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Abstract 

The N-containing compounds from biomass, including chitin, chitosan and D-glucosamine, are one of the 

largest sustainable native biobased materials on earth. Human processing of the sustainable 

chitin/chitosan/D-glucosamine-containing raw materials exhibits only a very minor fraction of all the 

chitin produced annually in nature, while the major fraction maintains intact. In order to reduce the high 

reliance on non-renewable feedstocks, chitin/chitosan/D-glucosamine as a substitute has been 

increasingly utilized for value-added functional materials and important chemical feedstocks through 

diverse routes, mainly including chemical modifications, transformations, as ligands or catalysts in 

organic synthetic pathways. Despite the tremendous progress on the usage of the N-containing biomass, it 

is still a great challenge to directly utilize it to prepare important N-heterocyclic compounds though 

cyclization reactions.  

The targeted cleavage of C−N bonds of alkyl primary amines in chitin, chitosan and D-glucosamine via a 

metal-free pathway and the conjunction of nitrogen in the synthesis of imidazo[1,5-a]pyridines are still 

highly challenging. In publication 1, we reported an anomeric stereoauxiliary approach for the synthesis 

of a wide range of imidazo[1,5-a]pyridines after cleaving the C−N bond of D-glucosamine (α-2° amine) 

from biobased resources. This new approach expands the scope of readily accessible imidazo[1,5-

a]pyridines relative to existing state-of-the-art methods. A key strategic advantage of this approach is that 

the α-anomer of D-glucosamine is capable of C−N bond cleavage through a seven-membered ring 

transition state. Using this novel method, a series of imidazo[1,5-a]pyridine derivatives (more than 80 

examples) were synthesized from pyridine ketones (including para-dipyridine ketone) and aldehydes 

(including para-dialdehyde). Moreover, imidazo[1,5-a]pyridines derivatives containing diverse important 

deuterated C(sp2)−H and C(sp3)−H bonds were also efficiently achieved. 

In publication 2, we discribed a facile and efficient one-pot methodology that enables nitrogen 

interception directly from chitosan/chitin for the synthesis of a broad range of important N-heterocycles 

imidazo[1,5-a]pyridines (52 examples). This strategy is featured by directly synthesizing tridentate 

ligands and important deuterated imidazo[1,5-a]pyridines. In particular, an extended range of various 

functional moieties on imidazo[1,5-a]pyridine backbone are tolerated with high efficiency under these 

mild and catalyst-free conditions.  

Diverse aminocatalysis modes have been discovered over the last decades, while sustainable 

aminocatalyst with native chiral skeleton from biomass for the regioselective annulations reaction are 

highly desirable but not realized yet. In publication 3, a stereoauxiliary aminocatalysis strategy from β-

anomeric glucosamine was achieved through the regioselective annulation of pyridine ketone with α,β-
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unsaturated aldehyde for the construction of trisubstituted indolizine-2-carbaldehydes. Using our strategy 

with native chiral skeleton for the regioselective control, a highly expanded range of commercially 

available but oxidatively sensitive α,β-unsaturated aldehydes can act as coupling partners for the efficient 

preparation of readily accessible trisubstituted indolizine-2-carbaldehydes via one-pot pathway. 

The thesis is a cumulative work with 3 publications. Two of them are published in peer-reviewed journals 

and the third one is in preparation. The background, the objective of the studies, results, discussions, 

general conclusions, perspectives and experimental section are shown in sections 1-5. 

 

Zusammenfassung 

Die N-haltigen Verbindungen aus Biomasse, darunter Chitin, Chitosan und D-Glucosamin, sind eines der 

größten nachhaltigen nativen biobasierten Materialien der Erde. Die menschliche Verarbeitung der 

nachhaltigen Chitin/Chitosan/D-Glucosamin-haltigen Rohstoffe weist nur einen sehr geringen Teil des 

jährlich in der Natur produzierten Chitins auf, während der Hauptteil intakt bleibt. Um die hohe 

Abhängigkeit von nicht erneuerbaren Rohstoffen zu verringern, wurde Chitin/Chitosan/D-Glucosamin als 

Ersatz zunehmend für wertsteigernde funktionelle Materialien und wichtige chemische Rohstoffe auf 

verschiedenen Wegen verwendet, hauptsächlich einschließlich chemischer Modifikationen, 

Transformationen, als Liganden oder Katalysatoren in organischen Synthesewegen. Trotz der enormen 

Fortschritte bei der Nutzung der N-haltigen Biomasse ist es immer noch eine große Herausforderung, sie 

direkt zu nutzen, um wichtige N-heterocyclische Verbindungen durch Cyclisierungsreaktionen 

herzustellen. 

Die gezielte Spaltung von C-N-Bindungen von primären Alkylaminen in Chitin, Chitosan und D-

Glucosamin über einen metallfreien Weg und die Bindung von Stickstoff in der Synthese von 

Imidazo[1,5-a]pyridinen stellen nach wie vor eine Aufgabe für die aktuelle Forschung dar. In Publikation 

1 berichteten wir über einen anomeren Stereoauxiliar-Ansatz für die Synthese einer breiten Palette von 

Imidazo[1,5-a]pyridinen nach Spaltung der C-N-Bindung von D-Glucosamin (α-2°-Amin) aus 

biobasierten Ressourcen. Dieser neue Ansatz erweitert den Anwendungsbereich leicht zugänglicher 

Imidazo[1,5-a]pyridine im Vergleich zu bestehenden Methoden nach dem Stand der Technik. Ein 

entscheidender strategischer Vorteil dieses Ansatzes besteht darin, dass das α-Anomer von D-Glucosamin 

über einen siebengliedrigen Ringübergangszustand zur C-N-Bindungsspaltung fähig ist. Mit dieser 

neuartigen Methode wurde eine Reihe von Imidazo[1,5-a]pyridin-Derivaten (mehr als 80 Beispiele) aus 

Pyridinketonen (einschließlich para-Dipyridinketon) und Aldehyden (einschließlich para-Dialdehyd) 
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synthetisiert. Darüber hinaus wurden auch Imidazo[1,5-a]pyridine-Derivate mit verschiedenen wichtigen 

deuterierten C(sp2)-H- und C(sp3)-H-Bindungen effizient erhalten. 

In Veröffentlichung 2 haben wir eine einfache und effiziente Eintopfmethode beschrieben, die das 

Abfangen von Stickstoff direkt aus Chitosan/Chitin für die Synthese einer breiten Palette wichtiger N-

Heterocyclen Imidazo[1,5-a]pyridine (52 Beispiele) ermöglicht. Diese Strategie zeichnet sich durch die 

direkte Synthese von dreizähnigen Liganden und wichtigen deuterierten Imidazo[1,5-a]pyridinen aus. 

Insbesondere wird unter diesen milden und katalysatorfreien Bedingungen ein breiter Bereich 

verschiedener funktioneller Einheiten am Imidazo[1,5-a]pyridin-Rückgrat mit hoher Effizienz toleriert. 

In den letzten Jahrzehnten wurden verschiedene Arten der Aminokatalyse entdeckt, während nachhaltige 

Aminokatalysatoren mit nativem chiralem Gerüst aus Biomasse für die regioselektive 

Anellierungsreaktion sehr wünschenswert, aber noch nicht realisiert sind. In Publikation 3 wurde eine 

stereoauxiliäre Aminokatalysestrategie ausgehend von β-anomerem Glucosamin durch die regioselektive 

Anellierung von Pyridinketon mit α,β-ungesättigtem Aldehyd zum Aufbau trisubstituierter Indolizin-2-

carbaldehyde erreicht. Unter Verwendung unserer Strategie mit nativem chiralem Gerüst zur 

regioselektiven Steuerung kann eine stark erweiterte Palette kommerziell erhältlicher, aber oxidativ 

empfindlicher α,β-ungesättigter Aldehyde als Kupplungspartner für die effiziente Herstellung von leicht 

zugänglichen trisubstituierten Indolizin-2-carbaldehyden im Eintopfverfahren fungieren Weg. 

Die Dissertation ist eine kumulative Arbeit mit 3 Publikationen. Zwei davon werden in Fachzeitschriften 

mit Peer-Review veröffentlicht und das dritte ist in Vorbereitung. Der Hintergrund, das Ziel der Studien, 

Ergebnisse, Diskussionen, allgemeine Schlussfolgerungen, Perspektiven und der experimentelle Teil 

werden in den Abschnitten 1-5 dargestellt. 
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1. Introduction  

Biomass is renewable organic material derived from plants, bacteria, fungi, protists, animals and viruses 

(Figure 1).1 The biomass resource can be considered as organic matter in which solar energy is stored 

chemically.2 In the past decade, research on biomass valorization has mainly focused on the (bio)chemical 

conversion of C-, H- and O-containing fractions (viz. DNA, RNA, carbohydrates, lignin, triglycerides and 

proteins),2-18 whereas the N-containing fractions (viz. chitin, chitosan and D-glucosamine) have received 

little attention so far.12,19,20 The abundant N-containing biomass, such as chitin and its derivatives, plays 

an irreplaceable role in organic organization.18,21,22 In the following we will mainly discuss chitin and its 

derivatives.  
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fungi
(12 Gt C)
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(1 Gt C)
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wild mammals
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fish
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wild birds
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annelids
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nematodes 
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a b

 

Figure 1 Graphical representation of the global biomass distribution by taxa: (a) Absolute biomasses of 

different taxa are represented using a Voronoi diagram, with the area of each cell being proportional to 

that taxa global biomass. Values are based on the estimates presented in ref.1. A visual depiction without 

components with very slow metabolic activity, such as plant stems and tree trunks, is shown in SI 

Appendix, Fig. S1 of ref.1 (b) Absolute biomass of different animal taxa. Related groups such as 

vertebrates are located next to each other. We estimate that the contribution of reptiles and amphibians to 

the total animal biomass is negligible, as we discuss in the SI Appendix of ref.1. Visualization performed 

using the online tool at bionic-vis.biologie.uni-greifswald.de/. 1 Gt C = 1015 g of carbon. (Adapted with 

permission from ref.1, Copyright from National Academy of Sciences.). 
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1.1 Chitin, chitosan and D-glucosamine 

1.1.1 Origin, structures and characterization 

Chitin, the second largest sustainable native polymer, can be found as a support material for many 

terrestrial organisms, marine organisms, microorganisms and crustacean shells (Figure 2).18 For example, 

the organic matrice of honeybees is composed of 23%-32% chitin, 35%-45% proteins, 30%-40% melanin 

and 3% minerals.23 Although chitin occurs in fungi, diatoms, nematodes, arthropods, and many other 

animals and plants, development has focused on extraction on a limited number of chitin species due to 

inconsistent physicochemical characteristics of products from aquatic organisms on an industrial 

scale.24,25 Shrimps, crabs, lobsters, krill and squid waste from the marine processing industry has become 

a major resource in use today.26  

 

Epicuticle
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Endocuticle

Adhesion zone

Epidermis

Chitin-protein fibers or 
chitin-melanin complex

Epicuticle

Exocuticle

Endocuticle

Epidermis

Chitin-protein fibers

a b

 

Figure 2 Schematic interpretation of organic matrix: (a) insect cuticle (rod and sheet types of chitin); (b) 

terrestrial crustacean (rod type of chitin) (Not drawn to scale. Adapted with permission from Ref.18, 

Copyright from Taylor and Francis Group LLC (Books) US ). 

 

The main production processes for chitin and its derivatives are based on chemical,27,28 enzymatic29,30 and 

fermentative methods.31-33 The general procedures for the extraction of chitin, chitosan and D-

glucosamine from organic organisms include demineralization, deproteination, decolorization, 

deacetylation, hydrolysis and crystallization (Figure 3).34-36  
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Figure 3 Schematic interpretation of the general procedure to obtain chitin, chitosan and D-glucosamine 

(Adapted with permission from Ref,36 Copyright from WILEY‐VCH Verlag GmbH & Co.). 

 

Chitin is an abundant native linear copolymer composed of N-acetyl-D-glucosamine and D-glucosamine 

units linked with β-(1-4) glycosidic bonds (Figure 4).18 Natural chitin samples may contain broadly 

different amounts of N-acetyl groups, depending on their origin and isolation procedure. The quantities of 

N-acetyl-D-glucosamine units are generally more than 50% in chitin backbone, while chitosan contains 

less than 50% N-acetyl-D-glucosamine.  

 

O
O

OH

HO
NH

O
HO

OH

O

NH2

n 1-n

CH3

O

Chitosan (n<50%) Chitin (n>50%)  

Figure 4 Schematic interpretation of chitin and chitosan structure. 

 

Depending on the source, chitin in its natural state has three anhydrous crystalline polymorphs, including 

α-, β-, γ-chitin (Table 1).37,38 β- and γ-chitin irreversibly convert to α-chitin, therefore, the α-chitin form is 

the majority of the three anhydrous crystalline polymorphs.18 α-Chitin exhibits two antiparallel molecules 

per unit cell, while β-chiti n exhibits a parallel arrangement (Figure 5). α-Chitin has strong inter-sheet 

and intra-sheet hydrogen bonding.39 β-Chitin has strong intermolecular hydrogen bonding (C=O and NH) 

between the chains along the a-axis40 and weak hydrogen bonding by intra-sheets.41 γ-Chitin has not been 

completely identified. Different from chitin as anhydrous crystalline polymorphs, chitosan is primarily a 

semicrystalline polymer in the solid state.18 
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α-chitin β-chitin γ-chitin  

Figure 5 Antiparallel and parallel arrangements of different allomorphs of chitin. 

 

Table 1 Sources of chitin and chitosan 

Types Sources 

α-chitin 
Insects (cuticle,42 ovipositors43); Crustaceans (Crab and shrimp shell); Centric Diatoms 

(Algae); Fungi (Mucor rouxi, Aspergillis nidulans42) 

β-chitin Squid (Ommastrephes pen44); Centric Diatoms (Thalassiosira fluviatilis45) 

γ-chitin Insects (Beetle cocoon38); Squid (Loligo stomach wall46) 

 

In amino sugars, the hydroxyl group of the sugar is replaced by an amino group. Theoretically any 

hydroxyl group of a sugar can be substituted. Therefore, there should be many different varieties of amino 

sugars. In nature, amino sugars are limited in number, including D-glucosamine, D-mannosamine, D-

galactosamine, D/L-rhamnosamine, D/L-fucosamine and their N-acetyl derivatives (Table 2).47 Sugar 

molecules with amino groups in unnatural positions can be artificially synthesiszed.47  

D-glucosamine with four free hydroxyl groups and one free amino group is usually formulated as 

hydrochloride or glucosamine sulfate, which is hydrolyzed from chitin and chitosan. The hydroxyl group 

in the anomeric carbon C1 of D-glucosamine contains α and β-anomer. Both forms are stable in the solid 

state, but interconvert in aqueous solutions to achieve equilibrium distributions through a mutarotation 

process (Figure 6).36,48 The predominant anomeric form of unprotonated glucosamine is the β-form, while 

protonated glucosamine takes foremost the α-form. 
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Table 2 Representation of native amino sugars 
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Figure 6 The mutarotation mechanism of D-glucosamine under aqueous conditions.47  

 

1.1.2 Physical and chemical properties 

Chitin as a highly crystalline material has specific solvent behavior, which is influenced by -NH2 and -OH 

groups. Chitin is generally hydrophobic, soluble in hexafluoroisopropanol, chloroalcohols, and 

hexafluoroacetone mixed with an aqueous mineral acid solution, soluble in dimethylacetamide containing 

5% lithium chloride, but insoluble in water and organic solvents at room temperature.49 Due to the high 

degree of deacetylation, chitosan is generally dissolved in some organic acids (methanoic acid and acetic 
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acid etc.) and inorganic acids (1% hydrochloric acid, dilute nitric acid and lactic acid etc.) by protonation 

of amino groups. In contrast, chitosan is insoluble in alkaline and neutral aqueous solutions. The most 

frequently used solvent for chitosan is 1% acetic acid aqueous solution at pH 4.0. In addition, 

depolymerization of chitosan occurs at high temperatures in concentrated acetic acid.50 D-glucosamine 

hydrochloride (GlcN) and N-acetyl-D-glucosamine hydrochloride (GlcNAc) are obtained by hydrolysis of 

chitin and chitosan. Generally, it is a white and sweet powder that decays at 221˚C.51 The solubility of 

GlcNAc in water is about 25%. Chitin, chitosan and D-glucosamine have attracted great interest in 

developing diverse applications due to the beneficial properties such as excellent biocompatibility, 

antimicrobial activity and nontoxicity.50-56  

 

1.1.3 Modifications  

Chitin, chitosan and D-glucosamine have natural active sites, including hydroxyl and amino groups, that 

can be easily further modified. The modified derivatives can show better solubility and interesting 

physicochemical properties for various applications.  

There are many reviews on the modification of chitin and chitosan.66,52 Therefore, we briefly summarize 

the four reaction types (Table 3). Sulfonation of chitin and chitosan is a general route to endow them with 

glycosaminoglycans-analogue biological activity.52 In this respect, advances from diverse sulphating 

agents including H2SO4, SO3, SO3·pyridine complex, ClSO3H/H2SO4, ClSO3H/formic acid, Me3N·SO3 

complex, Oleum/DMF, ClSO3H/formamide/dichloroacetic acid (DCAA) have widely expanded the 

chemical repertoire of accessible reaction sites (Table 3).52,57,58 Phosphorylated chitin and chitosan have 

attracted considerable interest due to their anti-inflammatory properties, ability to form metal complexes, 

blood compatibility, and formation of anionic polyelectrolyte hydrogels. Therefore, tremendous synthetic 

strategies have been reported in the past decade. Representative phosphorylating agents are 

P2O5/CH3SO3H; H3PO4/urea; H3PO4/P2O5/Et3PO4; ClP(O)(OEt)2; H3PO4/HCHO; ClC2H4P(O)(OH)2; 

PhP(O)(OH)2/HCHO (Table 3).59-63 The most common method to increase the positive charge density of 

chitin and chitosan is to introduce quaternary ammonium salts (Table 3). The general direct method is a 

nucleophilic substitution reaction between the amino group of chitosan and an alkyl halide under alkaline 

conditions.64,65 In another approach, the amino group of chitosan is first reacted with an aldehyde to form 

an imine, which is subsequently reduced by NaBH4, and the reduced product is reacted with an 

haloalkane via a nucleophilic substitution reaction.66,67 Indirect methods to introduce external quaternary 

ammonium groups broadly expand the types of reactants to include N-(3-chloro-2-hydroxypropyl) 

trimethyl ammonium chloride, glycidyltrimethyl ammonium chloride, (3-bromopropyl) 
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trimethylammonium bromide, (5-bromopentyl) trimethy-lammonium bromide etc.68 The 

carboxyalkylation reaction of chitin and chitosan has attracted great attention in application fields such as 

biosensor wound healing, food industry, and bio-imaging.69,70 To date, various synthetic agents have been 

explored, such as mono- or dicarboxylic acids (phthalic, succinic, maleic), acetic, propionic, butyric, 

valeric and hexanoic acids anhydride.62,71-73 In addition to these four most prominent types of 

modification, there are several more interesting methods to mention here: thiolation, fluorination, N-

pathaloylation and other cross-linking methods.62 

 

Table 3. Modification of chitin and chitosan 

O
O

OH

HO
NH

O
HO

OH

O

NH2

n

CH3

O

Functional agents O
O

OR

RO
NH

O
RO

OR

O

NHR

n

CH3

O

R= Functional groups, H  

Reaction types Reaction agents Ref. 

Sulphonation 
H2SO4; SO3;  SO3·pyridine; ClSO3H/H2SO4; ClSO3/formic acid; 

Me3N·SO3; Oleum/DMF; ClSO3H/formanide/DCAA 
52,57,58 

Phosphorylation 
P2O5/CH3SO3H; H3PO4/urea; H3PO4/P2O5/Et3PO4; ClP(O)(OEt)2; 

H3PO4/HCHO; ClC2H4P(O)(OH)2; PhP(O)(OH)2/HCHO 
59-63 

Quaternary 

ammonium 

Direct quaternization: Halogenated alkane; imine reduction;  
68 Indirect quaternization: Introduction of external quaternary ammonium 

groups via click reaction, nucleophilic substitution reaction 

Carboxyalkylation 
Mono- or dicarboxylic acids (phthalic, succinic, maleic), acetic, 

propionic, butanoic, valeric and hexanoic acids anhydride 
62,71-73 

 

D-glucosamine hydrochloride can generally be modified using organic synthesis strategies. There are 

many strategies for amino modification of D-glucosamine. The amino group of D-glucosmaine is easier 

to be modified than hydroxyl group due to their higher reactive activity. These mainly include Shiff’s 

bases reaction (Figure 7a)74-78 and amidation reaction (Figure 7b). 79-81 In 2019, Voglmeir et al. reported 

that the enzyme is capable of a series of N-acylation and N-transacylation reactions to prepare N-
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acylglucosamines (Figure 7c).82 This strategy overcomes the challenge of chemoselective acylation of 

glucosamine derivatives and is used for the total synthesis of sialosides.   
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Figure 7 (a)-(b) The representative strategies of modifications of amino group of D-glucosamine. (c) 

Biocatalysis of D-glucosamine for N-acylglucosamines.  CmCDA= Cyclobacterium marinum chitobiose 

deacetylase 

  

Because these modified groups can be easily removed, for example, the imine group can be removed by 

hydrolysis with aqueous HCl (Figure 7a),74-78 and the trifluoroacetyl group can be removed by hydrolysis 

with aqueous NaOH (Figure 7b)79-81. Therefore, chemists usually utilize them as representative block 

agents for site-selective modification of glucosamine. O-site-selective modification of glucosamine is 

possible by Shiff base reaction using aldehydes and ketones as block agent. The first imines derived from 
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2-amino-2-deoxyaldoses  and salicylaldehyde were reported by Irvine and Hynd in 1913.75,76 The method 

uses H2O as the solvent and is limited to substrates with a hydroxyl group in ortho position. Costamagna 

et al. improved this strategy by using methanol as the solvent and applied it to the 2-

hydroxynaphthylaldehyde substrate.77 Nguyen et al. reported an efficent method for the preparation of 

imines via α-D-glucosamine and diverse aromatic aldehydes (Figure 8a).78 After optimizing diverse base 

and solvent, NaOH and methanol are the best conditions. They discovered that those substrates with a 

hydroxyl group in the ortho position of the aromatic aldehyde gave more stable products. In 1950, 

Micheel and Wulff used unprotected glycosylazide with acetone to synthesize imines under acidic 

conditions. However, imines failed to obtain per-O-acetylated imines by the Ac2O agent (Figure 8b).83 

Bertho, Wolfrom, Perez et al. reported and improved this reaction pathway from D-glucosamine in three 

steps (Figure 8c).84-86 First, per-O-acetylated glycosylboro was synthesized with AcBr, and then the 

compound was further modified with AgN3 to give per-O-acetylated glycosylazide. Finally, the desired 

imine product was obtained. Perez et al. also expanded the scope of ketone and stereochemistry by DFT 

and 2D-NMR analysis,  providing more details.85 

Per-O-acetylated N-TFA-glucosamine can be synthesized by amidation reaction using CF3CO2Me as a 

block agent and is widely used as a precursor of O-,87,88 S-89,90 and N-glycosides91,92 (Figure 9a). For 

example, in 2004, Walsh et al. utilized this strategy to prepare glycopeptide variants of the antibiotic 

tyrocidine (Figure 9b).91  
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Figure 8 (a) Synthesis of imine via α-D-glucosamine with diverse aromatic aldehydes; (b), (c) Synthesis 

of imine via D-glucosamine with ketone. 
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Figure 9 (a) Trifluoroacetyl as protected agents for diverse late-stage modifications. (b) one 

representative application example (here briefly show the synthesis parts of the ref.88). DIEA= N,N-

Diisopropylethylamine. HBTU= hexafluorophosphate benzotriazole tetramethyl uronium. 

 

1.1.4 Transformations  

The transformation of chitin and chitosan reported in the literature mainly involves hydrolysis to produce 

monomeric GlcNH2 and GlcNAc.93-96 Here we do not mention the oligosaccharides of chitin and 

chitosan.97,98 Monomers are further modified into value-added products, such as hydrogenation to prepare 

alcohols,99-101 dehydration to synthesize nitrogen-containing-cyclic compounds,102-113 oxidation to obtain 

carboxylic acid compounds,114-116 dehydration-deamidation to prepare nitrogen-free aromatics,117-121 
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enzymatic/fermentative methods for the preparation of amino acid derivatives13 and hydrogenation/ 

selective deoxygenation for the preparation of nitrogen-containing chemicals122 (Figure 10). The 

mechanism of each type reaction was reviewed by Fukuoka et al.12,123  
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Figure 10 Synthesis of diverse value-added chemicals from chitin, chitosan and D-glucosamine. ADGF= 

2-acetamido-3,6-anhydro-2-deoxyglucofuranose; ADMF= 2-acetamido-3,6-anhydro2-

deoxymannofuranose; 3A5AF= 3-acetamido-5-acetylfuran; 5HMF= 5-Hydroxymethylfurfural; FMF= 5-

(formyloxymethyl)furfural; L-DOPA= L-3,4-dihydroxyphenylalanine. 

 

For example, in 2020, Yan and Zhou et al. reported a biorefinery process to upgrade shell waste-derived 

chitin to tyrosine and L-DOPA through an integrated process (Figure 11).13 The process includes 
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pretreatment of chitin-containing shell waste and an enzymatic/fermentative bioprocess using 

metabolically engineered Escherichia coli.  
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Figure 11 Synthesis of chiral aromatic amino acid from shrimp shell waste with biorefinery process. 

(Adapted with permission from Ref13, Copyright from National Academy of Sciences.) 

 

In 2021, Li et al. discovered an electrocatalytic method for the preparation of acetic acid and green 

hydrogen via chitin conversion (Figure 12).116 Chitin was electrooxidized to acetate in hybrid electrolysis 

with yields exceeding 90%. This method also needs to obtain GlcNAc first, and then undergo 

glucosamine oxidation to acetic acid and H2. 

 

 

Figure 12 Synthesis of acetic acid from chitin with electrocatalysis. (Adapted with permission from 

Ref,116 Copyright © 2021, The Author(s)) 
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In 2021, Chen et al. reported the selective switchable conversion of chitin-derived N-actyl-D-glucosamine 

to organic acids at room temperature (Figure 13).124 In this method, acetic acid and glyceric acid are 

obtained by using the oxidant O2, and formic acid is obtained by using H2O2 as oxidant in the dilute 

NaOH solution. Compared with previous methods at high temperature and pressure, this method is 

economical, efficient and safety risks. 
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Figure 13 Selectivity-switchable conversion of N-actyl-D-glucosamine into commodity organic acids 

(Adapted with permission from Ref,124 Copyright from 2021 American Chemical Society) 

 

1.1.5 As ligands in organic synthesis  

Enantiomerically pure compounds play important roles in pharmaceuticals, agrochemicals and 

flavors.125,126 It can be obtained by organometallic, enzymatic and organocatalytic pathways. Among them, 

enantioselective homogeneous metal catalysis is an attractive strategy to obtain enantiomerically pure 

compounds. In 2001, W. S. Knowles, R. Noyori and K. B. Sharpless were awarded the Nobel Prize for 

their great achievements in this field.127-129 In the process of catalytic enantioselectivity, ligands with 

stereostructures can cooperate with metal catalysts to form asymmetri chiral space. This facilitates the 

conversion of of prochiral substrates to chiral products. Therefore, the selection of suitable designed 

chiral ligands is the most critical step before the reaction. Until today, a series of ligands have been 

designed that greatly expand the scope of accessible structures and introduce their chiral properties into 

products.130-133  

Carbohydrates are the most abundant and renewable biomass with a natural chiral backbone and are 

mainly used as carbohydrate-derived ligands for enantioselective reactions in organic synthesis.134-136 It is 

shown to be economical and does not require pre-installation of chiral structures through  multiple steps 

like artificial ligands. Many reviews cover ligand-derived sugar,134-143 which are used as phosphine 
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ligands, phosphinite ligands, phosphite ligands for asymmetric hydrogenation, asymmetric 

hydroformylation, asymmetric allylic substitution, asymmetric 1,4-addition, asymmetric Heck reaction, 

asymmetric hydroboration, asymmetric hydrosilylation and asymmetric cyclopropanation. Here we 

mainly review chitin, chitosan and their monomers as ligand precursors in organic synthesis (Figure 14).  
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Figure 14 Stereochemistry of native chitin, chitosan and amino sugars. 

 

The natural chitin, chitosan, and amino sugars with amino groups endow them higher reactive activity 

than those carbohydrates without amino groups. N-containing carbohydrates can be easily modified to 

desired ligands to improve its reactivity in organic synthesis applications (Figure 15a).144,145 Kunz et al. 

in 1998, first time utilized D-glucosamine for phosphine oxazoline (phox) ligand.146 Uemura et al. 

improved this ligand with a diphenyl phosphinite group for asymmetric allylic substitution reactions.147,148 

Ligand L5 is used as a phosphinite-oxazoline ligand for the asymmetric Heck reaction and for the 

enantioselective arylation of 2,3-dihydrofuran with aryl triflate (Figure 15b).149 Boysen et al. introduced 

a C2-symmetrical bis-(oxazoline) ligand L7 derived from D-glucosamine. This ligand is used for copper-

catalyzed cyclopropanations of styrene with diazoacetate (Figure 15d).150 The ligand L8 designed by 

Bauer et al. was used to the addition of diethylzinc to aldehydes with high enantiomeric excess (ee) and 

yield (Figure 15e).151 In 2005, Dieguez et al. designed and synthesized a new family of readily available 
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phosphite-oxazoline ligands L6 for Pd-catalyzed asymmetric allylic substitution reactions (Figure 15c).152 

In 2006, a group of amino sugars (L1-L4) were usesd as chiral ligand additives for the addition of diethyl 

zinc to aldehydes (Figure 15f).153 Both L1 with the α-anomer and L2 with the β-anomer can achieve 

excellent yields and ee. However, low yields and ee can be achieved with α-allosamine (L3), while high 

yields with low ee can be achieved with α-mannosamine (L4). It was concluded that the α/β anomers do 

not affect the yield and ee of these reactions. The hydroxyl group on C3 plays an important role in the 

yield of the reaction, while the amino group on C2 helps to control the ee. Based on these results, they 

proposed a mechanism for the formation of a five-membered ring between the hydroxyl group on C2, 

amino group and zinc.  
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Figure 15 Representatives examples of ligands derived amino sugar and their applications. Pd(dba)2= 

Bis(dibenzylideneacetone)palladium; BSA= N,O-bis(trimethylsilyl)acetamide; ee= enantiomeric excess. 

 

In addition to asymmetric catalytic organic synthesis, in 2008, Bao et al. reported D-glucosamine as a 

ligand for the Ullmann reaction-type N-arylation of imidazoles with aryl and heteroaryl bromides (Figure 

16a).154  In 2016, Zhou et al. not only improved this reaction not only in an air atmosphere by utilizing 

GlcNAc, but also expanded the substrates from imidazoles to aromatic amines (Figure 16b).155 The role 

of GlcNAc was demonstrated by theoretical studies, suggesting that the hydroxyl groups at C3, C4, and C6 

positions may have a significant influence on the catalytic process. However, the role of the hydroxyl 

group on C1 and the role of the amino group on C2 have not been investigated. In 2011, Sekar et al. 

reported D-glucosamine as an efficient ligand for the copper-catalyzed selective synthesis of anilines 

from aryl halides and NaN3 (Figure 16c).156 In 2014, Zhang et al. discovered D-glucosamine used as a 

ligand for copper-catalysed synthesis of aryl sulfones from aryl halides and sodium sulfonates (Figure 

16d).157 Zhang et al. extended the strategy for the cross-coupling reaction of diphenyl disulfides and aryl 

iodides in the presence of CuI and glucosamine (Figure 16e).158 D-glucsaomine has also been used in the 

palladium-catalyzed Mizoroki-Heck reaction of aryl hades (Figure 16f)159 and the iron-catalyzed 

Grignard cross-coupling reaction of vinylic and allylic bromides (Figure 16g).160 
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Figure 16 Construction of C−N, C−S and C−C bonds via the metal-catalyzed with ligand D-glucosamine. 
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1.1.6 As organocatalysts in organic synthesis  

Organocatalysis is one of the most thriving research fields in contemporary organic synthesis.161-166 A 

variety of classical organocatalyst types have been reported, which highly expand their range of 

applications from value-added fine chemical production to natural product synthesis and drug 

discovery.166-177 Since the chiral backbone of aminocatalysts has tunable steroauxiliary groups, which help 

to form strong steric shielding, in 2000, Benjamin list et al. first reported the use of proline as a catalyst to 

direct realize asymmetric aldol reactions through enamine process.178 In the same year, David W. C. 

Macmillan et al. first demonstrated the highly enantioselective organocatalytic Diels-Alder reaction 

through the iminium-catalyzed pathway.179 Benjamin list and David W. C. Macmillan were awarded 

Nobel Prize in 2021. Until today, iminium and enamine catalysis methods based on covalent mechanisms 

has drawn much attention.180-186 Despite the enormous advance in these aminocatalysts modes, a 

sustainable and cheaper organocatalyst with natural chiral skeleton derived from biomass for the 

enantiselective synthesis are still highly desirable. 

In 2007, inspired by bifunctional urea Schiff base organocatalysts,187,188 the first example of a highly 

efficient organocatalyst for enantioselective Strecker and Mannich reactions was constructed from 

glucosamine as a readily available chiral scaffold (Figure 17b).189 In the Strecker reaction, catalyst Cat1 

shows an excellent 95% ee, while catalyst Cat2 only achieves 15% ee. Compared with the Strecker 

reaction, the catalyst Cat1 exhibited poor ee in the Mannich reaction (Figure 17c). In 2012, Miao et al. 

developed sugar-derived thiourea organocatalyst for the catalytic asymmetric addition reaction of α-

ketophosphonates and TMSCN with excellent ee and high yield (Figure 17d).190-192 

In 2006, Wong et al. demonstrated that the sugar moiety of a glycopeptide modified with a thiol handle at 

the C2 position can facilitate the ligation of cysteine-free glycopeptided to thioester peptide (Figure 

18).193-200 In this work, they propose that the sugar moiety affects the proximity of the N-terminal amine to 

the thioester. This provides acyl transfer to obtain the final product. But they did not explain the 

configuration of the anomertic center and the N-linked sugars, their effect on the fate of ligation. Two 

years later, they expanded the sugar types with more elaborate sugars for glycopeptide ligation.194 In 2016，

Liu et al. reported a practical approach for the synthesis of N-glycopeptide using an auxiliary-mediated 

dual native chemical ligation.201 
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Figure 17 The sugar-derived thiourea organocatalysis and applications. 
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Figure 18 Sugar-assisted glycopeptide ligation. 
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2. Objectives 

1) Targeted cleavage of the C−N bond of D-glucosamine via a metal-free pathway and the 

conjunction of nitrogen in the synthesis of imidazo[1,5-a]pyridines remains a great challenge. Despite 

tremendous progress in the synthesis of imidazo[1,5-a]pyridines over the past decade, many of them still 

cannot be efficiently prepared. Therefore, an novel anomeric stereoauxiliary approach for the synthesis of 

a wide range of imidazo[1,5-a]pyridines after cleavage of the C−N bond of D-glucosamine (α-2° amine) 

from biobased sources is highly desirable (Figure 19).  
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Figure 19 Anomeric stereoauxiliary strategy enables efficient synthesis of wide-ranging imidazo[1,5-

a]pyridines. 

 

2) Nitrogen-containing chemicals (NCCs) play a pivotal role in modern life, but direct nitrogen 

interception from the renewable nitrogen-containing polysaccharide chitosan/chitin for synthesizing 

value-added NCCs is still a big challenge. Herein, a facile and efficient one-pot methodology that enables 

direct nitrogen interception of chitosan/chitin for the synthesis of a broad range of important N-

heterocycles imidazo[1,5-a]pyridines are highly attractive (Figure 20).  
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Figure 20 Simultaneous C-N cleavage and incorporation of nitrogen from chitin/chitosan for 

imidazo[1,5-a]pyridines. 
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3) Today, there are still no examples of glucosamine being used only as aminocatalysis. Therefore, 

sustainable aminocatalysts with native chiral skeletons derived from N-containing biomass for the 

regioselective cyclization are highly attractive, but not yet realized. On the other hand, indolizine-

carbaldehyde is an important synthetic target. The easily modified carbaldehyde group makes them 

versatile precursors for diverse indolizines. However, the chemical construction of trisubstituted 

indolizine-2-carbaldehydes with efficient one-pot direct site-selective C2-aldehylation represents a long-

standing challenge for synthetic chemists.202,203 Herein, a novel anomeric stereoauxiliary aminocatalysis 

approach is highly desirable for the efficient one-pot preparation of trisubstituted indolizine-2-

carbaldehydes with highly site-selective C2-aldehylation via dehydration [3+2] annulations (Figure 21).  
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Figure 21 Anomeric stereoauxiliary-organocatalyzed one-pot site-selective C2-aldehylation for 

trisubstituted indolizine-2-carbaldehydes. 
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3. Results and Discussion 

3.1 Publication 1: Anomeric Stereoauxiliary Cleavage of the C−N Bond of D-glucosamine for the 

Preparation of Imidazo[1,5-a]pyridines 

3.1.1 Background  

The C−N bonds are ubiquitous in many biobased organic molecules, especially in many biomolecules of 

living organisms.204-206 The utilization and transformation of C−N bonds are among the central topics in 

organic chemistry, biochemistry and material science,207-210 while only a few examples of the C−N 

cleavage of alkyl primary amines were reported recently with the assistance of metal-catalysts. Up to now, 

most protocols are limited to primary amines with benzylic, allylic and pyridine.210-215 It is still highly 

attractive to develop efficient strategies for selective C−N bonds cleavage in alkyl primary amines, 

including α-1°, α-2° and α-3° alkyl primary amines. In 2017, the Watson group cleaved C−N bonds of α-1° 

and α-2° primary alkyl amines via single electron transfer to Katritzky pyridinium salts intermediates 

(Figure 22a).216-219 Later in 2020, the Rovis group demonstrated a visible light photoredox approach to 

cleave C−N bonds of α-3° primary alkyl amines via a key imidoyl radical intermediate (Figure 22a).220 

Moreover, the Milstein group reported a catalytic oxidative deamination protocol with ruthenium pincer 

complex (Figure 22a).221 Until now, all the reported methods for C−N bonds cleavage in alkyl primary 

amines require transition metal catalysts. Unlike these previous strategies towards the cleavage of C−N 

bond via metal catalysts, we present here a metal-free anomeric stereoauxiliary strategy to cleave the 

C−N bond of native D-glucosamine (α-2° amine) from biobased resources, which offers a readily 

accessible and sustainable route for the synthesis of a broad range of  imidazo[1,5-a]pyridines (Figure 

22b).  

Imidazo[1,5-a]pyridines, as one of the most important N-heterocyclic compounds, play pivotal roles in 

various areas from pharmaceutics over chemical synthesis to materials science.222-229 For example, they 

can be precursors of N-heterocyclic carbenes,222-224 ligands in coordination chemistry,225,226 and inhibitors 

of biologically active agents.227-229 In particular, due to the unique photophysical properties with quantum 

yields up to 50%, large Stokes shift (up to 100-150 nm) and good stability,230 imidazo[1,5-a]pyridines are 

attractive optical materials for many applications231-233. In this respect, advances from metal-free to metal-

catalyzed cyclization strategies of N-heterocyclic substrates have increased the number of accessible 

structures. A representative metal-free method with NH4OAc as nitrogen source for imidazo[1,5-

a]pyridines was reported in 2005.234 This method was continually improved and widely used in synthetic 

chemistry and for optical materials,235 even though the challenges still need to be addressed. For instance, 
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many imidazo[1,5-a]pyridines including 1-alkylimidazo[1,5-a]pyridines and 3-alkylimidazo[1,5-

a]pyridines are inaccessible by this method.  

In 2007, Gevorgyan reported the first efficient rhodium-catalyzed metal carbine approach for the 

preparation of imidazo[1,5-a]pyridines via transannulation of pyridotriazoles process.236 3-

alkylimidazo[1,5-a]pyridine products (6 examples) were unprecedentedly accessed with this metal-

catalyzed method. It was shown that an activating group (Cl, Br, or OMe substituents) at C7, as well as 

electron-withdrawing groups at C3, were necessary for an efficient formation of imidazo[1,5-a]pyridines. 

To overcome these limitations, a general strategy of rhodium-catalyzed NH insertion of pyridyl carbenes 

for imidazo[1,5-a]pyridines was developed in 2014.237 Although this strategy widely expanded the library 

of accessible structures, the study showed only 6 examples in total and the required precious metal 

catalyst with active triazole substrates hinders its widespread applications. In 2014 and 2016, inexpensive 

copper catalysts were applied for synthesizing imidazo[1,5-a]pyridines, but these methods are limited to 

3-monosubstituted imidazo[1,5-a]pyridines, while many imidazo[1,5-a]pyridines maintain inaccessible, 

such as 1-alkylimidazo[1,5-a]pyridines.238,239239 The challenges in accessing 1-alkylimidazo[1,5-

a]pyridines via ketone activation of alkyl(pyridine-2-yl)methanone substrates lies in the lower reactivity 

of alkyl(pyridine-2-yl)methanone compared to aryl(pyridin-2-yl)methanone.238 Additionally, 

alkyl(pyridine-2-yl)methanone is readily activated as nucleophilic reagent due to the α-saturated C−H 

bond next to ketone, which can result in side-reaction.240 Therefore, it is highly desired to develop a 

strategy to overcome these disadvantages.  

Carbohydrates as chiral auxiliaries in stereoselective synthesis134,241 and stereochemistry of transition 

metal complexes controlled by the metallo-anomeric effect242 have drawn much attention recently. 

Depending on the pKa values of aqueous solutions, the α/β-anomers of D-glucosamine exist with 

adjustable ratios.36,48 Inspired by these different stereochemical structures of α/β-anomers, we demonstrate 

herein a novel strategy for the cleavage of C−N bond in D-glucosamine that is enabled by α-anomer 

through the formation of a key (non-covalent) seven-membered ring transition state for the synthesis of 

diverse imidazo[1,5-a]pyridines without any metal catalysts. Various inaccessible substrates from existing 

methods for imidazo[1,5-a]pyridines are synthetically accessible by this protocol. 
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Figure 22 (a) The representative example of previous strategies for the cleavage of the C−N bonds of 

alkyl primary amines. (b) Our strategy: cleavage of C−N bond for imidazo[1,5-a]pyridines via anomeric 

stereoauxiliary. 

 

3.1.2 Optimization studies  

We commenced our study by probing various reaction conditions for imidazo[1,5-a]pyridines by using 2-

acetylpyridine (1a), 2-methylbenzaldehyde (2a) and diverse nitrogen sources (Table S1 of Publication 1). 

After extensive experimentation, we got the optimal condition for the efficient synthesis of imidazo[1,5-

a]pyridines with 74% yield using D-glucosamine as nitrogen source in a solvent mixture (vAcOH:vH2O of 

9:1) at 120 ˚C under Ar gas atmosphere (Figure 23a). In parallel, commercial acetylated amine sugars as 

stabilized α-anomer (3b) and β-anomer (3c) were used for the reaction under the optimal conditions 

(Figure 23a). The α-anomer of acetylated D-glucosamine led to 30% yield, while only trace of the 

product was detected using the β-anomer. Therefore, the α-anomer of D-glucosamine with the hydroxyl 

group at the neighbor C1 position is preferred for the synthesis of imidazo[1,5-a]pyridines. Besides, the 
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scope with D-mannosamine under the same conditions led to a yield of 41% in the presence of a major β-

anomer distribution (α/β = 0.79/1). This result further verified that the configuration of amine and 

hydroxyl group should be on the same side to cooperatively cleave C−N bonds for imidazo[1,5-

a]pyridines. Various amines (3e to 3i) were also investigated. As a result, only 3e fulfilling these 

configuration requirements provided the desired product with the highest yield of 16%. To explore the 

correlation between the yield of imidazo[1,5-a]pyridine 4 and the anomer of D-glucosamine in solvents 

with diverse pKa, solvent mixtures with various pKa (0.9 mL) and H2O (0.1 mL) were investigated under 

optimal conditions (Figure 23b). In general, the ratio between α- and β-anomer of D-glucosamine (refers 

as α/β) highly depends on the pKa of the respective solvent. Solvents with higher pKa, such as HFIP (pKa: 

9.30), Et3N (pKa: 10.76) and H2O (pKa: 15.75), result in lower α/β ratios of glucosamine and significantly 

lower yields of imidazo[1,5-a]pyridine 4. The predominant reason for this result should be the presence of 

the β-anomer of D-glucosamine as the major isomer. In comparison, those suitable acidic reaction media, 

such as CF3COOH (pKa: 0.30), HCOOH (pKa: 3.75) and AcOH (pKa: 4.76), result in higher α/β ratios of 

glucosamine and higher yields of 4, showing the facilitating effect of the α-anomer of D-glucosamine on 

the synthesis of 4. These results further indicate that Brønsted acids with suitable pKa stabilize the methyl 

group of alkyl(pyridine-2-yl)methanone, and thus hinder the deprotonation of the methyl group.243 
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Figure 23 Reaction development. (a) Diverse amino compounds 3a-3i were used in reactions in the 

solvent mixtures (vAcOH:vH2O of 9:1) at 120 ˚C under Ar gas atmosphere. (b) Various mixtures of 

solvents with various pKa (0.9 mL) and H2O (0.1 mL) were used for the reactions under the optimal 

conditions. pKa of CF3COOH,244 H3PO4,245 HCOOH,246 CH3COOH,247 1,1,1,3,3,3-hexafluoro-2-propanol 

(HFIP),248 Et3N,249  and H2O250 are determined at 25 ˚C. The ratios of α- and β-anomers were measured by 
1H-NMR analysis at room temperature; Yields were determined by 1H-NMR analysis with CH2Br2 as the 

internal standard. 
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3.1.3 Scope of substrates 

With the optimized reaction conditions in hand, we next probed the scope of various aldehydes using 2-

acetypyridine as a representative heteroaryl ketone (Figure 24). An array of aromatic aldehydes, 

including those with electron-donating or -withdrawing groups at different positions (ortho, meta or para), 

were efficiently transformed to the corresponding products 4-23. A variety of valuable functional groups 

at diverse positions, such as methoxy (11 and 12), halogens (14-18), trifluoromethyl (19), nitro (20), 

nitrile (21) and ester (22), were well compatible with these conditions. Particularly, free para-dialdehyde 

(23) and ortho-phenolic hydroxyl (13) were also tolerated in this protocol. The structure of 20 was further 

confirmed by X-ray crystallographic analysis, and those of other products in Table 1 were assigned by 

analogy. Moreover, 2-phenylacetaldehyde (product 24), cinnamaldehyde (product 25), 1-naphthaldehyde 

(product 26) and heterocyclic aldehydes (product 27-28) were also well compatible with this approach. 

Furthermore, a series of aliphatic aldehydes, including cyclic aldehydes (product 29-30) and aldehydes 

with aliphatic chains (product 31-34), could also be transformed into desired products. Hence, this facile 

and efficient approach has been proved for the successful preparation of saturated 1-alkylimidazo[1,5-

a]pyridine compounds, with unprecedented use of inexpensive and commercially available 

aromatic/aliphatic aldehydes. 

