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1. Introduction

The crystal structure of a material can be paramount to its properties. It can induce
optical properties, determine catalytic activity, and can be connected to myriad other
properties of interest for industrial applications or just for human curiosity. The crystalline
state is unique in that the relative position between molecules is usually more stable
and localised in comparison to other phases. The ordered aggregation is governed by
localised interactions such as covalent and hydrogen bonds, dipole-dipole interactions,
halogen and chalcogen bonding and less localised interactions such as ionic bonds and
van-der-Waals interactions.

As these interactions determine the crystal properties, their modelling is of constant
interest. From quantum chemical methods, Density Functional Theory (DFT) (Hohenberg
and Kohn, 1964; Kohn and Sham, 1965) can certainly be called the most successful
method for the description of crystalline materials. In order to verify the performance of a
given method within this framework, various benchmark datasets have been provided.

The benchmarks for molecular structures are often based on calorimetric measurements,
such as the X23 dataset (Otero-de-la Roza and Johnson, 2012a; Dolgonos et al., 2019),
ICE10 (Brandenburg et al., 2015), POLY59 (Brandenburg and Grimme, 2016) and the
most recent example by Díaz Mirón and Stein (2022), although other datasets probing
different properties have also been provided, such as the use of 13C shielding tensors
from the solid structures of peptides (Czernek et al., 2012).

On the other hand, most interactions in the crystal (with the exclusion of core-core
Coulomb repulsion) are governed by and influence the spatial distribution of electrons
within a crystal and as such the study of this distribution within atoms and crystals has
always been a topic of interest. The study of electron density can be separated along
the usual lines of theory and experiment.

The study of the crystalline state is the field of crystallography and one of its most
successful experimental methods is X-ray diffractometry. As Peter Debye wrote in 1915,
albeit about the study of amorphous matter:

[...] then it seems to me that the experimental investigation of diffracted
radiation, particularly for light atoms, warrants raised interest, as this should
be the way to experimentally discern the arrangement of electrons within
the atom. Accordingly, such an investigation has the significance of an ultra-
microscopy of the inner atom. (translated from the German original from
Debye (1915))
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1. Introduction

In the same year, Compton (1915) successfully excluded models of electron density
distributions of the atoms in rock salt, based on the X-ray diffraction experiments of
Bragg and Bragg (1913). An early attempt to derive a radial electron density distribution
from X-ray diffraction dates back to the 1920s (Bragg et al., 1922). However, due to
experimental uncertainties, the determined electron distribution does not match the
correct number of electron shells for the sodium and chlorine atoms in the crystal.

The study of the behaviour of electrons from the theoretical side is of course described by
quantum mechanics. The field of crystal structure analysis was able to profit significantly
from the atomic quantum electron densities calculated by methodologies from quantum
mechanics (Hartree and Waller, 1929) and atomic densities calculated by quantum
chemical methods have since become the basis of the ubiquitous independent atom
model (Doyle and Turner, 1968).

Starting from theoretical atomic densities a field emerged in crystallography, where
these densities were modified to fit experimental intensities from the X-ray diffraction
experiment, the latest approach of which is the model by Hansen and Coppens (1978)
now ubiquitous in charge density refinement. The obtained densities were approximately
deconvoluted from the vibrational influence and could subsequently be compared to
DFT calculations (Lippmann et al., 2003; Volkov et al., 2000). A more recent example
postulated an influence of dispersion interaction, which a recent van-der-Waals functional
was not able to reproduce (Zhang et al., 2018).

The final set of methods tries to combine wavefunction calculations and intensities from
X-ray diffractometry during the refinement of the model itself, effectively trying to reach
a compromise of the energy of the wavefunction and the agreement to the experimental
values. X-ray restrained wavefunction fitting introduced by Jayatilaka and Grimwood
(2001) is currently the most prominent of these methods. These methods are occupied
with getting a more accurate wavefunction with some impressive results (Genoni et al.,
2018). However, to this date calculations do not include periodic boundary conditions
and therefore the difference between the theoretical wavefunction and the wavefunction
including experimental influences cannot be attributed to inaccuracies in the theoretical
method of choice. This makes its use limited for the benchmarking purposes pursued in
this work until this drawback is remedied.

The final approach is splitting up the theoretically calculated density into atomic contribu-
tions for further use. The most prominent of these methods is Hirshfeld Atom Refinement
(HAR) (Jayatilaka and Dittrich, 2008; Capelli et al., 2014) and its improvement and use
will be explored in Chapter 6.

The marriage of crystallography and quantum mechanics has been coined quantum
crystallography. While this term was originally coined to only describe the combination
of crystallographic data and quantum mechanical techniques to gain additional or more
accurate information (Huang et al., 1999), the term has recently been used in a broader
sense, for example also including the aforementioned charge density refinements without
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a direct quantum mechanical calculation. The more recent definition used in this work
is given by Macchi (2020):

quantum crystallography includes the study of all those features of a crystal,
which cannot be described only by classical or semi-classical physics.

Using this definition this work will try to evaluate different approaches for a benchmarking
approach of the solid-state system. For every chapter, it will rely on approaches which
can be included in the definition of quantum crystallography. However, each chapter
will use varying broadness of the used term.
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2. Kinematic theory of X-ray diffraction

This chapter is meant as a review of the theory of X-ray diffraction employed within
the following chapters including the connection of X-ray scattering and electron density.
It will stay within the kinematical approximation, i. e. all presented derivations work
under the assumption that X-ray radiation is scattered only or mainly elastically by
crystals once, while non-elastic contributions are very small in comparison.

This approximation is very successful, as can be seen by the over 1 200 000 structures in
the Cambridge Structural Database,1 which are almost exclusively refined using kinemat-
ical models. In order to include essential non-kinematical effects, the crystallographic
community has developed corrections, as will be discussed in section 2.7.

The explanation will start from the most simple system imaginable, namely a one-
dimensional grating. From there on, the diffraction of X-ray radiation at a crystal will
be developed. In contrast, the final two sections will deal with how the model for the
intensity of the X-ray experiment can be fitted to the recorded intensity. The final
section will tackle how the quality of the fitted model can be assessed.

2.1. Diffraction from a one-dimensional grating

This section follows the derivation as presented by Schwarzenbach (1996). The basis of
all diffraction experiments is a wavefront of electromagnetic radiation. The direction
and wavelength of this wavefront are given by the wave vector of the incident wave
s0. The direction of the vector is the direction of propagation of the electromagnetic
radiation. The magnitude of the vector is given as |s0| = 1/λ. For this wave vector, the
displacement of the electric field ψ at position r at time t is given as:

ψ(r, t) = Ae2πi(s0·r−νt+ϕ) (2.1)

here A denotes the amplitude and λ the wavelength. ν is the frequency and ϕ is the
phase of the wave at |r| = 0 and t = 0. If a second wavefront of light is added, the
superposition of the two vectors will be obtained. With the phases of the two waves
ϕ1 and ϕ2 and the amplitudes A1 and A2 and the same direction of propagation, the
superposition can be described as:

1The number is taken from the CCDC website in December 2022
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2. Kinematic theory of X-ray diffraction

s0
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s2

s−1

s−2
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s0
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∆ θ s0

ζ1

ζ2
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∆ = λd · s = d sin θ

Figure 2.1.: Diffraction of electromagnetic radiation in the double-slit experiment. d is
the distance between the two slits. s is a wave vector in the direction of
diffraction. s0 is the wave vector of the incident wave. Reproduced after
Schwarzenbach (1996).

ζ = ζ1 + ζ2 = A1e
2πiϕ1 +A2e

2πiϕ2 (2.2)

In the simplest diffraction experiment, a parallel wavefront hits a wall that is impenetrable,
except for two small punctures (see Figure 2.1). From Huygens’ principle follows, that
these two punctures constitute two new sources of electromagnetic waves, which are
spherically emitted from the punctures. Assuming the distance of observation is large
compared to the spacing between these two punctures d = |d|, the product of the spherical
waves is a new plane wave with the new wave vector s (Fraunhofer’s approximation).
The path difference between these two waves ζ1 and ζ2 can be deduced from Figure 2.1
to be:

∆ = d sin θ = λd · s (2.3)

The relative phase difference is constant and therefore the first phase can be set to
ϕ(ζ1) = 0. Due to the path difference, the relative phase of the second wave has to be
ϕ(ζ2) = ∆/λ and according to Equation 2.2 the result is:

ζ = ζ1 + ζ2 = A(e2πi0 + e2πi∆/λ) = A(1 + e2πid·s) (2.4)

The intensity I(s) in direction s is proportional to the squared absolute value of ζ:

I(s) = |ζ|2 = 4A2 cos2(πd · s) = 4A2 cos2
(
π
d

λ
sin θ

)
(2.5)
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2.2. Fourier transform and convolution in crystallography

Now, this expression needs to be generalised for a linear arrangement of N punctures in
a row. In addition to the point sources at 0 and d, point sources are located at 2d, 3d,
. . . , (N−1)d. Accordingly, the resulting phase differences are s ·d, 2s ·d, . . . , (N−1)s ·d.
Combining the sum of geometric progression to evaluate the sum of exponential functions
with Equation 2.2 yields:

ζ =
N∑

n=1
ζn = A

N−1∑
n=0

e2πins·d = A
1 − e2πiNs·d

1 − e2πis·d (2.6)

I = |ζ|2 = ζζ∗ = A2 1 − cos (2πNs · d)
1 − cos (2πs · d) = A2 sin2 (πNs · d)

sin2 (πs · d) = A2J2
N (s · d) (2.7)

J2
N (s · d) = sin2 (πNs · d)

sin2 (πs · d) (2.8)

The function J2
N (s · d) is the interference function of a row of evenly spaced scattering

centres, which could be viewed as a one-dimensional crystal. Its root JN (s · d) is the
one-dimensional equivalent of the so-called structure factor for this specific system of
equal scatterers.

The structure factor describes the scattering of an object and is defined in reciprocal
space, which is spanned by possible diffraction vectors S = s − s0. For any scattering
system, it can be written as:

I(S) ∝ |F (S)|2 (2.9)

2.2. Fourier transform and convolution in crystallography

In the next section, a three-dimensional lattice of electron density will be constructed
to describe the crystal. However, two mathematical tools are needed for that purpose,
which need to be described first. Namely, this section will introduce the concepts of
Fourier Transformation and convolution. This will not be done in a mathematically
rigorous way but will take more of a picture-book approach. For a rigorous treatment,
the reader might consult the established literature (Bricogne, 2010).

Fundamentally, the Fourier Transform extracts the wave component from a function
in time or space. The latter will be used in this section as that is the type of waves
which are usually investigated in crystallography. For simplicity reasons, this section will
start with a sum of two Gaussian functions as the target of the example investigation.
Starting with the one-dimensional case, the formula for the Fourier Transform is:
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2. Kinematic theory of X-ray diffraction
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Figure 2.2.: Depiction of the calculation of Fourier transform for one point in reciprocal
space for the real-valued function. The plots on the right are the product of
the other two plots. The resulting imaginary and real space components are
the difference between the blue and red areas of these plots.

F [f(x)](ζ) =
∞∫

−∞

f(x)e−2πiζxdx (2.10)

It is illustrative to visualise the integral of the product of these two functions for a
given wavelength ζ, but first, the real and imaginary parts of this integration need to be
separated using Euler’s formula:

F [f(x)](ζ) =
∞∫

−∞

f(x) [cos (−2πζx) + i sin (−2πζx)] dx (2.11)

Now, the integrals for calculating the imaginary and real parts can be visualised separately.
As can be seen in Figure 2.2 the calculation of the Fourier transform for a given function
and wave vector is relatively straightforward. The real part is related to the cosine
of the wave with the given wavelength. It is calculated by multiplying with a cosine
function constructed with the wave vector and subsequently determining the integral.
The imaginary part is constructed with the sine function accordingly. Following this
recipe for each wavelength gives the reciprocal spectrum or the Fourier transform of a
given function constructed in real space.

Of course, there is an analytical solution for the investigated function, as the Fourier
transform is a linear transformation, which means that both Gaussian functions can be
investigated separately. However, the graphical illustration shall suffice for the purpose
of this work.
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2.2. Fourier transform and convolution in crystallography

Figure 2.3.: Illustration of the effect of convolution. The first two rows are convoluted
with each other to yield the two functions in the lower row.

The inverse operation is called the inverse Fourier transform, so for a function F (ζ):

F−1F (ζ) =
∞∫

−∞

F (ζ)e2πiζxdζ (2.12)

A normalisation for either the inverse Fourier transform or both directions was omitted,
as the convention for this is not consistent in literature.

For the three-dimensional case, the integral is naturally done over all three dimensions. In
preparation for later discussion, the inverse Fourier transform is applied to an arbitrary
density ρ(x). The resulting function is the structure factor F (S) from the last section.

F (S) = Fρ(x) =
∫
R3

ρ(x)e2πiS·xdx (2.13)

The structure factor is a complex number and determines the relative scattering intensity
of reflections in crystallography.

For the second part of this section, the concept of convolution shall be investigated
in the same manner. Imagine two functions a(x) and b(x). For each point of the first
function a(x), the second function b(x) is multiplied by the value of the first function
and then the function b(x) is drawn around the point of the first function a(x). The
integral obtained by applying this recipe to all functions is the resulting convolution.
This concept is graphically illustrated in Figure 2.3.

The convolution theorem connects the Fourier transform of the resulting convolution to
the product of the Fourier transforms of the individual functions.

F [a(x) ∗ b(x)] = F (a(x)) · F (b(x)) (2.14)

9



2. Kinematic theory of X-ray diffraction

This equation will be used in the next sections to construct the structure factor of our
complete lattice from individual components.

2.3. Constructing the electron density of an infinite lattice and
its (inverse) Fourier transform

The crystal lattice is defined by the unit cell which is composed of a parallelepiped
spanned by three unit vectors a, b and c. These parallelepipeds form a precise lattice,
which is assumed to be perfect and infinite in all three directions. The electron density
within one of these cells is given by ρcell(r). How this density can be described will be the
subject of the next two sections. For now, it just needs to be accepted that it exists.

There are two conventions of coordinates to use within one cell of the lattice. The
vector r shall denote a position in cartesian coordinates. In contrast, crystallography
usually uses fractional coordinates for atomic positions with the associated vector x. The
fractional coordinates are only unique within the range 0 ≤ xi ≤ 1. Larger or smaller
values correspond to equivalent positions in neighbouring unit cells. The coordinates
can easily be transformed from one convention into the other by using.

r =

 a1 a2 a3
b1 b2 b3
c1 c2 c3

 x = Mx (2.15)

where a1, a2 and a3 denote the components of the unit vector a and bi and ci are the
components of b and c, respectively.

The lattice itself can be defined as an infinite sum of delta functions, where each delta
function describes one point of the lattice. A lattice point is only found if there is a
linear combination of the unit vectors with integer factors which gives the coordinate.
Let u, v, w be integer values. Then a coordinate rlatt only belongs to the lattice if there
is a combination of u, v, w which yields:

rlatt = ua + vb + wc (2.16)

The function describing the lattice δlatt(r) can be constructed as the sum of all possible
δ functions that fulfil this condition. One can simply write:

δlatt(r) =
∞∑

u=−∞

∞∑
v=−∞

∞∑
w=−∞

δ(r − ua − vb − wc) (2.17)

The overall density of the lattice can now be described as a convolution between this
function and the density of an individual cell:

10



2.4. The average density at finite temperature

ρlatt(r) = δlatt(r) ∗ ρcell(r) (2.18)

Using Equation 2.14 the structure factor can be calculated:

Flatt(S) = F [δlatt(r) ∗ ρcell(r)] (2.19)
= F [δlatt(r)] · F [ρcell(r)] (2.20)

This means that for the quantities of interest, the Fourier transform of the lattice and
the Fourier transform of the density can be done separately. The product only needs to
be formed at the end. The description of the unit cell will be the topic of the following
section. It can be shown that the Fourier transform of the lattice function is another
lattice. It has its own three basis vectors in reciprocal space: a∗, b∗ and c∗.

What this means in practice is that the structure factor of a single unit cell can be probed
at the lattice points of this reciprocal lattice only. The benefit is that the measured
intensity from all the individual cells is added up by constructive interference, thereby
amplifying the signal to something, which is available even with X-ray sources of common
intensity. In kinematic approximation the structure factor can only be non-zero at points
in reciprocal space fulfilling the condition:

S = ha∗ + kb∗ + lc∗ (2.21)

where h, k, and l are the Miller indices and can only have integer values. As such our
reciprocal space can be mapped in these indices using the vector:

h =

 h
k
l

 (2.22)

2.4. The average density at finite temperature

This section aims to start the description of the electron density of the unit cell. It
will introduce why the unit cell is constructed from atomic contributions, while the
approaches for constructing the atomic densities will follow in the next section. Important
for now is the fact, that the atomic density ρatom(r) is constructed with the respective
atom being located on the origin of the coordinate system. It can now be moved onto its
position in the unit cell by a convolution with a δ function, which is one at the atomic
position and zero everywhere else. If there are Natom atoms in our unit cell the density
in the unit cell can be described as:

11



2. Kinematic theory of X-ray diffraction

ρcell(r) =
Natom∑
j=1

ρatom,j ∗ δ(r − rj) (2.23)

With the knowledge that the Fourier transformation is a linear transformation and the
definition of the convolution, the structure factor can then be calculated:

Fcell(S) = F

Natom∑
j=1

ρatom,j ∗ δ(r − rj)

 (2.24)

=
Natom∑
j=1

F [ρatom,j(r)] · F [δ(r − rj)] (2.25)

=
Natom∑
j=1

fj(S) · e2πiS·rj (2.26)

The density as a sum of atomic densities has now been successfully constructed. However,
in the investigated physical system, atoms are not strictly located in a single position.
Atoms are subject to thermal motion even at low temperatures, as they are subject to
zero-point vibration. This effect is included by another convolution. The atom can be
displaced from its equilibrium position in dependence on the displacement vector u with
the probability P (u). The thermally averaged density is now a convolution of our atomic
densities at their position with this probability function:

⟨ρcell(r)⟩T = ρcell(r) =
Natom∑
j=1

ρatom,j ∗ P (u) ∗ δ(r − rj) (2.27)

The structure factor becomes:

F (S) =
Natom∑
j=1

F [ρatom,j(r)] · F [P (u)] · F [δ(r − rj)] (2.28)

=
Natom∑
j=1

f0j(S) · T (S) · e2πiS·rj (2.29)

Here, f0j is the atomic form factor, T (S) is the temperature factor and e2πiS·rj is the
so-called phase factor. Using this description the temperature can be included elegantly
with a single additional term in our product. However, the underlying approximation is,
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2.4. The average density at finite temperature

that the atomic density is invariant with displacement. The lower the displacement in
the system is, the more this approximation is fulfilled.

The temperature factor is the Fourier transform of the probability density. The simplest
assumption is that the probability is a Gaussian function which is only dependent on
the distance and not on the direction of the displacement. In this case, the functions
take the following values (Coppens, 2010):

P (u) = e−|u|2/2⟨u2⟩

(2π ⟨u2⟩)3/2 (2.30)

T (|S|) = exp (−2π2Uiso |S|2) (2.31)

In crystallography, this approach is called an isotropic refinement of the atomic displace-
ment, with the isotropic displacement parameter Uiso. However, atoms are not vibrating
independently of each other, but displacements in bond directions are less likely than
displacements perpendicular to bonds. Vibrations of atoms are coupled to each other.
To account for these effects the probability is assumed to be dependent on the direction
of the displacement with an inversion symmetric trivariate Gaussian function. As such
the probability density and temperature factor can be calculated (Coppens, 2010):

P (u) =
∣∣σ−1∣∣1/2

(2π)3/2 exp
{

−1
2uT σ−1u

}
(2.32)

T (S) = exp
{

−2π2ST σS
}

(2.33)

Modelling the thermal motion in this way is called anisotropic refinement of the atomic
displacement. The variance-covariance matrix σ is symmetric, which means that the
displacement can be described with six parameters. In small molecule crystallography, a
slightly different convention for this temperature factor has been established. First, the
matrix N is defined as (Grosse-Kunstleve and Adams, 2002):

N =

 |a| 0 0
0 |b| 0
0 0 |c|

 (2.34)

with Ucif again being a symmetric matrix and h being a vector with the miller indices
h = (h k l)T , the temperature factor can be defined as:

T (S) = exp
{

−2π2hT NUcifNT h
}

(2.35)
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2. Kinematic theory of X-ray diffraction

This is also the convention which will be used throughout this work. This is due to
consistency with the main storage file format in crystallography: the ‘cif’ file and easy
comparison to other results.

It is possible to calculate the equivalent isotropic displacement parameter from the aniso-
tropic refinement. It is calculated by the trace of the transformed atomic displacement
matrix using N and the M from Equation 2.15.

Uequiv = tr
(
MNUcifNT MT

)
/3 (2.36)

So far, only harmonic displacement has been investigated. Dependent on the actual
system, atoms might be displaced according to probability functions no longer well
described by a multivariate Gaussian. In this case, the Gram-Charlier expansion proposed
by Johnson and Levy (1974) has proven successful. It is an expansion of the normal
distribution in terms of its derivatives (Coppens, 2010):

P (u) =

1 −
∑

j

Dj + 1
2!

∑
j

∑
k

cjkDjDk − 1
3!

∑
j

∑
k

∑
l

cijkDjDkDl + ...

P0(u)

(2.37)

where i, j, k ∈ 1, 2, 3 denominate the cartesian coordinate of the derivative operator
∂/∂ui. Higher derivatives are achieved by applying the operator multiple times. P0(u)
is the unmodified normal distribution displacement function. With the use of Hermite
polynomials (see Coppens (2010)). This can be transformed to:

P (u) =

1 + 1
3!

∑
j

∑
k

∑
l

cijkHjkl(u) + 1
4!

∑
j

∑
k

∑
l

∑
m

cjklmHjklm(u) + ...

P0(u)

(2.38)

The reciprocal space representation of this anharmonic displacement description is given
as:

T (S) =

1 − 4
3π

3i
∑

j

∑
k

∑
l

cjklSjSkSl + 2
3π

4 ∑
j

∑
k

∑
l

∑
m

cjklmSjSkSlSm + ...

T0(S)

(2.39)

Here T0 is the harmonic temperature factor and the individual Si are the components of
the reciprocal coordinate of the vector S.
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2.5. Atomic density models

As such, a flexible description of the atomic displacement is available. However, a model
for the electron density of the individual atoms is still necessary. Some available options
will be given in the next section.

2.5. Atomic density models

As mentioned this section will deal with descriptions of the atomic electron density. The
focus will be on the three approximations used in this work (Independent Atom Model,
Multipolar Model and Hirshfeld Atom refinement). The explanations will be following
some of the historical perspective from the excellent review from Genoni and Macchi
(2020).

Electron density can only be suitably described by quantum mechanics and as such
the foundation for the electron density has been derived from quantum mechanical
methodologies. An early model for atomic form factors based on classical Thomson
theory adapted to the Bohr atomic model (Hartree, 1925) did show poor agreement
to experimental measurements (Bragg et al., 1922). Subsequently, Waller and Hartree
(1929) were able to provide more accurate atomic form factors based on atomic quantum
electron densities, which were adopted successfully. The idea to use spherical atomic
densities as an approximation for the atomic contribution to the scattering electron
density is still in use today in the form of the Independent Atom Model, where the atomic
form factors in use were derived by Doyle and Turner (1968) and subsequently published
in a parametric form in the International Tables for Crystallography, Volume C (Prince
et al., 2006).

However, as soon as atoms start to interact with each other the assumption of spherically
symmetric densities is no longer valid. Additionally, electron densities will be redistributed
from one atom to another. There are two different approaches in crystallography how
to include this fact in our density description. One approach is to modify an atomic
description in suitable ways. The other approach is to start with a molecular density
description, which can be divided into atomic contributions.

2.5.1. The atomic basis for aspherical atoms

Initially, the derivation of improved atomic descriptions has been pushed by Steward.
Building on the concept of the generalised atomic form factor by Dawson (1967), Stewart
(1969) had the idea to project the calculated molecular densities onto atomic bases and to
derive the atomic form factors for X-ray refinement from these projections (Stewart, 1973).
As the direct refinement of the wavefunction coefficients proved to be too complicated
at this point in time, the model was applied differently, by directly refining atomic
parameters against experimental data. As such Stewart (1976) proposed an atom-centred
multipolar extension and the derived model became known as the multipole model. This
work uses the formalism proposed by Hansen and Coppens (1978), which introduces
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2. Kinematic theory of X-ray diffraction

local coordinate systems, thereby enabling a larger degree of transferability between
atomic densities.

The atomic density in this multipolar approach is described by (Coppens, 2010):

ρatomic(r) = Pcρcore(r) +Pvκ
3ρvalence(κr) +

lmax∑
l=0

κ′3Rl(κ′r)
l∑

m=0

∑
p

Plmpdlmp(r/r) (2.40)

where ρcore(r) is the atomic core density, with the coefficient Pc, κ3ρvalence(κr) is the
spherical atomic valence density, with the coefficient Pv, which is often called the
monopole parameter. The parameter κ can be used to vary the distance dependency
within the refinement (Coppens et al., 1979). The last part of this sum is the aspherical
valence density and is described as a sum of normalised spherical harmonic functions
dlmp with their coefficients Plmp, which are multiplied by functions for the distance
dependency κ′3Rl(κ′r). This dependency can be modified by multiplying the absolute of
the distance from the atomic position by an additional parameter κ′.

The expression for the distance dependency is usually chosen from either a Gaussian
or a Slater function and is provided in the form of precalculated databases of atomic
density functions derived from quantum chemical calculations. The first of these has
been provided by Clementi and Raimondi (1963). This work uses the functions from Su
and Coppens (1998), which were extended by Macchi and Coppens (2001).

The Fourier Transform is a linear transform and as such the parts of the atomic density
can be transformed individually to get our atomic form factors in reciprocal space. The
atomic form factor expression is given by:

f(S) = Pcorefcore(S)+Pvalencefvalence(S/κ)+
∑

l

∑
m

∑
p

4πil ⟨jl⟩ (S/κ′)dlmp(S/S) (2.41)

The exact expression for the core atomic form factor fcore(S) and the valence atomic
form factor fvalence(S/κ) depends on the function chosen for the description of the
distance dependence of the density. ⟨jl⟩ (S/κ′) is the Fourier-Bessel transform and is
defined as:

⟨jl⟩ (S/κ′) =
∞∫

0

jl(2πrS/κ′)Rl(r)r2dr (2.42)

where jl is the lth other Bessel function. Finally, the dlmp(S/S) function consists of
the corresponding spherical harmonic. As the Fourier transform of spherical harmonic
functions are the spherical harmonics themselves, the transformation is straightforward.
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2.5. Atomic density models

However, the coordinate system used consists of directions in reciprocal space instead of
cartesian coordinates.

2.5.2. Molecular basis for the atomic form factor

In 2008, a new procedure to calculate the atomic form factors was proposed (Jayatilaka
and Dittrich, 2008). It does not calculate them starting from atomic densities of atoms
or ions but instead partitions a calculated density of a multiatom system into atomic
contributions.

First, a representative fragment from our molecular structure within the unit cell is
defined and the density of that fragment is calculated via computational chemistry
methods. In the second step, this density is partitioned using the Hirshfeld stockholder
partitioning (Hirshfeld, 1971) scheme. Here, atomic densities are used as weighting
functions in order to determine, how much of each point in space should be attributed
to which atom.

For each atom, an atomic density of the neutral atom is placed onto the atomic position.
The sum of these atomic densities is then called the promolecular density.

ρpromol(r) =
Natoms∑

j=1
ρj,neutral atom(|r − rj |) (2.43)

The share of the density at a certain point in space which belongs to the atom j to be
evaluated can now be calculated by a simple division.

pj,Hirshfeld(r) = ρj,neutral atom(|r − rj |)
ρpromol(r) (2.44)

For a quantum mechanically calculated density ρsystem(r), the individual atomic con-
tributions for each point in space can now be calculated according to the Hirshfeld
scheme:

ρj,atom(r) = pj,Hirshfeld(r) · ρsystem(r) (2.45)

The individual atomic densities are then Fourier transformed to get the atomic form
factors needed for the crystallographic refinement, which is used to determine the atomic
positions and displacement parameters. For an application and further history of this
method, see Chapter 6.

As mentioned in the introduction, methods such as X-ray restrained wavefunction extend
this approach. Starting from molecular densities, they fit the wavefunction coefficients
to be as low as possible in energy and fit to the X-ray diffraction data at the same time
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2. Kinematic theory of X-ray diffraction

(Jayatilaka and Grimwood, 2001). However, as this method will not be used as the basis
of any of the investigations in this thesis, I will just redirect the interested reader to the
aforementioned review (Genoni and Macchi, 2020) for further information.

2.5.3. Non-density contributions to the atomic form factor: Resonance
scattering

The electrons can be approximated as bound to a specific nucleus with a strength,
that is dependent on the atomic field strength and its quantum state. Therefore they
can be considered atomic oscillators with natural frequencies (Giacovazzo et al., 2011).
However, this means an incident beam with a wavelength near these frequencies can
have resonance with the atomic oscillators. This effect is called resonance scattering or
anomalous dispersion. In good approximation, this can be described by modifying the
atomic form factor with two additional terms for the resonance scattering:

f(S) = fρ(S) + f ′(λ) + if ′′(λ) (2.46)

To a good approximation, these two factors are not dependent on the diffraction
vector. They are, however, highly dependent on the employed wavelength. Usually, the
corrections are applied for a given combination of wavelength and element (Creagh,
2010). However recently this approximation has been called into question by Meurer
et al. (2022), especially if the resonance is strong. The final scope and implications of
these issues are an active field of research and discussion at the point of writing.

According to Friedel’s law, the intensity of reflections connected by the inversion centre
in the origin of reciprocal space should be equal. However, for non-centrosymmetric
structures, this is no longer the case when resonance scattering is considered. This effect
can be used to determine the absolute structure of the content of the unit cell. In this
case, an occupation parameter can be refined between the structure and its inverted
counterpart. The intensity is described as:

|F (S, x)| = (1 − x) |F (S)| + x |F (−S)| (2.47)

where x is called the Flack parameter, which should be zero for correct non-centro-
symmetric structures. In general, the effect of resonance scattering increases with higher
wavelength. As such hard radiation in combination with light elements can often lead to
large uncertainty in the Flack parameter. At the same time, the density-dependent part
of the atomic form factor decreases in magnitude with higher scattering angles, while
the resonant scattering contributions remain similar. As such a large resolution can also
increase the certainty in the Flack parameter.
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2.6. The reciprocal lattice on the detector: The Ewald construction
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Figure 2.4.: Ewald construction in two dimensions.

2.6. The reciprocal lattice on the detector: The Ewald
construction

Section 2.3 demonstrated that the Fourier transform of an ideal crystal is only nonzero
if the following equation is fulfilled, i.e. if the point in reciprocal space is a point of the
reciprocal lattice:

S = ha∗ + kb∗ + lc∗ (2.21)

The question is now how to find out which point in reciprocal space is visible in which
direction and in which crystal orientation. Recall that the wave vector of the incident
wave is denoted s0 and the wave vector of the diffracted wave is denoted s. The position
in reciprocal space can now be constructed as the difference between these two vectors,
which is called the diffraction vector S:

S = s − s0 (2.48)

A point on the detector is the point in reciprocal space corresponding to the diffraction
vector for a given crystal orientation and diffraction direction. The most useful tool
to answer which points are available at a given orientation is the Ewald construction
(Figure 2.4).

If the points in the reciprocal lattice correspond to directions from the crystal, the wave
vector of the incident wave s0 can be drawn in a relative orientation pointing to the
point (0 0 0) of that lattice. The origin of s0 is called M . Another way to look at this, is
that −s0 is drawn from (0 0 0). The investigated direction of the diffracted beam s can
be chosen freely. However, the length of the vector is always 1/λ. If s is now chosen to
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2. Kinematic theory of X-ray diffraction

start at M in order to fulfil Equation 2.48, all possible diffraction vectors S are located
on a sphere with the radius 1/λ, the length of the two wave vectors.

