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Chapter One
Introduction

Inverse problems, ill-posedness and regularization

In many scientific and industrial applications the quantity of interest is not directly
observable but rather a causal effect or a parameter producing observations measured in an
experiment. The goal is to calculate stable approximations of these effects or parameters
from given noisy observations. For example, in computed tomography the goal is to
calculate images of parts of the interior of a human body from X-ray measurements from
different angles. Another concrete example is to compute the location of a sound source in
space using microphone arrays. As an another example, measuring the present state of a
physical system one wants to draw conclusions on the past.
Usually it is easier to solve the forward problem, which consists of predicting the observations
from a given cause or parameter. We model the forward problem as a possibly nonlinear
mapping F : dom(F ) → Y between Banach spaces X,Y assigning to each cause or
parameter f ∈ dom(F ) ⊂ X an observation F (f) ∈ Y. Hence, the corresponding inverse
problem appears as the task of solving the equation F (f) = g for given data g ∈ Y.

The main challenge in this task is usually ill-posedness of the inverse problem. This means,
that the unknown f does not continuously depend on the observations g: For F continuous
and injective the inverse F−1 : im(F )→ dom(F ) exists, but it may lack continuity. For
example in the important case of a linear, injective, and compact forward operator F with
dense range and dim(im(F )) = ∞ the inverse operator F−1 exists on a dense subset of
Y, but fails to be continuous as otherwise F−1F = IdX would be compact contradicting
dim(X) = dim(im(F )) =∞.
Due to ill-posedness, a naive application of the inverse of F (if it exists) may therefore
amplify noise in the data g indefinitely. Regularization methods are used to calculate
stable approximations of the true solution f anyways. The basic idea is to use a family of
continuous maps Y→ X approximating the discontinuous inverse F−1. This is particularly
relevant if only noisy measurements gobs ∈ Y of F (f) are available, but due to numerical
errors regularization is even necessary if exact data are available as in optimal control
problems.
The purpose of this work is to contribute to the mathematical analysis of generalized
Tikhonov regularization and in particular sparsity promoting Tikhonov regularization which
are popular examples of regularization methods.
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Classical and sparsity promoting Tikhonov regularization

Suppose for a moment that X and Y are Hilbert spaces and F = A : X→ Y is linear and
bounded. For noisy observations gobs ∈ Y of Af and α > 0 classical Tikhonov regularization
approximates f by f̂α = (A∗A+ αI)−1A∗gobs. Here the family (A∗A+ αI)−1A∗ with α > 0
is used to approximate A−1 in a stable manner. The estimator can also be characterized
variationally by

f̂α ∈ argmin
h∈X

( 1
2α‖g

obs − Ah‖2
Y + 1

2‖h‖
2
X

)
, (1.1)

namely as the unique minimizer of the Tikhonov functional 1
2α‖g

obs − A · ‖2
Y + ‖ · ‖2

X. The
data fidelity term 1

2‖g
obs − A · ‖2

Y ensures a good approximation of the observation in the
image space Y. The penalty term ‖ · ‖2

X stabilizes the reconstruction, and by choosing X
as a space of functions of a certain regularity it incorporates a priori knowledge on the
unknown f . The regularization parameter α controls the balance between these two terms.
The smaller α is chosen, the better Af̂α approximates gobs, but the more sensitive the
reconstruction is to errors in the observed data gobs.
A major disadvantage of classical Tikhonov regularization is the regularity of the estimators
f̂α: In many applications the operator A and the adjoint A∗ are smoothing integral
operators. For instance with A : L2 → L2 one may have im(A∗) = Hs for some s > 1

2 . As
the reconstruction f̂α always belongs to im(A∗) we obtain a continuous estimate f̂α even if
the true unknown function f has jumps. Hence, classical Tikhonov regularization provides
good recovery of smooth functions, but it may fail recovering functions with discontinuities.
A way to overcome this problems is to use Banach instead of Hilbert space penalties. For
example, evoking a wavelet basis and penalties given by wavelet coefficients one achieves
good localization in spacial and the frequency domain and estimators more suitable for
the reconstruction of functions with singularities (see [90, Sec. 1] and [9, Sec. 5.5]). Using

Figure 1.1: Noiseless reconstruction of a function with jumps. The left image
show the continuous estimator given by classical Tikhonov regularization. The right
image shows an estimator by penalization of Haar wavelet coefficients.

an `1- (or more generally a block `1-) norm penalty enforces the estimator to be sparse
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which means that it consists of only finitely many non-vanishing wavelet components. For
this reason such schemes are called sparsity promoting, and the penalization using 1-norms
is referred to as sparsity constraint.

Sparsity promoting regularization has been studied intensively. We refer the reader to the
survey paper [68] and to the special issue [69] on sparsity regularization for an overview on
the use of these methods for a variety of linear and nonlinear inverse problems in different
fields of applications. Moreover, the interest in sparsity and wavelet methods and their
application in natural science is reflected in the conference series Wavelets and Sparsity
(see, e.g., the proceeding volume [102]).

Aims and overview of this work

A central task in regularization theory is to provide upper bounds on the distance between
the unknown f and the estimators given by a regularization method. The asymptotic
behavior of these upper bounds as the noise level tends to zero is called convergence rate.
However, for ill-posed problems we cannot achieve uniform upper bounds on the domain
dom(F ) (see Proposition 2.4). Therefore, upper bounds on the error require regularity
conditions on the true solution, which are referred to as source conditions.
The aim of this work is to find (quasi-) Banach spaces Xs ⊂ X such that f ∈ Xs ∩ dom(F )
implies (or even characterizes) convergence rates of a given order. Here s denotes a
smoothness index in a scale of function spaces. In simpler words, we seek practical
conditions on the unknown in terms of regularity or smoothness measured in terms of
function spaces implying (or even characterizing) bounds on the reconstruction error.
To this end, we use penalties given by powers of Banach space norms and formulate
assumptions on the forward operator. Most often the latter are Lipschitz conditions
in certain function spaces with negative smoothness index. In particular, we focus
on convergence rates for sparsity promoting wavelet regularization. Even though the
convergence rates theory for `1-regularization, which we discuss in Section 2.3, is far
developed, there are only few results showing concrete convergence rates for non-sparse
unknowns. For example with δ denoting the noise level in a deterministic noise model,
Hölder type rates O(δν) as δ → 0 for 0 < ν < 1 where ν depends on the smoothness of the
unknown measured in some function space are desirable. We will prove such convergence
rates for wavelet regularization with Besov space penalties.

This thesis is organized as follows: In Chapter 2 we recall basic regularization theory,
motivate and introduce the mathematical framework of generalized Tikhonov regularization
and sparsity promoting wavelet regularization with Besov space penalties. We formulate
an assumption on the forward operator and discuss its verification in several relevant
examples.
The main contribution in Chapter 3 are convergence rate results for sparsity promoting
wavelet regularization using variational source conditions as an intermediate step, i.e.
characterizations of the smoothness of the unknown in terms of variational inequalities.
Such conditions have become popular in regularization theory over the last decade. More
precisely, we provide order optimal convergence rates for wavelet regularization with
Besov 0, p, 1-penalties. We discuss the verification of variational source conditions and
compare our strategies to the literature on `1-regularization. Moreover, we demonstrate
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by numerical simulations for a parameter identification problem in a differential equation
that our theoretical results correctly predict rates of convergence for piecewise smooth
unknown coefficients. Besides finitely smoothing operators, we also provide results for
exponentially ill-posed problems that furnish convergence rates for the backward heat
equation. Furthermore, we address statistical noise models and prove optimal convergence
rates for Gaussian white noise.
Converse results, i.e. necessity of certain source conditions, are investigated in Chapter 4.
Here we first treat the sparsity promoting regularization schemes considered in Chapter 3
and furnish converse results with respect to approximation rates for exact data. After that
we show equivalence of certain variational source conditions and approximation rates in
the image space for general convex variational regularization.
Chapter 5 is devoted to oversmoothing in Banach space regularization, i.e. to the case that
the unknown solution fails to admit a finite value in the penalty term. Here we present a
general theory and demonstrate its flexibility by providing convergence rates results not
only for Besov space regularization but also for bounded variation regularization, that is
Tikhonov regularization with a BV-norm penalty.
In Chapter 6 we investigate image space approximation rates as new type of source
conditions. We prove a nearly minimax theorem showing that up to a constant the
modulus of continuity is an upper bound on the reconstruction error. One main advantage
of our analysis is the flexibility in the choice of the loss function. The application to
Besov space regularization leads to convergence rate results for 0, 2, q- and 0, p, p-penalties
without restrictions on p, q ∈ (1,∞).
Finally, we discuss our results and point out some potential generalizations and open
problems in Chapter 7.
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Chapter Two
Generalized Tikhonov and wavelet

regularization

In this chapter we provide the mathematical framework of this thesis. In the first section
we motivate the use of more general penalties in the Tikhonov functional by recalling
that `1-penalization enforces sparsity. After that we introduce generalized Tikhonov
regularization with convex penalty terms and provide topological assumptions that ensure
the existence of minimizers. In the second section we recall basics from convergence rate
theory and the concept of order optimality. In Section 2.3 we provide an overview on
the convergence rate theory for sparsity promoting regularization. The following section
is devoted to wavelet regularization in Besov spaces. Here we formulate and discuss
assumptions on the wavelet system and on the forward operator. At the end of this chapter
we briefly touch upon regularization with weighted `p-penalties.

2.1 Generalized Tikhonov regularization

Sparsity promoting regularization

To further motivate the use of more general penalty terms than squared Hilbert space
norms as in (1.1), we compare classical Tikhonov regularization with regularization using
a penalty term which is given by the `1-norm of coefficients in a basis expansion.
Before we do so, let us clarify the following standard notation: For an index set Λ and
p ∈ (0,∞] we denote `p(Λ) = {x ∈ RΛ : ‖x‖p <∞} with ‖x‖pp = ∑

j∈Λ |xj|p for p <∞ and
‖x‖∞ = supj∈Λ |xj|. Moreover, we set `p := `p(N).
Now let, as above, A : X → Y be linear and bounded between Hilbert spaces X and Y.
Suppose X is separable, and (ψn)n∈N is an orthonormal basis in X. Let S : `2 → X be
the natural unitary operator given by Sen = ψn for all n ∈ N with (en)n∈N the canonical
basis of `2 given by (en)k = δnk. It is easy to see that the sequence of basis coefficients
x̂(2)
α = S−1f̂α of f̂α given by (1.1) minimizes the functional z 7→ 1

2α‖g
obs − ASz‖2

Y + 1
2‖z‖

2
2

on `2. Replacing the penalty term 1
2‖ · ‖2 by the norm ‖z‖1 := ∑∞

j=1 |zj| on the space
`1 ⊂ `2 of summable real sequences, we consider

x̂(1)
α ∈ argmin

z∈`1

( 1
2α‖g

obs − ASz‖2
Y + α‖z‖1

)
(2.1)

and use Sx̂(1)
α as an estimator in X. This procedure increases the penalization on coefficients

with absolute value less than 1 while decreasing it on those with absolute value greater
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than 1. Hence, using the 1-norm we put a higher penalty on functions with many small
coefficients (see [29, Sec. 1.3] for a similar explanation). We show that this leads to
estimators x̂(1)

α consisting of only finitely many non-vanishing components. As already
mentioned in the introduction this is the reason why schemes using 1-norms as penalty
terms are called sparsity promoting. The following result can also be found in [78, Lem. 2.1]
(see also [37, Prop. 2.2 (i)] for a slightly more general version).
Proposition 2.1 (Sparsity of the minimizers). Suppose x̂(1)

α ∈ `1 is given by (2.1). Then
there exists n ∈ N such that

(
x̂(1)
α

)
j

= 0 for all j ≥ n.

Proof. Recall that for an element x ∈ `1 the convex subdifferential of the `1-norm is given
by

∂‖ · ‖1(x) = {ξ ∈ `∞ : ξj = 1 if xj > 0 , ξj = −1 if xj < 0 and ξ ∈ [−1, 1] if xj = 0} .

The first order optimality condition and the sum and chain rules for convex functionals
(see [34, Ch. 1.5.]) yield ξ ∈ ∂‖ · ‖1(x̂(1)

α ) with ξ = 1
α

(AS)∗AS
(
gobs − Ax̂(1)

α

)
. Since

im((AS)∗) ⊂ `2, the sequence ξ convergences to 0. Hence, there exists n ∈ N such that
|ξj| < 1 and therefore

(
x̂(1)
α

)
j

= 0 for all j ≥ n.

In contrast, for classical Tikhonov regularization we cannot expect that f̂α has only
finitely many non vanishing coefficients in general. To see this and to provide some
intuition, we study a positive diagonal operator where we can explicitly calculate the
estimators for the `1- and `2-penalties. To this end, suppose X = Y and that there exists
a sequence (νn)n∈N of positive real numbers such that Aψn = νnψn.
Inserting the unique expansion gobs = ∑∞

n=1 gnψn, we calculate the coordinates of the
minimizer f̂α = ∑∞

n=1

(
f̂α
)
n
ψn in (1.1) separately and obtain

(
f̂α
)
n

= νn
α+ν2

n
gn. Hence, the

support of f̂α equals the support of gobs.
On the other hand, a routine calculation shows that the minimizer x̂(1)

α in (2.1) has the
following components

(
x̂(1)
α

)
n

=


1
νn

(
gn − α

νn

)
if gn > α

νn
,

1
νn

(
gn + α

νn

)
if gn < − α

νn
,

0 if |gn| ≤ α
νn
.

Hence, in this case the estimator x̂(1)
α is given by a weighed soft thresholding of gobs which

explains once more the finite support, i.e. the sparsity of x̂(1)
α .

In the early and influential work [29] the authors establish convergence of estimators with
weighed `1-penalties and propose an iterative thresholding algorithm to compute those.
In [7], Beck and Teboulle suggested and analyzed the so-called Fast Iterative Shrinkage-
Thresholding Algorithm (FISTA) that is based on Nesterov acceleration. Further numerical
schemes can be found in the overview paper [16].

Tikhonov regularization with general convex penalty

Motivated by the exposition of sparsity promoting regularization above, we study a
generalization of classical Tikhonov regularization with general convex penalties. We prove
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existence of minimizers in a framework that grasps the more concrete setups in the sequel.
To keep the formulation of the results in this work as self-contained as possible, we avoid
standing assumptions. However, we set up assumptions from the text in the following way
and refer to them whenever needed.

Assumption 2.2. Let X and Y be Banach spaces. Moreover, let τX be a topology on
X such that (X, τX) is a locally convex Hausdorff space and R : X→ (−∞,∞] a proper,
convex function such that the sublevel sets {f ∈ X : R(f) ≤ λ} are τX-compact for all
λ ∈ R. Suppose F : dom(F )→ Y is a τX-to-weak continuous map defined on a τX-closed
subset dom(F ) ⊂ X with dom(R) ∩ dom(F ) 6= ∅.

For α > 0, f ∈ dom(F ) and g ∈ Y we consider the Tikhonov functional given by

Tα(f, g) := 1
2α‖g − F (f)‖2

Y +R(f)

and denote its set of minimizers by

Sα(g) := argmin
f∈dom(F )

Tα(f, g) ⊆ dom(R) ∩ dom(F ). (2.2)

The next result shows existence of minimizers (see also [93, Thm. 3.22]).

Proposition 2.3 (Existence of minimizers). Suppose Assumption 2.2 holds true. Let
g ∈ Y. Then Sα(g) is nonempty. Moreover, if g ∈ im(F ), then there exists a (possibly
not unique) R-minimal f ∈ dom(F ) with F (f) = g, i.e. R(f) ≤ R(h) for all h ∈ dom(F )
with F (h) = g.
If F is linear and injective with dom(F ) = X, then Sα(g) is a singleton.

Proof. The function dom(F )→ Y given by f 7→ g − F (f) is τX-to-weak continuous and
Y→ [0,∞) given by y 7→ 1

2α‖y‖
2 is weakly lower semi-continuous. τX-lower semi-continuity

ofR follows from the τX-compactness of its level sets. Hence, Tα(·, g) : dom(F )→ (−∞,∞]
is τX-lower semi-continuous. Therefore, the sublevel set Lλ := {f ∈ dom(F ) : T (f, g) ≤ λ}
is τX-closed in dom(F ) for all λ ∈ R. As dom(F ) is τX-closed in X, the sets Lλ are also
τX-closed in X. Moreover, we have Lλ ⊂ {f ∈ X : R(f) ≤ λ}. Hence, Lλ is compact.
Using the finite intersection property, ⋂λ∈R Lλ = ∅ and Lλ1 ⊂ Lλ2 for λ1 ≤ λ2 implies
the existence of λ ∈ R with Lλ = ∅. Hence, m := inff∈dom(F ) Tα(f, g) > −∞. By the
assumption dom(R) ∩ dom(F ) 6= ∅ we have m < ∞. If λ > m, then Lλ 6= ∅. Therefore,
we obtain Sα(g) = ⋂

λ>m Lλ 6= ∅ using the finite intersection property once again.
We turn to the proof of the second statement. The set F−1({g}) is τX-closed in dom(F ) and
therefore in X. If R(f) =∞ for all f ∈ dom(F ) with F (f) = g, then the statement holds
true as every element in F−1({g}) is R-minimal in this case. Otherwise, the application
of the first part to the restriction of F to F−1({g}) yields the claim.
The uniqueness statement in the linear, injective case follows from strict convexity of the
function R→ R, τ 7→ 1

2ατ
2.

The above existence result tells us that the method introduced in (2.2) is well-defined.
Typically stability and convergence are investigated for inversion methods like Sα. Stability
means that the regularized solutions f̂α ∈ Sα(gobs) depend (sequentially) continuously
on the observed data gobs ∈ Y. For a true solution f ∈ dom(F ) convergence in this
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context stands for the convergence of f̂α ∈ Sα(gobs) to f whenever the observed data gobs

convergences to the true data F (f) and the regularization parameter α is chosen in an
appropriate manner. The combination of the three properties, namely well-definedness,
stability and convergence, is referred to as regularizing property.
As this work is mainly focused on statements on the speed of convergence, the latter two
properties are of less significance in the sequel. Nevertheless, we refer to [93, Sec. 3.2] for a
treatise of the regularizing property in a setting that is similar to the one in Assumption 2.2.

2.2 Convergence rate theory and source conditions

In the setting of Assumption 2.2 let f ∈ dom(F ), δ > 0 and gobs ∈ Y an observation
satisfying the deterministic error model ‖gobs−F (f)‖Y ≤ δ. A central aim of regularization
theory and of the present work is to find upper bounds on ‖f − f̂α‖X with f̂α ∈ Sα(gobs) in
terms of the noise level δ under specified parameter choice rules α = α(δ, gobs). As already
mentioned in the introduction, such an upper bound which converges to 0 as δ → 0 is also
referred to as a convergence rate.
The following abstract result shows that for an ill-posed problem no reconstruction method
R(δ, gobs) ∈ X satisfies a uniform error bound on dom(F ) (see also [35, Prop. 3.11]).

Proposition 2.4. Suppose F : dom(F )→ Y is an injective map between Banach spaces
X and Y and R : (0,∞) × Y → X is a map. For δ > 0 and a subset K ⊂ dom(F ) we
consider the worst case error of R on K given by

∆R(δ,K) := sup
{
‖f −R(δ, gobs)‖X : f ∈ K, gobs ∈ Y with ‖gobs − F (f)‖Y ≤ δ

}
. (2.3)

If there exists ψ : (0,∞) → (0,∞) with ψ(δ) → 0 for δ → 0 and ∆R(δ,K) ≤ ψ(δ), then
F−1 : F (K)→ K is uniformly norm-continuous.

Proof. Let ε > 0. There exists δ > 0 such that ψ(δ) < ε
2 . For g1, g2 ∈ F (K) with

‖g1 − g2‖Y ≤ δ we estimate

‖F−1(g1)− F−1(g2)‖X ≤ ‖F−1(g1)−R(δ, g1)‖X + ‖R(δ, g1)− F−1(g2)‖X ≤ 2ψ(δ) < ε.

For an ill-posed operator equation F (f) = g, this result shows that we can only hope
for error bounds tending to 0 for small noise levels uniformly on sets K ( dom(F ). In
other words, bounds on ‖f − f̂α‖X require additional assumptions on the true solution
f. Those assumptions are referred to as regularity conditions or source conditions in
regularization theory. The name source condition comes from the first such conditions for
linear forward operators A between Hilbert spaces: f = (A∗A)ν/2ω for some ν > 0, where
ω ∈ X is referred to as source generating f . This condition implies the convergence rate
‖f−f̂α‖X = O(δ

ν
ν+1 ) in the Hilbert space norm that defines the penalty. In [81] convergence

rates in Hilbert scales are proven under source conditions of the form f = ϕ(A∗A)ω for
more general functions ϕ. A generalization of the above source condition for ν = 1 to
convex or Banach space penalties is given by source-wise representations

A∗ω ∈ ∂R(f) for some ω ∈ Y. (2.4)
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The latter lead to the convergence rate O(δ) in the Bregman divergence of R (see [13]).
We refer to [92] for an analysis that uses the stronger condition A∗Aω ∈ ∂R(f).
Slower rates of convergence in Banach space settings can be shown under variational source
conditions. We provide details on these conditions and their verification in Chapter 3.
Further types are approximate source conditions [55, 56] and approximate variational
source conditions [42] . We refer to [36] for a comparison of those and variational source
conditions.
Recently, in [51] convergence rates are shown under the condition (A∗A)νω ∈ ∂R(f) for
convex penalties defined on Hilbert spaces. Upper bounds on Tα(f, Af)− Tα(fα, Af) in
terms of α with fα ∈ Sα(Af) (defect of the Tikhonov functional) are used in [59] as a
regularity condition. In Chapter 6 Hölder-type upper bounds in terms of α on ‖Af −Afα‖
will play the role of source conditions.

Optimality

A source condition corresponds to a subset K ⊂ dom(F ) consisting of all elements in
dom(F ) for which the condition is satisfied. In this sense a convergence rate result under
the source condition is a bound on the worst case error ∆RTik(δ,K) given by (2.3) with
RTik : (0,∞)× Y→ X satisfying RTik(δ, gobs) ∈ Sα(δ,gobs)(gobs) (see (2.2)) for a prescribed
choice of the regularization parameter α : (0,∞)× Y→ (0,∞). In this subsection we
present the concept of order optimality of such a convergence rate.

Definition 2.5 (Order optimality). Suppose F : dom(F ) → Y is an injective map be-
tween Banach spaces X and Y. A map R : (0,∞) × Y → X is called an order optimal
reconstruction on K ⊂ dom(F ) if there exists C > 0 and δ0 > 0 such that

∆R(δ,K) ≤ C inf {∆R′(δ,K) : R′ is a map (0,∞)× Y→ X} for all 0 < δ < δ0

with ∆R′(δ,K) defined in (2.3).

In [83, Ch. 1] the infimum on the right hand side is called intrinsic error. In [33,
Sec. 4.3.1.] the term order optimal is referred to as nearly minimax. We recall that the
modulus of continuity of F on a subset K ⊂ dom(F ) given by

ω (δ,K) := sup {‖f1 − f2‖X : f1, f2 ∈ K with ‖F (f1)− F (f2)‖Y ≤ δ} (2.5)

provides a lower bound on ∆R(δ,K) that is independent of the reconstruction method R.

Proposition 2.6 (Universal lower bound ([35, Rem. 3.12], [104, Lemma 3.11])). Suppose
F : dom(F )→ Y is an injective map between Banach spaces X and Y, R : (0,∞)× Y→ X
is a map and K ⊂ dom(F ) a subset. Then

ω (2δ,K) ≤ 2∆R (δ,K) for all δ > 0.

Proof. Let f1, f2 ∈ K with ‖F (f1)− F (f2)‖Y ≤ 2δ. With g = 1
2 (F (f1) + F (f2)) we have

‖g − F (fi)‖Y ≤ δ for i = 1, 2. Hence

‖f1 − f2‖X ≤ ‖f1 −R(δ, g)‖X + ‖R(δ, g)− f2‖X ≤ 2∆R (δ,K) .

This implies the claim by definition of ω(2δ,K).
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We refer to [61] for a comprehensive treatment of the modulus of continuity for linear
operators in Hilbert spaces.
We finish this section with a practicable criterion to verify order optimality.

Corollary 2.7 (Order optimality via the modulus of continuity). In the setting of
Proposition 2.6 suppose φ : (0,∞) → [0,∞) is non-decreasing and that there exists a
constant cω > 0 and δ0 > 0 such that

∆R(δ,K) ≤ φ(δ) and cωφ(δ) ≤ ω(δ,K) for all 0 < δ < δ0.

Then R is an order optimal reconstruction method on K.

Proof. Let R′ : (0,∞)× Y→ X be a map. Let 0 < δ < δ0
2 . Then Proposition 2.6 yields

∆R(δ,K) ≤ φ(δ) ≤ φ(2δ) ≤ 1
cω
ω(2δ,K) ≤ 2

cω
∆R′(δ,K).

2.3 Literature on convergence rates for sparsity pro-
moting regularization

We give a brief overview of the literature on convergence rate theory for `1-regularization.
In the early paper [78] from 2008 the rate O(δ1/2) in the 1-norm is shown assuming that the
unknown solution is sparse (i.e. has only finitely many non-vanishing entries) and that the
forward operator is linear. The paper [52] provides the rate O(δ1/2) for nonlinear operators
under a source condition that coincides with (2.4) in the linear case. Furthermore, by
additionally requiring sparsity of the unknown the authors achieve the linear rate O(δ)
and discuss that in contrast to classical Tikhonov regularization, which has the highest
possible rate O(δ2/3), in `1-regularization no saturation effect occurs. To the best of the
author’s knowledge the linear rate O(δ) was first proven in [14] for a regularization scheme
similar to (2.1), which is called residual method in [52]. In [50] a linear convergence rate
is shown in the more general setting of positively homogeneous functionals under the
source condition (2.4) and a mild injectivity type assumption. Furthermore, in [53] it is
proven (again under a mild injectivity type assumption) that the condition (2.4) is not
only sufficient but even necessary for a linear convergence rate of `1-regularization. The
phenomenon of exact recovery, i.e. the question whether the support of the estimator
equals the support of a sparse exact solution, is affirmatively treated in [79].

However, it is usually more realistic to assume that the true solution is only approximately
sparse in the sense that it can well be approximated by sparse vectors. Using a variational
source condition, convergence rates are shown for non-sparse solutions in [11] for linear
forward operators. Therein the analysis is based on the assumption that the unit vectors
belong to the range of the adjoint operator. The rates are characterized in terms of the
growth of the norms of the preimages of the unit vectors and the speed of decay of the true
solution. In [3] the range condition is further discussed and the convergence rate results
are extended to `q-regularization with q < 1. We will discuss the latter range condition in
more detail in Section 3.2.
In [41] a relaxation of the condition on the unit vectors is introduced, and it is shown
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that one also obtains convergence rates if the basis is not smooth enough, i.e. the unit
vectors do not belong to the range of the adjoint operator. We will illuminate this relaxed
assumptions in more detail in Section 3.3. The approaches of [11] and [41] are put into a
common framework in [43]. The relaxed assumptions are revised in [40] where it is shown
that they are always satisfied for injective and weak∗-to-weak continuous linear operators.
Furthermore, in the later paper the linear rate O(δ) is proven for sparse true solutions
without any further assumptions.
This overview shows that on the abstract level of general `1-regularization for linear
operators the convergence rate theory is far developed. Nevertheless, as already briefly
discussed in the introduction, there are only few results providing convergence rates under
concrete and practicable assumptions on the forward operator and non-sparse true solution.
For example, Hölder type rates O(δν) for 0 < ν < 1 where ν depends on smoothness of the
unknown measured in some function space are desirable. In the sequel we will prove such
convergence rates for wavelet regularization in Besov spaces. The latter will be introduced
in the following subsection.

Finally, we touch upon wavelet thresholding methods that have been studied extensively, in
particular for statistical noise models. In the special case of a diagonal operator Tikhonov
regularization with wavelet penalties coincides with estimators given by these methods. In
[32] (near) minimax convergence rates in Besov balls are shown for soft thresholding with
a wavelet basis. The application to a class of linear inverse problems (including the Radon
transform) is studied in [31]. Here the authors use a wavelet basis in X and a wavelet
vagulette basis in the image space Y such that the forward operator is diagonal in these
bases. The proposed method consists in exact inversion of the forward operator followed by
a wavelet shrinkage in X. Minimax optimal convergence rates with L2-loss functions under
white noise are established in many Besov balls. A wavelet vagulette decomposition is
also used in [76] for the inversion of the Radon transform. However, the wavelet vagulette
decompositions are only available for a small class of linear forward operators.
The further developed wavelet method for inversion of linear inverse problems proposed in
[25] relaxes the restrictions on the wavelet decomposition and allows the use of a generic
wavelet system in X. In this reference optimal convergence rates in Besov balls for finitely
smoothing linear operators with white noise error model are established. However, the
degree of smoothing of the forward operator is explicitly used in the inversion method
which limits the method to this class of operators. Finally, we refer to [73] for convergence
rates results for a two-step procedure consisting of wavelet shrinkage in the data space Y
followed by Tikhonov regularization.
In the following we will consider Tikhonov regularization with penalty terms given by
wavelet coefficients. Apart from the fact that it allows for a more flexible penalization, its
main advantage compared to the methods above is the applicability to non-linear inverse
problems.

2.4 Wavelet regularization in Besov spaces

In the sequel we will consider the situation where the unknown is a function defined on
a domain Ω. Our two main examples for Ω are the d-dimensional torus Td := (R/Z)d
and Euclidean space Rd. Our theory may also be applied to bounded Lipschitz domain in
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Rd (see [100, Def. 3.4.(iii)]). We will use a Besov type scale Bs
p,q that we will introduce

in an abstract and axiomatic way in the sequel. Typically Besov scales come with the
parameters: smoothness s ∈ R, integrabilty p ∈ (0,∞] and fine index q ∈ (0,∞]. The
reader unfamiliar with Besov function spaces may find a first orientation in the following
relations to classical function spaces (see Proposition A.11):

B0
p,1(Ω) ⊂ Lp(Ω) ⊂ B0

p,∞(Ω) for all p ≥ 1

and
Bs

2,2(Ω) = Hs(Ω) with equivalent norms for all s ∈ R.

In the sequel we shortly introduce Besov function spaces. For a comprehensive treatment of
Besov function spaces we refer to [101, 99] and [100]. Furthermore, we recommend [47, Ch.
4] for a readily accessible introduction to the topic and its applications in approximation
theory.
The following reasons justify the use of these spaces in regularization theory:

• For certain forward operators it was shown in [66] that convergence rates are
equivalent to smoothness measured in Besov spaces. More precisely the spaces
Bs

2,∞ appear as maxisets of classical Tikhonov regularization of a-times smoothing
operators as follows: Let M be a d-dimensional manifold satisfying the additional
requirements in [66, Ass. 6.1], A : X = L2(M) → Y = L2(M) be a linear forward
operator. With Hs(M), s ∈ R the scale of Sobolev spaces, we assume that A extends
or restricts to a Banach space isomorphism Hs(M)→ Hs+a(M) for all s ∈ R and
some fixed a > 0. For 0 < s < 2a, f ∈ L2, gobs satisfying a deterministic noise
bound with noise level δ and f̂α given by (1.1) the result [66, Thm. 7.1] yields
the following equivalence: There exists a parameter choice rule such that a bound
‖f − f̂α‖X = O(δ

s
s+a ) holds true if and only if f ∈ Bs

2,∞(M).
• Besov norms provide a precise way to estimate the regularity of stochastic processes.

For example, for p ∈ [1,∞) Gaussian white noise W on the d-dimensional torus
satisfies W ∈ B−

d
2

p,∞(Td) and W /∈ Bs
p,∞(Td) for s > −d

2 almost surely (see [103,
Thm. 3.4]).

• Suitable wavelet systems give rise to a characterization of Besov spaces in terms of
wavelet coefficients. This connection between wavelets and Besov spaces is a crucial
point in this work and treated in more detail in the following.

Besov function spaces

We briefly introduce Besov function spaces. The basic ingredient is a smooth dyadic
resolution of unity (see [99, Sec. 2.3.1.]) in Fourier space. To this end, let φ0 be a smooth
function on Rd with φ(ξ) = 1 if ‖ξ‖2 ≤ 1 and φ(ξ) = 0 if ‖ξ‖2 ≥ 2. For j ∈ N we set
φj(ξ) := φ(2−jξ)− φ(2−j+1ξ). Then we have

suppφj ≤ {ξ ∈ Rd : 2j−1 ≤ ‖ξ‖2 ≤ 2j+1} for all j ≥ 1 (2.6)

and ∑∞j=0 φj(ξ) = 1 for all ξ ∈ Rd.
Now we start with Ω = Rd. Let S ′(Rd) be the space of tempered distributions, i.e. the
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topological dual of the Schwartz space S(Rd). The Fourier transform F extends to a linear
isomorphism F : S ′(Rd)→ S ′(Rd). With s ∈ R and p, q ∈ (0,∞] we have

Bs
p,q(Rd) :=

{
f ∈ S ′(Rd) :

∥∥∥∥(2js‖F−1φjFf‖Lp(Rd)

)
j∈N0

∥∥∥∥
q
<∞

}
(2.7)

(see [101, Sec. 2.3.1.]).
Next we consider the periodic case. The definition of Bs

p,q(Td) is similar to the one of
Bs
p,q(Rd). Let D(Td) be the space all infinitely differentiable functions on Td. Then its

topological dual D′(Td) is the space of periodic distributions. For k ∈ Zd let ek(x) := ei〈k,x〉.
Every f ∈ D′(Td) has a representation

f =
∑
k∈Zd

f̂(k)ek with Fourier coefficients f̂(k) = 〈f, ek〉 (2.8)

and f̂(k) is of at most polynomial growth. On the other hand, if (ak)k∈Zd is a sequence of
at most polynomial growth then there exists f ∈ D′(Td) such that f̂(k) = ak.
For j ∈ N0 we set

fj =
∑
k∈Zd

f̂(k)φj(k)ek. (2.9)

With (φj)j∈N0 as above, p, q ∈ (0,∞] and s ∈ R we have

Bs
p,q(Td) :=

{
f ∈ D′(Td) :

∥∥∥∥(2js‖fj‖Lp(Td)

)
j∈N0

∥∥∥∥
q
<∞

}
(2.10)

(see [101, Sec. 9.1.3]).
Before we move on we discuss a simplification in the case p > 1.

Remark 2.8 (Lizorkin representations (see [101, Sec. 2.5.4.])). If p ∈ (1,∞] it is possible
to replace the smooth resolution of unity (φj)j∈N0 by the one given by the characteristic
function of the unit cube. The characterizations (2.10) and (2.7) remain valid and the
definition of the norms with φj replaced by the characteristic functions yield equivalent
norms. This is helpful in the analysis as the overlap in the resolution is omitted which
leads to pairwise orthogonality of (fj)j∈N given by (2.9). We refer to [101, Sec. 2.5.4.]
for details in the case Ω = Rd. For the d-dimensional torus this leads to the following
construction of an equivalent norm (see [95, Sec. 3.5.3.]): Let

Π0 = {0} and Πj := {ξ ∈ Zd : 2j−1 ≤ ‖ξ‖∞ < 2j} for j ≥ 1.

Then for all s ∈ R, p ∈ (1,∞) and q ∈ [1,∞] the following expression

‖f |Bs
p,q(Td)‖ :=

∥∥∥∥∥∥∥
2js‖

∑
k∈Πj

f̂(k)ek‖Lp(Td)


j∈N0

∥∥∥∥∥∥∥
q

(2.11)

defines an equivalent norm on Bs
p,q(Td).
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There are several ways to define Besov function spaces for open subsets Ω ⊂ Rn

differing mainly by their treatment of boundary values. We will recall two definitions of
Besov spaces for subdomains by restrictions in the sense of the theory of distributions (see
[100, Def. 2.1. and Rem. 2.2.]). Let Ω ⊂ Rd be a bounded Lipschitz domain, D(Ω) be the
set of all smooth function with compact support contained in Ω and D′(Ω) be the space of
distributions on Ω. The first way is

Bs
p,q(Ω) :=

{
f ∈ D′(Ω) : f = g|Ω for some g ∈ Bs

p,q(Rd)
}

(2.12)

with the natural quotient norm given by the infimum over ‖g|Bs
p,q(Rd)‖ for all extensions

g.
The other definition is

B̃s
p,q(Ω) :=

{
f ∈ Bs

p,q(Rd) : supp(f) ⊂ Ω
}
. (2.13)

Besides basic embedding and interpolation identities the results in this work depend
only on the characterization of Besov function spaces by wavelet coefficients that we will
address in the following section. Therefore, we use the following general way to introduce
Besov scales. This may help the reader mainly interested in regularization theory and not
familiar with Besov function spaces as all properties we need in this work are bundled in
the following definition. Moreover, the collection shows all properties that have to be met
by a scale of function spaces on a domain to make our theory applicable.
Recall that a quasi-norm satisfies all properties of a norm except for the triangle inequality,
which is only holds true in the weaker form ‖x + y‖ ≤ C (‖x‖+ ‖y‖) with C > 1. A
complete vector space with a quasi-norm is called quasi-Banach space.
Moreover, we recall real interpolation of quasi-Banach spaces via the K-method (see [8,
Sec. 3.1 & 3.11]). To this end, let X1 and X2 be quasi-Banach spaces with a common
ambient Hausdorff topological vector space D̃, i.e. Xi ⊂ D̃ continuously. Then for
t > 0 and f ∈ X1 + X2 the K-functional is defined by

K(t, f) := inf (‖f1‖X1 + t‖f2‖X2) (2.14)

where the infimum is taken over all decomposition f = f1 + f2 with fi ∈ Xi. Let 0 < θ < 1
and q ∈ (0,∞). For f ∈ X1 + X2 one defines

‖f‖(X1,X2)θ,q :=
(∫ ∞

0
t−qθK(t, f)q dt

t

) 1
q

. (2.15)

Furthermore, for 0 ≤ θ ≤ 1 we have

‖f‖(X1,X2)θ,∞ = sup
t>0

t−θK(t, f).

We obtain a quasi-Banach space (X1,X2)θ,q consisting of all elements f ∈ X1 + X2 with
‖f‖(X−,X)θ,q <∞. For all 0 < θ < 1 and q ∈ (0,∞) there exists a constant cθ,q such that
the interpolation inequality

‖f‖(X1,X2)θ,q ≤ cθ,q‖f‖1−θ
X1 · ‖f‖

θ
X2

holds true for all f ∈ X1 ∩ X2 (see [98, Sec. 1.3.3.]).
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Definition 2.9 (Besov scale). Let d ∈ N. A family of quasi-Banach spaces D ⊂ Bs
p,q ⊂ D̃

for s ∈ R, p, q ∈ (0,∞] with common subspace D and embedded continuously into an
ambient Hausdorff topological vector space D̃ with quasi-norms ‖· |Bs

p,q‖ is called a Besov
scale if the following conditions are satisfied.

(a) Bs
p,q is a Banach space whenever p, q ∈ [1,∞]. D is dense in Bs

p,q whenever
p, q ∈ (1,∞).

(b) B0
2,2 is a Hilbert space. Moreover, suppose that the restriction 〈·, ·〉 : D ×D → R of

the inner product on B0
2,2 extends to a bounded bilinear pairing B−sp′,q′ × Bs

p,q → R
that gives rise to isomorphisms (Bs

p,q)′ ' B−sp′,q′ for all s ∈ R, p, q ∈ [1,∞) and their
Hölder conjugates p′, q′.

(c) The following inclusions hold true with continuous embeddings:
(i) Bs1

p1,q ⊂ Bs2
p2,q for s1 ≥ s2, 0 < p1 ≤ p2 ≤ ∞, q ∈ (0,∞] with s1 − d

p1
≥ s2 − d

p2
,

(ii) Bs
p,q1 ⊂ Bs

p,q2 for s ∈ R, p ∈ (0,∞], 0 < q1 ≤ q2 ≤ ∞,
(iii) Bs2

p,∞ ⊂ Bs1
p,q for s1 < s2, p, q ∈ (0,∞].

(d) Let θ ∈ (0, 1). The following real interpolation identities hold true with equivalent
quasi-norms:

(i) Bs
p,q =

(
Bs1
p,q1 , B

s2
p,q2

)
θ,q

for s1 < s2 with s = (1− θ)s1 + θs2, p, q, q1, q2 ∈ (0,∞].
(ii) Bs

p,p =
(
Bs1
p1,p1 , B

s2
p2,p2

)
θ,p

for s1 < s2 with s = (1− θ)s1 + θs2, p, p1, p2 ∈ (0,∞)
with 1

p
= 1−θ

p1
+ θ

p2
.

Moreover, a Besov scale Bs
p,q is called p-monotone if Bs

p2,q ⊂ Bs
p1,q with a bounded embedding

whenever 0 < p1 ≤ p2 ≤ ∞.

If Ω is either Td, Rd or a bounded Lipschitz domain in Rd, then the scale of Besov
function spaces D(Ω) ⊂ Bs

p,q(Ω) ⊂ D′(Ω) (with S instead of D if Ω = Rd) is a Besov scale
in the sense of Definition 2.9 (see e.g. [101], [100] or [95]). If Ω is either Td or a bounded
Lipschitz domain in Rd then the scale Bs

p,q(Ω) is p-monotone (see [101, 3.3.1.(9)]). We will
frequently use the properties of a Besov scale without further referencing.
We finish this section with a direct consequence of Definition 2.9, namely a version of the
mixed embedding in Definition 2.9(c)(i) showing that if the required inequality is strict we
may change the fine index q.

Lemma 2.10 (Mixed embedding). Let Bs
p,q be a Besov scale as defined in Definition 2.9,

0 < p1 ≤ p2 ≤ ∞, s1, s2 ∈ R with s1 − d
p1
> s2 − d

p2
and q1, q2 ∈ (0,∞). Then there is a

continuous embedding Bs1
p1,q1 ⊂ Bs2

p2,q2.

Proof. Let s̃2 ∈ R satisfy s1 − d
p1

= s̃2 − d
p2

. Then s2 < s̃2 and hence there is a continuous
embedding Bs1

p1,q1 ⊂ B s̃2
p2,q1 . With this the claim follows from the following chain of

continuous embeddings B s̃2
p2,q1 ⊂ B s̃2

p2,∞ ⊂ Bs2
p2,q2 .

Besov sequence spaces and wavelet systems

We introduce a scale of sequence spaces bsp,q that allows to characterize Besov function
spaces Bs

p,q(Ω) by decay properties of coefficients in wavelet expansions (see also [100,
Def. 2.6]).



22 2. Generalized Tikhonov and wavelet regularization

Let d ∈ N0. Let (Λj)j∈N0 be either a family of finite sets such that

2jd ≤ |Λj| ≤ CΛ2jd for some constant CΛ ≥ 1 and all j ∈ N0 (2.16)

or a family of countably infinite sets. We refer to Λj as the j-th level and consider the
index set

Λ := {(j, k) : j ∈ N0, k ∈ Λj}.

For a sequence x = (xj,k)(j,k)∈Λ and a fixed j ∈ N0 we denote by xj := (xj,k)k∈Λj ∈ RΛj

the projection onto the j-th level. For s ∈ R and p, q ∈ (0,∞] let us introduce

bsp,q :=
{
x ∈ RΛ : ‖x‖s,p,q <∞

}
with ‖x‖s,p,q :=

∥∥∥∥∥
(

2js2jd(
1
2−

1
p)‖xj‖p

)
j∈N0

∥∥∥∥∥
q

.

If p, q ∈ [1,∞], then bsp,q is a Banach space. For p ∈ (0, 1) or q ∈ (0, 1) the vector spaces
bsp,q are quasi-Banach spaces. Here the smallest possible constant in the replacement of the
triangle inequality is C = 2

1
min{p,q}−1. The set of finitely supported sequences is a common

subset and lies dense in bsp,q whenever p 6=∞ and q 6=∞. We have `2(Λ) = b0
2,2.

Furthermore, it is routine to see that all the embedding relations and the statement on
the dual pairing in Definition 2.9 are satisfied. An adaption of the proof [101, Thm.
2.4.2.] shows the interpolation identity Definition 2.9(d)(i). Finally, the identity in
Definition 2.9(d)(ii) follows from identifying bsp,p with a weighed `p-space and using the
results in [45]. Hence, the scale bsp,q ⊂ RΛ is a Besov scale in the sense of Definition 2.9.
Moreover, it is p-monotone if the levels Λj and satisfy (2.16).
We formulate a condition that is typically met by wavelet systems.

Assumption 2.11. Let D ⊂ Bs
p,q ⊂ D̃ be a Besov scale as defined in Definition 2.9 and

smax > 0. With bsp,q as defined above (with d according to the Besov scale) suppose that
(ψλ)λ∈Λ is a family of elements in D̃ such that the synthesis operator

S : bsp,q → Bs
p,q given by x 7→

∑
λ∈Λ

xλψλ

is well defined and a quasi-norm isomorphism for all s ∈ R, p, q ∈ (0,∞] satisfying
s ∈ (σp − smax, smax) with σp = max

{
d
(

1
p
− 1

)
, 0
}

.

Note that p ≥ 1 implies σp = 0 and therefore S is a norm isomorphism whenever
|s| ≤ smax in this case.
For Ω either Rd or Td it is shown in [100, Thm. 1.20, Prop. 1.34, Thm. 1.37] that for every
smax > 0 there exists an orthonormal wavelet system such that Assumption 2.11 is met
with the scale of Besov function spaces Bs

p,q(Ω).
For a similar statement for bounded Lipschitz domains Ω ⊂ Rd we refer to [100, Thm. 2.33,
Thm. 3.23, Rem. 3.25]. There a scale of Besov function space is used that mixes the two
definitions given in (2.12) and (2.13). In the following two examples we briefly discuss the
construction of wavelet systems.

Example 2.12 (Periodic wavelets (cf. [64, Ex. 2.5])). We sketch the construction
of a wavelet system on Td starting with a wavelet system on R . Let smax ∈ N and
ψM ∈ Csmax(R) be a wavelet function (or mother wavelet) with corresponding scaling
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j = 0

j = 1

j = 2

j = 3

j = 4

j = 5

j = 6

Figure 2.1: A schematic illustration of the index set Λ if (2.16) holds true with
d = 1. Typically wavelet coefficients of the Haar wavelet are stored in this data
structure.

function (or father wavelet) ψF ∈ Csmax(R) (see e.g. [28] for an introduction to wavelets).
For simplicity we assume that {ψj,k : j ∈ N0, k ∈ Z} given by ψ0,k(x) := φF (x − k) and
ψj+1,k(x) := 2j/2ψM(2jx− k) for j ∈ N0 forms an orthonormal basis of L2(R). We further
assume that this wavelet system is smax-regular, in the sense of [47, Def. 4.2.14], which
entails in particular that

∫
R ψ

M (x)xm dx = 0 for all m ∈ N0 with m ≤ smax − 1. Examples
of such wavelets include Daubechies wavelets [27] of order N ∈ N, which are supported in
an interval of length 2N − 1 and the regularity can be bounded by smax ≥ 0.2N for large
N , as well as Meyer-wavelets [82], which are smax-regular for any smax > 0.
Using periodization one can construct a 1-periodic wavelet system from a wavelet system on
R: For j ∈ N0 we consider scaling and periodization ψP,Mj (x) := ∑

k∈Z 2j/2ψM(2j(x− k))
of the mother wavelet. We set ΛP

0 = {0} and ψP0,0(x) := ∑
k∈Z ψ

F (x − k). Moreover,
for j ∈ N0 and k ∈ ΛP

j+1 := {0, . . . , 2j − 1} we define ψPj,k(x) := ψP,Mj (x − 2−jk). Note
that all these functions belong to the space Csmax(T) of 1-periodic functions. The system
(ψPj,k)(j,k)∈ΛP with ΛP := {(j, k) : j ∈ N0 and k ∈ ΛP

j } constitutes an orthonormal basis of
L2(T). Furthermore, Assumption 2.11 holds true (see [47, Thm. 4.3.26 and (4.137)] and
[19, Ch. 3] for a treatment including the case 0 < p < 1).
Finally to obtain multivariate wavelet systems let us recall the construction of tensor
product wavelets (see [19, Sec. 1.4] or [28, Sec. 10.1] for further motivation and ex-
planation). To this end, we also need to scale and shift the father wavelet: ψP,Fj (x) :=∑
k∈Z 2j/2ψF (2j(x− k)) with j ∈ N0. Now let G := {F,M}d \ {(F, . . . ,F)} and note that
|G| = 2d − 1. We set ψ0,0(x) := ∏d

l=1 ψ
P,F
0 (xl) and ψj,k,G := ∏d

l=1 ψ
P,Gl
j (xl − 2−jkl) for

k ∈ {0, . . . , 2j − 1}d, G ∈ G and j ∈ N. Set ΛP,d
0 := {0}, ΛP,d

j+1 := {0, . . . , 2j − 1}d × G for
j ∈ N0 and ΛP,d := {(j, l) : j ∈ N0, l ∈ ΛP,d

j }. Then {ψP,d
λ : λ ∈ ΛP,d} is an orthonormal

basis and Assumption 2.11 remains valid.

Example 2.13 (Wavelets on bounded domains Ω ⊂ Rd (cf. [64, Ex. 2.6])). In many
applications domains with non-periodic boundary conditions occur. To show that this can
also be described in our setting, recall the two possibilities (2.12) and (2.12) to define Besov
spaces on Ω ⊂ Rd. For a bounded Lipschitz domain Ω ⊂ Rd it is possible under certain
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conditions to modify the wavelets whose support intersects with the boundary ∂Ω (or is
close to ∂Ω relative to its size) such that approximation properties and inverse inequalities
of the corresponding wavelet spaces are preserved. This was done in [26] for the symmetric,
compactly supported biorthogonal wavelets from [22]. There are different constructions
of boundary-adapted wavelets leading to isomorphisms bsp,q ∼= Bs

p,q(Ω) or bsp,q ∼= B̃s
p,q(Ω)

for certain values of s, p and q. (see e.g. [100, Thm. 2.33., Thm. 3.23., Rem. 3.25], [19,
§3.9–3.10], [47, §4.3.5], [5] and [23]).

Wavelet regularization

Let p, q ∈ [1,∞), r ≥ 0 and u ∈ [1,∞). Assume Assumption 2.11 holds true with r < smax.
Let F : dom(F )→ Y be a map defined on a subset dom(F ) ⊂ D̃ mapping to a Banach
space Y. For g ∈ Y we consider the following set-valued scheme

Rα(g) = Sx̂α with x̂α ∈ argmin
x∈D

( 1
2α‖g − F (Sx)‖2

Y + 1
u
‖x‖ur,p,q

)
(2.17)

with D := S−1(Br
p,q ∩ dom(F )) ⊆ brp,q and α > 0 a regularization parameter.

Note that this setting contains regularization with initial guess Sx0 = f0 ∈ Br
p,q as

follows: The above scheme with ‖x‖r,p,q replaced by ‖x− x0‖r,p,q is the same as (2.17)
with F̃ (f) := F (f + f0) on dom(F̃ ) := dom(F )− f0.
This kind of regularization scheme with a linear operator is the ”primary motivation” for
the seminal paper by Daubechies, Devries and DeMol (see [29, Sec. 1.4.1]). In the paper
[90] regularizing properties are shown for nonlinear operators.
For linear operators and Besov space wavelet penalty term the source condition (2.4) and
the stronger condition below (2.4) are interpreted and used to prove convergence rates in
[80] and [91]. Convergence rates with respect to Bregman distances rather than the norm
‖· |Br

p,q‖ as loss function are shown in [12] under Besov smoothness assumptions using
approximate source conditions. Finally, we refer to the paper [104] were convergence rates
where shown under variational source conditions. In the latter paper optimal convergence
rates are achieved for p ∈ (1, 2) and q ≥ 2. One central aim of this work is to extend these
results to the sparsity promoting penalties with p ∈ [1, 2] and q = 1.

Remark 2.14 (Analysis versus synthesis setting). Let Ω be either Td, Rd or a subdomain of
Rd. Some of the references above define the Tikhonov functional on function spaces rather
then on sequence spaces and use the analysis operator of a wavelet system (ψλ)λ∈Λ ⊂ L2(Ω)
to define a Besov space penalty term:

R(A)
α (g) = argmin

f∈Brp,q∩dom(F )

( 1
2α‖g

obs − F (f)‖2
Y + 1

u
‖(〈f, ψλ〉)λ∈Λ‖

u
r,p,q

)
. (2.18)

We argue that the latter estimators equal the ones in (2.17) whenever (ψλ)λ∈Λ satisfies
Assumption 2.11 and additionally is an orthonormal basis of L2(Ω).
To this end, note that we have 〈f, ψλ〉 = (S−1f)λ first for all test functions f ∈ D(Ω) and
therefore for all f ∈ Br

p,q. Hence the penalty in 2.18 equals 1
u
‖S−1f‖ur,p,q. From this it

follows that Rα(g) = R(A)
α (g) by considering how argmin transforms under composition

with a bijective mapping.
Our analysis using the synthesis operator as in Assumption 2.11 and estimators of the
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form (2.17) is restricted to wavelet basis systems. The reason is that for a wavelet frame
which is overcomplete the synthesis operator S and therefore also the composition F ◦ S is
not injective. Nevertheless, we will show that the convergence rates results we obtain in the
setting of Assumption 2.11 do generalize to wavelet frames if one replaces the estimators
given by (2.17) by the scheme (2.18). (See [3, Sec. 6.2.] for a related discussion.)

Finitely smoothing operators

We formulate an assumption on the forward operator, discuss several examples and prove
existence of minimizers in (2.17).
The following two-sided Lipschitz condition is a well studied mapping property of operators
in Besov spaces.

Assumption 2.15. For a given Besov scale Bs
p,q suppose a > 0, dom(F ) ⊂ B−a2,2 is closed

and F : dom(F )→ Y for some Banach space Y.
(a) Assume there exist constants M1 > 0 such that

‖f1 − f2 |B−a2,2‖ ≤M1‖F (f1)− F (f2)‖Y for all f1, f2 ∈ dom(F ).

(b) Assume there exist constants M2 > 0 such that

‖F (f1)− F (f2)‖Y ≤M2‖f1 − f2 |B−a2,2‖ for all f1, f2 ∈ dom(F ).

If the space B−a2,2 in Assumption 2.15 agrees with the Besov function space B−a2,2 (Ω) on
Ω either Td, Rd or a bounded Lipschitz subdomain of Rd, then replacing B−a2,2 by H−a(Ω)
in this assumption does only change the constants as the latter spaces agree and with
equivalent norms (see Proposition A.11(b)). Assumption 2.15(a) imposes that F is at most
a-times smoothing. This will be crucial requirement for upper bounds on the reconstruction
error. On the other hand, Assumption 2.15(b) states that F is at least a-times smoothing
and will be used to derive existence of minimizers in (2.17) and lower bounds on the
reconstruction error.
We point out that a map F satisfying Assumption 2.15(b) defined initially only on a subset
DF ⊂ L2(Ω) has a unique continuous extension to the closure of DF in B−a2,2 (Ω) and both
inequalities remain valid for this extension.
Before we discuss the verification of Assumption 2.15 in several examples, we prove
existence of minimizers in (2.17) under some natural restrictions on the parameters a, d, r
and p.

Proposition 2.16 (Existence of minimizers). Suppose Assumptions 2.11 and 2.15(b)
hold true. Let p, q ∈ [1,∞), 0 ≤ r < smax and u ∈ [1,∞) such that Br

p,q ∩ dom(F ) 6= ∅.
Additionally assume that at least one of the following assumptions holds true:

(a) (2.16) and a+ r > d
(

1
p
− 1

2

)
.

(b) a + r ≥ d
(

1
p
− 1

2

)
, q < 2, dom(F ) ⊂ B−a2,2 is weakly closed and F is weak-to-weak

continuous.
Then for Rα given by (2.17) we have Rα(g) 6= ∅ for all g ∈ Y.

