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Abstract
A genetic association study is a popular method to analyse the connection of genomic
factors with disorders or disease-related phenotypes. There are various study types in-
cluding genome-wide association studies (GWASs) and pathway analyses. In the simplest
case, the studied phenotype is either a case-control status or a quantitative trait, e.g., a
cognitive test score, with one measurement per individual. This thesis focuses on GWASs
and pathway analyses for longitudinal phenotypes in which multiple correlated pheno-
type measurements per individual are available. The focal phenotypes of this thesis are a
group of essential cognitive functions in the longitudinal PsyCourse Study, the executive
functions (EFs).

Longitudinal GWAS requires special statistical methods, in which hundreds of thou-
sands of single nucleotide polymorphisms (SNPs) are tested for association with a longi-
tudinal phenotype. Linear mixed models (LMMs) are one popular option to model the
correlation structure of the multiple assessments with random effects. LMMs can also
handle missing measurements, a frequently occurring problem with longitudinal data.
Moreover, LMMs are connected with kernel machine regression (KMR) analyses, which
are based on kernel methods. We can apply KMR to perform a pathway analysis, in
which a whole pathway (or gene set) is tested for association. These kernel methods can
handle high-dimensional genetic data by transforming the data into a lower-dimensional
similarity matrix. This similarity matrix or kernel matrix describes the genetic similari-
ties of every pair of study subjects and can be modelled very flexibly. Thus, we are able
to integrate additional biological aspects into the kernel, e.g. network information.

This thesis begins with conducting a longitudinal GWAS, in which we aim to identify
SNPs influencing the short-term course of EFs. We apply LMMs to study the course over
time of EFs. We use data from the PsyCourse Study, in which EFs are assessed at multiple
measurement points with cognitive tests, e.g., the Trail Making Test, part B (TMT-B).
Nine highly correlated genome-wide significant SNPs are identified as being associated
with the change over time in TMT-B. This result is replicated in an independent sample.

The main objective of this thesis is the extension of KMR to long-KMR to enable the
performance of a longitudinal pathway analysis. We include additional random effects to
KMR to create long-KMR. Long-KMR is further able to integrate network information
by utilising a network-based kernel and thus can be applied as a topology-based path-
way analysis. Moreover, long-KMR is able to model a pathway as a main genetic and/or
genetic-time-interaction effect, either of which can be tested for association. The genetic-
time-interaction effect allows studying the association of a pathway with the time course
of a phenotype. Overall, long-KMR demonstrates a higher power compared to another
longitudinal KMR method previously developed. The power increases further when ap-
plying the network kernel to include biological information. Long-KMR is available as an
R package kalpra.
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1. Introduction
During the last two decades, a large number of genetic association studies have been
performed analysing the genetic background of Mendelian disorders and complex diseases.
These studies test whether a phenotype of interest, e.g. a case-control status or a normally
distributed trait is correlated with a genetic variation [48]. There are various approaches
to performing genetic association studies, including the popular genome-wide association
study (GWAS) [10, 48, 69, 70] and the newer pathway analysis [30, 38, 72].
In this cumulative thesis, the focus lies on these two types of genetic association study
in the context of longitudinal data on unrelated individuals. These comprise multiple
measurements for each individual. Here, data from the longitudinal PsyCourse Study [8]
are applied to perform longitudinal genetic association studies. The central phenotypes
are a group of higher-level cognitive abilities [27], the executive functions (EFs). EFs are
essential to accomplishing daily-life tasks by controlling and organising mental processes
for both mentally ill and healthy individuals. We study the longitudinal course of these
EFs and analyse their genetic background.

1.1. The area of genome-wide association studies

In 2005, the first GWAS was performed with only 96 individuals [32]. Since then thou-
sands more GWASs with larger sample sizes have been and are still conducted. The
GWAS Catalog [9] is a publicly available catalogue (https://www.ebi.ac.uk/gwas/)
containing information and results from 6130 publications (date retrieved: 29 November
2022).

In a GWAS, hundreds of thousands of single genetic markers are tested for association
with a phenotype of interest [5, 69], e.g. binary case-control status or a normally dis-
tributed phenotype. Hereby, a genetic marker is defined as statistically associated with a
phenotype when a specific variant of a genetic marker occurs more often than expected
by chance alone in connection with the phenotype [48, 69, 79]. Graphically, the GWAS
results can be described as a Manhattan plot (see Fig. 1). Each individual genetic marker
is represented as a dot and is displayed according to its genomic location (chromosomes
on x-axis) against its −log10(p-value). In Fig. 1, the red horizontal line represents the
genome-wide significance level 5 × 10−8. This level is derived from the Bonferroni cor-
rection [69]. This multiple testing correction method needs to be performed because of
the large number of statistical tests conducted. In the Bonferroni correction, the global
significance level α is divided by the number of independent association tests executed
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[69]. Thus for a GWAS, we obtain α=5%
one million = 5 × 10−8 [79, p.374]. A SNP with a p-

value< 5× 10−8 is denoted as genome-wide significant. In particular, we aim to detect a
peak consisting of a number of genome-wide significant genetic markers as demonstrated
by Fig. 1 on chromosome 7.

Figure 1. Manhattan plot of simulated results of a genome-wide association study. The
red line represents the genome-wide significance level 5× 10−8.

As genetic marker type, we focus on single nucleotide polymorphisms (SNPs). A SNP
is a single base pair with a known position in the DNA [7]. In humans, a SNP is a biallelic
marker as it possesses, in the majority of the cases only two different variants [7]. These
variants are termed alleles. The allele that is more frequent in the population is denoted
as major allele and the allele with the lower frequency as minor allele. The frequency of a
minor allele is referred to as minor allele frequency or MAF. By genotyping each individ-
ual, both alleles of the individual SNP are determined. Additionally, we often perform a
genotype imputation in a GWAS in which the genotypes of SNPs not directly determined
are estimated [10, 54, 69]. This leads to an increased number of available SNPs and to a
power boost [54]. A SNP is most commonly coded as 0, 1, or 2, counting the number of
minor alleles present. This coding corresponds to the additive genetic model [10, 13] for
which it is assumed that the (disease) risk increases in a linear fashion [10]. The additive
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genetic model is the standard model in a GWAS, as it possesses acceptable power to
detect additive and dominant genetic effects [10, 13].

There are different statistical tests to study an individual SNP for association. In a
case-control study with binary phenotype, a classical test of independence, the χ2-test
[10, 13, 79], or a more flexible logistic regression model [10, 13] can be applied. In this
thesis, the focus lies on normally distributed phenotypes. Here, we can employ a linear
regression model and its extensions, such as a linear mixed model (LMM). In a linear
regression model, the SNP is included as independent variable to test the null hypothesis
that the mean of the phenotype is equal for all genotype groups [10]. The regression model
can also be extended by including additional covariates, for example, gender or age. This
expansion allows adjustment for potential influences on the studied phenotype. One of
the greater problems in a population-based association study is population stratification.
Here, differences in the allele frequencies are based on systematic ancestry distinctions
[10, 35, 59], such as population substructures. The most frequent approach to adjust
for population stratification is principal component analysis (PCA) [59], in which the
principal components (PCs) of the genotype data across the genome are determined. The
PCs are the "axes of genetic variation" [79, p.297-298] and a number of top PCs explaining
the most variability [59] are included as covariates in the regression model.
The fitted regression model in a GWAS can then be controlled by creating a quantile-
quantile (Q-Q) plot. For a Q-Q-plot, the observed test statistics are sorted in ascending
order and plotted against the values expected under the null hypothesis [79, p.296]. We
can also compute a genomic inflation factor λ, which is the ratio of the empirical median
to the median of χ2

1 (=0.4549) [35, 79]. This so-called genomic control [17] helps identify
any inflation of the test statistic, which can be caused by population stratification or
confounders for example [35]. A λ > 1 (in particular λ > 1.2) [13, 35] indicates an
inflation and thus would require model adjustment.

1.2. The world of pathway analysis

In spite of the various findings by GWASs [70], the detected SNPs only explain a small
proportion of the genetic variation of complex diseases [51]. This phenomenon is denoted
as the problem of missing heritability [51, 53]. One approach to explain the missing heri-
tability is based on the view that complex diseases most commonly do not emerge because
of an individual SNP but result from an interplay of various SNPs functionally related
to specific biological systems. Thus, we consider pathways or gene sets now. The terms
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pathway and gene set are often utilised interchangeably; there are however differences. A
gene set is a group of genes defined in respect to common biological features [30], e.g. tis-
sue expression or functionality. A pathway is a group of genes that additionally includes
details on how single genes interact with each other [30].
A pathway or gene-set analysis tests a pathway or a gene set for association with a trait of
interest [16, 38, 72, 73]. For example, a pathway analysis can be performed as a follow-up
study after a GWAS to understand more of the complex underlying biological aspects
[16, 43, 73]. An initial approach was GSEA, gene-set enrichment analysis [71]. GSEA
utilises as input data GWAS summary statistics containing effect sizes, p-values, and test
statistics for the tested SNPs. Since then, many additional pathway analysis tools have
been developed: for example, MAGMA [15], VEGAS2Pathway [56], or SKAT [75], and
SKAT-O [47]. SKAT and SKAT-O are part of a specific group of pathway analyses ap-
plying kernel methods. Kernel methods belong to a class of machine learning algorithms
[31], which are often utilised when analysing high-dimensional data such as genomic data.
Particularly for high-dimensional genomic data, traditional regression models reach their
limits and more sophisticated methods are required [63]. This thesis sets the focus on a
kernel-based pathway analysis, kernel machine regression (KMR) analysis.

Mathematically, a pathway can be regarded as a graph G with G = (V,E) in which V
is a set of nodes and E a set of edges [19, p.2]. The nodes of V represent the genes of the
pathway and the edges outline the gene interactions in which an edge links two nodes
when they interact with each other. These connections may be undirected, e.g. "gene A
interacts with gene B" or directed, e.g. "gene A activates gene B". The type of information
that can be integrated in an analysis depends on the chosen pathway database. A large
number of different pathway databases are available: KEGG [41], MSigDB [49], Reac-
tome [40], and Pathway Commons [60], to name but a few. Pathguide [2] provides a total
overview of all available databases (http://www.pathguide.org/), which holds informa-
tion on 702 biological pathway-related repositories (date retrieved: 11 December 2022).
A number of databases solely contain information on gene sets, for example MSigDB;
other databases, such as KEGG or Reactome, also entail information on interactions.
For example, Reactome has a pathway browser displaying graphically the connections
between the various pathways (https://reactome.org/PathwayBrowser/). The focus
in this thesis lies on pathways, which allow including gene interaction information in the
pathway analysis. Thus, a so-called topology-based pathway analysis is created.

There are several options to perform a pathway analysis, reflected by the huge number
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of available pathway analysis tools (for an overview, see de Leeuw et al. [16]). Here, an
example process is outlined inspired by the pathway analysis performed in this thesis. A
pathway is tested under the self-contained null hypothesis [16, 38, 73], which states that
the pathway tested is not associated with the trait of interest [38, 73].
In the performed pathway analysis, raw genotype data in the form of SNPs encoded as
0, 1, 2 serve as input data. The individual SNPs are assigned to gene(s) of the tested
pathway. Most frequently a SNP is assigned to a gene if it lies directly within a gene
or in a specified region around the gene [73]. Then, a statistical association test can be
performed. Different options are available, for example, the Kolmogorov-Smirnov test
[71], linear regression models with an F-test [16], or a variance component test [47, 75] to
name a number. In the KMR applied, a variance component test is conducted (refer to
chapter 2 for details). In contrast to a GWAS, the multiple testing is largely reduced, but
still required, as pathways instead of hundreds of thousands of SNPs are tested. Here, we
can utilise either the Bonferroni approach or a less conservative approach, for example
Benjamini-Hochberg [4]. The latter method corrects for the false discovery rate (FDR)
instead of the family-wise error rate (FWER). But we can also apply a more complex
approach [36, 45], which considers potential dependency structures between pathways
based on overlapping SNPs or genes.

1.3. Longitudinal data, their properties, and analysis methods

In a longitudinal study, individuals are assessed repeatedly at multiple times, also denoted
as measurement points, over a specific period of time [3, 11, 20]. This key characteristic
allows direct analysis of the change over time [20] and/or the relationship between risk
factors and the development of disorders [11]. We are also able to distinguish between
the changes within and between the individuals of the study sample [20]. Various longi-
tudinal studies analyse these aspects [12, 28, 42, 52, 66]. Here, it must be considered that
the multiple measurements within the study subjects are correlated [3, 20], preventing
the use of common analysis methods. For example, the often applied simple regression
model assumes independence between the individual observations [3] and thus cannot
be utilised without modifications. Furthermore, longitudinal studies have higher financial
and temporal costs [11].

In the special case of only two measurement points per individual in a longitudinal
study pre/post-analyses can be applied, including, for example, the change analysis and
the ANCOVA model [3]. For the often applied change analysis, the difference between the
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first and second measurement point is computed and regressed against covariates utilising
a simple regression model. For the ANCOVA model, the second measurement is included
as covariate in a simple regression model [3].
For longitudinal data, one can also apply simple approaches in which the measurements
are summarised in one single summary measurement. This summary value can be tested
with a cross-sectional approach [55], e.g. a linear regression model. Different summary
measurements can be utilised, such as the mean or median of the measurements. However,
all of these simple approaches do not use the full potential of longitudinal data. More
sophisticated methods have also been developed, including the popular linear mixed model
(LMM) [58] and generalized estimating equations (GEE) [3]. In GEE, two models are
specified: a regression model for the main response and a second model for the within-
subject correlation [3]. However, LMMs play a central role in this thesis, owing to their
diverse applicability and their connection to other methods (please refer to chapter 2.2 for
more details). In a LMM, so-called random effects are added to a simple linear regression
model correcting for the dependence structure of the multiple measurements [23, 58]. A
LMM contains the basic regression coefficients denoted as fixed effects, which model the
population-average effect. The random effects included in the LMM describe the subject-
specific effect. For example, a random effect can be a random intercept enabling each
individual to have their own starting point. Further, we can integrate a random slope
modelling the individual course for each study subject. We assume that these random
effects follow approximately a normal distribution with a specific mean and variance.
In the following, the notation of a LMM based on [23, 58] is introduced. Thus, let us
assume that yi is the vector containing a quantitative phenotype for an individual i with
i = 1, . . . , n (n sample size) and m measurement points. The LMM is given as follows:

yi = Xiβ + Zibi + εi, (1)

where β is the vector of the regression coefficients (fixed effects), Xi and Zi are the design
matrices for the fixed and random effects, respectively. The random effect vector is bi
with bi ∼ N (0, Di), where the mean is zero and covariance-variance matrix of individual
i is Di. The random error εi follows a N (0, Ri) with Ri being the covariance-variance
matrix. We assume that εi and bi are independent.

A great caveat of longitudinal studies is missing data. Individuals can drop out or
miss single measurement points leading to biased results when not handled appropriately
[3, 11, 20]. One possible approach is imputation filling in the missing assessments. A
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variety of imputation approaches are available [21, 39]; for example, multiple imputation
in which we perform the imputation step multiple times obtaining multiple estimates for
one missing value. However, some analysis methods, such as LMM can handle incomplete
longitudinal data as long as a specific missing mechanism can be assumed [58].
Overall, three underlying missing mechanisms [3, 58] have been distinguished: the Missing
Completely at Random (MCAR), the Missing at Random (MAR), and the Missing Not at
Random (MNAR) mechanisms. For the first, the data are assumed to be randomly missing
independent of any observed or unobserved measurements. Under a MAR mechanism, the
data missing depend on other measurements observed in the study and not on the absent
assessment itself [3, 58]. When the data are missing not at random, the measurements
depend on non-observed assessments and potentially on observed data. For MNAR, the
reason for the missing values is unknown and can lead to biased results. LMM assumes
that the missing data are either MCAR or MAR [58].

1.4. Outline

This cumulative thesis aims to perform longitudinal genetic association studies on the
single marker and pathway level. To correct for the dependence structure of longitudinal
data, LMMs and their connections to KMR analysis are employed. The KMR analysis
is extended to conduct a longitudinal pathway analysis, which can simultaneously inte-
grate network information. Furthermore, this extended version is capable of modelling
and studying both main genetic and genetic-time-interaction effects. The latter are of-
ten of interest when studying longitudinal data. The focal phenotypes in this thesis are
executive functions. These specific cognitive functions are assessed in the longitudinal
PsyCourse Study [8] and are investigated in the analyses. To perform the longitudinal
pathway analysis, an R package kalpra was developed.

This thesis is structured as follows: Chapter 1 introduces the basis of genetic association
studies and longitudinal data with the focus on GWAS and pathway analyses. Chapter
2 presents kernel methods as well as their application as pathway analysis in the form of
KMR. Furthermore, the extension of KMR to long-KMR analysing longitudinal data and
its variations are explained. Chapter 3 describes the PsyCourse Study, the data imple-
mented in the analyses, and as real-world data example. Chapter 4 provides summaries
of the peer-reviewed publications and represents the main body of this thesis given its
cumulative nature. Finally, chapter 5 discusses the advantages and disadvantages of the
presented method.
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2. The diverse facets of kernel methods
This section introduces kernel methods and their application in regression models as ker-
nel machine regression (KMR) analysis. We will explain the connection between KMR
and linear mixed models and present the variance component test utilised to test a path-
way for association. Next, long-KMR is described, which is the expansion of KMR to
analysing longitudinal data. Lastly, variations of long-KMR are specified including the
genetic-time-interaction model and the kernel principal component analysis (KPCA).

2.1. Kernel methods and kernel machine regression

Kernel methods are machine learning algorithms and are used in a variety of research
areas and analysis problems, such as clustering, correlation or dimension reduction [31].
The basic idea of kernel methods states that relationships between data points are easier
modelled if they are transformed from their original representation into a higher dimen-
sional feature space [31]. The data points are transformed via a user-specified feature map
[31] converting the data into a similarity or dissimilarity matrix. This matrix contains
quantitative values describing the similarity/dissimilarity between individuals and is also
denoted as kernel matrix.
When we consider a genetic association study then a large number of SNPs for each indi-
vidual are specified. These SNPs are transformed into a similarity measure assessing the
genetic resemblance between every pair of individuals in the study sample [31, 62, 63].
The similarity matrix or kernel matrix contains the similarity values. This kernel matrix
can be analysed in a regression framework creating a kernel machine regression analysis.

A KMR is a semi-parametric regression analysis, in which we regress the phenotype
of interest onto the kernel matrix [31]. Subsequently, we assume that the genomic data
analysed are given in form of SNPs for which the genotypes for each individual in the
study sample are determined. The SNPs are coded as 0,1, or 2, and we have no missing
genotypes. This information is presented in form of an n× s genotype matrix G with n
being the sample size and s the number of SNPs available. Let us assume that yi is a
cross-sectional normally distributed phenotype for individual i with i = 1, . . . , n. Then,
the basic KMR model is as follows:

yi = xTi β + h(gi) + εi, (2)

where β is a p×1 vector of regression coefficients, xTi is the transposed covariate vector and
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gi is an s×1 vector containing the genetic information (SNPs) of individual i. The random
error is εi ∼ N (0, σ2

ε ). The covariates are modelled parametrically and gi is modelled with
the unknown non-parametric function h ∈ Hk withHk being a reproducing kernel Hilbert
space (RKHS). A RKHS is a vector space with an inner product 〈·, ·〉Hk

: Hk ×Hk → R,
which is complete with respect to the norm induced by the inner product [31]. The
computation of h can be very complex and computationally intensive, thus we employ
that h ∈ Hk and approximate h by a feature map ϕ. We utilise the basic idea of the kernel
method and transform the genotype data to a higher dimensional feature space in which
{ϕk} are basis functions. Thus, we are able to describe h(gi) as a linear combination of
the basis functions:

h(gi) =
q∑
l=1

ϕl(gi)ωl,

where i = 1, . . . , n and ωl ∈ R with (l = 1, . . . , q) [31]. This is also denoted as the
primal representation. However, according to Mercer’s theorem [31] we can define a kernel
function k for any pair of individuals i and j as

k(gi, gj) = 〈ϕ(gi), ϕ(gj)〉Hk
,

where 〈·, ·〉Hk
is the inner product of the RKHS. The RKHS is uniquely determined by

this positive semi-definite kernel function k and the associated n×n kernel matrix (Gram
matrix). The kernel matrix is defined as K := {k(gi, gj)}ni,j=1 in which the elements of K
are the similarity measurements computed with k. By applying the kernel function, any
h(g) ∈ Hk can be expressed as a linear combination:

h(g) =
n∑
i=1

αik(gi, g),

with αi being constants [50]. This formulation is called the dual representation of function
h in kernel methods. As h ∈ Hk with Hk being a RKHS the reproducing property of Hk

ensures the existence of the primal and dual representation [31]. Any kernel function k
can be applied as long as the function and the associated kernel matrix K is positive
semi-definite, i.e. cTKc ≥ 0,∀c 6= 0 with c ∈ Rn.

Because of this flexibility of the kernel function a number of different kernels exist [63].
One of the most popular kernels is the linear kernel, which implies an additive independent
effect between SNPs. For two individuals i and j whose genotypes are represented by gi
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and gj, respectively, we obtain the linear kernel as follows:

k(gi, gj) = gTi · gj. (3)

Another often utilised kernel is the quadratic kernel [76], which is a polynomial kernel
putting a greater weight on already high entries in the genotype matrix. We compute K
for two individuals i and j as follows:

k(gi, gj) = (gTi · gj + 1)2. (4)

Additionally, we can select a more complex kernel integrating additional information, e.g.
network information. A basic way to define new kernel matrices is described by Schaid
[63]. The network-based kernel defined by Freytag et al. [24] includes topology information
of a pathway in form of an adjacency matrix. When a pathway is portrayed as a graph
the adjacency matrix N is a quadratic matrix with nuv = 1, if the gene u and v interact
with each other or zero otherwise. The network kernel is defined as follows:

K = GANATGT , (5)

where G is the genotype matrix, N represents the adjacency matrix, and A describes as
annotation matrix the assignment of each individual SNP s ∈ G to a gene of the pathway.
The elements of A are either asu = 1 if SNP s is mapped to gene u or zero otherwise.
The annotation matrix can also be size-adjusted with respect to the different gene sizes
by dividing asu by the square root of the total number of SNPs mapped to gene u [24].
The network kernel with the size-adjusted annotation matrix is denoted as size-adjusted
network kernel [24].

2.2. Connection between kernel machine regression and linear mixed
models

Next, the connection between a KMR and a LMM [31, 50] is described. We start with
the estimation of the parameters β and h of model 2, the KMR. Based on Ge et al. [31],
we minimize the scaled penalized likelihood function:

J (β, h) = 1
2

n∑
i=1

(yi − xTi β − h(gi))2

︸ ︷︷ ︸
loss function

+ λ

2 ||h||
2
Hk︸ ︷︷ ︸

penalty term

,
(6)
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where || · ||Hk
is the norm induced by the inner product on the RKHS with h ∈ Hk

and λ is a tuning parameter. The tuning parameter controls the balance of the model
complexity and the model fit [31, 50]. As we focus on quantitative data, the selected loss
function is the squared error loss function and the squared norm is chosen as penalty.
The Representer Theorem [31, 50] specifies that the general solution for h is:

h(·) =
n∑
j=1

αjk(·, gj), (7)

where αj ∈ R [50]. By substituting equation 7 into equation 6, we receive:

J (β, α) = 1
2

n∑
i=1

(yi − xTi β −
n∑
j=1

αjk(gi, gj))2 + ||
n∑
j=1

αjk(·, gj)||2Hk

= 1
2(y −Xβ −Kα)T (y −Xβ −Kα) + λ

2α
TKα

with K being the associated kernel matrix, X the design matrix and y the phenotype
vector of model 2 in matrix notation. In order to compute the penalty term, we apply the
matrix notation and the reproducing property of the RKHS. We receive the estimates of
β and h by setting the derivatives of J(β, α) with respect to α and β to zero. We obtain
the following estimates according to Ge et al. [31]:

β̂ = [XT (K + λI)−1X]−1XT (K + λI)−1y

ĥ = K(K + λI)−1(y −Xβ̂),

where I is the identity matrix.

