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Summary

This thesis proposes to develop new helioseismic diagnostics of solar near-surface flows.
In a first part, we discuss the interaction of solar seismic waves (sound waves) with
small-scale turbulent convection. The treatment of the effect of turbulent convection on
waves is challenging because it involves all spatial and temporal scales. We consider sev-
eral effective-medium approximations used to describe the propagation of acoustic waves
through solar granulation and compare these approximations with numerical simulations.
For large-amplitude perturbations, we find that the Keller approximation is best suited
to estimate the effective wave speed and attenuation. While the temporal evolution of
granulation may be ignored when estimating the effective wave speed, it must be taken
into account in the computation of the attenuation. In addition, late arrival waves due to
multiple scattering (coda waves) are seen in the simulations in the variance of the wave
field. This work will help improve our understanding of the physics of the modes of so-
lar oscillations, and contributes to the interpretation of global and local helioseismology
observations.

In a second part, we study near-surface local flows around solar active regions. These
active-region inflows are important because they contribute to the observed solar-cycle
changes in the longitudinal average of the solar meridional circulation. Using measure-
ments of the inflows with a granulation tracking method and a model for their depth
dependence, we solve the forward problem of time-distance helioseismology to estimate
their contribution to the observed helioseismic travel times. In the granulation-tracking
maps, the inflows contribute up to ±7 m/s to the surface meridional flow, which is about
50% of its amplitude. We find however that the travel-time perturbations associated with
near-surface active-region flows do not explain in full the solar-cycle variations observed
in the seismic data. This work paves the way for correcting the travel times for the near-
surface flows, in order to probe the cycle variations of the meridional flow at depth.
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1 Introduction

1.1 The interior of the Sun

1.1.1 The solar structure

The Sun is a 4.5-billion-year-old rotating G-type star lying on the main sequence, with a
radius R� of 696 Mm. It mostly consists of hydrogen and helium. Its interior structure
can be divided up into several distinct regions.

The inner core extends from the center to about 25% of the solar radius R�. There,
hydrogen is transformed into helium through nuclear fusion at temperatures up to 15
million degrees. The resulting pressure gradient balances gravity, maintaining hydrostatic
equilibrium. Up to 0.73R�, the radial temperature gradient of the medium is subadiabatic,
meaning that convection cannot take place. Radiation transports the energy from the
core outward through this region: it is the radiative zone. At a depth of 0.73R�, the
temperature gradient becomes slightly super-adiabatic, such that convection becomes the
dominant mechanism of energy transport (Christensen-Dalsgaard et al. 1991). At the top
of the convection zone, due to a drop of the density by several orders of magnitude, the
opacity decreases enough to let photons escape. The location of this opacity drop is called
the photosphere and is a few hundred kilometers thick. The solar spectrum is roughly that
of a black body with a temperature of about 5800 K. The solar atmosphere, above the
surface, consists of the chromosphere, the transition region and the corona, at which point
the temperature has risen again up to 2 × 106 K, for reasons that are still debated.

1.1.2 The solar oscillations

Leighton et al. (1962) first observed that the velocity field at the solar surface oscillates
with a period of about five minutes, corresponding to a frequency of about 3 mHz. It was
then hypothesized (e.g., Ulrich 1970, Leibacher and Stein 1971) that this signal comes
from the superposition of standing waves trapped inside cavities below the photosphere.
Deubner (1975) then observed for the first time the concentration of oscillatory power
along ridges in frequency – horizontal wave number space. Such a power spectrum is
presented in Fig. 1.1.

The oscillations are stochastically excited by the near-surface turbulent convection
(e.g., Goldreich and Keeley 1977, Houdek 2006, Houdek and Dupret 2015). There exist
three types of modes. The acoustic (p) modes are sound waves, for which the restoring
force is pressure. These waves propagate between the near-surface, where most of them
are reflected, and an inner turning point corresponding to where the horizontal phase speed
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1 Introduction

becomes equal to the local sound speed (Leibacher and Stein 1981, Duvall 1982). Because
the sound speed increases with depth, the larger the phase speed is, the deeper the modes
propagate. The power of these oscillations peaks at a frequency of about 3 mHz. The
second type of waves consists of the surface gravity, also known as f modes. They prop-
agate near the surface like riddles on water, and their restoring force is buoyancy. They
can be used for example to probe near-surface convection or measure rotation. Finally,
the gravity (g) modes are trapped inside the radiative zone and are driven by buoyancy
fluctuations. Both acoustic and surface gravity modes are visible in the power spectrum
of both the continuum intensity and the line-of-sight velocity measurements of the solar
surface, superimposed to the surface convection power spectrum. However, because the g
modes are evanescent in the convection zone, their direct observation is difficult and still
debated (e.g., Fossat et al. 2017, Schunker et al. 2018).

The observed solar oscillation modes, called normal modes, oscillate at frequen-
cies called eigenfrequencies. They can be decomposed using three quantum numbers:
n, the number of radial nodes; l, the number of surface nodes; and m ∈ [−l,+l] the
number of equator-crossing nodes. l is related to the horizontal wave number kh by
kh =

√
l(l + 1)/R�.

Helioseismology studies the structure and flows inside the Sun by using the informa-
tion contained in its oscillations. It makes use of continuous and high-resolution obser-
vations coming from ground-based networks like the Global Oscillation Network Group
(GONG, Harvey et al. (1996)) or space telescopes like the Michelson Doppler Imager
(MDI, Scherrer et al. (1995)) onboard the SOlar and Heliospheric Observatory (SOHO)
and the Heliosesmic and Magnetic Imager (HMI, Scherrer et al. (2012)) onboard the So-
lar Dynamics Observatory (SDO). These instruments observe(d) the solar disk in some
spectral line (HMI for instance uses the Fe I line at 617.3 nm). The forward problem
in helioseismology consists in retrieving a change in the observable, generally the line-
of-sight Doppler velocity, due to a perturbation from a reference medium. The inverse
problem aims at retrieving the departure from this background medium using the observ-
ables. Basu (2010) for instance provides a summary of the inversion methods used in
helioseismology. Global helioseismology (e.g., Christensen-Dalsgaard 2002) is the study
of the modes of the Sun that tell about its global structure, with some of the main results
being the determination of the depth and latitudinal dependence of the solar rotation (e.g.,
Duvall et al. 1986, Libbrecht 1989, Schou et al. 1998) and that of the sound speed profile
(Christensen-Dalsgaard et al. 1985). Local helioseismology on the other hand, is used to
probe the local structure on smaller areas. Several techniques can be used, among which
is time-distance helioseismology. First formulated by Duvall et al. (1993), it involves the
cross-correlation of the Doppler signal at any two points of the solar surface, as a proxy
for the wave packets traveling between these points. One wave packet goes directly from
the first point to the second point (first skip), while others bounce at the surface before
reaching destination. The greater the separation distance, the deeper the first-skip wave
packet reaches. One can measure the travel time of the wave packet in both directions,
which gives indications about the flows along or against the wave field (e.g., Burston et al.
2015). For a review of local helioseismology in general, see for example Gizon and Birch
(2005) and Gizon et al. (2010).
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1.2 Acoustic waves and turbulence near the surface
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Figure 1.1: m-averaged power spectrum of SDO/HMI Dopplergrams. Red corresponds to
high power. One day of medium-l data was taken.

1.2 Acoustic waves and turbulence near the surface

1.2.1 Small-scale turbulent convection near the solar surface

Near the solar surface, in the photosphere, different scales of turbulent convection have
been observed (Rieutord et al. 2010). These scales are selected by the constraint of mass
conservation on upward and downward motions. The most easily identifiable pattern is
granulation, mostly driven by radiative cooling from the surface (Nordlund et al. 2009).
It consists of a myriad of bright cells covering the surface and separated by darker lines
called intergranular lanes. Each cell is made of a hot parcel of gas, rising from below due
to convective instability. The upward motion is essentially isentropic. The plasma then
cools down at the surface and falls back inward in the intergranular lanes due to gravity.
There, the downdrafts receive entropy by mixing with the upflows, so that the entropy
difference between the former and the latter decreases with depth. Granulation is visible
both on intensity images (due to the temperature variations) and on Doppler images (due
to the line-of-sight velocity variations). The spatial size of a granule is typically 1 to 2
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1 Introduction

Mm (1 Mm = 1000 km), while its life time is of the order of ten minutes. The flows
typically have velocities of 1 to 2 km/s, which is 15 to 30% of the local sound speed
(about 7 km/s).

Supergranulation on the other hand, first discovered by Hart (1954), is a larger-scale
convective pattern, with a life time of 1.5 days and a size of roughly 30 Mm (Leighton
et al. 1962, Rieutord et al. 2008, Hirzberger et al. 2008). The flows have an rms value
of about 300 m/s, and are mostly horizontal, which explains why one sees them best
far from disk center on Dopplergrams. They are however barely detectable in intensity
observations. Whether supergranulation is convectively driven, has been debated for years
(e.g., Rieutord and Rincon 2010, Rincon and Rieutord 2018). An extensive review of
solar surface convection, from the observational and computational sides, can be found in
Nordlund et al. (2009).

1.2.2 Acoustic wave propagation in a time-varying random medium
In the context of helioseismology and more broadly asteroseismology, understanding the
pulsations of the star is paramount to infer properties such as radius, mass, etc. How-
ever, for the Sun already, there is a discrepancy between standard solar model predictions
of the eigenfrequencies of the modes and the observations (e.g., Libbrecht et al. 1990,
Gough and Toomre 1991, Christensen-Dalsgaard et al. 1996). The differences increase
with frequency and scale roughly as the mode mass, which is the ratio of the mode energy
to the square of the surface velocity (Libbrecht and Woodard 1991). This implies that
the cause of this difference lies in near-surface regions, far above the turning point of the
waves (Balmforth 1992b). This is why it is called the surface effect, which translates for
example by a departure of the observed eigenfrequency from a standard model by about
−10 µHz at 3.5 mHz.

The discrepancies stem from an imperfect modeling of the superadiabatic shallow
layer below the surface by the mixing-length theory used in standard solar (stellar) mod-
els. The surface effect can be decomposed into a model, or structural, effect, because the
structure of the shallow subsurface is not well represented, and a modal effect, because
the fluid equations do not hold anymore (non-adiabatic effects become important).

Brown (1984) and Delache and Fossat (1988) for example, investigated analytically
the scattering effect of velocity fluctuations in the upper convection zone on the eigen-
frequencies of the p modes. Rosenthal et al. (1999) suggested to patch an averaged 3D
numerical simulation of the near-surface convection on top of a standard solar model, in
order to account for the structural term. They also tried to address the difficult question of
how to include the turbulent pressure term in averaged fluid equations, in order to account
for the mode physics. In addition, they made the assumption that the time scales of con-
vective motions are greater than the period of the waves, while noting this is not valid for
the Sun. Sonoi et al. (2015), Ball et al. (2016) for example, followed up on this idea and
managed to significantly reduce the discrepancy. Houdek et al. (2017), in a way similar
to Balmforth (1992a), and making use of a non-local mixing length theory (Gough 1977),
tackled the modal effect and brought further improvement, bringing the difference down
to around 2 µHz. Schou and Birch (2020) numerically estimated the eigenfunctions in 3D
simulations and found frequency differences consistent with Houdek et al. (2017). An-
other (practical) approach to resolve the discrepancy consists in parametrizing the surface
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1.3 Large-scale flows in the Sun

term, regardless of the underlying physics, in order to generalize to other stars (Sonoi et al.
2015, Ball and Gizon 2017). One of the challenges in modeling the surface effect is to
determine which approximations can be used when trying to include the mode physics. In
particular, the solar turbulent convection has time scales that are comparable to the periods
of the waves that propagate in it, requiring a priori a time-dependent treatment. Gough
(1977), Unno (1967), Balmforth (1992c), to cite a few, developed mixing-length theo-
ries including the time dependence. Roth and Stix (2001, 2003) investigated theoretically
the coupling of time-varying velocity fields with acoustic oscillations. More recently,
Houdek et al. (2017) and Schou and Birch (2020) included time-dependent convection in
their models.

In addition to the surface effect, the incoherent wave scattering contributes to the
damping of the acoustic modes by mixing modes of different degrees (Bogdan 1989, Gol-
dreich and Murray 1994). Goldreich and Murray (1994) found the associated damping
rates to be in good qualitative agreement with the linewidths measured by, for example,
Libbrecht (1988) and Libbrecht and Woodard (1991). It is not however the only mecha-
nism responsible for the damping (e.g., Balmforth 1992a, Houdek et al. 1999).

It should be noted that a similar effect is observed on the f modes. They experience
a frequency shift and a mode damping because of multiple scattering of the waves by
the surface turbulent horizontal flows (see for example Murawski and Roberts (1993a,b),
Murawski et al. (1998), Duvall et al. (1998), Mȩdrek et al. (1999)).

1.3 Large-scale flows in the Sun

1.3.1 The global circulations: solar differential rotation and merid-
ional circulation

There are two axisymmetric flows in the Sun. The first one is the solar differential rotation.
The Sun rotates with a period of about 25 days at the equator (' 2 km/s), and more than
30 days near the poles. The rotation also depends on depth, as has been shown by global
helioseismology using the frequency splittings of p modes (Duvall and Harvey 1984,
Duvall et al. 1984, 1986, Thompson et al. 1996, Schou et al. 1998, Larson and Schou
2018). It increases from the surface inward in the outer 5% of the Sun (e.g., Barekat et al.
2014), and decreases thereafter. At 0.95R� is the so-called near-surface shear layer. The
tachocline, at about 0.7R�, is another shear layer below which the rotation becomes that
of a solid body (e.g., Christensen-Dalsgaard and Schou 1988, Brown et al. 1989). The
surface rotation rate has been measured via different methods: direct Doppler velocity
measurements (Howard and Labonte 1980), small magnetic feature tracking (Howard
et al. 1990), Doppler feature tracking (Snodgrass and Ulrich 1990), supergranular waves
(Schou 2003). The answer varies slightly depending on the method, which probably
comes as a consequence of the depth dependence. A review of solar rotation can be found
in Thompson et al. (2003).

The second axisymmetric flow is the meridional circulation. It has been measured by
different methods. A consensus was reached that it is a poleward flow at the surface in
both hemispheres, with an amplitude of roughly 15 m/s (Duvall 1979, Giles et al. 1997,
Zhao and Kosovichev 2004, Hathaway 2012, Komm et al. 2018). The flow must return
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at some depth toward the equator because of mass conservation. The depth at which
the return flow starts is still debated, as well as whether there is one cell (Hathaway
2012, Mandal et al. 2018, Gizon et al. 2020) or multiple ones (Zhao et al. 2013, Chen
and Zhao 2017) (see also Böning et al. (2017)). The meridional flow is much weaker
than supergranulation or differential rotation (about 200 m/s), so random noise and a
variety of systematics make its determination much more difficult. This circulation is
responsible for magnetic flux transport at the surface (advection of magnetic elements to
the poles in the Babcock-Leighton mechanism of the solar dynamo) and is responsible
in some dynamo models for the emergence of sunspots closer to the equator as the cycle
progresses, therefore its measurement is key to understand the dynamo (Sheeley 1992,
Dikpati and Gilman 2006, 2009, Gizon et al. 2020).

The meridional circulation results from an imperfect balance between two driving
forces that result from the differential rotation and from an entropy gradient (Kitchatinov
2011, 2016). The differential rotation is sustained by the transport of angular momentum
by turbulent convection via the Coriolis force (Reynolds stresses). This transport oper-
ates inward at small depths and equatorward at greater depths. Rotation is therefore not
constant on cylinders aligned with the rotation axis, creating a torque in the sense of a
surface poleward flow (Thompson et al. 2003); this is called the (non-conservative) cen-
trifugal force or gyroscopic pumping. On the other hand, the Coriolis force inhibits the
convective heat flux at low latitudes, making the poles slightly warmer than the equator.
The induced entropy gradient creates, via the buoyancy force, a circulation that is equa-
torward at the surface; this is called the thermal forcing, or baroclinic driver, because the
entropy gradient is related to a misalignment of the isosurfaces of pressure and density.
The small difference between the two forces is responsible for the observed meridional
circulation.

1.3.2 The time-varying component of the axisymmetric flows
These large-scale flows exhibit a time dependence. The time-varying part of the differ-
ential rotation is called torsional oscillations, whose amplitude is a few m/s (Howard and
Labonte 1980, Gizon 2003, 2004, Zhao and Kosovichev 2004). It looks like a shear flow
at the latitude of mean activity, with a faster-rotating region on the equatorward side and
a slower-rotating one on the poleward side. As the cycle progresses, it drifts toward the
equator along with the magnetic activity, as has been seen by global (Kosovichev and
Schou 1997, Schou et al. 1998, Schou 1999, Antia and Basu 2000) and local helioseis-
mology (Basu and Antia 2000, Haber et al. 2000, Gizon 2003, Komm et al. 2004, 2014).
Another shear region is present at high latitudes, that migrates toward the poles (Toomre
et al. 2000, Antia and Basu 2001, Komm et al. 2014). It coincides with the high-latitude
activity branch and seems to confirm that the zonal flows are connected to the regions of
magnetic activity. The torsional oscillations are seen through much of the depth of the
convection zone (e.g., Howe et al. 2000, Vorontsov et al. 2002).