Proof. (a) We verify Assumption 2.2 for F ◦ S on the set D ⊂ brp,q defined below (2.17).
By the assumed inequality there exists smax < r̃ < r such that a+ r̃ > d

(
1
p
− 1

2

)
. We
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choose τX to be the subspace topology on brp,q induced by the embedding brp,q ⊂ br̃p,q.
Proposition A.7 implies that the sublevel sets of brp,q → [0,∞) given by x 7→ 1

u
‖x‖r,p,q

are τX-compact.
By Assumption 2.11 the synthesis operator S : br̃p,q → B r̃

p,q is a norm isomorphism.
Furthermore, there is a continuous embedding B r̃

p,q ⊂ B−a2,2 (see Lemma 2.10). Hence
S : brp,q → B−a2,2 is well-defined and τX-to-norm continuous. Therefore, D is τX-closed.
As Assumption 2.15(b) implies norm-to-norm continuity of F we have τX-to-norm
continuity of F ◦ S which in turn yields τX-to-weak continuity of F ◦ S. The claim
follows as Proposition 2.3 yields the existence of x̂α in (2.17).

(b) For λ ∈ Λ let eλ ∈ RΛ be the unit vector given by (eλ)λ′ = δλλ′ and p′, q′ the Hölder
conjugates of p and q, i.e. 1

p
+ 1

p′
= 1 and likewise for q. Then the norm closure of

the linear span of {eλ : λ ∈ Λ} in b−rp′,q′ is a predual for brp,q (see Proposition A.9).
We consider the corresponding weak∗-topology on brp,q. Due to the Banach-Alaoglu
theorem the sublevel sets of 1

u
‖·‖ur,p,q are weak∗-compact. By Proposition A.10 the

embedding brp,q ⊂ brp,2 is weak∗-to-weak continuous. The operator S : brp,2 → Br
p,2

and the embedding Br
p,2 ⊂ B−a2,2 are bounded and therefore weak-to-weak continuous.

Hence S : brp,q → B−a2,2 is weak∗-to-weak continuous. Therefore, D defined below
(2.17) is weak∗-closed. Furthermore, F ◦ S is weak∗-to-weak continuous. Hence, once
again the existence of x̂α in (2.17) follows from Proposition 2.3.

We included the technically more elaborate existence statement under the assumption
(b) to cover for example the case a = r = 1

2 , d = 2 and p = q = 1, which is, as we will see,
particularly relevant for the inversion of the Radon transform.

Example 2.17 (Periodic differential operators (cf. [64, Ex. 2.7])). A simple example that
satisfies Assumption 2.15 is Fa := (Id−∆)−a2 : B−a2,2(Td)→ L2(Td). In this case Fa is a
norm isomorphim Bs

p,q(Td)→ Bs+a
p,q (Td) for all s ∈ R and p, q ∈ [1,∞]. More generally,

the assumptions hold true for inverses of elliptic differential operators of order a with
smooth, periodic coefficients (see [98]). Furthermore, it is fulfilled by periodic convolution
operators Ff := k ∗ f for which the Fourier coefficients of the convolution kernels k have
the asymptotic behavior k̂(n) ∼ (1 + |n|2)−a/2, n ∈ Zd.

Example 2.18 (Radon transform (cf. [64, Ex. 2.7])). We consider the Radon transform on
a bounded domain Ω ⊂ Rd, which appears as forward operator in computed tomography (CT)
and positron emission tomography (PET), among others. If Sd−1 := {θ ∈ Rd : ‖θ‖2 = 1}
is the unit sphere, R : L2(Ω)→ L2(Sd−1 × R) is given by

(Rf)(θ, t) :=
∫
x·θ=t

f(x) dβ with θ ∈ Sd−1, t ∈ R.

As a special case of [87, Thm. 5.1] the Radon transform satisfies Assumption 2.15 with
a = d−1

2 and Y = L2(Sd−1 × R). Moreover, it follows from [57, Thm. 3.1] that R is
bounded with closed range from Bs

2,2({x ∈ Rd : ‖x‖2 ≤ 1}) to Bs+a
2,2 (Sd−1 × [−1, 1]) for all

s ∈ R. Note that in order to meet the condition a+ r ≥ d
(

1
p
− 1

2

)
in Proposition 2.16(b)

with the favorable choice p = 1 we need r ≥ 1
2 . The weak continuity assumption is

automatically satisfied as F = R is linear and bounded. Hence, the choice r = 1
2 , leading

to the B
1
2
1,1-penalty that is recommended in [76], is admissible.
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As a last linear example we address the Abel integral transformation.

Example 2.19 (Abel integral equation). Let a ∈
(
0, 1

2

)
. The linear Abel transform

Aa : L2([0, 1])→ L2([0, 1]) is given by

(Af)(t) =
∫ t

0

f(x)
(t− x)1−a dx with t ∈ [0, 1].

Then Aα is a-times smoothing in the sense of Assumption 2.15. For a detailed study of the
mapping properties and in particular a verification of the latter statement we refer to [48].

We now turn to nonlinear examples (cf.[64, Ex. 2.6]). In the study of nonlinear
operator equations in Hilbert scales the following condition, which is closely related to
Assumption 2.15, has been investigated ([65, 88]):

1
M̃
‖h‖X−a ≤ ‖F ′[f ]h‖Y ≤ M̃‖h‖X−a for all h ∈ X−a. (2.19)

Here f ∈ dom(F ), M̃ > 0, and X−a is an element of a Hilbert scale, typically of L2-based
Sobolev spaces H−a(Ω). We also need the so-called range invariance condition: For all
f1, f2 ∈ dom(F ) there exists some operator R(f1, f2) : Y→ Y such that

F ′[f1] = R(f1, f2)F ′[f2] and ‖Id−R(f1, f2)‖ ≤ 1
2 . (2.20)

(Often a bound ‖I −R(f1, f2)‖ ≤ C‖f1 − f2‖ is shown, which implies (2.20) in a ball of
radius 1/(2C).) The following lemma shows that (2.19) and (2.20) implies Assumption 2.15
if X−a = B−a2,2 with equivalent norms.

Lemma 2.20 (cf.[64, Lem. 2.9]). Let X−a and Y be Banach spaces and suppose that
dom(F ) ⊂ X−a is convex, F : dom(F ) ⊂ X−a → Y is Fréchet differentiable and satisfies
(2.19) and (2.20). Then

1
2M̃
‖f1 − f2‖X−a ≤ ‖F (f1)− F (f2)‖Y ≤

3
2M̃‖f1 − f2‖X−a for all f1, f2 ∈ dom(F ).

Proof. By the mean value theorem and (2.20) we have

F (f1)− F (f2) =
∫ 1

0
F ′[f2 + t(f1 − f2)](f1 − f2) dt

=
(∫ 1

0
(R(f2 + t(f1 − f2), f)− Id) dt+ Id

)
F ′[f ](f1 − f2).

As ‖
∫ 1

0 (R(f2 + t(f1 − f2), f)− Id) dt‖ ≤ 1
2 , we obtain

1
2‖F

′[f ](f1 − f2)‖Y ≤ ‖F (f1)− F (f2)‖Y ≤
3
2‖F

′[f ](f1 − f2)‖Y.

Together with (2.19) this yields the assertion.

The conditions (2.19) and (2.20) have been verified for the following nonlinear inverse
problems:
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Example 2.21 (Identification of a reaction coefficient c (cf.[64, Ex. 2.8] and [85, Ex. 2])).
Let Ω ⊂ Rd, d ∈ {1, 2, 3} be a bounded Lipschitz domain, f : Ω → [0,∞) and g : ∂Ω →
(0,∞) be smooth functions. For c ∈ L∞(Ω) with c ≥ 0 almost everywhere, we define
F (c) := u where u solves the elliptic boundary value problem

−∆u+ cu = f in Ω,
u = g on ∂Ω.

(2.21)

For this problem (2.19) with Y = L2(Ω) and a = 2 has been shown in [65, Thm. 4.5],
and (2.20) in [54, Ex. 4.2]. Hence Assumption 2.15 with a = 2 holds true in some L2-
neighborhood of a reference solution c0 ∈ L∞(Ω), c0 ≥ 0. (Note that for coefficients c with
arbitrary negative values uniqueness in the boundary value problem (2.21) may fail and every
L2-ball contains functions with negative values on a set of positive measure, well-posedness
of (2.21) can still be established for all c in a sufficiently small L2-ball centered at c0. This
can be achieved by Banach’s fixed point theorem applied to u = u0 + (−∆ + c0)−1(u(c0− c))
where u0 := G(c0) and (−∆ + c0)−1f̃ solves (2.21) with c = c0, f = f̃ and g = 0, using
the fact that (−∆ + c0)−1 maps boundedly from L1(Ω) ⊂ H−2(Ω) to L2(Ω) for d ≤ 3.)

Example 2.22 (Identification of a diffusion coefficient ρ (cf.[64, Ex. 2.8])). Given
ρ ∈ L∞((0, 1)) with ρ ≥ ρ > 0, we define F (ρ) := u where u solves the boundary value
problem

− (ρu′)′ = f in (0, 1),
u(0) = g0, u(1) = g1.

(2.22)

Here (2.19) with a = 1 and Y = L2([0, 1]) has been verified in [65, Thm. 5.4] (in a Hilbert
scale of Sobolev spaces with mean 0 that was shifted for technical reasons). Moreover,
(2.20) was shown in [54, Ex. 4.3].

Example 2.23 (Hammerstein integral equations (cf.[64, Ex. 2.8])). The forward operator
is defined by

(F (f))(t) :=
∫ t

0
φ(f(s)) ds

where φ ∈ C2,1(I) on all intervals I ⊂ R. In this case (2.19) with a = 1 and Y = L2([0, 1])
is shown in [89, §4], and (2.20) in [54, Ex. 4.1].

Example 2.24 (Counterexample: backward heat equation). For fixed t > 0 we introduce
the heat equation on Td given by

∂tu = ∆u on Td × (0, t)
u(·, 0) = f on Td.

We consider the linear forward operator given by ABHf = u(·, t).
We will see that with Y = L2(Td) there is no a > 0 such that A satisfies Assumption 2.15(a)
while it satisfies Assumption 2.15(b) for all a > 0.
With ek and f̂ as in (2.8) it is routine to see that for a right hand side f ∈ D′(Td) the
function

u(x, t) =
∑
k∈Zd

e−t‖k‖
2
2 f̂(k)ek(x)
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solves the initial value problem. Since
(
e−t‖k‖

2
2 f̂(k)

)
k∈Zd

∈ `2(Zd) for all f ∈ D′(Td) we
obtain ABH : D′(Td)→ L2(Td) with

ABHf =
∑
k∈Zd

e−t‖k‖
2
2 f̂(k)ek. (2.23)

Now let a > 0. First we show that Assumption 2.15(a) is violated. For n ∈ N let us
consider fn = nae(n,...,0). Then on the one hand (fn)n∈N0 is bounded in B−a2,2(Td). This
can be seen either using the norm in (2.11) or the norm on H−a(Td) = B−a2,2(Td) briefly
recalled in the appendix (see above Proposition A.11). On the other hand, we have

‖ABHfn‖L2(Td) = nae−tn
2 −→ 0 for n→∞.

This excludes the existence of a constant M1 > 0 such that F = ABH satisfies Assump-
tion 2.15(a).
Moreover, we prove that ABH maps H−a(Td) = B−a2,2 (Td) boundedly to L2(Ω), i.e. it satisfies
Assumption 2.15(b) for all a > 0. To this end, let ca ≥ 1 such that e−2tx ≤ ca(1 + x)−a2
for all x ≥ 0. Then we obtain

‖ABHf‖2
L2(Td) =

∑
k∈Zd

e−2t‖k‖22|f̂(k)|2 ≤ ca
∑
k∈Zd

(1 + ‖k‖2
2)−a2 = ‖f‖2

H−a(Td)

for all f ∈ H−a(Td). Therefore, in contrast to the examples above, one calls ABH an
infinitely smoothing operator.
Remark 2.25 (Globality of the assumptions). In the literature on iterative regularization
methods for nonlinear problems similar conditions are typically formulated as a local
condition (see e.g. [71, (2.4)]). However, for Tikhonov regularization conditions on the
global behavior seem to be necessary. Here we require the two-sided Lipschitz condition
globally on the domain dom(F ). This entails that we have to assume (2.19) uniformly for
all f ∈ dom(F ) with a joint constant M̃ .
Remark 2.26 (Degree of ill-posedness (cf.[63, Ex. 3])). In [63] the authors introduce the
local degree of ill-posedness of a nonlinear map F : DF → Y mapping from a subset DF

of a Hilbert space X to a Hilbert space Y and f ∈ DF . By [63, Prop. 7] the local degree of
ill-posedness of F in f coincides with the speed of decay of the singular values of a compact
linear operator G if

K1‖G(h− f)‖Y ≤ ‖F (h)− F (f)‖Y ≤ K2‖G(h− f)‖Y (2.24)
holds true for some constants K1, K2 > 0 and for all h in a neighborhood of f.
Suppose Y = X = L2(Ω) for Ω the d-dimensional torus or a bounded Lipschitz domain
Ω ⊂ Rd and F : DF → Y is a forward operator such that both inequalities in Assump-
tion 2.15 hold true for some a > 0 and B−a2,2 = B−a2,2 (Ω). With (ψj,k)(j,k)∈Λ a wavelet system
satisfying Assumption 2.11 with smax > a and (2.16) we define

G : X→ Y by f 7→
∑

(j,k)∈Λ
2−ja〈f, ψj,k〉ψj,k.

Then G is compact and satisfies ‖G · ‖Y ∼ ‖· |B−a2,2‖. Therefore, condition (2.24) holds
true. The operator G has the singular value 2−ja with multiplicity |Λj|. Numerating these
singular values we obtain (λn)n∈N with |{n ∈ N : λn = 2−ja} = |Λj| and using |Λj| ∼ 2jd
we see that the singular values decay as λn = O(n−ad ) (see (2.16)). Hence, the local degree
of ill-posedness of F is a

d
for all f ∈ DF .
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2.5 Weighed `p-regularization

In the case r ≥ 0 and p = q the norm

‖x‖pr,p,p =
∞∑
j=0

2jrp2jdp(
1
2−

1
p)‖xj‖pp =

∑
(j,k)∈Λ

2jrp2jdp(
1
2−

1
p)|xj,k|p

on the Besov sequence space brp,p is a weighed `p-norm. The particular sequence of weights
is not of structural importance in most of the results in this work. As it also allows a better
comparison to the literature we introduce weighed `p-penalties and provide the theory for
those with the case of Besov space regularization with p = q as the main application.
To fix the notation we start by introducing weighed `p-spaces. Let Λ be a countable index
set, p ∈ (0,∞) and ω = (ωj)j∈Λ a sequence of positive reals. We consider `pω defined by

`pω =
{
x ∈ RΛ : ‖x‖ω,p <∞

}
with ‖x‖ω,p =

∑
j∈Λ

ωpj |xj|p
 1

p

.

For p ∈ [1,∞) the vector spaces `pω are Banach spaces and for p ∈ (0, 1) quasi-Banach
spaces. In the latter case the best possible constant in the generalized triangle inequality
is C = 2

1
p
−1.

Now let p, u ∈ [1,∞), r = (rj)j∈Λ a sequence of positive weights and G : dom(G)→ Y a
map defined on a set of sequences dom(G) ⊂ RΛ with values in a Banach space Y. For
g ∈ Y we consider the following set-valued scheme

Sα(g) = argmin
x∈`pr∩dom(G)

( 1
2α‖g −G(x)‖2

Y + 1
u
‖x‖ur,p

)
. (2.25)

We formulate an assumption on the forward operator G and discuss its relation to
Assumption 2.15.

Assumption 2.27. Let Y be a Banach space, a = (aj)j∈Λ a sequence of positive real
numbers, dom(G) ⊆ `2

a closed and G : dom(G)→ Y a map. We assume that there exist
constants M1,M2 > 0 with

1
M1
‖z1 − z2‖a,2 ≤ ‖G(z1)−G(z2)‖Y ≤M2‖z1 − z2‖a,2 for all z1, z2 ∈ dom(G).

For a finitely smoothing map F and a wavelet system which is regular enough we show
that the composition F ◦ S meets Assumption 2.27.

Remark 2.28 (Connection to Besov space regularization). Suppose Assumptions 2.11 and
2.15 hold true with a < smax. Let Λ as in Section 2.4. We set a(j,k) := 2−ja. Then b−a2,2 = `2

a

with equal norms. The wavelet synthesis operator is an isomorphism S : b−a2,2 → B−a2,2 . Hence
dom(G) := S−1(dom(F )) is closed in b−a2,2. Denoting S+ the operator norm of S and S−
the operator norm of its inverse we transfer Assumption 2.15 to

1
M1S−

‖z1 − z2‖−a,2,2 ≤ ‖F (Sz1)− F (Sz2)‖Y ≤M2S+‖z1 − z2‖−a,2,2 (2.26)

for all z1, z2 ∈ dom(G). Hence with the composition G := F ◦ S Assumption 2.27 holds
true.
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Remark 2.29 (Existence of minimizers). Under Assumption 2.27 existence of minimizers
in (2.25) for p ∈ [1, 2] can be shown if `pr ∩ dom(G) 6= ∅ and ajrj → 0 meaning that for
every ε > 0 all but finitely many j ∈ Λ satisfy ajr

−1
j ≤ ε. Alternatively one can also

require ajr−1
j is bounded above and additional assume that dom(G) is weakly closed and G

is weak-to-weak continuous. The proof of the existence can be carried out with the same
ideas as in Proposition 2.3. As our main application is Besov space wavelet regularization
with p = q, where we can bear on Proposition 2.3, we refrain of going into detail here.
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Chapter Three
Error bounds based on

variational source conditions

This chapter focuses on the verification of variational source conditions for sparsity
promoting wavelet regularization and the convergence rates that we can deduce from
those. In a first section we will recall the concept of variational source conditions and see
that they imply approximation and convergence rates. Next we show a first strategy for
the verification of variational source conditions and apply it to the situation of wavelet
regularization of a finitely smoothing operator with a wavelet system that is sufficiently
regular in relation to the degree of smoothing of the forward operator. Generalizing the
strategy of verification allows to drop this regularity condition. We provide minimax order
optimality on balls in Bs

p,∞ of our achieved error bounds on these sets. Moreover, we
show convergence rates for weighed `1-regularization under smoothness conditions given
by weak sequence spaces and show that the application to wavelet regularization with
Besov 0, 1, 1-penalties improves the convergence rates for piecewise smooth functions with
kinks or jumps. We confirm our theoretical results with numerical simulations with a
nonlinear parameter identification problem in an elliptic differential equation.
We extend our theory to show that it can also be applied to infinitely smoothing forward
operators. As an example we provide a convergence rate theorem for the backward heat
equation. Furthermore, we use the purely deterministic variational source conditions to
provide error bounds also for statistical noise models. Finally, in the last section of this
chapter, we show that in the our theory can be adapted to regularization with wavelet
frames.

3.1 Variational source conditions

We recall the concept of variational source conditions. To do so, we revisit generalized
Tikhonov regularization with regularizers given by

Sα(g) = argmin
z∈D

( 1
2α‖g −G(z)‖2

Y +R(z)
)
.

Throughout this subsection we assume that X and Y are Banach spaces, R : X→ [0,∞] is
convex and G : D → Y is a map defined on a subset D ⊂ X. The reason for the change of
notation in comparison to the first chapter is that we mostly apply the following results
to Besov sequence spaces and maps G = F ◦ S that are compositions of forward maps
defined on function spaces and wavelet synthesis operators.
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Let L : X × X → [0,∞) be a map and ϕ : [0,∞) → [0,∞) concave and continuous. We
say that a true solution x ∈ D satisfies a variational source condition with index function
ϕ and with respect to the loss function L if

L (x, z) +R(x)−R(z) ≤ ϕ
(
‖G(x)−G(z)‖2

Y

)
for all z ∈ D. (3.1)

The first variant of such a condition using the Bregman distance as loss function appears
in [58]. Moreover, we refer to [93, Sec. 3.2] and [96, Sec. 3.2.3] for further readings on the
topic. In [66] it was shown that variational source conditions are not only sufficient but
even necessary for convergence rates in a Hilbert space setting.
In order to recall that a variational source condition implies a convergence rate we introduce
the function

ϕ̆ : (0,∞)→ [0,∞] given by ϕ̆(α) = sup
τ≥0

(
ϕ(τ)− 1

2ατ
)

(3.2)

that will serve as an upper bound on the reconstruction error.
We consider two parameter choice rules for the regularization parameter α. An a priori
rule requiring prior knowledge of the function ϕ in (3.1) characterizing the regularity of
the unknown x, and the discrepancy principle as most well-known a posteriori rule. The
following result is a variant of [49, Thm. 3.3, Cor. 3.4], [105, Thm. 3.3] or [67, Thm. 2.3].
Convergence rates for the discrepancy principle under variational source conditions can
also be found in [4]. The result we present here for this a posteriori rule is similar to [40,
Prop. 14].

Proposition 3.1 (Convergence rate under variational source condition). Assume x ∈ D
satisfies (3.1). Suppose δ ≥ 0, gobs ∈ Y with ‖gobs − G(x)‖Y ≤ δ. Let α > 0 and
x̂α ∈ Sα(gobs).

(a) (error bounds) The following bounds

L(x, x̂α) ≤ δ2

α
+ ϕ̆(4α) and (3.3)

‖G(x)−G(x̂α)‖Y ≤ 2
√

2
(
δ +

√
αϕ̆(4α)

)
(3.4)

hold true.
(b) (rates with discrepancy principle) Let 1 ≤ cD ≤ CD. If cDδ ≤ ‖gobs−G(x̂α)‖Y ≤ CDδ

then

L(x, x̂α) ≤ ϕ
(
(1 + CD)2δ2

)
and (3.5)

‖G(x)−G(x̂α)‖Y ≤ (1 + CD)δ. (3.6)

Proof. (a) As x̂α minimizes the Tikhonov functional we obtain

1
2α‖g

obs −G(x̂α)‖2
Y +R(x̂α) ≤ δ2

2α +R(x). (3.7)
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Using the basic inequality (a+ b)2 ≤ 2a2 + 2b2 for a, b ∈ R and the inequalities (3.7),
(3.1) we bound

L(x, x̂α) + 1
4α‖G(x)−G(x̂α)‖2

Y ≤ L(x, x̂α) + δ2

2α + 1
2α‖g

obs −G(x̂α)‖2
Y

≤ δ2

α
+ L(x, x̂α) +R(x)−R(x̂α)

≤ δ2

α
+ ϕ

(
‖G(x)−G(x̂α)‖2

Y

)
.

Subtracting 1
8α‖G(x)−G(x̂α)‖2

Y on both sides and the definition of ϕ̆ yield

L(x, x̂α) + 1
8α‖G(x)−G(x̂α)‖2

Y ≤
δ2

α
+ ϕ̆(4α).

From this (3.3) follows immediately from neglecting 1
8α‖G(x)−G(x̂α)‖2

Y and (3.4)
follows from neglecting L(x, x̂α), multiplying by α and using the basic inequality
a2 + b2 ≤ (a+ b)2 for a, b ≥ 0.

(b) We obtain (3.6) using the triangle inequality

‖G(x)−G(x̂α)‖Y ≤ δ + ‖gobs −G(x̂α)‖Y ≤ (1 + CD)δ.

Inserting the left inequality of the assumption into (3.7) we obtain

c2
D

δ2

2α +R(x̂α) ≤ δ2

2α +R(x).

Hence, R(x̂α) ≤ R(x) and (3.1) yields

L(x, x̂α) ≤ L(x, x̂α) +R(x)−R(x̂α) ≤ ϕ
(
‖G(x)−G(x̂α)‖2

Y

)
.

As the function ϕ is non-decreasing (see Lemma A.1) we obtain (3.5) from (3.6)
together with the last inequality.

In the following we specialize Proposition 3.1 to Hölder-type upper bounds.

Corollary 3.2 (Convergence rate under Hölder-type variational source condition). Assume
x ∈ D satisfies (3.1) with ϕ(τ) = cτ ν for c > 0 and ν ∈ (0, 1

2 ]. There exits a constant
kν > 0 depending only on ν, such that the following statements hold true.

(a) (bias bounds) Let α > 0 and xα ∈ Sα (G(x)). Then

L(x, xα) ≤ kνc
1

1−να
ν

1−ν and (3.8)
‖G(x)−G(xα)‖Y ≤ kνc

1
2−2να

1
2−2ν . (3.9)

Suppose δ > 0, gobs ∈ Y with ‖gobs −G(x)‖Y ≤ δ. Let α > 0 and x̂α ∈ Sα(gobs).
(b) (a priori rule) Let 0 < cl ≤ cr. If clc−1δ2−2ν ≤ α ≤ crc

−1δ2−2ν then

L(x, x̂α) ≤ kν

(
c−1
l + c

ν
1−ν
r

)
cδ2ν and (3.10)

‖G(x)−G(x̂α)‖Y ≤ kν

(
1 + c

1
2−2ν
r

)
δ. (3.11)
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(c) (discrepancy principle) Let 1 ≤ cD ≤ CD. If cDδ ≤ ‖gobs −G(x̂α)‖Y ≤ CDδ then

L(x, x̂α) ≤ (1 + CD)2νcδ2ν and (3.12)
‖G(x)−G(x̂α)‖Y ≤ (1 + CD)δ. (3.13)

Proof. An easy calculus shows ϕ̆(α) = k′νc
1

1−να
ν

1−ν with k′ν = (2ν)
ν

1−ν − 1
2(2ν)

1
1−ν .

Proposition 3.1(a) yields (a) by inserting δ = 0 and (b) by inserting the parameter choice
rule. Statement (c) follows immediately from Proposition 3.1(b).

Remark 3.3 (The restriction ν ≤ 1
2 (cf. [59, Prop. 3])). Let us comment on the restriction

ν ≤ 1
2 in Corollary 3.2. To this end, we assume that G satisfies a Lipschitz condition

‖G(z1)−G(z2) ≤M‖z1− z2‖Lip for some norm ‖ · ‖Lip defined on X and that D is convex
with 0 ∈ D. Suppose x ∈ X satisfies (3.1) with a concave and continuous function ϕ

decaying faster than the square root function, i.e. we assume that limτ→0 τ
− 1

2ϕ(τ) = 0.
We repeat an argument that can be found in [59, Prop. 3] to show that we obtain
x ∈ argminz∈DR(z). First note that neglecting the loss function in (3.1) and the Lipschitz
condition yield

R(x)−R(z) ≤ ϕ
(
M2‖x− z‖2

Lip

)
for all z ∈ D.

Assuming z 6= x and inserting a convex combination θz + (1− θ)x with θ ∈ (0, 1) we wind
up with

R(x)−R(z) ≤ 1
θ
ϕ
(
θ2M2‖x− z‖2

Lip

)
= M‖x− z‖Lip
θM‖x− z‖Lip

ϕ
(
θ2M2‖x− z‖2

Lip

)
by convexity of R. As the right hand side vanishes for θ → 0 we conclude R(x) ≤ R(z).
Having in mind that in our examples R is a norm defined on X, this shows that 0 is the
only element satisfying a variational source condition (3.1) with a function ϕ decaying
faster than the square root. Hence, the restriction to ν ≤ 1

2 does not exclude any relevant
unknown solutions.

Variational source conditions for `1-type regularization

In this chapter we focus on the choices R(z) = ‖z‖X and L(z1, z2) = β‖z1 − z2‖X for some
β ∈ (0, 1] such that (3.1) becomes

β‖x− z‖X + ‖x‖X − ‖z‖X ≤ ϕ
(
‖G(x)−G(z)‖2

Y

)
for all z ∈ D. (3.14)

Variational source conditions of the form (3.14) are used in the references [11, 41, 43, 40]
which we already discussed in more detail in Section 2.2. Moreover, the author made use
of them in the articles [64, 85].

Remark 3.4 (preasymptotic error bounds). Let x ∈ X. Then the triangle inequality yields

β‖x− z‖X + ‖x‖X − ‖z‖X ≤ (β + 1)‖x‖X + (β − 1)‖z‖X ≤ (β + 1)‖x‖X (3.15)

for all z ∈ X. This will be advantageous in the proofs later in the following way: Suppose
(3.14) holds true with some β ∈ (0, 1] a concave and continuous function ϕ. Then (3.15)
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implies that (3.14) holds true with ϕ replaced by ϕ(τ) := min{ϕ(τ), (β + 1)‖x‖X}. Here ϕ
and ϕ share the same asymptotic behavior near 0.
For instance suppose ϕ satisfies a Hölder-type bound near zero, i.e. there exists ν ∈ (0, 1/2]
and τ0, c > 0 such that ϕ(τ) ≤ cτ ν for all 0 ≤ τ ≤ τ0. Then applying Proposition 3.1
directly yields Hölder-type error bounds only for δ small enough. As ϕ is bounded we may
increase the constant c such that we obtain ϕ(τ) ≤ cτ ν globally for all τ ≥ 0. Therefore,
Corollary 3.2 yields preasymptotic error bounds.

3.2 Smooth wavelet basis

The central result of this section is a convergence rate for 1-homogeneous wavelet regular-
ization in Besov spaces. We analyze the regularization scheme introduced in Section 2.4
with u = q = 1, 0 ≤ r < smax and p ∈ [1, 2], i.e. for an observation g ∈ Y the estimators
we consider are given by

Rα(g) = Sx̂α with x̂α ∈ argmin
x∈D

( 1
2α‖g − F (Sx)‖2

Y + ‖x‖r,p,1
)

(3.16)

with D := S−1(Br
p,1 ∩ dom(F )) ⊆ brp,1. Note that the penalty term ‖x‖r,p,1 is a weighed

sum of level-wise p-norms of wavelet coefficients. In the special case that F is linear and
allows a wavelet vaguelette decomposition and the norm in Y is chosen as `2-norm of
vaguelette coefficients, the estimators for p = 1 in (3.16) coincide with wavelet shrinkage
estimators studied in [31] and [76].
For an at most a-times smoothing operator (see Assumption 2.15(a)) and in the case r = 0
we prove the convergence rate ‖f − f̂α‖Lp(Ω) = O

(
δ

s
s+a
)

for f ∈ Bs
p,∞ and f̂α ∈ Rα(gobs)

with ‖gobs − F (f)‖Y ≤ δ.
In this section we consider wavelet systems that are smooth enough to characterize Besov
spaces with smoothness −a by decay properties of wavelet expansions, i.e. with the
notation of Assumption 2.15 and 2.11 we assume a < smax. This restriction is also required
in the results of the article [64]. We will overcome this restriction by a generalization in
the next section.

The proof of the convergence rate result is based on a variational source condition of the
form (3.14) with X = brp,1 the and G = F ◦ S the composition of the forward map F and
the wavelet synthesis operator S (see Assumption 2.11). From the latter condition we
obtain an error bound in the space of wavelet coefficients brp,1 which then in turn translates
into a bound measured in Br

p,1. If Bs
p,q = Bs

p,q(Ω) for some suitable domain Ω, then we
obtain bounds in an Lp(Ω)-norm with p ≤ p ≤ 2 by real interpolation.
Before we go into the details, let us sketch the basic idea of the verification of condition
(3.14). We introduce the projection Pn : brp,1 → brp,1 onto the first n + 1 levels given by
(Pn(x))j = xj if 0 ≤ j ≤ n and (Pn(x))j = 0 if j > n. Then the Pythagoras type equality

‖z‖r,p,1 = ‖Pnz‖r,p,1 + ‖(I − Pn)z‖r,p,1

holds true for all z ∈ brp,1 and n ∈ N0.
Let x, z ∈ brp,1 and n ∈ N0.
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The starting point is the following inequality that has been also used in [11, Lemma 5.1]

‖x− z‖r,p,1 + ‖x‖r,p,1 − ‖z‖r,p,1 ≤ 2 (‖Pn(x− z)‖r,p,1 + ‖(I − Pn)x‖r,p,1) . (3.17)

From there we proceed with a Bernstein type inequality ‖Pn·‖r,p,1 . 2n(a+r)‖·‖−a,p,∞ to
handle the first summand. The Jackson type inequality ‖(I − Pn)·‖r,p,1 . 2n(r−s)‖·‖s,p,∞
provides a bound on the second summand. Minimizing over n leads to

‖x− z‖r,p,1 + ‖x‖r,p,1 − ‖z‖r,p,1 ≤ c‖x‖
a+r
s+a
s,p,∞ · ‖x− z‖

s−r
s+a
−a,p,∞. (3.18)

Note that this inequality is a variational source condition for the embedding operator
brp,1 ⊂ b−ap,∞. As we assume that the wavelet system is smooth enough to characterize the
Besov function spaces with smoothness index −a Assumption 2.15(a) directly transfers to
an inequality in terms of wavelet coefficients, namely ‖x− z‖−a,p,∞ . ‖F (Sx)− F (Sz)‖
and we obtain the desired variational source condition from (3.18).

Before we present the discussed result in detail, we provide a general scheme for the
verification of condition (3.18).

Verification of variational source conditions

In [66, Thm. 2.1] and [104, Thm. 3.3] a general strategy for the verification of variational
source conditions with Bregman loss has been proposed. The following proposition provides
an analog for conditions of the form (3.14). An essential prerequisite is the Pythagoras
type equality (3.19a) with exponent 1. The latter restricts the choice penalty to `1-type
norms, i.e. to the choice q = u = 1 in (2.17).
Recall that a bounded linear operator P : X→ X is called projection if P 2 = P .
Proposition 3.5. Let X, Y be Banach spaces and G : D → Y a map defined on a subset
D ⊂ X. Let x ∈ D and J be an index set. Suppose (Pj : X→ X)j∈J is a family of
projections and (νj)j∈J a family of non-negative real numbers such that the following
conditions are satisfied:

‖z‖X = ‖Pjz‖X + ‖(I − Pj)z‖X for all z ∈ D, j ∈ J, (3.19a)
‖Pj(z1 − z2)‖X ≤ νj‖G(z1)−G(z2)‖Y for all z1, z2 ∈ D, j ∈ J. (3.19b)

Then (3.14) holds true with β = 1 and the continuous, concave function ϕ : [0,∞)→ [0,∞)
given by

ϕ(τ) = 2 inf
j∈J

(
νj
√
τ + ‖(I − Pj)x‖X

)
.

Proof. The function ϕ is concave and upper semi-continuous functions as it is the pointwise
infimum of functions possessing these properties. Lemma A.1 provides continuity of ϕ.
Next we turn to the proof of (3.14) (see also [11, Lemma 5.1, Theorem 5.2]). Let z ∈ D
and j ∈ J . With (3.19a) we split every ‖ · ‖X-term into ‖Pj · ‖X + ‖(I − Pj) · ‖X and
use the triangle equality for ‖(I − Pj) · ‖X-terms and the reverse triangle inequality for
‖Pj · ‖X-terms to achieve

‖x− z‖X + ‖x‖X − ‖z‖X ≤ 2 (‖Pj(x− z)‖X + ‖(I − Pj)x‖X) . (3.20)

Taking the infimum over j ∈ J after inserting (3.19b) on the right hand side yields the
result.
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The condition (3.19b) resembles a Bernstein inequality. In the sequel we will see that
for a linear operator G = A the latter condition is equivalent to im(P ∗j ) ⊂ im(A∗). This
explains the connection to smoothness of the basis system as for smoothing operators
(e.g. operators satisfying Assumption 2.15) the space im(A∗) consists of function with
a certain regularity, and in the following we will mostly choose Pj as a projection onto
certain wavelet coefficients.
The function ϕ in Proposition 3.5 satisfies ϕ(0) = 0 if and only if infj∈J ‖(I − Pj)x‖X = 0.
Moreover, note that (3.19a) implies that the operator norms of Pj and of (I − Pj) are
bounded by 1.
The asymptotic behavior of ϕ is determined by two (generalized) sequences: (νj)j∈J
and (‖(I − Pj)x‖X)j∈J . Using a simple example we illustrate that the growth of the
numbers (νj)j∈J depends on the degree of ill-posedness of the operator and that the decay
(‖(I − Pj)x‖X)j∈J can be interpreted as a measure of smoothness of the true solution x.

Example 3.6 (Diagonal operator on sequences). Suppose X = `1 = `1(N) and Y = `2 =
`2(N) and G = D : `1 → `2 is a diagonal operator, i.e. D is linear and bounded and there
exists a sequence (µn)n∈N of real numbers such that Den = µnen where en denotes the unit
sequence with a 1 in the n’th entry and 0’s else.
Let Pn : X→ X be the projection onto the first n entries, that is (Pnx)j = xj if 1 ≤ j ≤ n
and (Pnx)j = 0 if j > n. Then the family (Pn)n∈N fulfills condition (3.19a). Using the
Cauchy-Schwarz inequality we obtain

‖Pnz‖1 =
n∑
j=1
|µj|−1|µj||zj| ≤

 n∑
j=1
|µj|−2

 1
2
 n∑
j=1
|µj|2|zj|2

 1
2

≤

 n∑
j=1
|µj|−2

 1
2

‖Dz‖2

(3.21)

for all z ∈ X. This inequality is sharp for the choice z ∈ X with zj = µ−2
j if 1 ≤ j ≤ n

and zj = 0 for j > n. Hence, the smallest possible choice of νn such that (3.19b) holds
true is νn =

(∑n
j=1 |µj|−2

) 1
2 .

Therefore, we see that the growth of the numbers νn is determined by the asymptotic
behavior of the singular values µn. The latter in turn is a measure of ill-posedness
of the opertor D (see Remark 2.26 and [63]). Moreover, the asymptotic behavior of
‖(I − Pn)x‖1 = ∑∞

j=n+1 |xj| measures how fast the entries of x converge to 0. Interpreting
x as Fourier coefficients or more generally as the coefficients in some wavelet basis this
tail behavior is related to the smoothness of the solution. We refer to [78, Rem. 3.5] for
related considerations.

Next we show that for X = `1 the condition (3.19b) is equivalent to a Lipschitz
continuity assumption on G−1 with respect to a weighed `∞-space. We refer to [11, Rem.
2.5] for a similar statement in the case of a linear forward operator G = A. There,
the authors show that the condition ej ∈ im(A∗) implies a lower bound of the form
‖·‖ω,∞ ≤ ‖A · ‖Y where ω is given by the reciprocals of the norms of the source elements
ψi ∈ Y∗ with A∗ψi = ei.

Proposition 3.7. Let D ⊂ X = `1, G : D → Y a map and (Pn)n∈N as in Example 3.6.
The following statements are equivalent:
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(i) There exists a sequence ω = (ωn)n∈N0 ⊂ [0,∞) and L ≥ 0 such that

‖z1 − z2‖ω,∞ ≤ L‖G(z1)−G(z2)‖Y for all z1, z2 ∈ D. (3.22)

(ii) There exists a sequence of positive real numbers (νn)n∈N0 such that (3.19b) holds
true.

More precisely, (i) implies (ii) with νn = L
∑n
j=1 ω

−1
j and (ii) implies (i) with ωn = ν−1

n

and L = 1.

Proof.

(i)⇒ (ii): With a variant of the estimation (3.21) we prove the following Bernstein type
inequality

‖Pnz‖1 =
n∑
j=1

ω−1
j ωj|zj| ≤

 n∑
j=1

ω−1
j

 ‖z‖ω,∞ for all z ∈ `∞ω . (3.23)

The implication follows from inserting (3.22) into (3.23) with z = z1 − z2.

(ii)⇒ (i): Taking the supremum on the left hand side of

ν−1
n |(z1)n − (z2)n| ≤ ν−1

n ‖Pn(z1 − z2)‖1 ≤ ‖G(z1)−G(z2)‖Y

provides this implication.

The next remark substantiates that the strategy captured in Proposition 3.5 is reserved
to penalties that are homogeneous of degree less or equal to 1. Similar ideas as in
Proposition 3.5 for non convex regularization with a weighed `q-norm with 0 < q < 1 can
be found in [3, Sec. 4].

Remark 3.8. Proposition 3.5 is built upon the inequality (3.20) which seems not to have
a straightforward generalization for families of projections (Pj : X → X)j∈J satisfying a
Pythagoras type equality

‖x‖qX = ‖Pjx‖qX + ‖(I − Pj)x‖qX for all x ∈ X, j ∈ J (3.24)

for some q > 1 instead of (3.19a). First note that one gets back (3.19a) from (3.20) by
fixing z ∈ X and choosing x := Pjz.
An obvious inequality generalizing (3.20) would be

c‖x− z‖qX + ‖x‖qX − ‖z‖
q
X ≤ C (‖Pj(x− z)‖qX + ‖(I − Pj)x‖qX) (3.25)

for all x, z ∈ X, j ∈ J with some constants 0 < c < C. Assuming J is directed with
limj→∞ ‖(I−Pj)x‖X = 0 and x 6= 0 we will show that this inequality leads to a contradiction.
Let 0 < λ < 1. Inserting z = λx into (3.25) yields

c ((1− λ)q + 1− λq) ‖x‖qX ≤ C ((1− λ)q‖Pjx‖qX + ‖(I − Pj)x‖qX) .

Letting j tend to ∞ using (3.24), dividing by ‖x‖X and rearranging terms leads to

c(1− λq) ≤ (C − c)(1− λ)q,
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which is impossible for λ approaching 1 from below.
Another generalization would be of the form

c‖x− z‖X + ‖x‖X − ‖z‖X ≤ C (‖Pj(x− z)‖X + ‖(I − Pj)x‖X) (3.26)

for all x, z ∈ X, j ∈ J with some constants 0 < c < C. We show that this inequality is false
for all x 6= 0 with Pjx = x for some j ∈ N0. Hence, it is also impossible to show (3.26) for
all x belonging to some subspace of X characterized by the speed of decay of ‖(I − Pj) · ‖X.
Let ξ ∈ ker(Pj) with ‖ξ‖X = 1 and λ > 0. Inserting z = x+ λξ in (3.26) implies

cλ+ ‖x‖X ≤ ‖x+ λξ‖X = (‖x‖qX + λq)
1
q .

This leads to a contradiction if λ approaches 0 from above.

Error bounds for wavelet regularization in Besov spaces with
smooth basis

In this subsection we turn to the convergence rate result that we already mentioned at the
beginning of this section.
For n ∈ N0 we recall the projection Pn : brp,1 → brp,1 onto the first n + 1 levels given by
(Pn(x))j = xj if 0 ≤ j ≤ n and (Pn(x))j = 0 if j > n. With X = brp,1 the family (Pn)n∈N0

satisfies (3.19a). The next lemma provides a Bernstein type inequality that yields condition
(3.19b).

Lemma 3.9 (Bernstein inequality). Suppose p ∈ [1,∞], r ≥ 0, a > 0 and n ∈ N0. Then

‖Pnz‖r,p,1 ≤ CB2n(a+r)‖z‖−a,p,∞ for all z ∈ b−ap,∞

with CB := 2a+r (2a+r − 1)−1
.

Proof. We set ω = 2d(
1
2−

1
p) and estimate

‖Pnz‖r,p,1 =
n∑
j=0

2j(a+r)2−jaωj‖zj‖p ≤
 n∑
j=0

2j(a+r)

 ‖z‖−a,p,∞.
The claim follows from estimating the geometric sum.

To estimate the (I − Pn)-term in the definition of ϕ in Proposition 3.5 in terms of the
the regularity of x, we use the following Jackson type inequality.

Lemma 3.10 (Jackson inequality). Let r, s ∈ R with r < s and p ∈ [1,∞]. Then

‖(I − Pn)x‖r,p,1 ≤ CJ2n(r−s)‖x‖s,p,∞ for all x ∈ bsp,∞

with CJ = 2r−s (1− 2r−s)−1.

Proof. The claim follows from estimating the geometric series in

‖(I − Pn)x‖r,p,1 =
∞∑

j=n+1
2j(r−s)2js2jd( 1

2−
1
p

)‖xj‖p ≤

 ∞∑
j=n+1

2j(r−s)
 ‖x‖s,p,∞.
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Now we are in position to prove a variational source condition for the embedding
operator brp,1 ⊂ b−ap,∞.

Lemma 3.11 (Variational source condition for embedding operator). Let p ∈ [1,∞], a > 0
and 0 ≤ r < s. Then there exists a constant c > 0 depending only on a, r and s such that

‖x− z‖r,p,1 + ‖x‖r,p,1 − ‖z‖r,p,1 ≤ c‖x‖
a+r
s+a
s,p,∞ · ‖x− z‖

s−r
s+a
−a,p,∞. for all x ∈ bsp,∞, z ∈ brp,1.

Proof. With a variation of the argument in Lemma 3.10 one proves that there is a
continuous embedding bsp,∞ ⊂ brp,1 with an embedding constant c1 depending only on r
and s. With CJ and CB as above we set c = 2 max{c1, CB + 2s−rCJ}. Now assuming
x ∈ bsp,∞ and z ∈ brp,1 we set % := ‖x‖s,p,∞ and ϑ = ‖x− z‖−a,p,∞. If % ≤ ϑ, then the
triangle inequality (see also Remark 3.4) yields

‖x− z‖r,p,1 + ‖x‖r,p,1 − ‖z‖r,p,1 ≤ 2‖x‖r,p,1 ≤ c% ≤ c%
a+r
s+aϑ

s−r
s+a .

Therefore, we may assume ϑ < % in the following.
Lemma 3.9 provides ‖Pn(x− z)‖r,p,1 ≤ CB2n(a+r)ϑ and from Lemma 3.10 we obtain
‖(I − Pn)x‖r,p,1 ≤ CJ2n(r−s)%. Therefore, Proposition 3.5 with G the embedding operator
brp,1 ⊂ b−ap,∞ and (Pn)n∈N0 defined above yields

‖x− z‖r,p,1 + ‖x‖r,p,1 − ‖z‖r,p,1 ≤ 2 inf
n∈N0

(
CB2n(a+r)ϑ+ CJ2n(r−s)%

)
. (3.27)

Since ϑ < % there exists N ∈ N0 such that 2N ≤ (%/ϑ)
1
s+a ≤ 2N+1. By inserting N we

estimate the infimum on the right hand side

2 inf
n∈N0

(
CB2n(a+r)ϑ+ CJ2n(r−s)%

)
≤ 2CB2N(a+r)ϑ+ 2CJ2N(r−s)% ≤ c%

a+r
s+aϑ

s−r
s+a .

Inserting into (3.27) yields the claim.

Now a variational source condition for finitely smoothing operators is an easy conse-
quence.

Proposition 3.12 (Variational source condition). Suppose Assumptions 2.11 and 2.15(a)
hold true with a < smax. Let p ∈ [1, 2] and r ≥ 0. If p ∈ [1, 2), then we require that the
scale Bs

p,q is p-monotone (see Definition 2.9). Moreover, let s > r and % > 0 and assume
x ∈ bsp,∞ ∩ S−1(dom(F )) with ‖x‖s,p,∞ ≤ %. Then

1
2‖x− z‖r,p,1 + ‖x‖r,p,1 − ‖z‖r,p,1 ≤ ϕ

(
‖F (Sx)− F (Sz) ‖2

Y

)
(3.28)

for all z ∈ brp,1 ∩ S−1(dom(F )) with ϕ(τ) = Cϕ%
a+r
s+a τ

s−r
2s+2a for a constant Cϕ independent

of f, % and τ .

Proof. By the assumption a < smax the synthesis operator S : b−ap,∞ → B−ap,∞ is a Banach
space isomorphism. Let c1 be the operator norm of its inverse.
There is a continuous embedding B−ap,2 ⊂ B−ap,∞. Moreover, in the case p ∈ [1, 2) the p-
monotonicity yields a continuous embedding B−a2,2 ⊂ B−ap,2 . Therefore, we have a continuous
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embedding B−a2,2 ⊂ B−ap,∞ and denote its operator norm by c2. Along with Assumption 2.15(a)
we conclude

‖x− z‖−a,p,∞ ≤ c2‖x− z‖−a,2,2 ≤ c1c2‖Sx− Sz |B−a2,2‖ ≤ c1c2M1‖F (Sx)− F (Sz)‖Y.
(3.29)

With this the claim follows from Lemma 3.11.

Remark 3.13 (Weakening of the assumptions). Note that Proposition 3.12 remains true if
one replaces the space B−a2,2 in Assumption 2.15(a) by B−a2,∞ or even by B−ap,∞. Nevertheless,
we refrained from formulating this weaker Lipschitz assumption as we will need a Lipschitz
bound with respect to B−a2,2 later.

Remark 3.14. The idea of the verification of a variational source condition in Propo-
sition 3.12 generalizes as follows: Suppose Xs,X,X− are Banach spaces with continuous
embeddings Xs ⊂ X ⊂ X−, (Pj : X→ X)j∈J is a family of projections such that (3.19a)
holds true. Assume that one has the following Bernstein and Jackson type inequalities

‖Pj · ‖X ≤ νj‖ · ‖X− and ‖(I − Pj) · ‖X ≤ κj‖ · ‖Xs . (3.30)

Moreover, suppose G : D → Y is a map defined on a subset D ⊂ X mapping to a Banach
space Y such that a Lipschitz condition ‖z1−z2‖X− ≤ L‖G(z1)−G(z2)‖Y for all z1, z2 ∈ D
holds true.
Then Proposition 3.5 implies that every x ∈ Xs with ‖x‖Xs ≤ % satisfies a variational
source condition (3.14) with β = 1 and ϕ(τ) = 2 infj∈J (Lνj

√
τ + κj%) .

This consideration shows similarities to the discussion in [104, Rem. 4.8.]. A difference is
that in the latter reference Jackson and Bernstein estimates with respect to dual spaces are
required and smoothness is measured in terms of the tail behavior of the subdifferential of
the true solution.

Together with Corollary 3.2 the variational source condition provides the following
result for the reconstruction Rα given by (3.16). Optimal convergence rates for Besov
space regularization with p ∈ (1, 2] and q ≥ 2 are shown in [104, Thm. 4.2].

Theorem 3.15 (Error bounds for smooth wavelet systems). Suppose Assumptions 2.11
and 2.15(a) hold true with a < smax. Let p ∈ [1, 2], 0 ≤ r < s < smax and % > 0. If
p ∈ [1, 2), then we require that the scale Bs

p,q is p-monotone (see Definition 2.9). Suppose
f ∈ Bs

p,∞ ∩ dom(F ) with ‖f |Bs
p,∞‖ ≤ %. Let p := 2p(a+r)

2a+pr .
(a) (Bias bounds) There exists a constant Cb independent of f and % such that such that

for all α > 0 and fα ∈ Rα(F (f)) (see (3.16)) the following bounds hold true:

‖f − fα |Br
p,1‖ ≤ Cb%

2a+2r
s+2a+rα

s−r
s+2a+r , (3.31)

‖f − fα |B−a2,2‖ ≤ Cb%
a+r

s+2a+rα
s+a

s+2a+r and (3.32)
‖f − fα |B0

p,p‖ ≤ Cb%
2a+r
s+2a+rα

s
s+2a+r . (3.33)

(b) (Convergence rates) Let 0 < cl ≤ cr and 1 ≤ cD ≤ CD. Suppose δ > 0, gobs ∈ Y with
‖gobs − F (f)‖Y ≤ δ. Let α > 0 and f̂α ∈ Rα(gobs). Then there exists a constant Cr
independent of f, gobs, % and δ such that either of the conditions

cl%
−a+r
s+a δ

s+2a+r
s+a ≤ α ≤ cr%

−a+r
s+a δ

s+2a+r
s+a and cDδ ≤ ‖gobs − F (f̂α)‖Y ≤ CDδ
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implies the following bounds

‖f − f̂α |Br
p,1‖ ≤ Cr%

a+r
s+a δ

s−r
s+a , (3.34)

‖f − f̂α |B−a2,2‖ ≤ Crδ and (3.35)
‖f − f̂α |B0

p,p‖ ≤ Cr%
a
s+a δ

s
s+a . (3.36)

Proof. (a) Let xα be a minimizer in (3.16) with fα = Sxα. The smoothness assumption
on f implies that x := S−1f ∈ bsp,∞ and ‖x‖s,p,∞ ≤ c1% with c1 denoting the
operator norm of S−1 : Bs

p,∞ → bsp,∞. Let c2 be the operator norm of S : brp,1 → Br
p,1.

Proposition 3.12 and Corollary 3.2(a) with ν = s−r
2s+2a yield

‖f − fα |Br
p,1‖ ≤ c2‖x− xα‖r,p,1 ≤ 2c2kνC

2s+2a
s+2a+r
ϕ c

2a+2r
s+2a+r
1 %

2a+2r
s+2a+rα

s−r
s+2a+r .

Moreover, Corollary 3.2 and Assumption 2.15 provide

‖f − fα |B−a2,2‖ ≤M1‖F (Sx)− F (Sxα)‖Y ≤M1kνC
s+a

s+2a+r
ϕ c

a+r
s+2a+r
1 %

a+r
s+2a+rα

s+a
s+2a+r .

The continuous embedding B0
p,1 ⊆ B0

p,p implies (3.33) in the case r = 0. In the
case r > 0 we combine the latter embedding with the real interpolation identity(
B−a2,2 , B

r
p,p

)
a
a+r ,p

= B0
p,p (see Definition 2.9(d)(i) if p = 2 and (ii) if p < 2) to see that

there is a constant c3 such that

‖· |B0
p,p‖ ≤ c3‖· |B−a2,2‖

r
a+r ‖· |Br

p,1‖
a
a+r . (3.37)

Inserting f − fα we obtain (3.33) from (3.32) and (3.31).
(b) The proof is along the lines of the proof of (a) using Corollary 3.2(b) and (c) instead

of Corollary 3.2(a).

In the case that B0
p,p is a Besov function space we conclude error bounds in the Lp-norm.

Corollary 3.16 (Error bounds in Lp). In the setting of Theorem 3.15 suppose that
B0
p,p = B0

p,p(Ω) with Ω either Td,Rd or a bounded Lipschitz domain in Rd. Then we have
the upper bounds

‖f − fα‖Lp(Ω) ≤ Cp%
2a+r
s+2a+rα

s
s+2a+r and

‖f − f̂α‖Lp(Ω) ≤ Cp%
a
s+a δ

s
s+a .

with a constant Cp independent of f, gobs, % and δ.

Proof. By Proposition A.11(a) we have a continuous embedding B0
p,p ⊂ Lp(Ω). Hence the

inequalities in the Lp(Ω)-norm follow from the corresponding inequalities in the B0
p,p-norm

in Theorem 3.15.

The following example illuminates which Besov integrabilty and smoothness is assigned
to piecewise smooth functions with kinks or jumps.



3.2. Smooth wavelet basis 45

Example 3.17 (Functions with jumps or kinks (cf.[85, Ex. 30])). We consider functions
f jump, fkink : [0, 1]→ R which are C∞ everywhere with uniform bounds on all derivatives
except at a finite number of points in [0, 1], and fkink ∈ C0,1([0, 1]). In other words,
f jump, fkink are piecewise smooth, f jump has a finite number of jumps, and fkink has a finite
number of kinks. Then for p ∈ (0,∞), q ∈ (0,∞], and s ∈ R with s > σp with σp as in
Assumption 2.11 we have

f jump ∈ Bs
p,q((0, 1)) ⇔ s <

1
p
, fkink ∈ Bs

p,q((0, 1)) ⇔ s < 1 + 1
p

if q <∞ and

f jump ∈ Bs
p,∞((0, 1)) ⇔ s ≤ 1

p
, fkink ∈ Bs

p,∞((0, 1)) ⇔ s ≤ 1 + 1
p
.

To see this, we can use the classical definition of Besov spaces in terms of the modulus of
continuity ‖∆m

h f‖Lp where (∆hf)(x) := f(x+ h)− f(x) and ∆m+1
h f := ∆h(∆m

h f), see, e.g.
[100, eq. (1.23)]. Elementary computations show that ‖∆m

h f
jump‖Lp decays of the order

h1/p as h↘ 0 if m ≥ 1/p, and ‖∆m
h f

kink‖Lp decays as h1/p+1 if m ≥ 2/p.
Therefore, the regularity of f jump or fkink measured by the smoothness parameters s for
which these functions belong to Bs

p,q((0, 1)) depends on p. A smaller choice of p allows for
a larger value of s and hence a due to Theorem 3.15 for a faster convergence rate.

