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Abstract

Machine learning potentials (MLPs) have become an indispensable tool for large-scale
atomistic simulations, due to their accuracy comparable with ab-initio methods at consid-
erably reduced computational cost. The development of MLPs has attracted increasing
attention and numerous relevant applications in materials science, physics and chemistry
have been reported. Most MLPs up to date are based on the approximation of locality,
meaning that only short-range atomic interactions are considered. The total energy of
the system can be decomposed into a sum of environment-dependent atomic energies.
This approximation works well for the majority of systems and allows the MLPs to de-
scribe systems containing thousands of atoms with very high accuracy by just training on
configurations of small systems. Moreover, they can incorporate long-range electrostatic
interactions by employing fixed charges or more flexible environment-dependent charges.
Despite countless encouraging developments of MLPs, they are unable to describe non-
local effects arising from long-range charge transfer and multiple charge states. This
shortcoming prevents the study of many interesting phenomena such as chemical interac-
tions involving protonation/deprotonation and biological processes. A new generation of
MLPs such as charge equilibration via neural network technique (CENT) and Becke pop-
ulation neural network (BpopNN) is now beginning to emerge in an effort to address these
long standing challenges. In this thesis, the limitations of conventional MLPs are over-
come by introducing a fourth-generation high-dimensional neural network potential (4G-
HDNNP), which combines accurate atomic energies with a charge equilibration scheme
relying on environment dependent atomic electronegativities. 4G-HDNNP describes the
correct global charge distribution of the system, resulting in a markedly improved po-
tential energy surface. The capabilities of the method have been demonstrated for a set
of benchmark systems that involves non-local charge transfer, where existing methods
fail even at the qualitative level. Finally, an extension of the 4G-HDNNP, namely the
electrostatically embedded 4G-HDNNP (ee4G-HDNNP), is proposed to further enhance
the description of non-local effects, and the general transferability to different configu-
rations that are not covered in the reference data set. The promising improvements of
ee4G-HDNNP compared to the 4G-HDNNP have been shown on a large data set of both
neutral and charged sodium chloride clusters with large structural diversity. This novel
method is anticipated to become a reliable tool for the study of many complex biological
and electrochemical problems, while existing ab-initio methods combined with modern
computer technology are still computationally demanding for large-scale atomistic simu-
lations.
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Chapter 1

Introduction

1.1 Hierarchy of Atomistic Simulation Methods

Theoretical chemistry is utilized to understand the nature of atomic interactions by math-
ematical techniques and physical laws. It plays an important role in supporting exper-
imental results and providing new insights to study complex chemical reactions, where
experimental measurements are currently not feasible. Atomic interactions in molecules
and bulk materials can be accurately described by solving the Schrödinger equation. How-
ever, an analytical solution is only possible for systems containing at most two electrons
such as the hydrogen molecule.

Ab-initio methods based on the wavefunction approach, such as CCSD(T) [1], MP2 [2]
and others [3–6] have been developed. They provide an accurate description of atomic
interactions by numerically solving the Schrödinger equation. However, wavefunction
based methods are computationally demanding for modeling more than a hundred atoms,
despite the rapid development of modern computer technologies.

An alternative approach to numerically solving the Schrödinger equation is to employ
the concept of electron densities instead of wavefunctions. This concept introduces the
density functional theory (DFT), which has become a popular method due to its excellent
compromise between accuracy and efficiency. DFT is capable of handling systems with
several hundred atoms for molecular dynamics [7, 8] and Monte Carlo [9] simulations.
Even though DFT has been successfully applied to a wide range of systems, the descrip-
tion of many interesting phenomena in chemistry requires much larger system sizes to be
studied.

In order to perform efficient large-scale atomistic simulations, empirical force fields
such as the Tersoff potential [10, 11], ReaxFF [12], and many others [13–15], have been
proposed in the past few decades. They are based on physical approximations and the
potential energy surface (PES) of the system can be expressed as a simple analytical
function of atomic positions. Empirical force fields are usually parameterized by a set of
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4 Chapter 1 Introduction

ab-initio calculations or experimental results. Such force fields allow to model systems
with more than hundreds of thousands atoms. However, the properties of the system
extracted from simulations driven by force fields are often inconsistent with ab-initio
methods and experimental results due to their limited accuracy.

The hierarchy of atomistic simulation methods in terms of the accuracy and affordable
system size is plotted in Fig. 1.1. There existed a huge gap between empirical force
fields and ab-initio methods for several decades. In recent years, another approach for
the construction of PESs based on machine learning has been proposed. These machine
learning potentials (MLPs) [16–18] are able to bridge the hierarchy of existing atomistic
simulation methods in terms of accuracy and accessible system size, as shown in Fig. 1.1.

Fig. 1.1: Hierarchy of different approaches for performing atomistic simulations in terms
of the accuracy and system size. Machine learning potentials have been pro-
posed to bridge the gap between ab-initio methods and empirical force fields
that had existed for decades.

4



1.2 Introduction to Machine Learning Potentials 5

1.2 Introduction to Machine Learning Potentials

1.2.1 Overview

Machine learning (ML) algorithms [19–21] provide accurate predictions after being trained
to a set of reference data. They have become indispensable tools in different fields of sci-
ence that require analysis, classification, or interpolation of data like image recognition
and medical diagnosis. Such data-driven sciences are now even being called the ’fourth
paradigm of science’ together with the other three established paradigms including theo-
retical models, empirical experimental studies and computer simulations [22].

A particularly encouraging development that has emerged in the past two decades,
based on the combination of machine learning and computer simulations, is to represent
the high-dimensional PES by MLPs [18, 23–32]. The general idea of MLPs is to use
ML techniques to reproduce a PES from reference calculations by establishing a mapping
from the atomic positions and possible other physical quantities to the potential energy of
the system.

MLPs differ from empirical force fields in several aspects. First, the construction of
MLPs usually requires more than thousands of reference data points for the training due
to the large number of parameters in the model. Hence, the construction of reference
data sets generated from ab-initio methods is computationally demanding. In contrast,
the number of data points required for the construction of empirical force fields is sig-
nificantly reduced because of their simple functional form, which contains only a few
parameters to be optimized. However, this also limits the accuracy of force fields. As a
consequence, they often predict qualitatively incorrect results compared to ab-initio meth-
ods and experiments. On the other hand, MLPs provide a very flexible functional form
for fitting the PES of the system, which gives very high accuracy in the regions of con-
figuration space that have been well sampled. Even though the evaluation of energies and
forces with MLPs is slightly slower than with empirical force fields, MLPs are still sev-
eral orders of magnitude faster than electronic structure methods for modelling systems
containing thousands of atoms.

Overall, MLPs are considered as an alternative approach for performing large-scale
atomistic simulations instead of using empirical force fields, due to their appealing accu-
racy and efficiency given that the potentials have been constructed properly and validated
carefully. This field of research has attracted a great deal of attention and many different
types of MLPs have been recently proposed [16, 17, 33].

5



6 Chapter 1 Introduction

1.2.2 First Generation: Low-Dimensionality

The majority of existing MLPs can be systematically classified into four generations [16,
33, 34]. The first generation of MLPs is only applicable to systems containing few degrees
of freedom. Starting with the first model proposed by Doren and coworkers [35] in 1995,
they constructed a direct mapping from the atomic positions to the potential energy of the
system through a feed-forward neural network. The model was successfully applied to
the adsorption of H2 on a frozen Si(001) surface. In this pioneering work, many technical
aspects for the construction of MLPs were investigated and possible improvements for
the representation of PESs were also discussed. In the following decade, several groups
extended the applicability of neural networks to various molecular systems such as a water
dimer [36], vinyl bromide [37], nitrous acid [38] and others [39, 40]. In addition to small
molecules, other groups applied neural networks to study gas-surface reactions such as
the adsorption of O2 on Al(111) [41], N2O on Cu(100) [42] and ethanol on Au(111)[43].

Besides the applications of MLPs, some progress had been made in methodological
development for constructing low-dimensional PESs. For instance, a high-dimensional
model representation [44–46] was developed to express the PESs. This representation
aims to reduce the dimensionality of PESs by decomposing the total energy into a sum
of low-dimensional component functions. Each component function is expressed as a
function of few optimized coordinates by a separate neural network. Furthermore, the idea
of a many-body expansion was introduced in 2009 for the construction of PESs by using
a set of neural networks to express different body terms [47]. In 2013, the permutational
invariant polynomials [48] were applied as input coordinates to describe molecules with
full permutational invariance to construct a molecular PES by neural networks. Still, this
type of descriptors scales factorially with the number of atoms and they are thus only
applicable to very small molecular systems [49].

One of the main reasons for the restricted applicability of first-generation MLPs to
high-dimensional systems is the lack of generally applicable many-body descriptors that
preserve the translational, rotational, and permutational invariance of the total energy.
Moreover, these early developed models that directly express the total energy of the sys-
tem, are not transferable to different system sizes since their architecture is fixed. Finding
a solution to address these two problems had become a frustrating challenge in the first
decade of MLP development.

1.2.3 Second Generation: Short-Range Interactions

Second-generation MLPs overcome the restriction of dimensionality by employing the
concept of locality, which works well for the majority of systems. Here it is assumed
that a large portion of atomic interactions are attributed to short-range contributions. In
2007, Behler and Parrinello proposed the first MLP of the second generation, namely the

6



1.2 Introduction to Machine Learning Potentials 7

high-dimensional neural network potential (HDNNP or 2G-HDNNP) [50]. The general
idea of the model is to decompose the total energy of the system into a sum of all atomic
contributions, which is an approximation commonly used in empirical force fields such
as the Tersoff [11] and the embedded atom model [51]. Each atomic energy depends on
its local chemical environment within a sufficiently large cutoff radius, and is expressed
by a set of atomic neural networks (ANNs).

Apart from the definition of atomic energies, Behler and Parrinello also developed a
novel type of structural descriptors called atom-centered symmetry functions (ACSFs) [52].
These descriptors are utilized to represent the local atomic environment including exact
translational, rotational, and permutational invariances. Hence, the resulting atomic con-
tributions also preserve these invariances. ACSFs have predefined functional forms that
contain several parameters controlling the spatial shape of the functions. Based on the
combination of the locality approximation and ACSFs descriptors, 2G-HDNNPs can be
trained by arbitrary number of atoms and can model systems containing thousands of
atoms. 2G-HDNNPs typically reach an accuracy of 1 meV/atom and 0.1 eV/Å in terms
of energy and forces. These values define the state-of-the-art accuracy of MLPs.

Other MLPs such as Gaussian approximation potentials (GAPs) [53], spectral neigh-
bor analysis potentials (SNAPs) [54], moment tensor potentials (MTPs) [55] and atomic
cluster expansions (ACEs) [56] have been proposed after HDNNPs. All these MLPs
also belong to the second generation, since they are capable of modeling thousand of
atoms with the state-of-the-art accuracy based on the locality approximation. Moreover,
several predefined type structural descriptors for representing the local atomic environ-
ments have been developed. Further examples include smooth overlap of atomic positions
(SOAPs) [57], the Coulomb matrix [58], and Chebyshev polynomials [59].

More recently, another class of second-generation MLPs has attracted increasing atten-
tion. This class of MLPs is based on learning the atomic energies as a function of atomic
environments using message passing neural networks (MPNNs) [60]. Instead of using
predefined descriptors, the representation of the local chemical environment of each atom
is described by an adjustable feature vector, which is iteratively refined by exchanging
information with neighboring atoms including their current feature vectors and geometri-
cal information such as bond lengths and angles. The refined atomic feature vectors are
then used to predict atomic energies. The range of atomic interactions can in principle be
extended by increasing the number of message passing steps.

Various models such as deep tensor neural networks (DTNNs) [61], SchNet [62] and
atoms-in-molecules neural networks (AIMNET) [63] are emerging in the field and they
also achieve state-of-the-art accuracy for the prediction of energies and forces. Nowadays,
second-generation MLPs have become a useful tool for large-scale atomistic simulations
in the field of physics, chemistry, and materials science due to their simplicity and effi-
ciency [16, 18].

7



8 Chapter 1 Introduction

1.2.4 Third Generation: Long-Range Interactions

A crucial limitation of second-generation MLPs is the inability to describe long-range
interactions such as electrostatics and dispersion interactions beyond the local atomic
environment. Several early attempts have been made to take long-range electrostatic in-
teractions into account based on element-dependent fixed atomic charges for simple force
fields [64–67]. This straightforward solution was applied to study gallium nitride and
lithium nitride in combination with second-generation MLPs [53, 54]. Still, MLPs that
are based on element-specific fixed atomic charges, cannot describe the variability of elec-
trostatic interactions in different chemical environments. For instance, the atomic charges
on adsorbate and adsorbant should be different in the case of a metal oxide supported by
a slab of its pure metal. Therefore, the development of ML models for the prediction of
accurate charges has attracted a great deal of attention.

Starting with the first environment-dependent charges proposed by Popelier and cowork-
ers [68] in 2007, many groups have developed various methods to predict accurate atomic
charges and also dipole moments [69–71]. However, only a few MLPs up to date include
explicit long-range electrostatic interactions using Coulomb’s law without truncation. To-
gether with environment-dependent atomic energies, they compose the third generation of
MLPs. Artrith, Morawietz and Behler [72, 73] proposed the first MLP of the third genera-
tion in 2011. They extended the 2G-HDNNP by introducing local environment-dependent
charges, which are used to calculate the long-range electrostatic energy and forces.

This third-generation HDNNP (3G-HDNNP) provides a higher flexibility of atomic
charges to reliably describe long-range electrostatic interactions and the capabilities of
the method have been demonstrated on zinc oxide [72] and the water dimer [73]. In 2018,
Tensormol-0.1 [74] was developed to combine the 3G-HDNNP approach with dispersion
interactions using Grimme’s D2 method [75]. Instead of reproducing reference atomic
charges, the predicted charges in the model are optimized to reproduce dipole moments
obtained from reference electronic structure calculations.

Another third-generation MLP based on MPNNs is PhysNet [76], which also includes
dispersion interactions using Grimme’s D3 approach [77] and was proposed in 2019.
In PhysNet, the atomic feature vectors are repeatedly updated and these refined vectors
during every message passing step are also used to determine atomic charges and energies.
Notably, the efficiency of the method can be increased by simultaneously predicting both
atomic energies and charges based on two different output neurons in the neural networks.

However, only very few applications of third-generation MLPs have been reported for
periodic systems due to the fact that long-range electrostatic interactions for the major-
ity of periodic systems are efficiently screened. Furthermore, additional computational
time is required for the construction of third-generation MLPs by training another set of
machine learning models for the prediction of charges, while the accuracy is just slightly
better or comparable to second-generation MLPs.

8



1.2 Introduction to Machine Learning Potentials 9

1.2.5 Fourth Generation: Non-Local Interactions

Fig. 1.2: Long-range charge transfer in a molecular system. Panel (a) shows the DFT-
optimized structure of 2-hydroxy-anthracene. The most distant hydrogen atom
is less positively charged as indicated in the plot of DFT Hirshfeld charges on
the right side, when the hydroxyl group is deprotonated as shown in panel (b).
The local chemical environment of the most distant hydrogen atom indicated as
a dashed circle is unchanged and therefore local methods such as second- and
third-generation MLPs fail to capture the changes caused by long-range charge
transfer. The hydrogen, carbon and oxygen atoms are colored in white, grey and
red, respectively. The structural visualization was carried out using Ovito [78].
Reprinted (adapted) with permission from Ref. [79]. Copyright 2021 American
Chemical Society.

A remaining limitation of third-generation MLPs is their incapability of describing
long-range charge transfer and systems with multiple charge states simultaneously. Long-
range charge transfer arises from a global change in the electronic structure of a system
by modifying its local chemical environment or total charge. This effect is commonly
found in chemistry, materials science, and molecular biology [79–81]. For instance, an

9



10 Chapter 1 Introduction

illustrative molecular system for demonstrating long-range charge transfer is displayed
in Fig. 1.2. The DFT-optimized structure of the aromatic organic molecule 2-hydroxy-
anthracene and the corresponding Hirshfeld charges are displayed in panel (a). The global
charge distribution of the molecule changes significantly as shown in panel (b) due to the
deprotonation of the hydroxyl group. Even the most distant hydrogen atom still experi-
ences long-range charge transfer, despite the electronic change happening far outside the
local chemical environment of the hydrogen atom as indicated by the dashed circle. Con-
sequently, second- and third-generation MLPs predict the same atomic energy or charge
for both cases due to the identical atomic environment and are thus unable to describe
non-local effects arising from the long-range charge transfer.

Another illustrative periodic example, which also exhibits long-range charge transfer,
is shown in Fig. 1.3. Panel (a) shows the DFT-optimized structure of a gold atom on a
fixed ideal magnesium oxide (001) surface and the corresponding DFT Hirshfeld charges.
The favorable adsorption site of a gold atom is on top of an oxygen atom and it is nearly
neutral. If a magnesium atom is removed in the bottom layer as displayed in panel (b),
the gold atom becomes positively charged and the favorable adsorption site of the gold
atom remains the same. Another case is the substitution of an oxygen atom by a fluorine
atom in a subsurface layer, which is shown in panel (c). The gold atom becomes heavily
negatively charged and the favorable adsorption site changes to a magnesium atom. In
all cases, the charge transfers are far beyond the local chemical environment of the gold
atom, which is defined by the cutoff sphere indicated as a dashed circle. Again, second-
and third-generation MLPs are unable to describe such non-local effects due to the lack
of information about the global charge distribution of the system.

The problem of local atomistic PESs, which are unable to capture long-range charge
transfer and to describe a system with multiple charge states, has been recognized for a
long time. Describing all these non-local effects has led to the development of fourth-
generation MLPs. In 2015, the first MLP of the fourth generation was proposed, the
charge equilibration via neural network technique (CENT), by Ghasemi and cowork-
ers [82]. The essential idea of CENT is to allow the redistribution of atomic charges
over the whole system, relying on the environment dependent electronegativities, accord-
ing to a charge equilibration (Qeq) scheme [83]. These electronegativities expressed by
ANNs, are trained to distribute the partial charges in an optimal way to reproduce the
reference total energy of the system. CENT has shown the ability to describe non-local
charge transfer and systems with different total charge states. Apart from non-local depen-
dencies, the applications of CENT for the structure prediction of ionic materials has been
reported [84, 85]. All these works show that the method provides excellent transferability
to periodic systems when just training on the cluster structures.

In 2020, Xie, Persson and Small [86] introduced the Becke population neural network
(BpopNN) for modelling systems with different total charges. The expression of the total
energy consists of atomic contributions, intra-atomic, and Coulomb electrostatic energy.
Here the atomic contributions are expressed as a function of their local environments

10
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Fig. 1.3: Long-range charge transfer in a periodic system. The favourable adsorption site
of a gold atom on a fixed ideal magnesium oxide slab (001) predicted by DFT
is on top of an oxygen atom as shown in panel (a) and the gold atom is nearly
neutral. The gold atom becomes positively charged as indicated in the plot of
DFT Hirshfeld charges on the right side, when the vacancy of a magnesium atom
is introduced to the bottom layer as displayed in panel (b). If an oxygen atom in
the bottom layer of the surface is replaced by a fluorine atom as shown in panel
(c), the favourable adsorption site of a gold atom changes to a magnesium atom
and the gold becomes heavily negatively charged. The charge transfer in all
cases is far beyond the atomic environment of the gold atom as indicated in the
dashed circle and are thus unable to be described by local MLPs. The oxygen,
fluorine, magnesium, and gold atoms are colored in red, blue, green and yellow,
respectively. Reprinted (adapted) with permission from Ref. [79]. Copyright
2021 American Chemical Society.

and atomic populations, i.e. partial charge. This structural and electronic information is
transformed into modified SOAP descriptors to predict short-range interactions through
ANNs. In the training stage, the initial guess of atomic charges and the corresponding
total energy are updated through an iterative SCF-like process.

11



12 Chapter 1 Introduction

Despite all these encouraging developments of fourth-generation MLPs, they still have
some technical limitations. For instance, the CENT is primarily applicable to ionic sys-
tems due to the restricted total energy expression and the overall accuracy is still lower
than the state-of-the-art MLPs. In addition, the BpopNN requires an extra SCF-like cy-
cle, which increases the computational costs of energy and force calculations, and this
cycle could induce a technical problem regarding the possibility of having multiple or no
solutions [86], leading to a problematic energy and force prediction.

More recently, several fourth-generation MLPs based on MPNNs such as SpookyNet
[87], AIMNET-NSE [88] and QRNN [89] have been proposed. These models are able
to describe long-range charge transfer and multiple charge states by refining the atomic
weight factors that determine the redistribution of the charges over the whole system,
during the message passing steps. This non-local electronic information is adapted to
the atomic feature vectors, which serve as inputs for predicting atomic energies. The
ability of these methods to describe non-local effects has been demonstrated for a series
of molecular and bulk systems.

The development of fourth-generation MLPs has attracted increasing attention due to
their great potential for modeling large systems in electrochemical environments [90],
which usually involve long-range charge transfer. In this thesis, a general solution to
overcome the limitations of existing MLPs that are based on the locality approximation,
is proposed by introducing a fourth-generation HDNNP (4G-HDNNP) [34], which takes
the global charge distribution into account. 4G-HDNNP can describe non-local physical
effects caused by long-range charge transfer and even changes in the whole electronic
structure depending on different total charges of the system. It is generally applicable to
ionic and covalent systems without any SCF-like cycle.

The capabilities of the method are revealed in a variety of model systems, which are
well studied in chemistry and materials science and involve long-range charge transfer.
The 4G-HDNNPs trained to electronic structure calculations can reproduce charges, en-
ergies, and forces with excellent accuracy. In contrast, 2G- and 3G-HDNNPs yield inac-
curate PESs and they are thus unable to correctly describe these systems. In fact, all MLPs
of the second and third generation suffer from the same problem as they are based on the
approximation of locality. Finally, possible enhancements of 4G-HDNNP are discussed
and a modified framework of the 4G-HDNNP, namely the electrostatically embedded 4G-
HDNNP (ee4G-HDNNP), is proposed. The promising improvements of ee4G-HDNNP
compared to the 4G-HDNNP are demonstrated on a data set of sodium chloride clus-
ters, which clearly show the ability of the method to provide an accurate description of
non-local effects. Furthermore, the ee4G-HDNNP provides excellent transferability to
different atomic environments that are not provided in the data set. It is anticipated that
the ee4G-HDNNP can be used to study complex electrochemical problems, which re-
quire modelling more than thousands of atoms with an accurate description of non-local
electronic effects, while ab-initio methods are still impractical.

12
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1.3 Outline of the Thesis

This thesis is organized as follows: The hierarchy of atomistic simulation methods and an
overview of MLPs are introduced in chapter 1. In chapter 2 the theoretical background is
summarized including an overview of DFT and the important features of the 2G-HDNNP,
3G-HDNNP, and CENT, which inspire the framework of the 4G-HDNNP. Both Born-
Oppenheimer and classical molecular dynamics including their application to the minima
hopping algorithm are also introduced. The computational details for reference data gen-
eration, construction of HDNNPs and settings of minima hopping are given in chapter 3.
In chapter 4 the framework of 4G-HDNNP is presented and its ability to accurately repro-
duce ab-initio based PESs for describing non-periodic and periodic benchmark systems
is demonstrated, including a detailed comparison to 2G- and 3G-HDNNPs. Further, the
ee4G-HDNNP is introduced in chapter 5 and considerable improvements with respect
to the 4G-HDNNP on a data set containing both neutral and negatively charged sodium
chloride clusters with large structural diversity are also presented. The thesis concludes
with a summary and perspectives for the development of 4G-HDNNPs and possible future
extensions of the model in chapter 6.

13





Chapter 2

Theoretical Background

2.1 Density Functional Theory

Any kind of electronic structure method that provides the total energy, atomic forces and,
possibly, the atomic charges for the reference structures can be used to generate a data
set for constructing HDNNPs in principle. However, a large number of data points are
required to construct the high-dimensional potential energy surface (PES) using neural
networks. Hence, the compromise between computational cost and accuracy is a crucial
factor for choosing the right electronic structure method.

DFT was chosen to generate reference data in this work because it provides a reli-
able description of the atomic interactions for a broad range of systems ranging from
organic molecules to bulk materials. Furthermore, its efficiency allows to simulate sys-
tems containing up to a few hundred atoms. In the following subsections, the theoretical
background of DFT is summarized.

2.1.1 Schrödinger Equation

The energies and wavefunctions of non-relativistic quantum mechanical systems can be
obtained by solving the time-independent Schrödinger equation for all electrons and nu-
clei in the system,

ĤtotalΨtotal({xi},{Rα}) = EtotalΨtotal({xi},{Rα}) , (2.1)

where Ĥtotal is the Hamiltonian of the system, Ψtotal the total wavefunction and Etotal the
corresponding total energy. The wavefunction depends on a set of spatial coordinates of
the nuclei {Rα} and the combined spatial {ri} and spin coordinates {si} of the electrons
{xi}. Hence, the Schrödinger equation is an eigenvalue problem, where the eigenfunc-
tions are interpreted as wavefunctions of the system and eigenvalues as the allowed total
energies. The Hamilton operator encompasses all interactions in the system. It can be
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16 Chapter 2 Theoretical Background

written as the following in atomic units (i.e., me = h̄ = e = 1):

Ĥtotal = T̂e + T̂n +V̂nn +V̂ne +V̂ee

=−
Nel

∑
i=1

1
2

∇
2
i −

Nnuc

∑
i=1

1
2mi

∇
2
i

+
Nnuc

∑
i=1

Nnuc

∑
j>i

ZiZ j

|Ri−R j|
−

Nnuc

∑
i=1

Nel

∑
j=1

Zi

|ri−R j|
+

Nel

∑
i=1

Nel

∑
j>i

1
|ri− r j|

. (2.2)

The Hamiltonian includes the kinetic energy operators of the nuclei T̂n and electrons T̂e,
the nucleus-nucleus repulsions V̂nn, nucleus-electron attractions V̂ne and electron-electron
interactions V̂ee. Here ∇2

i represents the Laplace operator acting on the particle i. Zi and
mi denote the nuclear charge and atomic mass of nucleus i, respectively. Nel and Nnuc
indicate the number of electrons and nuclei in the system.

