
Analysis of Students’ Programming
Knowledge and Error Development

Dissertation
zur Erlangung des mathematisch-naturwissenschaftlichen Doktorgrades

“Doctor rerum naturalium”
der Georg-August-Universität Göttingen

im Promotionsprogramm Computer Science (PCS)
der Georg-August University School of Science (GAUSS)

vorgelegt von

Ella Albrecht
aus Pawlodar, Kasachstan

Göttingen, August 2021

Betreuungsausschuss

Prof. Dr. Jens Grabowski,
Institut für Informatik, Georg-August-Universität Göttingen

Prof. Dr. Carsten Damm,
Institut für Informatik, Georg-August-Universität Göttingen

Dr. Henrik Brosenne,
Institut für Informatik, Georg-August-Universität Göttingen

Mitglieder der Prüfungskommission

Referent: Prof. Dr. Jens Grabowski,
Institut für Informatik, Georg-August-Universität Göttingen

Korreferent: Prof. Dr. Carsten Damm,
Institut für Informatik, Georg-August-Universität Göttingen

Weitere Mitglieder der Prüfungskommission

Prof. Dr. Marcus Baum,
Institut für Informatik, Georg-August-Universität Göttingen

Prof. Dr. Dieter Hogrefe,
Institut für Informatik, Georg-August-Universität Göttingen

Prof. Dr. Delphine Reinhardt,
Institut für Informatik, Georg-August-Universität Göttingen

Prof. Dr. Stephan Waack,
Institut für Informatik, Georg-August-Universität Göttingen

Tag der mündlichen Prüfung
13. September 2021

Abstract

Learning to program is a hard task since it involves different types of specialized knowl-
edge. You do not only need knowledge about the programming language and its concepts,
but also knowledge from the problem domain and general problem solving abilities. Know-
ing how students develop programming knowledge and where they struggle, may help in the
development of suitable teaching strategies. However, the ever increasing number of stu-
dents makes it more and more difficult for educators to identify students’ needs, problems,
and deficiencies.

The goal of the thesis is to gain insights into students programming knowledge devel-
opment based on their solutions to programming exercises. Knowledge is composed of so
called knowledge components (KCs). In this thesis, we focus on KCs on a syntactic level,
which can be derived from abstract systax trees, e.g., loops, comparison, etc., and semantic
level, represented by so called roles of variables.

Since knowledge is not directly measurable, skill models are an often used for the esti-
mation of knowledge. But, the programming domain has its own characteristics which have
to be considered when selecting an appropriate skill model. One of the main characteristics
of the programming domain are the dependencies between KCs. Hence, we propose and
evaluate a Dynamic Bayesian Network (DBN) for skill modeling which allows to model
that dependencies explicitly. Besides the choice of a concrete model, also certain meta-
parameters like, e.g., the granularity level of KCs, has to be set when designing a skill
model. Therefore, we evaluate how meta-parameterization affects the prediction perfor-
mance of skill models and which meta-parameters to choose. We use the DBN to create
learning curves for each KC and deduce implications for teaching from them.

But not only students knowledge but also their “mal-knowledge” is of importance. There-
fore, we manually inspect students’ programming errors and determine the error’s fre-
quency, duration, and re-occurrence. We distinguish between the error categories syntactic,
conceptual, strategic, sloppiness, misinterpretation, and domain and analyze how the errors
change over time. Moreover, we use k-means clustering to identify different patterns in the
development of programming errors.

The results of our case studies are promising. We show that the correct meta-
parameterization has a huge effect on the prediction performance of skill models. In
addition, our DBN performs as well as the other skill models while providing better inter-
pretability. The learning curves of KCs and the analysis of programming errors provide
valuable information which can be used for course improvement, e.g., that students require
more practice opportunities or are struggling with certain concepts.

Zusammenfassung

Programmieren zu lernen ist für viele eine große Herausforderung, da es unterschiedli-
che Fähigkeiten erfordert. Man muss nicht nur die Programmiersprache und deren Kon-
zepte kennen, sondern es erfordert auch spezifisches Domänenwissen und eine gewisse
Problemlösekompetenz. Wissen darüber, wie sich die Programmierkenntnisse Studierender
entwickeln und welche Schwierigkeiten sie haben, kann dabei helfen, geeignete Lehrstrate-
gien zu entwickeln. Durch die immer weiter steigenden Studierendenzahlen wird es jedoch
zunehmend schwieriger für Lehrkräfte, die Bedürfnisse, Probleme und Schwierigkeiten der
Studierenden zu erkennen.

Das Ziel dieser Arbeit ist es, Einblick in die Entwicklung von Programmierkenntnissen
der Studierenden anhand ihrer Lösungen zu Programmieraufgaben zu gewinnen. Wissen
setzt sich aus sogenannten Wissenskomponenten zusammen. In dieser Arbeit fokussieren
wir uns auf syntaktische Wissenskomponen, die aus abstrakten Syntaxbäumen abgeleitet
werden können, und semantische Wissenskomponenten, die durch sogenannte Variablen-
rollen repräsentiert werden.

Da Wissen an sich nicht direkt messbar ist, werden häufig Skill-Modelle verwendet, um
den Kenntnissstand abzuschätzen. Jedoch hat die Programmierdomäne ihre eigenen spezi-
ellen Eigenschaften, die bei der Wahl eines geeigneten Skill-Modells berücksichtigt werden
müssen. Eine der Haupteigenschaften in der Programmierung ist, dass die Wissenskom-
ponenten nicht unabhängig voneinander sind. Aus diesem Grund schlagen wir ein dynami-
sches Bayesnetz (DBN) als Skill-Modell vor, da es erlaubt, diese Abhängigkeiten explizit zu
modellieren. Neben der Wahl eines passenden Skill-Modells, müssen auch bestimmte Meta-
Parameter wie beispielsweise die Granularität der Wissenkomponenten festgelegt werden.
Daher evaluieren wir, wie sich die Wahl von Meta-Parameters auf die Vorhersagequalität
von Skill-Modellen auswirkt und wie diese Meta-Parameter gewählt werden sollten. Wir
nutzen das DBN, um Lernkurven für jede Wissenskomponenten zu ermitteln und daraus
Implikationen für die Lehre abzuleiten.

Nicht nur das Wissen von Studierenden, sondern auch deren “Falsch”-Wissen ist von
Bedeutung. Deswegen untersuchen wir zunächst manuell sämtliche Programmierfehler der
Studierenden und bestimmen deren Häufigkeit, Dauer und Wiederkehrrate. Wir unterschei-
den dabei zwischen den Fehlerkategorien syntaktisch, konzeptuell, strategisch, Nachlässig-
keit, Fehlinterpretation und Domäne und schauen, wie sich die Fehler über die Zeit ent-
wickeln. Außerdem verwenden wir k-means-Clustering um potentielle Muster in der Feh-
lerentwicklung zu finden.

Die Ergebnisse unserer Fallstudien sind vielversprechend. Wir können zeigen, dass die

vi

Wahl der Meta-Parameter einen großen Einfluss auf die Vorhersagequalität von Model-
len hat. Außerdem ist unser DBN vergleichbar leistungsstark wie andere Skill-Modelle,
ist gleichzeitig aber besser zu interpretieren. Die Lernkurven der Wissenskomponenten und
die Analyse der Programmierfehler liefern uns wertvolle Erkenntnisse, die der Kursverbes-
serung helfen können, z.B. dass die Studierenden mehr Übungsaufgaben benötigen oder mit
welchen Konzepten sie Schwierigkeiten haben.

Acknowledgements

During the time of my thesis I was supported by several persons who I want to thank. First
of all, I want to thank my supervisor Prof. Dr. Jens Grabowski for his guidance, helpful
suggestions, and for pushing me forwards to finally finalize my thesis. Working in his
research group contributed not only to my professional but also to my personal growth. In
addition, I would like to thank my second and third supervisors Prof. Dr. Carsten Damm
and Dr. Henrik Brosenne for their valuable feedback during my presentations.

I also want to thank all my colleagues at the Institute for Computer Science for all the
fruitful discussions, the fun moments, and for sharing frustrations – A problem shared, is a
problem halved. With them, work did not feel like work. I am not sure if I ever will find
such wonderful colleagues again. Special thanks go to Patrick Harms and Simone Münz
who become some kind of surrogate parents to me and made Göttingen feel like a second
home for me.

Furthermore, I especially want to thank Andreas Neubauer, who did not hesitate to offer
me his proof-reading services after knowing me only for a few hours, and Stefan Menge for
proof-reading this thesis and helping me improving it.

Moreover, I would like to thank Nikolaj Gebert who came into my life in the dark age of
PhD thesis writing and lighted it up. Thanks for all the patience, his never-ending motiva-
tion, and the chocolate which let me survive. I am thankful for having him in my life.

Finally, my deepest gratitude goes to my parents who always supported me uncondition-
ally – even when their little girl moved far far away to evil Göttingen. They always let me
think that I can achieve whatever I want and they will always stay behind me. I love you
and thank you more than words can say.

Contents

List of Acronyms xiii

List of Figures xv

List of Algorithms and Listings xvii

List of Tables xix

1. Introduction 1
1.1. Scope of the Thesis . 3
1.2. Goals and Contributions . 5
1.3. Impact . 5
1.4. Structure of the Thesis . 6

2. Foundations 9
2.1. Programming Knowledge . 9
2.2. Roles of Variables . 11
2.3. Abstract Syntax Trees . 14

2.3.1. Intermediate Representations of Code 14
2.3.2. AST Differencing . 17

2.4. Bayesian Networks . 18
2.4.1. Dynamic Bayesian Networks . 22
2.4.2. Noisy-OR/Noisy-AND Gates . 23

2.5. Skill Models . 24
2.5.1. Models Based on Bayesian Theory 26
2.5.2. Logistic Regression Models . 28
2.5.3. Other Skill Models . 28

3. Related Work 31
3.1. Programming Errors . 31
3.2. Skill Models in the Programming Domain 34
3.3. Patterns in Programming Behavior . 36
3.4. Summary and Research Delta . 39

Contents x

4. Estimation of Programming Knowledge 41
4.1. Identification of Knowledge Components in Students’ Code 41

4.1.1. Programming Primitives . 41
4.1.2. Semantically Augmented Programming Primitives 42
4.1.3. Knowledge Application Model . 46

4.2. Code Similarity . 47
4.2.1. Set Similarity . 50
4.2.2. AST Similarity . 50
4.2.3. KAM Similarity . 53
4.2.4. Diversity . 55

4.3. Adjustment of Skill Models for the Programming Domain 57
4.3.1. Properties of the Programming Domain 57
4.3.2. Adjustment of PFA/AFM . 60
4.3.3. A DBN Topology for Skill Models 60

4.4. Learning Curves from DBNs . 65

5. Analysis of Programming Errors 67
5.1. Definition of Error Types and Error Categories 67
5.2. Error Landscape . 68

5.2.1. Error Frequency . 69
5.2.2. Error Duration . 70
5.2.3. Error Severity . 71
5.2.4. Error Re-occurrence . 72
5.2.5. Category-based Error Landscape 72

5.3. Clustering Error Curves . 73

6. Case Studies 75
6.1. Data Collection with SmartAPE . 75
6.2. Case Study 1: Skill Models for the Programming Domain 77

6.2.1. Setup . 77
6.2.2. Evaluation Criteria . 81
6.2.3. Results . 84

6.3. Case Study 2: Programming Errors . 100
6.3.1. Setup . 100
6.3.2. Results . 100

6.4. Case Study 3: Development of Programming Knowledge Over Time 107
6.4.1. Setup . 107
6.4.2. Results . 107

xi Contents

7. Discussion 115
7.1. Answers to Research Questions . 115

7.1.1. RQ1: How can we construct a skill model for the programming
domain? . 115

7.1.2. RQ2: Which errors do students make during programming? 117
7.1.3. RQ3: How does the programming knowledge of students change

over time? . 119
7.2. Strengths and Limitations . 122
7.3. Threats to Validity . 123

7.3.1. Construct Validity . 123
7.3.2. Internal Validity . 124
7.3.3. External Validity . 124

8. Conclusion 127
8.1. Summary . 127
8.2. Outlook . 128

Bibliography 131

A. KC Hierarchy 147

B. Programming Error Categories 151

C. Rule Descriptions for Variable Roles 155

D. Exercise Descriptions 157

E. Complete Case Study Results 163
E.1. Similarity Results . 163
E.2. Mata-parameters Results . 165
E.3. Error Landscape Results . 169
E.4. Learning Curves . 173
E.5. Clustering Results . 181

Acronyms

2-TBN 2-time-slice Bayesian Network.

AFM Additive Factor Model.

AST abstract syntax tree.

AUC area under the curce.

BKT Bayesian Knowledge Tracing.

BN Bayesian Network.

CKM conjunctive knowledge model.

CPT conditional probability table.

DBN Dynamic Bayesian Network.

DKT Deep Knowledge Tracing.

EDM Educational Data Mining.

HMM Hidden Markov Model.

IRT Item Response Theory.

ITS Intelligent Tutoring System.

KAM Knowledge Application Model.

KC knowledge component.

LFA Learning Factor Analysis.

MOOC massive open online course.

Acronyms xiv

MRH most-recent holder.

MWH most-wanted holder.

PFA Performance Factor Analysis.

PP programming primitive.

PPM proportional model.

RMSE root mean square error.

RNN recursive neural network.

SAPP semantically augmented programming primitive.

List of Figures

1.1. Basic architecture of an ITS (adopted from [1]) 2

2.1. Programming tasks (adopted from [2]) . 10
2.2. Levels of programming knowledge (adopted from [3]) 11
2.3. Parse tree for while(i<10){...}. The numbers next to non-leaf nodes

denote which rules from the grammar in listing 2.3 were applied at each step 16
2.4. AST for while(i<10){...} . 17
2.5. Comparison of two ASTs. The solid white boxes describe perfectly

matched nodes, the dotted boxes correspond to matched nodes and the solid
grey boxes correspond to unmatched nodes 19

2.6. An example for a BN with CPTs (adopted from [4]) 21
2.7. Updating probabilities with evidence . 21
2.8. An example of a DBN and its composition 23
2.9. General scheme of a skill model . 25
2.10. Bayesian skill models. White nodes represent hidden nodes, i.e., they can

not be observed directly. 27

4.1. Process of variable role analysis . 42
4.2. Construction patterns for complex nodes 48
4.3. Example of a KAM (KC level 2) . 49
4.4. Two KAMs . 56
4.5. DBN topology for skill modeling. White nodes represent hidden variables,

yellow nodes represent evidences and blue nodes represent noisy AND
gates with fixed CPTs. 61

4.6. Two alternatives for representing granularity relationships [5] 63
4.7. Example for a domain model . 63

5.1. An example of a submission sequence for a certain error. Orange means
that the error is present in the submission. 69

6.1. Structure of SmartAPE . 76
6.2. Overview of the setup for case study 1 . 78
6.3. Number of correct solutions for each exercise 81
6.4. Diversity for each exercise . 85

List of Figures xvi

6.5. Set similarity between solutions (level 0 and level 3) 87
6.6. KAM similarity between solutions (level 0 and 3) 88
6.7. AST similarity between solutions . 89
6.8. Distribution of AUC and RMSE for AFM, PFA and PPM models with dif-

ferent meta-parameterization . 90
6.9. Overview of the setup for case study 2 . 102
6.10. Distribution of error frequency, duration, re-occurrence, and severity among

students . 103
6.11. Distribution of error categories . 106
6.12. Types of learning curves for KCs . 110
6.13. Learning curves for variable roles . 110
6.14. Learning curve for the problem solving ability 111
6.15. Evolution of the average frequency of errors from different categories . . . 112
6.16. Evolution of the duration of errors from different categories 112
6.17. Error patterns of the different clusters . 113

A.-2. Hierarchy of KCs . 150

E.1. Set similarity . 163
E.2. KAM similarity . 164
E.3. AST similarity . 164
E.5. Learning curves of syntactic KCs . 178
E.6. Learning curve of the problem solving ability 178
E.7. Learning curves of variable roles . 180
E.8. Clustering of error patterns for different categories 183

List of Listings

2.1. Example program . 13
2.2. Example of a proper role change . 14
2.3. Example grammar . 15

4.1. Example program . 44
4.2. Pointer example . 46

List of Tables

2.1. CPT of a noisy-OR with two parent nodes 24
2.2. CPT of a noisy-AND with two parent nodes 25
2.3. Overview of common skill models . 30

3.1. Categories of programming errors . 32
3.2. Relationship between revised Bloom’s taxonomy and the error categories

by Zehetmeier et al. 33
3.3. Skill models for programming and their meta-parameters 37

4.1. Number of identified KCs on each level 42
4.2. Classification of KCs for statements on different levels 42
4.3. Constraints for the variable role stepper 45
4.4. Set similarity analysis on different KC levels 51
4.5. Edit script and costs per operation . 52
4.6. CPT of the item node . 64

6.1. Example for a basic data set . 79
6.2. Summary of model parameters . 79
6.3. Example for an extracted data set (minimal steps=0, KC count=“multi",

wrong KCs=“all") . 80
6.4. Data set summary . 80
6.5. Example of paired results of PFA models regarding AUC for meta-

parameter KC level . 83
6.6. P-values of Friedman test and Kendall’s W for all meta-parameters in the

comparison between PFA and AFM . 91
6.7. Effect sizes for parameter level . 92
6.8. Effect sizes for parameter minimum steps 93
6.9. Effect sizes for parameter step definition 93
6.10. Mean values of AUC and RMSE for all meta-parameter values 94
6.11. P-values of Friedman test and Kendall’s W for all meta-parameters 95
6.12. Effect sizes for parameter level . 96
6.13. Effect sizes for parameter incorrect KCs 96
6.14. Effect sizes for parameter KC count . 97
6.15. Effect sizes for parameter Q matrix and metric AUC 98

List of Tables xx

6.16. Effect sizes for parameter Q matrix and metric RMSE 99
6.17. Comparison of skill models . 101
6.18. Top 25 error types ordered by severity . 105
6.19. Assignment of KCs to learning curve types 108
6.20. Exam results by clusters . 114

B.1. Categories of programming errors (based on [6]) 153

C.1. Rule Description for Variable Roles . 156

E.1. Mean and median values of AUC and RMSE all meta-parameter values . . 165
E.2. Effect sizes for meta-parameter KC count 165
E.3. Effect sizes for parameter level . 166
E.4. Effect sizes for parameter step definition 166
E.5. Effect sizes for meta-parameter incorrect KCs 166
E.6. Effect sizes for parameter minimum steps 167
E.7. Effect sizes for meta-parameter Q matrix 168

1. Introduction

Nowadays, computers are indispensable from our daily life. Thanks to the digital revo-
lution, automatization, robotics, and IT become essential parts of almost all branches of
industry. Children born in last decades of the 20th century are called digital natives since
they grow up with technology from the digital age [7]. In this digitized world, programming
gains importance not only for software developers but also in other disciplines like, e.g., en-
gineering, pharmacy, finance etc. German chancellor Angela Merkel declares programming
as a key competency such as reading or writing [8].

In general, programming can be seen as a toolbox for solving problems, e.g., resource
planning, automatization, analysis of large data. However, learning to program is a hard task
since it requires different types of specialized knowledge. You do not only need knowledge
about the programming language, its concepts and conventions, but also knowledge from
the problem domain and general problem solving abilities to be able to develop a strategy
for solving a problem [2]. Knowing how students develop programming knowledge and
where they struggle, may help in the development of suitable teaching strategies.

Digitization already has a huge impact on education nowadays. Face-to-face teaching
is often supported by e-learning systems but also pure distance learning emerges in the
last years through massive open online courses (MOOCs), e.g., Coursera [9], edX [10], or
Udacity [11]. Especially during the Covid-19 pandemic many schools and universities had
to switch to online distance learning. Such systems allow for large data collection which is
a “gold mine” [12] of educational data.

In this thesis, we want to use data from an online assessment system for open-ended pro-
gramming exercises to analyze how a student’s programming knowledge and errors evolve
over time by looking at his/her submitted source code. Since knowledge is not measur-
able directly, we apply techniques from student modeling to estimate a student’s knowledge
based on his/her performance. Student models are one of the four basic components in
Intelligent Tutoring Systems (ITSs).

A traditional ITS consists of four components [13] (see Figure 1.1):

• Domain model: Knowledge can be divided into several knowledge components (KCs).
Koedinger et al. [14] define KCs as “an acquired unit of cognitive function or struc-
ture that can be inferred from performance on a set of related tasks”. KCs represent
units of knowledge, e.g., rules, concepts, principles, or facts, a student is expected
to learn in a specific domain. In the domain model, KCs and their dependencies, as
well as the corresponding learning materials, are defined. Often, it is considered as
the “ideal” student model, but may also contain typical errors and misconceptions.

1. Introduction 2

data about the student

user interface

domain model

tailored
instructionstutoring model

student's estimated
knowledgestudent model

student

Figure 1.1.: Basic architecture of an ITS (adopted from [1])

• Student model: The student model stores information about each individual student.
Typically, it contains student’s current affective [15, 16, 17, 18, 19, 20], motivational
[21, 16, 22] or cognitive [23, 20, 24, 25, 26] state which is inferred from the student’s
interaction with the ITS.

• Tutoring model: The tutoring model uses information about a student’s current state
to make decisions, e.g., which topic to present next, in which form, e.g., as video or
text, or to select appropriate exercises. It allows to reflect each student’s individual
needs.

• User interface: The user interface is responsible for the interaction between the stu-
dent and the system. It interprets the student’s input, e.g., speech, typing, clicking,
and produces output, e.g., text, videos, diagrams, questions.

A main task of the student model is the estimation of the student’s current knowledge.
According to Desmarais and Baker [27], we will refer to student models for the estima-
tion of a student’s knowledge as skill models. Within this thesis, we use two common
skill models, Performance Factor Analysis (PFA) which is based on logistic regression and
Dynamic Bayesian Networks (DBNs) which is based on Bayesian theory, to estimate a stu-
dent’s knowledge at each step during a programming beginners course. We evaluate in how
well the models fit for the prediction of student’s performance and fine-tune the models to
meet the special requirements of the programming domain. We can then use the models
to track the change of the student’s knowledge over time and use the interpretability of the
models to get further insights, e.g., about difficulty of certain KCs. Those skill models are
implementations of the more general overlay model [28]. The overlay model represents the
student’s knowledge as a subset of the domain level, i.e., it describes which KCs or to what
extent each KC has been learned by the student.

3 1.1. Scope of the Thesis

However, overlay models are not sufficient to model students cognitive state. Students
often derive own incorrect rules or facts because of misconceptions such that the main
assumption of overlay models, that students have incomplete but correct knowledge of the
domain, is violated [29]. This means that also the student’s “mal-knowledge” should be
considered when looking at students’ knowledge development. Therefore, we analyze the
errors students make and how those change over time to identify critical and less severe
misconceptions.

Educational Data Mining (EDM) is an emerging research area which uses data from
educational settings to get insights into learners1 and learning [30]. Ihantola et al. [31]
categorized the research goals of EDM in programming into three categories: student, en-
vironment, and programming. The category student refers to information about a student
individually, e.g., a student’s ability and knowledge [32, 33, 34], behavior [35, 36, 37, 38],
or drop-out risk [39, 40, 41], which can be used for personalization in adaptive systems or
for timely interventions before students are left behind. Environment involves insights about
the learning environment itself, e.g., the student’s usage of an IDE or hints [42, 43], which
can be used to improve the educational systems for a better learning experience. The last
category refers to information about the learning process itself, e.g., how do students learn
in general (not on the level of an individual student), which errors they make [44, 45, 46],
or which patterns can be observed [47, 48]. The work of this thesis falls into the categories
student, by analyzing properties of the programming domain and integrating them into skill
models, and programming since we are investigating patterns of knowledge development
and programming errors.

1.1. Scope of the Thesis

In this thesis, we want to investigate how students learn to program. We are looking at how
their knowledge evolves over time and which errors they make. Programming knowledge is
manifold, it contains reading, writing, testing and debugging code. In this thesis, we focus
on code writing. We only consider KCs which can be directly derived from a student’s
source code, i.e., on the syntactic level in form of programming primitives and on the
semantic level by looking at roles of variables. We do not include higher level knowledge,
e.g., programming plans since they can often be determined by assembling variable roles.
We also do not consider a student’s problem solving ability since it is hard to derive a
student’s intention solely by code.

Basically, knowledge consists of two parts, things you learn and errors you make. Since
learning is not directly measurable, we use skill models to estimate a student’s learning
progress. Therefore, the first research question is:

1Since we focus on university data in this thesis, we use the terms learner and student interchangeably
throughout the thesis

1. Introduction 4

• RQ 1: How can we construct a skill model for the programming domain?

We subdivide the question into several subquestions:

• RQ 1.1: How great is the difference between students’ code?
• RQ 1.2: Which effect does meta-parametrization have on the prediction performance

of skill models?
• RQ 1.3: How can we modify DBNs to reflect the properties of the programming

domain?

The second research question deals with the errors students make in programming:

• RQ 2: Which errors do students make during programming?

Also this question leads to more detailed subquestions answered in this thesis, which are:

• RQ 2.1: What are the most common errors made by students?
• RQ 2.2: Which errors are hard/easy to fix?
• RQ 2.3: Which errors re-occur often?

Using the skill model from RQ 1 and the error landscape from RQ 2, we answer the follow-
ing research question:

• RQ 3 How does the programming knowledge of students change over time?

This question leads to the following more detailed subquestions, which we also answer in
this thesis:

• RQ 3.1: Which KCs are hard/easy to learn?
• RQ 3.2: How do errors change over time?
• RQ 3.3: How do students differ regarding the errors made? Can we identify different

error patterns?

Previous studies showed that different patterns in how students write their code can be
observed (see Section 3.3). RQ 3.3 is a result from our hypothesis that we can also identify
such patterns in programming errors.

5 1.2. Goals and Contributions

1.2. Goals and Contributions

The work on this thesis extends the body of knowledge in the area of student modeling and
EDM by the following contributions:

• The identification of meta-parameters for skill models in the programming domain
and analysis of their importance in skill modeling.

• A formal extension of two common skill models, Additive Factor Model (AFM) and
PFA, by the ability to reflect flexible KC-item mapping.

• A dynamic multi-skill DBN model which allows to model KC granularity as well
as pre-requisite relationships between KCs, dynamically assign the required KCs for
solving an item, and implicitly models the problem solving ability.

• A new representation of source code as Knowledge Application Model (KAM) and a
code similarity measure based on the comparison of two KAMs.

• An analysis of the most common errors made in C programming.
• An analysis of learning curves for KCs based on a DBN.
• An investigation of common patterns in the development of made errors.
• A data set of student’s programming solutions with manually validated and classified

errors.
• A framework for the automatic assessment of programming exercises in C.

1.3. Impact

The results of this thesis as well as work that has been done to enable this work have been
published in peer-reviewed conference proceedings:

• Ella Albrecht, Jens Grabowski,“Sometimes It’s Just Sloppiness - Studying Students
Programming Errors and Misconceptions”, in Proceedings of the 51st ACM Technical
Symposium on Computer Science Education (SIGCSE ’20),2020.
Own contributions
I am the lead author of this publication. All main contributions, analysis, and evalua-
tions have been done by myself.

• Ella Albrecht, Fabian Gumz, Jens Grabowski, “Experiences in Introducing Blended
Learning in an Introductory Programming Course”, in Proceedings of the 3rd Euro-
pean Conference of Software Engineering Education (ECSEE’18),2018.
Own contributions
I am the lead author of this publication. I did most of the writing, the complete
implementation of SmartAPE as well as the analysis of the results. Fabian Gumz was
responsible for the content of learning management system ILIAS and the description
of his experiences with it.

1. Introduction 6

• Ella Albrecht, “A Framework for the Estimation of Students’ Programming Abili-
ties”, in Proceedings of the 10th International Conference on Educational Data Min-
ing (EDM’17), 2017.
Own contributions
This publication is a doctoral symposium paper where the idea of the doctoral project
were presented. I am the single author of this paper and established all of the work
on my own.

• Ella Albrecht, Jens Grabowski, “Towards a Framework for Mining Students’ Pro-
gramming Assignments”, in 2016 IEEE Global Engineering Education Conference
(EDUCON), 2016.
Own contributions
I am the lead author of this publication. All main contributions have been done by
myself.

In addition, we have submitted a paper to a scientific journal which is currently under
review:

• Ella Albrecht, Jens Grabowski, “How Meta-Parametrization Affects Prediction Per-
formance in the Programming Domain”, User Modeling and User-Adapted Interac-
tion (revised with minor revision).
Own contributions
I am the lead author of this publication. All main contributions, implentations, and
analysis have been done by myself.

1.4. Structure of the Thesis

We assume that the reader is familiar with the basics of probability theory and machine
learning techniques. Otherwise, we refer to [49] and [50] as a reminder. The thesis is
structured as follows:

In Chapter 2, we lay the foundation for our thesis by providing background informa-
tion about programming knowledge (Section 2.1). In Section 2.2, we introduce roles of
variables. Since our code analysis is based on abstract syntax trees (ASTs), these are
introduced in Section 2.3. To understand our modeling approach with DBNs, we provide
an introduction to Bayesian theory and Bayesian networks in Section 2.4. Furthermore, we
give an overview of common skill models in Section 2.5.

In Chapter 3, we put our work in relation to existing work by looking at research on
common programming mistakes (Section 3.1), work about skill models which have already
been used in programming (Section 3.2), and work focusing on the analysis of students’
knowledge evolution (Section 3.3). We summarize previous work and describe the novelty

7 1.4. Structure of the Thesis

of our work in Section 3.4.

Chapter 4 deals with our approach for the estimation of programming knowledge. First,
we present our approach for the identification of KCs in source code and introduce the
KAM as a new representation for source code in form the KCs applied in Section 4.1. In
Section 4.2, we define two types similarity metrics, one based on ASTs and one based on
KAMs. We identify the special properties of the programming domain and show how we
adjusted PFAs and DBNs to be able to cope with those properties in Section 4.3. In Section
4.4 we describe how we construct learning curves from the knowledge estimates of the
DBN.

In Chapter 5, we present how we analyzed programming errors. First, we explain our
manual inspection procedure and how we categorize programming errors in Section 5.1.
Then, we define different metrics for errors in Section 5.2. In Section 5.3, we then describe
how we use clustering to identify common patterns in error development.

In Chapter 6, we present the three case studies we performed. We first describe our data
and the data collection process in Section 6.1. Then we describe the setup and provide the
results of each case study. The case studies cover the evaluation of our skill models for the
programming domain (Section 6.2), the analysis of programming errors (Section 6.3), and
the analysis of how the programming knowledge and errors evolve over time (Section 6.4).

We discuss our findings in Chapter 7 by providing answers to our research question in
Section 7.1 and discussing the strengths and limitations of our approach in Section 7.2.
Furthermore, we present potential threats to validity in Section 7.3.

Finally, we conclude the thesis in Chapter 8 and provide an outlook on future work.

2. Foundations

In this chapter, we present the foundations of this thesis. First, we describe what is con-
sidered as programming knowledge by looking at mental models and roles of variables in
Section 2.1. Since our code analysis is based on ASTs, we will then give a short introduc-
tion into ASTs and AST-differencing in Section 2.3. Furthermore, we have a closer look at
skill models, because these are the main concepts that we use in this thesis, in Section 2.5.
For a better understanding of skill models based on Bayesian theory and our approach using
DBNs, we present the foundations of Bayesian Networks (BNs) in Section 2.4.

2.1. Programming Knowledge

Programming can be seen as a design task where programming primitives and instructions
are assembled to a complete program which solves a specific problem [2]. Figure 2.1 shows
that the programming task can be subdivided into several subtasks.

First, the problem needs to be understood. This requires knowledge in the particular
problem domain, e.g., in order to calculate the prime numbers from 1 to 1000, one needs
to have basic mathematical knowledge and to know the definition of a prime number. Then
the programmer has to design or create a plan for a solution of the problem, i.e., decom-
posing the problem into subproblems and creating plans as a solution for those problems.
This involves general knowledge about design strategies, but can also require algorithmic
knowledge or the knowledge of a specific design language, e.g., UML. During coding, the
design is transformed into code. Here, knowledge of the used programming language is
essential, but also knowledge about coding conventions and of hardware features that may
affect the software implementation.

Two fundamental programming activities are composition and comprehension [2]. Com-
position relates to writing a program. From knowing what has to be achieved one derives
instructional steps how to achieve it. Comprehension works in the other direction: by having
given a set of instructions, i.e., the code, we evaluate what the program tries to accomplish.
Besides composition and comprehension, Shneiderman and Mayer [51] identify two further
programming activities: debugging and modification. Debugging is often involved in com-
position and describes the process of locating defects in the program. Often the term is used
for the combination of detecting (testing), locating (debugging) and removing (bug fixing)
errors in the code.

2. Foundations 10

Programming
subtask

Basic
process Knowledge

Understanding
the problem

Problem domain knowledge
(e.g. mathematics, physics, statistics)

Design
Design strategies

Programming algorithms and methods
Design langugage

Coding Programming language
Programming conventions

Maintenance Debugging, testing strategies
Frequent kinds of errors

C
O
M
P
O
S
I
T
I
O
N

C
O
M
P
R
E
H
E
N
S
I
O
N

Figure 2.1.: Programming tasks (adopted from [2])

In cognitive sciences, it is basically distinguished between two types of knowledge:
declarative and procedural [52] knowledge. Declarative knowledge describes the knowl-
edge about facts, concepts, or principles. In contrast, procedural knowledge describes
how declarative knowledge is used when solving problems. Shneiderman added a second
dimension for programming knowledge. He distinguishes between syntactic and semantic
knowledge [53]. Syntactic knowledge refers to the knowledge of the syntax of a particular
programming language, e.g., that statements end with a semicolon or the names of built-in
functions in C. It can be learned by memorization and has only a low cognitive demand.
But, as easy as it can be learned, it is prone to forgetting. Semantic knowledge consists of
general programming concepts which are independent of a concrete programming language
and more resistant to forgetting. It can be organized hierarchically, ranging from low-level
concepts, e.g., how to assign a value to a variable, over mid-level concepts, e.g., counting
elements in an array, to high-level concepts, e.g., binary search or specific algorithms.
Bayman and Mayer [54] refined the model by diving semantic knowledge into conceptual
and strategic knowledge. Conceptual knowledge describes the knowledge about how
certain concepts work, e.g., what happens when assigning a value to a variable or when
looping. Strategic knowledge refers to composing syntactic and conceptual knowledge to
solve novel problems.

Bertels et al. [3] proposed a cognitive model of programming knowledge which defines
the "missing" link between syntactic and semantic knowledge. The model is organized
hierarchically (see Figure 2.2):

• Programming primitives (PPs): PPs make up the lowest level of the model. They
are the basic building blocks of a program and refer to syntactic knowledge.

• Semantically augmented programming primitives (SAPPs): Simply based on the

11 2.2. Roles of Variables

problem solving strategies

units

programming plans

SAPPs

PPs

Figure 2.2.: Levels of programming knowledge (adopted from [3])

code level, SAPPs are equal to PPs. However they comprise much more informa-
tion about their function, control and data flow. For example, instructions can be
distinguished regarding their purpose like initialization, read instruction, or count in-
struction. But also variables can have different roles, e.g., a variable can be used as a
counter or to hold the most recent value of a series of inputs. Roles of variables are
discussed in more detail in Section 2.2.

• Programming plans: Programming plans describe how multiple instructions can be
combined to achieve a certain goal [55]. Examples for plans are swapping values of
two variables or finding the smallest element in an array.

• Units: Programming plans can be organized in so called units [56], e.g., counting the
elements of an array or summing the elements of an array can be generalized in a unit
under enumeration of an array.

• Problem solving strategies: Plans can be combined to solve a novel problem, e.g.,
a plan for calculating the sum of array values can be combined with counting the
elements of an array to calculate the average, even if the knowledge of the average
plan is not yet present. Strategies for this composition process [55] represent the
highest level of programming knowledge.

2.2. Roles of Variables

Variable roles describe the stereotypical behavior of a variable, i.e., how the variable values
change over time. Sajaniemi has shown that the following 11 roles cover 99% of vari-
ables used in novices’ programs [57]. While the first 8 roles are applicable to all kinds of
variables, the last 3 roles refer to more complex data structures like arrays or lists:

2. Foundations 12

Fixed value A fixed value variable does not change its value after initialization, i.e., it is
a read-only variable. The fixed value can be a constant value, the value of another
variable or a calculation, or be read from an input.

Stepper A stepper is variable whose sequence of successive values is predictable. A step-
per does not necessarily have to increment/decrement by 1, but can also be, e.g., a
multiplication by a fixed factor. A stepper variable has to be updated in a loop. A
stepper is also often used for loop control.

Counter A counter is variable which is incremented under certain conditions and is used
for counting. A counter variable has to be updated in a loop and is protected by a
guard.

Most-recent holder (MRH) The MRH is a variable storing the last value in a sequence of
traversed values. Typically, a MRH is used to store the latest read value from input.
A MRH has to be updated in a loop.

Most-wanted holder (MWH) The MWH stores the "best" value in a sequence of values
gone through so far. There are no restrictions regarding the definition of "best". A
typical example for a MWH is storing the smallest or biggest value. The MWH has
to be updated in a loop and requires a guard which checks whether a better value was
found.

Gatherer A gatherer accumulates the values gone through so far. A typical example for a
gatherer is a variable that stores the sum of a sequence of values. A gatherer has to
be updated in a loop and typically is initialized with 0.

Follower A follower always gets assigned the old value of another variable. A follower is
typically used for comparison of succeeding values in an array or list.

One-way-flag A one-way flag is a boolean variable that once the value was changed after
initialization keeps its value. Typically, the one-way flag is used for loop or branch
control, e.g, check for valid input.

Temporary A temporary variable has only a short lifetime. It is initialized in loops or
selections. Typically it is used to store intermediate results of calculations or for
swapping values.

Organizer An organizer is a data structure where the elements are re-organized during run-
time. A typical example would be an array used for sorting. It requires swapping of
its elements.

Container A container is a data structure that allows storing multiple elements. Typically
containers are arrays that store input values.

13 2.2. Roles of Variables

1 #include <stdio.h>
2 #define MAX 100
3
4 int main(void){
5 int input[MAX], count = 0, int number;
6
7 printf("Please enter up to %d integer values:\n", MAX);
8 int check = 1;
9 while (count < MAX && (check = scanf("%d", &number)) == 1) {

10 input[count] = number;
11 count++;
12 }
13
14 if (check != 0) {
15 int i = 0;
16 while (i < count) {
17 int min = i, swap, j;
18 j = i+1;
19 while (j < count) {
20 if (input[j] < input[min]) {
21 min = j;
22 }
23 j=j+1;
24 }
25 swap = input[i];
26 input[i] = input[min];
27 input[min] = swap;
28 i = i+1;
29 }
30 }
31 else printf("Invalid input");
32 return 0;
33 }

Listing 2.1: Example program

Walker A walker is used to traverse a data structure. A typical example for a walker is an
iterator in Java. A walker is a special type of a stepper. As such it has to be updated
in a loop and is often used for loop control.

