
Computational methods for de novo

assembly and sequencing error correction of

short reads in the era of (viral)

metagenomics

Dissertation

for the award of the degree

“Doctor rerum naturalium”

Division of Mathematics and Natural Sciences of the

Georg-August-Universität Göttingen

within the doctoral program

International Max Planck Research School for Genome Science

of the Georg-August University School of Science (GAUSS)

submitted by

Annika Jochheim

from Wolfsburg, Germany

Göttingen, 2022

III

Thesis Advisory Committee

Dr. Johannes Söding

Research Group Quantitative and Computational Biology, Max Planck Institute for Multidisci-

plinary Sciences

Prof. Dr. Burkhard Morgenstern

Institute for Microbiology and Genetics, Department of Bioinformatics, Georg-August-University

Göttingen

Prof. Dr. Rolf Daniel

Institute for Microbiology and Genetics, Department of Genomic and Applied Microbiology &

Göttingen Genomics Laboratory, Georg-August-University Göttingen

Members of the Examination Board

Dr. Johannes Söding (1st reviewer)

Research Group Quantitative and Computational Biology, Max Planck Institute for Multidisci-

plinary Sciences

Prof. Dr. Burkhard Morgenstern (2nd reviewer)

Institute for Microbiology and Genetics, Department of Bioinformatics, Georg-August-University

Göttingen

Further Members of the Examination Board

Prof. Dr. Rolf Daniel

Institute for Microbiology and Genetics, Department of Genomic and Applied Microbiology &

Göttingen Genomics Laboratory, Georg-August-University Göttingen

Prof. Dr. Jan de Vries

Institute for Microbiology and Genetics, Department of Applied Bioinformatics, Georg-August-

University Göttingen

Prof. Dr. Michael Altenbuchinger

Department of Medical Bioinformatics, University Medical Center Göttingen

Prof. Dr. Anne-Christin Hauschild

Department of Medical Informatics, University Medical Center Göttingen

Date of the oral examination: October 4, 2022

Acknowledgements

This was a long journey - more like a marathon than a sprint - that would not have been possible

without the people around me.

First, I would like to thank my supervisor Dr. Johannes Söding for giving me the opportunity

for my doctoral research and to work and grow in his group. From our first interview to writing

my thesis, your excitement about science has heavily motivated me. I am grateful for the space

and freedom you provided to develop and pursue my own ideas. I have learned a lot and grown

personally and scientifically. Moreover, I am endlessly grateful for all your support in good, bad

and random times and for always having an open door. Further, I thank Prof. Dr. Burkhard

Morgenstern and Prof. Dr. Rolf Daniel for being part of my thesis committee and guiding my

way, providing valuable comments and suggestions during this journey. I am thankful to Prof.

Dr. Jan de Vries, Prof. Dr. Michael Altenbuchinger and Prof. Dr. Anne-Christin Hauschild for

taking their time and being part of my examination board. I also wish to thank the members

of my graduate school, and everyone involved, who enabled my doctoral research. I would like

to thank Dr. Henriette Irmer and Frauke Bergmann for their assistance in all administrative

tasks.

A special thanks goes to Prof. Dr. Martin Steinegger for his co-supervision. Thank you for

taking the time for our discussions no matter what time of day, no matter what time zone,

you have always had an open ear. I enjoyed working with you and have greatly benefited from

your expertise and support. I would also like to thank all present and former members of the

Söding lab. Especially, I thank Dr. Eli Levy Karin and Dr. Clovis Galiez for their guidance

and advice at the beginning of my graduate career, and Dr. Milot Mirdita for all scientific

discussions and for always volunteering technical support. Further, I am grateful to Étienne

Morice for the mathematical support in my project. I thank Dr. Salma Sohrabi-Jahromi and

Michel van Kempen for being caring office neighbors, as well as Louis Kraft, Anton Farr and

Jakub Wojciechowski for trusting me as their supervisor and giving me the opportunity to grow

as a mentor. I am also grateful to Hannah Rauterberg, Florian Jochheim, Dr. Wanwan Ge, Dr.

Yazhini A and Dr. Gesa Werner for proofreading this work.

I thank my parents and my brother for always supporting me, believing in me and encouraging

me. You have always given me a lot of strength to reach my goals. Finally, I would like to thank

Florian, for accompanying me on this journey since the very beginning. You always supported

me, personally and scientifically. Especially when I needed it the most, you were always at my

side, never left it. My gratitude to you is hard to put into words. I could not have completed

this work without your support. Thank you for believing in me.

Abstract

Viruses can affect all types of living cells, including bacteria, archaea and eukaryotes. Espe-

cially in the form of bacteriophages - bacteria infecting viruses - they have a huge impact on

their host communities, driving bacterial diversity, shaping composition, interactions, functions

and even genomes. Despite their importance, only very little is known about the viral compo-

nent in microbial communities. Recent advances in sequencing technologies and the advent of

metagenomics allow for a culture-independent analysis of the whole genetic material from an

environmental sample. This allows to discover previously uncharacterized and newly emerging

viruses within their natural environment. In this work, I address two computational tasks in

the data analysis in metagenomics, with a focus on the viral fraction.

In the first part of this thesis, I introduce PenguiN (protein-guided nucleotide assembler), a new

metagenomic de novo assembler. PenguiN utilizes full-read overlaps calculated in linear time on

both amino acid and nucleotide sequences within a greedy iterative assembly procedure. PenguiN

is built upon the protein-level assembler Plass. In a first stage, six-frame translated reads are

assembled to proteins, whereas the underlying nucleotide sequence is assembled simultaneously,

resulting in full open reading frames (ORFs). In a second stage, the resulting ORFs are then

linked with nucleotide reads to bridge intergenic regions as well, enabling the assembly of whole

genomes. Additionally, I introduce a new extension strategy using a Bayesian model to identify

the best overlaps in each iteration and describe a strategy to detect circular sequences.

Utilizing full-read overlaps in linear time, PenguiN overcomes the sensitivity-specificity trade-off

seen in k -mer based (de Bruijn graph) state-of-the-art metagenomic assemblers, while being

much faster than existing overlap-based assemblers. Moreover, focusing on the viral fraction of

microbial communities, I show that PenguiN can assemble longer contigs and more complete

genomes than existing assembly tools and overcomes the typical loss of population diversity seen

in metagenomic assemblies. Further, I show that PenguiN can also obtain long viral contigs at

very low read coverage. On a simulated metagenome, I obtain a 3- to 11-fold increase in the per-

nucleotide sensitivity compared to the next best tool at comparable per-nucleotide precision. On

a metatranscriptomic dataset from 82 aquatic and activated sludge samples, PenguiN assembles

about 75-90% (343-376) more complete ssRNA phage genomes than state-of-the-art tools.

In the second part of the thesis, I introduce CoCo, a new software tool for sequencing error

correction. By identifying sequencing errors as discontinuities in spaced k -mer frequencies along

a read, CoCo can make local decisions instead of using a global threshold. Together with a

very conservative two-side correction strategy, this allows to be more specific for low frequency

variants than tools that rely on global k -mer count statistics. Moreover, I introduce a mem-

ory efficient data structure to store the spaced k -mer counts. This makes it possible to run

CoCo on large and complex metagenomic datasets. Using CoCo’s corrected sequencing reads

for PenguiN’s assembly improves the final contigs, which become more continuous and more

accurate.

Table of Contents

Board members III

Acknowledgements V

Abstract VII

Table of Contents IX

List of Figures XIII

List of Tables XV

List of Abbreviations XVII

1 Introduction 1

1.1 The diverse universe of viruses . 2

1.2 Revolution of sequencing technologies . 4

1.3 Microbial and viral metagenomics . 6

1.4 Metagenomic assembly from short sequencing reads 11

1.4.1 Greedy assembly strategy . 12

1.4.2 Overlap-Layout-Consensus assembly . 13

1.4.3 De Bruijn graph assembly . 14

1.4.4 Limitations and challenges of assembly of viral genomes from metagenomic

data . 15

1.5 Sequencing error correction . 16

1.6 Objectives and overview of this thesis . 19

2 Development of a protein-guided nucleotide assembler and its application to viral

metagenomic samples 21

2.1 Related work and underlying concept . 21

2.2 Algorithm and Implementation . 22

2.2.1 Outline of the PenguiN algorithm and key ideas 22

2.2.1.1 Assemble six-frame translated reads to proteins and co-assemble

nucleotide ORFs . 22

2.2.1.2 Link ORFs with reads . 24

2.2.2 Algorithm and software details . 25

X Table of Contents

2.2.2.1 From input reads to potential ORFs 25

2.2.2.2 Finding Overlaps in linear time 26

2.2.2.3 Transform protein alignments to corresponding nucleotide align-

ments . 28

2.2.2.4 Greedy extension strategy based on a Bayesian model 28

2.2.2.5 Identify circular contigs . 32

2.2.2.6 Redundancy reduction . 34

2.2.2.7 Handling sequencing errors . 35

2.2.2.8 Software availability and documentation 36

2.2.2.9 Parallelization . 36

2.2.2.10 Parameter settings . 37

2.3 Test and Benchmark Design . 37

2.3.1 Computational resources . 38

2.3.2 Choice of assembly software and parameter settings 38

2.3.3 Choice of test and benchmarking datasets 39

2.3.4 Evaluation tools and metrics . 40

2.4 Evaluation and Results . 40

2.4.1 Performance on simulated error-free reads 41

2.4.2 Performance on a highly diverse strain mixture 44

2.4.2.1 Analysis using MetaQUAST . 46

2.4.2.2 Analysis using MMseqs2 search 48

2.4.3 Evaluation on a mock community . 51

2.4.4 Assembly of ssRNA phages from real metatranscriptomic samples from

activated sludge and aquatic environments 53

2.4.4.1 Detecting ssRNA phage sequences in the assemblies 54

2.4.4.2 Pairwise comparison of complete ssRNA phage genome sets . . . 57

2.4.4.3 Further investigation of the assembled genomes 59

2.4.5 Computational time and memory usage 64

2.5 Discussion and Outlook . 66

2.5.1 Add-ons to Plass . 67

2.5.2 Performance . 67

2.5.3 Shortcomings and limitations . 70

2.5.4 Possible improvements / further work . 73

2.5.5 Further applications . 74

2.6 Conclusion . 75

3 Sequencing error correction based on spaced k-mer count profiles 77

3.1 Algorithm . 78

3.1.1 Terminology and Notation . 78

3.1.2 Spaced k -mer count profiles . 79

3.1.2.1 Maximized spaced k -mer count profiles 80

3.1.2.2 Advantages of spaced k -mers . 80

3.1.3 Error correction strategy . 81

3.2 Implementation . 85

3.2.1 Efficient storage of spaced k -mer counts 85

3.2.2 Processing sequencing reads . 87

3.2.3 Further modules . 88

3.2.4 Code availability . 89

3.3 Test Results . 89

3.3.1 Validation on simulated data . 90

3.3.2 Comparison with other methods . 94

3.3.3 Impact on de novo assembly . 97

3.4 Discussion and Outlook . 98

3.4.1 Shortcomings and further benchmarks . 101

3.4.2 Algorithm related-extension . 101

3.4.3 Perspective on long reads . 103

3.5 Conclusion . 103

4 Concluding remarks 105

References 107

A Appendix 131

A.1 PenguiN user guide . 132

A.2 CoCo user guide . 134

A.3 MMseqs2 database format . 136

A.4 Parameter choice for the detection of circular sequences during the assembly . . . 137

A.5 Resource data for the metatranscriptomic dataset 138

A.6 Supplementary reports . 141

List of Figures

1.1 Distribution of phage genome sizes. 3

1.2 Sequencing cost per megabase of DNA sequence as reported by the National

Human Genome Research Institute (NHGRI). 5

1.3 Different culture-independent strategies for the analysis of microbial communities. 7

1.4 Four sources to identify uncultivated virus genomes. 9

1.5 Two graph-based assembly strategies. 13

1.6 Typical k -mers spectrum of sequencing reads obtained from a single genome. . . 18

2.1 Overview of the workflow and algorithm of PenguiN. 24

2.2 Detection pipeline for circular sequences. 33

2.3 Alignment computation for contigs originating from circular or terminal redun-

dant genomes. 35

2.4 Assessing assembly quality for PenguiN and eight other assemblers on the HRV

in silico mixture using MetaQUAST. 42

2.5 Contigs aligned to the three reference genomes used for the HRV in silico mixture. 43

2.6 Extract of the multiple sequence alignment (MSA) of the three rhinovirus refer-

ence genomes used to simulate the HRV in silico mixture. 43

2.7 Average Nucleotide Identity (ANI) distribution for the pairwise comparison be-

tween the 2550 HIV genomes. 45

2.8 Illustration of the reference genome preparation for the 2550 HIV1 in silico mix-

ture. 45

2.9 Assessing assembly results for individual genomes with MetaQUAST for the three

subsets (1-fold, 10-fold, 100-fold) of the 2550 HIV1 in silico mixture. 48

2.10 Sensitivity and precision of contigs assembled from the HIV1 in silico mixture. . 49

2.11 Size of the largest contig per reference genome during PenguiN’s assembly process

for the mock community dataset. 52

2.12 Re-implementation of the ssRNA phage detection workflow based on the descrip-

tion of [Callanan et al., 2020]. 55

2.13 Overlap of assemblies in terms of complete ssRNA phage genomes. 58

2.14 Number of complete ssRNA phages identified in metatranscriptomic samples

across different geographical locations. 60

2.15 Cluster analysis of the full-length RdRp proteins extracted from the complete

ssRNA phage genomes. 61

XIV List of Figures

2.16 Length distribution of the complete ssRNA phage genomes identified from the

different assemblies. 61

2.17 Co-occurence profiles of the core proteins in complete ssRNA phage genomes

assembled with PenguiN. 63

3.1 Spaced k -mer count profile. 79

3.2 Deviations in the count profile depending on the error type. 80

3.3 Maximized spaced k -mer count profile . 81

3.4 Choosing evaluation k -mers in the case of errors in close proximity. 84

3.5 CoCo workflow. 86

3.6 Spaced k -mer count histograms for the single rhinovirus dataset simulated at

different coverage values. 91

3.7 Spaced k -mer count profiles from the 30x coverage dataset of a single rhinovirus. 92

3.8 Fractional occurrence of erroneous reads before and after the correction for dif-

ferent simulated error rates. 93

3.9 Heatmap depicting the base gain across the different coverage ratios of the T4

phage mixtures. 97

A.1 Distribution of the hit rate for terminal redundant sequences and linear sequences

during PenguiN’s cycle decection. 137

A.2 Part of the extended MetaQUAST HTML report to assess assembly quality for

PenguiN and eight other assemblers on the HRV in silico mixture, expanded by

the runs per reference. 141

A.3 MetaQUAST HTML report for PenguiN and nine other assemblers on the three

subsets (a) 1-fold, (b) 10-fold, (c) 100-fold of the 2550-HIV1 in silico mixture. . . 143

A.4 MetaQUAST HTML report for PenguiN on the mock community. 144

List of Tables

2.1 Number of contigs (≥ 1 kbp) per assembler for the three subsets (1-fold, 10-fold,

100-fold) of the 2550 HIV1 in silico mixture. 45

2.2 Selected metrics of the MetaQUAST analysis for the assemblies of the three sub-

sets (1-fold, 10-fold, 100-fold) of the 2550 HIV1 in silico mixture. 47

2.3 Characteristics of the members included in the mock community produced in

[Warwick-Dugdale et al., 2019]. 51

2.4 Number of contigs in each class of the ssRNA phage detection pipeline applied to

82 metatranscriptomic samples from activated sludge and aquatic environments. 56

2.5 Comparision of runtimes for all datasets used in the assembly benchmark. 64

2.6 Comparision of Max RAM usage for all datasets used in the assembly benchmark. 65

3.1 Error correction results on the T4 phage mixture datasets. 95

3.2 Assembly results on the T4 phage mixture datasets using PenguiN with and

without read correction. 98

A.1 Accession numbers and sample information of the metatranscriptomic dataset. . 138

A.2 Partial ssRNA phage genomes: contigs encoding for at least two phage proteins

(RdRp, CP, MP), identified in the assemblies of the 82 metatranscriptomic samples.145

A.3 Near-complete ssRNA phage genomes: contigs encoding for all three phage pro-

teins (RdRp, CP, MP), identified in the assemblies of the 82 metatranscriptomic

samples. 146

A.4 Complete ssRNA phage genomes: contigs encoding for all three phage proteins

(RdRp, CP, MP) without their premature termination by the edge of a contig,

identified in the assemblies of the 82 metatranscriptomic samples. 147

List of Abbreviations

ANI average nucleotide identity

ASV amplicon sequence variant

DNA deoxyribonucleic acid

dsDNA double-stranded DNA

dsRNA double-stranded RNA

FN false negative

FP false positive

GWDG Gesellschaft für Wissenschaftliche Datenverarbeitung Göttingen

HIV human immunodeficiency virus

HMM hidden Markov model

HPC high-performance computing

HRV human rhinovirus

ICTV International Committee on Taxonomy of Viruses

MAG metagenomic assembled genome

MSA multiple sequence alignment

NGS next-generation sequencing

OLC overlap-layout-consensus

ONT Oxford Nanopore Technologies

ORF open reading frame

OTU operational taxonomic unit

PCR polymerase chain reaction

RAM random-access memory

RAR repeat-genome-repeat structure

RNA ribonucleic acid

XVIII List of Tables

SMRT single molecule real-time

SNP single nucleotide polymorphism

ssDNA single-stranded DNA

ssRNA single-stranded RNA

SSE Streaming SIMD Extensions

TN true negative

TP true positive

1. Introduction

Viruses are the most abundant entities on earth [Breitbart and Rohwer, 2005; Mokili et al., 2012].

It is estimated that around 107 virus particles occur in one milliliter of seawater [Bergh et al.,

1989], up to 109 in a gram of soil [Williamson et al., 2017] and that the human body harbors

more than 1015 virus particles, meaning a 10-fold increase to bacteria and a 100-fold increase

in comparison to the number of human cells [Mokili et al., 2012; Savage, 1977]. Most of them

are bacteria-infecting viruses, so-called bacteriophages (short: phages) (reviewed in [Guerin and

Hill, 2020; Shkoporov and Hill, 2019]). Despite their small size, they have enormous impact on

their host community and ecosystems: They play key roles to maintain a stable and balanced

gut microbiome and have therefore significant impact on human health [Manrique et al., 2016;

Moreno-Gallego et al., 2019; Norman et al., 2015; Sutton and Hill, 2019]. They impact carbon

and nutrient cycling in terrestrial systems [Albright et al., 2022; Emerson et al., 2018; Trubl et al.,

2018; Williamson et al., 2017] and marine systems [Danovaro et al., 2011; Fuhrman, 1999; Suttle,

2005, 2007; Wilhelm and Suttle, 1999; Zimmerman et al., 2020] and are in total responsible for

20-40% of bacterial lysis in the ocean per day [Brum and Sullivan, 2015; Keen, 2015; Suttle,

2007]. Furthermore, they can facilitate horizontal gene transfer [Colavecchio et al., 2017; Frazão

et al., 2019; Gyles and Boerlin, 2014; Irwin et al., 2022; Moon et al., 2020; Sano et al., 2004;

Zeidner et al., 2005] and act therefore as essential evolutionary drivers, increasing the “genetic

space” and enabling their hosts to adapt to environmental changes by supplementing existing

or providing entirely novel functionality [Boucher et al., 2003; Frazão et al., 2019; Gogarten and

Townsend, 2005; Irwin et al., 2022; Williams, 2013]. Incorporating viruses is therefore crucial

for our understanding of microbial communities, their structure, and function, as well as our

understanding of biological and biogeochemical processes in many environmental systems.

Historically, the study of viruses relies on isolation and co-culturing and was mainly focused on

viruses causing specific diseases [Miller et al., 2013; Mokili et al., 2012; Simmonds et al., 2017].

This heavily limits our knowledge to pathogenic viruses. However, recent advances of shotgun

sequencing and the advent of metagenomics allow studying viruses more broadly. Studying

viruses from metagenomic samples reveals many previously unknown viruses - especially phages

- and hint on a huge diversity, which still remains to discovered [Breitbart et al., 2002; Gregory

et al., 2020, 2019; Reyes et al., 2010; Shkoporov et al., 2019]. My work has addressed two main

problems in the computational analysis of metagenomic sequencing data: (1) de novo assembly

and (2) sequencing error correction, with a main focus on the viral fraction. Before going into

the details of these methods, I provide the reader in the remaining part of this chapter with the

2 1.1. The diverse universe of viruses

necessary information about the diversity of viruses and viral genomes (section 1.1), sequencing

technologies (section 1.2) and the advent of microbial and viral metagenomics (section 1.3).

This is followed by a comprehensive review of different assembly approaches (section 1.4) and

sequencing error correction approaches (section 1.5). Thereby, I point out current challenges

and limitations with these methods and address the relevance for the new methods introduced

in this thesis. Finally, I summarize the aims of this thesis and outline the scope of the following

chapters (section 1.6).

1.1. The diverse universe of viruses

Viruses are small infectious particles (mostly 20–300 nm) comprised of genetic material, deoxyri-

bonucleic acid (DNA) or ribonucleic acid (RNA) within a protein shell, a so-called capsid. All

viruses have in common that they lack ribosomes, instead they hijack the host machinery for

their replication. Besides these common features, viruses are extremely diverse, both in morphol-

ogy and genome structure [Louten, 2016; Sanjuán and Domingo-Calap, 2021]. Their genome can

be comprised of DNA or RNA, which can either be double-stranded or single-stranded (ssDNA,

dsDNA, ssRNA, dsRNA). Additionally, single-stranded RNA viruses can be either positive sense

or negative sense, depending on its genome’s orientation relative to the viral messenger RNA

(mRNA). Furthermore, the structure of the genome can either be linear or circular, and it can

be made up of a single nucleic acid molecule or is divided into multiple segments [Marintcheva,

2018]. Thus, viruses already exhibit a plethora of variation. Also, the size of the genome varies

significantly. Typically, the size of viral genomes range from 7-20 kbp [Louten, 2016]. However,

there are circoviruses, with only two to three genes and a genome size of 1.7-2.1 kbp [Breitbart

et al., 2017], and giant viruses including mimiviruses with sizes of >1 Mbp [Raoult et al., 2004]

or the even more extreme pandoraviruses [Pereira Andrade et al., 2019], with up to 2.5 Mbp

[Philippe et al., 2013]. The range of phage genome sizes is a bit shorter, but still ranges from

2.4 kbp to megaphages with genomes >540 kbp (see Fig. 1.1). Generally, RNA viruses are shorter

than DNA viruses [Chaitanya, 2019] and evolve more quickly. They have high mutation rates

of 10−6 − 10−4 substitutions per nucleotide per cell infection, whereas those from DNA viruses

range from 10−8 to 10−6 [Sanjuán and Domingo-Calap, 2016]. This is in part driven by the

fact that RNA viral replication is not influenced by the host’s DNA repair mechanism [Sanjuán

and Domingo-Calap, 2021]. Other commonly observed patterns are that single-stranded viruses

show higher mutation rates than double-stranded viruses, and smaller viral genomes tend to

mutate faster than those with larger genomes [Sanjuán and Domingo-Calap, 2016]. This is in

accordance with the general inverse correlation of mutation rate and genome size also seen for

cellular microorganisms [Lynch, 2010].

The high mutability of viruses is thereby driven by the error-prone replication of viruses due to

a highly error-prone polymerases [Dolan et al., 2018]. Additionally, RNA virus replication lack

proofreading mechanisms (except coronaviruses) [Smith et al., 2013] and certain DNA viruses

have developed strategies to avoid or interrupt the DNA repair mechanism from the host cell

1.1. The diverse universe of viruses 3

Figure 1.1.: Distribution of phage genome sizes. The Figure is taken from [Dion et al., 2020].

[Pereira-Gómez and Sanjuán, 2015]. Next to the nucleotide mutations, recombinations are a

further driving factor of viral diversity. They occur upon coinfection due to reassortment events

in segmented viruses or template switching [Pérez-Losada et al., 2015; Sanjuán and Domingo-

Calap, 2021]. In total, the high mutability leads to high genetic diversity, which plays a key

role in evolutionary processes. It allows viruses to adapt to environmental changes, escape host

immune responses, uphold pathogenesis and to evolve drug resistance [Sanjuán and Domingo-

Calap, 2021]. The competition with other viral members of their community thereby provides

selective pressure and determines, together with stochastic processes such as genetic drift, how

any new strain will spread [Bell, 2021; Retel et al., 2019].

Despite the enormous variation, there is effort for the classification of viruses. Historically,

viruses were classified based on their morphology and host range. In 1971, the non-hierarchical

Baltimore classification system was proposed [Baltimore, 1971]. It groups viruses based on

their nucleic acid genome type and replication strategies into seven classes: dsDNA viruses,

ssDNA viruses, dsRNA viruses, (+)ssRNA viruses, (-)ssRNA viruses, (+)ssRNA viruses us-

ing reverse transcription replication, and dsDNA viruses using reverse transcription replication

(added later). Even though the system is not “official” and does not reflect phylogenetic re-

lationships, it is still widely used [Koonin et al., 2021]. To provide an official classification of

viruses, which adopts a hierarchical system to reflect phylogenetic distances, the International

Committee on Taxonomy of Viruses (ICTV) was founded in 1966 [Lefkowitz et al., 2018]. Their

classification previously described five ranks, but has been expanded to 15 in 2019 [ICTV, 2020].

The classification is thereby based on genome structure and organization, but also on sequence-

based analysis [Simmonds, 2015]. As virus discovery continues, especially due to the newest

advance in viral metagenomics, the system is regularly updated to incorporate the newest pro-

posal. The most recent update was published in 2021 [Walker et al., 2021]. It currently describes

6 realms, 10 kingdoms, 17 phyla, 2 subphyla, 39 classes, 65 orders, 8 suborders, 233 families,

168 subfamilies, 2606 genera, 84 subgenera, 10 434 species [Walker et al., 2021].

4 1.2. Revolution of sequencing technologies

Among the viruses, phages are thought to be the most diverse group, with approximately ten

times more diversity than their hosts [Dion et al., 2020]. Especially (viral) metagenomics has

thereby allowed to estimate this richness and give insights into the extreme diversity of phages in

numerous environments [Dion et al., 2020]. Moreover, it hints at the bias of previous methods.

Whereas the (larger) double-stranded DNA tailed phages account for the majority of phages

described previously through the use of electron microscopy and culture-based methods, current

studies increasingly identify ssDNA [Hopkins et al., 2014; Roux et al., 2019b] and ssRNA phages

[Callanan et al., 2020]. In a recent review, Mirzaei et al. suggest that many phages have been

previously overlooked and a lot of phage diversity has yet to be discovered [Mirzaei et al., 2021].

1.2. Revolution of sequencing technologies

The ability to determine the genetic sequence of an organism was an enormous breakthrough and

has changed our understanding of biology. Over the last decades, several different sequencing

technologies were developed and constantly enabled to obtain the nucleotide sequence of DNA

or RNA molecules at an ever-increasing speed and decreasing costs. The enormous progress

is described in several review papers [Goodwin et al., 2016; Heather and Chain, 2016; Kchouk

et al., 2017; Liu et al., 2012; Reuter et al., 2015; Slatko et al., 2018] and briefly summarized

in the following. Whereas DNA fragments can be sequenced directly, RNA sequencing usually

requires the reverse transcription into cDNA first [Stark et al., 2019]. However, then the same

technologies can be applied.

DNA sequencing goes back to the mid of 1970s (first-generation sequencing), when Maxam

and Gilbert developed a technology where radioactively labeled DNA molecules are chemically

cleaved at specific bases, followed by an electrophoresis, which sorts the cleaved DNA fragments

by lengths and allows therefore to infer the nucleotide sequence [Maxam and Gilbert, 1977,

1980]. Around the same time, Sanger developed a method to determine the nucleotide sequences

using chain termination [Sanger and Coulson, 1975; Sanger et al., 1977]. Thereby, the DNA

is synthesized on the template strand via DNA polymerization reactions in the presence of

dideoxynucleotides (ddNTPs), modified dNTPs that lack a 3’ hydroxyl group. If a ddNTP is

incorporated, no phosphodiester bond can be established by the DNA polymerase and the chain

process terminates. This leads to fragments of different sizes, which can be separated using

gel electrophoresis and subsequently visualized via autoradiography. The radioactively labelled

ddNTPs were later replaced by fluorescently labeled ddNTPs [Smith et al., 1986] and a capillary

electrophoresis system was introduced to separate the fluorescently labeled DNA fragments

[Swerdlow and Gesteland, 1990]. This improved speed and allowed for the automatization of the

DNA sequence analysis [Hunkapiller et al., 1991]. Sanger sequencing was first commercialized

by Applied Biosystems (ABI, now part of ThermoFisher) and became widely used for many

years [Kchouk et al., 2017]. Today, it still remains in use in clinical settings due to its simplicity

and high accuracy (99.99%), cost-efficiency for small numbers of targets as well as the missing

approval by the FDA for many newer sequencing technologies.

1.2. Revolution of sequencing technologies 5

Figure 1.2.: Sequencing cost per megabase of DNA sequence as reported by the National
Human Genome Research Institute (NHGRI). The enormous drop in sequencing cost allows
for the advent of data-heavy research areas such as metagenomics. The numbers were obtained from
genome.gov/sequencingcosts.

In 2001, the first human genome (totaling ∼ 3 billion bp) was published using Sanger sequenc-

ing technology [Venter et al., 2001]. However, it was a ∼ 2.7 billion US$ effort and over 13

years of work, with approximately 10 months spent on the sequencing itself (September 1999

- June 2000) [Venter et al., 2001]. Since then, tremendous progress has been made in genome

sequencing technologies. Starting from 2005, a number of next-generation sequencing (NGS)

technologies arose: First, pyrosequencing [Margulies et al., 2005; Nyrén et al., 1993], which was

licensed to 454 Life Science (later Roche), followed by Illumina dye sequencing (Solexa) [Bent-

ley et al., 2008] and SOLiD (Supported Oligonucleotide Ligation and Detection) sequencing by

Life Technologies (ABI/SOLiD) [Shendure and Ji, 2008]. All these high throughput sequencing

(HTS) technologies are characterized through massive parallel sequencing that allow to generate

millions to billions of reads in a single sequencing run with a higher speed and lower cost in

comparison to first generation sequencing [Kchouk et al., 2017]. In the year 2008 it was possible

to sequence the full human genome within two months for US$1 million [Wheeler et al., 2008]

and 2014 Illumina claimed to reach the US$1000 genome [Check Hayden, 2014]. The massive

drop in sequencing costs for a megabase of DNA continued further (see Fig. 1.2) and enabled

several new research areas such as metagenomics [Desai et al., 2012], transcriptomics [Wang

et al., 2009] and epigenomics [Clark et al., 2016].

Currently, the most prevalent sequencing technology is Illumina sequencing. It applies a se-

quencing by synthesis approach using reversible terminators [Bentley et al., 2008]. Prior to the

sequencing, DNA is randomly fragmented, denatured into single strand fragments, ligated to

adapters and annealed to complementary oligonucleotides on the surface of a flow cell. Then a

PCR bridge amplification is performed resulting in approximately 1 million copies of the orig-

inal fragment, so-called clusters, making the signal detectable. Linearized single-strand DNA

genome.gov/sequencingcosts

6 1.3. Microbial and viral metagenomics

fragments act then as templates for the sequencing by synthesis. In cycles, a DNA polymerase

synthesizes the complementary strand using flurophore-labelled, terminally blocked nucleotides,

starting from a primer. In each cycle (1) a single nucleotide is incorporated in each fragment,

(2) remaining nucleotides are washed away, and (3) each cluster is excited by a laser; thus the

fluorescent signal is recorded to identify the incorporated base. (4) Afterwards, the terminator

with the fluorescent label is removed, reactivating the blocked 3’ hydroxyl group, and allowing

for the incorporation of the next nucleotide in a new cycle. The number of performed cycles de-

termines thereby the length of the sequencing read. The first Illumina/Solexa sequencer Genome

Analyzer could produce reads of ∼ 35 bp. Since then, Illumina launched several machines with a

variety of read length and throughput [Slatko et al., 2018]. Currently, MiSeq platforms produce

1-25 million reads per run with a length of 2 × 300 bp, HiSeq platforms generate 150 million

to 4 billion reads of 2 × 150 bp and NovaSeq can produce 800 million up to 20 billion reads of

2× 150 bp. All the Illumina platforms are capable of paired-end sequencing, the sequencing of a

fragment from both sides with a known distance (insert size), and commonly show very low error

rates (< 0.1− 0.6%), with substitution errors dominating and accumulating especially towards

the end of the reads [Stoler and Nekrutenko, 2021].

Also, new technologies have been developed that produce much longer reads (third-generation

sequencing). In 2011, Pacific Biosciences (PacBio) released a sequencer that uses single molecule

real time (SMRT) sequencing [Eid et al., 2009] and then, in 2014, the first nanopore sequencer

from Oxford Nanopore Technologies (ONT) became available [Clarke et al., 2009; Manrao et al.,

2012]. While relying on fundamentally different principles, both technologies have in common

that they do not require DNA amplification, provide data in real-time and produce very long

reads, ranging commonly from 10-30 kbp [Amarasinghe et al., 2020; Athanasopoulou et al., 2021;

Van Dijk et al., 2018], with records up to a few megabasepairs [Payne et al., 2019]. However,

they are much more expensive, require larger amount of starting material and have significantly

higher error rates than previous technologies, ∼ 15% for SMRT in single pass sequencing and

∼ 3-15% for nanopore sequencing [Dohm et al., 2020; Van Dijk et al., 2018; Zhang et al., 2020].

At the time of writing, Illumina short-read sequencing platforms are still the most widely used,

with Illumina owning 80% of the sequencing market. However, if the third-generation sequencing

technologies improve further, they probably have the potential to revolutionize the field of

genomics and metagenomics [Van Dijk et al., 2018].

1.3. Microbial and viral metagenomics

A major drawback in the study of microbial communities is that as many as 99% of the microor-

ganisms cannot be cultivated in the lab [Schloss and Handelsman, 2005]. As viruses depend on

a cellular host for replication, this also has heavily limited investigations of the complex world

of viruses until very recently [Breitbart and Rohwer, 2005; Roux et al., 2021]. Culture-based

approaches using for example the traditional ‘plaque’ assays, in which viruses are isolated from a

1.3. Microbial and viral metagenomics 7

Figure 1.3.: Different culture-independent strategies for the analysis of microbial commu-
nities. The 16S rRNA gene profiling can be applied to bacteria and archaea, it aims for the taxonomic
profiling. Sequencing reads are either clustered into operational taxonomic units (OTUs) based on se-
quence similarity (usually 97%) or denoised to amplicon sequence variants (ASVs). Then, taxonomy is
assigned by comparing the representative sequences of the OTUs or ASVs against reference databases.
In contrast, the shotgun sequencing approaches can be applied to the whole community, leading to an
unbiased view and more in-depth understanding. Metagenomics thereby describes the study of the whole
genetic material. After sequencing, the reads can be mapped to reference genomes/genes or assembled
to longer fragments and ideally whole genomes. This approach provides much more information than
the study of a single marker gene. In contrast to metagenomic, metatranscriptomic focuses on the active
genes and expressed transcripts in the microbiome at a certain time point. It allows obtaining gene ex-
pression profiles and to identify active pathways based on RNA sequences. Viral metagenomics (viromics)
combines technically metagenomics and metatranscriptomics, as viruses can be either made from DNA or
RNA. Before sequencing, viral particles are usually enriched. Then viromics analysis follows the typical
metagenomic workflow. Figure taken from [Bikel et al., 2015].

bacterial host grown in liquid culture, could only be performed for a minor fraction, and the vast

majority remained unknown [Breitbart and Rohwer, 2005]. Nowadays, the study of viruses can

be carried out using metagenomic-based strategies that do not rely on isolation and cultivation

[Dávila-Ramos et al., 2019].

The idea to study the complexity of natural microbial populations directly from environmental

samples was first proposed by Pace and colleagues in 1986 [Pace et al., 1986]. As sequencing

was costly and time-consuming at that time, they focused on single ribosomal RNA (rRNA)

sequences as phylogenetic marker genes. For populations of limited complexity they isolated 5S

rRNAs, for more complex populations they performed shotgun cloning of 16S rRNA genes us-

ing purified DNA, sequenced them with 16S rRNA-specific primers and subsequently compared

them to existing 16S rRNA sequence collections to infer phylogenetic relations [Olsen et al.,

1986; Pace et al., 1986]. The idea of using ribosomal RNA sequences as molecular markers for

8 1.3. Microbial and viral metagenomics

the phylogenetic analysis was already proposed a few years earlier by Woese and Fox [Woese

and Fox, 1977]. With the advent of polymerase chain reaction (PCR) it became possible to

selectively amplify, and subsequently sequence, the rRNA gene sequences (amplicon sequenc-

ing). Today, the most widely used marker gene for bacteria and archaea is the 16S rRNA gene

[Johnson et al., 2019; Langille et al., 2013; Tringe and Hugenholtz, 2008; Turnbaugh et al., 2009].

The 16S rRNA is the smaller subunit of the ribosome RNA molecule (rRNA) in bacteria and

archaea, and its ∼ 1500 bp long gene comprises nine hypervariable regions (V1-V9) separated by

highly conserved regions. The conserved regions allow for targeting the gene with “universal”

PCR primers, whereas the hypervariable regions are used for identification and taxonomic clas-

sification [Breitwieser et al., 2019; Johnson et al., 2019]. See Fig. 1.3 for a short overview of a

typical pipeline. This approach became widely used and has been the gold-standard to analyze

the composition of microbial communities (taxonomic profiling) for decades [Hugenholtz et al.,

1998; Hugenholtz and Pace, 1996; Johnson et al., 2019; Lozupone and Knight, 2007; Matsuo

et al., 2021; Pace, 1997; Ward et al., 1990]. Analogous to the 16s rRNA gene, the 18S rRNA

gene is used for eukaryotes [Kounosu et al., 2019; Tanaka et al., 2014] and internal transcribed

spacer (ITS) regions for fungi [Ihrmark et al., 2012; Schoch et al., 2012]. However, viruses lack

of a universal marker gene, highly limiting the amplicon-based approach for the study of viruses

from environmental samples [Breitbart and Rohwer, 2005]. Conserved genes occur only among

certain groups of viruses. Some studies investigated for example the diversity of T4-like bacte-

riophages using the gene 23 (g23), which encodes the major capsid protein in all T4-like phages

[Filée et al., 2005; Uyaguari-Diaz et al., 2016]. Other studies examined T7-like Podophages using

DNA polymerase genes, [Breitbart et al., 2004] or studied cyanophages using the viral capsid

assembly protein gene g20 [Dorigo et al., 2004; Zhong et al., 2002]. Besides the limitation to

only a single gene, the major drawback of these approaches is that they are unable to discover

novel groups of viruses.

When sequencing cost decreased, it became possible to sequence the whole genetic material from

a sample instead of focusing only on single marker genes. The so-called whole metagenomic shot-

gun sequencing arose. The term “metagenome” was first coined by Jo Handelsmann in 1998 to

describe the collective genomes obtained from soil microflora [Handelsman et al., 1998]. Since

then, metagenomics have been applied for a range of environments. In contrast to amplicon

sequencing, whole metagenomic shotgun sequencing goes beyond taxonomic profiling based on a

single gene. It allows recovering whole genome sequences and to retrieve the functional potential

of microbial communities [Handelsman, 2004; Simon and Daniel, 2011], see Fig. 1.3. In addi-

tion, it can be used to analyze viral-microbial host interactions [Schulz et al., 2020]. In total,

metagenomics allows for a more in-depth understanding and provides an unbiased view on the

whole microbial community including bacteria, archaea, single-celled eukaryotes and viruses.

Since the study by Breitbart et al. in 2002 on two uncultured marine viral communities [Breitbart

et al., 2002], which is often mentioned as the first application of viral metagenomics [Hayes et al.,

2017; Liang and Bushman, 2021; Mokili et al., 2012], the number of viral metagenomic studies

massively increased. This includes studies of a range of different environments, such as soil

1.3. Microbial and viral metagenomics 9

Figure 1.4.: Four sources to identify uncultivated virus genomes. Viral sequences can be ob-
tained untargeted from microbial genomes through co-cultivation or single-cell sorting, and from microbial
metagenomes through bulk metagenomic sequencing. Virus-specific sequencing is also possible (orange).
Viruses can be obtained from single virus methods using flow cytometry or from metagenomes enriched
for virus particles. In this thesis, I consider microbial and viral metagenomes as sources. All methods
require assembly methods subsequent to short read shotgun sequencing. In principle, the assembly step
can be circumvented for short viruses using long-reads (marked with *). However, long-read technologies
have their own drawbacks (see main text). Afterwards, viral sequences and depending on the method
also prophages are identified with computational methods. Subsequently, bioinformatic analysis allows
then for a deeper understanding of the obtained sequences. Figure is taken from [Roux et al., 2019a].

[Adriaenssens et al., 2015; Schulz et al., 2018], marine environments [Breitbart et al., 2007;

Coutinho et al., 2017; Gregory et al., 2019; Hwang et al., 2017; Roux et al., 2016] or the human

gut [Breitbart et al., 2003; Gregory et al., 2020; Gulyaeva et al., 2022; Minot et al., 2013; Reyes

et al., 2010; Shkoporov et al., 2019].

In general, there are two main approaches in these studies how virus genomes are obtained. Virus

genomes can be either retrieved from datasets enriched for virus particles (viral metagenomes)

or from bulk metagenomes, including both virus particles and microbial cells [Nayfach et al.,

2021b; Roux et al., 2021]. Other sources to obtain uncultivated virus genomes are single-virus

methods, where individual virus particles are selected using flow-cytometry [Mirzaei et al., 2021].

See Fig. 1.4 for an overview of the different pipelines.

In viral metagenomics (viromics), virus particles are enriched through a combination of filtra-

tion and purification steps. This usually includes size-selective filtration, ultracentrifugation and

DNase (or RNase) treatments [Kleiner et al., 2015; Thurber et al., 2009]. The filtration allows

for the enrichment of extracellular viruses, but it cannot remove cellular sequences completely

[Roux et al., 2013] and viral sequence identification through computational methods still remains

necessary later on. A critical step in viral metagenomics is also to obtain a sufficient amount

10 1.3. Microbial and viral metagenomics

of nucleotide acids for the sequencing. Due to the small biomass of viruses, an amplification

step might be necessary. Most common methods are random amplified shotgun library (RASL)

[Rohwer et al., 2001], linker-amplified shotgun library (LASL) [Breitbart et al., 2003], and mul-

tiple displacement amplification (MDA) [Hutchison et al., 2005]. However, all these methods

introduce biases and no quantitative analysis of relative abundances can be performed in the

downstream analysis [Roux et al., 2021].

In bulk metagenomic sequencing, no filtration or amplification step is performed. Instead, the

whole genetic material (virus particles and microbial cells) is sequenced together and separation

of viral and cellular sequences is only later performed through computational methods. This

approach circumvents the amplification bias and allows capturing extra- and intracellular viral

sequences, including integrated prophages [Nayfach et al., 2021b]. However, it poses a chal-

lenge for the computational methods, as viruses typically represent only a minor fraction of all

sequences compared to cellular genomes [Roux et al., 2021].

After the shotgun sequencing, metagenomic assembly and binning can be performed. Assembly

is the task to merge the short sequencing reads into longer contiguous fragments called contigs

and ideally whole genomes. Assembly is also the main subject of this thesis, and the different

assembly approaches are described in detail in the next section (section 1.4). Assembling viral

sequences from metagenomic data is especially challenging due to the high viral microdiversity

and strain variation, as well as the high mosaicism and proportion of genomic repeats [Mirzaei

et al., 2021]. Often a large fraction of viral diversity remains undiscovered in short, fragmented

contigs or unassembled reads. Thereby, especially rare viruses are often overlooked [Rose et al.,

2016; Roux et al., 2017; Sutton et al., 2019; Trubl et al., 2020; Vázquez-Castellanos et al., 2014].

In a typical metagenomic pipeline, binning is performed after the assembly [Quince et al., 2017].

The process of binning is employed to group contigs into genomic bins, representing sets of se-

quences estimated to originate from the same genome (MAG, metagenomic assembled genome).

However, due to the smaller size of viral genomes and the fact that the assessment of a bin in

terms of contamination and completeness is much more challenging than for bacteria due to the

absence of a universal marker gene, binning is often omitted in viral metagenomics [Roux et al.,

2017]. Still, according to the authors of the very recently published binning framework PHAMB,

it can help to identify viral genomes from bulk metagenomic datasets [Johansen et al., 2022]. In

principle, assembly and binning methods can be circumvented using long reads. However, long

read sequencing technologies have their own drawbacks. They usually require magnitudes more

DNA than can be extracted from a virome sample and still show high operation cost and error

rates [Mirzaei et al., 2021].

Subsequent to the assembly (and sometimes binning) step, further downstream analysis is per-

formed. Foremost, the assembled contigs have to be sorted into those originating from viruses

and microbial contigs. This is even necessary if a viral enrichment step was applied prior to

the library preparation, as contamination may still exist [Roux et al., 2013]. The identification

of viral sequences is thereby not trivial, as most viruses in metagenomic samples share little to

no homology to public databases [Gregory et al., 2019]. Furthermore, prophages poses specific

1.4. Metagenomic assembly from short sequencing reads 11

challenges, as it can be difficult to accurately determine the boundaries of prophages in their

host’s genome [Roux et al., 2019a]. To date, a number of computational methods exists, which

try to recover viral sequences based on similarity- and composition-based strategies. These in-

clude PhiSpy [Akhter et al., 2012], VirFinder [Ren et al., 2017], Vibrant [Kieft et al., 2020],

Virsorter/Virsorter2 [Guo et al., 2021; Roux et al., 2015a] and CheckV [Nayfach et al., 2021a].