All the positions where a point of the reciprocal lattice lies on this sphere are directions
where visible diffraction is detectable. By turning the crystal relative to the incident
beam the reciprocal lattice can be rotated to different positions in relation to the Ewald
sphere, thereby mapping different parts of the reciprocal lattice onto the detector.

A final transformation shall be done at this point. It can be shown by simple geometry,
that the magnitude of the diffraction vector has to be:

|S| = 2 sin θ
λ

(2.49)

The magnitude of the reciprocal lattice vector is n/d, where d is the spacing between the
lattice planes. With this information Bragg’s law can be derived by using the magnitudes
and the diffraction condition.

|S| = |r∗| (2.50)
2 sin θ/λ = n/d (2.51)

2d sin θ = nλ (2.52)

2.7. From signal to the absolute squared of the structure factor

So far, all influences on the intensities could be neatly partitioned into atomic contribu-
tions. Therefore, the structure factor F (S) calculated from these contributions was all
that was needed to evaluate the intensity. However, a more complete equation for the
intensity at a specific point in reciprocal space is given by (Giacovazzo et al., 2011):

I(S) = k1 k2 I0 LP T E |F (S)|2 (2.53)

This represents the number of effects that are acting on the intensity directly. Here I0 is
the intensity of the incident beam, k1 = e4/(mec

4) is a factor dependent on the physical
constants of electron charge e, the mass of the electron me and the speed of light c. The
rest of the factors will be tackled in the following sections.
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2.7. From signal to the absolute squared of the structure factor

Influence of the illuminated crystal volume

k2 collects the influence of the crystal size. For a crystal of size Ω with a unit cell size V ,
which is fully enveloped in the X-ray beam, this is a constant calculated as:

k2 = λ3Ω/V 2 (2.54)

However, for modern microfocus or MetalJet sources, the assumption of full envelopment
is no longer valid. Instead, SADABS is used for correction and the calculated intensity
is scaled using redundant data to determine the frame-to-frame scale factor S(n), where
n is the frame number of the centre of the reflection within the integration.

SADABS then refines this scaling factor together with an absorption correction (see the
later section) by minimising:

M =
∑ [

w(⟨IS⟩ − IS)2
]

+
∑ [

e−2
r {S(n) − S(n+ 1)}2

]
(2.55)

As such the intensity of nearby frames is assumed to be similar using a restraint parameter
er, which can be adapted to the system. It is immediately obvious that for the procedure
to work reliably the multiplicity (i. e. the number of times a set of symmetry equivalent
reflections is measured) needs to be suitably high.

The Lorentz correction

During data collection, crystals were rotated at a constant speed and the intensity on
the detector during a specific time frame is summed up. Taking Figure 2.4 into account,
a problem can be seen. For a given angular speed of the crystal, the travel speed of
the individual reflections is dependent on the distance to the origin of the reciprocal
lattice. The further away a reflection is located from (0 0 0), the faster its speed. This
means, that the reflections also spend different times in the reflection condition of the
Ewald sphere and their recorded intensity has a systematic dependence on the angular
frequency. This effect is corrected by the Lorentz correction. In general, the Lorentz
correction is dependent on the scattering angle θ by (Giacovazzo et al., 2011):

L = 1
sin 2θ (2.56)

21



2. Kinematic theory of X-ray diffraction

Polarisation correction

For a non-polarised beam, the diffracted intensity is affected by an additional factor,
which is also resolution dependent it is given by:

P = 1 + cos2 2θ
2 (2.57)

Transmission / Absorption

If electromagnetic radiation travels through the crystal, part of it will be absorbed. As
such the intensity after absorption Iabs is smaller than the diffracted intensity without
absorption Inonabs. If linear absorption with the coefficient µ and a travel distance
through the crystal r is assumed, the intensity of radiation is modified(Giacovazzo et al.,
2011):

T = Iabs
Inonabs

= e−µr (2.58)

The calculation of µ is usually done by summing up contributions for each atom
from tabulated mass attenuation coefficients for a given element and wavelength. It is
calculated as:

µ = ρm

Nelement∑
j=1

gjµj,m (2.59)

where ρm is the mass density of the crystal, gj is the mass fraction of the element with
index j and µj,m is the mass absorption coefficient.

However, for every wave vector of the incident wave s0 and exiting wave s, i. e. for every
scattering vector S, every point within the crystal needs to be taken into account with
the incident beam length travelled p and the diffracted beam length q (see Figure 2.5).

As such the transmission can theoretically be calculated as:

T (S) = 1
Ω

∫
Ω

e−µ[p(S,R)+q(S,R)]dR (2.60)

where R is the location within the crystal in cartesian coordinates and the integration
is over the crystal volume Ω.

There are no analytical solutions for this integral for arbitrary crystal shapes. Approx-
imations such as the tetrahedron method proposed by De Meulenaer and Tompa (1965)
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R

T

Figure 2.5.: Incident and diffracted beam lengths through the crystal for two arbitrary
points P and Q.

are available. This work uses a semi-empirical method implemented in SADABS (Krause
et al., 2015). As mentioned in Section 2.7, SADABS uses a refinement against redundant
data collection to refine a model for the crystal size. Additionally, it also applies a
spherical absorption correction Q(µr, 2θ) and a diffracted beam factor P (u, v, w), which
is dependent on the direction cosines of the diffracted beam and is fitted with spherical
harmonics. As such the absorption/transmission is treated as:

T = P (u, v, q) ·Q(µr, 2θ) (2.61)

Extinction

The final effect that will be discussed in the context of intensity modification is extinction
with the extinction coefficient E. Here two types of extinctions can be distinguished,
which both occur with significant crystal size of materials with high scattering cross-
section. Extinction mainly affects strong reflections, which often occur at low scattering
angles.

The less common effect is primary extinction. It occurs when the single diffracted beam
is joined by beams diffracted multiple times. The multiple reflections cause a phase
change and as such yield a weaker resulting intensity.

More common is secondary extinction. It occurs when the intensity throughout the
crystal is no longer approximately identical. Because of scattering or absorption in
the earlier planes of the path of the X-ray beam through the crystal, the intensity is
diminished at the scattering planes at the later path of the beam. This reduces the
intensity of strong reflections.

In contrast to other effects on the intensity, which are usually treated before refine-
ment, extinction is tackled by the introduction of one or more additional extinction
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2. Kinematic theory of X-ray diffraction

parameters. A simple approach to describe secondary extinction is by modifying the
calculated/modelled intensity by using Giacovazzo et al. (2011):

(Icalc)corr = Icalc
1 + gIcalc

(2.62)

where g is the refined extinction parameter. Alternatively, the program SHELXL by
Sheldrick (2015a) uses an empirical formula which is:

(Icalc)corr = Icalc√
1 + 0.001Icalcλ3g/ sin(2θ)

(2.63)

If possible the best approach is to limit extinction by using small crystals and shorter
wavelengths where appropriate.

The treatment of extinction concludes this part on how the mathematical model for the
X-ray intensity is constructed.

2.8. Fitting the model to the measured intensity

So far, this chapter has tackled how to model the different effects that determine the
intensity of our individual reflections in mathematical terms. Using this model, this
section will now deal with how to improve the underlying parameters by minimising the
difference between the measured reflection and the modelled intensity. This is certainly
not an exhaustive description (as none of the sections in this theory part are) but I hope
to provide a feel for the underlying assumptions.

2.8.1. Statistical errors and the method of least squares

Equation 2.53 indicates the intensity in a certain direction given all our assumptions and
the intensity of our incoming beam I0. The equation is written as a continuous number.
However, as X-ray radiation consists of photons, which are discrete particles, this cannot
be the case. In reality, the given intensity can be used to calculate the probability that
a certain number of photons is emitted into the investigated direction. The probability
density stems from a Poisson distribution, which has the probability density function
(Bronstein et al., 1993):

P(k|λP) = p(X = k) = λk
Pe−λP

k! (2.64)

where λP is the expectation value, i. e. the intensity. However, this means that our
individual intensity measurement will always have a deviation from this expectation
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2.8. Fitting the model to the measured intensity

value, as the variance is also equal to λP. Accordingly, for an individual observation, our
estimated standard deviation cannot be lower than

√
λP. For low expectation values,

the Poisson distribution is skewed. However, the normal distribution becomes a good
approximation for higher expectation values. This is particularly true as there are
additional influences, such as errors in measurement angles, rotation rate, emission rate
of the source and detection on the detector. Additionally, there are statistical errors
introduced by our data processing, including integration with background correction,
absorption correction and frame-to-frame scaling. As such the certainty of our integrated
intensities is usually assumed to be normal instead of Poissonian, while the influence of
the counting statistics is considered by the integration software.

Whereas the Poisson distribution is discrete, the normal distribution is continuous. Its
probability density has the well-known form (Bronstein et al., 1993):

N (x|µ, σ) = p(X = x) = 1
σ

√
2π
e− (x−µ)2

2σ2 (2.65)

with all the derived equations from the previous section and a given vector of parameters
θP, it is possible to calculate the intensities of our model Icalc(θP,h). On the other hand,
the observed intensity values Iobs(h) each with an estimated standard deviation σobs(h)
have been recorded and corrected.

Assuming that these standard deviations and intensities follow a normal distribution, the
probability that a given measured value occurs, given its estimated standard deviation
and the calculated value is (Bishop, 2009):

N (Iobs(h)|Icalc(θP,h), σobs(h)) = 1
σobs(h)

√
2π
e

− (Iobs(h)−Icalc(θP,h))2

2σ2
obs(h) (2.66)

The aim is to find the model, where the collected data has the highest likelihood to
appear. First, the joint probability is calculated for N recorded reflections:

p(Iobs(h)|Icalc(θP,h),σobs(h)) =
N∏

i=1
N (Iobs(hi)|Icalc(θP,hi), σobs(hi)) (2.67)

The next step is to apply the natural logarithm to this function, which does not change
the maximum and yields:

ln p = −1
2

N∑
i=1

(Iobs(hi) − I2
calc(θP,hi))

σ2
obs(hi)

+ 1
2

N∑
i=1

ln [σobs(hi)] + N

2 ln(2π) (2.68)
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By removing constant terms and factors, it can be seen that maximising this ln p is
equivalent to calculating the sum of least squares, which is the method of choice in
crystallographic applications:

M =
N∑

i=1

(Iobs(hi) − Icalc(θP,hi))2

σ2
obs(hi)

(2.69)

By varying θP, the function M is minimised. Our solution is the set of parameters θP,
which gives the lowest value M . Usually, this is achieved by using the approximated
non-linear least-squares method derived from the closed form for linear least squares. The
XHARPy library in Chapter 6 takes a slightly different but related approach by using
the BFGS method (Broyden, 1970; Fletcher, 1970; Goldfarb, 1970; Shanno, 1970).

2.8.2. Restraints and Constraints

In the last section, the sum of least squares has been introduced. In the same way that
observed intensities have been taken into account, one can also consider a set probability
for a target value t to occur given a set probability for the deviation σt and the calculated
value for the target, which is of course dependent on the parameter vector tcalc(θP). The
probability is again assumed to be normally distributed:

N (t|tcalc(θP), σt) = 1
σt

√
2π
e

− (t−tcalc(θP))2

2σ2
t (2.70)

These additional assumptions are called restraints in crystallography. Reasonable re-
straints can stabilise a model and assuming that bond lengths within a group are
similar to a disordered second orientation of the same chemical group is one of the most
ubiquitous reasonable restraints. Other restraints include similar atomic displacement
parameters of atoms located at close distances, atoms following a rigid body motion,
certain bond lengths being refined to a certain value or a group of atoms being restrained
to a common plane.

The probabilities of all restraints are multiplied to the joint probability to be maximised
(Equation 2.66). By again taking the natural logarithm and excluding constant terms,
a new function to minimise with N points of data and Nrestraints restraints can be
obtained:

M =
N∑

i=1

(Iobs(hi) − Icalc(θP,hi))2

σ2
obs(hi)

+
Nrestraints∑

j=1

(tj − t2calc,j(θP))
σ2

t,j

(2.71)

On the other hand, the term constrained is used for two values which could be different
parameters but are related by a strict mathematical relationship. Examples would
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include the assumption that atomic displacement parameters of two atoms at the
same site are identical (not just similar as assumed in a restraint) or that the sum of
all occupancies of one site is one. There are multiple ways to reduce the redundant
parameters. The XHARPy library for example uses the same underlying parameters at
model specification.

2.9. Quality indicators and data visualisation

The previous sections introduced the concepts of how to construct a model for the
various influences on our observed X-ray intensity and how to find the set of parameters,
which fit our observed X-ray intensities most closely. After having achieved this goal,
the quality of the resulting model needs to be assessed. In several cases, different models
from the same or different data are to be compared in this thesis. The quality indicators
used in subsequent chapters will be explained in this section.

2.9.1. Quality indicators for the precision of X-ray data collection

The first class of quality indicators is independent of the model and describes the
precision of a set of collected and corrected reflections. It stands to reason that high
precision is worthwhile as it indicates how many reflections need to be collected to find
a reasonably accurate value for the mean intensity of that set of reflections. As such,
several indicators for precision have been proposed. The most commonly used descriptor
is the Rmerge (Weiss, 2001; Giacovazzo et al., 2011) and is calculated as:

Rmerge =

∑
h

∑
i

∣∣∣Ii(h) − I(h)
∣∣∣∑

h

∑
i
Ii(h) (2.72)

where the vector h denotes the Miller index of a given unique reflection and the index
i runs over all measurements of that individual reflection. However, the Rmerge suffers
from the drawback that a very low redundancy/multiplicity might lead to a lower value,
thereby leading to incorrect conclusions. Weiss (2001) has proposed the redundancy
independent R-value, Rr.i.m, which has been corrected for this drawback using the
multiplicity N of the individual reflections. It is defined as:

Rr.i.m. =

∑
h

[N/(N − 1)]1/2 ∑
i

∣∣∣Ii(h) − I(h)
∣∣∣∑

h

∑
i
Ii(h) (2.73)

Additionally, he also proposed a term indicating the precision of the averaged intensity
Rp.i.m defined as:
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2. Kinematic theory of X-ray diffraction

Rp.i.m. =

∑
h

[1/(N − 1)]1/2 ∑
i

∣∣∣Ii(h) − I(h)
∣∣∣∑

h

∑
i
Ii(h) (2.74)

Due to their respective advantages but different focus, Rr.i.m. and Rp.i.m. are used for
discussion in the Chapter 5 instead of the more commonly used Rmerge.

2.9.2. Quality indicators for the agreement of the model to the data

The set of quality indicators discussed in this section is concerned with the agreement
between a given model and a given set of experimental data. The measured intensities
are corrected for all the influences acting on the intensity (Section 2.7) and divided by
the refined overall scaling factor. The resulting corrected measured intensity is denoted
with F 2

obs. The intensity modelled according to the kinematical model is named F 2
calc

If the agreement between the model and the calculated data is to be evaluated, the first
option is to use the wR2(F 2), which is defined as:

wR2(F 2) =

√√√√√√√√
N∑

k=1
wk

(
F 2

obs,k − F 2
calc,k

)2

N∑
k=1

wk

(
F 2

obs,k

)2
(2.75)

Comparing the minimisation criterion against the data (Equation 2.69), it is obvious,
that this is the square root of a scaled M if the weights are chosen as 1/σ2 and no
extinction is refined.

If a weighting scheme is refined and therefore the weights are no longer the inverse
variance of the reflection intensities, the wR2(F 2) cannot be compared between individual
refinements. In this case, the R(F ) is usually employed.

R(F ) =

N∑
k=1

||Fobs,k| − |Fcalc,k||

N∑
k=1

|Fobs,k|
(2.76)

The goodness of fit (GooF) tests whether the differences between calculated and observed
intensities match the values of a normal distribution given the number of reflections N
and the number of refined parameters Nparameters. It is defined as (Clegg and Harrington,
2021):
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S =

√√√√√√
N∑

k=1
wk

(
F 2

obs,k − F 2
calc,k

)2

N −Nparameters
(2.77)

where a value close to unity indicates good agreement to the expected deviations, a higher
value can indicate an under-parametrisation and a lower value over-parametrisation. How-
ever, it is dependent on choosing appropriate weights, i. e. on the correct determination
of the experimental uncertainties.

While the phase is missing from the observed structure factor, it can be assumed that
the phases of the calculated structure factor are close to correct and therefore be used
to calculate a difference electron density map:

∆ρ(x) = 1
V

N∑
k=1

(|Fobs,k| − |Fobs,k|) eiϕcalc,ke−2πihT
k x (2.78)

Under the assumption that the phase is close enough, this map now reveals features
where the calculated and observed reflections result in a difference in density within
our unit cell. Therefore, it provides a real-space measurement of our agreement and
its analysis is a useful tool during refinement. The simplest quality indicators are the
maximum ∆ρmax and the minimum ∆ρmin values of this difference electron density
map.

Additionally, the absolute value of the difference electron density is also a quality
indicator. Accordingly, Meindl and Henn (2008) defined the egross:

egross = 1
2

∫
V

|∆ρ(x)| d3r (2.79)

2.9.3. Quality indicators for the agreement of X-ray results to results from
neutron diffraction

Secondly, the quality of the derived parameters is to be evaluated. One of the most
established applications of HAR is the determination of atomic parameters of hydrogen.
X–H distances can be directly compared to the values from neutron refinement in the
form of the difference ∆r. Obviously, the deviation should be as small as possible. It is
desirable to have a lower value which indicates a performance improvement. Therefore
the absolute value of the difference |∆r| is also employed heavily in the investigations in
Chapter 6. The two indicators are calculated as:
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2. Kinematic theory of X-ray diffraction

∆r = rX − rn (2.80)
|∆r| = |rX − rn| (2.81)

The comparison of atomic displacement parameters is less straightforward. They can
be affected by influences such as absorption or extinction as well as small deviations in
temperature. This problem has already been tackled by Blessing (1995). To compare
displacement parameters from different models the values from neutron diffraction were
scaled using the formula:

U ij
c,n = qADP · U ij

c,n + ∆U ij (2.82)

Here qADP represents a scaling due to differences in measurement temperature. ∆U ij

can correct for differences in extinction, but some of the individual values can be zero,
depending on the crystal system. Both are parameters to be determined by a least-squares
refinement to the non-hydrogen atoms. This was done using a custom implementation
in python.

Using the scaled atomic displacement parameters, the difference between the refinements
from neutron and X-ray HAR can now be evaluated as a simple difference ∆Uij .
Additionally, the absolute of this difference |∆Uij | will be used. As such it can be
defined:

∆Uij = U ij
X − U ij

n,c (2.83)

|∆Uij | =
∣∣∣U ij

X − U ij
n,c

∣∣∣ (2.84)

Finally, a measure for the overlap of the two probability functions, which are represented
by the atomic displacement parameters of the hydrogen atoms, needs to be calculated.
Whitten and Spackman (2006) proposed the S12 value for this purpose. It is defined
as:

S12 = 1 −
∫

[p1(x)p2(x)]
1
2 d3x = 1 −

2 3
2

(
det U−1

1 U−1
2

) 1
4

[
det

(
U−1

1 + U−1
2

)] 1
2

(2.85)

Usually, an additional factor of 100 is contained within the expression. All our values
are listed in percent. Subsequently, the numerical values will be the same.
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Figure 2.6.: Two examples of Henn-Meindl plots. While the left shows the correct
parabola for a normally distributed difference electron density, the right
figure shows significant systematic deviations for both positive and negative
residual density.

2.9.4. Selected data visualisations

DRKPlot: The DRKPlot (Stash, 2007) program offers several different plots that
compare modelled and refined intensities. The one often called DRKPlot is created by
binning observed and modelled intensities within set resolution ranges and calculating
the quotient ∑

F 2
obs/

∑
F 2

calc.

For a multipole refinement, the usually accepted range is between 1.05 and 0.95 for all
bins.

Henn-Meindl-plot: This analytic plot was proposed by Meindl and Henn (2008) to
test for the normalcy of the difference electron density of a refined structure. It is less
useful for independent atom model refinements, where the bonding density represents
a non-statistical contribution to the difference electron density, but is very useful for
refinements involving aspheric atom descriptions such as the multipole or the Hirshfeld
atom model.

Two examples are depicted in Figure 2.6. The expected behaviour is a parabola. Addi-
tionally, the distribution should be as narrow as possible as this indicates the difference
electron density is flat and featureless.

Box-Whisker-Plot: In contrast to the first two plots, box-whisker plots are not
well established in crystallography but come from the field of statistical visualisation
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2. Kinematic theory of X-ray diffraction

p25 p75

medianleft whisker right whisker‘outliers’

Figure 2.7.: The basic setup of a box-whisker plot. p25 and p75 denote the 25th and 75th

percentiles respectively. The left whisker is the lowest point between p25 and
p25 − 1.5 · (p75 − p25). The right whisker is the highest point between p75
and p75 + 1.5 · (p75 − p25). Values outside this range are denoted separately
(‘outliers’).

(Krzywinski and Altman, 2014). They give more information on the distribution of
a given set of data points compared to the usual combination of mean and standard
deviation. As some of the differences discussed in Chapter 6 do not seem to follow the
normal distribution, they are extensively used there.

The general explanation of how these plots are constructed using an example of a
significantly skewed distribution is given in Figure 2.7.
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3. Evaluation of structural properties of
anthracene derivatives and correlation to
their luminescence

This chapter will contribute to the discussion of substituted anthracene structures,
which were investigated in collaboration with other members of the Stalke group. Here,
intermolecular interactions in the solid state have long been stated as potential candidates
for the rationalisation of the presence of the luminescence of one conformer over the
other. This chapter will investigate these ideas in some detail. For the second class
of compounds, different co-crystals of one molecule exhibited different fluorescence
behaviour. This chapter will describe approaches to reproduce this behaviour using
methods from computational chemistry and try to rationalise why they were ultimately
not successful.

The general structure can be found in Figure 3.1. A useful shorthand naming has been
introduced within the group for the two organic groups on the substituent. As the atom
directly connected to the anthracene has two phenyl groups by definition, these are
omitted from the name. If an oxidant is present this is named first, followed by the atom
connected to the anthracene. This is followed by ‘An’ for the anthracene itself. The last
part can either consist of an organic substituent (e. g. Me for methyl) or if the substitution
has been done with another substituent as depicted in the centre of Figure 3.1, the
shorthand notation is used in reversed order. For example, Ph2(S−−)P−An−P(−−S)Ph2
is shortened to SPAnPS.

The investigation of this class of structures has a long history within the Stalke group.
The initial investigation was published by Fei et al. (2003) and included disubstituted
anthracene derivatives, where the anthracene held two Ph2(S−−)P−) substituents in 9
and 10 positions (SPAnPS). The compound was found to be non-emissive in solution.
However, the solid-state structure, which included co-crystallised toluene molecules,
showed a strong yellow-green emission upon radiation with UV light. Fei et al. reported,

E

An

X

n+

n-

An

X = O, S, Se

E = P Si

Cl

Figure 3.1.: Compounds included in the discussion. If E is a phosphorous atom, n is
equal to one. If E is a silicon atom n = 0.
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3. Anthracene structure properties correlation to luminescence

Figure 3.2.: Conformers of Ph2(S−−)P−An−P(−−S)Ph2 (SPAnPS). Left: transoid con-
formation. Right: cisoid conformation. Hydrogen atoms have been omitted
for clarity. Atomic displacement parameters are displayed at 50 % probabil-
ity.

that this emission could be quenched by applying vacuum to the powdered crystal,
thereby removing the toluene molecule from the crystal structure. The fluorescence could
not be recovered using benzene, prompting the conclusion that the fluorescence was
specific for the presence of toluene. Therefore, Fei et al. concluded that the combined
structures were responsible for the luminescence properties, making it an exciplex.

This conclusion was challenged by the research of Schwab (2004, 2008) who was able to
characterise a number of additional fluorescent solid-state structures of SPAnPS. This
included the molecule with other aromatic solvents exhibiting strong luminescence, as well
as structures with negligible fluorescence at room temperature incorporating aromatic
and non-aromatic solvent molecules. The main difference Schwab observed was the
conformation that the SPAnPS molecule adopts within the solid-state structures. While
the strongly fluorescent structures all included the molecule in a transoid conformation,
where the sulphur atoms are located at opposite sites of the anthracene moiety, the
structures with negligible fluorescence all included the molecule in a cisoid conformation,
where the sulphur is located at the same side (Figure 3.2). The additional transoid
structures also included a luminescent structure with benzene as the guest molecule.
However, the exhibited space group was P1 instead of P 21/n as observed in the toluene
structure as well as the majority of transoid conformations in the investigated crystals.

Additionally, Schwab also investigated the luminescence properties at a reduced temper-
ature of -135 °C. At this temperature cisoid as well as transoid solid-state structures
did exhibit fluorescence, including the transoid structure with removed solvent. As
such, the quenching of the emission in some compounds could be attributed to a
temperature-dependent process, such as a non-radiative decay via inter-system crossing
into a non-radiative triplet state. Additionally, Schwab also modified the substituent
at the phosphorous group by exchanging the phenyl group for cyclohexyl, o-tolyl and
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isopropyl groups. None of these modified compounds showed a non-negligible solid-state
fluorescence.

Further characterisations and analysis of the phenyl systems were supplied by Finkelmeier
(2013). He pinpointed the emission maxima of all solid-state compounds including the
faintly fluorescent species to a range of 515 – 530 nm. He was also able to obtain the
solvent-free structure of SPAnPS, which exhibits a cisoid confirmation. Building upon
initial observations by Schwab, that the cisoid conformers show strong deformation he
was able to develop quantifiers for the deformations observed in this structure class (see
twist and bend angle in Section 3.2). Finkelmeier attributed the quenching to the bending
of the anthracene molecule and postulated an enhancement of the fluorescence with the
formation of the twist angle, but noted, that both of these features also corresponded to
the two different conformers.

Finkelmeier also extended the exciplex theory of Fei by investigating π–H distances
of guest molecules to the anthracene moiety for the transoid structures, but could
not find an overall influence. This approach was later used for further investigations
by Bukala. However, further systematic results could be obtained as a procedure for
reproducible quantum efficiencies could not be reached, thereby prohibiting detailed
discussions of quantum efficiencies. Subsequently, the question to rationalise strong or
negligible luminescence at room temperature for 9,10-SPAnPS remained open.

Krause (2017) investigated with additional experimental (powder X-ray diffraction,
neutron diffraction, solid-state NMR spectroscopy) and theoretical methods and added
further structures and structure conversions to the available pool of information. He
revisited the original experiment of Fei et al. and subjected vacuum-dried powder
of the toluene species to benzene. There, he could reaffirm the observation, that no
immediate recovery could be found. However, after a period of about 60 minutes, small
fluorescent crystals could be found in the flask, which upon inspection turned out to
be the known benzene transoid structure in P1. Further investigations included the
application of toluene vapour to dried crystals of the benzene structure. Here a new
polymorph containing a fluorescent transoid structure with toluene in P1 was formed.
Krause concluded that the dried co-crystals can act as a matrix and this effect can
predefine the structure.

For rationalising the difference between the two polymorphs, Krause turned to inter-
molecular interactions. He noted that the cisoid structures exhibited larger vibrational
parameters in the X-ray structure refinement, as well as a larger probability of disorder.
He explained that this hints towards a restriction of intramolecular vibration as intro-
duced by Li et al. (2016). Thereby he concluded that the effect of the guest molecule
might not be in the effect on the electronic structure but in the rigidity of the overall
system. Therefore, he investigated energy network interaction energies, which however
did not yield a conclusive answer. Krause reaffirmed the problem of comparing two very
similar classes (cisoid and transoid SPAnPS) with each other, where the differences are
present between the two structure motifs, but the generalisability of explanations cannot
be founded on these two points alone.
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Figure 3.3.: Official numbering for the enumeration of possible substituent positions on
the anthracene molecule.

This drawback was partly tackled by Stern (2006, 2009) with the synthesis of the asym-
metric compounds Ph2(S−−)P−An−H (SPAnH) and Ph2(S−−)P−An−Me (SPAnMe).
The scope of available structures was furthered significantly in the PhD thesis of Schill-
möller (2022), who not only supplied additional 9,10 substituted compounds, namely
Ph2(S−−)P−An−Br (SPAnBr), but also Ph2(S−−)P−An−Et (SPAnEt), Ph2(S−−)P−An−
SiMe3 (SPAnSiMe) and Ph2(S−−)P−An−Ph (SPAnPh). In addition, he also provided
synthetic routes to compounds with single and double substitutions at other positions
of the anthracene molecule. As such, he enabled a more global analysis beyond the so
far dominant SPAnPS compound. The tools described in this chapter were developed in
cooperation with him and this cooperation resulted in two publications (Schillmöller
et al., 2020a) and (Schillmöller et al., 2020b).

With respect to the majority of the investigated SPAnR systems, Schillmöller argued
convincingly that the absence of a large bathochromic shift for distinct ‘host-guest’
complexes of the same compound with different solvent molecules makes the presence of
an exciplex unlikely. As such he stressed the importance of the substitution pattern for
the wavelength shift and agreed with Krause on the importance of rigidity in the system
for the quantum yield, in accordance with the principles of the restriction of internal
motion (Mei et al., 2014) or the restricted access to conical intersections (Peng et al.,
2016; Crespo-Otero et al., 2019).

3.1. The general approach for analysis

To facilitate the fast analysis under the inclusion of new compounds supplied by synthetic
chemists, the analysis was automated in the form of a python script. The required
information can therefore be limited to a crystallographic information file ‘cif’ and the
information on how to reconstruct the anthracene moiety from the asymmetric unit.
The algorithm for the analysis works using the following steps.

Reading the ‘cif’ file: The crystallographic information file contains the necessary
information about symmetry elements, atomic positions and displacement parameters.
In addition, it contains the estimated standard deviations of the refined parameters,
which are necessary for error propagation. The first step is to extract this information
for further use in python.
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Reconstructing the anthracene: For some structures, the anthracene moiety is gener-
ated by symmetry, as only half of the molecule or molecules is or are located within the
asymmetric unit. Therefore, atomic positions and displacement parameters need to be
projected to their respective equivalent positions with the supplied symmetry element
or elements.

Finding the anthracene: First, the molecular graph needs to be constructed. Distances
between atomic positions are calculated. Two atoms count as bound to each other if they
are closer than 1.2 times the sum of their covalent radii. This enables the construction
of a molecular graph in the python package networkx, which can be analysed for
the necessary features. The algorithm searches for sp2 atoms. In a graph sense, these
are carbon atoms, which only have three connecting atoms, as radical or ionic species
are not contained within the dataset under investigation. Subsequently, aromatic rings
are identified as six-membered rings of sp2 carbon atoms. This enables the search for
anthracene moieties which are sets of three connected aromatic rings, where connecting
atoms have only one other connecting atom as a direct neighbour, thus enforcing that
the arrangement of the three aromatic rings has to be linear.

Enumerating the positions and connected atoms: The correct numbering for the
anthracene molecule is displayed in Figure 3.3. However, due to implementation reasons,
the internal numbering is different. This enables the use of pure integer numbers for
all carbon atoms within the anthracene moiety instead of using the combination of
numbering and letters the IUPAC uses for the connecting atoms. The context of this
work will use the official numbering. However, for further use of the script in future
projects, the internal numbering shall be documented here.

First, the central carbon atom with the highest IUPAC priority is identified (in official
numbering C9 or C10). This atom gets the index 1. Secondly, the script picks the atom
with the highest IUPAC priority within the set of atoms C1, C4, C5 or C8. This atom
will then be set to the internal index 3. The carbon atom between internal indices 1 and
3 gets index 2. As this sets the start and the direction of the numbering around the ring,
the remaining carbon atoms are just indexed consecutively up to index 14.