The meridional circulation varies too, with time residuals also reaching a few m/s as
shown by magnetic-feature tracking (Komm et al. 1993, Komm 1994, Meunier 1999) and
helioseismology (Chou and Dai 2001, Gizon 2003, 2004, Zhao and Kosovichev 2004,
Zhao et al. 2014, Komm et al. 2015). The time residuals present a pattern similar to
surface inflows converging toward the activity belt at low to mid-latitudes, also drifting
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Figure 1.2: Inflows around an average active region, measured via the local correlation
tracking of solar granulation on SDO/HMI intensity maps (see Subsection 1.4.2). ∆λ
and ∆φ are the angular distances to the center of the active region, respectively in the
latitudinal and in the longitudinal directions. ∆λ > 0◦ is poleward, ∆φ > 0◦ is prograde.
The flows have been smoothed with a 2D Gaussian of σ = 2◦. The flows at the center
of each polarity have been removed for clarity. The line-of-sight magnetic field has been
overplotted.

with time toward the equator. Surface inflows toward active regions have been observed
for instance by Gizon et al. (2001), Hindman et al. (2003), Haber et al. (2004), Hindman
et al. (2009), Braun (2019), with amplitudes reaching at the surface 50−100 m/s for single
regions and 10 − 20 m/s on average. Helioseismology has provided different answers
regarding the depth profile of the flows (e.g., Chou and Dai 2001, Haber et al. 2004, Zhao
and Kosovichev 2004, Chou and Ladenkov 2005, Komm et al. 2020). In general, it is
agreed that the inflows are localized in the upper 20 Mm and become outflows thereafter.
Fig. 1.2 shows the inflows around an average active region near the surface.

An open question is whether the inflows around the activity belt explain the totality
of the time variation of the meridional circulation. Gizon (2003) found that they can
explain it at the level of a few m/s. Cameron and Schüssler (2010) found a similar con-
clusion using a semi-empirical model of inflows. However, González Hernández et al.
(2008) contested this result, finding in particular an inflow pattern even when excluding
the surroundings of the active regions from their measurements.

Several mechanisms have been proposed to explain these flows. A possible driver is
the feedback from the magnetic field via the Lorentz force (Yoshimura 1981, Schuessler
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1981). Schuessler (1981) showed that theoeretically, the kinetic energy provided by the
Lorentz force in the toroidal direction is enough to quickly drive torsional oscillations
of a few m/s. However, (Rempel 2006, 2007), using a dynamic flux-transport dynamo
model, found that it could only account for the poleward high-latitude branch of the tor-
sional oscillations, meaning that other processes had to play a role. They found that a
thermal origin could explain the equatorward part. This process was initially described
by Spruit (2003), who proposed that the enhanced radiative cooling by the small-scale
magnetic field in the activity belts would create a region of slightly lower pressure. The
Coriolis force would then drive a geostrophic zonal flow, just like on Earth. Inflows to-
ward the active regions are predicted as a natural side effect of this theory. The flow is
indeed not purely geostrophic because of viscosity effects. The generated Ekmann spiral
then provides a poloidal flow of amplitude similar to that of the toroidal flow. The idea of
this cyclonic motion is supported by helioseismic observations (e.g., Hindman et al. 2009,
Komm et al. 2015), while some shortcomings remain, e.g. the fact that torsional oscilla-
tions precede the emergence of the magnetic field. Gizon and Rempel (2008) followed up
on the model by Rempel (2006) and found that they could explain both torsional oscilla-
tions and meridional circulation variations, with values consistent with observations near
the surface, while inconsistencies still remained at greater depths.

1.4 Aims of this thesis
This work focuses on the dynamics of the solar surface, namely variations of the solar
medium or solar flows occurring near the surface on time scales smaller than, say, a
solar cycle. The main question is how to average time-varying quantities to provide a
meaningful background medium or background flow. In the first case, we look at time
scales of the order of a few minutes (small-scale turbulent convection) and study how to
find an effective medium for the propagation of acoustic waves through solar granulation.
In the second case, we look at time scales of days to months, namely the active-region
inflows that modulate the meridional flow; the goal is to find a background meridional
flow that does not contain an imprint of the inflows and, conversely, to better constrain
the impact of the inflows on the solar-cycle variation of the meridional flow.

1.4.1 Chapter 2: Acoustic waves and near-surface convection

The first paper included here tries to tackle the issue of the interaction between solar gran-
ulation and acoustic waves. More precisely, only the action of the medium on the waves
is studied, while the back-reaction is neglected. Using second-order finite differences in
an explicit scheme, we model numerically the propagation of acoustic modes through a
one-dimensional medium that has been perturbed. The wave equation that we use is that
of Gizon et al. (2017). We compare a certain number of wave scattering theories to the
numerical (true) solutions, showing that a theoretical prediction of the scattering effect of
the turbulent medium on solar acoustic waves is possible.

The study is based on the fact that solar granulation can be seen as a random process
that modifies the background medium in which the solar acoustic waves propagate (quan-
tities like temperature, density and small-scale velocity fields vary randomly). There-
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fore, the propagation of the waves is modified through (multiple) scattering. In helio-
seismology, in order to lower the noise level, it is common to average the observables
(for instance, travel times for time-distance helioseismology) over time and space, that
is over realizations of the turbulent medium (whether the realizations are independent is
controlled by the correlation scales of the medium). Since each wave goes through a re-
alization, it is itself part of a random process. It makes sense then to look at how the
average, coherent wave field propagates. We also look at the variance of the wave field
that contains information about the part that is scattered multiple times (coda waves).

Numerically, we use a Monte-Carlo approach by generating many realizations of a
random medium with given statistical properties, and we propagate an acoustic wave
packet in each of them before averaging the solutions over the realizations. We also
derive the theoretical average wave field for a number of approximations down to the
second order in the perturbation (the first-order correction is zero on average). One of
them is the Born approximation, which gives a development of the perturbed wave field
as a function of the perturbation to a background state, provided that the perturbation
is "small" enough, as well as the ratio of the wavelength over the typical spatial size of
the perturbation. The Keller approximation (Keller 1964) is based on a similar idea, but
instead of providing a development of the solution, it rather looks at the equation satisfied
by the average wave field. The homogenization theory (e.g., Hanasoge et al. 2013) and
the geometrical optics (e.g., Tatarskii 1971) work for wavelengths respectively greater
and smaller than the size of the perturbation. Unluckily, in the case of solar granulation
and acoustic waves, the two quantities are comparable, meaning that we are in between
the two regimes.

Both the numerical simulations and the theories show that the amplitude of the av-
erage wave field is reduced, because of the loss of coherent signal along the randomly-
scattered path. Moreover, the effective path length browsed by the wave is increased by
the multiple scattering, which decreases the effective wave speed. These two effects are
qualitatively compatible with theoretical predictions and observations of the surface ef-
fect and the damping of the p modes but we do not investigate this aspect further because
our setup is very simplified compared to the true solar medium. We find that the Keller
theory works best to describe the propagation of the coherent wave field, followed by the
Born approximation that is valid for weaker perturbations or smaller distances of propa-
gation. We derive the Keller solution in a time-dependent medium so that we can check
the accuracy of the theory for different correlation times of the medium. We find, perhaps
surprisingly, that one can use only a snapshot of granulation and still retrieve the effec-
tive wave speed, while the attenuation is underestimated. Considering a frozen medium
would greatly simplify the theoretical and numerical study of wave scattering because
frequencies would be uncoupled and the problem could be tackled in frequency domain
via the Helmholtz equation. Finally, we show that the statistical variance of the wave field
exhibits coda waves that are invisible in the coherent wave field. The coda waves are an
indication of multiple scattering and have yet to be detected in the Sun, although they are
commonly studied in terrestrial seismology (e.g., Aki 1969, Aki and Chouet 1975).
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1.4.2 Chapter 3: Medium-scale flows and solar activity
The second work presented in this thesis is observational. The motivation is a better
measurement of the surface meridional flow and of its time-varying component. It would
allow one to improve the inversions of the depth profile. A better knowledge of the merid-
ional circulation would in turn help constrain the solar dynamo models. In this work, we
check whether the surface inflows around regions of magnetic activity are responsible for
the totality of the solar-cycle modulation of the meridional flow.

To do so, we use nine years of already-generated data from local correlation tracking
of granulation, which is a method to retrieve surface flows (e.g., November and Simon
1988). The idea of the method is to track a certain type of features (granulation, su-
pergranulation, magnetic features) over time. It is done by correlating in space (in two
dimensions x and y) pairs of small patches of observation maps (for example intensity
maps or magnetograms) separated by a time lag ∆t; for each patch, the maximal corre-
lation arises for some distances (dx, dy) (in both directions), meaning that the features’
instantaneous velocity is (vx = dx/∆t, vy = dy/∆t). For the method to work, the time lag
must be small enough compared to the lifetime of the features themselves. We isolate in
the flow maps the regions of high magnetic activity (active regions, mostly at low to mid-
latitudes, and diffuse magnetic field, emanating from these regions and dragged toward
the poles by the meridional circulation) and their surroundings. We find that the longi-
tudinal averages of the local inflows into active regions have amplitudes comparable to
those of the meridional flow and the torsional oscillations at the surface. The latitudinal
flow component converges toward the activity belts, while the longitudinal component
exhibits retrograde flows present mostly on the poleward side of the active regions.

The active-region flows are converted into north-south helioseismic travel-time shifts
by using 3D sensitivity kernels, assuming a radial dependence of the flows. A travel-
time sensitivity kernel K connects a perturbation in the flow field v to the shift in helio-
seismic travel time δτ induced by this flow (see for instance Fournier et al. (2018) for a
computationally-efficient way to compute kernels in the Born approximation). The travel-
time perturbation for waves traveling between points r1 and r2 is then the integral over
the whole volume of the Sun

δτ(r1, r2) =

∫
�

K(r, r1, r2) · v(r) dr.

Using 3D kernels is a priori essential because the active-region inflows are not axisym-
metric unlike the global meridional circulation. For active-region inflows with a constant
depth profile, the longitudinal averages of the forward helioseismic travel-time perturba-
tions computed using the above equation reach up to ±0.3 s during the peaks of solar
activity. When we remove the travel times between points associated with large mag-
netic field, this amplitude drops to approximately ±0.1 s. For the observed travel times,
the amplitude of the meridional flow varies by about ±0.3 s throughout the solar cycle.
Therefore, the active-region flows do not explain in full the solar-cycle variations of the
meridional flow.
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2 Acoustic wave propagation through
solar granulation: Validity of
effective-medium theories, coda
waves1

Abstract

Context. The frequencies, lifetimes, and eigenfunctions of solar acoustic waves are af-
fected by turbulent convection, which is random in space and in time. Since the correla-
tion time of solar granulation and the periods of acoustic waves (∼5 min) are similar, the
medium in which the waves propagate cannot a priori be assumed to be time independent.

Aims. We compare various effective-medium solutions with numerical solutions in
order to identify the approximations that can be used in helioseismology. For the sake of
simplicity, the medium is one dimensional.

Methods. We consider the Keller approximation, the second-order Born approxima-
tion, and spatial homogenization to obtain theoretical values for the effective wave speed
and attenuation (averaged over the realizations of the medium). Numerically, we com-
puted the first and second statistical moments of the wave field over many thousands of
realizations of the medium (finite-amplitude sound-speed perturbations are limited to a
30 Mm band and have a zero mean).

Results. The effective wave speed is reduced for both the theories and the simulations.
The attenuation of the coherent wave field and the wave speed are best described by the
Keller theory. The numerical simulations reveal the presence of coda waves, trailing the
ballistic wave packet. These late arrival waves are due to multiple scattering and are easily
seen in the second moment of the wave field.

Conclusions. We find that the effective wave speed can be calculated, numerically and
theoretically, using a single snapshot of the random medium (frozen medium); however,
the attenuation is underestimated in the frozen medium compared to the time-dependent

1This chapter reproduces the article Acoustic wave propagation through solar granulation: Valid-
ity of effective-medium theories, coda waves by P.-L. Poulier, D. Fournier, L. Gizon, and T. L. Du-
vall Jr., published in Astronomy & Astrophysics 643, A168 (2020), DOI https://doi.org/10.1051/
0004-6361/202039201. Reproduced under the terms of the Creative Commons Attribution License
(http://creativecommons.org/licenses/by/4.0). Contribution statement: P.-L. P. performed re-
search, accomplished the numerical computations and theoretical derivations, and wrote the paper with
contributions from D. F., L. G. and T. L. D. Jr.. D. F. participated in the numerical computations.
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2 Acoustic wave propagation through solar granulation: Validity of effective-medium
theories, coda waves

medium. Multiple scattering cannot be ignored when modeling acoustic wave propaga-
tion through solar granulation.

2.1 Introduction

Solar seismic waves interact with small-scale convective motions near the solar surface
via a wave scattering process, affecting their properties (e.g., propagation speed, fre-
quency, amplitude, and phase). As the e-folding lifetime of solar granulation is com-
parable to the period of the waves, the medium may not be assumed to be frozen. Fur-
thermore, the spatial spectrum of convection encompasses all scales, including those that
are comparable to the wavelengths of p and f modes.

Most approaches that have been proposed so far assume a separation of scales between
the waves and the medium. Often the wave period is assumed to be much smaller than the
time scale of the evolution of convective flows (Brown 1984, Delache and Fossat 1988,
Rosenthal et al. 1999). Murawski and Roberts (1993a,b), using this assumption, derived
a model for the scattering of the f mode by granulation using the binary collision approx-
imation (Howe 1971) and found a mode frequency reduction due to the scattering as well
as a large attenuation, which compare favorably with observations (Duvall et al. 1998).
Other authors assume that the wave period, or the wavelength, is much larger than the
temporal, or the spatial, scale of convection, which allows one to apply homogenization
techniques (Hanasoge et al. 2013, Bhattacharya et al. 2015).

Numerical simulations provide a useful means to study the interaction of seismic
waves with convection (e.g., Ball et al. 2016, Houdek et al. 2017, Schou and Birch 2020).
Turbulent convection has an indirect effect on the waves through a change in the average
medium (e.g., via a turbulent pressure term) and, in addition, it affects the physics of wave
propagation and attenuation via a scattering process.

Here, we study this problem under a highly simplified setup. We consider a one-
dimensional steady medium that contains sound-speed perturbations over a finite region,
but other than that it is uniform. There is no a priori separation of scales in space nor
in time between the incoming wave packet and the medium. For relative sound-speed
perturbations of a significant amplitude (e.g., 5% and above) multiple scattering plays a
significant role in the redistribution of wave energy. We compare our numerical simula-
tions with theoretical approximations, which are easy to implement in this context.

Since the medium is random in both time and space, we study the effect of the medium
on the waves in a statistical sense by computing the first and second moments of the quan-
tities of interest (e.g., the wave field) over many realizations. From the expectation value
of the wave field, also known as the coherent or ballistic wave field, we can extract the at-
tenuation and the effective wave speed for example. For the variance of the wave field, we
can extract information about the distribution of backward- and forward-scattered energy.
This includes late-arrival fluctuations due to multiply-scattered (coda) waves.

We state the problem in Section 2.2 and explain the numerical implementation in
Section 2.3. Various effective medium theories are reviewed in Section 2.4. We present
our results in Section 2.5, and discuss them in Section 2.6.
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Figure 2.1: Schematics of the problem.

2.2 Statement of the problem

2.2.1 The random medium
We consider a uniform one-dimensional background with sound speed c0 = 10 km/s, a
value of the same order of magnitude as the sound speed at the solar surface. We perturb
the medium by adding locally a space- and time-dependent random fluctuation:

c(x, t) =


c0 (x < X)
c0 + δc(x, t) (X ≤ x ≤ X + L)
c0 (x > X + L).

(2.1)

This is shown in Fig. 2.1, where the filled circles symbolize the fluctuation. In Eq. (2.1),
δc has a zero mean so that 〈c〉 = c0 where angle brackets denote an expectation value.

The sound-speed perturbation is specified through the autocorrelation

〈δc(x′, t′) δc(x′ + x, t′ + t)〉 = ε2c2
0 f (x)g(t), (2.2)

where we assume a separation between time and space. The value of ε is at most 0.1
in our simulations. The random medium can equivalently be characterized by its power
spectrum

P(k, ω) =

∫
f (x)e−ikxdx

∫
g(t)eiωtdt = F(k)G(ω). (2.3)

In time, we choose an exponential profile

g(t) = exp(−|t|/τ), (2.4)
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where τ is the e-folding lifetime. For granulation, we have τ ≈ 400 s (e.g., Title et al.
1989). The temporal power spectrum is Lorentzian,

G(ω) =
2τ

1 + (ωτ)2 . (2.5)

In space, we consider two different types of profile. The first choice is an exponential
medium (hereafter Medium 1), which will enable us to carry out approximations analyti-
cally:

f1(x) = exp(−|x|/a). (2.6)

For a granulation-like medium, it is reasonable to choose a = 1 Mm. In Fourier space,

F1(k) =
2a

1 + (ka)2 . (2.7)

The second choice (hereafter Medium 2) is a spatial power spectrum of the form (e.g.,
Baran 2013)

F2(k) = C|k|α exp(−β|k|), (2.8)

where C = πβα+1/Γ(α + 1) is a normalization factor such that the spatial autocorrelation
function equals 1 at x = 0.The parameters α and β can be tuned to obtain a power spectrum
that peaks at the desired wavenumber. Here we fix α = 1 and β = 6.7 × 10−4R� where
R� = 696 Mm, such that the spatial power spectrum peaks at kR� = 1500. In real space,
for α = 1, we have

f2(x) =
1 − (x/β)2

(1 + (x/β)2)2 . (2.9)

The two power spectra and their corresponding autocorrelation functions are shown in
Fig. 2.2.

