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Abstract 
 
Genetic generalized epilepsy (GGE) is a common epilepsy syndrome and represents the largest 
group of epilepsies suspected to have a complex genetic etiology. Specific time windows for 
age of onset and various seizure types that rapidly engage bilateral networks of the brain 
characterize GGE. Another hallmark of GGE is the occurrence of brief, transient synchronized 
discharges in the 2-3 Hz range, as observed in the electroencephalogram. To date, there is no 
clear understanding of how large-scale brain networks behave in the absence of seizures or 
discharges, that is, during the interictal state in GGE. It is also unclear how this functional state 
relates to the genetic etiology of the disease. This dissertation presents three studies that 
address the interictal state in GGE and its functional underpinnings to support diagnostic and 
therapeutic innovations using electrophysiological imaging phenotypes: 
 
In study I, patients with GGE and healthy individuals were measured during the resting-state 
using magnetoencephalography (MEG). Network power and phase-based connectivity were 
estimated following a whole-brain approach, and surface-based source analyses. An 
endophenotype approach was adopted, in which also the healthy siblings of the patients were 
studied to evaluate whether derived network alterations are genetically influenced. 
 
In study II, recordings from high-density electroencephalography (HD-EEG) of the same study 
cohort were analyzed with similar methods as in the first study and statistically combined with 
the MEG results and structural measures to broaden the understanding of the functional 
imaging phenotype in GGE.  
 
In study III, how power and connectivity vary across the lifespan was examined using a large-
scale dataset from the Cambridge Centre for Ageing and Neuroscience (Cam-CAN) to advance 
knowledge of the biological meaning of these markers concerning normative lifespan 
trajectory and disease development. 
 
Overall, this dissertation sheds new light on the interictal state and the causes and 
consequences of network alterations in GGE by revealing increased connectivity and power 
and evidence for a genetic contribution. The examinations of the study cohort using both 
techniques, HD-EEG and MEG, in a broad frequency spectrum adds significantly to the 
understanding of GGE to date and helps in comparing these findings with those of previous 
clinical studies. The work in this dissertation further promotes multimodal imaging in GGE that 
incorporates brain structural features in addition to electrophysiological markers. It also 
proposes to investigate behavioral and genetic correlates of power and phase-based 
connectivity across the lifespan and to investigate deviations from the norm that may lead to 
pathology in GGE. Eventually, this dissertation provides suggestions into how 
electrophysiological data might be linked to the genetic nature of GGE.  
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1 INTRODUCTION 
 

1.1 EPILEPSY 
 
The following sections provide the reader with an overview of the clinical presentation of 
epilepsy, the diagnostic process, causes of the disease, and treatment options. Further, the 
reader will be introduced to the concept of epilepsy as a network disease. 

1.1.1 SEIZURES AND EPILEPSY 

Today, epilepsy is conceptualized as a brain disease with a persisting disposition to epileptic 
seizures and its neurobiological, cognitive, and psychosocial consequences (Fisher et al., 
2005). Individuals with an epileptic seizure present with a transient shift in behavior caused 
by abnormal excessive or synchronous neuronal activity (Fisher et al., 2005). Broadly 
summarized, motor and non-motor signs or symptoms are typical of seizures that may be 
accompanied by loss of consciousness. The severity and frequency of seizures vary greatly. 
Seizures may manifest as brief episodes of disturbed awareness, abnormal sensations, muscle 
twitches, or severe prolonged convulsions. Seizures may occur less than once a year or several 
times a day (Devinsky et al., 2018). About 10% of all individuals may experience an unprovoked 
seizure during their lifetime, but not all of them develop epilepsy (Bergey, 2016; WHO, 2019). 
In practice, the current clinical definition of epilepsy requires the occurrence of at least two 
unprovoked seizures with a minimum interval of 24 hours. A high recurrence risk after a first 
unprovoked seizure, that is, at least 60 % over the following ten years, can also suggest the 
diagnosis of epilepsy (Fisher et al., 2014). This broader definition, proposed by the 
International League Against Epilepsy (ILAE) allows clinicians to respond to specific 
circumstances, in which there is a high risk of recurrence in a patient such as after a stroke or 
trauma, or in cases of a well-defined epilepsy syndrome (Fisher et al., 2014). Provoked or acute 
symptomatic seizures are thought to be situational and differ mechanistically from chronic 
epilepsy with recurrent seizure activity (Shorvon & Guerrini, 2010). These seizures usually 
occur during or as consequence of a systemic insult, that lowers the seizure threshold in the 
brain, often due to toxins, metabolic factors, medication or acute illness such as infections 
(Bergey, 2016; Vezzani et al., 2016). The description of seizures, along with 
electrophysiological and imaging findings, is central to the diagnosis of the various types of 
epilepsy (Scheffer et al., 2017). Different causes for the occurrence of seizures are known and 
must be taken into account when making a diagnosis. Likewise, comorbidities such as learning 
disabilities and psychiatric disorders such as depression or autism spectrum disorders should 
be considered (Devinsky et al., 2018). Seizures can remit and epilepsy is considered resolved, 
if the person has been seizure-free for more than ten years and off-medication for more than 
five years, or has passed the age for an age-related epilepsy syndrome (Fisher et al., 2014). 
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1.1.2 EPIDEMIOLOGY 

In total, around 50 million people worldwide are affected by epilepsy, making epilepsy one of 
the most common neurological conditions and a global burden (Beghi et al., 2019; Ngugi et 
al., 2010). This means that epilepsy is still a significant cause of premature mortality and 
residual disability, coupled with the notable economic impact due to loss of labor productivity 
and the need for medical care (WHO, 2019). The lifetime prevalence was estimated in a meta-
analysis to be approximately 7.6 per 1,000 persons, and the annual cumulative incidence was 
estimated to be around 67.8 per 10,000 person-years (Fiest et al., 2017). Both, the prevalence 
and the incidence of epilepsy are much lower in high-income states than in developing or 
resource-poor countries, which account for up to 80% of all cases worldwide. This is probably 
due to endemic factors (Fiest et al., 2017) such as greater frequency of traffic accidents, 
infectious disorders, and birth complications (Singh & Trevick, 2016). In general, all age groups 
are affected, with the prevalence increasing with age, peaking in adolescence and early 
adulthood, and decreasing later in life (Fiest et al., 2017). The incidence rate tends to follow a 
U-shaped pattern with the highest incidences in infancy or early childhood and older age 
groups (Fiest et al., 2017), indicating the risk of developing the disease in these age ranges. 
According to the meta-analysis, both sexes seem to be affected in a similar way, although 
some studies report higher numbers for men (Fiest et al., 2017). This could be due in part to 
the fact that women are less likely to report the condition if they might be marginalized for it 
(WHO, 2019). In some places, epilepsy is still highly stigmatized and is a cause for restriction 
of human rights. For example, the right to education and marriage, or access to health and life 
insurance may be restricted, often preventing appropriate treatment and health care (WHO, 
2019). Epilepsy can lead directly to death, unexpectedly ("sudden unexpected death in 
epilepsy") or from falls and burns, drowning, accidents, or status epilepticus. Comorbidities of 
seizures or adverse effects of medications (anticonvulsants or psychiatric drugs) such as 
obesity and cardiovascular effects or suicide can also be fatal (Devinsky et al., 2016). It is 
estimated that the mortality in affected individuals is 2.3 to 2.6 times higher than in individuals 
without epilepsy (Levira et al., 2017; Thurman et al., 2017). 

1.1.3 DIAGNOSTIC PROCESS 

Seizure as key symptom for classification 
 
An accurate diagnosis and a classification system are critical for providing appropriate 
treatment and facilitating communication in clinical care and research. The ILAE provides an 
operational framework for the diagnosis of epilepsy and currently classifies epilepsy on three 
levels, namely seizure type, epilepsy type, and epilepsy syndrome (Scheffer et al., 2017). These 
guidelines are adapted to serve different clinical environments and resources available around 
the world. A diagnosis on all three levels is desirable, but not always feasible in the absence 
of lacking information or equipment. A thorough diagnostic workup should include 
neurological examination, routine EEG recordings, cranial imaging, and sometimes laboratory 
and genetic testing (Devinsky et al., 2018). 
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Differential diagnosis 
 
Above all, differential diagnosis is a critical first step for the clinician to determine if the 
occurrence of an event is typical of a seizure. The clinical presentation of other disorders may 
mimic epileptic seizures and lead to misdiagnosis and inappropriate treatment (Devinsky et 
al., 2018). Imitators can be syncope and anoxic seizures, behavioral, psychological and 
psychiatric disorders, sleep-related conditions, paroxysmal movement disorders, migraine-
associated disorders and others (a detailed list of imitators can be found elsewhere: 
https://www.epilepsydiagnosis.org/epilepsy-imitators.html). Differentiation from seizure 
mimics can be difficult because reports are often based, if at all available, on the statements 
of witnesses or the affected person. In addition, epilepsy may overlap clinically and 
mechanistically with other disorders, probably due to similar genetic and environmental 
factors (Winawer et al., 2013) causing co-occurrence and confounding. 
 

Seizure classification 
 
After ruling out non-epileptic events, seizures are classified as "focal", "generalized", or 
“unknown” depending on their initial manifestation. A focal seizure is considered to originate 
in the networks of one hemisphere, whereas a generalized seizure implies rapid involvement 
of bilateral brain networks. If the onset of the seizure is ambiguous or has been missed, it is 
classified as “unknown”. Focal seizures can be further grouped according to the level of 
awareness (and/or motor onset or non-motor onset symptoms). Another subcategory for all 
seizure types includes motor or non-motor onset symptoms shown at the earliest stage of the 
seizure (Scheffer et al., 2017). 
 

Epilepsy types 
 
When more information about the seizure event is available, such as findings from imaging 
and EEG, a higher-level diagnosis is indicated. Focal epilepsies comprise unifocal or multifocal 
events and the occurrence of unilateral seizures. EEG recordings during the interictal state, 
that is during resting-state, may reveal focal epileptiform discharges. A range of seizures can 
occur, including focal aware or impaired seizures, motor or non-motor seizures, and seizures 
with a focal onset pattern propagating bilaterally (“focal to bilateral tonic-clonic”). 
Generalized epilepsies usually involve absence, myoclonic, atonic, tonic, and tonic-clonic 
seizures including interictal generalized spike-wave discharges (GSWD) in the EEG. Less 
commonly, patients have both focal and generalized seizures and may be categorized as 
having "combined generalized and focal epilepsy". In other cases, the physician may not be 
able to determine the type of epilepsy because there is not enough information, or the seizure 
types are unclear. If there is sufficient evidence that the patient does have epilepsy, a 
diagnosis of unknown epilepsy type is made (Scheffer et al., 2017). 
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Epilepsy syndromes 
 
Ideally, a cluster of clinical and imaging characteristics together constitute a distinctive 
disorder or syndrome (Scheffer et al., 2017). Age of onset or remission, seizure triggers, 
diurnal factors, specific comorbidities, such as cognitive or psychiatric dysfunction, or 
prognostic factors may be indicative of a syndrome. Known syndromes include Dravet 
syndrome, childhood absence epilepsy, West syndrome, and many others. 

1.1.4 ETIOLOGY 

Infectious, structural, metabolic, and immune etiology 
 
In all stages of the diagnostic process, the etiology of the patient’s epilepsy should be taken 
into account (Scheffer et al., 2017), although often the cause is unknown. In principle, any 
disturbances in the brain may transiently lower the threshold for seizure activity. A major risk 
factor for epilepsy are infections of the central nervous system (CNS), particularly in resource-
poor countries (Vezzani et al., 2016). Examples include meningitis, encephalitis, 
neurocysticerosis, tuberculosis, HIV, cerebal malaria, and congenital infections (Devinsky et 
al., 2018). These infections may be associated with structural alterations in the brain. 
Structural abnormalities resulting in epilepsy can be also due to vascular events (e.g. stroke), 
traumatic brain injuries, brain tumors, hippocampal sclerosis, or be genetic such as cortical 
malformations (Sazgar & Young, 2019). A structural brain scan is usually part of the first 
investigations carried out to identify and assess the need for further treatment, for example 
by means of epilepsy surgery. Seizures can also be core symptoms of metabolic disorders with 
genetic defects or acquired chemical imbalances or immune disorders (Scheffer et al., 2017). 
In both cases, timely diagnosis is necessary to prevent cognitive and behavioral impairments 
in the course or to initiate specific therapeutic measures.  
 

Genetic etiology 
 
Epilepsy may also be genetic (Scheffer et al., 2017). This category refers to pathogenic variants 
or mutations that lead to epilepsy. Evidence of a genetic basis usually comes from a patient's 
family history, from family or twin studies or from investigations in clinical populations with 
the same syndrome. In the past few decades, gene sequencing methods have developed 
rapidly, leading to a high success rate in identifying genetic underpinnings of epilepsy (Thakran 
et al., 2020). This is mostly true for monogenetic forms of epilepsy, where a single gene or 
copy number variant are considered causative and almost entirely predictive of disease onset 
(Koeleman, 2018). Examples include heterogeneous forms of epilepsy with onset in infancy 
and childhood that are grouped under the term developmental and epileptic 
encephalopathies (Scheffer et al., 2017). Affected molecular pathways often involve ion 
channels, synaptic functions, and transcription factors (McTague et al., 2016). One of the most 
prominent epilepsy genes is SCN1A, a sodium channel subunit gene. Pathogenic SCN1A 
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variants can lead to a spectrum of disease phenotypes, such as mild forms like genetic epilepsy 
with febrile seizures plus (GEFS+) or severe forms like the well-known Dravet syndrome, in 
which up to 80% of patients carry such a variant (Devinsky et al., 2018; Mulley et al., 2005). 
Thus, the phenotypic heterogeneity underlying a single genetic cause requires careful 
evaluation of a genetic finding in the clinical context for outcome prediction and therapy 
(McTague et al., 2016). Conversely, multiple genes may be associated with an epilepsy 
syndrome, even in prototypical Dravet syndrome (Scheffer et al., 2017). Currently, genetic 
testing and diagnosis, when available, are successful in approximately 10-50% of epileptic 
encephalopathy cases (Allen et al., 2017; Carvill et al., 2013; Lemke et al., 2012; McTague et 
al., 2016). In fact, most common epilepsies such as generalized and non-acquired focal 
epilepsies presumably follow a complex inheritance pattern. This means disease susceptibility 
is attributed to multiple factors, implying that both complex genetic and non-genetic factors 
are important. Despite the clear clustering of genetic generalized epilepsy and focal epilepsy 
in families, only genome-or exome-wide association studies with large sample sizes have 
detected a few risk loci for  common epilepsies to date (Helbig et al., 2009; May et al., 2018; 
Mefford et al., 2010; Striano et al., 2012; The International League Against Epilepsy, 2018), 
suggesting a heterogeneous genetic landscape and small effect sizes (Koeleman, 2018). It is 
notable that patients with genetic epilepsy in general do not necessarily have a family history 
of seizures or epilepsy. De novo mutations can occur in both severe encephalopathies or 
common epilepsies (Arsov, Mullen, Damiano, et al., 2012; Carvill et al., 2013; Claes et al., 2001) 
and the numbers are increasing (Scheffer et al., 2017). That means that new mutations may 
arise in an individual that may or may not be passed on to the next generation. 
In summary, etiologic categories for epilepsy are diverse and not mutually exclusive. For 
example, a structural etiology may have its roots in genetic causes, both of which may be 
crucial for further treatment (Scheffer et al., 2017). 

1.1.5 MOLECULAR MECHANISMS 

As mentioned above, the exact origin of the disease is not clear in many patients; however, 
epileptogenesis is thought to be due to genetic and epigenetic alterations, molecular and 
structural changes, including several cell types and levels in the brain (Devinsky et al., 2018). 
Animal models suggest widespread neuronal circuit dysfunction preceding seizure 
occurrence, leading to a state of hyperexcitability and a low threshold for the generation of 
seizures (Devinsky et al., 2018). After several decades of experiments in vivo on epileptic 
animals or in vitro by inducing seizure-like activity in brain sections, the notion of an imbalance 
between excitatory and inhibitory mechanisms inducing ictogenesis, that is, seizure initiation 
and progression, has become established (Staley, 2015). However, it is unclear, how this 
imbalance can lead to a persistent state of increased risk for spontaneous seizures, as it is the 
case in chronic epilepsies and thus in the vast majority of seizures (Staley, 2015). Another 
difficulty with this theory arises from the increasingly discovered bulk of genetic mutations 
associated with epilepsy. In addition to mutations that point to inhibitory or excitatory 
pathways, there are also those that directly alter neither (Ran et al., 2015; Staley, 2015). In 



| Introduction 

 6 

brief, several processes are likely to be involved in lowering the seizure threshold and making 
the brain susceptible to spontaneous seizures, including astro- and microgliosis, and neuronal 
plasticity accompanied by changes in gene expression and ion channel functions (Varvel et al., 
2015). New discoveries in the area of molecular mechanisms will probably expand the view 
on the timing of seizures and the various etiologies, possibly including a diverse set of affected 
pathways (Staley, 2015), which is critical for therapeutic innovation. 

1.1.6 TREATMENT OPTIONS 

Advances in the field of epileptogenesis are essential for therapeutic innovation. This is 
because the currently available treatment options do not alter the course of epilepsy, but only 
reduce the symptoms and the mortality (Ryvlin et al., 2011). After a thorough diagnostic 
procedure, tailored treatment can be initiated with the goal of minimizing seizures and 
comorbidities, thereby enhancing the quality of life in the patients (Pitkänen, 2010). The 
selection of antiepileptic drugs (AEDs) is based on the type of suspected epilepsy and the 
individual characteristics of the patient, such as age, life circumstances, use of other 
medications, as well as the pharmacokinetic profile and adverse effects of the AEDs (Glauser 
et al., 2013). Most of the available AEDs putatively target GABA and glutamate transmission, 
synaptic vesicle modulation, and / or block voltage-gated sodium or calcium channels 
(Devinsky et al., 2018). About half of the patients usually achieve seizure control with one AED, 
and another 13 percent using two AEDs. Very few patients benefit from a combination of more 
than two AEDs, and about 30 percent of patients do not respond even after trying different 
AEDs and therefore continue to experience seizures (Kwan & Brodie, 2000). In some of these 
cases, resective surgery of epileptogenic tissue can lead to long-term seizure control 
depending on how well the epileptogenic zone can be mapped (Devinsky et al., 2018). This 
procedure requires long-term EEG video monitoring and structural magnetic resonance 
imaging (MRI), preferably also positron emission tomography (PET) and 
magnetoencephalography (MEG) (O'Brien et al., 2008; Rampp et al., 2019). Many of the 
patients who have non-lesional drug-resistant focal epilepsy also have intracranial electrodes 
implanted in order to more precisely track the seizure origin, plan surgery, and avoid loss of 
critical brain function. Alternative therapies have been shown to be effective in some patients, 
such as vagus nerve stimulation or dietary therapies (Devinsky et al., 2018). 

1.1.7 UNDERSTANDING AND ADDRESSING EPILEPSY FROM A NETWORK PERSPECTIVE  

Invasive electrophysiology in patients has contributed remarkably to new insights into seizure 
initiation, progression, and seizure self-termination. Recordings of electrocorticograms at the 
brain surface or stereotactic EEG recordings in deep brain regions are usually performed in 
drug-resistant epilepsy patients (Kramer & Cash, 2012). Although intracranial recordings can 
provide excellent insight into ictogenesis in focal epilepsies, the signal strength at the 
electrodes decreases rapidly with distance, and the sampling zone in the brain is sparse 
(Parvizi & Kastner, 2018). Also, in generalized seizures, invasive procedures are usually not 
applicable because extended bilateral networks are already affected at the onset of the 
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seizure. Therefore, whole-brain mapping using non-invasive methods are essential pieces of 
the puzzle to uncover global network mechanisms in generalized as well as focal seizure types. 
EEG and MRI are typically used clinically, but diffusion and functional MRI (dMRI and fMRI), 
MEG, computed tomography, PET, and spectroscopy are also commonly used techniques. 
Notable advancements in hardware, methods, analysis, and application of neuroimaging 
techniques have furthered the field, resulting in improved presurgical evaluations and led to 
the conceptualization of epilepsy as a network disorder (Goodman & Szaflarski, 2021). 
Ultimately, changes at the molecular level are thought to lead to structural and functional 
neuronal connections at the systems level, resulting in epileptic activity. The development of 
generalized and focal seizures is assumed to rely on various brain networks and thus distal and 
distributed perturbations (Devinsky et al., 2018), which can be studied by applying brain 
network models (Goodman & Szaflarski, 2021). Understanding epilepsy from a network 
perspective thus represents a shift toward an integrative view of brain structural and 
functional alterations that encompasses multiple spatial and temporal scales (Bassett & 
Sporns, 2017). This includes the study of comorbidities of epilepsy, such as cognitive or 
behavioral problems, imaging of patients' brain activity and connectivity while performing 
tasks and during rest. In particular, the resting-state framework has found wide application in 
pathological conditions to develop biological meaningful markers of disease (Fox & Raichle, 
2007). Spontaneous resting-state brain activity has been found to be temporally correlated 
across different regions when a study participant is asked to sit or lie still with eyes open or 
closed in the absence of a task or external stimuli. This observation was initially made in the 
1990s for the somatosensory network (Biswal et al., 1995) and then for the default mode 
network (DMN), which comprises the medial prefrontal cortex, posterior cingulate cortex, 
precuneus, and parietal regions (Greicius et al., 2003; Raichle et al., 2001). Later, other 
neurocognitive networks were described, including regions from sensory to higher order 
control systems (Damoiseaux et al., 2006; De Luca et al., 2006; Fox et al., 2005). This intrinsic 
network organization, as determined by fMRI, is very stable (Gratton 2018), relatively 
independent of external tasks (Cole et al., 2014; Krienen et al., 2014), and under genetic 
control (Glahn et al., 2010). Suspensions in resting-state networks have been demonstrated 
for various epilepsy types, particularly in the DMN (Yang et al., 2021). In contrast, although 
electrophysiology has a long tradition in the clinical setting and in epilepsy research, 
quantitative resting-state analyses are less common but are further discussed in this work for 
genetic generalized epilepsy as a way to study network dysfunction. The conceptualization of 
whole-brain functional connectivity networks based on neurophysiological signals is rather 
modern, despite early views of long-range communication in the brain through oscillatory 
brain activity and synchronization (Sadaghiani & Wirsich, 2020). The reasons certainly lie in 
methodological challenges, such as how such a network looks like at different frequencies, or 
on which signal properties it should be constructed (Sadaghiani & Wirsich, 2020). In addition, 
the application of graph theoretical models on structural and functional brain networks 
(Bassett & Bullmore, 2006; Rubinov & Sporns, 2010; Sporns et al., 2005) has led to the 
investigation of brain topology in epilepsy, thereby identifying disruptions in, for example, 
network efficiency and integration.  
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Overall, the characterization of network dysfunction in epilepsy at multiple levels has led to 
new hypotheses and is associated with the hope of achieving a holistic and integrative 
understanding of the disease in the future and moving toward biologically informed diagnosis 
and treatment. 
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1.2 GENETIC GENERALIZED EPILEPSY  
 
In the following, the reader will become familiar with a specific epilepsy syndrome, the genetic 
generalized epilepsy (GGE), or, as previously called idiopathic generalized epilepsy (IGE), the 
study of which is the focus of this dissertation. GGE makes up 15-20% of all epilepsies and is 
the largest group of genetic epilepsies (Jallon & Latour, 2005). In addition to clinical and 
etiological aspects, the current status of functional and structural brain changes in GGE will be 
discussed. 

1.2.1 CLINICAL PRESENTATION 

Patients with GGE present with typical epileptiform EEG-features and with one or several of 
three common seizure types such as absence seizures, myoclonic and tonic-clonic seizures. 
Absences occur with abrupt loss of awareness and brief bursts of spike and wave (Mullen et 
al., 2018). Patients usually do not respond to external stimuli for a few seconds and show 
motor arrest (Panayiotopoulos et al., 1989). In contrast, myoclonic seizures are jerks involving 
axial or upper limbic muscles usually without impairment of awareness and are observed with 
spike or poly-spike wave discharges in EEG recordings. These motor seizures can evolve into 
tonic-clonic seizures (formerly called grand mal) lasting around one to three minutes with loss 
of consciousness and rhythmic bilateral muscle contractions (Vorderwülbecke et al., 2021). 
Most often, all three seizure types occur during the wake state, but subtle absences or jerks 
are observed during sleep (Vorderwülbecke et al., 2021). Myoclonic and tonic-clonic seizures 
typically occur in the first two hours after awakening and can be triggered by alcohol 
consumption or sleep deprivation the night before (Janz, 2000; Panayiotopoulos et al., 1994). 
Absences can be induced by hyperventilation (Panayiotopoulos et al., 1989). Other provoking 
factors for all seizure types can be visual stimuli such as flickering lights in a natural setting or 
strobe lighting, specific geometric patterns as well as complex cognitive and motor tasks 
(Ferlazzo et al., 2005).  
Based on the clinical presentation and age at onset, GGEs are classified into four subtypes. 
Childhood absence epilepsy (CAE) typically begins between the age of four and eight years 
and is characterized by multiple absences during a day (Mullen et al., 2018). In juvenile 
absence epilepsy (JAE), the seizure frequency is lower, and the onset is between the age of 12 
and 16 years of age (Vorderwülbecke et al., 2021). The criteria for juvenile myoclonic epilepsy 
(JME) include myoclonic seizures but do not exclude the occurrence of absences and tonic-
clonic seizures and usually have onset between the age of 10 and 25 years (Vorderwülbecke 
et al., 2021). Patients with only generalized tonic-clonic seizures are assigned to a separate 
category (GGE-GTCS) that has a broader window for age at onset, ranging from childhood to 
the fourth decade of life and peaking at 16-18 years of age (Vorderwülbecke et al., 2017). 
These definitions of the subtypes though widely accepted and helpful in clinical practice are 
largely descriptive (Scheffer et al., 2017). In about 20% of patients with GGE (Vorderwülbecke 
et al., 2021), the clinical presentation cannot be clearly assigned to one of the four subtypes. 
Also, from a genetic point of view, the boarders between the subtypes seem to be vague, as 
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more than one type occurs in families with GGE cases (Marini et al., 2004) and shared genetic 
risk factors have been found (The International League Against Epilepsy, 2018). This argues for 
a neurobiological overlap of the subtypes rather than clear lines between them. In addition, 
long-term seizure and psychosocial outcome in adult-onset GGE have been highly similar 
across the subtypes (Vorderwülbecke et al., 2017). Also, mild cognitive impairment has been 
reported for GGE (see also Other Contributions), and possible differences and similarities 
between GGE subtypes are the subject of ongoing research (Ratcliffe et al., 2020). 