All substituents get assigned the position where they are connected to the anthracene
molecule, as well as a distance in atoms to the anthracene.

Evaluate the features: Now, that everything is enumerated, the features can be evalu-
ated. A detailed description of all features is given in the next section and Section B.1.1.
However, at the moment the script assumes a phosphorous or silicon atom connected
to the carbon atom at position 1 for calculation of the features. In combination with
heavier elements than phosphorous at the opposite position, this can lead to a situation
where the calculation of certain properties is skipped. It was checked manually, that no
structure in the evaluated sets suffered from this problem.
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Figure 3.4.: Definition of the twist angle (left) and the bend angle (right). The twist
angle is defined as the angle between the bonds of C6-C7 or C2-C3 (orange)
to the mean plane of the atoms C4a, C8a, C9a and C10a (blue). The bend
angle is defined as the angle between mean planes through atoms C1 to C4

and C5 to C8 (both blue).

Automated error propagation: Finally, where possible, the python package auto-
grad is used for automatic error propagation using the estimated standard deviations
of the atomic parameters. This is an approximation as a full error propagation would
use the covariances as well as the variances for the calculation. However, the covariances
are not available from the ‘cif’ file and therefore were not easily obtainable within the
scope of the investigation.

3.2. Investigated features implemented in the automated
analysis

As per the discussion between geometric influences and influences from vibration, there
are two distinct groups of features which are investigated within this work. Features,
which are derived from the atomic positions as determined by X-ray diffractometry
and features which are derived from the mean displacements and which are therefore
connected to the dynamics of the system. Additional features have been implemented,
but as they turned out to not be relevant for the discussion, their description has been
moved to the appendix in Section B.1.1

Twist angle: The twist angle is defined as the angle between the mean plane of the
four connecting carbon atoms of the central aromatic ring in the anthracene moiety to
the bond between the carbon atom pairs C2, C3 and C6, C7 (see Figure 3.4)

Bend angle: Finkelmeier developed a straightforward approach to calculating the
bend angle. Mean planes are calculated through the outer four carbon atoms on both
sides of the anthracene molecule (group 1: C1–C4, group 2: C5–C8, see Figure 3.4).
The intersecting angle between these two carbon atom planes is the bend angle of the
system.
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Overlap and relative anthracene positions: A second anthracene molecule in direct
vicinity can significantly influence the emission wavelength of the crystalline material. In
order to be able to quantify such influences, a systematic quantification of the overlap,
as well as the relative positions of two anthracene molecules in a dimer was necessary.

As such, the calculation of the overlap, as well as the calculation of the relative anthracene
position was implemented in the following way:

1. Calculate a mean plane through the carbon atoms of the investigated anthracene
molecule.

2. Project all carbon atoms of the anthracene onto this plane.

3. Calculate the rotation matrix, which orients the normal vector of the plane in z
direction and the vector from the mean carbon position to C9 in x direction. This
has the consequence that the long side of the anthracene molecule will be oriented
in y direction.

4. Calculate the relative position of additional anthracene molecules given the rotation
matrix and the symmetry of the unit cell.

5. Find the closest anthracene molecule, which has a mean plane with an interplanar
angle to the first plane which is lower than 45°.

6. Calculate the relative position of the centroids of the two anthracene molecules in
the rotated coordinate system.

7. Project the carbon atoms of the second anthracene onto the mean plane of the
first anthracene, which, due to rotation, just means setting z equal to 0.

8. Construct two-dimensional polygons for the two anthracene molecules.

9. Calculate the area of the intersection polygon and divide it by the area of the first
anthracene. This value is the overlap in %.

This provides a systematic way to determine the overlap.

Mean U(equiv) values The displacement parameters should give an idea of the
rigidity of the system. (For the details see Section 2.4). In practice, atomic displacement
parameters can fit a variety of other effects and therefore the determined values can be
skewed by inadequacies in the data treatment, but more relevantly can be also skewed
by the crystal quality. With correct data treatment and comparable crystal quality, the
mean Uequiv value (Equation 2.36) of a part of the molecule can be used as a measure of
the flexibility that group enjoys within the crystalline environment.
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3.3. Challenging explanations for the 9,10-SPAnR luminescence

As written in the introduction to this chapter, several explanations for the difference
in the room temperature luminescence have been proposed during the long period of
time these systems have been investigated in the Stalke group. However, almost all of
these possibilities have been proposed to explain the behaviour of structures formed
by 9,10-SPAnPS with various solvent molecules or without the co-crystallisation of a
solvent. The following sections should deal with the individual explanations one by one
and add to the discussion with new experiments and data analysis.

3.3.1. Testing the localisation of C−H···π interactions

Finkelmeier (2013) discussed C−H···π interactions as a possible influence on the room
temperature luminescence properties. To this end, he determined the distances of
hydrogen atoms placed in the riding model to the anthracene plane and investigated a
possible connection. In addition to the fact, that hydrogen atoms placed in a riding model
provide at best a coarse approximation of position, Schwab (2004) already demonstrated
a disconnect between the discussed X-ray structure, which was determined at 100 K and
the room temperature measurement of fluorescence intensities.

To bridge this gap, X-ray diffraction data was collected at different temperatures. The
corresponding structures were refined using NoSpherA2 (Kleemiss et al., 2021) in
Olex2 (Dolomanov et al., 2009), as the XHARPy package discussed in Chapter 6 cannot
refine disordered structures. As the size of the atomic displacement parameters increased
significantly with rising temperature and libration effects were to be avoided, all data
was refined against atomic form factors determined by HAR of the lowest temperature
structure (100 K). The DFT calculation used no approximation of the crystal environment
and the partitioned molecular density was calculated on the R2SCAN//def2-TZVP
level.

Refinement of the room temperature data revealed a disorder of the toluene within the
structure, which could subsequently be located in the 100 K structure with a significantly
lower occupation. HAR ensured that the bonding density of the major fraction does not
introduce a systematic overestimation of the occupation of the less probable fraction.
This is a possibility with an independent atom model refinement, where the undescribed
aspheric bonding density of the major position might skew the occupancy and position
of the minor fraction. The resulting structures for 100 K and 298 K are depicted in
Figure 3.5.

The resulting occupancies are listed in Table 3.1. The question is, whether there is
a dynamic or static disorder between the two positions. During the experiment, an
equilibration time of 5 minutes was used after each temperature change. From the simple
fact that the occupancy is temperature dependent, it is clear that the barrier between
two potential states can be crossed at 125 K. Alternatively, the pattern could also be the
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3.3. Challenging explanations for the 9,10-SPAnR luminescence

Figure 3.5.: Depiction of disorder (major: grey, minor: orange) in the structure of
SPAnPS/Toluene for the diffraction experiment at 100 K (left) and 298 K
(right). Atomic displacement parameters are depicted at 50 % probability.
Hydrogen atoms are omitted for clarity.

result of a vibrational mode, even though the necessary amplitude of the displacement
seems rather pronounced for such a scenario.

Further evidence for the presence of two distinct positions instead of a simple artefact
can be found in the development of the unit cell length a with measurement temperature.
As depicted in Figure 3.6, the unit cell length decreases between a temperature of 150 K
and 250 K. This can be explained by the relative positions of the methyl groups of the
disordered toluene molecule in the respective fractions. The major disorder position has
the methyl group oriented towards the a-axis, while the minor disorder fraction has the
methyl group oriented towards the b-axis. As the occupation of the major disorder is

Table 3.1.: Determined lattice constants a and major occupancies nmajor for the struc-
tures of SPAnPS at different temperatures. Occupancies were obtained with
HAR.

T / K nmajor / % a / Å
100(2) 96.85(17) 10.766(2)
125(2) 94.6(2) 10.775(2)
150(2) 91.7(2) 10.777(2)
200(2) 88.9(2) 10.759(2)
250(2) 81.4(5) 10.744(2)
298(2) 78.6(6) 10.752(2)
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Figure 3.6.: Dependency on the unit cell lengths on the temperature of the diffraction
experiment (left). Orientation of the major toluene disorder position (upper
right) and the minor toluene disorder position (lower right) to the unit cell
constants (a-direction: red, b-direction: green, c-direction: blue).

lowered with increased temperature, fewer methyl groups are oriented in a-direction,
thereby reducing the average needed space of the toluene molecule in that direction.

If a static disorder between two distinct minima is assumed, the relative energy of the
two states can be calculated by assuming a two-state Boltzmann distribution, where the
occupancy of the major disorder fraction would be given by:

nmajor =
exp

(
∆E
RT

)
1 + exp

(
∆E
RT

) (3.1)

The practical regression was performed using PyMC which is the newest version of
the PyMC3 library by Salvatier et al. (2016) using a probabilistic model determined
using the No U-Turn Sampler by Hoffman et al. (2014). The posterior predictive for the
energy is given in Figure 3.7. The determined energy is 3.16(3) kJ mol−1.

This determination is under the assumption that the system is well described with
two positions. In the datasets of 250 K and 298 K difference electron density can be
observed in the region occupied by the toluene molecule (see Section B.2). As such, a
third position might be possible. However, due to the needed increase in the number
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Figure 3.7.: Refined occupancies in dependence of the temperature and 300 draws from
the posterior predictive distribution for the evaluated model.

of parameters, this was neglected. This also explains the increasingly large confidence
interval for the occupancy parameter in the high-temperature measurements.

In comparison to plane wave DFT-calculations in Quantum Espresso (Giannozzi et al.,
2017) conducted to reproduce this energy difference, it can be observed that the difference
from experiment is lower than calculated energy differences, especially if dispersion is
included with one of the many possible approximations for van-der-Waals interactions
(see Figure 3.8). The calculated energies were obtained using the PBE functional with
various dispersion corrections by Grimme (Grimme, 2006; Grimme et al., 2010, 2011;
Smith et al., 2016), as well as three functionals which included dispersion interaction,
namely rvv10 (Sabatini et al., 2013), vdW-DF (Dion et al., 2004; Thonhauser et al.,
2015) and vdW-DF2 (Lee et al., 2010). All calculations used Ultrasoft pseudopotentials
with a kinetic energy cutoff of 80 Ry and a charge density cutoff of 800 Ry respectively.
Occupancy of the respective disorder positions was either completely assigned to the
major or the minor position for the energy calculations of the two cells. Cell constants
were allowed to relax in accordance with the monoclinic symmetry of the unit cell.

The calculated energy differences are systematically too large. As such, the PBE cal-
culation without any dispersion gave the closest agreement. As the physical system
should include van-der-Waals interactions, it remains a question where the source of the
systematic difference is located. Possible candidates include the fact that the calculated
unit cells only contained either conformation but not the mixture of the two or the
complete neglect of entropic contributions.

However, there is significant flexibility in the toluene orientation at room temperature
and this basically excludes the possibility of directed and strong interactions of the guest
molecule to the anthracene group. This makes an influence of these interactions on the
room-temperature luminescence unlikely. Even if the change in occupancy is a change of
one minimum into another, the interconversion already happens between 100 and 125 K,
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Figure 3.8.: Calculated energy difference for the two orientations of toluene in the unit
cell for different schemes for including dispersion. Part of the calculations
was conducted with the PBE functional and dispersion correction by D2
(Grimme, 2006), D3 (Grimme et al., 2010), D3BJ (Grimme et al., 2011),
D3M and D3MBJ (Smith et al., 2016) schemes. The remaining calculations
used the van-der-Waals functionals rvv10 (Sabatini et al., 2013), vdw-df
(Dion et al., 2004; Thonhauser et al., 2015) and vdw-df2 (Lee et al., 2010).
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Figure 3.9.: Bend angle α and twist angle β for 9,10-SPAnR structures. Angles determ-
ined from 9,10-SPAnPS are marked in blue. Rows in the individual plots
represent negligible fluorescence or visible fluorescence at room temperature.

which means a rather low barrier. In the more unlikely case that the observed disorder
is purely dynamic, the amplitude of the corresponding phonon mode is exceptionally
large and therefore a directed interaction is even less plausible.

3.3.2. Twist and Bend in global investigations

Using the additional structures provided by Schillmöller (2022), as well as the automatic
evaluation, the geometric criteria by Finkelmeier (2013) can be investigated in more
detail.

The determined bend and twist angles for 9,10-SPAnR structures are depicted in
Figure 3.9. The molecules have been grouped by either negligible luminescence at
room temperature or visible luminescence at room temperature to avoid any ambiguity
connected to the determination of quantum efficiencies. The two angles seem to hold
very differently with the additional data.

For the bend angle α, the distance in the separation seen in the 9,10-SPAnPS data alone
is not retained. However, there still is a border at about 20.5°, where structures with
a lower bend angle show visible luminescence and structures with a higher bend angle
show negligible luminescence within the investigated group of structures. Additional
data or structures might provide a more gradual change, but the general connection
between a large bend angle and a quenched luminescence is valid.

At the same time, the twist angle does not seem to be connected to the presence of
luminescence, where the additional structures include low twist angle structures with
visible luminescence, as well as high twist angle structures with negligible luminescence.
The solvent-free 9,10-SPAnPS does also yield a large twist angle by the definition of
Finkelmeier, while structures with visible fluorescence and low twist angles only appear
with the additional structures within the SPAnR set.
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As such the additional data has sharpened the look upon the discussed structures. It is
clearly visible, that the 9,10-SPAnPS samples discussed in isolation before the works of
Schillmöller are not a representative sample of the compound class with respect to the
twist angle.

3.3.3. Completing the picture with displacement

Krause and Schillmöller both favoured an explanation including the restricted access to
conical intersections (Crespo-Otero et al., 2019). This approach tries to explain, why
some compounds show fluorescence in the solid state, but not in solution. The theory
states that there is a radiationless relaxation pathway including a conical intersection
between two states, which can be reached by the relaxation of the molecular structure
upon optical excitation. In the solid state, the relaxation pathway is blocked due to
the reduced degree of free movement the molecule can exhibit. Therefore, the conical
intersection is no longer accessible and no radiationless decay can happen. This means
that a decay involving radiation occurs instead.

This approach can be transferred onto the different polymorphs and solvent structures
of 9,10-SPAnR by assuming that the radiationless conical intersection has a geometry
exhibiting a bend angle. The amount of reorientation needed to reach the conical
intersection is therefore much smaller in the compounds exhibiting negligible fluorescence,
while the amount of reorientation needed in the absence of a preformed bend angle is
higher.
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3.4. Rationalising the wavelength shift in 1-SPAnH structures

A second influence can be in the flexibility of the overall system. Even if the bend angle is
not quite near the ideal value, given a large degree of freedom for the anthracene molecule
to reorient itself, the barrier to the conical intersection might still be low enough for a
radiationless decay. As such, the dependency on both the mean displacement parameter
of the anthracene moiety and the bend angle has been investigated (Figure 3.10). In
agreement with the presented theory, the three structures closest to the dividing line
in the bend angle, located at about α = 20.5° all show larger displacement parameters,
hinting that they might reach the intersection by relaxation of the positions in the
excited state.

3.4. Rationalising the wavelength shift in 1-SPAnH structures

As written in the introduction to this chapter, Schillmöller (2022) was able to provide
synthetic routes to different regioisomers. This included the synthesis of 1-Ph2(S)P−An
(1-SPAnH). In the solid state, this compound can adopt several different structures, of
which most contain a dimer of the molecule. In dependence on the presence or absence
of co-crystallised solvent molecules, the dimer structures adopt different overlaps, which
can be correlated to the emission wavelength. In total there is one solvent-free structure
without any dimer formation, two solvent-free polymorphs which form dimers (free1,
free2) and four structures which include a solvent molecule and dimers in the solid-state
structure (quinoline, benzene, aniline and pyridine).

The contribution of my work in this project consisted of two parts. The first task was to
find a systematic way to calculate the overlap of the dimer structures. The developed
approach is described in Section 3.2.

As depicted in Figure 3.11, the overlap between dimer structures can be correlated with
the wavelength shift for these structures. As the overlap is correlated with the relative
position of the two anthracene molecules a correlation of the luminescence with ∆x and
∆y can be observed as well. The distance between the anthracenes (∆z) is not correlated
with the shift in wavelength. The second step within this section is to try to reproduce
this behaviour with the Gaussian program (Frisch et al., 2016).

3.4.1. Anthracene dimers without substituents

The investigation started with the evaluation of anthracene dimers without any sub-
stitution. This assumes, that the influence of the substituent of the anthracene on the
relative energies of the fluorescence is small. The overlap of the anthracene molecules
themselves would then be the central influence. To test this hypothesis, dimer structures
of anthracene were generated using the geometries from the crystal structure. Before the
calculation of the excited state, the substituent was replaced by a hydrogen atom and all
hydrogen atoms were relaxed using either the CAM-B3LYP or M062X functionals and
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Figure 3.11.: Maximum emission wavelength and energy in dependence on the determined
overlap for the different crystals of the 1-SPAnH structure.

a 6-31G(d,p) basis set. The energies of the excited state were obtained with TD-DFT
calculations with the same basis set and functional and can be found in Table 3.2.

This simplistic approach proved to be unsuccessful. Not only is there a comparatively
large difference between the two solvent-free structures, but the relative position of the
other structures is also not reproduced. However, there is a minimal set of requirements
which can be drawn from the difficulties of this very simple model. First, the two
solvent-free structures should be as close as possible. Secondly, the dimer geometry
derived from the quinoline co-crystal should have a higher transition energy than both
of these structures. Thirdly, the geometry derived from the solid state structure formed
as a co-crystal with aniline should lie between the free structures and the quinoline
structure.

3.4.2. TD-DFT calculations for the substituted dimer structures

To investigate whether the missing effect is the result of a too-small system within the
calculation, dimers and dimers of dimers of 1-SPAnH were investigated. As can be seen
in Table 3.3 the differences are small, both between the dimers themselves and the
dimers of dimers. Additionally, no systematic development for the transition between
dimers and dimers of dimers can be seen. Solvent molecules were not included in the
calculations.
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3.4. Rationalising the wavelength shift in 1-SPAnH structures

Table 3.2.: Transition energy ∆ES0→S2 / eV for the different dimer structures of an-
thracene that match the geometry of the 1-SPAnH dimers. All theoretical
calculations were carried out using a 6-31G(d,p) basis set.

Structure CAM-B3LYP M062X Experimental in 1-SPAnH
free anthracene 4.1585 4.1770 3.35
quinoline 3.6932 3.7174 2.68
benzene 3.6549 3.6760 2.64
aniline 3.6821 3.7118 2.55
pyridine 3.7159 3.7437 2.49
free1 3.6786 3.6935 2.28
free2 3.6083 3.6056 2.28

Table 3.3.: Energy of first visible excitation of the dimers or dimer of dimers of 1-SPAnH
in the CAM-B3LYP/6-31G(d,p) level of theory.

Dimer Dimer of Dimers
Structure ∆Evis,1 / eV ∆Evis,1 / eV
quinoline 3.5864 3.5901

aniline 3.6065 3.6036
free1 3.5831 3.5894
free2 3.5167 3.5016

The general problems persist, with the relative excitation energies following a similar
pattern to the free anthracene calculations. The largest difference in the investigation is
still located between the two free isomers, which have been observed to be the same in
experiment.

To rule out that there is a basis set effect, that is specific to the dimer structures, the
properties of the first solvent-free structure (free1) were evaluated using the CAM-B3LYP
functional. As can be seen in Table 3.4 the overall differences between the basis sets
that did converge are rather small. Unfortunately, some augmented variants within the
evaluation did not show convergence, neither with DIIS nor with Fermi annealing.

As all structures contain the same two molecules, an optimisation of the excited state
without any constraints should lead to the same global minimum. As such, an optimisation
with fixed anthracene carbon atoms was performed. As the overlap still seems to be
the determining influence, fixing the overlapping atoms seems reasonable. In practice,
this means that the substituents of the anthracene, as well as the hydrogen atoms,
were relaxed in the excited S2-state. As the calculation is computationally expensive a
preliminary investigation using 1-SPAnH@free1 and 1-SPAnH@quinoline was performed.
With an experimental difference in emission energy of 0.4 eV they represent the largest
difference observed in the measurement of the powdered compounds. The calculation
was done using the CAM-B3LYP functional with a 6-31G(d,p) basis set. However, both
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3. Anthracene structure properties correlation to luminescence

Table 3.4.: Results for the free1 polymorph-derived dimer of 1-SPAnH obtained with
different basis sets. All calculations were done with the CAM-B3LYP func-
tional.

Basis set ∆ES1/eV ∆ES2/eV ∆(∆E)/eV µtr,S2,x µtr,S2,y µtr,S2,z

6-31G(d,p) 3.4064 3.5831 0.1767 1.4017 -0.4241 0.6865
6-31+G(d,p) 3.3317 3.5193 0.1876 -1.4205 0.4499 -0.6754
6-31++G(d,p) 3.3311 3.5188 0.1877 1.4202 -0.4509 0.6747
6-311+G(d,p) 3.3093 3.4905 0.1812 -1.4062 0.4480 -0.6585
cc-pVDZ 3.3655 3.5401 0.1746 1.3877 -0.4299 0.6728
aug-cc-pVDZ 3.2946 3.4691 0.1745 -1.3749 0.4428 -0.6463
pcseg1 3.3452 3.5306 0.1854 -1.4122 0.4273 -0.6744
pcseg2 3.2985 3.4762 0.1777 1.3983 -0.4483 0.6524
def2-TZVP 3.2956 3.4698 0.1742 1.3838 -0.4477 0.6458
aug-pcseg1 SCF did not converge
aug-pcseg2 SCF did not converge

structures yielded a practically indistinguishable transition energy (free1: 3.5079 eV,
quinoline: 3.5084 eV).

3.4.3. Coupling Calculations

As is obvious from the discussion so far, the two molecules which can be excited and are
located in close proximity can interact with each other. A direct way to quantify the
strength of this interaction is the coupling Jij (Davydov, 1964).

Dommet (2022) and Crespo-Otero supplied a GitHub repository, giving different possibil-
ities for calculating the coupling with python from log files from the Gaussian program.
Four different methods were supplied and these were evaluated using the CAM-B3LYP
functional with both the 6-31G(d,p) and 6-31+G(d,p) basis sets. The resulting coupling
plotted against the emission wavelength maxima are depicted in Figure 3.12.

Energy Splitting: The interaction of the two individual excited states generates two
new states, where one is raised in energy and one is lowered. Therefore, the coupling
can be calculated as one half of the difference between the energies of the first ES1 and
second ES2 excited state in the dimer calculation:

Jij = 1
2(ES2 − ES1) (3.2)

As the discussion on the relative S2 excitation energies was unsuccessful, it is perhaps
expected that this alternative analysis does not yield a reasonable coupling value. As
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Figure 3.12.: Results of the four methods for the basis sets 6-31G(d,p) (left) and 6-
31+G(d,p) (right) calculated with CAM-B3LYP. For both basis sets, the
different colours in CATC represent the different methods to calculate the
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51



3. Anthracene structure properties correlation to luminescence

depicted in the top row in Figure 3.12, no systematic connection to the emission energy
can be observed.

Point Dipole Approximation: The interaction can also be roughly approximated by
the Coulomb interaction of the transition dipole moments of the excitation of the two
individual molecules.

Jij = µiµj

R3 − 3 (µiRij) (Rjiµj)
R5 (3.3)

where µi and µj are the transition dipole moments of the individual molecules. Rij

and Rji are the vectors from the centre of mass of molecule i to the centre of mass of
molecule j and the other ways around which both have the length R.

While the relative positions of the two solvent-free molecules at 2.28 eV at least show a
very similar coupling, the relative positions of all other dimers do not correlate with the
observed emission maxima (second row in Figure 3.12).

Coulomb Atomic Transition Charges: A more sophisticated version of the point dipole
approximation can be reached by summing the interaction energies of the transition
charges.

Jij =
Ni∑
a

Nj∑
b

qaqb

|Ri,a − Rj,b|
(3.4)

This scheme is dependent on the way the transition charges are calculated. In addition to
the Mulliken partitioning scheme, the Hirshfeld partitioning scheme was also employed.
As can be seen in the third row of Figure 3.12, both schemes produce a reasonable
correlation with the emission maxima for the CAM-B3LYP//6-31G(d,p) calculations.
For the basis set including diffuse functions, the Mulliken scheme starts to show a lower
correlation. As the Mulliken scheme simply assigns all orbitals centred on an atom to
this atom, this is reasonable. Due to their diffuse nature, the additional orbitals do not
only include contributions from the atom they are centred on. The Hirshfeld partitioning
scheme on the other hand retains its correlation.

The good performance is consistent with the fact, that the overlap also has a strong
correlation with the emission maximum. As a large overlap means a large number of
close contacts, the calculated point interaction energies grow larger at the same time.
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3.5. Conclusion

Approximate Diabatisation Method: This method aims to retrieve the coupling
constant as part of the adiabatic Hamiltonian:

HD = CHACT (3.5)[
ED

i Jij

Jij ED
j

]
=

[
C11 C12
C21 C22

] [
EA

i 0
0 EA

j

] [
C11 C21
C12 C22

]
(3.6)

In order to yield C the methods of Aragó and Troisi (2015) are implemented in the
aforementioned Python package by Dommet and Crespo-Otero. The unitary matrix C
is calculated by minimising the transition dipole moments from the ground state of the
diabatic states and the transition dipole moments from the ground state of the isolated
states.

The resulting couplings are connected to the couplings from the energy splitting by a
factor of −1. As such they do not show correlation to the emission wavelengths.

3.5. Conclusion

The original aim of this project was to provide a dataset for benchmarking excited state
structures. However, for different reasons the evaluated systems proved to be unsuitable
for this purpose. The set of SPAnPS structures proved to be very similar for the properties
that could be obtained with a suitable degree of experimental certainty. Reevaluation of
the original data of the quantum efficiencies revealed a lack of reproducibility, prompting
the omission of this physical property. This is quite possibly connected to the very fact
prompting the initial study of this system by Fei et al.: the quenching of fluorescence
upon solvent loss. At the same time, the calculation of quantum efficiencies is certainly
non-trivial and the investigation in the solid state would have further complicated
the theoretical description, even if there had been an established protocol for their
measurement. The possible influence of flexibility and vibration within the system shows
that the involved geometries are probably not limited to the ground state.

The energy difference between the two orientations was also evaluated as a potential
target. However, host-guest complexes of larger molecules showed a less clear second
position, while the crystallisation of SPAnPS with singly halogenated benzene proved to
be unsuccessful.

The study of the 1-SPAnH dimer structures looked to be another promising candidate
for a set of connected structures to be a potential target for a benchmarking run.
However, the employed quantum chemical methods failed to reproduce the observed
behaviour. The calculation of emission wavelengths is non-trivial in the solid state
as the relaxed structure in the excited state is not easily available. A comparison to
the absorption spectra is not possible, as the investigated powders do not easily allow
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3. Anthracene structure properties correlation to luminescence

for the experimental observation of absorption. The initial hypothesis that the dimer
structures without their crystal environment are sufficient to reproduce the observed
shift in wavelength did not hold. Using the CATC method, the behaviour was reproduced
from the atomic transition charges. However, this is unsurprising, as the distances and
therefore the calculated Coulombic interactions are directly correlated with the overlap.
As such a large overlap means a larger number of shorter distances and therefore a
stronger shift. In summary, a relaxation of the excited state in the solid-state environment
seems to be needed, which is beyond the scope of this work.

While the application to benchmarking could ultimately not be provided, the invest-
igations delivered valuable insight into the systems under investigation. The study of
1-SPAnH did result in the development of a reliable overlap indicator and the large
number of elucidated other structural parameters did raise confidence in the unique
importance of the relative position. The first section could successfully evaluate previous
hypotheses used for the explanation of the difference in luminescence properties of cisoid
and transoid structures of SPAnPS by additional experiments conducted by myself as
well as additional structures provided by Schillmöller.

Of the three possibilities determining whether the luminescence is visible, the first can
be excluded with some certainty. The strong disorder, as well as the change in occupancy
of the guest molecule observed for toluene, should mean that only a small fraction of
solvent molecules are present in the exact relative orientation used for the discussion.
As will be shown in the next chapter, changes in the behaviour due to temperature
dependencies should not be overlooked.

While the twist angle β does not hold for the larger set of 9-SPAnR systems, the bend
angle α seems to be connected to the quenching of the fluorescence. Additionally, the
discussion of the rigidity within the system, as pursued by Krause and Schillmöller
can also play a role. This is underpinned by the fact that the combined discussion of
displacement and bend angle strengthens the separation between structures along their
luminescence properties.

Despite the new valuable insight won, it was clear that benchmarking would ultimately
need another (quantum) crystallographic approach as well as a different set of systems
to study.
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4. Evaluating the low-temperature phase
transition in decamethylsilicocene

This chapter will illustrate the importance of looking at the low-temperature ground
state when discussing interactions, while at the same time investigating a system where
dispersion interactions play a decisive role in the assumed geometry.

4.1. Background

The structure belongs to the group of cyclopentadienyl compounds of group 14. Synthetic
access to this type of structure was first made available by Fischer and Grubert (1956b)
in the form of cyclopentadienyl lead. The same group also published the synthetic route
to cyclopentadienyl tin in the same year (Fischer and Grubert, 1956a). After this quick
succession, it took considerably longer to provide access to the next structure of this
class in the form of cyclopentadienyl germanium reported by Scibelli and Curtis (1973).
The solid-state structure of this compound was measured and reported by Grenz et al.
(1984), while the structure of monomeric Cp2Sn was reported by Atwood et al. (1981).

Changing to a heavier and more protective ligand Atwood et al. (1981) also reported a
synthetic route and the structure of the heaviest member of the decamethylcyclopentadi-
enyl family. At this point, the synthesis and structures of Cp*

2Sn and Cp*
2Ge had already

been reported by Jutzi et al. (1980), in addition to the corresponding cations CpSn+

and CpGe+. The currently available set was completed by following their previously
published route (Jutzi and Hielscher, 1985), which Jutzi et al. (1986) successfully used
for providing synthetic access and the crystal structure of decamethylsilicocene, which
also corresponded to the first reported structure where silicon adopts the formal oxida-
tion number of II. Jutzi et al. (1989) also provided additional characterisation shortly
afterwards.

The solid-state structure as initially reported is very comparable to the structure depicted
in Figure 4.1 with two distinct conformers of the molecule within the same unit cell. In
agreement with the germanium and tin structures (Jutzi et al., 1980), the first molecule
exhibits a bent formation. In contrast, the second molecule adopts an inversion symmetric
staggered conformation of the two ring planes, where these planes are parallel to each
other. The inversion centre is not only present in the molecule, but also in the crystal
symmetry, which results in only half of this molecule’s atoms being in the asymmetric
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4. Evaluating the low-temperature phase transition in decamethylsilicocene

Figure 4.1.: Structure of the two different confirmations present in the high-temperature
phase of Cp*

2Si. The relative ratio of the two conformers bend/left to
symmetric/right is 2:1. All ADPs are depicted at the 50 % probability level.

unit, while the asymmetric unit contains one complete bent molecule. Subsequently, the
relative population of bend to symmetric molecules in the unit cell is two to one.

In the original publication by Jutzi et al. (1986), the presence of two distinct conformers
was explained by ‘intermolecular interactions and packing effects’ which were presented
to be responsible for the occurrence of the bent conformer. Later Jutzi et al. (1989)
showed that the bend conformer was the most stable in the gas phase. However, the idea
of packing effects kept being used in subsequent publications (Minyaev and Gribanova,
2005; Hutton, 1986) and used to rationalise differences between the theoretical structure
of Cp2Si and the experimental structure of Cp*2 Si (Smith and Hanusa, 2001).

4.2. A phase change

The apparent conundrum of why a straight conformer is present in addition to the more
stable bend conformer can be resolved by the observation of a non-destructive phase
change. The low-temperature phase of decamethylsilicocene is best described in the
space group P 21/c and it contains three molecules in bend conformation within the
asymmetric unit (Figure 4.2). Due to a lowering of symmetry the asymmetric unit is
twice the proportion of the total unit cell volume compared to the high-temperature
phase, which is best described in C 2/c.