Example 2.1 Listing 2.1 shows an implementation of selection sort. Numbers are read
from input and then sorted. We can identify 8 variables in the code. The variable number is
a MRH, the variables i, j and count are steppers. The array input is an organizer since
it is used for sorting the values stored in it. The variable check is a one-way flag. Once the
input is invalid, check is set to 0 and the loop is stopped. The variable min is a MWH since
it stores the minimum number found so far. The variable swap is a temporary variable since
its value is discarded after each repetition of the loop.

Variables can change their roles during their lifetime. We can distinguish between proper
and sporadic changes [57]. A sporadic change occurs when the value of a variable is not

2. Foundations 14

1 int i = 0;
2 while(scanf("%d",&i)){
3 int sum = 0;
4 while (i>0){
5 sum += i;
6 i−−;
7 }
8 printf("The sum of the numbers from 1 to %d is %d", i, sum);
9 }

Listing 2.2: Example of a proper role change

required anymore and the variable is re-initialized for a different use, i.e., role. Sporadic
changes are bad programming practice since they reduce readability of code. In proper role
changes, the current value of a variable is used in the new role. For example, the variable
i in Listing 2.2 is used as a MRH in the outer loop and changes its role to a stepper in the
inner loop.

2.3. Abstract Syntax Trees

When compiling a program, the source code is translated into machine code. For this pur-
pose the compiler needs to parse the code. Intermediate representations of the program
help the compiler to gather information about the program which can be used for analyzing,
translating, and optimizing the code [58].

2.3.1. Intermediate Representations of Code

Programming languages are defined by a context-free grammar.

Definition 2.1 (Context-free grammar [59]) A context-free grammar G = (S,T,NT,P) is
a quadruple where

• S is the start symbol;
• T is the set of terminal symbols;
• NT is the set of non-terminal symbols; and
• P is the set of production rules in the form of NT → (NT ∪T)+.

A context-free grammar describes how sentences can be constructed. A parser uses the
grammar to derive a parse tree from the code by starting at the start symbol S and looking
which production rules are applicable. Non-terminal symbols structure the language, while
terminal symbols define the basic building blocks of the language.

15 2.3. Abstract Syntax Trees

1 S −> stmt
2 stmt −> expr ;
3 | whileStmt ;
4 | ifStmt ;
5 | {stmtList}
6 expr −> (expr)
7 | comparison
8 | assignment
9 | arithmetic

10 | identifier
11 | constant
12 whileStmt −> while (expr) stmt
13 | do stmt while (expr);
14 ifStmt −> ...
15 stmtList −> stmt
16 | stmtList stmt
17 comparison −> expr compOp expr
18 compOp −> <
19 | >
20 | <=
21 | >=
22 | !=
23 | ==

Listing 2.3: Example grammar

Example 2.2 Listing 2.3 shows an excerpt from the grammar for the C programming lan-
guage. The parse tree for the code snippet while (i < 10) {...} is depicted in Figure
2.3.

The parse tree contains each token that is present in the source code and gets quite large.
However, much of the information is unnecessary for the analysis of the code. We do not
exactly need to know how the syntax of a while loop declaration looks like. To reduce
the size of the parse tree, unnecessary syntactical information is removed and nodes are
combined. The resulting tree is called an abstract syntax tree (AST).

Definition 2.2 (Abstract syntax tree [60]) An abstract syntax tree is an ordered tree A =
(V,E) with

• V being the set of nodes v = (l,ϕ) where l ∈ Σ denotes the label in an alphabet Σ,
ϕ ∈ String∨ ε denotes the value of the node, and ε describes the empty String,

• E being the set of edges e = (v,c, i) where c is the i-th child of v,
• parent(v) ∈V ∪ /0 denotes the parent of each node v ∈V ,
• root(A) = v with parent(v) = /0 denotes the root of the AST, and
• children(v)⊆V ×N denotes the ordered set of children (c, i) of node v ∈V .

Each node of an AST is associated with a label, which corresponds to the name of the
production rule and describes the node type, and a value which is a String describing an

2. Foundations 16

whileStmt

while ()expr stmt

comparison

expr compOp expr

identifier
i

<
constant

10

{ }stmtList

...

stmt

S1

12

3

7

17

10 18 11

5

15

Figure 2.3.: Parse tree for while(i<10){...}. The numbers next to non-leaf nodes denote
which rules from the grammar in listing 2.3 were applied at each step

operator, a name or any other actual token in the code. A node may also have no value
which is then denoted by an empty String.

Example 2.3 Figure 2.4 shows the AST corresponding to the parse tree from Figure 2.3.
The AST is defined by the following set of nodes V = {(S,ε),(while,ε),(comparison,<
),(stmtList,ε),(identi f ier, i),(constant,10), . . .}. Pure syntactical tokens like braces,
brackets, and keywords are removed. Instead of intermediate nodes like expr and stmt

nodes are directly connected to the concrete type of expression, e.g., comparison, or
statement, e.g., whileStmt. Operators are denoted as label directly in the expression to
which they belong instead of an extra node, e.g., the operator < is denoted in the node
comparison.

Although ASTs contain much less nodes than parse trees, they still contain full informa-
tion about the underlying source code.

17 2.3. Abstract Syntax Trees

while

condition body

lhs rhs

comparison
op: <

identifier
name: i

constant
value: 10

block

...

S

Figure 2.4.: AST for while(i<10){...}

2.3.2. AST Differencing

To determine the difference between two pieces of code on a fine-grained syntactical level,
AST differencing can be used. AST differencing determines a sequence of actions to trans-
form a source AST A into a target AST B. The sequence of actions is called an edit script.
Falleri et al. [60] consider four edit actions in their GumTree algorithm:

• update(v,ϕn): replacing the value of a node v = (l,ϕold) by a new value ϕn, such that
v = (l,ϕn).

• add(v,vp, i): adding a new node v = (l,ϕ) to the AST such that parent(V) = vp, i.e.,
vp is the parent of v, and (v, i) ∈ children(vp), i.e., v is the i-th child of vp. In case
that vp = /0, v becomes the new root of the AST, root(A) = v and children(v) =
{(rootold(A),0)}, i.e., the old root of the AST becomes a child of the newly added
node.

• delete(v): removing the node v from the AST, such that (v, i) /∈ children(parentold(v))
∀i ∈ N.

• move(v,vp, i) moving a subtree with v as root, such that parent(v) = vp, (v, i) ∈
children(vp), and (v, j) /∈ children(parentold(v)) ∀ j ∈ N.

Removing and adding subtrees can be realized by subsequently removing or adding
single nodes to the AST and are as such covered by the previous actions.

In general, AST differencing follows a two step process [60]:

1. Mapping: A mapping of nodes from AST A to nodes in AST B is generated. A
mapping describes which node in the source AST corresponds to which node in the
target AST. Each node can only be mapped to exactly one or zero other nodes and
both nodes have to have the same label, i.e., being of the same node type. In the

2. Foundations 18

GumTree algorithm [60], isomorphic subtrees are used in a top-down followed by a
bottom-up approach to identify matches between nodes.

2. Edit script generation: The mapping from the first step is used to derive an edit script
with as few actions as possible. The algorithm by Chawathe et al. [61] proceeds in 5
phases:

• Update phase: For each pair of nodes in the mapping with distinct values, the
value of the node is updated by the target value.

• Align phase: A pair of nodes in the mapping is aligned when the children of
these nodes are in the same order. If they are not aligned, a move operation is
performed to align them.

• Insert phase: For each unmatched node in the target AST with a matched parent,
the unmatched node is added as child to the matched parent node.

• Move phase: For matched nodes x in the source tree and y in the target tree with
unmatched parents, the subtree of x is moved as a child to the node matched to
parent(y).

• Delete phase: All remaining non-matched nodes are deleted.

Example 2.4 Figure 2.5 shows the mapping between the nodes of two ASTs. The target
program differs from the source program in such that it uses an add-assignment and incre-
ment instead of two assignments with an add-expression. The edit script for the ASTs would
look as following:

update((assignment,=),+=)

add((inc/decrement,++(post)),(block,eps),1)

move((identifier,i),(assignment,+=),1)

move((identifier,i),(inc/decrement,++(post)),0)

delete((identifier, sum))

delete((binary arithmetic,+))

delete((identifier,i))

delete((constant,1))

delete((binary arithmetic,+))

delete((assignment,=))

2.4. Bayesian Networks

In this section, we introduce the formalism of BNs and their generalization the DBNs. Fur-
thermore, we have a look at two noisy models which are used to simplify certain probability
distributions in BNs. BNs are probabilistic graphical models used to model uncertainty in
knowledge, that is why they are also called belief networks.

19 2.4. Bayesian Networks

while

condition body

lhs rhs

comparison
op: <

identifier
name: i

constant
value: 10

block

lhs rhs

assignment
op: =

S

lhs rhs

binary arithmetic
op: +

identifier
name: sum

identifier
name: sum

identifier
name: i

lhs rhs

assignment
op: =

lhs rhs

binary arithmetic
op: +

identifier
name: i

identifier
name: i

constant
name: 1

while

condition body

lhs rhs

comparison
op: <

identifier
name: i

constant
value: 10

block

lhs rhs

assignment
op: +=

S

identifier
name: sum

identifier
name: i

inc/decrement
op: ++(post)

identifier
name: i

Source:

Target:

while (i<10) {
 sum = sum + i;
 i = i+1;
}

while (i<10) {
 sum += i;
 i++;
}

Figure 2.5.: Comparison of two ASTs. The solid white boxes describe perfectly matched
nodes, the dotted boxes correspond to matched nodes and the solid grey boxes
correspond to unmatched nodes

2. Foundations 20

Definition 2.3 (Bayesian Network ([62])) A Bayesian network is a directed acyclic graph
B = (G,Θ) with

• the underlying graph G = (V,E) with vertices V = {X1, ...,Xn} and edges E : V ×V
• the set of parameters Θ = {θXi|pa(Xi) = PG(Xi|pa(Xi))|Xi ∈ V} where pa(Xi) denotes

the set of parents of the node Xi.

In a BN each node represents a random variable Xi and an edge denotes a direct depen-
dency between variables. A variable Xi is statistically independent of all its non-descendants
in the BN. The parameters of a BN are conditional probability tables (CPTs) describing the
probability of each realization of a variable conditioned on its parents. The BN can be used
to efficiently encode a joint probability distribution over the random variables in V [62]:

PG(X1, ...,Xn) =
n

∏
i=1

(Xi|pa(Xi)) =
n

∏
i=1

θXi|pa(Xi) (2.4.1)

Example 2.5 Figure 2.6 shows an example of a BN. It represents the dependencies between
the five random variables Difficulty, Intelligence, Grade, SAT, and Letter. A student’s grade
depends on the course difficulty and his/her intelligence. The student’s SAT score depends
on his/her intelligence, and the quality of the recommendation letter depends on the grade.
The difficulty of a course and a student’s intelligence are independent of each other. A
student’s grade and his/her SAT score are independent given his/her intelligence.

Each node is associated with a CPT. For example, the probability that a student gets a
good grade in case that the course is easy and he/she is smart is 90% (P(g1|i1,d0)).

Since the BN encodes a joint probability distribution, it can be used for reasoning and
evaluating different inference queries using marginalization. Observing the value of a vari-
able is called evidence. After observing one or multiple evidences our belief about other
variables can be updated by inference, e.g., using the algorithm by Lauritzen and Spiegel-
halter [63].

Example 2.6 Consider the BN from Example 2.5. We are interested in the probability that a
student achieves a high score in the SAT, i.e., P(S = high). Without knowing anything about
the student or the course P(S = high) = 0.28 (see Figure 2.7a). After observing that the
student gets a good grade, our belief can be updated with the new evidence P(G= good)= 1
resulting in the probability distribution presented in Figure 2.7b. The probability that the
student is smart increases and as a consequence also the probability of a high SAT score
increases to P(S = high) = 0.51.

21 2.4. Bayesian Networks

difficulty (D) intelligence (I)

grade (G) SAT (S)

letter (L)

D=easy D=hard

0.6 0.4

I=not smart I=smart

0.7 0.3

G=good G=medium G=bad

D=easy, I=not smart 0.3 0.4 0.3

D=hard, I=not smart 0.05 0.25 0.7

D=easy, I=smart 0.9 0.08 0.02

D=hard, I=smart 0.5 0.3 0.2

S=low S=high

I=not smart 0.95 0.05

I=smart 0.2 0.8

L=weak L=strong

G=good 0.1 0.9

G=medium 0.4 0.6

G=bad 0.99 0.01

Figure 2.6.: An example for a BN with CPTs (adopted from [4])

(a) Without evidence (b) With evidence G=good

Figure 2.7.: Updating probabilities with evidence

2. Foundations 22

2.4.1. Dynamic Bayesian Networks

DBNs [64] are a generalization of BNs and allow to model changes in the state of variables
over time. The BN is replicated for each time step which is called a time slice. A node from
one time slice can also be connected to nodes in the next time slice.

Definition 2.4 (2-time-slice Bayesian Network) A 2-time-slice Bayesian Network (2-
TBN) is a directed acyclic graph T = (V,E0,E1,Θ) with

• the set of nodes V ,
• the set of intra-time-slice edges E0,
• the set of inter-time-slice edges E1, and
• the set of parameters Θ.

A 2-TBN encodes the time behavior of a BN. The nodes represent a random variable
Xi at a time step t, which is denoted by X t

i . A 2-TBN distinguishes between two types of
edges, intra-time-slice edges which describe immediate dependencies between variables,
i.e. dependencies within the same time slice, and inter-time-slice edges describe that a
variable’s value at time t depends on the value of an variable at time t−1. The parameters
of 2-TBNs are CPTs as in BNs.

Definition 2.5 (Dynamic Bayesian Network [4]) A Dynamic Bayesian Network is defined
as D = (B0,B→) where

• B0 is a BN representing the initial distribution over states and
• B→ is a two-time slice BN.

A DBN consists of a BN describing the network at time step 0 and a 2-TBN describing the
network at each following time step and the transitions between time slices. A DBN can be
transformed into a BN for a fixed number of steps by unrolling it, i.e., modeling each time
slice explicitly.

Example 2.7 Figure 2.8 shows an example of a DBN. It is defined by the BN B0 in Figure
2.8a and the 2-TBN B→ in Figure 2.8b with intra-time-slice edges Humidityt → Raint

and Raint →Umbrellat and inter-time slice edges Humidityt →Humidityt+1 and Raint →
Raint+1. This means that whether it rains tomorrow does not only depend on tomorrow’s
humidity but also on whether it is raining today. Figure 2.8c shows the corresponding
unrolled BN for 3 time steps.

23 2.4. Bayesian Networks

Humidity0

Rain0

Umbrella0

time slice 0

(a) Initial network B0

Humidityt

Raint

Umbrellat

time slice t

Humidityt+1

Raint+1

Umbrellat+1

time slice t+1

(b) 2-TBN B→

Humidity0

Rain0

Umbrella0

time slice 0

Humidity1

Rain1

Umbrella1

time slice 1

Humidity2

Rain2

Umbrella2

time slice 2

(c) Unrolled BN for 3 time steps

Figure 2.8.: An example of a DBN and its composition

2.4.2. Noisy-OR/Noisy-AND Gates

A major problem in applying BNs is the effort for model building. Structure as well as
parameters have to be defined either by experts or learned from data [65, 66, 67]. A CPT
for a node X requires the specification of 2pa(X) parameters, i.e., the number of parameters
grows exponentially with the number of parents. But, more parameters mean that more
data is required to guarantee good results in parameter learning. In small data sets, many
conditioning cases are represented only by few or even no data such that the learned CPTs
are partially uninformative.

Consider, we have a binary variable Y with binary parent variables X1, ...,Xk. To make
Y = true it would be sufficient if at least one of the parent variables is true. Such dependen-
cies can be modeled using a noisy-OR gate.

Definition 2.6 (Noisy-OR Gate [4]) Let Y be a binary-valued random variable with
binary-valued parents pa(Y) = {X1, ...,Xk}. The CPT of a noisy-OR is defined by:

P(Y = 0|X1, ...Xk) = (1−λ0) ∏
i:Xi=1

(1−λi)

P(Y = 1|X1, ...Xk) = 1− ((1−λ0) ∏
i:Xi=1

(1−λi))

where λi for i ∈ {0, ...,k} are the noise parameters.

Instead of 2k parameters only k+1 parameters are required to fully specify a CPT when
using a noisy-OR gate. The parameter λi describes the probability that Y = 1 in case that
Xi = 1 and all other parent variables being 0. The parameter λ0 is called leakage and de-
scribes the probability of Y being true although all its parents are false. Table 2.1 shows the
full CPT for a noisy-OR node Y with two parents X1 and X2.

2. Foundations 24

X1 X2 Y = 0 Y = 1
0 0 1−λ0 λ0
1 0 (1−λ0)(1−λ1) 1− ((1−λ0)(1−λ1))
0 1 (1−λ0)(1−λ2) 1− ((1−λ0)(1−λ2)
1 1 (1−λ0)(1−λ1)(1−λ2) 1− ((1−λ0)(1−λ1)(1−λ2))

(a) With leakage λ0

X1 X2 Y = 0 Y = 1
0 0 1 0
1 0 1−λ1 λ1
0 1 1−λ2 λ2
1 1 (1−λ1)(1−λ2) 1− ((1−λ1)(1−λ2))

(b) Without leakage, i.e., λ0 = 0

Table 2.1.: CPT of a noisy-OR with two parent nodes

On the other hand, we might have a logical AND-dependency of parents. Using DeMor-
gan’s law X1∧X2 = X1∨X2, a noisy-OR can be transformed into a noisy-AND.

Definition 2.7 (Noisy-AND Gate) Let Y be a binary-valued random variable with binary-
valued parents pa(Y) = {X1, ...,Xk}. The CPT of a noisy-AND is defined by:

P(Y = 0|X1, ...Xk) = 1− ((1−λ0) ∏
i:Xi=0

(1−λi))

P(Y = 1|X1, ...Xk) = (1−λ0) ∏
i:Xi=0

(1−λi)

where λi for i ∈ {0, ...,k} are the noise parameters.

The noise parameter λi describes the probability of Y = 0 in case that Xi = 0 and all other
parent variables being 1. Table 2.2 shows the full CPT of a noisy-AND node Y with two
parents X1 and X2.

2.5. Skill Models

Figure 2.9 depicts the general structure of skill models. A Q matrix and other structural
information, e.g., dependencies between KCs, define the domain model. A Q matrix de-
fines for each learning item, i.e., question or exercise, which KCs are required to answer
the learning item correctly. Usually, a skill model uses the domain model as background
knowledge for the inference of a student’s current knowledge state. The knowledge of a

25 2.5. Skill Models

X1 X2 Y = 0 Y = 1
0 0 1− ((1−λ0)(1−λ1)(1−λ2)) (1−λ0)(1−λ1)(1−λ2)
1 0 1− ((1−λ0)(1−λ2) (1−λ0)(1−λ2)
0 1 1− ((1−λ0)(1−λ1)) (1−λ0)(1−λ1)
1 1 λ0 1−λ0

Table 2.2.: CPT of a noisy-AND with two parent nodes

skill model
student's
responses

knowledge
estimation

Q matrix structural
information

r ar ar r ar ar

Q1 Q2 Q3 Q4

KC1 0 1 0 1

KC2 1 1 0 0

KC3 0 0 1 0

KC1

KC2

KC3 KC4

data

domain

purpose

Figure 2.9.: General scheme of a skill model

student is estimated from data by looking at the sequence of his/her responses to the learn-
ing items. At each step it is evaluated which KCs were applied correctly and which were
applied incorrectly at that step. A step usually corresponds to a learning item. But in case
that the student is allowed to work more than once on an item, a step can also be defined
on a submission or even keystroke level. The current knowledge state is often expressed as
the probability that the student “knows” a certain KC or the probability that the student will
solve a particular learning item correctly and depends on the concrete purpose of the skill
model.

In this section, we present different skill models based on Bayesian theory (Section 2.5.1)
and logistic regression (Section 2.5.2) as well as models which comprise both techniques
(Section 2.5.3).

2. Foundations 26

2.5.1. Models Based on Bayesian Theory

One of the most famous skill modeling approaches is Bayesian Knowledge Tracing (BKT)
[68]. BKT uses a Hidden Markov Model to model a student’s knowledge of a certain KC
(see Figure 2.10b). The current knowledge state of a KC is modeled by a binary hidden
state, i.e., the KC can be either known or unknown. The student can switch from the state
unknown to the state known with a transition probability L, often also referred to as learning
rate. In classical BKT, a transition from known to unknown is not possible, i.e., there is
no forgetting. The knowledge state is estimated by observing the student’s responses to
questions. A student’s answer to an item may be correct although the student is in the
unknown state, i.e., the student can guess the answer. On the other hand, the student can
answer to an item incorrectly although the student is in the known state, i.e., the student can
slip. Besides the learning rate, the guess and slip probabilities, BKT has a fourth parameter
L0 which describes the probability that the student already knows the KC before any practice
opportunity. A lot of extensions were done to extend classic BKT, e.g., the integration
of item difficulty [69] or the contextualization of estimates for the guessing and slipping
parameters [70]. However, BKT observes all KCs separately. It does not consider multiple
KCs in one observation or the dependencies between KCs.

BNs [71] are graphical models that encode causal relationships between variables, i.e.,
objects of interest or observations (see Section 2.4). In skill models, nodes in a BN rep-
resent KCs and responses to exercises. The edges between the nodes describe the inter-
dependencies between KCs or which KC leads to which observation (see Figure 2.10c).
The nodes can be either in the state known or unknown for KCs or correct or incorrect for
observations of responses. The disadvantage of BNs is that the number of parameters in-
creases rapidly the more dependencies they contain. Furthermore, they only model a static
point in time and not the complete evolution over time.

When using DBNs (see Section 2.4.1) in student modeling, KCs are modeled by nodes
which states not only depend on the observation nodes in the current time step but also on
the KC’s state in the previous time step. As DBNs are special types of BNs, they have the
same problem of a high computational complexity.

A special BN which aims at allowing multiple KCs per item in BKT is the conjunctive
knowledge model (CKM) [72]. The CKM assumes a conjunctive relationship between KCs,
i.e., that all KCs that are required for the solution of an item have to be known in order to
answer the item correctly. To model the conjunctive relationships noisy-AND gates (see
Section 2.4.2) are used instead of complete CPTs (see Figure 2.10d). Noisy-AND gates are
defined by only two parameters guess and slip which determine the probability to answer
a learning item correctly although at least one KC is unknown resp. to answer a learning
item incorrectly although all required KCs are known. This drastically reduces complexity
of the BN when a lot of KCs are involved.

27 2.5. Skill Models

(a) Plate diagram of BKT (b) BKT as HMM

KC2KC1

O1 O2 O3

KC3

O4 O5

KC4

(c) BN

KC2KC1

O1 O2 O3

AND AND

(d) CKM

(e) DBN

Figure 2.10.: Bayesian skill models. White nodes represent hidden nodes, i.e., they can not
be observed directly.

2. Foundations 28

2.5.2. Logistic Regression Models

Other skill models are not based on Bayesian theory but are regression models. They are
slight variations of the Item Response Theory (IRT) [73]. The Learning Factor Analysis
(LFA) [74] can be used to calculate the probability p that a student i will solve a particular
exercise j correctly. The LFA model is defined as follows:

ln
(

p
1− p

)
= αi + ∑

k∈KCs(j)
βk + γknik (2.5.1)

If we want to estimate the probability p that a student i will solve a particular exercise
correctly, we consider the number of his/her previous practice opportunities nik. The counter
is weighted by a parameter γk to describe how large the influence of the previous attempts
on the current knowledge is. A parameter βk describes the general difficulty of a KC k. The
parameter αi captures a student’s ability. The parameters αi, βk, and γk are estimated from
data by logistic regression.
The AFM [75] extends LFA by an additional parameter δ j which reflects the difficulty of a
learning item:

ln
(

p
1− p

)
= αi +δ j + ∑

k∈KCs(j)
βk + γknik (2.5.2)

Performance Factor Analysis (PFA) [76] re-configures the LFA model by focusing on “the
strongest indicator of student learning: performance” [76]. In PFA, the student’s ability
parameter is dropped. Observations of previous attempts are split into success or failure.
Instead of only counting how often a KC was applied, it is distinguished between the number
of correct applications sik and the number of incorrect applications fik of a KC k. Similar
to the previous counter nik, these counters are weighted by parameters γk for sik resp. ρk for
fik:

ln
(

p
1− p

)
= ∑

k∈KCs(j)
βk + γksik +ρk fik (2.5.3)

While parameters of skill models based on regression can be learned relatively fast even for
large numbers of parameters, their main drawback is that they do not incorporate dependen-
cies between KCs.

2.5.3. Other Skill Models

There are also some attempts to combine classic BKT with logistic regression. LR-DBN
[77] adds an additional layer of observable nodes to BKT which represent whether a cer-
tain sub-skill is required for the solution of a certain learning item or not. Instead of a fixed
value for the transition probability from the unknown to the known state, the transition prob-
ability is determined by a logistic regression over all sub-skills. LR-DBN only focuses on

29 2.5. Skill Models

sub-skills as features for transition probability. Feature Aware Student knowledge Tracing
(FAST) [78] allows for general features for transition as well as emission probabilities. This
allows to include, e.g., student or item indicator features.

In Deep Knowledge Tracing (DKT) [79] recurrent neural networks are used to model
students learning. The input is a one-hot encoded vector which describes which skill was
applied and whether it was applied correctly. The output vector describes for each learning
item the probability that the student will solve the item correctly. The main disadvantage
of DKT is that the model is not interpretable. The parameters that are fit are weighting
matrices without any educational meaning.

Table 2.3 gives an overview of common skill models, their parameters, their capabilities,
and their disadvantages.

2. Foundations 30
skillm

odel
m

ultiK
C

s
K

C
count

dependencies
param

eters
output

disadvantages

B
K

T
–

binary
–

slip,
guess,

learning
rate,initialknow

ledge

probability
that

student
is

in
a

certain
know

l-
edge

state

single-K
C

m
odel,

high
com

putational
com

plexity

B
N

√
binary

√
C

PT
s

foreach
node

probability
foreach

K
C

being
in

a
certain

state
static

m
odel

D
B

N
√

binary
√

C
PT

s
foreach

node
probability

foreach
K

C
being

in
a

certain
state

high
com

putational
com

plexity

C
K

M
√

binary
–

slip,guess
probability

foreach
K

C
being

in
a

certain
state

no
dependencies

con-
sidered

L
FA

√
m

ultiple
–

student
ability,

K
C

dif-
ficulty,influence

ofpre-
vious

attem
pts

probability
that

a
stu-

dent
w

ill
answ

er
to

a
certain

learning
item

correctly

no
dependencies

con-
sidered

A
FM

√
m

ultiple
–

studentability,learning
item

difficulty,
K

C
dif-

ficulty,influence
ofpre-

vious
attem

pts

probability
that

a
stu-

dent
w

ill
answ

er
to

a
certain

learning
item

correctly

no
dependencies

con-
sidered

PFA
√

m
ultiple

–

K
C

difficulty,influence
of

previous
successes,

influence
of

previous
failures

probability
that

a
stu-

dent
w

ill
answ

er
to

a
certain

learning
item

correctly

no
dependencies

con-
sidered

L
R

-D
B

N
sub-skills

binary
sub-skills

slip,
guess,

initial
know

ledge,
a

sub-
skill’s

contribution
to

learning
rate

probability
that

student
is

in
a

certain
know

l-
edge

state

only
sub-skill

relation-
ships

possible

FA
ST

sub-skills
binary

sub-skills
em

ission
and

transition
probabilities

probability
that

student
is

in
a

certain
know

l-
edge

state

only
sub-skill

relation-
ships

possible

D
K

T
–

binary
–

inputw
eightm

atrix,re-
current

w
eight

m
atrix,

initial
state,

readout
w

eightm
atrix

probability
that

a
stu-

dent
w

ill
answ

er
to

a
learning

item
correctly

no
interpretable

param
-

eters

Table
2.3.:O

verview
ofcom

m
on

skillm
odels

3. Related Work

In this thesis, we perform a broad analysis of students’ programming knowledge. We have
a look at students’ errors and use skill models to estimate their knowledge of programming
constructs. Thus, we first start by giving an overview of related work dealing with the anal-
ysis of students’ programming errors. Afterwards, we have a look on prior applications of
skill models in the programming domain. Since we also want to analyze the development of
programming knowledge over time, we complete our related work with reporting about the
state of the art regarding the identification of common behavioral patterns in programming.
In the end, we put the identified related work into context with our work and define our
research delta.

3.1. Programming Errors

As broad as the variety of programming errors made by students is also the number of dif-
ferent classifications of errors [6]. Table 3.1 lists different categorizations of programming
errors which are complete in the sense that an error can always be assigned to at least one
of the categories. Further categories of programming errors can be found in Appendix B.

Two common categorizations base on on which programmatical level and when the error
occurs. The first one divides errors into syntax, semantic, and logic errors [80]. Syntax
errors refer to violations of the syntax resp. grammar of the programming language (see
Section 2.3), e.g., a missing semicolon at the end of a statement, or imbalanced parenthesis.
Semantic errors are related to an improper use of a programming construct, e.g., a missing
initialization of a variable. Logic errors refer to problems during problem-solving, e.g., a
wrong calculation. The second categorization distinguishes between compile-time and run-
time errors. Compile-time errors are found during compilation and correspond to syntax
and static semantic errors. Run-time errors occur when the program is executed. Run-time
errors can be further sub-divided into errors which make a program crash, e.g, a null pointer
exception or array index out of bounds, and failures, i.e., errors where the program does
not behave as intended resp. specified, e.g., an error in a calculation. Failures are typically
revealed by testing.

In general, a piece of code can be missing, spurious, misplaced, or malformed [81]. The
concrete manifestation of the error can be seen in a context, e.g., input/output, initialization,
declaration. For example, a missing output refers to a mismatch between implementation
and specification which expects an output. A spurious output means, that an output is imple-

3. Related Work 32

Error Description
Compile-time errors Errors arising during compilation
Run-time errors Errors only occurring at run-time

Hristova et al. Syntax Errors Incorrect syntax of a programming language
(2003) [80] Semantic Errors Improper use of programming constructs

Logic Errors Errors due to not respecting specification
Johnson et al. Missing Omitting required program element
(1983) [81] Spurious Including unnecessary program element

Misplaced Putting necessary program element in wrong place
Malformed Putting incorrect program element in right place

Spohrer and Construct-based problem Problems related to semantics of language constructs
Soloway (1986) [82] Plan composition problem Problems with putting parts of program together
Zehetmeier et al. Mental typo Sloppiness
(2015) [83] Knowledge gap Not knowing definitions or terms

Misconception Faulty understanding of a construct/concept
Wrong choice Inappropriate selection of solution process in a given

setting
Structural blindness Inability to structure components in a given setting
Quality gap Inability to stick to quality standards
Lack of innovation Inability to construct a new solution from previous

knowledge in a new context

Table 3.1.: Categories of programming errors

mented when it was not expected to. A misplaced output error could be, e.g., implemented
inside a loop instead of outside. A malformed output would be, e.g., ignoring a specified
output format.

Spohrer and Soloway [82] analyzed students’ syntactically correct programs and distin-
guish between two basic error categories: construct-based and plan composition problems.
Construct-based problems refer to difficulties students have with certain programming con-
structs and their semantics, e.g., confusing and and or. Plan composition problems describe
difficulties students have when putting parts of a program together to achieve a certain goal,
e.g., not considering uncommon, unlikely, or boundary cases.

The revised Bloom’s taxonomy [84] describes cognitive competencies on six different
skill levels which are also called the cognitive process dimension. Zehetmeier et al. [83]
define error categories related to the cognitive process dimensions (see Table 3.2). The first
level remember refers to retrieving knowledge from long-term memory. So the inability to
remember, how to access a specific element in an array, can be seen as a knowledge gap. The
second level understand means not only remembering the syntax of a certain construct but
also understanding its semantics. A lack in understanding relates to a misconception. For
example, a student may know how to write a do-while loop, but is not aware that the loop
is always executed at least once in contrast to a while loop. Apply on the third level means,
that the student is able to apply his/her knowledge in the correct context, i.e., he/she is able
to select the correct construct for his/her intended purpose, e.g., selecting the data structure

33 3.1. Programming Errors

Level Cognitive process [84] Error class [83]
0 – Mental typo
1 Remember Knowledge gap
2 Understand Misconception
3 Apply Wrong choice
4 Analyze Structural blindness
5 Evaluate Quality gap
6 Create Lack of innovation

Table 3.2.: Relationship between revised Bloom’s taxonomy and the error categories by Ze-
hetmeier et al.

list instead of set when the order of elements matters and duplicates of elements shall be
allowed. An error on this level falls into the category of wrong choice. Level 4 analyze deals
with a student’s ability to analyze a problem, break it down into smaller parts and analyze
their relationships. The corresponding error category is called structural blindness and is
comparable to Spohrer and Soloway’s [82] plan composition problem. While the student is
able to solve the individual sub-problems, he/she has problems with putting them together
such that the overall problem is solved. Level 5 deals with the evaluation, i.e., a student
shall be able to critically analyze and test his/her program. Errors on this level correspond
to a quality gap and are related to good programming practices and testing, e.g., errors
as a result of “spaghetti” code or the usage of goto statements. The highest level in the
revised Bloom’s taxonomy is apply where the student shall be able to apply his/her previous
knowledge to new, unseen problems. For example, if a student was able to calculate the sum
of the numeric elements in the array by using the array subscript, he/she should also be able
to achieve the same goal by using pointer arithmetic after learning about the relationship
between pointers and arrays. The lack of that ability refers to the corresponding error class
lack of innovation. Additional to the given six level of the Bloom’s taxonomy, Zehetmeier
et al. defined a level 0 mental typo which refers to errors due to a lack in concentration, e.g.,
typos, missing semicolons etc.

In most studies regarding the most common errors made by students, compiler messages
were analyzed to identify common programming errors since they can be easily evaluated
automatically [85, 46, 86, 87]. However McCall and Kölling [88] showed that diagnostic
messages and actual compiler errors often do not fit together and depend on the context by
inspecting source code manually. Hence, only considering diagnostic messages to get an
insight into programming errors is not sufficient.

Brown and Altadmri [85] developed a post-lexing and extension for compilation for the
detection of common errors based on a survey conducted by Hristova et al. among computer
science professors and students [80].

Spohrer and Soloway [82] showed that most errors students make are not not due to
misconceptions about language constructs but a result of plan composition problems by

3. Related Work 34

inspecting 152 solutions for three exercises in total and comparing in how far the plans of
the students deviate from the expected plans.

Ettles et al. [89] classified logic error into three categories: algorithmic, misconception,
and misinterpretation. They used the assumption that same logic errors result in same failed
test cases to group solutions inspecting them manually. They restricted their studies to errors
that occurred at least in 5% of the time or more than 50 times. However, their exercises
basically focused on variables, control structures, and arrays.

3.2. Skill Models in the Programming Domain

Although there exists a great variety of student modeling approaches, only few of them
are applied to the programming domain, especially to open-ended programming exercises.
Table 3.3 gives an overview of previous work of skill models in the programming domain
and which meta-parameters (see Section 4.3.1) were used by the authors.

Corbett and Anderson [68] use BKT for the estimation of programming knowledge in
the ACT Programming Tutor for LISP. The KCs in this approach are rules of the form “to
achieve goal X, do Y”. The order in which the rules should be applied for each exercise is
deterministic, thus applying a rule in the wrong order means that the KC corresponding to
that rule was not applied successfully. The estimated knowledge state describes the proba-
bility that a student knows a certain rule. However, in open-ended programming exercises
it is unnatural to pre-define a concrete solution path. Students should be relatively free in
the selection of KCs and the order of statements they want to use to achieve a goal.

Mayo and Mitrovic [90] use a constrained-based model (CBM) [91] in their SQL-Tutor
for student modeling. Constraints define conditions that have to be satisfied by every cor-
rect solution. A constraint consists of a pair of conditions (Cr,Cs) where Cr is the relevance
condition and Cs is the satisfaction condition. If the relevance condition is true in a student’s
solution then the satisfaction condition also has to be true, otherwise the student’s solution is
incorrect. To estimate a student’s mastery of a KC, i.e., constraint, they use a simple BN for
each KC which consists of four nodes: RelevantISc,p describes whether a KC c is relevant
in the ideal solution to learning item p, RelevantSSc,p describes whether the KC is relevant
in the student’s solution and depends on the relevance in the ideal solution, Masteredc de-
scribes whether the student has mastered the KC, and Per f ormancec,p describes whether the
constrained was satisfied and is conditionally dependent on RelevantSSc,p and Masteredc.
While RelevantISc, p, RelevantSSc,p, and Masteredc are binary variables, Per f ormancep

can take one of three values: satisfied, violated, not-relevant.
Kasurinen and Nikula [33] applied BKT to python exercises. Their KCs were particu-

lar programming structures, e.g., files or loops. They defined a set of rules which describe
guidelines for a preferred solution. Each guideline was associated with a certain program-
ming structure. For example, the rule that each open file should be closed relates to the KC
file. They checked if the guidelines were followed by means of structural analysis. If they

35 3.2. Skill Models in the Programming Domain

were followed, the KC was assumed as applied correctly. Overall, they provided a very
limited set of guidelines and KCs.

Gonzales-Brenes and Huang [78] evaluate how features like, e.g., multiple sub-skills,
item indicators, or practice opportunities affect prediction performance. They used data
from JavaGuide [92] to fit BKT, PFA, LR-DBN, and FAST models. In JavaGuide, students
have to answer which output a piece of code produces or which value a variable will have.
KCs are Java concepts and JavaParser [93], an AST-based indexing tool, determines which
KCs are required to solve a particular exercise. If the student answers correctly, all required
KCs are assumed as applied correctly, otherwise they are assumed as applied incorrectly.
For training and testing each attempt of a student was considered as step. However, these
types of exercises only evaluate whether students have the ability to understand code but
not if they can actually write code.

Huang et al. [72] also used the data from JavaGuide for fitting a skill model. They
extended CKM by further layers of hidden nodes that represent combinations of KCs resp.
integration skills [94] and their mastery. Since CKMs make it difficult to model multiple
attempts on the same learning item, they used the average success rate over attempts. This
allows them to consider the complete history of attempts with only one step for each item.

Berges and Hubwieser [32] used IRT to assess coding abilities from source code. They
identified 21 KCs covering the concepts of object-oriented programming, e.g., array, as-
signment, or overloading. For each KC one or more observable items were assigned, e.g.,
the items “Are there arrays with pre-initialization declared in the code” or “Is there any
access of the elements of an array in the code” are related to the KC array. Each item can
be answered by yes or no to evaluate whether the related KC was applied correctly or not.
Since they only had one large assignment, they only modeled a student’s knowledge at a
point in time but no learning.

Similar to our approach, Yudelson et al. [34] used programming language elements which
were obtained by means of an AST parser as KCs for Java. They interpreted each item-test
case-combination as a step and considered KCs as applied correctly if the test passed. They
used different configurations of AFM to estimate students’ knowledge of the KCs. They
used the KC actually used by the students in their solution as Q matrix and slight variations
of it by distinguishing between additions and deletions of KCs in subsequent solutions.
Furthermore they used a PC algorithm for systematic conditional independence to reduce
the set of required KCs. They showed that models based on automatically extracted KC can
be practically useful and that models using the reduced set of required KCs perform better
than the ones using all of the actually used KCs as Q matrix. However, they only checked
for the presence or absence of KCs in a student’s solution without considering how often or
in which order the KCs were applied.