We further discuss our result in a series of remarks.

Remark 3.18 (No saturation(cf. [64, Rem. 4.4.])). With Ω as in Corollary 3.16 and in
the case p = 2 and we obtain an error bound

‖f † − f̂α‖L2(Ω) = O
(
%

a
s+a δ

s
s+a
)
. (3.38)

This allows to compare the sparsity promoting regularization (3.16) to standard Tikhonov-
regularization with the quadratic penalty term α‖f‖2

L2(Ω): Whereas for quadratic Tikhonov
regularization the error bound (3.38) is only valid for s ≤ 2a (see [35, Prop. 5.3.]), the
sparsity promoting regularization (2.17) obeys this error bound for arbitrarily high smooth-
ness parameters s > 0 given sufficient smoothness of the wavelet system, i.e. large enough
smax in Assumption 2.11.
Figure 3.1 shows that this effect can also be observed in practice. In contrast to classical
Tikhonov regularization, which saturates at the rate O(δ2/3), we see that the reconstruc-
tion error using b0

2,1-penalty is linear in δ. Here we use the linear forward operator
(I − ∂2

x)−
1
2 : B−1

2,2(T)→ L2(T) (see Example 2.17). We implement the latter operator using
the fast Fourier transform on a grid with 213 nodes. Moreover, we penalize with a wavelet
system of high regularity (Daubechies wavelets of order 28). As true solution we take a
sine function. The staircase behavior of the reconstruction error for classical Tikhonov
regularization is due to the sequential discrepancy principle.

Remark 3.19 (Boundedness of Ω not required if p = 2). As we do not need require
monotonicity of the Besov scale in the case p = 2 the stated convergence rates results hold
also true for Bs

p,q = Bs
p,q

(
Rd
)
.
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Figure 3.1: Wavelet regularization with b0
2,1-penalty outperforms classical

Tikhonov regularization in reconstructing a smooth function.

Remark 3.20 (The assumption p ≤ 2). Suppose Bs
p,q is p-monotone. The assumption

p ≤ 2 enters as we use the embedding B−a2,2 ⊂ B−ap,2 in the proof of Proposition 3.12. This
embedding is no longer true if we allow p > 2. Replacing the p = q = 2 in Assumption 2.15
by a greater index p̃ would make the theory work for all p ≤ p̃. Nevertheless, such a
replacement would force Y to be an Lp̃-space.
Besides the promotion of sparsity another point why we think the case p ≤ 2 is more
interesting than p > 2 is that for p ∈ [1, 2] the source set Bs

p,∞ leading to the rate O(δ
s
s+a )

with a Besov 0, p, 1-penalty term is larger than the source set Bs
2,∞ leading to the same

rate using classical Tikhonov regularization with L2-penalty.

Remark 3.21 (Converse result to variational source condition). In the setting of Propo-
sition 3.12 we additionally assume Br

p,1 ⊂ dom(F ) and Assumption 2.15(b). Note that
we have Br

p,1 ⊂ dom(F ) for example if F is linear with dom(F ) = B−a2,2 and a + r ≥
d (1/p− 1/2). We investigate the validity of a converse result to Proposition 3.12 as fol-
lows: Suppose x ∈ brp,1 such that (3.28) holds true with ϕ(τ) = Kτ

s−r
2s+2a . Assumption 2.15(b)

and Assumption 2.11 yield

‖F (Sx)− F (Sz) ‖Y ≤M ′
2‖x− z‖−a,2,2 for all z ∈ brp,1 ∩ S−1(DF )

with M ′
2 the product of M2 and the operator norm of S : b−a2,2 → B−a2,2 . Using this Lipschitz
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bound and leaving out the loss function in (3.28) we obtain

‖x‖r,p,1 − ‖z‖r,p,1 ≤ KM ′
2‖x− z‖

s−r
s+a
−a,2,2 for all z ∈ brp,1. (3.39)

Let j ∈ N0. Inserting z ∈ brp,1 given by zk = xk for all k 6= j and zj = 0 we obtain

2jr2jd(
1
2−

1
p)‖xj‖p ≤ KM ′

22−
ja(s−r)
s+a ‖xj‖

s−r
s+a
2 .

As p ≤ 2 we may use ‖ · ‖2 ≤ ‖ · ‖p on the right hand side. Rearranging the obtained
inequality leads to

‖xj‖
r+a
s+a
p ≤ KM ′

22−js
r+a
s+a 2jd(

1
p
− 1

2).

In the case p = 2 this resolves to ‖xj‖2 ≤ (KM ′
2)

s+a
r+a 2−js. Hence,

x ∈ bs2,∞ with ‖x‖s,2,∞ ≤ (KM ′
2)

s+a
r+a 2−js.

Therefore, we have proven the equivalence of the following statements in the case p = 2:
(i) There exists a constant Kvsc ≥ 0 such that (3.28) holds true with ϕ(τ) = Kvscτ

s−r
2s+2a .

(ii) There exists a constant K ≥ 0 such that (3.39) holds true.
(iii) x ∈ bs2,∞.

This result does not generalize to p < 2: In Section 3.5 we characterize the largest space
on which a variational source condition of order ϕ(τ) = O(τ

s−r
2s+2a ) holds true in the case

of p = 1.

Remark 3.22 (The parameter r). While the smoothness assumption f ∈ Bs
p,∞ is in-

dependent of the parameter r which controls the weights in the penalty term the latter
parameter has an impact on the parameter choice. That is reasonable as for larger r the
stronger penalty requires a smaller parameter α to handle to offset between penalization
and data fidelity. It is worth noting that in the case p < 2 the strength of the Lp-norm in
which the error is measured in Corollary 3.16 grows with r. That could be a benefit of a
choice r > 0 in this case. Another advantage in particular in higher dimensional problems
is that it weakens the condition a ≥ d

(
1
p
− 1

2

)
to guarantee existence of minimizers to

a+ r ≥ d
(

1
p
− 1

2

)
(see Proposition 2.16).

Remark 3.23 (Limiting case: r = s). In the setting of Theorem 3.15 let us assume
f ∈ Br

p,1 with ‖f |Br
p,1‖ ≤ %. Hence, we assume that f has no additional smoothness than

needed for the true solutions wavelet coefficients x to have a finite value in the penalty term.
By inserting x into the Tikhonov functional in (3.16) it is easy to see and well-known that
a parameter choice α ∼ δ2 as well as the discrepancy principle as in Theorem 3.15(b) lead
to bounds ‖f̂α |Br

p,1‖ . ‖x̂α‖r,p,1 . % and ‖f − f̂α |B−a2,2‖ . ‖F (f) − F (f̂α)‖Y . δ. With
this the interpolation inequality (3.37) yields ‖f − f̂α |B0

p,p‖ . %
a
a+r δ

r
a+r .

As the same arguments apply also in the noiseless case we see that Theorem 3.15 remains
true in the case r = s if we replace Br

p,∞ by Br
p,1.

Remark 3.24 (Oversmoothing: r < s). Note that in view of the assumption r < s in
Theorem 3.15 it is natural to ask what happens for 0 < s ≤ r (and for r = s without the
replacement of ∞ by 1 in the last remark). Note that in this case the wavelet coefficients x
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of the true solution may not belong to brp,1 such that the value of the penalty term in (2.17)
at x is infinite. Therefore, the concept of variational source conditions does not apply here
and other ideas are needed to tackle this question.
Situations where the true solution does not admit a finite penalty are referred to as
oversmoothing in the literature and we refer to the papers [60, 62, 86, 17] for convergence
rates theory in this case.
In Chapter 5 we provide a general convergence rates theory for oversmoothing in Banach
space regularization. An application of this theory to wavelet regularization in Besov spaces
will provide error bounds in the case 0 < s ≤ r.

Numerical validation

We confirm the theoretical results in Theorem 3.15 with numerical experiments for the
nonlinear parameter identification problem in Example 2.21. In one dimension it becomes
the reconstruction of the coefficient c in the elliptic boundary value problem

− u′′ + cu = f in (0, 1),
u(0) = u(1) = 1.

. (3.40)

The forward operator in the function space setting is F (c) := u for the fixed right hand
side f(·) = sin(4π·) + 2. For this problem the verification of Assumption 2.15 with a = 2
is discussed in Example 2.21. The true coefficient cjump or ckink is given by a piecewise
smooth function with either finitely many jumps or kinks (see Example 3.17).
Numerical simulations were carried out in Python. To solve the boundary value problem
(3.40) we used quadratic finite elements and an equidistant grid containing 127 finite
elements. The coefficient c was sampled on an equidistant grid with 1024 points.
For the penalization by a brp,1-norm we used the discrete wavelet decomposition from
PyWavelets [75] with Daubechies wavelets of order 7, whose regularity satisfies smax > 2.15
(see [27, Table 2]).
The minimization problem in (3.16) was solved via the Gauß-Newton-type method ck+1 =
Sxk+1,

xk+1 ∈ argmin
x

[1
2‖F

′[Sxk](Sx− Sxk) + F (Sxk)− u‖2
Y + α‖x− x0‖r,p,1

]
.

with a constant initial guess c0 = 1. In each Gauß-Newton step these linearized mini-
mization problems were solved with the Fast Iterative Shrinkage- Thresholding Algorithm
(FISTA) proposed and analyzed by Beck & Teboulle in [7]. We used the inertial parameter
as in [15, Sec. 4].
We did not impose a constraint on the size of ‖c− c0‖, which is required by our theory if
Assumption 2.15 does not hold true globally. However, the size of the domain of validity
of this assumption is difficult to assess, and such a constraint is likely to be never active
for a sufficiently good initial guess c0.
The regularization parameter α was chosen by a sequential discrepancy principle with
τ1 = 1 and τ2 = 2 on a grid αj = 2−jα0.
To simulate worst case errors, we computed for each noise level δ reconstructions for
several data errors uδ −G(c†), ‖uδ −G(c†)‖L2 = δ, which were given by sin functions with
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different frequencies.
Here we focused on the choices p = 1 or p = 2 as in these cases the corresponding proximity
operator is given by simple explicit operations. In Figures 3.2 and 3.3, that is for p = 2
and r = 0, we see that the asymptotic behavior of the reconstruction error agrees with
impressive accuracy with our predicted convergence rate. Whereas the error diagrams in
Figures 3.4 and 3.5, i.e. for p = 1 and r = 0, suggest that our predicted rate could be
improved.
That is in line with the statements in Remark 3.21 as follows: By Example 3.17 the
smoothness parameters s = 1

2 for cjump and s = 3
2 for ckink are the maximal ones such

that these function belong to Bs
2,∞((0, 1)). Therefore, as Remark 3.21 characterizes these

spaces by variational source conditions, we see that s is also the maximal exponent such
that a variational source condition of the form (3.28) with ϕ(τ) = O

(
τ

s
2s+2a

)
holds true.

This suggests, that the convergence rate we state in this case cannot be improved. In the
next chapter we will even characterize the spaces Bs

p,∞ by the bias bound in the case of
exact data which consolidates this suggestion.
In the case p = 1 the values s = 1 for cjump and s = 2 for ckink are also maximal such that
these functions belong the Bs

1,∞((0, 1)). The difference to the above situation is that these
spaces are not characterized by the corresponding variational source conditions. Therefore,
at this point we cannot exclude that there is a larger s allowing for such a condition with
ϕ as above. Indeed, we will later prove a variational source condition for any s < 4

3 in case
of cjump and for any s < 8

3 for ckink. The convergence rates we are going to conclude from
the latter conditions explain the numerical simulations as accurate as in the case p = 2.

Characterization as source type condition

In the case of a linear forward operator A we characterize the condition (3.19b) in terms of
the range of the adjoint operator A∗. For X = `1 we show that the existence of a sequence
(νn)n∈N such that (3.19b) holds true is equivalent to the condition ej ∈ im(A∗) for all
j ∈ N. The latter source type condition is used in [11] to prove convergence rates.
We start with a lemma that characterizes (3.19b) for a single projection.

Lemma 3.25. Suppose A : X→ Y is linear and bounded, P : X→ X is a projection with
operator norm 1 and ν ≥ 0. The following statements are equivalent:

(i) ‖Pz‖X ≤ ν‖Az‖Y for all z ∈ X.
(ii) For every ξ ∈ im(P ∗) with ‖ξ‖X′ ≤ 1, there exists ψ ∈ Y′ with ‖ψ‖Y′ ≤ ν such that

A∗ψ = ξ.

Proof.

(i)⇒ (ii): As ξ ∈ im(P ∗) we have P ∗ξ = ξ. Hence, with z ∈ X we obtain

〈ξ, z〉 = 〈ξ, Pz〉 ≤ ‖Pz‖X ≤ ν‖Az‖Y.

Therefore, Proposition A.2 yields (ii).

(ii)⇒ (i): Let z ∈ X. By the Hahn-Banach theorem there is ξ ∈ X′ with ‖ξ‖X′ = 1 and
〈ξ, Pz〉 = ‖Pz‖X. As P has operator norm 1 so does P ∗. Hence, ‖P ∗ξ‖ ≤ 1 and (ii)
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Figure 3.2: Left: true coefficient cjump with jumps in the boundary value problem
(3.40) together with a typical reconstruction at noise level δ = 2.5 · 10−5. Right:
Reconstruction error using b0

2,1-penalization, the rate O(δ1/5) the L2-norm predicted
by Corollary 3.16 as Example 3.17 yields cjump ∈ B1/2

2,∞((0, 1)).

Figure 3.3: Left: true coefficient ckink with kinks in the boundary value problem
(3.40) together with a typical reconstruction at noise level δ = 2.5 · 10−5. Right:
Reconstruction error using b0

2,1-penalization, the rate O(δ3/7) the L2-norm predicted
by Corollary 3.16 as Example 3.17 yields ckink ∈ B3/2

2,∞((0, 1)).
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Figure 3.4: Left: true coefficient cjump with jumps in the boundary value problem
(3.40) together with reconstructions for b0

1,1- and b0
2,1-penalization at noise level

δ = 2.5 · 10−5 for the same data. Right: Reconstruction error using b0
1,1-penalization,

the rate O(δ1/3) in the L1-norm predicted by Corollary 3.16 as Example 3.17 yields
cjump ∈ B1

1,∞((0, 1)).

Figure 3.5: Left: true coefficient ckinks with kinks in the boundary value problem
(3.40) together with reconstructions for b0

1,1- and b0
2,1-penalization at noise level

δ = 2.5 · 10−5 for the same data. Right: Reconstruction error using b0
1,1-penalization,

the rate O(δ1/2) in the L1-norm predicted by Corollary 3.16 as Example 3.17 yields
ckink ∈ B2

1,∞((0, 1)).
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provides ψ ∈ Y′ with ‖ψ‖Y′ ≤ ν such that A∗ψ = P ∗ξ. Using Proposition A.2 again we
conclude

‖Pz‖X = 〈P ∗ξ, z〉 ≤ ν‖Az‖Y.

Remark 3.26. Note that the statement of Lemma 3.25 remains true, if ξ in (ii) ranges only
over a set whose convex hull is {ξ ∈ im(P ∗) : ‖ξ‖X′ ≤ 1}. Hence, by the Krein–Milman
theorem it is enough to require statement (ii) for the extreme points of the latter set
whenever im(P ∗) is finite dimensional.

Corollary 3.27. Suppose G = A : X→ Y is linear and bounded, (Pj : X→ X)j∈J a family
of projections satisfying (3.19a) and (νj)j∈J ⊂ [0,∞). Then (3.19b) holds true if and
only if for every for all j ∈ J and ξ ∈ im(P ∗j ) with ‖ξ‖X′ ≤ 1 there exists ψ ∈ Y with
‖ψ‖Y′ ≤ νj and A∗ψ = ξ.

Proof. By linearity the inequality in (3.19b) for all z1, z2 ∈ X is equivalent to statement
(i) in Lemma 3.25.

Applying the considerations to a linear operator on `1 we obtain the following charac-
terization of condition (3.19b).

Proposition 3.28. Let X = `1, G = A : `1 → Y bounded and linear and (Pn)n∈N as in
Example 3.6. Then there is a sequence (νn)n∈N such that (3.19b) holds true if and only if
en ∈ im(A∗) for all n ∈ N. In this case the minimal νn satisfying (3.19b) is given by

max
λ∈{−1,1}n

inf
‖ψ‖Y′ : ψ ∈ Y′ with A∗ψ =

n∑
j=1

λjej

 .
Proof. Let νn denote the maximum defined in the last line. Suppose (νn)n∈N is a sequence
such that (3.19b) holds true. The first implication in Lemma 3.25 for P = Pn yields
en ∈ im(A∗). To show that νn ≤ νn let λ ∈ {−1, 1}n. Then ‖λ1e1 + . . . + λnen‖∞ = 1.
Lemma 3.25 yields ψ ∈ Y∗ with ‖ψ‖Y′ ≤ νn and A∗ψ = λ1e1 + . . . + λnen. Hence, the
infimum in the definition of νn is less or equal νn. Taking the maximum over λ yields
νn ≤ νn.
Vice versa, we assume en ∈ im(A∗) and verify (ii) with νn = νn in Lemma 3.25. Let
ε > 0. By linearity for every λ ∈ {−1, 1}n there is ψ as in the definition of νn with
‖ψ‖Y′ ≤ ν + ε. Since {λ1e1 + . . .+ λnen : λ ∈ {−1, 1}n} is the set of extreme points of
im(P ∗n), Remark 3.26 yields (3.19b) with νn = νn + ε, and the statement follows from
taking the limit ε→ 0.

3.3 Non-smooth wavelet basis

In this section we generalize the results of Section 3.2 to the case where the regularity smax
of the wavelet system is lower then the smoothing parameter a of the forward operator.
We will validate our results numerically using the same example as above with Daubechies
wavelets of order 3 instead of order 7.
The restriction to a < smax in Section 3.2 as well as in the papers [104] and [64] is a
disadvantage, because for instance wavelet regularization of a twice smoothing operator
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as in Example 2.21 with a non-smooth wavelet system like the Haar wavelets or other
Daubechies wavelets of low order is not covered.
Another motivation to study the case smax < a is that it is a first step towards the
treatment of exponentially ill-posed problems. Indeed, we apply some of the presented
ideas later to obtain a convergence rates result for the backward heat equation.
Before we present the details we briefly sketch the basic modification of the verification
of the variational source condition. Recall that the starting point in Section 3.2 was the
inequality

‖x− z‖r,p,1 + ‖x‖r,p,1 − ‖z‖r,p,1 ≤ 2 (‖Pn(x− z)‖r,p,1 + ‖(I − Pn)x‖r,p,1) (3.41)

where Pn projects onto the first n+ 1 levels and that we used ‖Pn·‖r,p,1 . 2n(a+r)‖·‖−a,p,∞
to estimate the first summand on the right hand side. We have to modify the latter
Bernstein type inequality since the Besov norm with smoothness index −a on its right
hand side cannot be transferred to function spaces as in (3.29) if smax < a.
The key idea is to use the interpolation inequality ‖· |B−ãp,∞‖ . ‖· |B−ap,∞‖θ‖· |Br

p,1‖1−θ with
ã < smax. Then the norm on the left hand side ‖· |B−ãp,∞‖ is characterized by wavelet
coefficients. Combining with the Bernstein type inequality with a replaced by ã we obtain

‖Pn·‖r,p,1 . 2n(ã+r)‖S· |B−ap,∞‖θ‖S· |Br
p,1‖1−θ.

From there we translate the second factor ‖S· |Br
p,1‖ . ‖·‖r,p,1 back to wavelet coefficients

and apply Young’s inequality to wind up with ‖Pn·‖r,p,1 ≤ C2n(a+r)‖· |B−ap,∞‖+ 1
4‖·‖r,p,1.

Inserting into (3.41) we absorb the additional summand 1
4‖x− z‖r,p,1 into ‖x− z‖r,p,1

on the left hand side and use the same arguments as in the last section to conclude a
variational source condition with loss function 1

2‖x− z‖r,p,1.

−a −smax −ã 0 smax

Characterization by wavelet coefficients

Figure 3.6: Smoothness indices: Replacing a by ã < smax in order to access via
wavelet coefficients.

The structure of this section is as above: First we will present a general strategy for
the verification of variational source conditions that is a generalization of Proposition 3.5
with (3.19b) replaced by a weaker assumption allowing for an additional summand as
above. In a second subsection we will apply the considerations to sparsity promoting
wavelet regularization to obtain the desired generalization of Theorem 3.15. Finally, we
interpret the replacement of (3.19b) in the linear case as a source type condition involving
the adjoint of the forward operator.

Verification of variational source conditions

Proposition 3.29. Let X, Y be Banach spaces and G : D → Y a map defined on a subset
D ⊂ X, x ∈ D and J be an index set. Suppose κ ∈ [0, 1

2), (Pj : X→ X)j∈J is a family
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of projections and (νj)j∈J a family of positive real numbers such that (3.19a) and the
following condition are satisfied:

‖Pj(z1 − z2)‖X ≤ νj‖G(z1)−G(z2)‖Y + κ‖z1 − z2‖X for all z1, z2 ∈ D, j ∈ J. (3.42)

Then the variational source condition (3.14) holds true with β = 1− 2κ and

ϕ(τ) = 2 inf
j∈J

(
νj
√
τ + ‖(I − Pj)x‖X

)
.

Proof. The same argument as in Proposition 3.5 yields continuity of ϕ.
To prove (3.14) let z ∈ D and j ∈ J . Inserting condition (3.42) into (3.20) and subtracting
2κ‖z1 − z2‖X on both sides yields

(1− 2κ)‖x− z‖X + ‖x‖X − ‖z‖X ≤ 2 (νj‖G(z1)−G(z2)‖Y + ‖(I − Pj)x‖X) .

Taking the infimum over j ∈ J on the right hand side yields the result.

Example 3.30. Let (νj)j∈J be a family of positive real numbers and θ ∈ (0, 1). We consider
the following interpolation-type condition

‖Pj(z1 − z2)‖X ≤ νθj ‖G(z1)−G(z2)‖θY‖z1 − z2‖1−θ
X for all z1, z2 ∈ D. (3.43)

Assuming (3.43) Young’s inequality implies

‖Pj(z1 − z2)‖X ≤ θ(1− θ) 1−θ
θ κ

θ−1
θ νj‖G(z1)−G(z2)‖Y + κ‖z1 − z2‖X (3.44)

for all z1, z2 ∈ D. and κ ∈ (0,∞). In particular (3.43) implies condition (3.42) for every
κ ∈ (0, 1

2). Note that the choice of κ does not influence the asymptotic behavior of
the numbers in front of ‖G(z1) − G(z2)‖Y in (3.44), which enter the index function in
Proposition 3.29.
Vice versa, assuming (3.44) holds true for all z1, z2 ∈ D and all κ ∈ (0,∞), we regain
(3.43) up to a constant by choosing κ = νθj ‖G(z1)−G(z2)‖θY‖z1 − z2‖−θX .

In the sequel we show that for a linear, injective and weak∗-to-weak continuous operator
every x ∈ X satisfies a variational source condition (3.14). For X = `1 this is the main
result of the article [40]. Here we present a simpler proof based on (3.42) without evoking
the adjoint of the forward operator.

Proposition 3.31. Assume X is separable and has a predual. Suppose G = A : X→ Y
is linear, injective and weak∗-to-weak continuous. Let (Pj : X → X)j∈J be a family of
weak∗-to-norm continuous projections satisfying (3.19a) and infj∈J ‖(I − Pj)x‖X = 0 for
all x ∈ X. Then for every κ ∈ (0, 1

2) there exists (νj)j∈J such that (3.42) holds true.

Proof. By linearity it suffices to prove that for every j ∈ J there exists νj > 0 such that

‖Pjz‖X ≤ νj‖Az‖Y + κ‖z‖X for all z ∈ X. (3.45)

Assuming the contrary, let j ∈ J be such that for every m ∈ N there exists xm ∈ X such
that

‖Pjxm‖X = 1 and m‖Axm‖Y + κ‖xm‖X < 1.
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Then (xm)m∈N is bounded and ‖Axm‖Y → 0. The Banach-Alaoglu theorem implies the
existence of a subsequence (xmk)k∈N converging to some x ∈ X in the weak∗-topology. The
weak∗-to-weak continuity of A yields weak convergence of Axmk to Ax as k →∞. Since
‖Axmk‖Y → 0 we obtain Ax = 0. Injectivity implies x = 0. The weak∗-to-norm continuity
of Pj leads to the contradiction

1 = lim
k→∞
‖Pjxmk‖X = ‖Pjx‖X = 0.

Corollary 3.32. In the setting of Proposition 3.31 for every x ∈ X and β ∈ (0, 1) there
exists a concave and continuous function ϕ : [0,∞) → [0,∞) with ϕ(0) = 0 such that
(3.14) holds true.

Proof. Proposition 3.31 together with Proposition 3.29 yield the claim.

Example 3.33. The space X = `1 is separable and the space c0 of real null sequences
equipped with the supremum norm is a predual. The weak∗-convergence in X implies
componentwise convergence. Therefore, the projections Pn defined in Example 3.6 are
weak∗-to-norm continuous. Furthermore, they satisfy (3.19a) and

inf
n∈N
‖(I − Pn)x‖X = lim

n→∞
‖(I − Pn)x‖X = 0 for all x ∈ X.

Error bounds for wavelet regularization in Besov Spaces with
non-smooth basis

In this subsection we show that Theorem 3.15 remains valid without the assumption
a < smax. Let Pn : brp,1 → brp,1 be the projection onto the first n + 1 levels as defined in
Section 3.2. We start with the replacement of the Bernstein type inequality in Lemma 3.9.

Lemma 3.34 (Replacement of Bernstein inequality). Suppose Assumption 2.11. Let a > 0
and 0 ≤ r < smax. Then there exists a constant CBR > 0 such that

‖Pnz‖r,p,1 ≤ CBR2n(a+r)‖Sz |B−ap,∞‖+ 1
4‖z‖r,p,1 for all z ∈ brp,1 and n ∈ N0.

Proof. Let ã = min
{
smax

2 , a
}

. Then ã < smax. If ã < a then by Definition 2.9(d)(i) there
exists a constant cI > 0 such that

‖f |B−ãp,∞‖ ≤ cI‖f |B−ap,∞‖
ã+r
a+r ‖f |Br

p,1‖
a−ã
a+r for all f ∈ Br

p,1.

We may assume cI ≥ 1 such that this inequality remains valid for ã = a .
Let Cã and Cr, respectively, denote the operator norms of S−1 : B−ãp,∞ → b−ãp,∞ and
S : brp,1 → Br

p,1. The above interpolation inequality with f = Sz and Lemma 3.9 yield

‖Pnz‖r,p,1 ≤ CB2n(ã+r)‖z‖−ã,p,∞
≤ CBCã2n(ã+r)‖Sz |B−ãp,∞‖

≤ CBCãcIC
a−ã
a+r
r 2n(ã+r)‖Sz |B−ap,∞‖

ã+r
a+r ‖z‖

a−ã
a+r
r,p,1.

As in Example 3.30 an application of Young’s inequality yields the result.
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Remark 3.35. Note that the particular choice of ã in the proof of Lemma 3.34 is not
relevant as long as ã < smax and ã ≤ a. Moreover, the prefactor 1

4 could be replaced by
any κ > 0 (see also Example 3.30).

With Proposition 3.29 and Lemma 3.34 we are in position to drop the assumption
a < smax in Proposition 3.12.

Proposition 3.36 (Variational source condition). Suppose Assumptions 2.11 and 2.15(a)
hold true. Let p ∈ [1, 2] and 0 ≤ r < smax. If p ∈ [1, 2), then we require that the scale
Bs
p,q is p-monotone (see Definition 2.9). Moreover, let r < s and % > 0 and assume

x ∈ bsp,∞ ∩ S−1(dom(F )) with ‖x‖s,p,∞ ≤ %. Then

1
2‖x− z‖r,p,1 + ‖x‖r,p,1 − ‖z‖r,p,1 ≤ ϕ

(
‖F (Sx)− F (Sz) ‖2

Y

)
for all z ∈ brp,1 ∩ S−1(dom(F )) with ϕ(τ) = C ′ϕ%

a+r
s+a τ

s−r
2s+2a for a constant C ′ϕ independent

of f, % and τ .

Proof. We verify the assumptions of Proposition 3.29 for G := F ◦ S on D := brp,1 ∩
S−1(dom(F )). As in the proof of Proposition 3.12 we see that there is a continuous
embedding B−a2,2 ⊂ B−ap,∞. Let c1 be its operator norm. Together with Assumption 2.15(a)
we obtain

‖f1 − f2 |B−ap,∞‖ ≤ c1M1‖F (f1)− F (f2)‖Y for all f1, f2 ∈ dom(F ).

Let z1, z2 ∈ D. Inserting the last inequality with fi = Szi into the inequality in Lemma 3.34
we wind up with

‖Pn(z1 − z2)‖r,p,1 ≤ C̃BR2n(a+r)‖G(z1)−G(z2)‖Y + 1
4‖z1 − z2‖r,p,1 for all n ∈ N0

with C̃BR := CBRc1M1. That is (3.42) with νn = C̃BR2n(a+r) and κ = 1
4 .

Moreover, Lemma 3.10 yields

‖(I − Pn)x‖r,p,1 ≤ CJ2n(r−s)%.

Now for z ∈ brp,1∩S−1(dom(F )) we set ϑ = ‖F (Sx)−F (Sz) ‖Y. We apply Proposition 3.29
to obtain

1
2‖x− z‖r,p,1 + ‖x‖r,p,1 − ‖z‖r,p,1 ≤ ϕ̃

(
ϑ2
)

(3.46)

with ϕ̃(τ) = 2 infn∈N0

(
C̃BR2n(a+r)√τ + CJ2n(r−s)%

)
for τ > 0.

We set C ′ϕ := max{3
2c2, 2(C̃BR+2s−rCJ)} with c2 the embedding constant of the embedding

bsp,∞ ⊂ brp,1. With the same routine as at the end of the proof of Lemma 3.11 we see that
ϕ̃ (ϑ2) ≤ ϕ (ϑ2) whenever ϑ < %. Hence it remains to prove the result in the case ϑ ≥ %.
But here the triangle inequality (see also Remark 3.4) provides

1
2‖x− z‖r,p,1 + ‖x‖r,p,1 − ‖z‖r,p,1 ≤

3
2‖x‖r,p,1 ≤ C ′ϕ% ≤ C ′ϕ%

a+r
s+aϑ

s−r
s+a = ϕ(ϑ2).
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With Proposition 3.36 at hand the same arguments as in Section 3.2 lead to the same
error bounds for the reconstruction Rα in (3.16).

Theorem 3.37 (Error bounds for non-smooth wavelet systems). Theorem 3.15 and
Corollary 3.16 remain valid without the assumption a < smax.

Proof. The proofs work along the lines of the proof of Theorem 3.15 with Proposition 3.12
replaced by Proposition 3.36.

Remark 3.38 (p, q ≥ 1). Note that so far we have not used any spaces bsp,q and Bs
p,q with

p < 1 or q < 1 such that it is sufficient to require Assumption 2.11 for p, q ∈ [1,∞].

Numerical validation

We use the same setup and code as in the last section with Daubechies wavelets of order 3
instead of order 7 to reconstruct the coefficient cjump with jumps in the elliptic boundary
value problem (3.40). The regularity smax of the order 3 wavelet system is estimated by
1.0878 (see [28, p. 239]). So we do not reconstruct ckink here as the wavelet system is not
capable of measuring Besov smoothness larger then 1.0878 and point out that we have
a = 2 > 1.0878 ∼ smax.
The lower regularity of the wavelet functions is clearly visible in the reconstructions. As
expected the predicted rate agrees with the one in the experiment accurately in the case
p = 2 (see Figure 3.7). Furthermore, in Figure 3.8 we see once more that our theory in
the case p = 1 has to be revised as the error bound is to pessimistic. This motivates the
further investigation in weighed `1-regularization in the next but one section.

Figure 3.7: Left: true coefficient cjump with jumps in the boundary value prob-
lem (3.40) together with reconstructions for b0

2,1-penalization with db3 and db7 at
noise level δ = 2.5 · 10−5 for the same data. Right: Reconstruction error using
b0

2,1-penalization, the rate O(δ1/5) in the L2-norm predicted by Theorem 3.37 as
Example 3.17 yields cjump ∈ B1/2

2,∞.
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Figure 3.8: Left: true coefficient cjump with jumps in the boundary value prob-
lem (3.40) together with reconstructions for b0

1,1-penalization with db3 and db7 at
noise level δ = 2.5 · 10−5 for the same data. Right: Reconstruction error using
b0

1,1-penalization, the rate O(δ1/3) in the L1-norm predicted by Theorem 3.37 as
Example 3.17 yields cjump ∈ B1

1,∞.

Characterization as approximative source type condition

The purpose of this subsection is a characterization of (3.42) in terms of the range of the
adjoint operator A∗ in the case of a linear forward operator. Furthermore, we compare
(3.42) to a source type condition that can be found in [41], [43], and [40].
We start with a lemma that can be seen as an approximative version of Lemma 3.25.

Lemma 3.39. Suppose A : X→ Y is linear and bounded, P : X→ X is a projection with
operator norm 1, κ ∈

[
0, 1

2

)
and ν ≥ 0. Then the following statements are equivalent:

(i) ‖Pz‖X ≤ ν‖Az‖Y + κ‖z‖X for all z ∈ X.
(ii) For every ξ ∈ im(P ∗) with ‖ξ‖X′ ≤ 1, there exists ψ ∈ Y′ with ‖ψ‖Y′ ≤ ν such that
‖ξ − A∗ψ‖X′ ≤ κ.

If in addition P satisfies ‖z‖X = ‖Pz‖X + ‖(I − P )z‖X for all z ∈ X, then we have
equivalence of (i), (ii) and the statement
(iii) For every ξ ∈ im(P ∗) with ‖ξ‖X′ ≤ 1, there exists ψ ∈ Y′ with ‖ψ‖Y′ ≤ ν

1−κ such
that P ∗A∗ψ = ξ and ‖(I − P ∗)A∗ψ‖X′ ≤ κ

1−κ .

Proof. We prove the equivalence of (i) and (ii) by tracing it back to Lemma 3.25. Consider
the Banach space

(
Z(ii), ‖ · ‖(ii)

)
given by Z(ii) = Y× X and ‖(y, z)‖(ii) = ν‖y‖Y + κ‖z‖X

together with the bounded linear operator S(ii) : X→ Z(ii) defined by z 7→ (Az, z). Then
(i) is equivalent to

‖Pz‖X ≤ ‖Sz‖(ii) for all z ∈ X. (3.47)

Introducing the norm ‖(ψ, ξ)‖(ii)′ := max (ν−1‖ψ‖Y′ , κ−1‖ξ‖X′) on Y′ × X′ it is routine to
see that the pairing 〈(ψ, ξ), (y, x)〉 := 〈ψ, y〉+ 〈ξ, x〉 gives rise to an isometric isomorphism
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Y′×X′ ∼= Z′(ii). Hence, we may view the adjoint operator S∗(ii) : Y′×X′ → X′, and a routine
computation shows that it is given by S∗(ii)(ψ, ξ) = A∗ψ + ξ.
Lemma 3.25 provides equivalence of (3.47) and the following statement: For every ξ ∈
im(P ∗) there exists ψ ∈ Y′ and ξe ∈ X′ with ‖ψ‖Y′ ≤ ν and ‖ξe‖X ≤ κ such that
A∗ψ + ξe = ξ. The latter statement is in turn equivalent to (ii).
Assuming ‖z‖X = ‖Pz‖X +‖(I − P )z‖X we add or subtract κ‖Pz‖X and divide or multiply
by 1− κ on both sides of the inequality in (i) to see that (i) is equivalent to

‖Pz‖X ≤
ν

1− κ‖Az‖Y + κ

1− κ‖(I − P )z‖X for all z ∈ X. (3.48)

Consider
(
Z(iii), ‖ · ‖(iii)

)
given by Z(iii) = Y × X and ‖(y, z)‖(iii) = ν

1−κ‖y‖Y + κ
1−κ‖z‖X

together with S(iii) : X→ Z(iii) defined by z 7→ (Az, (1−P )z). The same arguments as above
provide the equivalence of (3.48) and the following statement: For every ξ ∈ im(P ∗) there
exists ψ ∈ Y′ and ξe ∈ X′ with ‖ψ‖Y′ ≤ ν

1−κ and ‖ξe‖X ≤ κ
1−κ such that A∗ψ+(1−P ∗)ξe = ξ.

It is easy to see that the latter statement is equivalent to (iii).

The condition (ii) in Lemma 3.39 appears as a natural generalization of condition (ii)
in Lemma 3.25. In Lemma 3.25 the elements in im(P ∗) are required to be exactly realized
as A∗ψ. In contrast, Lemma 3.39 allows an error of size κ.
We included statement (iii) for the purpose of comparing (3.42) to source conditions
in the literature (see [41, 43, 40] and Remark 3.44). Here the requirement is an exact
representation of ξ in the range of P ∗ while allowing for an error in the range of I − P ∗.

Remark 3.40. As in Remark 3.26 the statement of Lemma 3.39 remains true, if ξ in (ii)
or (iii) ranges only over a set whose convex hull is {ξ ∈ im(P ∗) : ‖ξ‖X′ ≤ 1}.

Corollary 3.41. Suppose G = A : X→ Y is linear and bounded, (Pj : X→ X)j∈J a family
of projections satisfying (3.19a). Let κ ∈

[
0, 1

2

)
. Then there exists a family (νj)j∈J of

positive real numbers such that (3.42) holds true if and only if for all j ∈ J and ξ ∈ im(P ∗j )
with ‖ξ‖X′ ≤ 1, there exists ψ ∈ Y′ with ‖ψ‖Y′ ≤ νj such that ‖ξ − A∗ψ‖X′ ≤ κ.

Proof. By linearity the inequality in (3.42) for all z1, z2 ∈ X is equivalent to statement (i)
with P = Pj in Lemma 3.39.

In the case of a linear operator on `1 the considerations lead to the following character-
ization of condition (3.42).

Proposition 3.42. Let X = `1, G = A : `1 → Y linear, bounded and weak∗-to-weak
continuous, (Pn)n∈N as in Example 3.6 and κ ∈

[
0, 1

2

)
. Then the minimal νn such that

(3.42) holds true is given by

max
λ∈{−1,1}n

inf
‖ψ‖Y′ : ψ ∈ Y′ with

∥∥∥∥∥∥
n∑
j=1

λjej − A∗ψ

∥∥∥∥∥∥
∞

≤ κ

 .
Proof. Let νn denote the maximum defined in the last line. Suppose (νn)n∈N0 is a sequence
such that (3.42) holds true. We show that νn ≤ νn. To this end, let λ ∈ {−1, 1}n.
Then ‖∑n

j=1 λjej‖∞ = 1. By Lemma 3.39 there exists ψλ ∈ Y′ with ‖ψλ‖Y′ ≤ νn and



60 3. Error bounds based on variational source conditions

∥∥∥∑n
j=1 λjej − A∗ψ

∥∥∥
X′
≤ κ. Hence, the infimum in the definition of νn is less or equal νn.

Taking the maximum over λ yields νn ≤ νn.
It remains to prove that (3.42) holds true with νn ≤ νn. Let ε > 0. For every
λ ∈ {−1, 1}n there exists ψ with ‖ψ‖Y′ ≤ νn + ε and

∥∥∥∑n
j=1 λjej − A∗ψ

∥∥∥
X′
≤ κ. Since{∑n

j=1 λjej : λ ∈ {−1, 1}n
}

is the set of extreme points of the unit ball in im(P ∗n), Re-
mark 3.40 yields (3.42) with νn = νn + ε, and the statement follows from taking the limit
ε→ 0.

Remark 3.43. In particular Proposition 3.42 together with Proposition 3.31 shows that
every linear, bounded and weak∗-to-weak continuous operator A : `1 → Y satisfies ej ∈
im(A∗) for all j ∈ N. Hence, c0 ⊂ im(A∗). Moreover, the weak∗-to-weak continuity yields
im(A∗) ⊂ c0 (see [40, Lem. 3]). Therefore, we obtain c0 = im(A∗). The latter statement
is proven in [40, Prop. 8] as an intermediate step to obtain the result in Corollary 3.32.

Remark 3.44 (Answers to questions posed in [41] and [43]). Lemma 3.39 and Remark 3.40
prove that for a sequence (νn)n∈N ⊂ [0,∞) of non-negative numbers and a constant κ ∈ [0, 1

2)
condition (3.42) holds true if and only if for every n ∈ N and ξ ∈ `∞ with ξi ∈ {−1, 1}
for i ≤ n and ξi = 0 for i > n there exists ψ ∈ Y′ such that ‖ψ‖Y′ ≤ νn

1−κ , P ∗nA∗ψ = ξ and
‖(I − P ∗n)A∗ψ‖∞ ≤ κ

1−κ .
Up to an irrelevant reparameterization the latter condition matches [40, Condition 4] which
is the starting point of the analysis in [40]. We refer also to [41, Def. 3.1; Ass. 3.2] and
[43, Ass. 2.1] for variants of the latter condition. For a linear operator the condition
(3.42) is equivalent to this source condition. This answers a question posed in [41, Ch.
7]. As (3.42) does not evoke the adjoint of the forward operator, it is qualified for the
generalization to nonlinear mappings.
In [40, Ch. 5] the authors point to the question of the influence of the constant κ on the
sequence νn. In Example 3.30 we saw that an interpolation type inequality of the form

‖Pnz‖1 ≤ νθj ‖Az‖θY‖z‖1−θ
1 for all z ∈ `1

implies (3.42) and therefore Condition 4 in [40] and the constant κ influences the sequence
νn only by a constant factor. In the proof of Lemma 3.34 we saw that such an inequality
holds true for finitely smoothing operators on Besov spaces. Hence, at least for these
operators the constant κ does not influence the asymptotic behavior of the sequence νn (see
also Example 3.30 and Remark 3.35)

3.4 Optimality

Here we show that the upper bounds on the reconstruction error in Theorem 3.15 and
therefore also in Theorem 3.37 are order optimal.
To do so we provide a lower bound on the modulus of continuity on Besov balls

Ks
p,q(f, %) :=

{
f ∈ Bs

p,q : ‖f − f |Bs
p,q‖ ≤ %

}
with s > 0, p, q ∈ (0,∞), f ∈ Bs

p,q and % > 0. Similar results (with more restrictions on
the involved indices) can be found in [104, Prop. 3.21] and [64, Thm. 4.5].
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Theorem 3.45 (Lower bound on the reconstruction error). Let Bs
p,q be a Besov scale

(see Definition 2.9) such that for every smax > 0 there exists a wavelet system meeting
Assumption 2.11. Suppose Assumption 2.15(b) holds true. Let s > 0 and p, q ∈ (0,∞] and
assume that f ∈ Bs

p,q and % > 0 such that Ks
p,q(f, %) ⊂ dom(F ). If p, q ∈ [1,∞] with a

continuous embedding Bs
p,q ⊂ B0

p,q. Then there is a constant c > 0 independent of f and %
such that the worst case error on Ks

p,q(f, %) given by

∆R(δ,Ks
p,q(f, %))

= sup
{
‖f −R(δ, gobs) |B0

p,q‖ : f ∈ Ks
p,q(f, %), gobs ∈ Y with ‖gobs − F (f)‖Y ≤ δ

}
of any reconstruction method given by a map R : (0,∞) × Y → B0

p,q satisfies the lower
bound

c%
a
s+a δ

s
s+a ≤ ∆R(δ,K%) for all δ < %

2 .

Proof. We show that the modulus of continuity

ω
(
δ,Ks

p,q(f, %)
)

= sup
{
‖f1 − f2 |B0

p,q‖ : f1, f2 ∈ Ks
p,q(f, %) with ‖F (f1)− F (f2)‖Y ≤ δ

}
satisfies

c%
a
s+a δ

s
s+a ≤ ω

(
δ,Ks

p,q(f, %)
)

for all δ < %

with a constant c independent of f and %. Then the result is an immediate consequence of
the universal lower bound on the worst case error in Proposition 2.6.
Let % > 0 and δ > 0. For n ∈ N0 we define βn := min{2−ns%, 2naδ}. Suppose for a moment
that (fn)n∈N0 ⊂ Bs

p,q is a sequence with

‖fn |Bs
p,q‖ ≤ %, ‖F (f + fn)− F (f)‖Y ≤ δ and ‖fn |B0

p,q‖ ≥ c1βn (3.49)

for all n ∈ N0 with a constant c1 independent f , %0, % and δ.
Then for δ < % there exists a minimal natural number n0 ≥ 1 with (%/δ)

1
s+a ≤ 2n0 . With

this βn0 = 2−n0s% and 2n0 < 2 (%/δ)
1
s+a imply

ω
(
δ,Ks

p,∞(f̄ , %), ‖ · ‖0,p,1
)
≥ ‖fn0 |B0

p,q‖ ≥ c1βn0 = c12−n0s% > c12−s%
a
s+a δ

s
s+a .

Hence we are left with constructing a sequence satisfying (3.49). To this end, choose
a wavelet system with smax > 0 large enough such that S acts as a Banach space
isomorphism between the three spaces bsp,q, b0

p,q, b−a2,2 and Bs
p,q, B

0
p,q, B−a2,2 respectively. With

c2 the maximum of the operator norms of these three isomorphism and their inverses we
set c3 := c−1

2 min{1,M−1
2 }.

Now fix n ∈ N0. Choose a subset Λj ⊂ Λj with |Λj| = 2jd. Let x ∈ RΛ given by
xj,k = c32− 1

2ndβn if j = n and k ∈ Λj and xj,k = 0 else. We define fn := Sx and estimate

‖fn |Bs
p,q‖ ≤ c2‖x‖s,p,q = c2c32nsβn ≤ %,

‖fn |B−a2,2‖ ≤ c2‖x‖−a,2,2 = c2c32−naβn ≤M−1
2 δ and

‖fn |B0
p,q‖ ≥ c−1

2 ‖x‖0,p,q = c−1
2 c3βn.

Using the Lipschitz continuity Assumption 2.15(b) we see that the obtained sequence
(fn)n∈N0 satisfies the requirements in (3.49).
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As already noted below Assumption 2.11 all Besov function spaces Bs
p,q(Ω) with

Ω ∈ {Rd,Td} can be characterized by wavelet systems. Hence in this case the assumption
on the Besov scale in Theorem 3.45 is satisfied.
This result shows that under Assumption 2.15 the upper bounds on the reconstruction
error (3.36) is order optimal, i.e. the wavelet reconstruction method given by Rα in (3.16)
is order optimal in the sense of Section 2.2 for both the a priori choice rule as well as for
the discrepancy principle.
Note that this is no contradiction to the claims in the last sections on insufficiency of the
predictions we have for piecewise smooth functions with kinks or jumps with a br1,1-penalty:
The stated optimality holds for suprema over balls in Bs

p,∞. However, Theorem 3.45 does
not rule out the existence of elements in such balls (such as piecewise smooth functions) for
which faster convergence rates can be achieved (even if s is maximal for these elements).

Remark 3.46 (Extension to Lp-loss). In view of Theorem 3.45 we also get that the bounds
in the Lp-norm (see Corollary 3.16) cannot be improved up to a change of the constant. To
this end, let p ∈ [1,∞). Suppose that B0

p,∞ = B0
p,∞(Ω) with Ω either Td, Rd or a bounded

Lipschitz domain in Rd. Then there is a continuous embedding Lp(Ω) ⊂ B0
p,∞(Ω) (see

Proposition A.11). Hence Theorem 3.45 remains valid if one replaces the space B0
p,q(Ω) by

Lp(Ω).

Remark 3.47. Finally we like to point out that Theorem 3.45 also generalizes to loss func-
tions given by Br

p,q-norms with r ≥ 0. We obtain lower bounds %
a+r
s+a δ

s−r
s+a . ω

(
δ,Ks

p,q(f, %)
)

.
This shows that the upper bound (3.34) is order optimal as well.

3.5 Weighted `1-regularization

We have seen in our numerical simulation displayed in Figures 3.4 and 3.5 that our error
bounds in the case p = 1 for piecewise smooth functions with jumps or kinks are too
pessimistic. Therefore, the aim of this section is to characterize maximal sets on which
certain approximation rates are achieved.

Using weak sequence spaces to measure the regularity of the true solution we will prove
convergence rates for weighted `1-regularization as introduced in Section 2.5. The results
of this section can also be found in the article [85] to which the author contributed. For
some data g ∈ Y we consider the following set-valued scheme

Sα(g) = argmin
x∈dom(G)∩`1r

( 1
2α‖g −G(x)‖2

Y + ‖x‖r,1
)
. (3.50)

The structure of this section is as follows: First we will introduce weak sequence spaces
and show that these are characterized by approximation rates of certain thresholding
operators. The latter thresholding procedures will play a central role in the analysis. Next
we verify a variational source condition on bounded sets of these weak sequence spaces.
To this end, we introduce a family (Pα)α>0 adaptively to the true solution x consisting
of projections onto those indices where the coefficients of x lie above some threshold.
Providing a Bernstein type inequality and using the characterization by thresholding
mentioned above we apply Proposition 3.5 to obtain a variational source condition of the
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form (3.14). As usual this condition implies convergence rates.
We finish this section with an application to wavelet regularization with penalties given by
br1,1-norms where we use similar arguments as in Section 3.3 to provide a convergence rate
result also for non-smooth wavelet systems.

Weak sequence spaces

As announced we introduce spaces of sequences whose bounded sets will provide the source
sets for the convergence analysis in the sequel. We define a specific thresholding map and
analyze its approximation properties.
As in Section 2.5 we let Λ be a countable set and r = (rj)j∈Λ, a = (aj)j∈Λ sequences of
positive weights. First we introduce a scale of spaces, part of which interpolates between
the spaces `1

r and `2
a involved in our setting. For t ∈ (0, 2] we define weights

(ωt)j = (a2t−2
j r2−t

j ) 1
t . (3.51)

Note that ω1 = r and ω2 = a. The next proposition captures interpolation inequalities we
will need later.

Proposition 3.48 (Interpolation inequality). Let u, v, t ∈ (0, 2] and θ ∈ (0, 1) with
1
t

= 1−θ
u

+ θ
v
. Then

‖x‖ωt,t ≤ ‖x‖1−θ
ωu,u‖x‖

θ
ωv ,v for all x ∈ `uωu ∩ `

v
ωv .

Proof. We use Hölder’s inequality with the conjugate exponents u
(1−θ)t and v

θt
:

‖x‖tωt,t =
∑
j∈Λ

(
a2u−2
j r2−u

j |xj|u
) (1−θ)t

u
(
a2v−2
j r2−v

j |xj|v
) θt
v ≤ ‖x‖(1−θ)t

ωu,u ‖x‖
θt
ωv ,v.

Remark 3.49. In the setting of Proposition 3.48 real interpolation theory yields the
stronger statement `tωt = (`uωu , `vωv)θ,t with equivalent quasi-norms (see, e.g. [45, Theorem
2]). The stated interpolation inequality is a consequence.

For t ∈ (0, 2) we define a weak version of the space `tωt .

Definition 3.50 (Source sets). Let t ∈ (0, 2). We define kt := {x ∈ RΛ : ‖x‖kt <∞} with

‖x‖kt = sup
α>0

α

∑
j∈Λ

a−2
j r2

j1{a−2
j rjα<|xj |}

 1
t

.

Remark 3.51. The functions ‖ · ‖kt are quasi-norms. The quasi-Banach spaces kt are
weighted Lorenz spaces. They appear as real interpolation spaces between weighted Lp-
spaces. To be more precise [45, Theorem 2] yields kt = (`uωu , `vωv)θ,∞ with equivalence of
quasi-norms for u, v, t and θ as in Proposition 3.48.

Remark 3.52. Remark 3.49 and Remark 3.51 predict an embedding

`tωt = (`uωu , `
v
ωv)θ,t ⊂ (`uωu , `

v
ωv)θ,∞ = kt.



64 3. Error bounds based on variational source conditions

Indeed, the Markov-type inequality

αt
∑
j∈Λ

a−2
j r2

j1{a−2
j rjα<|xj |} ≤

∑
j∈Λ

a2t−2
j r2−t

j |xj|t = ‖x‖tωt,t

proves ‖ · ‖kt ≤ ‖·‖ωt,t.

For aj = rj = 1 we obtain the weak-`t spaces kt = `t,∞ that appear in nonlinear
approximation theory (see e.g. [24], [21]).
Next we define a specific nonlinear thresholding procedure depending on r and a whose
approximation theory is characterized by the spaces kt. This characterization is the core
for the proofs of the convergence results in this section. The statement is [24, Theorem
7.1] for weighed sequence space. For sake of completeness we present an elementary proof
based on a partition trick that is perceivable in the proof of [24, Theorem 4.2].
Let α > 0. We consider the map

Tα : RΛ → RΛ by Tα(x)j :=
xj if a−2

j rjα < |xj|
0 else.

(3.52)

Let x ∈ `2
a. Then

‖x− Tα(x)‖2
a,2 =

∑
j∈Λ

a2
j |xj|21{|xj |≤a−2

j rjα} −→ 0 for α→ 0

by Lebesgue dominated convergence. Moreover, note that

α2 ∑
j∈Λ

a−2
j r2

j1{a−2
j rjα<|xj |} ≤ ‖Tα(x)‖2

a,2 ≤ ‖x‖2
a,2.

If ajr−1
j is bounded above then a−2

j r2
j is bounded away from zero. Hence in this case we

see that the set of j ∈ Λ with a−2
j rjα < |xj| is finite, i.e. Tα(x) has only finitely many non

vanishing coefficients whenever x ∈ `2
a.

Lemma 3.53 (Approximation rates for Tα). Let 0 < t < p ≤ 2 and x ∈ RΛ. Then x ∈ kt
if and only if η(x) := supα>0 α

t−p
p ‖x− Tα(x)‖ωp,p <∞.

More precisely we show bounds

η(x) ≤ 2
(
2p−t − 1

)− 1
p ‖x‖

t
p

kt
and ‖x‖kt ≤ 2

p
t (2t − 1)− 1

t η(x)
p
t .

Proof. We use a partitioning to estimate

‖x− Tα(x)‖pωp,p =
∑
j∈Λ

a2p−2
j r2−p

j |xj|p1{|xj |≤a−2
j rjα}

=
∞∑
k=0

∑
j∈Λ

a2p−2
j r2−p

j |xj|p1{a−2
j rj2−(k+1)α<|xj |≤a−2

j rj2−kα}

≤ αp
∞∑
k=0

2−pk
∑
j∈Λ

a−2
j r2

j1{a−2
j rj2−(k+1)α<|xj |}

≤ αp−t‖x‖tkt2
t
∞∑
k=0

(2t−p)k

= αp−t2p
(
2p−t − 1

)−1
‖x‖tkt .
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A similar estimation yields the second inequality:

∑
j∈Λ

a−2
j r2

j1{a−2
j rjα<|xj |} =

∞∑
k=0

∑
j∈Λ

a−2
j r2

j1{a−2
j rj2kα<|xj |≤a−2

j rj2k+1α}

≤ α−p
∞∑
k=0

2−kp
∑
j∈Λ

a2p−2
j r2−p

j |xj|p1{|xj |≤a−2
j rj2k+1α}

= α−p
∞∑
k=0

2−kp‖x− T2k+1α(x)‖pωp,p

≤ α−tη(x)p2p−t
∞∑
k=0

(2−t)k

= α−tη(x)p2p
(
2t − 1

)−1
.

Corollary 3.54. Suppose ajr−1
j is bounded above. Let 0 < t < p ≤ 2. Then kt ⊂ `pωp.

More precisely there is a constant M > 0 depending on t, p and supj∈Λ ajr
−1
j such that

‖·‖ωp,p ≤M‖ · ‖kt.

Proof. Let x ∈ kt. The assumption implies the existence of a constant c > 0 with c ≤ a−2
j r2

j

for all j ∈ Λ. Let α > 0. Then

c
∑
j∈Λ

1{a−2
j rjα<|xj |} ≤

∑
j∈Λ

a−2
j r2

j1{a−2
j rjα<|xj |} ≤ ‖x‖

t
ktα
−t.

