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Abstract 

 

Biological causes of many human diseases can be understood more comprehensively by 

measuring molecular states of the cells. Characterization of cells based on their inherent 

molecular profiles as well as functional changes in their transcriptional programs, in response to 

environmental stimuli, could be investigated using high-throughput next generation sequencing 

(NGS) methodologies. However, these technologies rely on massive amounts of input material 

containing thousands or even millions of cells, which leads to averaging of gene profiles from all 

the sequenced cells. It is important to acknowledge however that tissues can contain various types 

of cells with different characteristics. Furthermore, even cells that are of the same cell type can 

exhibit very different behavior. It is possible either because of subtypes of cells or expression 

variation among individual cells. Cellular specialization is especially evident in tissues, which 

perform varieties of functions using the similar cell types. For instance, the same brain region 

contains millions of neuronal cells, which differ in their molecular and physiological properties 

and are involved in different processes. For this reason, it is essential to develop new techniques 

that can measure individual cells instead of cell collectives. 

 

This thesis explores three cell type-specific techniques for obtaining molecular information and 

for investigation of biological mechanisms. At first, Chapter 3. describes an implementation of 

BiTS (Batch isolation of tissue-specific chromatin) coupled with ChIP-seq and MeDIP-seq 

approaches, which is used to reveal epigenetic changes associated with the formation and 

maintenance of memory, specifically in neuronal and non-neuronal cells. Such procedures may 

allow users to obtain cell type-specific genetic and epigenetic information based on a known 

marker. Chapter 4. introduces the Tagger system, which is the first in-vivo mouse system that 

enables cell type-specific analysis of multiple nucleic acids from the same tissue. The Tagger 

system is based on a single transgene insertion into the mouse genome. This system leads to the 

synthesis of four components (protein molecules) in specific cell types. It enables the researchers 

to isolate multiple nucleic acid species (such as mRNA, miRNA, 4-TU labeled RNA) as well as 

isolated nuclei for genetic and epigenetic studies. Finally, the Drop-seq method is implemented in 

Chapter 5. to characterize individual cells of the spinal cord and hippocampus at the single-cell 
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resolution. Using the Drop-seq method two studies are conducted, where the first study was 

devoted to characterizing molecular properties of individual cell types from the spinal cord based 

on the unbiased single-cell RNA sequencing method (Drop-seq). The second study investigated 

the effect of erythropoietin (EPO) on unidentified precursor cells in the brain hippocampus. 

These precursor cells can differentiate into neurons and oligodendrocytes and reported to give 

rise to ~20% increase in the neuronal cell population (Hassouna et al., 2016). 

 

Overall, the current thesis implements cutting-edge, robust, flexible and reliable technologies to 

understand the molecular mechanisms at the individual cell type as well as single cell level. The 

knowledge acquired in this thesis could be applied to resolving the precise molecular mechanisms 

of several diseases and to design targeted or personalized therapeutics in the near future. Notable 

examples are neuro-degeneration mediated memory deprivation, nervous system diseases 

affecting specific cell types such as ALS, Alzheimer’s disease, Parkinson’s and others. These 

diseases could be studied in more depth, with the cell types investigated in this thesis. 

 

 

  



 11 

List of figures 

Figure 3.1: Experimental procedure. ............................................................................................. 33	
Figure 3.2: Genome browser (IGB) image for cell type-specific chromatin modification. .......... 47	
Figure 3.3: Histone modifications for cell type-specific genes. .................................................... 49	
Figure 3.4: Validation of cis-regulatory modules. ......................................................................... 50	
Figure 3.5: Analysis of DMRs and DMGs in CA1 and ACC brain regions. ................................ 52	
Figure 3.6: Immunoblotting analysis of HPTMs changes. ............................................................ 53	
Figure 3.7: Immunoblot analysis of neuronal chromatin from the CA1 region. ........................... 54	
Figure 4.1 Overview of the Tagger transgene. .............................................................................. 58	
Figure 4.2: Mapping quality of the Rpl-tag co-immunoprecipitated mRNA samples. ................. 74	
Figure 4.3: PCA analysis for Rpl-tagged co-immunoprecipitated mRNA samples. ..................... 75	
Figure 4.4: Heat map of the Rpl-tag mRNA cell type-specificity. ................................................ 76	
Figure 4.5: Correlation analysis for Ago2 bound differentially expressed (DE) miRNAs. .......... 77	
Figure 4.6: Correlation analysis between DMRs vs. gene expression. ......................................... 78	
Figure 4.7: Mapping quality of the 4-TU labeled total RNA. ....................................................... 79	
Figure 4.8: PCA analysis for 4-TU labeled RNA samples. ........................................................... 80	
Figure 4.9: Heat map for the 4-TU labeled RNA. ......................................................................... 81	
Figure 5.1: Schematic of the Drop-seq experiment. ...................................................................... 87	
Figure 5.2: Abnormal droplet generation junctions. ...................................................................... 95	
Figure 5.3: Bioanalyzer profile of Human-mice mixed cell Drop-seq samples after cDNA 

amplification (PCR1). .......................................................................................................... 104	
Figure 5.4: Bioanalyzer profile of Human-mice mixed cell Drop-seq samples after PCR-II. .... 105	
Figure 5.5: Bam-tag histogram for cell counts. ........................................................................... 106	
Figure 5.6: The species-mixing plot for Human-mouse cell mixing Drop-seq experiment. ....... 107	
Figure 5.7: Droplets quality control for bead doublets. ............................................................... 108	
Figure 5.8: Representative bioanalyzer profile of spinal cord Drop-seq sample after cDNA 

amplification PCR-I. ............................................................................................................ 109	
Figure 5.9: Representative bioanalyzer profile of spinal cord Drop-seq sample after PCR-II. .. 110	
Figure 5.10: Sequencing quality (per base) for the Read-1 of a spinal cord Drop-seq library. ... 111	
Figure 5.11: Sequencing quality (Per base) for the Read-2 of a spinal cord Drop-seq library. .. 112	
Figure 5.12: Bam-tag histogram for spinal cord Drop-seq experiment. ...................................... 114	
Figure 5.13: Violin plot for the gene, transcript, and percent of mitochondrial reads. ............... 115	
Figure 5.14: Gene plot for spinal cord Drop-seq. ........................................................................ 115	
Figure 5.15: Dispersion and average expression plot for the dataset. ......................................... 116	
Figure 5.16: Genes enriched for PCA analysis in spinal cord Drop-seq dataset. ........................ 117	
Figure 5.17: PCA plot for all the single-cells in spinal cord dataset. .......................................... 118	
Figure 5.18: PC Heat map for first 9 PCs, which were selected for downstream analysis. ........ 119	
Figure 5.19: Jackstraw plot of principal components. ........................................................... 120	
Figure 5.20: PCElbow plot of principal components. ................................................................. 121	
Figure 5.21: tSNE plot for spinal cord Drop-seq clusters. .......................................................... 122	
Figure 5.22: Heatmap of the top 10 biomarkers in identified clusters. ....................................... 124	
Figure 5.23: Feature plot for Gfra1 marker across all the single-cells. ....................................... 126	
Figure 5.24: Violin plot for Gfra1 marker across all the single-cell clusters. ............................. 126	
Figure 5.25: Dot plot for Gfra1 marker across all the single-cell clusters. ................................. 127	
Figure 5.26: Joy plot for Gfra1 marker across all the single-cell clusters. .................................. 127	



 12 

Figure 5.27: Feature plot for alpha fast motor neuron markers across all the single-cells. ......... 128	
Figure 5.28: Violin plot for alpha fast motor neuron markers. .................................................... 128	
Figure 5.29: Dot plot for alpha fast motor neuron markers across all the single-cell clusters. ... 129	
Figure 5.30: Joy plot for alpha fast motor neuron markers across all the single-cell clusters. .... 129	
Figure 5.31: Feature plot for alpha slow motor neuron markers across all the single-cell clusters.

 .............................................................................................................................................. 130	
Figure 5.32: Violin plot for alpha slow motor neuron markers. .................................................. 130	
Figure 5.33: Dot plot for alpha slow motor neuron markers across all the cell clusters. ............. 131	
Figure 5.34: Joy plot for alpha slow motor neuron markers across all the cell clusters. ............. 131	
Figure 5.35: Feature plot for precursor motor neuron marker across all the single-cell clusters. 132	
Figure 5.36: Violin plot for precursor motor neuron markers. .................................................... 132	
Figure 5.37: Dot plot for precursor motor neuron markers. ......................................................... 133	
Figure 5.38: Joy plot for precursor motor neuron markers. ......................................................... 133	
Figure 5.39: Gene ontology analysis for motor neuron cellular clusters. .................................... 134	
Figure 5.40: Violin plot for EPO Drop-seq data. ......................................................................... 137	
Figure 5.41: Gene plot for EPO Drop-seq data. ........................................................................... 138	
Figure 5.42: Dispersion and average expression plot for the EPO dataset. ................................. 139	
Figure 5.43: Jackstraw plot of principal components. ................................................................. 140	
Figure 5.44: PC-elbow graph of principal components for EPO dataset. .................................... 140	
Figure 5.45: tSNE plot for the EPO Drop-seq dataset. ................................................................ 141	
Figure 5.46: Violin plots for cell type specific markers for EPO Drop-seq dataset. ................... 143	
Figure 5.47: tSNE plot with cell type identity. ............................................................................ 143	
Figure 5.48: Expression heat map. ............................................................................................... 144	
Figure 5.49: Gene ontology analysis for clusters. ........................................................................ 145	
Figure 5.50: tSNE plot with the group information. .................................................................... 147	
 

  



 13 

List of tables 

Table 3.1 Antibody concentrations. ............................................................................................... 37	
Table 3.2: Antibody dilutions ........................................................................................................ 41	
Table 5.1: Basic statistics for the Read-1 of a spinal cord Drop-seq library. .............................. 111	
Table 5.2: Basic statistics for the Read-2 of a spinal cord Drop-seq library. .............................. 112	
Table 5.3: Statistics of reads after each step in Drop-seq pipeline. ............................................. 113	
Table 5.4: Statistics of marker genes in identified clusters of cells from motor neuron Drop-seq 

dataset. ................................................................................................................................. 123	
Table 5.5 Parameters selected at each step in Seurat clustering analysis. ................................... 123	
Table 5.6 List of known markers for sub-types of motor neurons. ............................................. 125	
Table 5.7: Summary of EPO Drop-seq data analysis. ................................................................. 137	
Table 5.8: Summary of biomarker genes in clusters. .................................................................. 142	
Table 5.9: Cell type specific markers across different cell types. ............................................... 142	
Table 5.10: Summary of differential cell percentage analysis in placebo (group1) and EPO (group 

2) clusters. ............................................................................................................................ 146	
Table 5.11: Summary of Biomarker analysis in clusters. ............................................................ 147	
 

 

 

 

 

  



 14 

Abbreviations 

 
oC Degree Celsius 
% Percent 
4-TU 4-thiouracil 
A Adenine      
ACC Anterior cingulate cortex  
BAM Binary alignment/map  
BiTS Batch isolation of tissue-specific chromatin  
bp Base pair  
BSA Bovine serum albumin 
C Cytosine      
cDNA Complementary DNA  
CFC Contextual fear conditioning  
ChAT Choline acetyltransferase 
ChIP Chromatin immunoprecipitation  
ChIP-seq Chromatin immunoprecipitation sequencing  
CNS Central nervous system 
CpG 5'-C-phosphate-G-3'      
DE Differential expression  
DEE Differentially expressed exon  
DEG Differentially expressed gene  
DHPTM Differential histone post-translational modifications 
DMR Differentially methylated region  
DMSO Dimethyl Sulfoxide 
DNA Deoxyribonucleic acid  
EB Elution buffer 
EDTA Ethylene diamine tetraacetic acid 
ENCODE Encyclopedia of DNA Elements   
FACS Fluroscence activated cell sorter 
FDR False discovery rate    
G Guanine      
g Gram 
GO Gene ontology     
HOMER Hyper geometric optimization of motif enrichment  
HPTM Histone post-translational modication    
IP Immunoprecipitation      
M Molar 
m Milli 
MedIP Methylated DNA immunoprecipitation  
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MedIP-seq Methylated DNA immunoprecipitation sequencing  
min Minutes 
miRNA Micro RNA  
ml Mili liter 
mm Mili meter 
MN Motor neuron (s) 
mRNA Messenger RNA  
ms Millisecond 
NGS Next generation sequencing    
PBS Phosphate buffered saline 
PCA Principle component analysis    
PCR Polymerase chain reaction  
QC Quality control  
RNA Ribonucleic acid     
RNA-seq RNA-sequencing      
RPKM Reads per kilobase of transcript per 
RPM Reads per million  
RPM Rotations per minute 
RT Room temperature 
SAM Sequence alignment/map     
SDS Sodium dodecyl sulfate 
T Thymine      
TF Transcription factor     
tSNE t-Distributed Stochastic Neighbor Embedding 
TSS Transcription start site    
u Micro 
ul Micro liter 
vGlut1 Vesicular glutamate transporter 1 
WB Weinmann buffer 
WebGestalt Web-based gene set analysis toolkit  
WT Wild-type      
x g Gravitational acceleration (9.81) 
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Chapter 1.  Introduction  

	
The human body is made up of trillions of the cells. Cells are the basic building blocks of the 

living organisms. Different kinds of cells organize to form various tissues and organs of the body. 

Every cell type in the tissue plays a vital role supporting the tissue’s function and at the higher 

perspective maintains the body functions to attain the living organism properties. A cell type 

could be defined as a group of cells, which perform a similar function in the body (Poulin, 2016). 

Although the function of many cell types in the body is still unknown (for instance, nervous 

system), the experimental approaches for the classification of cells could employ the properties, 

which are easily accessible or measurable. As we know that a cell’s function is deeply connected 

with its molecular composition, categorization of cell type based on their gene expression level 

could be a pragmatic approach (Fishell & Heintz, 2013). 

 

At the cellular level, various genetic and epigenetic factors determine the expression of the genes. 

To study the gene expression, high-throughput next generation sequencing (NGS) technologies 

were developed, which employ methodologies such as messenger-RNA sequencing (mRNA-seq) 

to detect the level of mRNAs in the cells. Other applications of NGS methods are to study the 

role of epigenetic factors in the gene expression. This could be achieved by employing techniques 

such as chromatin immunoprecipitation sequencing (ChIP-seq), which could determine the DNA 

binding sites or genomic locations of epigenetic marks and transcription factors. Similarly, 

methylation DNA immunoprecipitation (MeDIP-seq) detects the presence of methylated cytosine 

in the genomic DNA, which inhibits the transcription of a gene. These methods are widely in use 

and provide massive amounts of data to analyze biological modifications in healthy to diseased 

conditions. For a long time, NGS techniques were relying on the bulk tissue, containing 

thousands or millions of cells, to investigate underlying functional mechanisms. In this approach, 

biomolecules from individual cells are mixed during sample processing steps, and it generates an 

average of gene expression profiles from all the cells in the tissue. However, this is not the 

accurate representation of a biological system. In the biological context, different cell types 

interplay with each other and respond to their environment differently at the molecular level. Cell 

types in the tissue further differ in their functional and cell cycle stages. Therefore, averaging the 
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gene expression levels from all the cells present in the tissue could not provide an accurate 

representation of the internal state of the tissue in a given time. 

 

Furthermore, as bulk tissue contains many different cell types, using a combination of cells in 

study diminishes the chances to detect the subtle changes in the gene expression or epigenetic 

mechanisms in the specialized cells  (such as neurons) during experimental conditions (for 

instance, memory formation, disease progression and so on.). In the clinical settings, it could 

further lead to misdiagnosis of a disease, which occur in specific cell type (for instance Cancer, 

ALS, Alzheimer’s and so on.). Similarly, age-dependent changes in specific cell types in the 

tissue were hard to detect using bulk tissue sequencing techniques. Therefore, this thesis aims to 

implement cell type-specific and single-cell NGS techniques, to delve into various research 

questions described in the following chapters. Nevertheless, to completely understand the 

significance of cell type-specific gene expression mechanisms, it is necessary to understand the 

underlying biological and methodological concepts behind these techniques. Hence, this chapter 

is dedicated to providing biological insights about the molecular mechanisms of the cell as well 

as core concepts, which in turn clarify the need and significance of the cell type-specific NGS 

workflows. 

1.1 DNA structure and gene expression 
 

One of the essential biomolecules, which carry the genetic blueprint of life, inside the nucleus of 

the cell is deoxyribonucleic acid (DNA). It is made up of two polynucleotide chains arranged in a 

double helix form, attached to each other by hydrogen bonds via their nitrogenous bases. Each 

nucleotide unit consists three components: a five-carbon sugar molecule (de-oxy-ribose in DNA), 

a phosphate molecule and one of the four nitrogenous bases, i.e., adenine (A), thymine (T), 

guanine (G) and cytosine (C). To hold the double-stranded DNA structure together, adenine pairs 

with thymine by two hydrogen bonds and guanine pairs with cytosine connected by three 

hydrogen bonds. Every cell of an organism carries an identical copy of the DNA, collectively 

known as the genome. Although, it raises a question that, how different type of cells exists in the 

body having the same genome. In other words, how the static genome creates such variety of 

changes in the cells while responding to the environment and growth of the body. These 
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questions could be answered by understanding the regulation of DNA functional unit (gene) 

expression. 

 

A functional unit of DNA is known as a gene. The human genome consists of approximately 

30,000 genes. Each gene is transcribed and leads to the formation of specific ribonucleic acid 

(RNA) molecule, which is further translated to a corresponding protein molecule. Proteins are the 

complex and extensive molecules that play many critical roles in the cell. Proteins are the actual 

workhorse of the cells and essential for the structure, function, and regulation of the body’s 

tissues and organs. The process, also known as the central dogma, first suggested that gene 

transcribed into RNA and later translation result in a protein. However, later discoveries reveal 

that messenger RNA (mRNA) molecules translated into proteins, while other types of RNA 

molecules, ribosomal RNAs, micro RNAs and other non-coding RNAs, remain in the form of 

RNA and play a role in the regulation of gene expression by interacting with DNA, proteins or 

other RNA molecules. For instance, these non-coding RNA could form an RNA-protein complex 

to regulate gene expression. In general, the number of mRNA molecules, instead of calculating 

protein concentration, produced from a particular gene is used for the determination of expression 

of that gene in a cell. One of the techniques to determine the amount of mRNA in the sample is 

mRNA sequencing (mRNA-seq), which will be described in the later chapters. 

1.1.1 Regulation of gene expression 
 

During the gene expression, DNA transcribes into RNA molecules, some of the RNA (mRNA), 

translate into proteins and performs several biological functions (Gerstein et al., 2007). 

Transcription of a gene is a complex process and involves several factors and regulatory 

mechanisms inside the cell. RNA molecules are single-stranded and consist of the un-methylated 

form of the base thymine called uracil (U) apart from A, G and C bases. To prepare for the RNA 

synthesis, the DNA double helix begins with opening and unwinding of the two strands, and in 

effect, they are exposed to attachment of the gene regulatory factors. In eukaryotes, RNA 

polymerase II (Pol II) binds to the transcription start site (TSS) of protein-coding genes and start 

transcription process. Binding of Pol II to the TSS is mediated by several initiation factors 

(general transcription factors). These general transcription factors such as TFIIB or TFIID 
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(TATA-box binding proteins and other co-factor complexes) recruits RNA polymerase II to the 

transcription start site (Wood, 1996). Apart from general transcription factors, sequence-specific 

transcription factors (TFs) could also regulate transcription of a gene. These transcription factors 

bind to regulatory elements like promoters and enhancers, which contain a short DNA sequence 

(5 to 20 bp), which provide a specific binding site for one or more transcription factors. 

Promoters are present in close proximity to the TSS region and contain TATA-box binding site 

for Pol II, while enhancers could be present within several hundred bases to thousands of bases 

distant from the TSS site of the gene. TFs bind to these regulatory elements in the DNA and 

control the expression of the gene. 

 

After transcription initiation, protein-coding genes are first transcribed into precursor mRNAs 

(pre-mRNAs) inside the nucleus, which are further processed to mature mRNAs and transported 

to the cytoplasm for translation. The process of mature RNA formation consists of three main 

modification steps: 5’ capping, 3’ polyadenylation, and splicing of RNA. 5’ capping is a chemical 

alteration of mRNA molecules in eukaryotes, which stabilize the RNA as well as important for 

the translocation of mRNA to the cytoplasm. In 5’ capping, 7-methyl-guanosine nucleotides were 

added to the 5’ end of the mRNA. On the other hand, 3’ poly-Adenylation is the process to add 

poly (A) tail to the mRNA by adding multiple adenosine monophosphates. The poly (A) tail is 

also crucial for nuclear transport, translation and protection of mRNA from degradation. In the 

end, splicing of pre-mRNA is the process to remove introns (non-protein-coding regions) and 

joining of exons (protein-coding regions), which leads to the formation of mature mRNA. The 

splicing process also leads to different combinations of exons and in turn produces many distinct 

isoforms of a gene.  

1.1.2 Epigenetic regulation of gene expression 
 

Another layer of gene expression regulation is present in the cell through epigenetic mechanisms. 

Epigenetics implies features “on the top” or “in addition to” the genetic basis of inheritance. 

Epigenetic mechanisms regulate gene expression without altering its primary nucleotide 

sequence. Examples of mechanisms that produce such changes are DNA methylation and histone 

posttranslational modifications. 
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In various organisms, DNA contains millions of base pairs in a cell. For instance, the human 

genome contains around 3 billion bps, and with each bp having the length of 340 picometers (3.4 

x 10-10 meters), human DNA spans around 1.2 meters in length in its double-stranded form. On 

the other hand, human cells (on average) range in volume from 30 to 5000 cubic micrometers 

(0.03 – 50 x 10-16 cubic meters) (Milo, Jorgensen, Moran, Weber, & Springer, 2010). The cells 

are too tiny to contain such a long DNA, and it is possible only by folding of the double helical 

structure of the DNA to a higher structure. To do that, proteins, known as “histones” create 

protein complexes and wraps DNA around. In brief, the nucleosome (the basic unit of 

chromatin), which contains eight copies (two copies of each) of the histone proteins H2A, H2B, 

H3, and H4 together form a histone octamer, and about 147 base pairs of DNA wrapped around it 

(Kouzarides, 2007). The histone H1 binds to DNA directly near nucleosomes and allows the next 

higher packing of the DNA. Multiple nucleosomes condense together to form chromatin and 

highly condensed chromatin forms the chromosome, where the multiple chromosomes contain 

the entire genetic material of an organism inside the nucleus of a cell. 

 

Histone post-translational modifications (HPTMs) regulate the gene expression by DNA 

compression and relaxation during various cellular functions as well as development and 

differentiation stages. The HPTMs could determine the chromatin structure, which can be present 

in either condensed heterochromatin form, blocking gene transcription or lightly packed structure 

called euchromatin, which allows the transcription of a gene. To study the location of various 

HPTMs in a cell type during various conditions, ChIP-seq could be utilized, which is further 

discussed in section 3.2.3. The histone proteins can be modified by many different chemical 

groups, which could be added and removed post-translationally; for instance, methylation, 

acetylation, phosphorylation, sumoylation and ubiquitination (Kouzarides, 2007). These HPTMs 

could alter chromatin structure and binding of specific proteins, which can, in turn, influence the 

gene expression. For instance, H3K4me2 and H3K4me3 are present at the euchromatin sites and 

indicate active gene expression (Zentner & Henikoff, 2013). Similarly, histone acetylation 

reduces the positive charges of histone tails and leads to open DNA-histone binding, and thus 

associated with the actively transcribed promoter regions (Fischer et al., 2008). However, other 

histone marks such as H3K9me3 and H3K27me3 indicates the presence of heterochromatin 
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region and silencing of genes (Zentner & Henikoff, 2013). Various enzymes alter these HPTMs. 

For instance, histone acetyltransferases (HATs) and histone methyltransferases (HMTs) add the 

acetyl and methyl groups on the histones, respectively. On the other hand, histone deacetylases 

(HDACs) and histone demethylases (HDMs) remove the acetyl and methyl groups, respectively 

(Legube & Trouche, 2003). 

 

Another well-studied epigenetic regulation of gene expression is DNA methylation. In this 

process, a methyl group is added at the 5’ position of the cytosine nucleotide to modify it to 5-

methylcytosine (m5C). Most of the DNA methylation is present on the CpG islands sites (high 

frequency of Cytosine precedes a Guanine). Although, it can be present at non-CpG sites as well 

(Smith & Meissner, 2013). DNA methylation is generally associated with gene expression 

silencing (Illingworth & Bird, 2009). Interestingly, CpG islands are present in more than 50% of 

gene promoter sites in humans (Smith & Meissner, 2013). In general, housekeeping and 

development-associated genes are hypo-methylated in their promoter regions (Smith & Meissner, 

2013). The DNA methylation process is carried out by DNA methyltransferases (DNMTs). 

Mainly DNMT1, DNMT3a and DNMT3b function to methylate DNA as well as its maintenance 

(Smith & Meissner, 2013). Apart from HPTMs and DNA methylation, several other epigenetic 

factors such as non-coding RNA, transcription factors, chromatin remodeling complexes, and 

others, also play an essential role in the regulation of gene expression. 
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1.2 Aim of the thesis 
 

The primary aim of this thesis is to characterize cell type-specific functional responses of central 

nervous system (CNS) cells in health and disease, using various NGS techniques. With this in 

mind, different chapters of this thesis deal with particular aspects of it, as described below. 

 

Chapter 3. DNA methylation changes in plasticity genes accompany the formation and 

maintenance of memory.  

Here we investigated chromatin modifications during the learning and memory, using cell type-

specific technique BiTS coupled ChIP-seq and MeDIP-seq. This chapter is already published 

(Halder et al., 2015). 

 

Chapter 4. Cell type-specific molecular analysis using the Tagger system. 

The Tagger system is developed to obtain cell type-specific mRNA, miRNA, TU-tagged RNA as 

well as cell nuclear materials. A manuscript is under preparation describing this chapter in detail. 

 

Chapter 5.  Investigating motor neuron subpopulations and EPO-mediated hippocampal changes 

using single-cell transcriptomics.  

