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Abstract
The aim of precision medicine is to identify the treatment that provides the best re-
sponse for a patient. For this purpose, predictive biomarkers play a crucial role.
Due to their ability to define subgroups of patients that respond differently to treat-
ment, they are highly useful. Biomarker-related subgrouping of the patient popula-
tion may have different reasons, e.g. an improved benefit-risk balance, and can be
supported by different sources of evidence, e.g. clinical data or pharmacological evi-
dence investigating the biochemical or physiological effect of a drug on cells, organs,
and systems. To assess the usefulness of a biomarker stratifying the patient popula-
tion considering the presented evidence, a classification scheme with five increasing
levels of evidence with regard to the expected molecular mechanism and the clini-
cal evidence was proposed as part of this dissertation. Additionally, for each of the
categories, an example of a biomarker-drug pair were suggested.
As the mechanism of action of a drug is not always fully understood or maybe even
unknown, data-driven identification of differential treatment effects in subgroups
suggesting treatment-by-subgroup or more precisely treatment-by-biomarker inter-
actions is of interest to inform further research. Various data-driven subgroup iden-
tification methods have been proposed. However, neutral and systematic compar-
isons of their performance in simulation studies are rare. Therefore, I conducted a
simulation study in order to compare five popular approaches regarding their ca-
pability to select a target population for subsequent trials. Although most of the
methods performed well in settings with larger effects or more substantial sample
sizes, all methods have difficulties in more realistic drug development settings with
sample sizes that are not sufficiently large for identifying treatment heterogeneity
across the population.
Pooling data from multiple trials can increase the sample size on which subgroup
identification is performed. When pooling data from multiple studies, however,
the between-trial heterogeneity must be taken into account, as otherwise spurious
subgroups might be identified. Therefore, I proposed the metaMOB approach for
subgroup identification in individual participant data (IPD) meta-analysis. The pro-
posed approach combines commonly made assumptions in random-effects meta-
analysis regarding between-trial heterogeneity and the generalized mixed-effects
model tree algorithm based on model-based recursive partitioning (MOB). Using a
Monte-Carlo simulation study, I showed that metaMOB is an appropriate subgroup
identification method for IPD resulting from multiple heterogeneous trials.
Discrete time-to-event data needs specialised methods for data analysis including
subgroup identification. Although MOB is applicable to a wide range of different
outcome measures, e.g. normal, or binary, it is not suitable for discrete time-to-event
data. For discrete time-to-event models which are based on binary outcome models,
I could show that the type I error rate of the M-fluctuation test used as splitting cri-
terion in MOB is inflated. I illustrated the inflated type I error rate in a simulation
study and proposed a revised version of MOB for discrete time-to-event data, which
is based on a resampling procedure and which controls the type I error more closely.
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Chapter 1

Introduction

1.1 Precision medicine and biomarkers

Precision medicine, often referred to as personalized medicine, aims at targeting the
right treatments for the right patients at the right time [35, 74]. To treat a disease, the
choice of drug or intervention should generally take into account both the disease
and the characteristics of the patient to be treated. The treatment should promise
the greatest benefit for the patient compared to alternative treatments and should
have the least safety concerns. In drug development, commonly the one size fits
all approach is used, meaning that the existence and magnitude of treatment and
safety effects are established at a population-level, comparing outcomes in the same
patients under different treatment conditions [46]. In contrast, precision medicine
takes into account individual differences. Precision medicine does not mean that
treatments are developed individually for each patient. Rather, the aim is to iden-
tify patients with similar treatment effects, which constitute subgroups. These sub-
groups are also expected to benefit particularly from the treatment compared to
other subgroups. For instance, in retrospective analyses, the drugs panitumumab
and cetuximab have been shown to be effective only in patients with the natural,
non-mutated (unchanged) form, i.e. the wild-type, of the gene Kirsten rat sarcoma
virus (KRAS) [61].
Precision medicine has become popular in recent years, as can be seen by the ap-
provals of the Food and Drug Administration (FDA): The number of FDA approvals
classified as personalised medicines by the Personalized Medicine Coalition [69] has
increased from 28% in 2015 to 35% in 2021. Technological advances such as next-
generation sequencing, which allow better characterisation of individuals through
genetic and proteomic biomarkers, have contributed to the popularity alongside the
US precision medicine initiative [87].
The term biomarker, however, does not necessarily refer to genes, proteins, or other
biological molecules found in blood, other body fluids, or tissues. Although there
are restrictive definitions of biomarkers, e.g. by the European Medicines Agency
(EMA) [29], more general definitions are also common. The Biomarkers Definitions
Working Group [9] defines a biomarker as a ”characteristic that is objectively mea-
sured and evaluated as an indicator of normal biological processes, pathogenic pro-
cesses, or pharmacologic responses to a therapeutic intervention”. In my disser-
tation, I use the term biomarker to refer to clinical covariates, e.g. demographics,
disease severity scores, or other imaging, pharmacological, genomic, or proteomic
biomarkers.
In drug development biomarkers can have different purposes. They can be used
for the diagnosis of a disease, for predicting the course of a disease or the response
to treatment, to stratify patient populations, to monitor patients, or as an endpoint
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in clinical trials [30]. For precision medicine, biomarkers that are able to discrim-
inate individuals with different treatment or safety profiles are of particular inter-
est. These biomarkers are called predictive biomarkers and have to be distinguished
from prognostic biomarkers which predict the natural course of a disease, e.g. the
likelihood of a clinical event. A prognostic biomarker can discriminate individuals
with different baseline risks for a clinical event of interest [30]. Figure 1.1 illustrates
the difference of prognostic and predictive biomarkers with a hypothetical exam-
ple. The outcomes of the experimental and control groups are shown for two dis-
joint biomarker-defined subgroups. The two subgroups are referred to as biomarker
positive (BM+) and biomarker negative (BM-). In the following, BM+ refers to the
subgroup in which the outcome is better or the treatment success is greater. For
subgroups defined by prognostic biomarkers, the outcome is different in the two
biomarker groups irrespective of the treatment group. The difference between the
treatment groups in BM+ and BM- is the same (see Figure 1.1 (A)). For purely predic-
tive biomarkers, however, a treatment difference between the BM+ and BM- groups
is observed (see Figure 1.1 (B)). Therefore, predictive biomarkers are drug specific,
whereas prognostic biomarkers are not.

(A) Prognostic (B) Predictive

FIGURE 1.1: Schematic plot of the outcome for the experimental and
control treatment in biomarker-defined subgroups. Larger outcome
values are better. (A) The biomarker is prognostic only and (B) the
biomarker is predictive only. BM+, biomarker positive subgroup;
BM-, biomarker negative subgroup.

Although a one size fits all approach is often employed in the development of medi-
cines, it is acknowledged that the treatment might be heterogeneous across sub-
groups. The regulatory agencies FDA and EMA issued guidelines [24, 33] related
to subgroup analyses. The EMA guideline on subgroup analysis focuses on ex-
ploratory subgroup analyses [24]. Therefore, guidance on confirmatory subgroup
analysis involving one or two prospectively defined subgroups for evaluating the
efficacy profile of a new treatment can be found in other documents, e.g. in the
guideline on multiplicity issues [22] or in the Reflection paper on methodological is-
sues in clinical trials planned with an adaptive design [21]. For confirmatory subgroup
analyses the type I error rate is commonly controlled and only one or two prespeci-
fied subgroups are considered [57].
Exploratory subgroup evaluation and post-hoc subgroup evaluation as defined by
Lipkovich et al. [57] consider a relatively small number of prespecified subgroups.
The EMA guideline distinguishes three scenarios in which exploratory subgroup
analysis might be pursued: (1) clinical data are overall statistically persuasive with
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the primary analysis showing therapeutic efficacy, (2) clinical data are statistically
persuasive in the primary analysis, but the efficacy or risk-benefit is borderline or
unconvincing, and (3) clinical data failed to establish treatment efficacy in the pri-
mary analysis.
In confirmatory trials that showed statistically persuasive results in the primary
analysis population, the consistency of efficacy or safety is routinely assessed. In
fact, health authorities require these exploratory subgroup analyses to investigate
small numbers of predefined subgroups of the overall patient population, e.g. gen-
der, age, region, and known prognostic biomarkers [24, 47]. The analyses of treat-
ment heterogeneity form the basis for assessing the consistency and the applicability
of the treatment effect to the patient population. Label restrictions may even apply
to an inconsistent treatment effect or an unacceptable safety profile in a subgroup. In
the case of Gefitinib (brand name IRESSA), the initial market authorisation applica-
tion at the EMA was for the treatment of adults with locally advanced or metastatic
non-small cell lung cancer (NSCLC). Based on the results of a post-hoc analysis of
a study for Gefitinib showing an interaction between Epidermal growth factor re-
ceptor (EGFR) tyrosine kinase and treatment the indication was restricted to adult
patients with locally advanced or metastatic NSCLC with activating EGFR tyrosine
kinase [27].
In failed confirmatory trials or trials with borderline treatment efficacy or risk-benefit
as described by the subgroup guideline of the EMA [24], subgroup analysis and the
identification of subgroups with increased or decreased treatment effect are also of
interest. However, confirmatory conclusions are no longer possible if the primary
null hypothesis cannot be rejected and further studies are needed [24]. Addition-
ally, exploratory subgroup selection based on overall non-significant trials should
be performed with caution because the subgroup treatment effect estimate is usu-
ally associated with a high bias [85].
The exploratory subgroup analysis plan defined in the study protocol should in-
clude prespecified subgroups defined by biomarkers, which are assumed to be prog-
nostic or which are assumed to modify the treatment effect [47]. The inclusion of sub-
groups in the study protocol requires prior hypotheses regarding a biomarker being
prognostic or predictive. The mechanism of action of a drug generates such hy-
potheses regarding treatment heterogeneity. Especially in oncology, modern drugs
are developed in order to act on specific genetic targets. Therefore, it can be expected
expected that the drug is only effective in individuals in whom the target is present.
The genetic biomarker, the target, can be considered predictive because it causes dif-
ferences in treatment efficacy between patients with and without the biomarker, e.g.
a gene mutation. If the drug’s mechanism of action is not fully understood, statis-
tical approaches for identifying subgroups with differential treatment effect are of
interest in order to generate hypotheses. Thus, they help to inform the design of fu-
ture trials, e.g. multi-population designs or adaptive enrichment designs [7, 14, 33,
36, 49, 90]. The aim of subgroup identification or subgroup discovery, as referred
to by Lipkovich et al. [57], is to select subpopulations in which treatment efficacy
or safety is improved. Commonly, methods for identifying subgroups use a larger
number of biomarkers to form subgroups with a differential treatment effect. Statis-
tically speaking, identifying subgroups with different treatment effects is equivalent
to identifying treatment-by-subgroup interactions. Subgroups are usually defined
by a single biomarker or a combination of biomarkers. Biomarkers that are involved
in the interaction and thus define the subgroup are predictive. However, the identi-
fication of subgroups can be difficult in practice. This is due to the fact that clinical
trials are usually not powered to detect interactions. Moreover, to define subgroups
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cut-off values for continuous biomarkers have to be chosen. When using interac-
tion tests, different cut-off values increase the number of subgroups to be tested and
thus the risk of chance findings. Moreover, additional cut-off selection increases the
risk of misclassifying patients into either the BM+ or BM- group. Another challenge
arising with subgroup identification is the overly optimistic estimated treatment ef-
fect within the identified subgroups. This is particularly relevant when planning
subsequent studies which are based on estimated treatment effects in the identified
patient populations. If these estimates are biased, this can lead to wrong decisions
in study planning, resulting in wasted time and money or missed opportunities for
both sponsors and society [57]. In addition, subgroups with lower prevalence may
not be very attractive for further planning by the sponsor.