From the knowledge of the power spectrum P(k, ω), we can compute a realization of
the sound speed perturbations as follows:

δc(x, t) =
c0

(2π)2

∫ √
P(k, ω)N(k, ω) ei(kx−ωt) dωdk, (2.10)

whereN(ω, k) is a realization of a complex Gaussian random variable with zero mean and
unit variance (the real and the imaginary parts are independent). To ensure that δc(x, t) is
real, we have N(k, ω) = N∗(−k,−ω). This way to proceed is based on the assumptions
of stationarity and horizontal spatial homogeneity of the medium (e.g., Gizon and Birch
2004).

2.2.2 The wave equation
The displacement ξ of acoustic waves is given by (Lynden-Bell and Ostriker 1967)

∂2
t ξ −

1
ρ
∇

(
ρc2∇ · ξ

)
= 0. (2.11)

Here, we have ignored gravity, rotation, damping as well as any background flows. This
equation has been derived in a background medium where the parameters ρ and c are
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Figure 2.2: Panel a: Power spectrum as a function of the adimensional wave number kR�.
Panel b: Power spectrum as a function of frequency. Panel c: Spatial autocorrelation.
Panel d: Temporal autocorrelation. The vertical dotted lines are drawn at the values of
the correlation parameters chosen for medium 1, namely τ = 400 s and a = 1 Mm.

independent of time. However, Legendre (2003) showed that this formulation remains
valid for a time-varying medium. Taking the divergence of Eq. (2.11) and denoting φ =
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∇ · ξ, we obtain

∂2
t φ − ∇ ·

(
1
ρ
∇(ρc2φ)

)
= 0. (2.12)

In this paper, we assume that the density is constant and consider the following 1D acous-
tic wave equation

∂2
t φ − ∂

2
x(c

2φ) = 0. (2.13)

We implement two numerical codes. The first code is a time-domain code to study
the propagation of a wave packet through a time-dependent random medium, based on
Eq. (2.13). As initial condition, we inject at location x0 < X a wave packet of central
frequency ω0 and frequency width σ:

φ(x, 0) = φ0(x, 0), ∂tφ(x, 0) = ∂tφ0(x, 0), (2.14)

where

φ0(x, t) = exp
−σ2

2

(
x − x0

c0
− t

)2 cos
[
ω0

(
x − x0

c0
− t

)]
. (2.15)

As shown in the schematics of Fig. 2.1, the incoming wave packet first travels in the
+x direction in the homogeneous medium, experiences scattering inside the perturbed
medium, then comes out (outgoing wave packet) and propagates in the +x direction in
the homogeneous medium. Part of the wave packet is back-scattered and travels in the −x
direction. The simulation box is large enough so that the wave packet is not affected by
the computational boundaries at x = 0 and x = xmax.

The second code is a frequency-domain code to study the wave field in a frozen
medium (τ → ∞). For a sound speed that does not depend on time, we can take the
temporal Fourier transform of Eq. (2.13) to obtain the wave equation in the frequency
domain, i.e. the Helmholtz equation

∂2
x(c

2φ̃(x, ω)) + ω2φ̃(x, ω) = 0, (2.16)

with Dirichlet boundary condition at x = 0,

φ̃(0, ω) = 1, (2.17)

and the Sommerfeld outgoing radiation condition

∂xφ̃(xmax, ω) =
iω

c(xmax)
φ̃(xmax, ω). (2.18)

The tilde denotes the temporal Fourier transform.

2.2.3 Characterizing the wave field
The wave field is affected randomly by the perturbations. The statistical effects can how-
ever be studied by looking at the moments of the wave field, i.e. by doing some averages
over the realizations of the random medium.

In particular, the coherent wave field is attenuated because each wave packet trav-
els in a different random realization of the medium and is deformed in a different way.
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This damping is related to the lifetime of the average acoustic wave. The coherent wave
field also propagates with a different velocity than c0, depending on frequency, called the
effective wave speed.

An approximate representation of the coherent wave field inside the perturbed medium
is therefore

〈φ〉 ∼ eik(ω)x−iωt = e−ki(ω)xeikr(ω)x−iωt, (2.19)

where the effective wave number is

kr(ω) = Re k(ω), (2.20)

and the spatial attenuation is
ki(ω) = Im k(ω). (2.21)

The effective wave speed is defined by

ceff(ω) =
ω

kr(ω)
. (2.22)

Similarly, we define k0(ω), the wave number for an unperturbed wave field, such that

c0 =
ω

k0(ω)
. (2.23)

We want to solve the (simplified) problem of acoustic wave scattering numerically and
find which approximations work to retrieve the coherent wave field. In particular, we
check whether we can get rid of the time dependence and assume a frozen medium.

Furthermore, we want to investigate the phenomenon of multiple scattering due to the
finite-amplitude perturbations. This is more easily done by looking at the second moment
(variance) of the wave field. It contains information that is otherwise zeroed out by doing
a mere average. By doing so, the coda waves, which trail the ballistic wave packet and
are often studied in seismology, can be readily observed.

2.3 Numerical methods

2.3.1 Numerical scheme to solve for φ(x, t)

In order to solve numerically Eq. (2.13), we use an explicit finite-difference scheme of
second order. We choose ω0/2π = 3 mHz and σ/2π = 1 mHz so that the frequency range
of study is 1 to 5 mHz, which is a reasonable choice for solar acoustic waves. The wave
packet is initially at x0 = 100 Mm, while xmax = 200 Mm and tmax = 10000 s. We set
X = 120 Mm and L = 30 Mm. The resolutions for the simulations are ∆x = 50 km and
∆t = 2.5 s, so that c0∆t/∆x = 0.5 < 1.

An example of time-domain simulation with medium 1 is shown in the online movie
and in Fig. 2.3. The wave packet begins to be perturbed when it enters the random
medium. Most of the signal is transmitted forward roughly in the form of a wave packet
(ballistic wave packet). Small oscillations trail that signal, propagating either forward or
backward. Once out of the perturbation, the shape of the wave packet is not modified
anymore.
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Figure 2.3: Top: Wave packet propagation through a realization of a random medium
(medium 2, with ε = 0.1 and τ = 400 s) located between the vertical dashed lines at
different time steps. Middle: Average over 10 000 realizations. Bottom: Square root of
the variance of the wave field. See the movie online.
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2.4 Effective medium theories

2.3.2 Numerical scheme to solve for φ̃(x, ω)

The code uses a second-order discretization scheme with a spatial resolution δx = 4 km. A
tridiagonal system is inverted with the tridiagonal matrix algorithm (Thomas algorithm).
c0, xmax, X and L are the same as for the time-domain code. The resolution is done for
frequencies between 1 and 5 mHz.

2.3.3 Measuring the attenuation
Following Aki and Richards (2002), after propagating between two points x1 and x2 (x2 >
x1) in an attenuating medium, a plane wave is damped by a factor

e−ki(x2−x1).

The spatial attenuation ki could be measured from the amplitude difference between the
incoming and the outgoing wave packets. However, this method leads to artifacts due to
boundary effects occurring at the edges of the random medium. Therefore, we rather con-
sider the wave packet inside the perturbation. We take x1 = 126 Mm and x2 = 144 Mm,
each point being 6 Mm away from the edge of the perturbation. As shown in Fig. 2.4, we
take the temporal Fourier transform of 〈φ(x, t)〉 where x ∈ [x1, x2]. The power of the sig-
nal has been attenuated during the propagation from x1 to x2. At each frequency, we then
fit a first order polynomial to the natural logarithm of the norm of the Fourier component
in order to retrieve the decay coefficient.

2.3.4 Measuring the effective wave speed
We first apply a temporal Fourier transform to 〈φ〉. Then we fit to Re(〈φ̃(x, ω)〉) (we
could have chosen the imaginary part arbitrarily), in the perturbed region, an exponentially
decreasing oscillatory function where the decay rate has been determined via the method
to measure the attenuation from the previous section. More precisely, we fit

Ae−ki(x−X) cos
(

ω

ceff(ω)
(x − xs)

)
(2.24)

where A, xs, and ceff are the free parameters, with xs being a phase shift. A similar fit is
done on φ0 to take numerical dispersion into account. This is illustrated in Fig. 2.5.

2.4 Effective medium theories
Depending on the values of the parameters, in particular k0a and ε, different theories can
be used to compute the effective parameters ceff and ki. For a medium whose spatial scale
is much less than the wavelength (λ � a, regime of Rayleigh scattering), the homogeniza-
tion method is appropriate and gives an effective sound speed ceff = c0(1− 3/2ε2) (deriva-
tion for a frozen medium in Appendix 2.7.4). On the other hand, for small wavelengths
(λ � a, small-angle scattering regime), the geometrical optics approach is relevant and
implies ceff = cray = c0(1− ε2) (derivation for a frozen medium in Appendix 2.7.5). These
two approaches give an effective wave speed that is independent of frequency and of the
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Figure 2.4: Measuring the attenuation with the temporal code. Top: Coherent wave packet
at x1 = 126 Mm (blue) and x2 = 144 Mm (red). Bottom: Natural log of the spectrum of
the coherent wave packet at different frequencies. We fit its slope between the vertical
dotted lines, corresponding to [x1, x2]. The vertical dashed lines delimit the location of
the perturbation in time (for a wave packet propagating at c0) and in space. In the figure,
the Fourier components have been normalized so that they have the same amplitude before
entering the perturbation.

power spectrum of the perturbation but do not provide any attenuation. Another caveat is
that in our model, we are in the regime of Mie scattering or large-angle scattering (Aki
and Wu 1988) because λ ' 3.3a. The wave number can therefore not be considered large
nor small compared to 1 and other theories may be required.

We explore two other derivations in the case of small perturbations (ε � 1). In this
regime, two methods are used: the Keller solution, derived for a frozen (Appendix 2.7.1)
or time-dependent medium (Appendix 2.7.2); the Born second-order approximation for a
frozen medium (derived in Appendix 2.7.3). The Keller and the Born solutions converge
toward the same values for small perturbations (ε = 0.01 for instance). However, at
ε = 0.1, the Born solution is very different from the Keller one, and it is not possible to fit
a function of the form of Eq.(2.19). We come back to this point in Section 2.5.1.

If k0a � 1 or k0a � 1, the effective wave speed obtained from the Keller theory
converges toward the results of the homogenization and geometrical optics approaches,
respectively. Table 2.1 summarizes the expressions for a frozen medium 1 (for which the
analytical expressions can be easily derived) as ε → 0. We check the agreement of these
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Figure 2.5: Measuring the effective wave speed. Top: Coherent wave packet (red curve)
experiencing a travel time shift compared to the unperturbed wave packet (blue curve).
The vertical dashed lines represent the arrival times at x2. Bottom: Fit of a decaying cosine
to the real part of the temporal Fourier transform in the random region, at ω/2π = 1 mHz.

theories with our simulations in Appendix 2.7.6. The Keller and the Born second-order
theories are consistent and predict that ki is proportional to k2

0 while the effective wave
speed difference is essentially independent of k0 provided that k0a ' 1. For comparison
purposes, we note that Bourret (1963) and Sato et al. (2012) (pp. 214-220) found that
for a 3D frozen medium with an exponential autocorrelation (i.e., similar to medium
1), the attenuation is proportional to k4

0 for k0a � 1 and to k2
0 for k0a � 1 while the

behavior of the effective wave speed is in qualitative agreement. In particular, the effective
wave speed is always less than c0. On the other hand, van der Baan (2001) used the
wave localization theory to make use of so-called self-averaging quantities; he derived the
effective medium using one realization of a one-dimensional perturbation in density and
bulk modulus. He found that the attenuation coefficient tends toward a constant value at
high k0a, while the effective wave speed difference is positive, in agreement with previous
studies (e.g., Müller et al. 1992). The sign of the difference ceff − c0 and the dependence
of the attenuation on frequency therefore seem to depend strongly on the equation that is
solved.
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Table 2.1: Theories used in this paper for the effective wave speed and attenuation in a
frozen medium as ε → 0, and their range of validity.

Theory Validity range ki ceff

Keller 1964 ε � 1 ε2k0

(
k0a + k0a

1+4(k0a)2

)
c0

(
1 − ε2

2

[
3 − 4(k0a)2

1+4(k0a)2

])
Born (2nd order) ε2(k0a)2 L

a � 1(†) '(‡) ε2k0

(
k0a + k0a

1+4(k0a)2

)
'(‡) c0

(
1 − ε2

2

[
3 − 4(k0a)2

1+4(k0a)2

])
Homogenization k0a � 1 Not applicable ch = 〈c−2〉−1/2 ' c0

(
1 − 3

2ε
2
)

Geometrical optics k0a � 1, k0a � 2π L
a , ε � 1(#) Not applicable cray = 〈c−1〉−1 ' c0(1 − ε2)

The Keller and the Born theories are for medium 1. (†) Approximation for k0a > 1 of
Rytov et al. (1989b) who made the derivation for a Gaussian autocorrelation function and
single scattering. (‡) The dominant term is that of Keller for small perturbations (see for
example Fig. 2.12). # See Rytov et al. (1989a).

2.5 Results and comparisons
We compute the properties of the effective medium using the procedure explained in Sec-
tions 2.3.3 and 2.3.4, with ε = 0.1 and a = 1 Mm. The 1-σ error bars shown later on the
attenuation and wave speed measurements are obtained from ten sets of 104 realizations.

2.5.1 Coherent wave field

We first reconstruct the theoretical coherent wave field obtained when using the vari-
ous theories. For all of them (except the Born theory that provides directly the wave
field), we assume the form written in Eq. (2.19). In Fig. 2.6, we plot Re(〈φ̃(3 mHz, x)〉)
(x ∈ [X, X +L]) for a frozen medium 1. Clearly the Keller approximation does the best job
at approximating the true (numerical) solution. As mentioned before, neither the homog-
enization technique nor the geometrical optics makes an attenuation emerge. The Born
solution is a good approximation on about half of the random medium at this frequency,
before it becomes out of phase with the numerical solution while its amplitude also starts
to increase. The discrepancy is worse and arises earlier in the medium for higher frequen-
cies. Thus the Born approximation, although similar to the Keller approximation when
ε → 0, performs poorly for a 10% perturbation in a medium of size L = 30 Mm.

2.5.2 Attenuation

Fig. 2.7 shows the measured attenuation for simulations with τ = 400 s and τ → ∞.
The case τ = 1 day (not shown on the plot) lies within the error bars of the curve for the
frequency code, which is to be expected as the typical time scales involved (the period of
the wave, about 5 minutes, and the time it takes for it to travel through the medium, about
1 h) are much less than one day. We superimpose the attenuation that one expects from
the time-dependent Keller theory.

The attenuation by medium 1 is an increasing function of frequency, with a value
of about 1.5% of the wave number at 3 mHz for τ = 400 s. The ratio ki/k0 is a linear
function of frequency, meaning that ki is quadratic, as expected from the Keller theory.
For medium 2 however, the attenuation is not quadratic. It reaches about 0.5% of the
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Figure 2.6: Theoretical solutions compared with the coherent wave field inside the ran-
dom medium from the numerical simulation, for a frozen medium 1, at 3 mHz. Keller:
blue. Born: red. Homogenization: orange. Geometrical optics: dashed green. The black
crosses are the numerical solution.

wave number at 3 mHz, which is smaller than the medium 1 value by a factor 3. The
smaller attenuation values are caused by the lack of power toward low wave numbers in
the spectrum of the perturbation: the absence of large scales in the perturbation means
that the incoherence between the realizations of the wave packets occurs preferentially on
small scales, thereby decreasing the overall broadening of the wave packet. In medium 2,
the ratio ki/k0 stabilizes above 5 mHz for τ = 400 s, while it reaches a maximum at about
3 mHz for τ → ∞. This may indicate that there is a preferred scale of damping of the
coherent wave field.

2.5.3 Effective wave speed

Fig. 2.8 shows the effective wave speed computed with for τ = 400 s and τ → ∞, as
well as the time-dependent Keller theory, the (frozen) spatial homogenization solution
and the (frozen) geometrical optics solution. Like for the attenuation, the case τ = 1 day
(not shown) lies within the error bars of the curve for the frequency code. The effective
wave speed is less than the unperturbed sound speed c0. This is due in part to waves
being scattered back and forth, contributing to the overall transmitted signal but at a later
time than the unperturbed wave. The second reason is the delay experienced by forward-
scattered waves. Indeed, in the regime of geometrical optics (λ/a � 1) where scattering
occurs essentially forward, the effective wave speed is given by the geometric velocity
cray = 〈c−1〉−1 < c0.
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Figure 2.7: Attenuation of the coherent wave packet vs frequency for media 1 and 2,
after propagation through a band of perturbed medium. The 1D theory from Keller is
overplotted in dashed lines. 1-σ error bars are shown.

The effective wave speed in medium 1 is an increasing function of frequency, with a
shift from c0 by about −0.7% at 3 mHz for τ = 400 s. The Keller theory is in relative
agreement for low frequencies ( f ≤ 2 mHz) but it predicts a constant wave speed at
higher frequencies. On the other hand, the measured effective wave speed in medium 2
clearly changes from the homogenized velocity ch at 1 mHz to the geometric velocity cray

at 5 mHz. We note a remarkable agreement at all frequencies between the simulations
and the Keller theory for medium 2.

2.5.4 Variance of wave field

The mean of the perturbation is zero, therefore looking at the coherent wave field may not
be enough to directly detect multiple scattering because one would only see oscillations
mixed within the noise. In the regime of strong perturbations, the coherent part would
vanish and only the fluctuating part would remain, solely accessible via second order
moments. One can for instance look at the envelope of the signal by studying the variance
of the wave field.