Here we have studied transcriptomics of spinal cord cell types with the single-cell resolution 

using the Drop-seq method. Another part is dedicated to erythropoietin (EPO) mediated 

molecular mechanisms that are associated with a ~20% increase in the pyramidal neurons and 

oligodendrocytes. This study will also be a part of a manuscript for publication. 
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Chapter 2.  Materials 

2.1 Buffers and solutions 
	
Low sucrose buffer 
 

0.32 M Sucrose 
10 mM HEPES pH 8.0 
3 mM Mg(CH3COO)2 
0.1 mM EDTA 
0.1% Triton X-100 
1 mM DTT 

 
Sucrose cushion 
 

10mM HEPES pH 8 
1M sucrose 
3mM Mg(CH3COO)2 
1mM DTT 
6 ml cushion for 1.5 ml lysate 

 
RIPA buffer 
 

10 mM Tris-Cl, pH 8.0 
140 mM NaCl 
1 mM EDTA 
1% Triton X-100 
0.1% sodium deoxycholate 
1% SDS 
Roche Complete protease inhibitors 

 
IP Buffer (ChIP) 
 

50 mM Tris-HCl 
150 mM NaCl 
1% NP-40 
0.5% sodium deoxycholate 
20 mM EDTA 

 
Wash buffer (ChIP) 
 
 20 mM EDTA, pH 8.0 
 100 mM Tris, pH 8.0 
 1% NP-40 
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 1% Na deoxycholate 
 500 mM LiCl 
 Dissolve in water 
 
Lysis buffer (MeDIP) 
 

10 mM Tris-Cl pH 7.5 
10 mM NaCl 
2 mM EDTA 
0.5% SDS 
100ug ProteinaseK 

 
E3 Media 
 

5 mM Nacl 
0.17 mM KCl 
0.33 mM Cacl2 
0.33 mM MgSo4 

  
TX Buffer 
 

50 mM Tris-HCl pH 7.4 
150 mM NaCl 
1mM EDTA 
1% Nonidet P40 
0.05% SDS 

 
Weinmann Buffer (2X) 
 
 100 mM Tris, pH 8 
 20 mM EDTA, pH 8 
 10% SDS 
 
Reverse transcription (RT-mix) solution (Drop-seq) 
 

Reagent Amount (in ul) 
H2O 75 
Maxima 5x RT buffer 40 
20 % Ficoll PM-400 40 
10 mM dNTPs (Clontech) 20 
RNase inhibitor (Lucigen) 5 
50 uM Template switch oligo (TSO) 10 
Maxima H- RTase 10 
Total 200 
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Lysis buffer (Drop-seq) 
  

Reagent Amount (in ul) 
H2O 500 
20% Ficoll PM-400 (GE Healthcare) 300 
20% Sarkosyl (Sigma #L7414) 10 
0.5 M EDTA (Life Technologies) 40 
2 M Tris pH 7.5 (Sigma) 100 
1 M DTT 50 
Total 1000 

 
 
TS-SDS solution 
  
 10 mM Tris pH 8.0 
 1 mM EDTA 
 0.5% SDS 
 
TE-TW solution 
 
 10 mM Tris pH 8.0 
 1 mM EDTA 
 0.01% Tween-20 
 
PBST  
 

0.1% Tween20 in PBS 
 
EB buffer 
 

1mM Tris pH 8 

2.2 Reagents and kits  
	

Reagent Company #order number 
0.5 M EDTA, pH 8.5  ThermoFisher Scientific 
1 M Tris-HCl, pH 8.0  Sigma 
2 M Tris-HCl, pH 7.5  Sigma 
2X Kapa HiFi HotStart ReadyMix, 1.25 mL  Kapa Biosystems #KK2601 
Advantage® UltraPure PCR Deoxynucleotide 
Mix ,10 mM  

Clontech #639125 

AMPure XP Beads  Beckman Coulter #A63880 
Barcoded Bead SeqB  Chemgenes 
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Bolt Bis-Tris 12% gel  Novex, Life technologies 
BSA, Fraction V, 7.5% solution  ThermoFisher Scientific #15260-037 
DTT, 1M in H2O  Sigma 
Exonuclease I, 20 U/uL  ThermoFisher Scientific #EN0581 
Ficoll PM-400  GE Healthcare Life Sciences #F4375-

100G 
Formaldehyde  Sigma-Aldrich F1635 
Maxima RT H minus Reverse Transcriptase, 
200 U/uL  

ThermoFisher Scientific #EP0751 

Nextera DNA sample preparation kit, 24 
samples  

Illumina #FC-121-1030 

Nextera XT DNA library preparation kit  Illumina #FC-131-1096 
Nextera XT index kit v2 set A  Illumina #FC-131-2001 
Nitrocellulose membrane  GE Healthcare 
Nitrocellulose membrane  GE Healthcare 
NxGen® RNAse Inhibitor  Lucigen #30281-1 
Perfluorooctanol (PFO), 97%  Sigma #370533-5G 
Qubit dsDNA HS assay kit  Life technology 
Qubit dsDNA HS assay kit  Life technology 
QX200 Droplet generation oil  Bio-Rad #186-4006 
Sarkosyl, sodium salt solution  Sigma #L7414-50ML 
SSC, 20X  Sigma #S6639 
Transcriptor first strand cDNA synthesis kit  Roche 

2.3 Primers 
 

Primer Sequence 

Template Switch Oligo AAGCAGTGGTATCAACGCAGAGTGAATrGrGrG 

SMART PCR primer AAGCAGTGGTATCAACGCAGAGT 

New-P5-SMART PCR 

hybrid oligo 

AATGATACGGCGACCACCGAGATCTACACGC 

CTGTCCGCGGAAGCAGTGGTATCAACGCAGAGT*A*C 

Custom Read-1 Primer GCCTGTCCGCGGAAGCAGTGGTATCAACGCAGAGTAC 

MeDIP (+) Forward TCTCCTTGCGGCATCTCTTA 

MeDIP (+) Reverse GGCGGTAAAGGGTGCTACTA 

MeDIP (-) Forward CTGGCACTGCACAAGAAGAT 

MeDIP (-) Reverse CACCATCCGGGTTCCTATAA 
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2.4 Instruments 
 

Instrument Company #order number 
Agilant 2100 Bioanalyzer  Agilent technologies 
Odyssey CLX imaging system  LI-COR 
Bioruptor plus  Diagenode 
Western blot gel running apparatus  Novex, Life technologies 
BD FACS Aria III  BD Biosciences 
Syringe pump, Legato 100  KD Scientific #788100 
Magnetic Mixing system  VP Scientific #710D2 
Mixing Disc  VP Scientific # 772DP-N42-5-2 
Stand  VP Scientific #710D2-4 
Needles 26G  BD Biosciences 
Drop-seq microfluidic device  FlowJem 
100 um, 70 um and 40 um cell strainer, 
Nylon, sterile  

BD Biosciences 

Fuchs-Rosenthal Hemocytometer  Incyto #DHC-F01 
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Chapter 3.  DNA methylation changes in plasticity genes 

accompany the formation and maintenance of memory 

 

3.1 Overview 
 

The ability to learn and forming memory is vital for many organisms, in order to adapt and to 

cope with their environments. On a cellular level, these environmental factors stimulate a series 

of structural and functional changes in the nervous system cells, which leads to the formation and 

maintenance of memory. This event is also known as synaptic plasticity and could lead to change 

a neuronal cell response to its surroundings (Guzman-Karlsson, Meadows, Gavin, Hablitz, & 

David Sweatt, 2014). At the molecular level, learning and memory-related structural and 

functional changes are associated with learning-related genes such as Reelin, Bdnf, and 

Calcineurin and others (Zovkic, Guzman-Karlsson, & Sweatt, 2013). Although these genes are 

regulated at the transcriptional and translational levels, evidence suggests that epigenetic 

regulations also play a vital role in the expression of these genes (Lopez-Atalaya & Barco, 2014; 

Sweatt, 2013; Zovkic et al., 2013). Here we investigated the spatio-temporal changes in 

chromatin modification and their effects on the expression of learning and memory-related genes. 

The author was mainly involved in designing and performing validation studies for the results 

from the ChIP-Seq and MeDIP-seq experiments described in this chapter. This study is already 

published (Halder et al., 2015) but the results presented in this chapter are only those which are 

either directly obtained by myself or are necessary to explain the rationale behind my findings. 

All other details could be found in (Halder et al., 2015).  

 

In this study, a learning paradigm known as contextual fear conditioning (CFC) was applied to 

wild-type three months old C56BL/6 (C56 black 6) male mice. Although, animals were not used 

for the test phase after the CFC training. In the CFC training session, animals were divided into 

two groups. One group was kept in a new cage for 180 Sec, which we refer to as context (C) 

group. Another group was kept in a new cage at the same time, however, last 2 Sec, a mild foot 
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shock of 0.7 mA was given, and refer them as Context-shock (CS) group. After training, the 

animals were returned to home cages. The third group of animals without CFC training were 

categorized as naive (N) controls. Furthermore, these three groups of animals were divided into 

sub-groups to do time point experiments. First groups of context and context-shock animals were 

sacrificed after 1 hour of the training. The second group of context and context-shock animals 

were home caged for four weeks and sacrificed afterward. An extra third group of context and 

context-shock mice was trained and tested after four weeks to confirm memory retrieval. All of 

the animal experiments were performed under the animal protection law and were approved by 

the District Government of Niedersachsen (Lower Saxony), Germany. 

 

To identify cell type-specific (neuron and glia) epigenetic changes, which possibly associated 

with short and long-term memory formation and maintenance, BiTS (batch isolation of tissue-

specific chromatin) -ChIP and -MeDIP was done after the behavioral experiments. Isolation of 

tissue was done as described in the method section (3.2.1) (Bonn, Zinzen, Perez-Gonzalez, et al., 

2012). In this study, contextual fear conditioning (CFC) paradigm was used as a learning method 

because of its robustness and other known applications (Fanselow, 1990). The brain regions, 

hippocampal CA1 (Cornu Ammonis-1) involve in short-term memory; and ACC (anterior 

cingulate cortex) involve in associative memory acquisition and maintenance (Einarsson & 

Nader, 2012; J. Kim & Fanselow, 1992; Runyan, 2004). To further investigate memory formation 

molecular mechanisms during CFC, these brain regions were analyzed for the epigenetic 

changes. NeuN (+) neuronal and NeuN (-) non-neuronal nuclei were sorted using the 

fluorescence activated cell sorter (FACS) to generate cell type-specific samples. The overall 

experimental design is depicted in (Figure	3.1).  

 

Cell type-specific nuclei samples were used for chromatin immunoprecipitation and sequencing 

(ChIP-seq) as well as methylated DNA immunoprecipitation and sequencing (MeDIP-seq) 

studies. The chromatin modifications, which were used in this study, are well characterized in 

previous studies (see Table	 3.1). In brief, activity related histone marks (H3K4me3, H3K9ac, 

H3K27ac, and H3K79me3) are well correlated with active genes; H3K4me1 and H3K27ac are 

located on active enhancers; H3K27me3 and DNA methylation are linked to gene repression 

(Barski et al., 2007; Bonn, Zinzen, Girardot, et al., 2012; Zhou, Goren, & Bernstein, 2011). 
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Figure 3.1: Experimental procedure.  

The experimental design is depicted to explain the workflow to obtain cell 
type-specific (neuronal and non-neuronal) epigenetic data. This figure was 
initially been taken from (Halder et al., 2015) and modified to present in this 
thesis. 
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3.2 Methods 
 

After the behavioral experiments and separating the animals into various combination of learning 

paradigm (N, C and CS), time-point (1 hour and 4 weeks), and cell type (NeuN+ and NeuN-), 

following histone modification (H3, H3K27ac, H3K27me3, H3K4me3, H3K79me3, and 

H3K4me1) and DNA methylation (MeDIP) experiments were done. 

3.2.1 Tissue collection from mice after fear conditioning   
 

Mice were sacrificed using the cervical dislocation method, and full brain was isolated in the 

chilled medium containing DPBS and EDTA-free protease inhibitor cocktail. From the brain, 

CA1 and ACC regions were dissected and stored in -80oC after being snap frozen in liquid 

nitrogen. For cell type-specific ChIP-seq and MeDIP-seq experiments, tissues from 20 mice were 

pooled for each replicate. In total, each treatment group was done on at least two replicates. Cell 

type-specific chromatin was extracted using the BiTS protocol for mouse brain tissue (Bonn, 

Zinzen, Girardot, et al., 2012)(Bonn, Zinzen, Perez-Gonzalez, et al., 2012). NeuN marker was 

used to differentiate between neuronal (NeuN +) and non-neuronal (NeuN-) cell types.  

3.2.2 FACS sorting of cell type-specific nuclei 
 

For nuclei FACS sorting, the detailed protocol could be found in the publication (Halder et al., 

2015). In brief, Mice brain regions from 5 mice were taken out from -80oC freezer and 

homogenized using a micropestle in 500 ul of low sucrose buffer and cross-linked with 1% 

formaldehyde (Sigma) for 5 minutes at room temperature. After the incubation, 125 mM glycine 

was added and incubated for 5 minutes to quench the reaction. The nuclei were centrifuged, and 

the supernatant was removed. Nuclei were resuspended in 3 ml of low sucrose buffer (with 

protease inhibitors), and the solution was homogenized. Nuclei were passed through a sucrose 

cushion using centrifugation (3200g for 10 minutes) in Oak Ridge centrifuge tubes. Purified 

nuclei were resuspended in PBS and filtered through a 70um filter to remove clumps. The nuclei 

were stained using anti-NeuN mouse antibody (Millipore mab377) diluted 1:500 in PBST with 

5% BSA and 3% goat serum. The nuclei were incubated for 30 minutes at 4oC; washed four 

times with PBST and incubated with secondary antibody anti-mouse Alexa 488 diluted (1:1000 



 35 

in PBS) for 15 minutes. The nuclei were washed with PBST and stored in PBST with 5% BSA 

until the sorting. Before FACS sorting, nuclei were passed through a 26G needle (10 times) to 

dissociate the nuclei aggregates and filtered with 70 um pore size filter (BD Biosciences). Sorting 

was done on a FACSAria II (BD Biosciences), and sorted nuclei were collected into chilled 

conical tubes containing 1 ml of 5% BSA in PBS (Halder et al., 2015). On the basis of size and 

density of unstained nuclei, gate setting was determined for FACS sorting. NeuN positive and 

NeuN negative both fractions were collected in separate tubes. This method has yielded cell type-

specific nuclei with high purity (>95%). NeuN positive fraction was containing primary 

excitatory neurons and interneurons while NeuN negative fraction had glial cells along with other 

non-neuronal cells (Halder et al., 2015).  

3.2.3 Chromatin immunoprecipitation and sequencing (ChIP-seq) 
 

ChIP protocol was optimized for low chromatin (0.5 to 1ug) input samples as described in the 

publication (Halder et al., 2015). ChIP-grade antibodies were used for this purpose, which was 

previously validated according to the Antibody Validation Database (Egelhofer et al., 2011). 

ChIP-seq experiments were only performed for 1-hour time point in CA1 (cellular consolidation) 

using detailed methods described in (Halder et al., 2015). In brief, FACS sorted nuclei were 

centrifuged at 3200g for 15 minutes, the supernatant was removed, and nuclei were resuspended 

in RIPA buffer. Nuclei were transferred into a fresh Diagenode tube and samples were sheared in 

a Diagenode Bioruptor plus apparatus. 4 times 5 cycles were run with 30 Sec ON/OFF setting 

with high power. Samples were centrifuged in between after every 5 cycles. The sheared 

chromatin was centrifuged, and the supernatant was aliquoted in the DNA low binding tubes 

(Eppendorf). Chromatin was stored in -80oC after liquid nitrogen snap freezing. 

 

DNA was isolated from an aliquot of chromatin using the SureClean method. In brief, 10 ul of 

chromatin was added in 20 ul of EB buffer. In the tube, 1 ul of RNase A (50 ng/ul) was added, 

and the solution was incubated for 30 minutes at 37oC. After the incubation, 1 ul of proteinase K 

(20 mg/ml) was added and incubated at 65oC for 2 hours with 800 RPM shaking. 3 ul of the co-

precipitant (LPA 5 mg/ml) and 1 volume of SureClean was added. The solution was vortexed and 

incubated at room temperature for 10 minutes. Tubes were centrifuged at 15000g for 20 minutes 
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at room temperature, and the supernatant was removed. The pellet was dried, resuspended in 15 

ul EB buffer and DNA content was measured using Qubit dsDNA HS assay kit. The size of the 

DNA fragments was also checked on an Agilent 2100 bioanalyzer using a DNA high sensitivity 

bioanalyzer chip. This shearing process should produce an average size of 300bp. If shearing was 

not good, samples were sonicated for more cycles and process was repeated. 

 

The chromatin samples were diluted in IP buffer (10 times) including Roche Complete protease 

inhibitors, and chromatin was pre-cleared using BSA blocked protein A magnetic beads 

(Dynabeads from Invitrogen). The solution was incubated for 1 hour at 4oC. After incubation, 

tubes were kept on a magnetic rack and supernatant was taken. Chromatin was split into aliquots 

for using them in different immunoprecipitation (IP) assay. One tube with 10% Input (10% of 

one IP) was also aliquoted. To prepare BSA blocked protein-A magnetic beads, required volume 

of beads were calculated (based on samples), and taken into a 1.5 ml Vial and kept on a magnetic 

rack. The supernatant was removed, and beads were washed with 1 ml IP buffer. After that, beads 

were incubated with a solution containing 1 ml IP buffer and 0.5% BSA for 2 hours at 4oC. Beads 

were rewashed two times with the IP buffer and resuspended in the same volume of IP buffer as 

the starting volume. BSA blocked beads could be stored at 4oC for 2-3 days. 

 

The amount of chromatin was optimized for the immunoprecipitation assay with the different 

ChIP-grade antibodies as described in (Table	 3.2) below and incubated on a rotating wheel at 

4oC for overnight. 

 

Ab specificity Ab ID Input 

chromatin/DNA 

[µg] 

Ab [µg] per IP DNA recovery 

[ng] 

H3 Abcam  ab1791 0.1 0.5 6 – 15 

H3K4me1 Abcam ab8895  0.5 0.5 3 – 10 

H3K4me3 Abcam ab8580 1 1 1 – 5 

H3K27ac Abcam ab4729 0.5 0.5 2 – 8 

H3K9ac Millipore 07-352 0.5 1 (µL) 1.5 – 3 

H3K79me3 Abcam ab2621 0.5 0.5 2 – 5 
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H3K27me3 Millipore 

CS200603 

0.5 0,25 (µL) 2 – 5 

Table 3.1 Antibody concentrations. 

Details of the amount of chromatin and antibodies required for ChIP assays, adapted 
from (Halder et al., 2015). 

 

After the overnight incubation, 15 ul of BSA blocked protein-A magnetic beads were added to 

each sample, and the tubes were incubated on a wheel for 2 hours at 4oC. The beads were washed 

two times with 200 ul cold IP buffer with 0.1% SDS and three times with 200 ul cold wash 

buffer. For the last two washes, samples were incubated 10 minutes on a rotator at 4oC. Beads 

were again washed twice with 200 ul cold IP buffer and twice with 200 ul cold TE (without any 

protease inhibitors). After the last washing step, the supernatant was removed, and the beads were 

incubated in EB buffer (1mM Tris pH 8) with the RNase A solution (0.1 ug/ul) for 30 minutes at 

37oC. The RNase A treatment was also done on the Input sample that was saved in the previous 

step. To perform the de-crosslinking, the beads and the input samples were added with 2X 

Weinmann buffer (WB) without inhibitors and tubes were incubated in the presence of 1 ul 

proteinase K (0.5 ug/ul) and 1% SDS at 65oC for overnight shaking (800 RPM). Tubes were kept 

on the magnetic rack, and the supernatant was transferred to a fresh DNA low binding tube 

(Eppendorf). To increase the yield, the beads were washed one more time using EB and tubes 

were incubated for 10 minutes at 65oC with 800 RPM rotation. The supernatant was added again 

to the previous DNA low binding tube. The DNA was isolated using SureClean precipitation 

method as described earlier in the presence of LPA (linear acrylamide). The DNA pellet was 

washed two times using 70% ethanol. All the ethanol was removed by drying and using speedvac 

for 3 minutes at room temperature. The DNA was resuspended in EB (Tris 10 mM, pH 8) and the 

concentration was determined using Qubit dsDNA HS assay. The immunoprecipitation efficiency 

was also validated using qPCR with positive and negative regions.  

 

Library preparation condition was optimized for a low amount (0.5 ng) of input materials to 

generate reliable and quantifiable libraries, as published in (Halder et al., 2015). The Diagenode 

MicroPlex kit or NEBNext Ultra DNA library preparation kit for Illumina (NEB) was used for 

this purpose. After template preparation and adapter ligation, the number of amplification cycles 
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was determined using a qPCR on a small amount of IP material to avoid over-amplification. 

After the library amplification PCR, libraries were purified using the SureClean method as 

described earlier. After ethanol wash and drying, the pellet was resuspended in 10 mM Tris pH 8. 

ChIP libraries were validated by qPCR assay and concentration was measured by a Qubit dsDNA 

HS assay kit. The library size was determined by a DNA High sensitivity bioanalyzer assay using 

the manufacturer’s protocol, and the library was adjusted to 2 nM concentration for the 

sequencing on a Hiseq 2000 (Illumina) according to the manufacturer’s protocol. 

3.2.4 Methylated DNA immunoprecipitation and sequencing (MeDIP-seq) 
 

The MeDIP protocol was optimized for the reliable enrichment of methylated regions with as 

little as 0.1 ug of DNA material as described in (Halder et al., 2015). NeuN positive and NeuN 

negative FACS sorted nuclei were centrifuged at 3200g for 15 minutes at 4oC. The supernatant 

was removed, and nuclei were resuspended in 200 ul of lysis buffer and incubated at 65oC for 

overnight. Genomic DNA was isolated using the Phenol-chloroform method. Using 0.3 M 

sodium acetate pH 5.2 and 400 ul of 100% ethanol DNA was precipitated. Samples were 

centrifuged at 20,000g for 20 minutes at room temperature, and the pellet was washed with 70% 

ethanol. After air-drying, DNA was resuspended in 100 ul TE buffer with 20 ug/ml RNase A and 

incubated at 37oC for 30 minutes and subsequently at 65oC for 1 hour. Shearing of the genomic 

DNA was done in an NGS Bioruptor  (Diagenode) for 10 cycles (30 sec ON, 30 sec OFF). 

Samples were centrifuged after 5 cycles of shearing. DNA size was analyzed using the 

Bioanalyzer DNA high sensitivity ChIP. DNA average size of 250-350 bp was achieved, and 700 

ng of sheared DNA was used for the further MeDIP procedure. 

 

The methylated DNA IP was done following the same procedure described later (section 4.2.1.4 ) 

in this thesis with some modification. In Brief, the DNA was end-repaired and A-tailing was done 

using the kit NEBNext ChIP-seq library preparation master mix (NEB-E6240 kit) according to 

the manufacturer’s instruction. Custom synthesized paired-end sequencing adapters for Illumina 

(Sigma-Aldrich) were ligated using the NEB kit. 100 ng of the adapter ligated genomic DNA was 

used for MeDIP using an antibody anti-5-methylcytosine (5mC) as described earlier (Proudhon et 

al., 2012). MeDIP efficiency was checked by qPCR using the primers listed in section 2.3. 
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Samples were also checked for optimum PCR amplification cycles by qPCR assay following the 

same method as described in section xx. MeDIP libraries were prepared using the PCR 

amplification of MeDIP and input samples following the NEB E6240 kit protocol (9 ul DNA 

sample, 0.4 ul custom TruSeq PCR primer with Index sequence, 9.4 ul 2X Phusion High fidelity 

PCR master mix). The libraries were further purified using AMPure XP beads and resuspended in 

EB buffer. MeDIP libraries were quantified using Qubit dsDNA HS assay, and size analysis was 

done using DNA high sensitivity bioanalyzer method. Libraries were diluted to 2 nM for the 

sequencing in Hiseq 2000 machine. 

3.2.5 CRMs validation in a zebrafish model 
 

Biological validation has been done for the predicted Cis-regulatory modules (CRMs) described 

in (Halder et al., 2015) using the Zebrafish Enhancer Detector (ZED) vector system (Bessa et al., 

2009). For this experiment, the wild-type strain of zebrafish (AB) was used. All the embryos 

were kept at the 28.5oC in E3 media along with 10-5 % methylene blue and prepared according to 

(Kimmel, Ballard, Kimmel, Ullmann, & Schilling, 1995). These experiments were performed in 

Biomedical Center, Ludwig Maximilians University Munich, and accordance with animal 

protection standards of LMU and were approved by the government of Upper Bavaria (Regierung 

von Oberbayern, Munich, Germany). 

 

From the 60,544 predicted enhancer regions, 30 sequences were chosen randomly for the 

validation assay (15 for CA1 and 15 for ACC). Based on the conserved regions between mouse 

and zebrafish 300 bp regions were selected. These enhancer sequences were synthesized and 

flanked by attL sites and cloned into the pMK-RQ vector from GeneArt (Halder et al., 2015). By 

employing LR clonase system (Gateway) enhancer sequences were cloned into the ZED vector, 

which had attR sites before the gata2a promoter sequence responsible for expression of GFP 

(Bessa et al., 2009). By checking loss of BglII site by digestion, integration of the enhancer 

sequence was confirmed. 

 

The ZED vectors with the enhancer sequence for validation were injected in the zebrafish at the 

one cell stage with the concentration of 25 ng/ul plasmid (2-4 pl/cell). Eggs with plasmid and 
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controls were incubated at 28oC in E3 buffer before analysis. The zebrafish larvae (male and 

female) were checked for transient expression by dsRed reporter (somites) and cloned enhancer 

driven GFP expression after 2 and five days of fertilization (Halder et al., 2015). Using Tricaine 

(0.016% w/v) larvae were anesthetized and mounted on coverslips using 3% methylcellulose. 

Samples were analyzed using LSM710 META inverted confocal microscope (Zeiss), and 

fluorescent images were visualized in Photoshop 8.0 (Adobe Systems) as described in (Halder et 

al., 2015). Injected enhancer element from neuronal shaped and GFP expressing cells, which 

were present in the central nervous system were assigned as a neuronal enhancer. Further, the 

enhancer element which was expressing GFP in non-neuronal cells (in at least 20 injected 

embryos) were described as a non-neuronal enhancer. 

3.2.6 Chromatin immunoblotting 
 

To detect the global changes for the 6 HPTMs investigated in this study, immunoblotting was 

done on a whole CA1 region as well as using cell type-specific chromatin. For isolating CA1 

regions, five mice per biological condition (Naive, Context and Context-shock in the CA1 at 1 

hour) three months old C56BL/6 male mice were used. For the immunoblotting analysis of cell 

type-specific chromatin, the material was used from the above mentioned 20 mice pooling for 

each replicate (Halder et al., 2015). The CA1 and ACC regions of the mouse brain were 

processed for the nuclear protein enrichment. In brief, tissues were homogenized in 200 ul TX 

buffer and protease inhibitor using a micro-pestle. Samples were incubated on a rotating wheel 

for 10 minutes and centrifuged for 10 minutes at 400g. The supernatant was discarded, and the 

pellet was washed once with TX buffer in the presence of protease inhibitors. Samples were lysed 

in TX buffer with 1% SDS by 5 minutes incubation on a rotating wheel. The samples were then 

sheared in a Bioruptor (Diagenode) for 3 times 5 cycles (30 Sec ON/OFF). Samples were 

centrifuged for 10 minutes at 9300g and the supernatant, which contains enriched nuclear 

proteins, was collected. The Pierce BCA Protein assay kit was used to measure the protein 

concentration following the manufacturer’s instruction in a clear bottom 96 well micro-plate. 