We further explored heteroaryl ketones (Figure 25). Di(pyridin-2-yl)methanone (product 35) and pyridin-

2-yl(pyridin-4-yl)methanone (product 36) were tolerated in this reaction. Various aromatic pyridine 

ketones, including those having electron-donating or -withdrawing groups at distinct positions (ortho, 

meta or para), were well transformed into the corresponding products 37-43. The functional groups at 

diverse positions, such as methyl (38-39), methoxyl (40), trifluoromethyl (41), mono-Br- (42) and di-Br-

substituted arenes (43), were fully compatible with our conditions. The cyclic aliphatic pyridine ketone 

was also tolerated under these conditions (44). In addition, our protocol was also capable for the assembly 

of diverse tridentate (45-47), bidentate ligands (48-60), and heterocyclic backbones with fluorescent 

properties. The structure of 51 was further assigned with X-ray crystallographic analysis.  
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Figure 24 Scope of aldehydes. Reactions were carried out at 120 ˚C with 2-acetylpyridine, aldehydes, D-

glucosamine·HCl (3a) in AcOH : H2O (0.9 mL : 0.1 mL), under Ar gas with stirring for 36 h. Yields are 

those of the isolated product. 
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Figure 25 Scope of N-heteroaryl ketones and aldehydes. Reactions were carried out at 120 ˚C with N-

heteroaryl ketones, aldehydes, D-glucosamine·HCl (3a) in AcOH : H2O (0.9 mL : 0.1 mL), under Ar gas 

with stirring for 36 h. Yields are those of the isolated product. 
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3.1.4 Applications 

Certain imidazo[1,5-a]pyridines with multiple substitutions show interesting optical properties and ligand 

effects due to the conjugation feasibility and the presence of lone pair electrons in nitrogen and oxygen 

atoms. Because of the difficulty for the regioselective functionalization and the interference of potential 

side reactions, there is still no efficient method to synthesize such compounds so far. With our method, 

the challenging bi-functionalization of dialdehyde (product 61) was achieved smoothly (Figure 26a). 

Motivated by this result, 1,4-phenylenebis(pyridin-2-ylmethanone) (product 62) was also prepared via our 

synthetic route (Figure 26b). In addition, starting from 50, products 63 and 64 were readily obtained with 

yields of 68% and 72% after the reaction with diphenylphosphine oxide and phenylboronic acid, 

respectively (Figure 26c-26d). Moreover, imidazo[1,2-a:3,4-a']dipyridin-10-ium (65) was accessed 

concisely after two steps with standard conditions (Figure 26e).  

Isotope labeling, such as deuterated fine chemicals, has a broad range of applications, for instance for 

drug absorption, distribution, metabolism and excretion, for the investigation of reaction processes and for 

imaging.251-254 The first deuterated drug, deutetrabenazine, was approved by FDA in 2017.255 Because of 

the versatile functionalities of imidazo[1,5-a]pyridines that are interesting for diverse fields ranging from 

material science to pharmaceutics, efficient synthetic methods for deuterated building blocks of 

imidazo[1,5-a]pyridines derivatives are highly desired.  
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Figure 26 Synthetic applications. (a), (b) Multi-transformations of aldehyde and N-heteroaryl ketone. (c)-

(e) Late-stage transformation of imidazo[1,5-a]pyridine. 
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Figure 27 H/D exchange experiments. 
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Figure 28 One-pot synthetic applications for diverse deuterated imidazo[1,5-a]pyridines. All yields are 

isolated products and the D incorporation was measured by 1H-NMR analysis. 
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The protons at the α-position of pyridine ketone and aliphatic aldehydes could reversibly exchange with 

acidic aqueous surroundings (Figure 27). With our protocol, deuterated imidazo[1,5-a]pyridines were 

readily synthesized via a one-pot process with the simultaneous cleavage of C−N bond of D-glucosamine. 

The aromatic aldehydes with electro-withdrawing and electro-donating groups at diverse positions were 

transformed into deuterated products with high yields (66-81) (Figure 28). Moreover, 1-naphthaldehyde, 

pyridine aldehyde and cyclopentyl(pyridin-2-yl)methanone were also compatible with the reaction 

condition (products 82, 83 and 86). In addition, the products 84 and 85 even achieved the efficient 

deuteration at multiple positions. 

Process mass intensity (PMI) is a key mass-based metric to evaluate the green credentials of reactions 

during process and chemical development.256 The calculations of the PMI for our current work as well as 

for representative approaches are shown comparatively234,237-239 (Figure 29). The PMIRRC (expressed as 

the amount of reagents, reactants and catalyst) of our strategy is slightly higher than the previous 

presentative approaches, while the PMISolv (solvent relative to the amount of isolated product) of the 

approach from Gevorgyan’s group237 is higher than ours and the other two approaches.234,238,239 It should 

be noted that PMISolv does not take into account of any solvent consumed during purification processes 

since the reference values for the comparative works are not available. 
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3.1.5 Mechanistic studies  

To gain insight into the mechanism, a set of control experiments were conducted (Figure 30-31). D-

glucosamine is able to form imines and azomethines with aldehydes and ketones85 and the hydroxyl 

groups of D-glucosamine can be modified via substitution reactions.51 In the first group of control 

experiment, intermediates 3j and 3k were used to verify the reaction order (Figure 30a-30b).85,257 As a 

result, product 13 was detected via 1H-NMR spectroscopy and further confirmed via HR-ESI-MS (Figure 

30a), while product 4 was not detectable (Figure 30b). We therefore suggest that D-glucosamine reacted 

with aldehyde at first to form the imine intermediate. 

In the second group of control experiment, N-acetyl-D-glucosamine was examined under standard 

conditions (Figure 30c). The results rule out the cleavage pathway via N-acetylation of D-glucosamine. 

In the absence of aldehyde and 2-acetylpyridine, only traces of ammonium acetate were detected by 1H-

NMR (Figure 30d). The ammonium acetate was further verified by two-dimensional 1H-15N-

heteronuclear single quantum coherence (HSQC)-NMR measurement (Figure 31), which excluded the 

pathway of thermo-cleavage of the C−N bond in D-glucosamine. Moreover, the intermediates 3o, 3p, 3q 

and 5 were detected by HR-ESI-MS and ESI-MS, which reveals the late-stage pathway with the 

formation of derivatives of imidazo[1,5-a]pyridines and furanoses as the intermediates after the cleavage 

of the C−N bond of D-glucosamine (Figure 30e). The isolation of furanoses is rather difficult due to the 

unstable properties under the acidic conditions at high temperature (Figure S25 of Publication 1). A 

group of molecules can be detected (99 g/mol, 131 g/mol and 159 g/mol et al.). This indicates that the 

furanose is not stable and it might degrade into smaller molecules. Even though furanose has been 

obtained as by-product from D-glucosamine in this approach, furanose with a pending aldehyde group 

and hydroxyl groups represents an interesting starting material for platform chemicals including synthesis 

of furanose sugars,258 nucleophilic substitution at the anomeric position of furanose,259 equilibrium and 

non-equilibrium furanose selection in the ribose isomerization network260 and synthesis of furanose-based 

carbohydrates.261 

Furthermore, picolinaldehyde (1j) and formaldehyde (2c) were used for the same protocol under standard 

conditions, which excluded the pathway of post dealkylation of imidazo[1,5-a]pyridinium salts (Figure 

30f).262 1-(pyridin-2-yl)propan-2-one (1k) reacts with benzaldehyde (2b) under the same conditions. In 

contrast, the N-transfer process from glucosamine to the N-heterocyclic chemical (3s) failed (Figure 30g). 
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Figure 30 Reaction pathway control experiments. 
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Figure 31 2D-15N1H-HSQC-NMR analysis of ammonium acetate in CH3OH-d4. 
 

In further control groups, 1,3,4,6-tetra-O-acetyl-2-amino-2-deoxy-β-D-glucopyranose hydrochloride (3b) 

and 1,3,4,6-tetra-O-acetyl-2-amino-2-deoxy-α-D-glucopyranose hydrochloride (3c) were tested under the 

same conditions (Group 3 in Figure 32a-32b). 3b and 3c show stable and pure β-anomer and α-anomer 

structures, respectively, while the anomer of D-glucoseamine is unstable. Therefore, 3b and 3c can be 

used to verify whether the α/β-anomer can affect the yield of product 4. As a result, product 4 with 30% 

yield was obtained using 3c (α-anomer), while 3b (β-anomer) could only deliver 8% yield. Based on the 

results shown in Figure 30, plausible reaction pathways for TSα and TSβ are proposed in Figure 32 to 

explain the distinct reaction activities between 3c (α-anomer) and 3b (β-anomer). First, in comparison to 

3b (β-anomer), 3c (α-anomer) should favor the formation of the E isomer of imine due to the steric 

hinderance (Figure 32a). Moreover, the α-anomer promotes the formation of a seven-membered ring 

transition state with the acetate anion in solutions via hydrogen bonds. This ring of the α-anomer 

transition state (TSα) not only helps to stabilize the intermediate during the cleavage of the C−N bond, but 

also shows a favorable alignment with the aromatic ring. 3b (β-anomer) forms a seven-membered ring 

transition state with β-anomer via hydrogen bond between the acetyl group of the β-anomer and the 

acetate anion (Figure 32b). The E isomer of imine forms more easily,85 and the stronger steric shielding 

from seven-membered ring transition state also contributes to the formation. The ring of the β-anomer 

transition state (TSβ) shows a disfavorable alignment with the aromatic ring. The energy states of both 

TSα and TSβ via D-glucosamine were calculated by electronic structure calculations (Figure 33b). Hence, 

based on the results shown in Figure 23, 30 and 32, a seven-membered ring of α-anomer transition state 
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(TSα) formed via hydrogen bonds, which favors the following cleavage of C−N bond.263-265 Combining all 

results, a plausible mechanism is proposed (Figure 33a). First, D-glucosamine reacts with aldehyde to 

form imine A. Then, A attacks the ketone of pyridine ketone via electrophilic addition to generate the 

intermediate B.266 Under acidic conditions with acetic acid, a seven-membered ring of α-anomer 

transition state (TSα) forms. The nitrogen of pyridine attacks the imine via nucleophilic addition to form 

the intermediate C. Under acidic conditions, the intermediate D forms via dehydration. The seven-

membered ring of α-anomer transition state (TSα) helps to stabilize the transition state when the C−N 

bond of the intermediate D is cleaved. The cleavage of the C−N bond in D results in intermediates E and 

F. Intermediate F shows a favorable alignment with the seven-membered ring. Due to the unstable 

transition state of F, H forms rapidly via the ring opening of F and further leads to I. In parallel, the 

deprotonation of E results in the product G.  

Based on the proposed mechanism and control experiments, theoretical calculations were performed for 

the reaction step of the C−N bond cleavage (D→E+H) with the consideration of the stereoselectivity to 

further support the proposed mechanism. The calculated final Gibbs free energy of the transition state of 

the α-anomer (TSα in Figure 33b) was 0.9 kcal/mol, which is lower than that of the β-anomer (TSβ). 

Since the Gibbs free energies of reactant connected to TSα (Dα) was 0.7 kcal/mol higher than that 

connected to TSβ (Dβ), the reaction barrier for the α-anomer is thus 1.6 kcal/mol and lower than that of the 

β-anomer (22.2 vs. 23.8 kcal/mol). Given that the two anomers do not stand in kinetic competition (they 

are utilized in separate reactions), the latter value should be taken as the actual barrier difference. The 

acetate molecule stabilizes the transition state via the hydrogen bond as depicted in Figure 32a, which is 

ultimately transferred. The ring system, as schematically shown in Figure 32b, aligns with the carboxylic 

group via dispersion forces that could reduce the barrier. This stands as a further example for the 

importance of London forces in stereoselectivity.267 

The α/β-ratio for the mixture of D-glucosamine and HCl was determined using the same theoretical 

method. Three conformers (Figure 33c) were taken into consideration for each anomer, where the 

chloride might interact with each of the hydrogen atom of the protonated amine group. The Gibbs free 

energy of the α-v1-conformer was taken as reference for all the energy terms listed in Figure 33c. For 

each anomer the Gibbs free energy was obtained by averaging the Gibbs free energies of the three 

conformers with their Boltzmann-factors and applying conformational entropy corrections. The resulting 

final Gibbs free energy was -0.1 kcal/mol for the α-anomer and 0.8 kcal/mol for the β-anomer, 

respectively. The energy difference of 0.9 kcal/mol corresponds to an α/β-ratio of 3.1 at the reaction 

temperature of 393.15 K. This difference would be reduced to 0.55 kcal/mol if one excludes the chloride 
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anion. Such energy difference corresponding to an α/β-ratio of 2.0 gives us a range, which comfortably 

accommodates the experimental observations.  
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Figure 32 Anomeric stereoauxiliary control experiments. 
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Figgure 33 (a) Proposed mechanism. (b) Density functional theory calculations. (c) Simplified scheme of 

the computed DFT conformers for the mixture of D-glucosamine and HCl, discriminated according to the 

respective anomers. The relative energies (in kcal/mol) in respect to the most stable conformer are 

provided. Conformers in c are v1, v2 and v3 from left to right. 

  

3.2 Publication 2: Direct Nitrogen Interception from Chitin/chitosan for the Preparation of 

Nitrogen-containing Chemicals 

3.2.1 Background 

Chitin and chitosan are abundant native linear polymers composed of randomly distributed units, namely, 

N-acetyl-D-glucosamine and D-glucosamine linked by β-1,4-linages.268 The quantities of N-acetyl-D-

glucosamine units are generally more than 50% in chitin backbone, while chitosan contains less than 50% 

N-acetyl-D-glucosamine.52,269,270 Human processing of sustainable chitin-containing raw materials, such 

as crustaceans shells, exhibits only a very minor fraction of all the chitin produced annually in nature,271-

276 while the major fraction maintains intact.36 On the other hand, low molecular weight nitrogen-

containing chemicals (NCCs) play a pivotal role in modern life, from pharmaceutical, agriculture and 

food fields to material fields.12,277-280 The nitrogen source of prevailing industrial processes for NCCs is 

mainly from NH3, NO3
- and NO2

- etc., which are obtained from N2 fixation.281-289 The quantities of 

nitrogen element fixed annually in chitin via the biochemical process are much more than the N2 fixed in 

the Haber-Bosch process.13 Therefore, the transformation of renewable chitin containing fixed nitrogen 

into value-added NCCs has drawn much attention.12  

Four types of strategies are currently known for the activation of amines in chitin/chitosan (Figure 34a). 

The first strategy (i) referred to the direct modifications of amines on the chitosan/chitin backbones 

without C–N bond cleavage.271 The second strategy (ii) involves the cleavage of C–N bonds via strong 

oxidants or acidic conditions with the simultaneous release of N2 or limited types of organic and primarily 

inorganic low-value NCCs, such as acetamide and ammonium salts.116,290,291 These two strategies cannot 

generate value-added NCCs, in particular more complicated organic compounds, which are highly desired 

in the modern life. Recently, the third strategy (iii) emerges with the biorefinery by converting 

chitin/chitosan into a preliminary C6 backbone via a depolymerization (e.g. monomeric and oligomeric 

molecules) and by further conversion of the C6 backbone into diversified products via breakage and 



42 
 

rearrangement (e.g. 3-acetamido-5-acetylfuran et al.).12,13 Although various protocols have been 

established through enzymatic, catalytic and/or hydrothermal treatments pathway, only more than 10 

NCCs examples (including sugars derivatives, amino alcohols, furanic amides) have been obtained with 

complicated conditions and a low efficiency. The fourth strategy (iv) involves the cleavage of C–N bond  
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Figure 34 a) General strategies for activation of amines in chitin/chitosan. b) This work: direct 

incorporation of nitrogen from chitosan/chitin for imidazo[1,5-a]pyridines.  

of chitin for the assembly of pyrrole with a low yield of 4%, which was realized in alkali aqueous solution 

at 300 ºC in 2016.115 In particular, it should be stressed that the synthesis of N-heterocycles from 

chitin/chitosan biomass is challenging and introducing an external nitrogen source is the main pathway 
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for the construction of N-heterocycles from biomass.292-294 The C–N bond of chitin/chitosan that offers a 

potential reactive site for various versatile chemical diversifications generally remains intact. Therefore, a 

one-pot protocol enabling the targeted efficient incorporation of nitrogen from chitin/chitosan into diverse 

valuable NCCs like N-heterocycles is highly attractive, which will advance the existing methodologies 

while expanding the library of NCCs derived from renewable sources. 

Herein, we developed an efficient catalyst-free one-pot protocol for the direct integration of nitrogen from 

the renewable feedstock chitosan/chitin that yields various valuable imidazo[1,5-a]pyridines (52 

examples with yields up to 92%) under mild conditions (Figure 34b), which provides ready access to 1-

alkylimidazo[1,5-a]pyridines (39 examples) and 1-arylimidazo[1,5-a]pyridines (13 examples).  

 

3.2.2 Optimization studies 

We initiated our studies by using 2-acetylpyridine (1a) and 2-methylbenzaldehyde (2a) as substrates to 

evaluate the envisioned nitrogen interception from chitosan for desired imidazo[1,5-a]pyridine 3 

employing metal-free condition. At the outset, product 4 was observed by 1H NMR analysis on a 

condition with solvent mixture of AcOH/H2O (0.9/0.1 mL) (Table 4, entries 1-2). After that, several 

silver salt additives were investigated. Interestingly, the yield of 4 was increased obviously from 3% to 13% 

when the silver trifluoroacetate (AgTFA) was exploited, while silver acetate (AgOAc) was not helpful for 

the efficacy (Table 4, entries 3-4). These results indicated that the anion ion -OCOCF3
 in AgTFA might 

facilitate the transformation. Therefore, a solvent mixture of CF3COOH/H2O (0.9/0.1 mL) was employed 

as a substitute of the previous solvent AcOH/H2O (0.9/0.1 mL). To our delight, the yield was improved to 

29% when CF3COOH/H2O was used as reaction media (Table 4, entry 5). Then, a higher yield (61%) 

was achieved with CF3COOH (1.0 mL) as the solvent (Table 4, entry 6). Besides, diverse reaction 

temperatures, ranging from 90 ºC to 140 ºC, were examined (Table 4, entries 7-8).  Thus, the optimal 

temperature was determined to be 140 ºC and a 78% yield was obtained. Moreover, the reaction was 

conducted at 12 h, 24 h and 36 h with the yield of 31%, 59% and 78%, respectively. The lower equivalent 

of chitosan leads to inferior yield. Combining all factors regarding the equivalent of chitosan, reaction 

temperature and time, the optimal reaction condition was identified as shown in entry 8: 140 ºC for 36 h 

(Table 4). 

 

Table 4. Optimization of the reaction conditions 
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N
O

H

Solvent, t (h), T ( °C), Ar

1a 2a
4

+ Chitosan
 
(0.3 mmol), additive (equiv.)

Me
O

OH

HO
NH2

O

ChitosanMe

N
N

Me

Me

O

 

Entry Additives Solvent (mL) t(h) / T(ºC) Yield (%)a 

1 - AcOH 36 / 120 n.d. 

2 - AcOH : H2O (0.9 : 0.1) 36 / 120 3 

3 AgTFA AcOH : H2O (0.9 : 0.1) 36 / 120 13 

4 AgOAc AcOH : H2O (0.9 : 0.1) 36 / 120 <1 

5 - CF3COOH : H2O (0.9 : 0.1) 36 / 120 29 

6b - CF3COOH (1.0) 36 / 120 61 

7b - CF3COOH (1.0) 36 / 90 4 

8b - CF3COOH (1.0) 36 / 140 78 

9b - CF3COOH (1.0) 12 / 140 31 

10b - CF3COOH (1.0) 24 / 140 59 

11b, c - CF3COOH (1.0) 36 / 140 66 

a Reactions were carried out with chitosan (0.2 mmol based on AGU 161 g/mol), 2-acetylpyridine (0.1 mmol), 2-

methylbenzaldehyde (0.2 mmol) and solvent (1.0 mL). Yields were determined by 1H-NMR analysis with CH2Br2 as 

the internal standard.
 b Chitosan was dried at 100 °C oven overnight.

 c Chitosan (0.2 mmol per AGU). 

 

3.2.3 Scope of substrates 

With the optimized reaction conditions in hand, we next explored the versatility of metal-free nitrogen 

interception from chitosan with various aldehydes for NCCs (Figure 35). Firstly, a series of aromatic 

aldehydes, including those having electron-donating or electro-withdrawing groups at different positions 

(ortho, meta or para) were subjected to the optimized conditions. As a result, these aldehydes could be 

efficiently transformed into the corresponding products 4-23 and 61. Aldehydes with electro-donating 

groups, such as methyl, isopropyl and methoxy group (4-12), are well compatible with the 

transformations, while a lower yield was obtained for substrate with hydroxyl group (13). In addition, 
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electro-withdrawing substituents, including halogen and trifluoromethyl groups, were well accommodated. 

Moderate yields were achieved for aldehydes with nitro and nitrile groups. It is noteworthy that the 

challenging para-dialdehyde also delivered the corresponding products with diverse conditions (23 and 

61). Furthermore, (E)-3-(4-(dimethylamino)phenyl)acrylaldehyde (87), 1-naphthaldehyde (24), 

nicotinaldehyde (25) and thiophene-2-carbaldehyde (26) were also amenable in our protocol. In addition 

to aromatic aldehydes, those aliphatic aldehydes (28, 30, 31 and 33) were well compatible with the 

conditions.  

We further investigated the viable scope of differently substituted pyridine ketone 1 as the general 

coupling partners for this transformation (Figure 36). The di(pyridin-2-yl)methanone and phenyl(pyridin-

2-yl)methanone were well compatible with the protocol (35 and 37). Pyridine ketones with electron-

donating groups (38-40) or electron-withdrawing groups (41-43) displayed good reactivity and delivered 

the corresponding products efficiently. These results indicated that the current protocol was not sensitive 

to the electronic or stereoscopic properties of pyridine ketones. Moreover, aliphatic cyclopentyl(pyridin-

2-yl)methanone (44) was also transformed efficiently. 
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Figure 35 Scope of aldehydes for synthesis of imidazo[1,5-a]pyridines. A mixture of 2-acetylpyridine 

(0.1 mmol), aldehydes (2.0 equiv.) and chitosan (3.0 equiv.) in CF3COOH (1.0 mL) was stirred at 140 ºC 

under Ar atmosphere for 36 h. Chitosan was dried at 100 ºC overnight. Yields are those of the isolated 
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products. a2-acetylpyridine (0.1 mmol), aldehyde (2.0 equiv.), chitosan (3.0 equiv) and CF3COOH (0.7 

mL), 4 days. b2-acetylpyridine (0.1 mmol), aldehyde (4.0 equiv.), chitosan (2.5 equiv) and CF3COOH (0.7 

mL), 36 h.  
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Figure 36 Scope of the pyridine ketones for synthesis of imidazo[1,5-a]pyridines. A mixture of pyridine 

ketone (0.1 mmol), 2-methylbenzoaldehyde (4.0 equiv.) and chitosan (2.5 equiv.) in CF3COOH (0.7 mL) 

was stirred at 140 ºC under Ar atmosphere for 36 h. Chitosan was dried at 100 ºC overnight. Yields are 

those of the isolated products. 

 

3.2.4 Applications  

N-heterocyclic compounds play an important role in materials and organic synthesis fields, especially as 

ligands in chemical transformations. Thus, the utilization of a sustainable protocol for the assembling of 

N-heterocyclic tridentate ligands is highly desirable. Herein, these tridentate ligands, 2-(1-(pyridin-2-
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yl)imidazo[1,5-a]pyridin-3-yl)phenol (46) and 3-(2-methoxyphenyl)-1-(pyridin-2-yl)imidazo [1,5-

a]pyridine (47), were accessed concisely through the interception of nitrogen from chitosan which further 

demonstrates the practical synthetic use of our method (Figure 37).  
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Figure 37 Synthesis of value-added tridentate ligands via incorporation of nitrogen from renewable 

chitosan. A mixture of di(pyridin-2-yl)methanone (0.1 mmol), aldehydes (4.0 equiv.) and chitosan (2.5 

equiv.) in CF3COOH (0.7 mL) was stirred at 140 ºC under Ar atmosphere for 36 h. Chitosan was dried at 

100 ºC overnight. Yields are those of the isolated products. 

 

Isotope labeling showed important applications on drug absorption, distribution, metabolism and 

excretion.251,252,255 Inspired by the H–D exchange between α-C–H of pyridine ketone and CF3COOD 

solvent, a variety of C(sp3)−H deuterated imidazo[1,5-a]pyridines derivatives was synthesized in one-pot 

procedure (Figure 38). Those aromatic aldehydes, pyridine aldehyde and cyclic aliphatic aldehyde were 

synthesized with deuterated incorporation of products (45-54). In addition, it is worth noting that the 

proton of the aromatic aldehyde with a hydroxy group and methoxy group could also be deuterated under 

this condition (46-48). 
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Figure 38 One-pot synthesis of deuterated C(sp3)–H bonds of imidazo[1,5-a]pyridine derivatives via 

incorporation of nitrogen from renewable chitosan. A mixture of 2-acetylpyridine (0.1 mmol), aldehydes 

(2.0 equiv.) and chitosan (3.0 equiv.) in CF3COOD (1.0 mL) was stirred at 140 ºC under Ar atmosphere 

for 36 h. Chitosan was dried at 100 ºC overnight. Yields are those of the isolated products. D 

incorporation was tested by 1H-NMR analysis. 

 

3.2.5 Synthesis of NCCs with chitin 

Furthermore, sustainable biomass chitin is proved to be a viable nitrogen source as well in this 

transformation, which could further bypass the deacylation process from chitin to chitosan and make the 

reaction more useful (Figure 39). As a result, a group of imidazo[1,5-a]pyridines were obtained under the 

standard conditions, including 3 (71%), 13 (71%), 15 (53%), 23 (29%), 26 (17%), 31 (26%), 39 (89%) 

and 41 (16%). Using chitosan as nitrogen sources in Fig. 2-5, these products can be obtained with higher 

yields, including 3 (76%), 13 (78%), 15 (70%), 23 (31%), 26 (28%), 31 (65%), 39 (92%) and 41 (44%). 

Despite the more advantages for these NCCs by chitin than chitosan, compared the yields of these 
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products by chitin with these by chitosan, chitosan shows better reaction efficiency to obtain higher yield 

of these products. 
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Figure 39 Direct utilization of chitin for the synthesis of imidazo[1,5-a]pyridines. Method for products 3, 

13, 15, 23 and 26, a mixture of 2-acetylpyridine (0.1 mmol), aldehydes (2.0 equiv.) and chitosan (3.0 

equiv.) in CF3COOH (1.0 mL) was stirred at 140 ºC under Ar atmosphere for 36 h. Method  for products 

31, 39 and 41, a mixture of pyridine ketones (0.1 mmol), aldehydes (4.0 equiv.) and chitosan (2.5 equiv.) 

in CF3COOH (0.7 mL) was stirred at 140 ºC under Ar atmosphere for 36 h. Chitosan was dried at 100 ºC 

overnight. Yields are those of the isolated products. 

 

3.2.6 Mechanistic studies  

11% of ammonium was trapped via 1H-NMR analysis, which could provide a support for the mainly 

release of nitrogen after the condensation to an intermediate, such as imidazo[1,5-a]pyridine-2,4-diium or 

imidazo[1,5-a]pyridin-4-ium (Figure 40a). Besides, an imidazo[1,5-a]pyridin-4-ium 4’ was confirmed by 

ESI-HRMS analysis (calc. for C15H15N2
+ [M]: 223.1230, Found: 223.1232) (Figure 40b), which reveals a 
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pathway for imidazo[1,5-a]pyridine 4 via deprotonation of 4’. Based on the control experiment (Figure 

40a-40b), a plausible reaction pathway was proposed. First, deacetylation takes place which enables the 

transformation of chitin to chitosan.295 Then, an imine intermediate is generated via the dehydration 

between an aldehyde substrate and an amine group of chitosan. The imine intermediate attacks a pyridine 

ketone substrate to form an iminium intermediate. Next, an imidazo[1,5-a]pyridine-2,4-diium 

intermediate forms via the intramolecular nucleophilic addition between pyridine and iminum in the 

backbone of iminium intermediate.296 With the help of TFA, the imidazo[1,5-a]pyridine-2,4-diium 

transfers to an imidazo[1,5-a]pyridin-4-ium (Figure 40b) via plausible pathways of dehydration and C–N 

bonds cleavage. Finally, an imidazo[1,5-a]pyridine generated via the deprotonation of the imidazo[1,5-

a]pyridin-4-ium. 
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Figure 40 Control experiments. (a) Control experiment for thermal deamination. (b) ESI-HRMS analysis 

of intermediate.  

 

3.3 Publication 3: Anomeric Stereoauxiliary-organocatalyzed One-pot Site-selective C2-aldehylation 

for Trisubstituted Indolizine-2-carbaldehydes 

3.3.1 Background 

Indolizines are an important group of N-heterocyclic compounds that play pivotal roles in pharmaceutics 

(Figure 41a),297-303 materials science,304 and chemical feedstocks.305,306 The easily modifiable 

carbaldehyde group makes indolizine-carbaldehyde a precursor for versatile indolizine products. 

Although tremendous progress has been made in the preparation of indolizines mainly by Scholtz 
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reaction,307,308 Tschitschibabin reaction,309,310 pyridinium N-methylides,311,312 and cyclization of alkynes 

with heteroaromatic compounds,236,313,314 the chemical construction of indolizine-carbaldehydes with a 

direct site-selectivity (C1/C2/C3) has been a long-standing challgenge for synthetic chemists.  

Various strategies for direct site selectivity on C1/C3 of indolizine-carbadlehydes have been reported so 

far. i) Representative strategies for C1 site-selectivity. In 2018, Li group reported the iron-catalyzed 

aerobic oxidation of pyridine and allenoate for the preparation of trisubstitued indolizine-1-

carbaldehydes.315 It is highly dependent on specific allenoate substrates with electron-withdrawing groups 

and the traditional pyridinium N-methylides route. ii) Representative strategies for C3 site selectivity. In  

1984 and 2017, a four-step synthesis of trisubstituted indolizine-3-carbaldehydes was reported.316,317 This 

method first requires the synthesis of indolizines via a traditional pyridinium N-methylide strategy, 

followed by the introduction of a carbaldehyde group at the C3 position via a non-green Vilsmeier reagent. 

In addition, in 2017, Wang group developed a novel amine-N-heterocyclic carbene relay catalysis strategy 

for the preparation of trisubstituted indolizine-3-carbaldehyde.318 Although indolizine-3-carbaldehyde is 

efficiently synthesized via a relay co-organocatalyst, this method is still limited to pyridine substrates 

with 2-substituted electron-withdrawing groups, which greatly limites the accessible substrates.  

In contrast, there are few effective strategies for the site-selective C2-aldehylation of indolizine-

carbadlehyde, especially for trisubstituted indolizines. In 2016, Biagetti et al. synthesized 1,2-

disubstituted indolizine-2-carbaldehyde derivatives in 6 steps (Figure 41b).202 Two years later, a 

monosubstituted indolizine-2-carbaldehyde was prepared in two steps by using a commercial indolizine-

2-carboxylic acid, for just one example.203 However, these two C2 site-selective strategies are highly rely 

on multiple synthetic steps using non-green expensive reagents (first four-steps construction of 

disubstituted indolizines with C2-substituted carboxyl group via precious metal catalyst, followed by 

introduction of a carbaldehyde on indolizine through reduction and oxidation processes)202 or expensive 

and rare commercial feedstocks such as monosubstituted indolizine-2-carboxylic acid (395.57 €/g from 

Sigma company) via amidation and reduction processes.203 In addition, only a few examples of mono-

substituted indolizine-2-carbaldehyde have been constructed, while the high value-added 1,2,3-

trisubstituted indolizine-2-carbaldehyde is still not available. In 2021, Zhao et al. reported a metal-free 

catalytic method using acetic acid as a solvent for 2-acylindolizine and indolizine-2-carbaldehydes.319 

This method is limited to internal enones and 1-aryl-indolizine. In particular, the method was significantly 

less efficient for 1-alkyl-2-acylindolizine (20%-24%) and cyclic indolizine (8%). 

Due to the challenges of sensitive functional groups, regioselectivity, and strong steric shielding, there is 

currently no efficient one-pot method for the construction of 1,2,3-trisubstituted indolizine-2-

carbaldehydes derivatives by dehydration [3+2] cyclization of cinnamaldehyde and 2-acetylpyridine. As 
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the most severe challenge, 2-acetylpyridine readily attacks the carbonyl group of cinnamaldehyde with a 

base,240 while 2-acetylpyridine activated by metal-based Lewis acid can attack the β-position of α,β-

unsaturated aldehydes in the presence of secondary organoamine as catalysts.320  

Asymmetric organocatalysis is one of the most thriving research domains in contemporary organic 

synthesis.161-166 Until today, aminocatalysis with iminium and enamine catalysis modes has drawn much 

attention.178-183,185,186  However, the marjority of chiral skeleton aminocatalysts are provided by artificially 

designed adjustable steroauxiliary group, which provide strong steric shielding for regioselectivity and 

stereoselectivity control. Thus, it is attractive to utilize an inexpensive aminocatalyst with a natural charil 

backbone. Commercially available D-glucosamine as an amino-containing monosaccharide is ubiquitous 

in nature derived from chitin.268 Sugar-derived thiourea organocatalysis has only been reported as a few 

examples.190-192 Up to now, there are no examples of aminocatalysis using carbohydrates alone. Inspired 

by the regioselective-controlled aminocatalysis strategy and the different stereochemical structures of α/β-

anomers of D-glucosamine, we demonstrate for the first time a novel synthetic strategy using β-anomeric 

glucosamine as a steroeoauxiliary amincatalyst for one-pot site-selective construction of 1,2,3-

trisubstituted indolizine-2-carbaldehydes (Figure 41c). To overcome the above challenges, we used 

Brønsted acids to stabilize the methyl group of 2-acetylpyridine and hinder the deprotonation of the 

methyl group.243 In addition, lithium cations are used to stabilize oxygen anions and activate 

cinnamaldehyde.321 
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Figure 41 (a) Pharmaceuticals derived from indolizine. (b) The representative example of previous 

approaches for indolizine-carbaldehydes with site-selective C2-aldehylation.  [O] Means oxidation process. 

[R] Means reduction process. [A] Means amidation process. (c) Our strategy: An anomeric 
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stereoauxiliary organocatalysis by glucosamine enables one-pot site-selective for trisubstituted indolizine-

2-carbaldehydes. (d) Optimized aminocatalysts for 1,2,3-trisubstituted indolizine-2-carbaldehydes via 

one-pot reaction. NCS means N-chlorosuccinimide. DIBAL means diisobutylaluminum hydride. 

 

3.3.2 Optimization studies 

We initiated our studies using cinnamaldehyde (89a) and 2-acetylpyridine (1a) as substrates to evaluate 

the envisioned aminocatalyzed [3+2] cyclization reaction for the synthesis of desired 1-methyl-3-

phenylindolizine-2-carbaldehyde (4). At the outset, without catalyst, the reaction was tested with a trace 

yield of product 4 with a mixture of 89a (0.2 mmol), 1a (2.5 equiv.), LiSO3CF3 (3.0 equiv.) and acetic 

acid (2.0 equiv.) in CF3CH2OH (0.9 mL) for 18 h under Ar gas atmosphere (Figure 41d). Then, we 

examed various aminocatalysts (Figure 41d). By using (S)-diphenyl(pyrrolidin-2-yl)methanol (90a) and 

(S)-2-(diphenyl((trimethylsilyl)oxy)methyl)pyrrolidine (90b) as catalysts, a low yield of product 4 was 

achieved. Next, diverse sustainable aminocatalysts, including glycine (90c), (tert-butoxycarbonyl)-L-

valine (90d), 1,3,4,6-tetra-O-acetyl-2-amino-2-deoxy-β-D-glucopyranose hydrochlorid (3b) and 1,3,4,6-

tetra-O-acetyl-2-amino-2-deoxy-α-D-glucopyranose hydrochloride (3c), were investigated under the same 

conditions. As a result, a low yield of 4 was obtained with 90c and 90d. Surprisingly, 97% yield of 4 was 

smoothly delivered by using catalyst 3b, while 3c only achieved 53% yield of 4. Based on all these results, 

3b was taken as the optimal aminocatalyst. In addition to amine-containing catalysts showing the central 

function for the efficient reaction, acetic acid plays an important role. Without acetic acid, the yield of 4 

decreased obviously from 97% to 44%.243 As well, the amount of LiSO3CF3 (2 equiv.) and 2-

acetylpyridine (1.5 equiv.), reaction time (12 h) and reaction temperature (25 ˚C and 50 ˚C) also affected 

the yields.  

 

3.3.3 Mechanistic studies  

To gain insight into the reaction mechanism, a set of control experiments were conducted (Figure 42a-

42d). First, under standard condition, catalyst 3b with β-anomer was examed to smoothly achieve 97% 

yield of 4, while catalyst 3c with α-anomer only yielded 53% of 4 (Figure 42a and 42c), which obviously 

demonstrates the presence of a strong steric shielding from α-anomer that affects the efficient conversion 

for the desired product 4. In the further control groups, 90p with β-anomer and 90q with α-anomer were 

tested under the same conditions (Figure 42b and 42d). Interestingly, product 4 with 51% yield was 

obtained using 90p (β-anomer), while 90q (α-anomer) could only deliver 16% yield. Thus, the imine 
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reaction pathway via aminocatalyst preferentially reacting with α,β-unsaturated aldehydes is reasonable. 

Besides, the lower yield with 90q (α-anomer) further provides a strong support for the existing bukyl 

steric hinderance from acetyl group at C1-position in 90q. Therefore, control experiments in Figure 42 

clearly demonstrated that a stereoauxiliary effect favored by β-anomer as well as a steric shielding effect 

from α-anomer obviously show a tremendous difference during the [3+2] cyclization for the preparation 

of 1,2,3-trisubstituted indolizine-2-carbaldehydes. 
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Figure 42 Stereoauxiliary control experiments. (a)-(d) Control experiments with intermediates of 

different anomers: stereoauxiliary from β-anomer, while steric shielding from α-anomer.  

 

Combining all results, the plausible mechanism is proposed (Figure 43). First, aminocatalyst A reacts 

with α,β-unsaturated aldehyde B to form iminue ion D.180 Then, the 2-acetylpyridine attacks the iminue 

ion D via Michael addition reaction to generate an enamine E.163,180 Because there is the bulkyl steric 

hinder between R1 and R2, which could hinder the cyclization of E. Thus, an enamine F was formed by 
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the conversion of E via a rotation. Next, an intermediate G forms via the intramolecular cyclization 

reaction in the enamine F. Then, an intermediate H generates through a dehydration reaction in the 

intermediate G.  After that, an intermediate I forms from the deprotonation reaction of H. Finally, an 

indolizine J generates via the hydrolysis reaction of intermedidate I and the catalyst A regenerates to inter 

next catalysis cycle. 
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Figure 43 Proposed mechanism.  

 

3.3.4 Scope of substrates  

With the optimized reaction conditions in hand, we next probed the scope of various α,β-unsaturated 

aldehydes using 2-acetypyridine as a representative heteroaryl ketone (Figure 44a). A series of α,β-

unsaturated aldehydes, including those with electron-donating or -withdrawing groups at different 

positions (ortho, meta or para), were unprecedentedly delivered to the corresponding products 91-100. 

An array of valuable products 91-95 were efficiently accessed with this aminocatalyzed protocol. Notably,  
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Figure 44 [3+2] annulations for indolizine-2-carbaldehydes. (a) Scope of aldehydes. (b) Scope of the 

heteroaryl ketones.  aReaction for 36 h in AcOH : CF3CH2OH (0.4 : 0.5 mL). bAcOH (4.0 equiv.) and 

reaction for 42 h at r.t. cReaction time 36 h. Yields are those of isolated products. 

 

in our system, a substrate with an electron-donating methoxy group at ortho position (93, 95%) could 

even achieve a higher yield than those at para position (92, 63%). Surprisingly, a native valuble substrate 

from gliricidia sepium with a hydroxyl group and a methoxy group was smoothly transformed into a 

value-added indolizine-2-aldehyde with a moderate yield of 63% (94). Interestingly, an important 

substrate for detection of catechins was also tolerant under this method with a 46% yield (95). Meanwhile, 

a variety of valuable funcational groups at diverse positions, such as fluoro (96), chloro (97), bromo (98, 

99), and nitro groups (100), were well compatible with these conditions. Particularly, the sensitive (E)-3-

(furan-2-yl)acrylaldehyde was also tolerated in this protocol and was successfully transformed into 

desired product (101). Moreover, aliphatic α,β-unsaturated aldehyde was also well compatible under the 

optimal conditions (102).  

We further explored heteroaryl ketones with cinnamaldehyde as a standard substrate (Figure 44b). 

Di(pyridin-2-yl)methanone and pyridin-2-yl(pyridin-4-yl)methanone were well compatible with the 

conditions and smoothly achieved 95% (103), 83% (104) and 85% yield (105), respectively. Diverse 

aromatic pyridine ketones, including those having electron-donating or -withdrawing groups at distinct 

positions (ortho, meta or para) were well transformed into the corresponding products (106-112). Various 

vavluble functional groups at distinct positions (ortho, meta or para), including methoxy (109), 

trifluoromethyl (110), bromo (111) and dibromo (112), were well tolerated undert this condition. The 

structure of 106 was further confirmed by X-ray crystallographic analysis, and those of other products in 

Figure 44 were assigned by analogy. It is worth to note that cyclopentyl(pyridin-2-yl)methanone (113) 

and ethyl 3-oxo-3-(pyridin-2-yl)propanoate (114) were also unprecedentedly transformed into valuble 1-

alkyl-3-arylindolizine-2-carbaldehydes with the protocol. Surprisingly, 1-(3-methylpyrazin-2-yl)ethan-1- 

was also compatible with the condition (115).  

 

3.3.5 Applications  

Indolizines show important biological acticities. To obtain diverse value-added indolizine, it is attractive 

to introduce a modifiable aldehyde group in an indolzine backbone. Thus, these valuable indolizine-2-

carbaldehydes was achieved via 6 steps with complex conditions202 and 2 steps with rare expensive 

feedstocks (Figure 45a).322 Compared with their protocols via carboxylation and reduction for the desired 



60 
 

products, we efficiently achieved a group of value-added 1,2,3-trisubstituted indolizine-2-carbaldehydes 

via totally 2 steps via aminocatalyzed [3+2] cyclization reaction. Besides, a group of important bioactive 

molecules or drugs was investigated in our protocol (Figure 45b). Surprisingly, an important fluvastatin 

intermediate was unprecedentedly accessed by our protocol for the preparation of value-added indolizine-

2-carbaldehyde (116). As well, (E)-3-(4-hydroxy-3-methoxyphenyl)acrylaldehyde from gliricidia sepium 

was also tolerant under the optimal conditions, which led to 3-(4-hydroxy-3-methoxyphenyl)-1-(pyridin-

2-yl)indolizine-2-carbaldehyde (117) with 79% yield. Interestingly, (E)-3-(4-(dimethylamino)phenyl) 

acrylaldehyde that is often used to detect catechins323 was also smoothly transformed into 3-(4-

(dimethylamino)phenyl)-1-(pyridin-2-yl)indolizine-2-carbaldehyde (118). Furthermore, the obtained 

indolizine-2-carbaldehydes could be readily late-stage diversified, thus providing more complex 

molecules in an efficient manner (Figure 45c). Namely, 3-(4-bromophenyl)-1-(pyridin-4-yl)indolizine-2-

carbaldehyde (104) underwent reduction (119), arylation (120), acylation (121) or dehydration [5+1] 

annulations (122), showcasing the synthetic power of 1,2,3-trisubstituted indolizine-2-carbaldehydes that 

were assembled via our robust stereoaxuliary aminocatalysis. Finally, our anomeric stereoauxiliary 

aminocatalysis strategy was first time expanded beyond the library of indolizine-2-carbaldehydes to 2-

acylindolizines (123) and (124) (Figure 45d).  
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Figure 45 Synthetic applications. (a) Comparison previous protocols with our strategy for indolizine-2-

carbaldehyde. (b) Late-stage selective modifications of bioactive molecules and drugs. (c) Late-stage 

transformation applications. (d) Preliminary expansion of the anomeric stereoauxiliary aminocatalysis 

strategy beyond α,β-unsaturated aldehyde to enone. aYields are those of isolated products. bReaction for 

42 h in AcOH : CF3CH2OH (0.45 : 0.45 mL). cReaction for 42 h in AcOH : CF3CH2OH (0.4 : 0.5 mL). 
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4. General conclusions and perspectives 

Chitin/chitosan/glucosamine has been increasingly used as a sustainable, environmentally-benign and 

economically-attractive N-containing biomass for organic synthesis of value-added N-heterocyclic 

products. The work in this thesis focuses on developing sustainable strategies for the preparation of value-

added imidazo[1,5-a]pyridines and indolizines via cyclization reactions from the N-containing biomass. 

In the first project, we developed a novel α-anomeric stereoauxiliary strategy for the facile preparation of 

a broad range of imidazo[1,5-a]pyridines, which features the cleavage of C−N bonds of D-glucosamine 

through a seven-membered ring transition state intermediate and the simultaneous incorporation of amine 

moieties into valuable imidazo[1,5-a]pyridines (Figure 46). This method unlocks efficient access to 

diverse imidazo[1,5-a]pyridine derivatives bearing sensitive functional groups that are inaccessible with 

conventional approaches. Various control experiments and DFT calculations revealed that the hydroxyl 

group of α-anomer promoted the formation of a seven-membered ring transition state with the acetate 

anion via hydrogen bonds. The ring structure in the α-anomer transition state (TSα) not only helped to 

stabilize the intermediate during the C−N bond cleavage, but also profited from the dispersion 

interactions brought by the neighboring aromatic ring. Given the importance of imidazo[1,5-a]pyridines  

and C−N bonds cleavage of aliphatic amine, we believe that this approach with combined anomer-

assisting C−N bonds cleavage by using native stereochemistry of D-glucosamine and the synthesis of 

imidazo[1,5-a]pyridines will be of significant and general interest for many fields, and opens a new 

window for chemical synthesis.  
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Figure 46 Anomeric stereoauxiliary strategy enables efficient synthesis of wide-ranging imidazo[1,5- 

a]pyridines 
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In the second project, we have developed a new strategy for the rapid assembly of NCCs with an ample 

scope through the direct use of native nitrogen sources from biomass (Figure 47). This strategy is 

achieved through a one-pot conversion approach of chitin/chitosan by cleaving the C–N bonds and 

simultaneously integrating the nitrogen in the synthesis of a broad range of imidazo[1,5-a]pyridines (52 

examples) that show diverse potential applications. A broad group of previously inaccessible products 

including saturated 1-alkylimidazo[1,5-a]pyridines is unprecedently synthesized by this protocol. The 

amine groups of chitin/chitosan backbone are intercepted via aldehyde and pyridine ketone assisted with 

CF3COOH under metal-free conditions. We believe this approach will initiate research endeavors for the 

targeted efficient incorporation of nitrogen from biomass for high-value NCCs. 
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Figure 47 Direct nitrogen interception from chitin/chitosan for imidazo[1,5-a]pyridines. 

 

In the third project, we developed a novel β-anomeric stereoauxiliary glucosamine-catalyzed strategy that 

first time allows one-pot site-selective C2-aldehylation for efficient preparation of 1,2,3-trisubstituted 

indolizine-2-carbaldehydes (Figure 48). Utilization of this aminocatalysis strategy with native chiral 

skeletons for the highly regioselective control, this one-pot approach expands the scope of readily 

accessible trisubstituted indolizine-2-carbaldehydes relative to existing state-of-the-art methods by multi-

steps to introduce carbaldehyde only for mono/di-substituted indolizine-2-carbaldehyde. This method not 

only enable the efficient C2-aldehylation of a range of commercial α,β-unsaturated aldehydes and 

bioactive molecules or drugs, it has been expanded beyond α,β-unsaturated aldehyde to enone. Overall, 

our anomeric stereoauxiliary catalytic system provides a promising solution towards addressing the 

challenge associated with indolizine formation with site-selective C2 aldehylation, on which ongoing 

work is targeted to apply this strategy towards developing a wider range of catalytic applications. 
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Figure 48 Anomeric stereoauxiliary-organocatalyzed one-pot site-selective C2-aldehylation for 

trisubstituted indolizine-2-carbaldehydes 
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5. Experimental section 

5.1 General Remarks 

NMR spectra were recorded on Inova 500 or Bruker Avance III 300, Avance III 400 and Acance III HD 

500 in the solvent indicated. Chemical shifts are provided in ppm and spectra refer to non-deuterated 

solvent signal. Yields refer to isolated compounds estimated to be >95% pure as determined by 1H-NMR. 

