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Abstract
The resolution limit of classical optical far-field microscopes was broken with the

invention of super-resolution microscopy. Today, a variety of these techniques

achieving different degrees of resolution exist. Image formation with most of these

methods can be easily affected by either photobleaching of fluorescent dyes due

to the use of high-intensity lasers or out-of-focus fluorescence signal from dyes in

different imaging planes. The resulting loss in contrast reduces the possibility to

distinguish individual structures or to localize individual fluorophores, ultimately

limiting the gain in resolution. This is especially the case when imaging axially

extended, densely labeled biological samples, where the out-of-focus signal can be

quite substantial.

Two-photon excitation as well as two-photon photoactivation (2PA) are promis-

ing strategies to mitigate this problem. The sharply confined two-photon active

volume facilitates imaging with significantly reduced background signal. The use

of STED compatible photoactivatable dyes enables the application of leading-edge

imaging modes including the nanometer-resolution MINSTED nanoscopy. The

goal of this thesis is to present efficient 2PA in the visible spectrum with multiple

photoactivatable dyes. The broad application of this technique, together with its

benefits compared to regular one-photon activation, is demonstrated for different

microscopy techniques.

On the other hand, in cases without 2PA, a deteriorated signal-to-background ratio

in measurements that are affected by a loss in contrast can be potentially recov-

ered through post-processing. The second part of this thesis investigates how the

image processing can be optimized to make informed decisions in cases where the

underlying structure is well known from previous experiments. Neural networks,

which are trained with simulated data of microtubules, are used to recover the

information that is present in any acquired low signal-to-background image. The

optimal training parameters are determined and the application on experimental

data is presented, outperforming classical algorithms.
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1. Introduction

The first description of the cell [1] and some larger bacteria was achieved in the

1600s by Anton von Leeuwenhoek through biological imaging with the use of an

optical microscope. His simple microscope contained just a single lens which was

placed between the sample and the eye. Even today, 360 years after this discovery,

optical imaging still plays a decisive role in uncovering biological processes through

the visualization of the underlying structure. Over time microscopes have improved

significantly and have developed from the use of single lenses to complex optical

systems. However, the imaging of individual sub-cellular structures closer than

∼ 200 nm remained impossible due to a fundamental limit postulated by Ernst

Abbe in 1873 [2]. This limit is based on the refraction of light and limits the

maximum resolution of visible far field microscopes with a wavelength of λ to a

lateral size dxymin

dxymin
≈ λ

2NA
=

λ

2n sin Θ
(1.1)

With NA being the numerical aperture of the objective lens, n the refractive index,

and Θ the half opening angle of the objective lens. The resolution dxymin
is here

defined as the full-width at half-maximum (FWHM) of the point spread function

(PSF) of the microscope.

Electron microscopy (EM) can deliver resolution down to the atomic scale with the

use of electrons, which possess a wavelength which is orders of magnitude lower

compared to visible light. Due to limitations such as imaging in vacuum, in vivo

imaging of biological samples is not possible with EM. Therefore, fluorescence mi-

croscopy is employed, where the biomolecules of interest are tagged with markers

that emit light. This allows for a specific labeling of different proteins in a single

cell with much simpler sample preparation compared to EM where the specific

staining of proteins is not possible. With fluorescence microscopy samples can be
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observed in living cells, allowing for the imaging of cellular dynamics.

In fluorescence microscopy the physical limit described above, set by the wave-

nature of light, was broken with the invention of stimulated emission depletion

(STED) in 1994 [3] and other super-resolution techniques like stochastic optical

reconstruction microscopy (STORM) [4] and photoactivated localization micros-

copy (PALM) in 2006 [5]. Fundamentally, all three methods rely on distinguishing

individual fluorophores based on their electronic states. In these methods emit-

ters are typically switched between their bright ON-state and a dark OFF-state,

where no fluorescence is emitted. The individual implementation differs between

these techniques but can be summarized in two groups, the coordinate-targeted

techniques such as STED and coordinate-stochastic techniques such as STORM

and PALM.

In coordinate-targeted methods the location of the fluorophore is determined by

the position of the fluorescence suppressing STED beam (see section 1.1), which

is scanned over the sample. In single molecule localization microscopy (SMLM)

methods on the other hand, the spatial separation is achieved by a separation in

time with a stochastic switching of single fluorophores. In the following, these sin-

gle fluorophores are localized individually with sub-diffraction limited localization

precision.

1.1 STED microscopy

In STED microscopy the fluorophores are transferred to a high vibrational excited

state S1,vib through the illumination with a diffraction-limited Gaussian-shaped ex-

citation beam (see blue line in Fig. 1.1 D). From there molecules transition quickly

to a lower excited state through internal relaxation. The off-switching of the fluo-

rophore is achieved through stimulated emission by a second beam illuminating the

sample together with the excitation beam. Instead of releasing a photon by spon-

taneous emission (fluorescence) the STED beam forces the molecule to a higher

level ground state by stimulated emission of a photon with the same wavelength.

To achieve good spectral filtering of the fluorescence and stimulated emission and

to avoid STED induced re-excitation, the STED beam is shifted to the red tail

of the emission spectrum. Therefore, the energy gap between the relaxed ground

state and the excited state is bigger than the STED photon energy. However, re-

excitation is non-zero since the transition from the first excited state to a higher
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excited state could still be induced by the STED light. From these higher excited

states the molecule can enter a triplet state through inter-system crossing. The

relaxation from this state is non-fluorescent and of significantly longer life-time

than the simple excited state.

Photobleaching of the dye is irreversible and can occur from any excited and triplet

state. This ultimately leads to a decrease in image quality through a loss of ob-

servable contrast. The specific pathway is often very complex [6], but triplet states

are assumed to play a major role [7, 8]. The excitation of the molecule to higher

electronic levels through the STED beam must therefore be kept at a minimum.

The focused STED beam for two-dimensional imaging is usually patterned through

the use of a vortex-phase plate. In the focus this forms a doughnut shape with

a minimal intensity in the center. When overlapped with the Gaussian-shaped

excitation beam, only fluorophores in the center of the STED beam stay in their

ON-state (see Fig. 1.1 A, B). Moving outward, the number of molecules in their

ON-state is decreasing until saturation is reached where all fluorophores are turned

off. The size of the effective PSF (EPSF) can be reduced by the manipulation of

this saturation point. This is achieved through an increase in the STED laser

intensity and the effective resolution can be described with a modified version of

the resolution formula by Abbe

dxy ≈
λ

2NA
√

1 + I/IS
(1.2)

with I being the applied STED intensity and IS the STED intensity where half

of the molecules are brought back to the ground state within the excited state

lifetime.

For the resolution improvement in axial direction, an annular phase plate is in-

troduced in the beam path, generating a so-called bottle beam in the focus (see

Fig. 1.1 C). The axial resolution can be calculated similarly to Eq. 1.2 with

dz ≈
λ

n−
√
n2 − n2 sin2(Θ) ·

√
1 + I/IS

(1.3)

Both beams for 2D- and axial-STED can be overlapped incoherently to achieve

resolution enhancement in both directions (see Fig. 1.1 C).

It has been shown that the addition of time-gating the detected fluorescence signal
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Figure 1.1: STED principle of resolution improvement. A Gaussian exci-
tation beam (blue) overlapped with the doughnut-shaped STED beam (red). The
resulting effective STED PSF is shown in green on the right, scale bars 400 nm.
B Cross-section through the PSF of STED, Gaussian excitation and the resulting
EPSF with the normalized intensity on the y-axis. Colors are the same as in A.
The gating of the fluorescent signal can improve the resolution but decreases the
obtained signal, shown in dark green. C Axial xz-view of the resulting profile of
the 3D-STED doughnut. This intensity profile in the focus of the beam is achieved
with the generation of a 2D-doughnut through a vortex phase plate, shown on the
left top, and a bottle-beam through an annular phase plate, left bottom. Scale bar
400 nm. D Jablonski diagram of the energy levels of the fluorescent molecule. The
excitation beam is shown in blue, the STED beam as dashed-red lines. The fluo-
rescence photon by a red-squiggly line, the stimulated emission by a red solid line.
Vibrational relaxation is shown in dark grey, non fluorescent conversions with a
black arrow. S0 is the ground state, S1 the excited state and Sn the higher excited
states. T1 and Tn are triplet states reached by inter-system crossing (isc).

to time-windows later in the fluorescence lifetime can further improve the resolu-

tion (g-STED [9, 10]). Early on, directly after the illumination with STED, not

all molecules in the vicinity of the doughnut minimum are yet switched off imme-

diately and some are still able to release photons before an effective stimulated

emission. These photons would lead to a reduction of the achieved resolution and

are therefore discarded in the application of g-STED, where only photons carrying

the maximum resolution information are considered. This effect is also visualized

in Fig. 1.1 B where the effective g-STED PSF is shown in dark green. In compari-

son to regular STED, the resolution is increased exhibiting smaller side lobes and

a lower base. However, the overall collected signal is decreasing with an increase

in the gating time.
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Theoretically, STED nanoscopy can deliver single nanometer resolution by simply

increasing the applied STED intensity (see Eq. 1.2). In practice however, with

a non-perfect doughnut this is hard to achieve. Any residual STED intensity in

the doughnut minimum is resulting in a decreased detected fluorescence signal.

This can be quite substantial for very high resolution measurements since only

very little STED power is needed for the initial suppression of the majority of

the fluorescence signal. Additionally, scanning over the sample with the high

intensities in the doughnut crest is resulting in photobleaching of not yet imaged

fluorophores. Due to these reasons, it is in practice impossible to achieve single

nanometer resolution in a classical scanning STED microscope.

1.2 MINFLUX and MINSTED microscopy

Recent advances in super-resolution microscopy make true molecular resolution

not only theoretically but also technically achievable. The new concepts of MIN-

FLUX [11, 12] and MINSTED [13] combine the ideas of the coordinate-targeted

and coordinate-stochastic approaches. Both methods, MINFLUX and MINSTED,

are based on single molecule localization. The sparsity of the probed structure is

ensured by stochastic on-switching of single photoactivatable dyes that are present

in the sample.

In MINFLUX the localization is achieved with a doughnut-patterned excitation

beam which is scanned through several positions around the estimated molecular

coordinate. The fluorescence photon counts at each MINFLUX iteration position

are used to localize the molecule and to update the scanning pattern accordingly.

The initial guess is based on a scan with a diffraction limited Gaussian excita-

tion beam. The position and the shape of the excitation beam profile, which are

recorded at the beginning of the measurement and are well-known values, encode

the information about the individual fluorophore’s position.

In the theoretical limit of a background free measurement, the most photon ef-

ficient localization is achieved when the doughnut minimum is positioned right

on top of the fluorophore, resulting ideally in a localization information without

emitted photons. Because of this, MINFLUX is typically implemented with an

iterative scheme where the area that is covered with the excitation beam scanning
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pattern is reduced progressively according to an increased knowledge about the

position of the imaged fluorophore. Based on the previous iteration the center

of the new scanning pattern is positioned on top of the estimated location of the

molecule. This effectively increases the overall photon-efficiency by scanning more

tightly around the target fluorophore.

MINSTED follows a similar concept where instead of a single doughnut-shaped ex-

citation beam the conventional pairing of a Gaussian excitation beam and STED

doughnut are used for the localization of the fluorophore. After successful activa-

tion of a single molecule, its rough position is estimated with an excitation-only

overview scan. The precise location of the emitter is then determined by encir-

cling it with the STED EPSF. The radius of the scan pattern is progressively

reduced to circle in on the molecule of interest. At the same time the FWHM

of the effective STED PSF is decreased until it reaches a minimum dmin. This

allows nanometer scale localization precision with only ∼ 1000 detected photons

even under relatively large background conditions [13].

1.3 Contrast loss in super-resolution micros-

copy

A microscope is generally tasked with three objectives: providing magnification,

resolution and contrast. Good magnification and high resolution are meaningless

in a microscope without enough contrast to distinguish objects of interest. The

well resolved features blend into the background and are therefore invisible.

A loss in contrast in super-resolution fluorescence microscopy might be due to

background signal originating from different parts of the imaged sample. In SMLM

methods like MINFLUX a high background signal significantly reduces the chances

for good fluorophore localizations due to a potentially reduced switching event de-

tection and reduced localization precision. Similarly, STED in thick, densely la-

beled biological samples suffers from out-of-focus signal which reduces the overall

image quality.

Another source of reduced contrast is a higher amount of photobleaching, induced

for example by the high power STED beam. During extended imaging sessions,

e.g. movie acquisition or 3D imaging, photobleaching can often become a signifi-
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cant drawback, especially when a high resolution is required.

This work discusses two different approaches to resolve the issue of contrast-loss in

super-resolution microscopy. The first part discusses the use case of two-photon ac-

tivation in the visible regime for its application with different (super-resolution) mi-

croscopy techniques. The second part investigates to which extend post-processing

of very low contrast STED images can be used to reconstruct the underlying struc-

ture. The gained knowledge about these approaches would allow to make informed

decisions about the imaging parameters that should be used for a given imaging

task.
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2. Two-photon activation

Two-photon microscopy has become a very popular tool for the imaging of thick bi-

ological samples due to its optical sectioning and therefore enhanced field of depth

[14–16]. For example, it is widely used in neurosciences due to the enhanced pene-

tration depth of the used IR wavelengths and the reduced fluorescence background

created through scattered photons [14, 15]. The main focus of these applications

lies on two-photon excitation of already fluorescent dyes.

Two-photon photoactivation of photoactivatable fluorescent dyes has, similar to

two-photon excitation, a potential to deliver a better signal-to-background con-

trast compared to regular imaging due to the restriction of the activated two-

photon volume, see Fig. 2.1 D. This limits the fluorescence readout from active

molecules and the subsequent photobleaching to only a small region, making two-

photon activation (2PA) a great tool for extended three dimensional structures.

2.1 Photoactivatable fluorescent dyes

Photoactivatable fluorophores offer the ability to further control the emitted flu-

orescence spatially as well as temporally. This additional control enables imaging

and spectroscopic measurements that were otherwise inaccessible. They are used

for diffusion measurements and measurements investigating cellular dynamics [17–

19], photolysis experiments [20] and for super-resolution microscopy [5, 11, 13, 21].

Photoactivatable fluorescent dyes are transferred from an inactive non-fluorescent

state to an active fluorescent form after being illuminated with light at an acti-

vation wavelength. The obtained active version of the fluorophore is subsequently

illuminated at the exciting wavelength which delivers the desired fluorescent signal

(see Fig. 2.1 A).
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In general the process of fluorescence suppression in the non-fluorescent state can

be achieved either by reducing the absorption at the excitation wavelength in the

ground state S0 or by increasing the non-radiative decay from the first excited

state S1 to the ground state S0 [22].

Similarly, the method of activation can differ between different photoactivatable

dyes. Typically the activation light induces a cleavage of one or more covalent

bonds, which is followed by a rearrangement of the distribution of the remaining

electrons in the molecule. This process is irreversible since it permanently separates

the dye from its caging group(s).

The actual method of fluorescence suppression as well as the activation mechanism

for each dye can be studied in the corresponding literature [13, 21, 23].

2.2 Two-photon microscopy

It has been shown early-on by Maria-Göppert Mayer [24] that an excitation, in-

duced by the absorption of a single photon, can also be achieved by the simulta-

neous absorption of two photons of lesser energy. In the basic form two photons

with the same energy interact with a molecule; in turn producing the same ef-

fect as a single photon with double the energy and half the wavelength. Similar to

two-photon excitation, 2PA is possible where two photons interact with a photoac-

tivatable fluorophore to transfer it into its active state (see Fig. 2.1 A). For this

to happen the photons have to interact almost simultaneously with the molecule

on time-scales of ∼ 5× 10−15 s or less [25]. This makes the probability for a 2PA

event extremely small and is the reason why the experimental application of the

theoretical proposal had to wait decades to become practical.

By focusing the laser beam with a high NA objective, the photon density and

therefore the chance for successful 2PA can be increased significantly. In the

resulting focal spot the photon flux is much higher than far away from the focal

spot. The probability for two-photon absorption is proportional to the square of

the laser intensity and therefore limits the two-photon active region to a small area

in the center of the PSF, where the intensity is high enough to cross the threshold.

This is the basis of the intrinsic three-dimensionality of this non-linear two-photon

process (see Fig. 2.1 B right).

In comparison, in the regular one-photon case the density of activated/excited
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molecules is similarly the highest in the focal point. But when moving axially away

from the focal point the number of activated/excited molecules is not decreasing

drastically but is more and more spread out laterally. Therefore, the sum of the

total lateral signal detectable after 1PA or similarly the signal which is generated

during one-photon excitation is constant over the entire area in the axial dimension.

Therefore, there is no optical sectioning after the application of 1PA (see Fig. 2.1 B

left).

This intensity squared behavior of 2PA is present throughout the whole sample

and illumination beam path. Therefore the FWHM of the effective two-photon

excitation PSF, for a beam with the wavelength λ in a medium with the refractive

index n focused with high NA, can be calculated using the work of [26, 27]

FWHMxy =
√

2 ln(2) · 0.33λ

NA0.91

FWHMz =
√

2 ln(2) · 0.53λ

(
1

n−
√
n2 −NA2

) (2.1)

This holds true in the absence of two-photon excitation saturation. When reaching

excitation saturation in the center of the PSF, further increases in the photon flux

will only result in an addition of excited molecules at the outer region of the PSF.

This leads to an increase of the two photon active volume and a flattened effective

two-photon excitation PSF [28]. This is also a concern in 2PA where a saturation

of the activated molecules in the center in order to achieve a high fluorescence

signal, can lead to an increase in the apparent two-photon activation volume and

a reduction of the optical sectioning capability.

Therefore, there exists an optimal activation intensity which delivers a high amount

of fluorescent molecules while preserving most of the spatial resolution gain.

Two ways to elevate the chances of two photons interacting with the molecule

simultaneously are to focus the laser beam tighter or to increase the incident laser

power. However, instead of simply increasing the power of a continuous wave

(cw) laser, the photon density is temporarily increased with the application of

pulsed lasers. Ultra-short (∼ fs) pulsed laser increase the photon concentration

and deliver a high number of photons over a very short period of time to the

sample. While having high peak power, this process keeps the required average

laser power relatively low. The expected number of photons that are absorbed

by the molecule depend on the peak power Ppeak. The peak power relates to the
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average power Pavg through Ppeak = gp
Pavg

fτ with the repetition rate f , the pulse

length τ and a pulse shape dependent parameter gp (0.66 for a Gaussian-shaped

pulse). This results in a number of photons np that are absorbed by a molecule

with a two photon absorption cross section of σ2 [29]

np ≈
P 2
avgσ2

f2τ

(
NA2

2~cλ

)2

(2.2)

From this follows a direct influence of the pulse length on the activation probabil-

ity.

Due to the broader spectral width of ultra-short laser pulses, compared to longer

pulses, the chromatic dispersion in the material that is being passed can cause fre-

quency dependent phase changes in the illumination wavefront. This can therefore

lead to a change in the length of the laser pulse, typically to a broadening, which

reduces the chances for a successful two-photon event. Meanwhile, the spectral

shape of the pulse remains the same.

After passing the media, the electric field of the laser pulse can be described with

E(t, z) = 1
2π

∫∞
−∞E0(ω)exp(i(ωt−φ(ω, z)))dω. The added phase delay originating

from the medium φ(ω, z) is dependent on the frequency. This added frequency

term can be described with a Taylor expansion around the carrier frequency of

the pulse φ(ω) ≈ φ0 + (ω − ω0)(
dφ(ω)
dω )ω0 + 1

2!(ω − ω0)
2(d

2φ(ω)
dω2 )ω0 + . . .. The first

term describes an added constant phase, whereas the second term describes the

group delay adding an overall time delay to the pulse. The second order term is

denoted as the group delay dispersion (GDD). Different spectral components of

the pulse are delayed differently which change the pulse temporally. The group

velocity dispersion (GVD) is closely related to the GDD through φ(ω) = k(ω)L

(GVD = d2k
dω2 ), with L being the length of the material that is being passed. After

Fourier transform the new pulse duration τ can be obtained from the original pulse

length τ0 with

τ(L) = τ0

√
1 +

(
4 ln(2)d2φ(ω)/dω2

τ20

)2

= τ0

√
1 +

(
4 ln(2)GVD · L

τ20

)2

(2.3)

The total GDD which is introduced by the material is based on its chromatic

dispersion. The wavelength dependent refractive index can be calculated with a

modified Sellmeier formula. The GVD at the wavelength of interest is then given

by the second derivative of the index of refraction with respect to the wavelength
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GVD = λ3

2πc2
d2n
dλ2

[30].