As shown in Fig. 2.9 and in the online movie, it is composed of three parts: a peak cor-
responding to the variance of the ballistic wave packet, coda waves (late-arriving waves)
propagating forward, and coda waves propagating backward. The forward-propagating
coda results from waves back-scattered an even number of times in the perturbed medium.
The backward-propagating coda forms a plateau of width 2L and results from single back-
scattering. In geophysics, a connection has been made between the functional form of the
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Figure 2.8: Speed of the coherent wave packet vs frequency for media 1 and 2, after
propagation through a perturbed medium. The 1D theory adapted from Keller (dashed
lines) as well as the prediction from the homogenization theory and the geometrical optics
are shown. 1-σ error bars are shown.

coda in time domain and the complexity of the scattering medium (e.g., Sato et al. 2012).

We decompose the domain in three regions (before, after and in the random medium)
and integrate spatially the variance over each of these three regions at tm = 8500 s, i.e.
after the coherent wave packet went through the random medium and just after the plateau
of back-scattered signal went out of it:

Ebsc =

∫ X

0
Var(φ(x, tm)) dx, (2.25)

Eout =

∫ xmax

X+L
Var(φ(x, tm)) dx, (2.26)

Etr =

∫ X+L

X
Var(φ(x, tm)) dx. (2.27)

It gives us a measurement of the variance that, respectively, has been back-scattered,
transmitted or is still trapped in the slab at this particular time. For medium 2, the back-
scattered variance makes up for about 50% of the total variance for τ = 400 s, and 75%
for τ = 1 day. The reason for these high amounts is that the spectrum of medium 2 peaks
at small scales, therefore more back-scattering takes place than for instance in medium 1
where these values become respectively 20% and 15%.
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Figure 2.9: Square root of the variance of the wave field as a function of position at a
given time t = 8500 s. Top: Medium 1. Bottom: Medium 2. See the movie online.

2.5.5 Dependence on correlation time of the medium
Calculations of an effective medium are easier to carry when the perturbation is frozen
because one can work directly in the frequency domain. Therefore, we study here how
the effective parameters ki and ceff depend on the correlation time of the medium.

Fig. 2.10 shows the relative errors in the attenuation, eki , and in the effective wave
speed difference, ec, between a given correlation time and the τ → ∞ case at 2, 3 and
4 mHz, for medium 2:

eki(ω, τ) =
ki(ω, τ) − ki(ω,∞)

ki(ω,∞)
, (2.28)

ec(ω, τ) =

(
ceff(ω, τ) − c0

c0
−

ceff(ω,∞) − c0

c0

) (
ceff(ω,∞) − c0

c0

)−1

=
ceff(ω, τ) − ceff(ω,∞)

ceff(ω,∞) − c0
. (2.29)

eki being generally positive, the attenuation is underestimated by the frozen-medium ap-
proximation. Our understanding is that since the power of the perturbation mostly lies
at high wave numbers, the attenuation mostly comes from the small-scale incoherence
between the realizations of the wave packets. Therefore, there must be two regimes:
one at small values of τ where the attenuation increases with τ, and one at greater val-
ues of τ where the attenuation decreases, because persisting scatterers start to create less
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Figure 2.10: Relative error on the attenuation (top) and the effective wave speed difference
(bottom) at 2, 3 and 4 mHz (medium 2). The error is between the quantities at τ and at
τ→ ∞. The dashed lines are the predictions from the time-dependent Keller theory.

small-scale incoherence, so less attenuation. The transition between the two regimes cor-
responds to a resonance, located according to the theory at about τ = 195 s, τ = 180 s
and τ = 135 s at 2, 3 and 4 mHz. On the other hand, ec being negative, the approxima-
tion overestimates the decrease in effective wave speed, because longer-lived features are
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Figure 2.11: Relative error in the variance integrated in space before, in and after the
random medium, at t = 8500 s. The error is between the quantities at τ and at τ = 1 day.

better "seen" by the wave packets. The decrease is therefore a monotonic function of τ,
with its asymptotic value at τ→ ∞ only determined by the value of the ratio of the wave
number over the typical size of the scatterer. The error is frequency-dependent and, on
average over the three central frequencies, is 29% (respectively −5%) for the attenuation
(respectively the effective wave speed difference) at τ = 400 s.

As for the variance, we assume τ = 1 day ' ∞. This is justified as the propagation
time in the random medium of length 30 Mm is about 1 h � 1 day. We compute therefore

ebsc(τ) = (Ebsc(τ) − Ebsc(1 day))/Ebsc(1 day), (2.30)
eout(τ) = (Eout(τ) − Eout(1 day))/Eout(1 day), (2.31)
etr(τ) = (Etr(τ) − Etr(1 day))/Etr(1 day). (2.32)

As shown in Fig. 2.11, the relative errors at τ = 400 s are then about 30%, 80% and 290%
for the back-scattered, trapped and outgoing variance, respectively. Hence it appears that
for medium 2, the variance is more sensitive to the correlation time than the coherent
wave field, and that the back-scattered coda is less sensitive than the rest of the variance.

The relative errors for medium 1 at τ = 400 s are presented for comparison purposes in
Table 2.2. In this case, the frozen-medium approximation overestimates the attenuation.
Most of the power is indeed located at large scales, so the attenuation is mostly caused by
the large-scale incoherence between the realizations (shifts of the wave packets), which
triggers a broadening and damping of the coherent wave packet. Therefore, the impact of
scattering is larger if the scatterers persist while the wave packets propagate through them
than if the scatterers evolve in time. On the other hand, the frozen-medium approximation
still overestimates, albeit by a larger amount, the decrease in effective wave speed. The
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Table 2.2: Relative error at τ = 400 s for the measured quantities for media 1 and 2.

Medium 1 Medium 2

Coherent wave
eki −25% 29%
ec −19% −5%

Variance ebsc 46% 31%

eki and ec are averaged over the three central frequencies 2, 3 and 4 mHz. They are
computed using both the temporal and the frequency codes. On the other hand, since we
study the variance in time domain, the errors for this quantity are computed using only
the temporal code.

error for both quantities does not depend much on frequency, and is about −25% for the
attenuation and −19% for the effective wave speed. For the back-scattered coda, the error
increases to 46%.

2.6 Discussion

2.6.1 Accuracy of the theories

All theories predict a decrease in the effective wave speed. The effective wave speed and
the attenuation of the coherent wave field are best described by the Keller approximation.
The Born second-order solution, although consistent with the Keller solution for small
perturbations, performs poorly for larger amplitudes, therefore it may not be suited for
the study of acoustic wave scattering by solar granulation unless it is on small distances
(< 30 Mm). The homogenization technique and the geometrical optics do not model the
attenuation of the coherent wave field. However they correctly represent the decrease in
wave speed for low and high frequencies, respectively.

2.6.2 Validity of the frozen-medium approximation

It is more convenient to study acoustic wave propagation in the frequency domain, but this
is easily doable only when the coefficients of the wave equation do not depend on time,
i.e. when one can use a snapshot of the random medium. As summarized in Table 2.2, we
find that for medium 2, the attenuation is underestimated by the frozen-medium approxi-
mation by 29% at the frequencies of interest for the Sun. As for the effective wave speed
difference, which is an important quantity since it is directly related to the helioseismic
travel times, it is overestimated by 5%. The greater error for ki seemingly arises from the
presence of a resonance of the function ki(τ) at a correlation time close to that of granu-
lation, while the effective wave speed does not exhibit such a feature. We note that the
relative error in ceff − c0 is similar to that of ki in medium 1, when the power of the per-
turbation is distributed at low scales. The frozen-medium approximation underestimates
the variance of the amplitude of back-scattered coda waves by about 30%.
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2.6.3 Detectability of coda waves
The numerical simulations show the emergence of coda waves, which are an interesting
effect of multiple scattering present both in single realizations of the wave field and in
its variance, but not in the coherent wave field. Coda waves are seen trailing the ballistic
wave packet, and also as late arrival back-scattered waves (in one dimension). In helio-
seismology, acoustic waves are measured via the two-point cross-covariance function of
the solar oscillations. Therefore, in order to identify coda waves in the Sun, one needs to
study the statistical variance of this cross-covariance function.
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2.7 Appendix

2.7.1 Keller approximation: Time-independent random medium

Starting from a time-independent random medium c(x), we can take the Fourier transport
of the wave equation:

ω2φ̃(x, ω) + ∂2
x(c

2(x)φ̃(x, ω)) = 0. (2.33)

The autocorrelation written in Eq. (2.2) can be simplified to

〈δc(x)δc(x′ + x)〉 = c2
0ε

2 f (x). (2.34)

For clarity, we drop the argument ω in the expression of φ̃.
Keller (1964) considers an unbounded spatially random medium and assumes statis-

tical homogeneity, isotropy and stationarity. The calculation could be generalized to the
case of a localized perturbation, however we follow the original derivation. It does ac-
curately model our problem since the amplitude attenuation and the effective wave speed
shift arise because of the perturbed region. Therefore only the boundary effects are not
taken into account. Keller made the first part of his derivation in time-domain, using the
fact that the Green’s function for the 3D wave equation is essentially a delta function,
which simplifies the calculation. In 1D however, the Green’s function is related to the
Heaviside step function. We shall first derive the Keller solution in frequency domain for
a frozen medium, then generalize in Appendix 2.7.2 to the solution in time domain.

The wave equation given by Eq. (2.33) can be written as

(L̃0 + L̃1 + L̃2)φ̃ = 0, (2.35)

where

L̃0φ̃ = ω2φ̃ + c2
0∂

2
xφ̃, (2.36)

L̃1φ̃ = 2c0∂
2
x

(
δc(x) φ̃

)
, (2.37)

L̃2φ̃ = ∂2
x

(
δc2(x) φ̃

)
. (2.38)

The unperturbed equation, assuming a constant background sound speed, is

L̃0φ̃0 = 0. (2.39)

The corresponding Green’s function G0, solution of L̃0G̃0(x, x′) = δ(x− x′) where δ is the
Dirac delta function, is

G̃0(x, x′) = −
i

2c2
0k0

eik0 |x−x′ |, (2.40)

where k0 = ω/c0. Keller has shown that one can find a new wave equation for the coherent
wave field under the form

(L̃0 − 〈L̃1L̃−1
0 L̃1〉 + 〈L̃2〉)〈φ̃〉 = 0, (2.41)
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with

(〈L̃1L̃−1
0 L̃1〉〈φ̃〉)(x)

=

〈
c0∂

2
x

(
2δc(x)

∫ ∞

−∞

dx′G̃0(x, x′)c0∂
2
x′[2δc(x′)〈φ̃(x′)〉]

)〉
= 4c4

0ε
2∂2

x

(∫ ∞

−∞

dx′G̃0(x, x′)∂2
x′[ f (x′ − x)〈φ̃(x′)〉]

)
. (2.42)

We assume that the coherent wave field also satisfies a wave equation with a complex
wave number k so that

〈φ̃(x′)〉 = eikx′ . (2.43)

In this case,
∂2

x′[ f (x′ − x)〈φ̃(x′)〉] = [(∂x′ + ik)2 f (x′ − x)]eikx′ . (2.44)

Therefore,

(〈L̃1L̃−1
0 L̃1〉〈φ̃〉)(x) = 4c4

0ε
2∂2

x

(
eikxI(x)

)
= 4c4

0ε
2
(
(∂x + ik)2I(x)

)
〈φ̃(x)〉, (2.45)

where
I(x) =

∫ ∞

−∞

dx′ G̃0(x, x′)[(∂x′ + ik)2 f (x′ − x)]eik(x′−x). (2.46)

On the other hand,
〈L̃2〉〈φ̃〉 = −c2

0ε
2k2〈φ̃〉. (2.47)

Using Eqs. (2.45) and (2.47) in Eq. (2.41), the perturbed wave equation for the coherent
wave field is (

∂2
x + k2

0 − 4c2
0ε

2(∂x + ik)2I(x) − ε2k2
)
〈φ̃(x)〉 = 0. (2.48)

We can define the complex wave number by

k2 = k2
0 − 4c2

0ε
2(∂x + ik)2I(x) − ε2k2. (2.49)

Since the autocorrelation function of the perturbation depends here only on the difference
x′ − x, I(x) = I. In the small-perturbation approximation, one can also replace k by k0 in
the right-hand term, to get finally

k2 = k2
0(1 + 4c2

0ε
2I − ε2). (2.50)

We note that it is possible to keep k in the right-hand side, one then has to solve a bi-
quadratic complex equation. Here we only use the approximation.

In this paper, we used in one case an exponential correlation function

f1(x′ − x) = f1(ζ) = ε2e−|ζ |/a, (2.51)

where ζ = x′ − x. In this case ∂ζ f1(ζ) = −sign(ζ) f1(ζ)/a and ∂2
ζ f1(ζ) = f1(ζ)/a2 − 2

aδ(ζ),
so that

I = −
i

2c2
0k0a

(
2ik0a − (k0a)2 +

(k0a)2

2ik0a − 1

)
. (2.52)
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Thus

k2 = k2
0 + ε2k2

0

(
3 −

4(k0a)2

1 + 4(k0a)2

)
+2iε2k2

0

(
k0a +

k0a
1 + 4(k0a)2

)
. (2.53)

This formula gives the damping Im(k) = ki of the coherent wave 〈φ̃〉 and the effective wave
speed ω/Re(k) = ceff of the medium. For medium 2, we evaluate the integral numerically.

2.7.2 Keller approximation: Time-dependent random medium

Here, we extend the previous analysis to a time-dependent random medium c(x, t). We
rewrite the problem as follows:

(L0 + L1 + L2)φ = 0, (2.54)

where

L0φ = −∂2
t φ + c2

0∂
2
x(φ), (2.55)

L1φ = 2c0∂
2
x(δc(x, t)φ), (2.56)

L2φ = ∂2
x(δc(x, t)2φ). (2.57)

The associated Green’s function, solution of L0G0(t, t′, x, x′) = δ(t − t′)δ(x − x′), is

G0(x, x′, t, t′) = −
1

2c0
Θ(c0(t − t′) − |x − x′|), (2.58)

where Θ is the Heaviside step function. With these new operators, writing the wave field
as

〈φ(x, t)〉 = ei(kx−ωt), (2.59)

it follows that

(〈L1L−1
0 L1〉〈φ〉)(x, t)

= −4c4
0ε

2∂2
x

" ∞

−∞

dx′dt′G0(x, x′, t, t′) ×

∂2
x′[ f (x′ − x)g(t′ − t)〈φ(t′, x′)〉] (2.60)

and
〈L2〉〈φ〉 = c2

0ε
2k2〈φ〉. (2.61)

The calculations are similar to those for the time-independent random medium. Replacing
again k by k0 in the O(ε2) terms, one gets for medium 1

k2 = k2
0

(
1 − ε2

[
1 + 2c0

τ

a
1

Q1

(
−2 +

Q2

Q3
−

Q4

Q5

)])
, (2.62)
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where

Q1 = 1 − iωτ, (2.63)

Q2 = (1 − ik0a)2, (2.64)

Q3 = 1 − ik0a + Q1
a
τc0

, (2.65)

Q4 = (1 + ik0a)2, (2.66)

Q5 = −1 − ik0a − Q1
a
τc0

. (2.67)

We have demonstrated here the possibility to develop a time-dependent theory given
the knowledge of the power spectrum (or autocorrelation function) of the perturbation.
We note that here too, the solution for medium 2 presented in the corpus is evaluated
numerically.

2.7.3 Second-order Born approximation
Another theory is the second-order Born approximation, which we derive here for a time-
independent random medium c(x). It is similar to the Keller theory, but one does not look
for an effective wave equation satisfied by the mean wave field. Instead, one writes the
mean wave field as a series up to a certain order, each term being proportional to a power
of ε. Using the same notations for the operators as in Appendix 2.7.1, denoting φ̃0 the
unperturbed wave field and φ̃1 the correction such that φ̃ = φ̃0 + φ̃1, the 1st-order Born
approximation reads

φ̃ = φ̃0 − L̃−1
0 L̃1φ̃0 + O(ε2). (2.68)

Taking the average, one gets 〈φ̃〉 = φ̃0 + O(ε2). This means that we have to go down to the
second order:

φ̃ = φ̃0 − L̃−1
0 L̃1φ̃0 + L̃−1

0 L̃1L̃−1
0 L̃1φ̃0 − L̃−1

0 L̃2φ̃0 + O(ε3) (2.69)

which, averaged, gives

〈φ̃〉 = φ̃0 + L̃−1
0 〈L̃1L̃−1

0 L̃1〉φ̃0 − L̃−1
0 〈L̃2〉φ̃0 + O(ε3). (2.70)

We can compute 〈L̃1L̃−1
0 L̃1〉φ̃0 and 〈L̃2〉φ̃0 easily because these are mostly equations 2.42

and 2.47 replacing 〈φ̃(x)〉 = eikx by φ̃0(x) = eik0 x. One finally needs to apply L̃−1
0 which

is a convolution by the Green’s function. In order to converge, the integration requires a
compact support. To model the localization of the perturbation between X and X + L, we
introduce the window function

w(x̄) = Θ(x̄ − X) − Θ(x̄ − (X + L)) (2.71)

where x̄ = (x + x′)/2, so that

〈δc(x)δc(x′)〉 = c2
0ε

2e−|ζ |/aw(x̄). (2.72)

The approximate solution in [X, X + L] is

〈φ̃(x)〉 ' φ̃0(x)
(
1 + ε2

[
3
2

ik0a − (k0a)2 +
(k0a)2

2ik0a − 1

]
(x − X)

)
, (2.73)
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which, since ε � 1, can be written (omitting a phase term) in the form 〈φ̃(x)〉 ' eik(x−X)

where k has the same expression as for the Keller theory (Eq. (2.53)). To this level of
approximation, the effective k does not depend on L.