Viral sequence identification can then be followed by more detailed sequence analysis, includ-

ing functional annotation [Hyatt et al., 2010; McNair et al., 2018] and taxonomic classification

[Bin Jang et al., 2019; Eddy et al., 1995], host prediction [Mihara et al., 2016; Villarroel et al.,

2016; Zhang et al., 2021], relative abundance estimation [Palermo et al., 2019] and genome

quality assessment [Nayfach et al., 2021a].

1.4. Metagenomic assembly from short sequencing reads

The advent of NGS and metagenomic leads to an ever-increasing amount of sequencing data.

However, the information within short reads is limited. Thus, it is necessary to merge the reads

into longer continuous fragments (contigs), which provide more continuous information about

genes, gene complexes and ideally whole genomes. This reconstruction process from the reads

is called assembly. The assembly problem for single organisms is already well studied, however

metagenomic sequencing data poses new challenges (reviewed in [Ghurye et al., 2016; Lapidus

and Korobeynikov, 2021]). (1) The mixture of genomes means that not all reads should be

assembled to a single genome, but rather, an unknown number of genomes should be recon-

structed. (2) The coverage is highly uneven, resulting from the widely different abundances.

(3) Metagenomic samples usually contain a mixture of closely related genomes (population di-

versity), making it difficult for assemblers to tell them apart. (4) The coverage for the low

abundant genomes in a sample is often insufficient. Many assumptions that can be made for

single genome assembly (e.g. regarding the coverage of repetitive regions and sequencing errors)

do not hold any longer and the use of single genome assemblers is highly limited for metage-

nomic data [Namiki et al., 2012]. In recent years, many metagenomic assemblers were developed,

adopting the concepts from single genome assemblers to the challenges of metagenomic samples.

For example, the metagenomic assembler MetaVelvet [Namiki et al., 2012] is based on the sin-

gle genome assembler Velvet [Zerbino and Birney, 2008; Zerbino et al., 2009] and metaSPAdes

[Nurk et al., 2017] extends SPAdes [Bankevich et al., 2012]. The underlying assembly strategies

of the metagenomic assemblers are thereby the same as those from the single genome assemblers,

respectively.

According to several review papers, including [Ayling et al., 2020; Ghurye et al., 2016; Pop, 2009],

the first rough distinction that can be made is reference-based assembly methods (comparative

assemblers) and the methods that do not rely on any references (de novo assemblers). In

reference-based methods, the reads are mapped against the reference genome and then grouped

based on their placement on the reference, which guides the reconstruction of contigs. This

approach can be used to target different strains and is implemented for example in the assembler

12 1.4. Metagenomic assembly from short sequencing reads

MetaCompass [Cepeda et al., 2017]. However, as this approach relies on the presence of suitable

reference sequences, it is highly limited for metagenomic studies and is omitted in the following.

In contrast, de novo assemblers aim to resolve the assembly problem without prior knowledge by

reconstructing the contigs directly from the reads. Consequently, they are much more suitable

for (viral) metagenomic studies where up to 90% of the sequences do not share any homology to

reference databases [Gregory et al., 2019]. However, the task of de novo assembly has been proven

to be NP-hard [Medvedev et al., 2007]. One heuristic approach to solving this is to assemble

with a greedy strategy, employed in the earliest assemblers [Ghurye et al., 2016]. Currently, two

classes of algorithms are widely used overlap-layout-consensus (OLC) assembly and de Bruijn

graph (dBg) assembly approaches, which both correspond to the idea that the assembly problem

can be described as a graph problem [Miller et al., 2010]. In the following, I describe the concepts

behind these three de novo approaches in more detail. Notorious, the greedy assembly approach

is thereby a more general strategy and can be used graph-free [Steinegger et al., 2019] but also

based on graph structures [Schmidt et al., 2009].

1.4.1. Greedy assembly strategy

The greedy assembly strategy describes an intuitive process where reads are merged in an iter-

ative manner by always choosing the best overlapping reads for extension. The decision for the

best overlap depends on the implementation, e.g. the sequence identity of the overlap region,

but is always made locally. The assembly process stops when no more reads or contigs can

be joined. Due to the local optimization, the methods employing the greedy approach can get

blocked or can result in misassemblies when multiple equally likely extension are possible, e.g.

within repetitive sequences [Pop, 2009]. However, it preserves the co-occurrence of mutations

within one read and can benefit from long overlaps to accurately distinguish closely related se-

quences (see own results in section 2.5.2). Usually, sequencing errors do not affect the strategy,

as they can be considered by the function to be optimized [Ghurye et al., 2016]. The greedy

assembly strategy was mainly employed by early single genome assemblers for Sanger sequencing

data, such as TIGR [Sutton et al., 1995] or Phrap [Green, 1996]. However, it is not a popu-

lar approach in today’s metagenomic studies as it is limited by the all-against-all read overlap

computation, which typically scales quadratically in runtime with the number of reads.

Recently, our group developed the protein assembler Plass [Steinegger et al., 2019], which over-

comes this limitation by implementing a linear time approach for the overlap computation. As a

result, Plass became applicable to large metagenomic datasets [Steinegger et al., 2019]. Besides,

only a few tools that adopt the greedy assembly strategy for heterogeneous samples exist today.

However, all of them apply targeted assembly. PRICE [Ruby et al., 2013] uses user-defined seeds

as the starting point for the greedy approach. IVA [Hunt et al., 2015] picks seeds from the reads

automatically and then compute a consensus assembly. The recently published assembly tool

contigExtender [Deng and Delwart, 2021] employs the greedy strategy, starting with the contigs

generated from metaSPAdes [Nurk et al., 2017].

1.4. Metagenomic assembly from short sequencing reads 13

Figure 1.5.: Two graph-based assembly strategies. The Figure shows the data structures in the
two main classes of assemblers. For a set of reads (A), the overlap graph (B) encodes reads as nodes and
connects them if they have overlaps. Transitive edges are later removed to simplify the overlap graph
towards a string graph. In the de Bruijn graph (C) each node represent a k -mer in the input reads.
Nodes are connected if the represented k -mers occur consecutively in a read. Here, the k -mer size is set
to 3. The Figure is taken from [Schatz et al., 2010].

1.4.2. Overlap-Layout-Consensus assembly

Another class of assembly algorithms is based on overlap graphs [Myers, 2005]. An overlap

graph can be reconstructed from the set of sequencing reads. In the graph, each read is a node,

and nodes are connected by an edge when the reads overlap (suffix prefix matches). See also

figure 1.5 for a visualization. The (single genome) assembly problem is then equivalent to finding

a path through the graph that contains each node exactly once (Hamiltonian path) [Pop, 2009].

Usually, overlap graph-based assemblers employ the Overlap-Layout-Consensus (OLC) strategy,

which consists of three phases: overlap-phase, layout-phase, consensus-phase. In the first phase,

the overlap graph is constructed by computing all pairwise read overlaps. This is time and

memory consuming, as it scales quadratically in the naive implementation. In the layout-phase,

OLC assemblers simplify the graph structure towards a string-graph [Myers, 2005]. Thereby,

reads that are complete substrings of other reads (“contained reads”) and transitive edges are

removed. Contigs can then be obtained from the non-branching stretches of the graph. Finally,

a majority voting is employed to obtain the consensus sequence for a contig (consensus-phase)

via multiple sequence alignment of the reads that make up the contig. This allows to remove

sequencing errors from the final contigs [Li et al., 2012].

OLC approaches were mostly used in the era of Sanger sequencing [Ayling et al., 2020]. The first

assembler employing this approach was the Celera assembler [Myers et al., 2000]. However, OLC

assemblers do not scale well with the higher throughput and shorter reads of today’s Illumina

sequencing platforms due to the need to compute and represent all pairwise overlaps [Pérez-

Cobas et al., 2020]. The very high computational demand for large and complex metagenomic

14 1.4. Metagenomic assembly from short sequencing reads

datasets limits therefore the applicability of the OLC approach in metagenomic studies for short

sequencing reads. With the current development of long read sequencing technologies, the OLC

approach reemerges, but this is not described here further and can be found elsewhere [Rizzi

et al., 2019].

Metagenomic assemblers that apply the OLC approach are for example Omega [Haider et al.,

2014] and Genovo [Laserson et al., 2011]. Besides, specialized viral population assembler such

as VICUNA [Yang et al., 2012] or SAVAGE [Baaijens et al., 2017] follow the OLC paradigm.

1.4.3. De Bruijn graph assembly

An alternative graph-based assembly approach is to use de Bruijn graphs (dBg), first introduced

in the EULER assembler [Pevzner et al., 2001]. In this approach, the set of input reads is

decomposed into substrings of length k , called k -mers, and a de Bruijn graph is utilized to store

the relationship between the k -mers. The nodes represent the k -mers, and the edges between

nodes indicate that two k -mers occur consecutively within the reads (see Fig. 1.5). Overlaps

between the reads are therefore implicitly stored, and the (single genome) assembly task is

defined as finding a path through the graph that contains each edge exactly once (Euler path)

[Pevzner et al., 2001]. Finding an Euler path can be solved in linear time and is therefore more

efficient than finding a Hamilton path in overlap graphs [Compeau et al., 2011b]. Furthermore,

the linear scaling in edges enables the processing of large genomes [Compeau et al., 2011b]

and even complex metagenomic data [Li et al., 2015]. Consequently, most of the recent work for

metagenomic assemblers were done in this category, resulting in the development of several tools

including MetaVelvet [Namiki et al., 2012], IDBA-UD [Peng et al., 2012], Ray-Meta [Boisvert

et al., 2012], MEGAHIT [Li et al., 2015] and metaSPAdes [Nurk et al., 2017].

Constructing a de Bruijn graph starts kind of counterintuitive, as the reads are cut into k -mers

and the read context gets lost. This is one major limitation of de Bruijn graph assemblers, as

k -mers from a read must not necessarily lead to a linear path in the graph. Instead, shared

k -mers can lead to complex graph structures. Especially in real metagenomic sequencing data,

de Bruijn graphs can become quite complex including bubbles, tips and bulges resulting from

repeats, closely related genomes and sequencing errors. This makes the graph traversing more

challenging and requires various graph simplification heuristics [Ayling et al., 2020; Breitwieser

et al., 2019]. Moreover, in contrast to the single genome assembler, where repeats and sequencing

errors can be recognized due to coverage deviations, metagenomic assemblers have to deal with

the highly uneven coverage across the different genomes.

In general, the most important parameter for the de Bruijn graph assembly paradigm is the

choice of the size of k [Breitwieser et al., 2019; Chikhi and Medvedev, 2014]. A small k might

not be specific enough for closely related genomes or short repeats and blow up the graph due

to false edges. A large k , however, might miss connections in low coverage regions or due to the

presence of sequencing errors and SNPs. This results in a sensitivity-specificity trade-off.

1.4. Metagenomic assembly from short sequencing reads 15

1.4.4. Limitations and challenges of assembly of viral genomes from metagenomic

data

As already highlighted in the previous sections, assembling metagenomic data is quite challeng-

ing and all of the three approaches (greedy, OLC and dBg) have their own limitations, with dBg

assemblers usually performing the best [Sczyrba et al., 2017; Vollmers et al., 2017]. Thereby,

most of today’s metagenomic assemblers were initially evaluated and optimized on bacterial

metagenomic samples [Li et al., 2015; Namiki et al., 2012; Nurk et al., 2017; Peng et al., 2012;

Sutton et al., 2019]. However, when considering the viral fraction of microbial communities, the

assembly task becomes even more challenging. As described above, (1) viral genomes show high

microdiversity and strain-level heterogeneity, resulting from high mutation rates [Minot et al.,

2013; Warwick-Dugdale et al., 2019] and exchange of genomic regions through homologous re-

combination events [Simon-Loriere and Holmes, 2011] during co-infections [Cudini et al., 2019;

Van der Kuyl and Cornelissen, 2007]. This enormous amount of diversity poses specific chal-

lenges. Moreover, (2) high background contamination from bacteria and eukaryotic sequences

challenge the assembly of viral genomes further. Due to the small size of virus genomes, often

only a small fraction of the reads from metagenomic samples originate from viral genomes, lead-

ing to low viral sequencing coverage [Moreno-Gallego et al., 2019; Roux et al., 2013; Shkoporov

and Hill, 2019]. Also, (3) for viral enriched metagenomic data, the multiple displacement am-

plification (MDA) step can lead to extremes in the coverage biasing the data towards certain

groups and insufficient coverage for low abundant genomes. Additionally, (4) viruses include

many repeat regions within their genomes [Sutton et al., 2019]. Lastly, (5) viruses lack of a

universal marker gene [Mirzaei and Maurice, 2017; Shkoporov and Hill, 2019], making subse-

quent identification of viral sequences from the assembly as well as assembly quality assessment

more challenging. In total, the huge amount of sequencing data from large complex metage-

nomic samples together with large variability between viral genomes poses crucial challenges for

current existing assembly methods.

As mentioned above, Greedy assemblers and OLC assembler have to compute all pairwise over-

laps between the reads and/or contigs (greedy assemblers usually in each iteration, OLC assem-

blers to construct the overlap graph). As this typically scales quadratically in the number of

reads, this is not applicable for large and complex metagenomic samples with millions to billions

of reads due to time and memory issues [Vollmers et al., 2017]. Currently, methods that adopt a

greedy/OLC approach are therefore mostly specialized tools to reconstruct viral genomes from

single viral populations instead of whole metagenomes. This includes IVA [Hunt et al., 2015],

VICUNA [Yang et al., 2012] and SAVAGE [Baaijens et al., 2017]. In contrast, de Bruijn graph

assemblers like MEGAHIT [Li et al., 2015] and metaSPAdes [Nurk et al., 2017] can deal with

the huge number of reads from metagenomic samples due to the k -mer splitting. They can store

redundant read information more efficiently and are also much faster [Compeau et al., 2011a;

Sutton et al., 2019]. However, they suffer from the above-mentioned specificity-sensitivity trade-

off, resulting in a loss of connectivity in the graph or complex graph structures. This creates the

need for various graph simplification and filtering strategies to obtain contigs from the graph

16 1.5. Sequencing error correction

structure. This results in short, fragmented contigs and loss of diversity (consensus assembly)

[Sutton et al., 2019]. Aggressive collapsing as employed in the recently published viral metage-

nomic tools metaviralSPAdes [Antipov et al., 2020] and rnaviralSPAdes [Meleshko et al., 2022]

can lead to longer contigs but cannot resolve the diversity.

In [Sutton et al., 2019], 16 metagenomic and viral specific assembly approaches were evaluated

on simulated viromes, mock viral communities and a human gut virome. The authors point out

that all assemblers suffered (to a varying degree) from the specific challenges of viral datasets

resulting in low genome recovery, high degree of fragmentation and low quality contigs, especially

in the case of low abundant genomes. Similar results have also been obtained in previous studies

[Garćıa-López et al., 2015; Roux et al., 2017; Smits et al., 2014]. This creates the need for a

new metagenomic assembler which can cope with viral diversity.

1.5. Sequencing error correction

Sequencing data analysis of NGS data usually starts with preprocessing the input read set to

improve data quality. An initial step is sequencing error correction. Sequencing errors occur

across all sequencing technologies, however the amount of sequencing errors as well as the dom-

inating type varies significantly (see section 1.2). In general, there are three types of sequencing

errors in NGS data: (1) substitution errors, where a nucleotide was erroneously replaced for

another nucleotide, (2) insertion errors, where an additional nucleotide was erroneously intro-

duced, and (3) deletion errors, where a nucleotide is missing. Furthermore, sequencers report

’N’s if a nucleotide is unknown. Illumina sequencers basically avoid insertions and deletions, due

to their one nucleotide per cycle approach, and substitution errors are clearly the dominating

type [Schirmer et al., 2016]. Substitution errors can be caused by phasing effects, where indi-

vidual clones desynchronize with the cluster and subsequently call the incorrect base [Pfeiffer

et al., 2018]. Or they can be the result of cross-talk, either due to the overlap between the

emission spectra of different nucleotides or from cross-talk between adjacent clusters [Pfeiffer

et al., 2018]. Notably, phasing effects also increase the longer the sequencing run takes, which

is also the reason why the number of errors increases toward the 3’ end of the reads [Stoler and

Nekrutenko, 2021] and why the sequence length is limited [Fuller et al., 2009].

Sequencing error correction is a fundamental step. Previous studies suggest that sequencing

error correction can benefit assembly [Heydari et al., 2017], SNP detection [Kelley et al., 2010]

and short read mapping [Qu et al., 2009]. To date, a number of error correction software

exists and is reviewed in several publications, including [Alic et al., 2016; Heydari et al., 2017;

Mitchell et al., 2020; Yang et al., 2013]. According to a popular benchmark study [Yang et al.,

2013], sequencing error correction methods can be roughly divided into three categories: k -mer

spectrum based, suffix tree/array based and multiple sequence alignment (MSA) based.

1.5. Sequencing error correction 17

k-mer spectrum based. The simplest technique employs the distribution of sample-wise fre-

quencies of k -mers appearing in the set of sequencing reads, which is termed the k -mer spectrum.

It assumes a uniform sequencing coverage and relies on the idea that error-free k -mers occur

roughly in the same amount as the sequencing coverage, whereas k -mers containing a sequencing

error occur much more rarely (see Fig. 1.6). To decide if a k -mer is correct or not, the first step

for these methods is to choose a frequency threshold. Such a threshold can be obtained by find-

ing the local minimum of a fitted Poisson and Gaussian mixture model [Chaisson et al., 2009],

by maximizing a likelihood function of these mixture models [Kelley et al., 2010], or by choosing

the first minimum in the k -mer spectrum [Liu et al., 2013]. k -mers above this threshold are seen

as correct and called “solid”, k -mers below are likely to be erroneous and are called “weak”.

Sequencing errors are then corrected by turning weak k -mers into solid k -mers. Popular meth-

ods employing the k -mer spectrum approach include Musket [Liu et al., 2013], Quake [Kelley

et al., 2010], Bloocoo [Benoit et al., 2014], Lighter [Song et al., 2014], BFC [Li, 2015], Reptile

[Yang et al., 2010] and Bless [Heo et al., 2014]. The k -mer spectrum based approach is the

most popular approach, probably due to its simplicity and scalability This is mostly resulting

from the use of computationally efficient data structures, such as Bloom filters [Bloom, 1970]

used for example in Lighter [Song et al., 2014], hash-tables or a combination of both [Li, 2015;

Liu et al., 2013]. However, one of the problems with these methods comes when k -mers are

underrepresented due to low coverage and are therefore erroneously filtered out. Especially on

metagenomic datasets, the assumption of a uniform coverage is not fulfilled. Another problem

arises from near-by errors resulting in k -mers that would require multiple changes within one

k -mer. Further, most of the methods mentioned above apply greedy strategies and never revert

their decisions.

Suffix tree/array based. Another technique is to employ suffix structures to hold the common

parts of reads, and to identify sequencing errors as branches that have an unexpected low fre-

quency. Methods using this technique generalize the k -mer based approach, as they can consider

suffixes of variable length, instead of a fixed k -mer size. SHREC [Schröder et al., 2009] was the

first method applying this approach by traversing a generalized suffix tree, whereas HiTEC [Ilie

et al., 2011] utilizes the more memory efficient suffix array structure instead. Building on the

same idea, Fiona [Schulz et al., 2014] utilizes a suffix array structure as well, but combines it

with alignment computations to also consider insertion and deletion errors. However, in gen-

eral, these methods are much more resource-consuming than the k -mer spectrum-based methods

while often showing worse error correction performance [Yang et al., 2013].

MSA based. A third type of sequencing error correction methods relies on multiple sequence

alignments (MSA). In a first stage, these methods group reads according to their location to

the prospective reference, generate the MSA between the co-located reads and then correct

reads according to the consensus obtained from the MSA. Two examples for this type of error

correction tools are Coral [Salmela and Schröder, 2011] and ECHO [Kao et al., 2011]. Thereby,

18 1.5. Sequencing error correction

Figure 1.6.: Typical k-mers spectrum of sequencing reads obtained from a single genome.
The distribution shows how often each k -mer frequency occurs in the reads. This distribution is utilized
by the k -mer spectrum based methods to correct identify sequencing errors. They expect the erroneous
k -mers to occur only in a small number of reads (first peak), whereas the frequency of true k -mers should
occur close to the read coverage (bell shape). Notably, the peak of the bell shape is thereby shifted by
L−k+1

L with L being the size of the genome because the full k -mer must be covered by the read. Based on
a threshold, set between the first peak and the bell-shape, allows them to distinguish the k -mers. Figure
taken from [Alic et al., 2016].

Coral identifies read groups based on shared k -mers and aligns them using a variant of the

Needleman–Wunsch algorithm [Needleman and Wunsch, 1970]. ECHO also utilizes shared k -

mers for overlap detection and then uses a maximum a-posteriori estimation procedure to correct

bases [Kao et al., 2011]. These methods have the advantage that they can consider the read

as a whole instead of at the k -mer level or as suffixes of variable length. Moreover, they can

make consistent corrections across overlapping reads. However, they are quite costly regarding

run-time and memory-usage [Mitchell et al., 2020; Yang et al., 2013]. As they may overlap

reads from different genomic locations, for example due to repeats, ambiguous correction can be

performed.

Besides the mentioned categories, there are other techniques applied. For example, BayesHam-

mer [Nikolenko et al., 2013] utilizes a hamming graph and Bayesian subclustering to identify

erroneous k -mers and correct each nucleotide in a read based on the consensus of solid k -mers

and cluster centers. Bcool [Limasset et al., 2020] constructs a de Bruijn graph, remove erro-

neous k -mers and subsequently maps sequencing reads to the cleaned de Bruijn graph to correct

them. Further, some methods mentioned here can be included in more than one category. A

comprehensive review of error correction methods for NGS data is given in [Alic et al., 2016].

Notably, almost all error correction tools were designed for single genome sequencing and their

assumptions often do not hold on metagenomic samples.

1.6. Objectives and overview of this thesis 19

1.6. Objectives and overview of this thesis

This thesis evolves around the development of two new software tools for the analysis of metage-

nomic sequencing data, with a focus on the viral fraction:

The first and main objective of this thesis is the development of a new metagenomic assembly

method that can cope with the high viral diversity occurring in nature. With this method, we

aim to assemble longer and more continuous fragments that provide more information about

genes, gene complexes and ideally whole viral genomes than currently existing metagenomic

assembly tools. Thereby, we aim to reveal more of the previously undiscovered viral diversity.

This work is built on the protein level assembler Plass, which our group has previously published

[Steinegger et al., 2019]. Its major contribution is the extension of Plass to a full nucleotide as-

sembler that is guided by the amino acid sequences during the nucleotide assembly process. The

resulting software tool is called PenguiN (protein guided nucleotide assembler) and is described

in chapter 2.

The second objective of this thesis is the development of a new sequencing error correction

method that can support the PenguiN assembler due to cleaner read overlaps. Precisely, with

this method we aim to reduce the number of sequencing errors in the set of input reads while

keeping the true (viral) diversity in the data. The method is implemented in a new tool called

CoCo, which is described in chapter 3.

2. Development of a protein-guided nucleotide

assembler and its application to viral

metagenomic samples

In this chapter, I describe the new protein-guided nucleotide assembler, PenguiN, and present

its application on viral metagenomic data. The main aim was to design a new de novo metage-

nomic assembler that can deal with the challenges of high viral diversity in complex metage-

nomic samples and therefore can assemble longer viral contigs than the current state-of-the-art

metagenomic assemblers, ideally up to whole viral genomes. PenguiN is implemented in C++

and is part of the Plass software (https://github.com/soedinglab/plass). PenguiN is not yet

published, but a manuscript is currently in preparation for the publication subsequent to this

thesis. Thereby, parts of the following text and figures will be included.

2.1. Related work and underlying concept

Previously, our group developed the protein-level assembler Plass [Steinegger et al., 2019], which

assembles six-frame-translated sequencing reads into protein sequences. Assembling protein

instead of nucleotide sequences has several advantages: (1) protein sequences are shorter, (2)

most SNPs are synonymous or conservative, (3) repeats are shorter and less frequent, and (4)

chimeric assemblies are less problematic as they do not lead to false conclusions about co-

occurring genes [Steinegger et al., 2019].

With the aforementioned advantages, the enormous increase in the number of protein sequences

that could be extracted from metagenomic samples was already shown in the original Plass pub-

lication [Steinegger et al., 2019]. Plass recovered 2-10 times more protein sequences from com-

plex metagenomic samples than predicted from the nucleotide assemblies of the state-of-the-art

metagenomic assemblers Megahit [Li et al., 2015] and metaSPAdes [Nurk et al., 2017]. Further, it

generated non-redundant protein reference catalogs of 2 billion proteins from soil metagenomes

(SRC) and 292 million proteins from marine eukaryotic metatranscriptomes (MERC). Since

its publication, Plass has become highly accepted in the field. It was utilized for example

in a metaproteomics study of soil samples from the Seine River (France) floodplain [Jouffret

et al., 2021], used to assemble proteins from wild animal gut metagenomes [Youngblut et al.,

2020], integrated in a pipeline to selectively assemble the neighborhoods extracted from large

https://github.com/soedinglab/plass

22 2.2. Algorithm and Implementation

metagenome assembly graphs [Brown et al., 2020] or used to recover protein sequences from

samples of extreme natural environments such as geothermal hot springs and deep-sea ocean

ecosystems in the context of the Virus-X project [Aevarsson et al., 2021]. Based on the advan-

tages of protein-level assemblers, a recent study [Mirzaei et al., 2021] further emphasized the

use of Plass also for viral metagenomic data, but also pointed out that the assembled proteins

are not placed into a genomic context.

To be able to assemble long contigs up to whole viral genomes, we have to extend the contigs

into the intergenic regions as well. During my doctoral research, I extended the protein-level

metagenomic assembler Plass to bridge intergenic regions by guiding a nucleotide assembly us-

ing the protein-coding regions as seeds. Specifically, in a first stage, the underlying nucleotide

sequences are assembled simultaneously to the protein sequences resulting in full open reading

frames (ORFs), which can then be used as anchors and linked by aligning additional nucleotide

reads in a second step. See also Fig. 2.1a for a graphical explanation of this approach. This

protein-guided nucleotide assembly approach is now implemented in the new software tool Pen-

guiN, which I integrated into the Plass software. We believe that this approach has the advantage

to simplify the assembly problem, as genomes, which already differ on amino acid level do not

have to be compared on the longer and therefore more computational expensive nucleotide se-

quences. At the same time, single nucleotide mutations in the coding regions, which do not

change the amino acid sequence significantly (synonymous or conservative mutations), do not

hinder the assembly process. While, genomes that have picked up multiple changes (lead to

different strains), can be distinguished due to co-occuring mutations within full-read overlaps.

2.2. Algorithm and Implementation

2.2.1. Outline of the PenguiN algorithm and key ideas

PenguiN proceeds in two main stages, which I briefly outline here. The details are then de-

scribed in section 2.2.2 and the whole workflow of the software tool is depicted in Fig. 2.1. The

guided assembly (stage I) assembles six-frame translated reads to proteins and co-assembles the

corresponding nucleotide ORFs. The nucleotide assembly (stage II) links the assembled ORFs

using the original nucleotide reads. In both stages, PenguiN uses thereby the same graph-free,

greedy iterative assembly strategy as developed for Plass [Steinegger et al., 2019].

2.2.1.1. Assemble six-frame translated reads to proteins and co-assemble nucleotide ORFs

First, PenguiN assembles the six-frame translated reads analogous to the original Plass algorithm

by (1) finding overlaps in linear times, and (2) iteratively extending the sequences on both sides

using full-alignment overlaps. Afterwards (3), extended and unchanged sequences are used as

input for the next iteration and the steps are repeated.

1
2
3
4

sequence set

merge set of assembled ORFs with
orginal nucleotide reads and continue
with overlap phase of stage II

stage I : six frame translated reads
 (amino acid sequences)

stage II : assembled ORFs from stage I + orginal reads
 (nucleotide sequences)

(1) select k-mers and write them with
their sequence ID into an array

O
ve

rla
p

ph
as

e

R TAGAL

in stage I in stage II

(E.II 3) iterate through steps 1-4 + E.II 1-2

(E.I 2) iterate through steps 1-4 + E.I-1

Output: ciruclar and linear nucleotide contigs

stage I : assemble nucleotide
ORFs using protein overlaps

translated ORFs proteins

stage II: link ORfs with reads
using nucleotide overlaps

Input reads

extracted ORFs assembled ORFs master contigscontigs

six frame
translation

redundancy
reduction

Assembled ORF2Assembled ORF1

Overlap phase: �nd protein overlaps
Extension phase: extend protein sequences
and co-extend nucleotide sequence

Overlap phase: �nd nucleotide overlaps
Extension phase: extend nucleotide sequences
Additional cycle detection step

1
2
3
4

1
2
2
3
1
4
3
4

1
1
2
2
3
3
4
4

(2) sort array by k-mer, from each set
with shared k-mer select longest
sequence as center (*)

*

*

*

*

*

*

*

*

(3) merge sets with same center
sequences and gaplessly align all
sequences to the center

same center
sequence

(4) �lter alignments based on E-value and
sequence identity threshold

stage I : additionally calculate alignment
coordinates for corresponding
nucleotide sequences and re-evaluate
E-value and sequence identity

(E.I 1) for each set extend protein
center sequence and
co-extend corresponding
nucelotide sequence

(E.II 1) for each set extend nucleotide
center sequence

Ex
te

ns
io

n
ph

as
e

*1
4 2

2
3

3

4

1

4
2

2
3

3

4 2
1

(E.II 2) check for circular sequences
and exclude them from the
next iteration

4 2
1

3

4 2
1

CGT ACA GCC GGT GC T T TA

2
3

T TC TCA CAA GGT GC T T TA AAG

FSQGALK

4 2
1

3

Output: proteins and assembled nucleotide ORFs

(a)

(b)

Linking reads

Figure 2.1.: Caption on the next page

24 2.2. Algorithm and Implementation

Figure 2.1.: Overview of the workflow and algorithm of PenguiN. (a) PenguiN proceeds in
two main stages. The guided assembly (stage I) assembles six-frame translated reads into proteins and
thereby co-assembles the underlying nucleotide sequences, resulting in complete open reading frames
(ORFs). Assembled ORFs from stage I are then linked with the original nucleotide reads within the
nucleotide assembly (stage II), resulting in long continuous stretches (contigs). At the end, a redundancy
reduction step is performed, clustering redundant contigs or contigs with minor differences to the final
master contigs. (b) Both stages thereby consist of two phases: overlap phase and extension phase,
supplemented by an additional cycle detection step within stage II. This panel summarizes the workflow
and highlights the differences in each step between the stages. A more detailed description of the steps
is given in the main text (section 2.2.2).

The key idea of the PenguiN assembly algorithm is now, that during the whole process the

underlying nucleotide sequence can be assembled simultaneously. Whereas the overlaps are found

and evaluated in linear time on the protein sequences, they are re-evaluated on the nucleotide

sequence as well and only processed further, if they fulfil an E-value and a minimum sequence

identity threshold as well for the corresponding nucleotide alignment (overlap phase). During

the subsequent extension phase of the protein sequences, the corresponding nucleotide sequences

are then extended in parallel. Therefore, stage I is in the following referred to as the guided

assembly part.

To avoid code duplication, PenguiN modifies approaches implemented in Plass. The details are

described in section 2.2.2. After 5 (default) iterations through overlap and extension phase,

the process is terminated, and the extended sequences should reflect the protein and nucleotide

sequences of full open reading frames. In contrast to the Plass algorithm, proteins translated

in the wrong frame are thereby not an issue, as for the subsequent steps only the nucleotide

sequence will be processed further.

2.2.1.2. Link ORFs with reads

The second stage then aims to link the assembled ORFs from the first stage using the original

reads to bridge non-coding regions. Thereby, PenguiN uses the nucleotide sequences of the

assembled ORFs from the first stage together with the original reads as input and performs

a nucleotide (only) assembly mostly following the same general scheme as used in stage I for

the protein and ORF assembly: (1) First it looks for overlaps in linear time, but this time on

nucleotide level, and (2) then iteratively extends the nucleotide sequences using full-alignment

overlaps (see Fig. 2.1). In the following, this part is referred to as the iterative nucleotide

assembly stage. Also here, parts of the original Plass code were re-used but needed to be

adapted or extended to nucleotide sequences. The details can be found in section 2.2.2.

However, since we also aim to assemble much longer contigs up to whole viral genomes in stage

II, the issue of circular genomes and long terminal repeats at the ends of linear viral genomes of

the form RAR arose. Both are common genome structures in viruses. Of 8420 sequences from

viruses in the RefSeq [O’Leary et al., 2016] database (viral.1.1.genomic.fna from 08/2019), 2119

were labelled as “circular” in the corresponding GenBank annotation file (viral.1.genomic.gbff)

2.2. Algorithm and Implementation 25

and further 350 showed a terminal repeat of length ≥ 22, exceeding PenguiN’s default k -mer

size of 22.

In contrast to graph-based assemblers, which can detect these structures as cyclic paths [Com-

peau et al., 2011b], our graph-free assembly strategy would not recognize if a contig started to

repeat itself. Our greedy iterative overlap-based assembly strategy would just overextend the

contigs that present such structures in the following iterations. To overcome this issue in Pen-

guiN, I implemented an additional step to detect circular structures after each extension phase

in stage II using a heuristic similarity approach (see section 2.2.2.5). Contigs containing circular

structures are thereby marked as complete and filtered out before starting the next iteration.

All other non-complete sequences, extended and unchanged, are then used as input for the next

iteration within the nucleotide assembly stage. By default, the whole process is also repeated

5 times. Finally, all circular complete sequences collected over all iterations as well as all

(circular and linear) sequences resulting from the last iteration are pooled together and passed

to a final redundancy reduction step, if they have been extended at least once and fulfilling a

minimum length threshold (default: 500 bp). The redundancy is then reduced using an adapted

version of the Linclust [Steinegger and Söding, 2018] algorithm (see section 2.2.2.6) and cluster

representatives are output as final master contigs, each representing a group of very similar

sequences, which only differ in sequencing errors or in a minor number of mutations.

2.2.2. Algorithm and software details

As described, both main assembly stages, the guided assembly (stage I) and the nucleotide

assembly (stage II), consist of an overlap phase and an extension phase, supplemented by a cycle

detection procedure in the nucleotide assembly, which is iteratively repeated. Before the actual

assembly process starts, paired-end reads are merged and six-frame translation is performed.

After the assembly process is completed, the redundancy is reduced. In the following, I now

explain the details of all these steps and describe some optimizations to the core algorithm.

2.2.2.1. From input reads to potential ORFs

Input format and merging reads

PenguiN expects short sequencing reads as input, either paired-end reads in FASTQ format or

single reads in FASTQ or FASTA format. However, due to the large size of typical metage-

nomic samples, sequencing reads (and later contigs) are not stored in memory. Instead, they

are transformed into the efficient MMseqs2 [Steinegger and Söding, 2017] database format that

makes direct byte access to specific sequences possible, while also avoiding random file system

accesses as good as possible (see section A.3 for a description of the database format). Further,

it is crucial for efficient parallelization of the software as it allows for thread-safe read-write

access in the next steps. Analogous to Plass, PenguiN converts the reads directly into the MM-

26 2.2. Algorithm and Implementation

seqs2 database format in case of single-end reads or, in case of paired-end reads, first merges

overlapping paired-end reads into longer sequences utilizing the code of FLASH [Magoč and

Salzberg, 2011]. Subsequently, all merged and non-merged reads are output together as a MM-

seqs2 database. With the latter, we make use of the pairing information to get already a bit

longer sequences and therefore also longer and more significant overlaps in the subsequent as-

sembly process.

Extract and translate ORFs

In the next step, analogous to Plass, PenguiN extracts all six open reading frames (ORFs) with

at least 45 codons from the reads as well as all ORFs with at least 20 codons starting with

a putative ATG start codon, i.e. the first ATG codon after a stop codon in the same frame.

Afterwards, extracted ORFs are translated into the corresponding protein sequences using the

canonical genetic code table. However, alternative codon tables can be specified. During the

translation process, stop codons are marked by an asterisk (*) and putative ATG start codons

are prepended with an asterisk before the methionine residue.

2.2.2.2. Finding Overlaps in linear time

Finding overlaps in linear time is a crucial step in the PenguiN assembly algorithm. In stage I

PenguiN searches for overlaps between the six-frame translated sequences on amino acid level

and later transform them to the corresponding nucleotide sequence. In stage II, it searches for

overlaps on nucleotide level directly. However, a pairwise comparison of all sequences would lead

to quadratic runtime complexity. This would not be feasible for a typical metagenomic dataset

containing 100 million of reads. To overcome this in Plass, the linear time clustering algorithm

Linclust [Steinegger and Söding, 2018] was adapted. PenguiN uses the same strategy with small

modifications on the protein-level and adaptions and extensions on the nucleotide-level. In the

following, I describe the procedure in more detail (Fig. 2.1b, steps 1-4), and point out the most

important adaptions. However, the reader is also referred to the original Linclust [Steinegger

and Söding, 2018] and Plass publication [Steinegger et al., 2019].

First, k -mers are extracted from each sequence (Fig. 2.1b, step 1). But in contrast to Plass, the

number of extracted k -mers per sequence is not fixed (default: 60) but scales linearly with the

sequence length (m + λ × n), with n being the sequence length, λ the scaling factor and m a

constant (default: m = 60, λ = 0.1). This was introduced to compromise for the huge length

differences between the sequences occurring during the assembly iterations, especially in stage II

where sequences ranges from the length of a read (∼150 bp) to full (viral) genome lengths (∼ 2–

100 kbp). The selection of the k -mers is thereby based on the lowest values of a hash function to

avoid positional clustering of the selected k -mers and picking different k -mers from each sequence.

By choosing the XXH64 hash function from https://github.com/Cyan4973/xxHash that maps

similar k -mers to uncorrelated hash values, a quasi random distribution of the extracted k -mers

https://github.com/Cyan4973/xxHash

2.2. Algorithm and Implementation 27

across a sequence can be achieved. At the same time, selecting the k -mers with the lowest hash

value ensures that the same k -mers tend to be selected from similar sequences.

Within stage I, k is set to 14 analogous to Plass and the same reduced amino acid alphabet with

|A| = 13 letters representing the following groups of amino acids (L, M), (I, V), (K, R), (E, Q),

(A, S, T), (N, D) and (F, Y) is used. In stage II, k is set to 22 and nucleotide sequences are

represented with the full nucleotide alphabet A = {A,C,G, T}. However, due to the unknown

orientation of the nucleotide sequences, also the reverse complement of each k -mer has to be

considered and the k -mer index is chosen as the canonical representation (the lower index of

the forward and reverse complement k -mers). k -mers containing a wildcard symbol, represented

as ‘X’ on amino acid level or ‘N’ on nucleotide-level, palindromic k -mers as well as k -mers

occurring multiple times in a sequence are skipped as they would lead to ambiguous matches in

the subsequent steps.

For each selected k -mer, the k -mer index (8 bytes) is saved in an array along with the sequence

identifier (4 bytes), the length of the sequence (2 bytes) it was extracted from and the position

in that sequence (2 bytes). This allows for a memory efficient representation. However, to

ensure the correct representation for long sequences in the later nucleotide iterations as well,

I introduced a template type. If the longest sequence in the current iteration is larger than

what can be represented with 2 bytes (65 535), the last two values are expanded to 4 bytes

dynamically.

After selecting and storing the k -mers with the lowest hash values, they are sorted by the k -mer

index and sequence length to find sequence sets containing the same k -mer (Fig. 2.1b, step 2).

For each set, the longest sequence is picked as the center sequence. For all other sequences

sharing this k -mer (member sequences), the matching diagonal is calculated as i − j, where i

is the k -mer position in the center sequence and j the k -mer position in the member sequence.

Then, for each member sequence, information about center sequence identifier and matching

diagonal are stored, replacing the k -mer index and position fields in the array. This allows to

find and merge sets with the same center sequence and to remove duplicate pairs of center and

member sequences when sorting the array now by the center sequence identifiers. If multiple

matches between the same center and member sequence are present, only the diagonal with the

higher number of k -mer matches is kept.

Afterwards, for each group, k -mer matches are extended to the full ungapped alignment between

the center sequence and each member sequence along the stored diagonal (Fig. 2.1b, step 3).

Originally, this was done in Plass using one-dimensional dynamic programming to find a local

alignment on the matching diagonal. PenguiN, and also the newest Plass version, now rescores

the full diagonal, allowing for a more robust evaluation of the overlapping region. However, if

a sequence contains an asterisk in stage I (representing the beginning or end of an ORF) the

alignment is truncated to not contain this character. This ensures that the assembly on protein-

level will later stop at these boundaries. Then, for each alignment, the sequence identity value

is computed and an E-value is estimated using the ALP library [Sheetlin et al., 2016] and, by

28 2.2. Algorithm and Implementation

default, the Blosum62 substitutions matrix on protein-level and a match score 2 and mismatch

score -3 on nucleotide-level.

Alignments satisfying an E-value (default: 10−5) and a sequence identity cutoff (default: 97%

at protein-level, 99% at nucleotide level) are then used in the subsequent extension phase. The

alignments represent the overlaps, while the hang-offs of the member sequences represent the

possible extensions for the center sequence.

2.2.2.3. Transform protein alignments to corresponding nucleotide alignments

To make the co-assembly on nucleotide level within stage I possible, PenguiN performs an

additional step to transform each protein alignment between center and member sequences into

the corresponding nucleotide alignment. Thereby, I do not re-calculate the k -mer matches,

but only transform the alignment coordinates and re-calculate the sequence identity value by

counting the matches on nucleotide level and divide them by the alignment length. In this

way, the k -mer matches on protein level operate as seeds for the alignments on nucleotide level.

Furthermore, the E-value of the nucleotide alignment is recalculated using again the ALP library

[Sheetlin et al., 2016] and, by default, a match score of 2 and a mismatch score of -3. Only

alignments that still satisfy the E-value and the nucleotide sequence identity cutoff (default:

99%) are then considered as overlaps between center-member pairs in the subsequent extension

stage.

2.2.2.4. Greedy extension strategy based on a Bayesian model

In the extension step, each center sequence is extended by concatenating the non-overlapping

residues of the member sequences on each side (“hang-offs”), either on protein and nucleotide

level simultaneously (stage I), or on nucleotide level only (stage II). See also Fig. 2.1b.

Even though only the member sequences with alignments to the center sequence satisfying the

sequence identity threshold and the E-value criterion are thereby considered, multiple extensions

might be possible on each side of a center sequence. In the Plass algorithm, the list of alignments

is sorted in order of descending overlap sequence identity and the best left and right extensions

are chosen. However, during my doctoral research I realized that this strategy is not ideal when

the length of the compared overlaps vary greatly, which is particularly seen during the nucleotide

assembly or in later iterations of the guided assembly.

For example, an overlap with length 1000 and sequence identity 98.9% might be more trustworthy

than an overlap of length 100 and sequence identity 99.0% as a longer overlap also yields a

statistically more significant estimation of the actual similarity between the full sequences. In

PenguiN, I resolved this issue with a new alignment sorting strategy using a Bayesian formulation

of the problem, which can be solved analytically. For the underlying mathematical formulation

of the problem, I was supported by Johannes Söding and Étienne Morice.

2.2. Algorithm and Implementation 29

Given a query sequence (center sequence) and a target sequence (member sequence) with a mean

fraction of non-identical residues qc, and an alignment of length Mc between them, out of which

mc are mismatches and Mc − mc are matches, the probability distribution for the number of

mismatches in the alignment is a binomial distribution

p(mc|qc,Mc) = Binom(mc|qc,Mc) =

(
Mc

mc

)
qmc
c (1− qc)

Mc−mc . (2.1)

The qc are hidden variables while Mc and mc are the observed variables. Given the latter, the

probability distribution of the former can be deduced using Bayes’ theorem,

p(qc|mc,Mc) =
p(mc|qc,Mc) p(qc)∫
p(mc|q,Mc) p(q) dq

, (2.2)

where p(q) is the prior probability for the fraction of mismatches of the alignment. We can

model p(q) as a beta distribution, defined by

p(q) = Beta(q|aq, bq) = B(aq, bq)
−1 qaq−1(1− q)bq−1 (2.3)

with

B(aq, bq) =
Γ(aq)Γ(bq)

Γ(aq + bq)
. (2.4)

We therefore obtain for the hidden qc

p(qc|mc,Mc) ∝ p(mc|qc,Mc) p(qc)

=

(
Mc

mc

)
Γ(aq + bq)

Γ(aq)Γ(bq)
qc

mc+aq−1(1− qc)
Mc−mc+bq−1

∝ Beta(qc|mc + aq,Mc −mc + bq) . (2.5)

The proportionality constant between the left and right-hand sides must be 1 since both are

normalized probability distributions, and therefore

p(qc|mc,Mc) = Beta(qc|mc + aq,Mc −mc + bq) . (2.6)

Given now two possible extensions for the same contig, described by the alignments (m,M)

and (m′,M ′), the probability that the first target sequence has lower dissimilarity to the query

contig than the second, is then given by

30 2.2. Algorithm and Implementation

p(q < q′|m,M,m′,M ′) =

∫ 1

0

∫ 1

q
p(q|m,M) p(q′|m′,M ′) dq′ dq (2.7)

=

∫ 1

0

∫ 1

q
Beta(q|m+aq,M−m+bq) Beta(q′|m′+aq,M

′−m′+bq) dq′ dq

using formula (2.6).