Absorbance was measured using the TECAN plate reader at 562 nm wavelength. After 

normalizing the samples for western blot studies, samples were denatured by incubating at 95oC 

for 5 minutes. 4 ug of proteins were used to run in a 12% Bolt Bis-Tris pre-casted gel, in reducing 
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conditions maintained by MES-SDS buffer. Samples were running for 25 minutes at 200V in 

western blot assembly. After that, proteins were transferred to nitrocellulose membrane (0.2 um 

pore size) in cold transfer assembly running for 90 minutes at 50V in cold 1X Tris-glycine 

transfer buffer with 20% methanol (Halder et al., 2015). The nitrocellulose membrane was 

incubated in the TBST buffer (TBS with 0.1% Tween 20) with 5% BSA for 1 hour at the room 

temperature for blocking the membrane. Protein containing membranes were incubated with 

primary antibodies (as described in the table below) overnight at 4oC. 

 

Chromatin marks Antibody Dilutions 

H4 Abcam ab31830 1/5000 

H3 Abcam ab1791 1/10000 

H3K4me3 Abcam ab8580 1/1000 

H3K27ac Abcam 4729 1/1000 

H3K9ac Millipore 07-352 1/1000 

H4K12ac Millipore 07-595 1/1000 

H4K5ac Millipore 07-327 1/1000 

H3K27me3 Abcam ab6002 1/1000 

Table 3.2: Antibody dilutions 

 
After the overnight incubation, the membranes were washed three times in TBST buffer and 

incubated with the secondary antibody (IRDyeR, LI-COR with 1/10000 dilution) for 1 hour at 

room temperature (Halder et al., 2015). The membranes were washed in TBST buffer three times, 

and imaging was done using an Odyssey CLX imaging system. Images were taken with ‘high 

quality’ settings with the resolution of 84 um in 700 nm, and 800 nm channels and the image 

processing and signal quantification was done using Image Studio software from LI-COR 

(Halder et al., 2015). Using similar methods, immunoblotting studies were done using sheared 

chromatin from BITS applied, and FACS sorted nuclei as described in the previous section. The 

chromatin was diluted in RIPA buffer with 0.1% SDS and samples were denatured for 10 

minutes at 99oC (Halder et al., 2015). Samples were mixed with loading buffer, and further 

western blotting was done similarly as described for the nuclear protein lysate using 100 ng of 

chromatin per well (Halder et al., 2015). 
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3.2.7 ChIP-, MeDIP-seq data analysis 
 

Detailed computational analysis methods could be found in the publication (Halder et al., 2015). 

Following sections, describe the analysis workflows, which were relevant to this thesis. 

3.2.7.1  Pre-processing and quality control of sequencing data 

The data from the ChIP-seq and MeDIP-seq studies were processed through a quality control 

workflow. Read quality was analyzed using the FastQC package (v0.10.1) to assess sequencing 

cycles with low coverage, contaminations such as adapter sequences or repetitive sequences from 

PCR artifacts and so on (Andrews, 2010).  Alignment quality was checked using samtools 

flagstat (v0.1.18) with default parameters (Li et al., 2009). Data quality was also visualized using 

an in-house developed genome browser at https://oasis.dzne.de/share/JBrowse-1.11.4/index.html 

(Halder et al., 2015). Samples were also checked for optimum depth of sequencing by checking 

for average per base coverage and the saturation correlation for all the samples by employing 

MEDIPS R package (Lienhard, Grimm, Morkel, Herwig, & Chavez, 2014). The biological 

correlation between replicates was analyzed using Pearson correlation (function 

MEDIPS.correlation). The samples were plotted in respect to the variance accounted for the first 

two principal components (PCs) to make sure that samples cluster according to their 

corresponding biological groups (brain region, cell type and chromatin modification). For ChIP-

seq data, peak enrichment was analyzed by calculating normalized strand cross-correlation 

(NSC), and relative strand cross-correlation (RSC) coefficients using the in-house developed R 

package ‘chequeR’ (Halder et al., 2015). Good libraries have an NSC score >1.05 and an RSC 

score > 0.8. The data samples, which passed the quality control parameters were further used for 

downstream analysis (Halder et al., 2015). 

3.2.7.2  Read alignment 

The reads from ChIP-seq experiments were aligned to the mouse NCBI genome (v38) using 

Bowtie2 (v2.0.2) (Langmead & Salzberg, 2012). Reads were first aligned by default parameters 

using seed alignment with two mismatches allowed (Halder et al., 2015). For true multi-map 

reads, which were aligned to multiple regions with the same score, only a single alignment was 

returned (Halder et al., 2015). The resultant Sequence Alignment/Map (SAM) files were 

converted into sorted Binary Alignment/Map (BAM) files by samtools functionalities (Li et al., 
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2009). Furthermore, reads were filtered either to high quality uniquely, and multi-mapped reads 

or to good quality uniquely mapped reads by using bowtie2 MAPQ scores. This step had 

removed all the reads, which were aligned to multiple genomic locations with the same score 

(Langmead & Salzberg, 2012). 

 

The MeDIP-seq data was also aligned to the mouse genome NCBI (v38) using Bowtie2 (v2.0.2) 

(Langmead & Salzberg, 2012). Same as ChIP data workflow, reads were first aligned using 

default parameters and using seed alignment with two mismatches allowed (Halder et al., 2015). 

Bowtie2 first looks for end-to-end 0-mismatch alignments and end-to-end 1-mismatch alignment. 

Later, it performs a seed based 2-mismatch alignment (Halder et al., 2015). The resultant SAM 

files were converted into BAM files using the samtools (Li et al., 2009). Furthermore, reads after 

the alignment was filtered for high quality unique and multi-mapped reads using MAPQ score 

(Halder et al., 2015). 

 

The BAM files were converted into WIG and BigWig file formats to data visualization purpose 

using MEDIPS R package function (MEDIPS.exportWIG) with the 50bp window size and RPM 

normalization (Halder et al., 2015). The BigWig files were also uploaded to the in-house 

developed custom browser at https://oasis.dzne.de/share/JBrowse-1.11.4/index.html (Halder et 

al., 2015). 

3.2.8 Cell type-specific gene list 
 

To analyze the cell type-specificity of the ChIP-seq and MeDIP-seq data, neuronal and non-

neuron-specific genes were manually searched and categorized using publically available datasets 

(Cahoy et al., 2008; Ko et al., 2013). Cell type-specific genes were further used in the analysis of 

aggregate gene plots, precision and recall calculations and genome-wide prediction of cell type-

specific gene lists (Halder et al., 2015). 

3.2.9 Prediction of Cis-regulatory modules (CRMs) 
 

Cell type-specific active CRMs the were identified by employing a modified random forest 

classifier (RFECS) along with ChIP-seq data from Naive mouse group (Rajagopal et al., 2013). 
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The RFECS uses a supervised machine learning technique, which needs a training dataset to 

identify parameters for use in the test datasets. The RFECS training dataset was built from a 

published primary neuronal cell culture study (T. K. Kim et al., 2010; Lienhard et al., 2014). 

From this study, transcription factors (CREB, CBP, and Npas4), and chromatin marks 

(H3K4me1, H3K4me3, H3K27ac, and H3K27me3) NGS data was acquired (Halder et al., 2015). 

To create a positive CRM set, genomic regions of the mouse were selected which were occupied 

by at least one transcription factor (Npas4, CBP or CREB) and should contain a chromatin mark 

peak either from H3K27ac or H3K4me1 (Halder et al., 2015). In detail, transcription factor 

binding sites were downloaded in bed format using the UCSC LiftOver tool 

(https://genome.ucsc.edu/cgi-bin/hgLiftOver) and converted into mm10 coordinates. Chromatin 

modification peaks were obtained by using MACS2 for H3K27ac and H3K4me1 and extended by 

1000 bases in each direction (Halder et al., 2015). For creating a negative set of CRM genomic 

locations, H3K4me3 peaks (active promoters) and known transcription start sites (TSS +/- 

500bp) were combined. From these regions, transcription factor binding sites were removed, and 

the final negative CRMs were selected randomly from 10% of the promoter regions and 

remaining random regions as described in (Halder et al., 2015). 

 

The RFACS was trained with positive and negative CRM datasets and with neuronal histone data 

from the naive mice ACC brain region (Halder et al., 2015). For this analysis, a window size of 

2000 bases was used to generate a prediction model containing 65 trees (Rajagopal et al., 2013). 

To validate the predicted CRMs, the coordinates were overlapped with H3K27ac and H3K4me1 

peaks. CRMs overlapped H3K4me3 and transcription start sites were labeled as false positives 

and later used in sensitivity or specificity analysis (Halder et al., 2015). The annotation of Cis-

regulatory modules with genomic regions was performed by comparing the CRM locations bed 

file to genome annotation in a format using the bedtools intersection function as described in the 

(Halder et al., 2015) in detail (Quinlan & Hall, 2010). In addition to the CRM annotations, CRM 

motif enrichment was discovered by employing Homer tools 

(http://homer.salk.edu/homer/chipseq/). Neuronal and non-neuronal CRMs were compared by 

respective motif enrichment, and transcription factors for the enriched motifs were merged 

according to their similarities (Halder et al., 2015).  
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3.2.10 Prediction of novel cell type-specific neuronal and non-neuronal genes 
 

Individual chromatin modification information from the Naive mouse neuronal and non-neuronal 

data (CA1 and ACC) was used to predict novel cell type-specific gene expressions. MeDIP-seq 

data could not be used for this purpose because of its low classification applicability. To compare 

neuronal and non-neuronal chromatin modifications, a matrix file containing read information 

corresponding to the transcription start sites or gene bodies was created. To identify statistically 

significant differential coverage for chromatin marks in neuronal and non-neuronal data, DEseq2 

was used (Love, Huber, & Anders, 2014). The 1500 bp region upstream and downstream around 

the TSS was taken for H3K27ac and H3K4me3 comparison in ChIP-seq data (Halder et al., 

2015). Furthermore, the full gene body was used for the chromatin modification in H3K79me3, 

H3K27me3 and H3K4me1 as described in (Halder et al., 2015). Following parameters were used 

for the filtration of the results: an FDR < 0.05, a |logFC| > 1 and a mean coverage > 50 (Halder et 

al., 2015). In the DEseq2 comparisons, neuronal and non-neuronal datasets were considered as 

treatment and control respectively. The activity related histone modifications show a positive 

correlation with the gene activity. For prediction of cell type-specificity a heuristic method best 

out-of-three classifier was used. For example, a certain gene to be annotated as a neuronal gene, 

at least three chromatin marks were statistically significantly enriched (or down-regulated for 

H3K27me3) in neuronal as compared to non-neuronal data (Halder et al., 2015). 

3.2.11 Functional gene enrichment analysis 
 

For the functional enrichment studies, the online version of WebGestalt and QIAGEN’s tool 

Ingenuity Pathway analysis (IPA) was used as described in detail in (Halder et al., 2015).  
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3.3 Results 

3.3.1 Cell type-specific epigenetic data  
 

ChIP-seq and MeDIP seq data showed the high quality of the cell type-specificity of the data 

assessed by replicate correlation, peak enrichment rates, and other quality measures (Halder et al., 

2015). Qualitative profiling of histone marks and DNA methylation of neuronal and non-neuronal 

genes were also showed cell type-specificity of the samples (Figure	 3.2). For example, the 

neuronal gene Camk2a histone profiles have high levels of H3K4me3, H3K27ac, H3K9ac, 

H3K4me1 and H3K79me3 in neurons and as expected these histone marks were mostly not 

present in non-neuronal cells (Figure	 3.2). Similarly, gene repression marks such as DNA 

methylation and H3K27me3 showed more signals in non-neuronal cells and fewer signals in 

neurons (Figure	3.2). Furthermore, cell type-specificity could also be confirmed on other neuron-

specific genes such as Camk2b in the CA1 tissue (Figure	3.3 [a]) and the same gene in the ACC 

region (Figure	 3.3 [b]). On the other hand, chromatin profiles were also confirmed in non-

neuronal genes for instance, in Mag (Figure	3.3 [c]) and in Oaf (Figure	3.3 [d]). 
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Figure 3.2: Genome browser (IGB) image for cell type-specific chromatin 
modification.  

DNA methylation and histone posttranslational modification (HPTMs) enrichment 
on the neuronally expressed Camk2a gene locus is shown here. Arrows at the 
promoter region indicate the direction of the transcription. NeuN positive neuronal 
data (+) showed significant enrichment for activity related histone modifications 
(for example, H3K4me3, H3K27ac, H3K79me3) whereas, NeuN negative non-
neuronal data (-) showed no enrichment for these histone modifications at Camk2a 
gene locus. This figure corresponds to Figure 1b in (Halder et al., 2015). 
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Figure 3.3: Histone modifications for cell type-specific genes.  

DNA methylation changes and histone modifications for the known representative 
genes, which are only expressed in neurons (panel a and b), and the representative 
genes, which only expressed in non-neuronal (glia) cells (panel c and d) under the 
Naive conditions. (a) CA1 chromatin modifications for the known neuron-specific 
gene Camk2b are shown. (b) At the Camk2b gene locus, chromatin modifications 
were shown for the ACC brain region. The ACC H3K9ac mark was not included in 
this analysis. (c) Chromatin modifications for non-neuronal (glia) specific gene Mag 
is shown here. (d) Another non-neuronal specific gene Oaf chromatin profiles were 
depicted here. Gene expression activity marks such as H3K4me3, H3K9ac, 
H3K27ac and H3K79me3 and repressive marks H3K27me3 and DNA methylation 
showed good purity of the cell type-specific samples. This figure corresponds to 
Supplementary figure 5 in (Halder et al., 2015). 

 

3.3.2 Prediction and validation of cell type-specific regulatory modules 
 

The HPTMs were proved to be efficient to classify known cell type-specific genes (with an 

average precision of 88% and 69% of a recall). Therefore, HPTMs were used for the prediction 

of previously unknown cell type-specific genes and other cis-regulatory modules (CRMs) such as 

enhancers and other functional genomic regions (Halder et al., 2015). As described in the method 

section 3.2.9, using heuristic best out of three classification method, 1,647 novel neuron-specific 

genes (94% precision; 37% recall) and 803 novel non-neuron-specific genes (100% precision; 

31% recall) were predicted (Halder et al., 2015). The predicted genes showed cell type-specific 

HPTMs and DNAme changes and enriched for their respective cell type related gene ontology 

(GO) terms. 
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In addition to the cell type-specific genes prediction, a random forest classifier was trained on a 

published set of positive and negative transcription factor binding sites (TFBS) and HPTMs in 

order to predict neuronal and non-neuronal CRMs (T. K. Kim et al., 2010; Malik et al., 2014). 

This method predicted a total of 60,544 CRMs (87.9% accuracy) in neuronal and non-neuronal 

cells (Halder et al., 2015). To validate biological activity of predicted CRMs using this model, 30 

predicted neuronal CRMs were randomly selected, and their biological activity was tested in a 

zebrafish model using a reporter assay as described in the method section 3.2.5. 28 out of 30 

CRMs were cloned, and 27 (96%) were detected positive for neuronal activity in vivo assay 

(Figure	3.4) (Halder et al., 2015). 

 

 
 

Figure 3.4: Validation of cis-regulatory modules. 

Representation of genomic distribution of predicted CRMs in neuronal and non-
neuronal data (left). 40% of all predicted enhancers were present in introns, which is 
known to have active enhancer sites. The right side of the figure represents the 
percentage of GFP positive zebrafish embryos, which showed the neuronal CRM 
activity. 28 predicted neuronal CRMs (Out of 30) were positive for this enhancer 
reporter assay (methods). The negative control (c) and CRM-14 (1) were not 
positive for neuronal activity. Inset, (n) is GFP positive neuronal cell image and (s) 
is expression of control in muscle cells (s); sc (spinal cord); nc (notochord). A 
permutation-based test was used for the estimation of significance (***P < 0.0001). 
The figure corresponds to Figure 2b and 2c in (Halder et al., 2015). 
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3.3.3 Learning-induced HPTMs and DNAme changes 
 

To understand the role of epigenetic changes in memory formation and consolidation, DNA 

methylation and HPTM changes were measured after 1-hour and 4-weeks of the contextual fear 

conditioning. In this analysis, hippocampal CA1 and the ACC brain regions were investigated. 

Differential methylated region (DMRs) computational analysis was done as described in (Halder 

et al., 2015) using MEDIPS package. The differential methylation regions (DMRs) are well 

correlated with the spatio-temporal changes of associative memory (C-CS) as changes were 

mostly present in short-term memory associated brain region CA1 at 1 hour and in long-term 

memory related ACC region at 4 weeks in neurons (Halder et al., 2015). In total, 1137 DMGs 

(3216 DMRs) were changed in CA1 neurons during cellular consolidation (1h), but no DNA 

methylation changes could be identified during memory maintenance (4w) in CA1 (Figure	

3.5[a]). On the other hand, in the ACC, no DMGs were identified during systems consolidation 

(1h), and 153 DMGs (365 DMRs) were detected in memory maintenance (4w) in neuronal cells 

(Figure	3.5[b]) (Halder et al., 2015). 

 

Along with the DNA methylation modifications, HPTM changes during learning events were also 

investigated using immunoblot (IB) analysis. In contrast to the DNAme changes, no early 

changes in bulk HPTMs could be identified by immunoblot study of CA1 and ACC brain regions 

in any of the analyzed conditions (Figure	 3.6). These results were also consistent with the 

immunoblot analysis of cell type-specific chromatin of the CA1 region (Figure	3.7) (Halder et 

al., 2015). To increase sensitivity and specificity to detect global changes in the HPTMs, the 

ChIP-seq method was used as described in the method section. Average gene intensity profiles 

(aggregate gene plots) showed a global increase in the activity related histone marks (such as 

H3K4me3 and H3K9ac), and a global decrease in the inactivity related histone mark 

(H3K27me3), during the cellular consolidation process (CA1 1h; N-C and N-CS) in genic 

regions, as shown in Fig3a and 3b in (Halder et al., 2015). On the other hand, in the intergenic 

regions, aggregate intensity profiles showed a global decrease in H3K4me3 and a global increase 

in H3K27me3 levels, compensating for the observed changes in the active areas (Halder et al., 

2015). 
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Figure 3.5: Analysis of DMRs and DMGs in CA1 and ACC brain regions. 

Differentially methylated regions (DMRs) and differential methylated genes 
(DMGs) for the associative memory-related changes (C-CS) in neuronal (+) and 
non-neuronal (-) cells after contextual fear conditioning. DMRs are represented with 
dark blue and DMGs are with light blue bars in the figure. Total hypo- and hyper-
methylated regions (black numbers) and genes (white or black in parenthesis) were 
represented. (a) Associative memory-related changes (DMRs and DMGs) in the 
brain hippocampal CA1 region at the 1 hour and 4 weeks time point after contextual 
fear conditioning. In the data analysis, DMGs were mainly present in the neurons at 
1 hour after learning. (b) Associative memory-related changes (DMRs and DMGs) 
in the brain cortical ACC region at the 1-hour and 4 weeks after contextual fear 
conditioning. In contrast to the CA1, hypo- and hyper-methylation changes (DMGs) 
in the ACC region were mainly in the 4 weeks after CFC. Apart from the neuronal 
changes, there were few changes (69 hypo and 3 hyper-methylated) DMGs in non-
neuronal cell fraction as well. This figure corresponds to Figure 5 in (Halder et al., 
2015). 
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Figure 3.6: Immunoblotting analysis of HPTMs changes. 

In the CA1 and ACC naive samples (N-1 to 5), context (C-1 to 5) and context-shock 
(CS-1 to 5) in mice 1 hour after contextual fear conditioning. Immunoblotting 
studies were performed using antibodies against H4K12ac, H3K27me3, H3K9ac, 
H3K4me3 and H3K27ac were used on the total tissue lysate as described in the 
method section in this thesis. Immunoblotting analysis of H3 and H4 were used as a 
loading control. (a) Representative image of immunoblotting with H3K9ac (red 
bands) and loading control H4 (green bands) in CA1 1-hour after contextual fear 
conditioning. (b and c)  Quantification of the immunoblot signal for the different 
HPTMs. Different color of the bars indicates the different biological conditions 
(naive in purple, context in red and context-shock in yellow). All the HPTMs were 
first normalized to H4 (H3 for H4K12ac) levels and later to the Naive mice (N) 
HPTMs level of the corresponding histone mark. The error bars represent the 
standard deviation. In immunoblot analysis, no significant HPTMs changes could be 
identified at the 1-hour after CFC in CA1 and ACC regions of the brain. This figure 
corresponds to supplementary figure 14 in (Halder et al., 2015).  
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Figure 3.7: Immunoblot analysis of neuronal chromatin from the CA1 region.  

From the CA1 region, neuronal chromatin for naive (N-1 and 2), context (C-1 and 
2), context-shock (CS-1 and 2) mice 1-hour after contextual fear conditioning were 
used for immunoblot studies. Antibodies against the H3K9ac and H4 were used in 
the immunoblotting. A pool of 20 mice chromatin was used for each biological 
replicates. (a) Levels of H3K9ac (red band) and H4 (green band). (b) Quantification 
of immunoblot signals. H3K9ac levels were first normalized to their respective H4 
levels and further with the level of the naive (N) mice. The error bars represent the 
standard deviation value (SD). In this analysis, no significant HPTM changes could 
be detected in H3K9ac levels. The figure corresponds to the supplementary figure 
15 in (Halder et al., 2015). 
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3.4 Discussion  
Learning and memory formation activities happen in the brain. Different brain regions are 

responsible for learning new information and its storage so that it can be retrieved later whenever 

needed. At the cellular level, neurons form a connection with the other neuronal cells, known as a 

synapse, to store the information. The adult human brain contains trillions of synapses. The 

external stimuli or learning event can fine tune as well as alter these synapses, called synaptic 

plasticity. At the molecular level, these structural changes are dependent on intracellular 

signaling networks, which regulate the expression of genes and protein synthesis. In the current 

chapter, we have mainly investigated chromatin modifications, which can have a role in learning 

and memory processes. Results showed that 5-methylcytosine DNA methylation levels correlate 

well with the spatio-temporal regions of the brain (Halder et al., 2015). This study highlights the 

possibilities of DNA methylation as a molecular correlate for the short and long-term memory.  

 

In this chapter, after the neuronal and non-neuronal cell separation using BiTS protocol, 

chromatin samples were used for ChIP- and MeDIP-seq analyses. In these analyses, we looked at 

histone profiles for activity related marks such as H3K4me3, H3K27ac, H3K9ac, H3K4me1, and 

H3K79me3 as well as repressive histone mark H3K27me3. A closer investigation of these 

histone profiles made it possible to categorize cell type-specific genes for neuronal and non-

neuronal cells. Based on the performance of data from histone post-translational modification 

(HPTMs; 88% precision, 69% recall) previously unknown cell type-specific genes and other cis-

regulatory modules such as enhancers were predicted. The biological validation of the predicted 

enhancers in a zebrafish model system using a reporter assay confirmed the activity of the newly 

predicted neuronal enhancers in an in-vivo assay with 96% accuracy. These results demonstrate 

the potential of the histone marks to find cell type-specific genes and enhancer elements. Apart 

from the cell type-specificity, this study was also designed to understand the epigenetic changes 

(HPTMs and DNA methylation) associated with learning and memory formation as well as 

consolidation by employing an associative memory-related learning paradigm (fear 

conditioning). Results from these experiments suggest that neuronal cell type-specific 

differentially methylated regions (DMRs) correlate strongly with the spatio-temporal changes of 

associative memory (Halder et al., 2015). DNA methylation changes were mainly present in the 

short-term memory brain region CA1 at 1 hour and in the long-term memory associated brain 
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region ACC at 4 weeks in neuronal cells. Furthermore, average gene intensity profiles based on 

histone marks spread across the genome showed a global increase in the gene activation-related 

histone marks such as H3K4me3 and H3K9ac and a global decrease in the gene repression-

related histone mark H3K27me3, during the cellular consolidation process in CA1 at 1 hour 

(Halder et al., 2015). In previous developmental studies, HPTMs showed a strong correlation 

with gene expression (Barski et al., 2007; Bonn et al., 2012; Zhou et al., 2011). However, in the 

current study, the analyzed HPTMs showed changes globally but very few regions specific 

changes. While the average gene intensity profiles for HPTMs corresponded to the gene 

expressions as expected (activating genes show gene activation and repressing genes show gene 

repression), the deregulated HPTMs between context-shock and naive mice did not correspond to 

the deregulated genes in the same conditions. In other words, HPTM changes seemed to be 

largely decoupled from differential gene expression (H3K79me3 was an exception) during 

learning (Halder et al., 2015). Our paper suggested some options to address this observation. (1) 1 

hour is too long to capture short-pulsed HPTM changes, and (2) as this is the first cell-type-

specific analysis of context shock vs. naive mice, maybe there are just not many individually 

deregulated HPTMs on the cell-specific level.   

 

Similarly, there were few DMRs present in the non-neuronal cells in the ACC at 4 weeks time 

point. Even though it is highly unlikely that non-neuronal cells play a role in memory formation 

or consolidation, more experiments need to be done in order to determine whether it is actually 

true and if so, to understand this phenomenon. These observations suggest that DNA methylation 

specifically plays a role in memory formation and consolidation in the brain (CA1 and ACC) 

regions and correlate well with the spatio-temporal changes in memory. One shortcoming of this 

study is that it uses a large brain tissue. In other words, memory-forming stimuli, such as fear 

conditioning, stimulate changes in only a few neuronal networks in the brain regions. Merging of 

stimulated neurons with surrounding un-stimulated neuronal cells could dilute the actual gene 

expression and epigenetic signals to a great extent. Although, isolation of only activated neuronal 

cells is not a trivial task. One such approach could be to isolate neuronal cells based on 

immediate early gene (egr-1, c-fos, and Arc) expression using the FACS. These cells could 

provide high-resolution information about the molecular and epigenetic mechanisms underlying 

learning and memory.  
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Chapter 4.  Cell type-specific molecular analysis using the 

Tagger system 

4.1 Overview 
	
Many neurodegenerative diseases affect only specific regions of the brain. This phenomenon is 

termed as selective vulnerability (Mattsson et al., 2016). At the cellular level, the interplay of 

sub-cellular factors (mRNA, microRNA, non-coding RNA, epigenetic regulators and so on) and 

surrounding microenvironment play a vital role in the selective vulnerability. Studying cell type-

specific selective vulnerability inducing factors could be very useful to gain more knowledge 

about the medical condition and to find molecular targets for the treatment of the disease. 