1.2 Research questions

In my research, I focused on the identification of subgroups differing with respect
to their treatment benefit. In short, I first examined the types of evidence that sup-
port the plausibility and utility of biomarkers included in the subgroup definition
when it comes to their ability to discriminate individuals with differential treatment
effects. Second, I focused on statistical methods for the identification of subgroups
in precision medicine. To that end, I compared five machine learning approaches in
a simulation study. Third, I proposed a subgroup identification approach for indi-
vidual participant data from multiple studies and an approach tailored to discrete
time-to-event event outcomes. In the following, I outline my motivation for investi-
gating these issues in detail.

1.2.1 Framework for classifying evidence for biomarker-driven patient
selection

Biomarker-based patient selection in clinical trials can have various reasons. The
biomarker may improve the disease definition or prognosis, or it may suggest a bet-
ter treatment effect or a reduction of adverse effects [23]. Although the benefit of this
restriction does not have to be demonstrated for the approval of drugs, regulatory
considerations relate to the usefulness of this restriction. Often, however, the evi-
dence for justifying the patient selection is sparse or unclear. Moreover, the sources
of this evidence are diverse and its relevance may be vague.
It is common practice to stratify patients into biomarker-defined subgroups due to
improvements in the safe and effective use of drugs based on prior knowledge of
their mechanism of action. In the absence of a full understanding of the mechanism
of action, data-driven evidence of treatment-by-subgroup interactions may be used
to support the pharmacological and biological reasoning of the predictive nature of
a biomarker. Data-driven evidence for treatment-by-subgroup interactions is scarce,
because clinical trials are usually not powered to detect statistically significant in-
teractions. Additionally, for drug approval, it is not necessary to demonstrate the
benefits of this restriction. The efficacy and tolerability of a drug has to be demon-
strated only within the intended patient population.
Nevertheless, in the case of a treatment approved in a biomarker-positive subgroup,
extrapolation of the benefit-risk ratio to the biomarker-negative population may be
considered at a later stage to expand the indicated patient population. To make such
an extrapolation, however, data from biomarker-negative patients are necessary, and
the biological plausibility of the benefit in this subgroup must also be considered.
For instance, the mode of action in different biomarker-drug combinations may be
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different, so data on treatment in biomarker-negative patients may not be necessary
or even ethical. Therefore, the benefit of a biomarker for precision medicine is de-
fined by biological plausibility combined with empirical evidence from clinical and
non-clinical studies [24].
To better assess the usefulness of biomarker-based subgrouping, a classification of
the level of evidence is needed that distinguishes between empirical and biological
evidence for patient selection. My work [44] proposed such a framework allow-
ing for a classification of the underlying evidence that can support regulatory and
scientific decision-making with respect to biomarker-based selections. In addition,
for the proposed categories, drugs approved by the EMA with biomarker informa-
tion on the label were classified into the proposed categories based on the evidence
provided in their European Assessment Reports or the Summary of Product Char-
acteristics.

1.2.2 Comparison of subgroup identification methods

A variety of methods have been presented in the past few years for the data-based
identification of subgroups with differential treatment effects. The systematic review
by Ondra et al. [66] found 86 articles on the identification and confirmation of tar-
geted subgroups. The tutorial by Lipkovich et al. [57] includes around 60 methods
for subgroup identification. For the identification of treatment-by-subgroup inter-
actions, tree-based methods are popular, as they identify predictive biomarkers and
select a cut-off value for continuous biomarkers to define decision rules. Interaction
trees (IT) [83], model-based recursive partitioning (MOB) [77], subgroup identifica-
tion based on differential effect search (SIDES) [58], and the simultaneous threshold
interaction modelling algorithm (STIMA) [20] are examples of tree-based methods
already described elsewhere that aim at identifying subgroups with an increased
treatment effect. The adaptive refinement by directed peeling algorithm (ARDP)
for subgroup identification, as included in Patel et al. [68], is also an example of a
subgroup identification method identifying predictive biomarkers with their corre-
sponding cut-off value. Despite the availability of a wealth of methods, there are
few neutral comparative studies focusing on the comparison itself. Boulesteix et al.
[11, 12, 13] stress the need for neutral comparisons that compare existing methods
described elsewhere and are conducted by a group of researchers that are (ideally)
equally familiar with the methods being compared. Studies published before Huber
et al. [42], i.e. [1, 19, 79], focused on emphasizing the differences between methods
and did not always take into account scenarios that are relevant in drug develop-
ment. In drug development, it is often of interest to identify one subgroup with
a larger treatment effect, e.g. to inform the trial design of future studies in order
to increase the probability of a successful subsequent trial. The results of the sub-
group identification methods that I included in the comparison study are used to
determine which subgroups will comprise the target population, that is, a subgroup
with a larger treatment benefit. I proposed a subgroup criterion for this selection
[42]. The treatment effects in each of the identified subgroups have to exceed a pre-
specified threshold in order to be assigned to a potential future target population,
the biomarker-positive (BM+) subgroup. Using the proposed subgroup criterion I
compared five subgroup identification methods in my work [42], namely, IT, MOB,
SIDES, STIMA, and ARDP in the situation of a randomized controlled clinical trial.
By using the subgroup criterion, comparable results are obtained for these methods.
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MOB, IT, and SIDES are able to identify multiple subgroups, ARDP identifies a se-
quence of potential subgroups, and the application of STIMA results in a regression
model with interaction terms. To evaluate which method selects the BM+ subgroup
best in which situation, the methods were compared in a Monte Carlo simulation
study.

1.2.3 Subgroup identification in individual participant data meta-analysis

Comparison studies on subgroup identification methods including my work [42]
showed that sample size is one of the important factors influencing the performance
of subgroup identification methods as measured by different criteria, including cor-
rectly identifying treatment-by-biomarker interactions, and false discovery rate, i.e.
spurious identification of a subgroup although the treatment effect is homogeneous
across the entire population [1, 42, 79]. Clinical trials are usually not powered to de-
tect predefined treatment-by-subgroup interactions in exploratory subgroup analy-
ses [16], thus it is not surprising that data from one clinical trial are often also not
sufficient for the identification of subgroups with differential treatment effects. This
might not only apply to clinical trials, but also to other experiments such as stud-
ies in social sciences or preclinical experiments in life sciences. Pooling data from
multiple trials may increase the sample size. For instance, repositories of individ-
ual participant data (IPD) with the aim of identifying subgroups of patients with
differential treatment effects were developed by Patel et al. [67] for low back pain
and the International Weight Management in Pregnancy Collaborative group [86]
for gestational weight gain. The investigation of differential effects in subgroups of
active scheduling as behavioural treatment for depression based on sixteen studies
was conducted by Cuijpers et al. [18].
When pooling data from multiple studies in an IPD meta-analysis, it is important to
take into account heterogeneity between studies resulting from, for example, differ-
ences in study designs, study populations, study quality, choice of comparator inter-
vention, or other study-specific influences. Two (very different) types of between-
trial heterogeneity may be present in data: heterogeneity in the baseline (control
group) outcomes as well as heterogeneity in treatment effect sizes. Although Jack-
son et al. [48] consider only aggregate meta-analysis models and binary outcomes in
their review article on random-effects models for meta-analyses, the approach to ac-
count for heterogeneity between studies in terms of treatment effect is the same in all
models considered: Treatment effects are assumed to be normally distributed. The
models in Jackson et al. [48] differ in their assumptions regarding the heterogeneity
of baseline risks or the independence of treatment and baseline random effects. To
account for heterogeneity in the baseline, the intercept term can be either modelled
by separate intercepts for each trial, so-called stratified intercepts, or by random in-
tercepts. While stratified intercepts do not require assumptions about the distribu-
tion of intercepts across studies, a (parametric) random intercept approach requires
fewer parameters to be estimated [72]. Generalised mixed models (GLMM) are in-
creasingly used for IPD meta-analyses [80], as they do not require aggregation of
IPD data to be analysed in a second step with known and appropriate meta-analysis
models, e.g. Jackson et al. [48].
GLMMs are the basis for most of the proposed methods of subgroup identification
on IPD data accounting for trial heterogeneity [51]. However, the approaches pub-
lished so far are not sufficiently flexible, e.g. Wang et al. [91, 92], and also tend to
model heterogeneity between studies using simpler models, e.g. Mistry et al. [62]
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and Fokkema et al. [32]. The approaches by Wang et al. [91, 92] investigate the treat-
ment heterogeneity across one continuous biomarker only by either a fixed-effect
[91] or a random effect [92] meta-analysis approach. The detection of interactions of
multiple biomarkers with the treatment indicator variable is not possible using this
framework. Tree-based subgroup identification methods accounting for between-
study heterogeneity allow the detection of more complex interactions. However, the
tree-based methods by Mistry et al. [62] extending SIDES [58] and by Fokkema et al.
[32] extending MOB [96, 77] only consider heterogeneity in the baseline. Ignoring
between-trial heterogeneity can lead to the identification of wrong splitting variables
and thus wrong definitions of the subgroups [78].
The aim of my research was to introduce and assess an approach that systematically
combines commonly made assumptions in meta-analysis models with the GLMM-
tree algorithm by Fokkema et al. [32]. GLMM-trees are based on MOB [77, 96] which
showed a good or even the best performance in various neutral comparison stud-
ies [1, 42, 59, 79]. In particular, I focused on using different assumptions for the
between-trial heterogeneity in the baseline in the introduced metaMOB approach
and their impact on the performance regarding the false discovery rate and correctly
identifying subgroups.

