) 

that the yields of the mixture components would differ between mixtures containing 

different genotypes of perennial ryegrass, as interspecific competition should vary with 

compatibility. We finally hypothesized (3) that perennial ryegrass genotype effects on 

any of these variables would be weakest in the four-species mixture due to niche 

saturation.  
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Figure 2.1: Conceptual graph of the hypothesized genotype effects on monoculture and mixture 

resource use. Circles represent total available resources, shaded areas represent plant resource 

use, which translates to herbage yield. In monocultures of species A, genotype 2 outperforms 

genotype 1, as it is able to use a greater share of the available resources. Binary mixtures of species 

A and B increase total resource use. However, the resource use pattern of genotype 1 is more 

complementary to species B than that of genotype 2, thus reversing the relative performance of 

the two genotypes in monoculture. Addition of further complementary species to the mixture is 

expected to further reduce the share of unused resources (white) and therefore decrease the effect 

of varying compatibility of single species’ genotypes with the mixture partners. 
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2.3 Materials and methods 

 

2.3.1 Study area 

 

A field experiment was conducted at the research farm Reinshof (51.50° N, 9.93° E, 150 

m asl) of the Georg-August-University Göttingen, Germany. The average annual rainfall 

and temperature during the four experimental years were 652 mm and 9.5 ˚C (Deutscher 

Wetterdienst, 51.50˚ N and 9.95° E). Weather conditions in the experimental years are 

shown in Figure 2.2. The seasonal rainfall (April to September) varied from 219 to 430 

mm. The soil was classified as Haplic Luvisol according to the FAO classification system. 

In 0–30 cm depth, the soil contained 15% clay, 73% silt, and 12% sand, 0.1% total N and 

1.0% total organic carbon content. 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 2.2: Monthly sum of precipitation (grey bars) and average temperature (black line) during 

the four experimental years.Q shows the quarter of the year. 
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2.3.2 Experimental design 

 

The experiment was set up in August as a randomized block design with four replications. 

Four perennial ryegrass (Lolium perenne) genotypes were each sown in different crop 

stands: monocultures (G), binary mixtures with white clover (Trifolium repens) 

(0.75:0.25) (G/C) and four-species mixtures with white clover, ribwort plantain (Plantago 

lanceolata) and dandelion (Taraxacum officinale) (0.4:0.2:0.2:0.2, proportions based on 

number of germinable seeds per m²) (G/C/F). Sowing density in all crop stands was 2000 

germinable seeds per m². The perennial ryegrass genotypes were chosen to provide 

factorial combinations of traits, namely phenology (early and late heading) and growth 

habit (prostrate, upright). For these traits the genotypes represent almost the full range of 

variability of the whole ryegrass assortment while for other important traits such as 

persistence, sward density, and susceptibility to diseases or yield potential they are similar 

among each other and close to the average of the ryegrass assortment. For details see 

Appendix Table A.1. Establishment of both perennial ryegrass genotypes and other 

species in all crop stands were good. The perennial ryegrass monoculture was fertilized 

with 200 kg N ha-1 per year, while mixtures did not receive nitrogen fertilizer. This design 

was chosen in order to assess ryegrass genotype performance under agronomically 

relevant conditions both in monocultures and in mixtures. While grass-legume mixtures 

are of greatest relevance in low-input and organic farming systems where they remain 

unfertilized, perennial ryegrass monocultures invariably receive nitrogen fertilization, as 

otherwise no satisfactory crop stand can be achieved. No phosphorus or potassium 

fertilizer was applied. Extractable (calcium acetate lactate) soil nutrient concentrations at 

the end of the experiment were 90 mg kg-1 phosphorus and 130 mg kg-1 potassium, with 

a pH of 5.9 (CaCl). The experimental plots were harvested by a forage combine harvester 

at a cutting height of 5 cm. There were four harvests per year over a period of four years 

(Table 2.1). Subsamples of fresh herbage were hand-separated into perennial ryegrass, 

white clover, ribwort plantain, dandelion, and non-sown species, and dried (60 °C, 48h) 

to determine the component yields. No such separation was done in the fourth cutting of 

year three due to very low dry matter yields of on average 0.36 t dm ha-1. 
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Table 2.1: Harvest dates in the four experimental years 

 

Harvest Year 1 Year 2 Year 3 Year 4 

1 May 18 May 10 May 14 May 14 

2 Jun 22 Jun 15 Jun 25 Jun 17 

3 Aug 4 Aug 1 Aug 13 Jul 15 

4 Oct 11 Sep 27 Sep 20 Sep 16 

 

 

2.3.3 Statistical analyses 

 

Statistical analyses were performed with R 3.0.2 (R Core Team 2015). Target variables 

were annual total dry matter yields, the sum of total dry matter yields over four years, the 

sum of mixture component yields over four years, and within-year and between year 

variability of total dry matter yield. Within-year variability was calculated for each year 

as the coefficient of variation (CV) of total dry matter yields of the four single harvests. 

The CV of the total dry matter yield of each of the four experimental years was taken as 

a measure of between-year variability. 

 

The effects of perennial ryegrass growth form (prostrate/upright), perennial ryegrass 

phenology (early/late) and crop stand (monoculture, binary and four-species mixture) on 

the target variables were analyzed by linear mixed-effects models using the software 

package “nlme” (Pinheiro et al. 2017). At first, full models including all possible 

interactions between the fixed effects (growth form, phenology, crop stand, and in the 

case of within-year variability, year) were fit. Experimental block and plot nested in block 

for the analysis of within-year variability was included as random effects. All models 

were visually checked for homogeneity of variance and normal distribution of the 

residuals. To fulfill model assumptions, grass and total dry matter yield over four years 

were log-transformed. Appropriate variance structures were fit for the analysis of within 

and between-year variability using the function “varIdent”. After validation of the full 

model, model reduction was performed using the second-order Akaike Information 

Criterion (AICc) as a selection criterion. For each target variable, the model with the 

lowest AICc was chosen as the final model. For significant effects in the final model, 
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means were compared using post-hoc pairwise contrasts and tested for significance with 

the LSD test as implemented in the package “lsmeans” (Lenth 2016). A significance level 

of α = 0.05 was chosen throughout. 

 

2.4 Results 

 

2.4.1 Herbage production 

 

The total dry matter yield accumulated over four full harvest years was significantly 

affected by the perennial ryegrass growth form, the crop stand and their interaction (Table 

2.2). The upright growth form of perennial ryegrass was higher yielding than the prostrate 

one. However, this growth form effect diminished from monoculture to four-species 

mixtures (Table 2.3). For the prostrate genotypes there was a significant yield increase 

from monoculture to the four-species stand while this was not the case for the upright 

genotypes (Table 2.3). The phenology of the ryegrass had no significant effect on the 

annual herbage yield. Figure 2.3 shows the total dry matter yield in the single years. In 

monocultures the growth form effect remained stable over years while in the mixtures the 

yield was hardly affected by either growth form or phenology of perennial ryegrass. The 

significant effect of the crop stand on the accumulated total dry matter yield could clearly 

be attributed to the four-species mixture, which on average over all treatments produced 

higher yields than the binary mixtures and the fertilized monocultures (Table 2.3). The 

effect of the crop stand varied among years. In the first year, the monocultures produced 

higher yields compared to the mixtures while in the other years the mixtures caught up 

and the four-species mixture showed the highest total dry matter yield (Figure 2.3). 

 

A ryegrass growth form effect was also found for the component yield of perennial 

ryegrass, white clover and ribwort plantain (Table 2.2). There was no interaction effect 

growth form x crop stand on these target variables. Dandelion and weed dry matter were 

not significantly affected by any of the factors or interactions (Table 2.2).  
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2.4.2 Variability of herbage production between years 

 

The coefficient of variation (CV) of the annual total dry matter yield among the four years 

was calculated as a measure for the yield stability between years for the different 

treatments. The results show that the growth form of the perennial ryegrass genotype, the 

crop stand as well as their interaction significantly affected the CV values  

(Table 2.4). They decreased from the monoculture over the binary to the four-species 

mixture. When grown in monocultures the upright genotypes showed higher yield 

stability than the prostrate ones; in binary and four-species mixtures no difference among 

the growth forms was found (Figure 2.4a).  
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Table 2.2: Results of linear mixed effects models for analyzing annual total dry matter yields (TDM) and accumulated dry matter yields over four years 

for TDM, component dry matter yield of perennial ryegrass (GDM), white clover (CDM) and ribwort plantain (PDM). Four perennial ryegrass genotypes 

differing in growth form (Form) and phenology (Phen) were grown in monoculture, binary mixture with white clover or four-species mixture with white 

clover, ribwort plantain and dandelion (crop stand). F and p values are only given for factors and interactions that remained in the final model; models for 

accumulated dry matter yield of dandelion and weeds only retained the intercept. 

 

Factor 
 TDM TDM GDM CDM PDM 

 Year 1 Year 2 Year 3 Year 4 Accumulated 

Stand F 27.40 5.75 35.67 10.36 5.50 255.69 1.75 - 

 p <.0001*** 0.0067** <.0001*** 0.0002*** 0.0076** <.0001*** 0.1979ns - 

Form F 5.10 5.76 18.12 10.23 9.42 28.66 4.70 5.53 

 p 0.0300* 0.0218 <.0001*** 0.0027** 0.0039** <.0001*** 0.0403ns 0.0384* 

Phen F - - - - - - 1.93 - 

 p - - - - - - 0.1780ns - 

Stand x Form F - - 11.23 4.56 3.48 - - - 

 p - - <.0001*** 0.0166* 0.0405* - - - 
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Figure 2.3: Annual total dry matter yield (TDM) of perennial ryegrass genotypes differing in 

growth form (prostrate/upright), grown in monoculture (G), binary mixture with white clover 

(G/C) and four-species mixture with white clover and two forb species (G/C/F). Lower case letters 

(year 3, year 4) indicate significant differences between growth form x crop stand means, 

averaged over phenology; upper case letters (year 1, year 2) indicate significant differences 

between crop stands, averaged over phenology and growth form (P < 0.05); error bars: standard 

error of the mean. 
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Table 2.3: Herbage yields accumulated over four years for total dry matter (TDM) and component 

dry matter yields of perennial ryegrass (GDM), white clover (CDM), ribwort plantain (PDM), 

dandelion (DDM) and weeds (WDM). Perennial ryegrass genotypes differing in growth form 

(form; P: prostrate, U: upright) and phenology (Phen) were grown in three crop stands (Stand): 

monoculture, binary mixture with white clover and four-species mixture with white clover, 

ribwort plantain and dandelion. All values are means over the two levels of phenology (early/late 

heading). Letters indicate significant differences between values in the same column within each 

level of comparison (p < 0.05). 

 

Stand Form TDM GDM CDM PDM DDM WDM 

G 

P 23.2c 22.2 - - - 0.7 

U 28.5a 27.2 - - - 0.6 

G/C 
P 23.7c 10.9 11.9 - - 0.7 

U 25.0bc 13.2 10.9 - - 0.6 

G/C/F 

P 27.3ab 4.5 12.3 8.2 1.4 0.7 

U 27.9ab 7.1 11.5 7.2 1.3 0.5 

G - 25.8 24.7a - - - 0.6 

G/C - 24.4 12.0b 11.4 - - 0.7 

G/C/F - 27.6 5.8c 11.9 7.2 1.4 0.6 

- P 24.8 12.5b 12.1 8.2a 1.4 0.7 

- U 27.1 15.8a 11.2 7.2b 1.3 0.6 
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Table 2.4: Results of linear mixed effects models analyzing the coefficient of variation of total 

dry matter yield between years and within years. Perennial ryegrass genotypes differing in growth 

forms (Form) and phenology (Phen) were grown in three crop stands (Stand): monoculture, binary 

mixture with white clover and four-species mixture with white clover, ribwort plantain and 

dandelion (Stand). F and p values are only given for factors and interactions that remained in the 

final model. 