Typical optical materials such as glass introduce positive dispersion. As a result,

long wavelength components of the pulse are traveling faster than the short wave-

length components, leading to a positive chirp and a pulse broadening.

This dispersive pulse broadening can be compensated by additionally introducing

anomalous dispersion with d2n
dλ2

< 0. Prisms as well as gratings introduce angular

dispersion which produces a negative GDD [31]. Typically, a four prism pulse

compressor is constructed. Angular dispersion introduced by the first prism is

corrected by the second one and the second set of prisms is required to eliminate

spatial dispersions that were introduced. Simpler configurations are possible where

the four prism setup is folded, with the easiest utilizing one [32] or two prisms [33]

where the beam is passing the prisms multiple times. Prisms are aligned such as the

incoming beam which is incident near the Brewster’s angle and minimum deviation

angle. The GDD introduced by the prism sequence is based on the wavelength de-

pendent path length P (λ) with GDD ∝ d2P (λ)
dλ2

[34]. It can be shown that the total

wavelength dependent optical path length introduced results to P (λ) = 2l cosβ(λ)

[33, 35] where l denotes the distance between the prism apices. The angle β(λ) is

the angle between the ray of wavelength λ traveling through both prisms and the

line connecting their apices. According to [34, 36, 37] the total GDD introduced

can be shown to result to

GDD ≈ λ3

2πc2

(
−4Lsep

(
dn

dλ

)2

+ Lprism
d2n

dλ2

)
(2.4)

The first term is always negative and is a result of the angular dispersion. The sec-

ond term is positive and accounts for the positive dispersion introduced by passing

through a length of Lprism through the prisms. The total GDD can easily be varied

by the separation of the two prisms and their placement within the beam path.

The use of high dispersive glass can help to reduce the separation needed between

the prism pairs to compress the pulses adequately.

The minimal achievable pulse length is limited by its time-bandwidth product,

the product of the FWHM of its pulse length and the spectral width FWHM.

Very short pulses posses a larger spectral width and vice versa. The product for

bandwidth-limited Gaussian pulses is ≈ 0.44 [38] giving a lower bound to the pulse

length for a given spectral width.
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Figure 2.1: Two-photon activation principle. A A photoactivatable fluo-
rophore can be activated either using one photon UV (< 400 nm) or two photons in
the visible (VIS, this case 515 nm). The activated fluorophores (dark grey) can in
turn be excited with another wavelength to emit fluorescence with a third, slightly
red shifted, wavelength. B Chromatic aberrations from the scanning lens used in
this work as focal length shift in mm as the function of the wavelength in nm. The
aberrations are increasing drastically when moving the wavelength to UV. The fo-
cal length shift for 515 nm is indicated in green. A cartoon of the chromatic focal
shift is depicted on the right. C Transmission of laser light in percent for different
wavelengths in case of the objective lens that was used in this work. Transmission
of light below 400 nm is much lower than at 515 nm indicated in green. D The
activation of fluorophores in a sample with UV leads to continuous activation along
the beam path with the highest density in the focal plane (left, FWHM of 375 nm
indicated with black dashed outline). The 2PA in the visible has a very restricted
activation volume in the focal region (right). The FWHM of the effective 2PA
volume is drawn in bright green with a dashed outline, the FWHM of the 515 nm
beam is shown in light green.

2.3 Scope of this chapter

STED microscopy of thick biological samples is challenging because of the increased

out-of-focus fluorescence in densely labeled structures. This leads to the loss of

contrast, described in section 1.3, reducing the overall image quality. Similarly,

enhanced photobleaching of fluorescent dyes during 3D STED is adding to that

contrast loss. Together, these factors have remained to be the major drawbacks of

high-resolution STED imaging.

Two-photon excitation [39–41] is commonly used in confocal microscopy to reduce
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background contributions to the signal. Two-photon excitation can also be imple-

mented together with STED [42].

However, similar issues as described above (out-of-focus signal, reduced imaging

depth) also affect novel nanometer-scale SMLM techniques such as MINFLUX and

MINSTED. These methods make use of photoactivatable fluorescent dyes, which

need to be switched to their excitable state before imaging. Consequently, the par-

asitic emission of activated dyes outside of the focal volume in regular one-photon

activation is reducing the number of high-precision localization events.

Similar to two-photon excitation the 2PA can restrict the activation to a small

volume in the focal point of the objective. Contributions to the background from

activated fluorophores outside of the focal plane are therefore limited in this ap-

proach. Additionally, since not yet activated molecules are not getting bleached

during the exposure with high intensity excitation and STED laser light, total flu-

orescence outside of the activation volume is preserved. A successful application

of 2PA is therefore not only beneficial for STED, but can also be used in SMLM

such as MINFLUX and MINSTED.

Typically, the activation wavelength used for conversion of photoactivatable flu-

orophores is in the range of UV (< 400 nm). However, the transmission of light

through glass is limited in this wavelength range, leading to substantial losses at

every optical element. An example is shown in Fig. 2.1 C. Only 51 % of 375 nm

light can pass through the objective lens that was used in this work, compared to a

transmission of 85 % for a wavelength in the visible range at 515 nm. Furthermore,

common lenses exhibit severe chromatic aberrations in the UV wavelength region,

complicating the practical application of this laser light in a microscope. Fig. 2.1 B

shows the chromatic focal shift of the used achromatic scanning lens as an example.

The deviation of the focal length is changing significantly for wavelengths below

400 nm.

Therefore in addition to the restricted activation volume, a successful application

of 2PA at longer wavelengths than UV, through a multiphoton process, could al-

leviate the aforementioned problems.

In previous work, the application of 2PA has been largely limited to the uncaging

of chemicals [43, 44] and optogenetics [45, 46]. Only little work focuses on the

photoactivation of dyes or their photo-conversion.

Previous work discussing the 2PA of coumarin fluorophores [47] or of photoacti-

15



vatable GFP [48] as well as the conversion of fluorescent cyanine-based dyes [49]

limits itself to the classical two-photon wavelength regime above 700 nm in the

near infrared (NIR). These long wavelengths show enhanced penetration of biolog-

ical specimens due to lower absorption and reduced scattering [50]. A downside

of using these long wavelengths is the relatively large effective two-photon PSF.

Additionally, some photoactivatable dyes, especially those designed for STED at

775 nm, are specifically engineered to exhibit a very low two-photon cross section

for their unactivated compounds at NIR wavelengths. This is done to minimize

unfavorable photoactivation induced by the high power STED beam while imaging

[21, 51]. Because of these reasons, a shorter wavelength outside of the NIR range

has to be found for 2PA.

Recently, 2PA has been reported at shorter wavelengths for confocal microscopy

at 560 nm [52]. Unfortunately, most photoactivatable far red dyes used for super-

resolution microscopy such as STED and MINSTED show already a non-negligible

absorption at this wavelength. This is potentially resulting in significant bleaching

due to the high laser power used for 2PA (1 MW/cm2).

To overcome this problem and to use 2PA together with super-resolution micros-

copy the activation wavelength needed to be shifted. For this reason different pho-

toactivatable dyes were tested in this thesis with a new shorter 2PA wavelength,

still in the visible regime, at 515 nm (see Fig. 2.1). Since successful two-photon ab-

sorption events are heavily reliant on many parameters as described in section 2.2,

optimal activation parameters were determined for all dyes. Different activation

schemes were implemented depending on the individual fluorophore’s strengths

(e.g. activation time or high stability).

Finally, the application of 2PA with all its benefits at this wavelength was demon-

strated as a platform for a broad range of microscopy modalities from confocal

over STED down to single nanometer-scale SMLM such as MINSTED.
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2.4 Methods

2.4.1 STED-Microscope

The STED measurements in this thesis were performed on a custom-built confocal

scanning STED microscope (see Fig. 2.2).

The microscope setup features a pulsed STED laser (OneFive Katana, NKT Pho-

tonics, Birkerød, Denmark) operating at a wavelength of 775 nm with a pulse

duration of 640 ps and repetition rate of 40 MHz. The STED beam is expanded

and subsequently split into two different paths with a polarizing beamsplitter cube

(PBS). In one path, the formation of the 2D doughnut is achieved by a vortex phase

plate (VPP-1a, RPC Photonics, W. Henrietta, NY, USA); a custom-made annular

phase plate is placed in the second path for the formation of the 3D doughnut. A

second polarizing beamsplitter is recombining both beams incoherently. The ratio

of the intensities between both paths can be controlled together with a half-wave-

plate (λ/2) placed before the first PBS.

The microscope is equipped with one LDH-D-C-640 pulsed diode laser (PicoQuant,

Berlin, Germany) as an excitation light source at 640 nm which is triggered by the

STED laser.

For the imaging with photoactivatable compounds, the microscope has two acti-

vation laser wavelengths. For the conventional 1PA, a continuous wave (cw) laser

operating at 375 nm (Lambda Beam, rgb lasersystems, Kelheim, Germany) is used

where the output power can be modified electronically. For 2PA, the microscope

is equipped with a femtosecond pulsed laser with the central wavelength of 515 nm

and an output pulse duration of 179 fs operating at a rate of 19.23 MHz (Halite,

Fluence technology, Warsaw, Poland). For fast on-off switching of the laser and

power control, an AOTF (AOTF-A3-400.700-Pv-T5w4-TN, AA Sa, Orsay, France)

was introduced. In order to compensate for the pulse broadening of the 2PA laser,

by the optics of the microscope, a compressor system based on two prisms (SF11,

Thorlabs) is implemented. The laser beam is passing the two prisms and gets split

spectrally during the first pass. The beam components are reflected back at a

different height to reverse the spectral splitting. The resulting beam is co-aligned

with the input beam and can be picked with a D-shaped mirror.

Based on the GDD introduced by the individual optical elements in the path of the

515 nm activation laser beam, a total GDD of the microscope was estimated, see
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Table 2.1. Material and thickness of the individual Thorlabs elements (Thorlabs

Inc., Newton, NJ, USA) is well documented on their respective website. The GDD

of the remaining elements is based on published data or estimated to a reasonable

extent. The total GDD estimate of the microscope results to ∼16 628 fs2. The

initial distance between the two prisms was calculated based on this number to be

around 40 cm. Optimization of the prism distance was done with measurements

of the activation rate of the dyes, see subsection 2.4.2.

For measurements investigating the effect of different pulse lengths on the activa-

tion efficiency, optical fibers (P1-405BPM, Thorlabs) with different lengths, 10 cm

and 100 cm, were placed after the prism pre-compressor. The corresponding pulse

broadening due to the silica core of the fiber is calculated based on Eq. 2.3, with

a GVD of 68.706 fs2/mm at 515 nm [53].

Table 2.1: GVD of elements in the activation beam pathway. The material
of the components is listed, if known, and the GVD in fs2/mm at a wavelength of
515 nm corresponding to it. Together with the thickness, the resulting GDD in fs2

is calculated.

Element Material GVD in fs2/mm l in mm GDD in fs2

AC254-030 N-SF5/N-SF6 270.22/432.568 6 2108.364

LA1509 NBK7 84.347 3.6 303.65

AC100 NBK7 84.347 ∼200

AC245-200 N-K5/N-SF57 95.27/492.72 5/3 1954.51

3xTRH254-040 N-F2/N-K5 213.84/95.27 5/17 2688.79

Tube lens ∼200

Pol-Plate Quartz/MF2 78.545/24.792 [54] 1.57 123.79

Objective ∼3876 [55]

All beams were scanned over the sample via two galvanometer mirrors (Cambridge

Technology, United Kingdom) in a 4f-relay arrangement with f = 40 mm triplet

lenses (TRH254-040, Thorlabs) and passed a quarter-wave-plate (λ/4) before the

objective to convert linear to circular polarized light. For the imaging of cells, neu-

rons and hepatocytes, a Leica 100x/1.4NA (HCX PL APO, Leica Microsystems

GmbH, Wetzlar, Germany) oil objective lens was used. An Olympus 60x/1.35NA

silicone oil objective was used for the imaging of tissue samples. The lateral posi-

tioning of the sample could be adjusted with a manual xy-stage, whereas focusing

was achieved by moving the objective with a z-piezo (PI-725-CDD, Physik Instru-

mente, Karlsruhe, Germany).
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The detection consists of a PMT (H10723-XX, Hamamatsu Photonics, Hamamatsu

City, Japan) for the characterization of the PSF. For this, the reflected signal from

the coverslide is deflected by a removable pellicle (BP145B1, ThorLabs) and fo-

cused on the PMT. An APD (SPCM-AQR-13, Excelitas Technologies, Waltham,

MA, USA) is used for the confocal detection of the fluorescence signal. Two fluo-

rescent filters, a 775 nm notch filter (Holographic NotchPlus Filter 775/10◦, Kaiser

Optical, USA) and a 670/40 beamsplitter (AHF Analysetechnik GmbH, Tübingen,

Germany) are placed in front of the APD.

At a later stage, an active axial drift control was implemented. A 980 nm laser

(Pegasus diode laser, Pegasus Lasersysteme, Wallenhorst, Germany) was coupled

to the system in total internal reflection (TIRF) mode. The spot of the laser which

was reflected at the boundary of the coverglass was imaged with the help of a CCD

(DMK23UP1300, The Imaging Source, Bremen, Germany). The center of inten-

sity of the reflection on the camera was calculated with LabVIEW and held at a

constant position by adjusting the positioning of the objective lens. The correction

signal was calculated with a proportional–integral–derivative (PID) controller in

software.

All hardware components were controlled with a custom software written in Lab-

VIEW 2019 (National Instruments, Austin, TX, USA). A field-programmable gate

array (FPGA, PCIe-7852, National Instruments) is programmed to generate the

scanning pattern and to output all electronic signals at the appropriate time. This

assures high timing accuracy, independent of the operating system. The FPGA

served furthermore as a photon-detection counter and as a generator of timing

signals (pixel clock, line clock, etc.) for external appliances.

A host program is used to update the FPGA with new parameters and to read

out the number of collected photons per pixel. For the gating of the detected sig-

nal, the setup includes a SPC-150 time-correlated single photon-counting module

(Becker& Hickl, Berlin, Germany), which is synchronized to the system via the

generated clock signals. The gating of the signal can be controlled with the host

program.

2.4.2 Prism distance

Based on the estimation of the total GDD without pre-compensation of the pulses,

the pulse duration would result to a minimum of 314 fs after passing the dispersive
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Figure 2.2: STED Microscope with one- and two-photon activation.
The microscope is equipped with four laser sources for imaging and activation.
The 375 nm laser beam is cleaned through a polarization maintaining single mode
fiber (PM) and coupled into the system via a dichroic mirror (415RDC, DM2).
The 515 nm beam is passing an AOTF for power control and subsequently a two
prism compressor. The excitation laser at 640 nm is cleaned through a PM fiber
and passes a half-waveplate and a glan-thompson prism (GT) for manual power
control. The green beam is coupled to the red excitation beam with the use of a
dichroic mirror (532RDC, DM1). The 775 nm STED laser is cleaned and passes a
half-waveplate and a polarizing beam splitter (PBS) to control the laser intensity
in the two arms. One arm is forming the 2D doughnut with the help of a vortex
phase-plate (VPP) whereas the other arm is forming the 3D doughnut with the
help of a custom-made 0-π phase plate. Both beams are combined and coupled
into the microscope with the dichroic mirrors 750SPRDC (DM3) and 635RDC
(DM4). All beams are scanned via two galvanometric mirrors arranged in a 4f-
system with f = 40 mm triplet lenses (L1). FC: fiber collimator, PBS: polarizing
beam splitter, TL: tube lens, NF: notch filter, F1: 670/40 filter, MM: multimode
fiber, APD: avalanche photodiode, PMT: photo-multiplier tube, OL: objective
lens, DM: dichroic mirror, CFD: constant fraction descriminator, TCSPC: time
correlated single photon counting.

material. The reduction of the pulse length leads to a reduction of the average

laser power needed for successful activation of the compounds. The positioning

of the two prisms is optimized by observing the average laser power needed for

successful activation.
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The initial distance between both prisms was estimated to ≈ 40 cm using Eq. 2.4.

The displacement is varied and the activation rate measurements described in

subsection 2.4.3 is performed on fresh samples. The final distance between the

prisms of 43.5 cm corresponds to the minimum of the average laser power needed

for successful activation.

2.4.3 Activation rates

For determination of the activation- and bleaching-rates a special scanning se-

quence was implemented. The experimental sequence is depicted in Fig. 2.3 A.

Initially, a reference confocal image is collected to measure the fluorescence signal

present in the sample and to get a baseline signal of already thermally activated

fluorophores. This is achieved by scanning the sample with the excitation beam

(640 nm, ∼ 100 ps, P = 8 mW, f = 40 MHz, dwell = 30 µs, ”Frame 0”). Then, the

compound is activated by scanning the same field of view (FOV) with activation

light (515 nm, ∼ 200 fs, P = 0 mW− 20 mW, f = 15 MHz, dwell = 100 µs, ”Activa-

tion”), during which the detector is switched off. In the following scan, fluorescence

images are detected by scanning the same FOV with the excitation beam (param-

eters as previously, ”Frame 1”). The sequence of activation and subsequent read

out is repeated 38 times for each activation power. For each power, a fresh area

of the sample is used with a different confluency and therefore total fluorescence

signal. To compare the results, the average fluorescence signal is calculated per

pixel for pixels with signal above the noise level (excluding empty regions).

The registered dependency can be modeled by a 3-state system (Fig. 2.3 C), cor-

responding to the fluorophore in its unactivated Nu, fluorescent Nf and bleached

Nb state respectively.

Nu
kact−−→ Nf

kbl−−→ Nb

Ṅu(t) = −kact ·Nu(t) (2.5)

Ṅf (t) = kact ·Nu(t)− kbl ·Nf (t) (2.6)

Ṅbl(t) = kbl ·Nf (t) (2.7)

The transition of the unactivated to the activated state can be described with

Eq. 2.5 with kact being the activation rate. The corresponding transition of the

fluorescent state can be described with Eq. 2.6 with kbl as the photobleaching rate

of Nf . Therefore, the transition to the bleached state is described with Eq. 2.7.
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We also assume that the detected signal is proportional to the amount of activated

fluorophores and that the initial fluorescence before activation is minimal compared

to the fluorescence detected after activation. The system of differential equations

therefore is easily solvable and the obtained signal scales with

Nf (t) =
kact

kact − kbl
(exp(−kbl · t)− exp(−kact · t)) (2.8)

This function can be fitted to the experimental data to extract the parameters kact

and kbl.

2.4.4 Bleaching measurements

For bleaching and confocal PALM measurements (see subsection 2.4.8) the micro-

scope setup described in subsection 2.4.1 is equipped with an additional high-power

cw laser diode at 636 nm (USHIO OTPO Semiconductors, INC. Type HL63391DG)

where the laser output power can be regulated electronically.

Measurements to estimate the amount of photobleaching are performed in a sim-

ilar way to the measurement to determine the activation rates described in sub-

section 2.4.3. After every activation frame the activated molecules are excited and

the fluorescence is detected. The majority of fluorophores are then bleached using

the laser diode with a varying laser power from 2 mW to 5 mW for a dwell time of

125 µs. The remaining fluorescence after bleaching is measured to get an estimate

of the remaining active molecules.

Measurements for each activation power are performed on at least three different

areas with the laser beam configurations as described in subsection 2.4.3 with a

FOV of (10 µm)2. The samples are flat homogeneously stained samples (either

collagen samples or LaminB stained in U2OS cells).

To get an estimate of the total fluorescence achieved at a certain activation power

level, the average fluorescence per pixel is calculated to average small differences

in dye concentration over the sample. A background level is estimated from the

measurements after bleaching, which is then subtracted from the remaining fluo-

rescence measurements. The total number of activatable dyes is calculated by the

integral of detected fluorescence after background correction.
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2.4.5 STED image acquisition

Regular 2D STED images are acquired after a whole frame scan with either the 1PA

or 2PA light source. They are taken in series and can feature different scanning

parameters. Typically, pixel sizes of 16 nm to 20 nm with pixel dwell times of

100 µs to 130 µs are employed for STED imaging. Samples stained with ONB-2SiR

and HCage 620 where activated using 515 nm with a power of 3 mW to 4 mW and

a dwell time of 100 µs for pixels with a size of 150 nm. The 2PA laser power for

images with pPA-SiR was set to 1 mW to 2 mW.

Confocal images were acquired before the STED images to avoid bleaching effects.

This is the case for samples with ONB-2SiR or HCage 620. Confocal images

for pPA-SiR are taken after the STED imaging due to the pixel-activation mode

necessary for this dye, which is described in subsection 2.4.6.

2.4.6 Pixel-/line-activation

For protected STED [56] or pixel-to-pixel activation measurements all beams are

overlapped on a gold bead sample before every measurement to ensure the best

result.