Next, we consider a LMM for a normally distributed phenotype vector y for n individ-
uals in matrix notation:

y = Xβ + h+ ε,

where X is an n×p covariate matrix, β is a p×1 fixed effect vector, h is an n×1 random
vector that follows a N (0, τK) in which K is an n × n kernel matrix. We assume that
the random error ε follows a N (0, σ2

ε I) and that h is independent of ε. To connect KMR
and LMM, τ can be expressed as a function of the tuning parameter λ and the variance
of the residuals σ2

ε with τ = λ−1σ2
ε [62]. When we look at the marginal distribution of y,

which follows a N (Xβ,Σ = τK+σ2
ε I) and apply τ = λ−1σ2

ε to Σ, we get Σ = τ(λI+K).
By maximizing the mixed log likelihood function [23, 62] and taking the first derivative,
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we receive the best linear unbiased estimator (BLUE) β̂LMM and the best linear unbiased
predictor (BLUP) ĥLMM for the LMM:

β̂LMM = (XTΣ−1X)−1XTΣ−1y

ĥLMM = K(K + λI)−1(y −Xβ̂).

When we consider that Σ = τ(λI +K), we see that the BLUE β̂LMM and BLUP ĥLMM

obtained for the LMM are equivalent to the estimates β̂ and ĥ of the KMR. This connec-
tion enables a common framework with respect to model fitting and statistical inference
for LMM and KMR.

2.3. Pathway analysis with a variance component test

To perform an association study, especially to test a pathway for association with a
phenotype of interest a statistical test is required. Thus Liu et al. [50] proposed a score
test to perform a variance component test. In this pathway analysis, the pathway is
given as genotype data G and modelled with the non-parametric function h. To test the
pathway for association, we formulate the null hypothesis H0 as h(·) = 0, which is equal
to H0 : τ = 0 owing to the connection of KMR and LMM. Subsequently, we consider
model 2 as LMM in matrix notation. Let us assume that y is a cross-sectional normally
distributed phenotype vector for n individuals. Then, the LMM is as follows:

y = Xβ + h+ ε, (8)

where β is the p×1 vector of the regression coefficients, X is the n×p design matrix, h ∼
N (0, τK) with K being the kernel matrix and ε ∼ N (0, σ2

ε I). The marginal distribution
of y is N (Xβ,Σ = τK + σ2

ε I), which is used to receive the score test statistic Qcross.
To determine the score test statistic for the variance component test, we consider the
restricted log likelihood function to avoid biased results. As we will explain the single
deduction steps for the longitudinal model the details are skipped here (see Ge et al. [31]
and Liu et al. [50] for details). The final score test statistic for the cross-sectional test is:

Qcross = 1
2σ2

ε

(y −Xβ̂)TK(y −Xβ̂), (9)

where β̂ = (XTΣ−1X)−1XTΣ−1y is the maximum likelihood estimator for the fixed re-
gression coefficients [31]. The score statistic Qcross is a quadratic form and follows a
mixture of χ2 distributions, particularly Qcross = ∑L

l=1 λlχ
2
l , where λl are eigenvalues of
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1
2KP0 with P0 = I −X(XTX)−1XT . We can choose between different methods to obtain
the p-value for the test statistic. Most commonly, either Davies’ method [14] or the Sat-
terthwaite approximation [61] are applied. For the latter a moment-matching method is
utilised (please refer to Ge et al. [31] and Liu et al. [50] for details). This approximation
can lead to an inflated type I error rate, especially for small significance levels whereas
Davies’ method requires more time to compute.

2.4. Expansion to longitudinal kernel machine regression

After introducing the basic requirements, we describe now the extension of KMR to long-
KMR. Long-KMR enables the analysis of longitudinal data. To correct for the correlation
structure of the multiple measurements of each individual we include additional random
effects in the KMR model on top of the non-parametric function h. As Yan et al. [77],
we exploit the estimation equivalence between LMMs and KMR. In the following, we
assume for individual i with i = 1, . . . , n (n sample size) that yi is a normally distributed
phenotype with m measurements (complete data). The long-KMR model for individual
i is as follows:

yi = Xiβ + h(gi) + Zibi + εi, (10)

where β is a p× 1 coefficients vector, bi a q × 1 random effect vector with bi ∼ N (0, Di)
in which Di is the covariance-variance matrix. Further, Xi (m× p matrix) and Zi (m× q
matrix) are design matrices of the fixed and the random effects, respectively. The genetic
vector gi of individual i is modelled with a non-parametric function h for which we assume
that h ∼ N (0, τK) with K being the n× n kernel matrix. The random error εi follows a
normal distribution with mean zero and covariance-variance matrix Ri (N (0, Ri)). It is
assumed that bi and εi are uncorrelated to avoid model overfitting.

In order to determine the altered score test statistic of long-KMR, we use the LMM
form of the long-KMR in matrix notation. For the phenotype vector y the model is:

y = Xβ + h+ Zb+ ε, (11)

where b ∼ N (0, D) with D = diag(D1, . . . , Dn), ε ∼ N (0, R) with R = diag(R1, . . . , Rn)
and the design matrices are X = (X1, . . . , Xn)T and Z = diag(Z1, . . . , Zn). We assume
that b and ε are uncorrelated. The non-parametric function h follows a N (0, τK) for
which the kernel matrix K is now depending on the sample size n and the number of
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measurement points m. Under the assumption of an equal number of measurements for
each individual (complete data) K can be obtained by K = K ⊗ 1m×m in which ⊗ rep-
resents the Kroenecker product. The n × n kernel matrix K is only determined once as
the SNPs are time invariant. The resulting matrix K is a (n ·m)× (n ·m) matrix.
We follow the steps proposed by Liu et al. [50] to obtain the altered test statistic Qlong

under the null hypothesis H0 : τ = 0. As the primary interest is on population-based
inference the inference is based on the marginal distribution of y as most commonly done
for LMM [58]. The marginal distribution of y is y ∼ N (Xβ,Σ) with Σ = Cov(y) =
Cov(ε) + Cov(h) + Cov(Zb) = R + τK + ZDZT .

The general form of the score test [31], also denoted as Lagrange multiplier test is:

Q = U(θ)
IE(θ)1/2 |θ=θ0 , (12)

where U(θ) is the first derivative of the log likelihood (= score) with respect to parameter
θ and IE(θ) is the Fisher information matrix or expected information matrix of θ [31].
We utilise the restricted log likelihood lREML of the marginal model to obtain unbiased
results [50] as the main focus lies on the variance parameter. The lREML is as follows:

lREML = −1
2 log |Σ| − 1

2 log |XTΣ−1X| − 1
2(y −Xβ̂)TΣ−1(y −Xβ̂)

= −1
2 log |Σ| − 1

2 log |XTΣ−1X| − 1
2y

TPy,

where β̂ = (XTΣ−1X)−1XTΣ−1y and P := Σ−1 − Σ−1X(XTΣ−1X)−1XTΣ−1. We apply
PΣP = P and Σ−1(y −Xβ̂) = Py [31]. Next, we specify the numerator of Q for which
lREML is differentiated with respect to τ and receive:

U(τ) = ∂lREML

∂τ

= −1
2tr(Σ

−1∂Σ
∂τ

) + 1
2tr((X

TΣ−1X)−1XTΣ−1∂Σ
∂τ

Σ−1X) + 1
2y

TP
∂Σ
∂τ

Py

= −1
2tr(P

∂Σ
∂τ

) + 1
2y

TP
∂Σ
∂τ

Py

= −1
2tr(PK) + 1

2(y −Xβ̂)TΣ−1KΣ−1(y −Xβ̂)

where P is defined as above. Here, we first apply multiple differential rules: the chain rule
and the differential rules for matrices d|X| = tr(X−1dX) and dX−1 = −X−1(dX)X−1.
Next, we expand and utilise the definition of P . For the final step, we utilise that the first
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derivative of Σ with respect to τ is ∂Σ
∂τ

= K and Σ−1(y −Xβ̂) = Py. Under H0 : τ = 0,
the final score is received:

U(τ)|τ=0 = −1
2tr(P0K) + 1

2(y −Xβ̂0)TΣ−1
0 KΣ−1

0 (y −Xβ̂0), (13)

where P0 = Σ−1
0 − Σ−1

0 X(XTΣ−1
0 X)−1XTΣ−1

0 with Σ0 = R0 + ZDZT . To determine the
Fisher information matrix IE first the observed information matrix IO is specified as
IE = E(IO) [31]. The IO matrix with respect to τ [31] is:

IO(τ) = −∂lREML

∂τ 2

= −1
2tr(P

∂Σ
∂τ

P
∂Σ
∂τ

) + 1
2tr(P

∂2Σ
∂τ 2 ) + yTP

∂Σ
∂τ

P
∂Σ
∂τ

Py − 1
2y

TP
∂2Σ
∂τ 2 Py,

where P is defined as before. We can now specify IE and take the derivative with respect
to τ :

IE(τ) = E(−∂lREML

∂τ 2 )

= −1
2tr(P

∂Σ
∂τ

P
∂Σ
∂τ

) + 1
2tr(P

∂2Σ
∂τ 2 ) + tr(P ∂Σ

∂τ
P
∂Σ
∂τ

)− 1
2tr(P

∂2Σ
∂τ 2 )

= 1
2tr(P

∂Σ
∂τ

P
∂Σ
∂τ

) = 1
2tr(PKPK),

with ∂Σ
∂τ

= K and P as above. When we consider H0 : τ = 0, the final IE is obtained:

IE(τ)|τ=0 = 1
2tr(P0KP0K), (14)

where P0 and Σ0 are defined as for equation 13. Thus, by substituting equations 13 and
14 into the general form of the score test represented by equation 12, we are able to
determine the altered score statistic:

Qlong =
−1

2tr(P0K) + 1
2(y −Xβ̂0)TΣ−1

0 KΣ−1
0 (y −Xβ̂0)√

1
2tr(P0KP0K)

.

By replacing Σ0 with its estimate Σ̂0 = R̂0 +ZD̂ZT and because the terms tr(P0K) and
tr(P0KP0K) are independent of y, the final score statistic is:

Qlong = 1
2(y −Xβ̂0)T Σ̂−1

0 KΣ̂−1
0 (y −Xβ̂0), (15)
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where β̂0 = (XT Σ̂−1
0 X)−1XT Σ̂−1

0 y. The altered test statistic Qlong is a quadratic form as
its cross-sectional counterpart. We use this characteristic to approximate the distribution
applying the theorem in Yuan and Bentler [78]:

Theorem. Let x ∼ N (0,Γ) and T = xTWx be a quadratic form in x. Γ is typically of full
rank whileW is non-negative definite. Let the rank ofW be L and the nonzero eigenvalues
of WΓ be λ1, . . . , λL. There exists T = xTWx = ∑L

l=1 λlz
2
l , where zl ∼ N (0, 1) and are

independent.

The theorem implies that x = (y−Xβ̂0) isN (0,Γ) with Γ = V0 := Σ̂0−X(XT Σ̂−1
0 X)−1XT

and W = K is positive semi-definite (=non-negative definite). Thus, we obtain that
Qlong = ∑L

l=i λlχ
2
1, where λl are eigenvalues of 1

2Σ̂−1
0 KΣ̂−1

0 V0. The p-values can be com-
puted as described in the previous section.
When we perform a pathway analysis either for a cross-sectional or longitudinal pheno-
type with KMR, we have a big advantage. By testing H0 : τ = 0, our model under the
null hypothesis does not contain the kernel matrix modelling the tested pathway. When
testing multiple pathways simultaneously the null model thus needs to be fitted only once.
This represents a large benefit, particularly for a longitudinal pathway analysis for which
the kernel matrix can have large dimensions. Nevertheless, a multiple testing correction
needs to be performed.

2.5. Variations of longitudinal kernel machine regression

In genetic longitudinal studies, there can also be an interest in testing the genetic-time
interaction effect. Thus SNPs associated with the change over time, i.e. influencing the
phenotype development are of interest. This interaction effect can be integrated by adding
a kernel modelling t×G to model 11 in which t is the time vector for the m measurements
and G the genotype matrix. When considering the model in LMM form with the notation
as above we get:

y = Xβ + h1 + h2 + Zb+ ε, (16)

where ε ∼ N (0, R) with R = diag(R1, . . . , Rn), b ∼ N (0, D) with D = diag(D1, . . . , Dn)
and h1 ∼ N (0, τ1K1) and h2 ∼ N (0, τ2K2). The non-parametric function h2 models the
genetic-time interaction t × G with the kernel matrix K2. The former K1 contains the
main genetic effect G as for long-KMR. The marginal distribution for model 16 with
the genetic-time-interaction effect is y ∼ N (Xβ,Σ = R + τ1K1 + τ2K2 + ZDZT ). By
testing the genetic-time-interaction effect for association the null hypothesis transforms to
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H0 : τ2 = 0. To gain the correct score statistic, we perform the previous steps with slight
alterations. First, we take the derivatives with respect to τ2 with ∂Σ

∂τ2
= K2. Second, we

need to take into account that Σ = R+τ1K1+τ2K2+ZDZT and Σ0 = R0+τ1K1+ZDZT .
Here, we consider only the score U(τ) (please refer to chapter 2.4, equation 13), which
looks as follows under H0:

U(τ)|τ2=0 = −1
2tr(P0K2) + 1

2(y −Xβ̂0)TΣ−1
0 K2Σ−1

0 (y −Xβ̂0),

where P0 is defined as in equation 13. However, Σ0 is the covariance-variance matrix
of model 16 and thus, has a different structure (described above). The final score test
statistic is:

QlongI = 1
2(y −Xβ̂0)T Σ̂−1

0 K2Σ̂−1
0 (y −Xβ̂0), (17)

where β̂0 = (XT Σ̂−1
0 X)−1XT Σ̂−1

0 y and Σ0 is replaced with its estimate Σ̂0. The test
statistic QlongI is also a quadratic form and thus, QlongI = ΣL

l=1λlχ
2
1 with λl being the

eigenvalues of 1
2Σ̂−1

0 K2Σ̂−1
0 V0 with V0 = Σ̂0 − X(XT Σ̂−1

0 X)−1XT . The computation of
p-values can be performed as for KMR and long-KMR. However, this model has some
disadvantages. As this null model still contains the kernel modelling the main genetic
effect, the null model needs to be fitted for every pathway to be tested. Secondly, we
fit the KMR by integrating the main genetic kernel as covariance-variance matrix. Both
aspects are computationally very expensive.

To reduce the computation time of this analysis of the genetic-time-interaction, we
looked for another approach. This approach is similar to the correction of population
stratification in a GWAS for which we perform a PCA on the genotype matrix including
data from across the genome and receive a number of PCs. These PCs describe the
variance in the genetic data. Here, we execute a PCA on the kernel matrix to obtain the
PCs. This application of PCA is denoted as kernel principal component analysis, KPCA
[65] and has already been conducted in different scenarios [29, 64].
We apply KPCA on K1, which is the kernel modelling the main genetic effect and is
only computed on one measurement point. We receive PCs, which are integrated in the
long-KMR. Thus, we describe the similarities modelled in K1 with a number of top PCs
downgrading model 16 to model 11, a basic long-KMR with only one single kernel matrix.
This hugely reduces the computational costs. Nevertheless, we can correct for the main
genetic effect whilst modelling and testing for the genetic-time-interaction effect.
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3. The PsyCourse Study, a longitudinal multi-centre
study

The PsyCourse Study [8] is a longitudinal multi-centre study comprising individuals from
the affective-to-psychotic continuum and mentally healthy individuals. The affective-to-
psychotic continuum encompasses diseases, such as schizophrenia, and bipolar disorders
I and II. One of the main goals in the development of the study was to analyse the
phenotypic and genetic overlap of schizophrenia and bipolar disorder [8]. To this point
only few longitudinal projects studied this connection [8].
The PsyCourse Study enables the analysis of various other research issues owing to the
large number of available phenotypes. For example, the study comprises a variation of
cognitive tests enabling the analysis of executive functions (EFs). EFs are responsible
for controlling and coordinating mental processes essential to all human beings and are
often impaired in various psychological disorders, for example, schizophrenia [18]. In this
thesis, EFs are considered as the main phenotypes for which the aim is to study the
genetic underpinnings of the longitudinal course.

3.1. The study details

We applied two different versions of the PsyCourse Study, Version 3.0, and Version 5.0.
At the point of our first analysis (Version 3.0), the study was still on-going and probands
had still been recruited. Version 5.0 [34] contains all available data presenting the Psy-
Course Study after the recruitment has been finalised.
The PsyCourse Study comprises approximately 1800 individuals in which four-fifths are
individuals with a disorder of the affective-to-psychotic spectrum and one-fifths are con-
trols. The controls are males and females who have no history of mental disorders and
are older than 18 years. A number of different diagnoses are presented in the mentally-
ill patients. These diagnoses were assessed according to the criteria of the Diagnostic
and Statistical Manual of Mental Disorders, Fourth Edition (DSM-IV) and a subset ac-
cording to the ICD-10 criteria. To classify the individuals suffering from a mental dis-
order, the individuals were broadly divided in two diagnostic groups, the affective and
the psychotic group. The affective group comprises patients with predominantly affective
symptoms including individuals with bipolar-I disorder (DSM-IV 296.X) or bipolar-II
disorder (DSM-IV 296.89) and major depression (DSM-IV 296.3). Probands with pre-
dominantly psychotic symptoms are part of the psychotic group, which are patients with
schizophrenia (DSM-IV 295.10/295.20/295.30/295.60/295.90 and ICD-10 schizophrenia),
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schizo-affective disorder (DSM-IV 295.70), schizophreniform (DSM-IV 295.40) and brief
psychotic disorder (DSM-IV 298.80). The affective and psychotic group represent with
the control group the three broad diagnostic groups of the PsyCourse Study. The individ-
uals were recruited in a number of different study centres in Germany, and in Austria. All
individuals gave written consent and the study protocol was approved from the respective
ethic committees at the various recruitment centres [8].

The longitudinal study comprises four measurement points, each approximately six
months apart. For each individual the study lasted approximately 18 months in which
the individuals participated at various questionnaires at each single measurement point.
The test battery spans a number of aspects including basic demographic information,
family and psychiatric history, medical treatments (e.g. medication), clinical symptoma-
tology, and neuropsychological assessments [8]. Different clinical rating scales, such as the
Global Assessment of Functioning (GAF) are part of the clinical symptomatology (please
refer to [34] for more details). GAF evaluates the psychosocial functioning of an indi-
vidual. The neuropsychological assessments comprises different neuropsychological tests,
e.g. the Trail Making Test (TMT) or the Verbal Digit Span (VDS) Test. As these tests
assess EFs, we will explain these tests in more details in the next chapter.
In addition to deep-phenotyping, biological materials were sampled at each measurement
point including DNA, RNA, plasma and serum samples [8]. In order to determine geno-
types of the individuals the Illumina Infinium PsychArray and the Illumina Infinium
GSAChip (Global Screening Array) were applied, followed by thorough quality control
(QC) [1, 67].

3.2. Executive functions

Executive functions are a specific group of higher-level cognitive abilities [27] influenc-
ing different mental processes. EFs comprise functions that organize, plan, and complete
daily tasks and thus, are essential in the daily life even affecting success in life of every
individual [18]. These cognitive abilities develop over time and decline with increasing
age. Besides the decline in age EFs are also often impaired in individuals suffering from a
mental disorder, for example, schizophrenia patients [18]. EFs are often rated under the
first symptoms of a mental disorder, such as for Alzheimer’s disease. Owing to their con-
trol of essential tasks, impaired EFs compromise largely the quality of life of individuals
with mental disorders.
Neurobiologically, it is well-documented that EFs are connected with the pre-frontal cor-
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tex [25, 57]. Twins studies also lend support to EFs being one of the most heritable traits
in psychology [26]. Various studies including twin studies and molecular genetic studies
[74] investigated the genetic background. However, most of the molecular genetic studies
did not detect any specific genetic marker [74]. Thus, the understanding of the genetic
background of EFs is of great interest, in particular the genetic influence on the develop-
ment of EFs over time.

Most commonly, EFs are distinguished in three core areas, which have according to
the "unity and diversity" concept a common latent factor [26]. The three core skills are
(i) set-shifting (cognitive flexibility), (ii) updating (working memory), and (iii) inhibition
[18, 57]. The set-shifting ability allows an individual to flexibly deal and adjust to new
tasks and challenges [18, 26]. The updating skill enables an individual to keep informa-
tion in mind and to process and modify this information [18, 26]. The last core skill,
inhibition supports the self-control and impulse control of an individual [18]. A number
of different neuropsychological tests are available to assess the EF abilities, such as the
Trail Making Test for set-shifting and the Verbal Digit Span Test for working memory.
The measurement of inhibition is often performed with go/no-go and stop-signal tasks
[18].
The focus of our analyses lies on the set-shifting and updating abilities and thus we
explain shortly the two cognitive tests applied to assess these skills. The Trail Making
Test, part B (TMT-B) [6] is utilised to measure the set-shifting ability. The TMT-B is
the second part of the two-part Trail Making Test. In the TMT-B, the time in seconds is
measured in which an individual is able to alternately connect numbers (numbers: 1-26)
and letters of the alphabet in an ascending order. The time in seconds is used as TMT-B
test score.
For the updating, the Verbal Digit Span Test Backwards (VDS-B) [37] is performed.
Here, the study participant is presented verbally with up to seven pairs of number se-
quences of increasing length by a trained interviewer. Each sequence of numbers needs to
be repeated backwards by the study participant. For each correctly named sequence the
participant gains a point with a maximum score of two for each sequence pair. The test
is terminated when both of the sequence are falsely repeated. The sum of all correctly
repeated sequence pairs represents the VDS-B test score.
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4. Summaries

4.1. A genome-wide association study of longitudinal course of
executive functions

Executive functions are a group of essential cognitive abilities that highly influence the
quality of life. The change over time of EFs is of great importance, especially for mentally-
ill individuals. Thus, it is also of great interest to understand the genetic basis of the
course over time to improve treatments for patients suffering from mental disorders. We
conducted two GWASs to investigate this genetic basis. In particular, we aimed to iden-
tify SNPs influencing the short-term course (comprising 18 months) of EFs. The focus
lay on two EF core abilities: set-shifting and updating (see chapter 3.2), which were as-
sessed with two cognitive tests, the Trail Making Test, part B (TMT-B), and the Verbal
Digit Span Test Backwards (VDS-B), respectively. In each GWAS, a LMM was applied
in which the interaction effect of SNP and time were tested for association.

Data from the longitudinal PsyCourse Study [8] Version 3.0, were implemented to study
the short-term course. A total of 1338 genotyped individuals were included in the anal-
ysis, comprising 550 affective patients, 530 psychotic individuals, and 258 controls. The
Illumina Infinium PsychArray was utilised to determine the genotypes of the individuals.
After an imputation with SHAPEIT2/IMPUTE2 and standard quality control (QC) [1],
approximately 8.2 million SNPs in each GWAS were tested.
For each phenotype, the missing measurement points across the different diagnostic

groups and measurement points were studied, and a MAR mechanism was assumed based
on this analysis. The TMT-B was log transformed (lgTMT-B) to yield a normally dis-
tributed phenotype. For a phenotype Y (lgTMT-B or VDS-B), the LMM for individual
i at measurement point tij with j = 1, 2, 3, 4 was as follows:

Yij = β0 + β1tij + β2agei + β3genderi + β4diagnosisi +
5∑

k=1
β4+kPCik+

b0i + b1itij + cicenteri + β10SNPi + β11SNPi · tij + εij,

where agei, genderi, and diagnosisi represent the age at first measurement, gender, and
diagnostic group of individual i, respectively. These fixed effects were added to correct
for confounders. To adjust for population stratification, the model contains the top five
ancestry components (PCik), which were determined with a PCA. The random effects of
the LMM encompassed a random intercept, random slope, and a random centre effect.
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The latter was integrated because of the multiple recruitment centres in the PsyCourse
Study. The former random effects model the individual course and correct for the corre-
lated measurements. The genetic data were included as main genetic effect with SNPi

and as time-interaction term, SNPi · tij. The genetic-time-interaction effect was the main
focus in the GWASs, as the interest lay in SNPs influencing the change over time of the
phenotypes. Thus, we tested the interaction effect for significance.

For lgTMT-B, nine genome-wide significant SNPs were identified. The nine SNPs were
all positioned in one single linkage disequilibrium block (r2 ≥ 0.85), i.e. a block of strongly
correlated SNPs on chromosome 5. The top SNP was rs150547358 with a p-value of
7.2 × 10−10 and an effect estimate β̂ of 1.16 seconds per measurement on the original
TMT-B scale. Four of the nine SNPs were directly located in an intron region of ring
finger protein 180 (RNF180), the product of which is involved in protein modification.
For VDS-B, no genome-wide significant hits were determined.