To track this phase change, sets of single crystal diffraction data were collected between
80 K and 160 K. The phase change will now be tracked in three different descriptions,
two of which are geometric and one is dependent on systematic absence differences
between the space groups.

Additionally, quantum chemical calculations were employed for comparison and analysis
of the phase change. Periodic plane wave calculations were conducted with Quantum
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4.2. A phase change

Figure 4.2.: Conformers for the three molecules of Cp*2 Si present in the asymmetric unit
of the low-temperature phase. Outer molecules are symmetry equivalent
and bend at high temperature, while the structure in the centre becomes
centrosymmetric. All ADPs are depicted at 50 % probability level. Additional
hydrogen atoms indicate two groups refined with different occupancies
summing to a total of 1.

Espresso using the PBE functionals with cut-off energies of 80 Ry for the wave function
and 800 Ry for the density. Non-periodic calculations were conducted with Orca using
the PBE0 functional and a def2-TZVP basis set. For all calculations, Grimme’s D3BJ
method was used for the dispersive energy correction.

The simplest way to track the difference in molecular geometry is the interplane angle
α. It is defined as the angle between the mean planes of the carbon atoms of the two
cyclopentadienyl rings of the structure. The development of the interplanar angle with
temperature is depicted in Figure 4.3. The comparison geometries were obtained from
the periodic plane-wave calculations, where the respective structures were relaxed under
enforcement of the space group symmetry starting from the experimental geometries.

The two bend molecules, which are symmetrically equivalent at high temperature, exhibit
a slight deviation of angles at low temperature. At high temperature, the angles start
at 27.59(18)° and 27.15(18)° respectively (calc 26.50°). Upon cooling to 80 K, the first
angle widens by 2° to 29.31(11)° (calc. 27.43°). Meanwhile, the second angle shows a
much smaller deviation to 27.96(11)° (calc. 26.97°). The remaining molecule changes its
conformation significantly with the interplanar angle starting from a nominal value of
0.8(2)° at 160 K (set to 0° in the calculation) when the high-temperature phase is refined
in P 21/c. The interplanar angle increases upon cooling, reaching a value of 20.40(10)°
(calc 20.40°) at 80 K. As such, the resulting angle is still smaller than the angle observed
in the other two molecules in the asymmetric unit.

The second possibility is to track how much atom positions break the symmetry of the
high-temperature phase. To quantify this difference, the atom positions were mapped
onto their symmetry equivalents using the additional inversion centre of C 2/c. Then
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Figure 4.3.: Interplane angle α in dependency of the temperature measured for the three
conformers of the P 21/c asymmetric unit. Calculated values were derived
from plane-wave calculations.

minimum: 5 mÅ maximum: 901 mÅ

Figure 4.4.: Distance of atom positions from their symmetry equivalents in C 2/c mapped
onto the atomic position by the additional inversion centre of the high-
temperature space group.
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4.2. A phase change

minimum: 0.014 Å2 maximum: 0.082 Å2

Figure 4.5.: Averaged Uequiv values of the two symmetry equivalent atoms in P 2 1/c.

the distance between the symmetry-generated atoms and the atoms with the refined
second position can be measured. The resulting values are depicted in Figure 4.4. It is
clearly visible what kind of geometry change leads to the breaking of symmetry for the
two respective molecules. For the molecule, which is completely in the asymmetric unit
in both phases, one of the two rings (here depicted at the centre) opens up, with the
largest point of movement being on a single atom. This atom is not pointed directly to
the opening but to the side, which indicates that the molecule itself is already close to
an optimal opening angle. In contrast, the second molecule shows the highest deviation
on three of the methyl carbon atoms, which form one pair of neighbours, while the other
atom lies on the opposite side of the cyclopentadienyl ring. This indicates a pitching
geometry change, which results in the inversion centre present at high temperature being
broken upon cooling.

Interestingly, the potential room for this movement is filled by vibration at high tem-
perature. Figure 4.5 shows mean Uequiv values for the atomic positions. Comparison to
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Figure 4.6.: Development of reflection intensity over estimated standard deviation (top)
and the fraction of reflection fulfilling the significance criterion (bottom)
in dependence of temperature. Colouring indicates whether reflections are
systematically absent in P 21/c (blue) or present in both space groups
(yellow).

Figure 4.4 shows that the same atoms, which break the symmetry at low temperature,
exhibit larger thermal motions at high temperature.

The third possibility to observe the phase change is to track the difference in systematic
absences between the two space groups C 2/c (high temperature) and P 21/c (low
temperature). While reflections with hkl : h+ k ≠ 2n are systematically absent in the
space group C 2/c, they are present in the low-temperature phase. The development of
the reflections is depicted in Figure 4.6 and the change can be assigned to the temperature
region between 90 K and 120 K. The mean intensity over estimated standard deviation
for the reflections fulfilling this criterion changes from 20.3 to 0.9 within this region. At
the same time, the reflections present in both space groups change only from 20.9 to
15.9.

4.3. The importance of dispersion for the minimum structure

Both structures are present in the solid state at high temperature, while the low
temperature favours the bend formation, even if the angle of the third molecule does not
converge to the larger bend angle of the two remaining molecules. A calculation will now
be employed to answer two questions. Firstly, what is the theoretical energy difference
between the two structures in isolation and between the two phases in the solid state?
Secondly, how important are dispersive interactions for the observed difference?

The overall energy difference in the ultrasoft pseudopotential calculations with optimised
geometries of full unit cells, and optimised unit cell parameters under the constraint that
resulting cells still need to be monoclinic, yields an energy difference of 0.191 eV between
the two complete unit cells with the lower energy structure being the low-temperature
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4.4. Conclusion

structure in P 21/c. This corresponds to an energy difference of only -1.54 kJ/mol Cp*
2Si

with 12 molecules per unit cell.

With both conformers present in the solid state, the discussion of how large the energy
difference between the two conformers is, has already had significant contributions.
Schoeller et al. (1999) provided a very in-depth discussion and used CCSD(t) calculations
to show that the analogue without methyl groups (Cp2Si) is bent. Using B3LYP/6-31G(d)
calculations, they also concluded that the influence of the methyl groups is small. A more
global approach by Sapunov et al. (2001) included Cp*

2Si. The approach investigated
through space coupling and attributed the resulting structure to a compromise between
van-der-Waals interaction and repulsion.

Consequently, calculations including dispersion interactions were performed and the
structure of Cp*

2Si was optimised using the PBE0 functional and Grimme’s B3BJ scheme
in a non-periodic calculation. The straight conformation was obtained by enforcing a Ci

symmetry, while the bend conformation was optimised without symmetry constraints
(C1 symmetry). The non-periodic calculation yielded an energy difference of about
4.5 kJ mol−1. A large part of this difference (3.5 kJ mol−1) can be attributed to dispersion,
which corresponds to a large part of the stabilisation of the bend conformation. In fact,
the straight conformation does not constitute a local minimum in these calculations,
shown by two Cp* ring slippage vibration modes yielding imaginary frequencies in the
calculation.

In the final step, the interaction will be localised. While it seems most plausible, that
dispersive interactions occur between the methyl groups, this fact will be verified using
NCIPlot (Contreras-García et al., 2011). The resulting depictions can be found in
Figure 4.7. They clearly show that the dispersive interactions are located between the
outer methyl groups. This further underpins the reasoning of dispersive interactions
between the methyl groups being a factor in the overall stabilisation. Arguably, the
centrosymmetric structure also shows dispersive interactions. However, the larger distance
between methyl groups reduces the strength of these interactions as van-der-Waals
interactions have a distance dependency of r−6.

4.4. Conclusion

What was so far known as a structure behaving uniquely compared to structures from
other elements from the same group, was rationalised as a high-temperature phase under
entropic driving force for the observed conformation. At low temperature, all structures
could be shown to adopt a bend position, albeit with different angles. A large part of
the stabilisation could be attributed to dispersive interactions, even though the overall
difference was calculated to be low, which is reasonable as both conformers are present
under ambient conditions.
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4. Evaluating the low-temperature phase transition in decamethylsilicocene

Figure 4.7.: NCI Analysis (Contreras-García et al., 2011) plots for the structures op-
timised in Orca. The depictions in the top row are calculated for the
bend conformer, while the depictions in the bottom row are calculated for
the straight conformer. On the left, the isosurfaces represent a reduced
density gradient at a level of 0.5 atomic units. The green colour indicates
a low-density accumulation corresponding to dispersive interactions. The
right column depicts the reduced density gradient plotted against the sign
of λ2 multiplied by the electron density ρ.
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4.4. Conclusion

The investigation shows the problem with the ‘explanation’ of differences due to not
further specified packing effects. Profiting from over 35 years of technological advancement
since the original publication of the structure, this chapter reveals that the difference
explained with the packing effect term is not to be localised in energy but entropy effects.
The equilibrium at room temperature is therefore not at the minimum of the electronic
energy surface. Keeping this in mind, it should be a warning that the explanation with
packing effects was still successful, ultimately revealing the fuzzy nature of the concept
and its limited explanatory and predictive power, when the interactions comprising these
packing effects are not further specified.

At the same time, this investigation is one of many demonstrations, that routine crystal
structures should be performed at low temperature whenever possible, especially if state-
ments with a high degree of generalisability are to be derived from the measurements.
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5. A new metal for in-house use: Evaluating
the performance of an Indium MetalJet
diffractometer

Chapter 2 has introduced the kinematical model of describing X-ray diffraction exper-
iments and the approximations used to include effects of non-kinematical diffraction
(Section 2.5.3 and Section 2.7). These models are highly successful and are a very good
description of a lot of structures determined with molybdenum Kα radiation, which can
be seen as one of the work-horses of high-resolution charge density refinements, with the
other being synchrotron radiation.

However, for heavier elements resonance scattering, as well as extinction can become
a problem. As long as the measurement is not close to an absorption edge, a lower
resonance scattering can be achieved with a lower wavelength / higher energy radiation
(Becker and Coppens, 1974a; Hamilton, 1965; Becker and Coppens, 1974b).

Therefore, the choice of the correct wavelength for the X-ray diffraction experiment is
highly dependent on the content of the crystal which is to be investigated. Softer radiation
shows benefits for weakly diffracting samples which need its larger scattering power,
as well as the higher intensity within the same class of X-ray source. Additionally, the
relative size of the resonant scattering to the elastic scattering increases, which enables a
higher degree of certainty of the determined absolute structure in non-centrosymmetric
structures.

Hard radiation is particularly desirable for compounds which are bound by ionic interac-
tions and which include no or only small organic ligands. These compounds combine a
high scattering density and the strong interactions often exacerbate high diffraction and
thereby extinction. While corrections exist, they introduce additional parameters with a
potential correlation to the crystallographic quantity of interest. Very strong resonance
scattering and extinction can even bring these models to their limits.

So far, employing silver Kα has been the only widely available choice for in-house
sources when facing these problems. This chapter aims to explore the potential of an
X-ray source with even higher energy, namely using indium Kα radiation produced by
an Excillum MetalJet source for the study of compounds with high absorption and
extinction potential, as well as the performance for compounds already well established
for benchmarking in X-ray crystallography.
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5. Evaluating the performance of an Indium MetalJet diffractometer

5.1. The MetalJet X-ray source

Generally, the MetalJet and all other in-house sources follow well-established principles.
The original discovery of X-ray radiation by Röntgen (1895) already used a setup where
electrons emitted from a cathode were accelerated onto an anode target, which then
produced the X-ray radiation. The specific apparatus was of the type described by
Crookes (1879). For in-house X-ray diffraction, this principle for the production of
X-rays has been retained until the present day. Improvement in produced intensity was
achieved by using tungsten cathodes (Coolidge, 1916, 1925). However, the current of
electrons onto the anode was still limited by the thermal load put onto the anode by
the impact of accelerated electrons. A successful mitigation strategy was provided in
the form of rotating anodes, where the spread of the thermal load enables higher X-ray
intensities (Gray, 1930) and the current iterations of this technologies provide some of
the highest intensities for in-house use.

The problem of heat dissipation was elegantly solved with the introduction of the liquid
MetalJet method (Hemberg et al., 2003). For this technique, the anode is a liquid jet,
which is expanded into the vacuum at high pressure. Subsequently, heat dissipation is
no longer a problem as the heated fraction of anode material is exchanged for new anode
material in an instant. The initial demonstration used an alloy consisting of tin and
lead as jet material, but the authors already mentioned the use of other liquid alloys
as potential candidates. At the same time, the employed cathode consisted of an LaB6
crystal instead of the usual tungsten filament. This enables the production of electrons
at the sharp edge of the crystal. While traditional X-ray sources do not profit from
the gain in focus of this cathode as they are limited by heat dissipation, the presented
MetalJet can see a benefit from the higher focus.

With the stability of the source confirmed by the Hertz group (Otendal et al., 2007),
the first application with a liquid gallium alloy followed quickly (Otendal et al., 2008),
while the first production of 24.2 keV indium radiation was presented three years later
(Larsson et al., 2011).

In 2007, the company ‘Excillum AB’ was founded to make the technology available
commercially. They introduced the pumping of the alloy in a closed loop instead of
using a reservoir to be refilled, thereby making the continuous operation of the machine
viable. Additionally, they introduced several different alloys of gallium, indium and tin,
to be chosen depending on the wavelength to be used in the experiments (gallium Kα or
indium Kα).

The X-ray diffraction experiments used the high brilliance of the gallium radiation to
obtain diffraction patterns refined with the independent atom model (see for example
Diop et al., 2016; Rajak et al., 2020), where the high brilliance can save on measurement
time and enable the study of weakly diffracting samples. Consequently, the use for the
study of metal-organic frameworks has also been reported (Klein et al., 2017). However,
gallium Kα has a wavelength of about 1.34 Å. The resolution limit for X-ray diffraction
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5.2. Detector technology for reducing low-energy contamination

experiments used for the refinement of charge density is at least 0.5 Å and the desired
resolution is usually beyond 0.45 Å. With a maximum theoretical resolution for gallium
Kα of only 0.67 Å (dmin = λ/2), the indium Kα part with a wavelength of about 0.51 Å
is the only sensible option for high-resolution X-ray diffraction with a MetalJet source
and the alloys commercially available at this moment.

The MetalJet setup in Göttingen was installed in September 2017. Starting from that date
it underwent some significant optimisation, where the investigation from the university
side was done in cooperation between Nico Graw and me. For the details, see the PhD
thesis of Graw (2022), where the first chapter sketches the path to the setup in its current
iteration. In addition, this chapter in his thesis also contains a comparison conducted by
Graw which evaluates the performance of the MetalJet at 200 W against an Incoatec Ag
IµS 2.0 High Brilliance.

In the iteration of the setup used for this work, the MetalJet D2 in Göttingen works
at an acceleration voltage of 70 kV and a power of 250 W. The used alloy is Excillum
I3 which consists of 75 % gallium and 25 % indium. The machine is housed in a Bruker
D8 Venture enclosure with a Bruker goniometer of the same name. The Incoatec Helios
Montel optics are the ones, which were provided in the first place as the experiments in
the optimisation evaluated these optics favourably.

5.2. Detector technology for reducing low-energy
contamination

After the optimisation until this point, two questions remained. The first question was
which of two possible detectors, the Bruker Photon III or the Eiger2 R CdTe 1M, provides
superior performance with the MetalJet. This includes investigations for high-absorbing
compounds, which were evaluated using the independent atom model. The second
question was, what performance is to be expected for high-resolution measurements
with aspherical refinements, especially with potential applications using the multipolar
model. This was evaluated for both detectors, as well as a setup using an Incoatec Ag
IµS 3.0 source with a Photon III detector for comparison.

5.2.1. Bruker Photon III

This detector is an improved version of its predecessor, the Photon II detector and
likewise uses a rare-earth X-ray scintillator to convert X-rays into visible light. This
light is subsequently detected by a CMOS sensor chip, with a large detector area of 110
mm · 140 mm covered with pixels of a size of 135 µm · 135 µm. The detector noise is
efficiently reduced by adaptive oversampling, where the fast non-destructive readout
rate of 70 Hz is used to distinguish photon detection events from background noise. This
signal processing is done in real-time.

67



5. Evaluating the performance of an Indium MetalJet diffractometer

The detector offers two measurement modes, dynamic mode and mixed mode. While
the dynamic mode offers a higher dynamic range, mixed mode offers a more sensitive
detection, scaling to single photon detection events and thereby lower background noise.
The scintillator cannot be easily saturated. However, the memory well on the detector
in dynamic mode is limited to 163810 counts. To account for this fact, strong reflections
are usually measured with a lower frame time / a higher rotation speed of the crystal.
Optionally they are determined in a fast scan mode and only reflections which cannot be
obtained otherwise are included from these fast scan measurements. Mixed mode usually
shows a lower maximum detection rate as the price for its increased sensitivity.

In the iteration present on the machine in Göttingen, the Photon III offers a comparatively
low quantum efficiency for indium radiation of only 53 %. According to Bruker, this
has been mitigated with the new ‘High Energy’ or HE variant. However, this was not
available at the point of this investigation.

5.2.2. Dectris Eiger2 R CdTe 1M

The second detector is a single photon counting detector using a cadmium telluride layer
for direct detection of individual photons via the charge separation induced by X-ray
photons on the detector. Despite their fairly complex composition individual pixels have
a size of only 75 µm · 75 µm with the total active area being 77.1 mm · 79.65 mm.

The direct conversion enables the setting of an energy threshold. Usually, this is set
to half the photon energy to exclude the possibility of double counting X-ray photons
hitting the detector at the border between two pixels. The Eiger2 family even offers the
possibility of setting a second higher energy threshold to exclude artefacts from cosmic
radiation.

Using a home source the detector has a high dynamic range with a maximum count rate
of 5.5 · 106 photons per pixel and second and basically no background noise from the
detector itself. The photon efficiency of the cadmium telluride semiconductor for indium
Kα radiation is near unity with 95 %. At the same time, the maximum readout rate is
100 Hz.

5.2.3. Tailored approaches to low energy contamination

The combined alloy of indium and gallium poses a challenge from an instrumental
perspective. While the Helios Mirror optics on the instrument focuses the indium
radiation more efficiently compared to gallium, four factors lead to a high detected
share of gallium radiation. Firstly, there is a higher overall gallium content in the
alloy, compared to indium. Secondly, compared to indium, the production of gallium
Kα radiation is more efficient. Thirdly, the higher scattering cross section for gallium
radiation means a larger share of the gallium radiation arriving on the crystal is scattered.
The final consideration concerns the Photon III detector, where the higher quantum
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efficiency for gallium radiation also favours the detection of the lower energy. All of these
points combined lead to a significant amount of unwanted low-energy contamination in
the measurement. This low-energy contamination has to be treated differently depending
on the employed detector.

The approach for the Eiger2 CdTe is straightforward. Using the energy cutoff feature
of the detector, the gallium radiation can be filtered. As the photon energy of gallium
(9.6 keV) is less than half of the indium radiation energy (24.2 keV), the optimal value
of the energy cutoff for indium radiation can be chosen.

In contrast, the Photon III detector does not offer energy discrimination to use for this
purpose. This means that an attenuator has to be used to eliminate the low-energy
gallium radiation. Most filtering materials do absorb gallium radiation more efficiently.
The approach in this work was to use 40 µm of palladium. It offers additional filtering
with its absorption edge just above the energy of indium Kα. While the theoretical
attenuation of gallium with this attenuator is 99.9 %, the indium radiation suffers from
an attenuation of 39.4 % as well.

5.3. Structures in the investigation

In total, five structures will be used to assess the performance of the two detectors
on the setup in Göttingen. For the determination using the Independent Atom Model,
three strongly absorbing inorganic salts were used. The first test crystal was scandium
cobalt carbide [ScCoC4]n 1. The solid-state structure of this compound was originally
described by Jeitschko et al. (1989). Subsequently, it has been the subject of a number of
investigations (Zhang et al., 2007; He et al., 2015), including being evaluated using high-
resolution X-ray diffraction (Rohrmoser et al., 2007; Eickerling et al., 2013; Langmann
et al., 2021). The other two compounds selected for the investigation were scandium
platinum silicate [ScPt9Si3]n 2 and sodium tungstate dihydrate [Na2WO4 · H2O]n 3.
To also include an indication for performance on crystals with low absorption, L-
Alanine [C3H7NO2] 4 was included, being a common compound for benchmarking
investigations.

The MetalJet setup with either detector was also to be compared to a second machine,
routinely used for X-ray diffraction with comparatively hard radiation. To this end,
data was collected on an YLID crystal [C11H10O2S] 5 and refinements using aspherical
form factor descriptions were conducted. While the use of this compound for bench-
marking diffractometers is well-established using room-temperature measurements, both
polymorphs have also been characterised at low temperature by Guzei et al. (2008).
Measurement at this temperature provides diffraction well suitable for the purposes
of the multipole and Hirshfeld atom refinements used for the comparison presented in
Section 5.7. The details of the measurement and the data processing can be found in
Section A.3.
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5. Evaluating the performance of an Indium MetalJet diffractometer

Table 5.1.: Crystal properties for the comparison measurements of this chapter.
Space group Crystal dim. / mm µ / mm−1 µr

1 [ScCoC4]n Immm 0.592/0.063/0.031 3.9 0.06
2 [ScPt9Si3]n C2/c 0.059/0.049/0.041 64.3 1.29
3 [Na2WO4 · 2 H2O]n Pbca 0.208/0.157/0.086 8.2 0.35
4 L-Ala P212121 0.214/0.155/0.128 0.1 0.00
5 YLID P212121 0.395/0.387/0.312 0.1 0.03

Table 5.2.: Measurement details for the comparison measurements in this chapter.
dmin / Å T / K

1 [ScCoC4]n 0.39 100
2 [ScPt9Si3]n 0.38 100
3 [Na2WO4 · 2 H2O]n 0.36 100
4 L-Ala 0.45 150
5 YLID 0.45 110
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Figure 5.1.: Solid-state structures for the compounds investigated in this chapter.
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Figure 5.2.: Reflection profiles for (2 1 2) measured with an exposure time of 15 s (data-
set 1). The filtering is incomplete for both cases. The indium reflection on
the Photon III is overexposed and the recorded intensity marked with * is
the detector limit.

5.4. Evaluating the efficiency of the low energy filtering

The different solutions for filtering the low energy contamination for the two detectors
were discussed in Section 5.2.3. The question is now, how well these approaches work
in practice. Qualitatively, this question can be answered by looking at the remaining
intensity at the gallium spots. As such, four reflection profiles of the reflection (2 1 2)
were created from the measurement of 1. The resulting comparison can be found in
Figure 5.2.

Both approaches still show maxima at the position of the reflection corresponding to the
peak position for gallium radiation. As such, it is obvious that neither approach offers a
full suppression of the gallium intensity. Accordingly, the next step was to investigate
the difference in filtering quantitatively using the twinning routine of SAINT. In the
first step, the integration was conducted normally for the unit cell corresponding to the
indium radiation. The determined cell, instrument parameters and crystal orientation
resulting from this integration were used as the basis of the following investigation. The
obtained cell was copied and scaled to match the equivalent gallium positions. Using
a fixed orientation and fixed cell parameters, the intensities of both wavelengths were
then evaluated by a second integration in SAINT. After absorption correction and
scaling in TWINABS (Sevvana et al., 2019), the two components were refined as a
twin in SHELXL (Sheldrick, 2015a). The determined relative percentages carry more
information than the absolute ones, as differences in scattering cross sections, absorption
and anomalous dispersion have been neglected. The determined twin partitions were
0.226(11) % for the Eiger2 CdTe and 0.44(4) % for the Photon III detector, respectively.
This indicates improved filtering of the Eiger2 CdTe compared to the Photon III detector.
This could be counteracted with an increase in the thickness of the palladium attenuation,
but this would further reduce the indium Kα intensity.
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5. Evaluating the performance of an Indium MetalJet diffractometer

Table 5.3.: Precision indicators for the datasets evaluated with the independent atom
model (1: [ScCoC4]n, 2: [ScPt9Si3]n, 3: [Na2WO4 · 2 H2O]n, 4: L-Ala). All
indicators were determined for the full measured and the multiplicity equi-
valent sets of data. Values in brackets denote the standard deviation of the
indicator over the 100 multiplicity equivalent sets.

1 2 3 4
Multiplicity full Eiger2 31.22 7.83 15.31 12.56

Photon III 60.78 32.63 24.38 31.83
equal both 25.71 7.76 10.68 7.61

Rr.i.m / % full Eiger2 2.35 6.29 3.76 3.75
Photon III 4.15 9.35 3.97 5.04

equal Eiger2 2.303(5) 6.3296(20) 3.502(5) 3.323(8)
Photon III 3.305(12) 6.98(2) 4.539(10) 5.94(4)

Rp.i.m / % full Eiger2 0.39 1.82 0.97 0.90
Photon III 0.47 1.35 0.69 0.85

equal Eiger2 0.42 1.8397(17) 1.04 1.099(5)
Photon III 0.598(4) 2.135(8) 1.339(3) 1.963(14)

⟨I/σ⟩ full Eiger2 117.24 20.03 41.00 41.90
Photon III 110.13 28.46 44.37 45.61

equal Eiger2 108.063(13) 18.958(4) 36.529(7) 37.73
Photon III 80.19(3) 14.830(9) 28.899(8) 20.95(2)

Table 5.4.: Precision indicators for the YLIDE (5) dataset evaluated with the aspherical
atom models. All indicators were determined for the full measured data.

Radiation Detector Multiplicity Rr.i.m / % Rp.i.m / % ⟨I/σ⟩
In Kα Eiger2 29.04 2.48 0.37 101.99

Photon III 27.99 3.83 0.59 78.14
Ag Kα Photon III 23.33 2.46 0.39 93.91

5.5. Comparison of the precision of the measured data

The precision measures how large the statistical spread is between symmetrically equi-
valent reflections. This was evaluated using the redundancy-independent merge Rr.i.m,
the precision indicating merge Rp.i.m and the mean intensity over estimated standard
deviation ⟨I/σ⟩. Their definitions can be found in Section 2.9.1. The indicators were
calculated for the full datasets as well as the multiplicity equivalent datasets, which
were prepared as described in Section A.3.2. The resulting values for datasets 1–4 can
be found in Table 5.3.

Comparing the multiplicity differences of the individual datasets reveals why a second
evaluation using multiplicity equivalent sets of reflections was included. The large
discrepancy stems from three factors: Firstly, the Photon III has a larger active area.
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5.6. Results of Independent Atom Model refinements

Secondly, multiple runs with increasing exposure times were included in the Photon III
measurement to ensure a maximum exposure time within the overexposure limit of the
detector. Finally, both mixed-mode and dynamic mode measurements were included for
the Photon III measurements. Subsequently, the multiplicity of the Eiger2 CdTe datasets
is lower as the higher maximum exposure limit reduced the need for such an approach
and only one measurement mode needs to be considered. Obviously, the multiplicity
equivalent datasets have the same multiplicity.

The difference in multiplicity does affect both the determined values for ⟨I/σ⟩ and
Rp.i.m . While the values determined from the full dataset favour the Photon III detector
in three of four cases, the indicators determined from the multiplicity equivalent datasets
favour the Eiger2 CdTe without exception. Due to its construction, the Rr.i.m value is
independent of the multiplicity. Accordingly, it favours the Eiger2 CdTe detector for all
datasets for both the complete as well as the redundancy equivalent datasets.

As the comparison for the aspherical atom refinements includes three datasets, the
sorting procedure was not employed. Instead, care was taken to keep the multiplicities
of the individual measurements within a closer window and this aim was achieved to
a reasonable degree. The precision indicators of the Metaljet equipped with an Eiger2
CdTe detector and the silver IµS were basically identical, except for the ⟨I/σ⟩, which was
higher for the MetalJet/Eiger2 CdTe setup. The combination of MetalJet and Photon
III detector fares worse. All indicators show inferior values to the other two setups.

5.6. Results of Independent Atom Model refinements

In this evaluation, the direct comparison of the two detectors on the MetalJet in
refinements using the independent atom model approximation was evaluated. The
evaluations used the dataset preparation as described in Section A.3.2 for preparing the
full, as well as the multiplicity equivalent datasets. All refinements were done in SHELXL
(Sheldrick, 2015a) and employed a weighting scheme. The results are listed in Table 5.5.
The definition of the evaluated quality indicators can be found in Section 2.9.2.

The crystallographic agreement factor (R(F )) of the full datasets does not favour either
detector. The Eiger2 CdTe is clearly superior in two of the four measurements (1 and
3), while the Photon III shows a lower value for one dataset (2). The difference in
agreement factor for the last dataset (4) is only 0.05 %. Recalling the approximations
of the independent atom model, this can be considered equivalent. The egross closely
follows the relative performance of the crystallographic agreement.

The ambiguity in relative performance is not retained for the multiplicity equivalent
evaluations. Here, the Eiger2 CdTe shows an improved performance in all four datasets
for both the R(F ) and the egross. Differences are always significantly larger than the
uncertainty introduced by the choice of which reflections are to be omitted for assuring
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5. Evaluating the performance of an Indium MetalJet diffractometer

Table 5.5.: Quality indicators of the independent atom model refinement of the four
structures: 1: [ScCoC4]n, 2: [ScPt9Si3]n, 3: [Na2WO4 · 2 H2O]nand 4: L-Ala.
R(F ) was calculated using all data. Bond precision σ(d) was evaluated for
the following bond types: 1: Co−C, 2: Pt−Si, 3: W−O and 4: C−C.

1 2 3 4
R(F ) / % full Eiger2 0.97 3.04 1.92 3.34

Photon III 1.35 2.72 2.28 3.29
equal Eiger2 0.930(5) 3.029(3) 2.079(6) 3.221(2)

Photon III 1.352(15) 3.85(3) 2.361(6) 4.53(4)
egross full Eiger2 9.8 424.5 143.7 10.3

Photon III 10.3 395.7 173.2 10.8
equal Eiger2 5.70(8) 419(7) 143.0(5) 8.45(3)

Photon III 9.52(8) 518(4) 149.3(3) 11.20(11)
σ(d) / mÅ full Eiger2 0.6 0.9(3) 0.6 0.7

Photon III 0.7 0.81(16) 0.7 0.6
equal Eiger2 0.6 0.9(3) 0.6 0.7

Photon III 0.7 1.0(3) 0.65(5) 0.83(5)

multiplicity equivalence. The standard deviations of the results from the 100 refinements
are well below the differences between the two detectors.

The uncertainties in bond lengths are always below 1 mÅ and are not systematically
different between the two detectors for either the multiplicity equivalent or the full
datasets. As such, the MetalJet is suitable for independent atom model measurements
with either detector, which should be somewhat unsurprising.

5.7. Results of aspherical refinements and comparison to an
established X-ray source

As explained in detail in Section 2.5, the electron density around an atom is spherically
symmetric only in a coarse approximation and newer methods have been developed to
describe atoms aspherically. Using the data measured for the YLIDE (5) crystal, this
section shall evaluate the performance of the two detectors for both the PAW-HAR
method, tackled in detail in Chapter 6 and by Ruth et al. (2022), as well as the multipolar
model.

In contrast to the last section which only compared the two detectors, this evaluation will
also include a comparison with data collected on an Incoatec IµS 3.0 silver microsource.
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5.7. Aspherical refinements and comparison to an established X-ray source

5.7.1. Comparison of quality indicators

The numerical factors for determining the agreement between data and model are very
similar for both aspherical models (Figures 5.3 and 5.4). The unweighted crystallographic
agreement factor R(F ) as well as the egross value follow the ⟨I/σ⟩ of the individual
measurements discussed in Section 5.5. Accordingly, the Eiger2 CdTe dataset shows
improvement over the Photon III datasets. Within the two datasets collected with
the Photon III detector, the egross for the dataset from the Ag IµS is superior to the
dataset of the Metaljet independent of the refinement method, the R(F ) only shows an
improvement in the same direction for the multipole model. The performance measured
by R(F ) is basically identical in the Hirshfeld atom refinement.