Huang et al. [95] also tried to reduce the set of required KCs. Again they used data
from JavaGuide to fit different BKT and PFA models. To define a Q matrix, they used three
reduction methods. First, they selected those KCs as required which occur most often in the
model solution. The second approach is to use those subset of KCs which are most difficult

3. Related Work 36

as required KCs. The difficulty of KCs was determined by the KC difficulty coefficient of
the PFA model. As third reduction method they used a labeling by experts. They showed
that reducing the set of required KCs can lead to a better prediction performance. However,
their reduction methods are based on a fixed existing code (as students have only to predict
output/a variable value and not to write code by themselves) and, thus, are not applicable
on open-ended programming exercises except for the expert-based labeling.

Rivers et al. [96] used AFM and learning curve analysis to identify KCs students are
struggling with. Similar to Yudelson et al. [34] and our approach the KCs were elements
which they derived automatically from ASTs. But instead of assuming that all KCs in a
solution were applied incorrectly if the solution is incorrect, they used the ITAP algorithm
[97] to find a corrected version of the solution. The KCs which are different in the original
solution and the corrected one are then assumed as being applied incorrectly.

Only Yudelson et al. [34] and Rivers et al. [96] have considered different meta-
configurations. While Rivers et al. [96] focused mainly on how to define a step and how
to account for incorrectly applied KCs, Yudelson et al. [34] focused more on the definition
of a Q matrix. Most of the approaches used either a fixed Q matrix which was defined
by an expert (either human or based on a model solution) or used the KCs which were
actually applied by the students in their solution. All of the approaches considered every
submission/attempt as a step.

3.3. Patterns in Programming Behavior

There is a lot of research using snapshots of students’ code to determine how students
progress through an assignment. Metrics referring to changes in code, number of error
messages, and students’ compilation or testing behavior are used to determine and visualize
a student’s trajectory. However, these trajectories are often analyzed manually to identify
general programming strategies of students [87, 98, 99, 100, 101]. Blikstein [98] identi-
fied seven canonical strategies in code creation. He could identify three different groups
of students: copy and pasters who start with an existing program and modify it often by
browsing for other useful sample programs and pasting code from that programs into their
current program; self-sufficients who try to completely write the program by themselves;
and mixed-mode students who are a mixture between the previous both types, i.e., write
most pieces of their code by themselves but also look for solutions of difficult parts in
sample programs. Hosseini et al. [99] used JavaParser [93] to extract concepts used in
the solutions and compared the change of concept number to the change in the correctness
level. They identified 4 types of students: builders gradually build their programs, with
increasing number of concepts also the correctness increases; massagers usually have long
streaks with only small changes in the number of concepts used without changing the level
of correctness of their program; reducers start with large amount of code and then gradually

37 3.3. Patterns in Programming Behavior

skillm
odel

K
C

s
observations

K
C

count
step

definition
Q

m
atrix

C
orbettand

A
nderson

[68]
B

K
T

production
rules

rule
applied

correctly/incor-
rectly

binary
each

coding
step

expert

M
ayo

and
M

itrovic
[90]

B
N

constraints
relevant/satisfied/violated

con-
straints

binary
every

used

K
asurinen

and
N

ikula
[33]

B
K

T
program

m
ing

structures,
e.g.,w

hile,for,file
correct

application
of

guide-
lines

related
to

K
C

s
binary

every
used

G
onzales-B

renes
and

H
uang

[78]
PFA

,L
R

-D
B

N
,

FA
ST

Java
concepts

obtained
by

JavaParser[93]
output/variable

value
answ

ered
correctly/incorrectly

binary
every

expert

H
uang

etal.[94]
C

K
M

-H
SC

Java
concepts

obtained
by

JavaParser
and

com
bina-

tions
of

them
(integration

skills)[93]

output/variable
value

answ
ered

correctly/incorrectly
binary

average
suc-

cess
rate

over
attem

pts
expert

B
erges

and
H

ubw
ieser[32]

IR
T

concepts
of

object-oriented
program

m
ing,

e.g.,
array,

assignm
ent,overloading

observable
item

s
related

to
K

C
s

binary
only

one
assignm

ent
all

Y
udelson

etal.[34]
A

FM
Java

concepts
obtained

by
JavaParser[93]

passed/failed
testcases

binary
every,diff

used,PC

H
uang

etal.[95]
K

T,PFA
Java

concepts
obtained

by
JavaParser

output/variable
value

answ
ered

correctly/incorrectly
binary

every

used,
m

ost
frequent,
m

ost
diffi-

cult,expert

R
ivers

etal.[96]
IR

T
/A

FM
language

elem
ents

obtained
by

an
A

ST
parser

deviation
of

applied
K

C
s

from
K

C
s

in
m

odel
solution

deter-
m

ined
by

ITA
P

algorithm
(in-

correctK
C

s
diff+all)

binary
first,every

expert

Table
3.3.:Skillm

odels
forprogram

m
ing

and
theirm

eta-param
eters

3. Related Work 38

reducing the number of concepts by optimizing their code moving towards an increasing
correctness; strugglers are students who can not make their program work for a long time,
no matter how often they change their code. Meier et al. [101] analyzed students compile
times and error frequencies in an introductory Python course. They identified 3 different
groups of students: bricklayers who gradually build and run their programs and are compa-
rable to builders by Hosseini et al. [99]; stonecutters who run their code only after writing
a large portion of the code and then need several attempts to fix their errors bit by bit; and
masters who also run their code only after their code is almost complete but only have few
errors which they fix quickly.

However, manual analysis of students’ trajectories is tedious. Thus, other studies use
machine learning to analyze students’ progress within an assignment. Piech et al. [48]
trained Hidden Markov Models (HMMs) on data from exercises with Karel the Robot [102]
using a programming language similar to Java. The states of the HMM correspond to states
of the program and achieved subgoals, so called milestones. They use k-medioids clustering
with a distance metric defined by a combination of the difference in API calls and AST
difference to compute the milestones. Then, an EM algorithm was used to train the HMM.
Finally, k-means clustering is used to determine different patterns in the paths students took
through the HMM. They found out that students who make smaller steps always in the right
direction of the solution, comparable to the builders by Hosseini et al. [99], usually achieve
a higher midterm score than students who get stuck in sink states before directly creating a
completely correct solution.

Wang et al. [100] use recursive neural networks (RNNs) which are fed with AST rep-
resentations of the student’s code to trace a student’s knowledge development within an
assignment and predict whether he/she will be able to solve the exercise correctly. Using k-
means clustering they found 5 trajectory clusters in which they identified 3 different groups
of students by qualitative analysis. The first group corresponds to builders by Hosseini et
al. [99], who make consistent progress. The second group makes inconsistent progress and
follows more a trial-and-error approach, comparable to tinkerers by Perkins et al. [103].
Students in the third group use more hard-coded simple elements instead of more complex
elements like if-statement or loops.

Yee-King et al. [104] used k-means clustering to identify different programming behav-
ior. They identified 4 groups of programming patterns: students in the first group tend to
change their code a lot, most often by using new vocabulary, i.e., function calls the stu-
dent has not used or seen previously; students in the second group do not change much in
their code, but the changes were done quickly; students in the third group also had a lot of
changes but they often reused code from demonstrator code and are, thus, comparable to
the copy and pasters by Blikstein [98]; students in the last group also tend to reuse code but
in contrast to the third group, the changes were only small.

Only few studies considered changes throughout a course instead of a per-assignment
basis [33, 105, 106]. Blikstein et al. [105] analyzed code update patterns in a Java program-
ming course and how this patterns changed throughout the course. Code update patterns

39 3.4. Summary and Research Delta

are defined by the size of the code changes, i.e., adding, removing, or modifying a line,
and the frequency of code changes. Based on the level of change in their update patterns
they divide the students into five groups. They found out that students who change their
update pattern to a great amount tend to achieve better results in the final exam. Ahadi et
al. [106] analyzed how students’ overall performance changed over time by looking at the
average correctness of students’ submissions. They find out that the performance which is
explainable by the incremental nature of programming and that new knowledge has to be
integrated continuously.

Most related to our work, are the work by Rivers et al. [96] and Smith and Rixner [107].
Rivers et al. [96] used the tokens from an AST as KCs to train IRT models which describe
how each KC is learned over time. They found out that while some KCs show expected
learning curves with decreasing error rate, others have been already known at the beginning
or were not learned at all. Although, they already thought about some properties of the
programming domain like KCs, the definition of a step, and step correctness, an elaborative
study about the effect of these meta-parameters is missing. Furthermore, they only restrict
to the syntactical level of knowledge.

Smith and Rixner [107] focused on the analysis of run-time errors over time which they
call the error landscape. They do not only consider error frequencies, but also how many
submissions were required to solve the error, and how often an error re-occurred within an
assignment. Unfortunately, they only analyze the change of errors within an assignment or
between two subsequent assignments but not throughout the complete course. Furthermore,
they focused on run-time errors which result in exceptions, syntactical errors and failures
however are not further sub-divided.

3.4. Summary and Research Delta

While most studies using code snapshots provide insights into how students write programs,
they do not investigate how students learn to program. In this thesis, we want to fill the gap
by analyzing how programming beginners’ knowledge and “anti-knowledge”, i.e., errors,
evolves over time. We extend the properties of the programming domain identified by
Rivers et al. [96] and evaluate how they can be incorporated into skill models and which
effect they have on the performance of the skill models. Instead of using IRT, we want to
use DBNs for creating learning curves. Furthermore, we do not only consider the lowest
level of knowledge in programming, i.e., syntax, but also a more semantic level by taking
roles of variables as SAPPs into account.

Similar to Smith and Rixner [107], we analyze the error landscape of programming begin-
ners. But instead of looking at the errors on a per-assignment basis, we track the evolution of
errors throughout the complete course. We prefer to use the categorization of programming
errors by Bayman and Mayer [54] in our work which distinguished between three types of
knowledge: syntactic, conceptual, and strategic (see Section 2.1). In most studies, only

3. Related Work 40

errors in the categories of syntactic and conceptual knowledge are analyzed. Studies re-
garding strategic errors are only limited to a small set of data or focus only on a small set of
language concepts. In our work, we consider all types of errors that lead to a solution being
considered as incorrect by manually analyzing student’s submissions in a C programming
beginners course. Since we hypothesize that students may have different error patterns,
we use the results from the error landscape to cluster students by their error patterns. The
identification of common patterns in knowledge as well as error evolution can lead to new
insights of certain issues during learning and lay a foundation for personalization in ITS.

4. Estimation of Programming Knowledge

In this section, we present our methodology for the estimation of a student’s programming
knowledge. First, we describe how we extract the KCs from student’s code in Section 4.1.
For the similarity analysis of the code, we define three different similarity metrics in Section
4.2. In Section 4.3, we adjust PFAs and AFMs to cope with a dynamic Q matrix and propose
a DBN topology for the programming domain. Afterwards, we describe how the DBN can
be used to derive learning curves in Section 4.4.

4.1. Identification of Knowledge Components in Students’ Code

As stated in Section 2.1, programming consists of several skills, including writing, reading,
or debugging code. Therefore, KCs for programming can be manifold, e.g., rules for com-
pliance to particular coding conventions, the ability to understand certain compiler errors,
or the ability to assemble pieces of code such that a certain goal is achieved. In this thesis,
we focus on the two lower levels of programming knowledge as defined by Bertels et al. [3]:
programming primitives and semantically augmented programming primitives (see Section
2.1).

4.1.1. Programming Primitives

We use the grammar of the C programming language as defined by the ISO/IEC 9899:2011
(C11) standard [108] to extract PPs. We summarize similar PPs to derive KCs and their
hierarchical structure. The KCs on the lowest level, 0, refer to the basic building blocks
of C, i.e., preprocessor directives, declarations, expressions, and statements. Level 1 KCs
describe the logical manifestation of these basic blocks for the preprocessor directives (in-
clude, define), statements (iteration, selection, jump, label, and block), and expressions
(e.g., comparison, member access, increment/decrement, assignment, logical), or in case
of the declaration the single components of which it is made (type specifier, type qualifier,
storage class, and declarator). Level 2 contains the concrete instantiation of the abstract
elements on level 1, e.g., we can distinguish between while, for, and do-while loops.
Level 3 finally contains all remaining types of AST nodes. The higher the level, the more
detailed the sub-division of the elements. Table 4.1 shows how many KCs are assigned
to each level. Table 4.2 shows an excerpt of our KC classification related to the language
element statement. Statement is the most general element and, thus, a KC on level 0. On

4. Estimation of Programming Knowledge 42

level 0 1 2 3
number of KCs 4 30 103 147

Table 4.1.: Number of identified KCs on each level

0 1 2 3
statement block break case

iteration continue default
jump do while else
label for then

selection goto
if

return
switch
while

Table 4.2.: Classification of KCs for statements on different levels

level 1 it is sub-divided into the different types of statements in the C programming lan-
guage, i.e., block, iteration, jump, label, and selection. These statement types can be further
sub-divided, e.g., selection can be sub-divided into switch and if. On level 3, we regard the
single parts of these elements, e.g., a switch statement can contain case and default labels.
The complete classification of KCs can be found in Appendix A.

The KCs used by a student in his/her solution can be derived from an AST (see Section
2.3). We use the CDT framework [109] of the Eclipse Foundation as a basis to create our
own AST. In each node of the AST, we store which KCs are associated with the node on
each level, such that we can easily access the applied KCs when analyzing the program.

4.1.2. Semantically Augmented Programming Primitives

In Section 2.2, we showed that variables can have different semantic roles within a program.
In this thesis, we are using these roles as KCs on the SAPP level. The process of variable
analysis consists of several steps which are depicted in Figure 4.1 and will be described in
the following.

rename
variables

analyze
usage types

analyze
 roles

Figure 4.1.: Process of variable role analysis

43 4.1. Identification of Knowledge Components in Students’ Code

Rename variables

In many programming languages identifier names can be defined at different levels, each
having a scope, i.e., region in the program where the name can be used. Thus, a variable
with the same name can be declared multiple times. Each use of an variable is associated
with a binding which describes to which declaration the current variable belongs. Two
variables with the same name but different bindings can be treated as completely different
variables. To make this independence explicit, we rename all variables by suffixing an
integer number.

Analyze usage types

Variables can be used in different contexts. The variable usage describes how the variable
is used in a certain occurrence and is defined by four elements:

• Scope: The scope is a list of elements of the types loop, if, switch, and function and
describes the nesting of the variable.

• Access type: The access type describes whether the variable is written or read in that
usage.

• Usage type: The usage type describes the variable’s immediate task within an ex-
pression. Since an expression can be composed of multiple expressions, a variable
can have more than one usage type. So also the variable usage is defined by a list
describing the nesting of expressions. For the analysis of variable roles, we have
identified the following usage types: declaration, initialization, assignment, function
call, branch condition, loop condition, return value, increment/decrement, input, out-
put, array index, comparison, and parameter.

• Superior statement: The superior statement is the next higher statement in which the
variable is nested.

Scope, usage type and superior statement are determined by going up the AST. For the
scope it is looked for loops, if-statements and function declarations. The superior statement
is the first statement reached when going up the AST from the variable node. The usage
types follow from the expression nesting until the superior statement is reached. The access
type is determined by looking at the usage of the variable. A variable has a write access if
is used at the left-hand side of an assignment, in an increment/decrement, or has the usage
type input.

Example 4.1 Consider the example program in Listing 4.1. The variable i has six occur-
rences or variable usages within the code. The definition of the variable usage of i in line 5
would look as following:

• Scope: loop - loop - function

4. Estimation of Programming Knowledge 44

1 int main() {
2 int i = 0;
3 while(scanf("%d",&i)) {
4 int sum = 0;
5 while (i>0){
6 sum += i;
7 i−−;
8 }
9 printf("The sum of the numbers from 1 to %d is %d", i, sum);

10 }
11 }

Listing 4.1: Example program

• Access type: read
• Usage type: comparison - while condition
• Superior statement: while (i>0){

sum += i;

i--;

}

The scope results from the nesting in two while loops which are located in the main func-
tion. The expression i>0 is a comparison and is used as a condition of the while loop.
Since the while loop is the first statement the variable occurrence is nested in, the com-
plete while statement is the superior statement. None of the above rules for write access
applies to that occurrence of i, as such the access type is read.

Analyze roles

As already stated in Section 2.2 variables may have different roles during their lifetime.
To cope with sporadic changes, we split the lifetime of a variable into several lifelines. A
new lifeline of a variable starts if the variable is re-initialized. We consider a variable as
re-initialized if it is assigned a fixed value. A fixed value can be a constant, a fixed variable,
or an expression consisting only of fixed values. A lifeline of a variable consists of all
usages of that variable until the re-initialization. The roles fixed, temporary, and organizer
are analyzed on the complete lifetime of a variable, while the remaining roles are analyzed
on a per-lifeline basis.

Rist [110] investigated how students created plan schemas. He determined that each plan
has a focal line which immediately implements the goal. For instance, if the plan is to sum
elements, the focal line is the sum statement. It encodes the core task of the plan. Byckling
et al. argue that variable roles also have a focal line [111]. To identify the variable roles in
the code, we define constraints on the focal line, the scope of the focal line and the allowed

45 4.1. Identification of Knowledge Components in Students’ Code

Focal line (1) var = var op fixedvalue
(2) var = fixedvalue opcom var
(3) var op= fixedvalue
(4) var++
(5) var--
(6) ++var
(7) --var

Focal scope loop - *
Usage • initialization outside of scope

• inside scope read-only

Table 4.3.: Constraints for the variable role stepper

value changes during the lifetime resp. lifeline of the variable. The rule descriptions for all
variable roles can be found in Appendix C.

Example 4.2 Table 4.3 shows the constraints for the variable role stepper. A focal line can
be expressed by an assignment (1)-(2), an equals assignment (3), or by increment/decrement
(4)-(7) where var is a placeholder for the treated variable, fixedvalue corresponds to a fixed
expression, op can be a binary operator, and opcom is a commutative binary operator (+
or *). The focal line has to be located directly inside a loop. The ∗ denotes that the outer
nesting of the loop does not matter. For the usages of the variable not in the focal line applies
that the initialization has to be located outside the loop and that the stepper variable is only
changed in the focal line inside the loop, i.e., further usages of the variable inside the loop
are restricted to read-only access.
Applying these rules to the program in Listing 4.1, we can identify the focal line (5) for a
stepper in line 7. The scope of that usage is loop - loop - function and as such fits to the
scope of a stepper. The initialization (line 1) is located outside of the focal scope, the usages
inside the scope (lines 5,6, excl. focal line) are read-only. As a result, we can conclude that
the variable i is a stepper.

A special construct of C programming are pointers. The value of a pointer variable is
the address of a memory location in contrast to a normal variable which contains the value
that is stored at that address. Consider the example in Listing 4.2. The value of variable
a is changed in line 4 by changing the value of the address the pointer p is pointing to.
Without considering the indirect manipulation via pointers, we would assume that a is a
fixed variable. However a complete static tracking of pointer behavior is not feasible if
pointer arithmetic comes into play. Therefore, we only account for simple dependencies in
the form of pointer = &variable when checking whether the value of a variable changes.
When analyzing the role of a pointer variable, we analyze the role behavior of the pointer,
i.e., the change of the addresses, not thus of the values it points to. For example, the pointer
p in Listing 4.2 is fixed although the value at that address is changed.

4. Estimation of Programming Knowledge 46

1 int a = 5;
2 int b = 2;
3 int* p = &a;
4 *p = 3;
5 printf(a*b); // output: 6

Listing 4.2: Pointer example

4.1.3. Knowledge Application Model

There exists a variety of representations of source code, e.g., ASTs which describe the
syntactic structure of a program, control and data flow graphs illustrating the control resp.
data flow of programs, or program dependency graphs [112], that comprise both data as well
as control dependencies. We introduce a model representing a program in terms of KCs that
are used in a certain solution for a programming exercise, the Knowledge Application Model
(KAM).

Definition 4.1 (Knowledge Application Model) A Knowledge Application Model (KAM)
K = (V,E) is a hierarchical directed path graph with

• the set of nodes V =Vs∪Vc,
• the set of simple nodes Vs with vs ⊆ KCs,
• the set of complex nodes Vc with vc = (τ,Kemb) where τ is the type and Kemb is the

embedded KAM of the complex node, and
• a function τ : Vc → {FUNCT ION, IF,SWITCH,WHILE,DO −WHILE,FOR}

which assigns a type to each complex node,
• a function emb : Vc→K P which denotes the embedded KAM for each complex node,

and
• the set of edges E ⊆V ×V .

In KAMs, we distinguish between two types of nodes, simple nodes and complex nodes.
Simple nodes represent simple sequences of statements while complex nodes represent nest-
ing in the program structure. Nesting is caused by functions, selection statements, i.e., if
and switch statements, and loops. Thus, each complex node vc is annotated with its type τ .
For level 0 and 1 the potential types are reduced to loop, selection, and function. Addition-
ally, complex nodes contain an embedded KAM emb(vc) which represents the nested code
within the function/statement.

To create the KAM for a solution, the code is sliced into basic blocks. Basic blocks
are sequences of statements without branching. For each basic block, a simple node vs is
created which contains a set of all KCs used in this block vs ⊆ KCs. Thus, the order of
instructions within a basic block does not matter for the KAM. The number of KCs within
a simple node vs ∈ Vs is denoted by |vs|. When nesting occurs, we create a complex node

47 4.2. Code Similarity

for the nesting element with the corresponding type and construct the embedded KAM for
the nested code.

Figure 4.2 shows how the embedded KAMs are created for particular branching elements.
The embedded KAM of a function starts with a simple node containing the KCs from the
function header. This node is followed by one or more nodes representing the body of the
function. These nodes can be simple as well as complex nodes. An embedded KAM of
complex nodes with type WHILE or DO-WHILE starts with a simple node representing
the looping condition followed by one or more nodes representing the body of the loop.
Similarly, the embedded KAM of a for loop is constructed. In this case, the first node does
not only contain the KCs of the looping condition, but also the KCs of the initialization and
the iteration expression contained in the for-header. The embedded KAM of an if statement
starts with a simple node containing the KCs of the condition, followed by one or more
nodes representing the then branch and - if existent - by one or more nodes representing the
else branch. A switch statement is expressed by an embedded KAM starting with a simple
node representing the switch expression. This is followed by nodes for each case.

Definition 4.2 (Path length in KAMs) The path length of a KAM K = (V,E) is defined
as:

pathlength(K) = |V |+ ∑
vc∈Vc

pathlength(emb(vc))

The path length corresponds to the number of nodes in an KAM by also adding the numbers
of nodes in the embedded KAMs.

Example 4.3 Figure 4.3 shows an example of a KAM. The example program consists of
the preprocessor directive include and a main-function. The preprocessor directive rep-
resents the first basic block and is thus transferred into a simple node. The main function
is transferred into a complex node of the type FUNCTION. The function can be sliced into
three basic blocks: the variable declaration at the beginning of the function, the if state-
ment, and the return statement at the end of the function. While the declaration and the
return statement can be transferred into simple nodes, the if statement has to be represented
by a complex node of type IF. The embedded KAM of the IF-node is split into a simple node
for the condition of the if statement, a simple node for the then branch, and a simple node
for the else branch. The path length of the KAM is 9.

A KAM can show the separation of KCs in a program and contains limited control flow
information, but it does not consider the order of statements within basic blocks, variable
naming, or concrete values of primary expressions.

4.2. Code Similarity

In software engineering, the assessment of code similarity has various applications like
clone detection [113], code plagiarism detection [114], finding similar bug fixes [115], and

4. Estimation of Programming Knowledge 48

FUNCTION

function header

function body

(a) Pattern for functions

WHILE/DO-WHILE

condition

body

(b) Pattern for while-/do-while-loops

FOR

for initialization
condition

iteration expression

body

(c) Pattern for for-loops

IF

condition

then branch

else branch

(d) Pattern for if-statements

SWITCH

switch expression

case 1

case 2

...

case n

(e) Pattern for switch-statements

Figure 4.2.: Construction patterns for complex nodes

49 4.2. Code Similarity

Figure 4.3.: Example of a KAM (KC level 2)

4. Estimation of Programming Knowledge 50

program comprehension [116]. Similarity algorithms can be divided into several classes.
Metric-based similarity detection [117, 118, 119] uses software metrics like, e.g., Halstead
complexity metrics, to determine the similarity. Text-based [120, 121] approaches use string
comparison of the source code as a measure for similarity. For token-based approaches [122,
123, 124], the code is transformed into tokens and then the token streams are compared. To
abstract from formatting and other lexical issues, one can use similarity metrics based on
the comparison of trees [125, 126], e.g., ASTs. To capture similarity on a more semantic
level, graph-based algorithms can be used by comparing, e.g., control-flow graphs [127] or
program dependency graphs [128, 129, 130].

In this section, we present three different similarity metrics that we use to assess the
similarity between two solutions of students. The set similarity is a very simple metric based
on the comparison of the sets of used KCs in the solutions (Section 4.2.1). The set similarity
neither accounts for structural differences, nor does it consider when and how often a KC
is applied in a solution. The second similarity metric we define here is AST similarity.
The AST similarity is based on the costs of transforming the AST of one solution into the
AST of the other solution (Section 4.2.2). The last similarity metric we present here is the
KAM similarity. It is based on the comparison of two KAMs (Section 4.2.3). In addition,
we introduce a metric which we call diversity in Section 4.2.4. It describes the proportion
of different solutions. While the diversity tells us whether the solutions are different, the
similarity describes to what extent they differ.

4.2.1. Set Similarity

For the set similarity of two solutions we are just regarding the overall sets of KCs of the
solutions independently of the order in which they were applied. A typical measure for the
similarity of two sets is the Jaccard index [131].

Definition 4.3 (Set Similarity) Let KCs(i) and KC(j) be the sets of KCs used in solutions
i and j. The set similarity is defined by:

simset(i, j) =
|KCs(i)|∩ |KCs(j)|
|KCs(i)|∪ |KCs(j)|

Example 4.4 Consider the code snippets from Figure 2.5. Table 4.4 shows the KCs on
each level for the both solutions as well as the resulting set similarity. Each higher level
also contains the KCs from the lower level to mitigate the differences on higher levels. We
can see that set similarity decreases with increasing KC level.

4.2.2. AST Similarity

One possible approach to determine the similarity between two ASTs is to use the tree edit
distance, i.e., look at which actions are necessary to transform one AST into another. In

51 4.2. Code Similarity

level KCs solution i KCs solution j |KCs(i)∩KCs(j)| |KCs(i)∪KCs(j)| simset
0 statement statement 2 2 1

expression expression
1 iteration iteration 7 9 0.78

comparison comparison
primary primary
block block
assignment assignment
arithmetic inc/decrement

2 while while 11 18 0.61
identifier identifier
less less
integer constant integer constant
basic assignment add assignment
binary arithmetic postfix

increment
3 addition post increment 11 19 0.58

Table 4.4.: Set similarity analysis on different KC levels

doing so, each action is associated with certain costs. We use the GumTree algorithm [60]
(see Section 2.3.2) to determine an edit script between an ASTs A1 = (V1,E1) and an AST
A2 = (V2,E2). We define the costs for each action with node u∈V1 and v∈V2 as following:

costsadd(v) = costsdelete(u) = costsmove(v,vp,i) = 1 (4.2.1)

Deleting or adding a node has a cost of 1 since this action only affects a single node. A
move action may affect multiple nodes, since we can move a complete subtree. However,
since the code fragment itself – and hence the nodes in the substree – is correct but simply
misplaced, we set the costs for a move action also to 1.

costsupdate(v,ϕnew) =


0, if lv = variable
sim(ϕold ,ϕnew)

2
, if lv = constant

0.5, else

(4.2.2)

Updating a node means that its value has to be changed. The value can represent an operator,
a name, a simple type like int, or a constant value. Since the label is correct, the node also
is partially correct. To account for partial correctness, we define that the maximum costs
are 0.5 instead of 1 for an update action. However, it is quite common that variables are
named differently in different implementations. To avoid overestimation of costs because
of variable naming, we set the costs for an update of the variable naming to 0. We do not
apply that rule to function names because they are prescribed for the exercises in our data

4. Estimation of Programming Knowledge 52

operation costs
update((assignment,=),+=) 0.5
add((inc/decrement,++(post)),(block,eps),1) 1
move((identifier,i),(assignment,+=),1) 1
move((identifier,i),(inc/decrement,++(post)),0) 1
delete((identifier, sum)) 1
delete((binary arithmetic,+)) 1
delete((identifier,i)) 1
delete((constant,1)) 1
delete((binary arithmetic,+)) 1
delete((assignment,=)) 1

Table 4.5.: Edit script and costs per operation

in most cases. For constant values used in expressions like, e.g., String literals, we use the
similarity between the old and the new value based on the Levenshtein distance [132] to
calculate the costs in a range between 0 (at full similarity) and 0.5 (completely different).
The rationale is that especially String literals which are used for output usually differ only
slightly because of typos or incorrect formatting. For the names of functions, operators,
types, includes, etc. a difference in values corresponds to a great logical difference and is,
thus, associated with maximum costs.

Definition 4.4 (AST Similarity) Let ∆ = 〈o1, ...,on〉 be the edit script to transform AST
A1 = (V1,E1) into AST A2 = (V2,E2). The AST similarity is defined by:

simAST (A1,A2) = 1− ∑oi∈∆ costs(oi)

|V1|+ |V2|

The numerator in the equation describes the tree edit distance, i.e., the total costs for the
execution of an edit script. The denominator normalizes the edit distance according to
the number of nodes in both ASTs. In case that the ASTs have no matching nodes, i.e.
maximum dissimilarity, the edit distance would need |V1| deletions and |V2| additions, i.e.,
have an edit distance of |V1|+ |V2|, to transform A1 into A2.

Example 4.5 Consider the AST comparison from Example 2.4 on page 18. Table 4.5 shows
the costs for each operation in the edit script. The tree edit distance is 9.5. The similarity
is:

simAST = 1− 9.5
15+10

= 0.62

53 4.2. Code Similarity

4.2.3. KAM Similarity

For the KAM similarity, we also consider the order of the nodes in a KAM. Since a KAM
is a path graph, we can regard a KAM as a sequence of nodes. We can use sequence
alignment to determine the difference between two solutions. One common metric for
sequence comparison is the Levenshtein distance [132] of two sequences. The Levenshtein
distance describes how many changes are required to transform one sequence into an other.
There are three types of changes possible: add, delete, and replace and each change is
associated with particular costs.

For two KAMs K1 = 〈u1,u2, ...,um〉 and K2 = 〈v1,v2, ...,vn〉 with paths 〈u1,u2, ...,um〉
(resp. 〈v1,v2, ...,vn〉) we can use the Wagner-Fisher algorithm [133] to calculate the edit
distance ED as follows:

D0,0 = 0

Di,0 = i,1≤ i≤ m

D0, j = j,1≤ j ≤ n

Di, j = min


Di−1, j−1, if ui = v j

Di, j−1 + costsinsert(v j)

Di−1, j + costsdelete(ui)

Di−1, j−1 + costsreplace(ui,v j)

(4.2.3)

If the nodes are identical, there are no costs. For adding, deleting, and replacing nodes,
we have to distinguish between simple and complex nodes:

costsadd(v) =

{
1, if v ∈VK2,s

1+ pathlength(emb(v)), if v ∈VK2,c
(4.2.4)

The costs for adding a simple node are 1, while costs for adding a complex node are 1 plus
the number of nodes in the embedded KAM of the complex node. The same also applies
for deleting a node:

costsdelete(u) =

{
1, if u ∈VK1,s

1+ pathlength(emb(u)), if u ∈VK1,c
(4.2.5)

4. Estimation of Programming Knowledge 54

The costs for replacing a node u by a node v are:

costsreplace(u,v) =



1− simset(u,v), if u ∈VK1,s,v ∈VK2,s

1+ED(〈u〉,emb(v)), if u ∈VK1,s,v ∈VK2,c

1+ED(emb(u),〈v〉), if u ∈VK1,c,v ∈VK2,s

ED(emb(u),emb(v)), if u ∈VK1,c,v ∈VK2,c,τ(u) = τ(v)
1+ED(emb(u),emb(v)), if u ∈VK1,c,v ∈VK2,c,τ(u) 6= τ(v)

(4.2.6)

Replacing a simple node by another simple node means replacing the KCs which differ.
Thus, the costs are the proportion of KC which are not similar. Costs for replacing a simple
node by a complex node are the costs for transforming a KAM which only consists of the
simple node into the embedded KAM of the complex node plus an additional cost of 1
for adding the branching. The costs for replacing a complex node by a simple node are
calculated similarly. The costs for replacing a complex by another complex node are the
costs for transforming the embedded KAM of the first one into the embedded KAM of the
second one. If the types of the complex nodes differ, an additional cost of 1 is added for
changing the complex type.

We can obtain the edit distance from Equation 4.2.3 by calculating Dm,n:

ED(K1 = 〈u1, ...,um〉,K2 = 〈v1, ...,vn〉) = Dm,n (4.2.7)

An edit distance on its own has only little expressive power. For example, intuitively, one
would assume that two KAMs, each consisting of a single simple node, with an edit distance
of 1 are less similar than two KAMs consisting of 100 nodes and an edit distance of 1.
Longer paths offer more opportunities for differences. Thus, we define the KAM similarity
as the edit distance in relation two the length of the longer path.

55 4.2. Code Similarity

Definition 4.5 (KAM Similarity) The KAM similarity between a KAM K1 and a KAM
K2 is defined as:

simKAM = 1− ED(K1,K2)

max(pathlength(K1), pathlength(K2))

If the edit distance is greater than the number of nodes in the bigger KAM, the similarity
is 0. For the example above, that means that the KAMs with one single node would have a
similarity of 0 while the KAM with 100 nodes would have a similarity of 0.99.

Example 4.6 Consider the KAMs in Figure 4.4 which belong to the code snippets from
Figure 2.5 on page 19. The colors denote the KC level: orange=0, red=1, green=2, and
blue=3. Since the type of the complex nodes is the same, the edit distance between the
KAMs corresponds to the edit distance of the embedded KAMs. Also the first simple node
in both embedded KAMs is equal, thus has an edit distance of 0. The costs for replacing
the second simple node u2 of KAM 1 by the second simple node v2 of KAM 2 is calculated
looking at the set similarity between the KCs in that nodes. The overall similarity of the
KAMs is determined by:

1− simset(KCs(u2),KCs(v2))

3
The resulting similarities are 1 on level 0, 0.89 on level 1, 0.81 on level 2, and 0.79 on level
3.

The KAM similarity rewards structural similarity while differences within basic blocks are
mitigated.

4.2.4. Diversity

To analyze how many different solutions students produce and, thus, determine the degree
of diversity, we look at the ratio between the number of different KAMs for an exercise and
the number of total solutions for that exercise:

diversity =
number of different solutions w.r.t. KAM−1

number of total solutions−1
(4.2.8)

If all solutions are different, the number of paths is the same as the number of solutions and
we get a diversity of 1. If all solutions are equal, i.e., in the sense of equal KAMs, there
exists only one solution, and we get a diversity of 0.

4. Estimation of Programming Knowledge 56

WHILE

EXPRESSION
STATEMENT
ITERATION

COMPARISON
PRIMARY

WHILE
IDENTIFIER

LESS
INTEGER CONSTANT

STATEMENT
EXPRESSION

BLOCK
ASSIGNMENT
ARITHMETIC

PRIMARY
BASIC ASSIGNMENT

IDENTIFIER
BINARY ARITHMETIC
INTEGER CONSTANT

ADDITION

WHILE

EXPRESSION
STATEMENT
ITERATION

COMPARISON
PRIMARY

WHILE
IDENTIFIER

LESS
INTEGER CONSTANT

STATEMENT
EXPRESSION

BLOCK
ASSIGNMENT

INC/DECREMENT
PRIMARY

ADD ASSIGNMENT
IDENTIFIER

POSTFIX
INCREMENT

POST INCREMENT

KAM 1 KAM 2

Figure 4.4.: Two KAMs

57 4.3. Adjustment of Skill Models for the Programming Domain

4.3. Adjustment of Skill Models for the Programming Domain

In this section, we will discuss certain properties of the programming domain which make
skill modeling challenging (Section 4.3.1). Afterwards, we show how we adapt PFA (Sec-
tion 4.3.2) and define a DBN topology (Section 4.3.3) to cope with these properties.

4.3.1. Properties of the Programming Domain

To effectively learn how to program, students need to freely write small programs with as
little limitations as possible. This leads to a theoretically unlimited number of possible cor-
rect solutions. Having that many different possible solutions, also means that an exercise
can be solved by many different combinations of KCs. Thus, the required KCs for solving
an exercise are not fixed but dynamic depending on the actual solution path, e.g., one can
solve an exercise iteratively or recursively. Furthermore a KC can be used multiple times in
a solution, e.g., when multiple loops are required to solve the exercise, and a programming
exercise usually requires more than one KC to solve it. Additionally, the KCs are often not
independent of each other, e.g., knowing how a while-loop works increases the probability
of knowing how a for-loop works because it means that the student has at least understood
the basic concept of a loop. To sum up, programming exercises have the following proper-
ties:

• multiple KCs required;
• KCs are not independent of each other;
• a KC can be used multiple times in one solution; and
• there are multiple ways of solving the exercise, i.e., the Q matrix is dynamic.

When selecting an appropriate skill model for programming, the characteristics of pro-
gramming exercises have to be considered. But not only the selection of an appropriate skill
model is crucial, but also the selection of meta-parameters. The meta-parameters determine
how data has to be collected and how features are selected and processed for training and
usage of the skill model. We have identified six meta-parameters for skill models in the
programming domain, but they are often also applicable to other domains:

KC level

Domain knowledge, and thus KCs, can be defined on different granularity levels. Higher
KC levels allow us to do a more fine-grained estimation of knowledge. However, a higher
level also means more parameters that have to be learned in the model, and thus, a higher
complexity and execution time. Additionally, more fine-grained KCs may lead to a very
sparse distribution of observations making it hard to make predictions.

4. Estimation of Programming Knowledge 58

Step definition

A step can be defined on different levels in the programming domain. It can be based on an
exercise level, a submission level, every time a student saves his/her solution, or even on a
keystroke level. Which step definitions are applicable often depends on the data available.
We collect data on a submission level. On this level, we can distinguish between four
different definitions of step:

• first: Only the first submission for an item is considered. The rational behind this is
that the first attempt represents a student’s starting point of knowledge and may be an
indicator on which KCs he/she has to work on.

• last: Only the last submission for an item is considered. The rational behind this is
that the last submission of a student to an exercise represents his/her knowledge state
at the end of an exercise. KCs which are still incorrectly applied in the last submission
may be a hint on which KCs the student is really struggling with.

• every: Considering every submission as a step allows to track a student’s knowledge
evolution within exercises.

• diff: The difference between two subsequent steps is considered as a step. When
looking at two subsequent submissions, often only small changes are made in code.
To not overestimate a student’s knowledge of KCs which are kept unchanged, one
could only look at the modified parts of code.