A replication study with data of the research consortium FOR2107 [44] was performed
to replicate the TMT-B findings. FOR2107 is a longitudinal cohort study comprising
two measurement points approximately two years apart. The sample implemented in the
replication study comprised 1795 individuals (851 affective, 112 psychotic patients, and
832 controls). As only two measurements were available, we applied a simple difference
model instead of the LMM of the GWAS to avoid a high number of parameters owing
to the random effects. Thus, we considered the difference of the lgTMT-B measurements
as phenotype and added the main genetic effect (SNPi), age, gender, diagnostic group,
and PCs as covariates to the model. SNPi was tested for significance and the effect
interpreted as the difference between the average change of the TMT-B between the
genotypes. Aiming to replicate the linkage disequilibrium block, the significance level
remained at 5%. The previously identified top SNP rs150547358 had a p-value of 0.015
and was thus successfully replicated.

4.2. Kalpra: a kernel approach for longitudinal pathway regression
analysis integrating network information with an application to
the longitudinal PsyCourse Study

Longitudinal pathway analyses are still uncommon and only a limited number of ap-
proaches are available. Here, the main goal was to expand the existing KMR pathway
analysis to study longitudinal data. To create a longitudinal KMR or long-KMR, the esti-
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mation equivalence of the KMR and LMM was exploited. The basic KMR model was ex-
panded by adding random effects modelling the correlation of the multiple measurements
within each individual. The details are presented in chapter 2.4. Moreover, long-KMR
is able to integrate pathway topology information by applying the network-based kernel
[24]. This network kernel models gene interaction by integrating the adjacency matrix
of the pathway, which describes the connections between the single genes (please refer
to chapter 2.1). Thus, long-KMR can be considered as topology-based pathway analysis.
Long-KMR has been implemented as an R package kalpra (see next section).

A similar approach was developed by Yan et al. [77], denoted as KMgene. KMgene tests
single genes for association with a longitudinal phenotype. In contrast, long-KMR studies
a whole pathway for significance enabling the modelling of a pathway with different ker-
nels. Moreover, long-KMR allows the integration and testing of a genetic-time-interaction
effect either with or without a simultaneous adjustment for the main genetic effect (see
chapter 2.5). By testing this interaction effect for association, we study the genetic influ-
ence on the course over time of a phenotype.

We evaluated the performance of long-KMR in a simulation study exploring different
aspects in various simulation settings. There the following questions were addressed:

• How does the performance of long-KMR change when the number of measurement
points in the longitudinal study alters?
Here, longitudinal studies with two and four measurements were considered, simu-
lating complete phenotype data and data sets with 25% and 50% missing measure-
ments, and assuming a MAR mechanism to contemplate the influence of missing
data. For the two-measurements data, long-KMR was compared with the ANCOVA
model. When studying four measurements, KMgene was applied as comparison
model.

• How does the network kernel influence the performance of long-KMR?
We compared the performance of long-KMR when using a linear kernel and a net-
work kernel. The network kernel was also studied in regard to its behaviour when
the pathway topology changed. Here, the pathway density was selected as distinc-
tive characteristic. The density (d) is a graph-theoretical feature, which is defined as
the ratio of the existing gene connections in the pathway divided by the number of
maximal available links (d ∈ [0, 1]). Three pathways were compared with a density
of 0.2, 0.5 and 0.8.
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In each scenario, the simulated study sample embraced 1000 unrelated individuals and
950 simulated SNPs. A pathway serving as foundation pathway was required to apply
the network kernel. Thus, a real pathway from the Reactome database [40], the "signaling
by ERBB4" pathway [68] was selected, which is related to our application example. This
pathway contains 19 genes and has a density of 0.46 (rounding up to 0.5). Based on this
foundation pathway, two additional artificial pathways with a density of 0.8 and 0.2 were
created.

To assess the type I error rate, the phenotypes were simulated with a LMM contain-
ing no genetic effects. For the power simulation, we designed three genetic effect models
for which each model contained three causal "pseudo-" genes comprising three causal
SNPs (in total: nine causal SNPs). We created two single-effect models, the main ge-
netic and time-interaction-effect model. The former contained only the following sum of
additive SNP effects ∑9

k=1 βk · SNPik for each individual i. The time-interaction model
included ∑9

k=1 βk · (SNPik · tij) for each individual i at time point tij (j = 1, . . . ,m)
to model a time-interaction effect. In addition, the joint model incorporated both sums
(∑9

k=1 βk ·SNPik + ∑9
k=1 βk · (SNPik · tij)), representing a more complex model. The main

genetic kernel was tested for association in the single-effect model containing only the
main genetic effect, whereas in the latter two, the time-interaction kernel was tested. For
the joint model one effect size β = 0.04 was studied; for the single-effect models, there
were three effect sizes β =0.04, 0.06, and 0.08.
In the analysis of the joint model, we performed a kernel principal component analysis
(KPCA, please refer to chapter 2.5 for details) on the kernel modelling the main genetic
effect. Adding the top two principal components to the analysis model enabled the adjust-
ment for the main genetic effect. We applied this approach to reduce the computational
costs.

Overall, long-KMR maintained the type I error rates for the different simulations set-
tings and demonstrated slightly conservative rates. In contrast, the combined pathway
p-values of KMgene displayed inflated type I error rates. For the single-effect models
(both main genetic and time-interaction), the power simulation revealed that the power
of long-KMR increased with increasing number of available measurement points. Fur-
thermore, long-KMR demonstrated a higher power in comparison to both the ANCOVA
model and KMgene. The network kernel displayed a superior power to the linear kernel.
Here, the power gain for the network kernel increased with decreasing density (d0.2 >
d0.5 > d0.8). These observations were reflected in the single-effect models for all effect
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sizes. In the joint model, only one exception was identified.

For the real-world example, we applied data from the PsyCourse Study [8], Version 5.0.
Here, the focus lay solely on the TMT-B assessing the set-shifting ability (see chapter
3.2 for details) because of the results of the first publication (please refer to chapter 4.1).
In total, 17 pathways selected from the Reactome database [40] were tested for associa-
tion with TMT-B. The SNPs of the PsyCourse Study genotyped with Illumina Infinium
Global Screening Array-24 Kit were mapped according to their genomic location (± 500
kbp).
The TMT-B was log-transformed for normality. Each analysis model included the follow-
ing fixed effects: age at first measurement, gender, diagnostic group, measurement point,
and the top five ancestry principal components. A random intercept and a random slope
were integrated to correct for the correlation of the longitudinal data. For each pathway,
the genetic data were modelled with a linear kernel, a network kernel, and a size-adjusted
network kernel. We modelled and tested each pathway as main genetic and genetic-time-
interaction effect. The multiple testing correction was conducted with the Gao approach
[36], for which the number of effective pathways was determined.
None of the pathways was significantly associated with TMT-B according to αGao. How-
ever, seven pathways had a p-value < 0.05, e.g. the "signaling by ERBB4" pathway that
was previously chosen as foundation pathway for the simulations.
All in all, long-KMR enables a longitudinal topology-based pathway analysis to be con-
ducted, in which genetic effects can be flexibly modelled. In particular, long-KMR allows
testing a genetic-time-interaction effect to investigate the longitudinal course of a pheno-
type.

4.3. R package kalpra: Kernel Approach for Longitudinal Pathway
Regression Analysis

We developed the R package kalpra - Kernel Approach for Longitudinal Pathway Regres-
sion Analysis that enables a longitudinal pathway analysis to be performed with a kernel
machine regression approach. kalpra has various features and enables the user to execute
a longitudinal analysis for normally distributed phenotypes, as well as a cross-sectional
kernel regression for binary and normally distributed phenotypes. The core functions of
the package listed in the following conduct the variance component test and compute the
p-value for each pathway. The function

• KMR.Cross.bin() performs a KMR for binary cross-sectional phenotypes,
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• KMR.Cross.quan() studies a normally distributed cross-sectional phenotype and

• KMR.Long() conducts long-KMR, the analysis of a normally distributed longitudi-
nal phenotype.

• KMR.KernelTime() allows modelling and testing of a genetic-time-interaction effect
while adjusting for the main genetic effect.

For all analysis types, two p-value methods are available: Davies’ method [14] and/or the
Satterthwaite approximation [61]. The first three functions can handle missing phenotype
values as long as the MAR can be assumed.

The user can model the pathway with three different kernels: the linear, the quadratic,
and the network-based kernel developed by Freytag et al. [24]. Depending on the chosen
kernel matrix different input data are required. However, for all kernels, the genotype
data need to be presented as a matrix with no missing values, which only contains 0s,1s,
or 2s. The determined kernel matrix then serves as input to the above described core
functions. When a longitudinal study is conducted, data need to be transformed into
long format. In long format, each individual has multiple rows, one for each measurement
point. The transformation into long format can be performed with makeLongGenotype()
or reduceGenotype() (see Fig.2), whereas the latter function attunes the dimensions of the
genotype matrix to the phenotype data containing missing values. In these two functions,
the user can also select to model a main genetic or genetic-time-interaction effect with
the kernel.
As the network kernel integrates additional network information, kalpra is able to down-
load information directly from the Pathway Commons databases [60]. Pathway Commons
holds information from different pathway database, e.g. Reactome [22]. The databases can
be searched via the function searchPathway() either for a pathway name or based on a
keyword. The pathway is downloaded in SIF (standard interchange format) and can be
directly transformed to an adjacency matrix. The adjacency matrix describes the gene
interactions. Furthermore, an annotation matrix can be created by assigning SNPs to the
genes of the pathway downloaded. The adjacency and annotation matrix are required
as input data for the network kernel. The pathway can also be graphically illustrated
and different pathway characteristics can be determined, e.g. number of nodes or average
node degree.
Figure 2 displays the steps required to conduct a pathway analysis.
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Figure 2. Example workflow of a pathway analysis performed with kalpra.
(source: https://gitlab.gwdg.de/bernadette.wendel/kalpra)
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5. Discussion
Genetic association studies are performed in miscellaneous forms, including single genetic
marker tests and whole pathway association analyses. This cumulative thesis focuses on
GWASs and pathway analyses examining longitudinal data. In order to execute a longi-
tudinal pathway analysis, the KMR analysis was extended to long-KMR. An overview
of the diverse KMR modifications are given by Larson et al. [46]. The large number of
available KMR analyses reflects the versatility of the approach and the underlying kernel
methods.
Kernel methods are highly flexible, which has many advantages. The kernel itself needs
only to be positive semi-definite allowing a number of kernel variations, for example, ker-
nels including biological information or modelling genetic interaction effects. Moreover,
the basic idea of kernel methods results in a dimensionality reduction of the analysed
data. Here, the high-dimensional genotype matrix is transformed into a low-dimensional
kernel matrix for which the dimensions are in general only dependent on the study sample
size.

We developed long-KMR, exploiting these flexibilities. For example, long-KMR enables
the researcher to apply the network kernel [24], creating a topology-based longitudinal
pathway analysis that includes additional biological information. Furthermore, we can
model a genetic-time-interaction effect with the kernel matrix enabling study of the lon-
gitudinal course of phenotypes. However, these benefits can also create obstacles. A kernel
matrix in long-KMR does not only depend on the sample size but also on the number
of measurement points in the longitudinal study. This can result in a high-dimensional
kernel matrix for which the computational costs increase. Depending on the longitudinal
study design, long-KMR can reach its computational limits. At this point, most longi-
tudinal studies are limited by the high temporal and financial costs, leading to either
a relatively small sample size or a small number of measurements. In this setting, the
computation of long-KMR is nevertheless still feasible. Advancements are necessary when
larger longitudinal studies are available. This progress is especially important when more
complex KMR models are studied. For example, models can include more than one ker-
nel, such as main genetic and genetic-time-interaction effects.

The flexibility of the kernel definition allows a great number of options to integrate bio-
logical pathway information. Schaid [63] suggested defining a kernel matrix K integrating
genomic information as K = GSGT , where G is the genotype matrix and the matrix S
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contains similarity score of SNPs. However, many options can lead to many questions
concerning methodological and practical issues. These questions include: "which informa-
tion should be modelled?", "how should the information be modelled?" or "how can the
results be interpreted?", to name a few examples. One possible approach is to model a
specific biological hypothesis that can be applied to develop weighting functions mod-
elling more of the pathway topology. This specific biological information can be obtained
from a variety of available pathway databases.
In this context, we also want to mention a great potential of long-KMR, which was not
discussed until now. Apart from the analysis of the longitudinal course of phenotypes,
long-KMR is also capable to analyse molecular data varying over time. Until now solely
SNPs are tested, which maintain the same variation at all measurement points. However,
there are also molecular data available that change over time, such as methylation or
gene expression data. This type of data enables a great number of opportunities. The
kernel matrix can either directly model these genetic data or utilise it to create detailed
weighting functions for pathways. Because of the flexibility of the kernel definition, this
different kind of information can be utilised in various ways.

This thesis also focuses on the analysis of EFs. In particular, we studied two core EF
abilities, the set-shifting and updating skill with respect to their genetic background. Of
great interest is the short-term course of the single core abilities. These analyses cover
only a small amount of the EF variability. According to the "unity and diversity" model
developed by Friedman et al. [26], all EF core abilities have a latent common underlying
EF factor. Thus, the analysis of single core EF abilities reflects only upon the individual
skills and does not consider the common factor. Hatoum et al. [33] computed a latent
common EF factor by performing a confirmatory factor analysis. Here, Hatoum et al. [33]
also conducted a GWAS in which 129 genome-wide significant SNPs were identified. One
can also conduct a confirmatory factor analysis to compute a common EF factor for each
individual in the PsyCourse Study data. Subsequently, a GWAS may be performed, ei-
ther on the cross-sectional or longitudinal level, for this common EF factor to analyse the
genetic basis. In this context, it would also be interesting to perform a pathway analysis
for the common EF factor. These results can be compared to the results of the single core
EF skill (e.g. TMT-B) pathway analyses to identify common or different pathways. To
this point, the molecular genetic basis of EFs still remain largely unknown. Thus, more
analyses are required in the future to unravel this complex EF structure.
To decipher this underlying EF structure, long-KMR and/or other KMR variations may
also be applied. However, EFs are not the only application. Because of the flexible mod-
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elling of genomic data, KMR analyses can be utilised to study various innovative research
questions. For example, one possible analysis direction can be to examine multiple pheno-
types at once, i.e. a multivariate KMR with multiple outcome phenotypes. This allows the
analysis of correlated phenotypes in a convenient setting. Other challenges accompanying
the analysis of longitudinal data may also be considered to further expand long-KMR.
One important aspect is how to handle missing phenotype measurements. One possibil-
ity here is to impute the missing phenotype values and integrate this in long-KMR, for
example by including multiple imputation or other imputation approaches. Overall, the
presented method still allows numerous options for further extensions, which will also
open doors to new applications.
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Executive functions are metacognitive capabilities that control and coordinate mental processes. In the transdiagnostic PsyCourse
Study, comprising patients of the affective-to-psychotic spectrum and controls, we investigated the genetic basis of the time course
of two core executive subfunctions: set-shifting (Trail Making Test, part B (TMT-B)) and updating (Verbal Digit Span backwards) in
1338 genotyped individuals. Time course was assessed with four measurement points, each 6 months apart. Compared to the initial
assessment, executive performance improved across diagnostic groups. We performed a genome-wide association study to identify
single nucleotide polymorphisms (SNPs) associated with performance change over time by testing for SNP-by-time interactions
using linear mixed models. We identified nine genome-wide significant SNPs for TMT-B in strong linkage disequilibrium with each
other on chromosome 5. These were associated with decreased performance on the continuous TMT-B score across time. Variant
rs150547358 had the lowest P value = 7.2 × 10−10 with effect estimate beta= 1.16 (95% c.i.: 1.11, 1.22). Implementing data of the
FOR2107 consortium (1795 individuals), we replicated these findings for the SNP rs150547358 (P value= 0.015), analyzing the
difference of the two available measurement points two years apart. In the replication study, rs150547358 exhibited a similar effect
estimate beta= 0.85 (95% c.i.: 0.74, 0.97). Our study demonstrates that longitudinally measured phenotypes have the potential to
unmask novel associations, adding time as a dimension to the effects of genomics.

Translational Psychiatry          (2021) 11:386 ; https://doi.org/10.1038/s41398-021-01510-8

INTRODUCTION
The term “executive functions” (EFs) describes a group of higher-
level cognitive abilities [1], including the regulation of thoughts

and actions in daily life [1, 2]. As humans age, EFs pass different
developmental stages, in which great variability is observed both
within and between individuals [3, 4]. EFs naturally decline with
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advanced age [4–6] in a gender-specific manner [7] and
diminished EFs are also observed in the longitudinal course of
severe mental disorders, such as schizophrenia [8]. In particular,
EFs appear to be generally impaired in psychiatric patients
suffering from schizophrenia, depression [4], or bipolar disorder
[9]. Deficits are also associated, for example with decreased
abilities to perform routine tasks [4]. Neurobiologically, EFs are
linked intimately to the prefrontal cortex, as exemplified by the
famous case of Phineas Gage [10].
There are many definitions of an EF [3], as it represents an

umbrella term for multiple cognitive processes [2]. An influential
theory of EFs is the “unity and diversity” concept [3, 11] that
describes EFs as a “collection of related but separable abilities“ [3].
EFs are differentiated into three latent core skills [3, 4, 11]: (i) set-
shifting, allowing an individual to approach tasks flexibly and
adjust to new conditions [3, 4], (ii) updating (or working memory),
with respect to the monitoring, manipulating, and updating of
information [4, 11], and (iii) inhibition, enabling an individual to
control behavior, emotions, and responses [4, 11]. In general, EFs
rank among the “most heritable psychological traits” [3]. On the
behavioral genetic level, a highly heritable latent (common) factor
affecting all EF aspects accounted for 99% of the variance
common to all three skills [3]. Regarding specific EF components,
the heritability estimates of set-shifting assessed by the Trail
Making Test (TMT) range from 0.34 to 0.65 [12] and the estimates
of updating measured by digit span tests range from 0.27 to 0.62
[12] (these results were obtained in twin studies). Recently, several
genome-wide association studies (GWASs) on EFs have been
undertaken [13–18]; however, genome-wide significance was not
attained [2, 12]. Moreover, the genetic basis of variation over time
is yet to be elucidated [19].
Here, we performed two longitudinal GWASs for the set-shifting

and updating EF abilities assessed by the Trail Making Test, part B
(TMT-B) and the Verbal Digit Span backwards (VDS-B), respectively,
to identify genetic variation associated with the course of EFs
across time. We used a linear mixed model (LMM) to model the
dependence structure of the longitudinal PsyCourse Study [20]
with four measurements across time. To validate our findings, we
also performed a replication study using data from the FOR2107
consortium [21], which assessed two measurements over time.

MATERIALS AND METHODS
Discovery sample: PsyCourse Study
The PsyCourse Study is a multicenter longitudinal study that combines
multilevel omics and longitudinal data [20]. We included 1338 genotyped
individuals (dataset version 3.0) recruited in different centers in Germany
and Austria, comprising patients from the affective-to-psychotic spectrum
(377 bipolar I disorder, 100 bipolar II disorder, 420 schizophrenia,
95 schizoaffective disorder, 6 brief psychotic disorder, 9 schizophreniform
disorder, and 73 with recurrent depression) and 258 psychiatrically healthy
controls. The study protocol was approved by the respective ethics
committee for each study center and was carried out following the rules of
the Declaration of Helsinki of 1975, revised in 2008 (see ref. [20]). All study
participants provided written consent [20]. The patients were diagnosed
using parts of the Structured Clinical Interview for DSM (SCID-I) and were
classified according to the Diagnostic and Statistical Manual of Mental
Disorders, Fourth Edition (DSM-IV) criteria. The patients were broadly
differentiated in patients with predominantly affective symptoms (550
“affective”, with recurrent depression, bipolar I and II disorders) and
patients with predominantly psychotic symptoms (530, “psychotic”, with
schizophrenia, schizoaffective, brief psychotic and schizophreniform
disorder) [20]. Deep phenotyping was performed during four visits, each
~6 months apart (see ref. [20]), thus corresponding to time t of the
longitudinal course.
Set-shifting and updating were assessed with the Trail Making Test, part

B (TMT-B) [22] and the Verbal Digit Span backwards (VDS-B) [23],
respectively. The TMT-B requires an individual to connect numbers
(numbers: 1–26) and letters of the alphabet in ascending alternating
order. The test score was the time (in seconds (s)) needed to finish this

exercise. As recommended by [24] participants with a time >300 s were set
to 300 s. VDS-B measures the updating ability. Here, a trained interviewer
verbally presented up to seven pairs of number sequences with increasing
length, and the study participant was requested to repeat each sequence
in backwards order, receiving a point score for each correctly repeated
sequence. The maximum possible score for each sequence pair was 2. The
process was terminated when an individual failed to repeat correctly both
of the sequences in a pair of given length. The test score was the sum of all
correctly repeated sequence pairs (range: 0–14).

Replication sample: FOR2107 consortium
To perform the replication study, we used data from the research
consortium FOR2107 [21], a longitudinal cohort with two centers, Marburg
and Münster (Germany), in which deep phenotyping was performed twice
~2 years apart [21]. In our analyses, we used a sample comprising 1795
individuals with genotype data available divided into five different
diagnostic groups (851 affective: 107 bipolar disorder and 744 depression,
112 psychotic: 68 schizophrenia and 44 schizoaffective disorder, and 832
healthy controls). The participants were classified into the same three
broad diagnostic groups (affective, psychotic, and controls) as in the
discovery sample. Set-shifting was assessed by the TMT-B. In this cohort,
participants with a time >180 s were excluded. For updating, we used the
Letter–Number-Sequencing Test (LNST) as a substitute for the VDS-B. Here,
a trained interviewer verbally presented an increasing sequence of letters
and numbers, which the participant was requested to repeat, starting with
the numbers in ascending order and ending with the letters in alphabetical
order. The test was terminated when the individual repeated the same
sequence incorrectly four times. The sum of the correctly repeated
sequences was the test score, with a maximum of 24.

Genotyping and imputation
Discovery sample. The Illumina Infinium PsychArray (Illumina, USA) was
used for genotyping purposes [20]. Genotypes were imputed with
SHAPEIT2/IMPUTE2 using the 1000 Genomes Project Phase 3 data as a
reference panel. Quality control (QC) was performed according to standard
procedures, as described previously [25] (details Supplementary List 1) and
poorly imputed genetic variants (INFO < 0.8) were excluded [20]. We
included ~8.2 million SNPs with minor allele frequency (MAF) ≥ 0.01 in our
analysis. Ancestry principal components (PCs) were computed with PLINK
v1.9 [26] (http://pngu.mgh.harvard.edu/).

Replication sample. To replicate genome-wide significant SNPs of the
discovery sample, we analyzed the genotypes of these nine significant
SNPs (SNPR). We additionally analyzed 187 suggestive SNPs (SNPNR) with a
P value ≤1 × 10−5 in the discovery sample (99 for TMT-B, 88 for VDS-B/
LNST) in an exploratory analysis. For the QC in the replication sample,
please refer to Supplementary List 2.