1.2.4 Subgroup identification for discrete survival data

Event times are sometimes not measured on a continuous but a discrete scale. In
some situations, it might be measured on a rather coarse scale (e.g. grouped or
rounded event times). Common examples of discrete event times are clinical or
epidemiological studies with a fixed number of follow-up visits not allowing for
continuous monitoring of event times, e.g. [81]. The time to infection, e.g. [6], or
time to death, e.g. [39], of patients collected on a daily basis in intensive care units
are other examples of event times measured on a discrete scale. Intrinsically discrete
time duration is encountered in studies investigating the time to pregnancy assessed
by the number of menstrual cycles, e.g. [73, 31].
The discreteness of the event times should be accounted for appropriately as, oth-
erwise, the estimators could be biased and the predictions inaccurate. Furthermore,
methods for continuous event times assume that there are no “ties”. Ties are ob-
servations with the same event time, which commonly occur in discrete time-to-
event data. Methods appropriate for the analysis of discrete event times have been
proposed by Tutz and Schmid [89], Willet and Singer [94] and Schmid and Berger
[75]. Tree-based models including random forest approaches specifically for dis-
crete time-to-event data have been proposed by Schmid et al. [76], Bou-Hamad et
al. [10] and Moradian et al. [63]. These methods aim to identify subgroups defined
by prognostic markers by partitioning the data based on impurity measures instead
of a formal statistical test. The semi-parametric model-based recursive partition-
ing approach, however, relies on formal statistical hypothesis testing to identify the
subgroups defined by both prognostic and predictive biomarkers. Additionally, it
is applicable to a broad range of outcome measures. Besides continuous outcomes
as assumed in two of my publications [42, 43], MOB can also be used for binary or
count data, as the splitting criterion and the node-wise fitting in MOB is based on
generalised linear models. MOB is also applicable to survival regression [96], but it
considers the time-to-event outcome to be continuous throughout. As the likelihood
of a discrete time-to-event model is equivalent to the likelihood of a binary regres-
sion model, it seems that MOB can be readily applied to discrete time-to-event data
by using the standard implementation for MOB [41]. MOB, however, controls for the
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percentage of incorrectly identified subgroups in binary models with independent
subjects. The percentage of falsely identifying subgroups although none are present
is controlled by the test used as splitting criterion in MOB, namely the M-fluctuation
test, and by the use of multiplicity adjustments [42, 79, 59]. The M-fluctuation test
investigates parameter instabilities of the regression model assumed for MOB [95,
96]. As discrete survival models are fitted using an augmented data matrix, the
rows of the matrix are not independent as subjects are commonly represented by
multiple rows. Therefore, the assumption of independent observations made for the
M-fluctuation test is violated and the asymptotic theory of the test is not valid for
discrete event times.
In my research I showed that applying the standard MOB (for binary data) to dis-
crete time-to-event data, i.e. ignoring dependencies in the augmented data matrix,
leads to a systematic inflation of the type I error rate. Therefore, I developed a
method for identifying subgroups defined by either prognostic, predictive, or prog-
nostic and predictive biomarkers specifically tailored to modelling discrete survival
data that controls the type I error rate better compared to the original MOB proce-
dure. The method employs a permutation procedure that accounts for the structure
of the augmented data matrix used for modelling discrete time-to-event data.

1.3 Outline

In this dissertation, I address the research questions described in Chapter 1.2. The
results of my research have either been published in peer-reviewed journals [42, 43,
44] or are currently under review [45]:

• [42] Huber, C., Benda, N., and Friede, T. “A comparison of subgroup identifi-
cation methods in clinical drug development: Simulation study and regulatory
considerations”. In: Pharmaceutical Statistics 18.5 (2019), pp. 600–626

• [43] Huber, C., Benda, N., and Friede, T. “Subgroup identification in individual
participant data meta-analysis using model-based recursive partitioning”. In:
Advances in Data Analysis and Classification 16.3 (2022), pp. 797–815

• [44] Huber, C., Friede, T., Stingl, J., and Benda, N. “Classification of Companion
Diagnostics: A New Framework for Biomarker-Driven Patient Selection”. In:
Therapeutic Innovation & Regulatory Science 56.2 (2022), pp. 244–254

• [45] Huber, C., Schmid, M., and Friede, T. Model-based recursive partitioning for
discrete event times. (2022). URL: http://arxiv.org/pdf/2209.06592v1

In Chapter 2, I present the details of my work addressing the research questions
outlined in Chapter 1.2. Chapter 3 includes a critical discussion of the chosen ap-
proaches and proposed statistical methods. Furthermore, I provide an outlook on
future research regarding subgroup identification for precision medicine.

http://arxiv.org/pdf/2209.06592v1
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Chapter 2

Proposed approaches for
identification of biomarker defined
populations

2.1 Classification framework for biomarker-drug pairs

The results of my research on different types of evidence for the plausibility and
usefulness of a biomarker-based patient selection are published in Huber et al. [44].
Patient selection is commonly based on a companion diagnostic, that is a medical de-
vice, which is often an in vitro device. This diagnostic device identifies patients that
are suitable or unsuitable for a safe and effective use of a specific drug. In my work
I propose a classification scheme for the evidence of a biomarker’s predictive value
in relation to a specific drug. The proposed classification considers two dimensions
for biomarker-drug pairs. First, the pharmacological mechanism and the biological
plausibility of the biomarker being the drug target, and second the evidence with re-
spect to clinical data. Furthermore, a distinction is made between comparative and
non-comparative evidence for these two dimensions. Comparative evidence can be
obtained from animal or clinical studies in which the treatment is compared to a con-
trol or in which the biomarker is associated with the drug’s mechanism of action,
e.g. the biomarker characterizes the drug target. Therefore, a differential effect in
biomarker-positive and biomarker-negative patients can be assumed. Comparative
clinical evidence allows us to evaluate the interaction between drug and biomarker.
The proposed classification consists of five categories with increasing evidence for a
biomarker-based patient selection:

A Biomarkers with non-comparative evidence:
Pharmacological mechanisms indicate a prognostic value of the biomarker
which is unrelated to the drug target

B Biomarkers with comparative clinical data only:
Comparative clinical data are available indicating a prognostic value

C Biomarkers with comparative pharmacological evidence:
Pharmacological mechanism indicates treatment benefit depending on biomarker
expression

D Biomarkers with comparative pharmacological and clinical evidence:
Pharmacological evidence and clinical data suggest a differential treatment ef-
fect in biomarker-defined subgroups

E Biomarkers demonstrated to be predictive in confirmatory clinical studies:
Evidence generated by confirmatory study stratifying patients by biomarker
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status to demonstrate significant and relevant interaction between treatment
and biomarker-defined subgroup.

Although comparative evidence is available for biomarkers of the biomarker-drug
pairs categorized in B, the level of evidence for the biomarker being predictive is
weak. Larger studies with stratification by biomarker status in order to demon-
strate the predictive effect of the biomarker are needed. However, conducting such
studies does not seem realistic without a biological rationale for a differential treat-
ment effect in the biomarker-defined subgroups. Biomarker-drug pairs of category
C are reasonable candidates for further investigation of the predictive value of the
biomarker in subsequent trials. For some biomarker-drug pairs, though, the gen-
eration of comparative clinical data and an increase in evidence level may not be
necessary or even possible due to ethical concerns if pharmacological evidence sug-
gests adverse effects on biomarker-negative patients.
For biomarker-drug pairs of category C, D, and E aspects such as the pathogenic
mechanism, the relationship of biomarker and efficacy, and biomarker and safety
have to be considered. My work distinguished between three cases relating to cate-
gories C, D, and E [44]:

• Detection of the specific pathological change implying zero efficacy if the bio-
marker is negative, e.g. BCR-abl for the drug Imatinib [26].

• Measures of the activation of a pathway (yes/no), implying that the drug is
more likely to be efficacious if the biomarker is positive. However, efficacy
ultimately depends on other surrounding factors, e.g. tumour heterogeneity.
The biomarker might therefore not be valid in all contexts, e.g. KRAS is valid
as a biomarker in colon cancer but not in lung cancer for detecting an inactive
epidermal growth factor receptor (EGFR) pathway in treatment with EGFR
inhibitors [53].

• Indirect measure of overexpression implying a higher efficacy if the biomarker
is positive. However, biomarker-positive non-tumour cells may have safety
implications, e.g. HER2 for the drug trastuzumab [25].