Chromatography was carried out on silica gel (40–63 µm). ESI mass spectra were recorded on Bruker 

Daltonic spectrometers maXis (ESI-QTOF-MS) and micrOTOF (ESI-TOF-MS). GC-MS spectra was 

performed on an Agilent Technologies chromatograph 7820A GC System and Agilent Technologies 

5977E system. GC calibrations were carried out with authentic samples and n-dodecane as an internal 

standard. FT-IR spectra were recorded on Alpha FT-IR Spectrometer (Bruker, Germany) at room 

temperature. All samples were measured between 4000 and 500 cm-1 with a resolution of 4 cm-1 using 

Platinum ATR and accumulated 24 scans. Melt point were recorded on melting point apparatus, 

Electrothermal IA 9200. The following starting chemicals were synthesized according to previously 

described methods: 1d-1k.324 Unless otherwise specified, the chemicals were obtained commercially and 

used without further purification. All reactions were performed under an atmosphere of Ar unless 

specified otherwise. 

 

5.2 General Procedures 

General procedure A: Preparation of pyridines ketones substrates  

The following starting chemicals were synthesized according to previously described methods: 1d-1k.324. 

A solution of dry THF (15 mL) with bromobenzene (10.0 mmol, 1.00 equiv.) was dropwised into 

magnesium (12 mmol, 1.2 equiv.) and the mixture solution was stirred in Ar gas in room temperature. 

After the formation of the Grignard reagent (the color changed to gray), then stopped it. At the same time, 

picolinonitrile (8 mmol, 0.8 equiv.) was dissolved in dry THF (10 mL), which was dropwised into the 

former mixture solution of Grignard reagent at 0 ˚C. After the reaction completely, it was quenched by 

saturated NH4Cl aqueous solution. The organic layer was separated and extracted twice by CH2Cl2. After 

evaporation, the organic layer was re-dissolved in Et2O (30 mL) and 6 M HCl (6 mL) was added into the 

solution. After 30 min, the organic layer was separated. The aqueous layer was basified by saturated 

NaHCO3 aqueous solution and then extracted three times by CH2Cl2. The combined organic layers were 

dried over Na2SO4 and evaporated in rotary evaporator. The residue was purified by column 

chromatography with n-hexane and ethyl acetate to afford 1b. Other pyridine ketones 1c−1i were 

prepared with the similar procedures, and characterized by NMR analysis. 
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General procedure B: Anomeric stereoauxiliary cleavage of the C−N bond of D-glucosamine for the 

preparation of imidazo[1,5-a]pyridines  

General procedure B1 

A mixture of pyridine ketone (0.1 mmol), aldehydes (2 equiv.) and D-glucosamine·HCl (2.0 equiv.) in 

AcOH : H2O (0.9 : 0.1 mL) were stirred at 120 ˚C under Ar atmosphere for 36 h.  

General procedure B2 

A mixture of pyridine ketone (0.1 mmol), aldehydes (4 equiv.) and D-glucosamine·HCl (2.0 equiv.) in 

AcOH : H2O (0.9 : 0.1 mL) were stirred at 120 ˚C under Ar atmosphere for 36 h. 

Workup: The reaction was conducted in a sealed Schlenk flask and heated by an IKA magnetic heating 

agitator with oil bath. The reaction temperature was directly read from temperature detector of IKA 

apparatus and was calibrated by thermometer. After cooling to room temperature, the reaction mixture 

was concentrated with rotary evaporator, the crude product was purified with flash chromatography on 

silica gel (ethyl acetate : n-hexane : Et3N) to give products 4-62. The deuterated products 66-86 were 

synthesized through an analogous procedure to method B1 using AcOH-d4 : D2O (0.9 mL : 0.1 mL) as 

solvent. More experimental details and characterization are available in the Supporting Information. 

 

General procedure C: Direct nitrogen interception from chitin/chitosan for imidazo[1,5-a]pyridines 

General procedure C1 

A mixture of 2-acetylpyridines (0.1 mmol), aldehydes (2.0 equiv.) and chitosan (3.0 equiv.) in CF3COOH 

(1.0 mL) was stirred at 140 ºC under Ar atmosphere for 36 h. Chitosan was dried at 100 ºC overnight. 

General procedure C2 

A mixture of pyridine ketone (0.1 mmol), 2-methylbenzoaldehyde (4.0 equiv.) and chitosan (2.5 equiv.) 

in CF3COOH (0.7 mL) was stirred at 140 ºC under Ar atmosphere for 36 h. Chitosan was dried at 100 ºC 

overnight. 

General procedure C3 

A mixture of pyridine ketone (0.1 mmol), aldehydes (2.0 equiv.) and chitin (3.0 equiv.) in CF3COOH (1.0 

mL) was stirred at 140 ºC under Ar atmosphere for 36 h. Chitin was dried at 100 °C overnight. 
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General procedure C4 

A mixture of pyridine ketone (0.1 mmol), aldehydes (4.0 equiv.) and chitin (2.5 equiv.) in CF3COOH (0.7 

mL) was stirred at 140 ºC under Ar atmosphere for 36 h. Chitin was dried at 100 °C overnight. 

General procedure C5 

A mixture of 2-acetylpyridines (0.1 mmol), aldehydes (2.0 equiv.) and chitosan (3.0 equiv.) in CF3COOD 

(1.0 mL) was stirred at 140 ºC under Ar atmosphere for 36 h. Chitosan was dried under 100 ºC oven 

overnight. 

 

Workup: The reaction temperature was directly read from temperature detector of IKA apparatus and was 

calibrated by a thermometer. After cooling to room temperature, the reaction mixture was basified up to 

pH = 7 via stad. Na2CO3 aqueous solution and then extracted by Et2O (3×3.0 mL) and dried over 

anhydrous Na2SO4. After filtration and concentration in a rotary evaporator, the crude product was 

purified with flash chromatography on silica gel (EtOAc: n-hexane: Et3N) to give the desired products. 

 

General procedure D: Anomeric stereoauxiliary-organocatalyzed one-pot site-selective C2-

aldehylation for trisubstituted indolizine-2-carbaldehydes  

General procedure D1 

A mixture of α,β-unsaturated aldehydes or ketones (0.2 mmol), heteroaryl ketones (2.5 equiv.), catalyst 

3b (0.04 mmol), AcOH (2.0 equiv.) and LiSO3CF3 (3.0 equiv.) in the CF3CH2OH (0.9 mL) were stirred at 

80 ºC under Ar atmosphere for 18 h.  

General procedure D2 

A mixture of α,β-unsaturated aldehydes (0.2 mmol), heteroaryl ketones (2.5 equiv.), catalyst 3b (0.04 

mmol) and LiSO3CF3 (3.0 equiv.) in the CF3CH2OH : AcOH (0.5 : 0.4 mL) were stirred at 80 ºC under Ar 

atmosphere for 36 h.   

General procedure D3 

A mixture of α,β-unsaturated aldehydes (0.2 mmol), heteroaryl ketones (2.5 equiv.), catalyst 3b (0.04 

mmol), AcOH (4.0 equiv.) and LiSO3CF3 (3.0 equiv.) in the CF3CH2OH (0.9 mL) were stirred at room 

temperature under Ar atmosphere for 42 h.   
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General procedure D4  

A mixture of α,β-unsaturated aldehydes (0.2 mmol), heteroaryl ketones (2.5 equiv.), catalyst 3b (0.04 

mmol), AcOH (2.0 equiv.) and LiSO3CF3 (3.0 equiv.) in the CF3CH2OH (0.9 mL) were stirred at 80 ºC 

under Ar atmosphere for 36 h.   

Workup: The reactions were conducted in a sealed Schlenk tube and heated by an IKA magnetic heating 

agitator with heating block. The reaction temperature was directly read from temperature detector of IKA 

apparatus and was calibrated by thermometer. After cooling to room temperature, the reaction mixture 

was basified up to pH 7 via stad. Na2CO3 aqueous solution, then extracted by diether (3×3 mL) and dried 

over anhydrous Na2SO4. After filtration and concentrated in rotary evaporator, the crude product was 

purified with flash chromatography on silica gel (ethyl acetate : n-hexane) to give products. 

 

5.3 Characterization Data 

5.3.1 Preparation of pyridines ketones substrates 

1d

N

O

 

phenyl(pyridin-2-yl)methanone (1d): Following the General procedure A, work-up gave product 1d 

(1189.5 mg, 6.5 mmol, isolated yield 65%) as a yellow oil. 1H NMR (400 MHz, CDCl3): δ 8.61 (ddd, J = 

4.8, 1.6, 0.8 Hz, 1H), 7.98 – 7.95 (m, 2H), 7.92 (d, J = 8.0 Hz, 1H), 7.77 (td, J = 8.0, 1.6 Hz, 1H), 7.50 – 

7.46 (m, 1H), 7.39 – 7.34 (m, 3H). 13C NMR (100 MHz, CDCl3): δ 193.64, 154.9, 148.4, 136.9, 136.1, 

132.7, 130.8, 128.0, 126.0, 124.4. The compound is known, and the NMR data is in accordance with the 

previous literature.325 

 

N

O Me

1e  

pyridin-2-yl(o-tolyl)methanone (1e): Following the General procedure A, work-up gave product 1e 

(1004.7 mg, 5.1 mmol, isolated yield 51%) as a yellow oil. 1H NMR (400 MHz, CDCl3): δ 8.61 (d, J = 

5.2 Hz, 1H), 8.00 (d, J = 8.0 Hz, 1H), 7.80 (t, J = 7.6 Hz, 1H), 7.39 – 7.30 (m, 3H), 7.21 – 7.15 (m, 2H), 

2.30 (s, 3H). 13C NMR (100 MHz, CDCl3): δ 197.4, 155.0, 149.1, 137.8, 137.3, 136.9, 131.1, 130.9, 
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129.9, 126.4, 125.0, 124.1, 20.4. The compound is known, and the NMR data is in accordance with the 

previous literature.326 

 

1f

N

O

Me

 

pyridin-2-yl(p-tolyl)methanone (1f): Following the General procedure A, work-up gave product 1f 

(1241.1 mg, 6.3 mmol, isolated yield 63%) as a brown oil. 1H NMR (400 MHz, CDCl3): δ 8.61 (d, J = 

4.4 Hz, 1H), 7.91 – 7.87 (m, 3H), 7.79 – 7.75 (m, 1H), 7.38 – 7.34 (m, 1H), 7.18 (d, J = 8.0 Hz, 2H), 2.32 

(s, 3H). 13C NMR (100 MHz, CDCl3): δ 193.4, 155.3, 148.4, 143.7, 136.9, 133.5, 131.0, 128.8, 125.9, 

124.4, 21.6. The compound is known, and the NMR data is in accordance with the previous literature.325 

 

N

O

OMe

1g  

(4-methoxyphenyl)(pyridin-2-yl)methanone (1g): Following the General procedure A,  work-up gave 

product 1g (1597.5 mg, 7.5 mmol, isolated yield 75%) as a white solid. 1H NMR (400 MHz, CDCl3): δ 

8.64 (d, J = 4.4 Hz, 1H), 8.05 (d, J = 7.2 Hz, 2H), 7.92 (d, J = 8.0 Hz, 1H), 7.81 (t, J = 7.6 Hz, 1H), 7.41 – 

7.38 (m, 1H), 6.90 (d, J = 8.8 Hz, 2H), 3.81 (s, 3H). 13C NMR (100 MHz, CDCl3): δ 192.3, 163.5, 155.8, 

148.3, 137.0, 133.5, 129.0, 125.8, 124.5, 113.5, 55.5. The compound is known, and the NMR data is in 

accordance with the previous literature.325 

 

N

O

CF3
1h  

pyridin-2-yl(4-(trifluoromethyl)phenyl)methanone (1h): Following the General procedure A, work-

up gave product 1h (1129.5 mg, 4.5 mmol, isolated yield 45%) as a yellow oil. 1H NMR (400 MHz, 

CDCl3): δ 8.64 – 8.62 (m, 1H), 8.09 (d, J = 8.0 Hz, 2H), 8.03 (d, J = 8.0 Hz, 1H), 7.84 (td, J = 8.0, 1.6 Hz, 

1H), 7.65 (d, J = 8.0 Hz, 2H), 7.43 (ddd, J = 7.6 Hz, 4.8, 1.2 Hz, 1H). 13C NMR (100 MHz, CDCl3): δ 

192.7, 154.1, 148.6, 139.3 (q, 4JC-F = 1.2 Hz), 137.25 , 133.85 (q, 2JC-F = 32.6 Hz), 131.2, 126.7, 125.0 (q, 
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3JC-F = 3.8 Hz), 124.7, 123.7 (q, 1JC-F = 270.9 Hz), 115.4. 19F NMR (375 MHz, CDCl3): δ -63.13. The 

compound is known, and the NMR data is in accordance with the previous literature.327 

 

N

O

Br

1i  

pyridin-2-yl(4-(trifluoromethyl)phenyl)methanone (1i): Following the General procedure A, work-

up gave product 1i (1357.2 mg, 5.2 mmol, isolated yield 52%) as a pale yellow solid. 1H NMR (400 MHz, 

CDCl3): δ 8.61 (d, J = 5.5 Hz, 1H), 7.98 – 7.88 (m, 3H), 7.83 – 7.79 (m, 1H), 7.53 (d, J = 8.6 Hz, 2H), 

7.41 – 7.38 (m, 1H). 13C NMR (100 MHz, CDCl3): δ 192.5, 154.5, 148.4, 137.1, 134.9, 132.5, 131.3, 

128.1, 126.4, 124.6. ESI-HRMS: m/z calcd. for C12H8BrNO [M+H]+: 261.9868, found 263.9846. The 

compound is known, and the NMR data is in accordance with the previous literature.328 

 

N

O

Br

Br
1j  

(3,5-dibromophenyl)(pyridin-2-yl)methanone (1j): Following the General procedure A, work-up 

gave product 1j (1186.2 mg, 3.5 mmol, isolated yield 35%) as a white green solid. 1H NMR (400 MHz, 

CDCl3): δ 8.67 – 8.66 (m, 1H), 8.11 (s, 2H), 8.02 (d, J = 8.0 Hz, 1H), 7.87 – 7.83 (m, 1H), 7.80 (s, 1H), 

7.48 – 7.44 (m, 1H). 13C NMR (100 MHz, CDCl3): δ 190.6, 153.7, 148.7, 139.2, 137.8, 137.3, 132.6, 

126.9, 124.8, 122.7. ESI-HRMS: m/z calcd. for C12H7Br2NO [M+H]+: 339.8973, found 339.8969.   

 

N

O

N

O

1k  

1,4-phenylenebis(pyridin-2-ylmethanone) (1k): Following the General procedure A, work-up gave 

product 1k (316.8 mg, 1.1 mmol, isolated yield 11%) as a yellow solid. 1H NMR (400 MHz, CDCl3): δ 

8.67 – 8.65 (m, 2H), 8.09 (d, J = 0.8 Hz, 4H), 8.02 (dd, J = 7.6, 1.2 Hz, 2H), 7.88 – 7.83 (m, 2H), 7.46 – 

7.43 (m, 2H). 13C NMR (100 MHz, CDCl3): δ 193.3, 154.4, 148.6, 139.4, 137.1, 130.5, 126.5, 124.6. 
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ESI-HRMS: m/z calcd. for C18H12N2O2 [M+H]+: 289.0977, found 289.0972. The compound is known, 

and the NMR data is in accordance with the previous literature.328 

 

5.3.2 Anomeric stereoauxiliary strategy enables efficient synthesis of wide-ranging imidazo[1,5-

a]pyridines 

4

Me

N
N

Me

 

Methyl-3-(o-tolyl)imidazo[1,5-a]pyridine: Following the General procedure B1, a mixture of 2-

acetylpyridine (0.1 mmol), 2-methylbenzaldehyde (2 equiv.) and D-glucosamine·HCl (2.0 equiv.) in 

AcOH : H2O (0.9 : 0.1 mL) were stirred at 120 ˚C under Ar atmosphere for 36 h. Work-up gave product 4 

(14.4 mg, 0.065 mmol, isolated yield 65%) as a yellow liquid. FT-IR: ν (cm-1): 3066, 2924, 2852, 1671, 

1630, 1605, 1554, 1515, 1451, 1412, 1362, 1319, 1247, 1140, 1107, 1072, 1037, 1006, 940, 865, 808, 773, 

734, 694, 657, 596, 575, 546, 492, 447, 418. 1H NMR (300 MHz, CDCl3): δ 7.41 (d, J = 7.2 Hz, 1H), 

7.35 – 7.17 (m, 5H), 6.53 – 6.48 (m, 1H), 6.35 – 6.30 (m, 1H), 2.49 (s, 3H), 2.12 (s, 3H). 13C NMR (100 

MHz, CDCl3): δ 138.1, 136.2, 130.6, 130.4, 129.5, 129.1, 127.9, 126.7, 125.9, 121.2, 118.0, 116.6, 112.2, 

19.6, 12.6. ESI-HRMS: m/z calcd. for C15H14N2 [M+H]+: 223.1235, found 223.1230. 

 

5

Me

N
N

 

1-methyl-3-phenylimidazo[1,5-a]pyridine: Following the General procedure B1, a mixture of 2-

acetylpyridine (0.1 mmol), benzaldehyde (2 equiv.) and D-glucosamine·HCl (2.0 equiv.) in AcOH : H2O 

(0.9 : 0.1 mL) were stirred at 120 ˚C under Ar atmosphere for 36 h. Work-up gave product 5 (17.3 mg, 

0.083 mmol, isolated yield 83%) as a yellow liquid. FT-IR: ν (cm-1): 3056, 2918, 2850, 1659, 1603, 1572, 

1517, 1451, 1409, 1362, 1257, 1076, 1024, 1004, 942, 915, 775, 738, 688, 616, 480, 420. 1H NMR (400 

MHz, CDCl3): δ 8.09 (d, J = 7.2 Hz, 1H), 7.68 (d, J = 7.6 Hz, 2H), 7.41 (t, J = 7.6 Hz, 2H), 7.33 – 7.30 

(m, 2H), 6.56 – 6.52 (m, 1H), 6.41 (t, J = 6.8 Hz, 1H), 2.48 (s, 3H). 13C NMR (100 MHz, CDCl3): δ 
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136.5, 130.3, 128.9, 128.4, 127.9, 127.7, 121.1, 118.3, 117.0, 112.9, 12.5. The compound is known, and 

the NMR data is in accordance with the previous literature.329 

 

6

Me

N
N

Me

 

1-methyl-3-(m-tolyl)imidazo[1,5-a]pyridine: Following the General procedure B1, a mixture of 2-

acetylpyridine (0.1 mmol), 3-methylbenzaldehyde (2 equiv.) and D-glucosamine·HCl (2.0 equiv.) in 

AcOH : H2O (0.9 : 0.1 mL) were stirred at 120 ˚C under Ar atmosphere for 36 h. Work-up gave product 6 

(16.0 mg, 0.072 mmol, isolated yield 72%) as a yellow solid. Mp: 105−107 ˚C. FT-IR: ν (cm-1): 2963, 

2920, 2852, 1659, 1607, 1583, 1519, 1463, 1432, 1366, 1261, 1201, 1094, 1026, 913, 882, 793, 738, 723, 

696, 618, 548, 521, 439, 420. 1H NMR (400 MHz, CDCl3): δ 8.10 (d, J = 7.2 Hz, 1H), 7.52 (s, 1H), 7.47 

(d, J = 7.6 Hz, 1H), 7.31 (d, J = 8.4 Hz, 2H), 7.14 (d, J = 7.6 Hz, 1H), 6.56 – 6.52 (m, 1H), 6.41 (t, J = 6.8 

Hz, 1H), 2.48 (s, 3H), 2.34 (s, 3H). 13C NMR (100 MHz, CDCl3): δ 138.8, 136.7, 132.7, 130.2, 129.2, 

128.7, 128.6, 127.9, 124.5, 121.2, 118.3, 117.0, 112.8, 21.4, 12.5. ESI-HRMS: m/z calcd. for C15H14N2 

[M+H]+: 223.1235, found 223.1231. 

 

7

Me

N
N

Me

 

1-methyl-3-(p-tolyl)imidazo[1,5-a]pyridine: Following the General procedure B1, a mixture of 2-

acetylpyridine (0.1 mmol), 4-methylbenzaldehyde (2 equiv.) and D-glucosamine·HCl (2.0 equiv.) in 

AcOH : H2O (0.9 : 0.1 mL) were stirred at 120 ˚C under Ar atmosphere for 36 h. Work-up gave product 7 

(17.3 mg, 0.078 mmol, isolated yield 78%) as a yellow solid.  Mp: 62−64 ˚C. FT-IR: ν (cm-1): 2914, 2852, 

1661, 1611, 1570, 1529, 1492, 1405, 1360, 1259, 1183, 1111, 1076, 1034, 1020, 946, 820, 732, 690, 579, 

492, 427. 1H NMR (400 MHz, CDCl3): δ 8.06 (d, J = 7.3 Hz, 1H), 7.58 (d, J = 8.1 Hz, 2H), 7.30 (d, J = 

9.1 Hz, 1H), 7.23 (d, J = 7.9 Hz, 2H), 6.52 (dd, J = 9.0, 6.3 Hz, 1H), 6.40 – 6.37 (m, 1H), 2.48 (s, 3H), 
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2.34 (s, 3H). 13C NMR (100 MHz, CDCl3): δ 138.3, 136.7, 129.6, 128.6, 127.7, 127.6, 127.5, 121.2, 

118.3, 116.8, 112.6, 21.4, 12.5. ESI-HRMS: m/z calcd. for C15H14N2 [M+H]+: 223.1235, found 223.1234.  

 

8

Me

N
N

Me

Me

 

3-(2,4-dimethylphenyl)-1-methylimidazo[1,5-a]pyridine: Following the General procedure B1, a 

mixture of 2-acetylpyridine (0.1 mmol), 2,3-dimethylbenzaldehyde (2 equiv.) and D-glucosamine·HCl 

(2.0 equiv.) in AcOH : H2O (0.9 : 0.1 mL) were stirred at 120 ˚C under Ar atmosphere for 36 h. Work-up 

gave product 8 (16.0 mg, 0.068 mmol, isolated yield 68%) as a brown solid. Mp: 81−83 ˚C. FT-IR: ν 

(cm-1): 2920, 2856, 1663, 1616, 1447, 1414, 1362, 1234, 1152, 1109, 1072, 1032, 1001, 950, 878, 818, 

740, 696, 591, 546, 424. 1H NMR (400 MHz, CDCl3): δ 7.41 (d, J = 6.8 Hz, 1H), 7.31 (d, J = 9.2 Hz, 1H), 

7.22 – 7.19 (m, 1H), 7.08 (s, 1H), 7.02 (d, J = 7.6 Hz, 1H), 6.55 – 6.51 (m, 1H), 6.36 – 6.33 (m, 1H), 2.48 

(s, 3H), 2.31 (s, 3H), 2.08 (s, 3H). 13C NMR (100 MHz, CDCl3): δ 139.1, 137.9, 136.3, 132.0, 131.4, 

130.4, 127.6, 126.7, 126.4, 121.3, 118.1, 116.7, 112.2, 21.3, 19.6, 12.5. ESI-HRMS: m/z calcd. for 

C16H16N2 [M+H]+: 237.1392, found 237.1386. 

 

 

9

Me

N
N

Me

Me

Me

 

3-mesityl-1-methylimidazo[1,5-a]pyridine: Following the General procedure B1, a mixture of 2-

acetylpyridine (0.1 mmol), 2,4,6-trimethylbenzaldehyde (2 equiv.) and D-glucosamine·HCl (2.0 equiv.) 

in AcOH : H2O (0.9 : 0.1 mL) were stirred at 120 ˚C under Ar atmosphere for 36 h. Work-up gave 

product 9 (14.0 mg, 0.056 mmol, isolated yield 56%) as a yellow liquid. FT-IR: ν (cm-1): 2924, 2852, 

1669, 1630, 1611, 1574, 1550, 1519, 1459, 1442, 1412, 1377, 1360, 1319, 1189, 1119, 1072, 1032, 1001, 

925, 849, 773, 738, 699, 596, 560, 544, 422. 1H NMR (400 MHz, CDCl3): δ 7.31 (d, J = 9.2 Hz, 1H), 
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7.14 –7.12 (m, 1H), 6.88 (s, 2H), 6.52 – 6.48 (m, 1H), 6.32 – 6.28 (m, 1H), 2.50 (s, 3H), 2.27 (s, 3H), 

1.88 (s, 6H). 13C NMR (100 MHz, CDCl3): δ 139.1, 139.1, 135.5, 128.3, 127.5, 126.2, 126.2, 120.9, 

118.0, 116.3, 112.0, 21.2, 19.5, 12.7. ESI-HRMS: m/z calcd. for C17H18N2 [M+H]+: 251.1548, found 

251.1542. 

 

10

Me

N
N

iPr

 

3-(4-isopropylphenyl)-1-methylimidazo[1,5-a]pyridine: Following the General procedure B1, a 

mixture of 2-acetylpyridine (0.1 mmol), 4-isopropylbenzaldehyde (2 equiv.) and D-glucosamine·HCl (2.0 

equiv.) in AcOH : H2O (0.9 : 0.1 mL) were stirred at 120 ˚C under Ar atmosphere for 36 h. Work-up gave 

product 10 (17.8 mg, 0.071 mmol, isolated yield 71%) as a brown solid. Mp: 61−63 ˚C. FT-IR: ν (cm-1): 

2961, 2922, 2864, 1671, 1607, 1527, 1457, 1414, 1383, 1362, 1306, 1255, 1199, 1175, 1127, 1076, 1053, 

1018, 948, 835, 797, 777, 736, 717, 690, 637, 593, 532, 414. 1H NMR (400 MHz, CDCl3): δ 8.09 (d, J = 

7.6 Hz, 1H), 7.63 – 7.60 (m, 2H), 7.32 – 7.27 (m, 3H), 6.55 – 6.51 (m, 1H), 6.41 – 6.37 (m, 1H), 2.93 – 

2.86 (m, 1H), 2.48 (s, 3H), 1.22 (dd, J = 6.8, 1.2 Hz, 6H). 13C NMR (75 MHz, CDCl3): δ 149.4, 136.5, 

128.3, 127.8, 127.7, 127.5, 127.0, 121.2, 118.3, 117.0, 112.8, 34.0, 23.9, 12.3. ESI-HRMS: m/z calcd. for 

C17H18N2 [M+H]+: 251.1548, found 251.1542. 
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3-(4-methoxyphenyl)-1-methylimidazo[1,5-a]pyridine: Following the General procedure B1, a 

mixture of 2-acetylpyridine (0.1 mmol), 4-methoxylbenzaldehyde (2 equiv.) and D-glucosamine·HCl (2.0 

equiv.) in AcOH : H2O (0.9 : 0.1 mL) were stirred at 120 ˚C under Ar atmosphere for 36 h. Work-up gave 

product 11 (18.6 mg, 0.078 mmol, isolated yield 78%) as a yellow solid. Mp: 61−63 ˚C. FT-IR: ν (cm-1): 
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2961, 2922, 2838, 1661, 1605, 1498, 1459, 1362, 1300, 1251, 1173, 1107, 1022, 835, 797, 734, 690, 581, 

515. 1H NMR (400 MHz, CDCl3): δ 8.00 (d, J = 7.2 Hz, 1H), 7.63 – 7.59 (m, 2H), 7.29 – 7.26 (m, 1H), 

6.96 – 6.93 (m, 2H), 6.51 – 6.47 (m, 1H), 6.38 – 6.34 (m, 1H), 3.78 (s, 3H), 2.48 (s, 3H). 13C NMR (100 

MHz, CDCl3): δ 159.7, 136.5, 129.2, 128.3, 127.5, 122.9, 121.0, 118.3, 116.6, 114.3, 112.6, 55.3, 12.4. 

ESI-HRMS: m/z calcd. for C15H14N2O [M+H]+: 239.1184, found 239.1181. 
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3-(2-methoxyphenyl)-1-methylimidazo[1,5-a]pyridine: Following the General procedure B1, a 

mixture of 2-acetylpyridine (0.1 mmol), 2-methoxylbenzaldehyde (2 equiv.) and D-glucosamine·HCl (2.0 

equiv.) in AcOH : H2O (0.9 : 0.1 mL) were stirred at 120 ˚C under Ar atmosphere for 36 h. Work-up gave 

product 12 (17.6 mg, 0.074 mmol, isolated yield 74%) as a yellow solid. Mp: 55−57 ˚C. FT-IR: ν (cm-1): 

2916, 2848, 1735, 1663, 1601, 1581, 1512, 1467, 1436, 1418, 1362, 1238, 1179, 1160, 1109, 1045, 1018, 

940, 797, 732, 690, 651, 583, 565, 534, 490, 449, 424. 1H NMR (400 MHz, CDCl3): δ 7.51 (dd, J = 7.6, 

1.8 Hz, 1H), 7.42 – 7.40 (m, 1H), 7.36 – 7.27 (m, 2H), 7.01 –  6.97 (m, 1H), 6.92 (d, J = 8.00 Hz, 1H), 

6.54 – 6.50 (m, 1H), 6.35 – 6.31 (m, 1H), 3.70 (s, 3H), 2.49 (s, 3H). 13C NMR (100 MHz, CDCl3): δ 

157.1, 134.3, 132.3, 130.3, 128.1, 127.5, 122.8, 121.0, 119.3, 117.6, 116.6, 111.4, 111.0, 55.4, 12.5. ESI-

HRMS: m/z calcd. for C15H4N2O [M+H]+: 239.0402, found 239.0397. 
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2-(1-methylimidazo[1,5-a]pyridin-3-yl)phenol: Following the General procedure B1, a mixture of 2-

acetylpyridine (0.1 mmol), 2-hydroxylbenzaldehyde (2 equiv.) and D-glucosamine·HCl (2.0 equiv.) in 

AcOH : H2O (0.9 : 0.1 mL) were stirred at 120 ˚C under Ar atmosphere for 36 h. Work-up gave product 

13 (14.6 mg, 0.065 mmol, isolated yield 65%) as a white solid. Mp: 137−138 ˚C. FT-IR: ν (cm-1): 2922, 

2856, 1735, 1653, 1609, 1583, 1519, 1469, 1436, 1381, 1364, 1290, 1253, 1236, 1181, 1156, 1102, 1076, 

1037, 1012, 933, 812, 752, 734, 690, 655, 596, 577, 548, 534, 455, 420. 1H NMR (400 MHz, CDCl3): δ 
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8.35 (d, J = 7.2 Hz, 1H), 7.67 – 7.64 (m, 1H), 7.37 – 7.34 (m, 1H), 7.20 – 7.17 (m, 1H), 7.08 – 7.05 (m, 

1H), 6.92 – 6.88 (m, 1H), 6.64 – 6.60 (m, 1H), 6.54 – 6.50 (m, 1H), 2.48 (s, 3H). 13C NMR (100 MHz, 

CDCl3): δ 156.3, 134.3, 129.4, 127.2, 127.0, 123.8, 121.9, 118.8, 118.6, 117.7, 117.7, 114.4, 113.7, 12.3. 

ESI-HRMS: m/z calcd. for C14H12N2O1 [M+H]+: 225.1028, found 225.1028. 
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3-(4-fluorophenyl)-1-methylimidazo[1,5-a]pyridine: Following the General procedure B1, a mixture 

of 2-acetylpyridine (0.1 mmol), 4-fluorobenzaldehyde (2 equiv.) and D-glucosamine·HCl (2.0 equiv.) in 

AcOH : H2O (0.9 : 0.1 mL) were stirred at 120 ˚C under Ar atmosphere for 36 h. Work-up gave product 

14 (18.1 mg, 0.080 mmol, isolated yield 80%) as a yellow solid. Mp: 80−82 ˚C. FT-IR: ν (cm-1): 2963, 

2920, 2852, 1665, 1603, 1496, 1412, 1368, 1257, 1222, 1156, 1092, 1012, 837, 791, 738, 688, 577, 507. 
1H NMR (400 MHz, CDCl3): δ 8.04 (d, J = 7.6 Hz, 1H), 7.75 – 7.70 (m, 2H), 7.38 – 7.34 (m, 1H), 7.17 – 

7.11 (m, 2H), 6.69 – 6.60 (m, 1H), 6.57 – 6.52 (m, 1H), 2.55 (s, 3H). 13C NMR (100 MHz, CDCl3) δ 

163.0 (d, 1JC-F = 248.6 Hz), 134.4, 129.9 (d, 3JC-F = 8.5 Hz), 127.6, 127.14, 124.4 (d, 4JC-F = 3.4 Hz), 120.8, 

118.4, 118.3, 116.3 (d, 2JC-F = 21.9 Hz), 114.4, 11.6. 19F NMR (375 MHz, CDCl3): δ -110.68. ESI-

HRMS: m/z calcd. for C14H11FN2 [M+H]+: 227.0985, found 227.0980. 
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3-(4-chlorophenyl)-1-methylimidazo[1,5-a]pyridine: Following the General procedure B1, a mixture 

of 2-acetylpyridine (0.1 mmol), 4-chlorobenzaldehyde (2 equiv.) and D-glucosamine·HCl (2.0 equiv.) in 

AcOH : H2O (0.9 : 0.1 mL) were stirred at 120 ˚C under Ar atmosphere for 36 h.  Work-up gave product 

15 (19.8 mg, 0.082 mmol, isolated yield 82%) as a yellow solid. Mp: 63−65 ˚C. FT-IR: ν (cm-1): 2959, 

2926, 2852, 2096, 1896, 1663, 1589, 1504, 1405, 1257, 1086, 1010, 797, 736, 709, 686, 573, 544, 499, 
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484, 424. 1H NMR (500 MHz, CDCl3): δ 8.04 (d, J = 7.5 Hz, 1H), 7.64 (d, J = 8.5 Hz, 2H), 7.39 (d, J = 

8.5 Hz, 2H), 7.33 (d, J = 9.0 Hz, 1H), 6.58 – 6.55 (m, 1H), 6.46 – 6.43 (m, 1H), 2.48 (s, 3H). 13C NMR 

(125 MHz, CDCl3): δ 135.3, 134.1, 129.2, 129.1, 128.9, 128.8, 128.2, 120.9, 118.4, 117.2, 113.2, 12.5. 

ESI-HRMS: m/z calcd. for C14H11ClN2 [M+H]+: 243.0689, found 243.0687. 
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3-(3-chlorophenyl)-1-methylimidazo[1,5-a]pyridine: Following the General procedure B1, a mixture 

of 2-acetylpyridine (0.1 mmol), 3-chlorobenzaldehyde (2 equiv.) and D-glucosamine·HCl (2.0 equiv.) in 

AcOH : H2O (0.9 : 0.1 mL) were stirred at 120 ˚C under Ar atmosphere for 36 h. Work-up gave product 

16 (18.2 mg, 0.075 mmol, isolated yield 75%) as a brown solid. Mp: 70−72 ˚C. FT-IR: ν (cm-1): 2965, 

2918, 2850, 1653, 1560, 1407, 1257, 1069, 1010, 795, 692. 1H NMR (400 MHz, CDCl3): δ 8.10 (d, J = 

7.2 Hz, 1H), 7.71 (s, 1H), 7.60 – 7.58 (m, 1H), 7.35 – 7.28 (m, 3H), 6.61 – 6.57 (m, 1H), 6.49 – 6.46 (m, 

1H), 2.48 (s, 3H). 13C NMR (100 MHz, CDCl3): δ 134.9, 132.1, 131.1, 130.2, 129.3, 128.4, 128.3, 127.6, 

125.6, 121.0, 118.5, 117.4, 113.4, 12.5. ESI-HRMS: m/z calcd. for C14H11ClN2 [M+H]+: 243.0689, found 

243.0685.  
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3-(3,4-dichlorophenyl)-1-methylimidazo[1,5-a]pyridine: Following the General procedure B1, a 

mixture of 2-acetylpyridine (0.1 mmol), 3,4-dichlorobenzaldehyde (2 equiv.) and D-glucosamine·HCl 

(2.0 equiv.) in AcOH : H2O (0.9 : 0.1 mL) were stirred at 120 ˚C under Ar atmosphere for 36 h. Work-up 

gave product 17 (17.1 mg, 0.062 mmol, isolated yield 62%) as a yellow solid. Mp: 117−118 ˚C. FT-IR: ν 

(cm-1): 2959, 1665, 1628, 1589, 1550, 1498, 1440, 1414, 1395, 1257, 1078, 1010, 872, 797, 732, 696, 666, 

521, 436. 1H NMR (400 MHz, CDCl3): δ 8.05 (d, J = 7.6 Hz, 1H), 7.83 (s, 1H), 7.57 – 7.54 (m, 1H), 7.49 

– 7.46 (m, 1H), 7.35 – 7.32 (m, 1H), 6.62 – 6.57 (m, 1H), 6.51 – 6.47 (m, 1H), 2.48 (s, 3H). 13C NMR 
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(100 MHz, CDCl3): δ 134.0, 133.2, 132.0, 130.8, 130.4, 129.6, 129.2, 128.6, 126.4, 120.8, 118.5, 117.5, 

113.6, 12.5. ESI-HRMS: m/z calcd. for C14H10Cl2N2 [M+H]+: 277.0299, found 277.0295. 
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3-(4-bromophenyl)-1-methylimidazo[1,5-a]pyridine: Following the General procedure B1, a mixture 

of 2-acetylpyridine (0.1 mmol), 4-bromobenzaldehyde (2 equiv.) and D-glucosamine·HCl (2.0 equiv.) in 

AcOH : H2O (0.9 : 0.1 mL) were stirred at 120 ˚C under Ar atmosphere for 36 h. Work-up gave product 

18 (22.6 mg, 0.079 mmol, isolated yield 79%) as a yellow solid. Mp: 90−92 ˚C. FT-IR: ν (cm-1): 2920, 

2850, 1659, 1589, 1506, 1459, 1401, 1362, 1255, 1230, 1105, 1069, 1008, 942, 826, 734, 684, 492, 420. 
1H NMR (400 MHz, CDCl3): δ 8.05 (d, J = 7.6 Hz, 1H), 7.60 – 7.54 (m, 4H), 7.33 (d, J = 8.8 Hz, 1H), 

6.58 – 6.55 (m, 1H), 6.46 – 6.43 (m, 1H), 2.49 (s, 3H). 13C NMR (100 MHz, CDCl3): δ 135.4, 132.1, 

129.4, 129.3, 129.1, 128.3, 122.2, 120.9, 118.5, 117.2, 113.2, 12.6. ESI-HRMS: m/z calcd. for 

C14H11BrN2 [M+H]+: 287.0184, found 287.0181. 
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1-methyl-3-(4-(trifluoromethyl)phenyl)imidazo[1,5-a]pyridine: Following the General procedure B1, 

a mixture of 2-acetylpyridine (0.1 mmol), 4-(trifluoromethyl)benzaldehyde (2 equiv.) and D-

glucosamine·HCl (2.0 equiv.) in AcOH : H2O (0.9 : 0.1 mL) were stirred at 120 ˚C under Ar atmosphere 

for 36 h. Work-up gave product 19 (23.7 mg, 0.086 mmol, isolated yield 86 %) as a yellow solid. Mp: 

73−74 ˚C. FT-IR: ν (cm-1): 3062, 2918, 2858, 1675, 1618, 1521, 1418, 1321, 1255, 1166, 1111, 1065, 

1012, 843, 802, 738, 684, 604, 499, 437. 1H NMR (400 MHz, CDCl3): δ 8.13 (d, J = 7.2 Hz, 1H), 7.85 (d, 

J = 8.0 Hz, 2H), 7.67 (d, J = 8.0 Hz, 2H), 7.37 – 7.34 (m, 1H), 6.62 – 6.59 (m, 1H), 6.51 – 6.47 (m, 1H), 

2.50 (s, 3H). 13C NMR (100 MHz, CDCl3): δ 134.9, 133.9 (q, 4JC-F = 1.1 Hz), 129.8 (q, 2JC-F = 32.5 Hz), 

129.8, 128.7, 127.6, 125.9 (q, 3JC-F = 3.8 Hz), 124.0 (q, 1JC-F = 270.3 Hz), 120.9, 118.5, 117.6, 113.6, 12.6. 
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19F NMR (375 MHz, CDCl3): δ -62.60. ESI-HRMS: m/z calcd. for C15H11F3N2 [M+H]+: 277.0953, found 

277.0950. 
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1-methyl-3-(4-nitrophenyl)imidazo[1,5-a]pyridine: Following the General procedure B1, a mixture of 

2-acetylpyridine (0.1 mmol), 4-nitrobenzaldehyde (2 equiv.) and D-glucosamine·HCl (2.0 equiv.) in 

AcOH : H2O (0.9 : 0.1 mL) were stirred at 120 ˚C under Ar atmosphere for 36 h. Work-up gave product 

20 (20.5 mg, 0.081 mmol, isolated yield 81%) as a red solid. Mp: 142−144 ˚C. FT-IR: ν (cm-1): 2912, 

1677, 1628, 1589, 1496, 1447, 1424, 1309, 1257, 1173, 1107, 1069, 1016, 948, 847, 814, 750, 738, 692, 

676, 546, 523, 490, 476, 433, 422. 1H NMR (400 MHz, CDCl3): δ 8.29 – 8.26 (m, 2H), 8.22 (d, J = 7.2 

Hz, 1H), 7.95 – 7.92 (m, 2H), 7.41 (d, J = 9.1 Hz, 1H), 6.71 – 6.67 (m, 1H), 6.61 – 6.57 (m, 1H), 2.52 (s, 

3H). 13C NMR (100 MHz, CDCl3): δ 146.7, 136.5, 134.0, 131.0, 129.6, 127.3, 124.4, 121.0, 118.7, 118.4, 

114.3, 12.6. ESI-HRMS: m/z calcd. for C14H11N3O2 [M+H]+: 254.0930, found 254.0928. 
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4-(1-methylimidazo[1,5-a]pyridin-3-yl)benzonitrile: Following the General procedure B1, a mixture 

of 2-acetylpyridine (0.1 mmol), 4-formylbenzonitrile (2 equiv.) and D-glucosamine·HCl (2.0 equiv.) in 

AcOH : H2O (0.9 : 0.1 mL) were stirred at 120 ˚C under Ar atmosphere for 36 h. Work-up gave product 

21 (16.8 mg, 0.072 mmol, isolated yield 72%) as a yellow solid. Mp: 89−91 ˚C. FT-IR: ν (cm-1): 2957, 

2910, 2844, 1655, 1605, 1552, 1510, 1395, 1257, 1082, 1010, 857, 789, 734, 686, 519. 1H NMR (400 

MHz, CDCl3): δ 8.15 (d, J = 7.6 Hz, 1H), 7.87 – 7.84 (m, 2H), 7.69 – 7.67 (m, 2H), 7.38 (d, J = 9.2 Hz, 

1H), 6.65 (dd, J = 8.8, 6.4 Hz, 1H), 6.56 – 6.52 (m, 1H), 2.49 (s, 3H). 13C NMR (100 MHz, CDCl3): δ 

134.6, 134.3, 132.7, 130.5, 129.2, 127.5, 120.9, 118.7, 118.7, 118.2, 114.1, 111.1, 12.5. ESI-HRMS: m/z 

calcd. for C15H11N3 [M+H]+: 234.1031, found 234.1030. 
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methyl 4-(1-methylimidazo[1,5-a]pyridin-3-yl)benzoate: Following the General procedure B1, a 

mixture of 2-acetylpyridine (0.1 mmol), methy-4-formylbenzoate (2 equiv.) and D-glucosamine·HCl (2.0 

equiv.) in AcOH : H2O (0.9 : 0.1 mL) were stirred at 120 ˚C under Ar atmosphere for 36 h. Work-up gave 

product 22 (12.0 mg, 0.043 mmol, isolated yield 43%) as a brown solid. Mp: 92−94 ˚C. FT-IR: ν (cm-1): 

2953, 2920, 2850, 1717, 1661, 1607, 1434, 1269, 1177, 1102, 1016, 960, 859, 797, 775, 736, 702, 568, 

540, 490, 420. 1H NMR (500 MHz, CDCl3): δ 8.17 (d, J = 7.5 Hz, 1H), 8.08 (d, J = 8.5 Hz, 2H), 7.80 (d, 

J = 8.5 Hz, 2H), 7.36 (d, J = 9.0 Hz, 1H), 6.62 (dd, J = 9.0, 6.0 Hz, 1H), 6.52 – 6.49 (m, 1H), 3.87 (s, 3H), 

2.49 (s, 3H). 13C NMR (125 MHz, CDCl3): δ 166.6, 134.5, 130.2, 129.8, 129.4, 128.8, 127.4, 127.1, 

121.1, 118.5, 117.8, 52.2, 12.5. ESI-HRMS: m/z calcd. for C16H14N2O2 [M+H]+: 267.1134, found 

267.1132. 
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4-(1-methylimidazo[1,5-a]pyridin-3-yl)benzaldehyde: Following the General procedure B1, a 

mixture of 2-acetylpyridine (0.1 mmol), terephthalaldehyde (2 equiv.) and D-glucosamine·HCl (2.0 

equiv.) in AcOH : H2O (0.9 : 0.1 mL) were stirred at 120 ˚C under Ar atmosphere for 36 h. Work-up gave 

product 23 (16.0 mg, 0.068 mmol, isolated yield 68%) as a yellow solid. Mp: 313−315 ˚C. FT-IR: ν (cm-

1): 2914, 1698, 1599, 1381, 1012, 795, 670. 1H NMR (400 MHz, CDCl3): δ 9.97 (s, 1H), 8.21 (dd, J = 7.2, 

0.8 Hz, 1H), 7.92 – 7.92 (m, 4H), 7.37 (dd, J = 9.2, 1.2 Hz, 1H), 6.66 – 6.62 (m, 1H), 6.55 – 6.51 (m, 1H), 

2.51 (s, 3H). 13C NMR (100 MHz, CDCl3): δ 191.5, 136.0, 135.3, 135.0, 130.4, 130.3, 129.1, 127.4, 
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121.2, 118.6, 118.0, 113.8, 12.6. ESI-HRMS: m/z calcd. for C15H12N2O [M+H]+: 237.1028, found 

237.1026. 
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-methyl-3-(naphthalen-1-yl)imidazo[1,5-a]pyridine: Following the General procedure B1, a mixture 

of 2-acetylpyridine (0.1 mmol), 1-naphthaldehyde (2 equiv.) and D-glucosamine·HCl (2.0 equiv.) in 

AcOH : H2O (0.9 : 0.1 mL) were stirred at 120 ˚C under Ar atmosphere for 36 h. Work-up gave product 

24 (15.2 mg, 0.059 mmol, isolated yield 59%) as a brown solid. Mp: 91−93 ˚C. FT-IR: ν (cm-1): 3054, 

2918, 2854, 1659, 1585, 1513, 1461, 1416, 1366, 1249, 1212, 1142, 1092, 1020, 995, 933, 865, 804, 773, 

738, 694, 645, 577, 532, 503, 412. 1H NMR (400 MHz, CDCl3): δ 8.00 – 7.95 (m, 2H), 7.76 – 7.73 (m, 

2H), 7.63 – 7.58 (m, 2H), 7.57 – 7.53 (m, 1H), 7.50 – 7.46 (m, 2H), 6.69 – 6.65 (m, 1H), 6.44 – 6.40 (m, 

1H), 2.67 (s, 3H). 13C NMR (100 MHz, CDCl3): δ 135.3, 134.0, 131.8, 129.6, 128.6, 128.6, 128.5, 127.6, 

127.5, 126.9, 126.2, 125.7, 125.4, 121.6, 118.2, 117.0, 112.3, 12.7. ESI-HRMS: m/z calcd. for C18H14N2 