We therefore need to compute the integral

I :=

∫ 1

0

∫ 1

q
qα−1(1− q)β−1q′α

′−1(1− q′)β
′−1 dq′ dq (2.8)

for

α := m + aq,

β := M −m + bq,

α′ := m′ + aq,

β′ := M ′ −m′ + bq. (2.9)

By substituting q′ = t + (1 − t)q; t ∈ [0, 1] with dq′ = (1 − q) dt, the integral can be rewritten

with fixed boundaries,

I =

∫ 1

0

∫ 1

0
qα−1(1− q)β−1(t + (1− t)q)α

′−1 [(1− q)(1− t)]β
′−1 (1− q) dtdq . (2.10)

Expanding

(t + (1− t)q)α
′−1 =

α′−1∑
i=0

(
α′ − 1

i

)
(1− t)i qi tα

′−1−i (2.11)

yields

I =
α′−1∑
i=0

(
α′ − 1

i

)∫ 1

0

∫ 1

0
qα+i−1(1− q)β+β′−1 tα

′−i−1(1− t)β
′+i−1 dt dq

=
α′−1∑
i=0

(
α′ − 1

i

)
B(α + i, β + β′) B(α′ − i, β′ + i) . (2.12)

Using n! = Γ(n + 1), the probability

p(q < q′|m,M,m′,M ′) = B(α, β)−1B(α′, β′)−1 I (2.13)

2.2. Algorithm and Implementation 31

can then be written as

p(q < q′| . . .) =
α′−1∑
i=0

Γ(α + β)

Γ(α)Γ(β)

Γ(α′ + β′)

Γ(α′)Γ(β′)

Γ(α′)

Γ(i + 1)Γ(α′ − i)

Γ(α + i)Γ(β + β′)

Γ(α + β + β′ + i)

Γ(α′ − i)Γ(β′ + i)

Γ(α′ + β′)

=
α′−1∑
i=0

Γ(α + β)Γ(α + i)Γ(β + β′)Γ(β′ + i)

Γ(α)Γ(β)Γ(i + 1)Γ(α + β + β′ + i)Γ(β′)
.

(2.14)

With a constant C and a term πi depending on i,

C =
Γ(α + β)Γ(β + β′)

Γ(β)Γ(α + β + β′)
(2.15)

πi =
Γ(α + i)Γ(β′ + i)Γ(α + β + β′)

Γ(i + 1)Γ(α)Γ(β′)Γ(α + β + β′ + i)
, (2.16)

the probability p(q < q′|m,M,m′,M ′) =
∑α′−1

i=0 C πi can then be computed iteratively by

π0 = 1 (2.17)

πi = πi−1 ×
(α + i− 1)(β′ + i− 1)

i(α + β + β′ + i− 1)
= πi−1 × ri . (2.18)

All together, the probability p(q < q′|m,M,m′,M ′) =
∑α′−1

i=0 C πi can then be computed using

the following pseudocode.

1 Function Prob(α, β, α′, β′):

2 C = (Γ(α + β)Γ(β + β′))/(Γ(β)Γ(α + β + β′));

3 sum = pi = 1.0;

4 for i = 1.0 . . .α′ − 1 do

5 pi *= (α+i-1) * (β′+i-1) / i / (α+β+β′+i-1) ;

6 sum += pi

7 end

8 return C * sum;

Algorithm 1: Naive implementation

However, to ensure numerical stability, the terms are calculated in log-space in the current

PenguiN implementation:

32 2.2. Algorithm and Implementation

1 Function Prob log(α, β, α′, β′):

2 lnC = ln Γ(α + β) + ln Γ(β + β′)− ln Γ(β)− ln Γ(α + β + β′);

3 lnpi = 0.0;

4 sum = exp(lnC);

5 for i = 1.0 . . .α′ − 1 do

6 lnpi += ln(α+i-1) + ln(β′+i-1) - ln(i) - ln(α+β+β′+i-1) ;

7 sum += exp(lnpi +lnC)

8 end

9 return sum;

Algorithm 2: Numerically stable implementation

Based on the resulting probability value, the following decisions are made:

If p(q < q′|m,M,m′,M ′) > 0.55 the (m,M) alignment is preferred, if p(q < q′|m,M,m′,M ′) <

0.45 the (m′,M ′) alignment is preferred. If the probability falls into the range 0.45 to 0.55 we

consider it as “inconclusive”, and prefer the extension that offers the longer extension instead.

Using this formulation to compare two alignments, PenguiN sorts for each center sequence the

whole list of alignments of its member sequences. Then, the list of alignments is processed

in the resulting order and the best left and right extension is chosen (Fig. 2.1b, extension

phase). Afterwards, the extended center sequence is realigned to the not yet processed member

sequences, which show hang-offs still exceeding the extended center sequence on one of the sides.

The alignment list is iterated further until no more extension can be made.

2.2.2.5. Identify circular contigs

As described above, circular and long terminal redundant genome structures are common among

viruses. This made the introduction of a cycle detection step (Fig. 2.1b, step E-II.2) in PenguiN

necessary to avoid over-extension of contigs representing such structures. Thereby, I do not

distinguish between circular and terminal redundant genomes, as, according to the short read

sequencing, reads from both behave similarly.

The first naive way I implemented to identify a contig that is starting to repeat itself was to

align the sequence with itself. However, calculating such an alignment has a quadratic runtime

complexity with the length of the sequence and is therefore computational demanding when

applied for each sequence after each iteration. On the other hand, performing the cycle detection

only at the very end would mean that circular sequences would be extended further and further

within the iterative assembly procedure and therefore computing time and memory to extract

k -mers, calculating alignments and extending these sequences would be spent unnecessarily in

each iteration, slowing down the whole assembly process. Thus, I introduced a heuristic, efficient

procedure in PenguiN to identify circular sequences after each iteration that (1) limits the region

to align and (2) approximates the alignments with k -mer matches.

2.2. Algorithm and Implementation 33

linear representation of a circular contig

Detection Pipeline for circular structures

without stopping the
assembly process , the whole
contig begins to repeat
(over-extension)

already repeated region

1 2

3

k-mer pos
AACG 20
ACGC 21
CGCC 22
GCCC 23

...

k-mer pos
ACGC 0
CGCC 1
GCCG 2
CCGA 3

...

k-mer pos
CACG 40
ACGC 41
CGCC 42
GCCG 43

...

e.g. sequence of
length n=60

(1) extract k-mers from each third of the
sequence and write them with their
position into three arrays

(2) sort arrays by k-mer index and scan linearly for
pairwise matches between the three arrays,
compute diagonal on diagonal d=i-j on which the
shared k-mer match occurs

1

2

3

diag index count
 20 2
 21 1
 22 0
 23 0

 41 3

(3) store number of k-mer matches for each
matching diagonal d with 1/3 n < d < n
(diagonal hits)

(4) pool diagonal hits within diagobalband
[d-w, d+w] with w=0.01*len(d) and
compute diagolband hit rate rd

(5) mark sequence as cyclic if rd > threshold and
optionally split contig at d to remove repetive
region (- - cycle-chop)

Figure 2.2.: Detection pipeline for circular sequences. To avoid overextension of contigs repre-
senting circular structures during the iterative assembly, I introduced a heuristic procedure in PenguiN
to identify and exclude them from subsequent assembly iterations. First, k -mers from each third of the
sequence are extracted, and stored in separate arrays as a k -mer index together with its position in the
sequence. The three arrays are sorted by the k -mer index and compared pairwise to identify shared
k -mers between the three sets. For each diagonal d > 1/3n, where n is the length of the sequence, the
number of shared k -mers is then counted as diagonal hits. Then, for each diagonal d the hits from all
diagonals within a distance of 1% of the length of the diagonal are pooled, getting the hits for diagonal
bands. For each of these diagonal bands, a hit rate rd is calculated as the fraction of number of hits
within the diagonal band and the length of the diagonal d. If the hit rate rd overcomes a certain threshold
(default: 0.24), the contig is considered as circular and excluded from subsequent assembly iterations.
Optionally, the repetitive region of a circular contig is removed by splitting the contig at position d′,
where d′ is the longest diagonal fulfilling rd > 0.24.

The limitation to only align parts of the sequences was possible due to the design of the extension

phase. In each iteration, a sequence can be extended on both sides. However, the sequence to

extend (center sequences) is always longer than or equal in size to the member sequences that

contribute their non-overlapping residues for the extension. Therefore, a sequence with non-

identical ends cannot contain more than three copies after one more iteration. Considering

the alignment task as a dynamic programming problem [Needleman and Wunsch, 1970], as

34 2.2. Algorithm and Implementation

is common, this means a reduction of the computation to one third of the distance matrix

(see Fig. 2.2). To reduce computation time further, I designed a procedure to approximate the

alignments between the thirds of the sequences by counting k -mer matches instead of computing

the full alignments. More precisely, the number of cumulative k -mer matches between the thirds

of the sequence within diagonal bands is determined and the respective contig is marked as

circular complete, if this number is significant compared to the length of the diagonal band

(hit rate rd). The whole detection workflow is depicted in Fig. 2.2. Using 5994 viruses from

the RefSeq [O’Leary et al., 2016] database, I found a hit rate threshold of 0.24 working well to

distinguish terminal redundant/circular and linear sequences (see Fig. A.1 in the appendix).

Circular contigs do not participate in the subsequent iterations, instead they are collected over

all iterations and written to the final output file. To mark where circular completeness for the

user, they get a cycle flag in their header in the final output file.

2.2.2.6. Redundancy reduction

The last step in PenguiN, before writing the final assembly file, is the redundancy reduction

step. PenguiN reduces the redundancy within the set of assembled contigs using the linear-

time clustering algorithm Linclust [Steinegger and Söding, 2018] with cluster mode 2 (greedy

incremental), which is the analogous mode to the CD-HIT clustering algorithm [Fu et al., 2012],

and parameters set to a minimum sequence identity of 97% at a minimum 99% coverage of the

shorter sequence (options --cluster-mode 2 --cov-mode 1 -c 0.99 --min-seq-id 0.97). Each cluster

then represents a set of redundant or very similar sequences diverging < 3%, from which only

the longest sequence (cluster representative) is output as the master contig.

Linclust was originally implemented to cluster protein sequences, but was later extended to

nucleotide sequences as well [Steinegger and Söding, 2018]. First, it identifies possible sets

of similar sequences based on shared k -mers. Afterwards, within each set, it compares each

sequence only with the longest sequence (center sequence) and clusters them in three consecutive

clustering steps using the Hamming distance, the ungapped local alignment and the gapped local

alignment.

During my doctoral research I contributed to the improvement of Linclust for nucleotide se-

quences by fixing smaller bugs in the software especially occurring for long nucleotide sequences

and adding a template type for the storage of sequence length and sequence position making

it applicable for our long assembled contigs. Further, I expanded Linclust to the use-case in

PenguiN by adding a logic to cluster contigs from circular genomes (set with the parameter

--wrapped-scoring).

Previously, two sequences representing the same circular genome but with different starting

points would not cluster together. Let contig A and B be two sequences representing the same

circular genome, but with different starting points. They would not align continually, but instead

showing two alignments, one from the beginning of contig A to the end of contig B, and one

2.2. Algorithm and Implementation 35

contig A contig B

same genome

di�erent start positions

continuous „wrapped“ alignment to doubled sequence

only non continous alignment possible

Figure 2.3.: Alignment computation for contigs originating from circular or terminal redun-
dant genomes. The same genome can be described with contigs starting at different positions within
the genome. The pairwise alignment between such contigs would be non-continuous (see top right).
Therefore, I adapted the alignment computation step during the redundancy reduction by doubling the
query sequence. This allows for a continuous alignment between the two contigs (see bottom right).

from the beginning of contig B to the end of contig A (see Fig. 2.3). Usually, neither of the

two alignments fulfills the coverage threshold alone. However, due to the data structures and

algorithms implemented in Linclust it was not possible to obtain multiple alignments, which

could be checked for this special kind of “wrapped” continuity. When using the wrapped-

scoring option now, one of the sequences (query sequence) is doubled before the actual alignment

calculation, resulting in a continued alignment beyond the original ends of the query sequence

(see Fig. 2.3). This alignment allows now for correct sequence identity and E-value calculation

between contig A and B within the Linclust algorithm, whereas coverage is still computed with

the original query sequence length.

The adapted version of Linclust was integrated into the PenguiN pipeline as it is magnitudes

faster than clustering methods that perform all-against-all comparisons. However, Linclust is

less sensitive than the latter [Steinegger and Söding, 2018]. Therefore, it might be necessary to

perform an additional, more sensitive clustering step, depending on the use case. One option is

to run the new MMseqs2 nucleotide clustering module.

2.2.2.7. Handling sequencing errors

PenguiN does not come with its own error correction step. Therefore, I allow for a small number

of mismatches within the overlap regions. On the protein-level, the sequence identity threshold

is set to 97% (default) and on the nucleotide-level it is set to 99% (default), each accounting for

approximately 0.5% sequencing errors within the aligned sequences. Further, due to the final

redundancy reduction step, contigs diverging ≤ 3% are clustered together and represented by the

same master contig. Therefore, contigs that only differ due to sequencing errors are most likely

to end up in the same cluster. The values can also be changed by the user to take higher error

rates into account. However, this would also increase the chance for misassembled (chimeric)

36 2.2. Algorithm and Implementation

contigs and is therefore not recommended. Further, PenguiN requires at least the length of a

k -mer to match in order to identify an overlap. The more errors there are in the reads, the less

likely there will be overlaps between the reads.

Usually, PenguiN will work on uncorrected datasets. However, cleaner data might improve the

assembly, especially as Illumina technology mainly introduces errors at the ends of the reads

leading to cumulative sequencing errors in the overlap regions [Bolger et al., 2014; Stoler and

Nekrutenko, 2021], which might result in fragmented assemblies in case of small coverage values

or low abundant strains. During my doctoral research, I developed CoCo, which I describe in

chapter 3, to correct the data before applying PenguiN. However, any sequencing error correction

tool can be used in principle if it is accurate enough.

2.2.2.8. Software availability and documentation

PenguiN is implemented in C++ and has been integrated into the free GPLv3-licensed Plass

software. It makes use of FLASH [Magoč and Salzberg, 2011] code, the Linclust [Steinegger and

Söding, 2018] algorithm and the MMseqs2 [Steinegger and Söding, 2017] code library. Code and

binaries can be downloaded from GitHub at https://github.com/soedinglab/plass. The version

used here for the benchmarks is GitHub commit 7571d37. A documentation for PenguiN can

be found in section A.1 in the appendix.

2.2.2.9. Parallelization

Due to the large size of metagenomic samples, the assembly task can be computationally demand-

ing and time-consuming. Modern CPUs offer the opportunity for efficient processing through

parallelization on multicore processors. The different cores act thereby as independent units,

but can communicate with each other “shared memory”). PenguiN supports multi-threading

using OpenMP [Dagum and Menon, 1998] in almost all stages (overlap phase, extension phase,

cycle detection, redundancy reduction). The parallelization is thereby mostly achieved by par-

allel processing of the input files in equal sized chunks enabled through the MMseqs2 database

format. PenguiN makes use of the parallelization that was already implemented in the Plass,

MMseqs2 and Linclust modules, but also all newly implemented modules support parallelization

using OpenMP. By default, PenguiN utilizes all available CPU-cores, but the user can limit this

with the --threads parameter. Additionally, SSE4.1/AVX2 instructions are used in the Linclust

algorithm utilized for PenguiN’s redundancy reduction step. For example, for the vectorized

calculations of the reverse complements in the k -mer matching step, the Hamming distance

pre-clustering step and the banded nucleotide alignment.

Further, similar to Plass, PenguiN can also be run on multiple homogeneous servers using the

message passing interface (MPI). In this scheme, the execution of the program is split to multiple

independent nodes (“distributed memory”), where each of them can use multiple cores. However,

https://github.com/soedinglab/plass

2.3. Test and Benchmark Design 37

access to the same file system from every node is important, as the folder for temporary files

has to be shared between all nodes.

2.2.2.10. Parameter settings

PenguiN has multiple parameters which can be changed by the user and adapted to the input

dataset. The most important parameters are probably the number of iterations of the assembly

(--num-iterations), the sequence identity threshold for the overlap (--min-seq-id), the E-value

threshold for overlaps (-e) and the minimal length to report a contig (--min-contig-len). Further,

the sequence identity and coverage thresholds used for the Linclust algorithm to reduce the

redundancy (--clust-min-seq-id and -–clust-min-cov) can be tuned. However, these should be

done with caution as very strict parameters can result in high redundant assemblies, whereas

very weak parameter settings can lead to a loss of diversity. Further, the new --cycle-check

parameter, turning on the cycle detection in stage II, is crucial for the assembly as it prevents

the assembly to cover the entire genome multiple times within a contig and should therefore not

be turned off without a good reason.

Testing all combinations of parameters to find the best set was impractical and would probably

highly depend on the length and quality of the input data, the coverage and the expected length

of the full (viral) genomes. Therefore, most parameters were chosen based on the experience with

Plass. However, the number of iterations for the protein and corresponding ORF assembly was

reduced from 12 to 5 (default) due to the new logic of multiple extension within one iteration. I

found 5 iterations on each of the two assembly stages (--num-iterations aa:5,nucl:5) working well

for viruses ranging from 1 to 10 kbp and can also work for viruses up to 40 kbp depending on

the number and length of the ORFs. However, to assemble much longer (viral) genomes more

iterations might be necessary.

The behavior of different sequence-identity thresholds was analyzed in detail by Louis Kraft

during his student internship. He found that 99% sequence identity on nucleotide-level gives high

precision, independent of the values tried for the amino acid level, while keeping the sensitivity

for all cutoffs. Higher sensitivity can be reached when lowering down the sequence identity

values, but with a loss of precision for high cutoffs. For the sequence identity value on protein-

level, 97% seems to be a reasonable choice. Notably, almost all parameters can be changed

individually for the two guided assembly (stage I) and the nucleotide assembly (stage II) due to

the new multi parameter logic, which I added to the MMseqs2 code library. However, usually,

the default settings should already provide high-quality assemblies.

2.3. Test and Benchmark Design

A crucial task of my doctoral research, besides developing and implementing PenguiN, was

to test and benchmark the resulting software tool in comparison to state-of-the-art and other

38 2.3. Test and Benchmark Design

recently published assembly tools. In this section, I briefly summarize the benchmark setup.

The respective results are then presented in the next section.

2.3.1. Computational resources

The benchmark was performed on the GWDG HPC cluster (www.gwdg.de) using individual

nodes with two Intel Xeon E5-2640v3 processors at 2.6 GHz totaling 16 cores and 128 GB RAM

for each assembly run. The operating system used was Scientific Linux release 7.9 (Nitrogen).

Before each assembly run, sequencing read data was always copied to the local SSD (∼ 400 GB).

Likewise, paths for output and possible temporary files were also set to the local disk. All

assembly runtimes were limited to 10 days per sample.

2.3.2. Choice of assembly software and parameter settings

At the time of the design of the project, there were basically two types of assemblers applied

on viral metagenomic data: (general) metagenomic and metatranscriptomic assemblers, which

were initially designed for mixtures of more divergent microbial genomes [Sutton et al., 2019]

and viral specific assemblers, designed for the application on patient samples. In the scope of my

doctoral research, I compared PenguiN with both groups. Megahit [Li et al., 2015], metaSPAdes

[Nurk et al., 2017] and rnaSPAdes [Bushmanova et al., 2019] from the first group and SAVAGE

[Baaijens et al., 2017], IVA [Hunt et al., 2015] and VICUNA [Yang et al., 2012] from the second

group.

During the work on this project, three further assemblers were published, which consider viral

genomes in metagenomic samples: metaviralSPAdes [Antipov et al., 2020], which is designed to

assemble DNA viruses (cyclic and linear) from metagenomic samples, rnaviralSPAdes [Meleshko

et al., 2022], which was published together with its more specialized variant coronaSPAdes and

is tailored to assemble RNA viruses from transcriptome, metatranscriptome, and metavirome

datasets, and Haploflow [Fritz et al., 2021], which aims for strain-resolved assembly and was

initially tested on patient samples as well as metagenomic samples identical to clinical isolates.

Consequently, all three tools were added later to the benchmark analysis as well.

The respective software versions of the all assembly tools used in the benchmark are: PenguiN

(GitHub commit 7571d37), Megahit (v1.2.9), metaSPAdes/rnaSPAdes/metaviralSPAdes/rnavi-

ralSPAdes (v3.15.2), SAVAGE (v0.4.2), IVA (v1.0.8), VICUNA (v1.3), Haploflow (v0.1).

Each assembler was run with default parameters, except for the minimum contig length and

the CPU thread parameter settings, which was uniformly set to utilize all 16 available cores.

Haploflow was the only tool that did not support multi-threads. The minimum contig length

was set to 500 bp or 1000 bp depending on the dataset for all assemblers that provide such a

filter option. For all others, the final assembly file was filtered subsequently with the same

minimum length threshold. Possible minor deviations from these settings, which were necessary

www.gwdg.de

2.3. Test and Benchmark Design 39

for some assemblers to be applicable to some datasets, are noted in the respective subsections of

the results (section 2.4). All tools were provided with paired-end read files except for Haploflow,

as Haploflow does not provide the possibility to take separate paired-end read files as input. In

order to run it, I appended both ends to a single file according to the same strategy used in the

Haploflow publication benchmark [Fritz et al., 2021]. For SAVAGE, it was necessary to set the

additional --revcomp flag to specify the orientation of the reads.

2.3.3. Choice of test and benchmarking datasets

On real metagenomic samples no ground truth is available. Therefore assemblers can only be

assessed using reference-free assembly statistics such as assembly size, read mapping rate, N50,

etc. This heavily limits the assessment of the performance of the assembler in terms of com-

pleteness of the recovered genomes. Furthermore, it also limits the ability to detect wrongly

assembled sequences (false positives). Therefore, simulated datasets with a known composition

are generally the better choice to start with. Within my doctoral research, I evaluated Pen-

guiN on two simulated datasets. The first simulated dataset was generated from three human

rhinovirus genomes (HRV), the second dataset comprised of 2550 HIV-1 genomes. HRV was

chosen because it is a well-studied virus with a simple genome of about 7 kbp that only contains

a single open reading frame (ORF) (∼ 6.5 kbp). HIV was chosen as it provides an extensive data

source for natural genetic variation resulting from its fast replication and high mutation rate, as

well as recombination events due to multi strain infections [Bbosa et al., 2019; Hemelaar et al.,

2006; Leye et al., 2013]. It therefore allows simulating a complex dataset with natural variation

and known reference sequences. Further, HIV genomes were already commonly used in several

previous studies to evaluate performance of assembly tools [Baaijens et al., 2017; Chen et al.,

2018; Fritz et al., 2021]. To analyze the effect of different coverage levels, I simulated three

different sets from the HIV-1 2550 genomes varying in coverage (1-fold, 10-fold, 100-fold).

Additionally, I also tested PenguiN on real HiSeq 2500 Illumina sequencing data (comprised of

2× 300 bp reads) obtained from a lab mixture of six Caudovirales genomes used in a previous

study [Warwick-Dugdale et al., 2019], referred to as a mock community. Members belonging

to the order of Caudovirales, tailed dsDNA phages, are of special interest as they account

for most known bacteria infecting viruses (> 96%) [Ackermann and Prangishvili, 2012] and are

highly representative in many samples obtained in previous metagenomic studies [Nayfach et al.,

2021b; Yang et al., 2019]. Finally, I used a dataset comprised of 82 real metatranscriptomic

samples from activated sludge and aquatic environments, which were previously used to detect

ssRNA phage genomes from these two environments [Callanan et al., 2020]. Members of ssRNA

phages, making up the Fiersviridae (since 03/2021; previously Leviviridae [Walker et al., 2021])

family, have small positive stranded RNA genomes of 3.5–4.5 kbp encoding three or four proteins

[Chamakura et al., 2020; Tars, 2020] and have been used as a model to understand various

fundamental processes in virology and molecular biology [Gytz et al., 2015; Lodish, 1968; Tars,

2020].

40 2.4. Evaluation and Results

The details of the read simulations or downloaded datasets, as well as the description of read

pre-processing and assembly for each dataset, can be found together with the results within

section 2.4.

2.3.4. Evaluation tools and metrics

For the first three datasets, reference genomes were available, so I could use the reference-based

third-party tool MetaQUAST [Mikheenko et al., 2016a] to evaluate the quality of the assembled

contigs. MetaQUAST is commonly used to assess metagenomic assembly quality [Meyer et al.,

2021; Sczyrba et al., 2017; Sutton et al., 2019] and provides several metrics including genome

fraction, number of misassemblies, number of mismatches per 100 kbp, duplication ratio, N50,

NGA50 and others. Further, it reports read statistics such as mapping rates to the contigs using

the short read aligner bwa [Li, 2013], if read files are specified.

In the scope of this thesis, I used MetaQUAST version 5.0.2 with a minimum contig length of

1000 bp, the --unique-mapping flag and default parameters otherwise. The --unique-mapping

flag ensures that for every contig only one alignment is considered, if multiple equally well

alignments exist. It is commonly used in metagenomic assembly benchmark studies [Meyer

et al., 2021; Sczyrba et al., 2017; Sutton et al., 2019]. By default, MetaQUAST performs all

reference-based metric calculations with a sequence identity cutoff of 95%. Alignments of contigs

to references are thereby only counted if their percent identity lies above this threshold.

Further comparison of a subset of assemblers (PenguiN, Megahit, metaSPAdes, rnaSPAdes,

rnaviralSPAdes) were carried out on the HIV-1 dataset using MMseqs2 [Steinegger and Söding,

2017] to search assembled contigs throughout the set of reference genomes, and vice versa, for

the calculation of sensitivity and precision values similar to [Steinegger et al., 2019]. The details

of this analysis are described in section 2.4.2.

For the real environmental metatranscriptomic data, I searched for all ssRNA phage sequences

in the resulting assemblies following the analysis done in [Callanan et al., 2020], and compared

the results to those obtained in Callanan’s analysis. Additionally, I compared PenguiN’s results

to those from other assemblers in terms of the number of assembled phage sequences (partial and

complete), determined the overlap of the sets of completely assembled ssRNA phage genomes

using MMseqs2 [Steinegger and Söding, 2017] and investigated the reliability of PenguiN’s as-

sembled genomes in various downstream analyses, examining the genome lengths, the genome

architecture, the core protein associations etc.

2.4. Evaluation and Results

In this section, I show the performance of PenguiN on the four mentioned datasets (two simulated

dataset, one in vitro mixture, one real metatranscriptomic dataset) and compare it with those of

nine other assemblers. In each of the subsections (2.4.1-2.4.4), I first describe the characteristics

2.4. Evaluation and Results 41

of the simulated or downloaded dataset and subsequently present the assembly results. Finally,

I evaluate PenguiN’s runtime and memory usage in comparison to the other assemblers on these

datasets (section 2.4.5).

2.4.1. Performance on simulated error-free reads

For a proof of concept, PenguiN was first tested on a synthetic dataset from error-free reads

of three human rhinovirus strains (HRV in silico mixture). For this purpose, I downloaded the

genomes of Rhinovirus A1 strain 5Q1, Rhinovirus A1 strain 7A2 and Rhinovirus A1B strain

12O2 (Accession No.: MF973193.1, MF973194.1, MN749156.1) from the NCBI GenBank (www.

ncbi.nlm.nih.gov/genbank/) [Sayers et al., 2019] with ANI values ranging from 92 to 95.5%,

mixed them in a proportion of 4:2:1 and simulated 2× 150 bp overlapping paired-end reads

(insert size range 220-280 bp) using randomreads.sh from the BBmap software suite (version

38.71) [Bushnell, 2014]. The simulated coverage was set to 50, resulting in theoretical read

depths of 200:100:50.

Afterwards, reads were assembled using PenguiN, Megahit, metaSPAdes, metaviralSPAdes,

rnaSPAdes, rnaviralSPAdes, SAVAGE, IVA, VICUNA, and Haploflow. Thereby, metaviralSPAdes

did not produce any final contigs and was therefore excluded from the subsequent analysis. The

assembly quality was then evaluated using MetaQUAST (see Fig. 2.4). PenguiN performed well

in all metrics. It assembled three contigs, covering all three strain genomes with a single contig

each (Fig. 2.5). In comparison, the general metagenomic and metatranscriptomic assemblers

(Megahit, metaSPAdes, rnaSPAdes) resulted in more fragmented assemblies (higher number

of contigs and lower NGA50 value per genome) and missed larger parts of at least one of the

genomes. Megahit, for example, could still recover 92% of the total genome fraction, but the

strain MN749156.1, which was simulated with the lowest abundance, was only recovered by 80%.

metaSPAdes recovered 60% of the total genome fraction including only 20% of MN749156.1.

The multiple sequence alignment (MSA) of the three reference genomes shows that the three

HRV genomes mostly differ by SNPs distributed over the whole sequences (Fig. 2.6). However,

larger parts are identical between two or all three genomes. Megahit and metaSPAdes seem to

have problems exactly at those regions, as both achieved fragmented contigs on the edges of the

shared regions. I believe that this is due to their use of de Bruijn graphs, since they can not be

overlaid when splitting the reads in shorter k -mers and lead therefore to ambiguous paths in the

graph producing fragmented contigs. This indicates a possible advantage of assemblers using

whole reads such as PenguiN or SAVAGE that can utilize the co-occurrence of mutations within

one read length. An exception among the de Bruijn graph assemblers seems to be Haploflow,

which assembled three contigs covering the three genomes, probably because it can take ad-

vantage of the different coverage values within its flow algorithm [Fritz et al., 2021]. However,

Haploflow yielded a significantly higher number of mismatches per 100 kbp than SAVAGE and

PenguiN, indicating an inadvertent mix of SNPs from the three genomes in the assembled contigs

due to the absence of sequencing errors in the simulated reads. In total, the viral specific assem-

www.ncbi.nlm.nih.gov/genbank/
www.ncbi.nlm.nih.gov/genbank/

42 2.4. Evaluation and Results

Figure 2.4.: Assessing assembly quality for PenguiN and eight other assemblers on the HRV
in silico mixture using MetaQUAST. Cells differing from the median are colored. All statistics are
based on contigs of size ≥ 1000 bp, unless otherwise noted. Metrics that depend on the reference lengths
(e.g. NGA60, LGA50) are not calculated for the combined reference. A more detailed report per reference
can be found in Fig. A.2 in the appendix.

blers split up into two groups. Whereas the strain-aware assemblers SAVAGE and Haploflow

could recover all three genomes, IVA and VICUNA assembled only one of the strains due to

their design as viral consensus assemblers (Fig. 2.4, Fig. 2.5).

2.4. Evaluation and Results 43

Figure 2.5.: Contigs aligned to the three reference genomes used for the HRV in silico
mixture. Visualization of contig alignments was created with Icarus [Mikheenko et al., 2016b], which is
automatically called within the MetaQUAST pipeline, if reference genomes are provided. Black vertical
lines indicate overlapping contigs.

Figure 2.6.: Extract of the multiple sequence alignment (MSA) of the three rhinovirus
reference genomes used to simulate the HRV in silico mixture. The whole MSA was computed
using MAFFT [Katoh et al., 2002] and visualized using Jalview (version 2.11.1.4) [Waterhouse et al.,
2009]. The color scheme indicates the percentage of the residues in each column that agree with the
consensus sequence. Thus, the blue color marks columns where all three nucleotides match, the lighter
blue color marks columns where two of three match, the white color marks unique nucleotides. The three
sequences mainly differ by SNPs that can be found all over the sequence, but there are also large identical
parts.

44 2.4. Evaluation and Results

2.4.2. Performance on a highly diverse strain mixture

Next, I tested the performance of PenguiN on a highly diverse strain mixture. To this end, I used

2550 HIV-1 genomes, which I obtained by searching for all complete HIV-1 genomes in the NCBI

database (accessed 07/2019) using the following search string: (“Human immunodeficiency virus

1”[Organism] OR hiv1[All Fields]) AND complete genome[All Fields]). I simulated three datasets

of 2× 150 bp error-free reads with a mean genome coverage of 1x, 10x and 100x again using

randomreads.sh from the BBmap software suite (HIV1 in silico mixtures). The assembly quality

was evaluated (i) using metrics from MetaQUAST [Mikheenko et al., 2016a] and (ii) using

MMseqs2 [Steinegger and Söding, 2017] to compute precision and sensitivity values as previously

done [Steinegger et al., 2019]. The details are described in the following. However, before

presenting the results, I shortly describe the peculiarities of the dataset construction, requiring

a brief review of the HIV-1 genome architecture first.

HIV-1 is a single-stranded RNA virus which evolves rapidly, leading to extreme genetic diversity

[Bbosa et al., 2019], and it therefore provides a good source for constructing a benchmark set

with a high degree of natural variation. Comparing the average nucleotide identity (ANI) of the

2550 HIV1 genomes showed values mostly in the range from 85-95% (see Fig. 2.7). Within the

ANI distribution in Fig. 2.7, two peaks can be made out, which can be attributed to inter- and

intra- subgroup identities [Désiré et al., 2018]. The HIV1 genome is approximately 9.7 kbp and

flanked at both ends by long terminal repeats (LTRs) that can interact, leading to circularized

forms containing one or two copies of the viral LTR (1-LTR circles, 2-LTR circles) [Craigie and

Bushman, 2012; Maldarelli et al., 2016]. All downloaded 2550 HIV-1 genomes were reported

as “complete genome” in the NCBI database, but their LTRs were reported in an inconsistent

manner (without, with one LTR or two LTRs, etc.). Because of that, it was not clear what result

an assembler should ideally produce (genome with one LTR or two LTRs, etc.) and circularized

contigs would heavily hamper the comparison of the different assemblers (rearrangement of the

contig start positions would be necessary). Therefore, I consistently circularized all genomes

by removing one of the repetitive regions, if two were present, and doubling the sequences

afterwards before simulating reads (Fig. 2.8). In this way, simulated reads from circular genomes

were provided consistently as input for all assemblers.

Subsequently, I assembled the reads using PenguiN and the above-mentioned nine other assembly

tools. Notably, metaSPAdes and metaviralSPAdes needed to be run with the option --only-

assembler set, as otherwise the calls finished abnormally due to an error thrown by BayesHammer

[Nikolenko et al., 2013], which is internally called for the read error correction step. The reason

was not investigated further. Table 2.1 shows the number of contigs with a minimum length of

1000 bp produced by each tool. In general, the viral specific assemblers provided much lower

numbers of contigs than the metagenomic assemblers or did not finish. For the 10x coverage

set, Haploflow finished without producing a final assembly file (without any error message). It

seems that no contigs greater than 1000 bp were assembled. Therefore, it was excluded from

the analysis for this subset. Furthermore, for the 100x coverage set, Haploflow was terminated

2.4. Evaluation and Results 45

Figure 2.7.: Average Nucleotide Identity
(ANI) distribution for the pairwise compari-
son between the 2550 HIV genomes. ANI val-
ues were estimated using fastANI version 1.1 [Jain
et al., 2018]. The distribution misses 75 000 (∼ 1%)
pairwise ANI values. They could not be estimated
by fastANI, which can fail for ANI values smaller
than 80%.

Figure 2.8.: Illustration of the reference genome preparation for the 2550 HIV1 in silico
mixture. (a) The HIV1 genomes are reported in an inconsistent manner in the database (LTR colored
in green). (b) For each genome, the repetitive region is identified by searching the first half of the genome
against the second half using MMseqs2 and subsequently cut. (c) Afterwards, the cut genomes are
doubled to circularize the genomes consistently. Reads are then simulated from these wrapped versions
of the genomes.

1x 10x 100x

PenguiN 1139 6205 5066
Megahit 74 2289 3365
metaSPAdes 20 670 2254
metaviralSPAdes 0 1 149
rnaSPAdes 309 5969 7097
rnaviralSPAdes 49 1574 2082
SAVAGE 2 - -
IVA 1 11 43
VICUNA 5 22 983
Haploflow 1 - -

Table 2.1.: Number of contigs (≥ 1 kbp) per assembler for the three subsets (1-fold, 10-fold, 100-fold) of
the 2550 HIV1 in silico mixture. The highest value per column is marked.

after 10 days without any result. SAVAGE also did not complete on either of these sets within

10 days. Therefore, Haplfolow and SAVAGE were only considered for the 1x coverage set.

46 2.4. Evaluation and Results

2.4.2.1. Analysis using MetaQUAST

As above, MetaQUAST was used with the --unique-mapping flag, a minimum contig length

of 1000 bp, and default parameters otherwise to evaluate the assemblies. However, this time I

skipped the integrated read mapping as it did not finish in reasonable time (>10 days for the

100-fold coverage set). Table 2.2 shows selected MetaQUAST metrics, the full MetaQUAST

reports for all three subsets are provided in Fig. A.3 in the appendix.

Overall, I obtained a 2 to 5-fold increase in the total assembly size of PenguiN compared to

the next best assembly size achieved by rnaSPAdes, whereas the rate of misassemblies were

similar or even lower. E.g. compared to rnaSPAdes at 1x coverage, PenguiN has a 4.5 times

larger assembly but only 2.5 times as many misassemblies. At coverage 10x and 100x, PenguiN

even has a lower number of misassemblies while having a two times larger assembly. Also in

comparison to Megahit or metaSPAdes, PenguiN showed comparable misassembly rates. This

hints, that PenguiN’s larger assembly size does not come with a loss of precision in comparison

to the metagenome assemblers. The duplication ratio of PenguiN’s assembly was slightly higher

than for most of the other assemblers (except for rnaSPAdes). I believe this is due to the less

aggressive settings of PenguiN’s internal redundancy reduction (using Linclust at 97% sequence

identity and 99% minimum coverage of the shorter sequence) to avoid clustering of different

strains. However, the duplication level was still reasonable (ranging from 1.12 to 1.32 for the

combined reference).

Fig. 2.9 displays genome fraction and the NGA50 values for the individual genomes reported

by MetaQUAST. Thereby, the genome fraction measures the total number of aligned bases in

the reference divided by the genome size. For all three sets (1x, 10x, 100x coverage) PenguiN

recovered the highest fraction with a median of 81.20% for 10x coverage and 94.25% for 100x

coverage, which were substantially higher than the ones of the next best tools (rnaSPAdes:

28.16% and 34.58%, Megahit: 12.09% and 31.16%). Further, PenguiN was the only tool that

could recover target genomes by more than 90% genome fraction on the 1x coverage set, which

was achieved 20 genomes. On the 10x coverage set, PenguiN recovered 1006, and on the 100x

coverage set 1408 genomes by more than 90% genome fraction, representing an approximately

40-fold increase compared to the next best tools (rnaSPAdes: 24 and 36, Megahit 3 and 11).

Analyzing the NGA50, as depicted in Fig. 2.9b, also complements this observation. While

almost all assemblers can gain from more coverage, most assemblers except for PenguiN have

either fragmented assemblies or do not cover the reference genomes with ≥ 50% (counted as

NGA50=0). PenguiN’s much higher NGA50 value per reference shows that PenguiN assembles

longer and more complete contigs.

The assemblers SAVAGE (de novo mode) and Haploflow, which aim for strain-resolved assem-

blies and which performed comparable to PenguiN on the three human rhinovirus in silico

mixture (section 2.4.1), are basically not applicable on this data. Providing SAVAGE with a

reference might help [Deng et al., 2021] but was not tested in the scope of this work as it would

2.4. Evaluation and Results 47

Table 2.2.: Selected metrics of the MetaQUAST analysis for the assemblies of the three subsets (1-fold,
10-fold, 100-fold) of the 2550 HIV1 in silico mixture. All statistics are based on contigs of size ≥ 1000 bp.
The best value per column is bold. Haploflow and SAVAGE did not produce results for the 10-fold and
100-fold subset within 10 days.

(a) 1x coverage set

of contigs
≥ 1 kbp

Total length
(bp)

Genome fraction
(%)

Misassemblies Duplication ratio

PenguiN 1139 2 087 455 8.147 282 1.12
Megahit 74 92 163 0.387 69 1.042
metaSPAdes 20 23 795 0.101 2 1.026
metaviralSPAdes 0 - - - -
rnaSPAdes 309 453 490 1.645 112 1.203
rnaviralSPAdes 49 63 753 0.275 10 1.01
SAVAGE 2 2234 0.01 0 1
IVA 1 2491 0.011 0 0.999
VICUNA 5 13 479 0.058 3 1.01
Haploflow 1 1084 0.005 0 1.01

(b) 10x coverage set

of contigs
≥ 1 kbp

Total length
(bp)

Genome fraction
(%)

Misassemblies Duplication ratio

PenguiN 6205 20 006 079 66.46 772 1.316
Megahit 2289 3 533 275 14.903 674 1.036
metaSPAdes 670 971 940 4.18 126 1.016
metaviralSPAdes 1 9167 0.04 0 1.014
rnaSPAdes 5969 9 978 913 29.669 2362 1.467
rnaviralSPAdes 1574 2 370 527 10.324 68 1.004
SAVAGE - - - - -
IVA 11 31 319 0.127 10 1.017
VICUNA 22 40 812 0.176 12 1.014
Haploflow - - - - -

(c) 100x coverage set

of contigs
≥ 1 kbp

Total length
(bp)

Genome fraction
(%)

Misassemblies Duplication ratio

PenguiN 5066 21 076 302 71.941 612 1.281
Megahit 3365 6 897 024 29.365 318 1.027
metaSPAdes 2254 3 656 910 15.748 234 1.013
metaviralSPAdes 149 513 966 2.044 2 1.099
rnaSPAdes 7097 12 654 174 35.058 3080 1.573
rnaviralSPAdes 2082 3 347 222 14.569 72 1.005
SAVAGE - - - - -
IVA 43 151 664 0.533 83 1.058
VICUNA 983 1 504 140 6.505 146 1.01
Haploflow - - - - -

48 2.4. Evaluation and Results

(a)

(b)

Figure 2.9.: Assessing assembly results for individual genomes with MetaQUAST for the
three subsets (1-fold, 10-fold, 100-fold) of the 2550 HIV1 in silico mixture. (a) Genome fraction
of the individual reference genomes assembled by each assembler for all genomes, (b) NGA50 statistics
per reference genome. NGA50 is analogous to NG50, the length for which the collection of all aligned
blocks of that length or longer covers at least half the reference genome. If less than half of a reference
genome is covered, the NGA50 for that genome is not defined, these values are set to zero here. The
higher the genome fraction and NGA50, the better is the assembly quality. Within the boxplot, vertical
lines indicate the median, while the boxes represent the quartiles (25, 75) with 1.5 times extension by
the whiskers, outliers are shown as diamonds.

not be the realistic use-case in a metagenomic context. Haploflow instead seems to prune its

de Bruijn graph structures too drastically, and therefore cannot make use of its flow algorithm

in the second part for the strain-resolved assembly. IVA and VICUNA also performed very

poorly, obtaining the lowest genome fractions recovered with a high number of mismatches.

Consequently, these viral specific assemblers were excluded from the subsequent analysis. I

also excluded metaviralSPAdes due to its poor performance and only continued with the other

SPAdes based assemblers.

2.4.2.2. Analysis using MMseqs2 search

Complementary to the analysis using MetaQUAST, I evaluated the per-base sensitivity and per-

base precision at different sequence identity cutoffs for the assemblies from PenguiN, Megahit,

metaSPAdes, rnaSPAdes and rnaviralSPAdes.

2.4. Evaluation and Results 49

(a)

(b)

(c)

Figure 2.10.: Sensitivity and precision of contigs assembled from the HIV1 in silico mixture.
(a) Assembly sensitivity computed from all alignments, (b) Assembly sensitivity only considering the
largest alignment, (c) Assembly precision. Each metric is shown for all three subsets (1-fold, 10-fold,
100-fold) from left to right.

Sensitivity and precision calculation Sensitivity and precision were computed similar to [Steineg-

ger et al., 2019]. For the sensitivity, I searched with the set of reference genomes through the

assembled contigs using MMseqs2 with options -a -s 5.7 --max-seqs 500000 --min-seq-id 0.89

--strand 2 --search-type 3 --max-seq-len 1000000 and subsequently filtered the resulting align-

ments with a minimum sequence identity threshold between 90% and 99%. Sensitivity was

then defined as the fraction of the reference sequences that can be covered by contigs with a

sequence identity of at least that threshold (total count of aligned nucleotides divided by total

length of reference genomes). Thereby, I considered two ways, either considering all alignments

or only the longest alignment for each reference genome. The latter approach corresponds to

50 2.4. Evaluation and Results

the sensitivity definition used in [Steinegger et al., 2019]. Precision was calculated by searching

with the contigs through the set of reference genomes, using MMseqs2 with options -a -s 5.7

--max-seqs 5000 --min-ungapped-score 100 -a --min-seq-id 0.89 --strand 2 --search-type 3 --max-

seq-len 10000000. For each contig, only the longest alignment was considered. Precision was

then defined as the fraction of contigs that are aligned to the reference genomes (total count of

aligned nucleotides divided by total length of assembled contigs).

Fig. 2.10a shows the sensitivity values computed from all alignments at different sequence iden-

tity cutoffs (X-axis). The sensitivity is quite similar for Megahit, metaSPAdes and rnavi-

ralSPAdes over all sequence identity cutoffs, whereas rnaSPAdes assembled many more nu-

cleotides correctly below X=98%. However, PenguiN always obtained the highest sensitivity

values. Thereby, the difference is larger at higher sequence identity values. At the highest se-

quence identity cutoff (X=99%) PenguiN assembled approximately 3-5 times more nucleotides

correctly than the next best tool (1x coverage: PenguiN 6.6%, rnaSPAdes 1.9%; 10x coverage:

PenguiN 61.9%, rnaSPAdes: 11.5%; 100x coverage: PenguiN: 73.7%, Megahit 27.4%).

In contrast, at X=90% the sensitivity values of all tools were much more similar except for the

low coverage set. E.g. for 100x coverage, all tools reached high sensitivity ranging from 93.5% to

100% for X=90%. However, at X=95%, the sensitivity dropped already to 69.7% for rnaSPAdes

and 44% for Megahit, whereas PenguiN still reached 98.7%. This indicates that PenguiN could

recover more strains correctly, whereas there is a lack of strain variation in the assemblies of the

other assemblers, which is discussed in more detail in section 2.5.2. Only for coverage 1x, the

sensitivity also significantly dropped for PenguiN (from 91.3% at X=90% to 6.6% at X=99%),

indicating that reads from different strains were combined here too. This is probably due to the

low coverage value, as a simulated mean coverage of 1 leads to incomplete coverage of the full

viral genomes in the sequencing reads, making a mix of variants necessary to recover the full

length.