For the proposed categories I identified ten biomarker-drug pairs approved in the
EU based on the PharmGKB Database [93], which collects knowledge about the
impact of genetic biomarkers on drug responses and identifies drugs with labels
containing pharmacogenetic information. For the categorization of the evidence in-
formation published in the documents such as the European Assessment Reports
or Summary of Product Characteristics which are available on https://www.ema.
europa.eu/en are used.
Only for category E describing the highest level of (confirmatory) evidence, no bio-
marker-drug pair could be identified. However, the categorization of biomarker-
drug pairs can change over time, if further studies on the drug and biomarker are
carried out. An example of category C is the drug osimertinib together with the
biomarker EGFR. Osimertinib was approved by the EMA and FDA for advanced
non-small cell lung cancer (NSCLC) as first-line treatment for patients with activat-
ing EGFR mutations or patients with locally advanced or metastatic EGFR T790M
mutation-positive NSCLC [28, 34]. The inhibitory activity against EGFR was demon-
strated in vitro and tumor shrinkage was shown in mouse lung tumor models [28].
Clinical studies of osimertinib did not include patients without EGFR mutations.
Therefore, no comparative clinical evidence is available which would justify a clas-
sification into a higher category. Further examples of biomarker-drug pairs and the

https://www.ema.europa.eu/en
https://www.ema.europa.eu/en
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evidence category they belong to can be found in Huber et al. [44].
In summary, I outlined a classification scheme for biomarker-drug pairs indicating
increasing evidence of the usefulness of a biomarker stratifying the patient popula-
tion. The categories are based on both pharmacological and data-based evidence.
The classification is useful for deciding whether the presented evidence is appropri-
ate for justifying biomarker-defined patient selections. For each proposed category
except category E, examples of biomarker-drug pairs were identified. To conclude,
the classification scheme can help to strengthen and focus discussions in regulatory
authorities on the qualification of new biomarkers and improve the comparability of
different biomarker-drug pairs.

2.2 Comparison of subgroup identification methods

Although numerous approaches for the identification of subgroups with differential
treatment effects are available [57], comparisons of these approaches are still scarce.
In the following, I summarize the main results of the comparison of five subgroup
identification methods published in Huber et al. [42]. First, I outline the methods.
Second, I introduce the criteria used for assessing the performance of the methods.
Last, I summarize the key findings of the simulation study.
For the comparison study methods were selected that are applicable to a continu-
ous outcome and also include a cut-off selection for continuous biomarkers. The
five methods included in the comparison study are Interaction tree (IT) [83], model-
based recursive partitioning (MOB) [77], subgroup identification based on differen-
tial effect search (SIDES) [58], simultaneous threshold interaction modelling algo-
rithm (STIMA) [20], and adaptive refinement by directed peeling algorithm (ARDP)
[68].

Methods

In the comparison study only the situation of a randomized controlled clinical trial is
considered. The data consist of N independent and identically distributed observa-
tions {(yi, ai, zi) : i = 1, . . . , N}. The data includes the continuous outcome variable
Y, the treatment indicator A, with A = 1 for the experimental and A = 0 for the con-
trol group, and p covariates Z = (Z1, . . . , Zp). The observed values for subject i of Y,
A and Z are denoted by yi, ai and zi, respectively. It is assumed that the covariates
Z potentially define subgroups with differential treatment effects. Therefore, the co-
variates Z are investigated with regard to a potential interaction with the treatment
effect. Without loss of generality, it is assumed that larger values of the outcome Y
are preferable. The expected outcome is denoted by µ.

Interaction trees start with growing a large initial tree following the Classification
and regression trees (CART) method [15] using the squared t-test for testing the null
hypothesis H0 : β1 = 0 of the following linear regression model as splitting criterion:

µij = α + β0 · ai + γ · I(zij ≤ c) + β1 · ai · I(zij ≤ c) for i = 1, . . . , N and j = 1, . . . , p,

with µij denoting the expected outcome of subject i for the model considering co-
variate Zj. The indicator function is denoted by I(·) . The biomarker Zj with its
corresponding cut-off value c yielding the maximum t2 test statistic value is selected
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for partitioning the data. The interaction-complexity criterion by Su et al. [83] is ap-
plied for pruning the initial interaction tree and for selecting the best-sized subtree
from the resulting sequence of nested subtrees. In order to reduce the overoptimism
in the results induced by applying the same complexity criterion to both pruning
and final tree selection, an independent subset of the data is used for selecting the
final tree.

Model-based recursive partitioning seeks to improve the model fit by partitioning
the data with respect to some biomarkers Z and fitting separate local regression
models of the form

µi = α + β0 · ai (2.1)

within each of the resulting partitions, where the expected outcome of subject i is de-
noted by µi. The data are partitioned if the model parameters α and β0 differ across
resulting partitions. This is assessed via the M-fluctuation test [95]. MOB applies a
pre-pruning procedure, i.e. the data are only partitioned if the at least one of the null
hypotheses of parameter stability of α or β0 across Zj(j = 1, . . . , p) can be rejected.
After the selection of the partitioning variable Zj∗, the cut-off value is selected to
maximize the sum of the log-likelihoods of the models in the two resulting subsets.

Simultaneous threshold interaction modelling algorithm uses a linear regression
model for modelling the main effects and a tree for modelling higher-order inter-
actions. For combining theses two approaches the tree is embedded in a reference
model. For subgroup identification the first split is forced on the treatment indicator
variable. Therefore, the initial reference model of STIMA which includes the tree in
the model equation is defined as follows (Equation (2.2)):

µi = α + β0 I(ai = 1) +
p

∑
j=1

γjzij. (2.2)

The splitting procedure compares the current reference model, e.g. Equation (2.2), to
an expanded model based on a tree with an additional split, e.g. Equation (2.3).

µi = α + β0 I(ai = 0) + β1 I(ai = 1)I(zij∗ > c∗) +
p

∑
j=1

γjzij. (2.3)

The variable Zj∗ and cut-off value c∗ defining the splits of the tree are selected by
evaluating the relative increase in variance accounted by an expanded model. The
splitting procedure is recursively applied using the model with the selected split as
new reference model until a predefined stopping criterion is met. STIMA applies the
pruning procedure for CART [15] on the obtained tree.

Subgroup identification based on differential effect search evaluates a splitting cri-
terion in order to identify M best splits (M = 3 in the simulation study) of each node.
The splitting criterion is defined as

pSIDES = 2 min(1 − Φ(Tleft), 1 − Φ(Tright)), (2.4)
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with Tle f t and Tright denoting the test statistics for a one-sided test of no differen-
tial treatment effect in the resulting left and right child nodes, respectively. The
cumulative distribution function of the standard normal distribution is denoted by
Φ(·). The splitting procedure only considers covariates that do not define the par-
ent nodes. Furthermore, only the child node of the identified pair of nodes with the
larger treatment benefit is retained, provided the p-value is significant at a one-sided
nominal level which is found using a resampling-based method. The splitting is re-
peated in the retained child nodes until no further predefined improvement of the
test statistic value in the resulting child nodes compared to the parent nodes can be
observed or a maximum tree depth or a prespecified minimum node size is reached.

Adaptive refinement by directed peeling does not partition the data but peels off
observations in each iteration step resulting in a sequence of nested subgroups which
can be illustrated by a tree. LeBlanc et al. [54] originally introduced ARDP for de-
tecting subgroups with poor prognosis. An adaption for treatment-by-biomarker
interactions was introduced in Patel et al. [68].
In iteration step r for each variable Zj, a prespecified number of observations is
peeled off in the direction indicated by the model

µi = α + β0ai +
p

∑
j=1

β jzijai + γjzj.

To increase the estimated treatment effect within the resulting region Sr
j , e.g. for a

positive sign of the interaction β j(j = 1, . . . , p), smaller values of Zj are peeled off as
larger values of the covariate Zj lead to larger treatment effects.
The region Sr

j∗ with the largest treatment effect compared to the subgroup selected
in the previous iteration step Sr−1 is selected as the subgroup of the current iteration
Sr. This procedure is repeated until a prespecified minimum size of the identified
region is reached. In contrast to the other methods, the ARDP algorithm does not
provide a pruning or selection criterion for the final subgroup. Instead a sequence of
nested subgroups of subjects benefiting from the experimental treatment is obtained.
In order to choose one of those subgroups as the final subgroup a selection criterion
is needed which is described in the following.

Subgroup criterion

In order to compare the different methods, I describe how to derive a subgroup def-
inition for different methods and how to define a potential target population. The
target population is denoted by BM+, the biomarker-positive subgroup, which is
assumed to benefit more from the experimental subgroup than its complement, the
biomarker-negative subgroup, BM−.
MOB and IT identify disjoint subgroups whose definition can directly be derived
from the splits of the estimated tree. In Figure 2.1(A) an example for MOB and IT
with four subgroups denoted S1, S2, S3 and S4 is illustrated. The first subgroup S1
is defined by the splits on Z1 ≤ 0 and Z2 ≤ 0.25 and therefore contains only sub-
jects fulfilling these conditions. As STIMA forces its first split to be on the treatment
indicator variable A in order to identify subgroups with heterogeneous treatment
effects, the terminal nodes denoted by R1, . . . , R4 in Figure 2.1(B) or by R1, . . . , R5
in Figure 2.1(D) include only subjects assigned to either the experimental or con-
trol treatment. In my work [42] each terminal node of the experimental treatment
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branch is combined with each terminal node of the control treatment branch to ob-
tain subgroups. An example on how to derive subgroup definitions from the output
of STIMA is given in Huber et al. [42]. STIMA can also yield overlapping subgroups,
see Figure 2.1(D): Combining region R1 with R3 and R1 with R4 leads to nested sub-
groups. The interpretation of the subgroups identified with SIDES is equivalent to
the interpretation of terminal nodes identified by MOB or IT. However, SIDES grows
multiple trees in each iteration step resulting in the possibility of obtaining overlap-
ping subgroups.
ARDP results in a sequence of potential subgroups. However, it does not provide
“final” subgroups as the other methods do. In the hypothetical example presented
in Figure 2.1(C) three potential subgroups denoted by S∗