 

Factor F value p value 

Between years   

Stand 121.84 <.0001*** 

Form 21.48 0.0011** 

Stand x Form 10.69 0.0002*** 

Within years   

Stand  82.53 <.0001*** 

Form  1.61 0.2067ns 

Phen 0.11 0.7435ns 

Year  542.25 <.0001*** 

Stand x Form  9.69 0.0001*** 

Stand x Phen  12.18 <.0001*** 

Stand x Year  12.78 <.0001*** 

Form x Phen 8.32 0.0045** 

Form x Year 4.51 0.0046** 

Phen x Year 143.86 <.0001*** 

Stand x Phen x Year 13.40 <.0001*** 

Form x Phen x Year 4.26 0.0064** 
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2.4.3 Variability of herbage production within years 

 

Similar to the stability of the herbage production between years the coefficient of 

variation was also used to assess the yield stability within years. Neither growth form nor 

phenology of perennial ryegrass genotype showed a significant main effect on the CV. 

However, there were significant interactions (Table 2.4). Compared to monocultures of 

ryegrass, the CV values were significantly lower in mixed stands, particularly so in the 

four-species mixtures (Figure 2.4b). In contrast to the herbage yield (Table 2.2), genotype 

effects were also significant in the mixtures, with pronounced differences between years: 

while early heading genotypes had a higher CV than late heading genotypes in the first 

two years, the opposite was true in years three and four. The prostrate growth form 

generally showed more within-year variability than the upright, but depending on year 

this was only true for either the early or the late heading genotypes (Figure 2.4b).  

 

 

 

Figure 2.4: Relationship between the coefficient of variation (CV) of total dry matter yield (TDM) 

of mixtures and monocultures of four perennial ryegrass genotypes (a) between years, (b) within 

years. Perennial ryegrass genotypes differed in growth form (P: prostrate, U: upright) and 

phenology (E: early heading, L: late heading).  Mixtures were either binary mixtures with white 

clover (G/C) or four-species mixtures with white clover and two forb species (G/C/F). 
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2.5 Discussion 

 

Binary grass-clover and multi-species mixtures have received considerable attention in 

forage research in recent years. There is reasonable evidence that in contrast to highly 

fertilized pure grass sowings such systems have a considerable potential for the 

sustainable intensification of grassland management (Huyghe et al. 2012; Kirwan et al. 

2007; Lüscher et al. 2014; Nyfeler et al. 2009; Weigelt et al. 2009). Mixture benefits have 

been shown to occur as overyielding compared to the respective monocultures but also as 

increasing yield stability (Ergon et al. 2016; Frankow-Lindberg et al. 2009). These 

benefits could be related to differences in plant traits for resource use and growth of the 

different species in mixtures ensuring a higher compatibility rather than competition 

among the partner species (Finn et al. 2013; Husse et al. 2016). Important modes of 

complementarity are differences in the nitrogen acquisition (legume vs non-legume 

species), temporal development (early vs late reproductive growth), shoot characteristics 

(small vs tall growing), or root growth pattern (shallow vs deep rooting). Based on the 

knowledge about complementarity it has been suggested to strategically utilize trait 

variability among forage species to design the optimal composition of mixtures (Huyghe 

et al. 2012; Finn et al. 2013). Although the genetic improvement of forage crops is a core 

activity of forage research and plant traits affecting agricultural performance as well as 

environmental services have successfully been altered (Barth 2012; Helgadottir et al. 

2016) there is remarkably little consideration of traits and their complementarity in 

mixtures in plant breeding. In addition, the development and testing of new forage 

germplasm is usually done in pure stands and does not account for potential mixture 

effects.  

 

In the present study trait variability among perennial ryegrass genotypes was used to 

investigate whether and to what extent the performance of mixtures of forage species can 

be varied by choosing genotypes which have a potentially higher compatibility with the 

partner species. More specifically, we expected that the growth form and the phenology 

of perennial ryegrass are traits that strongly determine the temporal and spatial overlap of 

resource use of the grass and its partner species and thereby significantly affect the total 

mixture yield and yield stability.  
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When grown in monocultures we found marked differences in the herbage production 

between the ryegrass genotypes, with the upright genotypes clearly better performing than 

the prostrate ones. It is well established that growth characteristics of ryegrass germplasm 

strongly determine herbage production (Wilkins and Lovatt 2011) and variation in the 

respective traits provide the basis for breeding. 

 

When grown in mixtures, this growth form effect was reduced but still visible  

(albeit not significant) in the binary mixture and almost completely disappeared in the 

four-species mixture. Thus, the performance of the mixtures was much more determined 

by the species composition (either binary or four-species mixtures) than by the ryegrass 

genotype. This was true for both herbage yield and yield stability. This is in line with 

work being done on grass-clover mixtures with either inconsistent (Elgersma and 

Schlepers 1997) or no significant (Nassiri and Elgersma 2002) ryegrass genotype effect. 

The phenology of the ryegrass genotypes did not significantly affect the annual herbage 

yield. In general, grass-clover mixtures are known to show a characteristic pattern of 

within season growth. The grass has lower temperature requirements to achieve high 

growth rates compared to white clover; that is why maximum growth rates of ryegrass 

usually occur in spring while clover grows best in summer. Accordingly, Evans et al. 

(1985) found a higher compatibility of ryegrass and clover in mixtures when the seasonal 

pattern of growth was more differentiated. It was therefore expected that the early heading 

ryegrass genotypes should have a higher compatibility compared to the late heading ones. 

Presumably, this was not the case because of temporal limitations in water availability 

which – among other reasons such as nitrogen limitation - might have restricted growth 

even if temperatures were favorable.  

 

In contrast to the herbage yield, the yield stability was significantly affected by 

interactions of ryegrass phenology with the other factors. When grown in monocultures 

the late heading ryegrass genotypes showed a lower within-season variation compared to 

the early heading ones. This effect decreased in the binary and even more so in the four-

species mixtures. Obviously, the companion species in the mixtures compensated for 

phenology-related patterns of resource use of the grass, thus, at sward level, a more even 

growth was possible. As expected, the binary and four-species mixtures had significantly 

higher between-years yield stability than the ryegrass monocultures. The low dry matter 

yields of year three are interesting in this respect as the yield drop compared to the other 
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years was clearly lower in the mixtures than in the monocultures. Although we cannot 

provide a definite reason for the low yield we assume that the grass component was 

particularly weak in that year. 

 

The second hypothesis of the present experiment was that the yields of the mixture 

components would differ between mixtures containing different genotypes of perennial 

ryegrass, as interspecific competition should vary with compatibility. This hypothesis 

could partly be confirmed. The ryegrass, clover and ribwort plantain component yields 

were significantly different between the upright and prostrate ryegrass genotypes while 

neither the the dandelion nor the weed components showed this response. In general, the 

yield of white clover was rather stable among the different treatments. This is interesting 

as the competitiveness of white clover was either little affected by the companion species, 

or the different companion species exerted a similar competitive effect on the clover. This 

is confirmed by the inclusion of forbs in the four-species mixtures which markedly 

reduced the component yield of the grass but not of clover. As the mixtures did not receive 

any nitrogen fertilizer, nitrogen limitation was likely to be a key factor determining 

herbage growth. Given this situation, forbs were a strong competitor against the grass but 

not the clover. 

 

The results of the present experiment quite clearly confirmed that unfertilized forage 

mixtures that include white clover have a similar yield potential as fertilized grass 

monocultures. In addition, adding forbs to binary grass-clover mixtures further increased 

and stabilized herbage yields. This latter finding is probably due to increasing niche 

saturation with an increasing complexity of forage mixtures (Assaf and Isselstein 2009; 

Jingying et al. 2017; Sanderson et al. 2016). In the third hypothesis of the present 

experiment we stated that perennial ryegrass genotype effects would be weakest in the 

four-species mixture due to niche saturation. This assumption was clearly supported by 

the sward level herbage yield. Neither phenology nor growth form of ryegrass showed 

any effect on the herbage yield of the four-species mixture. Apart from the niche 

saturation effect this finding could also be attributed to the relatively low yield share of 

ryegrass in that mixture. In contrast to the herbage yield, the yield stability not only of the 

monoculture but also of the mixtures responded to both the ryegrass growth form and 

phenology. 
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2.6 Conclusion and practical implications 

 

Perennial ryegrass covers a considerable range of growth traits which are markedly 

expressed and visible when the grass is grown in monocultures. This trait variation was 

expected to affect the compatibility with companion species and the performance of 

mixed stands. This expectation could only partly be confirmed. Compared to the overall 

strong yield effect of including clover and forbs in forage mixtures, the additional yield 

variation due the use of different grass genotypes was small. However, yield stability 

responded more strongly to the genotype traits than herbage yield. This is noteworthy as 

a more even distribution of herbage growth within and among years is of importance for 

forage-dependent livestock husbandry, in particular grazing systems where fresh herbage 

is consumed.  

 

While the agronomic advantage of binary and in particular multi-species mixtures are 

quite obvious, the consequences of this research for ryegrass breeding are less so. We 

assume that an attempt to design ryegrass germplasm through breeding in order to 

maximize the herbage potential will be decreasingly successful the more complex the 

mixtures are at the species level. Yet, we have to concede that in the present study only 

four contrasting ryegrass genotypes were employed which only cover a part of the totally 

available variation among the perennial ryegrass assortment. 
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3.1 Abstract 

 

Due to complementary resource use of the components, grass-clover mixtures are usually 

higher yielding compared to grass pure stands. The number and identity of species in a 

mixture are important factors for the mixture’s productivity. Little is known about the 

influence of plant species genotype on the productivity of mixtures. We established an 

experiment to investigate how and to what extent different genotypes of white clover 

(Trifolium repens L.) affect the mixtures’ performance. Eight novel genotypes of white 

clover and one variety of perennial ryegrass (Lolium perenne L.) and chicory (Cichorium 

intybus L.) each were grown as monocultures and in two- and three-species mixtures at 

two sites differing in soil fertility. Aboveground herbage was cut twice in the establishing 

year and four times in each of the three following years. The accumulated dry matter yield 

was calculated as the sum of the four annual dry matter yields. There was no significant 

interaction between white clover genotype x crop stand (i.e., monoculture or mixture) on 

dry matter yield accumulated over four years; the white clover genotype that performed 

well in monoculture also did so in mixtures. On both sites, the binary mixtures of white 

clover and chicory produced significantly higher dry matter yields than the white clover 

monocultures and other mixtures. Inclusion of chicory in mixtures significantly increased 

the stability of yield production. Site condition strongly affect the performance of forage 

species mixtures. We found that the benefit of mixtures over the monocultures more 

related to the identity of species in mixture than the white clover genotype. 

 

Keywords: White clover, Monoculture, Mixed stands, Forbs, Herbage yield, Yield 

stability 
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3.2 Introduction 

 

In temperate regions, cultivating grasses and legumes in mixtures often provides higher 

yields compared to the individual species grown in monoculture (Finn et al., 2013; 

Lüscher et al., 2014; Nyfeler et al., 2009). A yield advantage of mixtures is termed 

overyielding when the performance of the mixture is better than the performance of the 

average monoculture (Nyfeler et al., 2009). Transgressive overyielding happens when the 

yield advantage exceeds the best performing monoculture (Cardinal et al., 2007; Ergon et 

al., 2016; Nyfeler et al., 2009). In a meta-analysis summarizing 44 diversity experiments 

including non-agricultural systems, Cardinale et al. (2007) found that overyielding is a 

common phenomenon while transgressive overyielding is rather rare; 79% of the 

mixtures showed higher yields than the average of the referring monocultures while only 

12% were more productive than the best performing monoculture. 