A less conclusive picture is presented by the analysis of the weighted agreement factor
wR2(F 2 and the goodness of fit (GooF). While the Metaljet – Photon III setup still
performs the worse of the three investigated setups, the Ag IµS shows similar performance
in wR2(F 2) for the Hirshfeld atom model refinement but a small improvement in the
multipole refinement compared to the MetalJet - Eiger2 CdTe setup. The GooF shows a
superior performance of the MetalJet/Eiger2 CdTe in the Hirshfeld atom refinement
and for the Ag IµS/Photon III in the multipole refinement.

Both Photon III measurements show a higher absolute value for the most negative
difference electron density. This effect can be connected to an overall shift in the Henn-
Meindl plot towards values of more negative difference electron densities. While this
seems to be an overall shift for the Ag IµS / Photon III measurement, resulting in an
overall less pronounced maximum in the positive difference electron density, the MetalJet
/ Photon III dataset shows the largest value for this maximum overall.

For the resolution-dependent quotient of the sum of observed and modelled intensities
(DRKPlot), the Ag IµS shows a significant underdetermination in the innermost shells of
the Hirshfeld atom refinement. The effect is less pronounced in the multipolar refinement
but still present. The MetalJet / Photon III data suffers from a similar effect, albeit to a
lesser degree. A possible explanation would be the larger number of lower exposure time
reflections in the Photon III datasets. While these needed to be included to supplant
overexposed reflections on the Photon III dataset, the overall higher dynamic range of
the Eiger2 CdTe detector made the inclusion of these reflections unnecessary.

The overall difference in performance can also be illustrated by the difference elec-
tron density of the refinements (Figure 5.5). The region of high difference is mostly
concentrated around the sulphur region. The difference electron density is low for all
refinements. However, the already low difference electron density of the Photon III
datasets is significantly improved for the refinements against the data obtained with the
Eiger2 CdTe. This is consistent with the difference in the resolution dependence seen in
the DRKPlots but is also a very promising example of the achievable performance in
charge density refinements of the MetalJet setup.
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5. Evaluating the performance of an Indium MetalJet diffractometer
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Figure 5.3.: Evaluated quality indicators for the PAW-HAR refinement of 5. Displayed
are numerical quality indicators as defined in Section 2.9.2 (top), the Henn-
Meindl plot (right) and the DRKplot (bottom). Evaluated setups are
MetalJet D2 – Photon III (blue), MetalJet D2 – Eiger2 CdTe (orange)
and IµS 3.0 Ag – Photon III (red).
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Figure 5.4.: Evaluated quality indicators for the multipolar refinement of 5. Displayed
are numerical quality indicators as defined in Section 2.9.2 (top), the Henn-
Meindl plot (right) and the DRKplot (bottom). Evaluated setups are
MetalJet D2 – Photon III (blue), MetalJet D2 – Eiger2 CdTe (orange)
and IµS 3.0 Ag – Photon III (red).
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5.7. Aspherical refinements and comparison to an established X-ray source

Figure 5.5.: Difference electron density (red: −0.05 eÅ−3, green: 0.05 eÅ−3) of the mul-
tipole refinement (top row) and HAR (bottom row) of 5 against the data
obtained from the MetalJet D2 – Photon III (left), MetalJet D2 – Eiger2
CdTe (centre) and IµS 3.0 Ag – Photon III (right). Atomic displacement
parameters are depicted at the 50 % probability level.
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5. Evaluating the performance of an Indium MetalJet diffractometer
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Figure 5.6.: Selected QTAIM indicators determined from the experimental charge density
analysis of 5. Laplacians along the bond critical points for three bonds
(left), integrated Bader charges (lower right) and numbering of the displayed
atoms (top right). Evaluated setups are MetalJet D2 – Photon III (blue),
MetalJet D2 – Eiger2 CdTe (orange) and IµS 3.0 Ag – Photon III (red).

5.7.2. Comparison of QTAIM properties derived from the multipole
refinements

The aim of a traditional charge density refinement using the multipolar model is to
analyse the derived density to extract meaningful insight. Usually, this is done in the
framework of the Quantum Theory of atoms in molecules (QTAIM) by Bader (1985).
Selected properties are displayed in Figure 5.6.

The Laplacians along the three selected bond paths are well retained irrespective of the
employed setup and accordingly, the Laplacians at the bond critical points are basically
indistinguishable. There is a difference in the integrated Bader charges, where the
sulphur atom and the connected methyl carbon atom show a difference of 0.25 e between
the datasets collected using the MetalJet source and the Ag IµS. The charges of the
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5.8. Conclusion

remaining carbon atoms as well as the oxygen atom are well retained between all three
measurements. The difference in the sulphur might be connected to the comparatively
poorer performance of this dataset in the DRKPlot, but is surprising when considering
that the MetalJet – Eiger2 CdTe showed the lowest levels of difference electron density
around the sulphur atom, while the MetalJet – Photon III refinement showed the highest
levels at this site.

5.8. Conclusion

The MetalJet setup in Göttingen has been shown to work well with both independent
atom refinements and two investigated refinement methods using aspheric atomic form
factors.

In direct comparison, the Eiger2 CdTe offers a set of properties uniquely well tailored to
the challenges of the specific setup as well as the designated application of the MetalJet
in Göttingen. The ability to eliminate the low-energy gallium radiation by energy cutoff
makes the use of attenuation unnecessary. Together with the very high photon efficiency
of the cadmium telluride in the energy region of indium Kα radiation, this results in a
higher effective intensity of the source, both at the sample and by detecting a larger
number of the diffracted photons. The only possible downside of the lacking attenuator
would affect samples susceptible to radiation damage by gallium Kα radiation specifically.
The detector’s advantages result in superior performance in both the independent atom
model refinement of highly absorbing compounds, as well as the Hirshfeld atom model
and multipole model refinements of the YLIDE crystal.

In these aspherical refinements, superior performance of the combination of the MetalJet
D2 with the Eiger2 CdTe 1M compared to an Incoatec Ag IµS 3.0 with a Photon III
detector was established. Unfortunately, the set of data does not allow the separation of
the influence of the source and the detector, which would be of general interest but is
irrelevant for the operation of the machine in Göttingen itself. The high dynamic range
of the Eiger2 CdTe is advantageous for charge density refinements, where the strong
inner data needs to be collected with as high accuracy as possible.

The use of indium Kα enables a higher resolution limit with its lower radiation wavelength,
given that the specific sample diffracts up to this high resolution. Inorganic compounds
without organic groups are a logical application of the MetalJet technology. Firstly,
the unit cells are smaller on average and here the lower wavelength promises a faster
experiment as a larger volume of the reciprocal space is mapped within a given 2θ range.
Secondly, problems usually associated with these well-diffracting compounds such as
absorption and extinction are also mediated, making it a well-tailored machine for the
study of strong ionic interactions.

In future the update of the high voltage generator from 70 to 160 kV might further
increase the intensity the machine can provide for such experiments.
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6. Tapping of PAW-DFT for use in
Hirshfeld atom refinement

As introduced in Section 2.5.2, Jayatilaka and Dittrich (2008) proposed the use of
Hirshfeld atoms for crystallographic refinement. In a second publication, the method
was extended to the iterative approach (Capelli et al., 2014) currently known as HAR:
If the atomic positions resulting from the refinement deviate from the atomic positions
used for the calculation of the density, the density needs to be recalculated to be truly
representative of the structure within the crystal.

The greatest benefit compared to the ubiquitous Independent Atom Model (IAM) was
the possibility to obtain X−H bond lengths in much closer agreement with the values
derived from neutron diffraction. This was shown in a number of studies for elements
hydrogen is commonly bonded to in organic molecules. Comparison studies were done
using densities calculated using Hartree-Fock calculations (Fugel et al., 2018) or DFT
(Woińska et al., 2014; Sanjuan-Szklarz et al., 2020).

The choice of the theoretical method for the evaluation of the density of the selected
fragment affects the agreement factor with measured intensities. More important from a
practical point of view is the significantly higher agreement of hydrogen positions and
Atomic Displacement Parameters (ADPs) obtained by the HAR to atomic parameters
obtained by refinement against neutron diffraction data. Obviously, the quantum chemical
method of choice also affects the required computation time. Subsequently, progress can
be made in two directions. Either one can go to a method enabling results in shorter
computations times, by applying previous knowledge or approximations or one can go
to more accurate methods and pay the computational price for more accuracy.

An example of the first direction would be the application of Extremely Localised
Molecular Orbitals (ELMOs) in HAR, which were shown to yield accurate results at low
computation times (Malaspina et al., 2019). More recently fragmentation approaches
have been used for a significant reduction in the computation time of large molecules,
for example as reported by Chodkiewicz et al. (2022).

Higher accuracy quantum chemical methods have also been investigated with the applica-
tion of MP2 and CCSD (Wieduwilt et al., 2020). While a benefit for the crystallographic
agreement factors could be shown, no systematic improvement of the X−H bond lengths
of l-Alanine over DFT methods could be observed. As such the authors have provided a
strong indication to search for further improvements by improving the description of the
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Figure 6.1.: Hierarchy of HAR methods in the form of a Jacob’s Ladder. Adapted with
modifications from Wieduwilt et al. (2021).

interaction of the investigated fragment with its surrounding instead of improving the
level of quantum mechanical method used for the description of the fragment itself.

As such, Wieduwilt et al. (2021) proposed arranging the different descriptions of the
crystal environment in the form of a Jacob’s ladder as depicted1 in Figure 6.1.

1In the originally published version the authors added the multipole model to the second rung of the
ladder, together with the HAR using densities derived from isolated molecules. I disagree with the
placement on this rung or on the ladder at all. The multipole model is a way of describing aspherical
density. As such it contains all influences included in the object, which is described by the multipolar
model. If the multipolar model is refined against theoretical calculations, as done in several of the
databank approaches, the placement would be correct. However, if fitted against experimental X-ray
diffraction intensities the multipolar model includes all influences the density of the physical system
experiences. So assuming that the procedure is applied correctly, the Multipole model would be at
the top. Accordingly, the multipolar model should not be on the Jacob’s ladder in the same way that
the Linear Combination of Atomic Orbitals (LCAO) or plane-wave basis sets used in the calculation
do not belong onto the ladder. With exception of this caveat,the ladder is a highly useful tool to
conceptualise the different environment descriptions.
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6.1. Projector augmented waves

Jumping from the second rung of the ladder (isolated molecule) to the third (cluster
charges) was already established in the original publication of (non-iterative) HAR by
Jayatilaka and Dittrich (2008) in the form of cluster charges surrounding the investigated
fragment. The more involved form of the description of the surrounding in the form of
multipoles was first established in the form of dipoles (Dittrich and Jayatilaka, 2012;
Dittrich et al., 2012), but later the application of higher order multipoles was also
successfully demonstrated (Chodkiewicz et al., 2020).

The next rung is formed by embedding the selected fragment into a cluster of quantum
mechanically interacting molecules. Calculating the surrounding cluster at the same
level of theory has been applied in the publication of Chodkiewicz et al. (2020). A more
efficient approach is the embedding into other molecules described with an ELMOs basis
set as reported by Wieduwilt et al. (2021).

All of the previously presented methods involve the same choice at the beginning: A
representative fragment of the crystal needs to be chosen which can be either the
asymmetric unit or constructed from the asymmetric unit and the symmetry elements of
the unit cell. In a second step, the scientist would then decide if and how the surrounding
the fragment experiences in the crystal is approximated. Often different rungs are
combined into cluster shells of increasingly simple interactions. In the following sections,
a new approach will be presented and contrasted with the methodologies presented
so far. Namely, I will introduce the calculation of atomic densities for unit cells in
periodic boundary conditions. In addition to removing the ambiguity of defining what
a representative fragment for a specific structure actually would be, this method also
enables the application of HAR to structures where a sensible definition of a fragment
is not possible at all. This approach has only been demonstrated for non-iterative
HAR of the urea molecule in a pilot study by Wall (2016). This work will demonstrate
the systematic application in iterative HAR. For a discussion of additional differences
between the two approaches see Section 6.8.

Please note that the underlying assumption is still that the electronic density of the
vibrating system can be represented by atomic densities derived from the ground state
density, which are convoluted with a probability function for the change of atomic
position (see Section 2.4). It is known for Car-Parinello theory, that the band gap or
HOMO-LUMO gap is a measure of how tightly the electrons are bound to the atomic
positions (Pastore et al., 1991) and this in turn could affect how well the approximation
of vibrational invariance is fulfilled. All of the structure presented in this chapter have a
large HOMO-LUMO gap.

6.1. Projector augmented waves

In chemistry, most quantum chemical and therefore also most HAR calculations are
performed with the highly successful LCAO approach, where the molecular electronic
wave function is represented as a linear combination of atom-centred functions, which are
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6. Tapping of PAW-DFT for use in Hirshfeld atom refinement

usually Gaussians for performance reasons. These are provided in the form of well-defined
basis sets, such as the correlation-consistent basis set family by Dunning (1989) or the
Karlsruhe basis sets (Schäfer et al., 1992).

In contrast, evaluations in the solid-state physics community are largely dominated
by non-atom-centred bases for the wave function description, which were developed
from the eigenfunctions of a free electron gas. The introduction of pseudo potentials
removes the occurrence of rapidly oscillating wave functions near the atomic positions,
thereby enabling the use of significantly smaller bases, be it in the form of plane waves,
which represent a reciprocal space description of the wave function or the more recently
introduced use of real-space grids, which divide the unit cell into voxels with a specific
value for each position for each wave-function. The introduction of super soft pseudo
potentials has further sped up convergence times, thus enabling the treatment of larger
systems or larger bases for a given system.

The pseudopotential-based methods cannot adequately describe properties which require
the interaction with core electrons, such as in the calculation of chemical shifts for
Nuclear Magnetic Resonance (NMR) spectroscopy. It also prohibits the use for HAR as
X-ray radiation is diffracted from all electrons, including the core electrons and therefore
an all-electron density is required. Projector methods such as LAPW or the LMTO
method (Andersen, 1975) were developed to achieve an all-electron approach while still
relying on plane waves for most of the wave function description.

A very efficient solution to this problem was presented by Blöchl (1994) with the
introduction of the Projector Augmented Wave (PAW) method. It combines the versatility
of the LAPW approach with the simplicity of the use of plane wave pseudopotentials.
The method is an all-electron method and as such can provide us with the all-electron
density needed for calculating the atomic form factors. The explanation here will be
limited to the wave function and density description. I will mainly follow the notation
and completely follow the derivation by Blöchl (2022).

With the pseudopotential method, the PAW approach shares the presence of an auxiliary
wave function |ψ̃n⟩. However, the all-electron wave function can be recovered by use of a
transformation operator T̂ :

|ψn⟩ = T̂ |ψ̃n⟩ (6.1)

In the atomic regions, this operator has to modify the wave function to include the
correct nodal structure. As such, the transformation includes the identity of the wave
function plus a sum of atomic contributions ŜR:

T̂ = 1̂ +
∑
R

ŜR (6.2)
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6.1. Projector augmented waves

These atomic contributions add the difference between the true wave function and |ψn⟩
and auxiliary wave function |ψ̃n⟩ for every atom. The atomic transformation operators
are local, meaning they only affect the wave function near the atomic position. They are
defined in terms of the solution of the Schrödinger equation for the isolated atoms |ϕi⟩.
Additionally, core wave functions do not spread out to other atoms within the structure.
As such a frozen core approach can be employed, where the core density and energy
can be added separately, as long as the transformation T̂ only produces wave functions
orthogonal to the core electrons, which it does by construction. Near the nuclei the wave
functions are represented as a superposition of the partial waves:

ψ(r) =
∑
i∈R

ciϕi(r) for |r − RR| < rc,R (6.3)

Here i ∈ R is used for indicating that the partial wave with index i belongs to the atom
with index R. For defining our atomic contribution to the projector function ŜR an
auxiliary partial wave |ϕ̃i⟩ needs to be chosen using the identity:

|ϕi⟩ =
(
1̂ + ŜR

)
|ϕ̃i⟩ (6.4)

ŜR|ϕ̃i⟩ = |ϕi⟩ − |ϕ̃i⟩ (6.5)

The atomic contribution should be different from one only near the atomic position of the
respective atom with index R, i. e. the partial wave and its auxiliary counterpart should
be identical beyond a certain defined radius rc,R. To obtain the projector functions |p̃i⟩,
the auxiliary wave function is expanded locally onto the auxiliary partial waves.

ψ̃(r) =
∑
i∈R

ciϕ̃i(r) =
∑
i∈R

ϕ̃i(r)⟨p̃i|ψ̃⟩ for |r − RR| < rc,R (6.6)

Equations 6.5 and 6.6 can now be combined to apply ŜR to any auxiliary wave function.

ŜR|ψ̃⟩ =
∑
i∈R

ŜR|ϕ̃i⟩⟨p̃i|ψ̃⟩ =
∑
i∈R

(
|ϕi⟩ − |ϕ̃i⟩

)
⟨p̃i|ψ̃⟩ (6.7)

and the transformation operator is defined as:

T̂ = 1̂ +
∑

i

(
|ϕi⟩ − |ϕ̃i⟩

)
⟨p̃i| (6.8)

where the index i now runs over all partial waves of all atoms at their respective positions.
Finally, the complete all-electron wave function can be expressed as:
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6. Tapping of PAW-DFT for use in Hirshfeld atom refinement

|ψ⟩ = |ψ̃⟩ +
∑

i

(
|ϕi⟩ − |ϕ̃i⟩

)
⟨p̃i|ψ̃⟩ = |ψ̃⟩ +

∑
R

(
|ψ1

R⟩ − |ψ̃1
R⟩

)
(6.9)

with the atomic wave functions and auxiliary wave functions given by:

|ψ1
R⟩ =

∑
i∈R

|ϕi⟩⟨p̃i|ψ̃⟩ (6.10)

|ψ̃1
R⟩ =

∑
i∈R

|ϕ̃i⟩⟨p̃i|ψ̃⟩ (6.11)

What remains for the purpose of this work, is the expression for the density. Following
Equation 6.9 it can be expressed as:

ρ(r) = ρ̃(r) +
∑
R

(
ρ1

R(r) − ρ̃1
R(r)

)
(6.12)

where the auxiliary density ρ̃(r) can be calculated as the sum of all n wave functions
with the respective occupation fn:

ρ̃(r) =
∑

n

fnψ̃
∗
n(r)ψ̃n(r) + ρ̃c(r) (6.13)

The atomic density and auxiliary density can be calculated with:

ρ1
R(r) =

∑
i,j∈R

Di,jϕ
∗
j (r)ϕi(r) + ρc,R(r) (6.14)

ρ̃1
R(r) =

∑
i,j∈R

Di,jϕ̃
∗
j (r)ϕ̃i(r) + ρ̃c,R(r) (6.15)

where ρc,R(r) is the core density of the corresponding atom, ρ̃c,R(r) is the auxiliary core
density. It is identical to the core density outside of the atom region, but smooth inside.
Finally, Di,j are the elements of the one centre density matrix, which is defined as:

Di,j =
∑

n

⟨p̃i|ψ̃n⟩fn⟨ψ̃n|p̃j⟩ (6.16)

As such, all the elements of the all-electron ground-state density of the periodic calculation
are present. This in turn enables the use as the basis for a periodic approach to HAR.
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Figure 6.2.: Structures included in the investigation of this chapter.

6.2. Evaluation details

Before application comes validation, which is therefore the main focus of this work in
its quest to establish a new method. Accordingly, the methodology should be applied
to established high-quality datasets. For most of these, high-quality HARs are already
available, which enables the comparison without the possibility to choose options which
are beneficial to our own method. However, as these refinements have been done using a
plethora of different options, consistent combinations of description of the surrounding,
density functional, basis set and program for calculation, self-performed non-periodic
HARs will still be presented in addition to the reference descriptions obtained from
literature.

6.2.1. Datasets used for evaluation

A variety of datasets was chosen for the validation of the new methodology. While a good
crystallographic agreement factor is one factor in the evaluation, error compensation
might lead to erroneous conclusions. One factor to reduce this risk is a suitable high
resolution. This work included only datasets with a resolution of at least 0.6 Å.

At the same time, the stated benefit of HAR is the closer agreement of X−H bond lengths
and the possible description of atomic displacement of hydrogen atoms. The success
in this manner can only be evaluated against neutron diffraction experiments which
represent the gold standard for the determination of positions and atomic displacement.
Therefore the presence of a neutron diffraction measurement is paramount for validation.
A good performance in this regard then informs confidence in the application even when
neutron data is not available.

The depictions of the structures included in the investigation can be found in Figure 6.2.
Information on the individual structures will be provided in the following:
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L-Alanine at 23K (A23K)

The number of atoms in the structure L-Alanine is relatively small with one complete
molecule with thirteen atoms in the asymmetric unit and four molecules in the unit
cell. The heaviest element is oxygen, which also limits the number of electrons, which
need to be included in the calculation. As such it is employed for the evaluation of
options, as computational times are still affordable even with a larger relative basis per
atom. Additionally, there are no atoms on special positions. Therefore the maximum
number of atomic parameters for each atom are to be used for this structure. The
original high-resolution X-ray data at 23 K up was measured by Destro et al. (1988),
while the corresponding neutron dataset was measured more recently by Malaspina et al.
(2019).

Urea at 123K (Urea)

The second dataset suitable for comparatively cheap comparisons stems from a crystal
containing urea. In this structure all of the atoms are located on special positions and as
such the performance of XHARPy on this problem can be evaluated. There is only half
a molecule in the asymmetric and only two molecules with eight atoms each are located
in the unit cell. Again the heaviest element is oxygen, thereby limiting the number of
needed basis functions. The original high-resolution X-ray dataset was measured by
Birkedal et al. (2004), while the neutron dataset is older (Swaminathan et al., 1984).

Hydrogen maleate systems (HMa-Mg, HMa-8HQ)

These two structures contain the hydrogen maleate anion paired with different cations.
While the original investigation includes more cations, this investigation focuses on
the two cations which have been treated with the highest level of HAR in a previous
investigation, namely hexaquamagnesium and 8-hydroxyquinolinium. The X-ray data is
more recent (Malaspina et al., 2020) than the neutron dataset (Malaspina et al., 2017).

Xylitol (Xy)

This high-resolution dataset shows several hydrogen bonds and is well-established in
the charge density community. Additionally, the original authors (Madsen et al., 2004)
also refined extinction, while a later X-ray restrained wave function fitting investiga-
tion assigned the effects of the intensity-dependent differences to the density instead
(Malaspina et al., 2021). Attributing the effect to extinction effects seems more reasonable
and as such this system can be used to test the treatment of extinction effects in our
implementation. The corresponding neutron dataset was published by Madsen et al.
(2003).
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Oxalic acid dihydrate (OxyH)

All other investigated datasets supply one measurement per structure. In contrast, this
dataset by Kaminski et al. (2014) provides thirteen datasets measured on thirteen
crystals employing three different diffractometers. Therefore this dataset allows testing
the robustness of benchmarking with PAW-HAR in dependence on the individual
measurements. A neutron measurement for comparison was provided in the same
publication.

6.3. Application to Hirshfeld atom refinement

The resulting density of PAW calculations is usually expanded on a rectangular grid.
Fourier Transformation in this basis can efficiently be done using the Fast Fourier
Transform (FFT) algorithm (Gauß, 1866; Cooley and Tukey, 1965). However, there
is the potential for a similar challenge as described in Section 6.1: The expansion of
the localised core density requires a much denser grid than the less localised valence
density.

As such, it was decided to follow a similar route, namely, to evaluate the core density
separately. Most often PAW setups and software use a frozen core approximation. This
core is defined on a core-centred spherically symmetric grid which is evaluated on points
using a logarithmic scale. This core density was assigned completely to the respective
atom and as such excluded from the density to be partitioned in the Hirshfeld partitioning
scheme and from the atomic densities used for the Hirshfeld weights.

In general, the generation of the projector functions for the PAW method does include the
calculation of atomic densities. As such these atomic densities are also used for calculating
the Hirshfeld weights. In an ideal setting, this means, that the atomic and molecular
densities are calculated using the same functional. However, the implementations of
projector function generation only support density functionals using the generalised
gradient approximation. Therefore, the projector functions for meta-GGA functionals
or hybrid functionals are generated with PBE. Additionally, the libraries of Quantum
Espresso compatible setup files are mainly available for PBE or PBEsol. As such PBE
calculated setup files were used for all calculations in Quantum Espresso.

In general, there is a number of different codes for evaluating structures in the PAW
formalism such as GPAW (Enkovaara et al., 2010), Quantum Espresso (Giannozzi
et al., 2017), CP-PAW and ABINIT (Gonze et al., 2020), of which only the first two
were implemented and evaluated.

Starting from loaded X-ray intensities, including estimated standard deviations and
atomic parameters (x, y, z, Uij) the following algorithm is employed for the actual
refinement:
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Algorithm Basic Approach to PAW-HAR
for atomtype in structure do

Load distance grid of PAW setup
Load distance values of PAW setup
for h in measured intensities do

Calculate the frozen core structure factor for the atom by numerical Fourier-Bessel-
Transform

end for
end for
while New atomic positions not equal to old positions do

Do a PAW Calculation of the density
for atom in asymmetric unit do

Calculate the Hirshfeld density
Calculate the atomic form factor by FFT
for h in measured intensities do

for symmetry s in symmetry elements do
Get the corresponding atomic form factor value for Rsh for symmetry
equivalent atoms

end for
end for

end for
Do a crystallographic refinement using the calculated form factors

end while
Calculate the variance covariance matrix
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6.4. Dependence of the performance on the functional

The basic foundations of the XHARPy2 package were written in 2020 before the
publication of NoSpherA2 by Kleemiss et al. (2021). As such, I wrote a complete
refinement library in python, by leveraging the just-in-time compiling and automatic
gradient generation provided by the jax (Bradbury et al., 2018) package in combination
with NumPy (Harris et al., 2020) and the implementation of the BFGS algorithm
(Broyden, 1970; Fletcher, 1970; Goldfarb, 1970; Shanno, 1970) in SciPy (Virtanen et al.,
2020).

The code for the package is currently available under https://github.com/Niolon/
XHARPy.

In the first step, the dependence of the performance of PAW-HAR on grid-spacings and
the functional will be investigated in GPAW, which was implemented first. Subsequently,
this work will compare the performance to already established approaches, recapping
the investigations presented in Ruth et al. (2022). The employed quality indicators are
wR2(F 2) as defined in Equation 2.75, |∆r| as defined in Equation 2.81, |∆Uij | as defined
in Equation 2.84 and S12 as defined in Equation 2.85.

6.4. Dependence of the performance on the functional

The first investigation will focus on the performance of different functionals within the
PAW-HAR method. Investigations have been conducted using GPAW with a number
of functionals available within that software package, which unfortunately excluded
the possibility to use hybrid functionals in periodic calculations. The resulting quality
indicators are depicted in Figure 6.3 for HMa–Mg. Tables with numerical values for all
datasets can be found in the appendix in Section B.5. An explanation of the employed
box-whisker plots can be found in Section 2.9.4.

The difference in the performance of the crystallographic agreement as measured by
the wR2(F 2) is immediately obvious. Unsurprisingly, the PW functional using only
the LDA approximation shows a poorer agreement compared to the functionals of the
GGA family. Within the GGA family itself, an improvement can be seen for the newer
PBE functionals compared to the older BLYP and PW91 functionals. Moving to the
group using the mGGA approximations TPSS shows a worse performance compared to
the PBE family. The two investigated functionals from the SCAN family are again a
further improvement from the GGA functionals. The functionals including van-der-Waals
interactions yield disappointing results. They perform poorer compared to functionals
from the PBE and SCAN families with vdW-df2 yielding the poorest performance in
the complete set.

2The name is an acronym for ‘X-ray diffraction data Hirshfeld atom refinement in python.’ I agree
that it falls into the name-follows-acronym category of naming packages (instead of acronym-follows-
name), but hope the reader agrees that the stretch is limited as far as scientific software packages or
methodologies are considered.
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6. Tapping of PAW-DFT for use in Hirshfeld atom refinement

Figure 6.3.: Crystallographic agreement measured with the wR2(F 2), as well as the
agreement to neutron values for HMa–Mg in dependence of the chosen
functional.

In the agreement of the refined parameters to neutron values, PW does provide compar-
atively good distances, but at the same time very poor atomic displacement parameters.
An improvement in the ADPs can be seen for the GGA functionals, while the distances
do not profit for this dataset. This effect is unique for the HMA–Mg dataset, but
BLYP usually performs worse than the PW functional overall. At the meta-GGA level,
TPSS is again not an improvement but performs worse than the PBE family using a
simpler approximation. However, the functionals from the SCAN family do yield the best
displacement parameters and distances. Again, the performance of the van-der-Waals
functionals is disappointing, which indicates that the approaches do not reflect the
van-der-Waals interactions in the determined density, while they may do so in the
determined energy.

An outlier is present in the determination of the atomic displacement parameters for
all functionals. This corresponds to the U11 value of the hydrogen atom within the
maleate molecule between the two oxygen atoms. The disagreement is located along the
bond direction. A probable explanation lies in the fact that hydrogen atoms in such
configurations are known to tunnel between the two possible locations. The atomic
density should change shape completely with the change of position, where the bonding
density is now located at the other side of the atomic position. This effect cannot be
accurately represented within the chosen approximations.

In light of these results, the SCAN functional was chosen for further investigations
and comparisons. The other option would have been the revSCAN functional, which
performed similarly in the conducted investigations.
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Figure 6.4.: Crystallographic agreement measured with the wR2(F 2), as well as the
agreement to neutron values for A23K in dependence of the choice of
the real-space grid for the wave function description and the chosen k-
point grid using the SCAN functional. Real-space grids for the density for
functional evaluation and density for the atomic form factor calculation
are interpolated two and four times on each axis respectively. Colours
indicate k-point sampling, with a k-point grid of a single point in the origin
denominated with the common symbol Γ.

6.5. Dependence of the performance on real-space grid spacing
and k-point grid

In this section, the influence of the two main grids that can be set in a GPAW calculation
is to be evaluated. Computing a larger number of grid points improves the achieved
results until convergence is reached. This section should now demonstrate the evaluation
of convergence for the A23K dataset. While the determination of the required real-space
grid size should be applicable to other compounds, especially with similar elements, the
k-point grid should be evaluated for individual compounds. Therefore, this investigation
should be seen as an example of the influence of the k-point grid on crystallographic
parameters. The resulting quality indicators are depicted in Figure 6.4.

All quality indicators profit from a finer real-space grid spacing. Convergence for the
wR2(F 2) is reached at 1.50 Å. Convergence in comparison to the neutron-derived dis-
tances and atomic displacement parameters is reached at 1.75 Å.
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The picture is less obvious for convergence with the k-point grid. Both the wR2(F 2)
and the agreement to neutron atomic displacement parameters profit from raising the
number of k-points from the single Γ point to a (2,2,2) Monkhorst-Pack grid, which was
centred on the origin. At the same time, the mean absolute difference in X−H bond
distances increases from 0.007 to 0.009 Å. There is no additional difference if the k-point
grid size is increased even further.

6.6. Comparison to established approaches

The individual reference refinements from other groups represent a climb of the ladder
as depicted in Figure 6.1. In order to also compare to Hirshfeld atom refinements using
a cohesive set of options, further Hirshfeld atom refinements without any consideration
of the crystal environment were performed in Olex2 (Dolomanov et al., 2009) using
NoSpherA2 (Kleemiss et al., 2021) and Orca (Neese, 2018). These will be listed in
the following figures with the indicator ‘(None)’. In addition, tonto (Jayatilaka and
Grimwood, 2003) in Olex2 was employed to perform HAR with a shell of 4 or 8 Å of
cluster charges. The connected indicator is ‘(4/8 Å cc)’. All these investigations were
performed on the B3LYP/def2-TZVPP level to ensure that the performance is not
limited by a small basis set.