Solving the Schrödinger equation using the total wavefunction is computationally very
demanding since the total number of variables is 3(Nel +Nnuc) spatial and Nel spin co-
ordinates. In 1927, Born and Oppenheimer [91] proposed a physical approximation to
reduce the complexity of the problem. It is based on the fact that nuclei are much heavier
than electrons. Therefore, the nuclei can be regarded as static on the time scale of the fast
moving electrons. Due to the decoupling between the motion of electrons and nuclei, the
total wavefunction can be approximated by a product of an electronic wavefunction Ψe
and a nuclear wavefunction Ψn

Ψtotal({xi},{Rα})≈Ψe({xi},{Rα}) ·Ψn({Rα}) . (2.3)

As a consequence, the kinetic energy of the nuclei is omitted and their repulsion only
exists in the equation as a constant term. The Coulomb interaction between nuclei and
electrons is now considered as the external potential Vext. The remaining Hamiltonian
only acts on the electronic wavefunction. Hence, The electronic energy eigenvalues Ee
can be obtained by solving the following electronic Schrödinger equation:

ĤeΨe = EeΨe , (2.4)

where the electronic Hamiltonian Ĥe can be expressed as

Ĥe = T̂e +V̂ext +V̂ee . (2.5)

Consequently, the electronic energy eigenvalue of the electronic wavefunctions Ee de-
pends parametrically on the nuclear positions. The PES establishes a direct mapping
from a set of spatial coordinates of atoms to the potential energy of the system. It can
be obtained by varying the positions of the nuclei and repeatedly solving the electronic
Schrödinger equation for each chosen atomic configuration. Nowadays, many methods
aim to solve the electronic Schrödinger equation numerically and they are referred to as
electronic structure methods.

16



2.1 Density Functional Theory 17

2.1.2 Electron Density

Solving the electronic Schrödinger equation with 4Nel degrees of freedom is still very
computationally intensive. To further reduce the dimensionality of the problem, the con-
cept of electron density has been proposed for the representation of a many-electron sys-
tem. It can be written as

ρ(r1) = Nel

∫
...
∫
|Ψe(x1, ...,xNel)|

2ds1dx2...dxNel , (2.6)

where ρ(r1) denotes the probability density of finding an electron in the volume element
dr1 at position r1 and the other Nel−1 electrons elsewhere. This is equal to Nel times the
probability to find one of the electrons at that region since the probability is exactly the
same for all indistinguishable electrons. Hence, the electron density only depends on three
spatial coordinates, which is much lower than the dimensionality of the wavefunction.
Furthermore, the electron density can also provide all necessary information such as the
number of electrons and the position of nuclei to construct the electronic Hamiltonian as
explained in the next subsection.

2.1.3 Hohenberg-Kohn Theorems

In 1964, Hohenberg and Kohn established two theorems [92] to provide the theoretical
justification for solving the electronic Schrödinger equation using the electron density in-
stead of the wavefunction. The first theorem states that a one-to-one functional relation
exists between the external potential and the electron density. Hence, the external poten-
tial, except for a constant, is uniquely determined by the electron density. In this way, the
electronic energy of a system can be expressed as a functional of the electron density

E[ρ] = Ekin[ρ]+Eext[ρ]+Eee[ρ], (2.7)

where Ekin[ρ] and Eee[ρ] denote the kinetic energy of the electrons and the electron-
electron interaction. Eext[ρ] is the interaction with external potential. Notably, the electron-
electron interactions can be further decomposed into a sum of the Coulomb interactions
Ecoul[ρ] and the non-classical contributions Encl[ρ] including exchange and correlation
interactions

Eee[ρ] = Ecoul[ρ]+Encl[ρ] . (2.8)

The second Hohenberg-Kohn theorem indicates that the exact ground state electron
density corresponds to the lowest total energy in a many-electron system. Hence, the
theorem provides a practical way for optimizing any given electron density ρ to obtain
the ground state electron density ρ0 and the corresponding energy using the variational
principle

E[ρ0(r)]≤ E[ρ(r)] . (2.9)
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18 Chapter 2 Theoretical Background

However, an expression for the exact functional dependence of energy and electron den-
sity remains unknown.

2.1.4 Kohn-Sham Equations

Before the foundations for DFT were established by Hohenberg and Kohn in 1964, Thomas
and Fermi [93] already employed the concept of the electron density to calculate the total
energy of a system in the late 1920s. Based on the approximation of the uniform electron
distribution in an atom, the representation of the kinetic energy expression of the electron
density can be deduced directly.

The total energy of the model is expressed as the sum of the Thomas-Fermi kinetic
energy functional and two classical terms including the electron-electron and nucleus-
electron interactions, which are also represented by the electron density. However, the
model provides a very poor description for realistic systems since the predicted energy of
a molecule is higher than the sum of its isolated atoms. This is attributed to the unrealistic
approximation to the kinetic energy functional term. Apart from that, the lack of exchange
and correlation effects of electrons is another source of error.

Kohn and Sham addressed these problems by introducing a fictitious system of non-
interacting electrons, which moves within an effective potential Veff. For this model sys-
tem, the kinetic energy can be calculated exactly. The effective potential for the non-
interacting system is chosen such that it generates the same density as the system of
interacting electrons,

ρeff(r) =
Nel

∑
i=1
|ψi|2 = ρ(r) . (2.10)

Here, ψi stands for the Kohn-Sham orbital of a single electron. A set of Kohn-Sham
orbitals ψi is determined by solving a set of one-electron Kohn-Sham equations using the
Kohn-Sham operator F̂KS

F̂KS
ψi = εiψi with F̂KS =−1

2
∇

2
i +Veff . (2.11)

To derive Eq. 2.11 for a system of fictitious non-interacting electrons, Kohn and Sham
split the energy functional into the following contributions:

E[ρ] = Ekin,KS[ρ]+Ecoul[ρ]+Eext[ρ]+Exc[ρ] . (2.12)

where the kinetic energy of non-interacting electrons Ekin,KS[ρ], the electron-electron
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2.1 Density Functional Theory 19

Coulomb interactions Ecoul[ρ], and the external potential Eext[ρ] are written as:

Ekin,KS[ρ] =−
1
2

Nel

∑
i=1
〈ψi|∇2

i |ψi〉 ,

Ecoul[ρ] =
1
2

∫ ∫
ρ(r)ρ(r′)
|r− r′|

drdr′ ,

Eext[ρ] =
∫

Vextρ(r)dr ,

Exc[ρ] = (Ekin[ρ]−Ekin,KS[ρ])+Encl[ρ] .

The first three terms in Eq. 2.12 can be computed exactly. The last term is the so-
called exchange correlation functional Exc[ρ]. It includes the quantum exchange and
correlation contributions caused by the electron-electron interaction Encl[ρ] and the dif-
ference between the kinetic energy of the interacting and non-interacting electron systems
(Ekin[ρ]−Ekin,KS[ρ]).

The Eq. 2.12 is then minimized with respect to the Kohn-Sham orbitals ψ∗i under the
normality constraint of each orbital with the corresponding Lagrange multiplier εi. The
expression of the constrained minimization can be written as:

δ

δψ∗i

(
E[ρ]−

Nel

∑
i=1

εi

∫
ψ
∗
i (r)ψi(r)dr

)
= 0 (2.13)

and finally the Kohn-Sham equations can be derived in the following steps:

−1
2

∇
2
i ψi +(

δEcoul

δρ
+

δEext

δρ
+

δExc

δρ
)ψi− εiψi = 0

{−1
2

∇
2
i +(

δEcoul

δρ
+

δEext

δρ
+

δExc

δρ
)}ψi = εiψi

(−1
2

∇
2
i +Veff(r))ψi = εiψi .

(2.14)

The effective potential Veff is expressed as a sum of the functional derivatives with respect
to the electron density. A new set of Kohn-Sham orbitals ψi and corresponding orbital
energies εi are then obtained by solving the eigenvalue problem in Eq. 2.14. Finally, the
total energy for the system of interacting electrons can be calculated based on the updated
electron density obtained from Eq. 2.10:

E[ρ] =
Nel

∑
i=1

εi−Ecoul[ρ]−
∫

δExc

δρ
ρ(r)dr+Exc[ρ] . (2.15)

In this way the ground state energy of the system in the Schrödinger equation can be
solved iteratively. The standard procedure for determining the ground state density and
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energy is to first initialize the electron density, then construct the Kohn-Sham operators
and solve an eigenvalue problem that yields a new electron density. The above steps
are repeated until the change of the electron density and the corresponding total energy is
lower than the desired tolerance. An iterative procedure like this is called a self-consistent
field (SCF) cycle.

2.1.5 Atom-Centered Basis Sets

The representation of the Kohn-Sham orbital for a single electron plays an essential role in
the efficiency and accuracy of DFT calculations. One particularly advantageous approach
to solve the Kohn-Sham equations is based on the linear combination of atomic orbitals,
in which the Kohn-Sham orbitals are expressed as a linear combination of atom-centered
basis functions (in Dirac notation),

ψi = ∑
µ

ci,µ |φµ〉 , (2.16)

where φµ represents a set of basis functions and with the corresponding expansion coeffi-
cients ci,µ . Substituting this expression into Eq. 2.11 yields

F̂KS
∑
µ

ci,µ |φµ〉= εi ∑
µ

ci,µ |φµ〉 . (2.17)

A generalized eigenvalue problem can be established by multiplying an arbitrary basis
function 〈φν | from the left:

∑
µ

ci,µ〈φν |F̂KS|φi,µ〉= εi ∑
µ

ci,µ〈φν |φµ〉 , (2.18)

where 〈φν |F̂KS|φi,µ〉 and 〈φν |φµ〉 are the matrix elements of the Kohn-Sham matrix and
overlap matrix, respectively. The size of these two matrices is determined by the number
of basis functions. Linear eigenvalue problems like this can then be efficiently solved
using highly optimized libraries [94, 95]. In this way, the solution of computationally
demanding partial differential equations can be avoided.

2.1.6 Exchange-Correlation Functionals

2.1.6.1 Overview

The exchange-correlation functional describes all unknown quantities in the Kohn-Sham
equations. As a consequence, an accurate approximation of the exchange-correlation
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functional is essential for practical applications of DFT. In the past few decades, the de-
velopment of exchange-correlation functionals has attract a great deal of attention and
several approximations have been developed.

In 2001, Perdew and Schmidt [96] presented Jacob’s ladder of density functional ap-
proximations. It classifies the accuracy of different approximations from no consideration
of exchange-correlation effects up to the goal of "chemical accuracy" with an energy ac-
curacy below 1 kcal/mol. Nowadays, generalized gradient approximations (GGAs) are
commonly used in DFT due to their appealing compromise between accuracy and com-
putational cost [97, 98].

2.1.6.2 Generalized Gradient Approximation

In the very early days of DFT, only the local density approximation (LDA) was used to
evaluate the exchange-correlation energy. It is based on the assumption that the density
varies slowly and the electron density can thus be approximated by a homogeneous elec-
tron gas. Hence, the LDA provides reasonable descriptions for metallic systems where
the electron density changes slowly. However, a well known problem of LDA is the over-
estimation of binding energies. Besides, the LDA only depends on the distribution of the
electron density (i.e., ρ(r)), which is insufficient to describe systems with rapidly varying
electron densities.

To overcome the limitations of LDA, Langreth and Perdew proposed the GGA for non-
uniform electronic systems [99] in 1980. Related works were reported in the following
years [100–102]. In the framework of GGA, the gradient of the electron density ∇ρ(r)
is introduced as an additional variable to approximate the exchange-correlation energy
density εxc:

EGGA
xc [ρ(r)] =

∫
εxc(ρ(r),∇ρ(r))ρ(r)dr . (2.19)

The exchange-correlation energy EGGA
xc [ρ(r)] can be further decomposed into exchange

and correlation contributions. Different approximations are based on the fitting of highly
accurate wavefunction methods [103, 104] for EGGA

x and EGGA
c . They show general im-

provements for describing bulk materials and biological molecules compared to LDA.
For instance, Perdew, Burke, and Ernzerhof proposed the PBE functional [105], which
is generally applicable to periodic and non-periodic systems. Becke, Lee, Yang and Parr
developed the BLYP functional [106, 107] that provides reliable descriptions for organic
molecules.

In conclusion, GGAs are considered standard functionals for electronic structure stud-
ies in numerous applications. Developments related to the improvement of accuracy of
GGAs are expected to continue in the coming years.
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2.1.7 Hirshfeld Charge Partitioning Scheme

The electron density is not only used to calculate the total energy and atomic forces of a
system, but also to investigate charge transfer processes. Its visualization provides useful
insight to understand and control chemical interactions [108]. However, direct visualiza-
tion of the electron density requires a large amount of data storage for all coefficients of
basis sets. Hence, it is not feasible for large systems containing thousands of electrons.

To characterize the distribution of the electron density over the whole system efficiently,
various charge partitioning schemes have been developed to extract atomic charges from
the electronic density. Many schemes such as Mulliken [109] and Löwdin [110] pop-
ulation analysis require the definition of atomic basis functions. However, choosing
different basis functions can yield considerably different partial charges on the same
atoms [111, 112]. In contrast, the Hirshfeld charge partitioning scheme [113] does not
rely on any basis set and it is computationally efficient. Therefore, Hirshfeld charges are
employed throughout this work.

Hirshfeld population analysis considers a reference molecule of non-interacting parti-
cles, the so-called promolecule. The total electron density of the promolecule at position
r is then defined as the sum of all free atom densities

ρtotal(r) =
Natoms

∑
i=1

ρi(r) , (2.20)

where ρi(r) represents a spherically averaged ground state free-atom density obtained
from DFT calculations. A weight function for each atom that describes their relative
share in the promolecule density is expressed as

wi(r) =
ρi(r)

∑
Natoms
i=1 ρi(r)

. (2.21)

The weight functions are all positive and their sum must be equal to one everywhere. It is
noteworthy that the free-atom electron density depends on the choice of functional used
in the DFT calculations. The density of the bonded atom i can be defined in a similar way

ρ
bonded
i (r) = wi(r)ρmol(r) , (2.22)

where ρmol(r) is the actual total electron density of the molecule. The total density is de-
composed into all bonded atomic densities according to their respective weight functions.
Finally, the partial charge on atom i is calculated by integrating over the bonded atomic
densities and subtracting the nuclear charge Zi

Qi = Zi−
∫

ρ
bonded
i (r)dr . (2.23)
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2.2 Neural Network Potentials

2.2.1 Second-Generation HDNNP

2.2.1.1 Overview

Fig. 2.1: Schematic diagram of a 2G-HDNNP for a binary system XNXYNY . Two sets
of element-specific atomic neural networks are used to predict the atomic en-
ergy contribution of the respective elements. Atom-centered symmetry functions
{Gi}, which describe the chemical environment within the cutoff sphere based
on atomic coordinates, serve as inputs for the atomic neural networks. The sum
of all atomic energy contributions Ei is equal to the short-range energy of the
system Eshort, which is equivalent to the total energy of a system based on the
approximation of locality. Reprinted (adapted) with permission from Ref. [79].
Copyright 2021 American Chemical Society.

Second-generation high-dimensional neural network potential (2G-HDNNP) [50] is the
first MLP, which can efficiently simulate thousands of atoms with excellent accuracy.
Fig. 2.1 shows the structure of a 2G-HDNNP for any binary system. 2G-HDNNPs are
based on the concept of locality. The short-range energy of the system is decomposed
into the sum of environment-dependent atomic energies:

Eshort =
Natoms

∑
i=1

Ei({Gi}) , (2.24)

where Ei is the atomic energy of atom i and Eshort denotes the short-range energy of
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the system, which accounts for all atomic interactions between atoms up to a given cutoff
radius. Each atomic contribution is calculated by an element-specific ANN and it depends
on a set of ACSFs {Gi}, which describe the local atomic environment of atom i. In this
expression, any system size can be handled by adapting the corresponding number of
ANNs.

2.2.1.2 Atom-Centered Symmetry Functions

One of the crucial components for the construction of HDNNPs is ACSFs, as they pro-
vide structural fingerprints of the atomic environment within a cutoff radius. A main
advantage of using ACSFs for the construction of HDNNPs is to ensure that the potential
energy of the system is invariant under the translation, the rotation, or the permutation of
the atoms. Several types of ACSFs have been developed to describe radial and angular
information within the local atomic environment. The most commonly used functional
forms of ACSFs are as follows:

Gradial,i =
Nneig

∑
j 6=i

e−η(Ri j−Rs)
2

fc(Ri j) , (2.25)

Gangular,i = 21−ζ

Nneig

∑
j,k 6=i

(1+λcosθi jk)
ζ e−η(R2

i j+R2
ik+R2

jk) fc(Ri j) fc(Rik) fc(R jk) . (2.26)

The radial symmetry function Gradial,i describes the coordination at various distances from
the central atom i and the angular symmetry function Gangular,i describes the angular dis-
tribution at various distances and angles from the central atom i. Notably, these are many-
body descriptors due to the fact that all two-body and three-body terms within the atomic
environment are considered. The parameter η controls the decay rate of the Gaussian
function. Rs shifts the center of the Gaussian functions by a certain radial distance. fc is
a cutoff function to ensure that the ACSF values and their derivatives smoothly decay to
zero at a cutoff radius Rc, which is typically set to 6-10 Å.

Two typical cutoff functions based on the cosine and the hyperbolic tangent are

fc(Ri j) =

{
1
2

[
cos
(

πRi j
Rc

)
+1
]

for Ri j 6 Rc

0 for Ri j > Rc
(2.27)

and

fc(Ri j) =

{
tanh3

(
1− Ri j

Rc

)
for Ri j 6 Rc

0 for Ri j > Rc .
(2.28)

More detailed information about the ACSFs and cutoff functions for constructing HDNNPs
can be found in the recent literature [16, 52]. These local structural fingerprints with a
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set of parameters λ , η and ζ , which provide a distinguishable representation of different
chemical environments, are then fed into ANNs to predict the atomic energy contribu-
tion. Fig. 2.2 shows the spatial shape of the ACSFs Gradial,i and Gangular,i with different
combinations of parameters.

Fig. 2.2: Radial and angular symmetry functions with different combinations of parame-
ters. Panel (a) and (b) show the Gradial,i for central atom i with one neighboring
atom only. Here a cosine cutoff function with Rc = 6 Å is used to ensure that
both radial symmetry functions smoothly decay to zero at Rc. Panel (c) and (d)
display the angular contributions of Gangular,i for a triplet system.

2.2.1.3 Architecture of Atomic Neural Networks

Apart from ACSFs, ANNs also play a central role in the construction of HDNNPs since
the functional relationship between atomic positions and the corresponding atomic energy
is expressed by ANNs. The number of ANNs that needs to be parameterized during
training depends on the number of chemical elements in the system. For instance, a
binary system with elements X and Y requires two different set of ACSFs and ANNs for
predicting the atomic contributions of the respective element. ANNs are feed-forward
neural networks (FFNNs) as depicted in Fig 2.3. FFNNs consists of an input layer, one
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Fig. 2.3: Schematic structure of an atomic neural network for element X. Each symmetry
function represents a single input neuron and this information passes through
two hidden layers that contain M hidden neurons, to the output layer yielding
atomic energy Ei. Every neuron in the adjacent layer is fully connected by the
weight as indicate in the solid line. w01

11 is the weight connecting the neuron GX
1

in layer 0 (input layer) with the neuron 1 in layer 1 (1st hidden layer). A set of
bias weight values {b} is connected to hidden neurons and an output neuron as
shown in dashed line. b1

1 is the bias value for the neuron 1 in the hidden layer 1.

or more hidden layers, and an output layer. Each layer in principle can have an arbitrary
number of nodes depending on the application.

In the case of ANNs, the input neurons correspond to ACSFs and the output neuron
represents the resulting atomic energy contribution. The nodes in the hidden layers have
no physical meaning but provide the non-linearity of the neural network in predicting
high-dimensional functions such as the PES. The flexibility of the functional relation be-
tween ACSFs and atomic energy contribution crucially depends on the number of hidden
layers and nodes per layer. Each neuron is fully connected to the neurons in the adjacent
layers by weights and information moves forward from the input layer, through the hid-
den layers, to the output layer in a single direction. In addition, a bias value is connected
to every neuron in the hidden layers and the output layer.
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The value of a node yl
j can then be calculated in the following way:

yl
j = f l

j

(
Nk

∑
i=1

yk
i wkl

i j +bl
j

)
. (2.29)

where f l
j is an activation function for neuron j in layer l. yk

i is the value of node i in layer
k = l−1 and wkl

i j is the weight connecting node i in layer k with node j in layer l. bl
j is the

bias value for neuron j in layer l. The value of a node j is calculated by summing over all
node values in the last layer k multiplied by the respective weights that connect with node
i. The activation function f l

j introduces the non-linearity into the model. The same type of
activation function is often used for all neurons in a layer. The common type of activation
functions for hidden layers in ANNs are chosen as the hyperbolic tangent or the sigmoid
function. The activation function for the output layer is chosen as a linear function to avoid
any boundary for the range of possible resulting atomic energy contributions predicted by
ANNs.

Nk is the number of neurons in layer k and typical number of hidden neurons for con-
structing PESs ranges from 15-40. The resulting atomic energies predicted by ANNs are
summed up to yield Eshort.

2.2.1.4 Force and Stress Calculations

In order to perform MD simulations, one needs to calculate the atomic forces and, pos-
sibly, the stress in a system. In 2G-HDNNPs, the short-range force contribution Fshort

k,α
acting on atom k along direction α = {x,y,z} with respect to coordinate Rk,α can be cal-
culated analytically using the following chain rules:

Fshort
k,α =−∂Eshort

∂Rk,α
=−

Natoms

∑
i=1

∂Ei

∂Rk,α
=−

Natoms

∑
i=1

Nsym,i

∑
j=1

∂Ei

∂Gi, j

∂Gi, j

∂Rk,α
, (2.30)

where Nsym,i represents the number of ACSFs describing atom i and Gi, j is the jth sym-
metry function of atom i. The first term, ∂Ei

∂Gi, j
can be obtained by the back-propagation

of the neural network, the second term ∂Gi, j
∂Rk,α

can be calculated from the expression of
the employed symmetry functions. The atomic forces depend on the atomic environment
with effectively two cutoff spheres, since the atomic forces acting on the central atom
are calculated from the sum of the atomic energies within its local environment and these
atomic energies also rely on their own local environment.

The expression of stress contribution of atom i to the static stress matrix σ static
i,αβ

is pro-
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vided in Ref. [16]:

σ
static
i,αβ

=
Natoms

∑
j=1

Ri j,αFj,β =−
Natoms

∑
k=1

Nsym,k

∑
ν=1

∂Ek

∂Gk,ν

Natoms

∑
j=1

Ri j,α
∂Gk,ν

∂R j,β
, (2.31)

where Ri j,α is defined as the difference of the Cartesian coordinate between atom i and
j along direction α , i.e., Ri j,α = Ri,α −R j,α . These equations enable the efficient cal-
culation of forces and stress tensors for performing MD simulations. Hence, HDNNPs
have become a useful tool for atomistic simulations since they can considerably extend
the time scale and the system size with linear scaling O(N), while their accuracy is in
good agreement with reference electronic structure calculations.

2.2.1.5 Modifications of Second-Generation HDNNP

In recent years, several attempts have been made to modify the ACSF for the construc-
tion of HDNNPs. For instance, generally applicable HDNNPs like ANI-1 [114], which
employs modified angular symmetry functions, have been reported for a wide range of or-
ganic molecules. Besides, Gastegger et al. proposed weighted atom-centered symmetry
functions (wACSFs) [115], which aim to overcome the undesirable scaling of the number
of ACSFs with the number of elements in the system. The general idea of wACSFs is to
introduce a set of element-dependent weight functions to modify the contribution of each
radial and angular term so that the wACSFs values are distinguishable for all element
types. In this way the number of ACSFs is independent of the number of elements in the
system.

In addition to the modifications of ACSFs, the element-specific ANNs have been re-
placed by a single universal ANN in combination with wACSFs for constructing a PES
for a system containing multiple chemical species [116]. In this model, the number of
atomic energy outputs depends on the number of elements in a system and all of them
share the same weights in the hidden layers, while the linear weights connected to the
output layer are element-specific. The expected outcome of this development is to in-
crease the transferability of the model to different data sets that contain different elements
by only training the linear weights in the output layer. Hence, the training time for the
construction of PES can be markedly reduced.

Still, due to the limited number of reported studies using these modifications of 2G-
HDNNP, their actual performance in terms of accuracy and efficiency remains unknown
since the flexibility of the model, which crucially depends on the quality of ACSFs and
the number of element-specific ANNs for constructing HDNNPs, is also reduced after the
dimensionality reduction. More detailed investigations of this direction are required in
the future.
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2.2.2 Third-Generation HDNNP

2.2.2.1 Overview

Fig. 2.4: Schematic diagram of a 3G-HDNNP for an arbitrary binary system. In addition
to the short-range energy calculated by a set of atomic neural networks (left) as
usual 2G-HDNNPs, another set of atomic neural networks (right) is trained to
predict environment-dependent charges Qi. These point charges are then used
to calculate the electrostatic energy without truncation according to Coulomb’s
law. The sum of the electrostatic energy Eelec and short-range energy Eshort is
equal to the total energy of the system. Reprinted (adapted) with permission
from Ref. [79]. Copyright 2021 American Chemical Society.