1.2.2 ETIOLOGY OF GGE 

Several independent twin studies starting in the 1950s have provided strong evidence for 
major genetic contribution to GGE (Lennox, 1951). Early casewise concordance rate estimates 
that yielded values around 0.76 in monozygotic twins (MZ) versus 0.33 in dizygotic twins (DZ) 
(Berkovic 1998) have been confirmed in subsequent studies (Vadlamudi et al., 2004; 
Vadlamudi et al., 2014). A casewise concordance rate reflects the probability that one member 
is affected given that the other is affected (McGue, 1992). This rate was higher for GGE than 
for focal epilepsies (0.36 versus 0.05) or for seizure occurrence in general (0.62 versus 0.18) 
(Berkovic et al., 1998). MZ twins are largely genetically identical, whereas DZ twins share 
approximately 50% of the inherited genetic variation. A comparison of the two types of twins 
is thought to cancel out environmental influences, leaving the difference for the genetic 
contribution to phenotypic variability. Despite these early reports on the genetic contribution 
to GGE, gene discovery has been challenging up to date (The International League Against 
Epilepsy, 2018) as most GGEs presumably follow complex inheritance (Section 1.1.4), and 
thus, rare variants and many common variants are likely involved in the cause of GGE 
(Koeleman, 2018; Vadlamudi et al., 2014). Nevertheless, the history of genetic variant 
detection in GGE will be briefly outlined below.  
As with other diseases following complex inheritance, variants in single genes have been 
identified in GGE (Mullen et al., 2018). In families with autosomal dominantly inherited GGE, 
variants in the GABRG2 and GABRA1 genes encoding subunits of one type of the gamma-
aminobutyric acid receptor (GABAA) were found to be causative (Wallace et al., 2001). Also, 
loss of function in the SLC2A1 gene, which encodes the glucose transporter GLUT1, is observed 
in approximately 1% of individuals with GGE and in 10% of those with typical absence seizures 
that begin before the age of four years (Arsov, Mullen, Damiano, et al., 2012; Arsov, Mullen, 
Rogers, et al., 2012; Suls et al., 2009). GLUT1 is an important glucose transporter at the blood-
brain barrier (Mullen et al., 2018), and its dysfunction is associated with movement disorders 
and absence seizures (Mullen et al., 2010; Weber et al., 2008) as well as severe metabolic 
encephalopathies and intellectual disability (De Vivo et al., 1991). Other linkage and candidate 
gene studies produced conflicting results or were not able to confirm the findings, probably 
due to insufficient statistical power (Koeleman, 2018).  
After a long period of stagnation in gene discovery, the first genome-wide association study 
(GWAS) in 2009 shed new light on the field (Helbig et al., 2009). GWAS are conceptually 
designed for a “common disease common variants” hypothesis and enables a genome-wide 
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structural assessment of single nucleotide polymorphism (SNP) alleles. With this new 
technology deletions of chromosomal segments (also copy number variants (CNV)) at 
chromosomes 15 and 16, were detected in GGE (de Kovel et al., 2010; Helbig et al., 2009). 
Remarkably, these microdeletions had earlier been related to a spectrum of 
neurodevelopmental disorders (Miller et al., 2009), including autism, schizophrenia 
(Stefansson et al., 2008), and mental retardation (Sharp et al., 2008), but also occur in rare 
instances in unaffected individuals, suggesting that these CNVs should be considered risk 
factors rather than disease causation. Overall, these findings established a new perspective 
on the genetic architecture of GGE, underpinning the complexity with rare genetic variants.  
In the following it became clear, that large sample sizes in the order of several ten thousand 
individuals with extended international collaboration are required to attain sufficient power 
for the detection of genetic risk in common epilepsies such as GGE (Koeleman, 2018). The 
formation of a meta-collaboration, the ILAE consortium on complex epilepsies, yielded the 
largest epilepsy GWAS to date, comprising 15,212 common epilepsy cases and 29,677 controls 
in total (The International League Against Epilepsy, 2018). Sixteen risk loci have been detected, 
of which 11 were new and the others previously reported. The majority of these could be 
attributed to GGE or GGE subtypes, compatible with the notion of higher heritability estimates 
for GGE than focal epilepsies. Enrichment analyses indicated that the observed risk variants 
are involved in the regulation of gene expression in the brain, particularly in the dorsolateral 
prefrontal cortex (The International League Against Epilepsy, 2018). The authors further 
pinpointed about 21 genes (for all common epilepsies), including known epilepsy genes 
related to ion-channel function (e.g. SCN1A), transcription factors, and vitamin B6 metabolism. 
Moreover, genetic overlap among the GGE subtypes and between common and rare 
epilepsies had been noted (The International League Against Epilepsy, 2018). Nevertheless, 
the sample size of this mega-analysis was still modest compared with similar approaches in 
other common neurological disorders (The International League Against Epilepsy, 2018). 
Besides common variants, ultra-rare variants have also been identified using whole-exome 
sequencing, specifically a gene set encoding GABAA receptors in individuals with GGE. (May et 
al., 2018).  
In summary, over the years and with the innovations in the field of genomics, some 
considerable insights have been gained into the complex genetic etiology of GGE, but further 
approaches and advances are needed to find additional variants and to develop a better 
understanding of the functional impact of genetic risk factors. 

1.2.3 TREATMENT AND OUTCOME 

The diagnosis of GGE is made on clinical grounds, as described in Section 1.1.3, and on the 
basis of short-term EEG recordings and sometimes in an overnight recording. Additional 
genetic testing or imaging studies may be necessary for the differential diagnosis. Antiepileptic 
medication tailored to the specific GGE type, as well as sex and comorbidities is the primary 
therapy once the diagnosis has been confirmed. Similar to AEDs used in other epilepsies, the 
putative mechanisms of the AEDs used in GGE include blockade of voltage-gated sodium and 
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calcium channels, enhancement of GABAergic transmission, inhibition of glutamatergic 
transmission, or synaptic vesicle modulation (Devinsky et al., 2018). Besides pharmacological 
treatment, training in self-management of the disease, avoidance of seizure triggers, 
education and psychological intervention are essential. Nevertheless, the disorder is drug-
resistant in about 12-36 % of the patients with GGE in adulthood, and they experience seizures 
despite adequate treatment (Cerulli Irelli et al., 2020; Kwan & Brodie, 2000; Mohanraj & 
Brodie, 2007). This is particularly the case when more than one seizure type is present, the 
seizure onset is in childhood, a status epilepticus had occurred, or when psychiatric 
comorbidities are present (Gesche et al., 2020; Gesche et al., 2017). Nevertheless, the long-
term outcomes in GGE are generally more favorable than in many other forms of epilepsy 
(Alsfouk et al., 2019; Beghi et al., 2019). 

1.2.4 FUNCTIONAL NETWORK DYNAMICS IN GGE 

As previously described, patients with GGE can experience absence, myoclonic and/or tonic-
clonic seizures. By convention, these seizures are thought to engage the cortex in a 
symmetrical way, but about one third of the patients also show focal semiology (Usui et al., 
2005) or exhibit focal or asymmetric ictal EEG features (Leutmezer et al., 2002). GGE is typically 
characterized by short transient episodes of synchronous EEG discharges occurring bilaterally, 
but often with an anterior predominance (Leutmezer et al., 2002). These GSWD can be 
detected using EEG during the interictal, that is the non-seizing period, and commonly have a 
frequency around 2-3 Hz (see Figure 1 for an example) (Sazgar & Young, 2019). The role of 
GSWD towards epileptic network dynamics is not entirely clear. They could be a precursor or 
a driver of seizure activity or even protect against seizures (Chang et al., 2018). Many studies 
have focused on the localization of GSWD to map the origin of activation, but also to 
investigate the wide network implications before and after these events. There is strong 
evidence from multiple imaging modalities that thalamocortical and cortico-cortical networks 
play a central role in GGE (Bernhardt et al., 2009; Blumenfeld et al., 2003; Larivière et al., 2020; 
Moeller et al., 2008). Studies in animal models also suggest that thalamo-cortical circuits are 
involved in seizures (Maheshwari & Noebels, 2014), but also that the somatosensory cortex 
may play a role in the initiation of GSWD (Sitnikova & Van Luijtelaar, 2007). In humans, 
network behavior around GSWD has been altered for an extended period, suggesting high 
sensorimotor network synchrony along with low posterior synchrony before GSWSD onset 
and involvement of frontal, parietal, and occipital regions during GSWD (Tangwiriyasakul et 
al., 2018). This raises the question of how network changes in GGE behave in the phases 
without epileptiform activity, that is, interictal, from which GSWD and seizures may eventually 
evolve. Studies that have examined patients with GGE using fMRI during the resting-state have 
consistently demonstrated connectivity changes in the default mode network (DMN) (Parsons 
et al., 2020), which were common to all GGE subtypes but also to other epilepsies (Yang et al., 
2021). It has been suggested that there is a higher likelihood for dynamic state transitions in 
the DMN of patients with epilepsy than of controls, potentially reflecting effects of a distorted 
excitation-inhibition balance in epilepsy (Yang et al., 2021). GGE-typical fMRI changes (Gonen 
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et al., 2020; Yang et al., 2021) also affected other regions, such as frontal (McGill et al., 2012), 
cingulate (McGill et al., 2012) and cerebellar (Kay et al., 2014) areas. EEG/MEG studies 
providing regional, that is, source-related, information for resting-state alterations in GGE are 
less numerous and will be discussed later in this work (Chapters 4.1 and 4.2). In general, EEG 
and MEG can greatly complement findings derived by functional MRI with a much greater 
temporal precision, are less sensitive to vascular confounds, and measure neuronal activity 
more directly than fMRI (Da Silva, 2013). EEG/MEG studies have indicated a less optimized 
brain network organization, with a tendency towards stronger local clustering and integration 
(Chavez et al., 2010; Chowdhury, Woldman, et al., 2014; Elshahabi et al., 2015). Evidence from 
the fMRI literature has been rather conflicting, pointing to methodological inconsistencies for 
graph theoretical network analyses across modalities (Pegg et al., 2020). It can be said that in 
addition to the occurrence of GSWD and seizures, resting-state and topological network 
changes were also found in GGE, but to gain further insight into the nature of GGE, these need 
to be further investigated, especially with higher temporal resolution.  

1.2.5 STRUCTURAL ARCHITECTURE IN GGE 

MRI scans in patients with GGE usually appear normal on clinical inspection (Woermann et al., 
1998), but in the last few decades quantitative MRI analyses have revealed subtle structural 
alterations. In specific, cortical thickness reductions in bilateral precentral gyri and reduced 
volume of the thalamus have been most prominent (Bernhardt et al., 2009; Larivière et al., 
2020; Whelan et al., 2018). Interestingly, these particularly subcortical grey matter atrophies 
were related to structural and marginally, to functional subcortico-cortico hubs, that is to 
highly connected regions, and to fronto-central connectivity profiles. These findings were 
distinct from those in temporal lobe epilepsies, pointing to specific effects for GGE (Larivière 
et al., 2020). Microstructural brain alterations have also been detected in fiber pathways, and 
although modest compared with focal epilepsies (Hatton et al., 2020), they support the 
hypothesis of a fronto-thalamic involvement in GGE (Deppe et al., 2008; Focke et al., 2014; 
Keller et al., 2011). Further, commissural, projection and corticocortical association pathways 
seem to be affected in GGE (Hatton et al., 2020), as observed using diffusion MRI metrics 
reflecting fiber density, axonal diameter, and myelination in white matter (Beaulieu, 2002). 
Graph theoretical analyses of structural data point to a more random network topology, which 
may indicate a loss of network efficiency and is also likely to affect brain functional 
architecture in GGE (Pegg et al., 2020). While structural alterations in focal epilepsies have 
often been considered as progressive, thus changing with duration of the disease (Caciagli et 
al., 2017), this association is less clear for GGE (Bernhardt et al., 2009; Hatton et al., 2020; 
Larivière et al., 2020; Wandschneider et al., 2019; Whelan et al., 2018). In both cases, the 
evidence is based on cross-sectional designs limiting the interpretation. Moreover, 
disentangling long-term disease effects from aging or medication effects and genetic 
predisposition has been difficult and requires longitudinal studies (Caciagli et al., 2017).  
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Figure 1 | Example of generalized spike-wave complexes of ~ 3 Hz 

Shown are 10 seconds of a HD-EEG recording during resting-state eyes-closed (10-20 montage, microvolts). 
Patient is a 36-year-old with juvenile absence epilepsy (age at onset: 16 years). Note that the spike-wave 
discharges have frontal dominance (as observed in the frontal electrodes). Odd numbers represent the 
electrodes on the left hemisphere. Even numbers represent the electrodes on the right hemisphere. C = 
central, F = frontal, O = occipital, T = temporal, z = midline.  
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1.3  FROM IMAGING TO GENETICS IN GGE 
 
One of the pieces of the puzzle to be uncovered that could advance the understanding, 
diagnosis and treatment of GGE is its genetic underpinnings. This chapter will present ways in 
which brain imaging can serve this purpose, as well as previous efforts in this direction. 

1.3.1 BRIDGING THE GAP USING GENETICALLY INFLUENCED IMAGING PHENOTYPES 

Imaging methods are used in an attempt to trace the neurobiological basis of GGE and over 
the last decades, advances in imaging research have led to a better understanding of the 
epileptic network. However, how the genetic make-up of GGE leads to the manifestation of 
symptoms and large-scale brain network alterations is still vague. To bridge the gap between 
imaging findings in GGE and the complex genetic basis, we have adopted an endophenotypic 
study approach, which will be introduced here. Endophenotypes are measurable quantities 
that are related to an illness and presumably genetically simpler than the genetics of a 
complex disorder itself (Gottesman & Gould, 2003). The idea is to advance gene discovery and 
mechanisms in diseases for which a number of risk loci have been identified, but which can 
explain only a small fraction of genetic variance. It is assumed that a smaller sample size than 
in large-scale genetic studies is required to detect the genetic architecture of 
endophenotypes, as a lower polygenicity and stronger effect sizes are expected than for the 
“full” clinical disorder in question (Glahn et al., 2014). Endophenotype research was 
introduced into psychiatry research in 1987 by Irving Gottesman and colleagues and has been 
resonating strongly ever since in the field (Roffman, 2019). The reason for this lies in the 
phenomenological or symptom-based and uncertain conceptualization of psychiatric 
disorders, which promoted efforts towards a biologically oriented classification. The term 
endophenotype was first described by John and Lewis in 1966 in studies of grasshoppers and 
referred to the “internal, microscopic condition” (endophenotype) that provided more 
information about their geographic distribution than their (external) appearance (John & 
Lewis, 1966). The hope in complex diseases is that clinical phenotypes can be better linked to 
underlying molecular biological causes and that the clinical overlap of diagnostic categories 
can be better explained. Endophenotypes can be of any behavioral or physiological nature, 
but have mostly focused on cognitive, electrophysiological, or imaging candidates in previous 
efforts (Glahn et al., 2014; Meyer-Lindenberg & Weinberger, 2006; Sanchez-Roige & Palmer, 
2020). As with many neuropsychiatric disorders, the genetic architecture of GGE is complex, 
albeit heritability is comparably high (Section 1.2.2). This means that no particular 
combination of genes or environmental influences can characterize the diseased individual. It 
is conceivable that an endophenotype approach could lead to a greater discoverability of the 
genetic contribution than whole-genome or exome screenings in large populations. However, 
a few criteria need to be met for an endophenotype according to Gottesman that distinguish 
it from a classical biomarker (Gottesman & Gould, 2003). Prerequisites are a correlation of the 
marker with disease liability, heritability and co-inheritance in families. Furthermore, an 
endophenotype should be independent of the disease status. In concrete terms, this means 
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that an expression of the marker can be present in an individual without having the disease. 
However, this should be the case more often in non-affected family members than in the 
general population.  

1.3.2 ENDOPHENOTYPES IN GGE 

Early reports about endophenotypes in GGE concerned cognitive alterations. Iqbal et al. 
(2009) derived cognitive profiles in patients with GGE, healthy controls and healthy siblings of 
the patients. They found a tendency for the performance of patients and siblings in expressive 
language and higher-order executive functions to be similar but different from that of 
controls. Wandschneider et al. (2010) assessed prospective memory in 19 patients with JME, 
a GGE subtype, 21 siblings and 21 healthy individuals, reflecting the ability to execute 
previously planned intentions (Ellis, 1996). Again, subtle deficits were reported for the 
patients, and to a lesser extent also in the siblings. This evidence for genetic cognitive profiles 
in JME, albeit of small effect size, was further substantiated by Iqbal et al. (2015) for a number 
of other cognitive functions  and similarly for a mixed GGE patient cohort (Chowdhury, Elwes, 
et al., 2014).  
One of the first endophenotype studies using imaging in GGE focused on the most common 
GGE subtype JME (Wandschneider et al., 2014). During an fMRI working memory paradigm, 
coactivation of the primary and supplementary motor areas was altered in patients with JME 
and sustained with increasing demand, whereas deactivation occurred in healthy controls. 
Functional connectivity between motor and frontoparietal networks were also increased. 
Healthy siblings of the patients presented with a similar pattern. This study provided first 
important insights that atypical function and wiring of large-scale networks in JME may be a 
precursor mechanism of the disease. Furthermore, it suggested that this network behavior 
could underlie the observed cognitive deficits in JME (Wandschneider et al., 2014). This finding 
of a hyperactivated motor system in JME and siblings has been later extended to other 
cognitive domains such as memory and expressive language, suggesting a more domain-
independent endophenotype (Caciagli et al., 2020). Based on fMRI findings, others argued for 
a state-independent hypersynchronous sensorimotor network as GGE endophenotype 
(Tangwiriyasakul et al., 2019), that is, for a generally increased level of spontaneous 
synchronization.  
Chowdhury and colleagues provided further evidence for genetically influenced network 
conditions by studying 35 mixed GGE patients, 42 unaffected first-degree relatives, and 40 
healthy individuals using conventional 10-20 scalp EEG (Chowdhury, Woldman, et al., 2014). 
Network measures characterizing the functional brain topology revealed stronger local 
clustering and mean variance of functional connections in the theta range (6-9 Hz) in the 
patients and relatives. Other evidence for altered wiring costs and network efficiency in GGE 
can be derived from a study on (structural) cortico-cortical connectivity in JME patients and 
siblings (Wandschneider et al., 2019). Cortical distance measures were increased in prefrontal 
areas, anterior cingulate, and temporo-polar cortices with effects on a wide range of well-
known functional networks across the cortex (Wandschneider et al., 2019). Again, siblings had 
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similar topological patterns, corresponding to the note that these MRI markers can reflect 
neurodevelopmental processes and genetic organization of the cortex (Chen et al., 2013). 
Other morphological markers have also been looked into, such as curvature, surface area, and 
cortical thickness, for which regional differentiation is presumably controlled by gene 
expression along different topographical axes in the brain (Chen et al., 2013). Increased folding 
complexity of the cortical structures and surface area have been found to be present in JME 
patients and siblings in prefrontal and cingulate areas, whereas cortical thickness was only 
altered in the patients (Wandschneider et al., 2019). Also, morphological changes in the 
hippocampus and hippocampal malrotation were detected in the same study groups, with 
functional implications during verbal memory encoding, albeit without a behavioral 
(cognitive) correlate (Caciagli et al., 2019).  
Overall, a handful of studies have investigated cognitive impairments in GGE and reported 
similar performance of the siblings, which gave rise to the question of a neurobiological 
substrate with heritable basis. In JME, (f)MRI paradigms have linked cognitive variables with 
brain function and structure with the possibility of using the employed markers as 
endophenotypes. At this point, it remains unanswered whether these findings are specific for 
JME or can be extended to other forms of GGE. Two other studies suggested that, independent 
of external or cognitive variables, there are basic heritable alterations in functional networks 
in GGE in the interictal state, specifically in sensorimotor regions and network organization. 
Given that rapid and abrupt changes in neuronal dynamics are characteristic to GGE and 
epilepsy in general, it is of utmost interest, to study oscillatory activity at high temporal 
resolution, as well as the underlying etiology leading to seizure susceptibility. Significantly, 
including first-degree relatives in the study also allows better delineation of disease causes 
from consequences or confounding factors such as pharmacological treatment.  

1.3.3 AGE AT DISEASE ONSET AND BRAIN OSCILLATIONS DURING DEVELOPMENT 

In the search for causative mechanisms for GGE using brain imaging, the age at disease onset 
may also provide important clues. Brain development and aging is critical in many pathological 
conditions and also in epilepsy. GGE subtypes are classically characterized by a specific 
window for age at onset (Vorderwülbecke et al., 2021). The onset of childhood absence 
epilepsy is usually between four and eight years of age with several absence seizures a day. 
With its often less frequent absences, juvenile absence epilepsy typically begins around 11 
years and can include GTCS. In some cases, absences may also be present in JME with onset 
in adolescence. Myoclonic seizures are a hallmark of JME, but GTCS can also occur (Mullen et 
al., 2018). Generally speaking, in age-associated diseases, there could be a deviation from 
normative brain development or aging leading to the expression of symptoms and disease. 
Clinical symptoms may arise many years later than the presumably actual onset of disease as 
is for example suspected for Alzheimer’s disease ;�ǀĢƎŽǀĄ͕� ϮϬϭϵͿ that primarily manifests 
during senescence.  
Establishing biomarkers which quantify biological aging likely more meaningfully than the 
chronological age, has gained momentum in the last decade (Franke & Gaser, 2019). In 
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neuroimaging such markers have been mostly based on neuroanatomical data and are 
intended for individual health risk assessment and prediction (Franke & Gaser, 2019). In 
essence, the idea is to use imaging data to infer the deviation of an individual’s brain age at a 
certain time point from that of a population norm. The relationship between chronological 
age and the expression of an imaging marker is studied using machine learning in a training 
dataset of healthy individuals, which then can be used for prediction in another sample (Cole 
& Franke, 2017). Usually, the difference between the individual computed brain age and the 
actual chronological age is calculated and referred to the ‘brain age gap’ or ‘brain age delta’ 
(Smith et al., 2020). This paradigm has been shown to have clinical relevance and has provided 
means to study the interaction of normal brain aging and pathology (Cole & Franke, 2017). 
Moreover, development and aging are complex processes, with central genetic and epigenetic 
determinants, and are marked with structural and functional brain changes (Higgins-Chen et 
al., 2021). It is conceivable that genetic determinants of lifespan trajectories are intertwined 
with genetic risk for disease. Remarkably, a study with over 45,000 individuals aged 3-96 years 
found signs of brain aging in common brain disorders using markers of structural MRI and 
machine learning. Moreover, the authors have demonstrated partial genetic overlap for 
“healthy” brain aging and disorders with clinical appearance in early or late life, including 
schizophrenia, bipolar spectrum disorder, autism spectrum disorder, attention-deficit 
hyperactivity disorder, multiple sclerosis, major depressive disorder, and Alzheimer’s disease 
(Kaufmann et al., 2019). Although disease patterns cannot be expected to be fully congruent 
with signs of biological aging (Smith et al., 2020), a deeper understanding of dynamic lifespan 
trajectories may be an important building block in unravelling the complexity of age-related 
diseases (per se and specifically in epilepsy). In fact, recent investigations have challenged the 
claim that the brain age gap mainly reflects accelerated brain aging (Vidal-Pineiro et al., 2021). 
Instead, the authors have demonstrated that these markers rather reflect early-life factors 
than longitudinal changes in an individual’s brain. In their study, they compared longitudinal 
and cross-sectional estimates of the brain age in two independent, large-scale data sets and 
were unable to determine a relationship between them. Remarkably, cross-sectional brain 
age gap was associated with self-reported birth weight and genetic composition related to an 
‘older looking brain’. These findings strongly imply that genetic factors have, probably in 
interaction with environmental influences, a stable and long-lasting effect on these brain 
markers, in this case structural MRI markers (Vidal-Pineiro et al., 2021). So far, most brain age 
studies have been based on a single global marker of brain morphology. Recently, others have 
used more sophisticated procedures and calculated about 3,900 imaging phenotypes and 
aggregated them into so-called “modes” based on their co-variation across age as well as 
overarching clusters (Smith et al., 2020). The idea is that the combined phenotypes represent 
specific biological processes. For example, altered white-matter structure could index axonal 
degeneration. Interestingly, brain age gaps for these modes could be linked to the genetic 
architecture of individuals, which was not possible with a single (unimodal) brain age measure 
for an individual (Smith et al., 2020). In this sense, it seems valuable to consider meaningful 
and distinct entities composed of multiple and multimodal features to understand what 
causes deviations from the norm.  
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Roughly speaking, the brain age approach could, in future, be a window into prediction of 
brain conditions at a certain time point in a (diseased) individual and allow inferences about 
genetic determinants and/or early developmental parameters. Given that the pathological 
dynamics in epilepsy are well represented at faster timescales using electrophysiology 
techniques, information about fast oscillatory activity across the lifespan could greatly help to 
disentangle disease-related effects from normal effects of aging. However, as opposed to 
research investigating brain structural features or slow-waves using fMRI, there is little 
scientific evidence for how features of fast brain oscillations evolve with age, nor is much 
known about the biological basis of such markers. Therefore, as a first step, this should be 
sought in healthy controls before drawing conclusions about individuals with epilepsy. 
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1.4  METHODS OF BRAIN ELECTROPHYSIOLOGY 
 
In the original studies of this dissertation, I will focus on the use of EEG and MEG to study brain 
activity and synchronization of GGE, as well as the characterization of markers used across the 
lifespan. This section will provide a brief introduction to the origin of brain oscillations in MEG 
and EEG, connectivity measures, and source imaging in epilepsy. 

1.4.1 OSCILLATORY ACTIVITY AND SYNCHRONIZATION  

The electrical or magnetic signals measured at the scalp using EEG and MEG, respectively, are 
generated by neurons that are active in a temporally coordinated manner. In order for the 
signals to be observable from outside the brain, an assembly of several thousands of neurons 
must be functionally and spatially organized (Da Silva, 2013). This is the case with pyramidal 
neurons in the cortex, which are organized in columns with the dendrites parallel to each 
other. Excitation of postsynaptic neurons lead to intracellular and extracellular current flows, 
producing an electric field along the main axis of the neurons, and perpendicular to it, a 
magnetic field that can be measured from a distance (Berger, 1929; Cohen, 1972; Da Silva, 
2013; Hämäläinen et al., 1993). The main feature of electrophysiological recordings is the 
presence of oscillations of different rhythms reflecting variations in the excitability of (local) 
neuronal populations ;�ƵǌƐĄŬŝ� & Wang, 2012; Cohen, 2017). The signal strength, that is, 
amplitude, and timing of the oscillations also vary, which likely facilitates information flow 
between network nodes if synchronized (Womelsdorf et al., 2007) and enables long-range 
communication in the brain (Wang, 2010). The functional relevance of neuronal oscillations 
has been the subject of in vitro and in vivo experiments (Cohen, 2017) as well as cross-species 
studies for decades ;�ƵǌƐĄŬŝ� Ğƚ� Ăů͕͘� ϮϬϭϯͿ. The basic idea is that the study of neuronal 
oscillations can provide insights into mechanistic principles of the brain, both in task-based 
study paradigms, and at rest in healthy subjects as well as in pathological conditions such as 
in epilepsy (Berger, 1929; Buzsaki, 2006; Cohen, 2017; Singer, 1999; Uhlhaas & Singer, 2006; 
Varela et al., 2001).  
Epileptic seizures are reflected in electrophysiological recordings as high-amplitude, often 
rhythmic activity, and are interpreted as aberrant neuronal excitability and synchronization 
(Jiruska et al., 2013). Initially, this state was termed “hypersynchronous” (Penfield & Jasper, 
1954), however, it has become clear that synchronization in epilepsy is much more complex 
(Jiruska et al., 2013). Using EEG or MEG, a number of different metrics are available to study 
synchronization in the brain (Varela et al., 2001; Wang et al., 2014), usually grouped under the 
umbrella term “connectivity”. Functional connectivity represents the statistical 
interdependence between time series (Friston et al., 1993), with the possibility of also 
considering the direction of interaction (Bastos & Schoffelen, 2016). In the time domain these 
include correlation metrics or, in the directed case, cross-correlations, Granger causality, or 
transfer entropy (Bastos & Schoffelen, 2016). Of particular interest is often the study of 
neuronal interactions in specific temporal rhythms, such as in the study of epilepsy, which 
requires the transformation of signals into the frequency domain. Most metrics quantify the 
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consistency of phase differences between oscillating signals. Others ignore phase relations 
between the signals and use only the amplitude or envelopes to study mutual dependencies 
(Hipp et al., 2012). It is worth noting that there is no universally preferred connectivity metric, 
as all have their advantages and disadvantages. The choice is usually difficult and depends on 
factors such as applicability, comparability or accessibility within a research community 
(Bastos & Schoffelen, 2016). Throughout this work, we used the imaginary part of coherency 
(Nolte et al., 2004), which shall briefly be introduced. Coherence quantifies the phase 
synchrony in the frequency domain and is equivalent to the cross-correlation function in the 
time domain. In the case of two signals this is achieved by multiplying the amplitudes of the 
signals and subtracting their phases, resulting in the cross-spectrum between the signals 
(Bastos & Schoffelen, 2016). Now, studying connectivity at the human scalp sensors 
introduces one serious problem. The activity of a single source in the brain is picked up by 
many sensors, and therefore the relationship between sensor signals does not reflect true 
connectivity of brain sources. To mitigate this problem, the complex-valued coherency is 
projected onto the imaginary axis so that connectivity with a phase-lag of zero or two S, which 
is considered spurious, is discarded. The spread of activity from one source to multiple sensors 
or volume conduction has no time delay and therefore a zero-phase lag. Neural transmission, 
on the other hand, should result in amplitude correlation and additionally in a time delay, 
which is reflected in a phase shift. In essence, the imaginary part of coherency is sensitive only 
to time-lagged synchronization of signals (Nolte et al., 2004).  