The scan logic is adjusted such that at the beginning of a pixel measurement the

515 nm light can be switched on immediately for a variable duration. Because of

the delay of the electric signal as well as the delayed response of the AOTF, the

signal for the activation window needs to be adjusted carefully by introduction of

a negative time offset measured with an oscilloscope. A user-selectable time-gap

is bridging the time until the subsequent imaging of the pixel either in confocal or

STED mode. The total dwell time of the imaging period can be adjusted accord-

ingly. The APD is gated and is only registering photon counts during the selected

detection window.

This is repeated for every pixel until the image is completed. A small schematic

of the process is depicted in Fig. 2.7 B. Usual imaging parameters are: 0.6 mW of

515 nm, pixel size of 24 nm with 10 µs activation time. 775 nm STED with 90 mW

for an imaging dwell time of 100 µs to 130 µs with a gap time in the low two digit

µs regime.

For line activation measurements an entire line is scanned with activation light.

Multiple line scans with excitation and STED light as well a detection can be
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performed in the following. The amount of lines imaged after each activated line

can be set by the user. This procedure is repeated until the entire frame is scanned.

2.4.7 3D measurements

In order to measure the bleaching induced by the 3D doughnut the following mea-

surement scheme was applied. In a sample (U2OS immunolabeled for microtubules

with HCage 620) three different layers with equal spacing in z are of interest. Two

of the three layers (middle and lower) are activated at the beginning of the mea-

surement either with 1PA or 2PA. The spacing of the three layers at 600 nm is

chosen such that it is bigger than the axial size of the two photon volume but

small enough to fall into the high power lobes of the 3D doughnut applied. After

the initial activation, the central layer is imaged with excitation light together

with a 3D-doughnut with 200 mW. After the STED imaging scan the remaining

fluorescence signal is detected with only the excitation laser in all three different

layers. The last two steps are repeated 7 times until the fluorescence signal is

reduced significantly. Finally, the last of the three layers (top) which wasn’t ac-

tivated initially is activated using either 1PA or 2PA and the fluorescence signal

is detected. The fluoresce intensity of each layer is normalized to the initial max

value at the start of the bleaching series for comparison.

For 3D STED images of LaminB in neural stem cell colonies, different 2D images

were acquired with a 3D STED doughnut with a total power of 140 mW where

40 mW are in the 2D-doughnut (2D FWHM ∼50 nm). The different layers are

separated by a distance of 200 nm. Each layer was activated individually with the

corresponding activation light before imaging. After complete acquisition of the

volumetric stack, the images are further processed using Fiji [57] to reconstruct a

three dimensional view and maximum signal projections along the optical axis. The

average fluorescence per pixel above noise level was calculated for every individual

2D slice.

2.4.8 Confocal PALM-like imaging

For single molecule localization microscopy (SMLM) measurements small regions

with a FOV of (10 µm)2 are scanned with a pixel size of 78 nm. This ensures at

least three pixels per detection FWHM in accordance with the Nyquist criterion.

24



To avoid broken or incomplete PSFs, multiple fast imaging scans of the same area

(typically 5 to 8 frames with a pixel dwell time of 10 µs) are performed following the

activation scan of one entire frame. They are subsequently combined before they

are used for post-processing. All fluorophores that remain active after the read-

out are bleached with the 636 nm laser diode before the next activation step. The

activation power is chosen for each dye such that only a small subset of molecules

are active at the same time within the acquisition region.

The stack of binned images is further analyzed with a multi-emitter 2D fitting algo-

rithm DAOSTORM [58] (maximum number of iterations: 30) written in Python.

The super-resolved image is reconstructed by imposing Gaussians with a variable

σ corresponding to the localization precision at the center point of the fit. For

comparison confocal images are generated by summation of the counts over all

detected frames.

Fourier ring correlation (FRC) maps area calculated with the Nanoj-SQUIRREL

plugin for Fiji [59].

2.4.9 MINFLUX, MINSTED and confocal laser scan-

ning microscopy

MINFLUX measurements were performed on a yet unpublished setup which is

based on the original MINFLUX publication [12]. For 2PA activation the 515 nm

laser from subsection 2.4.1 was placed in the corresponding setup. MINFLUX im-

ages were acquired with an iterative MINFLUX scheme. A Gaussian and doughnut

beam at 647 nm with 80 µW and 350 µW respectively were employed for the local-

ization with 5 steps and an scan diameter L of 100 nm in the last iteration. The

position of the active fluorophore was estimated and the scan centered on it before

moving to the next iteration. The last iteration step was concluded after 10000

recorded photons at most. A total FOV of (1.5 µm to 6 µm)2 was scanned with a

photon countrate detection threshold of 5 kHz to 10 kHz. Typically, the activation

laser power for 2PA was set to 30 µW to 60 µW and 10 nW for 1PA at 405 nm.

Localizations were rendered after post-processing of the localization traces with

tools from [60].

MINSTED images were acquired on a previously published setup [13] with the

addition of the 2PA laser. Images were acquired with a final STED FWHM of
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50 nm in a FOV of (1.2 µm)2. The scanning period was set to 60 µs. The photon

threshold was set to 8 for the start of a localization sequence and was terminated

if less than 16 counts were detected in 30 ms period.

For visualization the localizations are rendered with their corresponding localiza-

tion precision as the σ of a Gaussian profile. Only localization events with photon

counts above 200 and localizations where the standard deviation of their center

positions after reaching the maximal STED power were below 20 nm were chosen

as valid localizations (see [13]).

Confocal overview scans of the MINSTED area were acquired with the EODs in

a FOV of (1.3 µm)2 with a pixel size of 13 nm and a dwell time of 20 µs. Bigger

overview images of whole cells were taken with the galvo-scanners with a varying

FOV of (60 µm to 80 µm)2 with a pixel size of 60 nm to 80 nm and a dwell time of

20 µs.

For large confocal overview scans of brain tissue sections, a TCS SP8 confocal laser

scanning microscope (Leica Microsystems, Wetzlar, Germany) was used. Cross sec-

tional confocal images of tissue sections were acquired using a previously reported

STED system [61] with increased axial scanning range.

2.4.10 Gold and fluorescent microspheres

For daily calibration of the excitation, activation and STED beam, gold bead sam-

ples were prepared with 50 nm colloidal gold (Aldrich, St. Louis, Missouri, United

States). For precise control of the spatial position of the STED beam in relation to

the excitation as well as the accurate timing of the STED beam a reference sam-

ple with fluorescent microspheres (FluoSpheres®, 0.02 µm, dark red fluorescent;

Thermo Fischer Scientific, Waltham, MA, USA) was prepared.

Coverslips were cleaned with MiliQ water and acetone. Afterwards, they were

coated with Poly-L-Lysine (100 µl, 0.01 % Poly-L-Lysine solution, Sigma-Aldrich,

St. Louis, MO, USA) for 5 min. The gold bead/fluorescent microsphere solution

was sonicated for 15 min. Coverslips were incubated with 100 µl of the correspond-

ing solution. After an incubation time of 5 min the coverslip was washed with

Mili-Q water and mounted on the coverslide with either PBS or immersion oil.

The sample was sealed using nail polish.
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2.4.11 Animals

Described animal procedures were conducted in accordance with Directive 2010/

63/EU of the European Parliament and the Council on the protection of animals

used for scientific purposes as well as with the German Animal Protection Law

(Tierschutzgesetz der Bundesrepublik Deutschland, TierSchG).

All mice were housed with a 12 hours light/dark circadian cycle and ad libitum

access to food and water.

2.4.12 Cells

U2OS cells (ECACC, cat. 92022711) were cultured in McCoy’s 5A (modified)

medium (Thermo Fisher, cat. 16600082) supplemented with 10 % FBS (Bio&Sell,

cat. S0615), 1 % Sodium Pyruvate (Sigma, cat. S8636) and 1 % Penicillin-Streptomycin

(Sigma, cat. P0781) in a humidified 5 % CO2 incubator at 37 °C. Cells were seeded

on coverslips 24 h before fixation.

The protocol of hepatocyte isolation and culture was modified from [62]. Briefly,

an adult female mice of CD1 background were sacrificed and immediately perfused

via the hepatic portal vein with EGTA solution (pH 7.4) followed by collagenase

solution. The perfused liver was transferred into a pre-warmed collagenase so-

lution, mechanically dissociated and subsequently filtered through a 100 µm cell

strainer. Cells were plated on coverslips pre-coated with collagen type I (Corning,

cat. 354236) and cultivated in William’s Medium E (Gibco, cat. A12176-01) sup-

plemented with 4 % Cell Maintenance Cocktail-B (Gibco, cat. A13448) and 10 µM

Dexamethasone (Gibco, cat. A13449). Cultures were kept in a humidified 10 %

CO2 incubator at 37 °C.

Neural stem/progenitor cells were cultured as previously described in [63]. In

brief, cortexes were dissected from C57BL/6N mouse embryos at embryonic day

E12.5, digested by 0.25 % trypsin (Gibco, cat. 15090046) for 20 min at 37 °C and

subsequently mechanically dissociated with a fire-polished, culture-medium-coated

Pasteur pipette. Cells were plated on coverslips pre-coated with 0.2 % gelatin in

PBS and cultivated in KnockOut DMEM/F-12 medium (Gibco, cat. 12660012)

supplemented with 2 % StemPro Neural Supplement (Gibco, cat. 10508-01), 1x

GlutaMax (Gibco, cat. 35050061), 2 µg/µl Recombinant Human Basic Fibroblast
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Growth Factor (Gibco, cat. PHG0024), 2 µg/µl Recombinant Human Epidermal

Growth Factor (Gibco, cat. PHG0314) and 0.5x Antibiotic-Antimycotic (Gibco,

cat. 15240062) in a humidified 10 % CO2 incubator at 37 °C.

The protocol for hippocampal neurons isolation has been described previously in

[64]. Briefly, hippocampi were isolated from C57BL/6N mice of mixed gender

at postnatal day P0-P1, digested with 0.25 % trypsin (Gibco, cat. 15090046) for

25 min at 37 °C and subsequently manually dissociated. Cells were plated on cov-

erslips pre-coated with poly-L-ornithine (100 µg/ml; Sigma-Aldrich, cat. P3655)

and laminin (1 µg/ml; BD Bioscience, cat. 354232) and cultured in Neurobasal

medium (Gibco, cat. 21103049) supplemented with 2 % B27 serum-free supple-

ment (Gibco, cat. 17504044), 1x GlutaMax (Gibco, cat. 35050061) and 0.5 %

Penicillin-Streptomycin (Gibco, cat. 15140122). Cells were kept in a humidified

5 % CO2 incubator at 37 °C.

For imaging nuclear pore complexes we used U2OS cells which express the nu-

clear pore protein NUP96 endogenously tagged with HaloTag (U-2OS-CRISPR-

NUP96-Halo clone #252 (330448, CLS GmbH) [65]). They were cultured on

coverslips in McCoy’s medium (Thermo Fisher Scientific, 16600082) which was

supplemented with 10 % [v/v] fetal bovine serum (Bio&SELL, S0615), 1 % [v/v]

non-essential amino acid solution (Thermo Fisher Scientific, 11140050) and 1 %

[v/v] penicillin-streptomycin (Sigma Aldrich, P0781). The cells were fixed with

2.4 % [w/v] paraformaldehyde in PBS for 15 min. The PFA autofluorescence was

quenched by incubating the sample in 100 mM NH4Cl in PBS for 5 min. We per-

meabilized with 0.5 % [v/v] Triton X-100 in PBS. The sample was washed with

PBS between the steps.

2.4.13 Stereotaxic Injections and slice preparation

The protocol of stereotaxic injection has been described previously in [61, 66].

Briefly, an adult mouse of C57BL/6J background was anaesthetised by 1.0 %-2.0 %

isoflurane (Forene, Abbvie) in oxygen-enriched air (47.5 % oxygen, 50 % nitrogen,

and 2.5 % carbon dioxide; Westfalen AG, Münster, Germany) and fixed into a

stereotaxic apparatus (SG-4N, Narishige, Tokyo, Japan). The scalp was incised

and a craniotomy was performed on the parietal bone above the visual cortex of

the left hemisphere. A prepulled, tapered, borosilicate glass injection capillary
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(World Precision Instruments, Sarasota, FL, USA) was filled with a solution of

pAAV-hSyn-Lifeact-EYFP virus [67] diluted 1:5 in sterile artificial cerebrospinal

fluid (ACSF; NaCl 126 mM, KCl 2.5 mM, CaCl2 2.5 mM, MgCl 1.3 mM, HEPES

27 mM, glucose 30 mM; pH 7.4). The capillary was subsequently lowered ca.

500 µm into the brain with a vertical angle of 20◦ and the volume of 250 nl-500 nl

of virus-containing solution was injected using a pressure system (30 ms pulses de-

livered with 20ψ on manual command, TooheySpritzer, Toohey Company).

The scalp was surgically closed by polyamide surgical suture (6.0/697H, Ethilon)

immediately after retraction of the capillary and the animal was allowed to recover.

During the surgery perioperative analgesia was achieved by subcutaneous injec-

tion of Buprenovet (0.1 mg/kg mouse body weight, Bayer) and incision sites were

analgised by subcutaneous injection of 2 % Lidocaine (Xylocaine, AstraZeneca).

Through the whole surgery eyes were protected from dehydration by application

of ointment (Bepanthen, Bayer) and a custom build heating plate was used to

maintain mouse body temperature. Analgesic and anti-inflammatory post-surgical

care was achieved by subcutaneous administration of Carprofen (5 mg/kg, Zoetis)

every 24 h for a minimal period of 2 days following surgery.

Intracardial perfusion took place 3–4 weeks after stereotaxic viral injection. The

mouse was anaesthetised by intraperitoneal injection of an overdose of Ketamine

(Medistar)/Xylasine (Dechra) and subsequently transcardially perfused with PBS,

followed by 4 % [w/v] PFA in PBS. The brain was dissected and post-fixed by

an overnight incubation in 4 % PFA/PBS at 4 °C. Afterwards the fixative was

removed, the brain was transferred into PBS and sliced into 60 µm thick consecutive

coronal sections using a vibratome (VT1200S, Leica).

2.4.14 Immunohistochemistry

Fixed slices were successively washed 2 times with Tris Buffer (TB), Tris Buffer

Saline (TBS) and Tris Buffer Saline containing 0.5 % [v/v] Triton-X 100 (TBST)

(all with pH 7.6) for 15 min each at room temperature (RT). The slices were sub-

sequently blocked with 10 % [w/v] normal goat serum and 0.25 % [w/v] bovine

serum albumin (BSA) in TBST (blocking solution) for 1.5 h at RT. Sections were

incubated for 72 h at 4 °C on a rocking plate with primary antibodies: (I) rabbit

anti-GFP (Abcam, cat. 6556) diluted 1:300 and (II) rabbit anti-Tubulin (Abcam,

cat. 18251) diluted 1:100 in blocking solution. Afterwards, the slices were rinsed
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4 times with TBST for 15 min each at RT and incubated with HCage 620 [21]

conjugated goat anti-rabbit secondary antibodies diluted 1:10 in TBST overnight

at 4 °C on a rocking plate. Slices were successively washed 2 times with TBST,

TBS and TB before being mounted with PBS.

U2OS cells were fixed with ice-cold methanol for 5 min at −20 °C and subsequently

blocked with 2 % BSA in PBS (blocking solution) for 10 min at RT. Cells were then

incubated for 1 h at RT with primary rabbit anti-Tubulin antibody (Abcam, cat.

18251) diluted 1:100 in blocking solution. Afterwards the coverslips were washed

with blocking solution for 10 min at RT and incubated for 1 h at RT with secondary

anti-rabbit antibodies conjugated with: (I) ONB-2SIR [51], (II) HCage 620 [21]

and (III) pPA-SiR [23] diluted in blocking solution. Cells were then washed 2 times

with PBS and subsequently mounted with PBS.

Primary hepatocytes at the 15th day of in vitro (DIV) culture were fixed with ice-

cold methanol for 5 min at −20 °C and subsequently blocked with 10 % BSA in PBS

at RT. Afterwards, cells were incubated with primary rabbit anti-actin antibodies

(Sigma, cat. A2668) diluted 1:100 in 2 % BSA in PBS. Cells were then succes-

sively washed with 0.5 % Triton-X in PBS and 2 % BSA in PBS for 5 min each at

RT and subsequently incubated with secondary anti-rabbit pPA-SiR conjugated

antibodies diluted 1:20 in 2 % [v/v] BSA in PBS for 1 h at RT. Coverslips were

washed with PBS 2 times 15 min each at RT and subsequently mounted with PBS.

Neural stem/progenitor colonies at the 5th DIV were fixed with ice-cold methanol

for 10 min at −20 °C and subsequently blocked with 2 % BSA in PBS (blocking

solution) for 10 min at RT. Cells were then permeabilized with 0.5 % Triton in

PBS for 10 min at RT and incubated with primary rabbit anti-LaminB1 (Abcam,

cat. 16048) antibody for 1 h at RT. Afterwards, colonies were washed with block-

ing solution 2 times 10 min each and subsequently incubated for 1 h at RT with

secondary anti-rabbit HCage 620 conjugated antibody diluted 1:20 in blocking so-

lution. Coverslips were then washed with PBS 2 times 15 min each at RT and

subsequently mounted with PBS.

Primary hippocampal neurons at the 7th DIV were washed with PBS and subse-

quently fixed with 4 % PFA in PBS for 10 min at RT. Cells were then quenched

with 10 mM NH4Cl in PBS and permeabilized with 0.1 % [v/v] Triton-X in PBS
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for 5 min at RT each. Afterwards cells were blocked with 1 % [w/v] BSA in PBS

for 30 min at RT and incubated with primary anti-β-Spectrin II mouse antibody

diluted 1:200 in PBS for 1 h at RT. Specimens were then washed 2 times with 0.1 %

Triton-X in PBS for 5 min at RT each and then incubated with secondary anti-

mouse pPA-SiR conjugated antibodies diluted 1:10 in PBS. Coverslips were sub-

sequently washed with PBS 2 times 15 min each at RT and subsequently mounted

with PBS.

For MINSTED measurements U2OS cells were washed with PBS and subsequently

fixed with 8 % [w/v] PFA in PBS for 5 min at 37 °C. Afterwards cells were per-

meabilized with 0.5 % [v/v] Triton-X in PBS for 5 min at RT and subsequently

blocked with 2 % BSA in PBS (blocking solution) for 10 min at RT. Cells were

then incubated with primary rabbit anti-Caveolin-1 (Cell Signaling) antibody di-

luted 1:200 in blocking solution for 1 h at RT. After that cells were washed with

blocking solution and incubated for 1 h at RT with secondary anti-rabbit anti-

bodies conjugated with: (I) ONB-2SiR and (II) HCage 620 diluted in blocking

solution. Cells were subsequently washed with the blocking solution and counter-

stained for 1 h at RT with tertiary anti-goat antibody conjugated with Alexa 647

diluted 1:500 (Invitrogen) in blocking solution. Cells were subsequently washed

with PBS.

2.4.15 Sample preparation

For simple confocal or STED measurements, samples were mounted directly on the

coverslide with PBS pH 7.4 as a buffer using picodent twinsil® (picodent®Dental-

Produktions- und Vertriebs-GmbH, Wipperfürth, Germany) or two component

epoxy resin.

For MINSTED measurements, samples were incubated with diluted silica shelled

silver nanoplates for 20 min (nanoComposix, SPSH1064-1M; 1 µg/ml in PBS). Af-

ter washing the sample with PBS pH 7.4 twice, they were mounted in PBS and

sealed using nail polish.

For MINFLUX measurements, gold nanorods (A12-25-980-CTAB-DIH-1-25, Na-

nopartz Inc., Loveland, CO, USA) were diluted with twice the volume PBS and

sonicated for 15 min. In the following the sample was incubated for 15 min at room

temperature with the nanorod dilution. After washing with PBS for three times,

the cell-sample was mounted on a single-well microscope slide which was filled with
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a buffer (either PBS pH 7.4 or 20 mM HEPES pH 7, 150 mM NaCl). The sample

was then sealed using twinsil.