 

The highest possible yield, however, may not always have the highest priority from a 

farming point of view. Yield stability between years is also very important (Frankow-

Lindberg et al., 2009). Mixtures often exhibit a more even seasonal growth than mono-

crops, as different plant species may respond to environmental fluctuation and 

disturbance differently (Brink et al., 2015; Litrico and Violle, 2015; Sanderson et al., 

200).  

 

Selecting species or genotypes with complementary functional traits for mixtures has 

recently been considered as a promising strategy to enhance productivity and yield 

stability (Hooper, 1998; Lüscher et al., 2014). Mixture communities containing species 

with different root and shoot architecture can occupy a larger niche space and thus can 

acquire more unexploited resources compared to communities containing species with 

similar root and shoot distributions (Hooper, 1998). An example of complementary root 

architecture has been given by Hoekstra et al. (2014) who showed that the inclusion of 

deep-rooting forbs such as Cichorium intybus in grass-legume mixtures increase the 

biomass production. However, research by Cong et al. (2017) did not confirm this 

beneficial effect of C. intybus, probably because water was less than in the experiment of 

Hoekstra et al. (2014). However, Cong et al. (2017) found that, in contrast to C. intybus, 

Plantago lanceolata did increase the performance of a grass-clover mixture, suggesting 

other mechanism of complementarity than rooting depth. 
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In general, the role of functional group and species diversity of mixtures for improved 

resource utilization is well known (Finn et al., 2013; Lüscher et al., 2014). However, the 

effect of plant species genotype on the performance of mixtures is not that obvious. Plant 

species genotypes may differ markedly in major morphological and physiological 

characters. These variations might reflect adaption in response to different environmental 

conditions, e.g., soil properties, water availability, temperature or neighboring species 

(Annicchiarico and Proiretti, 2010; Collins and Rhodes, 1989; Rhodes, 1970; Turkington 

et al., 1979). A possible avenue to enhance the general compatibility of plant species in 

mixture may be through genetic improvement (Annicchiarico, 2010). So far, the breeding 

effort has concentrated on optimizing key agronomic traits, such as biomass production, 

forage quality, and pest and disease resistance (Litrico and Violle, 2015). Commonly, 

grassland plant species have been bred separately and tested in monocultures with little 

consideration of the fact that they are usually grown in mixtures with other species 

(Collins et al., 1989). When the breeding target is a crop mixture, in addition to all 

agronomic traits that have been optimized, other traits must also be incorporated and 

optimized, including the ability to live and perform with others (compatibility).  

 

Earlier studies highlighted the general effect of the botanical composition of mixtures and 

the plant species genotype on the productivity of mixtures (Collins and Rhodes, 1989; 

Finn et al., 2013; Hill and Michaelson-Yeates, 1987; Lüscher et al., 2014). There is, 

however, a knowledge gap on how the combination of plant species genotype and 

botanical composition would affect the mixtures’ performance under different 

environmental conditions. The objective of this study is to assess the effect of white clover 

genotype on yield and yield stability of different binary and multi-species mixtures. We 

hypothesized that white clover genotypes perform differently in white clover 

monocultures and mixtures of white clover with non-legume species. Differences 

between monocultures’ and mixtures’ performances are expected to depend on the partner 

species and the resource availability. Accordingly, a field experiment was established on 

two contrasting sites differing in climatic and soil conditions. Eight novel genotypes of 

white clover were sown as monocultures and in mixtures either with perennial ryegrass 

or chicory or a combination of the two. 
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3.3 Material and methods 

 

3.3.1 Study area 

 

This study was part of the IMPAC³ experiment and was carried out during 2014-2017 at 

two experimental stations of the Georg-August-University Goettingen, Germany. The 

two sites were noticeably different in terms of soil depth, soil texture, and precipitation. 

The fertile site (51.29 N, 9.55 E) has a Gleyic Fluvisol (FAO classification system) with 

21% of clay, 11% sand and 68% silt in the Ah horizon, making up the top 30 cm soil 

layer. The marginal site (51.34 N, 9.58 E) with a Calcaric Leptosol (FAO classification 

system) has a shallower Ah horizon of 25 cm depth. The clay content is higher than on 

the fertile site (34% clay, 2% sand and 55% silt). The marginal site is located at a higher 

elevation (342 m versus 157 m above sea level of the fertile site). During the years 2014-

2017, it had a lower mean annual precipitation (591.60 mm versus 636.83 mm) and a 

lower average temperature (8.96 °C versus 10.05 °C) than the fertile site. The monthly 

average temperature and rainfall per experimental year are given in Appendix (Fig. A1). 

 

3.3.2 Experimental design 

 

In July 2014, eight novel genotypes of white clover from the Deutsche Saatveredelung 

(DSV, Asendorf, Germany), one variety of perennial ryegrass (Lolium perenne L., ELP 

060687) and one variety of chicory (Cichorium intybus L., Puna II) were sown as 

monocultures, in binary mixtures of white clover with either ryegrass or chicory, in binary 

mixture of ryegrass with chicory and in three-species mixtures of white clover with 

ryegrass and chicory. The white clover genotypes differed in phenology, leaf size and 

yield potential. On a scale of one to nine for phenology, leaf size and yield potential for 

white clover varieties included on the German National List of Varieties 

(Bundessortenamt, 2016), the phenology of white clover in the present study was rated 

between three and nine, and both leaf size and yield potential between three and seven. 

The seed rate of each species in mixtures was calculated based on a monoculture seed 

rate of 1000 seeds per m2. Sowing ratios were 0.4 : 0.6 (white clover : ryegrass, white 

clover : chicory), 0.5 : 0.5 (ryegrass : chicory) and 0.4 : 0.3 : 0.3 (white clover : ryegrass 

: chicory). Crop stands with white clover did not receive any fertilizer. Two levels of 

fertilization, 0 and 240 kg total N ha−1yr−1 (NH4NO3+CaCO3), were applied to ryegrass 
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and chicory monocultures and also to the mixture of the two species. Fertilizer 

applications were split into four doses (80, 60, 60 and 40 kg N ha-1), applied at the start 

of the vegetation period and after the first, second and third cut each year. 

 

The experiment followed a split-plot design with four replications (block) at both sites. 

In each block, experimental treatments were arranged with five plots each nested within 

eight main plots corresponding to the white clover genotypes. This resulted in 160 plots 

(5 m × 2.8 m) at each site. Buffer areas of 0.2 m width between adjacent plots were 

regularly treated with glyphosate to prevent the incursion of white clover stolons into 

adjoining plots. All plots were cut twice during the establishment year (2014), in mid-

August and mid-October. In the following years, four cuts per year were carried out in 

six-week intervals from mid-May to mid-October. The whole plots were cut to a height 

of 5 cm with a combine forage harvester (Wintersteiger hd 1500, Wintersteiger AG, Ried 

im Innkreis, Austria). At each harvest, the fresh biomass yield from a core area of 1.4 m 

× 5 m from each plot was determined. A subsample of approximately 250 g was dried at 

60°C for 48 hours to estimate the dry-matter concentration of the harvested biomass, 

which was used to calculate the dry matter yield. The results presented in this paper focus 

on white clover monoculture and mixtures including white clover. 

 

3.3.3 Statistical analysis 

 

The accumulated dry matter yield was calculated as the sum of the four annual dry matter 

yields.The stability of dry matter yields was quantified using the coefficient of variation 

(CV) of annual dry matter yields from the three years following the establishment (2015–

2017). Transgressive overyielding (TO) of legume/non-legume mixtures over the most 

productive unfertilized and fertilized monocultures was determined as: 

 

TO =
DM𝑚𝑖𝑥 − DM𝑚𝑜𝑛𝑜

DM𝑚𝑜𝑛𝑜
 

 

DMmix = accumulated dry matter yield of mixture, DMmono= accumulated dry matter yield 

of the mixture component species with the highest yield when grown as monoculture in 

the same block. The binary mixture of the non-legume species ryegrass and chicory was 
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considered as a monoculture when evaluating transgressive overyielding of the three-

species mixture of white clover with ryegrass and chicory. 

 

The effect of white clover genotype, crop stand, site and their interactions on accumulated 

dry matter yield, transgressive overyielding and the stability of total dry matter yield 

between years was analyzed in the R 3.4.2 statistical software environment (R Core Team, 

2017), using linear mixed effects models implemented in the software package “nlme” 

(Pinheiro et al, 2017). Block and main plot were included as nested random effects. 

 

All models were visually checked for homogeneity of variance and normal distribution 

of residuals, and variance was allowed to vary between factor levels where necessary to 

account for heteroscedasticity. The full model containing all main effects and interactions 

was simplified based on the second-order Akaike Information Criterion (AICc). Means 

were then compared using post-hoc pairwise contrasts and tested for significance with the 

LSD test, as implemented in the “emmeans” package (Lenth, 2017). A significance level 

of α < 0.05 was chosen throughout. 

 

3.4 Results  

 

No significant interaction was seen between white clover genotype × crop stand for 

accumulated dry matter yield (Table 3.1). The white clover genotype itself affected 

accumulated dry matter yield, but this effect was site-dependent (Table 3.1). The 

differences between white clover genotypes were larger at the fertile site compared to the 

marginal site (Fig. 3.1B).  
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Table 3.1: Results of linear mixed effects models analyzing accumulated dry matter yields (DM) 

over four years, yield stability between years, and transgressive overyielding over the unfertilized 

(TO-N0) monoculture or the fertilized monoculture (TO-N1). Eight white clover genotypes were 

grown in four crop stands (Stand): monoculture, binary mixture with either perennial ryegrass or 

chicory and three species mixture with perennial ryegrass and chicory at two sites, either fertile 

or marginal. F and p values are only given for factors and interactions that remained in the final 

model. 

 

Factor 
Accumulated DM Yield stability 

Transgressive 

overyielding 

TO-N0 

Transgressive 

overyielding 

TO-N1 

F P F P F P F P 

Genotype 7.3 <0.0001 - - - - 4.1 <0.0001 

Stand 158.9 <0.0001 94.1 <0.0001 16.7 <0.0001 183.6 <0.0001 

Site 12.4 0.0124 5.5 0.0561 0.2 0.6572 - - 

Genotype × site 2.4 0.0308 - - - - - - 

Stand × site 49.2 <0.0001 - - 28.4 <0.0001 - - 

 

The advantage of mixtures over white clover monocultures differed between sites 

(Table 3.1). While accumulated dry matter yields of white clover monocultures did not 

differ between the two sites, the yields of all mixtures were higher at the fertile than at 

the marginal site (Fig. 3.1A, 3.2). As a consequence, all mixtures showed higher yields 

than the white clover monocultures on the fertile site, while on the marginal site, this was 

only true for the two mixtures including chicory (Fig. 3.1A, 3.2). At both sites, all 

mixtures yielded higher than the average of the unfertilized partner species monoculture 

but not all mixtures yielded higher than the fertilized monocultures. (Fig. 3.2) 
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Figure 3.1: Dry matter yield of white clover monocultures and mixtures at two sites accumulated 

over four years (A): effect of crop stand (stand) averaged over white clover genotypes for white 

clover monoculture (wc), binary mixture of white clover with perennial ryegrass (wc/pr), binary 

mixture of white clover with chicory (wc/ci), and three-species mixture of white clover, perennial 

ryegrass and chicory (wc/pr/ci). (B): effect of white clover genotypes averaged across crop stands. 

Letters indicate significant ( < 0.05) differences between crop stand × site (A) and white clover 

genotype × site model estimates (B), respectively; error bars: confidence interval. 