1.4.2 SOURCE IMAGING AND THE USE OF EEG AND MEG IN EPILEPSY 

Besides measuring signal properties and the topographical distribution given a set of sensors 
outside the brain, it is usually of interest to know about the signal’s origin. However, this is 
not straightforward because electromagnetic fields of a single source spread spatially 
(Helmholtz, 1853) and may be picked up by multiple sensors. Conversely, one sensor on the 
scalp may record the activity of multiple neuronal sources (Fender, 1987). Essentially, the 
question is which functional and anatomical configurations in the brain result in the sensor 
topographies measured using EEG or MEG, which, without constraints, has an unlimited 
number of solutions (Da Silva, 2013). To solve this so called “inverse problem”, several 
assumptions need to be made and parameters set, which may have an impact on the results 
(Fender, 1987; Michel et al., 2004). In general, using mathematical descriptions and projection 
methods one can determine the anatomical localization of cortical sources with centimeter 
precision (Cuffin et al., 2001; Fuchs et al., 2002; Klamer et al., 2015). One concept in source-
space imaging is the forward model, which includes the anatomy of an individual brain or a 
template brain (head model), the locations of the EEG/MEG sensors, and a set of sources or 
dipoles (Michel et al., 2004). Conceptually, the forward solution tells us what the activity at 
the sensors looks like given a set of activated sources in the brain and the anatomical 
conditions (Cohen, 2017; Michel et al., 2004). In the case of EEG, signals traveling quasi-
instantaneously from the brain to the scalp are distorted by several layers of cortical tissue of 
different electrical conductivities leading to an attenuation of the electrical signal. This must, 
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therefore, be accounted for in the forward solution by modeling the cortical layers, that is, by 
assuming specific conductance values for brain tissue (Michel et al., 2004). Head models can 
be simplistic or complex by including skin, skull, cerebrospinal fluid, gray and white matter 
(Wolters et al., 2006). Conversely, these tissues are constantly permeable to magnetic signals, 
which means they are less affected by anatomical features and require less complex modeling 
(Da Silva, 2013; Hansen et al., 2010). Assumptions are also made about the density and 
localization of dipoles, which can be generated based on an MRI volume or cortical surface 
area (Saad & Reynolds, 2012). Once the forward model is computed, the unknown sources 
corresponding to the MEG/EEG data are estimated by defining a set of sensor weights for each 
given source point in the brain. Several source imaging methods exist with fixed weights or 
adaptive filters such as beamforming methods (Cohen, 2017; Michel et al., 2004). In this way, 
an approximate solution to the inverse problem is found that provides information about 
where in the brain the measured EEG or MEG might have originated. 
In epilepsy, source imaging has been of special interest for the localization of epileptic 
discharges and seizure foci for the purpose of more accurate resection in focal epilepsies. In 
GGE, most of the studies have reported on EEG power at the sensor level without mapping it 
to brain sources and often, EEG systems with comparably low sensor density (< 64 sensors) 
were used (Faiman et al., 2021). Today, many high-density systems with 128 or 256 sensors 
are available, which can yield improved resolution if noise is kept low (Da Silva, 2013). EEG 
reflects relative changes in electrical potentials between an electrode and, typically, a 
reference electrode in microvolts (Cohen, 2017). MEG usually comes with a whole-brain 
coverage of at least 64 sensors and is a reference-free method (Hansen et al., 2010), 
measuring brain activity at the units of femtotesla (10-15 tesla). EEG and MEG are thought to 
reflect the same neuronal phenomena (Da Silva, 2013), but due to their unique signal 
properties and associated modeling aspects, the two methods are complementary (Malmivuo, 
2012), which will be covered in more detail in Chapter 4.2 of this dissertation. Although MEG 
has been shown to yield additional information in epileptic spike detection (Heers et al., 2010; 
Rampp et al., 2019), resting-state MEG studies in GGE are scarce (Elshahabi et al., 2015; 
<ƌǌĞŵŝŷƐŬŝ�Ğƚ�Ăů͕͘�ϮϬϮϬ͖�>ŝ�,ĞŐŶĞƌ�Ğƚ�Ăů͕͘�ϮϬϭϴ͖�>ŽƉĞƐ�Ğƚ�Ăů͕͘�ϮϬϮϭͿ.  



Scope of the Dissertation | 

23 
 

2 SCOPE OF THE DISSERTATION 
 
Epilepsy, including genetic generalized epilepsy, is increasingly understood as a network 
disease, and imaging and electrophysiological methods have contributed to its more 
sophisticated understanding. Recordings of epileptic seizures and epileptic discharges show 
rapid, rhythmic synchronization of brain activity and are essential features for the 
classification of seizure types and syndromes. However, how large-scale brain networks 
behave in GGE during periods without epileptiform activity, that is, during the interictal state, 
is not well understood and must be clarified. Are functional networks altered in epilepsy 
patients in general, as a sign of the disease, and not just during a seizure? It is further essential 
to grasp what is being measured when examining the interictal state by means of resting-state 
measurements — do the corresponding markers reflect disease mechanisms, disease 
progression, or even treatment effects? And, most intriguingly, how is the genetic etiology of 
GGE related to brain activity and synchronization during this state? Conversely, do 
electrophysiological markers of activity and synchronization map disease mechanisms that 
may be genetically influenced? In addition to the conceptual description of the interictal state, 
it is pertinent whether MEG and HD-EEG provide complementary information about network 
alterations in GGE and whether these correspond to known subtle structural changes. This is 
critical for a better understanding of the disease and the imaging phenotype in GGE, which 
could support diagnostics and treatment in future. Moreover, it is of significance whether 
electrophysiological markers change across the lifespan and what this might reveal about 
developmental aspects relevant to GGE.  
 
Overall, I address the following overarching questions in this dissertation: 
 

(A) Are markers of brain oscillatory activity and synchronization during the interictal state 
able to capture disease variations related to the genetic makeup of GGE? Can a 
multimodal assessment of functional and structural properties of the brain enhance 
the understanding of the network phenotype in GGE? 
 

(B) How are electrophysiological markers expressed in different age groups of healthy 
individuals? Do they reflect brain development and aging processes, and how might 
this relate to disease trajectories in GGE? 

 
To answer the questions in (A), we first investigated power and connectivity in patients with 
GGE and their healthy siblings at rest using MEG (Study I, Chapter 4.1). In a second step, we 
applied the same analysis principles to the HD-EEG data obtained from the same study cohort. 
Further, we statistically combined the MEG and HD-EEG results with cortical thickness 
measures in a joint analysis (Study II, Chapter 4.2). For the questions in (B), we used MEG data 
from a large-scale research project to study how power and connectivity evolve from early 
adulthood into old age (Study III, Chapter 4.3).  
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3 MATERIALS AND DATA 

 MULTIMODAL IMAGING IN GENETIC GENERALIZED EPILEPSY 

For the studies presented in Chapter 4.1, Chapter 4.2, and Other Contributions, the data were 
measured and analyzed as part of a multimodal imaging project. A patient sample with mixed 
GGE subtypes was recruited through the Department of Neurology, University Hospital of 
Tübingen, Germany. Further, healthy siblings of the patients and healthy controls were 
contacted and interviewed regarding medical history and eligibility for MR examinations. 
Individuals with neurologic or psychiatric disorders, cardiac or respiratory diseases, and 
medication intake were excluded. All eligible individuals were invited to participate in the 
study at the MEG Center, University of Tübingen, and at the Department of Biomedical 
Magnetic Resonance, University of Tübingen, Germany. All individuals were measured in a 
magnetically shielded room during eyes-closed resting-state in supine position using MEG (30 
min) and separately using HD-EEG (30 min). After a short break, the patients with GGE and the 
siblings were neuropsychologically examined (approximately 60 minutes). The protocol was 
based on an established presurgical paradigm of the department and included tests covering 
different executive memory and visuo-spatial functions, attention, and fluid and crystallized 
intelligence. Finally, we conducted simultaneous fMRI-EEG measurements (30 min) and 
anatomical and diffusion tensor imaging (T1 weighted/T2-FLAIR/DTI; 30 min). 
 
My contributions: I evaluated and documented the medical reports of the patients. I 
coordinated the study, contacted the patients and their healthy siblings, and healthy controls, 
interviewed them concerning medical history and MR eligibility. I acquired the MEG, HD-EEG, 
fMRI-EEG and MRI data of 20 patients, 21 siblings and 20 healthy individuals, and conducted 
and evaluated the neuropsychological assessments. I was also involved in data curation and 
documentation.  
 

 LIFESPAN TRAJECTORY OF OSCILLATORY MARKERS 

The study of electrophysiological markers across the lifespan (Chapter 4.3) is based on the 
data repository of a large-scale collaborative research initiative of the Cambridge Centre for 
Ageing and Neuroscience (Cam-CAN). Launched in 2010, the project aims at studying how 
cognitive abilities can be retained into old age. Cam-CAN provides cross-sectional 
epidemiological, cognitive, and neuroimaging data derived from two study stages. In a first 
stage, 3,000 adults ranging from 18 to 88 years of age were surveyed as to health and lifestyle 
and were cognitively tested. In a second stage, 700 of them underwent task and resting-state 
fMRI and MEG measurements. Again, the individuals were assessed using a cognitive test 
battery. Individuals with cognitive impairments, communication difficulties (hearing and 
vision), mobility problems, medical conditions, and substance abuse were excluded (Shafto et 
al., 2014; Taylor et al., 2017). 
 
My contributions: I applied for data access, downloaded and processed the data.   
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4 ORIGINAL STUDIES 
 
My research contributions for this dissertation have been summarized into the following three 
main manuscripts: 
 
4.1 Heritability of magnetoencephalography phenotypes among patients with genetic 
generalized epilepsy and their siblings 
Authors: Christina Stier, Adham Elshahabi, Yiwen Li Hegner, Raviteja Kotikalapudi, Justus 
Marquetand, Christoph Braun, Holger Lerche, and Niels K. Focke 
 
CS and NKF designed and conceptualized the study; CS, AE, RK, JM acquired data; CS analyzed 
the data, CS performed statistical analyses and visualization; CS and NKF interpreted the 
results; YLH and CB provided critical input on the methods; NKF and CB supervised the project; 
CS wrote the manuscript; NKF, AE, YLH, RK, JM, CB, HL revised the manuscript for intellectual 
content 
 
Published in Neurology, 2021 
 
4.2 Combined electrophysiological and morphological phenotypes in patients with genetic 
generalized epilepsy and their healthy siblings 
Authors: Christina Stier, Markus Loose, Raviteja Kotikalapudi, Adham Elshahabi, Yiwen Li 
Hegner, Justus Marquetand, Christoph Braun, Holger Lerche, and Niels K. Focke 
 
CS and NKF designed and conceptualized the study; CS, RK, AE, JM acquired data; CS and ML 
analyzed the data, CS performed statistical analyses and visualization; CS and NKF interpreted 
the results; YLH and CB provided critical input on the methods; NKF and CB supervised the 
project; CS wrote the manuscript; NKF, ML, RK, AE, YLH, JM, CB, HL revised the manuscript for 
intellectual content 
 
In revision for resubmission to Epilepsia; version dated January 28, 2022 
 
4.3 Lifespan trajectory of oscillatory power and phase 
Authors: Christina Stier, Christoph Braun, Niels K. Focke 
 
CS and NKF designed and conceptualized the study; Cam-CAN acquired and provided data; CS 
analyzed the data, CS performed statistical analyses and visualization; CS and NKF interpreted 
the results; CB provided critical input on the methods; NKF supervised the project; CS wrote 
the manuscript; NKF revised the manuscript for intellectual content 
 
In preparation for submission. 
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4.1 HERITABILITY OF MAGNETOENCEPHALOGRAPHY PHENOTYPES AMONG PATIENTS WITH 

GENETIC GENERALIZED EPILEPSY AND THEIR SIBLINGS 
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Abstract
Objective
To assess whether neuronal signals in patients with genetic generalized epilepsy (GGE) are
heritable, we examined magnetoencephalography resting-state recordings in patients and their
healthy siblings.

Methods
In a prospective, cross-sectional design, we investigated source-reconstructed power and
functional connectivity in patients, siblings, and controls. We analyzed 5 minutes of cleaned and
awake data without epileptiform discharges in 6 frequency bands (1–40 Hz). We further
calculated intraclass correlations to estimate heritability for the imaging patterns within families.

Results
Compared with controls (n = 45), patients with GGE (n = 25) showed widespread increased
functional connectivity (θ to γ frequency bands) and power (δ to γ frequency bands) across the
spectrum. Siblings (n = 18) fell between the levels of patients and controls. Heritability of the
imaging metrics was observed in regions where patients strongly differed from controls, mainly
in β frequencies, but also for δ and θ power. Network connectivity in GGE was heritable in
frontal, central, and inferior parietal brain areas and power in central, temporo-parietal, and
subcortical structures. Presence of generalized spike-wave activity during recordings and
medication were associated with the network patterns, whereas other clinical factors such as age
at onset, disease duration, or seizure control were not.

Conclusion
Metrics of brain oscillations are well suited to characterize GGE and likely relate to genetic
factors rather than the active disease or treatment. High power and connectivity levels co-
segregated in patients with GGE and healthy siblings, predominantly in the β band, repre-
senting an endophenotype of GGE.
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Idiopathic/genetic generalized epilepsy (GGE) is a common
epilepsy syndrome accounting for 15%–20% of all epilepsies.1

Different seizure types can occur, including absence, myo-
clonic, and generalized tonic-clonic seizures.2 For GGE, a
polygenic background is presumed.3 So far, gene discovery
has been scarce despite high heritability4 and large-scale col-
laborative efforts.3,5 Thus, it is of high interest to seek sub-
clinical traits of the syndrome (endophenotypes) that reflect
the genetic background of the disease and cosegregate in
families with affected individuals.6 Candidate markers for
GGE have been proposed, such as cognitive functioning,7-9

frontal lobe10 and hippocampal morphology, hippocampal
function,11 and functional network topology.12 Furthermore,
patients with juvenile myoclonic epilepsy (JME) and their
siblings have shown increased activation of the motor system
during cognitive tasks.13,14 However, increased brain con-
nectivity and power has also been found in absence of cog-
nitive load in a mixed GGE cohort and in widespread
regions.15,16 It is less clear to which extent observed findings
reflect disease activity, effects of seizure burden, or treatment.
Also, various methodologic approaches hinder reproducibility
and comparability of functional network studies.17 Given that
characteristics of spontaneous brain oscillations at rest are
heritable,18,19 the studies of unaffected siblings may help to
disentangle genetic factors from secondary disease effects.

This study set out to assess whether imaging metrics based on
oscillatory neural activity and measured by magneto-
encephalography (MEG) during resting-state could represent
an endophenotype of GGE.

Methods
Standard Protocol Approvals, Registrations,
and Patient Consents
This study was approved by the local ethics committee of the
Medical Faculty of the University of Tübingen and con-
ducted in compliance with the principles of the Declaration
of Helsinki. All participants provided written informed
consent.

Recruitment
Patients with GGE and their siblings were consecutively
recruited through the clinical database of the Department of
Neurology, University Hospital of Tübingen, Germany, be-
tween 2013 and 2019. Advertisement and recruitment of
controls was conducted in the local area. All patients were
diagnosed with GGE according to the recent International
League Against Epilepsy classification.2 At the time of the
study, siblings and controls never had experienced seizures,

were free of any neurologic and psychiatric diseases, and did
not take any medication.

MEG Recording
Resting-state data were measured in supine position (275
channels system, CTF Inc.) in the MEG center of the Uni-
versity of Tübingen (585.9 Hz sampling rate). Participants
underwent 30 minutes of continuous recording in order to
have sufficient data after exclusion of segments with gener-
alized spike-wave discharges (GSWD). All participants were
instructed to relax, to keep their eyes closed, not to fall asleep,
and not to think of anything in particular.

Individual Head Anatomy
A sagittal high-resolution T1-weighted image was acquired for
all participants (3D-MPRAGE, repetition time = 2.3 seconds,
echo time = 3.03 ms, flip angle = 8°, voxel size = 1 × 1 ×
1 mm), either on a Siemens Magnetom Trio 3T scanner
equipped with a 12-channel head coil (11/45 controls, 5/25
patients) or at the Siemens Magnetom Prisma 3T system
(Siemens AG) with a 64-channel head coil (34/45 controls,
18/18 siblings, 20/25 patients). Detailed description of pro-
cessing methods and references can be found elsewhere.20 In
brief, individual cortical surfaces were reconstructed using
FreeSurfer (surfer.nmr.mgh.harvard.edu/) and further sub-
jected to SUMA (afni.nimh.nih.gov/download/). SUMA
decimated each participant’s cortical surface to 1,002 com-
mon vertices per hemisphere. The surface was resampled
using the fsaverage template (FreeSurfer) and SUMA (ld =
10). In addition, 6 subcortical nuclei (bilateral amygdala,
hippocampus, thalamus, caudate, putamen, and pallidum)
were reconstructed based on the fsaverage template. Each
region was converted to surfaces and spatially normalized to
Montreal Neurological Institute space (DARTEL; SPM12; fil.
ion.ucl.ac.uk/spm/software/spm12/) using CAT12 DAR-
TEL template (neuro.uni-jena.de/cat/). This procedure
eventually yielded 2,338 vertices for each participant and
point-for-point anatomical correspondence for cortical and
subcortical regions. Finally, the individual cortical mesh was
realigned to the CTF sensor space using the fiducial positions
recorded during theMEG session. A volume conduction head
model was constructed for the MEG source analysis using the
single shell method implemented in Fieldtrip.

MEG Data Processing and Source Analysis
Preprocessing and further analysis steps were performed us-
ing Fieldtrip (fieldtriptoolbox.org/) running in MatLab
(version 9.0, R2016a, Mathworks Inc.) as described and ref-
erenced elsewhere.20 In short, data were preprocessed (But-
terworth band-pass filter 1–70 Hz, line-noise removal),
downsampled (150 Hz), and cut into epochs of 10 seconds

Glossary
FWE = familywise error correction; GGE = genetic generalized epilepsy; GSWD = generalized spike-wave discharges; ICC =
intraclass correlation; JME = juvenile myoclonic epilepsy; MEG = magnetoencephalography; SNR = signal-to-noise ratio.
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length. Trials with GSWD were manually marked and ex-
cluded from the further analysis including one trial preceding
and one trial after the event (±10 seconds). Each trial was
visually inspected and trials with artefacts were manually re-
moved (e.g., movements, excessive muscle activity, sensor
jumps). We used independent component analysis to detect
and manually reject cardiac and eye movement artefacts. All
trials were again reviewed and vigilance was rated according to
sleep scoring criteria of the American Academy of Sleep
Medicine. Thirty trials of cleaned and awake data (300 sec-
onds) per participant were randomly selected for source
analysis. We performed spectral analysis on the MEG sensor
data using a multitaper fast Fourier time-frequency trans-
formation approach with frequency-dependent discrete pro-
late spheroidal sequences tapers for 6 frequency bands (δ: 2 ±
2 Hz, θ: 6 ± 2 Hz, α: 10 ± 2 Hz, β1: 16 ± 4 Hz, β2: 25 ± 4 Hz,
and γ: 40 ± 8 Hz). Power and the cross-spectral density were
derived from the Fourier transformed sensor-level data. We
used beamforming (dynamic imaging of coherent sources)
to project the data to the source space. For each vertex point
of the individual cortical mesh, the lead field matrix was
calculated and an adaptive spatial filter was applied sepa-
rately for each frequency band (regularization: λ = 5%).
Power was computed for each source position. The co-
herency coefficient, which quantifies phase synchrony be-
tween 2 signals, was estimated between all pairs of sources (n
= 2,338). We then investigated the absolute imaginary part
of coherency to reduce contributions to the connectivity
estimate, which are due to potential field spread.21 In sum, a
symmetrical, weighted, and undirected individual functional
connectivity matrix was constructed for each frequency
band. We averaged the weights of each vertex to estimate the
overall connection strength of a vertex. To obtain an overall
indicator of metrics, we also averaged connectivity and
power across all vertices, yielding one global value per
participant.

Statistical Analysis of Imaging Metrics
Group differences in power and connectivity were assessed
using Permutation Analysis of Linear Models (fsl.fmrib.ox.
ac.uk/fsl/fslwiki/PALM), a nonparametric statistical tool. In
order to allow permutation inference in presence of possible
dependence structures among related participants, we ap-
plied multilevel block permutation.22 Blocks of exchangeable
units were defined and shuffled as a whole (families and
single unrelated participants). Observations within a block
were rearranged among themselves (observations within
families). We carried out single t contrasts instead of an
overall F test, which would have only allowed limited ex-
changeability of the data given related family structures
(patients/siblings) and unrelated controls. Based on pre-
vious work,15,16 we hypothesized increased network levels in
patients with GGE compared with controls and thus ran
one-sided comparisons (controls < siblings, siblings < pa-
tients, controls < patients). Groups were contrasted vertex-
based and on a global level, respectively, and for each fre-
quency band separately. For each comparison, a general

linear model was fit for every permutation, with imaging
metrics as dependent variables. Group association and age
constituted the predictors. Sex was initially included as ad-
ditional predictor in the model but did not change any of the
main results and was not further considered in the analyses.
The data were permuted 5,000 times. An estimate of the
empirical distribution of the t statistics under the null hy-
pothesis was constructed, from which the p values were
generated. In the vertex-based analysis, we corrected for
multiple comparisons on cluster level using threshold-free
cluster enhancement.23 p Values were familywise error cor-
rected (FWE) within each group contrast and indicated as
–log10 p with a significance threshold of 1.3 (p < 0.05).
Effect sizes (Cohen d) for vertex-based and global group
comparisons were derived from the t values of the linear
models. d Is therefore adjusted for age effects. An effect size
of d = 0.2 is considered to be small, d = 0.5 intermediate, and
d = 0.8 large.24

Heritability of Imaging Patterns
We explored the extent to which imaging phenotypes are
heritable and quantified this using intraclass correlation
(ICC) through linear mixed-effects modeling.25 ICC values
were estimated based on the random effect components of a
mixed model, which allows the incorporation of confounding
effects. Here, a mixed model was constructed for power and
connectivity, respectively, as dependent variables, family
membership as random effect alongside group (patients vs
siblings), and age as subject-level covariate (fixed-effect).
ICC(1,1) was computed based on the variances of the ran-
dom effect (family) and the total random effect variance
(family and residual variance)25 using R (nlme package;
CRAN.R-project.org/package=nlme) and restricted
maximum-likelihood estimation. ICC ranges from 0 to 1,
where an ICC close to 1 indicates correlated connectivity and
power levels for patient–sibling pairs in a family. A low ICC
means that family affiliation is not relevant and thus genetic
contribution is unlikely. In total, 14 GGE families contributed
to the ICC estimations. We performed a regional resampling
of the vertex-level metrics using the Desikan-Killiany atlas26 to
improve the signal-to-noise ratio (SNR) and calculated ICCs
for 80 anatomically defined cortical and subcortical regions.
Finally, we investigated whether heritability estimates of im-
aging metrics are particularly high in brain areas where pa-
tients show stronger differences from controls. To this end,
effect sizes (Cohen d) from the vertex-wise group compari-
sons were averaged for each anatomical region and related to
the ICC maps using Spearman rank correlation for each fre-
quency band and metric. Higher positive correlations of effect
sizes and ICC values imply genetic contribution to disease-
related patterns in GGE.

Data Availability
All relevant data including power and connectivity results and
ICC estimations are available from the corresponding author
upon request. Raw imaging data are not publicly available due
to data protection regulations.
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Results
Participants
Twenty-eight patients with GGE, 21 siblings, and 50 controls
underwent resting-state measurements. We excluded partici-
pants due to technical problems during the acquisition (n =
5), movement artifacts (n = 4), or sleep (n = 2), leaving
datasets of 25 patients, 18 siblings (related to 15 patients), and
45 controls for further analysis. Raw data from 6 patients were
also used in a previous study.15 Anatomical MRI scans were
visually rated as normal in all controls, siblings, and in 22
patients. Three patients had nonspecific findings (2 un-
complicated cysts, a single unspecific white matter lesion).
Demographics and clinical details are described in the table.
Family membership and GGE syndromes are indicated in
figures 1A and 2A. The groups were comparable for age
(analysis of variance, p = 0.95) and sex (χ2, p = 0.84).

Connectivity Analysis
Compared with controls, patients with GGE showed in-
creased functional connectivity in most of the frequency
bands studied. Global connectivity (figure 3A) was higher in
the θ (t67 = 2.17, p = 0.011, d = 0.54), α (t67 = 2.36, p = 0.016,
d = 0.59), β1 (t67 = 3.35, p = 0.0004, d = 0.84), β2 (t67 = 2.40, p
= 0.023, d = 0.60), and γ band (t67 = 3.17, p = 0.008, d = 0.79),
but not in δ (t67 = 0.88, p = 0.152, d = 0.22). Vertex-based

comparisons showed widespread bilateral increases across the
frequency spectrum (figure 3B). Strongest effects were ob-
served in the β1 frequency band with a focus on left-
hemispheric temporal, frontal, central, and parietal regions.
Mesio-frontal regions were also pronounced in α, β2, and γ
frequency bands and postcentral regions mainly in the θ band.
Connectivity of siblings statistically fell between patients and
healthy controls (figure 3A). Global connectivity of patients
was higher than in siblings for α (t40 = 1.67, p = 0.047, d =
0.52), β2 (t40 = 1.98, p = 0.027, d = 0.61), and γ (t40 = 1.89, p =
0.044, d = 0.59), but there were no significant differences in
the remaining frequency bands (δ: t40 = 1.38, p = 0.098, d =
0.43; θ: t40 = 1.19, p = 0.247, d = 0.37; β1: t40 = 0.90, p = 0.205,
d = 0.28). Siblings did not significantly differ from controls (δ:
t60 = −0.8, p = 0.444, d = −0.21; θ: t60 = 0.49, p = 0.223, d =
0.14; α: t60 = 0.45, p = 0.267, d = 0.13; β1: t60 = 1.59, p = 0.101,
d = 0.44; β2: t60 = 0.46, p = 0.250, d = 0.13; γ: t60 = 0.749, p =
0.520, d = 0.21). On a vertex level (figure 3C) and after
correction for multiple comparisons, siblings differed from
patients with GGE in α and β2 frequency bands (pFWE <
0.05), but not from controls (pFWE > 0.05).

Power Analysis
Patients with GGE had higher power than controls in all
frequency bands studied, in the global (figure 4A; δ: t67 =
3.15, p = 0.002, d = 0.79; θ: t67 = 3.73, p = 0.0002, d = 0.93;

Table Study Population

Patients Siblings Controls

Total 25 18 45

Female 16 (64) 10 (55) 28 (62)

Age, y 25 (22–37) 26 (22–42) 25 (23–35)

Positive family history of epilepsy/seizures 12 (48) 7 (39)a 0 (0)

GSWD during MEG recordings 9 (36) 0 (0) 0 (0)

GSWD in routine/long-term EEG 22 (88) — —

Seizure free >12 months 16 (64) — —

Drugs at measurement 1.2 (0–3) — —

Epilepsy syndrome — —

CAE 5 (20) — —

JAE 6 (24) — —

JME 5 (20) — —

GTCS 4 (16) — —

GGE 5 (20) — —

Age at onset, y 15 (10–17) — —

Disease duration, y 17 (8–24) — —

Abbreviations: CAE = childhood absence epilepsy; GGE = genetic generalized epilepsy (unclassified); GSWD = generalized spike-wave discharges; GTCS =
generalized tonic-clonic seizures; JAE = juvenile absence epilepsy; JME = juvenile myoclonic epilepsy; MEG = magnetoencephalography.
Values are n (%), median (interquartile range), or mean (range).
a Positive family history beyond the related index patient with GGE.
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α: t67 = 4.22, p = 0.0002, d = 1.05; β1: t67 = 5.44, p = 0.0002,
d = 1.36; β2: t67 = 4.24, p = 0.0002, d = 1.06; γ: t67 = 3.60, p
= 0.0006, d = 0.90) and vertex-based analysis (pFWE < 0.05;
figure 4B). Differences were focused on occipital-parietal
and temporal regions. Also, hippocampal (α, β1, β2) and
subcortical structures such as thalamus and putamen (β1)
showed higher power. Patients also exhibited higher global
power than siblings (figure 4A) in α (t40 = 2.40, p = 0.027,
d = 0.74), β1 (t40 = 1.34, p = 0.024, d = 0.41), and γ (t40 =
1.74, p = 0.048, d = 0.54), but not in δ (t40 = 1.96, p = 0.123,
d = 0.61), θ (t40 = 1.60, p = 0.189, d = 0.50), β2 (t40 = 0.68, p
= 0.096, d = 0.21) frequency bands. In the vertex-based
comparison, patients with GGE had higher power than
siblings in all frequency bands but θ (figure 4C), mainly in
occipital regions. Global power in siblings was higher than
in controls (figure 4A) in β1 (t60 = 2.53, p = 0.044, d = 0.71)
and β2 bands (t60 = 2.62, p = 0.044, d = 0.73), but not in the
remaining frequency bands (δ: t60 = 0.16, p = 0.191, d =
0.04; θ: t60 = 1.28, p = 0.108, d = 0.36; α: t60 = 0.85, p =
0.246, d = 0.24; γ: t60 = 1.02, p = 0.193, d = 0.29). Dif-
ferences at vertices did not reach statistical significance
(pFWE > 0.05).