[M+H]+: 259.1235, found 259.1233. 
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1-methyl-3-(pyridin-3-yl)imidazo[1,5-a]pyridine: Following the General procedure B1, a mixture of 

2-acetylpyridine (0.1 mmol), nicotinaldehyde (2 equiv.) and D-glucosamine·HCl (2.0 equiv.) in AcOH : 

H2O (0.9 : 0.1 mL) were stirred at 120 ˚C under Ar atmosphere for 36 h. Work-up gave product 25 (8.8 

mg, 0.042 mmol, isolated yield 42%) as a brown liquid. FT-IR: ν (cm-1): 3035, 2922, 2858, 1675, 1630, 

1587, 1568, 1510, 1496, 1420, 1362, 1327, 1300, 1255, 1179, 1150, 1123, 1078, 1022, 1006, 944, 808, 

736, 709, 688, 616, 546, 422. 1H NMR (400 MHz, CDCl3): δ 8.99 (d, J = 2.0 Hz, 1H), 8.56 (dd, J = 4.8, 

1.5 Hz, 1H), 8.09 (d, J = 7.2 Hz, 1H), 8.05 – 8.03 (m, 1H), 7.38 – 7.35 (m, 2H), 6.61 (dd, J = 9.1, 6.3 Hz, 
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1H), 6.52 – 6.48 (m, 1H), 2.50 (s, 3H). 13C NMR (100 MHz, CDCl3): δ 149.1, 148.2, 135.1, 133.4, 129.8, 

128.6, 126.8, 123.8, 120.7, 118.5, 117.6, 113.6, 12.5. ESI-HRMS: m/z calcd. for C13H11N3 [M+H]+: 

210.1031, found 210.1027. 
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1-methyl-3-(thiophen-2-yl)imidazo[1,5-a]pyridine: Following the General procedure B1, a mixture of 

2-acetylpyridine (0.1 mmol), thiophene-2-carbaldehyde (2 equiv.) and D-glucosamine·HCl (2.0 equiv.) in 

AcOH : H2O (0.9 : 0.1 mL) were stirred at 120 ˚C under Ar atmosphere for 36 h. Work-up gave product 

26 (11.8 mg, 0.055 mmol, isolated yield 55%) as a brown solid. Mp: 79−81 ˚C. FT-IR: ν (cm-1): 3074, 

2959, 2920, 2854, 1735, 1649, 1603, 1513, 1463, 1401, 1364, 1253, 1037, 909, 843, 804, 682, 416. 1H 

NMR (400 MHz, CDCl3): δ 8.18 – 8.16 (m, 1H), 7.42 – 7.40 (m, 1H), 7.35 – 7.30 (m, 2H), 7.10 (ddd, J = 

4.8, 3.6, 1.2 Hz, 1H), 6.60 – 6.50 (m, 2H), 2.49 (s, 3H). 13C NMR (100 MHz, CDCl3): δ 132.7, 131.3, 

129.3, 128.2, 127.6, 125.4, 124.0, 121.5, 118.4, 117.0, 113.5, 12.6. ESI-HRMS: m/z calcd. for C12H10N2S 

[M+H]+: 215.0643, found 215.0641. 
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3-cyclopentyl-1-methylimidazo[1,5-a]pyridine: Following the General procedure B1, a mixture of 2-

acetylpyridine (0.1 mmol), cyclopentanecarbaldehyde (2 equiv.) and D-glucosamine·HCl (2.0 equiv.) in 

AcOH : H2O (0.9 : 0.1 mL) were stirred at 120 ˚C under Ar atmosphere for 36 h. Work-up gave product 

27 (16.2 mg, 0.081 mmol, isolated yield 81%) as a brown liquid. FT-IR: ν (cm-1): 2945, 2864, 1667, 1504, 

1449, 1434, 1339, 1314, 1284, 1241, 1199, 1158, 1094, 993, 938, 795, 732, 692, 620, 587, 422, 402. 1H 

NMR (400 MHz, CDCl3): δ 7.57 (d, J = 7.2 Hz, 1H), 7.19 (d, J = 9.6 Hz, 1H), 6.44 – 6.39 (m, 1H), 6.35 

– 6.31 (m, 1H), 3.25 (p, J = 8.3 Hz, 1H), 2.40 (s, 3H), 2.08 – 2.01 (m, 2H), 1.96 – 1.89 (m, 2H), 1.80 – 

1.75 (m, 2H), 1.64 – 1.61 (m, 2H). 13C NMR (100 MHz, CDCl3): δ 140.5, 126.6, 126.0, 120.4, 118.1, 
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115.6, 111.5, 36.6, 30.8, 25.5, 12.4. ESI-HRMS: m/z calcd. for C13H16N2 [M+H]+: 201.1392, found 

201.1384. 
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3-cyclohexyl-1-methylimidazo[1,5-a]pyridine: Following the General procedure B1, a mixture of 2-

acetylpyridine (0.1 mmol), cyclohexanecarbaldehyde (2 equiv.) and D-glucosamine·HCl (2.0 equiv.) in 

AcOH : H2O (0.9 : 0.1 mL) were stirred at 120 ˚C under Ar atmosphere for 36 h. Work-up gave product 

28 (17.8 mg, 0.083 mmol, isolated yield 83%) as a white solid. Mp: 92−94 ˚C. FT-IR: ν (cm-1): 2920, 

2850, 1663, 1591, 1480, 1445, 1259, 1170, 1090, 1018, 890, 795, 742, 694, 643,542, 420. 1H NMR (400 

MHz, CDCl3): δ 7.58 (d, J = 7.2 Hz, 1H), 7.21 (d, J = 9.2 Hz, 1H), 6.44 – 6.40 (m, 1H), 6.35 – 6.32 (m, 

1H), 2.88 – 2.80 (m, 1H), 2.41 (s, 3H), 1.95 – 1.90 (m, 2H), 1.85 – 1.80 (m, 2H), 1.74 – 1.64 (m, 3H), 

1.41 – 1.25 (m, 3H). 13C NMR (100 MHz, CDCl3): δ 141.4, 126.4, 126.2, 120.2, 118.3, 115.6, 111.5, 35.7, 

30.8, 26.4, 26.0, 12.5. ESI-HRMS: m/z calcd. for C14H18N2 [M+H]+: 215.1548, found 215.1546. 
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3-benzyl-1-methylimidazo[1,5-a]pyridine: Following the General procedure B1, a mixture of 2-

acetylpyridine (0.1 mmol), 2-phenylacetaldehyde (2 equiv.) and D-glucosamine·HCl (2.0 equiv.) in 

AcOH : H2O (0.9 : 0.1 mL) were stirred at 120 ˚C under Ar atmosphere for 36 h. Work-up gave product 

29 (9.1 mg, 0.041 mmol, isolated yield 41%) as a brown solid. Mp: 89−91 ˚C. FT-IR: ν (cm-1): 3054, 

3029, 2961, 2926, 1663, 1599, 1494, 1453, 1370, 1261, 1222, 1156, 1074, 1030, 800, 746, 696, 565, 460. 
1H NMR (400 MHz, CDCl3): δ 7.40 (d, J = 7.2 Hz, 1H), 7.20 – 7.18 (m, 3H), 7.15 – 7.13 (m, 1H), 7.11 – 

7.09 (m, 2H), 6.47 – 6.43 (m, 1H), 6.30 – 6.26 (m, 1H), 4.31 (s, 2H), 2.45 (s, 3H). 13C NMR (100 MHz, 

CDCl3): δ 136.6, 135.2, 129.8, 128.8, 128.6, 128.2, 126.7, 120.5, 118.2, 116.1, 112.1, 33.5, 12.5. ESI-

HRMS: m/z calcd. for C15H14N2 [M+H]+: 223.1235, found 223.1231. 
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 (E)-1-methyl-3-styrylimidazo[1,5-a]pyridine: Following the General procedure B1, a mixture of 2-

acetylpyridine (0.1 mmol), cinnamaldehyde (2 equiv.) and D-glucosamine·HCl (2.0 equiv.) in AcOH : 

H2O (0.9 : 0.1 mL) were stirred at 120 ˚C under Ar atmosphere for 36 h. Work-up gave product 30 (3.3 

mg, 0.014 mmol, isolated yield 14%) as a brown solid. Mp: 110−112 ˚C. FT-IR: ν (cm-1): 3031, 2918, 

2848, 2089, 1659, 1628, 1597, 1548, 1513, 1492, 1449, 1412, 1374, 1333, 1261, 1241, 1197, 1129, 1094, 

1072, 1026, 954, 795, 750, 696, 550, 495, 416. 1H NMR (400 MHz, CDCl3): δ 7.89 (d, J = 7.2 Hz, 1H), 

7.61 (d, J = 16.0 Hz, 1H), 7.50 (d, J = 8.0 Hz, 2H), 7.32 – 7.28 (m, 3H), 7.21 (d, J = 8.4 Hz, 1H), 7.11 (d, 

J = 15.6 Hz, 1H), 6.59 – 6.51 (m, 2H), 2.50 (s, 3H). 13C NMR (100 MHz, CDCl3): δ 137.0, 134.9, 130.0, 

128.8, 127.9, 127.9, 126.6, 120.5, 118.5, 117.3, 113.4, 111.7, 12.6. ESI-HRMS: m/z calcd. for C16H14N2 

[M+H]+: 235.1235, found 235.1229. 
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3-isopropyl-1-methylimidazo[1,5-a]pyridine: Following the General procedure B1, a mixture of 2-

acetylpyridine (0.1 mmol), isobutyraldehyde (2 equiv.) and D-glucosamine·HCl (2.0 equiv.) in AcOH : 

H2O (0.9 : 0.1 mL) were stirred at 120 ˚C under Ar atmosphere for 36 h. Work-up gave product 31 (9.2 

mg, 0.053 mmol, isolated yield 53%) as a brown solid. Mp: 94−95 ˚C. FT-IR: ν (cm-1): 2959, 2928, 2866, 

1659, 1587, 1455, 1368, 1199, 1175, 1125, 1096, 800, 740, 717, 694, 620, 587, 422. 1H NMR (300 MHz, 

CDCl3): δ 7.57 (d, J = 7.2 Hz, 1H), 7.24 – 7.20 (m, 1H), 6.44 (dd, J = 9.0, 6.3 Hz, 1H), 6.38 – 6.33 (m, 

1H), 3.20 (hept, J = 6.9 Hz, 1H), 2.42 (s, 3H), 1.35 (d, J = 6.9 Hz, 6H). 13C NMR (100 MHz, CDCl3): δ 

141.7, 126.4, 120.2, 118.3, 115.9, 112.0, 25.9, 20.5, 12.3. ESI-HRMS: m/z calcd. for C11H14N2 [M+H]+: 

175.1235, found 175.1224. 
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1-methyl-3-pentylimidazo[1,5-a]pyridine: Following the General procedure B1, a mixture of 2-

acetylpyridine (0.1 mmol), hexanal (2 equiv.) and D-glucosamine·HCl (2.0 equiv.) in AcOH : H2O (0.9 : 

0.1 mL) were stirred at 120 ˚C under Ar atmosphere for 36 h. work-up gave product 32 (16.6 mg, 0.082 

mmol, isolated yield 82%) as a brown liquid. FT-IR: ν (cm-1): 3342, 3186, 2957, 2928, 2858, 1665, 1500, 

1463, 1377, 1228, 1181, 1092, 997, 859, 795, 732, 694, 620, 418. 1H NMR (400 MHz, CDCl3): δ 7.51 (d, 

J = 7.2 Hz, 1H), 7.20 (d, J = 10.0 Hz, 1H), 6.43 – 6.40 (m, 1H), 6.35 – 6.32 (m, 1H), 2.83 (t, J = 7.8 Hz, 

2H), 2.39 (s, 3H), 1.72 (p, J = 7.2 Hz, 2H), 1.31 – 1.27 (m, 4H), 0.82 (t, J = 6.3 Hz, 3H). 13C NMR (100 

MHz, CDCl3): δ 137.3, 126.3, 126.3, 120.2, 118.1, 115.5, 111.7, 31.6, 26.9, 26.5, 22.3, 13.9, 12.3. ESI-

HRMS: m/z calcd. for C13H18N2 [M+H]+: 203.1548, found 203.1543. 

 

33

Me

N
N

Me
Me

 

1-methyl-3-(pentan-2-yl)imidazo[1,5-a]pyridine: Following the General procedure B1, a mixture of 

2-acetylpyridine (0.1 mmol), 2-methylpentanal (2 equiv.) and D-glucosamine·HCl (2.0 equiv.) in AcOH : 

H2O (0.9 : 0.1 mL) were stirred at 120 ˚C under Ar atmosphere for 36 h. Work-up gave product 33 (17.0 

mg, 0.084 mmol, isolated yield 84%) as a brown liquid. FT-IR: ν (cm-1): 3334, 3180, 2963, 2928, 2875, 

1665, 1461, 1459, 1374, 1337, 1282, 1238, 1188, 1154, 1094, 1055, 997, 868, 787, 738, 694, 622, 416. 
1H NMR (400 MHz, CDCl3): δ 7.57 (d, J = 7.2 Hz, 1H), 7.19 (d, J = 9.2 Hz, 1H), 6.43 – 6.39 (m, 1H), 

6.34 – 6.31 (m, 1H), 3.07 (h, J = 7.0 Hz, 1H), 2.40 (s, 3H), 1.85 – 1.76 (m, 1H), 1.65 – 1.56 (m, 1H), 1.31 

(d, J = 6.8 Hz, 3H), 1.27 – 1.17 (m, 2H), 0.80 (t, J = 7.3 Hz, 3H). 13C NMR (100 MHz, CDCl3): δ 141.3, 

126.4, 126.1, 120.1, 118.2, 115.5, 111.7, 37.5, 30.9, 20.6, 18.6, 13.9, 12.3. ESI-HRMS: m/z calcd. for 

C13H18N2 [M+H]+: 203.1548, found 203.1543. 
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3-(dec-9-en-1-yl)-1-methylimidazo[1,5-a]pyridine: Following the General procedure B1, a mixture of 

2-acetylpyridine (0.1 mmol), undec-10-enal (2 equiv.) and D-glucosamine·HCl (2.0 equiv.) in AcOH : 

H2O (0.9 : 0.1 mL) were stirred at 120 ˚C under Ar atmosphere for 36 h. Work-up gave product 34 (20.3 

mg, 0.075 mmol, isolated yield 75%) as a brown liquid. FT-IR: ν (cm-1): 3357, 3182, 3079, 2924, 2854, 

1659, 1632, 1465, 1424, 1372, 1243, 995, 909, 789, 746, 721, 699, 633, 554, 523, 474. 1H NMR (400 

MHz, CDCl3): δ 7.60 (d, J = 7.2 Hz, 1H), 7.31 – 7.26 (m, 1H), 6.53 – 6.48 (m, 1H), 6.45 – 6.41 (m, 1H), 

5.86 – 5.75 (m, 1H), 5.02 – 4.91 (m, 2H), 2.94 – 2.90 (m, 2H), 2.48 (s, 3H), 2.06 – 2.00 (m, 2H), 1.84 – 

1.77 (m, 2H), 1.42 – 1.26 (m, 10H). 13C NMR (100 MHz, CDCl3): δ 139.1, 137.3, 126.4, 126.3, 120.2, 

118.1, 115.5, 114.1, 111.7, 33.7, 29.4, 29.3, 29.2, 29.0, 28.8, 27.2, 26.6, 12.4. ESI-HRMS: m/z calcd. for 

C18H26N2 [M+H]+: 271.2174, found 271.2171. 
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1-(pyridin-2-yl)-3-(o-tolyl)imidazo[1,5-a]pyridine: Following the General procedure B2, a mixture of 

di(pyridine-2-yl)methanone (0.1 mmol), 2-methylbenzaldehyde (4 equiv.) and D-glucosamine·HCl (2.0 

equiv.) in AcOH : H2O (0.9 : 0.1 mL) were stirred at 120 ˚C under Ar atmosphere for 36 h. Work-up gave 

product 35 (21.4 mg, 0.075 mmol, isolated yield 75%) as a yellow solid. Mp: 90−92 ˚C. FT-IR: ν (cm-1): 

2924, 2848, 1634, 1605, 1589, 1562, 1533, 1508, 1482, 1465, 1445, 1426, 1399, 1354, 1327, 1315, 1259, 

1236, 1185, 1148, 1137, 1107, 1090, 1049, 1006, 942, 890, 868, 791, 777, 758, 744, 723, 711, 674, 624, 

604, 542, 495, 443, 427, 404. 1H NMR (400 MHz, CDCl3): δ 8.66 – 8.61 (m, 1H), 8.58 – 8.55 (m, 1H), 

8.18 – 8.14 (m, 1H), 7.65 – 7.61 (m, 1H), 7.59 – 7.55 (m, 1H), 7.46 – 7.43 (m, 1H), 7.37 – 7.25 (m, 3H), 

7.05 – 6.99 (m, 1H), 6.89 – 6.83 (m, 1H), 6.57 – 6.51 (m, 1H), 2.19 (s, 3H). 13C NMR (100 MHz, CDCl3): 
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δ 155.2, 149.0, 138.6, 137.7, 136.2, 130.8, 130.6, 129.9, 129.7, 129.2, 129.2, 126.1, 121.7, 121.6, 120.9, 

120.3, 119.8, 113.6, 19.7. ESI-HRMS: m/z calcd. for C19H15N3 [M+H]+: 286.1344, found 286.1341. 
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1-(pyridin-4-yl)-3-(o-tolyl)imidazo[1,5-a]pyridine: Following the General procedure B2, a mixture of 

pyridin-2-yl(pyridin-4-yl)methanone (0.1 mmol), 2-methylbenzaldehyde (4 equiv.) and D-

glucosamine·HCl (2.0 equiv.) in AcOH : H2O (0.9 : 0.1 mL) were stirred at 120 ˚C under Ar atmosphere 

for 36 h. Work-up gave product 36 (16.0 mg, 0.056 mmol, isolated yield 56%) as a yellow liquid. FT-IR: 

ν (cm-1): 2957, 2924, 2850, 1735, 1673, 1622, 1595, 1537, 1498, 1463, 1407, 1379, 1304, 1278, 1197, 

1148, 1100, 987, 942, 824, 773, 723, 649, 616, 515, 451, 420. 1H NMR (400 MHz, CDCl3): δ 8.56 – 8.55 

(m, 2H), 7.87 (d, J = 9.2 Hz, 1H), 7.85 – 7.83 (m, 2H), 7.63 (d, J = 7.2 Hz, 1H), 7.42 (d, J = 7.6 Hz, 1H), 

7.38 – 7.34 (m, 2H), 7.31 – 7.29 (m, 1H), 6.92 (dd, J = 9.3, 6.4 Hz, 1H), 6.60 – 6.56 (m, 1H), 2.19 (s, 3H). 
13C NMR (100 MHz, CDCl3): δ 149.3, 143.1, 139.0, 138.5, 131.0, 130.5, 130.0, 128.6, 127.6, 126.3, 

122.7, 121.9, 121.0, 120.3, 118.5, 113.4, 19.7. ESI-HRMS: m/z calcd. for C19H15N3 [M+H]+: 286.1344, 

found 286.1340. 
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1-phenyl-3-(o-tolyl)imidazo[1,5-a]pyridine: Following the General procedure B2, a mixture of 

phenyl(pyridin-2-yl)methanone (0.1 mmol), 2-methylbenzaldehyde (4 equiv.) and D-glucosamine·HCl 

(2.0 equiv.) in AcOH : H2O (0.9 : 0.1 mL) were stirred at 120 ˚C under Ar atmosphere for 36 h. Work-up 

gave product 37 (21.9 mg, 0.077 mmol, isolated yield 77%) as a yellow liquid. FT-IR: ν (cm-1): 3048, 
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2927, 2851, 1663, 1628, 1599, 1508, 1490, 1447, 1354, 1315, 1242, 1179, 1142, 1102, 1074, 1004, 981, 

946, 909, 771, 736, 694, 664, 616, 602, 499, 447, 418. 1H NMR (400 MHz, CDCl3): δ 7.90 –  7.87 (m, 

2H), 7.80 – 7.77 (m, 1H), 7.54 –  7.51 (m, 1H), 7.43 – 7.36 (m, 3H), 7.34 – 7.28 (m, 2H), 7.27 – 7.17 (m, 

2H), 6.72 – 6.68 (m, 1H), 6.45 – 6.41 (m, 1H), 2.18 (s, 3H). 13C NMR (100 MHz, CDCl3): δ 138.5, 137.8, 

135.1, 131.1, 130.8, 130.6, 129.5, 129.2, 128.7, 126.6, 126.6, 126.3, 126.1, 121.9, 119.5, 118.9, 112.8, 

19.8. ESI-HRMS: m/z calcd. for C20H16N2 [M+H]+: 285.1392, found 285.1390. 
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1,3-di-o-tolylimidazo[1,5-a]pyridine: Following the General procedure B2, a mixture of pyridin-2-

yl(o-tolyl)methanone (0.1 mmol), 2-methylbenzaldehyde (4 equiv.) and D-glucosamine·HCl (2.0 equiv.) 

in AcOH : H2O (0.9 : 0.1 mL) were stirred at 120 ˚C under Ar atmosphere for 36 h. Work-up gave 

product 38 (16.7 mg, 0.056 mmol, isolated yield 56%) as a green solid. Mp: 112−114 ˚C. FT-IR: ν (cm-1): 

3056, 2918, 2854, 1663, 1601, 1517, 1482, 1455, 1354, 1306, 1257, 1133, 1102, 1039, 1010, 950, 793, 

769, 758, 723, 703, 659, 616, 542, 453, 422. 1H NMR (500 MHz, CDCl3): δ 7.63 (d, J = 7.0 Hz, 1H), 

7.46 – 7.44 (m, 2H), 7.42 (d, J = 9.0 Hz, 1H), 7.34 – 7.32 (m, 2H), 7.28 – 7.26 (m, 2H), 7.22 – 7.20 (m, 

2H), 6.74 – 6.69 (m, 1H), 6.50 – 6.50 (m, 1H), 2.42 (s, 3H), 2.25 (s, 3H). 13C NMR (100 MHz, CDCl3): δ 

138.5, 137.3, 130.9, 130.8, 130.3, 130.2, 129.4, 127.4, 127.4, 126.0, 125.5, 121.5, 118.9, 112.9, 20.7, 19.9. 

ESI-HRMS: m/z calcd. for C21H18N2 [M+H]+: 299.1548, found 299.1545. 
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3-(o-tolyl)-1-(p-tolyl)imidazo[1,5-a]pyridine: Following the General procedure B2, a mixture of 

pyridin-2-yl(p-tolyl)methanone (0.1 mmol), 2-methylbenzaldehyde (4 equiv.) and D-glucosamine·HCl 

(2.0 equiv.) in AcOH : H2O (0.9 : 0.1 mL) were stirred at 120 ˚C under Ar atmosphere for 36 h. Work-up 

gave product 39 (21.8 mg, 0.073 mmol, isolated yield 73%) as a yellow liquid. FT-IR: ν (cm-1): 3031, 

2926, 2856, 1909, 1661, 1607, 1539, 1508, 1409, 1358, 1311, 1259, 1245, 1179, 1107, 1039, 1001, 946, 

818, 771, 746, 715, 645, 600, 571, 507, 451, 424. 1H NMR (400 MHz, CDCl3): δ 7.80 – 7.75 (m, 3H), 

7.54 – 7.51 (m, 1H), 7.42 (d, J = 7.2 Hz, 1H), 7.35 – 7.28 (m, 2H), 7.27 – 7.23 (m, 1H), 7.21 – 7.18 (m, 

2H), 6.71 –  6.67 (m, 1H), 6.45 – 6.41 (m, 1H), 2.33 (s, 3H), 2.18 (s, 3H). 13C NMR (100 MHz, CDCl3): 

δ 138.5, 137.6, 136.0, 132.3, 131.3, 130.8, 130.6, 129.5, 129.4, 129.3, 126.5, 126.3, 126.1, 121.8, 119.2, 

119.1, 112.7, 21.2, 19.8. ESI-HRMS: m/z calcd. for C21H18N2 [M+H]+: 299.1548, found 299.1543. 
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1-(4-methoxyphenyl)-3-(o-tolyl)imidazo[1,5-a]pyridine: Following the General procedure B2, a 

mixture of (4-methoxyphenyl)(pyridin-2-yl)methanone (0.1 mmol), 2-methylbenzaldehyde (4 equiv.) and 

D-glucosamine·HCl (2.0 equiv.) in AcOH : H2O (0.9 : 0.1 mL) were stirred at 120 ˚C under Ar 

atmosphere for 36 h. Work-up gave product 40 (22.0 mg, 0.070 mmol, isolated yield 70%) as a yellow 

liquid. FT-IR: ν (cm-1): 3066, 2930, 2848, 1657, 1599, 1539, 1500, 1459, 1412, 1356, 1298, 1284, 1245, 

1179, 1102, 1028, 999, 942, 835, 771, 750, 725, 703, 647, 600, 577, 521, 449, 422. 1H NMR (400 MHz, 

CDCl3): δ 7.81 (d, J = 8.4 Hz, 2H), 7.73 (d, J = 9.3 Hz, 1H), 7.52 (d, J = 7.2 Hz, 1H), 7.43 (d, J = 7.4 Hz, 

1H), 7.35 – 7.29 (m, 2H), 7.27 – 7.24 (m, 1H), 6.94 (d, J = 8.5 Hz, 2H), 6.68 (dd, J = 9.2, 6.4 Hz, 1H), 

6.45 – 6.41 (m, 1H), 3.79 (s, 3H), 2.19 (s, 3H). 13C NMR (100 MHz, CDCl3): δ 158.4, 138.5, 137.5, 

131.1, 130.8, 130.6, 129.5, 129.4, 127.9, 127.8, 126.1, 126.0, 121.8, 119.0, 118.9, 114.2, 112.7, 55.3, 19.8. 

ESI-HRMS: m/z calcd. for C21H18N2O [M+H]+: 315.1497, found 315.1495. 
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3-(o-tolyl)-1-(4-(trifluoromethyl)phenyl)imidazo[1,5-a]pyridine: Following the General procedure 

B2, a mixture of pyridin-2-yl(4-(trifluoromethyl)phenyl)methanone (0.1 mmol), 2-methylbenzaldehyde (4 

equiv.) and D-glucosamine·HCl (2.0 equiv.) in AcOH : H2O (0.9 : 0.1 mL) were stirred at 120 ˚C under 

Ar atmosphere for 36 h. Work-up gave product 41 (30.6 mg, 0.087 mmol, isolated yield 87%) as a yellow 

liquid. FT-IR: ν (cm-1): 3066, 2963, 2918, 2848, 1922, 1677, 1616, 1545, 1508, 1469, 1407, 1319, 1253, 

1160, 1107, 1061, 1010, 981, 948, 847, 802, 771, 760, 729, 715, 703, 674, 618, 604, 544, 509, 455, 443, 

424, 410. 1H NMR (400 MHz, CDCl3): δ 8.01 (d, J = 8.1 Hz, 2H), 7.80 (d, J = 9.3 Hz, 1H), 7.64 – 7.58 

(m, 3H), 7.43 (d, J = 7.6 Hz, 1H), 7.37 – 7.26 (m, 3H), 6.84 – 6.80 (m, 1H), 6.52 (t, J = 6.8 Hz, 1H), 2.19 

(s, 3H). 13C NMR (100 MHz, CDCl3): δ 138.7, 138.5, 138.4, 131.2, 130.9, 130.6, 129.8, 129.4, 128.9, 

127.8 (q, 2JC-F = 32.1 Hz), 127.5, 126.3, 126.2, 125.6 (q, 3JC-F = 3.8 Hz), 124.5 (q, 1JC-F = 269.8 Hz), 122.3, 

120.7, 118.6, 113.1, 19.8. 19F NMR (375 MHz, CDCl3): δ -62.20. ESI-HRMS: m/z calcd. for C21H15F3N2 

[M+H]+: 353.1266, found 353.1263. 
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1-(4-bromophenyl)-3-(o-tolyl)imidazo[1,5-a]pyridine: Following the General procedure B2, a 

mixture of (4-bromophenyl)(pyridin-2-yl)methanone (0.1 mmol), 2-methylbenzaldehyde (4 equiv.) and 

D-glucosamine·HCl (2.0 equiv.) in AcOH : H2O (0.9 : 0.1 mL) were stirred at 120 ˚C under Ar 

atmosphere for 36 h. Work-up gave product 42 (30.0 mg, 0.083 mmol, isolated yield 83%) as a yellow 

solid. Mp: 123−125 ˚C. FT-IR: ν (cm-1): 2918, 2854, 2122, 1653, 1583, 1521, 1484, 1457, 1395, 1377, 

1346, 1311, 1261, 1241, 1160, 1133, 1098, 1067, 1047, 1006, 981, 946, 828, 800, 771, 756, 723, 711, 699, 
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678, 633, 610, 598, 583, 505, 455, 437, 422. 1H NMR (300 MHz, CDCl3): δ 7.78 – 7.72 (m, 3H), 7.55 (d, 

J = 7.2 Hz, 1H), 7.50 (d, J = 8.4 Hz, 2H), 7.41 (d, J = 7.2 Hz, 1H), 7.35 – 7.26 (m, 3H), 6.76 (dd, J = 9.2, 

6.3 Hz, 1H), 6.50 – 6.46 (m, 1H), 2.18 (s, 3H). 13C NMR (100 MHz, CDCl3): δ 138.5, 138.0, 134.1, 131.7, 

130.9, 130.6, 129.9, 129.7, 129.0, 128.0, 126.8, 126.1, 122.1, 120.1, 120.0, 118.7, 112.9, 19.8. ESI-

HRMS: m/z calcd. for C20H15BrN2 [M+H]+: 363.0497, found 363.0493. 
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1-(3,5-dibromophenyl)-3-(o-tolyl)imidazo[1,5-a]pyridine: Following the General procedure B2, a 

mixture of (3,5-dibromophenyl)(pyridin-2-yl)methanone (0.1 mmol), 2-methylbenzaldehyde (4 equiv.) 

and D-glucosamine·HCl (2.0 equiv.) in AcOH : H2O (0.9 : 0.1 mL) were stirred at 120 ˚C under Ar 

atmosphere for 36 h. Work-up gave product 43 (27.7 mg, 0.063 mmol, isolated yield 63%) as a yellow 

solid. Mp: 139−140 ˚C. FT-IR: ν (cm-1): 3052, 2951, 2916, 2958, 1663, 1583, 1545, 1508, 1459, 1432, 

1409, 1383, 1341, 1315, 1276, 1247, 1148, 1100, 1051, 1014, 983, 948, 861, 839, 806, 777, 738, 721, 705, 

670, 620, 536, 451, 422. 1H NMR (400 MHz, CDCl3): δ 7.98 (s, 2H), 7.76 (d, J = 9.2 Hz, 1H), 7.57 (d, J 

= 7.2 Hz, 1H), 7.47 (s, 1H), 7.41 (d, J = 7.6 Hz, 1H), 7.36 – 7.26 (m, 3H), 6.87 – 6.83 (m, 1H), 6.55 – 

6.51 (m, 1H), 2.17 (s, 3H). 13C NMR (100 MHz, CDCl3): δ 138.7, 138.5, 138.4, 131.3, 130.9, 130.6, 

129.9, 128.7, 127.9, 127.7, 127.4, 126.2, 123.2, 122.3, 121.1, 118.4, 113.2, 19.7. ESI-HRMS: m/z calcd. 

for C20H14Br2N2 [M+H]+: 440.9602, found 440.9609. 
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1-cyclopentyl-3-(o-tolyl)imidazo[1,5-a]pyridine: Following the General procedure B2, a mixture of 

cyclopentyl(pyridin-2-yl)methanone (0.1 mmol), 2-methylbenzaldehyde (4 equiv.) and D-
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glucosamine·HCl (2.0 equiv.) in AcOH : H2O (0.9 : 0.1 mL) were stirred at 120 ˚C under Ar atmosphere 

for 36 h. Work-up gave product 44 (22.6 mg, 0.082 mmol, isolated yield 82%) as a brown solid. Mp: 

72−74 ˚C. FT-IR: ν (cm-1): 3060, 2951, 2862, 1653, 1628, 1603, 1453, 1416, 1364, 1304, 1238, 1105, 

1045, 995, 946, 771, 746, 723, 620, 453, 418. 1H NMR (400 MHz, CDCl3): δ 7.42 (d, J = 6.8 Hz, 1H), 

7.36 (d, J = 9.2 Hz, 1H), 7.32 (d, J = 7.6 Hz, 1H), 7.26 – 7.22 (m, 2H), 7.18 (t, J = 6.7 Hz, 1H), 6.48 (dd, 

J = 9.2, 6.4 Hz, 1H), 6.33 – 6.29 (m, 1H), 3.36 – 3.28 (m, 1H), 2.11 (s, 3H), 2.04 – 1.98 (m, 2H), 1.91 – 

1.86 (m, 2H), 1.82 – 1.76 (m, 2H), 1.65 – 1.59 (m, 2H). 13C NMR (100 MHz, CDCl3): δ 138.4, 136.1, 

135.9, 130.7, 130.4, 129.6, 129.1, 125.9, 125.8, 121.2, 118.2, 116.5, 112.2, 38.3, 33.4, 25.7, 19.7. ESI-

HRMS: m/z calcd. for C19H20N2 [M+H]+: 277.1705, found 277.1702. 
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1-(pyridin-2-yl)-3-(thiophen-2-yl)imidazo[1,5-a]pyridine: Following the General procedure B2, a 

mixture of di(pyridin-2-yl)methanone (0.1 mmol), thiophene-2-carbaldehyde (4 equiv.) and D-

glucosamine·HCl (2.0 equiv.) in AcOH : H2O (0.9 : 0.1 mL) were stirred at 120 ˚C under Ar atmosphere 

for 36 h. Work-up gave product 45 (16.1 mg, 0.058 mmol, isolated yield 58%) as a yellow solid. 1H 

NMR (400 MHz, CDCl3): δ 8.66 (d, J = 9.2 Hz, 1H), 8.55 (d, J = 4.0 Hz, 1H), 8.30 – 8.28 (m, 1H), 8.18 

(d, J = 8.0 Hz, 1H), 7.68 – 7.63 (m, 1H), 7.51 (d, J = 3.6 Hz, 1H), 7.39 (d, J = 5.2, 1H), 7.16 – 7.13 (m, 

1H), 7.05 – 7.02 (m, 1H), 6.90 – 6.86 (m, 1H), 6.74 – 6.67 (m, 1H). 13C NMR (100 MHz, CDCl3): δ 

154.8, 149.0, 136.3, 132.6, 132.1, 130.8, 130.4, 127.7, 126.4, 125.5, 122.0, 121.9, 121.1, 120.7, 120.1, 

114.5. The compound is known, and the NMR data is in accordance with the previous literature.234 
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2-(1-(pyridin-2-yl)imidazo[1,5-a]pyridin-3-yl)phenol: Following the General procedure B2, a mixture 

of di(pyridin-2-yl)methanone (0.1 mmol), 2-hydroxybenzaldehyde (4 equiv.) and D-glucosamine·HCl 

(2.0 equiv.) in AcOH : H2O (0.9 : 0.1 mL) were stirred at 120 ˚C under Ar atmosphere for 36 h. Work-up 

gave product 46 (15.8 mg, 0.055 mmol, isolated yield 55%) as a yellow solid. 1H NMR (400 MHz, 

CDCl3): δ 8.72 (d, J = 9.2 Hz, 1H), 8.57 – 8.55 (m, 1H), 8.47 (d, J = 7.6 Hz, 1H), 8.04 (d, J = 8.0 Hz, 1H), 

7.71 (dd, J = 7.6, 1.6 Hz, 1H), 7.67 (td, J = 8.0, 2.0 Hz, 1H), 7.28 – 7.24 (m, 1H), 7.11 (dd, J = 8.0, 1.2 

Hz, 1H), 7.07 –  7.04 (m, 1H), 6.97 – 6.89 (m, 2H), 6.71 – 6.67 (m, 1H). 13C NMR (100 MHz, CDCl3): δ 

156.3, 153.8, 149.1, 136.4, 135.5, 130.1, 129.6, 128.6, 124.5, 122.3, 122.2, 121.7, 120.9, 119.8, 119.1, 

117.8, 114.8, 114.0. The compound is known, and the NMR data is in accordance with the previous 

literature.330 
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3-(2-methoxyphenyl)-1-(pyridin-2-yl)imidazo[1,5-a]pyridine: Following the General procedure B2, a 

mixture of di(pyridin-2-yl)methanone (0.1 mmol), 2-methoxylbenzaldehyde (4 equiv.) and D-

glucosamine·HCl (2.0 equiv.) in AcOH : H2O (0.9 : 0.1 mL) were stirred at 120 ˚C under Ar atmosphere 

for 36 h. Work-up gave product 47 (19.3 mg, 0.064 mmol, isolated yield 64%) as a yellow solid. 1H 

NMR (400 MHz, CDCl3): δ 8.63 – 8.61 (m, 1H), 8.56 – 8.54 (m, 1H), 8.18 – 8.15 (m, 1H), 7.64 – 7.58 

(m, 2H), 7.55 – 7.53 (m, 1H), 7.44 – 7.39 (m, 1H), 7.09 – 7.04 (m, 1H), 7.01 – 6.97 (m, 2H), 6.88 – 6.84 

(m, 1H), 6.55 – 6.51 (m, 1H), 3.73 (s, 3H). 13C NMR (100 MHz, CDCl3): δ 157.6, 155.3, 148.9, 136.2, 

136.1, 132.8, 131.0, 130.2, 130.0, 123.3, 121.3, 121.2, 120.9, 120.2, 119.8, 119.1, 112.7, 111.2, 55.6. The 

compound is known, and the NMR data is in accordance with the previous literature.226  
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3-(4-methoxyphenyl)-1-(pyridin-2-yl)imidazo[1,5-a]pyridine: Following the General procedure B2, a 

mixture of di(pyridin-2-yl)methanone (0.1 mmol), 4-methoxylbenzaldehyde (4 equiv.) and D-

glucosamine·HCl (2.0 equiv.) in AcOH : H2O (0.9 : 0.1 mL) were stirred at 120 ˚C under Ar atmosphere 

for 36 h. Work-up gave product 48 (21.2 mg, 0.067 mmol, isolated yield 67%) as a yellow solid. 1H 

NMR (400 MHz, CDCl3): δ 8.60 (d, J = 9.2 Hz, 1H), 8.55 (d, J = 4.8 Hz, 1H), 8.16 (d, J = 8.0 Hz, 1H), 

8.10 (d, J = 7.2 Hz, 1H), 7.68 (d, J = 8.7 Hz, 2H), 7.65 – 7.61 (m, 1H), 7.02 – 6.98 (m, 3H), 6.82 (dd, J = 

9.2, 6.4 Hz, 1H), 6.56 – 6.53 (m, 1H), 3.81 (s, 3H). 13C NMR (100 MHz, CDCl3): δ 160.1, 155.1, 148.9, 

138.1, 136.2, 130.2, 129.9, 129.9, 122.5, 121.7, 121.6, 120.8, 120.3, 119.9, 114.5, 113.7, 55.4. The 

compound is known, and the NMR data is in accordance with the previous literature.330 
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4-(1-(pyridin-2-yl)imidazo[1,5-a]pyridin-3-yl)benzonitrile: Following the General procedure B2, a 

mixture of di(pyridin-2-yl)methanone (0.1 mmol), 4-formylbenzonitrile (4 equiv.) and D-

glucosamine·HCl (2.0 equiv.) in AcOH : H2O (0.9 : 0.1 mL) were stirred at 120 ˚C under Ar atmosphere 

for 36 h. Work-up gave product 49 (24.0 mg, 0.081 mmol, isolated yield 81 %) as a yellow solid. Mp: 

140−142 ˚C. FT-IR: ν (cm-1): 3384, 3309, 3200, 3058, 2928, 2850, 2230, 2217, 1667, 1603, 1591, 1564, 

1513, 1484, 1457, 1434, 1409, 1352, 1311, 1278, 1255, 1170, 1148, 1105, 1084, 1061, 1008, 993, 946, 

845, 816, 779, 748, 734, 721, 694, 661, 628, 616, 585, 558, 544, 525, 486, 433. 1H NMR (400 MHz, 

CDCl3): δ 8.70 (d, J = 9.2 Hz, 1H), 8.57 (d, J = 4.8 Hz, 1H), 8.24 (d, J = 7.2 Hz, 1H), 8.16 (d, J = 8.0 Hz, 

1H), 7.96 – 7.94 (m, 2H), 7.75 (d, J = 7.6, 2H), 7.69 – 7.65 (m, 1H), 7.08 – 7.05  (m, 1H), 6.96 – 6.91 (m, 

1H), 6.71 – 6.68 (m, 1H). 13C NMR (100 MHz, CDCl3): δ 154.5, 149.0, 136.4, 135.7, 134.5, 132.8, 131.9, 
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131.8, 131.1, 130.1, 128.2, 122.2, 121.8, 121.3, 120.9, 120.0, 118.6, 115.0, 111.8. ESI-HRMS: m/z calcd. 

for C19H12N4 [M+H]+: 297.1140, found 297.1136. 
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3-(4-bromophenyl)-1-(pyridin-2-yl)imidazo[1,5-a]pyridine: Following the General procedure B2, a 

mixture of di(pyridin-2-yl)methanone (0.1 mmol), 4-bromobenzaldehyde (4 equiv.) and D-

glucosamine·HCl (2.0 equiv.) in AcOH : H2O (0.9 : 0.1 mL) were stirred at 120 ˚C under Ar atmosphere 

for 36 h. work-up gave product 50 (26.5 mg, 0.076 mmol, isolated yield 76%) as a brown solid. FT-IR: ν 

(cm-1): 2920, 2852, 2125, 1733, 1667, 1589, 1508, 1477, 1397, 1313, 1247, 1140, 1121, 1067, 1006, 950, 

830, 785, 736, 696, 626, 593, 542, 488, 431, 406. 1H NMR (400 MHz, CDCl3): δ 8.65 (d, J = 9.2 Hz, 1H), 

8.56 – 8.55 (m, 1H), 8.16 – 8.13 (m, 2H), 7.68 – 7.60 (m, 5H), 7.05 – 7.02 (m, 1H), 6.89 – 6.85 (m, 1H), 

6.61 (t, J = 6.8 Hz, 1H). 13C NMR (100 MHz, CDCl3): δ 154.8, 149.0, 136.8, 136.3, 132.3, 130.9, 130.4, 

129.7, 129.1, 122.9, 122.0, 121.3, 121.2, 120.6, 119.9, 114.3. The compound is known, and the NMR data 

is in accordance with the previous literature.331  
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3-(4-fluorophenyl)-1-(pyridin-2-yl)imidazo[1,5-a]pyridine: Following the General procedure B2, a 

mixture of di(pyridin-2-yl)methanone (0.1 mmol), 4-fluorobenzaldehyde (4 equiv.) and D-

glucosamine·HCl (2.0 equiv.) in AcOH : H2O (0.9 : 0.1 mL) were stirred at 120 ˚C under Ar atmosphere 

for 36 h. Work-up gave product 51 (23.1 mg, 0.080 mmol, isolated yield 80%) as a yellow solid. Mp: 

116−117 ˚C. FT-IR: ν (cm-1): 2930, 2112, 1630, 1591, 1562, 1527, 1513, 1480, 1405, 1350, 1311, 1280, 
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1251, 1216, 1193, 1154, 1088, 1010, 948, 837, 810, 787, 734, 713, 690, 657, 628, 587, 565, 513, 433, 406. 
1H NMR (400 MHz, CDCl3): δ 8.62 (d, J = 9.2 Hz, 1H), 8.56 – 8.54 (m, 1H), 8.14 (d, J = 8.0, 1H), 8.08 

(d, J = 7.2 Hz, 1H), 7.75 – 7.72 (m, 2H), 7.65 – 7.61 (m, 1H), 7.18 – 7.14 (m, 2H), 7.03 – 7.00 (m, 1H), 

6.86 – 6.82 (m, 1H), 6.59 – 6.55 (m, 1H). 13C NMR (100 MHz, CDCl3): δ 163.0 (d, 1JC-F = 249.4 Hz), 

154.9, 149.0, 137.0, 136.2, 130.6, 130.3 (d, 3JC-F = 8.4 Hz), 130.1, 126.3 (d, 4JC-F = 3.4 Hz), 121.9, 121.3, 

121.0, 120.5, 119.8, 116.2 (d, 2JC-F = 21.8 Hz), 114.1. 19F NMR (375 MHz, CDCl3): δ -111.55. ESI-

HRMS: m/z calcd. for C18H12FN3 [M+H]+: 290.1094, found 290.1090. 
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1-(pyridin-2-yl)-3-(4-(trifluoromethyl)phenyl)imidazo[1,5-a]pyridine: Following the General 

procedure B2, a mixture of di(pyridin-2-yl)methanone (0.1 mmol), 4-(trifluoromethyl)benzaldehyde (4 

equiv.) and D-glucosamine·HCl (2.0 equiv.) in AcOH : H2O (0.9 : 0.1 mL) were stirred at 120 ˚C under 

Ar atmosphere for 36 h. Work-up gave product 52 (28.1 mg, 0.083 mmol, isolated yield 83%) as a yellow 

solid. 1H NMR (400 MHz, CDCl3): δ 8.69 – 8.66 (m, 1H), 8.57 – 8.55 (m, 1H), 8.12 – 8.15 (m, 2H), 7.92 

(d, J = 8.0 Hz, 2H), 7.72 (d, J = 8.1 Hz, 2H), 7.68 – 7.63 (m, 1H), 7.06 – 7.02 (m, 1H), 6.91 – 6.87 (m, 

1H), 6.66 – 6.62 (m, 1H). 13C NMR (100 MHz, CDCl3): δ 154.7, 149.0, 136.3, 136.3, 133.6 (q, 4JC-F = 1.5 

Hz), 131.3, 130.7, 130.5 (q, 2JC-F = 32.7 Hz), 128.3, 126.0 (q, 3JC-F = 3.8 Hz), 124.0 (q, 1JC-F = 272.1 Hz), 

122.1, 121.4, 121.3, 120.7, 120.0, 114.6. 19F NMR (375 MHz, CDCl3): δ -62.66. The compound is known, 

and the NMR data is in accordance with the previous literature.332  
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3-(4-nitrophenyl)-1-(pyridin-2-yl)imidazo[1,5-a]pyridine: Following the General procedure B2, a 

mixture of di(pyridin-2-yl)methanone (0.1 mmol), 4-nitrobenzaldehyde (4 equiv.) and D-

glucosamine·HCl (2.0 equiv.) in AcOH : H2O (0.9 : 0.1 mL) were stirred at 120 ˚C under Ar atmosphere 

for 36 h. Work-up gave product 53 (25.6 mg, 0.081 mmol, isolated yield 81%) as a red solid. Mp: 

225−226 ˚C. FT-IR: ν (cm-1): 2916, 1683, 1589, 1566, 1519, 1504, 1480, 1449, 1412, 1346, 1321, 1306, 

1249, 1175, 1100, 1084, 1014, 950, 851, 785, 729, 694, 628, 591, 525, 478, 424. 1H NMR (300 MHz, 

CDCl3): δ 8.75 (dt, J = 9.2, 1.2 Hz, 1H), 8.59 (ddd, J = 4.9, 1.7, 0.9 Hz, 1H), 8.36 – 8.23 (m, 3H), 8.21 – 

8.18 (m, 1H). 8.06 – 8.01 (m, 2H), 7.73 – 7.67 (m, 1H), 7.09 (ddd, J = 7.4, 4.9, 1.1 Hz, 1H), 6.98 (ddd, J 

= 9.2, 6.5, 0.9 Hz, 1H), 6.74 (ddd, J = 7.1, 6.4, 1.2 Hz, 1H). 13C NMR (100 MHz, CDCl3): δ 148.9, 147.2, 