2.7.4 Spatial homogenization
In order to perform the spatial homogenization for a time-independent random medium
c(x), we consider the variable

ψ = c2φ, (2.74)

which is solution of
∂2

t
ψ

c2 − ∂
2
xψ = 0. (2.75)

Multiplying the equation by ∂tψ and integrating over space, then applying an integration
by parts, we find that

∂tE = 0, (2.76)

where

E =

∫
dx

(
1

2c2 (∂tψ)2 + (∂xψ)2
)

(2.77)

is an expression for the energy. Since it is invariant, we are certain that the homogeniza-
tion expansion converges.

The medium is assumed to vary on length scales much shorter than the wave (for solar
granulation the length scale a is at least shorter than the wave length of acoustic waves).
We moreover assume the periodicity of the medium: c(x) = c(x + a). We separate the
spatial variable x into y0, a slow-varying spatial scale, and y1 = y0/η, a fast-varying spatial
scale, where η = k0(ω0)a � 1 (e.g., Hanasoge et al. 2013). Then

ψ = ψ(y0, y1, t) (2.78)

and

∂x = ∂y0 +
1
η
∂y1 , (2.79)

∂2
x = ∂2

y0
+

2
η
∂y1∂y0 +

1
η2∂

2
y1
. (2.80)

We also expand the solution

ψ = ψ0 + ηψ1 + η2ψ2 + O(η3), (2.81)

where ψi = ψi(y0, y1, t) = ψi(y0, y1 + a, t). We can now proceed to solving the equation
order by order. Order η−2 gives

∂2
y1
ψ0 = 0. (2.82)

Multiplying by ψ0, integrating over y1 and using the argument of periodicity, one gets∫ a

0
(∂y1ψ0)2dy1 = 0, (2.83)
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meaning that ψ0 does not depend on y1. Order η−1 then gives

∂2
y1
ψ1 = 0, (2.84)

meaning that ψ1 does not depend on y1 either. Finally, at order η0,

∂2
t
ψ0

c2 − ∂
2
y0
ψ0 − ∂

2
y1
ψ2 = 0. (2.85)

Integrating over the fast-varying coordinate y1, invoking periodicity, one finds the follow-
ing homogenized equation for ψ:

∂2
t ψ0 −

1

c−2
∂2

y0
ψ0 = 0, (2.86)

where c−2 = 1
a

∫ a

0
c−2dy1 is a spatial average. The homogenization method, used here

for a periodic medium, has been generalized to a statistically homogeneous and ergodic
random medium, by making the period tend to∞ (e.g., Papanicolaou and Varadhan 1982).
The spatial average identifies then with the statistical average. The homogenized sound
speed ch of the medium is therefore equal to 〈c−2〉−1/2. Knowing that c = c0 + δc, c−2 '

c−2
0 (1 − 2δc/c0 + 3δc2/c2

0) and 〈c−2〉 ' c−2
0 (1 + 3ε2). Hence:

ch = 〈c−2〉−1/2 ' c0(1 −
3
2
ε2). (2.87)

We note that the spatial homogenization technique does not make an attenuation arise.

2.7.5 Ray approximation

The geometrical optics theory, or ray theory, is an infinite-frequency approximation. In
practice the applicability conditions are (Rytov et al. 1989a):

ε � 1, (2.88)
k0a � 1, (2.89)

k0a � 2π
L
a
. (2.90)

Under these conditions, the wave travel time inside the random medium starting at x = X
is computed as an integral of the slowness over the ray path:

t =

∫ x

X
c−1(s) ds = (x − X) c−1. (2.91)

Assuming ergodicity of the random medium, the spatial average identifies with the statis-
tical average and

cray = 〈c−1〉−1. (2.92)

46



2.7 Appendix

2.7.6 Comparing theories with numerical simulations in the limit ε →
0

Fig. 2.12 summarizes the accuracy of the (frozen) Keller theory, the Born second-order
approximation, the spatial homogenization and the ray theory in the small-perturbation
regime (ε = 0.01). For each simulation, ten sets of 104 realizations were generated to get
the error bars. For such a small perturbation, we are in the regime of validity of the Born
and Keller theories and the results are in agreement with the numerical simulations for the
attenuation and the effective wave speed. The attenuation for medium 2 resulting from
the time-domain simulation differs from the attenuation from the frequency-domain one,
likely because of numerical diffusion. As k0a is of order unity in our setup, we are not a
priori in the regime of validity of the homogenization or the geometrical optic theories.
However, the geometrical optics is in good agreement with the numerical simulations for
medium 1, despite the fact that the condition k0a � 2π L

a is not verified in our simulations.
Medium 2 exhibits, just like for ε = 0.1, a transition from the homogenization regime
at small frequencies (< 1 mHz) to the geometrical optics regime at high frequencies
(> 5 mHz).
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Figure 2.12: Comparison of theories with simulations for the average wave field (ε =

0.01). Top: attenuation. Bottom: effective wave speed. The triangles are for the simula-
tions in frequency domain (τ→ ∞), the squares for those in time domain (τ = 1 day). The
two dashed-dotted blue lines are the Born solutions for media 1 and 2, while the yellow
and orange dashed lines are the Keller solutions. 1 − σ error bars are shown.
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3 Contribution of flows around active
regions to the north-south
helioseismic measurements1

Abstract
Context. In local helioseismology, the travel times of acoustic waves propagating in op-
posite directions along the same meridian inform us about horizontal flows in the north-
south direction. The longitudinal averages of the north-south helioseismic travel-time
shifts vary with the sunspot cycle.

Aims. We aim to study the contribution of inflows into solar active regions to this
solar-cycle variation.

Methods. To do so, we identify the local flows around active regions in the horizontal
flow maps obtained from correlation tracking of granulation in SDO/HMI continuum im-
ages. We compute the forward-modeled travel-time perturbations caused by these inflows
using 3D sensitivity kernels. In order to compare with the observations, we average these
forward-modeled travel-time perturbations over longitude and time in the same way as
the measured travel times.

Results. The forward-modeling approach shows that the inflows associated with active
regions may account for only a fraction of the solar-cycle variations in the north-south
travel-time measurements.

Conclusions. The travel-time perturbations caused by the large-scale inflows sur-
rounding the active regions do not explain in full the solar-cycle variations seen in the
helioseismic measurements of the meridional circulation.

3.1 Introduction
The Sun’s meridional flow at the surface is poleward with a maximum amplitude of about
15 m/s (Duvall 1979). The meridional ciculation, both at the surface and in the deep
convection zone, is believed to be a key ingredient in flux-transport dynamo models (e.g.,
Wang et al. 1991, Dikpati and Gilman 2006, 2009). Observationally, the meridional cir-
culation is given as the longitudinal average of the north-south flows. This longitudinal

1Contribution statement: P.-L. P. performed research, measured the flow residuals, and wrote the results
with contributions from Zhi-Chao Liang, Damien Fournier and Laurent Gizon. Zhi-Chao Liang provided
the remapping and averaging codes. Damien Fournier computed the 3D sensitivity kernels.
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average is not constant in time: its amplitude and latitudinal dependence change over the
solar cycle (e.g., Komm et al. 1993, Hathaway and Rightmire 2010, 2011). It has been
proposed that extended inflows around solar active regions (Gizon et al. 2001) modu-
late the meridional flow at the surface (Gizon 2004, Gizon et al. 2010). These inflows
have amplitudes of up to 50 m/s near the surface and extend up to 10◦ from the center of
the active regions or further (Gizon et al. 2001, Hindman et al. 2003, Haber et al. 2004,
Hindman et al. 2009, Braun 2019, Gottschling et al. 2021).

Helioseismic travel-time shifts in the north-south direction are sensitive to the merid-
ional flow (e.g., Giles et al. 1997). The measurements made by Gizon et al. (2020) show a
solar-cycle modulation. We aim to determine how much of this modulation may indeed be
attributed to the near-surface active-region flows. To this end, we isolate and measure the
active-region flows in local correlation tracking (LCT) flow maps. By assuming a depth
dependence of these flows, we compute forward helioseismic travel-time perturbations
in the north-south direction to estimate their contribution to the fluctuations seen in the
time-distance measurements. Section 3.2 presents the data and the method. Section 3.3
shows the latitudinal and longitudinal components of the resulting active-region flows.
We compute in Section 3.4 the forward helioseismic travel-time perturbations associated
with the latitudinal inflows, using 3D Born sensitivity kernels. We attempt to model the
inflows with a simple model based on the latitudinal gradient of the unsigned magnetic
field in Section 3.5, in order to extend to the previous solar cycle. We compare our results
with helioseismic measurements in Section 3.6.

3.2 Horizontal flows from granulation tracking

3.2.1 Flow maps from LCT

We use the horizontal flow maps computed by Löptien et al. (2017). The original data set
covered the period from May 2010 to April 2016, and has later been extended till April
2019 (Gottschling et al. 2021). The maps were obtained by using the Fourier Local Cor-
relation Tracking code (Welsch et al. 2004, Fisher and Welsch 2008). The code tracked
pairs of consecutive full-resolution intensity images from SDO/HMI, so that the flows
represent the surface motions of solar granulation. The cadence of the flow maps is 30
minutes.

The data contained systematics like the orbital motions of SDO and the shrinking-Sun
effect (Lisle and Toomre 2004, Löptien et al. 2016). Löptien et al. (2017) decomposed
the flow maps into Zernike polynomials and filtered the time series of the coefficient
amplitudes to remove the periods of 24 h, 1 year, and their corresponding harmonics, as
well as the zero frequency.

The resulting data product contains the time-varying part of the rotation (torsional os-
cillations) and of the meridional circulation, plus potentially residual systematics (Gottschling
et al. 2021). The velocities are in CCD-frame units (pixels per second). The size of these
filtered images is 1024 × 1024 pixels; we perform a 5 × 5 binning on these images, yield-
ing a spatial resolution of about 10 arcsec per pixel which corresponds to 0.6 heliographic
degree per pixel at disk center.
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3.2.2 Construction of background in CCD frame
Gottschling et al. (2021) reported that the LCT flow maps contained residual systematics.
This means that large-scale background flows must be removed from the flow maps in
order to measure the flows related to active regions. These systematics likely depend on
the position on the visible disk, in particular if they are a residual of the shrinking-Sun
effect. Therefore, the correction should be done in the CCD frame.

3.2.2.1 Contour around active regions

In order to identify regions of magnetic activity, we use the HMI magnetograms at the
same time steps as the LCT data. We assume that the magnetic field is purely radial and
thus divide the line-of-sight magnetic field BLOS by the cosine of the great-circle angular
distance to disk center to obtain Br.

We aim to define a contour around active regions based on a spatially-smoothed mag-
netic field, in order for the contour itself to be smooth. We use a 2D Gaussian kernel
to smooth |Br|, with a full width at half maximum (FWHM) of 10◦ (here, 1◦ is 1 helio-
graphic degree) because it is the typical horizontal extent of the flows into active regions
(see Fig. 3.10). We then define the contour around the active regions as the line along
which the smoothed |Br| is equal to a magnetic threshold b, that we choose equal to 3.5 G.
By aligning the centers of active regions with a total magnetic flux above 1021 Mx in a
way similar to Braun (2019), we indeed found that this choice allows us to capture flows
as far as 12◦ away from the active region centers (see Appendix 3.8.1). The contour cap-
tures not only the active-region flows, but also the flows around the diffuse flux that is far
less concentrated, as seen in Fig. 3.1.

3.2.2.2 Background flows

We consider the flows outside the contour as the background flows which consist of the
potential systematics. We generate the background flow maps by computing monthly
averages of the flows using only the pixels outside the contour.

The monthly background flow maps can contain little to no data at mid-latitudes dur-
ing the solar maximum. Therefore, we smooth in time with a Gaussian of full width at
half maximum of one year. This width is large enough that it smooths out the regions
containing no data for several months, while the background is not expected to vary sig-
nificantly on that time scale (see Appendix 3.8.2). We further smooth in space with a
2D Gaussian of full width at half maximum of ten pixels, corresponding to an angular
distance of 6◦ at disk center.

These smoothed background flows exhibit a modulation on the time scale of a solar
cycle. This modulation is consistent with what is described by Gottschling et al. (2021).
They are studied in more detail in Appendix 3.8.2.

3.2.3 Active-region flows
The flows inside the contour are the superposition of the background flows and the active-
region flows. We therefore subtract the smoothed background flows from the 30-minute
cadence flow maps; the remaining flows are the active-region flows.
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Figure 3.1: Contours (thick black lines) on a quiet day July 14, 2018 (panel a) and on
an active day June 1, 2011 (panel b), superimposed on SDO/HMI magnetograms (line-
of-sight magnetic field). The thin black lines represent the contour of the magnetic mask
discussed in Section 3.4.2. We only consider pixels whose great-circle distance from disk
center is less than 50◦, and hence the active region in panel b located close to the limb is
not included in the analysis.
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Figure 3.2: Longitudinal average of vAR
θ (panel a; positive values are southward) and

vAR
φ (panel b; positive values are prograde), as a function of time and latitude. They

were further smoothed in latitude with a Gaussian of FWHM of 3.6◦ and in time with a
Gaussian of FWHM of 6 months. The black lines show the mean active latitudes. The
ticks on the horizontal axis indicate the beginning of each year. The shaded areas indicate
the times when the edge effects become visible due to the one-year temporal smoothing
of the background flows.

We track these active-region flow maps at the Carrington rate on a daily basis using
noon as a reference, and remap them using the Plate Carree projection into the helio-
graphic coordinate system. The spatial resolution is 0.6◦ per pixel. Following the for-
mulas in the appendix of Löptien et al. (2017), we convert the velocities from pixels per
second to meters per second. Then we average the flows daily. These daily-averaged flows
are denoted by vAR

j (θ, φ, t), where j ∈ {θ, φ} indicates the colatitudinal or the longitudinal
direction.
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Figure 3.3: In black, longitudinally- and yearly-averaged vAR
θ and vAR

φ , rebinned in latitude
to obtain a point every 3.6◦. The standard error of the mean in each binning interval is
about 1 m/s for vAR

θ and 0.4 m/s for vAR
φ , and is not shown here. The magenta filling

indicates the distribution of |Br| (arbitrary unit), which was averaged and rebinned in the
same way as the flows.
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3.3 Temporal variation of active-region flows

To examine the temporal and latitudinal evolution of the active-region flows, we average
vAR

j (θ, φ, t) in longitude within ±15◦ of the central meridian. Figure 3.2 shows the longitu-
dinal averages of vAR

θ and vAR
φ as a function of time and latitude (denoted as λ = 90◦ − θ).

Figure 3.3 shows the yearly-averaged flows as a function of latitude, together with the
magnetic activity.

Figure 3.2a shows an inflow pattern converging toward the mean latitude of activity
in both hemispheres. The inflows are stronger and cover a greater latitudinal range on the
poleward side of the active latitude. We note that, in Braun (2019) and Gottschling et al.
(2021), the inflows are mostly symmetric with respect to the center of the active regions.
This is because they use an ensemble averaging over active regions whose centers have
been aligned with each other, while we use a longitudinal long-term averaging that makes
the equatorward side of the inflows from both hemispheres cancel each other out.

In the left column of Fig. 3.3, the amplitude of the yearly-averaged vAR
θ reaches ex-

trema of over 7 m/s in the north in 2011 – 2012 and over 6 m/s in the south in 2014 –
2015. Likewise, the solar magnetic activity peaks in 2011 in the northern hemisphere
and in 2014 in the southern hemisphere. Therefore the amplitude of the inflows is clearly
correlated with the strength of the solar activity. This amplitude is consistent with that
predicted by the model of Spruit (2003) that interprets the inflows as a consequence of the
enhanced cooling in the activity belt. The amplitude is also similar to that from, e.g., Gi-
zon (2003), González Hernández et al. (2008), Komm et al. (2020), who isolated regions
of magnetic activity and their surroundings in a way similar to what we do here.

Figure 3.2b shows that the toroidal component is a retrograde flow (with respect to the
background flow) on the poleward side of the active latitudes. The torsional oscillations,
which are the time-varying part of the solar rotation, exhibit a shear flow around the
active latitude, with a faster-rotating band on the equatorward side and a slower-rotating
one on the poleward side. Therefore, the toroidal component seen here contributes to the
torsional oscillations.

The right column of Fig. 3.3 shows that the amplitude of the toroidal component is also
correlated with the amplitude of the solar magnetic activity. The retrograde flow reaches
over 8 m/s in the north in 2011 – 2012 and over 6 m/s in the south in 2013 – 2014. This
signal is consistent with the retrograde flow, surrounding active regions preferentially on
the poleward side, that was found by Braun (2019). There is also a weaker prograde flow
on the equatorward side of the activity belt. The presence of this signal is also consistent
with the idea of a cyclonic circulation around active regions that derives from the model
of Spruit (2003) and that was also described by Hindman et al. (2009). Braun (2019)
and Gottschling et al. (2021) reported the presence of a prograde flow inside the leading
polarity; the fact that the leading polarity lies at lower latitudes than the trailing one may
also explain why a prograde flow is seen in our longitudinal and long-term average.
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Figure 3.4: Forward travel-time perturbations −τAR, as a function of latitude and separa-
tion distance. They have been averaged in longitude around the central meridian and in
time from January 2011 to December 2014.