Heritability of Imaging Patterns
ICC values, which represent heritability estimations of MEG-
derived patterns, strongly correlated with β1 connectivity
differences of patients against controls (rs = 0.59, p =
1.88e−08) and negatively to β2 levels (rs = −0.39, p = 4.23e

−04).
The correlation of ICC and connectivity differences in the
remaining frequency bands did not reach significance (δ: rs =
−0.01, p = 0.900; θ: rs = −0.10, p = 0.364; α: rs = 0.14, p =
0.223; γ: rs = 0.18, p = 0.120). ICC values for power were
significantly associated with GGE contrast maps in all fre-
quency bands except α and γ (δ: rs = 0.60, p = 8.6e−09; θ: rs =
0.46, p = 2.5e−05; α: rs = 0.18, p = 0.109; β1: rs = 0.59, p =
1.47e−08; β2: rs = 0.34, p = 0.002; γ: rs = 0.15 p = 0.17). In the
following, we only report results for ICC maps with positive
and significant correlations with the GGE phenotype (p <
0.05), implying genetic contribution to disease-related pat-
terns (figures 1B and 2B). ICC values for connectivity in β1
frequency band were highest in rostral and caudal anterior
cingulate, orbitofrontal, paracentral, entorhinal, and inferior
parietal regions (ICC > 0.4) and lower in temporal regions
and subcortical nuclei (ICC > 0.2) figure 1B). ICC estimates
were generally higher for power than connectivity and peaked

Figure 1 Connectivity Within Families Related to Genetic Generalized Epilepsy (GGE) Imaging Patterns

(A) Individual global connectivity values of patients with GGE and siblings are plotted with regard to their family membership (columns of data within
frequency bands). Data of patients with GGEwithout a corresponding sibling are not shown. GGE syndromes of patients in each family are indicated on the x-
axis. Childhood absence epilepsy and juvenile absence epilepsy are referred to absence epilepsies (AE). (B) Color-coded heritability estimates (intraclass
correlation [ICC] values) per region based on the Desikan-Kiliany atlas26 with small to large group-level differences between patients with GGE and controls
(Cohen d > 0.2). Only ICC maps with a positive and significant correlation with averaged effect sizes are shown (p < 0.05). The color coding indicates the
strength of ICC values in those regions for connectivity differences. ICC estimates were derived from random effect components of mixed models for each
region, taking group and age effects into account. A large ICC indicates correlated imaging patterns for patient–sibling pairs in a family (n = 14) and thus
heritability of themetrics. Cortical regions are displayed in the left columnand subcortical regions are shown separately in the right columnof the plot. GTCS =
generalized tonic-clonic seizures; JME = juvenile myoclonic epilepsy.
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in β frequency bands in temporal, subcortical, and parietal
regions such as lingual gyrus and cuneus as well as postcentral
gyrus (ICC > 0.5). ICC maps for δ and θ frequency bands
showed similar patterns but generally lower ICC values (ICCs
up to ;0.5) (figure 2B).

Clinical Variables and Imaging Findings
We carried out secondary analyses to evaluate the relation of
clinical variables with brain oscillations. We investigated
whether networks of patients with GGE with GSWD during
the MEG recordings differ from patients without GSWD.
Although trials containing GSWD (±10 seconds of data) were

rejected in all analyses, patients with GSWD in the recording
had higher connectivity in the δ frequency band (global: t22 =
2.95, p = 0.004, d = 1.26; vertex-based: p < 0.05; figure 5A).
There was also a tendency of higher power across frequency
bands in those patients, with significant differences for δ
(global: t22 = 2.55, p = 0.010, d = 1.09; vertex-based: p < 0.05)
and β1 frequency bands (global: t22 = 2.23, p = 0.019, d = 0.96;
vertex-based: p < 0.05; figure 5A). Mean global power and
connectivity for patients without GSWD during the recording
remained higher for patients than controls and never dropped
below the mean levels of siblings (data not shown). Patients
taking 2 or more drugs at the study date had lower

Figure 2 Power Within Families Related to Genetic Generalized Epilepsy (GGE) Imaging Patterns

(A) Individual global power values of patients with GGE and siblings are plotted with regard to their family membership (columns of data within frequency
bands). Data of patients with GGE without a corresponding sibling are not shown. GGE syndromes of patients in each family are indicated on the x-axis.
Childhood absence epilepsy and juvenile absence epilepsy are referred to absence epilepsies (AE). For visualization purposes, power data were log10-
transformed. (B) Color-coded heritability estimates (intraclass correlation [ICC] values) per region based on the Desikan-Kiliany atlas26 with small to large
group-level differences between patients with GGE and controls (Cohen d > 0.2). Only ICCmapswith a positive and significant correlationwith averaged effect
sizes are shown (p < 0.05). The color coding indicates the strength of ICC values in those regions for power differences. ICC estimates were derived from
random effect components of mixedmodels for each region, taking group and age effects into account. A large ICC indicates correlated imaging patterns for
patient–sibling pairs in a family (n = 14) and thus heritability of themetrics. Cortical regions are displayed in the left column and subcortical regions are shown
separately in the right column of the plot. GTCS = generalized tonic-clonic seizures; JME = juvenile myoclonic epilepsy.
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connectivity in β1 frequency band than patients taking less
than 2 drugs (global: t21 = −2.04, p = 0.029, d = −0.98; vertex-
based: p < 0.05, figure 5C). The effect was stronger when

accounting for the presence of GSWD during MEG record-
ings. There were no differences for power in any of the fre-
quency bands studied (all p > 0.05). Other clinical factors such

Figure 3 Group-Level Connectivity Differences

(A) Violin plots show individual data points, the density of the data, groupmeans, and standard errors of themeans for the global imaginary part of coherency
in each frequency band (controls, n = 45; siblings, n = 18; patients with genetic generalized epilepsy [GGE], n = 25). Asterisks denote statistical significance at *p
< 0.05 and **p < 0.001 for permutation-based group comparisons. (B) The plot highlights vertices with significantly higher connectivity values in patients with
GGE (n = 25) than in controls (n = 45) and (C) higher connectivity values in patients with GGE (n = 25) than in siblings (n = 18). The color scale indicates –log10 p
with a cutoff of 1.3 (corresponding to p < 0.05, familywise error corrected). In all analyses, age was included as covariate of no interest.
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Figure 4 Group-Level Power Differences

(A) Violin plots show individual data points, the density of the data, groupmeans, and standard errors of themeans for global power in each frequency band
(controls, n = 45; siblings, n = 18; patients with genetic generalized epilepsy [GGE], n = 25). Asterisks denote statistical significance at *p < 0.05 and **p < 0.001
for permutation-based group comparisons. For visualization purposes, power data were log10-transformed. (B) The plot highlights cortical and subcortical
vertices with significantly higher power values in patients with GGE (n = 25) than in controls (n = 45). (C) The plot shows vertices with significantly higher power
values in patients with GGE (n = 25) than in siblings (n = 18). The color scale indicates −log10 pwith a cutoff of 1.3 (corresponding to p < 0.05, familywise error
corrected). In all analyses, age was included as covariate of no interest.
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as age at onset, disease duration, or seizure control were not
associated with global and vertex-based connectivity or power
(all p > 0.05).

Discussion
We assessed power and phase-based connectivity during rest
in patients with GGE and their healthy siblings to evaluate
endophenotypic potential of electrophysiologic metrics. Pa-
tients with GGE showed bilateral, widespread, and highly
increased power and connectivity compared with controls.
Asymptomatic siblings presented with intermediate levels
between patients and controls, particularly in β frequencies,
suggesting genetic background as major driver for those
patterns.

We expanded and replicated previous work of ours using
MEG data of mixed GGE cohorts,15,16 confirming strong
interictal network differences in GGE as quantified with the

investigated imaging metrics. Both global and local measures
have been reliable in source-space analyses using the same
processing pipeline.20 Increased power in GGE is a pre-
viously reported finding,27,28 but M/EEG connectivity
studies on source level are scarce.15,16 High β band con-
nectivity in GGE was the most consistent finding across the
studies, followed by increases in θ, α, and γ bands. Epileptic
seizures commonly involve pathologic synchronization.29

Also during the interictal state, patients have had higher
liability to synchronize.30,31

Increased network connectivity and power was also observed
in siblings without active epilepsy.6 Intraclass correlations
substantiate heritability in regions, where patients with GGE
strongly differed from controls, specifically for β1 band con-
nectivity and both β1 and β2 power. In δ and θ power, heri-
tability estimates corresponded to the phenotype of patients,
but effect sizes and ICC values were comparably low. In-
creased β2 connectivity patterns in patients compared with
controls were less concordant within families.

Figure 5 Clinical Variables and Imaging Metrics

Vertex plots highlight cortical vertices with higher (A) connectivity and (B) power values in patients with genetic generalized epilepsy (GGE) with generalized
spike-wave discharges (GSWD) (n = 9) than patients without GSWD (n = 16) during themagnetoencephalography recordings. These effects were present after
exclusion of trials containing GSWD ±10 seconds of data and corrected for age effects. (C) The plot shows significantly lower connectivity in patients with GGE
taking 2 or more antiepileptic drugs (n = 6) than patients taking fewer than 2 drugs (n = 19) at the study date. Age and presence of GSWD was included as
covariate of no interest. Color scales indicate –log10 p with a cutoff of 1.3 (corresponding to p < 0.05, familywise error corrected).
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Elevated MEG connectivity was mostly heritable in anterior
cingulum, orbitofrontal, and superior frontal regions. In GGE,
direct evidence for a genetically determined functional dysre-
gulation in frontal cortex is limited, but has been documented
for prefrontal and cingulate morphology.10 Altered structural
network integration of the frontal cortex10 potentially leads to
cognitive impairments in patients with JME and similarly in
their healthy siblings.7-10 Furthermore, network power and
connectivity was heritable in central brain regions. Hyper-
activations in motor systems have been suggested as endo-
phenotypes of JME during cognitive fMRI,13,14 but also for a
mixed GGE cohort during resting-state.30 We complement
these findings by studying much faster neuronal oscillations
using MEG and without vascular confounds. Our results point
to more globally increased network levels in patients with GGE
and siblings, irrespective of a task involved. This includes in-
creased power patterns in mesiotemporal cortices and in sub-
cortical structures with a strong genetic substrate. ICC
estimates reached levels of up to 0.85, particularly in β fre-
quencies, indicating that familial and, thus, likely genetic factors
explain the majority of the observed variance. Thalamocortical
circuits are critical for GGE32 and structural alterations in the
thalamus33,34 have been linked to subcortico-cortico hub or-
ganization in GGE.33 Using MEG, it is debatable whether
signals of deep brain structures can be captured. Yet recent
work has used simultaneous intracerebral andMEG recordings
in patients with epilepsy and demonstrated detectability of
signals generated in mesial temporal lobe structures as well as
thalamic activity at the surface.35 In line with our results,
mesiotemporal task-based activations cosegregated in patients
with JME and their healthy siblings, along with changes in
hippocampal morphology.11 The role of increased occipital
power in our GGE cohort is less clear. Low-density EEG data28

and microstructural alterations in fronto-occipital white matter
association tracts36 point to the involvement of occipital areas
in GGE. In our study, patients and siblings mostly differed in
occipital power, suggesting that this finding may not be due to
genetic factors but to other unknown disease-related effects.
Overall, we consolidate findings of earlier GGE–sibling studies
using (f)MRI and add evidence for resting-state trait heritability
in extended brain networks at higher temporal resolution.

Electrophysiologic studies in twins suggest strong genetic
influence on brain oscillations relative to environmental fac-
tors, particularly for wideband power (h2 ; 0.5–0.8).18,37

Heritability for connectivity on the cortical source level has
been lower than for power and highest in α and β frequencies
(10%–20%).19 Lower reproducibility of connectivity metrics
may, at least partly, explain a lower heritability estimate
compared to power. Similarly, connectivity in α and β bands
has been more repeatable than in other frequency bands.20

Network alterations characterizing GGE were captured in
brain rhythms of different frequencies, but imaging pheno-
types of siblings and patients with GGE most strongly cor-
related in β frequencies. β band oscillations are classically
related to sensory and motor processing38 as well as long-
distance synchronization.39 GABAergic processes are

presumably involved in the generation of MEG β oscillations
as shown with endogenous GABA concentrations in hu-
mans.40 GABAA receptor gene variants constitute GGE dis-
ease risk5,41 and one of those candidates, the GABRA2 gene,
has been linked to EEG β band activity.42,43 Moreover, re-
cently discovered genetic markers in GGE have been enriched
in the frontal cortex, specifically in the dorso-lateral prefrontal
cortex.5 Genetic signals have further converged on the inferior
temporal lobe, angular gyrus, cingulum, and subcortical tissue,
but less strongly.5 Our ICC maps show substantial spatial
correspondence to those findings, emphasizing the functional
relevance of imaging resting-state markers as investigated in
our study. Previously, oscillatory activity has been successfully
used to detect psychiatric liability genes43 and EEG coherence
has served as an endophenotype for alcohol use disorders.44

Yet the functional role of spectral perturbations is not fully
understood. Here, we can only speculate about molecular
changes occurring within specific networks in the brain, such
as an excitation–inhibition imbalance, as a putative key factor
in epilepsy. Through coupling mechanisms, the coordination
of neuronal spike timing might be affected across networks, in
sum leading to increased oscillatory amplitudes.45

Disease duration and age at onset did not correlate with the
imaging patterns in our GGE cohort. These clinical variables do
not necessarily describe disease severity and the lack of a sig-
nificant association with the imaging findings may support the
notion of a genetic imaging trait. Patients showing epileptic
discharges during theMEG recording had higher δ connectivity
and δ and β power increases at rest (after careful exclusion of
segments with GSWD ± 10 seconds of data). These patterns
had a spatial profile with a temporal and central focus. GSWD
typically have a frequency around 3Hz and it is possible that we
captured network dynamics around the onset or offset, evolv-
ing during a considerable time span.31 Only 9 patients in our
study showed GSWD and at least 5 of them had experienced
seizures within the past year. However, seizure control was not
associated with significantly different network patterns in our
cohort and might not be a sensitive marker in a rather well-
controlled cohort. Similarly, persistent GSWD do not neces-
sarily have an effect on long-term seizure prognosis.46 More-
over, patients with higher medication load had lower
connectivity in the β1 frequency band. Because only 6 patients
received more than 2 antiepileptic agents at the time of the
study, we can only speculate about a network downregulation
through antiepileptic treatment. Normalizing effects of anti-
epileptic drugs on background synchronization have been
demonstrated before.47 Further investigations are needed to
confirm our exploratory results and study drug-specific effects.

This study has limitations. We found alterations for both
power and imaginary part of coherency, a phase-based metric.
Power and phase characterize different aspects of neural sig-
nals; however, both physiologic and nonphysiologic coupling
between those characteristics has been noted.45 In particular,
high values in phase-based connectivity require a temporally
stable phase relationship of signals, which depends on the
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SNR and eventually on signal power. In our study, the to-
pography for GGE power differences had a posterior focus
and was distinct from connectivity maps with a more frontal
emphasis. Recent work suggests that spontaneous MEG
networks can be decoupled into anterior and posterior states,
both connected to the posterior cingulate cortex, likely
reflecting functional specialization.48 Given the different ef-
fects of power and connectivity on the MEG signal topogra-
phy, it is very likely that both measures captured independent
features. Furthermore, we cannot assess the mechanisms of
genetic control over oscillatory markers. Methodologic as-
pects may also affect heritability estimates. For example,
higher sensitivity of connectivity measures to noise might be a
reason for generally lower effect sizes than for power and
weaker ICC values in our study. Accordingly, higher statistical
power is needed for significant connectivity differences be-
tween siblings and controls or patients, given the intermediate
levels of the siblings. The relatively small number of 14 fam-
ilies that were available for the study also limits the precise
estimation of the ICCs. Finally, we cannot discern specific
effects for the GGE subsyndromes due to the small sample
size. Yet multiple GGE subtypes occur within the same fam-
ilies49 and overlap of genetic risk factors has been suggested.5

Network phenotypes as assessed in our study could reflect
shared pathophysiologic features across the syndromes, such
as the occurrence of GSWD. Interestingly, GSWD have been
more frequently observed in unaffected first-degree relatives
of patients with GGE than in the general population,50 which
again points to genetic contributions to network function
in GGE.

We propose that increased interictal MEG power and
connectivity in frontocentral and temporo-parietal corti-
cal regions are a hallmark of GGE. These network features
are likely driven by genetic factors and not by the presence
or absence of the active disease or clinical confounds.
Siblings without epilepsy had similarly increased network
levels during rest, predominantly in β frequencies. We
show that power and phase-based connectivity are heri-
table and may serve as markers to link imaging with ge-
netics in epilepsy.
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Abstract  

Objective 
Genetic generalized epilepsy is characterized by aberrant neuronal dynamics and subtle 
structural alterations. We evaluated whether a combination of magnetic and electrical 
neuronal signals and cortical thickness would provide complementary information 
about network pathology in GGE. We also investigated if these imaging phenotypes 
were present in healthy siblings of the patients to test for genetic influence. 
 
Methods  
In this prospective, cross-sectional study, we analyzed five minutes of resting-state data 
acquired using electroencephalography (EEG) and magnetoencephalography (MEG) in 
patients, their siblings, and controls, matched for age and sex. We computed source-
reconstructed power and connectivity in six frequency bands (1-40 Hz) and cortical 
thickness (derived from MRI). Group differences were assessed using permutation 
analysis of linear models for each modality separately and jointly for all modalities 
using a non-parametric combination. 
 
Results  
Patients with GGE (n = 23) had higher power than controls (n = 35) in all frequencies, 
with a more posterior focus in MEG than EEG. Connectivity was also increased, 
particularly in frontotemporal and central regions in theta (strongest in EEG) and low 
beta frequencies (strongest in MEG), which was eminent in the joint EEG/MEG 
analysis. EEG showed weaker connectivity differences in higher frequencies, possibly 
related to drug effects. The inclusion of cortical thickness reinforced group differences 
in connectivity and power. Siblings (n = 18) had functional and structural patterns 
intermediate between those of patients and controls. 
 
Significance 
EEG detected increased connectivity and power in GGE similar to MEG, but with 
different spectral sensitivity, highlighting the importance of theta and beta oscillations. 
Cortical thickness reductions in GGE corresponded to functional imaging patterns. Our 
multimodal approach extends the understanding of the resting state in GGE and points 
to genetic underpinnings of the imaging markers studied, providing new insights into 
the causes and consequences of epilepsy. 
 
Keywords 
Resting-state, oscillations, cortical thickness, interictal, endophenotypes  
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Introduction 
 
Genetic generalized epilepsy (GGE) is a common epilepsy syndrome with polygenic 
etiology.1 Rapid neuronal changes such as generalized spike-wave discharges (GSWD) 
or generalized seizures are a hallmark of GGE. However, the link between the genetic 
pathology underlying the disease and its systemic effects on macro-scale brain 
dynamics is not well understood. Using MEG, we have previously shown that increased 
resting-state power and network synchronization are characteristic of GGE and are 
similarly present in healthy siblings of the patients.2 We hypothesized that this could 
also be observed with EEG, which is generally more available than MEG in routine 
clinical practice. In principle, MEG and EEG signals reflect the same neuronal sources. 
However, due to the different sensitivity profiles of the techniques, one can expect that 
the recording of both signals could also reveal complementary information.3 For GGE, 
few studies have exploited the benefit of employing both EEG and MEG together, and 
most have focused on localizing the source of GSWD.4, 5 Using both techniques in the 
same individuals at rest could therefore provide additional information about aberrant 
networks in GGE. In addition to functional alterations in GGE, subtle structural changes 
such as cortical thinning are known.6 However, the relationship between those changes 
and fast oscillatory neuronal activity in GGE has not been investigated in detail. 
Atrophic patterns could result from disease progression or disease activtiy,7 but the 
evidence is inconclusive8, and longitudinal studies are lacking. Cortical thickness 
reflects cell density and cytoarchitecture, among other factors, and is highly heritable. 
9 Consequently, microstructural changes in GGE may be genetically driven and linked 
to electrophysiological alterations. If so, the statistical combination of all three 
modalities, that is, EEG, MEG, and MRI in the same cohort, should point to common 
network alterations. Together with attempts to understand the heritability of these 
states, this could lead to improved diagnosis and prognosis for GGE in the future. GGE 
markers that are heritable, so-called endophenotypes10, are thought to reflect causative 
disease mechanisms rather than clinical presentation. Some (f)MRI research has 
demonstrated such traits of GGE subtypes,7, 11-15 including increased activations of the 
motor system12-15, aberrant cortical folding and surface7 and hippocampal structure and 
function.11 So far, there is little evidence of such endophenotypic markers at higher 
temporal resolution16 and in mixed GGE types.  

Here, we adopted a multimodal approach that integrated structural and 
functional features of GGE to promote a more holistic understanding of GGE network 
pathology and its genetic basis. In a first step, we compared EEG resting-state 
measurements to MEG measurements in the same cohort reported earlier.2 We then 
integrated both modalities in a unified statistical analysis and explored the 
correspondence between cortical thickness and functional group maps. Finally, we 
examined whether the functional and structural changes could be genetically 
determined by studying healthy siblings of the patients.  
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Methods 
 
Participants 
We studied 28 consecutive patients, 21 healthy siblings and 50 controls, who were 
recruited through the Department of Neurology, University Hospital of Tübingen, 
Germany, and in the local area. Patients were diagnosed with GGE according to the 
International League Against Epilepsy.17 Siblings and controls were free of any 
neurologic or psychiatric disorders, had never experienced seizures, and did not take 
any medication at the time of the measurements. After exclusion of data because of 
technical problems, artifacts, or sleep during recordings, 23 patients, 18 siblings 
(related to 13 patients), and 35 controls were available for further analysis. All MRI 
scans were visually rated as normal except for three non-specific findings (two patients 
with uncomplicated cysts and one patient with a non-specific white matter lesion). The 
groups were comparable for sex (female patients: 61%; siblings: 50%; controls: 51%; 
X2 = 0.5, p = 0.78) and age (median (IQR): patients: 26 (22-40); siblings: 26 (22-42); 
controls: 25 (22-35); F = 0.1, p = 0.91). Five of the 23 patients were diagnosed with 
juvenile absence epilepsy, four patients with childhood absence epilepsy, five patients 
with juvenile myoclonic epilepsy (JME), four patients with isolated generalized tonic-
clonic seizures and five patients could not be further classified. All but two patients 
were on antiepileptic medication (AED; mean number of drugs: 1.2, range: 0-3). For 
more clinical details, see Table S1. Study approval was received from the local Ethics 
Committee of the Medical Faculty of the University of Tübingen. The study was 
conducted in compliance with the principles of the Declaration of Helsinki. All 
individuals gave informed consent to participate in the study. 

EEG/MEG recordings 
The individuals were measured in a supine position in the MEG center of the University 
of Tübingen, using a 275-channel MEG system (CTF Inc., Vancouver, Canada) and 
subsequently using a 256-channel EEG system (GES400; EGI, Inc./Philips-Neuro, 
Eugene). We continuously recorded 30 minutes of resting-state eyes-closed each 
(sampling rate EEG: 1 kHz; MEG: 568 Hz) and instructed the individuals to relax, not 
to fall asleep, and not to think of anything in particular. This rather long acquisition 
time was chosen to obtain sufficient data after exclusion of segments with GSWD. 

MR image acquisition 
All individuals underwent MRI scanning either on a Siemens Magnetom Trio 3T 
scanner equipped with a 12-channel head coil (10/35 controls, 4/23 patients) or on the 
Siemens Magnetom Prisma 3T system (Siemens, AG, Erlangen, Germany) with a 64-
channel head coil (25/35 controls, 18/18 siblings, 19/23 patients). Sagittal high-
resolution T1-weighted images were acquired (3D-MPRAGE, repetition time = 2.3 s, 
echo time = 3.03 ms, flip angle = 8°, voxel size = 1 x 1 x 1 mm). 
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Surface based mapping 
FreeSurfer 6.0.0 (https://surfer.nmr.mgh.harvard.edu/) was used to reconstruct 
individual cortical surfaces sampled at the pial and the grey-white boundary 
(‘smoothwm’). To ensure anatomical correspondence among individuals and 
modalities, we applied SUMA18 to recreate each surface (density factor ld = 10) based 
on a FreeSurfer standard template (‘fsaverage’). This procedure yielded 1002 common 
vertices per hemisphere for cortical thickness estimations and as EEG/MEG source-
points, allowing vertex-based group contrasting.  

EEG/MEG head models  
In order to conduct source-level analyses, we built volume conduction models based on 
individual cortical meshes yielded by the SUMA procedure and SPM12 
(https://www.fil.ion.ucl.ac.uk/spm/software/spm12/) brain segmentations. The EEG 
electrodes were aligned with the anatomical landmarks (nasion, preauricular points) 
and projected onto the scalp mesh. For MEG, cortical meshes were realigned to the 
CTF sensor space using fiducial positions marked in the MR image and reference coils 
placed during the measurements. Leadfields were computed based on either a three-
layer boundary element model for EEG or a single-shell model for MEG using 
Fieldtrip19 in Matlab (version 9.0, R2016a, Mathworks Inc.). More technical details and 
references can be found elsewhere.20  

Data processing and source localization 
EEG and MEG data were separately processed using Fieldtrip.19 First, we applied a 
first-order Butterworth band-pass filter (1-70 Hz) and a band-stop filter to remove line 
noise (at 50, 100, and 150 Hz). Data were downsampled (150 Hz) and segmented into 
trials of 10 s length. Each trial was visually inspected and rejected if noisy (e.g. muscle 
artifacts, sensor jumps). We also excluded trials with GSWD plus trials preceding and 
following the event, respectively (±10 seconds). Cardiac artifacts and eye movements 
were extracted by independent component analyses and manually rejected. In a second 
review, we scored vigilance of the individuals according to the criteria of the American 
Academy of Sleep Medicine (https://aasm.org/). Only trials rated as awake were further 
considered. Thirty trials were randomly selected for source analysis because previous 
work has shown good reliability for the metrics of interest for 5 min data. 20  

Spectral analyses were performed using fast Fourier time-frequency transforms 
and multitapers for six frequency bands (delta: 2 ± 2 Hz, theta: 6 ± 2 Hz, alpha 10 ± 2 
Hz, beta1 16 ± 4 Hz, beta2 25 ± 4 Hz and gamma 40 ± 8 Hz). Power and cross-spectral 
densities were estimated on the Fourier transformed sensor data and then projected to 
the source space using beamforming21 in each frequency band. Power was calculated 
for each vertex and the coherency coefficient between all pairs of vertices (n = 2004). 
We derived the absolute imaginary part of coherency as our connectivity measure 
quantifying phase synchrony between signals less affected by potential field spread.22 
To determine the total connectivity for each vertex, we averaged the strength of all its 
connections. We also computed a global power and connectivity value for each 
participant by averaging across all vertices.  
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Cortical thickness  
Cortical thickness quantifies the distance between the gray-white matter and pial 
boundaries and was computed at each SUMA vertex (FreeSurfer procedure). Thickness 
maps were smoothed with a heat kernel of size 12 mm Full Width at Half Maximum23 
in AFNI (https://afni.nimh.nih.gov/) to account for residual spatial differences among 
individuals. 

Joint inference 
We performed joint analyses of EEG, MEG, and MRI metrics using permutation-based 
Non-Parametric Combination (NPC)24 in PALM 
(https://fsl.fmrib.ox.ac.uk/fsl/fslwiki/PALM). We hypothesized the existence of 
increased EEG and MEG connectivity and power as well as reduced cortical thickness 
in patients compared with controls with corresponding intermediate values in siblings. 
To obtain concordant directions of the modalities, we multiplied individual cortical 
thickness values by -1 when combining with functional data. First, one-sided t contrasts 
were separately tested for each modality based on synchronous permutations across 
modalities to account for dependencies. In brief, general linear models were fitted for 
each vertex individually, and one at the global level, with group, age, sex, total 
intracranial volume and scanner site as independent variables and the imaging metric 
as dependent variable. Second, we applied Fisher’s method to combine test statistics of 
the modalities for each permutation. This process was repeated (number of 
permutations), resulting in a combined empirical distribution from which a final p-value 
was derived25. We used tail approximation in PALM for accelerated inference (500 
permutations) and multi-level block permutation to allow sufficient exchangeability of 
the data, given relatedness among individuals (for details see2). P-values were family-
wise error corrected (FWE) at the level of clusters resulting from threshold-free cluster 
enhancement (TFCE)26 and based on the permutation distribution of the extremum 
statistics across all modalities. We chose a significance level of –log10 p = 1.3 
(equivalent to p < 0.05). Cohen's d was calculated based on the t values of the group 
factors of the linear models and is therefore adjusted for age, sex, and intracranial 
volume effects. d describes the standardized mean difference of an effect so that d ≥  
0.8 indicates a large, d = 0.5 a medium, and d = 0.2 a small effect.27 In order to further 
explore structural alterations, we spatially remapped cortical thickness measures to 68 
brain regions of the Desikan-Kiliany atlas28 and investigated separate regional group 
differences using PALM.   
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Results 
 
Connectivity in GGE and siblings 
Patients with GGE had higher connectivity than controls, reaching significance in lower 
frequencies in the vertex and global EEG analysis (delta, theta, and alpha frequency 
bands; see Figure 2, Table S2). The EEG connectivity increases in patients were most 
pronounced in centrotemporal brain areas, whereas significant increases in the MEG 
analysis tended to have a frontotemporal focus across the entire frequency spectrum 
(Figure 1A and 1B) as previously reported.2 In the joint EEG and MEG vertex analysis, 
the increases were strongest in theta and beta1 but also included significant patterns in 
the delta and alpha frequencies (Figure 1C). When combining global EEG and MEG 
statistics, connectivity levels in patients were significantly higher than in controls in all 
frequency bands studied (Table S2). 