Statistical analysis
We performed regression analysis, log-transforming the TMT-B values
(lgTMT-B) to fulfill the linear mixed model requirement of normally
distributed errors. We present effect estimates with 95% confidence
intervals (c.i.s) transformed back to the original scale. Furthermore, we
investigated missing data patterns across visits and diagnoses for violation
of a missing-at-random (MAR) mechanism [27]. We computed the mean
and standard deviation (s.d.) of EFs per visit and diagnostic group, testing
for differences in means between diagnostic groups at each visit. For the
discovery sample, we fitted LMMs to the longitudinal time course of
lgTMT-B and VDS-B, investigating each phenotype first without the SNP
terms, and subsequently including them. For each SNP, the fitted model
for individual i at visit/time tij with j= 1, 2, 3, 4 was as follows:

Yij ¼ β0 þ β1tij þ β2agei þ β3genderi þ β4diagnosisi þ
P5

k¼1
β4þkPCikþ

b0i þ b1i tij þ cicenteri þ β10SNPi þ β11SNPi � tij þ εij

The LMM adjusted for agei, genderi, diagnosisi, PCik, i.e., age at visit 1,
gender, diagnostic group (affective, psychotic, or control), and the top five
PCs, for each individual i, the latter to correct for population stratification.
We allowed for random intercepts and slopes b0i,b1i of the trajectories and
a random center effect.
For the respective SNP under consideration, we integrated the main

effect (SNPi) and the SNP-by-time interaction (SNPi*tij), where the latter is
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tested (two-sided) for the influence of the SNP on the longitudinal course
(see ref. [28]). The interaction term consisting of SNP × diagnosis × time has
not been investigated due to the limited sample size. We assumed an
additive genetic model with each considered SNP in dosage format. We set
the genome-wide significance level to 5 × 10−8, yielding replication SNPs
(SNPR), and set the level for suggestive significance to 1 × 10−5 for SNPs to
be further explored (SNPNR, not to be replicated). For the replication
sample, we separately determined linkage disequilibrium (LD) blocks with
r2 > 0.8 for both SNP sets, correcting for multiple testing by dividing 5% by
the number of LD blocks for the SNP set [29]. In the end, the SNPR were
contained in a single LD block, so the significance level for replication
could be set to 5%. The significance levels for the exploratory analysis of
the SNPNR were set to 0.05/24= 0.0021 for lgTMT-B and 0.05/12= 0.0042
for VDS-B/LNST, respectively.
For the SNP analysis in the replication sample, we analyzed the

difference (diff) of lgTMT-B (LNST) between the visits as outcome and SNP,
age, gender, diagnosis, and PC’s as covariates. We applied the difference
model, as the LMM above contained too many parameters for the
replication sample with only two measurements (in total: 613 individuals)
and incomplete data resulting in low statistical power (data not shown;
two-sided test). Here, the SNP effect may be interpreted as the difference
between the average change between the genotypes, especially since
SNPR displayed only two genotypes.
We computed LD and haplotypes for Europeans with LDlink [30] and

created a regional plot with gene identification using Locus-Zoom [31].
Finally, the average longitudinal course over time per genotype along with
95% c.i. is displayed for the top SNP.
All statistical analyses were performed with R, version 3.5.1 (https://www.

r-project.org/). The LMM was fitted with the R package lme4 [32] and P
values were computed using the Satterthwaite approximation of the
lmerTest package [33, 34].

RESULTS
Behavioral characteristics of the EFs
Discovery sample. In comparison with controls, the disease
groups were slightly older on average (Table 1). A total of 1272
(1297) individuals had at least one TMT-B (VDS-B) measurement,
demonstrating a similar decrease of available data in each
diagnostic group (Table 2). Missing value patterns did not hint
at any violation of a missing-at-random (MAR) assumption (data
not shown). Figure 1 illustrates the mean longitudinal course of
TMT-B (left) and VDS-B (right) for each diagnostic group with 95%
c.i.s; controls differed significantly from patients (see Fig. 1, c.i.s).
Generally, executive performance increased over time, with
differences between affective and psychotic patients decreasing
over time. An improvement in the respective EF performance is
reflected by a decreased TMT-B score for set-shifting and an
increased VDS-B score for updating. The individual trajectories
were highly variable (Supplementary Fig. 1). The mean difference
between diagnostic groups was significant at each visit when

adjusting for age and gender (see Table 1). Table 3 displays the
time effect estimates in the LMM for each phenotype without SNP
stratified by diagnostic group. For lgTMT-B, the time effect within
each diagnostic group is highly significant and similar across
groups. For VDS-B, the time effects for the two patient groups are
similar, very small, and only nominally significant in the psychotic
group, but larger and highly significant for controls.

Replication sample. We analyzed 1795 genotyped individuals
with at least one TMT-B and LNST measurement (we deleted data
for one individual who had a value larger than the maximum score
of 24). Phenotypes were measured at both visits for 34.2%. The
means of the diagnostic groups at each visit were significantly
different (Table 1) during which the controls had again the best EF
abilities, followed by affective and then psychotic individuals
(Supplementary Fig. 2).

GWAS of the discovery sample
The QQ-plot (Supplementary Fig. 3) demonstrates that the
genomic inflation factor was λ= 1.0034 for lgTMT-B and λ=
0.9999 for VDS-B, hence not indicating any inflation. As illustrated
on the Manhattan plots (lgTMT-B Fig. 2A, VDS-B Fig. 2B) for the
SNP-by-time interaction in the LMM, we identified nine genome-
wide significant SNPs on chromosome 5 (all imputed) in one LD
block (r2 > 0.85) for lgTMT-B, and none for VDS-B. For lgTMT-B, 99
SNPs were suggestive, for VDS-B 88.
For the nine genome-wide significant SNPs of the GWAS,

Supplementary Table 1 displays estimates for the effect of the
SNP-by-time interaction on lgTMT with 95% c.i. and P values. The
top SNP rs150547358 (P value= 7.2 × 10−10) had an effect of 1.16
(95% c.i. 1.11–1.22) seconds per measurement (spm) in the
discovery sample on the original TMT-B scale. We present the
mean plot for the top SNP in Fig. 2C, where the TMT-B score
increases over time for heterozygotes with risk allele “C”. Figure 2D
displays the regional Manhattan plot with three genes in or near
the nine significant SNPs. Four of them, including rs150547358,
are located in an intron region of ring finger protein 180 (RNF180)
(Supplementary Table 1). Other genes located nearby are
regulator of G protein signaling 7 binding protein (RGS7BP) and
5-hydroxytryptamine receptor 1A (HTR1A), but neither contained
any of the nine SNPs. For the SNP main effect, also included in the
model, we did not observe any genome-wide significant SNPs
(Supplementary Fig. 4; P < 5 × 10−8).

Difference analysis of the replication sample
The analysis of the differences also identified the top SNP,
rs150547358, as significant (P= 0.015), and thus replicated this
GWAS-significant LD block. The effect estimate for the top SNP

Table 1. Characteristics at visit 1 in discovery sample and replication sample by diagnostic group.

Study sample Phenotypes Diagnostic groups mean (s.d.) or percentage (%) Group difference

Affective Psychotic Controls P value

Discovery sample Age 44.6 (13.4) 41.1 (12.1) 37.1 (15.6) –

Females 49.8 % 39.6 % 58.1 % –

TMT-B 83.9 (42.6) 92.3 (41.3) 59.4 (25.1) <2 × 10−16

VDS-B 6.2 (2.1) 5.5 (2.0) 7.3 (2.9) <2 × 10−16

Replication sample Age 37.6 (13.4) 38.4 (11.3) 34.1 (12.6) –

Females 63.9 % 44.6 % 63.0 % –

TMT-B 57.7 (23.9) 73.6 (30.9) 48.8 (18.6) <2 × 10−16

LNST 15.7 (3.3) 13.4 (3.5) 16.8 (3.2) <2 × 10−16

The proportion of females (%), means of age (years), TMT-B, and VDS-B/LNST with standard deviation (s.d.).
We tested for differences in means between the diagnostic groups for lgTMT-B and VDS-B. Results are only displayed for visit 1 as results for the other visits
proved to be similar.
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was 0.85 (95% c.i. 0.74–0.97) on the original scale and the highest
effect size in the scale of the analysis (greatest negative effect).
The estimates for the other SNPs were slightly larger when
transformed back to the original scale and also positive (see
Supplementary Table 1 for the summary).
Exploratory analysis of the GWAS-suggestive SNPNR in the

replication sample yielded no significant results after multiple
testing corrections for either phenotype (Supplementary Fig. 5).

DISCUSSION
We performed a GWAS on the longitudinal course of EFs and
detected nine SNPs within the same LD block associated with
change over a relatively short period of time (∼1.5 years) in the EF
core skill set-shifting. Importantly, we were able to replicate a
significant result for this LD block in an independent sample,
which was observed in a heterogeneous population including
controls and different psychiatric disorders of the affective-to-
psychotic spectrum across age groups. Analysis of TMT-B
performance of C-allele carriers, in contrast to the AA genotype,
revealed a pronounced slowing over time.
Recently, the analysis of longitudinal data has come to the fore

in genetic research. Multiple methods have been developed to
perform GWAS with longitudinal data [35–40] for binary as well as
continuous phenotypes. These analysis methods are mostly
applied to analyze long-term developments of the investigated
phenotypes [41, 42], as most data comprise multiple measure-
ments over a relatively long period of time. These longitudinal
studies often detect group effects [8] based on age or baseline
cognitive functions, for example. To date, short-term variability, for
example with respect to the longitudinal course of schizophrenia
has been found as reviewed [8], but without considering a
potential genetic effect. In our longitudinal GWAS, we enter
uncharted territory as we study short-term courses of cognitive
phenotypes in relation to the genetic background. The discovery
sample, the PsyCourse Study, is unique in this sense, as it assesses
the phenotypes multiple times in a very heterogeneous sample
over a relatively short period of time (18 months). Here, the main
interest is the observation of short-term changes specific to a
phenotype, such as EF skills, and the use of newly identified
characteristics to detect genotype–phenotype associations. The
genetic variants found in this study may, if further replicated, be
used to improve clinical evaluation of the longitudinal course of EF
skills. Knowledge of the genetic status of a patient may, in the
future, enhance the interpretation of the course of EF abilities e.g.,
during psychiatric treatment. Moreover, special training programs
could support patients with a known genetic disposition to lack
improvement over time. To our knowledge, no other study has
performed such analyses to date.

Behavioral results
Prior to our GWAS, we studied the short-term courses of changes
in cognitive abilities, focusing on the differences between the
diagnostic groups considered. In the discovery sample, we
observed an identical pattern for both phenotypes: psychotic
individuals demonstrated the lowest EF abilities, followed by those
with affective disorders and then the control individuals. This
greater EF impairment in psychotic individuals compared to
controls is well-documented, as exemplified by [43]. However,
regarding the impairment difference between bipolar (affective)
and schizophrenic (psychotic) patients, there are various studies
[43–48] analyzing these differences. The hypothesis exists that
bipolar patients demonstrate less severe impairment in compar-
ison to schizophrenic patients [49]. Some studies [44, 46, 48] lend
their support to this hypothesis, though not always statistically
significant, whereas others detected similar levels of impairment
in symptomatic patients [45, 47]. In our analysis, we observed a
statistically significant difference between affective and psychoticTa
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individuals at visit 1 but detected a decline in these discrepancies
over time. The abilities of these two diagnostic groups converged
with patients from the psychotic group displaying an improve-
ment in their skills and patients from the affective group
presenting a more constant course. Documentation of the EF
convergence is only possible thanks to the longitudinal design of
the discovery sample and represents a great advantage of this
study design.
Owing to the slightly different age structure of the two study

samples, with the discovery sample being minimally older on
average at visit 1, we further observed the impact of age reflected
by the minimally lower average test score. That is, the discovery
sample had lower VDS and greater TMT-B scores than the
replication sample. The TMT-B mean scores may also be
influenced further by the different cutoff thresholds of 300 s in
the discovery sample and 180 s for the replication sample.

Genome-wide association studies
To our knowledge, the LD block comprising the nine SNPs we
detected for the set-shifting ability has been not identified in any

GWAS before. These SNPs are part of two common haplotypes,
that is, 97.7% carry the haplotype consisting of the major alleles
and 1.7% have the rare haplotype with only minor alleles in
European populations [30]. However, we did not observe different
allelic distributions between the three diagnostic groups (Supple-
mentary Table 2). We displayed the longitudinal course for the two
genotypes “AC” and “AA” of the top SNP rs150547358, observing a
steady increase in the TMT-B score for “AC” and an almost
unchanging course for “AA”. Consequently, the minor allele C was
associated with a decline in the set-shifting ability of ~5 s over a
period of 18 months for AC with a large c.i. at the last visit owing
to the small number of available heterozygous individuals. This
result reflects a relatively high decrease in the ability over this
short period. Furthermore, it portrays a highly interesting
observation, which is further underpinned when we consider
the genetic region of the nine SNPs. Variant rs150547358, the
significantly replicated SNP, is one of four associated SNPs directly
located in the ring finger protein 180 (RNF180) gene on
chromosome 5q12.3. It is an E3 ubiquitin-protein ligase [50],
whose product is involved in protein modification. RNF180 is

Fig. 1 Longitudinal course of TMT-B score (time in seconds, left) and VDS-B score (working memory capacity, right) for each diagnostic
group in the discovery sample. Displayed are means with 95% confidence interval for each visit 1, 2, 3, 4, ~6 months apart.

Table 3. Results of the LMM of the discovery sample to test the time effect on lgTMT-B and VDS-B within each diagnostic group.

EF core skill TMT-B VDS-B

Diagnostic groups Time effect (t) β 95% c.i. P value β 95% c.i. P value

Affective 0.957 0.94, 0.97 9.8 × 10−09 0.076 0, 0.15 0.053

Psychotic 0.950 0.94, 0.96 <2 × 10−16 0.086 0.02, 0.15 0.011

Controls 0.947 0.93, 0.96 6.1 × 10−11 0.288 0.17, 0.41 2.7 × 10−06

The effect estimates β of lgTMT-B are transformed back to their original scale.
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associated with the regulation of monoamine levels in different
brain regions, for example, the prefrontal cortex (PFC) in RNF180
knockout mice [51]. The PFC is a critical part of the frontal lobe in
the development of EFs [4, 52]. Another gene located in the
nearby region, HTR1A (5-hydroxytryptamine receptor 1A), is an
important receptor of serotonin (5-HT) also essential to the
prefrontal lobe. More importantly, HTR1A is an autoreceptor,
located on the cell bodies of serotonin-synthesizing neurons of
the brainstem dorsal raphe nucleus, helping to maintain home-
ostasis in serotonergic function [53]. Furthermore, a genetic
polymorphism in the 5-HT system has previously been implicated
in EF performance [12].

In an additional exploratory gene-set analysis performed with
MAGMA v1.06 as a part of the FUMA pipeline (https://fuma.ctglab.nl/)
[54], we did not receive significant (Bonferroni-corrected P values
≤0.05) pathways for either phenotype.
Our results are a first step in the direction of understanding the

molecular genetic influences on the longitudinal course of EFs. We
were unable to consider the third core ability, inhibition, which
also plays an important role for EF, because we could not fulfill a
specific assessment requirement resulting from the multicenter
and interview-based structure of the discovery sample [20]. Many
unknown factors remain, such as the genetic aspects due to the
correlation of the different EF abilities, as we only concentrated on

Fig. 2 Results of the genome-wide association studies of the discovery sample. A Manhattan plot of the GWAS of lgTMT-B in the discovery
sample. The lines in (A) and (B) indicate the thresholds for the genome-wide significance of 5 × 10−8 (red) and for suggestive SNPs (blue, P ≤
1 × 10−5). B Manhattan plot of the GWAS of VDS-B in the discovery sample. C Mean profile of TMT-B by the top SNP rs150547358 genotypes
for the discovery sample (1039 AA, 28 AC, 0 CC) with the 95% confidence intervals. D GWAS regional Manhattan plot of chromosome 5 for
lgTMT-B of the discovery sample. Colors indicate the LD values (r2) of SNPs with rs150547358 (in purple).
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individual EF core skills in two separate analyses. According to the
“unity but diversity” concept [11] that also concerns the genetic
underpinnings of the EFs, a genetic study of a latent common
factor needs to follow. Further, we need to acknowledge the
problem of missing data which is a great challenge in longitudinal
studies as presented in our samples. Here, selecting the correct
analysis method, e.g., linear mixed models are imported but
generally, more longitudinal studies with multiple time points and
greater sample sizes will be required to unmask further time and
genomics interactions [19].

CODE AND DATA AVAILABILITY
R code and data will be available upon reasonable request by the authors. The
summary statistics of our analysis will be published in the GWAS Catalog (https://
www.ebi.ac.uk/gwas/).
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Kalpra: A kernel approach for
longitudinal pathway regression
analysis integrating network
information with an application
to the longitudinal PsyCourse
Study
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A popular approach to reduce the high dimensionality resulting from genome-

wide association studies is to analyze a whole pathway in a single test for

association with a phenotype. Kernel machine regression (KMR) is a highly

flexible pathway analysis approach. Initially, KMR was developed to analyze a

simple phenotype with just one measurement per individual. Recently,

however, the investigation into the influence of genomic factors in the

development of disease-related phenotypes across time (trajectories) has

gained in importance. Thus, novel statistical approaches for KMR analyzing

longitudinal data, i.e. severalmeasurements at specific time points per individual

are required. For longitudinal pathway analysis, we extend KMR to long-KMR

using the estimation equivalence of KMR and linear mixed models. We include

additional random effects to correct for the dependence structure. Moreover,

within long-KMR we created a topology-based pathway analysis by combining

this approach with a kernel including network information of the pathway. Most

importantly, long-KMR not only allows for the investigation of the main genetic

effect adjusting for time dependencies within an individual, but it also allows to

test for the association of the pathway with the longitudinal course of the

phenotype in the form of testing the genetic time-interaction effect. The

approach is implemented as an R package, kalpra. Our simulation study

demonstrates that the power of long-KMR exceeded that of another KMR

method previously developed to analyze longitudinal data, while maintaining

(slightly conservatively) the type I error. The network kernel improved the

performance of long-KMR compared to the linear kernel. Considering

different pathway densities, the power of the network kernel decreased with

increasing pathway density. We applied long-KMR to cognitive data on
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executive function (Trail Making Test, part B) from the PsyCourse Study and

17 candidate pathways selected from Reactome. We identified seven nominally

significant pathways.

KEYWORDS

pathway analysis, kernel machine regression, longitudinal data, network, PsyCourse
Study

1 Introduction

Pathway analyses or gene-set analyses are association

studies, which test whole gene sets or pathways for

association with a phenotype of interest (Holmans, 2010;

Mooney and Wilmot, 2015). In contrast to a genome-wide

association analysis (GWAS) in which a great number of

individual SNP association tests are performed, a smaller

group of genes or SNPs is tested simultaneously. Thus, the

multiple testing problem of a GWAS is tremendously

mitigated. In the last two decades, many different general

approaches and particular tools have been developed for

pathway analysis (Holmans, 2010; Mooney and Wilmot,

2015; de Leeuw et al., 2016).

In this paper, we focus on kernel machine regression (KMR)

(Liu et al., 2007; Ge et al., 2016), a machine-learning algorithm

(Liu et al., 2007) with great flexibility. KMR is a semi-parametric

regression analysis (Liu et al., 2007) initially designed to analyze

case-control studies (Liu et al., 2008; Wu et al., 2010; Wu et al.,

2011) or quantitative data (Liu et al., 2007; Wu et al., 2011; Ge

et al., 2016). KMR models the environmental (non-genetic)

parameters parametrically and the high-dimensional genetic

data (e.g., genotype information) non-parametrically (Liu

et al., 2007; Freytag et al., 2013). The genetic data are

transformed into a similarity matrix containing for every pair

of individuals quantitative values, which describe the genetic

similarities of the pairs of individuals (Schaid, 2010; Ge et al.,

2016). This matrix is denoted as kernel matrix. The

transformation is performed by a kernel function, which can

have different forms depending on the desired similarity concept

(Freytag et al., 2013). There are many possibilities to model a

pathway as the only requirement of the kernel function is to be

positive semidefinite (Schaid, 2010; Schaid, 2010) For example, a

popular kernel is the linear kernel (Wu et al., 2010; Freytag et al.,

2013). New kernels have been also defined, e.g., a kernel adjusting

for size bias (Freytag et al., 2012) or a kernel integrating the

network information of a pathway (Freytag et al., 2013). The

latter was possible thanks to the development of different

pathway databases, e.g., Reactome (Jassal et al., 2019),

Pathway Commons (Rodchenkov et al., 2019) or KEGG

(Kanehisa et al., 2017). Different versions and extensions of

KMR have been developed to address various research

questions (for a summary see (Larson et al., 2019)). KMR

analyzing more complex phenotype data, e.g., family samples

(Malzahn et al., 2014; Yan et al., 2015) is just one example.

Longitudinal studies assess multiple, thus correlated,

measurements over time for each single individual

(Molenberghs and Verbeke, 2000; Caruana et al., 2015). They

enable researchers to study the time course of the investigated

phenotype. A number of statistical methods have been and are

still being developed especially in this context. An important

aspect of longitudinal studies is the frequently high number of

missing data or unequal measurement points (Caruana et al.,

2015). A popular method to overcome this challenge are linear

mixed models (LMM) (Molenberghs and Verbeke, 2000) in

which so-called random effects are added to correct for the

dependence structure of the different measurements. A

random effect enables the modeling of an individual

development for each subject. LMMs can handle missing

phenotype data under the assumption that the data are at

least missing at random (MAR) (Molenberghs and Verbeke,

2000).

In the genetic context, these LMMs can be applied to perform

longitudinal GWASs (Wendel et al., 2021). Using this, we

previously (Wendel et al., 2021) investigated the genetic

influence of individual SNPs on the course over time of

executive functions, which control and coordinate mental

processes. These GWASs demonstrated the versatility of

LMMs in genetic association studies. Thus, the next step is to

investigate pathways for association with longitudinal

phenotypes, for example, the genomic basis of the

longitudinal course of executive functions. For this, we can

exploit that LMMs share an estimation equivalence with KMR

models (Liu et al., 2007).

The aim of this work is to develop a longitudinal pathway

analysis to test for the association between genetic factors and the

longitudinal phenotype applying KMR and simultaneously

allowing integrating network information. To be able to

analyze longitudinal data, we extended KMR to long-KMR.

Other authors have also studied longitudinal data (Yan et al.,

2015; Ge et al., 2016; Wang et al., 2016) and created a KMR

extension (Yan et al., 2015; Yan et al., 2018). However, in this

extension only single genes can be tested for association (Yan

et al., 2018) and these genes can solely be modeled with a

weighted linear kernel. In our longitudinal pathway analysis,

the whole pathway can be modeled with different kernels

respectively prior to testing. For example, a linear kernel or a

network-based kernel (Freytag et al., 2013), which enables the

integration of network information in KMR can be applied.

Moreover, different genetic effects including main, interaction,
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and joint genetic (main and interaction) effects can be

considered. Thus, in long-KMR, we can model and test not

only a main genetic effect, but most importantly also a genetic

time-interaction effect. The latter translates to an association of

the pathway with the trajectory of the considered phenotype.

In a simulation study, we assessed the properties of long-

KMR regarding several aspects. We considered longitudinal

studies with two and four measurement points. We compared

the performance of long-KMR when applying a linear kernel or a

network kernel. We also studied the influence of the pathway

topology on the performance of the network kernel with a focus

on the density of the pathway.

Finally, as a real-world application, we use long-KMR on the

data from our previous longitudinal GWASs (Wendel et al.,

2021) on executive functions of the PsyCourse Study (Budde

et al., 2018). For this phenotype we chose several candidate

pathways to be investigated with long-KMR.

In summary, in this paper we first present the theoretical

aspects of long-KMR and the network kernel. We then describe

the simulation approach used to evaluate our method, and, lastly,

provide a real-world example of long-KMR.

2 Material and methods

In this section, we introduce the KMR analysis and its

extension to analyze longitudinal data. We describe our

simulation approach to investigate the type I error rate and

power. Lastly, we present an application of long-KMR as example

and give details on the PsyCourse Study data and the

pathways used.

2.1 Kernel machine regression models

Let us assume yi is a quantitative phenotype for individual

i (i � 1, . . . , n) with one measurement point per individual. We

assume for the entire article that the pathway tested is

represented as genotypes of the SNPs part of the pathway.

The SNPs are coded as 0, 1, or 2, representing the number of

minor alleles of the SNP in individual i. The genetic information

for individual i of all selected SNPs s is stored as genotype vector

gi. We regress gi on our phenotype of interest by applying the

following model:

yi � xiβ + h gi( ) + εi,

where yi is the phenotype of interest for individual i, xi represents

potential covariates, β is the regression coefficient vector, and h is a

non-parametric function. This function h ∈ HK, where HK is a

reproducing kernel Hilbert space with an inner product (Schaid,

2010; Ge et al., 2016). The reproducing kernel Hilbert space is

generated by a positive semidefinite kernel function k (Liu et al.,

2007; Ge et al., 2016). The mathematical characteristics of the

reproducing kernel Hilbert space (e.g., inner product) allows

approximating h as a linear combination of the kernel function k

(Liu et al., 2007; Schaid, 2010; Ge et al., 2016). The “kernel trick” (Ge

et al., 2016) specifies hereby that any positive semidefinite kernel

function can be used as k. We define the corresponding kernel

matrixK asK ≔ k(gi, gj) for any pair of individuals i and j of the
associated kernel function k (Schaid, 2010; Ge et al., 2016). Here, we

transform the high-dimensional n × s genotype matrix into a n × n

similarity matrix. The kernel matrix K describes the similarity

between each pair of individuals. By choosing a kernel, we can

specify how to model the concept of genetic similarity. For example,

we can use the popular linear kernel (LIN), which computes the

similarity for each pair of individuals i and j by multiplying their

genotype vectors gi and gj. The kernel matrix contains the elements

K(gi, gj) � gT
i gj (matrix notation: K � GGT). The linear kernel

assumes that each SNP contributes a random independent value in

an additive manner (Freytag et al., 2013). For the above model, we

assume that the random error εi ~ N (0, σ2ε ) and h ~ N (0, τK)
with K being the kernel matrix and τ a variance component. The

null hypothesis of our association test isH0: h � 0 being equivalent

to H0: τ � 0 (Liu et al., 2007; Wu et al., 2011). To test for

association, we perform a variance component test (Liu et al.,

2007; Wu et al., 2011).