3.4 Modeled helioseismic travel-time perturbations

3.4.1 Computation of travel-time perturbations
We compute the forward travel-time perturbations associated with the active-region flows
to compare with the solar-cycle variations of the helioseismic measurements of the merid-
ional circulation.

To this end, we first construct a 3D flow profile associated with the active-region flows
at the surface. We neglect the contribution from the vertical flow to the travel times. For
the colatitudinal and longitudinal components uθ and uφ, we choose a constant profile with
depth such that

uθ(r, t) = vAR
θ (θ, φ, t), (3.1)

uφ(r, t) = vAR
φ (θ, φ, t), (3.2)

where r = (r, θ, φ). Although it would be more realistic to choose a flow profile where
the amplitude decreases with depth, choosing a constant profile allows us to estimate an
upper bound for the amplitude of the travel-time perturbations due to active-region flows.

In order to directly compare with Gizon et al. (2020), we use an arc-to-arc geometry,
with the travel-time perturbations being computed between pairs of points placed on two
opposite arcs. The paired arcs, each subtending an angle of 30◦, are aligned in the north-
south direction as described by Liang et al. (2017). Let’s denote ψ the angle between a
meridian and the ray path connecting the paired points on the arcs, (θ0, φ0) the mid-point
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Figure 3.5: Panel a: Longitudinally-averaged active-region flows vAR
θ as plotted in

Fig. 3.2, shown again here for convenience of comparison. Panel b: Longitudinally-
averaged forward travel-time perturbations −τAR, further averaged over separation dis-
tances 6◦ – 18◦. Panel c: same as panel b, but for the travel-time perturbations with the
magnetic mask applied, −τAR

m (discussed in Section 3.4.2). We applied the same smooth-
ing as in Fig. 3.2. The black lines show the mean active latitudes. Panels d–f : Averages
of the top panels over latitudes λ = 20◦ − 35◦ in each hemisphere. The typical errors
in the flows over the latitudinal range of interest are about 0.6 m/s. For the travel-time
perturbations, the errors are in the range of 0.002 – 0.008 s, with the largest error for τAR

m
during the peaks of activity. The errors are not shown here. In all panels, the shaded ar-
eas indicate the times when the edge effects become visible due to the one-year temporal
smoothing of the background flows.

between the paired arcs, and ∆ the separation distance between the paired points. The
travel-time perturbation is thus defined as (e.g., Gizon et al. 2017, Fournier et al. 2018)

τ(θ0, φ0,∆, ψ, t) =

∫
�

(
Kθ(r; θ0, φ0,∆, ψ) uθ(r, t)

+ Kφ(r; θ0, φ0,∆, ψ) uφ(r, t)
)

dr,
(3.3)

where the integral is taken over the whole volume of the Sun, and Kθ and Kφ are the
colatitudinal and longitudinal components of the sensitivity kernel (see Appendix 3.8.3).
Here, by convention, a northward flow perturbation corresponds to a positive travel-time
perturbation for short separation distances.

The forward travel-time perturbation is averaged in the same way as in Gizon et al.
(2020); that is,

τAR(θ0,∆, t) =
(
Nφ0 Nψ

)−1
×

∑
φ0,ψ

τ(θ0, φ0,∆, ψ, t), (3.4)
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where the sum over φ0 is taken within ±15◦, the sum over ψ is taken within ±15◦, Nφ0 is
the number of points used in the longitudinal average, and Nψ is the number of points on
an arc for each distance.

Figure 3.4 shows the forward travel-time perturbations as a function of latitude and
separation distance after we averaged over the active period from January 2011 to De-
cember 2014. Even though we chose a constant flow profile with depth, the forward
travel-time perturbations could still change sign with increasing separation distance, for
example, when the separation distance is larger than the spatial scale of active region
flows. Our τAR decreases with separation distance but does not change sign up to at least
∆ = 18◦, which is similar to the modeled travel-time perturbations from Liang et al.
(2018).

We show the longitudinally-averaged vAR
θ (as plotted in Fig. 3.2) in Fig. 3.5a, and

the corresponding τAR averaged over separation distances 6◦ – 18◦ in Fig. 3.5b. We can
clearly see the inflow pattern converging toward the active latitudes in Fig. 3.5b, with an
amplitude that varies throughout the solar cycle as in panel Fig. 3.5a. When averaged over
latitudes 20◦ − 35◦, the amplitude of the inflows reaches 5 m/s in 2011 in the north and
−5 m/s in 2014 in the south (Fig. 3.5d). Similarly, the amplitude of τAR reaches extrema
of 0.3 s during these active periods (Fig. 3.5e). For comparison, we also computed τAR

using the radial flow profile from the shallow model LC2 described in Liang et al. (2018);
in this case, the amplitude of τAR reaches extrema of 0.15 s.

3.4.2 Effect of masking travel-time perturbations inside magnetic re-
gions

Gizon et al. (2020) excluded the travel-time perturbations measured within magnetic re-
gions from the averages, as those measurements introduce a systematic error that resem-
bles a divergent flow pattern (Liang and Chou 2015). In order to compare with their
results, we apply the same masking as they did. The contour of the mask is shown as
the thin black line in Fig 3.1. We rewrite the forward travel-time perturbation averaging
with a weighting function w that is equal to zero if the forward travel-time perturbation is
excluded and one elsewhere. Equation 3.4 then becomes

τAR
m (θ0,∆, t) =

∑
φ0,ψ

w(θ0, φ0,∆, ψ, t)


−1

×∑
φ0,ψ

w(θ0, φ0,∆, ψ, t) τ(θ0, φ0,∆, ψ, t).
(3.5)

The third column of Fig. 3.5 shows the forward travel-time perturbations after the
magnetic mask is applied, denoted by τAR

m . These perturbations are associated with the
flows located between the contour defining the magnetic mask and the one defining the
background (see Fig. 3.1). τAR

m (Fig. 3.5c) resembles τAR (Fig. 3.5b) but the amplitude
of the inflow pattern is strongly reduced during solar maximum. Figure 3.5f shows that,
when averaged over mid latitudes, the amplitude reaches a maximum in 2011 – 2012 in the
north and in 2014 – 2015 in the south, that is three times smaller than that in Fig. 3.5e. We
note that τAR

m changes sign around the same time as the background flows (see Fig. 3.11):
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Figure 3.6: Longitudinally-averaged forward travel-time perturbations, further averaged
from January 2011 to December 2014, i.e. during high magnetic activity. They have been
rebinned in latitude to obtain a point every 3.6◦. The typical standard error of the mean,
computed in each binning interval, is about 0.003 s, and is not shown here. The vertical
gray shaded areas show the mean active latitudes.

the pattern is mostly equatorward during solar maximum and becomes poleward after
2016.

Figure 3.6 presents a comparison between τAR and τAR
m , averaged over four active

years from January 2011 to December 2014. τAR shows an inflow pattern with an ampli-
tude reaching a maximum at about 20◦. With the masking, the inflow pattern converging
toward the active latitudes is nearly gone, and it rather looks like a flow converging to-
ward the equator with an extremal amplitude of about 0.1 s. The difference τAR

m − τAR

presents a clear inflow pattern toward the active latitudes, comparable to τAR. Therefore,
the masking of the magnetic regions removes most of the inflow pattern from the averaged
travel-time perturbations.

We note that the masking of magnetic pixels implemented in Gizon et al. (2020)
checks an area of 4 × 4 pixels around either of the foot points in the arc-to-arc geom-
etry (Liang et al. 2017); if the field strength is greater than a threshold in this area, the
paired points are excluded from the averages. We found that if only the nearest pixel to
the foot point (instead of a 4×4-pixel area) is checked, the reduction of the inflow pattern
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Figure 3.7: Modeled inflows ṽ AR
θ (panel a), and travel-time perturbations without mag-

netic mask −τ̃AR (panel b) and with magnetic mask −τ̃AR
m (panel c) from May 1996 to

April 2019. τ̃AR and τ̃AR
m are derived from τAR and τAR

m averaged over separation dis-
tances 6◦ – 18◦. The same smoothing as in Fig. 3.2 is applied. The black lines show the
mean active latitudes.

in the forward travel-time perturbations is not as strong as the aforementioned results.

3.5 Extension to May 1996 – April 2019
We aim to extend the analysis to cover the time period 1996 – 2019 in order to compare
the results with Gizon et al. (2020). Although the LCT data are only available after May
2010 as they were computed from full-resolution HMI intensity images, we could use the
magnetic field as a proxy for the active-region inflows from May 1996 to April 2010. The
correlation between the magnetic field and the inflows is visible in Fig. 3.3: the greater the
latitudinal gradient of the magnetic field strength, the greater the inflows. Several models
already exist in the dynamo literature to generate artificial active-region inflows based on
the observations of the magnetic field (e.g., De Rosa and Schrijver 2006, Cameron and
Schüssler 2010, 2012).
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Figure 3.8: Panels a–c: Averages of ṽ AR
θ , −τ̃AR, and −τ̃AR

m from Figs. 3.7a–c over latitudes
λ = 20◦ − 35◦ in each hemisphere (thin lines). For comparison, the corresponding vAR

θ ,
−τAR, and −τAR

m from Figs. 3.5d–f are overplotted in thick lines; the data in the first and
last six months are not shown because the edge effects become visible due to the one-year
temporal smoothing of the background flows. Panel d: 13-month running mean of the
hemispheric monthly sunspot numbers. The red (respectively blue) filling indicates an
excess of sunspot numbers in the northern (respectively southern) hemisphere.
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We minimize the cost function∥∥∥∥∥ 〈vAR
θ 〉 − c0

∂〈|Br|〉

∂θ

∥∥∥∥∥2

(3.6)

to determine the constant of proportionality c0. Here ‖ · ‖ denotes the L2-norm and 〈 · 〉
denotes the averaging in longitude within ±15◦ of the central meridian and the smoothing
in latitude and time in the way described in Fig. 3.2. We use only the data from January
2011 to December 2014 and in the latitudinal range 20◦ – 35◦, where the inflows are the
strongest. We find c0 ' 0.072 m s−1 G−1.

We compute the modeled inflows ṽ AR
θ using the MDI magnetograms from May 1996

to April 2010 and the HMI magnetograms from May 2010 to April 2019. The line-of-
sight magnetic field inferred from HMI data is smaller than that from MDI data (Liu et al.
2012); the scaling factor depends on the location on the disk and on the field strength. We
determine this scaling factor using |Br| at latitudes 20◦ – 35◦ and longitudes within ±15◦

of the central meridian, during the time period from May 2010 to April 2011 when both
data sets are available. We find the scaling factor is about 0.64 which is then applied to
the MDI data.

Finally, based on the similarity between the inflows and the travel-time perturbations
shown in Fig. 3.5, we use a conversion constant to convert from the modeled flows ṽ AR

θ

to modeled travel-time perturbations from May 1996 to April 2019. For an average over
separation distances 6◦ – 18◦, we find the conversion constant to be −0.056 s2/m for the
case without the magnetic mask τ̃AR and −0.014 s2/m for the case with the magnetic mask
τ̃AR

m .
Figure 3.7 shows the modeled inflows and the travel-time perturbations without and

with magnetic mask as a function of time and latitude, over Cycle 23 (1996 – 2008) and
Cycle 24 (2008 – 2019). All the panels exhibit the inflow pattern with the flows generally
converging toward the mean active latitudes, which is similar to that in Fig. 3.5. The
amplitude of the models is comparable to that of the observations for both the inflows
and the travel-time perturbations on the poleward side of the activity belt. However, on
the equatorward side, the amplitude of the models is greater because we determined the
proportionality constant c0 using only the latitudes 20◦ – 35◦.

Figure 3.8 shows how the models compare with the observations when averaged over
latitudes 20◦ – 35◦. ṽ AR

θ (Fig. 3.8a) and τ̃AR
θ (Fig. 3.8b) generally match vAR

θ and τAR well
in both hemispheres, especially during the peaks of magnetic activity. When the magnetic
mask is applied (Fig. 3.8c), the model τ̃AR

m retrieves the correct order of magnitude but
does not fully capture τAR

m . Furthermore, we note that the amplitude of the models is
greater during the Cycle 23 solar maximum than that during the Cycle 24 solar maximum,
which is consistent with the sunspot number presented in Fig. 3.8d.

3.6 Comparison with helioseismic measurements
We compare in Fig. 3.9 our forward travel-time perturbations with the measurements from
Gizon et al. (2020) spanning Cycles 23 and 24. Gizon et al. (2020) used the data from
SOHO/MDI and GONG for the periods from May 1996 to April 2003 and from May
2003 to April 2019, respectively; the travel times associated with the magnetic pixels
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Figure 3.9: Comparison between the north-south travel-time perturbations as measured by
Gizon et al. (2020) (thick solid lines) and the forward travel-time perturbations without
(thin solid line) and with (thick dashed line) the magnetic mask. The measurements were
averaged over the latitudes λ = 20◦ – 35◦ in each hemisphere, over separation distances
∆ = 6◦ – 18◦, and over consecutive 4-year time intervals. The average over the quiet-Sun
period January 2007 to April 2009 was subtracted from the measurements, and the sign
was reversed for the purpose of comparison. The corresponding −τ̃AR and −τ̃AR

m are used
from May 1996 to April 2010, and −τAR and −τAR

m from May 2010 to April 2019. For the
measurements, the error bars represent the standard error of the mean computed over the
latitudinal range of interest. For the forward travel-time perturbations, the standard error
of the mean is in the range of 0.001 – 0.006 s and is not shown here.

were excluded in their measurements. For the forward travel-time perturbations, we used
τ̃AR and τ̃AR

m for the period from May 1996 to April 2010, and τAR and τAR
m for the period

from May 2010 to April 2019.

The measurements of Gizon et al. (2020) exhibit a modulation in amplitude over the
solar cycles that is correlated with the magnetic activity. The τAR and τ̃AR also exhibit
this modulation, albeit with a weaker amplitude. We remind the reader that we used
a constant profile with depth for the active-region flow model to place an upper limit;
that is, the magnitude of τAR and τ̃AR is overestimated. When the masking is taken into
account, the magnitude of τAR

m and τ̃AR
m differs greatly from the measurements. These

results suggest that the true travel-time perturbations caused by the inflows do not fully
explain the solar-cycle variations in the travel-time measurements.
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3.7 Summary and discussion

We used LCT flow maps over nine years during Cycle 24. We removed large-scale back-
ground flows and extracted the flows associated with active regions. We averaged these
flows in longitude to study their latitudinal profile and time evolution. The latitudinal flow
exhibits an inflow pattern converging toward the active latitudes with a maximal amplitude
of 7 m/s (yearly average) on the poleward side of the activity belt during solar maximum,
which is about 50% of the global meridional flow at the surface. This amplitude is similar
to that found by Gizon (2003), González Hernández et al. (2008), Komm et al. (2020),
although a direct comparison with their results is not possible because they used different
methods. The longitudinal flow exhibits a retrograde component on the poleward side
of the activity belt, with an amplitude reaching 8 m/s, namely of the same order as the
torsional oscillations. The presence and the structure of these flows are correlated with
the strength and the distribution of the magnetic activity. The flows related to the surface
magnetic activity thus strongly contribute to shaping the large-scale flows.

We computed the corresponding forward helioseismic travel-time perturbations using
3D sensitivity kernels and using an arc-to-arc geometry in the north-south direction. We
assumed constant inflows with depth to place an upper limit on the contribution of inflows
to helioseismic measurements of the meridional circulation. For separation distances ∆ =

6◦ – 18◦, the extrema of the averaged forward travel-time perturbations are ±0.3 s during
the peaks of solar activity. We also averaged the forward travel-time perturbations with
the masking of magnetic regions as in Gizon et al. (2020), and found that the masking
significantly reduced the amplitude of the travel-time perturbations, leading to extrema of
about ±0.1 s during solar maximum.

We extended the active-region flows and the forward travel-time perturbations to cover
two solar cycles, from May 1996 to April 2019, using a model based on the latitudinal
gradient of the magnetic field strength. We assumed that the travel-time perturbations
are roughly proportional to the flows. This simple model reproduces the inflow patterns
throughout the solar cycle and allows us to compare our results with the measurements
of Gizon et al. (2020) over two solar cycles. We found that the near-surface active-region
flows do not explain in full the solar-cycle variations seen in the measurements.

We note that the background flows, defined as the flows that are far from active re-
gions, contain not only systematics but also true flows in the quiet regions, if any. We
see that they exhibit a large-scale modulation throughout the solar cycle that seems cor-
related with the magnetic activity (Appendix 3.8.2). Since the LCT data were filtered to
remove only the periods of 24 hr, 1 yr, and the mean of the time series (Löptien et al.
2017, Gottschling et al. 2021), long-term variations of the global-scale meridional flow
could still remain in the background flows. However, we cannot exclude that there exist
systematics that vary with the solar cycle. Separating the true global-scale flows from the
systematics in the LCT data is beyond the scope of this paper.