The 2G-HDNNP is currently one of the most commonly used MLPs and many suc-
cessful applications for a wide range of systems have been reported [117–120]. Still, 2G-
HDNNPs are unable to describe long-range interactions beyond the cutoff radius such as
electrostatics and dispersion interactions, which can play an important role in describing
many systems. A straight-forward solution is to assign fixed atomic charges depend-
ing on the element type and calculate the electrostatic energy explicitly using Coulomb’s
law. However, this approximation cannot be generalized to different chemical environ-
ments since the partial charges can vary according to the arrangement of atomic posi-
tions. Therefore, 2G-HDNNPs were extended to include long-range electrostatic interac-
tions, based on environment-dependent charges. This constitutes the third generation of
HDNNPs (3G-HDNNPs).

Fig. 2.4 shows the general structure of a 3G-HDNNP for a binary system. In addition to
the short-range energies obtained from a 2G-HDNNP, another set of ANNs is introduced
to predict environment-dependent charges, which are usually expressed as a function of
the same set of ACSFs used for the short-range ANNs. Thus, the total energy expression
of 3G-HDNNP consists of the short-range and the long-range electrostatic energy and it
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can be written as

Etotal = Eshort +Eelec

=
Natoms

∑
i=1

Ei({Gi})+
Natoms

∑
i> j

Qi({Gi})Q j({G j})
Ri j

, (2.32)

where Eelec is calculated by summing over all pairwise electrostatic interaction energies
between Qi and Q j using Coulomb’s law. Eshort is computed in the same way as in 2G-
HDNNPs. The corresponding force expression can be derived from the partial derivative
of the total energy with respect to coordinate Rk,α :

F total
k,α =− ∂Etotal

∂Rk,α

=−
Natoms

∑
i=1

Nsym,i

∑
j=1

∂Ei

∂Gi, j

∂Gi, j

∂Rk,α
−

Natoms

∑
i> j

QiQ j
∂

∂Rk,α

(
1

Ri j

)

−
Natoms

∑
i> j

1
Ri j

(
Qi

∂Q j

∂Rk,α
+Q j

∂Qi

∂Rk,α

)
. (2.33)

The first term in Eq. 2.33 is the short-range force contribution as in 2G-HDNNPs. The
second term is the typical Coulomb forces between two fixed point charges, while the
third term represents the force contribution due to the partial derivatives of the partial
charges on atom i and j with respect to the change of the atomic position Rk,α . These
partial derivatives can be calculated from the architecture of ANNs and the ACSFs using
the chain rule,

∂Qi

∂Rk,α
=

Nsym,i

∑
j=1

∂Qi

∂Gi, j
·

∂Gi, j

∂Rk,α
. (2.34)

It is noteworthy that the atomic charges only depend on the local atomic environment,
which fails to capture global changes in the electronic structure.

To train a 3G-HDNNP, the first step is to convert the atomic coordinates into ACSFs
which are fed into ANNs to determine the atomic charges as a function of the local chem-
ical environment. The ANN weights are adjusted during the training process to minimize
the error between the predicted and reference charges. In principle, any charge partition-
ing scheme can be used to obtain the reference charges. Once the ANNs are trained, the
electrostatic energy and forces can be calculated through Coulomb’s law.

The electrostatic energies and forces have to be removed from the reference calcula-
tions to obtain the remaining contribution for the training of the short-range part. In such
a manner, double counting of electrostatic contributions can be avoided. The two-step
sequential training is necessary because the electrostatic forces require the gradient of the
atomic charges with respect to the atomic positions. These quantities can only be obtained
from the trained ANNs, which are responsible for predicting charges.
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A major limitation of this approach is that the sum of the atomic charges predicted by
the ANNs is not guaranteed to equal the correct total charge of the system due to the lack
of any constraint. Therefore, a scaling treatment is needed in order to achieve charge
conservation:

Qi,scaled = Qi−
∑

Natoms
j=1 Q j−Qtotal

Natoms
, (2.35)

where Qtotal represents the total charge of the system. Qi,scaled is the scaled partial charge
of atom i using Eq. 2.35. In this way, the 3G-HDNNP can be chosen to construct on either
the unscaled or scaled charges since the target energies and forces for the training of the
short-range part depend on the electrostatic contributions calculated from the charges.

Except for long-range electrostatics, dispersion interactions also play a crucial role in
structural stability, catalysis and chemical reactivity [121]. These can be also taken into
account explicitly with the 2G-HDNNP framework. For instance, Morawietz and Behler
extended the 2G-HDNNP by including addition dispersion interactions for modelling bulk
liquid water [122]. The total energy expression is then written as:

Etotal = Eshort +Edisp , (2.36)

where Edisp is calculated using Grimme’s D3 method [77]. The reference energy without
dispersion corrections are reproduced by the usual 2G-HDNNP. The correction is then
directly added on top of the short-range energy predicted by the 2G-HDNNP. This is
analogous to applying an empirical correction to density functionals which fail to describe
dispersion interactions accurately.

2.2.2.2 Screening of Short-Range Electrostatics

When subtracting the long-range electrostatic energy from the reference data, one leaves
behind cusps in the remaining short-range part due to the large Coulomb interactions at a
very short distance Ri j. This deteriorates the accuracy of short-range fitting. A screening
function is introduced to address this problem, and the expression is given in the follow-
ing:

fscreen =


0 for Ri j < Rinner,s

1
2

(
1− cos

(
π(Ri j−Rinner,s)

Router,s

))
for Rinner,s < Ri j < Router,s

1 for Ri j > Router,s.

(2.37)

where Rinner,s and Router,s define the inner and outer cutoff radius that determine the range
of the screening function.
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The screened electrostatic energy of the system is given by

Eelec,screen =
Natoms

∑
i> j

QiQ j

Ri j
· fscreen . (2.38)

The corresponding screened electrostatic forces are obtained by taking the partial deriva-
tive of the screened electrostatic energy with respect to coordinate Rk,α

Felec,screen
k,α =

dEelec,screen

dRk,α
=−

Natoms

∑
i> j

QiQ j
∂

∂Rk,α

(
1

Ri j

)
fscreen

−
Natoms

∑
i> j

1
Ri j

(
Q j

∂Qi

∂Rk,α
+Qi

∂Q j

∂Rk,α

)
· fscreen

−
Natoms

∑
i> j

1
Ri j

QiQ j
∂ fscreen

∂Rk,α
. (2.39)

Notably, the screening of short-range electrostatics does not affect the total PES in gen-
eral, since the screened contributions are automatically covered by the remaining short-
range part. This ensures that the total energy of the system is conserved during sim-
ulations. Typically, the Router,s is chosen to be the cutoff radius of ACSFs so that all
interactions beyond the short-range part are considered as long-range electrostatics.

2.2.3 Charge Equilibration Using Neural Network Technique

Before starting the development of fourth-generation MLPs, some early attempts have
been made to describe long-range charge transfer. In 1991, Rappe and Goddard [83]
proposed the Qeq scheme to predict charge distributions of the system. The basic idea
of Qeq scheme is to distribute the charges in an optimal way to minimize the energy
expression

Etotal({Qi} ,{Ri}) =
Natoms

∑
i=1

(
E0

i +χiQi +
1
2

ηiQ2
i

)
+

1
2

∫∫
ρ(R)ρ(R′)
|R−R′|

dR dR′ . (2.40)

The Eq. 2.40 contains the second order Taylor expansion of the atomic energy as a func-
tion of the partial charges and Coulomb interactions. The constant term E0

i denotes the
energy of an isolated atom. The coefficient of the linear and quadratic terms is referred to
as the atomic electronegativity χi and hardness ηi, respectively, and the resulting charge
distribution depends on the atomic positions as well as these coefficients. The Qeq scheme
is ready to use once the electronegativities and hardnesses are parameterized from a set of
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Fig. 2.5: Architecture of a CENT for a binary system. Instead of directly predicting
atomic energies, the intermediate physical quantities, so-called electronegativ-
ities χi, as a function of atom-centered symmetry functions {Gi} are obtained
from atomic neural networks. These environment-dependent electronegativities
are then use to determine the global charge distributions with element dependent
hardness and width of Gaussian charge density according to charge equilibration
scheme. The total energy of the system is then computed from these equilibrated
charges Qi using Eq. 2.41. Reprinted (adapted) with permission from Ref. [79].
Copyright 2021 American Chemical Society.

reference calculations or experimental data.

Some modern empirical force fields such as COMB [123, 124] and ReaxFF [12] have
successfully employed this scheme to describe a variety of systems [125–129]. However,
these force fields are unable to provide an acceptable accuracy for describing charge trans-
fer in complicated systems since the electronegativity depends on the atomic environment
via simple analytical functions only.

In 2015, the first non-local fourth-generation MLP was proposed to overcome the lim-
itation of Qeq-based empirical force fields: the charge equilibration via neural network
technique (CENT) [82, 84]. Fig 2.5 shows the architecture of a CENT model for a binary
system. In CENT, the atomic electronegativities χi are assumed to be local environment-
dependent properties. The local atomic environments are represented by ACSFs, which
serves as inputs for ANNs yielding the electronegativities. This can provide much more
flexibility for the model to accurately describe long-range charge transfer and systems
with multiple charge states. CENT is conceptually equivalent to 2G-HDNNPs [50] whose
ANNs determine the environment-dependent energy contribution. This demonstrates the
flexibility of the ANN approach, which can further be generalized for predicting other

33



34 Chapter 2 Theoretical Background

local atomic physical properties such as partial charges, polarizabilities, and spins [130].

The CENT method was originally developed for describing ionic materials and there-
fore the total energy expression is the same as for the Qeq scheme in Eq. 2.40 and no
additional terms are needed. The charge density ρ(R) is represented by the Gaussian

ρi(R) =
Qi

α3
i π

3
2

exp
(
−|R−Ri|2

α2
i

)
,

where ρi(R) describes the electron density at atom i as a function of the distance between
R and atomic position Ri. αi controls the width of the Gaussian. This functional form
enables the straightforward calculation of the overlap of charge densities as the superpo-
sition of two Gaussians. The total energy of Eq. 2.40 for non-periodic systems can thus
be calculated analytically,

Etotal({Qi},{Ri}) =
Natoms

∑
i=1

(
E0

i +χiQi +
1
2

ηiQ2
i +

Q2
i√

2παi

)
+

Natoms

∑
i> j

QiQ j
erf(γi jRi j)

Ri j
, (2.41)

where γi j = (α2
i +α2

j )
− 1

2 and Ri j is the distance between atoms i and j. The Coulomb
interactions for periodic systems can be calculated using Ewald summation [131]. The
charge distribution can be obtained by taking the partial derivative of the total energy with
respect to the charge Qi and setting it equal to zero,

∂Etotal

∂Qi
= 0,∀i = 1, ..,Natoms =⇒

Natoms

∑
j=1

Ai jQ j +χi = 0 , (2.42)

where the elements of the matrix A are given by

Ai j =

ηi +
√

2√
παi

if i = j
erf(γi jRi j)

Ri j
otherwise

. (2.43)

A (Natoms +1) by (Natoms +1) system of linear equations is constructed by including the
constraint that the sum over all atomic charges must be equal to the total charge Qtotal, via
introducing a Lagrange multiplier λ , A

1
...
1

1 . . . 1 0




Q1
...

QNatoms

λ

=


−χ1

...
−χNatoms

Qtotal

 (2.44)
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where Natoms represents the number of atoms. The redistributed charges can be calculated
by solving this system of linear equations. CENT has been successfully applied to both
neutral and charged ionic systems with nearly ab-initio accuracy [82]. Furthermore, the
excellent transferability of CENT has been demonstrated for completely new structure
predictions of materials like transitional metal oxides [132, 133].

In CENT, the force acting on atom k with respect to coordinate Rk,α is given by

F total
k,α =−∂Etotal

∂Rk,α
−

Natoms

∑
i=1

∂Etotal

∂Qi

∂Qi

∂Rk,α
. (2.45)

Here the second term vanishes as required by Eq. 2.42. Therefore the calculation of
the partial derivatives ∂Qi

∂Rk,α
is not needed, which avoids solving many systems of linear

equations. This is similar to the use of the Hellmann-Feynman theorem in standard DFT,
which states that the derivative of the electron density with respect to the atomic positions
is not required. As a result, only the first term of the equation has to be expanded and the
formula becomes

F total
k,α =−

Natoms

∑
i=1

(
Qi

∂ χi

∂Rk,α

)
+

Natoms

∑
i> j

QiQ j
∂

∂Rk,α

(
erf
(
γi jRi j

)
Ri j

)
, (2.46)

where the partial derivatives of the electronegativities with respect to the atomic positions
can be obtained from the architecture of the ANNs and the employed ACSFs. The first
term describes the force exerted on atom k due to the local charge distribution around
this atom. The second term represents the force contribution arising from the electro-
static energy of the global charge distribution excluding the self-interaction of Gaussian
charges.

In the training stage of CENT, the neural network weights are adjusted such that the
error of total energy with respect to reference methods is minimized. This means that the
value of the resulting atomic charges obtained from the charge equilibration scheme does
not have a physical meaning.

2.2.4 Short Summary

2G-HDNNPs [50] provide a very flexible functional form for describing atomic energies
as a function of the local chemical environment. The model is generally applicable to
any type of chemical bonding such as ionic, metallic and covalent bonds. However, 2G-
HDNNPs are unable to describe long-range electrostatic interactions beyond the cutoff
radius.

The 3G-HDNNP [72] method overcomes the limitation of 2G-HDNNPs by introduc-
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ing flexible environment-dependent charges predicted by another set of ANNs. These
charges are used to calculate long-range electrostatic interactions without truncation. Still,
3G-HDNNPs cannot describe non-local effects caused by long-range charge transfer and
cannot account for multiple charge states. In addition, the sum of the atomic charges is
not guaranteed to agree with the correct total charge of the system.

All these remaining problems can be addressed by fourth-generation machine learning
potentials such as CENT [82], which is based on a charge equilibration scheme to capture
the global charge distribution due to the change of the electronic structure. Despite the
capability of describing non-local effects, CENT is less accurate when modelling mixed
ionic-covalent interactions due to a lack of accurate description for covalent contributions
in the total energy expression. It is expected that such systems can be accurately described
by combining both the advantages of 2G-HDNNPs and CENT.

2.3 Molecular Dynamics Simulations

2.3.1 Overview

Molecular dynamics (MD) simulations are a computational tool for investigating the
structural and dynamic properties of molecules and bulk materials by analyzing their mo-
tion. The basic idea of MD simulations is to predict the motion of the system during
time evolution by solving the classical Newtonian equations of motion, which is based
on the assumption that all nucleus are considered as classical particles. This problem in-
volves solving a system of Natoms coupled second order non-linear differential equations.
It can be only solved numerically by discretizing the trajectory and using an integrator to
propagate over small time steps. Commonly used integrators include the velocity Verlet
algorithm,[134] the leapfrog algorithm [135], and predictor-correctors algorithms [136].

The reliability of the simulation results relies on an accurate description of the atomic
interactions provided by the chosen method for energy and force calculations such as DFT
or empirical force fields. In this section, two popular approaches for performing MD
simulations that have been applied in this work are introduced. Other technical details
of molecular dynamics simulations such as propagators and ensembles can be found in
the literature [136]. In addition, the minima hopping algorithm [137], which aims to
search the minimum on the PES based on MD simulations, employed in this work is also
presented.
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2.3.2 Born-Oppenheimer Molecular Dynamics

The position and velocity of nuclei are determined by Newton’s equation of motion

Fk =−
∂Etotal

∂Rk
= mkR̈k, (2.47)

where the mk and R̈k denote the mass and acceleration of nucleus k, respectively. The
force acting on nucleus k, which is equal to the negative partial derivative of the total
energy with respect to the atomic positions −∂Etotal

∂Rk
, can be calculated using DFT based

on the Born-Oppenheimer approximation.

The concept of Born-Oppenheimer molecular dynamics (BOMD) is to solve the static
electronic structure problem under the Born-Oppenheimer approximation at every time
step given that the position of nuclei are fixed. Hence, the time-independent Schrödinger
equation has to be solved. The forces acting on nuclei due to the electron-nucleus and
nucleus-nucleus interactions can be calculated using the Hellmann-Feynman theorem.
The theorem states that the partial derivative of the total energy withe respect to a param-
eter λ is equal to the expectation value of the derivative of the Hamiltonian with respect
to the same parameter. This can be derived in the following way:

∂Etotal

∂λ
=

∂ 〈Ψ|Ĥ|Ψ〉
∂λ

= 〈∂Ψ

∂λ
|Ĥ|Ψ〉+ 〈Ψ|∂ Ĥ

∂λ
|Ψ〉+ 〈Ψ|Ĥ|∂Ψ

∂λ
〉 . (2.48)

When Ψ is an eigenstate, the Eq. 2.48 can be rewritten as:

∂Etotal

∂λ
= Etotal〈

∂Ψ

∂λ
|Ψ〉+Etotal〈Ψ|

∂Ψ

∂λ
〉+ 〈Ψ|∂ Ĥ

∂λ
|Ψ〉 . (2.49)

The first two terms vanish since the partial derivative of the overlap of a wavefunction
with itself is equal to zero given the identity of normalized wavefunctions.

The force calculations are analogous to Eq. 2.49, which is now the partial derivative
of Etotal with respect to Rk,α and assuming that the nuclei are classical particles with the
corresponding mass mi. The position of nuclei can be updated by solving the equations
of motion

miR̈k =−〈Ψ|
∂ Ĥ
∂Rk
|Ψ〉 . (2.50)

The basic flow chart of BOMD simulations is given in Fig. 2.6. First, the atomic po-
sitions and velocities are initialized. The velocities are usually randomly assigned on
each atom according to the Maxwell-Boltzmann distribution, which provides a reason-
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Fig. 2.6: Workflow of Born-Oppenheimer molecular dynamics.

able starting point for BOMD simulations at a given temperature. The process of the
BOMD begins with setting the initial electron density and external potential for the con-
struction of the Kohn-Sham equations. The ground state energy of the system is obtained
after the SCF procedure. The corresponding atomic forces are then calculated using the
Hellmann-Feynman theorem. Next, the nuclear positions and velocities can be updated
based on the atomic forces according to the equation of motion with a numerical integra-
tion scheme. Additional constraints like thermostats or barostats can be imposed on the
system depending on the given ensemble. These processes are repeating until the desired
number of time steps have been performed.

In practice, most BOMD simulations are performed on a ground state PES. Although
the BOMD provides a reliable description for a wide range of systems, it is computation-
ally very demanding to compute forces on the fly from electronic structure calculations
and therefore this prevents the investigation of various interesting phenomena.

2.3.3 Classical Molecular Dynamics

Classical molecular dynamics are driven by empirical force fields. Instead of solving the
electronic structure problem on the fly for the force calculations, empirical force fields
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provide a direct mapping from atomic positions and possible charges to the corresponding
potential energy of a system. Depending on the functional form of force fields, the atomic
forces can be derived analytically using Eq. 2.47. Therefore, they can be used to study
very large systems at significantly reduced computational cost.

Most computationally efficient empirical force fields can be expressed as a sum of
bonded and non-bonded interaction terms. The former term can be described by simple
analytical functions of the bond lengths, angles and dihedrals torsion between atoms. The
non-bonded interactions include long-range pairwise electrostatic and dispersion interac-
tions, based on Coulomb’s law and Lennard-Jones potentials. Such force fields are able
to simulate systems up to hundreds of thousands of atoms. Many interesting applications
such as the exploration of folding dynamics and other biophysical processes [138] as well
as the investigation of phase transitions and surface reconstructions [139, 140] have been
reported.

The workflow of classical molecular dynamics is the same as for BOMD except that the
whole SCF procedure including the initialization during every time step is not required.
However, the accuracy of force fields is limited by their simple functional form. Hence,
the reliability of the properties that are obtained from MD simulations is limited by the
accuracy of the underlying force fields. Nowadays, MLPs have become an alternative
tool to perform large-scale MD simulations since they are significantly more accurate
than modern empirical force fields with comparable efficiency.

2.3.4 Minima Hopping

A useful application of molecular dynamic simulations is minima hopping [137, 141],
which aims to find the global minimum of the PES of complex systems. Finding their
ground state structure is usually very computationally expensive, since the number of
local minima increases exponentially with number of atoms [137]. In addition, the sys-
tem often needs to go through a great deal of intermediate local minima, which requires
overcoming high energy barriers.

In many studies, Monte Carlo based algorithms[142, 143] are employed for global op-
timization problems. However, these schemes tend to revisit neighboring configurations
that are close in energy. Hence, the simulations can keep jumping back and forth between
two configurations if crossing high energy barriers is required to reach other configura-
tions. All these limitations can be overcome by minima hopping, which limits repeated
visits by performing escape trials at a higher temperature for already visited minima.

The minima hopping algorithm depends on the parameters αr, αa, βn, βs, βo, Ediff. The
first five parameters control the temperatures for performing MD simulations according
to the kinetic energy Ekin. βs and αr are set to be larger than 1.0 and other parameters
are set to below 1.0. The last parameter Ediff determines whether the escaped minimum is
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Fig. 2.7: Flowchart of the minima hopping algorithm [137].

accepted or rejected.

The flowchart of the algorithm is given in Fig. 2.7. The simulation starts by the escape
trial. The current minimum is used to perform molecular dynamic simulations at given
temperature Ekin for a certain number of time steps. The geometry at the end of the
MD run is then relaxed to the closest minimum on the PES. These procedures repeat
with increased temperature by multiplying a factor of βs until the current minimum is
escaped. The new minimum M is considered to be accepted if Ediff is larger than the
energy difference between the current minimum and the last minimum (E(M)−E(Mold)).
Then the Ediff is decreased by multiplying a factor of αa. Otherwise, the minimum is
rejected and the Ediff is increased by multiplying a factor of αr. If the current minimum
has already been found in the past, the temperature is increased by multiplying a factor

40



2.3 Molecular Dynamics Simulations 41

of βo. Otherwise, the minimum is added to the history and the temperature is reduced by
multiplying βn. The whole loop is completed when the target number of found minima is
reached or the simulation becomes unstable due to ever increasing escape temperatures.

The choice of parameter values affects the overall performance of the algorithm. The
global minimum is found faster with larger values. However, some cases the ground state
structure can be missed. Detailed information about the minima hopping can be found in
Ref. [137]. The reliability of minima, which are obtained by minima hopping, depends
on the accuracy of the PES. MLPs are tailor-made for running such simulations, since
they provide excellent accuracy and are computationally efficient for modeling large-scale
systems at numerous number of time steps. Many applications based on minima hopping
algorithm driven by MLPs for structure prediction have been reported in recent years [133,
144, 145].
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Chapter 3

Computational Details

3.1 Overview

The capabilities of 4G-HDNNP are demonstrated on benchmark systems as diverse as
a long linear carbon chain (C10H2/C10H+

3 ), a small silver trimer (Ag+3 /Ag−3 ), a sodium
chloride cluster fragment (Na8Cl+8 / Na9Cl+8 ) and a magnesium oxide surface-supported
gold dimer with or without Al doping (Au2-MgO/Al-doped Au2-MgO). The data set of
sodium chloride and a gold dimer on a magnesium oxide slab were generated by Jonas
Finkler.

Apart from that, the considerable improvement obtained from the ee4G-HDNNP model
when compared to 4G-HDNNPs is revealed on a data set containing both neutral and neg-
atively charged sodium chloride clusters with large structural diversity. In this chapter, the
computational details for the generation of reference data sets, construction of HDNNPs
and settings of the minima hopping algorithm driven by the ee4G-HDNNP are presented.

3.2 Reference Data Generation

All DFT data points were generated using the electronic structure code Fritz Haber Insti-
tute ab initio molecular simulations package (FHI-aims) [146], which is an all-electron,
full-potential electronic structure code for simulating bulk systems and molecules. The
code supports DFT calculations including semi-local and hybrid functionals based on
atom-centered basis functions.

The PBE exchange-correlation functional was used to take electron exchange and cor-
relation interaction into account. The "light" setting of basis sets and integration grid
density were applied to all testing systems. The SCF convergence criteria including
the charge density, sum of eigenvalues and the total energy for all systems except Au2-
MgO/Al-doped Au2-MgO, were set to 10−4 eV, 10−2 e, and 10−5 eV, respectively. A
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tighter convergence for the Au2-MgO/Al-doped Au2-MgO system was applied by multi-
plying each criterion used for the other systems by a factor of 0.1 Furthermore, a 3×3×1
k-space integration grid was employed to evenly distributed along the three reciprocal
lattice axis of the first Brillouin zone.

A treatment of spin collinearity was taken into account for the Ag3, NaCl and Au2-
MgO systems. The zero-order regular approximation (ZORA) [147] was used to take rel-
ativistic effects into account for all elements heavier than 20 u. Reference atomic charges
were integrated using the Hirshfeld charge partitioning scheme [113]. The DFT-based ge-
ometry optimizations were performed using Broyden-Fletcher-Goldfarb-Shanno (BFGS)
algorithm [148]. A Nosé-Hoover thermostat was applied to all BOMD simulations under
the canonical (NVT) ensemble [149], and the thermostat parameter was set to 1700 cm-1.

The data sets of C10H2/C10H+
3 and Ag+3 /Ag−3 were constructed by performing BOMD

simulations for each system at 300 K with 5000 time steps. The step size for numerically
integrating the equations of motion was chosen to be 0.5 fs. The initial structure of the
system for MD simulations was obtained by geometry optimization. The structures gen-
erated at each step of the geometry relaxation, which employed a force threshold of 0.001
eV/Å, were also added to the data set in order to make sure that the region close to the
equilibrium structure had been well sampled. The geometry optimization of the Ag−3 was
terminated when reaching forces below 0.0015 eV/Å

The data set of Na8Cl+8 /Na9Cl+8 clusters was constructed based on the optimized Na9Cl+8
displayed in Fig. 4.10 and the structure with the brown sodium atom removed. Each sys-
tem was used to generate half of the data points. These data points were generated by
performing a random sampling along the moving direction shown in Fig. 4.10 and further
displacement was added according to a Gaussian distribution with a standard deviation of
0.05 Å to sufficiently sample the PES in the region of interest.