As stated by Huang et al. [94] the first submission of a student is often incorrect while the
last one is often correct. Thus, considering only the first or the last attempt could lead to an
under- resp. overestimation of a student’s knowledge.

Minimum steps

At the beginning of an observation sequence there is often some noise. Usually, you cannot
tell after one or two exercises if the student just had luck or actually understood a certain
concept. The meta-parameter minimum steps defines after how many steps data is assumed
to be relatively noise-free and, thus, can be considered for fitting a skill model.

Incorrect KCs

For most skill models it is important to know which KCs were applied correctly and which
KCs were applied incorrectly in a solution. While this can be implemented quite easily
for multiple choice questions by mapping the options to KCs, it is a more complicated
task for open-ended exercises. Since there is not only “the one” correct answer, one has to
identify which KCs were applied correctly, which were applied incorrectly, and which KCs
are missing although they are required for the solution. Since automatic error correction is
still an ongoing research field, we only have a look at three very basic approaches in this
thesis:

59 4.3. Adjustment of Skill Models for the Programming Domain

• all: If a solution is incorrect, all KCs that were used in the solution are assumed as
being applied incorrectly. This is a pessimistic estimation of KC knowledge since
KCs are only considered as applied correctly when the complete solution is correct.

• qmatrix: If a solution is incorrect, all KCs which are required but missing in the
student’s solution or not required but used by the student are assumed as being applied
incorrectly. This is an optimistic estimation of KC knowledge since it assumes that a
KC is applied correctly if it was required in the solution w.r.t. the Q matrix.

• diff: We compare the solution to the most similar solution. The KCs which are dif-
ferent in both solutions are assumed as being applied incorrectly. We do not make
any assumptions about the KCs which are same in both solutions as they still could
be applied incorrectly.

KC count

In programming exercises a KC can be used more than once in a solution. So we have two
possibilities how to count the KCs:

• binary: We ignore the concrete number of occurrences and just use a binary value
which tells whether the KC was used in the solution or not. The rational behind this
is that the student’s knowledge of a particular KC is the same for each application of
the KC during one solution as it corresponds to the same point in time.

• multiple: We use the concrete number of occurrences. The rational behind this is that
KCs can be applied in different contexts and, thus, each application is an own practice
opportunity.

Q matrix

In open-ended programming exercises, there exist several ways of solving the exercise.
Additionally, it is not known in advance which KC the student actually will use in his/her
solution. We can use the set of correct solutions to derive different definitions of a Q matrix
for an exercise:

• all: All KCs from the domain model are required.
• shared: The set of KCs that occur in every solution path, i.e., the intersection of the

KCs used in every correct solution.
• union: The set of KCs that occur in any solution path, i.e., the union of the KCs used

in every correct solution.
• common: The set of KCs that is used in the most common solution path, i.e., the set

of KCs of the KAM which represents the majority of the solutions.
• used: The set of KCs the student actually used in his/her solution.

4. Estimation of Programming Knowledge 60

• set: The set of KCs that is used on the solution path which is most similar w.r.t. set
similarity (see Section 4.2.1) to the actual solution.

• kam: The set of KC that is used on the solution path which is most similar w.r.t. KAM
similarity (see Section 4.2.3) to the actual solution.

While the actually used KCs in a solution are only applicable for training a skill model but
not in practice when predicting a student’s performance because we do not know which
KC a student will use in his/her solution, the Q matrix definitions all, shared, union, and
common can always be used because they are independent of a student’s solution. The Q
matrix definitions based on set and KAM similarity can be used in practice after the first
submission as one gets an insight on a student’s actual solution path.

4.3.2. Adjustment of PFA/AFM

Logistic regression models like AFM and PFA are able to deal with multiple KCs and with
the multiple application of one KC in a solution. We extend traditional PFA/AFM models
by a parameter ri jk which describes if student i requires KC k to solve the exercise j. This
allows us to define a dynamic, student-dependent Q matrix.

The AFM model is defined as follows:

ln
(

p
1− p

)
= αi +δ j + ∑

k∈KCs
ri jkβk + ri jkγknik (4.3.1)

The PFA model is respectively defined as follows:

ln
(

p
1− p

)
= ∑

k∈KCs
ri jkβk + ri jkγksik + ri jkρk fik (4.3.2)

However, the property of dependent KCs is not reflected by skill models based on logistic
regression, since logistic regression assumes that features, i.e., KCs, are independent of each
other.

4.3.3. A DBN Topology for Skill Models

Since PFA is not able to deal with dependencies between KCs, we use DBNs (see Section
2.4.1) to model those dependencies. A DBN is defined by its structure, also called topology,
and a set of parameters. In this thesis, we learn the parameters from data while we define
the topology manually. The topology we propose for skill modeling consists of three parts:
the domain model, which defines the relationship between KCs, a KC-item mapping, which
represents the Q matrix, and the result composition, which is used to distinguish between
KC knowledge and the problem solving ability.

61 4.3. Adjustment of Skill Models for the Programming Domain

KC

obsreq

item

KC

obsreq

item

KC

obsreq

item

KC

obsreq

item

KC
application

KC KC

KC

solution
obs

problem
solving

domain
model

KC-item
mapping

result
composition

level n

level n-1

level n-2

Figure 4.5.: DBN topology for skill modeling. White nodes represent hidden variables,
yellow nodes represent evidences and blue nodes represent noisy AND gates
with fixed CPTs.

4. Estimation of Programming Knowledge 62

Domain model

In the domain model, each KC is represented by a binary node which describes whether
the KC is known or unknown. We distinguish between two types of dependencies between
KCs: prerequisite and granularity relationships.

A prerequisite relationship defines that KC K1 has to be learned before a KC K2 can be
learned. In the DBN, this kind of relationships is represented by an edge from K1 to K2
[134]. For our model, we derive the prerequisite relationships from the grammar of the pro-
gramming language. Typically, one PP is composed of several different components. Each
of these components is a prerequisite for the KC represented by the PP if the component
is obligatory. For example, an iteration statement consists of an expression representing
the looping condition and a block statement. As such, the KCs expression and block are
prerequisites for the KC iteration. Since the number of parameters of a node increases ex-
ponentially with the number of its parents, we do not consider relationships of KCs which
are often used with another KC, e.g., increment/decrement with for, to keep complexity
manageable.

A granularity relationship describes a hierarchical structure between KCs. According to
Millán and Pérez-de-la-Cruz [5], there are two alternatives to describe a granularity rela-
tionship in a DBN (see Figure 4.6). Let K be a KC which can be refined by KCs K1, K2, and
K3. Alternative 1 describes that K is composed of three independent subtopics which have
to be known in order to know K. An evidence about the state of a sub-KC does not change
the belief about the knowledge of the other sub-KCs. Alternative 2 describes that KCs K1,
K2, and K3 are all specializations of KC K. Evidence about the knowledge of one sub-KC
also increases the belief that the other sub-KCs are known. We have defined different levels
of refinement of KCs (see Section 4.1.1). For example, the KC iteration is refined by KCs
while, do-while, and for. We would assume that a student who is able to apply a while loop
also has a high probability of applying a do-while loop correctly since he/she showed that
he/she basically understood the concept of an iteration. For this reason, alternative 2 is more
appropriate in our use case to model granularity dependencies.

To make the definition of parameters easier, all prerequisites are summarized by a noisy-
AND gate (see Section 2.4.2). Then, the CPT for each KC can be defined conditioned on
the knowledge of the prerequisites and on the more coarse-grained KC [134].

Example 4.7 Figure 4.7 shows an example for a domain model. We have two level 0 KCs
statement and expression. Statement is refined by two level 1 KCs iteration and block.
Expression is refined by a level 1 KC binary. Iteration is refined by three level 2 KCs while,
do-while, and for. The KCs block and expression are prerequisites for the KC iteration and
are summarized in the auxiliary node P.

63 4.3. Adjustment of Skill Models for the Programming Domain

K

K1 K2 K3

(a) Alternative 1

K

K1 K2 K3

(b) Alternative 2

Figure 4.6.: Two alternatives for representing granularity relationships [5]

statement

while fordo-while

iteration P block

expression

binary

obs obs obs

obs obs

Figure 4.7.: Example for a domain model

4. Estimation of Programming Knowledge 64

req = 0 req = 1
item = correct 1 P(obs = correct)
item = incorrect 0 P(obs = incorrect)

Table 4.6.: CPT of the item node

KC-item mapping

To be able to cope with a dynamic Q matrix, we introduce binary evidence nodes req which
describe whether a KC is required in a step according to the Q matrix or not. For each
higher level KC, a binary virtual evidence node obs is defined. This node describes whether
the KC was applied correctly or incorrectly. We use a virtual evidence node to account
for multiple occurrences of a KC. A virtual evidence describes evidences which are not
completely certain, i.e., may have other values than 0 or 1. For example, if a KC was
applied 2 times correctly and 1 time incorrectly in a solution, we set the evidence to 0.66.
We use noisy-AND gates without leakage to connect the req and obs nodes. We call them
item since they reflect the contribution of a KC to the overall result of the solution. If the
KC is not required, the item is assumed to be correct. If the KC is required, the probability
that the item is correct corresponds to the probability that the student applies the required
KC correctly (see Table 4.6).

Result composition

All item nodes are combined by a noisy-AND gate which represents the probability that
all required KCs were applied correctly. An evidence node result describes whether the
exercise was solved by the student correctly or not. The probability that a student solves
an exercise correctly depends on the probability of applying all required KC correctly and
by composing them correctly which we explicitly model by a node problem solving ability.
The problem solving ability is a latent trait, i.e., not directly observable.

Inter-time-slice edges

So far, we only defined intra-time-slice edges, i.e., the DBN structure within a time slice.
As discussed by Millán and Pérez-de-la-Cruz [5], we use inter-time-slice edges (Kt ,Kt+1)
for each of the highest level KCs K and for the problem solving node. This corresponds
to the learning progress of a student like it is modeled in BKT (see Section 2.5.1). There
are no inter-time slice edges for lower level KCs since their value is already updated by
propagation from the higher level KCs.

65 4.4. Learning Curves from DBNs

4.4. Learning Curves from DBNs

A learning curve describes how the performance of a student (or person in general) changes
with the number of practice opportunities [135]. It can be used to assess a student’s ability
to acquire a new skill or for improving a course by identifying problematic learning curves.
To create a learning curve, the knowledge or ability of a student has to be estimated. AFM
is a widely used skill model which also defines different types of learning curves [136].
However, AFM is a model based on logistic regression. Logistic regression assumes all
parameters and observations to be independent of each other. Nevertheless, in programming
KCs often are dependent. Since DBNs are able to deal with dependencies, we propose a
learning curve based on estimates of a DBN.

We can use the DBN we defined in Section 4.3.3 after training to track a student’s
knowledge evolution. To achieve this, the evidental nodes like the req and obs nodes are
set accordingly to a student’s data record. Then inference is used to update the state of each
node. The KC nodes tell us the student’s knowledge state of a KC, i.e., the probability that
the student knows the KC, at a certain step. The trajectory of these probabilities describes
the student’s learning curve of that KC.

To get a generalized learning curve for the complete course, we average over all students.
However, students may have a different number of steps if we consider all of their submis-
sions as a single step. There are four possibilities how to deal with the different sequence
lengths:

1. Considering only the first attempt: As we already discussed in Section 4.3.1, the
first submission of a student is often an incorrect solution and may underestimate a
student’s knowledge.

2. Considering only the last attempt: In contrast to the first attempt, the last attempt is
often a correct solution and may overestimate a student’s knowledge.

3. Considering all attempts: The advantage of DBNs is that we can even get an estima-
tion for time steps that we do not have observed yet. The problem of that approach
is that the sequences are not synchronous anymore. For example, student 1 submits
in total 30 solutions to the first 5 exercises. Those exercises are mainly dealing with
output, constants, and branching. His/her estimated knowledge of other KCs will be
quite low since he/she has not practiced on them yet. Student 2 also submits 30 solu-
tions, but on all 30 exercises which involve all KCs. So the knowledge of the students
at each step is not comparable.

4. Considering all attempts, averaging over exercises: To avoid the asynchronicity, we
consider each exercise as a step and average over all knowledge estimates for that

4. Estimation of Programming Knowledge 66

exercise. In this case, we steer a middle course between underestimation of the first
and overestimation of the last attempt.

5. Analysis of Programming Errors

In this thesis, we distinguish between error types and error categories. Error types describe
concrete instances of errors, e.g., a missing semicolon, off-by-one-error, etc. Error cate-
gories are more abstract and are defined by a certain viewpoint on the errors (see Section
3.1). For example, from the viewpoint of when the error occurs, we can distinguish between
the error categories run-time and compile-time errors. In this section, we describe how we
analyze the students’ programming errors. We start with a description of our manual in-
spection of students’ code and how we identify error types in Section 5.1. We present the
error categories we used in this thesis and how we assigned them to error types. Since we
are not only interested in the types of errors and their frequencies, i.e., how often they occur,
we introduce further metrics for error measurement in Section 5.2. In the end, we describe
how we use the collected metrics to identify patterns in the error development with the help
of clustering in Section 5.3.

5.1. Definition of Error Types and Error Categories

McCall and Kölling show that diagnostic messages of compilers cannot be mapped one-to-
one on actual errors. They can not only be imprecise but also inaccurate [88]. Furthermore,
errors in compilable solutions cannot be located automatically in general since this would
require an automatic debugging. Therefore, we have to inspect all solutions manually.

In non-compilable solutions, we use the diagnostic message of the compiler as a hint
where to look for the error. For compilable solutions, we use an automatic AST-based com-
parison between the erroneous solution and the most similar correct solution to highlight
tentative error locations. Similarly to McCall and Kölling [88], the manual analysis is per-
formed in two steps. First, we go through all solutions and identify the erroneous part of
the code. We determine which code parts belong to one error and create the error types
on-the-fly. If we have not defined a fitting type for an error yet, we add a new one to our
error type list. In the second step, we revise the error types. For each defined error type, we
have a second look on the assigned solutions. We change types of errors, if another type fits
better, group similar error types and refine others. In this step, we also define which error
categories fit the error type.

For the categorization, we use the categories by Bayman and Mayer [54] and extend them
by three additional categories [137], since we came across errors which did not fit into the
others:

5. Analysis of Programming Errors 68

• Syntactic: Syntactic knowledge refers to the syntax or rules of a programming lan-
guage. Typical syntactic errors are, e.g., using commas instead of semicolons in a
for-loop header or undeclared variables.

• Conceptual: Conceptual knowledge refers to knowledge about how a programming
construct works. This category contains semantic errors as well as logic errors due to
a misconceptions of a programming construct. A typical conceptual error is, e.g., an
uninitialized variable because students think the variable is implicitly initialized with
0.

• Strategic: Strategic knowledge refers to the way to assemble programming constructs
to achieve a certain goal. Strategic knowledge is often also referred to as problem
solving ability. A typical strategic error is, e.g., an omitted boundary case.

• Sloppiness: Sloppiness refers to errors made unintentionally. Typical errors are, e.g.,
forgetting a semicolon or typos.

• Misinterpretation: Misinterpretation means that a student has another interpretation
of the exercise than intended. For example, the task is to continuously read-in strings
and immediately output the number of occurrences for each character. Instead, the
student writes a program that first reads-in a limited number of strings in an array and
just afterwards outputs the character occurrences for each string.

• Domain: Domain errors refer to errors made due to the lack of background knowledge
required for solving the exercises. For example, if the exercise is to calculate the
average of entered numbers, but the student thinks the average is always a division by
2.

Usually we can not tell the actual cause of an error, such that an error can belong to more
than one category. For example, an off-by-one error can be conceptual if the student has
a misconception about the stop of a loop, strategical if the student has an incorrect solving
strategy for a problem, or sloppiness if a student unintentionally typed < instead of <= [137].

5.2. Error Landscape

The term error landscape was first introduced by Smith and Rixner [107] and refers to a
set of metrics used in the analysis of programming errors. In our work, we consider the
frequency, duration, severity, and re-occurrence rate of errors.

Similar to McCall and Kölling [138], we associate each error with a certain state during
the manual analysis. We distinguish between three states:

• New: The state new refers to errors which are newly introduced, i.e., the first oc-
currence of an error while solving a particular exercise. Multiple occurrences of the
same error type but in different contexts are counted as separate errors.

• Unresolved: When an error is still present in subsequent submissions, it has the state
unresolved.

69 5.2. Error Landscape

1 2 3 4 5 6 1 2 1 2 3 4 5

exercise 1 exercise 2 exercise 4

1 2 3

exercise 3

submission
number

Figure 5.1.: An example of a submission sequence for a certain error. Orange means that
the error is present in the submission.

• Resolved: When an error is not present in a submission and all subsequent submis-
sions for that exercise, the state of the error is resolved.

When an error is not present in one submission anymore, but re-occurs in a subsequent
submission, the state of the error remains unchanged because it is simply considered as
reverted but not really resolved.

Example 5.1 Consider the example of a submission sequence of a student for a certain
error in Figure 5.1. For exercise 1, the student submitted six solutions. The error was
present in submission 1-3, and 5. The state of the error was new in submission 1, unresolved
in submission 2,3, and 5, and resolved in submission 6.

5.2.1. Error Frequency

The error frequency f refers to the total number of occurrences of a certain error type t.
We can distinguish between submissions and solutions. A solution is a student’s attempt to
solve a particular exercise and consists of a sequence of submissions. An error can occur
multiple times in a solution at different places in the code. Each occurrence in a single
submission is counted separately for the frequency. Furthermore, the error may occur in
subsequent submissions if it was not resolved. The re-occurrence of an error in subsequent
submission is only counted as one instance. This means, that the error frequency fs,t of a
certain error type for a certain student s is defined by the number of errors with error type t
and state new.

Definition 5.1 (Error frequency) Let S be the set of students, T be the set of error types,
E be the set of exercises, Sube,s be the set of submissions a student s makes to exercise e,
state(err,subi) describe the state of an error err in the i-th submission by student s to a
particular exercise e, and type(err) denote the type of an error err.

Then the error frequency is defined as:

fs,t = ∑
e∈E

∑
subi∈Sube,s

|{err | err ∈ subi,state(err,subi) = new}, type(err) = t}|

5. Analysis of Programming Errors 70

We can aggregate the frequencies to get a student-based frequency fs which describes
how many errors a particular student s ∈ S made

fs = ∑
t∈T

fs,t

or to get a type-based frequency ft which describes how often an error of a particular type
t ∈ T was made

ft = ∑
s∈S

fs,t

Example 5.2 Consider the submission sequence for an error in Figure 5.1. The frequency
of the error is 3 since it occurs in exercise 1, 2, and 4.

5.2.2. Error Duration

The error duration (or also called time-to-fix) ds,t describes how long a student s needs on
average to fix an error of a certain error type t. We define the duration derr of an error
err in terms of the number of submissions between the first occurrence of an error and its
resolution:

derr = j− i (5.2.1)

where i and j define the submission numbers with state(err,subi)= new and state(err,sub j)=
resolved.

However, not all errors are resolved. We define the default duration dde f ault,e of an un-
resolved error as the sum of the arithmetic mean µe and the standard deviation σe of the
number of submissions for an exercise e:

dde f ault,ex = µe +σe (5.2.2)

But if a student s already has more submissions than the calculated value, the duration is set
to number of submissions, i.e., we assume that the student would have resolved the error in
the next submission:

derr = max{dde f ault,e, |Subs,e|} (5.2.3)

where Subs,e denotes the set of submissions of student s to exercise e.

Definition 5.2 (Error duration) Let S be the set of students, T be the set of error types,
Errorss be the set of errors made by student s, type(err) denote the type of an error err,
and derr denote the duration of the error err.

71 5.2. Error Landscape

Then the error duration is defined as:

ds,t = ∑
err∈Errorss

{derr | type(err) = t}

We can aggregate the durations to get a student-based duration ds which describes the
average error duration of student s ∈ S

∑t∈T ds,t

fs

or to get a type-based duration dt which describes the average duration an error of a par-
ticular type t ∈ T

∑s∈S ds,t

ft
Example 5.3 Consider the submission sequence for an error of type t in Figure 5.1. The
duration of the error is derr,1 = 6−1 = 5 for exercise 1 and derr,3 = 5−1 = 4 for exercise 4.
If we assume that dde f ault,2 < 3, then derr,2 = 3 for exercise 2, otherwise it is set to dde f ault,2
because it means that the student just “gave up” solving the error. The average duration of
an error of type t for student s would be

ds,t =
5+4+3

3
= 4

5.2.3. Error Severity

The error severity ss,t describes the mean effort that a student s requires for removing all
errors of type t. It is calculated as the product of the error frequency fs,t and the duration
ds,t of an error.

Definition 5.3 (Error severity) Let S bet the set of students and T be the set of error types.
Then the error severity is defined as

ss,t = fs,t ∗ds,t

Accordingly, we get the student-based severity

ss = fs ∗ds

and the type-based severity
st = ft ∗dt .

Example 5.4 Consider the submission sequence for an error of type t in Figure 5.1. From
the frequency fs,t that we calculated in Example 5.2 and the duration ds,t that we calculated
in Example 5.3 we obtain the severity ss,t = 3∗4 = 12.

5. Analysis of Programming Errors 72

5.2.4. Error Re-occurrence

The error re-occurrence describes how likely it is that a certain error will be done again,
once it has been made by a student.

Definition 5.4 (Error re-occurrence) Let S be the set of students and T be set of error
types. We distinguish between student-based error re-occurrence

rs =
{t ∈ T | fs,t > 1}
{t ∈ T | fs,t > 0}

and type-based re-occurrence

rt =
{s ∈ S | fs,t > 1}
{s ∈ S | fs,t > 0}

The student-based re-occurrence is the mean error repetition rate of a student independent
of the concrete error type. The type-based re-occurrence rate however defines how likely it
is that an error of a certain type is repeated without regarding the concrete student.

5.2.5. Category-based Error Landscape

Summed up, we can distinguish between a student-based error landscape and a type-based
error landscape. Since we might also be interested how the error landscapes looks like for
certain error categories, we can obtain a category-based landscape by aggregating over the
different categories.

Definition 5.5 (Category-based landscape) Let Ci ⊆ T be a category defined by a set of
error types ti ∈ T . Then the category-based frequency fCi is defined as:

fCi = ∑
t∈Ci

ft

Accordingly, the category-based duration fCi and re-occurrence rate rCi are defined:

dCi =
∑t∈Ci dt

|Ci|

rCi =
∑t∈Ci rt

|Ci|

An error type can fall into several categories. We assume that these categories are uni-
formly distributed, i.e., if an error type t can belong to nt categories, the probability that the

error is a result of a certain category is pt =
1
nt

. When we want to determine the probability

73 5.3. Clustering Error Curves

that a certain error category is responsible for a solution to fail, we use the intersection rule
by multiplying the probabilities of all errors in that solution.

Example 5.5 A solution has 3 errors e1, e2, and e3. Errors e1 and e2 are of type t1 and error
e3 is of type t2. We want determine the probability that the solution is incorrect just because

of sloppiness. Error type t1 can be due to sloppiness or misinterpretation, thus pt1 =
1
2

.
Error type t2 is assigned to the categories sloppiness, strategic, and misinterpretation, thus

pt2 =
1
3

. So the resulting probability for sloppiness as the only cause is

1
2
∗ 1

2
∗ 1

3
=

1
12

5.3. Clustering Error Curves

When analyzing the error landscape, we get for each student the frequency of errors he/she
makes and the duration of these errors. Plotting the students error frequency and duration
over the time gives us an error curve, describing how the student’s errors change over time.
This is not applicable to the re-occurrence rate, since it is already a metric considering an
error’s occurrence over time.

To find similar error patterns between students, we need to cluster the error curves of the
students. We use k-means clustering [139] for that purpose, because the centroid gives us a
representative error curve for each cluster.

We use the category-based frequency and duration for each exercise as feature set, since
we are interested whether students differ in the categories of errors and when they do them.
Since many students have not completed all 30 exercises of the course, we add an additional
feature which describes the number of missing exercises. Since the duration often is much
higher than the frequency, we scale the data before clustering.

6. Case Studies

We use data from an introductory C programming course to perform three case studies aim-
ing at answering our research question. Each case study is targeting one major research
question. First, we present how we collected data with SmartAPE in Section 6.1. After-
wards, we present the setup and results for each of our case studies.

6.1. Data Collection with SmartAPE

As a basis for our case studies, we use data that we collected in SmartAPE (Smart As-
sessment of Programming Exercises) [140]. SmartAPE is an online assessment tool where
students’ programming solutions are automatically evaluated. Figure 6.1 shows the general
structure of SmartAPE. The following description of SmartAPE is taken from our previous
publication [141].

The student can submit his/her solution to a programming exercise via a web interface.
The solution is then compiled using gcc [142] as well as clang [143]. We decided two inte-
grate both compilers since we observed that they return different results regarding semantic
checks and warnings. Furthermore, students can get two different descriptions of an error
and can decide which one fits them better. In addition, we integrated several static analysis
tools. Splint [144] is a tool for checking C programs for security vulnerabilities and cod-
ing mistakes. The drawback of splint is its high false positive rate. Therefore, we added
cppcheck [145] and clang-analyzer [146] which do not detect as many errors as splint, but
have a lower false positive rate.

Since it is not only important to write correct but also readable code in programming,
we integrated vera++ [147] to check whether code conventions are complied. If the code is
compilable, we run dynamic tests to check whether the code does what is intended to do.
We use cunit [148] for testing single functions and dejagnu [149] for testing a complete
program. Dejagnu is a framework for testing programs independently of the programming
language by comparing a program’s output to an expected output via regular expressions.
If the execution of a test case takes longer than 10 seconds, a timeout is reported. Since
the expected programs are very simple and should have a small execution time, a timeout
indicates an infinite loop in most cases. Due to security reasons, the evaluation of the
students’ code runs on a different server such that is separated from the web frontend and
the data base. In addition, the dynamic tests of each solution run in a separated linux

6. Case Studies 76

submit solution

compiler

gcc
clang

cppcheck
splint

clang.analyzer

static analysis

dejagnu
cunit

dynamic tests
feedback

Figure 6.1.: Structure of SmartAPE

77 6.2. Case Study 1: Skill Models for the Programming Domain

container [150]. Compiler messages, static analysis reports and the results of the dynamic
tests are parsed and stored in a data base.

The data we use is from our introductory C programming course from the winter term
2016/2017. The students in this course are from Computer Science as well as from other
disciplines like, e.g., Physics or Biology. In total, we have 21546 submitted solutions by
281 students to 30 exercises of which 18982 are compilable and 5681 labeled as correct.

6.2. Case Study 1: Skill Models for the Programming Domain

The first case study deals with skill models in the programming domain. We investigate
how different students’ solutions actually are, how meta-parameters affect skill models, and
compare several skill models including DBNs as introduced in Section 4.3.3.

6.2.1. Setup

The main goal of this case study is to evaluate different skill models for the programming
domain. For skill modeling the identification of a Q matrix, and thus KCs, is essential.
We use KAMs (see Section 4.1.3), which describe a student’s program in terms of KCs.
Since, we are only able to construct KAMs for compilable code, we remove non-compilable
solutions from the data set for this case study. Figure 6.2 shows how we set up the first case
study.

Preparation of required data

Using the submitted code of students from SmartAPE, we construct an AST for each so-
lution. We transform each AST into KAMs of different KC levels. We determine for all
solutions pair-wisely their similarity as described in Section 4.2. We require the similarity
for answering RQ 1.1 and certain definitions of the Q matrix. From the KAM, we can ex-
tract which KCs on syntax level the student used and how often it was used in the solution.
In addition, we use the AST for the determination of variable roles as additional KCs (see
Section 4.1.2). A record of the resulting raw performance data set consists of a student id,
an exercise number, the step number, for each KC how often it was applied, and a binary
value indicating whether the solution was solved correctly (see Table 6.1).

Creation of meta-parameterized data sets

In the next step, we have pre-processed the raw performance data by removing columns,
i.e., features, which were always 0 and correspond to KCs which were not used in any
solution, e.g., ATOMIC, REGISTER, INITIALIZATION_LIST, etc. Furthermore, logistic
regression assumes parameters to be independent of each other. However, in our data

6. Case Studies 78

parametrize

pairwise similarities

clean

raw performance
 data

AST KAM

SmartAPE data

code

compiled?

test results

correct?

construct

construct

variable roles

determine calculatecalculate extract

parametrize

preprocessed
performance

 data

train

meta-parametrized
 data

skill models

PFA AFM DBN

Figure 6.2.: Overview of the setup for case study 1

79 6.2. Case Study 1: Skill Models for the Programming Domain

student exercise step KC1 KC2 KC3 ... KCn correct

1 1 1 1 1 2 ... 2 1

1 2 2 2 1 3 ... 5 1

1 3 3 1 2 2 ... 3 0

2 1 1 1 1 1 ... 2 1

Table 6.1.: Example for a basic data set

Parameter name Values Influence on

KC level 0, 1, 2, 3 number of features
minimum steps 0, 5, 10, 15, 20 number of observations
step definition first, last, every number of observations
incorrect KCs all, diff value of fi j

KC count binary, multiple value of si j and fi j

Q matrix all, shared, union, common, used, set, KAM value of ri j

Table 6.2.: Summary of model parameters

singularities occurred because some KCs always occur together and are, therefore, linearly
dependent. In pre-processing, we resolved such singularities by removing the dependent
parameters.

As already stated in Section 4.3.1, there are several meta-parameters we can adjust to fine-
tune skill models. From the pre-processed performance data set and additional information
from the KAMs, we extracted data sets for all combinations of the parameters from Table
6.2. For the KC level meta-parameter, we selected the refinement levels defined in Section
4.1.1 as KC levels. As parameter values for the meta-parameter minimum steps, we selected
the values 0, 5, 10, 15 and 20.

A record of an extracted data set contains the student id, the exercise id, the step number,
for each KC a binary value indicating whether the KC is defined as required in that model
r, the counts of previous successes s and failures f for that KC, and whether the solution
was solved correctly (see Table 6.3). In total, we got 1680 extracted data sets where each
one represents a single combination of meta-parameters.

Since the meta-parameters step and minimum steps have an influence on the number of
records, i.e., observations, we provide a summary on the data set characteristics in Table 6.4.

6. Case Studies 80

student exercise ri1 si1 fi1 ri2 si2 fi2 ri3 si3 fi3 ... rin sin fin correct

1 1 1 0 0 1 0 0 1 0 0 ... 1 0 0 1

1 1 1 1 0 1 1 0 1 2 0 ... 1 2 0 1

1 2 1 3 0 0 2 0 1 5 0 ... 0 7 0 0

1 3 3 1 1 2 2 1 5 2 ... 1 7 3 1

2 1 1 0 0 1 0 0 1 0 0 ... 1 0 0 1

Table 6.3.: Example for an extracted data set (minimal steps=0, KC count=“multi", wrong
KCs=“all")

step minimum steps
0 5 10 15 20

first

solutions 5534 4222 3045 1973 1022
correct solutions 2119 1635 1288 826 432
incorrect solutions 3415 2587 1757 1147 50
students 280 245 223 199 173

last

solutions 6152 4832 3644 2565 1158
correct solutions 5047 3861 2869 1970 1167
incorrect solutions 1105 971 775 595 391
students 281 246 223 206 194

every

solutions 18982 17629 16360 15121 13945
correct solutions 5681 5136 4713 4291 3914
incorrect solutions 13301 12493 11647 10830 10031
students 281 260 249 238 233

Table 6.4.: Data set summary

81 6.2. Case Study 1: Skill Models for the Programming Domain

0

50

100

150

200

250

300

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30

n
u

m
b

er
 o

f
so

lu
ti

o
n

s

exercise number

Figure 6.3.: Number of correct solutions for each exercise

Training skill models

The resulting meta-parameterized data sets are used to fit PFA and AFM models by means
of logistic regression as defined in Section 4.3.2. We manually define the structure of DBN
models as defined in Section 4.3.3 using the GeNIe Modeler [151]. The GeNIe Modeler
is a graphical editor which allows defining, learning, and evaluating probabilistic network
models. For fitting the parameters of the DBN we use GeNIe’s SMILE [152] engine and its
wrapper for Java.

6.2.2. Evaluation Criteria

Evaluation of similarity

As students were able to submit multiple solutions for each exercise, we only take the last
submission to an exercise which was identified as correct for the evaluation of code variance.
We consider only correct solutions since incorrect solutions can be arbitrary far away from
a valid solution and would, thus, distort the results. We take only the last correct solution
into account since subsequent solutions by the same student typically only contain small
changes. Figure 6.3 shows that we received between 80 and 265 correct solutions for each
exercise.

Evaluation of meta-parameters

While meta-parameters like KC level, KC count, incorrect KCs, and Q matrix only in-
fluence the feature selection and processing, minimum steps and step definition change
the data set. But to make models comparable, all models have to be tested on the same
data. Since our skill model shall be applicable on each step a student makes, we use data

6. Case Studies 82

for every step. The same holds for minimum steps. Usually, we want to apply the model
directly from the beginning. But since minimum steps=20 is a subset of, e.g., minimum
steps=15, we need to be careful when creating test and training sets. Therefore, we divide
our data set into step slices: steps 1-4, 5-9, 10-14, 15-19, and >20. We use subject-based
5-fold-cross validation, i.e., students are distinct in each fold, to divide the data of each step
slice into 5 folds. From these folds, we assemble our test data by selecting one fold from
each step slice. The remaining folds can be used for training. For each value of minimum
steps, we select those step slices which correspond to the value, e.g., if minimum steps is
15, tentative training data are the remaining folds of the data slices for steps 15-19 and >20.
To get nearly equally-sized training sets, we randomly choose a sample of the tentative
training data as training set.

To answer RQ 1.2, we use the meta-parameterized data sets to fit different skill models
and compare them to each other. We decided to use PFA and AFM as they can be relatively
quickly fitted and can deal with all of our proposed meta-parameters. Since these skill
models are rather similar, they can help us evaluating how meta-parameterization affects
the prediction behavior in similar models. As a third skill model, we select a completely
different skill model type which uses the proportion of previous successes by a student
on a KC which we call the proportional model (PPM). The probability that a student i
knows a certain KC k is sik

sik+ fik
. Having the probabilities for each KC, the problem is now

to determine the probability of answering correctly to a certain learning item. For BKT
there exist two common approaches for determining the overall probability: multiplying
the probabilities of all required KCs or assuming that the overall performance corresponds
to the knowledge of the “weakest" KC, i.e., with the lowest probability [153]. Since the
first approach is based on the joint probability and assumes independence between the KCs
which is not given for programming KC, we have chosen the second approach for our PPM.
The probability that a student i solves an exercise j correctly is:

p = min
k∈KCs(j)

sik

sik + fik
(6.2.1)

This model has no parameters that have to be learned and, thus, has not to be trained but is
directly applicable. In so far, the definition of a step is not required for that approach, since
in practice we would use the prediction on each submission of the student. The same also
holds for the meta-parameter minimum steps. In that model the step definition is always set
to every and minimum steps is set to 0. We have not used models based on Bayesian theory
for this research questions since we would have to fit a huge amount of models with a high
number of parameters which would result in unmanageable computational effort.

We fit the models for all combinations of the meta-parameters, i.e., 1680 AFM models
and 1680 PFA models in total, and use that adapted version of 5-fold cross validation. For
PPM models, we get 112 models in total because we do not consider the meta-parameters

83 6.2. Case Study 1: Skill Models for the Programming Domain

minstep count incorrect Q matrix step KC level
0 1 2 3

0 binary all shared all 0.636 0.688 0.583 0.663
5 binary all shared all 0.632 0.675 0.587 0.596

10 binary all shared all 0.634 0.674 0.59 0.594
15 binary all shared all 0.633 0.672 0.571 0.565
20 binary all shared all 0.634 0.674 0.584 0.583
0 multiple all shared all 0.634 0.686 0.706 0.702
5 multiple all shared all 0.634 0.679 0.693 0.693
...

...
...

...
...

...
...

...
...

Table 6.5.: Example of paired results of PFA models regarding AUC for meta-parameter KC
level

step definition and minimum steps. Since we have strongly unbalanced data and the correct
prediction of both classes is equally important in our case, we use the area under the curce
(AUC) and the root mean square error (RMSE) as performance metrics which we average
over all folds.

For the evaluation of the single meta-parameters, we split the result data for each meta-
parameter by the parameter values. Table 6.5 shows an example of splitting result data
(PFA AUC) for the meta-parameter KC level into four data sets. Since the data sets are
not independent of each other because they were built on the same data, they are paired
such that they distinguish only in the currently regarded meta-parameter value. As the
other parameters are fixed for each row, the variation between the results in a row is solely
explained by the currently regarded meta-parameter, i.e., in the example by the chosen KC
level. Our result data do not fulfill the normal distribution assumption of ANOVA, thus we
use Friedman test [154] and a pairwise Wilcoxon signed rank test [155] with Bonferroni
correction [156] for checking whether the differences between the models are significant.
To measure how much a parameter influences the result, we use Kendall’s coefficient of
concordance (Kendall’s W) [157] which is proposed by [158] as effect size for the Friedman
test. We distinguish between small (W ≤ 0.3), moderate (0.3 < W ≤ 0.5), high (0.5 <
W ≤ 0.7), and very high (W > 0.7) effects [159]. To evaluate the single parameter values,
we calculate the effect size by Cohen’s d for each pair of significantly different values.
According to Cohen [160], 0.2 < d < 0.5 describes a small effect, 0.5≤ d ≤ 0.8 describes
a medium effect, and d > 0.8 describes a large effect. Sawilowsky [161] extended the scale
by 0.01 < d < 0.2 as a very small effect, 1.2 < d < 2 as very large effect and d ≥ 2 as a
huge effect.

6. Case Studies 84

Skill model comparison

With the evaluation of meta-parameters we determine which parameter values seem to be
best. However, these parameters are determined among a broad variation of models. We
want to investigate how good a model with taking the best separate parameters (“meta”) is in
comparison to the overall best model (“best”) and in comparison to the model when it uses
the most wide-spread meta-parameterization in previous work (“common”). Furthermore,
we add the majority class model which always predicts the major class (in our data it is
incorrect) as a baseline model, and also evaluate the performance of our DBN models.

For the “meta”-models we took the models with KC level=1, KC count=multiple, Q
matrix=shared, incorrect KCs=diff, step definition=every and minimum steps=0. For the
“common”-models, we used KC count=binary, Q matrix=used, incorrect KCs=all, step def-
inition=every, and minimum steps=0. As the KC level was never mentioned in previous
work, we provide the results for the worst and the best models (KC level in brackets).

We also fit a “meta”- and a “common” model for DBNs. A “best” model for DBNs is not
possible since we do not perform a meta-parameter evaluation on them. Furthermore, we
distinguish between DBNs with variable roles included and without variable roles.

We use the complete data set for training now and a new data set based on data from the
winter term 2017/18 as validation set.

6.2.3. Results

Similarity

Figure 6.4 shows that the diversity as defined in Section 4.2.4 increases with higher KC
levels. The average diversity for level 0 is about 0.6 which is surprising since we have
not expected that much variation within only four KCs. There is almost no difference in
diversity between level 2 and level 3 where over 2/3 of the exercises have a high (> 0.7)
diversity. The average diversity of 0.72 on level 1 is only slightly lower than the average
diversity on level 2 and 3 (0.75). More than half of the exercises have a high diversity on all
levels. Four exercises (exercise 1, 2, 8, and 29) have a low diversity (< 0.3) on all levels.
Those are exercises in which a more or less constant value has to be printed out, e.g., "Hello
World!", MIN_CHAR and MAX_CHAR, sizes of primitive data types, etc. (see Appendix
D).