For experiments investigating the influence of buffer systems on the behavior

of the dyes, a standard STORM buffer was prepared [68]. The buffer consists

of 0.4 mg/ml glucose oxidase (G2133, Sigma Aldrich, St. Louis, MO, USA),

64 µg/ml catalase (C100-50MG, Sigma Aldrich), 50 mM TRIS/HCl pH 8.0/8.5,

10 mM NaCl, 10 mM to 200 mM cysteamine hydrochloride (MEA) (M6500, Sigma

Aldrich) and 10 % [w/v] glucose [69].
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2.5 Results

After the initial screening of possible candidates, three different silicon rhodamine

(SiR) based dyes remain: ONB-2SiR [51], HCage 620 [21] and pPA-SiR [23] (see

Table 2.2). All of them showed a strong increase in fluorescence after illumination

with 515 nm laser light. Two of the three dyes, ONB-2SiR and HCage 620, exhibit

two caging groups which are cleaved after the typical irradiation with UV light

(<400 nm). This leads to a change in conformation and to its excitable state (see

Fig. A.1 A). The activation of the third dye, pPA-SiR, is mechanistically different

as it doesn’t contain caging groups but is activated through light induced proto-

nation (see Fig. A.1 A). Detailed mechanistic descriptions of the activation process

can be obtained from the corresponding literature [21, 23, 51].

NHS esters of all three dyes can be coupled to an antibody of choice. Two of the

three dyes, HCage 620 and pPA-SiR, also exist as HaloTag or SNAP-Tag conju-

gates for their use with these self-labeling proteins.

All suitable fluorophores show, in their unmodified state, a similar spectrum with

no absorption at 515 nm before and minimal absorption after activation (spectrum

of ONB2-SiR in Fig. A.1 B). Therefore, the activation wavelength is located be-

tween their absorption maximum for the non-activated compound in the UV range

and the excitation maxima of the activated fluorophore above ∼550 nm.

The spectrum of pPA-SiR however seems to be strongly influenced by the applied

labeling mechanism. Versions of pPA-SiR with HaloTag and SNAP-tag show a

much higher absorption cross-section at 515 nm before and after activation com-

pared to the NHS ester variant. This leads to a significantly higher bleaching

during activation, making these variants unusable for 2PA at this wavelength (see

Table 2.2).

Other dyes that were tested, like Abberior CAGE 635, show some fluorescence

increase after illumination with 515 nm, but the activation is not efficient enough

to use this fluorophore further in the 2PA experiments. PA Janelia Fluor 646

[70] shows no increase in fluorescence at any power level of the 2PA laser. On the

contrary, PaX560 [71] shows successful activation with the two-photon femtosecond

laser at 515 nm. However, illumination of this dye with a regular cw laser at

514 nm (see Table 2.2) also shows a similar increase in detectable fluorescence

signal, pointing to a linear 1PA at this wavelength.

33



Table 2.2: List of dyes tested for activation with 515 nm together with
their different labeling conjugates. If activation with the femtosecond laser
at 515 nm was successful for the given compound the cell is marked with yes.
Otherwise, if the activation was unsuccessful the cell is marked with no. HaloTag
and SNAP-tag conjugates marked with - either don’t exist or weren’t tested if the
activation of the NHS ester variant was unsuccessful.

Fluorophore NHS ester HaloTag SNAP-tag

ONB-2SiR [51] yes - -

HCage 620 [21] yes yes yes

pPA-SiR [23] yes no no

Abberior Cage 635 yes (weak activation) - -

PA Janelia 646 [70] no - -

PaX 560 [71] yes (but not 2PA) - -

2.5.1 Activation-rate scaling

The successful first activation of the three individual dyes with the wavelength of

515 nm during the initial screening process indicates the presence of a multi-photon

activation process. Next, the order of this multi-photon activation process needed

to be determined.

For this reason we imaged microtubules in U2OS cells that were immunostained

with one of the selected dyes respectively (see subsection 2.4.14). The measurement

procedure described in subsection 2.4.3 was applied and is depicted in Fig. 2.3 A.

Typically, the initial signal of the sample before activation was negligible for all the

measurements. An example of microtubules stained with ONB2-SiR before activa-

tion is shown in Fig. 2.3 A (lower left). The signal before activation is particularly

low upon comparison to the signal obtained after activation (∼ 1 %). An image

of the same area is shown in Fig. 2.3 A (lower right) with the same color range

and same excitation power as before the activation. The very low count of already

activated fluorophores in the beginning of the measurement is in good agreement

with the assumptions made for solving the differential equations in subsection 2.4.3.

An example of the experimental data obtained from measurements with ONB-

2SiR can be seen in Fig. 2.3 B. The measured average fluorescence signal per pixel

above background level is shown here, depicted as filled circles, as a function of

the frame number in which it was acquired.

The initial activation scans increase the detectable fluorescence in the sample con-
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tinuously as only a fraction of the total molecules present is activated during a

single scan with 515 nm. This is especially true for low activation power levels in

the range of 1 mW to 5 mW. Upon reaching a maximum, photobleaching of already

activated molecules becomes dominant and the signal begins to decline with fur-

ther exposure to the activation light. For a higher activation laser power >5 mW

the maximal fluorescence intensity is already obtained after the first activation

scan and additional activation scans result only in a decrease in fluorescence.

Repeated scanning with only the excitation laser, as a control, results in no in-

crease or decrease of the detected fluorescence signal. The detectable activation

and bleaching of molecules is therefore only a result of the activation laser.

To extract the activation rate from such a measurement, the expression in Eq. 2.8,

based on the three state system shown in Fig. 2.3 C, is fitted (solid and dashed

lines in Fig. 2.3 B) to the experimental data. The model fits very well to the ob-

tained data-points, especially at low to moderate activation power levels. For high

activation power the fit doesn’t converge for the two dyes ONB-2SiR and pPA-SiR

as can be seen by the last data-points in Fig. 2.3 D, F. The rates can be gathered

directly from the fit and are visualized according to the used activation power in

Fig. 2.3 D-F (squares: activation rate, circles: bleaching rate) in a log-log plot.

The activation rate scales with the laser power as kact ∼ Pnact, where n can be

extracted directly from a linear fit.

For ONB-2SiR the activation order results in n = 1.96±0.16. This nearly quadratic

scaling of the activation rate based on the applied laser power is consistent with a

two-photon process. The bleaching rate is five-folds smaller and shows a fractional

power dependency kbl ∼ P 1.54±0.12
act , suggesting a mixture of a linear and higher-

order processes. Following the same procedure, similar n > 1 activation rate

dependencies are observed for the two other dyes HCage 620 with n = 2.95± 0.03

and pPA-SiR n = 2.48± 0.13. A slightly higher (n > 2) activation rate scaling for

pPA-SiR is still consistent with a two-photon process. HCage 620 however, shows

a clear higher-order dependency of the activation rate on the average activation

laser power which is indicative for a multi-photon process (higher than 2PA). They

also show both a lower power dependency of their corresponding bleaching rates

with n = 1.00±0.05 for HCage 620 and a fractional dependency of n = 1.66±0.84

for pPA-SiR.

The average 515 nm laser power needed for successful activation of pPA-SiR is no-

tably lower (<1 mW) than that needed for ONB-2SiR and HCage 620 (>1 mW).
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Figure 2.3: Activation rate measurements of the fluorophores reveal
the two-photon process. A Activation rate measurements as described in sub-
section 2.4.3. The first frame is obtained as a baseline reference. The following
procedure of successive activation and fluorescence readout is repeated 38 times.
An example of a U2OS cell with microtubules immunostained with ONB-2SiR be-
fore and after 2PA activation is shown below. B Examples of experimental data
of activation rate measurements (points) of ONB-2SiR with their fits (lines) for
three different activation power levels. C Three state system of the fluorophore
in its unactivated state Nu, fluorescent state Nf and bleached state Nb with the
activation rate kact and bleaching rate kbl. D-F Activation (squares) and bleach-
ing (circles) rates extracted from the corresponding fits for the three different dyes
ONB-2SiR, HCage 620 and pPA-SiR in a log-log plot as a function of the 515 nm
activation laser power. The order of the process is determined from their linear
fits (solid line for activation, dotted line for bleaching).
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It was noticeable that the behavior of some dyes changed over time, starting some

hours after the mounting of a sample. To achieve a consistent fluorescent signal

after activation, a significant reduction in the required 2PA power was needed.

For time spans longer than 5 h after mounting the sample, the required activation

power was reduced significantly (from 4 mW to 2 mW) for the two dyes ONB-2SiR

and HCage 620. Changing the imaging buffer or introducing oxygen scavenging

systems had no effect. This behavior is possibly due to a partial thermal uncaging

where the fluorophore is losing one of the two caging groups without illumination

of the activation light. Due to this reason special care was taken to image freshly

mounted samples for those two dyes. No change of required activation power over

time for the pPA-SiR was detected. Additionally, the activation laser power was

randomly selected to avoid any time dependent effects.

With pulse lengths of 200 fs for the 515 nm laser the activation rate of HCage 620

shows a dependency very close to n = 3. To check whether this is in fact a three-

photon activation process the activation rates are measured with different pulse

lengths of the activation laser. For this purpose pulses are stretched to different

lengths by introducing different optical fibers (10 cm and 100 cm) into the beam

path as described in subsection 2.4.1. The scheme for measuring the activation

rates remains unchanged.

The experimental data shows a reduced activation rate of 1/(2.01 ± 0.28) from

measurements with no fiber compared to ones with the short fiber of length 10 cm.

By replacing the short fiber with the fiber of length 100 cm, the activation rate gets

reduced by another factor of 4.33± 0.94, see Table 2.3. Similar measurements are

performed with ONB-2SiR, the dye which shows the clearest two-photon behavior

based on the activation rate measurements. For this fluorophore the data shows

a reduced activation rate of 1.79 ± 0.15 from no fiber to the short fiber of length

10 cm and of 3.17±0.29 to the 100 cm fiber. The comparison of the activation rate

changes of both dyes shows a similar trend with comparable values for both pulse

length increases.

The theoretical pulse stretching can now be calculated with Eq. 2.3 from the esti-

mated total GDD of the microscope and an additional GVD of 68.706 fs2/mm as

a result from the introduced fibers of different length. This results in an increase

of the original pulse length of 200 fs by a factor of 1.911 to ∼ 382 fs after intro-

duction of the 10 cm fiber in the optical path. The replacement with the longest

fiber (100 cm) is increasing the pulse length additionally by another factor of 3.14
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Table 2.3: Scaling of the activation rates with the pulse length. Ac-
tivation rates (in 1/frame) of HCage 620 and ONB-2SiR with fibers of different
lengths placed in the beam path of the 515 nm activation laser. Measurements are
performed as described before. The ratios in the lower table show the ratio of two
n measured with two fibers of different length.

kact, 0 cm fiber kact, 10 cm fiber kact, 100 cm fiber

HCage 620 1.24± 0.16 0.62± 0.01 0.12± 0.01
ONB-2SiR 1.33± 0.08 0.72± 0.02 0.23± 0.02

0 cm/10 cm 10 cm/100 cm
HCage 620 2.01± 0.28 4.33± 0.94
ONB-2SiR 1.79± 0.15 3.17± 0.29

to 1200 fs.

Comparing the results of the theoretical pulse prolongation to the measured changes

of the activation rate of both dyes they appear to follow a similar trend. For ONB-

2SiR the activation rate scales almost exactly with the inverse of the calculated

pulse-length 1/τtheo. This is the expected outcome for a two-photon dependent

process. The changes of the activation rate are slightly higher for HCage 620. The

measured data in Table 2.3 however does not show a dependency of 1/τ2theo, which

would be the expected behavior for a three-photon activation process.

As a result we can conclude that the activation of HCage 620 is, despite showing

a activation rate dependency of n = 3, likely not a three-photon process. Based

on the experimental data it is much closer to a 2PA behavior. This leaves the

possibility of a mixed process with a higher-order and dominant 2PA or a 2PA

combined with an additional step.

2.5.2 Photobleaching estimates

Flat samples with a homogeneous dye distribution are prepared by either embed-

ding the dyes in a collagen matrix or labeling the membrane of the nucleus (see

subsection 2.4.14). The samples of the nuclear envelope are chosen because the

reported thickness of ∼ 30 nm [72] is small enough to eliminate effects of different

activation volumes between 2PA and 1PA. These samples are used to estimate the

amount of photobleaching of the 2PA on the individual fluorophores. The com-

parison of the total detectable fluorescence after 2PA (at usual imaging activation

power for each dye) to the one after 1PA shows a significantly higher signal in
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the 1PA case. 2PA imaging parameters are chosen for the three dyes in a way

that delivers the highest fluorescence signal after one frame activation (515 nm

power of 4 mW for ONB-2SiR and HCage 620 and 1 mW for pPA-SiR, remaining

parameters described in subsection 2.4.5). For plasma membrane samples stained

with ONB-2SiR the signal after 1PA is 4.0 ± 1.1 times higher compared to 2PA.

Similarly for HCage 620 embedded in collagen samples which are spread flat on a

coverglass the signal after 1PA is 4.3±0.3 times higher than after 2PA. Activation

measurements on flat cell areas with pPA-SiR show a higher signal after 1PA as

well with a ratio of 3.3± 1.6 compared to 2PA.

The measurement procedure to asses the activation rates as described earlier, to-

gether with its model, can, by design, only include molecules which reside in their

fluorescent state during the detection scan. Molecules that are bleached before

this scan are never detected and accounted for. Similarly, the amount of active

fluorophores that are added after each activation step are observed together with

the amount that remains from the previous activation. Both individual quantities

are unknown in this measurement. To get a better understanding of the num-

ber of newly added fluorescent molecules after every activation step a different

measurement procedure described in subsection 2.4.4 is employed. The sample is

repeatedly activated, but after every detection of the fluorescence almost all active

fluorophores are bleached by a high intensity laser exposure.

Two typical results for lower and higher activation power are shown in Fig. 2.4

where the amount of fluorescence per pixel is plotted against the frame number.

Every alternating frame shows the remaining fluorescence after bleaching. This

is used in turn for a baseline correction of the remaining data. The overall curve

looks similar to the data obtained in subsection 2.5.1, but each point after activa-

tion here reflects only the new fluorescence signal which was added. This allows

for a better estimation of the expected number of activated fluorophores after a

single 2PA activation scan at different power levels. The area under the curve

after background subtraction equals to the total number of molecules that could

be activated with this light dose. The first measurement point in relation to the

total sum gives an estimate of how much of the achievable fluorescence is gained

in the first activation for a given imaging configuration.

For HCage 620 a total of (43± 6) % is expected to be active after the first frame

with an average 515 nm power of 4 mW (other parameters as described in sub-

section 2.4.4). If we compare this to the measurements on flat samples, the 2PA
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resulted in ∼ 23 % of the total fluorescence that was detectable after 1PA. Based on

the estimate of the first frame activation we estimate a total bleaching of roughly

∼ 47 % for these specific imaging conditions compared to 1PA. At the same imag-

ing configuration the first frame of 2PA for ONB-2SiR results in a subset of 33 %

of active molecules. This results in a 2PA bleaching of (25± 10) % compared to

1PA. For pPA-SiR with an average power of 0.6 mW (39± 4) % of all two-photon

activatable fluorophores are in their active state. This results in a bleaching com-

pared to 1PA to (22± 4) %.

Figure 2.4: 515 nm power
dependent photobleaching.
Photobleaching measurements
for two different 515 nm power
levels. Measurements on Lamin-
B with ONB-2SiR are shown
with the average fluorescence
per pixel as a function of the
acquisition frame. Low power
activation laser measurements
shown with circle and higher
power with filled squares. The
alternating measurements in dark
grey show the fluorescence before
and in light grey after bleaching
of the activated molecules.
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The bleaching of molecules is changing with the applied light dose. The higher

the used 2PA activation power the higher the bleaching. This is already visible in

Fig. 2.4 where the total area under the curve for the low power measurement is

bigger than the one for higher average activation power.

To test this, the bleaching measurements were carried out at different activation

laser powers as described earlier. The integral of the measured signal is represen-

tative of the total fluorophore count achievable for this activation configuration.

The total signal is dropping with higher light doses indicating a higher level of

bleaching (see Fig. A.4). Measurements were carried out on homogeneous stained

flat samples on at least three different areas per activation light dose (examples

shown in Fig. 2.4). The addition of an antioxidant (ascorbic acid) had no effect

on the bleaching behavior.
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Since every point before the bleaching in the plots in Fig. 2.4 is representing new,

previously not imaged, fluorophores every new activation delivers additional infor-

mation about the imaged structure. Therefore it is beneficial for every activation

laser power, even high ones, to successively activate multiple frames to combine

them. This is however increasing imaging times and might be unfavorable for dy-

namic structures. If longer acquisition times are feasible it may be better to image

multiple frames at low activation light doses, where the overall bleaching is lower,

than a single one with high activation laser power.

2.5.3 Activation extent and STED-characterization

The total size of the 2PA volume is expected to be smaller than its diffraction lim-

ited spot due to the nonlinear nature of the process. The two-photon spot size can

be assessed by imaging the 515 nm PSF which was scattered on gold beads. Due

to the intensity squared dependency the effective two-photon activation volume is

calculated by dividing the measured FWHM with
√

2. The lateral cross section of

the 2PA laser beam PSF is depicted in Fig. 2.5 A with the corresponding FWHM

of ∼ 210 nm. Therefore the 2PA size is calculated to ∼ 148 nm, very close to the

theoretical minimum of 145 nm. Similarly the measured axial FWHM is 554 nm

depicted in Fig. 2.5 A (right), resulting in a 2PA size of 392 nm which is again close

to the theoretical value of 345 nm.

The effective experimental 2PA PSF however can be influenced by saturation ef-

fects and can differ from the one measured on gold beads. To get an estimate

of the dimensions of the effective PSF a homogeneous sample of diluted dye in a

collagen matrix was activated with a big scanning step size. The ramp pattern

was confirmed to be a step wise function with measurements on an oscilloscope.

The subsequent fluorescence was read out together with 2D STED at a power of

90 mW. The fluorescent spot exhibits a FWHM of (191± 4) nm which is bigger

than the estimated number before. In the same way the axial size can be measured

with a z-doughnut where the EPFS has an axial FWHM of (400± 79) nm slightly

above the calculated extent.

The experimental linear PSF of the 2PA laser-beam as well as the 3D doughnut

shown in Fig. 2.5 A, B are imaged on gold beads.

Both cross-sections of the 515 nm PSF show no significant aberrations and are of

diffraction-limited size.
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Figure 2.5: Characterization of the STED and 2PA PSF as well as STED
resolution scaling. A PSF measured on 50 nm gold beads of 2PA laser at 515 nm
in xy (left) and cross-section xz (right), scale bars 0.5 µm. B PSF of the combined
3D-STED doughnut in lateral xy-scan (left) and cross-sectional scan (right), scale
bars 1 µm. C Lateral resolution scaling measurements of the 2D-STED measured
on Atto647N single molecules as a function of applied average STED laser power
(squares). The behavior follows the expected square root law which is shown as a
red line [73]. D Axial resolution scaling measurements of the z-STED doughnut as
a function of applied average STED laser power (squares). Theoretical fit shown
in red.

The 3D STED doughnut shows slight astigmatic aberrations. This is visible in

the slightly uneven intensity distribution of the 2D doughnut in the xy-scan, in

Fig. 2.5 B on the left, and the 3D doughnut displays a slightly higher intensity in the

top lobe (Fig. 2.5 B right). However, both small inhomogeneities are irrelevant for

the applied use cases. The residual intensity in the center of the STED doughnut is

minimal and measured at the same level as the background. The lateral resolution

scaling of the STED microscope with applied STED power in the 2D-doughnut,

measured on fluorescent microspheres, is depicted in Fig. 2.5 C and shows the

typical square root law [73] with achieving a STED FWHM of (48± 5) nm at an

average STED power of 50 mW. Fig. 2.5 D shows the axial resolution scaling when

employing a 3D STED doughnut, reaching a FWHM of (97± 16) nm at an average
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STED power of 200 mW.

2.5.4 2D STED imaging

To test if reasonable 2D STED super-resolution images could be acquired after

2PA of the dyes, we first imaged U2OS cells immunostained for microtubules.

Good STED images could be obtained by following the staining protocols described

in subsection 2.4.14, as can be seen in the example of microtubules stained with

ONB2-SiR in Fig. 2.6 A (right side). Enough fluorophores are activated after a

single activation scan with a moderate power of 4 mW of the 2PA laser beam to

render a continuous, well resolved representation of the sample. The pixel dwell

time for activation was set to 100 µs and the activation pixel size to ∼ 150 nm.

After acquisition of the 2PA STED image, the FOV is again targeted with the 1PA

in order to record a reference image. The STED image obtained after 1PA shows

significantly higher background in areas where the imaged cells are thicker in axial

direction, mainly around the nucleus Fig. 2.6 A (left side). In direct comparison,

after 2PA, the STED image shows better contrast across the entire cell compared to

the STED image of the same cell after 1PA. This is also visible when observing the

enlarged part of Fig. 2.6 A in Fig. 2.6 B. The intensity profile in Fig. 2.6 D shown

for both 1PA STED and 2PA STED along the same line depicted in Fig. 2.6 B

shows clear distinctive peaks in the 2PA case, where some of the peaks are masked

by higher background level in the 1PA case. This background is furthermore

increasing from left to right with the progression to thicker parts of the cell, where

it stays constant in the 2PA case. As a result, not all microtubles are clearly

visible in the profile line of the 1PA STED image, because they are lost in the

higher overall background. Similar results of contrast improvement for the STED

acquisition after 2PA compared to 1PA can be observed for the other two dyes

HCage 620 and pPA-SiR (see Fig. A.2).