PAW-HAR calculations in this section were done using GPAW as the calculation
program with a real-space grid as the basis for the pseudo-wave functions. The listed
grid size for a given real-space grid spacing corresponds to the grid for the description
of the wave functions. Density-dependent properties are calculated by GPAW from a
once interpolated grid, i. e. with half the size of that one listed. The density grid used
for atomic partitioning of the unit cell density was interpolated once more, thereby
quadrupling the number of points in each dimension compared to the wave function.
Calculated k-points were either limited to the Γ-point or selected using the scheme
proposed by Monkhorst and Pack (1976).

6.6.1. L-Alanine at 23K

The comparison can be done with a CCSD calculation without consideration of the
crystal environment (Wieduwilt et al., 2020). To my knowledge, this published structure
can be seen as the limit of what can be reached without consideration of the crystal
environment. As such it answers the question, of whether the quality of the density
is limited by the quality of the calculation method or the description of the crystal
environment. The fragment-based HAR methods conducted for this work used the
asymmetric unit as the evaluated fragment. The PAW-HAR calculations used a (2 2 2)
k-point grid and real-space grid spacing of 0.15 Å.
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3.0 3.2wR2(F2) / %
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Figure 6.5.: Crystallographic agreement measured with the wR2(F 2), as well as the
agreement to neutron values for A23K. CCSD (None) results are computed
from the calculations of Wieduwilt et al. (2020). Lighter-coloured quality
indicators are computed with an F/σ(F ) cutoff of 3, as applied in the
reference.

The reference calculation used an F/σ(F ) cut-off. Accordingly, two PAW-HAR refine-
ments were done. One used the employed cut-off while the other used the complete
data.

All Hirshfeld atom refinements result in a featureless difference electron density. A
summary of the performance can be found in Figure 6.5. The wR2(F 2) indicates that a
consideration of the crystal environment is necessary. Both the refinement using cluster
charges in tonto as well as the calculation using the periodic PAW density basis show
a significant improvement over the Orca calculation without any consideration of the
crystal surrounding, while the wR2 is almost identical for the two methods using a model
for the crystal environment. Against intuition, the increase of the cluster radius from
4 Å to 8 Å did lead to worse results, whereas one would normally expect convergence to
a minimum with increasing cluster radius. Neither of the tonto calculations converged
in 20 HAR iterations.

The agreement to neutron values increases from cluster charge calculations to periodic
PAW. A higher impact can be seen on the agreement in X−H distances, whereas the
improvement in atomic displacement parameters is only small. A direct comparison of
the reference CCSD calculation to the PAW-HAR calculations clearly shows the need
for the crystal environment description for all investigated agreement factors.

6.6.2. 8-Hydroxyquinolinium hydrogen maleate and hexaquamagnesium
hydrogen maleate at 15 K

The reference calculation (Malaspina et al., 2021) used 8 Å of cluster charges and
the B3PW91 functional for a refinement on the absolute of the structure factors (F )
instead of the intensities with an F/σ(F ) cutoff of 4. For each structure, two PAW-
HAR calculations were done. One against the data reduced to the same reflection as
in the reference to enable a direct comparison and one additional refinement against
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Figure 6.6.: Crystallographic agreement measured with the wR2(F 2), as well as the
agreement to neutron values for HMa-8HQ. B3PW91 results are computed
from the calculations of Malaspina et al. (2021). Lighter-coloured quality
indicators are computed with an F/σ(F ) cutoff of 4, as applied in the
reference.

Figure 6.7.: Crystallographic agreement measured with the wR2(F 2), as well as the
agreement to neutron values for HMa-Mg. B3PW91 results are computed
from the calculations of Malaspina et al. (2021). Lighter-coloured quality
indicators are computed with an F/σ(F ) cutoff of 4, as applied in the
reference.

the full data. The fragment-based HAR methods conducted for this work used the
asymmetric unit as the fragment for the hydroxyquinolinium structure. The fragment
of the magnesium-based structure was generated by applying the inversion centre on
the magnesium atom onto all atoms, thereby retaining the inversion symmetry of the
structure within the fragment. The PAW-HAR calculations were done at the Γ-point
with a real-space grid spacing of 0.15 Å.

The resulting summary of the performance can be found in Figures 6.6 and 6.7. Refine-
ment against a periodic density shows obvious benefits for both the wR2(F 2) and the
agreement in X−H bond distances. However, the reference calculation exhibits smaller
outliers for both the ∆Uij and S12 values.

This improvement in X−H bond distance agreement is also exhibited by the No-
SpherA2/tonto cluster charge calculation compared to the reference, albeit to a
smaller degree. This could be an indication that refinement against F 2 can show im-
proved results to a refinement against F .
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Figure 6.8.: Crystallographic agreement measured with the wR2(F 2), as well as the
agreement to neutron values for Xy. B3LYP (4 Å ELMO/8 Å cc) results
are computed from the calculations of Wieduwilt et al. (2021). Refinements
marked with a triangle do not account for extinction effects.

The residual density is featureless in neither of the two datasets (For a depiction see
Figures B.12 and B.13 in the appendix). This could point to an undescribed effect within
the data. Nevertheless, PAW refinements still result in a superior agreement to both the
data as well as the neutron X−H distances.

6.6.3. Xylitol

The reference description of the Xy dataset is located another rung higher on the Jacob’s
ladder (Figure 6.1) than the previous one. The investigation provided by Wieduwilt
et al. (2021) embedded the structure calculated with the B3LYP functional into a 4 Å
cluster where the molecules were described by ELMOs. This layer was surrounded by
another layer with a 4 Å width consisting of cluster charges. The fragment-based HAR
methods conducted for this work used the asymmetric unit as the evaluated fragment.
The PAW-HAR calculation was conducted in GPAW, using a k-point grid of (3 3 3) and
a real-space grid spacing of 0.175 Å.

Initial HAR results showed strong reflections, which were weaker than calculated by
the employed model for all descriptions of the crystal environment. The behaviour is
consistent with the effects of extinction and the original authors treated it as such
(Madsen et al., 2004). I would also interpret the observed behaviour as such.

In contrast, the reference (Wieduwilt et al., 2021) seems to follow the route by Malaspina
et al. (2021). The treatment of extinction does affect the results, but in order to be
consistent with the approach in this chapter, comparison to reference is still neces-
sary. Accordingly, two PAW-HAR calculations were performed. The first calculation
includes a refinement of extinction using the scheme as implemented in SHELXL by
Sheldrick (2015a) and should be considered the correct refinement. For comparison, an
additional refinement without extinction has been performed. The results can be found
in Figure 6.8.
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1.2 2.3wR2(F2) / %
B3LYP (None)

B3LYP (8 Å cc)
B3LYP (3.5 Å c/8 Å mm)

SCAN (periodic PAW)
B3LYP (8 Å cc)

SCAN (periodic PAW)

0.0 7.0| r|
(rN)

0 14| r| / mÅ

0.0 22.9| Uij|
(Uij, N)

0 2| Uij| / 10 2 Å2 0.3 5.1S12 / %

Figure 6.9.: Crystallographic agreement measured with the wR2(F 2), as well as the
agreement to neutron values for Urea. B3LYP (3.5 Å c/8 Å mm) results are
computed from the calculations of Chodkiewicz et al. (2020). Refinements
marked with a diamond glyph used models including a Gram-Charlier
expansion of the atomic displacement.

In comparison to the reference (and therefore in the calculation without extinction),
the calculated wR2 is slightly lower for the PAW-HAR calculation and the agreement
in atomic displacement parameters is improved slightly. However, the agreement to
X−H neutron bond lengths is lower compared to the reference. An investigation, into
whether the relative performance holds with an extinction refinement still remains to
be conducted. However, superior performance for the ELMO cluster on the X−H bond
lengths seems likely.

As expected the crystallographic agreement factor profits from the refinement of an
extinction parameter. In contrast to all other datasets, the cluster charge calculation
shows an improvement in wR2 over the PAW-HAR calculation. However, the agreement
in distances and atomic displacements is still superior for PAW-HAR.

6.6.4. Urea at 123K

The reference refinement calculates the density by placing the molecule at the centre of
a 3.5 Å cluster calculated at the same level of theory as the molecule itself, which is a
B3LYP//cc-pVTZ description. Additionally, the cluster was surrounded by a cluster with
an 8 Å width, which was described by classical point multipoles. The fragment-based
HAR methods conducted for this work used a single completed molecule as the evaluated
fragment. The PAW-HAR calculation was conducted in GPAW using a (3 3 3) k-point
grid and a real-space grid spacing of 0.1 Å.

The resulting quality indicators are depicted in Figure 6.9. As can be seen, the wR2
and the atomic displacement parameters of the PAW-HAR refinement show a slightly
worse performance compared to the reference. However, the N−H bond distances are
in agreement with the neutron values, exhibiting differences of only 0.001 and 0.003 Å,
with the estimated standard deviation of the neutron value being 0.002 Å.
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Figure 6.10.: Difference electron density (red: −0.05 eÅ−3, green: 0.05 eÅ−3) for the
PAW-HAR refinement of urea without Gram-Charlier parameters on the
left and with Gram-Charlier parameters (N, O) on the right.

The resulting difference electron density (Figure 6.10) is on a low level but not entirely
featureless. The features were successfully modelled using third and fourth-order Gram-
Charlier parameters for urea. While this modelling resulted in a decrease in agreement
to neutron values for the description of the surrounding with cluster charges using
tonto/NoSpherA2, the PAW-HAR refinement resulted in a further convergence to
the neutron values. A possible reason would be the error compensation of the missing
Gram-Charlier and the less accurate density description in the cluster charge calculation,
while the more accurate description using a periodic calculation does not suffer from
this drawback.

The description with Gram-Charlier parameters needs to be verified. Three criteria need
to be met for the additional refinement parameters to be permitted. The first criterion
is the check for negative probability, resulting from the anharmonic refinement. A region
of negative probability is impossible in the physical system and as such a refinement
that gives this result is not allowed. The second criterion was formulated by Kuhs
(1992), who formulated a necessary resolution of the data, depending on the harmonic
vibrational parameters of the investigated atoms. Kuhs’ rule allowed for the refinement
of third-order parameters for the carbon atom and fourth-order refinement of nitrogen
and oxygen with the given data with a maximum resolution of sin(θ)

λ = 1.405 Å−1. Both
criteria were checked using XDPDF from the XD2016 suite (Volkov et al., 2016). The
final criterion for refinement is that Gram-Charlier parameters of the given order are
significantly different from zero. As the third-order Gram-Charlier parameter refined
for the carbon atom did not meet this criterion, Gram-Charlier parameters were only
refined for the nitrogen and oxygen atoms of the urea molecule. As such, the procedure
is consistent with the treatment of anharmonic vibration in the original publication by
Birkedal et al. (2004).
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6.6.5. Comparison of aggregated values

This section will aggregate the results from all the structures in order to draw more
general conclusions. To this end, the hydrogen atoms were allocated into three groups
based on whether they are located in hydrogen bonds or not. The applied criterion is
the narrow definition of a classical hydrogen bond (X−H···Y) where X and Y are either
nitrogen or oxygen atoms in the systems evaluated.

The first group consists of hydrogen atoms in classical hydrogen bonds, which were not
cut in the fragment definition for the Orca/tonto calculations with NoSpherA2.
This includes the bridging hydrogen atom of the hydrogen maleate structures as well
as the hydrogen bonds connecting the maleate anion with the cation. This means four
bonds in total (intra X−H···Y).

The second group consists of hydrogen bonds, which were cut during the fragment
definition. These include the N−H bonds of alanine. The remaining hydrogen bonds
from the hydrogen maleate structures include most of the bonds in the water molecules,
except for one, all O−H bonds in the xylitol molecule and the N−H bonds of the urea
molecule. In total, this means 16 atoms/bonds are included (inter X−H···Y).

The third group contains hydrogen atoms, which are not in a hydrogen bond. In the case
of the evaluated structures, these are only C−H bonds. In total there are 21 atoms/bonds
in this group (C−H).

There are two slight differences concerning the comparison to the reference neutron
refinements in this section in relation to the last one. Firstly, signed values instead of
absolute ones will be evaluated in addition to the averaged absolute values. Secondly,
all values for the differences in bond lengths and atomic displacement parameters are
divided by the estimated standard deviations resulting from the neutron refinement.
This scales the values to the achievable accuracy and makes discussion of the significance
of the observed differences possible. The reference refinement will not be aggregated as
they do not form a consistent set of values, having been refined with a multitude of
options. However, the results from refinements using the SCAN functional without any
consideration of the crystal environment were added to exclude the possibility that the
functional itself is responsible for all the observed differences. The resulting aggregated
values can be found in Figure 6.11.

The bond lengths agreement of the C−H bonds profits from a description of the
crystal environment in general. However, the additional decrease in mean deviation
from the cluster charge model to PAW-HAR is only 0.7 σn. The agreement to neutron
anisotropic atomic displacement parameters decreases going from the neglect of the
crystal environment to cluster charges and the deviation is no longer centred around
zero. This effect is reversed, with the application of PAW-HAR and the mean agreement
is again on the same level as the neglect of the crystal environment.
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Figure 6.11.: Aggregated comparison of the X−H bond lengths and atomic displacement
parameters derived by the different approaches to neutron-derived values.
Periodic PAW calculations were conducted with GPAW, B3LYP (4/8 Å cc)
were conducted with tonto/NoSpherA2 in Olex2 and the calculations
denominated with ‘None’ were conducted with Orca/NoSpherA2 in
Olex2. Hydrogen atoms were categorised by bond type (C−H bonds
or hydrogen bonds). The latter were sorted into hydrogen bonds where
the acceptor atom was included in the calculated fragment (intra) or not
included in the calculated fragment (inter) for the non-periodic calculations.

The hydrogen bonds located within the same fragment show similar performance for
both methods including the crystal environment concerning the bond lengths. However,
only the cluster charge approach shows a significant improvement in the agreement in
atomic displacement parameters.

As expected, the largest differences are seen for the hydrogen bonds not located within
the same fragment. The agreement improves from no crystal description to cluster
charges by more than 2σn. PAW-HAR yields a further improvement of 3.4σn over the
cluster charge approach. The atomic displacement parameters show a smaller but still
significant improvement of 2.6σn from no crystal environment to cluster charges and a
further improvement of 1.1σn for the agreement from cluster charges to PAW-HAR.

6.7. Comparison of computation times for different approaches

After having established the practical benefit of PAW-HAR to the results, this section
will show a comparison of the needed computation time to reach that result. Two different
approaches have been employed to do this comparison. All the following calculations
have used a Dell Precision 3640 system with the following specifications: Intel Core
i9-10900K (used cores: 10) and 32 GB RAM.
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6.7.1. Comparison to Olex2/NoSpherA2

The first comparison will use the structures and settings from the refinements conducted
in Section 6.6. The comparison will be between the calculation using either tonto or
Orca with NoSpherA2 and XHARPy with GPAW. Note that this might mean a
difference in convergence criteria. The calculations were originally done to compare both
methods with a focus on quality instead of computing time. As such, the settings for
all calculations are probably using a larger basis, than one would choose for a focus on
performance. Additionally, the structures were taken as resulting from the independent
atom model refinement. While both approaches might profit from refining with a cheaper
functional or smaller basis first and only use more expensive methods starting from this
first result, neither approach employed such a prerefinement. The number of variations
to include in such an investigation would be unfeasible and in fact, one could also use a
cheaper variation of one method as the prerefinement method for the other.

Orca calculations showed a very good convergence, often within two cycles and in all
cases except for HMA-Mg (36 min) reached convergence in under 10 minutes.

In contrast, tonto calculations often showed small oscillations at the end of the
refinement, while the calculated structural parameters entered a steady state within the
estimated standard deviation. In this case, the first point reaching this steady state was
interpreted as convergence and later subsequent points were ignored.

XHARPy/GPAW calculation again showed good convergence properties. The PAW-
HAR calculation in GPAW and HAR calculation in tonto showed lower computation
times for different structures. For A23K the calculation time of tonto is almost half
(1:03 h against 1:45 h). The included shell of cluster charges was also smaller with 4 Å.
Computation time for Xy is almost identical between the two methods (PAW-HAR:
3:20 h, cluster charge: 3:38 h). The hydrogen maleate structures provide a best-case
scenario for PAW-HAR with computation times of 2:01 h for HMa-8HQ and 54 min for
HMA-Mg compared to 8:23 h and 13:17 h for the calculation using tonto. Here the
periodic calculations profit from the fact, that the calculations were only conducted at
the Γ-point, while tonto suffers from comparatively large fragments.

On the other hand, tonto shows a lower computation time for urea (16 min compared
to 42 min). This is however accompanied by a significant benefit in the quality of the
description.

This initial comparison showed a large dependence on the chosen settings for the
calculation and fragments. Additionally, a potential difference in convergence criteria for
the refinement or HAR procedure cannot be excluded. To address these open questions,
an additional investigation was conducted using only the A23K structure within the
XHARPy library.
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6.7.2. Comparison of different methods within XHARPy

The last section compared the computation time to already established workflows for
calculating with or without cluster charges in Olex2 with the methodology available at
the time of the investigation. This section will do another comparison in a slightly more
controlled environment. There are a number of key differences.

Refinement using the independent atom model is equal well within the estimated standard
deviations between XHARPy and Olex2. It is however not completely identical. The
HAR refinements use different convergence criteria. By doing the complete refinement
and call of quantum chemical codes in XHARPy, both of these possible sources of
differences are eliminated and comparison on a more equal footing can be achieved.
While the refinement using XHARPy is currently the only option to drive both methods,
the implementation of PAW-HAR in other refinement programs is already planned.

The cluster charge calculation in Olex2 was only available using tonto at the time
of the investigation. The overall computation time in tonto is comparatively large,
especially as the density from previous calculations is not recycled and Hirshfeld charges
for the cluster charges are calculated in a separate calculation for each step. In contrast,
this section will use Orca as the quantum chemistry code in the cluster charge calculation
and the Hirshfeld charges used are reused from the Hirshfeld partitioning of the density
from the previous step. As the positions converge, the differences between determined
densities converge as well and therefore a possible influence of this approximation
vanishes. No convergence problem could be observed during cluster charge HAR.

Quantum Espresso (QE) was also added as an additional source for a density
calculated with PAWs. In contrast to GPAW, it represents the pseudo wave function
with a plane wave basis instead of a real-space grid.

In the last section, options were chosen to be consistent with established practice and
to reach an optimal quality for the individual methods. This section is focused on
comparability. The influence of basis choices on the computation time is included. On
the other hand, the functional in this first step is limited to only PBE, which is not the
ideal choice but available without any complications for all three investigated quantum
chemistry codes. The resulting computation times and quality indicators are listed in
Table 6.1.

Comparison of the two PAW-HAR implementations

In direct comparison of the two PAW-HAR implementations using different programs as
their backend, it can immediately be seen that the two choices converge to a different
limit of wR2(F 2). While the calculations using GPAW seem to be converged at 0.18 Å
for the wave function grid with a value of 3.22 %, QE still does not seem converged at
60 Ry with a value of 3.14 %.
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Table 6.1.: Comparison of the performance of different methods for the A23K dataset using the PBE functional. The
environment denotes the approximation of the crystal environment. A basis in Å denotes a real-space grid, Ry
denotes a plane wave basis, a basis set starting with def2 denotes an atom centred basis. tXC: Density calculation,
tpart: Partitioning, tref : Refinement. All calculations are done with the PBE functional.〈

|∆r|
σn(r)

〉
/ mÅ

〈
|∆Uij |

σn(Uij)

〉
/10−2Å2 time / min

environment program basis wR2(F 2)
% NH3 CH3 CH NH3 CH3 CH tXC tpart tref

periodic GPAW 0.26 Å 3.25 10.5 3.1 2.2 11.6 7.7 8.8 1:47 0:58 0:37
0.24 Å 3.24 9.9 3.3 2.2 11.2 7.7 9.2 1:57 1:04 0:39
0.22 Å 3.23 10.1 3.4 2.2 11.5 7.6 8.8 2:15 1:40 0:42
0.20 Å 3.23 10.1 3.4 2.2 11.6 7.6 8.4 2:23 1:45 0:41
0.18 Å 3.22 10.3 3.3 2.2 11.6 7.7 8.9 3:03 2:45 0:41
0.16 Å 3.22 10.3 3.4 2.2 11.6 7.9 8.9 4:02 3:38 0:42
0.14 Å 3.22 10.3 3.4 2.2 11.6 7.8 8.9 5:32 5:40 0:40
0.12 Å 3.22 10.3 3.4 2.2 11.6 7.8 8.9 7:59 8:39 0:39

QE 40 Ry 3.22 11.2 3.3 2.9 11.9 7.5 9.0 2:09 3:45 0:39
50 Ry 3.19 12.0 4.0 2.2 11.0 7.7 8.4 2:36 3:47 0:35
60 Ry 3.14 10.5 3.3 2.2 11.0 7.6 8.6 4:04 5:08 0:45

None Orca def2-SVP 3.26 15.9 1.7 10.2 13.3 5.9 5.6 0:58 0:15 0:49
def2-TZVP 3.25 15.6 3.0 8.2 14.8 6.8 5.1 1:32 0:23 0:55

4 Å cc Orca def2-SVP 3.22 14.4 3.7 6.9 11.9 6.0 6.6 1:03 0:14 1:02
def2-TZVP 3.14 14.5 2.3 4.9 11.0 7.3 5.8 1:23 0:17 0:51

cluster Orca def2-SVP 3.20 11.0 6.5 2.2 9.5 6.2 7.8 24:06 1:56 0:52
def2-TZVP 3.13 12.8 7.0 1.5 9.4 7.0 7.4 46:57 2:50 0:51
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There are two possible explanations for this fact. The Hirshfeld partitioning in GPAW
was done using the routine provided by GPAW for this purpose. At the same time, the
procedure in Quantum Espresso was more custom. Atomic densities were generated
by initialising a calculation without a single step from the atomic densities and then
using the resulting density of this ‘calculation’ as the atomic density. The first possibility
would be a difference resulting from these two approaches. The difference is noticeable
in the computation times. Despite the fact, that this investigation was performed on an
SSD, the input/output heavy approach yields a larger time for partitioning compared to
the wave function optimisation. This is despite the fact, that the task was implemented
in parallel for QE but not for GPAW.

The second possibility would be a difference resulting from the different representations
of the wave functions and the resulting gradients, which leads to different densities even
when using the same functional. A difference in performance for distances was basically
non-existent for the largest basis of the respective calculations. At the same time, a
small benefit below the significance of the neutron values was observed in the atomic
displacement parameters.

In general, the computation time at convergence is lower for GPAW but does lead to
worse results in crystallographic agreement.

Comparison of the different descriptions of the crystal environment in non-periodic
calculations

In contrast to the difference in computation times observed between tonto and Orca
in the last section, the description using cluster charges in Orca does not yield a
higher overall computation time compared to the calculation neglecting the crystal
environment completely. At the same time, the cluster charges improve the agreement of
the X−H distances to the neutron refinement, while the effect on the atomic displacement
parameters is more varied.

Performance using non-periodic calculation seems to be less stable overall: Larger basis
sets do not lead to convergence at a better performance level but the relative performance
between different basis set sizes is inconsistent. This points to error compensation in
unpredictable ways. While it might seem positive to have both an improvement in
computation time and agreement when using the smaller def2-SVP basis, the unpredict-
ability of this effect means, that a lower agreement must be assumed without the ability
to compare to neutron results, which will be the usual case for application instead of
verification.

The description of the crystal surrounding by a cluster of hydrogen-bound molecules
does yield an improvement in the agreement of bond lengths and a small improvement
in atomic displacement parameters of the atoms gaining a bond partner this way. At the
same time, the computation time increases from two minutes to 27 minutes for def2-SVP
and from about 2:30 min to 51 minutes for def2-TZVP.
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Comparison of periodic and non-periodic calculation

The computation times of the periodic calculation at convergence in GPAW or 60 Ry
in Quantum Espresso were at about seven minutes for GPAW and ten minutes
for Quantum Espresso. This is significantly larger than the two minutes and fifteen
seconds for the cluster charge calculation using the def2-SVP basis set. On the other
hand, it is also significantly faster than the calculation using a cluster to describe the
crystal environment.

The wR2(F 2) reached by GPAW at convergence is also higher than the values reached
by cluster charge or cluster descriptions using the def2-TZVP basis set. The density
calculated with QE and a 60 Ry cut-off is basically identical to the wR2(F 2) of the
non-periodic calculations in this case.

At the same time, the bond distances of the non-periodic calculations are usually higher
in two or more of the categories compared to the periodic calculations.

Atomic displacement parameters are improved using non-periodic calculations with a
description of the direct crystal environment. Neglect of the environment does lead to
worse performance in the agreement of ADPs to neutron values.

Remarks on the comparison

It needs to be reiterated that PBE does not represent an ideal choice for any of the
methods investigated. It is however available for all investigated quantum chemistry
codes. As described in Section 6.4 good results can be achieved with functionals of the
SCAN family. This also holds true for non-periodic calculations. However, metaGGA
functionals are not available in Quantum Espresso and hybrid functionals are not
available in GPAW. At the same time setups for PBE PAW calculation are available and
well-tested. An investigation of additional codes to GPAW and Quantum Espresso
might be worth considering as additional points might shine light on the nature of the
performance difference between the two codes. The behaviour is consistent with the
observations of Section 6.9.

6.8. Comment on the suggested structure factor by Wall

All presented results, as well as the corresponding publication (Ruth et al., 2022), use a
phase factor as established for crystallographic structure factor calculations (Coppens,
2010). This is despite the fact that Wall (2016) suggested that this is not appropriate in
his pilot study of the application of PAW to the description of urea with HAR.

Instead, he suggested the replacement of the phase with a factor of the form, where
(u0 v0w0) are the integer and (u1 v1w1) are the fractional parts of the transformation
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of the coordinate shift x′ to the grid coordinates such that (u1 v1w1) lie in the range
0 ≤ u1 v1w1 < 1:

A′
i(hkl)

Ai(hkl)
=e− 2πihu0

N1 e
− 2πikv0

N2 e
− 2πilw0

N3

× [(1 − u1)(1 − v1)(1 − w1) + e
− 2πih

N1 u1(1 − v1)(1 − w1)

+ e
− 2πik

N2 (1 − u1)v1(1 − w1) + e
− 2πil

N3 (1 − u1)(1 − v1)w1

+ e
− 2πih

N1 e
− 2πik

N2 u1v1(1 − w1) + e
− 2πih

N1 e
− 2πil

N3 u1(1 − v1)w1

+ e
− 2πik

N2 e
− 2πil

N3 (1 − u1)v1w1 + e
− 2πih

N1 e
− 2πik

N2 e
− 2πil

N3 u1v1w1]

(6.17)

In an implementation in XHARPy, the use of this structure factor did lead to less
optimal convergence properties, even though in the iterative implementation of the HAR
scheme, the difference at convergence should ultimately be zero. Subsequently, it was
decided to use the traditional phase. There were two additional reasons to rationalise
the decision.

6.8.1. The factor for ∆x and −∆x do not offset each other

Wall (2016) derived his factor in the one-dimensional case (equation 15 in the publication).
This culminates in the equation.

A∆x(h)
A(h) = e− 2πihuo

N

[
(1 − u1) + e− 2πih

N u1
]

(6.18)

Here u = N∆x with u0 again being the integer component and u1 being the fractional
remainder in the range 0 ≤ u1 < 1, h is the reciprocal index and N is the number of
lattice points in the one-dimensional lattice. For the sake of investigation, it is now
assumed that our difference between the calculated one-dimensional position and the
original position is only small, i. e. |∆x| ≤ 1/N . For a positive ∆x this means u0 = 0,
u1 = N∆x and Equation 6.18 simplifies to:

A∆x(h)
A(h) = (1 − u1) + e− 2πih

N u1 = 1 −N∆x+N∆x · e− 2πih
N (6.19)

For a sufficiently small negative ∆x, u0 = −1 and u1 = 1 −N∆x. As such, the equation
simplifies to

A−∆x(h)
A(h) = 1 −N∆x+N∆x · e

2πih
N (6.20)
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Figure 6.12.: Comparison of the performance of an LCAO density in the spherical
expansion to a rectangular grid expansion of the same density and a
density calculated with a real-space grid basis. All calculations were done
using the RPBE functional in GPAW.

Intuitively, the product A∆x · A−∆x should be one for the operation to be reversible.
However, this is not the case. This might lead to the experienced convergence problems.
Additionally, the phase does allow for easier access to atomic form factors, where the
atomic position is defined to be at the origin of the reference system.

6.8.2. Evaluation of LCAO-derived densities Fourier transformed on
spherical and rectangular grids do not show a large difference

The quantum mechanical code GPAW enables the use of three different bases for the
description of the wave function: plane waves, real-space grids and LCAO. Therefore,
it enables the comparison of the LCAO density expanded and Fourier transformed on
a rectangular grid to an atom-centred grid. As such, a direct comparison of the two
expansions using the traditional phase factor is possible and it can be verified, whether
the issue raised by Wall can be observed in our implementation.

The expansion and Fourier transform on a spherical grid was implemented in python
using the grid implementation and integration procedures of Horton (Verstraelen et al.,
2015) with grids of the ‘insane’ preset. The comparison was conducted using the A23K
dataset. In GPAW, calculations using an LCAO basis are only available with GGA
functionals. As such the RPBE functional was used with a grid spacing for the wave
function calculation chosen as 0.12 Å. Expansion on the rectangular grid was done with
the four-fold interpolation.

As can be seen in Figure 6.12, the difference between the two grid types (spherical and
rectangular) is small when both use the LCAO basis. While the wR2(F 2) is slightly
higher for the spherical expansion, the X−H bond distances are improved by an amount
below the significance of the neutron-derived distances. As such, the evaluation does not
favour the spherical expansion of the LCAO density. At the same time, the rectangular
grid wave function (FD) calculation shows a larger improvement in wR2(F 2) compared
to the LCAO expansion, even if the differences for the hydrogen parameters are still
small and inconclusive, as for the ADPs the difference to the neutron-derived value
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gets larger, while the overlap between the probability distributions as indicated by S12
improves.

In conclusion, there is no practical drawback to using the rectangular grid expansion,
while at the same time, using it enables us to support a much larger range of software
packages and methodologies within those packages. Additionally, the procedure is
interoperable with established crystallographic software such as Olex2 (Dolomanov
et al., 2009).

6.9. Reducing the number of parameters for DFT
benchmarking

So far, atomic Hirshfeld densities were used to determine atomic parameters, with a
focus on hydrogen atoms. In other words, the chapter presented a method for achieving
aims from the field of crystallography. The ability to achieve this has a systematic
dependence on the functional used to obtain the atomic densities and has been tracked
using the agreement to neutron diffraction, which is considered the gold standard for
the obtained parameters.

While the performance can directly be used as a measure of the quality, the refinement
of atomic parameters might influence the result in unexpected ways. This section aims
to switch the train of thought around. How can the quality of the atomic density of
a given functional be isolated from the other refined parameters and thereby how can
PAW-HAR be used as a prototype for density benchmarking for periodic boundary DFT
calculations?