From an average diversity of about 70% we can conclude that students actually tend to
write different code.

To determine to which extent the solutions differ, we compared all correct solutions to
each other. Figure 6.5 shows the distribution of the similarities for KC level 0 and 3. The
complete results can be found in Appendix E.1. For set similarity on level 0, we can see
that there is almost no difference between the solutions throughout all exercises. Except

85 6.2. Case Study 1: Skill Models for the Programming Domain

0

0,1

0,2

0,3

0,4

0,5

0,6

0,7

0,8

0,9

1

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30

di
ve

rs
ity

exercise number

lo
w

m
id

lo
w

m
id

hi
gh

(a) Diversity for level 0 KCs

0

0,1

0,2

0,3

0,4

0,5

0,6

0,7

0,8

0,9

1

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30

di
ve

rs
ity

exercise number

lo
w

m
id

lo
w

m
id

hi
gh

(b) Diversity for level 1 KCs

0

0,1

0,2

0,3

0,4

0,5

0,6

0,7

0,8

0,9

1

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30

di
ve

rs
ity

exercise number

lo
w

m
id

lo
w

m
id

hi
gh

(c) Diversity for level 2 KCs

0

0,1

0,2

0,3

0,4

0,5

0,6

0,7

0,8

0,9

1

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30

di
ve

rs
ity

exercise number

lo
w

m
id

lo
w

m
id

hi
gh

(d) Diversity for level 3 KCs

Figure 6.4.: Diversity for each exercise

6. Case Studies 86

for exercises 25, 26, 27, and 28, the median similarity is 1. For level 1 KCs the median
of similarities is about 0.87. Similar to the observations for diversity, there is no great
difference between the similarity for level 2 and level 3 where the median is located at 0.8
on average. Exercises 1 and 8 have a median similarity of 1 on all levels. The minimum
median value is about 0.67 for exercise 28, whereas the absolute minimum set similarity is
0.254.

Figure 6.6 shows the distribution of the KAM similarities for KC level 0 and 3. The
complete results can be found in Appendix E.1. The KAM similarity is smaller than the set
similarity on all levels. However, the difference between the single levels is not that great.
The mean median is 0.768 on level 0, 0.748 on level 1, 0.719 on level 2, and 0.717 on level
3. For two KAMs, differences in structure have a higher influence on the edit distance (> 1),
and thus on KAM similarity, than differences in used KCs within a node (< 1). But as the
structure basically remains the same on all levels and just the KCs get more fine-grained,
this results in only small difference between the KAM similarities. Similar to set similarity,
exercises 1 and 8 have a median KAM similarity of 1 on all levels. The minimum median
is 0.617 which is the median of exercise 20. 14 out of 933403 compared solution pairs have
a KAM similarity of 0. For exercises 2 and 29 the set similarity is smaller than the KAM
similarity.

Figure 6.7 shows the distribution of the AST similarities. Since the AST similarity is
not based on KCs but on AST nodes, we do not distinguish between different KC levels.
However, the AST nodes are closely related to level 3 KCs. The AST similarity is smaller
than the KAM similarity on level 3 except for exercise 25. The mean median is 0.689. The
minimum median is 0.567 which is the median of exercise 20 which is the same as for
KAM similarity. Also all solutions having a KAM similarity of 0, have an AST similarity
of 0.

With an average set similarity of 0.97 on level 0 to 0.798 on level 3 and an average AST
similarity of 0.689, the concrete differences between students’ solutions are not that high.

Meta-parameter evaluation

Figure 6.8 shows the box-plots for the distribution of AUC and RMSE for the different
meta-configurations of the skill models. The least achieved AUC for a PPM is 0.511 (KC
level = 0, KC count = binary, incorrect KCs = diff, Q matrix = shared), the greatest AUC
is 0.639 (KC level = 3, KC count = binary, incorrect KCs = all, Q matrix = shared). The
median AUC is 0.589. For PFA models, the median AUC is similar with 0.586. However,
the AUC varies between 0.5 (KC level = 2, minimum steps = 5, KC count = multiple, in-
correct KCs = all, Q matrix = all, step definition = first) and 0.711 (KC level = 2, minimum
steps = 20, KC count = multiple, incorrect KCs = all, Q matrix = common, step definition
= all). For AFM, the range of the AUC is even larger between 0.5 (KC level = 3, minimum
steps = 20, KC count = multiple, incorrect KCs = diff, Q matrix = all, step definition = first

87 6.2. Case Study 1: Skill Models for the Programming Domain

0.00

0.25

0.50

0.75

1.00

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30
Exercise number

S
im

ila
rit

y

Set similarity for level 0

0.00

0.25

0.50

0.75

1.00

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30
Exercise number

S
im

ila
rit

y

Set similarity for level 3

Figure 6.5.: Set similarity between solutions (level 0 and level 3)

6. Case Studies 88

0.00

0.25

0.50

0.75

1.00

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30
Exercise number

S
im

ila
rit

y

KAM similarity for level 0

0.00

0.25

0.50

0.75

1.00

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30
Exercise number

S
im

ila
rit

y

KAM similarity for level 3

Figure 6.6.: KAM similarity between solutions (level 0 and 3)

89 6.2. Case Study 1: Skill Models for the Programming Domain

0.00

0.25

0.50

0.75

1.00

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30
Exercise number

S
im

ila
rit

y

AST similarity

Figure 6.7.: AST similarity between solutions

6. Case Studies 90

(a) AUC (b) RMSE

Figure 6.8.: Distribution of AUC and RMSE for AFM, PFA and PPM models with different
meta-parameterization

and 0.752 (KC level = 3, minimum steps = 0, KC count = multiple, incorrect KCs = diff, Q
matrix = set, step definition = all). A similar behavior of the models is also observable for
RMSE. While the variance between different meta-configurations is comparably low for
PPM models, the meta-configuration has a higher effect on the RMSE of the AFM which
varies between 0.421 (KC level = 2, minimum steps = 0, KC count = multiple, incorrect
KCs = diff, Q matrix = set, step definition = all) and 0.838 (KC level = 1, minimum steps =
20, KC count = binary, incorrect KCs = all, Q matrix = set, step definition = first).

How much a meta-parametrization affects performance metrics like AUC and RMSE
depends on the concrete skill model. However, the effect is not negligible and can increase
AUC by up to 0.3 and decrease RMSE by up to 0.4.

First, we compare the two similar models PFA and AFM. Table 6.6 shows the results of
the comparison between meta-parameters for the metrics AUC and RMSE. The p-values
of the Friedman test indicate that there is a significant difference (significance level 1%)
of the results for the different meta-parameter values for each meta-parameter and each of
the regarded metrics except for the meta-parameter incorrect KCs for AUC in PFA models
and for AUC as well as RMSE for AFM models. We use Kendall’s W to estimate which
parameter has a high effect on the results. While the meta-parameter KC level has a high
effect on the AUC for AFM models, its effect on the AUC of PFA models is only moderate.

91 6.2. Case Study 1: Skill Models for the Programming Domain

Friedman test p-value Kendall’s W
parameter AUC RMSE AUC RMSE
KC level 8.785e-84 1.670e-136 0.308 0.501
minimum steps 1.072e-60 5.008e-59 0.213 0.207
step definition 1.752e-121 4.078e-170 0.497 0.696
incorrect KCs 0.011 5.035e-27 – 0.138
KC count 3.743e-47 1.476e-36 0.248 0.190
Q matrix 2.944e-65 9.375e-14 0.219 0.051

(a) PFA

Friedman test p-value Kendall’s W
parameter AUC RMSE AUC RMSE
KC level 6.845e-171 7.270e-89 0.627 0.327
minimum steps 1.572e-39 3.280e-74 0.140 0.259
step definition 1.565e-109 3.489e-187 0.447 0.767
incorrect KCs 0.011 0.013 – –
KC count 5.163e-29 4.419e-22 0.149 0.111
Q matrix 1.263e-32 6.058e-16 0.113 0.058

(b) AFM

Table 6.6.: P-values of Friedman test and Kendall’s W for all meta-parameters in the com-
parison between PFA and AFM

For the PFA model as well as for the AFM model, the meta-parameters minimum steps,
KC count, and Q matrix have only a small effect and the parameter step definition has a
moderate effect on the AUC.

We look in more detail at the meta-parameters KC level and step definition since they
have at least on one model type a large effect. Furthermore, we analyze the meta-parameter
minimum steps, since it is not applicable to PPM in further analysis. A complete listing of
effect sizes for all meta-parameters can be found in Appendix E.2.

First, we look at models for different levels of KC (see Table 6.7). We use Cohen’s d
to measure the effect on the prediction power. Pairwise Wilcoxon signed rank test tells
us that level 1 PFA models perform significantly better than all other levels (p = .001)
regarding AUC (large effect). Regarding RMSE, level 1 also performs better than level 2
and level 3 PFA models (large-very large effect). Regarding RMSE, there is no significant
difference between level 0 and level 1 PFA models which perform better than the other
levels (very large effect). AFM models perform best when the meta-parameter level is set
to 0. Thus, in the case of the meta-parameter level, the best meta-parameterization depends
on the concrete skill model.

If we look at how many steps are at least required to make sufficient predictions (see

6. Case Studies 92

level 0 1 2
1 +1.145 – –
2 not sign. -0.968 –
3 not sign. -1.207 -0.184

(a) AUC PFA

level 0 1 2
1 -0.725 – –
2 -1.423 -1.133 –
3 -1.526 -1.241 -0.167

(b) AUC AFM

level 0 1 2
1 not sign. – –
2 +1.303 +1.468 –
3 +1.464 +1.716 +0.248

(c) RMSE PFA

level 0 1 2
1 +0.447 – –
2 +0.727 +0.554 –
3 +0.738 +0.563 +0.078

(d) RMSE AFM

Table 6.7.: Effect sizes for parameter level

Table 6.8), we can see clearly that models with minimum steps = 0 perform best. However
the effect on the overall performance is only small to moderate.

Looking at the results of the evaluation of different definitions of a step (see Table 6.9),
we also get a clear result that considering each submission of a student as a single step leads
to best performance results. In contrast to minimum steps, the effect on the performance is
large. When comparing the step definitions last and first, we see that first performs better
regarding AUC while last performs better regarding RMSE.

To make PFA and AFM models comparable to PPM models, we use only a subset of
meta-parametrizations of PFA and AFM models where minimum steps is 0 and step def-
inition is every. Table 6.10 shows the mean values of AUC and RMSE for the different
meta-parameters of the skill models. AFMs perform almost in all cases best while PPMs
perform worst. The table gives a first impression on which meta-parameter values may have
a positive impact on the prediction performance (best value for each meta-parameter bold).

Table 6.11 shows the results of the Friedman test and Kendall’s W for all meta-parameters
of the skill models. In PFAs the meta-parameter Q matrix has a large effect on AUC as
well as RMSE. The meta-parameter incorrect KCs has no effect on RMSE and only a
small effect on AUC. In AFMs however, it has a large effect on AUC, while all other
meta-parameters have a small or medium effect. In PPMs the meta-parameter incorrect
KCs has a large effect on RMSE and the meta-parameter Q matrix has a large effect on
AUC while KC level has no significant effect on AUC and KC count has no significant
effect on RMSE.

93 6.2. Case Study 1: Skill Models for the Programming Domain

minimum steps 0 5 10 15
5 -0.291 – – –

10 -0.208 not sign. – –
15 -0.315 -0.108 -0.202 –
20 -0.650 -0.461 -0.663 -0.509

(a) AUC PFA

minimum steps 0 5 10 15
5 not sign. – – –

10 -0.211 not sign. – –
15 -0.347 -0.262 -0.231 –
20 -0.794 -0.698 -0.729 -0.696

(b) AUC AFM

minimum steps 0 5 10 15
5 not sign. – – –

10 not sign. not sign. – –
15 +0.248 not sign. +0.281 –
20 +0.638 +0.548 +0.726 +0.620

(c) RMSE PFA

minimum steps 0 5 10 15
5 +0.296 – – –

10 +0.509 +0.332 – –
15 +0.664 +0.522 +0.414 –
20 +0.802 +0.704 +0.586 +0.286

(d) RMSE AFM

Table 6.8.: Effect sizes for parameter minimum steps

step def. first last
last +0.413 –

every +1.168 +1.071

(a) AUC PFA

step def. first last
last +0.301 –

every +1.150 +1.684

(b) AUC AFM

step def. first last
last +0.291 –

every -1.485 -1.890

(c) RMSE PFA

step def. first last
last +1.691 –

every -0.964 -2.413

(d) AUC AFM

Table 6.9.: Effect sizes for parameter step definition

6. Case Studies 94

AUC RMSE
parameter value PFA AFM PPM PFA AFM PPM
KC level 0 .596 .697 .585 .452 .432 .560

1 .657 .692 .589 .443 .438 .496
2 .624 .622 .582 .506 .541 .505
3 .644 .619 .578 .484 .545 .508

incorrect KCs all .634 .647 .592 .473 .492 .484
diff .627 .668 .575 .470 .485 .550

KC count binary .613 .626 .578 .490 .530 .530
multiple .648 .689 .589 .453 .448 .504

Q matrix all .569 .651 .555 .480 .486 .525
shared .659 .660 .611 .460 .477 .522
union .642 .653 .564 .467 .480 .519
common .651 .656 .573 .464 .479 .513
used .618 .627 .585 .480 .536 .522
set .641 686 .597 .475 4.83 .509
KAM .632 .670 .598 .475 .481 .509

Table 6.10.: Mean values of AUC and RMSE for all meta-parameter values

Which meta-parameter has the largest effect on prediction performance highly depends
on the concrete skill model. Even for similar models the same meta-parameter can be of
completely different importance.

Looking at models for different levels of KCs (see Table 6.12), we see that level 1 PFAs
models perform better than level 0 PFA models (d =+1.859), at least as good as the other
levels for AUC, and even better than the other levels for RMSE. For AFM models there is no
significant difference between level 0 and level 1 models which perform much better than
models on level 2 or 3 (large effect). The meta-parameter KC level has no effect on AUC
for PPM and there are no significant differences between the KC levels for RMSE except
that level 2 is much better than level 3 (d = +1.708). Thus, we recommend to use models
based on level 1 KCs since they perform best regarding all metrics and all skill models.

When we compare the two simple approaches for selecting which KC shall be taken
as applied unsuccessfully (see Table 6.13), the Wilcoxon signed rank test shows us that
models which assume all KCs from an incorrectly solved exercise as unsuccessfully applied
performed better than those which were determined by the difference between the KC set
of the student’s solution and the KC set of the most similar correct solution for PFAs and
PPMs, but the effect is only between negligible and medium. For AFMs selecting diff for
the meta-parameter incorrect KCs however has a large effect on AUC (d = 1.117). Thus, the
selection of the “best" value for the incorrect KCs meta-parameter depends on the concrete
skill model.

95 6.2. Case Study 1: Skill Models for the Programming Domain

Friedman test p-value Kendall’s W
parameter AUC RMSE AUC RMSE
KC level 0.001e-1 3.51e-136 0.249 0.334
incorrect KCs 0.003 0.033 0.154 –
KC count 6.10e-5 0.003 0.287 0.154
Q matrix 9.92e-11 6.31e-9 0.607 0.514

(a) PFA

Friedman test p-value Kendall’s W
parameter AUC RMSE AUC RMSE
KC level 0.007e-1 2.69e-8 0.201 0.454
incorrect KCs 7.90e-10 5.53e-06 0.675 0.369
KC count 0.001 0.001 0.184 0.184
Q matrix 2.87e-11 0.009e-1 0.427 0.234

(b) AFM

Friedman test p-value Kendall’s W
parameter AUC RMSE AUC RMSE
KC level 0.015 0.007e-1 – 0.201
incorrect KCs 0.001 5.35e-13 0.184 0.930
KC count 6.10e-5 0.593 0.287 –
Q matrix 3.96e-12 3.06e-05 0.679 0.318

(c) PPM

Table 6.11.: P-values of Friedman test and Kendall’s W for all meta-parameters

6. Case Studies 96

level 0 1 2
1 +1.859 – –
2 not sign. not sign. –
3 +0.949 not sign. not sign.

(a) AUC PFA

level 0 1 2
1 not sign. – –
2 -0.955 -1.004 –
3 -1.032 -1.070 not sign.

(b) AUC AFM

level 0 1 2
1 -1.784 – –
2 not sign. +0.987 –
3 +1.103 +1.443 not sign.

(c) RMSE PFA

level 0 1 2
1 not sign. – –
2 +1.068 +1.067 –
3 +1.131 +1.102 not sign.

(d) RMSE AFM

level 0 1 2
1 not sign. – –
2 not sign. not sign. –
3 not sign. not sign. +1.708

(e) RMSE PPM

Table 6.12.: Effect sizes for parameter level

incorrect KCs all
diff -0.270

(a) AUC PFA

incorrect KCs all
diff +1.117

(b) AUC AFM

arg1
incorrect KCs all

diff -0.568

(c) AUC PPM

incorrect KCs all
diff -0.198

(d) RMSE AFM

incorrect KCs all
diff +0.737

(e) RMSE PPM

Table 6.13.: Effect sizes for parameter incorrect KCs

97 6.2. Case Study 1: Skill Models for the Programming Domain

KC count binary
multiple +0.828

(a) AUC PFA

KC count binary
multiple +0.876

(b) AUC AFM

KC count binary
multiple +0.555

(c) AUC PPM

KC count binary
multiple -0.697

(d) RMSE PFA

KC count binary
multiple -0.837

(e) RMSE AFM

Table 6.14.: Effect sizes for parameter KC count

For answering whether KCs should be counted once or multiple times in a solution, the
Wilcoxon signed rank test states that counting the KCs multiple times has a medium to large
effect on prediction performance throughout all skill models and for all metrics (see Table
6.14).

Looking at the different definitions for a Q matrix (see Table 6.15 and 6.16), models
which use the actually used KCs for each exercise perform worst throughout all models.
Also using just all KCs as required leads to poor performance. The Q matrix definition
shared performs best or at least as good as any other Q matrix. The ranking of the remaining
Q matrix definitions varies among the skill models. For AFM models setting the Q matrix
based on the set similarity also leads to better performance results regarding AUC.

While the effect size of a particular meta-parameter can be completely different among
different skill model types, the tendency of which parameter value leads to best results
is often similar. With regard to our results the best selection of meta-parameters for a
skill model in the programming domain would be to build skill models based on KCs on
level 1 refinement, use the actual number of occurrences of the KC as count, and define
the Q matrix as the intersection of KCs in all correct solutions. The selection of the
meta-parameter incorrect KCs, however, depends on the concrete skill model.

Skill model comparison

Table 6.17 shows the AUC und RMSE of the selected models. Each model performs bet-
ter than the Majority class model regarding AUC. Regarding RMSE, the PPM models are
worse. The “best” models perform significantly worse than the “meta” models for PFA as
well as AFM models with a difference in AUC up to 0.049 on the validation set. For PPM
models the “best” model performs only slightly better than the “meta” model.

The models based on meta-parameterization that is commonly used in related work per-
forms worst even when assuming the best KC level selection. The difference can be up to
0.058 in AUC for the best KC level selection and up to 0.191 for the worst KC level selec-

6. Case Studies 98

Q matrix all shared union common set KAM
shared +1.888 – – – – –
union not sign. not sign. – – – –

common not sign. not sign. not sign. – – –
set not sign. not sign. not sign. not sign. – –

KAM +1.459 -2.104 not sign. not sign. not sign. –
used not sign. -2.670 not sign. -1.501 -1.528 -1.063

(a) AUC PFA

Q matrix all shared union common set KAM
shared not sign. – – – – –
union not sign. not sign. – – – –

common not sign. not sign. not sign. – – –
set +1.418 not sign. +1.337 +1.333 – –

KAM not sign. not sign. not sign. not sign. not sign. –
used not sign. not sign. not sign. not sign. -0.931 not sign.

(b) AUC AFM

Q matrix all shared union common set KAM
shared +1.372 – – – – –
union not sign. -1.260 – – – –

common not sign. not sign. not sign. – – –
set +1.330 not sign. +1.190 not sign. – –

KAM +1.625 not sign. +1.530 +1.278 not sign. –
used not sign. -1.448 not sign. not sign. not sign. -1.809

(c) AUC PPM

Table 6.15.: Effect sizes for parameter Q matrix and metric AUC

99 6.2. Case Study 1: Skill Models for the Programming Domain

Q matrix all shared union common set KAM
shared -0.887 – – – – –
union not sign. not sign. – – – –

common not sign. not sign. not sign. – – –
set not sign. not sign. not sign not sign. – –

KAM not sign. +0.809 not sign. not sign. not sign. –
used not sign. +0.924 not sign. not sign. not sign. not sign.

(a) RMSE PFA

Q matrix all shared union common set KAM
shared -0.395 – – – – –
union -0.309 +0.101 – – – –

common -0.275 +0.352 not sign. – – –
set not sign. +0.163 not sign. not sign. – –

KAM not sign. +0.130 not sign. not sign. not sign. –
used not sign. +0.723 +0.667 +0.689 +0.609 not sign.

(b) RMSE AFM

Q matrix all shared union common set KAM
shared not sign. – – – – –
union not sign. not sign. – – – –

common not sign. not sign. not sign. – – –
set not sign. not sign. not sign. not sign. – –

KAM not sign. not sign. not sign. not sign. not sign. –
used not sign. not sign. not sign. not sign. +2.286 +3.910

(c) RMSE PPM

Table 6.16.: Effect sizes for parameter Q matrix and metric RMSE

6. Case Studies 100

tion. For RMSE the difference can be up to 0.12 for the best KC level selection and up to
0.298 for the worst KC level selection.

Also for the DBN models, those which are fitted to the “common” meta-parameterization
perform worse. DBN models which include variable roles as KCs perform better than those
without variable roles for all KC levels. With an AUC of 0.759 and an RMSE of 0.389 the
DBN model with KC level 1 and variable roles included performs similarly well as the best
AFM model.

Models which are fit using the meta-parameters which were identified as best individual
meta-parameter values perform better on the validation set than models which performed
best on the test set or used common meta-parameterization from related work. Including
variable roles increases the prediction performance of DBNs.

6.3. Case Study 2: Programming Errors

The second case study is about programming errors students make. By manual analysis, we
identify common error types and determine the error landscape (see Section 5.2). This case
study is an extension of our previous published work [137] and contains parts of it. The
results are updated and extended where necessary, but the key findings remain the same.

6.3.1. Setup

Figure 6.9 depicts the setup of our second case study. Using the SmartAPE data (see Section
6.1), we perform a manual error analysis of students’ code as described in Section 5.1. As
a result, we get a list of error types which are assigned to one or more error categories and
a data set which contains for each student’s submission a list of errors which it contains.
Then we determine the state of each error at each time step. Based on the resulting data set,
we calculate the error frequency, duration, severity, and re-occurrence as defined in Section
5.2. Furthermore, we are interested in the distribution of error categories, especially the
proportion of sloppiness in students’ errors. We aggregate the data to obtain the student-
based, type-based, and category-based error landscape.

The error data contains 4705 manually labeled errors from 271 students, classified into
105 error types.

6.3.2. Results

Student-based error landscape

Figure 6.10 shows a box-plot of the student-based error landscape. The median student-
based error frequency is 16 (mean 18.1), i.e., a student makes about 16 errors during the
course. However, the calculation of the median does not consider students who did not

101 6.3. Case Study 2: Programming Errors

Skill model AUC RMSE level KC count Q matrix incorrect KCs
Majority class 0.5 0.457
PFA best 0.686 0.437 2 multiple common diff
PFA meta 0.711 0.432 1 multiple shared all
PFA common 0.554(2)

-
0.656(1)

0.444
(1) -
0.566
(2)

binary used all

AFM best 0.703 0.430 2 multiple set diff
AFM meta 0.752 0.421 1 multiple shared diff
AFM common 0.561(3)

-
0.694(0)

0.431(0)
-
0.719(2)

binary used all

PPM best 0.638 0.458 1 binary shared all
PPM meta 0.630 0.463 1 multiple shared all
PPM common 0.589(0)

-
0.602(3)

0.473(3)
-
0.502(0)

binary used all

DBN meta 0.603(0)
-
0.692(1)

0.432(1)
-
0.461(0)

multiple shared diff

DBN meta +
roles

0.624(3)
-
0.759(1)

0.389(1)
-
0.426(2)

multiple shared diff

DBN common 0.541(3)
-
0.628(0)

0.443(0)
-
0.547(3)

binary used all

DBN + roles
common

0.557(3)
-
0.652(0)

0.430(0)
-
0.548(2)

binary used all

Table 6.17.: Comparison of skill models

6. Case Studies 102

determine
 error states

raw error data

SmartAPE data

code

compiled?

test results

correct?

extract errors

calculate
metrics

error data
 with states

aggregate

error landscape

student-based
error landscape

type-based
error landscape

category-based
error landscape

aggregate aggregate

classified
error data

manual
inspection

Figure 6.9.: Overview of the setup for case study 2

103 6.3. Case Study 2: Programming Errors

frequency duration re−occurrence severity

0

200

400

600

0.00

0.25

0.50

0.75

1.00

0

5

10

15

20

25

0

20

40

60

Figure 6.10.: Distribution of error frequency, duration, re-occurrence, and severity among
students

do any mistake (11 students in total). The variance is large and the maximum frequency
of a student is 63. The median duration is about 3.6 (mean 4.3), i.e., a student needs on
average 3 to 4 submission till he/she fixed an error. The maximum duration is about 25. The
students who have a large frequency are not identical with those who have a long duration.
The median re-occurrence is about 0.7, so students tend to do the same errors again. Since
severity is the product of frequency and duration, it is not surprising that the students with
high severity are those who have a high frequency or a high duration.

The frequency varies a lot between the students while the duration is more stable. Because
of the high re-occurrence rates, it is likely that students will do the same errors again.
Since severity depends on frequency, it also varies a lot. Students with a high frequency
do not necessarily also have a high duration.

Type-based error landscape

Table 6.18 shows the 25 top error types regarding severity. The complete type-based results
can be found in Appendix E.3. A description of the top 50 error types with examples can
be found in the supplementary material [162] to our publication.

6. Case Studies 104

Many of the errors are related to input and output. The error occurred most often is wrong
output format. Since our exercises are mostly assessed by regular expressions, it is crucial to
adhere to the prescribed output template. Students often do not read the exercise description
thoroughly, introduce typos, or just ignore the template which leads to failed tests.

Students often also do not check for boundary conditions, e.g., whether the input is valid
(error e3), i.e., of the correct type, or if array size is exceeded during input (error e12), and
omit boundary cases (error e11). An error that also occurred quite often is that students do
not understand how getchar() and scanf() consume data in the input buffer (error e24).
That results in certain variations of nesting these constructs. A typical variation is using
getchar() != EOF as a looping condition to check for a user’s end of input and calling
scanf inside the loop to read-in the data. Typical strategic errors are also that students
often miss some additional conditions when branching or looping (error e40) or do not loop
when it is required (error e23). Sometimes they even omit to implement a complete subgoal
of the exercise (error e20). In general, half of the top 10 errors can be avoided as they are
often a result of sloppiness .

The error with the highest duration refers to the student’s believe that a condition is
checked continuously in a loop and the loop is left immediately after the change of the
guard variable (e55). Furthermore, errors referring to pointers like missing malloc (e53),
wrong allocation size (e68), and using address operator wrong (e60) belong to the top
10 duration error types. However, these errors are rare (frequency of 1 or 2), such that
their severity is not that high. More severe are errors like using = instead of == (e37)
with a mean duration of 9.83 or initializing a variable with an incorrect value (e35) with
a duration of 7.83. Errors having a relatively low duration and a high frequency are, e.g.,
missing escaping in String (e46, ft = 19, dt = 3.14), missing/wrong include (e15, ft = 100,
dt = 3.67), or missing terminating character (e13, ft = 109, dt = 3.66).

The error types missing terminating character (e13) and de-referencing something that
is not a pointer (e30) have a re-occurrence rate of 1, i.e., every students that makes one of
these makes, does that mistake more than once. In general, it is likely that an error will
re-occur. There are only few errors with a re-occurrence rate smaller than 0.5 and those are
often not so frequent.

105 6.3. Case Study 2: Programming Errors

errortype
st

ft
d

t
rt

syntactic
concecptul

strategic
sloppiness

m
isinterpretation

dom
ain

e1
w

rong
outputform

at
4622.64

1193
3.87

0.92
X

X
e2

m
issing

sem
icolon

1416.09
319

4.44
0.81

X
X

e3
m

issing
check

forinvalid
input

1266.24
235

5.39
0.73

X
e4

undeclared
variable

1142.37
182

6.28
0.76

X
X

e5
confuse

E
O

F
and

’\n’
1078.74

189
5.71

0.53
X

X
e6

w
rong

array
size

978.49
172

5.69
0.52

X
X

X
e7

off-by-one-error
856.08

173
4.95

0.67
X

X
X

e8
w

rong
boundaries

843.39
182

4.63
0.6

X
X

e9
unexpected

output
809.88

185
4.38

0.6
X

e10
w

rong
escaping

705.9
144

4.9
0.42

X
e11

boundary
case

om
itted

485.57
77

6.31
0.57

X
e12

no
check

forarray
lim

its
during

input
481.57

74
6.51

0.63
X

e13
m

issing
term

inating
character

398.85
109

3.66
1

X
e14

m
issing

erroroutput
392.49

89
4.41

0.62
X

e15
m

issing/w
rong

include
366.84

100
3.67

0.9
X

X
e16

uninitialized
variable

348.25
64

5.44
0.57

X
X

e17
orderofconditions

345.6
52

6.65
0.69

X
e18

w
rong

claculation
338.81

65
5.21

0.52
X

X
e19

w
rong

type
331.02

55
6.02

0.44
X

e20
m

issing
subgoal

328.19
63

5.21
0.49

X
e21

unnecessary
if

322.68
63

5.12
0.51

X
X

e22
m

issing/w
rong

pointerde-reference
283.6

65
4.36

0.79
X

e23
m

issing
loop

282.12
49

5.76
0.48

X
X

e24
m

isconception
ofinputbuffer

280.29
53

5.29
0.59

X
X

e25
conflicting/incom

patible
types

249.33
66

3.78
0.67

X

Table
6.18.:Top

25
errortypes

ordered
by

severity

6. Case Studies 106

syntactic
11%

conceptual
16%

strategic
18%

sloppiness
32%

misinterpretation
21%

domain
2%

(a) incl. error e1

syntactic
14%

conceptual
22%

strategic
24%

sloppiness
26%

misinterpretation
11%

domain
3%

(b) excl. error e1

Figure 6.11.: Distribution of error categories

The most common errors relate to input and output or missing boundary checks. Students
often need longer time to fix the error using = instead of ==. A missing terminating
character is done by all students who did this error more than once.

Category-based error landscape

Figure 6.11a shows the resulting distribution of categories regarding their frequencies.
About half of all errors are caused by sloppiness (32%) or misinterpretation (21%). This
high percentage is mainly a result of error e1 because this error covers about 25% of all
resulting errors. As this error is mainly a result of our testing method of students’ solutions,
we removed it from evaluation to get a more unbiased impression. The resulting distribution
is depicted in Figure 6.11b. The value of misinterpretation gets much lower (11%) and also
the portion of sloppiness decreases (26%). But still, sloppiness is the most often occurring
category. Among the categories related to programming knowledge, strategic errors are
the most common (24%) and syntactic errors are the least common made errors (14%).
The portion of errors due to a lack of domain knowledge is fortunately low (3%) which
means that students can focus more on the programming task than struggling with domain
problems. There are no significant differences in duration or re-occurrence rate between
the categories, even when not considering e1. We also find out that 16.1% of students’
incorrect solutions are solely incorrect because of sloppiness.

The most frequent error categories are sloppiness and strategic errors. The duration and
re-occurrence is similar throughout all categories.

107 6.4. Case Study 3: Development of Programming Knowledge Over Time

6.4. Case Study 3: Development of Programming Knowledge
Over Time

This case study targets RQ 3. We focus on the evolution of KC knowledge and errors and
look for different patterns among students.

6.4.1. Setup

We use the DBN which we trained in case study 1 (Section 6.2) to create learning curves
as defined in Section 4.4. We manually analyze the learning curves for each KC and group
similar curves. The slope of a curve indicates the difficulty of the KC. In traditional BKT, a
knowledge level of 0.95 is considered as mastery of a skill [52]. So if the final knowledge
level of a KC is below this threshold, the student needs more practice.

We use the error landscape from case study 2 (see Section 6.3) to derive the temporal
evolution of the frequency and duration for the different error categories. We do not use the
re-occurrence rate, since it is calculated over the complete course and not on a per-exercise
basis, and severity, since it is already encoded in the frequency and duration. We use k-
means clustering as defined in Section 5.3 to group similar error patterns of students. To
determine the number of clusters, we use the average silhouette approach [163]. Afterwards,
we evaluate the relationship between the error patterns, i.e., clusters, and the final exam
outcome.

6.4.2. Results

KC Learning Curves

We have identified 8 different types of learning curves. Figure 6.12 shows a representative
learning curve for each type. Table 6.19 summarizes which KC has which type of learning
curve. The learning curves for all KCs can be found in Appendix E.4.

The first learning curve type represents KCs which start at a knowledge level of 0.75,
reach a level of about 0.9 after 5 exercises and about 0.95 at the end of the course. KCs
with such a curve are basic KCs like, e.g., block, declaration, or expression, which occur
in almost all exercises and are, thus, most often practiced. The second learning curve
type is quite similar to the first one, but shifted about 0.15-0.2 of knowledge downwards,
starting at about 0.55-0.6 and ending at about 0.8. Type 3 learning curves are also similar
to type 1 curves, starting at a knowledge level of about 0.65-0.75 and ending at 0.8-0.9.
But while the knowledge in type 1 curve increases exponentially till exercise 5 and slows
down afterwards, the knowledge level increases linearly in type 3 curves throughout the
complete course. Type 4 corresponds to a linear version of type 2. Type 5 is similar to type

6. Case Studies 108

Learning
curve type

KCs

1 block, comparison, data type, declaration, declarator, expression, jump,
primary expression, statement

2 assignment, function call, increment/decrement, iteration, member access
3 include, initialization, preprocessor, selection
4 arithmetic expression
5 logical expression
6 define, expression list, label, type cast
7 sizeof-operator, type qualifier
8 bitwise operator, conditional operator, storage class

Table 6.19.: Assignment of KCs to learning curve types

4, but on a lower knowledge level, starting at about 0.3 and ending at about 0.4. KCs with
a learning curve of of type 6 start on a low level of knowledge of about 0.2 and are learned
slowly such that they achieve only a level of about 0.6 at the end. In contrast type 7 KCs
achieve a final knowledge level of about 0.8 although also starting at a low level of about
0.2. Type 8 learning curve KCs are completely unknown at the beginning and achieve a
final knowledge level of about 0.4.

The learning curves for variable roles all look quite similar, starting at knowledge level
of 0 and increasing up to 0.6. The major difference between them is the “tail” at the start of
the course since some roles are only necessary for later exercises, and thus, their knowledge
level starts growing only later in the course (see Figure 6.13a). Only the roles stepper and
fixed value achieve a knowledge level above 0.8 at the end (see Figure 6.13b). The learning
curves for all variable roles can be found in Appendix E.4.

Despite syntactic KCs and variable roles we have a further hidden node in our DBN
representing the student’s problem solving ability. Figure 6.14 shows the learning curve of
the problem solving ability. It starts at a low knowledge level of about 0.4 and increases
linearly but slowly until reaching a level of about 0.6 at the end.

Only KCs with learning curves of type 1 and the variable role stepper achieve the mastery
level of >0.95. All other KCs and roles and the problem solving ability require more
practice. KCs of learning curve type 2 and 3 have a high initial knowledge which indicates
that students basically understand the concepts even before practice. KCs with learning
curve type 7 and variable roles are easy to learn. The remaining KCs are hard to learn.

109 6.4. Case Study 3: Development of Programming Knowledge Over Time

0 5 10 15 20 25 30

0.
0

0.
2

0.
4

0.
6

0.
8

1.
0

exercise

P
(K

C
=

kn
ow

n)

(a) Learning curve for KC block – Type 1

0 5 10 15 20 25 30

0.
0

0.
2

0.
4

0.
6

0.
8

1.
0

exercise

P
(K

C
=

kn
ow

n)

(b) Learning curve for KC iteration – Type 2

0 5 10 15 20 25 30

0.
0

0.
2

0.
4

0.
6

0.
8

1.
0

exercise

P
(K

C
=

kn
ow

n)

(c) Learning curve for KC include – Type 3

0 5 10 15 20 25 30

0.
0

0.
2

0.
4

0.
6

0.
8

1.
0

exercise

P
(K

C
=

kn
ow

n)

(d) Learning curve for KC arithmetic expression – Type
4

0 5 10 15 20 25 30

0.
0

0.
2

0.
4

0.
6

0.
8

1.
0

exercise

P
(K

C
=

kn
ow

n)

(e) Learning curve for KC logical expression – Type 5

0 5 10 15 20 25 30

0.
0

0.
2

0.
4

0.
6

0.
8

1.
0

exercise

P
(K

C
=

kn
ow

n)

(f) Learning curve for KC type cast – Type 6

6. Case Studies 110

0 5 10 15 20 25 30

0.
0

0.
2

0.
4

0.
6

0.
8

1.
0

exercise

P
(K

C
=

kn
ow

n)

(g) Learning curve for KC sizeof-operator – Type 7

0 5 10 15 20 25 30

0.
0

0.
2

0.
4

0.
6

0.
8

1.
0

exercise
P

(K
C

=
kn

ow
n)

(h) Learning curve for KC bitwise operator – Type 8

Figure 6.12.: Types of learning curves for KCs

0 5 10 15 20 25 30

0.
0

0.
2

0.
4

0.
6

0.
8

1.
0

exercise

P
(r

ol
e=

kn
ow

n)

(a) Learning curve for variable role most-wanted holder

0 5 10 15 20 25 30

0.
0

0.
2

0.
4

0.
6

0.
8

1.
0

exercise

P
(r

ol
e=

kn
ow

n)

(b) Learning curve for variable role stepper

Figure 6.13.: Learning curves for variable roles

111 6.4. Case Study 3: Development of Programming Knowledge Over Time

0 5 10 15 20 25 30

0.
0

0.
2

0.
4

0.
6

0.
8

1.
0

exercise

P
(K

C
=

kn
ow

n)

Figure 6.14.: Learning curve for the problem solving ability

Error curves

Figure 6.15 shows how the frequency of errors from different error categories changes over
time. The frequency of sloppiness and misinterpretation errors starts quite high with about
0.58 resp. 0.47 errors per student on average in exercise 1 and decreases continuously
throughout the course. Errors of categories conceptual, syntactic, and strategic start at a
quite low level of about 0.1-0.15 errors per student. While syntactic error occurrence in-
creases only for the first three exercises before it decreases continuously, the frequency of
conceptual and strategic errors increases till exercises 5 to 7 until it decreases. Domain er-
rors are always below a frequency of 0.06 throughout the course. At about exercise 20 all
categories fall below an average frequency of 0.04.