Comparison of the enlarged images in Fig. 2.6 B of the confocal scan after 2PA (top

panel) and the two images taken with STED (middle panel 1PA and lower panel

2PA) shows a clear resolution improvement. The size of individual microtubules

at a moderate STED power level of 50 mW is almost identical between both cases

with an average diameter of (75± 13) nm for 2PA STED and (74± 19) nm for

1PA STED measured on six different individual filaments of the sample shown in

Fig. 2.6 A. An exemplary intensity line profile for both STED cases and confocal

is shown in Fig. 2.6 C, the arrows in Fig. 2.6 A indicate the position (additional
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line profiles shown in Fig. A.3).
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Figure 2.6: STED after 2PA of ONB-2SiR delivers higher signal to
background ratio on simple cells. A Example of STED images acquired after
1PA (left) and 2PA (right). U2OS cells with microtubules immunostained with
ONB-2SiR, scale bar 5 µm. B Enlarged area of selected image region from A
(middle). Confocal and STED image after 2PA of the same area are shown for the
reference (top and bottom, scale bar 2 µm). C Intensity line profile indicated by
arrows from both sides from A. Corresponding confocal and 1PA STED profile lines
added for reference (images not included) and showing the resolution improvement
by STED nanoscopy. Resolution of the acquired image is similar for the 1PA and
2PA case. D Intensity profile lines indicated by arrows and line in B showing
contrast improvement for 2PA with constant background.
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The lateral size of a single two-photon activated spot is smaller than its diffrac-

tion limited spot due to the nonlinear nature of the activation process which was

measured with STED in subsection 2.5.3. Due to the very targeted nature of the

2PA and its relatively small spot size, scanning configurations reminiscent of the

protected STED or MINFIELD approach (see subsection 2.4.6) are possible [56,

74]. By only activating a small region in the sample, the majority of active flu-

orophores are not exposed to the high intensity STED laser. Scanning around

the activated region with the center part of the doughnut reduces the bleaching

significantly. The activation and following readout of every pixel individually is

tested for all three dyes.

The results of this pixel activation mode for pPA-SiR are shown in Fig. 2.7 A.

Different parts of a single U2OS cell immunostained for microtubules were imaged

in different activation modes (pixel-activation vs. frame activation). The inset in

the top left shows that the pixel activation imaging mode is much more favorable

for pPA-SiR compared to the activation of a whole frame before imaging (left).

The pixel-activation at equal activation power results in up to three times higher

fluorescent intensities in both confocal and STED. The total detection time win-

dow of 130 µs as well as the color scale and STED power of 90 mW are the same

in both activation cases presented. The parameters for the pixel-activation scan

were chosen to be 0.6 mW of 515 nm, a pixel size of 24 nm with 10 µs activation

time.

The other two caged dyes (ONB-2SiR and HCage 620) however, show a different

behavior with a reduced detected signal when being imaged in pixel-activation

mode.

Fig. 2.7 C shows alternating confocal scans of fluorescence detection during pixel-

activation scans with (green points) and without (red points) the activation laser

(gap time 880 µs, 1.5 mW of 515 nm, a pixel size of 24 nm with 10 µs activation

time). A fluorescence detection without the activation laser after a previous pixel-

activation scan is equivalent to the frame activation case. The acquisition scans

with the 2PA laser light, during the pixel-activation mode, show consistently a re-

duced detected fluorescence signal compared to the same scan afterwards without

the 515 nm light. This reduces the resulting image quality of the pixel-activated

image significantly.

The fluorescence signal that can be detected during the pixel-activation scan is

highly dependent on the length of the gap time between the activation and imag-
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Figure 2.7: Pixel-activation greatly improves fluorescence detected dur-
ing STED with pPA-SiR. A Confocal image during pixel-activation scan, STED
image during pixel-activation and STED image after regular frame-activation.
Pixel-activation scans show 3-times signal increase compared to regular frame-
activation. U2OS cell with microtubules immunostained with pPA-SiR, scale bar
10 µm. B Schematic of the timing of events during one pixel acquisition. C Aver-
age signal per pixel of alternating pixel-activation scans with 2PA light (green) and
with the activation light blocked (red). Data from measurements with ONB-2SiR.
D Detected average signal per pixel during a pixel-activation scan divided by the
signal that could be detected after a scan. Shown as a function of the gap time.
E Activation of a whole line with following STED imaging shows no increase in
detected fluorescence signal. U2OS cell immunostained with ONB-2SiR, scale bar
5 µm.

ing/detection. This is visualized for ONB-2SiR in Fig. 2.7 D where the average

signal per pixel is calculated during and after the pixel-activation scan on a sim-

ilar sample as for pPA-SiR. The ratio of the values of the signal before and after

activation is plotted against the length of the gap time in ms. Very long gap times,

more than 1 s are needed during the scan to reach 80 % of the fluorescent intensity

that is detectable after the pixel-activation scan. This can be reduced somewhat

by changing to a STORM buffer but gap times of 50 ms still result in a total ac-

quisition time of ∼ 14 h for a (1024 px)2 STED image in pixel acquisition mode.

Line-activation scanning measurements, as described in subsection 2.4.3, were im-
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plemented to find a middle ground between the scanning speed and a potential

signal increase due to bleaching protection. However no difference in detectable

signal compared to regular frame-activation can be found in this scanning mode

with ONB-2SiR or HCage 620. Therefore, no special activation mode is necessary

for these two dyes.

This concludes the optimization of activation parameters. The optimal activation

strategy for pPA-SiR is pixel-activation with immediate read-out of the fluores-

cence signal. For ONB-2SiR and HCage 620 the optimum is whole frame activation

with following fluorescence read-out.

2.5.5 3D STED imaging

The 2PA volume is not only restricted in size laterally, but also in the axial di-

mension (see subsection 2.5.3). This is demonstrated by activation measurements

using the 515 nm femtosecond laser in ∼ 50 µm thick mouse brain slices. To this

end, cortical regions of the coronal brain section were immunolabeled for tubulin

using HCage 620 (see subsection 2.4.14). Two individual focal planes of the slice

were activated with both the 375 nm 1PA laser (power=130 µW, pixel size=150 nm,

pixel dwell time=100 µs) and 515 nm 2PA laser (average power=4 mW) right next

to each other. One focal plane located at a shallow depth of 6 µm above the cov-

erslide and one deep in a distance of roughly 46 µm from the surface.

The successful activation is visible in the confocal overview scan. Fig. 2.8 A (left)

shows a part of the whole coronal brain tissue section with both activated regions

highlighted by a white outline. A detailed view onto the highlighted region is shown

in Fig. 2.8 B with the 1PA region being on the left and the 2PA on the right. The

image was acquired with both regions side by side with the same imaging param-

eters and is visualized with the same color scale. Even in the enlarged confocal

scan in Fig. 2.8 C, at the depth of 6 µm, a pronounced difference in contrast is

visible. The 2PA recording shows a better distinction between the structure and

background with a much sharper delineation of the activated section.

Cross-sectional scans of this part are shown in Fig. 2.8 D. Two clearly distinct fluo-

rescent layers are visible at the targeted activation depth for the 2PA case (right),

illustrating the optical section capabilities of the nonlinear two-photon process. In

the 1PA case (left), the fluorescent signal is significantly more spread out in the

axial dimension, following the whole path of the beam.

Overall the fluorescence signal is decreasing with imaging depth. The signal is
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also minimal in the center of the axial scan of the slice, possibly due to sample

preparation related effects.
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Figure 2.8: 2PA allows improved optical sectioning. A (left) Confocal
overview scan of a cortical mouse brain section. Tubulin is immunostained with
HCage 620. The two activated regions are visible within the white square. The
1PA region is located on the left, the 2PA region on the right, scale bar 1000 µm.
B Enlarged area of the two activated regions, scale bar 100 µm. C Confocal scan
shows better contrast in the area after 2PA, scale bar 10 µm. D Cross-sectional
confocal scans of the region marked in A and shown in B,C. The coverglass position
is indicated with a white dotted line. Two focal planes were targeted for activation,
as can be seen in the annotations, one 6 µm and another 46 µm deep inside the
tissue section, scale bar 10 µm.

The optical sectioning of the 2PA together with activatable dyes can be used,

analogue to the two dimensional case, for an axial protected STED-like imaging

approach. Unactivated molecules are not affected by the STED beam and are

therefore not bleached.

Bleaching measurements of already activated layers with a 3D doughnut are per-

formed as described in subsection 2.4.7. An example of the results for measure-

ments with HCage 620 used to immunostain microtubules in U2OS cells is depicted

in Fig. 2.8 A. The average signal per pixel is visualized as a function of the acquired

frame number. For the layer that was additionally activated at the start of the

measurement a clear drop in detected fluorescence signal is visible (bright green).

This layer is continuously bleached by the high power in the 3D STED doughnut

lobes. The layer that remained un-activated in the 2PA case shows very low initial
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fluorescence signal, which is barely changing over time since almost no molecules

reside in the activate state (dark green). After eight frames all STED imaging

scans are completed and this previously not activated layer can be activated to

show the full fluorescence signal in frame 9. The signal of the similar layer (in an-

other area) for the 1PA case shows a high fluorescence signal already at the start

of the measurement (frame 1, blue). This signal also drops with the following

successively acquired STED images and cannot be fully recovered after all these

bleaching scans.

This underscores that 2PA can be used together with 3D STED to achieve a low-

bleaching, pseudo protected STED imaging mode (for the axial dimension).
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Figure 2.9: 2PA allows for better 3D imaging with preserved axial sig-
nal. A Results of the bleaching experiment described in subsection 2.4.7. The
average fluorescence signal per pixel is plotted as a function of the frame number
collected. B Reconstructed side view of acquired image stack of LaminB stained
with HCage 620 in nuclei of neural stem cell colonies for 2PA and STED (top)
and 1PA and STED (bottom), scale bar 5 µm. The graph to the right shows the
corresponding normalized intensity as a function of the imaging depth of the mea-
surements on the left. The maximum intensity projections of the image stacks are
shown for 1PA in C and for 2PA in D on the right, scale bars 5 µm.
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This advantage of 2PA can be used when imaging extended structures in 3D. To

demonstrate this, LaminB of nuclei in neural stem cell colonies are immunostained

with HCage 620 and imaged with a 3D doughnut with a total power of 140 mW

where 40 mW are in the 2D doughnut (2D FWHM∼ 50 nm, 3D FWHM∼ 134 nm).

Individually imaged layers are spaced 200 nm apart and repeatedly activated using

either 1PA (160 µW for 10 µs with a pixel size of 20 nm) or 2PA (3 mW for 10 µs

with a pixel size of 20 nm).

The cross-sectional reconstruction in Fig. 2.9 B shows a homogeneous distribution

of the detected fluorescent signal for the case of 2PA-STED. This is not the case

for 1PA-STED where a clear gradient is visible due to successive bleaching of the

following layers. The reason for this non-beneficial behavior is that those layers

already got activated even though they don’t coincide with the focal plane of the

375 nm laser light. The average fluorescence per pixel in each layer from this mea-

surement is depicted in the Graph in Fig. 2.9 B as a function of the imaging depth.

The almost flat signal over the imaging depth for the 2PA case illustrates its pos-

sibility to preserve fluorescence signal compared to 1PA.

The maximum intensity projection of the imaged stacks allows for a top down

view through the nuclei in Fig. 2.9 C, D. The significantly increased background

and inhomogeneous distribution of signal in the 1PA-STED case is also visible

here. In comparison, the 2PA-STED case allows for a three dimensional like im-

pression through this reconstruction due to its constant signal with low background

throughout the imaged slices.

2.5.6 Biological application

The evaluation of the optimal scanning modalities and activation parameters for

each dye enables the use of 2PA-STED for biological applications. In the following

section, I present some potential applications, which highlight the benefits of com-

bining 2PA together with STED. I will demonstrate that, due to improved optical

sectioning, 2PA-STED allows the acquisition of high-contrast data of challenging

thick biological samples with reduced photobleaching.

As an example, Fig. 2.10 A, B show 2PA-STED imaging of a thick brain tissue slice.

Here, actin in dendrites was stained with HCage 620 (see sec subsection 2.4.14).

2PA-STED allows for a resolution gain sufficient for capturing the individual spine

necks and heads. The images depicted here are taken within the tissue slice at
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Figure 2.10: 2PA allows acquisition of STED images in brain slices
with improved contrast. A, C Actin stained in dendrites in tissue samples
with HCage 620 as described in subsection 2.4.14. C 1PA and STED shows much
more background and haze surrounding the imaged structure. A 2PA and STED
has a better contrast with much lower overall background. Scale bars 5 µm. B
Unstained mouse brain slices fixed with PFA. The part which was illuminated with
1PA light, marked in blue, shows no change in signal. The part exposed to 2PA
laser light, marked in green, shows less fluorescence. Scale bar 10 µm.

a relatively shallow depth to avoid aberration issues. However, even at a depth

of 4 µm the reduced and more homogeneous background in the 2PA STED image

shown in C is visible compared to the 1PA STED image presented in A. This

is due to the restricted activation of the targeted layer and a reduction of auto-

fluorescence generated from the PFA fixation of the tissue sample. This PFA

induced fluorescence background can be quite effectively bleached by illumination

with a normal 2PA laser power of ∼ 3 mW. An example is visible in Fig. 2.10 B

where an unstained PFA fixed tissue sample was illuminated with 375 nm 1PA light

(top) and the 515 nm femtosecond 2PA laser (bottom). The region of the latter

has a significantly lower fluorescence after illumination compared to the sample

before the exposure (outside of the marked regions), whereas the region of 1PA

shows no change in detected signal. Tissue that was not fixed with PFA shows

no difference in the fluorescence signal before and after 2PA illumination. This

supports the presumption that the change in background is due to the bleaching
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of PFA induced signal.
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Figure 2.11: 2PA allows acquisition of STED images in challenging
thick and flat samples. A Actin in hepatocytes immunostained with pPA-SiR.
Overview shows confocal image after 1PA after the imaging of the marked region
which is 2PA and STED, scale bar 20 µm. The marked region is shown enlarged on
the right with the confocal data, scale bar 10 um. B β2-spectrin immunostained
with pPA-SiR, scale bar 5 µm. STED images with pPA-SiR were taken in a pixel
activation mode. The cartoon in the inset shows the underlying periodic structure.

Another relatively thick sample, which is prone to out-of-focus background dur-

ing imaging, are hepatocytes which are depicted in Fig. 2.11 A. The hepatocytes

were immunostained with pPA-SiR (see subsection 2.4.14) and visualized by 2PA-

STED. The enlarged section to the right shows individual actin fibers with a

diameter of ∼ 90 µm with overall very low background. The insert of the confo-

cal picture demonstrates the resolution improvement by 2PA-STED. The confocal

picture shows a non-continuous structure in some areas which is due to the fact

that it was acquired after the STED image due to the pixel-to-pixel activation

image mode required with pPA-SiR.

Fig. 2.11 B shows STED images of neurons where β2-spectrin was immunostained

with pPA-SiR. The STED images of β2-spectrin reveal the underlying periodic

axonal cytoskeleton which is shown in the cartoon in the inlet in Fig. 2.11 B.

STED recordings show the characteristic striped pattern with an average spacing

of (191± 16) nm between to consecutive rings of β2-spectrin.

The STED images acquired after 2PA show greatly improved signal-to-background

ratio, independent of the imaged structure. The three tested dyes are compatible

with STED offering a great versatility when it comes to labeling different biological
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structures. Imaging these dyes with 2PA-STED can deliver images with decent

quality at the required STED resolution.

2.5.7 Single molecule activation and localization

Activation of the fluorophores in bulk enables confocal and STED microscopy as

described in the previous examples. However, 2PA is not restricted to an ensem-

ble activation but could also be extended to the activation of single molecules.

This opens the application of 2PA to another set of super resolution microscopy

techniques such as SMLM. Especially with the newer SMLM techniques described

earlier (see subsection 2.4.9) this could result in nanometer scale resolution, which

also benefits from an increased signal-to-background ratio. For successful appli-

cation of 2PA for SMLM a sparse activation of individual molecules has to be

guaranteed.

Preliminary tests for the estimation of the required 2PA laser power were performed

on the confocal scanning microscope (see subsection 2.4.1). After their activation

the individual molecules were localized (subsection 2.4.8). The resulting number

of individually localized dyes is depicted as a function of the applied laser power in

Fig. 2.12 for ONB2-SiR (A), HCage 620 (B) and pPA-SiR (C). All these dyes show

a similar behavior of a low number of detectable localizations at low light doses.

At a power level of ∼ 7 µW the number of localizations show a clear increase in

the case for ONB-2SiR Fig. 2.12 A. This number is steadily increasing with higher

applied laser power until reaching a plateau at 30 µW. Results from HCage 620

and pPA-SiR show a slightly different behavior, since the number of localizations

shows a slow increase until it reaches a similar plateau at a maximum laser power

of around 50 µW.

When the activation beam is blocked while performing the same type of measure-

ment, no increase in the number of localized molecules can be observed. This is

falsifying a purely time dependent effect.

To avoid a cumulative effect of the activation a random selection of the power was

implemented.

Based on these results, an activation laser power range of 30 µW to 50 µW was

chosen for the following single molecule measurements, depending on the specific

dye that was used. A laser power in this range ensures to deliver a steady state of
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Figure 2.12: Average normalized number of localization. Number of acti-
vated ONB-2SiR (A), HCage 620 (B) and pPA-SiR (C) fluorophores as a function
of the activation laser power. An increase in localizations for ONB-2SiR is visible
starting from ∼7 µW. The number of localized molecules is increasing with higher
laser power until it reaches a plateau.

active fluorophores that can be localized.

Successful 2PA of single molecules allows the application of a PALM-like imaging

mode, where single activated fluorophores are localized to form a super-resolved

structure, as described in subsection 2.4.8. Initial scans of relatively big and ex-

tended structures like microtubules immunostained with ONB-2SiR in U2OS cells

showed a working implementation of this mode at an activation power level of

40 µW (see Fig. 2.13 A). The individual microtubules can be clearly distinguished

from the background in the single molecule localization image and resolve closely

spaced microtubules which are indistinguishable in the confocal picture. In line

with this, Fourier ring correlation (FRC) calculations indicate a, better than con-

focal, mean resolution of 117 nm.

Similarly, SMLM images can be acquired of samples that were previously shown

in STED in subsection 2.5.6. Fig. 2.13 B shows β2-spectrin in neurons immunos-

tained with pPA-SiR. The super resolved picture shows the characteristic striped

pattern, similar to the example shown before for 2PA-STED. The distance of the

individual stripe, as measured along the marked white line Fig. 2.13 B, is similar

to the distance estimated on STED recordings with a mean peak-to-peak distance

of (196± 15) nm.

Due to the two-photon nature of the activation, the acquisition is not only re-

stricted to the coverslide. Similar to the STED examples in subsection 2.5.6 im-

ages were acquired in mouse brain tissue samples stained with pPA-SiR. Successful
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Figure 2.13: PALM-like SMLM with confocal microscope after 2PA.
A Single molecule activation and localization of ONB-2SiR (top left) versus the
confocal image (bottom right). The imaged structure are microtubules in U2OS
cells. The SMLM image can clearly resolve multiple strands of microtubules next
to each other which blend in the confocal picture. Scale bar 2 µm. B β2-spectrin
immunostained with pPA-SiR. The SMLM image resolves the periodic structure
with a distance of 180 nm to 200 nm, scale bar 1 µm. The intensity distribution
along the line profile indicated with the white line in the top image is plotted in
the bottom Graph. C SMLM of dendrites in mouse brain tissue slices where actin
was stained with pPA-SiR. The image was acquired at a depth of ∼ 3 µm. Scale
bar 3 µm.

activation, detection and localization of individual fluorophores was possible at a

depth of around 3 µm. This demonstrates SMLM together with 2PA as a possible

technique for tissue imaging at depth in the sample.

To showcase high resolution 2PA SMLM imaging, we stained NUP96, a protein in

the nuclear pore complex (NPC) with HCage 620 using the HaloTag. Imaging of

this structure however was unsuccessful with very few localization events during

the time of the measurement (30 min to 40 min). The main reason for this was,

the confocal scanning system was not equipped with an active lateral drift control.

Without this stabilization system the imaging is limited in terms of time and FOV

(due to an extended acquisition time).