Inserting α := 2‖x‖ktc−
1
t implies a−2

j rjα ≥ |xj| for all j ∈ Λ. Hence, Tα(x) = 0. With
C = 2 (2p−t − 1)−

1
p Lemma 3.53 yields

‖x‖ωp,p = ‖x− Tα(x)‖ωp,p ≤ C‖x‖
t
p

kt
α
p−t
p = 2

p−t
p Cc

t−p
tp ‖x‖kt .

Error bounds on bounded sets in kt

For t ∈ (0, 1) and x ∈ kt we prove a variational source condition using Proposition 3.5.
The key difference to the verifications in Section 3.2 and 3.3 is that we choose the family
of projections involved in Proposition 3.5 adaptively to x. This possibility is already
mentioned, but not further exploited in [43, Remark 2.4] and [40, Ch. 5].
We introduce coordinate projections onto the support of Tα(x) and provide a Bernstein
type inequality for them.

Lemma 3.55 (Bernstein inequality). Let t ∈ (0, 2), p ∈ (1, 2], α, % > 0 and x ∈ kt with
‖x‖kt ≤ %. We consider

Λα = {j ∈ Λ: a−2
j rjα < |xj|}

and the coordinate projection Pα : RΛ → RΛ onto Λα given by (Pαz)j = zj if j ∈ Λα and
(Pαz)j = 0 else. Then

‖Pαz‖r,1 ≤ %
t(p−1)
p α−

t(p−1)
p ‖z‖ωp,p for all z ∈ `pωp .
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Proof. We prove the claim using Hölder’s inequality as follows

‖Pαz‖r,1 =
∑
j∈Λ

(
(ωp)−1

j rj1{a−2
j rjα<|xj |}

) (
(ωp)j |zj|

)

≤

∑
j∈Λ

a−2
j r2

j1{a−2
j rjα<|xj |}


p−1
p
∑
j∈Λ

(ωp)pj |zj|
p

 1
p

≤ ‖x‖
t(p−1)
p

kt
α−

t(p−1)
p ‖z‖ωp,p.

Proposition 3.56 (Variational source condition). Assume Assumption 2.27. Let t ∈ (0, 1)
and % > 0. Suppose x ∈ kt ∩ dom(G) with ‖x‖kt ≤ %. Then

‖x− z‖r,1 + ‖x‖r,1 − ‖z‖r,1 ≤ ϕ
(
‖G(x)−G(z)‖2

Y

)
for all z ∈ `1

r ∩ dom(G) (3.53)

with ϕ(τ) = Cϕ%
t

2−t τ
1−t
2−t . Here Cϕ denotes a constant depending only on t and M1.

Proof. Let J := (0,∞) and (Pα)α∈J be as introduced in Lemma 3.55. Then Equa-
tion (3.19a) is satisfied. Using Lemma 3.55 with p = 2 and Assumption 2.27 we obtain

‖Pα (z1 − z2)‖r,1 ≤M1%
t
2α−

t
2‖G(z1)−G(z2)‖Y for all z1, z2 ∈ `1

r ∩ dom(G).

Note that Pαx = Tα(x). Hence, Lemma 3.53 yields

‖(I − Pα)x‖r,1 = ‖x− Tα(x)‖r,1 ≤ 2(21−t − 1)−1%tα1−t.

We set C̃ := 2 max {M1, 2(21−t − 1)−1} and apply Proposition 3.5 to obtain (3.53) with

ϕ(τ) = C̃ inf
α>0

(
%
t
2α−

t
2
√
τ + %tα1−t

)
≤ 2C̃%

t
2−t τ

1−t
2−t .

where the last step follows from inserting α = τ
1

2−t%−
t

2−t . Redefining ϕ(τ) := Cϕ%
t

2−t τ
1−t
2−t

with Cϕ = 2C̃ yields the claim.

Remark 3.57 (Lipschitz condition for G−1 suffices). Note that as in Proposition 3.12 and
Proposition 3.36 we only need the first inequality in Assumption 2.27 for the verification
of the variational source condition.

Remark 3.58 (Converse result to variational source condition). In the setting of Proposi-
tion 3.56 we additionally assume `1

r ⊂ dom(G) to investigate into a converse statement
to Proposition 3.56. To this end, suppose x ∈ `1

r satisfies 3.53 with ϕ(τ) = Kτ
1−t
2−t . We

remove the loss function and use Assumption 2.27 to obtain

‖x‖r,1 − ‖z‖r,1 ≤ KM2‖x− z‖
2−2t
2−t
a,2 for all x ∈ `1

r. (3.54)

As in Remark 3.21 we insert specific elements z into (3.54) to conclude x ∈ kt :
Let α > 0. We define

zj :=


xj if |xj| ≤ a−2

j rjα

xj − a−2
j rjα if xj > a−2

j rjα

xj + a−2
j rjα if xj < −a−2

j rjα

.
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Then |zj| ≤ |xj| for all j ∈ Λ. Hence, z ∈ `1
r. With (3.54) we estimate

α
∑
j∈Λ

a−2
j r2

j1{a−2
j rjα<|xj |} = ‖x‖r,1 − ‖z‖r,1 ≤ KM2‖x− z‖

2−2t
2−t
a,2

= KM2α
2−2t
2−t

∑
j∈Λ

a−2
j r2

j1{a−2
j rjα<|xj |}


1−t
2−t

.

Rearranging terms yields∑
j∈Λ

a−2
j r2

j1{a−2
j rjα<|xj |} ≤ (KM2)2−t α−t.

Hence, ‖x‖kt ≤ (KM2)
2−t
t .

In summary we have equivalence of the following statements:
(i) There exists a constant Kvsc ≥ 0 such that (3.53) holds true with ϕ(τ) = Kvscτ

1−t
2−t .

(ii) There exists a constant K ≥ 0 such that (3.54) holds true.
(iii) x ∈ kt.

This above equivalence is a success message: kt is the maximal set of elements satis-
fying a variational source condition with a given Hölder rate. Note the analogy of the
statement to Remark 3.21 where we characterized variational source conditions for Besov
br2,1-penalization. Therefore, we are on the right track to describe the convergence rates for
penalties given by br1,1-norms more accurately.

The following convergence rates result for the regularization scheme Sα(g) given in
(3.50) is a consequence of Proposition 3.56.

Theorem 3.59 (Error bounds for weighted `1-penalties). Suppose Assumption 2.27. Let
t ∈ (0, 1) , p ∈ (1, 2) and %, δ > 0. Suppose x ∈ kt ∩ dom(G) with ‖x‖kt ≤ %.

(a) (Bias bounds) There exists a constant Cb depending only on t and M1 such that such
that for all α > 0 and xα ∈ Sα(G(x)) (see (3.50)) the following bounds hold true:

‖x− xα‖r,1 ≤ Cb%
tα1−t, (3.55)

‖x− xα‖a,2 ≤ Cb%
t
2α

2−t
2 and (3.56)

‖x− xα‖ωp,p ≤ Cb%
t
pα

p−t
p . (3.57)

(b) (Convergence rates) Let 0 < cl ≤ cr and 1 ≤ cD ≤ CD. Suppose δ > 0, gobs ∈ Y
with ‖gobs − F (f)‖Y ≤ δ. Let α > 0 and x̂α ∈ Sα(gobs). There is a constant Cr
independent of x, gobs, % and δ such that either of the conditions

cl%
− t

2−t δ
2

2−t ≤ α ≤ cr%
− t

2−t δ
2

2−t and cDδ ≤ ‖gobs −G(x̂α)‖Y ≤ CDδ

implies the following bounds

‖x− x̂α‖r,1 ≤ Cr%
t

2−t δ
2−2t
2−t , (3.58)

‖x− x̂α‖a,2 ≤ Crδ and (3.59)

‖x− x̂α‖ωp,p ≤ Cr%
t
p

2−p
2−t δ

2
p
p−t
2−t . (3.60)
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Proof. In analogy to the proof of Theorem 3.37: The first two bounds in (i) and (ii) follow
from Corollary 3.2, Proposition 3.56 and Assumption 2.27. The interpolation inequality
‖·‖ωp,p ≤ ‖·‖

2p−2
p

a,2 ‖·‖
2−p
p

r,1 (see Proposition 3.48) provides the third bound in (i) and (ii).

Remark 3.60 (Limit t→ 1). Let us consider the limiting case t = 1 by assuming only
x ∈ `1

r ∩ D. Then as in Remark 3.23 we see that the parameter choice α ∼ δ2 as well
the discrepancy principle as in Theorem 3.59(b) lead to bounds ‖x− x̂α‖r,1 ≤ C‖x‖r,1 and
‖F (x)−F (x̂α)‖Y ≤ Cδ. Assumption 2.27 allows to transfer to a bound ‖x− x̂α‖a,2 ≤ C̃δ.
Interpolating as in the proof of Theorem 3.59 yields

‖x− x̂α‖ωp,p ≤ C̃‖x‖
2−p
p

r,1 δ
2p−2
p .

Remark 3.61 (Limit t → 0). Note that in the limit t → 0 the convergence rates get
arbitrarily close to the linear convergence rate. As already mentioned in Section 2.2 , the
formal limiting rate for t→ 0, i.e. a linear convergence rate in δ occurs if and only if x is
sparse as shown by different methods in [53].

We finish this subsection by showing that the rates in Theorem 3.59 are optimal in the
sense of Section 2.2.

Proposition 3.62 (Optimality). Suppose that Assumption 2.27 holds true. Assume
furthermore that there are c0 > 0, q ∈ (0, 1) such that for every η ∈ (0, c0] there is j ∈ Λ
satisfying qη ≤ ajr

−1
j ≤ η. Let p ∈ [1, 2], t ∈ (0, p) and ρ > 0. Suppose dom(G) contains

all x ∈ kt with ‖x‖kt ≤ %. Consider an arbitrary reconstruction method described by a
mapping R : (0,∞)× Y→ `pωp. Then the worst case error under the a priori information
‖x‖kt ≤ % is bounded below by

sup
{
‖x−R

(
δ, gobs

)
‖ωp,p : ‖x‖kt ≤ %, gobs ∈ Y with ‖F (x)− gobs‖Y ≤ δ

}
≥ c%

t
p

2−p
2−t δ

2
p
p−t
2−t

for all δ ≤M2%c
2−t
t

0 with c = q
2p−2t
pt M

2
p
t−p
2−t

2 .

Proof. By Proposition 2.6 the worst case error is bounded below by 1
2ω(2δ, %) with the

modulus of continuity

ω(δ, %) = sup
{
‖z1 − z2‖ωp,p : ‖z1‖kt , ‖z2‖kt ≤ %, ‖F (z1)− F (z2)‖Y ≤ δ

}
.

Using Assumption 2.27 we obtain

ω(δ, %) ≥ sup{‖z‖ωp,p : ‖z‖kt ≤ ρ, ‖z‖a,2 ≤M−1
2 δ}.

By assumption there exists j0 ∈ Λ such that

q
(
M−1

2 δ%−1
) t

2−t ≤ aj0r
−1
j0 ≤

(
M−1

2 δ%−1
) t

2−t .

Choosing zj0 = %a
2−2t
t

j0 r
t−2
t

j0 and zj = 0 if j 6= j0 we obtain ‖z‖kt = % and ‖z‖a,2 ≤ M−1
2 δ

and estimate
‖z‖ωp,p = %

(
aj0r

−1
j0

) 2p−2t
pt ≥ q

2p−2t
pt M

2
p
t−p
2−t

2 %
t
p

2−p
2−t δ

2
p
p−t
2−t .

Note that for Λ = N the additional assumption in Proposition 3.62 is satisfied if
ajr
−1
j ∼ q̃j for q̃ ∈ (0, 1) or if ajr−1

j ∼ j−κ for κ > 0, but violated if ajr−1
j ∼ exp(−j2).
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Wavelet regularization with Besov r, 1, 1-penalties

In this section we apply the results of the last subsections to obtain convergence rates for
wavelet regularization with Besov r, 1, 1-norm penalties. For fixed r ≥ 0 we consider (3.16)
with p = 1, i.e. for an observation g ∈ Y we analyze

Rα(g) = Sx̂α with x̂α ∈ argmin
x∈D

( 1
2α‖g − F (Sx)‖2

Y + ‖x‖r,1,1
)

(3.61)

with D := S−1(Br
1,1 ∩ dom(F )) ⊆ br1,1.

Let a > 0 and Λ as in Section 2.4 we set a(j,k) := 2−ja and r(j,k) := 2j(r− d2 ). Then we have
br1,1 = `1

r and b−a2,2 = `2
a with equal norms. For s ∈ [−a,∞) we set

ts := 2a+ 2r
s+ 2a+ r

. (3.62)

Note that ts ∈ (0, 2] and for s > r we have ts < 1. Moreover, we obtain bsts,ts = `tsωts
isometrically for ωts given by (3.51). The next proposition introduces function spaces Ks

that will replace Bs
1,∞ in Theorem 3.15 in the case p = 1. Motivated by Remark 3.51 we

define Ks in correspondence to kts as real interpolation space with fine index ∞.

Proposition 3.63 (Spaces Ks). Suppose Bs
p,q is a Besov scale as in Definition 2.9. Let

a, s > 0. For v > s the real interpolation space

Ks :=
(
B−a2,2 , B

v
tv ,tv

)
θ,∞

with θ = a+ s

a+ v

does not depend on the choice of v. We have Bs
ts,ts ⊂ Ks continuously.

If the scale Bs
p,q is p-monotone, then we have a continuous embedding Ks ⊂ Bs

tv ,∞. Hence,

Ks ⊂
⋂
t<ts

Bs
t,∞.

Proof. Let −a < u < v. Then(
B−a2,2 , B

v
tv ,tv

)
ξ,tu

= Bu
tu,tu with ξ = a+ u

a+ v
. (3.63)

Hence, if s < u < v and θv = a+s
a+v and θu = a+s

a+u then θuξ = θv and the reiteration theorem
for real interpolation (see A.6) yields(

B−a2,2 , B
u
tu,tu

)
θu,∞

=
(
B−a2,2 , B

v
tv ,tv

)
θv ,∞

.

This shows that Ks is independent of the choice of v.
Using (3.63) with u = s and [8, Thm. 3.4.1.(b)] we obtain the first continuous embedding

Bs
ts,ts =

(
B−a2,2 , B

v
tv ,tv

)
θ,ts
⊂
(
B−a2,2 , B

v
tv ,tv

)
θ,∞

= Ks.

For a p-monotone scale tv ≤ 2a+2r
2a+r ≤ 2 yields the embeddings B−a2,2 ⊂ B−a2,∞ ⊂ B−atv ,∞. There-

fore, the interpolation identity Bs
tv ,∞ = (B−atv ,∞, Bv

tv ,tv)θ,∞ provides the second embedding
using [101, 2.4.1 Rem. 4]. Finally, the last statement follows from tv → ts for v ↘ s.
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The following lemma shows that a function belongs to Ks if and only if its wavelet
coefficients belong to kts . As spaces bsp,q and Bs

p,q with p < 1 are involved let us first argue
that within the scale Bs

ts,ts for s > 0 the extra condition σts − smax < s in Assumption 2.11
is always satisfied if we assume a+ r ≥ d

2 . To this end, let 0 < s < smax. Then

σts = d
( 1
ts
− 1

)
= d(s− r)

2a+ 2r ≤ s− r ≤ s < smax. (3.64)

Hence σts − smax < 0 < s.
Note that the condition a+ r ≥ d

2 is reasonable as it already appears in Proposition 2.3
for p = 1 as a requirement for the existence of minimizers in (3.61).
Lemma 3.64. Suppose Assumption 2.11 holds true. Let a > 0 with a + r ≥ d

2 . If
s ∈ (0, smax) then S : kts → Ks is an isomorphism of quasi-Banach spaces.

Proof. Let v ∈ R with s < v < smax. If a < smax, then we obtain the result by functor
properties of real interpolation (see [98, 1.3.3. Rem. 1 ]) as kts =

(
b−a2,2, b

v
tv ,tv

)
θ,∞

with
θ = a+s

a+v by Remark 3.51 and S provides an isomorphism b−a2,2 → B−a2,2 and bvtv ,tv → Bv
tv ,tv ,

where the latter isomorphism holds since a+ r ≥ d
2 (see (3.64)).

In general (in particular for a ≥ smax) we may pick ã > 0 such that ã ≤ a and ã ∈
(−smax, smax). Then (3.63) with u = −ã and the reiteration theorem (see [8, Thm. 3.11.5])
yield Ks =

(
B−ãt−ã,t−ã , B

v
tv ,tv

)
η,∞

for η = s+ã
v+ã . As Remark 3.51 provides the corresponding

representation of kts , we obtain the result by the same argument as above.

In case of a smooth enough wavelet basis (i.e. a < smax) we apply Theorem 3.59 to
obtain the following convergence rate result for the method Rα given in (3.61).
Theorem 3.65 (Error bounds for r, 1, 1-penalties with smooth wavelet systems). Suppose
Assumptions 2.11 and 2.15 hold true with a < smax. Let 0 ≤ r < s < smax such that
a + r ≥ d

2 . Suppose % > 0 and f ∈ Ks ∩ dom(F ) (see Proposition 3.63) with ‖f‖Ks ≤ %.
Let p := 2a+2r

2a+r .
(a) (Bias bounds) There exists a constant Cb independent of f and % such that such that

for all α > 0 and fα ∈ Rα(F (f)) (see (3.61)) the following bounds hold true:

‖f − fα |Br
1,1‖ ≤ Cb%

2a+2r
s+2a+rα

s−r
s+2a+r , (3.65)

‖f − fα |B−a2,2‖ ≤ Cb%
a+r

s+2a+rα
s+a

s+2a+r and (3.66)
‖f − fα |B0

p,p‖ ≤ Cb%
2a+r
s+2a+rα

s
s+2a+r . (3.67)

(b) (Convergence rates) Let 0 < cl ≤ cr and 1 ≤ cD ≤ CD. Suppose δ > 0, gobs ∈ Y
with ‖gobs − F (f)‖Y ≤ δ. Let α > 0 and f̂α ∈ Rα(gobs). There is a constant Cr
independent of f, gobs, % and δ such that either of the conditions

cl%
−a+r
s+a δ

s+2a+r
s+a ≤ α ≤ cr%

−a+r
s+a δ

s+2a+r
s+a and cDδ ≤ ‖gobs − F (f̂α)‖Y ≤ CDδ

implies the following bounds

‖f − f̂α |Br
1,1‖ ≤ Cr%

a+r
s+a δ

s−r
s+a , (3.68)

‖f − f̂α |B−a2,2‖ ≤ Crδ and (3.69)
‖f − f̂α |B0

p,p‖ ≤ Cr%
a
s+a δ

s
s+a . (3.70)
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Proof. By Remark 2.28 G = F ◦ S satisfies Assumption 2.27. Due to s > r we have
ts ∈ (0, 1). With Lemma 3.64 we obtain f = Sx with x ∈ kts and there exists a constant
c1 independent of f and % such that ‖x‖kt ≤ c1%. For f̂α ∈ Rα(g) (with g = F (f) in (i) or
g = gobs in (ii)) there is x̂α a minimizer in (3.61) with Sx̂α = f̂α. Using the boundedness
of S the results in Theorem 3.59 are transferred to the claimed error bounds. Here we
obtain the third bound in (i) and (ii) as p = t0.

As in Section 3.2 we use the embedding B0
p,p ⊂ Lp(Ω) to conclude a bound in the

Lp-norm.

Corollary 3.66 (error bound in Lp). In the setting of Theorem 3.65 suppose that
B0
p,p = B0

p,p(Ω) with Ω either Td,Rd or a bounded Lipschitz domain in Rd. Then we
have the upper bounds

‖f − fα‖Lp(Ω) ≤ Cp%
2a+r
s+2a+rα

s
s+2a+r and

‖f − f̂α‖Lp(Ω) ≤ Cp%
a
s+a δ

s
s+a

with a constant Cp independent of f, % and δ.

Proof. See the proof of Corollary 3.16.

Example 3.67 (Functions with kinks or jumps). Let us revisit functions f jump, fkink :
[0, 1]→ R which are piecewise smooth, f jump has a finite number of jumps, and fkink has
a finite number of kinks (see Example 3.17). Let r ≥ 0 and a = 2. Then we have

f jump ∈ Ks for s < 4 + r

3 + 2r and fkink ∈ Ks for s < 8 + 3r
3 + 2r . (3.71)

To see this, note that s < 4+r
3+2r is equivalent to s < 1

ts
with ts defined in (3.62). Hence

Example 3.17 implies fjump ∈ Bs
ts,ts which yields the statement for fjump by the embedding

Bs
ts,ts ⊂ Ks shown in Proposition 3.63. The same consideration leads to the statement for

the function fkink. Hence, in the case r = 0 Corollary 3.66 predicts the rate O(δe) for all
e < 2

5 measured in the L1-norm for fjump and O(δe) for all e < 4
7 for fkink.

Therefore, describing the regularity of f jump or fkink in the scale Ks as in Theorem 3.65
allows for a larger value of s and hence a faster convergence rate than describing the
regularity of these functions in the Besov spaces Bs

1,∞ as in Theorem 3.15. Recall that
s = 1

2 is maximal with f jump ∈ Bs
1,∞ and s = 3

2 with f jump ∈ Bs
1,∞. In other words, the

previous analysis provided only suboptimal rates of convergence for this important class of
functions in the case p = 1.
Figures 3.9 and 3.10 show that this can also be observed numerically. Here we see the
same error diagrams as in Section 3.2 for p = 1 using Daubechies wavelets of order 7.
Once more we see that the old error bounds are too pessimistic. The new error bounds
obtained from Corollary 3.66 are in line with the numerical experiment with a remarkable
precision.

Remark 3.68 (Order optimality). The bounds in Theorem 3.65 and Corollary 3.66 are
order optimal in the sense of Section 2.2. This can be seen either with Proposition 3.62
and the identifications below (3.62) or directly from Theorem 3.45 using the embedding
Bs
ts,ts ⊂ Ks (see Proposition 3.63).
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Figure 3.9: Left: true coefficient cjump with jumps in (3.40) together with a
reconstruction for b0

1,1-db7-penalization at noise level δ = 2.5 · 10−5. Right: Recon-
struction error using b0

1,1-penalization, the rate O(δ2/5) predicted by Corollary 3.66
(see Example 3.67), and the rate O(δ1/3) from the previous analysis in Section 3.2.

Figure 3.10: Left: true coefficient ckink with kinks in (3.40) together with a
reconstruction for b0

1,1-db7-penalization at noise level δ = 2.5 · 10−5. Right: Recon-
struction error using b0

1,1-penalization, the rate O(δ4/7) predicted by Corollary 3.66
(see Example 3.67), and the rate O(δ1/2) from the previous analysis in Section 3.2.
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In the sequel we investigate into a generalization of Theorem 3.65 for non-smooth
wavelet systems, i.e. we drop the assumption a < smax to include cases with a ≥ smax.
Using the same strategy as in Section 3.3 we start with a replacement of the Bernstein
type inequality Lemma 3.55.

Lemma 3.69 (Replacement of Bernstein inequality). Suppose Assumption 2.11. Let a > 0
and 0 ≤ r < smax and % > 0. Suppose s > −a, x ∈ kts with ‖x‖kts ≤ % and Λα and Pα as
in Lemma 3.55. Then there is a constant CBR > 0 such that

‖Pαz‖r,p,1 ≤ CBR%
a+r

s+2a+rα−
a+r

s+2a+r ‖Sz |B−a2,2‖+ 1
4‖z‖r,1,1 for all z ∈ brp,1 and α > 0.

Proof. As in the proof of Lemma 3.34 we consider ã := min
{
smax

2 , a
}

. Assuming ã < a,
the interpolation identity (3.63) with u = −ã and v = r implies an interpolation inequality

‖f |B−ãt−ã,t−ã‖ ≤ cI‖f |B−a2,2‖
ã+r
a+r ‖f |Br

1,1‖
a−ã
a+r for all f ∈ Br

1,1

with a constant cI . We may assume cI ≥ 1 such that this inequality remains valid for
ã = a .
Let Cã and respectively Cr denote the operator norm of S−1 : B−ãt−ã,t−ã → b−ãt−ã,t−ã and
S : br1,1 → Br

1,1. The above interpolation inequality with f = Sz and Lemma 3.55 with
p = t−ã yield

‖Pαz‖r,1,1 ≤ %
ã+r

s+2a+rα−
ã+r

s+2a+r ‖z‖−ã,t−ã,t−ã
≤ Cã%

ã+r
s+2a+rα−

ã+r
s+2a+r ‖Sz |B−ãt−ã,t−ã‖

≤ CãcIC
a−ã
a+r
r %

ã+r
s+2a+rα−

ã+r
s+2a+r ‖Sz |B−a2,2‖

ã+r
a+r ‖z‖

a−ã
a+r
r,1,1.

An application of Young’s inequality as in Example 3.30 yields the claim.

Proposition 3.70 (Variational source condition). Suppose Assumptions 2.11 and 2.15(a).
Let 0 ≤ r < smax with a + r ≥ d

2 . Moreover, let r < s < smax and % > 0. Assume
x ∈ kts ∩ S−1(dom(F )) with ‖x‖kts ≤ %. Then

1
2‖x− z‖r,1,1+‖x‖r,1,1−‖z‖r,1,1 ≤ ϕ

(
‖F (Sx)− F (Sz) ‖2

Y

)
for all z ∈ br1,1∩S−1(dom(F ))

with ϕ(τ) = C ′ϕ%
a+r
s+a τ

s−r
2s+2a for a constant C ′ϕ independent of x and %.

Proof. We use the Proposition 3.29 for G := F ◦ S on D := brp,1 ∩ S−1(dom(F )) with
J := (0,∞) and (Pα)α∈J as in Lemma 3.55. Then (3.19a) is satisfied. Lemma 3.69 and
Assumption 2.15 yield (3.42) with να = M1CBR%

a+r
s+2a+rα−

a+r
s+2a+r and κ = 1

4 .
The same routine as in the proof of Theorem 3.59 yields a bound on ‖(I − Pα)x‖r,1,1 and
an estimation of the infimum involved in the definition of ϕ in Proposition 3.29.

The variational source condition in Proposition 3.70 leads to the following result.

Theorem 3.71 (Error bounds for r, 1, 1-penalties with non-smooth wavelet systems).
Theorem 3.65 and Corollary 3.66 remain valid without the assumption a < smax.
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Proof. With Lemma 3.64 the smoothness assumption on f transfers to the corresponding se-
quence of wavelet coefficients x with Sx = f . Then the claim follows from Proposition 3.70
using the same arguments as in the proof of Theorem 3.15.

Remark 3.72 (boundedness of Ω not required). Note that the only place within this
section where we require p-monotonicity is for the superset of Ks in Proposition 3.63.
Hence the stated convergence rates results hold also true if the domain Ω of the functions
in the domain of the forward operator is Rd.

3.6 Infinitely smoothing operators

This section is devoted to error bounds for infinitely smoothing operators, i.e. operators
with range contained in the set of infinitely differentiable functions on some domain. As seen
for the backward heat equation in Example 2.24 we cannot expect that Assumption 2.15
holds true for this kind of operators: Recall that the first inequality in Assumption 2.15(a)
means that F is at most a-times smoothing. Hence for infinitely smoothing operators there
is no a > 0 such that the first inequality holds true whereas the second one is satisfied for
all a > 0.
As a first step we provide a modification of the statement Proposition 3.29 for the verifica-
tion of variational source conditions for 1 homogeneous wavelet regularization in Besov
spaces. The key amendment is that it allows to pick a family of operators (Pj)j∈J acting
on the space Br

p,1 in the Besov scale instead of a family of projections (Pn)n∈N0 acting on
the Besov sequence brp,1 as in the earlier sections.
For example, the gained flexibility allows to choose Pj as a high cut filter, i.e. a multi-
plication with a compact supported function in Fourier space. Due to the representation
of the forward operator of the backward heat equation as Fourier multiplier this choice
allows us to prove a convergence rate theorem for the backward heat equation.

Verification of variational source condition

To state a general scheme for the verification of a variational source condition we need
some preliminaries. The first one concerns the subdifferential of `1-type norms.

Lemma 3.73. Let r ≥ 0, p ∈ [1, 2] and x ∈ brp,1. With p′ the Hölder conjugate of p we
obtain ξ ∈ ∂‖·‖r,p,1(x) if and only if

‖ξ‖−r,p′,∞ ≤ 1 and 〈ξj, xj〉 = 2jr2jd(
1
2−

1
p)‖xj‖p for all j ∈ N0.

Here we denote 〈ξj, xj〉 = ∑
k∈Λj ξj,kxj,k.

Proof. By [94, Prop. 4.6.2] and in view of Proposition A.8 we identify

∂‖·‖r,p,1(x) = {ξ ∈ b−rp′,∞ : ‖ξ‖−r,p′,∞ ≤ 1 and 〈ξ, x〉 = ‖x‖r,p,1}.

Hence 〈ξ, x〉 = ‖x‖r,p,1 is equivalent to
∞∑
j=0
〈ξj, xj〉 =

∞∑
j=0

2jr2jd(
1
2−

1
p)‖xj‖p. (3.72)
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The claim follows as Hölder’s inequality and ‖ξ‖−r,p′,∞ ≤ 1 imply

〈ξj, xj〉 ≤ ‖ξ‖p′‖xj‖p ≤ 2jr2jd(
1
2−

1
p)‖xj‖p.

The next lemma provides a technical tool to estimate index functions given as an
infimum over simple concave functions as in Proposition 3.29.

Lemma 3.74. Let (νn)n∈N0 , (bn)n∈N0 be sequences of of positive real numbers. Suppose
(νn)n∈N0 is strictly increasing with limn→∞ νn = ∞ and infn∈N0 bn = 0. Then for every
k ∈ N0 there exists τ0 > 0 such that

inf
n∈N0

(
νn
√
τ + bn

)
= inf

n∈N0

(
νn+k
√
τ + bn+k

)
for all 0 ≤ τ ≤ τ0.

Proof. Consider the function ϕ : [0,∞) → [0,∞) given by ϕ(τ) = infn∈N0 (νn
√
τ + bn).

Let τ > 0. Then we have νn
√
τ + bn → ∞ as n → ∞. Therefore, the infimum in the

definition of ϕ(τ) is attained. Hence we may define I : (0,∞)→ N0 such that for all τ > 0
the integer I(τ) is minimal with ϕ(τ) = νI(τ)

√
τ + bI(τ). Note that the claim follows from

I(τ)→∞ for τ ↘ 0 which we prove in the following.
At first we show that I is non-increasing. To this end, let 0 < τ1 < τ2. Then I(τ1) ≥ I(τ2)
follows from

ϕ(τ2) ≤ νI(τ1)
√
τ2 + bI(τ1)

= νI(τ1) (√τ2 −
√
τ1) + ϕ(τ1)

< νn (√τ2 −
√
τ1) + ϕ(τ1)

≤ νn
√
τ2 + bn

for all n > I(τ1).
Moreover, the function ϕ is concave and upper semi-continuous as it is the pointwise
infimum of functions possessing these properties. Lemma A.1 provides continuity of ϕ. In
particular,

lim
τ↘0

ϕ(τ) = ϕ(0) = inf
n∈N0

bn = 0.

Hence I cannot be bounded as this would imply

lim
τ↘0

ϕ(τ) = lim
τ↘0

(
νk
√
τ + bk

)
= bk > 0.

The following general scheme requires an orthonormal basis system. Note that if (ψλ)λ∈Λ
an orthonormal basis of B0

2,2 satisfying Assumption 2.11, then S : `2(Λ) = b0
2,2 → B0

2,2 is a
unitary operator.

Proposition 3.75 (Variational source condition). Suppose Assumption 2.11 holds true
and that (ψλ)λ∈Λ is an orthonormal basis of B0

2,2. Let F : dom(F )→ Y be a function with
dom(F ) ⊂ D̃ (see Definition 2.9) and Y a Banach space. Let p ∈ [1, 2], 0 ≤ r < s < smax,
% > 0 and x ∈ bsp,∞ with ‖x‖s,p,∞ ≤ %. Assume

(
Pn : Br

p,1 → Br
p,1

)
j∈N0

is a family of
bounded linear operators, (νn)n∈N0 is a strictly increasing sequence of positive real numbers
and cJ > 0 is a constant such that the following conditions are satisfied:

‖Pn(f1 − f2) |Br
p,1‖ ≤ νn‖F (f1)− F (f2)‖Y for all f1, f2 ∈ dom(F ), n ∈ N0, (3.73a)

‖(I − P∗n)f |B−rp′,∞‖ ≤ cJ2−n(s+r)‖f |Bs
p′,∞‖ for all f ∈ Bs

p′,∞, n ∈ N0. (3.73b)
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Then the variational source condition
1
2‖x− z‖r,p,1 + ‖x‖r,p,1 − ‖z‖r,p,1 ≤ ϕ

(
‖F (Sx)− F (Sz) ‖2

Y

)
for all z ∈ brp,1 ∩ S−1(dom(F )) holds true with a concave and continuous ϕ satisfying

ϕ(τ) ≤ C inf
n∈N0

(
νn
√
τ + %2n(r−s)

)
for all τ ≤ τ0 (3.74)

for some τ0 > 0 and a constant C that depends on r, s, cJ and operator norms of S only.

Proof. Let Pn : brp,1 → brp,1 be the projection onto the first n + 1 levels as defined in
Section 3.2. At first we use (3.73b) to show that

‖Pnz‖r,p,1 ≤ c1‖Pn+kSz |Br
p,1‖+ 1

4‖z‖r,p,1 for all z ∈ brp,1 and n ∈ N0 (3.75)

with a constant c1 specified below and k the smallest integer such that c2c3cJ2−k(s+r) ≤ 1
4

where c2 denotes the operator norm of S : brp,1 → Br
p,1 and c3 the one of S : bsp′,∞ → Bs

p′,∞.
To this end, let z ∈ brp,1 and n ∈ N0. Let ξn ∈ ∂‖·‖r,p,1(Pnz). By Lemma 3.73 we may
assume (ξn)j = 0 for all j > n. Therefore, we obtain

‖Pnz‖r,p,1 = 〈ξn, Pnz〉 = 〈ξn, z〉 = 〈Sξn,Sz〉 = 〈Sξn,Pn+kSz〉+ 〈(I − P∗n+k)Sξn,Sz〉.
(3.76)

Here the third identity needs a further justification: Since r < smax the bilinear map
b−rp′,∞ × brp,1 → given by (ξ, z) 7→ 〈Sξ,Sx〉 is continuous (see Definition 2.9 (b)). Moreover,
since S is a unitary operator b0

2,2 → B0
2,2 the latter bilinear map agrees with (ξ, z) 7→ 〈ξ, z〉

on the set of finitely supported sequences. Therefore, the identity holds since z ∈ brp,1 can
be approximated by finitely supported sequences.
In the following we separately estimate the two summands on the right hand side of (3.76).
Lemma 3.73 yields ‖Sξn |B−rp′,∞‖ ≤ c4 with c4 the operator norm of S : b−rp′,∞ → B−rp′,∞. By
2.9(b) there is a constant c5 such that

〈Sξn,Pn+kSz〉 ≤ c5‖Sξn |B−rp′,∞‖ · ‖Pn+kSz |Br
p,1‖ ≤ c4c5‖Pn+kSz |Br

p,1‖.

For the second summand we first observe that by the definition of the norms in Besov
sequence spaces and once again by Lemma 3.73 we obtain

‖ξn‖s,p′,∞ ≤ 2n(s+r)‖ξn‖−r,p′,∞ ≤ 2n(s+r).

Making use of (3.73b) we estimate

〈(I − P∗n+k)Sξn,Sz〉 ≤ ‖(I − P∗n+k)Sξn |B−rp′,∞‖ · ‖Sz |Br
p,1‖

≤ cJ2−(n+k)(s+r)‖Sξn |Bs
p′,∞‖ · ‖Sz |Br

p,1‖
≤ c2c3cJ2−(n+k)(s+r)‖ξn‖s,p′,∞ · ‖z‖r,p,1

≤ c2c3cJ2−k(s+r)‖z‖r,p,1 ≤
1
4‖z‖r,p,1.
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Inserting into (3.76) proves (3.75).
Now let z1, z2 ∈ brp,1. Inequality (3.75) for z = z1 − z2 together with (3.73a) for fi = Szi
yield

‖Pn(z1 − z2)‖r,p,1 ≤ c1νn+k‖F (Sz1)− F (Sz2)‖Y + 1
4‖z1 − z2‖r,p,1 for all n ∈ N0.

Moreover, Lemma 3.10 provides ‖(I − Pn)x‖r,p,1 ≤ c42n(r−s)% with c4 > 0 depending only
on r and s. Therefore, Proposition 3.29 yields the stated variational source condition with

ϕ(τ) = 2 inf
n∈N0

(
c1νn+k

√
τ + c42n(r−s)%

)
.

Finally with c5 = 2 max{c1, c42k(s−r)} the estimation

ϕ(τ) ≤ c5 inf
n∈N0

(
νn+k
√
τ + 2(n+k)(r−s)%

)
together with Lemma 3.74 implies (3.74).

Backward heat equation

Now we turn to the periodic heat equation as described in Example 2.24. Recall
ABH : D′(Td)→ L2(Td) with

ABHf =
∑
k∈Zd

e−t‖k‖
2
2 f̂(k)ek

for some fixed t > 0. For an observation g ∈ L2(Td) we consider the regularization scheme

Rα(g) = Sx̂α with x̂α ∈ argmin
x∈brp,1

( 1
2α‖g − ABHSx‖

2
L2(Td) + ‖x‖0,2,1

)
. (3.77)

Here we restrict ourselves to r = 0 and p = 2 for simplicity. Optimal convergence rates for
Besov space regularization with p ∈ (1, 2] and q ≥ 2 can be found in [104, Thm. 5.1]. In
Example 2.24 we showed that ABH maps B−a2,2(Td) boundedly to L2(Td) for every a > 0.
Hence we obtain existence of minimizers in (3.77) by Proposition 2.16.

Proposition 3.76 (Variational source condition). Suppose Assumption 2.11 holds true
with an orthonormal wavelet system on Td. Let 0 < s < smax and assume x ∈ bs2,∞ with
‖x‖s,2,∞ ≤ %. Then

1
2‖x− z‖0,2,1 + ‖x‖0,2,1 − ‖z‖0,2,1 ≤ ϕ

(
‖ABHS(x− z)‖2

L2(Td)

)
for all z ∈ b0

2,1

holds true with a concave and continuous ϕ : [0,∞)→ [0,∞) satisfying

ϕ(τ) ≤ C% ln
(
%√
τ

)− s2
for all τ ≤ τ0

for a constant C that does not depend on f and τ and some τ0 > 0.
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Proof. Here we always use the norms ‖· |Bs
p,q(Td)‖ given by (2.11). For n ∈ N0 and f ∈ D′

we define Pnf := ∑n
j=0

∑
k∈Πj f̂(k)ek (see Section 2.4 for clarification of the notations).

Then Pn is self adjoint, we have PnB0
2,1(Td) ⊂ B0

2,1(Td) and

‖(I − Pn)f |B0
2,∞(Td)‖ = sup

j>n

∥∥∥∥∥∥
∑
k∈Πj

f̂(k)ek

∥∥∥∥∥∥
L2(Td)

≤ 2−(n+1)s‖f |Bs
2,∞(Td)‖.

Hence (3.73b) is satisfied with cJ = 2−s.
In the following we verify (3.73a). First note that we have ‖k‖2 ≤

√
d‖k‖∞ <

√
d2j . With

a = td we obtain ∑
k∈Πj
|f̂(k)|2 ≤ e2a4j ∑

k∈Πj
e−2t‖k‖22 |f̂(k)|2 for all j ∈ N0.

We set Aj(f) := ∑
k∈Πj e

−2t‖k‖22|f̂(k)|2. Then ∑∞j=0Aj(f) = ‖ABHf‖2
L2(Ω), and the Cauchy-

Schwarz inequality provides

‖Pnf |B0
2,1(Td)‖ =

n∑
j=0

∑
k∈Πj
|f̂(k)|2

 1
2

≤
n∑
j=0

ea4jAj(f) 1
2 ≤

 n∑
j=0

e2a4j
 1

2

‖ABHf‖L2(Ω).

(3.78)

Let dj := e2a4j . Then for j ≥ 1 we have dj−1
dj

= e−6a4j−1 ≤ e−6a < 1. Therefore, there is a

constant c1 such that ∑n
j=0 dj ≤ c1dn for all n ∈ N0. With c2 = c

1
2
1 we update

‖Pnf |B0
2,1(Td)‖ ≤ c2e

a4n‖ABHf‖L2(Ω).

This shows that condition (3.73a) is satisfied with νn := c2e
a4n .

Hence Proposition 3.75 implies the desired variational source condition with a ϕ satisfying

ϕ(τ) ≤ C inf
n∈N0

(
ea4n√τ + %2−ns

)
for all τ ≤ τ0.

Note that we have absorbed c2 into C. It remains to estimate the infimum on the right
hand side. For τ small enough we choose 4n ∼ 1

2a ln
(
%√
τ

)
= 1

a
ln
((√

τ
%

)− 1
2
)

and obtain a
constant c3 with

ϕ(τ) ≤ c3%

(√τ
%

) 1
2

+ ln
(
%√
τ

)− s2 .
Finally, note that for small τ the second summand dominates the first such that we wind
up with ϕ(τ) = O

(
% ln

(
%√
τ

)− s2) for τ small enough.

The verification of (3.73a) in the above proof is an adaption of a similar argument in
the proof of [104, Thm. 5.1]. From 3.76 we deduce the following logarithmic convergence
rate for the inversion method (3.77).
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Theorem 3.77 (Convergence rate for the backward heat problem). Suppose Assump-
tion 2.11 holds true with an orthonormal wavelet system on Td. Let 0 < s < smax and
assume f ∈ Bs

2,∞ with ‖f |Bs
2,∞‖ ≤ %. Moreover, let δ > 0, 1 ≤ cD ≤ CD and suppose

gobs ∈ L2(Td) satisfies ‖gobs−ABHf‖L2(Td) ≤ δ. Let α > 0 and f̂α ∈ Rα(gobs) (see (3.77)).
There exists a constant C independent of f ,gobs, % and δ and some δ0 such that for δ ≤ δ0
the parameter choice cDδ ≤ ‖gobs − ABH‖L2(Td) ≤ CDδ implies

‖f − f̂α‖L2(Td) ≤ C% ln
(
%

δ

)− s2
.

Proof. As in the proof of Theorem 3.15 the bs2,∞-norm of the wavelet coefficients x of f is
bounded by a multiple of %. Hence x satisfies the variational source condition given in
Proposition 3.76. From Proposition 3.1(b) we obtain

‖x− x̂α‖0,2,1 ≤ ϕ
(
(1 + cD)2δ2

)
≤ (1 + cD)2ϕ

(
δ2
)

with x̂α given by (3.77). Here the second inequality is due to concavity and ϕ(0) = 0.
Using the synthesis operator and the embedding B0

2,1(Td) ⊂ B0
2,2(Td) = L2(Td) (see

Proposition A.11) we obtain the error bound with respect to the L2-norm.

Remark 3.78 (Optimality). In [104, Thm. 5.3] it is shown that the above convergence
rate is order optimal in the sense of Section 2.2.

Remark 3.79 (A priori choice rule). Optimizing α in the right hand side of the error
bound in Proposition 3.1(a) one can show that there always exists an a priori choice rule
such that one obtains an error bound L(x, x̂α) = O(ϕ(δ2)) (see [67, Thm. 2.3]). Hence the
variational source condition in Proposition 3.76 implies the same convergence rate also for
some a priori rule.

3.7 Error bounds for statistical noise models

In this section we consider a statistical model: We assume that the the forward operator
F : dom(F )→ Y with Y = L2(ΩY) for ΩY either the d−dimensional torus or a bounded
Lipschitz domain in Rd. We will write ‖ · ‖L2 for the norm in Y and ‖· |Bs

p,q‖ for Besov
norms on ΩY. The scale Bs

p,q(ΩY) satisfies all properties in Definition 2.9 including p-
monotonicity.
For some unknown f ∈ dom(F ) we model the data by

gobs = F (f) + εZ (3.79)

with statistical noise level ε > 0 and some noise process Z on L2(Ω) with white noise as
prominent example.
This section is structured as follows. In the first part we show existence of minimizers
and statistical bounds on the reconstruction error under variational source conditions. In
the second part we use the variational source conditions verified in the last sections to
conclude statistical error bounds for a-times smoothing operators. Finally, we show a
statistical convergence rate for the backward heat equation.
We will make the following assumption on the noise process.
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Assumption 3.80. We assume that Z is a random variable with

Z ∈ B−d/2u,∞ (ΩY) almost surely

for all u ∈ [1,∞).

This assumption is satisfied for Gaussian white noise on ΩY = Td by [103, Thm. 3.4].
For Gaussian white noise and the Brownian bridge process on ΩY = [0, 1] the assumption
is satisfied by [47, Thm. 4.4.3].
If the Besov norm of the noise additionally satisfies a a large deviation inequality of the
form

P
[
‖Z |B−d/2u,∞ ‖ > MZ + τ

]
≤ exp(−CZτµ) for all τ > 0. (3.80)

with constants CZ ,MZ , µ > 0 we will show error bounds on the expectation of arbitrary
moments of the error. By [103, Cor. 3.7] such an inequality is satisfied in particular for
Gaussian white noise on ΩY = Td.
Now suppose Assumption 2.11 holds true and dom(F ) ⊂ D (see Definition 2.9). As for
example white noise does not belong to L2(ΩY) with probability 1 we expand the square
in (3.16) and omit the term 1

2‖g‖
2
L2 which has no influence on the minimizer. This yields

Rα(gobs) = Sx̂α with x̂α ∈ argmin
x∈D

( 1
2α‖F (Sx)‖2

L2 −
1
α
〈gobs, F (Sx)〉+ ‖x‖r,p,1

)
(3.81)

with D := S−1(Br
p,1 ∩ dom(F )) ⊆ brp,1.

Existence of minimizers and error bounds

Following the lines of [104, Prop. 6.3], we prove existence of minimizers in (3.81). In the
sequel we will frequently use inequalities

〈g1, g2〉 ≤ ct‖g1 |B−d/2t′,∞ ‖ · ‖g2 |Bd/2
t,1 ‖ (3.82)

for t′ the Hölder conjugate of t ∈ (1, 2], without further mentioning.

Proposition 3.81 (Existence of minimizers). Suppose Assumptions 3.80, 2.11 and 2.15(b)
hold true and that gobs is given by (3.79). Let r ≥ 0 and p ∈ [1, 2] with Br

p,1 ∩ dom(F ) 6= ∅
and a+ r > d

2 . Moreover, assume that there exists t ∈ (1, 2], θ ∈ (0, 1) and CI > 0 such
that the following interpolation type inequality

‖F (f1)− F (f2) |Bd/2
t,1 ‖ ≤ CI‖F (f1)− F (f2)‖1−θ

L2 ‖f1 − f2 |Br
p,1‖θ (3.83)

holds true for all f1, f2 ∈ Br
p,1∩dom(F ). Finally, suppose that there exists f ∈ Br

p,1∩dom(F )
such that F (f) ∈ Bd/2

t,1 . Then Rα(gobs) 6= ∅ (see (3.81)) almost surely.

Proof. We set N := ct‖gobs |B−d/2t′,∞ ‖ and A := ctN‖F (f) |Bd/2
t,1 ‖. Then A,N <∞ almost

surely by Assumption 3.80 and (3.82). Let h ∈ Bs
p,1 ∩ dom(F ). We use Young’s inequality
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βγ ≤ 1
4β

2
1−θ + cγ

2
1+θ and the inequality (β + γ)2 ≤ 2β2 + 2γ2 for all β, γ ≥ 0 to obtain

〈gobs, F (h)〉 = 〈gobs, F (h)− F (f)〉+ 〈gobs, F (f)〉
≤ N‖F (h)− F (f) |Bd/2

t,1 ‖+ A

≤ NCI‖F (h)− F (f)‖1−θ
L2 ‖h− f |Br

p,1‖θ + A

≤ 1
4‖F (h)− F (f)‖2

L2 + cN
2

1−θ ‖h− f |Br
p,1‖

2θ
1+θ + A

≤ 1
2‖F (h)‖2

L2 + 1
2‖F (f)‖2

L2 + cN
2

1−θ ‖h− f |Br
p,1‖

2θ
1+θ + A

with a generic constant c. Plugging this into the product of the Tikhonov functional and
α yields

1
2‖F (Sx)‖2

L2 − 〈gobs, F (Sx)〉+ α‖x‖r,p,1 ≥ −B − cN
2

1−θ ‖Sx− f |Br
p,1‖

2θ
1+θ + α‖x‖r,p,1

for B = A + 1
2‖F (f)‖2

L2 . Using 2θ
1+θ < 1 and Assumption 2.11, we see that the right

hand side tends to ∞ if ‖x‖r,p,1 → ∞. Hence, a minimizing sequence in (3.81) has to
stay bounded in brp,1 almost surely. Therefore, using the same topology τX on brp,1 as
in the proof of Proposition 2.16(a) (note that a + r > d

2 ≥ d
(

1
p
− 1

2

)
) we see that a

minimizing sequence in (3.81) has a τX-convergent subsequence xn → x ∈ brp,1. As D
is τX-closed and F ◦ S is τX-to-norm continuous we obtain ‖F (Sxn)− F (Sx)‖L2 → 0.
Together with boundedness of xn in brp,1 we also obtain ‖F (Sxn)− F (Sx) |Bd/2

t′,1‖ → 0 by
(3.83). Using τX-lower semi-continuity we conclude that x is a minimizer in (3.81). Hence,
Sx ∈ Rα(g).

Note that the additional requirement on the existence of f is always met if F (0) = 0.
In the articles [105, 67] statistical error bounds are proven under variational source
conditions. The following proposition is an adaption of [104, Thm. 2.6]. Relying on the
interpolation type inequality (3.83) we show that a variational source condition (3.14)
implies statistical convergence rates.

Proposition 3.82 (Statistical error bounds under variational source conditions). Suppose
Assumptions 3.80, 2.11 and 2.15(b) hold true and that gobs is given by (3.79). Let r ≥ 0
and p ∈ [1, 2] and assume that there exists t ∈ (1, 2], θ ∈ (0, 1) and CI > 0 such that
(3.83) holds true for all f1, f2 ∈ Br

p,1 ∩ dom(F ). Suppose that f ∈ Br
p,1 ∩ dom(F ) and the

sequence of wavelet coefficients x ∈ brp,1 with Sx = f satisfies a variational source condition

1
2‖x− z‖r,p,1 + ‖x‖r,p,1 − ‖z‖r,p,1 ≤ ϕ

(
‖F (Sx)− F (Sz)‖2

L2

)
for all z ∈ D

with ϕ : [0,∞)→ [0,∞) concave and continuous. Then every f̂α ∈ Rα(gobs) (see (3.81))
satisfies the following bounds

‖F (f)− F (f̂α)‖L2 ≤ C1‖εZ |B−d/2t′,∞ ‖
1

1−θα−
θ

1−θ +
√

8αϕ̆(4α) and (3.84)

‖f − f̂α |Br
p,1‖ ≤ C2‖εZ |B−d/2t′,∞ ‖

2
1−θα−

1+θ
1−θ + C3ϕ̆(4α) (3.85)

hold true for constants C1, C2, C3 > 0 depending only on CI , θ and the operator norm of
S : brp,1 → Br

p,1. Here ϕ̆ denotes the function given in (3.2).
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Proof. For h ∈ dom(F ) we define K(h) := 1
2α‖F (h)‖2

L2 − 1
α
〈gobs, F (h)〉 the data fidelity

term in (3.81). Then

1
2α‖F (f)− F (f̂α)‖2

L2 = K(f̂α)−K(f) + 1
α
〈gobs − F (f), F (f̂α)− F (f)〉

= K(f̂α)−K(f) + 1
α
〈εZ, F (f̂α)− F (f)〉. (3.86)

Here the first equality is verified by expanding the mixed term on the right hand side.
Such an expansion is also used in [104, Sec. 2.3].
Now let x̂α be a minimizer in (3.81) such that f̂α = Sx̂α. Then

K(f̂α) + ‖x̂α‖r,p,1 ≤ K(f) + ‖x‖r,p,1.

Denoting c1 the operator norm of S : brp,1 → Br
p,1 and N := ct‖εZ |B−d/2t′,∞ ‖ we combine

(3.86), the last inequality and the variational source condition to

1
2c1
‖f − f̂α |Br

p,1‖+ 1
2α‖F (f)− F (f̂α)‖2

L2

≤ 1
2‖x− x̂α‖r,p,1 + ‖x‖0,p,1 − ‖x̂α‖0,p,1 + 1

α
〈εZ, F (f̂α)− F (f)〉

≤ ϕ (‖F (Sx)− F (Sx̂α)‖L2) + 1
α
N‖F (f)− F (f̂α) |Bd/2

t,1 ‖. (3.87)

Next we evoke (3.83) and Young’s inequality βγδ ≤ c2β
2

1−θ + 1
4γ

2
1−θ + 1

4c1 δ
1
θ for all β, γ, δ ≥ 0

with c2 depending only on θ, c1 to estimate the second summand on the right hand side

1
α
N‖F (f)− F (f̂α) |Bd/2

t,1 ‖ ≤
(
cθ1CINα

− 1+θ
2
) (
a−

1
2‖F (f)− F (f̂α)‖L2

)1−θ
‖f − f̂α |Br

p,1‖θ

≤ c3N
2

1−θα−
1+θ
1−θ + 1

4α‖F (f)− F (f̂α)‖2
L2 + 1

4c1
‖f − f̂α |Br

p,1‖

with c3 := c2(cθ1CI)
2

1−θ .
Plugging into (3.87) and rearranging terms we see

1
4c1
‖f − f̂α |Br

p,1‖+ 1
4α‖F (f)− F (f̂α)‖2

L2 ≤ c3N
2

1−θα−
1+θ
1−θ + ϕ

(
‖F (Sx)− F (Sx̂α)‖2

L2

)
.

Subtracting 1
8α‖F (f)− F (f̂α)‖2

L2 on both sides and using the definition of ϕ̆ we conclude

1
4c1
‖f − f̂α |Br

p,1‖+ 1
8α‖F (f)− F (f̂α)‖2

L2 ≤ c3N
2

1−θα−
1+θ
1−θ + ϕ̆(4α).

This proves (3.85) and (3.84) follows from the basic inequality β2 + γ2 ≤ (β + γ)2 for all
β, γ ≥ 0.

Finitely smoothing operators

We apply Proposition 3.82 to finitely smoothing operators. In order to verify the inter-
polation inequality (3.83) for a forward map F satisfying Assumption 2.15, we need an



3.7. Error bounds for statistical noise models 83

additional assumption, namely Lipschitz continuity of F as a map from B s̃
p̃,p̃ → Ba+s̃

p̃,p̃ (ΩY)
for s̃ and p̃ specified below. The basic example of periodic differential operators (see
Example 2.17) shows that such an assumption is reasonable.
We formulate two theorems. The first provides statistical error bounds for (3.81) with
p ∈ (1, 2] under the smoothness assumption given by bounded sets in Bs

p,∞ as in Sections
3.2 and 3.3. This result agrees with [64, Thm. 6.4]. A similar result on Besov space regu-
larization with p ∈ (1, 2] and q ≥ 2 is [104, Thm. 4.11]. A small but anyway noteworthy
difference to this results is that we keep on using the additional parameter r > 0 which
allows to loosen the restriction a > d

2 on the degree of smoothing.
The second theorem is devoted to the case p = 1. In this case the techniques in [64] could
not furnish the optimal convergence rate because the value u =∞ is not reasonable in
Assumption 3.80. Here we choose t ∈ (1, 2) and prove (3.83) to obtain the optimal upper
bound even under the weaker smoothness assumption given by bounded sets in Ks as in
Section 3.5.