136.6, 136.3, 136.3, 135.8, 135.5, 131.4, 128.2, 124.4, 122.3, 122.1, 121.4, 121.1, 120.2, 115.3. ESI-

HRMS: m/z calcd. for C18H12N4O2 [M+H]+: 317.1039, found 317.1036. 
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methyl 4-(1-(pyridin-2-yl)imidazo[1,5-a]pyridin-3-yl)benzoate: Following the General procedure B2, 

a mixture of di(pyridin-2-yl)methanone (0.1 mmol), methyl-4-formylbenzoate (4 equiv.) and D-

glucosamine·HCl (2.0 equiv.) in AcOH : H2O (0.9 : 0.1 mL) were stirred at 120 ˚C under Ar atmosphere 

for 36 h. Work-up gave product 54 (13.5 mg, 0.041 mmol, isolated yield 41%) as a yellow liquid. FT-IR: 

ν (cm-1): 2918, 1719, 1681, 1581, 1523, 1467, 1430, 1317, 1278, 1189, 1105, 1018, 993, 946, 868, 824, 

777, 746, 696, 664, 614, 534, 439. 1H NMR (300 MHz, CDCl3): δ 8.70 (d, J = 9.3 Hz, 1H), 8.58 (ddd, J = 

5.1, 1.5, 0.9 Hz, 1H), 8.28 – 8.25 (m, 1H), 8.21 – 8.18 (m, 1H), 8.17 – 8.13 (m, 2H), 7.93 – 7.89 (m, 2H), 

7.71 – 7.65 (m, 1H), 7.07 (ddd, J = 7.2, 5.1, 1.2 Hz, 1H), 6.95 – 6.90 (m, 1H), 6.70 – 6.65 (m, 1H), 3.91 (s, 

3H). 13C NMR (100 MHz, CDCl3): δ 166.6, 149.7, 149.2, 137.0, 136.8, 130.3, 129.8, 129.0, 127.9, 126.4, 

125.3, 123.5, 122.0, 121.6, 121.3, 120.8, 52.3. ESI-HRMS: m/z calcd. for C18H15N3O2 [M+H]+: 330.1243, 

found 330.1236. 
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3-(4-chlorophenyl)-1-(pyridin-2-yl)imidazo[1,5-a]pyridine: Following the General procedure B2, a 

mixture of di(pyridin-2-yl)methanone (0.1 mmol), 4-chlorobenzaldehyde (4 equiv.) and D-

glucosamine·HCl (2.0 equiv.) in AcOH : H2O (0.9 : 0.1 mL) were stirred at 120 ˚C under Ar atmosphere 

for 36 h. Work-up gave product 55 (25.0 mg, 0.082 mmol, isolated yield 82%) as a yellow solid. Mp: 

137−138 ˚C. FT-IR: ν (cm-1): 2922, 2854, 2100, 1673, 1587, 1560, 1502, 1480, 1403, 1313, 1245, 1197, 

1173, 1146, 1123, 1086, 1010, 952, 833, 781, 740, 713, 699, 628, 608, 596, 581, 492, 429, 406. 1H NMR 

(400 MHz, CDCl3): δ 8.65 (d, J = 10.4 Hz, 1H), 8.56 (s, 1H), 8.17 – 8.14 (m, 2H), 7.74 – 7.71 (m, 2H), 

7.67 – 7.64 (m, 1H), 7.47 – 7.44 (m, 2H), 7.05 – 7.03 (m, 1H), 6.89 – 6.86 (m, 1H), 6.63 – 6.60 (m, 1H). 
13C NMR (100 MHz, CDCl3): δ 154.9, 149.0, 136.8, 136.3, 134.8, 130.9, 130.4, 129.5, 129.3, 128.6, 

122.0, 121.4, 121.1, 120.6, 119.9, 114.2. ESI-HRMS: m/z calcd. for C18H12ClN3 [M+H]+: 306.0798, 

found 306.0795. 
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3-(3,4-dichlorophenyl)-1-(pyridin-2-yl)imidazo[1,5-a]pyridine: Following the General procedure B2, 

a mixture of di(pyridin-2-yl)methanone (0.1 mmol), 3,4-dichlorobenzaldehyde (4 equiv.) and D-

glucosamine·HCl (2.0 equiv.) in AcOH : H2O (0.9 : 0.1 mL) were stirred at 120 ˚C under Ar atmosphere 

for 36 h. Work-up gave product 56 (24.4 mg, 0.072 mmol, isolated yield 72%) as a yellow solid. Mp: 

177−179 ˚C. FT-IR: ν (cm-1): 2922, 2850, 2112, 1669, 1632, 1591, 1566, 1531, 1506, 1477, 1453, 1401, 

1381, 1352, 1313, 1247, 1133, 1088, 1030, 1012, 954, 878, 828, 812, 783, 727, 703, 672, 628, 600, 532, 

507, 455, 435, 412. 1H NMR (400 MHz, CDCl3): δ 8.67 (d, J = 9.2 Hz, 1H), 8.56 (d, J = 4.0 Hz, 1H), 

8.16 (d, J = 7.2 Hz, 2H), 7.92 (s, 1H), 7.68 – 7.63 (m, 2H), 7.55 (d, J = 8.0 Hz, 1H), 7.07 – 7.04 (m, 1H), 
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6.92 – 6.88 (m, 1H), 6.68 – 6.65 (m, 1H). 13C NMR (100 MHz, CDCl3): δ 154.7, 149.0, 136.3, 135.5, 

133.4, 132.8, 131.2, 131.0, 130.6, 130.1, 130.0, 127.1, 122.1, 121.4, 121.2, 120.8, 120.0, 114.6. ESI-

HRMS: m/z calcd. for C18H11Cl2N3 [M+H]+: 340.0408, found 340.0404. 
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3-(naphthalen-1-yl)-1-(pyridin-2-yl)imidazo[1,5-a]pyridine: Following the General procedure B2, a 

mixture of di(pyridin-2-yl)methanone (0.1 mmol), 1-naphthaldehyde (4 equiv.) and D-glucosamine·HCl 

(2.0 equiv.) in AcOH : H2O (0.9 : 0.1 mL) were stirred at 120 ˚C under Ar atmosphere for 36 h. Work-up 

gave product 57 (18.6 mg, 0.058 mmol, isolated yield 58%) as a yellow solid. Mp: 71−73 ˚C. FT-IR: ν 

(cm-1): 3050, 2924, 2850, 1663, 1585, 1529, 1508, 1473, 1426, 1401, 1352, 1304, 1245, 1214, 1142, 1076, 

999, 969, 938, 802, 775, 740, 729, 705, 670, 616, 596, 530, 511, 418. 1H NMR (400 MHz, CDCl3): δ 

8.70 (d, J = 8.8 Hz, 1H), 8.60 (d, J = 4.0 Hz, 1H), 8.21 (d, J = 7.6 Hz, 1H), 7.96 (d, J = 8.0 Hz, 1H), 7.90 

(d, J = 8.0 Hz, 1H), 7.73 (d, J = 7.2 Hz, 1H), 7.68 – 7.55 (m, 4H), 7.50 – 7.38 (m, 2H), 7.06 – 7.03 (m, 

1H), 6.91 – 6.87 (m, 1H), 6.51 – 6.48 (m, 1H). 13C NMR (100 MHz, CDCl3): δ 155.2, 149.0, 136.8, 136.3, 

134.0, 132.0, 130.4, 130.1, 129.8, 129.0, 128.6, 127.1, 126.4, 125.5, 125.4, 122.0, 121.7, 121.2, 120.4, 

120.0, 113.6. ESI-HRMS: m/z calcd. for C22H15N3 [M+H]+: 322.1344, found 322.1342. 

 

 

58

N
N

N
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3-cyclohexyl-1-(pyridin-2-yl)imidazo[1,5-a]pyridine: Following the General procedure B2, a mixture 

of di(pyridin-2-yl)methanone (0.1 mmol), cyclohexanecarbaldehyde (4 equiv.) and D-glucosamine·HCl 

(2.0 equiv.) in AcOH : H2O (0.9 : 0.1 mL) were stirred at 120 ˚C under Ar atmosphere for 36 h. Work-up 

gave product 58 (20.8 mg, 0.075 mmol, isolated yield 75%) as a yellow solid. Mp: 107−109 ˚C. FT-IR: ν 

(cm-1): 2926, 2852, 1632, 1587, 1562, 1533, 1519, 1471, 1445, 1428, 1401, 1346, 1284, 1224, 1146, 1086, 

1059, 1001, 958, 890, 822, 791, 736, 703, 633, 616, 598, 509, 424, 408. 1H NMR (400 MHz, CDCl3): δ 

8.62 – 8.58 (m, 2H), 8.18 (d, J = 8.0 Hz, 1H), 7.82 (d, J = 7.2 Hz, 1H), 7.72 – 7.68 (m, 1H), 7.07 – 7.04 

(m, 1H), 6.84 (dd, J = 8.8, 6.4 Hz, 1H), 6.62 – 6.58 (m, 1H), 3.01 (tt, J = 11.3, 3.0 Hz, 1H), 2.10 (d, J = 

13.2 Hz, 2H), 1.98 – 1.83 (m, 5H), 1.53 – 1.40 (m, 3H). 13C NMR (100 MHz, CDCl3): δ 155.3, 148.9, 

142.8, 136.0, 128.9, 128.7, 121.6, 120.7, 119.9, 119.9, 119.7, 112.7, 35.8, 30.6, 26.2, 25.9. ESI-HRMS: 

m/z calcd. for C18H19N3 [M+H]+: 278.1657, found 278.1654. 
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3-pentyl-1-(pyridin-2-yl)imidazo[1,5-a]pyridine: Following the General procedure B2, a mixture of 

di(pyridin-2-yl)methanone (0.1 mmol), hexanal (4 equiv.) and D-glucosamine·HCl (2.0 equiv.) in AcOH : 

H2O (0.9 : 0.1 mL) were stirred at 120 ˚C under Ar atmosphere for 36 h. Work-up gave product 59 (20.4 

mg, 0.077 mmol, isolated yield 77%) as a brown liquid. FT-IR: ν (cm-1): 3037, 2936, 2858, 1686, 1681, 

1630, 1587, 1533, 1519, 1463, 1428, 1405, 1374, 1341, 1323, 1286, 1241, 1220, 1179, 1148, 1115, 1088, 

1065, 1028, 1004, 954, 886, 830, 787, 762, 734, 723, 699, 674, 631, 614, 579,  418, 404. 1H NMR (400 

MHz, CDCl3): δ 8.52 – 8.48 (m, 2H), 8.04 (d, J = 8.4 Hz, 1H), 7.66 (d, J = 7.2 Hz, 1H), 7.60 (td, J = 7.6, 

1.6 Hz, 1H), 6.96 (ddd, J = 7.2, 4.8, 1.2 Hz, 1H), 6.76 (ddd, J = 9.2, 6.4, 0.8 Hz, 1H), 6.55 – 6.51(m, 1H), 

2.93 (t, J = 8.0 Hz, 2H), 1.78 (p, J = 8.0 Hz, 2H), 1.38 – 1.28 (m, 4H), 0.84 (t, J = 6.8 Hz, 3H). 13C NMR 

(100 MHz, CDCl3): δ 155.1, 148.9, 139.1, 136.1, 129.0, 128.7, 121.6, 120.8, 120.0, 120.0, 119.6, 113.1, 

31.6, 26.8, 26.7, 22.4, 14.0. ESI-HRMS: m/z calcd. for C17H19N3 [M+H]+: 266.1657, found 266.1654. 
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3-(dec-9-en-1-yl)-1-methylimidazo[1,5-a]pyridine: Following the General procedure B2, a mixture of 

di(pyridin-2-yl)methanone (0.1 mmol), undec-10-enal (4 equiv.) and D-glucosamine·HCl (2.0 equiv.) in 

AcOH : H2O (0.9 : 0.1 mL) were stirred at 120 ˚C under Ar atmosphere for 36 h. Work-up gave product 

60 (23.3 mg, 0.070 mmol, isolated yield 70%) as a dark liquid. FT-IR: ν (cm-1): 3338, 3079, 2926, 2856, 

1679, 1640, 1587, 1537, 1521, 1473, 1428, 1403, 1381, 1321, 1276, 1238, 1144, 1086, 1049, 995, 960, 

909, 787, 738, 725, 678, 631, 612, 420, 402. 1H NMR (400 MHz, CDCl3): δ 8.61 – 8.57 (m, 2H), 8.13 (d, 

J = 8.0 Hz, 1H), 7.74 (d, J = 7.2 Hz, 1H), 7.71 – 7.66 (m, 1H), 7.07 –  7.03 (m,  1H), 6.86 – 6.82 (m, 1H), 

6.63 – 6.59 (m, 1H), 5.87  –  5.77 (m, 1H), 5.03 – 4.92 (m, 2H), 3.04 – 2.99 (m, 2H), 2.05 (q, J = 7.0 Hz, 

2H), 1.87 (p, J = 7.7 Hz, 2H), 1.49  – 1.44 (m, 2H), 1.40 – 1.35 (m, 4H), 1.34 – 1.29 (m, 4H). 13C NMR 

(100 MHz, CDCl3): δ 155.2, 148.9, 139.1, 139.0, 136.0, 129.0, 128.7, 121.5, 120.7, 119.9, 119.9, 119.5, 

114.1, 113.0, 33.7, 29.4, 29.3, 29.2, 29.0, 28.8, 27.1, 26.7. ESI-HRMS: m/z calcd. for C22H27N3 [M+H]+: 

334.2283, found 334.2280. 
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1,4-bis(1-methylimidazo[1,5-a]pyridin-3-yl)benzene: a mixture of 2-acetylpyridine (0.3 mmol), 

terephthaldehyde (0.1 mmol) and D-glucosamine·HCl (0.4 mmol) in AcOH : H2O (1.8 : 0.2 mL) were 

stirred at 120 ˚C under Ar atmosphere for 3 days. Work-up gave product 61 (17.2 mg, 0.051 mmol, 

isolated yield 51%) as a brown red solid. Mp: 212−214 ˚C. FT-IR: ν (cm-1): 3070, 3035, 2920, 2858, 

2110, 1927, 1663, 1630, 1537, 1510, 1442, 1424, 1407, 1356, 1327, 1306, 1253, 1179, 1115, 1078, 1008, 

942, 837, 736, 678, 581, 548, 503, 422, 410. 1H NMR (400 MHz, CDCl3): δ 8.18 – 8.16 (m, 2H), 7.87 – 

7.86 (m, 4H), 7.37 – 7.33 (m, 2H), 6.60 – 6.55 (m, 2H), 6.49 – 6.45 (m, 2H), 2.52 (s, 6H). 13C NMR (100 

MHz, v): δ 136.0, 130.1, 129.3, 128.3, 128.0, 121.2, 118.4, 117.2, 113.2, 12.6. ESI-HRMS: m/z calcd. 

for C22H18N4 [M+H]+: 338.1531, found 338.1528. 
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1,4-bis(3-(o-tolyl)imidazo[1,5-a]pyridin-1-yl)benzene: A mixture of 1,4-phenylenebis(pyridin-2-

ylmethanone) (0.1 mmol), 2-methylbenzaldehyde (0.6 mmol) and D-glucosamine·HCl (0.4 mmol) in 

AcOH : H2O (2.7 : 0.3 mL) were stirred at 120 ˚C under Ar atmosphere for 3 days. Work-up gave product 

62 (17.6 mg, 0.036 mmol, isolated yield 36%) as a brown solid. Mp: 98−100 ˚C. FT-IR: ν (cm-1): 3058, 

2920, 2852, 2110, 1869, 1745, 1661, 1599, 1510, 1455, 1428, 1377, 1356, 1306, 1276, 1241, 1158, 1105, 

1043, 1004, 942, 843, 804, 773, 746, 727, 709, 616, 579, 519, 449, 424. 1H NMR (400 MHz, CDCl3): δ 

8.01 (s, 4H), 7.87 – 7.84 (m, 2H), 7.55 (d, J = 7.6 Hz, 2H), 7.46 (d, J = 7.5 Hz, 2H), 7.36 – 7.25 (m, 6H), 

6.76 – 6.72 (m, 2H), 6.48 – 6.45 (m, 2H), 2.21 (s, 6H). 13C NMR (100 MHz, CDCl3): δ 138.6, 137.8, 

133.1, 131.2, 130.8, 130.7, 129.5, 129.3, 126.8, 126.7, 126.1, 121.9, 119.4, 119.2, 112.8, 19.8. ESI-

HRMS: m/z calcd. for C34H26N4 [M+H]+: 491.2236, found 491.2240. 

 

P H

O

Ph

Ph K2CO3(1.5 equiv.), DMF (1.5 mL)
120 °C, 18 h

63, 68%

+ Pd(OAc)2 (10 mol%), dppf (20 mol%) N
N

P

N

O
Ph

Ph

N
N

N

Br

50  

A mixture of 3-(4-bromophenyl)-1-(pyridin-2-yl)imidazo[1,5-a]pyridine 50 (0.1 mmol), 

diphenylphosphine oxide (1.5 equiv.), Pd(OAc)2 (10 mol%), dppf (20 mol%) and K2CO3 (1.5 equiv.) in 

the DMF (1.5 mL) were stirred at 120 ˚C under Ar atmosphere for 18 h. The reactions were conducted in 

a sealed Schlenk tube and heated by an IKA magnetic heating agitator with heating block. The reaction 

temperature was directly read from temperature detector of IKA apparatus and was calibrated by 

thermometer. After the reaction completely, the reaction solution was filtrated and concentrated in rotary 

evaporator, the crude product was purified with flash chromatography on silica gel (ethyl acetate : n-

hexane : Et3N) to give products 63 (32.0 mg, isolated yield 68%) as a yellow solid. Mp: 102−104 ˚C; FT-

IR: ν (cm-1): 2918, 2623, 2498, 1679, 1589, 1510, 1477, 1434, 1395, 1311, 1251, 1175, 1109, 1010, 995, 

948, 841, 791, 744, 719, 692, 643, 552, 538, 422. 1H NMR (400 MHz, CDCl3): δ 8.65 (d, J = 9.2 Hz, 1H), 
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8.53 (d, J = 2.4 Hz, 1H), 8.21 (d, J = 7.2 Hz, 1H), 8.14 (d, J = 8.0 Hz, 1H), 7.89 (d, J = 8.0 Hz, 2H), 7.78 

– 7.73 (m, 2H), 7.65 – 7.60 (m, 5H), 7.51 – 7.47 (m, 2H), 7.42 – 7.39 (m, 4H), 7.03 – 7.00 (m, 1H), 6.90 

– 6.85 (m, 1H), 6.63 – 6.60 (m, 1H). 13C NMR (100 MHz, CDCl3): δ 154.5, 149.1, 148.8, 136.6 (d, JC-P = 

15.6 Hz), 136.3, 133.5 (d, JC-P = 2.9 Hz), 132.7 (d, JC-P = 10.1 Hz), 132.1 (d, JC-P = 2.7 Hz), 132.0 (d, JC-P 

= 10.0 Hz), 131.1, 130.7, 128.5 (d, 2JC-P = 12.2 Hz), 127.8 (d, 2JC-P = 12.2 Hz), 125.8 (d, 1JC-P = 116.6 Hz), 

121.9, 121.5, 121.4, 120.6, 119.9, 114.5. 31P NMR (162 MHz, CDCl3): δ 29.0. EI-HRMS (FTMS + p EI 

Full ms): m/z calcd. for C30H22N3OP [M]: 471.1500, found 471.1486.  

 

Ph B(OH)2  
K2CO3 (1.5 equiv.), CH3CN (1.5 mL) 

Ar, 120 °C, 18 h

64, 72%

+
Pd(PPh3)Cl2

 
(10 mol%)N

N

N

Br

50

N
N

Ph

N

 

A mixture of 3-(4-bromophenyl)-1-(pyridin-2-yl)imidazo[1,5-a]pyridine 50 (0.1 mmol), phenylboronic 

acid (1.5 equiv.), Pd(PPh3)Cl2 (10 mol%) and K2CO3 (1.5 equiv.) in the CH3CN (1.5 mL) were stirred at 

120 ˚C under Ar atmosphere for 18 h. The reactions were conducted in a sealed Schlenk tube and heated 

by an IKA magnetic heating agitator with heating block. The reaction temperature was directly read from 

temperature detector of IKA apparatus and was calibrated by thermometer. After reaction completely, the 

reaction mixture was filtrated and concentrated in rotary evaporator, the crude product was purified with 

flash chromatography on silica gel (ethyl acetate : n-hexane : Et3N) to give products 64 (25.0 mg, isolated 

yield 72%) as a green solid. Mp: 160−162 ˚C; FT-IR: ν (cm-1): 2965, 2920, 2850, 2112, 1673, 1585, 

1560, 1529, 1513, 1496, 1480, 1447, 1430, 1403, 1335, 1313, 1302, 125, 1193, 1140, 1086, 1008, 948, 

853, 789, 760, 738, 723, 696, 664, 631, 596, 550, 517, 482, 435. 1H NMR (300 MHz, CDCl3): δ 8.68 (d, 

J = 9.0 Hz, 1H), 8.58 (d, J = 4.2 Hz, 1H), 8.24 (dd, J = 14.5, 7.6 Hz, 2H), 7.87 (d, J = 8.1 Hz, 2H), 7.71 (d, 

J = 7.8 Hz, 2H), 7.66 (d, J = 8.1 Hz, 1H), 7.61 (d, J = 8.4 Hz, 2H), 7.42 (t, J = 7.5 Hz, 2H), 7.34 (d, J = 

6.9 Hz, 1H), 7.07 – 7.03 (m, 1H), 6.89 (dd, J = 9.0, 6.6 Hz, 1H), 6.63 (t, J = 6.8 Hz, 1H). 13C NMR (100 

MHz, CDCl3): δ 154.8, 148.8, 141.7, 140.4, 137.9, 136.5, 132.6, 130.4, 129.1, 128.9, 128.7, 127.7, 127.2, 

127.1, 121.9, 121.7, 121.2, 120.5, 120.1, 114.1. ESI-HRMS: m/z calcd. for C24H17N3 [M+H]+: 348.1501, 

found 348.1498.  
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TLC isolation (Yellow oil)
Detected by ESI-HRMS: m/z calcd. for C12H15ClN2

 
[M+H]

+: 
223.1002, found 223.1000.

Overnight
AcOH : H2O (0.9 : 0.1 mL)

120 °C, Ar, 36 h

3a (2.0 equiv.)
+

0.1 mmol 0.4 mmol

Self-reaction

65, 33% 
Brown solid

O

HCl Cl

Me

N
N

Cl

3

Me

N
N

 

A mixture of 2-acetylpyridine (0.1 mmol), 5-chloropentanal (4.0 equiv.), D-glucosamine·HCl (2.0 equiv.) 

in the AcOH : H2O (0.9 : 0.1 mL) were stirred at 120 ˚C under Ar atmosphere for 36 h. The reactions 

were conducted in a sealed Schlenk tube and heated by an IKA magnetic heating agitator with heating 

block. The reaction temperature was directly read from temperature detector of IKA apparatus and was 

calibrated by thermometer. After cooling to room temperature, the reaction mixture was filtrated and 

concentrated in rotary evaporator, the crude product was purified with flash chromatography on silica gel 

(ethyl acetate : n-hexane : Et3N) to give products 3-(4-chlorobutyl)-1-methylimidazo[1,5-a]pyridine as a 

yellow oil, which then transform to final product 65 in glass bottle through self-reaction under air 

atmosphere in room temperature overnight. Finally the crude product 65 was washed by n-hexane (2 mL) 

for 3 times and ethyl acetate (2 mL) for 3 times to obtain pure product 65 (25.0 mg, overall isolated yield 

33%). Mp: 115−117 ˚C. FT-IR: ν (cm-1): 3436, 3379, 3031, 2953, 2926, 2858, 1723, 1653, 1611, 1533, 

1434, 1358, 1255, 1041, 806, 744, 536. 1H NMR (300 MHz, CD3OD): δ 8.20 (d, J = 7.2 Hz, 1H), 7.77 (d, 

J = 9.3 Hz, 1H), 7.18 – 7.06 (m, 2H), 4.39 (t, J = 5.7 Hz, 2H), 3.29 (t, J = 6.2 Hz, 2H), 2.65 (s, 3H), 2.31 

– 2.17 (m, 4H). 13C NMR (100 MHz, CD3OD): δ 134.7, 127.1, 123.5, 122.4, 121.6, 118.7, 118.0, 45.7, 

22.6, 21.5, 19.0, 7.8. ESI-HRMS: m/z calcd. for C12H15N2 [M]: 187.1230, found 187.1240. 

 

N
N

D
D

D

66

D: 90%

Me

 

1-(methyl-d3)-3-(o-tolyl)imidazo[1,5-a]pyridine: Following the General procedure B1, a mixture of 2-

acetylpyridine (0.1 mmol), 2-methylbenzaldehyde (2 equiv.) and D-glucosamine·HCl (2.0 equiv.) in 

AcOH-d4 : D2O (0.9 : 0.1 mL) were stirred at 120 ˚C under Ar atmosphere for 36 h. Work-up gave 

product 66 (10.8 mg, 0.048 mmol, isolated yield 48%) as a yellow solid. Mp: 60−61 ˚C. FT-IR: ν (cm-1): 

3050, 2918, 2852, 1669, 1517, 1453, 1412, 1362, 1247, 1100, 1044, 1016, 993, 958, 773, 727, 678, 649, 

451, 422. D incorporation was tested by 1H NMR: 90%. 1H NMR (300 MHz, CDCl3): δ 7.43 (d, J = 7.2 
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Hz, 1H), 7.36 – 7.22 (m, 5H), 6.53 (dd, J = 9.0, 6.3 Hz, 1H), 6.37 – 6.33 (m, 1H), 2.47 (0.3H), 2.13 (s, 

3H). ESI-HRMS: m/z calcd. for C15H11D3N2 [M+H]+: 226.1424, found 226.1420. 

 

N
N

D
D

D

67

D: 94%

Me

 

1-(methyl-d3)-3-(m-tolyl)imidazo[1,5-a]pyridine: Following the General procedure B1, a mixture of 

2-acetylpyridine (0.1 mmol), 3-methylbenzaldehyde (2 equiv.) and D-glucosamine·HCl (2.0 equiv.) in 

AcOH-d4 : D2O (0.9 : 0.1 mL) were stirred at 120 ˚C under Ar atmosphere for 36 h. Work-up gave 

product 67 (13.3 mg, 0.059 mmol, isolated yield 59%) as a yellow liquid. FT-IR: ν (cm-1): 3050, 2918, 

2854, 1671, 1605, 1583, 1517, 1465, 1362, 1255, 1203, 1090, 1028, 997, 971, 884, 791, 734, 696, 657, 

618, 528, 439, 420. D incorporation was tested by 1H NMR: 94%. 1H NMR (300 MHz, CDCl3): δ 8.11 (d, 

J = 7.2 Hz, 1H), 7.54 (s, 1H), 7.49 (d, J = 7.8 Hz, 1H), 7.33 – 7.28 (m, 2H), 7.15 (d, J = 7.8 Hz, 1H), 6.54 

(dd, J = 9.1, 6.3 Hz, 1H), 6.41 (t, J = 6.9 Hz, 1H), 2.47 (0.19H), 2.36 (s, 3H). ESI-HRMS: m/z calcd. for 

C15H11D3N2 [M+H]+: 226.1424, found 226.1420. 
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D: 93%

Me

 

1-(methyl-d3)-3-(p-tolyl)imidazo[1,5-a]pyridine: Following the General procedure B1, a mixture of 

2-acetylpyridine (0.1 mmol), 4-methylbenzaldehyde (2 equiv.) and D-glucosamine·HCl (2.0 equiv.) in 

AcOH-d4 : D2O (0.9 : 0.1 mL) were stirred at 120 ˚C under Ar atmosphere for 36 h. Work-up gave 

product 68 (15.1 mg, 0.067 mmol, isolated yield 67%) as a yellow solid. Mp: 49-50 ˚C. FT-IR: ν (cm-1): 

3019, 2916, 2854, 1661, 1609, 1529, 1457, 1409, 1364, 1251, 1177, 1111, 1041, 1016, 958, 820, 725, 676, 

637, 573, 490, 422. D incorporation was tested by 1H NMR: 93%. 1H NMR (300 MHz, CDCl3): δ 8.07 (d, 

J = 7.2 Hz, 1H), 7.59 (d, J = 8.1 Hz, 2H), 7.30 (d, J = 9.0 Hz, 1H), 7.23 (d, J = 7.8 Hz, 2H), 6.53 (dd, J = 
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9.1, 6.3 Hz, 1H), 6.42 – 6.37 (m, 1H), 2.46 (0.22H), 2.34 (s, 3H). ESI-HRMS: m/z calcd. for C15H11D3N2 

[M+H]+: 226.1424, found 226.1419. 
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D: 90%
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Me

 

3-mesityl-1-(methyl-d3)imidazo[1,5-a]pyridine: Following the General procedure B1, a mixture of 2-

acetylpyridine (0.1 mmol), 2,4,6-trimethylbenzaldehyde (2 equiv.) and D-glucosamine·HCl (2.0 equiv.) 

in AcOH-d4 : D2O (0.9 : 0.1 mL) were stirred at 120 ˚C under Ar atmosphere for 36 h. Work-up gave 

product 69 (11.4 mg, 0.045 mmol, isolated yield 45%) as a yellow liquid. FT-IR: ν (cm-1): 2918, 2850, 

1611, 1521, 1461, 1412, 1362, 1321, 1243, 1187, 1127, 1034, 1016, 993, 966, 940, 851, 773, 734, 682, 

585, 420. D incorporation was tested by 1H NMR: 90%. 1H NMR (300 MHz, CDCl3): δ 7.31 (d, J = 9.3 

Hz, 1H), 7.14 (d, J = 7.2 Hz, 1H), 6.89 (s, 2H), 6.51 (dd, J = 9.1, 6.3 Hz, 1H), 6.33 – 6.29 (m, 1H), 2.48 

(0.30H), 2.27 (s, 3H), 1.88 (s, 6H). ESI-HRMS: m/z calcd. for C17H15D3N2 [M+H]+: 254.1737, found 

254.1733. 

 

 

N
N

D
D

D

70

D: 92%

OMe

 

3-(2-methoxyphenyl)-1-(methyl-d3)imidazo[1,5-a]pyridine: Following the General procedure B1, a 

mixture of 2-acetylpyridine (0.1 mmol), 2-methoxylbenzaldehyde (2 equiv.) and D-glucosamine·HCl (2.0 

equiv.) in AcOH-d4 : D2O (0.9 : 0.1 mL) were stirred at 120 ˚C under Ar atmosphere for 36 h. Work-up 

gave product 70 (14.7 mg, 0.061 mmol, isolated yield 61%) as a yellow solid. Mp: 66−68 ˚C. FT-IR: ν 

(cm-1): 2926, 2838, 1657, 1632, 1601, 1578, 1519, 1463, 1434, 1414, 1370, 1241, 1160, 1105, 1045, 1016, 
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960, 793, 750, 732, 678, 649, 573, 521, 492, 422. D incorporation was tested by 1H NMR: 92%. 1H NMR 

(300 MHz, CDCl3): δ 7.52 (dd, J = 7.5, 1.5 Hz, 1H), 7.44 (d, J = 7.2 Hz, 1H), 7.40 – 7.30 (m, 2H), 7.04 – 

7.00 (m, 1H), 6.96 (d, J = 8.4 Hz, 1H), 6.55 (dd, J = 9.0, 6.3 Hz, 1H), 6.39 – 6.34 (m, 1H), 3.73 (s, 3H), 

2.48 (0.25H). ESI-HRMS: m/z calcd. for C15H11D3N2O [M+H]+: 242.1373, found 242.1368. 

 

 

N
N

D
D

D

71

D: 92%

OMe

 

3-(4-methoxyphenyl)-1-(methyl-d3)imidazo[1,5-a]pyridine: Following the General procedure B1, a 

mixture of 2-acetylpyridine (0.1 mmol), 4-methoxylbenzaldehyde (2 equiv.) and D-glucosamine·HCl (2.0 

equiv.) in AcOH-d4 : D2O (0.9 : 0.1 mL) were stirred at 120 ˚C under Ar atmosphere for 36 h. Work-up 

gave product 71 (15.7 mg, 0.065 mmol, isolated yield 65%) as a yellow solid. Mp: 50−52 ˚C. FT-IR: ν 

(cm-1): 2998, 2932, 2835, 1665, 1607, 1570, 1527, 1461, 1438, 1407, 1366, 1300, 1288, 1247, 1170, 1111, 

1020, 958, 833, 727, 676, 604, 575, 513, 416. D incorporation was tested by 1H NMR: 92%. 1H NMR 

(300 MHz, CDCl3): δ 8.02 (d, J = 7.3 Hz, 1H), 7.62 (d, J = 8.7 Hz, 2H), 7.30 (d, J = 9.0 Hz, 1H), 6.96 (d, 

J = 8.7 Hz, 2H), 6.52 (dd, J = 9.0, 6.3 Hz, 1H), 6.41 – 6.37 (m, 1H), 3.80 (s, 3H), 2.46 (0.23H). ESI-

HRMS: m/z calcd. for C15H11D3N2O [M+H]+: 242.1373, found 242.1368. 

 

 

72

D: 92%

D: 24%
D: 40%

N
N

D
D

D

HO
D

D

 

2-(1-(methyl-d3)imidazo[1,5-a]pyridin-3-yl)phen-4,6-d2-ol: Following the General procedure B1, a 

mixture of 2-acetylpyridine (0.1 mmol), 2-hydroxylbenzaldehyde (2 equiv.) and D-glucosamine·HCl (2.0 

equiv.) in AcOH-d4 : D2O (0.9 : 0.1 mL) were stirred at 120 ˚C under Ar atmosphere for 36 h. Work-up 
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gave product 72 (11.9 mg, 0.052 mmol, isolated yield 52%) as a white solid. Mp: 129−131 ˚C. FT-IR: ν 

(cm-1): 2924, 2850, 2120, 1741, 1634, 1607, 1578, 1519, 1436, 1416, 1372, 1292, 1259, 1234, 1179, 1096, 

1041, 1018, 964, 913, 839, 808, 750, 727, 680, 641, 583, 544, 523, 420. D incorporation was tested by 1H 

NMR: 92%, 40% and 24%. 1H NMR (300 MHz, CDCl3): δ 8.37 (d, J = 7.3 Hz, 1H), 7.69 – 7.66 (m, 1H), 

7.37 (d, J = 9.0 Hz, 1H), 7.19 (s, 1H), 7.07 (0.60H), 6.91 (0.76H), 6.63 (dd, J = 9.0, 6.3 Hz, 1H), 6.57 – 

6.52 (m, 1H), 2.45 (0.26H). ESI-HRMS: m/z calcd. for C14H7D5N2O [M+H]+: 230.1342, found 230.1330. 

 

 

N
N

D
D

D

NO2

73

D: 91%

 

1-(methyl-d3)-3-(4-nitrophenyl)imidazo[1,5-a]pyridine: Following the General procedure B1, a 

mixture of 2-acetylpyridine (0.1 mmol), 4-nitrobenzaldehyde (2 equiv.) and D-glucosamine·HCl (2.0 

equiv.) in AcOH-d4 : D2O (0.9 : 0.1 mL) were stirred at 120 ˚C under Ar atmosphere for 36 h. Work-up 

gave product 73 (17.7 mg, 0.069 mmol, isolated yield 69%) as a red solid. Mp: 49−51 ˚C. FT-IR: ν (cm-

1): 2951, 2918, 2850, 1681, 1591, 1510, 1422, 1344, 1309, 1255, 1175, 1098, 1078, 1016, 956, 913, 847, 

750, 736, 719, 690, 666, 521, 490, 474, 420. D incorporation was tested by 1H NMR: 91%. 1H NMR (400 

MHz, CDCl3): δ 8.30 – 8.27 (m, 2H), 8.23 (d, J = 7.2 Hz, 1H), 7.95 – 7.93 (m, 2H), 7.41 (d, J = 8.8 Hz, 

1H), 6.71 – 6.68 (m, 1H), 6.62 – 6.58 (m, 1H), 2.49 (0.27H). ESI-HRMS: m/z calcd. for C14H8D3N3O2 

[M+H]+: 257.1118, found 257.1117. 

N
N

D
D

D

F

D: 91%

74  

3-(4-fluorophenyl)-1-(methyl-d3)imidazo[1,5-a]pyridine: Following the General procedure B1, a 

mixture of 2-acetylpyridine (0.1 mmol), 4-fluorobenzaldehyde (2 equiv.) and D-glucosamine·HCl (2.0 

equiv.) in AcOH-d4 : D2O (0.9 : 0.1 mL) were stirred at 120 ˚C under Ar atmosphere for 36 h. Work-up 
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gave product 74 (16.0 mg, 0.070 mmol, isolated yield 70%) as a yellow solid. Mp: 99-100 ˚C. FT-IR: ν 

(cm-1): 2955, 2921, 2852, 1659, 1603, 1525, 1506, 1461, 1414, 1377, 1222, 1156, 1096, 1014, 962, 839, 

812, 765, 736, 673, 577, 517. D incorporation was tested by 1H NMR: 91%. 1H NMR (300 MHz, CDCl3): 

δ 8.02 (d, J = 6.9 Hz, 1H), 7.68 (dd, J = 8.4, 5.4 Hz, 2H), 7.32 (d, J = 9.3 Hz, 1H), 7.12 (t, J = 8.7 Hz, 2H), 

6.58 – 6.53 (m, 1H), 6.45 – 6.41 (m, 1H), 2.45 (0.26H). ESI-HRMS: m/z calcd. for C14H8D3N2F [M+H]+: 

230.1173, found 230.1168. 

 

 

N
N

D
D

D

Cl

D: 94%

75  

3-(4-chlorophenyl)-1-(methyl-d3)imidazo[1,5-a]pyridine: Following the General procedure B1, a 

mixture of 2-acetylpyridine (0.1 mmol), 4-chlorobenzaldehyde (2 equiv.) and D-glucosamine·HCl (2.0 

equiv.) in AcOH-d4 : D2O (0.9 : 0.1 mL) were stirred at 120 ˚C under Ar atmosphere for 36 h. Work-up 

gave product 75 (14.9 mg, 0.061 mmol, isolated yield 61%) as a yellow solid. Mp: 83−85 ˚C. FT-IR: ν 

(cm-1): 2951, 2914, 2844, 1659, 1591, 1506, 1480, 1403, 1374, 1253, 1173, 1088, 1012, 960, 833, 725, 

670, 523, 484, 424. D incorporation was tested by 1H NMR: 94%. 1H NMR (300 MHz, CDCl3): δ 8.05 (d, 

J = 7.2 Hz, 1H), 7.65 (d, J = 8.1 Hz, 2H), 7.41 – 7.31 (m, 3H), 6.57 (dd, J = 9.0, 6.3 Hz, 1H), 6.47 – 6.43 

(m, 1H), 2.46 (0.18H). ESI-HRMS: m/z calcd. for C14H8D3N2Cl [M+H]+: 246.0877, found 246.0872. 

 

 

N
N

D
D

D
D: 91%

76

Cl

 

3-(3-chlorophenyl)-1-(methyl-d3)imidazo[1,5-a]pyridine: Following the General procedure B1, a 

mixture of 2-acetylpyridine (0.1 mmol), 3-chlorobenzaldehyde (2 equiv.) and D-glucosamine·HCl (2.0 
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equiv.) in AcOH-d4 : D2O (0.9 : 0.1 mL) were stirred at 120 ˚C under Ar atmosphere for 36 h. Work-up 

gave product 76 (15.4 mg, 0.063 mmol, isolated yield 63%) as a yellow solid. Mp: 89−90 ˚C. FT-IR: ν 

(cm-1): 2917, 1665, 1592, 1564, 1455, 1428, 1377, 1251, 1080, 995, 884, 787, 734, 688, 614, 414. D 

incorporation was tested by 1H NMR: 91%. 1H NMR (300 MHz, CDCl3): δ 8.10 (d, J = 7.2 Hz, 1H), 7.72 

(s, 1H), 7.60 (d, J = 7.5 Hz, 1H), 7.36 – 7.28 (m, 3H), 6.61 – 6.56 (m, 1H), 6.49 – 6.45 (m, 1H), 2.46 

(0.27H). ESI-HRMS: m/z calcd. for C14H8D3ClN2 [M+H]+: 246.0877, found 246.0873. 

 

 

N
N

D
D

D

Cl

D: 88%

77

Cl

 

3-(3,4-dichlorophenyl)-1-(methyl-d3)imidazo[1,5-a]pyridine: Following the General procedure B1, a 

mixture of 2-acetylpyridine (0.1 mmol), 3,4-dichlorobenzaldehyde (2 equiv.) and D-glucosamine·HCl 

(2.0 equiv.) in AcOH-d4 : D2O (0.9 : 0.1 mL) were stirred at 120 ˚C under Ar atmosphere for 36 h. Work-

up gave product 77 (11.4 mg, 0.041 mmol, isolated yield 41%) as a yellow solid. Mp: 97−99 ˚C. FT-IR: 

ν (cm-1): 2916, 2852, 1671, 1589, 1554, 1496, 1451, 1416, 1397, 1249, 1131, 1028, 977, 874, 826, 729, 

666, 573, 536, 519, 435, 420. D incorporation was tested by 1H NMR: 88%. 1H NMR (300 MHz, CDCl3): 

δ 8.05 (d, J = 7.5 Hz, 1H), 7.82 (s, 1H), 7.55 (dd, J = 8.4, 1.5 Hz, 1H), 7.47 (d, J = 8.4 Hz, 1H), 7.34 (d, J 

= 9.0 Hz, 1H), 6.60 (dd, J = 9.0, 6.3 Hz, 1H), 6.52 – 6.47 (m, 1H), 2.45 (0.37H). ESI-HRMS: m/z calcd. 

for C14H7D3Cl2N2 [M+H]+: 280.0488, found 280.0476. 

 

 

N
N

D
D

D
D: 90%

78

Br
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3-(4-bromophenyl)-1-(methyl-d3)imidazo[1,5-a]pyridine: Following the General procedure B1, a 

mixture of 2-acetylpyridine (0.1 mmol), 4-bromobenzaldehyde (2 equiv.) and D-glucosamine·HCl (2.0 

equiv.) in AcOH-d4 : D2O (0.9 : 0.1 mL) were stirred at 120 ˚C under Ar atmosphere for 36 h. Work-up 

gave product 78 (19.4 mg, 0.067 mmol, isolated yield 67%) as a yellow solid. Mp: 86−88 ˚C. FT-IR: ν 

(cm-1): 2928, 2114, 1660, 1591, 1508, 1418, 1399, 1362, 1253, 1175, 1102, 1067, 1008, 958, 826, 723, 

672, 490, 420. D incorporation was tested by 1H NMR: 90%. 1H NMR (300 MHz, CDCl3): δ 8.05 (d, J = 

6.6 Hz, 1H), 7.60 – 7.56 (m, 4H), 7.33 (d, J = 9.0 Hz, 1H), 6.59 – 6.54 (m, 1H), 6.47 – 6.42 (m, 1H), 2.45 

(0.3H). ESI-HRMS: m/z calcd. for C14H8D3N2Br [M+H]+: 290.0372, found 290.0364. 

 

 

N
N

D
D

D
D: 91%

79

CF3

 

1-(methyl-d3)-3-(4-(trifluoromethyl)phenyl)imidazo[1,5-a]pyridine: Following the General 

procedure B1, a mixture of 2-acetylpyridine (0.1 mmol), 4-(trifluoromethyl)benzaldehyde (2 equiv.) and 

D-glucosamine·HCl (2.0 equiv.) in AcOH-d4 : D2O (0.9 : 0.1 mL) were stirred at 120 ˚C under Ar 

atmosphere for 36 h. Work-up gave product 79 (22.9 mg, 0.082 mmol, isolated yield 82%) as a yellow 

solid. Mp: 73−74 ˚C. FT-IR: ν (cm-1): 2930, 1684, 1616, 1519, 1422, 1317, 1253, 1162, 1107, 1063, 

1014, 958, 839, 732, 670, 602, 523, 497, 427. D incorporation was tested by 1H NMR: 91%. 1H NMR 

(300 MHz, CDCl3): δ 8.13 (d, J = 7.2 Hz, 1H), 7.85 (d, J = 8.4 Hz, 2H), 7.67 (d, J = 8.1 Hz, 2H), 7.36 (d, 

J = 9.0 Hz, 1H), 6.62 (dd, J = 9.1, 6.4 Hz, 1H), 6.52 – 6.48 (m, 1H), 2.47 (0.28H). ESI-HRMS: m/z calcd. 

for C15H8D3F3N2 [M+H]+: 280.1141, found 280.1139. 
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N
N

D
D

D
D: 92%

80

CN

 

4-(1-(methyl-d3)imidazo[1,5-a]pyridin-3-yl)benzonitrile: Following the General procedure B1, a 

mixture of 2-acetylpyridine (0.1 mmol), 4-formylbenzonitrile (2 equiv.) and D-glucosamine·HCl (2.0 

equiv.) in AcOH-d4 : D2O (0.9 : 0.1 mL) were stirred at 120 ˚C under Ar atmosphere for 36 h. Work-up 

gave product 80 (16.5 mg, 0.070 mmol, isolated yield 70%) as a yellow solid. Mp: 117−118 ˚C. FT-IR: ν 

(cm-1): 3079, 2953, 2920, 2856, 2221, 2125, 1737, 1671, 1605, 1513, 1414, 1333, 1255, 1168, 1105, 1018, 

956, 843, 727, 672, 593, 550,  533, 420. D incorporation was tested by 1H NMR: 92%. 1H NMR (300 

MHz, CDCl3): δ 8.17 (d, J = 7.2 Hz, 1H), 7.87 (d, J = 8.4 Hz, 2H), 7.70 (d, J = 8.4 Hz, 2H), 7.39 (d, J = 

9.0 Hz, 1H), 6.66 (dd, J = 9.0, 6.6 Hz, 1H), 6.55 (t, J = 6.6 Hz, 1H), 2.47 (0.23H). ESI-HRMS: m/z calcd. 

for C15H8D3N3 [M+H]+: 237.1220, found 237.1219. 

 

 

N
N

D
D

D
D: 90%

81

COOMe

 

methyl 4-(1-(methyl-d3)imidazo[1,5-a]pyridin-3-yl)benzoate: Following the General procedure B1, a 

mixture of 2-acetylpyridine (0.1 mmol), methyl-4-formylbenzoate (2 equiv.) and D-glucosamine·HCl (2.0 

equiv.) in AcOH-d4 : D2O (0.9 : 0.1 mL) were stirred at 120 ˚C under Ar atmosphere for 36 h. work-up 

gave product 81 (10.5 mg, 0.039 mmol, isolated yield 39%) as a brown solid. Mp: 79−81 ˚C. FT-IR: ν 

(cm-1): 2916, 1714, 1609, 1436, 1278, 1175, 1102, 1014, 956, 859, 773, 701, 528, 486, 420. D 

incorporation was tested by 1H NMR: 90%. 1H NMR (300 MHz, CDCl3):  δ 8.17 (d, J = 7.2 Hz, 1H), 

8.08 (d, J = 8.4 Hz, 2H), 7.81 (d, J = 8.4 Hz, 2H), 7.36 (d, J = 9.0 Hz, 1H), 6.62 (dd, J = 9.0, 6.3 Hz, 1H), 

6.53 – 6.48 (m, 1H), 3.88 (s, 3H), 2.47 (0.29H). ESI-HRMS: m/z calcd. for C16H11D3O2N2 [M+H]+: 

270.1322, found 270.1316. 
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N
N

D
D

D
D: 90%

82  

1-(methyl-d3)-3-(naphthalen-1-yl)imidazo[1,5-a]pyridine: Following the General procedure B1, a 

mixture of 2-acetylpyridine (0.1 mmol), 1-naphthaldehyde (2 equiv.) and D-glucosamine·HCl (2.0 equiv.) 

in AcOH-d4 : D2O (0.9 : 0.1 mL) were stirred at 120 ˚C under Ar atmosphere for 36 h. Work-up gave 

product 82 (14.1 mg, 0.054 mmol, isolated yield 54%) as a yellow solid. Mp: 59−61 ˚C. FT-IR: ν (cm-1): 

3056, 2918, 2850, 1646, 1587, 1508, 1442, 1409, 1364, 1327, 1247, 1210, 1144, 1004, 942, 864, 802, 773, 

734, 680, 639, 573, 530, 495, 412. D incorporation was tested by 1H NMR: 90%. 1H NMR (400 MHz, 

CDCl3): δ 7.90 – 7.85 (m, 2H), 7.65 – 7.63 (m, 2H), 7.53 – 7.48 (m, 2H), 7.43 (d, J = 6.8 Hz, 1H), 7.39 – 

7.36 (m, 2H), 6.59 – 6.55 (m, 1H), 6.34 – 6.30 (m, 1H), 2.53 (0.30H). ESI-HRMS: m/z calcd. for 

C18H11D3N2 [M+H]+: 262.1424, found 262.1419. 