If only the longest instead of all alignments is considered for the sensitivity calculation, equivalent

to the sensitivity definition used in [Steinegger et al., 2019], the difference between PenguiN and

the other assemblers is even greater for all sequence identity cutoffs (Fig. 2.10b). Altogether,

the per-base sensitivity based on the largest alignment only was much smaller in comparison to

the per-base sensitivity on all alignments for X=90-95% for all assemblers except PenguiN. This

shows that PenguiN’s high sensitivity relies mainly on the largest alignment only, whereas the

sensitivity values of the other assemblers were composed of multiple alignments, indicating a

much higher level of fragmentation within their assemblies. This is consistent with the NGA50

values reported by MetaQUAST, described in the previous section (Fig. 2.9).

In terms of precision, PenguiN performs similar to the other assemblers (Fig. 2.10c). Only

rnaviralSPAdes achieved higher precision values on all three coverage sets, but with fewer contigs

(and much smaller sensitivity values). For all three coverage sets (1x, 10x, 100x) 98 to 99% of

PenguiN’s contigs could be aligned back to the reference genomes with sequence identity values

≥90%. For X = 99% still 21.4% (for coverage 1x), 65%, (for coverage 10x) and 74% (for coverage

2.4. Evaluation and Results 51

Phage Family Genome Length (kbp) NCBI Accession

PSA-HS2 Siphoviridae 38.2 KF302036.1
Cba phi18:1 Siphoviridae 39.2 NC 021790.1
PSA-HP1 Podoviridae 45.0 KF302037.1
Cba phi38:2 Myoviridae 54.0 KC821629.1
Cba phi38:1 Podoviridae 72.5 NC 021796.1
PSA-HM1 Myoviridae 129.4 KF302034.1

Table 2.3.: Characteristics of the members included in the mock community produced in [Warwick-
Dugdale et al., 2019].

100x) could be aligned to the reference genomes. This supports the above formulated hypothesis

that PenguiN’s much higher sensitivity values do not come with a loss of precision in comparison

to the other assemblers. It can be seen that, due to its two-stage approach, PenguiN is able to

mix variants to boost the sensitivity when the coverage is low, but at the same time is able to

produce much longer and highly accurate assemblies when the coverage is sufficient. Thereby, it

benefits from it’s full-read overlap approach, which can distinguish closely related variants more

accurately than the de Bruijn graph assemblers (as also seen for the HRV dataset).

2.4.3. Evaluation on a mock community

In the previous two sections, I showed that PenguiN performs well on simulated data. Before

applying PenguiN on real environmental samples, where no ground truth is available, I tested

PenguiN on a lab generated mock community of six marine Caudovirales (in vitro mixture)

[Warwick-Dugdale et al., 2019]. Hence, the effect on the assembly quality due to the challenges

of real sequencing data could be investigated. Originally, short-read sequencing on a HiSeq 2500

(Illumina Inc.) and long read sequencing on a MinION flow cell (Oxford Nanopore Technologies)

was performed by Warwick-Dugdale et al. Here, I only used the set of Illumina short sequencing

reads, comprising 5 642 957 paired-end reads of 2× 300 bp with a total base count of 2.8 billion.

The sequencing reads were downloaded from the European Nucleotide Archive under the project

accession number PRJEB27181 (https://www.ebi.ac.uk/ena/browser/view/PRJEB27181). Fol-

lowing [Warwick-Dugdale et al., 2019], I pre-processed them using Trimmomatic (version 0.39)

[Bolger et al., 2014] to remove adapters and low-quality reads and bbnorm (https://sourceforge.

net/projects/bbmap/) to normalize to ∼100-fold coverage, yielding 133 571 paired-end reads

with ∼ 61 million base-pairs. In principle, normalization is not necessary to run PenguiN, but

it sped up the assembly.

The six Caudovirales included in the mock community represent the three main families of

dsDNA bacteriophages (see Table 2.3). As the genome sizes of the six Caudovirales ranges

from 38.2–129.4 kbp, the expected contig sizes were much larger compared to the HRV or HIV

datasets. This was compensated by increasing the number of iterations for PenguiN’s assembly

process using the option --num-iterations aa:5,nucl:7 (instead of the default values aa:5, nucl:5).

https://www.ebi.ac.uk/ena/browser/view/PRJEB27181
https://sourceforge.net/projects/bbmap/
https://sourceforge.net/projects/bbmap/

52 2.4. Evaluation and Results

Fig. 2.11 shows how the length of the largest contig for each reference genome increased with

the numbers of iterations.

Figure 2.11.: Size of the largest contig per reference genome during PenguiN’s assembly
process for the mock community dataset. On the left is the growth of the contigs during the
protein guided assembly iterations with a clear convergence at 2.5–5 kbp depending on reference genome,
indicating completely assembled protein and ORF sequences. Dots indicate the contig length after the
respective iteration. The right panel shows the growth of the contigs after switching to the nucleotide
assembly iterations. The markers at 0 in the right panel correspond to the last ones in the left panel,
but shown with the y-axis scaled differently, as the final genome lengths are much larger than the protein
coding sequences. Towards seven iterations, all contig lengths have converged towards the full genome
length. The largest contig per reference is determined by running MMseqs2 to search the reference
genomes through the set of contigs after each iteration and selecting those with the largest alignment for
each reference genome.

Extract viral contigs. In total, PenguiN assembled 42 contigs with a minimum length of 1000 bp

on the mock dataset. From these, 30 were identified as putative viral contigs using VirSorter2

[Guo et al., 2021]. PenguiN is designed to deal with the challenges of viral diversities in genome

assembly from metagenomic samples in mind. However, it is not limited to viral genomes

only (no filter step is included), and therefore it also assembles all non-viral reads as well.

Further investigation of the 12 contigs that were identified as non-viral showed that they were all

much smaller (average length of ∼ 2 kbp compared to ∼ 19 kbp) and had high confident matches

(> 99% sequence identity) to cellular organisms when searching against the NCBI nucleotide

database (version from 2022-01-31) with MMseqs2. This indicates that they probably stem

from contamination in the dataset and are not wrongly assembled contigs.

Next, PenguiN’s assembly quality was evaluated against the reference genomes of the six Cau-

dovirales present in this dataset, which were obtained from the NCBI RefSeq [O’Leary et al.,

2016] database (accession numbers listed in Table 2.3), using MetaQUAST [Mikheenko et al.,

2016a]. For all six genomes, MetaQUAST reports that the respective contig with the largest

alignment covers 99.8 to 100% of the full reference sequence (see Fig. A.4 in the appendix for

2.4. Evaluation and Results 53

the MetaQUAST report). The additional viral contigs that map to references were all much

shorter and represent either (1) unidentified short duplicates or (2) deviations from the refer-

ence genomes that can be traced back to individual reads. These could either be biological,

or artifacts due to the amplification or sequencing process. However, the exact origin of these

reads could not be determined further. In total, 99.84% of the reads could be mapped back to

the assembly according to the MetaQUAST analysis.

The accuracy of PenguiN’s assembly was assessed using the number of mismatches and indels

to the RefSeq genomes. Per 100 kbp, MetaQUAST reports 172.31 mismatches and 10.85 indels,

corresponding to a total error rate of approximately 0.18%. As this is close to the expected

Illumina sequencing error rate [Stoler and Nekrutenko, 2021] and PenguiN does not have its

own logic to reduce sequencing errors, these errors can be attributed to sequencing errors, which

are incorporated into the contigs during the assembly process. Pre-processing the reads with my

own sequencing error correction tool CoCo (described in chapter 3), before running PenguiN’s

assembly, could improve the accuracy, reducing the error rate within the contigs to 0.013% (8.75

mismatches per 100 kbp, 3.98 indels per 100 kbp).

2.4.4. Assembly of ssRNA phages from real metatranscriptomic samples from

activated sludge and aquatic environments

On real datasets, no ground truth is available, but the quantity of the assembled genomes can

be compared among assemblers and the assembled genome’s architecture can be more closely

examined and evaluated using previously known characteristics.

To evaluate PenguiN’s performance on large scale environmental data, I chose 82 public avail-

able metatranscriptomic samples from activated sludge and aquatic environments, which were

recently used in a study to detect ssRNA phages from these two environments [Callanan et al.,

2020]. In this study, Callanan and colleagues could expand the number of known ssRNA phage

genomes using a Hidden Markov Model (HMM) approach to detect all sequences encoding a mat-

uration protein (MP), a coat protein (CP) and an RNA-dependent RNA polymerase (RdRp)

in contigs assembled with rnaSPAdes (version 3.12.0). Here, I used their model to identify se-

quences encoding the three ssRNA phage core proteins from PenguiN’s assemblies and compared

them to those of the Callanan study as well as other assemblers.

Dataset characteristic and preprocessing. In total, the dataset contained 16 activated sludge

samples from Austria, 42 activated sludge samples from Illinois, 12 activated sludge samples

from Japan, 4 freshwater aquatic samples from Lake Mendota (Wisconsin), 4 aquatic samples

from the Mississippi River (Louisiana), and 4 freshwater aquatic samples from Singapore. I

downloaded the samples from the NCBI Sequence Read Archive (SRA) database according

to the accession numbers provided by [Callanan et al., 2020] (see Table A.1 in the appendix)

and pre-processed them analogues to the Callanan et al. study using Cutadapt (version 3.3)

[Martin, 2011] to remove Illumina adapters and Trimmomatic (version 0.39) [Bolger et al., 2014]

54 2.4. Evaluation and Results

for quality trimming, but with updated versions. Thereby, all reads shorter than 100 bp were

discarded.

Assembly. Afterwards, the remaining paired-end reads were assembled sample by sample with

PenguiN, Megahit, metaSPAdes, metaviralSPAdes, rnaSPAdes, rnaviralSPAdes, Haploflow and

VICUNA. Additionally, I also ran the combined pipeline of sequencing error correction using

CoCo (described in chapter 3) and subsequent assembly using PenguiN. Notably, it was not

possible to run SAVAGE (runtime >10 days per sample) and IVA on this dataset. Further,

Haploflow and VICUNA did not finish for all samples within 10 days each, so only 76 samples

could be examined for Haploflow assemblies (five “out of time” errors, one “out of memory”

error) and only 49 for VICUNA assemblies (see tables A.2 to A.4). To be consistent with the

analysis done by Callanan et al., only contigs with a minimum length of 500 bp were considered

in the subsequent analysis.

2.4.4.1. Detecting ssRNA phage sequences in the assemblies

After assembling the reads with the different tools, I used the HMMs published by [Callanan

et al., 2020] to detect ssRNA phage sequences. As their pipeline itself was not available, I rebuilt

it from the description in the paper and their supplementary material. Thereby, I used mainly

the same tools and parameters if specified. The whole workflow is depicted and explained in

more detail in Fig. 2.12. In summary, non-redundant contigs (≥ 750 bp) encoding ssRNA phage

core proteins (MP, CP, RdRp) are detected and filtered in three steps: contigs encoding at least

two protein hits (partial genomes), contigs encoding three protein hits (near-complete genomes)

and contigs encoding three protein hits without proteins that are prematurely terminated by

the edge of a contig (complete genomes). Terms are used according to Callanan’s analysis.

Using this pipeline, I identified 20 725 non-redundant contigs that encode ssRNA phage proteins

in the PenguiN assemblies pooled from all samples. Of these, 13 999 contigs had a minimum

length of 750 bp and included at least one core gene, 6469 included two core genes, 3501 included

three core genes. Of these, 1954 were predicted to include the three core genes without premature

termination by the edge of a contig (full-length genes), meaning an increase of 92.5% (939)

compared to the 1015 of complete phages reported in the Callanan et al. study [Callanan et al.,

2020].

Further investigation of the complete phage genomes showed very high similarity between some

phages for both PenguiN and the complete phages available from the Callanan et al. study.

Clustering with very strict settings (sequence identity ≥ 99.5%; coverage ≥ 99%) using the

MMseqs2 cluster module [Steinegger and Söding, 2017] reduced the numbers to 1486 (76%)

for PenguiN and 468 (47%) for the Callanan et al. phages. Clustering with less strict settings

(sequence identity ≥ 97%; coverage ≥ 99%) even reduced this to 814 and 377 sequences. Judging

if this similarity is due to redundancy or just to very similar strains is beyond the scope of this

work. Nevertheless, it shows that PenguiN provides a 2 to 3-fold increase in the number of

2.4. Evaluation and Results 55

Figure 2.12.: Re-implementation of the ssRNA phage detection workflow based on the
description of [Callanan et al., 2020]. Deviations from the original pipeline are colored in blue text.
After assembly for each sample, proteins are predicted using Prodigal (version 2.6.3) [Hyatt et al., 2010]
with options -p meta and -n. Predicted proteins are then searched against sequence profiles of the HMM
5-MC model generated by [Callanan et al., 2020] using hmmscan (version 3.2.1) [http://hmmer.org/].
Proteins with a hmmscan score of 30 or greater are annotated as the respective core protein. Then,
all contigs encoding at least one ssRNA phage core protein (MP, CP, RdRp) are considered in the
downstream analysis and pooled across all samples. Subsequently, redundancy is either reduced at 100%
sequence identity according to the original description or at 97% using MMseqs2 cluster. Afterwards,
non-redundant contigs of sufficient length (≥ 750 bp) including at least one core gene are reported as
ssRNA phage sequences. Finally, contigs are filtered into different sets depending on the number of core
proteins encoded within the contig: contigs encoding at least two protein hits (partial genomes), encoding
three protein hits (near-complete genomes) and those encoding three full-length (no partial) protein hits
(complete genomes).

complete phage genomes recovered compared to the Callanan et al. study, independent of the

exact redundancy cutoff used.

To avoid giving too much weight to possibly redundant genomes, I used the more aggressive

clustering/redundancy reduction settings (sequence identity ≥ 97%; coverage ≥ 99%) for the

http://hmmer.org/

56 2.4. Evaluation and Results

(a)

contigs with core
protein hits

contigs non-redundant
at 97% identity

contigs non-redundant
at 97% identity
and ≥ 750 bp

PenguiN 21 110 13 548 8869
PenguiN with CoCo 20 556 13 017 8609
Megahit 11 809 5895 3259
metaSPAdes 12 015 6189 3196
metaviralSPAdes 1 1 1
rnaSPAdes 10 699 4720 2680
rnaviralSPAdes 10 154 4545 2405
VICUNA 2319 957 623
Haploflow 5411 2063 1251

(b)

contigs encoding at
least two core proteins

(partial genomes)

contigs encoding
three core proteins
(near-complete

genomes)

contigs encoding
three full-length
core proteins

(complete genomes)

PenguiN 3397 1472 793
PenguiN with CoCo 3371 1538 833
Megahit 1547 819 450
metaSPAdes 1477 770 417
metaviralSPAdes 0 0 0
rnaSPAdes 1381 821 453
rnaviralSPAdes 1153 613 354
VICUNA 356 225 134
Haploflow 584 302 122

Table 2.4.: Number of contigs in each class of the ssRNA phage detection pipeline applied
to 82 metatranscriptomic samples from activated sludge and aquatic environments. Results
are pooled across all 82 samples, however for VICUNA and Haploflow only 76 and 49 samples pro-
duced results. The results reported here are not directly comparable with those from Callanan’s analysis
[Callanan et al., 2020] due to the more aggressive redundancy reduction performed here. In their study,
all non-redundant contigs at 100% sequence identity were considered, whereas here clustering at 97%
identity was performed.

contigs of interest when comparing PenguiN’s performance with those of the other assemblers

(deviation from the pipeline is marked in blue in Fig. 2.12). The results are summarized in

Table 2.4.

In all categories, PenguiN yielded the most sequences. PenguiN assembled up to 75-90% (343-

376) more complete phages than the state-of-the-art tools Megahit, metaSPAdes, and rnaSPAdes

and achieved around 6-6.5 times more complete phages than the viral assemblers Haploflow and

VICUNA, which both did not produce results on all samples. The metaviralSPAdes assembler

only produced a single contig across all samples that encoded for a single phage protein, and

was therefore not considered for further downstream analysis.

When CoCo was additionally used for error correction upstream of the PenguiN assembly, the

number of near-complete and complete genomes could even be increased slightly, while the total

number of ssRNA phage sequences was slightly lower. This indicates that more contigs could

2.4. Evaluation and Results 57

be assembled into whole genomes, which is probably due to the fact that the correction of

the sequencing errors makes it possible to find previously overlooked overlaps. However, the

additional use of CoCo was added later in this analysis to further improve PenguiN’s assemblies

and is not part of the following analyses, so the remaining comparison of the assemblers is not

biased due to the use of an external sequencing error correction tool.

2.4.4.2. Pairwise comparison of complete ssRNA phage genome sets

To compare the assemblers among each other, I considered the overlaps of the sets of complete

phages recovered by each assembler. The pairwise comparison shows that the set assembled by

PenguiN covers ∼ 64-93% of those from the other assemblers, whereas these cover only ∼ 34-36%

or much less (Haploflow (7.3%) and VICUNA (9.7%)) of the PenguiN assembly (see Fig. 2.13).

The pairwise comparison between the other assemblers instead shows a significantly more bal-

anced ratio (∼ 60-70% in both directions), except for Haploflow and VICUNA, which both pro-

duced very little in total. This shows, that PenguiN can cover as much of the other metagenomic

and metatranscriptomic assemblers as those cover among each other, hinting at the correctness

of PenguiN’s assembly. At the same time, PenguiN assembled many additional genomes, which

were missed by the other assemblers.

58 2.4. Evaluation and Results

(a)

(b)

Figure 2.13.: Overlap of assemblies in terms of complete ssRNA phage genomes. (a) Overlap
of complete phage genomes identified in the set assembled by PenguiN to those of six other assemblers
(Megahit, metaSPAdes, rnaSPAdes, rnaviralSPAdes, VICUNA, and Haploflow). A phage genome in the
assembly of tool A is counted for the overlap region when it is covered by an alignment to a complete
phage in the assembly of tool B at a minimum sequence identity of 97% and minimum coverage cutoff
of 99% (consistent with parameters used in the redundancy reduction). E.g. 34.05% of the complete
phages in the PenguiN assembly are covered by alignments to complete phages in the Megahit assembly.
Conversely, 63.78% of the phages in the Megahit assembly are covered by alignments with phages in the
PenguiN assembly. VICUNA and Haploflow could cover significantly less of PenguiN’s assembly than
the other tools, which is a result of their low number of assembled complete ssRNA phage genomes (see
also Table 2.4). (b) is the same as (a) but for the pairwise comparison among a selection of the other
assemblers.

2.4. Evaluation and Results 59

2.4.4.3. Further investigation of the assembled genomes

To investigate where the higher amount of complete phages in the PenguiN assemblies comes

from and to assess the complete phage genomes in more detail, I performed further analyses,

which I briefly summarize in the following.

Sample-wise analysis. First, I performed a sample-wise analysis using the same pipeline as

described above to detect ssRNA phage sequences within the assemblies, but only clustered

contigs within the same sample. This allows to evaluate the performance based on sample

specific characteristics (e.g. sample location). The full results per sample are reported in the

appendix (Table A.2, Table A.3, and Table A.4). Considering the number of complete phages per

location showed that PenguiN can especially gain on the activated sludge samples from Japan

and Illinois, whereas no complete phage was found among the 4 freshwater aquatic samples

from Singapore (see Fig. 2.14). Notably, all assemblers detect significantly higher numbers of

phages in the activated sludge samples (Austria, Illinois and Japan) than in the aquatic samples

(Lake Mendota, Mississippi River, freshwater aquatic samples from Singapore). This was also

previously observed in the Callanan et al. study for rnaSPAdes (version 3.12.0) and attributed to

the fact that activated sludge might provide a better environment for the known hosts of ssRNA

phages or technical differences (e.g. sequencing depth, microbiome complexity, ...) between the

samples [Callanan et al., 2020]. In general, PenguiN followed the pattern as also seen for the

other assemblers.

Diversity analysis. Next, I analyzed the diversity of the assembled complete ssRNA phage

genomes. To this end, I used the full-length RdRp proteins extracted from each complete

genome. The RdRp protein is the most conserved core protein and was used in the Callanan et

al. study for potential taxonomic assignment on genera (AAI ≥80%) and species (AAI≥50%)

level [Callanan et al., 2020]. For each complete genome, I extracted the RdRp protein sequence

from the protein translation file, which was generated with Prodigal [Hyatt et al., 2010] during

the phage detection described above and assigned by hmmscan with a score ≥ 30. Thereby, only

full-length RdRp proteins were considered. In cases where a complete genome encodes for more

than one protein with RdRp protein hits, the one with the highest hmmscan score was chosen.

So the number of extracted RdRp proteins was the same as the number of complete genomes for

each assembler. The RdRp protein sets were then clustered at various levels using the MMseqs2

cluster module at sequence identity thresholds from 50% to 90% (in steps of 10%) and 90% to

100% (in steps of 1%) at a 99% minimum coverage of the shorter sequence. Thereby, the cluster

runs were performed independently and not in a hierarchical fashion.

From these sets, I identified 771 unique RdRp sequences (X=100%) for PenguiN, 407 for Megahit,

397 for metaSPAdes, 396 for rnaSPAdes, 348 for rnaviralSPAdes, 133 for VICUNA and 122 for

Haploflow, supporting the increase in sensitivity by PenguiN, which was already seen for the

nucleotide sequences of the complete genomes (Table 2.4). The cluster trend is similar for

60 2.4. Evaluation and Results

Figure 2.14.: Number of complete ssRNA phages identified in metatranscriptomic samples
across different geographical locations. The 82 samples from the metatranscriptomic dataset are
sampled from activated sludge from Austria (16), Illinois (42) and Japan (12) as well as aquatic en-
vironments from Lake Mendota/Wisconsin (4), Mississippi River/Louisiana (4) and freshwater aquatic
from Singapore (4). All assemblers found significantly more complete ssRNA phages in the samples from
activated sludge environments than in the aquatic environment samples. None of the assembler found a
complete ssRNA phage genome in the samples from Lake Mendota.

Megahit and the three SPAdes variants (metaSPAdes, rnaSPAdes, rnaviralSPAdes): all four

tools produce similar number of clusters, whereas PenguiN yields many more clusters at 90-

100% sequence identity (see Fig. 2.15). However, at 50-80% sequence identity it is very close

to the other assemblers. This suggests that PenguiN mainly gains at lower taxonomic levels as

it can distinguish also very similar sequences, whereas those group to a very similar number of

species (X=80%) or genera (X=50%) compared to those from the other assemblers. Haploflow

and VICUNA yield a much lower number of clusters already at high sequence identity values

due to the much smaller amount of complete phages assembled. However, the trend of their

graphs also indicates that their assembled phages are rather dissimilar, as they mostly do not

cluster together even at lower cluster values.

Finally, I also examined the characteristics of the ssRNA phages genomes assembled by PenguiN

in terms of genome lengths and genome architecture and compared them to those from the other

assemblers as well as to the previously known phages.

Genome lengths. For the 82 metatranscriptomic samples, all assemblers show a quite similar

length distribution, with a median genome length of 3.8 kbp each (Fig. 2.16). The interquartile

range of the genome lengths is thereby consistent with the lengths of ssRNA phage genomes

revealed in previous studies (3.5–5 kbp) [Krishnamurthy et al., 2016]. However, almost all tools

showed outliers with PenguiN (and PenguiN+Coco) producing the most: it produced 62 genomes

> 6 kbp (compared to 0-10 genomes), including 8 genomes > 10 kbp. Nevertheless, more than

92% (731) of PenguiN’s complete ssRNA phages genomes fall in the range of 2–6 kbp. Investi-

gating the other sequences further, however, revealed that often the three core genes could be

2.4. Evaluation and Results 61

Figure 2.15.: Cluster analysis of the full-length RdRp proteins extracted from the complete
ssRNA phage genomes. The clustering was performed using MMseqs2 cluster at sequence identity
thresholds from 50% to 90% (in steps of 10%) and 90% to 100% (in steps of 1%) at a 99% minimum
coverage of the shorter sequence.

Figure 2.16.: Length distribution of the complete ssRNA phage genomes identified from
the different assemblies.

62 2.4. Evaluation and Results

still found within a range of 2.5–5 kbp, indicating the respective complete phage was probably

assembled correctly but is embedded in a longer sequence. In the end, it could not be unequiv-

ocally clarified if these chimeras were true biological or misassembled artifacts. However, due to

the minor fraction, the reasons were not investigated further.

Genome architecture. Another criterion, which was investigated, was the total number of

full-length core proteins encoded by the sequences classified as complete phages. By definition,

each of these sequences contained at least the three core proteins (MP, CP, RdRp) once. 754

(95.1%) instances of the PenguiN-assembled complete phages encode exactly three proteins that

got full-length matches to the HMM sequence profiles of the three core proteins, 36 (4.5%)

got an additional fourth and 3 (0.4%) had a fifth match. Further investigation of the additional

proteins showed that, except for two cases, the additional protein followed the same kind, mostly

an additional MP or additional RdRp hit directly following the native one, e.g. RdRp A directly

following an RdRp A. The ssRNA phages are not known to have the core genes multiple times.

However, the same could be observed for other assemblers as well. Previously, Callanan et al.

has also recognized weak similarity between hypothetical genes following the RdRp and the

native RdRp termini and theorized that these are either artifacts due to artificially introduced

stop codons or can be attributed to the ability of phages to bypass stop codons during phage

replication [Callanan et al., 2020].

I also considered the co-occurence of the core protein subtypes. The HMM 5-MC model re-

leased by [Callanan et al., 2020], which I used for the ssRNA phage detection (described in

section 2.4.4.1), contained 3 MP, 3 CP and 2 RdRp protein subtypes. Except for one genome

(contig:SRR7976310 60885), PenguiN maintained the same eight core-protein association profiles

across the subtypes that were previously described in the Callanan et al. study (see Fig. 2.17).

This is in line with our expectations, as the larger amount of complete ssRNA phages assembled

by PenguiN is on a low taxonomic level, as shown in the diversity analysis, and therefore should

not create new core protein association.

Additionally, PenguiN also maintained a specific order of the three core proteins. In 789 out

of 793 cases, MP was encoded first, followed by CP and subsequently RdRp, which in turn is

consistent with the specific order known for Fiersviridae (obsolete since 03/2021: Leviviridae)

genomes [Tars, 2020]. This further supports the reliability of PenguiN’s assembly and shows its

ability to place the protein sequences into the correct genomic context.

2.4. Evaluation and Results 63

Figure 2.17.: Co-occurence profiles of the core proteins in complete ssRNA phage genomes
assembled with PenguiN. The HMM profiles released by [Callanan et al., 2020] contained 3 MP, 8 CP
and 2 RdRp protein clusters. Of the 48 theoretical combinations of these proteins on a complete genome,
only 8 were observed in the PenguiN assembly, in accordance to the Callanan et al. study. There was
only one deviation marked by an asterisks (*) where a contig (contig:SRR7976310 60885) contained an
additional RdRp A following the RdRp B. However, the protein classified as RdRp A (hmmscan score
469.6) in this contig was also very similar to the RdRp cluster B (hmmscan score 240.0).

64 2.4. Evaluation and Results

2.4.5. Computational time and memory usage

Furthermore, I assessed the runtime and memory usage of PenguiN in comparison to the eight

other assemblers on the HRV in silico mixture, the three subsets (1-fold, 10-fold, 100-fold) of

the 2550 HIV1 in silico mixture and the 82 samples of the metatranscriptomic dataset. All

testing was completed using the GWDG HPC cluster (www.gwdg.de) on nodes with two Intel

Xeon processors at 2.6 GHz totaling 16 cores and 128 GB RAM. Assemblies were thereby always

performed on the local SSD (400 GB). Running time and peak memory footprint were measured

using the /usr/bin/time command with the option -f ”%e,%M”. The runtime limit was set to 10

days on the HPC cluster system. For the metatranscriptomic dataset, assemblies were limited to

10 days per sample. All assembly tools were called with 16 CPU threads, except for Haploflow,

which does not support multithreading.

Table 2.5 shows the total run time for all datasets. Due to the small size of the HRV dataset,

the run time differences between the tools must be viewed with caution for this dataset. All

tools were able to assemble the HRV dataset in very short time. Apart from that, Megahit,

rnaSPAdes and rnaviralSPAdes had the shortest run times. They finished the three subsets of

the HIV1 mixture in <0.5 min, <5 min, <10 min, respectively, and assembled the 82 samples of

the metatranscriptomic dataset in less than 1.5 days. In contrast, metaSPAdes was by far the

slowest tool from the SPAdes family used here, with more than 1 h for the 10-fold and more

than 2 h for the 100-fold HIV1 dataset, even though it was run with the --only-assembly option.

For the metatranscriptomic datasets, the runtime summed up to more than 27 days.

PenguiN was the fastest tool on the 1-fold HIV1 dataset and close to the best tools on the HRV,

and the 10-fold HIV1 dataset. On the 100-fold HIV1 dataset it was 3.5-4.5 times slower than the

fastest tools (Megahit, rnaSPAdes, rnaviralSPAdes), but 3.5 times faster than metaSPAdes and

47 times faster than IVA and VICUNA. For the 82 samples of the metatranscriptomic dataset,

PenguiN took in total ∼ 7 days. This means 5-6 times slower than Megahit, rnaSPAdes and

rnaviralSPAdes, but 4 times faster than metaSPAdes and much faster than VICUNA.

Dataset / HRV in HIV1 in silico mixture Metatranscriptomic
Tool silico mixture 1x 10x 100x dataset

PenguiN 00:08 00:21 00:04:19 00:36:55 166:17:23
Megahit 00:03 00:33 00:03:14 00:08:36 28:39:21
metaSPAdes 00:19 02:14 01:02:34 02:12:02 668:47:30
metaviralSPAdes 00:23 - 00:04:03 00:13:39 492:23:00
rnaSPAdes 00:08 00:27 00:02:14 00:08:06 34:28:50
rnaviralSPAdes 00:11 00:37 00:03:32 00:10:08 31:31:44
SAVAGE 01:41 25:27 > 10 d > 10 d -
IVA 03:04 04:31 00:51:31 29:17:30 -
VICUNA 00:02 00:33 03:28:33 29:31:19 *4989:38:20
Haploflow 00:02 00:47 - > 10 d *568:57:30

Table 2.5.: Comparision of runtimes for all datasets used in the assembly benchmark. Values
are given in [hh]:mm:ss; values marked with * are underestimated because the tools did not finish on all
samples.

www.gwdg.de

2.4. Evaluation and Results 65

Dataset / HRV in HIV1 in silico mixture Metatranscriptomic
Tool silico mixture 1x 10x 100x dataset

PenguiN 0.10 0.38 2.74 15.13 91.04
Megahit 0.25 0.27 0.29 1.81 10.96
metaSPAdes 5.11 5.15 22.16 46.97 116.66
metaviralSPAdes 5.11 - 5.67 11.59 41.52
rnaSPAdes 5.11 5.21 5.49 11.55 24.58
rnaviralSPAdes 5.11 5.21 5.47 11.55 17.64
SAVAGE 1.28 10.94 - - -
IVA 1.25 1.24 1.24 1.25 -
VICUNA 0.06 0.35 3.23 31.03 116.38
Haploflow 0.01 1.06 - - *119.00

Table 2.6.: Comparision of Max RAM usage for all datasets used in the assembly benchmark.
Values are given in GB. (*)Haploflow had one sample in the metatranscriptomic dataset where the 128 GB
were not sufficient for the assembly, resulting in an “out-of-memory error”.

Overall, SAVAGE, IVA and VICUNA had the longest runtimes. From these, VICUNA was the

only one which produced results on some samples of the metatranscriptomic dataset in less than

10 days each (for 49 out of 82 samples), however, the runtimes over all 49 samples summed up

to more than 207 days. SAVAGE was by far the slowest program. It took more than 25 min

for the 1-fold HIV1 subset and more than 10 days runtime for the 10-fold and 100-fold HIV1

subsets, respectively. It was also not able to assemble a single sample of the metatranscriptomic

datasets in less than 10 days and was therefore excluded from the analyses of these datasets.

The recently published strain-resolved de novo assembler Haploflow [Fritz et al., 2021] was close

to the runtimes reported for PenguiN. However, it ran into problems for the 100-fold HIV1

dataset and 6 of the 82 metatranscriptomic samples, where it did not complete within 10 days

or had an out of memory error.

Table 2.6 shows the maximal memory used during the assembly of all datasets. PenguiN requires

91 GB to assemble the metatranscriptomic dataset. This is more than Megahit, rnaSPAdes and

rnaviralSPAdes but less than metaSPAdes, VICUNA and Haploflow and results therefore in a

similar pattern to that of runtime. The same applies to the 100-fold HIV1 dataset, whereas

PenguiN needs much less memory than the three SPAdes variants on the HRV and the 1- and

10-fold HIV1 dataset. Due to the similar space used by the three tools of the SPAdes family, the

core algorithm seems to have a minimum memory requirement of ∼ 5 GB. Also most notable

is the very low memory usage of Megahit across all datasets. IVA had a constant memory

usage across the datasets, but, as described in the previous sections, it only produced very little

contigs.

PenguiN automatically adjusts to fully utilize all available system memory, if necessary. The

main memory limitation in PenguiN is the k -mer matching step, which has to extract k -mers

from all sequences in each iteration. However, it also has the option to process k -mers in chunks

to stay under a specified memory limit (set by the option --split-memory-limit). This should

66 2.5. Discussion and Outlook

enable PenguiN to process the datasets used here with less memory, but would increase the

runtime. Further, it also gives the possibility to process much larger samples.

2.5. Discussion and Outlook

The aim of the study outlined in this chapter was the development of a new de novo metagenomic

assembler that can deal with the high diversity of viruses and therefore assembles much longer

viral contigs up to whole viral genomes from metagenomic samples in comparison to existing

assembly tools. In the following, I discuss the results on the benchmark datasets as well as

limitations of the assembler, possible improvements to the tool and two further applications.

As described in the introduction (see chapter 1), de novo assembly from metagenomic samples

is a crucial task in virus research. The accurate reconstruction of the genomic sequences allows

for the in vivo identification of newly emerging or previously unidentified viruses [Callanan

et al., 2020; Gregory et al., 2020, 2019] and has implications for a deeper understanding of viral

diversity, viral pathogenicity and virus-host interactions [Deng et al., 2021; Roux et al., 2015b].

These, in turn, can help improve environmental models and generate ecological hypotheses

[Gregory et al., 2019; Roux et al., 2015b], as well as strongly influence the development of

phage-based therapeutics approaches [Mirzaei et al., 2021].

Here, I provided a new approach that makes use of the enormous selective pressure operating

on small viral genomes that limits most single nucleotide mutations between very closely related

genomes to synonymous or conservative substitutions or non-coding regions (increased sensitiv-

ity) and at the same time makes use of the quickly diverging amino acid sequences to distinguish

even strains, if the genome coverage is sufficient (increased specificity). The new method first

assembles nucleotide sequences to full open reading frames simultaneously to the assembly of

six-frame translated reads to protein sequences. Subsequently, it links the resulting ORFs from

the first stage with nucleotide reads to bridge intergenic regions, resulting in longer contigs and

ideally whole viral genomes. The resulting software tool PenguiN (protein-guided nucleotide

assembler) adopts thereby the greedy iterative assembly strategy with an all-against-all overlap

computation of the protein-level assembler Plass [Steinegger et al., 2019] for the two stages.

The use of full-read overlaps enables PenguiN to be very sensitive to co-occurring changes in

the sequences. With this, it overcomes the typical sensitivity-specifity trade-off of the de Bruijn

graph assemblers that can only see co-occurences within one k -mer. The main contribution of

this work was the extension of Plass to a full metagenomic nucleotide assembler. Due to its

two level assembly approach, PenguiN assembles nucleotide contigs and ideally whole (viral)

genomes, whereas Plass aims to assemble only proteins.

2.5. Discussion and Outlook 67

2.5.1. Add-ons to Plass

The main differences to Plass on the algorithm level is the simultaneous assembly of the un-

derlying nucleotide sequences during the protein assembly and the subsequent nucleotide only

assembly stage, which both required extensions and adaptations for nucleotide-specific consid-

erations (e.g. reverse complement) as well as adaptations for longer sequences (e.g. scaling of

the number of k -mers extracted per sequence) (see section 2.2.2). Further, I introduced a new

extension choice strategy in PenguiN to deal with the difficulty of scoring overlaps with varying

lengths (see section 2.2.2.4). Instead of using the non-overlapping residues of the alignment with

the highest sequence identity value for the extension as done in Plass, the probability that an

overlap is better than all others is calculated based on a Bayesian model. Beyond that, I added

the possibility to detect circular contigs in PenguiN through a heuristic similarity approach

(see section 2.2.2.5) and adapted the Linclust [Steinegger and Söding, 2018] algorithm, which

I integrated in the PenguiN workflow for the redundancy reduction step, to cluster circular se-

quences as well (see section 2.2.2.6). Further smaller modifications introduced in PenguiN are

the new end-to-end scoring mode, multiple extensions within the same iteration and the correct

handling of asterisks, which mark the ends of protein sequences. Due to the different use-case,

I also decided for much stronger default sequence identity cutoffs for the overlaps than used in

Plass.

2.5.2. Performance

For benchmarking experiments and performance analysis, I considered several datasets. I tested

PenguiN on two simulated datasets (including subsets varying in coverage), one in vitro mix-

ture and one real metatranscriptomic dataset. At the time of the conception of the project,

no metagenomic assembler exists, which could deal with the above-mentioned viral specific

challenges sufficiently. There were mainly two types of assemblers (1) (general) metagenomic

assemblers, which mainly employ the de Bruijn graph approach, and (2) viral specific assemblers

including haplotype assemblers and consensus assemblers, which mainly utilize the greedy or the

OLC assembly approach (see section 1.4). I compared the assemblies obtained using PenguiN

with assemblers from both groups: SAVAGE [Baaijens et al., 2017], IVA [Hunt et al., 2015]

and VICUNA [Yang et al., 2012] as they performed well on patient samples, and Megahit [Li

et al., 2015] and metaSPAdes [Nurk et al., 2017] as the state-of-the-art metagenomic assemblers.

Especially, the latter two were also recommended by previous benchmark studies on viral metage-

nomic data [Roux et al., 2017; Sutton et al., 2019]. I also integrated the metatranscriptomic

assembler rnaSPAdes [Bushmanova et al., 2019] into my benchmark, as it was recently utilized

for the assembly of RNA viruses from metatranscriptomic data in several studies [Callanan

et al., 2020; Yan et al., 2021]. Later on, the three assembly tools metaviralSPAdes [Antipov

et al., 2020], rnaviralSPAdes [Meleshko et al., 2022], and Haploflow [Fritz et al., 2021], which

were published during the work on this project, showing the high interest in the research field

of viral metagenomic, were added to the benchmarks as well. However, it should be mentioned

68 2.5. Discussion and Outlook

here, that the design of the benchmark was thereby probably not ideal for metaviralSPAdes, as

the benchmark datasets contained RNA viruses. Assemblies were assessed based on common

quality metrics using MetaQUAST [Mikheenko et al., 2016a] and calculation of sensitivity and

precision values for the simulated datasets. On the real metatranscriptomic dataset, a ssRNA

phage-specific pipeline was used for quality assessment.

I showed that PenguiN assembles long viral contigs up to whole viral genomes in high quality

and is less influenced by the similarity of closely related genomes than other assemblers. The

strain-resolved assemblers SAVAGE and Haploflow could still resolve closely related genomes

from the HRV dataset containing only three genomes. However, they consistently suffered

from the highly diverse strain mixture of HIV1 genomes, containing both very closely related

genomes as well as more diverged genomes (ANI < 80). Further, they could not deal with the

complexity and size of the metatranscriptomic samples. In total, they either produced much less

than the others, resulted in small and fragmented contigs or did not finish in reasonable time

(> 10 days). Also, IVA and VICUNA performed very poorly, obtaining only very low genome

fraction with a high number of misassemblies on the simulated data. This is consistent with

observations from previous assembly comparison studies [Deng et al., 2021; Sutton et al., 2019;

Vázquez-Castellanos et al., 2014] and shows the limitation when applying those assemblers to

highly complex metagenomic samples containing multiple strains and species. This may not

be surprising, since both were designed for consensus assemblies from a viral population [Hunt

et al., 2015; Yang et al., 2012].

In contrast, the metagenomic assemblers could deal with the size and complexity of the simulated

data in principle better than the previous mentioned assemblers. However, due to the high

viral diversity, especially in the HIV1 dataset (see section 2.4.2), they resulted in fragmented

assemblies and a loss of variation. High genome fraction could only be reached when using

multiple contigs together and aligning them at weak sequence identity thresholds (∼ 90%) to

the reference genomes. This hints for a consensus assembly (or chimeric contigs) and shows

a lack of strain variation in the assemblies of the compared metagenomic assemblers. This

observation is also in line with previous studies [Roux et al., 2017; Sczyrba et al., 2017; Sutton

et al., 2019] and results probably from the limited possibilities to recover variation from de Bruijn

graphs, as graph simplifications are necessary to traverse the highly branching graphs efficiently.

As a further complication, the graph does only directly encode co-occurring mutations within

the length of one k -mer, which hinders the resolution of closely related genomes. Notable,

metaviralSPAdes performed consistently poorly on all datasets.

All tools were consistently outperformed by PenguiN, which could highly benefit from its full-

read overlap approach, in terms of sensitivity while keeping a similar precision. On the HRV

dataset, PenguiN assembled all three genomes within a single contig each. On the HIV dataset,

PenguiN assembled by far the longest contigs and the most complete genomes within single

contigs on all three tested coverage values and reached the highest per-nucleotide sensitivity

independent of the considered accuracy cutoff (90-99%). For example, I obtained a 3 to 11-

fold increase in per-nucleotide sensitivity compared to Megahit at similar or even higher per-

2.5. Discussion and Outlook 69

nucleotide precision. Notably, PenguiN achieved by far the highest sensitivity when contigs were

aligned to the genomes at 99% sequence identity, whereas sensitivity massively decreased for all

other compared metagenomic assemblers (see Fig. 2.10a). In contrast to the above-mentioned

limitation of the other metagenomic assemblers resulting from the de Bruijn graph structure,

PenguiN instead can utilize the co-occurrence of mutations within one read length due to its

all-against-all overlap computation within its greedy iterative approach. Similar to overlap-

graph based assemblers like SAVAGE [Baaijens et al., 2017], it can therefore distinguish closely

related genomes, but without the need for the memory expensive overlap graph structure [Li

et al., 2012]. Thereby, the protein level assembly is a crucial part in PenguiN to reduce the

problem’s complexity. The sequences are much shorter and therefore less expensive to align. If

the sequences do not match at the amino acid level, they will not be considered at the nucleotide

level in stage I. Further, it allows for the use of “longer” and therefore more specific k -mers (k=14

on amino acid level corresponds approximately to a spaced k -mer of length 42 on the nucleotide

level). At the same time, re-evaluation on nucleotide level, performed if an overlap on amino acid

level is good enough, further ensures that precision is not lost on nucleotide level. Altogether,

this allows to distinguish between very closely related genomes (ANI ∼ 97%), if the coverage

is sufficient, and contributes to the out-standing high sensitivity at high accuracy cutoffs (see

Fig. 2.10).

Moreover, I showed that PenguiN was the only tool that could reconstruct genomes from the

complex HIV1 strain mixture by more than 90% on the 1x coverage set, where most likely the

similarity of amino acid sequences of very closely related genomes can especially help to increase

sensitivity. This is especially notable, since difficulties with low coverage or low abundant virus

genomes is a known problem for de novo assemblers [Deng et al., 2021; Garćıa-López et al., 2015;

Roux et al., 2017; Sutton et al., 2019].

Besides the benchmark on the simulated data, I showed, with the help of a lab generated

mock community from a previous study [Warwick-Dugdale et al., 2019], that PenguiN also

performs well on real sequencing data. With small adjustments of the default parameter settings

(increased number of iterations), PenguiN can even assemble the very long dsDNA phages (38.2–

129.4 kbp) from the mock community within one contig with high accuracy (99.82%). The

missing accuracy is mainly caused by sequencing errors and can be reduced further by using a

sequencing error correction tool such as CoCo (described in chapter 3). The additional shorter

contigs, which were obtained as well, can hint at misassembled regions (as they did not cluster

together with the longer contigs during the redundancy reduction), undetected redundancy or

biological/technical deviations from the reference genomes.

With the application on the metatranscriptomic dataset from 82 aquatic and activated sludge

samples, used in a previous study for ssRNA phage discovery [Callanan et al., 2020], I showed the

enormous impact of PenguiN to resolve previously uncharacterized viral diversity from metage-

nomic short read sequencing data. PenguiN assembled 75-90% (343-376) more complete ssRNA

phage genomes than the state-of-the-art tools Megahit, metaSPAdes and rnaSPAdes and many

times more than VICUNA and Haploflow. The reliability of the tremendous expansion in the

70 2.5. Discussion and Outlook

quantity was thereby carefully checked in several downstream analyses (see section 2.4.4.3). Be-

sides a few cases (< 8%), which showed much too long genome lengths and might be a result of

misassemblies, there seems to be no reason for doubt on the correctness of the phage genomes

recovered by PenguiN. They lie in the expected genome length range, with the correct genome

architecture (number of core proteins and order) and do not even show any deviations from the

protein co-occurrence pattern discovered in a previous study [Callanan et al., 2020]. Moreover, a

diversity analysis on the RdRp protein suggests that PenguiN achieved approximately the same

number of potentially different species and genera, but especially outperforms the other assem-

blers for more closely related genomes (80-100% sequence identity on the RdRp protein) and

achieved many more complete phage genomes in total. This confirms the results from the sim-

ulated data and might have strong impact on our understanding of phage biology and diversity

in the future.

Thereby, PenguiN is sufficiently fast, and its memory consumption is reasonable. For the as-

sembly of the 82 metatranscriptomic samples it took a combined runtime of ∼ 7 days in total,

meaning an average runtime of ∼ 2 hours per sample, at a maximal memory peak of ∼ 91 GB. In

practice, the waiting time was much shorter, since multiple assembly jobs could be run in parallel

on the cluster system. On the smaller simulated datasets (total size of 7.8 MB to 4.6 GB) Pen-

guiN’s runtime and memory requirement was among the best of the tools tested. For the meta-

transcriptomic dataset its runtime is considerably slower than Megahit and rna(viral)SPAdes,

but much faster than metaSPAdes, Haploflow, VICUNA, SAVAGE and IVA. Possible improve-

ments of the run time of PenguiN are discussed in section 2.5.4. However, I think PenguiN’s run

time and its memory consumption is already reasonable, especially when taking the significantly

higher sensitivity into account.