0 , S∗
1 , and S∗

2 and their corre-
sponding complementary subgroups denoted by R1 and R2 are shown.
None of the methods described above identifies by default two complementary sub-
groups, BM+ and BM−. To obtain a potential future target population, BM+, the
results of the subgroup identification methods need to be dichotomized. Since the
BM+ subgroup should benefit from the experimental subgroup, it should only con-
sist of subgroups whose estimated treatment effects exceed a prespecified threshold
denoted by ∆mintrt. In each identified subgroup Ŝ the treatment effect is estimated
by the difference ∆(Ŝ) = µ1(Ŝ) − µ0(Ŝ), with µ0(Ŝ) = E(Y|A = 0, Z ∈ Ŝ) and
µ1(Ŝ) = E(Y|A = 1, Z ∈ Ŝ) denoting the expected outcomes in the identified sub-
groups for subjects in the experimental or control arm. All subgroups identified
by either IT, MOB, STIMA or SIDES meeting the criterion ∆̂(Ŝ) > ∆mintrt are com-
bined into the BM+ group. Subjects not included in the BM+ group form the BM−
group. For ARDP, the largest subgroup out of the identified sequence of potential
subgroups meeting the subgroup criterion is chosen as BM+.
Selecting a BM+ and BM− subgroup based on the proposed subgroup criterion
can lead to different shapes of the formed subgroups. A BM+ definition resulting
from merging subgroups identified by MOB, IT, or STIMA can lead to a disjointed
definition of the BM+ subgroup, illustrated by subgroups a and c, respectively, of
the hypothetical example in Figure 2.2. In principle, subgroup b can be obtained
by all methods, but this box shape of the BM+ is guaranteed only for ARDP. For
the other methods, a simple tree, which can be obtained by an appropriate choice
of certain tuning parameters, could also lead to a complex form of the BM+ group,
as illustrated by subgroups a and b, respectively, in Figure 2.2. However, SIDES
only allows one cut-off value for a single covariate in the definition of the subgroup,
meaning that two cut-off values are not possible for one covariate. Therefore, SIDES
results in half-open box shapes. These half-open boxes, which form the BM+ group,
can also be disjoint, similar to subgroups a and c of Figure 2.2.
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FIGURE 2.1: Theoretical example of trees obtained by the different
methods
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FIGURE 2.2: Hypothetical example of the shape of three BM+
groups denoted by a, b and c defined by two covariates Z1 and Z2.
Three different shapes are illustrated which can be obtained by the
considered methods. Subgroup a and c consisting of the union of the
regions 1 and 2 or regions 3 and 4, respectively, can be obtained by
all methods except ARDP and SIDES. Subgroup b consists of just
one region and can be obtained by all methods. In practice the shape
of subgroup b is preferable due to the lower number of thresholds
which facilitates the assignment of subjects to the BM+ group.

Simulation study

The performance of the five methods in combination with the proposed subgroup
criterion was evaluated by means of Monte Carlo simulations. In the following I
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only present some selected results of the simulation study which, however, sum-
marise the key findings. A detailed description of the chosen tuning parameters for
the five methods, the model and parameter value assumptions used for generating
the data, and other results can be found in Huber et al. [42].
The generated data sets consist of N subjects. For each subject a continuous outcome
variable Y, a treatment indicator variable A and four covariates Z1, . . . , Z4 are gen-
erated. The treatment indicator A is drawn from a binomial distribution B(1, 0.5)
and the covariates Z = (Z1, . . . , Z4) are drawn from N4(0, I4) with I4 denoting the
identity matrix. For generating the outcome Yi = µ(Ai, Zi) + ϵi with ϵi ∼ N (0, 1)
(i = 1, . . . , N) different mean functions µ(A, Z) are used. The parameter values used
for the results are presented in Table 2.1 and are illustrated in Figure 2.3 and 2.4.

TABLE 2.1: Parameters in the simulation study for assessing the
selection accuracy.

Parameter Values

Model
M0: µ(A, Z) = 0.2 · A + γ · I(Z1 > 0)
M1: µ(A, Z) = 0.2 · A + γ · I(Z1 > 0) + β1 · A · I(Z1 > 0)

Sample size N 600, 1200, 2400
Main effect γ −0.2, 0, 0.2
Interaction effect β1 0.3 (small), 0.5 (medium), 1 (large)

For each parameter combination, 500 data sets were generated. For the subgroup
criterion the threshold ∆mintrt = 0.4 was chosen. Based on this threshold the step
function model M1 defines the BM+ subgroup Z1 > 0 for all selected sizes of the
interaction effect β1. Therefore, the true treatment effect in the BM+ subgroup in set-
tings with M1 is β1 + 0.2. The true treatment effect in the complementary subgroup,
the BM− group defined by Z ≤ 0, is 0.2. The null model, M0, does not include any
treatment-by-biomarker interaction and is therefore used to evaluate the false dis-
covery rate (FDR) of the methods in combination with the subgroup criterion. The
FDR evaluates the relative frequency of identifying a BM+ subgroup although no
subgroup is present in the data, i.e. the treatment effect is homogeneous across the
entire population. It is considered that a BM+ subgroup does not include all or any
patients. The FDR is sometimes also referred to as type I error rate, although strictly
speaking no hypothesis is tested. Figure 2.3 shows that the erroneous identification
of a target population, BM+, although the treatment effect is homogeneous across
the population, occurs less frequently for IT and STIMA as compared to the other
three methods. For MOB also smaller FDRs in comparison to SIDES and ARDP are
observed. However, in presence of prognostic effects, i.e. γ ̸= 0, the FDR of MOB is
higher compared to settings without a prognostic effect as MOB evaluates instabili-
ties in both the intercept and the treatment effect parameter of the underlying model
(see Equation (2.1)). The FDR of SIDES decreases with increasing sample size and
does not seem to be influenced by the presence of a prognostic effect. ARDP, how-
ever, does not include any FDR control and always results in the selection of a target
population with the exception of two situations: (a) when the estimated treatment
effect in the overall population is larger than the subgroup criterion threshold ∆mintrt
and (b) when none of the identified nested subgroups exceeds the threshold.

Figure 2.4 shows the relative frequency of not identifying a BM+ subgroup al-
though a “true” target population, a BM+ group, is present. If the selected BM+
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FIGURE 2.3: False discovery rate (FDR) for model M0 as mean
function of the data generating model. The y-axes represent the FDR
and the x-axes the considered sample sizes N. The left panel shows
the FDR for setting without any prognostic effect, i.e. γ = 0 in M0
and the right panel shows settings with γ = −0.2 or γ = 0.2.

group includes all or any subjects, it is considered that no BM+ group was iden-
tified. This is also referred to as type II error corresponding to falsely retaining
the null hypothesis of no subgroup being present. It is worth noting that here no
hypothesis is tested, i.e. this definition of type II error has no connection to signif-
icance testing. The type II error rates illustrated in Figure 2.4 are based on model
M1 without any prognostic effect, i.e. γ = 0. For smaller interaction effects all five
methods have difficulties identifying a BM+ subgroup. For larger interaction ef-
fects STIMA and MOB show the lowest type II error rates. With increasing sam-
ple size the type II error rate of IT decreases. However, MOB outperforms the
other methods clearly for medium-sized effects or smaller effects in combination
with larger sample sizes. For ARDP, the smallest type II error rates are observ-
able in settings with smaller interaction effects. However, this is due to the treat-
ment effect in the overall population and the chosen value of the subgroup criterion
∆mintrt. I further investigated how well the identified biomarker-positive B̂M+ sub-
group and the identified biomarker-negative B̂M− subgroup coincides with the true
subgroups by means of additional performance criteria, e.g. the selection accuracy
(P(subjects are correctly classified) with P denoting the probability) or the sensitiv-
ity (P(subjects are assigned to the B̂M+ group|subjects truly belong
to the BM + group)) and specificity (P(subjects are assigned to the B̂M− group|

subjects truly belong to the BM − group)). For M1 as data generating model, MOB
shows the best selection accuracy for even smaller treatment-by-covariate interac-
tions and smaller sample sizes. However, the performance of MOB is influenced by
the presence and direction of prognostic effects (results omitted).
Additional scenarios, not reported here, including a linear interaction trend, all split-
ting candidates being prognostic or a qualitative interaction were considered to eval-
uate their influence on the performance of the methods. The results of the additional
scenarios and performance criteria can be found in Huber et al. [42]. For larger
treatment-by-biomarker interaction effects and larger sample sizes, the approaches
MOB, IT, and STIMA identify the BM+ subgroup similarly well with the excep-
tion of settings in which all potential splitting candidates Z1, . . . , Z5 are prognos-
tic. In these settings, STIMA performs best. For data with 600 subjects and smaller
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FIGURE 2.4: Type II error rate vs sample size for three interaction
effect sizes β1 in setting with the step function model M1 using
γ = 0.

treatment-by-biomarker interactions, all methods have difficulties identifying a tar-
get subgroup. Overall, MOB seems the most promising method as it assigns the
majority of patients correctly to BM+ and BM− even in settings with fewer obser-
vations or smaller treatment-by-biomarker interactions.

Application example

For illustration purposes, I applied the five subgroup identification methods with
the subgroup criterion to data from amyotrophic lateral sclerosis (ALS) patients, an
orphan disease affecting the nervous system with a prevalence between 4.1 and 8.4
per 100 000 persons [60]. I used the PRO-ACT (Pooled Resource Open Access ALS
Clinical trials) database aggregating data from 23 phase II/III trials due to the small
sample sizes of single clinical studies on ALS [3]. The identified B̂M+ subgroup of
MOB, IT, ARDP, and STIMA are similar. The results of MOB, IT, and ARDP only
vary due to the cut-off value of the selected splitting variable. The B̂M+ subgroup
identified by STIMA is more complex as it consists of the union of a subgroup similar
to the one of MOB, IT, and ARDP and four smaller subgroups. The identified sub-
group of MOB, IT and ARDP is defined by subjects with phosphorus values greater
than 1.42 (1.36 for ARDP). Details on the application of the subgroup identification
methods in combination with the proposed subgroup criterion to ALS data can be
found in Section 4 of Huber et al. [42].

Summary

Summarizing, in my research on the comparison of subgroup identification meth-
ods, I presented five popular methods in a unified notation and proposed a criterion
for selecting a target population based on a predefined minimum clinical benefit
threshold. Using a simulation study I showed that MOB, STIMA and IT control
the error of wrongly identifying a subgroup while the treatment effect is homoge-
neous across the entire population well. However, the type II error of mistakenly
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retaining the null hypothesis of no subgroup being existent, is larger for all methods
when the differential treatment effect or the sample size are smaller. Since real stud-
ies tend to have smaller sample sizes, it can be expected that the methods perform
rather poorly in real-world scenarios. However, for the different scenarios consid-
ered, MOB showed the best performance.