For the duration of error categories (see Figure 6.16), no clear trend can be discerned.
The duration slightly increases throughout the course for all categories. However, for the
single exercises the duration is quite jumpy, especially for domain errors, such that we can
assume that the actual error duration depends on the concrete exercise rather than on the
error category.

Sloppiness and misinterpretation errors are descreasing continuously. In the beginning,
the number of conceptual and strategic errors increases until it starts decreasing after
about 8 exercises.

Error patterns

The average silhouette approach proposes us a number of k = 3 clusters. Cluster 1 con-
tains 72 students with about 11-29 (22.18 on average) missing exercises, the second cluster
contains 27 students who have only 0-2 missing (0.11 on average) exercises, and the third
cluster contains 182 students with 0-13 (1.34 on average) missing exercises. In general, we
can say that cluster 2 is the cluster with students making the most errors and taking the most

6. Case Studies 112

0.0

0.2

0.4

0.6

0 10 20 30
exercise

fr
eq

ue
nc

y
pe

r
st

ud
en

t category

conceptual

syntactic

strategic

misinterpretation

sloppiness

domain

Figure 6.15.: Evolution of the average frequency of errors from different categories

0

5

10

15

0 10 20 30
exercise

du
ra

tio
n

category

conceptual

syntactic

strategic

misinterpretation

sloppiness

domain

Figure 6.16.: Evolution of the duration of errors from different categories

113 6.4. Case Study 3: Development of Programming Knowledge Over Time

0.00

0.25

0.50

0.75

0 10 20 30
exercise

fr
eq

ue
nc

y cluster

1

2

3

(a) Frequency for category sloppiness

0.0

0.1

0.2

0.3

0 10 20 30
exercise

fr
eq

ue
nc

y cluster

1

2

3

(b) Frequency for category syntactic

Figure 6.17.: Error patterns of the different clusters

time for fixing them throughout all error categories and cluster 1 describes students who
drop out early in the course. All error curves for the clusters can be found in Appendix E.5.

Cluster 1 and cluster 3 students behave quite similar in the beginning for about 8 to 10
exercises for errors in the categories conceptual, strategic, misinterpretation, and domain
with regard to frequency as well as duration. Cluster 3 students do more sloppiness errors
than cluster 1 students (see Figure 6.17a). In contrast, with regard to syntactic errors the
error frequency of cluster 2 students is higher than the frequency of cluster 3 students until
cluster 2 students do not submit solutions anymore (see Figure 6.17). Cluster 1 students do
a lot of syntactic errors even at the end of the course. The same holds also for the duration of
syntactic errors. The frequency and duration of the categories strategic, misinterpretation,
and domain gets 0 for all clusters at exercise 24.

Table 6.20 shows the results of the final exam for each cluster. There is no significant
difference between the pass rates for the particular clusters. However, more students from
cluster 1 are not participating at the exam. Students from cluster 2 on the other hand have a
higher fail rate in the exam.

6. Case Studies 114

cluster 1 cluster 2 cluster 3
pass 73.6% 74.0% 77.4 %
fail 18.1 % 26.0% 21.4 %
miss 8.3 % 0.0% 1.2 %

Table 6.20.: Exam results by clusters

The error curves of the students can be clustered into three groups. One group is repre-
senting students which only work on maximum up to 19 exercises. These students are
more likely to quit the course in advance. The second group refers to students who are
hardworking but produce a lot of errors. Thus, their risk of failing the exam is higher
than for the other groups. The third group is a mixture of both groups. Students are doing
many of the exercise but their error frequency is lower than the one of group 2.

7. Discussion

In this section, we discuss the findings of our case studies and provide answers to our
research questions. Moreover, we report the strengths and limitations of our approach and
show potential threats to validity of our studies. In addition, we use the results to derive
implications for teaching.

7.1. Answers to Research Questions

We provide the answers to our research questions from Section 1.1 by summarizing the
results of our case studies and putting them into context.

7.1.1. RQ1: How can we construct a skill model for the programming domain?

Since skill models are the core component of each adaptive learning system and required for
gaining an estimate of a student’s knowledge, our goal is to construct a skill model which
fits the specific needs of the programming domain. One major property of programming
is that there may exist an unlimited number of potential solutions. So we first need to get
an impression how different students’ solutions actually are, which leads to RQ 1.1. The
results from our similarity analysis in Section 6.2.3 show that there are actually differences
between student’s solutions, but these differences are relatively small. The mean similarity
is, depending on the similarity metric, located between 0.689 to 0.798 for level 3 KCs. So
we need to consider this fact when defining a skill model for the programming domain.

Answer to RQ 1.1 – How great is the difference between students’ code?: While the
diversity of students’ solutions is quite high, the actual similarity between the similarities
is relatively low.

When constructing a skill model, we have several options to account for the properties of
the programming domain by defining meta-parameters. We combined multiple configura-
tions of meta-parameters and evaluated them by statistical tests. The results show that the
correct meta-parameterization can drastically increase the performance of skill models for
the prediction of student’s performance on future exercises. Less surprising is that training a
skill model on data from each submission being a single step leads to best prediction results
since we want to predict every solution of a student. When the goal is predicting a student’s
first solution to an exercise probably looking at student’s first submissions would be more

7. Discussion 116

beneficial. The selection of a minimum step size to avoid potential noise in the beginning
does not play a crucial role in skill modeling. Our results show that the optimum minimum
step size is 0, i.e., the data right from the beginning is good enough to be used for prediction.

The definition of a Q matrix can have a moderate to large effect on the prediction per-
formance. In our set-up it was not beneficial to use those KCs as required KCs which were
actually used by the student in his/her solution. We think this is due the fact that when a
student’s solution is incorrect, there are incorrect or missing parts and, thus the KCs taken
for knowledge estimation are incorrect. Best results are achieved when using the KCs which
are used in every solution path. We think that these KCs are the core KCs for solving an
exercise correctly. Together with the fact that we only have two very modest approaches
for the determination of the incorrectly applied KCs, we believe that evaluating only the
shared KCs leads to better prediction results. This is also in accordance with the results of
Yudelson et al. [34] and Huang et al.[95] who showed that a reduced set of required KCs
leads to better performance results than using all KCs that were actually used.

Also the choice of the KC level has an influence on the prediction performance. Our
results indicate that using KCs on refinement level 1 leads to best results which means
that a too fine-grained definition of KCs leads to too much noise. Although using concrete
counts of used KCs rather than a binary counting results in better prediction results, it is
surprising that the effect is only negligible to small. The most inconsistent meta-parameter
is incorrect KCs. Its effect ranges from negligible to very large dependent on the concrete
skill model and performance metric.

Answer to RQ 1.2 – Which effect does meta-parameterization have on the prediction
performance of skill models?: Meta-parameterization can have large effect on the pre-
diction performance. Therefore, the choice of the concrente meta-parameters should be
carefully evaluated when creating a new skill model. When extensive evaluation is not
possible, our results can be a good starting point, i.e., starting with KCs which are not too
fine-grained, including each submission of a student as a step, and using the intersection
of KCs of all correct solutions for the definition of the Q matrix.

In skill modeling, interpretable models are preferred as they contain additional infor-
mation about students or course content. PFA and AFM are interpretable models as the
parameters of the logistic regression model contain information on the difficulty of KCs or
a student’s individual learning rate. However, they do not consider dependencies between
KCs. But for programming there clearly exist some, e.g., pointers and arrays are related in
C, as well as the different forms of loops. Since logistic regression models assume indepen-
dent variables, the estimated values of the parameters are pointless for interpretation even
when the model’s prediction capability is high. To integrate KC dependency into skill mod-
els, we use DBNs for skill modeling. We define a topology for the DBN consisting of three
major parts which target specific properties of the programming domain: the domain model
containing dependencies between KCs and allowing to use multiple KCs in one model; an

117 7.1. Answers to Research Questions

item-KC-mapping structure that uses AND gates such that the DBN is able to deal with a
dynamic Q matrix; and the explicit modeling of the problem solving ability which allows us
also to monitor student’s progress in that ability. In addition, by using virtual evidences, the
model is able to deal with multiple application of the same KC in one step. As a result, the
DBN is able to deal with all properties of the programming domain. The results of the skill
model comparison (see Section 6.2.3) show that DBNs (AUC=.692, RMSE=.461) can be as
good predictors as, e.g., PFA models (AUC=.711, RMSE=.432). When integrating variable
roles into the DBN, they even achieve as good results (AUC=.759, RMSE=.389) as AFM
models (AUC=.752, RMSE=.421). This indicates that additional semantic information like
the one obtained by variable roles can lead to more sophisticated models.

Answer to RQ 1.3 – How can we modify DBNs to reflect the properties of the program-
ming domain?: DBNs inherently provide a possibility to model dependencies between
multiple KCs. We use a combination of an evidental node and a noisy AND gate to de-
scribe whether a KC is required in that step to incorporate the possibility of a dynamic
Q matrix. We use virtual evidences for our observation nodes to integrate multiple ap-
plications of one KC in the same step. A comparison to other common skill models
indicates that the model can keep up with them with regard to prediction performance
while providing a better interpretability.

7.1.2. RQ2: Which errors do students make during programming?

To get a holistic view on students’ programming errors, we do not rely on diagnostic mes-
sages of compilers because, first, they can not identify strategic errors, and, second, diag-
nostic message and the actual error type often do not fit together [88]. Instead, we perform
a manual analysis of all incorrect solutions. Moreover, we are not only interested in how
often a student makes errors, but also how long he/she needs to fix them, and how often
they are repeated. For that purpose, we calculate the metrics error frequency, duration, and
re-occurrence rate to which we refer as error landscape.

McCall and Kölling [138] also manually analyzed error frequency and duration, but they
only analyzed non-compilable solutions. Errors which were frequent in their study like, e.g.,
typos, undeclared variables, missing semicolons also occurred quite often in our analysis.
Also our third most often occurred error missing check for invalid input is comparable to
their top 10 error unhandled exception since there are no exceptions in C.

The error with the highest frequency in our study is the wrong output format error which
is mainly a result of our testing method. Students often do not read the description of the
exercise thoroughly or introduce typos. Ettles et al. observed a similar problem. In their
study, they found out that students have inserted printf into their solution although it was
not requested in 83% of the solutions. This led the test cases fail although their solutions
basically were correct. In addition, they identified three major misconceptions in students’

7. Discussion 118

programming code: uninitialized variable, off-by-one error, and boundary error which also
occurred relatively frequently in our data.

We also identified several errors which correspond to some of the plan composition prob-
lems identified by Spohrer and Soloway [82]. Not explicitly derivable from our error types
is the previous-experience problem. A very frequent result of this problem is the confusing
EOF and ’\n’ error. While checking for ’\n’ in input is sufficient for some exercises, oth-
ers explicitly require an EOF. Students who previously always used ’\n’ in their solutions
believe that it is the common way to check for an end of input. Spohrer and Soloway’s
interpretation problem is so common that we have defined an own category for it. Also
very frequently the boundary problem occurred. It describes that students are unable to find
the correct boundaries during solution, e.g., the initialization value of counting variables in
loops and when looping has to be ended. It is more than just an off-by-one-error since it
does not result from the misconception of constructs, e.g., loops or arrays, or sloppiness
but often is a lack in strategic knowledge. The last problem covered by our errors is the
unexpected cases problem. This problem is mainly reflected by missing check for invalid
input and boundary case omitted.

Since our most frequent error wrong output format is a result of our testing method
and would skew the distribution of error categories, we excluded it to get an adjusted
distribution. The results show that sloppiness and strategic errors are the most frequent
categories of errors. Our results estimate that about 16.1 % of all solutions are incorrect
solely because of sloppiness. Although sloppiness has such a large impact, to the best of
our knowledge, none of the previous studies has considered sloppiness in their analysis of
programming errors. We assume that many researchers and educators underestimate how
often it actually occurs. Another reason may be that they do not perceive it as a “real” error
since it is made unintentionally and there is not much that can be done against it from the
educator’s site. Our results let conclude that a lack in strategic knowledge is one of the
main reasons why programming is perceived challenging by students. However, strategic
knowledge is independent of a concrete programming language and, thus, students need
to develop appropriate cognitive structures for problem solving. We suggest that students
should be confronted with algorithmic problems on practical examples first, e.g., sorting
books, to develop a strategy first before being confronted with difficulties arising from
syntactic and conceptual knowledge.

Answer to RQ 2.1 – What are the most common errors made by students?: Most errors
students make are due to sloppiness or a lack in strategic knowledge.

The results show that there is no significant difference between the duration of errors
from different error categories. This is somehow surprising. We would have assumed that
syntactic or sloppiness errors are easier to fix since the compiler usually points to the con-
crete location of a syntactic error and sloppiness errors are usually made unintentionally and
could be identified with a more thorough look at the code. The long duration for syntactic

119 7.1. Answers to Research Questions

errors could be a clue that students have problems with understanding diagnostic messages
of compilers. Integrating the interpretation of diagnostic messages into curriculum may
be therefore a potential option. On average, a student needs 3 to 4 submission to fix an
error which seem to be a long time and more trial and error than directed debugging. An
investigation of the debugging abilities of students could provide more insights. The errors
using = instead of == (dt = 11.2) has a high duration and occurs quite often which indicates
that it is actually hard to fix. The reason could be that the = is more natural form for defining
equality and beginner students have problems distinguishing it from assignment. When you
are not aware of the difference, fixing the error is difficult because you do not recognize it
as an error in the code. On the other hand, the errors missing escaping in String (dt = 2.67)
and missing terminating character (dt = 3.79) have a relatively low duration and are, thus,
easy to fix. The reason is probably that the diagnostic messages and the error locations are
clear.

Answer to RQ 2.2 – Which errors are hard/easy to fix?: There are no significant dif-
ferences in the error duration between different error categories. The error type using =

instead of == is hard to fix. In contrast, the error types missing escaping in String and
missing terminating character can be fixed easily

.

The results from our second case study indicate that the duration is similar for all error
categories. However, the errors missing terminating character and de-referencing some-
thing that is not a pointer both have a re-occurrence rate of 1, i.e., a student makes the error
more than once. While the first error is a very common sloppiness error, the second error
indicates that students need a longer time to actually understand the concept of a pointer
and being able to distinguish between pointers and non-pointers.

Answer to RQ 2.3 – Which errors re-occur often?: There are no significant differences
in the error re-occurence between different error categories. The error types missing
terminating character and de-referencing something that is not a pointer always re-occur

.

7.1.3. RQ3: How does the programming knowledge of students change over
time?

The third research question deals with the temporal development of student’s programming
knowledge. We distinguish between knowledge and errors. RQ 3.1 targets the knowledge
component and asks which KCs are hard/easy to learn. After showing that DBNs are an
appropriate skill model when it comes to interpretability in case study 1, we use the knowl-
edge estimates generated by the DBN to derive learning curves for each KC. The learning
difficulty of a KC can be deduced from three parameters of the curve: the initial knowledge
of the KC, the slope of the curve, and the final knowledge level. We have generated learning
curves for syntactic KCs, variable roles, and the problem solving ability.

7. Discussion 120

The results show that only few KCs reach the mastery level of 0.95. These KCs are
the basic building blocks of almost each exercise like, e.g., declaration, expression, and
statement, but also jump statements (because of return). Only the variable role stepper
achieves mastery, because it is also required in almost all exercises when iterating through
an array. In general, all variable roles have a small initial knowledge. This may be due
to the fact that variable roles are a composition of multiple basic KCs which have to
be learned step by step by students. However, the learning curves of variable roles are
almost linear with a relatively large slope. This indicates that they can be learned easily
when having enough practice opportunities. The learning curves of the logical expression,
bitwise-operator, conditional operator, and storage class is relatively plain which means
that students have difficulties with learning that KCs. Also the problem solving ability is
difficult to learn. For teaching this means, that those KCs have to be targeted more, either
by providing more exercises requiring the use of that KCs, or alternatively, since the error
curve is quite plain, the KCs need to be discussed more in the lecture.

Answer to RQ 3.1 – Which KCs are hard/easy to learn?: Most KCs require more prac-
tice than we offer with our 30 exercises to achieve mastery. Only the basic KCs like ex-
pression, statement, and declaration as well as the variable role stepper achieve mastery.
Variable roles can be learned easily, while the problem solving ability is hard to learn.
Futhermore, the KCs bitwise operator, logical expression, and conditional operator are
hard to learn.

RQ 3.2 targets the error component and asks how programming errors change over time.
To evaluate the research question, we used the metrics frequency and duration aggregated
over the different categories for each exercise and got an error curve describing the temporal
development of the metrics. The results show that the frequency of sloppiness and misin-
terpretation errors continuously decrease. We think, the reason is that students get more
familiar with how exercises are described and what is expected from them. The number of
conceptual and strategic errors first increases for about 8 exercises until it also starts to de-
crease. The increase in the beginning may be due to increasing complexity of the exercises
and, thus, higher requirements on the concepts used and strategic knowledge. After a short
period of familiarization, the learning then starts. Syntactic errors also have an increase in
the beginning but only for about 3 exercises. The number of domain errors is quite low
throughout the complete exercise. After about 20 exercises, the frequency falls below 0.2
errors per student. The decrease of the error frequency and reaching a very low frequency in
the end indicates that students learn from their mistakes and their programming knowledge
increases over time.

Although the error duration varies between exercises, no real trend can be identified for
any of the categories. The duration does not improve over time which is again an indicator
for a low debugging ability or at least for no growth in the debugging ability.

121 7.1. Answers to Research Questions

Answer to RQ 3.2 – How do errors change over time?: The number of errors of all
categories decreases over time to a low frequency of 0.2 errors per student. However,
syntactic, conceptual, and strategic errors have some kind of familiarization phase in the
beginning where the frequency increases until it starts decreasing. The error duration
toggles around a constant value throughout the complete course.

So far, we only regarded how errors change for the complete course, i.e., averaging over
all students. However, individual students can have completely different error patterns.
RQ 3.3 asks whether we can identify different patterns among students. To evaluate the
question, we create an error curve for each student, split up into different categories. We use
k-means clustering to identify similar error patterns. The features used are the individual
frequencies and errors for each exercise and an additional feature describing the number of
missing exercises since not all students have solved all exercises. The clustering resulted
in 3 clusters defining different kinds of error patterns. We use the centroid of each cluster
to analyze how a typical error path looks like for a student of that cluster. The first group
of students, i.e., cluster, describes students who miss a lot of exercises (11-29), thus we
will call them the missers. However, in the exercises which they did they had few errors in
comparison to the other two groups. Also their duration was most often lower. The reason
why they stopped submitting is not clear. But since still 92% of them participated at the
exam and 73.6% passed, we do not think that is was because they were overchallenged
and gave up. The second group describes students who submitted solutions to almost all
exercises. Unfortunately, they were also clearly the group with most errors and the longest
error duration for all categories. This also manifested in their exam outcomes where they
had the highest fail rate among all groups. Although they made a lot of errors, they never
gave up. Therefore, we call them the fighters. The last group refers to students who work
on a lot of exercises, but do not produce as many errors as the fighters. They also have
the highest pass rate in the exam. Therefore, we call them the studious. Although we can
identify different patterns among the groups, the final exam outcomes do not differ that
much. Since the centroids only represent the average pattern of all students within that
group, we need a more elaborated investigation of the missers and fighters. This might
help us to identify students which need support either because they are likely to give up
(missers) or have a higher probability of failure (fighters).

Answer to RQ 3.3 – How do students differ regarding the errors made? Can we identify
different error patterns?: We identified 3 different groups of student with regard to their
error patterns: the missers, who miss most of the exercises but have a relatively low
error frequency, the fighters who work on almost all exercises although they make a lot
of errors, and the studious who do many exercises but have an error frequency slightly
higher than the one of the missers. However, these classification by error patterns alone
does not help in identifying students which require support.

7. Discussion 122

7.2. Strengths and Limitations

In educational research, interpretable models are always preferred as they contain additional
information about students or course content. PFA and AFM are interpretable models as
the parameters of the logistic regression model contain information on the difficulty of KCs
or the importance of practicing particular KCs. However, for KCs in the programming
domain clearly exist dependencies, e.g., pointers and arrays are related in C, as well as the
different forms of loops. Since logistic regression models assume independent variables,
the values of estimated parameters are pointless for interpretation. Our DBN model is able
to cope with all of the four properties of the programming domain, including the capability
of modeling KC dependencies. While the prediction performance is comparable to that
of logistic regression models, we get a better interpretable model. However, the better
interpretability of the model comes at the cost of high computational effort. While logistic
regression models grow linearly in the number of KCs, DBNs have to deal with the “curse
of dimensionality” since the number of parameters for a node grows exponentially with the
number of its parents. The more KCs we include into the model, the more data we need
to achieve reliable parameter estimates. This also makes the evaluation of meta-parameters
for a DBN difficult.

A limitation of our meta-parameter evaluation is that the determination of the different
Q matrix definitions relies on ASTs resp. KAMs. However, these can only deal with com-
pilable solutions. But, uncompilable solutions contain valuable information on missing
knowledge which is at the moment simply ignored in our current modeling approach. In
this thesis, we try to fill this gap by the additional analysis of programming errors.

The major drawback of our approach with regard to skill modeling is that our approaches
for determining which KCs are applied successfully and which not are very modest at
the moment. While it is obvious that in a correct solutions all KCs that are used in that
solution are applied correctly, the contrary can not be expected for incorrect solutions. The
performance and parameter interpretability of skill models highly depends on a convenient
identification of the incorrectly applied KCs.

Through the manual analysis of programming errors, we obtain a data set which does
not exist in such a form yet, containing all different types of errors and their locations. This
leads to a more sophisticated view on programming errors and brings valuable insights. Un-
fortunately, manual analysis is not feasible in practice, since you can not always manually
label about 20,000 solutions by hand to get insights into problems in the course. How-
ever, our manually validated data can lay the basis for future research on automatic error
localization in programming solutions.

123 7.3. Threats to Validity

7.3. Threats to Validity

In this section, we discuss potential threats to construct, internal, and external validity of
our studies.

7.3.1. Construct Validity

Construct validity describes in how far the selected measurements measure what they are
intended to. A typical threat to construct validity can be introduced during coding. To
minimize faults in our code for the construction of KAMs and the identification of variable
roles, we thoroughly tested the code with multiple examples from the real code base used
in our studies.

A threat to construct validity concerning the data we used concerns the classification of
students’ solutions into correct and incorrect. As we use automatic assessment, we could
have misclassified a solution as correct although it is not completely correct, e.g., by omit-
ting a border case in our tests. We used established software testing techniques to derive
test cases. Furthermore, the tests were improved over years such that the case of misclassi-
fication should occur very rarely and, thus, have only little effect on the overall results. On
the other hand, we also may have problems with classifying a correct solution as incorrect
because sometimes only small deviations of the expected output can lead to a classification
as incorrect. Although this usually means that the solution is actually incorrect, it is only a
very small mistake in the output generation. This would be no problem if we had a more
precise localization of the incorrectly applied KCs, which directly leads to our next threat
to validity.

The approaches we used for the identification of incorrectly applied KCs are very sim-
plistic. So we cannot be sure whether the DBN actually models a student’s knowledge.
Unfortunately, knowledge can not be measured directly and, therefore, a real validation of
the learned DBN is not possible. However, prediction performance is a first indicator of the
model’s validity. In addition, we checked for parameter plausibility which is based on com-
mon assumptions about human learning. For example, if a student knows all required KCs
for the solution of an exercise, the model should infer that he/she will answer the exercise
correctly, and if the student does not know one the required KCs, the model should infer
that he/she will answer incorrectly [70] or if a student practices more, his/her knowledge
should not decrease [164]. Since our learning curves also seem quite plausible, we think
that this threat to construct validity can at least be not be that high.

Considering the error analysis, a threat to construct validity is how we calculated the
category-based error metric. If an error type can be the result of different categories, we
assume an equal distribution between those categories for the determination of the expected
frequency. Nevertheless, for some error types one category is more likely than an other. For
example, a missing semicolon is more likely caused because of sloppiness than by a lack
in syntactic knowledge. While we can usually assume that the error is due to sloppiness by

7. Discussion 124

checking whether the students omitted all semicolons in his solution or only in one or two
statements, for other error types this is unfortunately usually not possible. For that reason,
assigning the same chance for all categories seems to be fair for us, as we cannot determine
the concrete distribution solely from data.

7.3.2. Internal Validity

Internal validity describes in how far the casual relationship established for the study is
trustworthy and if there exist no further explanations. A threat to internal validity concern-
ing our data is that students are also able to test their solutions offline. Thus, intermediate
steps of some students are missing and the upload frequency, and thus the progress step
with each submission, can vary. When considering the step definition every this can lead to
an unbalanced distribution of successes and failures between different students. However,
a good skill model should be able to deal with this imbalance since it can not be distin-
guished between a student who immediately is able to solve everything and a student who
needs several attempts offline before submitting a correct solution. During manual analysis
of the programming errors, we had not the impression that students tested their solutions in
advance offline and if, then would be only a small portion. Thus, the results should not be
affected that much.

A threat to internal validity of our error analysis is that the type of errors made highly
depends on the exercise. For example, if we only have few exercises involving pointers,
pointer errors will be less frequent than, e.g., errors related to input and output. Although
we cannot claim that errors we found are the most common errors in general, we still can
conclude that if an exercise offers a chance to produce one of the errors, it is likely that such
an error actually occurs.

7.3.3. External Validity

External validity concerns to what extent the results of a study are generalizable. One
major threat to external validity is that we used only data from one university. Although
we showed skill models are generalizable to different years and we have a broad diversity
within the solutions in our data set, we cannot be sure that our results are generalizable for
other institutions. Because of the high effort, the error analysis was only performed on the
data of one year. So we can not be sure that it is generalizable to future years. However,
the fact that skill models are generalizable to future years can be an indicator that it would
also work for the errors. In addition, our data contains only data for C programming. So,
in Java other errors and KC learning curves can be found since it is a completely different
programming paradigm.

Another threat to external validity is that the meta-parameters we investigated are not
completely independent of each other. Thus we can only assure that the results are valid in
equal set-ups, i.e., same sets of meta-parameters and parameter values. For example, having

125 7.3. Threats to Validity

a method to locate the concrete incorrectly applied KCs could lead to completely different
results.

8. Conclusion

In this section, we conclude our thesis by providing a summary and giving an outlook on
potential future work.

8.1. Summary

In this thesis, we aimed at getting an impression of students’ programming knowledge and
error development. Therefore, we defined what we consider as programming knowledge.
We focused on KCs which we can be derived from ASTs – as a syntactic component –
and variable roles – as a semantic component. Since knowledge is not directly measurable,
we decided to use skill models to estimate the knowledge. We started with showing that
students actually write different code and we, therefore, need a skill model which is able to
deal with a dynamic Q matrix. Since there are different meta-parameters which have to be
considered when developing a skill model, we evaluated different meta-parameter settings.
we configured PFA and AFM models with all combinations of potential meta-parameter
values and used data from our introductory C programming course to evaluate how the meta-
parameters affected the prediction performance. We showed that meta-parameterization
plays a crucial role when it comes to prediction performance. We decided to use DBNs
as our skill model since it allows to explicitly model dependencies between nodes, i.e.,
KCs. We proposed a topology for the DBN which is able to deal with all properties of the
programming domain that we identified. We showed that the DBN performs as well as the
models based on logistic regression. We used the DBN to derive a student’s learning curve
from observational data. By aggregating over all students we got a learning curve for each
KC which we used to identify KCs which are easy resp. hard to learn. One major finding of
the learning curve analysis was that most KCs do not achieve a mastery level, i.e., are not
learned completely. For teaching this means, that we should provide more exercises, and
thus practice opportunities to the students.

In a second step, we focused on the programming errors made by the students. Therefore,
we manually inspected all solutions of the students and identified 105 different error types in
total. We assigned the different error types to 6 error categories, namely syntactic, concep-
tual, strategic, sloppiness, misinterpretation and domain errors. Based on the manual classi-
fication of errors, we determined the error frequency, duration, severity, and re-occurrence
rate on a per-student, per-error-type, and per-category basis. We found out that most errors
made by students are due to sloppiness and due to a lack in strategic knowledge which is

8. Conclusion 128

coherent to the findings by Spohrer and Soloway [82] who identified plan composition as
the major problem of programming beginners. For error duration and re-occurrence rate,
we could not find any significant differences between the different categories.

In a third step, we had a look at the development of error frequency and duration for the
different error categories over time. The results show that the number of occurrences of all
error categories decrease towards the end of the course. However, the number of syntactic,
conceptual, and strategic errors first increases before its starts decreasing. So these errors
need some kind of familiarization in the beginning before students learn to avoid them.

In the last step, we aimed at identifying common patterns in the error development for
students. We used the frequency and duration at each time step, i.e., exercise and a feature
which describes how many exercises a student misses as input for k-means clustering to
group students by their error patterns. We identified 3 groups of students. The missers are
students who missed a large portion of the exercise. However the missers had only a low
error frequency. The fighters refer to students who worked on almost all exercises although
they produced a lot of errors and need longer time to fix the errors. We called the third group
of students studious. As fighters they worked on a lot of exercises, but their error frequency
and duration was much lower than the one of the fighters.

8.2. Outlook

While a thorough analysis of the error landscape can deliver valuable insights into prob-
lematic concepts, the approach of determining the error landscape has to be applicable in
practice. For that purpose, the manual analysis has to be replaced as much as possible by an
automated analysis. Our manually labeled error data provides a good foundation for future
research. It can be used to evaluate for which of the errors an automatic detector can be
developed. For instance, a missing check for an invalid input could be easily checked when
having a reference implementation which we usually have in teaching.

Although the prediction performance of our skill models is acceptable, we believe that
it can be improved. In our view, the major weakness of our models is the approach for
determining which KCs are applied correctly and which not. One potential approach would
be to use AST or KAM differencing to transform an incorrect solutions into the most similar
correct one. The differences between both solutions are potential locations of defects. A
more fine-grained comparison of these locations can be used to identify the concrete fault
and, thus, the affected KC. Alternatively, when appropriate error detectors can be developed
as proposed above, we could assign each error type with the affected KCs to have more
precise reasons for an incorrect solutions than only syntactic differences.

One limitation of our skill modeling approach is that we only consider compilable so-
lutions. Future work can elaborate on how to construct KAMs from an incomplete AST.
Alternatively, we could integrate programming errors into our skill model. However, this
requires an appropriate error detector and would also raise the complexity of our model

129 8.2. Outlook

coming with high computational costs. Furthermore, we have defined the dependencies
between KCs, i.e., the domain model, manually. However, not only parameters can be
learned from data but also the structure [165]. This may also reduce parameters that have to
be learned, when the algorithm identifies some dependencies as not important by omitting
them.

We used k-means clustering to identify different error patterns among students. But,
the patterns are only limited helpful in identifying students who need support. Instead of
clustering, we could use classification approaches on student’s error landscape and their
individual knowledge development to identify students who are at risk from dropping or
failing the course. Together with the improvements and extensions mentioned above, this
would provide a convenient basis for an adaptive system.

During the manual inspection of the programming errors, we noticed several flaws in stu-
dents’ code, e.g., unused variables or solutions which are more complex than necessary. In
future work, we can also consider code smells and “algorithmic smells” to train students not
only to write correct, but also efficient and readable programs. Furthermore programming
abilities are more than the knowledge of syntactic elements of the language. We made a
first step towards a more holistic model by integrating variable roles as a semantic layer to
our model and explicitly modeling the problem solving ability. In future work, we can also
consider higher level knowledge like cliches or units (see Section 2.1) as cliches often are a
composition of several SAPPs. In this work, we mainly focused on the code writing ability.
An extension could also be the code reading ability, especially the evaluation of testing and
debugging skills.

Bibliography

[1] C. J. Butz, S. Hua, and R. B. Maguire, “A web-based bayesian intelligent tutoring
system for computer programming,” Web Intelligence and Agent Systems, vol. 4,
no. 1, pp. 61–81, 2006.

[2] N. Pennington and B. Grabowski, “The Tasks of Programming,” in Psychology of
Programming, J.-M. Hoc, T. R. G. Green, R. Samurcay, and D. J. Gilmore, Eds.
Elsevier, 1990, pp. 45–62.

[3] K. Bertels, P. Vanneste, and C. Backer, “A cognitive model of programming knowl-
edge for procedural languages,” in International Conference on Computer Assisted
Learning. Springer Verlag, 1992, vol. 602 LNCS, pp. 124–135.

[4] D. Koller and N. Friedman, Probabilistic Graphical Methods Principles and Tech-
niques. Cambridge, MA, USA: The MIT Press, 2009.

[5] E. Millán and J. L. Pérez-De-La-Cruz, “A Bayesian diagnostic algorithm for student
modeling and its evaluation,” User Modeling and User-Adapted Interaction, vol. 12,
no. 2-3, pp. 281–330, 2002.

[6] A. Ko and B. Myers, “Development and evaluation of a model of programming er-
rors,” in IEEE Symposium on Human Centric Computing Languages and Environ-
ments, 2003. Proceedings. 2003. IEEE, 2003, pp. 7–14.

[7] M. Prensky, “Digital Natives, Digital Immigrants,” Tech. Rep. 5, 2001.

[8] A. Merkel. Rede von Bundeskanzlerin Merkel zur Eröffnung der
CeBIT 2017 am 19. März 2017. Accessed on: 2021-01-28.
[Online]. Available: https://www.bundeskanzlerin.de/bkin-de/aktuelles/
rede-von-bundeskanzlerin-merkel-zur-eroeffnung-der-cebit-2017-am-19-maerz-2017-789606

[9] Coursera. Accessed on: 2021-01-28. [Online]. Available: https://de.coursera.org/

[10] edX. Accessed on: 2021-01-28. [Online]. Available: https://www.edx.org/

[11] Udacity. Accessed on: 2021-01-28. [Online]. Available: https://www.udacity.com/

[12] J. Mostow and J. Beck, “Some useful tactics to modify, map and mine data from
intelligent tutors,” Natural Language Engineering, vol. 12, no. 2, pp. 195–208, jun
2006.

https://www.bundeskanzlerin.de/bkin-de/aktuelles/rede-von-bundeskanzlerin-merkel-zur-eroeffnung-der-cebit-2017-am-19-maerz-2017-789606
https://www.bundeskanzlerin.de/bkin-de/aktuelles/rede-von-bundeskanzlerin-merkel-zur-eroeffnung-der-cebit-2017-am-19-maerz-2017-789606
https://de.coursera.org/
https://www.edx.org/
https://www.udacity.com/

Bibliography 132

[13] D. Sleeman and J. S. Brown, Intelligent Tutoring Systems. London: Academic
Press, 1982.

[14] K. R. Koedinger, A. T. Corbett, and C. Perfetti, “The Knowledge-Learning-
Instruction Framework: Bridging the Science-Practice Chasm to Enhance Robust
Student Learning,” Cognitive Science, vol. 36, no. 5, pp. 757–798, jul 2012.

[15] E. Alepis, M. Virvou, and K. Kabassi, “Mobile education: Towards affective bi-
modal interaction for adaptivity,” in 2008 Third International Conference on Digital
Information Management. IEEE, nov 2008, pp. 51–56.

[16] R. S. Baker, “Modeling and understanding students’ off-task behavior in intelligent
tutoring systems,” in Proceedings of the SIGCHI Conference on Human Factors in
Computing Systems. New York, NY, USA: ACM, apr 2007, pp. 1059–1068.

[17] A. Balakrishnan, “On Modeling the Affective Effect on Learning,” in Multi-
disciplonary Trends in Artificial Intelligence, C. Sombattheera, A. Agarwal, S. K.
Udgata, and K. Lavangnananda, Eds. Berlin, Heidelberg: Springer Berlin Heidel-
berg, 2011, pp. 225–235.

[18] C. Conati and X. Zhou, “Modeling Students’ Emotions from Cognitive Appraisal
in Educational Games,” in Intelligent Tutoring Systems, S. A. Cerri, G. Gouardères,
and F. Paraguaçu, Eds. Berlin, Heidelberg: Springer Berlin Heidelberg, 2002, pp.
944–954.

[19] C. Conati and H. Maclaren, “Empirically building and evaluating a probabilistic
model of user affect,” User Modeling and User-Adapted Interaction, vol. 19, no. 3,
pp. 267–303, aug 2009.

[20] A. Kofod-Petersen, S. Abbas Petersen, G. Griff Bye, L. Kolås, and A. Staupe, “Learn-
ing in an Ambient Intelligent Environment. Towards Modelling Learners through
Stereotypes,” Revue d’intelligence artificielle, vol. 22, no. 5, pp. 569–588, oct 2008.

[21] R. S. Baker, A. T. Corbett, K. R. Koedinger, and A. Z. Wagner, “Off-task behavior in
the cognitive tutor classroom: When students "game the system",” in Conference on
Human Factors in Computing Systems - Proceedings, 2004, pp. 383–390.

[22] S. Cetintas, Luo Si, Yan Ping Xin, and C. Hord, “Automatic Detection of Off-Task
Behaviors in Intelligent Tutoring Systems with Machine Learning Techniques,” IEEE
Transactions on Learning Technologies, vol. 3, no. 3, pp. 228–236, jul 2010.

[23] B. Jia, S. Zhong, T. Zheng, and Z. Liu, “The Study and Design of Adaptive Learning
System Based on Fuzzy Set Theory,” in Transactions on Edutainment IV. Berlin,
Heidelberg: Springer Berlin Heidelberg, 2010, pp. 1–11.

133 Bibliography

[24] C. Carmona, G. Castillo, and E. Millán, “Designing a Dynamic Bayesian Network for
Modeling Students’ Learning Styles,” in 2008 Eighth IEEE International Conference
on Advanced Learning Technologies. IEEE, 2008, pp. 346–350.

[25] N. Salim and N. Haron, “The Construction of Fuzzy Set and Fuzzy Rule for
Mixed Approach in Adaptive Hypermedia Learning System,” in Technologies for E-
Learning and Digital Entertainment, Z. Pan, R. Aylett, H. Diener, X. Jin, S. Göbel,
and L. Li, Eds. Berlin, Heidelberg: Springer Berlin Heidelberg, 2006, pp. 183–187.

[26] H. D. Surjono and J. R. Maltby, “Adaptive Educational Hypermedia Based on Mul-
tiple Student Characteristics,” in Advances in Web-Based Learning - ICWL 2003,
Second International Conference,, 2003, pp. 442–449.

[27] M. C. Desmarais and R. S. J. d. Baker, “A review of recent advances in learner
and skill modeling in intelligent learning environments,” User Modeling and User-
Adapted Interaction, vol. 22, no. 1-2, pp. 9–38, apr 2012.

[28] J. L. Stansfield, B. P. CArr, and I. P. Godstein, “Wumpus Advisor I. A First Im-
plementation of a Program That Tutors Logical and Probabilistic Reasoning Skills,”
p. 68, oct 1976.

[29] M. J. Mayo, “Bayesian Student Modelling and Decision-Theoretic Selection of Tuto-
rial Actions in Intelligent Tutoring Systems,” Ph.D. dissertation, University of, 2001.

[30] C. Romero and S. Ventura, “Educational Data Mining: A Review of the State of the
Art,” IEEE Transactions on Systems, Man, and Cybernetics, Part C (Applications
and Reviews), vol. 40, no. 6, pp. 601–618, nov 2010.