Although, obtaining cell type-specific sub-cellular information is not a trivial task because of the 

cellular complexity and heterogeneity of the biological systems (for instance, the brain). To gain 

insights of the molecular mechanisms about the selective vulnerability of brain cells, in the in-

vivo system, a transgenic mouse line called the Tagger was developed. The study was done in 

collaboration with the Jackson lab (DZNE, Bonn). Specifically, mouse line generation and 

immunoprecipitation experiments were done in the Jackson lab. The high throughput NGS library 

generation for sequencing was performed by myself in the Bonnlab. Furthermore, Dr. Bansal 

from our lab has analyzed the NGS data and helped in the interpretation of the results.  

 

Nevertheless, this chapter deals with the sample processing (after the immunoprecipitation 

studies) and subsequent analysis of the NGS data. Manuscript preparation is underway describing 

the overall research, during the writing of this thesis. 

 

In the Tagger system, following four molecular enrichment techniques were combined in a single 

transgene. 

  

a) Co-immunoprecipitation of actively translated ribosome-associated mRNA using 

ribosomal protein Rpl22 tag (Sanz et al., 2009). 

b) Isolation of newly transcribed RNA utilizing the 4-thiouracil (4-TU) labeling (Gay et al., 

2013). 
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c) Purification of cell type-specific nuclei by FACS using a fluorescently labeled nuclear 

protein (Halder et al., 2015). 

d) Co-immunoprecipitation of Argonaute2 bound miRNAs (He et al., 2012). 

 

The Tagger system was developed as a single copy knock-in transgene, which comprises a 

polycistronic expression cassette encoding four different proteins. Expression of this transgene 

was dependent on both Flp- and Cre- recombinase system. To verify the Tagger system for cell 

type-specificity and purity, three cell type-specific Cre lines were developed. These lines were 

PV-Cre (tagger expression in parvalbumin-positive GABAergic interneurons in the nervous 

system; also function as inhibitory neurons), Gad2-Cre (expression in Gad2 positive GABAergic 

neurons) and vGlut2-Cre (expression in glutamatergic neurons; also known as excitatory neural 

cells). 

 

In the experimental workflow, the Tagger mouse with a recombinase mouse of choice to produce 

mice driver line with particular cell type-specific Tagger transgene expression. The resultant mice 

line was subjected to experimental paradigms (for instance disease modeling) and optionally 4-

thiouracil injections. At the desired time point, Tagger system allowed to isolate four different 

cell type-specific sub-cellular molecular entities from the same tissue sample. Furthermore, 

individually enriched molecules were processed for high throughput sequencing library 

preparations as described in the method section (below) in detail. 

 
Figure 4.1 Overview of the Tagger transgene. 

The Tagger transgene consists of four sub-components. HA = HA tag; 2A peptides 
are 18-22 amino-acid long viral oligopeptides that mediate cleavage of the 
polypeptide during translation in eukaryotic cells (Liu et al., 2017). NLS = Nuclear 
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localization signal. Cre-recombinase system regulates the Tagger transgene 
expression. 

 

4.2 Methods: 

4.2.1 Processing of cell type-specific nuclei samples 
	
Nuclei were sorted in the FACS machine based on mKate2 signal expression in the nucleus. 

Sorted nuclei were frozen in the -80oC until the processing time.  For isolation of DNA, sorted 

nuclei were resuspended in 30ul EB inside a 1.5 ml vial. 1ul of 50ng/ul RNase A was added to 

the tube and solution was incubated at 37oC for 30 minutes. After the RNase treatment, 30 ul of 

the 2X WB (Weinmann buffer) and 1ul of PK (proteinase K, 20mg/ml) was added to the solution 

and incubated at 65oC for overnight with intermittent shaking (30 sec ON 1300rpm; 15 minutes 

OFF). After the overnight incubation, nuclei solution was transferred into Diagenode shearing 

tube, and the cap was covered with parafilm. Shearing was done in Bioruptor plus with high 

power for 5x3 cycles (30 sec ON/OFF). After every five cycles, the tubes were removed from the 

Bioruptor machine and centrifuged briefly. After 15 cycles, the solution was manually triturated 

with p100 pipette (10 times up and down) and centrifuged for (10000g for 5 minutes). The 

supernatant was transferred into 1.5 ml DNA low binding vial. The remaining pellet was either 

freeze in -80oC or sheared again to obtain more DNA material.  

 

In the DNA low binding tube, 3 ul of co-precipitant (LPA 5mg/ml) was added along with 1 

volume of SureClean plus (Bioline, BIO-37048). The tube was briefly vortexed and incubated for 

10 minutes at room temperature. Centrifugation was done at 15,000 g for 20 minutes at room 

temperature, and the supernatant was removed. The pellet was washed with 1 ml of 70% ethanol 

in water. The tube was briefly vortexed and centrifuged for 5 minutes at 10,000g. The 

supernatant was removed, and the pellet was dried at room temperature inside a hood (until pellet 

become transparent).  The pellet was resuspended in 15ul EB buffer. DNA concentration was 

measured with Qubit 2.0 using the manufacturer’s protocol. DNA samples were also checked for 

DNA size using High-sensitivity DNA bioanalyzer assay adjusting the concentration appropriate 

for High-sensitivity chip. Samples are having average size more than 300bp were subjected to 

another round of DNA shearing and Bioanalyzer.  
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4.2.1.1  Sample preparation 

	
For the following processes, the Ultra NEB kit was used. For end repair of the DNA samples, 12 

ul of the DNA (100ng) was added with 1.5 ul of End prep enzyme mix (NEB kit) and 1.5 ul of 

10x buffer. The 15ul mix was incubated at 20oC for 30 minutes and 65oC for 30 minutes. 

Subsequently cooled down to 4oC. To ligate the adapters to the end-repaired DNA, 7.5 ul of the 

ligase master mix, 2 ul of the adapter (15 uM; final conc. 1.2uM) and 0.5 ul of the ligation 

enhancer was added. The tube was incubated at 20oC for 30 minutes. After incubation, 1.5 ul 

USER enzyme was added to each tube and further incubated at 37oC for 30 minutes. Adapter 

from Illumina are methylated and should not be used for MeDIP experiments. In current MeDIP 

experiments, adapters from NEB were used. 

4.2.1.2  Sample cleanup 

	
25 ul AMPure XP beads (1X) were mixed with 25 ul end repaired and adapter ligated DNA from 

the previous reaction and mixed by pipetting 15 times. Tubes were incubated for 5 minutes at 

room temperature. After incubation, tubes were briefly centrifuged and kept on the magnetic 

stand until all the beads were accumulated at one place and the solution becomes clear. The 

supernatant was removed, and beads were washed with 200 ul 80% fresh ethanol using the 

multichannel pipette. Washing step was repeated in total for three times. After final washing, 

tubes were air-dried few minutes on the magnet and afterwards 30 ul EB buffer was added on top 

the beads. Beads were mixed by pipetting up and down and incubated for 5 minutes at room 

temperature. Tubes were briefly spun down and kept on the magnet. Once, solution became clear; 

supernatant was transferred into a new PCR tube. 

4.2.1.3  Adapter ligation checking by qPCR 

Following qPCR mix was prepared to check adapter ligation quality with the DNA template. 

Sample (DNA inputs diluted 1/100) 2 ul 

2x Q5 NEBNext master mix 2.5 ul 

Index (any) 0.1 ul 

Universal primer 0.1 ul 

SyBr (1/200 diluted) 0.3 ul 
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The qPCR was done according to Q5 NEBNext master mix cycling conditions (98oC 30sec; 40 

cycles: 98oC 10sec, 65oC 75sec). After confirmation of adapter ligation, samples were used for 

immunoprecipitation of methylated DNA (MeDIP) assay. 

4.2.1.4  Methylated DNA immunoprecipitation (MeDIP) 

 

The MeDIP assay was done based on a highly specific anti-5-methylcytosine monoclonal 

antibody. It was the part of Methylated DNA IP kit provided by Zymo Research (Cat D5101) 

used for the following assay. For the MeDIP assay, manufacturer’s protocol was followed with 

some modifications. In Brief, 100 ng of End repaired and adapter ligated input DNA was diluted 

in the DNA Denaturing buffer to a final volume of 50 ul. In a 1.5 ml DNA low binding vial 250 

ul of MIP buffer, 15 ul of ZymoMag Protein A containing beads and 1 ul of Mouse Anti-5-

Methylcytosine antibody (5-mc) was added, and the tube was inverted 3-4 times to mix the 

Protein A and antibody thoroughly. Diluted input DNA was denatured at 98oC for 5 minutes and 

added immediately to the Protein A and antibody containing the mixture. The final solution was 

incubated at 37oC for 1 hour on a Thermomixer and the tubes were inverted every 10 minutes 

during incubation. After that, the incubation tubes were placed in a plastic stand containing 

magnetic bars near to the tube. Once, the beads were clustered at one place; the supernatant was 

removed and discarded. On top of the beads, 500 ul of MIP buffer was added in vial and caps 

were closed. The tube was inverted ten times and vortexed briefly to resuspend the beads. Again 

tube was placed on a magnetic rack and supernatant was discarded. The washing step was 

repeated two more times, first with 500 ul MIP buffer and after that once with 500 ul of DNA 

elution buffer. After the final wash, 15 ul of DNA elution buffer was added to the tubes and 

beads were resuspended by pipetting up and down. The bead suspension was transferred to a new 

0.2 ml PCR tubes and incubated at 75oC for 5 minutes. PCR tubes were placed on a magnetic 

rack for 2 minutes to aggregate the beads, and the supernatant was stored in a fresh tube. This 

was the recovered DNA, mostly single-stranded and suitable for further downstream DNA 

methylation analysis. DNA could be stored at -20oC or -70oC for long-term storage. 
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4.2.1.5  qPCR to determine the amplification cycles 

	
DNA samples after MeDIP assay were used to determine amplification cycles to prepare the 

library for sequencing. 

 

Sample (DNA after MeDIP) 2 ul 

2x Q5 NEBNext master mix 2.5 ul 

Index (any) 0.1 ul 

Universal primer 0.1 ul 

SyBr (1/200 diluted) 0.3 ul 

 

The qPCR was done according to Q5 NEBNext master mix cycling conditions as mentioned 

before. 

4.2.1.6  Final library amplification 

	
ct1/2 was calculated based on the previous qPCR, and the value was used in library amplification 

PCR. Following reaction was set up for each sample. 

 

Sample (DNA after MeDIP) 10 ul 

2x Q5 NEBNext master mix 11 ul 

Index primer 0.5 ul 

Universal primer 0.5 ul 

 

A number of cycles were adjusted according to the qPCR (ct1/2 – 2 cycles). Cycling condition 

was same as used in the qPCR. Final amplification was done in a Thermocycler. 

4.2.1.7  Library cleanup 

	
22 ul of AMPure XP beads (1X) was used for cleaning the library samples following the same 

protocol as used for sample cleanup (describe before). 20 ul EB was added for final dilution of 

samples. The final library product was stored in DNA low binding tubes and kept in -20oC. 
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4.2.1.8  Methylation enrichment qPCR 

	
The qPCR assay was used to measure methylated DNA enrichment efficiency.  

Reaction setup: 

DNA (cleaned libraries/Input) 4.3 ul 

MeDIP primers +/- 0.67 ul 

SyBr Green 5 ul 

 

Cleaned libraries and input were diluted 1:100 times to use in the enrichment qPCR assay. 

MeDIP primers (+ or -) were a mixture of forward and reverse primer at 3 uM concentration (See 

primer information 2.3). The standards were also checked in qPCR. 

4.2.1.9  Preparation of libraries for sequencing 

 

After enrichment qPCR, library size was checked using the high sensitivity DNA bioanalyzer and 

concentration was determined using Qubit assay using the manufacturer’s protocol. Libraries 

were diluted to 2 nM, and sequencing was done in Hi-seq 2500 sequencer following standard 

procedures. 

 

4.2.2 Processing of 4-TU labeled newly synthesized RNA  
 

The TU-tagging method was used to investigate newly synthesized RNA molecules. 4-thiouracil 

(4TU) was injected into the mouse brain cortex region. 4-thiouracil converts into 4-thiouridine in 

the presence of an enzyme called UPRT or uracil phosphoribosyltransferase (from Toxoplasma 

gondii), which was a part of Grabber/Tagger vector cassette. 4-thiouridine could incorporate into 

newly transcribed RNA as an analog of uracil nucleotide. After 4-TU delivery into the tissue and 

required experimental time, RNA was isolated from the whole tissue. Ribosomal RNA was 

removed, and remaining RNA was fragmented. One fraction of RNA was used for biotinylation 

reaction and subsequent uMacs streptavidin-based biotinylated RNA isolation. Only TU-tagged 

RNA was biotinylated, and this RNA fraction was used for library preparation using ScriptSeq 

V2 RNA-seq library synthesis as described below. Another fraction of fragmented RNA was 
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taken without biotinylation reaction as total RNA and also used for library preparation using 

ScriptSeq V2 RNA-seq method. 

4.2.2.1  Scriptseq V2 RNA-seq library preparation    

 

rRNA-depleted RNA was first subjected to annealing of the cDNA synthesis primer. Following 

mixture was prepared: 

 

Nuclease-free H2O x ul 

rRNA depleted fragmented RNA y ul 

ScriptSeq cDNA synthesis primer 2 ul 

Total 11 ul 

 

The tube was incubated at 65oC for 5 minutes in a PCR machine, and after the incubation, 

reaction was stopped by putting the tube on the ice. To synthesizing the cDNA, following cDNA 

synthesis master mix was prepared. 

 

 

RNA fragmentation solution 1 ul 

cDNA synthesis premix 3 ul 

100 mM DTT 0.5 ul 

StarScript AMV reverse transcriptase 0.5 ul 

Total volume per reaction 5 ul 

 

The RNA fragmentation solution was added in the cDNA synthesis reaction to provide Mg2+ 

ions. cDNA synthesis master mix was appropriately mixed by pipetting up and down 15 times 

and added 5 ul to each reaction on ice from the previous step. The solution was mixed gently and 

thoroughly. It was incubated at 25oC for 5 minutes and afterward 42oC for 20 minutes. The 

reaction was cooled to 37oC, and thermocycler was paused. In each reaction tube, 1 ul of 

Finishing solution was added and mixed thoroughly by pipetting. The tubes were incubated at 
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37oC for 10 minutes, followed by incubation at 95oC for 3 minutes. After that reaction was 

cooled to 25oC and thermocycler was kept on hold. 

4.2.2.2  Synthesizing 3’-tagged DNA 

The following mix was prepared on the ice. 

Terminal tagging premix 7.5 ul 

DNA polymerase 0.5 ul 

Total volume/ reaction 8 ul 

 

Terminal tagging master mix was viscous and thoroughly mixed by pipetting 10-15 times. From 

the previous step, tubes were removed from thermocycler one by one and 8 ul of Terminal 

tagging master mix was added to each of them. Tubes were incubated at 25oC for 15 minutes and 

at 95oC for 3 minutes. The reaction was cooled to 4oC in the thermocycler. 

4.2.2.3  Purification of the cDNA 

	
The di-tagged cDNA was purified using the 1.8X AMPure XP system as described previously in 

the method section. cDNA was eluted in 22.5 ul elution buffer (EB). 

4.2.2.4  PCR amplification and addition of indexes 

 

To generate the complementary strand of cDNA, following steps were used. These steps also 

incorporate an Illumina adapter sequence and an index in the library. The following mix was 

prepared for this PCR amplification in a PCR tube: 

 

Di-tagged cDNA 22.5 ul 

Forward PCR primer 1 ul 

ScriptSeq Index PCR primer 1 ul 

FailSafe PCR premix E 25 ul 

FailSafe PCR enzyme (1.25 U) 0.5 ul 

Total volume / reaction 50 ul 
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These steps were followed in the PCR reaction. At first, samples were denatured at 95oC for 1 

minute. 15 PCR cycles was performed of 95oC for 30 seconds; 55oC for 30 seconds; 68oC for 3 

minutes. After the PCR cycles, samples were incubated at 68oC for 7 minutes. 

4.2.2.5  Purification of the library 

 

1X AMPure XP system was used to purify the TU RNA-seq libraries following the same 

protocol described earlier. Samples were eluted in 20 ul nuclease-free water.  

4.2.2.6  Quantification and quality checking of library 

 

The libraries were quantified using the Qubit assay, following manufacturer’s protocol. 

Furthermore, to assess the size distribution of the libraries, High sensitivity DNA bioanalyzer was 

used following manufacturer’s protocol. Libraries were diluted to 2nM for sequencing into 

Hiseq-2500 system.  

4.2.3 Ribosome-associated RNAs (RPL-tag) processing  
 

The co-immunoprecipitated ribosome-associated mRNA, using a tagged ribosomal protein 

Rpl22, was subjected to high throughput sequencing library preparation. To prepare the 

ribosome-associated mRNA library, TruSeq total RNA sample preparation protocol was followed 

according to manufacturer’s instructions. In brief, 0.25 to 0.5 ug of total RNA was diluted with 

nuclease-free water to a final volume of 5 ul in a PCR plate labeled as BRP. 2.5 ul of rRNA 

binding buffer and 2.5 ul of Ribo-Zero rRNA removal mix was added to each well. The plate was 

sealed and samples were incubated at 68oC for 5 minutes and cooled down to 4oC. The plate was 

incubated for 1 minute at room temperature. In a fresh PCR plate, 17.5 ul of rRNA removal beads 

were added to each well and 10 ul of the sample from the BRP plate was added. After mixing 

correctly by pipetting, the plate was incubated for 1 minute at room temperature and placed on 

the magnetic stand at RT for 1 minute. The supernatant was transferred to the corresponding well 

into a new plate. The new plate was again placed on the magnetic stand and supernatant was 

transferred to a new fresh plate. This procedure was repeated until all of the beads were removed. 

After that, 49.5 ul of well-mixed RNAClean XP beads were added to each well and mixed by 
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pipetting. The plate was incubated at room temperature for 15 minutes and placed on the 

magnetic stand for 5 minutes at room temperature. The supernatant was removed, and beads were 

washed with 200 ul of 70% ethanol by incubating 30 seconds at room temperature and then 

discard the supernatant. The plate was air dried for 15 minutes at RT and then 5.5 ul Elution 

buffer was added and mixed properly. The plate was incubated at RT for 2 minutes and then 

placed on the magnetic stand for 5 minutes at RT. 4.25 ul of the supernatant was transferred to a 

new 0.3 ml PCR plate. In the new plate, 4.25 ul of Elute, prime, fragment high mix was added in 

each well and mixed by pipetting. The solution was incubated at 94oC for 8 minutes in a thermal 

cycler. The plate was cooled to 4oC and briefly centrifuged. 

4.2.3.1  Synthesizing the first strand of cDNA 

 

To reverse transcribe the cleaved RNA fragments that were primed with random hexamers into 

first strand cDNA, the following process was done. In the PCR plate, 4 ul of First strand 

synthesis Act D and SuperScript II mix was added and mixed properly. The plate was sealed and 

incubated at 25oC for 10 minutes, 42oC for 15 minutes, 70oC for 15 minutes, 4oC hold in a 

thermal cycler.  

4.2.3.2  Synthesizing the second strand of cDNA 

 

Following process was used to remove the RNA template and to synthesize a replacement strand, 

incorporating dTTP in place of dUTP to generate ds cDNA. AMPure XP beads were used to 

separate the ds cDNA from the second strand reaction mix. At the end of this process, blunt-

ended cDNA was generated. To proceed with, 2.5 ul of Resuspension buffer and 10 ul of Second 

strand master mix was added to the samples and mixed properly. Samples were incubated at 16oC 

for 1 hour and after that 45 ul of AMPure XP beads were added at the RT and mixed properly. 

The plate was incubated at RT for 15 minutes and after that placed on the magnetic stand for 5 

minutes. The supernatant was discarded, and beads were washed with 200 ul of 80% ethanol. The 

plate was incubated at RT for 30 seconds, and the supernatant was discarded. Ethanol washes 

were repeated two more times. The plate was dried at RT for 15 minutes, and 8.75 ul of 

Resuspension buffer was added and mixed properly. The plate was incubated at RT for 2 minutes 
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and again placed on the magnetic stand for 5 minutes at RT. 7.5 ul of the supernatant was 

transferred to a new 0.3 ml PCR plate (ALP plate). 

4.2.3.3  Adenylation of 3’ end 

 

A single ‘A’ nucleotide was added to the 3’ ends of the blunt fragments to prevent them from 

ligating to one another during the adapter ligation reaction. A corresponding single ‘T’ nucleotide 

on the 3’ end of the adapter provides a complementary overhang for ligating the adapter to the 

fragment. This strategy ensures a low rate of chimera (concatenated template) formation. For this 

reaction, 1.25 ul of Resuspension buffer and 6.25 ul of A-Tailing mix was added to the samples 

and mixed by pipetting. The plate was sealed and incubated at 37oC for 30 minutes; 70oC for 5 

minutes and was held at 4oC in a thermal cycler. 

4.2.3.4  Adapters ligation 

 

Multiple indexing adapters were ligated to the ends of the ds-cDNA to enable them to hybridize 

onto the flow cell. To the samples, 1.25 ul of the Resuspension buffer, 1.25 ul of Ligation mix 

and 1.25 ul of RNA adapter index was added and mixed by pipetting. The plate was sealed and 

incubated at 30oC for 10 minutes. 2.5ul of Stop ligation buffer was added and mixed properly by 

pipetting. To the samples, 21 ul of the AMPure XP beads were added, and purification was done 

as described previously. At the end, 26.25 ul of the Resuspension buffer was added and mixed 

properly to recover the DNA molecules. Samples were incubated at RT for 2 minutes. The plate 

was placed on a magnetic stand for 5 minutes, and 25 ul of supernatant was transferred to a new 

plate (CAP plate). With 1X AMPure XP beads, samples were purified and isolated in 10 ul 

Resuspension buffer. 

4.2.3.5  Selective enrichment of DNA fragments 

 

To selectively enrich DNA fragments that have adapter molecules on both ends and to amplify 

the amount of DNA in the library following step was done. The PCR was performed with a PCR 

primer cocktail that anneals to the ends of the adapters. The number of PCR cycles was kept a 

minimum to avoid skewed representation of the library. In the adapter-ligated samples from the 
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previous step, 2.5 ul of PCR primer cocktail and 12.5 ul PCR master mix was added. Samples 

were mixed properly, and the plate was sealed. In a thermal cycler samples were incubated at 

(98oC for 30 sec; 11 cycles of [98oC for 10 sec; 60oC for 30 sec, 72oC for 30 sec]; 72oC for 5 

minutes; 4oC hold). Samples were cleared using 1X AMPure XP beads and resuspended in 16.25 

ul Resuspension buffer. 15 ul clear supernatant was transferred to a new 0.3 ml PCR plate 

(TSP1). 

 

Samples were measured by Nanodrop, Qubit, and Agilent Bioanalyzer DNA 1000 kit. Libraries 

were normalized to 10nM concentration using Tris-Cl 10mM, pH 8.5 with 0.1% Tween 20 and 

pooled for sequencing into Hiseq 2000 sequencer.  

4.2.4 Library preparation of Ago2 bound miRNA  
 

The flag-tagged Argonaute2 (Ago2) bound miRNA, obtained from the co-immunoprecipitated 

reaction was subjected to high throughput sequencing library preparation. For this purpose, 

TruSeq small RNA library preparation kit from Illumina was used, following the manufacturer’s 

protocol. In brief, following steps were followed. 

4.2.4.1  Ligation of 3’ adapter 

 

In a 200 ul PCR tube, 1 ul of RNA 3’ adapter and 5 ul of 1 ug total RNA was added. After 

mixing properly tube was incubated for 2 minutes at 70oC and then immediately kept on ice. In 

each sample tube, 2 ul of ligation buffer, 1 ul of RNase inhibitor and 1 ul of T4 RNA ligase two 

deletion mutant was added and mixed by pipetting. Samples were incubated at 28oC for 1 hour, 

and at the end, 1 ul Stop solution was added to each tube on the thermal cycler. Tubes were 

incubated further for 15 minutes at 28oC and placed on the ice. 

4.2.4.2  Ligation of 5’ adapter 

 

In a 200 ul PCR tube, 1.1 ul per sample amount of RNA 5’ adapter was incubated at 70oC for 2 

minutes and then placed on the ice. In the tube, 1.1 ul per sample amount of 10 nM ATP was 

added and mixed properly. After that, 1.1 ul per sample amount of T4 ligase was added and 
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mixed by pipetting. From the mix, 3 ul was added to the 3’ adapter ligated per samples. The plate 

was incubated at 28oC for 1 hour and placed on the ice.  

4.2.4.3  Reverse transcription and amplification 

 

In a 200ul PCR plate, 6 ul of 3’ and 5’ adapter ligated RNA and 1ul of RNA RT primer was 

added and mixed properly. The plate was incubated at 70oC for 2 minutes and placed on ice. In 

another tube, following mix was prepared for each sample. 2ul 5x first strand buffer, 0.5ul of 

12.5nM dNTP mix, 1 ul 100 mM DTT, 1 ul RNase inhibitor and 1 ul SuperScript II reverse 

transcriptase; mixed properly and 5.5 ul of the mix was added to per tube of the RNA sample. 

Total 12.5 ul of the solution was mixed by pipetting and incubated at 50oC for 1 hour and placed 

on the ice. For PCR amplification, following mix was prepared in a 200 ul PCR tube. 8.5 ul 

ultrapure water, 25 ul of PCR mix, 2 ul of RNA PCR primer and 2 ul of RNA PCR primer index 

was mixed properly, and 37.5 ul of the mix was added to the 12.5 ul sample from the reverse 

transcription step. Plate was placed on the thermal cycler and incubated at (98oC for 30 sec; 14 

cycles of (98oC for 30 sec, 60oC for 30 sec; 72oC for 15 sec) 72oC for 10 minutes; hold at 4oC). 