Patients did not significantly differ from siblings, but siblings tended to have 
higher EEG connectivity than the patients in the beta2 and gamma frequency bands 
(vertex-level and globally; Figure 2A and 2C, Table S2). In siblings, there was also a 
trend toward higher EEG connectivity compared with controls across the spectrum, but 
predominantly in the theta band without reaching significance (vertex-level and 
globally; Figure 2A and Table S2). In the MEG analysis, siblings showed higher 
connectivity than controls in the beta1 band, as previously reported in detail,2 but also 
did not differ significantly from either the controls or the patients (vertex analysis not 
shown, global analysis in Table S2). See Figure S1 for effect sizes of the differences 
between siblings and the other groups at the vertex-level. 

Combining EEG and MEG statistics did not substantially change the findings 
of the separate analyses in siblings. 
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FIGURE 1 Effect sizes of separate EEG and MEG connectivity increases in GGE, 
and joint inference with and without cortical thickness  
 
(A) and (B) show standardized effect sizes (Cohen’s d) for increased connectivity in 
patients with GGE (n = 23) versus controls (n = 35) using EEG and MEG, respectively. 
Effect sizes were derived from the t-values of the permutation analyses of linear 
models. d is therefore adjusted for age, sex, scanner, and intracranial volume effects. d 
= 0.2 indicates a small effect, d = 0.5 a medium, and d ≥ 0.8 a large effect.27 Note the 
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different spectral results of the two modalities. The EEG connectivity increases in 
patients were significant in the delta, theta, and alpha frequencies with a centrotemporal 
focus. In the MEG analysis, the increases were most pronounced in the beta1 frequency 
and frontotemporal areas, but reached significance in all frequency bands studied (not 
shown). (C) The statistical combination of EEG and MEG patterns highlighted 
connectivity increases, particularly in the theta and beta frequency band. (D) Inclusion 
of cortical thickness in the joint analysis of EEG and MEG patterns resulted in more 
pronounced differences between patients and controls, especially in theta and beta1 
frequencies and in frontal areas in other frequency bands. We used a non-parametric 
combination of EEG/MEG connectivity and cortical thickness based on Fisher’s 
method25 with age, sex, scanner, and intracranial volume as covariates of no interest. 
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FIGURE 2 EEG analyses of global and vertex connectivity 
 
(A) Individual global connectivity values (imaginary part of coherency) of controls (n 
= 35), siblings (n = 18), and patients with GGE (n = 23). Shown are the density of data, 
group means, and standard errors of means. Statistically significant group differences 
are marked with an asterisk (*p < 0.05, **p < 0.001). See Table S2 for detailed results. 
(B) and (C) Significantly increased vertex connectivity is highlighted in patients 
compared with controls, and in patients compared with siblings, respectively at a -log10 
p threshold of 1.3 (equivalent to p < 0.05 family-wise error corrected). We used 
permutation-based analysis of linear models for global and vertex analyses with age, 
sex, scanner, and intracranial volume as covariates of no interest. 
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Power in GGE and siblings 
EEG power was significantly higher in patients with GGE than in controls in all 
frequency bands studied (delta to gamma bands at vertex-level and globally, Figure 4, 
Table S2). A posterior focus of power increases was observed in both EEG and MEG 
analyses, but especially for the MEG-derived patterns in all frequency bands (Figure 
3A and 3B). In the joint EEG/MEG analysis, the power increases were most 
pronounced in posterior regions of the brain, that is, in occipital, temporoparietal, and 
central regions (delta to gamma bands, Figure 3C).  

Patients with GGE also had higher power than their siblings, but to a lesser 
extent than controls. This increased power was significant in the lower EEG frequency 
bands (delta to alpha at vertex-level, and globally, Figure 4A and 4C, Table S2) in the 
temporal-posterior regions. In the MEG analysis, power was increased occipitally and 
in all frequency bands except theta (not shown). In the joint vertex analyses, the power 
increases in patients compared with siblings were significant at all frequencies and at a 
global level in delta, alpha and gamma (Table S2). There were no significant EEG 
power differences between healthy siblings and controls, but standardized effect sizes 
indicated generally higher power in siblings than in controls. Similarly, MEG analysis 
revealed higher theta and beta power in siblings as previously shown.2 See Figure S1 
for a vertex-level and Table S2 for global comparison of effect sizes for differences 
between the three groups. 

Combining EEG and MEG statistics did not reveal notable changes compared 
with separate power analyses in siblings. 
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FIGURE 3 Effect sizes of separate EEG and MEG power increases in GGE, and joint 
inference with and without cortical thickness  
 
(A) and (B) show standardized effect sizes (Cohen’s d) for increased power in patients 
with GGE (n = 23) versus controls (n = 35) using EEG and MEG, respectively. Effect 
sizes were derived from the t-values of the permutation analyses of linear models. d is 
therefore adjusted for age, sex, scanner, and intracranial volume effects. d = 0.2 
indicates a small effect, d = 0.5 a medium, and d ≥ 0.8 a large effect. 27 The power 
increases in GGE patients were significant across the frequency spectrum with a 
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stronger posterior focus in MEG compared with EEG. (C) The power increases in the 
joint analysis of EEG and MEG were prominent in the occipital and temporoparietal 
regions. (D) The inclusion of cortical thickness in the joint analysis of EEG and MEG 
patterns resulted in more pronounced power differences between patients and controls 
in temporoparietal regions. We used a non-parametric combination of EEG/MEG 
connectivity and cortical thickness based on Fisher’s method25 with age, sex, scanner, 
and intracranial volume as covariates of no interest. 
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FIGURE 4 EEG analyses of global and vertex power 
 
 (A) Individual global power values of controls (n = 35), siblings (n = 18), and patients 
with GGE (n = 23). Shown are the density of data, group means, and standard errors of 
means. Statistically significant group differences are marked with an asterisk (*p < 
0.05, **p < 0.001). See Table S2 for more detailed results. (B) and (C) Significantly 
increased vertex power is highlighted in patients compared with controls, and in 
patients compared with siblings, respectively, at a -log10 p threshold of 1.3 (equivalent 
to p < 0.05 family-wise error corrected). We used a permutation analysis of linear 
models for global and vertex analyses with age, sex, scanner, and intracranial volume 
as covariates of no interest. 
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Joint inference of functional and structural metrics 
The inclusion of cortical thickness in the joint connectivity analysis increased the 
statistical significance of group differences between patients and controls. This was 
particularly the case for the theta band in frontocentral and temporal regions (Figure 
1D), with an average decrease of significant p-values by 3 -log10-levels (Figure 5A). P-
values were also lower for the delta and beta1 contrast as well as in the alpha band 
(differences of 2-2.5 -log10-levels). In higher frequency bands, the group contrasts 
became mainly stronger in superior frontal regions (beta2, gamma; difference of ~1.5 -
log10-levels).  

Power contrasts became stronger in all frequency bands and in occipital-parietal 
and central areas of the brain (Figure 3D and Figure 5A; differences of ~4 -log10-levels). 
Group comparisons between siblings and controls or patients and siblings did not 
change significantly when cortical thickness was taken into account. 

 
Cortical thickness in GGE and siblings 
Separate analyses in patients, siblings, and controls did not reveal significant 
differences between the groups (at vertex-level and globally, p > 0.05). Regional 
standardized group mean differences, however, suggest cortical thinning in patients 
predominantly in the right hemisphere and paracentral and precentral gyri (d > 0.5), 
and in frontoparietal regions and cuneus (d > 0.4; Figure 5B). These patterns were 
significant only in the uncorrected maps (puncorr < 0.05). Siblings had lower cortical 
thickness than controls in frontocentral regions (d > 0.3; Figure 5B). In the right supra 
marginal gyrus, right temporal gyri and left medial orbitofrontal regions the siblings 
had a greater cortical thickness than controls (d > 0.4), but the patterns did not survive 
corrections for multiple comparisons and were not present in the patients.  
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FIGURE 5 Effects of cortical thickness on joint inference analysis and group-level 
differences 
 
(A) When cortical thickness was jointly analyzed with functional data (EEG + MEG), 
the connectivity patterns of GGE patients were amplified mainly in the theta and beta 
frequency band. The power patterns became stronger in temporoparietal and occipital 
regions. The plot shows significant vertices with an increase in the p-value (-log10 
difference) after adding cortical thickness to the joint functional analysis. (B) The plot 
shows standardized effect sizes (Cohen’s d) for reduced cortical thickness in patients 
with GGE (n = 23) against controls (n = 35), and in siblings (n = 18) against controls, 
respectively. Effect sizes were derived from the t-values of the permutation analysis of 
linear models in cortical regions (Desikan-Kiliany atlas)28. d is therefore adjusted for 



	 18 

age, sex, scanner, and intracranial volume effects. d = 0.2 indicates a small effect, d = 
0.5 a medium and d ≥ 0.8 a large effect.27 (C) The violin plot shows individual thickness 
values for cortical regions, in which patients with GGE had lower cortical thickness 
than controls (Cohen’s d > 0.4). Individual cortical thickness values were adjusted for 
effects of age, sex, scanner, and total intracranial volume.  
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Clinical factors 
To assess whether the intake of medication influenced the structural and functional 
metrics, we split the patient group according to AED exposure. Functional connectivity 
was generally lower in patients taking two or more drugs (n = 6) than in patients taking 
none or one drug (n = 17). This finding was observed using both, EEG and MEG, and 
was significant in the beta1 band of vertex-level analyses (separate and joint inference, 
Figure 6B) and global analyses (global EEG: t17 = -1.94, p = 0.039, d = - 0.94; MEG: 
t17 = -1.83, p = 0.046, d = - 0.89; joint inference p = 0.015). The global EEG 
connectivity mean of the patients with high drug exposure was also lower than the mean 
of the controls and siblings (mainly in the delta, beta1, beta2, and gamma bands, Figure 
6A), which was not the case in the MEG analysis (not shown). Neither EEG nor MEG 
power of the patients differed significantly with respect to drug exposure (vertex-level 
and globally, p > 0.05). Cortical thickness did not differ in relation to AED exposure 
(vertex-level and globally, p > 0.05). 

The assessment of other clinical variables, such as the occurrence of GSWD 
during EEG/MEG recordings or seizure control, was complicated by the small sample 
sizes, unequal sex ratios and age distributions in the corresponding patient subgroups. 
Because EEG power differed between sexes and cortical thickness varied with age, we 
were unable to distinguish these effects from the effects of interest. 
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FIGURE 6 Antiepileptic medication and decreased connectivity in GGE 
 
(A) Individual global connectivity for separate EEG analyses in controls (n = 35), 
siblings (n = 18), and patients with low (n = 17) and high drug load (n = 6). The violin 
plots show the density of data, group means, and standard errors of means. Global and 
(B) vertex connectivity in the beta1 band was significantly lower in patients taking two 
or more antiepileptic drugs (high load) at the time of the measurement than in patients 
taking fewer than two drugs (low load). This effect was observed in separate EEG and 
MEG analyses as well as in the joint analysis, but was more pronounced in EEG than 
in MEG. Vertices are color-coded at a -log10 p threshold of 1.3 (equivalent to p < 0.05 
family-wise error corrected). Results for global and vertex analyses were obtained by 
permutation testing of linear models with age, sex, scanner, and intracranial volume as 
covariates of no interest. 
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Discussion 
 
We combined electrophysiological signals at rest and cortical morphology to advance 
our understanding of network pathology in GGE and its genetic basis. EEG detected 
functional alterations in GGE similar to MEG, but with a different spectral sensitivity 
profile. The statistical integration of both modalities suggests a significant role of theta 
and beta oscillations in GGE. Cortical thinning was observed in our GGE cohort and 
amplified the functional group contrast when jointly analyzed. Similar functional and 
structural characteristics in healthy siblings of the patients suggest genetic contribution 
to the imaging patterns. 

Aberrant neuronal excitability and synchronization during the ictal state 
typically play a crucial role in epilepsy.29 Even in the interictal state, patients with GGE 
have higher global and large-scale synchronization and power, as similarly observed 
using EEG and MEG but with spectral differences relevant for comparisons of clinical 
studies. The joint EEG/MEG analysis revealed significant connectivity increases in the 
delta to beta1 frequency bands, with a broader spectral distribution in the MEG, peaking 
in the beta1 band, as previously described in the same2 and other cohorts.30, 31 
Conversely, EEG was more sensitive to connectivity increases in the lower frequencies, 
particularly in theta. This could have several reasons. In line with previous studies, high 
drug exposure likely had a normalizing effect32 that was significant for the EEG beta1 
band and less pronounced in the MEG analysis. It is also possible that the phase 
estimation in the higher EEG frequencies was noisier than with MEG, despite careful 
artifact suppression, possibly due to greater susceptibility to electromyogenic effects.33, 

34 While studies on electrophysiological connectivity in GGE are still limited, more is 
known about oscillatory power in this condition. Most resting-state EEG studies have 
associated GGE to power increases in the theta frequency band, followed by increases 
in the beta band, and mixed results for delta and alpha frequencies.35 However, the 
choice of channel density, analysis space, and patient characteristics has been 
inconsistent across studies and presents a challenge to the comparability of results.35 
We used EEG and MEG systems with comparable channel coverage and analysis 
pipelines in the same individuals and observed increased power in both modalities and 
across the conventional frequency spectrum. 

GGE phenotypes within each modality were spatially similar across the 
frequency spectrum. This is consistent with the idea of a timescale-invariant spatial 
organization of the electrophysiological connectome,36 that is, neuronal signals likely 
operate within the same networks at different timescales. It is conceivable that GGE-
typical changes are reflected in the broadband and similar brain regions, with a 
dominant role of theta and beta oscillations particularly evident in our joint EEG/MEG 
analysis. At this point, it should be noted that we only assessed static network function. 
Dynamic approaches in healthy subjects suggest transient reconfigurations of 
spontaneous activity in specific frequencies and networks.37 Further, the spatial 
representation of GGE patterns differed between the modalities. Frontotemporal 
connectivity alterations were more readily detected by MEG, whereas increased EEG 
connectivity was more pronounced in central regions. The power patterns were more 
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widespread in the EEG analysis and focused on the posterior regions in the MEG 
analysis. This difference in focality may be due to distinct signal origins resulting in a 
clearer separation of cortical sources in MEG, as well as greater spatial smearing of 
electrical signals due to different tissue conductances.3 Also, EEG tends to measure 
differently oriented sources and MEG captures mainly tangential currents originating 
in cortical fissures.38 On the other hand, the signal-to-noise ratio varies depending on 
the modality, brain region, and frequency, which limits the comparability of the contrast 
maps. Also, we recorded EEG and MEG separately, and the choice of the head model 
and slightly different measurement conditions may have introduced a bias. Direct 
comparisons of simultaneously recorded M/EEG have shown that both methods 
measure the same intrinsic network,39 especially between 8 and 32 Hz.40 However, 
different spatial sensitivity for frontoparietal connections and effects of head model 
complexity were found.39 To take advantage of both methods, we adopted a combined 
approach and weighted the EEG- and MEG-derived statistics equally, which provided 
new insights into the network characteristics of GGE. 

Moreover, we provide evidence for the heritability of EEG phenotypes. The 
present analysis suggests an intermediate position of network levels in siblings, except 
for beta and gamma connectivity. Here, the global mean in the siblings was higher than 
that in the patients, which was probably related to medication effects in the patients. 
For MEG phenotypes, we previously demonstrated that heritability was strongest in 
beta frequencies.2 Altogether, we have extended the results of previous endophenotype 
research in GGE and JME using (f)MRI11-15 by showing that resting-state alterations 
measured at high temporal resolution co-segregate in families with affected members. 
A recent genetic correlation study supports the notion of an endophenotype based on 
fast brain oscillations. Genetic risk for increased theta and beta power, as measured at 
the vertex (Cz) electrode, was associated with a higher risk for GGE.41 Beta oscillations 
have been linked to motor control42 and GABAergic mechanisms,43 which in turn play 
a meaningful role in the pathology of GGE.44 Theta rhythms are thought to be involved 
in hippocampal networks.45 In animal models of temporal lobe epilepsy, increased theta 
synchronization in the transition phase to seizures46 and coupling to the prefrontal 
cortex have been observed.47  

When cortical thickness was added to the connectivity analyses, the differences 
between patients and controls were amplified, especially in the theta and beta bands, 
and anterior and central brain regions. Power contrasts in posterior regions were also 
strengthened, suggesting a relationship between aberrant morphology and functional 
organization in GGE. Clearly, this interplay requires further investigations. The spatial 
correspondence between fMRI connectivity and cortical atrophy in GGE has been 
studied earlier, but without significant results.8 We did not directly assess the structure-
function relationship, but statistically combined multiple modalities, which can provide 
greater power than separate analyses.24 Thus, it is easier to detect a true effect that acts 
on all measured characteristics simultaneously.24 Indeed, a separate analysis of cortical 
thickness revealed a reduction in patients with a central focus consistent with earlier 
findings6, 8, but significance did not survive corrections for multiple testing. Yet, the 
functional contrasts benefited from taking cortical thickness into account, which argues 
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for the integration of the three modalities to improve diagnostic and prediction 
accuracy.48 In addition, cortical thinning in GGE may not simply reflect disease activity 
but also genetic background. In our study, siblings without epilepsy also had reduced 
cortical thickness in the superior frontal and paracentral areas, arguing against a change 
subsequent to seizures and disease progression alone. A larger sample is needed to 
validate these results, but strong evidence for genetic risk signals enriched in the frontal 
cortex has also been demonstrated in a recent genome-wide mega-analysis.49 Other 
markers such as prefrontal and cingulate curvature and surface area have been proposed 
as endophenotypes in JME, 7 but these likely underlie other neurodevelopmental 
trajectories.50  

Overall, the integration of MEG and EEG resting-state signatures and brain 
morphology provided valuable information concerning GGE pathophysiology. Our 
investigations in healthy siblings without active epilepsy suggest that the observed 
imaging phenotypes are likely genetically driven. These findings pave the way to 
advance the deciphering of the genetic predisposition to GGE using imaging metrics.  
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Key Points 
 

• Interictal states in GGE were characterized by widespread increases in fast 
oscillatory activity and synchronization 

• Network conditions were similarly detected by EEG and MEG, but with spectral 
and spatial differences 

• GGE network changes were reflected in the broadband, but particularly in theta 
and beta frequencies 

• Cortical thinning in GGE was related to functional patterns and amplified group 
contrasting 

• Similar structural and functional phenotypes in healthy siblings suggest a 
genetic influence 
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Figure S1 Effect sizes for group differences 
 
The plot shows effect sizes (Cohen’s d) for increased connectivity in (A) patients with 
GGE versus siblings, and (B) siblings versus controls as well as for increased power in 
(C) patients with GGE versus siblings, and (D) siblings versus controls. Effect sizes 
were derived from the t-values of the permutation analyses of linear models. d is 
therefore adjusted for age, sex, scanner, and intracranial volume effects. d = 0.2 
indicates a small effect, d = 0.5 medium, and d ≥ 0.8 a large effect (Cohen, 1992). 
Sample sizes: patients with GGE n = 23, siblings n = 18, controls n = 35. 
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4.3 LIFESPAN TRAJECTORY OF OSCILLATORY POWER AND PHASE
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 2 

Abstract 

 

Objective: Development and aging are critical processes for the maturation of behavioral, socio-

emotional skills and cognition, but also for the emergence of many neurological and mental 

diseases. While there is some evidence of structural and functional changes in the brain over 

the life course that were quantified primarily by (functional) magnetic resonance imaging 

(f)MRI, little is known about how rapid brain oscillations alter from adulthood into old age. 

Oscillatory power and phase synchronization map neuronal dynamics at different temporal 

scales and are widely studied for the description of the healthy or diseased brain.  

 

Methods: To study the effects of age on power and phase-based connectivity, we examined 

data from the large-scale cross-sectional project of the Cambridge Centre for Aging and 

Neuroscience (Cam-CAN). For our analyses, we studied a sex-balanced group of 350 

individuals aged 18 to 88 years using magnetoencephalography (MEG) during resting-state and 

with eyes-closed. The imaging markers were investigated in six frequency bands (~2-40 Hz) 

and tested for linear and quadratic association with age. Further, we estimated interaction 

effects of sex and age on power and connectivity.  

 

Results Delineated age-related patterns were observed for both imaging metrics. Significant 

linear age effects on connectivity showed either a positive association in theta and gamma 

frequencies or a negative association in alpha and beta, respectively, for posterior brain areas. 

In the beta bands, an inverted U-shaped model was significant for connectivity in 

frontotemporal and central regions. Significant linear age effects on power showed a decrease 

in the delta band in the cingulate and a gradual increase with higher frequencies emphasized in 

insular and central regions. The quadratic models for power were significant for a U-shaped 

course in frontal delta and an inverted U-shaped relationship in higher beta and gamma 

encompassing cingulate and central areas. The lifespan trajectory differed between the sexes 

for delta power and connectivity, and theta connectivity. 

 

Significance: We provide insights into linear and nonlinear trajectories of electrophysiological 

signals from adulthood into old age and show frequency-specific patterns for lower- and higher-

order brain areas. Our results agree well with previous findings from fMRI but reveal 

temporally and spatially fine-grained patterns, encouraging further investigations of the role of 

electrophysiological markers at different frequencies in developmental and aging processes. 

The associations between oscillatory features and age diverged between males and females in 

the lower frequency ranges, potentially due to developmental changes in early or old adulthood.  



 3 

Introduction 

 

Brain development and aging are subject to highly complex processes that are shaped by genetic 

and environmental influences and are critical factors in health or disease. During development 

cell growth, synaptogenesis, and myelination are among the fundamental processes 

(Huttenlocher, 1979; Miller et al., 2012; Whitaker et al., 2016), whereas synaptic pruning, 

inflammatory processes, and changes in metabolism are associated with aging (Higgins-Chen 

et al., 2021; Huttenlocher, 1979; Silk & Wood, 2011). Early brain maturation has been related 

to a gradual consolidation of brain networks with association hubs becoming more strongly 

connected until adulthood (Oldham et al., 2022). With old age, functional connectivity within 

brain networks as studied using fMRI appears to decrease, particularly in the default mode 

network (DMN), including higher-order brain areas, and relate to cognitive decline 

(Damoiseaux, 2017; Dennis & Thompson, 2014; Ferreira & Busatto, 2013). This finding is 

thought to be in line with the hypothesis of a longer maturation period for association cortices 

than for primary cortices (Ferreira & Busatto, 2013; Grieve et al., 2005; Kalpouzos et al., 2009; 

Terribilli et al., 2011) and the particular vulnerability of these cortices to developmental 

disruption (Sydnor et al., 2021). Other fMRI networks such as attention, salience, or motor 

networks also appear to be affected during the life course, but the evidence is inconclusive 

(Damoiseaux, 2017; Huang et al., 2015; Onoda et al., 2012; Tomasi & Volkow, 2012).  

To date, functional brain alterations across the entire lifespan have been studied primarily with 

fMRI. However, cerebrovascular function changes with age and can substantially confound 

fMRI connectivity measures if not corrected appropriately (Tsvetanov et al., 2015). MEG, on 

the other hand, is less sensitive to vascular confounds (Tsvetanov et al., 2015), measures 

neuronal activity more directly than fMRI and can capture fast neuronal dynamics. Hence, it is 

of great interest to track the brain’s functional profile across the lifespan using 

electrophysiology, which has been extensively used in clinical and cognitive neuroscience to 

study oscillatory activity and synchronization (Sadaghiani et al., 2022; Uhlhaas & Singer, 

2006). Neuronal synchronization has been related to information processing and 

communication in the brain (Başar & Güntekin, 2012; Buzsaki, 2006; Fries, 2005, 2015; 

Jokisch & Jensen, 2007), and disruptions have been linked to a range of cognitive disorders and 

clinical diseases (Uhlhaas & Singer, 2006). Moreover, brain oscillations at rest are genetically 

influenced (Glahn et al., 2010; Smit et al., 2005; Tang et al., 2007; Van Beijsterveldt et al., 

1996; Zietsch et al., 2007) and likely vary with changing complex gene expression throughout 

life (Colantuoni et al., 2011). The onset of various disorders with significant genetic 

components often coincides with specific age windows, indicating alterations of developmental 

or aging pathways and genetic programs. For example, aberrant MEG power and 

synchronization have been reported for genetic generalized epilepsy, an epilepsy syndrome with 

typical age at onset during child- or adulthood (Elshahabi et al., 2015; Hegner et al., 2018; Stier 

et al., 2021; Vorderwülbecke et al., 2021). Resting-state functional MEG alterations have also 

been found in psychiatric disorders that occur at younger ages, such as schizophrenia (Grent et 

al., 2016; Hirvonen et al., 2017), as well as in diseases of aging, such as Alzheimer's disease 

(Kurimoto et al., 2008; Stam et al., 2002). Thus, understanding “normative” brain maturation 

and aging based on neuronal activity and synchronization is key to estimating pathological 

disease trajectories and of great importance for an increasingly aging global population (World 

Health Organization, 2020). 
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Previous electrophysiology studies have quantified oscillatory power or connectivity only for 

specific age ranges (Coquelet et al., 2020; Hunt et al., 2019; Marek et al., 2018; Schäfer et al., 

2014) or over the lifespan, but then only at the scalp level, without providing source information 

on the alterations (Gómez et al., 2013; Sahoo et al., 2020). Here, we looked into the distribution 

of MEG power and phase-based connectivity in the population-based Cam-CAN cohort with 

individuals aged 18 to 88 years. Our goal was to investigate regional alterations in 

characteristics of brain oscillations during the resting-state using surface-based source 

reconstruction methods, resolved for six conventional frequency bands. Based on earlier reports 

of linear and non-linear findings for age effects on functional brain features (Gómez et al., 

2013), we expected linear and quadratic relationships between age and power and connectivity, 

respectively. We also tested whether these trajectories differed between sexes, as males and 

females show sexually divergent biological variations, for instance in brain volume (Ritchie et 

al., 2018; Ruigrok et al., 2014) and functional within- and between network connectivity 

(Satterthwaite et al., 2015). Further, cognitive performance appears to differ between males and 

females, including attention, verbal fluency and reasoning, motor and visuospatial tasks (De 

Luca et al., 2003; Klenberg et al., 2001; Satterthwaite et al., 2015), which may indicate sex 

differences in brain network patterns.  
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Materials and Methods 

 

Data and participants 

 

In our study, we used cross-sectional open-access data provided by the Cambridge Centre for 

Aging and Neuroscience (Cam-CAN) data repository (available at http://www.mrc-

cbu.cam.ac.uk/datasets/camcan/). The Cam-CAN project encompassed several phases, 

including cognitive assessments, interviews and health and lifestyle questionnaires, and 

structural and functional brain examinations (Shafto et al., 2014). Approximately 650 resting-

state MEG data sets and anatomical scans were available from phase two of the study (Taylor 

et al., 2017), a subset of which we initially analyzed (n = 448). After excluding data with motion 

artifacts, noise, sleep, or failed extraction of cortical surface for source reconstruction (nexcluded 

= 70), 350 cleaned MEG and MRI data were randomly selected from the remaining data sets 

for further analysis in a balanced design. In total, we report on seven age groups, each with 50 

individuals aged 18 to 88 years, divided into ten-year increments and balanced by sex (see 

demographic data in Table 1). All included individuals were cognitively healthy (Mini Mental 

State Examination score < 24; Folstein et al. (1975)) and free of neurological or psychiatric 

conditions (e.g. dementia, epilepsy, head injury with severe sequelae, bipolar disorder, 

schizophrenia) and substance abuse history. Individuals with communication problems 

(hearing, speech, or visual impairment), limited mobility, or MRI/MEG contraindications were 

excluded. For details on the study protocol and datasets see Shafto et al. (2014). The study was 

conducted in accordance with the Declaration of Helsinki (World Medical Association, 2013) 

and approved by the local ethics committee, Cambridgeshire 2 Research Ethics Committee. 

Data collection and sharing for this project was provided by the Cam-CAN. 

 

 

Table 1 Demographic data of the individual age groups 

  Age (years) Sex 

Age group  N Mean ± SD Males : females 

18-28 years 50 24.4 ± 3.4 25 : 25 

29-38 years  50 33.3 ± 2.9 25 : 25 

39-48 years 50 43.6 ± 3.0 25 : 25 

49-58 years 50 53.7 ± 2.8 25 : 25 

59-68 years 50 63.0 ± 2.8 25 : 25 

69-78 years 50 71.8 ± 2.9 25 : 25 

79-88 years 50 81.5 ± 2.7 25 : 25 

 

  

http://www.mrc-cbu.cam.ac.uk/datasets/camcan/
http://www.mrc-cbu.cam.ac.uk/datasets/camcan/
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MRI acquisition 

 

Anatomical data were acquired using a 3T Siemens TIM Trio scanner with a 32-channel head 

coil. T1-weighted images were derived from 3D MPRAGE sequences with TR=2250ms, 

TE=2.99ms, TI=900ms; FA=9 deg; FOV=256x240x192mm; 1mm isotropic; GRAPPA=2; 

TA=4mins 32s), and T2-weighted images from 3D SPACE sequences with TR=2800ms, 

TE=408ms, TI=900ms; FOV=256x256x192mm; 1mm isotropic; GRAPPA=2; TA=4mins 

30s).   