The KMR model can be read as a LMM with h being

interpreted as a random effect (Liu et al., 2007; Ge et al.,

2016). The above model for a quantitative phenotype with

one measurement per individual can also be described as

LMM (in matrix notation) (Liu et al., 2007; Ge et al., 2016):

y � Xβ + h + ε,

where y is the vector of phenotypes for n individuals, X is the

design matrix, β is the regression coefficient vector of the fixed

effects, h ~ N (0, τK) is the random effect vector with K being

the kernel matrix, the random error ε is normally distributed. The

variance component test for this model (Liu et al., 2007; Ge et al.,

2016) is:

Qcross � 1
2σ2ε

y −Xβ̂0( )TK y −Xβ̂0( ),
where β̂0 are the estimates of the fixed effects under H0. For the

longitudinal extension, we adjust for the dependence structure of

the multiple measurements in the longitudinal data by including

additional random effects (Molenberghs and Verbeke, 2000).

Now we assume that yi is a quantitative longitudinal phenotype

for individual i (i � 1, . . . , n) with m measurement points. The

long-KMR model for individual i is:

yi � Xiβ + h gi( ) + Zibi + εi,

where yi is the phenotype vector of individual i, β is the fixed

effect vector, and bi the random effect vector. We assume that

only two random effects are added (random intercept and slope
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for time). Thus, we assume that bi ~ N (0, Di) with Di being a

2 × 2 covariance matrix and εi ~ N (0, Ri)withRi being am × m

covariance matrix, bi and εi are uncorrelated. Xi and Zi are two

designs matrices for the fixed and random effects, respectively.

The genotype vector gi and function h are given as above. To

obtain the test statistic of the extended variance component test,

we followed the steps proposed by (Liu et al., 2007; Yan et al.,

2015). Therefore, we look at the longitudinal model in matrix

notation considering the whole dataset:

y � Xβ + h G( ) + Zb + ε

where y is the phenotype vector, h ~ N (0, τK), b ~ N (0, D)
(D � diag(D1, . . . , Dn)) and ε ~ N (0, R) with

R � diag(R1, . . . , Rn). The design matrices are X �
(X1, . . . , Xn)T for the fixed effects and Z � diag(Z1, . . . , Zn)
for the random effects, with β and b being the fixed and random

effect vectors, respectively. The null hypothesis remains

H0: τ � 0. The altered test statistic is:

Qlong � 1
2

y −Xβ̂0( )TΣ̂−1
0 KΣ̂

−1
0 y −Xβ̂0( ),

where β̂0 are the estimates of the fixed effects under H0 and Σ̂
−1
0

are the inverse of the covariance-variance matrix under H0 with

Σ̂0 � R̂0 + ZD̂0ZT. The test statistic is a quadratic form and

follows a mixture of χ2 distributions with Qlong ~ ∑L
l�1λlχ21,

where λl are the eigenvalues of 12 V0
1
2Σ̂

−1
0 K Σ̂

−1
0 V0

1
2 withV0 � Σ̂0 −

X(XTΣ̂
−1
0 X)−1XT (Yan et al., 2015; Ge et al., 2016). We

computed the p-values with the Davies method (Davies, 1980).

Next, we will apply long-KMR to test a genetic (G)

interaction effect with time (t). Here, we multiply the time

vector of individual i, ti � 0, . . . , m − 1 with the genotype

vector gi of individual i. In addition to the main genetic

kernel (h(G)) this extended model contains a kernel

modelling the genetic time interaction effect (t × G, further

denoted as time-interaction effect). In matrix notation (whole

dataset) the model is:

y � Xβ + h1 G( ) + h2 t × G( ) + Zb + ε,

where ε ~ N (0, R), h1(G) ~ N (0, τ1K1) and

h2(t × G) ~ N (0, τ2K2). The notation follows the previous

long-KMR in matrix notation. When fitting the LMM in this

interaction model, we have to integrate K1 as random effect in

form of a variance-covariance matrix. This is complex and

computationally very extensive. We use two different

approaches to reduce the computation time. For the first

approach, we only include h2(t × G) in our model without

adjusting for the main genetic effect (h1(G)) altering the

LMM independent of any kernel matrix under the null

hypothesis. For the second approach, we adjust for the main

genetic effect by performing a principal component analysis

(PCA) on K1. This so-called kernel principal component

analysis (KPCA, (Schölkopf et al., 1997; Schölkopf et al.,

1998)) has been previously applied in different situations

(Schölkopf et al., 1997; Schölkopf et al., 1998; Gao et al.,

2011). We replace h1(G) by a number of top principal

components, which are added as fixed effects. By only

including additional fixed effects, we avoid complex variance

structures while adjusting for the main genetic effect. In both

approaches, we are interested in testing K2, modeling the time-

interaction effect for association. The null hypothesis is defined

asH0: τ2 � 0. The test statistic of long-KMR is slightly altered, as

K of Qlong is exchanged with K2 modeling the time-interaction

effect.

2.2 Network kernel

In long-KMR, we can also integrate network information on

the studied pathway by applying the network-based kernel

(Freytag et al., 2013) (noted as network kernel in the

following). The network kernel is defined as K � GANATGT,

where G is the genotype matrix with the genotypes for each

individual, A is an annotation matrix and N is an adjacency

matrix of the pathway. The annotation matrix contains elements

aργ ∈ (0, 1) describing whether a SNP ρ (ρ = 1, . . ., s) is mapped

to the gene γ (=1) or not (=0). The assignment of a SNP to a gene

is defined by its genomic location. We can adjust for different

gene sizes (= number of SNPs mapped) by dividing aργ by the

square root of the number of SNPs mapped to gene

γ (Freytag et al., 2013). The size-adjusted annotation matrix

replaces A in the network kernel. We distinguish these

network kernels by denoting the unadjusted kernel as NET

and the size-adjusted network kernel as ANET [similar to

(Freytag et al., 2013)]. The elements of the quadratic

adjacency matrix for a pathway are nγγ′ � 1, if genes γ and γ′
interact with each other, or zero otherwise. By definition (Freytag

et al., 2013), the genes all interact with themselves; thus, the main

diagonal of N contains only ‘1’s. We do not distinguish between

the different types of gene interaction (e.g., activation and

inhibition) owing to the characteristics of the studied

pathways (more details later). We slightly modify the network

(topology) of the pathway to ensure a positive semidefinite

kernel. We do not describe the details of these modifications

here; please refer to (Freytag et al., 2013) for more details.

2.3 Simulation study

We studied type I error rates and power in different scenarios

to assess the performance of long-KMR for different genetic

effects and the network kernel. The type I error rate is defined as

the proportion of simulations that have a p-value < α in the

simulations of the model with no genetic effects (null model).

Here we set α to equal 5%, 1%, 0.5%, and 0.1%, respectively. In

the scenarios in which we simulated genetic effects, we

determined the power as the proportion of simulations with a
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p-value <5% threshold. In total, we compared the power for three

different genetic effect models. We simulated two single-effect

models containing either a main genetic effect or a time-

interaction effect. We also created a more complex model, the

joint model, which comprises a main genetic effect and a time-

interaction effect. The joint model was only studied in a limited

number of scenarios, as portrayed in Table 1. For the single-effect

models, we had the same scenarios to evaluate the type I error

rates and the power. We assessed the influence of the number of

measurement points comparing two-measurement models with

four-measurement models. The type I error rates and respective

power of the linear kernel (LIN) and the network kernel (NET)

were compared. For the latter, we only used the unadjusted

network kernel (NET), as all genes had the same size. For two

measurement points representing a pre/post-analysis, we applied

the ANCOVA model (Table 1) to compare their performances

with long-KMR. For the four-measurement models, we

compared the performance of long-KMR with the previously

TABLE 1 Models of simulation study.

Model names Kernel Statistical model
(without
genetic effect)

Phenotype data Genetic effect model

Main
genetic

Time-
interaction

Joint

Two-measurement models

KMR-LIN-ANCOVA Linear kernel ANCOVA:
y2 � β0Xi + β1y1 + ε

complete data * * —

KMR-LIN-m2 Linear kernel KMR
(LMM): y � Xβ + Zb + ε

complete data * * —

KMR-LIN-m2_25MAR 25% missing
data (MAR)

* * —

KMR-NET-d0.8-m2 Network kernel (pathway
d = 0.8)

KMR
(LMM): y � Xβ + Zb + ε

complete data * * —

KMR-NET-d0.8-m2_25MAR 25% missing
data (MAR)

* * —

KMR-NET-d0.5-m2 Network kernel (pathway
d = 0.5)

KMR
(LMM): y � Xβ + Zb + ε

complete data * * —

KMR-NET-d0.5-m2_25MAR 25% missing
data (MAR)

* * —

KMR-NET-d0.2-m2 Network kernel (pathway
d = 0.2)

KMR
(LMM): y � Xβ + Zb + ε

complete data * * —

KMR-NET-d0.2-m2_25MAR 25% missing
data (MAR)

* * —

Four-measurement models

KMR-LIN-m4 Linear kernel KMR
(LMM): y � Xβ + Zb + ε

complete data * * *

KMR-LIN-m4_25MAR 25% missing
data (MAR)

* * —

KMR-LIN-m4_50MAR 50% missing
data (MAR)

* * —

KMR-NET-d0.8-m4 Network kernel (pathway
d = 0.8)

KMR
(LMM): y � Xβ + Zb + ε

complete data * * *

KMR-NET-d0.8-m4_25MAR 25% missing
data (MAR)

* * —

KMR-NET-d0.8-m4_50MAR 50% missing
data (MAR)

* * —

KMR-NET-d0.5-m4 Network kernel (pathway
d = 0.5)

KMR
(LMM): y � Xβ + Zb + ε

complete data * * *

KMR-NET-d0.5-m4_25MAR 25% missing
data (MAR)

* * —

KMR-NET-d0.5-m4_50MAR 50% missing
data (MAR)

* * —

KMR-NET-d0.2-m4 Network kernel (pathway
d = 0.2)

KMR
(LMM): y � Xβ + Zb + ε

complete data * * *

KMR-NET-d0.2-m4_25MAR 25% missing
data (MAR)

* * —

KMR-NET-d0.2-m4_50MAR 50% missing
data (MAR)

* * —

KMgene (comparison model)
(Yan et al., 2018)

Weighted linear kernel KMR
(LMM): y � Xβ + Zb + ε

complete data * — —

For each model, the kernel, the applied statistical models and the used phenotype data sets are displayed. For network kernel the pathway density (d) is given. The phenotype data can be

complete or with 25/50% of values missing at random (MAR). The addressed genetic effects (main genetic, time-interaction and joint effect) are indicated with an asterisk “*”.
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published KMgene package (Yan et al., 2018). Further, we

compared the analysis of complete phenotype data with

incomplete phenotype data with 25% or 50% of the data

missing [assuming missing at random mechanism (MAR)].

To evaluate the performance of the network kernel on

pathways with different characteristics, we focused on the

density (=d) of a pathway. This density is a graph-theoretical

characteristic defined as the ratio of the number of present

connections divided by the maximum number of possible

connections in a pathway (d ∈ [0, 1]). When we consider a

pathway as a graph in which the genes are the nodes and the

connections of the genes are the edges linking the nodes, the

density can be computed straightforwardly. We determined the

density of the original pathway after downloading the pathway

from the Reactome database, applying the igraph package (Csardi

and Nepusz, 2006). We selected the “signaling by ERBB4”

pathway [R-HSA-1236394, (Stern, 2019)] as foundation

pathway for our simulation study. The selection process for

“signaling by ERBB4” is described in detail in the section

Pathway Data. The “signaling by ERBB4” pathway has a

density of 0.46 but we denoted the pathway as d0.5 after

rounding up d = 0.46 (Figure 1A). In addition, we created

two artificial pathway topologies with different density

originating from the original “signaling by ERBB4” pathway.

We generated a high-density pathway with d = 0.81 (denoted as

d0.8, Figure 1B) and a low-density pathway with d = 0.20 (d0.2,

Figure 1C). Table 1 lists all the models studied with an overview

of the different settings.

We sampled genotypes for 10,000 individuals with

HAPGEN2 (Su et al., 2011) using common (MAF ≥ 0.05)

variants of chromosome one of the CEU sample of the

International HapMap Project (HapMap 3 release 2)

(Altshuler et al. 2010). In analogy to our foundation pathway

“signaling by ERBB4” with 19 genes (Figure 1), we created

19 “pseudo-” genes all with a size of 50 SNPs (in total:

950 SNPs). The 950 SNPs were simulated in the region

between 742 kbp and 112,709 kbp with a separation of

500 kbp between SNPs of the single “pseudo-” genes to

prevent LD. We assign the simulated SNPs to a “pseudo-”

gene. For each simulation setting, we created 100 smaller

genotype matrices each containing 950 SNPs and

1,000 individuals. To achieve this, we randomly drew

genotypes for 1,000 individuals from the previously simulated

10,000 individual sample (elementary matrix). For each of the

100 genotype matrices, we simulated 1,000 quantitative

phenotypes according to the LMM below, resulting in a total

number of 100,000 replications [similar to (Yan et al., 2015)].

For the null model corresponding to the null hypothesis of no

genetic effects, we simulated the quantitative phenotypes

according to the following LMM for an individual

i (i � 1, . . . , 1000):

yi � 0.5*X1i + 0.25*X2i + 0.2*ti + ui,

whereX1i is a binary time-invariant variable with a probability

of 0.5 (e.g., sex of individual i), X2i is normally distributed and

time-invariant with N (50, 5) (e.g., age at first measurement

point) and ti � 0, . . . , m − 1 where m equals the total number

of measurement points (m = 2 or m = 4). Random error and

random effects are modelled by ui, which follow a multivariate

normal distribution with mean zero and Var(yi). Var(yi) is
defined as follows:

Var yi( ) � Zi
σ2intercept σcov
σcov σ2time

( )ZT
i + σ2εIm×m

where Im×m is the identity matrix, σ2intercept � σ2time � σ2ε � 1 and

σcov � −0.5. We selected the parameters similarly to (Yan et al.,

2015). For the missing phenotype simulations, we assumedMAR

FIGURE 1
Graphical illustration of the “signaling by ERBB4” pathway (A) original form without the chemical compound (d0.5), (B) the simulated high-
density pathway (d0.8), (C) the artificially created low-density pathway (d0.2). The red vertices are the three defined causal genes (NRG2, ERBB4 and
DLG4).
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and generated the missing phenotypes with the R package mice

(van Buuren and Groothuis-Oudshoorn, 2011).

For the power simulations, we added genetic effects to our

null model to simulate the phenotypes. All models comprised

three causal “pseudo-” genes each with three causal SNPs (in

total: nine causal SNPs). The effect sizes βk for each SNP had the

same value. The effect size for the joint model was 0.04. For the

single-effect models, we studied three different scenarios with

three different effect sizes β � 0.04, 0.06, and 0.08. To compare

the different network topologies, we defined the genes NRG2,

ERBB4, and DLG4 of the “signaling by ERBB4” pathway as the

causal genes (red nodes, Figure 1) based on their central position

in the pathway. The main genetic effect model adds a sum

consisting of the additive effect of the causal SNPs to the

phenotype (∑9
k�1βk*SNPik) for each individual i. The time-

interaction effect includes only the sum of the product of the

causal SNPs and the time (∑9
k�1βk*(SNPik*tij)) at each time

point j for individual i. The joint model comprised both sums

(∑9
k�1βk*SNPik +∑9

k�1βk*(SNPik*tij)). In the first model, the

main genetic kernel (h(G)) is tested. The latter models test

the time-interaction kernel (h(t × G)) for association. In the

joint model, the main genetic kernel was computed with the

linear kernel. Here, we performed a principal component analysis

on the main genetic kernel to adjust for the main genetic effect to

simplify computational complexity and gain speed.We added the

top two principal components as fixed effects to our model.

To compare the type I error rate and power of long-KMR

with KMgene (Yan et al., 2015; Yan et al., 2018) we performed a

simulation with KMgene for 1,000 individuals and four

measurement points. Here, only the main genetic effect model

was simulated because of the characteristics of KMgene (Yan

et al., 2018). For every simulated gene (in total: 19, each with

50 SNPs), we obtained a gene-level p-value, which we combined

with the Fisher’s method (Fisher, 1925; Larson et al., 2017) to

receive a pathway p-value. This p-value combination was

performed with the R package metap (Dewey, 2022).

2.4 Application to real data

2.4.1 The PsyCourse Study
The PsyCourse Study is a longitudinal, multi-center study

comprising patients with diagnoses from the affective-to-

psychotic spectrum and neurotypical individuals. A large

battery of different phenotypes, including demographics,

cognition, self- and observer rating scales, are assessed at up

to four measurement points each 6 months apart (Budde et al.,

2018). For our application, we analyzed 1,594 genotyped

individuals including patients from the affective-to-psychotic

spectrum (411 bipolar I disorder, 113 bipolar II disorder,

466 schizophrenia, 90 schizoaffective disorder,

10 schizophreniform disorder, 6 brief psychotic disorder and

94 with recurrent depression) and 404 control individuals. The

diagnoses were determined according to the criteria in the

Diagnostic and Statistical Manual of Mental Disorders, Fourth

Edition (DSM-IV); a subset of individuals suffering from

schizophrenia (45 individuals) was diagnosed according to

ICD-10 criteria. Different centers in Germany and Austria

conducted the recruitment of the study participants. All

individuals provided written informed consent, and the study

protocol was approved by the respective ethics committees at

each study center [see ref. (Budde et al., 2018)]. Based on their

symptoms, the individuals were broadly distinguished into an

“affective” group (618, predominantly affective symptoms

including bipolar disorder I and II and recurrent depression)

or a “psychotic” group (572, predominantly psychotic symptoms

encompassing schizophrenia, schizoaffective, schizophreniform,

and brief psychotic disorder).

As phenotype of interest, we chose the Trail Making Test,

part B (TMT-B) (Bowie and Harvey, 2006). TMT-B is applied to

assess set-shifting, one of the three latent core skills of executive

functions (Diamond, 2013; Friedman et al., 2016), a specific

group of cognitive abilities. During the test, an individual is

required to connect numbers (numbers: 1–26) and letters of the

alphabet in ascending alternating order, for which the time (in

seconds) to finish this task is measured to represent the test score.

Study participants with a time >300 s were set to 300 s according
to the recommendation by (Strauss et al., 2006). The higher the

TMT-B score of an individual is, the greater the cognitive

impairment.

Genotyping was performed with the Illumina Infinium

Global Screening Array-24 Kit (version 3.0 or version 1.0) and

the imputation took place on the Michigan imputation server

(Das et al., 2016) with the haplotype reference consortium as

reference panel. Quality control (QC) steps were performed

according to standard procedures described elsewhere

(Smigielski et al., 2021). In the analysis, we included

approximately 3.5 million imputed SNPs with a MAF >0.05.
We used PLINK v1.9 (Chang et al., 2015) (https://www.cog-

genomics.org/plink/) to compute the ancestry principal

components.

2.4.2 Pathway data
We focused on pathways on the Reactome database (Jassal

et al., 2019) downloaded from Pathway Commons database

Version 12 (Rodchenkov et al., 2019) (Reactome version 69,

date: 01|14|22). First, we selected pathways based on different

keywords connected to executive functions including dopamine,

serotonin, GABA, glutamate, NDMA, synaptic, voltage-gated

potassium channels, plasticity, and prefrontal cortex. The

keywords resulted in 130 pathways, which we reduced to the

17 pathways finally studied (Table 2). We selected the

17 pathways according to different criteria. First, we only used

pathways that we were able to download. The pathway had to be

between 15 and 100 genes in size, and the number of chemical

compounds (CHEBI) in the pathway had to be at most five. For
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each pathway, we specified the density (d) by applying the igraph

package (Csardi and Nepusz, 2006) and included only pathways

with d ≤ 0.95. The 17 selected pathways with specific

characteristics e.g., number of genes, density, and average

degree are displayed in Table 2. The average degree of a

pathway is the average number of connections of a gene

(=node). Originating from the list of 17 pathways, we chose

“signaling by ERBB4” (Stern, 2019) (https://reactome.org/

content/detail/R-HSA-1236394) as foundation pathway for our

simulation study. This pathway was selected for its moderate size

of 19 genes and because it only contains one CHEBI. The

network consists of only one graph component, also denoted

as connected (i.e., any gene can be reached from any other gene

via a path). Most importantly, the pathway has an intermediate

density of 0.46, which was a good basis for further artificial

pathways we generated with high and low densities. “Signaling by

ERBB4” is connected to schizophrenia (Banerjee et al., 2010) and

schizophrenia endophenotypes, e.g. cognitive functions

(Banerjee et al., 2010; Tian et al., 2017; Shi and Bergson,

2020) and thus is biologically very interesting. We deleted the

CHEBI, as SNPs are the genomic basis in our analysis and a

CHEBI cannot be assigned.

2.4.3 Statistical analysis
Each of the 17 pathways was tested for association with

TMT-B. To fulfil the normality assumption, the TMT-B was log-

transformed (lgTMT-B). We included the following fixed effects

in the model: sex, age at first measurement point, diagnostic

TABLE 2 Selected pathways investigated in the real-data example.

Pathway name Reactome
identifier
(R-HSA-xxx)

URL Pathway Characteristics

No.
Genes

Average
degree

Density
(d)

NCAM1 interactions 419037 https://reactome.org/content/detail/
R-HSA-419037

37 3.40 0.093

Receptor-type tyrosine-protein phosphatases 388844 https://reactome.org/content/detail/
R-HSA-388844

20 3.10 0.163

MECP2 regulates neuronal receptors and channels 9022699 https://reactome.org/content/detail/
R-HSA-9022699

18 3.00 0.177

EPHB-mediated forward signaling 3928662 https://reactome.org/content/detail/
R-HSA-3928662

33 7.45 0.233

Synaptic adhesion-like molecules* 8849932 https://reactome.org/content/detail/
R-HSA-8849932

22 4.67 0.233

Transcriptional Regulation by MECP2 8986944 https://reactome.org/content/detail/
R-HSA-8986944

17 4.00 0.250

Neurexins and neuroligins 6794361 https://reactome.org/content/detail/
R-HSA-6794361

57 14.39 0.257

EPH-Ephrin signaling 2682334 https://reactome.org/content/detail/
R-HSA-2682334

22 5.45 0.260

Regulation of MECP2 expression and activity 9022692 https://reactome.org/content/detail/
R-HSA-9022692

31 8.00 0.267

Signaling by ERBB4* 1236394 https://reactome.org/content/detail/
R-HSA-1236394

19 8.32 0.462

Trafficking of AMPA receptors 399719 https://reactome.org/content/detail/
R-HSA-399719

17 7.88 0.493

NCAM signaling for neurite out-growth* 375165 https://reactome.org/content/detail/
R-HSA-375165

21 11.00 0.524

Assembly and cell surface presentation of NMDA
receptors

9609736 https://reactome.org/content/detail/
R-HSA-9609736

24 12.08 0.525

Interaction between L1 and Ankyrins 445095 https://reactome.org/content/detail/
R-HSA-445095

29 20.28 0.724

Negative regulation of NMDA receptor-mediated
neuronal transmission

9617324 https://reactome.org/content/detail/
R-HSA-9617324

21 16.86 0.843

Long-term potentiation* 9620244 https://reactome.org/content/detail/
R-HSA-9620244

23 19.22 0.874

Ion channel transport* 983712 https://reactome.org/content/detail/
R-HSA-983712

24 21.83 0.949

The pathways are listed according to ascending density and with links to their Reactome entry. The foundation pathway in our simulation study is printed in bold, the pathways with a

p-value <0.1 in our application are further discussed and are labelled with an asterisk “*“.
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group (affective, psychotic, and control), time, and the top five

ancestry principal components. A random intercept and a

random slope for the time effect were also added. We tested

each pathway for a potential main genetic and a time-interaction

effect. The linear kernel (LIN), the unadjusted network (NET),

and the size-adjusted network kernel (ANET) were applied. We

assigned a SNP to a gene of a pathway based on its genomic

location with a mapping window of ± 500 kbp on each side of the

gene. For the multiple testing correction, we considered the

overlap of the tested pathways and computed the number of

effective pathways (Peff) according to (Hendricks et al., 2013;

Larson et al., 2017). We computed a 17 × 325 matrix W for the

17 tested pathways and the 325 genes comprised in the

17 pathways with

wrγ �
1			
Pr| |√ , if gene γ ∈ pathway r

0, otherwise

⎧⎪⎪⎨⎪⎪⎩ ,

where |Pr| is the number of genes contained in pathway r. From

the product of this matrix with its transpose, we computed the

eigenvalues to obtain Peff according to the Gao approach

(Hendricks et al., 2013). We determined the number of

eigenvalues required to fulfil ∑Peff
r�1 |λr |∑P

r�1 |λr |
≥ c, setting c to

0.95 leading to Peff � 15. We set c to 0.95, as it was sufficient

for us that the effective number of pathways explains 95% of the

total variance. The adjusted significance level was computed as

αGao � 0.05
15 � 0.0033.