4.2.4.4  Purification of cDNA construct 

 

A number of samples pooled accordingly (for example, a pool of 24 samples would use 4 ul 

each) to run on a polyacrylamide gel electrophoresis (PAGE). In each well, 30 ul sample was 

loaded, and between different samples, two wells were kept empty. High-resolution ladder and 

custom ladder both were mixed with equal amount of DNA Loading Dye. Samples were also 

mixed with 20 ul of DNA Loading Dye. In the wells of the gel, 2 ul of the diluted high-resolution 

ladder and 2 ul of the custom ladder was loaded. 25 ul of samples were also loaded with the 

loading dye on the 6% PAGE gel. Electrophoresis was done for 57 minutes at 145V. The gel was 

stained with Midori green advance (in H2O) for 10 minutes and observed on a UV trans-

illuminator. Using a clean razor blade bands between 160 bp and 145 bp from the sample lane 

was cut and placed on the gel breaker tube. Tubes were centrifuged at 20,000xg for 2 minutes at 

RT. In the tube, 200 ul of ultrapure water was added, and DNA was eluted by shaking the tube 

for 2 hours at RT. Gel debris and supernatant was filtered through a 5 um filter by centrifuging it 

to 600xg for 10 seconds. Final libraries were concentrated by ethanol precipitation method. In the 
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supernatant 2 ul of Glycoblue, 30 ul of 3M NaAc and 975 ul of 100% ethanol was added. Tubes 

were centrifuged to 20,000xg for 20 minutes at 4oC. The supernatant was removed, and the pellet 

was washed with 70% ethanol and again centrifuged to 20,000xg for 2 minutes at RT. The pallet 

was dried on 37oC heat block for 10 minutes and resuspended in 10 ul of 10 mM Tris-HCl (pH 

8.5). Libraries were validated using High sensitivity DNA bioanalyzer.  

4.2.5 Sequenced data analysis 
	

4.2.5.1  Quality control, read alignment and differential gene expression analysis 

 

RNA-seq raw reads quality was assessed using FASTQC quality control tool (v0.10.1). The 

single end 50 bp sequence reads were aligned to the mouse reference genome (mm10) with 

Bowtie2 (v2.0.2) using RSEM (v1.2.29) with default parameters. First, the mouse reference 

genome was indexed using the Ensembl annotations (v72) with rsem-prepare-reference from 

RSEM software. After that, rsem-calculate-expression was used for read alignments and 

quantification of gene and isoform abundance. The output of this program provided the read 

counts and the TPM (transcript per million) value for all the genes and their respective isoforms 

separately. Differential expression of genes was analyzed by DESeq2 package using their read 

counts and genes with a p-value below 0.05 were determined as differentially expressed genes. 

4.2.5.2  Cell type-specific gene expression (RNA-seq data) analysis 

 

From the published literature, a cell type-specific gene list was prepared and used for 

benchmarking of our data. TPM values were extracted for these genes from all of the RNA-seq 

samples in the study. To generate the heat map, scaled TPM values (z-score) were used for the 

gplot R package function heatmap.2. For validation of cell type-specific gene expression, 

recently published data GSE78163 was downloaded from the Gene expression omnibus (GEO) 

database (Hornstein et al., 2016). In this dataset, RiboTag system was used to purify and identify 

actively translated genes from excitatory neurons in the brain cortex of Camk2a-Cre/RiboTag 

mice. The data from (Hornstein et al., 2016) contains the two biological replicates of 

immunoprecipitated ribosome profiling and the total mRNA from RiboTag mice. Read counts on 

coding sequences (CDS) were normalized by size factors generated from DESeq2. Furthermore, 
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enrichment scores were calculated by dividing the normalized RiboTag counts by normalized 

total mRNA counts. 

4.2.5.3  MeDIP-seq data analysis 

 

Sequenced reads of MeDIP libraries obtained using the Tagger system were analyzed as 

described in the section 3.2.7. 

4.2.5.4  Small RNA (miRNA) –seq data analysis 

 

To analyze the miRNA-seq data, in-house- developed bioinformatics tool “Oasis2” was used. It 

can handle the complex high throughput sequencing data and provide seamless and reliable 

analysis of the miRNAs in the study, for instance, differential expression of the miRNAs across 

multiple samples (Capece et al., 2015; Rahman et al., 2018). For the analysis, raw Fastq reads 

were uploaded using the front-end of Oasis (https://oasis.dzne.de/). The reference genome was 

selected as “mus musculus – mm10” and TruSeq 3’ was used as an adapter sequence for data 

analysis in the Oasis web tool. Other options were set as default.  
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4.3 Results 

4.3.1 Cell type-specificity of Rpl22-tag co-immunoprecipitated mRNA 
(polysome profiling) 
 

The mapping quality of Rpl22 tagged (Rpl-tag) co-immunoprecipitated mRNA sequencing was 

analyzed as described in the section (4.2.5) and presented in the (Figure	4.2). For this analysis, 

PV-Cre, Gad2-Cre, and vGlut2-Cre samples were used as described in section 4.1. Apart from 

that ‘total’ samples (input for IP) were analyzed to see enrichment in the IP procedures. Wild-

type (WT) mouse samples were also analyzed as a control. The mapping analysis showed that 

most of the reads were either uniquely or multi-mapped to the genome, which indicates good 

quality of the samples. Very few percentages of reads were not mapped to the genome (Figure	

4.2). The samples with very low mapped reads were not included in the further downstream 

analysis. To benchmark the purity and verify the cell type-specificity of Rpl22 tagged co-

immunoprecipitated mRNA assay for the Tagger mouse, principal component analysis (PCA) 

was carried out for all the three cell types Gad2, PV, and vGlut2 (Figure	4.3). The PCA analysis 

showed that all biological replicates of the same cell type were clustered together. Moreover, 

samples were distant from each other in the PCA plot for different cell type-specificity. Mixed 

un-immunoprecipitated samples (Input for IP; labeled as “Total”) were also clustered together in 

a separate cluster (Figure	4.3). 

 

In another attempt to validate the cell type-specific gene expression in the Rpl-tag co-

immunoprecipitated mRNA samples, TPM values (Transcript per million) for the genes from 

each cell type were plotted against the previously known cell type-specific gene (Hornstein et al., 

2016), as described in the method section 4.2.5.2  and presented in a heat map (Figure	4.4). The 

heat map showed that cell type-specific genes from Rpl-tag assay were same as their previously 

known genes (Hornstein et al., 2016). Furthermore, as expected genes from mixed un-

immunoprecipitated samples were co-localizing with the astrocytes genes, indicating the non-

specific background (Figure	4.4). These results showed the high purity and cell type-specificity 

of the Rpl-tag mRNA samples in the Tagger mouse. 
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Figure 4.2: Mapping quality of the Rpl-tag co-immunoprecipitated mRNA 
samples. 

On the graph, each bar represents a single sample. Percentages of uniquely 
mapped reads (salmon), multi-mapped reads (green) and unmapped reads (blue) 
were also plotted.  
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Figure 4.3: PCA analysis for Rpl-tagged co-immunoprecipitated mRNA 
samples.  

PCA Plot for all the Rpl-tag co-immunoprecipitated mRNA samples in the study. 
Cell type-specific mRNA samples were clustered together indicating the good 
quality of the data. All mixed un-immunoprecipitated samples (labeled as “total”) 
have also formed another cluster. Gad = Gad2-Cre; PV = PV-Cre; vGlut = vGlut2-
Cre; rpl22 = Rpl22 tagged mRNA; total = input for IP. Replicates were presented as 
alphanumeric letters (B1, B2 and so on). 
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Figure 4.4: Heat map of the Rpl-tag mRNA cell type-specificity. 

In this heat map, rows represent the previously known cell type-specific genes 
(Hornstein et al., 2016) for each cell type, shown in grey shades; and columns 
represent the cell type-specific Rpl-tag co-immunoprecipitated mRNA samples in 
this study (shown in colors). The top-left corner has a color key with the z-scores for 
the heat map.  
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4.3.2 Ago2 bound cell type-specific microRNA analysis 
 

The FLAG-tagged-Ago2 bound miRNAs; isolated using the Tagger system, from PV-Cre and 

Gad-Cre samples were analyzed as described in section 4.2.5.4 using ‘Oasis2’ tool.  The 

differential expression (DE) of miRNA from two cell types (PV vs. Gad) was carried out to 

confirm cell type-specific miRNA enrichment. A correlation study was done between the 

differential expressed miRNAs from in-house data to a published dataset of the similar cell type’s 

(PV vs. Gad) miRNA DE analysis (He et al., 2012). In total 125 differentially expressed miRNAs 

with significant padj (<0.01) value from the published study was taken for this analysis. 

Correlation analysis (Pearson’s correlation r = 0.68) was indicating the good overlap between the 

two datasets and signify the cell type-specificity of the miRNAs (Figure	4.5). 

 
Figure 4.5: Correlation analysis for Ago2 bound differentially expressed (DE) 
miRNAs.  

Cell type-specific DE (PV vs. Gad) data from Tagger mouse (Y-axis) and 125 
differentially expressed miRNA from (He et al., 2012) (X-axis). Pearson’s 
correlation value ‘r’ was depicted at the upper right of the figure. 
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4.3.3 Correlation between DNA methylation and gene expression 
 

The Tagger system was used to isolate cell type-specific nuclei, and genetic material was used for 

MeDIP analysis (4.2.1). MeDIP-seq data were analyzed as described in the section (3.2.7). DNA 

methylation in gene body and upstream regions inversely correlate with gene expression, as 

previously presented for GABA and GLU neurons (Kozlenkov et al., 2015). In the current study, 

cell type-specific nuclear fraction of the cells from Tagger mouse was subjected to MeDIP 

analysis. The differential methylated region (DMR) analysis of Gad2 vs. vGlut2 samples was 

done to assess the quality of the MeDIP data. In this analysis, 1385 DMRs (padj < 0.1) were 

enriched that were around the gene (5kb upstream to TSS or in the gene body). Furthermore, Cell 

type-specific Rpl-tag co-immunoprecipitated mRNA was used to analyze differential gene 

expression analysis between Gad vs. Glut cells, which resulted in 609 genes (padj < 0.1). 

Correlation analysis between DMRs and gene expression resulted into Pearson’s correlation 

coefficient value (r = -0.44), which was corroborating with the previously published study 

(Kozlenkov et al., 2015) as depicted in (Figure	4.6). 

 

 
Figure 4.6: Correlation analysis between DMRs vs. gene expression. 
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Log2 fold change of DMRs (X-axis) and Log2 fold change of gene expression (Y-
axis). Each dot in the figure represents the individual DMR, present in the vicinity 
of the assigned gene. The color of the dot indicates its location from the 
transcription start site (TSS) with respect to the annotated gene (according to the 
labels). The blue line represents the correlation between DMRs and gene expression 
in the dataset. 

4.3.4 Cell type-specificity of 4-thiouracil (4-TU) labeled total-RNA 
 

The mapping statistics of 4-TU labeled total-mRNA sequencing was analyzed as described in the 

section (4.2.5) and showed in the (Figure 4.7). Similar to Rpl-tag co-immunoprecipitated mRNA 

benchmarking, cell type-specificity and quality of the 4-TU labeled RNA was also confirmed 

(section 4.2.5.2 For this purpose, the principal component analysis was done for the samples from 

Gad2 and vGlut2 (Glut) expressing Tagger mice (Figure 4.8). In this analysis, biological 

replicates from the same cell type were clustered together, and different cell type samples were 

distant from each other in the PCA plot. Unbound fractions were clustered in the different 

locations in the PCA plot (Figure 4.8). Furthermore, cell type-specific gene expression was also 

checked for the known marker genes using the heat map (Figure 4.9). In this analysis, 4-TU 

labeled cell type-specific RNAs were co-localizing with the known marker genes, which was the 

confirmation for the high quality and cell type-specificity of the 4-TU labeled total RNA 

purification assay in the Tagger system (Figure 4.9).  

 
Figure 4.7: Mapping quality of the 4-TU labeled total RNA. 
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On the graph, each bar represents a single sample. Percentages of uniquely mapped 
reads (salmon), multi-mapped reads (green) and unmapped reads (blue) were also 
plotted. 
 
 
 
 
 

 
Figure 4.8: PCA analysis for 4-TU labeled RNA samples. 

PCA plot for the 4-TU labeled newly synthesized RNA samples from Gad2 and 
vGlut2 (Glut) Tagger mouse and their unbound RNA fractions. Biological replicates 
of the cell type-specific 4-TU tagged RNA samples cluster together, distant from the 
unbound fraction. It indicates the cell type-specificity and purity of the 4-TU total 
RNA material. 
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Figure 4.9: Heat map for the 4-TU labeled RNA.  

In this heat map, previously known cell type-specific genes were plotted in the 
rows, and the columns represent the cell type-specific 4-TU labeled total RNA 
samples in this study. The top-left corner has a color key with the z-scores for the 
heat map.  
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4.4 Discussion  
 

The Tagger system was developed to understand the selective vulnerability of the brain regions to 

diseases. In-vivo studies of sub-cellular factors such as mRNA, miRNA, epigenetic factors and so 

on could reveal the underlying mechanisms of susceptibility of the individual cell types and 

progression of the disease. Studying various types of nucleic acid molecules and epigenetic 

factors from the same biological material in a cell type-specific manner was a big challenge for 

the scientific community. The Tagger system is the first in-vivo mouse system to enable the study 

of four nucleic acid fractions by combining four different enrichment techniques in a single 

transgene. 

 

One of the nucleic acid fractions, the actively translated mRNAs are isolated by co-

immunoprecipitation of mRNAs associated with ribosomes (ribosomal subunit Rpl22). The 

advantage of this system is to capture mRNAs, which were in their active translation stage and 

represent the more precise functional image of the cell. One of the challenges, presented by the 

ribosome-associated mRNA sequencing, was associated with the contamination of rRNA in the 

samples. Fortunately, it was possible to efficiently remove this contamination by introducing 

Ribo-zero rRNA removal solution during the library preparations. The Tagger system also allows 

isolating cell type-specific miRNA by co-immunoprecipitation of FLAG-tagged Ago2 protein. 

As such, mature miRNAs bind with Ago2 protein together with RISC (RNA induced silencing 

complex) in the cell.  

 

The third component of the Tagger system is the far-red fluorescent nuclear marker (mKate2-

NLS), which is transported into the nucleus because of the presence of the nuclear localization 

signal (NLS). By harnessing fluorescence properties of the endogenous marker, cell type-specific 

nuclei can be FACS sorted, and nuclear material can be used for further genetic or epigenetic 

analysis. To validate the cell type-specificity and the purity of the samples, FACS sorted nuclei 

were used for the DNA isolation and subsequent MeDIP analysis as described in (section 4.3.3). 

To assess the cell type-specificity of the methylation signature, differentially methylated region 

(DMR) analysis as well as differential expression of mRNA (Rpl22 bound mRNA) was done 

between two available cell type samples in this experiment (Gad2 and vGlut2). Correlation 
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analysis between DMRs and mRNA expression resulted in negative correlation value (r = -0.44) 

indicating DNA methylation negatively regulate mRNA expression levels, as expected. Similar 

results were also observed in another study (Kozlenkov et al., 2015) which corroborates our 

method. For mKate2-NLS Tagger system, DNA methylation analysis served as an indirect proof 

of concept for cell type-specificity.  

 

Moreover, the fourth sub-component of Tagger system is an enzyme called Uracil 

phosphoribosyltransferase (UPRT), which was initially isolated from Toxoplasma gondii. UPRT 

could efficiently incorporate 4–thiouracil (4TU) into newly transcribed RNA (Gay et al., 2013). 

Tagger mouse TU-tagging system was based on previous technological developments on 

Drosophila (Miller et al., 2009), cell culture system (Cleary et al., 2005) and mouse system (Gay 

et al., 2013). This method serves as an intersection of genetic and chemical approaches and 

allows covalent labeling of newly synthesized RNAs in a cell type-specific manner (Gay et al., 

2013). Cell type-specificity of Tagger system was obtained by Cre-induced expression of UPRT 

enzyme and temporal specificity as well as experimental pulse-chase specificity obtained by 

injection of the uracil analog 4-thiouracil (4-TU) into the specific brain region (Gay et al., 2013). 

Cells expressing the UPRT efficiently incorporate 4-TU into newly synthesized RNA in the in-

vivo conditions in the mouse system. The main advantage of this system is that it maintains the 

normal physiological conditions and molecular interactions inside the cells during the 4-TU RNA 

labeling experiment. The thio-RNA was later extracted from the total RNA using the in-vitro 

biotinylation and uMacs streptavidin mediated isolation of biotinylated RNA. To generate the 

high-throughput RNA-seq libraries, the ScriptSeq RNA-seq library synthesis kit was used 

because of its ability to generate libraries from the low amount of RNA, which was the case in 

these experiments. Another advantage of using this system is that 4-TU labeling has been shown 

to have a negligible effect on the in-vivo gene expression and molecular interplay in the cells 

(Cleary et al., 2005). Furthermore, ubiquitous expression of the UPRT enzyme had not shown 

any effect on the viability of the cells in the Drosophila (Miller et al., 2009) or in mice system 

(Gay et al., 2013).  
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To summarize, Tagger mouse system provides a simple, rapid and flexible tool to study various 

nucleic acid molecules and other nuclear content of the cells, from a single biological sample. It 

enables the researchers to understand the biological mechanisms of disease progression with 

better molecular insights. 
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Chapter 5.  Investigating motor neuron subpopulations and 

EPO-mediated hippocampal changes using single-cell 

transcriptomics 

5.1  Overview 
 

Cells are the basic units of tissues, organs, and organisms. Each tissue made up of many different 

cell types, and each cell type can have many different biological states in a given time (E. Z. 

Macosko et al., 2015). In a complex biological system, each cell plays an important role, and to 

understand the complex tissue function, it is essential to understand the functional responses and 

capabilities of individual cell types (E. Z. Macosko et al., 2015). For many biological systems, 

cell type complexity is still not known entirely; for instance, cellular diversity of central nervous 

system is not fully understood and still in the investigation (Luo, Callaway, & Svoboda, 2008). 

 

Cellular transcriptome plays a vital role in determining the cellular functions. In recent years, 

advances in technologies made it possible to do mRNA-seq at a single-cell level (Tang et al., 

2009). Single-cell sequencing technologies were available from just hundreds of cells (Picelli et 

al., 2013) to thousands of cells (Jaitin et al., 2014; Shalek et al., 2014). In this study, we have 

implemented a microfluidic-based single-cell mRNA-seq method known as Drop-seq (Figure	

5.1). This method was first developed by Macosko et al. in the McCarroll lab at Harvard medical 

school. In the Drop-seq method, thousands of single-cells were encapsulated in tiny oil droplets 

for parallel analysis of mRNA expression (E. Z. Macosko et al., 2015). The droplets 

compartmentalize the cells into tiny nanoliter volume reaction chamber to lyse the cells and 

capture all the mRNA from individual cells. To retain the molecular memory about the cell of 

origin, the mRNA was captured by a barcoded microparticle (bead) using the polyT primer on the 

surface, which binds to the polyA tail of mRNA and hybridizes it with the bead (Figure	5.1).  

 

In brief, these steps were followed in a Drop-seq experiment. At first, a single-cell suspension 

was prepared by enzymatic tissue digestion method, from an intact tissue, customized according 

to the tissue type. After that, each cell was co-encapsulated with a uniquely barcoded 
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microparticle (bead) in a nanoliter volume oil droplet. Inside the droplet, lysis reagent lyses the 

cell and mRNA from that individual cell was captured on the surface of companion microparticle, 

forming the Single-cell transcriptomes attached to microparticle (STAMP). After that, reverse 

transcription and synthesis of cDNA processes carried out on the surface of the microparticle. In 

the further steps, cDNA (carrying their cell barcode identity) was removed from the surface of 

the microparticle, subjected to amplification, tagmentation and library preparation steps. 

Thousands of these STAMPs were sequenced together in Hiseq flowcell. In the end, STAMP 

barcodes were used to infer cells of origin and associated transcripts in the data analysis pipeline, 

as described in detail in the following sections. 

 

As for technique optimization for the Drop-seq method and to determine the presence of doublet 

in the Drop-seq libraries with set parameters, a Human-Mouse mixed cell experiment was 

performed. After the successful method optimization for Drop-seq technique, it was applied to 

two case studies described in this thesis: 

 

Case study I: Characterization of motor neuron subpopulations using single-cell sequencing. 

Case study II: Effect of Erythropoietin (EPO) on the cells of hippocampal tissue using single-

cell sequencing. 

 

The setup of the Drop-seq platform and quality control experiments were done in the Bonnlab 

(DZNE, Göttingen) as previously published (E. Z. Macosko et al., 2015). The investigation of 

spinal cord tissue using the Drop-seq method was carried out in collaboration with Marquardt lab 

(European neuroscience institute, Göttingen). Dr. Edwar (Bonn-lab, DZNE, Göttingen) has 

helped the author in the wet-lab experiments of this study. Dr. Bansal and Abdul Qadir have also 

helped the author in the analysis of the NGS data in the Bonnlab.  

 

In another study using the Drop-seq method, the molecular mechanisms were investigated, which 

can drive precursor cell differentiation into neurons and oligodendrocytes cells upon EPO 

administration. This study was conducted in collaboration with Debia Wakhloo and colleagues in 

the Ehrenreich lab in Clinical neuroscience department, Max Plank Institute of experimental 

medicine, Göttingen, Germany. Also, Dr. Bansal and Ting sun along with the author were 
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associated with the study specifically in the Drop-seq experiment as well as in the Drop-seq data 

analysis. The single-cell study was done in the Bonn-lab, German center for neurodegenerative 

diseases, Göttingen, Germany. 

 

 

 

 
Figure 5.1: Schematic of the Drop-seq experiment. 

Complex tissue was dissociated to form a single cell suspension. These single cells 
were captured in a tiny oil droplet together with a barcoded micro-particle (beads) 
during the Drop-seq experiment, as explained in this chapter. This figure was 
adapted from (E. Z. Macosko et al., 2015) and modified to present in this thesis. 
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5.2  Methods 

5.2.1 Human-Mouse mixed cell experiment 
 

Human HEK-293T cells and mouse NIH-3T3 cells were seeded in a 10 cm diameter culture plate 

in DMEM medium. Following day when cells are 70% confluent in a culture dish, cells were 

trypsinized for 5 minutes using 0.05% Trypsin and collected in a 15 ml tube. Cells were 

centrifuged and washed with 1 ml of PBS-BSA. Cells were again spun down at 300xg for 3 

minutes, and the supernatant was removed. 1 ml of PBS was added, and cells were passed 

through a 40-micron filter to remove cell aggregates. 20 ul of cells were added to a C-chip 

(Fuchs-Rosenthal	Hemocytometer) and counted using the Equation	 1 (page 91). HEK-293T 

and NIH-3T3 cells were mixed in 1:1 ratio as a cell input for the Drop-seq experiment. 

5.2.2 Motor neuron dissociation method 
 

For motor neuron Drop-seq experiment, a transgenic mouse line having an expression of Rosa-

CAG-tdTomato in motor neurons was used in process development phase. Experiment on mice 

was conducted in collaboration with Prof. Till Marquardt lab. Postnatal day 14 (p14) mice were 

anesthetized and dissected to expose the spinal cord of mice. The lumbar region of the spinal cord 

was isolated using the tdTomato expression as a guiding marker for motor neuron density under a 

fluorescence microscope. Following method was used for successful dissociation of motor 

neurons from the spinal cord. The spinal cord sample was washed in a vial containing 1 ml 

EBSS#1 solution as mentioned below (Saxena et al.,2012) and then kept into a vial containing 1 

ml Papain and DNase-I solution.  

EBSS#1 solution 

EBSS 8.9 ml 

25 mM AP-V 20 ul (0.05 mM) 

100mM KA 80 ul (0.8 mM) 

50% (w/v) Trehalose 1 ml 

Total (for 1 mouse) 10 ml 
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To prepare Papain and DNase-I solution, 5 ml of EBSS#1 was added to papain container 

(Worthington kit). The papain solution was incubated for 10 min at 37oC inside the cell culture 

incubator after loosening the cap. The solution was equilibrated by incubator environment, 

having 95% O2 and 5% CO2. During incubation, 500 ul of EBSS was added to the vial containing 

DNase-I powder from Worthington kit and mixed slowly to avoid DNase-I solution degradation. 

250 ul of the DNase-I solution was added in prepared papain solution to prepare final Papain 

DNase-I solution. Final concentration of this solution was 20 units/ml of Papain and 0.005% of 

the DNase I. Inside the Papain DNase-I solution, spinal cord sample was chopped into smaller 

pieces and the vial was incubated at 37oC alternatively for 10 minutes in a cell culture incubator 

with open cap and 10 minutes at Thermomixer (Eppendorf) with 500 RPM shaking. After the 

incubation, the sample was transferred to 15 ml falcon tube. Tissue was triturated few times with 

the 1 ml pipette tip. 5 ml of EBSS#2 solution was prepared as mentioned below and added to the 

falcon tube (Saxena et al.,2012). Tissue suspension was mixed properly without forming air 

bubbles.  

EBSS#2 solution 

EBSS 4.73 ml 

25 mM AP-V 20 ul  

100mM KA 48 ul 

Albumin ovomucoid inhibitor 350 ul 

DNase-I 250 ul 

50% (w/v) Trehalose 600 ul 

Total (for 1 mouse) 6 ml 
 

The tissue suspension was centrifuged at 100g for 10 minutes. The supernatant was discarded, 

and the pellet was resuspended in 200 ul of the EBSS#2 solution. Digested tissue was 

mechanically dissociated with p200 pipette tip by gently pipetting up and down for around 40 

times until big tissue chunks were dissociated and a cloudy suspension was prepared. 200 ul of 

the EBSS#2 solution was again added and pipetted for 15 more times with 1000 ul pipette tip. 

After this trituration step, 5 ml of Medium without serum was added (as mentioned below) and 

centrifuged for 10 minutes at 100g. 
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Medium without serum 

DMEM/F12 without phenol red 18.9 ml 

25 mM AP-V 21 ul  

100mM KA 84 ul 

50% (w/v) Trehalose 2.1 ml 

Total (for 1 mouse) 21 ml 
 

The supernatant was discarded, and the pellet was resuspended in 200 ul of the mixed EBSS#2 

solution and pipetted up and down 20 times using p200 pipette. 5 ml of Medium without serum 

was added, the solution was mixed properly, and the cell suspension was washed by 

centrifugation at 100g for 10 minutes. The pallet was resuspended in 150 ul of YES medium 

(Yield enhancing separation medium) and proceeded for ClioCell treatment as mentioned in 

further steps. 