To overcome this issue, the measurements of NPCs were repeated on a MINFLUX

setup with an active stabilization system to achieve high-resolution images ac-

quired over an extended time period.

Individual fluorophores could be successfully activated via 2PA (60 µW) and sub-

sequently localized in an iterative MINFLUX scheme (see Fig. 2.14 A, B). The

majority of localizations over an extended imaging time were converging success-
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fully, as can be seen from the left skewed histogram in Fig. 2.14 D. This histogram

shows the difference rest-rel between the estimated position of the FPGA during

the scan and the localization position determined with the maximum likelihood

estimator during post-processing. Good localization is also possible due to the low

background in the sample, which is visible in the distribution of the ratio of the

fluorescence detected at the central MINFLUX position relative to the other three

positions p0, with the majority of localizations being well below 0.2 (Fig. 2.14 E).

The experimental localization precision results to σx = 2.12 nm and σy = 2.20 nm

with a minimum number of 10000 photons in the last iteration step (Fig. 2.14 C).
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Figure 2.14: MINFLUX images of NUP96 after 2PA. A Overview of a
MINFLUX scan with 2PA (60 µW). NUP96 in U2OS-cells are labeled via Halo-
tag with HCage 620, scale bar 500 nm. Image contains very low number of nuclear
pore complexes with most of them severely underlabeled only showing a maximum
of six subunits. B Representative enlarged image of a different area showing the
individual NUPs, scale bar 100 nm. C The experimental localization precision
as a histogram for each direction. The standard deviations of the localization
precision are calculated for x to 2.12 nm and for y to be 2.20 nm. The data is
filtered according to the criteria p0 < 0.2 and rest < 0.03 µm. The corresponding
histograms of a slightly larger FOV are shown in D, E with their cutoff as a red
line. Localizations to the left of the dividing line, shown in red, are used for the
rendering of the image. Gaussians for both images A & B are drawn with a fixed
σ of 3 nm.

However, not all nuclear pore complexes in the whole FOV show the expected eight-

fold symmetry and appear mostly under-sampled with six or less sub-units visible.

As similar results are obtained when using 1PA with 405 nm (10 nW), this observa-

tion points to an incomplete labeling of the HaloTag. Therefore, different labeling

methods were employed such as SNAP-tag, combined with HCage 620, or labeling
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of NUP96-GFP with an anti-GFP-nanobody/antibody with HCage 620. Likewise,

we performed immunostaining of nuclear pore sub-complexes with pPA-SiR. All of

them resulted in mostly incomplete NUPs in MINFLUX images with both activa-

tion wavelengths. Additionally, the variation of the buffer (PBS, HEPES, STORM

buffer) or the modification of imaging parameters had no effect on the overall re-

sult. Independent of the labeling strategy, successful 2PA and stable localization

of molecules could be achieved on top of the U2OS cell’s nucleus at an imaging

depth of ∼ 3 µm.

First experiments at shallow depths in mouse brain tissue slices with actin im-

munostained against GFP in dendrites, showed as well that localization of single

activated molecules is possible in challenging samples with MINFLUX using the

2PA approach.

The combination of photoactivatable dyes which are also STED compatible makes

this method a good candidate for MINSTED imaging.

For this purpose, Caveolin-1 in simple U2OS cells was immunostained with ONB-

2SiR and HCage 620 (see subsection 2.4.14). Imaging and rendering parameters

are as described in subsection 2.4.9. As can be seen in Fig. 2.15 C/E the internal

structure of the caveolas can be resolved by MINSTED. It is worth noting that

the acquired two-dimensional MINSTED image shows a projection of the three-

dimensional object which is depicted in the cartoon in Fig. 2.15 D.

The comparison to the confocal overview scan of the caveolas is shown in Fig. 2.15 B.

As a note, the confocal image does not show the unresolved fluorophores from the

MINSTED measurements, but the corresponding counter-staining of Alexa 647

(see subsection 2.4.14).

The diameters of the clusters of localizations in C are in the range of 50 nm to

70 nm which is the expected size of caveolas, as reported previously [75].

The complete MINSTED image in Fig. 2.15 C consists of a total of 1462 localiza-

tions. The histogram of the number of localizations with the corresponding esti-

mated localization precision is shown in Fig. 2.15 F. The histogram shows a clear

left skewed distribution, with the majority of localizations at the lower bound and

a median localization precision of 2.6 nm. The number of localizations with their

corresponding standard deviation at the minimal FWHM of the STED iteration is

visualized in a histogram together with the separation line (red) used for filtering
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Figure 2.15: MINSTED images of Caveolin-1 after 2PA. A Confocal
overview of a U2OS cell where Caveolin-1 was immunostained with ONB-2SiR,
scale bar 10 µm. B Enlarged confocal region of the cell. Position indicated in A
by the white outline. Scale bar 0.3 µm. C MINSTED image of the same confocal
region shown in B. The MINSTED image resolves the internal structure of the
individual caveolas, scale bar 0.2 µm. The scanning FOV of the MINSTED image
is slightly smaller than the confocal image in B. This is the reason why caveolas in
the region of the edge are not resolved. D Cartoon of the caveola with the targeted
Caveolin-1 protein shown in red. The average diameter of the caveola is equal to
60 nm to 80 nm with a diameter of the neck of 10 nm to 50 nm [75]. E Enlarged ar-
eas of the MINSTED image from C. The positions in C are highlighted with white
outlines. The upper image corresponds to the upper outline. Scale bar 20 nm. F
Histogram of the estimated precision of the individual localizations in nm. G The
standard deviation of the localization measurements when reaching the minimal
FWHM of the STED. The events are filtered as described in subsection 2.4.9. The
threshold is shown as a red line. All data points right of the line are discarded.

(localizations right of line are filtered out, marked with grey shade) in Fig. 2.15 G.

The distribution shows a good convergence of the localizations, with the majority

of them within the non-filtered region. The medium amount of detected photons
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per ONB2-SiR fluorophore after 2PA is equal to 1556±160. Well above the thresh-

old for filtering. The data is comparable to previously reported data after 1PA

[21]. The number of photons per fluorophore after 1PA 1269± 200 doesn’t deviate

from the one measured after 2PA.

Similar measurements are possible with Caveolin-1 immunostained with HCage 620.

For HCage 620 however the number of photons is significantly lower with 774±165

detected photons after 2PA and 965± 241 photons after 1PA.

MINSTED measurements with 2PA are successful at different imaging depths, de-

livering super resolved images with good localization precision up to a distance of

∼ 2 µm from the coverglass, which is roughly equivalent to the height of a U2OS

cell.
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2.6 Discussion

This thesis demonstrates that 2PA improves the contrast in confocal and various

types of super-resolution microscopy techniques. The main reason for this is that

the 2PA restricts the conversion of activatable dyes to a small volume in the focal

spot. Thereby 2PA counteracts out-of-focus signal, especially in thick specimens.

Three different dyes (ONB2-SiR, HCage 620, pPA-SiR) were selected for this study,

all of which are suitable for 640 nm excitation and STED at 775 nm wavelength.

The three dyes show two different activation mechanisms and were found to be effi-

ciently activatable at a wavelength of 515 nm with short-pulsed laser light without

strong premature bleaching. All of them show a multi-photon activation mecha-

nism. This could be shown by the change of the activation rate which scales with

the squared average applied activation laser power. Additionally, a direct inverse

change of the activation rate with a variation in pulse length ( 1τ ) was observed.

This is the expected behavior for a two-photon process (see Eq. 2.2), whereas the

regular 1PA is unaffected by pulse length changes. Among the three dyes ONB-

2SiR shows the clearest two-photon uncaging behavior. HCage 620 exhibiting an

activation order higher than two reveals to be either a mixed process with predomi-

nantly two-photon behavior or a two-photon activation together with an additional

step (similar to the reported 2PA of DsRed2 [76]).

The successful activation of HCage 620 opens up the potential of 2PA at 515 nm

for the remaining dyes published in [21], if the absorption of the uncaged dye at

this wavelength is small enough. Similarly, color shifted variants of ONB-2SiR

with the same caging group have a high chance of being activated by 515 nm light

through a two-photon process.

This work shows that bulk activation of all three dyes allows for subsequent STED

imaging with overall enhanced contrast. The needed high applied average laser

power however is inducing bleaching due to the high peak power of the 515 nm

femtosecond laser. Therefore, for single activation measurements an optimal acti-

vation configuration was established for each dye.

For a pulse length of ∼ 200 fs and a pixel size of 150 nm with a dwell time of 100 µs

the optimal average laser power for ONB-2SiR and HCage 620 is equal to 4 mW,

which is well in range of previously reported 2PA power levels for different dyes at

other wavelengths [49]. This activation configuration delivers the highest amount

of activated fluorophores in one scanned frame, resulting in the best achievable
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single frame STED images. Since only a subset of all available fluorophores is acti-

vated after a single activation scan, a repeated activation and detection scanning,

is advisable, if the associated longer acquisition times are manageable.

It was shown that not all dye molecules survive the activation process. The total

amount of bleached fluorophores is dependent on the activation laser power and

slightly different for each of the three dyes. Bleaching pathways can be very com-

plex. However, a bleaching via the formation of a cation and solvated electron

pair, which lead to irreversibly destroying the molecule through collisions with

the solvent molecules, can be considered unlikely since the addition of ascorbic

acid as an antioxidant had no effect on the amount of detected bleaching [77].

Additionally, pPA-SiR shows a fluorescence quenching effect after activation due

to a reaction with the surrounding water molecules resulting in a reduction of

detected fluorescence for normal imaging modes (described in [23]). Because of

this, a special scanning mode was implemented, where the fluorescence is read out

immediately after the activation with 0.6 mW of 515 nm. With this approach, an

efficient activation can be achieved, allowing efficient STED nanoscopy at 775 nm

for this fluorophore.

An additional indirect proof that the activation with 515 nm is in fact a non-linear

process is the resulting small activation volume. The finite activated region is ex-

pected for higher order activation mechanisms.

With this precise control over the location of the activation it is now possible to

image in a pseudo-protected-STED imaging mode.

A lateral protected STED reminiscent technique was shown to work for pPA-SiR

as described above but showed not to be usable for the two caged dyes ONB-2SiR

and HCage 620. The detectable fluorescence is increasing over long periods of

time (up to s) after an illumination with the 515 nm laser. This might be due to a

slower activation process and/or transitions to a long lived dark state induced by

the femtosecond laser light.

However, this imaging mode is especially promising for axially extended structures

that are imaged with a 3D doughnut, where 2PA delivers a significantly improved

signal retention in the third dimension compared to regular 1PA at 375 nm. The

confinement of the axial activation volume is additionally decreasing out-of-focus

fluorescence which could further degrade image quality. Even on very thin samples

with a thickness of ∼ 3 µm the application of 2PA together with STED is benefi-

cial, resulting in a much better contrast due to the optical sectioning.
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The examples shown in subsection 2.5.5 demonstrate the effectiveness of the activa-

tion of a single plane deep in brain tissue slices. This optically-sectioned activation

can also deliver much improved STED images in thick samples with overall lower

background, as demonstrated before. STED images at a shallow depth are pre-

sented as an example in this work. For high-resolution deep-tissue STED imaging,

adaptive optics (AO) is needed in order to correct for aberrations introduced by

the sample [78–80], as well as the use of a focusing piezo with a bigger range.

It could be argued that two-photon excitation could deliver similar results for

bulk STED imaging [42, 81]. However, it has been shown that 2PA together with

two-photon excitation has the potential to drastically increase the imaging depth

compared to regular excitation and two-photon excitation on its own [82].

The successful application of 2PA in mouse brain tissue samples together with

STED, showing a significantly reduced background compared to regular 1PA,

makes this activation mechanism a good candidate for MINFLUX or MINSTED

image acquisition in comparable challenging samples. Due to its use of an ex-

citation beam only, MINFLUX is susceptible to background and its suppression

greatly improves the localizations.

As a ground work, different 2PA single molecule localization techniques (PALM,

MINFLUX, MINSTED) near the coverslide were shown to work here. Localizing

single molecules with high precision, deep in tissue samples, requires special care

and a special microscope system with adaptable optics and a stabilization system

supporting the imaging depths. This is open for future work.

Nonetheless, the acquired images show as a proof of concept that the 2PA pre-

sented in this work could be applied to any imaging technique, ranging all the way

from confocal over STED to the newest nanometer-scale SMLM techniques.

Unfortunately, the selected dyes show some unfavorable characteristics when it

comes to single molecule imaging of sparse samples such as nuclear pore com-

plexes. All three dyes seem to exhibit very poor labeling efficiency, independent of

the labeling mechanism (antibody, nanobody, HaloTag, SNAP-tag). Furthermore,

the fluorophores are not reversibly switchable. This results in a loss of localiza-

tion targets, if some of the fluorophores are activated either thermally or due to

premature exposure to light, e.g. during staining or transportation, since initially

fluorescent molecules are bleached at the start of the MINFLUX or MINSTED

measurement. In a similar way, activated fluorophores that couldn’t be localized
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or multiple activated fluorophores too close to localize them individually are lost

as a result. These cumulative effects can result in under-sampled images of the

underlying structure. However, the results of undersampled structures is not an

effect of the usage of 2PA with SMLM but a general issue in SMLM. In fact, the

results presented here are comparable to already published data on pPa-SiR [23]

(NPCs with STORM) and HCage 620 [21] with classical 1PA in UV, with the ex-

ception that 2PA delivers much more precise control over the location of activation

and reduced background signal. A potential solution to the problem of sparsity

could be an approach which uses a DNA-paint [83] imaging scheme with these dyes.

The experimentally measured size of the two photon PSF at the regular activa-

tion power levels used for STED imaging in this work is slightly bigger than the

minimal PSF predicted by the theory (see Eq. 2.1). This is somehow expected

since the actual dimensions are highly dependent on the activation power which

is applied [48]. This can result easily in a saturated effective two-photon PSF [28]

with a larger overall volume. Reducing the activation power could therefore result

in a minimal activated volume (as discussed in section 2.2), with the downside of

not activating enough molecules in the region of interest to acquire a high qual-

ity STED image. The balancing of the number of activated molecules with the

bleaching of molecules and the effective size of the two-photon PSF can be different

for every imaging mode. For the significantly reduced activation power for single

molecule imaging, the two-photon PSF can be assumed to be minimal.

The activation at this wavelength resolves a number of issues that existed with the

classical UV activation of these dyes [84]. Using visible light at 515 nm results in

less chromatic aberrations induced by the optics since it resides in the optimized

range of both achromatic and apochromatic lenses. Together with the significantly

increased transmission through optical elements, this makes building a microscope

with this activation wavelength much easier. The ability to easily characterize the

PSF on gold beads simplifies the lateral and axial overlapping of all individual

beams in the microscope significantly.

Together, the 515 nm laser provides a very compact solution with an easy to use

turn key system which can fit on almost any setup.

On the other hand, the relatively short activation wavelength is not ideal when

it comes to deep tissue imaging. The wavelength resides outside of the typical
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optical window used for tissue imaging from 650 nm to 1350 nm where the ab-

sorption of light is minimal [50]. Furthermore, the scattering of light is increasing

significantly at shorter wavelengths, making it less practical for deep imaging in

biological structures.

Still, this option remains more practical than the alternative 1PA in the UV region.

This regular 1PA wavelength window is, in the case of ONB-2SiR and HCage 620,

explicitly shifted to lower wavelengths (below 380 nm) to avoid a two-photon ac-

tivation by the 775 nm STED beam [21, 51]. For this reason a three-photon ac-

tivation would be needed for the application of wavelengths in the optical win-

dow. However, this would set much more stringent requirements for the dispersion

compensation compared to 2PA. Especially third order dispersion compensation

introduced by the prism compressor could be ignored in the 2PA case but would be

relevant for three photon activation to achieve the required shortest pulses possible

[85].

A drawback of the two caged dyes is the overall biocompatibility. Due to the

extended caging system, both dyes, ONB-2SiR and HCage 620, are not able to

penetrate the cell membrane efficiently, rendering them not live cell compatible.

Unfortunately, the remaining dye, pPA-SiR, exhibits a changed spectrum of the

unactivated compound with a higher absorption at 515 nm for its live cell com-

patible Halo- and SNAP-tag conjugates. This is not unexpected as it has been

previously reported that these self-labeling tags can have a significant influence on

the properties of SiR dyes [86], but here it unfortunately increases the bleaching for

a 2PA application. As a result in vivo stainings with these dyes are not possible.

The potential benefit of 2PA at 515 nm to be less photo-toxic than the regular

activation with high power UV photons was not tested due to this reason. This

could be confirmed with a new set of biocompatible dyes.

Overall, 2PA at 515 nm exhibits a great potential for microscopy, independent of

the method that is used. The ability to control a small activation volume precisely

is beneficial for a variety of techniques ranging from confocal to nanometer-scale

SMLM. 2PA at 515 nm can replace the classical 1PA below 400 nm for photoac-

tivatable (far-)red dyes, which improves imaging conditions drastically as well as

resolving many constraints during the microscope construction. With the combi-

nation of AO, 2PA offers the potential of nanometer-scale SMLM acquisition deep

in the specimen.
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3. Image reconstruction in low

signal STED microscopy

3.1 Introduction

Classical image processing concerned itself previously with task specific tailored

algorithms. With the advent of machine learning however, deep neural networks

have become a popular and powerful tool in data-driven analysis and image pro-

cessing. These neural networks can be used to find any mapping of an input

data distribution to a target distribution, without the need of hard-coding spe-

cific mathematical operations. If the input and output are both images, such as

in denoising [87] or image reconstruction [88] applications, this task is known as

image-to-image translation. Explicit pre-determined image filters are no longer

needed as the network is trained to learn the weights itself. Different variations

of these neural networks have already found their application in microscopy for

signal-to-background ratio (SBR) improvements [87, 89, 90] or deconvolution ap-

plications [90].

In its most basic form neural networks are used to find a mapping with the use of

multivariate functions from a source to a target distribution. It has been shown

by the universal approximation theorem [91] that a neural network with at least

three layers can approximate almost any function connecting two datasets if the

number of weights is allowed to be arbitrarily large. By presenting data from both

distributions to the network, the weight parameters w are learned in the process of

training. Typically, the network is trained on a sub-sample of the source data and

the performance is then validated on the remaining data from the set. The training

data is used to determine the fit of an unknown function between both distribu-

tions. The use of activation functions, such as the rectified linear unit (ReLU),
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between different layers of the network is introducing important non-linear ele-

ments to the overall network design, allowing the network to learn more complex

relationships [92].

A calculated loss value is used to determine how well the fit of the network is ap-

proximating the true mapping. Popular loss functions are the L1-norm or L2-loss

(Euclidian norm, see Eq. 3.2). The aim of the training is finding a mapping be-

tween the input and output distributions that minimizes the selected loss function.

This is typically achieved through either stochastic gradient descent or with the

use of adaptive gradient methods such as Adam [93] or AdamW [94].

Generative adversarial networks are an interesting network architecture for image-

to-image translation. They rely on convolutional neural networks (CNNs), es-

pecially down/up-sampling CNNs. Both types will be shortly discussed in the

following sections.

3.1.1 Convolutional Neural Networks

When processing images in neural networks the naive approach of assigning weights

to the relations of individual pixels quickly has its limits. For images described

with an n ×m matrix the mapping of all input pixels to all output pixels is in-

creasing the number of weights needed substantially with an increase in image size

(∝ (n × m)2). At the same time this would require a corresponding increase in

the available training data to find a good approximation for all unknown weights.

Additionally, the increase in compute power and memory needed becomes unfea-

sible for regular workstations very quickly.

A potential solution to keep the number of weights small was introduced with the

application of convolutional neural networks (CNN). The reasoning behind the use

of convolution is based on the assumption that pixels that are far apart in an image

are less correlated than pixels that are spaced closer together. This is assumed to

be true for the entirety of the image.

A sliding window, named convolution kernel, with a finite size of k × l pixels is

moved over the input matrix, learning only a small set k× l of weights. Only that

set of weights is used to determine all entries of the output. It is worth noting that

the number of weights here is independent of the input image dimension. Every

single output pixel is only influenced by a small, constant fraction of the input

image. For higher dimensional data, the kernel used can be extended to spread
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over all dimensions or multiple kernels can be used in different directions. The

weights of the kernels, also described as filters, are learned from the input data.

Down-sampling of the image can be achieved by implementation of a stride, where

the sliding window is not moved from pixel to pixel continuously but with a higher

step size, therefore reducing the output dimension. At the same time, the number

of output channels (third dimension of the matrix) is usually increased. However,

this is done in a way that keeps the total size of the generated matrix smaller than

the input matrix. Thereby, the network learns a compact mapping for the given

source data.

Similarly up-sampling of the data can be achieved through transposed convolution

[95] with an according reduction of the third dimension.