González Hernández et al. (2008) used ring-diagram analysis to infer the subsurface
meridional flow, and found that the inflows persist even after the flows surrounding the
active regions were excluded. They attributed it to the fact that their masking may not
remove the weaker magnetic regions and the diffuse field, but they also did not exclude
the possibility that inflows may exist in quiet regions. Similarly, Komm et al. (2020)
studied the time variations of subsurface flows for quiet and active regions, separately,
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over the past two solar cycles and found a solar-cycle modulation in the quiet-Sun flows.
Hathaway and Rightmire (2010) found that the meridional flow is stronger during so-

lar minimum, although they did not disentangle the active-region flows from the global
circulation. Lin and Chou (2018) assumed that the meridional flows are simply a linear
combination of the local inflows and global-scale meridional flows and found a similar
result. A number of other studies, in which the authors subtracted a time-averaged merid-
ional flow profile, observed residuals during solar minima (e.g., Hathaway and Rightmire
2011, Komm et al. 2015, Getling et al. 2021); however, the patterns of these residuals
differ from one another, depending on the time periods used to compute the reference. To
avoid this dependence, González Hernández et al. (2010) subtracted a low-order polyno-
mial fit and also found meridional flow residuals. These studies support the conclusion of
our paper that there may be a time-varying component of the meridional flow unrelated
to active regions.

We note finally that other phenomena related to the surface magnetic activity can
contribute to the temporal variation of the travel-time perturbations measured by Gizon
et al. (2020). In particular, the Woodard effect (Woodard 1997) can add systematics via
the localized absorption of acoustic waves by sunspots. This effect has not been taken
into account in our study.
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3.8 Appendix

3.8.1 Definition of contour
To determine the values of the contour parameter b defined in Section 3.2.2.1, we first
compute the ensemble average of active regions in a way similar to Braun (2019) and
Gottschling et al. (2021). A brief description of the procedure is as follows.

We track the HMI magnetograms at the Carrington rate, remap them using the Plate
Carree projection into the heliographic coordinate system, and compute daily averages of
unsigned magnetic flux density maps. We smooth these maps by a 2D Gaussian of full
width at half maximum 10◦ (heliographic degrees). We follow the algorithm of Braun
(2019) to detect the peaks (pixels of value higher than that of any of the eight neighboring
pixels), sort them from highest to lowest flux density, and then retain only those that are
further than 20◦ from all peaks of higher flux density. This procedure ensures that all the
selected active regions are clearly separated from each other. Each active region has an
associated total unsigned magnetic flux computed over a box, spanning 20◦ in longitude
and 10◦ in latitude around the active region. We retain the active regions with a total
unsigned magnetic flux above 1021 Mx.

65



3 Contribution of flows around active regions to the north-south helioseismic
measurements

15 m/s

-20 -10 0 10 20
∆φ ( ◦ )

-20

-10

0

10

20

∆
λ
 (
◦
)

BLOS (G)

-20

-10

0

10

20

Figure 3.10: Average active-region flows. ∆φ and ∆λ are the longitude and latitude with
respect to the center of the active region. The flows close to the center of each polarity
have been masked out before averaging because LCT flows in highly-magnetic regions are
not reliable (Löptien et al. 2017). We superimpose the average contours for the following
values of b: 4 G, 3.5 G, and 3 G (dotted, solid, and dashed green lines, respectively).

We align the selected active regions with respect to their center of mass. The center
of mass is computed as the average of the center of mass of the pixels with positive Br

and that of the pixels with negative Br, both weighted by the smoothed and daily averaged
unsigned flux density. To limit the impact of noise, we do not consider pixels with |Br| less
than 50 G in the computation of the center of mass and of the magnetic flux. If an active
region is in the southern hemisphere, we flip it in the north-south direction and the sign
of Br and vAR

θ , so that it can be averaged together with the active regions in the northern
hemisphere.

Figure 3.10 shows the average active-region flows using the vAR
θ and vAR

φ from Sec-
tion 3.2.3. They consist of inflows toward the center of the active region, mainly toward
the trailing polarity. They extend on average up to 10◦ away from the center of each po-
larity, in both the latitudinal and the longitudinal directions. This is consistent with the
results of, e.g., Löptien et al. (2017), Braun (2019) and Gottschling et al. (2021).

We determine the contours for each individual active region with various values for
the magnetic threshold b. For each value of b, we draw in Fig. 3.10 the line for which
the pixels are inside of 90% of the contours. The contours for b = 4 G and 3.5 G are
similar, with the later covering up to 12◦ away from the active region in the latitudinal
direction, that is, further than the inflows. However, using b = 4 G results in yearly- and
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longitudinally-averaged flows up to 2 − 3 m/s weaker than with b = 3.5 G. On the other
hand, the contour with b = 3 G covers up to about 15◦ away from the active region, which
seems more than enough to encompass all active-region flows. However with this param-
eter value, the background flows contains no data for more than a year at mid latitudes
around 2011 in the north and around 2014 in the south. A smoothing in time with a Gaus-
sian of FWHM of one year is therefore not possible. Increasing significantly the FWHM
is also not possible because of the time scale of variation of the background flows. As a
result, we choose b = 3.5 G as the best compromise to consider as much active-region
flows as possible and still have a reliable background estimation.

3.8.2 Temporal variation of the background flows

We track, remap and average the background flows in the same way as the active-region
flows in order to study their temporal variation. The results are presented in Figure 3.11.
After subtraction of the activity-related flows from the LCT maps, a large-scale modula-
tion of the meridional component is still present, with a peak-to-peak amplitude of about
12 m/s on average over mid latitudes (panel c). This trend is roughly antisymmetric with
respect to the equator, and resembles an equatorward flow in the first half of the time
series, then a poleward flow in the second half toward solar minimum (panel a). This
is consistent with Gottschling et al. (2021). Although these flows contain systematics,
this trend seems to indicate that the global-scale meridional flows become stronger when
approaching the solar minimum, as was previously reported by, e.g., Hathaway and Right-
mire (2010), González Hernández et al. (2010), Komm et al. (2015), Lin and Chou (2018),
Gizon et al. (2020), and Getling et al. (2021).

The toroidal component also shows a modulation that is roughly symmetric with re-
spect to the equator. It resembles a prograde flow with respect to the mean rotation rate
in the first half of the time series, then a retrograde flow in the second half (panel b).
The amplitude varies between −3 and +5 m/s (panel d). The prograde pattern during the
first half migrates toward the equator along with the activity belts, which suggests that
this component of the background flows might contain not only systematics but also real
flows in the quiet Sun.

3.8.3 3D Born sensitivity kernels

The computation of the 3D Born sensitivity kernels is based on the approaches from Gizon
et al. (2017), Fournier et al. (2018). The wave field ψ(r, ω) is solution of a scalar wave
equation in the frequency domain

− (ω2 + 2iωγ)ψ − 2iωu · ∇ψ − c∇ ·
(
1
ρ
∇(ρcψ)

)
= s(r, ω), (3.7)

where ρ is the density, c the sound speed, γ the attenuation and s a stochastic source
term describing wave excitation. The wave field is related to the 3D wave displacement ξ
through ψ(r, ω) = c(r)∇ · ξ(r, ω).

The flow kernels K = (Kr,Kθ,Kφ) can be computed from the knowledge of the Green’s
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Figure 3.11: Longitudinally-averaged background flows vQS
θ (panel a; positive values are

southward) and vQS
φ (panel b; positive values are prograde). We smoothed in latitude with

a Gaussian of FWHM of 3.6◦ and in time with a Gaussian of FWHM of 6 months. Panels
c-d: Average over latitudes λ = 20◦ − 35◦ in each hemisphere; the typical standard errors
of the mean, computed over the latitudinal interval, are about 0.06 m/s for vQS

θ and about
0.03 m/s for vQS

φ , and are not shown here. In all panels, the shaded areas indicate the
times when the edge effects become visible due to the one-year temporal smoothing of
the flows.

function solution of Eq. (3.7) with a Dirac on the right hand side:

K(r; r1, r2) = 2iρ(r)
∫ ∞

−∞

ωW∗(r1, r2, ω)
[
G(r2; r, ω)∇C(r1; r, ω)

−G∗(r1; r, ω)∇C∗(r2; r, ω)
]

dω, (3.8)

where r1 = (R, θ1, φ1) and r2 = (R, θ2, φ2) are two observation points, R is the observa-
tion radius, C is the cross-covariance, W is a weighting function in order to relate the
travel-time perturbation to changes in the cross-covariance, and ∇ is the gradient operator
with respect to r. As in Gizon et al. (2017), we assume energy equipartition so that the
cross-covariance is related to the imaginary part of the Green’s function. For the sake of
simplicity, we now drop the ω in the notation of the cross-covariance and of the Green’s
function. In a spherically symmetric background, the Green’s function depends only on
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the angular distance between source and receiver and can be obtained from its Legendre
coefficients (Fournier et al. 2018):

G(r, θ, φ; ri) =
1
√

2π

∑
`

G`(r; R)P`(cos γi), (3.9)

where i ∈ {1, 2}, P` is the Legendre polynomial of order `,

cos γi = cos θ cos θi + sin θ sin θi cos(φ − φi), (3.10)

and G`(r; R) is solution of

− (ω2 + 2iωγ)G` − c
d
dr

(
1
ρ

d
dr

(ρcG`)
)

+
`(` + 1)c2

r2 G` = δ(r − R). (3.11)

We keep the values of ` up to 300.
Inserting Eq. (3.9) into Eq. (3.8), the kernel for the radial flow is given by

Kr(r; r1, r2) =
2ρ(r)
π

∑
``′

[
− f r

``′(r)P`′(cos γ1)P`(cos γ2)

+ gr
``′(r)P`(cos γ1)P`′(cos γ2)

]
, (3.12)

where

f r
``′(r) =

∫ ∞

0
ωIm [W∗(r1, r2, ω)G`(r; R)∂rC`′(r; R)] dω, (3.13)

gr
``′(r) =

∫ ∞

0
ωIm

[
W∗(r1, r2, ω)G∗`(r; R)∂rC∗`′(r; R)

]
dω. (3.14)

Similarly, denoting

f j
``′(r) =

∫ ∞

0
ωIm [W∗(r1, r2, ω)G`(r; R)C`′(r; R)] dω, (3.15)

g j
``′(r) =

∫ ∞

0
ωIm

[
W∗(r1, r2, ω)G∗`(r; R)C∗`′(r; R)

]
dω, (3.16)

where j ∈ {θ, φ}, the kernels for the horizontal flow components are given by

K j(r; r1, r2) =
2ρ(r)
π r

∑
``′

[
− f j

``′(r)α j
1P′`′(cos γ1)P`(cos γ2)

+ g j
``′(r)α j

2P`(cos γ1)P′`′(cos γ2)
]
, (3.17)

where P′ is the derivative of the Legendre polynomials and

αθi = − cos θi sin θ − sin θi cos θ cos(φ − φi), (3.18)

α
φ
i = − sin θi sin(φ − φi) (3.19)

are respectively the derivative of cos γi with respect to θ, and the derivative with respect
to φ and divided by sin θ.
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Let’s consider r1 and r2 two foot points in the arc-to-arc geometry described by Liang
et al. (2017) and used in this paper. Let’s denote (θ0, φ0) the colatitude and longitude of
the midpoint, ∆ the separation distance between the foot points, and ψ between a meridian
and the ray path connecting the paired points on the arcs. Then we rewrite the flow kernels
as

K(r; r1, r2) = K(r; θ0, φ0,∆, ψ). (3.20)

We use this notation in the main text in order to make the averaging of the travel-time
perturbations over the arcs more explicit.

70



4 Discussion

4.1 Properties of flows around the average active region
In a way similar to Braun (2019), we want to analyze the properties of the flows around
the average active region to better understand their contribution to the meridional flow. In
particular, we aim to determine if the change over time of the amplitude of vAR

θ depends
on the magnetic flux of the active regions. We also check the presence of a retrograde flow
on the poleward side of the active regions. We use the method described in Section 3.8.1.

4.1.1 LCT data show a retrograde flow in the leading polarity

Panel a of Fig. 4.1 shows the average active region. Clear inflows are visible, mostly
in the latitudinal direction. The flows converge preferably toward the trailing polarity,
as seen by Löptien et al. (2017) using the same LCT data and by Braun (2019) using
a helioseismic holography technique. This can partly be because it is known that, in
sunspots with penumbra, the leading polarity is the location of outgoing moat flows that
may inhibit the inflows. However, after performing the ensemble averaging, we do not
see a moat flow but rather a retrograde flow from the leading polarity into the trailing
polarity. Since the LCT velocities cannot be trusted inside strong magnetic regions, in
a way similar to Löptien et al. (2017) we discard the pixels whose unsigned magnetic
field, once smoothed with a Gaussian of σ = 4 pixels, is over 50 G. The resulting average
active region is presented in panel b. The inflows in the latitudinal direction also increase
by this procedure. We did not use this procedure in Chapter 3, so vAR

φ presents a retrograde
component coming from the inner part of the active regions. By running our procedure
from Chapter 3 with this procedure, we estimated this additional azimuthal flow to reach
about −4 m/s (yearly average) during high activity and at the center of the activity belt,
while the additional inflow in the latitudinal direction reaches 0.5 m/s. The retrograde
flow seen in Chapter 3 changes by about 1 m/s for latitudes greater than 20◦.

4.1.2 Dependence of the flows on the total unsigned magnetic flux

We discard here the pixels with a strong magnetic field using the procedure described
in Section 4.1.1. As shown in Fig. 4.2, the total unsigned magnetic flux of most active
regions lies between 1×1021 Mx and 5×1022 Mx. We separate the active regions in three
categories depending on their total flux. Both polarities have inflows with a maximum
amplitude of about ±10 − 15 m/s. The maximum arises at ±3◦ − 5◦ from the center.
The inflows are overall stronger by a few m/s on the poleward side. They extend up to
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Figure 4.1: Average active region. Panel a: When keeping the flows inside the active
regions. Panel b: When removing these flows. ∆λ and ∆φ are the angular distances to the
center of the active region, respectively in the latitudinal and in the longitudinal directions.
∆λ > 0◦ is poleward, ∆φ > 0◦ is prograde. The orange dashed lines delimit the averaging
ranges for the longitudinal and latitudinal cuts in Fig. 4.2. The green line delimits the
region of 90% accuracy of the contour defined in Chapter 3, with d = 10◦ and b = 3.5 G.

10◦ − 15◦ away from the active region center. The inflows become stronger by as much as
5 m/s as the magnetic flux increases, with the exception of the equatorward-side inflows
in the leading polarity.

In the φ direction, at ∆λ = 0◦, the flow is prograde for the trailing polarity and ret-
rograde for the leading polarity, with an amplitude of about ±5 m/s. This is consistent
with an inflow signal in the φ direction. For ∆λ > 0◦, both polarities have an additional
retrograde flow of amplitude ' −4 m/s. As a consequence, the maximum retrograde flow
in the leading polarity is shifted to ∆λ = 1◦ − 3◦ with an amplitude of about −12 m/s. On
average over both polarities, the net flow is retrograde up until 15◦ on the poleward side
and with a maximal amplitude of about −8 m/s for the highest flux range. The presence
of a retrograde flow on the poleward side of the active regions confirms the findings by
Braun (2019) and our result in Chapter 3.

4.1.3 Effect of the flows around the selected active regions on the
solar-cycle variation of the meridional flow

The procedure described in this chapter allowed us to detect active regions with a total
unsigned magnetic flux greater than 1021 Mx. Here, we aim to quantify the contribution
of the flows around these active regions to the residuals measured in Chapter 3. To do so,
we draw a box spanning 20◦ in longitude and 10◦ in latitude around the active regions.
We then map back this contour to the CCD frame in order to compute the background
flows, then the residuals. The contour is shown in Fig. 4.3. In this example, the present
contour is only drawn around the active regions but not around decaying active regions
nor around the diffuse field, unlike the contour used in Chapter 3. The results are shown in
Fig. 4.4. Clearly, the flows for both contours present similar features. vAR

θ is high in 2011
in the north and until 2015 in the south for both. vAR

φ is negative during the maximum
of magnetic activity for both. However, the amplitude of vAR

θ is less by more than 3 m/s
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Figure 4.2: Top: Distribution of the detected active regions, based on their total unsigned
magnetic flux. The 50 bins are distributed in a logarithmic way in the range [0.1, 5]×1022

Mx. The vertical dashed lines delimit the regions [0.1×1022, 0.3×1022] Mx, [0.3×1022, 1×
1022] Mx and [1×1022,∞[ Mx. Bottom: Flows for the flux ranges [0.1×1022, 0.3×1022] Mx
(blue), [0.3 × 1022, 1 × 1022] Mx (red) and [1 × 1022,∞[ Mx (green). The first column
starting from the left is a longitudinal average over the trailing polarity, the second column
over the leading polarity and the third column over both polarities. The fourth column is
a latitudinal average. The averages are computed between the orange dashed lines in
Fig. 4.1. vθ is positive in the −∆λ direction, vφ in the +∆φ direction. The flows have been
smoothed with a 2D Gaussian with σ = 2◦ for better visualization. The last row shows
the averaged magnetic field.

around 2011 in the north and around 2014 in the south. The maximum amplitude also
occurs earlier in the South. This tends to suggest that the diffuse field, which the present
contour ignored, is also the location of inflows, and that these play an important role in
the temporal variation of the meridional flow.
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Figure 4.3: Example of the contour used to define the background, superimposed on the
HMI magnetogram at noon on June 1, 2011. Panel a: contour presented in Chapter 3.
Panel b: present contour.
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Figure 4.4: Longitudinally-averaged active-region flows vAR
θ (panel a) and vAR

φ (panel b).
The dashed lines are the flows presented in Chapter 3. The solid lines are the flows com-
puted using the detection procedure described in this chapter. The shaded areas represent
the standard error of the mean over the latitudinal range.