2.5.3. Shortcomings and limitations

The results provided in this work suggest that PenguiN outperforms current state-of-the art

methods when considering the viral fraction of metagenomic samples. There are, however,

limitations which I discuss in this section.

One of the first points to be noted is that PenguiN has no built-in error correction. Whereas de

Bruijn graph assemblers usually employ the topology of de Bruijn graphs for direct or implicit

error correction [Heydari et al., 2017], overlap-graph based or greedy iterative assemblers utilizing

full-read overlaps usually do not have any sequencing error correction strategy. They can tolerate

a small amount of sequencing errors in their alignment-based overlap computation and often

exclude them through a consensus step at the end [Li et al., 2012]. PenguiN falls in line with

the latter ones. It works on the input reads directly without any correction, allowing for a small

number of sequencing errors as expected from today’s highly accurate Illumina sequencing data

(<<1% errors, mostly substitutions) [Stoler and Nekrutenko, 2021] through non-exact overlaps

(sequence identity cutoff ≥99%) and the subsequent clustering step. Using all reads as they

are has advantages for low frequency variants and low coverage regions, which might be lost

2.5. Discussion and Outlook 71

through a sequencing error correction procedure otherwise [Heydari et al., 2017; Yeom et al.,

2019], but also has the disadvantage of missing connections, especially when the sequencing

errors cumulate at the end of the reads [Schirmer et al., 2016; Stoler and Nekrutenko, 2021].

In this case, it may happen in PenguiN that no common k -mer can be found for overlapping

reads or alignments describing overlaps would not full-fill the sequencing identity cutoffs. This

is especially crucial at lower coverage, where these reads might be crucial to assemble longer

contigs and not using them would result in fragmented assemblies. Further, independent of the

coverage, reads containing cumulative sequencing errors at the opposite end to that which is

used in the previous iteration can result in dead ends for the greedy iterative assembly strategy.

Using a trimming tool such as Trimmomatic [Bolger et al., 2014] to discard parts of the reads

with low per-base quality and applying a sequencing error correction tool before the application

of PenguiN can therefore help to improve the assembly result further. One choice I tried here is

the sequencing error correction module of CoCo, which I developed during my doctoral research

as well, and also describe in the next chapter (see chapter 3). Further, it should be mentioned

that the current PenguiN implementation cannot take insertion or deletion errors in the overlap

region into account, as it only computes an ungapped alignment to score an overlap. This is only

a very minor issue for Illumina’s short sequencing reads, where a rate of approximately 10−6

indel errors per base is expected [Schirmer et al., 2016], but might be crucial when considering

the application on long sequencing reads (see below).

Another issue that needs to be discussed is the slightly higher redundancy obtained in PenguiN’s

assemblies for the HIV1 datasets. To overcome the issue of dead ends in low coverage regions

during the greedy iterative assembly strategy, PenguiN re-uses reads. More precisely, different

contigs can be extended with the same read. However, this can result in the same genome or

genomic region being built multiple times in parallel. If the coverage is high, this becomes even

more extreme, as the same sequences can be built from different redundant reads, leading to

highly redundant assemblies. Due to the choice of the hash-function to pick k -mers in the over-

lap phase and then always taking k -mers with lowest hash-values, the effect is minimized. In

most cases, the same k -mers will be selected and redundant reads therefore assigned to the same

center sequences, however it cannot be prevented completely. In other greedy assemblers such

as PRICE, a similar behavior was observed and reduced by collapsing fully overlapping contigs

in a subsequent meta-assembly step [Ruby et al., 2013]. To overcome this issue in PenguiN,

I integrated the Linclust [Steinegger and Söding, 2018] algorithm and only output the cluster

representatives as final contigs. This massively reduced the redundancy. However, Linclust’s

speed comes at the expense of some loss in sensitivity [Steinegger and Söding, 2018]. Therefore,

some sequence matches could be missed, and a small amount of redundancy remains. In cases

where redundancy is problematic (e.g. when comparing quantities of assembled genomes), I sug-

gest using a more sensitive all-against-all clustering in a post-processing step after the assembly.

In the benchmarks presented in this work, additional clustering was performed using the new

nucleotide clustering workflow of the MMseqs2 software suite, which combines Linclust with

the more sensitive MMseqs2 all-against-all search for forward and reverse strand followed by a

clustering step [Hauser et al., 2016; Steinegger and Söding, 2017]. It should also be mentioned

72 2.5. Discussion and Outlook

here, that redundancy was also observed for other assemblers previously [Deng et al., 2021].

Another possible workaround to reduce the redundancy for PenguiN, which I have not tried yet,

would be to cluster the reads beforehand. Since reads can be re-used in PenguiN, this should

not restrict the assembly process, but decrease redundancy and most likely also the run time.

Another, more notorious problem associated with the greedy approach is that overlaps are eval-

uated locally, which does not lead necessarily to the globally optimal sequence [Miller et al.,

2010; Pop, 2009]. Therefore, single genome assemblers utilizing the greedy approach usually

terminate the assembly process to avoid misassemblies if conflicting extension are found [Jeck

et al., 2007; Warren et al., 2007]. However, due to the presence of multiple, closely related

genomes in metagenomic samples, this would lead to highly fragmented assemblies. In PenguiN,

I do not use such a strategy and always extend with the best sequence according to the Bayesian

formulation described above. In general, this comes with the risk to join unrelated sequences

(misassemblies) triggered by a common sequence. However, in the benchmarks performed in

the scope of this work, only very few misassemblies were observed in the PenguiN assemblies.

I think this is due to the characteristics of viral genomes and the two level assembly approach.

Either two genomes only differ by very few mutations, from which most are silent or conservative

mutations, then a contig combining them still represents both with high accuracy (consensus),

or the mutations are so many due to the fast evolution of viral genomes that the read becomes

“unique” and the right choice can be made. Assembling viral genomes with a greedy iterative

assembly approach seems therefore a good choice, and worked previously also in other studies

[Deng and Delwart, 2021; Hunt et al., 2015]. However, I speculate the chief limitation is when it

comes to more complex genomes containing long repeats (longer than a read length) or highly

conserved regions. Using PenguiN for such data comes with the risk of many chimeric connec-

tions and will probably require further optimization. Further, I want to point out here, that the

aim of the project was not to resolve any single sequence variant and that this would also not

be possible with the PenguiN’s assembly strategy.

Finally, I want to discuss the limitation of PenguiN for long reads, the newest sequencing

technologies. The two dominating approaches, single-molecule real-time (SMRT) sequencing

[Eid et al., 2009] from Pacific Biosciences (PacBio) and Oxford Nanopore Technologies’ (ONT)

nanopore sequencing [Manrao et al., 2012], currently produce very long reads of commonly

10–30 kbp [Amarasinghe et al., 2020] up to records of even a few megabasepairs [Payne et al.,

2019]. The read length itself is not an issue as there is no limitation for the input read length

in PenguiN and the number of k -mers extracted from each sequence is scaled with the sequence

length. However, the issue with these data for PenguiN is highly connected with the first point

mentioned in this section as they have very high error rates, ranging from 3-15%, of which most

are indels [Zhang et al., 2020]. Assembling genomes from these sequencing technologies would

therefore require much lower sequence identity cutoffs for the overlapping regions, as well as

gapped alignment computation in PenguiN to take indels into account. However, the chief limi-

tation would probably be frame shifting indel errors, which undermine the amino acid sequence

guided assembly stage of PenguiN. Therefore, PenguiN is currently not capable to work with

2.5. Discussion and Outlook 73

these data until further technological developments decrease the rate of indel errors. In future

research, long reads could be a great opportunity for viral research as they can cover whole

viruses [Pinzone et al., 2019; Takeda et al., 2017] and therefore even circumvent the assembly

step in a metagenomic sequence analysis [Mirzaei et al., 2021]. However, it remains question-

able if the error rate can be reduced so drastically that the true viral diversity in a natural viral

community can be revealed and that the nanograms of DNA/RNA usually obtained for the viral

fraction of a metagenomic sample are sufficient for the long read technologies [Mirzaei et al.,

2021].

2.5.4. Possible improvements / further work

PenguiN outputs the cluster representatives found by Linclust in the redundancy reduction step

as the final master contigs. Thereby, the cluster representative is always the longest sequence

within the cluster. However, to represent the group of sequences as good as possible, it could be

worthwhile to validate the nucleotides of the representative sequences using the cluster member

sequences and output a consensus sequence for each group. This would then automatically also

reduce the chance of reporting sequencing errors within the final contigs. However, it should be

noted that the calculation of a consensus can lead to a sequence from the cluster subsequently

showing a greater distance to the final sequence. Whether the consensus is therefore the best

choice remains to be tried out.

During my doctoral research, I have observed well-working default parameters. However, adjust-

ing the parameter --num-iterations to other data might be confusing, as the extension for each

sequence is hard to estimate. Therefore, I would like to integrate an additional stop criterion

for the greedy iterative assembly strategy. If I keep track of the extended sequences in each

iteration and only extend those in the next iteration, then a convergence can be reached when

no further extension can be made.

Excluding the sequences, which were not extended, from the possible center sequences in sub-

sequent iterations could also be a strategy to improve upon speed. A second opportunity to

decrease run time is to collapse fully identical reads. Having the exact same read sequence mul-

tiple times in the input set is a sign of very high coverage and does not contribute any further

information for PenguiN’s assembly, but increases run time and memory usage. A third strat-

egy to decrease run time would be to prevent the re-use of reads. However, as discussed above,

re-using reads has several advantages for low coverage regions or for low abundant genomes,

especially when the greedy strategy runs into dead ends. Therefore, I suggest checking the in-

fluence of the latter one cautiously and integrate it only optionally through a new parameter.

The user can then choose between a more sensitive but slower assembly or a faster, but less

sensitive.

For better user experience, I also plan to integrate the sequencing error correction with CoCo

directly into the PenguiN workflow. The same is done for example with BayesHammer [Nikolenko

et al., 2013] in metaSPAdes [Nurk et al., 2017]. However, integrating CoCo into PenguiN would

74 2.5. Discussion and Outlook

also provide further possibilities. One could for example utilize the k -mer count profiles of

CoCo as additional information to evaluate overlaps between two sequences. I would expect

that the position dependent k -mer counts of the suffix of a sequence to be similar to that of the

prefix of the sequence to extend with if the suffix-prefix pair form a true overlap in the genome.

Another, but related, possibility would be to integrate tetranucleotide frequencies in the overlap

evaluation. It was shown that the tetramer composition along the genome is conserved well

enough to distinguish contigs from different microbial genomes [Kang et al., 2015; Pride et al.,

2003; Saeed et al., 2012]. Integrating this information could therefore be useful to avoid chimeric

assemblies, especially for more complex microbial genomes.

A further possible extension for PenguiN is scaffolding. Due to the non-uniform sequencing

coverage, gaps can occur that can not be closed during the assembly process, leading to frag-

mented contigs [Hunt et al., 2014]. One typical technique to get more contiguous draft genomes

is to determine the order and orientation of contigs belonging to the same genome with the help

of paired-read information [Huson et al., 2002; Kim et al., 2008]. Currently, PenguiN assem-

bles only contigs, but could be complemented by a typical scaffolding step afterwards in which

paired-end reads are mapped onto the contigs and then linked with a certain number of N’s

in between depending on a given or estimated insert size. However, based on the smaller sizes

compared to microbial genomes, viral genomes are more frequently assembled in single contigs

already.

Finally, PenguiN could be extended and adapted for other applications as well. Two examples

that are currently considered are transcriptome assembly and the assembly of metagenomic

ancient samples. They are briefly outlined in the next subsection.

2.5.5. Further applications

De novo transcriptome assembly. De novo transcriptome assembly aims to reconstruct the

transcriptomes from short read RNA sequencing (RNA-seq) data without the need for a known

genome sequence, allowing for the identification of transcripts and expressed genes at a certain

time point [Hölzer and Marz, 2019; Martin and Wang, 2011; Raghavan et al., 2022]. The

task is more related to metagenomic assembly than to genome assembly, as it shares major

difficulties like the varying abundance due to the different expression levels of the transcripts

[Conesa et al., 2016; Martin and Wang, 2011]. However, it also brings its own difficulties,

such as transcript isoforms due to alternative splicing [Canzar et al., 2016; Ozsolak and Milos,

2011; Wang et al., 2008]. In the scope of his master thesis [Kraft, 2021], Louis Kraft evaluated

the applicability of PenguiN for transcriptomic data under my supervision, and compared the

obtained assemblies with the state-of-the-art transcriptome de novo assembler Trinity [Grabherr

et al., 2011]. Even though PenguiN could not outperform Trinity, his results suggest that

PenguiN in its native version performs almost as good as Trinity in terms of sensitivity, precision,

and minimum fraction identity and revealed similar patterns in the BUSCO [Simão et al., 2015]

scores. However, PenguiN produced much more redundancy and Trinity generated significant

2.6. Conclusion 75

longer contigs on average. Some algorithmic adaptations to further improve the assembly were

considered, but could not make a significant difference on the transcriptomic data yet. Especially,

it stays questionable if the misassemblies in transcriptomic data, triggered by common sequences,

can be avoided in PenguiN’s assembly strategy. However, to provide a reasonable competitor to

Trinity in practice, PenguiN would also need to provide isoform information for the assembled

transcripts allowing for the differential gene expression analysis.

Assemble ancient metagenomic samples. Another application of PenguiN that is currently

considered is the assembly of environmental ancient DNA (aDNA) samples. Assembling ancient

DNA is especially challenging due to the degeneration of the DNA sequences over time that re-

sults in short and damaged fragments. Here, an overlap-based assembler can have an advantage,

as mismatches in the overlap region can be accounted for. Antonio Fernandez-Guerra’s group

at the Globe Institute / University of Copenhagen has recently started to utilize PenguiN in

their pipeline for the assembly of ancient DNA samples. They have assembled data from dif-

ferent environments, ages, and read lengths, some published others unpublished. The samples

are from permafrost [Wang et al., 2021], marine sediments, dental calculus, and chewing gum

[Jensen et al., 2019]. The ages span from the oldest permafrost samples from Greenland which

are 2M years old to the youngest which are 1000 years old. The shortest read lengths have

been ∼28nt while the majority of them have a modal length ∼50nt. They assembled the data

using Megahit and PenguiN (utilizing spaced k -mers and a lower sequence-identity threshold

in the guided stage, -k nucl:22,aa:7, --spaced-kmer-pattern nucl:””,aa:110111011, --min-seq-id

nucl:1.0,aa:0.9). Afterwards, they dereplicate the contigs with MMseqs2 and carefully check for

chimeras (intra-genomic and inter-genomic). They observed that PenguiN shows higher per-

formance in discovering the ancient fraction, whereas Megahit tends to recover what would be

the “living fraction”. Thereby, they see that both methods make mistakes, but these can be

controlled within their pipeline. The results are not yet published, but a publication is currently

in preparation.

2.6. Conclusion

Taken all together, my doctoral research showed that assembling viral genomes from metage-

nomic samples is challenging, but also demonstrated that the approach presented in this chapter

can overcome the major drawbacks of both, (general) metagenomic and viral specific assemblers.

PenguiN assembles significantly longer viral contigs and more complete viral genomes from com-

plex samples than existing assembly tools in a reasonable time. It overcomes the variation loss in

metagenomic de Bruijn graph assemblers and deals with the size and complexity of metagenomic

samples much better than overlap-based viral specific assemblers. Moreover, it is competitive

to the existing metagenomic assembly tools for more distantly related viral genomes and out-

performs them for more closely related genomes, distinguishing even very similar sequences.

Thereby, it can also reconstruct genomes of low frequency. Its main advantage seems to be

76 2.6. Conclusion

the two level assembly approach combined with the greedy iterative assembly strategy and the

all-against-all full-read overlap computation. Thereby, especially the protein-guided assembly

stage allows for a simplification of the assembly problem itself: (1) genomes that already differ

on amino acid level do not have to be compared on the longer and therefore more computation-

ally expensive nucleotide sequences, and (2) at the same time, single nucleotide mutations in

the coding regions, which do not change the amino acid sequence significantly (synonymous or

conservative mutations), do not confuse the assembly process. Additionally, Penguin’s full-read

overlap based approach allows it to utilize all information encoded in a read. It thereby has

an advantage over de Bruijn graph assemblers, which split reads into k -mers when constructing

the graph. PenguiN can instead utilize the co-occurence of SNPs within one read-length to

distinguish closely related variants. Consequently, PenguiN can assemble many more complete

viral genomes than the tested de Bruijn graph assemblers, even on highly complex datasets of

thousands of closely related viral genomes.

Thus, I hope PenguiN can help to recover previously uncharacterized viruses and viral diversity

in a variety of environments in future studies and therefore help to expand our limited knowledge

of viruses (especially phages) occurring in nature. Getting to know the genomes is thereby a

key step on the way to understand the effect of the viral component in microbial communities

and can help to improve upon environmental models and understanding virus-host interactions

for a variety of ecosystem ranging from geochemical cycling to human health. Further, it has

the potential to discover newly emerging viruses.

3. Sequencing error correction based on spaced

k-mer count profiles

During the development of the PenguiN assembler, which I introduced in the previous chapter

(see chapter 2), I realized that sequencing errors can sometimes hamper the assembler in finding

overlaps between reads or read and contigs. This seems to be especially the case if a region is

only sparsely covered, and the read overlaps are therefore small. Sequencing errors could then

lead to overlaps being overlooked if no matching k -mers can be found, or ignored if they do not

pass the sequence identity threshold. This becomes even more problematic, as sequencing errors

accumulate at the 3’ end of reads [Stoler and Nekrutenko, 2021]. In highly covered regions

this is obviously less problematic as the read overlaps usually become long enough so that

enough correct position can compensate for sequencing errors. However, I argue that also these

can benefit from cleaner overlap as a stronger sequence identity threshold can be chosen. In

addition, the quality of the final contigs can be improved if fewer errors are included. Currently,

PenguiN does not have its own logic to avoid integrating sequencing errors. In this chapter,

I propose CoCo (Consensus Correction), a new sequencing error correction tool, exploring

the discontinuity in spaced k -mer frequencies along sequencing reads to identify and correct

sequencing errors. Due to the work outlined in this chapter, CoCo can be applied pre-assembly

to PenguiN and helps to assemble more contiguous contigs due to cleaner read overlaps and can

help to reach better contig quality. CoCo is not yet published, but a manuscript is currently in

preparation for the publication subsequent to this thesis. Thereby, parts of the following text

and figures will be included.

In the following, I first introduce the algorithm and the underlying idea, then I outline the

details of the implementation including the underlying data structure to efficiently store spaced

k -mer counts. Afterwards, I show the results on two simulated datasets and illustrate how

CoCo impacts PenguiN’s assembly. Finally, I discuss the results in a broader context and give

a perspective of the further development that remains to be done.

78 3.1. Algorithm

3.1. Algorithm

3.1.1. Terminology and Notation

For a given sequence S of length L = |S| over an alphabet A, a substring S[i] denotes the i-th

element in S and S[i..j] with 0 ≤ i ≤ j ≤ L − 1 the contiguous substring of S from i to j. In

particular, a substring of S of length k, denoted by S[i..i+k−1] for 0 ≤ i < L−k+1, is termed

k -mer. Analogously, a spaced k -mer is a non-contiguous substring of S of length k following a

binary pattern P with P ∈ {0, 1}ℓ having exactly k many ‘1’. Thereby, a ‘1’ in the pattern P

is called an informative position, and a ‘0’ is a non-informative position. We say that a spaced

k -mer Ki with respect to some pattern P occurs in a sequence S at position i if Ki = S[i+k−1]

for all informative positions k of P . Whereas, the corresponding continuous substring of length

ℓ, is called ℓ-mer. The number of informative positions in a pattern P is its weight, ℓ is its

length.

As by definition, the spaced k -mer of S respectively to pattern P only contains the letters at the

informative positions, two different substrings of length ℓ can lead to the same spaced k -mer.

However, if the ℓ-mers differ at an informative position also the corresponding spaced k -mers

differ.

For example, for two sequences S1 and S2 (shown below), which differ at position 7, and a spaced

pattern P = 1101011 the spaced k -mer starting at position 3 in S1 is the same as the spaced

k -mer starting at position 3 in S2.

Whereas, the spaced k -mer starting at position 4 is affected by the difference, as the difference

is at an informative position.

This property I use in CoCo to identify sequencing errors (see section 3.1.2).

For a set of sequences, one can determine the frequency of a spaced k -mer over all sequences,

and therefore obtain a count value count(K) for each spaced k -mer K existing in the sequence

set. For a k -mer K that does not occur in the set of sequences, I define count(K) = 0.

3.1. Algorithm 79

3.1.2. Spaced k-mer count profiles

Figure 3.1.: Spaced k-mer count profile. Example profile for a sequence of length 150 and a spaced
k -mer pattern of length 41 with weight 32, P = 11110111111011011101010111011011111101111. The
error position located at position 94 (red circle) leads to a deviation in the count values of all spaced
k -mers overlapping that position with an informative position, but not for the ones that overlap the error
with a non-informative position.

Based on the counts of the spaced k -mers existing in a set of sequences, it is possible to determine

for each position in a sequence how often the k -mer starting at that position occurs in the entire

set of sequences. This can be visualized with a spaced k -mer count profile (see Fig. 3.1). Each

data point in the count profile for sequence S corresponds to count(Ki) with Ki being the spaced

k -mer starting at position i in S. Obviously, the length of the spaced k -mer count profile is ℓ

positions shorter than the sequence itself, as the last spaced k -mer of S is K|S|−ℓ.

If we consider a set of reads obtained from a sequencing experiment, we expect to have fully

or partially overlapping sequences, correlating with the sequencing coverage. The count values

of the spaced k -mers in a read should therefore reflect the local coverage of the genomic region

this read originated from. Sequencing errors, however, do not follow the random sampling

process but introduce new k -mers. Consequently, the frequency associated with these k -mers is

lower compared to the true k -mers from the genome and sequencing errors can be identified as

discrepancies in the count profiles.

Different error types would thereby lead to different deviations in the count profiles, see Fig. 3.2.

A single substitution error would affect k spaced k -mer counts in the range of ℓ positions. If a

spaced k -mer contains the sequencing error at an informative position, it is affected, whereas a k -

mer containing the sequencing error at a non-informative position is not affected. Consequently,

the drop in the spaced k -mer count profile follows the spaced pattern P . If the error is unique,

it will drop to 1. However, if the sequencing error is an insertion, each spaced k -mer overlapping

the respective error position is affected, independent of informative or non-informative positions.

This is because each nucleotide after the error position in the respective ℓ-mer is offset by 1

compared to the true sequence. Consequently, ℓ count values are affected, and the count profile

shows a continuous drop of length ℓ. The same applies to a single deletion error. Each spaced

k -mer overlapping with the deleted position is partly offset by 1. The first spaced k -mer, which is

not affected, is the one that starts directly after the deleted position. Therefore, a single deletion

80 3.1. Algorithm

Figure 3.2.: Deviations in the count profile depending on the error type. Given the sequence
S =AAGCCCAATAAACCACTCTGACTGGCCGAA of length 30 with a mean coverage of 30 and a
spaced k -mer pattern P = 1101011 of length 7 and weight 5, different variants of the sequence at position
15 leads to different count profiles. From left to right: a single substitution error, leading to a drop
following the spaced k -mer pattern; an insertion, leading to a continuous drop of length ℓ = 7; and a
deletion error, leading to a continuous drop of length ℓ− 1 = 6.

error will affect ℓ − 1 contiguous counts in the count profile. For multiple insertion errors in a

row, ℓ + n counts are affected, where n is the length of the insertion. Further deviations from

this pattern arise when an indel affects a repeated nucleotide.

Using k -mers to identify sequencing errors is quite common [Alic et al., 2016]. However, here we

use the discrepancy along reads as a main source of information. This enables for a correction

strategy based on the local k -mer frequency instead of a global threshold obtained from a k -mer

spectrum analysis. A similar approach is also implemented in Pollux [Marinier et al., 2015] using

continuous k -mers. However, the use of spaced k -mers allows for an error correction independent

of errors in the immediate proximity (see section 3.1.2.2) and a direct distinction of the different

types of errors (substitution, deletion, and insertion), in most cases.

3.1.2.1. Maximized spaced k-mer count profiles

As described above, a single substitution error leads to a drop in the count profile following the

spaced k -mer pattern P . We expect each spaced k -mer that overlaps the error position with an

informative position to have a low count. Using a maximization of all count values associated

with spaced k -mers overlapping a certain position i in sequence S

maxcount(i) = max
i−ℓ<j≤i

(count(Kj)|Kj has an informative position at i)

will therefore raise the count value of all affected positions to the neighboring level, except for the

error position itself. This allows to identify the erroneous position directly from the maximized

count profile. See Fig. 3.3.

3.1.2.2. Advantages of spaced k-mers

The main advantage of spaced k -mers over contiguous k -mers comes when correcting multiple

sequencing errors in close proximity. The existence of more than one error within a range of k

3.1. Algorithm 81

Figure 3.3.: Maximized spaced k-mer count profile corresponding to the spaced k -mer count profile
shown in Fig. 3.1. The error at position 94 can be identified directly.

positions in the sequencing read would lead to a completely merged drop in the count profile

when using contiguous k -mers, making it difficult to find the erroneous positions and to choose

k -mers for the correction evaluation. Multiple consecutive k -mers would always overlap both

sequencing errors, and a single substitution correction would never be able to correct them.

Using spaced k -mers instead allows for a much higher resolution of the erroneous positions.

Usually, spaced k -mers exist that have a non-informative position at both errors, as well as

k -mers that only have an informative position at one of the error positions. This observation

allows for (i) obtaining the true local coverage, (ii) finding the exact error positions with high

accuracy and (iii) allowing for an independent error correction due to the selection of appropriate

evaluation k -mers (see next section and Fig. 3.4).

3.1.3. Error correction strategy

As described above, potential erroneous positions can be identified as discontinuities in the

spaced k -mer count profiles. In CoCo, I use the maximized spaced k -mer count profiles to

identify potential substitution errors as drops and choose spaced k -mers around those positions

for the error correction.

Thereby, I define a spaced k -mer Ki as potentially erroneous if the count is smaller than 1% of

the maximal count in the immediate neighborhood (window of length ℓ centered around i) plus

a small pseudocount (default: 1). Consequently, different counts are being seen as erroneous

depending on the count values in the neighborhood. For example, for a neighborhood count of

5 a count of 1 would be seen as potentially erroneous, whereas for a neighborhood count of 100

all positions with counts ≤ 2 would be marked as potential errors, and for a neighborhood of

1000 counts ≤ 11 would be considered as potential errors. This leads to a threshold adapted

to the local coverage within the read, instead of a globally set threshold. For reads originating

from lower coverage genomes the threshold is dominated by the pseudo count, whereas in high

coverage regions or in reads occurring from more abundant genomes the percent criterion is

dominating. Thus, this strategy allows being aware of the wide variety of abundances occurring

82 3.1. Algorithm

in metagenomic samples and to adjust the error correction accordingly. As an exception, I

never mark positions as errors within a neighborhood count < 5 (lowerbound criterion), as the

absolute count difference is only very small and there is high probability that the count value is

actually correct for this region.

For a certain read, I first pre-calculate the neighborhood counts (as defined above) and derive

from these the neighborhood-specific threshold for the spaced k -mer count at each position in

the read. The error correction procedure is then organized iteratively to process different kinds

of errors, and an overview is given in Algorithm 3. First, I scan for substitution errors and

try to correct them with high confidence using a very conservative two-side correction (lines

7-19). Afterwards, I scan for indel errors as well (lines 20-23). This order reflects the error

type distribution in Illumina sequencing, where substitutions errors are the dominating type

[Schirmer et al., 2016]. During the indel correction, I also consider substitution errors on the

edges of a sequencing read (ℓ positions from the beginning/end) as they might have led to drops

in the count profiles that differ from the expected pattern for a substitution error. For example,

a single substitution error in the first few positions of a read might still show a continuous drop

in the maximized count profile when no spaced k -mer exists that covers the previous positions,

but not the error position itself. Thereby, both indel and “edge substitution” correction is

performed using again a two-sided conservative correction.

For the first round of substitution error correction, I scan the whole maximized profile for

positions with maxcount ≤ threshold. These positions are marked as potential errors and

stored in an array. Additionally, all positions, which are affected by an erroneous position, i.e.

the start positions of all k -mers that overlap the error position with an informative position, are

marked to be affected by this error. This is represented by a bit vector for each position, where

a set bit at a position j means that error j is overlapped by the k -mer starting at this position.

This allows for an efficient selection of evaluation k -mers for the subsequent correction step

after all potential errors in the read have been marked. I iterate over the vector of potential

erroneous positions: For each such position N , the two spaced k -mers Kl and Kr are identified

that (i) are affected by the error to be corrected, (ii) are not affected by any other error and

(iii) have a maximal distance of their starting positions in the read. These criteria were selected

as evaluating all k -mers would be inefficient, whereas a single k -mer might not be informative

enough to make an accurate correction decision. As a compromise, I choose the two k -mers for

the correction evaluation that carry as much information from the remaining read as possible,

while being independent of other errors. In the simplest case, Kl and Kr will be the k -mers that

have the erroneous position as the first (leftmost), respectively the last (rightmost), nucleotide.

Depending on the distance between errors and the spaced pattern, however, one or both of these

k -mers might overlap another error and the next one has to be selected to ensure independence,

see Fig. 3.4. A similar strategy to choose a leftmost and rightmost k -mer was also applied in

Musket, but it does not check for independence of other errors [Liu et al., 2013].

3.1. Algorithm 83

1 lookup ← generate spaced k -mer lookup table
2 for r in reads do
3 p ← generate count profile
4 repeat
5 mp ← maximize count profile
6 np ← pre-calculate neighborhood thresholds
7 errors ← find drops in mp

/* potential substitution errors */

8 for N in errors do
9 affected ← mark all positions affected by N

10 end
11 for N in errors do
12 choose non affected evaluation k -mers Kl and Kr

13 explore possible substitution corrections at N
14 if valid(correction) and unique (correction) then
15 apply(correction)
16 end

17 end
18 p ← update count profile

19 until corrections have been performed
20 errors2 ← find drops in p

/* potential indel or edge substitution errors */

21 for N in errors2 do
22 do indel correction and substitution edge correction

(details listed in the main text)
23 end
24 if number of correction > maxNumCorr then
25 revert corrections
26 end

27 end

Algorithm 3: Pseudocode of the iterative error correc-
tion strategy implemented in CoCo.

As the evaluation k -mers are independent of other sequencing errors, their counts should improve

when the sequencing error is corrected successfully. I locate the nucleotide position associated

with the potential error in Kl and Kr and replace the associated nucleotide with the three other

possible ones. Afterwards, I evaluate if the count values associated with K ′
l and K ′

r improved,

i.e. the new count value must no longer meet the criterion for an incorrect position. If both

new count values of K ′
l and K ′

r rise over the error threshold, I consider the replacement as a

possible correction. However, if multiple corrections for the same error position achieve this, no

correction is performed. The decision to only make unique corrections avoids over-correction

(false positives) and was made in the context of using CoCo as a preprocessing tool for PenguiN.

It leads to a very conservative strategy that might miss some possible corrections (less sensitive),

but should also minimize the risk to make spurious corrections. This is especially relevant if

we encounter a position that could be changed to one strain or the other. In the context of

PenguiN’s assembly strategy, it is better to have a sequencing error than to accidentally create

84 3.1. Algorithm

Figure 3.4.: Choosing evaluation k-mers in the case of errors in close proximity. In the simplest
case, CoCo chooses the left- and rightmost k -mer that overlaps the error for the correction evaluation.
However, if one of the spaced k -mer overlaps another error with an informative position, it is discarded
and CoCo shifts its starting position to find the next k -mer that overlaps the error to correct with an
informative position but has a non-informative position at all other error positions in close proximity.

a read that is a chimera between different strains and would then lead to misassembled contigs

(see section 3.4). If a unique correction is found, the correction is applied by replacing the

nucleotide in the sequence.

In principle, it is possible that for a certain error position no two distinct spaced k -mers can

be found, which satisfy the conditions for the evaluation k -mers due to a very high number of

errors in close proximity. Therefore, I perform the correction iteratively until the number of

corrected errors matches the number of identified errors or no more confident corrections can be

performed. However, in practice, I saw that usually one round is sufficient.

Whereas substitution errors are the dominating type of sequencing errors in Illumina sequencing,

a small fraction of indel errors also need to be accounted for. However, due to the much smaller

probability to have an indel error, the indel correction in CoCo was much more simplified. I

just scan the “normal” count profile for drops and distinguish three cases: (1) a drop of length

ℓ or ℓ − 1 and boundaries on both sides, (2) a drop of length ≤ ℓ without a left boundary,

and (3) without a right boundary. Thereby, a drop starts when the count first drops below the

local error threshold and ends when a count value is above it. I only consider single indels, as

otherwise the number of possible corrections grows exponentially. So, if a drop is larger than ℓ,

I do not perform any correction. In case (1), with i being the last positions with a low count,

I consider an insertion error at position i and, if the drop is exactly of length ℓ − 1, a possible

deletion error between i and i+ 1. For the deletion correction, I explore corrections by inserting

a nucleotide between i and i + 1 and choose the leftmost and rightmost spaced k -mer that

contain the newly inserted nucleotide as evaluation k -mers. For an insertion error, I delete the

nucleotide at position i and subsequently evaluate using three k -mers: The left- and rightmost

k -mers that contain the position before and after the deleted nucleotide and a third one that is

centered around the deleted position. I found choosing the third k -mer to be necessary in this

case to consider the fact that the correction of an insertion error that has introduced the same

base again (e.g. an ‘A’ after an ‘A’), can only fully be evaluated with a k -mer that carries the

information context from both sides.

3.2. Implementation 85

In cases (2) and (3) the drop is only partly existent at the edge of the count profile, it could

either be the result of an indel error or hint to a single substitution error close to the edges.

Therefore, I first try a substitution correction on the last drop position before trying to apply

indel corrections (as described above). For simplicity, I assume that no other errors are in close

proximity any more (most substitution errors should already be fixed from the first step) and

choose the evaluation spaced k -mers accordingly.

3.2. Implementation

I implemented the described algorithm in a new software tool, called CoCo. It consists of two

parts: First, it generates a spaced k -mer count lookup, storing the frequencies over the whole set

of sequences. Second, it iterates over each sequence of the set linearly, builds the count profile

using the count lookup table and applies the error correction procedure. The whole workflow of

CoCo is depicted in Fig. 3.5. A crucial step thereby is the efficient storage of the spaced k -mers

and their counts.

The default pattern in CoCo is P = 11110111111011011101010111011011111101111. The length

of P is 41 and the weight is 32. I choose the length that long to avoid common short repeats,

which might otherwise confound the spaced k -mer count profiles and the weight as k=32 as

it is the longest k that can be represented in a 64-bit word. A smaller number of informative

positions would be less sensitive, and a higher number would not fit into a 64-bit word. I expect

that the perfect choice depends on the genomic variation represented in the dataset as well as

on the number and distribution of sequencing errors. The distribution of informative and non-

informative positions in the pattern was selected for no specific reason as I do not expect the

pattern itself to have much influence on the correction, as long as the non-informative positions

are spread approximately equally (this was confirmed by the analyses done by Anton Farr during

his internship project in our group). However, the inversion symmetry in the pattern was chosen

on purpose, as it allows for a uniform handling of the reverse complements. For a symmetric

pattern, the reverse complement of a sequence would simply lead to the reverse complement

spaced k -mers, which is not true for a non-symmetric spaced pattern. So a k -mer and its reverse

complement can be considered as the same object. Each time when a spaced k -mer is considered

(when counting, accessing, ...) the canonical representation is used, i.e. of each k -mer the reverse

complement is computed and between the two, the one with the lower index is used. For faster

computation of the reverse complement, I use the Streaming SIMD Extensions (SSE) instruction

set in CoCo, if available.

3.2.1. Efficient storage of spaced k-mer counts

The generation of spaced k -mer count profiles requires the storage of spaced k -mers and their

counts over a whole set of sequencing reads. However, due to the large size and complexity of

metagenomic samples, the number of k -mers and frequencies is usually too large to be hold in the

86 3.2. Implementation

Figure 3.5.: CoCo workflow. As input, CoCo gets the sequencing reads (sequencing errors are marked
with a red cross) and a pre-computed ℓ-mer count table generated by DSK. It then proceeds in multiple
steps. First: transform contiguous ℓ-mers into spaced k -mers and store them together with their counts
in an efficient lookup table (upper part). Second (lower part): parse sequencing file and generate for each
sequence the spaced k -mer count profile using the count lookup table (1) and apply the error correction
procedure (2-4). Here, only the substitution error correction is shown.

main memory of a modern computer, if a simple lookup of k -mer indices and their counts would

be used. Further, the high number of lookups to build the spaced k -mer count profiles for each

sequence (approximately one access per sequence position) requires the data structure (lookup

table) that holds the counts of all spaced k -mers to be very space efficient while providing very

fast access.

The data structure I use in CoCo consists of two tables, which can be held in memory: the

index grid table and the offset table. For memory efficiency, I compress nucleotide information

and represent them with a two-bit alphabet (A:00, C:01, T:10, G:11). Based on the two-bit

alphabet, spaced k -mers can be represented with 2k bits. However, I only store the last I bits

(suffices) explicitly. They are stored in the offset table – grouped by common prefixes - alongside

3.2. Implementation 87

with the count associated with the spaced k -mer. The remaining p bits (prefix of the spaced

k -mer) are only stored implicitly. In the index grid table, I store the starting positions for the

common prefix blocks in the offset table, indexed by the first p bits. Thereby, no information

is lost, as the full spaced k -mer can be reconstructed by k -mer = (p << I)|(last I bits). See

Fig. 3.5 for visual demonstration.

In the default configuration with k = 32, the spaced k -mer is divided into a 30 bit prefix and 34

bit suffix. This leads to a fixed memory requirement of 8 GB for the index table (230 entries) plus

5 bytes per spaced k -mer and 2-4 bytes for its count. The complete memory requirement to store

the count of M spaced k -mers would then be 8 GB +M · 9 B. This enables storing the complete

spaced k -mer count information of samples with billions of reads in memory (< 128 GB), while

ensuring fast access, as only short blocks of suffixes have to be searched for the correct entry.

As (contiguous) k -mer counting is essential in many bioinformatics applications, a number of

ready-to-use tools exist already, which are highly optimized, e.g. Jellyfish [Marçais and Kings-

ford, 2011], DSK [Rizk et al., 2013], KMC3 [Kokot et al., 2017], etc. Therefore, I decided to first

count contiguous 41-mers with an external tool and use them as input for CoCo and internally

translate them into the canonical spaced 32-mers. At the time of writing, CoCo supports the

hdf5 file format as created by DSK [Rizk et al., 2013].

In the first step, CoCo reads the precomputed contiguous 41-mers and their counts from a

hdf5 file using the gatb-core library [Drezen et al., 2014] and sets up the index grid table by

translating the contiguous ℓ-mers to spaced k -mers on the fly. It determines for each (prefix)

block the number of suffixes to store and saves each block’s starting position in the offset table

into the index grid table. Then, in a second iteration, it scans the hdf5 file again to fill the

offset table. Based on the prefix, CoCo determines for each spaced k -mer the correct block in

the offset table and stores the spaced k -mer suffix in the offset table. As different contiguous

41-mers can also lead to the same spaced k -mer (as shown in section 3.1.1), I check if the suffix

of the spaced k -mer already exists in the selected block. If so, I do not add a new entry in the

offset table, but only sum up the count values. If not, a new suffix is added in the offset table

and the corresponding pointer in the index table is shifted by one. So the pointers in the index

grid table always point to the next free space in the corresponding block in the offset table.

After completely scanning the hdf5 file and filling the tables, I reset the pointers to the starts

of the blocks.

3.2.2. Processing sequencing reads

In the second step, CoCo processes the sequencing reads linearly. For each sequencing read, it

computes the corresponding spaced k -mer count profile and applies the error correction proce-

dure individually (lower part of Fig. 3.5). As input, CoCo accepts sequencing reads in FASTA

or FASTQ format (paired-end and single). The sequencing reads are parsed one by one us-

ing the kseq parser from Heng Li [Li, 2009] and the kseq wrapper functionality from MMseqs2

[Steinegger and Söding, 2017], which enables processing of compressed files. Then, CoCo iter-

88 3.2. Implementation

ates linearly over the sequence. Thereby, it splits the sequence into 41-mers and obtains the

corresponding spaced 32-mers using the specified spaced pattern. Then it stores the associated

count from the lookup table in an array, representing the spaced k -mer count profile. If a se-

quence contains an ‘N’ or any other wildcard symbol, true spaced k -mers can still be obtained,

whenever the ‘N’ affects a non-informative position. If the ‘N’ meets an informative position,

there is no valid spaced k -mer representation according to the two-bit alphabet representation.

However, an explicit representation is not necessary as there will also be no associated count

value stored in the lookup table (DSK does not report ‘N’ containing 41-mers). In this case, the

count values stored in the spaced k -mer count profile will simply be set to zero for these spaced

k -mers. Consequently, an ‘N’ leads to the same drop pattern as a substitution error, but with

counts of zero. CoCo will try to replace the ‘N’ with either A, C, G, or T in the subsequent

error correction procedure.

Next, CoCo applies the error correction procedure itself, following the strategy described in

section 3.1.3. It generates the maximized count profile and scans it for discrepancies to obtain

potential substitution error positions. It selects the evaluation k -mers according to the strategy

described on page 82 and tries to correct the substitution errors by improving the count above

the neighborhood-specific error threshold. If a valid substitution is found and if it’s the only

one for that position, the correction is applied. If quality strings are given, additionally also the

quality score is updated as the average of the quality scores adjacent to the corrected position.

When the substitution error correction is completed, CoCo updates the count profile and applies

the indel and edge substitution correction to it, as described above. Finally, one last attempt

to correct remaining substitution errors is performed. The strategy thereby is the same as the

previously described substitution error correction, but allows for the case that Kl = Kr, i.e.

only using one evaluation k -mer when it is not possible to find two independent ones (one-sided

correction). These corrections are much less confident, but correspond to edge cases. Note,

independent on the stage, all corrections are only performed if there is one unique alternative

nucleotide at a certain position and discarded otherwise.

In the end, the sequence is written to the output file using the same mode (FASTA or FASTQ)

in that the input was provided. Then, the next sequencing read is processed. During the whole

process, CoCo keeps track of the number of corrections performed to prevent over-correction. If

a read underwent too many corrections (by default more than 10), the changes are reverted and

the original sequence is output. Additionally, the statistics about corrections performed is also

gathered globally and provided to the user in the end.

3.2.3. Further modules

CoCo is built very modular with a high level of abstraction. This allows for a simple replacement

of individual steps, and therefore to build functionality other than the error correction procedure

on top of the count profiles. During my doctoral research, I build further functionality for

abundance estimation and to filter chimeric reads, as well as two further developer features to

3.3. Test Results 89

output all spaced k -mer count profiles and to read out the spaced k -mer count table. However,

these modules require further benchmarking yet.

3.2.4. Code availability

CoCo is implemented in C++ and the source code is freely available under the GPLv3-license.

It can be downloaded from GitHub at https://github.com/soedinglab/CoCo. CoCo makes use

of the gatb-core library [Drezen et al., 2014] and the kseq parser [Li, 2009]. The version used

here for the benchmarks is GitHub commit 2737d13. To generate the pre-computed count table

the counting software DSK [Rizk et al., 2013] has to be called beforehand. The DSK version

used here for the benchmarks is GitHub commit 68b79e4 downloaded from https://github.com/

GATB/dsk.

dsk -file raw1.fastq,raw2.fastq -kmer-size 41 -abundance-min 1 \

-nb-cores 16 -out dsk.h5 -out-tmp dsk-tmp -max-memory 8000

coco correction -1 raw1.fastq -2 raw2.fastq --counts dsk.h5 \

--outdir OUTDIR --outprefix OUTPREFIX

A documentation for CoCo can be found in section A.2 in the appendix.

3.3. Test Results

As the sequencing error correction approach in CoCo was originally designed and implemented

in the context of the development of the de novo assembler PenguiN (see chapter 2), no com-

prehensive sequencing error correction benchmark was performed for CoCo as a standalone tool

yet. However, in the following I present the results from the proof of concept analysis on reads

simulated from a single viral genome and show some preliminary results for a mixture of two

genomes, hinting at the potential of CoCo when compared to other tools.

For the data simulation I used WgSim [Li, 2011] with slight modifications compared to the

customized version used in [Mitchell et al., 2020], see WgSim fork available at https://github.

com/AnnSeidel/wgsim. In this version, WgSim also provides the error-free reads (true reads, a

feature added by Mitchell et al.) and introduces random sequencing errors instead of recurrent

ones. Having the true reads avoids the need for a mapping step for the evaluation of the

corrected reads. Mapping the raw and the corrected reads each against the reference is common

to evaluate error correction tools [Salmela and Schröder, 2011; Schröder et al., 2009; Yang et al.,

2013, 2010], but can also be misleading. A read that originally stems from a genome A and

is erroneously corrected in a way that it maps afterwards to a closely related genome B would

be seen as correct and therefore lead to an incorrect assessment of accuracy. This becomes

especially problematic in the presence of multiple strains. Having the true reads instead allows

https://github.com/soedinglab/CoCo
https://github.com/GATB/dsk
https://github.com/GATB/dsk
https://github.com/AnnSeidel/wgsim
https://github.com/AnnSeidel/wgsim

90 3.3. Test Results

for a direct comparison between raw reads (set of simulated reads with sequencing errors), true

reads (set of reads with correct bases) and corrected reads (output of the correction tool to

evaluate) and therefore for a more accurate and robust evaluation [Mitchell et al., 2020]. For the

experiments presented here, I used the framework provided by Mitchell et al. that classifies each

base into categories of true negative (TN), true positive (TP), false negative (FN), and false

positive (FP) or trimmed. Thereby, it uses a multiple sequence alignment between the raw, true

and corrected version of a read. TP describes correctly corrected error positions, FP stands for

newly introduced errors, FN for non-fixed or incorrectly fixed errors and TN for an unaffected

error-free base. The extra category trimmed contains the bases that were removed from the ends

of sequencing reads by the error correction tool. All experiments were performed on the GWDG

HPC cluster (www.gwdg.de) using individual nodes with two Intel Xeon E5-2640v3 processors

at 2.6 GHz totaling 16 cores and 128 GB RAM.