Recall that Blessing (1995) showed that in order to apply atomic displacement parameters
from neutron diffraction to X-ray diffraction experiments they need to be scaled by the
following formula introduced earlier in the theory section:

U ij
c,n = qADP · U ij

c,n + ∆U ij (2.82)

Accordingly, these up to seven parameters overall can also be used to adapt the atomic
displacement parameters of the neutron refinement to the X-ray experiment. A free
crystallographic refinement would mean 6 atomic displacement parameters per atom.
Additionally, the positions from neutron refinement are directly applicable to our X-ray
experiment and do not need any modification, which reduces the number of parameters
per atom by another three. As neutrons are scattered from the atomic cores there is
much less probability to introduce a bias into our density evaluation.
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The resulting method will be called ‘X-ray And Neutron diffraction data for benchmark-
ing via THeoretically Obtained Structure factors’ or Xanthos.3

In theory, this should provide a benchmark, which is orthogonal to the usual employed
energy-based benchmarks in the solid state. A theory-theory benchmark on the question
of whether density functionals still reproduce the density has been tackled by Medvedev
et al. (2017) for isolated atoms and cations. Theory benchmarks for the solid state are
generally hard to achieve. At the same time comparing to experimental results has
its own challenges. Most benchmarks on the solid state evaluate properties such as
equilibrium geometries (Björkman et al., 2012), electronic band-gaps (Borlido et al.,
2019), cell volumes and lattice energies (Otero-de-la Roza and Johnson, 2012b; Hoja
et al., 2017; Dolgonos et al., 2019). The idea is to provide a diffraction-based benchmark
in addition and certainly not instead of these well-established datasets. The general idea
is similar to the one laid out by Medvedev et al. (2017). The minimisation of energy
should lead to a correct density, which with a correct functional should lead to the
correct energy. By staying closer to the physical background of the method, the method
should generalise to a larger number of systems.

6.9.1. Considerations for practical application

Data quality is always the most fundamental consideration in investigations of electron
density from X-ray diffraction. This becomes even more important if something as
fundamental as a density functional is to be evaluated. As such, structures should be
investigated with a normal HAR first. If there are strong features in the difference electron
density, significant effort should be spent on searching for systematic deviations stemming
from data processing or the crystal itself. The application of crystallographic knowledge
to mediate systematic deviations is paramount. Especially resolution-dependent effects
could lead to misleading results. As usual, the inner data is most crucial. As most DFT
calculations use some form of frozen core, the valence density encoded in the inner
reflections is the actual target of our benchmark.

Even though there is no need to decouple the density from the vibration to the same
degree as in a normal refinement, a reasonable resolution still ensures that subtle effects
can be detected. On the other hand, a resolution, which is too high can bias the quality
indicators to the core density, which is not the target of our investigations, as they
cannot be affected by the functional itself in the investigated implementations of density
functional theory. A similar effect has been observed for X-ray wave function fitting,
where Genoni et al. (2017) found, that with a too-high resolution, subtle effects in
theoretically calculated densities were no longer retrieved. As such an ad-hoc procedure
was implemented for the prototype of Xanthos, where the resolution-dependent absolute
theoretical structure factor was determined. The cutoff was then set to recover 95 % of

3This is even more severe example of a ‘meaning-follows-acronym’ naming approach, but in one Greek
tradition Xanthos or Xanthus is one of the horses of Achilles and son to the harpy Podarge. The
opportunity to link the XHARPy package and the derived method was too good not to take it.
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Figure 6.13.: Illustration of the calculation of the resolution cutoff on the fictitious
example of a single oxygen atom in a structure.

the integral. A detailed investigation of this procedure was beyond the scope of this
work. A graphical illustration for a single oxygen atom in a larger structure is illustrated
in Figure 6.13. It is quite obvious, that the core atomic form factor is still very much
significant at the cutoff, while the valence atomic form factor is negligible in comparison.
If the performance of interest is mainly related to the valence density, the outer data
can obscure the desired test.

All the caveats for HAR are also applicable to the Xanthos method. Hirshfeld atom
partitioning is only one of several fuzzy partitioning methods. Which of these provides
the best representation of a static vibrating atomic density remains an open question.
While Chodkiewicz et al. (2020) provided a first study tackling this problem, a canon
of work exploring this subject is still missing. A first step to go from prototype to
universally applicable benchmark would be to check, whether the relative performance
of functionals is robust with respect to the atomic partitioning method. The lower the
deviation from average density, i.e. the lower the temperature, the smaller this influence
should get.

This leads nicely into the still lingering problem, that in its current application, the
density of the vibrationally excited system is represented by a modified ground-state
density. The effect of this approximation needs to be assessed on each combination of
system and temperature range, but if a specific measurement has been shown to be a
possible candidate, there should be no dependency on the specific functional. In other
words, the preparation of a database of prevetted structures should be possible.

6.9.2. Evaluating the robustness with individual crystal choice

The first step is to evaluate the robustness of the results with the individual measurement.
The OxyH dataset provides an excellent basis to tackle this problem as the thirteen
crystals measured with different setups should provide similar results. A refinement was
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Figure 6.14.: Resulting qADP for a Xanthos refinement in dependence of functional and
crystal of OxyH. Blue diamonds: Results calculated from a Quantum
Espresso density; Orange spheres: Results calculated from GPAW density.

done for all datasets. However, dataset 4 was excluded from the overall investigation as
the mean qADP of 0.888(8) indicated a measurement temperature significantly different
from the reference neutron data collection. The remaining 12 qADP values are depicted
in Figure 6.14.

All determined values lie within 0.95 and 1.03 indicating a good agreement between
the measurement temperature of the neutron experiment and the X-ray experiment.
The refined qADP is dependent on the functional in a consistent manner for all datasets.
Higher qADP values should indicate a higher localisation of electrons, which the correction
redistributes away from the atomic positions. Interestingly, the two software packages
used for calculating the Hirshfeld density show a systematic difference in the relative
size of qADP, with the values of densities calculated with Quantum Espresso (QE)
being systematically lower than the values from GPAW. The question, of whether
this difference stems from the different descriptions of the pseudo wave function (QE:
plane-waves, GPAW: real-space grid) or some approximation used in the respective
Hirshfeld partitioning routines remains open.
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Figure 6.15.: Resulting wR2(F 2) for a Xanthos refinement in dependence of functional
and crystal of OxyH. Blue diamonds: Results calculated from a Quantum
Espresso density; Orange spheres: Results calculated from GPAW density.

A similar trend can be seen with the crystallographic agreement factor wR2(F 2) displayed
in Figure 6.15. The relative performance of functionals is well preserved over the datasets,
especially for the performance of functionals compared to other functionals used in
the same program. There is a systematic difference between the two programs used
for calculating the densities, where Quantum Espresso performs superior to GPAW,
which is also consistent with the evaluations from Section 6.7.2.

There are two quality indicators which are directly calculated from the difference electron
density: egross and the difference ∆ρdiff = ∆ρmax − ∆ρmin. The preliminary investigation
presented here exhibited a significant drop in the consistency of the performance with
functional. At first glance, this fact is puzzling, as the difference electron density should
be directly connected to the quality of the refinement. However, this is only the case if
there is no correlation of the agreement with the resolution of the individual reflections.

This work will now focus on two datasets out of the 13 datasets presented in OxyH. One
where the connection between the density-based quality indicators and the agreement
factor holds (Dataset 2) and one where it does not hold (Dataset 13). The quality
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Figure 6.16.: Resulting wR2(F 2), egross and ∆ρdiff for a Xanthos refinement in depend-
ence of functional and for the datasets 2 and 13 of OxyH. Blue diamonds:
Results calculated from a Quantum Espresso density; Orange spheres:
Results calculated from GPAW density.

indicators for both datasets are depicted in Figure 6.16. For dataset 2 the behaviour of
the egross is as expected. An improvement in wR2(F 2) also results in an improvement
in the overall difference electron density. At the same time, the difference between the
maximum and minimum difference electron density roughly follows the same trend but is
much more flattened. This is the behaviour that might be expected from a high-quality
dataset.

On the other hand, dataset 13 does show the same relative performance in wR2(F 2),
but the egross runs opposite to the performance in the data agreement. At the same
time, the difference between maximum and minimum difference electron density shows
larger differences and is systematically following the performance in wR2(F 2).

An indicator of successful refinement is the resolution-dependent scaling plot commonly
known as DRKplot (Stash, 2007) from the program, where it is usually displayed with.
A resolution dependency of the agreement can stem from either modelling problems or
problems during data collection and processing. The resulting plots and the reference
plots from a multipolar refinement of Kaminski et al. (2014) are displayed in Figure 6.17.
Two things are immediately obvious.

Firstly, the inner data of Dataset 13 is not adequately described in the very flexible
multipolar reference refinement. A check for problems in the data of this dataset is
therefore warranted.

Secondly, for dataset 2, the Xanthos refinement yields modelled intensities, which are
too low on average, while dataset 13 does not show this behaviour. This behaviour
is consistent with all datasets, which show a well-behaved DRKPlot in the reference
multipolar refinement. This warrants further future investigation.
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Figure 6.17.: Resolution-dependent quotient of sums of observed and modelled values for
F 2 as usually done with DRKPlot (Stash, 2007). The top row is an overlay
of the values for all Xanthos refinement of the two datasets. The bottom
row is the result of the reference multipolar refinement as published by
Kaminski et al. (2014). The first and last bins are larger to avoid single
reflections in a bin.

In summary, the Xanthos method is a way to isolate the performance of functionals
from the additional parameters, which are fitted in a crystallographic refinement. It is
still in an experimental stage, where limits of the method in structures and data quality
need to be tested in future investigations. In its current state, it provides a performance
of the wR2(F 2) with crystal quality, while density-dependent parameters require a more
rigorous quality assessment of the crystal quality and data processing. In my personal
opinion, this rigorous approach in combination with interpretable difference electron
density quality indicators is to be strongly preferred.

6.9.3. Applying the method to A23K and Xy and discussion

As written before, care needs to be applied in choosing candidate datasets for the
Xanthos method. As such a HAR without a structured difference electron density should
be an essential starting point. If the density cannot be fitted with additional degrees of
freedom, it will probably not be well-behaved with the limited set of parameters used in
XANTHOS. There are two different reasons, why datasets included in the evaluation so
far may be unsuitable.

In the case of the urea dataset, Gram-Charlier features were seen and successfully
described against X-ray data. Ideally, these would be fitted against neutron data. However,
Gram-Charlier does need a considerably higher resolution for refinement (Kuhs, 1992).
While the Gram-Charlier parameters could also be refined against the X-ray data, this
would defeat the purpose of reducing the number of parameters.

In the case of the hydrogen maleate structures, the difference electron density is much
more likely to stem from problems in the data collection or processing, as current
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Figure 6.18.: Resulting wR2(F 2), egross and ∆ρdiff for a Xanthos refinement of A23K
in dependence of functional. Blue diamonds: Results calculated from a
Quantum Espresso density; Orange spheres: Results calculated from
GPAW density.

crystallographic approaches did not reduce the difference electron density. Therefore,
the strong possibility of a systematic influence in the data precludes the use of these
datasets. Subsequently, the final application will focus on two datasets: A23K and Xy.
The respective results are depicted in Figures 6.18 and 6.19.

Again, it is obvious, that the two codes employed perform differently, where Quantum
Espresso shows a performance, which is systematically improved over GPAW. Inter-
estingly the relative difference seems to be smaller for the refinement of A23K, than
for Xy. The source of the difference cannot be identified at this moment and may be
searched in either the description of the wave functions (real-space grid for GPAW,
plane-waves for GPAW) or in the internal routine of GPAW for the determination of
the Hirshfeld densities.

The functional dependence for the resulting quality indicators is very well retained
between the two datasets. Within the metaGGA functionals, which could only be
evaluated in GPAW, the SCAN functional also proves to be superior to TPSS with the
reduced set of parameters in the Xanthos refinement. Within the GGA functionals,
the best performance in both programs is achieved using the HCTH/120 functional.
The performance of HCTH is to be expected to a certain degree as it is fitted to
reproduce potentials. Again functionals including van-der-Waals interactions lead to a
lower agreement to the X-ray diffraction intensities. It seems that the approaches are not
able to achieve a closer agreement in both density and energy, but have sacrificed some
accuracy in the resulting density to get an improvement in the agreement to energy. The
highest agreement is shown by the Hybrid functionals with PBE0 and HSE06 showing
an almost identical performance, which is slightly superior to the performance of B3LYP.
Hybrid functionals could only be evaluated in Quantum Espresso.
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Figure 6.19.: Resulting wR2(F 2), egross and ∆ρdiff for a Xanthos refinement of Xy
in dependence of functional. Blue diamonds: Results calculated from a
Quantum Espresso density; Orange spheres: Results calculated from
GPAW density.

6.10. Conclusion and Outlook

This chapter established using PAW densities in periodic boundary conditions in HAR,
which so far had only been evaluated in non-iterative HAR in a single pilot study. This
approach removes one source of ambiguity in the setup of these calculations, namely,
the decision of how a representative fragment from the unit cell looks like. There is no
potential bias from fortunate or unfortunate selections of the calculated fragment and/or
cluster radii. In this investigation, this concern applies to the A23K structure, where a
cluster of 4 Å of Hirshfeld charges provided an improved agreement to diffraction data
and neutron results over the larger 8 Å cluster in the fragment-based method.

The benefits for the agreement of the model to the data, as well as the improved
reproduction of X−H bond length derived from neutron diffraction, were successfully
demonstrated, both over results from literature as well as results from provided non-
periodic comparison calculations. Only embedding in quantum mechanical clusters
did provide similar results. However, at this point, the PAW-HAR implementation is
no longer the more computationally demanding method, at least in our comparison
investigation. An exhaustive investigation, where each participant contributes their own
method using a set of compromises of their own choice might be worthwhile.

The implementation was not limited to custom code for the investigated systems, but
instead, a python package was provided to the scientific community, which should
enable interested readers to both reproduce the findings presented here, as well as offer
the possibility to apply the methodology for the refinement of their own structures. The
ability to combine the method with more established refinement codes is provided on
a basic level by the ability to calculate atomic form factor ‘tsc’ files from given ‘cif’
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files. A more convenient way to access the calculation of atomic form factors using the
implemented PAW codes is already planned.

The interaction with the crystal environment is included in the theoretical method.
This facilitates the use of this method for benchmarking purposes. There is no longer
the question of whether a difference between theory and experiment stems from an
inadequate description of the surrounding of the molecule or other structure within the
crystal. If everything worked perfectly, the calculated density would be the ground state
density of the unit cell within the crystal and therefore the agreement between calculated
and measured X-ray diffraction intensities can be used as a quality indicator for the
given method of calculation. This chapter has also presented how such a benchmark
could be streamlined using neutron data. The fact that positions are no longer refined,
reduces the number of quantum chemical calculations needed to one. The ability of the
refinement to attribute deficiencies of a given functional into crystallographic parameters
has been reduced.

What remains an open question is the quality of the deconvolution of vibrational and
density influences. Different density partitioning methods should be evaluated to evaluate
the performance of their partitioning in finding atomic contributions compatible with the
crystallographic model for vibration within the crystal. Additionally, more sophisticated
models of displacement could reduce systematic errors from inadequate descriptions.
The influence of the current models should be evaluated. The current obstacle to such
an investigation is the unavailability of a theoretical model of the mean density at finite
temperature, which is not in itself based on atomic partitioning. By removing noise
present in the experimental structure factors, these influences could be studied in more
detail. Such an investigation could also evaluate the size of the benefit of the Xanthos
procedure over conventional HAR and thus determine whether having the neutron data
is only beneficial or necessary. After such an investigation, given that it is successful, the
benchmark of functionals against carefully vetted X-ray and neutron data should prove
worthwhile as a measure of functional performance that is orthogonal to the energy.

Finally, as this chapter was focused on validation, the application was limited to
structures and thereby questions which could be subjected to HAR in the past. However,
the periodic basis also enables refinement for structures where a fragment of reasonable
size could not be chosen. Using the aspheric atomic form factors calculated for chiral
grey selenium it could be shown that the fact that the two enantiomeric forms are
not distinguishable by resonance scattering, might not be true for refinements using
aspherical form factors. An experimental evaluation of this fact, which contradicts an
exercise long established in Göttingen’s teaching of crystallography, was not possible in
the time frame of this thesis.

In summary, this chapter succeeded on two points. The interaction of the crystal
environment could be included in the calculation of atomic densities for HAR and the
fact that this is included enabled me to build a prototype for a structure-factor-based
benchmark.
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This thesis aimed to find systems and methods for benchmarking quantum chemical
methods using quantum crystallographic methodology. While some of the systems
and approaches proved to be unsuitable for this purpose for a variety of reasons, a
methodology could ultimately be established with the use of periodic boundary conditions
for Hirshfeld atom refinement as well as the derived ‘X-ray And Neutron diffraction
data for benchmarking via THeoretically Obtained Structure factors’ or Xanthos
method and the evaluation of the MetalJet diffractometer for the purpose of quantum
crystallographic measurements.

The first approach, presented in Chapter 3 was the original idea of this project, namely
using the luminescence properties of crystals of anthracene derivatives. While the data
proved to be unsuitable in its current form for the strict requirements enforced by
benchmarking, valuable information could be obtained about the luminescence of the
system class in general. For the first group of compounds, intermolecular interactions
had been proposed as a factor determining the strength of this luminescence. This could
be shown to be highly unlikely due to the difference between the low-temperature and
room-temperature structures determined by X-ray diffraction. Ultimately, the preformed
bending of the anthracene molecule in addition to the flexibility of the system proved to
be the most promising candidates for explaining the differences.

The following Chapter 4 investigated the case of decamethylcyclopentadienyl silicon.
This system was chosen for investigation as the reported X-ray structure contained
the molecule in two very distinct conformations, which had been the topic of quantum
chemical investigations in the past. The answer to why this structure behaved differently
from its heavier analogues, proved to be a phase transition and as such, this chapter
illustrated how the neglect of entropic effects can lead discussions about most stable
states astray. The newly observed phase change was evaluated using geometric and
crystallographic quantities and methods of computational chemistry were employed to
underpin the idea that dispersive interactions play a large role in determining, which
conformer is the most stable.

While the previous projects provided valuable insights, the first project to advance
towards a benchmark using X-ray diffraction was presented in Chapter 5. The indium
Kα radiation provided by the new Excillum MetalJet in Göttingen has the highest
photon energy of a commercial in-house source. Thereby, it can potentially improve the
study of high electron density materials, such as inorganic solid-state compounds from
heavy elements held together by strong ionic interactions. To unearth the potential of
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these compounds often poses a challenge for the quantum crystallographic evaluation, as
the scattering of the involved elements often enables the measurement to the resolution
limit of a given wavelength, but strong resonance scattering effects and absorption
can introduce systematic biases. The evaluation of the detector now completes the
assessment of parts of the setup of the machine. The chapter could successfully establish
the Eiger2 1M CdTe as the detector meeting the unique challenges posed by that
system. In addition to independent atom model refinements of the target compounds,
the investigation included a first charge density refinement with very promising results.
However, these need to be repeated for the target ionic compounds. Extrapolating from
the data of this evaluation, the MetalJet should fare well for these applications.

After tackling how certain compounds are measured with an in-house source with the
data quality required for a benchmark, Chapter 6 tackled one of the possibilities for
approaching such a benchmark. First, it showed how including the interaction with the
full crystal environment in the calculation of the density of a given system benefits
the crystallographic Hirshfeld Atom Model. Here, the performance of the different
functionals was already reproducible for the structures within the investigation. It
then showed how instead of refining positions and atomic displacement parameters and
comparing them to neutron refinement, available neutron data can be used directly to
limit the number of calculation steps, as well as, possible biases where the refinement of
crystallographic parameters compensates for the deficiency of a given functional. While
the presented methodology warrants further validation, as well as the evaluation of an
optimal partitioning method, the systematic reproduction of the relative performance
with different high-quality datasets, shows great promise for a benchmark not directly
dependent on energy but making the independent evaluation of the produced density
possible for methods in density functional theory.

As such, this thesis has opened the door for further explorations with a solid set of
methods. Even though I might have wished to explore the room behind it further, this
was beyond the time constraints of a thesis.
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A. Determination of X-ray Data

A.1. Measurement and Refinement of temperature-dependent
SPAnPS/toluene data

The temperature-dependent measurement of SPAnPS was conducted as follows. Suitable
crystals were coated in perfluorinated oil and mounted on a MiTeGen crystal loop.
Crystal data was recorded using an Incoatec Mo Microsource (Schulz et al., 2009)
and an APEX II detector. Data was integrated with SAINT (Bruker AXS Inc., 2019)
and corrected using the multiscan absorption correction in SADABS (Krause et al.,
2015). The structure was solved once for the data at 100 K using SHELXT (Sheldrick,
2015b) and all the datasets were refined on F 2 using SHELXL (Sheldrick, 2015a) in
the graphical user interface ShelXle (Hübschle et al., 2011). Using the respective
cell constants and diffraction data this model was then fitted to each dataset for the
individual temperatures.

In the HAR conducted in Olex2 (Dolomanov et al., 2009) using NoSpherA2 (Kleemiss
et al., 2021), atoms in the SPAnPS molecule were refined freely including hydrogen atoms
with isotropic displacement parameters, while the toluene guest molecule was refined
using restraints. Carbon-carbon and carbon-hydrogen distances as well as angles within
the aromatic ring were restrained to be similar, as were carbon-carbon and carbon-
hydrogen distances to and within the methyl groups. Atomic displacement parameters
were restrained to be similar to nearby atoms and follow a rigid-bond model to bound
atoms. All carbon atoms, as well as hydrogen atoms connected to the aromatic ring,
were restrained to lie in a common plane. The methyl hydrogen atoms 1,3 distance to
the Cα was restrained to 2.056 Å to provide further stability to the model.

A.2. Measurement of decamethylsilicocene data

For all measurements, suitable crystals were coated in perfluorinated oil and mounted
on a MiTeGen crystal loop under cooling using an XTemp2 device (Stalke, 1998; Kottke
and Stalke, 1993).

The initial measurement which lead to the discovery of the low-temperature phase was
measured using a first crystal on a Bruker AXS rotating anode using an APEX II
detector with a resolution of dmin = 0.6 Å and a measurement temperature of 90 K. The
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A. Determination of X-ray Data

Figure A.1.: Crystal structure derived from the first crystal at 90 K, with the difference
electron density being depicted at an iso-level of ±0.2eÅ−3. Atomic dis-
placements are depicted at 50 % probability level. Hydrogen positions were
refined disordered where necessary and all hydrogen atoms were placed
using idealised geometries in a riding model.

difference electron density derived from this structure contained the main maximum
difference electron density on the bonds with the exception of a maximum of 0.55 eÅ−3

near Si2 (see Figure A.1).

For further investigation, a second crystal was subjected to a set of measurements for the
listed different measurement temperatures where the resolution was set to dmin = 0.75 Å
to assure reasonable diffraction up to the resolution limit for all temperatures. The
setup itself was retained, however, the X-ray detector had been changed to a Photon III
detector. Unfortunately, the crystal quality seems to have deteriorated between the two
measurements, as indicated by the occurrence of additional maxima in the difference
electron density for all temperature-dependent measurements. The size of the maxima
as depicted in Figure A.2 are as follows: two maxima near Si1, 1.40 and 1.24 e, the
maximum near Si2 has increased to 1.23 e, and four maxima of approximately 0.5 e
near Si3. These features could neither be explained with twinning, as no twin matrix
could be derived nor with a disorder of chemically reasonable geometry.

However, an overlay of the structures determined at 90 K from the first and the second
crystal reveals no influence of the geometrical parameters (Figure A.3). The geometric
considerations can therefore be considered valid.

All data was integrated with SAINT (Bruker AXS Inc., 2019) and corrected using the
multiscan absorption correction in SADABS (Krause et al., 2015). SHELXT (Sheldrick,
2015b) was used to solve the structures once for the data from crystal one at 90 K for
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A.2. Measurement of decamethylsilicocene data

Figure A.2.: Crystal structure derived from the first crystal at 90 K, with the difference
electron density being depicted at an iso-level of ±0.2eÅ−3. Silicon atoms
are numbered anti-clockwise with the silicon atom at the lower right being
denoted Si1. Atomic displacements are depicted at 50 % probability level.
Hydrogen positions were refined disordered where necessary and all hydrogen
atoms were placed using idealised geometries in a riding model.

Figure A.3.: Overlay of the structures at 90 K derived from crystal 1 (red) and crystal 2
(blue). For most of the structure, no red thermal ellipsoids are visible as
they are completely contained within the blue ellipsoids. All ellipsoids are
depicted at 50 % probability level.
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A. Determination of X-ray Data

the structure in P 21/c and once from the data at 298 K for the structure in C 2/c.
Both structures were subsequently refined on F 2 using SHELXL (Sheldrick, 2015a)
in the graphical user interface ShelXle (Hübschle et al., 2011). Using the respective
cell constants and diffraction data this model was then fitted to each dataset for the
individual temperatures. Hydrogen atoms were placed in idealised geometries using a
riding model and disorder between hydrogen atoms was refined when needed, where the
number of disordered hydrogen groups changed with temperature.

A.3. Measurement details and Data Processing for the
evaluation of the MetalJet diffractometer

A.3.1. Implementation of the Eiger II CdTe in the Bruker D8 Enclosure

While the overall results of the investigation of the Eiger2 1M CdTe on the MetalJet
induced a more close implementation that is currently in progress, the evaluations
were done on a more custom implementation. In general, this had two aspects: The
implementation needed to be done in hardware and software. The mounting of the
detector had been developed by Nico Graw in cooperation with the precision engineering
workshop. The second challenge was to synchronise the triggering of the Eiger2 to the
movement and data collection and frame collection of the machine. The basic approach
was to not let the machine itself know that anything was different. The Photon III
remained in the enclosure and therefore one part of the puzzle were ‘sfrm’ frame files,
which contained no intensity information but the goniometer angle information at the
time of collection. In cooperation with the electronics workshop in Göttingen, a trigger
box was developed that combined signals from the enclosure to achieve a clean signal
ultimately triggering the Eiger2 detector at the correct time. This now enabled the
collection of the X-ray intensities from the hardware side of things.

The Eiger2 can be easily programmed to collect a set of identical frames and react to
multiple triggers to collect identical runs. However, a typical set of runs on a Bruker
instrument does not contain runs with identical numbers of frames. Additionally, high-
resolution X-ray diffraction experiments typically contain multiple different exposure
times to collect the weak outer reflections while also determining the very strong inner
reflections without overexposure. As such a python script was written, which read a
measurement strategy in the form of a Bruker .exp file and fed the necessary information
to the Eiger2 detector during the measurement.

To develop the necessary strategy the approach was as follows. First, a new strategy
was created from the measured cell constants and crystal orientation. After Apex4 had
written the necessary mask files for the corresponding angles, these were then modified
to create an Eiger2-1M-shaped set of valid pixels, while all other pixels were masked
invalid. Using these a new strategy was created. In case new angles were included and
therefore new mask files were created, the process was repeated until convergence.
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A.3. Details for the evaluation of the MetalJet diffractometer

After the measurement was finished the two sets of frames were then combined using
another script, therefore enabling the comparison of the two detectors on equal footing.

A.3.2. Data processing for the Independent Atom Model investigation

The intensity of the Bragg reflections on the collected frames was integrated using SAINT
(Bruker AXS Inc., 2019). While the refinement of the data of the Photon III detector
was integrated using defaults, the profile fitting was deactivated for the integration of
the data on the Eiger 2 CdTe detector. Absorption correction and scaling were done
in SADABS (Krause et al., 2015), where the radius for the absorption correction was
assumed to be half of the lowest crystal dimension (Krause et al., 2015). Structure
solutions were obtained using SHELXT (Sheldrick, 2015b). Structure refinement was
conducted against F 2 using SHELXL (Sheldrick, 2015a). While initial refinement was
done using the graphical user interface ShelXle (Hübschle et al., 2011), subsequent
data processing was automated using a script created in python.

The comparison was done once against the complete collected data up to the given resol-
ution. In addition, refinements were conducted against datasets, which were multiplicity
normalised. To this end, sets of symmetry equivalent reflections of equivalent exposure
time were created from the measured reflections. For a given symmetry equivalent reflec-
tion and exposure time, the sets from both detectors were compared. While the smaller
set was included completely, the size of the larger set was reduced by taking a random
sample. This procedure was then continued until new sets had been created for both
of the detectors. To quantify the statistical variation resulting from this procedure, it
was repeated 100 times. This enabled the calculation of mean values and their standard
deviation from the refinement against these 100 sets.

A.3.3. Data processing for the refinement of aspherical atom models

Again, integration was conducted using SAINT (Bruker AXS Inc., 2019), while ab-
sorption correction and scaling were done in SADABS (Krause et al., 2015). For the
multipole refinement, it has been shown that thermal diffuse scattering can skew the
results Niepötter et al. (2015), which can be corrected by using a resolution-dependent
scaling. Accordingly, the intensity within the YLIDE measurements was corrected using
the described method, by applying the formula.

Icorr = Imeas

1 + a
[

sin(θ)
λ

]2
+ b

[
sin(θ)

λ

]3 (A.1)

The determined values for the correction parameters a/b were 0.13/0.76 for the in-
dium/Photon III dataset, -0.08/1.74 for the indium/Eiger2 CdTe and 0.15/1.07 for the
silver/Photon III dataset.
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A. Determination of X-ray Data

Instead of solving the structures from scratch, a presolved model was refined against the
collected data using SHELXL (Sheldrick, 2015a) using again the graphical user interface
ShelXle (Hübschle et al., 2011). Subsequent multipolar refinement was conducted in
XD2016 (Volkov et al., 2016), while HAR used the methodology described in Chapter 6.
PAW-DFT calculations were done in GPAW (Hjorth Larsen et al., 2017) at the Γ-point
using the SCAN functional with grid spacings of 0.16 / 0.08 / 0.04 Å (wavefunction /
density / FFT).
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B. Additional Details and Verification

B.1. Additional information concerning the evaluation and
experiments on fluorescence

B.1.1. Additional implemented features

XE-plane angle This is the angle between the mean plane of the anthracene molecule
and the vector from the connected phosphorous or silicon atom (E) and the oxidising
atom (X), which is usually an oxygen atom, a sulphur atom or if E is a silicon atom it
consists of a chlorine atom.

XEEX torsion angle and XEEX torsion angle on CC These two indicators are only
evaluated if the molecule in question has oxidised substituents on opposing sides of the
anthracene molecule.

The first of the two indicators is simply the torsion angle between the substituent atoms
directly connected to the anthracene E (in most cases phosphorous) and the oxidising
element X (usually oxygen or sulphur).

The second angle is determined by determining the vector between the opposing carbon
atoms, where the substituents are attached (e. g. the 9 and 10 positions). The two E-X
vectors are projected onto the plane perpendicular to the carbon-carbon vector. The
given angle is the angle between these two projections.

C-E distance This is simply the distance between the substituent directly connected
to the anthracene molecule. Only phosphorous and silicon are currently evaluated

XE distance This is simply the distance between the phosphorous or silicon directly
connected to the anthracene molecule and the oxidising atom.
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B. Additional Details and Verification

Wilson B: This descriptor can be calculated directly from the X-ray intensities from
the diffraction experiment. Wilson (1942) could show that a mean isotropic displacement
parameter can be calculated by the fit.

ln (⟨I⟩) = −B (sin(θ)/λ)2

2 +K ′ (B.1)

where B is the desired parameter. The evaluation is done in resolution shells and B is
the average over these resolution shells.

B.1.2. Trace and posterior values for the Bayesian fit in PyMC

To check convergence the trace of the No-U-Turn sampler should be indistinguishable
from noise for all parameters. The trace plot is depicted in Figure B.1.

Figure B.1.: Trace plot for the Bayesian Boltzmann fit.
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B.2. Difference electron density SPAnPS 298K

B.2. Difference electron density SPAnPS 298K

Figure B.2.: Molecular structure of 9,10-SPAnPS. Atomic displacement parameters are
depicted at the 50 % probability level. The difference electron density is
displayed at an iso-level of ±0.133 eÅ−3.
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B. Additional Details and Verification

B.3. Additional information on Decamethylsilicocene

Table B.1.: Value for the interplanar angle α for the given temperatures. While α1 and
α3 are symmetry equivalent at high temperature, α2 belongs to the molecule
adopting an inversion symmetric conformation at high temperature

T / K α1 / ° α2 / ° α3 / °
80(2) 29.31(10) 20.40(10) 27.96(11)
85(2) 29.14(10) 19.80(10) 27.91(11)
90(2) 28.96(12) 18.78(11) 27.84(12)
95(2) 28.77(12) 17.17(12) 27.77(12)
100(2) 28.41(14) 13.88(14) 27.82(14)
105(2) 28.17(16) 8.47(18) 27.77(16)
110(2) 27.93(16) 5.13(18) 27.87(16)
120(2) 27.85(16) 2.83(19) 27.72(16)
130(2) 27.51(17) 2.18(19) 27.84(16)
140(2) 27.64(17) 1.38(19) 27.52(17)
150(2) 27.44(18) 1.25(20) 27.53(17)
160(2) 27.59(18) 0.8(2) 27.15(18)

Table B.2.: Temperature dependence of the unit cell lengths and the R(F ) for refinement
in the low-temperature or high-temperature phase.