Theorem 3.83 (Statistical error bounds for p > 1). Suppose Assumptions 2.11, 3.80,
2.15 and that gobs is given by (3.79). Let p ∈ (1, 2], 0 ≤ r < s < smax with a + r > d

2
and set p = 2p(a+r)

2a+pr . If p < 2 then we require that the scale Bs
p,q (domain) is p-monotone

(see Definition 2.9). Suppose that there exists M3 > 0 such that the following Lipschitz
condition holds true

‖F (f1)− F (f2) |Ba+r
p,p ‖ ≤M3‖f1 − f2 |Br

p,p‖ for all f1, f2 ∈ Br
p,p ∩ dom(F ). (3.88)

If f ∈ Bs
p,∞ ∩ dom(F ) with ‖f |Bs

p,∞‖ ≤ % for some % > 0 and the parameter α is chosen
such that

α ∼ %−
a+r−d/2
s+a+d/2 ε

s+2a+r
s+a+d/2

then there exists a constant Cr independent of f, Z, % and ε such that every f̂α ∈ Rα(gobs)
(see (3.81)) satisfies

‖f − f̂α |B−a2,2‖ ≤ Cr

(
1 + ‖Z |B−d/2p′,∞ ‖

a+r
a+r−d/2

)
%

d/2
s+a+d/2 ε

s+a
s+a+d/2 ,

‖f − f̂α |Br
p,1‖ ≤ Cr

(
1 + ‖Z |B−d/2p′,∞ ‖

2a+2r
a+r−d/2

)
%
a+r+d/2
s+a+d/2 ε

s−r
s+a+d/2 and

‖f − f̂α |B0
p,p‖ ≤ Cr

(
1 + ‖Z |B−d/2p′,∞ ‖

2a+r
a+r−d/2

)
%

a+d/2
s+a+d/2 ε

s
s+a+d/2 .

Proof. Starting with (3.83) we verify all assumptions of Proposition 3.82. By the real
interpolation identity Bd/2

p,1 (ΩY) =
(
B0
p,2(ΩY), Ba+r

p,p (ΩY)
)

d
2a+2r ,1

and the continuous embed-
ding L2(ΩY) = B0

2,2(ΩY) ⊂ B0
p,2(ΩY) (see Definition 2.9 and Proposition A.11) there exists

a constant c1 such that ‖· |Bd/2
p,1 ‖c1 ≤ ‖·‖

1− d
2a+2r

L2 ‖· |Ba+r
p,p ‖

d
2a+2r . Moreover, the continu-

ous embedding Br
p,1 ⊂ Br

p,p yields a constant c2 with ‖· |Br
p,p‖ ≤ c2‖· |Br

p,1‖. We insert
F (f1)− F (f2) into the above interpolation inequality and use (3.88) to wind up with

‖F (f1)− F (f2) |Bd/2
p,1 ‖ ≤ c1M

d
2a+2r

3 ‖F (f1)− F (f2)‖1− d
2a+2r

L2 ‖f1 − f2 |Br
p,p‖

d
2a+2r (3.89)

≤ c1(M3c2)
d

2a+2r ‖F (f1)− F (f2)‖1− d
2a+2r

L2 ‖f1 − f2 |Br
p,1‖

d
2a+2r .
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That is (3.83) with t = p and θ = d
2a+2r .

The smoothness assumption on f implies a bound ‖x‖s,p,q ≤ c3% with x the wavelet
coefficients of f and with c3 the operator norm of S : bsp,∞ → Bs

p,∞. Hence Proposition 3.36
yields a variational source condition with ϕ(τ) = c4%

a+r
s+a τ

s−r
2s+2a .

Therefore, the bounds in Proposition 3.82 are available. We have ϕ̆(α) = c5%
2a+2r
s+2a+rα

s−r
s+2a+r

for a constant depending on c4 that is made explicit in the proof of Corollary 3.2. Moreover,
with Assumption 2.15(a) we may replace ‖F (f)− F (f̂α)‖L2 by ‖f − f̂α |B−a2,2‖ in (3.84) to
obtain

‖f − f̂α |B−a2,2‖ ≤ c6‖εZ |B−d/2p′,∞ ‖
a+r

a+r−d/2α−
d/2

a+r−d/2 + c6%
a+r

s+2a+rα
s+a

s+2s+r and

‖f − f̂α |Br
p,1‖ ≤ c6‖εZ |B−d/2p′,∞ ‖

2a+2r
a+r−d/2α−

a+r+d/2
a+r−d/2 + c6%

2a+2r
s+2a+rα

s−r
s+2a+r

for a constant c6 independent of f, Z, % and ε. Inserting the parameter choice rule yields

‖f − f̂α |B−a2,2‖ ≤ c7 max
{

1, ‖Z |B−d/2p′,∞ ‖
} a+r
a+r−d/2 %

d/2
s+a+d/2 ε

s+a
s+a+d/2 and

‖f − f̂α |Br
p,1‖ ≤ c7 max

{
1, ‖Z |B−d/2p′,∞ ‖

} 2a+2r
a+r−d/2 %

a+r+d/2
s+a+d/2 ε

s−r
s+a+d/2 .

A bound in ‖· |B0
p,p‖ follows from interpolating the latter two inequalities with

‖· |B0
p,p‖ . ‖· |B−a2,2‖

r
a+r ‖· |Br

p,1‖
a
a+r

(see (3.37)). Finally, we use max{1, N}γ ≤ 1 +Nγ for N, γ ≥ 0 to finish the proof.

Before we state and prove our result for p = 1 let us discuss an alternative to condition
(3.88) that already reveals the basic idea we use to handle p = 1.
Remark 3.84 (Alternative Lipschitz condition if r > 0). In the setting of Theorem 3.83
with r > 0 and a > d

2 we can require the following Lipschitz condition

‖F (f1)− F (f2) |Ba
p,p‖ ≤M3‖f1 − f2 |B0

p,p‖ for all f1, f2 ∈ B0
p,p ∩ dom(F )

instead of (3.88) to verify the interpolation inequality (3.83). To this end, first use (3.89)
with r = 0, i.e.

‖F (f1)− F (f2) |Bd/2
p,1 ‖ . ‖F (f1)− F (f2)‖1− d

2a
L2 ‖f1 − f2 |B0

p,p‖
d
2a .

Now in a second step we use the interpolation identity B0
p,p =

(
B−ap,2 , B

r
p,1

)
a
a+r ,p

. Together
with

‖f1 − f2 |B−ap,2‖ . ‖F (f1)− F (f2)‖L2 ,

which besides Assumption 2.15(a) and in case p < 2 follows from p-monotonicity, we wind
up with

‖F (f1)− F (f2) |Bd/2
p,1 ‖ . ‖F (f1)− F (f2)‖1− d

2a+2r
L2 ‖f1 − f2 |Br

p,1‖
d

2a+2r .

But this is up to a change of the constants the same inequality we used in the proof of
Theorem 3.83. Note that this replacement has the disadvantage that we have to require the
stronger inequality a > d

2 instead of a+ r > d
2 .

Using the same idea with a mixed interpolation identity (see Definition 2.9 (d) (ii)) in the
case p = 1 allows us to start with an integrabilty index t > 1. In this way we avoid the
critical value u = p′ =∞ in Assumption 3.80.
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Now we state the theorem specialized to the case p = 1.

Theorem 3.85 (Statistical error bounds for p = 1). Suppose Assumptions 2.11, 3.80 and
2.15 hold true with a + r > d

2 and that gobs is given by (3.79). Let p = 1, 0 ≤ r < s <

smax and set p = 2a+2r
2a+r . We assume that there exists e ∈

(
0, a+ r − d

2

)
such that with

t := a+r
a+r−e/2 the following Lipschitz condition holds true

‖F (f1)− F (f2) |Ba+r−e
t,t ‖ ≤M3‖f1 − f2 |Br−e

t,t ‖ for all f1, f2 ∈ Br−e
t,t ∩ dom(F ) (3.90)

for a constant M3 > 0. If f ∈ Ks ∩ dom(F ) (see Proposition 3.63) with ‖f‖Ks ≤ % for
some % > 0 and the parameter α is chosen such that

α ∼ %−
a+r−d/2
s+a+d/2 ε

s+2a+r
s+a+d/2

then there exists a constant Cr independent of f, Z, % and ε such that every f̂α ∈ Rα(gobs)
(see (3.81)) satisfies

‖f − f̂α |B−a2,2‖ ≤ Cr

(
1 + ‖Z |B−d/2t′,∞ ‖

a+r
a+r−d/2

)
%

d/2
s+a+d/2 ε

s+a
s+a+d/2 ,

‖f − f̂α |Br
1,1‖ ≤ Cr

(
1 + ‖Z |B−d/2t′,∞ ‖

2a+2r
a+r−d/2

)
%
a+r+d/2
s+a+d/2 ε

s−r
s+a+d/2 and

‖f − f̂α |B0
p,p‖ ≤ Cr

(
1 + ‖Z |B−d/2t′,∞ ‖

2a+r
a+r−d/2

)
%

a+d/2
s+a+d/2 ε

s
s+a+d/2 .

Proof. As in the proof for p > 1 let us start with the verification of (3.83). Due to (3.89)
with p,r replaced by t, r − e respectively (note a+ (r − e) > d

2 and t > 1) we have

‖F (f1)− F (f2) |Bd/2
t,1 ‖ ≤ c1‖F (f1)− F (f2)‖1− d

2a+2r−2e
L2 · ‖f1 − f2 |Br−e

t,t ‖
d

2a+2r−2e (3.91)

with a constant c1 specifiable as in the proof of Theorem 3.83. The interpolation inequality
that belongs to the identity Br−e

t,t =
(
B−a2,2 , B

r
1,1

)
and the assumption ‖f1 − f2 |B−a2,2‖ ≤

M1‖F (f1)− F (f2)‖L2 yield

‖F (f1)− F (f2) |Bd/2
t,1 ‖ ≤ c2‖F (f1)− F (f2)‖1− d

2a+2r
L2 · ‖f1 − f2 |Br

1,1‖
d

2a+2r . (3.92)

That is (3.83) with θ = d
2a+2r . By Lemma 3.64 the smoothness assumption on f transfers

to ‖x‖kts ≤ c3%. Hence Proposition 3.70 provides a variational source condition. From
here the same arguments as in the proof of Theorem 3.83 apply and finish the proof.

Remark 3.86 (Existence of minimizers). Note that in the setting of the last two theorems
if there exists f ∈ Br

p,1 such that F (f) ∈ B
d
2
t,1 then by Proposition 3.81 the interpolation

type inequalities (3.89) and (3.92) provide existence of the estimators in (3.81) almost
surely.

Theorem 3.83 and Theorem 3.85 yield not only rates in terms of the noise level
parameter ε, but also a bound of the distribution of the error in terms of the distribution
of a negative Besov norm of the noise. In particular, we obtain bounds on the expectation
of arbitrary moments of the error if the Besov norm of the noise satisfies a deviation
inequality of the form (3.80).
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Corollary 3.87 (Bound on moments (cf. [64, Cor. 6.5])). If (3.80) holds true in addition
to the assumptions of Theorem 3.83 or Theorem 3.85, then for any σ ≥ 1 there exists a
constant Cm independent of f, % and ε and such that f̂α ∈ Rα(gobs) (see (3.81)) satisfies

E
(
‖f − f̂α |B0

p,p‖σ
) 1
σ ≤ Cm%

a+d/2
s+a+d/2 ε

s
s+a+d/2 .

In particular, this inequality holds true if Z is Gaussian white noise.

Proof. It suffices to show that E [(1 +N t)σ] <∞ for all t > 0 where N denotes one of the
Besov norms of the noise process appearing in Theorem 3.83 or Theorem 3.85. Due to the
inequality (β + γ)σ ≤ 2σ−1(βσ + γσ) for β, γ ≥ 0 this reduces to showing that E [N t] <∞
for all t > 0. This can be deduced from (3.80) as follows:

E
[
N t
]
≤M t

ZP [N ≤MZ ] +
∞∑
j=1

(MZ + j)tP [j − 1 < ‖Z‖ −MZ ≤ j]

≤M t
Z +

∞∑
j=1

(MZ + j)t exp(−CZ(j − 1)µ) <∞.

Remark 3.88 (Lower bounds). The upper bound in the ‖· |B0
p,p‖-norm in Corollary 3.87

for σ = 1 coincide up to a constant with lower bounds on the expected reconstruction error
for any reconstruction method shown in [104, Cor. 4.14] and [64, Prop. 6.6.] in the case
of Gaussian white noise. In this sense the presented error bounds are order optimal.

Finally, as in Corollary 3.16 the embedding B0
p,p(Ω) ⊂ Lp(Ω) allows to transfer the

bounds on the B0
p,p-norm in Theorem 3.83, Theorem 3.85 and Corollary 3.87 to error

bounds measured in the Lp-norm.

Corollary 3.89 (Statistical bound in Lp). In the setting of Theorem 3.83 or Theorem 3.85
suppose that B0

p,p = B0
p,p(Ω) with Ω either Td,Rd or a bounded Lipschitz domain in Rd.

Then also the following bounds hold true

‖f − f̂α‖Lp(Ω) ≤ C ′r max
{

1, ‖Z |B−d/2p′,∞ ‖
} 2a+r
a+r−d/2 %

a+d/2
s+a+d/2 ε

s
s+a+d/2

with a constant C ′r independent of f, Z, % and ε.
If in addition a large deviation inequality (3.80) is available as it is for Gaussian white
noise, then

E
(
‖f − f̂α‖σLp(Ω)

) 1
σ ≤ C ′m%

a+d/2
s+a+d/2 ε

s
s+a+d/2

for a constant C ′m independent of f, % and ε.

Backward heat equation

Now we return to the backward heat equation and show a logarithmic bound on the
reconstruction error for random noise. The main ingredients are Proposition 3.76 and
Proposition 3.82. We refer to [104, Thm. 5.5] for the same result for Besov space regular-
ization with q ≥ 2.
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Theorem 3.90 (Statistical error bound for the backward heat problem). Suppose As-
sumptions 2.11 and 3.80 hold true with an orthonormal wavelet system on Td and that
gobs is given by (3.79). Let 0 < s < smax and assume f ∈ Bs

2,∞ with ‖f |Bs
2,∞‖ ≤ %. For

α > 0 there exists f̂α ∈ Rα(gobs) in (3.81) with F = ABH on D = b0
2,1 almost surely and if

α is chosen by α ∼ ε then we have the following asymptotic behavior

‖f − f̂α‖L2(Td) ≤ ε‖Z |B−d/22,∞ ‖+ C% ln
(
%

ε

)− s2
for ε→ 0.

If moreover a large deviation inequality (3.80) holds true as for Gaussian white noise, then
we obtain

E
(
‖f − f̂α‖σL2(Ω)

) 1
σ = O

(
% ln

(
%

ε

)− s2)
for ε→ 0

for all σ ≥ 1.

Proof. By the smoothness assumption, the bs2,∞-norm of the wavelet coefficients x of
f is bounded by a multiple of %. In view of Proposition 3.76 it remains to find an
interpolation type inequality of the form (3.83) in order to apply Proposition 3.82. By
the same argument we used in Example 2.24 to show that ABH maps B−a2,2 boundedly
to L2(Td) = B0

2,2(Td) (see Proposition A.11) one shows that it maps B0
2,2(Td) boundedly

to Bd
2,2(Td). Together with the continuous embedding B0

2,1(Td) ⊂ B0
2,2(Td) we obtain a

constant c1 such that ‖ABHf |Bd
2,2(Td)‖ ≤ c1‖f |B0

2,1(Td)‖. Moreover, we use the identity
B

d
2
2,1(Td) =

(
B0

2,2, B
d
2,2

)
1
2 ,1

to wind up with a constant c2 such that

‖ABHf |B
d
2
2,1(Td)‖ ≤ c2‖ABHf‖

1
2
L2(T) · ‖f |B

0
2,1(Td)‖ for all f ∈ B0

2,1.

Inserting f = f1 − f2 we obtain (3.83) with t = 2 and θ = 1
2 .

Hence existence of minimizers follows from 3.81 as ABH0 = 0.
Furthermore, the second error bound in Proposition 3.82 and once again the continuous
embedding B0

2,1(Td) ⊂ B0
2,2(Td) provide

‖f − f̂α‖L2(Td) ≤ c3‖εZ |B−d/22,∞ ‖4α−3 + c3ϕ̆(4α)

with ϕ̆ belonging to ϕ in Proposition 3.76.
In [36] it is shown that if γ : [0,∞)→ [0,∞) is concave and satisfies γ(τ) ≤ (− ln τ)− s2 (1 +
o(1)) as τ → 0 then

sup
τ≥0

(
γ(τ)− τ

α

)
≤ (− lnα)− s2 (1 + o(1)) as α→ 0. (3.93)

We use this to provide an asymptotic bound on ϕ̆(4α). To this end, we first observe, that
ϕ satisfies

ϕ(τ) ≤ C% ln
(
%√
τ

)− s2
= c1% ln

(
%2

τ

)− s2
for all τ ≤ τ0
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for c1 = 2 s
2C with C and τ0 from Proposition 3.76. We set γ(τ) := (c1%)−1ϕ(%2τ) and use

(3.93) to wind up with

ϕ̆(4α) = sup
τ≥0

(
ϕ(τ)− τ

8α

)

= c1% sup
τ≥0

(
γ(τ)− %τ

8c1α

)
≤ c1%

(
− ln

(
8c1α

%

))− s2
(1 + o(1)) as α→ 0.

Therefore,

ϕ̆(4α) = O
(
% ln

(
%

α

)− s2)
for α→ 0.

Together with the the parameter choice α ∼ ε we obtain

‖f − f̂α‖L2(Td) ≤ ε‖Z |B−d/22,∞ ‖+ C% ln
(
%

ε

)− s2
.

If (3.80) holds true then we use the same argument as in the proof of Corollary 3.87 to
wind up with

E
(
‖f − f̂α‖σL2(Ω)

) 1
σ = O

(
ε+ % ln

(
%

ε

)− s2)
= O

(
% ln

(
%

ε

)− s2)
for ε→ 0.

3.8 Extension to frames

To stably decompose and reconstruct signals one sometimes gains flexibility by using an
overcomplete wavelet system instead of a Riesz basis. Appending more functions to a
basis could also be a benefit in sparsity regularization as more functions admit a sparse
representation (see [3, Sec. 6.2.]). On the other hand, if the wavelet system is not linearly
independent, then the functions decomposition is not unique, i.e. the wavelet synthesis
operator S is not longer injective. In this case, there seems to be no straightforward
extension of our theory as for example (3.29), and also the inequality in Lemma 3.34
cannot hold true if S has a nontrivial kernel.
The situation changes when we penalize with the analysis operator as in (2.18). Here the
forward operator is F itself and the Tikhonov functional is defined on a function space
rather then a sequence space.
Suitable wavelet frames φj,k ∈ L2(Ω) characterize Besov spaces via their analysis oper-
ators as follows: f belongs to Bs

p,q(Ω) if and only if the sequence of frame coefficients
(〈f, φj,k〉)(j,k)∈Λ belongs to bsp,q. Moreover, there are c, C > 0 possibly depending on s, p
and q such that

c‖f |Bs
p,q‖ ≤ ‖(〈f, φλ〉)λ∈Λ‖r,p,q ≤ C‖f |Bs

p,q‖.

This is equivalently formulated with the analysis operator T : Bs
p,q(Ω) → bsp,q given by

T (f) = (〈f, φλ〉)λ∈Λ being bounded with closed range. We formulate the above frame
condition in the context of Besov scales as defined in Definition 2.9.

Assumption 3.91. Let D ⊂ Bs
p,q ⊂ D̃ be a Besov scale as defined in Definition 2.9 and

smax > 0. With bsp,q defined as in Section 2.4 (with d according to the Besov scale) assume



3.8. Extension to frames 89

that T : D → RΛ is a linear map that extends and co-restricts to T : Bs
p,q → bsp,q such that

there exist constants cspq, Cspq > 0 with

cspq‖f |Bs
p,q‖ ≤ ‖T f‖s,p,q ≤ Cspq‖f |Bs

p,q‖

for all s ∈ R, p, q ∈ (0,∞] satisfying s ∈ (σp − smax, smax) with σp = max
{
d
(

1
p
− 1

)
, 0
}

.

In the setting of this assumption, let F : dom(F ) → Y with dom(F ) ⊂ D̃, p ∈ [0, 1]
and r ≥ 0. Then we consider the reconstruction method

Rα(g) = argmin
h∈Brp,1∩dom(F )

( 1
2α‖g

obs − F (h)‖2
Y + ‖T h‖r,p,1

)
. (3.94)

In the sequel we show exemplarily how to extend the results of the chapter to this situation.
The following proposition is the analogue of Proposition 3.36 providing a variational source
for finitely smoothing operators under a Bs

p,∞ smoothness assumption.

Proposition 3.92 (Variational source condition). Suppose Assumptions 3.91 and 2.15(a)
hold true. Let p ∈ [1, 2] and 0 ≤ r < s < smax. If p ∈ [1, 2), then we require that the scale
Bs
p,q is p-monotone (see Definition 2.9). Moreover, let % > 0 and assume f ∈ Bs

p,∞∩dom(F )
with ‖f |Bs

p,∞‖ ≤ %. Then

crp1
2 ‖f − h |B

r
p,1‖+ ‖Tf‖r,p,1 − ‖Th‖r,p,1 ≤ ϕ

(
‖F (f)− F (h) ‖2

Y

)
for all h ∈ Br

p,1 ∩ dom(F ) with ϕ(τ) = C%
a+r
s+a τ

s−r
2s+2a for a constant C independent of f, %

and τ .

Proof. For sake of a better readability of the proof let us first consider the case a < smax.
Here we simply use the variational source condition for the embedding operator found in
Lemma 3.11 with x = T f and z = T h to obtain

‖T (f − h)‖r,p,1 + ‖T f‖r,p,1 − ‖T h‖r,p,1 ≤ c1‖T f‖
a+r
s+a
s,p,∞ · ‖T (f − h)‖

s−r
s+a
−a,p,∞. (3.95)

The smoothness assumption on f yields ‖T f‖s,p,∞ ≤ Csp∞%. The frame condition to-
gether with the embedding B−a2,2 ⊂ B−ap,∞, which requires p-monotonicity if p < 2, and
Assumption 2.15(a) provide

‖T (f − h)‖−a,p,∞ . ‖f − h |B−ap,∞‖ . ‖f − h |B−a2,2‖ . ‖F (f)− F (h)‖Y. (3.96)

Finally, the loss function in (3.95) is bounded below by crp1‖f − h |Br
p,1‖. Updating (3.95)

yields the claim, and we pass over to the case a ≥ smax.
In this case we use interpolation involving the surrogate ã = smax

2 visualized in Section 3.3.
Again we start with the variational source condition for the embedding operator with the
insertions as in (3.95) but with a replaced by ã. We use the smoothness assumption and
bound the loss function from below as above to wind up with

crp1‖f − h |Br
p,1‖+ ‖T f‖r,p,1 − ‖T h‖r,p,1 ≤ c2%

ã+r
s+ã‖T (f − h)‖

s−r
s+ã
−ã,p,∞. (3.97)
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We estimate the right hand side. Starting with the frame condition condition

‖T (f − h)‖−ã,p,∞ ≤ C−ãp∞‖f − h |B−ãp,∞‖

we move to the Besov space B−ãp,∞. Here we use the interpolation identity B−ãp,∞ =(
B−ap,2 , B

r
p,1

)
a−ã
a+r ,1

and with a simple calculation of the exponents we wind up with

c2%
ã+r
s+ã‖T (f − h)‖

s−r
s+ã
−ã,p,∞ ≤

(
c3%

a+r
s+a‖f − h |B−ap,∞‖

s−r
s+a
)1−ϑ

‖f − h |B0
p,1‖ϑ

for ϑ = a−ã
a+r

s−r
s+ã ∈ (0, 1) and a suitable constant c3. Note 1− ϑ = ã+r

a+r
s+a
s+ã . Using Young’s

inequality βγ ≤ c4β
1

1−ϑ + crp1
2 γ

1
ϑ on the right hand side and inserting into (3.97) we obtain

crp1‖f − h |Br
p,1‖+ ‖T f‖r,p,1 − ‖T h‖r,p,1 ≤ c5%

a+r
s+a‖f − h |B−ap,∞‖

s−r
s+a + crp1

2 ‖f − h |B
0
p,1‖.

We move the last summand to the right hand side and settle ‖f − h |B−ap,∞‖ as in (3.96)
to finish the proof.

Remark 3.93 (proof concept). The simpler proof concept of the latter proposition also
applies in the synthesis setting. We decided to write Section 3.3 in the way it is because it
introduces Proposition 3.29 which allows the comparison to the literature and is used in
Section 3.6.

Using the above variational source condition we see that Theorem 3.65 and Corol-
lary 3.16 hold true with Assumption 2.11 replaced by Assumption 3.91 for the reconstruction
method given in (3.94). As Proposition 3.92 does not require a < smax the error bounds
hold also true if a ≥ smax as in Theorem 3.37.

Remark 3.94 (Transfer of other results). All the other results in this chapter can be
transferred in a similar spirit. For example we obtain an analogue of Proposition 3.70
with similar ideas as in Proposition 3.92 using the scale Bs

ts,ts instead of Bs
p,∞ and mixed

interpolation as in Definition 2.9(d)(ii) instead of the one with fixed integrabilty as in (i).
Therefore, also the improved convergence rates theory in the case p = 1 holds true for
(3.94).
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Chapter Four
Converse results and sparsity bounds

In Chapter 3 most of our theorems provide sufficient conditions, namely smoothness
assumptions on the unknown, leading to certain upper bounds on the reconstruction
error. We also proved optimality of the upper bounds uniformly over the class of functions
satisfying the regularity assumptions. Nevertheless, we have not judged whether our
assumptions are minimal, i.e. hitherto we cannot exclude that a certain rate of convergence
holds true on a larger class than the one given by our smoothness conditions. This
motivates the investigation of converse results, which state that a certain condition on the
unknown is not only sufficient but even necessary for a certain asymptotic upper bound
on the reconstruction error.
We elaborate this motivation by exemplary recalling the course of development of the
convergence rate theory for wavelet regularization with b0

2,1- and b0
1,1-penalty in the last

chapter. The first smoothness assumptions we required to obtain Hölder-type convergence
rates were given by bounded sets in Bs

2,∞ for the b0
2,1-penalty and by bounded sets in Bs

1,∞
for the b0

1,1-penalty (see Theorem 3.15). To predict a convergence speed for functions with
kinks or jumps we assigned the maximal parameters s such that these functions belong to
Bs

2,∞ or to Bs
1,∞. In the case p = 2 we saw an accurate accordance of theory and practice,

whereas for p = 1 it seemed that there is still room for sharper error bounds. Moreover,
we saw that bounded sets in Bs

2,∞ are precisely the class of functions allowing for certain
variational source conditions and such a characterization seemed unlikely for p = 1. Hence,
we developed a further theory dedicated to weighed `1-penalties and discovered that we
can considerably weaken the regularity condition in the case p = 1, namely to smoothness
measured in spaces Ks, which are slightly larger than Bs

ts,ts with ts < 1. The new source
sets at hand, we then could assign larger smoothness indices to functions with jumps
and kinks such that we obtained faster convergence rates. In the first two sections of
this chapter we will prove necessity in both situations: A certain approximation rate in
b0

2,1-regularization implies that the unknown belongs to Bs
2,∞ and a certain approximation

rate in b0
1,1-regularization implies that the unknown belongs to Ks. These converse results

show that for both scenarios there are no weaker source conditions leading to certain
Hölder-type rates.
The ideas to prove these results differ significantly from each other. In the case p = 2 a
main ingredient are sparsity bounds, which quantify the sparsity of the estimators and are
of interest on their own. In the case p = 1 the strategy is to compare the minimizers with
surrogate minimizers given by soft thresholding.
In Section 4.3 we prove that Hölder type image space approximation rates are equivalent
to certain variational source conditions with vanishing loss function. This result is shown
in the general framework of regularization with a convex penalty. In passing we establish
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some new techniques which may be of independent interest in variational regularization
theory.

4.1 Sparsity bound and converse results for Besov
r, 2, 1-penalties

In Section 2.1 we recalled that estimators given by Tikhonov regularization with `1-
penalization on coefficients in same basis are sparse in the sense that their decomposition
is a finite linear combination of basis elements. In this section we will use the two sided
Lipschitz condition in Assumption 2.15 to quantify the sparsity of the minimizers

x̂α ∈ argmin
x∈D

( 1
2α‖g − F (Sx)‖2

Y + ‖x‖r,p,1
)

(4.1)

with D = S−1(Br
p,1 ∩ dom(F )). We start with a first order optimality condition for

minimality in (4.1).

Proposition 4.1 (First order condition). Suppose Assumptions 2.11 and 2.15(b) hold true.
With dom(F )o the interior of dom(F ) in B−a2,2 we further assume that F : dom(F )o → Y is
continuously Fréchet differentiable. Let p ∈ [1, 2] and 0 ≤ r < smax with a+ r ≥ d

(
1
p
− 1

2

)
.

If gobs ∈ Y, α > 0 and x̂α given by (4.1) satisfies Sx̂α ∈ dom(F )o then

1
α
S∗F ′ [Sx̂α]∗

(
gobs − F (Sx̂α)

)
∈ ∂‖·‖r,p,1(x̂α).

Proof. The synthesis operator S : brp,1 → Br
p,1 is a norm isomorphism and there is a

continuous embedding Br
p,1 ⊂ B−a2,2 . Therefore, the set D̃ := S−1(dom(F )o ∩ Br

p,1) is
open in brp,1 and together with Assumption 2.15(b) we obtain Lipschitz continuity of
F ◦ S : D̃ → Y.
This implies that the Tikhonov functional 1

2‖g
obs − F (S·)‖2

Y + α‖·‖r,p,1 is locally Lipschitz
continuous on D̃. By [18, 2.3.2.] we obtain

0 ∈ ∂C
(1

2‖F (S·)− gobs‖2
Y + α‖·‖r,p,1

)
(x̂α) , (4.2)

where ∂C denotes Clarke’s generalized gradient (see [18, Sec. 2.1]).
By [18, Prop. 2.2.4] the set ∂C

(
1
2‖F (S·)− gobs‖2

Y

)
(x̂α) is a singleton containing the Fréchet

derivative. Due to the chain rule the latter is(1
2‖F (S·)− gobs‖2

Y

)′
[x̂α] = S∗F ′ [Sx̂α]∗

(
F (Sx̂α)− gobs

)
.

For convex functionals Clarke’s generalized gradient agrees with the usual subdifferential for
convex functions (see [18, Prop. 2.2.7]). The claim follows as Clarke’s generalized gradient
satisfies a sum rule (see [18, Prop. 2.3.1]) and is compatible with scalar multiplication (see
[18, Prop. 2.3.3]).
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Using this first order optimality we can quantify the size of the support of the estimators
in (4.1). More precisely we give an inequality that besides the known parameters a, r, d, p
involves only α, the image space residual in the image space ‖gobs − F (Sx̂α)‖Y and j, and
claim that (x̂α)j = 0 whenever this inequality is satisfied. The following result is similar
to [64, Thm. 5.1] to which the author contributed, but therein the restriction a < smax is
required.

Theorem 4.2. Suppose Assumptions 2.11 and 2.15(b) hold true and additionally that
F : dom(F )o → Y is continuously Fréchet differentiable. Let p ∈ [1, 2] and 0 ≤ r < smax

with a+ r ≥ d
(

1
p
− 1

2

)
. Then there exists a constant Cs > 0 such that for gobs ∈ Y, α > 0

and x̂α given by (4.1) with Sx̂α ∈ dom(F )o we obtain

(x̂α)j = 0 for all j ∈ N0 satisfying Cs
α
‖gobs − F (Sx̂α)‖Y < 2j(a+r)2jd(

1
2−

1
p).

Proof. Assumption 2.15(b) implies that the operator norm of the Fréchet derivative
F [Sx̂α] : B−a2,2 → Y is bounded by M2. By Definition 2.9(b) we may identify the dual of
B−a2,2 with Ba

2,2. Hence, the operator norm of the adjoint operator F [Sx̂α]∗ : Y→ Ba
2,2 is

also bounded by M2. Furthermore, we set ã = a + d
(

1
2 −

1
p

)
. Then ã = a − d

(
1
2 −

1
p′

)
with p′ the Hölder conjugate of p. Let c1 be the embedding constant of the continuous
embedding Ba

2,2 ⊂ Bã
p′,2. Therefore, ξ := F ′ [Sx̂α]∗

(
gobs − F (Sx̂α)

)
satisfies

‖ξ |Bã
p′,2‖ ≤ c1‖ξ |Ba

2,2‖ ≤ c1M2‖gobs − F (x̂α)‖Y. (4.3)

Let us first assume ã < smax. Note that ã ≥ −r > −smax. Hence, S : b−ãp,2 → B−ãp,2 is
bounded in this case. Let c2 be the operator norm of S. In view of Definition 2.9(b) we
obtain ‖S∗·‖ã,p′,2 ≤ c2‖· |Bã

p′,2‖. We apply Proposition 4.1 and Lemma 3.73 to estimate

2jr2jd(
1
2−

1
p)‖ (x̂α)j ‖p = 1

α
〈(S∗ξ)j , (x̂α)j〉

≤ 1
α
‖ (S∗ξ)j ‖p′‖ (x̂α)j ‖p

≤ c2

α
2−jã2jd

(
1
p′−

1
2

)
‖ξ |Bã

p′,2‖‖ (x̂α)j ‖p

≤ c1c2M2

α
2−jã2jd

(
1
p′−

1
2

)
‖gobs − F (Sx̂α)‖Y‖ (x̂α)j ‖p.

Since 1
2 −

1
p

= 1
p′
− 1

2 this implies the claim with Cs = c1c2M2 in this case.
For ã ≥ smax, we use real interpolation to modify (4.3) such that it becomes accessible
by the wavelet system as follows: Since r < smax the map S : brp,1 → Br

p,1 is a norm
isomorphism. Hence, there is a constant c3 > 0, such that ‖· |B−rp′,∞‖ ≤ c3‖S∗·‖−r,p′,∞.
Together with Lemma 3.73 we obtain

‖ξ |B−rp′,∞‖ ≤ c3‖S∗ξ‖−r,p′,∞ ≤ c3α. (4.4)

Let a = smax
2 . The interpolation inequality ‖· |Ba

p′,∞‖ ≤ c4‖· |B−rp′,∞‖
ã−a
ã+r ‖· |Bã

p′,2‖
a+r
ã+r allows

us to combine (4.3) and (4.4) to

‖ξ |Ba
p′,∞‖ ≤ c5α

ã−a
ã+r ‖gobs − F (Sx̂α)‖

a+r
ã+r
Y



94 4. Converse results and sparsity bound

with c5 := c4c
ã−a
ã+r
3 (c1M2)

a+r
ã+r .

With c6 the operator norm of S : b−ap,1 → B−ap,1 we obtain ‖S∗·‖a,p′,∞ ≤ c6‖· |Ba
p′,∞‖ and we

conclude as above

2jr2jd(
1
2−

1
p)‖ (x̂α)j ‖p ≤

1
α
‖ (S∗ξ)j ‖p′‖ (x̂α)j ‖p

≤ c6

α
2−ja2jd

(
1
p′−

1
2

)
‖ξ |Ba

p′,2‖‖ (x̂α)j ‖p

≤ c5c6α
−a+r
ã+r 2−ja2jd

(
1
p′−

1
2

)
‖gobs − F (Sx̂α)‖

a+r
ã+r
Y ‖ (x̂α)j ‖p.

Hence, in this case the claim follows with Cs = (c5c6)
ã+r
a+r .

With Theorem 4.2 at hand we conclude a converse result to the bound (3.31) in
Theorem 3.15, i.e. we show that the smoothness condition f ∈ Bs

2,∞ is necessary for the
bound ‖f − fα |Br

2,1‖ = O(α
s−r

s+2a+r ). The key idea is that ‖xj‖2 agrees with ‖xj − (x̂α)j‖2
if j is large enough.

Theorem 4.3 (Converse result for r, 2, 1-penalties). Suppose Assumptions 2.11 and 2.15
hold true and additionally that F : dom(F )o → Y is continuously Fréchet differentiable.
Let p = 2, 0 ≤ r < s < smax. Assume that f ∈ Br

2,1 ∩ dom(F ) and (fα)α>0 with fα ∈
Rα(F (f))∩dom(F )o (see (3.16) with p = 2). Then the following statements are equivalent:

(i) f ∈ Bs
2,∞.

(ii) γ := supα>0 α
− s−r
s+2a+r ‖f − fα |Br

2,1‖ <∞.
More precisely, we can bound γ ≤ C‖f |Bs

2,∞‖
2a+2r
s+2a+r and ‖f |Bs

2,∞‖ ≤ Cγ
s+2a+r
2a+2r with a

constant C independent of f and (fα)α>0.

Proof.

(i)⇒ (ii): See Theorem 3.15 (a) if a < smax and Theorem 3.37 the generalization without
this restriction.

(ii)⇒ (i): Let xα be a minimizer in (4.1) with Sxα = fα. Since r < smax, there exists
x ∈ br2,1 with Sx = f . Furthermore, let c1 be the operator norm of the inverse of
S : br2,1 → Br

2,1. Inserting x into the Tikhonov functional we obtain

1
2‖F (f)− F (fα)‖2

Y + α‖xα‖r,2,1 ≤ α‖x‖r,2,1.

We subtract α‖xα‖r,2,1 on both sides and apply the reverse triangle inequality to wind up
with

1
2‖F (f)− F (fα)‖2

Y ≤ α‖x‖r,2,1 − α‖xα‖r,2,1 ≤ α‖x− xα‖r,2,1 ≤ c1α‖f − fα |Br
2,1‖.

Using the hypothesis, multiplying by 2 and taking the square roots on both sides yields

‖F (f)− F (fα)‖Y ≤ (2c1γ) 1
2α

s+a
s+2a+r . (4.5)
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We apply Theorem 4.2 to obtain

(xα)j = 0 for all j ∈ N0 satisfying Kγ
1
2α−

a+r
s+2a+r < 2j(a+r)

with K := (2c1)
1
2Cs. Let j ∈ N0. We choose α = K

s+2a+r
a+r γ

s+2a+r
2a+2r 2−j(s+2a+r) and use the

hypothesis once again to obtain

‖xj‖2 = ‖xj − (xα)j‖2 ≤ 2−jr‖x− xα‖r,2,1 ≤ c12−jrγα
s−r

s+2a+r = c1K
s−r
a+r γ

s+2a+r
2a+2r 2−js. (4.6)

This shows x ∈ bs2,∞ with ‖x‖s,2,∞ ≤ c1K
s−r
a+r γ

s+2a+r
2a+2r . With c2 the operator norm of

S : bs2,∞ → Bs
2,∞ we obtain ‖f |Bs

2,∞‖ ≤ c1c2K
s−r
a+r γ

s+2a+r
2a+2r .

Remark 4.4 (Interior point). We show that the condition on the estimators being interior
points can be dropped if we require that f is an interior point of the domain.
Suppose Assumptions 2.11 and 2.15 hold true and additionally that F : dom(F )o → Y
is continuously Fréchet differentiable. Let p = 2, 0 ≤ r < s < smax. Assume that
f ∈ Br

2,1 ∩ dom(F )o and that (ii) in Theorem 4.3 holds true. Then there exists δ > 0
such that the B−a2,2 ball with radius δ around f is contained in dom(F )o. As in the proof of
Theorem 4.3 we obtain (4.5) and together with the Lipschitz condition in 2.15(a) we get

‖f − fα |B−a2,2‖ ≤ c3γ
1
2α

s+a
s+2a+r

with c3 := M1(2c1) 1
2 . Therefore, we have fα ∈ dom(F )o for all α < α0 :=

(
δ

c3γ1/2

) s+2a+r
s+a .

Now let j ∈ N0. If c3K
s+a
a+r γ

s+2a+r
2a+2r 2−j(s+a) < δ, then the choice of α in the fifth line from

the bottom of the above proof satisfies α < α0 and we obtain 2js‖xj‖2 ≤ c1K
s−r
a+r γ

s+2a+r
2a+2r in

this case. On the other hand, if c3K
s+a
a+r γ

s+2a+r
2a+2r 2−j(s+a) ≥ δ then

2js‖xj‖2 ≤ 2j(s+a)‖x |B−a2,2‖ ≤ c3K
s+a
a+r γ

s+2a+r
2a+2r ‖x |B−a2,2‖δ−1.

Putting the bound on 2js‖xj‖2 for small and large j together we obtain x ∈ Bs
2,∞ with

‖x |Bs
2,∞‖ ≤ c4γ

s+2a+r
2a+2r max{1, ‖x |B−a2,2‖δ−1}

with c4 independent of f and δ. From here we conclude f ∈ Bs
2,∞ with ‖f |Bs

2,∞‖ ≤
c2c4γ

s+2a+r
2a+2r max{1, ‖x |B−a2,2‖δ−1}.

In the following two remarks we provide converse results also for the other two bias
bounds, namely ‖f − fα |B−a2,2‖ = O(α

s+a
s+2a+r ) and ‖f − fα |B0

2,2‖ = O(α
s

s+2a+r ), which we
proved in Theorem 3.15 under the condition f ∈ Bs

2,∞.

Remark 4.5 (Converse result for image space bound). In the setting of Theorem 4.3 we
additionally assume a < smax and investigate a converse to the bias bound in the B−a2,2 -norm
(see (3.32)). The idea is simply to replace the Br

2,1-norm in (4.6) by the B−a2,2 -norm. In the
following we provide the details:
Assume that ‖f − fα |B−a2,2‖ ≤ γYα

s+a
s+2a+r holds true for some constant γY > 0. Then we
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obtain ‖F (f) − F (fα)‖Y ≤ M2γYα
s+a

s+2a+r with M2 from Assumption 2.15(b). We apply
Theorem 4.2 to obtain

(xα)j = 0 for all j ∈ N0 satisfying KγYα
− a+r
s+2a+r < 2j(a+r)

with K := M2Cs.
Since we assume a < smax, there exists a constant c such that ‖·‖−a,2,2 ≤ c‖S· |B−a2,2‖. With
the choice α = (KγY)

s+2a+r
a+r 2−j(s+2a+r) we estimate

‖xj‖2 = ‖xj − (xα)j‖2 ≤ 2ja‖x− xα‖−a,2,2 ≤ c2jaγYα
s+a

s+2a+r = cK
s+a
a+r γ

s+2a+r
a+r

Y 2−js.

This implies f ∈ Bs
2,∞ with ‖f |Bs

2,∞‖ ≤ cK
s+a
a+r γ

s+2a+r
a+r

Y . Hence together with the statement
of Theorem 3.15(a), we obtain the equivalence of the following statements.

(i) f ∈ Bs
2,∞.

(ii) γY := supα>0 α
− s+a
s+2a+r ‖f − fα |B−a2,2‖ <∞.

Here we can bound γY ≤ C‖f |Bs
2,∞‖

a+r
s+2a+r and ‖f |Bs

2,∞‖ ≤ Cγ
s+2a+r
a+r

Y with a constant C
independent of f and (fα)α>0.

Remark 4.6 (Converse result for interpolated bound). Again in the setting of Theorem 4.3
and in view of Theorem 3.15 it remains to examine whether also the bias bound in the
B0

2,2-norm is sufficient to reclaim f ∈ Bs
2,∞ (note that p = 2 whenever p = 2). Here we

need the following additional assumption on the forward operator:

‖f1 − f2 |B−r−2a
2,∞ ‖ ≤M3‖F ′[f0]∗ (F (f1)− F (f2)) |B−r2,∞‖ (4.7)

for all f0 ∈ dom(F )o and f1, f2 ∈ dom(F ) with a constant M3 > 0. This assumption is
natural as the adjoint of an a-times smoothing operator is again a-times smoothing and
the composition of two a-times smoothing operators is 2a-times smoothing (see Section 2.4,
especially Example 2.17 and (2.19)).
Since r < smax there exists a constant c1 > 0 such that ‖· |B−r2,∞‖ ≤ c1‖S∗·‖−r,2,∞. With
Proposition 4.1 and Lemma 3.73 and (4.7) we obtain

‖f − fα |B−r−2a
2,∞ ‖ ≤ c1M3‖S∗F ′[fα]∗ (F (f)− F (fα))‖−r,2,∞ ≤ c1M3α. (4.8)

Now let us assume ‖f − fα |B0
2,2‖ ≤ γ2α

s
s+2a+r holds true with a constant γ2 > 0. By the

interpolation identity B−a2,2 =
(
B−r−2a

2,∞ , B0
2,2

)
a+r
2a+r ,2

there exists a constant c2 with

‖· |B−a2,2‖ ≤ c2‖· |B−r−2a
2,∞ ‖

a
2a+r · ‖· |B0

2,2‖
a+r
2a+r .

We combine the bound in the B0
2,2-norm with (4.8) and wind up with

‖f − fα |B−a2,2‖ ≤ c3γ
a+r
2a+r
2 α

s+a
s+2a+r with c3 := c2 (c1M3)

a
2a+r .

In the case a < smax we may apply the converse result in Remark 4.5 to obtain ‖f |Bs
2,∞‖ ≤

Cc
s+2a+r
a+r

3 γ
s+2a+r

2a+r
2 . If the basis is not smooth enough to satisfy a < smax a further modification

of (4.6) using the b0
2,2-norm instead of the br2,1-norm yields the same kind of bound on

‖f |Bs
2,∞‖. All in all, we obtain the equivalence of the following statements:
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(i) f ∈ Bs
2,∞.

(ii) γ2 := supα>0 α
− s
s+2a+r ‖f − fα |B0

2,2‖ <∞.

Here we can bound γ2 ≤ C2‖f |Bs
2,∞‖

2a+r
s+2a+r and ‖f |Bs

2,∞‖ ≤ C2γ
s+2a+r

2a+r
2 with a constant

C2 independent of f and (fα)α>0.

4.2 Converse result for weighted `1-regularization

As in Section 3.5 we switch to the setting of weighed `1-regularization where the forward
operator G is defined on sequence spaces and the estimators are given by

Sα(g) = argmin
z∈`1r∩dom(G)

( 1
2α‖g −G(z)‖2

Y + ‖z‖r,1
)
. (4.9)

The aim of this section are converse results to the bias bounds in Theorem 3.59: We
prove that the regularity condition x ∈ kt is necessary and sufficient for the Hölder type
approximation rate ‖x− xα‖r,1 = O(α1−t). Whereas the argument that ‖x− xα‖r,1 =
O(α1−t) implies an image space approximation rate ‖G(x)−G(xα)‖Y = O(α 2−t

2 ) is the
same as above the strategy to reclaim the smoothness condition x ∈ kt differs significantly
from the arguments in the last section where the converse result was built upon a first
order condition. Here we will see that the latter image space approximation rate yields a
certain quality of the approximation of Tα(x) for x and conclude with Lemma 3.53. This
result appears also in [85].

Theorem 4.7 (Converse result for weighted `1-penalties). Suppose Assumption 2.27 holds
true and let r such that ajr−1

j is bounded above. Suppose x ∈ `1
r ∩ dom(G)o, t ∈ (0, 1),

and (xα)α>0 minimizers of (4.9), i.e. xα ∈ Sα(G(x)). Then the following statements are
equivalent:

(i) x ∈ kt.
(ii) γ := supα>0 α

−1−t‖x− xα‖r,1 <∞.
(iii) γY := supα>0 α

− 2−t
2 ‖G(x)−G(xα)‖Y <∞.

More precisely, we can bound γ ≤ c‖x‖tkt, γY ≤
√

2γ and ‖x‖kt ≤ cmax
{
γ

2
t
Y , δ

2−2t
t ‖x‖

2−t
t

r,1

}
with δ > 0 such that the ball with radius δ around x in `2

a is contained in dom(G) and a
constant c > 0 that depends on M1,M2 and t only.

Proof.

(i)⇒ (ii): See Theorem 3.59(a).

(ii)⇒ (iii): As in the proof of Theorem 4.3, inserting x into the Tikhonov functional and
the triangle inequality provide

1
2‖G(x)−G(xα)‖2

Y ≤ α (‖x‖r,1 − ‖xα‖r,1) ≤ α‖x− xα‖r,1 ≤ C2α
2−t.

Multiplying by 2 and taking square roots on both sides yields (iii).
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(iii)⇒ (i): Here the strategy is to prove that ‖G(x) − G(xα)‖Y is an upper bound on
‖x− Tα(x)‖a,2 with Tα as defined in (3.52) up to a constant and a linear change of α and
then proceed using Lemma 3.53.
First note that the statement is trivial if x = 0 as we have xα = 0 in this case. Therefore,
we assume x 6= 0. As an intermediate step we first consider

zα ∈ argmin
z∈`1

r

(1
2‖x− z‖

2
a,2 + α‖z‖r,1

)
. (4.10)

The minimizer can be calculated in each coordinate separately by

(zα)j = argmin
z∈R

(1
2a

2
j |xj − z|2 + αrj|z|

)
= argmin

z∈R

(1
2 |xj − z|

2 + αa−2
j rj|z|

)
.

Hence

(zα)j =


xj − a−2

j rjα if xj > a−2
j rjα

xj + a−2
j rjα if xj < −a−2

j rjα

0 if |xj| ≤ a−2
j rjα

.

Comparing zα with Tα(x) yields |x− Tα(x)j| ≤ |xj − (zα)j| for all j ∈ Λ. Therefore, we
have

‖x− Tα(x)‖a,2 ≤ ‖x− zα‖a,2 for all α > 0. (4.11)

Next we find a bound on ‖x− zα‖a,2 in terms of ‖G(x)−G(xα)‖Y.
To this end, we first assure that zα ∈ dom(G) for α small enough: Since x belongs to
the interior of dom(G) there exist δ > 0 such that z ∈ dom(G) whenever ‖x− z‖a,2 ≤ δ.
Comparing the values of zα and x in (4.10) we obtain

‖x− zα‖2
a,2 ≤ 2α‖x‖r,1 for all α > 0. (4.12)

Hence zα ∈ dom(G) for all α ≤ δ2

2‖x‖r,1
.

Now let 0 < α ≤ α0 := δ2

2‖x‖r,1
. We set β := 2M2

2α and insert into (4.10) once more to see

1
2‖x− zα‖

2
a,2 + α‖zα‖r,1 ≤

1
2‖x− xβ‖

2
a,2 + α‖xβ‖r,1.

Using the first inequality in Assumption 2.27 and subtracting α‖zα‖r,1 yield

1
2‖x− zα‖

2
a,2 ≤

M2
1

2 ‖G(x)−G(xβ)‖2
Y + α (‖xβ‖r,1 − ‖zα‖r,1) . (4.13)

As xβ is a minimizer of (4.9) we obtain

β‖xβ‖r,1 ≤
1
2‖G(x)−G(xβ)‖2

Y + β‖xβ‖r,1 ≤
1
2‖G(x)−G(zα)‖2

Y + β‖zα‖r,1.
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Using the second inequality in Assumption 2.27, subtracting β‖zα‖r,1 and dividing by β
on both sides we end up with

‖xβ‖r,1 − ‖zα‖r,1 ≤
M2

2
2β ‖x− zα‖

2
a,2 = 1

4α‖x− zα‖
2
a,2.

We insert the last inequality into (4.13), subtract 1
4‖x− zα‖

2
a,2, multiply by 4 and take

the square root and get ‖x− zα‖a,2 ≤
√

2M1‖G(x)−G(xβ)‖Y. Together with (4.11), the
hypothesis (iii) and the definition of β we achieve

α−
2−t

2 ‖x− Tα(x)‖a,2 ≤ α−
2−t

2 ‖G(x)−G(xβ)‖Y ≤ c1γY for all α ≤ α0 (4.14)

with c1 :=
√

2M1(2M2
2 ) 2−t

2 . From (4.11) and (4.12) we obtain

α−
2−t

2 ‖x− Tα(x)‖a,2 ≤ (2‖x‖r,1)
1
2 α−

1−t
2 ≤ (2‖x‖r,1)

1
2 α
− 1−t

2
0 = δ1−t (2‖x‖r,1)

2−t
2

for all α > α0. We combine with (4.14) and use Lemma 3.53 to conclude x ∈ kt with

‖x‖kt ≤ c2

(
sup
α>0

α−
2−t

2 ‖x− Tα(x)‖a,2
) 2
t

≤ c3 max
{
γ

2
t
Y , δ

2−2t
t ‖x‖

2−t
t

r,1

}
.

with c3 := c2 max{c
2
t
1 , 2

2−t
t } and c2 given explicitly in Lemma 3.53.

Application to Besov r, 1, 1-penalties

We apply the above result to wavelet regularization with br1,1-penalty to see that Ks is the
maximal source set leading to the approximation rate ‖f − fα |Br

1,1‖ = O(α
s−r

s+2a+r ) for the
estimator for the estimators fα ∈ Rα(F (f)) given in (3.61).

Theorem 4.8 (Converse result for Besov r, 1, 1-penalties). Suppose Assumptions 2.11
and 2.15 hold true with a < smax. Let 0 ≤ r < s < smax with a + r ≥ d

2 . Assume that
f ∈ Br

1,1 ∩ dom(F )o and (fα)α>0 is a selection of minimizers fα ∈ Rα(F (f)) (see (3.61)).
Then the following statements are equivalent:

(i) f ∈ Ks.

(ii) γ := α−
s−r

s+2a+r ‖f − fα |Br
1,1‖ <∞.

(iii) γY := α−
s+a

s+2a+r ‖f − fα |B−a2,2‖ <∞.
More precisely, we can bound

γ ≤ C‖f‖
2a+2r
s+2a+r
Ks , γY ≤ Cγ

1
2 and ‖f‖Ks ≤ C max

{
γ
s+2a+r
a+r

Y , δ
s−r
a+r ‖f |Br

1,1‖
a+s
a+r

}
with δ > 0 such that the ball with radius δ around f in B−a2,2 is contained in dom(F ) and a
constant C independent of f and (fα)α>0.

Proof.

(i)⇒ (ii): See Theorem 3.65(a).
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(ii)⇒ (iii): Let xα, x ∈ br1,1 with fα = Sxα and f = Sx. With c1 such that ‖·‖r,1,1 ≤
c1‖· |Br

1,1‖, the Lipschitz condition in 2.15(a) and the same idea as in the corresponding
implication in the proof of Theorem 4.3 we see

1
2M2

1
‖f − fα |B−a2,2‖2 ≤ 1

2‖F (f)− F (fα)‖2
Y ≤ c1α‖f − fα |Br

1,1‖ ≤ c1γα
2s+2a
s+2a+r . (4.15)

Multiplying by 2M2
1 and taking the square root yields the desired implication.

(iii)⇒ (i): Let a, r, dom(G) and G be as in Remark 2.28 As S : b−a2,2 → B−a2,2 is a norm
isomorphism we have x ∈ dom(G)o. With 2.15(b) and the hypothesis we get

‖G(x)−G(xα)‖Y = ‖F (f)− F (fα)‖Y ≤M2‖f − fα |B−a2,2‖ ≤M2γYα
s+a

s+2a+r = γYα
2−ts

2

with ts given by (3.62). By Theorem 4.7 we obtain

x ∈ kts with ‖x‖kts ≤ c2 max
{
γ
s+2a+r
a+r

Y , δ
s−r
a+r ‖x‖

a+s
a+r
r,1,1

}
with δ > 0 such that the ball with radius δ around x in b−a2,2 is contained in dom(G) and a
constant c2 depending on M1,M2 and ts only. With Lemma 3.64 we conclude f ∈ Ks and
the claimed bound on ‖f‖Ks .

4.3 Image space approximation rates and variational
source conditions

In this section we revisit the general setting of a convex penalty introduced in Assump-
tion 2.2. We recall the minimizers

Sα(g) := argmin
f∈dom(F )

Tα(f, g) ⊆ dom(R) ∩ dom(F ) (4.16)

with the generalized Tikhonov functional

Tα(f, g) = 1
2α‖g − F (f)‖2

Y +R(f).