For the data set of Au2-MgO/Al-doped Au2-MgO, there are two different optimized
geometries of the Au2 on the unrelaxed ideal MgO and the Al-doped MgO slabs. These
geometries are separated into wetting and non-wetting configurations as illustrated in
Fig. 4.14. This way, a total of four different geometries can be obtained by permuting
the wetting and non-wetting geometries of the Au dimer with the unrelaxed Al-doped and
undpoped MgO surfaces. The data generation for each geometry is similar to the NaCl
system and the standard deviation for the substrate and gold dimer were chosen to be 0.02
Å and 0.1 Å, respectively. The total number of data points for the NaCl cluster and Au2-
MgO system is 5000 while the carbon chain and Ag trimer contain 10019 and 11013 data
points, respectively.

The data set for demonstrating the improvement achieved by the ee4G-HDNNP con-
sists of NanCln/NanCl−n+1 with n = 16,24 and the generation of the data set is divided
into two stages. The first stage was to generate high energy structures by performing
BOMD simulations in the NVT ensemble for 10 structures with n = 16 and 5 structures
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with n = 24 per each charge state at 1000 K with 5000 steps and one trajectory snap-
shot was taken every five time steps and included in the data set. The step size for all
BOMD simulations was set to 1.0 fs. All these initial structures provided by Prof. Dr.
Stefan Goedecker were obtained from minima hopping using BigDFT [150] and then re-
optimized with FHIaims up to the force threshold of 0.01 eV/Å. Apart from that, the
trajectory paths during the geometry relaxation were also added to the data set to have
configurations close to the equilibrium structures.

The second stage was to explore the extrapolated structures that were not well sampled
in the low temperature region by running MD simulations driven by the preliminary PES
with a time step of 0.5 fs to achieve relatively stable MD simulations. Moreover, initial
minimum geometries were generated from the Coulomb Lennard Jones empirical force
field [151] using the ABCluster program [152], which performs global optimization of
clusters based on the artificial bee colony algorithm [153]. Consecutively, these struc-
tures were optimized with the preliminary HDNNP. If the optimized geometry exhibits a
large structural deviation indicated by performing not less than 10 geometry optimization
steps when subjecting the HDNNP-optimized structures to DFT-optimized geometries,
the structures will be also included in the data set. The total number of data points includ-
ing both stages is 33592.

3.3 Construction of Neural Network Potentials

All HDNNPs reported in this thesis were constructed using the neural network potential
package RuNNer [154–156]. ACSFs were utilized to describe the atomic environment
within a cutoff radius, which was set to 8-12 Bohr depending on the system. The same
parameters of the ACSFs and the same ANN architectures for a given system were applied
to construct different generations of HDNNPs for a fair comparison. The cutoff function
is chosen to be the hyperbolic tangent (see Eq. 2.28) and the functional form of radial and
angular symmetry functions is given in Eq. 2.25 and Eq. 2.26, respectively. The values of
ACSFs are scaled and centered by the following expression:

G′i =
Gi−Gi,mean

Gi,max−Gi,min
, (3.1)

where Gi,max and Gi,min denote the maximum and minimum value of Gi given in the
training set. Gi,mean is the average of all values of Gi calculated in the training set. Such
treatment prevents extreme input values for the forward propagation in the ANNs, which
improves the quality of the fit. The parameters and cutoff radii of the ACSFs for all
systems are provided in the Appendix, Sec. A.1.

The ANNs used in all testing systems are composed of an input layer with a number
of nodes equal to the number of ACSFs with possible other descriptors for the respective
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element depending on the generations of HDNNPs, two hidden layers with 15 hidden
neurons for each layer, and an output layer with an output neuron, which is either the
atomic energy or the electronegativity. 90% of the reference data was taken for training
the HDNNPs, while the remaining 10% of the data points were used as an independent
test set to validate the reliability of the constructed PESs and identify possible over-fitting.
Both energies and forces were used for the training of short-range ANNs. To accelerate
the process of the training, only 2.5 % of the force component were randomly chosen in
each epoch for training.

Furthermore, short-range Coulombic interactions were screened using Eq. 2.37 to fa-
cilitate the fitting of the short-range energies and forces. The inner spatial cutoff that
removes all electrostatic interactions was set to 1.69-2.54 Å depending on the model sys-
tem while the outer spatial cutoff that takes the full electrostatic contributions into account
was set to the cutoff radius used in ACSFs respectively.

The ANN weights were first randomly initialized between −1.0 and 1.0, then further
optimized employing the Nguyen-Widrow scheme [157] to ensure that there were no
unrealistically large values to mitigate the risk of an exploding gradient during training.
In addition, the initial error of the potentials was reduced by a preconditioning scheme,
which adjusted the weights connected between the last hidden layer and the output layer
so that the initial model predicted the same average and standard deviation of the atomic
energies as calculated from the training set. Such treatment for the initialization of the
weights was essential to provide a good starting point for searching the minimum of the
high-dimensional loss function during the optimizations, which could significantly reduce
the fitting error.

The weights of all ANNs were adjusted to minimize the error of training energies,
forces and charges using the global, adaptive, extended Kalman filter. The parameters of
the Kalman Filter were set to λ = 0.98 and ν = 0.9987. The early stopping algorithm
was applied to detect the overfitting of the potentials by observing the error in the test
set, which slightly increase after already reaching a minimum while the error of training
error is further reduced after certain training epochs. All details of the training process
and validation strategies for constructing HDNNPs in general can be found in recent re-
views [155, 156].

3.4 Settings of Minima Hopping

The parameters for minima hopping explained in Sec. 2.3.4 were set to α1 = 0.9,α2 =
1.1,β1 = 1.1,β2 = 1.1,β3 = 0.909, and Ediff = 2× 10−3 Ha. Some modifications for
the algorithm were made in order to increase the stability of the simulations. The safety
threshold for high temperature was set to 1000 K. If the temperature is higher than the
safety threshold and new minima are not found, the number of time steps is increased by
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a factor of 2 until the number of time step is larger than the maximum of number of time
steps nmax = 6400. The temperature is increased after n > nmax if no minimum can be
found. Apart from that, the possibility that minima are accepted is increased by taking the
absolute value of the energy difference between the current minimum and past minimum
and comparing to the acceptance threshold Ediff.

Such modifications can effectively avoid unrealistically high temperatures during the
MD simulations in the microcanonical (NVE) ensemble, to prevent the collapse of clus-
ters caused by the excessively large repulsive forces. Moreover, the minimum temperature
and number of time step were set to 500 K and 100 during the simulation to make the sim-
ulations more efficient. Once a minimum is accepted, the temperature and number of time
steps are reduced by a factor of 0.5 if the temperature is above the safety threshold and the
number of time steps is greater than the initial number of time step. The initial number of
time step and temperature during the MD simulations were 100 and 100K, respectively.
A smaller step size of 0.5 fs was used for performing stable MD simulations. The force
threshold for the geometry relaxation was set to 0.01 eV/Å after MD simulations. All
geometry optimizations driven by HDNNPs were performed using a gradient descent al-
gorithm. Softening of velocities was used to ensure that the structure tends to go towards
low-curvature directions in PESs. The softening parameters d and α were set to 0.1 and
0.015, respectively. The number of iterations for softening was 40 and more detailed
information on velocity softening can be found in Ref. [158].
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Chapter 4

Fourth-Generation HDNNP

4.1 Method

After giving a concise overview of 2G-HDNNP, 3G-HDNNP and CENT including their
strengths and limitations in chapter 2, a novel model, namely the fourth-generation high-
dimensional neural network potential (4G-HDNNP) [34], is proposed. The model is in-
spired by combining the flexible short-range energy in 2G-HDNNP, and the accurate de-
scription of global charge distributions in CENT with two essential modifications. First,
the training part in CENT is reformulated so that the predicted atomic charges are physi-
cal and these charges are used to calculate the electrostatic energies and forces. Second,
the architecture of short-range ANNs in 2G-HDNNP is modified such that the model can
include additional information, i.e., the atomic charges, to describe non-local effects.

The 4G-HDNNP is able to capture long-range charge transfer and describe local bond-
ing due to the global changes in the electronic structure. This novel method is generally
applicable to both ionic and covalent systems. The 4G-HDNNP is a two-step approach,
which consists of two different sets of ANNs for the non-local long-range electrostatic
part and the short-range part, respectively. These two sets of ANNs are used to calcu-
late electrostatic Eelec and short-range Eshort contributions, yielding the total energy of the
system liked in 3G-HDNNPs (i.e., Etotal = Eelec +Eshort). The general structure of a 4G-
HDNNP for a binary system is shown in Fig. 4.1. The framework and technical details of
the 4G-HDNNP are presented in the following subsections.

4.1.1 Non-Local Long-Range Electrostatic Part

4.1.1.1 Charge and Energy Calculations

The goal of the non-local electrostatic part is to reproduce the reference charges through
a charge equlibration (Qeq) scheme that relies on environment-dependent atomic elec-
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Fig. 4.1: A schematic structure of a 4G-HDNNP for a binary system containing NX atoms
of element X and NY of element Y. In the long-range electrostatic part, a set
of Cartesian coordinates Ri is transformed into atom-centered symmetry func-
tions {Gi}, which serves as input for atomic neural networks (right) to predict
environment-dependent electronegativities χi. The partial charges Qi are then
calculated according to a charge equilibration scheme. Theses charges are used
to compute the long-range electrostatic energy Eelec. In the short-range part,
not only symmetry functions {Gi} but also atomic charges Qi are fed into the
atomic neural networks (left) to determine the short-range atomic energies Ei.
The structure of 4G-HDNNP and corresponding implementations are jointly de-
veloped with Jonas Finkler. Reprinted (adapted) with permission from Ref. [79].
Copyright 2021 American Chemical Society.

tronegativies. In this case, the electronegativities are trained such that the partial charges
are redistributed in an optimal way to reproduce reference charges according to the Qeq
scheme. The Qeq scheme redistributes the atomic charges by minimizing the following
energy expression with respect to atomic charges

EQeq = Eelec +
Natoms

∑
i=1

(
χiQi +

1
2

ηiQ2
i

)
, (4.1)
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where Eelec is the electrostatic energy calculated using Gaussian charges and ηi represents
the element-dependent hardness. It is noted that ηi is independent of the local environ-
ment and is also optimized for each element during the training. The atomic electroneg-
ativities χi are assumed to be local physical properties that are expressed as a function
of the chemical environment using ANNs. The atomic environments are represented by
ACSFs to ensure that the resulting electronegativities are invariant under translation, ro-
tation, and permutation of the atoms. The expression for the electrostatic energy Eelec
differs for periodic and non-periodic systems as presented in the following subsections.

Non-Periodic Systems

The long-range electrostatic energy in 3G-HDNNPs is calculated using point charges.
Due to the function form of 1

r , the electrostatic interaction becomes unrealistically large,
when two charged atoms move closer. To address this problem in the framework of 4G-
HDNNPs, the charge densities are assumed to be Gaussian distributed. The general ex-
pression for the electrostatic energy of a non-periodic system based on Gaussian charges
is given by Coulomb’s law as

Eelec =
Natoms

∑
i> j

erf
(

Ri j√
2γi j

)
Ri j

QiQ j +
Natoms

∑
i=1

Q2
i

2σi
√

π
with γi j =

√
σ2

i +σ2
j , (4.2)

where the first term represents the pairwise electrostatic interactions between the Gaussian
charge on atom i and j. The second term is the self-interaction of the Gaussian charge
densities. Here σi denotes the element-dependent width of the Gaussian charge densities,
which were set to the corresponding covalent radii for all potentials reported in this thesis.
In this way, the problem of unrealistically large electrostatic energy can be alleviated by
the error function in Eq. 4.2.

The implicit dependence of Qi can be obtained by minimizing the energy expression of
Eq. 4.1 with respect to the atomic charges Qi under the constraint that the sum of all partial
charges must be equal to the total charge of the system. This constrained minimization
problem can be solved by applying a Lagrange multiplier λ

L({Qi},λ ) = EQeq−λ

(
Qtotal−

Natoms

∑
i=1

Qi

)
(4.3)

and by setting the partial derivative ∂L
∂Qi

= 0,

∂L

∂Qi
= 0,∀i = 1, ..,Natoms =⇒

Natoms

∑
j=1

Ai jQ j +χi +λ = 0 , (4.4)
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where the corresponding elements Ai j of a Natoms by Natoms matrix A are given by:

Ai j =


ηi +

1
σi
√

π
, if i = j

erf
(

Ri j√
2γi j

)
Ri j

, otherwise .

(4.5)

With this constraint, the equilibrated charges can be obtained by solving the following set
of linear equations: A

1
...
1

1 . . . 1 0




Q1
...

QNatoms

λ

=


−χ1

...
−χNatoms

Qtotal

 . (4.6)

In principle, solving a set of linear equations scales O(N3) with the number of atoms in
standard algorithms. Although this still can be efficiently solved for systems containing
up to around 10,000 atoms in a few seconds with highly optimized libraries such as La-
pack [94] or ScaLAPACK [95], it can pose a bottle neck for much larger systems. Efficient
iterative solvers [159] have been proposed to significantly reduce the computational time
for solving such systems of linear equations by applying incomplete factorization and
sparse inverse (SAI) preconditioners [160]. The detailed difference of charge calculations
between CENT and 4G-HDNNP is given in the last part of Sec. 4.1.1.1.

Periodic Systems

The charge calculations for periodic systems based on the Qeq scheme is similar to the
non-periodic case. The main difference between them is the calculation of the matrix A.
In the periodic case, the Ewald Summation [131] is used to calculate Eelec. The general
idea of the Ewald Summation is to place the Gaussian distributed charge density of the
opposite sign on each point charge. The remaining electrostatic energy is calculated in real
space Ereal. In order to obtain the desired total energy of the point charges, the electrostatic
energy of the compensated Gaussian charge density of the same sign is also included,
which can be efficiently computed in reciprocal space Erecip using Fourier transform. An
extra term Eself is needed to cancel the self-interaction of the Gaussian charge density.
In this way, the calculation of a conditionally convergent direct summation of 1

r can be
replaced by just calculating two rapidly convergent summations and a constant term. The
energy expression of the point charges Epc,elec is written as:

Epc,elec = Ereal +Erecip +Eself (4.7)

54



4.1 Method 55

with

Ereal =
1
2 ∑

n

Natoms

∑
i=1

Natoms

∑
j=1

′QiQ j

erfc
(
|Ri j+nL|√

2β

)
|Ri j +nL|

,

Erecip =
2π

V ∑
k6=0

e

(
−−β2|k|2

2

)
|k|2

|S (k) |2 with S (k) =
Natoms

∑
i=1

Qieik·ri ,

Eself =−
Natoms

∑
i=1

Q2
i√

2πβ
.

Here, β defines the width of Gaussian charge density, which controls the convergence of
the two summations in the real and reciprocal space. V and L represent the volume and a
set of lattice vectors of the unit cell, respectively. The symbol ′ means that the term j = i
in the summation is not included if and only if n = 0. The vectors n create a series of
replicated unit cells along the x, y and z-direction. k is a set of reciprocal lattice vectors.

Ereal is computed by summing the pairwise electrostatic contribution over other atoms
for the atom i within the spatial cutoff in real space. Erecip is calculated by summing
over all reciprocal lattice points within the cutoff of the reciprocal space represented by
reciprocal lattice vector k, which can be written as a linear combination of three primitive
translational reciprocal lattice vectors. Eself is obtained by solving the Poisson equation
for a Gaussian charge density centered at the origin of each point charge. Detailed devia-
tions of the Ewald Summation can be found in the literature [131, 161].

The convergence of the Ewald summation mainly relies on three parameters including
β , Rc,real and Rc,recip. The last two terms denote the cutoff used in real and reciprocal
spaces, which determine the maximum number of replicated image cells in each space.
Typically, the Ewald summation scales O(N2) with the number of atoms N and therefore
can be very computationally intensive when a system contains more than a few thousand
atoms. Still, the computational scaling can be reduced to O(N1.5) by choosing an optimal
setting of β , Rc,real and Rc,recip [162] and the parameter values are given by the following
equations:

β =

(
(V 2/Natoms)

1
6

√
2π

)
,

Rc,real =
√

2β
√
− logεprec ,

Rc,recip =

√
2
√
− logεprec

β
.

(4.8)

Here, the V denotes the volume of the unit cell and εprec defines the convergence of
the sum, which is typically set to 10−6. Apart from the standard Ewald summation,
other much more efficient algorithms such as the fast multipole [163] and particle mesh
Ewald [164] have been developed. These algorithms scale O(NlogN) with the number of
atoms N, which significantly reduces the computational time in comparison with standard
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Ewald summation, but these methods have not been used in the present work.

The Ewald summation of point charges is easily extended to Gaussian distributed
charges by adding the following terms which account for the different interactions in
the real space part and express the self-interaction of Gaussian charges [165],

EGauss,elec = Epc,elec−
1
2

Natoms

∑
i=1

Natoms

∑
j=1
′QiQ j

erfc
(
|Ri j+nL|√

2γi j

)
|Ri j +nL|

+
Natoms

∑
i=1

Q2
i

2
√

πσi
. (4.9)

By following the same procedure to calculate the equilibrated charges by minimizing EQeq
with respect to Qi that was presented for non-periodic systems, a set of linear equations
like Eq. 4.6 are established. The difference lies in the matrix elements Ai j, which are
given by:

Ai j =


ηi +

(
−
√

2√
πβ

+ 1
σi
√

π

)
+ 4π

V ∑k6=0
e−
−β2|k|2

2

|k|2 +∑n

(
erfc
(
|nL|√

2β

)
−erfc

(
|nL|
2σi

)
|nL|

)
, if i = j

∑n

erfc
(
|Ri j+nL|
√

2β

)
−erfc

(
|Ri j+nL|
√

2γi j

)
|Ri j+nL| + 4π

V ∑k6=0 cos
(
k · (Ri j +nL)

) e
−β2|k|2

2

|k|2 , otherwise
(4.10)

Comparison to CENT

The calculation of charges and electrostatic energies for non-periodic and periodic sys-
tems in CENT and 4G-HDNNP is basically the same except the energy expression for
the minimization (see Eq. 2.41 and Eq. 4.1 for the non-periodic case in Eq.4.2). The en-
ergy of an isolated atom E0

i is removed in Eq. 4.1 and σi in 4G-HDNNP is equal to αi√
2

in Eq. 2.41. The main difference between 4G-HDNNP and CENT is the training part.
In CENT, the electronegativites predicted by ANNs are trained to minimize the error be-
tween the predicted total energy calculated and reference total energy. Consequently, the
atomic charges obtained from CENT have no direct physical meaning. In contrast to that,
in 4G-HDNNP the electronegativities are adjusted to reproduce the reference charges,
which are physical and can be used to describe local bonding caused by global changes
in the electronic structure.

4.1.1.2 Training Phase

In the training process, the ANN weights that predict the environment-dependent elec-
tronegativities and element-dependent hardnesses are optimized to minimize the loss
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function

Γcharge =
1

Natoms

Natoms

∑
i=1

(
Qi,ref−Qi,4G−HDNNP

)2
, (4.11)

where Qi,ref and Qi,4G−HDNNP are the reference charges and the 4G-HDNNP charges,
respectively. All free parameters including different ANN weights and hardness val-
ues are both optimized simultaneously using a global, adaptive and extended Kalman
filter [166], which is well suited for highly non-linear regression problems. The optimiza-
tion of weights and hardnesses requires the following derivatives using the chain rule:

∂Γcharge

∂η j
=

Natoms

∑
i=1

∂Γcharge

∂Qi
· ∂Qi

∂η j
, (4.12)

∂Γcharge

∂Wk
=

Natoms

∑
i=1

Natoms

∑
j=1

∂Γcharge

∂Qi
· ∂Qi

∂ χ j
·

∂ χ j

∂Wk
, (4.13)

where ∂Γcharge
∂η j

and ∂Γcharge
∂Wk

denote the partial derivative of the loss function with respect to

the atomic hardness η j and weight Wk, respectively. ∂Γcharge
∂Qi

can be derived from Eq. 4.11

while ∂Qi
∂η j

can be obtained by taking the partial derivative of Eq. 4.6 with respect to the
atomic hardness η j and solving the respective system of linear equations A

1
...
1

1 . . . 1 0




∂Q1
∂η j
...

∂QNatoms
∂η j

λ

=


−δ1, jQ1

...
−δNatoms, jQNatoms

0

 (4.14)

and ∂Qi
∂ χ j

can also be computed in a similar way

 A
1
...
1

1 . . . 1 0




∂Q1
∂ χ j
...

∂QNatoms
∂ χ j

λ

=


δ1, j

...
δNatoms, j

0

 , (4.15)

where δ stands for the Kronecker delta meaning that δi j is equal to 1 if i = j, and 0
otherwise. The ∂ χ j

∂Wk
are evaluated through the back-propagation in ANNs. All these

derivatives are accumulated by looping over all atoms in every training structure and
utilized to update the weights and hardnesses through the Kalman filter.
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4.1.1.3 Force Calculations

The electrostatic force acting on the atom k with respect to the coordinate Rk,α can be
calculated by

Felec
k,α =−∂Eelec

∂Rk,α
−

Natoms

∑
i=1

∂Eelec

∂Qi

∂Qi

∂Rk,α
. (4.16)

Here, the partial derivative of the electrostatic energy with respect to the atomic charge
Qi is not equal to zero, which is different from CENT in Eq. 2.45. As a consequence, the
calculations of the partial derivative ∂Qi

∂Rk,α
are required to obtain the force contributions.

These quantities can be derived from Eq. 4.6: A
1
...
1

1 . . . 1 0




∂Q1
∂Rk,α

...
∂QNatoms

∂Rk,α

λ

=


∂ χ1

∂Rk,α
...

∂ χNatoms
∂Rk,α

0

−


∂A
∂Rk,α

1
...
1

1 . . . 1 0




Q1
...

QNatoms

0

 .

(4.17)
However, the calculation of ∂Qi

∂Rk,α
for all atomic coordinates typically involves solving

3Natoms systems of linear equations. This is very computationally demanding for systems
with more than thousands of atoms. An efficient trick suggested by Jonas Finkler, which
is exploiting a method proposed from Ref. [167], can be used to address the problem by
only solving the linear equations once instead of many times. For simplicity, Eq. 4.6 is
rewritten to

A′Q′ = b (4.18)

with

A′ =

 A
1
...
1

1 . . . 1 0

 , Q′ =


Q1
...

QNatoms

λ

 and b =


χ1
...

χNatoms

Qtotal

 . (4.19)

An auxiliary function L is defined as:

L = Eelec +
Natoms+1

∑
i=1

Λi

(
Natoms+1

∑
j=1

A′i jQ
′
j−bi

)
, (4.20)

where ∑
Natoms
j=1 (A′i jQ

′
j− bi) is obtained by subtracting b on both sides in Eq. 4.18. These

terms are always equal to zero and therefore L is equal to Eelec. The parameter Λi is
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chosen such that the partial derivative ∂L
∂Q′l

is equal to zero.

∂L

∂Q′l
=

∂Eelec

∂Q′l
+

Natoms+1

∑
l=1

A′ilΛi = 0 . (4.21)

Hence, {Λi} can be obtained by solving the following system of linear equations: A
1
...
1

1 . . . 1 0




Λ1
...

ΛNatoms

ΛNatoms+1

=


−∂Eelec

∂Q1
...

− ∂Eelec
∂QNatoms

0

 . (4.22)

Here, A is a symmetric matrix. Now the partial derivative ∂Qi
∂Rk,α

can be calculated by
taking the partial derivative of Eq. 4.20 with respect to Rk,α

dEelec

dRk,α
=

∂L

∂Rk,α

=
∂Eelec

∂Rk,α
+

Natoms+1

∑
j=1

∂Eelec

∂Q′j
·

∂Q′j
∂Rk,α

+
Natoms+1

∑
i=1

Λi

(
Natoms+1

∑
j=1

(
∂A′i j

∂Rk,α
Q′j +A′i j

∂Q′j
∂Rk,α

)
− ∂bi

∂Rk,α

)
. (4.23)

Rearranging the equations yields

dEelec

dRk,α
=

∂Eelec

∂Rk,α
+

Natoms+1

∑
j=1

(
∂Eelec

∂Q′j
+

Natoms+1

∑
i=1

A′i jΛi)
∂Q′j

∂Rk,α

+
Natoms+1

∑
i=1

Λi

(
Natoms+1

∑
j=1

∂A′i j

∂Rk,α
Q′j−

∂bi

∂Rk,α

)
. (4.24)

The second term vanishes due to Eq. 4.21, which leads to the resulting expression

dEelec

dRk,α
=

∂Eelec

∂Rk,α
+

Natoms+1

∑
i=1

Λi

(
Natoms+1

∑
i=1

∂A′i j

∂Rk,α
Q′j−

∂bi

∂Rk,α

)
. (4.25)

The ∂Eelec
∂Rk,α

is the usual electrostatic force according to Coulomb’s law. The
∂A′i j

∂Rk,α
can be

calculated analytically and ∂bi
∂Rk,α

depends on the employed ACSFs and the architecture
of ANNs. Once the {Λi} is calculated by solving a set of linear equations in Eq. 4.22,
electrostatic forces can be then calculated efficiently, which avoids solving 3 Natoms linear
systems.
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4.1.2 Short-Range Part

4.1.2.1 Energy and Force Calculations

The total energy expression of the 4G-HDNNP consists of an electrostatic and a short-
range parts. Once the electrostatic energy has been calculated, the short-range energy can
be obtained by removing the electrostatic part from the total energy. The expression of
short-range energy is thus given by

Eshort =
Natoms

∑
i=1

Ei({Gi},Qi) , (4.26)

where the Eshort is expressed as a sum of atomic energies as common in 2G-HDNNPs.
An important difference to 2G-HDNNP is that the atomic energies in 4G-HDNNP do not
only depend on the ACSF values describing the local atomic environments, but also on the
atomic charges determined in the non-local electrostatic part (see Fig. 4.1). In this way,
the atomic energy contributions enable describing physical effects caused by non-local
charge transfer. The atomic force acting on the atom k with respect to the coordinate Rk,α
can be calculated analytically using the chain rule yielding the following expression:

Fshort
k,α =−dEshort

dRk,α

=−

(
Natoms

∑
i=1

Ni,sym

∑
j=1

∂Ei

∂Gi, j

∂Gi, j

∂Rk,α
+

Natoms

∑
i=1

∂Ei

∂Qi

∂Qi

∂Rk,α

)
, (4.27)

where the ∂Ei
∂Gi, j

and ∂Ei
∂Qi

are the partial derivatives of atomic energy Ei with respect to the
ACSF Gi, j of atom i and its atomic charge Qi, respectively. These quantities can be com-
puted directly in neural networks, while the partial derivatives ∂Qi

∂Rk,α
are calculated from

the non-local electrostatic part. Physically, the first term in Eq. 4.27 describes the force
contributions due to changes of the local atomic environments represented by ACSFs as in
2G-HDNNPs, and the second term incorporates global changes in the electronic structure.