T / K a / Å b / Å c / Å V / Å3 R(F )
% (P 21

c ) R(F )
% (C 2

c )
80(2) 30.885(3) 8.400(2) 22.997(2) 5636.4(17) 6.44 10.05
85(2) 30.896(3) 8.402(2) 23.010(2) 5642.9(17) 6.91 10.04
90(2) 30.908(3) 8.405(2) 23.022(2) 5650.1(17) 7.96 9.73
95(2) 30.915(3) 8.408(2) 23.039(2) 5657.6(17) 8.10 8.82
100(2) 30.917(3) 8.409(2) 23.063(2) 5664.5(17) 9.73 8.18
105(2) 30.915(3) 8.410(2) 23.081(2) 5669.6(17) 11.69 7.98
110(2) 30.929(3) 8.410(2) 23.093(2) 5674.7(17) 12.01 7.54
120(2) 30.961(3) 8.415(2) 23.104(2) 5686.7(17) 12.12 7.27
130(2) 31.001(3) 8.420(2) 23.112(2) 5699.4(17) 12.07 7.19
140(2) 31.038(3) 8.425(2) 23.123(2) 5712.6(17) 12.15 7.15
150(2) 31.077(3) 8.430(2) 23.130(2) 5724.9(17) 12.36 7.20
160(2) 31.119(3) 8.435(2) 23.140(2) 5738.9(17) 12.25 7.19
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B.4. Additional Information concerning the MetalJet

B.4. Additional Information concerning the MetalJet

Figure B.3.: Difference electron density for 1 in dependence of the detector from all
collected data. The Photon III result is depicted on the left, the Eiger2
CdTe is depicted on the right. ADPs are depicted at the 50 % probability
level.

Figure B.4.: Multiplicity and precision indicating quality indicators for the data of 1 as
calculated by XPREP in comparison between the Photon III (blue) and
the Eiger2 CdTe (orange). Grey indicators denote the standard deviation
of the 100 drawn sets but are often below the visible threshold.
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B. Additional Details and Verification

Figure B.5.: Difference electron density for 2 in dependence of the detector from all
collected data. The Photon III result is depicted on the left, the Eiger2
CdTe is depicted on the right. ADPs are depicted at the 50 % probability
level.

Figure B.6.: Multiplicity and precision indicating quality indicators for the data of 2 as
calculated by XPREP in comparison between the Photon III (blue) and
the Eiger2 CdTe (orange). Grey indicators denote the standard deviation
of the 100 drawn sets but are often below the visible threshold.
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B.4. Additional Information concerning the MetalJet

Figure B.7.: Difference electron density for 3 in dependence of the detector from all
collected data. The Photon III result is depicted on the left, the Eiger2
CdTe is depicted on the right. ADPs are depicted at the 50 % probability
level.

Figure B.8.: Multiplicity and precision indicating quality indicators for the data of 3 as
calculated by XPREP in comparison between the Photon III (blue) and
the Eiger2 CdTe (orange). Grey indicators denote the standard deviation
of the 100 drawn sets but are often below the visible threshold.
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B. Additional Details and Verification

Figure B.9.: Difference electron density for 4 in dependence of the detector from all
collected data. The Photon III result is depicted on the left, the Eiger2
CdTe is depicted on the right. ADPs are depicted at the 50 % probability
level.

Figure B.10.: Multiplicity and precision indicating quality indicators for the data of 4
as calculated by XPREP in comparison between the Photon III (blue) and
the Eiger2 CdTe (orange). Grey indicators denote the standard deviation
of the 100 drawn sets but are often below the visible threshold.
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B.5. Additional Information for the PAW-HAR evaluations

B.5. Additional Information for the PAW-HAR evaluations

Table B.3.: Evaluated crystallographic agreement factor wR2(F 2) in dependence of
functional and crystal environment description given in mÅ. Periodic PAW
calculations were done in XHARPy using GPAW and the settings given for
the evaluation in Chapter 6. The cluster charge environment was calculated
in tonto, and the calculation without consideration of the environment was
calculated in Orca, both using NoSpherA2 in Olex2.

dataset A23K HMa-8HQ HMa-Mg Xy Urea
environment functional
Periodic PAW PW 3.31 4.11 3.27 2.35 1.97

BLYP 3.20 4.08 3.20 2.24 1.89
PW91 3.17 4.07 3.06 2.23 1.85
PBE 3.16 4.07 3.04 2.22 1.83
revPBE 3.12 4.06 2.96 2.19 1.80
RPBE 3.11 4.06 2.94 2.18 1.79
TPSS 3.14 4.05 3.00 2.21 1.80
SCAN 3.06 4.03 2.85 2.14 1.76
revSCAN 3.03 4.04 2.78 2.12 1.77
vdW-DF 3.14 4.07 3.08 2.20 1.82
vdW-DF2 3.22 4.12 3.33 2.26 1.97
BEEF-vdW 3.10 4.07 3.04 2.20 1.80

8 Å cc B3LYP 3.06 4.07 2.91 2.12 1.80
None PBE 3.24 4.09 3.11 2.22 2.20

SCAN 3.12 4.05 2.96 2.14 2.11
B3LYP 3.17 4.06 3.05 2.18 2.16

Figure B.11.: Difference electron density resulting from the PAW-HAR refinement with
XHARPy/GPAW for A23K. ADPs are depicted at 50 % probability
level.
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B. Additional Details and Verification

Table B.4.: Evaluated absolute differences of X−H bond length determined from HAR
and neutron diffraction (⟨|∆r|⟩) in dependence of functional and crystal
environment description given in mÅ. Periodic PAW calculations were done
in XHARPy using GPAW and the settings given for the evaluation in
Chapter 6. The cluster charge environment was calculated in tonto, and
the calculation without consideration of the environment was calculated
in Orca, both using NoSpherA2 in Olex2. Values in brackets are not
uncertainties but sample standard deviations.

dataset A23K HMa-8HQ HMa-Mg Xy Urea
environment functional
Periodic PAW PW 11(11) 15(15) 7(3) 15(11) 5(1)

BLYP 13(11) 15(14) 10(5) 16(12) 6(3)
PW91 11(10) 13(13) 9(4) 14(11) 3(3)
PBE 11(10) 13(13) 9(4) 14(11) 4(2)
revPBE 11(10) 12(12) 9(4) 14(10) 3(1)
RPBE 11(9) 12(12) 9(5) 14(10) 3(1)
TPSS 11(10) 12(12) 9(5) 14(11) 4(3)
SCAN 9(8) 9(9) 6(4) 11(8) 2(1)
revSCAN 8(6) 7(7) 5(4) 9(7) 4(0)
vdW-DF 14(10) 14(12) 11(5) 17(11) 8(3)
vdW-DF2 16(12) 16(15) 11(5) 18(13) 13(3)
BEEF-vdW 12(9) 12(11) 10(5) 14(10) 5(3)

4/8 Å cc B3LYP 12(9) 13(10) 7(5) 15(11) 7(2)
None PBE 12(10) 17(15) 15(7) 24(15) 7(1)

SCAN 10(7) 13(11) 14(8) 20(14) 10(1)
B3LYP 12(9) 15(13) 14(7) 22(15) 9(3)

Figure B.12.: Difference electron density resulting from the PAW-HAR refinement with
XHARPy/GPAW for HMa-8HQ. ADPs are depicted at 50 % probability
level.
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B.5. Additional Information for the PAW-HAR evaluations

Table B.5.: Evaluated absolute differences of hydrogen atomic displacement parameters
determined from HAR and neutron diffraction (⟨|∆Uij |⟩) in dependence of
functional and crystal environment description given in 10−2 Å2. Periodic
PAW calculations were done in XHARPy using GPAW and the settings
given for the evaluation in Chapter 6. The cluster charge environment
was calculated in tonto, and the calculation without consideration of the
environment was calculated in Orca, both using NoSpherA2 in Olex2.
Values in brackets are not uncertainties but sample standard deviations.

dataset A23K HMa-8HQ HMa-Mg Xy Urea
environment functional
Periodic PAW PW 0.5(3) 0.7(6) 0.4(4) 0.6(5) 0.6(3)

BLYP 0.5(4) 0.5(5) 0.3(5) 0.6(5) 0.6(5)
PW91 0.5(3) 0.5(5) 0.3(4) 0.5(5) 0.6(4)
PBE 0.5(3) 0.5(5) 0.3(4) 0.5(5) 0.6(4)
revPBE 0.5(4) 0.5(5) 0.3(4) 0.6(5) 0.6(5)
RPBE 0.5(4) 0.5(5) 0.3(4) 0.6(5) 0.6(5)
TPSS 0.5(4) 0.5(5) 0.3(4) 0.6(5) 0.6(5)
SCAN 0.4(3) 0.5(4) 0.3(4) 0.5(5) 0.5(4)
revSCAN 0.4(3) 0.5(4) 0.3(3) 0.5(5) 0.5(4)
vdW-DF 0.5(4) 0.5(5) 0.4(5) 0.6(5) 0.7(5)
vdW-DF2 0.6(5) 0.6(5) 0.4(5) 0.7(5) 0.7(5)
BEEF-vdW 0.5(4) 0.5(4) 0.4(4) 0.6(5) 0.7(5)

8 Å cc B3LYP 0.5(4) 0.5(4) 0.3(2) 0.6(5) 0.6(5)
None PBE 0.6(6) 0.6(5) 0.4(4) 0.7(5) 0.8(8)

SCAN 0.6(6) 0.5(5) 0.4(3) 0.6(5) 0.7(8)
B3LYP 0.6(6) 0.5(5) 0.4(3) 0.7(5) 0.7(8)

Figure B.13.: Difference electron density resulting from the PAW-HAR refinement with
XHARPy/GPAW for HMa-Mg. ADPs are depicted at 50 % probability
level.
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B. Additional Details and Verification

Table B.6.: Evaluated overlap of hydrogen atomic displacement determined from HAR
and neutron diffraction (⟨S12⟩) in dependence of functional and crystal
environment description given in %. Periodic PAW calculations were done
in XHARPy using GPAW and the settings given for the evaluation in
Chapter 6. The cluster charge environment was calculated in tonto, and
the calculation without consideration of the environment was calculated
in Orca, both using NoSpherA2 in Olex2. Values in brackets are not
uncertainties but sample standard deviations.

dataset A23K HMa-8HQ HMa-Mg Xy Urea
environment functional
Periodic PAW PW NPD NPD 3(2) 6(5) 4.7(1.1)

BLYP 5(3) 5(6) 2(2) 6(4) 2.8(1.3)
PW91 5(3) 6(8) 1.7(1.6) 6(4) 2.8(8)
PBE 5(2) 6(8) 1.6(1.6) 6(4) 2.8(9)
revPBE 3.8(1.3) 5(7) 1.5(1.5) 5(4) 2.7(1.2)
RPBE 4.1(1.5) 5(7) 1.4(1.5) 5(4) 2.7(1.2)
TPSS 3.7(1.3) 4(6) 1.5(1.5) 6(4) 2.5(1.2)
SCAN 3.9(1.7) 5(7) 1.4(1.1) 5(4) 1.8(9)
revSCAN 3.5(1.5) 6(9) 1.3(9) 5(4) 1.5(7)
vdW-DF 3.7(1.2) 4(5) 1.6(1.7) 6(4) 2.6(1.6)
vdW-DF2 4.5(2) 4(5) 2(2) 6(4) 2.7(1.7)
BEEF-vdW 3.6(1.1) 4(6) 1.5(1.5) 6(4) 2.4(1.5)

8 Å cc B3LYP 3.8(1.9) 3(3) 1.5(9) 6(4) 1.8(1.0)
None PBE 8(8) 5(6) 4(4) 6(3) 4.2(1.3)

SCAN 7(9) 4(4) 4(6) 6(3) 3.0(1.4)
B3LYP 8(10) 4(4) 3(4) 6(3) 3.2(1.5)

Figure B.14.: Difference electron density resulting from the PAW-HAR refinement with
XHARPy/GPAW under inclusion of extinction for Xy. ADPs are depic-
ted at 50 % probability level.
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C. X-ray structure determinations in
cooperation with synthetic groups

Part of a crystallographer’s research is the structure determination of compounds from
synthetic groups via X-ray diffraction and I was fortunate enough to also take part in
such investigations. The obtained structural information will be listed here for reference.
For any more details, please consult the respective publications, which are:

• CCDC 1880920 / 1880921: M. M. Siddiqui, S. K. Sarkar, S. Sinhababu, P. N. Ruth,
R. Herbst-Irmer, D. Stalke, M. Ghosh, M. Fu, L. Zhao, D. Casanova, G. Frenking,
B. Schwederski, W. Kaim, H. W. Roesky, J. Am. Chem. Soc. 2019, 141, 1908.

• CCDC 1935771: C. P. Sindlinger, P. N. Ruth, Angew. Chem. 2019, 58, 15051.

• CCDC 2049785 – 2049791: Y. Ding, P. N. Ruth, R. Herbst-Irmer, D. Stalke, Z.
Yang, H. W. Roesky, Dalton Trans. 2021, 50, 2067.

• CCDC 2067321: Y. Ding, S. K. Sarkar, M. Nazish, S. Muhammed, D. Lüert,
P. N. Ruth, C. M. Legendre, R. Herbst-Irmer, P. Parameswaran, D. Stalke, Z.
Yang, H. W. Roesky, Angew. Chem. 2021, 60, 27206.

• CCDC 2086522 / 2086522: Ding, S. K. Sarkar, M. Nazish, P. N. Ruth, R. Herbst-
Irmer, S. Muhammed, P. Parameswaran, D. Stalke, H. W. Roesky, Inorg. Chem.
2022, 48, 19067.
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C. X-ray structure determinations in cooperation with synthetic groups

C.1. Cooperation with Mujahuddin M. Siddiqui (Roesky group)

CCDC no. 1880920 formula C38H61GeN2Si
crystal system triclinic space group P 1
a / Å 9.570(2) α / ° 104.34(2)
b / Å 11.955(2) β / ° 93.68(2)
c / Å 17.699(3) γ / ° 108.63(3)
V / Å-1 1836.3(7) Z 2
M /g mol-1 646.56 ρmass / Mg m-1 1.169
dcryst / mm 0.49, 0.34, 0.27 µabs / mm-1 0.476
λ / Å 0.56086 dmax, dmin / Å 8.96, 0.79
Nreflections (all) 62594 Nreflections (unique) 7706
Nparameters 392 Nrestraints 0
Rmerge / % 7.12 ∆ρmax,∆ρmin 1.133 / –1.003
R(F ) [I > 2σ(I)] / % 4.36 wR2(F 2) / % (all) 11.92
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C.1. Cooperation with Mujahuddin M. Siddiqui (Roesky group)

CCDC no. 1880921 formula C47H57GeN2Si
crystal system triclinic space group P 1
a / Å 13.375(2) α / ° 112.83(2)
b / Å 13.416(2) β / ° 100.59(2)
c / Å 14.015(3) γ / ° 108.21(3)
V / Å-1 2063.8(8) Z 2
M /g mol-1 750.62 ρmass / Mg m-1 1.208
dcryst / mm 0.51, 0.22, 0.14 µabs / mm-1 0.43
λ / Å 0.56086 dmax, dmin / Å 10.74, 0.80
Nreflections (all) 72471 Nreflections (unique) 8474
Nparameters 471 Nrestraints 0
Rmerge / % 5.07 ∆ρmax,∆ρmin 1.166 / –1.047
R(F ) [I > 2σ(I)] / % 4.59 wR2(F 2) / % (all) 12.51
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C. X-ray structure determinations in cooperation with synthetic groups

C.2. Cooperation with Christian P. Sindlinger

CCDC no. 1935771 formula C78H102AlBF6
crystal system monoclinic space group P 21/n
a / Å 14.770(4)
b / Å 17.075(5) β / ° 97.27(2)
c / Å 34.408(10)
V / Å-1 8608(4) Z 4
M /g mol-1 1191.38 ρmass / Mg m-1 0.919
dcryst / mm 0.41, 0.31, 0.10 µabs / mm-1 0.07
λ / Å 0.71073 dmax, dmin / Å 17.07, 1.14
Nreflections (all) 75486 Nreflections (unique) 5992
Nparameters 1276 Nrestraints 8425
Rmerge / % 6.92 ∆ρmax,∆ρmin 0.399 / –0.264
R(F ) [I > 2σ(I)] / % 8.30 wR2(F 2) / % (all) 21.93
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C.3. Cooperation with Yi Ding (Roesky group)

C.3. Cooperation with Yi Ding (Roesky group)

CCDC no. 2049785 formula C34H58Cl4Ga2
crystal system triclinic space group P 1
a / Å 11.601(2) α / ° 91.96(2)
b / Å 12.454(2) β / ° 101.72(3)
c / Å 13.378(3) γ / ° 90.14(2)
V / Å-1 1891.3(6) Z 2
M /g mol-1 748.04 ρmass / g m-1 1.314
dcryst / mm 0.25, 0.12, 0.10 µabs / mm-1 1.728
λ / Å 0.71073 dmax, dmin / Å 13.09, 0.77
Nreflections (all) 74912 Nreflections (unique) 8777
Nparameters 380 Nrestraints 0
Rmerge / % 5.32 ∆ρmax,∆ρmin 1.19 / –0.983
R(F ) [I > 2σ(I)] / % 3.85 wR2(F 2) / % (all) 10.36

153



C. X-ray structure determinations in cooperation with synthetic groups

CCDC no. 2049786 formula C34H58Ga2I4
crystal system monoclinic space group P 21/n
a / Å 9.984(2)
b / Å 23.624(3) β / ° 99.89(2)
c / Å 17.260(2)
V / Å-1 4010.5(11) Z 4
M /g mol-1 1113.84 ρmass / Mg m-1 1.845
dcryst / mm 0.20, 0.14, 0.10 µabs / mm-1 4.443
λ / Å 0.71073 dmax, dmin / Å 11.81, 0.77
Nreflections (all) 91909 Nreflections (unique) 9248
Nparameters 379 Nrestraints 0
Rmerge / % 6.96 ∆ρmax,∆ρmin 1.686 / –0.602
R(F ) [I > 2σ(I)] / % 2.91 wR2(F 2) / % (all) 6.16
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C.3. Cooperation with Yi Ding (Roesky group)

CCDC no. 2049787 formula C21H37Cl2GaO
crystal system orthorhombic space group P 21212
a / Å 15.744(2)
b / Å 24.553(4)
c / Å 11.926(2)
V / Å-1 4610.1(12) Z 8
M /g mol-1 446.12 ρmass / Mg m-1 1.286
dcryst / mm 0.13, 0.12, 0.11 µabs / mm-1 1.432
λ / Å 0.71073 dmax, dmin / Å 11.92, 0.77
Nreflections (all) 96451 Nreflections (unique) 10598
Nparameters 470 Nrestraints 0
Rmerge / % 4.93 ∆ρmax,∆ρmin 0.603 / –0.437
R(F ) [I > 2σ(I)] / % 2.93 wR2(F 2) / % (all) 7.24

155



C. X-ray structure determinations in cooperation with synthetic groups

CCDC no. 2049788 formula C17H29Ga2I3
crystal system triclinic space group P 1
a / Å 10.845(2) α / ° 82.69(2)
b / Å 11.250(3) β / ° 61.37(2)
c / Å 11.306(3) γ / ° 74.03(3)
V / Å-1 1164.0(6) Z 2
M /g mol-1 753.54 ρmass / Mg m-1 2.15
dcryst / mm 0.24, 0.20, 0.10 µabs / mm-1 6.289
λ / Å 0.71073 dmax, dmin / Å 10.81, 0.76
Nreflections (all) 20363 Nreflections (unique) 5543
Nparameters 208 Nrestraints 0
Rmerge / % 3.85 ∆ρmax,∆ρmin 0.995 / –0.961
R(F ) [I > 2σ(I)] / % 2.38 wR2(F 2) / % (all) 5.81
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C.3. Cooperation with Yi Ding (Roesky group)

CCDC no. 2049789 formula C42H76Br2In2
crystal system triclinic space group P 1
a / Å 9.494(2) α / ° 71.33(2)
b / Å 10.197(2) β / ° 73.77(2)
c / Å 12.616(3) γ / ° 77.36(3)
V / Å-1 1099.7(5) Z 1
M /g mol-1 970.48 ρmass / Mg m-1 1.465
dcryst / mm 0.15, 0.15, 0.05 µabs / mm-1 2.891
λ / Å 0.71073 dmax, dmin / Å 11.64, 0.77
Nreflections (all) 22845 Nreflections (unique) 5060
Nparameters 218 Nrestraints 0
Rmerge / % 7.33 ∆ρmax,∆ρmin 0.712 / –0.525
R(F ) [I > 2σ(I)] / % 3.50 wR2(F 2) / % (all) 7.48

157



C. X-ray structure determinations in cooperation with synthetic groups

CCDC no. 2049790 formula C17H29Cl3Ge2
crystal system orthorhombic space group P bca
a / Å 17.206(2)
b / Å 9.715(2)
c / Å 25.399(3)
V / Å-1 4245.6(11) Z 8
M /g mol-1 484.93 ρmass / Mg m-1 1.517
dcryst / mm 0.27, 0.22, 0.17 µabs / mm-1 3.205
λ / Å 0.71073 dmax, dmin / Å 12.70, 0.70
Nreflections (all) 86549 Nreflections (unique) 6504
Nparameters 224 Nrestraints 89
Rmerge / % 2.94 ∆ρmax,∆ρmin 0.481 / –0.523
R(F ) [I > 2σ(I)] / % 2.71 wR2(F 2) / % (all) 6.22

158



C.3. Cooperation with Yi Ding (Roesky group)

CCDC no. 2049791 formula C17H29Br0.3Cl2.7Sn2
crystal system monoclinic space group C 2/c
a / Å 27.222(3)
b / Å 8.752(2) β / ° 106.84(2)
c / Å 19.398(2)
V / Å-1 4423.3(13) Z 8
M /g mol-1 590.89 ρmass / Mg m-1 1.775
dcryst / mm 0.35, 0.25, 0.14 µabs / mm-1 3.138
λ / Å 0.71073 dmax, dmin / Å 13.03, 0.75
Nreflections (all) 33569 Nreflections (unique) 5495
Nparameters 220 Nrestraints 6
Rmerge / % 2.05 ∆ρmax,∆ρmin 0.426 / –0.214
R(F ) [I > 2σ(I)] / % 1.40 wR2(F 2) / % (all) 3.29
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C. X-ray structure determinations in cooperation with synthetic groups

CCDC no. 2067321 formula C36H64N6Si4
crystal system monoclinic space group C c
a / Å 11.985(2)
b / Å 22.595(3) β / ° 94.22(2)
c / Å 15.218(2)
V / Å-1 4109.9(10) Z 4
M /g mol-1 693.29 ρmass / Mg m-1 1.12
dcryst / mm 0.42, 0.40, 0.22 µabs / mm-1 0.176
λ / Å 0.71073 dmax, dmin / Å 11.29, 0.73
Nreflections (all) 85318 Nreflections (unique) 11096
Nparameters 652 Nrestraints 1644
Rmerge / % 3.45 ∆ρmax,∆ρmin 0.37 / –0.196
R(F ) [I > 2σ(I)] / % 3.40 wR2(F 2) / % (all) 9.28
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C.3. Cooperation with Yi Ding (Roesky group)

CCDC no. 2086521 formula C33H55Ge2N5Si
crystal system triclinic space group P 1
a / Å 14.858(2) α / ° 87.39(2)
b / Å 14.933(2) β / ° 88.93(3)
c / Å 16.872(3) γ / ° 78.48(2)
V / Å-1 3664.1(10) Z 4
M /g mol-1 695.09 ρmass / Mg m-1 1.26
dcryst / mm 0.23, 0.19, 0.15 µabs / mm-1 1.701
λ / Å 0.71073 dmax, dmin / Å 16.86, 0.77
Nreflections (all) 118941 Nreflections (unique) 16776
Nparameters 769 Nrestraints 0
Rmerge / % 3.26 ∆ρmax,∆ρmin 0.346 / –0.293
R(F ) [I > 2σ(I)] / % 2.22 wR2(F 2) / % (all) 5.61

161



C. X-ray structure determinations in cooperation with synthetic groups

CCDC no. 2086522 formula C39.5H68Ge2N6Si2
crystal system triclinic space group P 1
a / Å 12.576(2) α / ° 112.60(3)
b / Å 13.182(2) β / ° 93.17(2)
c / Å 14.738(3) γ / ° 96.32(2)
V / Å-1 2229.2(8) Z 2
M /g mol-1 828.35 ρmass / Mg m-1 1.234
dcryst / mm 0.27, 0.19, 0.12 µabs / mm-1 1.435
λ / Å 0.71073 dmax, dmin / Å 12.04, 0.78
Nreflections (all) 53118 Nreflections (unique) 9852
Nparameters 560 Nrestraints 555
Rmerge / % 3.35 ∆ρmax,∆ρmin 0.82 / –0.475
R(F ) [I > 2σ(I)] / % 3.05 wR2(F 2) / % (all) 7.83

162



D. Acknowledgements

No project can be completed without help from many other people and so it is customary
but also always the right thing to do to thank these people who were essential for the
overall success of this PhD period.

First, I want to thank my supervisor Prof. Dietmar Stalke for giving me the opportunity
to work on interesting projects for encouragement and focus, but also for the freedom to
pursue approaches of my own choosing. I feel that the degree to which this was possible
should not be taken for granted. At the same time, he also reminded me when collecting
and writing up the results was in order.

I also want to thank the other two members of my thesis advisory committee: Prof.
Martin Suhm and Dr Carlo Gatti. I always had the feeling you were taking the word
advice from the naming of this group seriously and I benefited from that substantially.
Additionally, I want to thank the other four members of my examination board for
agreeing to be a part of my thesis defence.

Additionally, I want to thank all the people participating on the MetalJet project. First
and foremost Tobias and Nico, who worked with me on and thought with me about the
machine and how to bring it to where we want it to be. But I also want to thank Holger
Ott, Julius Hållstedt, Martin Adam, Jürgen Graf, Michael Peeters and Irene Cimatti for
lots of discussions and help on this journey.

I want to thank the synthetic chemists who cooperated with me on projects. The first
to name is Timo Schillmöller. Thank you for sharing your thoughts on luminescence
and listening to mine. Second in this text but equally important is Christian Sindlinger.
Thanks for all the discussions, advice on and beyond chemistry and the two cooperation
projects which were part of this thesis. Finally, I also want to thank my two cooperation
partners from the group of Prof. Herbert Roesky, Mujahuddin M. Siddiqui and Yi Ding,
for very productive cooperation.

I want to thank Carlo Gatti and Davide Ceresoli for their hospitality during my research
stay in Milan, both while at work and during leisure time. Even though the luminescence
calculations might have been less yielding in concrete results, I feel that the basics and
approaches I learned in Italy were the foundation of the successes achieved afterwards.
Here, I also want to thank them for giving feedback on my ideas during and after the
research stay. Some of these ideas turned into Chapter 6, while others turned out to
be rubbish. From the same research stay, I also want to thank Bjørn Egede Grønbech

163



D. Acknowledgements

for being a great flatmate for that time. I appreciated the company, as well as the
conversations about crystallography and all the other topics we discussed.

This trip was made possible because I was part of the BENCh RTG. Additionally, I want
to thank all the members for sharing insight into their research and approaches and for
social activities, even if my participation in these stalled after COVID. I also want to
thank the planners of that RTG. I felt the overall conception set us up for success and I
enjoyed and profited from the goals, insights and opportunities the research training
group provided. I hope there is enough BENCh in this thesis in return.

I want to thank Christian Schürmann. Having been a friend and neighbour, he lured
me into the topic of crystallography and also became a great colleague. Additionally, I
want to thank all the other people that shared my office and passion for crystallography,
with nice conversations on and off-topic. To be named here in the cop-out alphabetical
order are Anna Lübben, Annika Münch, Christian Köhler, Corinna Willenberg, Felix
Engelhardt, Helena Keil, Katharina Rachuy and Lennard Krause.

Also thanks to the remaining Stalke group and the adjacent Krawczuk group as well. I
always felt welcome, enjoyed all the group activities be it in university, online during
the pandemic or in town and hope to see a lot of you again. I started writing out names,
but every line that could be drawn who to mention and where to stop felt too arbitrary
to me.

I want to thank my two flatmates, for saving my sanity during otherwise social distancing,
nice kitchen discussions and sharing a home with me.

Also keeping my sanity during COVID but especially during non-COVID times were
the people from the Postorchester Göttingen. Thank you for being such a large and
persistent part of my life in Göttingen. I will miss meeting so many nice people and
making music together.

And last but the opposite of least, I want to thank my family. First and foremost my
mother who always supported me during my life. But I also want to thank my brother,
step-father, step-brothers and everyone who always has been part of or has joined this
family.

164


	Introduction
	Kinematic theory of X-ray diffraction
	Diffraction from a one-dimensional grating
	Fourier transform and convolution in crystallography
	Constructing the electron density of an infinite lattice and its (inverse) Fourier transform
	The average density at finite temperature
	Atomic density models
	The reciprocal lattice on the detector: The Ewald construction
	From signal to the absolute squared of the structure factor
	Fitting the model to the measured intensity
	Quality indicators and data visualisation

	Anthracene structure properties correlation to luminescence
	The general approach for analysis
	Investigated features implemented in the automated analysis
	Challenging explanations for the 9,10-SPAnR luminescence
	Rationalising the wavelength shift in 1-SPAnH structures
	Conclusion

	Evaluating the low-temperature phase transition in decamethylsilicocene
	Background
	A phase change
	The importance of dispersion for the minimum structure
	Conclusion

	Evaluating the performance of an Indium MetalJet diffractometer
	The MetalJet X-ray source
	Detector technology for reducing low-energy contamination
	Structures in the investigation
	Evaluating the efficiency of the low energy filtering
	Comparison of the precision of the measured data
	Results of Independent Atom Model refinements
	Aspherical refinements and comparison to an established X-ray source
	Conclusion

	Tapping of PAW-DFT for use in Hirshfeld atom refinement
	Projector augmented waves
	Evaluation details
	Application to Hirshfeld atom refinement
	Dependence of the performance on the functional
	Dependence of the performance on real-space grid spacing and k-point grid
	Comparison to established approaches
	Comparison of computation times for different approaches
	Comment on the suggested structure factor by Wall
	Reducing the number of parameters for DFT benchmarking
	Conclusion and Outlook

	Summary and Outlook
	Determination of X-ray Data
	Measurement and Refinement of temperature-dependent SPAnPS/toluene data
	Measurement of decamethylsilicocene data
	Details for the evaluation of the MetalJet diffractometer

	Additional Details and Verification
	Additional information concerning the evaluation and experiments on fluorescence
	Difference electron density SPAnPS 298K
	Additional information on Decamethylsilicocene
	Additional Information concerning the MetalJet
	Additional Information for the PAW-HAR evaluations

	X-ray structure determinations in cooperation with synthetic groups
	Cooperation with Mujahuddin M. Siddiqui (Roesky group)
	Cooperation with Christian P. Sindlinger
	Cooperation with Yi Ding (Roesky group)

	Acknowledgements