[31] P. Ihantola, A. Vihavainen, A. Ahadi, M. Butler, J. Börstler, S. H. Edwards, E. Iso-
hanni, A. Korhonen, A. Petersen, K. Rivers, M. Á. Rubio, J. Sheard, B. Skupas,
J. Spacco, C. Szabo, and D. Toll, “Educational Data Mining and Learning Analytics
in Programming,” in Proceedings of the 2015 ITiCSE on Working Group Reports.
New York, NY, USA: ACM, jul 2015, pp. 41–63.

[32] M. Berges and P. Hubwieser, “Evaluation of Source Code with Item Response The-
ory,” in Proceedings of the 2015 ACM Conference on Innovation and Technology in
Computer Science Education, vol. 2015-June. New York, NY, USA: ACM, jun
2015, pp. 51–56.

[33] J. Kasurinen and U. Nikula, “Estimating programming knowledge with Bayesian
knowledge tracing,” in Proceedings of the 14th annual ACM SIGCSE conference on
Innovation and technology in computer science education - ITiCSE ’09. New York,
NY, USA: Association for Computing Machinery, aug 2009, pp. 313–317.

Bibliography 134

[34] M. Yudelson, R. Hosseini, A. Vihavainen, and P. Brusilovsky, “Investigating Au-
tomated Student Modeling in a Java MOOC,” Proceedings of the 7th International
Conference on Educational Data Mining., pp. 261–264, 2014.

[35] R. Pettit, J. Homer, R. Gee, S. Mengel, and A. Starbuck, “An Empirical Study of
Iterative Improvement in Programming Assignments,” in Proceedings of the 46th
ACM Technical Symposium on Computer Science Education, vol. 5. New York,
NY, USA: ACM, feb 2015, pp. 410–415.

[36] K. Sharma, P. Jermann, and P. Dillenbourg, “Identifying Styles and Paths toward
Success in MOOCs,” in 8th International Conference on Educational Data Mining,
2015, pp. 408–411.

[37] J. Spacco, P. Denny, B. Richards, D. Babcock, D. Hovemeyer, J. Moscola, and R. Du-
vall, “Analyzing Student Work Patterns Using Programming Exercise Data,” in Pro-
ceedings of the 46th ACM Technical Symposium on Computer Science Education -
SIGCSE ’15. New York, New York, USA: ACM Press, 2015, pp. 18–23.

[38] J. Spacco, D. Fossati, J. Stamper, and K. Rivers, “Towards improving programming
habits to create better computer science course outcomes,” in Proceedings of the
18th ACM conference on Innovation and technology in computer science education
- ITiCSE ’13. New York, New York, USA: ACM Press, 2013, p. 243.

[39] N. J. Falkner and K. E. Falkner, “A fast measure for identifying at-risk students in
computer science,” in Proceedings of the ninth annual international conference on
International computing education research - ICER ’12. New York, New York,
USA: ACM Press, 2012, p. 55.

[40] I. Koprinska, J. Stretton, and K. Yacef, “Students at Risk : Detection and Reme-
diation,” in Proceeding of the 8th International Conference on Educational Data
Mining, EDM15, 2015, pp. 512–515.

[41] E. S. Tabanao, M. M. T. Rodrigo, and M. C. Jadud, “Predicting at-risk novice Java
programmers through the analysis of online protocols,” in Proceedings of the seventh
international workshop on Computing education research. New York, NY, USA:
ACM, aug 2011, pp. 85–92.

[42] G. Marceau, K. Fisler, and S. Krishnamurthi, “Measuring the effectiveness of error
messages designed for novice programmers,” in Proceedings of the 42nd ACM tech-
nical symposium on Computer science education - SIGCSE ’11. New York, New
York, USA: ACM Press, 2011, p. 499.

[43] L. Werner, C. McDowell, and J. Denner, “Middle school students using alice: What
can we learn from logging data?” in SIGCSE 2013 - Proceedings of the 44th ACM
Technical Symposium on Computer Science Education, 2013, pp. 507–512.

135 Bibliography

[44] B. Adcock, P. Bucci, W. D. Heym, J. E. Hollingsworth, T. Long, and B. W. Weide,
“Which pointer errors do students make?” in Proceedinds of the 38th SIGCSE tech-
nical symposium on Computer science education - SIGCSE ’07. New York, New
York, USA: ACM Press, 2007, p. 9.

[45] A. Altadmri and N. C. Brown, “37 Million Compilations,” in Proceedings of the 46th
ACM Technical Symposium on Computer Science Education. New York, NY, USA:
ACM, feb 2015, pp. 522–527.

[46] P. Denny, A. Luxton-Reilly, and E. Tempero, “All syntax errors are not equal,” in
Proceedings of the 17th ACM annual conference on Innovation and technology in
computer science education - ITiCSE ’12. New York, New York, USA: ACM Press,
2012, p. 75.

[47] C. Norris, F. Barry, J. B. Fenwick Jr., K. Reid, and J. Rountree, “ClockIt,” in Pro-
ceedings of the 13th annual conference on Innovation and technology in computer
science education - ITiCSE ’08. New York, New York, USA: ACM Press, 2008,
p. 37.

[48] C. Piech, M. Sahami, D. Koller, S. Cooper, and P. Blikstein, “Modeling how students
learn to program,” in Proceedings of the 43rd ACM technical symposium on Com-
puter Science Education - SIGCSE ’12. New York, New York, USA: ACM Press,
2012, p. 153.

[49] J. L. Devore and K. N. Berk, Modern Mathematical Statistics with Applications, ser.
Springer Texts in Statistics. New York, NY: Springer New York, 2012.

[50] U. Braga-Neto, Fundamentals of Pattern Recognition and Machine Learning.
Cham: Springer International Publishing, 2020.

[51] B. Shneiderman and R. Mayer, “Syntactic/semantic interactions in programmer be-
havior: A model and experimental results,” International Journal of Computer &
Information Sciences, vol. 8, no. 3, pp. 219–238, jun 1979.

[52] J. R. Anderson, The Architecture of Cognition. Cambridge, MA, USA: Harvard
University Press, 1983.

[53] B. Shneiderman, “Teaching programming: A spiral approach to syntax and seman-
tics,” Computers & Education, vol. 1, no. 4, pp. 193–197, jan 1977.

[54] P. Bayman and R. E. Mayer, “Using conceptual models to teach BASIC computer
programming.” Journal of Educational Psychology, vol. 80, no. 3, pp. 291–298, sep
1988.

Bibliography 136

[55] E. Soloway, J. Bonar, and K. Ehrlich, “Cognitive strategies and looping constructs,”
Communications of the ACM, vol. 26, no. 11, pp. 853–860, nov 1983.

[56] V. Jonckers, “A Framework for Modeling Programming Knowledge,” AI Communi-
cations, vol. 2, no. 2, pp. 72–87, 1989.

[57] J. Sajaniemi, “An empirical analysis of roles of variables in novice-level procedu-
ral programs,” in Proceedings IEEE 2002 Symposia on Human Centric Computing
Languages and Environments. IEEE Comput. Soc, 2002, pp. 37–39.

[58] K. D. Cooper and L. Torczon, “Intermediate Representations,” in Engineering a
Compiler. Elsevier, 2012, pp. 221–268.

[59] ——, “Parsers,” in Engineering a Compiler. Elsevier, 2012, pp. 83–159.

[60] J.-R. Falleri, F. Morandat, X. Blanc, M. Martinez, and M. Monperrus, “Fine-grained
and accurate source code differencing,” in Proceedings of the 29th ACM/IEEE in-
ternational conference on Automated software engineering. New York, NY, USA:
ACM, sep 2014, pp. 313–324.

[61] S. S. Chawathe, A. Rajaraman, H. Garcia-Molina, and J. Widom, “Change detection
in hierarchically structured information,” ACM SIGMOD Record, vol. 25, no. 2, pp.
493–504, jun 1996.

[62] I. Ben-Gal, “Bayesian Networks,” in Encyclopedia of Statistics in Quality & Relia-
bility, F. Ruggeri, F. Faltin, and R. Kenett, Eds. Cham: Wiley & Sons, 2007.

[63] S. L. Lauritzen and D. J. Spiegelhalter, “Local Computations with Probabilities on
Graphical Structures and Their Application to Expert Systems,” Journal of the Royal
Statistical Society: Series B (Methodological), vol. 50, no. 2, pp. 157–194, jan 1988.

[64] T. Kaser, S. Klingler, A. G. Schwing, and M. Gross, “Dynamic Bayesian Networks
for Student Modeling,” IEEE Transactions on Learning Technologies, vol. 10, no. 4,
pp. 450–462, oct 2017.

[65] G. F. Cooper and E. Herskovits, “A Bayesian method for the induction of probabilis-
tic networks from data,” Machine Learning, vol. 9, no. 4, pp. 309–347, oct 1992.

[66] J. Pearl and T. S. Verma, “A theory of inferred causation,” in Studies in Logic and
the Foundations of Mathematics, 1995, vol. 134, no. C, pp. 789–811.

[67] P. Spirtes, C. Glymour, and R. Scheines, Causation, Prediction, and Search, ser.
Lecture Notes in Statistics. New York, NY: Springer New York, 1993, vol. 81.

137 Bibliography

[68] A. T. Corbett and J. R. Anderson, “Knowledge tracing: Modeling the acquisition of
procedural knowledge,” User Modelling and User-Adapted Interaction, vol. 4, no. 4,
pp. 253–278, 1995.

[69] Z. A. Pardos and N. T. Heffernan, “KT-IDEM: Introducing Item Difficulty to the
Knowledge Tracing Model,” in User Modeling, Adaption and Personalization, J. A.
Konstan, R. Conejo, J. L. Marzo, and N. Oliver, Eds. Berlin, Heidelberg: Springer
Berlin Heidelberg, 2011, pp. 243–254.

[70] R. S. J. d. Baker, A. T. Corbett, and V. Aleven, “More Accurate Student Modeling
through Contextual Estimation of Slip and Guess Probabilities in Bayesian Knowl-
edge Tracing,” in Intelligent Tutoring Systems. Berlin, Heidelberg: Springer Berlin
Heidelberg, 2008, vol. 5091 LNCS, pp. 406–415.

[71] C. Conati, A. Gertner, and K. Vanlehn, “Using Bayesian networks to manage uncer-
tainty in student modeling,” User Modelling and User-Adapted Interaction, vol. 12,
no. 4, pp. 371–417, nov 2002.

[72] Y. Huang, J. D. G. Hollstein, and P. Brusilovsky, “Modeling Skill Combination Pat-
terns for Deeper Knowledge Tracing,” in The 6th Intl. Workshop on Personalization
Approaches in Learning Environments (PALE 2016) in the 24th Conf. on User Mod-
eling, Adaptation and Personalization (UMAP 2016), 2016.

[73] W. J. van der Linden and R. K. Hambleton, Handbook of Modern Item Response
Theory. New York, NY, USA: Springer New York, sep 1997.

[74] H. Cen, K. Koedinger, and B. Junker, “Learning Factors Analysis – A General
Method for Cognitive Model Evaluation and Improvement,” in Intelligent Tutoring
Systems, M. Ikeda, K. D. Ashley, and T.-W. Chan, Eds. Berlin, Heidelberg: Springer
Berlin Heidelberg, 2006, pp. 164–175.

[75] ——, “Comparing Two IRT Models for Conjunctive Skills,” in Intelligent Tutoring
Systems, B. P. Woolf, E. Aïmeur, R. Nkambou, and S. Lajoie, Eds. Berlin, Heidel-
berg: Springer Berlin Heidelberg, 2008, pp. 796–798.

[76] P. I. Pavlik, H. Cen, and K. R. Koedinger, “Performance Factors Analysis – A New
Alternative to Knowledge Tracing,” in Proceedings of the 2009 Conference on Artifi-
cial Intelligence in Education: Building Learning Systems That Care: From Knowl-
edge Representation to Affective Modelling. Amsterdam, The Netherlands: IOS
Press, 2009, pp. 531–538.

[77] Y. Xu and J. Mostow, “Using logistic regression to trace multiple subskills in a dy-
namic bayes net,” in EDM 2011 - Proceedings of the 4th International Conference
on Educational Data Mining, M. Pechenizkiy, T. Calders, C. Conati, S. Ventura,
C. Romero, and J. Stamper, Eds., Eindhoven, The Netherlands, 2011, pp. 241–245.

Bibliography 138

[78] J. P. González-Brenes and Y. Huang, “General features in knowledge tracing: Appli-
cations to multiple subskills, temporal item response theory, and expert knowledge,”
in Proceedings of the 7th International Conference on Educational Data Mining.,
J. Stamper, Z. Pardos, M. Mavrikis, and B. M. Mclaren, Eds., 2014, pp. 84–91.

[79] C. Piech, J. Spencer, J. Huang, S. Ganguli, M. Sahami, L. Guibas, and J. Sohl-
Dickstein, “Deep Knowledge Tracing,” Advances in Neural Information Processing
Systems, vol. 2015-Janua, pp. 505–513, jun 2015.

[80] M. Hristova, A. Misra, M. Rutter, and R. Mercuri, “Identifying and correcting Java
programming errors for introductory computer science students,” in Proceedings of
the 34th SIGCSE technical symposium on Computer science education, vol. 35, no. 1,
jan 2003, pp. 153–156.

[81] W. L. Johnson, E. Soloway, B. Cutler, and S. Draper, “Bug Catalogue: I,” Yale Uni-
versity, New Haven, CT, USA, Tech. Rep., 1983.

[82] J. C. Spohrer and E. Soloway, “Novice mistakes: are the folk wisdoms correct?”
Communications of the ACM, vol. 29, no. 7, pp. 624–632, jul 1986.

[83] D. Zehetmeier, A. Böttcher, A. Brüggemann-Klein, and V. Thurner, “Development
of a Classification Scheme for Errors Observed in the Process of Computer Program-
ming Education,” in HEAd’15. Conference on Higher Education Advances. Edito-
rial Universitat Politècnica de València, jun 2015, pp. 475–484.

[84] O. Anderson and D. Krathwohl, “Taxonomy for Learning, Teaching, and Assessing
(A Revision Of Bloom’s Taxonomy of Educational Objecives),” Tech. Rep., 2001.

[85] N. C. Brown and A. Altadmri, “Investigating novice programming mistakes,” in Pro-
ceedings of the tenth annual conference on International computing education re-
search - ICER ’14. New York, New York, USA: ACM Press, 2014, pp. 43–50.

[86] J. Jackson, M. Cobb, and C. Carver, “Identifying Top Java Errors for Novice Pro-
grammers,” in Proceedings Frontiers in Education 35th Annual Conference. IEEE,
2015, pp. T4C–24–T4C–27.

[87] M. C. Jadud, “Methods and tools for exploring novice compilation behaviour,” in
Proceedings of the 2006 international workshop on Computing education research -
ICER ’06, vol. 2006. New York, New York, USA: ACM Press, 2006, p. 73.

[88] D. McCall and M. Kölling, “Meaningful categorisation of novice programmer er-
rors,” in Proceedings - Frontiers in Education Conference, FIE, vol. 2015-Febru, no.
February, 2015.

139 Bibliography

[89] A. Ettles, A. Luxton-Reilly, and P. Denny, “Common logic errors made by novice
programmers,” in Proceedings of the 20th Australasian Computing Education Con-
ference on - ACE ’18. New York, New York, USA: ACM Press, jan 2018, pp.
83–89.

[90] M. Mayo and A. Mitrovic, “Using a Probabilistic Student Model to Control Problem
Difficulty,” in Intelligent Tutoring Systems, G. Gauthier, C. Frasson, and K. VanLehn,
Eds. Berlin, Heidelberg: Springer Berlin Heidelberg, 2000, pp. 524–533.

[91] S. Ohlsson, “Constraint-Based Student Modeling,” in Student Modelling: The Key
to Individualized Knowledge-Based Instruction, J. E. Greer and G. I. McCalla, Eds.
Berlin, Heidelberg: Springer Berlin Heidelberg, 1994, pp. 167–189.

[92] I.-H. Hsiao, S. Sosnovsky, and P. Brusilovsky, “Guiding students to the right ques-
tions: adaptive navigation support in an E-Learning system for Java programming,”
Journal of Computer Assisted Learning, vol. 26, no. 4, pp. 270–283, jul 2010.

[93] R. Hosseini and P. Brusilovsky, “JavaParser; A Fine-Grain Concept Indexing Tool
for Java Problems,” in AIED Workshops, Memphis, TN, USA, 2013.

[94] Y. Huang, J. Guerra-Hollstein, J. Barria-Pineda, and P. Brusilovsky, “Learner Model-
ing for Integration Skills,” in Proceedings of the 25th Conference on User Modeling,
Adaptation and Personalization, ser. UMAP ’17. New York, NY, USA: ACM, jul
2017, pp. 85–93.

[95] Y. Huang, Y. Xu, and P. Brusilovsky, “Doing More with Less: Student Modeling and
Performance Prediction with Reduced Content Models,” in User Modeling, Adapta-
tion, and Personalization, V. Dimitrova, T. Kuflik, D. Chin, F. Ricci, P. Dolog, and
G.-J. Houben, Eds. Cham: Springer International Publishing, 2014, pp. 338–349.

[96] K. Rivers, E. Harpstead, and K. Koedinger, “Learning Curve Analysis for Program-
ming,” in Proceedings of the 2016 ACM Conference on International Computing
Education Research. New York, NY, USA: ACM, aug 2016, pp. 143–151.

[97] K. Rivers and K. R. Koedinger, “Automating Hint Generation with Solution Space
Path Construction,” in Intelligent Tutoring Systems, S. Trausan-Matu, K. E. Boyer,
M. Crosby, and K. Panourgia, Eds. Cham: Springer International Publishing, 2014,
pp. 329–339.

[98] P. Blikstein, “Using learning analytics to assess students’ behavior in open-ended
programming tasks,” in Proceedings of the 1st International Conference on Learning
Analytics and Knowledge - LAK ’11. New York, New York, USA: ACM Press,
2011, p. 110.

Bibliography 140

[99] R. Hosseini, A. Vihavainen, and P. Brusilovsky, “Exploring Problem Solving Paths
in a Java Programming Course,” Proceedings of the Psychology of Programming
Interest Group Annual Conference, pp. 65–76, 2014.

[100] L. Wang, A. Sy, L. Liu, and C. Piech, “Learning to represent student knowledge
on programming exercises using deep learning,” in Proceedings of the 10th Interna-
tional Conference on Educational Data Mining, EDM 2017, 2017, pp. 324–329.

[101] H. Meier, E. Tonisson, M. Lepp, and P. Luik, “Behaviour Patterns of Learners while
Solving a Programming Task: an Analysis of Log Files,” in 2020 IEEE Global En-
gineering Education Conference (EDUCON), vol. 2020-April. IEEE, apr 2020, pp.
685–690.

[102] R. E. Pattis, J. Roberts, and M. Stehlik, Karel the robot (2nd ed.): a gentle introduc-
tion to the art of programming, 2nd ed. New York, NY, USA: John Wiley & Sons,
Ltd., 1995.

[103] D. N. Perkins, C. Hancock, R. Hobbs, F. Martin, and R. Simmons, “Conditions
of Learning in Novice Programmers,” Journal of Educational Computing Research,
vol. 2, no. 1, pp. 37–55, feb 1986.

[104] M. Yee-King, L. McCallum, M. T. Llano, V. Ruzicka, M. D’Inverno, and M. Grier-
son, “Examining Student Coding Behaviours in Creative Computing Lessons using
Abstract Syntax Trees and Vocabulary Analysis,” in Proceedings of the 2020 ACM
Conference on Innovation and Technology in Computer Science Education, vol. 20.
New York, NY, USA: ACM, jun 2020, pp. 273–279.

[105] P. Blikstein, M. Worsley, C. Piech, M. Sahami, S. Cooper, and D. Koller, “Program-
ming Pluralism: Using Learning Analytics to Detect Patterns in the Learning of Com-
puter Programming,” Journal of the Learning Sciences, vol. 23, no. 4, pp. 561–599,
oct 2014.

[106] A. Ahadi, R. Lister, S. Lal, J. Leinonen, and A. Hellas, “Performance and Consis-
tency in Learning to Program,” in Proceedings of the Nineteenth Australasian Com-
puting Education Conference on - ACE ’17. New York, New York, USA: ACM
Press, 2017, pp. 11–16.

[107] R. Smith and S. Rixner, “The error landscape: Characterizing the mistakes of novice
programmers,” in SIGCSE 2019 - Proceedings of the 50th ACM Technical Symposium
on Computer Science Education, vol. 7. ACM, 2019, pp. 538–544.

[108] ISO/IEC, “ISO/IEC 9899:2011 - Programming languages — C,” Tech. Rep., 2011.
[Online]. Available: https://www.iso.org/standard/57853.html

https://www.iso.org/standard/57853.html

141 Bibliography

[109] Eclipse Foundation. Eclipse CDT. Accessed on: 2021-02-16. [Online]. Available:
https://www.eclipse.org/cdt/

[110] R. Rist, “Schema creation in programming,” Cognitive Science, vol. 13, no. 3, pp.
389–414, sep 1989.

[111] P. Byckling and J. Sajaniemi, “A role-based analysis model for the evaluation of
novices’ programming knowledge development,” in Proceedings of the 2006 inter-
national workshop on Computing education research - ICER ’06. New York, New
York, USA: ACM Press, 2006, p. 85.

[112] J. Ferrante, K. J. Ottenstein, and J. D. Warren, “The program dependence graph and
its use in optimization,” ACM Transactions on Programming Languages and Systems,
vol. 9, no. 3, pp. 319–349, jul 1987.

[113] A. Sheneamer and J. Kalita, “A Survey of Software Clone Detection Techniques,”
International Journal of Computer Applications, vol. 137, no. 10, pp. 1–21, mar
2016.

[114] M. Novak, M. Joy, and D. Kermek, “Source-code Similarity Detection and Detec-
tion Tools Used in Academia,” ACM Transactions on Computing Education, vol. 19,
no. 3, pp. 1–37, jun 2019.

[115] B. Hartmann, D. Macdougall, J. Brandt, and S. R. Klemmer, “What Would Other
Programmers Do? Suggesting Solutions to Error Messages,” in CHI ’10: Proceed-
ings of the SIGCHI Conference on Human Factors in Computing Systems. New
York, NY, USA: Association for Computing Machinery, 2010, pp. 1019–1028.

[116] J. Maletic and A. Marcus, “Supporting program comprehension using semantic and
structural information,” in Proceedings of the 23rd International Conference on Soft-
ware Engineering. ICSE 2001. IEEE Comput. Soc, 2001, pp. 103–112.

[117] K. J. Ottenstein, “An algorithmic approach to the detection and prevention of plagia-
rism,” ACM SIGCSE Bulletin, vol. 8, no. 4, pp. 30–41, dec 1976.

[118] J. L. Donaldson, A.-M. Lancaster, and P. H. Sposato, “A plagiarism detection sys-
tem,” ACM SIGCSE Bulletin, vol. 13, no. 1, pp. 21–25, feb 1981.

[119] J. Faidhi and S. Robinson, “An empirical approach for detecting program similarity
and plagiarism within a university programming environment,” Computers & Edu-
cation, vol. 11, no. 1, pp. 11–19, jan 1987.

[120] C. Roy and J. Cordy, “NICAD: Accurate Detection of Near-Miss Intentional Clones
Using Flexible Pretty-Printing and Code Normalization,” in 2008 16th IEEE Inter-
national Conference on Program Comprehension. IEEE, jun 2008, pp. 172–181.

https://www.eclipse.org/cdt/

Bibliography 142

[121] S. Ducasse, M. Rieger, and S. Demeyer, “A language independent approach for de-
tecting duplicated code,” in Proceedings IEEE International Conference on Software
Maintenance - 1999 (ICSM’99). ’Software Maintenance for Business Change’ (Cat.
No.99CB36360). IEEE, 1999, pp. 109–118.

[122] M. Joy and M. Luck, “Plagiarism in programming assignments,” IEEE Transactions
on Education, vol. 42, no. 2, pp. 129–133, may 1999.

[123] L. Prechelt, G. Malpohl, and M. Philippsen, “Finding plagiarisms among a set of
programs with JPlag,” in Journal of Universal Computer Science, vol. 8, no. 11,
2002, pp. 1016–1038.

[124] S. Burrows, S. M. M. Tahaghoghi, and J. Zobel, “Efficient plagiarism detection for
large code repositories,” Software: Practice and Experience, vol. 37, no. 2, pp. 151–
175, feb 2007.

[125] I. D. Baxter, A. Yahin, L. Moura, M. Sant’ Anna, and L. Bier, “Clone Detection
Using Abstract Syntax Trees. I,” in Proceedings of ICSM’98. IEEE, 1998.

[126] L. Jiang, G. Misherghi, Z. Su, and S. Glondu, “DECKARD: Scalable and Accurate
Tree-Based Detection of Code Clones,” in 29th International Conference on Software
Engineering (ICSE’07). IEEE, may 2007, pp. 96–105.

[127] D.-K. Chae, J. Ha, S.-W. Kim, B. Kang, and E. G. Im, “Software plagiarism detec-
tion,” in Proceedings of the 22nd ACM international conference on Conference on
information & knowledge management - CIKM ’13. New York, New York, USA:
ACM Press, 2013, pp. 1577–1580.

[128] C. Liu, C. Chen, J. Han, and P. S. Yu, “GPLAG: Detection of software plagiarism by
program dependence graph analysis,” in Proceedings of the ACM SIGKDD Interna-
tional Conference on Knowledge Discovery and Data Mining, vol. 2006, 2006, pp.
872–881.

[129] J. Crussell, C. Gibler, and H. Chen, “Attack of the Clones: Detecting Cloned Ap-
plications on Android Markets,” in Computer Security - ESORICS 2012. Berlin,
Heidelberg: Springer Berlin Heidelberg, 2012, pp. 37–54.

[130] J. Krinke, “Identifying similar code with program dependence graphs,” in Proceed-
ings Eighth Working Conference on Reverse Engineering. IEEE Comput. Soc, 2001,
pp. 301–309.

[131] P. Jaccard, “Lois de distribution florale dans la zone alpine,” Bulletin de la Société
vaudoise des sciences naturelles, vol. 38, no. 144, p. 72, 1902.

143 Bibliography

[132] V. Levenshtein, “Binary codes capable of correcting deletions, insertions, and rever-
sals,” Soviet Physics Doklady, vol. 10, no. 8, pp. 707 – 710, 1966.

[133] R. A. Wagner and M. J. Fischer, “The String-to-String Correction Problem,” Journal
of the ACM, vol. 21, no. 1, pp. 168–173, jan 1974.

[134] E. Millán, T. Loboda, and J. L. Pérez-de-la Cruz, “Bayesian networks for student
model engineering,” Computers & Education, vol. 55, no. 4, pp. 1663–1683, dec
2010.

[135] B. Martin, A. Mitrovic, K. R. Koedinger, and S. Mathan, “Evaluating and improv-
ing adaptive educational systems with learning curves,” User Modeling and User-
Adapted Interaction, vol. 21, no. 3, pp. 249–283, aug 2011.

[136] T. Effenberger, R. Pelánek, and J. Čechák, “Exploration of the robustness and gen-
eralizability of the additive factors model,” in Proceedings of the Tenth International
Conference on Learning Analytics & Knowledge. New York, NY, USA: ACM, mar
2020, pp. 472–479.

[137] E. Albrecht and J. Grabowski, “Sometimes It’s Just Sloppiness - Studying Students’
Programming Errors and Misconceptions,” in Proceedings of the 51st ACM Technical
Symposium on Computer Science Education. New York, NY, USA: ACM, feb 2020,
pp. 340–345.

[138] D. McCall and M. Kölling, “A new look at novice programmer errors,” ACM Trans-
actions on Computing Education, vol. 19, no. 4, pp. 1–30, nov 2019.

[139] J. MacQueen, “Some methods for classification and analysis of multivariate obser-
vations,” in Proceedings of the fifth Berkeley Symposium on Mathematical Statistics
and Probability, vol. 1, 1967, pp. 281–296.

[140] E. Albrecht, F. Gumz, and J. Grabowski, “Experiences in Introducing Blended Learn-
ing in an Introductory Programming Course,” in Proceedings of the 3rd European
Conference of Software Engineering Education. New York, NY, USA: ACM, jun
2018, pp. 93–101.

[141] E. Albrecht and J. Grabowski, “Towards a framework for mining students’ pro-
gramming assignments,” in 2016 IEEE Global Engineering Education Conference
(EDUCON), vol. 10-13-Apri. IEEE, apr 2016, pp. 1096–1100.

[142] GCC, the GNU Compiler Collection - GNU Project. Accessed on: 2021-08-03.
[Online]. Available: https://gcc.gnu.org/

[143] Clang C Language Family Frontend for LLVM. Accessed on: 2021-08-03. [Online].
Available: https://clang.llvm.org/

https://gcc.gnu.org/
https://clang.llvm.org/

Bibliography 144

[144] Splint - Annotation-Assisted Lightweight Static Checking. Accessed on: 2021-08-
03. [Online]. Available: https://splint.org/

[145] Cppcheck - A tool for static C/C++ code analysis. Accessed on: 2021-08-03.
[Online]. Available: http://cppcheck.sourceforge.net/

[146] Clang Static Analyzer. Accessed on: 2021-08-03. [Online]. Available: https:
//clang-analyzer.llvm.org/

[147] vera++. Accessed on: 2021-08-03. [Online]. Available: https://bitbucket.org/
verateam/vera/wiki/Home

[148] CUnit - A Unit Testing Framework for C. Accessed on: 2021-08-03. [Online].
Available: http://cunit.sourceforge.net/

[149] DejaGnu - GNU Test Framework. Accessed on: 2021-08-03. [Online]. Available:
https://www.gnu.org/software/dejagnu/

[150] Linux Containers. Accessed on: 2021-08-03. [Online]. Available: https:
//linuxcontainers.org/

[151] L. BayesFusion. GeNIe Modeler. Accessed on: 2021-08-03. [Online]. Available:
https://www.bayesfusion.com/genie/

[152] ——. SMILE: Structural Modeling, Inference, and Learning Engine. Accessed on:
2021-08-03. [Online]. Available: https://www.bayesfusion.com/smile/

[153] Y. Gong, J. E. Beck, and N. T. Heffernan, “Comparing Knowledge Tracing and Per-
formance Factor Analysis by Using Multiple Model Fitting Procedures,” in Intelli-
gent Tutoring Systems, V. Aleven, J. Kay, and J. Mostow, Eds. Berlin, Heidelberg:
Springer Berlin Heidelberg, 2010, pp. 35–44.

[154] M. Friedman, “A Comparison of Alternative Tests of Significance for the Problem
of m Rankings,” The Annals of Mathematical Statistics, vol. 11, no. 1, pp. 86–92,
mar 1940.

[155] F. Wilcoxon, “Individual Comparisons by Ranking Methods,” in Breakthroughs in
Statistics: Methodology and Distribution, S. Kotz and N. L. Johnson, Eds. New
York, NY: Springer New York, 1992, pp. 196–202.

[156] H. Abdi, “The Bonferroni and Sidak Corrections for Multiple Comparisons,” in En-
cyclopedia of measurement and statistics, N. Salkind, Ed. Thousand Oaks (CA):
Sage, 2007, pp. 103–107.

[157] M. G. Kendall and B. B. Smith, “The Problem of m Rankings,” The Annals of
Mathematical Statistics, vol. 10, no. 3, pp. 275–287, sep 1939.

https://splint.org/
http://cppcheck.sourceforge.net/
https://clang-analyzer.llvm.org/
https://clang-analyzer.llvm.org/
https://bitbucket.org/verateam/vera/wiki/Home
https://bitbucket.org/verateam/vera/wiki/Home
http://cunit.sourceforge.net/
https://www.gnu.org/software/dejagnu/
https://linuxcontainers.org/
https://linuxcontainers.org/
https://www.bayesfusion.com/genie/
https://www.bayesfusion.com/smile/

145 Bibliography

[158] M. Tomczak and E. Tomczak, “The need to report effect size estimates revisited. An
overview of some recommended measures of effect size,” Trends in Sport Sciences,
vol. 1, no. 21, pp. 19–25, 2014.

[159] S. Cafiso, A. Di Graziano, and G. Pappalardo, “Using the Delphi method to evaluate
opinions of public transport managers on bus safety,” Safety Science, vol. 57, pp.
254–263, aug 2013.

[160] J. Cohen, Statistical Power Analysis for the Behavioral Sciences. Routledge, may
2013.

[161] S. S. Sawilowsky, “New Effect Size Rules of Thumb,” Journal of Modern Applied
Statistical Methods, vol. 8, no. 2, pp. 597–599, nov 2009.

[162] E. Albrecht, “Supplementary Material to "Sometimes It’s Just Sloppiness
- Studying Student’s Programming Errors and Misconceptions", SIGCSE
2020,” 2020. [Online]. Available: https://www.researchgate.net/publication/
337566114_Supplementary_Material_to_Sometimes_It’s_Just_Sloppiness_-_
Studying_Student’s_Programming_Errors_and_Misconceptions_SIGCSE_2020

[163] L. Kaufman and P. J. Rousseeuw, Eds., Finding Groups in Data, ser. Wiley Series in
Probability and Statistics. Hoboken, NJ, USA: John Wiley & Sons, Inc., mar 1990.

[164] A. Newell and P. S. Cn Rosenbloom, “Mechanisms of Skill Acquisition and the Law
of Practice: Allen Newell and Paul S. Rosenbloom,” in Cognitive Skills and Their
Acquisition. Psychology Press, oct 2013, pp. 12–66.

[165] S. Gao, Q. Xiao, Q. Pan, and Q. Li, “Learning Dynamic Bayesian Networks Struc-
ture Based on Bayesian Optimization Algorithm,” in Advances in Neural Networks –
ISNN 2007. Berlin, Heidelberg: Springer Berlin Heidelberg, 2007, vol. 4492 LNCS,
no. PART 2, pp. 424–431.

[166] J. D. Gould, “Some psychological evidence on how people debug computer pro-
grams,” International Journal of Man-Machine Studies, vol. 7, no. 2, pp. 151–182,
mar 1975.

[167] M. Eisenberg and H. A. Peelle, “APL learning bugs,” in Proceedings of the inter-
national conference on APL - APL ’83. New York, New York, USA: ACM Press,
1983, pp. 11–16.

[168] D. E. Knuth, “The errors of tex,” Software: Practice and Experience, vol. 19, no. 7,
pp. 607–685, jul 1989.

[169] M. Eisenstadt, “Tales of Debugging from the Front Lines,” Empirical Studies of Pro-
grammers, 5th Workshop, vol. 5365, pp. 86–112, 1993.

https://www.researchgate.net/publication/337566114_Supplementary_Material_to_Sometimes_It's_Just_Sloppiness_-_Studying_Student's_Programming_Errors_and_Misconceptions_SIGCSE_2020
https://www.researchgate.net/publication/337566114_Supplementary_Material_to_Sometimes_It's_Just_Sloppiness_-_Studying_Student's_Programming_Errors_and_Misconceptions_SIGCSE_2020
https://www.researchgate.net/publication/337566114_Supplementary_Material_to_Sometimes_It's_Just_Sloppiness_-_Studying_Student's_Programming_Errors_and_Misconceptions_SIGCSE_2020

Bibliography 146

[170] R. R. Panko, “What We Know About Spreadsheet Errors,” Journal of Organizational
and End User Computing, vol. 10, no. 2, pp. 15–21, apr 1998.

A. KC Hierarchy

preprocessor include

define

level 0

level 1

level 2

level 3

(a) preprocessor

statement block

jump

goto

return

continue

break

iteration for

do while

while

label default

caseselection switch

if then

else

level 0

level 1

level 2

level 3

(b) statement

A. KC Hierarchy 148

expression arithmetic

bitwise bitwise and

bitwise or

bitwise xor

binary addition

subtraction

plus

product

division

modulo

unary

minus

bitwise left
shift

bitwise right
shift

shift

assignment

bitwise and
assignment

bitwise or
assignment

bitwise xor
assignment

bitwise left shift
assignment

bitwise right shift
assignment

add
assignment

sub
assignment

mult
assignment

div
assignment

mod
assignment

basic
assignment

logical and

or

not

bitwise not

function call

type cast

conditional
operator

comma
operator

expression
list

size of
size of

expression

size of type

initialization
designated
initializer

designator
array

designator

field
designator

equals
initialization

initialization
list

level 0

level 1

level 2

level 3

(c) expression

149

expression

member
access

dot

pointer
operator

address of

array
subscript

comparison greater

greater or
equals

less

increment
decrement

increment

postfix

less or equals

equals

pointer
dereference

decrement

prefix

not equals

postfix
increment

prefix
increment

postfix
decrement

prefix
decrement

primary
expression

identifier variable

character
constant

single byte

16 bit

32 bit

wide

unsigned

long

long long

oct

hex

integer
constant

double

long double

floating
constant

predefined
constant

null

true

false

string literal

level 0

level 1

level 2

level 3

(d) expression

A. KC Hierarchy 150

declaration data type

storage class

register

static

extern

auto

declarator array

function

identifier

type qualifier atomic

const

arithmetic
type

character signed

unsignedinteger

short

int

long

long long

float double

long double

enum

struct

union

elaborated
type specifier

void

variable

pointer

typedef
name

thread local

typedef

restrict

volatile

level 0

level 1

level 2

level 3

(e) declaration

Figure A.-2.: Hierarchy of KCs

B. Programming Error Categories

Error Description
Gould Assignment bug Errors assigning variable values
(1975) [166] Iteration bug Errors iterating

Array bug Errors accessing data in arrays
Eisenberg Visual bug Clustering semantically related parts of expression
(1983) [167] Naive bug Using branching & iteration instead of parallel pro-

cessing
Logical bug Omitting or misusing logical connectives or relation-

als
Dummy bug Experience with other languages interfering
Illiteracy bug Difficulties with order of operations
Gestalt bug Not foreseeing side effects of commands

Johnson Missing Omitting required program element
et al. Spurious Including unnecessary program element
(1983) [81] Misplaced Putting necessary program element in wrong place

Malformed Putting incorrect program element in right place
Spohrer and
Soloway

Natural language problem Confusing semantics of constructs because of their
natural-language naming

(1986) [82] Inconsistency problem Misunderstanding differences of a construct in differ-
ent situations

Human interpreter problem Assuming computer has similar interpretation of code
Summarization problem Summarizing combinations of plans without consid-

ering implications of secondary functions in later plan
compositions

Optimization problem Optimizing code without checking if optimization re-
ally can be carried out

Previous experience problem Plans from previous experience are re-used in situa-
tions where the plan does not completely fit

Specialization problem Abstract plan is inappropriate or not instantiated cor-
rectly

Interpretation problem Misunderstandings of the problem specification
Boundary problem Difficulties deciding on appropriate boundary points
Unexpected cases problem Omitting uncommon, unlikely, or boundary cases
Cognitive load problem Small but important parts of plans are dropped out or

plan interactions are overlooked
Bayman and Syntactic Incorrect syntax or rules of a programming language
Mayer Conceptual Misconception of programming constructs
(1988) [54] Strategic Wrong plan or algorithm to achieve goal
Knuth Algorithm awry Improperly implemented algorithms
(1989) [168] Blunder or botch Accidentally writing code not to specifications

Data structure debacle Errors using and changing data structures

B. Programming Error Categories 152

Forgotten function Missing implementation
Language liability Misusing or misunderstanding language/environment
Mismatch between modules Imperfectly knowing specs, interface; reversed argu-

ments
Reinforcement of robustness Not handling erroneous input
Surprise scenario Unforeseen interactions in program elements
Trivial typos Incorrect syntax, reference, etc.