The workflow of energy and force predictions in 4G-HDNNP is as follows. The geo-
metrical information of the structure is transformed into ACSFs. The atomic charges are
then determined by the charge equilibration process using the electronegativities predicted
by ANNs. These charges are used to compute the electrostatic energy using Coulomb’s
law and fed into short-range ANNs with ACSFs to predict the atomic energies and the
corresponding short-range forces. Finally the total energy and forces of the system is
equal to the sum of the short-range part and the electrostatic part.
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4.1.2.2 Training Phase

The training procedure of the short-range part is very similar to 2G-HDNNP except for
the atomic charge, which serves as additional input to the ANNs. As explained above,
the target values for the short-range energies and forces can be obtained by removing the
electrostatic contributions from the reference total energy and forces. The energies used
for the training are binding energies, which are given by removing the sum of energies of
the isolated atoms. The neural network weights are optimized to minimize the error of
the loss function [16]:

Γshort =
1

Nenergies

Nenergies

∑
i=1

(
Ei,ref−Ei,4G−HDNNP

Natoms

)2

+ γ
1

Nforces

Nforces

∑
j=1

(
Fi,ref−Fi,4G−HDNNP

)2 (4.28)

where Ei,ref is the reference energy and Ei,4G−HDNNP is the short-range energy predicted
by 4G-HDNNP. Fi,ref and Fi,4G−HDNNP denote the reference and the 4G-HDNNP short-
range force component. Apart from that, γ denotes the scaling factor for adjusting the rel-
ative importance of force accuracy for the training of ANNs. Energies and forces training
requires the partial derivatives of the energies and forces with respect to neural network
weights. The energy derivatives are simply calculated through back-propagation, which
fully depending on the architecture of ANNs. The partial derivatives of force component
Fk,α in 4G-HDNNP with respect to the weight Wl can be derived from the following:

∂Fk,α

∂Wl
=

∂

∂Wl

(
−

Natoms

∑
i=1

(
Nsym,i

∑
j=1

∂Ei

∂Gi, j
·

∂Gi, j

∂Rk,α
+

∂Ei

∂Qi
· ∂Qi

∂Rk,α

))

=−
Natoms

∑
i=1

Nsym,i

∑
j=1

(
∂Gi, j

∂Rk,α
· ∂

∂Wl

∂Ei

∂Gi, j
+

∂Ei

∂Gi, j

∂

∂Wl

∂Gi, j

∂Rk,α

)

−
Natoms

∑
i=1

(
∂Qi

∂Rk,α
· ∂

∂Wl

∂Ei

∂Qi
+

∂Ei

∂Qi
· ∂

∂Wl

∂Qi

∂Rk,α

)
. (4.29)

Here, the partial derivatives ∂Gi, j
∂Rk,α

and ∂Qi
∂Rk,α

are independent of the weights and their
derivatives are thus equal to zero. Eventually Eq. 4.29 can be simplified to

∂Fk,α

∂Wl
=−

(
Natoms

∑
i=1

Nsym,i

∑
j=1

∂Gi, j

∂Rk,α
· ∂

∂Wl

∂Ei

∂Gi, j
+

Natoms

∑
i=1

∂Qi

∂Rk,α
· ∂

∂Wl

∂Ei

∂Qi

)
, (4.30)

where ∂

∂Wl

∂Ei
∂Gi, j

and ∂

∂Wl

∂Ei
∂Qi

can be obtained from the architecture of short-range ANNs.
The second term in Eq. 4.30 is additional compared to 2G-HDNNPs. It involves the
partial derivatives of charges with respect to the atomic position ∂Qi

∂Rk,α
.
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62 Chapter 4 Fourth-Generation HDNNP

4.2 Comparisons with Local Methods for
Benchmark Systems

In the following subsections, detailed comparisons between 2G-HDNNPs, 3G-HDNNPs
constructed with unscaled charges (unscaled 3G-HDNNPs) and scaled charges (scaled
3G-HDNNPs), and 4G-HDNNPs in reproducing DFT results for a series of benchmark
systems are presented. The learning curves of these HDNNPs are provided in Sec. A.2

4.2.1 Organic Molecule

The first model system is a linear organic molecule, which consists of ten sp-hybridized
carbon atoms terminated by two hydrogen atoms, as displayed in Fig. 4.2. This type of
molecules has been extensively investigated using ab-initio calculations [168–170], due
to the increasing interest in studies of carbon materials. The protonation of the terminal
carbon atom induces long-range charge transfer along the whole molecule, which changes
the equilibrium structure and the total charge of the system. Such chemical interactions
can be described by fourth-generation MLPs, which contain explicit information about
the total charge and corresponding global charge distribution. In contrast, second- and
third-generation MLPs fail to study systems with multiple charge states due to the lack of
these non-local information.

To show the capabilities of the new method, 2G-, 3G- and 4G-HDNNPs are constructed
using a cutoff radius Rc = 4.23 Å based on a data set containing both configurations gen-
erated from MD simulations and geometry optimizations. The details of data generation
are given in chapter 3. Fig. 4.3 shows the correlation plots of binding energies and atomic
force components obtained from 2G- and 4G-HDNNPs with respect to DFT in the train-
ing and test sets. Both potentials predict binding energies in similar agreement with DFT,
while a noticeable improvement of 4G-HDNNP over 2G-HDNNP can be found in the

1 12

12

13

(a)

1 11

(b)

Fig. 4.2: DFT-optimized structures of C10H2 (a) and C10H+
3 (b) with atom IDs. Reprinted

(adapted) with permission from Ref. [34]. Copyright 2021 Springer Nature.
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(a) (b)

(c) (d)

Fig. 4.3: Correlation plots of binding energies predicted by the 2G-HDNNP (a), 4G-
HDNNP (b), and atomic force components predicted by the 2G-HDNNP
(c), 4G-HDNNP (d) in the training and test sets for C10H2/C10H+

3 systems.
Reprinted (adapted) with permission from Ref. [34]. Copyright 2021 Springer
Nature.

correlation plots of force component as illustrated in Fig. 4.3 (c) and (d).

Furthermore, the correlation of the unscaled 3G-HDNNP and 4G-HDNNP charges in
the training and test sets compared to DFT charges is plotted in Fig. 4.4. It can be clearly
seen that the 4G-HDNNP is considerably more accurate than the unscaled 3G-HDNNP in
reproducing DFT charges.

To provide statistics for the overall performance of different potentials, the root mean
square errors (RMSEs) of charges, binding energies and force components for differ-
ent generations of HDNNPs compared to DFT in the training and test sets are given in
Tab. 4.1. The 4G-HDNNP obtains below 7.0× 10−3 e, 1.2 meV/atom and 0.08 eV/Å,
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64 Chapter 4 Fourth-Generation HDNNP

(a) (b)

Fig. 4.4: Correlation plots of partial charges predicted by the unscaled 3G-HDNNP (a)
and 4G-HDNNP (b) in the training and test sets for C10H2/C10H+

3 systems.
Reprinted (adapted) with permission from Ref. [34]. Copyright 2021 Springer
Nature.

respectively. All these RMSE values show that the 4G-HDNNP reproduces DFT results
with state-of-the-art accuracy for all reported properties while previous generations of
HDNNPs are unable to reach such accuracy.

Tab. 4.1: Root mean square errors of charges (10−3 e), binding energies (meV/atom) and
force components (meV/Å) for the C10H2/C10H+

3 data set. The training and test
sets contain 9035 and 984 structures, respectively. Numbers in brackets indicate
the errors of the test set. Reprinted (adapted) with permission from Ref. [34].
Copyright 2021 Springer Nature.

methods charges binding energies force components
2G-HDNNP — 1.583 (1.619) 130.7 (129.5)
3G-HDNNP (unscaled) 27.36 (27.35) 3.192 (3.197) 652.5 (658.3)
3G-HDNNP (scaled) 19.98 (20.08) 2.017 (2.045) 229.9 (231.0)
4G-HDNNP 5.78 (6.58) 1.148 (1.194) 77.7 (78.0)

To investigate the low accuracy of 3G-HDNNPs on the partial charges in more detail,
the partial charges of DFT-optimized C10H2 and C10H+

3 are computed with DFT, 3G- and
4G-HDNNPs. After protonation, the hybridization state of the terminal carbon atom is
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(c)

(b)
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Fig. 4.5: Atomic Hirshfeld charges on the DFT-optimized C10H2 and C10H+
3 obtained

with DFT (a), the unscaled and scaled 3G-HDNNPs (b), and 4G-HDNNP (c).
The hydrogen and carbon atoms are labeled as small and large spheres, respec-
tively. The atomic environment of the hydrogen atom is indicated as a dashed
circle for illustration of the cutoff radius for constructing HDNNPs. Reprinted
(adapted) with permission from Ref. [34]. Copyright 2021 Springer Nature.

changed to sp2. Hence, the electronic structure of C10H+
3 is modified accordingly over

the whole molecule. This electronic change can be indicated by the DFT charges of both
molecules, as displayed in Fig. 4.5 (a).
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Atomic charges predicted by the 3G-HDNNPs are shown in Fig. 4.5 (b). The first
case is the unscaled version and the second case is the scaled version, where the atomic
charges are corrected using Eq. 2.35 to enforce charge conservation. It can be clearly
seen that both unscaled and scaled 3G-HDNNPs provide qualitatively incorrect charge
predictions for the left half of the molecule. This is expected since the distance of the
added proton is far beyond the cutoff sphere of the left carbon atom in the left half of the
molecule. In addition, the atomic environments after the DFT optimization for the left
half of both molecules differ only slightly between the two different charge states. Hence,
the resulting unscaled 3G-HDNNP charges are very similar as shown in Fig. 4.5 (c). The
scaling does not significantly improve the accuracy of partial charges.

Further, most of the atomic environments for the left half of the molecules in the train-
ing set are basically identical. However, both molecules have completely different charge
distributions, which yields a large fitting error due to the contradictory information. These
atomic charges correspond to the region with large deviations in the correlation plot

(
see

Fig. 4.4 (a)
)
. To obtain a lower fitting error in the 3G-HDNNP, ANNs assign the aver-

age charges on the atoms for both molecules, which are qualitatively different with DFT
charges. For instance, the partial charges on atom 2, i.e., the left carbon atom, predicted
by the unscaled 3G-HDNNP are indistinguishable for both cases while the DFT charges
are remarkably different. It is noted that the unscaled 3G-HDNNP would predict iden-
tical charges on atoms 1-6 in C10H2 and C10H+

3 if their chemical environments were
exactly the same before and after the protonation. In addition, the scaled 3G-HDNNP
would have similar but not the same charges due to the correction of scaling. On the
other hand, the 4G-HDNNP reproduces DFT charges for both molecules with excellent
agreement as shown in Fig. 4.5 (d). This is due to the Qeq scheme in 4G-HDNNP, which
accurately distributes the partial charges over the whole molecule depending on flexible
environment-dependent electronegativities and the given total charge of the system.

The inaccurate 3G-HDNNP charges lead to poor energy and force predictions for
C10H2 and C10H+

3 . The errors of the total energies, mean errors of atomic charges and
forces of different generation of HDNNPs for the DFT-optimized structures are given in
Tab. 4.2. The unscaled 3G-HDNNP predicts large force errors of more than 0.4 eV/Å with
respect to DFT. The scaled 3G-HDNNP improves certain accuracy of forces although it
is still far away from the state-of-the-art accuracy. Interestingly, the 2G-HDNNP is even
generally better than both versions of 3G-HDNNP in terms of energies and forces since
the accuracy of 3G-HDNNPs is deteriorated due to the non-physical charge predictions.
This also explains the larger RMSE of binding energies and force components obtained by
the 3G-HDNNPs compared to the 2G-HDNNP in the training and test sets (see Tab. 4.1).
In contrast, the 4G-HDNNP achieves outstanding accuracy of energies, charges and forces
for both DFT-optimized molecules as shown in Tab. 4.2 because of its ability to capture
non-local effects. A comparable performance can be observed from the correlation plots
and RMSE values of binding energies and forces in the training and test sets for the same
reason.
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Tab. 4.2: Binding energy error (meV/atom) and mean errors of the partial charges (10−3

e) and atomic forces (eV/Å) for the two DFT-optimized structures of C10H2 and
C10H+

3 . Reprinted (adapted) with permission from Ref. [34]. Copyright 2021
Springer Nature.

methods binding energy charges forces

C10H2

2G-HDNNP 0.684 — 0.095
3G-HDNNP (unscaled) 1.255 19.72 0.430
3G-HDNNP (scaled) 2.193 10.76 0.138
4G-HDNNP 0.463 4.82 0.032

C10H+
3

2G-HDNNP 0.922 — 0.127
3G-HDNNP (unscaled) 0.046 17.82 0.658
3G-HDNNP (scaled) 1.425 17.72 0.259
4G-HDNNP 0.176 5.05 0.042

(a) (b)

Fig. 4.6: Force errors of the 2G- and 4G-HDNNPs in the two DFT-optimized structures of
C10H2 (a) and C10H+

3 (b). Reprinted (adapted) with permission from Ref. [34].
Copyright 2021 Springer Nature.

To find out the reason causing large force errors for the 2G-HDNNP, the absolute error
of the force acting on each atom predicted by 2G- and 4G-HDNNPs for C10H2 and C10H+

3
is plotted in Fig 4.6. The 4G-HDNNP predicts the DFT forces with an average error of
only 0.037 eV/Å for all atoms in both molecules. In contrast, the 2G-HDNNP yields large
force errors for the atoms in the middle of C10H2 and in the left half of C10H+

3 . These
phenomena are consistent with the charge errors of 3G-HDNNPs for both molecules. It
shows that 2G- and 3G-HDNNPs, which rely only on the locality approximation, are
unable to distinguish both molecules.
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Notably, the low energy errors of 2G-HDNNP are inconsistent with the relatively high
force errors. This is attributed to the error compensation in the distribution of atomic
energies. The atoms on the right side of the molecule are able to detect the changes of the
electronic structure, caused by protonation based on the corresponding modification of
the atomic environment. Consequently, the atomic energy contributions in the right half
of molecule are adjusted to reduce the error of the total energy caused by the problematic
atomic energies in the left half of the molecule, which are independent of protonation
due to the limited cutoff sphere. Such distribution of atomic energies based on the wrong
reason leads to large force errors.

4.2.2 Metal Clusters

The equilibrium structure of metal clusters depends on the total charge of the system [171–
173], which can significantly change the shape of the PES. Here, the small metal cluster
Ag3 is evaluated in two different charge states. The 2G-HDNNP should, in principle,
accurately reproduce the PES of this trimer with respect to DFT due to the small system
size, which does not have any long-range effect since the whole system is fully covered
by each atomic environment, but 2G-HDNNPs are restricted to a single charge state.

To illustrate the limitations, 2G-, 3G- and 4G-HDNNPs with a cutoff radius Rc = 5.29
Å are trained to a data set containing both configurations of Ag−3 and Ag+3 , which are
generated from MD simulations and geometry optimizations. The correlation of binding
energies and force components for 2G- and 4G-HDNNPs compared to DFT is plotted
in Fig. 4.7. As expected, the 2G-HDNNP fail even at the qualitative level as shown in
Fig. 4.8 (a) and (c). This is attributed to the fact that the 2G-HDNNP does not contain
explicit information about the global charge distribution according to the total charge of
the systems. The configurations of Ag−3 and Ag+3 in the data set are very similar while
the corresponding PES is completely different. Hence, this introduces contradictory in-
formation in the data set for the construction of the 2G-HDNNP, resulting in large fitting
errors. In contrast, the 4G-HDNNP, which takes the global charge distribution of the sys-
tem into account, agrees very well with the DFT binding energies and forces. Similarly,
the unscaled 3G-HDNNP is inaccurate in reproducing DFT charges with large errors as
can be clearly seen in Fig. 4.8 (a). This can be explained by the same reasons as the
poor energy and force predictions of the 2G-HDNNP. However, the 4G-HDNNP predicts
atomic charges in good agreement with the DFT charges, as can be seen in Fig. 4.8 (b).
This illustrates that the 4G-HDNNP can handle a wide range of charge values using the
Qeq scheme with flexible electronegativities expressed by ANNs.

In addition to the correlation plots, the RMSE values of 2G-, 3G- and 4G-HDNNPs are
presented in Tab. 4.3. The errors of binding energies and force components obtained with
the 4G-HDNNP are only approximately 1.3 meV and 30 meV/Å, which are significantly
lower than the 2G-HDNNP. Besides, the charge errors predicted by the 4G-HDNNP are
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(a) (b)

(c) (d)

Fig. 4.7: Correlation plots of binding energies predicted by the 2G-HDNNP (a), 4G-
HDNNP (b), and atomic force components predicted by the 2G-HDNNP (c),
4G-HDNNP (d) in the training and test sets for Ag+3 /Ag−3 systems. Reprinted
(adapted) with permission from Ref. [34]. Copyright 2021 Springer Nature.

around 0.01 e while the errors of both unscaled and scaled 3G-HDNNPs are far from the
accuracy of state-of-the-art MLPs. Apart from that, these 3G-HDNNPs also yield large
fitting errors in terms of binding energies and forces although the scaling improves the ac-
curacy of charges. These observations can be accounted for the non-physical electrostatic
energies and forces calculated from the qualitatively incorrectly predicted charges, which
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(a) (b)

Fig. 4.8: Correlation plots of partial charges predicted by the unscaled 3G-HDNNP
(a) and 4G-HDNNP (b) in the training and test sets for Ag+3 /Ag−3 systems.
Reprinted (adapted) with permission from Ref. [34]. Copyright 2021 Springer
Nature.

Tab. 4.3: Root mean square errors of charges (10−3 e), binding energies (meV/atom) and
force components (meV/Å) for the Ag−3 /Ag+3 data set. The training and test sets
contain 9930 and 1083 structures, respectively. Numbers in brackets indicate
the errors of the test set. Reprinted (adapted) with permission from Ref. [34].
Copyright 2021 Springer Nature.

methods charges binding energies force components
2G-HDNNP — 355.0 (352.0) 1812 (1803)
3G-HDNNP (unscaled) 75.50 (77.55) 345.0 (340.0) 1909 (1963)
3G-HDNNP (scaled) 26.24 (26.48) 321.1 (320.2) 1912 (1913)
4G-HDNNP 10.61 (9.98) 1.3 (1.3) 32 (32)

deteriorate the fitting of the short-range part.

To further demonstrate the limitations of 2G-HDNNPs, the initial DFT-optimized ge-
ometry of the neutral Ag trimer is relaxed in two different charge states using 2G- and 4G-
HDNNPs. The root mean square deviation (RMSD) with respect to the DFT-optimized
geometry of the respective charge state is compared. As expected, the minima predicted
by 2G-HDNNP are identical for both charge states because both cases are indistinguish-
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Fig. 4.9: Optimized structures of Ag+3 /Ag−3 and corresponding atomic charges predicted
by DFT (a), the 2G-HDNNP (b) and 4G-HDNNP (c). The root mean square
deviation for minima predicted by 2G- and 4G-HDNNPs in Å with respect to the
respective DFT minima are given in numbers. The scaled 3G-HDNNP charges
are displayed in (b) for illustrative purposes only. The tool for calculating the
root mean square deviation of structures was provided by Jonas Finkler [174].
Reprinted (adapted) with permission from Ref. [34]. Copyright 2021 Springer
Nature.

able. This is due to the loss of a unique mapping from atomic positions to short-range
energy contributions for a data set containing different total charges. As a consequence,
the resulting geometries do not match any minima predicted by DFT with a large RMSD
as displayed in Fig. 4.9. However, the 4G-HDNNP is able to reproduce DFT minima with
a very small RMSD, which is below 0.01 Å for both charge states. Moreover, the corre-
sponding energy errors calculated from the 4G-HDNNP are only about 1.166 meV/atom
and 0.320 meV/atom for Ag−3 and Ag+3 , respectively. The errors of the 2G-HDNNP are
0.605 and 2.017 eV/atom and significantly larger than the 4G-HDNNP, which is consis-
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tent with the large structural deviation of the minima with respect to DFT. Moreover, the
energy errors obtained from the scaled 3G-HDNNP are 0.713 and 5.721 eV/atom, which
is even worse than the 2G-HDNNP because of the non-physical electrostatic contributions
calculated using inaccurate scaled charges.

4.2.3 Ionic Fragments

The first two examples show the inability of 2G- and 3G-HDNNPs to describe systems
with multiple charge states. Ionic systems, on the other hand, can exhibit long-range
charge transfer without changing the total charge of the system. In this example, the
changes of the PES for a positively charged Na9Cl+8 cluster after the removal of a neutral
sodium atom is studied. The DFT-optimized structure of Na9Cl+8 is shown in Fig. 4.10.
To redistribute the atomic charges over the whole system, the neutral brown sodium atom
is removed, while other atomic positions remain fixed.

Fig. 4.10: DFT-optimized structure of the Na9Cl+8 cluster. The sodium atoms are col-
ored in purple, blue and brown color while the chlorine atoms are shown in
grey. The arrow indicates the moving direction of the blue sodium atom. The
structure of Na8Cl+8 is constructed by removing the brown sodium atom. This
example is proposed by Jonas Finkler. Reprinted (adapted) with permission
from Ref. [34]. Copyright 2021 Springer Nature.

To investigate non-local effects caused by removing the sodium atom on the PES, 2G-,
3G- and 4G-HDNNPs with Rc = 5.29 Å are constructed based on the data set containing
both configurations.

The correlation plot of binding energies, atomic forces and charges for different gener-
ations of HDNNPs and DFT are displayed in Fig. 4.11 and Fig. 4.12. The fitting errors of
2G- and 3G-HDNNPs are relatively low compared to the first two examples in terms of all
quantities due to two reasons. First, the configurations in the data set have the same total
charge, and therefore contain less contradictory information for the construction of 2G-
and 3G-HDNNPs. Second, the errors of binding energies caused by the global redistribu-
tion of the charges after removing the brown sodium atom are reduced by the neighboring
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(a) (b)

(c) (d)

Fig. 4.11: Correlation plots of binding energies predicted by the 2G-HDNNP (a), 4G-
HDNNP (b), and atomic force components predicted by 2G-HDNNP (c), 4G-
HDNNP (d) in the training and test sets for Na8Cl+8 /Na9Cl+8 systems. Reprinted
(adapted) with permission from Ref. [34]. Copyright 2021 Springer Nature.

atoms of the brown sodium atom. They are able to distinguish between the two cases and
their atomic energies are adjusted to yield an acceptable agreement with reference calcu-
lations. Still, 4G-HDNNP significantly improves the accuracy in terms of all quantities
compared with previous generations of HDNNPs. Notably, the 4G-HDNNP charge errors
in the range of DFT charges from −0.28 to −0.5 e are relatively large. This is attributed
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(a) (b)

Fig. 4.12: Correlation plots of partial charges predicted by the unscaled 3G-HDNNP (a)
and 4G-HDNNP (b) in the training and test sets for Na8Cl+8 /Na9Cl+8 systems.
Reprinted (adapted) with permission from Ref. [34]. Copyright 2021 Springer
Nature.

to the chlorine atom located below the blue sodium atom. The DFT charge on that chlo-
rine atom changes significantly (≈ 0.2 e) depending on the removal of the brown sodium
atom. Due to the very similar atomic environments of the chlorine atom for both clusters
in the data set, the resulting electronegativity is not flexible enough to reproduce the large
charge difference according to the Qeq scheme.

Tab. 4.4: Root mean square errors of charges (10−3 e), binding energies (meV/atom) and
force components (meV/Å) for the Na8Cl+8 /Na9Cl+8 data set. The training and
test sets contain 4493 and 507 structures, respectively. Numbers in brackets
indicate the errors of the test set. Reprinted (adapted) with permission from
Ref. [34]. Copyright 2021 Springer Nature.

methods charges binding energies force components
2G-HDNNP — 1.690 (1.692) 57.54 (57.39)
3G-HDNNP (unscaled) 28.28 (28.52) 1.426 (1.470) 57.69 (59.49)
3G-HDNNP (scaled) 20.75 (20.80) 2.058 (2.042) 73.47 (76.67)
4G-HDNNP 15.87 (15.83) 0.474 (0.481) 32.45 (32.78)

The RMSE values calculated from different generations of HDNNPs in the training
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and test sets are reported in Tab. 4.4. Interestingly, the scaled 3G-HDNNP performs even
worse than its unscaled counterpart in terms of binding energies and force components.
This is because the scaling deteriorates the accuracy of the overall charge distribution
and thus degrades the fitting quality of the short-range part. At first glance, the reported
error of the scaled 3G-HDNNP charges is lower, since the scaling improves the charge
errors at the range of -0.4 e (see Fig. 4.12). This effectively reduces the RMSE values
due to the larger contributions from the outliners. However, the scaling also reduces the
accuracy of other atomic charges, which are already in agreement with DFT. The PES
relies on the accuracy of all charges in the system, and its accuracy is thus deteriorated
by this procedure. On the other hand, the 4G-HDNNP achieves the RMSE of 0.016 e, 0.5
meV/atom and 0.035 eV/Å in terms of charges, binding energies and force components,
which show noticeable improvements compare to previous generations of HDNNPs.