2.3 Subgroup identification in individual participant data meta-
analysis using model-based recursive partitioning

In Subsection 1.2.3 I described the need for an approach combining commonly made
assumptions in meta-analysis with a subgroup identification procedure. The GLMM-
tree framework introduced by Fokkema et al. [32] uses the approach by Sela and
Simonoff [78] for extending MOB, and therefore accounts for between-study hetero-
geneity. However, the authors only investigated a simpler model not accounting
for heterogeneity in the treatment effect. Next, I introduce metaMOB which com-
bines commonly made assumptions in meta-analysis with the GLMM-tree frame-
work. The details of my research on metaMOB are published in Huber et al. [43].
For metaMOB data from k = 1, . . . , K randomized controlled trials investigating the
same experimental treatment against the same control are assumed. The number of
participants per trial is denoted by Nk. The outcome of participant i is denoted by
yi and ai denotes the observed treatment group. It is assumed that each participant
i is included in one trial only. The affiliation of each participant to one of the trials k
is therefore already reflected in the index i and the index k is omitted to simplify the
notation. Furthermore, the observed p baseline covariates for partitioning the data
are denoted by z1, . . . , zp .
The generalised linear models fitted by MOB to each resulting subgroup j are de-
fined as

g(µij) = γj + θjai (M0)

with µij denoting the expected outcome of patient i in subgroup j and g(·) denotes
a suitable link function. Fokkema et al. [32] considered heterogeneity in the baseline
by using model (M1):

g(µij) = γj + θjai + b0k with b0k ∼ N (0, τ2
0 ). (M1)

The between-study variance for the intercept is denoted by τ2
0 .

For subgroup identification via metaMOB different GLMMs are assumed and fitted
to the identified subgroups. The differences in the models arise from the different
assumptions regarding heterogeneity in the baseline. The GLMMs with a random
baseline effect fitted in each of the subgroups j identified by metaMOB are defined
in Equation (M2):

g(µij) = γj + b0k + θjai + b1kai (M2)

with b0k ∼ N (0, τ2
0 )

and b1k ∼ N (0, τ2
1 ).

The random effects b0k and b1k are assumed to be normally distributed and, as com-
monly assumed, independent [48]. The between-study variance for the treatment is
denoted by τ2

1 .
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For metaMOB with stratified intercepts Equation (M3) is fitted to each subgroup j:

g(µij) = γjk + θjai + b1kai (M3)

with b1k ∼ N (0, τ2
1 ).

The baseline effect for trial k in subgroup j is denoted by γjk and is assumed to be
fixed. Due to the subgroup and trial-specific intercept terms, the number of param-
eters to be estimated increases with the number of trials and identified subgroups.
For both models (Equations (M2) and (M3)), the fixed effect part is assumed to be
subgroup-specific, whereas the random effect part is assumed to be the same across
the identified subgroups.
In the following, I refer to metaMOB with model (M2) underlying the tree growing
procedure as metaMOB-RI due to the random intercept. The method metaMOB with
model (M3), the stratified intercept model, is referred to as metaMOB-SI. Model (M1)
does not consider between-study heterogeneity in the treatment effect and models
between-study variation in the baseline by using a random intercept. Therefore, this
method is referred to as MOB-RI.
The GLMMs (M1) to (M3) and (M0) are special cases of the GLMM framework and
can be represented by the model equation

g(µij) = xT
i

(
γj
θj

)
+ vT

i b, (2.5)

where xi
T and vT

i are the i-th row of the design matrix X for the fixed effects and
V for the random effects, respectively. The vector b denotes the random effects,
whereas the coefficient vector of the fixed effects is denoted by(γj, θj)T. The vectors
b, xi and vi depend on the model ((M0)-(M3)) underlying the partitioning algorithm.
The algorithm for partitioning the data based on the GLMMs (M1)-(M3) fits the cho-
sen GLMM with the identified subgroups j as main effects to the data. The estimated
random effects b̂ are extracted from the estimated GLMM in order to use b̂ as offset
in the next step, i.e. the estimation of the tree based on the MOB algorithm [96]. The
algorithm assumes either that the random effect part is known to estimate the fixed
effect part via MOB or that the fixed effect part, the subgroup structure, is known to
estimate the random effect part via fitting the GLMM. More details on the algorithm
for MOB-RI, metaMOB-RI, and metaMOB-SI can be found in Huber et al. [43].
The methods MOB [77, 96] with (M0), MOB-RI [32] with (M1), metaMOB-RI with
M2 and metaMOB-SI with (M3) as underlying model were compared in a simula-
tion study considering different IPD settings.
The continuous response in the simulation study is generated by yi = f (zi, ai) +
b0k + b1k · ai + ϵi, with ϵi ∼ N(0, 52), b0k ∼ N(0, τ2

0 ) and b1k ∼ N(0, τ2
1 ). The gen-

erated data sets {(yi, ai, zi,1, . . . , zi,15) : i = 1, . . . , N} consist of N subjects of equally
sized trials (k = 1, . . . , K). The treatment indicator A is drawn from a binomial dis-
tribution with a probability of 0.5. The 15 covariates Z1,. . . ,Z15 are drawn from a
multivariate normal distribution with µZ1 = 10, µZ2 = 30, µZ4 = −40 and µZ5 = 70.
The variance of all all covariates Zp is set to σ2

Zp
= 100 and the covariates are corre-

lated with ρ = 0.3. The other means are drawn from a discrete uniform distribution
on the interval [−70, 70], following the data generating process described in Dussel-
dorp et al. [20] and Fokkema et al. [32].
The range of the parameter values considered for the simulation study are listed in
Table 2.2. Additionally, the correlation between b0 or b1 and one of the potential
splitting variables Z is varied: b0 (or b1) and all Z = (Z1, . . . , Zp) uncorrelated, b0
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(or b1) correlated with one of the splitting variables (correlation ρ ≈ 0.42), b0 (or b1)
correlated with one of the non-splitting variables (correlation ρ ≈ 0.42). For each
scenario 2000 data sets are generated.

TABLE 2.2: Scenarios considered in the simulation study.

Parameter Values
Number of trials K 5, 10
Sample size N 200, 500, 1000
Heterogeneity in baseline τ0 0, 5, 10
Heterogeneity in treatment τ1 0, 2.5, 5, 10

When fitting GLMMs ((M1),(M2) or (M3)) with the lme4 R-package in the tree algo-
rithm, convergence problems occur for both MOB-RI and metaMOB. The frequency
of convergence problems using MOB-RI and metaMOB-SI was less than 0.8% across
all the simulated data sets. The most convergence warnings, in around 1.7% of the
simulated data sets, were obtained for metaMOB-RI based on model (M2) which
estimates the variance component of two random effects. In practice, the random
effect structure is simplified when convergence problems are present, as the more
complex random effect structure seems to drive convergence problems. Therefore,
metaMOB-SI should be used instead of metaMOB-RI if convergence problems are
encountered, as recommended by Kontopantelis [52] for IPD meta-analysis one-
stage models. The calculation of further performance measures is based on cases
without convergence warnings.
For assessing the FDR of the methods the fixed effect part in the data generating
model is set to f (·) = 0. In settings without correlation of the random effects b0 and
b1 with one of the covariates, the false discovery rate is below 0.055 with a simula-
tion error of approximately 0.49% for all the considered methods (not shown here).
Figure 2.5 depicts the false discovery rate for settings with K = 5 and in which b1 is
correlated with one of the covariates Z1, . . . , Zp. Without heterogeneity in both the
baseline (τ0 = 0) and the treatment effect (τ1 = 0), all methods show similar FDRs
across different sample sizes. With increasing heterogeneity in both baseline and
treatment ((M2) as the true underlying model), the FDR of both MOB and MOB-RI
increases as both methods do not account for heterogeneity in the treatment effect.
Since metaMOB-RI and metaMOB-SI account for these different types of heterogene-
ity, they are not strongly affected by their presence and do not show a worse FDR
when heterogeneity is not present.
To assess the frequency of identifying the correct subgroups with differential treat-
ment effects, data using the between-trial assumptions of (M2) (not shown here)
and (M3) were generated. The outcome yi according model (M3) is generated by
yi = f (zi, ai) + b1k · ai + ϵi, with ϵi ∼ N(0, 52), and b1k ∼ N(0, τ2

1 ). For the fixed effect
f (·) the tree structure presented in Figure 2.6 was used. The terminal nodes of the
tree are the “true subgroups” which are defined by the covariates Z1, Z2, and Z5. A
tree was considered to be accurately estimated if it has the correct number of termi-
nal nodes, all splitting variables are selected correctly and when the selected cut-off
values for the split denoted by c are in the interval c ± 5 with 5 corresponding to the
population standard deviation. The greatest number of accurately estimated trees is
observed for metaMOB-SI across all considered parameter variations, see Figure 2.7.
However, the other three methods perform similarly well when there is no between
trial heterogeneity in the treatment effect and when the random effects and the co-
variates Z are not correlated. As MOB and MOB-RI do not account for between-trial
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FIGURE 2.5: False discovery rate for settings with K = 5,
cor(b1, Z) ̸= 0 and cor(b0, Z) = 0. The dotted line at value 0.05
indicates the prespecified level of significance used as stopping
criteria in the algorithm.

heterogeneity in the treatment effect, fewer trees are accurately estimated with in-
creasing variance of the random treatment effect τ2

1 compared to metaMOB-SI and
metaMOB-RI if random treatment effects b1 and a splitting variable Zsplit (either
Z1, Z2 or Z5) are correlated. The assumption for the heterogeneity in the baseline
of metaMOB-RI is not flexible enough for settings with trial and subgroup-specific
intercepts (τγ ̸= 0). Based on the underlying model of metaMOB-RI ((M2)), hetero-
geneity in the baseline effects is assumed to be constant across studies, which is not
the case for the data-generating model of the second row of Figure 2.7. Therefore,
its tree accuracy decreases with larger variations of the trial and subgroup-specific
intercepts τγ.
To assess the performance of the methods regarding treatment effect estimation in
the estimated subgroups, the correlation between the estimated and true treatment
effect was calculated. Throughout the considered settings with (M2) and (M3) as
data-generating models, the more complex models metaMOB-RI and metaMOB-SI
showed the highest correlation of true and estimated treatment effect in the esti-
mated subgroups (not shown here, see Figure 6 in Huber et al. [43]).
Summarizing, I proposed the methods metaMOB-SI and metaMOB-RI, which fall
into the broad class of GLMM-trees [32] for subgroup identification in IPD meta-
analysis. I showed that accounting for heterogeneity in settings in which no between-
trial heterogeneity is present or when between-trial heterogeneity is independent of
potential splitting candidates is less relevant due to the similar performance of the
considered methods. However, as the composition of the trial populations in terms
of patient characteristics contributes to the heterogeneity between trials, it is rea-
sonable to assume that the heterogeneity between trials is linked to one or more
patient-level covariates. By utilizing Monte Carlo simulations, I demonstrated that
the misspecification of the between-trial heterogeneity structure in settings in which
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FIGURE 2.6: Fixed effect structure f (·) for the data generating
model. Z1,Z2 and Z5 denote the covariates defining the four
subgroups. The true fixed intercepts are denoted by γ which are
drawn from a normal distribution.

covariates and heterogeneity are linked, adversely affects the FDR, the accuracy of
the estimated tree, and the estimated treatment effect for the identified subgroups.
I concluded that metaMOB-SI is the preferred option for subgroup identification in
IPD meta-analysis as it showed the best performance across the considered settings.
Furthermore, the underlying model accounts for between-trial heterogeneity in the
treatment effect and models baseline heterogeneity with fixed effects making it the
more flexible approach than metaMOB-RI, which imposes a constraint on the base-
line effects. However, the number of parameters that have to be estimated for the
underlying models of metaMOB-SI increases with the number of trials and iden-
tified subgroups which might lead to inconsistent estimators as described by the
Neyman–Scott problem [65].