3.3.1. Validation on simulated data

To provide a simple proof of concept analysis for the error correction strategy implemented in

CoCo, I used data from a single rhinovirus genome (MN749156.1) and analyzed the spaced

k -mer frequencies before and after the correction with CoCo (see Fig. 3.6). Thereby, I applied

CoCo with default settings, meaning a spaced k -mer pattern with length 41 and weight 32 with

the pattern as shown above. I simulated one dataset with a mean coverage of 30 and another

one with a mean coverage of 1000, each with a sequencing error rate of 0.1% (only substitution

errors).

Despite the small error rate, I obtained a large number of unique or near unique spaced k -mers

before the correction, as can be seen in Fig. 3.6. This can be explained by the fact that each

error introduces (approximately) k artificial k -mers. For the 30x coverage dataset, I obtained

4633 spaced k -mers that have a frequency of 1-4, for the 1000x coverage I obtained 145 620

(the extreme left side of the graph). After correction, for both datasets, the number of unique

and near-unique spaced k -mers massively decreased (first peak basically disappeared) and the

average spaced k -mer count increased (slight shift to the right for the true spaced k -mers). This

illustrates that the process by which an error had turned frequent k -mers into infrequent ones

is successfully reversed by CoCo’s correction.

For the high coverage dataset only two spaced k -mers with a frequency lower or equal to 4

remain, for the low coverage dataset 88 remain. However, evaluating the set of CoCo corrected

reads with the evaluation pipeline from Mitchell et al. against the true reads obtained from the

customized WgSim simulation, showed that none of them was an overlooked sequencing error.

Instead, CoCo correctly distinguished between artificial k -mers with low counts resulting from

sequencing errors and true k -mers with low counts, resulting from the random sampling process

of read origins.

Next, I also analyzed CoCo’s strategy in more detail, inspecting the spaced k -mer count profiles

before, during and after the correction runs. Fig. 3.7 visualizes the spaced k -mer count profiles

www.gwdg.de

3.3. Test Results 91

(a)

(b)

Figure 3.6.: Spaced k-mer count histograms for the single rhinovirus dataset simulated at
different coverage values. The x-axis refers to the spaced k -mer count, i.e. it shows the number of
times a spaced k -mer occurs in the data, the y-axis refers to the frequency this count is observed. (a) shows
the distribution for the 30x coverage dataset for the raw reads (left) and for the CoCo corrected reads
(right). The first peak results from unique or near-unique spaced k -mers, which result from sequencing
errors. The main peak of the bell shape occurs around x=21. After CoCo’s correction, the first extreme
peak disappeared as the number of unique and near-unique spaced k -mers massively decreased. The
main peak shifts slightly to the right (x=22), as each now corrected spaced k -mer increases the count of
the true ones by one. (b) shows the distribution for the 1000x coverage dataset for the raw reads (left)
and for the CoCo corrected reads (right). Also here the first extreme peak on the raw reads disappeared
after CoCo’s correction and the mean of the bell-shape shifts from x=715 to x=738.

92 3.3. Test Results

Figure 3.7.: Spaced k-mer count profiles from the 30x coverage dataset of a single rhinovirus.
Two count profiles from (a) a read with a single substitution error and (b) a read with two errors in
close proximity. The top row shows the “raw” count profile, as calculated using CoCo’s lookup table
before the correction. Significant deviations show that errors are present in the read. The orange line
in the middle row shows the maximized count profile, which CoCo calculates during its process, directly
revealing the positions to correct (red dots). The green line in the bottom row shows the count profile
of the read after CoCo’s correction. The previously observed significant deviations are now gone, hinting
at a successful correction.

for two examples from the 30x coverage dataset, a sequencing read containing a single sequencing

error (same profile as used above for the algorithm explanation) and a sequencing read containing

two nearby errors. This illustrates that the theoretical assumptions that have been made for

the algorithm are also visible in practice. The error positions can be identified directly from

the maximized count profile, allowing for an accurate correction which results in a count profile

without significant deviations after CoCo has processed the read.

Next, I increased the error rate during the simulation to 0.3%, 0.5% and 1%, respectively.

This obviously increased the total number of sequencing errors in the raw reads, as well as the

probability for multiple sequencing errors within one read. Whereas the 0.1% error rate, used

before, had led to reads with 0-2 errors, I observed reads with 0-4 errors for the error rate

of 0.3%, 0-5 errors for the error rate of 0.5% and reads with up to 7 errors for the 1% error

rate. The total number of reads with any error before the correction was approximately 13%,

36%, 53% and 76%, respectively. Applying CoCo on these data massively decreased the overall

number of sequencing errors and significantly increased the fraction of error-free reads across all

datasets. The results are presented in Fig. 3.8.

For the four datasets, the fraction of error-free reads increased from 87% to 100%, from 64% to

99%, from 47% to 97% and from 24% to 86%. Thereby, also the majority of reads with multiple

sequencing errors were successfully corrected.

3.3. Test Results 93

Figure 3.8.: Fractional occurrence of erroneous reads before and after the correction for
different simulated error rates. For all four error rates tested (0.1%, 0.3%, 0.5% and 1%) CoCo
massively increased the fraction of error-free reads (blue). Thereby, CoCo was also able to massively
reduce the fraction of reads with multiple errors. The slightly worse performance for the 1% error rate
dataset could probably be improved by choosing a spaced k -mer pattern with less densely packed 1s, i.e.
a decreased weight.

94 3.3. Test Results

3.3.2. Comparison with other methods

Next, I evaluated how CoCo performs on a mixture of genomes. I used an Escherichia phage

T4 genome (MT984581.1) and simulated reads from the original reference as well as from an

alternative reference, using WgSim’s internal polymorphism feature with -r 0.05 -R 0.15, i.e. a

divergence of 5% with a 15% fraction of indels.

To investigate thereby also the influence of the ratio between low and high abundant genome, I

simulated read sets with different coverage values and mixed them in four different ratios: 10:10,

10:50, 10:100, 10:500. Thereby, the first value always indicates the coverage of the mutated

reference genome and the second value the coverage simulated for the original reference. I

also tried the same ratios with higher absolute coverage values. However, higher values for the

coverage turned out to be very costly for the evaluation framework and were therefore finally

left out. All simulations were run with an error rate of 0.1% and created paired-end reads with

2x150 bp and an outer distance of 260 with a standard deviation of 20.

I compared the results of CoCo with those obtained from several other error correction tools

including Bcool (v1.0.0) [Limasset et al., 2020], BayesHammer (v3.15.2) [Nikolenko et al., 2013],

Fiona (v0.2.10) [Schulz et al., 2014], Musket (v1.1) [Liu et al., 2013] and Pollux (v1.0.2) [Marinier

et al., 2015].

As all of these programs use k -mers in some way, but have different restrictions to set the k -mer

size e.g. only odd or up to a specific k value, I tried different settings for a fair comparison,

except for Fiona, which adapts parameters depending on the data automatically [Schulz et al.,

2014]. However, the results for the different settings tried did not differ much. Therefore, I only

report the results for the default settings in the following. All tools were set to utilize all 16

cores, if they had a multi-threading option. On the 10:50 coverage dataset, BayesHammer did

not run successfully, instead ending with a segmentation fault. The exact cause could not be

determined, and therefore results for BayesHammer on this dataset are missing in the following.

A summary of the results can be found in Table 3.1. Thereby, sensitivity and precision were

calculated using the evaluation pipeline from Mitchell et al. [Mitchell et al., 2020]. They are

defined as followed:

Sensitivity =
TP

TP + FN
(3.1)

Precision =
TP

TP + FP
(3.2)

Further, I calculated the fraction of reads with any sequencing error as the number of reads with

at least one base that was classified as FN or FP, divided by the total number of reads.

All tools show high sensitivity values > 90% across all datasets. Fiona reaches the highest values

for the per-base sensitivity on all four datasets. However, the corrected read set obtained from

3.3. Test Results 95

Table 3.1.: Error correction results on the T4 phage mixture datasets.

(a) genome coverage 10:10

Tool
Reads with Error

(%)
Base Sensitivity

(%)
Base Precision

(%)
Time
(s)

Memory
(MB)

Original 13.86 - - - -

BayesHammer 3.61 93.86 77.45 4 796
Bcool 1.20 98.33 87.00 9 587
CoCo 0.69 96.15 97.61 21 8418
Fiona 27.68 99.00 14.13 109 794
Musket 1.31 98.92 84.75 1 85
Pollux 6.61 91.09 49.11 18 47

(b) genome coverage 10:50

Tool
Reads with Error

(%)
Base Sensitivity

(%)
Base Precision

(%)
Time
(s)

Memory
(MB)

Original 13.95 - - - -

BayesHammer - - - - -
Bcool 0.94 98.98 87.92 15 607
CoCo 0.51 96.89 98.96 39 8423
Fiona 13.83 99.43 15.93 140 842
Musket 0.49 98.86 95.44 3 92
Pollux 10.00 95.14 23.57 40 80

(c) genome coverage 10:100

Tool
Reads with Error

(%)
Base Sensitivity

(%)
Base Precision

(%)
Time
(s)

Memory
(MB)

Original 13.87 - - - -

BayesHammer 2.61 95.20 82.11 13 867
Bcool 0.64 98.83 91.96 19 528
CoCo 0.43 97.86 98.27 62 8426
Fiona 9.05 99.74 17.66 114 896
Musket 0.73 98.72 92.02 5 122
Pollux 6.98 96.03 27.60 47 116

(d) genome coverage 10:500

Tool
Reads with Error

(%)
Base Sensitivity

(%)
Base Precision

(%)
Time
(s)

Memory
(MB)

Original 13.9 - - - -

BayesHammer 1.40 95.50 91.79 46 1857
Bcool 0.40 99.04 94.94 21 694
CoCo 0.39 98.44 97.03 252 8439
Fiona 1.96 99.94 48.97 209 1301
Musket 0.41 98.86 95.88 13 231
Pollux 1.67 97.99 64.20 100 264

96 3.3. Test Results

Fiona still showed a high proportion of erroneous reads. On the 10:10 dataset, the fraction

of reads with errors after the correction was even higher than in the raw sequencing reads.

This is due to a high number of newly introduced errors (as is also reflected in the precision

value). Considering the sequencing reads in more detail showed that Fiona actually reverts the

differences between the two genomes and not only the sequencing errors (”strain flipping”) and

that these bases constitute a large fraction of its false positives. Similar, but to a less extent,

seems to apply for Pollux, the only other tool besides CoCo, which uses k -mer count profiles

along a read.

Notable is that in each of the experiments, CoCo had a significantly higher precision than all the

other tools tested. This is especially relevant, as a corrector should not introduce new errors.

CoCo constantly showed a precision that is 1-11 percent points higher than the next best tool.

Furthermore, CoCo was the best tool to generate completely error-free reads. It reaches the

lowest fraction on the 10:10, 10:100 and 10:500 mixtures and was close to the best on the 10:50

dataset.

Besides the correction evaluation, I also compared the performance of the tools in terms of

runtime and memory footprint. The results from Table 3.1 show that CoCo has a significantly

higher memory peak than the other tools tested. This is due to the index table, which always

occupies 8 GB of memory (see section 3.2.1), which clearly dominates CoCo’s memory consump-

tion here. As the dataset presented here is rather small, the theoretical advantage of this data

structure cannot be seen. However, it can be seen that CoCo scales well with the coverage value,

as its memory footprint does not increase across the datasets, while e.g. BayesHammer needs

∼ 1 GB more memory between the 10:10 and the 10:500 dataset. Therefore, it is likely that with

more complex data sets, the advantage of CoCo’s lookup table will become apparent. Moreover,

for small datasets, the use of the hash table instead of the lookup table could be considered

(discussed in section 3.4). CoCo (including the DSK counting step) was also slower than the

other tools tested, except Fiona. Thereby, the obvious bottleneck is the linear processing of

reads, as CoCo is not yet parallelized. However, the total run time was still small due to the

small size of the datasets and CoCo is not yet parallelized.

To quantify the overall performance of the error correction tools, I used the gain metric [Yang

et al., 2013, 2010]. It is a summary of sensitivity and precision, calculated by

Gain =
TP− FP

TP + FN
(3.3)

For a method that removes all errors without introducing new ones, the gain reaches one. When

more errors are introduced than corrected, the value becomes negative.

Fig. 3.9 shows the gain metric for both phage genomes individually. As expected, each error

correction tool reaches a higher base gain for the high abundant genome than for the low

abundant genome. The differences in the base gain for the two genomes from the even mixture

(10:10), could not be clarified. However, for all mixtures, CoCo is in line with the other tools

3.3. Test Results 97

Figure 3.9.: Heatmap depicting the base gain across the different coverage ratios of the T4
phage mixtures. Each row corresponds to an error correction tool, and each column corresponds to a
dataset with the given coverage combination of the two T4 phage genomes. (a) shows the base gain for
the original genome, which is always the higher covered one in the uneven mixtures. It is represented
by the second value of the coverage combination. (b) shows the base gain for the 5% diverged genome,
which is always the lower covered one in the uneven mixtures. It is represented by the first value of the
coverage combination.

for the higher abundant genome (see Fig. 3.9a), whereas it reaches significantly higher gain

values for the low abundant one than the other tools (see Fig. 3.9b). The majority of tools

reach either very small values or even a negative gain for the lower abundant one, indicating a

high number of false positives, possibly resulting from strain flip corrections. The only other

exception besides CoCo was Bcool, which shows the second-best overall performance on the

lower abundant genome.

CoCo was the only tool that consistently showed a gain ≥ 0.7 on the 10:10, 10:100 and 10:100

coverage datasets. Only for the 10:500 mixture, it reached a negative gain for the lower abundant

genome, as did all other tools. I argue, that at this coverage ratio, CoCo also starts to flip some

SNPs between the different genomes due to the 1% drop criterion. This could probably be

avoided by choosing a lower percent drop criterion or using another error detection criterion

(discussed in section 3.4).

3.3.3. Impact on de novo assembly

To evaluate the effect of CoCo’s error correction on assembly, I ran the PenguiN assembler on

the set of uncorrected reads and on the corrected reads of the T4 phage mixtures. Thereby, I

used PenguiN with 5 and 10 iterations on the amino acid level and nucleotide level respectively

and default parameters otherwise. The results are shown in Table 3.2. We see that on all

four mixtures, the assembly significantly improves when providing the CoCo corrected reads to

PenguiN instead of the uncorrected ones. The assembly becomes more contiguous in view of

number of contigs, length of the largest contig, average contig length and N50 value.

Besides this, the results shown during PenguiN’s benchmark in the previous chapter, had demon-

strated that CoCo can improve the accuracy of PenguiN’s assembly also on real sequencing data.

98 3.4. Discussion and Outlook

Table 3.2.: Assembly results on the T4 phage mixture datasets using PenguiN with and
without read correction.

Number of contigs Largest contig (bp) Average Length (bp) N50

10:10

Uncorrected 127 12 621 2754.5 3456
CoCo corrected 30 99 454 28 359 48 682

10:50

Uncorrected 118 173 996 19 590 49 600
CoCo corrected 30 168 900 41 151 95 144

10:100

Uncorrected 135 113 262 19 838.3 49 087
CoCo corrected 39 168 569 31 144.5 56 687

10:500

Uncorrected 176 127 798 17 946.3 47 923
CoCo corrected 62 168 914 25 408 95 157

On a mock dataset comprised of six Caudovirales genomes using CoCo pre-assembly yields final

contigs with 8.75 mismatches per 100 kbp, and 3.98 indels per 100 kbp when compared to the

reference genomes (0.013%), instead of 72.31 mismatches and 10.85 indels per 100 kbp (0.18%)

when using PenguiN without error correction (see section 2.4.3).

Further, the results obtained on the real metatranscriptomic samples from activated sludge and

aquatic environments used in the PenguiN benchmark suggest that CoCo’s error correction also

works on very complex metagenomic samples (see section 2.4.4). Applying CoCo pre-assembly

results in even more complete phage genomes in PenguiN’s final assemblies (increasing from 793

to 833). This once again demonstrates that CoCo’s correction leads to less fragmentation in the

assembly due to cleaner overlaps.

3.4. Discussion and Outlook

In this chapter, I introduced the new sequencing error correction tool CoCo. It detects se-

quencing errors as sudden drops in the sample-wide frequency of spaced k -mers along a read.

It utilizes a new data structure for the efficient storage of millions to billions of spaced k -mers,

allowing for the processing of large and complex datasets. For the correction itself, I decided

for a very conservative strategy to minimize the risk of introducing new errors or loosing true

diversity (false positives) due to over-corrections, which would in turn hamper subsequent de

novo assembly instead of supporting it.

The notorious problem of error correction involves identifying and correcting errors that were

introduced during the sequencing process. Other biases can be introduced, for example during

sample processing and storage, amplification, or library preparation stages [Ma et al., 2019], but

3.4. Discussion and Outlook 99

go beyond the scope of this thesis and are therefore not discussed here further. Even though

today’s Illumina short read sequencing produces highly accurate sequences with typical error

rates of 0.1-0.25% (sometimes also reported as 0.1%-1% depending on the sequencing platform)

[Fox et al., 2014; Pfeiffer et al., 2018; Stoler and Nekrutenko, 2021], sequencing errors can

significantly influence the assembly [Heydari et al., 2017; Kelley et al., 2010; Liao et al., 2019;

Salzberg et al., 2012].

Most of the de novo assemblers used today employ de Bruijn graphs. Such graphs represent k -

mers occurring in the set of input reads as nodes and the overlaps between them as edges, contigs

can then be obtained as paths through the graph [Compeau et al., 2011a; Pevzner et al., 2001].

As each single sequencing error leads to k erroneous k -mers (i.e. k -mers containing at least one

sequencing error), they complicate this task, leading to spurious dead ends, bulges and chimeric

connections [Liao et al., 2019; Miller et al., 2010; Zerbino and Birney, 2008]. Furthermore,

erroneous k -mers can easily outnumber the true k -mers, leading to growing de Bruijn graphs

and therefore to substantially higher memory usage [Li et al., 2015, 2012]. To reduce these

effects of sequencing errors, many assemblers use some kind of explicit or implicit correction

procedure, removing low-frequent k -mers under a certain frequency threshold or employing the

topology of de Bruijn graphs [Bankevich et al., 2012; Li et al., 2015; Liao et al., 2019; Pevzner

et al., 2001; Zerbino and Birney, 2008]. Additionally, some de Bruijn graph assemblers even have

their own error correction tool integrated, e.g. the SPAdes assemblers have the error correction

tool BayesHammer [Nikolenko et al., 2013] built in. For overlap-based assemblers, sequencing

errors are usually less problematic, as the pairwise overlap computation usually tolerates a

minor fraction of mismatches, and sequencing errors can be eliminated during the consensus

step [Baaijens et al., 2017; Li et al., 2012]. However, these assemblers might also benefit from

cleaner overlaps, allowing for more stringent alignment parameters.

The main motivation for the project outlined in this chapter was to develop a sequencing er-

ror correction tool that can be applied pre-assembly to PenguiN (chapter 2), to support it in

assembling more contiguous due to cleaner read overlaps and allowing for higher contig quality

in the end. As we aim to deal with high (viral) population diversity in metagenomic samples

with PenguiN, a sequencing error correction tool applied pre-assembly to PenguiN (1) has to be

aware of uneven coverage due to the mixture of genomes with widely different abundances in a

metagenomic sample and (2) must not cancel out true diversity resulting from different strain

variants.

Similar to other sequencing correction tools, CoCo makes use of k -mers to identify and correct

sequencing errors. However, it explores k -mer frequencies along the reads and identifies poten-

tial erroneous positions as discrepancies in those frequencies. In contrast to k -mer spectrum

correctors, which distinguish between “solid” and “weak” k -mers based on a certain threshold,

this allows for a local instead of a global distinction of potentially erroneous k -mers. I argue

that this is much more suitable for a mixture of genomes / metagenomic samples, as it considers

the context of a read. In contrast, a global threshold would cause a corrector to assume that the

low coverage k -mers derived from low covered genomes are erroneous and causes it to change

100 3.4. Discussion and Outlook

them to k -mers from higher covered genomes. This seems to be the main drawback for many

existing error correction tools, originally developed for genomic data.

The idea to maintain the k -mer frequencies along the reads as main source of information has

already been previously implemented in a tool called Pollux [Marinier et al., 2015]. However, the

implementation in CoCo differs substantially due to the use of spaced k -mers. As I have pointed

out in section 3.1.2.2, using spaced k -mers together with the maximized count profile allows

revealing the erroneous positions (resulting from substitution errors) directly and therefore also

to identify errors in close proximity. This in turn allows for a better selection of evaluation

k -mers, as different sequencing errors can be considered independently. Furthermore, spaced

k -mers yield a better local estimate of the true read coverage value, as there are usually at

least a few spaced k -mers which overlap the sequencing errors with non-informative positions.

However, it remains to be noted that spaced k -mers do not give an advantage for correcting

indels. Because of the shift within a k -mer due to a deleted or inserted position, the erroneous

position cannot be masked out and spaced k -mers just behave as “normal” contiguous k -mers,

leading to a continuous drop in the k -mer frequency profiles. However, as substitution errors are

the dominating type in Illumina sequencing errors [Schirmer et al., 2016], I think CoCo’s error

correction strategy, which is focused on substitution errors and corrects insertions and deletions

in a simple manner, should suffice.

In order to prove the general working scheme of CoCo, I have done several benchmarks on a

single genome and have proven its applicability even in cases with multiple sequencing errors

within one read. Further experiments have shown that CoCo reaches very high precision in the

presence of closely related genomes, with a slight loss in sensitivity compared to state-of-the-art

correction tools (see section 3.3.2). This together results in CoCo outperforming the other tools

in terms of error-free reads after the correction. This is especially due to CoCo’s performance for

the lower abundant genome, as most of the other error correction tools show a high number of

false positives due to ”strain flipping”. In contrast, CoCo can accurately distinguish sequencing

errors from SNPs due to its local coverage estimation and error detection.

I think there are two main sources for the slight loss of sensitivity. The first source is obviously

the lower bound criterion for the neighborhood (default 5), the threshold under which CoCo

does not try to correct anything but just skips the region. With a read coverage of 10, we

would expect a mean k -mer coverage of ∼ 7 and expect to have at least some regions with a

count < 5. Sequencing errors in these regions would then be systematically overlooked by CoCo.

The second source is the very conservative choice to apply a correction. CoCo just discards a

correction and leaves the potential sequencing error position unchanged if multiple corrections

are possible. In principle, it is possible to improve up on that to obtain higher sensitivity values.

For example, one could decrease the lowerbound criterion, use more k -mers to be evaluated, try

to formulate a criterion which correction best matches the neighborhood count or just choose

one out of the possible corrections in a consistent manner. All these would then lead to a more

aggressive flipping of nucleotides and should therefore also increase sensitivity. However, to the

best of my understanding a more conservative strategy with a slight loss in sensitivity is more

3.4. Discussion and Outlook 101

suitable in the context of de novo assembly, the main motivation for the conception of CoCo,

especially if the true diversity should be maintained. An overlooked sequencing error should be

much less problematic than a systematically and erroneously corrected nucleotide. In addition,

it was previously shown, that more aggressive error correction tools with high sensitivity do not

necessarily lead to the better assemblies [Heydari et al., 2017]. Instead, the loss of true k -mers

seems to be much more problematic as they lead to breakpoints in the assembly or to chimeric

connections, if the k -mer is wrongly replaced by a k -mer that actually occurs elsewhere in the

genome or in another genome [Heydari et al., 2017].

At the current state, it remains to be seen how CoCo improves the quality of different de novo

genome assemblers, also in comparison to other error correction tools. However, in association

with the PenguiN assembler, my experiments already show substantial improvements. Applying

CoCo prior to the assembly with PenguiN leads to a more contiguous assembly and higher

accuracy in the final contigs. This could be shown on simulated and real datasets.

3.4.1. Shortcomings and further benchmarks

As mentioned above, the error correction in CoCo was designed and implemented in the context

of the PenguiN assembler. Thereby, the general working scheme could already be proven and

the beneficial impact to the PenguiN assembler was shown. Nevertheless, a comprehensive

benchmark for CoCo as a standalone tool in comparison to other correctors is lacking at the

time of writing. So far, CoCo was only compared to other correction tools on one small dataset

(T4 phage mixtures). It remains to compare CoCo with existing tools on larger and more

complex datasets, which would actually also represent the use case CoCo was designed for,

in a better way. I could already show that CoCo was able to process a large and complex

metatranscriptomic dataset. Besides the correction performance itself, it would be especially

interesting to see thereby how the resource demands behave for such datasets. I think CoCo

substantially benefits from the lookup table, whose advantages could not be shown on the small

dataset. Additionally, CoCo was not compared yet to other tools regarding its improvement

for de novo assembly. Whereas the interplay of CoCo and PenguiN was shown, a comparison

to another correction tool before PenguiN’s assembly is missing. Moreover, I would also be

interested to see how CoCo would influence the performance of other de novo assemblers.

3.4.2. Algorithm related-extension

CoCo already shows promising performance. However, one could think of further improvements

to CoCo. Foremost, I would like to increase the user-friendliness of CoCo by integrating the

k -mer counting step itself directly into the software tool, instead of requiring the use of an

external tool. Currently, I utilize DSK [Rizk et al., 2013] as an external tool for the counting

step and provide its output as input for CoCo. However, there are newer and probably more

efficient tools available, e.g. KMC3 [Kokot et al., 2017], Gerbil [Erbert et al., 2017] and KCMBT

102 3.4. Discussion and Outlook

[Mamun et al., 2016]. Comparing them regarding CoCo’s use-case would allow finding a tool

which is highly efficient and can be integrated into CoCo’s software. This would then streamline

the error correction process. From a developer’s point of view, it might also be interesting in this

context to get rid of the gatb-core library [Drezen et al., 2014] dependency, which is currently

only necessary to parse the hdf5 file format DSK generates. Furthermore, there is potential

to improve up on speed and memory. Currently, CoCo processes all sequencing reads linearly.

However, this could be efficiently parallelized, as CoCo’s processing of one read is completely

independent of all other reads. This would then greatly benefit CoCo’s speed and improve

scalability further. Regarding the memory, there is already work in progress. Whereas, I expect

the lookup table to scale nicely for large and complex datasets, it generates a huge overhead

for small datasets. Therefore, I already considered another storage opportunity for the spaced

k -mer counts based on a hash table instead of the lookup table for smaller datasets, where the

8 GB of the lookup table is an overhead. However, an analysis between the two data structures

is still remaining. Adding a logic to estimate the number of different spaced k -mers upfront

and deciding then automatically for one of the two storage opportunities could improve CoCo’s

capability to adjust time and memory requirements to the data. Additionally, the exact choice

of the weight of the pattern can have a huge influence on the memory requirements. Currently,

CoCo’s default with 32 informative position leads to the need to represent 64 bits, of which

34 bits are saved as the suffix. Due to the default padding to full bytes by the compiler, this

is inflated to 5 bytes, i.e. 40 bits. Using a pattern with 31 informative positions, however,

would reduce the suffix to 32 bits, which would need only 4 bytes. At the same time, it would

most likely not influence the sensitivity greatly. Therefore, this is something to consider when

benchmarking CoCo on larger data sets in the future. From a more theoretical viewpoint, it

would also be interesting to consider the use of multiple spaced k -mer patterns. However, this

would come with the price of runtime and memory. Also, the handling of paired-end reads could

be improved. Currently, CoCo can handle single-end and paired-end input files, but always

considers each read individually. In the overlap regions, however, CoCo could potentially make

use of the information from the mate pair when making a correction decision. This could improve

on the sensitivity and precision of these regions and prevent the pairs from drifting apart due

to the correction. Thereby, and also in general, it could be worthwhile to take also the quality

scores available in FASTQ files into account. Finally, the identification and correction step itself

could also be improved further when better statistical considerations are included. I already

discussed that using a criterion for the detection that evaluates the local coverage along a read

has several advantages over a static cutoff. A certain count can be considered as sequencing

error for one read originating from a highly abundant genome, whereas the same count can be

considered as true in low covered regions or rarely abundant genomes to prevent false positives.

However, the choice of a percent criterion is still naive and might not be ideal, as certain coverage

ratios would always be considered as errors. As an alternative, one could calculate a probability

distribution to estimate the multiplicity of a sequencing error in a region with a certain coverage

(e.g. a Poisson distribution) and then select a context-specific threshold for the detection based

on a certain cut-off in that distribution. Last but not least one could consider the updating

3.5. Conclusion 103

of the k -mer counts once a correction is applied. This would allow for a better statistic of the

neighborhood towards following sequencing reads. However, it would also create a dependency

on the order of reads and make parallelization more difficult.

3.4.3. Perspective on long reads

At the time of writing, Illumina sequencing is still the major player in the sequencing market

[Levy and Myers, 2016]. However, the long read technologies of Oxford Nanopore Technologies

and Pacific Bioscience (described in section 1.2) experience continuous improvement. In prin-

ciple, there is no limitation of the read length for CoCo’s approach, but it would greatly suffer

from the still very high error rate of this data (∼ 3-15%). I expect to only rarely find k -mers

which do not overlap any error position, and those to hamper the applicability to detect se-

quencing errors as discrepancies in sample-wise k -mer frequencies. Moreover, CoCo’s approach

is also not ideally suited to handle indel errors, the dominating type in long read sequencing

[Dohm et al., 2020; Goodwin et al., 2016; Van Dijk et al., 2018; Zhang et al., 2020]. These error

types can never be masked by non-informative positions, canceling CoCo’s advantage to deal

with errors in close proximity through spaced k -mers. Despite the growing interest in long read

sequencing, I argue that it is still worth investigating to improve upon existing methods for short

sequencing read corrections due to several reasons. First of all, I expect Illumina sequencing

will still be broadly used in the next decade, as it is cheaper and more accurate. Secondly, short

sequencing reads are commonly used together with long reads to compensate for their high error

rate [Warwick-Dugdale et al., 2019; Wick et al., 2017; Zhang et al., 2020], and those experiments

would greatly benefit from more accurate short reads. Thirdly, there is already a lot of short

read sequencing data available in public databases, which requires for accurate error correction

tools to distinguish artificial from true diversity, especially in metagenomic samples, to explore

their full potential in the downstream analysis.

3.5. Conclusion

Taken all together, CoCo is capable of correcting many sequencing errors, even in close proximity,

whereas introducing only very few new errors. This results in very high precision and a drastic

reduction of the number of reads with errors. Subsequent assembly with the PenguiN assembler

substantially benefits from this much cleaner input. First results of CoCo also in comparison

with existing error correction tools suggest that there is potential to outperform them if multiple

closely related genomes are present. This highlights CoCo’s usability also for mixed genome

datatsets and hint that CoCo might also be able to outperform these tools on larger and more

complex metagenomic datasets. To confirm this properly, further benchmarks are necessary.

However, I could already show that CoCo can process large and complex metagenomic datasets

within the PenguiN benchmark. I think CoCo is well suited for this task for four reasons:

(1) the count profile allows for a context-considering correction, which seems to be ideal for

104 3.5. Conclusion

a metagenomic, mixture of genomes with highly varying abundances, (2) the use of spaced k -

mers allows for accurately detecting errors in close proximity and in low coverage regions, (3) the

conservative strategy to apply a correction avoids over-correction, minimizing false-positives and

decreasing the risk to switch between strains, which would otherwise lead to a loss of diversity

and chimeric assemblies and (4) the lookup table which allows for the efficient storage of the

(spaced) k -mer counts, making CoCo applicable also on larger and more complex samples.

In conclusion, CoCo is a reliable method that I believe to scale well to large and complex datasets

and ideally interplays with the PenguiN assembler.

4. Concluding remarks

In this thesis, I introduced two new software tools, addressing the challenges of (1) de novo

assembly and (2) sequencing error correction in the computational analysis of viral metagenomic

samples. There are numerous hints that we are just starting to understand the enormous extent

of virus diversity – especially phage diversity – and that there is huge potential in the data that

has been previously overlooked and still remains to be discovered. I hope that with the tools

and ideas provided in this thesis, I can contribute in helping the community to make new and

exciting discoveries by spotting light into the viral dark matter.

References

Ackermann, H.-W. and Prangishvili, D. (2012). Prokaryote viruses studied by electron mi-

croscopy. Archives of virology, 157(10):1843–1849.

Adriaenssens, E. M., Van Zyl, L., De Maayer, P., Rubagotti, E., Rybicki, E., Tuffin, M., and

Cowan, D. A. (2015). Metagenomic analysis of the viral community in n amib d esert hypoliths.

Environmental microbiology, 17(2):480–495.

Aevarsson, A., Kaczorowska, A.-K., Adalsteinsson, B. T., Ahlqvist, J., Al-Karadaghi, S., Al-

tenbuchner, J., Arsin, H., Átlasson, Ú. Á., Brandt, D., Cichowicz-Cieślak, M., et al. (2021).

Going to extremes–a metagenomic journey into the dark matter of life. FEMS microbiology

letters, 368(12):fnab067.

Akhter, S., Aziz, R. K., and Edwards, R. A. (2012). Phispy: a novel algorithm for finding

prophages in bacterial genomes that combines similarity-and composition-based strategies.

Nucleic acids research, 40(16):e126–e126.

Albright, M. B., Gallegos-Graves, L. V., Feeser, K. L., Montoya, K., Emerson, J. B., Shakya,

M., and Dunbar, J. (2022). Experimental evidence for the impact of soil viruses on carbon

cycling during surface plant litter decomposition. ISME Communications, 2(1):1–8.

Alic, A. S., Ruzafa, D., Dopazo, J., and Blanquer, I. (2016). Objective review of de novo stand-

alone error correction methods for ngs data. Wiley Interdisciplinary Reviews: Computational

Molecular Science, 6(2):111–146.

Amarasinghe, S. L., Su, S., Dong, X., Zappia, L., Ritchie, M. E., and Gouil, Q. (2020). Oppor-

tunities and challenges in long-read sequencing data analysis. Genome biology, 21(1):1–16.

Antipov, D., Raiko, M., Lapidus, A., and Pevzner, P. A. (2020). Metaviral spades: assembly of

viruses from metagenomic data. Bioinformatics, 36(14):4126–4129.

Athanasopoulou, K., Boti, M. A., Adamopoulos, P. G., Skourou, P. C., and Scorilas, A. (2021).

Third-generation sequencing: The spearhead towards the radical transformation of modern

genomics. Life, 12(1):30.

Ayling, M., Clark, M. D., and Leggett, R. M. (2020). New approaches for metagenome assembly

with short reads. Briefings in bioinformatics, 21(2):584–594.

Baaijens, J. A., El Aabidine, A. Z., Rivals, E., and Schönhuth, A. (2017). De novo assembly of

viral quasispecies using overlap graphs. Genome research, 27(5):835–848.

108 References

Baltimore, D. (1971). Expression of animal virus genomes. Bacteriological reviews, 35(3):235–

241.

Bankevich, A., Nurk, S., Antipov, D., Gurevich, A. A., Dvorkin, M., Kulikov, A. S., Lesin,

V. M., Nikolenko, S. I., Pham, S., Prjibelski, A. D., et al. (2012). Spades: a new genome

assembly algorithm and its applications to single-cell sequencing. Journal of computational

biology, 19(5):455–477.

Bbosa, N., Kaleebu, P., and Ssemwanga, D. (2019). Hiv subtype diversity worldwide. Current

Opinion in HIV and AIDS, 14(3):153–160.

Bell, G. (2021). Evolutionary dynamics of a virus in a vaccinated population. medRxiv.

Benoit, G., Lavenier, D., Lemaitre, C., and Rizk, G. (2014). Bloocoo, a memory efficient read

corrector. In European conference on computational biology (ECCB).

Bentley, D. R., Balasubramanian, S., Swerdlow, H. P., Smith, G. P., Milton, J., Brown, C. G.,

Hall, K. P., Evers, D. J., Barnes, C. L., Bignell, H. R., et al. (2008). Accurate whole human

genome sequencing using reversible terminator chemistry. nature, 456(7218):53–59.

Bergh, Ø., Børsheim, K. Y., Bratbak, G., and Heldal, M. (1989). High abundance of viruses

found in aquatic environments. Nature, 340(6233):467–468.

Bikel, S., Valdez-Lara, A., Cornejo-Granados, F., Rico, K., Canizales-Quinteros, S., Soberón,

X., Del Pozo-Yauner, L., and Ochoa-Leyva, A. (2015). Combining metagenomics, metatran-

scriptomics and viromics to explore novel microbial interactions: towards a systems-level

understanding of human microbiome. Computational and structural biotechnology journal,

13:390–401.

Bin Jang, H., Bolduc, B., Zablocki, O., Kuhn, J. H., Roux, S., Adriaenssens, E. M., Brister,

J. R., Kropinski, A. M., Krupovic, M., Lavigne, R., et al. (2019). Taxonomic assignment of

uncultivated prokaryotic virus genomes is enabled by gene-sharing networks. Nature biotech-

nology, 37(6):632–639.

Bloom, B. H. (1970). Space/time trade-offs in hash coding with allowable errors. Communica-

tions of the ACM, 13(7):422–426.

Boisvert, S., Raymond, F., Godzaridis, É., Laviolette, F., and Corbeil, J. (2012). Ray meta:

scalable de novo metagenome assembly and profiling. Genome biology, 13(12):1–13.

Bolger, A. M., Lohse, M., and Usadel, B. (2014). Trimmomatic: a flexible trimmer for illumina

sequence data. Bioinformatics, 30(15):2114–2120.

Boucher, Y., Douady, C. J., Papke, R. T., Walsh, D. A., Boudreau, M. E. R., Nesbø, C. L.,

Case, R. J., and Doolittle, W. F. (2003). Lateral gene transfer and the origins of prokaryotic

groups. Annual review of genetics, 37(1):283–328.

Breitbart, M., Delwart, E., Rosario, K., Segalés, J., Varsani, A., and Consortium, I. R. (2017).

Ictv virus taxonomy profile: Circoviridae. The Journal of general virology, 98(8):1997.

References 109

Breitbart, M., Hewson, I., Felts, B., Mahaffy, J. M., Nulton, J., Salamon, P., and Rohwer, F.

(2003). Metagenomic analyses of an uncultured viral community from human feces. Journal

of bacteriology, 185(20):6220–6223.

Breitbart, M., Miyake, J. H., and Rohwer, F. (2004). Global distribution of nearly identical

phage-encoded dna sequences. FEMS microbiology letters, 236(2):249–256.

Breitbart, M. and Rohwer, F. (2005). Here a virus, there a virus, everywhere the same virus?

Trends in microbiology, 13(6):278–284.

Breitbart, M., Salamon, P., Andresen, B., Mahaffy, J. M., Segall, A. M., Mead, D., Azam, F.,

and Rohwer, F. (2002). Genomic analysis of uncultured marine viral communities. Proceedings

of the National Academy of Sciences, 99(22):14250–14255.

Breitbart, M., Thompson, L. R., Suttle, C. A., and Sullivan, M. B. (2007). Exploring the vast

diversity of marine viruses. Oceanography, 20(2):135–139.

Breitwieser, F. P., Lu, J., and Salzberg, S. L. (2019). A review of methods and databases for

metagenomic classification and assembly. Briefings in bioinformatics, 20(4):1125–1136.

Brown, C. T., Moritz, D., O’Brien, M. P., Reidl, F., Reiter, T., and Sullivan, B. D. (2020).

Exploring neighborhoods in large metagenome assembly graphs using spacegraphcats reveals

hidden sequence diversity. Genome biology, 21(1):1–16.

Brum, J. R. and Sullivan, M. B. (2015). Rising to the challenge: accelerated pace of discovery

transforms marine virology. Nature Reviews Microbiology, 13(3):147–159.

Bushmanova, E., Antipov, D., Lapidus, A., and Prjibelski, A. D. (2019). rnaspades: a de novo

transcriptome assembler and its application to rna-seq data. GigaScience, 8(9):giz100.

Bushnell, B. (2014). Bbmap: a fast, accurate, splice-aware aligner. Technical report, Lawrence

Berkeley National Lab.(LBNL), Berkeley, CA (United States).

Callanan, J., Stockdale, S. R., Shkoporov, A., Draper, L. A., Ross, R. P., and Hill, C. (2020).

Expansion of known ssrna phage genomes: from tens to over a thousand. Science advances,

6(6):eaay5981.

Canzar, S., Andreotti, S., Weese, D., Reinert, K., and Klau, G. W. (2016). Cidane: comprehen-

sive isoform discovery and abundance estimation. Genome biology, 17(1):1–18.

Cepeda, V., Liu, B., Almeida, M., Hill, C. M., Koren, S., Treangen, T. J., and Pop, M. (2017).

Metacompass: reference-guided assembly of metagenomes. BioRxiv, page 212506.

Chaisson, M. J., Brinza, D., and Pevzner, P. A. (2009). De novo fragment assembly with short

mate-paired reads: Does the read length matter? Genome research, 19(2):336–346.

Chaitanya, K. (2019). Structure and organization of virus genomes. In Genome and Genomics,

pages 1–30. Springer.

110 References

Chamakura, K. R., Tran, J. S., O’Leary, C., Lisciandro, H. G., Antillon, S. F., Garza, K. D.,

Tran, E., Min, L., and Young, R. (2020). Rapid de novo evolution of lysis genes in single-

stranded rna phages. Nature communications, 11(1):1–11.

Check Hayden, E. (2014). Is the $1,000 genome for real? Nature.

Chen, J., Zhao, Y., and Sun, Y. (2018). De novo haplotype reconstruction in viral quasispecies

using paired-end read guided path finding. Bioinformatics, 34(17):2927–2935.

Chikhi, R. and Medvedev, P. (2014). Informed and automated k-mer size selection for genome

assembly. Bioinformatics, 30(1):31–37.

Clark, S. J., Lee, H. J., Smallwood, S. A., Kelsey, G., and Reik, W. (2016). Single-cell epige-

nomics: powerful new methods for understanding gene regulation and cell identity. Genome

biology, 17(1):1–10.

Clarke, J., Wu, H.-C., Jayasinghe, L., Patel, A., Reid, S., and Bayley, H. (2009). Continuous base

identification for single-molecule nanopore dna sequencing. Nature nanotechnology, 4(4):265–

270.

Colavecchio, A., Cadieux, B., Lo, A., and Goodridge, L. D. (2017). Bacteriophages contribute to

the spread of antibiotic resistance genes among foodborne pathogens of the enterobacteriaceae

family–a review. Frontiers in Microbiology, 8:1108.

Compeau, P. E., Pevzner, P. A., and Tesler, G. (2011a). How to apply de bruijn graphs to

genome assembly. Nature biotechnology, 29(11):987–991.

Compeau, P. E., Pevzner, P. A., and Tesler, G. (2011b). Why are de bruijn graphs useful for

genome assembly? Nature biotechnology, 29(11):987.

Conesa, A., Madrigal, P., Tarazona, S., Gomez-Cabrero, D., Cervera, A., McPherson, A.,

Szcześniak, M. W., Gaffney, D. J., Elo, L. L., Zhang, X., et al. (2016). A survey of best

practices for rna-seq data analysis. Genome biology, 17(1):1–19.

Coutinho, F. H., Silveira, C. B., Gregoracci, G. B., Thompson, C. C., Edwards, R. A., Brussaard,

C. P., Dutilh, B. E., and Thompson, F. L. (2017). Marine viruses discovered via metagenomics

shed light on viral strategies throughout the oceans. Nature communications, 8(1):1–12.

Craigie, R. and Bushman, F. D. (2012). Hiv dna integration. Cold Spring Harbor perspectives

in medicine, 2(7):a006890.

Cudini, J., Roy, S., Houldcroft, C. J., Bryant, J. M., Depledge, D. P., Tutill, H., Veys, P.,

Williams, R., Worth, A. J., Tamuri, A. U., et al. (2019). Human cytomegalovirus haplo-

type reconstruction reveals high diversity due to superinfection and evidence of within-host

recombination. Proceedings of the National Academy of Sciences, 116(12):5693–5698.

Dagum, L. and Menon, R. (1998). Openmp: an industry standard api for shared-memory

programming. IEEE computational science and engineering, 5(1):46–55.

References 111

Danovaro, R., Corinaldesi, C., Dell’Anno, A., Fuhrman, J. A., Middelburg, J. J., Noble, R. T.,

and Suttle, C. A. (2011). Marine viruses and global climate change. FEMS microbiology

reviews, 35(6):993–1034.

Dávila-Ramos, S., Castelán-Sánchez, H. G., Mart́ınez-Ávila, L., Sánchez-Carbente, M. d. R.,

Peralta, R., Hernández-Mendoza, A., Dobson, A. D., Gonzalez, R. A., Pastor, N., and Batista-

Garćıa, R. A. (2019). A review on viral metagenomics in extreme environments. Frontiers in

microbiology, page 2403.

Deng, Z. and Delwart, E. (2021). Contigextender: a new approach to improving de novo sequence

assembly for viral metagenomics data. BMC bioinformatics, 22(1):1–19.

Deng, Z.-L., Dhingra, A., Fritz, A., Götting, J., Münch, P. C., Steinbrück, L., Schulz, T. F.,

Ganzenmüller, T., and McHardy, A. C. (2021). Evaluating assembly and variant call-

ing software for strain-resolved analysis of large dna viruses. Briefings in bioinformatics,

22(3):bbaa123.