The inability to capture non-local charge transfer by 2G- and 3G-HDNNPs is illustrated
in the relative energies of the systems and the atomic forces acting on the blue sodium
atom when moving the atom along the one-dimensional path indicated by the arrow in
Fig. 4.10. Fig. 4.13 shows the energies obtained with 2G-, 3G- and 4G-HDNNPs and
DFT for both systems. All energies are relative to the minimum of the DFT total energy of
the corresponding clusters. The difference in the equilibrium Na-Na distance for Na8Cl+8
and Na9Cl+8 predicted by DFT is larger than 0.1 Å, arising from the removal of the distant
brown sodium atom.

(a)

3.2 3.3 3.4 3.5 3.6
Na-Na distance [Å]

0.00
0.02
0.04
0.06
0.08
0.10
0.12
0.14

Re
la

tiv
e 

en
er

gy
 [e

V]

DFT (Na9Cl +
8 )

DFT (Na8Cl +
8 )

2G-HDNNP (Na9Cl +
8 )

2G-HDNNP (Na8Cl +
8 )

3G-HDNNP (Na9Cl +
8 )

3G-HDNNP (Na8Cl +
8 )

4G-HDNNP (Na9Cl +
8 )

4G-HDNNP (Na8Cl +
8 )

(b)

3.2 3.3 3.4 3.5 3.6
Na-Na distance [Å]

0.75

0.50

0.25

0.00

0.25

0.50

0.75

1.00

Fo
rc

e 
on

 N
a 

[e
V/

Å]

DFT (Na9Cl +
8 )

DFT (Na8Cl +
8 )

2G-HDNNP (Na9Cl +
8 )

2G-HDNNP (Na8Cl +
8 )

3G-HDNNP (Na9Cl +
8 )

3G-HDNNP (Na8Cl +
8 )

4G-HDNNP (Na9Cl +
8 )

4G-HDNNP (Na8Cl +
8 )

Fig. 4.13: Relative energies corresponding to the moving path of the blue sodium atom
in Fig. 4.10 obtained with different generations of HDNNPs and DFT (a). The
energies are shifted to the lowest DFT energy of the respective clusters. The
corresponding atomic forces acting on the blue sodium atom during the scan
are shown in (b). The plotted 3G-HDNNP curves are based on the unscaled
charges. Reprinted (adapted) with permission from Ref. [34]. Copyright 2021
Springer Nature.
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The 2G-HDNNP is unable to capture the long-range charge transfer caused by the
brown sodium atom, which is far beyond the local chemical environment of the blue
sodium atom. The atomic energies of the sodium atom and its neighboring atoms are ex-
actly the same for both cases, which leads to the same equilibrium position with roughly
the mean value of the two minima predicted by DFT. The energy offset for the 2G-
HDNNP energy curves of both clusters exists due to some constant atomic energies on
the right side of the clusters, since their atomic environments are unchanged when moving
the blue sodium atom.

The unscaled 3G-HDNNP predicts very similar minima but not identical to 2G-HDNNP
due to the additional long-range electrostatic interactions. The energy offset is not a con-
stant anymore, which is attributed to the same reason. Even though the energy curves
predicted by 2G- and 3G-HDNNPs only deviate about 1 meV/atom with respect to DFT
results, the physical properties extracted from the potentials, i.e., the equilibrium bond
lengths, are still qualitatively wrong. On the other hand, the energy curves predicted by
4G-HDNNP match DFT results with excellent accuracy including the equilibrium Na-Na
bond distance for both clusters. Such example reveals that the 4G-HDNNP is able to
describe non-local effects caused by long-range charge transfer, which is not covered by
most of established MLPs.

The corresponding atomic forces acting on the blue sodium atom for Na8Cl+8 and
Na9Cl+8 are displayed in Fig. 4.13 (b). All results are consistent with the behavior of the
energy curves. The DFT forces acting on the moving sodium atom are different for both
clusters and the equilibrium positions indicated by the zero atomic force match with the
position of the energy minimum shown in Fig. 4.13 (a). The 4G-HDNNP almost exactly
reproduces the DFT forces for Na8Cl+8 and Na9Cl+8 while 2G-HDNNP predicts the same
forces for both cases, which correspond to the constant energy offset between both en-
ergy curves. The forces obtained with the unscaled 3G-HDNNP are just slightly different
due to the additional electrostatic contributions computed from the unscaled 3G-HDNNP
charges.

4.2.4 Gold Dimer on an Oxide Surface

The final benchmark system is chosen to be a Au dimer adsorbed on a periodic MgO(001)
slab. This type of systems has attracted a great deal of attention due to its interesting
catalytic properties for water-gas shift reactions [175, 176], hydrogenation of unsaturated
hydrocarbons [177], and the oxidation of carbon monoxide [178]. The orientation of
clusters supported on such oxides can be modified through substitutional doping on the
oxide surface. The catalytic activity of the system can be enhanced by controlling the
cluster morphology using such techniques. 2G-HDNNPs have been constructed to study
the properties of copper clusters adsorbed on a ideal zinc oxide slab [119, 179]. However,
all these reported potentials are not applicable doped substrates, which involve long-range
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charge transfer between the adsorbate and the dopant. Such non-local effects can be only
captured by fourth-generation MLPs.

(a) (b)

Fig. 4.14: DFT-optimized geometry of an Au dimer on the undoped and Al-doped MgO
substrate. Panel (a) shows the non-wetting orientation of a Au dimer adsorbed
on the O atom for the undoped case. The wetting orientation of the Au dimer
adsorbed on Mg atoms for the Al-doped substrate is displayed in panel (b). The
MgO(001) surface is constructed by replicating (3×3) super cell. The O, Mg,
Al and Au atoms are colored in red, green, light grey and yellow, respectively.
The structures are visualized using VESTA [180]. This example was proposed
by Jonas Finkler. Reprinted (adapted) with permission from Ref. [34]. Copy-
right 2021 Springer Nature.

In the case of Au2 at MgO(001), two energetically favorable adsorption geometries
of the gold dimer predicted by DFT are studied. The geometries are either the upright
"non-wetting" orientation, where the dimer adsorbs on an oxygen atom at the top surface,
or the "wetting" orientation, where two gold atoms attach on top of two Mg atoms. The
relative stability of both orientations changes depending on whether the undoped or doped
unrelaxed surfaces are considered. Fig. 4.14 (a) shows the DFT-optimized geometry of a
gold dimer on the pure MgO support, which is the "non-wetting" orientation. The ground
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state structure of a gold dimer changes to a "wetting" orientation when the MgO is doped
by three aluminum atoms, as can be seen in Fig. 4.14 (b). The doped Al atoms are
introduced into the fifth layer, which is far away from the gold atoms (> 10 Å). In spite
of the large separation, the gold atoms still experience the non-local effects arising from
long-range charge transfer. The partial charges on the gold dimer are significantly reduced
by around 0.2 e compared to the same orientation of the gold dimer on the undoped
surface.

To examine the performance of the potentials for describing non-local effects, 2G-, 3G-
and 4G-HDNNPs are constructed on a data set containing all four configurations.

Fig. 4.15 and Fig. 4.16 show the correlation plots of target properties obtained by dif-
ferent generations of HDNNPs with respect to DFT. The 4G-HDNNP predicts the cor-
relation of binding energies and force components in much better agreement with DFT
than the 2G-HDNNP. Besides, the 2G-HDNNP predicts very similar binding energies
for some structures, while the DFT binding energies are very different as can be seen in
Fig. 4.15 (a). These inconsistencies illustrate that the 2G-HDNNP is unable to distin-
guish between all four geometries. For the comparison of charges, the accuracy of the
unscaled 3G-HDNNP is not satisfactory and the region of large errors shown in Fig. 4.16
(a) corresponds to the partial charges on the gold atoms. This illustrates that the unscaled
3G-HDNNP fails to distinguish the doped and undoped substrate that are far beyond the
local environment of the gold atoms. The 4G-HDNNP in general reproduces all quantities
with close-to-DFT quality since the Qeq scheme in 4G-HDNNP accurately describes the
global charge distribution of the system and the corresponding PES.

Tab. 4.5: Root mean square errors of charges (10−3 e), binding energies (meV/atom) and
force components (meV/Å) for the Au2-MgO/Al-doped Au2-MgO data set. The
training and test sets contain 4468 and 532 structures, respectively. Numbers in
brackets indicate the errors of the test set. Reprinted (adapted) with permission
from Ref. [34]. Copyright 2021 Springer Nature.

methods charges binding energies force components
2G-HDNNP — 2.299 (2.287) 155.4 (153.1)
3G-HDNNP (unscaled) 10.48 (10.84) — —
4G-HDNNP 5.66 (5.70) 0.209 (0.219) 81.1 (66.0)

The corresponding RMSE values for different generations of HDNNPs are provided
in Tab. 4.5. The 4G-HDNNP predicts charges, binding energies and forces in excellent
agreement with DFT, with RMSEs below 6.0× 10−3 e, 0.5 meV/atom and 0.1 eV/Å.
Previous generations of HDNNPs fall significantly behind these values.

The electronic change induced by doping with Al atoms switch the energetic order of
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(a) (b)

(c) (d)

Fig. 4.15: Correlation plots of binding energies predicted by the 2G-HDNNP (a), 4G-
HDNNP (b), and atomic force components predicted by the 2G-HDNNP (c),
4G-HDNNP (d) in the training and test sets for Au2-MgO/Al-doped Au2-MgO
systems. Reprinted (adapted) with permission from Ref. [34]. Copyright 2021
Springer Nature.

the respective geometries. The energy difference (Ewetting−Enon−wetting) between the wet-
ting and non-wetting geometries on an undoped substrate and a doped substrate obtained
with DFT is 929 meV and −2.7 meV, respectively. However, the 2G-HDNNP predicts
the same energy difference 375 meV for both substrates since the dopant atoms are far
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(a) (b)

Fig. 4.16: Correlation plots of partial charges predicted by the unscaled 3G-HDNNP (a)
and 4G-HDNNP (b) in the training and test sets for Au-MgO/Al-doped Au2-
MgO systems. Reprinted (adapted) with permission from Ref. [34]. Copyright
2021 Springer Nature.

away from the local chemical environments of the the gold atoms. As a result, the 2G-
HDNNP fails to capture the long-range charge transfer caused by the aluminium atoms.
The energy difference calculated from 4G-HDNNP on an undoped slab and a doped slab
is 975 meV and−41 meV, which match DFT results with only a small deviation. Both the
4G-HDNNP and DFT results agree that the wetting orientation for the doped substrate is
slightly energetically favorable and the non-wetting orientation for the undoped substrate
is much more stable.

Apart from the energetic order, the electronic change caused by the doping also change
the equilibrium bond distance of gold atoms to the adsorption site is also changed. A
particular analysis of 2G- and 4G-HDNNPs has been done for the non-wetting orientation
of the gold dimer attached on the undoped and doped surfaces. The relative energies of
the respective systems with respect to the minimum of DFT energy, and the sum of atomic
forces acting on the gold dimer, are plotted as a function of the bond distance between
the oxygen atom and its closest neighboring Au atom. The 2G-HDNNP energy curves
displayed in Fig. 4.17 (a) differ by just a constant energy shift caused by the dopant
atoms, which is analogous to the absence or presence of the additional sodium atom in
the positively NaCl clusters. The resulting equilibrium bond length is 2.26 Å marked
by a dot in Fig. 4.17 (a) for both cases, which is not in agreement with DFT results.
In contrast, the 4G-HDNNP not only matches the equilibrium bond lengths with DFT
for the undoped (4G-HDNNP: 2.18 Å; DFT: 2.19 Å) and doped (4G-HDNNP: 2.34 Å;
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Fig. 4.17: Relative energies (a) and sum of atomic forces acting on an Au dimer (b) at-
tached on the MgO(001) slab for the non-wetting geometry with the undoped
and Al-doped cases. The equilibrium bond length are marked with a dot. The
energies are shifted to the minimum of DFT total energy of the respective ge-
ometry. The bond length of Au-O refers to the bond distance between the
O atom and the closest Au atom. Reprinted (adapted) with permission from
Ref. [34]. Copyright 2021 Springer Nature.

DFT: 2.33 Å) cases, but also reproduces with DFT energy and force curves in excellent
accuracy. Both results reveal the 4G-HDNNP is able to describe the non-local effects
caused by long range charge transfer from the dopant atoms to the gold dimer.
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Chapter 5

Electrostatically Embedded
Fourth-Generation HDNNP

5.1 Motivation

The inability of MLPs relying on the concept of locality to describe non-local effects
caused by long-range charge transfer and multiple charge states, is being solved by the
emerging fourth-generation MLPs, which incorporate information about the global charge
distribution. Despite a lot of improvements in the description of electrostatic interactions
from second-generation to fourth-generation MLPs, a set of effective descriptors that ac-
curately describe the electronic changes is currently missing. This leaves a large space
for further improvements in accuracy and transferability of potentials. In the framework
of 4G-HDNNPs, non-local effects arising from global changes in the electronic structure
are mainly captured by the partial charge on the central atom, which serves as an input
for a short-range ANN.

However, in some cases, this is still insufficient to describe changes of the electronic
structure within the local environments. To illustrate this, the long carbon chain from
Fig. 4.2 is investigated further

(
see Fig. 5.1 (a)

)
. The fourth carbon atom from the left is

slightly negatively charged. When the hydrogen atom is substituted by a lithium atom, as
shown in Fig. 5.1 (b), the second carbon atom on the left side becomes positively charged
while the partial charge on the fourth carbon is nearly unchanged. If the 4G-HDNNP is
trained to a data set containing both configurations, the resulting atomic energy of the
carbon atom predicted by the 4G-HDNNP will be very similar for both cases. It means
that the 4G-HDNNP fails to describe the changes of the electronic structure in the local
atomic environments due to the substitution.

A further example is the replacement of a hydrogen atom by a fluorine atom, while
only relaxing the bond distance between the fluorine and carbon atoms as displayed in
Fig. 5.1 (c). The second carbon atom on the left side becomes strongly negatively charged
while the fourth carbon atom is very similar compared with panel (a). Due to lack of the

83



84 Chapter 5 Electrostatically Embedded Fourth-Generation HDNNP

electronic structure information in the local atomic environment, the 4G-HDNNP is also
unable to describe such non-local effects. Such illustrative examples show that there
is still room for further improvements of 4G-HDNNPs in the description of non-local
electronic changes, which are crucial for the construction of highly accurate potential
energy surfaces.

Apart from the description of non-local effects, a more general limitation for the ma-
jority of MLPs is the limited transferability to unknown structures outside the training set.
Some preliminary works have been done to address this problem such as the combination
of pairwise potentials and MLPs [181]. The target energy of the MLPs is expressed as the
difference between the reference total energy and two-body part by performing an itera-
tive fitting for these two contributions separately. Apart from that, the simple two-body
and three-body descriptors, which capture explicit two-body and three-body contribu-
tions, can be also included in the total energy expression of MLPs [182–184] as well.
All these methods improve the transferability of the potentials such as providing a proper
repulsion, when atoms are getting too close even though such atomic environments are
not covered in the data set.

Based on these two possible improvements, a modified framework of the 4G-HDNNP,
called the electrostatically embedded 4G-HDNNP (ee4G-HDNNP) is proposed. In the
following sections, the methodology and technical details of the ee4G-HDNNP are intro-
duced. Furthermore, the capabilities of the method demonstrated on a benchmark system
including systematic comparisons to the original 4G-HDNNP implementation are also
presented.

5.2 Method

5.2.1 Energy and Force Calculations

In the framework of ee4G-HDNNPs, two essential modifications have been done com-
pared to the 4G-HDNNP. These are the improvement of the transferability by including
two-body physical potentials, and the description of non-local effects by introducing a
new set of non-local descriptors. The architecture of an ee4G-HDNNP for an arbitrary
binary system is displayed in Fig. 5.2. The expression of the total energy contains the
short-range energy Eshort, the electrostatic energy Eelec without any truncation and the
two-body potential E2b,

Etotal = Eshort +Eelec +E2b . (5.1)

The electrostatic part of the ee4G-HDNNP is equivalent to the original 4G-HDNNP de-
scribed in Sec. 4.1.1. The environment-dependent atomic electronegativities and element-
dependent hardnesses are trained to reproduce the reference charges according to the Qeq
scheme. These Gaussian charges are used to calculate electrostatic energies and forces
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Fig. 5.1: Illustrative examples demonstrating the inability of 4G-HDNNPs to describe
electronic changes in local atomic environments. The DFT-optimized geometry
of C10H2 and corresponding Hirshfeld charges are shown in panel (a). When
the left hydrogen atom is replaced by a Li atom, the partial charge on the fourth
C atom is almost the same but its neighboring charges are different as shown
in panel (b). Another example is the substitution of the hydrogen atom by a
F atom, while only relaxing the F-C bond, as displayed in panel (c). Again,
the atomic charge on the fourth C atom is nearly unchanged but neighboring
charges change. In both cases, the atomic energy of the fourth C atom obtained
by the 4G-HDNNP is almost identical, due to the same atomic environment
indicated by a dashed circle. These example show that 4G-HDNNPs cannot
properly describe non-local effects arising from the changes of the electronic
structure in the local atomic environment. The H, Li, C, F, atoms are colored in
white, purple, grey and blue, respectively.

using Coulomb’s law.

The first modification is to introduce an additional two-body term, which is inspired
by the Tosi-Fumi potential [185, 186]. The functional form of the two-body term E2b is
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Fig. 5.2: Schematic diagram of an ee4G-HDNNP for a binary system. The total energy
of the system containing NX and NY atoms that belong to element X and Y
respectively, consists of a short-range energy Eshort, which is expressed as a sum
of atomic energies Ei, an empirical two-body contribution E2b, and the long-
range electrostatic energy Eelec. The atomic charges Qi are globally distributed
according to the charge equilibration scheme employing environment-dependent
electronegativities χi predicted by atomic neural networks (right). These charges
are used to calculate the electrostatic energy and element-dependent electrostatic
potentials {Vi}, which serve as additional non-local inputs for the short-range
atomic neural networks (left) yielding Ei. The local atomic environment are
represented by atom-centered symmetry functions {Gi}, which depend on a set
of Cartesian coordinates Ri and serve as geometrical inputs for the atomic neural
networks.

given by

E2b =
Natoms

∑
i> j

(
Ai jeBi j(µi j−Ri j)−

Ci j

R6
i j
−

Di j

R8
i j

)
· fcut(Ri j) , (5.2)

where Ai j,Bi j,Ci j,Di j, and µi j denote element-pair dependent training parameters that are
extracted from a fit to binding energies for the dissociation of a dimer. The hyperbolic
tangent cutoff function fcut in Eq. 2.28 is employed to ensure the two-body energies and
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forces smoothly decay to zero at the cutoff radius Rc. The cutoff radius for the two-body
part can be larger than the cutoff used for the short-range part. This type of pairwise
physical potential takes the Pauli repulsion, the dipole-dipole and the dipole-quadrupole
van der Waals (vdW) interactions into account, which are not included in the framework
of 4G-HDNNPs.

For the improvement of the description of non-local effects compared to the 4G-HDNNP,
additional input information for the short-range part is considered. In the 4G-HDNNP ap-
proach, an accurate global distribution of charges over the system is already obtained by
the Qeq scheme. However, the description of local bonding caused by the electronic
changes still mainly relies on a single partial charge of the central atom. This means that
the resulting atomic energies are independent of the neighboring charges, which describe
the changes of the electronic structure within the local atomic environment.

To address this problem, a new kind of non-local descriptors is developed. These de-
scriptors serve as additional non-local inputs for the short-range ANNs. The short-range
energy in the framework of the 4G-HDNNP is expressed as the energy difference between
the total energy and electrostatic energy. In contrast, the short-range energy Eshort in the
ee4G-HDNNP is expressed as the remaining energy after removing the two-body E2b and
electrostatic part Eelec from the total energy,

Eshort = Etotal−Eelec−E2b =
Natoms

∑
i=1

Ei({Gi},Qi,{Vi}) . (5.3)

Here Ei depends not only on the local atomic environment, which is described by ACSFs
{Gi}, and its atomic charge Qi but also on a new set of non-local descriptors {Vi}, which
takes the electronic structure information from local atomic environments into account.

The functional form of the new descriptor is inspired by the Coulomb potential acting
on the central atom arising from neighboring Gaussian charges within its local atomic
environment. The electrostatic potentials are considered as local properties, which are
consistent with short-range atomic energies. This means that the contribution of electro-
static potentials are only up to the range of the cutoff sphere.

Apart from that, the descriptors are calculated for each element individually. Other-
wise, the contributions to the Coulomb potential of positive and negative partial charges
within the cutoff radius would vanish, which reduces the resolution of the descriptors.
Based on all these requirements, the expression of non-local descriptor V j

i is written as

V j
i =

Nneig, j

∑
k=1

erf
(

Rik√
2γik

)
Qk

Rik
fcut(Rik) , (5.4)

where V j
i is defined as the total electrostatic potential acting on the central atom i caused

by all neighboring atoms k of element j. The contribution of the electrostatic potential
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does not only depend on the distance between atom i and k, but also depend on the γik,
which is calculated using the width of Gaussian charge densities in Eq. 4.2. These novel
non-local descriptors provide the information about the local charge distribution. They
serves as additional inputs for short-range ANNs to describe local chemical bonding,
which involves the changes of the electronic structure in the local atomic environment.
Here fcut employs the same functional form with a two-body part and Rc is set to the
cutoff, which is used for the calculation of ACSFs. The total number of input neurons in
the short-range part is equal to the sum of Nsym for the number of ACSFs, 1 for the atomic
charge and Nelems for the number of elements in the system.

The short-range forces acting on atom k along the direction α is

Fshort
k,α =−

(
Natoms

∑
i=1

Ni,sym

∑
j=1

∂Ei

∂Gi, j

∂Gi, j

∂Rk,α
+

Natoms

∑
i=1

∂Ei

∂Qi

∂Qi

∂Rk,α

+
Natoms

∑
i=1

Nelems

∑
j=1

∂Ei

∂V j
i

∂V j
i

∂Rk,α

)
, (5.5)

where ∂V j
i

∂Rk,α
denotes the gradient of the electrostatic potential with respect to atomic po-

sitions, which can be calculated analytically using Eq. 5.4 by the chain rule. Such cal-
culations do not cause much computational cost since the required physical quantities
such as the partial derivatives of the charges with respect to atomic positions are already
computed from the original framework of 4G-HDNNP.

5.2.2 Training Stage

The training phase of ee4G-HDNNP can be separated into three steps. The first step is to
train the atomic electronegativities expressed by ANNs and hardnesses to reproduce the
reference charges. This is the same as for 4G-HDNNP. The second step is to construct
the empirical two-body potentials by fitting the dissociation curves of a dimer. The third
step is to train the short-range ANNs to reproduce the remaining energy after removing
the two-body and electrostatic contributions from the target total energies and forces.

In this way the training of the short-range part is analogous to the ∆−learning ap-
proach [187, 188] that aims to predict accurate but computationally intensive proper-
ties based on cheaper baseline methods by learning the difference between both methods
through machine learning. For instance, the difference between the high level DFT and
the baseline level density functional tight binding method with self-consistent charges
can be accurately reproduced by a MLP [189]. Another example is to predict the expen-
sive hybrid functional or non-local vdW functionals in DFT by learning the difference
with HDNNPs based on the cheap PBE functional with a minimal atomic basis set [190].
These ∆−learning approaches are able to considerably improve the transferability and
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accuracy by using a smaller amount of data points. In this work, DFT is the high-level
method and the two-body empirical potential is the low-level method. The difference
between the two methods is reproduced by the short-range and electrostatic part in the
ee4G-HDNNP.

The energy training requires the partial derivatives of the energy with respect to the neu-
ral network weights, which can be directly calculated through back-propagation depend-
ing on the architecture of the ANNs. The force training requires the following derivatives:

∂Fk,α

∂Wl
=−

(
Natoms

∑
i=1

Nsym,i

∑
j=1

∂Gi, j

∂Rk,α
· ∂

∂Wl

∂Ei

∂Gi, j
+

Natoms

∑
i=1

∂Qi

∂Rk,α
· ∂

∂Wl

∂Ei

∂Qi

+
Natoms

∑
i=1

Nelems

∑
j=1

∂V j
i

∂Rk,α
· ∂

∂Wl

∂Ei

∂V j
i

)
, (5.6)

where the first two terms are equivalent with 4G-HDNNP and the last term is used to
optimize the weights for the non-local force contributions depending on the electrostatic
potentials.

In order to have a systematic investigation on the role of both methodical extensions in
the framework of 4G-HDNNPs, a 4G-HDNNP with only two-body empirical potentials
(4G-HDNNP+E2b) is also developed for comparison. The short-range target energy is
the same as for ee4G-HDNNP, except that the local electrostatic potential descriptor does
not enter its functional form:

Eshort = Etotal−Eelec−E2b =
Natoms

∑
i=1

Ei({Gi},Qi) . (5.7)

Here, the main difference between ee4G-HDNNP and 4G-HDNNP+E2b is the functional
form of the short-range atomic energies. In 4G-HDNNP+E2b, the atomic energies only
depend on ACSFs and atomic charges while ee4G-HDNNP depends on additional non-
local descriptors {Vi} arising from the electrostatic potentials. It is noted that the train-
ing of short-range part in 4G-HDNNP+E2b is equal to 4G-HDNNP except for the target
short-range energies and forces, which are the difference after removing two-body and
electrostatic parts from the reference total energies and forces.