The addition of layers to normalize the data after every convolution step, before the

activation function, has been shown to increase the chances of good convergence

in the optimization process [96].

3.1.2 Generative Adversarial Network

The invention of generative adversarial networks (GAN) [97] represents a break-

through for the use of CNNs for image translation tasks [98].

In the supervised image translation task a GAN consists of two different network

parts, one encoder-decoder network called the generator and a separate encoder

network as the discriminator (see Fig. 3.1). The generator describes a CNN based

network that is used for converting an input image to an output image.

The encoder part of the generator usually consists of convolutional layers with a

stride of two and an increase of the number of channels of 2. In this way, the

effective overall size of the matrix is halved in every convolution step. The number

of encoding down-sampling layers varies in different implementations, where each

layer is usually followed by a batch normalization and activation function. The

abstract representation of the source data is extracted and fed through the lowest

dimensional layer, the bottleneck, from the encoder to the decoder. In the follow-

ing the decoder is up-sampling the data, decreasing the number of channels while

increasing the output image dimensions.

The U-Net [99] represents a special version of the generator architecture, which

uses skip connections, concatenating the output of the encoder to the input of the

decoder with the appropriate dimensions (see Fig. 3.2 A). This resolves the issue
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of the vanishing gradient problem [100] for deep CNN-networks in a similar way

to ResNet [101] and is a way to transfer the high frequency signal in the raw data

directly to the output.

The second part of the network, the discriminator, is usually a simple CNN net-

work with a small number of down-sampling convolutional layers. The objective is,

similar to a regular classification system, to distinguish between two sets of data.

Depending on the specific GAN-model either the ”real” input/output-pair (for a

conditional GAN, cGAN [102]) that is being used to train the generator network

or just the ”real” input data (for a simple GAN) is supposed to be classified as

true. The generated data by the generator network is trained to be labeled as fake

by the discriminator.

Input

Target

Output

Generator
Discriminator

L1-norm
Weights
update

Optimizer

All real
Sigmoid
Cross

Entropy

λ

Input Output

Generator

DiscriminatorReal Samples
Is discriminator
correct?

Weights
update

A

B

Figure 3.1: Training of a conditional GAN network. A The input of
random or noisy data is fed into the Generator which is producing a corresponding
output. The output is functioning together with the target as the input for the
L1-loss function. Additionally the output from the generator is passed together
with the original input into the discriminator. The output from the discriminator
is passing a sigmoid cross validation with a vector of only ones and the value is
added together, after a scaling with λ, with the L1-loss to yield the total loss. The
optimizer is using the total loss to generate an update to the internal weights of
the generator. B The discriminator is fed real samples from the data set and fake
samples from the generator. The weights of the discriminator are updated based
on the correctness of its classifications.

During training the generator G is tasked to approximate the true data distribution

and to trick the discriminator D to falsely classify the generated data as ”real”,
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based on an input image x from the distribution pt and a random noise vector

z from the distribution pz. On the other hand the discriminator is trained to

accurately distinguish between ”fake” data pg(x) originating from the generator

and ”real” data pt(x). A scheme of the training of the generator is presented in

Fig. 3.1 A. The weights of the generator are updated based on the discriminator

output as well as a regularization parameter λ, estimating how closely the predicted

output matches the target. Both models are trained alternately where the weights

of the discriminator are updated with the generated data from the generators

previous step (see Fig. 3.1 B). Both networks are growing stronger over time while

competing with each other. This minimax game can be described by optimizing

the following total loss function [103]

min
G

max
D

L(D,G) = Ex∼pt(x)[logD(x)] + Ez∼pz(z)[log(1−D(G(z)))]

= Ex∼pt(x)[logD(x)] + Ex∼pg(x)[log(1−D(x)]
(3.1)

The loss function relates to the Jensen-Shannon (JS) divergence DJS(p‖q) with

the loss function being L(G,D∗) = 2DJS(pt‖pg) − 2 log 2 [103]. With an optimal

discriminator D∗ the loss function describes the similarity between the two distri-

butions of real data and generated data. Since the JS divergence is bound by [0, 1]

an optimum of the training can be achieved when L(G∗, D∗) = −2 log 2.

Due to the competing nature of the alternating training process the training of

GANs can become unstable very easily where the individual loss functions start

to oscillate. Different methods to stabilize and improve GAN training can be ob-

tained from literature [103, 104].

The issue of potential mode collapse is where the generator is not learning any-

thing, but continuously generates the same image for different input data to fool

the discriminator. Mode collapse can be circumvented by adding an additional

parameter to the loss function described in Eq. 3.1 which describes some distance

of the generated to the target data. Typically the addition of L1-norm in the loss

function of the generator with some weight λ is sufficient (see Fig. 3.1) [98].

Since the first publication on GANs many new GAN architectures with slightly

different objective functions are reported for special use cases or for better training

performances. An overview can be obtained from the literature [105].
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3.1.3 Scope of this chapter

Weak contrast can be a significant drawback of super-resolution microscopy, es-

pecially in thick specimens. However, in many cases the underlying biological

structures which are observed, are already known. This is for example the case in

time series where the change in the structure (the movement) is of primary interest

or in studies where merely the presence of the target is checked. In these cases

the existing prior knowledge about the structure can be used to make informed

decisions during the post-processing of the experimentally obtained data. Exploit-

ing prior knowledge constrains the object space and can significantly reduce the

uncertainty of estimated parameters. This is of special interest when the acquired

images exhibit poor signal levels with potentially high background (low SBR), for

example due to high STED intensities, fast imaging acquisition or simply due to

a dim fluorophore/fluorescence labeling.

Classical image reconstruction tasks with the help of feature detection algorithms

are mostly dependent on tuning a variety of parameters to achieve good results.

These can differ between different images and are usually fixed on a single struc-

ture. Additionally, wavelet based filtering methods for ridge detection tasks can

become quite resource intensive with long compute times for each image.

Neural networks have become a popular tool in many different fields [106, 107]

including microscopy [87–90, 108]. They offer higher flexibility with parameter

free application.

Therefore, in this chapter the application of neural networks is discussed as a

tool for image reconstruction in STED microscopy. A neural network is trained

to uncover the underlying, previously known, biological structure from simulated

and experimentally acquired STED images. The limit of this approach is tested

with a variation of the STED imaging parameters. Optimal imaging conditions to

extract the most information from the data are determined.
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3.2 Methods

3.2.1 Neural Network

The neural network that was employed was an adaptation of the conditional GAN

named pix2pix [98] that is widely used for image translation tasks and showed the

best initial results.

Different architectures of the GAN network can be used. In the most basic pix2pix

network the generator consists of the classical U-net structure with eight two di-

mensional convolutional downsampling layers with a kernel size of 4 and stride of 2.

The number of filters used in each step is increased accordingly by a factor of 2. A

two-dimensional batch normalization layer follows each convolutional layer which

is then passed through a leaky rectified linear unit (leaky ReLU) activation func-

tion with a negative slope of −0.2. This describes the architecture of the encoder.

The decoder passes the data after the last convolutional layer through a series of

eight, two dimensional transposed convolutional layer for upconversion purposes.

A normalization layer (usually BatchNorm) and a ReLU activation function fol-

low after each transposed convolution. The last layer is an exception which only

features a tanh activation function without any normalization. The final output is

the generated picture with the same dimensions as the input image. The filter-set

before each transposed convolution step is concatenated with the filters originat-

ing from the corresponding down-convolution step. The upconversion is reducing

the filter number by a factor of 2. A visual representation of the basic network

architecture can be found in Fig. 3.2 A.

To resolve limitations with GPU memory, the image can also be cropped to a

certain patch size before entering the encoder. Multiple of these patches can be

stacked to form a batch. They are used together in one training iteration.

The individual convolutional blocks can be exchanged with ResNet blocks to form

a classical ResNet architecture with variable depth [109].

Additionally, a three dimensional convolution network was built for image stacks.

The previously described architecture was implemented with three dimensional

convolutional and three dimensional transposed convolution layers. For similar

reasons a long short term memory (LSTM) convolutional network was constructed

by replacing the individual convolutional layer with a variant of ConvLSTM blocks

[110].

The discriminator (see Fig. 3.2 B) is unchanged to the PatchGAN discriminator
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Figure 3.2: Architecture of the applied neural network. A Classic archi-
tecture of the U-net pix2pix network with purely convolutional blocks [98]. The
image passes several convolutional layers and encodes the information in the filter
set. After passing the lowest dimension the encoded data is fed into the decoder
with convolutional transpose layers. The filter-set of the corresponding step in the
encoder is concatenated to the output before passing the next layer. The decoder
outputs a generated picture which is in turn fed into the discriminator B. Small
patches of the generated image are passed through several convolutional layers
before making the prediction if the passed image is real or artificially generated.
A, B Individual convolutional blocks can be exchanged with three dimensional
convolutional, LSTMConv or ResNet layers.

from the original publication [98] with a total of five layers.

Proposed images from the generator are passed to the discriminator and addition-

ally compared to the original data during training. The comparison delivers one

loss term (either L1 or L2-loss, see Eq. 3.2) which can be scaled freely with a pa-

rameter λ before the addition to the loss of fooling the discriminator (GAN-loss).

AdamW was chosen as the optimizer with an optimizer momentum β1 = 0.9 and

β2 = 0.999. Detailed options for the optimizer can be obtained from the ConvNeXt

framework [111].

For training the image batch size was varied from 1 to 10 with a random cropping

of the images to sizes of (256 px2 to 512 px2). The training was performed for a

total of 400 epochs with half of them at a stable learning rate of 0.0002 and a

linear decay of the learning rate for the second half.

Before the images were fed into the neural network they were augmented with the

use of the Python package Augmentor. The dataset was overall increased five-fold

with random rotations and random flipping enabled.

Normalization of the data could be achieved by either stretching the contrast,

rescaling the intensities to the values between the 2 and 99.9 percentile, or by
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changing the contrast locally in parts of the images.

Different metrics were calculated for validation. Typical metrics include mean

structural similarity (mSSIM) index [112], which was calculated using the skimage

library for Python, least absolute deviations (L1, or norm) and Least Square Er-

rors (L2, Euclidian norm). L1 and L2 are just calculated as the sum of differences

or differences squared from the individual pixels in the predicted image ŷi to the

target picture pixel yi weighted by the overall number of pixels N (see Eq. 3.2).

mSSIM =
1

M

M∑
i

SSIM(xi, yi) =
1

M

M∑
i

(2µxiµyi + c1)(2σxiyi + c2)

(µ2xi + µ2yi + c1)(σ2xi + σ2yi + c2)

L1 =
1

N

N∑
i

|yi − ŷi|

L2 =
1

N

N∑
i

(yi − ŷi)2

(3.2)

N is the total number of pixel in the image. For the calculation of mSSIM the

image was divided into M small sections where the SSIM is calculated with the

mean value of all pixels µ the standard deviation σ and the covariance σxy. The

constants c1 and c2 are dependent on the dynamic range of the input images.

Typically they are defined as c1 = (0.01 · L)2 and c1 = (0.03 · L)2 where L is the

dynamic range of the pixels (L = 255 for 8-bit and L = 1 when normalized) [113].

The typical metric of the normalised root mean square error (NRMSE) is just

the square root of the L2-norm. The two-dimensional Wasserstein distance (also

known as transportation theory in mathematics) calculates the cost function of

transporting the pixels in the predicted image to the location of the pixels in the

target image.

3.2.2 Hardware and Software

Training of the network, evaluation and predictions were run on two different sys-

tems. One workstation was equipped with 96 GB of RAM, an Intel Core i9-9820X,

3.30 GHz CPU and an NVIDIA GeForce RTX 3080 Ti with 12 GB of memory,

the other one with 16 GB of RAM, an Intel Core i7-8650U, 1.90 GHz CPU and an

NVIDIA GeForce RTX 3090 with 24 GB of memory.

Training of the network was performed with python 3.9.7 using PyTorch 1.10.0

and CUDA 11.3.
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3.2.3 Simulation of microtubules

Microtubules were simulated using a two dimensional worm like chain (wlc) model

in Python. The model includes a persistence length lp and a total length of the

microtubule. The persistence length is a measure of the stiffness of the generated

chain, the chain is rigid in short term but flexible over long length scales. Starting

from a vector in the xy-plane the following segment equals the previous segment

except for a rotation by a random angle Θ. This angle is drawn from a probability

distribution described with

p(Θ) =

√
lp
2π

exp

(
−lpΘ2

2

)
(3.3)

The sum of all vectors is resulting in the final chain.

One chain with length ltot is generated for an image with size of n2 pixel. The

chain is folded onto the the image using periodic boundary conditions, generating

multiple different strands of microtubules from one wlc chain. The density of the

individual lines can therefore be controlled with the length of the generated wlc

chain.

The single pixel wide structures are saved as the ground-truth data for the ma-

chine learning model and were increased in diameter for the generation of artificial

microscopy pictures. The microtubules were convolved with a 2D Gaussian peak

with FWHM = 4 px corresponding to the size of an effective STED-PSF. This

results in a representation of a perfect STED image without any background or

noise. To simulate different imaging intensities, photons were randomly drawn

from a Poisson distribution where the expected number of events λ(x, y) on the

structure is modified by a variable sampling rate.

Additionally, an imaging background was added by drawing again photons from

another Poisson distribution with a position independent mean λBG. STED in-

duced background close to the structure was accomplished by first a convolution

with another slightly larger PSF and then a random drawing of photons.

This way the signal from the microtubules and the background can be adjusted

independently to for example reach a target SNR and SBR.
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3.2.4 Ridge detection

Classic analysis of the data was achieved by ridge detection using the concept of

α-molecules based on the work from [114]. As a generator function the mexican

hat wavelet, the second derivative of a negative Gaussian, was chosen. The result-

ing system of α-molecules is then translated, scaled and rotated. The maximum

feature width was set to 7, the minimum to 2. Additional parameters resulted to:

scalesPerOctave = 2, number of orientations = 32, j0 = 1, β = 20. Only ridges

with positive contrast were considered as valid.

The thinned skeleton of the detected ridges was used for comparison.

3.2.5 Experimental data acquisition

Microtubules in living human fibroblast cells were stained with CP610-CTX at

different concentrations.

Images were acquired with the setup described in subsection 2.4.1. The pixel dwell

time was varied from 1 µs to 3 µs. Fast scans were performed in a bidirectional

scanning mode where the laser beam was scanning over the sample in both direc-

tions. Detection of fluorescence was possible without scanner flyback. The timing

adjustments necessary due to the response time of the galvo scanner system were

performed on fluorescent bead samples. The timing was set such that the resulting

image showed no distortions.
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3.3 Results

The neural network that was chosen in this work is an adaptation of the pix2pix

network which is fully described in subsection 3.2.1. This network architecture has

been used as a basis in similar use cases in previous work [87–90] and delivered

the most promising results during the initial trials.

The specific architecture design was modified to improve the training process. Dif-

ferent convolutional blocks were used (U-net vs. ResNet), different loss functions

(L1, L2, etc.) and their corresponding weights showed to have an influence on the

stability of the training. Classical hyperparameters that were changed include the

batch size, patch size, learning rate and epoch count.

To optimize the network, a validation metric needs to be determined, which guides

the selection of optimal parameters. Typical metrics for comparing two images,

such as L1, NRMSE, Wasserstein and mSSIM are described in subsection 3.2.1.

When comparing the different metrics on a single validation set, they all show a

similar behavior with a fast improvement of the parameter and a subsequent flat-

tening of the learning curve after roughly 100 training epochs. To select the metric

of choice for further network optimization, a subset of five images was randomly

selected at five different training epochs and judged by three humans to select the

best reconstructed image. The human selection was equivalent with choosing the

best images based on the mSSIM score. This score (as defined in Eq. 3.2) was

therefore used further on for upcoming validation calculations.

The training of the network was performed on 500 unique images. These images

were augmented as described in subsection 3.2.1. Calculation of the validation

metrics was also performed on a set of 500 images.

Due to the fact that the underlying biological structure served as the target of

the image reconstruction the validation metrics could not be calculated on ex-

perimentally obtained data. This could have been only possible if the target of

the reconstruction was a STED image itself. Therefore, the image data of micro-

tubules was simulated as described in subsection 3.2.3 for the following training

optimization steps.

In the beginning the influence of different pre-processing steps was investigated

on the outcome and stability of the neural network training. As demonstrated in
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Fig. 3.3 A, stretching the contrast of the input data results in an unstable training

which is fluctuating heavily. The overall trained final model is worse compared

to the unmodified data-set. Similarly, adaptive equalization, where the histogram

of the image is stretched in small patches of the image, leads to a worse training

result with a significant drop in the last few epochs. Normalizing the data as well

as averaging the data with an effective mean filter has little effect on the training

and is not resulting in an increased performance. The difference in patch size, edge

length of 512 px vs. 256 px, seems to have no influence on the training either.

Therefore, for further trainings no pre-processing of the data was applied and the

patch size was kept at (256 px)2.
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Figure 3.3: Effect of different parameters on the neural network train-
ing. A Effect of pre-processing of the data on the training performance. The
mSSIM is shown as a function of the training epoch. Different pre-processing
methods don’t seem to show a significant increase in the training performance. B
The training efficiency is tested with different L1-loss multipliers. An increase of
the loss multiplier above 600 results in a stabilization of the training, as long as
the value is kept below 5000. C A change in the GAN-loss away from the vanilla
GAN is not resulting in a better training performance. D Change of the learning
rate shows highest evaluation metric for a learning rate of 0.0002.

Next the weight of the L1-loss within the overall loss function of the GAN was in-
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vestigated and optimal parameters determined (see Fig. 3.3 B). Network training

with L1 multipliers of 100 (black), 200 (red) and 600 (blue) show a lot instabili-

ties in early epochs (< 300). Results with these multipliers can often show some

degradation of the trained structure, especially on challenging datasets. Usually

this manifests itself as hallucinated periodic structures, starting at the edges of the

images, creeping into the center with progressing epoch count. Loss multipliers of

1000 (green) and 2000 (purple) work to stabilize the training and to eliminate the

described unwanted effects by focusing more on the penalization of the deviation

of the proposed structure from the target. A higher loss multiplier of 5000 (brown)

leads to no training and a constant loss which is not increasing. For further train-

ings the L1 loss multiplier of λ = 1000 is chosen.

The constant evaluation metric of a loss multiplier of 5000 is due to the fact that

the model is predicting all images with identical gray pixel values. This delivers

higher evaluation metrics than false structure predictions, but this metric is stable

and not increasing since the model is trapped in a local minimum which requires

higher losses for its escape.

Similarly the GAN loss function can be exchanged. Without any GAN loss the

training is ineffective, which can be seen in Fig. 3.3 C in black. Changing to Wasser-

stein GAN (WGAN) makes the training very erratic and reduces the performance

substantially. Least squares GAN (LSGAN) results in a stable but slightly worse

training performance than the so called vanilla GAN, which is the loss function of

the original GAN publication. Therefore the vanilla GAN is kept for subsequent

network trainings.

The optimal learning rate has to be evaluated, together with the best epoch length.

With a low learning rate the model needs longer to converge, whereas a learning

rate that is too high might fail to find the optimum. Different starting learning

rates were tested. A learning rate of 0.005 is too high and leads to no learning at

all as can be seen in Fig. 3.3 C in blue. A learning rate of 0.0001 leads to some

initial success, but then collapses and results in an unfit model. A learning rate

of 0.001 is quite stable but performs worse than a model with a learning rate of

0.0002. Even for a higher epoch count up to 800 no real improvement is detectable

after ∼300 epochs.

Therefore, a training with an initial learning rate of 0.0002 and an epoch length

of 400 was chosen. This epoch length seemed to be a good number for reliably

achieving a training that already plateaued.
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It is worth to note that the change of the batch size had no effect on the training

outcome and could therefore be optimized for the individual GPU to maximize

training speed.

Real world STED images rarely exhibit the same SBR over different samples, due

to different labeling densities or related factors. Similarly, the density of the imaged

biological structures are highly variable even within a single sample. Especially

when changing the EPFS by increasing the STED beam intensity, the SBR as

well as the density of the structure get reduced. The previous optimization steps

presented so far were performed on a fixed SBR and a fixed density.

In order to estimate the effect of these two additional variables on the training and

subsequent reconstruction performance, the SBR of the training and validation

set was changed from a minimum SBR of 1.5 to a maximum of 30. As can be

seen in Fig. 3.4 A, the validation metric of mSSIM (color-scale) is increasing for

all trainings (x-axis) with a higher validation set SBR (y-axis). The training of a

model with input data exhibiting a lower SBR results also in a better performance

for predicting the structure on low SBR validation data. An overall increase in

performance for lower SBR validation datasets is visible when reducing the train-

ing SBR until reaching an SBR of 4. For lower SBR values during the training

the validation metric gets slightly worse. Interestingly, for a training SBR of 3

the structure prediction seems to perform worse on low SBR images compared to

higher SBR value of 4 training data as well as lower SBR = 2 input data.