Desai, N., Antonopoulos, D., Gilbert, J. A., Glass, E. M., and Meyer, F. (2012). From genomics

to metagenomics. Current opinion in biotechnology, 23(1):72–76.

Désiré, N., Cerutti, L., Le Hingrat, Q., Perrier, M., Emler, S., Calvez, V., Descamps, D.,

Marcelin, A.-G., Hué, S., and Visseaux, B. (2018). Characterization update of hiv-1 m sub-

types diversity and proposal for subtypes a and d sub-subtypes reclassification. Retrovirology,

15(1):1–7.

Dion, M. B., Oechslin, F., and Moineau, S. (2020). Phage diversity, genomics and phylogeny.

Nature Reviews Microbiology, 18(3):125–138.

Dohm, J. C., Peters, P., Stralis-Pavese, N., and Himmelbauer, H. (2020). Benchmarking of

long-read correction methods. NAR Genomics and Bioinformatics, 2(2):lqaa037.

Dolan, P. T., Whitfield, Z. J., and Andino, R. (2018). Mechanisms and concepts in rna virus

population dynamics and evolution. Annual Review of Virology, 5:69–92.

Dorigo, U., Jacquet, S., and Humbert, J.-F. (2004). Cyanophage diversity, inferred from g20

gene analyses, in the largest natural lake in france, lake bourget. Applied and Environmental

Microbiology, 70(2):1017–1022.

Drezen, E., Rizk, G., Chikhi, R., Deltel, C., Lemaitre, C., Peterlongo, P., and Lavenier, D.

(2014). Gatb: genome assembly & analysis tool box. Bioinformatics, 30(20):2959–2961.

Eddy, S. R. et al. (1995). Multiple alignment using hidden markov models. In Ismb, volume 3,

pages 114–120.

Eid, J., Fehr, A., Gray, J., Luong, K., Lyle, J., Otto, G., Peluso, P., Rank, D., Baybayan,

P., Bettman, B., et al. (2009). Real-time dna sequencing from single polymerase molecules.

Science, 323(5910):133–138.

112 References

Emerson, J. B., Roux, S., Brum, J. R., Bolduc, B., Woodcroft, B. J., Jang, H. B., Singleton,

C. M., Solden, L. M., Naas, A. E., Boyd, J. A., et al. (2018). Host-linked soil viral ecology

along a permafrost thaw gradient. Nature microbiology, 3(8):870–880.

Erbert, M., Rechner, S., and Müller-Hannemann, M. (2017). Gerbil: a fast and memory-efficient

k-mer counter with gpu-support. Algorithms for Molecular Biology, 12(1):1–12.

Filée, J., Tétart, F., Suttle, C. A., and Krisch, H. (2005). Marine t4-type bacteriophages,

a ubiquitous component of the dark matter of the biosphere. Proceedings of the National

Academy of Sciences, 102(35):12471–12476.

Fox, E. J., Reid-Bayliss, K. S., Emond, M. J., and Loeb, L. A. (2014). Accuracy of next

generation sequencing platforms. Next generation, sequencing & applications, 1.

Frazão, N., Sousa, A., Lässig, M., and Gordo, I. (2019). Horizontal gene transfer overrides mu-

tation in escherichia coli colonizing the mammalian gut. Proceedings of the National Academy

of Sciences, 116(36):17906–17915.

Fritz, A., Bremges, A., Deng, Z.-L., Lesker, T. R., Götting, J., Ganzenmueller, T., Sczyrba, A.,

Dilthey, A., Klawonn, F., and McHardy, A. C. (2021). Haploflow: Strain-resolved de novo

assembly of viral genomes. Genome Biology, 22(1):1–19.

Fu, L., Niu, B., Zhu, Z., Wu, S., and Li, W. (2012). Cd-hit: accelerated for clustering the

next-generation sequencing data. Bioinformatics, 28(23):3150–3152.

Fuhrman, J. A. (1999). Marine viruses and their biogeochemical and ecological effects. Nature,

399(6736):541–548.

Fuller, C. W., Middendorf, L. R., Benner, S. A., Church, G. M., Harris, T., Huang, X., Jo-

vanovich, S. B., Nelson, J. R., Schloss, J. A., Schwartz, D. C., et al. (2009). The challenges

of sequencing by synthesis. Nature biotechnology, 27(11):1013–1023.

Garćıa-López, R., Vázquez-Castellanos, J. F., and Moya, A. (2015). Fragmentation and coverage

variation in viral metagenome assemblies, and their effect in diversity calculations. Frontiers

in bioengineering and biotechnology, 3:141.

Ghurye, J. S., Cepeda-Espinoza, V., and Pop, M. (2016). Focus: microbiome: metagenomic

assembly: overview, challenges and applications. The Yale journal of biology and medicine,

89(3):353.

Gogarten, J. P. and Townsend, J. P. (2005). Horizontal gene transfer, genome innovation and

evolution. Nature Reviews Microbiology, 3(9):679–687.

Goodwin, S., McPherson, J. D., and McCombie, W. R. (2016). Coming of age: ten years of

next-generation sequencing technologies. Nature Reviews Genetics, 17(6):333–351.

Grabherr, M. G., Haas, B. J., Yassour, M., Levin, J. Z., Thompson, D. A., Amit, I., Adiconis,

X., Fan, L., Raychowdhury, R., Zeng, Q., et al. (2011). Full-length transcriptome assembly

from rna-seq data without a reference genome. Nature biotechnology, 29(7):644–652.

References 113

Green, P. (1996). Phrap documentation. http://www.phrap.org/phredphrap/phrap.html. Ac-

cessed 15 May 2021.

Gregory, A. C., Zablocki, O., Zayed, A. A., Howell, A., Bolduc, B., and Sullivan, M. B. (2020).

The gut virome database reveals age-dependent patterns of virome diversity in the human

gut. Cell host & microbe, 28(5):724–740.

Gregory, A. C., Zayed, A. A., Conceição-Neto, N., Temperton, B., Bolduc, B., Alberti, A.,

Ardyna, M., Arkhipova, K., Carmichael, M., Cruaud, C., et al. (2019). Marine dna viral

macro-and microdiversity from pole to pole. Cell, 177(5):1109–1123.

Guerin, E. and Hill, C. (2020). Shining light on human gut bacteriophages. Frontiers in cellular

and infection microbiology, page 481.

Gulyaeva, A., Garmaeva, S., Ruigrok, R. A., Wang, D., Riksen, N. P., Netea, M. G., Wijmenga,

C., Weersma, R. K., Fu, J., Vila, A. V., et al. (2022). Discovery, diversity, and functional

associations of crass-like phages in human gut metagenomes from four dutch cohorts. Cell

reports, 38(2):110204.

Guo, J., Bolduc, B., Zayed, A. A., Varsani, A., Dominguez-Huerta, G., Delmont, T. O., Pratama,

A. A., Gazitúa, M. C., Vik, D., Sullivan, M. B., et al. (2021). Virsorter2: a multi-classifier,

expert-guided approach to detect diverse dna and rna viruses. Microbiome, 9(1):1–13.

Gyles, C. and Boerlin, P. (2014). Horizontally transferred genetic elements and their role in

pathogenesis of bacterial disease. Veterinary pathology, 51(2):328–340.

Gytz, H., Mohr, D., Seweryn, P., Yoshimura, Y., Kutlubaeva, Z., Dolman, F., Chelchessa, B.,

Chetverin, A. B., Mulder, F. A., Brodersen, D. E., et al. (2015). Structural basis for rna-

genome recognition during bacteriophage qβ replication. Nucleic acids research, 43(22):10893–

10906.

Haider, B., Ahn, T.-H., Bushnell, B., Chai, J., Copeland, A., and Pan, C. (2014). Omega: an

overlap-graph de novo assembler for metagenomics. Bioinformatics, 30(19):2717–2722.

Handelsman, J. (2004). Metagenomics: application of genomics to uncultured microorganisms.

Microbiology and molecular biology reviews, 68(4):669–685.

Handelsman, J., Rondon, M. R., Brady, S. F., Clardy, J., and Goodman, R. M. (1998). Molec-

ular biological access to the chemistry of unknown soil microbes: a new frontier for natural

products. Chemistry & biology, 5(10):R245–R249.

Hauser, M., Steinegger, M., and Söding, J. (2016). Mmseqs software suite for fast and deep

clustering and searching of large protein sequence sets. Bioinformatics, 32(9):1323–1330.

Hayes, S., Mahony, J., Nauta, A., and Van Sinderen, D. (2017). Metagenomic approaches to

assess bacteriophages in various environmental niches. Viruses, 9(6):127.

Heather, J. M. and Chain, B. (2016). The sequence of sequencers: The history of sequencing

dna. Genomics, 107(1):1–8.

http://www.phrap.org/phredphrap/phrap.html

114 References

Hemelaar, J., Gouws, E., Ghys, P. D., and Osmanov, S. (2006). Global and regional distribution

of hiv-1 genetic subtypes and recombinants in 2004. Aids, 20(16):W13–W23.

Heo, Y., Wu, X.-L., Chen, D., Ma, J., and Hwu, W.-M. (2014). Bless: bloom filter-based error

correction solution for high-throughput sequencing reads. Bioinformatics, 30(10):1354–1362.

Heydari, M., Miclotte, G., Demeester, P., Van de Peer, Y., and Fostier, J. (2017). Evaluation of

the impact of illumina error correction tools on de novo genome assembly. BMC bioinformatics,

18(1):1–13.

Hölzer, M. and Marz, M. (2019). De novo transcriptome assembly: A comprehensive cross-

species comparison of short-read rna-seq assemblers. Gigascience, 8(5):giz039.

Hopkins, M., Kailasan, S., Cohen, A., Roux, S., Tucker, K. P., Shevenell, A., Agbandje-

McKenna, M., and Breitbart, M. (2014). Diversity of environmental single-stranded dna

phages revealed by pcr amplification of the partial major capsid protein. The ISME journal,

8(10):2093–2103.

Hugenholtz, P., Goebel, B. M., and Pace, N. R. (1998). Impact of culture-independent studies on

the emerging phylogenetic view of bacterial diversity. Journal of bacteriology, 180(18):4765–

4774.

Hugenholtz, P. and Pace, N. R. (1996). Identifying microbial diversity in the natural environ-

ment: a molecular phylogenetic approach. Trends in biotechnology, 14(6):190–197.

Hunkapiller, T., Kaiser, R., Koop, B., and Hood, L. (1991). Large-scale and automated dna

sequence determination. Science, 254(5028):59–67.

Hunt, M., Gall, A., Ong, S. H., Brener, J., Ferns, B., Goulder, P., Nastouli, E., Keane, J. A.,

Kellam, P., and Otto, T. D. (2015). Iva: accurate de novo assembly of rna virus genomes.

Bioinformatics, 31(14):2374–2376.

Hunt, M., Newbold, C., Berriman, M., and Otto, T. D. (2014). A comprehensive evaluation of

assembly scaffolding tools. Genome biology, 15(3):1–15.

Huson, D. H., Reinert, K., and Myers, E. W. (2002). The greedy path-merging algorithm for

contig scaffolding. Journal of the ACM (JACM), 49(5):603–615.

Hutchison, C. A., Smith, H. O., Pfannkoch, C., and Venter, J. C. (2005). Cell-free cloning using

φ29 dna polymerase. Proceedings of the National Academy of Sciences, 102(48):17332–17336.

Hwang, J., Park, S. Y., Park, M., Lee, S., and Lee, T.-K. (2017). Seasonal dynamics and metage-

nomic characterization of marine viruses in goseong bay, korea. PloS one, 12(1):e0169841.

Hyatt, D., Chen, G.-L., LoCascio, P. F., Land, M. L., Larimer, F. W., and Hauser, L. J. (2010).

Prodigal: prokaryotic gene recognition and translation initiation site identification. BMC

bioinformatics, 11(1):1–11.

References 115

Ihrmark, K., Bödeker, I., Cruz-Martinez, K., Friberg, H., Kubartova, A., Schenck, J., Strid, Y.,

Stenlid, J., Brandström-Durling, M., Clemmensen, K. E., et al. (2012). New primers to amplify

the fungal its2 region–evaluation by 454-sequencing of artificial and natural communities.

FEMS microbiology ecology, 82(3):666–677.

Ilie, L., Fazayeli, F., and Ilie, S. (2011). Hitec: accurate error correction in high-throughput

sequencing data. Bioinformatics, 27(3):295–302.

International Committee on Taxonomy of Viruses Executive Committee (2020). The new scope

of virus taxonomy: partitioning the virosphere into 15 hierarchical ranks. Nature Microbiology,

5(5):668.

Irwin, N. A., Pittis, A. A., Richards, T. A., and Keeling, P. J. (2022). Systematic evaluation of

horizontal gene transfer between eukaryotes and viruses. Nature microbiology, 7(2):327–336.

Jain, C., Rodriguez-R, L. M., Phillippy, A. M., Konstantinidis, K. T., and Aluru, S. (2018).

High throughput ani analysis of 90k prokaryotic genomes reveals clear species boundaries.

Nature communications, 9(1):1–8.

Jeck, W. R., Reinhardt, J. A., Baltrus, D. A., Hickenbotham, M. T., Magrini, V., Mardis, E. R.,

Dangl, J. L., and Jones, C. D. (2007). Extending assembly of short dna sequences to handle

error. Bioinformatics, 23(21):2942–2944.

Jensen, T. Z., Niemann, J., Iversen, K. H., Fotakis, A. K., Gopalakrishnan, S., V̊agene, Å. J.,

Pedersen, M. W., Sinding, M.-H. S., Ellegaard, M. R., Allentoft, M. E., et al. (2019). A 5700

year-old human genome and oral microbiome from chewed birch pitch. Nature Communica-

tions, 10(1):1–10.

Johansen, J., Plichta, D. R., Nissen, J. N., Jespersen, M. L., Shah, S. A., Deng, L., Stokholm,

J., Bisgaard, H., Nielsen, D. S., Sørensen, S. J., et al. (2022). Genome binning of viral entities

from bulk metagenomics data. Nature communications, 13(1):1–12.

Johnson, J. S., Spakowicz, D. J., Hong, B.-Y., Petersen, L. M., Demkowicz, P., Chen, L.,

Leopold, S. R., Hanson, B. M., Agresta, H. O., Gerstein, M., et al. (2019). Evaluation of 16s

rrna gene sequencing for species and strain-level microbiome analysis. Nature communications,

10(1):1–11.

Jouffret, V., Miotello, G., Culotta, K., Ayrault, S., Pible, O., and Armengaud, J. (2021). In-

creasing the power of interpretation for soil metaproteomics data. Microbiome, 9(1):1–15.

Kang, D. D., Froula, J., Egan, R., and Wang, Z. (2015). Metabat, an efficient tool for accurately

reconstructing single genomes from complex microbial communities. PeerJ, 3:e1165.

Kao, W.-C., Chan, A. H., and Song, Y. S. (2011). Echo: a reference-free short-read error

correction algorithm. Genome research, 21(7):1181–1192.

116 References

Katoh, K., Misawa, K., Kuma, K.-i., and Miyata, T. (2002). Mafft: a novel method for rapid mul-

tiple sequence alignment based on fast fourier transform. Nucleic acids research, 30(14):3059–

3066.

Kchouk, M., Gibrat, J.-F., and Elloumi, M. (2017). Generations of sequencing technologies:

from first to next generation. Biology and Medicine, 9(3).

Keen, E. C. (2015). A century of phage research: bacteriophages and the shaping of modern

biology. Bioessays, 37(1):6–9.

Kelley, D. R., Schatz, M. C., and Salzberg, S. L. (2010). Quake: quality-aware detection and

correction of sequencing errors. Genome biology, 11(11):1–13.

Kieft, K., Zhou, Z., and Anantharaman, K. (2020). Vibrant: automated recovery, annotation

and curation of microbial viruses, and evaluation of viral community function from genomic

sequences. Microbiome, 8(1):1–23.

Kim, P.-G., Cho, H.-G., and Park, K. (2008). A scaffold analysis tool using mate-pair information

in genome sequencing. Journal of Biomedicine and Biotechnology.

Kleiner, M., Hooper, L. V., and Duerkop, B. A. (2015). Evaluation of methods to purify virus-

like particles for metagenomic sequencing of intestinal viromes. BMC genomics, 16(1):1–15.

Kokot, M., D lugosz, M., and Deorowicz, S. (2017). Kmc 3: counting and manipulating k-mer

statistics. Bioinformatics, 33(17):2759–2761.

Koonin, E. V., Krupovic, M., and Agol, V. I. (2021). The baltimore classification of viruses 50

years later: How does it stand in the light of virus evolution? Microbiology and Molecular

Biology Reviews, 85(3):e00053–21.

Kounosu, A., Murase, K., Yoshida, A., Maruyama, H., and Kikuchi, T. (2019). Improved 18s

and 28s rdna primer sets for ngs-based parasite detection. Scientific reports, 9(1):1–12.

Kraft, L. (2021). Adapting a novel metagenome assembler for transcriptomic data: A proof of

concept study. Unpublished master thesis.

Krishnamurthy, S. R., Janowski, A. B., Zhao, G., Barouch, D., and Wang, D. (2016). Hyperex-

pansion of rna bacteriophage diversity. PLoS biology, 14(3):e1002409.

Langille, M. G., Zaneveld, J., Caporaso, J. G., McDonald, D., Knights, D., Reyes, J. A.,

Clemente, J. C., Burkepile, D. E., Thurber, R. L. V., Knight, R., et al. (2013). Predictive

functional profiling of microbial communities using 16s rrna marker gene sequences. Nature

biotechnology, 31(9):814–821.

Lapidus, A. L. and Korobeynikov, A. I. (2021). Metagenomic data assembly–the way of decoding

unknown microorganisms. Frontiers in Microbiology, 12:653.

Laserson, J., Jojic, V., and Koller, D. (2011). Genovo: de novo assembly for metagenomes.

Journal of Computational Biology, 18(3):429–443.

References 117

Lefkowitz, E. J., Dempsey, D. M., Hendrickson, R. C., Orton, R. J., Siddell, S. G., and Smith,

D. B. (2018). Virus taxonomy: the database of the international committee on taxonomy of

viruses (ictv). Nucleic acids research, 46(D1):D708–D717.

Levy, S. E. and Myers, R. M. (2016). Advancements in next-generation sequencing. Annual

review of genomics and human genetics, 17:95–115.

Leye, N., Vidal, N., Ndiaye, O., Diop-Ndiaye, H., Wade, A. S., Mboup, S., Delaporte, E., Toure-

Kane, C., and Peeters, M. (2013). High frequency of hiv-1 infections with multiple hiv-1

strains in men having sex with men (msm) in senegal. Infection, Genetics and Evolution,

20:206–214.

Li, D., Liu, C.-M., Luo, R., Sadakane, K., and Lam, T.-W. (2015). Megahit: an ultra-fast

single-node solution for large and complex metagenomics assembly via succinct de bruijn

graph. Bioinformatics, 31(10):1674–1676.

Li, H. (2009). kseq. http://lh3lh3.users.sourceforge.net/kseq.shtml. Accessed 18 November 2020.

Li, H. (2011). Wgsim. https://github.com/lh3/wgsim. Accessed 15 March 2021.

Li, H. (2013). Aligning sequence reads, clone sequences and assembly contigs with bwa-mem.

arXiv preprint arXiv:1303.3997.

Li, H. (2015). Bfc: correcting illumina sequencing errors. Bioinformatics, 31(17):2885–2887.

Li, Z., Chen, Y., Mu, D., Yuan, J., Shi, Y., Zhang, H., Gan, J., Li, N., Hu, X., Liu, B.,

et al. (2012). Comparison of the two major classes of assembly algorithms: overlap–layout–

consensus and de-bruijn-graph. Briefings in functional genomics, 11(1):25–37.

Liang, G. and Bushman, F. D. (2021). The human virome: assembly, composition and host

interactions. Nature Reviews Microbiology, 19(8):514–527.

Liao, X., Li, M., Zou, Y., Wu, F.-X., Wang, J., et al. (2019). Current challenges and solutions

of de novo assembly. Quantitative Biology, 7(2):90–109.

Limasset, A., Flot, J.-F., and Peterlongo, P. (2020). Toward perfect reads: self-correction of

short reads via mapping on de bruijn graphs. Bioinformatics, 36(5):1374–1381.

Liu, L., Li, Y., Li, S., Hu, N., He, Y., Pong, R., Lin, D., Lu, L., and Law, M. (2012). Comparison

of next-generation sequencing systems. Journal of Biomedicine and Biotechnology, 2012.

Liu, Y., Schröder, J., and Schmidt, B. (2013). Musket: a multistage k-mer spectrum-based error

corrector for illumina sequence data. Bioinformatics, 29(3):308–315.

Lodish, H. F. (1968). Bacteriophage f2 rna: control of translation and gene order. Nature,

220(5165):345–350.

Louten, J. (2016). Virus structure and classification. Essential Human Virology, page 19.

http://lh3lh3.users.sourceforge.net/kseq.shtml
https://github.com/lh3/wgsim

118 References

Lozupone, C. A. and Knight, R. (2007). Global patterns in bacterial diversity. Proceedings of

the National Academy of Sciences, 104(27):11436–11440.

Lynch, M. (2010). Evolution of the mutation rate. TRENDS in Genetics, 26(8):345–352.

Ma, X., Shao, Y., Tian, L., Flasch, D. A., Mulder, H. L., Edmonson, M. N., Liu, Y., Chen, X.,

Newman, S., Nakitandwe, J., et al. (2019). Analysis of error profiles in deep next-generation

sequencing data. Genome biology, 20(1):1–15.

Magoč, T. and Salzberg, S. L. (2011). Flash: fast length adjustment of short reads to improve

genome assemblies. Bioinformatics, 27(21):2957–2963.

Maldarelli, F. et al. (2016). The role of hiv integration in viral persistence: no more whistling

past the proviral graveyard. The Journal of clinical investigation, 126(2):438–447.

Mamun, A.-A., Pal, S., and Rajasekaran, S. (2016). Kcmbt: ak-mer counter based on multiple

burst trees. Bioinformatics, 32(18):2783–2790.

Manrao, E. A., Derrington, I. M., Laszlo, A. H., Langford, K. W., Hopper, M. K., Gillgren, N.,

Pavlenok, M., Niederweis, M., and Gundlach, J. H. (2012). Reading dna at single-nucleotide

resolution with a mutant mspa nanopore and phi29 dna polymerase. Nature biotechnology,

30(4):349–353.

Manrique, P., Bolduc, B., Walk, S. T., van der Oost, J., de Vos, W. M., and Young, M. J.

(2016). Healthy human gut phageome. Proceedings of the National Academy of Sciences,

113(37):10400–10405.

Marçais, G. and Kingsford, C. (2011). A fast, lock-free approach for efficient parallel counting

of occurrences of k-mers. Bioinformatics, 27(6):764–770.

Margulies, M., Egholm, M., Altman, W. E., Attiya, S., Bader, J. S., Bemben, L. A., Berka, J.,

Braverman, M. S., Chen, Y.-J., Chen, Z., et al. (2005). Genome sequencing in microfabricated

high-density picolitre reactors. Nature, 437(7057):376–380.

Marinier, E., Brown, D. G., and McConkey, B. J. (2015). Pollux: platform independent error

correction of single and mixed genomes. BMC bioinformatics, 16(1):1–12.

Marintcheva, B. (2018). ”Chapter 1 - Introduction to Viral Structure, Diversity and Biology.”

Harnessing the Power of Viruses. Academic Press.

Martin, J. A. and Wang, Z. (2011). Next-generation transcriptome assembly. Nature Reviews

Genetics, 12(10):671–682.

Martin, M. (2011). Cutadapt removes adapter sequences from high-throughput sequencing reads.

EMBnet. journal, 17(1):10–12.

Matsuo, Y., Komiya, S., Yasumizu, Y., Yasuoka, Y., Mizushima, K., Takagi, T., Kryukov, K.,

Fukuda, A., Morimoto, Y., Naito, Y., et al. (2021). Full-length 16s rrna gene amplicon analysis

References 119

of human gut microbiota using minion™ nanopore sequencing confers species-level resolution.

BMC microbiology, 21(1):1–13.

Maxam, A. M. and Gilbert, W. (1977). A new method for sequencing dna. Proceedings of the

National Academy of Sciences, 74(2):560–564.

Maxam, A. M. and Gilbert, W. (1980). [57] sequencing end-labeled dna with base-specific

chemical cleavages. In Methods in enzymology, volume 65, pages 499–560. Elsevier.

McNair, K., Aziz, R. K., Pusch, G. D., Overbeek, R., Dutilh, B. E., and Edwards, R. (2018).

Phage genome annotation using the rast pipeline. In Bacteriophages, pages 231–238. Springer.

Medvedev, P., Georgiou, K., Myers, G., and Brudno, M. (2007). Computability of models

for sequence assembly. In International Workshop on Algorithms in Bioinformatics, pages

289–301. Springer.

Meleshko, D., Hajirasouliha, I., and Korobeynikov, A. (2022). coronaspades: from biosynthetic

gene clusters to rna viral assemblies. Bioinformatics, 38(1):1–8.

Meyer, F., Fritz, A., Deng, Z.-L., Koslicki, D., Gurevich, A., Robertson, G., Alser, M., Antipov,

D., Beghini, F., Bertrand, D., et al. (2021). Critical assessment of metagenome interpretation-

the second round of challenges. BioRxiv.

Mihara, T., Nishimura, Y., Shimizu, Y., Nishiyama, H., Yoshikawa, G., Uehara, H., Hingamp,

P., Goto, S., and Ogata, H. (2016). Linking virus genomes with host taxonomy. Viruses,

8(3):66.

Mikheenko, A., Saveliev, V., and Gurevich, A. (2016a). Metaquast: evaluation of metagenome

assemblies. Bioinformatics, 32(7):1088–1090.

Mikheenko, A., Valin, G., Prjibelski, A., Saveliev, V., and Gurevich, A. (2016b). Icarus: visu-

alizer for de novo assembly evaluation. Bioinformatics, 32(21):3321–3323.

Miller, J. R., Koren, S., and Sutton, G. (2010). Assembly algorithms for next-generation se-

quencing data. Genomics, 95(6):315–327.

Miller, R. R., Montoya, V., Gardy, J. L., Patrick, D. M., and Tang, P. (2013). Metagenomics

for pathogen detection in public health. Genome medicine, 5(9):1–14.

Minot, S., Bryson, A., Chehoud, C., Wu, G. D., Lewis, J. D., and Bushman, F. D. (2013).

Rapid evolution of the human gut virome. Proceedings of the National Academy of Sciences,

110(30):12450–12455.

Mirzaei, M. K. and Maurice, C. F. (2017). Ménage à trois in the human gut: interactions

between host, bacteria and phages. Nature Reviews Microbiology, 15(7):397–408.

Mirzaei, M. K., Xue, J., Costa, R., Ru, J., Schulz, S., Taranu, Z. E., and Deng, L. (2021). Chal-

lenges of studying the human virome–relevant emerging technologies. Trends in Microbiology,

29(2):171–181.

120 References

Mitchell, K., Brito, J. J., Mandric, I., Wu, Q., Knyazev, S., Chang, S., Martin, L. S., Karlsberg,

A., Gerasimov, E., Littman, R., et al. (2020). Benchmarking of computational error-correction

methods for next-generation sequencing data. Genome biology, 21(1):1–13.

Mokili, J. L., Rohwer, F., and Dutilh, B. E. (2012). Metagenomics and future perspectives in

virus discovery. Current opinion in virology, 2(1):63–77.

Moon, K., Jeon, J. H., Kang, I., Park, K. S., Lee, K., Cha, C.-J., Lee, S. H., and Cho, J.-

C. (2020). Freshwater viral metagenome reveals novel and functional phage-borne antibiotic

resistance genes. Microbiome, 8(1):1–15.

Moreno-Gallego, J. L., Chou, S.-P., Di Rienzi, S. C., Goodrich, J. K., Spector, T. D., Bell,

J. T., Youngblut, N. D., Hewson, I., Reyes, A., and Ley, R. E. (2019). Virome diversity cor-

relates with intestinal microbiome diversity in adult monozygotic twins. Cell host & microbe,

25(2):261–272.

Myers, E. W. (2005). The fragment assembly string graph. Bioinformatics, 21(suppl 2):ii79–ii85.

Myers, E. W., Sutton, G. G., Delcher, A. L., Dew, I. M., Fasulo, D. P., Flanigan, M. J., Kravitz,

S. A., Mobarry, C. M., Reinert, K. H., Remington, K. A., et al. (2000). A whole-genome

assembly of drosophila. Science, 287(5461):2196–2204.

Namiki, T., Hachiya, T., Tanaka, H., and Sakakibara, Y. (2012). Metavelvet: an extension of

velvet assembler to de novo metagenome assembly from short sequence reads. Nucleic acids

research, 40(20):e155–e155.

Nayfach, S., Camargo, A. P., Schulz, F., Eloe-Fadrosh, E., Roux, S., and Kyrpides, N. C. (2021a).

Checkv assesses the quality and completeness of metagenome-assembled viral genomes. Nature

biotechnology, 39(5):578–585.

Nayfach, S., Páez-Espino, D., Call, L., Low, S. J., Sberro, H., Ivanova, N. N., Proal, A. D.,

Fischbach, M. A., Bhatt, A. S., Hugenholtz, P., et al. (2021b). Metagenomic compendium of

189,680 dna viruses from the human gut microbiome. Nature Microbiology, 6(7):960–970.

Needleman, S. B. and Wunsch, C. D. (1970). A general method applicable to the search for

similarities in the amino acid sequence of two proteins. Journal of molecular biology, 48(3):443–

453.

Nikolenko, S. I., Korobeynikov, A. I., and Alekseyev, M. A. (2013). Bayeshammer: Bayesian

clustering for error correction in single-cell sequencing. In BMC genomics, volume 14, pages

1–11. Springer.

Norman, J. M., Handley, S. A., Baldridge, M. T., Droit, L., Liu, C. Y., Keller, B. C., Kambal,

A., Monaco, C. L., Zhao, G., Fleshner, P., et al. (2015). Disease-specific alterations in the

enteric virome in inflammatory bowel disease. Cell, 160(3):447–460.

Nurk, S., Meleshko, D., Korobeynikov, A., and Pevzner, P. A. (2017). metaspades: a new

versatile metagenomic assembler. Genome research, 27(5):824–834.

References 121

Nyrén, P., Pettersson, B., and Uhlén, M. (1993). Solid phase dna minisequencing by an

enzymatic luminometric inorganic pyrophosphate detection assay. Analytical biochemistry,

208(1):171–175.

O’Leary, N. A., Wright, M. W., Brister, J. R., Ciufo, S., Haddad, D., McVeigh, R., Rajput,

B., Robbertse, B., Smith-White, B., Ako-Adjei, D., et al. (2016). Reference sequence (refseq)

database at ncbi: current status, taxonomic expansion, and functional annotation. Nucleic

acids research, 44(D1):D733–D745.

Olsen, G. J., Lane, D. J., Giovannoni, S. J., Pace, N. R., and Stahl, D. A. (1986). Microbial

ecology and evolution: a ribosomal rna approach. Annual reviews in microbiology, 40(1):337–

365.

Ozsolak, F. and Milos, P. M. (2011). Rna sequencing: advances, challenges and opportunities.

Nature reviews genetics, 12(2):87–98.

Pace, N. R. (1997). A molecular view of microbial diversity and the biosphere. Science,

276(5313):734–740.

Pace, N. R., Stahl, D. A., Lane, D. J., and Olsen, G. J. (1986). The analysis of natural

microbial populations by ribosomal rna sequences. In Advances in microbial ecology, pages

1–55. Springer.

Palermo, C. N., Fulthorpe, R. R., Saati, R., and Short, S. M. (2019). Metagenomic analysis of

virus diversity and relative abundance in a eutrophic freshwater harbour. Viruses, 11(9):792.

Payne, A., Holmes, N., Rakyan, V., and Loose, M. (2019). Bulkvis: a graphical viewer for oxford

nanopore bulk fast5 files. Bioinformatics, 35(13):2193–2198.

Peng, Y., Leung, H. C., Yiu, S.-M., and Chin, F. Y. (2012). Idba-ud: a de novo assembler

for single-cell and metagenomic sequencing data with highly uneven depth. Bioinformatics,

28(11):1420–1428.

Pereira Andrade, A. C. d. S., Victor de Miranda Boratto, P., Rodrigues, R. A. L., Bastos, T. M.,

Azevedo, B. L., Dornas, F. P., Oliveira, D. B., Drumond, B. P., Kroon, E. G., and Abrahão,

J. S. (2019). New isolates of pandoraviruses: contribution to the study of replication cycle

steps. Journal of virology, 93(5):e01942–18.

Pereira-Gómez, M. and Sanjuán, R. (2015). Effect of mismatch repair on the mutation rate of

bacteriophage ϕx174. Virus Evolution, 1(1):vev010.

Pérez-Cobas, A. E., Gomez-Valero, L., and Buchrieser, C. (2020). Metagenomic approaches

in microbial ecology: an update on whole-genome and marker gene sequencing analyses.

Microbial genomics, 6(8).

Pérez-Losada, M., Arenas, M., Galán, J. C., Palero, F., and González-Candelas, F. (2015).

Recombination in viruses: mechanisms, methods of study, and evolutionary consequences.

Infection, Genetics and Evolution, 30:296–307.

122 References

Pevzner, P. A., Tang, H., and Waterman, M. S. (2001). An eulerian path approach to dna

fragment assembly. Proceedings of the national academy of sciences, 98(17):9748–9753.

Pfeiffer, F., Gröber, C., Blank, M., Händler, K., Beyer, M., Schultze, J. L., and Mayer, G.

(2018). Systematic evaluation of error rates and causes in short samples in next-generation

sequencing. Scientific reports, 8(1):1–14.

Philippe, N., Legendre, M., Doutre, G., Couté, Y., Poirot, O., Lescot, M., Arslan, D., Seltzer,

V., Bertaux, L., Bruley, C., et al. (2013). Pandoraviruses: amoeba viruses with genomes up

to 2.5 mb reaching that of parasitic eukaryotes. Science, 341(6143):281–286.

Pinzone, M. R., VanBelzen, D. J., Weissman, S., Bertuccio, M. P., Cannon, L., Venanzi-Rullo, E.,

Migueles, S., Jones, R. B., Mota, T., Joseph, S. B., et al. (2019). Longitudinal hiv sequencing

reveals reservoir expression leading to decay which is obscured by clonal expansion. Nature

communications, 10(1):1–12.

Pop, M. (2009). Genome assembly reborn: recent computational challenges. Briefings in bioin-

formatics, 10(4):354–366.

Pride, D. T., Meinersmann, R. J., Wassenaar, T. M., and Blaser, M. J. (2003). Evolution-

ary implications of microbial genome tetranucleotide frequency biases. Genome research,

13(2):145–158.

Qu, W., Hashimoto, S.-i., and Morishita, S. (2009). Efficient frequency-based de novo short-read

clustering for error trimming in next-generation sequencing. Genome research, 19(7):1309–

1315.

Quince, C., Walker, A. W., Simpson, J. T., Loman, N. J., and Segata, N. (2017). Shotgun

metagenomics, from sampling to analysis. Nature biotechnology, 35(9):833–844.

Raghavan, V., Kraft, L., Mesny, F., and Rigerte, L. (2022). A simple guide to de novo tran-

scriptome assembly and annotation. Briefings in bioinformatics, 23(2):bbab563.

Raoult, D., Audic, S., Robert, C., Abergel, C., Renesto, P., Ogata, H., La Scola, B., Suzan,

M., and Claverie, J.-M. (2004). The 1.2-megabase genome sequence of mimivirus. science,

306(5700):1344–1350.

Ren, J., Ahlgren, N. A., Lu, Y. Y., Fuhrman, J. A., and Sun, F. (2017). Virfinder: a novel k-

mer based tool for identifying viral sequences from assembled metagenomic data. Microbiome,

5(1):1–20.

Retel, C., Märkle, H., Becks, L., and Feulner, P. G. (2019). Ecological and evolutionary processes

shaping viral genetic diversity. Viruses, 11(3):220.

Reuter, J. A., Spacek, D. V., and Snyder, M. P. (2015). High-throughput sequencing technolo-

gies. Molecular cell, 58(4):586–597.

References 123

Reyes, A., Haynes, M., Hanson, N., Angly, F. E., Heath, A. C., Rohwer, F., and Gordon, J. I.

(2010). Viruses in the faecal microbiota of monozygotic twins and their mothers. Nature,

466(7304):334–338.

Rizk, G., Lavenier, D., and Chikhi, R. (2013). Dsk: k-mer counting with very low memory

usage. Bioinformatics, 29(5):652–653.

Rizzi, R., Beretta, S., Patterson, M., Pirola, Y., Previtali, M., Della Vedova, G., and Bonizzoni,

P. (2019). Overlap graphs and de bruijn graphs: data structures for de novo genome assembly

in the big data era. Quantitative Biology, 7(4):278–292.

Rohwer, F., Seguritan, V., Choi, D., Segall, A., and Azam, F. (2001). Production of shotgun

libraries using random amplification. Biotechniques, 31(1):108–118.

Rose, R., Constantinides, B., Tapinos, A., Robertson, D. L., and Prosperi, M. (2016). Challenges

in the analysis of viral metagenomes. Virus Evolution, 2(2):vew022.

Roux, S., Adriaenssens, E. M., Dutilh, B. E., Koonin, E. V., Kropinski, A. M., Krupovic, M.,

Kuhn, J. H., Lavigne, R., Brister, J. R., Varsani, A., et al. (2019a). Minimum information

about an uncultivated virus genome (miuvig). Nature biotechnology, 37(1):29–37.

Roux, S., Brum, J. R., Dutilh, B. E., Sunagawa, S., Duhaime, M. B., Loy, A., Poulos, B. T.,

Solonenko, N., Lara, E., Poulain, J., et al. (2016). Ecogenomics and potential biogeochemical

impacts of globally abundant ocean viruses. Nature, 537(7622):689–693.

Roux, S., Emerson, J. B., Eloe-Fadrosh, E. A., and Sullivan, M. B. (2017). Benchmarking

viromics: an in silico evaluation of metagenome-enabled estimates of viral community com-

position and diversity. PeerJ, 5:e3817.

Roux, S., Enault, F., Hurwitz, B. L., and Sullivan, M. B. (2015a). Virsorter: mining viral signal

from microbial genomic data. PeerJ, 3:e985.

Roux, S., Hallam, S. J., Woyke, T., and Sullivan, M. B. (2015b). Viral dark matter and virus–

host interactions resolved from publicly available microbial genomes. elife, 4:e08490.

Roux, S., Krupovic, M., Daly, R. A., Borges, A. L., Nayfach, S., Schulz, F., Sharrar, A.,

Matheus Carnevali, P. B., Cheng, J.-F., Ivanova, N. N., et al. (2019b). Cryptic inoviruses

revealed as pervasive in bacteria and archaea across earth’s biomes. Nature Microbiology,

4(11):1895–1906.

Roux, S., Krupovic, M., Debroas, D., Forterre, P., and Enault, F. (2013). Assessment of viral

community functional potential from viral metagenomes may be hampered by contamination

with cellular sequences. Open biology, 3(12):130160.

Roux, S., Matthijnssens, J., and Dutilh, B. E. (2021). Metagenomics in virology. Encyclopedia

of Virology, page 133.

Ruby, J. G., Bellare, P., and DeRisi, J. L. (2013). Price: software for the targeted assembly of

components of (meta) genomic sequence data. G3: Genes, Genomes, Genetics, 3(5):865–880.

124 References

Saeed, I., Tang, S.-L., and Halgamuge, S. K. (2012). Unsupervised discovery of microbial

population structure within metagenomes using nucleotide base composition. Nucleic acids

research, 40(5):e34–e34.

Salmela, L. and Schröder, J. (2011). Correcting errors in short reads by multiple alignments.

Bioinformatics, 27(11):1455–1461.

Salzberg, S. L., Phillippy, A. M., Zimin, A., Puiu, D., Magoc, T., Koren, S., Treangen, T. J.,

Schatz, M. C., Delcher, A. L., Roberts, M., et al. (2012). Gage: A critical evaluation of

genome assemblies and assembly algorithms. Genome research, 22(3):557–567.

Sanger, F. and Coulson, A. R. (1975). A rapid method for determining sequences in dna by

primed synthesis with dna polymerase. Journal of molecular biology, 94(3):441–448.

Sanger, F., Nicklen, S., and Coulson, A. R. (1977). Dna sequencing with chain-terminating

inhibitors. Proceedings of the national academy of sciences, 74(12):5463–5467.

Sanjuán, R. and Domingo-Calap, P. (2016). Mechanisms of viral mutation. Cellular and molec-

ular life sciences, 73(23):4433–4448.

Sanjuán, R. and Domingo-Calap, P. (2021). Genetic diversity and evolution of viral populations.

Encyclopedia of Virology, page 53.

Sano, E., Carlson, S., Wegley, L., and Rohwer, F. (2004). Movement of viruses between biomes.

Applied and Environmental Microbiology, 70(10):5842–5846.

Savage, D. C. (1977). Microbial ecology of the gastrointestinal tract. Annual review of microbi-

ology, 31(1):107–133.

Sayers, E. W., Cavanaugh, M., Clark, K., Ostell, J., Pruitt, K. D., and Karsch-Mizrachi, I.

(2019). Genbank. Nucleic acids research, 47(D1):D94–D99.

Schatz, M. C., Delcher, A. L., and Salzberg, S. L. (2010). Assembly of large genomes using

second-generation sequencing. Genome research, 20(9):1165–1173.

Schirmer, M., D’Amore, R., Ijaz, U. Z., Hall, N., and Quince, C. (2016). Illumina error profiles:

resolving fine-scale variation in metagenomic sequencing data. BMC bioinformatics, 17(1):1–

15.

Schloss, P. D. and Handelsman, J. (2005). Metagenomics for studying unculturable microorgan-

isms: cutting the gordian knot. Genome biology, 6(8):1–4.

Schmidt, B., Sinha, R., Beresford-Smith, B., and Puglisi, S. J. (2009). A fast hybrid short read

fragment assembly algorithm. Bioinformatics, 25(17):2279–2280.

Schoch, C. L., Seifert, K. A., Huhndorf, S., Robert, V., Spouge, J. L., Levesque, C. A., Chen, W.,

Consortium, F. B., List, F. B. C. A., Bolchacova, E., et al. (2012). Nuclear ribosomal internal

transcribed spacer (its) region as a universal dna barcode marker for fungi. Proceedings of the

national academy of Sciences, 109(16):6241–6246.

References 125

Schröder, J., Schröder, H., Puglisi, S. J., Sinha, R., and Schmidt, B. (2009). Shrec: a short-read

error correction method. Bioinformatics, 25(17):2157–2163.

Schulz, F., Alteio, L., Goudeau, D., Ryan, E. M., Yu, F. B., Malmstrom, R. R., Blanchard,

J., and Woyke, T. (2018). Hidden diversity of soil giant viruses. Nature communications,

9(1):1–9.

Schulz, F., Roux, S., Paez-Espino, D., Jungbluth, S., Walsh, D. A., Denef, V. J., McMahon,

K. D., Konstantinidis, K. T., Eloe-Fadrosh, E. A., Kyrpides, N. C., et al. (2020). Giant virus

diversity and host interactions through global metagenomics. Nature, 578(7795):432–436.

Schulz, M. H., Weese, D., Holtgrewe, M., Dimitrova, V., Niu, S., Reinert, K., and Richard, H.

(2014). Fiona: a parallel and automatic strategy for read error correction. Bioinformatics,

30(17):i356–i363.

Sczyrba, A., Hofmann, P., Belmann, P., Koslicki, D., Janssen, S., Dröge, J., Gregor, I., Majda,

S., Fiedler, J., Dahms, E., et al. (2017). Critical assessment of metagenome interpretation—a

benchmark of metagenomics software. Nature methods, 14(11):1063–1071.

Sheetlin, S., Park, Y., Frith, M. C., and Spouge, J. L. (2016). Alp & falp: C++ libraries for

pairwise local alignment e-values. Bioinformatics, 32(2):304–305.

Shendure, J. and Ji, H. (2008). Next-generation dna sequencing. Nature biotechnology,

26(10):1135–1145.

Shkoporov, A. N., Clooney, A. G., Sutton, T. D., Ryan, F. J., Daly, K. M., Nolan, J. A.,

McDonnell, S. A., Khokhlova, E. V., Draper, L. A., Forde, A., et al. (2019). The human gut

virome is highly diverse, stable, and individual specific. Cell host & microbe, 26(4):527–541.

Shkoporov, A. N. and Hill, C. (2019). Bacteriophages of the human gut: the “known unknown”

of the microbiome. Cell host & microbe, 25(2):195–209.

Simão, F. A., Waterhouse, R. M., Ioannidis, P., Kriventseva, E. V., and Zdobnov, E. M. (2015).

Busco: assessing genome assembly and annotation completeness with single-copy orthologs.

Bioinformatics, 31(19):3210–3212.

Simmonds, P. (2015). Methods for virus classification and the challenge of incorporating metage-

nomic sequence data. Journal of General Virology, 96(6):1193–1206.

Simmonds, P., Adams, M. J., Benkő, M., Breitbart, M., Brister, J. R., Carstens, E. B., Davison,

A. J., Delwart, E., Gorbalenya, A. E., Harrach, B., et al. (2017). Virus taxonomy in the age

of metagenomics. Nature Reviews Microbiology, 15(3):161–168.

Simon, C. and Daniel, R. (2011). Metagenomic analyses: past and future trends. Applied and

environmental microbiology, 77(4):1153–1161.

Simon-Loriere, E. and Holmes, E. C. (2011). Why do rna viruses recombine? Nature Reviews

Microbiology, 9(8):617–626.

126 References

Slatko, B. E., Gardner, A. F., and Ausubel, F. M. (2018). Overview of next-generation sequenc-

ing technologies. Current protocols in molecular biology, 122(1):e59.

Smith, E. C., Blanc, H., Vignuzzi, M., and Denison, M. R. (2013). Coronaviruses lacking

exoribonuclease activity are susceptible to lethal mutagenesis: evidence for proofreading and

potential therapeutics. PLoS pathogens, 9(8):e1003565.