 

At the fertile site, the binary mixures of white clover either with rygrass (TO = 0.13; 

confidence interval 0.05–0.18) or chicory (TO = 0.095; confidence interval -0002-0.192) 

showed significant transgressive overyielding compared to the correspondig best 

performing unfertilized monocultures while the three-species mixture (TO = -0.030; 

confidence interval -0.117-0.056) did not. At the marginal site, the binary mixture of 

white clover and chicory (TO = 0.139; confidence interval 0.042-0.236) as well as binary 

mixture of white clover and ryegrass (TO = 0.001; confidence interval -0.097-0.099) 

transgressively overyielded the corresponding best performing unfertilized monocultures. 

In contrast to the fertile site, the three species mixture of white clover-ryegrass-chicory at 

the marginal site was superior to the best performing unfertilized ryegrass-chicory 

mixture. 
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Among the mixtures only the binary mixtures of white clover and ryegrass yielded higher 

than the corresponding best performing fertilized ryegrass monoculture. The mixtures 

including chicory did not yield higher than the best fertilized respective monocultures. 

 

 

Figure 3.2: Relationship between the accumulated dry matters yields over four years of binary 

mixtures of white clover with perennial ryegrass (wc/pr), binary mixture of white clover with 

chicory (wc/ci), and three-species mixture of white clover, perennial ryegrass and chicory 

(wc/pr/ci) with accumulated white clover dry matter yield (upper row) and with the accumulated 

dry matter yield of companion species monoculture (bottom row). The companion species 

monocultures either did not receive any fertilizer (N0) or were fertilized with 240 kg of nitrogen 

fertilizer per hectar per year (N1). The crosses show the average dry matter yield of mixtures and 

white clover monocultures.  
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White clover genotype did not significantly affect the stability of dry matter yield over 

three years (2015-2017), but crop stand did (Table 3.1, Fig. 3.3). The inclusion of chicory 

in mixtures increased yield stability at both sites, while the binary mixture of white clover 

and ryegrass showed a lower yield stability than the corresponding white clover 

monoculture (Fig. 3.3).  

 

Figure 3.3: Relationship of the coefficients variation (CV) of annual dry matter yield (DM) of 

mixtures and monocultures of eight different white clover genotypes between years (2015-2017) 

at two sites. The crosses show the average of mixtures and monoculture yield variability.  

 

3.5 Discussion 

 

White clover genotype did not interact with the crop stands regarding dry matter yield 

and yield stability; the white clover genotype that performed well in monoculture also did 

so in mixtures. This finding contrasts with the earlier research on grass-clover mixtures 

which had shown that the combination of white clover and perennial ryegrass genotypes 

could substantially affect the performance of mixtures, suggesting genotype-dependent 

differences in the compatibility of the components (Collins and Rhodes, 1989; Hill and 

Michaelson-Yeates, 1987; Turkington et al., 1979; Lüscher et al., 1992). Collins and 

Rhodes (1989) assumed that compatibility between the grass and clover components was 

of great importance during the establishing phase of grass-clover mixtures. In our 
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experiment, the establishment of all white clover genotypes and partner species was 

reasonably good and there were no large differences among partner species and white 

clover genotypes. Thus, the phenomenon described by Collins and Rhodes (1989) did not 

appear to be relevant here.  

 

We found higher mixture benefits at the fertile than at the marginal site. This contrasts 

with the expectation that advantages of mixtures should be greater when resources are 

more limited  (Brooker et al., 2015): For example, mixed-cropping can increase crop 

water use under water limitation because as the mixture components may occupy a larger 

soil space through their complementary root traits, allowing an improved access to water 

(Berendse, 1982; Hill, 1990; Frankow-Lindberg and Wrage-Mönnig, 2015; Brooker et 

al., 2015; Husse et al., 2016; Ravenek et al., 2016). Differences in soil depth between our 

two sites may explain the difference between our results and this expectation. The 

marginal site has a rather shallow soil with underlying parent rock material whereas soil 

depth at the fertile soil exceeds two meter. During the spring and summer months, water 

availability in the top soil layers is frequently limited at both sites due to the 

subcontinental climatic conditions. The fertile site, however, maintains higher water 

availability in deeper soil layers. We therefore assume that the competition for water 

among the different mixture components of the mixtures was much stronger at the 

marginal than at the fertile site, where the deep-rooted chicory was able to exploit the 

water that was available in the deeper soil layers. This assumption is consistent with the 

fact that site differences in mixture benefit were largest in mixtures that contained 

chicory.  

 

Interestingly, the highest mixture benefit was found in the binary mixture of white clover 

and chicory and not in the three-species mixture. The mere number of components, be it 

species or functional groups, was not explaining higher performance in this experiment. 

This was unexpected as many studies over the last two decades have demonstrated a 

positive relationship between species or functional group number and productivity, in 

particular at a low level of diversity (Nyfeler et al, 2009; Tilman et al., 2001; Finn et al., 

2013). Rather, in the present experiment, the identity of the partner species was more 

important for the mixture benefit. Mixtures containing species with more contrasting 

traits showed a higher advantage in productivity.  
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From an agronomic point of view, mixtures are most interesting when they produce 

higher dry matter yields than the best monocultures (i.e. transgressive overyielding; 

(Nyfeler et al., 2009; Temperton et al., 2007). Transgressive overyielding occurs when 

there is a synergetic interaction between species in mixtures, and the net effect of 

interspecific interactions is sufficiently strong (Cardinale et al., 2007; Kirwan et al., 2007; 

Kirwan et al., 2009). While overyielding is a rather common phenomenon in agricultural 

and non-agricultural systems, transgessive overyieldig is rather rare (Cardinale et al. 

2007). The probability of transgressive overyielding of mixtures, moreover, appears to 

increase over time, and only became evident after about five years in the meta-analysis 

of Cardinale et al. (2007). In contrast to this, Nyefeler et al. (2009) found a high level of 

transgressive overyielding at the Swiss site of a continent-wide mixture experiment 

(Kirwan et al. 2007). Which was already significant in the first year of the experiment. In 

our study, one of the three mixtures at each site had higher yields than the most productive 

corresponding unfertilized monoculture during the first four years after mixture 

establishment. This rather high incidence of transgressive overyielding can probably be 

attributed to the deliberate selection of species for our mixtures, as white clover, perennial 

ryegrass and chicory are among the most productive species for forage production in 

temperate-humid grassland systems.  

 

Yield stability, which is also of agronomic importance, was highest in mixtures including 

chicory and lowest in the binary mixture of white clover and ryegrass. Previous studies 

reported inconsistent effects of mixed cropping on yield stability. Tilman et al. (2006) 

found a positive correlation between species number in mixture and stability of yield. On 

the other hand, Sanderson (2010) reported only weak or no relationships between 

interannual yield stability and the number of forage species grown in mixtures. 

Küchenmeister et al. (2012) demonstrated that an increasing contribution of forbs 

(Plantago lanceolata L., Taraxacum officinale L.) to the mixture yield even decreased 

yield stability. The presence of chicory in mixtures substantially increased the between-

year yield stability in our study. This benefit may be closely related to the divergent 

rooting systems of the shallow-rooted grass and white clover on the one hand and the 

deep-rooted chicory on the other. Therefore, mixtures including chicory were able to 

exploit the water that was available in the deeper soil layers and produce a more stabe 

yield. 
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3.6 Conclusion 

 

The results of this study showed that white clover genotypes did not perform differently 

in monocultures and mixtures. Although we found no genotype × crop stand interaction, 

it should not be concluded that there is no scope for breeding to specifically improve the 

performance of forage mixtures. Our findings are based on a limited number of white 

clover genotypes and only two partner species and should be verified by a larger range of 

clover genotypes as well as partner species and varieties. Independent of clover genotype, 

mixtures clearly showed an advantage over the corresponding monocultures with higher 

yield production and yield stability. However, these benefits were more related to the 

species identity than to the number of species in the mixture. Strong effects of the site, 

i.e., the environmental conditions, on performance of forage species mixtures indicated 

the need for considering site effects and resource availability in developing productive 

forage mixtures.  
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4.1 Abstract  

 

Grass-legume mixtures often improve the forage nutritive value compared to grass 

monocultures. Adding more species to grass-clover mixtures might further improve the forage 

quality. Little is known about the role of the species genotype on the forage quality of mixtures. 

We established a field experiment to investigate how and to what extent different white clover 

(Trifolium repens L.) genotypes affect the forage nutritive value of different mixtures. Eight 

novel genotypes of white clover were grown as monocultures, as binary and three-species 

mixtures with Lolium perenne L. and Cichorium intybus L. at two sites differing in resource 

availability. Above-ground herbage was cut twice in the establishment year and four times in 

each of the following years. Samples were dried and scanned with near-infrared spectroscopy 

to determine the forage nutritive value. White clover genotypes significantly affected the forage 

nutritive value. However, the effect of white clvoer genotypes was inferior to the effect of 

partner species. The range of variation among white clover genotypes regarding all nutritive 

parameters was higher in white clover monocultures and it got narrower in mixtures. White 

clover monocultures had a higher concentration of crude protein (CP) and lower concentration 

of acid detergent fibre (ADF) compared to the mixtures. Forage nutritive value of the crop 

stands was dependent on the site condition and year. 

 

Keywords: White clover, Monoculture, Mixed stands, Nutritive value, Crude protein, Fibre 
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4.2 Introduction 

 

Forage nutritive value is defined as the ability of forage to support animal nutrition requirements 

which is mainly determined by crude protein (CP), neutral detergent fibre (NDF), acid detergent 

fibre (ADF), and water-soluble carbohydrate (WSC) (Kilcher 1981). Acid detergent fiber 

(ADF) consists of cellulose and lignin the cell wall and thus limits the digestibility of the whole 

plant. Forage with a lower value of ADF has higher energy content. Water-soluble 

carbohydrates (WSC) provide the most readily available source of energy for ruminants and 

affect forage intake; high WSC concentrations increase both forage intake and the efficiency of 

protein utilization (Jones and Roberts 1991). 

 

There are marked differences between plant species in inherent nutritional composition. For 

instance, legumes have higher CP and lower fibre and WSC concentrations than grasses (Brink 

et al. 2015; Lüscher et al. 2014). Several factors may affect the forage nutritional composition, 

such as weather conditions (Fulkerson et al. 1998; Smith et al. 1998), soil fertility (Fulkerson 

et al. 2007), plant functional group (Ergon et al, 2016; Sleugh et al. 2000; Zemenchik et al. 

2002) and plant genotype (Casler 1999; Calser 2001). In nutrient-limited grassland systems, 

grass-legume mixtures often provide greater profitability and improve forage quality compared 

to grass monoculture (Sturludottir et.al. 2014; Sleugh et al. 2000; Zemenchik et al. 2002). 

Adding legumes to the mixture of non-legume species showed to have a similar effect on the 

forage nutritive value as N fertilization; increasing CP while reducing ADF (Buxton 1996: 

Ergon et al. 2016). This benefit is attributed to the ability of legumes to improve the soil N pool 

by fixing atmospheric nitrogen and to their high protein content per se (Sleugh et al. 2000; 

Lüscher et al. 2014). Grass-clover mixtures are widely used in grassland farming because of 

their many advantages, e.g. higher yields and higher forage quality compared to monocultures. 