4.1.4 Conclusion of the analysis

We studied the properties of the flows surrounding well-separated active regions with total
unsigned magnetic flux greater than 1021 Mx. The signal that we see, after performing
the ensemble averaging, inside the leading polarity of large active regions, has little effect
on the latitudinal component of the active-region flows in Chapter 3 and, therefore, on
the associated forward travel-time perturbations. We confirmed previous findings of a
retrograde flow flanking the poleward side of active regions, even for regions with a small
magnetic flux. However, the inflows around the regions that we analyzed account only
for a small part of the flow residuals measured in Chapter 3, so there may be a large
contribution from smaller regions and from the diffuse magnetic field.
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4.2 Conclusion and outlook
The main goal of this thesis was to study the solar dynamics near the surface. It focused
on two types of varying flows, on different time scales, which affect helioseismic obser-
vations. The main conclusions are:

4.2.1 Propagation of acoustic waves through turbulent convection
• For a 1D set-up with random sound speed perturbations, we found that the Keller

theory works best to represent the wave propagation through a medium resembling
solar granulation. In particular, it can be easily derived when the medium varies
with time. We showed, perhaps surprisingly, that a frozen-medium approximation,
although seemingly unjustified, actually works well to retrieve the effective wave
speed. More precisely, one can use a snapshot of granulation to model the wave
propagation and find a wave speed with a 5% accuracy. The attenuation however is
off by about 30%. We detect coda waves in the variance of the wave field. These
waves are commonly studied in terrestrial seismology but have yet to be detected
in helioseismology. In our set-up, a small part of the coda propagates forward and
results from multiple scattering, while most of it propagates backward and results
from a reflection somewhere in the medium (single back-scattering).

• The next step is to extend this study to the propagation of seismic waves through
realizations of a solar-like random medium with the help of the Montjoie solver
(Gizon et al. 2017). Possible improvements include moving to three dimensions
in a stratified medium, and adding flows. So far, sound speed fluctuations can be
seen only as isotropic flow perturbations, but solar granulation and convection in
general are anisotropic. The passage to multiple dimensions will bring, in particu-
lar, an additional attenuation because of geometrical spreading. Finally, one needs
to connect the wave field to the cross-covariance function used in time-distance
helioseismology. In the time domain,

C(r1, r2, t) =
1
T

∫ T/2

−T/2
Φ(r1, t′)Φ(r2, t′ + t) dt′, (4.1)

where Φ(r1, t′) denotes the Doppler signal observed at point r1 and time t′, Φ(r2, t′+
t) the one observed at point r2 and time t′+t, and T is the duration of the observation.
t represents here a time lag. The cross-covariance is used as a proxy to observe
the wave packets propagating between r1 and r2, so it should also satisfy a wave
equation.

4.2.2 Near-surface inflows around active regions
• We measured the contribution of near-surface activity-related flows to the time-

averaged meridional circulation, by identifying and isolating these flows in surface
flow measurements. We found that, if we assume that the active-region flows are
constant with depth, the amplitude of the north-south helioseismic travel-time per-
turbations associated with these flows reaches ±0.3 s during solar maximum and
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for separation distances 6◦ – 18◦. When masking magnetic pixels that create sys-
tematic effects in time-distance measurements, this amplitude drops significantly.
Therefore, the active-region inflows do not explain in full the solar-cycle variations
seen in the helioseismic measurements of the meridional circulation.

• One direct application of isolating the active-region inflows may be to improve on
the inversions of the radial profile of meridional circulation down to the bottom of
the convection zone, which has been under debate for years. A cleaner surface flow
measurement can be given as an input to the inversions, with the contributions of
the global and local cells being clearly separated.
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Appendix





A Derivation of the second-order Born
approximation for a slab of frozen
random medium

This appendix derives the second-order Born approximation for Medium 1, following the
notations of the paper presented in Chapter 2. We drop however the overhead tilde that
denoted the Fourier transform, for the sake of simplicity. The approximation requires the
perturbation to have a compact support as it behaves as a source term for the perturbed
wave field. Let’s assume a localized perturbation between X and X + L, namely,

〈δc(x)δc(x′)〉 = ε2c2
OM(x, x′) = ε2c2

O f (ζ)w(x̄), (A.1)

f (ζ) = e−|ζ |/a, (A.2)
w(x̄) = Θ(x̄ − X) − Θ(x̄ − (X + L)), (A.3)

ζ = x′ − x, (A.4)

x̄ =
x + x′

2
, (A.5)

where Θ is the Heaviside step function. Then

∂x̄w(x̄) = δ(x̄ − X) − δ(x̄ − (X + L)),

∂2
x̄w(x̄) = −

δ(x̄ − X)
x̄

+
δ(x̄ − (X + L))

x̄
.

(A.6)

Now let’s use the Born approximation, valid for small perturbations (ε � 1). Using the
same notations for the operators, denoting φ0 the unperturbed field and φ1 the correction
such that φ = φ0 + φ1, the Born approximation reads

φ = φ0 − L−1
0 L1φ0 + O(ε2). (A.7)

Taking the average, one gets 〈φ〉 = φ0 + O(ε2). This means that we have to go down to the
second order:

φ = φ0 − L−1
0 L1φ0 + L−1

0 L1L−1
0 L1φ0 − L−1

0 L2φ0 + O(ε3), (A.8)

which gives, once averaged,

〈φ〉 = φ0 + L−1
0 〈L1L−1

0 L1〉φ0 − L−1
0 〈L2〉φ0 + O(ε3). (A.9)

We get
〈L1L−1

0 L1〉φ0(x) = 4c4
0ε

2
(
(∂x + ik0)2IB(x)

)
φ0(x), (A.10)
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where

IB(x) =

∫ ∞

−∞

G0(x, x′)[(∂x′ + ik0)2M(x, x′)]eik0ζdx′

=

∫ ∞

−∞

G0(x, x′)[(∂x′ + ik0)2 f (ζ)]w(x̄)eik0ζdx′

+

∫ ∞

−∞

G0(x, x′)eik0ζ
[
2∂x′ f (ζ)∂x′w(x̄) + f (ζ)∂2

x′w(x̄) + 2ik0 f (ζ)∂x′w(x̄)
]

dx′

=

∫ 2(X+L)−x

2X−x
G0(x, x′)[(∂x′ + ik0)2 f (ζ)]eik0ζdx′︸                                                   ︷︷                                                   ︸

IB,1

+ boundary terms︸             ︷︷             ︸
IB,2

,

(A.11)

where the boundary terms are introduced by the derivatives of w. Then, calculations lead
to:

IB,1(x) =
i

2c2
0k0a

(
1 +

(k0a)2

2ik0a − 1

) (
e2 2ik0a−1

a L − 1
)

e2 2ik0a−1
a (X−x) if x < X,

=
i

2c2
0k0a

[(
1 +

(k0a)2

2ik0a − 1

) (
e2 2ik0a−1

a (X+L−x) − 1
)
− (1 + 2ik0a − (k0a)2)

(
1 − e2 X−x

a
)

+ 2
]

if X ≤ x ≤ X + L,

= −
i

2c2
0k0a

(1 + 2ik0a − (k0a)2)
(
e2 L

a − 1
)

e−2 x−X
a if x > X + L.

(A.12)

The boundary terms read:

IB,2(x) =
1

4c2
0

e2 2ik0a−1
a (X−x)

(
e2 2ik0a−1

a L

[
−

i
2k0(X + L)

−
2i

k0a
− 2

]
+

[
i

2k0X
+

2i
k0a

+ 2
])

if x < X,

=
1

4c2
0

e2 2ik0a−1
a (X+L−x)

[
−

i
2k0(X + L)

−
2i

k0a
− 2

]
+ e−

2
a (x−X)

[
i

2k0X
−

2i
k0a

+ 2
]

if X ≤ x ≤ X + L,

=
1

4c2
0

e−
2
a (x−X)

(
e

2
a L

[
−

i
2k0(X + L)

+
2i

k0a
− 2

]
+

[
i

2k0X
−

2i
k0a

+ 2
])

if X + L < x.
(A.13)

It can be condensed in

IB,i(x) = K(i)
0 eαx if x < X,

= K(i)
1 eαx + K(i)

2 eβx + K(i)
3 if X ≤ x ≤ X + L,

= K(i)
4 eβx if x > X + L,

(A.14)
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where i ∈ {1, 2} and

K(1)
0 =

i
2c2

0k0a

(
1 +

(k0a)2

2ik0a − 1

) (
e−αL − 1

)
e−αX, (A.15)

K(1)
1 =

i
2c2

0k0a

(
1 +

(k0a)2

2ik0a − 1

)
e−α(X+L), (A.16)

K(1)
2 =

i
2c2

0k0a
(1 + ik0a)2e−βX, (A.17)

K(1)
3 =

i
2c2

0k0a

[
−

(k0a)2

2ik0a − 1
+ (k0a)2 − 2ik0a

]
, (A.18)

K(1)
4 = −

i
2c2

0k0a
(1 + ik0a)2

(
e−βL − 1

)
e−βX, (A.19)

K(2)
0 =

1
4c2

0

e−αX

(
e−αL

[
−

i
2k0(X + L)

−
2i

k0a
− 2

]
+

[
i

2k0X
+

2i
k0a

+ 2
])
, (A.20)

K(2)
1 =

1
4c2

0

e−α(X+L)
[
−

i
2k0(X + L)

−
2i

k0a
− 2

]
, (A.21)

K(2)
2 =

1
4c2

0

e−βX

[
i

2k0X
−

2i
k0a

+ 2
]
, (A.22)

K(2)
3 = 0, (A.23)

K(2)
4 =

1
4c2

0

e−βX

(
e−βL

[
−

i
2k0(X + L)

+
2i

k0a
− 2

]
+

[
i

2k0X
−

2i
k0a

+ 2
])
, (A.24)

α = −2
2ik0a − 1

a
, (A.25)

β = −
2
a
. (A.26)

Consequently,

IB(x) = K0eαx if x < X,

= K1eαx + K2eβx + K3 if X ≤ x ≤ X + L,

= K4eβx if x > X + L,

(A.27)

where

∀ j ∈ [[0, 4]], K j = K(1)
j + K(2)

j . (A.28)

Finally, we can compute

〈L−1
0 L1L−1

0 L1〉φ0(x) = 4c4
0ε

2
∫

G0(x, x′)[(∂x′ + ik0)2IB(x′)]φ0(x′)dx′. (A.29)
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First let’s set

K5 = K0(α + ik0)2, (A.30)

K6 = K1(α + ik0)2, (A.31)

K7 = K2(β + ik0)2, (A.32)

K8 = −k2
0K3, (A.33)

K9 = K4(β + ik0)2, (A.34)
(A.35)

So

〈L−1
0 L1L−1

0 L1〉φ0(x) = c4
0

(∫ X

−∞

G0(x, x′)K5eαx′φ0(x′)dx′

+

∫ X+L

X
G0(x, x′)(K6eαx′ + K7eβx′ + K8)φ0(x′)dx′ +

∫ +∞

X+L
G0(x, x′)K9eβx′φ0(x′)dx′

)
= −

ic2
0

2k0
φ0(x)(K5I5 + K6I6 + K7I7 + K8I8 + K9I9)

(A.36)

Each integral Ii is of the form ∫ l2

l1
eik0 |x−x′ |eΩx′eik0(x′−x)dx′, (A.37)

where Ω = α, β or 0, l1 = −∞, X, or X + L and l2 = X, X + L or +∞. Distinguishing
cases where x ∈ [l1, l2], x < l1 and x > l2, one finds:

〈L−1
0 L1L−1

0 L1〉φ0(x) = −
ic2

0

2k0
φ0(x)

[
K5

(
eαx

α
+

e2ik0(X−x)+αX − eαx

2ik0 + α

)
+ K6

e2ik0(X−x)+αX(e(2ik0+α)L − 1)
2ik0 + α

+ K7
e2ik0(X−x)+βX(e(2ik0+β)L − 1)

2ik0 + β

+K8
e2ik0(X−x)(e2ik0L − 1)

2ik0
− K9

e2ik0(X+L−x)+β(X+L)

2ik0 + β

]
if x < X,

= −
ic2

0

2k0
φ0(x)

[
K5

eαX

α
+ K6

(
eαx − eαX

α
+

e2ik0(X+L−x)+α(X+L) − eαx

2ik0 + α

)
+ K7

(
eβx − eβX

β
+

e2ik0(X+L−x)+β(X+L) − eβx

2ik0 + β

)
+ K8

(
(x − X) +

e2ik0(X+L−x) − 1
2ik0

)
−K9

e2ik0(X+L−x)+β(X+L)

2ik0 + β

]
if X ≤ x ≤ X + L,

= −
ic2

0

2k0
φ0(x)

[
K5

eαX

α
+ K6

eαX(eαL − 1)
α

+ K7
eβX(eβL − 1)

β
+ K8L

+K9

(
eβx − eβ(X+L)

β
−

eβx

2ik0 + β

)]
if X + L < x,

(A.38)

90



A Derivation of the second-order Born approximation for a slab of frozen random
medium

which is of the form

(C1 + C2eαx + C3eβx + C4e−2ik0 x + C5
x
a

)φ0(x). (A.39)

Setting r = k0a, ỹ =
y
a for any variable y and replacing α and β by their expression,

〈L−1
0 L1L−1

0 L1〉φ0(x) = −
i(c0a)2

4r
φ0(x)

[
K5

(
e2(1−2ir)x̃

1 − 2ir
+

e2(1−ir)X̃−2irx̃ − e2(1−2ir)x̃

1 − ir

)
+ K6

e2(1−ir)X̃−2irx̃(e2(1−ir)L̃ − 1)
1 − ir

+ K7
e2(−1+ir)X̃−2irx̃(e2(−1+ir)L̃ − 1)

−1 + ir

+K8
e2ir(X̃−x̃)(e2irL̃ − 1)

ir
− K9

e2(−1+ir)(X̃+L̃)−2irx̃

−1 + ir

]
if x̃ < X̃,

= −
i(c0a)2

4r
φ0(x)

[
K5

e2(1−2ir)X̃

1 − 2ir

+ K6

(
e2(1−2ir)x̃ − e2(1−2ir)X̃

1 − 2ir
+

e2(1−ir)(X̃+L̃)−2irx̃ − e(1−2ir)x̃

(1 − ir)

)
+ K7

(
−(e−2x̃ − e−2X̃) +

e2(−1+ir)(X̃+L̃)−2irx̃ − e−2x̃

(−1 + ir)

)
+K8

(
2(x̃ − X̃) +

e2ir(X̃+L̃−x̃) − 1
ir

)
− K9

e2(−1+ir)(X̃+L̃)−2irx̃

−1 + ir

]
if X̃ ≤ x̃ ≤ X̃ + L̃,

= −
i(c0a)2

4r
φ0(x)

[
K5

e2(1−2ir)X̃

1 − 2ir
+ K6

e2(1−2ir)X̃(e2(1−2ir)L̃ − 1)
1 − 2ir

−K7(e−2X̃(e−2L̃ − 1)) + K82L̃ + K9

(
−(e−2x̃ − e−2(X̃+L̃)) −

e−2x̃

(−1 + ir)

)]
if X̃ + L̃ < x̃.

(A.40)

Numerically, one term appears to be dominant:

〈L−1
0 L1L−1

0 L1〉φ0(x) ' 0 if x̃ < X̃,

' −
i(c0a)2

2r
φ0(x)K8(x̃ − X̃) if X̃ ≤ x̃ ≤ X̃ + L̃,

' 0 if X̃ + L̃ < x̃.

(A.41)
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Finally, we also compute

L−1
0 〈L2〉φ0 = ε2

[
−

i
2r

(
−

e2ir(X̃−x̃)

X̃
+

e2ir(X̃+L̃−x̃)

X̃ + L̃

)
+ e2ir(X̃−x̃)(1 − e2irL̃)

+
e2ir(X̃−x̃)

4
(e2irL̃ − 1)

]
if x̃ < X̃

= ε2
[
−

i
2r

(
−

1
X̃

+
e2ir(X̃+L̃−x̃)

X̃ + L̃

)
+ (1 − e2ir(X̃+L̃−x̃))

+
ir
2

(
(x̃ − X̃) +

e2ir(X̃+L̃−x̃) − 1
2ir

)]
if X̃ ≤ x̃ ≤ X̃ + L̃

= ε2
[
−

i
2r

(
−

1
X̃

+
1

X̃ + L̃

)
+

irL̃
2

]
if X̃ + L̃ < x̃.

(A.42)

Here again, one term appears to be dominant:

L−1
0 〈L2〉φ0 ' 0 if x̃ < X̃

'
irε2

2
(x̃ − X̃) if X̃ ≤ x̃ ≤ X̃ + L̃

' 0 if X̃ + L̃ < x̃,

(A.43)

meaning that in the band where the medium is random:

〈φ(x)〉 ' φ0(x)
(
1 + ε2

[
3
2

ik0a − (k0a)2 +
(k0a)2

2ik0a − 1

]
x − X

a

)
. (A.44)

The corrective term is the one that appears in the Keller theory for small perturbations
(2.52), although the calculation is more tedious.

Although the Keller and the Born theories are based on the same idea, the former gives
directly an equation for the mean field to the second order, but requires the medium to be
perturbed everywhere. On the other hand, the Born approximation gives a second-order
correction to the unperturbed field, but can be computed for a localized perturbed medium
and therefore accounts for boundary effects. Both theories confirm the linear increase of
Im(k)/k0 in Medium 1 with frequencies in the range 1 to 5 mHz, and the approximate
independence of ceff with respect to frequency.
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