Smith, L. M., Sanders, J. Z., Kaiser, R. J., Hughes, P., Dodd, C., Connell, C. R., Heiner, C.,

Kent, S. B., and Hood, L. E. (1986). Fluorescence detection in automated dna sequence

analysis. Nature, 321(6071):674–679.

Smits, S. L., Bodewes, R., Ruiz-Gonzalez, A., Baumgärtner, W., Koopmans, M. P., Osterhaus,

A. D., and Schürch, A. C. (2014). Assembly of viral genomes from metagenomes. Frontiers

in microbiology, 5:714.

Song, L., Florea, L., and Langmead, B. (2014). Lighter: fast and memory-efficient sequencing

error correction without counting. Genome biology, 15(11):1–13.

Stark, R., Grzelak, M., and Hadfield, J. (2019). Rna sequencing: the teenage years. Nature

Reviews Genetics, 20(11):631–656.

Steinegger, M., Mirdita, M., and Söding, J. (2019). Protein-level assembly increases protein

sequence recovery from metagenomic samples manyfold. Nature methods, 16(7):603–606.

Steinegger, M. and Söding, J. (2017). Mmseqs2 enables sensitive protein sequence searching for

the analysis of massive data sets. Nature biotechnology, 35(11):1026–1028.

Steinegger, M. and Söding, J. (2018). Clustering huge protein sequence sets in linear time.

Nature communications, 9(1):1–8.

Stoler, N. and Nekrutenko, A. (2021). Sequencing error profiles of illumina sequencing instru-

ments. NAR genomics and bioinformatics, 3(1):lqab019.

Suttle, C. A. (2005). Viruses in the sea. Nature, 437(7057):356–361.

Suttle, C. A. (2007). Marine viruses—major players in the global ecosystem. Nature reviews

microbiology, 5(10):801–812.

Sutton, G. G., White, O., Adams, M. D., and Kerlavage, A. R. (1995). Tigr assembler: A

new tool for assembling large shotgun sequencing projects. Genome Science and Technology,

1(1):9–19.

Sutton, T. D., Clooney, A. G., Ryan, F. J., Ross, R. P., and Hill, C. (2019). Choice of assembly

software has a critical impact on virome characterisation. Microbiome, 7(1):1–15.

Sutton, T. D. and Hill, C. (2019). Gut bacteriophage: current understanding and challenges.

Frontiers in endocrinology, page 784.

Swerdlow, H. and Gesteland, R. (1990). Capillary gel electrophoresis for rapid, high resolution

dna sequencing. Nucleic acids research, 18(6):1415–1419.

References 127

Takeda, H., Ueda, Y., Inuzuka, T., Yamashita, Y., Osaki, Y., Nasu, A., Umeda, M., Takemura,

R., Seno, H., Sekine, A., et al. (2017). Evolution of multi-drug resistant hcv clones from

pre-existing resistant-associated variants during direct-acting antiviral therapy determined by

third-generation sequencing. Scientific reports, 7(1):1–13.

Tanaka, R., Hino, A., Tsai, I. J., Palomares-Rius, J. E., Yoshida, A., Ogura, Y., Hayashi, T.,

Maruyama, H., and Kikuchi, T. (2014). Assessment of helminth biodiversity in wild rats using

18s rdna based metagenomics. PloS one, 9(10):e110769.

Tars, K. (2020). ssrna phages: Life cycle, structure and applications. In Biocommunication of

Phages, pages 261–292. Springer.

Thurber, R. V., Haynes, M., Breitbart, M., Wegley, L., and Rohwer, F. (2009). Laboratory

procedures to generate viral metagenomes. Nature protocols, 4(4):470–483.

Tringe, S. G. and Hugenholtz, P. (2008). A renaissance for the pioneering 16s rrna gene. Current

opinion in microbiology, 11(5):442–446.

Trubl, G., Hyman, P., Roux, S., and Abedon, S. T. (2020). Coming-of-age characterization of

soil viruses: a user’s guide to virus isolation, detection within metagenomes, and viromics.

Soil Systems, 4(2):23.

Trubl, G., Jang, H. B., Roux, S., Emerson, J. B., Solonenko, N., Vik, D. R., Solden, L., Ellen-

bogen, J., Runyon, A. T., Bolduc, B., et al. (2018). Soil viruses are underexplored players in

ecosystem carbon processing. MSystems, 3(5):e00076–18.

Turnbaugh, P. J., Ridaura, V. K., Faith, J. J., Rey, F. E., Knight, R., and Gordon, J. I. (2009).

The effect of diet on the human gut microbiome: a metagenomic analysis in humanized

gnotobiotic mice. Science translational medicine, 1(6):6ra14–6ra14.

Uyaguari-Diaz, M. I., Chan, M., Chaban, B. L., Croxen, M. A., Finke, J. F., Hill, J. E., Peabody,

M. A., Van Rossum, T., Suttle, C. A., Brinkman, F. S., et al. (2016). A comprehensive method

for amplicon-based and metagenomic characterization of viruses, bacteria, and eukaryotes in

freshwater samples. Microbiome, 4(1):1–19.

Van der Kuyl, A. C. and Cornelissen, M. (2007). Identifying hiv-1 dual infections. Retrovirology,

4(1):1–12.

Van Dijk, E. L., Jaszczyszyn, Y., Naquin, D., and Thermes, C. (2018). The third revolution in

sequencing technology. Trends in Genetics, 34(9):666–681.

Vázquez-Castellanos, J. F., Garćıa-López, R., Pérez-Brocal, V., Pignatelli, M., and Moya, A.

(2014). Comparison of different assembly and annotation tools on analysis of simulated viral

metagenomic communities in the gut. BMC genomics, 15(1):1–20.

Venter, J. C., Adams, M. D., Myers, E. W., Li, P. W., Mural, R. J., Sutton, G. G., Smith, H. O.,

Yandell, M., Evans, C. A., Holt, R. A., et al. (2001). The sequence of the human genome.

science, 291(5507):1304–1351.

128 References

Villarroel, J., Kleinheinz, K. A., Jurtz, V. I., Zschach, H., Lund, O., Nielsen, M., and Larsen,

M. V. (2016). Hostphinder: a phage host prediction tool. Viruses, 8(5):116.

Vollmers, J., Wiegand, S., and Kaster, A.-K. (2017). Comparing and evaluating metagenome

assembly tools from a microbiologist’s perspective-not only size matters! PloS one,

12(1):e0169662.

Walker, P. J., Siddell, S. G., Lefkowitz, E. J., Mushegian, A. R., Adriaenssens, E. M., Alfenas-

Zerbini, P., Davison, A. J., Dempsey, D. M., Dutilh, B. E., Garćıa, M. L., et al. (2021).

Changes to virus taxonomy and to the international code of virus classification and nomen-

clature ratified by the international committee on taxonomy of viruses (2021). Archives of

virology, 166(9):2633–2648.

Wang, E. T., Sandberg, R., Luo, S., Khrebtukova, I., Zhang, L., Mayr, C., Kingsmore, S. F.,

Schroth, G. P., and Burge, C. B. (2008). Alternative isoform regulation in human tissue

transcriptomes. Nature, 456(7221):470–476.

Wang, Y., Pedersen, M. W., Alsos, I. G., De Sanctis, B., Racimo, F., Prohaska, A., Coissac,

E., Owens, H. L., Merkel, M. K. F., Fernandez-Guerra, A., et al. (2021). Late quaternary

dynamics of arctic biota from ancient environmental genomics. Nature, 600(7887):86–92.

Wang, Z., Gerstein, M., and Snyder, M. (2009). Rna-seq: a revolutionary tool for transcrip-

tomics. Nature reviews genetics, 10(1):57–63.

Ward, D. M., Weller, R., and Bateson, M. M. (1990). 16s rrna sequences reveal numerous

uncultured microorganisms in a natural community. Nature, 345(6270):63–65.

Warren, R. L., Sutton, G. G., Jones, S. J., and Holt, R. A. (2007). Assembling millions of short

dna sequences using ssake. Bioinformatics, 23(4):500–501.

Warwick-Dugdale, J., Solonenko, N., Moore, K., Chittick, L., Gregory, A. C., Allen, M. J.,

Sullivan, M. B., and Temperton, B. (2019). Long-read viral metagenomics captures abundant

and microdiverse viral populations and their niche-defining genomic islands. PeerJ, 7:e6800.

Waterhouse, A. M., Procter, J. B., Martin, D. M., Clamp, M., and Barton, G. J. (2009). Jalview

version 2—a multiple sequence alignment editor and analysis workbench. Bioinformatics,

25(9):1189–1191.

Wheeler, D. A., Srinivasan, M., Egholm, M., Shen, Y., Chen, L., McGuire, A., He, W., Chen,

Y.-J., Makhijani, V., Roth, G. T., et al. (2008). The complete genome of an individual by

massively parallel dna sequencing. nature, 452(7189):872–876.

Wick, R. R., Judd, L. M., Gorrie, C. L., and Holt, K. E. (2017). Unicycler: resolving bacte-

rial genome assemblies from short and long sequencing reads. PLoS computational biology,

13(6):e1005595.

Wilhelm, S. W. and Suttle, C. A. (1999). Viruses and nutrient cycles in the sea: viruses play

critical roles in the structure and function of aquatic food webs. Bioscience, 49(10):781–788.

References 129

Williams, H. T. (2013). Phage-induced diversification improves host evolvability. BMC evolu-

tionary biology, 13(1):1–17.

Williamson, K. E., Fuhrmann, J. J., Wommack, K. E., and Radosevich, M. (2017). Viruses

in soil ecosystems: an unknown quantity within an unexplored territory. Annual review of

virology, 4:201–219.

Woese, C. R. and Fox, G. E. (1977). Phylogenetic structure of the prokaryotic domain: the

primary kingdoms. Proceedings of the National Academy of Sciences, 74(11):5088–5090.

Yan, Q., Wang, Y., Chen, X., Jin, H., Wang, G., Guan, K., Zhang, Y., Zhang, P., Ayaz, T.,

Liang, Y., et al. (2021). Characterization of the gut dna and rna viromes in a cohort of chinese

residents and visiting pakistanis. Virus Evolution, 7(1):veab022.

Yang, Q., Gao, C., Jiang, Y., Wang, M., Zhou, X., Shao, H., Gong, Z., and McMinn, A. (2019).

Metagenomic characterization of the viral community of the south scotia ridge. Viruses,

11(2):95.

Yang, X., Charlebois, P., Gnerre, S., Coole, M. G., Lennon, N. J., Levin, J. Z., Qu, J., Ryan,

E. M., Zody, M. C., and Henn, M. R. (2012). De novo assembly of highly diverse viral

populations. BMC genomics, 13(1):1–13.

Yang, X., Chockalingam, S. P., and Aluru, S. (2013). A survey of error-correction methods for

next-generation sequencing. Briefings in bioinformatics, 14(1):56–66.

Yang, X., Dorman, K. S., and Aluru, S. (2010). Reptile: representative tiling for short read

error correction. Bioinformatics, 26(20):2526–2533.

Yeom, H., Lee, Y., Ryu, T., Noh, J., Lee, A. C., Lee, H.-B., Kang, E., Song, S. W., and Kwon,

S. (2019). Barcode-free next-generation sequencing error validation for ultra-rare variant

detection. Nature communications, 10(1):1–8.

Youngblut, N. D., De la Cuesta-Zuluaga, J., Reischer, G. H., Dauser, S., Schuster, N., Walzer,

C., Stalder, G., Farnleitner, A. H., and Ley, R. E. (2020). Large-scale metagenome assem-

bly reveals novel animal-associated microbial genomes, biosynthetic gene clusters, and other

genetic diversity. Msystems, 5(6):e01045–20.

Zeidner, G., Bielawski, J. P., Shmoish, M., Scanlan, D. J., Sabehi, G., and Béjà, O. (2005).

Potential photosynthesis gene recombination between prochlorococcus and synechococcus via

viral intermediates. Environmental microbiology, 7(10):1505–1513.

Zerbino, D. R. and Birney, E. (2008). Velvet: algorithms for de novo short read assembly using

de bruijn graphs. Genome research, 18(5):821–829.

Zerbino, D. R., McEwen, G. K., Margulies, E. H., and Birney, E. (2009). Pebble and rock band:

heuristic resolution of repeats and scaffolding in the velvet short-read de novo assembler. PloS

one, 4(12):e8407.

130 References

Zhang, H., Jain, C., and Aluru, S. (2020). A comprehensive evaluation of long read error

correction methods. BMC genomics, 21(6):1–15.

Zhang, R., Mirdita, M., Levy Karin, E., Norroy, C., Galiez, C., and Söding, J. (2021).

Spacepharer: Sensitive identification of phages from crispr spacers in prokaryotic hosts. Bioin-

formatics, 37(19):3364–3366.

Zhong, Y., Chen, F., Wilhelm, S. W., Poorvin, L., and Hodson, R. E. (2002). Phylogenetic

diversity of marine cyanophage isolates and natural virus communities as revealed by se-

quences of viral capsid assembly protein gene g20. Applied and Environmental Microbiology,

68(4):1576–1584.

Zimmerman, A. E., Howard-Varona, C., Needham, D. M., John, S. G., Worden, A. Z., Sullivan,

M. B., Waldbauer, J. R., and Coleman, M. L. (2020). Metabolic and biogeochemical conse-

quences of viral infection in aquatic ecosystems. Nature Reviews Microbiology, 18(1):21–34.

A. Appendix

132 A.1. PenguiN user guide

A.1. PenguiN user guide

PenguiN (protein guided nucleotide assembler) is a software to assemble short nucleotide reads.

It is mainly tested on viral metagenomes, but should also be applicable for the assembly of

other data types. Please note that PenguiN has been integrated into the free GPLv3-licenced

Plass software. It is implemented in C++ and available for Linux and macOS. Source code and

binaries can be downloaded from https://github.com/soedinglab/plass.

Installation and requirements

PenguiN is not yet part of the latest release of Plass, but can be compiled from source. Therefore,

g++ (4.9 or higher) and CMake (3.0 or higher) are required.

git clone https://github.com/soedinglab/plass.git

cd plass

mkdir build && cd build

cmake -DCMAKE_BUILD_TYPE=RELEASE -DCMAKE_INSTALL_PREFIX=. ..

PenguiN takes advantage of multicore systems through OpenMP, and uses the SIMD capabilities

of the system in the redundancy reduction step with Linclust. It needs a CPU with at least the

SSE4.1 instruction set to run.

Usage and command line parameter

The work outlined in this thesis has extended Plass by two more workflows: nuclassemble and

guided nuclassemble.

For the whole PenguiN workflow, run

plass guided_nuclassemble <INPUT> <OUTPUT> <TMP> [OPTIONS]

PenguiN can assemble both paired-end reads (FASTQ) and single reads (FASTA or FASTQ).

For single reads pass a single file, for paired-end reads pass an even number of files.

The most important parameters are listed in the following. Parameter with type TWIN can always

be specified independently for the first stage and second stage by setting aa:<value>,nucl:<value>

or nucl:<value>,aa:<value>. If only a single value is passed, it is used for both stages. To

see the full parameter overview, run plass guided nuclassemble with -h

https://github.com/soedinglab/plass

A.1. PenguiN user guide 133

workflow parameter:

--num-iterations TWIN Number of assembly iterations performed on

nucleotide level and protein level

[aa:5,nucl:5]

output parameter:

--min-contig-len INT Minimum length of assembled contig to

output [1000]

--compressed INT Write compressed output [0]

kmermatcher parameter:

--ignore-multi-kmer BOOL Skip k-mers occurring multiple times (>=2) [1]

-k TWIN k-mer length [nucl:22,aa:14]

--kmer-per-seq INT k-mers per sequence [60]

--kmer-per-seq-scale TWIN Scale k-mer per sequence based on sequence

length as kmer-per-seq val + scale x seqlen

[0.100]

alignment parameter:

-e DOUBLE Extend sequences if the E-value is below

[1.000E-05]

--min-seq-id TWIN Overlap sequence identity threshold

[nucl:0.990,aa:0.970]

--min-aln-len TWIN Minimum alignment length [0]

cycle detection:

--chop-cycle BOOL Remove superfluous part of circular seq. [1]

--cycle-check BOOL Check for circular sequences [1]

redundancy reduction:

--clust-min-seq-id FLOAT Seq. id. threshold passed to linclust [0.970]

--clust-min-cov FLOAT Coverage threshold passed to linclust [0.990]

technical parameters:

--max-seq-len INT Maximum sequence length [200000]

--threads INT Number of CPU-cores used (all by default) [16]

-v INT Verbosity level: 0: quiet, 1: +errors,

2: +warnings, 3: +info [3]

134 A.2. CoCo user guide

A.2. CoCo user guide

CoCo (consensus correction) is a software to correct or filter short sequencing reads. CoCo is

implemented in C++ and freely available under the GPLv3-licence. The source code can be

downloaded from https://github.com/soedinglab/CoCo.

Installation and requirements

CoCo can be compiled from source, pre-built binaries are not yet available. To compile CoCo

from source git, g++ (5.0 or higher) and CMake (3.10 or higher) are required.

git clone https://github.com/soedinglab/CoCo.git

cd CoCo

git submodule update --init

mkdir build && cd build

cmake -DCMAKE_BUILD_TYPE=RELEASE -DCMAKE_INSTALL_PREFIX=. ..

make -j 4

Afterwards, the CoCo binary will be located in the build/ directory.

For optimal performance, CoCo requires a system supporting the SSE4.1 instruction set. How-

ever, it can also be compiled without.

Overview of workflows

CoCo provides different workflows:

• correction: Apply sequencing error correction.

• filter: Filter chimeric sequences.

• abundance: Estimate the abundance for each sequence.

• profile: Developer Tool to output spaced k -mer count profiles.

• counts2flat: Developer Tool to output the spaced k -mer count table.

Usage and command line parameter

To use a CoCo workflow, run coco <workflow>.

Here, only the usage and command line parameter for the sequencing error correction workflow

are shown. To see the available parameters for the other workflows, run coco <workflow>

without parameters or with -h

https://github.com/soedinglab/CoCo

A.2. CoCo user guide 135

For the sequencing error correction workflow run

coco correction -1 <fasta|q> -2 <fasta|q> | --reads <fasta|q>

[--counts <count.h5>] [options]

Specifying, the input by using either -1 <fasta|q> -2 <fasta|q> for paired-end sequences or

--reads <fasta|q> for single-end reads is required. Passing a pre-computed count-table by

specifying --counts is optional, but highly recommended. Using this option, CoCo transforms

the contiguous k -mers provided in the h5 file into spaced k -mers and utilizes the memory-efficient

lookuptable to store the counts. If the counts parameter is not specified, CoCo will utilize its

internal hash-table to count the spaced k -mers in the input reads itself. However, this only

works for small datasets.

An overview about CoCo’s parameter is given in the following:

-1 file with forward paired-end reads (fasta/fastq format)

-2 file with reverse paired-end reads (fasta/fastq format)

--reads file with unpaired/single/merged reads

(fasta/fastq format)

--counts pre-computed contiguous kmer count file in hdf5 format

(dsk output)

--outdir output directory [coco_out/]

--outprefix prefix to use for resultfile(s)

--spaced-pattern user-specified spaced k-mer pattern

[11110111111011011101010111011011111101111]

span must be <=64, 12 <= weight <=32 and symmetric

--skip skip sequences with less than this many k-mers [10]

--threshold percent drop threshold relative to neighborhood counts

[0.010]

--pseudocount untrusted count added to the pseudocount parameter [1]

--lowerbound lower bound for neighborhood counts to be considered [5]

--max-corr-num maximal number of corrections performed per read,

changes are discarded otherwise [10]

--max-trim-len maximal number of nucleotides trimmed from the beginning

or end of a read if error could not be corrected [0]

--update-lookup update counts in lookuptable after a sequence

is corrected [0]

(slow down and creates read order dependency but might

help in low coverage regions)

--verbose verbosity level, 0: quiet 1: Errors, 2: +Warnings,

3: +Info, 4: +Debug [3]

136 A.3. MMseqs2 database format

A.3. MMseqs2 database format

Due to the size of metagenomic samples, input and intermediate results of the described assembly

processes can not be stored in memory. Therefore, it is necessary to write out these results to

the disk during the assembly, which creates the bottleneck of many accesses to the file system.

To tackle this, PenGuiN (and Plass) use the more efficient MMseqs2 [Steinegger and Söding,

2017] database format. The details of the format are described in the MMseqs2 User Guide

(https://mmseqs.com/latest/userguide.pdf). In summary, a MMseqs2 database consists of three

files (1) a data file, (2) an index file, and (3) a dbtype file. The data file contains the content

of the database as \0 separated records, the index file gives for each record the corresponding

byte position and size in the data file, and the dbtype file contains a number in binary format

describing the type of the database e.g. amino acid, nucleotide, profile, ...

In case of a sequencing file (FASTA/FASTQ) the content is transformed into two databases,

the sequence data and the header, i.e. 6 files. Each line in the sequence data file is a separate

sequence followed by a null byte \0. The index file contains three tab separated columns (1)

numeric sequence identifier, (2) byte offset, (3) size of the record (corresponding to the real

sequencing length plus newline and \0 character). The header data file contains either the “>”

or “@” records, and has its own corresponding index file. The relationship of sequence and

header records are maintained by using the same identifier as key.

Besides the use of the MMseqs2 database format for sequences, also k -mer matches and alignment

results are stored in the MMseqs2 database format. E.g. for each sequence id the record with the

same id in the alignment database gives all alignments which were computed for this sequence.

At the same time, this format enables to store the relation between the protein sequence and

the corresponding nucleotide sequences in a simple way in PenguiN, which was necessary for

the simultaneous assembly of both. Both have the same numerical identifier in their respective

database files. Therefore, for each protein sequence the corresponding nucleotide sequence can

be queried directly. Further, with the same identifier the alignments that corresponds to the

possible extension can be accessed from the protein alignment database and nucleotide alignment

database.

https://mmseqs.com/latest/userguide.pdf

A.4. Parameter choice for the detection of circular sequences during the assembly 137

A.4. Parameter choice for the detection of circular sequences during

the assembly

(a) (b)

Figure A.1.: Distribution of the hit rate for terminal redundant sequences and linear se-
quences during PenguiN’s cycle decection. Within the PenguiN software, circular sequences are
identified through the number of k -mer matches between the sequences ends relative to the length (hit
rate). If the hit rate is greater than a threshold, the sequence is excluded from the subsequent iterations
of the assembly process to avoid overextension and only added later to the final contigs. To get a default
threshold value, I analyzed the hit rate distribution for 5994 complete viruses, obtained from the RefSeq
[O’Leary et al., 2016] database. By aligning the ends of the sequences I classified the viruses as terminal
redundant viruses, the once that would start to repeat itself during the assembly process, and linear
otherwise. (a) shows the distribution of the hit rate for the complete genomes as boxplot, and (b) the
distribution of the hit rate when splitting the linear sequences in fragments to model the assembly process
(for 3 different fragment sizes). The boxes (orange) contain 75% of the values and show that both classes
significantly differ, there are only some outliers. I simply choose the hit rate threshold as the midpoint of
the most extreme outliers of the terminal redundant and linear class from the complete genomes (0.24)

.

138 A.5. Resource data for the metatranscriptomic dataset

A.5. Resource data for the metatranscriptomic dataset

Table A.1.: Accession numbers and sample information of the metatranscriptomic dataset.
The table is adapted from [Callanan et al., 2020].

SRA Accession Location Sample paired reads

SRR6960803 Japan activated sludge 20 191 321

SRR6960801 Japan activated sludge 20 197 408

SRR6960799 Japan activated sludge 22 422 377

SRR7976324 Japan activated sludge 17 780 687

SRR7976357 Japan activated sludge 23 459 568

SRR7976327 Japan activated sludge 20 767 250

SRR7976323 Japan activated sludge 19 691 006

SRR7976326 Japan activated sludge 12 678 684

SRR7976325 Japan activated sludge 17 670 226

SRR6960800 Japan activated sludge 15 926 937

SRR6960802 Japan activated sludge 20 208 979

SRR7976356 Japan activated sludge 19 834 461

SRR7473382 Austria activated sludge 50 635 570

SRR5208573 Austria activated sludge 14 216 734

SRR6050738 Austria activated sludge 18 337 219

SRR5208570 Austria activated sludge 28 150 679

SRR5208572 Austria activated sludge 29 553 670

SRR5208574 Austria activated sludge 11 776 827

SRR5208575 Austria activated sludge 17 963 645

SRR5467137 Austria activated sludge 32 099 619

SRR5467139 Austria activated sludge 24 263 621

SRR5467140 Austria activated sludge 27 444 364

SRR6050482 Austria activated sludge 15 846 142

SRR6050483 Austria activated sludge 28 430 957

SRR6050528 Austria activated sludge 21 300 721

SRR6050643 Austria activated sludge 4 803 184

SRR6050698 Austria activated sludge 17 703 117

SRR6050716 Austria activated sludge 24 078 057

SRR5466399 Illinois activated sludge 15 040 886

SRR6254352 Illinois activated sludge 19 029 630

SRR6960507 Illinois activated sludge 21 165 227

SRR5466338 Illinois activated sludge 17 022 360

SRR5466364 Illinois activated sludge 21 955 895

SRR5466365 Illinois activated sludge 20 573 268

SRR5466366 Illinois activated sludge 17 463 750

A.5. Resource data for the metatranscriptomic dataset 139

Table A.1 continued.

SRA Accession Location Sample paired reads

SRR5466369 Illinois activated sludge 16 356 361

SRR5466337 Illinois activated sludge 19 932 210

SRR5466723 Illinois activated sludge 15 660 162

SRR5466725 Illinois activated sludge 16 731 551

SRR5466727 Illinois activated sludge 13 890 630

SRR5466728 Illinois activated sludge 15 838 965

SRR5466729 Illinois activated sludge 13 872 521

SRR5467090 Illinois activated sludge 16 287 026

SRR5467091 Illinois activated sludge 15 688 657

SRR6049586 Illinois activated sludge 16 487 854

SRR6253161 Illinois activated sludge 19 588 661

SRR6253256 Illinois activated sludge 16 671 597

SRR6253579 Illinois activated sludge 19 008 214

SRR6254351 Illinois activated sludge 18 281 569

SRR6254353 Illinois activated sludge 16 089 478

SRR6254893 Illinois activated sludge 17 144 853

SRR6254984 Illinois activated sludge 17 408 755

SRR6255402 Illinois activated sludge 20 295 615

SRR6255513 Illinois activated sludge 16 354 936

SRR6255520 Illinois activated sludge 14 928 927

SRR6255521 Illinois activated sludge 18 186 323

SRR6255522 Illinois activated sludge 14 712 936

SRR6255733 Illinois activated sludge 15 439 553

SRR6255746 Illinois activated sludge 18 874 520

SRR6960509 Illinois activated sludge 21 489 598

SRR6960540 Illinois activated sludge 665 184

SRR6960549 Illinois activated sludge 3 322 729

SRR6960550 Illinois activated sludge 1 801 990

SRR6960551 Illinois activated sludge 25 867 062

SRR6960797 Illinois activated sludge 13 437 612

SRR7976295 Illinois activated sludge 2 568 117

SRR7976299 Illinois activated sludge 4 197 344

SRR7976300 Illinois activated sludge 16 710 492

SRR7976301 Illinois activated sludge 19 019 935

SRR7976310 Illinois activated sludge 18 395 372

SRR5834492 Lake Mendota aquatic 20 694 213

SRR6823494 Lake Mendota aquatic 14 858 012

SRR6435858 Lake Mendota aquatic 25 508 743

140 A.5. Resource data for the metatranscriptomic dataset

Table A.1 continued.

SRA Accession Location Sample paired reads

SRR6435866 Lake Mendota aquatic 27 804 741

SRR7687319 Lake Mississippi aquatic 20 624 327

SRR7687334 Lake Mississippi aquatic 26 231 537

SRR7687308 Lake Mississippi aquatic 25 099 737

SRR7963800 Lake Mississippi aquatic 23 489 000

SRR5995670 Singapore aquatic 1 586 743

SRR5995695 Singapore aquatic 1 535 590

SRR5995666 Singapore aquatic 1 243 067

SRR5995668 Singapore aquatic 1 428 190

A.6. Supplementary reports 141

A.6. Supplementary reports

Figure A.2.: Part of the extended MetaQUAST HTML report to assess assembly quality for PenguiN
and eight other assemblers on the 3-rhinovirus in silico mixture, expanded by the runs per reference.
Cells differ from the median are colored. All statistics are based on contigs of size ≥ 1000 bp, unless
otherwise noted.

142 A.6. Supplementary reports

Figure A.2.: continued

A.6. Supplementary reports 143

(a)

(b)

Figure A.3.: MetaQUAST HTML report for PenguiN and nine other assemblers on the three subsets
(a) 1-fold, (b) 10-fold, (c) 100-fold of the 2550-HIV1 in silico mixture. In (a) metaviralSPAdes is excluded
as it did not produce any result. For the latter two, Haploflow and SAVAGE did not produce results
within 10 days and are therefore excluded. Cells differing from the median are colored. All statistics are
based on contigs of size ≥ 1000 bp, unless otherwise noted. Metrics that depends on the reference lengths
(e.g. NGA60, LGA50) are not calculated for the combined reference.

144 A.6. Supplementary reports

(c)

Figure A.3.: continued

Figure A.4.: MetaQUAST HTML report for PenguiN on the mock community. All statistics are based
on contigs of size ≥ 1000 bp, unless otherwise noted. Metrics that depends on the reference lengths (e.g.
NGA50, LGA50) are not calculated for the combined reference. The genome fraction panel is expanded.

A.6. Supplementary reports 145

Table A.2.: Partial ssRNA phage genomes: contigs encoding for at least two phage proteins
(RdRp, CP, MP), identified in the assemblies of the 82 metatranscriptomic samples. The results are
reported per sample. An ’x’ indicates that the assembler could not process this sample within 10 days.

Sample PenguiN Megahit metaSPAdes rnaSPAdes rnaviralSPAdes VICUNA Haploflow

SRR6960803 108 99 83 68 64 x 16
SRR6960801 11 14 15 11 13 x 2
SRR6960799 229 246 243 197 171 x 70
SRR7976324 78 18 18 18 15 12 4
SRR7976357 102 94 94 78 71 x 21
SRR7976327 13 9 12 8 7 x 1
SRR7976323 47 26 25 22 20 17 10
SRR7976326 111 108 106 75 70 22 21
SRR7976325 206 193 186 176 153 45 34
SRR6960800 5 6 7 5 5 3 1
SRR6960802 62 21 22 23 19 14 10
SRR7976356 125 84 67 68 63 27 7
SRR7473382 27 31 x 32 31 x 12
SRR5208573 20 23 x 16 16 x x
SRR6050738 25 30 30 26 26 17 19
SRR5208570 19 22 x 20 19 12 10
SRR5208572 22 21 x 20 19 x x
SRR5208574 19 19 20 20 17 14 2
SRR5208575 27 26 26 23 23 18 15
SRR5467137 10 10 x 9 9 x 6
SRR5467139 27 28 28 26 26 22 15
SRR5467140 22 25 x 21 20 x x
SRR6050482 9 12 13 11 12 4 4
SRR6050483 14 16 x 13 13 x 2
SRR6050528 15 16 18 15 14 8 11
SRR6050643 9 13 12 7 6 4 6
SRR6050698 24 23 23 22 22 14 15
SRR6050716 23 20 18 18 16 x x
SRR5466399 44 30 34 30 27 9 6
SRR6254352 63 51 52 47 44 17 11
SRR6960507 119 85 83 75 66 x 11
SRR5466338 156 67 67 65 63 x 13
SRR5466364 89 73 77 72 67 x 23
SRR5466365 135 59 61 60 52 x 4
SRR5466366 99 62 60 60 54 x 10
SRR5466369 111 63 64 60 54 x 7
SRR5466337 136 67 63 64 57 x 9
SRR5466723 153 87 89 81 77 40 15
SRR5466725 175 131 141 123 119 x 73
SRR5466727 190 133 131 131 119 x 60
SRR5466728 130 74 68 70 62 37 16
SRR5466729 239 117 114 109 98 x 34
SRR5467090 185 89 85 86 75 39 17
SRR5467091 123 87 86 87 81 39 29
SRR6049586 75 62 57 59 55 x 13
SRR6253161 90 69 67 70 62 x 24
SRR6253256 55 42 42 35 31 17 12
SRR6253579 69 52 48 51 44 17 10
SRR6254351 68 47 47 44 39 19 12
SRR6254353 100 56 56 57 52 28 13
SRR6254893 64 47 44 43 44 17 16
SRR6254984 74 50 45 51 46 19 12
SRR6255402 67 46 45 48 42 20 9
SRR6255513 71 39 36 33 29 14 2
SRR6255520 60 44 40 39 34 15 8
SRR6255521 55 39 35 37 33 19 12
SRR6255522 46 40 38 38 33 12 10
SRR6255733 185 96 96 96 89 42 25
SRR6255746 99 85 88 83 78 38 46
SRR6960509 95 82 79 73 67 x 32
SRR6960540 24 14 14 15 13 7 5
SRR6960549 91 82 85 75 68 30 30
SRR6960550 27 25 24 21 20 13 12
SRR6960551 135 101 98 95 84 x 49
SRR6960797 86 59 63 58 52 22 37
SRR7976295 22 14 16 9 13 3 2
SRR7976299 115 72 73 65 58 24 17
SRR7976300 75 71 64 60 51 x 13
SRR7976301 88 73 81 62 59 23 19
SRR7976310 146 67 65 61 59 30 24
SRR5834492 2 2 2 2 2 1 0
SRR6823494 2 1 1 1 1 1 0
SRR6435858 1 1 1 1 1 x 1
SRR6435866 2 3 3 3 3 x 1
SRR7687319 3 6 8 3 1 x 1
SRR7687334 163 3 2 76 2 x 2
SRR7687308 7 9 10 6 4 x x
SRR7963800 44 2 2 8 2 x 2
SRR5995670 29 40 38 27 39 2 3
SRR5995695 0 3 2 0 3 0 0
SRR5995666 1 1 1 1 2 1 1
SRR5995668 0 3 3 3 4 0 0

146 A.6. Supplementary reports

Table A.3.: Near-complete ssRNA phage genomes: contigs encoding for all three phage proteins
(RdRp, CP, MP), identified in the assemblies of the 82 metatranscriptomic samples. The results are
reported per sample. An ’x’ indicates that the assembler could not process this sample within 10 days.

Sample PenguiN Megahit metaSPAdes rnaSPAdes rnaviralSPAdes VICUNA Haploflow

SRR6960803 54 47 43 43 34 x 5
SRR6960801 6 7 8 6 6 x 2
SRR6960799 113 126 125 109 91 x 30
SRR7976324 34 13 13 15 14 9 2
SRR7976357 55 41 44 47 37 x 7
SRR7976327 6 4 5 4 4 x 0
SRR7976323 27 17 20 22 19 12 6
SRR7976326 56 51 53 47 36 9 7
SRR7976325 102 104 110 101 85 29 17
SRR6960800 4 4 5 4 4 1 1
SRR6960802 30 16 17 16 15 11 7
SRR7976356 65 40 41 40 33 17 2
SRR7473382 21 27 x 25 23 x 10
SRR5208573 12 13 x 12 13 x x
SRR6050738 19 21 23 18 18 14 13
SRR5208570 13 18 x 16 15 8 9
SRR5208572 14 16 x 15 13 x x
SRR5208574 11 12 12 11 10 7 2
SRR5208575 18 22 23 22 21 13 9
SRR5467137 6 8 x 8 8 x 5
SRR5467139 22 21 22 21 21 14 9
SRR5467140 13 16 x 14 14 x x
SRR6050482 7 8 8 7 6 0 2
SRR6050483 10 11 x 9 8 x 1
SRR6050528 10 12 13 12 12 4 8
SRR6050643 6 6 5 6 5 3 4
SRR6050698 16 17 19 17 17 10 9
SRR6050716 15 15 14 12 10 x x
SRR5466399 25 25 22 17 15 4 3
SRR6254352 40 38 36 34 29 11 8
SRR6960507 56 44 42 40 38 x 5
SRR5466338 85 49 47 40 37 x 5
SRR5466364 61 50 46 46 41 x 10
SRR5466365 78 45 42 40 34 x 2
SRR5466366 57 42 37 40 33 x 6
SRR5466369 58 43 41 41 35 x 3
SRR5466337 67 47 44 38 35 x 4
SRR5466723 78 62 57 56 49 22 7
SRR5466725 102 90 93 84 77 x 48
SRR5466727 100 81 83 82 75 x 37
SRR5466728 70 50 47 44 38 19 5
SRR5466729 112 73 72 74 64 x 17
SRR5467090 92 52 49 51 51 23 9
SRR5467091 76 56 59 53 44 29 15
SRR6049586 42 44 41 42 34 x 6
SRR6253161 54 50 47 47 40 x 11
SRR6253256 35 28 26 24 23 8 3
SRR6253579 43 37 32 35 29 10 7
SRR6254351 39 31 27 29 25 11 6
SRR6254353 60 41 38 34 30 15 6
SRR6254893 38 33 33 30 24 10 9
SRR6254984 43 32 30 27 23 11 5
SRR6255402 39 34 32 31 27 9 3
SRR6255513 39 28 25 18 17 6 0
SRR6255520 37 30 27 22 15 12 1
SRR6255521 33 26 24 22 21 6 7
SRR6255522 29 28 24 25 22 7 3
SRR6255733 84 66 64 63 55 25 11
SRR6255746 57 62 58 53 50 23 28
SRR6960509 58 51 51 48 41 x 17
SRR6960540 13 11 11 10 9 6 1
SRR6960549 46 50 50 46 40 21 15
SRR6960550 16 17 17 16 16 8 8
SRR6960551 73 68 67 63 55 x 28
SRR6960797 43 37 36 37 32 15 21
SRR7976295 8 4 5 4 3 3 0
SRR7976299 57 44 42 37 33 17 7
SRR7976300 41 33 35 33 25 x 6
SRR7976301 43 38 39 39 34 21 12
SRR7976310 60 42 39 36 33 25 18
SRR5834492 0 0 0 0 0 0 0
SRR6823494 0 0 0 0 0 0 0
SRR6435858 0 0 0 0 0 x 0
SRR6435866 0 1 1 0 0 x 0
SRR7687319 2 2 2 0 0 x 0
SRR7687334 31 1 2 71 2 x 2
SRR7687308 1 3 3 2 2 x x
SRR7963800 19 2 2 8 2 x 2
SRR5995670 0 12 12 11 14 1 0
SRR5995695 0 1 1 0 1 0 0
SRR5995666 0 1 1 1 1 0 0
SRR5995668 0 2 2 2 2 0 0

A.6. Supplementary reports 147

Table A.4.: Complete ssRNA phage genomes: contigs encoding for all three phage proteins (RdRp,
CP, MP) without their premature termination by the edge of a contig, identified in the assemblies
of the 82 metatranscriptomic samples. The results are reported per sample. An ’x’ indicates that the
assembler could not process this sample within 10 days.

Sample PenguiN Megahit metaSPAdes rnaSPAdes rnaviralSPAdes VICUNA Haploflow

SRR6960803 31 27 28 26 24 x 3
SRR6960801 3 3 4 1 2 x 1
SRR6960799 53 54 62 48 40 x 12
SRR7976324 13 8 10 7 9 5 0
SRR7976357 30 30 29 28 28 x 5
SRR7976327 3 2 2 2 2 x 0
SRR7976323 17 11 14 13 14 9 4
SRR7976326 26 19 24 21 18 3 2
SRR7976325 48 47 48 37 38 13 3
SRR6960800 2 2 1 1 1 0 0
SRR6960802 17 10 12 11 11 6 3
SRR7976356 40 24 23 25 21 12 1
SRR7473382 15 17 x 15 14 x 5
SRR5208573 7 7 x 7 7 x x
SRR6050738 14 17 17 13 13 9 7
SRR5208570 9 11 x 9 9 5 4
SRR5208572 9 7 x 7 6 x x
SRR5208574 8 11 10 9 9 7 2
SRR5208575 13 19 17 16 16 8 3
SRR5467137 4 4 x 5 3 x 2
SRR5467139 18 17 20 18 18 9 4
SRR5467140 11 13 x 9 12 x x
SRR6050482 4 4 4 4 4 0 0
SRR6050483 4 6 x 5 4 x 1
SRR6050528 6 7 9 7 5 2 3
SRR6050643 2 5 4 2 1 1 0
SRR6050698 10 12 13 11 9 6 4
SRR6050716 8 12 12 7 5 x x
SRR5466399 14 9 8 8 8 3 1
SRR6254352 21 17 15 15 14 7 0
SRR6960507 26 21 20 20 16 x 2
SRR5466338 46 26 24 23 23 x 2
SRR5466364 35 30 26 23 22 x 3
SRR5466365 50 29 21 24 20 x 0
SRR5466366 35 25 20 21 18 x 2
SRR5466369 33 24 18 19 16 x 2
SRR5466337 40 24 20 20 19 x 1
SRR5466723 44 25 25 27 25 12 3
SRR5466725 64 47 56 49 46 x 15
SRR5466727 54 41 43 44 42 x 14
SRR5466728 37 28 28 22 23 9 0
SRR5466729 58 40 35 42 34 x 5
SRR5467090 48 35 29 29 30 11 0
SRR5467091 45 34 34 36 30 14 6
SRR6049586 27 24 23 22 16 x 1
SRR6253161 29 32 27 27 23 x 3
SRR6253256 20 12 12 12 11 4 0
SRR6253579 25 17 15 18 16 5 0
SRR6254351 22 14 13 15 11 8 0
SRR6254353 32 21 18 18 12 8 1
SRR6254893 23 13 13 19 14 8 2
SRR6254984 18 13 14 13 12 6 1
SRR6255402 19 19 15 16 12 6 0
SRR6255513 23 12 9 6 7 4 0
SRR6255520 17 12 10 9 9 6 0
SRR6255521 22 15 14 11 10 4 3
SRR6255522 13 10 9 8 9 5 0
SRR6255733 41 29 36 34 29 14 5
SRR6255746 32 33 30 29 28 16 13
SRR6960509 34 19 23 25 20 x 5
SRR6960540 7 5 5 5 4 4 1
SRR6960549 26 22 27 26 25 14 2
SRR6960550 9 8 8 8 8 6 2
SRR6960551 46 37 34 32 32 x 11
SRR6960797 23 20 18 19 17 9 11
SRR7976295 4 1 1 1 1 1 0
SRR7976299 35 20 21 22 20 12 1
SRR7976300 23 21 17 19 15 x 1
SRR7976301 28 26 24 23 21 15 5
SRR7976310 39 27 25 26 27 19 5
SRR5834492 0 0 0 0 0 0 0
SRR6823494 0 0 0 0 0 0 0
SRR6435858 0 0 0 0 0 x 0
SRR6435866 0 0 0 0 0 x 0
SRR7687319 0 0 0 0 0 x 0
SRR7687334 11 1 2 44 1 x 2
SRR7687308 0 1 1 1 1 x x
SRR7963800 7 1 1 7 2 x 2
SRR5995670 0 6 6 3 6 1 0
SRR5995695 0 0 0 0 0 0 0
SRR5995666 0 0 0 0 0 0 0
SRR5995668 0 0 0 0 0 0 0

	Board members
	Acknowledgements
	Abstract
	Table of Contents
	List of Figures
	List of Tables
	List of Abbreviations
	Introduction
	The diverse universe of viruses
	Revolution of sequencing technologies
	Microbial and viral metagenomics
	Metagenomic assembly from short sequencing reads
	Greedy assembly strategy
	Overlap-Layout-Consensus assembly
	De Bruijn graph assembly
	Limitations and challenges of assembly of viral genomes from metagenomic data

	Sequencing error correction
	Objectives and overview of this thesis

	Development of a protein-guided nucleotide assembler and its application to viral metagenomic samples
	Related work and underlying concept
	Algorithm and Implementation
	Outline of the PenguiN algorithm and key ideas
	Assemble six-frame translated reads to proteins and co-assemble nucleotide ORFs
	Link ORFs with reads

	Algorithm and software details
	From input reads to potential ORFs
	Finding Overlaps in linear time
	Transform protein alignments to corresponding nucleotide alignments
	Greedy extension strategy based on a Bayesian model
	Identify circular contigs
	Redundancy reduction
	Handling sequencing errors
	Software availability and documentation
	Parallelization
	Parameter settings

	Test and Benchmark Design
	Computational resources
	Choice of assembly software and parameter settings
	Choice of test and benchmarking datasets
	Evaluation tools and metrics

	Evaluation and Results
	Performance on simulated error-free reads
	Performance on a highly diverse strain mixture
	Analysis using MetaQUAST
	Analysis using MMseqs2 search

	Evaluation on a mock community
	Assembly of ssRNA phages from real metatranscriptomic samples from activated sludge and aquatic environments
	Detecting ssRNA phage sequences in the assemblies
	Pairwise comparison of complete ssRNA phage genome sets
	Further investigation of the assembled genomes

	Computational time and memory usage

	Discussion and Outlook
	Add-ons to Plass
	Performance
	Shortcomings and limitations
	Possible improvements / further work
	Further applications

	Conclusion

	Sequencing error correction based on spaced k-mer count profiles
	Algorithm
	Terminology and Notation
	Spaced k-mer count profiles
	Maximized spaced k-mer count profiles
	Advantages of spaced k-mers

	Error correction strategy

	Implementation
	Efficient storage of spaced k-mer counts
	Processing sequencing reads
	Further modules
	Code availability

	Test Results
	Validation on simulated data
	Comparison with other methods
	Impact on de novo assembly

	Discussion and Outlook
	Shortcomings and further benchmarks
	Algorithm related-extension
	Perspective on long reads

	Conclusion

	Concluding remarks
	References
	Appendix
	PenguiN user guide
	CoCo user guide
	MMseqs2 database format
	Parameter choice for the detection of circular sequences during the assembly
	Resource data for the metatranscriptomic dataset
	Supplementary reports