However, they have some limitations: for instance,  

grass-clover mixtures have higher early summer CP and lower fibre contents than the level 

required by grazing animals (Høgh-Jensen et al. 2006). Moreover, under intensive management 

conditions white clover may be almost lost in the system and only the grass component will 

remain (Høgh-Jensen et al. 2006). Adding a third species to grass-clover mixtures may help to 

overcome these limitations. Such a species should reduce the competitiveness of the grass, but 

not of the clover component, and be nutritionally complementary to white clover, e.g. by having 
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its highest fibre content and lowest CP content in early summer. Chicory (Cichorium intybus 

L.) is a perennial deep rooting broad-leafed forage herb with high productivity and forage 

quality (Rumball 1986). Adding chicory in grass-clover mixture may have a potential to 

improve the forage nutritive value of mixtures. In this context, selecting plant species or 

genotypes with more compatible functional traits improve the complementarity among species 

in the mixture (e.g., Sleugh et al. 2000; Zemenchik et al. 2002). Breeding of the grass species 

showed an improvement of forage nutritive value (Casler 1999). Genetic variability within 

species may affect the interspecific interaction in mixture by optimizing plant traits (Casler 

1999; Lüscher et al. 2014). Breeding of forage species is almost exclusively conducted in 

monocultures even though they are often grown in mixtures. So plant species genotype 

performance in monoculture might be different than inmixtures (Williams et al. 2003; Evans et 

al. 1995). It has been shown that the improved plant genotype will usually have increased forage 

quality under most environmental or management conditions to which it is subjected (Casler 

1999). No study till to date evaluated the effect of the white clover genotype on the forage 

nutritive value of mixtures with different partner species.  

 

In the present study, we aimed to assess the effect of white clover genotype on forage nutritive 

value of different mixtures under different environmental condition. Eight novel genotypes of 

white clover were cultivated as monocultures in binary mixture with either perennial ryegrass 

or chicory and in a multi-species mixture with ryegrass and chicory at two different sites 

differing in soil characteristics and soil depth. We hypothesized that: (i) white clover (Trifolium 

repenes) genotypes vary in forage nutritive value and that (ii) the forage nutritive value of 

mixtures with different non-legume companion species is affected by the white clover 

genotype, both because white clover genotypes differ in forage quality and because the 

proportion of white clover in mixtures is genotype-dependent. We also expected that (iii) the 

mixture forage nutritive value differs between the two sites since we expect that the fertile site 

would have a smaller proportion of white clover in the mixture than the marginal site. 
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4.3 Material and methods 

 

4.3.1 Study area 

 

The present study was part of the IMPAC³ experiment and was carried out during 2014-2017 

on two experimental stations of the Georg-August-University Göttingen, Germany. The two 

sites were noticeably different regarding soil depth, texture, and precipitation. The rather fertile 

site (51.29 N, 9.55 E) had a low elevation 157 m a.s.l. and the marginal site (51.34 N, 9.58 E) 

was located at a higher elevation of 342 m a.s.l.  The soil type according to the FAO 

classification system on fertile site was a Gleyic Fluvisol (Ah horizon of 0- 30 cm, 21% of clay, 

11% sand, 68% silt) and the soil pH was 7. The soil type on the marginal site was a Calcaric 

Leptosol and had a shallower Ah horizon of 25 cm depth. Clay content was higher on the 

marginal site than on the fertile site (34% clay, 2% sand and 55% silt) and the soil pH was 7.5. 

The monthly average temperature and rainfall per experimental year are given in Appendix 

(Figure A1 Deutscher Wetterdienst). 

 

4.3.2 Experimental design 

 

In July 2014, eight novel genotypes of white clover (Trifolium repens L.), one variety of 

perennial ryegrass (Lolium perenne L., ELP 060687) and one variety of chicory (Cichorium 

intybus L., Puna II) were sown as monoculture, binary mixture of white clover either with 

perennial ryegrass or chicory (0.4:0.6), binary mixture of ryegrass and chicory (0.5:0.5) and as 

three-species mixtures of white clover with ryegrass and chicory (0.4:0.3:0.3). The white clover 

genotypes differed in flowering time, flower intensity and leaf size. The seed rate of each 

species in a mixture was calculated based on commonly used seed rates in monocultures (1000 

seed per m2). The experimental layout followed a split-plot design with four replications at both 

sites. In each block, experimental treatments were arranged with five plots, each nested within 

eight main plots corresponding to the white clover genotypes. In total, each site consisted of 

160 plots (5 m length x 3 m width). The between plot spacing was 0.2 m. Plots were regularly 

treated with glyphosate to prevent the spread of white clover stolon to the other plots. Mixtures 

including white clover and the white clover monoculture did not receive any fertilizer. Two 

levels of fertilization, 0 and 240 kg total N ha yr−1 (NH4NO3+CaCO3) were applied for perennial 
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ryegrass and chicory monocultures and also for mixtures of those two species. As soil 

phosphorus and potassium contents at both sites were sufficient, no phosphorus and potassium 

fertilizers were applied. The result presented in this paper focuses on white clover monocultures 

and mixtures including white clover. All plots were cut twice during the establishment year 

(2014) and four times per year for the following years (2015-2017). Harvest dates are shown in 

Table 4.1. 

 

Table 4.1: Harvest dates in the four experimental years. Two sites: fertile (F), marginal (M). 

 

 2014 2015 2016  2017 

Harvest F M F M F M F M 

1 - - 11/05 19/05 17/05 23/05 8/05 16/05 

2 - - 01/07 07/07 22/06 28/06 19/06 27/06 

3 12/08 12/08 20/08 24/08 08/08 16/08 7/08 14/08 

4 14/10 14/10 05/10 13/10 04/10 11/10 26/09 09/10 

 

All plots were cut to a height of 5 cm with a combine harvester (Wintersteiger hd 1500). After 

each harvest, the biomass from each plot was blended, and a sample of approximately 250 g 

was taken and dried in the oven at 60° C for 48 hours. Dried samples were grounder to pass 

through a 1-mm sieve and scanned with a NIR spectrophotometer to determine the 

concentration of CP, ADF and WSC.  

 

4.3.3 Statistical analysis 

 

 The weighted average of the concentration of CP, ADF and WSC over four harvests for each 

experimental year was calculated: 

 

∑ (𝑐𝑜𝑛𝑐𝑒𝑛𝑡𝑟𝑎𝑡𝑖𝑜𝑛𝑖 ×
𝑑𝑟𝑦 𝑚𝑎𝑡𝑡𝑒𝑟 𝑦𝑖𝑒𝑙𝑑 𝑖

𝑑𝑟𝑦 𝑚𝑎𝑡𝑡𝑒𝑟 𝑦𝑖𝑒𝑙𝑑 𝑡𝑜𝑡𝑎𝑙
)

ℎ

𝑖=1

 

 

Where i is the harvest number, and h is the total number of harvest per year. Out of 2560 

samples, 15 samples from the last harvest of the marginal site were too small to determine the 
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forage nutritive value and were treated as missing values in the statistical analysis. Statistical 

analyses of the forage nutritive factors were performed with R version 3.4.2 (R Core Team 

2017). All target variables were analyzed by applying linear mixed model (lme) using the 

software package “nlme” (Pinheiro et al. 2017), including block, main plot within the block, 

and plot as a random effect, as well as the white clover genotype, crop stand, site, year and their 

interactions as fixed effects. All models were visually checked for homogeneity of variance and 

normal distribution of residuals. Because models for ADF and WSC concentrations were 

unevenly distributed, they were corrected by including an appropriate variance structure. 

“VarIdent” variance structure was incorporated into the models for both factors to provide 

better distribution. The most fitted model was simplified using the second Akaike Information 

Criterion (AICc) to obtain an optimal model that fits the data with an AICc as low as possible. 

Afterwards, means of the most influential variables and their interactions were compared in the 

final model using post-hoc pairwise contrasts and tested for significance with the LSD test as 

implemented in the package “emmeans” (Lenth, 2016). A significance level of p < 0.05 for all 

variables was selected. 

 

4.4 Results:  

 

4.4.1 Forage nutritive value: 

 

The results showed that the white clover genotype, the crop stand as well as their interaction 

significantly affected the concentration of CP, ADF and WSC (Table 4.2). The range of 

variation among white clover genotypes was wider in white clover monocultures, and it got 

narrower in binary mixtures with either ryegrass or chicory and in multi species mixture 

(Table 4.3). Even though the interaction of white clover genotype x stand significantly affected 

all nutritive factors, the white clover genotype with an increased forage value in the 

monoculture also did the same in all mixtures (Table 4.3). The white clover genotype with the 

highest CP concentration had a lower concentration of ADF both in white clover monocultures 

and mixtures (wc7).  
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Table 4.2: F and P-values to test the effect of white clover genotype, stand, site and year as the main 

effect and their interaction on the weighted average of the concentration CP, ADF and WSC. 

Significance level at P<0.05. 

 

 

Factor 

CP ADF WSC 

F- value P- value F- value P- value F- value P- value 

Genotype 18.1 <0.0001*** 12.6 <0.0001*** 4.6 0.0001*** 

Stand 1710.0 <0.0001*** 465.5 <0.0001*** 1563.8 <0.0001*** 

Site 0.2 0.6666ns 12.1 0.0130* 165.8 <0.0001*** 

Year 716.6 <0.0001*** 205.7 <0.0001*** 4.5 <0.0001*** 

Genotype: Stand 2.5 0.0007*** 2.6 0.0002*** 3.1 0.0001*** 

Stand: Site 130.1 <0.0001*** 71.7 <0.0001*** 60.0 <0.0001*** 

Stand: Year 77.9 <0.0001*** 93.4 <0.0001*** 77.2 <0.0001*** 

Site: Year 105.8 <0.0001*** 37.8 <0.0001*** 27.7 <0.0001*** 

Stand: Site: Year 19.2 <0.0001*** 8.6 0.0001*** 38.9 <0.0001*** 
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Table 4.3: The concentrations of CP, ADF and WSC in aboveground biomass of different white clover genotypes averaged over all crop stands, years (2015-

2017) and sites (marginal and fertile site). Crop stands were binary mixtures of white clover with either ryegrass (wc/pr) or chicory (wc/ci) and three species 

mixture (wc/pr/ci).  Small letters indicate significant differences between white clover genotypes means over sites and years in the same column (crop stand). 

Capital letters show significant differences between stands means over sites and years in the same row (white clover genotype) (p < 0.0001). 

 

 CP  ADF  WSC 

Genotype wc wc/pr wc/ci wc/pr/ci  wc wc/pr wc/ci wc/pr/ci  wc wc/pr wc/ci wc/pr/ci 

wc 1 21.5 ab A 14.8 bc B 14.6 cd B 13.5 bc C  28.3 c D 29.4 bc C 32.5 a A 31.6 ab B  7.5 cd C 12.1 abc A 5.6 c D 8.5 ab B 

wc 2 21.5 ab A 15.7 a B 15.2 bc BC 14.7 ab C  28.0 cd C 29.1 c B 31.5 bc A 31.0 b A  7.9 ab C 11.5 cd A 6.1 b D 8.4 ab B 

wc 3 20.0 d A 14.3 c B 14.5 d B 13.6 bc C  29.0 b C 29.4 bc C 32.1 ab A 31.4 ab B  7.8 bcd C 12.6 a A 6.1 b D 8.4 ab B 

wc 4 21.7 a A 14.9 b B 14.6 cd BC 14.1 bc C  27.6 de D 29.1 c C 32.3 a A 31.5 ab B  8.2 a B 12.4 ab A 5.9 bc C 8.4 ab B 

wc 5 21.0 b A 15.5 a B 15.5 b B 14.7 ab C  28.2 cd C 29.0 c B 31.7 b A 31.4 ab A  7.8 bcd B 12.0 abc A 6.1 ab C 8.1 b B 

wc 6 20.3 cd A 14.3 c B 14.4 d B 13.9 cd B  29.7 a C 30.2 a C 32.4 a A 31.7 a B  6.9 d C 11.8 cd A 5.8 bc D 8.2 ab B 

wc 7 22.1 a A 16.0 a B 16.3 a B 14.9 a C  27.3 e C 29.0 c B 31.0 c A 31.0 b A  7.9 abc C 11.3 d A 6.5 a D 8.8 a B 

wc 8 20.9 bc A 14.7 bc B 14.3 d B 13.3 c C  29.1 b D 29.8 ab C 32.5 a A 31.9 a B  7.5 d C 11.8 bcd A 5.9 bc D 8.5 ab B 

 



Chapter IV 

 

64 

 