In this general setting where the only conditions on the forward operator and the penalty
term are the topological ones in Assumption 2.2 it seems unlikely to obtain convergence
rates or converse results under smoothness assumptions given by balls in concrete function
spaces as above. Nevertheless, the results of this section reveal some structural insights to
generalized Tikhonov regularization.
The main result of this section is the equivalence of a Hölder-type image space approx-
imation rate, i.e. a bound of the form ‖Af − Afα‖Y = O (αν) with ν ∈

(
1
2 , 1

]
and a

Hölder-type variational source condition with vanishing loss function

R(f)−R(h) ≤ ϕ(‖Af − Ah‖2
Y) for all h ∈ X (4.17)

with ϕ(τ) = O
(
τ

2ν−1
2ν
)

under the assumption that the forward operator F = A is linear
and Y is a Hilbert space.
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In [72] condition (4.17) is used to prove convergence rates with respect to the twisted
Bregman distance of R, and it is shown that the source condition (2.4) implies (4.17)
with φ ∼

√
·. In [38] necessity of (4.17) for convergence rates with respect to the twisted

Bregman distance under a fixed parameter choice rule is proven. In Remarks 3.21 and
3.58 we saw that variational source conditions with vanishing loss function are equivalent
to those with norm loss functions exemplary in two concrete setups. The results of this
section can also be found in the author’s article [84].

This section is structured as follows: As a first intermediate step we show that bounds
on the defect of the Tikhonov functional, used as a source condition in [59], give rise
to a characterization of condition (4.17). Thereafter we study the minimal value of the
Tikhonov functional and show that it is differentiable in the regularization parameter α.
This implies differentiability of the defect of the Tikhonov functional and allows us to
expose a connection between bounds on the defect of the Tikhonov functional and image
space approximation rates. We end this section with a converse result for exact data using
the Bregman distance of the penalty as a loss function.

Defect function and its link to variational source conditions

As already mentioned above, we introduce the defect of the Tikhonov functional. Whereas
we will assume linearity of the forward operator in the sequel, the result of this section
applies also in the nonlinear case.

Definition 4.9 (Defect of the Tikhonov functional). In the setting of Assumption 2.2 let
f ∈ dom(R)∩dom(F ). We define the defect of the Tikhonov functional σf : (0,∞)→ [0,∞)
by

σf (α) := Tα(f, F (f))− Tα(fα, F (f)) = R(f)−R(fα)− 1
2α‖F (f)− F (fα)‖2

Y

for a minimizer fα ∈ Sα(F (f)) (see (4.16)).

Note that σf is well-defined as the value of σf(α) does not depend on the particular
choice of fα ∈ Sα(F (f)).
In the following lemma we show that σf (α)→ 0 for α↘ 0 provided that f is R-minimal
in F−1 ({F (f)}), which is automatically satisfied if F is injective. This kind of statement
is covered by the usual convergence results for generalized Tikhonov regularization. For
the sake of completeness we yet decided to include a proof.

Lemma 4.10 (Limit of the defect). Suppose Assumption 2.2 holds true and let
f ∈ dom(R) ∩ dom(F ). Then σf is non-decreasing. If additionally R(f) ≤ R(h) is
satisfied for all h ∈ dom(F ) with F (h) = F (f), then σf (α)→ 0 as α↘ 0.

Proof. We denote ϑ(α) := infh∈dom(F )
1

2α‖F (f) − F (h)‖2
Y +R(h) for the minimal value

of the Tikhonov functional. Then ϑ is non-increasing as a pointwise infimum over non-
increasing functions. Therefore, σf (α) = R(f)− ϑ(α) is non-decreasing.
We set m = supα>0 ϑ(α). Since ϑ is non-increasing we obtain ϑ(α) → m and therefore
σf (α)→ R(f)−m as α↘ 0. Thereby, it remains to prove m = R(f).
From ϑ(α) = infh∈dom(F ) Tα(h, F (f)) ≤ Tα(f, F (f)) = R(f) for all α > 0 we obtain
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m ≤ R(f). In particular m <∞ as f ∈ dom(R).
For every α let fα ∈ Sα(F (f)) (see (4.16)). We obtain ϑ(α) = 1

2α‖F (f)−F (fα)‖2
Y +R(fα).

First this implies

‖F (f)− F (fα)‖Y ≤
√

2αm→ 0 as α↘ 0. (4.18)

Second (fα)α>0 is contained in the τX-compact set {h ∈ dom(F ) : R(h) ≤ m}. Hence
there exists f0 ∈ dom(F ) with R(f0) ≤ m such that every τX-neighborhood of f0 contains
fα for arbitrarily small α. By τX-to-weak continuity of F this implies that every weak-
neighborhood of F (f0) contains F (fα) for arbitrarily small α. In view of (4.18) this forces
F (f) = F (f0). Finally, assuming that f satisfies the stated R-minimality this implies
R(f) ≤ R(f0) ≤ m.

We write

σf (α) = sup
h∈dom(F )

(
R(f)−R(h)− 1

2α‖F (f)− F (h)‖2
)

(4.19)

to note a similarity to the distance functions used in [42, (4.1)], [36, Ch. 12], [38, (3.1)]
and [59, Ch. 3]. In [59, Prop. 4] it is shown for linear forward operators that a variational
source condition (4.17) implies a bound on the defect function σf .
Before we state and prove a sharp connection between bounds on the defect function and
variational source conditions we need a preliminary result showing that a concave and
continuous function ϕ : [0,∞)→ [0,∞) can be recovered from the function ϕ̆ that we have
already used in Section 3.1.

Lemma 4.11 (Index function calculus). Let ϕ : [0,∞)→ [0,∞) be concave and continuous.
Recall the function ϕ̆ : (0,∞)→ [0,∞) given by ϕ̆(α) = supτ≥0

(
ϕ(τ)− 1

2ατ
)

introduced
in (3.2). We have

ϕ(τ) = inf
α>0

(
ϕ̆(α) + 1

2ατ
)

for all τ ∈ [0,∞).

Proof. The function

gϕ : R→ (−∞,∞] given by gϕ(t) =
−ϕ(t) if t ≥ 0
∞ if t < 0

is convex, proper and lower semi-continuous. Its Fenchel conjugate (see [6, Def. 13.1])
is given by g∗ϕ(ξ) = supτ≥0 (ϕ(τ) + ξτ). Non-negativity of ϕ implies g∗ϕ(ξ) = ∞ for
ξ > 0. Moreover, g∗ϕ is non-decreasing and together with lower semi-continuity we obtain
g∗ϕ(0) = limξ↗0 g

∗
ϕ(ξ). Furthermore, we note that ϕ̆(α) = g∗ϕ

(
− 1

2α

)
for all α > 0.

Let τ ≥ 0. The biconjugation theorem (see [6, Thm. 13.32]) yields

ϕ(τ) = −g∗∗ϕ (τ) = − sup
ξ≤0

(
ξτ − g∗ϕ(ξ)

)
= inf

ξ≤0

(
g∗ϕ(ξ)− ξτ

)
. (4.20)

As g∗ϕ(0) = limξ↗0 g
∗
ϕ(ξ)− ξτ we may leave out ξ = 0 in the infimum in (4.20) and obtain

ϕ(τ) = inf
ξ<0

(
g∗ϕ(ξ)− ξτ

)
= inf

α>0

(
ϕ̆(α) + 1

2ατ
)
.
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Example 4.12 (Hölder-type index functions). Let ϕ(τ) = c1τ
ν with c1 > 0 and ν ∈

(
0, 1

2

]
.

As in the proof of Corollary 3.2 an easy calculus shows

ϕ̆(α) = kc
1

1−ν
1 α

ν
1−ν with k = (2ν)

ν
1−ν − 1

2(2ν)
1

1−ν .

Vice versa let us consider σ(α) = c2α
ν

1−ν . Then ϕσ(τ) := kν−1c1−ν
2 τ ν satisfies ϕ̆σ = σ.

As announced we prove a connection between a variational source condition

R(f)−R(h) ≤ ϕ(‖F (f)− F (h)‖2
Y) for all h ∈ dom(F ) (4.21)

for a concave and continuous function ϕ : [0,∞)→ [0,∞) and a bound on σf .

Proposition 4.13. Suppose Assumption 2.2 holds true. Let f ∈ dom(R) ∩ dom(F ) and
ϕ : [0,∞) → [0,∞) be concave and continuous. Then (4.21) holds true if and only if
σf (α) ≤ ϕ̆(α) for all α > 0.

Proof. Assuming (4.21) we estimate

σf (α) ≤ ϕ(‖F (f)− F (fα)‖2
Y)− 1

2α‖F (f)− F (fα)‖2
Y ≤ ϕ̆(α).

This proves the first implication.
Let h ∈ dom(F ). With

Tα(fα, F (f)) ≤ 1
2α‖F (f)− F (h)‖2

Y +R(h)

we obtain

R(f)−R(h) = σf (α) + Tα(fα, F (f))−R(h) ≤ σf (α) + 1
2α‖F (x)− F (h)‖2

Y. (4.22)

Inserting σf(α) ≤ ϕ̆(α) on the right hand side and taking the infimum over α yields
R(f)−R(h) ≤ infα>0 ϕ̆(α) + 1

2ατ with τ = ‖F (x)−F (h)‖2
Y. Using Lemma 4.11 we obtain

(4.21) which proves the reverse implication.

Corollary 4.14 (Application to Hölder-type bounds). Suppose Assumption 2.2 holds
true and let f ∈ dom(R) ∩ dom(F ) and ν ∈

(
0, 1

2

]
. Then the following statements are

equivalent:
(i) There exists c1 ≥ 0 such that (4.21) holds true with ϕ(τ) = c1τ

ν.
(ii) There exists c2 ≥ 0 such that σf (α) ≤ c2α

ν
1−ν .

More precisely, with k = (2ν)
ν

1−ν − 1
2(2ν)

1
1−ν statement (i) implies (ii) with c2 = kc

1
1−ν
1 and

(ii) implies (i) with c1 = kν−1c1−ν
2 .

Proof. Assuming (i) the first implication in Proposition 4.13 and Example 4.12 yield
σf (α) ≤ ϕ̆(α) = kc

1
1−ν
1 α

ν
1−ν .

Assuming (ii) we set ϕ(τ) = kν−1c1−ν
2 τ ν . Then we obtain σf(α) ≤ c2τ

ν
1−ν = ϕ̆(α) by

Example 4.12. Therefore, the reverse implication in Proposition 4.13 yields (1) with
c1 = kν−1c1−ν

2 .
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Note that due to Remark 3.3 the restriction to ν ∈
(
0, 1

2

]
in Corollary 4.14 does not

exclude any relevant unknown solutions.

Proposition 4.15 (Minimal index function satisfying a vsc). Suppose Assumption 2.2
holds true. Let f ∈ dom(R) ∩ dom(F ). Then

ϕf : [0,∞)→ [0,∞) given by ϕf (τ) = inf
α>0

(
σf (α) + 1

2ατ
)

is concave and continuous with ϕ̆f = σf . We have

R(f)−R(h) ≤ ϕf (‖F (f)− F (h)‖2
Y) for all h ∈ dom(F ). (4.23)

Furthermore, (4.21) holds true if and only if ϕf ≤ ϕ.

Proof. The function ϕf is concave and upper semi-continuous functions as it is the
pointwise infimum of functions possessing these properties. Lemma A.1 provides continuity
of ϕf . Taking the infimum over α on the right hand side of (4.22) yields (4.23). Hence
σf(α) ≤ ϕ̆f(α) due to Proposition 4.13. Let α > 0 and τ ≥ 0. By definition of ϕf we
have ϕf(τ) − 1

2ατ ≤ σf(α). Taking the supremum over τ on the left hand side yields
ϕ̆f (α) ≤ σf (α).
Now suppose (4.21) holds true. Then Proposition 4.13 implies ϕ̆f = σf ≤ ϕ̆. With
Lemma 4.11 we conclude

ϕf (τ) = inf
α>0

(
ϕ̆f (α) + 1

2ατ
)
≤ inf

α>0

(
ϕ̆(α) + 1

2ατ
)

= ϕ(τ).

Vice verse assuming ϕf ≤ ϕ we obtain (4.21) immediately from (4.23).

Remark 4.16 (Existence of variational source condition). In particular, Proposition 4.15
shows that for every f ∈ dom(R) ∩ dom(F ) there is a function ϕ such that (4.21)
is satisfied. Note that if f is R-minimal in F−1 ({F (f)}), then Lemma 4.10 yields
ϕf (0) = infα σf (α) = 0.
A similar statement is proven in [39]. In this context we also refer to Corollary 3.32 and
[40] for the existence of variational source conditions for `1-regularization.

Remark 4.17. Inequality (4.23) is sharp for all h = fα ∈ Sα(g), α > 0 (see (4.16)) . To
see this note that by definition ϕf(τ) ≤ σf(α) + 1

2ατ for all τ ≥ 0 and α > 0. Hence we
have

R(f)−R(fα) ≤ ϕf
(
‖F (f)− F (fα)‖2

Y

)
≤ σf (α) + 1

2α‖F (f)− F (fα)‖2
Y

= R(f)−R(fα).

In order to link Hölder-type bounds on the defect of the Tikhonov functional as in
condition (ii) in Corollary 4.14 to Hölder-type image space approximation we need some
preliminary results which we establish in the following two subsections. Besides that we
also need them in other places in this work. They contain some new techniques which
may be of some independent interest in variational regularization theory.
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Characterization of A ◦ Sα as proximity mapping

In the setting of Assumption 2.2 with a linear forward operator F = A defined on
dom(A) = X and a Hilbert space Y we introduce a convex function Q on Y that can be
seen as a push forward of R through the linear operator A. We show that the proximity
mapping of αQ equals A ◦ Sα. Recall that for a convex, proper and lower semi-continuous
function Q : Y→ (−∞,∞] and g ∈ Y there is a unique minimizer ProxQ(g) of the function
y 7→ 1

2‖g − y‖
2
Y +Q(y). The single-valued mapping

ProxQ : Y→ Y given by g 7→ ProxQ(g) := argmin
y∈Y

(1
2‖g − y‖

2
Y +Q(y)

)

is called proximity mapping of Q (see [6, 11.4, Def. 12.23]).

Lemma 4.18. In the setting of Assumption 2.2 with a linear forward operator F = A,
dom(A) = X and Y a Hilbert space we define

Q : Y→ (−∞,∞] by Q(g) := inf{R(f) : f ∈ X with Af = g}

with inf ∅ = ∞. Then Q is convex, proper and lower semi-continuous, and we have
dom(Q) = A(dom(R)).

Proof. Let λ ∈ R. First we prove that Lλ := {g ∈ Y : Q(g) ≤ λ} satisfies

Lλ = A({f ∈ X : R(f) ≤ λ}).

To this end, let g ∈ Lλ. By Proposition 2.3 there exists f ∈ X with Af = g and
R(f) ≤ R(h) for all h ∈ X with Ah = g. Then R(f) = Q(g) ≤ λ. On the other hand, if
f ∈ X with R(f) ≤ λ then Q(Af) ≤ R(f) ≤ λ.
Taking union over λ ∈ R yields dom(Q) = A(dom(R)). Hence Q is proper as R is proper.
The sublevel sets Lλ are convex as the image of a convex set under a linear map and closed
as the image of a τX-compact set under a τX-to-weak continuous map. Hence Q is convex
and lower semi-continuous.

Remark 4.19. Note that in the case of an injective forward operator A, the map Q is given
by Q(g) = R(A−1g) if g ∈ im(A) and Q(g) =∞ if g ∈ Y \ im(A) where A−1 : im(A)→ X
denotes the inverse map of A.

Proposition 4.20. Suppose Assumption 2.2 holds true with a linear forward operator
F = A, dom(A) = X and Y a Hilbert space. Let g ∈ Y and α > 0. Then

Af̂α = ProxαQ(g) and R(f̂α) = Q(ProxαQ(g)) for all f̂α ∈ Sα(g) (see (4.16)).

In particular A ◦ Sα = ProxαQ is single-valued. Hence Af̂α and R(f̂α) do not depend on
the particular choice of f̂α ∈ Sα(g).

Proof. Let v ∈ dom(Q). Then by Lemma 4.18 we have v ∈ im(A). Due to Proposition 2.3
there exists h ∈ X with Ah = v and R(h) ≤ R(y) for all y ∈ X with Ay = v. By definition
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of Q that is R(h) = Q(v). The first identity follows from

1
2α‖g − Af̂α‖

2
Y +Q(Af̂α) ≤ 1

2α‖g − Af̂α‖
2
Y +R(f̂α)

≤ 1
2α‖g − Ah‖

2
Y +R(h)

= 1
2α‖g − v‖

2
Y +Q(v).

Inserting v = Af̂α yields R(f̂α) = Q(Af̂α) = Q (ProxαQ(g)).

The statement in Proposition 4.20 can be read as follows: the function Q on Y stores
all relevant information on R and A to recover the mapping A ◦ Sα in one object.

Remark 4.21. Suppose f ∈ dom(R), α > 0 and fα ∈ Sα(Ax). In [59] the authors study
upper bounds on R(f) − R(fα) (defect for penalty) and on σf(α) (defect for Tikhonov
functional) in terms of α. The first quantity bounds the second and it is bounded by the
double of the second (see [59, Prop. 2.4]). In [59, Rem. 2.5] the authors rely on this nesting
to argue that changing the selection of minimizers changes the defect for penalty at most
by a factor of 2. Proposition 4.20 actually shows that the defect for penalty is independent
of the choice of fα ∈ Sα(Ax).

Differentiability of the minimal value function

As an important preliminary we introduce the minimal value function and prove its
differentiability.

Definition 4.22 (minimal value function). In the setting of Assumption 2.2 with a linear
forward operator F = A, dom(A) = X and Y a Hilbert space we let g ∈ Y and define

ϑg : (0,∞)→ R by ϑg(α) = inf
h∈dom(R)

Tα(h, g) = 1
2α‖g − Af̂α‖

2
Y +R(f̂α)

independent of the choice f̂α ∈ Sα(g) in (4.16).

The main result of this subsection is the differentiability in α of ϑg for all g ∈ Y. The
approximation error ‖g − Af̂α‖Y is represented by calculus rules of ϑg.
Recall that the Moreau envelope function of some function Q : Y→ (−∞,∞] for α > 0 is
given by

Qα(g) = inf
y∈Y

( 1
2α‖g − y‖

2
Y +Q(y)

)
and the infimum is uniquely attained at ProxαQ(g) ∈ Y. The key ingredient is the following
result by T. Strömberg:

Lemma 4.23. (see [97, Prop. 3(iii)]) Let Q : Y→ (−∞,∞] be convex, proper and lower
semi-continuous. The family of Moreau envelope functions Qα : Y→ R, α > 0 satisfies

∂

∂α
Qα(g) = −1

2‖(∇Qα)(g)‖2
Y.
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We apply Lemma 4.23 to the function Q defined in Lemma 4.18. Note that due to
Proposition 4.20 we have

Qα(g) = 1
2α‖g − ProxαQ(g)‖2

Y +Q(ProxαQ(g)) = ϑg(α). (4.24)

Proposition 4.24. Suppose Assumption 2.2 holds true with a linear forward operator
F = A, dom(A) = X and Y a Hilbert space. Let g ∈ Y and f̂α ∈ Sα(g), α > 0 any selection
of minimizers. The function ϑg is convex, non-increasing and continuously differentiable
with

ϑ′g(α) = − 1
2α2‖g − Af̂α‖

2
Y.

Proof. The Moreau envelope function Qα is convex, real valued and continuous with
the Fenchel conjugate (Qα)∗ = Q∗ + α

2 ‖ · ‖
2
Y (see [6, Prop. 12.15; Prop. 13.21]). The

biconjugation theorem implies

ϑg(α) = Qα(g) =
(
Q∗ + α

2 ‖ · ‖Y
)∗

(g) = sup
v∈Y

(
〈g, v〉 − Q∗(v)− α

2 ‖v‖
2
Y

)
.

Hence ϑg is convex and non-increasing being the supremum of affine non-increasing
functions.
By [6, Prop. 12.29] Qα is Fréchet differentiable with ∇Qα = 1

α
(IdY−ProxαQ). Lemma 4.23

yields differentiability of α 7→ Qα(g) with derivative −1
2‖(∇Qα)(g)‖2 for all g ∈ Y.

Therefore, ϑg is differentiable and we conclude with Proposition 4.20

ϑ′g(α) = −1
2‖(∇Qα)(g)‖2 = − 1

2α2‖g − ProxαQ(g)‖Y = − 1
2α2‖g − Ax̂α‖Y.

Finally, ϑ′g is continuous as ϑg is convex and differentiable.

As a corollary we obtain non increasingness of α 7→ 1
α
‖g − Af̂α‖Y.

Corollary 4.25. In the setting of Proposition 4.24 the map (0,∞) → [0,∞) given by
α 7→ 1

α
‖g − Af̂α‖Y is non-increasing.

Proof. By convexity of ϑg the derivative ϑ′g(α) = − 1
2α2‖g − Af̂α‖2

Y is non decreasing.

Remark 4.26. As it fits in the context we recall the well-known facts that the function
(0,∞) → R given by α 7→ R(f̂α) is non increasing and the function (0,∞) → [0,∞)
given by α 7→ ‖g − Af̂α‖Y is non decreasing. To see this let α < β and set m =
1
2‖g − Af̂α‖

2
Y − 1

2‖g − Af̂β‖
2
Y. From Tα(f̂α, g) ≤ Tα(f̂β, g) and Tβ(f̂β, g) ≤ Tβ(f̂α, g) we

obtain
m ≤ α

(
R(f̂β)−R(f̂α)

)
≤ α

β
m.

Hence m ≤ 0.

Remark 4.27 (An expression for R(fα)). Besides the approximation error ‖g −Af̂α‖Y
also the value of the penalty at the minimizers R(fα) is expressed by a calculus rule of ϑg.
To this end, we use the product rule and Proposition 4.24 to see

(αϑg(α))′ = ϑg(α) + αϑ′g(α) = R(fα).
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We end this subsection by recording the limit behavior of ϑg.

Lemma 4.28 (Limits of the minimal value). Suppose Assumption 2.2 holds true with a
linear forward operator F = A, dom(A) = X and Y a Hilbert space. Let g ∈ Y. Then

lim
α↘0

ϑg(α) = Q(g) and lim
α→∞

ϑg(α) = inf
h∈X
R(h) > −∞.

In particular, ϑg is bounded if and only if g ∈ A(dom(R)).

Proof. By [6, Prop. 12.32] the Moreau envelope functions have the following limits:

lim
α↘0
Qα(g) = Q(g) and lim

α→∞
Qα(g) = inf

y∈Y
Q(y).

Hence the stated limits follows from Qα(g) = ϑg(α) (see (4.24)) together with the obser-
vation infv∈YQ(v) = infh∈XR(h) (see Lemma 4.18). Using similar arguments as in the
proof of Proposition 2.3 one obtains −∞ < infh∈XR(h) from Assumption 2.2.

Link between defect function and image space approximation

The result of this subsection is that σf from Definition 4.9 and hence also the smallest
index function ϕf allowing for a variational source condition from Proposition 4.15 depend
only on the net (‖Ax− Axα‖Y)α>0. Further we will exploit a condition when a bound
‖Ax− Axα‖Y ≤ ψ(α) implies a bound on the defect function σf .
Specializing these findings to Hölder-type bounds in the next subsection leads to the
equivalence result between Hölder-type image space approximation rates and variational
source conditions of the form (4.17).

Lemma 4.29. Suppose Assumption 2.2 holds true with F = A linear, dom(A) = X and
Y a Hilbert space. Let f ∈ dom(R), fα ∈ Sα(Af) (see (4.16)) for α > 0 any selection of
minimizers and assume R(f) ≤ R(h) for all h ∈ X with Ah = Af . Then

σf (α) =
∫ α

0

1
2β2‖Af − Afβ‖

2
Y dβ for all α > 0.

Proof. Note that σf(α) = R(f) − ϑAf(α) with the minimal value function ϑAf from
Definition 4.22. Therefore, Proposition 4.24 provides continuous differentiability of σf
with

σ′f (α) = 1
2α2‖Af − Afα‖

2
Y. (4.25)

Let 0 < ε < α. The fundamental theorem of calculus yields

σf (α)− σf (ε) =
∫ α

ε
σ′f (β) dβ =

∫ α

ε

1
2β2‖Af − Afα‖

2
Y dβ.

In view of Lemma 4.10 the expression for σf follows by taking the limit ε→ 0.
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Remark 4.30. In the setting of Lemma 4.29 we compute the limit α → ∞ to wind
up with an interesting identity showing that the value R(f) is determined by the net
(‖Af − Afα‖Y)α>0. By Lemma 4.28 we have

lim
α→∞

σf (α) = R(f)− lim
α→∞

ϑAf (α) = R(f)− inf
h∈X
R(h).

Hence the identity in Lemma 4.29 implies

R(f) =
∫ ∞

0

1
2β2‖Af − Afβ‖

2
Y dβ + inf

h∈X
R(h). (4.26)

Proposition 4.31 (Image space approximation). Suppose Assumption 2.2 holds true
with F = A linear, dom(A) = X and Y a Hilbert space. Let f ∈ dom(R) and assume
R(f) ≤ R(h) for all h ∈ X with Ah = Af .

(a) We have

‖Af − Afα‖Y ≤
√

2ασf (α) for all α > 0 and fα ∈ Sα(Af) (see (4.16)).

(b) Let ψ : [0,∞)→ [0,∞) be continuous. Assume that there is a constant Cψ > 0 with

∫ α

0

1
β
ψ(β) dβ ≤ Cψψ(α) for all α > 0. (4.27)

Then a bound ‖Af−Afα‖Y ≤
√

2αψ(α) for all α > 0 with some selection fα ∈ Sα(Ax)
implies σf (α) ≤ Cψψ(α) for all α > 0.

Proof. (a) By Proposition 4.24 the function σf (α) = R(x)− ϑAf (α) is concave and by
Lemma 4.10 it extends continuously to [0,∞). Together with (4.25) the claim follows
from

1
2α2‖Af − Afα‖

2
Y = σ′f (α) ≤ 1

α
σf (α).

(b) Using Lemma 4.29 and (4.27) we obtain

σf (α) =
∫ α

0

1
2β2‖Af − Afβ‖

2
Y dβ ≤

∫ α

0

1
β
ψ(β) dβ ≤ Cψψ(α).

Remark 4.32. Note that the bound in Proposition 4.31 can also be derived using the
first order condition ξα := 1

α
A∗(Af − Afα) ∈ ∂R(fα). Namely, the definition of the

subdifferential yields

R(f)−R(fα) ≤ 〈ξα, f − fα〉 = 1
α
‖Af − Afα‖2

Y.

Subtracting 1
2‖Af − Afα‖Y and solving the resulting inequality for ‖Af − Afα‖Y proves

the desired inequality.
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Equivalence results for Hölder-type image space approximation
rates

Now we are in position to prove the announced equivalence results.

Theorem 4.33. Suppose Assumption 2.2 holds true with F = A linear, dom(A) = X and
Y a Hilbert space. Let ν ∈ (1

2 , 1], f ∈ dom(R) and fα ∈ Sα(Af) (see (4.16)) for α > 0
any selection of a minimizers for exact data. Assume R(f) ≤ R(h) for all h ∈ X with
Ah = Af . Then the following statements are equivalent:

(i) There exists a constant c1 > 0 with ‖Af − Afα‖Y ≤ c1α
ν for all α > 0.

(ii) There exists a constant c2 > 0 such that the variational source condition

R(f)−R(h) ≤ ϕ(‖Af − Ah‖2
Y) for all h ∈ X

holds true with ϕ(t) = c2t
2ν−1

2ν .

More precisely (i) implies (ii) with c2 = (2ν − 1)− 1
2ν c

1
ν
1 , and (ii) implies (i) with c1 = cν2.

Proof.

(i)⇒(ii): Consider the continuous function

ψ : [0,∞)→ [0,∞) given by ψ(α) = 1
2c

2
1α

2ν−1.

Then c1α
ν =

√
2αψ(α) for all α > 0. We have

∫ α

0

1
β
ψ(β) dβ = 1

2c
2
1

∫ α

0
β2ν−2 dβ = 1

2ν − 1ψ(α).

Hence (4.27) is satisfied with Cψ = 1
2ν−1 . Therefore, Proposition 4.31.(b) implies

σf (α) ≤ c21
4ν−2α

2ν−1 with σf defined in Definition 4.9. With ϕf as defined in Proposi-
tion 4.15 we estimate

ϕf (τ) ≤ inf
α>0

(
c2

1
4ν − 2α

2ν−1 + 1
2ατ

)
≤ (2ν − 1)− 1

2ν c
1
ν
1 τ

2ν−1
2ν

by inserting α = (2ν − 1) 1
2ν τ

1
2ν c
− 1
ν

1 . Therefore, Proposition 4.15 implies (ii) for the desired
constant c2 = (2ν − 1)− 1

2ν c
1
ν
1 .

(ii)⇒(i): (see also [59, proof of Prop. 4]) With the first order condition

ξα := 1
α
A∗A(f − fα) ∈ ∂R(fα)

condition (ii) provides

1
α
‖Af − Afα‖2

Y = 〈ξα, f − fα〉 ≤ R(f)−R(fα) ≤ c2‖Af − Afα‖
2ν−1
ν

Y .

Solving for ‖Af − Afα‖Y yields (i) with c1 = cν2.
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Theorem 4.33 is dedicated to true solutions contained in the domain of the penalty and
to image space approximation rates ‖Af−Afα‖Y = O (αν) with ν > 1

2 . In the following we
investigate low order image approximation rates that occur in the oversmoothing situation
where f /∈ dom(R). We will further motivate and analyze oversmoothing in the next
chapter. Here, we show that approximation rates ‖Af − Afα‖Y = O (αν) with ν < 1

2 are
characterized by upper bounds on the minimal value ϑAf (α) in terms of α. Whereas it is
easy to see that upper bounds on ϑAf imply bounds on ‖Af − Afα‖Y the converse relies
on the differentiability of ϑAf .

Theorem 4.34. Suppose Assumption 2.2 holds true with F = A linear, dom(A) = X and
Y a Hilbert space. Let ν ∈ [0, 1

2), f ∈ X and fα ∈ Sα(Af) (see (4.16)) for α > 0 any
selection of a minimizers for exact data. Then the following statements are equivalent:

(i) There exists a constant c1 > 0 such that ‖Af − Afα‖Y ≤ c1α
ν for all α > 0.

(ii) There exists a constant c2 > 0 such that the minimal value (see Definition 4.22)
satisfies ϑAf (α)− infh∈XR(h) ≤ c2α

2ν−1 for all α > 0.
More precisely, we show that (i) implies (ii) with c2 = c21

2(1−2ν) and (ii) implies (i) with
c1 =

√
2c2.

Proof.

(i)⇒(ii): Suppose (i) holds true and let 0 < α < ε. We use Proposition 4.24 and the
fundamental theorem of calculus to obtain

ϑAf (α)− ϑAf (ε) =
∫ ε

α

1
2β2‖Af − Afβ‖

2
Y dβ

≤ c2
1
2

∫ ε

α
β2ν−2 dβ

= c2
1

2(1− 2ν)
(
α2ν−1 − ε2ν−1

)
.

By Lemma 4.28 taking the limit ε→∞ yields (ii) with c2 = c21
2(1−2ν) .

(ii)⇒(i): We estimate

1
2α‖Af − Afα‖

2
Y ≤

1
2α‖Af − Afα‖

2
Y +R(fα)− inf

h∈X
R(h) = ϑAf (α)− inf

h∈X
R(h). (4.28)

Therefore, condition (ii) implies (i) with c1 =
√

2c2.

Remark 4.35 (The limiting case ν = 1
2). Neither Theorem 4.33 nor Theorem 4.34 provides

a characterization of the image space approximation rate ‖Af − Afα‖Y = O
(
α

1
2
)
. As

in Remarks 3.23 and 3.60 we see that the condition f ∈ dom(R) is sufficient for the
latter approximation rate as Tα(fα, Af) ≤ Tα(f, Af) implies ‖Af − Afα‖Y ≤ cα

1
2 for c =

(2R(f)− 2 infh∈XR(h))
1
2 . Due to the identity (4.26) we cannot expect that f ∈ dom(R)

is necessary for the latter approximation rate. Additionally we provide a concrete example
where f /∈ dom(R) but anyway satisfies the approximation rate ‖Af − Afα‖Y = O

(
α1/2

)
:

Let X = Y = `2(N), A the identity map `2 → `2, R(x) = ‖x‖1 and f = (fn)n∈N ∈ `2 given



112 4. Converse results and sparsity bound

by fn = 1
n

. Then f /∈ dom(R). As in the last chapter the minimizers fα are given by soft
thresholding, i.e. (fα)n = sgn(fn) ·max (0, |fn| − α). We see

‖f − fα‖2
2 = α2#

{
n <

1
α

}
+
∞∑
n=1

1
n21{n≥ 1

α
}.

The first summand is bounded by α and for α ≤ 1
2 we estimate the second by an integral

comparison
∞∑
n=1

1
n21{n≥ 1

α
} ≤

∫ ∞
1
α
−1

1
x2 dx ≤ α

1− α ≤ 2α.

Moreover, for α > 1
2 we have ‖f − fα‖2 ≤ ‖f‖2 ≤

√
2‖f‖2α

1
2 . Therefore, we have a bound

‖f − fα‖2 = O
(
α1/2

)
for all α > 0.

Note that a variational source condition always implies f ∈ dom(R) and that condition
(ii) in Theorem 4.34 for ν = 1

2 yields boundedness of ϑAf which entails that there exists
f̃ ∈ dom(R) with Af = Af̃ . This shows that neither variational source conditions nor
bounds on the minimal value are appropriate to give a characterization of the Hölder type
image space precision with exponent 1

2 .

Converse Result for approximation rates with respect to the
Bregman distance

We finish this section with a further equivalence result: A variational source condition
with vanishing loss function is necessary and sufficient for approximation rates measured
in the skewed Bregman distance of R. This result, even for Banach space valued forward
operators, can be found in [44]. Moreover, in [38] it is shown that convergence rates with
skewed Bregman loss for deterministic noise under a fixed parameter choice rule implies a
variational source condition with vanishing loss function. Here we illustrate how such a
result can be obtained from the theory developed above.
Let us first recall the Bregman distance. Let R : X→ (−∞,∞] be as in Assumption 2.2.
Then for h ∈ dom(R) such that ∂R(h) 6= ∅ we pick ξ ∈ ∂R(h) and define

∆ξ(f, h) := R(f)−R(h)− 〈ξ, f − h〉 for all f ∈ X.

In [72] the skewed Bregman distance is used to measure the reconstruction error. In the case
of exact data g = F (f) for some f ∈ X the latter is given by ∆ξα(f, fα) with fα ∈ Sα(g)
and ξα := 1

α
A∗(Af − Afα) ∈ ∂R(fα) due to the first order optimality condition.

Theorem 4.36. Suppose Assumption 2.2 holds true with F = A linear, dom(A) = X
and Y a Hilbert space. Let f ∈ dom(R) and fα ∈ Sα(g), α > 0 (see (4.16)). Then the
following statements hold true:

(a) If

R(f)−R(h) ≤ ϕ
(
‖Af − Ah‖2

Y

)
for all h ∈ X (4.29)

with concave and continuous ϕ : [0,∞) → [0,∞), then ∆ξα(f, fα) ≤ ϕ̆(α) for all
α > 0.
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(b) Let ψ : (0,∞)→ [0,∞) be continuous such there exists a constant C > 0 with∫ ∞
α

1
β2ψ(β) dβ ≤ C

1
α
ψ(α) for all α > 0. (4.30)

If ∆ξα(f, fα) ≤ ψ(α) for all α > 0, then there exists ϕ : [0,∞)→ [0,∞) concave and
continuous such that (4.29) holds true and ϕ̆(α) ≤ Cψ(α) for all α > 0.

Proof. With σf as defined in Definition 4.9 we have σ′f (α) = 1
2α2‖Af −Afα‖2

Y (see (4.25)).
Therefore, the skewed Bregman distance has the following representation:

∆ξα(f, fα) = R(x)−R(xα)− 1
α
‖Ax− Axα‖2 = σf (α)− ασ′f (α). (4.31)

Here the first identity is due to 〈ξα, f − fα〉 = 1
α
‖Ax− Axα‖2. With this we prove both

statements separately.
(a) Due to (4.31) and Proposition 4.13 we have ∆ξα(f, fα) ≤ σf (α) ≤ ϕ̆(α).
(b) Due to Proposition 4.15 it suffices to show

σf (α) ≤ Cψ(α) for all α > 0 (4.32)

as then ϕ̆f (α) = σf (α) ≤ Cψ(α).
We define γ(β) := − 1

β
σf (β) and use (4.31) to obtain

γ′(β) = 1
β2

(
σf (β)− ασ′f (β)

)
= 1
β2 ∆ξβ(f, fβ) ≤ 1

β2ψ(β).

Since σf (β) = R(f)−ϑAf (β) with the minimal value function ϑAf from Definition 4.22
we have limβ→∞ σf(β) = R(f) − infh∈XR(h) < ∞ (see Lemma 4.28). Hence
limβ→∞ γ(β) = 0 and with (4.30) we conclude

σf (α)
α

=
∫ ∞
α

γ′(β) dβ ≤
∫ ∞
α

1
β2ψ(β) dβ ≤ C

1
α
ψ(α).

Multiplying with α yields (4.32).

Remark 4.37 (Hölder type bounds). The condition on ψ in Theorem 4.36(b) is valid
for Hölder type functions ψ(α) := cψα

ν with cψ > 0 and ν ∈ [0, 1). More precisely, with
C := 1

1−ν we obtain equality in (4.30) in this case.
It is violated for ψ(α) := cψα. The following example shows that the assumption on ψ is
not superfluous: Consider X = Y = `2, R = ‖ · ‖1 and A = Id. If f ∈ `1 then with the
explicit expression for fα given in Remark 4.35 an elementary calculation results in

∆ξα(fα, f) =
∑
|fk|≤α

(
|fk| −

1
α
|fk|2

)
. (4.33)

Now suppose f is finitely supported. The function ψ(α) := ∆ξα(fα, f) is continuous and
we have ψ(α) = 0 for all α ≤ min{|fk| : fk 6= 0}.
But on the other hand, assuming a variational source condition (4.29) holds true, then a
further computation and Proposition 4.13 yield

ϕ̆(α) ≥ σf (α) =
∑
|fk|≤α

(
|fk| −

1
2α |fk|

2
)

+ α

2 #{|fk| > α} > 0
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for all α > 0. This excludes the existence of a constant C > 0 with ϕ̆(α) ≤ Cψ(α).
Hence the approximation rate ∆ξα(xα, x) = O(ψ(α)) is not obtainable by a variational
source condition in this example.

Remark 4.38 (Bounds of logarithmic type). We verify (4.30) for a logarithmic function
of the form ψ(α) :=

(
ln
(
e+ 1

α

))−ν
for ν > 0. To this end, first note that ψ is increasing

and maps (0,∞) bijective onto (0, 1). Moreover, strict concavity yields that α 7→ 1
α
ψ(α) is

decreasing.
Let c ∈ (0, 1) such that νc 1

ν ≤ 1
2 and α0 := ψ−1(c). For α ≥ α0 we obtain

∫ ∞
α

1
β2ψ(β) dβ ≤

∫ ∞
α

1
β2 dβ = 1

α
= c−1 1

α
ψ(α0) ≤ c−1 1

α
ψ(α). (4.34)

Therefore, in the following we assume α < α0. We estimate

ψ′(α) = ν

2α2 + α
ψ(α) ν+1

ν ≤ νc
1
ν

α
ψ(α) ≤ 1

2αψ(α).

Let η(α) := − 1
α
ψ(α). Then we have

η′(α) = 1
α

( 1
α
ψ(α)− ψ′(α)

)
≥ 1

2α2ψ(α)

and conclude
1
α
ψ(α)− 1

α0
ψ(α0) =

∫ α0

α
η′(β) dβ ≥ 1

2

∫ α0

α

1
β2ψ(β) dβ.

Together with (4.34) and 1
α0
ψ(α0) ≤ 1

α
ψ(α) and by splitting the integral

∫∞
α =

∫ α0
α +

∫∞
α0

we
finish up with∫ ∞

α

1
β2ψ(β) dβ ≤ 2

α
ψ(α) + (c−1 − 2) 1

α0
ψ(α0) ≤ max(2, c−1) 1

α
ψ(α).
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Chapter Five
Convergence rates for oversmoothing Banach

space regularization

In this chapter we provide convergence rates results in the case of oversmoothing, i.e. we
show upper bounds on the reconstruction error if the unknown solution f ∈ X fails to
admit a finite value in the penalty term: R(f) = ∞. For wavelet regularization with
brp,q-norm penalties as in (2.17), this case may be rather unlikely for r = 0, except maybe
for delta peaks. However, for example in case of the Radon transform and the particularly
interesting choice p = 1, our theory requires to choose r ≥ 1

2 (see Example 2.18), and more
generally, mildly ill-posed problems in higher spatial dimensions require larger values of r
(see Proposition 2.16). In the situation of a strong penalty term, i.e. a choice r > 0, it
becomes much more likely that the penalty term fails to be finite at the exact solution.
Therefore, it is desirable to derive error bounds also for this situation.
So far, however, this case has only rarely been considered in variational regularization
theory. In the oversmoothing case one difficulty is that neither variational source conditions
nor source conditions based on the range of the adjoint operator are applicable. Whereas
oversmoothing in Hilbert scales has been analyzed in numerous papers (see, e.g., [60, 62,
86]), the literature on oversmoothing for more general variational regularization is sparse.
The special case of diagonal operators in `1-regularization has been discussed in [46]. In
a very recent work, which has been drafted in parallel, Chen, Hofmann & Yousept [17]
have studied oversmoothing for finitely smoothing operators in scales of Banach spaces
generated by sectorial operators. Although the aims and the type of results of this paper
are similar to ones presented in this chapter we believe that our approach is considerably
simpler and more flexible. In particular, we can also treat BV-regularization.
This section is structured as follows: First we introduce the setup of oversmoothing in
Banach space regularization and formulate abstract assumptions we need on the occurring
spaces. As in most of the scenarios in this work we suppose that the forward operator
satisfies a two-sided Lipschitz condition.
The main result of the second section is a convergence rate result in the abstract setting.
The analysis relies on spaces given by real interpolation, part of which also provide the
smoothness assumptions.
In a third section we apply our theory to regularization of finitely smoothing operators
with Br

p,q-norm penalties for r > 0. Here the results append smoothness assumptions given
by Besov smoothness s with s ≤ r to the convergence results in Chapter 3. As above, we
numerically confirm our result in this setup using the nonlinear parameter identification
problem in (3.40).
Finally, we prove a convergence rate result for BV-regularization. In particular, this last
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example shows the wide applicability of our theory.

5.1 Framework and strategy

The following mathematical framework requires four Banach spaces:
• XR provides the penalty term given by R(f) = 1

u
‖f‖uXR for some fixed u ∈ [1,∞),

• X− carries a weaker norm, and we will assume that the forward map satisfies a
two-sided Lipschitz condition with respect to the norm on X−,

• the image space Y is the range of the possibly nonlinear forward map,
• the reconstruction error is measured in the norm on XL (the subscript L stands for

’loss’).
The minus sign in X− indicates that X− may be a function space with negative smoothness
index. For wavelet regularization in Besov spaces as considered in Section 2.4 we have
XR = Br

p,q with r > 0 and a norm given by wavelet coefficients, X− = B−a2,2 and Y a Hilbert
space, typically an L2-space and XL = B0

p,q.
The following assumption collects the precise requirements on these spaces, the forward
operator and their interaction.
Assumption 5.1. Suppose XR,Y are a Banach spaces, D̃F ⊂ XR, F : D̃F → Y a map,
and R(f) = 1

u
‖f‖uXR for u ∈ [1,∞). Moreover, we assume that XR continuously embeds

into a Banach space X− with
1
M1
‖f1 − f2‖X− ≤ ‖F (f1)− F (f2)‖Y ≤M2‖f1 − f2‖X− for all f1, f2 ∈ D̃F

for some constants M1,M2 > 0. Finally, let ξ ∈ [0, 1). If ξ ∈ (0, 1), let XL be a Banach
space and suppose that there exists a continuous embedding

(X−,XR)ξ,1 ⊂ XL.

If ξ = 0, we set XL := X−.

Note that under Assumption 5.1 F has a unique continuous extension to the norm
closure of D̃F in X− which we denote by dom(F ).
For an observation g ∈ Y we consider

Rα(g) := argmin
h∈D̃F

( 1
2α‖g − F (h)‖2

Y + 1
u
‖h‖uXR

)
⊂ D̃F . (5.1)

5.2 Error bounds

An important ingredient of most proofs in variational convergence rate theory is a com-
parison of the Tikhonov functional at the minimizer and at the exact solution. In the
oversmoothing case such a comparison is obviously not useful. As a substitute, one
may use a family of approximations of the unknown at which the penalty functional is
finite. See also [60] and [62] where this idea is used and the approximations are called
auxiliary elements. We start with a lemma that introduces auxiliary elements based on
real interpolation theory and provides their approximation properties we need later.
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Lemma 5.2 (Auxiliary elements). Suppose Assumption 5.1 holds true. Let θ ∈ (ξ, 1]
and % > 0. Suppose f ∈ (X−,XR)θ,∞ with ‖f‖(X−,XR)θ,∞ ≤ %. Then there exists a net
(ft)t>0 ⊂ XR such that the following bounds hold true

‖f − ft‖X− ≤ 2%tθ (5.2)
‖f − ft‖XL ≤ CL%t

θ−ξ (5.3)
‖ft‖XR ≤ 2%tθ−1. (5.4)

Here CL > 0 denotes a constant that is independent of %, t and f.

Proof. Recall that ‖f‖(X−,XR)θ,∞ ≤ % implies K(t, f) ≤ %tθ for t > 0 with the K-functional

K(t, f) = inf
h∈XR

(
‖f − h‖X− + t‖h‖XR

)
(see (A.1)). Hence, for every t > 0 there exists ft ∈ XR such that

‖f − ft‖X− + t‖ft‖XR ≤ 2K(t, f) ≤ 2%tθ.

We neglect the first summand on the left hand side to see (5.4) and the second to obtain
(5.2). This finishes the proof for ξ = 0 and we now turn to the case ξ ∈ (0, 1).
As an intermediate step to (5.3) we first prove that ‖f − ft‖(X−,XR)θ,∞ ≤ 3% for all t > 0.
To this end, we first consider s ≥ t and insert h = 0 into the K-functional to wind up with

K(s, f − ft) = inf
h∈XR

(
‖f − ft − h‖X− + s‖h‖XR

)
≤ ‖f − ft‖X− ≤ 2%tθ ≤ 2%sθ.

For s ≤ t we substitute h = h′ − ft and use the triangle inequality in XR to estimate

K(s, f − ft) = inf
h′∈XR

(
‖f − h′‖X− + s‖h′ − ft‖XR

)
≤ K(s, f) + s‖ft‖XR ≤ %sθ + 2%stθ−1 ≤ 3%sθ.

From the last two inequalities we conclude.

‖f − ft‖(X−,XR)θ,∞ = sup
s>0

s−θK(f − ft, s) ≤ 3%.

By the reiteration theorem (see Proposition A.6) we have

XL ⊃ (X−,XR)ξ,1 =
(
X−, (X−,XR)θ,∞

)
ξ
θ
,1

with equivalent norms of the latter two spaces. Hence, Lemma A.4 provides an interpolation
inequality ‖ · ‖XL ≤ c‖ · ‖1− ξ

θ
XL · ‖ · ‖

ξ
θ

(X−,XR)θ,∞
. Inserting f − ft we finalize

‖f − ft‖XL ≤ c
(
2%tθ

)1− ξ
θ (3%)

ξ
θ ≤ 3c%tθ−ξ.

With the auxiliary elements at hand we are in position to prove the main result of this
section.
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Theorem 5.3 (Error bounds). Suppose Assumption 5.1 holds true. Let θ ∈ (ξ, 1] and
% > 0. Assume that f ∈ (X−,XR)θ,∞ with ‖f‖(X−,XR)θ,∞ ≤ % and moreover that dom(F )
contains an XL-ball with radius τ > 0 around f .

(a) (Bias bounds) There exits a constant Cb independent of f, % and τ such that

‖f − fα‖X− ≤ Cb%
u

(1−θ)u+2θα
θ

(1−θ)u+2θ , (5.5)

‖f − fα‖XL ≤ Cb%
(1−ξ)u+2ξ
(1−θ)u+2θα

θ−ξ
(1−θ)u+2θ and

‖fα‖XR ≤ Cb%
2

(1−θ)u+2θα
θ−1

(1−θ)u+2θ (5.6)

holds true for all 0 < α < %−
(1−θ)u+2ξ

θ−ξ τ
(1−θ)u+2θ

θ−ξ and fα ∈ Rα(F (f)) (see (5.1)).
(b) (Rates with a priori choice) Let 0 < cl ≤ cr. Suppose 0 < δ < %−

ξ
θ−ξ τ

θ
θ−ξ , gobs ∈ Y

with ‖gobs − F (f)‖Y ≤ δ. Let α > 0 and f̂α ∈ Rα(gobs). There exists a constant Ca
independent of f, gobs, %, τ and δ such that

cl%
−u
θ δ

(1−θ)u+2θ
θ ≤ α ≤ cr%

−u
θ δ

(1−θ)u+2θ
θ

implies the following bounds

‖f − f̂α‖X− ≤ Caδ,

‖f − f̂α‖XL ≤ Ca%
ξ
θ δ

θ−ξ
θ and

‖f̂α‖XR ≤ Ca%
1
θ δ

θ−1
θ .

(c) (Rates with discrepancy principle) Let 1 < cD ≤ CD. Suppose 0 < δ < %−
ξ
θ−ξ τ

θ
θ−ξ ,

gobs ∈ Y with ‖gobs − F (f)‖Y ≤ δ. Let α > 0 and f̂α ∈ Rα(gobs). There exists a
constant Cd independent of f, gobs, % and δ such that

cDδ ≤ ‖gobs − F (f̂α)‖Y ≤ CDδ

implies the following bounds

‖f − f̂α‖XL ≤ Cd%
ξ
θ δ

θ−ξ
θ and

‖f̂α‖XR ≤ Cd%
1
θ δ

θ−1
θ .

Proof. Let (ft)t>0 be as in Lemma 5.2.
(a) We choose

t = C
− 1
θ−ξ

L %
u−2

(1−θ)u+2θα
1

(1−θ)u+2θ

with CL from Lemma 5.2. Inequality (5.3) yields

‖f − ft‖XL ≤ CL%t
θ−ξ = %

(1−ξ)u+2ξ
(1−θ)u+2θα

θ−ξ
(1−θ)u+2θ < τ. (5.7)
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Hence ft ∈ dom(F ), i.e. we may insert ft into the Tikhonov functional and use the
Lipschitz condition of F , (5.2) and (5.4) to wind up with

1
2α‖F (f)− F (fα)‖2

Y + 1
u
‖fα‖uXR ≤

1
2α‖F (f)− F (ft)‖2

Y + 1
u
‖ft‖uXR

≤ M2
2

2α ‖f − ft‖
2
X− + 1

u
‖ft‖uXR

≤ 2M2
2

α
%2t2θ + 2u

u
%ut(θ−1)u

= c1%
2u

(1−θ)u+2θα
(θ−1)u

(1−θ)u+2θ

with c1 := 2M2
2C
− 2θ
θ−ξ

L + 2u
u
C

(1−θ)u
θ−ξ

L . We neglect the penalty term and use the Lipschitz
condition of the inverse of F to obtain the first bound

‖f − fα‖X− ≤M1‖F (f)− F (fα)‖Y ≤ (2c1) 1
2M1%

u
(1−θ)u+2θα

θ
(1−θ)u+2θ .

Together with (5.2) we record

‖ft − fα‖X− ≤ ‖f − ft‖X− + ‖f − fα‖X− ≤ c2%
u

(1−θ)u+2θα
θ

(1−θ)u+2θ

with c2 = 2C−
θ
θ−ξ

L + (2c1) 1
2M1.

Neglecting the data fidelity term in the above estimation of the Tikhonov functional
provides

‖fα‖XR ≤ (c1u) 1
u%

2
(1−θ)u+2θα

θ−1
(1−θ)u+2θ .

Furthermore, we see that ‖ft‖XR satisfies the same upper bound. With the triangle
inequality in XR we combine

‖ft − fα‖XR ≤ ‖ft‖XR + ‖fα‖XR ≤ 2(c1u) 1
u%

2
(1−θ)u+2θα

θ−1
(1−θ)u+2θ .

Next, the interpolation inequality ‖ · ‖XL ≤ c3‖ · ‖1−ξ
X− · ‖ · ‖

ξ
XR (see Lemma A.4) fur-

nishes
‖ft − fα‖XL ≤ c4%

(1−ξ)u+2ξ
(1−θ)u+2θα

θ−ξ
(1−θ)u+2θ

with c4 := 2ξc3c
1−ξ
2 (c1u) ξu . Together with (5.7) we finalize with

‖f − fα‖XL ≤ ‖f − ft‖XL + ‖ft − fα‖XL ≤ (1 + c4)%
(1−ξ)u+2ξ
(1−θ)u+2θα

θ−ξ
(1−θ)u+2θ .

(b) Taking t = C
− 1
θ−ξ

L %−
1
θ δ

1
θ we have

‖f − ft‖XL ≤ CL%t
θ−ξ = %

ξ
θ δ

θ−ξ
θ < τ. (5.8)

This ensures ft ∈ dom(F ). We insert into the Tikhonov functional, use the elementary
inequality (a+ b)2 ≤ 2a2 + 2b2 for a, b ≥ 0, (5.2), (5.4), the Lipschitz condition of F
and the choice of α to estimate

1
2α‖g

obs − F (f̂α)‖2
Y + 1

u
‖f̂α‖uXR ≤

1
2α‖g

obs − F (f) + F (f)− F (ft)‖2
Y + 1

u
‖ft‖uXR

≤ δ2

α
+ M2

2
α
‖f − ft‖2

X− + 2u
u
%ut(θ−1)u

≤ (1 + 4M2
2C
− 2θ
θ−ξ

L )δ
2

α
+ 2u

u
C

(1−θ)u
θ−ξ

L %
u
θ δ

(θ−1)u
θ

≤ c5%
u
θ δ

(θ−1)u
θ
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with c5 := c−1
l (1 + 4M2

2C
− 2θ
θ−ξ

L ) + 2u
u
C

(1−θ)u
θ−ξ

L . Now we follow the argument in (a):
From the last inequality and the triangle inequality in Y we get

‖f − f̂α‖X− ≤M1‖F (f)− gobs + gobs − F (f̂α)‖Y
≤M1δ +M1(2c5) 1

2α
1
2%

u
2θ δ

(θ−1)u
2θ

≤M1(1 + (2c5cr)
1
2 )δ

which together with (5.2) implies ‖ft − f̂α‖X− ≤ c6δ with

c6 := 2C−
θ
θ−ξ

L +M1(1 + (2c5cr)
1
2 ).

Moreover, ‖f̂α‖XR , ‖ft‖XR ≤ (c5u) 1
u%

1
θ δ

θ−1
θ . Hence ‖ft − f̂α‖XR ≤ 2(c5u) 1

u%
1
θ δ

θ−1
θ by

the triangle inequality in XR.
We use the above interpolation inequality to combine the last two inequalities to
‖ft − f̂α‖XL ≤ c7%

ξ
θ δ

θ−ξ
θ with c7 := c3c

1−ξ
6 2ξ(c5u) ξu . With (5.8) we conclude

‖f − f̂α‖XL ≤ (1 + c7)%
ξ
θ δ

θ−ξ
θ .

(c) We set ε := min
{
c2D−1

2 , 4M2C
− 2θ
θ−ξ

L

}
. Then ε > 0. Furthermore, we take

t =
(

(4M2)−1ε

1 + ε−1

) 1
2θ

%−
1
θ δ

1
θ .