5.2.3 Removal of impurities from the samples using ClioCell treatment 
 

To remove cell debris and dead cells from the samples, ClioCell (Amsbio Biotechnology) 

treatment was performed on the spinal cord cells. ClioCell nanoparticles stock vial was vortexed 

for 30 seconds to make sure a homogeneous suspension. 25 ul of the resuspended ClioCell 

nanoparticles was transferred to a 1.5 ml vial containing 1 ml of the cell culture medium or YES 

medium. Tubes were placed on the magnetic rack for 5 minutes, and when the beads were 

aggregated, and the solution was clear, YES medium was carefully removed without disturbing 

the beads. The tube was removed from the magnetic platform and nanoparticles were 

resuspended in 100 ul of YES medium. Nanoparticle suspension was vortexed and pipetted up 

and down to make a homogeneous solution without forming the bubbles. Carefully 100 ul cells 

were added in nanoparticle suspension and triturated 4 to 5 times to make sure cells were mixed 

adequately with ClioCell nanoparticles. Tubes were incubated in 4oC for 25 minutes. It allowed 

the nanoparticles to bind the cell debris or dead cells by the dissociation and trituration processes. 

After the incubation, 800 ul of the YES medium or cell culture medium was added to each vial 

and slowly mixed them using a pipette. Tubes were placed in the magnetic rack for 5 minutes to 
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gather all the nanoparticles together. After that, the supernatant was removed and collected in a 

fresh tube, which contains healthy dissociated cells. Cells were once again washed with PBS-

BSA solution and pass through a 100-micron filter. Cells were counted using the C-chip method 

and used for the Drop-seq experiment. 

5.2.4 Preparation of Drop-seq experiment 

5.2.4.1  Oil channel setup 

	
Droplet generation oil was loaded in a 10 ml syringe using 1 ml pipette. The 26G needle was 

attached to the syringe and plunger was slightly pushed up to remove all the air bubbles from the 

syringe. The syringe was loaded into the pump and tubing was attached to the needle. The pump 

has a clamp for pushing the syringe plunger. The clamp was adjusted to the syringe, and the flow 

rate of the oil pump was set to 30,000 ul/hr. The pump was switched on until the oil dripping out 

of the tubing from the other side. The pump was switched off, and once oil dripping was stopped, 

the free end of the tube was inserted into the leftmost channel of a clean droplet generation device 

on the microscope stage. Cutting of tubing with a sharp angle facilitate easier insertion into the 

Drop-seq device. The shorter tubing was inserted into the outlet channel, which was situated at 

the rightmost area of the device, and the free end was kept in a waste container at the beginning. 

5.2.4.2  Bead channel setup  

An aliquot of the beads from stock was taken, and beads were counted using the C-chip. Using 

below mentioned formula (Equation 1) bead concentration was determined and adjusted to have 

120,000 beads/ml. 

  

 

 

Equation 1: To count the beads in the C-chip.  

In this equation, the dilution factor was 2 because the beads were mixed with 6x DNA dye in 1:1 
ratio. 

  

Concentration in beads/ul = (Beads counted/number of boxes)*5*dilution factor 
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Beads tended to aggregate while counting in C-chip because of a slight charge present on their 

surface. To counteract this problem, beads were mixed with DNA 6X dye (NEB) in 1:1 ratio 

(dilution factor) for efficient counting. Beads were spun down in a tabletop centrifuge, TE-TW 

had been removed, and beads were resuspended in lysis buffer. For a standard Drop-seq 

experiment requiring 1 ml of bead flow, 50ul 1M DTT  (Sigma) in 950 ul lysis buffer was mixed 

with the beads before droplet formation. For bead solution, a 3 ml Luer-lock syringe was used, 

and a magnetic mixing disc was placed inside the syringe by removing the plunger from behind. 

Bead solution was carefully filled in the bead syringe using 1 ml pipette, excess air and bubbles 

were pushed out, and a 26G needle was attached to the syringe. The tubing was inserted into the 

syringe from one end, and it was loaded onto a syringe pump designated for the beads (stands in a 

vertical position above the surface of the microscopic stage). Before loading the syringe on the 

pump, magnetic mixing system was switched on for continuous mixing of the beads and prevents 

them from settling down or blocking the needle attached to the syringe. Magnetic mixing system 

(VP Scientific) was set at the speed of 10-15 for Europe (for the USA, 25-30 speed was 

recommended because of different electric voltage standards). The flow rate of the bead syringe 

pump was adjusted to 30,000 ul/hr and run started for a short time to push out all air from the 

tubing until there was liquid dripping from the other end of the tubing. The pump was switched 

off, and another end of the tubing was inserted into the bead inlet of the microfluidic device. The 

flow rate was set to 4000 ul/hr for Drop-seq experiment. 

5.2.4.3  Cells loading for the Drop-seq 

 
Cells were dissociated as described in section (5.2.2) and after post-dissociation cells were 

resuspended in 1 ml of PBS-BSA, spun in a microcentrifuge at 300xg for 3 minutes. The 

supernatant was removed, and cells were resuspended in 1 ml of PBS and filtered through 40-

micron filter. Cell counting was done using a C-chip and cells were resuspended in PBS-BSA 

with the final concentration of 100,000 cells/ml. Cells were mixed properly and loaded in a 3 ml 

Luer-lock syringe with the help of 1 ml pipette. The 26G needle was attached, and air bubbles 

were removed by pressing the plunger while keeping the syringe in vertical position. Cell syringe 

was mounted into the pump in the horizontal direction, same as we did with the oil pump and 

tubing was attached to the needle. The flow rate was adjusted to 30,000 ul/hr and pump was short 

run to push out all the air and bubbles from the system. The run was halted once liquid was 



 93 

dripping from the other side of the tubing. Pump flow rate was set to 4000 ul/hr, and the free end 

was inserted into the microfluidic device cell channel. 

5.2.4.4  Flow rates: 

• Oil:   15,000 ul/hr 

• Cells:   4,000 ul/hr 

• Beads: 4,000 ul/hr 

5.2.4.5  Starting Drop-seq run: 

• Start order:   cells -> beads -> oil 

• Stop order:   beads -> cells -> oil 

  

Drop-seq run was started by first starting cell pump, then the beads (with continuous mixing of 

beads) and at last the oil pump was started. The rationale behind this order was that bead solution 

should not flow back into the cell channel, because of the lysis reagent present in the bead 

channel. Lysis reagent can lyse the incoming cells before they can reach the droplet formation 

junction. Similarly, bead flow should be stopped first once the Drop-seq run is finished or need to 

be stopped in between of an experiment. It was also helpful to pull out tubing from oil, bead and 

cell channel simultaneously from the device after switching off the pumps in between of the two 

cell loading in the same device or to reuse that device in the future experiment. It takes around 10 

seconds to 1-minute time for all the flows to stabilize and start production of good quality 

droplets. The outflow tube was positioned in a waste container until the flow was stabilized. To 

check droplet emulation quality, outflow tubing was tilted to one side of the Falcon so that the 

droplets were running down from the side. Stable droplet production could be identified by hazy 

and uniform line because every droplet would be the same size. Stable droplet formation could 

also be determined by visualizing a flickering pattern at the droplet generation junction (appears 

as an elongated triangle) inside the Drop-seq microfluidic device under the microscope at 4x 

magnification (E. Macosko & Goldman, 2015b). Apart from this, the flow downstream to this 

junction was appeared “blurry” because of the fast movement of droplets (E. Macosko & 

Goldman, 2015b).  
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Clear stream downstream of droplet generation junction was an indication of no droplet 

formation. In a higher objective than 10x, it could be seen a narrow stream of oil running in the 

center of outflow and the surrounding was blurry in case of the droplets formation (E. Macosko 

& Goldman, 2015b). Once it was sure that stable droplets were forming and reached by the end 

of the outflow tubing (checked by the run-down method as described previously), the droplets 

collection tube was switched to a fresh 50 ml falcon to collect good quality droplets for further 

processing. Droplet generation junction (elongated triangle) and flow downstream to this junction 

were continuously monitored inside the microscope to maintain the overall good quality droplets 

collection for the experiment. The droplets made from 1 ml of the cell and 1 ml of the bead flow 

was collected into each 50 ml falcon tube. More than 1 ml cell product in each falcon could have 

an adverse effect on downstream processing (E. Macosko & Goldman, 2015a). If droplets were 

not being formed after some time or a microfluidic channel was blocked, it would be necessary to 

stop and restart some of the flows. Stopping the bead and cell pumps while continue running the 

oil flow for some seconds and then restart bead and cell flow back could be helpful in droplet 

generation with good quality (E. Macosko & Goldman, 2015b). 

5.2.5 Assessment of stable droplet generation junction during a Drop-seq run 
 

Droplet generation junction is the place in the Drop-seq microfluidic device where all three flows 

(cells, beads, and oil) merge to generate droplets. It appears like an elongated triangle. A good 

triangle was directly correlated with good quality droplet formation and a key for the Drop-seq 

experiment because of following reasons: 

 

1. It indicates uniform droplet production. 

2. It helps to figure out flow related problems, which could contribute to bad droplet quality. 

 

The shape of a good triangle was different slightly from device to device, and it also depends on 

flow rates used in Drop-seq experiment (E. Macosko & Goldman, 2015b). If the triangle 

appeared little wide or small in shape, it was helpful to check that all tubing was fixed properly 

with the needles and there was no leaking between the junction point of the needle and tubing and 

device inlets of the tubing.  
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Here are some conditions, which can lead to the abnormal shape of a triangle: 

1. Decreased cell flow: In this condition, the base of the triangle appears widens and 

outward curved (see Figure	5.2 (A)). It could occur either because of the cell solution was 

over, or it might indicate errors in the cell flow. For example, the cell solution might be 

leaking, the needle was not appropriately fixed with syringe, error in the pump, and so on. 

 

2. Decreased bead flow: In this condition, the triangle appears elongated and narrow as 

shown in Figure	5.2 (B) (E. Macosko & Goldman, 2015b). It could occur either because 

of the bead solution was over, or it might be an error in bead tubing, clogging in bead 

needle or needle not fixed properly with bead syringe or pump errors. 

 

3. Pulsating triangle: It would lead to the production of different size droplets. The reason 

behind this phenomenon was either magnet was touching or too close to the bead syringe 

or the bead pump. Sliding bead syringe could fix pulsating triangle. 

 

4. Tip of the triangle flicker: It would also lead to the production of different size droplets. 

This phenomenon could be fixed by decreasing bead and cell flow rates. It could also 

emerge because of the error from outflow tubing or if it is longer than required. To 

stabilize flickering, tapping on the outflow tube was done. 

 

 
A 

 
B 

Figure 5.2: Abnormal droplet generation junctions. 

(A) When cell flow decreased. (B) When bead flow decreased. 
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5.2.6 Quality control of droplets 
  

To assess the quality of droplets generated in a Drop-seq experiment, 20 ul of oil containing an 

approximately 1/5th volume of droplet emulsion was loaded into a C-chip. It was rolled some 

time to equally distribute droplets on the surface. Droplets were observed using a microscope at 

10x magnification. The droplets were seen as a homogeneous, circular shaped and transparent; 

and the beads were appearing as a smaller dark circle inside the droplets (E. Macosko & 

Goldman, 2015a). Cells could not be seen at this stage because of they were lysed by lysis buffer 

used in bead flow. A homogeneous population of droplets was considered to be high quality and 

droplets were counted to check for the presence of single bead or doublets of the beads in a single 

droplet as shown in (Figure	5.7). According to (E. Z. Macosko et al., 2015) bead doublet rate of 

less than 5% in an experiment is appropriate to proceed with the sample.  

5.2.7 Processing of droplets 
 

To prepare single-cell libraries for sequencing, following steps were used to recover beads, 

reverse transcription of RNA and generate libraries from pooled samples.  

5.2.7.1  Breakage of droplets to collect the beads 

	

To recover the beads along with captured RNA on the bead surface, the first step was to break the 

oil droplets and separate the oil from the beads. Because oil is heavier than the droplets, it sinks 

to the bottom of falcon tube. Excess oil was removed from a falcon tube using p1000 pipette. 

Pipette was pressed down to its first stop and pushed through the droplets layer to the bottom of 

the falcon tube. After that, the pipette was pressed until a second stop to remove any droplets 

inside the tip. Most of the oil was removed from the bottom of the falcon. In the droplets 

containing falcon, 30 ml of 6X SSC (Saline-sodium citrate buffer; 3M NaCl in 0.3M sodium 

citrate; pH 7.0) diluted in water, and 1 ml of Perflurooctanol (PFO) was added in the fume hood 

at the room temperature. The falcon was vertically shaken by hand 4 to 5 times for breakage of 

the droplets and centrifuged at 1000xg for 1 minutes. After spinning, most of the white beads 

were located on the interface of oil and SSC buffer. If many beads were still floating after 
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centrifugation, the falcon was again centrifuged for 1min at 1000g. It was also helpful to loosen 

the caps of the falcon to prevent the beads from floating up again.  

 
Ice was pre-punched to keep falcon without disturbing the beads. Falcons were carefully placed 

into the ice after centrifugation. The supernatant was discarded from the top, leaving some liquid 

above the interface using a pipette. Another 30 ml fresh 6X SSC buffer was added on top of the 

beads to kick them up in SSC solution. After 10 seconds, once all the oil was sunk to the bottom 

of the falcon, supernatant above the oil surface (containing beads) were taken in a new Falcon 

tube. White beads could be seen in the Falcon. Beads were spun again at 1000xg for 1 minutes. 

All the beads were at the bottom after this centrifugation step. The supernatant was discarded, 

leaving 1 ml of SSC buffer. After mixing of the beads, it was transferred to a 1.5 ml DNA low 

binding tubes and centrifuged using a mini-centrifuge. The supernatant was removed, and beads 

were washed twice with 1 ml of 6X SSC buffer and one time with 300 microliters of Maxima 5X 

RT buffer (ThermoFisher Scientific). After removing 5X RT buffer, beads were processed for 

reverse transcription and further steps. 

5.2.7.2  Reverse transcription of RNA 

	
200 ul of RT mix (see 2.1) was added to the vial containing beads and incubated at room 

temperature for 30 minutes on a rotating wheel. The vials were further incubated at 42oC for 90 

minutes in a lab incubator (Eppendorf) with intermediate shaking by hand after every 10 minutes. 

After incubation, beads were washed with 1 ml of TE-SDS and two times with 1 ml TE-TW 

solution. Afterward, beads were washed with 1 ml of 10 mM Tris (pH 8) prepared in water, and 

proceeded to exonuclease I treatment. Reverse transcription step generates cDNA on the surface 

of the beads using RNA as a template (hybridized by the poly A tail to the bead primer). One RT 

mix reaction was used for around 50K beads. Beads could be stored after RT step for some time 

in TE-TW solution at 4oC (maximum one month). 

5.2.7.3  Exonuclease I treatment of beads to remove excess primers 

	
This treatment digests excess primers on the surface of the bead that was not captured by an RNA 

molecule. 200 ul of the exonuclease I mix was sufficient for the processing of approximately 

90,000 STAMPs. After reverse transcription steps and washing with 1 ml of 10mM Tris (pH 8), 
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beads were mixed with 200 ul of exonuclease mix. Reaction tubes were incubated at 37oC for 45 

minutes on a thermoshaker with the rotation of tubes manually every 10 minutes intervals. After 

the Exonuclease-I treatment, beads were washed with 1 ml of TE-SDS and two times with 1 ml 

TE-TW. Beads could be stored after Exonuclease-I treatment for some time in TE-TW solution at 

4oC. 

5.2.8 cDNA amplification PCR (PCR-I) 
 

cDNA amplification PCR step was employed to increase the concentration of individual full-

length cDNA molecules (transcribed from RNA of single-cells) to preserve them from loss and 

process them for library preparation steps in downstream procedures. Beads were homogenized 

properly in 1 ml TE-TW solution, and 20 ul of the beads were taken out and mixed with 20 ul of 

6X DNA dye in 1:1 ratio. As mentioned previously, 6x DNA dye prohibits the aggregation of 

beads, and it helps in evenly spreading of beads in the C-chip. Beads were counted on the C-chip 

using the (Equation	1). All 16 boxes were counted for the good estimation of the bead numbers. 

Beads were washed with 1 ml of H2O, and approximately 5000 beads were distributed into each 

PCR tube. PCR tubes were spun down, the supernatant was removed, and PCR mix was added to 

each tube as follows: 

H2O 21 ul 

10 uM SMART PCR primer 4 ul 

2x Kapa HiFi Hotstart Readymix 25 ul 

 

PCR tubes were mixed well-using pipette up and down and following PCR program was used to 

amplify the cDNA. 

98oC for 3 minutes. 1 cycle 

98oC for 20s 
65oC for 45s 
72oC for 3 minutes. 

 
4 cycles 

98oC for 20s 
67oC for 20s 
72oC for 3 minutes. 

 
9 cycles 
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72oC for 5 minutes. 
4oC forever 

 

 

These 13 cycles were used for the cells and conditions in this thesis. A number of cycles depends 

on the type of cells used for the experiment and should be optimized for each cell type. 

Remaining beads could be stored in TE-TW at 4oC.  

5.2.8.1  AMPure purification and Bioanalyzer analysis of libraries 

 

cDNA libraries need to be purified to remove excess primers, enzymes and other components 

which can affect downstream library preparation procedures. The container of the AMPure beads 

was thawed at room temperature for 5 minutes and vortexed to mix the beads. 0.6x beads to 

sample ratio was used for this purification. 30 ul of AMPure XP beads were added to the 

amplified product (50 ul) from the previous reaction and incubated at room temperature for 15 

minutes. PCR tubes were put on a magnetic stand to allow aggregation of AMPure beads. The 

supernatant was removed, and beads were washed with 80% ethanol three times. During each 

washing step beads were incubated with 80% ethanol for 30 seconds. After the last ethanol wash, 

tubes were centrifuged briefly, and every drop of ethanol was removed. Beads were air dried for 

a few minutes. 10 ul of H2O was added to each tube, mixed properly and incubated at room 

temperature for 2 minutes. PCR tubes were again put on a magnetic stand to aggregate the beads. 

The supernatant was collected as a final product from this purification. The ampure purification 

process was repeated one more time using 0.6X AMPure beads. High sensitivity DNA 

bioanalyzer (Agilent	Technologies)	was used according to manufacturer’s protocol to assess the 

quality and concentration of the cDNA libraries. 1ul of the purified product was used as an input 

for bioanalyzer analysis. 

5.2.9 Tagmentation of cDNA using Nextera XT kit and PCR-II 
	
Library sizes were adjusted by using Nextera XT DNA	 library	 preparation	 kit	 (Illumina).	

Libraries of cDNA in the previous step had an average size of 1300-2000 bp. Although, the 

optimum library size for NGS sequencing needs to be much less. This step employs an 

engineered Tagmentase enzyme (Nextera XT kit) to cut the cDNA molecules in shorter sizes 
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(average 500-700 bp), which is appropriate for pair-end sequencing of Drop-seq libraries. For 

each sample, 600 pg of purified cDNA was taken and made up to 5 ul final volume with H2O in a 

PCR tube. 10 ul of Nextera TD buffer and 5 ul of Nextera Amplicon Tagmentase enzyme were 

added to each tube (final volume 20 ul). The solution was mixed by pipetting at least 5 times, and 

afterward tubes were centrifuged. Thermocycler was preheated to 55oC and tubes were incubated 

for 10 minutes at 55oC. After incubation, 5 ul of Neutralization buffer (Nextera XT kit) was 

added and mixed by pipetting 5 times. Tubes were centrifuged and incubated at room temperature 

for 5 minutes. Bubbles could be seen in the tube because of the viscosity of the solution. For the 

final library amplification, PCR-II mix was added to each tube in the following order: 

Nextera PCR mix 15 ul 

H2O 8 ul 

10 uM New-P5-SMART PCR hybrid oligo 1 ul 

10 uM Nextera Index (N70X oligo) 1 ul 

 

PCR-II mix selectively enrich cDNA fragments from 3’ end of RNA (containing cell barcode and 

PCR handle) so that libraries have cell identity information intact for each cDNA molecule 

sequenced. Following PCR program was used for PCR-II amplification 

 

98oC for 30 sec  

98oC for 10s 
55oC for 30s 
72oC for 30s 

 
14 cycles 

72oC for 5 minutes. 
4oC forever 

 

 

After this PCR reaction, tagmented libraries were purified with AMPure XP beads using the same 

protocol as described in the previous step, 2 times using 0.6x beads and 1 time using 1x AMPure 

XP beads. The final product was eluted with 10 ul of H2O, and Bioanalyzer High sensitivity 

DNA assay was ran according to manufacturer’s instructions. 1 ul of the purified cDNA libraries 

were used as an input. Libraries were also quantified using Qubit DNA high sensitivity reagent. 

Tagmented Drop-seq libraries were reasonably smooth with an average size of 500-700 bp. 
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Smaller than 400 average size libraries could have more poly A reads; larger libraries might have 

a lower cluster density and cluster quality for sequences.  

5.2.10 Preparation of custom Read-1 primer 
 

The stock primer was stored at 100 uM (or 100 pmoles/ul) in 10 mM Tris-HCl, pH 8.0. 

Immediately before loading into the sequencer, the 100 uM custom Read-1 primer was diluted to 

10 uM using 10 mM Tris-HCl at pH 8. After that 30 ul of the 10 uM Custom read primer was 

diluted with 600 ul of the chilled HT1 buffer to make a final solution of 0.5 uM custom Read-1 

primer. Primer solution was vortexed and centrifuged briefly. Primer solution was loaded into 

position 18 of the Miseq reagent cartridge. In the Instrument Experiment Manager sample sheet, 

Read-1 custom primer usage was indicated. Otherwise, the sequencer could use the Illumina 

Read-1 primer by default and which could lead to failure of the Drop-seq library sequencing. 

5.2.11 Sequencing of Drop-seq libraries 
 

Following specifications were used for sequencing of Drop-seq libraries in Illumina Mi-seq and 

Hi-seq 2500 sequencer: 

 

Read-1: 25 bp 

Read-2: 50 bp 

Read-1 Index: 8bp (Multiplexing of samples) 

Custom Read-1 primer 

 

Library concentration using Qubit measurement and average size from the High sensitivity DNA 

Bioanalyzer was used to make a 3 nM library solution in EB buffer. Following steps were 

followed to prepare libraries for sequencing. To denature the Drop-seq libraries, 10 ul of 3 nM 

library samples were mixed with 10 ul 0.2N NaOH. It leads to 1.5 nM concentration of the 

samples. Solutions were vortexed briefly and centrifuged to collect contents. The sample was 

incubated at room temperature (25oC for 5 minutes). 20 ul denatured library was diluted with 980 

ul chilled HT1 buffer to make a 30 pM library solution with 2 mM NaOH concentration. 

Following calculation describe this concentration: 
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C1V1=C2V2 

1.5 nm * 20 ul = C2 * 1000 ul   

C2 = 0.03nM 

1nM = 1000pM 

C2 = 0.03 nM * (1000 pM/1nM) = 30 pM 

 

400 ul of 30 pM library solution was mixed with 600 ul of chilled HT1 buffer for a final 

concentration of 12 pM sample and <1 mM NaOH. The final solution was used for cluster 

generation for Mi-seq machine and also for Hi-seq 2500 sequencer. 

5.2.12 Computational analysis of the Drop-seq sequences 
 

To process Drop-seq sequence data, the Drop-seq software pipeline was implemented, provided 

online by the developers of the Drop-seq method (Nemesh & Macosko, 2015). This software 

pipeline transforms raw sequence data into a “digital gene expression” (DGE) matrix, which 

contains integer counts of the number of transcripts for all the genes and all of the cells. The 

Drop-seq data analysis includes massive de-multiplexing of the raw data, alignment of reads to a 

reference genome and cellular and molecular barcodes processing (Nemesh & Macosko, 2015). 

Sequencing libraries of Drop-seq experiments produce paired-end reads. Read-1 contains 

information about 8 bp cell barcode and 12 bp molecular barcode (UMI). On the other hand, 

Read-2 contain transcript information, which could align to the reference genome (Nemesh & 

Macosko, 2015). 

 

To begin with the analysis, the raw data was processed by the Illumina’s bcl2fastq program to 

generate Fastq files. These Fastq files were processed with the Picard FastqToSam program to 

generate unmapped, queryname-sorted BAM files. Afterward, following steps were executed to 

align the raw reads and to create a BAM file that was suitable to produce digital gene expression 

(DGE) analysis (Nemesh & Macosko, 2015). 

a. Cell barcodes tagging 

b. Molecular barcodes tagging 

c. 5’ primer sequence trimming 
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d. 3’ polyA sequence trimming 

e. SAM to Fastq conversion 

f. Alignment to the reference genome using STAR 

g. STAR alignment sorting in queryname order 

h. STAR aligned tagged SAM file merged with recovered cell and molecular barcodes 

i. Addition of gene, exon, and other available annotation tags 

j. Detection of bead synthesis errors 

 

These programs were part of the Drop-seq software toolkit and also employ other programs like 

Picard tools and alignment tool STAR. After the execution of the steps mentioned above, 

alignment steps were completed and the pair end raw reads were converted into single end reads 

with the cell and molecular barcodes attached, cleaned, aligned to reference genome and prepared 

for digital gene expression analysis (Nemesh & Macosko, 2015). 

 

To digitally count the gene transcripts, a list of molecular barcodes (UMIs) for each gene, within 

each cell, was assembled and molecular barcodes within edit distance=1 were merged. The sum 

of unique molecular barcodes was reported as the number of transcripts of that specific gene in a 

given cell. The Drop-seq program DigitalExpression was used to extract digital gene expression 

(DGE) data from the aligned libraries from the previous steps (Nemesh & Macosko, 2015). The 

input of the digital expression program was the aligned BAM file generated in the previous 

workflow. There were two output files presented by this program. The first was the DGE matrix 

and the second was a summary of the DGE matrix, which contains the number of genes and 

transcripts observed on a per cell level (Nemesh & Macosko, 2015). For the secondary analysis 

of digital gene expression matrix, Seurat package (Butler & Satija, 2017) was used following the 

instructions from Seurat tutorials (Satija, 2017).  
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5.3 Results from Drop-seq optimization 

5.3.1 Optimization of Drop-seq quality using Human-Mouse cell mixing 
 

Human-Mouse mixed cell Drop-seq experiment was performed as described in the method 

section (5.2.1) to ensure that parameters used in Drop-seq optimization were not producing cell 

doubles attached to the bead-containing a single-cell barcode. After droplet processing, reverse 

transcription and exonuclease-I treatment beads were counted in C-chip (Equation 1 at page 91). 

Approximately 5000 beads were distributed in each PCR tube, and samples were amplified using 

cDNA amplification (PCR-I) protocol as described in the method section (5.2.8) . Bioanalyzer 

profile of these samples after cDNA amplification showed that cDNA molecules are with full 

length (around 1200-1600 average sizes) as they reverse transcribed from RNAs (Figure 5.3) 

 

 
Figure 5.3: Bioanalyzer profile of Human-mice mixed cell Drop-seq samples 
after cDNA amplification (PCR1).  