 

MEG acquisition 

 

Resting-state data were recorded using a 306-channel VectorView MEG system (Elekta 

Neuromag, Helsinki) with 102 magnetometers and 204 planar gradiometers (sampling at 1 kHz 

with a 0.03 Hz high pass filter). Individuals were assessed in a seated position in a magnetically 

shielded room at a single site (MRC Cognition and Brain Science Unit, University of 

Cambridge, UK) for 8 min and 40 s. At the same time, four coils continuously measured the 

head position within the MEG helmet. Additionally, electrocardiogram (ECG) and 

electrooculogram (horizontal and vertical) were recorded to track cardiac signals and eye-

movements. Individuals were instructed to keep their eyes closed and sit still.  

 

MRI processing and individual head models 

 

For mapping MEG sensor level data onto individual cortical surfaces and surfaces of deep brain 

regions, anatomical information was derived from T1- and T2-weighted images and 

reconstructed using FreeSurfer 6.0.0 (https://surfer.nmr.mgh.harvard.edu/). We applied 

surface-based mapping (SUMA; Saad and Reynolds (2012)), which resampled the cortical 

surfaces to 1,002 vertices per hemisphere (ld factor = 10), based on the ‘fsaverage’ template 

mesh provided by FreeSurfer and SUMA. Additionally, six deep brain structures were 

reconstructed (bilateral amygdala, hippocampus, thalamus, caudate, putamen and pallidum), 

also based on the ‘fsaverage’ template atlas. Each region was converted to surfaces using 

Matlab (isosurface) and resampled to a number of vertices corresponding to their average 

volume in comparison to the SUMA reconstruction (334 vertices in total; 167 per hemisphere). 

These reference surfaces were spatially normalized to MNI space with DARTEL normalization 

(Ashburner, 2007) in SPM12 (https://www.fil.ion.ucl.ac.uk/spm/software/spm12/). In a next 

step, individual subject MRI images were segmented (SPM12, unified segment, Ashburner and 

Friston (2005)) and again processed with DARTEL using the CAT12 template (Gaser & 

Dahnke, 2016). The individual non-linear transformations were inverted and used to bring the 

fsaverage-based MNI-space subcortical vertices into the individual space. Thus, this procedure 

resulted in 2,338 vertex positions for each individual and point-for-point anatomical 

correspondence among individuals for cortical (via FreeSurfer/SUMA) and deep brain regions 

(via SPM/DARTEL). Next, the individual meshes were realigned to the Neuromag sensor space 

based on anatomical landmark coordinates provided by Cam-CAN. We used the “single shell” 

method implemented in Fieldtrip to compute the leadfields and individual head models for 

MEG source projection.  

 

https://www.fil.ion.ucl.ac.uk/spm/software/spm12/
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MEG processing 

 

Preprocessed MEG data was available through the Cam-CAN repository. For each dataset 

Elekta Neuromag Maxfilter 2.2 was applied using temporal signal space separation (10s 

window, 0.98 correlation limit) to remove external interference and artefacts, line noise (50 Hz 

and its harmonics), and to correct for bad channels and head movements. Using the Fieldtrip 

toolbox (Oostenveld et al., 2011), we resampled the data to 300 Hz, high-pass filtered at 1 Hz 

(first order Butterworth), and segmented the data into trials of 10 s length. Trials containing 

artifacts were removed following an automatic approach for both MEG channel types separately 

(see https://www.fieldtriptoolbox.org/tutorial/automatic_artifact_rejection/ for further details). 

In brief, the data was bandpass filtered at 110 to 140 Hz (9th order Butterworth) for optimal 

detection of muscle artifacts and z-transformed for each channel and timepoint. The z-

transformed values were averaged over all channels so that artifacts could be accumulated and 

detected in a time course representing standardized deviations from the mean of all channels. 

Finally, all time points that belonged to the artifact were marked using artifact padding, and 

data trials whose z-values were above a threshold of 14 were excluded. The remaining data 

were then low-pass filtered at 70 Hz (first-order Butterworth), and independent component 

analysis (ICA) was applied. Ocular components were automatically identified based on their 

similarity to EOG channel signals (high coherence and amplitude correlation). Cardiac 

components were identified when highly coherent with the ECG signal or based on the averaged 

maximum peaks timelocked to the ECG (QRS complex, see 

https://www.fieldtriptoolbox.org/example/use_independent_component_analysis_ica_to_rem

ove_ecg_artifacts/). For each data set, the automatic selection of the components was manually 

revised. In a few cases, we manually selected the relevant ICA components because the 

ECG/EOG was noisy. We visually inspected all cleaned data for quality control and rated 

vigilance of individuals according to the criteria of the American Academy of Sleep Medicine 

(https://aasm.org/). From the cleaned data, which were scored to be awake, 30 trials were 

randomly selected for source analysis using signals from magnetometers (102 channels) only. 

We used beamforming (dynamic imaging of coherent sources; Gross et al. (2001)) to project 

sensor data to the surface points (source space) in the frequency domain. MEG power and cross-

spectral densities were computed for six conventional frequency bands (delta: 2 ± 2 Hz, theta: 

6 ± 2 Hz, alpha 10 ± 2 Hz, beta1 16 ± 4 Hz, beta2 25 ± 4 Hz and gamma 40 ± 8 Hz) based on 

fast Fourier spectral analysis using multitapers (Discrete Prolate Spheroidal Sequences tapers). 

Source projection was carried out using leadfields and adaptive spatial filters (regularization: 

lambda = 5%). The coherency coefficient was estimated between all pairs of vertices (source 

points, n = 2238) and the imaginary part was derived to account for potential field spread (Nolte 

et al., 2004). The absolute imaginary part of coherency was our connectivity measure of interest, 

reflecting phase synchrony between signals. We averaged all connections of a vertex to obtain 

the overall strength of a vertex, and for each individual also across all vertices to get a global 

connectivity and power index. 

To provide an overview of connectivity and power distributions across the age groups, the 

frequency spectra of each individual in this study were calculated for 1-Hz bins and averaged 

for each age group (Figure 1).  

https://www.fieldtriptoolbox.org/example/use_independent_component_analysis_ica_to_remove_ecg_artifacts/
https://www.fieldtriptoolbox.org/example/use_independent_component_analysis_ica_to_remove_ecg_artifacts/
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Figure 1 Spectra for global connectivity and power across age groups  

 

For each individual included in this study, global connectivity or power was computed for 1 Hz 

frequency bins and averaged for the corresponding age group (see Table 1; ngroup = 50). Dark 

colors represent the young age groups, light colors indicate the old age groups. (A) Mean global 

connectivity between the youngest and oldest age groups diverged around the alpha peak (~10 

Hz). In the beta frequencies (~12-30 Hz), the mean connectivity of the youngest and the oldest 

was similar, whereas the middle age groups had the highest average values. In the gamma range 

(above ~30 Hz), the pattern is more diffuse, with the youngest age groups having lower 

connectivity than the older age groups. (B) In most frequency bands, the mean power differed 

across age groups. The oldest age groups had lower power than the other age groups in the delta 

band (~2 Hz), but higher power in all other frequency bands. Individuals under 28 years of age 

had the highest power in the delta band and the lowest power in the frequencies above 12 Hz 

compared to individuals over 28 years of age. Quantitative assessment of age-effects on power 

and connectivity in specific frequency bands are found in the results section, and Figure 2 and 

Figure 3. 
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Statistical analysis  

 

Linear and quadratic effects of age at the global and vertex-level 

 

We examined the relationship between age and connectivity or power by fitting a model with 

the imaging metrics in each frequency band as dependent variables and age, age2 and sex as 

independent variables. We centered the individual age values before squaring them to reduce 

the correlation between the linear and the quadratic terms. The models were estimated either 

for the global metrics or for the metrics at each vertex (surface point) in the brain. The non-

parametric statistic tool PALM (Permutation Analysis of Linear Models, Winkler et al. (2014)) 

was used to generate permutations for the respective models with tail approximation for 

accelerated inference (500 permutations) (Winkler et al., 2016). Single t contrasts were 

computed, that is, for positive and negative linear age effects, and for convex and concave 

quadratic age terms. P-values were derived from the permutation distribution, at the tail of 

which a generalized Pareto distribution was fitted (Winkler et al., 2016), and corrected for 

multiple comparisons (family-wise error, FWE) at cluster level resulting from threshold-free 

cluster enhancement (Smith & Nichols, 2009). We set the significance level at p = 0.05 or 

equivalently -log10(p) ~ 1.3. The partial correlation coefficient (rpartial) was estimated as an 

effect size for the independent variables based on the t-values and degrees of freedom of the 

global models (Rosenthal et al., 1994). rpartial indicates the degree of association between two 

variables at which the influence of other variables in the model has been eliminated (Bortz & 

Schuster, 2011): values of ± 0.1 reflect a small effect, ± 0.3 represent a large effect, and ± 0.5 

is a large effect (Field et al., 2012).  

 

Interaction of sex and age on imaging metrics 

 

Using PALM, we also investigated sex differences in the trajectory of imaging metrics over the 

lifespan. For each age decade, 25 males and 25 females were included to ensure a balanced 

design giving 175 individuals per sex in total. Models were fitted to test whether the beta 

coefficients for the age and age2 effects on connectivity or power in each frequency band 

differed between males and females. Again, p-values were computed based on permutation 

analyses for the global values or vertex-values (tail approximation, 500 permutations) and 

family-wise error corrected at the cluster level resulting from threshold-free cluster 

enhancement (Smith & Nichols, 2009). We considered a threshold of p = 0.05 or -log10(p) ~ 

1.3 as significant.  
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Results 

 

Global and vertex connectivity across the lifespan 

 

Significant linear associations between age and global connectivity were observed in the theta, 

alpha, beta1, and gamma frequency bands (Table 2 and Figure 2A). The direction for the linear 

association in theta and gamma connectivity was positive, and implies a global increase with 

age. Global connectivity in the alpha and beta1 bands decreased with age. Delta connectivity 

was rather stable across the age ranges (p > 0.05). At the vertex-level, significant linear effects 

were mainly observed in the occipital lobes, including cuneus and inferior parietal regions, and 

for the alpha band also in middle temporal regions (Figure 2B). The linear age effect in the 

beta2 band was not significant at the global level but was significant at the vertex-level, again 

in occipital brain areas. Moreover, in the beta frequencies, the relationship between age and 

global and vertex connectivity significantly followed a quadratic function (Table 2 and Figure 

2C). Accordingly, middle age groups exhibited the highest global connectivity in comparison 

with young or old age groups. These quadratic effects, especially in beta2, were strongest in 

central and frontotemporal regions. 
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Figure 2 Frequency-specific association between age and connectivity 

 

(A) The plots show individual values of global connectivity (n = 350) across early and late adulthood for the six 

frequency bands investigated. The blue lines represent linear relationships between age and global connectivity, 

while the yellow lines represent quadratic relationships. Statistical analyses yielded significant linear effects of 

age in the theta, alpha, beta1, and gamma frequency bands. For the beta1 and beta2 bands, the quadratic term in 
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the regression model was also significant. See Table 2 for statistical details. In (B) and (C), significant effects of 

age on vertex connectivity are highlighted. Vertex-results for subcortical nuclei and deep structures were not 

significant and are not displayed here. (B) the blue color bar indicates significant negative effects of age, whereas 

the red color bar represents significant positive associations. (C) The purple color bar indicates significant 

quadratic effects of age following an inverted U-shaped pattern (concave). Results for the U-shaped term (convex) 

were not significant and are not displayed. The significance level was set at -log10 p > 1.3 (equivalent to p < 0.05), 

family-wise error corrected. We estimated linear models for each frequency band separately with connectivity as 

the independent variable, and age, age2 and sex as dependent variables and performed permutation-based analysis. 

The included healthy individuals (n = 350) ranged in age from 18 to 88 years. ImCoh = imaginary part of 

coherency.  

 



 13 

Table 2 Relationship between global connectivity and age 

 

 Contrast  t  p  rpartial 

Delta Age positive  1.16 0.166  0.06 

 Age negative  -1.16 0.892 -0.06 

 Age2 convex  0.47 0.346  0.03 

 Age2 concave -0.47 0.706 -0.03 

 Sex -1.26 0.880 -0.07 

Theta Age positive  1.91 0.034*  0.10 

 Age negative  -1.91 0.978 -0.10 

 Age2 convex  0.87 0.216  0.05 

 Age2 concave -0.87 0.782 -0.05 

 Sex -1.83 0.974 -0.10 

Alpha Age positive -2.82 0.992 -0.15 

 Age negative   2.82 0.002*  0.15 

 Age2 convex -0.16 0.564 -0.01 

 Age2 concave  0.16 0.464  0.01 

 Sex -1.66 0.972 -0.09 

Beta1 Age positive -2.02 0.972 -0.11 

 Age negative   2.02 0.028*  0.11 

 Age2 convex -3.33 1.000 -0.18 

 Age2 concave  3.33 0.002*  0.18 

 Sex  0.48 0.350  0.03 

Beta2 Age positive -0.77 0.776 -0.04 

 Age negative   0.77 0.194  0.04 

 Age2 convex -3.88 1.000 -0.20 

 Age2 concave  3.88 <0.001*  0.20 

 Sex  0.78 0.222  0.04 

Gamma Age positive  2.17 0.010*  0.12 

 Age negative  -2.17 0.984 -0.12 

 Age2 convex  0.50 0.324  0.03 

 Age2 concave -0.50 0.728 -0.03 

 Sex -2.23 0.982 -0.12 

 

Results were obtained by permutation analyses of linear models with global connectivity (imaginary part of 

coherency) as independent variable and age, age2 and sex as dependent variables. We estimated the effects for 

positive and negative associations between age and connectivity, as well as the convex (U-shaped) and concave 

(inverted U-shaped) quadratic relationship in each frequency band. rpartial reflects the degree of association between 

connectivity and age at which the influence of the other effects was eliminated. Values of ± 0.1 reflect a small 

effect, ± 0.3 represent a large effect, and ± 0.5 is a large effect (Field et al., 2012). The included healthy individuals 

(n = 350) ranged in age from 18 to 88 years. * denotes statistical significance at p < 0.05. 
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Global and vertex power across the lifespan 

 

The distribution of global power across age groups showed a trend of decrease or stability in 

the lower frequency bands and an increase in the faster oscillations (Table 3 and Figure 3A). 

For delta power, there was a significant negative linear relationship with age, globally and in 

the cingulate and caudate (Figure 3B). In the theta band, the linear age effect was not significant 

at a global level, but at a vertex level in insular and frontotemporal regions. Global power in 

the higher frequencies, that is, alpha to the gamma band, showed a significant linear increase 

with age. At the vertex level, the linear effects in these frequency bands were widespread across 

the brain and most prominent in frontotemporal, insular, and central regions. In beta1 and 

gamma, significant linear age effects were also observed in deeper brain structures, such as 

thalamus, hippocampus, and putamen. 

The quadratic association between delta power and age was also significant; in the global and 

vertex analyses with a strong focus in orbitofrontal regions, the insula, and temporal regions 

(Figure 3C). There was also a significant quadratic effect in the theta band for global power 

and in insular and frontotemporal regions. The relationship between global power in the beta2 

and gamma bands and age also followed a quadratic function. In these frequency bands, power 

was lowest in the young individuals, highest in middle age, and somewhat lower again in old 

age. The quadratic effect at the vertex level was highlighted in central areas and the cingulate.  
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Figure 3 Frequency-specific association between age and power 

 

(A) The plots show individual values of global power (n = 350) across early and late adulthood for the six frequency 

bands investigated. The blue lines represent linear relationships between age and global power, while the yellow 

lines represent quadratic relationships. Power data was log10-transformed for visualization purposes. Statistical 

analyses yielded significant linear effects of age on global power in the delta, beta1, beta2, and gamma frequency 

bands. The quadratic term in the regression model was significant for the delta, theta, beta2, and gamma bands. 

See Table 3 for statistical details. In (B) and (C), significant effects of age on vertex-power are highlighted. (B) 

The blue color bar indicates significant negative effects of age, whereas the red color bar represents significant 

positive associations. (C) The green color bar depicts significant quadratic effects of age following a U-shaped 

pattern (convex), while the purple color bar indicates significant effects following an inverted U (concave). The 

significance level was set at -log10 p > 1.3 (equivalent to p < 0.05), family-wise error corrected. We estimated 

linear models for each frequency band separately with power as the independent variable, and age, age2 and sex 

as dependent variables and performed permutation-based analysis. The included healthy individuals (n = 350) 

ranged in age from 18 to 88 years.  

  



 17 

Table 3 Relationship between global power and age 

 Contrast t p rpartial 

Delta Age positive -3.14 0.998 -0.17 

 Age negative   3.14 <0.001*  0.17 

 Age2 convex  3.54 0.002*  0.19 

 Age2 concave -3.54 1.000 -0.19 

 Sex -2.48 0.996 -0.13 

Theta Age positive  1.11 0.142  0.06 

 Age negative  -1.11 0.874 -0.06 

 Age2 convex  2.03 0.025*  0.11 

 Age2 concave -2.03 0.980 -0.11 

 Sex -2.20 0.990 -0.12 

Alpha Age positive  1.72 0.050  0.09 

 Age negative  -1.72 0.958 -0.09 

 Age2 convex  0.10 0.482  0.01 

 Age2 concave -0.10 0.516 -0.01 

 Sex -3.19 1.000 -0.17 

Beta1 Age positive  4.44 <0.001*  0.23 

 Age negative  -4.44 1.000 -0.23 

 Age2 convex -1.57 0.938 -0.08 

 Age2 concave  1.57 0.051  0.08 

 Sex -1.45 0.936 -0.08 

Beta2 Age positive  3.27 <0.001*  0.17 

 Age negative  -3.27 0.998 -0.17 

 Age2 convex -3.95 1.000 -0.21 

 Age2 concave  3.95 <0.001*  0.21 

 Sex -1.22 0.910 -0.07 

Gamma Age positive  4.66 <0.001*  0.24 

 Age negative  -4.66 1.000 -0.24 

 Age2 convex -2.76 0.996 -0.15 

 Age2 concave  2.76 0.003*  0.15 

 Sex -1.56 0.952 -0.08 

 

Results were obtained by permutation analyses of linear models with global power as independent variable, and 

age, age2 and sex as dependent variables. We estimated the effects for positive and negative associations between 

age and power as well as the convex (U-shaped) and concave (inverted U-shaped) quadratic relationship in each 

frequency band. rpartial reflects the degree of association between power and age at which the influence of the other 

effects was eliminated. Values of ± 0.1 reflect a small effect, ± 0.3 represent a large effect, and ± 0.5 is a large 

effect (Field et al., 2012). The included healthy individuals (n = 350) ranged in age from 18 to 88 years. * denotes 

statistical significance at p < 0.05. 
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Sex differences for power and connectivity across the lifespan 

 

The main effect for sex was not significant for either global connectivity or global power (Table 

2 and Table 3), but was significant for beta2 and gamma power at a vertex level in frontal 

regions (data not shown). We further tested whether the slopes for the linear and quadratic age 

effects differed significantly between sexes, which was the case in the lower frequency bands.  

For delta connectivity, there was a steeper linear decrease with age in males than in females, 

which was significant in occipital areas of the brain and cuneus (Figure 4B), but not at a global 

level (Table 4). In the theta band, quadratic age effects on connectivity were significantly 

different between the sexes at a global level, but did not survive correction for multiple 

comparisons in the vertex analysis. Delta power linearly decreased with age with a stronger 

decline for men than women. This was the case in the global analysis (Table 4) as well as in 

frontocentral regions, cingulate, and precuneus (Figure 5B). In other frequency ranges for 

connectivity and power, there was no significant interaction between sex and age. 
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Table 4 Summary of interaction effects sex by age on global MEG metrics  

  Connectivity  Power  

 Contrast t p t p 

Delta Sex*age positive -1.38 0.896 -2.57  0.998 

 Sex*age negative   1.38 0.081  2.57 <0.001* 

 Sex*age2 convex -1.29 0.882  1.20  0.114 

 Sex*age2 concave  1.29 0.092 -1.20  0.872 

Theta Sex*age positive  0.95 0.186 -1.14  0.866 

 Sex*age negative  -0.95 0.826  1.14  0.134 

 Sex*age2 convex  1.82 0.039*  1.55  0.052 

 Sex*age2 concave -1.82 0.962 -1.55  0.940 

Alpha Sex*age positive  0.84 0.196 -0.16  0.564 

 Sex*age negative  -0.84 0.792  0.16  0.446 

 Sex*age2 convex -0.86 0.808  1.33  0.077 

 Sex*age2 concave  0.86 0.192 -1.33  0.930 

Beta1 Sex*age positive  1.08 0.158  0.03  0.506 

 Sex*age negative  -1.08 0.842 -0.03  0.500 

 Sex*age2 convex  1.29 0.102  1.39  0.081 

 Sex*age2 concave -1.29 0.888 -1.39  0.910 

Beta2 Sex*age positive -1.10 0.870  0.08  0.486 

 Sex*age negative   1.10 0.152 -0.08  0.514 

 Sex*age2 convex  0.60 0.268  1.37  0.086 

 Sex*age2 concave -0.60 0.752 -1.37  0.912 

Gamma Sex*age positive -0.91 0.822  0.88  0.188 

 Sex*age negative   0.91 0.194 -0.88  0.806 

 Sex*age2 convex  1.59 0.071  1.63  0.056 

 Sex*age2 concave -1.59 0.948 -1.63  0.944 

 

Results were obtained by permutation analyses of linear models testing whether the coefficients for the age and 

age2 effect on MEG metrics differed between males (n = 175) and females (n = 175). Positive and negative linear 

associations between age and the metrics as well as the convex (U-shaped) and concave (inverted U-shaped) 

quadratic relationship in each frequency band were considered.  The included healthy individuals (n = 350) ranged 

in age from 18 to 88 years. * denotes statistical significance at p < 0.05. 
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Figure 4 Sex-specific trajectories for connectivity with age 

 

(A) The plots show individual global connectivity across early and late adulthood separately for males (n = 175) 

and females (n = 175) and for the six frequency bands studied. The blue lines represent linear relationships between 

age and global connectivity, while the yellow lines represent quadratic relationships. The interaction effect of sex 

and age on global connectivity was significant for the quadratic association in the theta frequency band. See Table 

4 for statistical details. (B) Shown is the significant interaction between sex and age for linear vertex-connectivity 

in the delta band. Interaction effects in the other frequency bands were not significant and are not shown. The 

significance level was set at -log10 p > 1.3 (equivalent to p < 0.05), family-wise error corrected. We estimated 

linear models to test whether the age trajectories of connectivity differed between males and females in each 

frequency band using permutation-based analysis. The included healthy individuals (n = 350) ranged in age from 

18 to 88 years. ImCoh = imaginary part of coherency.   
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Figure 5 Sex-specific trajectories for power with age 

 

(A) The plots show individual global power across early and late adulthood separately for males (n = 175) and 

females (n = 175) and for the six frequency bands studied. The blue lines represent linear relationships between 

age and global connectivity, while the yellow lines represent quadratic relationships. Power data was log10-

transformed for visualization purposes. The interaction effect of sex and age on global power was significant for 

the linear association in the delta frequency band. See Table 4 for statistical details. (B) Shown is the significant 

interaction between sex and age for linear vertex-power in the delta band. Interaction effects in the other frequency 

bands were not significant and are not shown. The significance level was set at -log10 p > 1.3 (equivalent to p < 

0.05), family-wise error corrected. We estimated linear models to test whether the age trajectories of power differed 

between males and females in each frequency band using permutation-based analysis. The included healthy 

individuals (n = 350) ranged in age from 18 to 88 years.   
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Discussion 

 

Using a large set of age-stratified MEG resting-state recordings, we gained insights into how 

frequency-specific phase-coupling and power is expressed in whole-brain networks from early 

adulthood to old age. The markers showed different associations with age, which could be 

described by linear and quadratic functions depending on the frequencies, and may be related 

to different (physiological) aging effects. The spatial patterns of these associations were largely 

distinct for power and connectivity, suggesting that the measures convey nonredundant 

information. Connectivity changed linearly with age in mainly posterior brain regions with 

similar topographies for the frequency bands studied, but with increases in the theta and gamma 

frequencies and, conversely, decreases in the alpha to beta2 frequency bands. Connectivity in 

central and frontotemporal regions followed a quadratic relationship with age in the beta 

frequencies, suggesting that these areas might undergo different maturation or aging processes 

than the posterior regions. The focus of age-effects on power also tended to be in the anterior 

and central regions. In the linear case, there were power redistributions from lower (delta 

decrease) to higher frequencies (theta to gamma increases) prominent in the frontotemporal and 

central regions, and cingulate. Quadratic age effects for delta power, and weaker also for theta 

power, were observed anterior-basal. In beta2 and gamma, the quadratic age effects were 

strongest in the cingulate und central areas, overlapping spatially, at least in part, with the 

quadratic age effects on beta connectivity.  

 

In general, very few studies have investigated phase-based neuronal organization across the 

lifespan. One study has reported linear changes of coherence and metastability of signals in the 

full MEG Cam-CAN dataset at the scalp (Sahoo et al., 2020). In their study, topographical 

global coherence increased with age in the delta and theta bands, and decreased in alpha. 

However, the authors used coherence as their connectivity measure, which is likely to involve 

artifactual coherence due to electromagnetic field spread. We employed the imaginary part of 

coherency, which has been reported to be less affected by field spread (Nolte et al., 2004). Our 

results on global connectivity confirm their findings in the theta and alpha bands, but also point 

to alterations with age in the gamma and beta band and additionally provide source information 

about these effects. Remarkably, the linear age effects on phase coupling were more local and 

mainly pronounced in the occipital lobe, with the frequency bands possibly exhibiting different 

but related functional processes. Marek et al. (2018) have reported theta-changes in phase-

connectivity in the transition from adolescence to adulthood following an anterior-to-posterior 

gradient. According to their results and to another study covering the first five decades of life 

(Hunt et al., 2019), it is conceivable that frontal theta coupling decreases during this time period, 

while it slightly increases in posterior regions with age, as was observed in our analysis. 

Interestingly, the theta decoupling in the frontal cortex during adolescence was related to 

cognitive control (Marek et al., 2018). In general, theta oscillations are believed to temporally 

coordinate higher-frequency activity and to be fundamental to neuronal communication (Fries, 

2005, 2015). Of note, in our study, gamma connectivity also increased significantly with age, 

showing a similar trend and spatial pattern as theta connectivity. Interestingly, in the primate 

brain, theta and gamma oscillations supported feedforward synchronization in visual cortical 

areas, whereas feedback communication relied on the beta band (Bastos et al., 2015). In the 

MEG Cam-CAN data set, others have observed that in these posterior brain regions covering 
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early visual areas, the occurrence of microstates decreased with age (Coquelet et al., 2020; 

Tibon et al., 2021). It is possible that these neural changes are related, for example, to the 

findings of reduced selective responsiveness of the ventral visual cortex to visual stimuli and 

slowing of perceptual speed in the elderly (Park 2004). In contrast, in higher-order areas, like 

frontotemporal and parietal regions, such transient neuronal states occurred more frequently 

with age (Tibon et al., 2021). These microstate profiles have been associated with lower fluid 

but not crystalline intelligence, which may indicate lower flexibility and coordination in the 

brain and overall lower neuronal efficiency (Tibon et al., 2021). In our study, frontocentral and 

temporal areas exhibited time-averaged connectivity following an inverted U-shaped pattern 

with age in the beta bands, with the highest connectivity levels in middle age and lower 

connectivity in the younger and older groups. In general, these higher-order areas may subserve 

intellectual, behavioral, and socioemotional processes and exhibit distributed long-range 

connections in the brain (Buckner & Krienen, 2013; Sepulcre et al., 2010; Sydnor et al., 2021). 

Consistently, beta oscillations have been linked to long-range brain communication before 

(Kopell et al., 2000) and our results may reflect developmental peaks around the 50s.  

Our study supports the notion that connectivity in delta, theta, alpha, and gamma bands is likely 

to be relatively stable at a global level from early adulthood to old age, but exhibits local 

alterations, particularly in posterior brain areas. In contrast, strong nonlinear age effects on beta 

connectivity were observed in distributed centrotemporal and frontal areas. We extend 

electrophysiological studies in childhood or adolescence and show frequency-specific changes 

into old age. 