2.4 Model-based recursive partitioning for discrete event times

For analysing data with a time-to-event outcome measured on a discrete time scale
appropriate statistical methods are needed as introduced in Section 1.2.4. In Hu-
ber et al. [45] I proposed a method for identifying subgroups defined by prognostic
and/or predictive biomarkers tailored to a discrete time-to-event outcome based on
the MOB algorithm.
Parametric regression models for discrete event times are usually based on the dis-
crete hazard function, which has the form λ(t|X) = P(T = t|T ≥ t, X = x), describing
the conditional probability of the event at time point t given survival until t [89]. The
discrete event time T can take values in {1, . . . , L}, which might result from L un-
derlying intervals [a0, a1), [a1, a2), . . . , [aL−2, aL−1), [aL−1, ∞). The parametric discrete
hazard model is defined by

g(λ(t|x)) = γ0t + xT β, (2.6)
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FIGURE 2.7: Tree accuracy for model (M3) as data-generating
mechanism. The correlation of b1 and the covariates Z are varied
(columns). Different variances for the subgroup and trial specific
intercepts are presented in the three rows.

where g(·) is a monotonic link function relating conditional survival probabilities to
the covariates x by a vector of regression coefficients β. The set γ0 = {γ01, . . . , γ0,L−1}
defines a covariate-free “baseline” trend (for x = 0). Common discrete time-to-event
models are the proportional continuation ratio models using the logistic function for
h(η) = g−1(η) = exp(η)/(1 + exp(η)) or the grouped proportional odds model us-
ing the Gompertz distribution h(η) = 1 − exp(− exp(η)).
As the likelihood of discrete time-to-event models (Equation (2.6)) is equivalent to
the likelihood of a binomial model that distinguishes whether the event occurred at
time t or not (given T ≥ t), the generalized linear modelling (GLM) framework can
be used for modelling discrete hazards λ(t|x) [76, 89]. For fitting discrete hazard
models, the binary response yit of subject i at time t = 1, . . . , T̃i, is defined as

yit =

{
1 if t = T̃i and δi = 1,
0 else,

(2.7)

with δ := I(T ≤ C) denoting the status indicator indicating whether the observed
survival time T̃ is right-censored (δ = 0) or not (δ = 1). From the data matrix D =
{(t̃i, δi, xT

i , zT
i ) : i = 1, . . . , N}, the augmented data matrix with the binary response

for fitting the discrete hazard models is constructed: DA = {(ym, t∗m, x∗T
m , z∗T

m ) :
m = 1, . . . , n}. Alongside the binary response y, the augmented data matrix con-
sists of a time index for each subject i given by (t∗1 , . . . , t∗N)

⊤ with t∗i = (1, 2, . . . , T̃i),
i = 1, . . . , N allowing to fit time-dependent intercepts. Additionally, two disjoint sets
of covariates x and z are considered. The covariates x are used to fit the regression
model in the nodes of MOB, whereas the covariates z are potential splitting candi-
dates. The covariate vectors xi and zi are duplicated subject-wise for the augmented
matrix. The subject-wise duplicated vectors are denoted by x∗i and z∗i , respectively.
The number of rows in the augmented data matrix for subject i is T̃i. Therefore, the
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number of rows in the augmented data matrix is n = ∑i T̃i. Although the data sets
D and DA differ in the number of rows, the number of columns is the same despite
different contents.
Although fitting discrete time-to-event models is based on the GLM framework
which is used in MOB as well, MOB cannot be directly applied to discrete time-
to-event data. Using the augmented data matrix to fit the discrete hazard model,
which is assumed to be the underlying model of MOB for time-to-event data, results
in an increased type I error rate of the M-fluctuation test as I demonstrated in Huber
et al. [45]. By means of a Monte Carlo simulation study, I demonstrated that ignor-
ing dependencies in the augmented data matrix leads to a systematic inflation of the
type I error rate in case the standard MOB approach with binary outcome is applied
to a set of discrete time-to-event data. Furthermore, I proposed MOB for discrete
survival outcomes (MOB-dS) an adjusted MOB algorithm tailored to model discrete
time-to-event data. The adjusted algorithm is based on a permutation approach for
obtaining the distribution under the null hypothesis of the M-fluctuation test used
for partitioning the data using MOB-dS.
For partitioning the data the M-fluctuation test [96, 95] is applied to each resulting
node j. Without restriction of generality, the root node is considered in the following
and therefore the index j is omitted to enhance readability. The M-fluctuation test
investigates instabilities in the model parameters γ and β which are estimated by
maximizing the log-likelihood Ψ(y, x, θ) with θ = (γ, β). The null hypothesis for
variable Zr (r = 1 . . . , p) in the M-fluctuation test is

Hθ,r
0 : θk = θ0, k = 1, . . . , n (2.8)

versus the alternative that (at least one component of) θk varies across Zr . The pa-
rameter vector θk (k = 1, . . . , n) is a row-specific vector of regression coefficients
based on DA. The test statistic of the M-fluctuation test is based on the empirical
fluctuation process Wr(o) (see Equation (2.9)) and a scalar function ζ(·), e.g. the su-
pLM statistics [2], which is applied to the empirical fluctuation process. This results
in ζ(Wr(·)) and the corresponding limiting distribution being ζ(W0(·)) with the em-
pirical fluctuation process converging to the Brownian bridge denoted by W0. The
empirical fluctuation test is defined by

Wr(o) = Ĵ−1/2n−1/2
⌊no⌋
∑
u=1

h′(x∗u θ̂)
yu − µ̂u

µ̂u(1 − µ̂u)
x∗u, 0 ≤ o ≤ 1 (2.9)

with x∗u denoting row u of the augmented data matrix DA ordered by the values of
Zr. The floor function is denoted by ⌊·⌋. The empirical fluctuation process is the par-
tial sum process of the scores ordered by the variable Zr, scaled by the number of the
rows n and Ĵ, an estimate of the covariance matrix Cov(ψ(Y, X, θ̂)). The score func-
tion corresponding to the log-likelihood is denoted by ψ(y, x, θ) = ∂Ψ(y,x,θ)

∂θ . Depend-
ing on the scale of Zr a corresponding scalar function for defining the test statistic is
chosen, i.e. supLM statistics [2] for numerical Zr or the weighted sum of the squared
L2 norm of the increments of the empirical fluctuation process over the observations
in one of the categories of Zr for categorical Zr. Zeileis and Hornik [95] provide a
detailed description of the M-fluctuation test.
In contrast to MOB which calculates the p-values using [38] or [40] depending on the
scale of covariates Z1, . . . , Zp, I propose to calculate the p-values based on the empiri-
cal distribution of the test statistic obtained by the following permutation procedure:
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1 Randomly permute the row vectors (t̃i, δi, xT
i ) of the un-augmented data D

against the covariate vector zT
i .

2 Form the augmented data of the permuted data.

3 Calculate the M-fluctuation test statistic based on the augmented data of the
permuted data.

Step 1 of the permutation approach retains the overall effects of X and the correla-
tions among Z while removing any marginal effects of the covariates Z on the out-
come. The algorithm of MOB-dS differs only from MOB’s algorithm for binomial
data in the calculation step of the p-value: MOB-dS uses a permutation approach
which accounts for the dependencies in the augmented data matrix. The permuta-
tion approach provided in the implementation of MOB in the R-package partykit
is not appropriate for discrete time-to-event data. This approach permutes the rows
of the data matrix used for fitting the underlying model, i.e. the augmented data
matrix DA for discrete time-to-event data. Since the common assumption regarding
independent observations is violated [95, 96] for discrete time-to-event data due to
the use of the augmented data matrix, the asymptotic theory of the M-fluctuation
test used in MOB is not valid.
The type I error rate of the M-fluctuation test with the newly proposed permuta-
tion strategy for time-to-event data used in MOB-dS was determined by means of
a Monte Carlo simulations and compared to the type I error rate of the approach
by Zeileis and Hornik [95] used in MOB. The setup and results of the Monte Carlo
simulation studies are summarized next.
The time-to-event T was generated using a proportional continuation ratio model
(PCRM) with time-dependent baseline coefficients (Equation (2.10)) which were con-
stant across the covariate values of Z:

λ(t) =
exp(γ0t)

1 + exp(γ0t)
, t = 1, . . . , L − 1. (2.10)