 

 

N
N

D
D

D

N

D: 84%

83  

1-(methyl-d3)-3-(pyridin-3-yl)imidazo[1,5-a]pyridine: Following the General procedure B1, a 

mixture of 2-acetylpyridine (0.1 mmol), nicotinaldehyde (2 equiv.) and D-glucosamine·HCl (2.0 equiv.) 

in AcOH-d4 : D2O (0.9 : 0.1 mL) were stirred at 120 ˚C under Ar atmosphere for 36 h. Work-up gave 

product 83 (6.4 mg, 0.030 mmol, isolated yield 30%) as a yellow solid. Mp: 47−48 ˚C. FT-IR: ν (cm-1): 

3037, 2926, 2854, 1677, 1630, 1568, 1517, 1422, 1366, 1327, 1255, 1181, 1154, 1022, 958, 810, 736, 705, 

676, 616, 521, 420. D incorporation was tested by 1H NMR: 84%. 1H NMR (400 MHz, CDCl3): δ 9.00 (d, 

J = 1.2 Hz, 1H), 8.60 (dd, J = 4.8, 1.6 Hz, 1H), 8.15 – 8.12 (m, 2H), 7.44 – 7.39 (m, 2H), 6.69 (dd, J = 9.1, 
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6.4 Hz, 1H), 6.60 – 6.56 (t, J = 6.7 Hz, 1H), 2.52 (0.47H). ESI-HRMS: m/z calcd. for C13H8D3N3 

[M+H]+: 213.1220, found 213.1214. 

 

 

84

D: 91%

N
N

D
D

D

D

D: 91%

 

3-(cyclohexyl-1-d)-1-(methyl-d3)imidazo[1,5-a]pyridine: Following the General procedure B1, a 

mixture of 2-acetylpyridine (0.1 mmol), cyclohexanecarbaldehyde (2 equiv.) and D-glucosamine·HCl 

(2.0 equiv.) in AcOH-d4 : D2O (0.9 : 0.1 mL) were stirred at 120 ˚C under Ar atmosphere for 36 h. Work-

up gave product 84 (15.7 mg, 0.072 mmol, isolated yield 72 %) as a yellow solid. Mp: 60−61 ˚C. FT-IR: 

ν (cm-1): 3342, 3173, 2928, 2854, 1626, 1445, 1405, 1245, 1142, 1090, 1022, 995, 960, 837, 816, 727, 

696, 661, 587, 517, 499, 418. D incorporation was tested by 1H NMR: 91% and 91%. 1H NMR (300 

MHz, CDCl3): δ 7.58 (d, J = 7.2 Hz, 1H), 7.20 (d, J = 9.0 Hz, 1H), 6.44 – 6.31 (m, 2H), δ 2.89 – 2.80 

(0.09H). 2.38 (0.26H), 1.94 – 1.45 (m, 7H), 1.41 – 1.33 (m, 3H). ESI-HRMS: m/z calcd. for C14H14D4N2 

[M+H]+: 219.1799, found 219.1796. 

 

 

85

D: 88%

N
N

D
D

D

D

D: 89%

D

Me

 

1-(methyl-d3)-3-(pentyl-1,1-d2)imidazo[1,5-a]pyridine: Following the General procedure B1, a 

mixture of 2-acetylpyridine (0.1 mmol), hexanal (2 equiv.) and D-glucosamine·HCl (2.0 equiv.) in 

AcOH-d4 : D2O (0.9 : 0.1 mL) were stirred at 120 ˚C under Ar atmosphere for 36 h. Work-up gave 

product 85 (15.5 mg, 0.075 mmol, isolated yield 75%) as a brown solid. Mp: 106−107 ˚C. FT-IR: ν (cm-

1): 3184, 2959, 2930, 2858, 1653, 1461, 1377, 1247, 1043, 995, 783, 734, 694, 618, 560, 418. D 

incorporation was tested by 1H NMR: 89% and 88%. 1H NMR (300 MHz, CDCl3): δ 7.53 (d, J = 7.2 Hz, 
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1H), 7.22 (d, J = 9.3 Hz, 1H), 6.44 (dd, J = 9.0, 6.3 Hz, 1H), 6.38 – 6.34 (m, 1H), 2.83 (0.24H), 2.37 

(0.33H), 1.72 (t, J = 6.3 Hz, 2H), 1.32 – 1.29 (m, 4H), 0.83 (t, J = 6.9 Hz, 3H). ESI-HRMS: m/z calcd. 

for C13H13D5N2 [M+H]+: 208.1862, found 208.1858. 

 

 

N
N

D: 80%

Me

D

86  

1-(cyclopentyl-1-d)-3-(o-tolyl)imidazo[1,5-a]pyridine: Following the General procedure B1, a 

mixture of cyclopentyl(pyridin-2-yl)methanone (0.1 mmol), 2-methylbenzaldehyde (2 equiv.) and D-

glucosamine·HCl (2.0 equiv.) in AcOH-d4 : D2O (0.9 : 0.1 mL) were stirred at 120 ˚C under Ar 

atmosphere for 36 h. Work-up gave product 86 (21.6 mg, 0.078 mmol, isolated yield 78%) as a brown 

liquid. FT-IR: ν (cm-1): 3064, 2951, 2866, 1688, 1632, 1517, 1453, 1412, 1362, 1306, 1243, 1222, 1137, 

1105, 1043, 999, 944, 773, 746, 721, 616, 544, 453, 418. D incorporation was tested by 1H NMR: 80%. 
1H NMR (400 MHz, CDCl3): δ 7.42 – 7.40 (m, 1H), 7.36 – 7.31 (m, 2H), 7.24 – 7.21 (m, 2H), 7.19 – 

7.15 (m, 1H), 6.48 – 6.44 (m, 1H), 6.30 – 6.26 (m, 1H), 3.36 – 3.28 (0.2H), 2.11 (s, 3H), 2.03 – 1.98 (m, 

2H), 1.92 – 1.85 (m, 2H), 1.81 – 1.77 (m, 2H), 1.64 – 1.59 (m, 2H). ESI-HRMS: m/z calcd. for 

C19H19DN2 [M+H]+: 278.1768, found 278.1759. 

 

5.3.3 Direct nitrogen interception from chitin/chitosan for imidazo[1,5-a]pyridine  

 

Me

N
N

Me

4  

Methyl-3-(o-tolyl)imidazo[1,5-a]pyridine: Following the General procedure C1, a mixture of 2-

acetylpyridine (0.1 mmol), 2-methylbenzaldehyde (2.0 equiv.) and chitosan (3.0 equiv.) in CF3COOH 

(1.0 mL) was stirred at 140 ºC under Ar atmosphere for 36 h. Chitosan was dried at 100 ºC overnight. 
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Work-up gave product 3 (16.9 mg, 0.076 mmol, isolated yield 76%) as a yellow liquid. Following the 

General procedure C3, a mixture of 2-acetylpyridine (0.1 mmol), 2-methylbenzaldehyde (2.0 equiv.) 

and chitin (3.0 equiv.) in the CF3COOH (1.0 mL) was stirred at 140 ºC under Ar atmosphere for 36 h. 

Chitin was dried at 100 ºC overnight. Work-up gave product 3 (15.8 mg, 0.071 mmol, isolated yield 71%) 

as a yellow liquid. 

1H NMR (300 MHz, CDCl3) δ 7.41 (d, J = 7.2 Hz, 1H), 7.35–7.17 (m, 5H), 6.53 – 6.48 (m, 1H), 6.35–

6.30 (m, 1H), 2.49 (s, 3H), 2.12 (s, 3H). 13C NMR (100 MHz, CDCl3) δ 138.1, 136.2, 130.6, 130.4, 129.5, 

129.1, 127.9, 126.7, 125.9, 121.2, 118.0, 116.6, 112.2, 19.6, 12.6.  

 

5

Me

N
N

 

1-Methyl-3-phenylimidazo[1,5-a]pyridine: Following the General procedure C1, a mixture of 2-

acetylpyridine (0.1 mmol), benzaldehyde (2.0 equiv.) and chitosan (3.0 equiv.) in CF3COOH (1.0 mL) 

was stirred at 140 ºC under Ar atmosphere for 36 h. Chitosan was dried at 100 ºC overnight. Work-up 

gave product 5 (17.1 mg, 0.082 mmol, isolated yield 82%) as a yellow liquid. 1H NMR (400 MHz, CDCl3) 

δ 8.09 (d, J = 7.2 Hz, 1H), 7.69 (d, J = 7.6 Hz, 2H), 7.41 (t, J = 7.6 Hz, 2H), 7.34 – 7.30 (m, 2H), 6.56 – 

6.52 (m, 1H), 6.43 – 6.39 (m, 1H), 2.48 (s, 3H). 13C NMR (100 MHz, CDCl3) 136.5, 130.3, 128.9, 128.4, 

127.9, 127.7, 121.1, 118.3, 117.1, 112.9, 12.4. ESI-HRMS: m/z calcd. for C15H14N2 [M+H]+: 223.1235, 

found 223.1230. 

 

 

6
Me

N
N

Me

 

1-Methyl-3-(m-tolyl)imidazo[1,5-a]pyridine: Following the General procedure C1, a mixture of 2-

acetylpyridine (0.1 mmol), 3-methylbenzaldehyde (2.0 equiv.) and chitosan (3.0 equiv.) in CF3COOH 

(1.0 mL) was stirred at 140 ºC under Ar atmosphere for 36 h. Chitosan was dried at 100 ºC overnight. 
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Work-up gave product 6 (17.8 mg, 0.080 mmol, isolated yield 80%) as a yellow solid. m.p.: 104-106 ºC. 
1H NMR (400 MHz, CDCl3) δ 8.10 (d, J = 7.2 Hz, 1H), 7.53 (s, 1H), 7.47 (d, J = 7.6 Hz, 1H), 7.31 (d, J 

= 8.0 Hz, 2H), 7.14 (d, J = 7.6 Hz, 1H), 6.54 (dd, J = 9.2, 6.4 Hz, 1H), 6.42 – 6.39 (m, 1H), 2.48 (s, 3H), 

2.34 (s, 3H). 13C NMR (100 MHz, CDCl3) δ 138.8, 136.7, 132.7, 130.2, 129.2, 128.7, 128.6, 127.9, 124.5, 

121.2, 118.3, 117.0, 112.8, 21.4, 12.5. ESI-HRMS: m/z calcd. for C15H14N2 [M+H]+: 223.1235, found 

223.1233. 
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1-methyl-3-(p-tolyl)imidazo[1,5-a]pyridine: Following the General procedure C1, a mixture of 2-

acetylpyridine (0.1 mmol), 4-methylbenzaldehyde (2.0 equiv.) and chitosan (3.0 equiv.) in CF3COOH 

(1.0 mL) was stirred at 140 ºC under Ar atmosphere for 36 h. Chitosan was dried at 100 ºC overnight. 

Work-up gave product 7 (17.6 mg, 0.079 mmol, isolated yield 79%) as a yellow solid. m.p.: 62-63 ºC. 1H 

NMR (400 MHz, CDCl3) δ 8.06 (d, J = 7.2 Hz, 1H), 7.58 (d, J = 8.0 Hz, 2H), 7.30 (d, J = 9.2 Hz, 1H), 

7.23 (d, J = 8.0 Hz, 2H), 6.52 (dd, J = 9.2, 6.4 Hz, 1H), 6.41 – 6.37 (m, 1H), 2.49 (s, 3H), 2.34 (s, 3H). 
13C NMR (100 MHz, CDCl3) δ 138.4, 136.7, 129.6, 128.5, 127.7, 127.7, 127.4, 121.2, 118.3, 116.8, 

112.7, 21.4, 12.5. ESI-HRMS: m/z calcd. for C15H14N2 [M+H]+: 223.1235, found 223.1234. 
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3-(2,4-dimethylphenyl)-1-methylimidazo[1,5-a]pyridine: Following the General procedure C1, a 

mixture of 2-acetylpyridine (0.1 mmol), 2,4-dimethylbenzaldehyde (2.0 equiv.) and chitosan (3.0 equiv.) 

in CF3COOH (1.0 mL) was stirred at 140 ºC under Ar atmosphere for 36 h. Chitosan was dried at 100 ºC 

overnight. Work-up gave product 8 (16.7 mg, 0.075 mmol, isolated yield 75%) as a brown solid. m.p.: 

82-83 ºC. 1H NMR (400 MHz, CDCl3) δ 7.41 (d, J = 7.2 Hz, 1H), 7.30 (d, J = 9.2 Hz, 1H), 7.21 (d, J = 

8.0 Hz, 1H), 7.07 (s, 1H), 7.02 (d, J = 8.0 Hz, 1H), 6.54 – 6.50 (m, 1H), 6.36 – 6.32 (m, 1H), 2.48 (s, 3H), 
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2.31 (s, 3H), 2.07 (s, 3H). 13C NMR (100 MHz, CDCl3) δ 139.1, 137.9, 136.3, 131.4, 130.4, 127.6, 126.7, 

126.4, 121.3, 118.0, 116.7, 112.2, 21.3, 19.5, 12.5. ESI-HRMS: m/z calcd. for C16H16N2 [M+H]+: 

237.1392, found 237.1389. 
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3-mesityl-1-methylimidazo[1,5-a]pyridine: Following the General procedure C1, a mixture of 2-

acetylpyridine (0.1 mmol), 2,4,6-trimethylbenzaldehyde (2.0 equiv.) and chitosan (3.0 equiv.) in 

CF3COOH (1.0 mL) was stirred at 140 ºC under Ar atmosphere for 36 h. Chitosan was dried at 100 ºC 

overnight. Work-up gave product 9 (17.8 mg, 0.071 mmol, isolated yield 71%) as a yellow liquid. 1H 

NMR (400 MHz, CDCl3) δ 7.31 (d, J = 8.8 Hz, 1H), 7.13 (d, J = 7.2 Hz, 1H), 6.88 (s, 2H), 6.52 – 6.48 (m, 

1H), 6.32 – 6.28 (m, 1H), 2.50 (s, 3H), 2.27 (s, 3H), 1.88 (s, 6H). 13C NMR (100 MHz, CDCl3) δ 139.1, 

135.5, 128.3, 127.5, 126.2, 126.2, 120.9, 118.0, 116.3, 112.1, 21.2, 19.5, 12.7. ESI-HRMS: m/z calcd. for 

C17H18N2 [M+H]+: 251.1548, found 251.1545. 
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3-(4-isopropylphenyl)-1-methylimidazo[1,5-a]pyridine: Following the General procedure C1, a 

mixture of 2-acetylpyridine (0.1 mmol), 4-isopropylbenzaldehyde (2.0 equiv.) and chitosan (3.0 equiv.) in 

CF3COOH (1.0 mL) was stirred at 140 ºC under Ar atmosphere for 36 h. Chitosan was dried at 100 ºC 

overnight. Work-up gave product 10 (18.5 mg, 0.074 mmol, isolated yield 74%) as a brown solid. m.p.: 

61-63 ºC. 1H NMR (300 MHz, CDCl3) δ 8.08 (d, J = 7.2 Hz, 1H), 7.62 (d, J = 8.1 Hz, 2H), 7.31 – 7.26 

(m, 3H), 6.53 (dd, J = 9.0, 6.4 Hz, 1H), 6.42 – 6.37 (m, 1H), 2.89 (hept, J = 6.9 Hz, 1H), 2.49 (s, 3H), 

1.21 (d, J = 6.9 Hz, 6H). 13C NMR (100 MHz, CDCl3) δ 149.4, 136.5, 128.3, 127.8, 127.7, 127.4, 127.0, 

121.2, 118.3, 117.0, 112.9, 34.0, 23.8, 12.3. ESI-HRMS: m/z calcd. for C17H18N2 [M+H]+: 251.1548, 

found 251.1544. 
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3-(4-methoxyphenyl)-1-methylimidazo[1,5-a]pyridine: Following the General procedure C1, a 

mixture of 2-acetylpyridine (0.1 mmol), 4-methoxylbenzaldehyde (2.0 equiv.) and chitosan (3.0 equiv.) in 

CF3COOH (1.0 mL) was stirred at 140 ºC under Ar atmosphere for 36 h. Chitosan was dried at 100 ºC 

overnight. Work-up gave product 11 (15.5 mg, 0.065 mmol, isolated yield 65%) as a yellow solid. m.p.: 

55−57 ºC. 1H NMR (400 MHz, CDCl3) δ 8.01 (d, J = 7.2 Hz, 1H), 7.61 (d, J = 8.4 Hz, 2H), 7.29 (d, J = 

9.2 Hz, 1H), 6.95 (d, J = 8.4 Hz, 2H), 6.51 (dd, J = 9.2, 6.0 Hz, 1H), 6.40 – 6.37 (m, 1H), 3.79 (s, 3H), 

2.47 (s, 3H). 13C NMR (100 MHz, CDCl3) δ 159.7, 136.5, 129.2, 128.3, 127.5, 122.8, 121.1, 118.3, 116.7, 

114.4, 112.7, 55.3, 12.4. ESI-HRMS: m/z calcd. for C15H4N2O [M+H]+: 239.0402, found 239.0397. 
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3-(2-methoxyphenyl)-1-methylimidazo[1,5-a]pyridine: Following the General procedure C1, a 

mixture of 2-acetylpyridine (0.1 mmol), 2-methoxylbenzaldehyde (2.0 equiv.) and chitosan (3.0 equiv.) in 

CF3COOH (1.0 mL) was stirred at 140 ºC under Ar atmosphere for 36 h. Chitosan was dried at 100 ºC 

overnight. Work-up gave product 12 (14.99 mg, 0.063 mmol, isolated yield 63%) as a yellow solid. m.p.: 

62−63 ºC. 1H NMR (400 MHz, CDCl3) δ 7.50 (dd, J = 7.2, 1.2 Hz, 1H), 7.42 – 7.40 (m, 1H), 7.36 – 7.28 

(m, 2H), 7.01 – 6.97 (m, 1H), 6.93 (d, J = 8.4 Hz, 1H), 6.54 – 6.50 (m, 1H), 6.36 – 6.32 (m, 1H), 3.70 (s, 

3H), 2.49 (s, 3H). 13C NMR (100 MHz, CDCl3) δ 157.1, 134.3, 132.3, 130.3, 128.1, 127.5, 122.8, 120.9, 

119.2, 117.6, 116.7, 111.5, 111.0, 55.4, 12.5. ESI-HRMS: m/z calcd. for C15H14N2O [M+H]+: 239.1184, 

found 239.1181. 
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2-(1-methylimidazo[1,5-a]pyridin-3-yl)phenol: Following the General procedure C1, a mixture of 2-

acetylpyridine (0.1 mmol), 2-hydoxylbenzaldehyde (2.0 equiv.) and chitosan (3.0 equiv.) in CF3COOH 

(1.0 mL) was stirred at 140 ºC under Ar atmosphere for 36 h. Chitosan was dried at 100 ºC overnight. 

Work-up gave product 13 (6.7 mg, 0.030 mmol, isolated yield 30%) as a white solid. m.p.: 136−138 ºC. 
1H NMR (400 MHz, CDCl3) δ 8.34 (d, J = 7.2 Hz, 1H), 7.66 (d, J = 8.0 Hz, 1H), 7.36 (d, J = 9.2 Hz, 1H), 

7.19 – 7.18 (m, 1H), 7.07 (d, J = 8.4 Hz, 1H), 6.92 – 6.88 (m, 1H), 6.64 – 6.60 (m, 1H), 6.55 – 6.51 (m, 

1H), 2.48 (s, 3H). 13C NMR (100 MHz, CDCl3) δ 156.3, 134.2, 129.4, 127.2, 127.0, 123.9, 121.9, 118.9, 

118.6, 117.7, 117.7, 114.3, 113.7, 12.2. ESI-HRMS: m/z calcd. for C14H12N2O1 [M+H]+: 225.1028, found 

225.1026. 
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N,N-dimethyl-4-(1-methylimidazo[1,5-a]pyridin-3-yl)aniline: Following the General procedure C1, a 

mixture of 2-acetylpyridine (0.1 mmol), (E)-3-(4-(dimethylamino)phenyl)acrylaldehyde (2.0 equiv.) and 

chitosan (3.0 equiv.) in CF3COOH (0.7 mL) was stirred at 140 ºC under Ar atmosphere for 4 days. 

Chitosan was dried at 100 ºC overnight. Work-up gave product 87 (10.5 mg, 0.038 mmol, isolated yield 

38%) as a yellow solid; m.p. 57−59 ºC. 1H NMR (400 MHz, CDCl3) δ 7.82 (d, J = 6.8 Hz, 1H), 7.52 (d, J 

= 16.0 Hz, 1H), 7.39 (d, J = 8.4 Hz, 2H), 7.25 (d, J = 9.2 Hz, 1H), 6.88 (d, J = 15.6 Hz, 1H), 6.64 (d, J = 

8.8 Hz, 2H), 6.51 – 6.42 (m, 2H), 2.92 (s, 6H), 2.47 (s, 3H). 13C NMR (100 MHz, CDCl3) δ 150.3, 135.9, 

130.4, 129.7, 129.2, 127.7, 125.3, 120.5, 118.4, 116.5, 112.7, 112.3, 107.6, 40.4, 12.6. ESI-HRMS: m/z 

calcd. for C18H19N3 [M+H]+: 278.1652, found 278.1654. 
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3-(4-fluorophenyl)-1-methylimidazo[1,5-a]pyridine: Following the General procedure C1, a mixture 

of 2-acetylpyridine (0.1 mmol), 4-fluorobenzaldehyde (2.0 equiv.) and chitosan (3.0 equiv.) in CF3COOH 

(1.0 mL) was stirred at 140 ºC under Ar atmosphere for 36 h. Chitosan was dried at 100 ºC overnight. 

Work-up gave product 14 (17.6 mg, 0.078 mmol, isolated yield 78%) as a yellow solid. m.p.: 82−83 ºC. 

Following the General procedure C3, a mixture of 2-acetylpyridine (0.1 mmol), 4-fluorobenzaldehyde 

(2.0 equiv.) and chitin (3.0 equiv.) in CF3COOH (1.0 mL) was stirred at 140 ºC under Ar atmosphere for 

36 h. Chitin was dried at 100 ºC overnight. Work-up gave product 14 (16.0 mg, 0.071 mmol, isolated 

yield 71%) as a yellow solid.  

1H NMR (400 MHz, CDCl3) δ 8.02 (d, J = 7.2 Hz, 1H), 7.67 (dd, J = 8.8, 5.2 Hz, 2H), 7.33 (d, J = 9.2 Hz, 

1H), 7.14 – 7.10 (m, 2H), 6.56 (dd, J = 9.2, 6.0 Hz, 1H), 6.45 – 6.42 (m, 1H). 13C NMR (100 MHz, 

CDCl3) δ 162.7 (d, 1JC-F = 247.1 Hz), 135.5, 129.7 (d, 3JC-F = 8.2 Hz), 128.7, 127.9, 126.5 (d, 4JC-F = 3.3 

Hz), 120.8, 118.4, 117.1, 116.1 (d, 2JC-F = 21.6 Hz), 113.1, 12.4. ESI-HRMS: m/z calcd. for C14H11FN2 

[M+H]+: 227.0985, found 227.0980. 
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3-(4-chlorophenyl)-1-methylimidazo[1,5-a]pyridine: Following the General procedure C1, a mixture 

of 2-acetylpyridine (0.1 mmol), 4-chlorobenzaldehyde (2.0 equiv.) and chitosan (3.0 equiv.) in CF3COOH 

(1.0 mL) was stirred at 140 ºC under Ar atmosphere for 36 h. Chitosan was dried at 100 ºC overnight. 

Work-up gave product 15 (17.7 mg, 0.073 mmol, isolated yield 73%) as a yellow solid. m.p: 63−64 ºC. 
1H NMR (400 MHz, CDCl3) δ 8.04 (d, J = 7.2 Hz, 1H), 7.63 (d, J = 8.4 Hz, 2H), 7.39 (d, J = 8.8 Hz, 2H), 

7.33 (d, J = 10.0 Hz, 1H), 6.57 (dd, J = 8.8, 6.4 Hz, 1H), 6.47 – 6.43 (m, 1H), 2.47 (s, 3H). 13C NMR 

(100 MHz, CDCl3) δ 135.3, 134.2, 129.2, 129.1, 128.9, 128.8, 128.2, 121.6, 120.9, 118.4, 117.3, 113.3, 

12.4. ESI-HRMS: m/z calcd. for C14H11ClN2 [M+H]+: 243.0689, found 243.0687. 
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3-(3-chlorophenyl)-1-methylimidazo[1,5-a]pyridine: Following the General procedure C1, a mixture 

of 2-acetylpyridine (0.1 mmol), 3-chlorobenzaldehyde (2.0 equiv.) and chitosan (3.0 equiv.) in CF3COOH 

(1.0 mL) was stirred at 140 ºC under Ar atmosphere for 36 h. Chitosan was dried at 100 ºC overnight. 

Work-up gave product 16 (17.0 mg, 0.070 mmol, isolated yield 70%) as a brown solid. m.p: 70−71 ºC. 

Following the General procedure C3, a mixture of 2-acetylpyridine (0.1 mmol), 3-chlorobenzaldehyde 

(2.0 equiv.) and chitin (3.0 equiv.) in the CF3COOH (1.0 mL) was stirred at 140 ºC under Ar atmosphere 

for 36 h. Chitin was dried at 100 ºC oven overnight. Work-up gave product 15 (12.8 mg, 0.053 mmol, 

isolated yield 53%) as a brown solid.  

1H NMR (400 MHz, CDCl3) δ 8.10 (d, J = 7.6 Hz, 1H), 7.71 (s, 1H), 7.59 (d, J = 7.6 Hz, 1H), 7.35 – 7.30 

(m, 3H), 6.59 (dd, J = 9.2, 6.0 Hz, 1H), 6.50 – 6.46 (m, 1H), 2.49 (s, 3H). 13C NMR (100 MHz, CDCl3) δ 

134.9, 132.1, 130.2, 130.0, 129.3, 128.4, 128.3, 127.6, 125.6, 121.0, 118.5, 117.5, 113.4, 12.5. ESI-

HRMS: m/z calcd. for C14H11ClN2 [M+H]+: 243.0689, found 243.0687. 
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3-(3,4-dichlorophenyl)-1-methylimidazo[1,5-a]pyridine: Following the General procedure C1, a 

mixture of 2-acetylpyridine (0.1 mmol), 3,4-dichlorobenzaldehyde (2.0 equiv.) and chitosan (3.0 equiv.) 

in CF3COOH (1.0 mL) was stirred at 140 ºC under Ar atmosphere for 36 h. Chitosan was dried at 100 ºC 

overnight. Work-up gave product 17 (15.7 mg, 0.057 mmol, isolated yield 57%) as a yellow solid. m.p.: 

116−117 ºC. 1H NMR (400 MHz, CDCl3) δ 8.05 (d, J = 7.2 Hz, 1H), 7.82 (s, 1H), 7.57 – 7.45 (m, 2H), 

7.34 (d, J = 9.2 Hz, 1H), 6.61 – 6.58 (m, 1H), 6.50 – 6.47 (m, 1H), 2.48 (s, 3H). 13C NMR (100 MHz, 

CDCl3) δ 134.0, 133.2, 132.0, 130.8, 130.4, 129.6, 129.2, 128.6, 126.4, 120.8, 118.5, 117.6, 113.6, 12.5. 

ESI-HRMS: m/z calcd. for C14H10Cl2N2 [M+H]+: 277.0299, found 277.0295. 
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3-(4-bromophenyl)-1-methylimidazo[1,5-a]pyridine: Following the General procedure C1, a mixture 

of 2-acetylpyridine (0.1 mmol), 4-bromobenzaldehyde (2.0 equiv.) and chitosan (3.0 equiv.) in CF3COOH 

(1.0 mL) was stirred at 140 ºC under Ar atmosphere for 36 h. Chitosan was dried at 100 ºC overnight. 

Work-up gave product 18 (18.31 mg, 0.064 mmol, isolated yield 64%) as a yellow solid. m.p.: 90−91 ºC. 
1H NMR (400 MHz, CDCl3) δ 8.05 – 8.03 (m, 1H), 7.58 – 7.53 (m, 4H), 7.34 – 7.31 (m, 1H), 6.57 (dd, J 

= 9.1, 6.4 Hz, 1H), 6.47 – 6.43 (m, 1H), 2.47 (s, 3H). 13C NMR (100 MHz, CDCl3) δ 135.3, 132.1, 129.2, 

129.1, 129.1, 128.2, 122.3, 120.9, 118.4, 117.3, 113.3, 12.4. ESI-HRMS: m/z calcd. for C14H11BrN2 

[M+H]+: 287.0184, found 287.0181. 
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1-methyl-3-(4-(trifluoromethyl)phenyl)imidazo[1,5-a]pyridine: Following the General procedure C1, 

a mixture of 2-acetylpyridine (0.1 mmol), 4-trifluoromethylbenzaldehyde (2.0 equiv.) and chitosan (3.0 

equiv.) in CF3COOH (1.0 mL) was stirred at 140 ºC under Ar atmosphere for 36 h. Chitosan was dried at 

100 ºC overnight. Work-up gave product 19 (18.49 mg, 0.067 mmol, isolated yield 67%) as a yellow solid. 

m.p.: 72−73 ºC.  1H NMR (400 MHz, CDCl3) δ 8.15 – 8.12 (m, 1H), 7.85 (d, J = 8.0 Hz, 2H), 7.69 – 7.66 

(m, 2H), 7.38 – 7.35 (m, 1H), 6.64 – 6.59 (m, 1H), 6.52 – 6.47 (m, 1H), 2.50 (s, 3H). 13C NMR (100 

MHz, CDCl3) δ 134.9, 133.9 (q, 4JC-F = 1.2 Hz), 129.8 (q, 2JC-F = 32.5 Hz), 129.8, 128.7, 127.6, 125.9 (q, 
3JC-F = 3.8 Hz), 124.0 (q, 1JC-F = 270.4 Hz), 120.9, 118.5, 117.7, 113.6, 12.5. 19F NMR (377 MHz, CDCl3) 

δ -62.6. ESI-HRMS: m/z calcd. for C15H11F3N2 [M+H]+: 277.0953, found 277.0950. 
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1-methyl-3-(4-nitrophenyl)imidazo[1,5-a]pyridine: Following the General procedure C1, a mixture 

of 2-acetylpyridine (0.1 mmol), 4-nitrobenzaldehyde (2.0 equiv.) and chitosan (3.0 equiv.) in CF3COOH 

(1.0 mL) was stirred at 140 ºC under Ar atmosphere for 36 h. Chitosan was dried at 100 ºC overnight. 

Work-up gave product 20 (10.6 mg, 0.042 mmol, isolated yield 42%) as a red solid. m.p.: 142−143 ºC. 
1H NMR (400 MHz, CDCl3) δ 8.27 (d, J = 8.8 Hz, 2H), 8.22 (d, J = 7.2 Hz, 1H), 7.93 (d, J = 8.8 Hz, 2H), 

7.41 (d, J = 9.2 Hz, 1H), 6.71 – 6.67 (m, 1H), 6.61 – 6.57 (m, 1H), 2.52 (s, 3H). 13C NMR (100 MHz, 

CDCl3) δ 146.6, 136.5, 134.0, 131.0, 129.6, 127.3, 124.4, 121.0, 118.7, 118.4, 114.3, 12.6. ESI-HRMS: 

m/z calcd. for C14H11N3O2 [M+H]+: 254.0930, found 254.0926. 
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4-(1-methylimidazo[1,5-a]pyridin-3-yl)benzonitrile: Following the General procedure C1, a mixture 

of 2-acetylpyridine (0.1 mmol), 4-formylbenzonitrile (2.0 equiv.) and chitosan (3.0 equiv.) in CF3COOH 

(1.0 mL) was stirred at 140 ºC under Ar atmosphere for 36 h. Chitosan was dried at 100 ºC overnight. 

Work-up gave product 21 (8.4 mg, 0.036 mmol, isolated yield 36%) as a yellow solid. m.p.: 89−90 ºC. 1H 

NMR (400 MHz, CDCl3) δ 8.16 (d, J = 7.2 Hz, 1H), 7.87 (d, J = 8.0 Hz, 2H), 7.70 (d, J = 8.4 Hz, 2H), 

7.39 (d, J = 9.2 Hz, 1H), 6.66 (dd, J = 8.9, 6.5 Hz, 1H), 6.57 – 6.54 (m, 1H), 2.50 (s, 3H). 13C NMR (100 

MHz, CDCl3) δ 134.6, 134.3, 132.7, 130.5, 129.2, 127.4, 120.9, 118.7, 118.6, 118.1, 114.0, 111.0, 12.5. 

ESI-HRMS: m/z calcd. for C15H11N3 [M+H]+: 234.1031, found 234.1030. 
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4-(1-methylimidazo[1,5-a]pyridin-3-yl)benzaldehyde: Following the General procedure C1, a 

mixture of 2-acetylpyridine (0.1 mmol), terephthalaldehyde (2.0 equiv.) and chitosan (3.0 equiv.) in 

CF3COOH (1.0 mL) was stirred at 140 ºC under Ar atmosphere for 36 h. Chitosan was dried at 100 ºC 

overnight. Work-up gave product 23 (12.5 mg, 0.053 mmol, isolated yield 53%) as a yellow solid. m.p.: 

310−312 ºC. 1H NMR (400 MHz, CDCl3) δ 9.97 (s, 1H), 8.21 (d, J = 7.2 Hz, 1H), 7.92 (s, 4H), 7.38 (d, J 

= 8.8 Hz, 1H), 6.65 (dd, J = 9.2, 6.4 Hz, 1H), 6.54 (t, J = 6.8 Hz, 1H), 2.51 (s, 3H). 13C NMR (100 MHz, 

CDCl3) δ 191.5, 136.0, 135.3, 135.0, 130.4, 130.3, 129.1, 127.4, 121.2, 118.6, 118.0, 113.9, 12.5. ESI-

HRMS: m/z calcd. for C15H12N2O [M+H]+: 237.1028, found 237.1024. 
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1,4-bis(1-methylimidazo[1,5-a]pyridin-3-yl)benzene: Following the General procedure C1, a mixture 

of 2-acetylpyridine (0.1 mmol), terephthalaldehyde (2.0 equiv.) and chitosan (3.0 equiv.) in CF3COOH 

(0.7 mL) was stirred at 140 ºC under Ar atmosphere for 4 days. Chitosan was dried at 100 ºC overnight. 

Work-up gave product 61 (8.1 mg, 0.024 mmol, isolated yield 24%) as a brown red solid. m.p.: 212−214 

ºC. 1H NMR (300 MHz, CDCl3) δ 8.17 (d, J = 7.2 Hz, 2H), 7.86 (s, 4H), 7.35 (d, J = 9.3 Hz, 2H), 6.58 

(dd, J = 9.0, 6.3 Hz, 2H), 6.49 – 6.44 (m, 2H), 2.52 (s, 6H). 13C NMR (75 MHz, CDCl3) δ 136.0, 130.1, 

129.3, 128.3, 128.0, 121.2, 118.4, 117.2, 113.2, 12.6. ESI-HRMS: m/z calcd. for C22H18N4 [M+H]+: 

338.1531, found 338.1526. 
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1-methyl-3-(naphthalen-1-yl)imidazo[1,5-a]pyridine: Following the General procedure C1, a mixture 

of 2-acetylpyridine (0.1 mmol), 1-naphthaldehyde (2.0 equiv.) and chitosan (3.0 equiv.) in CF3COOH 

(1.0 mL) was stirred at 140 ºC under Ar atmosphere for 36 h. Chitosan was dried under 100 ºC overnight. 

Work-up gave product 24 (8.0 mg, 0.031 mmol, isolated yield 31%) as a brown solid. m.p.: 90−93 ºC. 

Following the General procedure C3, a mixture of 2-acetylpyridines (0.1 mmol), 1-naphthaldehyde (2.0 

equiv.) and chitin (3.0 equiv.) in the CF3COOH (1.0 mL) was stirred at 140 ºC under Ar atmosphere for 

36 h. Chitin was dried at 100 ºC oven overnight. Work-up gave product 24 (7.5 mg, 0.029 mmol, isolated 

yield 29%) as a brown solid. 

1H NMR (300 MHz, CDCl3) δ 7.91 – 7.85 (m, 2H), 7.66 – 7.62 (m, 2H), 7.53 – 7.48 (m, 2H), 7.44 (dd, J 

= 7.8, 1.2 Hz, 1H), 7.41 – 7.35 (m, 2H), 6.57 (dd, J = 9.0, 6.0 Hz, 1H), 6.35 – 6.30 (m, 1H), 2.57 (s, 3H). 
13C NMR (75 MHz, CDCl3) δ 135.3, 133.9, 131.8, 129.6, 128.8, 128.5, 128.5, 127.5, 127.4, 126.9, 126.2, 

125.7, 125.3, 121.6, 118.1, 117.0, 112.3, 12.7. ESI-HRMS: m/z calcd. for C18H14N2 [M+H]+: 259.1235, 

found 259.1233. 
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1-methyl-3-(pyridin-3-yl)imidazo[1,5-a]pyridine: Following the General procedure C1, a mixture of 

2-acetylpyridine (0.1 mmol), nicotinaldehyde (4.0 equiv.) and chitosan (2.5 equiv.) in CF3COOH (0.7 mL) 

was stirred at 140 ºC under Ar atmosphere for 36 h. Chitosan was dried at 100 ºC overnight. Work-up 

gave product 25 (12.1 mg, 0.058 mmol, isolated yield 58%) as a brown liquid. 1H NMR (400 MHz, 

CDCl3) δ 8.99 (s, 1H), 8.56 (d, J = 4.4 Hz, 1H), 8.10 (d, J = 7.2 Hz, 1H), 8.05 (d, J = 8.0 Hz, 1H), 7.37 (d, 

J = 8.4 Hz, 2H), 6.64 – 6.60 (m, 1H), 6.50 (t, J = 6.8 Hz, 1H), 2.51 (s, 3H). 13C NMR (100 MHz, CDCl3) 

δ 149.0, 148.2, 135.2, 133.3, 129.8, 128.6, 126.8, 123.8, 120.7, 118.5, 117.7, 113.7, 12.5. ESI-HRMS: 

m/z calcd. for C13H11N3 [M+H]+: 210.1031, found 210.1027. 
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1-methyl-3-(thiophen-2-yl)imidazo[1,5-a]pyridine: Following the General procedure C1, a mixture of 

2-acetylpyridine (0.1 mmol), thiophene-2-carbaldehyde (2.0 equiv.) and chitosan (3.0 equiv.) in 

CF3COOH (1.0 mL) was stirred at 140 ºC under Ar atmosphere for 36 h. Chitosan was dried at 100 ºC 

overnight. Work-up gave product 26 (5.8 mg, 0.027 mmol, isolated yield 27%) as a brown solid. m.p.: 

79−81 ºC. 1H NMR (400 MHz, CDCl3) δ 8.17 (d, J = 6.8 Hz, 1H), 7.42 – 7.40 (m, 1H), 7.35 – 7.30 (m, 

2H), 7.09 (dd, J = 5.2, 4.0 Hz, 1H), 6.60 – 6.56 (m, 1H), 6.54 – 6.50 (m, 1H), 2.48 (s, 3H). 13C NMR 

(100 MHz, CDCl3) δ 132.7, 131.3, 129.3, 128.2, 127.6, 125.5, 124.0, 121.5, 118.4, 117.0, 113.5, 12.6. 

ESI-HRMS: m/z calcd. for C12H10N2S [M+H]+: 215.0643, found 215.0641. 
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3-cyclohexyl-1-methylimidazo[1,5-a]pyridine: Following the General procedure C1, a mixture of 2-

acetylpyridine (0.1 mmol), cyclohexanecarbaldehyde (2.0 equiv.) and chitosan (3.0 equiv.) in CF3COOH 

(1.0 mL) was stirred at 140 ºC under Ar atmosphere for 36 h. Chitosan was dried at 100 ºC overnight. 

Work-up gave product 28 (14.8 mg, 0.069 mmol, isolated yield 69%) as a colorless solid. m.p.: 92−93 ºC. 
1H NMR (400 MHz, CDCl3) δ 7.60 (d, J = 7.2 Hz, 1H), 7.22 (dd, J = 9.2 Hz, 0.8 Hz, 1H), 6.45 (dd, J = 

9.2, 6.4 Hz, 1H), 6.39 – 6.35 (m, 1H), 2.85 (tt, J = 11.9, 3.4 Hz, 1H), 2.42 (s, 3H), 1.92 (d, J = 13.2 Hz, 

2H), 1.83 (d, J = 12.8 Hz, 2H), 1.71 – 1.68 (m, 3H), 1.37 – 1.29 (m, 3H). 13C NMR (100 MHz, CDCl3) δ 

141.2, 126.2, 126.1, 120.2, 118.3, 115.9, 111.9, 35.7, 30.8, 26.4, 25.9, 12.2. ESI-HRMS: m/z calcd. for 

C14H18N2 [M+H]+: 215.1548, found 215.1544. 
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(E)-1-methyl-3-styrylimidazo[1,5-a]pyridine: Following the General procedure C1, a mixture of 2-

acetylpyridine (0.1 mmol), cinnamaldehyde (2.0 equiv.) and chitosan (3.0 equiv.) in CF3COOH (1.0 mL) 

was stirred at 140 ºC under Ar atmosphere for 36 h. Chitosan was dried at 100 ºC overnight. Work-up 

gave product 30 (6.6 mg, 0.028 mmol, isolated yield 28%) as a brown solid. m.p.: 110−111 ºC. Following 

the General procedure C3, a mixture of 2-acetylpyridine (0.1 mmol), cinnamaldehyde (2.0 equiv.) and 

chitin (3.0 equiv.) in the CF3COOH (0.1 M) was stirred at 140 ºC under Ar atmosphere for 36 h. Chitin 

was dried at 100 ºC overnight. Work-up gave product 30 (4.0 mg, 0.017 mmol, isolated yield 17%) as a 

brown solid. 

1H NMR (400 MHz, CDCl3) δ 7.88 (d, J = 7.2 Hz, 1H), 7.56 (d, J = 16.0 Hz, 1H), 7.49 (d, J = 7.6 Hz, 

2H), 7.31 – 7.28 (m, 3H), 7.21 – 7.18 (m, 2H), 6.58 – 6.49 (m, 2H), 2.49 (s, 3H). 13C NMR (100 MHz, 

CDCl3) δ 137.1, 129.6, 128.7, 127.8, 126.5, 120.5, 118.5, 117.1, 113.2, 112.0, 12.7. ESI-HRMS: m/z 

calcd. for C16H14N2 [M+H]+: 235.1235, found 235.1229. 
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3-isopropyl-1-methylimidazo[1,5-a]pyridine: Following the General procedure C1, a mixture of 2-

acetylpyridine (0.1 mmol), isobutyraldehyde (2.0 equiv.) and chitosan (3.0 equiv.) in CF3COOH (1.0 mL) 

was stirred at 140 ºC under Ar atmosphere for 36 h. Chitosan was dried at 100 ºC overnight. Work-up 

gave product 31 (8.7 mg, 0.050 mmol, isolated yield 50%) as a brown solid. m.p.: 93−95 ºC. 1H NMR 

(300 MHz, CDCl3) δ 7.58 (d, J = 7.2 Hz, 1H), 7.23 (d, J = 9.3 Hz, 1H), 6.46 (dd, J = 9.0, 6.3 Hz, 1H), 

6.40 – 6.35 (m, 1H), 3.21 (hept, J = 6.9 Hz, 1H), 2.43 (s, 3H), 1.36 (d, J = 6.9 Hz, 5H). 13C NMR (100 

MHz, CDCl3) δ 141.8, 126.4, 120.2, 118.3, 115.6, 111.7, 25.9, 20.5, 12.5. ESI-HRMS: m/z calcd. for 

C11H14N2 [M+H]+: 175.1235, found 175.1227. 
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1-methyl-3-(pentan-2-yl)imidazo[1,5-a]pyridine: Following the General procedure C1, a mixture of 

2-acetylpyridine (0.1 mmol), 2-methylpentanal (2.0 equiv.) and chitosan (3.0 equiv.) in CF3COOH (1.0 

mL) was stirred at 140 ºC under Ar atmosphere for 36 h. Chitosan was dried at 100 ºC overnight. Work-

up gave product 33 (10.5 mg, 0.052 mmol, isolated yield 52%) as a brown liquid. 1H NMR (300 MHz, 

CDCl3) δ 7.65 (d, J = 7.2 Hz, 1H), 7.28 (d, J = 9.0 Hz, 1H), 6.50 (dd, J = 9.0, 6.3 Hz, 1H), 6.44 – 6.40 (m, 

1H), 3.15 (h, J = 7.0 Hz, 1H), 2.48 (s, 3H), 1.93 – 1.85 (m, 1H), 1.73 – 1.65 (m, 1H), 1.39 (d, J = 6.9 Hz, 

3H), 1.23 – 1.13 (m, 2H), 0.89 (t, J = 7.2 Hz, 3H). 13C NMR (75 MHz, CDCl3) δ 141.4, 126.4, 126.1, 

120.1, 118.2, 115.6, 111.7, 37.6, 30.9, 20.6, 18.6, 14.0, 12.3. ESI-HRMS: m/z calcd. for C13H18N2 

[M+H]+: 203.1548, found 203.1543. 
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1-(pyridin-2-yl)-3-(o-tolyl)imidazo[1,5-a]pyridine: Following the General procedure C2, a mixture of 

di(pyridin-2-yl)methanone (0.1 mmol), 2-methylbenzoaldehyde (4.0 equiv.) and chitosan (2.5 equiv.) in 

CF3COOH (0.7 mL) was stirred at 140 ºC under Ar atmosphere for 36 h. Chitosan was dried at 100 ºC 

overnight. Work-up gave product 35 (18.5 mg, 0.065 mmol, isolated yield 65%) as a yellow solid. m.p.: 

90−91 ºC. Following the General procedure C4, a mixture of di(pyridin-2-yl)methanone (0.1 mmol), 2-

methylbenzoaldehyde (4.0 equiv.) and chitin (2.5 equiv.) in CF3COOH (0.7 mL) was stirred at 140 ºC 

under Ar atmosphere for 36 h. Chitin was dried under 100 ºC overnight. Work-up gave product 35 (7.4 

mg, 0.026 mmol, isolated yield 26%) as a yellow solid. 