 

Research on power alterations with age was undertaken early on with studies covering different 

life decades (Duffy et al., 1984). Overall, power decreases in lower frequency bands and 

increases in higher frequency bands with age have been consistently reported (Coquelet et al., 

2020; Gómez et al., 2013; Hunt et al., 2019; Marek et al., 2018; Miskovic et al., 2015; Whitaker 

et al., 2016). We replicate previous results and add regional information for power redistribution 

across frequencies and distinct linear and nonlinear effects of age. Our data point to a delta 

power decrease in the cingulate and a U-shaped trajectory in the frontotemporal regions. Other 

electrophysiology studies have not examined the delta frequency band in this context (Coquelet 

et al., 2020; Hunt et al., 2019; Schäfer et al., 2014), and another study found no significant 

power differences across the lifespan in this frequency range (Sahoo et al., 2020). A possible 

explanation for this inconsistency with our findings could be a moderately lower reliability of 

power estimates in the delta range (Marquetand et al., 2019) and susceptibility to noise. Our 

results, however, tie in well with earlier work across the lifespan (Gómez et al., 2013), during 

the teenage years (Campbell & Feinberg, 2009) and early adulthood, showing delta band 

decreases in oscillatory activity along a posterior-anterior axis (Marek et al., 2018). Also in our 

study, frontal structures showed more of a delta decrease than posterior regions, which may be 

related to the development or decline of frontal cognitive functions. For example, decline in 

executive functions with age is thought to be related to structural changes in the frontal lobe 

(Greenwood, 2000; West, 2000). Consistently, a decrease in fluid intelligence and multitasking 

was found in the Cam-CAN data, to which changes in gray and white matter in specific 

prefrontal regions contributed (Kievit et al., 2014). Future studies should address this 

neurocognitive relationship in more detail, but the possible importance of delta oscillations for 

cognitive processes has been discussed previously (Harmony, 2013). Furthermore, the delta 
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power decrease in our study also affected cingulate and insular regions, which conversely 

exhibited a strong power increase in the beta and gamma frequency bands. Multiple, widely 

different functions in the brain are attributed to the insula (Nieuwenhuys, 2012), including 

interoception, for example, for pain, temperature, or tactile stimuli (Jones et al., 2010), as well 

as temporal and social perception (Schirmer et al., 2016). Insular dysfunction has been 

described in autism spectrum disorder, a neurodevelopmental disorder, and probably underlies 

several symptoms related to cognition, affection, and sensory functions (Nomi et al., 2019). 

Also, the insula is broadly connected to thalamic nuclei, amygdala, limbic, and association 

cortical areas (Nieuwenhuys, 2012). Remarkably, we also found power signals from the 

thalamus, putamen, and hippocampus to change over the lifespan in the beta1 and gamma 

bands. However, it is controversial whether MEG can reliably detect signals from deep 

structures, although one group has recently shown that it may be possible (Pizzo et al., 2019). 

In addition, in our study, cingulate and central brain regions exhibited a quadratic effect of 

aging in the faster oscillations investigated, that is, high beta and gamma power. Cingulate 

regions are considered part of the DMN (Buckner et al., 2008) and to change during aging 

(Damoiseaux, 2017). The anterior cingulate cortex is assigned a central role in information 

processing and also a broad range of brain functions (Margulies et al., 2007), whereas the 

posterior part is thought to support internal cognition (Buckner et al., 2008; Raichle et al., 2001). 

Moreover, abnormal structure and function of the posterior cingulate cortex is associated with 

many neurological and psychiatric disorders with onset in adolescence and old age (Zhang & 

Raichle, 2010) and has been proposed to contribute to the metastability of intrinsic connectivity 

(Leech & Sharp, 2014). Central regions and beta band changes are classically related to 

movement (Jurkiewicz et al., 2006; Pfurtscheller & Neuper, 1997; Pfurtscheller et al., 1996). 

Interestingly, characteristics of movement-related amplitude alterations in beta, that is, during 

button pressing tasks, have been shown to change across the lifespan, as measured in the Cam-

CAN data set (Bardouille et al., 2019). The findings were mainly restricted to primary 

somatosensory and motor areas, but also included activation of frontotemporal areas. It is 

conceivable that age-related changes in these networks during the resting-state over the 

lifespan, as observed in our study, lead to altered levels of event-related activity. 

Altogether, power alterations in our study spatially encompassed the major players of the 

association network and the primary sensorimotor regions, with power decreasing at slower 

oscillations and increasing above 10 Hz. The reason for this redistribution needs further 

investigation, as does a possible relationship between phase-connectivity and power in beta 

frequencies. Currently, it is not clear why beta signals seem to be important for brain 

development and aging. One hypothesis is that beta oscillations may be involved in 

coordination within and between networks and, thus, hold a pivotal role across the lifespan 

(Briley et al., 2018). 

 

We also explored whether males and females differ with regard to age-effects on MEG 

measures. Across the whole sample, there were no significant main effects of sex except for 

small frontal clusters in the beta2 and gamma bands (data not shown). Some studies report sex 

differences in MEG (Azanova et al., 2021; Fung et al., 2021; Hoshi & Shigihara, 2020; Taylor 

et al., 2020) or EEG features (Brenner et al., 1995; Clarke et al., 2001; Davidson et al., 1976; 

Kober & Neuper, 2011; Smit et al., 2008; Thordstein et al., 2006) during or in absence of a task 

in various age ranges and frequencies. However, research efforts in this direction for the resting-
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state are generally limited. Our sample of 25 individuals of each sex per decade of life may not 

be sufficient to detect subtle main differences. However, there were significant interactions 

between sex and age in delta power and connectivity, and theta connectivity, while in the other 

frequency bands the global trajectories between the sexes were not significantly different. 

Looking at the distribution of global delta power in our data, we find that values are higher in 

males than in females in their early twenties and decrease more steeply with age. Decline in 

slow-wave activity during adolescence is known in the context of sleep research (Campbell et 

al., 2011; Campbell & Feinberg, 2009), with boys exhibiting more delta power than girls during 

the course, indicating an earlier onset of changes in sleep homeostasis in girls (Campbell et al., 

2005). The occurrence of the "occipital delta of youth" is also a well-known EEG phenomenon 

that usually disappears with the transition to adulthood (Ebner et al., 2006), and could follow a 

different course in males and females, which would require further investigation. Similar to our 

results, Hunt et al. (2019) found less stable theta connectivity for males than females from 

childhood to middle age during rest, but alpha to gamma frequency were not affected. Another 

study reports sex-specific reconfigurations of EEG microstates during maturation and in the old 

age, pointing to varying trajectories of temporal dynamics for males and females (Tomescu et 

al., 2018). However, more studies are needed that systematically examine sex-dimorphic age-

related patterns from an electrophysiological perspective and link them to other phenotypes to 

explore behavioral associations. Our study was balanced for age and sex, providing initial 

results suggesting that sex-specific differences in oscillatory lifetime dynamics can be expected 

in the slower frequency ranges. 

 

Overall, we provide a comprehensive overview of changes in the characteristics of 

electrophysiological signals across the lifespan and complement age-related (f)MRI literature 

by resolving the spectral dynamics of the resting-state. We were able to model the relationship 

between age and connectivity or power by a linear function in some brain regions and a 

quadratic function in others. The Cam-CAN dataset used here does not cover the early years of 

life, which should be taken into account when interpreting our results. It is conceivable that the 

most extensive brain alterations occur in the childhood, adolescence, and early adulthood, when 

physical, cognitive and socio-emotional abilities are being formed, and then again in older age, 

when physical and cognitive decline occurs. White matter volumes have been found to increase 

into the middle adulthood, potentially due to extended myelination processes (Barnea-Goraly 

et al., 2005), whereas grey matter alterations were found to follow a differential pattern 

(Kochunov et al., 2011; Li et al., 2014). Structural underpinnings are likely to be intertwined 

with functional network behavior (Sadaghiani & Wirsich, 2020) and curvilinear associations 

between cortical volume and power changes with age have been reported (Whitford et al., 

2007). However, the structure-function relationship across the lifespan is probably more 

complex. For example, we have found both functional increases and decreases with age in the 

same brain regions, depending on the respective frequency. With reference to fMRI findings, 

shifts in functional activation patterns in the elderly have been attributed to functional 

compensatory mechanisms (Davis et al., 2008). Others relate increased activity in the frontal 

lobe to decreases in neuronal efficiency or specificity (Morcom & Henson, 2018; Nyberg et al., 

2012). However, without direct behavioral correlates, the interpretation of increased versus 

decreased power or connectivity during rest is challenging. Also, the relatively small effect 

sizes of the age effects on brain oscillatory characteristics suggest that many other factors 
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contribute to the variance in our data. Nonetheless, our results have important implications for 

a number of clinical studies using MEG or EEG in patients of different age and sex. When 

applying similar measures in clinical cohorts, convergence or divergence from the patterns in 

healthy individuals could be tested, primarily to understand brain pathology but also to advance 

the development of biological disease markers. However, one major limitation of our study 

must be kept in mind, namely its cross-sectional design. It is not suitable for determining 

dynamic long-term changes within an individual (Lindenberger et al., 2011) and cohort effects 

on our results cannot be excluded (Sliwinski et al., 2010). Longitudinal data would be most 

appropriate to study individual developmental processes, but the feasibility of such studies 

across the lifespan is unlikely with current techniques and methods.  

 

To conclude, we demonstrate demarcated MEG phase-based connectivity and power patterns 

for primary and higher-order brain areas that are shown to develop differently across the 

lifespan. In addition, we provide evidence for sexually dimorphic trajectories in the lower 

frequency bands during rest. Our study can form a basis for further neurocognitive and clinical 

studies using electrophysiology. 
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4.4 THE RESULTS IN BRIEF 
 
In study I, we showed that MEG power and connectivity are strongly increased in patients with 
GGE and, thus, provide evidence that network configurations are also altered during the 
interictal state. The connectivity increases for GGE were prominent in frontotemporal and 
central brain regions (in theta to gamma frequency bands), whereas power increases tended 
to be more widespread with a posterior focus, including occipital brain regions (in delta to 
gamma bands). Intriguingly, healthy siblings who had never epileptic seizures exhibited similar 
conditions; more precisely, the connectivity and power levels of the siblings were 
intermediate between those of the patients and those of the controls. We reported 
heritability estimates for MEG network measures, which were highest for the beta frequency 
band. In addition, connectivity was lower in patients with high drug exposure (AED) than 
patients with low exposure, especially in beta connectivity. Patients with generalized spike-
wave discharges (GSWD) during the MEG recordings had higher delta connectivity than 
patients without GSWD, as well as higher delta and beta power.  
 
The HD-EEG analysis in study II revealed increased network levels in GGE, similar to the MEG 
findings, but with spatial and spectral differences. HD-EEG power increases were more 
widespread and observed across the frequency spectrum (delta to gamma bands). 
Connectivity increases in the HD-EEG analysis were significant in the lower frequency bands, 
particularly in theta, whereas connectivity in the higher frequencies was not significant (beta 
to gamma bands), possibly related to medication effects. A statistical combination of HD-EEG 
and MEG maps yielded the strongest alterations in the theta and beta bands, suggesting that 
brain oscillations in these frequencies may be particularly relevant in GGE. Further, patients 
had reductions in cortical thickness, which corresponded spatially with the functional 
phenotype and enhanced the group contrast in a joint analysis. The healthy siblings exhibited 
similar HD-EEG and structural properties to the patients, but to a lesser extent. 
 
Study III yielded different trajectories for power and connectivity across the lifespan. The 
linear and quadratic associations between age and the markers were spatially distinct, 
possibly mapping different developmental and aging processes. Global connectivity was 
relatively stable from early adulthood into old age but showed local linear changes in posterior 
regions (increases in theta and gamma, decreases in alpha to beta2 bands). In contrast, strong 
quadratic age effects on beta connectivity were found in central and frontotemporal areas 
(inverted U-shaped). Age effects on power spatially encompassed the major players of the 
association network and the primary sensorimotor regions, with power linearly decreasing 
with age at slower oscillations within the cingulate, and increasing above 10 Hz in insular, 
temporal, and central regions. Quadratic effects of age on power were observed anterior-
basal (delta, theta; U-shaped), in the cingulate and central areas (high beta and gamma; 
inverted U-shaped). The lifespan trajectories for delta power and theta connectivity differed 
between males and females.  
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5  DISCUSSION AND FUTURE PERSPECTIVES 
 
This final chapter is intended to provide the reader with a conceptual and comprehensive 
treatise on electrophysiological networks in genetic generalized epilepsy (GGE) and further 
steps that lead to a promising interdisciplinary field of imaging, genetics, and human 
development. To begin with, the independent variables used as network markers in all three 
original studies are placed into context with other electrophysiological markers to guide their 
interpretation (Section 5.1). I then explain in more detail the significance of increased power 
and connectivity in GGE (Section 5.2), discuss the utility of these markers as endophenotypes, 
and what implications the studies in healthy siblings have (Section 5.3). Further, I aim to 
differentiate GGE from and elucidate features in common with other epilepsies (Section 5.4), 
and to discuss to what extent functional connectivity and power could be studied either alone 
or in a multimodal approach that would ultimately serve diagnostic purposes (Section 5.5). In 
addition, I address the question whether these markers change differently over the lifespan 
of patients with GGE compared with healthy individuals, and whether developmental or aging 
processes might contribute to the disease (Section 5.6). Finally, I offer suggestions on how 
electrophysiological data might be linked to the molecular make-up of the human brain 
(Section 5.7). 
 

5.1 A WORD IN ADVANCE ABOUT POWER AND PHASE SYNCHRONIZATION 
 
Throughout this work, we focused on the imaginary part of coherency, a phase-based 
connectivity measure. Other coupling modes other than phase synchronization have been 
described, such as temporal correlation of signal amplitude, for example (Brookes et al., 2011; 
Bruns et al., 2000; Hipp et al., 2012). Very rapid fluctuations of neuronal oscillations in terms 
of burst-like activity could also coincide and coordinate networks (Baker et al., 2014), as has 
been found for the beta frequency in particular (Seedat et al., 2020). As outlined in Section 
1.4.1, there are many available connectivity metrics (Bastos & Schoffelen, 2016) that quantify 
interdependencies between signals, each with their own advantages and disadvantages, and 
presumably also with different outcomes (Siems & Siegel, 2020). When using the imaginary 
part of coherency, an important caveat is that not only the phase of the signals but also the 
amplitude enters into the calculation (Nolte et al., 2004). Previous work has demonstrated 
that stronger phase-based connectivity in brain regions tends to be associated with a high 
signal power (Daffertshofer & van Wijk, 2011; Moon et al., 2015). Conversely, when the signal 
power decreases the signal-to-noise ratio (SNR) also decreases and the reliability of the phase 
estimate is reduced, as well. It follows that phase synchronization patterns should always be 
reported together with amplitude variations (Daffertshofer & van Wijk, 2011), as they could 
arise mainly on the basis of high signal power. We followed this recommendation in our 
analyses and found some overlap of significant differences in connectivity and power between 
the study groups in Chapters 4.1 and 4.2. However, there were also regional variations, which 
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argues against the possibility that our connectivity findings were solely due to variations in 
SNR. For example, the MEG analysis revealed strongly increased posterior power in patients 
with GGE, whereas the connectivity results were rather focused on frontotemporal regions. 
Also, as discussed in Chapter 4.3, the analysis of age-related differences in oscillatory features 
yielded spatially and temporally distinct power and connectivity trajectories. Nevertheless, 
other phase-based connectivity measures exist which could have been used instead. For 
example, one widely used measure is the phase locking value, which has been thought to 
reflect phase synchronization more strictly, since the amplitude normalized Fourier 
transforms across observations are included (Lachaux et al., 1999). On the other hand, it could 
be considered an advantage that the coherence metric leads to a better quality of phase 
estimation by giving more weight to observations with more stable signal strength and thus a 
higher SNR (Bastos & Schoffelen, 2016). Furthermore, it is argued that the coupling of 
oscillatory connectivity and amplitude is a natural condition of neural networks and should be 
expected to be observed in empirical data (Moon et al., 2015; Tewarie et al., 2019). Other 
exciting work has been initiated to further deepen the understanding of this relationship 
(Vidaurre et al., 2018).  
In general, our results discussed in this dissertation should be interpreted in light of the 
selected imaging metrics. To validate our results, one could use other measures and see if they 
provided similar or different insights. 
 

5.2 INCREASED FUNCTIONAL NETWORK LEVELS AND THEIR SIGNIFICANCE IN GGE 
 
Power and connectivity estimates indicated strongly increased levels in GGE during the 
interictal state (Chapters 4.1 and 4.2). However, the overall interpretation of this functional 
state and its role in ictogenesis is not trivial, but an attempt at an explanation will be made 
here. Brain oscillations reflect fluctuations of the membrane potentials of neural populations 
and, thus, timing of spiking activity and neural excitability (Fell & Axmacher, 2011) (Section 
1.4.1). The alterations found in GGE therefore point to some loss of integration of postsynaptic 
potentials across neuronal assemblies. Classically, excitation of pyramidal neurons, which are 
considered the source of MEG and EEG signals, is assumed to be constrained by inhibitory 
interneurons and the neurotransmitter GABA (Buzsaki, 2006). In this way, a balance between 
excitation and inhibition is achieved, which, if disturbed, can lead to seizures in otherwise 
normal brain tissue and marked oscillatory changes (Scharfman, 2007; Staley, 2015). 
Conversely, seizure activity can be blocked by pharmacologically increasing inhibition 
(Wiechert & Herbst, 1966) or suppressing excitation (Croucher et al., 1982). Thus, as in other 
epilepsies (Section 1.1.5), impaired inhibition may underlie GGE. This is supported by several 
findings. For instance, genetic variations in GABA receptors were associated with GGE (Section 
1.2.2). Further, the mechanisms of action of many antiepileptic drugs (AED), which are 
commonly used in GGE, focus on enhancing GABA transmission, whereas others act on 
voltage-gated sodium or calcium channels (Devinsky et al., 2018). In addition, higher cortical 
excitability has been reported in patients with GGE compared with controls (Badawy et al., 
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2007; Badawy et al., 2013), possibly indicating disturbed inhibitory circuits. This is, however, 
probably not the complete picture.  
It also raises the question of what role different frequencies might play in the altered inhibition 
processes in GGE. Different brain rhythms are thought to coexist and together orchestrate 
different brain states, with inhibition providing the basis of rhythmic activity (Buzsaki, 2006). 
In our MEG-and HD-EEG analyses of power, all frequency bands studied (delta to low gamma) 
were affected, potentially indicating a temporally independent, distorted inhibition in GGE. 
Connectivity changes, on the other hand, were prominent in the theta (~6 Hz) and low beta 
(~16 Hz) bands (Chapters 4.1 and 4.2). Theta oscillations play a critical role in the transition to 
seizure activity in mice by affecting the function of interneurons (Moxon et al., 2019). Moxon 
et al. (2019) proposed that theta oscillations and particularly hyper-synchronization rather 
than simple hyper-excitability in this frequency range could modulate seizures and 
presumably also cognitive control. Also, in primates, low-frequency oscillations have been 
shown to align spatiotemporal dynamics by phase resetting and presumably triggering 
coherent activity in the brain (Daitch et al., 2013; Voloh et al., 2015). This mechanism could 
facilitate accurate shifts in attention or other behavioral tasks and essentially control the 
timing of brain activity (Daitch et al., 2013; Voloh et al., 2015). Whether theta oscillations 
during the resting-state in humans might be a kind of control or coordination instance, also 
with regard to the emergence of seizures from the interictal state, needs further investigation. 
One could also speculate whether theta oscillations during rest interact with higher frequency 
activity in epilepsy, as has been previously reported in context with cognition (Lisman & 
Jensen, 2013). For example, in the MEG analysis, increased connectivity was also observed in 
low gamma, which is often related to more local processing in the brain ;�ƵǌƐĄŬŝ�Θ�tĂŶŐ͕�
2012). Beta connectivity also seems to play a significant role in GGE as discussed in Chapter 
4.1. Interestingly, a direct relationship between GABA concentrations and beta peak 
frequencies at rest (Baumgarten et al., 2016) and beta power during movement has been 
found in the sensorimotor cortex (Gaetz et al., 2011; Muthukumaraswamy et al., 2013). 
Parallel to a central function in movement-related processes, beta oscillations are involved in 
long-range connectivity in the cortex (Brookes et al., 2011; Engel et al., 2013; Hipp et al., 2012).  
But how can increased connectivity, in our case phase synchronization, be interpreted? It is 
currently unknown how inhibitory modulation of signal amplitude ultimately drives 
connectivity in the brain (Seedat et al., 2020). Correlated neuronal activity is thought to 
facilitate communication between different brain areas (Singer, 1999). Brain regions in phase, 
that is, coherent, could provide windows for flexible and optimal information transmission 
through action potentials (Fries, 2005, 2015; Varela et al., 2001). It has been shown that highly 
connected brain areas also exhibit phase-coupling in the resting-state (Engel et al., 2013; 
Vidaurre et al., 2018). In contrast, recent work proposed that coherence does not reflect the 
cause but the consequence of inter-areal communication in the brain (Schneider et al., 2021). 
As such, the spiking activity in cortical neurons would not only trigger synaptic potentials in 
the neighborhood but also in more distant, connected cells with a delay. Accordingly, rhythmic 
activity in a sending brain region would naturally induce coherence in local rhythms of the 
receiver (Schneider et al., 2021). Based on these two hypotheses, increased connectivity could 



| Discussion and Future Perspectives 

 114 

be an expression of increased information exchange, or something like a control mechanism 
of one brain area over another based on their power profiles and anatomical connections. 
Interestingly, in our cohort, EEG connectivity was associated with cognitive performance, as 
shown by preliminary results (Other Contributions). High network synchrony in frequency 
bands where patients significantly differed from controls was related to weaker attention and 
problem-solving ability. In turn, cognitive performance was reported to be impacted by the 
occurrence of interictal epileptic discharges (Rausch et al., 1978; Ung et al., 2017), supporting 
a neurobehavioral link.  
But does it follow that increased macroscale power and connectivity promote the occurrence 
of epileptiform discharges or seizures in GGE, maybe through long-range connections? A 
disturbed inhibition in the brain may map to, for instance, an attempt to restore a balanced 
level of inhibition as a sort of compensation, or reflect an altered sequence of excitation and 
inhibition leading to seizures. In the first case, an evolvement of a seizure from an interictal 
state with strong power and connectivity would be less likely. Conversely, should increased 
network power and connectivity be some sort of precursor to seizures, the occurrence of 
seizures from this state would become more likely. Given the varying levels in the network 
metrics with drug exposure (reduced connectivity) or epileptic discharges (increased power 
and connectivity) in our GGE cohort, the latter hypothesis seems more plausible at a first 
glance. Some have argued that epileptic discharges are related to deviations from critical 
dynamics, hence the brain state would be closer to neuronal runaway activity (Arviv et al., 
2016). However, others have observed that epileptiform discharges produce phasic changes 
in a network, either facilitating (Huberfeld et al., 2011) or preventing seizures (Karoly et al., 
2016) or both (Chang et al., 2018). Interestingly, in the epileptogenic zone in patients with 
focal epilepsies, the pre-ictal phase was characterized by spiking activity and also by 
suppression of delta to low gamma activity coupled with the occurrence of rapid high-
frequency activity at seizure onset (Grinenko et al., 2018). The authors also showed that 
during the transition to the ictal state, fast inhibitory neurons were acting on or suppressing 
activity from pyramidal neurons at the seizure onset (Grinenko et al., 2018). That study does 
not help to clarify the role of epileptic discharges or increased interictal networks, but does 
demonstrate the involvement of relatively low-frequency activity around seizure onset and 
reveals the complex interplay of these processes.  
Many electrophysiology micro- and macroscale studies have so far focused on network 
dynamics during or in close temporal proximity to ictal states (Section 1.2.4) rather than on 
longer interictal phases, which is the most frequent state in patients with GGE. We examined 
five minutes of cleaned interictal data and provided evidence that altered network states are 
generally present or may be changing rapidly and recursively even in those patients who did 
not exhibit observable GSWD during EEG/MEG recordings. Our results further suggest the 
involvement of frontotemporal, central, and occipital brain regions in GGE. To some extent, 
this is consistent with the results of resting-state fMRI studies that show connectivity changes 
primarily in the default mode network (DMN) (Section 1.2.4) encompassing some of the 
observed regions. This may not be surprising given that the electrophysiological connectome 
appears to correspond to fMRI resting-state networks (Brookes et al., 2011; Hipp & Siegel, 
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2015; Sadaghiani & Wirsich, 2020), especially when canonical frequencies are considered 
together (Tewarie et al., 2016). Interestingly, using MEG rapid reconfigurations (~50-100 ms) 
were observed in the DMN, sensorimotor, and visual networks, revealing independent 
anterior and posterior functional parts of the DMN at certain frequencies (Vidaurre et al., 
2018).  
Although it is not possible to fully elucidate the nuanced aspects of increased connectivity and 
power in GGE, the findings discussed above and the results of our work have substantial added 
value. They highlight the unique opportunities that the high temporal resolution of MEG and 
EEG, as well as power- and phase-based markers, offers to unravel the mechanisms of network 
interactions in future studies. A more detailed investigation of dynamic network changes in 
the resting-state could provide a sophisticated picture of dysfunction in GGE and clarify the 
role of temporal hierarchies such as theta and beta frequencies. 
 

5.3 SIMILAR NETWORK PHENOTYPES IN HEALTHY SIBLINGS 
 
In Chapters 4.1 and 4.2, I present the observation that siblings of patients, who never 
experienced epileptic seizures, also have increased MEG and EEG power and connectivity 
compared with controls. Thus, this network state in GGE does not merely reflect disease 
progression or consequences of secondary disease effects, but rather indicates a genetic 
influence, which has important implications. First, the electrophysiological markers formally 
meet the suggested criteria for an endophenotype marker (Gottesman & Gould, 2003) 
(Section 1.3.1). In specific, increased power and connectivity co-segregated in unaffected 
family members of the patients, but were also associated with the illness. This demonstrates 
the unexplored potential of using oscillatory markers to discover genetic mechanisms in GGE, 
as will be discussed in more detail in Section 5.7. Second, our findings in siblings indicate that 
there is probably no “standard” or “pathological” power or connectivity network state per se, 
so that a categorical distinction between healthy and diseased based on network levels by 
themselves seems difficult. In all three studies included in this thesis, a large interindividual 
variability stands out despite robust statistical group differences, suggesting that 
neurophysiological activity in humans varies considerably between individuals, which is a 
common observation in many studies (Holmes & Patrick, 2018). In Chapters 4.1 and 4.2, we 
present the data distributions of global power and connectivity in the patients, siblings, and 
controls, and find a clear overlap between the individuals of the different groups. Simply put, 
a higher network connectivity or power is not necessarily always pathological if the network 
is studied in isolation. In the same vein, a variation in cortical thickness likely does not 
necessarily imply an adverse (behavioral) outcome, if our results in siblings (Chapter 4.2) can 
be confirmed in studies with a larger number of participants. Also, familial and environmental 
factors may have contributed to the similarity in the network traits between family members. 
Yet, in our study, connectivity patterns were associated with disease aspects, that is, GSWD in 
patients. Also, one of the 18 investigated siblings had GSWD during the EEG recording without 
a history of seizures or epilepsy. An increased prevalence of interictal epileptiform discharges 
in siblings is known (Atakli et al., 2000; Doose et al., 1977), but they also occur in 
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approximately one to five percent of the general population (Gregory et al., 1993; So, 2010). 
This may relate to the higher risk for GGE in first-degree relatives and to the fact that single 
spontaneous seizures can arise in healthy individuals without developing epilepsy with 
recurrent seizures. It is possible that the formation of a balance between excitation and 
inhibition in the brain is genetically imprinted and that we have recorded the individual level 
of this balance with electrophysiological measurements. These levels may eventually translate 
into seizure susceptibility, perhaps due to experience, environmental influences, or other (epi-
)genetic factors. Finally, the question remains as to what causes molecular pathways to go off 
track and cause chronic GGE in some people but not in others. Potentially, a set of multivariate 
“fingerprints” that includes genetics, brain and behavioral characteristics of an entire 
individual, and ideally the environmental context, would help improve our understanding of 
susceptibility to disease (Holmes & Patrick, 2018). In fact, individual characterization using 
imaging markers seems possible. Robust differentiation of individuals has been successful 
based on cortical structure (Tian et al., 2021), but also on fMRI brain function and was linked 
to behavioral measures (Finn et al., 2015; Tian et al., 2021). With some regional variability, 
accurate and robust fingerprints for MEG resting-state power spectra and the connectome 
have also been described (Da Silva Castanheira et al., 2021; Sareen et al., 2021). Previous EEG 
studies had already reported individual characteristic features (Demuru & Fraschini, 2020; 
Fraschini et al., 2014; Kong et al., 2019), but were limited to the sensor level.  
Taken together, increased network power and connectivity may signify genetically influenced 
mechanisms in GEE. At the same time, our data implies that these electrophysiological 
markers are expressed on a continuum and that an individual risk of disease can probably only 
be determined if individual phenotyping of multiple traits is taken into account. 
 