Eisenstadt Clobbered memory bugs Overwriting memory, subscript out of bounds
(1993) [169] Vendor problems Buggy compilers, faulty hardware

Design logic bug Unanticipated case, wrong algorithm
Initialization bug Erroneous type or initialization of variables
Variable bugs Wrong variable or operator used
Lexical bugs Lexical problem, bad parse, ambiguous syntax
Language Misunderstandings of language semantics

Panko Omission error Omitting facts
(1998) [170] Logic error Incorrect algorithm or incorrectly implemented algo-

rithm
Mechanical error Typos
Overload error Working memory unable to complete task without er-

rors
Strong but wrong error Functional fixedness (fixed mindset)
Translation error Misreading of specification

Hristova Syntax Errors Incorrect syntax of a programming language
et al. Semantic Errors Improper use of programming constructs
(2003) [80] Logic Errors Errors due to not respecting specification
Zehetmeier Mental typo Sloppiness
et al. Knowledge gap Not knowing definitions or terms
(2015) [83] Misconception Faulty understanding of a construct/concept

Wrong choice Inappropriate selection of solution process in a given
setting

Structural blindness Inability to structure components in a given setting
Quality gap Inability to stick to quality standards
Lack of innovation Inability to construct a new solution from previous

knowledge in a new contex
McCall and Incorrect attempt to use variable Errors related to incorrect usage of a variable
Kölling Incorrect variable declaration Errors in the declaration of an variable
(2019) [138] Incorrect method call Errors when calling a method, e.g., wrong number of

parameters
Incorrect method declaration Errors related to the declaration of methods, e.g.,

missing return type
Incorrect constructor call Incorrect call of a constructor, e.g., wrong number of

parameters
Incorrect constructor declaration Errors when declaring a constructor, e.g., call to “su-

per” note first statement
Incorrect use of class or type Errors related to the use of a class, e.g., missing im-

port
Semantic error Errors not involving variables, methods, or construc-

tors which are related to semantics
Simple syntactical error Errors not involving variables, methods, or construc-

tors which are related to syntax

153

Statement outside method/block Statements are place outside of a method or a class
Uncategorized All errors that do not fit in any of the other categories

Albrecht and Sloppiness Unintentional errors
Grabowski Misinterpretation Incorrect understanding of specification
(2020) [137] Domain Lack in domain knowledge

Compile-time errors Errors arising during compilation
Run-time errors Errors only occurring at run-time

Table B.1.: Categories of programming errors (based on [6])

C. Rule Descriptions for Variable Roles

Focal line no focal line, only initialization
Focal scope *
Usage • read-only

(a) Constraints for the variable role fixed value

Focal line (1) var = var op fixedvalue
(2) var = fixedvalue opcom var
(3) var op= fixedvalue
(4) var++
(5) var--
(6) ++var
(7) --var

Focal scope loop - *
Usage • initialization outside of scope

• inside scope read-only

(b) Constraints for the variable role stepper

Focal line (1) var = var +1
(2) var = 1+ var
(3) var++
(4) ++var

Focal scope if - loop - *
Usage • initialization outside of scope

• inside scope read-only

(c) Constraints for the variable role counter

Focal line (1) var = getchar()

(2) scanf("formatspec", &var)
Focal scope * - loop - *
Usage • initialization outside of scope

• inside scope read-only

(d) Constraints for the variable role MRH

C. Rule Descriptions for Variable Roles 156

Focal line (1) var = var2
Focal scope if - * - loop - *
Usage • initialization outside of scope

in comparison in if
• inside scope read-only

(e) Constraints for the variable role MWH

Focal line (1) var = var2 op var3
Focal scope *
Usage • inside scope read-only

(f) Constraints for the variable role transforma-
tion

Focal line (1) var = var op var2
(2) var op= var2

Focal scope loop - *
Usage • initialization outside of scope

• inside scope read-only

(g) Constraints for the variable role gatherer

Focal line no focal line
Focal scope loop - *

if - *
Usage • initialization inside scope

(h) Constraints for the variable role temporary

Focal line (1) var = fixed value
Focal scope *
Usage • usage as looping condition or

• usage as branch condition

(i) Constraints for the variable role one-way flag

Table C.1.: Rule Description for Variable Roles

D. Exercise Descriptions

1 Write a program that displays Hello World!.
2 Write a program that displays the standard constants (header files limits.h resp.

float.h) in the following way:
CHAR_MIN:

CHAR_MAX:

INT_MIN:

INT_MAX

FLT_MIN:

FLT_MAX:

DBL_MIN:

DBL_MAX:

3 Write a program that displays all characters that are “greater" or equal to ’A’ or “less" or
equal to ’z’

4 Write a program where repeatedly (until input of <Ctrl>-D non-negative decimal
numbers are read and displayed as octal and hexadecimal each. The output should look
like this:
OKT: octal value HEX: hexadecimal value.
The program shall be aborted, if the input is invalid.

5 Write a program that reads a non-negative number and calculates and displays its sum of
digits. Example: the sum of digits of 387 is 18. The output should look like this:
Sum of digits: result
If the input is not a valid number, the following message shall be displayed:
Invalid input

6 Write a program which reads any number of floating point numbers (until <Ctrl>-D) and
calculates their mean value. The numbers do not all have to be stored at the same time,
but can be read and edited one after the other. If the input is not a valid number, the
following should be displayed
Input error

Use the format string %lf and display the result like this:
Solution: result

7 Write a program that reads two lines as strings, concatenates the second string to the first
one, and displays the resulting string. The read string are only allowed to have a length of
50 characters (including terminating null character) at maximum. If this is not the case,
the program shall be aborted with displaying the following error message:
Invalid input

D. Exercise Descriptions 158

8 Write a program that displays the following text:
Er kam lässig heran und sagte nur "Na, wie geht’s?". Kommentare

beginnen mit /* und enden mit */. Verwechseln Sie das bitte nicht

mit * bzw. * \!

9 Write a program that can read up to 100 integers. The numbers have to be entered
separately and confirmed by pressing Enter. It should not be possible to enter more than
100 numbers, i.e., after entering number 100 the result shall be displayed immediately.
The entered numbers have to be stored in an array. Then the content of the array has to be
displayed, the array has to be sorted, and the sorted content of the array has to be
displayed again.
Apply “selection sort": If n numbers have to be sorted, you first determine the smallest
element and interchange it with the element on position 1. Then you determine the
smallest element of the remaining elements on positions 2, ...n and interchange it with the
element on position 2, and so on.
The output has to look like this:
Numbers to sort: number3 number1 number2
Numbers sorted: number1 number2 number3
At the start of the program, the user shall to be asked to enter the numbers like this:
Please enter up to 100 integer numbers:

If the input is invalid the following message shall be displayed:
Invalid input

10 Write a program that reads the coefficients of a polynomial p(c) with a maximum degree
of 32, starting with the smallest degree. The input of the coefficients shall be ended by
entering <CTRL>-D. After that the user has to be asked to enter places (floating numbers)
for which the polynomial shall be calculated:
Please enter places for calculations

These places a shall be read until end of input and the value of p(a) has to be calculated
and displayed each time immediately after input like this:
Value of the polynomial at place place: value
Use the format string %g to output the result. For the calculation you can use the Horner
scheme. Example:
p(x) = 5.1x3−1.8x2−0.02x+17.3 = 17.3+ x(−0.02+ x(−1.8+5.1x))

11 Write a program that reads a binary number and displays the corresponding decimal
value like this:
Decimal: value
If the input is invalid, the program shall be aborted with the following message:
Invalid input

12 Write a program that reads a text from standard input and counts how often each ASCII
character occurs. Display the characters in the order of their ASCII code (ascending
order) and use a new line for each character. Graphical characters shall be displayed like
this:
character : count of character
Control characters shall be displayed like this:
<CTRL> number of character : count of character

159

13 Write a program that reads a string (that may also contain blanks), determines if the string
is a palindrome, and accordingly displays palindrome or no palindrome. It shall not
be distinguished between upper case and lower case letters. A palindrome is a string that
is the same read backwards and forwards. Example: smart trams

14 Write a program that determines all prime numbers less than 1000. There exist two
approaches:

1. It is checked by division if the numbers n (1 < n < 1000) have a factor k
(1 < k <

√
n).

2. With the "sieve of Eratosthenes" (Eratosthenes of Cyrene, Greek mathematician
around 225 BC) all numbers to be examined (here 2 to 999) are first written down.
Each step of the actual algorithm consists of three individual steps:

a) The first not deleted number is searched for.
b) This number is noted as the prime number.
c) Its multiples are deleted.

Implement both algorithms as efficiently as possible. Output the numbers separated by a
blank character. For the submission, it is sufficient to upload one of the two solutions.

15 Write a function
int date2int(int day, int month)

which converts a date into the day in the year (e.g, the 11.2. is the 42nd day in the year)
and a function
void int2day(int days, int* result)

which converts a day of the year into a date. The result is an array where the first element
corresponds to the day and the second element corresponds to the month. Assume that
February always has 28 days.

16 A permutation of the length n is a mapping of the set {1,2, ...,n} on itself. Program and
test a function
int permtest(const unsigned int* p, int length)

which tests a passed array of length length to see if the content represents a permutation
and in this case returns the value 1 and 0 otherwise.

17 Implement the following functions:
int strend(const cgar *s, const char *t)

returns 1 if string t is at the end of string s, and 0 otherwise.
char *strchr(const char *s, int c)

returns a pointer to the last occurrence of the character c in string s or the NULL pointer if
c does not occur in s.
char *strstr(const char *s, const char *t)

returns a pointer to the first occurrence of the string t in string s or the NULL pointer if t
does not occur in s.

D. Exercise Descriptions 160

18 Call the command factor 144 in the console. The output
144: 2 2 2 2 3 3

gives the prime number decomposition of 144. Implement this in C to be able to process
any integer up to the size UINT_MAX. The number to be processed is passed to the
program as argument by command line. Write a main function for the prototype
int main(int argc, char *argv[])

If the number of passed arguments is invalid, display the following error message
Wrong number of arguments

19 Solve exercise 17 again without using the []-operator, i.e. only using pointer arithmetic.
20 Implement the following functions:

char *strinv(const char *s)

returns the inverse of the string s, i.e. the string s read backwards.
char *strconcat(const char *s, const char *t)

returns a string that is a union of the strings s and t, i.e. corresponds to the concatenation
of the strings s and t.

21 A permutation matrix is a quadratic, integer matrix where exactly one element is 1 in
each row and each column and the other elements are all 0. Implement a function
int permatcheck(const int** p, int length)

which tests whether a two-dimensional i permutation matrix is involved by means of a
two-dimensional integer array of size length× length is a permutation matrix. Return 1,
if yes, and 0 otherwise.

22 A Sudoku matrix is a 9×9 matrix whose elements are integers between 1 and 9 and
which fulfill further conditions. To formulate the conditions we consider the matrix as a
block matrix of 9 blocks of 3×3 matrices formed by the rows resp. columns 1 to 3, 4 to 6
and 7 to 9. Each of these 3×3 matrices is referred to as a block. Now we can formulate
the conditions that make a Sudoku matrix out of a matrix of the above form:

• Each row and each column is a permutation of length 9.
• Each block contains each of the values 1 to 9 exactly once.

Implement a function
int sudokucheck(const int** s)

which tests whether a matrix described by a two-dimensional integer array of size 9×9 is
a Sudoku matrix. Return 1, if yes, and 0 otherwise.

161

23 Define the type fraction_t as a structure with two integer components numerator and
denominator. Implement the following standard operations as functions for this type:
void fractInput(fraction_t* fract)(Input a fraction)
void fractOutput(fraction_t* fract)(Display a fraction)
void fractAddition(fraction_t* fract, fraction_t add) (Addition of two
fractions. The second fraction is added to the first fraction)
void fractSubtraction(fraction_t* fract, fraction_t sub) (Subtraction of
two fractions. The second fracture is subtracted from the first)
void fractMultiplication(fraction_t* fract, fraction_t mult)

(Multiplication of two fractions. The second fraction is multiplied to the first fraction)
void fractDivision(fraction_t* fract, fraction_t div) (Division of two
fractions. The second fraction is divided away from the first fraction)
float fractQuotient(fraction_t fract) (Calculation of the quotient)
void fractExtend(fraction_t* fract, int factor) (Extend by a factor)
void fractCancel(fraction_t* fract) (Cancel a fraction)
Cancel the results of addition/subtraction/multiplication/division as much as possible.
Always enter integer numbers as a whole, i.e. 1/1, 2/1, and so on.

24 Write a function that implements selection sort on a (sub) array of integers using the
following prototype:
int (int *from, int *to)

from is a pointer to the first element and to a pointer which points to element after the
last element of the (sub) array to be sorted. The function returns the number of re-stored
values. Only re-store the values if necessary. Only use pointer arithmetic in the function
and not the []-operator.

25 Write a recursive function with the prototype
int sum(int n)

that implements the following definition:

sum(n) =


0 if n = 0
sum(n−1)+n if n > 0
sum(n+1)+n if n < 0

26 Write a recursive function
unsigned long ggT(unsigned long a, unsigned long b)

which calculates the largest common divisor of the non-negative integers a and b. Use the
formula

ggt(a,b) =

{
ggt(b,a mod b) if b > 0
a if b = 0

27 For an given year number, we want to determine whether it is a leap year or not.
Implement a function
int leapyear(int year)

which returns the value 0 if the given year is not a leap year and 1 otherwise.
The Gregorian calendar specifies that each year dividable by 4 is a leap year unless the
year is dividable by 100. In this case, it is only a leap year if the year is dividable by 400.

D. Exercise Descriptions 162

28 For the functions of exercise 15, also also exotic entries. Examples: The 366th day in
1991 is 1.1.1992; the 0th day in 1992 is 31.12.1991; and so on. The year number is
irrelevant.

29 Use the sizeof-operator to determine how many bytes are reserved for values of integer
types. The output should look like this:
char: size
short: size
int: size
long: size

30 Modify your solution of exercise 29 such that the year is also taken into account.
Supplement the parameters of the two functions:
int datum2int(int day, int month, int year)

void int2datum(int days, int year, int* result)

The result field should now contain three elements, the third of which corresponds to the
year.

E. Complete Case Study Results

E.1. Similarity Results

0.00

0.25

0.50

0.75

1.00

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30
Exercise number

S
im

ila
rit

y

Set similarity for level 0

0.00

0.25

0.50

0.75

1.00

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30
Exercise number

S
im

ila
rit

y

Set similarity for level 1

0.00

0.25

0.50

0.75

1.00

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30
Exercise number

S
im

ila
rit

y

Set similarity for level 2

0.00

0.25

0.50

0.75

1.00

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30
Exercise number

S
im

ila
rit

y

Set similarity for level 3

Figure E.1.: Set similarity

E. Complete Case Study Results 164

0.00

0.25

0.50

0.75

1.00

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30
Exercise number

S
im

ila
rit

y

KAM similarity for level 0

0.00

0.25

0.50

0.75

1.00

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30
Exercise number

S
im

ila
rit

y

KAM similarity for level 1

0.00

0.25

0.50

0.75

1.00

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30
Exercise number

S
im

ila
rit

y

KAM similarity for level 2

0.00

0.25

0.50

0.75

1.00

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30
Exercise number

S
im

ila
rit

y

KAM similarity for level 3

Figure E.2.: KAM similarity

0.00

0.25

0.50

0.75

1.00

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30
Exercise number

S
im

ila
rit

y

AST similarity

Figure E.3.: AST similarity

165 E.2. Mata-parameters Results

E.2. Mata-parameters Results

AUC RMSE
meta-parameter value PFA AFM PFA AFM
KC level 0 .577 .653 .499 .567

1 .618 .634 .507 .586
2 .586 .581 .580 .629
3 .581 .578 .588 .633

minimum steps 0 .597 .622 .535 .530
5 .592 .620 .535 .574
10 .593 .617 .539 .585
15 .590 .609 .536 .598
20 .580 .591 .564 .640

step definition first .568 .584 .570 .585
last .580 .595 .584 .737
every .623 .656 .476 .490

incorrect KCs all .592 .611 .538 .597
diff .589 .613 .549 .610

KC count binary .580 .600 .556 .616
multiple .601 .623 .531 .591

Q matrix all .557 .610 .546 .605
shared .605 .628 .541 .588
union .594 .618 .542 .592
common .600 .619 .539 .595
used .589 .592 .540 .629
set .596 .613 .552 .609
KAM .592 .601 .544 .609

Table E.1.: Mean and median values of AUC and RMSE all meta-parameter values

KC count binary
multiple +0.588

(a) AUC PFA

KC count binary
multiple +0.481

(b) AUC AFM

KC count binary
multiple -0.554

(c) RMSE PFA

KC count binary
multiple -0.375

(d) RMSE AFM

Table E.2.: Effect sizes for meta-parameter KC count

E. Complete Case Study Results 166

level 0 1 2
1 +1.145 – –
2 not sign. -0.968 –
3 not sign. -1.207 -0.184

(a) AUC PFA

level 0 1 2
1 -0.725 – –
2 -1.423 -1.133 –
3 -1.526 -1.241 -0.167

(b) AUC AFM

level 0 1 2
1 not sign. – –
2 +1.303 +1.468 –
3 +1.464 +1.716 +0.248

(c) RMSE PFA

level 0 1 2
1 +0.447 – –
2 +0.727 +0.554 –
3 +0.738 +0.563 +0.078

(d) RMSE AFM

Table E.3.: Effect sizes for parameter level

step def. first last
last +0.413 –

every +1.168 +1.071

(a) AUC PFA

step def. first last
last +0.301 –

every +1.150 +1.684

(b) AUC AFM

step def. first last
last +0.291 –

every -1.485 -1.890

(c) RMSE PFA

step def. first last
last +1.691 –

every -0.964 -2.413

(d) AUC AFM

Table E.4.: Effect sizes for parameter step definition

incorrect KCs all
diff +0.365

(a) RMSE PFA

Table E.5.: Effect sizes for meta-parameter incorrect KCs

167 E.2. Mata-parameters Results

minimum steps 0 5 10 15
5 -0.291 – – –

10 -0.208 not sign. – –
15 -0.315 -0.108 -0.202 –
20 -0.650 -0.461 -0.663 -0.509

(a) AUC PFA

minimum steps 0 5 10 15
5 not sign. – – –

10 -0.211 not sign. – –
15 -0.347 -0.262 -0.231 –
20 -0.794 -0.698 -0.729 -0.696

(b) AUC AFM

minimum steps 0 5 10 15
5 not sign. – – –

10 not sign. not sign. – –
15 +0.248 not sign. +0.281 –
20 +0.638 +0.548 +0.726 +0.620

(c) RMSE PFA

minimum steps 0 5 10 15
5 +0.296 – – –

10 +0.509 +0.332 – –
15 +0.664 +0.522 +0.414 –
20 +0.802 +0.704 +0.586 +0.286

(d) RMSE AFM

Table E.6.: Effect sizes for parameter minimum steps

E. Complete Case Study Results 168

Q matrix all shared union common set KAM
shared +0.761 – – – – –
union +0.690 -0.359 – – – –

common +0.750 -0.191 +0.359 – – –
set +0.667 -0.248 not sign. not sign. – –

KAM +0.737 -0.374 not sign. -0.240 not sign. –
used +0.687 -0.425 not sign. -0.316 -0.277 -0.170

(a) AUC PFA

Q matrix all shared union common set KAM
shared +0.512 – – – – –
union +0.444 -0.367 – – – –

common +0.441 -0.380 not sign. – – –
set not sign. -0.255 not sign. not sign. – –

KAM not sign. -0.517 -0.358 -0.402 -0.484 –
used -0.165 -0.548 -0.412 -0.462 -0.393 not sign.

(b) AUC AFM

Q matrix all shared union common set KAM
shared not sign. – – – – –
union not sign. not sign. – – – –

common -0.200 not sign. not sign. – – –
set not sign. not sign. +0.225 +0.300 – –

KAM not sign. not sign. not sign. not sign. -0.343 –
used -0.190 not sign. not sign. not sign. -0.367 not sign.

(c) RMSE PFA

Q matrix all shared union common set KAM
shared -0.397 – – – – –
union -0.341 +0.250 – – – –

common -0.362 +0.317 not sign. – – –
set not sign. +0.187 not sign. not sign. – –

KAM not sign. +0.249 not sign. not sign. not sign. –
used not sign. +0.307 +0.277 +0.243 +0.204 not sign.

(d) RMSE AFM

Table E.7.: Effect sizes for meta-parameter Q matrix

169 E.3. Error Landscape Results

E
.3.

E
rror

Landscape
R

esults

errortype
st

ft
d

t
rt

synt.
conc.

strat.
slop.

m
isint.

dom
.

e1
w

rong
outputform

at
4622.64

1193
3.87

0.92
X

X
e2

m
issing

sem
icolon

1416.09
319

4.44
0.81

X
X

e3
m

issing
check

forinvalid
input

1266.24
235

5.39
0.73

X
e4

undeclared
variable

1142.37
182

6.28
0.76

X
X

e5
confuse

E
O

F
and

’\n’
1078.74

189
5.71

0.53
X

X
e6

w
rong

array
size

978.49
172

5.69
0.52

X
X

X
e7

off-by-one-error
856.08

173
4.95

0.67
X

X
X

e8
w

rong
boundaries

843.39
182

4.63
0.6

X
X

e9
unexpected

output
809.88

185
4.38

0.6
X

e10
w

rong
escaping

705.9
144

4.9
0.42

X
e11

boundary
case

om
itted

485.57
77

6.31
0.57

X
e12

no
check

forarray
lim

its
during

input
481.57

74
6.51

0.63
X

e13
m

issing
term

inating
character

398.85
109

3.66
1

X
e14

m
issing

erroroutput
392.49

89
4.41

0.62
X

e15
m

issing/w
rong

include
366.84

100
3.67

0.9
X

X
e16

uninitialized
variable

348.25
64

5.44
0.57

X
X

e17
orderofconditions

345.6
52

6.65
0.69

X
e18

w
rong

claculation
338.81

65
5.21

0.52
X

X
e19

w
rong

type
331.02

55
6.02

0.44
X

e20
m

issing
subgoal

328.19
63

5.21
0.49

X
e21

unnecessary
if

322.68
63

5.12
0.51

X
X

e22
m

issing/w
rong

pointerde-reference
283.6

65
4.36

0.79
X

e23
m

issing
loop

282.12
49

5.76
0.48

X
X

e24
m

isconception
ofinputbuffer

280.29
53

5.29
0.59

X
X

e25
conflicting/incom

patible
types

249.33
66

3.78
0.67

X
e26

m
isunderstanding

ofexercise
164.25

31
5.3

0.58
X

e27
confusing

lastindex
w

ith
size

in
array

declaration
155.26

32
4.85

0.72
X

e28
w

rong
form

atspecifier
155.1

33
4.7

0.65
X

e29
m

isplacem
entofoutput

151.14
23

6.57
0.64

X
X

e30
de-referncing

som
ething

thatis
nota

pointer
137.17

34
4.03

1
X

e31
variable-sized

objectm
ay

notbe
initialized

116.71
31

3.76
0.65

X
X

e32
m

issing
resetofvariable

in
loop

113.75
14

8.12
0.75

X
X

E. Complete Case Study Results 170
errortype

st
ft

d
t

rt
synt.

conc.
strat.

slop.
m

isint.
dom

.
e33

m
issing

quotes
forstring/character

110.13
28

3.93
0.67

X
e34

w
rong

initialization
value

109.67
14

7.83
0.62

X
X

e35
spurious

constraint
102

17
6

0.42
X

e36
spurious

code
fragm

ent
100.69

29
3.47

0.5
X

X
e37

using
=

instead
of==

98.33
10

9.83
0.67

X
X

e38
m

isconception
ofreturn

value
ofscanf

98
20

4.9
0.5

X
e39

spelling
m

istake/typo
88

11
8

0.38
X

e40
m

issing
condition

86.23
19

4.54
0.46

X
X

e41
storing

inputvalues
in

array
instead

ofcontinous
calculation

78.2
17

4.6
0.7

X
X

e42
infinite

loop
75.85

17
4.46

0.31
X

X
e43

m
issing

output
69.33

13
5.33

0.44
X

e44
using

getcharinstead
ofscanf

66
9

7.33
0.5

X
e45

array
outofbounds

64.91
17

3.82
0.36

X
e46

m
issing

escaping
in

string
59.71

19
3.14

0.36
X

X
e47

m
isconception

ofchecking
a

type
57.6

18
3.2

0.7
X

e48
unexpected

read-in
51

9
5.67

0.5
X

e49
division

by
zero

49
7

7
0.75

X
e50

using
isgraph()instead

ofisprint()
48.57

10
4.86

0.43
X

e51
errorin

include
40.5

15
2.7

0.8
X

X
e52

m
issing

read-in
38.5

7
5.5

0.4
X

e53
m

issing
m

alloc
38

4
9.5

1
X

e54
w

rong
dom

ain
know

ledge
36.67

11
3.33

0.22
X

e55
assum

ption
thatcondition

is
coninuesly

checked
30

2
15

1
X

e56
w

rong
array

elem
ent

28.67
10

2.87
0.8

X
e57

nesting
loop

instead
ofadditionalcondition

26.67
4

6.67
0.33

X
e58

w
rong

assignm
entvalue

26.67
5

5.33
0.67

X
e59

array
starting

w
ith

index
1

25.67
7

3.67
1

X
e60

using
&

w
rong

23
2

11.5
0

X
e61

m
isplacem

entofincrem
ent

22.75
7

3.25
0.75

X
e62

U
sing

’’instead
of"

"
forstrings

22
8

2.75
1

X
e63

notusing
in

scanf
21

2
10.5

0
X

X
X

e64
unnecessary

break
20

2
10

1
X

X
e65

w
rong

interpretation
ofsizeof-operator

18.67
8

2.33
0.33

X
e66

copy
paste

error
18

3
6

0.5
X

e67
w

ong
calculation

ofarray
length

18
2

9
0

X

171 E.3. Error Landscape Results

errortype
st

ft
d

t
rt

synt.
conc.

strat.
slop.

m
isint.

dom
.

e68
w

rong
alloc

size
18

2
9

1
X

e69
m

iscplacem
entofcheck

17
4

4.25
0

X
e70

m
issing

else
16.33

7
2.33

0.67
X

e71
spurious

m
ain

function
14

7
2

0.75
X

e72
w

rong
condition

14
7

2
0.4

X
X

X
e73

==
instead

of!=
13.5

3
4.5

0.5
X

X
e74

assum
ption

thatarray
ends

w
ith

’\0’although
notstring

12
2

6
1

X
e75

m
issing

if
12

4
3

1
X

e76
return

w
ith

value
in

void-function
12

2
6

1
X

e77
m

isconception
oforderofevaluation

11.67
5

2.33
0.67

X
e78

storing
resultin

localvariable
10.5

3
3.5

0.5
X

e79
w

rong
output

10.5
6

1.75
0.5

X
e80

w
rong

return
value

10.5
3

3.5
0.5

X
e81

m
issing

braces
10

4
2.5

1
X

X
e82

instead
off==

8
2

4
1

X
e83

w
rong

integerconstantused
8

2
4

0
X

X
e84

trying
to

printarray
directly

6
2

3
0

X
e85

type
m

issing
in

function
declaration

6
2

3
1

X
e86

U
sing

||instead
of

6
3

2
0.5

X
e87

w
rong

function
fordisplay

output
6

6
1

1
X

e88
setting

ofpointervalue
w

rong
5

1
5

0
X

X
e89

unnecessary
loop

5
1

5
0

X
X

e90
m

isconception
ofrecursion

4
2

2
1

X
e91

m
ixing

up
bounds

4
2

2
1

X
e92

m
ultiple

com
parison

4
2

2
1

X
X

e93
param

eterm
issing

4
2

2
0

X
e94

w
rong

check
fortype

4
2

2
1

X
X

e95
=

instead
of+=

3
1

3
0

X
X

e96
m

isplacem
entofstatem

ent
3

1
3

0
X

X
e97

printfinstead
ofreturn

3
3

1
0.5

X
X

e98
w

rong
return

type
3

1
3

0
X

e99
do-w

hile
instead

ofw
hile

2
2

1
1

X
X

e100
m

isconception
ofreturn

2
2

1
1

X
e101

m
isplacem

entofbraces
2

2
1

1
X

e102
m

issing
cases

2
2

1
1

X

E. Complete Case Study Results 172
errortype

st
ft

d
t

rt
synt.

conc.
strat.

slop.
m

isint.
dom

.
e103

m
ixing

up
looping

variables
2

2
1

1
X

X
e104

w
rong

variable
2

1
2

0
X

e105
m

isplacem
entofvariable

reset
1

1
1

0
X

X

173 E.4. Learning Curves

E.4. Learning Curves

0 5 10 15 20 25 30

0.
0

0.
2

0.
4

0.
6

0.
8

1.
0

exercise

P
(K

C
=

kn
ow

n)

(a) KC block based on DBN

0 5 10 15 20 25 30

0.
0

0.
2

0.
4

0.
6

0.
8

1.
0

exercise

P
(K

C
=

kn
ow

n)

(b) KC data type based on DBN

0 5 10 15 20 25 30

0.
0

0.
2

0.
4

0.
6

0.
8

1.
0

exercise

P
(K

C
=

kn
ow

n)

(c) KC declaration based on DBN

0 5 10 15 20 25 30

0.
0

0.
2

0.
4

0.
6

0.
8

1.
0

exercise

P
(K

C
=

kn
ow

n)

(d) KC declarator based on DBN

E. Complete Case Study Results 174

0 5 10 15 20 25 30

0.
0

0.
2

0.
4

0.
6

0.
8

1.
0

exercise

P
(K

C
=

kn
ow

n)

(e) KC expression based on DBN

0 5 10 15 20 25 30

0.
0

0.
2

0.
4

0.
6

0.
8

1.
0

exercise

P
(K

C
=

kn
ow

n)
(f) KC primary expression based on DBN

0 5 10 15 20 25 30

0.
0

0.
2

0.
4

0.
6

0.
8

1.
0

exercise

P
(K

C
=

kn
ow

n)

(g) KC statement based on DBN

0 5 10 15 20 25 30

0.
0

0.
2

0.
4

0.
6

0.
8

1.
0

exercise

P
(K

C
=

kn
ow

n)

(h) KC comparison based on DBN

0 5 10 15 20 25 30

0.
0

0.
2

0.
4

0.
6

0.
8

1.
0

exercise

P
(K

C
=

kn
ow

n)

(i) KC jump based on DBN

0 5 10 15 20 25 30

0.
0

0.
2

0.
4

0.
6

0.
8

1.
0

exercise

P
(K

C
=

kn
ow

n)

(j) KC iteration based on DBN

175 E.4. Learning Curves

0 5 10 15 20 25 30

0.
0

0.
2

0.
4

0.
6

0.
8

1.
0

exercise

P
(K

C
=

kn
ow

n)

(k) KC increment/decrement based on DBN

0 5 10 15 20 25 30

0.
0

0.
2

0.
4

0.
6

0.
8

1.
0

exercise

P
(K

C
=

kn
ow

n)

(l) KC member access based on DBN

0 5 10 15 20 25 30

0.
0

0.
2

0.
4

0.
6

0.
8

1.
0

exercise

P
(K

C
=

kn
ow

n)

(m) KC assignment based on DBN

0 5 10 15 20 25 30

0.
0

0.
2

0.
4

0.
6

0.
8

1.
0

exercise

P
(K

C
=

kn
ow

n)

(n) KC include based on DBN

0 5 10 15 20 25 30

0.
0

0.
2

0.
4

0.
6

0.
8

1.
0

exercise

P
(K

C
=

kn
ow

n)

(o) KC preprocessor based on DBN

0 5 10 15 20 25 30

0.
0

0.
2

0.
4

0.
6

0.
8

1.
0

exercise

P
(K

C
=

kn
ow

n)

(p) KC function call based on DBN

E. Complete Case Study Results 176

0 5 10 15 20 25 30

0.
0

0.
2

0.
4

0.
6

0.
8

1.
0

exercise

P
(K

C
=

kn
ow

n)

(q) KC initialization based on DBN

0 5 10 15 20 25 30

0.
0

0.
2

0.
4

0.
6

0.
8

1.
0

exercise

P
(K

C
=

kn
ow

n)
(r) KC selection based on DBN

0 5 10 15 20 25 30

0.
0

0.
2

0.
4

0.
6

0.
8

1.
0

exercise

P
(K

C
=

kn
ow

n)

(s) KC arithmetic expression based on DBN

0 5 10 15 20 25 30

0.
0

0.
2

0.
4

0.
6

0.
8

1.
0

exercise

P
(K

C
=

kn
ow

n)

(t) KC logical expression based on DBN

0 5 10 15 20 25 30

0.
0

0.
2

0.
4

0.
6

0.
8

1.
0

exercise

P
(K

C
=

kn
ow

n)

(u) KC label based on DBN

0 5 10 15 20 25 30

0.
0

0.
2

0.
4

0.
6

0.
8

1.
0

exercise

P
(K

C
=

kn
ow

n)

(v) KC type cast based on DBN

177 E.4. Learning Curves

0 5 10 15 20 25 30

0.
0

0.
2

0.
4

0.
6

0.
8

1.
0

exercise

P
(K

C
=

kn
ow

n)

(a) KC expression list based on DBN

0 5 10 15 20 25 30

0.
0

0.
2

0.
4

0.
6

0.
8

1.
0

exercise

P
(K

C
=

kn
ow

n)

(b) KC define based on DBN

0 5 10 15 20 25 30

0.
0

0.
2

0.
4

0.
6

0.
8

1.
0

exercise

P
(K

C
=

kn
ow

n)

(c) KC sizeof-operator based on DBN

0 5 10 15 20 25 30

0.
0

0.
2

0.
4

0.
6

0.
8

1.
0

exercise

P
(K

C
=

kn
ow

n)

(d) KC type qualifier based on DBN

0 5 10 15 20 25 30

0.
0

0.
2

0.
4

0.
6

0.
8

1.
0

exercise

P
(K

C
=

kn
ow

n)

(e) KC storage class based on DBN

0 5 10 15 20 25 30

0.
0

0.
2

0.
4

0.
6

0.
8

1.
0

exercise

P
(K

C
=

kn
ow

n)

(f) KC bitwise operator based on DBN

E. Complete Case Study Results 178

0 5 10 15 20 25 30

0.
0

0.
2

0.
4

0.
6

0.
8

1.
0

exercise

P
(K

C
=

kn
ow

n)

(g) KC conditional operator based on DBN

Figure E.5.: Learning curves of syntactic KCs

0 5 10 15 20 25 30

0.
0

0.
2

0.
4

0.
6

0.
8

1.
0

exercise

P
(K

C
=

kn
ow

n)

Figure E.6.: Learning curve of the problem solving ability

179 E.4. Learning Curves

0 5 10 15 20 25 30

0.
0

0.
2

0.
4

0.
6

0.
8

1.
0

exercise

P
(r

ol
e=

kn
ow

n)

(a) variable role fixed

0 5 10 15 20 25 30

0.
0

0.
2

0.
4

0.
6

0.
8

1.
0

exercise

P
(r

ol
e=

kn
ow

n)

(b) variable role stepper

0 5 10 15 20 25 30

0.
0

0.
2

0.
4

0.
6

0.
8

1.
0

exercise

P
(r

ol
e=

kn
ow

n)

(c) variable role counter

0 5 10 15 20 25 30

0.
0

0.
2

0.
4

0.
6

0.
8

1.
0

exercise

P
(r

ol
e=

kn
ow

n)

(d) variable role gatherer

0 5 10 15 20 25 30

0.
0

0.
2

0.
4

0.
6

0.
8

1.
0

exercise

P
(r

ol
e=

kn
ow

n)

(e) variable role MRH

0 5 10 15 20 25 30

0.
0

0.
2

0.
4

0.
6

0.
8

1.
0

exercise

P
(r

ol
e=

kn
ow

n)

(f) variable role MWH

E. Complete Case Study Results 180

0 5 10 15 20 25 30

0.
0

0.
2

0.
4

0.
6

0.
8

1.
0

exercise

P
(r

ol
e=

kn
ow

n)

(g) variable role one-way-flag

0 5 10 15 20 25 30

0.
0

0.
2

0.
4

0.
6

0.
8

1.
0

exercise

P
(r

ol
e=

kn
ow

n)

(h) variable role temporary

0 5 10 15 20 25 30

0.
0

0.
2

0.
4

0.
6

0.
8

1.
0

exercise

P
(r

ol
e=

kn
ow

n)

(i) variable role transformation

0 5 10 15 20 25 30

0.
0

0.
2

0.
4

0.
6

0.
8

1.
0

exercise

P
(r

ol
e=

kn
ow

n)

(j) variable role organizer

Figure E.7.: Learning curves of variable roles

181 E.5. Clustering Results

E.5. Clustering Results

0.0

0.1

0.2

0.3

0 10 20 30
exercise

fr
eq

ue
nc

y cluster

1

2

3

(a) Frequency for category syntactic

0

1

2

3

4

0 10 20 30
exercise

du
ra

tio
n

cluster

1

2

3

(b) Duration for category syntactic

0.0

0.2

0.4

0.6

0 10 20 30
exercise

fr
eq

ue
nc

y cluster

1

2

3

(c) Frequency for category conceptual

0

2

4

6

0 10 20 30
exercise

du
ra

tio
n

cluster

1

2

3

(d) Duration for category conceptual

E. Complete Case Study Results 182

0.00

0.25

0.50

0.75

0 10 20 30
exercise

fr
eq

ue
nc

y cluster

1

2

3

(e) Frequency for category strategic

0.0

2.5

5.0

7.5

0 10 20 30
exercise

du
ra

tio
n

cluster

1

2

3

(f) Duration for category strategic

0.00

0.25

0.50

0.75

0 10 20 30
exercise

fr
eq

ue
nc

y cluster

1

2

3

(g) Frequency for category sloppiness

0.0

2.5

5.0

7.5

10.0

0 10 20 30
exercise

du
ra

tio
n

cluster

1

2

3

(h) Duration for category sloppiness

183 E.5. Clustering Results

0.0

0.2

0.4

0.6

0 10 20 30
exercise

fr
eq

ue
nc

y cluster

1

2

3

(i) Frequency for category misinterpretation

0.0

2.5

5.0

7.5

10.0

0 10 20 30
exercise

du
ra

tio
n

cluster

1

2

3

(j) Duration for category misinterpretation

0.00

0.05

0.10

0 10 20 30
exercise

fr
eq

ue
nc

y cluster

1

2

3

(k) Frequency for category domain

0

1

2

3

4

5

0 10 20 30
exercise

du
ra

tio
n

cluster

1

2

3

(l) Duration for category domain

Figure E.8.: Clustering of error patterns for different categories