All nutritive parameters were significantly affected by the interaction of stand x site x year 

(Table 4.2). In Table 4 the interaction of stand x site is showen for each year separately. The 

white clover monocultures had a significantly higher concentration of CP (20-24%) and a lower 

concentration of ADF (26-32%) than the other mixtures at both site in all years  

(Table 4.4). In all experimental years, white clover monocultures had a notably higher 

concentration of CP and lower concentration of ADF than the mixtures on both sites. In the first 

and last year of the experiment, the binary mixture of white clover and ryegrass had a a higher 

concentration of CP and a lower concentration of ADF than the binary mixture of white clover 

and chicory and the three species mixture, on both sites (Table 4.4). The presence of chicory in 

the mixture was more likely to be the reason for increasing the concentration of ADF. The 

pattern of differences between crop stands in the concentration of CP, ADF and WSC were 

changed in each year for each site. Regarding the WSC concentration, the presence of ryegrass 

in mixture showed a rise in WSC concentration. The binary mixture of white clover with 

ryegrass had the highest WSC concentration among all crop stands (10-16% at the fertile site 

and 10 to 12% at the marginal site). Including chicory in the three species mixture reduced the 

concentration of WSC compared to the binary mixture of white clover and ryegrass. This was 

the same at both sites and in all experimental years. The site condition showed a significant 

main effect on the concentrations of ADF and WSC, however it had no effect on concentration 

of CP. 
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Table 4.4: Concentration of CP, ADFom and WSC in aboveground biomass averaged over eight white clover genotypes on two different sites (fertile and 

marginal) and three experimental years (2015-2017) for white clover monoculture (wc), binary mixture of white clover with perennial ryegrass (wc/pr), binary 

mixture of white clover with chicory (wc/ci) and three-species mixture of white clover with perennial ryegrass and chicory (wc/pr/ci). Letters indicate significant 

differences between values in the same column (year) within each level of comparison (p < 0.0001). 

 

Site Crop stand 

  CP    ADF    WSC  

 2015 2016 2017  2015 2016 2017  2015 2016 2017 

Fertile wc  22.7 a 21.4 a 23.32 a  26.5 d 28.4 e 26.8 e  8.3 c 7.7 d 7.5 cd 

 wc/pr  12.4 e 14.1 ef 18.40 c  28.4 c 29.9 d 28.0 d  16.0 a 12.3 a 10.0 a 

 wc/ci  11.4 f 15.4 cd 16.1 de  34.9 a 30.9 ab 31.1 a  5.9 d 5.4 f 6.3 e 

 wc/pr/ci  10.4 g 14.3 ef 16.5 de  34.6 a 30.2 cd 29.7 bc  8.0 c 8.8 c 7.8 c 

 wc  20.3 b 17.9 b 21.2 b  28.7 c 31.5 ab 28.5 d  8.2 c 7.6 d 6.9 d 

Marginal wc/pr  15.0 c 13.7 f 16.6 d  29.2 c 31.7 a 29.1 c  12.2 b 10.9 b 10.3 a 

 wc/ci  13.9 d 15.7 c 16.9 d  32.9 b 31.0 bc 31.2 a  6.3 d 6.7 e 5.6 f 

 wc/pr/ci  13.3 e 14.3 de 15.7 e  32.5 b 31.5 ab 30.2 b  8.2 c 8.8 c 8.9 b 
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4.4.2 White clover content 

 

The proportion of white clover was clearly different among crop stands between two sites 

in each year (P= 0.0001). In the first year of the experiment, all mixtures at the marginal 

site contained a higher percentage of white clover than the same mixtures at the fertile 

site. However, this difference between sites was not consistent during the experimental 

years, and it appeared to be reduced over the time. In all experimental years, the grass-

clover mixtures contained a higher percentage of white clover than the binary mixtures 

of white clover and chicory and the three-species mixtures of white clover with ryegrass 

and chicory on both sites (Figure 4.1). There was a significant difference among white 

clover genotypes in contribution to yield production  

(P= <0.0001). There was no significant interaction of white clover genotype x stand on 

white clover content of mixtures. The difference among white clover genotypes might be 

related to the yield potential of the partner species in the mixture. 

 

 

 

 

Figure 4.1: The white clover percentage (a) in a binary mixture of white clover with 

perennial ryegrass (wc/pr), binary mixture of white clover with chicory (wc/ci) and three-

species mixture of white clover with both perennial ryegrass and chicory (wc/pr/ci) 

averaged over white clover genotypes in three experimental years (201-2017), on two 

different sites (fertile and marginal), (b) of eight white clover genotypes averaged over 

crop stands, sites and years. 
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4.5 Discussion 

 

When grown in monoculture white clover genotypes had significantly different 

concentrations of CP, ADF, and WSC, confirming our first hypothesis. This result is in 

line with earlier studies that found a significant effect of species genotype on forage 

nutritional composition of other forage species (Casler 1999; Calser 2001; Smith et al. 

2005). Studies of the plant species genotype effect on forage quality are extremely rare 

for white clover, as the focus has mostly been on traits that enhance persistence and 

competitiveness of white clover (Annicchiarico and Proietti, 2010; Frankow-Lindberg et 

al. 2009). 

 

The interaction of white clover genotype x stand significantly affected all nutritive 

parameters. In our study, the forage nutritive value varied more among crop stands than 

among the white clover genotypes. Compared to the genotype differences in nutritive 

value we found in white clover monocultures, the range of variation between white clover 

genotypes got narrower in mixtures, but remained significant, confirming our second 

hypothesis.  

 

While our results suggested that the white clover genotype influenced the forage nutritive 

value of mixtures, it was more strongly determined by the partner species in the mixture. 

White clover monocultures had notably higher concentrations of CP and lower 

concentrations of ADF compared to all mixtures. The high concentration of CP in white 

clover monocultures is probably due to the inherently high protein content of legumes. 

The lack of a stem fraction of white clover may be the reason for low ADF concentrations 

of white clover monocultures compared to the mixtures (Brink et al., 1994). The presence 

of chicory in mixtures increased the ADF concentration which showed the substantial 

contribution of stem material in altering the nutritional composition of forage. Plant 

species with erect forms will tend to have a higher concentration of ADF because of their 

need for stronger structures (Vreugdenhil, 2017). The binary mixture of white clover and 

perennial ryegrass had the highest concentration of WSC. Presence of perennial ryegrass 

in the binary mixture of white clover and chicory was likely to be the factor increasing 

the WSC in the mixture. This could be attributed to the high WSC concentrations 

commonly found in perennial ryegrass (Van Rossum 2013). Our results thus showed that 
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the identity of companion species had a substantial effect on the forage nutritive value, 

which is in line with earlier studies (Sanderson, 2010; Zemenchik et al. 2002).  

 

There was no significant interaction of a white clover genotype neither with a site nor 

with a year that showed the performance of white clover genotype to be independent of 

site condition and year. The site condition per se did not affect the concentration of CP, 

while it had a significant effect on the concentration of ADF and WSC. The interaction 

of stand x site x year interactively affected the forage nutritive value. 

 

Previous results regarding the effect of legume content on the forage nutritive value are 

inconsistent. While several studies found a positive effect of clover content on the CP 

content at low levels of N input (Sturludóttir et al., 2013; Elgersma et al., 2018), Jing et 

al. (2017) found no relationship between the proportion of legume in a mixture and CP 

concentration. In our experiment white clover coexisted well with the non-legume partner 

species. The proportion of white clover was higher in the binary mixture with ryegrass 

compared to that with chicory and the three-species mixture. Chicory is a perennial herb 

with broad erect leaves that can shade white clover, which has a horizontal stem at the 

ground level. This might lead to a lower percentage of white clover in the mixture. 

Observed differences in the white clover proportion of mixtures can help to explain the 

crop-stand–specific site and year effects on forage nutritional value: In 2015, when 

mixtures at the marginal site had higher proportions of white clover than those at the 

fertile site, their CP concentrations were also higher and their ADF concentrations were 

lower compared to the fertile site. In 2017, when the proportion of clover in the binary 

mixture with ryegrass was lower at the marginal than at the fertile site, CP concentrations 

likewise were lower and ADF concentrations were higher than at the fertile site. Due to 

these annual variations, we cannot confirm our third hypothesis. 

 

Both the differences in forage nutritive value between the white clover genotypes and the 

genotype-specific white clover proportion in mixtures contributed to the white clover 

genotype effect on mixture nutritive value: for example, genotype wc7 was characterized 

by high proportions in mixtures and high CP concentrations together with low ADFom 

concentrations in both monoculture and mixtures. By contrast, genotype wc3 combined 

low CP concentrations and high ADF concentrations with comparatively low white clover 

proportions in mixtures, resulting in an unfavorable forage nutritive value of mixtures. 
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4.6 Conclusion 

 

The main result of this study was that the white clover genotype influences the forage 

nutritive value of different mixtures. However, this effect was of minor importance 

compared to the effect of the botanical composition of the mixture. We found that the 

effect of thewhite clover genotype on forage nutritive value was diminished with 

increasing the complexity of mixture. The resource availability affected the nutritive 

value of mixtures via influencing the share of species in the mixture.  

 

4.7 Acknowledgments 

 

This research was a part of IMPAC3 project which is supported by a fund from the 

Federal Ministry of Education and Research of Germany (BMBF, FKZ031A351A,B,C). 

We thank our project partner Deutsche Saatveredelung AG (DSV) for providing the seed 

material. We gratefully acknowledge the invaluable help of Dirk Koops in field 

experimentation and data sampling. Declarations of interest: none. 

 

4.8 References 

 

Annicchiarico P, Proietti S (2010) White clover selected for enhanced competitive ability 

widens the compatibility with grasses and favours the optimization of legume 

content and forage yield in mown clover‐grass mixtures. Grass Forage Sci 65: 318. 

 

Brink G, Sanderson MA, and Casler MD (2015). Grass and legume effects on nutritive 

value of complex forage mixtures. Crop Science 55: 1329- 1337. 

 

Buxton DR (1996) Quality-related characteristics of forages as influenced by plant 

environment and agronomic factors. Anim Feed Sci Technol 59: 37-49. 

 

Casler MD (1999) Accomplishments and impact from breeding for increased forage 

nutritional value. Crp Sci 39: 12-20. 

Casler MD (2001) Breeding forage crops for increased nutritional value. ADV AGRON 

71: 51-107. 

 



Chapter IV 

 

70 

 

Elgersma A, Søegaard K (2018) Changes in nutritive value and herbage yield during 

extended growth intervals in grass–legume mixtures–effects of species, maturity at 

harvest, and relationships between productivity and components of feed quality. 

Grass Forage Sci 73:78–93. 

 

Ergon A, Kirwan L, Fystro G, Bleken MA, Collins RP, and Rognli OA (2017) Species 

interactions in a grassland mixture under low nitrogen fertilization and two cutting 

frequencies. II. Nutritional quality. Grass Forage Sci 72, 333–342. 

 

Evans DR, Williams TA, Jones S, and Evans SA (1995) The effect of blending white 

clover varieties and their contribution to a mixed grass/clover sward under 

continuous sheep stocking. Grass Forage Sci 50: 10-15. doi:10.1111/j.1365-

2494.1995.tb02288.x  

 

Frankow-Lindberg BE, Halling M, Höglind M, Forkman, J (2009) Yield and stability of 

yield of single- and multi-clover grass-clover swards in two contrasting temperate 

environments. Grass Forage Sci 64: 236-245. 

 

Fulkerson WJ, Slack K, Hennessy DW, and Hough GM (1998) .Nutrients in ryegrass 

(Lolium spp), white clover (Trifolium repens) and kikuyu (Pennisetum 

clandestinum) pastures in relation to season and stage of re-growth in subtropical 

environment. Aust J Exp Agric 38: 227–240. 