The x-axis represents the library size in base pairs, and Y-axis indicates the 
concentration. The first and the last peak in the graph are from low and high marker 
respectively. 

 

After the PCR-I, cDNA molecules were subjected to tagmentation process and subsequent 

amplification. Full-length cDNA molecules create adverse effects in pair-end sequencing 

technique. The tagmentation process cuts the cDNA molecules in shorter sizes and adds a known 

flanking sequence towards both ends of resulting cDNA chunks. This sequence from Tagmentase 

enzyme was used in the second round of selective amplification, which uses PCR handle 

sequence from the bead primer as well as sequence added by the tagmentase enzyme to amplify 
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the cDNA libraries. In this amplification process, indexes (also contain adapters) from the 

Nextera XT index kit (Illumina) to attach to the Next generation sequencing platform were also 

added. The resulting libraries only have molecules, which have 12 bp cell barcode and 8 bp UMI 

intact in the cDNA. Other cDNA chunks would not amplify in this step (PCR-II). Libraries 

resulted after this step was relatively smooth and had an average size of 400-700bp as described 

in Figure	5.4. 

 

 
Figure 5.4: Bioanalyzer profile of Human-mice mixed cell Drop-seq samples 
after PCR-II.  

The x-axis represents the library size in base pairs, and Y-axis indicates the 
concentration. The first and the last peak in the graph are from low and high marker 
respectively. 

 

5.3.1.1  STAMPs count determination 

 

To determine the number of STAMPs present in a sample, a histogram method (Bam-Tag 

histogram) was used (Figure	5.5). Drop-seq program BAMTagHistogram was used to generate 

this histogram. After assigning transcript reads to individual cell barcodes, they were sorted in the 

descending order. The cumulative fraction of reads (of sorted cell barcodes) was plotted on the 

Y-axis and the X-axis, a number of cell barcodes were plotted. The knee of the plot indicates the 

number of the STAMPs present in a sample. In Human-mice cell mixing experiments, 180 cells 

were detected using this technique (Figure	5.5). 
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Figure 5.5: Bam-tag histogram for cell counts.  

The x-axis represents the number of cell barcodes (sorted by a number of reads), 
and Y-axis represents the cumulative fraction of the reads. 

 

5.3.1.2  Species mixing plot 

The species mixing plot was used to determine the cross-contamination of two different species 

among the single-cell transcriptomes. In this method, all the reads assigned to a STAMP are 

mapped against a custom-made transcriptome, which has a human as well as mouse transcript 

information (flagged according to species). After that, if an individual cell has mapped against 

80% or more human transcripts, the cell was assigned to Human cells. On the other hand, if the 

reads from a cell have mapped 80% or more against mouse cells, the cell was assigned as a 

mouse cell. In species mixing plot, different single-cells were plotted for Human transcripts on 

X-axis and mouse transcripts on the Y-axis. Results show that individual cells exclusively belong 

to one species and mixed signals which could be an indication of cell doublets or another kind of 

data quality complications, is not present in Human-mice cell mixing experiment (see Figure	

5.6). 
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Figure 5.6: The species-mixing plot for Human-mouse cell mixing Drop-seq 
experiment.  

X and Y-axis are representing the number of transcripts present in individual cells, 
mapped to human genome or mouse genome respectively. In total 180 cells were 
present; 90 cells were mapped to Human transcripts, and 87 cells were mapped to 
mouse transcripts. Three cells having a low number of transcripts could not be 
determined for Human or mouse, so that, depicted as mixed cells. 
 

5.3.1.3  Droplets quality analysis for bead doublet using visual inspection 

To ensure Drop-seq experiment parameters are not producing oil droplets with more than one 

bead, following test was done. An aliquot of 3ul droplet emulsion and 17ul oil was taken using 

p200 and carefully loaded onto the platform of a C-chip. It was rolled back and forth 4-5 times 

and visualized using a microscope. Droplets were checked for the presence of one or more beads 

(Figure	5.7). In this observation, droplets with only one bead could be seen, which indicates the 

excellent quality of the droplets with set parameters. In Figure	5.7, cells were not visible at this 

stage because of the lysis buffer presence inside the droplets. 
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Figure 5.7: Droplets quality control for bead doublets. 

Blue arrows indicate representative droplets with one bead. 
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5.4 Characterization of sub-population of motor neurons in spinal cord tissue 
using the Drop-seq method (case study-I) 

 

After optimizing the Drop-seq parameters on the Human-mice cell mixing experiment, Drop-seq 

experiment on spinal cord tissue was carried out. P14 mice were used for this experiment and 

processed with dissection, and cell dissociation (papain, trehalose, Kynurenic acid, AP-V, and 

DNase) as discussed in the section (5.2.2). Followed by droplet generation, reverse transcription 

and exonuclease-I treatment beads were counted using the C-chip. Approximately 50000 beads 

were present in the sample at this stage. In PCR tubes, 5000 beads were added to each tube and 

samples were amplified using cDNA amplification (PCR-I) protocol as described in the method 

section. Remaining beads were stored for any future use at the 4oC. Figure	5.8, represents the 

bioanalyzer profile of motor neuron sample libraries after PCR-I. 

 

  
Figure 5.8: Representative bioanalyzer profile of spinal cord Drop-seq sample 
after cDNA amplification PCR-I.  

The first and the last peak in the graph are from low and high marker respectively. 
The x-axis represents the library size in base pairs, and Y-axis indicates the 
concentration. The average size of the libraries was around 1600 bp at this stage. 

 

After PCR-I, cDNA molecules detached from the beads and came into solution. cDNA was 

purified using AMPure XP beads as described in method section and after quantification using 

bioanalyzer, 600 pg of cDNA from each tube was used for tagmentation process and later another 

PCR reaction (PCR-II) together with adapters and indexes for high throughput sequencing. After 

PCR-II, libraries were again purified with AmpureXP beads to remove unused primers, enzyme, 

and other impurities. Libraries were dissolved in 10ul H2O. Figure	 5.9, represents the 

bioanalyzer profile of motor neuron Drop-seq libraries after PCR-II.  
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Figure 5.9: Representative bioanalyzer profile of spinal cord Drop-seq sample 
after PCR-II.  

The first and the last peak in the graph are from low and high marker respectively. 
The x-axis represents the library size in base pairs, and Y-axis indicates the 
concentration. At this stage, libraries were relatively smooth and had an average size 
around 950 bp.  

 
 

5.4.1 Sequenced data quality of spinal cord Drop-seq libraries 
 

Before processing raw data generated by high throughput sequencer, data quality has been 

checked for per base sequencing quality and many other parameters. For this purpose, raw Fastq 

files were processed using the FastQC software. For Drop-seq libraries, pair-end sequencing 

generates two Fastq files:  

 

Read-1: Cell barcode and UMI 

Read-2: transcript sequence 

 

The spinal cord Drop-seq libraries were first sequenced in Mi-seq. Table	 5.1 provides 

information about basic statistics of Read1 of one pool of Drop-seq library. Furthermore, Figure	

5.10 describes the per base sequence quality of the Read-1 for the Drop-seq library. 
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Measure Value 
Filename Drop-seq_MN_sept2017_merged_R1.fastq.gz 
File type Conventional base calls 
Encoding Sanger / Illumina 1.9 
Total Sequences 178741389 
Sequences flagged as poor quality 0 
Sequence length 26 
%GC 41 
Table 5.1: Basic statistics for the Read-1 of a spinal cord Drop-seq library. 

 
Figure 5.10: Sequencing quality (per base) for the Read-1 of a spinal cord 
Drop-seq library.  

On X-axis, base pair positions of sequenced read are depicted. Y-axis, represent Q 
(Phred score) in log scale. As such, Phred score 20 and more considered as good 
quality. 

 

Apart from this, several other quality scores were also presented by the FastQC program, which 

is not presented in this thesis. Similarly, Table	5.2 provides information about basic statistics of 

Read-2 of the same pool of Drop-seq library and Figure	 5.11 describe the per base sequence 

quality of the Read-2 for the Drop-seq library. 
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Measure Value 
Filename Drop-seq_MN_sept2017_merged_R2.fastq.gz 
File type Conventional base calls 
Encoding Sanger / Illumina 1.9 
Total Sequences 178741389 
Sequences flagged as poor quality 0 
Sequence length 26-51 
%GC 43 
Table 5.2: Basic statistics for the Read-2 of a spinal cord Drop-seq library. 

 

 
Figure 5.11: Sequencing quality (Per base) for the Read-2 of a spinal cord 
Drop-seq library.  

On X-axis, base pair positions of sequenced read are depicted. Y-axis, represent Q 
(Phred score) in log scale. As such, Phred score 20 and more considered as good 
quality. 
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5.4.2 Spinal cord Drop-seq data analysis 
 

The primary data analysis was done following the Drop-seq analysis pipeline as described in the 

method section. Summary of the output results from each step is as follows (Table	5.3). 

 

Process Relevant Statistics 
Create Unmapped BAM  
Tag Cell Barcodes Number of Reads (Left and Right): 178,741,389 
Tag Molecular Barcodes Number of Reads (Left and Right): 178,741,389 
Filter BAM Number of Reads: 137,153,711 
Trim 5’ primer sequence Number of Reads: 137,153,711 
Trim 3’ polyA sequence Number of Reads: 137,153,711 
Convert SAM to Fastq  
Star Alignment Number of input reads: 137,153,711 Average input 

read length: 48 Uniquely mapped reads number: 
111,109,025 Uniquely mapped reads %: 81.01% 

Table 5.3: Statistics of reads after each step in Drop-seq pipeline. 

 

5.4.2.1  STAMPs count determination 

 

For motor neuron Drop-seq experiment, to determine the number of sequenced STAMPs, Bam-

Tag Histogram was prepared (Figure	5.12). After assigning transcripts to individual STAMPs, 

they were sorted in descending order. The cumulative fraction of reads and the cell barcodes were 

plotted on the Y-axis and X-axis respectively. The knee of the plot indicates the number of cells 

present in the sample. In motor neuron experiment, top 1000 highest transcripts containing 

STAMPs were chosen for further analysis. 
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Figure 5.12: Bam-tag histogram for spinal cord Drop-seq experiment.  

The X-axis represents the number of cell barcodes (sorted by the number of reads), 
and Y-axis represents the cumulative fraction of the reads. In this experiment, 1000 
STAMPs were chosen for the downstream analysis. 

 

5.4.2.2  Quality control and further cells selection using Seurat 

	
The digital gene expression (DGE) file, which was obtained by running Drop-seq analysis 

pipeline, was further subjected to an R based toolkit Seurat (v2.0) for single-cell genomics. To 

process scRNA-seq data using Seurat the following steps were carried out. After creating the 

Seurat object using the CreateSeuratObject function, single-cells were filtered out based on 

technical and biological parameters. The number of genes and UMIs (nGene and nUMI) were 

calculated for each object using Seurat. The percentage of mitochondrial genes were also 

calculated and used as one of the QC metric criteria to filter out cells containing a high number of 

mitochondrial genes. Using violin plot (Figure 5.13) and gene plot (Figure 5.14) rare subset of 

cells which had more than 20% of the reads from mitochondrial genes, were excluded from the 

dataset. Similarly, the cells, which have unique gene counts more than 7000 (possible doublet of 

cells), or less than 1000, were filtered out before data analysis. After this quality control filtration, 

837 cells were remaining in the motor neuron Drop-seq dataset.   
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Figure 5.13: Violin plot for the gene, transcript, and percent of mitochondrial 
reads.  

The Y-axis represents the number of genes (nGene), the number of UMIs (nUMI) 
and percentages of the mitochondrial reads (percent.mito) in the total reads 
respectively (from left to right).  

 

 
Figure 5.14: Gene plot for spinal cord Drop-seq. 

The plot, at the left side, represents the distribution of mitochondrial percentage 
(percent.mito) and transcripts (nUMI) for the STAMPs/cells detected in the spinal 
cord Drop-seq experiment. The plot, at the right side, represents the number of 
genes (nGene) and transcripts (nUMI) for the same STAMPs. Each dot in the figure 
above represents a STAMP/cell. 
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5.4.2.3  Data normalization  

	
After filtering out bad quality cells (mitochondrial genes > 20%; genes > 7000 and genes <1000) 

from the dataset, the following step was to normalize the Drop-seq data. Seurat package employs 

a global-scaling normalization method called LogNormalize. It normalizes the gene expression 

measurements for each cell by the total expression multiplied by a scale factor (by default 

10,000) and log-transformed the result (Butler & Satija, 2017). 

5.4.2.4  Variable genes detection in the Drop-seq dataset 

 

In single-cell data analysis, variable genes are more interesting to determine cell markers or to 

study differential expression of genes among individual cells. Seurat package calculates highly 

variable genes, which could be used for downstream analysis. FindVariableGenes program 

calculates the dispersion and average expression for each gene, and place these genes into bins 

and then calculates a z-score for dispersion within each bin (Satija, 2017). Resulting graph from 

this analysis is depicted in 	

Figure	 5.15. These results enabled the identification of variable genes while controlling for a 

strong relationship between variability and average gene expression.	

 

 
Figure 5.15: Dispersion and average expression plot for the dataset. 

The X-axis represents the average expression and the Y-axis represents the 
dispersion of the genes. Using this graph, highly variable genes were selected for 
downstream analysis. 
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5.4.2.5  Data scaling and removing uninteresting sources of variation 

 

Single-cell datasets contain many unwanted sources of variations, for example, technical noise, 

batch effects, cell cycle variation and so on. (Buettner et al., 2015) Suggested that by regress out 

these variations from the analysis, it could improve downstream processes such as dimensionality 

reduction and clustering. Seurat package implements linear models for the prediction of gene 

expression based on user-defined variables. The scaled z-scored residuals of linear models were 

used for dimensional reduction and clustering analysis. 

5.4.2.6  Linear dimensional reduction 

 

After removing technical variables and other uninteresting variations, PCA analysis on scaled 

data was performed. Generally, dimensional reduction on highly variable genes could increase 

performance. However, in UMI containing data, after removing technical variables, PCA remain 

the same. For motor neuron dataset, VizPCA function in Seurat package plotted the highly 

variable genes, as described in Figure	5.16 (also see PCA plot in Figure	5.17). 

 
Figure 5.16: Genes enriched for PCA analysis in spinal cord Drop-seq dataset. 
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Figure 5.17: PCA plot for all the single-cells in spinal cord dataset. 

 

After PCA plot analysis, motor neuron Drop-seq data was investigated for the primary sources of 

heterogeneity using a PCHeatmap function from Seurat package. It was also helpful to decide the 

number of PCs to add in the further downstream analysis (Butler & Satija, 2017). PCHeatmap 

ordered cells and genes according to their corresponding PCA scores (Figure	5.18). Although, 

this method involves a supervised analysis, it is beneficial for investigation of correlated gene 

sets.  
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Figure 5.18: PC Heat map for first 9 PCs, which were selected for downstream 
analysis.  

 

5.4.2.7  Determining statistically significant principal components 

	

To reduce technical noise in Drop-seq data, clustering of the cells was done, based on their PCA 

scores using the Seurat package. Each PC was representing a metagene, which combines 

information across a correlated gene set (Satija, 2017). Therefore, it was an important step to 

determine the number of PCs to include in the downstream procedures. The PCs selection was 

implemented by a resampling test, which was based on Jackstraw method (Chung & Storey, 
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2015). A subset of the data (1%) was randomly permuted, and PCA analysis was repeated several 

times, constructing a null distribution of gene scores each time. Significant PCs were identified 

which contains higher enrichment of low p-value genes (Butler & Satija, 2017). The Seurat 

package function ‘JackStrawPlot’ provides a visualization tool for manually comparing the p-

value distribution for each PC with a uniform distribution (dashed line) (Figure 5.19). Significant 

PCs were showing higher enrichment of genes with low p-value, depicted by the solid curve 

above the dashed line in Figure 5.19 (Satija, 2017). Another Seurat function called PCElbowPlot 

uses more ad hoc method to determine PCs selection. It uses a plot of the standard deviations of 

the PCs and cutoff could be taken at the point of the apparent elbow in the graph. For the motor 

neuron Drop-seq data, the elbow appeared near PC16 (Figure	5.20). 

 

 
Figure 5.19: Jackstraw plot of principal components.  

The dashed line represents the uniform distribution, and solid curve line represents 
the enrichment of genes with low p-values in significant PCs. 
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Figure 5.20: PCElbow plot of principal components.  

The x-axis represents the number of PCs and Y-axis represents the standard 
deviation of principal components.  

 

5.4.2.8  Clustering of the cells 

 

Seurat package includes a graph-based clustering approach based on the method described in the 

SNN-Cliq (Xu & Su, 2015) and PhenoGraph (Levine et al., 2015) different than Drop-seq data 

analysis (E. Z. Macosko et al., 2015). The distance metric which drives the clustering analysis 

remains the same as described in (E. Z. Macosko et al., 2015). Although, partitioning the cellular 

distance matrix into clusters was improved because of the graph based clustering. SNN-Cliq and 

PhenoGraph methods embed cells in a graph structure (for instance, K-nearest neighbor or KNN 

graph) where graph edges between cells represent the similar gene expression patterns. 

Afterward, this graph was partitioned into highly interconnected ‘quasi-cliques’ or ‘communities’ 

(Satija, 2017). In Seurat package, a KNN graph was constructed based on the Euclidean distance 

in PCA space, and graph edge weights between two cells were refined based on the shared 

overlap in their respective local neighborhoods (also known as Jaccard distance) (Zhang, Wu, & 

You, 2017). To cluster the cells, Seurat package applies modularity optimization techniques to 

group cells together iteratively, keeping the goal of optimizing the standard modularity function 

(Satija, 2017). The FindClusters function in the Seurat package could implement this procedure, 

and it also contains a resolution parameter to set the granularity of the downstream clustering. 

The high values result in a more number of clusters (Satija, 2017). 
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5.4.2.9  Non-linear dimensional reduction (tSNE) plot for cell clusters 

 

Seurat package uses tSNE (t-distributed stochastic neighbor embedding) method as an efficient 

visualization tool to explore single-cell datasets (Butler & Satija, 2017). Doing clustering directly 

on tSNE components is not appropriate. However, graph-based clusters should co-localize with 

the tSNE plot (with some exception). The tSNE method places the cells together in a low 

dimensional space, which have similar local neighborhoods in the high dimensional space (Van 

Der Maaten & Hinton, 2008). To generate the tSNE graph, same PCs were used, which were 

selected for the clustering analysis (Figure	5.20). The tSNE plot visualized the 6 clusters (cluster 

0 to 5) in the motor neuron Drop-seq dataset (Figure	5.21). 

 

 
Figure 5.21: tSNE plot for spinal cord Drop-seq clusters. 

Cell are colored according to their clusters in the t-SNE plot. In total, six clusters 
were present in the spinal cord Drop-seq dataset. 
 

5.4.2.10  Differential expression of genes among single-cell clusters (biomarker analysis) 

 

The identified clusters from the previous steps could be defined based on their gene markers or 

differential expression of genes. The Seurat package could identify positive and negative markers 
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of a single cluster in comparison to all other cells in the study. For the identification of marker 

genes in the motor neuron Drop-seq dataset, a Seurat package function FindAllMarkers was used 

(Satija, 2017). This function could also be used to test groups of clusters vs. each other or against 

all the single-cells. Table	5.4, summarizes the marker genes in each cluster identified for motor 

neuron Drop-seq dataset. Furthermore, Table	 5.5 contains information about parameters and 

statistics used in clustering analysis and results obtained during the analysis. Based on the 

identified marker genes for each cluster, another Seurat function called DoHeatmap was used to 

generate an expression heat map for all the single-cells in motor neuron dataset. The top 10 

marker genes for each cluster based on their respective log fold change were presented in the heat 

map (Figure	5.22). 

 

Cluster No. of Markers No. of Positive 
Markers 

No. Markers with     
p_val < 0.001 

0 1111 371 371 
1 587 362 116 
2 1346 1052 469 
3 3298 2133 2118 
4 2359 1451 451 
5 2778 1834 1211 

 

Table 5.4: Statistics of marker genes in identified clusters of cells from motor 
neuron Drop-seq dataset. 

 

Process Values 
Number of Cells selected 1000 
Number of Genes 18.254 
%age of Mitochondrial Genes used 0.2 
Mitochondrial Threshold -inf: 0.3 
UMI Threshold 1000: 7000 
Number of Cells After Filtering 837 
No of Variable Genes Detected 3.353 
No of Principal Components (PCs) Found 20 
No of PCs used in Clustering 16 
Clustering Resolution 0.4 
No of Clusters 6 

Table 5.5 Parameters selected at each step in Seurat clustering analysis. 
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Figure 5.22: Heatmap of the top 10 biomarkers in identified clusters. 

 

5.4.2.11  Cell type identity of the clusters 

 

Based on previous literature (Friese et al., 2009; Shneider, Brown, Smith, Pickel, & Alvarez, 

2009) , known markers of motor neuron subtypes were categorized and listed (Table	 5.6). In 

brief, four subtypes of motor neuron markers were investigated, which are gamma motor neuron, 

alpha fast motor neuron, alpha slow motor neuron as well as precursor motor neuron (Table	5.6). 

These markers were investigated among different clusters to check their cell type identity. For 

instance, the violin plot shows expression probability distributions across all the clusters; the 

feature plot visualizes gene expression on the tSNE plot or a PCA plot. Apart from these tools, 

Joy-plot and Dot-plot were also employed to assess the clusters for their representative markers. 

 

The gamma motor neuron marker Gfra1 was mainly present in cluster 0,1,2 and 3 as shown in 

feature plot (Figure	5.23) and violin plot (Figure	5.24) and also correlated by Dot plot and Joy 
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plot (Figure	5.25 and Figure	5.26 respectively). The alpha fast motor neuron markers Adam23, 

Mest, Dkk3, and Prkcb, were mainly present in cluster 3; although Adam23 was also showed 

some expression in the cells of cluster 0 and 1 (Figure	 5.27 to Figure	 5.30) Similarly, Prkcb 

showed some expression in cluster 1.  

 

Furthermore, alpha slow motor neuron marker Sv2a, Crtac1, and Aldoc had high expression in 

the cells of the cluster 3 and mild expression in the cluster 0,1 and 2. Another alpha slow motor 

neuron markers Timp3 and Prkcd showed high expression in cluster 5 and cluster 4 respectively. 

On the other hand, other known markers for the alpha slow motor neurons such as Kcnmb4, 

Mmp2, Serpinf1, and Cacna1h did not appear in expression analysis in any of the clusters 

(Figure	5.31 to Figure	5.34).  

 

In the end, precursor motor neuron marker Olig2 showed high expression in the cells of cluster 

0,1 and 2 and did not show expression in remaining clusters in motor neuron Drop-seq dataset 

(Figure	5.35 to Figure	5.38). For all the six clusters of the motor neuron Drop-seq dataset, gene 

ontology analysis was presented in Figure	5.39. 

 

 

Gamma MN Alpha Fast MN Alpha Slow MN Precursor MN 
Gfra1 Adam23 Sv2a Olig2 

 Mest Kcnmb4  
 Dkk3 Crtac1  
 Prkcb Timp3  
  Aldoc  
  Mmp2  
  Prkcd  
  Serpinf1  

Table 5.6 List of known markers for sub-types of motor neurons. 
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Gamma motor neuron marker 

 

                  
Figure 5.23: Feature plot for Gfra1 marker across all the single-cells. 

 

 
Figure 5.24: Violin plot for Gfra1 marker across all the single-cell clusters. 
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Figure 5.25: Dot plot for Gfra1 marker across all the single-cell clusters. 

 

 
Figure 5.26: Joy plot for Gfra1 marker across all the single-cell clusters. 
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Alpha fast motor neuron markers 

 
Figure 5.27: Feature plot for alpha fast motor neuron markers across all the 
single-cells. 

  
Figure 5.28: Violin plot for alpha fast motor neuron markers. 
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Figure 5.29: Dot plot for alpha fast motor neuron markers across all the single-
cell clusters. 

 

 
 

Figure 5.30: Joy plot for alpha fast motor neuron markers across all the single-
cell clusters. 
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Alpha slow motor neuron markers 

 
Figure 5.31: Feature plot for alpha slow motor neuron markers across all the single-
cell clusters. 

 
Figure 5.32: Violin plot for alpha slow motor neuron markers. 
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Figure 5.33: Dot plot for alpha slow motor neuron markers across all the cell 
clusters. 

 
Figure 5.34: Joy plot for alpha slow motor neuron markers across all the cell 
clusters. 
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Precursor motor neuron markers 

 

 
Figure 5.35: Feature plot for precursor motor neuron marker across all the 
single-cell clusters. 

 
Figure 5.36: Violin plot for precursor motor neuron markers. 
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Figure 5.37: Dot plot for precursor motor neuron markers. 

 

 
 

Figure 5.38: Joy plot for precursor motor neuron markers. 
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Figure 5.39: Gene ontology analysis for motor neuron cellular clusters. 
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5.5 Effect of Erythropoietin (EPO) on the cells of hippocampal tissue using 
single-cell sequencing (Case study-II) 

 

Erythropoietin (EPO; also known as hematopoietin) is a glycoprotein cytokine, which is an 

essential hormone for red blood cell production in the bone marrow (erythropoiesis). EPO has 

shown its primary function by promoting the survival of red blood cell progenitors and precursors 

through protecting these cells from cell death or apoptosis. EPO binds to the erythropoietin 

receptor (EPOR) on the surface of red blood cell progenitor cells and activates the JAK2 

signaling pathways (Middleton et al., 1999). Further, it leads to activation of STAT5, PIK3, and 

RAS MAPK pathways, which results in differential, survival, and proliferation of the red blood 

progenitor cells (Hodges, Rainey, Lappin, & Maxwell, 2007). Recent studies suggest the 

presence of EPO receptors in the other tissues, such as heart, kidney, muscle and interestingly in 

central/peripheral nervous system (Genc, Koroglu, & Genc, 2004).  