5.3 Comparison of Fourth-Generation MLPs on
Sodium Chloride Clusters

Finding a proper system to systematically compare the performance between 4G-HDNNP
and ee4G-HDNNP is crucial. Here, sodium chloride clusters were chosen as a benchmark
system due to their large structural diversity and electrostatic interactions, which changes
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significantly depending on the total charge of the system. The details of reference data
generation are described in chapter 3. To compare the individual improvements on the
accuracy and transferability of the potential made by the two different modifications in
ee4G-HDNNP, the 4G-HDNNP, 4G-HDNNP+E2b and ee4G-HDNNP were constructed
on the same training set. Moreover, the same settings for the ANNs including the num-
ber of hidden layers and neurons, the activation function, and other training details, as
provided in chapter 3, were chosen. Parameters for the ACSFs are given in Tab. A.5.

All two-body potential parameters were extracted by fitting to the dimer dissociation
curves of Na-Na, Cl-Cl, and Na-Cl through the non-linear least squares method. It is noted
that the interactions of Na-Cl in the framework of ee4G-HDNNP and 4G-HDNNP+E2b
involve electrostatic contributions during the dissociation which need to be removed to
avoid double counting of the electrostatic interactions. In this work, the electrostatic in-
teraction between Na and Cl atoms was simply calculated using Coulomb’s law based
on fixed point charges by setting Na = +1 and Cl = −1. The details of the fitting pro-
cess and parameters are given in Sec. A.3. The detailed comparisons of 4G-HDNNP,
4G-HDNNP+E2b and ee4G-HDNNP in different aspects are presented in the following
subsections.

5.3.1 Accuracy of Fourth-Generation MLPs

A straight forward estimation for the accuracy of the constructed potentials is to compare
the errors in the training and test set. The correlation of binding energies, atomic forces
and charges between different potentials and DFT is plotted in Fig. 5.3. The 4G-HDNNP
achieves overall state-of-the-art accuracy with respect to the binding energies, force com-
ponents, and atomic charges. However, certain data points in the correlation plot of the
force components

(
see Fig. 5.3 (d)

)
are scattered, often reaching several eV/Å with re-

spect to DFT. Notably, the settings in the non-local electrostatic part of the 4G-HDNNP,
4G-HDNNP+E2b and ee4G-HDNNP are identical. As a consequence, the calculation
of charges, electrostatic energies and forces is exactly the same for all methods, which
provide a fair comparison for evaluating the improvement of each modification.

In contrast, the 4G-HDNNP+E2b predicts a significantly improved correlation of force
components and binding energies compared to the 4G-HDNNP as shown in Fig. 5.3 (b)
and (e). Nevertheless, some force components still deviate strongly from the reference.
Finally, the ee4G-HDNNP predicts DFT binding energies and force components in excel-
lent agreement with DFT and only a few force components are scattered as shown in the
correlation plot. These remaining outliers of force components can be explained by very
close neighboring atoms with relatively large charge errors, which give an inaccurate in-
put for the short-range part yielding large force errors. In summary, these correlation plots
show that the accuracy of the training and test set is gradually improved from 4G-HDNNP
over 4G-HDNNP+E2b to ee4G-HDNNP.
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(a) (b) (c)

(d) (e) (f)

(g)

Fig. 5.3: Correlation plots of binding energies obtained from the 4G-HDNNP (a), 4G-
HDNNP+E2b (b), ee4G-HDNNP (c), atomic force components obtained from
the 4G-HDNNP (d), 4G-HDNNP+E2b (e), ee4G-HDNNP (f), and atomic
charges obtained from 4G-HDNNP (g) in the training and test set for sodium
chloride clusters. The charge calculations are the same for all methods.

More statistical information about the accuracy of the different fourth-generation po-
tentials can be extracted from the RMSEs of charges, binding energies and force compo-
nents as reported in Tab. 5.1. The 4G-HDNNP is in agreement with DFT for all target
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Tab. 5.1: Root mean square errors of charges (10−3 e), binding energies (meV/atom) and
force components (meV/Å) for the data set of NaCl clusters. The training and
test sets contain 30196 and 3396, respectively. Numbers in brackets indicate
the errors of the test set. The 4G-HDNNP+E2b and ee4G-HDNNP share same
settings with the 4G-HDNNP for charge calculations.

method charges binding energies force components
4G-HDNNP 6.904 (6.912) 1.779 (1.796) 64.78 (63.70)

4G-HDNNP+E2b 6.904 (6.912) 1.391 (1.381) 39.45 (39.38)
ee4G-HDNNP 6.904 (6.912) 1.250 (1.267) 34.76 (34.94)

properties, which are below 7.0× 103 e, 1.8 meV/atom and 0.065 eV/Å, respectively.
The errors of 4G-HDNNP+E2b are reduced by roughly 30% compared to 4G-HDNNP
in terms of binding energies and force components, while the ee4G-HDNNP is further
decreased by 10%. The learning curve of potentials are provided in Fig. A.6. At first
glance, the significant improvement is attributed to the empirical two-body potentials,
which can be also seen in the correlation plots. However, only including the two-body
potential is still insufficient for describing non-local effects, which arise from dramatic
changes of the electronic structure in the local atomic environments. Such situations are
further investigated in the next subsection.

5.3.2 A Benchmark for Ionic Clusters

To demonstrate the capabilities of ee4G-HDNNP, the non-local effects caused by an ad-
ditional chloride ion attached on the DFT-optimized structure of Na6Cl6 with a bond
distance of 2.7 Å (see Fig. 5.4) are investigated with different potentials. It is noteworthy
that these two structures are not included in the training set. The charge distribution of
both structures obtained by 4G-HDNNP are shown in Fig. 5.4 (a).

The partial charge on the additional chloride ion is around −0.66 e and its nearest
sodium atom becomes less positively charged from 0.47 e to 0.30 e while the nearest chlo-
rine atom remains nearly unchanged. The additional chloride ion considerably changes
the electronic structure of the neighboring atoms and the corresponding chemical inter-
actions. To compare the performance of different potentials in describing such electronic
changes, the force errors for each atom obtained by different potentials with respect to
DFT for both clusters are displayed in the color plot from Fig. 5.4 (b) to (d).

For the case of Na6Cl6, the RMSEs of the forces obtained with the 4G-HDNNP, 4G-
HDNNP+E2b and ee4G-HDNNP compared to DFT are 0.055, 0.037 and 0.032 eV/Å. All
of them are in very good agreement with DFT and their force error for each atom is also
similar. For the case of Na6Cl−7 , the RMSEs of atomic forces are generally higher than
for Na6Cl6 (4G-HDNNP: 0.121 eV/Å; 4G-HDNNP+E2b: 0.131 eV/Å; ee4G-HDNNP:
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Fig. 5.4: Investigation of non-local effects arising from the additional Cl− ion attached
on the DFT-optimized structure of Na6Cl6. Atomic charges for both structures
predicted by 4G-HDNNP are displayed in (a). The force error of 4G-HDNNP
(b), 4G-HDNNP+E2b (c), ee4G-HDNNP (d) for the atoms in both structures
are plotted with respect to DFT. The Na and Cl atoms are indicated as large and
small spheres, respectively.

0.078 eV/Å). This can be explained by a very small number of training structures which
contain a highly negatively charged chlorine atom. Therefore, such chemical interactions
between neighboring atoms within the atomic environment are not well described by the
ANNs compared to the neutral system.

The force error for each atom is also investigated to identify other possible reasons. The
4G-HDNNP predicts a large force error of the additional chlorine ion and its nearest chlo-
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rine atom with respect to DFT (0.2 and 0.307 eV/Å, respectively). The 4G-HDNNP+E2b
is even worse than the 4G-HDNNP with RMSEs of 0.24 and 0.344 eV/Å. In contrast, the
ee4G-HDNNP significantly reduces the force error for the additional chlorine ion and its
nearest chlorine atom to 0.123 and 0.158 eV/Å.

This benchmark example reveals that the ee4G-HDNNP significantly improves the de-
scription of non-local effects, which are caused by the electronic changes in the surround-
ings of the central atom. This is attributed to the novel descriptors, which incorporate
electrostatic potentials arising from the atomic environment. However, the 4G-HDNNP
and 4G-HDNNP+E2b cannot be properly adjusted to the electronic changes in the atomic
environment. It can be explained by the lack of explicit information about the neighbor-
ing charges in these models, which cannot identify the partial charge on the additional
chlorine ion. Such short coming leads to a unrealistically large short-range force between
these two chlorine atoms, resulting in a higher force error with respect to DFT.

The even higher force error obtained from the 4G-HDNNP+E2b compared to the 4G-
HDNNP in this particular configuration is attributed to the pairwise potential of Cl-Cl. In
the training of the short-range part of 4G-HDNNP+E2b, the target values of energies and
forces are obtained by subtracting the electrostatic and two-body contributions from the
reference data. As the two-body potential has very strong covalent interactions, which
increases the range of the target forces. This also increases the complexity of the fitting
in the short-range part, which results in a higher force error.

5.3.3 Structural Analysis and Energetic Ordering of Local
Minima

After showing the improved description of non-local electronic effects on a benchmark
example, several analyses are performed for a set of local minima for both neutral and
charged sodium chloride clusters obtained from different methods. The structures of min-
ima and corresponding energetic orders are investigated with different methods to eval-
uate the general accuracy of the potentials in diverse configuration spaces. The minima
hopping algorithm [137] was applied to explore different minima on the PESs. More-
over, small clusters have been chosen for the simulations, since the normalized relative
energy difference per atom between two energetically similar minima for large clusters
is extremely small, which is even lower than the typical energy error (∼ 1 meV/atom) of
MLPs.

The minima hopping simulations were driven by the ee4G-HDNNP and the detected
minima were re-optimized with 4G-HDNNP, 4G-HDNNP+E2b and DFT. In this way, the
same initial structure is relaxed to the closest minimum on the respective PESs. Various
sizes of sodium chloride cluster including NanCln, NanCl−n+1, and Nan+1Cl+n with n =
24,62 are studied. Here, the positively charged clusters were also included to test the
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transferability of potentials for describing systems with the unknown charge state. The
first 50 minima found in the minima hopping simulation were used for performing the
analysis. Fig. 5.5 shows the RMSD in terms of the structures and DFT forces for the 50

Fig. 5.5: Root mean square deviation of the structures and DFT forces for 50 minima ob-
tained with 4G-HDNNP, 4G-HDNNP+E2b and ee4G-HDNNP compared to the
respective DFT minima. The tool for calculating the root mean square deviation
of structures was provided by Jonas Finkler [174].

minima in each system size found by different potentials, compared to the respective DFT
minima. If the data points are located at the bottom left region in the correlation plot, it
means that the minima predicted by the potentials are in excellent agreement with DFT,
energetically and structurally.

About 50% of the minima for smaller clusters obtained from the 4G-HDNNP reach
state-of-the-art accuracy, which is below 0.09 eV/Å and 0.1 Å. Notably, the quality of the
4G-HDNNP for positively charged clusters is similar to neutral and negatively charged
clusters, which reveals the excellent transferability of the 4G-HDNNP to the unknown
charge state. Still, some minima predicted by the 4G-HDNNP deviate more than 0.5 Å
with respect to the DFT, which means the shape of PESs at the respective configuration
space is different. Moreover, the average force deviation is increased by about 0.03 eV/Å
for larger clusters compared to smaller clusters, since some atomic environments for large
clusters are not covered in the training set, which results in large force deviations.
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The significant improvement of 4G-HDNNP+E2b in regard to the deviation of struc-
tures and DFT forces can be observed in Fig. 5.5. More than 70% of minima show less
than 0.1 Å structural deviation and around 80% of minima deviate below 0.065 eV/Å
from the DFT forces. Additionally, the average DFT force deviation for larger clusters
predicted by 4G-HDNNP+E2b is slightly increased by 0.013 eV/Å compared to the case
of smaller clusters. This shows that the transferability of the model can be substantially
increased by including two-body potentials. However, a few minima still have large struc-
tural deviations, which are more than 0.5 Å, with respect to DFT.

Finally, the ee4G-HDNNP demonstrates outstanding accuracy and transferability com-
pared to the other potentials. More than 80% of minima are below 0.1 Å in terms of
structural deviations, and for above 95% the average DFT force deviation is lower than
0.06 eV/Å. Besides, the average force deviation from smaller to larger clusters is just
increased by up to 0.005 eV/Å. These results show that the accuracy and transferabil-
ity of the potentials for describing systems with larger sizes and different charge states
are further enhanced by introducing electronic structure information in the local atomic
environments.

Apart from the statistical comparison of minima in terms of structures and forces, the
energetic ordering of minima is also studied. This is a meaningful comparison of the
performance of 4G- and ee4G-HDNNPs, since the prediction of the correct energetic or-
dering of minima requires an accurate representation of the PES. The minima of Na25Cl+24
and Na63Cl+62 found in the minima hopping simulation were used to evaluate the accuracy
of the energetic ordering predicted by 4G- and ee4G-HDNNPs compared to DFT.

Fig. 5.6 (a) shows the five lowest energies of Na25Cl+24 predicted by 4G-HDNNP, ee4G-
HDNNP and DFT relative to the respective lowest energy of the minimum. It also depicts
the corresponding structural differences as indicated by the RMSD compared to DFT. The
4G-HDNNP predicts qualitatively incorrect relative energies compared to DFT, which can
be seen in the energy level given in Fig. 5.6 (a). Even though three out of five minima
are accurately reproduced with structural deviations of approximately 0.06-0.07 Å with
respect to DFT, only two minima are in exactly the same energetic order as DFT, while
other minima either have large structural deviation or are not among the five lowest min-
ima predicted by DFT. In contrast to that, the energetic ordering of minima predicted by
the ee4G-HDNNP is equivalent to DFT. The corresponding relative energies are also in
excellent agreement with DFT, which are even below the training accuracy of the po-
tential. Moreover, all structures deviate less than 0.05 Å with respect to DFT minimum
structures.

For the larger clusters Na63Cl+62, the normalized relative energy difference per atom
between minima can be very small and therefore the minima with the highest relative
energies are included for comparisons. Fig. 5.6 (b) shows energetic ordering of the two
lowest and the three highest energy minima obtained from DFT, 4G- and ee4G-HDNNPs.
Three out of five minima obtained from the 4G-HDNNP agree with the energetic order
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Fig. 5.6: Energetic ordering of minima predicted by 4G-HDNNP, ee4G-HDNNP and
DFT. The five lowest energy minima of Na25Cl+24 are shown in (a). The three
highest energy and two lowest energy minima of Na63Cl+62 are shown in (b).
All minima are obtained from minima hopping simulations driven by the ee4G-
HDNNP and then re-optimzied with the respective methods. The numbers indi-
cate the relative energy to the lowest energy minima predicted by the respective
method. The numbers in brackets show the corresponding root mean square
deviation (in Å) of the structure compared to the respective DFT minima. Mis-
matched structures with respect to DFT are colored in grey. The sodium and
chlorine atoms are indicated as large and small spheres, respectively.

of DFT and all relative energy differences are within 1 meV/atom, although the structural
deviation with respect to DFT is more than 0.1 Å for the high energy minima. In contrast,
the ee4G-HDNNP predicts the DFT energetic order of minima very well with relative
energy differences below 0.5 meV/atom. Besides, the structural deviation for all minima
with respect to DFT is still significantly lower than 0.1 Å, which demonstrate the excellent
transferability of the model from small to large systems. This analysis reveals that the
ee4G-HDNNP is not only able to accurately reproduce the curvature of DFT-based PESs
but also the corresponding energies.

5.3.4 Transferability to Crystals

The final comparison between 4G-HDNNP and ee4G-HDNNP is to evaluate the trans-
ferability of potentials to a periodic system based on the data set, which only contains
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(a) (b)

Fig. 5.7: Atomic charges (a) and Relative energies (b) versus normalized volume per atom
for FCC crystal obtained from 4G-HDNNP, ee4G-HDNNP, both potentials con-
structed based on the data set including crystal structures and DFT. The energies
are relative to the minimum of DFT energies.

cluster structures, by predicting the properties of the NaCl FCC bulk crystal. Fig. 5.7 (a)
shows the changes of partial charges on Na and Cl atoms during isotropic compression or
expansion. The charges on the Na and Cl atoms predicted by 4G-HDNNP based on the
data set including additional crystal structures are able to reproduce the DFT Hirshfeld
charges with very high accuracy. Remarkably, the charges predicted by the 4G-HDNNP
based on the original cluster data set also give comparable accuracy to the data set with
crystal structures, which underlines the excellent transferability of the Qeq scheme.

The relative energies obtained with DFT, 4G-HDNNP and ee4G-HNDNP correspond-
ing to the isotropic deformation of a FCC crystal are plotted in Fig. 5.7 (b). The 4G- and
ee4G-HDNNPs constructed on the data set including additional crystal structures match
the DFT energy curve as indicated by the triangle symbols in the plot. However, the 4G-
HDNNP constructed on the data set without including crystal structures fails to reproduce
the curvature and minimum of the DFT energy curve while the ee4G-HDNNP predicts all
these properties in acceptable agreement with DFT. The mean absolute error calculated
from the ee4G-HDNNP is 8.462 meV/atom while the 4G-HDNNP has an error of 24.978
meV/atom.

The equilibrium lattice constant of the crystal and bulk modulus can be extracted by
utilizing the Murnaghan equation of state [191]. The fitted DFT bulk modulus and equi-
librium are 23.32 GPa and 5.706 Å. The ee4G-HDNNP predicts 25.79 GPa for the bulk
modulus and 5.708 Å for the equilibrium bond length, which is in agreement with DFT
results. On the other hand, the properties obtained by the 4G-HDNNP show larger de-
viations compared to DFT, which are 28.73 GPa and 5.602 Å respectively. This trans-
ferability test demonstrates the significant improvement provided by physical two-body
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potentials, which explicitly take Pauli repulsive potentials and dispersion interactions into
account.
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Chapter 6

Summary and Perspectives

The development of machine learning potentials (MLPs) nowadays has reached an im-
portant milestone that enables large-scale atomistic simulations with nearly ab-initio ac-
curacy at significantly reduced computational cost. Numerous applications of MLPs have
been reported in chemistry, physics and materials science. The MLPs are classified into
four different generations [16, 79], which give an overview for the historical development
of MLPs over the past two decades.

First-generation MLPs have been introduced 25 years ago and they are only applicable
to systems with a few degrees of freedom such as an molecule on a fixed slab. Starting
from applications to high-dimensional systems based on second-generation MLPs, the
development of MLPs has attracted a great deal of attention. Many models relying on
the chemical locality combined with either predefined or learnable type descriptors have
been proposed. The long-range interactions such as electrostatics can be described by
third-generation MLPs, which rely on local environment dependent charges predicted by
machine learning models. Apart from that, the dispersion interactions can be also included
by using empirical corrections [75, 77, 192].

In recent years, fourth-generation MLPs have been proposed to describe non-local ef-
fects caused by long-range charge transfer and different total charge states, which over-
come the long-standing challenge for previous generations of MLPs. A novel model,
namely the fourth-generation high-dimensional neural network potential (4G-HDNNP),
which is inspired by the charge equilibration using neural network technique (CENT) and
the second-generation high-dimensional neural network potential (2G-HDNNP), is intro-
duced in chapter 4 including the development of the conceptual approach and the technical
details. A charge equilibration (Qeq) scheme is used to distribute the partial charges over
the whole system according to the total charge. The environment-dependent atomic elec-
tronegativities, which are express by ANNs, and element-specific hardnesses are trained
to reproduce the reference charges. Environment-dependent electronegativities, which
are predicted by atomic neural These Gaussian distributed charges are used to calculate
long-range electrostatic energies and forces. Furthermore, the atomic charges also serve
as non-local input for the short-range ANNs together with atom-centered symmetry func-
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tions (ACSFs) to describe the local bonding. In this way, the short-range atomic energies
are able to take non-local effects arising from the global redistribution of atomic charges
into account.

The capabilities of 4G-HDNNPs have been demonstrated on a wide range of systems
including an organic molecule, ionic and charged metal clusters, and bulk materials,
which involve long-range charge transfer or multiple charge states. These results illus-
trate that the 4G-HDNNPs provide excellent agreement with the underlying DFT results
in terms of charges, energies and forces. In contrast, previous generations of HDNNPs
yield even qualitatively wrong results for these benchmark systems, which involve non-
local effects arising from long-range charge transfer or multiple charge states. For in-
stance, some equilibrium structures are missed by the 2G- and 3G-HDNNPs. On the
other hand, the 4G-HDNNP is able to identify these structures in agreement with DFT.
All these results illustrate that the 4G-HDNNP is generally applicable and enables replac-
ing computationally demanding electronic structure methods for performing large-scale
atomistic simulations to study complex problems.

Moreover, the accuracy and transferability of the 4G-HDNNP have been further en-
hanced by proposing the electrostatically embedded 4G-HDNNP (ee4G-HDNNP), which
contains two essential modifications with respect to the 4G-HDNNP. The first change is
to introduce a new kind of non-local electronic descriptors, which take the electrostatic
potential arising from Gaussian charges within the local atomic environment into account.
Just like the atomic charges in the 4G-HDNNP, these non-local descriptors serve as in-
puts for short-range ANNs to determine the atomic energies. Hence, the representation of
atomic energies is more completed in terms of the distribution of atomic charges within
the local environment, which considerably improve the description of overall PES. Fur-
thermore, the transferability of the potential can be substantially increased by including
physical pairwise potentials that account for Pauli repulsion, dipole-dipole, and dipole-
quadruple vdW interactions.

The noticeable improvements of the ee4G-HDNNP compared to the 4G-HDNNP have
been demonstrated on a data set containing both neutral and charged sodium chloride clus-
ters with large structural diversity in chapter 5. The results reveal that the ee4G-HDNNP
predicts the structure of minima and corresponding energetic orderings in excellent agree-
ment with DFT, while the minima obtained by the 4G-HDNNP have larger structural
deviations and only partially correct energetic orderings. Besides, the ee4G-HDNNP ex-
hibits outstanding transferability to crystal structures compared to the 4G-HDNNP based
on a data set only containing cluster structures. All these analyses confirm that the ee4G-
HDNNP provides a significant improved PES, which offers a more accurate description of
non-local electronic effects with excellent transferability to unknown structures. In terms
of computational cost, the performance of 2G-, 4G-, and ee4G-HDNNPs for a NaCl FCC
supercell with different number of atoms is displayed in Fig. 6.1. It shows that the ad-
ditional computational effort caused by the ee4G-HDNNP relative to the 4G-HDNNP
is negligible. On the other hand, the computational time of the local methods such as
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Fig. 6.1: Computational time spent on the energy and force calculations with the RuN-
Ner program for a NaCl FCC supercell with different number of atoms Natoms =
64,512,1728 using 2G-, 4G-, and ee4G-HDNNPs by four Intel R©Xeon Gold
6240 CPU cores. The RuNNer program was compiled with the OpenMP paral-
lelization flag. The data points are calculated by taking the average of total run
time for 100 identical structures and plotted on a logarithmic scale.

2G-HDNNP is significantly shorter than for 4G- and ee4G-HDNNPs. For example, the
2G-HDNNP takes only 1.22 s for the energy and force calculation of a single structure
containing 1728 atoms while 4G- and ee4G-HDNNPs consume 111.36 s and 114.84 s,
respectively.

The main bottle neck of computational speed in 4G- and ee4G-HDNNPs is the calcu-
lation of charges and their derivatives, which involves O(N3) of the standard algorithm
for solving the linear systems of equations. One of the solutions is to employ an itera-
tive solver, which can effectively reduce the scaling to O(NlogN) with number of atoms
N. Apart from that, the electrostatic energies and forces are currently computed using
standard Ewald summation, which can be replaced by more efficient algorithms such as
the fast multipole [163] and particle mesh Ewald methods [164]. These modifications are
expected to considerably reduce the computational cost for the energy and force calcu-
lations using 4G- and ee4G-HDNNPs, which will allow to efficiently simulate systems
with more than ten thousand atoms in the future. It can be foreseen that the ee4G-
HDNNP will serve as a powerful tool to study interesting electrochemical phenomena
such as the mechanisms and kinetics of interfacial electron transfer in the solid electrolyte
interphase [193, 194].
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For future work, the construction of two-body potentials in the framework of ee4G-
HDNNPs requires further investigation. The coefficients of two-body potentials are cur-
rently determined by fitting the dissociation curve of different dimers, which generally
improves the accuracy and transferability of 4G-HDNNPs. However, the introduction of
such two-body potentials sometimes provides worse extrapolation for exceptional con-
figurations, which contain strongly charged atoms with atomic environments that are not
sampled well in the training set. For instance, the 4G-HDNNP reproduces more accurate
DFT forces on Na6Cl−7 compared to the 4G-HDNNP+E2b as shown in Fig. 5.4. This is
attributed to the unrealistically large short-range contributions which remain after remov-
ing the strong covalent interactions provided by the pairwise potential. Open questions
remain about how the introduction of such pairwise potentials with strong covalent bond-
ing between two neutral atoms influences the accuracy and transferability of the potential.
Due to time constraints, a detailed analysis will be conducted in the future.