2.5 Code availability

We performed all analyses with R (R Core Team, 2021),

which we also used to implement the KMR for quantitative

longitudinal data and cross-sectional binary and quantitative

data as an R package kalpra (kernel approach for longitudinal

pathway regression analysis) available at https://gitlab.gwdg.de/

bernadette.wendel/kalpra. In addition to the linear and network

kernels, a quadratic kernel is also available. The pathway

information can be directly downloaded and transformed into

an annotation and adjacency matrix. The computational aspects

for some example analyses are provided in Supplementary

Table S1.

3 Results

3.1 Simulation studies

The type I error rate in our simulation study is defined, as

mentioned above, as the proportion of simulations for which we

obtained a p-value < α (α = 5%, 1%, 0.5%, and 0.1%) in the null

simulations without genetic effects. The type I error rates were

maintained overall at the different α thresholds for the models in

our simulation scenarios. We did detect individual type I error

rates only slightly exceeding the respective significance levels,

e.g., 5% and 1%, for three models (KMR-NET-d0.5-m2, KMR-

NET-d0.8-m2, and KMR-NET-d0.8-m4). However, all the values

lie in the range of expected random variations (confidence

intervals of the null model simulations carried out, data not

shown). KMR-NET-d0.8-m2 presented the largest increase in

type I error of 5.09% at the significance level of 5%. Table 3

displays the type I error rates. The error rates of the different

network kernels (all densities) were overall higher compared to

the linear kernel and were closer to the nominal level. The

combined pathway p-values of the KMgene analysis revealed

an inflation of the error rates. The error rates for the analyses of

the missing aspect for the different network kernel were also

maintained (Supplementary Table S2). Figure 2 displays a QQ-

plot of the distribution of the multiple error rates for all models

analyzing complete data distinguished between the two-

measurement and four-measurement models including KMgene.

For the two single-genetic-effect models (main genetic and

time-interaction model), the power comparison of the two-

measurement models revealed that the LMM had the highest

power independent of effect size and for either kernel. ANCOVA

had the lowest power for the two-measurement models in

comparison. Table 4 displays the results for the effect size β =

0.04. Increasing the number of measurement points resulted in

an improvement of the power for long-KMR, in particular for the

time-interaction effect (an increase from 21% to 52% (time-

interaction effect) compared to 33%–36% (main genetic effect)).

Overall, the time-interaction effect yielded a higher power for the

four-measurement models, especially for the smaller effect sizes

0.04 (Table 4) and 0.06 (Supplementary Table S3). An additional

power benefit compared to the linear kernel was achieved when

applying the network kernel. For the main genetic effect with

effect size 0.04, the network kernel in the two-measurement

models demonstrate a higher power than KMR-LIN-m4.

However, the power gain for the network kernel depends on

the pathway density. The power increases with decreasing

density (d0.2 > d0.5 > d0.8). A direct comparison of the

power for the linear and network kernels for the four-

measurement models is displayed in Figures 3A,B for the

main genetic effect and the time-interaction effect,

respectively. The power differences between KMR-LIN-

m4 and KMR-NET-d0.8-m4, the pathway with the highest

density, fluctuated in the different settings (Table 4;

Supplementary Tables S3,S4). In the joint modeling of main

genetic and time-interaction effects, the network kernel with the

lowest density displayed the highest power. Table 5 illustrates the

results for a genetic effect size of 0.04. Here, at the significance

level of 5% the linear kernel had the second highest power

followed by KMR-NET-d0.5-m4 and KMR-NET-d0.8-m4

(Table 5). As displayed in Figure 3C, the power of LIN-m4
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and KMR-NET-d0.5-m4 are very similar at different significance

levels.

The analyses performed with different percentages of missing

data revealed similar features for the single-effect models, with a

general decrease of power compared to the analysis of a complete

phenotype data set (Table 4). In general, the power increased

with increasing effect sizes (β = 0.04, 0.06, and 0.08). For

example, for KMR-LIN-m4 testing the main genetic effect, the

power increased from 36% (β = 0.04) to 78% (β = 0.06,

Supplementary Table S3), and then to 98% (β = 0.08,

TABLE 3 Type I error rates of the simulation studies.

Models Estimated type I error rate (%)

α = 5% α = 1% α = 0.5% α = 0.1%

KMR-LIN-ANCOVA 4.33 0.79 0.37 0.07

KMR-LIN-m2 4.37 0.78 0.38 0.07

KMR-NET-d0.8-m2 5.09 1.00 0.50 0.09

KMR-NET-d0.5-m2 5.02 1.01 0.48 0.07

KMR-NET-d0.2-m2 4.96 0.96 0.50 0.09

KMR-LIN-m4_25MAR 4.47 0.84 0.40 0.08

KMR-LIN-m4_50MAR 4.38 0.82 0.41 0.09

KMR-LIN-m4 4.32 0.78 0.38 0.07

KMR-NET-d0.8-m4 4.93 0.92 0.44 0.11

KMR-NET-d0.5-m4 4.83 0.92 0.45 0.07

KMR-NET-d0.2-m4 4.48 0.94 0.45 0.08

KMgene* Yan et al. (2018) 5.31 1.13 0.57 0.11

Simulated type I error for tests at significance levels of α = 5%, 1%, 0.5% and 0.1% are displayed. The simulations are based on 100,000 runs each with 1,000 individuals. *For comparability,

the single gene-level p-values of KMgene are combined to a pathway p-value using Fisher’s method.

FIGURE 2
QQ-plots for the type I error rate for our simulation studies divided for the (A) two-measurement and (B) four-measurement models and the
comparison model KMgene.
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Supplementary Table S4). In the pathway analysis, the

comparison model KMgene yielded a significantly lower

power compared to KMR-LIN-m4 for the same simulation

scenario (N = 1,000, m = 4). This effect increased with

increasing effect size β.

3.2 Application to the PsyCourse Study

In our real-world data sample, we analyzed 1,518 individuals

with at least one TMT-B measurement including 591 “affective,”

533 “psychotic,” and 394 mentally healthy individuals. The mean

TABLE 4 Power results of the simulation study.

Genetic effect

Main genetic effect Time-interaction effect

Models Complete 25MAR 50MAR Complete 25MAR 50MAR

KMR-LIN-ANCOVA 12.48% [12.28; 12.69] — — 5.16% [05.02; 05.30] — —

KMR-LIN-m2 33.09% [32.79; 33.38] 25.26% [24.99;
25.53]

— 21.28% [21.02; 21.53] 07.12% [06.96;
07.28]

—

KMR-NET-d0.8-m2 39.46% [39.15; 39.76] 31.66% [31.37;
31.95]

— 27.14% [26.85; 27.43] 18.92% [18.68;
19.17]

—

KMR-NET-d0.5-m2 42.10% [41.78; 42.41] 33.70% [33.41;
33.99]

— 28.68% [28.38; 28.97] 19.87% [19.62;
20.12]

—

KMR-NET-d0.2-m2 43.68% [43.36; 43.99] 35.18% [34.88;
35.48]

— 29.81% [29.49; 30.12] 20.68% [20.43;
20.94]

—

KMR-LIN-m4 35.68% [35.38; 35.96] 31.00% [30.72;
31.29]

23.10% [22.83;
23.36]

51.72% [51.41; 52.03] 44.61% [44.30;
44.91]

31.36% [31.07;
31.65]

KMR-NET-d0.8-m4 42.24% [41.93; 42.56] 37.66% [37.36;
37.96]

29.42% [29.14;
29.70]

57.62% [57.32; 57.93] 50.66% [50.35;
50.97]

38.57% [38.27;
38.87]

KMR-NET-d0.5-m4 44.83% [44.51; 45.15] 39.86% [39.56;
40.16]

31.21% [30.93;
31.50]

61.05% [60.75; 61.35] 54.10% [53.79;
54.41]

40.77% [40.47;
41.08]

KMR-NET-d0.2-m4 46.86% [46.54; 47.18] 41.76% [41.46;
42.06]

32.87% [32.58;
33.16]

63.28% [62.98; 63.59] 56.12% [55.81;
56.43]

42.43% [42.13;
42.74]

KMgene* (Yan et al., 2018) 31.02% [30.74; 31.31] — — — — —

Simulated power to detect an effect of size 0.04 with a test at significance levels of α = 5% is displayed. The simulations are based on 100,000 runs each with 1,000 individuals. Power

estimates together with 95% confidence interval are presented for genetic main and time-interaction effects. Phenotype data were either complete or with 25/50% of values missing at

random (MAR). Model names correspond with Table 1.

*For comparability, the single gene-level p-values of KMgene are combined to a pathway p-value using Fisher’s method.

FIGURE 3
Comparison of the power for the four-measurement models (KMR-LIN, KMR-NET-d0.2, KMR-NET-d0.5, KMR-NET-d0.8) with complete
phenotype data and effect size β = 0.04 for the different genetic effect models with (A) the main genetic (B) the time-interaction and (C) the joint
effect in our simulation study.
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age at the first measurement point was 41 years [sd: 13.8] 48% of

the samples were female (for more details see Supplementary

Table S5). At all four measurement points, the psychotic group

attained the highest TMT-B score; only at measurement points

1 and 3 were the differences for the psychotic and affective groups

significant (see CI of Supplementary Figure S1). The control

TABLE 5 Power comparison for main, time-interaction and joint effects.

Models Genetic effect

Main genetic effect Time-interaction effect Joint effect

KMR-LIN-m4 35.68% [35.38; 35.96] 51.72% [51.41; 52.03] 71.55% [71.27; 71.83]

KMR-NET-d0.8-m4 42.24% [41.93; 42.56] 57.62% [57.32; 57.93] 64.47% [64.16; 64.78]

KMR-NET-d0.5-m4 44.83% [44.51; 45.15] 61.05% [60.75; 61.35] 69.44% [69.14; 69.74]

KMR-NET-d0.2-m4 46.86% [46.54; 47.18] 63.28% [62.98; 63.59] 73.23% [72.95; 73.50]

Simulated power to detect an effect of size 0.04 with a test at significance levels of α = 5% is displayed. The simulations are based on 100,000 runs each with 1,000 individuals. Power

estimates together with 95% confidence interval are presented for genetic main, time-interaction and joint effects. Model names correspond with Table 1. The adjustment for the main

genetic effect in the joint genetic effect was performed by adding the top two principal components of a PCA on a main linear kernel.

TABLE 6 Results of the real-data analyses without outlier.

Kernel type Genetic effect tested Pathway p-value

Linear kernel (LIN) Main genetic effect Synaptic adhesion-like molecules 0.0389

NCAM signaling for neurite out-growth 0.0739

Ion channel transport 0.1029

Regulation of MECP2 expression activity 0.2101

MECP2 regulates neuronal receptors and channels 0.2237

Linear kernel (LIN) Time-interaction effect Ion channel transport 0.0089

MECP2 regulates neuronal receptors and channels 0.2738

Synaptic adhesion-like molecules 0.3202

Long-term potentiation 0.3391

Receptor-type tyrosine-protein phosphatases 0.3579

Network kernel (NET) Main genetic effect Synaptic adhesion-like molecules 0.0171

NCAM signaling for neurite-growth 0.0472

Signaling by ERBB4 0.0496

Long-term potentiation 0.0910

MECP2 regulates neuronal receptors and channels 0.1038

Network kernel (NET) Time-interaction effect Synaptic adhesion-like molecules 0.2282

NCAM1 interactions 0.2551

Long-term potentiation 0.2943

Neurexins and neuroligins 0.3341

Trafficking of AMPA receptors 0.4404

Size-adjusted network kernel (ANET) Main genetic effect Synaptic adhesion-like molecules 0.0174

Signaling by ERBB4 0.0419

NCAM signaling for neurite out-growth 0.0548

Long-term potentiation 0.0886

MECP2 regulates neuronal receptors and channels 0.1059

Size-adjusted network kernel (ANET) Time-interaction effect Synaptic adhesion-like molecules 0.2429

NCAM1 interactions 0.2498

Long-term potentiation 0.2998

Neurexins and neuroligins 0.3629

Trafficking of AMPA receptors 0.4866

The five top ranked pathways (according to p-value) are listed for each kernel and genetic effect (main genetic and time-interaction effect). Nominal significant (p-value <0.05) pathways are
printed in bold.
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group demonstrated at each measurement point a significant

difference and attained the lowest TMT-B score (Supplementary

Figure S1). Previously, we identified a phenotypic outlier, an

individual with the highest possible score at each measurement

point assessed. Here we focused on the results without the outlier.

The results did not change qualitatively when removing the

outlier (data not shown).

Thirteen of the 17 tested pathways overlapped at least with

one other pathway in at least one gene. The four independent

(i.e., pathways not overlapping) were “ion channel transport,”

“EPH-ephrin signaling,” “receptor-type tyrosine-protein

phosphatases,” and “regulation of MECP2 expression and

activity” (Table 2). We did not find any pathways significantly

associated with the phenotype TMT-B after multiple testing

correction (p-value <0.0033 = αGao) for either applied kernel

(LIN, NET, and ANET). However, we identified seven pathways

in total as achieving a p-value <0.05, which are represented in

bold in Table 6 with the respective kernel used. For example, the

“synaptic adhesion-like molecules” pathway is nominally

significant for the main genetic effect for ANET, NET, and

LIN. The “signaling by ERBB4” pathway, which poses as the

foundation of our simulation, was nominally significant with all

three kernels when testing the main genetic effect. For the time-

interaction effect, we identified only one pathway, “ion channel

transport,” as nominally significant. This pathway has the

smallest p-value of all pathways (0.0089). To compare the

different kernels, we ranked all pathways according to their

p-values. Table 6 lists the top five pathways for each kernel

stratified by the main genetic and time-interaction effects. For

both network kernels, we noted a very similar ranking of the top

five pathways in the respective genetic effects, whereas for the

linear kernel the detected pathways varied between the genetic

effect models. Considering the p-value ranking, the “synaptic

adhesion-like molecules” pathway stood out as the one with

smallest p-value (rank 1) in all analyses.

4 Discussion

Here we present long-KMR, a topology-based pathway

analysis method for longitudinal data, which applies kernel

machine regression. The methodological basis of long-KMR is

presented. To create long-KMR the connection of KMR and

LMM are exploited. In addition, we use the network kernel

(Freytag et al., 2013) integrating network information into the

model. A simulation study is conducted to assess the

performance of long-KMR. The models applied in the

simulation study are displayed in Table 1. Different aspects

are studied, including the influence of the number of

measurement points and varying pathway densities. We

modeled and tested a main genetic effect and a time-

interaction effect for association, the latter testing the

association of a pathway with the trajectory of the phenotype

TMT-B. Furthermore, we considered an approach to analyze a

joint model containing the main genetic effect and the time-

interaction effect in a computationally effective way. Lastly, we

applied long-KMR to a cognitive phenotype from the PsyCourse

Study (Budde et al., 2018).

4.1 Simulation studies

4.1.1 Number of measurements per individual
As expected, the power of long-KMR increases with growing

number of measurement points, in particular for the time-

interaction effect. This can be traced back to the information

that is added to the model at each measurement point, increasing

the probability of detecting an effect. Thus, we also identified a

larger power loss when analyzing the time-interaction effect with

incomplete phenotype data (missing measurements).

4.1.2 Network kernel
The performance of long-KMR improves further when we

apply the network kernel instead of the linear kernel, in particular

in the single-effect models. We observe that the network kernel

has at least the same power as the linear kernel. The power benefit

of the network kernel is more pronounced when testing in the

presence of smaller genetic effect sizes. For larger genetic effect

sizes the power is already extremely high (approx. 98%–99%,

Supplementary Table S4), thus the power increase is less

noticeable. This power gain is due to the integration of

additional pathway information on gene interactions and

network topology (Freytag et al., 2013). Here, the topology

characteristics of the pathway network play an important role.

As the network kernel was developed to exploit the connection of

a pathway (Freytag et al., 2013) we studied the influence of the

pathway density, identifying a power increase with decreasing

pathway density. The higher the density, the more the respective

power of network and linear kernel converged. Mathematically, a

pathway with many connections (high density) leads to a denser

adjacency matrixN, i.e.,N contains mainly ‘1’s. Thus, we do not

add a lot of specific information when multiplying GA with N

(see definition of network kernel). We integrate more noise into

the kernel (whenN is highly dense) as we sum up the same effects

(sum of rows) and only inflate the similarity values artificially

(higher range). Thus, we exclude variations and cover potential

effects with noise. Consequently, a candidate pathway should

preferentially be studied with respect to its characteristics before

applying the network kernel when performing long-KMR.

In the joint model including both main and time-interaction

effect, the network kernel demonstrated a slightly different

performance for different pathway densities. We consider four

measurement points only. The network kernel with density 0.2

(lowest density) still has the highest power but only slightly

higher when compared to the linear kernel (approx. 72%–73%).

The network kernels with densities 0.5 and 0.8 have surprisingly
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low power compared to the linear kernel. This phenomenon is

perhaps due to the simulation of the genetic effect as purely linear

effect and enhanced by the application of two different kernel

functions in onemodel. We simulate the genetic effects in a linear

fashion and thus we observe the performance of the network

kernel in worst-case scenarios. Nevertheless, the network kernel

improved long-KMR slightly when the pathway density is not too

high. In general, long-KMR is preferable except when testing a

very dense pathway. The latter should be acknowledged and

considered when interpreting the results of long-KMR under a

specific kernel.

It should also be taken into account that a possible

misspecification of a pathway, for example, in the form of

wrongly described gene connections leads to an inaccurate

pathway topology and pathway characteristics, e.g., density. This

can lead to power changes in the analysis. Thus, one of the greatest

challenges to topology-based pathway analyses remains the possible

inaccuracy and perhaps incompleteness of the studied pathways.

Here, future work is required to minimize possible

misclassifications. In the future, it would be also worthwhile

analyzing other pathway characteristics, e.g., the betweenness

centrality or diameter of the pathway, and their influence on

power of the long-KMR with the network kernel. However, these

aspects should also be considered beforehand in one-measurement

settings in order to determine any indication of the performance

being affected and thus keep the computational costs associated with

the analysis of an extensive longitudinal scenario down to an

acceptable level. Additionally, more complex simulation models

could be considered, including e.g., genetic effect models in

which causal SNP effects interact with each other and the causal

SNPs vary between main and interaction effects. Here it is expected

that these scenarios are even more advantageous for the network

kernel. However, this exceeds the scope of this communication.

4.1.3 Comparison of long-KMR with ANCOVA
and KMgene

When comparing the different two-measurement models

either for the main effect or for the time-interaction effect,

long-KMR has the higher power and is the preferred option,

in spite of its longer computation time, in particular when using

the network kernel. As expected ANCOVA has lower power.

Note that the ANCOVA model only uses the second

measurement point as dependent variable (Table 1) and loses

information regarding the time effect. For the main genetic effect,

we even observed that by applying the network kernel compared

to the linear kernel, the power loss resulting from the smaller

number of measurement points is reduced.

For the four-measurement models the comparison with

KMgene (Yan et al., 2015; Yan et al., 2018) on pathway level

reveals that our long-KMR has higher power. In addition, the

KMgene type I error rates were slightly inflated (Table 3) for the

Fisher method. Thus, we used a second p-value combination

approach according to Stouffer (Larson et al., 2017), yielding

even slightly more inflated p-values (data not illustrated). Thus,

our approach represents the suitable choice when analyzing a

whole pathway. KMgene remains a solid approach when

analyzing single genes.

4.2 Application to the PsyCourse Study

In our application, a total of seven pathways were nominally

significant (Table 6). Six of the seven pathways were associated with

TMT-B when testing for the main effect. We looked more closely at

the pathways with a p-value <0.1, i.e., “synaptic adhesion-like

molecules,” “signaling by ERBB4,” “long-term potentiation,” and

“NCAM signaling for neurite growth.” The first three pathways

contain the gene DLG4. This synaptic gene encodes for the density

protein 95 (PSD95) and plays a critical role in the activity regulation

of NMDA (N-methyl-D-aspartate) receptors in schizophrenic

patients (Cheng et al., 2010; Tian et al., 2017). It is important for

learning and memory (Tian et al., 2017) and as a predictor of

cognitive deficits (Fan et al., 2018). DLG4 is also part of the complex

DLG4-NMDA-DLGAP1, which was associated with influencing

executive functions, in particular the set-shifting abilities (cognitive

flexibility) in attention deficit hyperactivity disorder individuals (Fan

et al., 2018). NMDA receptors, which are highly influenced by

DLG4, are important inmany neuropsychiatric disorders that have a

cognitive flexibility impairment (Fan et al., 2018), e.g., schizophrenia

(Cheng et al., 2010). Two other schizophrenia susceptibility genes

are NRG1 and ERBB4 (Banerjee et al., 2010; Tian et al., 2017), which

are part of the “signaling by ERBB4” and “long-term potentiation”

pathway together with DLG4. The signaling pathway of NRG1 and

ERBB4 has been identified as influencing the transmission of

glutamate and GABA (Banerjee et al., 2010), which are

implicated in playing a role in executive functions (Hatoum

et al., 2020). NRG1-ERBB4 signaling has also been discussed as a

target of gene therapy in adults with neurodevelopmental disorders

to reduce cognitive impairment, e.g., in executive functions (Shi and

Bergson, 2020). They modulate different synaptic processes, such as

long-term potentiation, and are essential for the development of the

nervous system (Ledonne andMercuri, 2019), proper brain function

and cognitive processes (Ledonne and Mercuri, 2019). The “long-

term potentiation” pathway is also strongly influenced by the above-

mentioned NMDA glutamate receptors and is strongly involved

with learning and memory processes (Lisman et al., 2012; Lüscher

and Malenka, 2012). For the fourth pathway, “NCAM signaling for

neurite outgrowth,” the neural cell adhesion molecule (NCAM) also

plays an important role in the nervous system (Li et al., 2013).

Of the seven pathways nominally significant, “ion channel

transport”was the only pathway to prove significant for the time-

interaction effect and when modelled with the linear kernel. This

pathway had the lowest p-value (0.0089). Ion channels are

implicated in influencing the susceptibility to or the

pathogenesis of psychiatric diseases (Imbrici et al., 2013), and

are integral to synaptic functioning.
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Conclusion

Overall, we demonstrated that our longitudinal topology-

based pathway analysis displays a power gain and a great

flexibility to model pathways and genetic effects. Our

approach enables the choice between the popular linear kernel

and a network kernel that integrates pathway topology

information. The latter demonstrated superiority depending

on the density of the pathway of interest. The approach is

implemented as the R package kalpra, which is available at

https://gitlab.gwdg.de/bernadette.wendel/kalpra.
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Supplementary Material 

1 Supplementary Figures and Tables 

1.1 Supplementary Tables 

Supplementary Table 1. Run times of exemplary analyses  

 

 

 

 

 

 

 

 

We provide the run time (=time actually needed to finalize the process), which is required to fit the 

model of the KMR analysis and to compute the p-value. The time in brackets is the CPU time in 

seconds (sec). For the simulated data, we determine the computation time for an individual pathway 

consisting of 19 genes with a pathway density of 0.5 (d0.5). The run times displayed for the real-data 

example provides information for the analysis of 17 pathways.  

*The ANCOVA model is applied as pre/post-analysis (two measurements). Due to the characteristics 

of the ANCOVA model (see Table 1) it uses only one measurement as dependent variable thus it 

reduces to a KMR with one measurement (baseline).  

**For KMgene, we provide the added computation times relating to the analysis of 19 single genes.  

Note that the actual runtime can vary as it also depends on the computing power. When applying 

real-data, the run time is also largely depending data structure, e.g. the number of genotyped SNPs, 

size of pathway.  