 

The expression of EPO and its receptor EPOR in the healthy postnatal brain is low but distinct in 

specific brain regions such as cortex and hippocampus (Digicaylioglu et al., 1995; Marti et al., 

1996). During stress conditions such as brain injury, the expression of EPO is strongly 

upregulated (Ott, Martens, et al., 2015). Although, in healthy human and rodents, recombinant 

human EPO leads to improvement in cognition and increase hippocampal long-term potentiation 

(LTP) (Adamcio et al., 2008; Miskowiak, O’Sullivan, & Harmer, 2007). These beneficial results 

of EPO on cognitive functions were widely evident in clinical trials on various neurological 

diseases such as multiple sclerosis, schizophrenia, depression and bipolar disease (Ehrenreich et 

al., 2007). This consistent effect of EPO was specific to brain and independent to its 

hematopoiesis effects (Hassouna et al., 2016). To understand, the cellular mechanisms underlying 

these cognitive effects, a study was conducted in healthy young mice. This study showed that 

administration of EPO for three weeks is associated with a ~20% increase in pyramidal neurons 

and oligodendrocytes cell numbers in the hippocampus (Hassouna et al., 2016). Furthermore, 

neuron numbers remained elevated more than six months of age under constant cognitive 

challenge (Hassouna et al., 2016). Also, EPO-treated NG2-Cre-ERT2 mice showed enhanced 

differentiation of pre-existing oligodendrocyte precursors in the absence of elevated DNA 

synthesis (Hassouna et al., 2016). These results indicate towards the role of EPO as an effector 
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molecule, which can drive the differentiation of non-dividing precursor cells into (NG2+) 

oligodendroglial as well as neuronal lineages (Hassouna et al., 2016). However, the exact 

mechanism behind this phenomenon is not entirely clear yet. In the current study, we aimed to 

identify precursor cells, which differentiate into neuronal and oligodendrocytes cells followed by 

EPO intervention. To identify individual precursor cells with the single-cell resolution, the Drop-

seq method was used. 

5.5.1 Experimental design and results 
	
The 28 days postnatal wild-type C57/BL6N mice were subjected to injection of either EPO or 

Placebo intraperitoneally (i.p.). The mice were injected in triplicates for each group. After 6 

hours of injection, mice were sacrificed, and the hippocampal CA1 region was isolated. Brain 

tissues were digested following the same procedure used for spinal cord samples (see Drop-seq 

methods) and prepared the single-cells for the Drop-seq experiment on these samples. After 

sequencing the Drop-seq libraries, reads were first processed with Drop-seq pipeline to generate 

digital gene expression matrix and further processed using Seurat package, similar to spinal cord 

Drop-seq data analysis (section 5.4.2). The sequencing data from three biological replicates for 

each group was analyzed separately to check data quality. Once individual samples are proved to 

have good quality, individual replicates were merged into a single sample for secondary analysis. 

The parameters and the output results from essential steps in the analysis were summarized 

(Table 5.7). Using the Seurat package number of genes (nGene), number of UMIs (nUMI) and 

percentage of mitochondrial genes (percent.mito) in each cell were calculated for both of the 

groups (Figure 5.40). Also, Gene plot (Figure 5.41) were used to filter a rare subset of cells, 

which had more than 20% of the reads belong to mitochondrial genes. Furthermore, cells with 

unique gene count more than 8000 (possible doublet), and less than 1000 genes were filtered out 

from the dataset. After the quality check filtration, 973 cells (390 in group 1 and 583 in group 2) 

were remaining in the EPO Drop-seq dataset (Table 5.7). 
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Process                                                        Values 
Number of Unique Mitochondrial Genes 18 
%age of Mitochondrial Genes used 0.4 
Mitochondrial Threshold -inf : 0.4 
UMI Threshold 1000: 8000 
Number of cells After Filtering 973 (Group 1: 390; Group 2: 583) 
Groups By Experiment GROUP 1 (M1D1,M3D1,M5D2) 

GROUP 2 (M2D1,M4D2,M6D2) 
No of Variable Genes Detected 3008 
No of Principal Components (PCs) Found 20 
No of PCs used in Clustering 15 
Clustering Resolution 0.2 
No of Clusters 7 

Table 5.7: Summary of EPO Drop-seq data analysis. 

 

 
Figure 5.40: Violin plot for EPO Drop-seq data.  

The Y-axis represents the number of genes (nGene), the number of UMIs (nUMI) 
and percentages of the mitochondrial reads (percent.mito) in the total reads 
respectively (from left to right). Group-1 and group-2 is placebo vs. EPO samples, 
respectively. 
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Figure 5.41: Gene plot for EPO Drop-seq data. 

The plot, at the left side, represents the distribution of mitochondrial percentage 
(percent.mito) and transcripts (nUMI) for the STAMPs/cells detected in the spinal 
cord Drop-seq experiment. The plot, at the right side, represents the number of 
genes (nGene) and transcripts (nUMI) for the same STAMPs. Each dot in the figure 
above represents a STAMP/cell. Red	and	black	 colors	 represent	 two	groups	of	
the	cells. 

 

5.5.2 Data normalization and detection of highly variable genes 
	
Using Seurat package program called LogNormalize, global scale normalization was performed 

on EPO Drop-seq dataset (see spinal cord Drop-seq analysis 5.4.2). After normalizing the data, 

Seurat package program FindVariableGenes was used to calculate the dispersion, average 

expression and z-score for each gene (Figure 5.42). This analysis identified the highly variable 

genes, which were further used in the downstream analysis of EPO Drop-seq data (Figure 5.42). 
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Figure 5.42: Dispersion and average expression plot for the EPO dataset. 

The X-axis represents the average expression and the Y-axis represents the 
dispersion of the genes. Using this graph, highly variable genes were selected for 
downstream analysis. 

 

5.5.3 Statistically significant principal components 
 

After determining highly variable genes in the EPO dataset, technical and cell cycle variation 

were removed as described in the motor neuron Drop-seq data analysis. Linear dimensional 

reduction technique (PCA analysis) was performed on the scaled EPO dataset. As described 

earlier, significant PCs were identified, which contains higher enrichment of low p-value genes. 

Using the Seurat package’s JackStrawPlot function, visualization and manual comparison for the 

p-value distribution of each PC (solid curve) with the uniform distribution (dashed line) was 

performed (Figure	5.43). Furthermore, Seurat function PCElbowPlot was used to plot standard 

deviations of the PCs, and the elbow in the graph was served as a cutoff point to determine 

significant PCs (Figure	5.44). For EPO Drop-seq dataset, in total 20 PCs were found and 15 PCs 

were selected for downstream clustering analysis. 
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Figure 5.43: Jackstraw plot of principal components. 

 
Figure 5.44: PC-elbow graph of principal components for EPO dataset. 

5.5.4 Clustering of the cells 
 

As described earlier in detail in section (5.4.2.8 ), based on Jaccard distance among the cells, 

Seurat package function Findclusters applied modularity optimization techniques to group cells 

together iteratively (also known as graph-based clustering approach). On the other hand, non-

linear dimensional reduction method (tSNE) was employed as an efficient visualization tool for 

single-cell clusters by Seurat package. Clustering analysis revealed the seven cell clusters (cluster 

0 to 6) in EPO Drop-seq dataset (Figure	5.45).  
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Figure 5.45: tSNE plot for the EPO Drop-seq dataset. 

Cell are colored according to their clusters, in the t-SNE plot. In total, seven clusters 
were present in the EPO Drop-seq dataset. 

 

5.5.5 Differential expression of genes among single-cell clusters 
 

For the identification of differentially expressed genes among cell clusters (biomarker analysis), 

FindAllMarkers function from Seurat package was used (see case study 1). The marker genes 

were identified for each cluster of EPO Drop-seq dataset (Table 5.8). Furthermore, cell type-

specific markers for brain tissue were taken from previously published studies (Kelsom & Lu, 

2013; Wu, Pan, Zuo, Li, & Hong, 2017) and listed in Table 5.9. The expression of these markers 

was investigated in identified clusters in EPO Drop-seq dataset, as presented in violin plot 

(Figure 5.46). Based on the marker genes, each cluster was assigned a possible cell type identity, 

as depicted in the tSNE plot (Figure 5.47). Furthermore, based on identified marker genes for 

each cluster, which were determined by the FindAllMarkers function, a heat map was generated 

containing top 10 biomarkers for each cluster using the DoHeatmap function from Seurat 
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package (Butler & Satija, 2017). Gene ontology analysis was also done on the different cell 

clusters based on the marker genes (Figure 5.49).  

 

Cluster Markers Positive 
Markers 

p_val < 
0.001 

p_val < 
0.00001 

Glutamatergic0 1304 903 902 893 
Glutamatergic1 775 444 416 306 

OPCs_Oligo 2335 1113 1089 1001 
Astrocytes 2219 1047 621 469 
Gabaergic 1364 645 378 188 
Endothelial 2846 1867 1038 751 
Microglia 2650 1856 378 234 

Table 5.8: Summary of biomarker genes in clusters.  

 
Cell types Markers 

Neurons Camk2a, Kif5c 
Astrocytes Slc7a10, Lfng 
Microglia Tmem119, C1qc 
OPC (Oligodendrocyte precursor cell) Pdgfra, Gpr17 
Oligodendrocytes Mog, Opalin 
Endothelial cells Fit1, Ly6c1 
GABAergic neuron Gad1, Gad2 
Glutamergic neuron Slc17a7, Neurod6 

 
Table 5.9: Cell type specific markers across different cell types.  

These markers were adapted from (Wu et al., 2017) and (Kelsom & Lu, 2013). 
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Figure 5.46: Violin plots for cell type specific markers for EPO Drop-seq 
dataset. 

Cell type specific marker, as listed in Table 5.9 were investigated in the identified 
clusters. Based on these known marker genes, identified single cell clusters were 
assigned a plausible class of cells. 

 
Figure 5.47: tSNE plot with cell type identity.  
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Based on known marker genes, these clusters were assigned a plausible class of 
cells. 

 

 

Figure 5.48: Expression heat map.  

The heat map showing the top-10 biomarkers in the identified clusters in EPO Drop-
seq dataset. 
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Figure 5.49: Gene ontology analysis for clusters. 
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5.5.6 Cell type analysis in EPO vs. placebo groups 
 

To compare changes in the gene expression in the identified clusters at the single-cell level, we 

have calculated the percentage of the cells from each group fall into individual clusters (Table 

5.10). Also, based on the positive markers for individual clusters, cells categorized to their 

respective groups were also presented (Table 5.11). Furthermore, to visualize the cells in their 

clusters, based on their group color code, cells were plotted based on their low-dimensional 

embedding produced by tSNE (Figure 5.50).  

 
Cluster Group 1  

Cells 
Group 2 

Cells 
Group 1 

%age 
Group 2 

%age 
Fisher 

Exact Test 
(p_value) 

Glutamatergic
0 

171 219 43,8 % 37,6 % 0.05307 

Glutamatergic
1 

77 164 19,7 % 28,1 % 0.003106 

OPCs_Oligo 65 99 16,7 % 17,0 % 0.9305 

Astrocytes 33 42 8,5 % 7,2 % 0.4652 
Gabaergic 19 27 4,9 % 4,6 % 0.8784 
Endothelial 14 25 3,6 % 4,3 % 0.6213 

Microglia 11 7 2,8 % 1,2 % 0.08789 
TOTAL 390 583 100,0 % 100,0 %  

Table 5.10: Summary of differential cell percentage analysis in placebo 
(group1) and EPO (group 2) clusters. 

 

Cluster/Group +ve Markers 
(PM) 

PM with 
p_value < 0.001 

PM with p_value < 0.00001 

Glutamatergic0/1 67 40 12 

Glutamatergic0/2 37 18 8 

Glutamatergic1/1 111 15 3 

Glutamatergic1/2 79 0 0 

OPCs_Oligo/1 170 3 1 

OPCs_Oligo/2 234 3 0 
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Astrocytes/1 482 1 0 

Astrocytes/2 673 0 0 

Gabaergic/1 1027 30 1 

Gabaergic/2 631 4 0 

Endothelial/1 963 2 0 

Endothelial/2 747 3 2 

Microglia/1 137 1 0 

Microglia/2 477 0 0 
Table 5.11: Summary of Biomarker analysis in clusters. 

 

 
 

Figure 5.50: tSNE plot with the group information. 

In the tSNE plot, the cells are colored according to their respective groups (group 1 
and 2 for placebo vs. EPO respectively). The circle highlights the glutamatergic-1 
cluster, which showed increased cells in EPO group. 
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5.6 Discussion 
 

A better understanding of transcriptional variations among individual cells can be achieved by 

single-cell sequencing. This, in turn, leads to more molecular insights on complex tissues (for 

instance brain) and their functional responses. In recent years, advances in technologies made it 

possible to sequence mRNA from hundreds of single-cells (Picelli et al., 2013) to thousands of 

single-cells (Jaitin et al., 2014; Shalek et al., 2014). However, the expenses of library preparation 

and time involved in processing individual cells limited earlier methods. In the current chapter, 

we have implemented a microfluidic-based single-cell mRNA-seq method (Drop-seq), which was 

first developed by Macosko et al. in the McCarroll lab at Harvard medical school and used for the 

investigation of the retinal cells (E. Z. Macosko et al., 2015). We have used this technique to 

perform the single-cell sequencing of motor neurons as well as to learn the effect of a small 

molecule (EPO) intervention in hippocampal neurons. 

 
At first, after setting up the physical Drop-seq setup in the lab, we have optimized the parameters 

by Human-mouse species mixing experiments to check the purity and presence of cell doublet 

rate in the libraries. Once species mixing experiments provided optimal results, Drop-seq method 

was further used for single-cell studies of motor neurons as well as hippocampal neuronal cells 

with a small molecule intervention. One of the main technical challenges of the single-cell 

sequencing experiments was the optimal dissociation of the cells from the tissue of interest. In 

complex tissues (such as the brain, spinal cord, and others.) many different cell types are 

interconnected with each other in close proximity, which makes it difficult to dissociate the cells 

and separate them from each other with high survival rate. For every tissue, dissociation methods 

need to be optimized for efficient processing of cells. For motor neurons, dissociation method is 

optimized after several experiments, as described in section 5.2.2. This method is also applied to 

hippocampal tissue for cellular dissociation. 

 
Furthermore, after the Drop-seq library preparation and the pair end sequencing in Illumina high 

throughput sequencer (Hiseq-2500), the raw reads were analyzed using the Drop-seq pipeline for 

generation of digital gene expression matrix. For the second level of data analysis, the Seurat 

package was used, which is capable of quality filtering of the cells, normalization of the data, 

detection of the variable genes among single-cells, determination of statistically significant 
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principal components of the data and at the end clustering of the samples. It also plots an 

effective representation using the tSNE method. The Seurat package enabled us to identify and 

interpret sources of heterogeneity in single-cell transcriptomics data. The most important 

advantages of Seurat package are as follows. To begin with, it can integrate and analyze single-

cell data coming from various platforms such as Drop-seq, 10x genomics technique, and others. 

Also, the Seurat package features three recently developed computational methods for single-cell 

data analysis, which are forefront techniques in this field. The first method is unsupervised 

clustering and discovery of cell types and states, which featured in Drop-seq publication and used 

in the analysis of the retinal Drop-seq dataset (E. Z. Macosko et al., 2015). It also combines 

dimensional reduction with graph-based clustering. The second method does a spatial 

reconstruction of the single-cell data and integrates single-cell RNA-seq with in-situ reference 

data to infer cellular spatial localization expression (Satija, Farrell, Gennert, Schier, & Regev, 

2015). Finally, the third method is an integrated analysis of single-cell RNA-seq across 

conditions, technologies, and species (Butler & Satija, 2017). 

 

At this point, we would also like to highlight a critical step in the clustering approach used by the 

Seurat package.  In it, each principal component (PC) represents a ‘metagene’ (a linear 

combination of hundreds or thousands of transcripts), and it is robust towards drop-out events in 

any individual gene (Satija, 2017). Nevertheless, estimating the true dimensionality of a dataset is 

a non-trivial task in machine learning. In order to select a set of principal components (PCs) for 

the downstream clustering analysis, the Seurat package approaches with three methods to 

estimate this selection parameter. The first approach is the jackstraw method, which is essentially 

a statistical resampling procedure. It is used to construct a null distribution for PC scores, and 

afterward, it associates each PC with a p-value to enable the significance assessment in a more 

formal statistical framework (Satija, 2017). The next approach is using the Elbow plot in the 

Seurat package (Figure	5.20). Plotting the eigenvalues in decreasing order (also known as scree 

plot) is a valuable heuristic. In this method, the ‘elbow’ of the plot represents a transition from 

variable and more informative PCs to comparatively less variable PCs. The Elbow point is 

correlated well with the significant PCs identified by the jackstraw method. Nevertheless, the 

Elbow plot is much faster to obtain. The third approach suggested by the Seurat package employs 

supervised analysis by the user. The PCHeatmap function can be used to visualize heat-maps of 
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PCs across both genes and cells and can be helpful to exclude the PCs, which is primarily driven 

by mitochondria, ribosome or cell cycle genes (Satija, 2017). 

 
The molecular insights with single-cell resolution, which we obtained thanks to the Drop-seq 

method is very valuable and an addition to the knowledge in this scientific domain. Analysis 

showed that the motor neuron Drop-seq dataset (case study I) contains 6 clusters of different cell 

types in total, as detected by the Seurat package analysis (Figure	5.21). These clusters are mainly 

investigated for four subtypes of motor neuron marker genes, which were curated from the 

previous literature. Individual marker genes could be present in different ratios in more than one 

cellular sub-type. This presents an obstacle to determining absolute cell type identity of 

recognized clusters, also evident in single-cell clusters from spinal cord tissue. Nevertheless, the 

search of gamma motor neuron marker Gfra1 among all the clusters reveals that it is highly 

present in cluster 3 (Figure	5.24) while also showing some presence in clusters 0,1 and 2. The 

next subtype, characterized by alpha fast motor neuron markers is divided among clusters 0, 1 

and 3 (Figure	5.28). These results are indicating the presence of cell type sub-populations within 

the alpha fast motor neurons, which were not fully characterized in the previous studies. 

However, more validation studies need to be done before any conclusive remarks. Furthermore, 

another cell type containing alpha slow motor neuron markers is also bifurcated. Among these 

markers, three genes (Sv2a, Crtac1, Aldoc) are present in cluster 3, and other two genes (PrKcd 

and Timp3) have high expression in clusters 4 and 5 respectively. As discussed above, these 

observations are indicating that alpha slow motor neurons could also have more sub-types, which 

were not identified earlier. At last, precursor motor neuron marker Olig2 was expressed in the 

cells of clusters 0,1 and 2 (Figure	5.36). Overall, single-cell sequencing using Drop-seq method 

provided an unprecedented amount of data for the cell types present in spinal cord samples. This 

data could be used for many further applications; for example, in disease studies, comparative 

analysis of gene expression (specifically for individual cell types) could be possible. 

 
As discussed in Case study-II (section 5.5), administration of recombinant erythropoietin (EPO) 

in mice for three weeks was associated with a ~20% increase in cell numbers of pyramidal 

neurons and oligodendrocytes in the hippocampus (Hassouna et al., 2016). However, the 

published study did not address, which specific precursor cells give rise to this increment in 

neuronal cell numbers upon EPO treatment. That is why we have decided to address this question 
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to investigate potential precursor cells at the single-cell level resolution, which can differentiate 

into neurons and oligodendrocytes followed by EPO intervention. We tried to determine the 

molecular mechanisms behind this phenomenon using the Drop-seq method. The two groups 

(EPO and placebo) of dissociated cells were subjected to Drop-seq preparation and analysis. The 

results showed that there are 7 clusters detected in hippocampal neuronal single-cell samples 

(Figure 5.45). Based on previously known markers, individual clusters are annotated and labeled 

with a plausible cell type. In this hippocampal neuronal dataset, the largest cluster of the cells is 

annotated as glutamatergic cells; however, because of the high variability within the cell cluster, 

it is manually divided into two sub-clusters (Glutamatergic 0 and 1) based on the tSNE plot 

(Figure 5.47). In the differential analysis, the Glutamatergic-1 cluster showed a statistically 

significant increase in the neuronal cell percentage after EPO treatment (Table 5.10). However, 

the Glutamatergic-0 cluster showed a decrease in the neuronal cell population, overall nullifying 

any increase in the glutamatergic cell cluster. Nonetheless, further investigations are needed to 

understand these observations. Furthermore, one branch of oligodendrocytes seems to be 

acquiring neuronal cell characteristics upon EPO treatment as shown in tSNE plot (Figure 5.50), 

which is quite unusual to comprehend and would require further research to understand this 

phenomenon.  
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Chapter 6.  Summary and conclusion 

 

Molecular information from individual cell types could help to better understand disease 

mechanisms as well as several other functions of tissues. However, the biological complexity and 

physical properties (such as proximity with other cell types and cell junctions like gap junction, 

tight junction, and desmosomes) of the different cell types in a tissue makes it experimentally 

challenging to obtain such high-resolution information on a molecular scale. In the current thesis, 

we have implemented the techniques, which have enabled us to explore cell type-specific genetic 

and epigenetic information, and at the end provided a deeper understanding of various molecular 

mechanisms. In Chapter 3. the BiTS technique enabled us to isolate neuronal and non-neuronal 

cell type nuclei based on the antibody labeling of the neuronal marker NeuN on the surface of the 

nuclear membrane. After FACS sorting and isolation of chromatin, several epigenetics studies 

were done on the sample sets. In Chapter 4.  the Tagger mouse system was developed to gain 

information on multiple entities of nucleic acids in a specific cell type. Furthermore, in Chapter 5. 

the single-cell sequencing method Drop-seq enabled us to gain molecular insights at a resolution 

of single-cells from the spinal cord and hippocampal tissue respectively.  

6.1 Outlook 
	
The cell type-specific data for neuronal and non-neuronal cells generated in BiTS-ChIP and 

BiTS-MeDIP experiments followed by high throughput sequencing analysis were uploaded and 

maintained in an online web platform at https://oasis.dzne.de/share/JBrowse-1.11.4/index.html. 

In general, the data contains information on two different cell types, two different brain tissues, 

and three-time points along with different epigenetic marks as described in Chapter 3. Exploring 

this data with novel aspects and research questions can benefit the neuroscience research 

community to a greater extent. Results from this study also showed newly predicted cell type-

specific genes for neuronal and non-neuronal cells, which could be useful to gain new molecular 

insights and to reveal hidden layers of disease mechanisms (such as for neurodegenerative 

diseases). 
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Moreover, the Tagger system can be employed to understand cell type-specific molecular 

mechanisms in in-vivo systems. This system can provide information from various nucleic acid 

sources as well as epigenetic regulators (histone marks) in the cell, which play a role in regulating 

the gene expression. By combining the Tagger system with disease mouse models or in treatment 

intervention studies, it could revolutionize the understanding of the disease mechanisms as well 

as drug discovery process. The TU-tagging component of the Tagger system could also address 

many time point related questions using the pulse-chase experiments. 

 

In the end, BiTS coupled epigenetic studies as well as the Tagger system have advantages in 

specific experimental setups and are based on the pre-defined markers of the cell types. On the 

other hand, the single-cell RNA sequencing (scRNA-seq) techniques could be applied to any 

previously undefined cell types or tissue samples and provides far more in-depth information 

about the biological samples in the study. The Drop-seq technique already proved to be efficient 

in cell type characterization as well as in finding novel and rare cell types (E. Z. Macosko et al., 

2015). Apart from that, this technique could be useful in linking specific cell populations with the 

genes involved in the disease mechanisms previously identified in genome-wide genetic studies. 

Furthermore, combining Drop-seq with gene expression modification techniques, for instance, 

mutations, small molecule intervention, pathogen or induction of cells, could provide multi-

dimensional cellular response information for experimental conditions. Finally, because scRNA-

seq experiments need fewer samples and provide information at single-cell resolution, these 

techniques could revolutionize the personalized medicine field.  

6.2 Limitations and future directions 
 

One of the limitations of the BiTS-ChIP and –MeDIP experiments are the dependencies on the 

known markers for specific cell populations. Expression of these marker genes could be altered 

by cellular stress or other environmental factors and therefore can alter the experimental 

observations. This method is also hard to implement with multiple markers at the same time, 

which is essential when one wants to obtain the sub-populations of the cells. Because of the 

nuclear isolation step, another limitation of this method was the loss of cytosolic information. 

During the experimental protocol, cell nuclei are subjected to formaldehyde cross-linking which 



 155 

could change the structure and specificity of the epitopes present on the nucleus surface. It can 

further lead to variations in downstream procedures such as FACS or immunoprecipitation. 

Antibodies should be thoroughly checked for cross-reactivity before using in the experiments. 

 

Regarding the Tagger system, its bottleneck is to develop the mouse line with the help of pre-

defined markers for the desired cell types. Developing the mouse line is both costly as well as 

time-consuming. Furthermore, different cellular sub-types could express the different proportions 

of marker genes, although, the Tagger system cannot differentiate between these gene expression 

variations. The Tagger system also depends on pre-defined markers for the particular cell type 

studies, which limits its use for the previously undefined novel cell types. 

 

Moreover, one of the limitations of the Drop-seq method is that it still needs many more cells as 

input compared to the output results. The fundamental principle of mixing of the cells and beads, 

in the Drop-seq method, is based on the diluting cells to Poisson-limiting concentration; therefore 

a vast majority of beads and cells (90%-99%) are not exposed to each other (E. Z. Macosko et al., 

2015). This limits the Drop-seq applicability for cells that are very difficult to obtain. Another 

limitation of Drop-seq experiments is the information loss of the spatial location of the single-

cells in the tissue. As the Drop-seq method captures only mRNAs from the single-cells, the 

genetic and epigenetic information is also not obtained from the single-cells. It is also not trivial 

to extract absolute gene expression levels and to remove noise signals from the single-cell 

samples, which makes it difficult to detect rare cell types. 

 

Some of the limitations from the BiTS and the Tagger systems could be addressed by first 

analyzing the tissue with the Drop-seq method to gain information about the markers of all the 

cell types present in the tissue in an unbiased manner. Later, these markers can be used in the 

BiTS coupled ChIP-seq or MeDIP-seq as well as in the Tagger system to obtain much deeper 

genetic and epigenetic information about a specific cell type in the tissue. The Tagger system 

could also be used for the cell type-specific ChIP-seq experiments for histone marks or 

transcription factor binding site analysis. To overcome the inherent limitations of the Drop-seq 

method some technique developments were happening in the single-cell-sequencing field 

recently. To do single-cell sequencing with low input and rare samples, the Seq-well technique 
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was developed (Gierahn et al., 2017). In this technique, barcoded mRNA capture beads and 

single-cells were sealed in an array of nanoliter volume wells using a semi-permeable membrane, 

which facilitates the effective cell lysis and capture of transcripts (Gierahn et al., 2017). 

Furthermore, for the preserved tissues or the cells, which were very hard to dissociate, the single 

nucleus RNA-seq (DroNC-seq) method was developed (Habib et al., 2017). As an addition to 

DroNC-seq, the Div-seq technique was developed, which can capture rare dynamic processes (for 

instance adult neurogenesis) by labeling of proliferating cells by EdU (5-ethynyl-2’-

deoxyuridine) to profile single dividing cells (Habib et al., 2016). In future, single-cell techniques 

like scChIP-seq, scBS-seq (single-cell bisulfite sequencing for DNA methylation) and other 

genetic and epigenetic methods need to be developed. 
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