1H NMR (400 MHz, CDCl3) δ 8.73 (d, J = 9.2 Hz, 1H), 8.65 (d, J = 4.0 Hz, 1H), 8.26 (d, J = 8.0 Hz, 1H), 

7.71 (t, J = 7.6 Hz, 1H), 7.64 (d, J = 7.2 Hz, 1H), 7.52 (d, J = 7.6 Hz, 1H), 7.44 – 7.33 (m, 3H), 7.11 – 

7.08 (m, 1H), 6.94 – 6.90 (m, 1H), 6.59 (t, J = 6.8 Hz, 1H), 2.28 (s, 3H). 13C NMR (100 MHz, CDCl3) δ 

155.1, 148.9, 138.4, 137.6, 136.1, 130.7, 130.5, 129.8, 129.5, 129.1, 129.0, 126.0, 121.5, 121.5, 120.8, 

120.2, 119.7, 113.5, 19.6. ESI-HRMS: m/z calcd. for C19H15N3 [M+H]+: 286.1344, found 286.1342. 
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1-phenyl-3-(o-tolyl)imidazo[1,5-a]pyridine: Following the General procedure C2, a mixture of 

phenyl(pyridin-2-yl)methanone (0.1 mmol), 2-methylbenzoaldehyde (4.0 equiv.) and chitosan (2.5 equiv.) 

in CF3COOH (0.7 mL) was stirred at 140 ºC under Ar atmosphere for 36 h. Chitosan was dried at 100 ºC 

overnight. Work-up gave product 37 (20.2 mg, 0.071 mmol, isolated yield 71%) as a yellow liquid. 1H 

NMR (400 MHz, CDCl3) δ 7.88 (d, J = 7.6 Hz, 2H), 7.78 (d, J = 9.2 Hz, 1H), 7.52 (d, J = 6.8 Hz, 1H), 

7.42 – 7.36 (m, 3H), 7.32 – 7.28 (m, 2H), 7.26 – 7.16 (m, 2H), 6.72 – 6.68 (m, 1H), 6.45 – 6.41 (m, 1H), 

2.17 (s, 3H). 13C NMR (100 MHz, CDCl3) δ 138.5, 137.8, 135.1, 131.1, 130.8, 130.6, 129.5, 129.2, 128.6, 

126.6, 126.3, 126.1, 121.9, 119.5, 118.9, 112.8, 19.7. ESI-HRMS: m/z calcd. for C20H16N2 [M+H]+: 

285.1392, found 285.1390. 
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1,3-di-o-tolylimidazo[1,5-a]pyridine: Following the General procedure C2, a mixture of pyridin-2-

yl(o-tolyl)methanone (0.1 mmol), 2-methylbenzoaldehyde (4.0 equiv.) and chitosan (2.5 equiv.) in 

CF3COOH (0.7 mL) was stirred at 140 ºC under Ar atmosphere for 36 h. Chitosan was dried at 100 ºC 

overnight. Work-up gave product 38 (16.1 mg, 0.054 mmol, isolated yield 54%) as a green solid. m.p.: 

112−113 ºC. 1H NMR (400 MHz, CDCl3) δ 7.62 – 7.60 (m, 1H), 7.45 – 7.39 (m, 3H), 7.31 (d, J = 2.8 Hz, 

2H), 7.27 – 7.23 (m, 2H), 7.21 – 7.18 (m, 2H), 6.67 – 6.64 (m, 1H), 6.49 – 6.44 (m, 1H), 2.41 (s, 3H), 

2.24 (s, 3H). 13C NMR (100 MHz, CDCl3) δ 138.5, 137.3, 130.9, 130.8, 130.3, 130.2, 129.5, 127.4, 126.0, 

125.5, 121.5, 118.9, 112.9, 20.7, 19.9. ESI-HRMS: m/z calcd. for C21H18N2 [M+H]+: 299.1548, found 

299.1546. 
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3-(o-tolyl)-1-(p-tolyl)imidazo[1,5-a]pyridine: Following the General procedure C2, a mixture of 

pyridin-2-yl(p-tolyl)methanone (0.1 mmol), 2-methylbenzoaldehyde (4.0 equiv.) and chitosan (2.5 equiv.) 

in CF3COOH (0.7 mL) was stirred at 140 ºC under Ar atmosphere for 36 h. Chitosan was dried at 100 ºC 

overnight. Work-up gave product 39 (20.2 mg, 0.083 mmol, isolated yield 68%) as a yellow liquid. 1H 

NMR (400 MHz, CDCl3) δ 7.79 – 7.75 (m, 3H), 7.52 (d, J = 7.2 Hz, 1H), 7.43 (d, J = 7.6 Hz, 1H), 7.35 – 

7.18 (m, 5H), 6.69 (dd, J = 9.3, 6.3 Hz, 1H), 6.45 – 6.42 (m, 1H), 2.33 (s, 3H), 2.18 (s, 3H). 13C NMR 

(100 MHz, CDCl3) δ 138.5, 137.6, 136.0, 132.2, 131.2, 130.8, 130.6, 129.5, 129.4, 129.3, 126.5, 126.3, 

126.1, 121.8, 119.2, 119.1, 112.7, 21.2, 19.8. ESI-HRMS: m/z calcd. for C21H18N2 [M+H]+: 299.1548, 

found 299.1544. 
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1-(4-methoxyphenyl)-3-(o-tolyl)imidazo[1,5-a]pyridine: Following the General procedure C2, a 

mixture of (4-methoxyphenyl)(pyridin-2-yl)methanone (0.1 mmol), 2-methylbenzoaldehyde (4.0 equiv.) 

and chitosan (2.5 equiv.) in CF3COOH (0.7 mL) was stirred at 140 ºC under Ar atmosphere for 36 h. 

Chitosan was dried at 100 ºC overnight. Work-up gave product 40 (22.9 mg, 0.073 mmol, isolated yield 

73%) as a yellow liquid. 1H NMR (300 MHz, CDCl3) δ 7.81 (d, J = 9.0 Hz, 2H), 7.73 (d, J = 9.3 Hz, 1H), 

7.52 (d, J = 7.2 Hz, 1H), 7.43 (d, J = 7.2 Hz, 1H), 7.33 – 7.23 (m, 3H), 6.94 (d, J = 8.7 Hz, 2H), 6.68 (ddd, 

J = 9.3, 6.3, 0.9 Hz, 1H), 6.45 – 6.41 (m, 1H), 3.79 (s, 3H), 2.19 (s, 3H). 13C NMR (100 MHz, CDCl3) δ 

138.5, 137.3, 130.9, 130.8, 130.3, 130.2, 129.5, 127.4, 126.0, 125.5, 121.5, 118.9, 112.9, 20.7, 19.9. ESI-

HRMS: m/z calcd. for C21H18N2O [M+H]+: 315.1497, found 315.1495. 
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3-(o-tolyl)-1-(4-(trifluoromethyl)phenyl)imidazo[1,5-a]pyridine: Following the General procedure 

C2, a mixture of pyridin-2-yl(4-(trifluoromethyl)phenyl)methanone (0.1 mmol), 2-methylbenzoaldehyde 

(4.0 equiv.) and chitosan (2.5 equiv.) in CF3COOH (0.7 mL) was stirred at 140 ºC under Ar atmosphere 

for 36 h. Chitosan was dried at 100 ºC overnight. Work-up gave product 41 (28.5 mg, 0.081 mmol, 

isolated yield 81%) as a yellow liquid. 1H NMR (400 MHz, CDCl3) δ 8.01 (d, J = 8.0 Hz, 2H), 7.81 (d, J 

= 9.2 Hz, 1H), 7.64 – 7.58 (m, 3H), 7.43 (d, J = 7.6 Hz, 1H), 7.36 – 7.26 (m, 3H), 6.82 (dd, J = 9.2, 6.4 

Hz, 1H), 6.54 – 6.50 (m, 1H), 2.19 (s, 3H).  13C NMR (100 MHz, CDCl3) δ 138.7, 138.5, 138.4, 131.2, 

130.9, 130.6, 129.8, 129.5, 128.9, 127.9 (q, 2JC-F = 33.4 Hz), 127.4, 126.3, 126.2, 125.6 (q, 3JC-F = 3.7 Hz), 

124.5 (q, 1JC-F = 270.1 Hz), 122.3, 120.8, 118.6, 113.1, 19.8. 19F NMR (377 MHz, CDCl3) δ -62.2. ESI-

HRMS: m/z calcd. for C21H15F3N2 [M+H]+: 353.1266, found 353.1261. 

 

42

N
N

Me

Br

 

1-(4-bromophenyl)-3-(o-tolyl)imidazo[1,5-a]pyridine: Following the General procedure C2, a 

mixture of (4-bromophenyl)(pyridin-2-yl)methanone (0.1 mmol), 2-methylbenzoaldehyde (4.0 equiv.) 

and chitosan (2.5 equiv.) in CF3COOH (0.7 mL) was stirred at 140 ºC under Ar atmosphere for 36 h. 

Chitosan was dried at 100 ºC overnight. Work-up gave product 42 (27.1 mg, 0.075 mmol, isolated yield 

75%) as a yellow solid. m.p.: 123−124 ºC. 1H NMR (400 MHz, CDCl3) δ 7.78 – 7.73 (m, 3H), 7.55 (d, J 

= 6.8 Hz, 1H), 7.50 (d, J = 8.4 Hz, 1H), 7.42 (d, J = 7.2 Hz, 1H), 7.34 – 7.26 (m, 3H), 6.78 – 6.74 (m, 1H), 

6.50 – 6.47 (m, 1H), 2.18 (s, 3H). 13C NMR (100 MHz, CDCl3) δ 138.5, 138.0, 134.1, 131.7, 130.9, 130.6, 

129.8, 129.7, 128.0, 126.7, 126.2, 122.1, 120.1, 120.0, 118.7, 113.0, 19.8. ESI-HRMS: m/z calcd. for 

C20H15BrN2 [M+H]+: 363.0497, found 363.0494. 
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1-(3,5-dibromophenyl)-3-(o-tolyl)imidazo[1,5-a]pyridine: Following the General procedure C2, a 

mixture of (3,5-dibromophenyl)(pyridin-2-yl)methanone (0.1 mmol), 2-methylbenzoaldehyde (4.0 equiv.) 

and chitosan (2.5 equiv.) in CF3COOH (0.7 mL) was stirred at 140 ºC under Ar atmosphere for 36 h. 

Chitosan was dried at 100 ºC overnight. Work-up gave product 43 (28.2 mg, 0.064 mmol, isolated yield 

64%) as a yellow solid. m.p.: 138−140 ºC.  1H NMR (400 MHz, CDCl3) δ 7.99 – 7.98 (m, 2H), 7.76 (d, J 

= 9.2 Hz, 1H), 7.57 (d, J = 7.2 Hz, 1H), 7.47 (dt, J = 3.2, 1.7 Hz, 1H), 7.41 (d, J = 7.2 Hz, 1H), 7.36 – 

7.26 (m, 3H), 6.87 – 6.82 (m, 1H), 6.55 – 6.51 (m, 1H), 2.17 (s, 3H). 13C NMR (100 MHz, CDCl3) δ 

138.7, 138.5, 138.4, 131.3, 130.9, 130.6, 129.9, 128.7, 127.9, 127.7, 127.4, 126.2, 123.2, 122.3, 121.1, 

118.4, 113.2, 19.7. ESI-HRMS: m/z calcd. for C20H14Br2N2 [M+H]+: 440.9602, found 440.9609. 
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1-cyclopentyl-3-(o-tolyl)imidazo[1,5-a]pyridine: Following the General procedure C2, a mixture of 

cyclopentyl(pyridin-2-yl)methanone (0.1 mmol), 2-methylbenzoaldehyde (4.0 equiv.) and chitosan (2.5 

equiv.) in CF3COOH (0.7 mL) was stirred at 140 ºC under Ar atmosphere for 36 h. Chitosan was dried at 

100 ºC overnight. Work-up gave product 44 (25.36 mg, 0.092 mmol, isolated yield 92%) as a brown solid. 

m.p.: 72−73 ºC. Following the General procedure C4, a mixture of cyclopentyl(pyridin-2-yl)methanone 

(0.1 mmol), 2-methylbenzoaldehyde (4.0 equiv.) and chitin (2.5 equiv.) in CF3COOH (0.7 mL) was 

stirred at 140 ºC under Ar atmosphere for 36 h. Chitin was dried at 100 ºC overnight. Work-up gave 

product 44 (24.6 mg, 0.089 mmol, isolated yield 89%) as a brown solid. 

1H NMR (400 MHz, CDCl3) δ 7.42 (d, J = 7.2 Hz, 1H), 7.37 (d, J = 9.2 Hz, 1H), 7.32 (d, J = 7.2 Hz, 1H), 

7.26 – 7.23 (m, 2H), 7.20 – 7.16 (m, 1H), 6.49 (ddd, J = 9.2, 6.3, 0.8 Hz, 1H), 6.34 – 6.30 (m, 1H), 3.37 – 
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3.28 (m, 1H), 2.10 (s, 3H), 2.04 – 1.99 (m, 2H), 1.91 – 1.87 (m, 2H), 1.81 – 1.78 (m, 2H), 1.64 – 1.60 (m, 

2H). 13C NMR (100 MHz, CDCl3) δ 138.4, 136.1, 135.9, 130.7, 130.4, 129.5, 129.2, 125.9, 125.8, 121.2, 

118.2, 116.5, 112.3, 38.3, 33.4, 25.7, 19.6. ESI-HRMS: m/z calcd. for C19H20N2 [M+H]+: 277.1705, 

found 277.1703. 
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2-(1-(pyridin-2-yl)imidazo[1,5-a]pyridin-3-yl)phenol: Following the General procedure C2, a mixture 

of di(pyridin-2-yl)methanone (0.1 mmol), 2-hydroxybenzaldehyde (4.0 equiv.) and chitosan (2.5 equiv.) 

in CF3COOH (0.7 mL) was stirred at 140 ºC under Ar atmosphere for 36 h. Chitosan was dried at 100 ºC 

overnight. Work-up gave product 46 (5.2 mg, 0.085 mmol, isolated yield 18%) as a yellow solid. 1H 

NMR (400 MHz, CDCl3) δ 8.73 (d, J = 9.2 Hz, 1H), 8.57 (d, J = 4.0 Hz, 1H), 8.48 (d, J = 7.2 Hz, 1H), 

8.05 (d, J = 8.0 Hz, 1H), 7.72 (dd, J = 7.8, 1.4 Hz, 1H), 7.67 (td, J = 7.8, 2.0 Hz, 1H), 7.28 – 7.24 (m, 1H), 

7.12 (dd, J = 8.2, 1.0 Hz, 1H), 7.06 (ddd, J = 7.2, 4.8, 1.2 Hz, 1H), 6.97 – 6.90 (m, 2H), 6.72 – 6.68 (m, 

1H). 13C NMR (100 MHz, CDCl3) δ 156.3, 153.9, 149.1, 136.4, 135.5, 130.1, 129.6, 128.6, 124.5, 122.3, 

122.3, 121.7, 120.9, 119.8, 119.1, 117.8, 114.8, 114.0. The compound is known, and the NMR data is in 

accordance with the previous literature.330 
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3-(2-methoxyphenyl)-1-(pyridin-2-yl)imidazo[1,5-a]pyridine: Following the General procedure C2, a 

mixture of di(pyridin-2-yl)methanone (0.1 mmol), 2-methoxybenzaldehyde (4.0 equiv.) and chitosan (2.5 

equiv.) in CF3COOH (0.7 mL) was stirred at 140 ºC under Ar atmosphere for 36 h. Chitosan was dried at 

100 ºC overnight. Work-up gave product 47 (13.3 mg, 0.044 mmol, isolated yield 44%) as a yellow solid. 

Following the General procedure C4, a mixture of di(pyridin-2-yl)methanone (0.1 mmol), 2-
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methoxybenzaldehyde (4.0 equiv.) and chitin (2.5 equiv.) in CF3COOH (0.7 mL) was stirred at 140 ºC 

under Ar atmosphere for 36 h. Chitin was dried at 100 ºC overnight. Work-up gave product 47 (4.8 mg, 

0.016 mmol, isolated yield 16%) as a yellow solid. 

 1H NMR (400 MHz, CDCl3) δ 8.62 (d, J = 9.2 Hz, 1H), 8.56 – 8.54 (m, 1H), 8.16 (d, J = 8.4 Hz, 1H), 

7.64 – 7.58 (m, 2H), 7.54 (d, J = 7.2 Hz, 1H), 7.44 – 7.40 (m, 1H), 7.08 – 7.05 (m, 1H), 7.01 – 6.97 (m, 

2H), 6.86 (dd, J = 9.2, 6.4 Hz, 1H), 6.55 – 6.52 (m, 1H), 3.73 (s, 3H). 13C NMR (100 MHz, CDCl3) δ 

157.6, 155.3, 148.9, 136.1, 132.8, 131.0, 130.1, 130.0, 123.3, 121.2, 121.2, 120.9, 120.2, 119.9, 119.1, 

112.7, 111.2, 55.6. The compound is known, and the NMR data is in accordance with the previous 

literature.226 

 

66

N
N

Me

D

D
DD: 80%

 

1-(methyl-d3)-3-(o-tolyl)imidazo[1,5-a]pyridine: Following the General procedure C5, a mixture of 2-

acetylpyridine (0.1 mmol), 2-methylbenzaldehyde (2.0 equiv.) and chitosan (3.0 equiv.) in CF3COOD 

(1.0 mL) was stirred at 140 ºC under Ar atmosphere for 36 h. Chitosan was dried at 100 ºC overnight. 

Work-up gave product 66 (16.4 mg, 0.073 mmol, isolated yield 73%) as a yellow solid. m.p. 62−64 °C. D 

incorporation by 1H NMR: 80%. 1H NMR (300 MHz, CDCl3) δ 7.43 (d, J = 7.2 Hz, 1H), 7.37 – 7.19 (m, 

5H), 6.53 (dd, J = 9.1, 6.3 Hz, 1H), 6.37 – 6.32 (m, 1H), 2.48 (s, 0.59H), 2.13 (s, 3H). ESI-HRMS: m/z 

calcd. for C15H11D3N2 [M+H]+: 226.1424, found 226.1420. 

 

 

70

D: 80%

D: 30%

N
N

OMe

D

D
D

D

 

3-(2-3-(2-methoxyphenyl-3-d)-1-(methyl-d3)imidazo[1,5-a]pyridine: Following the General 

procedure C5, a mixture of 2-acetylpyridine (0.1 mmol), 2-methoxybenzaldehyde (2.0 equiv.) and 

chitosan (3.0 equiv.) in CF3COOD (1.0 mL) was stirred at 140 ºC under Ar atmosphere for 36 h. Chitosan 
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was dried at 100 ºC overnight. Work-up gave product 70 (14.7 mg, 0.061 mmol, isolated yield 61%) as a 

yellow solid; m.p. 44−46 °C. D incorporation by 1H NMR: 80% and 30%. 1H NMR (400 MHz, CDCl3) δ 

7.53 (dd, J = 4.0, 1.6 Hz, 1H), 7.45 – 7.43 (m, 1H), 7.37 – 7.31 (m, 2H), 7.04 – 7.00 (m, 0.70H), 6.96 (dd, 

J = 8.4, 4.4 Hz, 1H), 6.57 – 6.53 (m, 1H), 6.40 – 6.35 (m, 1H), 3.73 (s, 3H), 2.49 (s, 0.59H). ESI-HRMS: 

m/z calcd. for C15H10D4N2O [M+H]+: 243.1435, found 243.1422. 

 

71

D: 80%

D: 40%

N
N

D

D
D

OMe
D

 

3-(4-methoxyphenyl-3-d)-1-(methyl-d3)imidazo[1,5-a]pyridine: Following the General procedure C5, 

a mixture of 2-acetylpyridine (0.1 mmol), 4-methoxybenzaldehyde (2.0 equiv.) and chitosan (3.0 equiv.) 

in CF3COOD (1.0 mL) was stirred at 140 ºC under Ar atmosphere for 36 h. Chitosan was dried at 100 ºC 

overnight. Work-up gave product 71 (15.2 mg, 0.063 mmol, isolated yield 63%) as a yellow solid. D 

incorporation by 1H NMR: 80% and 40%. m.p. 43−45 °C. 1H NMR (400 MHz, CDCl3) δ 8.02 (d, J = 7.6 

Hz, 1H), 7.62 (d, J = 8.8 Hz, 2H), 7.29 (d, J = 9.2 Hz, 1H), 6.96 (d, J = 9.2 Hz, 1.59H), 6.51 (ddd, J = 9.2, 

6.4, 0.8 Hz, 1H), 6.38 (ddd, J = 7.6, 6.4, 1.2 Hz, 1H), 3.80 (s, 3H), 2.46 (s, 0.60H). ESI-HRMS: m/z 

calcd. for C15H10D4N2O [M+H]+: 243.1435, found 243.1422. 

 

73

D: 76%

D: 68%
D: 70%

N
N

OH

D

D
D

D

D

 

2-(1-(methyl-d3)imidazo[1,5-a]pyridin-3-yl)phen-4,6-d2-ol: Following the General procedure C5, a 

mixture of 2-acetylpyridine (0.1 mmol), 2-hydroxybenzaldehyde (2.0 equiv.) and chitosan (3.0 equiv.) in 

CF3COOD (1.0 mL) was stirred at 140 ºC under Ar atmosphere for 36 h. Chitosan was dried at 100 ºC 

overnight. Work-up gave product 73 (6.9 mg, 0.030 mmol, isolated yield 30%) as a white solid. m.p. 

130−132 °C. D incorporation by 1H NMR: 76%, 70% and 68%. 1H NMR (400 MHz, CDCl3) δ 8.35 (dd, 

J = 7.0, 3.6 Hz, 1H), 7.67 – 7.65 (m, 1H), 7.38 – 7.34 (m, 1H), 7.19 (d, J = 4.4 Hz, 1H), 7.07 (dd, J = 8.0, 
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4.0 Hz, 0.32H), 6.93 – 6.88 (m, 0.30H), 6.65 – 6.60 (m, 1H), 6.56 – 6.51 (m, 1H), 2.46 (s, 0.73H). ESI-

HRMS: m/z calcd. for C14H7D5N2O [M+H]+: 230.1342, found 230.1330.  

 

74

N
N

D

D
D

F

D: 77%

 

3-(4-fluorophenyl)-1-(methyl-d3)imidazo[1,5-a]pyridine: Following the General procedure C5, a 

mixture of 2-acetylpyridine (0.1 mmol), 4-fluorobenzaldehyde (2.0 equiv.) and chitosan (3.0 equiv.) in 

CF3COOD (1.0 mL) was stirred at 140 ºC under Ar atmosphere for 36 h. Chitosan was dried at 100 ºC 

overnight. Work-up gave product 74 (16.9 mg, 0.074 mmol, isolated yield 74%) as a yellow solid. D 

incorporation by 1H NMR: 77%. m.p. 93−95 °C. 1H NMR (300 MHz, CDCl3) δ 8.01 (d, J = 7.2 Hz, 1H), 

7.67 (dd, J = 8.4, 5.4 Hz, 2H), 7.31 (d, J = 9.0 Hz, 1H), 7.14 – 7.09 (m, 2H), 6.54 (dd, J = 9.0, 6.3 Hz, 

1H), 6.44 – 6.40 (m, 1H), 2.46 (s, 0.68H). ESI-HRMS: m/z calcd. for C14H8D3N2F [M+H]+: 230.1173, 

found 230.1168. 

 

75

N
N

D

D
D

Cl

D: 79%

 

3-(4-chlorophenyl)-1-(methyl-d3)imidazo[1,5-a]pyridine: Following the General procedure C5, a 

mixture of 2-acetylpyridine (0.1 mmol), 4-chlorobenzaldehyde (2.0 equiv.) and chitosan (3.0 equiv.) in 

CF3COOD (1.0 mL) was stirred at 140 ºC under Ar atmosphere for 36 h. Chitosan was dried at 100 ºC 

overnight. Work-up gave product 75 (18.6 mg, 0.076 mmol, isolated yield 76%) as a yellow solid. D 

incorporation by 1H NMR: 79%. m.p. 84−86 °C. 1H NMR (400 MHz, CDCl3) δ 8.04 (d, J = 7.2 Hz, 1H), 

7.65 (d, J = 8.4 Hz, 2H), 7.40 (d, J = 8.4 Hz, 2H), 7.34 (d, J = 9.2 Hz, 1H), 6.60 (dd, J = 9.2, 6.4 Hz, 1H), 

6.50 – 6.46 (m, 1H), 2.47 (s, 0.62H). ESI-HRMS: m/z calcd. for C14H8D3N2Cl [M+H]+: 246.0877, found 

246.0873. 
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79

N
N

D

D

D

CF3

D: 74%

 

1-(methyl-d3)-3-(4-(trifluoromethyl)phenyl)imidazo[1,5-a]pyridine: Following the General 

procedure C5, a mixture of 2-acetylpyridine (0.1 mmol), 4-trifluoromethylbenzaldehyde (2.0 equiv.) and 

chitosan (3.0 equiv.) in CF3COOD (1.0 mL) was stirred at 140 ºC under Ar atmosphere for 36 h. Chitosan 

was dried at 100 ºC overnight. Work-up gave product 79 (18.1 mg, 0.065 mmol, isolated yield 65%) as a 

yellow solid. D incorporation by 1H NMR: 74%. m.p. 69−71 °C. 1H NMR (300 MHz, CDCl3) δ 8.12 (d, 

J = 7.2 Hz, 1H), 7.84 (d, J = 8.1 Hz, 2H), 7.66 (d, J = 8.1 Hz, 2H), 7.35 (d, J = 9.3 Hz, 1H), 6.63 – 6.58 

(m, 1H), 6.51 – 6.46 (m, 1H), 2.47 (s, 0.77H). ESI-HRMS: m/z calcd. for C15H8D3F3N2 [M+H]+: 

280.1141, found 280.1137. 

 

80

N
N

D

D
D

CN

D: 71%

 

4-(1-methylimidazo[1,5-a]pyridin-3-yl)benzonitrile: Following the General procedure C5, a mixture 

of 2-acetylpyridine (0.1 mmol), 4-formylbenzonitrile (2.0 equiv.) and chitosan (3.0 equiv.) in CF3COOD 

(1.0 mL) was stirred at 140 ºC under Ar atmosphere for 36 h. Chitosan was dried at 100 ºC overnight. 

Work-up gave product 80 (7.8 mg, 0.033 mmol, isolated yield 33%) as a yellow solid. D incorporation by 
1H NMR: 71%. m.p. 120−122 °C. 1H NMR (300 MHz, CDCl3) δ 8.16 (d, J = 7.5 Hz, 1H), 7.85 (q, J = 

8.4 Hz, 4H), 7.36 (d, J = 9.9 Hz, 1H), 6.64 – 6.59 (m, 1H), 6.52 – 6.48 (m, 1H), 2.48 (s, 0.86H). ESI-

HRMS: m/z calcd. for C15H8D3N3 [M+H]+: 237.1220, found 237.1219. 
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83

N
N

N

D

D
D

D: 75%

 

1-(methyl-d3)-3-(pyridin-3-yl)imidazo[1,5-a]pyridine: Following the General procedure C5, a 

mixture of 2-acetylpyridine (0.1 mmol), nicotinaldehyde (2.0 equiv.) and chitosan (3.0 equiv.) in 

CF3COOD (1.0 mL) was stirred at 140 ºC under Ar atmosphere for 36 h. Chitosan was dried at 100 ºC 

overnight. Work-up gave product 83 (12.72 mg, 0.060 mmol, isolated yield 60%) as a yellow solid. D 

incorporation by 1H NMR: 75%. m.p. 45−47 °C. 1H NMR (400 MHz, CDCl3) δ 8.97 (s, 1H), 8.56 – 8.54 

(m, 1H), 8.08 (d, J = 7.2 Hz, 1H), 8.03 (d, J = 8.0 Hz, 1H), 7.35 (dd, J = 7.6, 1.2 Hz, 2H), 6.63 – 6.59 (m, 

1H), 6.51 – 6.47 (m, 1H), 2.47 (s, 0.75H). ESI-HRMS: m/z calcd. for C13H8D3N3 [M+H]+: 213.1220, 

found 213.1213. 

 

88

N
N

D

D
D

D: 70%

 

3-cyclohexyl-1-(methyl-d3)imidazo[1,5-a]pyridine: Following the General procedure C5, a mixture of 

2-acetylpyridine (0.1 mmol), cyclohexanecarbaldehyde (2.0 equiv.) and chitosan (3.0 equiv.) in 

CF3COOD (1.0 mL) was stirred at 140 ºC under Ar atmosphere for 36 h. Chitosan was dried at 100 ºC 

overnight. Work-up gave product 88 (13.9 mg, 0.064 mmol, isolated yield 64%) as a white solid. D 

incorporation by 1H NMR: 70%. m.p. 74−76 °C. 1H NMR (300 MHz, CDCl3) δ 7.58 (d, J = 7.2 Hz, 1H), 

7.21 (d, J = 8.4 Hz, 1H), 6.45 – 6.32 (m, 2H), 2.39 (s, 0.90H), 1.94 – 1.64 (m, 8H), 1.37 – 1.31 (m, 3H). 

ESI-HRMS: m/z calcd. for C14H15D3N2 [M+H]+: 218.1737, found 218.1736. 
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5.3.4 Anomeric stereoauxiliary-organocatalyzed one-pot site-selective C2-aldehylation for 

trisubstituted indolizine-2-carbaldehydes  

N

Me
O

H

91  

Following the General procedure D1, a mixture of α,β-unsaturated aldehydes (0.2 mmol), heteroaryl 

ketones (2.5 equiv.), catalyst 3b (0.04 mmol), AcOH (2.0 equiv.) and LiSO3CF3 (3.0 equiv.) in the 

CF3CH2OH (0.9 mL) were stirred at 80 ºC under Ar atmosphere for 18 h. Work-up gave product 1-

methyl-3-phenylindolizine-2-carbaldehyde (91, 44.7 mg, 0.19 mmol, isolated yield 95%) as a yellow 

liquid. FT-IR: ν (cm-1): 3052, 2922, 2749, 1661, 1517, 1477, 1430, 1383, 1358, 1319, 1247, 1218, 1142, 

1115, 1076, 997, 940, 872, 830, 756, 736, 715, 699, 682, 666, 620, 534, 482, 431. 1H NMR (400 MHz, 

CDCl3) δ 9.91 (s, 1H), 7.76 (d, J = 7.2 Hz, 1H), 7.47 – 7.45 (m, 2H), 7.42 – 7.40 (m, 3H), 7.32 (d, J = 9.2 

Hz, 1H), 6.61 – 6.56 (m, 1H), 6.40 – 6.36 (m, 1H), 2.53 (s, 3H). 13C NMR (100 MHz, CDCl3) δ 189.7, 

131.3, 131.0, 130.6, 129.0, 128.9, 128.8, 123.4, 122.3, 119.1, 117.6, 112.7, 109.9, 9.7. ESI-HRMS: m/z 

calcd. for C16H13NO [M+H]+: 236.1075, found 236.1071. 

 

N

Me
O

H

OMe

92  

Following the General procedure D1, a mixture of α,β-unsaturated aldehyde (0.2 mmol), heteroaryl 

ketone (2.5 equiv.), catalyst 3b (0.04 mmol), AcOH (2.0 equiv.) and LiSO3CF3 (3.0 equiv.) in the 

CF3CH2OH (0.9 mL) were stirred at 80 ºC under Ar atmosphere for 18 h. Work-up gave product 3-(4-

methoxyphenyl)-1-methylindolizine-2-carbaldehyde (92, 33.4 mg, 0.13 mmol, isolated yield 63%) as a 

yellow liquid. FT-IR: ν (cm-1): 2922, 2840, 2741, 1661, 1607, 1574, 1527, 1482, 1432, 1381, 1356, 1319, 

1286, 1245, 1220, 1175, 1150, 1111, 1026, 878, 824, 785, 736, 684, 641, 626, 583, 515, 433, 404. 1H 

NMR (400 MHz, CDCl3) δ 9.89 (s, 1H), 7.71 (d, J = 7.2 Hz, 1H), 7.34 – 7.28 (m, 3H), 6.98 (d, J = 8.8 Hz, 

2H), 6.57 – 6.53 (m, 1H), 6.35 (t, J = 6.6 Hz, 1H), 3.81 (s, 3H), 2.52 (s, 3H). 13C NMR (100 MHz, CDCl3) 
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δ 189.7, 160.1, 132.2, 131.4, 130.3, 123.3, 122.3, 120.8, 119.0, 117.4, 114.5, 112.5, 109.6, 55.4, 9.6. ESI-

HRMS: m/z calcd. for C17H15NO2 [M+H]+: 266.1181, found 266.1177. 

 

N

Me
O

H

MeO

93  

Following the General procedure D1, a mixture of α,β-unsaturated aldehyde (0.2 mmol), heteroaryl 

ketone (2.5 equiv.), catalyst 3b (0.04 mmol), AcOH (2.0 equiv.) and LiSO3CF3 (3.0 equiv.) in the 

CF3CH2OH (0.9 mL) were stirred at 80 ºC under Ar atmosphere for 18 h. Work-up gave product 3-(2-

methoxyphenyl)-1-methylindolizine-2-carbaldehyde (93, 50.4 mg, 0.19 mmol, isolated yield 95%) as a 

yellow liquid. FT-IR: ν (cm-1): 2920, 2833, 2745, 1663, 1601, 1576, 1515, 1463, 1432, 1383, 1358, 1321, 

1288, 1278, 1245, 1216, 1181, 1152, 1146, 1127, 1100, 1047, 1022, 940, 880, 851, 835, 783, 736, 713, 

684, 659, 573, 552, 528, 462, 429. 1H NMR (400 MHz, CDCl3) δ 9.85 (s, 1H), 7.43 – 7.38 (m, 1H), 7.36 

(d, J = 7.2 Hz, 1H), 7.31 (d, J = 9.2 Hz, 1H), 7.25 (dd, J = 7.2, 1.6 Hz, 1H), 7.03 – 6.98 (m, 2H), 6.57 (dd, 

J = 9.1, 6.3 Hz, 1H), 6.36 (t, J = 6.8 Hz, 1H), 3.70 (s, 3H), 2.54 (s, 3H). 13C NMR (100 MHz, CDCl3) δ 

189.7, 157.9, 133.7, 130.8, 128.2, 123.6, 123.4, 120.7, 118.8, 117.4, 117.2, 112.0, 111.2, 109.5, 55.5, 9.7. 

ESI-HRMS: m/z calcd. for C17H15NO2 [M+H]+: 266.1181, found 266.1176. 

 

N

Me
O

H

OH
MeO

94  

Following the General procedure D1, a mixture of α,β-unsaturated aldehyde (0.2 mmol), heteroaryl 

ketone (2.5 equiv.), catalyst 3b (0.04 mmol), AcOH (2.0 equiv.) and LiSO3CF3 (3.0 equiv.) in the 

CF3CH2OH (0.9 mL) were stirred at 80 ºC under Ar atmosphere for 18 h. Work-up gave product 3-(4-

hydroxy-3-methoxyphenyl)-1-methylindolizine-2-carbaldehyde (94, 36.5 mg, 0.13 mmol, isolated yield 

63%) as a yellow solid. mp: 168−169 ˚C. FT-IR: ν (cm-1): 3171, 2924, 2852, 1638, 1583, 1523, 1488, 

1471, 1432, 1416, 1377, 1344, 1319, 1271, 1236, 1208, 1177, 1142, 1125, 1057, 1030, 964, 913, 888, 876, 

812, 769, 736, 725, 684, 659, 647, 571, 558, 528, 517, 433, 410. 1H NMR (400 MHz, CDCl3)  δ 9.92 (s, 
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1H), 7.74 (d, J = 6.8 Hz, 1H), 7.30 (d, J = 8.8 Hz, 1H), 7.00 (d, J = 8.0 Hz, 1H), 6.93 (d, J = 8.0 Hz, 1H), 

6.86 (s, 1H), 6.58 – 6.54 (m, 1H), 6.37 (t, J = 6.8 Hz, 1H), 5.83 (s, 1H), 3.84 (s, 3H), 2.52 (s, 3H). 13C 

NMR (100 MHz, CDCl3) δ 189.8, 146.9, 146.5, 131.6, 130.3, 124.4, 123.3, 122.5, 120.5, 119.1, 117.4, 

115.0, 113.4, 112.6, 109.6, 56.1, 9.6. ESI-HRMS: m/z calcd. for C17H15NO3 [M+H]+: 282.1130, found 

282.1124. 

 

N

Me
O

H

N
Me

Me

95  

Following the General procedure D2, a mixture of α,β-unsaturated aldehyde (0.2 mmol), heteroaryl 

ketone (2.5 equiv.), catalyst 3b (0.04 mmol), and LiSO3CF3 (3.0 equiv.) in the AcOH : CF3CH2OH (0.4 : 

0.5 mL) were stirred at 80 ºC under Ar atmosphere for 36 h. Work-up gave product 3-(4-

(dimethylamino)phenyl)-1-methylindolizine-2-carbaldehyde (95, 25.0 mg, 0.09 mmol, isolated yield 46%) 

as a yellow liquid. FT-IR: ν (cm-1): 2924, 2854, 2800, 1661, 1605, 1531, 1488, 1432, 1352, 1222, 1195, 

1164, 1113, 1057, 944, 876, 814, 736, 641, 552, 515, 435.  1H NMR (400 MHz, CDCl3) δ 9.91 (s, 1H), 

7.78 (d, J = 7.6 Hz, 1H), 7.30 – 7.25 (m, 4H), 6.77 (d, J = 8.6 Hz, 2H), 6.53 (dd, J = 9.0, 6.4 Hz, 1H), 

6.33 (t, J = 6.6 Hz, 1H), 2.98 (s, 6H), 2.52 (s, 3H). 13C NMR (100 MHz, CDCl3) δ 190.2, 150.6, 132.8, 

131.8, 130.1, 123.1, 122.6, 119.0, 117.2, 115.7, 112.2, 112.2, 109.3, 40.3, 9.7. ESI-HRMS: m/z calcd. for 

C18H18N2O [M+H]+: 279.1497, found 279.1502. 

 

N

Me
O

H

F

96  

Following the General procedure D1, a mixture of α,β-unsaturated aldehyde (0.2 mmol), heteroaryl 

ketone (2.5 equiv.), catalyst 3b (0.04 mmol), AcOH (2.0 equiv.) and LiSO3CF3 (3.0 equiv.) in the 

CF3CH2OH (0.9 mL) were stirred at 80 ºC under Ar atmosphere for 18 h. Work-up gave product 3-(4-

fluorophenyl)-1-methylindolizine-2-carbaldehyde (96, 40.5 mg, 0.16 mmol, isolated yield 81%) as a 
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yellow liquid. FT-IR: ν (cm-1): 3072, 2924, 2739, 1665, 1601, 1525, 1480, 1434, 1383, 1356, 1319, 1220, 

1158, 1113, 1094, 1053, 938, 878, 828, 802, 736, 717, 684, 641, 571, 550, 509, 441, 420. 1H NMR (400 

MHz, CDCl3)  δ 9.88 (s, 1H), 7.67 (d, J = 7.2 Hz, 1H), 7.39 – 7.36 (m, 2H), 7.31 (d, J = 9.2 Hz, 1H), 7.15 

(t, J = 8.6 Hz, 2H), 6.57 (dd, J = 9.2, 6.4 Hz, 1H), 6.40 – 6.37 (m, 1H), 2.51 (s, 3H). 13C NMR (100 MHz, 

CDCl3) δ 189.2, 163.0 (d, 1JC-F = 248.2 Hz), 132.8 (d, 3JC-F = 8.3 Hz), 130.6, 129.8, 124.9 (d, 4JC-F = 3.5 

Hz), 123.4, 122.1, 119.1, 117.6, 116.2 (d, 2JC-F = 21.6 Hz), 112.9, 110.0, 9.5. 19F NMR (375 MHz, CDCl3) 

δ -111.5. ESI-HRMS: m/z calcd. for C16H12NOF [M+H]+: 254.0981, found 254.0975. 

 

N

Me
O

H

Cl

97  

Following the General procedure D1, a mixture of α,β-unsaturated aldehyde (0.2 mmol), heteroaryl 

ketone (2.5 equiv.), catalyst 3b (0.04 mmol), AcOH (2.0 equiv.) and LiSO3CF3 (3.0 equiv.) in the 

CF3CH2OH (0.9 mL) were stirred at 80 ºC under Ar atmosphere for 18 h. Work-up gave product 3-(4-

chlorophenyl)-1-methylindolizine-2-carbaldehyde  (97, 40.4 mg, 0.15 mmol, isolated yield 75%) as a 

yellow solid. mp: 105−106 ˚C. FT-IR: ν (cm-1): 3056, 2916, 2846, 1655, 1510, 1475, 1430, 1405, 1385, 

1352, 1319, 1247, 1220, 1150, 1111, 1090, 1014, 938, 878, 820, 740, 729, 711, 680, 637, 622, 548, 536, 

501, 482, 435, 404. 1H NMR (400 MHz, CDCl3) δ 9.90 (s, 1H), 7.71 (d, J = 7.2 Hz, 1H), 7.44 (d, J = 8.4 

Hz, 2H), 7.35 – 7.31 (m, 3H), 6.61 – 6.57 (m, 1H), 6.40 (t, J = 6.8 Hz, 1H), 2.52 (s, 3H). 13C NMR (100 

MHz, CDCl3) δ 189.1, 135.1, 132.1, 130.8, 129.4, 127.3, 123.4, 122.0, 119.2, 117.7, 113.1, 110.3, 9.5. 

ESI-HRMS: m/z calcd. for C16H13ClNO [M+H]+: 270.0686, found 270.0685. 

 

N

Me
O

H

Br

98  

Following the General procedure D1, a mixture of α,β-unsaturated aldehyde (0.2 mmol), heteroaryl 

ketone (2.5 equiv.), catalyst 3b (0.04 mmol), AcOH (2.0 equiv.) and LiSO3CF3 (3.0 equiv.) in the 
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CF3CH2OH (0.9 mL) were stirred at 80 ºC under Ar atmosphere for 18 h. Work-up gave product 3-(4-

bromophenyl)-1-methylindolizine-2-carbaldehyde (98, 53.2 mg, 0.17 mmol, isolated yield 87%) as a 

yellow liquid. FT-IR: ν (cm-1): 2916, 2747, 1663, 1587, 1508, 1471, 1432, 1399, 1381, 1354, 1321, 1249, 

1220, 1148, 1115, 1069, 1010, 938, 878, 814, 736, 680, 666, 622, 560, 534, 492, 433, 402. 1H NMR (400 

MHz, CDCl3)  δ 9.89 (s, 1H), 7.71 (d, J = 7.6 Hz, 1H), 7.58 (d, J = 8.4 Hz, 2H), 7.31 (d, J = 9.2 Hz, 1H), 

7.26 (d, J = 8.4 Hz, 2H), 6.58 (dd, J = 9.2, 6.6 Hz, 1H), 6.41 – 6.37 (m, 1H), 2.50 (s, 3H). 13C NMR (100 

MHz, CDCl3) δ 189.0, 132.3, 132.3, 130.8, 129.3, 127.8, 123.3, 123.2, 122.0, 119.1, 117.7, 113.1, 110.3, 

9.5. ESI-HRMS: m/z calcd. for C16H12NOBr [M+H]+: 314.0181, found 314.0164. 

 

N

Me
O

H

Br

99  

Following the General procedure D1, a mixture of α,β-unsaturated aldehyde (0.2 mmol), heteroaryl 

ketone (2.5 equiv.), catalyst 3b (0.04 mmol), AcOH (2.0 equiv.) and LiSO3CF3 (3.0 equiv.) in the 

CF3CH2OH (0.9 mL) were stirred at 80 ºC under Ar atmosphere for 18 h. Work-up gave product 3-(2-

bromophenyl)-1-methylindolizine-2-carbaldehyde (99, 43.8 mg, 0.14 mmol, isolated yield 71%) as a 

yellow liquid. FT-IR: ν (cm-1): 2918, 2850, 2807, 2739, 1667, 1510, 1432, 1385, 1358, 1321, 1249, 1218, 

1154, 1144, 1125, 1115, 1045, 1024, 954, 882, 861, 833, 754, 736, 711, 688, 645, 569, 550, 536, 497, 447, 

420. 1H NMR (400 MHz, CDCl3) δ 9.81 (s, 1H), 7.69 – 7.67 (m, 1H), 7.38 – 7.27 (m, 5H), 6.61 (dd, J = 

8.8, 6.4 Hz, 1H), 6.44 – 6.40 (m, 1H), 2.54 (s, 3H). 13C NMR (100 MHz, CDCl3) δ 188.8, 134.2, 133.3, 

131.0, 130.7, 130.3, 129.2, 127.6, 125.9, 123.6, 122.8, 119.0, 117.6, 112.7, 109.6, 9.6. ESI-HRMS: m/z 

calcd. for C16H12NOBr [M+H]+: 314.0181, found 314.0164. 

 

N

Me
O

H

O2N

100  

Following the General procedure D1, a mixture of α,β-unsaturated aldehyde (0.2 mmol), heteroaryl 

ketone (2.5 equiv.), catalyst 3b (0.04 mmol), AcOH (2.0 equiv.) and LiSO3CF3 (3.0 equiv.) in the 

CF3CH2OH (0.9 mL) were stirred at 80 ºC under Ar atmosphere for 18 h. Work-up gave product 1-
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methyl-3-(2-nitrophenyl)indolizine-2-carbaldehyde (13, 39.2 mg, 0.14 mmol, isolated yield 69%) as a red 

liquid. FT-IR: ν (cm-1): 2916, 2854, 1667, 1609, 1583, 1523, 1467, 1432, 1385, 1339, 1300, 1249, 1220, 

1144, 995, 950, 936, 853, 830, 787, 738, 717, 701, 666, 647, 567, 536, 482, 422. 1H NMR (400 MHz, 

CDCl3) δ 9.87 (s, 1H), 8.15 (dd, J = 8.0, 1.2 Hz, 1H), 7.68 (td, J = 7.2, 1.6 Hz, 1H), 7.63 – 7.59 (m, 1H), 

7.44 (dd, J = 7.6, 1.2 Hz, 1H), 7.36 (d, J = 9.2 Hz, 1H), 7.28 (d, J = 7.2 Hz, 1H), 6.63 (dd, J = 9.2, 6.4 Hz, 

1H), 6.44 – 6.41 (m, 1H), 2.53 (s, 3H). 13C NMR (100 MHz, CDCl3) δ 187.7, 149.7, 134.5, 133.4, 131.3, 

130.5, 125.2, 124.5, 123.5, 123.4, 122.2, 119.2, 117.7, 113.6, 111.0, 9.1. ESI-HRMS: m/z calcd. for 

C16H12N2O3 [M+H]+: 281.0926, found 281.0921. 

 

N

Me

H

O

O

101  

Following the General procedure D3, a mixture of α,β-unsaturated aldehyde (0.2 mmol), heteroaryl 

ketone (2.5 equiv.), catalyst 3b (0.04 mmol), AcOH (4.0 equiv.) and LiSO3CF3 (3.0 equiv.) in the 

CF3CH2OH (0.9 mL) were stirred at room temperature under Ar atmosphere for 42 h. Work-up gave 

product 3-(furan-2-yl)-1-methylindolizine-2-carbaldehyde  (101, 13.5 mg, 0.06 mmol, isolated yield 30%) 

as a yellow liquid. FT-IR: ν (cm-1): 3118, 2920, 2850, 1663, 1510, 1463, 1434, 1381, 1352, 1319, 1249, 

1212, 1162, 1144, 1117, 1076, 1016, 958, 888, 874, 808, 7734, 682, 659, 620, 593, 528, 427. 1H NMR 

(400 MHz, CDCl3) δ 10.17 (s, 1H), 8.13 (d, J = 7.2 Hz, 1H), 7.58 (s, 1H), 7.35 (d, J = 9.2 Hz, 1H), 6.68 – 

6.64 (m, 1H), 6.61 (d, J = 3.2 Hz, 1H), 6.55 – 6.50 (m, 2H), 2.52 (s, 3H). 13C NMR (100 MHz, CDCl3) δ 

189.3, 143.6, 143.4, 131.5, 124.0, 124.0, 120.2, 119.0, 118.2, 113.3, 112.2, 111.6, 110.9, 9.6. ESI-HRMS: 

m/z calcd. for C14H11NO2 [M+H]+: 226.0868, found 226.0862. 