5.4 FUNCTIONAL AND GENETIC OVERLAP WITH OTHER EPILEPSIES AND WITHIN GGE 

SUBTYPES 
 
If increased power and connectivity represent compensatory mechanisms or a precursor state 
of a seizure, one might anticipate similar network states in different forms of epilepsy. 
However, regional differences or variations in the spatial extent of increased activity or 
connectivity are to be expected, for example, more local patterns in focal epilepsy than in 
generalized epilepsy. In fact, increased MEG connectivity was also found in a group of 
cryptogenic / non-lesional focal epilepsies, albeit with spatial differences in comparison to 
GGE patients (Li Hegner et al., 2018). Even though medial frontal and sensorimotor areas were 
more strongly affected in GGE, this finding point to common network alterations in the various 
epilepsy types. Also, earlier studies have described increased functional connectivity in the 
epileptogenic zone of focal epilepsy patients (Bettus et al., 2008; Wu et al., 2014). In general, 
despite the remarkable symptomatic and pathogenic heterogeneity of the epilepsies, there 
are common functional and structural alterations that may also arise from common genetic 
mechanisms. Previously, some genetic association signals related to the SCN1A, SCN2A, and 
SCN3A genes have been found to overlap in focal and genetic generalized epilepsies (The 
International League Against Epilepsy, 2018). Interestingly, mutations in all three genes cause 
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ion channel dysfunction and are an established monogenic cause of epileptic 
encephalopathies (The International League Against Epilepsy, 2018). Whether variants in 
these genes lead to an imbalance between excitation and inhibition in focal epilepsies and 
GGE in a similar manner as suspected for the encephalopathies, however, is an unanswered 
question. Other common genetic susceptibilities have been identified for monogenic 
epilepsies and complex GGE. Mutations in the STX1B gene were reported to cause fever-
associated epilepsies of varying severity ranging from simple febrile seizures to developmental 
and epileptic encephalopathies (Schubert et al., 2014; Wolking et al., 2019). A strong genetic 
signal for STX1B was also detected in JME, the largest GGE subtype. STX1B encodes syntaxin-
1B, a presynaptic protein which is part of the SNARE complex that mediates presynaptic 
vesicle release (Smirnova et al., 1996). Given this genetic and phenotypic spectrum of rare 
monogenic and common complex epilepsies, it may be informative to map functional brain 
networks in patients of both groups and compare them with their healthy relatives. First, this 
comparison could reveal mechanistic similarities and differences between epilepsies. For 
example, one could clarify whether increased power and connectivity reflect an overriding 
susceptibility to increased network excitability or other factors typical of GGE. Second, imaging 
findings in monogenic epilepsies with a known genetic cause could be better linked to 
molecular mechanisms that may involve whole brain networks. A major limitation, however, 
is that these patients are relatively rare, and collecting data from them and their families 
requires collaboration among multiple hospitals and research centers. 
In this context, it is also worth mentioning the subtypes of GGE, which are also thought to 
share significant genetic susceptibility (Smirnova et al., 1996) with presumably specific 
determining effects. As early as the 1980/1990s, a neurobiological continuum for GGEs was 
proposed rather than assuming distinct subtypes, a concept that is supported to some extent 
by current genetic findings (Berkovic et al., 1987; Reutens & Berkovic, 1995). This is also in line 
with the semiological presentation of patients, which is often inconclusive (Section 1.2.1), and 
with studies examining cognition or other imaging modalities, most of which have revealed 
subtle differences between subtypes (Ratcliffe et al., 2020; Vorderwülbecke et al., 2021). The 
size of our study sample did not enable us to discern network effects for single GGE subtypes, 
but they contributed relatively equally to the overall GGE sample (Chapters 4.1 and 4.2). 
However, about 20 % of the patients could not be clearly assigned to one of the four classic 
subtypes, which corresponds to the general observation in clinical routine (Vorderwülbecke 
et al., 2021). Further studies would, therefore, be needed to disentangle subtype specific 
patterns. 
From an imaging, genetic and clinical perspective, it seems evident that certain forms of 
epilepsy blend into each other. This could challenge the discrete delineations between 
epilepsies based on electrophysiological markers for clinical diagnosis and treatment. 
Conversely, studies of different epilepsy syndromes, particularly those with a clear biological 
etiology, could help solidify the validity and specificity of imaging markers such as power and 
connectivity. 
 



| Discussion and Future Perspectives 

 118 

5.5 (MULTIMODAL) IMAGING AND DIAGNOSTICS IN GGE  
 
The question arises whether resting-state power and connectivity could be of support in 
clinical routine or diagnostic processes in the future. As stated in the introduction (Section 
1.1.3), the current diagnostic criteria for epilepsy are based on descriptive guidelines and, in 
the first instance, mostly on clinical observation and self-reports by the patient. Usually, an 
EEG recording or cranial imaging is used additionally. In this context, great hopes are pinned 
on technical developments in the field of computer science or even molecular genetics. For 
example, machine learning and the accumulation of large data sets will be used to improve 
algorithms through data rather than by explicit instructions (Abbasi & Goldenholz, 2019). For 
GGE, a few studies have already implemented such approaches, for example, for automated 
detection of epileptiform events in the EEG (Clarke et al., 2021) or for discrimination of JME 
from controls based on diffusion MRI properties (Lee et al., 2021). In other studies, MEG data 
at the sensor level in the resting-state were used to discriminate healthy subjects from 
patients with GGE or frontal focal epilepsy (Soriano et al., 2017) or from patients with JME 
(Lopes et al., 2021). Interestingly, Soriano et al. (2017) report that relative MEG power was 
sufficient to discriminate controls from epilepsy patients with high predictive accuracy, 
whereas only a combination of power and connectivity features allowed discrimination 
between GGE and focal epilepsy, particularly in the beta frequencies. It should be noted, 
however, that in all of the above-mentioned studies, the size of the data sets was limited. 
Small sample sizes may increase the risk of overfitting and inadequate treatment of outliers 
in the data (Lemm et al., 2011), and it is possible that clinical variables may confound the 
results (Abbasi & Goldenholz, 2019). In general, this calls for large, coordinated data sets and 
external validation of results, as well as work on other technical barriers to enable translation 
of biomarkers to clinical practice in the future. The comparatively strong effect sizes for HD-
EEG and MEG group differences in our work (Cohen's d up to 1.3) also encourage further 
efforts in this direction. Moreover, we and others have demonstrated that EEG/MEG signal 
power can be very reliable with as little as about one minute of clean data (Gasser et al., 1985; 
Lew et al., 2021; Salinsky et al., 1991; Van Albada et al., 2007), both at the global level and in 
most brain regions (Marquetand et al., 2019), and that it is a very stable marker even with 
about 30 seconds of data (Wiesman et al., 2021). Reliability for the imaginary part of 
coherency using MEG and HD-EEG was lower than for power especially for delta band EEG, 
which requires longer recordings overall (Marquetand et al., 2019). Also, phase-based 
connectivity has been less reliable than amplitude-based measures (Colclough et al., 2017; 
Duan et al., 2021; Rolle et al., 2021), which would argue in favor of using the latter in 
translational studies. However, it has been shown that those two modes at least partly reflect 
distinct mechanisms in the brain (Mostame & Sadaghiani, 2020; Siems & Siegel, 2020).  
Network science has taught us that changes in one part of the brain usually occur together 
with other disturbances in the system (Bassett & Sporns, 2017; Buckholtz & Meyer-
Lindenberg, 2012). Although not always easy to implement technically, multimodal 
approaches can broaden the perspective on a disease or the interaction of multiple biological 
levels and support (differential) diagnostics by integrating different features. As discussed in 
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Chapter 4.2, the joint use of HD-EEG and MEG yielded complementary information in GGE at 
the group level. At the individual level, this combination has also been used successfully, that 
is, in the presurgical setting for intractable focal epilepsies (Rampp et al., 2019). Some also 
report that interictal epileptiform events were detectable in both MEG and EEG, but 
sometimes only in one of the two techniques (Lin et al., 2003; Ossenblok et al., 2007; Scheler 
et al., 2007). Further, we provided evidence that the inclusion of cortical thickness reductions 
corresponded to functional patterns in GGE. This underlines the notion of a relation between 
brain rhythms and anatomy. For example, Mahjoory et al. (2020) have demonstrated a spatial 
gradient for MEG oscillations anticorrelated with that of cortical thickness. Others have shown 
in monkeys that connectivity networks at different frequencies may depend on anatomical 
architecture (Vezoli et al., 2021). Our data suggest that structural and functional features 
should be jointly used to more precisely characterize GGE. However, we must acknowledge 
that our connectivity estimates are based on pairwise connections, and likely to inaccurately 
map the topographical interactions in the brain (Smith et al., 2011). Therefore, another way 
to improve the estimation of functional connectivity and discrimination at the group-level 
could be to consider anatomical connectivity (Deco et al., 2013; Haimovici et al., 2013). Such 
an approach of structurally guided functional estimation has been successful earlier in clinical 
samples (Pineda-Pardo et al., 2014) and healthy individuals (Finger et al., 2016). Clearly, more 
work needs to be done to understand how best to combine different modalities to actually 
increase the diagnostic potential of imaging markers. For GGE, we have taken initial steps to 
bring together functional and structural features at the population level. 
Overall, collaborative (multimodal) imaging efforts can help advance a biologically oriented 
classification of GGE alongside clinical observation. In this regard, versatile electrophysiology 
will contribute well, by including resting-state measurements that can be easily incorporated 
in the clinical setting. Precision medicine for epilepsy, including GGE, would be the ultimate 
goal to enable early diagnosis and therapy, reduce disease burden, and predict seizure 
occurrence and disease activity. As alluded to in Section 5.3, this is likely to require 
phenotyping based on a combination of electroclinical imaging, pharmaco-response, and 
genetic building blocks (Thakran et al., 2020), and will depend heavily on the availability of the 
appropriate techniques.  
 

5.6 ELECTROPHYSIOLOGY ACROSS THE LIFESPAN WITH REFERENCE TO GGE 
 
When using electrophysiological markers for diagnostic purposes or in clinical studies, it is 
essential to know the factors that influence the expression of these markers. In Chapter 4.3, 
we have shown that power and phase-based connectivity vary across the lifespan and 
probably map developmental and aging processes. On the one hand, this emphasizes the 
importance of considering the age of the patients when assessing EEG (or MEG) recordings in 
the clinical routine and of aiming for balanced study designs to avoid age-related biases. 
Moreover, this motivates further questions related to GGE: do patients with GGE deviate from 
normative electrophysiological trajectories across the lifespan? Do developmental and age-
related processes play a role in GGE, as assumed (Section 1.3.3)? Also, the “brain age” 
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approach presented earlier could reveal more about the state of the brain at a given time in a 
(diseased) person (Section 1.3.3). The following is a discussion of these questions with 
reference to our data. 
In our work, the age distribution in the GGE and control samples ranged from 18 to 50 years 
and was matched for the groups. In the Appendix, we provide an overview and statistical 
analyses for the expression of global power and connectivity with age for GGE and healthy 
controls. We found significant interaction effects between study group and global connectivity 
with age in the EEG theta band and the MEG gamma band. For power and for other frequency 
bands, the global trajectories of the patients roughly paralleled those of the controls. Theta 
connectivity as measured by EEG is likely to play an important role in GGE (Chapter 4.2). MEG 
gamma connectivity was also significantly increased in the patients (Chapter 4.3). An 
interaction effect in these frequency bands could, thus, be an indication of meaningful age-
related mechanisms in GGE. However, the data density is skewed and sparse at the upper end 
of the age distribution, clearly compromising the comparability of the slopes between the 
groups. Therefore, an estimation of the development of power and connectivity with age in 
GGE with our data should be interpreted with caution. It should also be mentioned again that 
GGE usually arises in childhood or early adulthood (and in some cases also in late adulthood). 
The patients in our sample recruited in an adult epileptology clinic were all older than 18 years, 
with a median age at onset of 15 years (interquartile range 10-17). 
Interestingly, Vidal-Pineiro et al. (2021) suggested that the individual variation of cross-
sectional brain age rather reflects early life influences or genetic underpinnings than 
accelerated brain aging as demonstrated for MRI features (Section 1.3.3). It should be tested 
whether this holds true in a similar way for electrophysiological brain age estimations. 
However, this hypothesis implies that deviation from the norm does not increase gradually 
with age, but that there might be a specific time in life when an initial deviation occurs and 
then develops stably along the normative aging trajectory. In concrete terms for GGE, this 
could mean that relative increases in connectivity and power occur in the short term or 
gradually early in life, develop at this level with age, and are eventually accompanied by 
seizures. Since the healthy siblings also had higher levels of connectivity and power than the 
controls in our studies, it is possible that these electrophysiological traits are expressed early 
in life and transition to a state of seizure susceptibility and chronic epilepsy at a certain point 
or over some period of time. In addition, the duration of GGE could also have an impact on 
interictal oscillatory changes with age, which has not yet been adequately investigated. 
However, if increased power and connectivity reflect seizure susceptibility, this scenario 
seems improbable as the likelihood of seizures in adults with GGE tends to decrease with age 
(Vorderwülbecke et al., 2021). Also, in our MEG analysis (Chapter 4.1), there was no effect of 
epilepsy duration after controlling for age, and the sub-analyses for EEG did not allow a clear 
separation from other variables such as sex effects (Chapter 4.2).  
Of note, age at epilepsy onset may cluster within families (Kinirons et al., 2008; Tsuboi & Endo, 
1991). A recent study has shown that this is likely partly independent of the different epilepsy 
syndromes and subtypes, that is, family members have comparable age at seizure onset due 
to familial aggregation of a syndrome but also because of family membership (Ellis et al., 
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2019). The authors suggested that this could indicate distinct genetic determinants that may 
be involved in the time course of neurodevelopment and interact with causal genetic factors 
of epilepsy. As such, the timing and its genetic basis seem to play an intriguing role alongside 
disease susceptibility per se. This has similarly been described for schizophrenia (Hare et al., 
2010), where the first symptoms usually emerge in the mid-twenties (about a few years later 
for females) (Häfner et al., 1993). Interestingly, extensive reorganization of genes at the time 
of symptom expression has been demonstrated, essentially controlling the onset of the 
disease (Skene et al., 2017).  
Clearly, longitudinal studies would be needed to best track network changes in GGE, 
particularly around disease onset, but this poses a methodological challenge. The studies of 
electrophysiological markers in our GGE cohort and in healthy individuals encourage further 
efforts to map such changes across the lifespan. In particular, the early years in childhood up 
to adulthood of patients with GGE and, at best, the period around the first seizure could be 
informative. Further, genetic underpinnings of electrophysiological markers across the 
lifespan should be deciphered. It seems valid to assume that genetic factors for GGE also 
converge on biological pathways influencing functional brain development. 
 

5.7 IMPLICATIONS FOR LINKING ELECTROPHYSIOLOGY AND GENETICS 
 
In this final section, I will take a broader look at how electrophysiological markers can help 
elucidate molecular mechanisms in GGE or changes across the lifespan. As discussed above 
(Section 5.3), power and connectivity can be used as endophenotypes for GGE, following 
examples of previous work in psychiatric research. Rather than performing genome-wide 
association studies (GWAS) for cases and controls (Section 1.2.2), which require enormous 
sample sizes, it might be useful to focus on disease components such as electrophysiological 
patterns. The advent of large population-based cohorts can allow such investigations, as has 
been demonstrated in a number of papers in recent years. For example, the behavioral trait 
“impulsivity” has been shown to be heritable and genetically correlated with ADHD and 
substance use disorders (Sanchez-Roige et al., 2019; Sanchez-Roige et al., 2018). In another 
case, GWAS on executive functions (Ibrahim-Verbaas et al., 2016), risk tolerance (Linnér et al., 
2019) and sensation seeking (Sanchez-Roige et al., 2019) revealed a locus encompassing the 
gene CAMD2, which was also associated with alcohol use disorder (Kranzler et al., 2019). 
Others have used the large-scale UK Biobank for a GWAS of MRI phenotypes and identified 
genes relevant for brain development and plasticity, ion transport, nutrients and minerals 
(Elliott et al., 2018). In this analysis, more than 3,000 image phenotypes derived from grey 
matter features, white matter connections, and resting-state fMRI were studied. This 
selection of studies underscores, on the one hand, that neurobiological insights into disease-
related bases can be gained in this way, but on the other hand, that the notion of a simpler 
genetic architecture of endophenotypes is not readily tenable (Sanchez-Roige et al., 2019). 
Accordingly, a polygenic basis should generally be expected for endophenotype models. 
To date, similar efforts have been rare for electrophysiological markers, although EEG traits 
are highly heritable (Smit et al., 2005; Tang et al., 2007; Van Beijsterveldt et al., 1996; Zietsch 
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et al., 2007). In 2018, Smit and colleagues published first results of the largest GWAS to date 
on EEG power in the delta to beta frequencies (Smit et al., 2018). One prominent finding was 
an association of beta power with hippocampal expression of the GABRA2 gene (Smit et al., 
2018). Interestingly, GABRA2 seems to be an important risk gene for GGE (The International 
League Against Epilepsy, 2018). The link between high beta power and genetic GGE risk was 
later confirmed (Stevelink et al., 2021). In addition, the authors reported that the tendency to 
increased theta power was also associated with higher GGE risk. These findings fit very well 
with our own study results and support the conceptual validity of an endophenotypic 
approach in GGE. We complement these large-scale studies with regional information and the 
observation that heritability appears to be strongest in the beta and theta bands but may 
extend to other frequency bands. However, larger sample sizes in clinical studies would be 
needed to confirm the latter. In the presented EEG-GWAS study (Smit et al., 2018), the signal 
was sampled at only three electrodes, so there is still room for improvement of spatial and 
temporal resolution in further efforts.  
One issue with large statistical association analyses of imaging phenotypes and genomic data 
is that the functional role of identified variants is often unknown. Follow-up analyses, for 
example in animal models, are needed to understand how such a gene variant would affect 
the phenotypic variation. Also, gene expression levels mostly vary across brain regions 
(Hawrylycz et al., 2012), something which cannot be assessed from sequencing alone. The 
availability of brain-wide gene expression atlases of post mortem brains of humans or other 
species have opened exciting new opportunities to link molecular function and imaging data. 
One of the most comprehensive atlases today is the Allen Human Brain Atlas (Hawrylycz et al., 
2012). It contains measurements of the transcriptional activity of over 20,000 genes at several 
thousand anatomical sites in six different post mortem human brains. Spatial mapping using 
coordinates makes it possible to relate the atlas gene samples to functional imaging patterns 
in a study population (ArnatkeviĐȕŝƻƚĦ� Ğƚ� Ăů͕͘� ϮϬϭϵ). Finally, in principle, the relationship 
between spatial variations in gene expression with variations in imaging-derived patterns is 
tested statistically. In addition, associated genes can also be tested for their presumed 
function by examining their enrichment in ontological databases (ArnatkeviĐȕŝƻƚĦ�Ğƚ�Ăů͕͘�ϮϬϭϵͿ. 
Of course, these methods are also subject to methodological caveats and a unified approach 
is proposed (ArnatkeviĐȕŝƻƚĦ� Ğƚ� Ăů͕͘� ϮϬϭϵͿ. Nevertheless, this approach has already led to 
informative findings. Richiardi et al. (2015) and Wang et al. (2015) were among the first to 
directly correlate transcriptional gene activity with fMRI resting-state networks, finding gene 
sets associated with ion channel activity and synaptic function, among others.  
Returning to the results of our work, given the relatively high heritability of GGE and 
electrophysiological markers, their use as endophenotypes could find application in large-
scale GWAS studies, or could directly yield new insights with the available genetics data. This 
ultimately concerns the pathophysiology of GGE, but also developmental and aging processes, 
which in turn play a significant role in disease.  
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5.8 CONCLUSION 
 
This work significantly contributes to a broader understanding of large-scale network 
alterations in GGE by demonstrating widespread increases in multiple frequencies during the 
resting-state. MEG/EEG power and connectivity metrics differently characterized this network 
state in GGE involving frontotemporal, central, and posterior brain areas, potentially reflecting 
a precursor state to seizures or compensation. Our studies in healthy siblings indicate a 
genetic influence on this state rather than effects attributable to disease progression or 
treatment, highlighting the potential for the use of electrophysiological markers in genetic 
studies. It could be shown that cortical thickness complements the functional phenotype of 
GGE, encouraging multimodal approaches to better understand brain changes in GGE. This 
approach, together with comparative studies in other types of epilepsy, may help to improve 
the previously descriptive, clinically oriented diagnosis based on imaging findings. The work 
described here further elucidates changes in power and connectivity across age, which should 
be taken into account when applying these markers in clinical studies or the diagnostic 
context. Furthermore, variations in these markers, their genetic basis, and behavioral 
correlates across the lifespan should be explored to relate them to disease development in 
epilepsy. 
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6 OTHER CONTRIBUTIONS 

6.1 COGNITIVE PROFILES ARE LINKED TO EEG PHENOTYPES IN PATIENTS WITH GENETIC 

GENERALIZED EPILEPSY 
 
Authors: Christina Stier, Markus Loose, Niels K. Focke 
 
My contributions: Conductance of neuropsychological examinations, documentation and 
scoring. Test scores and group differences were statistically evaluated in collaboration with a 
medical doctoral student under my supervision and further related the functional alterations 
in patients with GGE. 
 
Unlike many other epilepsy syndromes, genetic generalized epilepsy (GGE) is associated with 
comparatively mild cognitive impairments (Ratcliffe et al., 2020). In general, patients' IQ 
scores are usually within the normal range (Loughman et al., 2014; Ratcliffe et al., 2020), but 
poorer academic performance and psychosocial outcome have been noted (Camfield & 
Camfield, 2009; Guida et al., 2019; Shakeshaft et al., 2021). Executive functions often appear 
to be affected (Loughman et al., 2014; Ratcliffe et al., 2020), including working memory 
(Chowdhury, Elwes, et al., 2014; Vollmar et al., 2011), prospective memory (Wandschneider 
et al., 2010) such as planning and implementation of intentions, as well as linguistic abilities 
(Chowdhury, Elwes, et al., 2014; Iqbal et al., 2015) and attention (Chowdhury, Elwes, et al., 
2014). Moreover, pharmacological treatment is expected to affect cognitive abilities, making 
it challenging to separate causal effects from secondary treatment effects. For example, 
sedation (Mattson et al., 1985), cognitive impairment (Mattson et al., 1985), loss of 
concentration (Bresnahan et al., 2019), and neuropsychiatric adverse effects (Chen et al., 
2017) may occur with common treatment options in GGE.  
The extent to which cognitive changes are related to interictal electrophysiological patterns 
in patients with GGE has not yet been investigated. We associated global HD-EEG power and 
connectivity with the cognitive profiles of the patients in our GGE sample. In specific, we 
tested attention, concentration, and speed (d2-R Aufmerksamkeits-Belastungstest; 
Brickenkamp et al. (2010)), auditory verbal learning (VLMT Verbaler Lern- und 
Merkfähigkeitstest; Helmstaedter and Durwen (1990)), figural memory (DCS-II Diagnosticum 
für Cerebralschädigung II; Weidlich et al. (2011)), working memory (Wechsler’s digit span test; 
Coalson et al. (2008)), psychomotor speed and cognitive flexibility (TMT Trail Making Test; 
Reitan and Wolfson (1995)), and problem solving (Tower of London; Phillips (1999)). All 
patients were assessed for symptoms of depression (BDI-2 The Beck Depression Inventory 
Beck et al. (1996)) and premorbid (crystallized) intelligence (MWT-B Mehrfachwahl-
Wortschatz Intelligenztest; Lehrl (2005)). The test results for 19 patients were available for 
further analysis. Analyses were performed using linear models with the neuropsychological 
test scores as dependent variables. Global HD-EEG power or connectivity were the 
independent variables, as were drug exposure (number of AEDs), age, and sex. 
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Overall, higher connectivity and power in lower frequency bands (delta, theta) were 
significantly associated with worse performance in attention and problem-solving domains. 
As discussed earlier (Chapter 4.2), comparing the HD-EEG metrics with those of the control 
cohort showed that increased values in these frequency bands are characteristic of GGE and 
probably indicative of pathological mechanisms. Thus, it is plausible that lower attention and 
reduced problem-solving ability may be directly related to electrophysiological patterns 
typical of GGE. Conversely, higher connectivity in the higher frequencies (beta1, beta2, 
gamma) was associated with better verbal and working memory scores. Remarkably, at the 
group level, patients with GGE did not statistically differ from controls in connectivity in these 
higher frequencies (Chapter 4.2), suggesting that network markers and cognitive performance 
were in the normative range. For instance, it could be that increased network synchrony is 
generally linked with better performance in these cognitive domains in a healthy population. 
Further, the analyses indicated positive medication effects on verbal memory, yielding better 
scores for patients with high drug load than patients taking fewer drugs. Consistently, HD-EEG 
connectivity was lower in patients with high drug load, falling within the range of healthy 
controls in higher frequencies (Chapter 4.2). At the same time, medication load was negatively 
associated with the performance in the trail making test, which assesses psychomotor speed, 
and the D2 attention task in the patients. In line with earlier work (Meador et al., 2001; Witt 
et al., 2015), antiepileptic medication may have reduced the processing speed in the patients 
studied and thus, task performance. The relationship between adverse effects of medication 
on cognitive performance needs to be further studied with a repeated measures design, 
before and after the medication intake. However, this is a first attempt to disentangle the 
interplay between electrophysiological patterns and cognitive functioning in GGE, 
encouraging future neurobehavioral studies. We provide evidence for a negative association 
of increased HD-EEG power and connectivity with attention and problem-solving skills in GGE. 
Performance in the verbal and working memory of the patients was positively associated with 
connectivity in higher frequencies, which was within the range of controls and probably 
related in part to medication effects. 
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APPENDIX 

 NETWORK PHENOTYPES IN GGE ACROSS AGE 

As a supplement to the discussion in Section 5.6, an overview is provided of how power and 
connectivity differed across age in patients with GGE and controls in the study cohort 
presented in Chapter 4.2. The linear trajectories of MEG gamma connectivity (Figure 7.1.1) 
and EEG theta connectivity (Figure 7.1.2) with age differed significantly between the patients 
and controls, whereas no significant interaction was observed in the other frequency bands 
or power (see the figure legends for details). Please note that the data density is skewed and 
sparse at the upper end of the age distribution, clearly compromising the comparability of the 
slopes in the study groups.  
 

 

Figure 7.1 | Group-specific trajectories of MEG metrics with age 
 
The plots show individual global (A) connectivity (imcoh) and (B) power across the adulthood for patients 
with GGE (in red, n = 23) and controls (in black, n = 35) and for the six frequency bands studied. Solid lines 
represent the fitted linear regression lines for each group, with the 95% confidence interval (shaded area). 
There was a significant interaction effect of group and age on global connectivity in the gamma frequency 
band (t54 = 1.96, p = 0.03). This effect was also significant in a vertex-based analysis in right temporal regions 
(data not shown). There were no significant interaction effects in the other frequencies or in power 
estimates, either for the global markers or at the vertex level. The significance level was set at p < 0.05, 
family-wise error corrected at the cluster level in the vertex-analysis. We estimated linear models to test 
whether the trajectories of imaging metrics across age differed between patients with GGE and controls in 
each frequency band using permutation-based analysis (Winkler et al., 2014). The inclusion of covariates in 
the models, such as sex or MRI scanner, did not change the results. The median age in patients was 26 years 
(interquartile range 22-40) and in controls 25 years (interquartile range 22-35). Power data was log10-
transformed for visualization purposes.
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Figure 7.2. | Group-specific trajectories of HD-EEG metrics with age 
 
The plots show individual global (A) connectivity and (B) power across the adulthood for patients with GGE 
(in red, n = 23) and controls (in black, n = 35) and for the six frequency bands studied. Solid lines represent 
the fitted linear regression lines for each group, with the 95% confidence interval (shaded area). There was 
a significant interaction effect of group and age on global connectivity in the theta frequency band (t54 = 
1.76, p = 0.04). This effect was also significant in a vertex-based analysis in the insula and right pars 
opercularis and triangularis (data not shown). There were no significant interaction effects in the other 
frequencies or in power estimates, either for the global markers or at the vertex level. The significance level 
was set at p < 0.05, family-wise error corrected at the cluster level in the vertex-analysis. We estimated 
linear models to test whether the trajectories of imaging metrics across age differed between patients with 
GGE and controls in each frequency band using permutation-based analysis (Winkler et al., 2014). The 
inclusion of covariates in the models, such as sex or MRI scanner, did not change the results. The median 
age in patients was 26 years (interquartile range 22-40) and in controls 25 years (interquartile range 22-35). 
Power data was log10-transformed for visualization purposes.  
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