Based on these results a training SBR of 4 seems optimal. However, in cases where

the expected data for structure prediction has an SBR lower than 3, a model that

was trained with an SBR of 2 might result in slightly better performances.

Similarly, the density of the structure occupying the imaged segment can be

changed. This is achieved by varying the length of the generated object chain

described in subsection 3.2.3. The density for a given STED FWHM can then be

described by ρ = l ·FWHMA−1 with l being the length of the chain and A the to-

tal size of the image (A = (512 px)2 and FWHM = 4 for simulated dataset). The

structure prediction performance of different densities is depicted in Fig. 3.4 B.

The SBR that was used for the generation of this dataset was fixed to 20 as it high

enough to single out the density only influence. The metrics for successful predic-

tion of the underlying structure gets worse for higher density validation datasets
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Figure 3.4: Effect of SBR and density of the data on training and pre-
diction. A Effect of the SBR of the input data on the reconstruction performance
on validation datasets with different SBR. The x-axis represents the SBR of the
training data, the y-axis shows the SBR of the validation data. B Effect of the
simulated chain length of the input data on the reconstruction performance on
validation datasets with different chain lengths. The variation of the worm-like
chain length corresponds to a variation in the density of the underlying structure.
The x-axis represents the occupation density of the chain in relation to the whole
image in percent of the training data, the y-axis shows the density of the validation
data. Contour lines correspond to the labeled values at the color scale bar.

for all trainings. Similarly, the metrics drop for all validation datasets for train-

ings with an increase in the length of the chain and corresponding density of the

structure. More dense structures are more difficult to reconstruct. It is interesting

however, that a training on less dense samples is resulting in a better performance

on more dense samples than models that were trained on equally high dense sam-

ples. This suggests, that during training of very dense samples the network is not

able to learn the important features of the underlying structure sufficiently. It

seems therefore that there is no benefit in training on dense samples when lower

density trainings can deliver a better final model.

As a peculiarity, structure prediction on validation data with ∼ 4.5 % occupancy

performs much worse than densities close-by, for models trained on high densities.

An example of the input data and the corresponding predicted structure is shown

in Fig. 3.5. The neural network is trained using data with an SBR of 2 and a

density of ∼ 6.9 %. The predicted structure in Fig. 3.5 B is closely matching the

actual simulated structure in Fig. 3.5 C that is used to generate the input data in

Fig. 3.5 A. In cases where the structure is not resolvable with the used FWHM of
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A simluated raw input B structure prediction C simulated target

Figure 3.5: Example of structure prediction on simulated noisy data. A
Simulated noisy data of microtubules with an SBR of 2 and a density of ∼ 6.9 %.
B The predicted underlying structure corresponding to the sample presented in
A. The Neural Network for the prediction was trained on input data with an SBR
of 2. C The simulated target data of the structure of the noisy data shown in A.
A region where two microtubules run very close is marked in yellow.

the microscope the prediction fails, because the information about the accurate lo-

cation of the microtubule can not be obtained from the data. This is visible in the

lower half where two microtubules run very close (closer than FWHM) side-by-side

before splitting again (marked in yellow in Fig. 3.5). Similar image reconstruction

performance is achieved on data which exhibits an SBR of 2 with high signal and

high background (see Fig. B.1).

Previous variations of the input training data, in terms of SBR and density, show

to have an effect on the performance of the final model. Before, we tested only

what influence the variation of one of these parameter has on the resulting trained

model. In practice however, applying STED power to increase the resolution in the

measurement decreases the fluorescence signal. Therefore, the SBR gets reduced

due to the smaller EPSF and additional bleaching of the fluorophores, as described

earlier. The cumulative influence of the variation of the SBR and density on the

training and validation was evaluated. The training is performed on 30 different

datasets spanning an SBR from 2 to 30 and sampling the density of the total space

covered with microtubules from 1.5 % to 30.5 %. Each model that was trained with

one of these datasets is evaluated on all of them.

The results show, that the overall best performing model was trained on an SBR

of 2 and an occupation density of 1.5 %. The best performance is defined as the

highest average evaluation score for all predictions on all of the different SBR and
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Increase STED power

Figure 3.6: Evaluation metrics on different validation data. The neural
network was trained with an SBR of 2 and a 1.5 % occupation density of the
structure. The evaluation was performed on different validation datasets with
different SBRs and densities. The mSSIM is plotted for all validations. The bold
black and purple line indicate the trajectory of varying the applied STED laser
power on two samples with a different starting occupation and fluorescent labeling
density. Contour lines correspond to the labeled values at the color scale bar.

density combinations. The evaluation metrics map, spanning a more densely sam-

pled SBR from 1 to 30, is shown in Fig. 3.6. The model provides almost uniform

high evaluation metrics for low densities up to 20 % for all SBR values above 2.

The training starts to break down for higher occupation densities. Unsurprisingly,

the model, even though trained on low SBR data, is able to predict structures for

high SBR almost equally well as models trained with high SBR data. For pre-

dictions on low SBR data the models trained with a higher SBR start to fail and

produce no or faulty data (see evaluation maps in Fig. B.2).

For input data approaching an SBR of 1 the predictions start to fail. However,

predictions from the network for low density data with an SBR of 1.5 are still not

completely faulty. The model predicts the majority of the structure with some

gaps. The visual inspection of the resulting images shows that the network is

marking very few pixels falsely as structure where no structure exists in the tar-

get data. The degradation of the evaluation metric seems to be mostly driven by

the under assignment of pixels to the structure that is present in the underlying

distribution.

The trend of decreasing accuracy for predictions on higher density validation data

is visible for all different training variations. The models deliver successively worse
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results with a higher density of the structure of interest either in the training or

validation data. The evaluation maps for all trained models are shown in Fig. B.2.

By varying the STED power used for imaging both the SBR as well as the occu-

pation density are both decreasing. An increase in STED power is increasing the

resolution by a decrease of the EPSF according to the square root law [73], effec-

tively reducing the density of the underlying target structure. At the same time

an increase in STED power is resulting in a decrease of the detectable fluorescent

signal due to the shrinking of the EPSF and an increased bleaching, resulting from

the high intensities in the doughnut crest. However, in this work the bleaching is

not considered as it is dependent on many additional factors, such as pixel dwell

time, scanning pattern, the specific dye used etc. [74, 115, 116].

Samples can vary in their initial SBR based on the initial fluorescence and in their

starting density corresponding to the structure of interest. Two trajectories of a

variation of the STED power are indicated in Fig. 3.6 by the bold black and purple

line. The density scales according to the square root law d(P ) = d0 ∗ 1
1+
√
PSTED

,

similarly the signal scales with s(P ) = s0 ∗ 1
1+PSTED

.

Walking along this line on the two dimensional plane spanning different SBRs and

densities of the structure, an optimum of the used STED power and required reso-

lution in terms of structure prediction performance can be found. Judging by the

strong degradation of performance for SBR < 1, the highest STED power is the

one that lowers the SBR to 2.

An example of the line through the metrics plane (pink line in Fig. 3.6) is shown

in Fig. 3.7. An increase in applied STED power is resulting in an improved reso-

lution, as shown in red. The increase in resolution is first leading to an increase of

the evaluation metrics until a point is reached where the SBR is dropping too low

and the performance of the model is rapidly decreasing. This point is the optimal

STED power that can be used with this sample. The individual STED power that

is needed can vary between different samples, depending on the starting fluorescent

signal and density of the structure in confocal, as described above.

After training and optimizing the model, it was tested on experimental acquired

data. For this purpose microtubules were stained in human fibroblasts with Abbe-

rior LIVE 610 and imaged with short dwell times of ∼ 3 µs and a STED power of

80 mW. The gated STED images show only very few counts per frame as can be
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Figure 3.7: Evaluation metrics as a function of the applied STED power.
The power is given in mW for an example case with a starting SBR of 20 in the
confocal mode. The increase in resolution is shown as the second x-axis on the
top. Two prediction examples are shown on the left and right corresponding to
two different mSSIM evaluation metrics. The corresponding data-points on the
graph are marked in red and blue.

A experimental raw input B structure prediction C ridge detection

Figure 3.8: Structure prediction on experimental data of microtubules.
Microtubules are stained in human fibroblasts with Abberior LIVE 610. Images
were acquired with a dwell time of 3 µs and a STED power of 80 mW. A Shows
one frame of the experimentally acquired STED images. B Shows the predicted
structure from the neural network. C As a comparison an analysis with a special
wavelet filter for ridge detection. The location of the enlarged sections shown in
the bottom left corner is marked with a dotted white outline.

seen in Fig. 3.8 A. The structure prediction of the neural network model is shown

in Fig. 3.8 B. The estimated position of the microtubules seems to be a very rea-

sonable estimate and very few false assignments are made. Since these cells were

imaged live there is no ground truth reference.

A classical ridge detection algorithm is used as a comparison (see Fig. 3.8 C). This

87



wavelet based algorithm is similarly able to find most of the microtubules but

performs worse at the boundaries of the localizations. Especially in dense areas

of the sample the neural network prediction outperforms the classical approach,

being able to find more of the individual microtubule strands.

88



3.4 Discussion

The goal of this chapter was to determine if previous knowledge about the un-

derlying biological structure in an acquired low contrast STED image can help in

image post-processing.

The results show that a reconstruction of the structure is successful using neural

networks, in this case an adaptation of the pix2pix architecture. The parameters

for training such a CNN based GAN can be optimized to achieve a stable learn-

ing with high image translation accuracy. In order to achieve the most accurate

prediction for all imaging conditions, it is best to use input training data with an

SBR of 2 and a low occupation density of 1.5 %.

The fact that training on a low SBR delivers the best overall performance is not

surprising, since a successfully trained model at this SBR is expected to filter the

comparatively large noise contribution more effectively than models trained on

high SBR data. The low density training data might be helping with a better ab-

straction of the underlying structure and therefore delivering the best performance

for all SBR values. It also seems that once the detection of the structure is success-

fully trained on low SBR data, the SBR of the data that is used for analysis has

little effect. The model does not seem to perform much better on high SBR data.

The number of trainable weights and kernels is apparently high enough to achieve

a good denoising for the structure reconstruction task. As a result, a higher signal

over background noise would have no additional benefit in real experiments.

This thesis demonstrates that the model can be applied to STED imaging. The

optimal STED power for a given sample is the power which decreases the SBR be-

low a value of 2. The model shows a good performance at much lower SBR values

than previously reported [89]. An increase in resolution is being compensated by

a reduction in prediction performance for values below an SBR of 2. The increase

in the applied imaging STED power until this point is always beneficial on dense

structures, since it reduces the total occupied space by the structure of interest,

increasing the model’s performance. On structures that are very sparse from the

start the benefit is reduced. The increase in STED power is going in tandem with

an increase in the information present in the imaged sample, as long as the SBR

is high enough.

This optimum in STED imaging power has to be evaluated on each sample individ-

ually, since it is highly dependent on the initial fluorescence present in the sample
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and the needed resolution improvement to distinguish the objects of interest.

The application of the neural network presented here can also be used to predict

the structure in experimentally acquired images. The network is able to identify

the structure based on very few counts from a STED image, showing overall very

few false predictions, outperforming a wavelet based ridge detection in dense areas.

Additionally, the neural network approach is much faster after the initial training

is done. Every prediction is done in a few seconds, where the ridge detection based

on a wavelet filtering is a multistep algorithm requiring much more time and com-

pute power for every single image.

Classic algorithms, like the ridge detection used here, usually need a careful se-

lection of different parameters for achieving the best result. In contrast, once the

neural network model is trained, there are no additional parameters that need to

be adjusted for its application. This makes the neural network approach much

easier for an untrained end user and large datasets.

For a better applicability, the simulations of microtubules in this work can be

further improved. So far, after the convolution of the structure with the STED

FWHM, a sample of photons is drawn from a Poisson distribution to simulate dif-

ferent signal levels. More realistically, a random sample of fluorophores attached

to the structure could be drawn first to simulate different in-homogeneous label-

ing densities present in real experimental data. Additionally, simulating a more

inhomogeneous background can make the data more realistic. Those adjustments

might further improve the application to real acquired data.

After the neural network training was optimized for one structure at different SBRs

and densities, the prediction can also be extended to other structures in a possible

next step. Currently, the network will predict line segments wherever it can and

is not able to generalize to other structures yet. The training of networks with

a mixture of structures can easily lead to a confusion of the prediction results.

Therefore, the optimal training strategy has to be evaluated. Simple encoding of

the target structure in an additional one hot vector, like in segmentation tasks for

pix2pix, represents the easiest but the least flexible solution [117, 118].

The network is already at this moment able to predict the structure better than

conventional approaches, as shown with the comparison to the ridge detection for
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microtubules. But with the ability to identify additional different shapes, a neural

network would be able to outperform any classical approach due to its flexibility

alone.

Similarly, continuing the previous work to include movies is a possible next step. In

a fast acquired movie the structure itself is not changing drastically from one frame

to the next. As a result, lower SBR images are enough to predict the movement of

the structure since only the difference to the previous frame has to be determined.

Additionally, some higher SBR images can be obtained as intermediates as a result

of a variable scanning speed. They can serve as anchors to help to improve the

predictions to correct slight misjudgments of the network made in-between them

(similar to [119, 120]). The optimal STED power in these scenarios has to be

determined as a function of the scanning speed and bleaching behavior.

Different networks are optimized for these purposes and already used for analyzing

movies. They include feature warping of detected objects to quickly predict the

movement of objects [121] or optical flow [122]. Similar principles can be applied

for movie structure predictions.

On a similar note, new neural network architectures are published almost on

a monthly basis. New architectures utilizing vision transformers [123] or slight

modifications to the classical CNN [111] provide better performance on reference

datasets such as ImageNet. If this improvement translates to better predictions for

input data, as presented in this work needs to be confirmed separately. Faster and

more accurate reconstructions can help to image increasingly difficult samples.
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4. Conclusion and outlook

This thesis demonstrates two different solutions to deal with loss of contrast in

super-resolution microscopy.

The fist part, described in chapter 2, presents the application of 2PA with the

subsequent use of different super-resolution microscopy techniques. The contrast

loss due to bleaching of a high intensity laser beam during image acquisition can

be mitigated by using 2PA. The 2PA with (far-)red dyes is presented in the visible

regime at a wavelength of 515 nm. As discussed in the chapter, the method is

superior to classical UV 1PA mainly due to its restriction in activation volume.

The method can be applied in a variety of biological samples but shows the biggest

contrast enhancement in comparison to 1PA in thick, axially extended specimens.

If the application of 2PA is not viable, the chapter 3 discusses the use of a cGAN

for low signal STED images. The cGAN network is shown to be able to recon-

struct the acquired structure, even on low SBR STED image data. The model

outperforms classical image reconstruction algorithms and is more universal in its

application. A recovery of the structure that is present in low SBR data can help

in movie acquisitions or other extended imaging sessions.

The two methods presented in this thesis approach the loss in contrast differently.

2PA tries to retain the signal during the acquisition process, whereas the applica-

tion of the cGAN network solves the contrast loss during image post-processing.

Particularly, since the utilization of the cGAN aided image reconstruction can be

done retroactively, it can additionally be applied on previously acquired datasets.

The findings described in this thesis show some means to counteract signal degra-

dation in microscopy. Better dyes and more sophisticated scanning methods to

boost the fluorescence signal might help to alleviate some of the problems in the

future. However, the presented methods remain to be of interest. Moreover, they

resolve a variety of other currently existing drawbacks of classical techniques. 2PA
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at 515 nm shows better transmission and less chromatic aberrations compared to

UV photoactivation, whereas the application of a neural network reduces the num-

ber of user-adjustable free parameters in image post-processing significantly.
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[40] M. Sonnleitner, G.J. Schütz, and Th. Schmidt. “Imaging individual molecules

by two-photon excitation”. In: Chemical Physics Letters 300.1 (1999), pp. 221–

226.

[41] Alberto Diaspro and Mauro Robello. “Two-photon excitation of fluores-

cence for three-dimensional optical imaging of biological structures”. In:

Journal of Photochemistry and Photobiology B: Biology 55.1 (2000), pp. 1–

8.

[42] Gael Moneron and Stefan W. Hell. “Two-photon excitation STED micros-

copy”. In: Opt. Express 17.17 (Aug. 2009), pp. 14567–14573.

[43] Srinivas Kantevari et al. “Two-color, two-photon uncaging of glutamate and

GABA”. In: Nature Methods 7.2 (2010), pp. 123–125.

[44] Graham C. R. Ellis-Davies. “Two-Photon Uncaging of Glutamate”. In:

Frontiers in Synaptic Neuroscience 10 (2019).

98



[45] Dan Oron et al. “Two-photon optogenetics”. In: Optogenetics: Tools for

Controlling and Monitoring Neuronal Activity. Ed. by Thomas Knöpfel and
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[74] Fabian Göttfert et al. “Strong signal increase in STED fluorescence micros-

copy by imaging regions of subdiffraction extent”. In: Proceedings of the

National Academy of Sciences 114.9 (2017), pp. 2125–2130.

[75] Zhenjia Wang et al. “Size and dynamics of caveolae studied using nanopar-

ticles in living endothelial cells”. eng. In: ACS nano 3.19919048 (Dec. 2009),

pp. 4110–4116.

[76] Mikhail Drobizhev et al. “Multiphoton Photochemistry of Red Fluorescent

Proteins in Solution and Live Cells”. In: J. Phys. Chem. B 118.31 (Aug.

2014), pp. 9167–9179.

[77] P. S. Dittrich and P. Schwille. “Photobleaching and stabilization of. fluo-

rophores used for single-molecule analysis. with one- and two-photon exci-

tation”. In: Applied Physics B 73.8 (2001), pp. 829–837.

[78] Travis J. Gould et al. “Adaptive optics enables 3D STED microscopy in

aberrating specimens”. In: Opt. Express 20.19 (Sept. 2012), pp. 20998–

21009.

[79] Brian R. Patton et al. “Three-dimensional STED microscopy of aberrat-

ing tissue using dual adaptive optics”. In: Opt. Express 24.8 (Apr. 2016),

pp. 8862–8876.
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A. Supplementary figures for two-

photon activation
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Figure A.1: Structure of the dyes used with a representative spectrum.
A Structure of the three different dyes, ONB-2SiR, HCage 620 and pPA-SiR, used
in this thesis before (up) and after activation (bottom). The classic activation with
UV is depicted here. B A for the three dyes representative absorption spectrum
of ONB-2SiR. Dark grey shows the spectrum of the caged compound. Light grey
shows the absorption of the activated fluorophore. The emission spectrum of ONB-
2SiR is shown in red. The typical 1PA wavelength, the 2PA wavelength used in
this thesis as well as the excitation and STED wavelengths are highlighted with
the colored bars.
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Figure A.2: 2D STED comparison after 1PA and 2PA for HCage 620
and pPA-SiR. STED of U2OS cells immunostained with A HCage 620 and B
pPA-SiR. The STED image after 2PA shows better contrast compared to the STED
image acquired after 1PA. Scale bars 10 µm.
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Figure A.3: Line profile of five additional microtubules from Fig. 2.6.
Line profiles measured on the sample shown in Fig. 2.6 A at five additional locations
to the one presented in Fig. 2.6 C.
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Figure A.4: Total 2PA obtainable fluorescence signal for different aver-
age activation laser power. The total integrated fluorescence signal per pixel
obtained from the bleaching measurements in subsection 2.4.4 is depicted as a
function of the average 2PA laser power that was used. Measurements are shown
for all three dyes A ONB-2SiR, B HCage 620 and C pPA-SiR. All show a reduc-
tion of the total signal with an increase of the laser power, indicating a higher
contribution of bleaching.
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B. Supplementary figures for low

count STED

A simluated raw input B structure prediction C simulated target

Figure B.1: Example of structure prediction on simulated noisy data. A
Simulated noisy data of microtubules with an SBR of 2 and a density of ∼ 6.9 %.
B The predicted underlying structure corresponding to the sample presented in
A. The Neural Network for the prediction was trained on input data with an SBR
of 2. C The simulated target data of the structure of the noisy data shown in A.
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Figure B.2: Evaluation metrics for different SNRs and densities. The
training of the neural network was performed with input data varying in SNR
and density of the structure of interest. For each combination of parameters the
validation is performed on itself and the remaining datasets. The scale bar for
the validation metric, the mSSIM, is the same for all graphs. All rows of graphs
had the same training SNR as indicated above each row. Above every graph the
corresponding training density is shown.
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