 

Fulkerson WJ, Neal JS, Clark CF, Horadagoda A, Nandra KS, and Barchia I (2007) 

Nutritive value of forage species grown in the warm temperate climate of Australia 

for dairy cows: Grasses and legumes. Livest Sci 107, 253-264 

 

Høgh-Jensen H, Nielsen B, and Thamsborg SM (2006) Productivity and quality, 

competition and facilitation of chicory in ryegrass/ legume-based pastures under 

various nitrogen supply levels. Eur J Agron 24: 247-256. 

 

Jing J, Søegaard K, Cong WF, Eriksen J (2017) Species diversity effects on productivity, 

persistence and quality of multispecies swards in a four-year experiment. PLoS 

ONE 12(1): e0169208. 

https://doi.org/10.1111/j.1365-2494.1995.tb02288.x
https://doi.org/10.1111/j.1365-2494.1995.tb02288.x


Chapter IV 

 

71 

 

 

Kilcher MR (1981) Plant development, stage of maturity and nutrient composition. J 

Range Manage 34(5): 363-364. 

 

Lenth R (2017) emmeans: Estimated Marginal Means, aka Least-Squares Means. R 

package version 1.0. https://CRAN.R-project.org/package=emmeans 

 

Lüscher A, Mueller-Harvey I, Soussana JF, Rees RM, and Peyraud JL (2014) Potential 

of legume-based grassland–livestock systems in Europe: a review. Grass Forage 

Sci 69(2): 206–228. 

 

Pinheiro J, Bates D, DebRoy S, Sarkar D, R Core Team (2017) nlme: Linear and 

Nonlinear Mixed Effects Models. R package version, 3, 1-128, url: 

http://CRAN.R444. project.org/package=nlme. 

 

R Core Team (2017) R: A language and environment for statistical computing. R 

Foundation for Statistical Computing, Vienna, Austria. URL https://www.R-

project.org/. 

 

Rumball W, (1986) Grasslands Puna chicory (Cichorium intybus L.). NZ J.Exp. Agric 

14: 105–107. 

 

Sturludóttir E, Brophy C, Bélanger G, Gustavsson A, Jørgensen M, Lunnan T, and 

Helgadóttir Á (2013) Benefits of mixing grasses and legumes for herbage yield and 

nutritive value in Northern Europe and Canada. Grass Forage Sci 69: 229-240. 

 

Sanderson MA (2010). Nutritive value and herbage accumulation rates of pastures sown 

to grass, legume, and chicory mixtures. Agron J 102: 728–733. 

 

Sleugh B, Moore KJ, George JR, and Brummer EC (2000) Binary legume-grass mixtures 

improve forage yield, quality, and seasonal distribution. Agron J 92: 24–29. 

Smith KF, Simpson RJ, Oram RN, Lowe KF, Kelly KB, Evans PM, and Humphreys MO 

(1998) Seasonal variation in herbage yield and nutritive value of perennial ryegrass 

(Lolium Perenne L.) cultivars with high or normal herbage water-soluble 

https://cran.r-project.org/package=emmeans
http://cran.r444/


Chapter IV 

 

72 

 

carbohydrate concentrations grown in three contrasting Australian dairy 

environments. Aust J Exp Agric 38: 821-830. 

 

Smith HJ, Tas BM, Taweel HZ, Tamminga S, and Elgersma A (2005) Effects of perennial 

ryegrass (Lolium perenne L.) cultivars on herbage production, nutritional quality 

and herbage intake of grazing dairy cows. Grass and Forage Sci 60: 297–309. 

 

Sturludóttir E, Brophy C, Bélanger G, Gustavsson AM, Jørgensen M, Lunnan T and 

Helgadóttir Á (2014) Benefits of mixing grasses and legumes for herbage yield and 

nutritive value in Northern Europe and Canada. Grass and Forage Sci 69: 229–240. 

 

Van Rossum M (2013) Dry matter production, nutritive value and botanical composition 

of a perennial ryegrass white clover pasture applied with GA and N in successive 

periods in autumn and spring. Dissertation, Lincoln University 

 

Vreugdenhil SR (2017) Understanding the nutritive value of pasture mixtures. 

Dissertation, Lincoln university 

 

Williams TA, Abberton MT, and Rhodes I (2003) Performance of white clover varieties 

combined in blends and alone when grown with perennial ryegrass under sheep and 

cattle grazing. Grass and Forage Sci 58: 90-93.  

 

Zemenchik RA, Albrecht KA, and Shaver RD (2002) Improved Nutritive Value of Kura 

Clover– and Birdsfoot Trefoil–Grass Mixtures compared with Grass Monocultures. 

Agron J 94: 1131–1138. 



 

73 

 

 

 

 

 

 

Chapter V: General discussion 



Chapter V 

 

74 

 

Mixtures of grass and clover are widely adopted in temperate regions because they can 

provide high biomass yield with little or no reliance on artificial nitrogen fertilizer (Finn 

et al. 2013; Nyfeler et al. 2009). Legume based mixtures have the potential to contribute 

to the sustainable intensification of grassland management. Compared to fertilized grass 

monoculture, grass-clover mixtures improve forage quantity and quality with less 

environmental impact and at the same time improving soil fertility (Kirwan et al. 2007; 

Nyfeler et al. 2011). The interactions among component species in a mixture are 

complementary or competitive, and their implications for the agronomic performance 

have been explored for many years (Hooper 1998; Ergon et al. 2016; Turkington 1989a). 

However, the effect of the genetic variation within species on interspecific interactions is 

less well documented (Collins and Rhodes 1989a; Turkington et al. 1979; Turkington 

1989b; Suter et al. 2007). There is little information available whether the choice of the 

plant species genotype affects the performance of a multi-species mixture. In particular, 

almost no attention has been paid to the variation among genotypes within species that 

would increase complementarity among component species in a mixture and thereby the 

mixture performance. Two different experiments were therefore established to evaluate: 

 

I. Whether and to what extent different non-legume species genotype affects the 

mixture yield and yield stability (Chapter 1). 

 

II. Whether and to what extent different legume species genotype affects the mixture 

yield and yield stability (Chapter 2). 

 

III. Whether and to what extent different legume species genotype affects the forage 

nutritive value of mixtures (Chapter 3). 

 

In order to investigate the effect of different genotypes of non-legume species on yield 

and yield stability of mixtures, we grew four genotypes of perennial ryegrass differing in 

two traits (growth form: prostrate or upright, phenology: early or late heading) in 

monoculture, in binary mixture with white clover and in four-species mixture with white 

clover and two forb species ribwort plantainand dandelion. 

 

The second project was conducted to assess the effect of different genotypes of legume 

species on yield, yield stability and forage nutritive value in monoculture and different 
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mixture. Eight white clover genotypes were grown as monocultures, in binary mixtures 

with either ryegrass or chicory and in three species mixture with both ryegrass and 

chicory. The white clover genotypes differed in phenology, leaf size and yield potential. 

To assess the effect of environmental condition on performance of mixtures, we 

stablished the same experiment on two different sites. The two sites were noticeably 

different in terms of soil depth, soil texture, and precipitation.  

 

In line with earlier studies, the results of both experiments confirmed the positive effect 

of mixed cropping on forage yield production and yield stability (chapter 2 & 3). The 

yield advantage of mixtures compared to monocultures could be related to the 

complementarity of resource use of the component species. Obviously, a major role 

played by the ability of white clover to fix the atmospheric nitrogen and improve the soil 

N pool. The inclusion of forbs in mixtures suggested additional pathways of increased 

resource use of the mixtures compared to the monocultures (Hoekstra et al. 2014; Cong 

et al. 2017). Including Dandelion and plantain (chapter 2) and chicory (chapter 3) into 

grass-clover mixtures substantially increased the forage yield. This benefit was assumed 

to be closely related to the divergent rooting systems of the shallow rooted grass and 

white clover on the one hand and the deep rooted forbs on the other. Similarly, Hoekstra 

et al. (2014) demonstrated that the inclusion of the deep-rooting species (chicory) in 

grass-legume mixtures increased biomass production, especially under drought 

conditions. Recent research by Cong et al. (2017), however, found different results on the 

effect of non-legume forbs (chicory, dandelion, and plantain) as a constituent of red 

clover-ryegrass mixtures. Including plantain into grass-clover mixtures significantly 

increased herbage yield, while adding chicory and caraway did not show a yield increase 

compared to the grass-clover mixture. The ability of forbs to take water and nutrients up 

from deep soil layers that are not available to shallowly-rooted species are likely to be a 

main reason why the inclusion of forbs contributes to the overyielding of mixtures 

(Hoekstra et al. 2014; Moloney 1993). The results of 

Cong et al. (2017), however, suggest that there are further mechanisms that increase the 

complementarity of resource use.  

 

In chapter 3 we found that all mixtures yielded higher than the white clover monocultures 

on the fertile site, while at the marginal site, this was only true for the two mixtures 

including chicory. Many studied have found 
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a positive relationship between the species/species functional group number 

and the productivity of the mixture (Ergon et al. 2016; Finn et al. 2013; Helgadottir et al. 

2008), but in the present study (chapter 3) we found that the identity of the species in the 

mixture is more important than the number of species for the mixture benefit.  

 

Not only the choice of crop species but also that of genotypes affected the productivity 

and yield stability of mixtures (chapter 2). The ryegrass genotypes in our study affected 

the forage production of the mixtures. The upright perennial ryegrass genotypes notably 

performed better than the prostrate ones when grown in monoculture (chapter 2). 

However, the effect of the ryegrass growth form was diminished in binary mixtures but 

still visible and almost completely disappeared in the four species mixture (chapter 2). 

The phenology of ryegrass did not affect forage yield (chapter 2). We had expected that 

phenological differences among ryegrass genotypes influence the mixture performance 

via improving the complementarity in mixture since they take up resources at a different 

time. Presumably, this was not the case because of temporal limitations in water 

availability which among other reasons such as nitrogen limitation might have restricted 

growth even if temperatures were favorable. Evans et al. (1985) found higher 

compatibility of ryegrass and clover in mixtures when the seasonal pattern of growth was 

more differentiated.  

 

In contrast to many earlier studies (e.g., Evans and William 1987; Collins and Rhodes 

1989; Hill and Michaelson-Yeates 1987; Turkington et al. 1979) and findings of our first 

experiment (chapter 2), white clover genotypes did not interact with the crop stands 

regarding yield production and yield stability. The white clover genotype which 

performed well in monoculture also did so in mixtures (chapter 3).  

 

We found that environmental factors play a role for the relative performance of white 

clover genotypes as at the fertile site the difference between the white clover genotypes 

was more visible than at the marginal site (chapter 3). On average over all crop stands, 

white clover genotypes yielded higher at the fertile site than at the marginal site. However, 

significant interaction of genotype x site might be due to the difference between crop 

stands yield production on marginal site and fertile site; partner species yielded higher at 

the fertile site where the resources were more available than at the marginal site with 

limited resources. Irrespective of the crop stands, the white clover genotypes affect are 
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stronger expressed where resources are less limited. Although the three-way interaction 

genotype x stand x site was not significant, this finding indicates that resource limitation 

is of importance and that in the other research the sites where genotype x stand effects 

were found had a likely higher resource availability (Collins and Rhodes 1989; Hill and 

Michaelson-Yeates 1987).  

 

The resource availability also influenced the mixtures productivity notably (chapter 3). 

Presumably, this happened via alteration in plant-plant interaction (competition and/or 

complementarity) in the mixture (Brooker et al. 2015; Sanderson et al. 2002). All the 

mixtures yielded notably higher at the fertile site than their referring mixture at the 

marginal site, but white clover monocultures did not differ in yield between the two sites 

(chapter 3). The resource limitation at the marginal site could be responsible for that 

difference; limited soil depth and available water at the marginal site might have increased 

the competition among component species in mixture and limited the plants growth which 

affected the mixtures productivity.  