 

N

Me

H

O

Me

102  
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Following the General procedure D1, a mixture of α,β-unsaturated aldehyde (0.2 mmol), heteroaryl 

ketone (2.5 equiv.), catalyst 3b (0.04 mmol), AcOH (2.0 equiv.) and LiSO3CF3 (3.0 equiv.) in the 

CF3CH2OH (0.9 mL) were stirred at 80 ºC under Ar atmosphere for 18 h. Work-up gave product 1-

methyl-3-pentylindolizine-2-carbaldehyde (102, 34.4 mg, 0.15 mmol, isolated yield 76%) as a yellow 

liquid. FT-IR: ν (cm-1): 2955, 2924, 2856, 2734, 1663, 1504, 1447, 1434, 1393, 1321, 1249, 1199, 1142, 

1111, 1057, 905, 853, 732, 643, 523, 427. 1H NMR (400 MHz, CDCl3) δ 10.22 (s, 1H), 7.57 (d, J = 7.2 

Hz, 1H), 7.23 (d, J = 9.2 Hz, 1H), 6.48 (dd, J = 8.8, 6.4 Hz, 1H), 6.44 – 6.40 (m, 1H), 3.08 – 3.05 (m, 2H), 

2.44 (s, 3H), 1.55 (p, J = 7.4 Hz, 2H), 1.29 – 1.25 (m, 4H), 0.80 (s, 3H). 13C NMR (100 MHz, CDCl3) δ 

188.0, 130.3, 129.7, 122.0, 121.6, 119.1, 115.9, 112.6, 109.8, 31.5, 27.8, 23.6, 22.4, 13.9, 8.9. ESI-

HRMS: m/z calcd. for C15H19NO [M+H]+: 230.1545, found 230.1542. 

 

 

N

O

H

N

103  

Following the General procedure D1, a mixture of α,β-unsaturated aldehyde (0.2 mmol), heteroaryl 

ketone (2.5 equiv.), catalyst 3b (0.04 mmol), AcOH (2.0 equiv.) and LiSO3CF3 (3.0 equiv.) in the 

CF3CH2OH (0.9 mL) were stirred at 80 ºC under Ar atmosphere for 18 h. Work-up gave product 3-

phenyl-1-(pyridin-2-yl)indolizine-2-carbaldehyde (103, 56.6 mg, 0.19 mmol, isolated yield 95%) as a 

yellow liquid. FT-IR: ν (cm-1): 3060, 2846, 2761, 1673, 1585, 1517, 1473, 1445, 1420, 1381, 1354, 1323, 

1278, 1267, 1236, 1191, 1146, 1123, 1096, 1076, 1055, 1039, 1024, 987, 948, 923, 905, 824, 779, 740, 

719, 694, 664, 645, 624, 610, 585, 565, 507, 486, 433, 406. 1H NMR (400 MHz, CDCl3) δ 10.01 (s, 1H), 

8.61 (d, J = 4.8 Hz, 1H), 7.86 (d, J = 9.2 Hz, 1H), 7.77 (d, J = 7.2 Hz, 1H), 7.65 (d, J = 3.2 Hz, 2H), 7.47 

– 7.40 (m, 5H), 7.09 (q, J = 4.4 Hz, 1H), 6.74 (dd, J = 9.2, 6.5 Hz, 1H), 6.47 (t, J = 6.8 Hz, 1H). 13C 

NMR (100 MHz, CDCl3) δ 188.6, 153.2, 149.1, 135.7, 132.1, 131.6, 131.1, 129.2, 128.9, 128.7, 125.5, 

122.7, 122.2, 120.9, 120.4, 114.0, 113.6. ESI-HRMS: m/z calcd. for C20H14N2O [M+H]+: 299.1184, 

found 299.1180. 
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N

O

H

N

104

Br

 

Following the General procedure D1, a mixture of α,β-unsaturated aldehyde (0.2 mmol), heteroaryl 

ketone (2.5 equiv.), catalyst 3b (0.04 mmol), AcOH (2.0 equiv.) and LiSO3CF3 (3.0 equiv.) in the 

CF3CH2OH (0.9 mL) were stirred at 80 ºC under Ar atmosphere for 18 h. Work-up gave product 3-(4-

bromophenyl)-1-(pyridin-2-yl)indolizine-2-carbaldehyde  (104, 63.9 mg, 0.17 mmol, isolated yield 83%) 

as a yellow solid. mp: 167−168 ˚C. FT-IR: ν (cm-1): 3052, 2854, 2770, 1671, 1630, 1585, 1562, 1519, 

1506, 1469, 1434, 1397, 1333, 1263, 1232, 1193, 1148, 1107, 1094, 1074, 1051, 1037, 1008, 989, 946, 

911, 841, 814, 775, 740, 725, 713, 686, 618, 563, 503, 495, 441, 404. 1H-NMR (400 MHz, CDCl3) δ 

10.07 (s, 1H), 8.66 (d, J = 3.6 Hz, 1H), 7.86 (d, J = 9.2 Hz, 1H), 7.80 – 7.72 (m, 2H), 7.65 – 7.63 (m, 3H), 

7.36 (d, J = 8.1 Hz, 2H), 7.19 (s, 1H), 6.83 (t, J = 7.6 Hz, 1H), 6.57 (t, J = 6.5 Hz, 1H). 13C NMR (100 

MHz, CDCl3) δ 188.5, 152.8, 149.3, 136.1, 132.7, 132.3, 132.2, 129.1, 127.9, 125.4, 123.7, 122.6, 122.5, 

121.1, 121.1, 120.4, 114.1. ESI-HRMS: m/z calcd. for C20H13BrN2O [M+H]+: 377.0290, found 377.0280. 

 

N

O

H

N

105  

Following the General procedure D1, a mixture of α,β-unsaturated aldehyde (0.2 mmol), heteroaryl 

ketone (2.5 equiv.), catalyst 3b (0.04 mmol), AcOH (2.0 equiv.) and LiSO3CF3 (3.0 equiv.) in the 

CF3CH2OH (0.9 mL) were stirred at 80 ºC under Ar atmosphere for 18 h. Work-up gave product 3-

phenyl-1-(pyridin-4-yl)indolizine-2-carbaldehyde (105, 50.7 mg, 0.17 mmol, isolated yield 85%) as a 

yellow solid. mp: 182−183 ˚C. FT-IR: ν (cm-1): 3050, 2106, 1657, 1628, 1593, 1554, 1533, 1490, 1473, 

1436, 1352, 1331, 1300, 1245, 1142, 1119, 1076, 1057, 1006, 950, 863, 824, 769, 756, 723, 711, 696, 686, 

668, 635, 622, 612, 546, 499, 443, 414. 1H NMR (400 MHz, CDCl3) δ 9.91 (s, 1H), 8.58 (d, J = 6.0 Hz, 

2H), 7.84 (d, J = 7.2 Hz, 1H), 7.52 – 7.45 (m, 6H), 7.40 (d, J = 6.0 Hz, 2H), 6.76 (dd, J = 9.2, 6.4 Hz, 1H), 
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6.53 (t, J = 6.8 Hz, 1H). 13C NMR (100 MHz, CDCl3) δ 188.0, 149.5, 141.6, 132.7, 131.3, 131.1, 129.5, 

129.1, 128.1, 125.2, 123.0, 121.9, 121.1, 118.9, 113.7, 111.9. ESI-HRMS: m/z calcd. for C20H14N2O 

[M+H]+: 299.1184, found 299.1179. 

 

N

O

H

106  

Following the General procedure D1, a mixture of α,β-unsaturated aldehyde (0.2 mmol), heteroaryl 

ketone (2.5 equiv.), catalyst 3b (0.04 mmol), AcOH (2.0 equiv.) and LiSO3CF3 (3.0 equiv.) in the 

CF3CH2OH (0.9 mL) were stirred at 80 ºC under Ar atmosphere for 18 h. Work-up gave product 1,3-

diphenylindolizine-2-carbaldehyde (106, 50.5 mg, 0.17 mmol, isolated yield 84%) as a yellow solid. mp: 

164−165 ˚C. FT-IR: ν (cm-1): 3029, 1675, 1591, 1525, 1475, 1442, 1428, 1414, 1383, 1354, 1344, 1331, 

1315, 1261, 1236, 1218, 1187, 1146, 1076, 1039, 1022, 989, 948, 925, 905, 843, 822, 804, 750, 740, 729, 

711, 692, 674, 633, 604, 585, 569, 511, 488, 435, 414. 1H NMR (400 MHz, CDCl3) δ 9.95 (s, 1H), 7.79 

(d, J = 7.2 Hz, 1H), 7.46 – 7.43 (m, 7H), 7.40 – 7.35 (m, 3H), 7.26 (t, J = 7.2 Hz, 1H), 6.62 (dd, J = 9.2, 

6.4 Hz, 1H), 6.43 (t, J = 6.8 Hz, 1H). 13C NMR (100 MHz, CDCl3) δ 188.4, 133.1, 131.0, 130.7, 130.6, 

130.2, 129.1, 129.0, 128.9, 128.2, 126.8, 122.6, 122.0, 119.6, 119.4, 116.2, 113.5. ESI-HRMS: m/z calcd. 

for C21H15NO [M+H]+: 298.1232, found 298.1227. 

 

N

O

H

Me

107  

Following the General procedure D4, a mixture of α,β-unsaturated aldehyde (0.2 mmol), heteroaryl 

ketone (2.5 equiv.), catalyst 3b (0.04 mmol), AcOH (2.0 equiv.) and LiSO3CF3 (3.0 equiv.) in the 

CF3CH2OH (0.9 mL) were stirred at 80 ºC under Ar atmosphere for 36 h. Work-up gave product 3-

phenyl-1-(o-tolyl)indolizine-2-carbaldehyde (107, 7.5 mg, 0.02 mmol, isolated yield 12%) as a yellow 
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solid. mp: 68−69 ˚C. FT-IR: ν (cm-1): 3054, 2918, 2850, 1673, 1624, 1599, 1576, 1523, 1447, 1428, 

1379, 1356, 1321, 1257, 1166, 1121, 1072, 1018, 969, 921, 903, 797, 750, 732, 692, 618, 571, 540, 503, 

484, 445, 404. 1H NMR (400 MHz, CDCl3) δ 9.95 (s, 1H), 7.79 (d, J = 7.2 Hz, 1H), 7.46 – 7.43 (m, 7H), 

7.40 – 7.35 (m, 3H), 7.26 (t, J = 7.2 Hz, 1H), 6.62 (dd, J = 9.2, 6.4 Hz, 1H), 6.43 (t, J = 6.8 Hz, 1H). 13C 

NMR (100 MHz, CDCl3) δ 188.4, 138.1, 131.4, 131.3, 131.0, 130.9, 130.7, 130.0, 129.1, 129.1, 129.0, 

128.6, 128.5, 127.6, 125.4, 122.5, 119.9, 118.9, 113.3, 20.2. ESI-HRMS: m/z calcd. for C22H17NO 

[M+H]+: 312.1388, found 312.1384. 

 

N

O

H

Me

108  

Following the General procedure D1, a mixture of α,β-unsaturated aldehyde (0.2 mmol), heteroaryl 

ketone (2.5 equiv.), catalyst 3b (0.04 mmol), AcOH (2.0 equiv.) and LiSO3CF3 (3.0 equiv.) in the 

CF3CH2OH (0.9 mL) were stirred at 80 ºC under Ar atmosphere for 18 h. Work-up gave product 3-

phenyl-1-(p-tolyl)indolizine-2-carbaldehyde (108, 52.9 mg, 0.17 mmol, isolated yield 87%) as a yellow 

liquid. FT-IR: ν (cm-1): 3019, 2918, 2848, 2747, 1673, 1626, 1601, 1523, 1504, 1475, 1447, 1428, 1381, 

1356, 1323, 1259, 1232, 1183, 1121, 1074, 1041, 1016, 971, 950, 923, 903, 812, 746, 729, 696, 565, 507, 

441. 1H NMR (400 MHz, CDCl3) δ 9.93 (s, 1H), 7.76 (d, J = 7.2 Hz, 2H), 7.43-7.42 (m, 4H), 7.38 (d, J = 

2.4 Hz, 1H), 7.34 – 7.30 (m, 3H), 7.17 (d, J = 8.0 Hz, 2H), 6.58 (ddd, J = 9.2, 6.4, 1.2 Hz, 1H), 6.42-6.38 

(m, 1H). 13C NMR (100 MHz, CDCl3) δ 188.5, 136.4, 131.2, 130.9, 130.4, 130.0, 129.0, 129.0, 129.0, 

128.9, 128.4, 122.5, 122.0, 119.7, 119.2, 116.2, 113.4, 21.2. ESI-HRMS: m/z calcd. for C22H17NO 

[M+H]+: 312.1388, found 312.1384. 

 

N

O

H

OMe

109  
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Following the General procedure D1, a mixture of α,β-unsaturated aldehyde (0.2 mmol), heteroaryl 

ketone (2.5 equiv.), catalyst 3b (0.04 mmol), AcOH (2.0 equiv.) and LiSO3CF3 (3.0 equiv.) in the 

CF3CH2OH (0.9 mL) were stirred at 80 ºC under Ar atmosphere for 18 h. Work-up gave product 1-(4-

methoxyphenyl)-3-phenylindolizine-2-carbaldehyde (109, 22.9 mg, 0.07 mmol, isolated yield 35%) as a 

yellow liquid. FT-IR: ν (cm-1): 3015, 2930, 2833, 2749, 1673, 1605, 1537, 1523, 1504, 1463, 1445, 1428, 

1381, 1358, 1286, 1243, 1175, 1109, 1076, 1030, 1020, 948, 923, 903, 833, 785, 748, 729, 696, 666, 565, 

528, 488, 439, 410.  1H NMR (400 MHz, CDCl3) δ 9.94 (s, 1H), 7.79 (d, J = 7.2 Hz, 1H), 7.47 – 7.44 (m, 

4H), 7.42 – 7.37 (m, 4H), 6.93 (d, J = 8.4 Hz, 2H), 6.63 – 6.59 (m, 1H), 6.45 – 6.41 (m, 1H), 3.79 (s, 3H). 
13C NMR (100 MHz, CDCl3) δ 188.6, 158.6, 131.7, 131.0, 130.6, 130.2, 129.0, 129.0, 128.9, 125.3, 

122.5, 122.0, 119.7, 119.1, 115.9, 113.7, 113.4, 55.3. ESI-HRMS: m/z calcd. for C22H17NO2 [M+H]+: 

328.1338, found 328.1331. 

 

N

O

H

CF3

110  

Following the General procedure D1, a mixture of α,β-unsaturated aldehyde (0.2 mmol), heteroaryl 

ketone (2.5 equiv.), catalyst 3b (0.04 mmol), AcOH (2.0 equiv.) and LiSO3CF3 (3.0 equiv.) in the 

CF3CH2OH (0.9 mL) were stirred at 80 ºC under Ar atmosphere for 18 h. Work-up gave product 3-

phenyl-1-(4-(trifluoromethyl)phenyl)indolizine-2-carbaldehyde (110, 69.4 mg, 0.19 mmol, isolated yield 

97%) as a yellow solid. mp: 127−128 ˚C. FT-IR: ν (cm-1): 3058, 2848, 2776, 1669, 1613, 1539, 1523, 

1445, 1426, 1409, 1383, 1354, 1317, 1261, 1230, 1160, 1107, 1065, 1016, 939, 903, 843, 833, 756, 736, 

703, 692, 674, 600, 558, 490, 455, 439. 1H NMR (400 MHz, CDCl3) δ 9.91 (s, 1H), 7.83 (d, J = 7.2 Hz, 

1H), 7.60 (q, J = 8.4 Hz, 4H), 7.52 – 7.45 (m, 5H), 7.40 (d, J = 9.2 Hz, 1H), 6.71 (dd, J = 9.2, 6.4 Hz, 1H), 

6.50 (t, J = 6.8 Hz, 1H). 13C NMR (100 MHz, CDCl3) δ 188.2, 148.6, 137.2 (q, 4JC-F = 1.2 Hz), 132.2, 

131.1, 130.7, 129.4, 129.1, 128.9 (q, 2JC-F = 32.2 Hz), 128.4, 126.7, 125.0 (q, 3JC-F = 3.7 Hz), 124.4 (q, 1JC-

F = 270.2 Hz), 122.9, 122.0, 120.5, 119.1, 113.6. 19F NMR (377 MHz, CDCl3) δ -62.3. ESI-HRMS: m/z 

calcd. for C22H14F3NO [M+H]+: 366.1106, found 366.1100. 
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111  

Following the General procedure D1, a mixture of α,β-unsaturated aldehyde (0.2 mmol), heteroaryl 

ketone (2.5 equiv.), catalyst 3b (0.04 mmol), AcOH (2.0 equiv.) and LiSO3CF3 (3.0 equiv.) in the 

CF3CH2OH (0.9 mL) were stirred at 80 ºC under Ar atmosphere for 18 h. Work-up gave product 1-(4-

bromophenyl)-3-phenylindolizine-2-carbaldehyde (111, 67.5 mg, 0.18 mmol, isolated yield 88%) as a 

yellow solid. mp: 150−151 ˚C. FT-IR: ν (cm-1): 3046, 2926, 2846, 2749, 1675, 1597, 1521, 1486, 1447, 

1426, 1397, 1379, 1356, 1321, 1259, 1230, 1177, 1123, 1102, 1069, 1039, 1022, 1006, 921, 901, 816, 797, 

748, 732, 701, 688, 647, 560, 501, 488, 435, 412. 1H NMR (400 MHz, CDCl3) δ 9.90 (s, 1H), 7.81 (d, J = 

7.2 Hz, 1H), 7.50 – 7.45 (m, 7H), 7.38 – 7.32 (m, 3H), 6.69 – 6.65 (m, 1H), 6.47 (t, J = 6.6 Hz, 1H). 13C 

NMR (100 MHz, CDCl3) δ 188.3, 132.1, 131.3, 131.0, 131.0, 130.6, 129.3, 129.1, 128.9, 128.6, 128.2, 

122.7, 121.9, 120.8, 120.0, 119.33, 113.5. ESI-HRMS: m/z calcd. for C21H14BrNO [M+H]+: 376.0337, 

found 376.0335. 

 

N
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H
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Br

112  

Following the General procedure D1, a mixture of α,β-unsaturated aldehyde (0.2 mmol), heteroaryl 

ketone (2.5 equiv.), catalyst 3b (0.04 mmol), AcOH (2.0 equiv.) and LiSO3CF3 (3.0 equiv.) in the 

CF3CH2OH (0.9 mL) were stirred at 80 ºC under Ar atmosphere for 18 h. Work-up gave product 1-(3,5-

dibromophenyl)-3-phenylindolizine-2-carbaldehyde (112, 86.1 mg, 0.19 mmol, isolated yield 95%) as a 

yellow solid. mp: 57−58 ˚C. FT-IR: ν (cm-1): 3064, 2844, 2747, 1673, 1578, 1543, 1523, 1475, 1453, 

1405, 1377, 1356, 1321, 1300, 1280, 1259, 1232, 1156, 1123, 1105, 1074, 1047, 1026, 989, 956, 925, 907, 

851, 750, 740, 694, 672, 641, 618, 577, 523, 488, 422. 1H NMR (400 MHz, CDCl3) δ 9.89 (s, 1H), 7.82 

(d, J = 7.2 Hz, 1H), 7.55 (d, J = 4.4 Hz, 3H), 7.50 – 7.46 (m, 5H), 7.38 (d, J = 9.2 Hz, 1H), 6.76 – 6.72 (m, 

1H), 6.51 (t, J = 6.8 Hz, 1H). 13C NMR (100 MHz, CDCl3) δ 187.9, 148.7, 137.8, 137.3, 137.1, 132.1, 
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131.1, 129.5, 129.1, 128.2, 124.8, 122.9, 122.4, 120.8, 118.9, 113.6, 112.0. ESI-HRMS: m/z calcd. for 

C21H13Br2NO [M+H]+: 353.9441, found 353.9442. 

 

N

O

H

113  

Following the General procedure D1, a mixture of α,β-unsaturated aldehyde (0.2 mmol), heteroaryl 

ketone (2.5 equiv.), catalyst 3b (0.04 mmol), AcOH (2.0 equiv.) and LiSO3CF3 (3.0 equiv.) in the 

CF3CH2OH (0.9 mL) were stirred at 80 ºC under Ar atmosphere for 18 h. work-up gave product 1-

cyclopentyl-3-phenylindolizine-2-carbaldehyde (113, 26.6 mg, 0.09 mmol, isolated yield 46%) as a 

yellow liquid. FT-IR: ν (cm-1): 2949, 2864, 1669, 1599, 1515, 1447, 1428, 1395, 1358, 1315, 1241, 1224, 

1164, 1074, 1026, 1001, 973, 927, 886, 744, 725, 696, 554, 495, 439, 406. 1H NMR (400 MHz, CDCl3) δ 

9.88 (s, 1H), 7.72 (d, J = 7.2 Hz, 1H), 7.48 – 7.39 (m, 6H), 6.57 – 6.53 (m, 1H), 6.38 – 6.34 (m, 1H), 3.84 

– 3.76 (m, 1H), 1.96 – 1.89 (m, 6H), 1.69 – 1.67 (m, 2H). 13C NMR (100 MHz, CDCl3) δ 189.4, 132.5, 

131.2, 129.8, 129.0, 129.0, 129.0, 122.9, 122.6, 120.0, 118.3, 117.5, 112.6, 36.2, 33.3, 26.4. ESI-HRMS: 

m/z calcd. for C20H19NO [M+H]+: 290.1547, found 290.1545. 

 

N

O

H

114

OEt

O

 

Following the General procedure D4, a mixture of α,β-unsaturated aldehyde (0.2 mmol), heteroaryl 

ketone (2.5 equiv.), catalyst 3b (0.04 mmol), AcOH (2.0 equiv.) and LiSO3CF3 (3.0 equiv.) in the 

CF3CH2OH (0.9 mL) were stirred at 80 ºC under Ar atmosphere for 36 h. work-up gave product ethyl 2-

(2-formyl-3-phenylindolizin-1-yl)acetate (114, 19.6 mg, 0.06 mmol, isolated yield 32%) as a yellow 

liquid. FT-IR: ν (cm-1): 3056, 2978, 2926, 2835, 2753, 1731, 1665, 1525, 1445, 1389, 1356, 1321, 1249, 

1226, 1212, 1175, 1154, 1105, 1076, 1028, 933, 868, 833, 752, 736, 701, 672, 530, 482, 435. 1H NMR 

(400 MHz, CDCl3) δ 9.88 (s, 1H), 7.81 (d, J = 7.6 Hz, 1H), 7.50 – 7.43 (m, 5H), 7.33 (d, J = 9.2 Hz, 1H), 
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6.67 (ddd, J = 9.2, 6.4, 0.8 Hz, 1H), 6.45 – 6.41 (m, 1H), 4.13 (q, J = 7.2 Hz, 2H), 4.06 (s, 2H), 1.23 (t, J 

= 7.2 Hz, 1H). 13C NMR (100 MHz, CDCl3) δ 189.3, 171.8, 132.0, 131.6, 131.1, 129.2, 129.1, 128.5, 

123.1, 122.7, 119.0, 118.7, 112.9, 105.7, 60.8, 30.1, 14.3. ESI-HRMS: m/z calcd. for C19H17NO3 [M+H]+: 

308.1287, found 308.1281. 

 

N

N

Me
O

H

115

Me

 

Following the General procedure D4, a mixture of α,β-unsaturated aldehyde (0.2 mmol), heteroaryl 

ketone (2.5 equiv.), catalyst 3b (0.04 mmol), AcOH (2.0 equiv.) and LiSO3CF3 (3.0 equiv.) in the 

CF3CH2OH (0.9 mL) were stirred at 80 ºC under Ar atmosphere for 36 h. work-up gave product 1,8-

dimethyl-6-phenylpyrrolo[1,2-a]pyrazine-7-carbaldehyde (115, 21.5 mg, 0.09 mmol, isolated yield 43%) 

as a yellow liquid. FT-IR: ν (cm-1): 3060, 2924, 2852, 2737, 1675, 1607, 1502, 1465, 1453, 1432, 1387, 

1372, 1352, 1284, 1208, 1152, 1069, 1024, 956, 826, 760, 705, 593, 556, 488. 1H NMR (400 MHz, 

CDCl3) δ 9.94 (s, 1H), 7.51 – 7.45 (m, 4H), 7.39 – 7.37 (m, 2H), 7.21 (d, J = 5.2 Hz, 1H), 2.84 (s, 3H), 

2.77 (s, 3H). 13C NMR (100 MHz, CDCl3) δ 189.2, 157.1, 132.7, 130.8, 129.6, 129.2, 127.8, 127.6, 125.7, 

123.5, 116.5, 113.7, 24.8, 11.9. ESI-HRMS: m/z calcd. for C16H14N2O [M+H]+: 251.1184, found 

251.1178. 

 

+

H

O

89p, 0.2 mmol 1a, 2.5 equiv.
116, 38%

3b
 
(20 mol%), LiSO3CF3

 
(3.0 equiv.)

 
CF3CH2OH : AcOH (0.45 : 0.45 mL) 

80 °C, 42 h, Ar
N

Me
Me

F

N

Me
O

H

N Me

Me

FN

O

Me

 

Preparation of 3-(3-(4-fluorophenyl)-1-isopropyl-1H-indol-2-yl)-1-methylindolizine-2-carbaldehyde 

(116): A mixture of (E)-3-(3-(4-fluorophenyl)-1-isopropyl-1H-indol-2-yl)acrylaldehyde (0.2 mmol), 

acetylpyridine (2.5 equiv.), catalyst 3b (0.04 mmol) and LiSO3CF3 (3.0 equiv.)  in the CF3CH2OH : 

AcOH (0.45 : 0.45 mL) were stirred at 80 ˚C under Ar atmosphere for 42 h. The reactions were conducted 
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in a sealed Schlenk tube and heated by an IKA magnetic heating agitator with heating block. The reaction 

temperature was directly read from temperature detector of IKA apparatus and was calibrated by 

thermometer. After cooling to room temperature, the reaction mixture was basified up to pH 7 via stad. 

Na2CO3 aqueous solution, then extracted by diether (3×3 mL) and dried over anhydrous Na2SO4. After 

filtration and concentrated in rotary evaporator, the crude product was purified with flash chromatography 

on silica gel (ethyl acetate : n-hexane) to give products. Work-up gave product 116 (31.2 mg, 0.08 mmol, 

isolated yield 38%) as a yellow solid. mp: 199−200 ˚C. FT-IR: ν (cm-1): 3039, 2926, 2854, 2743, 2108, 

1673, 1599, 1519, 1484, 1475, 1445, 1426, 1395, 1356, 1317, 1259, 1230, 1179, 1123, 1105, 1069, 1039, 

1020, 1006, 921, 901, 816, 797, 748, 732, 701, 688, 645, 560, 501, 488, 435, 408. 1H NMR (400 MHz, 

CDCl3) δ 9.85 (s, 1H), 7.74 (d, J = 8.0 Hz, 1H), 7.61 (d, J = 8.4 Hz, 1H), 7.40 – 7.35 (m, 2H), 7.27 (t, J = 

7.7 Hz, 1H), 7.16 (t, J = 7.6 Hz, 1H), 7.05 – 7.01 (m, 2H), 6.82 (t, J = 8.5 Hz, 2H), 6.65 – 6.62 (m, 1H), 

6.39 (t, J = 6.7 Hz, 1H), 4.08 (hept, J = 6.9 Hz, 1H), 2.53 (s, 3H), 1.48 (d, J = 7.2 Hz, 3H), 1.44 (d, J = 

6.8 Hz, 3H). 13C NMR (100 MHz, CDCl3) δ 188.6, 161.5 (d, 1JC-F = 243.9 Hz), 135.8, 131.7, 130.1 (d, 
4JC-F = 3.2 Hz), 129.9 (d, 3JC-F = 7.8 Hz), 127.7, 126.2, 123.6, 122.9, 122.7, 120.3, 120.2, 119.7, 119.2, 

118.1, 115.5 (d, 2JC-F = 21.2 Hz), 113.4, 112.4, 110.5, 48.8, 22.0, 21.5, 9.6. 19F NMR (377 MHz, CDCl3) δ 

-116.1. ESI-HRMS: m/z calcd. for C27H23FN2O [M+H]+: 411.1873, found 411.1854. 

 

N

O

+H

O

N

O

H

89d, 0.2 mmol 1b, 2.5 equiv.

117, 79%

3b
 
(20 mol%), LiSO3CF3

 
(3.0 equiv.)

AcOH (2.0 equiv.), CF3CH2OH (0.9 mL) 
80 °C, 18 h, ArHO

MeO

N

N

OH

OMe

 

Preparation of 3-(4-hydroxy-3-methoxyphenyl)-1-(pyridin-2-yl)indolizine-2-carbaldehyde (117): A 

mixture of (E)-3-(4-hydroxy-3-methoxyphenyl)acrylaldehyde (0.2 mmol), di(pyridin-2-yl)methanone (2.5 

equiv.), catalyst 3b (0.04 mmol), AcOH (2.0 equiv.) and LiSO3CF3 (3.0 equiv.)  in the CF3CH2OH (0.9 

mL) were stirred at 80 ˚C under Ar atmosphere for 18 h. The reactions were conducted in a sealed 

Schlenk tube and heated by an IKA magnetic heating agitator with heating block. The reaction 

temperature was directly read from temperature detector of IKA apparatus and was calibrated by 

thermometer. After cooling to room temperature, the reaction mixture was basified up to pH 7 via stad. 

Na2CO3 aqueous solution, then extracted by diether (3×3 mL) and dried over anhydrous Na2SO4. After 

filtration and concentrated in rotary evaporator, the crude product was purified with flash chromatography 
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on silica gel (ethyl acetate : n-hexane) to give products. Work-up gave product 117 (55.0 mg, 0.16 mmol, 

isolated yield 79 %) as a yellow liquid gel. FT-IR: ν (cm-1): 3017, 2955, 2930, 2848, 2755, 1671, 1587, 

1533, 1517, 1475, 1422, 1377, 1346, 1265, 1216, 1168, 1121, 1098, 1057, 1026, 960, 925, 876, 810, 785, 

742, 696, 664, 626, 598, 556, 437, 408. 1H NMR (400 MHz, CDCl3) δ 10.02 (s, 1H), 8.63 (d, J = 4.8 Hz, 

1H), 7.85 (d, J = 9.2 Hz, 1H), 7.80 (d, J = 7.2 Hz, 1H), 7.69 – 7.66 (m, 2H), 7.15 – 7.11 (m, 1H), 7.00 – 

6.93 (m, 3H), 6.76 (dd, J = 9.0, 6.7 Hz, 1H), 6.50 (t, J = 6.8 Hz, 1H), 3.83 (s, 3H). 13C NMR (100 MHz, 

CDCl3) δ 188.8, 153.2, 149.1, 147.0, 146.8, 135.9, 132.1, 132.0, 125.6, 124.4, 122.9, 122.2, 121.0, 120.8, 

120.4, 120.2, 115.0, 113.7, 113.7, 113.6, 56.1. ESI-HRMS: m/z calcd. for C21H16N2O3 [M+H]+: 345.1239, 

found 345.1234. 

 

N

O

+H

O

N

O

H

89e, 0.2 mmol 1b, 2.5 equiv.

118, 81%

3b
 
(20 mol%), LiSO3CF3

 
(3.0 equiv.)

AcOH : CF3CH2OH (0.4 : 0.5 mL) 
80 °C, 42 h, ArN

N

Me

Me

Me
Me

N

N

 

Preparation of 3-(4-(dimethylamino)phenyl)-1-(pyridin-2-yl)indolizine-2-carbaldehyde (118): A mixture 

of (E)-3-(4-(dimethylamino)phenyl)acrylaldehyde (0.2 mmol), di(pyridin-2-yl)methanone (2.5 equiv.), 

catalyst 3b (0.04 mmol), and LiSO3CF3 (3.0 equiv.) in the CF3CH2OH : AcOH (0.5 : 0.4 mL) were stirred 

at 80 ˚C under Ar atmosphere for 42 h. The reactions were conducted in a sealed Schlenk tube and heated 

by an IKA magnetic heating agitator with heating block. The reaction temperature was directly read from 

temperature detector of IKA apparatus and was calibrated by thermometer. After cooling to room 

temperature, the reaction mixture was basified up to pH 7 via stad. Na2CO3 aqueous solution, then 

extracted by diether (3×3 mL) and dried over anhydrous Na2SO4. After filtration and concentrated in 

rotary evaporator, the crude product was purified with flash chromatography on silica gel (ethyl acetate : 

n-hexane) to give products. Work-up gave product 118 (54.6 mg, 0.16 mmol, isolated yield 81%) as a 

yellow solid. mp: 166−167 ˚C. FT-IR: ν (cm-1): 3315, 2899, 2848, 2800, 2774, 2188, 1918, 1665, 1605, 

1587, 1535, 1521, 1473, 1440, 1418, 1381, 1354, 1327, 1263, 1228, 1203, 1166, 1117, 1096, 1063, 1053, 

1034, 1006, 985, 942, 905, 874, 833, 814, 806, 777, 736, 721, 692, 645, 618, 560, 530, 478, 443, 404. 1H 

NMR (300 MHz, CDCl3) δ 9.98 (s, 1H), 8.59 (d, J = 4.8 Hz, 1H), 7.87 – 7.81 (m, 2H), 7.69 – 7.60 (m, 

2H), 7.28 (d, J = 8.4 Hz, 2H), 7.09 – 7.04 (m, 1H), 6.76 – 6.67 (m, 3H), 6.43 (t, J = 6.8 Hz, 1H). 13C 
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NMR (75 MHz, CDCl3) δ 188.9, 153.5, 150.7, 148.9, 135.6, 133.7, 131.9, 125.5, 122.9, 121.8, 120.7, 

120.6, 120.5, 115.1, 113.2, 113.1, 112.0, 40.1. ESI-HRMS: m/z calcd. for C22H19N3O [M+H]+: 342.1606, 

found 342.1603. 

 

N

O

H

N

Br

104, 0.1 mmol 119, 57%

Step 1. NaBH4
 
(1.2 equiv.), MeOH

 
(1.5 mL ), 4 °C. 2 h, Ar N

OH

N

Br

Step 2. H3O+ 
(3.0 mL), 30 min, Ar. from 4 °C to r.t.

 

Preparation of (3-(4-bromophenyl)-1-(pyridin-2-yl)indolizin-2-yl)methanol (119): A mixture of 104 (0.1 

mmol) and NaBH4 (1.2 equiv.) in anhydrous MeOH solution (1.5 mL) were stirred at 4 ºC under Ar 

atmosphere for 2 h. The reactions were conducted in a sealed Schlenk tube and stirred by an IKA 

magnetic heating agitator with heating block. The reaction temperature was calibrated by thermometer. 

After the reaction, the solution was acidified via 0.5 N HCl aqueous solution, then stirred for 30 min from 

4 ˚C to room temperature. After completion, the solution was extracted by diether (3×3 mL) and dried 

over anhydrous Na2SO4. After filtration and concentrated in rotary evaporator, the crude product was 

purified with flash chromatography on silica gel (ethyl acetate : n-hexane) to give products. Work-up 

gave product 119 (22.7 mg, 0.06 mmol, isolated yield 57%) as a yellow solid. mp: 99−100 ˚C. FT-IR: ν 

(cm-1): 2922, 2852, 1587, 1537, 1513, 1473, 1389, 1323, 1273, 1228, 1148, 1123, 1100, 1069, 1055, 1037, 

1008, 946, 907, 828, 787, 727, 703, 664, 616, 499, 439, 404. 1H NMR (400 MHz, CDCl3) δ 8.59 (d, J = 

4.4 Hz, 1H), 7.95 (d, J = 6.8 Hz, 1H), 7.78 – 7.67 (m, 3H), 7.61 (d, J = 8.0 Hz, 2H), 7.38 (d, J = 8.4 Hz, 

2H), 7.12 – 7.09 (m, 1H), 6.86 – 6.82 (m, 1H), 6.50 (t, J = 6.8 Hz, 1H), 4.52 (s, 1H). 13C NMR (100 MHz, 

CDCl3) δ 154.3, 148.6, 137.4, 132.4, 132.2, 131.5, 129.0, 127.7, 123.5, 123.3, 122.7, 122.5, 120.8, 120.0, 

117.6, 111.8, 55.9. ESI-HRMS: m/z calcd. for C20H15N2OBr [M+H]+: 379.0446, found 379.0430. 
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N

O

H

N

Br

+

104, 0.12 mmol 2.0 equiv.
120, 83%

Pd(PPh3)2Cl2
 
(10 mol%), K2CO3

 
(1.5 equiv.)

CH3CN (1.0 mL ), 18 h, Ar, 120 °C
PhB(OH)3

N

O

H

N

Ph

 

Preparation of 3-([1,1'-biphenyl]-4-yl)-1-(pyridin-2-yl)indolizine-2-carbaldehyde (120): A mixture of 3-

(4-bromophenyl)-1-(pyridin-2-yl)indolizine-2-carbaldehyde (0.12 mmol), phenylboronic acid (2.0 equiv.), 

catalyst Pd(PPh3)2Cl2 (10% mmol), and K2CO3 (1.5 equiv.) in the CH3CN (1.0 mL) were stirred at 120 ˚C 

under Ar atmosphere for 18 h. The reactions were conducted in a sealed Schlenk tube and heated by an 

IKA magnetic heating agitator with heating block. The reaction temperature was directly read from 

temperature detector of IKA apparatus and was calibrated by thermometer. After cooling to room 

temperature, the reaction mixture was basified up to pH 7 via stad. Na2CO3 aqueous solution, then 

extracted by diether (3×3 mL) and dried over anhydrous Na2SO4. After filtration and concentrated in 

rotary evaporator, the crude product was purified with flash chromatography on silica gel (ethyl acetate : 

n-hexane) to give products. Work-up gave product 33 (37.4 mg, 0.10 mmol, isolated yield 83%) as a 

yellow solid. mp: 146−147 ˚C. FT-IR: ν (cm-1):3058, 3031, 2920, 2854, 2774, 1673, 1630, 1583, 1519, 

1475, 1426, 1416, 1356, 1323, 1280, 1269, 1230, 1197, 1181, 1156, 1142, 1100, 1086, 1055, 1034, 1018, 

1008, 946, 907, 882, 853, 820, 785, 767, 740, 725, 694, 647, 622, 587, 571, 550, 505, 495, 439, 420, 404. 
1H NMR (400 MHz, CDCl3) δ 10.09 (s, 1H), 8.64 (d, J = 4.8 Hz, 1H), 7.89 (d, J = 8.4 Hz, 2H), 7.71 – 

7.67 (m, 4H), 7.59 (d, J = 7.6 Hz, 2H), 7.55 – 7.46 (m, 3H), 7.41 (t, J = 7.6 Hz, 2H), 7.33 (d, J = 7.2 Hz, 

1H), 7.15 – 7.11 (m, 1H), 6.78 (dd, J = 9.6, 6.4 Hz, 1H), 6.53 (t, J = 6.0 Hz, 1H). 13C NMR (100 MHz, 

CDCl3) δ 188.7, 153.1, 149.2, 142.0, 140.2, 135.9, 132.3, 131.5, 131.1, 130.3, 128.9, 127.8, 127.7, 127.6, 

127.2, 127.1, 125.6, 122.9, 122.4, 121.0, 120.5. ESI-HRMS: m/z calcd. for C26H18N2O [M+H]+: 375.1497, 

found 375.1495. 

 

N

O

H

N

Br

104, 0.05 mmol

EtOH : CF3CH2OH (2.0 : 1.0 mL)
+

3.0 equiv.

25 °C, 24 h, air

N

N

Br

Ph

O

121, 90%

NaOH (3.0 equiv.)
Me

O
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Preparation of (E)-3-(3-(4-bromophenyl)-1-(pyridin-2-yl)indolizin-2-yl)-1-phenylprop-2-en-1-one (121): 

A mixture of 3-(4-bromophenyl)-1-(pyridin-2-yl)indolizine-2-carbaldehyde (0.05 mmol), acetophenone 

(3.0 equiv.) and NaOH (3.0 equiv.) in the EtOH : CF3CH2OH (2.0 : 1.0 mL) were stirred at 25 ˚C under 

air atmosphere for 24 h. The reactions were conducted in a glass tube and stirred by an IKA magnetic 

heating agitator. The reaction was monitored by TLC. After filtration and concentrated in rotary 

evaporator, the crude product was purified with flash chromatography on silica gel (ethyl acetate : n-

hexane) to give products. Workup gave product 121 (21.5 mg, 0.05 mmol, isolated yield 90%) as a 

yellow solid. mp: 173−174 ˚C. FT-IR: ν (cm-1): 3054, 2920, 1655, 1583, 1504, 1471, 1447, 1387, 1341, 

1296, 1212, 1177, 1148, 1102, 1072, 1034, 1008, 991, 853, 830, 789, 742, 690, 647, 583, 548, 509, 441, 

408. 1H NMR (400 MHz, CDCl3) δ 8.73 (d, J = 4.4 Hz, 1H), 7.91 (d, J = 16.0 Hz, 1H), 7.72 – 7.66 (m, 

5H), 7.57 (d, J = 7.6 Hz, 2H), 7.47 (d, J = 7.6 Hz, 1H), 7.42 (t, J = 7.1 Hz, 1H), 7.34 – 7.32 (m, 4H), 7.17 

(d, J = 10.0 Hz, 1H), 6.93 (d, J = 15.6 Hz, 1H), 6.77 – 6.73 (m, 1H), 6.48 (t, J = 6.8 Hz, 1H). 13C NMR 

(100 MHz, CDCl3) δ 189.9, 154.2, 149.9, 138.2, 137.4, 136.4, 132.9, 132.8, 132.5, 132.3, 129.6, 128.4, 

128.2, 125.1, 124.7, 124.1, 123.3, 122.3, 121.0, 120.9, 120.1, 119.0, 114.0, 112.8. ESI-HRMS: m/z calcd. 

for C28H19N2OBr [M+H]+: 479.0759, found 479.07740. 

 

N

O

H

N

Br

104, 0.05 mmol

CH3CN (1.0 mL)+

1.0 equiv.

80 °C, 24 h, Ar

N

N

Br

Br

O

122, 72%

O

Br

 

Preparation of 6-benzoyl-8-(4-bromophenyl)indolizino[1,2-a]quinolizin-5-ium bromide (122): A mixture 

of 3-(4-bromophenyl)-1-(pyridin-2-yl)indolizine-2-carbaldehyde (0.05 mmol) and 2-bromo-1-

phenylethan-1-one (1.0 equiv.) in the CH3CN (1.0 mL) were stirred at 80 ˚C under Ar atmosphere for 24 

h. The reactions were conducted in a sealed Schlenk tube and heated by an IKA magnetic heating agitator 

with heating block. The reaction temperature was directly read from temperature detector of IKA 

apparatus and was calibrated by thermometer. After cooling to room temperature, resulting precipitate 

was filtered off, washed with n-hexane and washed with ethyl acetate, then gave product 122 (20.0 mg, 

0.04 mmol, isolated yield 72%) as a red solid. mp: 293−295 ˚C. FT-IR: ν (cm-1): 3392, 3060, 1655, 1630, 

1597, 1552, 1533, 1492, 1473, 1436, 1354, 1333, 1302, 1245, 1197, 1164, 1142, 1119, 1076, 1057, 1008, 

950, 863, 824, 771, 756, 723, 711, 699, 686, 668, 635, 622, 614, 546, 499, 443, 416.  1H NMR (400 MHz, 
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DMSO-d6) δ 9.26 (d, J = 8.8 Hz, 1H), 9.19 (d, J = 6.8 Hz, 1H), 9.11 (d, J = 9.2 Hz, 1H), 8.98 (d, J = 6.8 

Hz, 1H), 8.49 (t, J = 7.8 Hz, 1H), 8.15 (s, 1H), 8.09 (d, J = 7.6 Hz, 2H), 7.89 – 7.80 (m, 4H), 7.75 – 7.73 

(m, 3H), 7.64 (t, J = 7.5 Hz, 2H), 7.58 (t, J = 6.7 Hz, 1H). 13C NMR (100 MHz, DMSO-d6) δ 188.9, 

142.1, 140.3, 137.7, 135.6, 135.2, 135.2, 132.8, 132.1, 130.8, 130.4, 129.1, 126.3, 126.1, 125.6, 122.9, 

122.8, 120.5, 120.1, 119.8, 119.5, 118.7, 118.3, 104.2. ESI-HRMS: m/z calcd. for C28H18N2OBr+ [M]: 

477.0603, found 477.0596. 

 

N

Me

Ph

O

Me

123  

Following the General procedure D4, a mixture of α,β-unsaturated ketone (0.2 mmol), heteroaryl ketone 

(2.5 equiv.), catalyst 3b (0.04 mmol), AcOH (2.0 equiv.) and LiSO3CF3 (3.0 equiv.) in the CF3CH2OH 

(0.9 mL) were stirred at 80 ºC under Ar atmosphere for 36 h. Work-up gave product 1-(1-methyl-3-

phenylindolizin-2-yl)ethan-1-one  (123, 9.5 mg, 0.04 mmol, isolated yield 21%) as a yellow liquid. mp: 

93−94 ˚C. FT-IR: ν (cm-1): 2922, 1655, 1517, 1469, 1445, 1424, 1350, 1323, 1241, 1168, 954, 859, 767, 

738, 701, 670, 647, 589, 554, 495, 422. 1H NMR (400 MHz, CDCl3) δ 7.49 – 7.40 (m, 4H), 7.35 – 7.31 

(m, 3H), 6.5 – 6.53 (m, 1H), 6.32 (t, J = 6.6 Hz, 1H), 2.46 (s, 3H), 1.98 (s, 3H). 13C NMR (100 MHz, 

CDCl3) δ 198.3, 131.8, 131.1, 129.9, 129.3, 129.0, 126.1, 126.1, 122.5, 118.7, 116.8, 112.2, 110.1, 31.4, 

10.2. ESI-HRMS: m/z calcd. for C17H15NO [M+H]+: 250.1232, found 250.1227. 

 

N

Me

O

124  

Following the General procedure D4, a mixture of α,β-unsaturated aldehyde (0.2 mmol), heteroaryl 

ketone (2.5 equiv.), catalyst 3b (0.04 mmol), AcOH (2.0 equiv.) and LiSO3CF3 (3.0 equiv.) in the 

CF3CH2OH (0.9 mL) were stirred at 80 ºC under Ar atmosphere for 36 h. Work-up gave product 10-

methyl-3,4-dihydropyrido[1,2-a]indol-1(2H)-one (124, 15.2 mg, 0.08 mmol, isolated yield 38%) as a 

yellow solid. mp: 111−112 ˚C. FT-IR: ν (cm-1): 2920, 2854, 1649, 1523, 1432, 1414, 1368, 1331, 1265, 

1228, 1183, 1140, 1082, 997, 925, 894, 859, 812, 783, 736, 713, 628, 598, 577, 560, 530, 466, 420. 1H 

NMR (400 MHz, CDCl3) δ 7.48 (d, J = 7.2 Hz, 1H), 7.24 (d, J = 9.2 Hz, 1H), 6.49 (dd, J = 9.0, 6.4 Hz, 

1H), 6.44 – 6.41 (m, 1H), 2.85 (t, J = 6.2 Hz, 2H), 2.54 – 2.51 (m, 2H), 2.47 (s, 3H), 2.19 (p, J = 6.4 Hz, 
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2H). 13C NMR (100 MHz, CDCl3) δ 197.2, 130.8, 129.9, 121.8, 121.0, 119.1, 116.0, 112.1, 107.8, 39.4, 

23.5, 21.1, 9.6. ESI-HRMS: m/z calcd. for C13H13NO [M+H]+: 200.1075, found 200.1071. 
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