  

Models 
Kernel 

Linear Kernel Network kernel 

Simulation (N=1000) – analysis of a single pathway 

ANCOVA*  00.55 sec [00.54 sec] 00.97 sec [00.96 sec] 

Long-KMR with m=2  08.24 sec [07.98 sec] 15.46 sec [15.18 sec] 

Long-KMR with m=4 35.00 sec [22.86 sec] 91.01 sec [89.65 sec] 

KMgene** with m=4 08.29 sec [08.05 sec] - 

 

Real data example (N=1517) – analysis of 17 pathways 

Baseline (m=1) 38.31 sec [37.85 sec] 26.45 sec [26.18 sec] 

Longitudinal (m=4) 496.73 sec [488.73 sec] 861.74 sec [852.98 sec] 
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Supplementary Table 2. Type I error rates of the simulation studies. 

Models 
Estimated type I error rate (%) 

α = 5% α = 1% α = 0.5% α = 0.1% 

KMR-LIN-m2_25MAR 4.44 0.78 0.37 0.06 

KMR-NET-d0.8-m2_25MAR 4.95 0.99 0.48 0.09 

KMR-NET-d0.5-m2_25MAR 4.93 0.99 0.46 0.07 

KMR-NET-d0.2-m2_25MAR 4.98 1.00 0.47 0.07 

KMR-LIN-m4_25MAR 4.47 0.84 0.40 0.08 

KMR-LIN-m4_50MAR 4.38 0.82 0.41 0.09 

KMR-NET-d0.2-m4_25MAR 4.95 1.00 0.49 0.09 

KMR-NET-d0.2-m4_50MAR 4.93 0.98 0.48 0.09 

KMR-NET-d0.5-m4_25MAR 4.94 0.93 0.42 0.07 

KMR-NET-d0.5-m4_50MAR 4.88 0.93 0.47 0.08 

KMR-NET-d0.8-m4_25MAR 4.88 0.95 0.48 0.10 

KMR-NET-d0.8-m4_50MAR 4.86 0.95 0.48 0.09 

Simulated type I error for tests at significance levels of α = 5%, 1%, 0.5% and 0.1% are displayed. 

The simulations are based on 100,000 runs each with 1000 individuals. 
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Supplementary Table 3. Power results of the simulation study with effect size 0.06.   

 Genetic effect 

 Main genetic effect Time-interaction effect 

Models Complete  25MAR 50MAR Complete  25MAR 50MAR 

KMR-LIN-

ANCOVA 
26.66% 

[26.39;26.94] 
- - 06.13% 

[05.98;06.28] 
- - 

KMR-LIN-m2 74.01% 
[73.73;74.28] 

59.91% 
[59.61;60.22] 

- 51.26% 
[50.95;51.58] 

11.33% 
[11.13;11.52] 

- 

KMR-NET-d0.8-m2 76.45% 
[76.18;76.72] 

65.02% 
[64.72;65.32] 

- 56.80% 
[56.49;87.11] 

39.19% 
[38.90;39.50] 

- 

KMR-NET-d0.5-m2 79.80% 
[79.54;80.05] 

68.74% 
[68.45;69.03] 

- 60.28% 
[59.97;60.59] 

41.91% 
[41.60;42.21] 

- 

KMR-NET-d0.2-m2 81.53% 
[81.28;81.77] 

70.61% 
[70.32;70.89] 

- 62.13% 
[61.83;62.44] 

43.42% 
[43.11;43.73] 

- 

KMR-LIN-m4 77.47% 
[77.21;77.73] 

70.63% 
[70.35;70.91] 

55.52% 
[55.21;55.83] 

92.66% 
[92.50;92.83] 

87.35% 
[87.14;87.55] 

71.08% 
[70.80;71.36] 

KMR-NET-d0.8-m4 79.19% 
[79.29;79.79] 

73.74% 
[73.46;74.01] 

61.16% 
[60.86;61.47] 

92.58% 
[92.42;92.74] 

87.89% 
[87.68;88.09] 

74.73% 
[74.46;75.00] 

KMR-NET-d0.5-m4 82.72% 
[82.48;82.96] 

77.32% 
[77.06;77.58] 

64.84% 
[64.54;65.14] 

94.26% 
[94.12;94.41] 

90.40% 
[90.21;90.59] 

78.26% 
[78.01;78.52] 

KMR-NET-d0.2-m4 84.16% 
[83.93;84.40] 

79.09% 
[78.83;79.34] 

66.79% 
[66.50;67.09] 

95.04% 
[94.91;95.18] 

91.40% 
[91.22;91.58] 

79.99% 
[79.74;80.24] 

KMgene* 66.22% 
[65.93;66.51] 

  - - - 

Simulated power to detect an effect of size 0.06 with a test at significance levels of α = 5% is 

displayed. The simulations are based on 100,000 runs each with 1000 individuals. Power estimates 

together with 95% confidence interval are presented for genetic main and time-interaction effects. 

Phenotype data were either complete or with 25/50% of values missing at random (MAR). Model 

names correspond with Table 1. *For comparability, the single gene-level p-values of KMgene are 

combined to a pathway p-value using Fisher’s method. 
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Supplementary Table 4. Power results of the simulation study with effect size 0.08.  

 Genetic effect 

 Main genetic effect Time-interaction effect 

Models Complete 25MAR 50MAR Complete 25MAR 50MAR 

KMR-LIN-

ANCOVA 
45.50% 

[48.19;48.81] 
- - 07.54% 

[07.37;07.70] 
- - 

KMR-LIN-m2 96.62% 
[96.50;96.73] 

89.75% 
[89.57;89.94] 

- 82.88% 
[82.65;83.12] 

18.23% 
[17.99;18.47] 

- 

KMR-NET-d0.8-m2 96.17% 
[96.05;96.29] 

90.16% 
[89.97;90.35] 

- 84.11% 
[83.88;84.34] 

64.26% 
[63.96;64.56] 

- 

KMR-NET-d0.5-m2 97.26% 
[97.16;97.36] 

92.34% 
[92.17;92.50] 

- 86.86% 
[86.65;87.08] 

 68.03% 
[67.74;68.32] 

- 

KMR-NET-d0.2-m2 97.67% 
[97.57;97.76] 

93.20% 
[93.04;93.36] 

- 88.14% 
[87.93;88.34] 

69.85% 
[69.56;70.13] 

- 

KMR-LIN-m4 97.57% 
[97.47;97.66] 

95.30% 
[95.17;95.43] 

86.50% 
[86.29;86.71] 

99.84% 
[99.82;99.87] 

99.40% 
[99.35;99.45] 

95.57% 
[95.44;95.70] 

KMR-NET-d0.8-m4 97.20% 
[97.10;97.30] 

94.93% 
[94.80;95.07] 

94.93% 
[94.80;95.07] 

99.73% 
[99.70;99.76] 

99.14% 
[99.08;99.20] 

95.18% 
[95.05;95.31] 

KMR-NET-d0.5-m4 98.04% 
[97.95;98.22] 

96.29% 
[96.17;96.41] 

90.01% 
[89.82;90.19] 

99.83% 
[99.80;99.85] 

99.43% 
[99.39;99.48] 

96.57% 
[96.45;96.68] 

KMR-NET-d0.2-m4 98.35% 
[98.27;98.43] 

96.86% 
[96.75;96.97] 

91.15% 
[90.97;91.32] 

99.86% 
[99.84;99.89] 

99.54% 
[99.50;99.58] 

97.07% 
[96.97;97.18] 

KMgene*  75.98% 
[75.71;76.24] 

  - - - 

Simulated power to detect an effect of size 0.08 with a test at significance levels of α = 5% is 

displayed. The simulations are based on 100,000 runs each with 1000 individuals. Power estimates 

together with 95% confidence interval are presented for genetic main and time-interaction effects. 

Phenotype data were either complete or with 25/50% of values missing at random (MAR). Model 

names correspond with Table 1. *For comparability, the single gene-level p-values of KMgene are 

combined to a pathway p-value using Fisher’s method. 
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Supplementary Table 5. Phenotype information relating to the first measurement point of the 

PsyCourse Study 

Phenotypes             
Diagnostic groups mean (sd) or percentage 

Affective Psychotic Controls 

Female 51.4% 37.7% 58.6% 

Age 44.9 [13.4] 43.5 [12.0] 36.8 [15.2] 

TMT-B 83.5 [42.3] 93.1 [42.8] 58.6 [24.5] 

Time effect on lgTMT-B    

β [95% CI] 0.96 [0.95;0.97] 0.95 [0.94;0.97] 0.96 [0.95;0.97] 

p-value 4.93×10-11 1.16×10-13 8.62×10-15 

The mean and standard deviation (sd) of the age at first measurement and the TMT-B for each 

diagnostic group are provided. The LMM results testing the time effect on lgTMT-B within each 

diagnostic group are displayed. The effect estimates β of lgTMT-B are transformed back to their 

original scale. 
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1.2 Supplementary Figures 

 

Supplementary Figure 1. Longitudinal course of lgTMT-B score (time in seconds) for each 

diagnostic group (affective, psychotic and controls). Displayed are means with 95% CI for each 

measurement point 1,2,3,4, approximately 6 months apart.  
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adjustAnnotation Create size adjusted annotation matrix

Description

The function deletes empty genes (= no SNPs mapped) if parameter removeGene=TRUE and if pa-
rameter removeSNP=TRUE it also deletes not mapped SNPs. The annotation matrix can also be size
adjusted for each gene if sizeadjusted=TRUE.

Usage

adjustAnnotation(
Annotationmatrix,
sizeadjusted = FALSE,
removeSNP = FALSE,
removeGene = FALSE

)

Arguments

Annotationmatrix

an annotation matrix of a pathway

sizeadjusted logical variable, size adjustment of the annotation matrix, default: FALSE

removeSNP logical variable, SNPs which are not mapped to any gene are maintained or
deleted, default: FALSE (see below)

removeGene logical variable, empty genes (no SNPs mapped) are maintained or deleted, de-
fault: FALSE (see below)

Value

an annotation matrix without empty genes (genes without SNPs assigned)



CrossPhenotype 3

Note

If the parameter removeSNP=TRUE, SNPs that are not mapped are deleted and the rows are removed.
The dimension of the annotation matrix changes and thus, the dimensions of the genotype matrix
need to be changed accordingly. This reduction needs to be performed by the user before computing
the kernel matrix. This can be performed by matching the row names of the reduced annotation
matrix (removeSNP=TRUE) with the column names of the genotype matrix. If the empty genes are
deleted by removeGene=TRUE before creating the adjacency matrix, the rewiring of the adjacency
matrix in regards to emtpy genes are incorrect. This steps should be performed after creating the
adjacency matrix.

Author(s)

Bernadette Wendel

References

For details on the size adjustment see:

• Freytag S, Manitz J, Schlather M, Kneib T, Amos CI, Risch A, Chang-Claude J, Heinrich J,
Bickeboeller H: A network-based kernel machine test for the identification of risk pathways
in genome-wide association studies. Hum Hered. 2013, 76(2):64-75.

Examples

Annotationmatrix1<-create.anno(GeneInformation, SNPBimFile, windowsize=20,method="position")
Annotation.adjusted<-adjustAnnotation(Annotationmatrix1)
Annotation.notadjusted<-adjustAnnotation(Annotationmatrix1, sizeadjusted = FALSE)

CrossPhenotype Example cross-sectional phenotype (binary and quantitative)

Description

The data set CrossPhenotype contains a simulated normally distributed phenotype and a binary
phenotype for 250 individuals for one measurement point. The data contain columns with a com-
plete phenotype and a phenotype with missing values for each phenotype (in total: 80xNA (quanti-
tative) and 69xNA (binary), see below). In addition to the phenotype, we also simulated two types
of covariables (a binary and a continuous variable).

Usage

CrossPhenotype

Format

A data frame with 250 rows and 7 columns:

IID Identifier of each individual, pattern: IIDn with n=1,...,250

Age normally distributed variable, representing the age of an individual

Gender a binary (0 or 1) variable, representing the gender of an individual
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Quantpheno quantitative phenotype

Quantmisspheno quantitative phenotype with 80 missing measurement points

Binpheno binary phenotype

Binmisspheno binary phenotype with 69 missing measurement points

Source

Simulated data set

download.geneinfo Download gene information

Description

The function downloads information of the genes part of the pathway studied. It uses the pack-
age biomaRt. The database and data set used to download the information is predefined with
’Ensembl’and ’hsapiens_gene_ensembl’, respectively (cannot be changed by the user). It returns
the following information: HGNC symbols,chromosome,start position and stop position.

Usage

download.geneinfo(pathway)

Arguments

pathway list of one or multiple pathway(s) in SIF (list of data frames)

Value

a dataframe or a list with dataframes of gene information for each pathway (depends on input)

Author(s)

Bernadette Wendel

Examples

PathwaysURI<-searchPathway("neuronal system","reactome")
head(PathwaysURI);dim(PathwaysURI)

selectedPathway<-subset(PathwaysURI,name=="Transcriptional Regulation by MECP2")
selectedPathway
Pathway1<-get.pathway(selectedPathway, URI="uri", pathwayname="name", delete =TRUE)
geneInfo<-download.geneinfo(Pathway1)
head(geneInfo)

pathwayList<-get.pathway(PathwaysURI[c(2:7,10:12),],delete = FALSE)
class(pathwayList);length(pathwayList)

geneInfoList<-download.geneinfo(pathwayList)
class(geneInfoList)
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GeneInformation Example of gene information data (20 genes)

Description

The data set GeneInformation is a data frame with simulated gene information for 20 genes of a
simulated pathway.

Usage

GeneInformation

Format

A data frame with 20 rows and 4 columns:

hgnc_symbol hypothetical HGNC symbol of the gene
CHR simulated chromosome of the gene
startBP simulated start base pair position of the gene
endBP simulated end base pair position of the gene

Source

Simulated data set

Genotypematrix Example genotypes for 250 individuals

Description

Genotypematrix is a matrix with simulated genotypes for 250 individuals and 2000 SNPs. The
genotype matrix has no missing values and contains only three values: 0,1, or 2 representing the
number of minor alleles.

Usage

Genotypematrix

Format

A data frame with 250 rows and 2000 columns:

row each row contains the genotype for one individual
rownames contains the identifier of the individuals
column each column holds information for one SNP
columnnames contains the names of the SNPs

Source

Simulated data set
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GenotypematrixInteraction

Example genotypes for 100 individuals

Description

GenotypematrixInteraction is a matrix with simulated genotypes for 100 individuals and 2000
SNPs. The genotype matrix has no missing values and contains only three values: 0, 1, or 2
representing the number of minor alleles.

Usage

GenotypematrixInteraction

Format

A data frame with 100 rows and 2000 columns:

row each row contains the genotype for one individual

rownames contains the identifier of the individuals

column each column holds information for one SNP

columnnames contains the names of the SNPs

Source

Simulated data set

get.Annotation Create an annotation matrix from pathway information

Description

This function creates an annotation matrix containing information on which SNP is assigned to
which gene of a pathway (0 or 1, if sizeadjusted=FALSE).

Usage

get.Annotation(
pathway,
SNPinfo,
method = c("position", "LD"),
SNP = "SNP",
chrSNP = "CHR",
bp = "BP",
bp.2 = "BP2",
gene = "hgnc_symbol",
chrgene = "chromosome_name",
startgene = "start_position",
endgene = "end_position",
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windowsize = NULL,
geneinfo = FALSE,
sizeadjusted = FALSE,
removeSNP = FALSE,
removeGene = FALSE

)

Arguments

pathway a single pathway in SIF (if geneinfo=FALSE) or a data frame with at least four
columns with gene information (if geneinfo=TRUE)

SNPinfo file contains information on SNPs, either ’.bim’ file or ’.blocks.det’ file from
PLINK, for ’position’ or ’LD’, respectively

method method to assign a SNP to a gene, either ’position’ or ’LD’

SNP column of SNP name (’position’) or names of the SNPs of one LD block (’LD’)
in SNPinfo, default: ’SNP’

chrSNP column in SNPinfo of chromosome of SNP, default: ’CHR’

bp column in SNPinfo of base pair position (if method=position) or start base pair
of LD block (if method=LD), default: ’BP’

bp.2 column in SNPinfo of end base pair of the LD block, only when method=LD,
default: ’BP2’

gene column in pathway (if geneinfo=TRUE) with gene name, default: ’hgnc_symbol’

chrgene column in pathway (if geneinfo=TRUE) with chromosome of gene, default:
’chromosome_name’

startgene column in pathway (if geneinfo=TRUE) with gene start, default: ’start_position’

endgene column in pathway (if geneinfo=TRUE) with gene end, default: ’end_position’

windowsize size of mapping window for SNPs, state size in kbp, default: 0

geneinfo logical variable, if TRUE parameter pathway needs to contain information on
genes in form of a data frame with gene name, chromosome, start- and end base
pair, default:FALSE

sizeadjusted logical variable, size adjustment of the annotation matrix, default: FALSE (see
below)

removeSNP logical variable, SNPs which are not mapped to any gene are maintained or
deleted, default: FALSE (see below)

removeGene logical variable, empty genes (no SNPs mapped) are maintained or deleted, de-
fault: FALSE (see below)

Details

If the parameter geneinfo=FALSE (default) then the information about the genes in the pathway
presented in parameter pathway are downloaded by the function download.geneinfo().

If the parameter sizeadjusted=TRUE, the annotation matrix is size adjusted (see Freytag et al.) and
the values of the annotation matrix values are <1.

If the parameter removeSNP=TRUE, SNPs which are not mapped to any gene are deleted and the
rows are removed. The dimension of the annotation matrix changes and thus, the dimensions of
the genotype matrix need to be changed accordingly.This reduction needs to be performed by the
user before computing the kernel matrix. This can be performed by matching the row names of the
reduced annotation matrix (removeSNP=TRUE) with the column names of the genotype matrix.
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If the parameter removeGene=TRUE empty genes are deleted. If this step is performed before cre-
ating the adjacency matrix, the rewiring of the adjacency matrix in regards to empty genes are
incorrect. This steps should be performed after creating the adjacency matrix.

Value

a single annotation matrix

Author(s)

Bernadette Wendel

References

For more details on PLINK see https://www.cog-genomics.org/plink/ and

• Chang CC, Chow CC, Tellier LC, Vattikuti S, Purcell SM, Lee JL: Second-generation PLINK:
rising to the challenge of larger and richer datasets. Gigascience 2015.

• Purcell S, Neale B, Todd-Brown K, Thomas L, Ferreira MAR, Bender D, Maller J, Sklar
P, de Bakker PIW, Daly MJ, Sham PC: PLINK: a toolset for whole-genome assocation and
population-based linkage analysis. Am J Hum Genet 2017, 81.

For details on size-adjustment see:

• Freytag S, Manitz J, Schlather M, Kneib T, Amos CI, Risch A, Chang-Claude J, Heinrich J,
Bickeboeller H: A network-based kernel machine test for the identification of risk pathways
in genome-wide association studies. Hum Hered. 2013, 76(2):64-75.

Examples

Annotationmatrixfinal<-get.Annotation(pathway = GeneInformation, SNPinfo = SNPBimFile, method="position",
windowsize = 50, geneinfo = TRUE)

get.networkadjacency Create adjacency matrix of a pathway

Description

This function computes an adjacency matrix of the pathway and rewires the network according to
Freytag et al., e.g. elements which are not genes are deleted and empty genes (no SNPs assigned)
are deleted (if annotation matrix is provided). The neighbors of the deleted genes are connected,
i.e. edges are added between nodes (a direct path) where an indirect path was before. We assume
undirected graphs in all cases.

Usage

get.networkadjacency(pathway, Annotationmatrix = NULL, signed = FALSE)
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Arguments

pathway a single pathway dataframe or a list of pathway data frames
Annotationmatrix

a single pathway annotation matrix or a list of annotation matrices, default: NULL
(see below)

signed logical variable, sets weights according to ’activation’|’inhibition’, default:
FALSE

Details

If Annotationmatrix=NULL the adjacency matrix is created but not rewired. If the adjacency ma-
trix should be rewired the annotation matrix provided needs to contain all genes (including empty
genes).

Value

an adjacency matrix of a pathway or a list of adjacency matrices (depends on input format)

Author(s)

Bernadette Wendel and Markus Heidenreich

References

For details on the rewiring of a network:

• Freytag S, Manitz J, Schlather M, Kneib T, Amos CI, Risch A, Chang-Claude J, Heinrich J,
Bickeboeller H: A network-based kernel machine test for the identification of risk pathways
in genome-wide association studies. Hum Hered. 2013, 76(2):64-75.

Examples

AdjacencyMatrix<-get.networkadjacency(Pathway, Annotationmatrix = NULL, signed = FALSE)

Annotationmatrixfinal<-get.Annotation(pathway = GeneInformation, SNPinfo = SNPBimFile,
method="position", windowsize = 50, geneinfo = TRUE)
AdjacencyMatrix1<-get.networkadjacency(Pathway, Annotationmatrix =Annotationmatrixfinal,

signed=FALSE)
AdjacencyMatrix1

get.pathway Download pathway in SIF

Description

This function downloads one or multiple pathways from the Pathway Commons database. The
pathway(s) is/are in SIF (Standard Interchange Format).

Usage

get.pathway(pathwaydataframe, URI = "uri", pathwayname = "name", delete = TRUE)
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Arguments

pathwaydataframe

data frame with at least two columns: URI and pathway name(s)

URI name of column yielding the URI of the pathway(s)

pathwayname name of the column with the pathway name(s)

delete logical variable, deletes empty pathways (no genes), default: TRUE

Value

a dataframe with one pathway or a list of dataframe where each pathway is in SIF and accessable
by the pathway name

Author(s)

Bernadette Wendel

References

For more details on Pathway Commons database

• Cerami EG, Gross BE, Demir E, Rodchenkov I, Babur O, Anwar N, Schultz N, Bader GD,
Sander C Pathway Commons, a web resource for biological pathway data. Nucleic Acids
Research 2010, 39(Database):D685-D690.

• Rodchenkov I, Babur O, Luna A, Aksoy BA, Wong JV, Fong D, Franz M, Siper MC, Cheung
M, Wrana M, Mistry H, Mosier L, Dlin J, Wen Q, O’Callaghan C, Li W, Elder G, Smith
PT, Dallago C, Cerami E, Gross B, Dogrusoz U, Demir E, Bader GD, Sander C Pathway
Commons 2019 Update: integration, analysis and exploration of pathway data. Nucleic Acids
Research 2019

Examples

PathwaysURI<-searchPathway("neuronal system","reactome")
head(PathwaysURI);dim(PathwaysURI)

selectedPathway<-subset(PathwaysURI,name=="Transcriptional Regulation by MECP2")
selectedPathway
Pathway1<-get.pathway(selectedPathway, URI="uri", pathwayname="name", delete =TRUE)

pathwayList<-get.pathway(PathwaysURI[c(2:7,10:12),],delete = FALSE)
class(pathwayList);length(pathwayList)

KMR.Cross.bin Kernel machine regression (KMR) analysis for cross-sectional binary
data

Description

This function performs the null model fitting and p-value computation when the phenotype is binary
and cross-sectional. Assumption: binomial distribution
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Usage

KMR.Cross.bin(
formula,
phenotypedata,
kernelmatrix,
phenotype = "pheno",
method = c("satt", "davies", "all"),
lim = NULL,
acc = NULL

)

Arguments

formula formula of null model

phenotypedata data frame with phenotype (do not delete rows with missing values) and covari-
ables

kernelmatrix kernel matrix - either a matrix or a list of matrices

phenotype name of the column with phenotype, default: ’pheno’

method method of p-value computation, possibilities: ’satt’ for the Satterthwaite ap-
proximation, ’davies’ for the Davies’ algorithm or ’all’ for both available
methods

lim maximum number of integration terms (more details see package CompQuad-
Form function davies). Values range from 1,000 (procedure called repeatedly)
to 50,000 (procedure called only occasionally)

acc error bound (more details see package CompQuadForm function davies). Suit-
able values for ’acc’ range from 0.001 to 0.00005’

Details

The p-value computation can be performed with two different methods by option method. If pa-
rameter is ’davies’ the p-value is computed as described by Davies. The function davies() from
the package CompQuadForm is applied. The parameter ’lim’ and ’acc’ are only important for
davies() and ignored otherwise. For parameter ’satt’ the p-value is computed by using the Sat-
terthwaite approximation as described by Schaid.