 

From an agronomic point of view, mixtures are more interesting when they produce 

higher dry matter yields than the best monocultures, which is called transgressive 

overyielding (Nyfeler et al. 2009; Temperton et al. 2007). Transgressive overyielding 

occurs when there is a synergetic interaction between species in mixtures, and the net 

effect of interspecific interactions are sufficiently strong (Cardinale et al. 2007; Kirwan 

et al. 2007; Kirwan et al. 2009). Cardinale et al. (2007), in a meta-analysis summarizing 

44 diversity experiments including non-agricultural systems, found that 79% of all 

mixtures had been more productive than the average monoculture. However, in only 12% 

of the experiments the mixtures had been more productive than the most productive 

monocultures (transgressive overyielding). They also demonstrated that the probability 

of transgressive overyielding of mixtures had increased over time and it took about five 

years for transgressive overyielding to become evident (Cardinale et al. 2007). In contrast 

to the finding of Cardinale et al. (2007), Nyefeler et al. (2009) found a high level of 

transgressive overyielding at the Swiss site of a continent wide mixture experiment 

(Kirwan et al. 2007). In addition, they observed a significant transgressive overyielding 

in the first year of the experiment. In our study, one of the three mixtures at each site 

transgressively overyielded the most productive corresponding unfertilized monoculture 

(chapter 3). It is remarkable that we found such a high incidence of transgressive 
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overyielding occurring within the first four years (chapter 3). That is probably attributed 

to the deliberate selecting of species for our mixtures, as white clover, ryegrass and 

chicory are the most important and highly productive grassland species for forage 

production in temperate-humid grassland systems.  

 

From the agronomic perspective, not only the amount of forage yield is important, the 

stability of yield between years and within year is also as important. The ryegrass growth 

form influenced the stability of the yield between years. When grown in monocultures 

the upright genotypes showed higher yield stability than the prostrate ones. The 

differences among ryegrass genotypes decreased from the monocultures over the 

binarymixtures to the four-species mixture; no difference among the growth types was 

found in binary and four-species mixtures (chapter 2). In contrast to forage production, 

ryegrass phenology affects the yield stability within year (chapter 2). The late heading 

ryegrass genotypes showed a lower within-year variation compared to early heading ones 

when grown in monocultures. This effect declined with increasing complexity of mixture. 

The companion species in the mixture compensated for the phenology pattern of resource 

use of the grass. As we expected, the 

four-species mixture had higher yield stability within years compared to the monocultures 

and the binary mixtures. White clover genetic variation did not show any effect on the 

stability of yield between years. However, the botanical composition of mixtures 

markedly affects the stability of yield production. In contrast to the finding of 

Küchenmeister et al. (2012) who stated that yield stability decrease with including forbs 

(plantain and dandelion) in the mixture, in both of our experiments, including forb into 

grass-clover mixtures increased the yield stability between years (chapter 2 & 3).  

 

The genotype effect of white clover on the forage nutritive value has been rarely studied, 

as the focus has mostly been on traits that enhance persistence and competitiveness of 

white clover in the mixture (Annicchiarico and Proietti, 2010). We found a significant 

main effect of white clover genotype and significant interaction of white clover genotype 

x crop stand on the forage nutritive value (chapter 4). The effect of white clover genotype 

on the forage nutritive value was independent of site condition and year. The white clover 

genotype effect was more visible in white clover monocultures and it got narrower in 

mixtures, but remained significant. Our results showed that the effect of partner species 

was superior to the effect of white clover genotype on the forage nutritive value; mixtures’ 
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forage nutritive value was more determined by the identitiy of species than by white 

clover genotypes.   

 

5.1 Conclusion 

 

The quality and the quantity of forage are both important for maintaining livestock and 

livestock production. As we found in this study, quality and quantity of forage both 

change substantially based on the botanical composition of the mixture and partly related 

to the plant species genetic variation. Chicory, ribwort plantain and dandelion are three 

promising non-legume forage forbs that we found to notably increase the forage yield and 

yield stability when included in grass-clover mixtures. Supplementation programs are 

recommended to be designed to specifically address the effect of the interaction of a 

particular legume genotype with a specific non-legume genotype on quality and quantity 

of mixtures forage.  
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Summary 

 

Grass-clover mixtures have shown a higher yield, higher yield stability and higher 

nutritive value compared to individual species in monoculture. The number and identity 

of species in a mixture are important factors for the mixture’s productivity. Species 

complementarity is assumed to be a key mechanism determining the mixture 

performance. Not only species but also genotypes might have different complementarity 

to their mixture partners so that the genotypes’ performance might be different in 

monocultures and mixtures. Moreover, resource availability can be expected to affect the 

species complementarity.  

 

To study how and to which extent the genotype affects yield, yield stability and forage 

nutritive value in different mixtures, two different studies were carried out in two 

experimental stations of Georg-August-University Göttingen, Germany. In the first 

experiment, we studied the effect of perennial ryegrass (Lolium perenne L.) genotypes on 

mixture yield and yield stability. We hypothesized that the performance of perennial 

ryegrass genotypes in terms of yield and yield stability would differ between 

monocultures and mixtures. We also assumed that the effect of the perennial ryegrass 

genotype on accumulated total and species-specific component yield over four years 

would be decreased with increasing number of partner species. Four genotypes of 

perennial ryegrass differing in two traits (growth form: prostrate or upright, phenology: 

early or late heading) were grown (i) in monoculture, (ii) in binary mixture with white 

clover (Trifolium repens) and (iii) in four-species mixture with white clover and two forb 

species (ribwort plantain, Plantago lanceolata and dandelion, Taraxacum officinale). Our 

results showed that the treatments with the upright growth form of perennial ryegrass 

were higher yielding than the treatments with the prostrate form, but this effect decreased 

from monoculture to four-species mixtures. Phenology did not have any effect on 

accumulated yields over four years. The perennial ryegrass genotype significantly 

affected the mixture components’ yield. Between- and within-year yield stability was 

generally highest in the four-species mixtures and lowest in the monocultures.  

 

To test the effect of the white clover genotype and resource availability on mixture 

performance, we established an experiment as a part of the IMPAC3 project in two sites 

which were noticeably different in terms of soil depth, texture, and precipitation. We 
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hypothesized that white clover genotypes would perform differently in terms of 

productivity, yield stability and forage nutritive value in monocultures and mixtures. We 

also assumed that a lower level of resource availability might increase white clover 

competitiveness and affect mixtures’ performance. Eight genotypes of white clover, one 

variety of perennial ryegrass  and one variety of chicory (Cichorium intybus L.) were 

sown as (i) monoculture, (ii) binary mixture of white clover with perennial ryegrass, (iii) 

binary mixture of white clover with chicory, (iv) binary mixture of perennial ryegrass and 

chicory and (v) three-species mixture of white clover with perennial ryegrass and chicory. 

The white clover genotypes differed in flowering time, leaf size and yield potential. 

Above ground herbage was cut twice in the establishing year and four times in each of 

the two following years. Subsamples were scanned with a near infrared 

spectrophotometer to determine crude protein (CP), acid detergent fiber (ADF) and water-

soluble carbohydrate (WSC). Our results revealed that the white clover genotype did not 

affect the mixtures’ productivity; the white clover genotype that performed well in the 

monoculture also did so in mixtures. One of the three mixtures at each site 

showedsignificant transgressive overyielding compared to the most productive 

unfertilized corresponding. Generally, the binary mixture of white clover and chicory 

yielded notably higher than the other mixtures and monocultures. This shows that the 

benefits of mixtures are more related to the species identity than to the number of species 

in the mixture. Site conditions also strongly affected the mixture performance: All 

mixtures at the fertile site yielded higher than the same mixture at the marginal site. 

 

The white clover genotype significantly affected the forage nutritive. This effect was most 

visible in white clover monocultures. In mixtures, it was less pronounced, but remained 

significant. Nevertheless, the forage nutritive value of mixtures was more determined by 

the partner species than by white clover genotype. White clover monocultures had 

significantly a higher concentrations of CP and lower concentrations of ADF than the 

mixtures. Mixtures including chicory had a higher concentration of ADF than the binary 

mixtures of white clover and ryegrass and white clover monocultures. Presence of 

ryegrass in mixtures led to a high concentration of WSC. 

In synopsis of these two experiments, the effect of plant species genotype was 

surprisingly small. The white clover genotype that performed well in monoculture also 

did so in mixtures. Perennial ryegrass genotypes affected yield stability rather than annual 
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herbage yield. On the other hand, inclusion of forbs into the grass-clover mixture 

improved yield in both experiments. 

 

Keywords: white clover, perennial ryegrass, forbs, monoculture, mixture, yield stability, 

forage nutritive value, niche complementarit 
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Table A1: Value for cultivation and use (VCU) test scores of the four perennial ryegrass genotypes used in the experiment compared to the mean, minimum and 

maximum of the total contemporary perennial ryegrass assortment in Germany. Adapted from Bundessortenamt (1995). 

 

*Test scores range from 1 to 9, with the following meaning: 

Date of heading: 1… very early, 9 … very late 

Average height: 1… very short, 9 … very tall 

Growth form: 1… very upright, 9 … very prostrate 

Persistence, sward density, herbage yield: 1 … very low, 9 … very high 

Growth 

form 

Pheno-

logy 

Genotype 

name 

VCU test scores* 

Date of 

heading 

Average 

height 

Growth 

form 

Suscepti-

bility rust 
Persistance 

Sward 

density 

Herbage yield 

total 

Herbage yield 

first cut 

Herbage 

yield 

following 

cuts 

Genotypes used in the experiment 

prostrate early Bardonna 1 5 7 6 6 6 5 4 6 

prostrate late Kerdion 9 3 7 5 7 7 6 5 7 

upright early Sambin 2 7 4 3 6 6 6 6 5 

upright late Hercules 8 5 5 5 6 5 6 5 6 

Perennial ryegrass assortment (n = 82) 

  min 1 3 3 3 4 4 4 3 4 

  max 9 8 7 7 7 7 7 7 7 

  mean 5.4 5.9 5.5 4.8 6.1 5.6 5.8 5.3 5.7 
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Table A2: Identity and some features of white clover genotypes for IMPAC³ project.  

 

Entry  Data base and trait identified as outstanding and further, specific features 

WC1 (EGB PX 90305)   

Early flowering, small to medium leaf size, 

good flowering intensity, moderate yield in 

mixtures  

WC2  (EGB PX 90312)  

  Seasons 2008/09,    

  2009/10,                   

  2010/11 

Intermediate flowering, large leaf size, 

medium flowering intensity, high yield in 

mixtures  

WC3 (EGB PX90702) 

Intermediate flowering, medium leaf size, 

medium flowering intensity, good yield in 

mixture  

WC4 (EGB PX90710)  

Late flowering, medium to large leaf size, 

medium flowering intensity, low yield in 

mixtures in D, high yield in F  

WC5 (EGB PX90913) 

Late flowering, intermediate ripening, 

medium to large leaf size, high yield in 

mixtures and pure stands, moderate winter 

hardiness  

WC6 (EGB PX90914)  
Very late flowering, medium leaf size, high 

flowering intensity, low yield in mixtures  

WC7 (EGB PX90915)  

Early flowering, medium leaf size, medium 

flowering intensity, high yield in mixtures, 

medium in pure stands  

WC8 (EGB PX90909) 
 Seasons 2009/2010,    

 2010/2011, 

Early to intermediate flowering, medium to 

large leaf size, bad winter hardiness, very 

high flowering intensity, medium yield in 

mixture  
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Figure A1: Monthly sum of precipitation (grey bars) and average temperature (black line) during the three experimental years for each site; (a) fertile site and 

(b) marginal site (data from Deutscher Wetterdienst).

Fertile site 

Marginal site 
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