In terms of further methodical developments, a general limitation of the Qeq scheme is
that it always allows long-range charge transfer for all types of systems. However, this is
only valid for conductor-like systems such as conjugated hydrocarbons and metals [195,
196]. This problem could yield large charge errors for the studies of bond dissociation at
large distance. Some early attempts have been done to address the problem of unrealistic
long-range charge transfer such as putting artificial constraints on fragment charges [197,
198] and increasing the impact of the electronegativity difference at long distances [199,
200]. Work in this direction to improve long-range charge transfer in the framework
of 4G-HDNNPs will continue in the future. Apart from that, the costly solution of the
system of linear equations in the Qeq scheme can be avoided by introducing effective local
learnable atomic electronegativities. These electronegativities implicitly include the off-
diagonal terms (i.e. the Coulomb interaction terms) in the matrix by iteratively updating
through message passing neural networks [89]. In this simplification of the Qeq scheme,
the charges can be calculated analytically without solving a system of linear equations
and the efficiency is thus substantially increased.

In addition to the improvements of the Qeq scheme in terms of accuracy and efficiency,
the framework of 4G-HDNNPs can be further extended to magnetic systems, where the
model is currently unable to distinguish different electronic spin arrangements due to the
lack of atomic spin information. A set of spin dependent atom-centered symmetry func-
tions (SACSFs) [130], which take collinear atomic spins into account, have been recently
proposed for the construction of HDNNPs to describe materials in different magnetic
states. The possible extension of the 4G-HDNNP to magnetic systems can be done by
predicting the atomic spins and employing SACSFs, which describe the arrangement of
atomic spins within the local environment. These SACSFs serve as inputs for short-range
ANNs together with other descriptors to predict atomic contributions arising from differ-
ent magnetic states.

Fourth-generation MLPs are emerging as a tool for atomistic simulations and relevant
developments are constantly reported in this field of research. For example, the non-local
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effects arising from the changes of the electronic structure can be described by the position
of the maximally localized Wannier centers (MLWFCs) [201, 202]. The MLWFCs, which
are suggested to be local properties, and their electronic responses due to the applied
electric field over the whole system are predicted by two different sets of neural networks.
This electronic information provides an alternative way for constructing fourth-generation
MLPs instead of using atomic charges, which depend on the chosen partitioning scheme.

Even though fourth-generation MLPs can describe non-local effects arising from long-
range charge transfer and multiple charge states, explicit electronic degrees of freedoms
are still missing. Another new direction in the field is to combine MLPs with infor-
mation obtained from electronic structure methods. Further examples include the com-
bination of neural networks with Hückel theory [203] or density functional tight bind-
ing [204] obtained by message passing neural networks as well as the representation of
symmetry-adapted atomic orbital features [205]. In addition, highly accurate molecular
electronic wave functions can be represented by deep neural networks relying on the base-
line Hartree-Fock method [206]. Such direction of including more electronic information
from ab-initio methods can be expected to continue in the coming years.

Due to the capabilities of fourth-generation MLPs, many studies of interesting phe-
nomena involving global changes in the electronic structure, which cannot be described
by previous generations of MLPs, become feasible. These encouraging developments
leads to more general applicability of MLPs in different fields of science. In this thesis, the
framework and algorithms of 4G- and ee4G-HDNNPs are presented, along with a detailed
analysis for various benchmark systems and possible improvements to the methods. All
these works would give valuable insights for the further development of next-generation
MLPs, which provide an accurate description of non-local electronic effects and excellent
transferability to unknown structures. The definition of a future fifth-generation of MLPs
is still not clear. However, more promising developments of MLPs can be anticipated in
this highly active field of research.
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Appendix

A.1 Symmetry Functions Used for Constructing
Neural Network Potentials

Tab. A.1: Symmetry functions for C10H2/C10H+
3 . Reprinted (adapted) with permission

from Ref. [34]. Copyright 2021 Springer Nature.

type atom i atom j atom k η(1/a2
0) λ ζ Rc(a0) Rs(a0)

2 H H 0.0 8.0 0.0
2 H H 0.006 8.0 0.0
2 H H 0.011 8.0 0.0
2 H H 0.018 8.0 0.0
2 H H 0.026 8.0 0.0
2 H H 0.035 8.0 0.0
2 C H 0.0 8.0 0.0
2 C H 0.013 8.0 0.0
2 C H 0.029 8.0 0.0
2 C H 0.054 8.0 0.0
2 C H 0.093 8.0 0.0
2 C H 0.161 8.0 0.0
2 H C 0.0 8.0 0.0
2 H C 0.013 8.0 0.0
2 H C 0.029 8.0 0.0
2 H C 0.054 8.0 0.0
2 H C 0.093 8.0 0.0
2 H C 0.161 8.0 0.0
2 C C 0.0 8.0 0.0
2 C C 0.01 8.0 0.0
2 C C 0.023 8.0 0.0
2 C C 0.041 8.0 0.0
2 C C 0.065 8.0 0.0
2 C C 0.103 8.0 0.0
3 C C C 0.0 1.0 1.0 8.0
3 C C C 0.0 1.0 2.0 8.0
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type atom i atom j atom k η(1/a2
0) λ ζ Rc(a0) Rs(a0)

3 C C C 0.0 1.0 4.0 8.0
3 C C C 0.0 1.0 8.0 8.0
3 C C C 0.0 -1.0 1.0 8.0
3 C C C 0.0 -1.0 2.0 8.0
3 C C C 0.0 -1.0 4.0 8.0
3 C C C 0.0 -1.0 8.0 8.0
3 C H H 0.0 1.0 1.0 8.0
3 C H H 0.0 1.0 2.0 8.0
3 C H H 0.0 1.0 4.0 8.0
3 C H H 0.0 1.0 8.0 8.0
3 C H H 0.0 -1.0 1.0 8.0
3 C H H 0.0 -1.0 2.0 8.0
3 C H H 0.0 -1.0 4.0 8.0
3 C H H 0.0 -1.0 8.0 8.0
3 C C H 0.0 1.0 1.0 8.0
3 C C H 0.0 1.0 2.0 8.0
3 C C H 0.0 1.0 4.0 8.0
3 C C H 0.0 1.0 8.0 8.0
3 C C H 0.0 -1.0 1.0 8.0
3 C C H 0.0 -1.0 2.0 8.0
3 C C H 0.0 -1.0 4.0 8.0
3 C C H 0.0 -1.0 8.0 8.0
3 H C C 0.0 1.0 1.0 8.0
3 H C C 0.0 1.0 2.0 8.0
3 H C C 0.0 1.0 4.0 8.0
3 H C C 0.0 1.0 8.0 8.0
3 H C C 0.0 -1.0 1.0 8.0
3 H C C 0.0 -1.0 2.0 8.0
3 H H C 0.0 1.0 1.0 8.0
3 H H C 0.0 1.0 2.0 8.0
3 H H C 0.0 1.0 4.0 8.0
3 H H C 0.0 1.0 8.0 8.0
3 H H C 0.0 -1.0 1.0 8.0
3 H H C 0.0 -1.0 2.0 8.0

Tab. A.2: Symmetry functions for Ag+/Ag− clusters. Reprinted (adapted) with permis-
sion from Ref. [34]. Copyright 2021 Springer Nature.

type atom i atom j atom k η(1/a2
0) λ ζ Rc(a0) Rs(a0)

2 Ag Ag 0.0 10.0 0.0
2 Ag Ag 0.007 10.0 0.0
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type atom i atom j atom k η(1/a2
0) λ ζ Rc(a0) Rs(a0)

2 Ag Ag 0.014 10.0 0.0
2 Ag Ag 0.025 10.0 0.0
2 Ag Ag 0.04 10.0 0.0
2 Ag Ag 0.062 10.0 0.0
3 Ag Ag Ag 0.0 1.0 1.0 10.0
3 Ag Ag Ag 0.0 1.0 2.0 10.0
3 Ag Ag Ag 0.0 1.0 4.0 10.0
3 Ag Ag Ag 0.0 1.0 8.0 10.0
3 Ag Ag Ag 0.0 -1.0 1.0 10.0
3 Ag Ag Ag 0.0 -1.0 2.0 10.0

Tab. A.3: Symmetry functions for Na8Cl+8 /Na9Cl+8 clusters. Reprinted (adapted) with
permission from Ref. [34]. Copyright 2021 Springer Nature.

type atom i atom j atom k η(1/a2
0) λ ζ Rc(a0) Rs(a0)

2 Na Na 0.0 10.0 0.0
2 Na Na 0.001 10.0 0.0
2 Na Na 0.002 10.0 0.0
2 Na Na 0.003 10.0 0.0
2 Na Na 0.004 10.0 0.0
2 Na Na 0.005 10.0 0.0
2 Na Cl 0.0 10.0 0.0
2 Na Cl 0.003 10.0 0.0
2 Na Cl 0.005 10.0 0.0
2 Na Cl 0.007 10.0 0.0
2 Na Cl 0.01 10.0 0.0
2 Na Cl 0.013 10.0 0.0
2 Cl Na 0.0 10.0 0.0
2 Cl Na 0.003 10.0 0.0
2 Cl Na 0.005 10.0 0.0
2 Cl Na 0.007 10.0 0.0
2 Cl Na 0.01 10.0 0.0
2 Cl Na 0.013 10.0 0.0
2 Cl Cl 0.0 10.0 0.0
2 Cl Cl 0.001 10.0 0.0
2 Cl Cl 0.002 10.0 0.0
2 Cl Cl 0.003 10.0 0.0
2 Cl Cl 0.004 10.0 0.0
2 Cl Cl 0.005 10.0 0.0
3 Na Na Cl 0.0 1.0 1.0 10.0
3 Na Na Cl 0.0 1.0 2.0 10.0
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type atom i atom j atom k η(1/a2
0) λ ζ Rc(a0) Rs(a0)

3 Na Na Cl 0.0 1.0 4.0 10.0
3 Na Na Cl 0.0 1.0 8.0 10.0
3 Na Na Cl 0.0 -1.0 1.0 10.0
3 Na Na Cl 0.0 -1.0 2.0 10.0
3 Na Cl Cl 0.0 1.0 1.0 10.0
3 Na Cl Cl 0.0 1.0 2.0 10.0
3 Na Cl Cl 0.0 -1.0 1.0 10.0
3 Na Cl Cl 0.0 -1.0 2.0 10.0
3 Na Cl Cl 0.0 -1.0 4.0 10.0
3 Cl Cl Na 0.0 1.0 1.0 10.0
3 Cl Cl Na 0.0 1.0 2.0 10.0
3 Cl Cl Na 0.0 1.0 4.0 10.0
3 Cl Cl Na 0.0 1.0 8.0 10.0
3 Cl Cl Na 0.0 -1.0 1.0 10.0
3 Cl Na Na 0.0 1.0 1.0 10.0
3 Cl Na Na 0.0 1.0 2.0 10.0
3 Cl Na Na 0.0 1.0 4.0 10.0
3 Cl Na Na 0.0 -1.0 1.0 10.0
3 Cl Na Na 0.0 -1.0 2.0 10.0

Tab. A.4: Symmetry functions for Au2-MgO slabs. Reprinted (adapted) with permission
from Ref. [34]. Copyright 2021 Springer Nature.

type atom i atom j atom k η(1/a2
0) λ ζ Rc(a0) Rs(a0)

2 Mg Mg 0.0 8.0 0.0
2 Mg Mg 0.001 8.0 0.0
2 Mg Mg 0.002 8.0 0.0
2 Mg Mg 0.003 8.0 0.0
2 Mg Mg 0.004 8.0 0.0
2 Mg Mg 0.005 8.0 0.0
2 O Mg 0.0 8.0 0.0
2 O Mg 0.004 8.0 0.0
2 O Mg 0.007 8.0 0.0
2 O Mg 0.01 8.0 0.0
2 O Mg 0.014 8.0 0.0
2 O Mg 0.018 8.0 0.0
2 Mg O 0.0 8.0 0.0
2 Mg O 0.004 8.0 0.0
2 Mg O 0.007 8.0 0.0
2 Mg O 0.01 8.0 0.0
2 Mg O 0.014 8.0 0.0
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type atom i atom j atom k η(1/a2
0) λ ζ Rc(a0) Rs(a0)

2 Mg O 0.018 8.0 0.0
2 O O 0.0 8.0 0.0
2 O O 0.001 8.0 0.0
2 O O 0.002 8.0 0.0
2 O O 0.003 8.0 0.0
2 O O 0.004 8.0 0.0
2 O O 0.005 8.0 0.0
2 Mg Au 0.0 8.0 0.0
2 Mg Au 0.001 8.0 0.0
2 Mg Au 0.002 8.0 0.0
2 Mg Au 0.003 8.0 0.0
2 Mg Au 0.004 8.0 0.0
2 Mg Au 0.005 8.0 0.0
2 Au Mg 0.0 8.0 0.0
2 Au Mg 0.001 8.0 0.0
2 Au Mg 0.002 8.0 0.0
2 Au Mg 0.003 8.0 0.0
2 Au Mg 0.004 8.0 0.0
2 Au Mg 0.005 8.0 0.0
2 Au O 0.0 8.0 0.0
2 Au O 0.004 8.0 0.0
2 Au O 0.008 8.0 0.0
2 Au O 0.013 8.0 0.0
2 Au O 0.018 8.0 0.0
2 Au O 0.024 8.0 0.0
2 Au Au 0.0 8.0 0.0
2 Au Au 0.004 8.0 0.0
2 Au Au 0.008 8.0 0.0
2 Au Au 0.012 8.0 0.0
2 Au Au 0.017 8.0 0.0
2 Au Au 0.022 8.0 0.0
2 O Al 0.0 8.0 0.0
2 O Al 0.003 8.0 0.0
2 O Al 0.005 8.0 0.0
2 O Al 0.008 8.0 0.0
2 O Al 0.011 8.0 0.0
2 O Al 0.014 8.0 0.0
2 Al O 0.0 8.0 0.0
2 Al O 0.003 8.0 0.0
2 Al O 0.005 8.0 0.0
2 Al O 0.008 8.0 0.0
2 Al O 0.011 8.0 0.0
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type atom i atom j atom k η(1/a2
0) λ ζ Rc(a0) Rs(a0)

2 Al O 0.014 8.0 0.0
2 Al Mg 0.0 8.0 0.0
2 Al Mg 0.001 8.0 0.0
2 Al Mg 0.002 8.0 0.0
2 Al Mg 0.003 8.0 0.0
2 Al Mg 0.004 8.0 0.0
2 Al Mg 0.005 8.0 0.0
2 Mg Al 0.0 8.0 0.0
2 Mg Al 0.001 8.0 0.0
2 Mg Al 0.002 8.0 0.0
2 Mg Al 0.003 8.0 0.0
2 Mg Al 0.004 8.0 0.0
2 Mg Al 0.005 8.0 0.0
3 Mg Mg Mg 0.0 1.0 1.0 8.0
3 Mg Mg Mg 0.0 1.0 2.0 8.0
3 Mg Mg Mg 0.0 1.0 4.0 8.0
3 Mg Mg Mg 0.0 -1.0 1.0 8.0
3 Mg Mg O 0.0 1.0 1.0 8.0
3 Mg Mg O 0.0 1.0 2.0 8.0
3 Mg Mg O 0.0 1.0 4.0 8.0
3 Mg Mg O 0.0 1.0 8.0 8.0
3 Mg Mg O 0.0 -1.0 1.0 8.0
3 Mg Mg O 0.0 -1.0 2.0 8.0
3 Mg O O 0.0 1.0 1.0 8.0
3 Mg O O 0.0 1.0 2.0 8.0
3 Mg O O 0.0 1.0 4.0 8.0
3 Mg O O 0.0 -1.0 1.0 8.0
3 Mg O O 0.0 -1.0 2.0 8.0
3 Mg O O 0.0 -1.0 4.0 8.0
3 Mg O Al 0.0 1.0 1.0 8.0
3 Mg O Al 0.0 1.0 2.0 8.0
3 Mg O Al 0.0 1.0 4.0 8.0
3 Mg O Al 0.0 1.0 8.0 8.0
3 Mg O Al 0.0 -1.0 1.0 8.0
3 Mg O Au 0.0 1.0 1.0 8.0
3 Mg O Au 0.0 1.0 2.0 8.0
3 Mg O Au 0.0 1.0 4.0 8.0
3 Mg O Au 0.0 1.0 8.0 8.0
3 Mg O Au 0.0 -1.0 1.0 8.0
3 Mg O Au 0.0 -1.0 2.0 8.0
3 O Mg Mg 0.0 1.0 1.0 8.0
3 O Mg Mg 0.0 1.0 2.0 8.0
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type atom i atom j atom k η(1/a2
0) λ ζ Rc(a0) Rs(a0)

3 O Mg Mg 0.0 1.0 4.0 8.0
3 O Mg Mg 0.0 -1.0 1.0 8.0
3 O Mg Mg 0.0 -1.0 2.0 8.0
3 O Mg Mg 0.0 -1.0 4.0 8.0
3 O Mg O 0.0 1.0 1.0 8.0
3 O Mg O 0.0 1.0 2.0 8.0
3 O Mg O 0.0 1.0 4.0 8.0
3 O Mg O 0.0 1.0 8.0 8.0
3 O Mg O 0.0 -1.0 1.0 8.0
3 O Mg O 0.0 -1.0 2.0 8.0
3 O Mg Al 0.0 1.0 1.0 8.0
3 O Mg Al 0.0 1.0 2.0 8.0
3 O Mg Al 0.0 1.0 4.0 8.0
3 O Mg Al 0.0 -1.0 1.0 8.0
3 O Mg Al 0.0 -1.0 2.0 8.0
3 O Mg Al 0.0 -1.0 4.0 8.0
3 O Mg Au 0.0 1.0 1.0 8.0
3 O Mg Au 0.0 1.0 2.0 8.0
3 O Mg Au 0.0 -1.0 1.0 8.0
3 O Mg Au 0.0 -1.0 2.0 8.0
3 O O O 0.0 1.0 1.0 8.0
3 O O O 0.0 1.0 2.0 8.0
3 O O O 0.0 -1.0 1.0 8.0
3 O O Al 0.0 1.0 1.0 8.0
3 O O Al 0.0 1.0 2.0 8.0
3 O O Al 0.0 -1.0 1.0 8.0
3 O O Al 0.0 -1.0 2.0 8.0
3 Al Mg Mg 0.0 1.0 1.0 8.0
3 Al Mg O 0.0 1.0 1.0 8.0
3 Al Mg O 0.0 1.0 2.0 8.0
3 Al Mg O 0.0 -1.0 1.0 8.0
3 Al O O 0.0 1.0 1.0 8.0
3 Al O O 0.0 1.0 2.0 8.0
3 Al O O 0.0 -1.0 1.0 8.0
3 Al O O 0.0 -1.0 2.0 8.0
3 Au Mg Mg 0.0 1.0 1.0 8.0
3 Au Mg Mg 0.0 1.0 2.0 8.0
3 Au Mg O 0.0 1.0 1.0 8.0
3 Au Mg O 0.0 1.0 2.0 8.0
3 Au Mg O 0.0 -1.0 1.0 8.0
3 Au Mg O 0.0 -1.0 2.0 8.0
3 Au O O 0.0 1.0 1.0 8.0
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type atom i atom j atom k η(1/a2
0) λ ζ Rc(a0) Rs(a0)

3 Au O Au 0.0 1.0 -1.0 8.0
3 Au O Au 0.0 1.0 -2.0 8.0

Tab. A.5: Symmetry functions for NaCl clusters

type atom i atom j atom k η(1/a2
0) λ ζ Rc(a0) Rs(a0)

2 Na Na 0.0 12.0 0.0
2 Na Na 0.003 12.0 0.0
2 Na Na 0.005 12.0 0.0
2 Na Na 0.008 12.0 0.0
2 Na Na 0.012 12.0 0.0
2 Na Na 0.016 12.0 0.0
2 Na Cl 0.0 12.0 0.0
2 Na Cl 0.004 12.0 0.0
2 Na Cl 0.008 12.0 0.0
2 Na Cl 0.013 12.0 0.0
2 Na Cl 0.019 12.0 0.0
2 Na Cl 0.028 12.0 0.0
2 Cl Na 0.0 12.0 0.0
2 Cl Na 0.004 12.0 0.0
2 Cl Na 0.008 12.0 0.0
2 Cl Na 0.013 12.0 0.0
2 Cl Na 0.019 12.0 0.0
2 Cl Na 0.028 12.0 0.0
2 Cl Cl 0.0 12.0 0.0
2 Cl Cl 0.003 12.0 0.0
2 Cl Cl 0.006 12.0 0.0
2 Cl Cl 0.009 12.0 0.0
2 Cl Cl 0.013 12.0 0.0
2 Cl Cl 0.017 12.0 0.0
3 Na Na Cl 0.0 1.0 1.0 12.0
3 Na Na Cl 0.0 1.0 2.0 12.0
3 Na Na Cl 0.0 1.0 4.0 12.0
3 Na Na Cl 0.0 1.0 8.0 12.0
3 Na Na Cl 0.0 -1.0 1.0 12.0
3 Na Na Cl 0.0 -1.0 2.0 12.0
3 Na Na Cl 0.0 -1.0 4.0 12.0
3 Na Na Cl 0.0 -1.0 8.0 12.0
3 Na Na Na 0.0 1.0 1.0 12.0
3 Na Na Na 0.0 1.0 2.0 12.0
3 Na Na Na 0.0 1.0 4.0 12.0
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type atom i atom j atom k η(1/a2
0) λ ζ Rc(a0) Rs(a0)

3 Na Na Na 0.0 1.0 8.0 12.0
3 Na Na Na 0.0 -1.0 1.0 12.0
3 Na Na Na 0.0 -1.0 2.0 12.0
3 Na Na Na 0.0 -1.0 4.0 12.0
3 Na Cl Cl 0.0 1.0 1.0 12.0
3 Na Cl Cl 0.0 1.0 2.0 12.0
3 Na Cl Cl 0.0 1.0 4.0 12.0
3 Na Cl Cl 0.0 1.0 8.0 12.0
3 Na Cl Cl 0.0 -1.0 1.0 12.0
3 Na Cl Cl 0.0 -1.0 2.0 12.0
3 Na Cl Cl 0.0 -1.0 4.0 12.0
3 Na Cl Cl 0.0 -1.0 8.0 12.0
3 Cl Cl Cl 0.0 1.0 1.0 12.0
3 Cl Cl Cl 0.0 1.0 2.0 12.0
3 Cl Cl Cl 0.0 1.0 4.0 12.0
3 Cl Cl Cl 0.0 1.0 8.0 12.0
3 Cl Cl Cl 0.0 -1.0 1.0 12.0
3 Cl Cl Cl 0.0 -1.0 2.0 12.0
3 Cl Cl Cl 0.0 -1.0 4.0 12.0
3 Cl Cl Na 0.0 1.0 1.0 12.0
3 Cl Cl Na 0.0 1.0 2.0 12.0
3 Cl Cl Na 0.0 1.0 4.0 12.0
3 Cl Cl Na 0.0 1.0 8.0 12.0
3 Cl Cl Na 0.0 -1.0 1.0 12.0
3 Cl Cl Na 0.0 -1.0 2.0 12.0
3 Cl Cl Na 0.0 -1.0 4.0 12.0
3 Cl Cl Na 0.0 -1.0 8.0 12.0
3 Cl Na Na 0.0 1.0 1.0 12.0
3 Cl Na Na 0.0 1.0 2.0 12.0
3 Cl Na Na 0.0 1.0 4.0 12.0
3 Cl Na Na 0.0 1.0 8.0 12.0
3 Cl Na Na 0.0 -1.0 1.0 12.0
3 Cl Na Na 0.0 -1.0 2.0 12.0
3 Cl Na Na 0.0 -1.0 4.0 12.0
3 Cl Na Na 0.0 -1.0 8.0 12.0
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A.2 Learning Curves of HDNNPs

(a) (b)

(c)

Fig. A.2: Training and test error of binding energies (a), force components (b) and
atomic charges (c) during the training of different generations of HDNNPs for
C10H2/C10H+

3 .
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(a) (b)

(c)

Fig. A.3: Training and test error of binding energies (a), force components (b) and
atomic charges (c) during the training of different generations of HDNNPs for
Ag+3 /Ag−3 .
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(a) (b)

(c)

Fig. A.4: Training and test error of binding energies (a), force components (b) and
atomic charges (c) during the training of different generations of HDNNPs for
Na8Cl+8 /Na9Cl+8 .
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(a) (b)

(c)

Fig. A.5: Training and test error of binding energies (a), force components (b) and atomic
charges (c) during the training of different generations of HDNNPs for Au2-
MgO.
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(a) (b)

(c)

Fig. A.6: Training and test error of binding energies (a), force components (b) and atomic
charges (c) during the training of different generations of HDNNPs for NaCl
clusters.
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A.3 Two-Body Potentials of Dimers for Sodium
Chloride

The fitting of the two-body potentials in eq. 5.2 for the construction of ee4G-HDNNP and
4G-HDNNP+E2b was performed using Python (version: 3.7.11) with the SciPy (version:
1.6.2) library. The reference DFT dissociation curve of a neutral dimer was generated
by evenly sampling from 2.94 to 11.23 Bohr with a stepsize of 0.105 Bohr. The fitted
two-body potentials and DFT reference curves are plotted in Fig. A.7 and the correspond-
ing parameters are reported in Tab. A.6. It is noted that the pairwise interaction energy
between Na and Cl is trained to the difference between DFT total energy and Coulomb
energy Eelec.

Tab. A.6: Parameters of the two-body potentials for the construction of 4G-HDNNP+E2b
and ee4G-HDNNP.

pair A [Ha] B [1/Bohr] µ [Bohr] C [Ha Bohr6] D [Ha Bohr8]
Na-Na 2.997 1.860 3.379 4276.635 0.0
Na-Cl 1.778 1.293 2.529 0.0 0.0
Cl-Cl 1.713 2.106 3.624 4592.649 0.0
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(a) (b)

(c)

Fig. A.7: Binding energy curves of Na-Na (a), Na-Cl (b) and Cl-Cl (c) predicted by DFT
and two-body potentials in 4G-HDNNP+E2b and ee4G-HDNNP. The binding
energy of Na-Cl is trained to the remaining part after removing the Coulomb
energy Eelec from DFT energy.
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