Value

Outcome object with the results of the kernel regression

Author(s)

Bernadette Wendel

References

For details on the variance component test

• Liu D, Ghosh D, Lin X: Estimation and testing for the effect of a genetic pathway on a disease
outcome using logistic kernel machine regression via logistic mixed models. BMC Biometrics
2008, 9(1).
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• Wu MC, Kraft P, Epstein MP, Taylor DM, Chanock SJ, Hunter DJ, Lin X: Powerful SNP-
Set Analysis for Case-Control Genome-Wide Association Studies. Am J Hum Genet 2010,
86:929-42.

• Wu MC, Lee S, Cai T, Li Y, Boehnke M, Lin X: Rare-Variant Association Testing for Se-
quencing Data with the Sequence Kernel Association Test. Am J Hum Genet 2011, 89:82-93.

• Freytag S, Manitz J, Schlather M, Kneib T, Amos CI, Risch A, Chang-Claude J, Heinrich J,
Bickeboeller H: A network-based kernel machine test for the identification of risk pathways
in genome-wide association studies. Hum Hered. 2013, 76(2):64-75.

• Ge T, Schmoller JW, Sabuncu MR: Kernel machine regression in neuroimaging genetics. In
Machine Learning and Medical Imaging. page 31-68. Elsevier 2016.

The details on the p-value computation methods can be found in:

• Davies RB: Algorithm AS 155: The Distribution of a Linear Combination of chi square Ran-
dom Variables. Applied Statistics 1980, 29(3):323.

• Schaid DJ: Genomic Similarity and Kernel Methods I: Advancements by Building on Mathe-
matical and Statistical Foundations. Hum Hered 2019, 70:109-131.

Examples

LinKernel<-Linearkernel(Genotypematrix)

crossbin<-KMR.Cross.bin(formula= Binpheno~Age+Gender, phenotypedata = CrossPhenotype,
kernelmatrix = LinKernel,
method="all", phenotype = "Binpheno")

summaryKMR(crossbin)

KMR.Cross.quan Kernel machine regression (KMR) analysis for cross-sectional quanti-
tative data

Description

This function performs the null model fitting and p-value computation when the phenotype is quan-
titative and cross-sectional. Assumption: normal distribution

Usage

KMR.Cross.quan(
formula,
phenotypedata,
kernelmatrix,
phenotype = "pheno",
method = c("satt", "davies", "all"),
lim = NULL,
acc = NULL

)
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Arguments

formula formula of null model

phenotypedata data frame with phenotype (do not delete rows with missing values) and covari-
ables

kernelmatrix kernel matrix - either a matrix or a list of matrices

phenotype name of the column with phenotype, default: ’pheno’

method method of p-value computation, possibilities: ’satt’ for the Satterthwaite ap-
proximation, ’davies’ for the Davies’ algorithm or ’all’ for both available
methods

lim maximum number of integration terms (more details see package CompQuad-
Form function davies). Values range from 1,000 (procedure called repeatedly)
to 50,000 (procedure called only occasionally)

acc error bound (more details see package CompQuadForm function davies). Suit-
able values for ’acc’ range from 0.001 to 0.00005’

Details

The p-value computation can be performed with two different methods by option method. If pa-
rameter is ’davies’ the p-value is computed as described by Davies. The function davies() from
the package CompQuadForm is applied. The parameter ’lim’ and ’acc’ are only important for
davies() and ignored otherwise. For parameter ’satt’ the p-value is computed by using the Sat-
terthwaite approximation as described by Schaid.

Value

Outcome object with the results of the kernel regression

Author(s)

Bernadette Wendel

References

For details on the variance component test

• Liu D, Lin X, Ghosh D: Semiparametric Regression of Multidimensional Genetic Pathway
Data: Least-Squares Kernel Machines and Linear Mixed Models. Biometrics 2007, 63(4):1079-
1088.

• Wu MC, Lee S, Cai T, Li Y, Boehnke M, Lin X: Rare-Variant Association Testing for Se-
quencing Data with the Sequence Kernel Association Test. Am J Hum Genet 2011, 89:82-93.

• Ge T, Schmoller JW, Sabuncu MR: Kernel machine regression in neuroimaging genetics. In
Machine Learning and Medical Imaging. page 31-68. Elsevier 2016.

The details on the p-value computation methods can be found in:

• Davies RB: Algorithm AS 155: The Distribution of a Linear Combination of chi square Ran-
dom Variables. Applied Statistics 1980, 29(3):323.

• Schaid DJ: Genomic Similarity and Kernel Methods I: Advancements by Building on Mathe-
matical and Statistical Foundations. Hum Hered 2019, 70:109-131.
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Examples

QuadKernel<-Quadratickernel(Genotypematrix)

crossquant<-KMR.Cross.quan(formula = Quantpheno~Age, phenotypedata = CrossPhenotype,
kernelmatrix = QuadKernel,
method="all",phenotype = "Quantpheno")

summaryKMR(crossquant)

KMR.KernelTime Kernel machine regression (KMR) with Kernel x Time interaction term
and adjustment

Description

This function allows the user to test for an interaction effect between the time factor and the kernel
matrix. There are two possible random effect structures available (see below for more details).

Usage

KMR.KernelTime(
fixedEff,
phenotypedata,
kernelmatrix,
kerneltime,
phenotype = "pheno",
ID = "IID",
timepoints = "time",
estimation = c("REML", "ML"),
method = c("satt", "davies"),
randomEff = NULL,
lim = NULL,
acc = NULL

)

Arguments

fixedEff formula of fixed effects

phenotypedata data frame with phenotype and covariable

kernelmatrix kernel matrix

kerneltime kernel matrix of time interaction effect, i.e. genotypes are multiplied by time
and used to compute kernel

phenotype name of the column with phenotype, default: ’pheno’

ID column with individual identifier, default: ’IID’

timepoints column of time vector, default: ’time’

estimation method of estimation, possibilities: ’REML’ or ’ML’

method method of p-value computation, possibilities: ’satt’ for the Satterthwaite ap-
proximation, ’davies’ for the Davies’ algorithm or ’all’ for both available
methods
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randomEff formula of random effects, where only two options are possible, default: NULL,
second possibility: ’slope’(see below)

lim maximum number of integration terms (more details see package CompQuad-
Form function davies). values range from 1,000 (procedure called repeatedly)
to 50,000 (procedure called only occasionally)

acc error bound (more details see package CompQuadForm function davies). Suit-
able values for ’acc’ range from 0.001 to 0.00005

Details

The p-value computation can be performed with two different methods by option method. If pa-
rameter is ’davies’ the p-value is computed as described by Davies. The function davies() from
the package CompQuadForm is applied. The parameter ’lim’ and ’acc’ are only important for
davies() and ignored otherwise. For parameter ’satt’ the p-value is computed by using the Sat-
terthwaite approximation as described by Schaid.

Value

Outcome object with the results of the kernel regression

Note

There are only two possible random effect structures:

• The kernel matrix and a random intercept for correction of the dependence structure between
the individuals (’randomEff=NULL’)

• The kernel matrix and random intercept and a random time slope (’randomEff=slope’)

Author(s)

Bernadette Wendel

References

For details on the extension see:

• Yan Q, Weeks DE, Tiwari HK, Yi N, Thang K, Gao G, Lin W-Y, Lou X-Y, Chen W, Liu N:
Rare-Variant Kernel Machine Test for Longitudinal Data from Population and Family Sam-
ples. Human Heredity 2015, 80(3):126-138.

The details on the p-value computation methods can be found in:

• Davies RB: Algorithm AS 155: The Distribution of a Linear Combination of chi square Ran-
dom Variables. Applied Statistics 1980, 29(3):323.

• Schaid DJ: Genomic Similarity and Kernel Methods I: Advancements by Building on Mathe-
matical and Statistical Foundations. Hum Hered 2019, 70:109-131.

Examples

WidePhenotypeLong<-long.format(WidePhenotype, i=4,j=6,m=3, columnmeasurement = "pheno")

longGenotype<-makeLongGenotype(GenotypematrixInteraction,m=3)
Genotypetime2<-makeLongGenotype(GenotypematrixInteraction,m=3,timevector = (0:2))
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Kernelmatrix<-Linearkernel(longGenotype)
Kerneltime<-Linearkernel(Genotypetime2)

Interaction<-KMR.KernelTime(fixedEff=pheno~Age+Gender+time,WidePhenotypeLong,
kernelmatrix=Kernelmatrix,Kerneltime,
estimation="REML",method="all",randomEff = "slope")

summaryKMR(Interaction)

KMR.Long Longitudinal kernel machine regression (KMR) analysis

Description

The function performs the null model fitting and p-value computation for a longitudinal quantitative
phenotype. Assumption: normal distribution.

Usage

KMR.Long(
fixedEff,
randomeffects,
phenotypedata,
kernelmatrix,
phenotype = "pheno",
ID = "IID",
timepoints = "time",
estimation = c("REML", "ML"),
method = c("satt", "davies", "all"),
lim = NULL,
acc = NULL

)

Arguments

fixedEff formula of fixed effects

randomeffects formula of random effects (see below)

phenotypedata data frame with phenotype (do not delete rows with missing values) and covari-
ables

kernelmatrix kernel matrix

phenotype name of the column with phenotype, default: ’pheno’

ID name of the column containing the identifier of the individuals, default: ’IID’

timepoints name of the column containing the time, default: ’time’

estimation method of estimation, possibilities: ’REML’ or ’ML’

method method of p-value computation, possibilities: ’satt’ for the Satterthwaite ap-
proximation, ’davies’ for the Davies’ algorithm or ’all’ for both available
methods

lim maximum number of integration terms (more details see package CompQuad-
Form function davies). Values range from 1,000 (procedure called repeatedly)
to 50,000 (procedure called only occasionally)
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acc error bound (more details see package CompQuadForm function davies). Suit-
able values for ’acc’ range from 0.001 to 0.00005

Details

The p-value computation can be performed with two different methods by option method. If pa-
rameter is ’davies’ the p-value is computed as described by Davies. The function davies() from
the package CompQuadForm is applied. The parameter ’lim’ and ’acc’ are only important for
davies() and ignored otherwise. For parameter ’satt’ the p-value is computed by using the Sat-
terthwaite approximation as described by Schaid.

The random effects can be either a single random intercept or a random intercept and a random
time slope to correct for the dependence of the longitudinal data. A more complex random effect
structure is not possible.

The kernel matrix can model a main genetic effect or a time genetic interaction effect. The kernel
need to be computed accordingly with makeLongGenotype().

Value

Outcome object with the results of the kernel regression

Author(s)

Bernadette Wendel

References

For detail on the expansion to longitudinal data:

• Yan Q, Weeks DE, Tiwari HK, Yi N, Thang K, Gao G, Lin W-Y, Lou X-Y, Chen W, Liu N:
Rare-Variant Kernel Machine Test for Longitudinal Data from Population and Family Sam-
ples. Human Heredity 2015, 80(3):126-138.

• Ge T, Schmoller JW, Sabuncu MR: Kernel machine regression in neuroimaging genetics. In
Machine Learning and Medical Imaging. page 31-68. Elsevier 2016.

The details on the p-value computation methods can be found in:

• Davies RB: Algorithm AS 155: The Distribution of a Linear Combination of chi square Ran-
dom Variables. Applied Statistics 1980, 29(3):323.

• Schaid DJ: Genomic Similarity and Kernel Methods I: Advancements by Building on Mathe-
matical and Statistical Foundations. Hum Hered 2019, 70:109-131.

Examples

longGenotype<-makeLongGenotype(Genotypematrix,m=4)
Kernellong<-Linearkernel(longGenotype)

longcompleteKMR<-KMR.Long(fixedEff = pheno~Age+Gender+time, randomeffects = ~1+time|IID,
phenotypedata = LongPhenotype,kernel = Kernellong,
method = "all",estimation = "REML")

summaryKMR(longcompleteKMR)
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Linearkernel Computation of a linear kernel

Description

This function computes a linear kernel.

Usage

Linearkernel(Genotype)

Arguments

Genotype a single nxp matrix of the genotype of n individuals and p SNPs (no missing
values)

Value

an nxn kernel matrix (n - number of individuals)

Author(s)

Bernadette Wendel

References

For details on the linear kernel

• Wu MC, Kraft P, Epstein MP, Taylor DM, Chanock SJ, Hunter DJ, Lin X: Powerful SNP-
Set Analysis for Case-Control Genome-Wide Association Studies. Am J Hum Genet 2010,
86:929-42.

Examples

KernelLin<-Linearkernel(Genotypematrix)#for cross-sectional data

longGenotype<-makeLongGenotype(Genotypematrix, m=4)
Kernellong<-Linearkernel(longGenotype)
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LongPhenotype Example quantitative longitudinal phenotype for 250 individuals

Description

The data set LongPhenotype contains a simulated normally distributed phenotype for 250 individ-
uals at four measurement points. The data are saved in long format. The data have a column with
a complete phenotype and one column of a phenotype with missing values (in total: 294xNA, see
below). In addition to the phenotype, we also simulated two types of covariables (a binary and a
continuous variable).

Usage

LongPhenotype

Format

A data frame with 1000 rows and 6 columns:

IID Identifier of each individual, pattern: IIDn with n=1,...,250
time a categorical variable representing the time factor: 0,1,2,3 (in total: four measurement points)
Age normally distributed variable, representing the age of an individual
Gender a binary (0 or 1) variable, representing the gender of an individual
pheno quantitative phenotype, simulated with a linear mixed model
missingpheno phenotype values with 294 missing measurement points

Source

Simulated data set

makeLongGenotype Create genotype matrix in long format and computed interaction effect

Description

This function transforms a genotype matrix from wide to long format if required. If the genetic time
interaction effect is of interest, a time factor need to be provided by timevector and the genotypes
are multiplied with the time.

Usage

makeLongGenotype(Genotype, m, ID = NULL, timevector = NULL)

Arguments

Genotype genotype matrix in wide format (each row one individual)
m number of time points
ID name of column with individual identifiers, if default NULL row names are used
timevector vector containing time points (e.g. 0,1,...) only required if the genetic time

interaction is of interest, default: NULL
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Value

genotype matrix in long format (m rows for each individual)

Author(s)

Bernadette Wendel

Examples

longGenotype<-makeLongGenotype(Genotypematrix, m=4)
dim(longGenotype)

longGenotypeInteraction<-makeLongGenotype(Genotypematrix, m=4, timevector=c(0,1,2,3))
dim(longGenotypeInteraction)

Networkkernel Computation of a network kernel based on Freytag et al.

Description

This function creates a network kernel matrix based on Freytag et al.. The annotation matrix and
the adjacency matrix (both created previously) do not have to be sorted. This function will order the
row/column names of the matrices before computing the network kernel. It will also delete empty
genes from the annotation matrix. The adjacency matrix need to be already rewired (i.e. empty
genes and elements which are no genes are already removed).

Usage

Networkkernel(Genotype, Annotation, N)

Arguments

Genotype a single nxp matrix of the genotype of n individuals and p SNPs (no missing
values)

Annotation is an annotation matrix or a list of annotation matrices (order of annotation ma-
trices identical to order of adjacency matrices (N), pathways need to match)

N an adjacency matrix of a rewired pathway or a list of rewired adjacency ma-
trices (order of adjacency matrices identical to order of annotation matrices
(Annotation), pathways need to match)

Value

an nxn kernel matrix (n - number of individuals) or a list of kernel matrices depending on the input
format of Annotation and N

Author(s)

Bernadette Wendel
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References

For details on the network kernel

• Freytag S, Manitz J, Schlather M, Kneib T, Amos CI, Risch A, Chang-Claude J, Heinrich J,
Bickeboeller H: A network-based kernel machine test for the identification of risk pathways
in genome-wide association studies. Hum Hered. 2013, 76(2):64-75.

Examples

Annotationmatrixfinal<-get.Annotation(pathway = GeneInformation, SNPinfo = SNPBimFile,
windowsize = 50, geneinfo = TRUE)

AdjacencyMatrix1<-get.networkadjacency(Pathway,Annotationmatrix = Annotationmatrixfinal,
signed=FALSE)

NetworkKernel<-Networkkernel(Genotype = Genotypematrix,Annotation=Annotationmatrixfinal,
N=AdjacencyMatrix1)

Outcome-class Object class storing the results of the kernel regression analysis

Description

Object class storing the results of the kernel regression analysis

Slots

inputformat character string with general information

fixedeffects formula describing the fixed effects of the model

randomeffects information of the random effect structure

estimationmethod character string determining the method applied to estimate the parameter (ML
or REML)

pvalueinfo character string on type of p-value computation method (davies or satt)

resultdf data frame containing the results of the kernel analysis

Author(s)

Bernadette Wendel
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Pathway Example pathway

Description

The data set Pathway is a data frame with an hypothetical pathway of 42 interactions.

Usage

Pathway

Format

A data frame with 42 rows and 3 columns:

PARTICIPANT_A gene which interacts with gene in column 3

INTERACTION_TYPE type of gene interaction

PARTICIPANT_B gene which interacts with gene in column 1

Source

Simulated data set

pathway.characteristics

Determine graph theoretical characteristics of a pathway graph

Description

This function determines specific graph theoretical characteristics of a pathway. The following fea-
tures are assessed: number of nodes and edges, average node degree, density, diameter, betweenness
and transitivity. All of the characteristics are computed with functions of the igraph package.

Usage

pathway.characteristics(pathway)

Arguments

pathway a single graph in SIF (Standard Interchange Format) or a single adjacency ma-
trix.

Value

a data frame of the pathway characteristics.

Author(s)

Bernadette Wendel
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Examples

pathwayinfo<-pathway.characteristics(Pathway)
pathwayinfo

pathway.plot Graphical illustration of a pathway

Description

This function allows to plot a pathway.

Usage

pathway.plot(
pathway,
direction = "undirected",
vertexcolor = "darkblue",
vertexframe = vertexcolor,
labeldist = -2.5,
labelcex = 0.8,
labelcolor = "black",
labelfont = 2,
edgewidth = 2.5,
edgecol = "black",
curved = FALSE,
rescale = TRUE,
pathwayname = NULL,
title = NULL,
vertexname = NULL,
layout = NULL,
weighted = NULL

)

Arguments

pathway single pathway in a SIF format or an igraph object

direction select between ’undirected’ and ’directed’ graph, default: ’undirected’

vertexcolor color of the vertices, default: ’darkblue’

vertexframe color of the frame of the vertices, default: vertexcolor

labeldist distance of the label from the center of the vertex, default: -2.5

labelcex font size for vertex labels, default: 0.8

labelcolor color of the vertex labels, default: ’black’

labelfont font for the vertex labels, default: 2

edgewidth width of the edges, default: 2.5

edgecol color of edges, default: ’black’

curved edge curve, range between (0,1), default: FALSE (=0), see igraph
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rescale logical constant, whether to rescale the coordinates, default: TRUE, see igraph
documentation

pathwayname name of the plotted graph

title title of the plotted graph

vertexname optional vector of names for vertices (user-defined)

layout layout type of illustration, default: layout.fruchterman.reingold

weighted logical variable, default: NULL, (if the adjacency matrix has weights it needs to
be set to TRUE)

Value

plot of the pathway

Note

This function holds only part of the options of the plot()- function of the package igraph. For
more option see igraph.

Author(s)

Bernadette Wendel

Examples

PathwaysURI<-searchPathway("neuronal system","reactome")
selectedPathway<-subset(PathwaysURI,name=="Transcriptional Regulation by MECP2")

Pathway1<-get.pathway(selectedPathway, URI="uri", pathwayname="name", delete =TRUE)
pathway.plot(Pathway1,direction="undirected",pathwayname="Transcriptional Regulation by MECP2",

title="Display of the Regulation pathway")

pathway.plot(Pathway,direction = "undirected", pathwayname = "articifial")

Quadratickernel Computation of a quadratic kernel

Description

This function creates a kernel based on the quadratic kernel computation.

Usage

Quadratickernel(Genotype)

Arguments

Genotype a single nxp matrix of the genotype of n individuals and p SNPs (no missing
values)
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Value

an nxn kernel matrix (n - number of individuals)

Author(s)

Bernadette Wendel

References

For details on the quadratic kernel

• Wu MC, Maity A, Lee S, Simmons EM, Harmon QE, Lin Y, Engel SM, Molldrem JJ, Armis-
tead PM: Kernel machine SNP-set testing under multiple candidate kernels. Genet Epidemiol.
2013, 37(3):267-275.

Examples

KernelQuad<-Quadratickernel(Genotypematrix)

reduceGenotype Downsizing of genotype matrix

Description

The genotype matrix (dimensions) is reduced to match the dimensions of the phenotype data when
measurements are missing. The genotype matrix is also transformed in long format. If the genetic
time interaction effect is of interest, a time factor needs to be provided by timevector and the
genotypes are multiplied with the time.

Usage

reduceGenotype(
phenotypedata,
Genotype,
phenotype = "pheno",
currentGenotypeformat = "long",
m = NULL,
timevector = NULL

)

Arguments

phenotypedata phenotype data in long format with missing values (do not delete rows with
missing values), row names are used to match with row names of Genotype

Genotype an nxp matrix of the genotypes of all individuals, are used to match with row
names of phenotypedata

phenotype column with phenotype data
currentGenotypeformat

format of the input genotype matrix (Must be either ’long’ or ’wide’), default:
’long’
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m number of time points, only required if the format of the genotype matrix is
’wide’

timevector vector containing time points if a genetic time interaction effect is of interest,
default: NULL

Value

a reduced form (smaller dimensions) of the genotype matrix, if the phenotype data is longitudinal
then the genotype matrix will also be transformed into long format

Author(s)

Bernadette Wendel

Examples

Genotypecross<-reduceGenotype(Genotypematrix,phenotypedata = CrossPhenotype,
phenotype="Quantmisspheno",
currentGenotypeformat = "wide",m=1)

dim(Genotypecross)
Kernelcross<-Linearkernel(Genotypecross)
dim(Kernelcross)

searchPathway Scan Pathway Commons database for pathway(s)

Description

This function scans the database Pathway Commons by a keyword returning a data frame of the
found pathways with information, e.g. name and URI. The function uses the function searchPc()
of the package paxtoolsr searching the Pathway Commons database.

Usage

searchPathway(keyword, pathwaysource, type = NULL, organism = NULL)

Arguments

keyword keyword or name of a pathway to find pathway(s) and URI

pathwaysource name of pathway database which should be used, only databases part of Pathway
Commons (e.g. Reactome)

type describes type of information returned, default: ’Pathway’

organism type of organism researched, default: ’homo sapiens’

Value

data frame with 3 columns: name, uri, biopaxClass

Author(s)

Bernadette Wendel
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References

For more details on Pathway Commons database

• Cerami EG, Gross BE, Demir E, Rodchenkov I, Babur O, Anwar N, Schultz N, Bader GD,
Sander C Pathway Commons, a web resource for biological pathway data. Nucleic Acids
Research 2010, 39(Database):D685-D690.

• Rodchenkov I, Babur O, Luna A, Aksoy BA, Wong JV, Fong D, Franz M, Siper MC, Cheung
M, Wrana M, Mistry H, Mosier L, Dlin J, Wen Q, O’Callaghan C, Li W, Elder G, Smith
PT, Dallago C, Cerami E, Gross B, Dogrusoz U, Demir E, Bader GD, Sander C Pathway
Commons 2019 Update: integration, analysis and exploration of pathway data. Nucleic Acids
Research 2019

Examples

PathwaysURI<-searchPathway("neuronal system","reactome")
head(PathwaysURI);dim(PathwaysURI)

SNPBimFile Example of SNP information data

Description

The data set SNPBimFile is a data frame with simulated information on 2000 SNPs.

Usage

SNPBimFile

Format

A data frame with 2000 rows and 3 columns:

CHR chromosome of the SNP

SNP name of the SNP

BP base pair position of the SNP

Source

Simulated data set
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summaryKMR Summary function

Description

summaryKMR is the summarizing function to return an Outcome object

Usage

summaryKMR(object)

Arguments

object an object of class Outcome

Author(s)

Bernadette Wendel

WidePhenotype Example quantitative longitudinal phenotype for 100 individuals

Description

The data set WidePhenotype contains a simulated normally distributed phenotype for 100 individu-
als and three measurement points. The data are saved in wide format (one individual per row). The
phenotype is complete (no missing values at any measurement point). In addition to the phenotype,
we simulated two types of covariables (a binary and a continuous variable).

Usage

WidePhenotype

Format

A data frame with 100 rows and 6 columns:

IID Identifier of each individual, pattern: IIDn with n=1,...,100

Age normally distributed variable, representing the age of an individual

Gender a binary (0 or 1) variable, representing the gender of an individual

pheno.t1 quantitative phenotype at time point 1

pheno.t2 quantitative phenotype at time point 2

pheno.t3 quantitative phenotype at time point 3

Source

Simulated data set
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