Then (5.2) reads as

‖f − ft‖X− ≤ 2%tθ =
(

ε

1 + ε−1

) 1
2
M
− 1

2
2 δ. (5.9)

Due to (5.3) we obtain

‖f − ft‖XL ≤ CL%t
θ−ξ ≤ CL

(
(4M2)−1ε

) θ−ξ
2θ %

ξ
θ δ

θ−ξ
θ ≤ %

ξ
θ δ

θ−ξ
θ < τ (5.10)

which provides ft ∈ dom(F ).
In the following we use the elementary inequality (a+ b)2 ≤ (1 + ε)a2 + (1 + ε−1)b2

for all a, b ≥ 0, which is proven by expanding the square and applying Young’s
inequality on the mixed term, and (5.9) to estimate

‖gobs − F (ft)‖2
Y ≤ (1 + ε)δ2 + (1 + ε−1)‖F (f)− F (ft)‖2

Y

≤ (1 + ε)δ2 + (1 + ε−1)M2‖f − ft‖2
X−

≤ (1 + 2ε)δ2 ≤ c2
Dδ

2 ≤ ‖gobs − F (f̂α)‖2
Y.

Therefore, a comparison of the Tikhonov functional taken at f̂α and ft, and (5.4)
yield

‖f̂α‖XR ≤ ‖ft‖XR ≤ 2%tθ−1 = c8%
1
θ δ

θ−1
θ with c8 := 2

(
(4M2)−1ε

1 + ε−1

) θ−1
2θ

.



5.2. Error bounds 121

Hence ‖ft − f̂α‖XR ≤ 2c8%
1
θ δ

θ−1
θ . Moreover,

‖F (ft)− F (f̂α)‖Y ≤ ‖gobs − F (ft)‖Y + ‖gobs − F (f̂α)‖Y ≤ 2CDδ.

Therefore, ‖ft − f̂α‖X− ≤M1CDδ by the Lipschitz condition. As above we conclude
‖ft− f̂α‖XL ≤ c9%

ξ
θ δ

θ−ξ
θ with c9 := c3(2CD)1−ξ(2c8)ξ and use (5.10) to finish up with

‖f − f̂α‖XL ≤ (1 + c9)%
ξ
θ δ

θ−ξ
θ .

We discuss our result in a series of remarks.

Remark 5.4 (Interior point). The requirement that f is an interior point of the domain
in XL may be weakened to the requirement that elements ft satisfying the bounds given
in Lemma 5.2 belong to dom(F ) for t small enough. This may be helpful in concrete
situations where there is a natural choice of ft that maybe satisfies some helpful additional
requirements like support constraints or further smoothness assumptions.

Remark 5.5 (Influence of the exponent u). A strength of the above theorem is that it
works for all exponents u independent of the space XR. Note that the choice of u does
not influence the rate of convergence while it does influence the bias bounds and the
parameter choice rule. An inspection of the a priori rule shows that a larger u allows for
a larger choice of the parameter α. The flexibility in the choice of u in our theory is a
remarkable difference to many other variational convergence theories. For example we saw
in Remark 3.8 that the theory in Chapter 3 is designed to the choice u = 1. Also in [104]
the authors have to pick a specific exponent u in order to obtain error bounds in the norm
instead of the Bregman distance.

Remark 5.6 (Equivalent norms). The presented theory relies on a purely Banach space
theoretic framework: As we do not appeal to any metric or convex notions like subdifferen-
tials or convexity the result in Theorem 5.3 stays the same up to a change of the constants
if we change the norm on any of the occurring spaces up to equivalence.
Once again this is a major difference to classical variational regularization theory. For
example it is not clear how the subdifferential of a norm involved in the classical source
condition (2.4) changes if the norm is replaced by an equivalent one.
This has an important impact on wavelet regularization with Besov space penalties. In
many places the analysis in Chapter 3 makes explicit use of the Besov norms given by
wavelet coefficients, and we use the equivalence of the initial norm to the norm given by
wavelet coefficients several times for different indices. Here we will see that it is enough to
require that the wavelet system yields an equivalent norm on the particular space XR = Br

p,q

involved in the penalization.

Remark 5.7 (Limiting case θ = 1). In the case θ = 1 the parameter choice rule in
Theorem 5.3 becomes α ∼ δ2. Here the results provides boundedness of the estimators fα
and f̂α in XR. Due to Proposition A.5 we have XR ⊂ (X−,XR)1,∞. The latter two spaces
agree if XR is reflexive (see [98, 1.3.2. Rem. 2]).
In Remark 3.23 and Remark 3.60 we have discussed similar limiting cases. Therein, we
assumed that x has a finite value in the penalty term to obtain uniform boundedness of the
estimators in the norm of the penalty.



122 5. Convergence rates for oversmoothing Banach space regularization

Remark 5.8 (Converse result). If minimizers in (5.1) exist and dom(F ) = X−, then one
can reclaim f ∈ (X−,XR)θ,∞ from the bias bound (5.5) together with (5.6). To this end,
one starts with

K(t, f) ≤ ‖f − fα‖X− + t‖fα‖XR
for fα ∈ Rα(F (f)). Then choosing α balancing the two summands on the right hand side,
yields the desired upper bound on the K-functional.

5.3 Application to Besov space regularization

In this section we apply Theorem 5.3 to regularization of finitely smoothing operators
with Besov space penalty term. To this end, let Bs

p,q be a Besov scale in the sense of
Definition 2.9. We suppose Assumption 2.15 holds true and use XR := Br

p,q for some r > 0
and p, q ∈ [1,∞]. We take any norm ‖ · ‖XR that is equivalent to the original ‖· |Br

p,q‖ and
consider the regularization scheme given by

Rα(g) = argmin
h∈Brp,q∩dom(F )

( 1
2α‖g − F (h)‖2

Y + 1
u
‖h‖uXR

)
⊂ Br

p,q ∩ dom(F ) (5.11)

with g ∈ Y and a fixed exponent u ∈ [1,∞).
In contrast to the analysis in Chapter 3 and [104], which are restricted to certain choices
of r,p,q and u, the only restriction on the parameters we assume here is r > 0 and
q ≤ p. Moreover, we will see that the assumption q ≤ p can be dropped by some refined
argument using a complex interpolation identity. This illustrates the impact and flexibility
of Theorem 5.3 as to the best of the authors knowledge this is the first result in Besov
space regularization with this flexibility in the parameters p and q.
On the other hand, the result we present in this section is restricted to the case of
oversmoothing which depending on the choice of r occurs only for functions of low
regularity. In this sense the following result is complementary to the former convergence
rates results in Besov spaces but not improving them.
Before we state the convergence rates we show that the setting of wavelet regularization
as introduced in Section 2.4 is contained in this setting.

Remark 5.9 (Wavelet regularization). Suppose Bs
p,q ⊂ D̃ is a Besov scale as in Defini-

tion 2.9 and (ψλ)λ∈Λ is a family of elements in D̃ with Λ as in Section 2.4. Assume that S
the wavelet synthesis operator as in Assumption 2.11 is a norm isomorphism S : brp,q → Br

p,q

with XR = Br
p,q the particular element of the Besov space that provides the penalty term. In

this case we define the norm ‖f‖XR := ‖S−1f‖r,p,q. Then ‖ · ‖XR is equivalent to ‖· |Br
p,q‖

on Br
p,q. By considering how argmin transforms under composition with a bijective mapping

one sees that with this the estimators in (5.11) agree with the ones in (2.17).

We first state our theorem under the abstract smoothness condition given by the real
interpolation space in Theorem 5.3 and discuss how to find more handsome smoothness
conditions afterwards.

Theorem 5.10 (Error bounds for oversmoothing Besov space regularization). Suppose
Bs
p,q is a Besov scale, Assumption 2.15 holds true, q ≤ p and that Br

p,q ⊂ B−a2,2 with a
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continuous embedding. Let s ∈ (0, r] and % > 0. Assume that

f ∈
(
B−a2,2 , B

r
p,q

)
θs,∞

for θs := s+ a

a+ r

with ‖f‖(B−a2,2 ,B
r
p,q)θ,∞ ≤ %. Suppose ‖ · ‖XR in (5.11) is equivalent to ‖· |Br

p,q‖. Let p :=
2p(a+r)
2a+pr and assume that dom(F ) contains a B0

p,p-ball with radius τ > 0 around f .
(a) (Bias bounds) There exits a constant Cb independent of f, % and τ such that

‖f − fα |B−a2,2‖ ≤ Cb%
u(a+r)

(2−u)s+2a+urα
s+a

(2−u)s+2a+ur ,

‖f − fα |B0
p,p‖ ≤ Cb%

2a+ur
(2−u)s+2a+urα

s
(2−u)s+2a+ur and

‖fα |Br
p,q‖ ≤ Cb%

2a+2r
(2−u)s+2a+urα

s−r
(2−u)s+2a+ur

holds true for all 0 < α < %−
u(r−s)+2a

s τ
(2−u)s+2a+ur

s and fα ∈ Rα(F (f)) (see (5.11)).
(b) (Convergence rates) Let 0 < cl ≤ cr and 1 < cD ≤ CD. Suppose 0 < δ < %−

a
s τ

s+a
s ,

gobs ∈ Y with ‖gobs−F (f)‖Y ≤ δ. Let α > 0 and f̂α ∈ Rα(gobs). There is a constant
Cr independent of f, gobs, %, τ and δ such that either of the conditions

cl%
−u(a+r)

s+a δ
(2−u)s+2a+ur

s+a ≤ α ≤ cr%
−u(a+r)

s+a δ
(2−u)s+2a+ur

s+a and

cDδ ≤ ‖gobs − F (f̂α)‖Y ≤ CDδ

implies the following bounds

‖f − f̂α |B−a2,2‖ ≤ Crδ,

‖f − f̂α |B0
p,p‖ ≤ Cr%

a
s+a δ

s
s+a and

‖f̂α |Br
p,q‖ ≤ Cr%

a+r
s+a δ

s−r
s+a .

Proof. Let ξ := a
a+r . Since q ≤ p and 1 ≤ p we have the following chain of continuous

embeddings: (
B−a2,2 , B

r
p,q

)
ξ,1
⊂
(
B−a2,2 , B

r
p,q

)
ξ,p
⊂
(
B−a2,2 , B

r
p,p

)
ξ,p

= B0
p,p (5.12)

(see [8, Thm. 3.4.1.(b)] for the first embedding and [101, 4.2.1. Rem. 4] for the second).
Therefore, XR = Br

p,q, X− := B−a2,2 , Y, XL := B0
p,p and D̃F := Br

p,1 ∩ dom(F ) satisfy
Assumption 5.1 and the result follows from Theorem 5.3. Here one first obtains bounds
in the ‖ · ‖XR-norm on Br

p,q which in turn yield the stated bounds in the Br
p,q-norm by

equivalence of the latter two norms.

We discuss our result in the following remarks.

Remark 5.11 (Lp-loss). In the setting of Theorem 5.10 suppose that p ≤ 2 and B0
p,p =

B0
p,p(Ω) with Ω either Td,Rd or a bounded Lipschitz domain in Rd. Then the contin-

uous embedding B0
p,p ⊂ Lp(Ω) (see Proposition A.11(a)) together with (5.12) yields(

B−a2,2 , B
r
p,q

)
ξ,1
⊂ Lp(Ω). Therefore, Theorem 5.10 remains true word for word if one

replaces B0
p,p by Lp(Ω) in this case.
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Remark 5.12 (Smoothness condition). Suppose that both Br
p,q = Br

p,q(Ω) and B−a2,2 =
B−a2,2(Ω) with Ω either Td,Rd or a bounded Lipschitz domain in Rd and let 0 < s < r.
Then due to [101, Thm.3.3.6] the following complex interpolation result with equivalence
of norms is available:

(
B−a2,2(Ω), Br

p,q(Ω)
)
θs

= Bs
ps,qs(Ω) with ps = 2p(a+ r)

s(2− p) + 2a+ pr
, qs = 2q(a+ r)

s(2− q) + 2a+ qr
.

(5.13)

With this we obtain a continuous embedding Bs
ps,qs(Ω) ⊂

(
B−a2,2(Ω), Br

p,q(Ω)
)
θs,∞

as the
complex interpolation space (·, ·)θ is always continuously embedded in the real interpolation
space (·, ·)θ,∞ (see [8, Thm. 4.7.1.]). Hence the statements in Theorem 5.10 remain true
if the smoothness assumption on f formulated in terms of

(
B−a2,2 , B

r
p,q

)
θs,∞

is replaced by
f ∈ Bs

ps,qs(Ω) with ‖f |Bs
ps,qs‖ ≤ %.

In this case the results in Section 3.4 show that the convergence rate measured in the
B0
p,p-norm or with the Lp(Ω)-norm as in the last remark is minimax optimal on bounded

sets in Bs
ts,ts(Ω).

Example 5.13 (p = 2). In the case p = 2 we have
(
B−a2,2 , B

r
2,q

)
θs,∞

= Bs
2,∞. Hence for

p = 2 and q = 1 the smoothness condition is in line with the one in Theorems 3.15 and
Theorem 3.37 such that Theorem 5.10 complements these results for the case r < s. (see
also Remark 3.24).
For a coefficient cjump with finitely many jumps in the boundary value problem (3.40) we
numerically confirm the convergence rate predicted by Theorem 5.10 and Remark 5.11. To
this end, we recall that cjump ∈ B

1
2
2,∞((0, 1)). We use the Besov norm penalty on B2

2,1((0, 1))
given by the b2

2,1-norm of wavelet coefficients with respect to Daubechies wavelets of order 7.
As s = 1

2 is the maximal smoothness index such that cjump ∈ Bs
2,∞((0, 1)) the penalty term

is infinite at the true coefficient in this case. In Figure 5.1 we see a good agreement of the
reconstruction error in the numerical experiment with the predicted rate O(δ1/5) measured
in the L2-norm. A possible explanation of the jumpy behavior in the reconstruction error
in this case is that our choice of noisy data may not attain the worst case at some noise
levels.

Example 5.14 (The case p = q = 1). In the case p = q = 1 we have
(
B−a2,2 , B

r
1,1

)
θs,∞

= Ks

with the spaces Ks introduced in Proposition 3.63. Hence Theorem 5.10 complements
Theorems 3.65 and 3.71.
As above we use our numerical example (3.40) to confirm the convergence rate in a concrete
example. We use the b2

1,1-penalty on db7 wavelet coefficients. Hence, we have a = 2 and
r = 2 which yields p = 4

3 Due to Example 3.67 a true coefficient cjump with finitely many
jumps belongs to Ks for s < 6

7 . Therefore, Theorem 5.10 and Remark 5.11 predict the rate
O(δe) for all e < 3

10 . Here, we see a precise agreement with the reconstruction error in the
numerical experiment.

Remark 5.15 (Assumption q ≤ p). Finally, we comment on the assumption q ≤ p. Using
complex interpolation this restriction can be dropped as follows: As in Remark 5.12 we
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Figure 5.1: Left: true coefficient cjump with jumps in the boundary value problem
(3.40) together with reconstructions for b2

2,1- and b0
2,1-penalization at noise level

δ = 2.5 · 10−5 for the same data. Right: Reconstruction error using b2
2,1-penalization,

the rate O(δ1/5) in the L2-norm predicted by Theorem 5.10 (see Example 5.13).

assume Br
p,q = Br

p,q(Ω) and B−a2,2 = B−a2,2(Ω). Since the real interpolation space (·, ·)θ,1 is
always continuously embedded in the complex interpolation space (see [8, Thm. 4.7.1.])
identity (5.13) yields a continuous embedding

(
B−a2,2(Ω), Br

p,q(Ω)
)
ξ,1
⊂ B0

p,q(Ω) for p as in
Theorem 5.10 and q := 2q(a+r)

2a+qr . Hence the statements in Theorem 5.10 remain true in the
case q > p if one replaces B0

p,p by B0
p,q(Ω).

Remark 5.16 (’Does oversmoothing hurt?’). To conclude this section we point out a
difference in the statements for p = 2 and p = 1 in Examples 5.13 and 5.14. For p = 2
our convergence rate analysis in the case of oversmoothing, i.e. for r = 2, yields the
same convergence rate O(δ

s
s+a ) measured in the same norm, the L2-norm, under the same

smoothness condition given by Bs
2,∞ as in the case r = 0. Hence the paradigm ’oversmooth-

ing does not hurt’ known for Hilbert-space regularization remains true for Br
2,q Banach

space penalties with q < 2.
In contrast to p = 1 where we see in Example 3.67 that a higher value of r may cause an
assignment of a lower smoothness s to a fixed true solution. For example, for the coefficient
cjump we assign every s < 4

3 in the case r = 0 but only the values s < 6
7 when we set r = 2.

For r = 0 we obtain the faster rate O(δe) for e < 2
5 measured in the L1-norm and for r = 2

we obtain the slower rate O(δe) for e < 3
10 but measured in the stronger L 4

3 -norm.
This indicates that the chosen loss function may have an influence on the observed con-
vergence rate. This motivates the development of a convergence rates theory that is more
flexible in the loss function, which is as far as the author knows an open problem. It is not
clear how to obtain error bounds with respect to norms whose corresponding spaces XL do
not relate to the scale spanned by real interpolation of X− and XR as in Assumption 5.1.
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Figure 5.2: Left: true coefficient cjump with jumps in the boundary value problem
(3.40) together with reconstructions for b2

1,1- and b0
1,1-penalization at noise level

δ = 2.5 · 10−5 for the same data. Right: Reconstruction error using b2
1,1-penalization,

the rate O(δ3/10) in the L4/3-norm predicted by Theorem 5.10 (see Example 5.14).

In the next chapter we obtain convergence rates in terms of the modulus of continuity using
image space approximation rates as source conditions. Although this approach works in a
very general setting its application to Banach space regularization requires the estimation
of the latter modulus which in turn forces us again to require an assumption similar to the
one on XL in Assumption 5.1.

5.4 Application to bounded variation regularization

We close this chapter with an application of Theorem 5.3 to Tikhonov regularization with
penalty term given by the BV-norm. Let d ∈ N and Ω ⊂ Rd be a bounded Lipschitz
domain. A function f ∈ L1(Ω) has bounded variation if

|f |BV(Ω) := sup
{∫

Ω
f(x) divg(x) dx : g ∈ C1

c (Ω,Rd), ‖g‖L∞(Ω,Rd) ≤ 1
}
<∞.

Here ‖g‖L∞(Ω,Rd) :=
∥∥∥∥(∑d

j=1 g
2
i

)1/2
∥∥∥∥
L∞(Ω)

with g = (g1, . . . gn). Then

BV(Ω) := {f ∈ L1(Ω) : |f |BV(Ω) <∞}

is a Banach space equipped with ‖ · ‖BV(Ω) := ‖ · ‖L1(Ω) + | · |BV(Ω). We refer to [2] for a
detailed study of spaces of bounded variation.
Throughout this section we assume that F : dom(F )→ Y with dom(F ) ⊂ B−a2,2 (Ω) closed
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for some a ≥ 0 such that a ≥ d
2 − 1, BV(Ω) ∩ dom(F ) 6= ∅ and with a Banach space Y

such that a two-sided Lipschitz condition
1
M
‖f1 − f2 |B−a2,2‖ ≤ ‖F (f1)− F (f2)‖Y ≤M‖f1 − f2 |B−a2,2‖ for all f1, f2 ∈ dom(F ).

for some constant M ≥ 1.
For g ∈ Y we consider

Rα(g) = argmin
h∈BV(Ω)∩dom(F )

( 1
2α‖g − F (h)‖2

Y + ‖h‖BV(Ω)

)
⊂ BV(Ω) ∩ dom(F ). (5.14)

We refer to [1] for this kind of regularization scheme for linear operators including a proof
of existence of minimizers and to [30] for a treatment of similar estimators in a statistical
setting.
We start by showing that the condition a ≥ d

2 − 1 ensures a continuous embedding
BV(Ω) ⊂ B−a2,2(Ω).
Lemma 5.17 (Embedding). There is a continuous embedding BV(Ω) ⊂ B−a2,2(Ω).

Proof. For all embeddings involving the space BV(Ω) in this proof we refer to [2, Cor.
3.49 & Prop. 3.21].
For d = 1 there is a continuous embedding BV(Ω) ⊂ L2(Ω). By Proposition A.11 we have
L2(Ω) = B0

2,2(Ω) ⊂ B−a2,2(Ω), which yields the claim in this case.
For d > 1 we set p := d

d−1 . Then p ∈ (1, 2] and there is a continuous embedding
BV(Ω) ⊂ Lp(Ω). By Proposition A.11 we have a continuous embedding Lp(Ω) ⊂ B0

p,2(Ω).
Furthermore, a+ d

2 ≥ d−1 = d
p

yields a continuous embedding B0
p,2(Ω) ⊂ B−a2,2 (Ω). Putting

together the latter three embeddings yields the claim.

Let s ∈ (−a, 1). The following interpolation identity, based on the result by Cohen et
al. in [20, Thm. 1.4], is a crucial ingredient for our convergence rates result

Bs
ts,ts(Ω) =

(
B−a2,2(Ω),BV(Ω)

)
θs,ts

with θs := s+ a

a+ 1 and ts := 2a+ 2
s+ 2a+ 1 (5.15)

with equivalent norms. In the latter reference the authors show this identity for Ω = Rd

and from there we conclude the statement in Proposition A.12.
To avoid the abstract smoothness condition in Theorem 5.3 we state our theorem under a
slightly stronger smoothness condition and comment on the weaker condition in a remark
afterwards.
Theorem 5.18 (Convergence rates for BV-regularization). Let 0 < s < 1 and % > 0.
Assume that

f ∈ Bs
ts,ts(Ω) with ‖f |Bs

ts,ts‖ < %.

Let p = 2a+2
2a+1 and suppose that dom(F ) contains an Lp(Ω)-ball with radius τ around f.

(a) (Bias bounds) There exits a constant Cb independent of f, % and τ such that

‖f − fα |B−a2,2‖ ≤ Cb%
a+1

s+2a+1α
s+a

s+2a+1 ,

‖f − fα‖Lp(Ω) ≤ Cb%
2a+1
s+2a+1α

s
s+2a+1 and

‖fα‖BV(Ω) ≤ Cb%
2a+2
s+2a+1α

s−1
s+2a+1 .

holds true for all 0 < α < %−
1−s+2a

s τ
s+2a+1

s and fα ∈ Rα(F (f)) (see (5.14)).
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(b) (Convergence rates) Let 0 < cl ≤ cr and 1 < cD ≤ CD. Suppose 0 < δ < %−
a
s τ

s+a
s ,

gobs ∈ Y with ‖gobs−F (f)‖Y ≤ δ. Let α > 0 and f̂α ∈ Rα(gobs). There is a constant
Cr independent of f, gobs, %, τ and δ such that either of the conditions

cl%
−a+1
s+a δ

s+2a+1
s+a ≤ α ≤ cr%

−a+1
s+a δ

s+2a+1
s+a and cDδ ≤ ‖gobs − F (f̂α)‖Y ≤ CDδ

implies the following bounds

‖f − f̂α |B−a2,2‖ ≤ Crδ,

‖f − f̂α‖Lp(Ω) ≤ Cr%
a
s+a δ

s
s+a and

‖f̂α‖BV(Ω) ≤ Cr%
a+1
s+a δ

s−1
s+a .

Proof. We show that Assumption 5.1 is satisfied with XR = BV(Ω), X− = B−a2,2(Ω), Y
and XL = Lp(Ω) and D̃F = BV(Ω) ∩ dom(F ) and u = 1. Due to Lemma 5.17 we have a
continuous embedding BV(Ω) ⊂ B−a2,2 . For a = 0, we have p = 2 and B0

2,2 = L2(Ω) (see
Proposition A.11). Hence we have Assumption 5.1 with ξ = 1 in this case and the result
follows from Theorem 5.3.
If a > 0, we set ξ := a

a+1 . Note that 1 < p = t0 < 2. Hence [8, Thm. 3.4.1.(b)], (5.15) and
Proposition A.11 yield the following chain of continuous embeddings(

B−a2,2(Ω),BV(Ω)
)
ξ,1
⊂
(
B−a2,2(Ω),BV(Ω)

)
ξ,p

= B0
p,p(Ω) ⊂ Lp(Ω). (5.16)

Finally, [8, Thm. 3.4.1.(b)] and (5.15) yields

Bs
ts,ts(Ω) =

(
B−a2,2(Ω),BV(Ω)

)
θs,ts
⊂
(
B−a2,2(Ω),BV(Ω)

)
θs,∞

.

Hence the smoothness condition on f in the claim implies the smoothness condition in
Theorem 5.3. Therefore, the stated result follows from Theorem 5.3.

Remark 5.19 (Weaker smoothness condition). The statements in Theorem 5.18 remain
true if the smoothness assumption on f is replaced by f ∈

(
B−a2,2(Ω),BV(Ω)

)
θs,∞

with a
bound by % on the norm of f therein.

Remark 5.20 (Similarity to B1
1,1-regularization). We see that the convergence rates and

also the smoothness condition for BV-regularization equals the ones for B1
1,1-regularization

in Theorem 5.10. The reason for that is that the interpolation identity in (5.15) holds true
with BV(Ω) replaced by B1

1,1(Ω).
Whereas for B1

1,1-regularization with a norm given by wavelet coefficients we also have a
convergence rate result in the non oversmoothing case s > r (see Theorem 3.71) a similar
result remains open for BV-regularization.

Remark 5.21 (Comparison to the results by del Alamo). A major advantage of our
result over the ones in [30] is that we do not have to require that the unknown solution
f itself is a BV-function. Whereas our result presumes a deterministic noise model the
latter work deals with a statistical setup similar to the one in Section 3.7. It remains open
to generalize the presented approach to statistical noise models to obtain convergence rates
for the estimators in [30] under weaker smoothness conditions on the unknown.
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Chapter Six
Convergence rates based on
image space approximation

In this chapter we present an approach to convergence rate results published in the
author’s article [84]. Avoiding Bregman distances and using image space approximation
rates as source conditions we prove a nearly minimax theorem showing that the modulus
of continuity is an upper bound on the reconstruction error up to a constant. Applied
to Besov space regularization we obtain new convergence rate results for 0, 2, q- and
0, p, p-penalties without restrictions on p, q ∈ (1,∞).

6.1 Minimax convergence rates

In this section we work in the general setting of linear and bounded forward operators
A : X→ Y between a Banach space X and a Hilbert space Y. We require the topological
assumptions in Assumption 2.2 and use a loss function L : X×X→ [0,∞] to measure the
reconstruction error. For the sake of clearness and self-containedness we summarize the
precise assumption as follows.

Assumption 6.1. Let X be a Banach space and let τX be a further topology such that
(X, τX) is a locally convex Hausdorff space and R : X→ (−∞,∞] a proper, convex function.
We assume that the sublevel sets {x ∈ X : R(x) ≤ λ} are τX-compact for all λ ∈ R. Let
Y be a Hilbert space and A : X → Y a linear, τX-to-weak continuous operator. Finally,
suppose that L : X× X→ [0,∞] satisfies the triangle inequality.

As we will apply the following theory mainly to sequence spaces we denote the elements
of X by x, z. We consider the Tikhonov functional

Tα(z, g) = 1
2α‖g − Az‖

2
Y +R(z)

and its set of minimizers

Sα(g) = argmin
z∈dom(R)

Tα(z, g) ⊂ dom(R). (6.1)

Due to Proposition 2.3 we have Sα(g) 6= ∅ for all g ∈ Y and α > 0. Moreover,
argminz∈XR(z) 6= ∅ and for every g ∈ im(A) there exists a R-minimal solution x ∈ X,
that is Ax = g and R(x) ≤ R(z) for all z ∈ X with Az = g. As announced, we introduce
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source sets, that is, sets on which we will prove convergence rates, based on image space
approximation bounds: Let ν ∈ [0,∞) and % > 0. We define

%ν : X→[0,∞] by %ν(x) = sup
{
α−ν‖Ax− Axα‖Y : α > 0, xα ∈ Sα(Ax)

}
, (6.2)

K%
ν = {x ∈ X : %ν(x) ≤ %} and Kν := {x ∈ X : %ν(x) <∞} .

Recall that Axα does not depend on the choice of the minimizer xα (see Proposition 4.20).
Note that x ∈ Kν if and only if a bound ‖Ax−Axα‖Y ≤ cαν holds true and %ν(x) provides
the smallest possible constant c > 0.
The first and central result is a uniform bound in K%

ν on L(x, x̂α) with x̂α ∈ Sα(gδ) in
terms of the modulus of continuity. Recall that the latter is given by

ω(δ,K, L) := sup {L(x1, x2) : x1, x2 ∈ K with ‖Ax1 − Ax2‖Y ≤ δ} (6.3)

for a subset K ⊂ X. As above we will consider both, an a priori rule requiring prior
knowledge of the parameter ν such that the unknown belongs to Kν characterizing the
regularity of the unknown x, and the discrepancy principle as most well-known a posteriori
rule.
To this end, we follow an idea presented in the seminal paper [33]: Any feasible procedure
is nearly minimax (see [33, 4.3.1.]). In our context feasibility means

• image space bounds: ‖Ax− Ax̂α‖Y ≤ cδ,
• regularity of minimizers: %ν(x̂α) ≤ c%ν(x) for some constant c > 0.

After proving feasibility, we use the same argument as in [33, 4.3.1. Prop. 2] to obtain the
minimax result.
In the sequel we will first address the sets Kν and their basic properties. Moreover for
ν ∈ (1

2 , 1], we provide descriptions of the latter sets that do not make explicit use of the
minimizers of the Tikhonov functional. After that we will analyze image space bounds
and regularity of minimizers separately to conclude the minimax result.

The sets Kν

We show that Kν is nontrivial for ν ∈ (0, 1] and recall that for ν ∈ (1
2 , 1] the set Kν are

characterized by variational source conditions. The oversmoothing case corresponds to
ν ∈ (0, 1

2) and here the image space rate is characterized by bounds on the minimal value
in (6.1). Moreover, Kν does not change for ν > 1.

Proposition 6.2 (Properties of the Kν ’s). Suppose Assumption 6.1 holds true. The
following statements hold true:

(a) Kν2 ⊂ Kν1 for 0 ≤ ν1 ≤ ν2.
(b) K0 = X.
(c) Let ν ∈ (0, 1

2). Then x ∈ Kν if and only if the minimal value ϑAx(α) in (6.1) (see
Definition 4.22) satisfies

ϑAx(α)− inf
z∈X
R(z) ≤ coverα

2ν−1

for some constant cover ≥ 0.
(d) dom(R) + ker(A) ⊆ K1/2.
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(e) Let ν ∈ (1
2 , 1] and assume x ∈ X satisfies R(x) ≤ R(z) for all z ∈ X with Ax = Az.

Then x ∈ Kν if and only if there exists a constant cvsc > 0 such that the variational
source condition

R(x)−R(z) ≤ cvsc‖Ax− Az‖
2ν−1
ν

Y for all z ∈ X

holds true.
(f) For ν > 1 we have Kν = argminz∈XR(z) + ker(A) and x ∈ Kν implies Ax = Axα

for all α > 0 in this case.

Proof. (a) Suppose x ∈ Kν2 . Then

‖Ax− Axα‖Y = ‖Ax− Axα‖
ν1
ν2
Y ‖Ax− Axα‖

1− ν1
ν2

Y ≤ %ν2(x)
ν1
ν2 %0(x)1− ν1

ν2αν1

yields %ν1(x) ≤ %ν2(x)
ν1
ν2 %0(x)1− ν1

ν2 .
(b) Let x ∈ X. We set

Dx := inf
{
‖Ax− Ay‖Y : y ∈ argmin

z∈X
R(z)

}
.

Suppose y ∈ argminz∈XR(z), α > 0 and xα ∈ Sα(Ax). Then
1

2α‖Ax− Axα‖
2
Y +R(xα) ≤ 1

2α‖Ax− Ay‖
2
Y +R(y).

As R(y) ≤ R(xα), this implies ‖Ax−Axα‖Y ≤ ‖Ax−Ay‖Y. Hence %0(x) ≤ Dx <∞.
Therefore, x ∈ K0. The inclusion X ⊂ K0 holds true by definition.

(c) See Theorem 4.34.
(d) Let x = y + k ∈ dom(R) + ker(A). From

1
2α‖Ax− Axα‖

2
Y ≤ Tα(xα, Ax) ≤ Tα(y, Ax) = R(y)

we obtain %1/2(x) ≤
√

2R(y).
(e) See Theorem 4.33.
(f) Let ν > 1. Suppose x ∈ Kν . From the first order condition [6, Prop. 16.34] and

Proposition 4.20 we obtain

ηα := 1
α

(Ax− Axα) = 1
α

(Ax− ProxαQ(Ax)) ∈ ∂Q(Axα).

Since ηα → 0 and Axα → Ax for α → 0 in the norm topology of Y this implies
0 ∈ ∂Q(Ax). Hence Ax ∈ argming∈YQ(g). Now let y ∈ X be R-minimal with
Ay = Ax. Then

R(y) = Q(Ax) ≤ Q(Az) ≤ R(z) for all z ∈ X.

Hence
x = y + x− y ∈ argminz∈XR(z) + ker(A).

On the other hand, assume x = y + k ∈ argminz∈XR(z) + ker(A). Then
1

2α‖Ax− Axα‖
2
Y +R(xα) ≤ Tα(y, Ax) = R(y) ≤ R(xα)

yields ‖Ax− Axα‖Y = 0 and x ∈ Kν .



132 6. Convergence rates based on image space approximation

Note that the last inequality in the above proof of (a) resembles an interpolation
inequality. This gives a first hint to a connection to interpolation theory in the case of
Banach space regularization.
In Theorems 4.33 and 4.34 we have seen, that powers of the best constants cover and
cvsc and (c) in (e) are lower and upper bounded by the best constant %ν(x) in the image
space rate (see (6.2)). Moreover, (f) entails the following statement that yields positive
definiteness of %ν if R is positive definite and A is injective.

Corollary 6.3. Suppose Assumption 6.1 holds true and let ν ∈ [0,∞). We have %ν(x) = 0
if and only if x ∈ argminz∈XR(z) + ker(A).

Proof. Suppose %ν(x) = 0. Then Ax = Axα for all α > 1. Therefore, x ∈ K2 and
Proposition 6.2(f) yields x ∈ argminz∈XR(z) + ker(A). On the other hand, again by
Proposition 6.2(f), x ∈ argminz∈XR(z) + ker(A) implies Ax = Axα for all α > 0 and
xα ∈ Sα(Ax). Hence %ν(x) = 0.

Next we present a further characterization of Kν in the case ν = 1 that will be of
central importance in the sequel: K1 contains precisely the elements satisfying a classical
source condition A∗ω ∈ ∂R(x) for some ω ∈ Y based on the subdifferential of the penalty
term at the true solution (see also (2.4)).
It is a well-known fact that the latter source condition implies a linear convergence rate in
the image space (see e.g. [53, Lem. 3.5]). Also the converse holds true: A linear bound
‖Ax− Axα‖Y = O(α) implies the classical source condition and the minimal O-constant
%1(x) agrees with the minimal norm ‖ω‖Y attended by a source element ω. Similar results
can be found in [53, Lem. 4.1] and [91, Prop. 4.1]. For sake of self-containedness we
include a proof.

Proposition 6.4 (Linear image space rate). Suppose Assumption 6.1 holds true and that
x ∈ X such that R(x) ≤ R(z) for all z ∈ X with Ax = Az. Let xα ∈ Sα(Ax), α > 0 any
selection of minimizers for exact data (see (6.1)). Then x ∈ K1 if and only if there exists
ω ∈ Y such that A∗ω ∈ ∂R(x). More precisely, we have

%1(x) = inf {‖ω‖Y : A∗ω ∈ ∂R(x)} .

Moreover, the net ( 1
α

(Ax− Axα))α>0 convergences weakly for α↘ 0 to the unique ω ∈ Y
with A∗ω ∈ ∂R(x) and ‖ω‖Y = %1(x).

Proof. First we assume ω ∈ Y with A∗ω ∈ ∂R(x). The first order optimality condition
ξα := 1

α
A∗A(x− xα) ∈ ∂R(xα) yields

1
α
‖Ax− Axα‖2 = 〈ξα, x− xα〉 ≤ R(x)−R(xα) ≤ 〈A∗ω, x− xα〉 ≤ ‖ω‖Y · ‖Ax− Axα‖Y.

Hence

‖Az − Azα‖Y ≤ ‖ω‖Yα. (6.4)

Taking the infimum over ω in (6.4) yields

%1(x) ≤ inf {‖ω‖Y : A∗ω ∈ ∂R(x)} . (6.5)
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Next we assume that there exists a bound ‖Ax−Axα‖Y = O(α), which means %1(x) <∞.
Then the net ( 1

α
(Ax− Axα))α>0 is norm bounded by %1(x) in the Hilbert space Y. By

the Banach–Alaoglu theorem every null sequence of positive numbers has a subsequence
αn > 0 such that 1

αn
(Ax − Axαn) converges weakly to some ω ∈ Y with ‖ω‖Y ≤ %1(x).

Lemma 4.28 and the minimality assumption yield

1
2αn
‖Ax− Axαn‖2

Y +R(xαn)→ R(x).

Together with ‖Ax− Axαn‖Y ≤ %1(x)αn we obtain R(xαn)→ R(x). Using the first order
optimality condition ξαn ∈ R(xαn) yields

R(x) + 〈A∗ω, z − x〉 = R(x) + 〈ω,A(z − x)〉

= lim
n→∞

R(xαn) + 〈 1
αn
A(x− xαn), A(z − xαn)〉

= lim
n→∞

R(xαn) + 〈ξαn , z − xαn〉 ≤ R(z)

for all z ∈ X. This shows A∗ω ∈ ∂R(x) and therefore equality in (6.5).
Finally, we turn to the claim’s last statement. Being the preimage of the convex set ∂R(x)
under the linear map A∗, the set {ω ∈ Y : A∗ω ∈ ∂R(x)} is convex. Strict convexity of
‖ · ‖Y yields uniqueness of ω. In particular this implies the convergence of the net.

As an example we explicitly calculate %1 for the embedding operator `p ⊂ `2.

Example 6.5. Let p ∈ [1, 2], X := `p, Y := `2, A : `p → `2 the embedding operator and R
given by R(x) = 1

p
‖x‖p.

Let x ∈ `p. First we consider the case p > 1. Here ∂R(x) = {ξ} with |ξj| = |xj|p−1. The
adjoint A∗ identifies with the embedding operator `2 → `p

′ with p′ the Hölder conjugate of
p. Hence x ∈ K1 if and only if ‖ξ‖`2 <∞, and we have

%1(x) = ‖ξ‖`2 =
(∑

j∈N
|xj|2p−2

)1/2
= ‖x‖p−1

2p−2.

Note that %1(·)
1
p−1 is a quasi-norm.

For p = 1 we have ξ ∈ ∂R(x) if and only if ξj = 1 for xj > 0, ξj = −1 for xj < 0 and
|ξj| ≤ 1 for xj = 0. Hence K1 consists of all elements with finitely many non vanishing
coefficients. We have %1(x) = # {j ∈ N : xj 6= 0}1/2 and therefore in this case no power of
%1 is a quasi-norm.

Image space bounds

This subsection is devoted to error bounds in the image space Y in terms of the deterministic
noise level and the image space approximation error for exact data. As a first step we
exploit firm non-expansiveness (see [6, Def. 4.1]) of the proximal operator A ◦ Sα.

Lemma 6.6 (Firm non-expansiveness). Suppose Assumption 6.1 holds true. Let g, h ∈ Y,
α > 0, x̂α ∈ Sα(g) and ẑα ∈ Sα(h). Then

‖(g − Ax̂α)− (h− Aẑα)‖2
Y + ‖Ax̂α − Aẑα‖2

Y ≤ ‖g − h‖2
Y.
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Proof. By [6, Prop. 12.27] the proximity operator ProxαQ is firm non-expansive, that is

‖(g − ProxαQ(g))− (h− ProxαQ(h))‖2
Y + ‖ProxαQ(g)− ProxαQ(h)‖2

Y ≤ ‖g − h‖2
Y

for all g, h ∈ Y. Inserting the first identity in Proposition 4.20 yields the claim.

With Lemma 6.6 at hand we obtain bounds on ‖Ax− Ax̂α‖Y and on ‖gδ − Ax̂α‖Y of
the simplest conceivable shape.

Lemma 6.7. Suppose Assumption 6.1 holds true. Let δ ≥ 0, x ∈ X and gδ ∈ Y with
‖gδ − Ax‖Y ≤ δ. Then following two inequalities

‖Ax− Ax̂α‖Y ≤ δ + ‖Ax− Axα‖Y, (6.6)
‖gδ − Ax̂α‖Y ≤ δ + ‖Ax− Axα‖Y (6.7)

hold true for all α > 0, x̂α ∈ Sα(gδ), xα ∈ Sα(Ax).

Proof. Lemma 6.6 with g = gδ and h = Ax yields

‖(Ax− Axα)− (gδ − Ax̂α)‖2
Y + ‖Axα − Ax̂α‖2

Y ≤ δ2.

We neglect the first summand on the left hand side and obtain

‖Ax− Ax̂α‖Y ≤ ‖Ax− Axα‖Y + ‖Axα − Ax̂α‖Y ≤ δ + ‖Ax− Axα‖Y

and the second for

‖gδ − Ax̂α‖Y ≤ ‖(Ax− Axα)− (gδ − Ax̂α)‖Y + ‖Ax− Axα‖Y ≤ δ + ‖Ax− Axα‖Y.

The next proposition has two parts. First we apply the last lemma to obtain an image
space error bound uniformly on the set Kν if the parameter α is chosen not too large.
The second shows that the lower bound on the norm of the residual in the discrepancy
principle implies a certain lower bound on the choice of the regularization parameter.

Proposition 6.8 (Image space bounds). Suppose Assumption 6.1 holds true, and let
α, δ, % > 0 and ν ∈ (0, 1]. Suppose x ∈ K%

ν and gδ ∈ Y with ‖gδ − Ax‖Y ≤ δ.
(a) Let cr > 0. If α ≤ cr%

− 1
ν δ

1
ν then

‖Ax− Ax̂α‖Y ≤ (1 + cνr)δ for all x̂α ∈ Sα(gδ).

(b) Let cD > 1. If x̂α ∈ Sα(gδ) satisfies cDδ ≤ ‖gδ − Ax̂α‖, then

(cD − 1) 1
ν %−

1
ν δ

1
ν ≤ α.

Proof. Let xα ∈ Sα(Ax).
(a) By (6.6) and the definition of %ν we obtain

‖Ax− Ax̂α‖Y ≤ δ + %αν ≤ (1 + cνr)δ.

(b) The bound (6.7) implies

cDδ ≤ δ + ‖Ax− Axα‖Y ≤ δ + %αν .

Subtracting δ and rearranging yields the claim.
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Regularity of the minimizers

As already announced the second ingredient of the minimax result is the regularity of the
minimizers which we will establish in the following. To show that x ∈ Kν implies x̂α ∈ Kν

we have to estimate ‖Ax̂α − A(x̂α)β‖Y for (x̂α)β ∈ Sβ(Ax̂α) (see (6.1)).
Lemma 6.9. Suppose Assumption 6.1 holds true, and let α, δ, % > 0 and ν ∈ (0, 1].
Suppose x ∈ K%

ν , gδ ∈ Y with ‖gδ − Ax‖Y ≤ δ and x̂α ∈ Sα(gδ). Furthermore, let β > 0,
(x̂α)β ∈ Sβ(Ax̂α) and xβ ∈ Sβ(Ax).

(a) If β ∈ (0, α], then

‖Ax̂α − A(x̂α)β‖Y ≤
βδ

α
+ ‖Ax− Axβ‖Y.

(b) If β ∈ [α,∞), then
‖Ax̂α − A(x̂α)β‖Y ≤ δ + 2‖Ax− Axβ‖Y.

Proof. (a) By the first order optimality condition, the element x̂α satisfies the classical
source condition A∗ω ∈ ∂R(x̂α) with ω = 1

α
(gδ − Ax̂α).

By Corollary 4.25 the map α 7→ 1
α
‖Ax − Axα‖Y is non-increasing. Together with

(6.7) we obtain

‖ω‖Y = 1
α
‖gδ − Ax̂α‖Y ≤

δ

α
+ 1
α
‖Ax− Axα‖Y ≤

δ

α
+ 1
β
‖Ax− Axβ‖Y.

Hence (6.5) implies the claim.
(b) We use first Lemma 6.6 with g = Ax and h = Ax̂α then (6.6) and finally non-

decreasingness of α 7→ ‖Ax− Axα‖Y (see Remark 4.26) to estimate
‖(Ax− Axβ)− (Ax̂α − A(x̂α)β)‖Y ≤ ‖Ax− Ax̂α‖Y

≤ δ + ‖Ax− Axα‖Y
≤ δ + ‖Ax− Axβ‖Y.

The triangle inequality finishes the proof.

In the next proposition we see that in terms of the regularity condition given by Kν

the minimizers stay as smooth as the true solution, whenever α is chosen large enough.
Proposition 6.10 (Regularity of minimizers). Let ν ∈ (0, 1] and %, cl, α > 0. Suppose
x ∈ K%

ν and x̂α ∈ Sα(gδ). If cl%−
1
ν δ

1
ν ≤ α, then %ν(x̂α) ≤ (2 + c−νl )%.

Proof. Let β ≤ α. With δ ≤ c−νl %αν we estimate
δβ

α
≤ c−νl %αν−1β ≤ c−νl %βν .

Furthermore,
δ ≤ c−νl %αν ≤ c−νl %βν for all β ≥ α.

Together with ‖Ax− Axβ‖Y ≤ %βν for all β > 0 and xβ ∈ Sβ(Ax) the result follows from
Lemma 6.9.

Propositions 6.8 and 6.10 precisely confirm the following intuition for Tikhonov regular-
izers. The choice of α has to be small enough to obtain good image space approximation
and it has to be large enough to get the desired regularity of the minimizers.
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Almost minimaxity on the sets Kν

Now we are in position to state and prove the main result of this section.
Theorem 6.11. Suppose Assumption 6.1 holds true, and let α, δ, % > 0 and ν ∈ (0, 1].
Suppose x ∈ K%

ν , gδ ∈ Y with ‖gδ − Ax‖Y ≤ δ and x̂α ∈ Sα(gδ) (see (6.1)).
(a) (A priori rule) Let cr ≥ cl > 0. If cl%−

1
ν δ

1
ν ≤ α ≤ cr%

− 1
ν δ

1
ν , then

L(x, x̂α) ≤ ω(c1δ,K
c2%
ν , L)

with c1 := 1 + cνr and c2 := 2 + c−νl .
(b) (Discrepancy principle) Let CD > cD > 1. If cDδ ≤ ‖gδ − Ax̂α‖Y ≤ CDδ, then

L(x, x̂α) ≤ ω(d1δ,K
d2%
ν , L)

with d1 := 1 + CD and d2 := 2 + (cD − 1)−1.

Proof. (a) By Proposition 6.8 we have ‖Ax− Ax̂α‖Y ≤ c1δ and Proposition 6.10 yields
x, x̂α ∈ Kc2%

ν .
(b) Using the triangle inequality we obtain

‖Ax− Ax̂α‖Y ≤ δ + ‖gδ − Ax̂α‖Y ≤ d1δ.

Proposition 6.8 provides (cD − 1) 1
ν %−

1
ν δ

1
ν ≤ α. Therefore, Proposition 6.10 yields

x, x̂α ∈ Kd2%
ν .

In both cases the claim follows from the definition of the modulus ω (see (6.3)).

Under mild assumptions, Theorem 6.11 gives rise to an almost minimax result in
the following manner. Recall the worst case error ∆R(δ,K, L) of a reconstruction map
R : Y→ X on a set K ⊂ X given by

∆R(δ,K, L) := sup
{
L
(
f,R(δ, gobs)

)
: f ∈ K, gobs ∈ Y with ‖gobs − F (f)‖Y ≤ δ

}
. (6.8)

(see also (2.3)) and the lower bound Ω (2δ,K, L) ≤ 2∆R (δ,K) (see Proposition 2.6 with
‖ · − · ‖X replaced by L).
Let Rα : Y→ X satisfy Rα(gδ) ∈ Sα(gδ) for all gδ ∈ Y with either α = α(δ) satisfying the
a priori parameter choice given in (a) or α = α(δ, gδ) satisfying the discrepancy principle
in (b). In the case ω(δ,K%

ν , L) ∼ %eδf for some exponents e, f > 0 Theorem 6.11 yields a
minimax result

∆Rα
(δ,K%

ν , L) ≤ C infR ∆R(δ,K%
ν , L).

This shows that up to a constant C no method can achieve a better approximation
uniformly on K%

ν in this case.
Moreover, we would like to highlight the flexibility in the choice of the loss function L.
Many recent works in Banach space or convex regularization theory are restricted to error
bounds in the Bregman divergence (see e.g. [72], [59], [38], [105]). In some situations
the meaning of the Bregman divergence is unclear and lower bounds on the Bregman
distance are required to obtain more tangible statements. In [104] these lower bounds
cause a restriction on the parameters s, p, q of the Besov scale. By applying Theorem 6.11
to Besov space regularization we can overcome these restrictions.
We end this section with a characterization of the sets Kν via approximation by elements
in K1.
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Kν via approximation by elements of K1

In [13, Prop. 1] the authors point out that the set of elements satisfying the source condition
(2.4), i.e. the set K1 (see Proposition 6.4) equals the set of possible minimizers of the
Tikhonov functional. Therefore, one might suggest that the approximation error of x ∈ X
by xα ∈ Sα(Ax) is determined by the approximation error from the family of sets

Kr
1 := {x ∈ X : %1(x) ≤ r} with r ≥ 0.

This motivates to consider the error of best approximation error

γx : [0,∞)→ [0,∞) given by γx(r) = inf
z∈Kr

1
‖Ax− Az‖Y.

The function γx is well defined as Corollary 6.3 yields ∅ 6= argminz∈XR(z) ⊂ Kr
1 for all

r ≥ 0. Moreover, it is non-increasing as Ks
1 ⊆ Kr

1 for s ≤ r.
The following proposition is the starting point to prove equivalence of Hölder-type bounds
on γx and on ‖Ax− Axα‖Y.

Proposition 6.12. Let x ∈ X, α > 0 and xα ∈ Sα(Ax). Then

γx

( 1
α
‖Ax− Axα‖Y

)
≤ ‖Ax− Axα‖Y ≤ 4γx

( 1
4α‖Ax− Axα‖Y

)
.

Proof. The first order optimality condition 1
α
A∗A(x− xα) ∈ ∂R(xα) together with (6.5)

provide %1(xα) ≤ 1
α
‖Ax− Axα‖Y. This proves the first inequality by definition of γx.

To show the second inequality let z ∈ Kr
1 . Then there exists a R-minimal z̃ ∈ X, such that

Az = Az̃. Then z̃ ∈ Kr
1 , and due to Proposition 6.4 there exists ω ∈ Y with ‖ω‖Y ≤ r

and A∗ω ∈ ∂R(z̃). Hence

R(z̃)−R(xα) ≤ 〈A∗ω, z̃ − xα〉 ≤ r‖Az̃ − Axα‖Y.

From 2αTα(xα, Ax) ≤ 2αTα(z̃, Ax) and the last inequality we deduce

‖Ax− Axα‖2
Y ≤ ‖Ax− Az̃‖2

Y + 2αr‖Az̃ − Axα‖Y
≤ ‖Ax− Az‖2

Y + 2αr‖Ax− Az‖Y + 2αr‖Ax− Axα‖Y.

Taking the infimum over z ∈ Kr
1 and estimating the third summand using ab ≤ 1

2a
2 + 1

2b
2

we obtain

‖Ax− Axα‖2
Y ≤ γx(r)2 + 2αrγx(r) + 2α2r2 + 1

2‖Ax− Axα‖
2
Y

≤ 2(γx(r) + αr)2 + 1
2‖Ax− Axα‖

2
Y.

Hence ‖Ax−Axα‖Y ≤ 2γx(r) + 2αr and the choice r = 1
4α‖Ax−Axα‖Y yields the second

inequality.

As announced we see equivalence of Hölder-type bounds on γx and on ‖Ax− Axα‖Y
as a consequence.

Proposition 6.13. Let µ ∈ (0,∞) and x ∈ X. The following statements are equivalent:
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(i) There exists a constant c1 > 0 such that γx(r) ≤ c1r
−µ for all r > 0.

(ii) There exists a constant c2 > 0 such that ‖Ax− Axα‖Y ≤ c2α
µ

1+µ for all α > 0 and
xα ∈ Sα(Ax).

More precisely (i) implies (ii) with c2 = 4c
1

1+µ
1 and (ii) implies (i) with c1 = c1+µ

2 .

Proof.

(i)⇒(ii): The second inequality in Proposition 6.12 yields

‖Ax− Axα‖Y ≤ 41+µc1α
µ‖Ax− Axα‖−µY .

Multiplying by ‖Ax− Axα‖µY and taking the power 1
1+µ yields

‖Ax− Axα‖Y ≤ 4c
1

1+µ
1 α

µ
1+µ .

(ii)⇒(i): Let r > 0. For α = c1+µ
2 r−(1+µ) we obtain 1

α
‖Ax− Axα‖Y ≤ c2α

− 1
1+µ = r. Hence

non-increasingness of γx and the first inequality in Proposition 6.12 yields

γx(r) ≤ γx

( 1
α
‖Ax− Axα‖Y

)
≤ ‖Ax− Axα‖Y ≤ c2α

µ
1+µ = c1+µ

2 r−µ.

6.2 Banach space regularization

We apply the theory developed in the last section to Banach spaces penalties, i.e. we
consider R : X → [0,∞) given by R(x) = 1

u
‖x‖uX for fixed u ∈ (1,∞). To obtain a

convergence rate result we need further assumptions that we collect in the following. These
involve K1 and %1 as defined in (6.2).

Assumption 6.14. Suppose Assumption 6.1 holds true with R(x) = 1
u
‖x‖uX for some

u ∈ (1,∞). Let X− be a Banach space with a continuous, dense embedding X ⊂ X− such
that A extends to A : X− → Y and there exists a constant M ≥ 1 such that

1
M
‖x‖X− ≤ ‖Ax‖Y ≤M‖x‖X− for all x ∈ X−. (6.9)

Moreover, suppose K1 is a vector space and that there is a quasi-norm ‖ · ‖lin on K1 such
that (K1, ‖ · ‖lin) is a quasi-Banach space and that we have

1
M
%1(x) ≤ ‖x‖u−1

lin ≤M%1(x) for all x ∈ K1. (6.10)

Note that injectivity is necessary for (6.9). On the other hand, injectivity of A : X→ Y
suffices for the existence of a space X− such that (6.9) holds with M = 1. (Take the
Banach completion of X in the norm x 7→ ‖Ax‖Y).
For example, in Besov space settings we will assume X− to be a space with negative
smoothness index, and we consider spaces X with smoothness index r ≥ 0.
The assumption is motivated by Example 6.5 and the computation of K1 for the examples
in the next section.
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Remark 6.15 (Topological assumptions). If X is reflexive we choose τX to be the weak
topology on X. Then the sublevel sets of R are τX-compact by the Banach–Alaoglu theorem.
Moreover, A is weak-to-weak continuous as it is bounded. Therefore, the topological
conditions in Assumption 6.1 are automatically satisfied in this case.
If the embedding X ⊂ X− is compact, then a further way to verify these assumptions that
works also for non-reflexive spaces is to choose τX the topology induced by the norm ‖ · ‖X−
on X.

Kν via real interpolation

In the sequel we use Proposition 6.13 to show that under Assumption 6.14 image space
approximation rates are characterized by real interpolation spaces. More precisely, we
show that Kν and (X−, K1)θ,∞ agree for a certain choice of ν depending on u and θ.
Here the case of oversmoothing, i.e. the case ν < 1

2 is naturally included.

Proposition 6.16 (Kν as a real interpolation space). Suppose Assumption 6.14 holds
true. Let θ ∈ (0, 1) and ν := θ

(1−θ)(u−1)+θ . Then we have Kν = (X−, K1)θ,∞ with

C1‖x‖(X−,K1)θ,∞ ≤ %ν(x)
(1−θ)(u−1)+θ

u−1 ≤ C2‖x‖(X−,K1)θ,∞ for all x ∈ (X−, K1)θ,∞

with constants C1, C2 > 0 depending only on u, θ and M .

Proof. Assume % := %ν(x) <∞. Proposition 6.13 with µ = θ
(1−θ)(u−1) provides the bound

γx(r) ≤ %
(1−θ)(u−1)+θ

(1−θ)(u−1) r−
θ

(1−θ)(u−1) .

Let t > 0. We choose r := %(1−θ)(u−1)+θt−(1−θ)(u−1). If ε > 0, then there exists z ∈ K1 with
%1(z) ≤ r and ‖Ax− Az‖Y ≤ γx(r) + ε. Therefore, we obtain

K(x, t) ≤ ‖x− z‖X− + t‖z‖lin ≤M(γx(r) + ε) + tM
1

u−1 r
1

u−1 .

For ε→ 0 we obtain

K(x, t) ≤M%
(1−θ)(u−1)+θ

(1−θ)(u−1) r−
θ

(1−θ)(u−1) + tM
1

u−1 r
1

u−1 =
(
M +M

1
u−1
)
%

(1−θ)(u−1)+θ
u−1 tθ.

This proves the first inequality.
Assume n := ‖x‖(X−,K1)θ,∞ < ∞. We prove a bound on γx and apply Proposition 6.13
with µ as above. Let r > 0. We choose t := 2M

1
(1−θ)(u−1)n

1
1−θ r−

1
(1−θ)(1−u) . Since 21−θ > 1,

there exists z ∈ X− such that

M−1‖Ax− Az‖+ tM− 1
u−1%1(z)

1
u−1 ≤ ‖x− z‖X− + t‖z‖lin

≤ 21−θK(x, t) ≤ 21−θntθ = tM− 1
u−1 r

1
u−1 .

Neglecting the first summand on the left hand side we obtain %1(z) ≤ r. Therefore,

γx(r) ≤ ‖Ax− Az‖Y ≤M21−θntθ = 2M
(1−θ)(u−1)+θ

(1−θ)(u−1) n
1

1−θ r−
θ

(1−θ)(u−1) .

Proposition 6.13 yields %ν(x) ≤ 8Mn
u−1

(1−θ)(u−1)+θ .
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Remark 6.17. As already exposed in Example 6.5 we cannot expect that (6.10) holds true
for `1-type norms like brp,1-norms. Therefore, Proposition 6.16 does not apply in these
cases. Nevertheless, one may use Proposition 6.13 directly to characterize the sets Kν in
this case. Applying Theorem 6.11 then reproduces the convergence rate results in the case
of linear operators for the 0, 2, 1-penalty in Theorem 3.15 and for weighed `1-penalties in
Theorem 3.59.

Remark 6.18 ((X−, K1)θ,∞ extends (X−,X)θ′,∞). Note the similarity of the source sets
(X−,X)θ′,∞ in case of the convergence result for oversmoothing Banach space regular-
ization in Theorem 5.3 to the ones in Proposition 6.16 given by (X−, K1)θ,∞. We have
(X−,X)θ′,∞ = (X−, K1)θ,∞ for θ′ ∈ (0, 1) and θ = u−1

u
θ′. To show this one can argue

as follows. In Theorem 5.3 we saw that an element in (X−,X)θ′,∞ satisfies a bound on
the minimal value of the Tikhonov functional for exact data. Replacing the Tikhonov
functional and the K-functional a similar estimation shows the converse statement. Hence,
(X−,X)θ′,∞ contains precisely the elements satisfying a certain Hölder type bound on the
minimal value. In Proposition 6.16 we characterize (X−, K1)θ,∞ by image space approxi-
mation rates. Due to Theorem 4.34 bound on the minimal value of the Tikhonov functional
for exact data are equivalent to image space approximation rates.
Therefore, the scale (X−, K1)θ,∞ may be viewed as an extension of the scale (X−,X)θ′,∞.
Nevertheless, the theory we present here cannot be understood as a generalization of the
results in Chapter 5 as we do not require linearity and the rather restrictive assumption on
K1 being a quasi-Banach space there.

Error bounds for Banach space regularization

We apply Theorem 6.11 to obtain error bounds measured in the norm of certain Banach
spaces XL with a continuous embedding XL ⊂ X−.
To this end, we consider the loss function L : X × X → [0,∞] given by L(x1, x2) =
‖x1 − x2‖XL if x1 − x2 ∈ XL and L(x1, x2) = ∞ if x1 − x2 /∈ XL. Before we prove our
convergence rate result we state a proposition that characterizes for which spaces XL

Hölder-type bounds on the modulus of continuity on balls of a given quasi-Banach space
XS ⊂ X are satisfied.

Lemma 6.19 (bound on the modulus). Suppose Assumption 6.14 holds true. Let XS ⊂ X
be quasi-Banach space, XL a Banach space with continuous embeddings XS ⊂ XL ⊂ X−
and e ∈ (0, 1). For % > 0 we denote

K%
XS := {x ∈ XS : ‖x‖XS ≤ %} .

The following statements are equivalent:
(i) There is a continuous embedding (X−,XS)e,1 ⊂ XL.

(ii) There exists a constant c > 0 with ω(δ,K%
XS , L) ≤ c%eδ1−e for all δ, % > 0.

Proof. By Lemma A.4 statement (i) is equivalent to an interpolation inequality

‖z‖XL ≤ cL‖z‖1−e
X− · ‖z‖

e
XS for all z ∈ XS. (6.11)

Let x1, x2 ∈ K%
XS with ‖Ax1−Ax2‖Y ≤ δ. The quasi-triangle inequality yields ‖x1−x2‖XS ≤

2c% and from (6.9) we obtain ‖x1 − x2‖X− ≤ Mδ. Hence (6.11) with z = x1 − x2 yields
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‖x1 − x2‖XL ≤ CM1−e(2c)e%eδ1−e. Taking the supremum over x1, x2 yields (ii).
Assuming a bound on the modulus we obtain (6.11)

‖z‖XL ≤ Ω
(
M‖z‖X− , K

‖z‖XS
XS , L

)
.

Now we deduce a convergence rate result as follows: From Theorem 6.11 together
with Proposition 6.16 we obtain error bounds in terms of the modulus of continuity ω on
bounded subsets of (X−, K1)θ,∞. Then we conclude with the Hölder type bounds on ω,
that we obtain from Lemma 6.19.

Theorem 6.20 (error bounds). Suppose Assumption 6.14 holds true and let XL be a
Banach space with a continuous embedding XL ⊂ X−. Let 0 < ξ < θ < 1 and δ, %, α > 0
and cr ≥ cl > 0, CD > cD > 1. Suppose there is a continuous embedding (X−, K1)ξ,1 ⊂ XL.
Assume

x ∈ (X−, K1)θ,∞ with ‖x‖(X−,K1)θ,∞ ≤ %.

Let x̂α ∈ Sα(gδ) (see (6.1)). There exists a constant C > 0 independent of x, gobs, δ and %
such that either of the conditions

cl%
−u−1

θ δ
(1−θ)(u−1)+θ

θ ≤ α ≤ cr%
−u−1

θ δ
(1−θ)(u−1)+θ

θ and cDδ ≤ ‖gδ − Ax̂α‖Y ≤ CDδ

implies the bound
‖x− x̂α‖XL ≤ C%

ξ
θ δ1− ξ

θ .

Proof. For ν as in Proposition 6.16 the second inequality therein yields

x ∈ K%
(X−,K1)θ,∞ ⊂ K%

ν

with % = (C2%)
u−1

(1−θ)(u−1)+θ .
In view of Theorem 6.11 it remains to prove an upper bound on ω(c1δ,K

c2%
ν , L) ≤ C%

ξ
θ δ1− ξ

δ

for constants c1, c2 > 0 given therein. The first inequality in Proposition 6.16 provides

Kc2%
ν ⊂ Kc3%

(X−,K1)θ,∞ with c3 = C−1
1 C2c

(1−θ)(u−1)+θ
u−1

2 .

The reiteration theorem (see Proposition A.6) yields

(X−, K1)ξ,1 =
(
X−, (X−, K1)θ,∞

)
ξ
θ
,1

(6.12)

with equivalent quasi-norms. In particular (X−, K1)θ,∞ ⊂ (X−, K1)ξ,1 ⊂ XL ⊂ X− (see
[8, Thm. 3.4.1 (c)&(d), Sec. 3.11]). Hence Lemma 6.19 with XS = (X−, K1)θ,∞ yields a
constant c4 with

ω
(
c1δ,K

c2%
ν , L

)
≤ ω

(
c1δ,K

c3%
(X−,K1)θ,∞

, L
)
≤ C%

ξ
θ δ1− ξ

θ

with C = c4c
ξ
θ
3 c

1− ξ
θ

1 .
For the discrepancy principle the bound ω(d1δ,K

d2%
ν , L) ≤ C%

ξ
θ δ1− ξ

δ follows by replacing
c1 by d1 and c2 by d2.
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Remark 6.21 (Limiting case θ = 1). The statement of the theorem remains valid in the
limiting case θ = 1 where the source condition in terms of (X−, K1)θ,∞ has to be replaced
by simply x ∈ K1 with ‖x‖lin ≤ %. Here the a priori rule is α ∼ %−(u−1)δ. The proof follows
along the same lines as above leaving out the step involving the reiteration theorem.

Remark 6.22. The relation (X−, K1)ξ,1 ⊂ XL is necessary to obtain error bounds as in
Theorem 6.20 in the following sense: Assuming XL satisfies an error bound

‖x− x̂α‖XL ≤ C%eδ1−e

for some e ∈ (0, 1) and all x ∈ K%
(X−,K1)θ,∞ under some a priori parameter choice α = α(δ),

then the lower bound in Proposition 2.6 yields

1
2ω

(
2δ,K%

(X−,K1)θ,∞ , L
)
≤ ∆Rα(δ)

(
δ,K%

(X−,K1)θ,∞ , L
)
≤ C%eδ1−e.

Thus the converse implication in Lemma 6.19 and the identity (6.12) provide

(X−, K1)θe,1 =
(
X−, (X−, K1)θ,∞

)
e,1
⊂ XL.

In the sequel we illustrate the impact of this result by applying it to three more concrete
Banach space regularization setups: weighed `p-, Besov brp,p- and br2,q-regularization.
Before that we finish this section by providing a tool that helps to find a quasi-norm
satisfying (6.10). Note that the density X ⊂ X− allows us to view the adjoint of the
embedding as an embedding X′A ⊂ X′.

Lemma 6.23. Suppose Assumption 6.14 holds true. We have x ∈ K1 if and only if
∂R(x) ∩ X′A 6= ∅. The function

%1 : X− → [0,∞] given by %1(x) = inf
{
‖ξ‖X′− : ξ ∈ ∂R(x) ∩ X′−

}
satisfies

1
M
%1(x) ≤ %1(x) ≤M%1(x) for all x ∈ X.

Proof. Suppose ξ ∈ ∂R(x) ∩ X′−. Let z ∈ X−, then

〈ξ, z〉 ≤ ‖ξ‖X′−‖z‖X− ≤M‖ξ‖X′−‖Az‖Y.

Therefore, Proposition A.2 provides ω ∈ Y with ‖ω‖Y ≤M‖ξ‖X′− and A∗ω = ξ ∈ ∂R(x).
With Proposition 6.4 we obtain %1(x) ≤M‖ξ‖X′− . This shows the first inequality.
Let ω ∈ Y such that A∗ω ∈ ∂R(x). Then

〈A∗ω, z〉 = 〈ω,Az〉 ≤ ‖ω‖Y‖Az‖Y ≤M‖ω‖Y‖z‖X−

for all z ∈ X. Hence %1(x) ≤ ‖A∗ω‖X′− ≤ M‖ω‖Y. Again by Proposition 6.4 this proves
the second inequality.
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6.3 Weighed `p-regularization

We will prove a convergence rate result for weighed `p-regularization with p > 1 (see
Section 2.5). Throughout this section we suppose A : `2

a → Y is linear and satisfies

1
M
‖z‖a,2 ≤ ‖Az‖Y ≤M‖z‖a,2 for all z ∈ `2

a

for a constant M > 0. Moreover, let p in(1, 2) and r = (rj)j∈Λ such that ajr−1
j is bounded

above. Then there is a continuous embedding `pr ⊂ `2
a. We consider

Sα(g) = argmin
z∈`rp

(
1

2α‖g − Az‖Y + 1
p
‖z‖pr,p

)
. (6.13)

Hence, we have X− := `2
a and X := `pr and u = p. As p > 1 the space `pr is reflexive.

Therefore, choosing the weak topology on `pr the topological assumptions in Assumption 6.1
are satisfied (see also Remark 6.15). In particular, Proposition 2.3 yields existence of the
minimizers, i.e. Sα(g) 6= ∅ for all g ∈ Y.
Using Lemma 6.23 we compute the set K1 of elements satisfying a classical source condition.
Similar considerations can also be found in [78, Rem. 3.5].

Lemma 6.24 (K1 for weighted p-norm penalties). Let s = a−
1
p−1 r

p
p−1 . Then K1 = `2p−2

s

with
1
M
%1(x) ≤ ‖x‖p−1

s,2p−2 ≤M%1(x) for all x ∈ `2
a.

Proof. Let x ∈ `pr. Then ∂R(x) = {ξ} with |ξj| = rpj |xj|p−1. With %1 as in Lemma 6.23
and in view of Proposition A.8 we obtain

%1(x) = ‖ξ‖a−1,2 =
(∑

j∈Λ a
−2
j r2p

j |xj|2p−2
)1/2

= ‖x‖p−1
s,2p−2.

Lemma 6.23 yields the result.

Therefore, (6.10) holds true with ‖ · ‖lin := ‖·‖s,2p−2.
The real interpolation spaces (`2

a, `
2p−2
s )θ,∞ are weighted weak `p-spaces which we

introduce in the following. Let µ = (µj)j∈Λ and ν = (νj)j∈Λ sequences of positive reals
and t ∈ (0,∞). Then those are defined by the following quasi-norms

`t,∞µ,ν = {x ∈ RΛ : ‖x‖µ,ν,t <∞} with ‖x‖tµ,ν,t = sup
τ>0

(
τ t
∑

j∈Λ νj1{µj |xj |>τ}

)
.

We apply Theorem 6.20 and obtain the following result.

Theorem 6.25 (error bounds for weighted p-norm penalties). Let p ∈ (1, 2), t ∈ (2p−2, p)
and δ, %, α > 0 and cr ≥ cl > 0, CD > cD > 1 and µ := (a2r−p)

1
2−p , ν := (a−1r)

2p
2−p .

Assume x ∈ `t,∞µ,ν with ‖x‖µ,ν,t ≤ %, gobs ∈ Y with ‖gobs − Ax‖Y ≤ δ and x̂α ∈ Sα(gδ) (see
(6.13)). There exists a constant C > 0 independent of x,gobs, δ and % such that whenever
α satisfies either

cl%
− t(2−p)2−t δ

2(2−p)
2−t ≤ α ≤ cr%

− t(2−p)2−t δ
2(2−p)

2−t or cDδ ≤ ‖gδ − Ax̂α‖Y ≤ CDδ



144 6. Convergence rates based on image space approximation

the bound
‖x− x̂α‖r,p ≤ C%

t(2−p)
p(2−t) δ

2(p−t)
p(2−t)

holds true.

Proof. By Lemma 6.24 and [45, Thm. 2, Rem.] we have

`pr =
(
`2
a, `

2p−2
s

)
ξ,p

= (X−, K1)ξ,p with ξ := p− 1
p

.

By [8, Thm. 3.4.1 (b); Sec. 3.11] there is a continuous embedding
(
`2
a, `

2p−2
s

)
ξ,1
⊂ `pr.

Hence the choice XL = `pr satisfies the assumption of Theorem 6.20.
The interpolation spaces (X−, K1)θ,∞ =

(
`2
a, `

2p−2
s

)
θ,∞

are characterized by weighted weak
`p-spaces `t,∞µ,ν in the following manner:

`t,∞µ,ν = (`2
a, `

2p−2
s )θ,∞ with 1

t
= 1− θ

2 + θ

2p− 2 , µ := (a2r−p)
1

2−p , ν := (a−1r)
2p

2−p

with equivalent quasi-norms (see [45, Thm. 2]).
The application of Theorem 6.20 yields the result.

Remark 6.26 (Limiting case t = 2p−2). Due to Remark 6.21 the statement remains valid
in the limiting case t = 2p− 2 if one replaces `t,∞µ,ν by K1 = `2p−2

s with s = a−
1
p−1 r

p
p−1 . Here

we obtain the rate ‖x− x̂α‖r,p ≤ C%
p−1
p δ

1
p . In [49] the convergence rate O(δ

1
p ) is already

proven under a condition similar to (2.4). Here we obtain intermediate convergences rates
between O(δ0) and O(δ

1
p ). This has the advantage that we obtain statements on the speed

of convergences on larger sets.

Remark 6.27 (p = 1). Theorem 6.25 remains valid word by word in the case p = 1 (see
Theorem 3.59).

6.4 Besov r, p, p-Penalties

We consider Besov space wavelet regularization with a finitely smoothing operator as
introduced in Section 2.4. Let Bs

p,q be a Besov scale that is p-monotone as in Definition 2.9.
We assume linearity of the forward operator A : B−a2,2 → Y and that there is a constant
M̃ ≥ 1 such that

1
M̃
‖f |B−a2,2‖ ≤ ‖Ax‖Y ≤ M̃‖f |B−a2,2‖ for all f ∈ B−a2,2 . (6.14)

Moreover, throughout this section we suppose that Assumption 2.11 holds true with
smax > a and that the number of coefficients in each level satisfies (2.16). The wavelet
synthesis operator S : b−a2,2 → B−a2,2 is a Banach space isomorphism. Hence, there exists a
constant M ≥ 1 such that

1
M
‖x‖−a,2,2 ≤ ‖ASx‖Y ≤M‖x‖−a,2,2 for all x ∈ b−a2,2. (6.15)
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With p ∈ (1,∞) and r ∈ [0, smax) such that a + r ≥ d
(

1
p
− 1

2

)
we obtain a continuous

embedding brp,p ⊂ b−a2,2 (see [101, 3.3.1.(6),(7), 3.2.4.(1)]) and consider

Rα(g) = Sx̂α with x̂α ∈ argmin
z∈brp,p

(
1

2α‖g − ASz‖
2
Y + 1

p
‖z‖pr,p,p

)
. (6.16)

We set X− = b−a2,2 and X = brp,p. Recall that we have

bsp,p = `pωs,p with equal norm for (ωs,p)(j,k) = 2j(s+
d
2−

d
p

).

Hence for p < 2, this example is a special case of Section 6.3.
As above we use Lemma 6.23 to compute K1.

Lemma 6.28 (K1 for for r, p, p-penalties). Let s̃ := a+rp
p−1 and t̃ := 2p− 2. Then K1 = bs̃t̃,t̃

with
1
M
%1(x) ≤ ‖x‖p−1

s̃,t̃,t̃
≤M%1(x) for all x ∈ b−a2,2.

Proof. The proof works along the lines of the proof of Lemma 6.24 by identifying the
expression for ‖ξ‖a,2,2 with ‖x‖s̃,t̃,t̃.

For r < s < s̃ we set

ks :=
(
b−a2,2, b

s̃
t̃,t̃

)
θ,∞

with θ = p− 1
p

a

s+ a
. (6.17)

We apply Theorem 6.20 to obtain convergence rates for functions whose wavelet coefficients
belong to ks. After that we give necessary and sufficient conditions in terms of spaces Bs

p,q

for the latter smoothness condition.

Theorem 6.29 (Error bound for r, p, p-penalties). Let r < s < s̃ and δ, %, α > 0,
cr ≥ cl > 0, CD > cD > 1. Assume f = Sx for x ∈ ks with ‖x‖ks ≤ %, gobs ∈ Y with
‖gobs − Af‖Y ≤ δ and f̂α ∈ Rα(gobs). (see (6.16)). Let p := 2p(a+r)

2a+pr . There is a constant
C > 0 independent of f , gobs, δ and % such that either of the conditions

cl%
− pa
s+a δ

(2−p)s+2a
s+a ≤ α ≤ cr%

− pa
s+a δ

(2−p)s+2a
s+a and cDδ ≤ ‖gδ − Af̂α‖Y ≤ CDδ

implies the bound
‖f − f̂α |B0

p,p‖ ≤ C%
a
s+a δ

s
s+a .

Proof. We apply Theorem 6.20 with X− = b−a2,2 and X = brp,p. By Lemma 6.28 we have
(6.10) with K1 = bs̃t̃,t̃. The identification [45, Thm. 2, Rem.] for p 6= 2 and [101, 3.3.6.(9)]
for p = 2 yield

b0
p,p =

(
b−a2,2, b

s̃
t̃,t̃

)
ξ,p

= (X−, K1)ξ,p with ξ = p− 1
p

a

a+ r
. (6.18)

Hence, the choice XL = b0
p,p satisfies the assumption in Theorem 6.20 as p > 1 implies that

there exists a continuous embedding (·, ·)ξ,1 ⊂ (·, ·)ξ,p (see [8, Thm. 3.4.1 (b); Sec. 3.11]).
We apply Theorem 6.20 and obtain first a bound ‖x− x̂α‖0,p,p ≤ C%

a
s+a δ

s
s+a . With this

the desired bound follows from boundedness of S : b0
p,p → B0

p,p.
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Remark 6.30 (Limiting case s = s̃). In the limiting case s = s̃ the result remains valid
if one replaces ks by K1 = bs̃t̃,t̃ and we obtain the bound ‖f − f̂α‖0,p,p ≤ C%

p−1
p δ

1
p (see

Remark 6.21).

Remark 6.31 (Error bound in Lp). Let p ≤ 2. As in Corollary 3.16 the error bound
measured in the B0

p,p-norm implies ‖f − f̂α‖Lp(Ω) = O(%
a
a+s δ

s
s+a ) if B0

p,p = B0
p,p(Ω) with Ω

being either Td,Rd or a bounded Lipschitz domain in Rd (see also Proposition A.11).

Remark 6.32 (p = 1). The above result holds true word for word in the case p = 1 (see
Theorem 3.65).

Remark 6.33 (Influence of r > 0). A larger value of r > 0 leads to a larger s̃, such that
our result is able to guarantee faster convergence rates (under stronger assumptions) in
this case.

For p = 2 we have ks = bs2,∞ (see [101, 3.3.6.(9)]). Hence if r < s < min{smax, s̃} then
the smoothness condition in Theorem 6.29 is satisfied if and only if f ∈ Bs

2,∞ in this case.
To obtain a similar statement in the case p 6= 2 we start by showing a nesting of ks for
p 6= 2 by Besov sequence spaces.

Lemma 6.34. Let r < s < s̃ and t = 2p(a+r)
s(2−p)+2a+pr .

(a) For p < 2 we have continuous embeddings

bst,t ⊂ ks ⊂ bst−ε,∞ for all 0 < ε < t.

(b) For p > 2 we have continuous embeddings bst,t ⊂ ks ⊂ bs2,∞.

Proof. Let θ = p−1
p

s+a
a

. Then 1
t

= 1−θ
2 + θ

t̃
and s = (1− θ)(−a) + θs̃. With [8, Thm. 3.4.1

(b)] we obtain
bst,t =

(
b−a2,2, b

s̃
t̃,t̃

)
θ,t
⊂
(
b−a2,2, b

s̃
t̃,t̃

)
θ,∞

= ks

in both cases.
Suppose p < 2. Then t̃ < 2 and t ∈ (t̃, 2). Let ε > 0 such that t − ε ∈ (t̃, 2). There
are s < s′ < s̃ and θ < θ′ < 1 such that bs′t−ε,t−ε =

(
b−a2,2, b

s̃
t̃,t̃

)
θ′,t−ε

. The reiteration
theorem (see Proposition A.6) yields ks =

(
b−a2,2, b

s′
t−ε,t−ε

)
θ
θ′ ,∞

. From t− ε < 2 we obtain
the continuous embeddings b−a2,2 ⊂ b−a2,∞ ⊂ b−at−ε,∞. Together with the interpolation identity
bst−ε,∞ = (b−at−ε,∞, brt−ε,∞)θ,∞ we get the second inclusion using [101, 2.4.1 Rem. 4]. Due to
p-monotonicity we obtain the second inclusion for all 0 < ε < t.
For p > 2 we have t̃ > 2. Hence bs̃t̃,t̃ ⊂ bs̃2,t̃. Once again [101, 2.4.1 Rem. 4] yields
ks ⊂

(
b−a2,2, b

s̃
2,t̃

)
θ,∞

= bs2,∞.

We use this to give a sufficient condition on f such that f = Sx with x ∈ ks.

Corollary 6.35 (Smoothness condition on f). Let p ∈ (1,∞), r < s < min{smax, s̃},
t = 2p(a+r)

s(2−p)+2a+pr and % > 0. There exists a constant c such that f ∈ Bs
t,t with ‖f |Bs

t,t‖ ≤ %

implies f = Sx with ‖x‖ks ≤ c%.
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Proof. Due to Assumption 2.11 S−1 : Bs
t,t → bst,t is bounded. Lemma 6.34 yields a continu-

ous embedding bst,t ⊂ ks.

Note that from Lemma 6.34 one can similarly also derive necessary conditions for the
smoothness condition in Theorem 6.29.
In the article [104] the authors achieve the minimax optimal convergence rate for s, p, q-
penalties only under the restriction q ≥ 2. For q < 2 the rates obtained there by variational
source conditions and Bregman distances are suboptimal. Here we obtain the optimal
convergence rate for all 1 ≤ p = q <∞.
The same arguments as in Example 3.67 shows that describing the regularity of functions
with jumps or kinks via their wavelet expansion in terms of ks allows for a higher value of s
then using Bp

s,∞. Therefore, we obtain a faster convergence rate for this class of functions.
For p > 2 we measure the error in a stronger norm than the L2-norm. On the other hand,
the set on which we obtain convergence rates is smaller than bs2,∞.

6.5 Besov r, 2, q-Penalties

Once again we consider wavelet regularization as in Section 2.4. Let Bs
p,q be a Besov scale.

Here we do not have to require p-monotonicity. Again we assume A : B−a2,2 → Y to be
linear such that (6.14) and Assumption 2.11 hold true with smax > a (we do not need
(2.16) here).
With q ∈ (1,∞) and r ∈ [0, smax) we obtain a continuous embedding br2,q ⊂ b−a2,2 and
consider

Rα(g) = Sx̂α with x̂α ∈ argmin
z∈br2,q

(
1

2α‖g − ASz‖
2
Y + 1

q
‖z‖qr,2,q

)
. (6.19)

We set X− = b−a2,2 and X = br2,q. As above (6.14) transfers to a lower and upper bound for
A ◦ S (see (6.15)).
Once again we start by computing K1.

Lemma 6.36 (K1 for for r, 2, q-penalties). Let s̃ := a+rq
q−1 and q̃ := 2q − 2. Then K1 = bs̃2,q̃

with
1
M
%1(x) ≤ ‖x‖q−1

s̃,2,q̃ ≤M%1(x) for all x ∈ b−a2,2.

Proof. If x ∈ b0
2,q, then ∂R(x) = {ξ} with ξj,k = 2jrq‖xj‖q−2|xj,k|. With %1 as in

Lemma 6.23 and using Proposition A.8 we obtain %1(x) = ‖ξ‖a,2,2 = ‖x‖q−1
s̃,2,q̃. Lemma 6.23

yields the result.

Next we deduce the convergence rate result from Theorem 6.20.

Theorem 6.37 (Error bounds for 0, 2, q-penalties). Let r < s < min{smax, s̃} and δ, %, α >
0, cr ≥ cl > 0, CD > cD > 1. Assume f ∈ Bs

2,∞ with ‖f |Bs
2,∞‖ ≤ %, gobs ∈ Y with

‖gobs − Af̂α‖Y ≤ δ and f̂α ∈ Rα(gobs) (see (6.19)). There exists a constant C > 0
independent of x, gobs, δ and % such that either of the conditions

cl%
− qa
s+a δ

(2−q)s+2a
s+a ≤ α ≤ cr%

− qa
s+a δ

(2−q)s+2a
s+a and cDδ ≤ ‖gδ − Ax̂α‖Y ≤ CDδ
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implies the bound
‖f − f̂α |B0

2,2‖ ≤ C%
a
s+a δ

s
s+a .

Proof. We verify Assumption 6.14 with X− = b−a2,2 , X = br2,q and XL = b0
2,2. As already

mentioned above the requirement (6.9) follows as in (6.15). Due to Lemma 6.36 condition
(6.10) is satisfied. Moreover, we have

b0
2,2 =

(
b−a2,2, b

s̃
2,q̃

)
ξ,2

with ξ = q − 1
q

a

a+ r
.

Therefore, the choice XL = b0
2,2 satisfies the assumption on XL in Theorem 6.20.

Finally, for r < s < s̃ we have

bs2,∞ =
(
b−a2,2, b

s̃
2,q̃

)
θ,2

with θ = q − 1
q

s+ a

a
.

Due to Assumption 2.11 we have x := S−1f ∈ bs2,∞ with ‖x‖s,2,∞ ≤ c1% with c1 the
operator norm of S−1 : Bs

2,∞ → bs2,∞. Therefore, Theorem 6.20 yields the error bound
‖x− x̂α‖0,2,2 ≤ c2%

a
s+a δ

s
s+a with x̂α a minimizer in (6.19). Due to boundedness of S : b0

2,2 →
B0

2,2 this bound on the wavelet coefficients transfers to the desired error bound.

Remark 6.38 (L2-loss). As in Corollary 3.16 the error bound measured in the B0
2,2-norm

equals a bound ‖f − f̂α‖L2(Ω) = O
(
%

a
a+s δ

s
s+a
)

if B0
2,2 = B0

2,2(Ω) with Ω either Td,Rd or a
bounded Lipschitz domain in Rd (see also Proposition A.11).

Remark 6.39 (q = 1). The above result holds true word for word in the case q = 1 (see
Theorem 3.15).

Remark 6.40 (Limiting case s = s̃). In the limiting case s = s̃ the result remains valid if
one replaces bs2,∞ by K1 = bs̃2,q̃ with q̃ = 2q − 2. Here we obtain ‖f − f̂α |B0

2,2‖ ≤ C%
q−1
q δ

1
q .

Here the results for q ≥ 2 agree with the ones in [104]. Theorem 6.37 proves the order
optimal convergence rate for all q ∈ (1,∞). In particular for q < 2 our result improves the
convergence rate in the latter reference.
Note that we measure the error in the B0

2,2-norm independent of the value of q, i.e. the
error norm is not dictated by the penalty term.
Suppose r = 0. Then the smaller q the larger is the region r < s < s̃ = a

q−1 of regularity
parameters for which we guarantee upper bounds. Furthermore, we see that changing
the fine index q while keeping p = 2 does not change the set where convergence rates are
guaranteed, but it influences the parameter choice rule.
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Chapter Seven
Discussion and outlook

In this work we have successfully derived order optimal convergence rates for wavelet
regularization in Besov scales. In particular, we believe that with our contributions
the convergence rate theory for sparsity promoting r, p, 1-penalties has now reached a
satisfactory stage in many respects, e.g., concerning minimax convergence rates and
converse results for approximation rates. Nevertheless, starting with Chapter 3 we would
like to point out some open problems and potential extensions:

• Remark 3.8 shows that we cannot expect that our strategy for the verification of
variational source condition (see Proposition 3.5 and 3.29) generalizes to Besov
space r, p, q-penalties with q > 1. Nevertheless, an extension to the non convex case
0 < q < 1 seems straightforward by adapting the the arguments in [3, Thm. 4.3.].

• A further interesting extension concerns redundant frames. In Section 3.8 we showed
how to extend the convergence rate results in Chapter 3 to redundant frames when
we consider the Tikhonov functional on function spaces evoking the analysis operator
of the frame to define the penalty term (see Remark 2.14 and the discussion at the
beginning of Section 3.8). It remains open how to obtain convergence rates in the
synthesis setting given by (2.17) for redundant systems. Note that lacking injectivity
the composition of a forward operator in a function space with a synthesis operator of
a redundant frame cannot meet (3.19b) or (3.42). Therefore, the mapping properties
of the forward operator will have to be described in a different manner. In this
context we refer to [37] for convergence rate theory with `1-penalty and non-injective
linear forward operators.

• Shearlets and curvelets are a natural extension of wavelets used e.g. in tomographic
imaging [10] or in phase retrieval problems [77]. In [74] so called shearlet smoothness
spaces are investigated. Although the latter scale of spaces has a close connection
to Besov spaces (see [74, Prop. 4.3.]) those systems do not satisfy Assumption 2.11
with the scale of Besov spaces. Anyways, the sequence spaces associated to shearlet
smoothness spaces seem to have a similar structure as the spaces of wavelet coefficients
bsp,q used in this work. Therefore, an extension to penalties given by the latter systems
seems possible.

• For deterministic noise all our convergence rate results are proven under both an a
priori parameter choice rule depending on the smoothness of the unknown and the
discrepancy principle as a standard a posteriori rule. In Section 3.7 we successfully
used the purely deterministic variational source conditions to treat statistical noise
models. Bounds on the moments of the reconstruction error are achieved under an
a priori parameter choice rule of α. It is desirable to investigate convergence rates
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under an a posteriori choice rules in the statistical setting.
• Most of the results in this work are devoted to finitely smoothing operators as

introduced and discussed in Section 2.4. The theory for sparsity promoting wavelet
regularization is complemented by our convergence rate results for the backward
heat equation (see Theorems 3.77 and 3.90). Proposition 3.75 hopefully paves the
way to treat also nonlinear exponentially ill-posed problems like inverse scattering
problems or electrical impedance tomography. Moreover, another technical challenge
is to extend the results for the backward heat equation to wavelet regularization
with 0, 1, 1-penalty.

In Chapter 4 we have shown that the smoothness condition in terms of Bs
2,∞ for r, 2, 1-

penalties and in terms of Ks for r, 1, 1-penalties are not only sufficient but also necessary
for Hölder type approximation rates (see Theorems 4.3 and 4.8). Also the other converse
results, i.e. Theorems 4.7, 4.33, 4.34, 4.36, Remark 5.8 and Proposition 6.16, provide
necessary conditions for bounds on the reconstruction error with exact data. However,
converse results for noisy data, that is the question whether a regularization scheme
achieves given convergence rates in terms of the noise level on even larger sets, remains
open. Although it seems likely that the answer will be negative, a rigorous proof would
probably require uniform lower bounds on the maximal effect of data noise.
So far the theory presented in Section 4.3 is restricted to Hölder-type variational source
conditions. To also cover exponentially ill-posed problems it is of interest to investigate
logarithmic convergence rates and source conditions. At first sight condition (4.27) seems
to fail for index functions not of Hölder-type. Thus it remains open whether an equivalence
between image space approximation rates and variational source conditions remains valid
for more general upper bounds.
An inspection of the proofs in Sections 4.3 and 6.1 shows that the set valued mapping
A ◦ Sα that assigns minimizers f̂α of the Tikhonov functional to an observation gobs plays
the key role in our contributions for general convex regularization. The discovery that
the latter map is a proximal operator (see Proposition 4.20) allowed us to provide new
arguments and structural insights with the differentiability result in Proposition 4.24 and
the firm non-expansiveness in Lemma 6.6 as two forceful examples.

The simplicity and clearness of the the convergence rate theory for oversmoothing with
Banach space penalty in Chapter 5 indicates that this case can be treated more flexi-
bly and is less challenging than classical variational regularization theory with a true
solution contained in the penalty’s domain. Here we saw a close connection between
smoothness conditions and the real interpolation scale spanned by the space associated to
the forward operator and the one providing the penalty term. Therefore, as we saw for
BV-regularization, it is enough to know the interpolation theory of the latter spaces to
conclude a convergence rate result. Concerning converse results for noisy data in Banach
space regularization the author believes that the oversmoothing setting may be a good
starting point. As already mentioned in Remark 5.21, a treatment of statistical noise
models would be desirable.

So far, the presented theory based on image space approximation rates in Chapter 6 is
limited to Hilbert space data fidelity terms. It would be interesting to generalize the
arguments to Banach spaces Y. A generalization to nonlinear operators seems even more
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challenging.
As for approaches using variational source conditions, the fastest convergence rate we
are able to prove for a p-homogeneous penalty term is O(1

p
) (see Remarks 6.26, 6.30

and 6.40). It seems to be an interesting aim to extend the presented approach to higher
order convergence rates. Also the question of saturation in Banach space regularization is
hardly understood. The author believes that the the exponent u in a norm penalty of the
form R(x) = 1

u
‖x‖uX has an influence on the saturation effect. Another direction is the

application to further concrete settings as in the three presented examples in Section 6.2.
An idea is to formulate a weaker version of the condition (6.10) by requiring a nesting
X1a ⊆ K1 ⊆ X1b with quasi-Banach spaces X1a,X1b and try to prove a generalized version
of Theorem 6.20. The author believes that this approach would cover e.g. Besov norm
penalties with mixed indices p, q with p 6= 2.

Finally, we address the choice of the loss function to measure the reconstruction error.
In all our convergence rate results we are limited to loss functions associated to spaces
that continuously contain a real interpolation space in the scale generated by the forward
operator with respect to Y and the space providing the penalty term (see the condition on
XL in Assumption 5.1). This restriction impedes a clear comparison of different regular-
ization schemes. Therefore, a theory that is more flexible in the choice of the loss function
is desirable (see also Remark 5.16). In this context Remark 6.22 shows that Hölder type
convergence rates under an a priori parameter choice rule on source sets containing all
elements satisfying some Hölder type image space approximation rate cannot hold true for
loss function whose corresponding spaces do not satisfy an embedding relation as above.

In summary, although many important theoretical questions concerning sparsity promoting
wavelet regularization could be settled in this thesis, a number of interesting problems
remains unsolved and may be subject of further research.
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Appendix

A.1 Index functions

Lemma A.1. Let ϕ : [0,∞)→ [0,∞) be concave and upper semi-continuous. Then ϕ is
non-decreasing and continuous.

Proof. To prove non-decreasingness let τ1 < τ2. Set m := ϕ(τ2)−ϕ(τ1)
τ2−τ1 . Using concavity it is

routine to check that ϕ(τ) ≤ m(τ −τ1)+ϕ(τ1) for all τ > τ2. Together with non-negativity
of ϕ this forces m ≥ 0. Therefore, ϕ(τ1) ≤ ϕ(τ2).
Concavity of ϕ yields continuity on the open set (0,∞) (see [6, Cor. 8.30]) and it remains to
prove continuity at 0. By non-decreasingness the limit limτ↘0 ϕ(τ) exists. Let 0 < τ < 1.
Then ϕ(τ) ≥ (1 − τ)ϕ(0) + τϕ(1) yields limτ↘0 ϕ(τ) ≥ ϕ(0). Moreover, upper semi-
continuity yields ϕ(0) ≥ lim infτ↘0 ϕ(τ) = limτ↘0 ϕ(τ). Therefore, ϕ is continuous.

A.2 Banach spaces

In this section we collect some functional analytic tools. The first one characterizes the
range of the adjoint operator of a linear bounded operator.

Proposition A.2 ([93, Lem. 8.21.]). Let A : X→ Y be a bounded linear operator between
Banach spaces and ξ ∈ X′. The following statements are equivalent:

(i) There exists a constant c ≥ 0 such that 〈ξ, x〉 ≤ c‖Ax‖Y for all x ∈ X.
(ii) There exists ω ∈ Y′ with ‖ω‖Y′ ≤ c and A∗ω = ξ.

Next we characterize weak∗-to-weak continuity.

Proposition A.3 (weak∗-to-weak continuity). Let Z and Y be real Banach spaces and
A : Z′ → Y linear and bounded. Then A is weak∗-to-weak continuous if and only if im(A∗) ⊂
Z.
Here we view Z ⊂ Z′′ canonically embedded.

Proof. First recall that a linear functional ψ : Z′ → R is weak∗-continuous if and only if
ψ ∈ Z.
Suppose A is weak∗-to-weak continuous and let φ ∈ Y′. Then A∗φ = φ ◦ A is weak∗
continuous. Hence A∗φ ∈ Z. This proves im(A∗) ⊂ Z.
On the other hand, suppose im(A∗) ⊂ Z. Then φ ◦ A = A∗φ ∈ Z for all φ ∈ Y′. Hence
φ ◦A is weak∗-continuous. Therefore, A is weak∗-to-weak continuous as the weak topology
on Y is the initial topology with respect to the elements in Y′.
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We turn to real interpolation theory of Banach spaces. Here we assume that X− is
a Banach space and X is a quasi-Banach spaces with a continuous embedding X ⊂ X−.
Then we can rewrite the K-functional

K(t, f) = inf
h∈X

(
‖f − h‖X− + t‖h‖X

)
for t > 0 and f ∈ X−. (A.1)

Note that this agrees with the definition given in Section 2.4 using X− as ambient space:
D̃ = X− in the notation of Section 2.4). Recall

‖f‖(X−,X)θ,q =
(∫ ∞

0

(
t−θK(t, f)

)q dt
t

) 1
q

for 0 < θ < 1 and q ∈ [1,∞) and

‖f‖(X−,X)θ,∞ = sup
t>0

t−θK(t, f)

for 0 ≤ θ ≤ 1. Here we obtain quasi-Banach spaces (X−,X)θ,q consisting of all f ∈ X−
with ‖f‖(X−,X)θ,q <∞ (see e.g. [8, Sec. 3.11.]).

Lemma A.4 (Interpolation inequality (see [8, Sec. 3.5, Thm. 3.11.4])). Suppose XL is a
Banach space with XL ⊂ X− and ξ ∈ (0, 1). Then the following statements are equivalent

(i) XL continuously embeds into (X−,X)ξ,1.
(ii) There exists a constant cL > 0 such that

‖f‖XL ≤ cL‖f‖1−ξ
X− · ‖f‖

ξ
X for all f ∈ X.

Proposition A.5. We have X ⊂ (X−,X)1,∞ with a continuous embedding. The embedding
constant is 1.

Proof. Let f ∈ X. Then we insert h = f in the K-functional (A.1) to obtain

K(t, f) ≤ t‖f‖X for all t > 0.

Hence f ∈ (X−,X)1,∞ with ‖f‖(X−,X)1,∞
≤ ‖f‖X.

Proposition A.6 (Reiteration). Let 0 < ξ < θ ≤ 1. Then

(X−,X)ξ,1 =
(
X−, (X−,X)θ,∞

)
ξ
θ
,1

with equivalent quasi-norms.

Proof. In the notation of [8, Def. 3.5.1] we have that X− is of class C (0, (X−,X)). Moreover,
(X−,X)θ,∞ is of class C (θ, (X−,X)). If θ < 1 this follows directly from [8, Thm. 3.11.4]).
For θ = 1 the definition yields that (X−,X)1,∞ is of class CK (1, (X−,X)) (see [8, Def. 3.5.1]).
Moreover, from Proposition A.5 we see

‖f‖(X−,X)1,∞
≤ ‖f‖X ≤ t−1 max{‖f‖X− , t‖f‖X}.

Hence (X−,X)1,∞ is of class CJ (1, (X−,X)) (see again [8, Def. 3.5.1]). Therefore, the result
follows from the reiteration theorem [8, Thm. 3.11.5].
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A.3 Besov spaces

In this section we collect some properties of Besov function and related sequence spaces
needed in this work. The first one is a compactness statement needed to prove existence
of minimizers of the Tikhonov functional in wavelet regularization.

Proposition A.7. Let p, q ∈ [1,∞] and r, r̃ ∈ R with r̃ < r and suppose (2.16). The unit
ball

B := {x ∈ brp,q : ‖x‖r,p,q ≤ 1}
is norm compact in br̃p,q.

Proof. For n ∈ N0 we consider Pn : brp,q → br̃p,q given by (Pnx)(j,k) = x(j,k) if j ≤ n and
(Pnx)(j,k) = 0 for j > n. Writing out the definition of the norm we obtain

‖x− Pnx‖r̃,p,q ≤ 2−(n+1)(a+r)‖x‖r,p,q for all x ∈ brp,q.

This shows that the finite range operator Pn converges strongly to the embedding operator
brp,q ⊂ br̃p,q. Hence the embedding is compact. Therefore, B is relatively compact. It
remains to show that B is closed. To this end, let (x(k))k∈N ⊂ B be a sequence that
converges to some x ∈ br̃p,q in the ‖·‖r̃,p,q-norm. In particular we obtain xj = limk x

(k)
j for

all j ∈ N0. As Pn has finite range this implies

‖Pnx‖r,p,q = lim
k→∞
‖Pnx(k)‖r,p,q ≤ lim sup

k→∞
‖x(k)‖r,p,q ≤ 1

for all n ∈ N. Therefore, x ∈ B.

Next we characterize dual spaces of Besov sequence spaces bsp,q and weighed `p-spaces.
The statement is proven by adapting the well known proofs of the isomorphisms (`p)′ = `p

′

with p′ the Hölder conjugate of p ∈ [1,∞).

Proposition A.8. (a) Let p ∈ [1,∞) with Hölder conjugate p′ and ω = (ωj)j∈Λ a
sequence of positive reals. Let p′ ∈ (1,∞] with 1

p
+ 1

p′
= 1. Then the pairing

〈·, ·〉 : `p
′

ω−1 × `pω → R given by 〈ξ, x〉 =
∑

j∈Λ ξjxj

is well defined and gives rise to an isometric isomorphism (`pω)′ ∼= `p
′

ω−1.
(b) Let p, q ∈ [1,∞) with Hölder conjugates p′, q′ and s ∈ R. Then the pairing

〈·, ·〉 : b−sp′,q′ × bsp,q → R given by 〈ξ, x〉 =
∑

(j,k)∈Λ ξj,kxj,k

is well defined and gives rise to an isometric isomorphism (bsp,q)′ ∼= b−sp′,q′. (see also
[101, 2.11.2 (1)])

The next proposition provides a predual for the sequence spaces bsp,q.

Proposition A.9 (Predual space). Suppose s ∈ R and p, q ∈ [1,∞) with Hölder conjugates
p′ and q′. For λ ∈ Λ let eλ ∈ RΛ be the unit vector given by (eλ)λ′ = δλλ′. Then the norm
closure E of the linear span of F := {eλ : λ ∈ Λ} in b−sp′,q′ is a predual for bsp,q, i.e. E ′ = bsp,q.
More precisely the map Ψ: bsp,q → E ′ given by (Ψ(x)) (z) = 〈z, x〉 is an isometric isomor-
phism.
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Proof. Proposition A.8 allows us to view F as a subset of
(
bsp,q

)′
. We show that the closed

unit ball B := {x ∈ brp,q : ‖x‖r,p,q ≤ 1} is compact in the topology τF induced by F . Then
the claim follows from [70, Thm. 1] as F obviously separates points of brp,q.
We consider RΛ with the product topology. Then it is easy to see that τD coincides with
the induced topology by bsp,q ⊂ RΛ. Let ωj := 2jr2jd(

1
2−

1
p). Then x ∈ B implies

|xj,k| ≤ ‖xj‖p ≤ ω−1
j ‖x‖r,p,q ≤ ω−1

j .

Hence, B ⊂ ∏(j,k)∈Λ[−ω−1
j , ω−1

j ]. As the right hand side of the latter inclusion is compact
by Tychonoff’s theorem it suffices to show that B is closed in RΛ. To this end, suppose
x ∈ RΛ \B. Then there exists a finite subset J ⊂ Λ and ε > 0, such that whenever z ∈ RΛ

satisfies zλ ∈ (xλ − ε, xλ + ε) for all λ ∈ J then ‖z‖r,p,q > 1. Hence, B is closed in RΛ since
its complement is open.

Proposition A.10 (weak∗-to-weak continuous embedding). Let s ∈ R and p, q, q2 ∈ [1,∞)
with q < q2. We endow bsp,q with the weak∗-topology given by the predual in Proposition A.9.
Then the embedding bsp,q ⊂ bsp,q2 is weak∗-to-weak continuous.

Proof. With p′, q′ and q′2 the Hölder conjugates of p, q and q2 and in view of Proposition A.8
we may view the adjoint operator of the embedding bsp,q ⊂ bsp,q2 as the embedding b−sp′,q′2 ⊂
b−sp′,q′ . By Proposition A.9 and Proposition A.3 it suffices to show that b−sp′,q′2 is contained in
the closure of the linear span of F = {eλ : λ ∈ Λ} in b−sp′,q′ .
Note that 1 ≤ q < q2 implies q2 < ∞. Let x ∈ b−sp′,q′2 . For n ∈ N let zn ∈ RΛ be given
by (zn)j = xj if j ≤ n and (zn)j = 0 if j > n. Then zn belongs to the linear span of F .

Furthermore, zn ∈ b−sp′,q′2 and with ωj = 2−js2jd
(

1
2−

1
p′

)
we obtain

‖x− zn‖q2−s,p′,q′2 =
∞∑

j=n+1
w
q′2
j ‖xj‖

q′2
p′ −→ 0 for n→∞.

This shows that (zn)n∈N converges to x in b−sp′,q′2
. This implies convergence in b−sp′,q′ and

therefore x belongs to the closure of the linear span of D in b−sp′,q′ .

Now we turn to Besov function spaces and their relation to other classical function
spaces.
Recall that for s ∈ R fractional Sobolev spaces on Rd are given by

Hs(Rd) :=
{
f ∈ S ′(Rd) : ‖f‖Hs(Rd) :=

∥∥∥(1 + ‖ξ‖2
2) s2F(f)

∥∥∥
L2(Rd)

<∞
}

with the Fourier transform F : S ′(Rd)→ S ′(Rd). Likewise for the d-dimensional torus we
have

Hs(Td) :=

f ∈ D′(Td) : ‖f‖Hs(Td) :=
∑
k∈Zd

(1 + ‖k‖2
2) s2 |f̂(k)|2

 1
2

<∞
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with the Fourier coefficients f̂(k) of f. For a bounded Lipschitz domain Ω ⊂ Rd we define
Hs(Ω) by restrictions (in the sense of the theory of distributions):

Hs(Ω) :=
{
f ∈ D′(Ω) : f = g|Ω for some g ∈ Hs(Rd)

}
(A.2)

with the norm given by the infimum over ‖g‖Hs(Rd) for all extensions g.

Proposition A.11 (Relation to Lp and Sobolev spaces). (a) Let p ∈ (1,∞). Then we
have continuous embeddings

B0
p,min{p,2}(Ω) ⊂ Lp(Ω) ⊂ B0

p,max{p,2}(Ω).

For p = 1 the following embeddings hold true:

B0
1,1(Ω) ⊂ L1(Ω) ⊂ B0

1,∞(Ω).

(b) Let s ∈ R, then Bs
2,2(Ω) = Hs(Ω) with equivalent norms.

Proof. First note that as all occurring spaces on bounded Lipschitz domains in Rd are
defined by restriction of the respective spaces on Rd, it suffices to prove the assertions for
Ω = Rd and for the periodic case Ω = Td.

(a) Let F s
p,q(Ω) be the scale of function spaces as defined in [101, 2.3.1. Def. 2(ii)] for

Ω = Rd and in [101, 9.1.3. Def. (ii)] for the d-dimensional torus. By [101, 3.2.4.(3)]
and [95, 3.5.1.(20)] we have continuous embeddings

Bs
p,min{p,q} ⊂ F s

p,q(Ω) ⊂ Bs
p,max{p,q} for all p, q ∈ [1,∞). (A.3)

With this the embeddings for p > 1 follow from the identity F 0
p,2(Ω) = Lp(Ω) with

equivalent norms. The latter identity can be found in [101, 2.5.6.] for Ω = Rd and
in [95, 3.5.4(22)] in to the periodic case.
For the assertion in the case p = 1 we refer to [101, 2.5.7.(2)] and to [95, 3.5.4(21)]
in the periodic case.

(b) We have F s
2,2(Ω) = Hs(Ω) (see [101, Thm. 2.5.6] and [95, Thm. 3.5.4.]). Therefore,

the claimed identity follows from (A.3).

A.4 Bounded variation functions

Proposition A.12. Let a ≥ 0, s ∈ (−a, 1), and Ω ⊂ Rd a bounded Lipschitz domain.
Then

Bs
ts,ts(Ω) =

(
B−a2,2(Ω),BV(Ω)

)
θs,ts

with θs := s+ a

a+ 1 and ts := 2a+ 2
s+ 2a+ 1

with equivalent norms.

Proof. First note that if f ∈ BV(Rd) and Ω ⊂ Rd a subdomain, then f |Ω ∈ BV(Ω) with
‖f |Ω‖BV(Ω) ≤ ‖f‖BV(Rd).
Due to [20, Thm. 1.4] to claim holds true for Ω = Rd. Note that here the condition
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γ < 1− 1
d

from the latter reference on γ := −(2a+2)
d

+1 is satisfied. Let c1 be a constant such
that the norm in Bs

ts,ts(Rd) is bounded by c1 times the norm in
(
B−a2,2(Rd),BV(Rd)

)
θs,ts

and the other way around.
We transfer this result to bounded Lipschitz domains. To this end, we separately prove
both inclusions in the stated identity.
Let f ∈ Bs

ts,ts(Ω). Then there is f̃ ∈ Bs
ts,ts(Rd) with f̃ |Ω = f and ‖f̃ |Bs

ts,ts‖ ≤ 2‖f |Bs
ts,ts‖.

Let t > 0 and f̃ = f̃1 + f̃2 with f̃1 ∈ B−a2,2(Rd) and f̃2 ∈ BV(Rd) be a decomposition such
that

‖f̃1 |B−a2,2‖+ t‖f̃2‖BV(Rd) ≤ 2K(t, f̃)

with the K-functional given in (2.14). Then f̃1|Ω ∈ B−a2,2(Ω), f̃2|Ω ∈ BV(Ω), f = f1 + f2
and

K(t, f) ≤ ‖f̃1|Ω |B−a2,2‖+ t‖f̃2|Ω‖BV(Ω) ≤ 2K(t, f̃).
Hence with the definition of the norm on real interpolation spaces (see (2.15)) we obtain

‖f‖(B−a2,2 (Ω),BV(Ω))
θs,ts

≤ 2‖f̃‖(B−a2,2 (Rd),BV(Rd))
θs,ts

≤ 2c1‖f̃ |Bs
ts,ts‖ ≤ 4c1‖f |Bs

ts,ts‖.

We turn to the other inclusion. There exists a constant Cext > 0 such that for every
f ∈ B−a2,2(Ω) there exists f̃ ∈ B−a2,2(Rd) with f̃ |Ω = f and ‖f̃ |B−a2,2‖ ≤ Ce‖f |B−a2,2‖ and
likewise for every f ∈ BV(Ω) there exists f̃ ∈ BV(Rd) with f̃ |Ω = f and ‖f̃‖BV(Rd) ≤
Cext‖f‖BV(Ω). This holds true by the definition of B−a2,2(Ω) via restrictions (see (2.12))
and due to [2, Prop. 3.21] for of bounded variation functions. Now suppose f ∈(
B−a2,2(Ω),BV(Ω)

)
θs,ts

. Let f = f1 + f2 with f1 ∈ B−a2,2(Ω) and f2 ∈ BV(Ω) such that

‖f1 |B−a2,2‖+ t‖f2‖BV(Ω) ≤ 2K(t, f).

Let f̃1 ∈ B−a2,2(Rd) and f̃2 ∈ BV(Rd) be extensions as above. Then f̃ := f̃1 + f̃2 satisfies
f̃ |Ω = f , and

K(t, f̃1 + f̃2) ≤ ‖f̃1 |B−a2,2‖+ t‖f̃2‖BV(Rd) ≤ 2CeK(t, f).

We conclude that

‖f |Bs
ts,ts‖ ≤ ‖f̃ |B

s
ts,ts‖ ≤ c1‖f̃‖(B−a2,2 (Rd),BV(Rd))

θs,ts

≤ 2c1Ce‖f‖(B−a2,2 (Ω),BV(Ω))
θs,ts

.
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