The values of γ0 = (γ01, . . . , γL−1) were chosen in order to result in different shapes
of survival functions, e.g. events occurring in the middle of the observational pe-
riod. Furthermore, different event rates (20%, 40%, and 60%) were considered. The
shape of the survival functions with the three different event rates used for gener-
ating the data is illustrated exemplarily for L = 7 in Figure 2.8. The true censoring
times C were drawn from a continuous exponential distribution and were indepen-
dent of the event time T. The observed true survival time T̃ = min(T, C) and the
status indicator δ := I(T ≤ C) are obtained based on the event and censoring time.
The number of discrete time points was varied L ∈ {4, 5, . . . , 11}. The rates of the
exponential distribution were chosen to achieve approximately 0%, 20%, and 50%
censoring. Thirteen covariates Z1,. . . ,Z13 were drawn from a standard normal distri-
bution with ρ = 0.1 being the correlation of the covariates. No additional variables
X were considered in the data-generating model. The number of subjects was set to
N = 100 · (L − 1). For each scenario, 2000 Monte Carlo replications were generated.
For both MOB and MOB-dS the PCRM defined in Equation (2.10) was considered as
the underlying model. The sandwich estimator was used as the covariance matrix
estimator in the parameter instability tests (see Equation (2.9)). For all other argu-
ments of MOB and also for MOB-dS the default values of the R-package partykit
version 1.2-15 were used. For MOB-dS 1000 repetitions of the permutation approach
were conducted.
Figure 2.9 shows the inflated type I error rate of MOB across all the scenarios for
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FIGURE 2.8: Illustration of the true survival functions for settings
with L = 7. The different colours and line types correspond to
settings with 80% (solid), 60% (dashed) and 40% (dotted) events.

which MOB-dS (with 1000 samples) controlled the type I error rate well. Fewer
discrete time points, e.g. L = 4, and higher event rates, e.g. 60%, lead to fewer de-
pendencies in the augmented data matrix. This might contribute to a type I error
rate of MOB close to 5% in this setting. This is not only observed in settings with
events occurring in the middle of the observational period as shown in Figure 2.9,
but also in settings with linear survival functions and with events occurring mainly
at the beginning of the observational period (results not reported here). Higher type
I error rates for MOB are observable in settings with a larger number of discrete time
points and fewer events.
To illustrate the difference of the approximate asymptotic and proposed sampling

distribution of the M-fluctution test for discrete-time-to-event data and binary data,
the exceedence probabilities are shown in Figure 2.10. The exceedence probabilities
for a range of values of the test statistics used in MOB (black) and MOB-dS (red)
likely to be of interest when testing are included in Figure 2.10. The distribution of
MOB is based on the Hansen approximation [38] and the distribution obtained by
MOB-dS is based on 1000 permutation samples. The right-hand tail probabilities for
the test statistic of two covariates are shown for simulated data with L = 8 and 20%
events, which resulted in higher type I error rates. The first row shows the obtained
tail probabilities of the test statistic based on the proportional continuation ratio
model (Equation (2.10)). The second row corresponds to the tail probabilities for test
statistics based on logistic regression models ignoring the time-to-event information
by using the status indicator δ as outcome. For binary outcomes both approaches
lead to tail probabilities of the test statistic that are very close (see the second row of
Figure 2.10). This is consistent with the type I error rate of MOB not being inflated
for binary outcomes with independent observations. For discrete hazards models
based on the augmented data matrix, however, the distribution obtained by MOB
seems to be shifted compared to the one obtained by MOB-dS (see the first row of
Figure 2.10), leading to the test used in MOB becoming anti-conservative. This con-
firms the results of the inflated type I error rate of the previous simulations. Thus, for
discrete hazard models that use an augmented data matrix to fit a logistic model, the
Hansen approximation does not seem to be suitable for approximating the asymp-
totic distribution of the instability test statistic used as splitting criterion in MOB.
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FIGURE 2.9: Type I error rate for MOB and MOB-dS based on 2000
simulated data sets per setting with 20% censoring and 1000
permutation samples for MOB-ds. The columns represent settings
with the three different expected event rates. The horizontal grey

lines mark α ± 2SE with SE =
√

0.05·0.95
2000 ≈ 0.49% being the Monte

Carlo simulation error at a simulated type I error of 0.05.

Summarizing, I showed that although discrete time-to-event data can be modelled
using the GLM framework, which is integrated into MOB, MOB cannot be directly
applied to discrete time-to-event data. Applying MOB to discrete time-to-event data
results in inflated type I error rates of the M-fluctuation test used as MOB’s split-
ting criterion. Therefore, I proposed MOB-dS, a permutation approach, tailored to
discrete time-to-event data. Furthermore, I showed via simulations that the type
I error rate is controlled better by MOB-dS compared to MOB applied to discrete
time-to-event data. However, the permutation approach used in MOB-dS is compu-
tationally expensive, because a sufficiently large number of permutations is required
to approximate the distribution of the test statistic.
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FIGURE 2.10: Right-hand tail probabilities from approximate
asymptotic and sampling distributions of the instability test in MOB
(solid black) and MOB-dS (dashed red). The dashed red lines
correspond to the smoothed sampling distributions obtained by the
LOESS estimator. Test statistics for two out of thirteen covariates are
shown only. Distributions are illustrated for data generated with
L = 8 and 20% events. The sampling distribution used in MOB-dS is
based on 1000 permutation samples.
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Chapter 3

Discussion

My research focused on subgroup identification in the context of randomized con-
trolled trials in precision medicine. Biomarker-defined subgroups in drug develop-
ment may be selected for different reasons and based on different sources of evi-
dence. For assessing whether the presented evidence is acceptable for a biomarker-
defined subgroup related to a specific drug, I proposed a classification scheme distin-
guishing between biological and data-driven evidence related to subgrouping [44].
In my dissertation, I proposed different approaches for the data-driven identifica-
tion of subgroups with differential treatment effects based on data from multiple
clinical trials or data with a discrete time-to-event outcome. The methods I pro-
posed are based on model-based recursive partitioning, a subgroup identification
method, that performed best in the neutral comparison study, investigating the per-
formance of five methods for identifying biomarker-defined subgroups with differ-
ential treatment effect [42]. The advantages of the metaMOB methods are that the
heterogeneity in baseline and treatment effect can be modelled appropriately which
reduces false findings, i.e. identification of subgroups although the treatment effect
is homogeneous across the population and subgroups defined by spurious biomark-
ers and cut-off values [43]. The benefit of the proposed change in MOB tailored to
discrete time-to-event data is that it ensures controlling the type I error rate of the
M-fluctuation test used as splitting criterion [45].
My research in Huber et al. [42] focused on comparing methods that identify a
biomarker-positive subgroup. The biomarker-positive subgroup is defined by a
better treatment effect than its complementary counterpart, namely the biomarker-
negative subgroup. To obtain these biomarker-positive and biomarker-negative sub-
groups based on the results of different subgroup identification methods, I proposed
to amalgamate subgroups identified by the considered methods whose estimated
treatment effect exceeds the proposed subgroup criterion. However, the subgroup
criterion could have been chosen differently, e.g. selecting the subgroup with the
largest test statistic for the treatment effect as in Johnston et al. [50]. Alternatively,
Ballarini et al. [5] proposed to use the lower or upper bound of confidence intervals
for the treatment effect to identify a subgroup with a larger treatment benefit. How-
ever, inference after model selection remains a challenging task as the additional
uncertainty from model selection has to be integrated into the inferential process.
Post-selection inference has primarily been applied to regression models using the
least absolute shrinkage and selection operator (lasso) [55, 88]. For other subgroup
identification methods, e.g. the methods investigated in my comparison study [42],
the application of post-selection inference [4, 8] remains a topic of future research.
The identification of subgroups and neutral comparisons of the different proposed
methods is still a relevant topic as publications in the past few years [1, 19, 42, 59, 79]
and the recent publication by Sun et al. [84] demonstrate. Although all studies focus
on the comparison of subgroup identification methods, the results differ because of
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the study-specific properties of the investigated data, the included methods, and the
underlying scientific questions of interest. Strobl and Leisch [82] advocate a more
differentiated view of the research question “Which is the best method in general",
which they consider ill-posed. The performance on a single task depends on both the
method used and the dataset properties. For instance, Loh et al. [59] investigate sub-
group identification for binary endpoints, whereas Alemayehu et al. [1] and Huber
et al. [42] consider continuous endpoints. Additionally, the focus of research ques-
tions differs, e.g. Sun et al. [84] focus on a more general assessment of the treatment
heterogeneity, whereas in my research I focused on the identification of a biomarker-
positive and biomarker-negative subgroup with differential treatment effects.
My research on subgroup identification based on IPD meta-analysis considers data
from multiple trials [43]. My work showed that accounting for between-trial het-
erogeneity is essential for identifying accurate subgroups. Additionally, I recom-
mend modelling between-trial heterogeneity in the treatment effect using random
effects, and modelling the between-trial heterogeneity in the baseline using trial-
specific fixed effects, as this approach has been shown to be robust in my simula-
tions. A common assumption in meta-analysis is the normal distribution of random
effects. This distribution assumption is also made almost automatically in linear
mixed models, which are also used for IPD meta-analyses. A normal distribution
was also assumed for the random effects in Huber et al. [43]. Misspecification of
the shape of the random effects distribution in GLMMs has been shown to affect
the random effects predictions, but has a smaller effect on the fixed effects estimates
[17, 64]. Since the data partitioning of metaMOB is mainly based on the estimation
of fixed effects, I assume that a misspecification of the random effects distribution
should not have a larger impact on the tree structure, i.e. the selected splitting vari-
ables. However, this needs to be investigated further. Heterogeneity in treatment
effects and baseline may also occur with other cluster structures in the data, e.g.
data from different centres. The ICH E9 guideline [47] also states that the hetero-
geneity of the treatment effect between centres should be explored if positive treat-
ment effects were found in the study. The proposed metaMOB approach can also
be applied to data with heterogeneity that does not result from studies, but rather
from other clustering structures. One assumption in metaMOB is that the subgroup
structure is the same in the different clusters. However, it is plausible that the true
subgroup structure varies slightly from study to study, e.g. the cut-off values of the
biomarkers. In more extreme cases, the biomarkers that define the subgroups could
also differ. Pooling data with different subgroup definitions will complicate iden-
tification, as differential treatment effects between subgroups may be obscured by
the different subgroup definitions. The extent to which heterogeneity in subgroup
definitions between clusters affects the performance of metaMOB, whether and how
this heterogeneity is dealt with in the course of subgroup identification, is a topic for
future research.
A more accurate subgroup identification may improve future trials in terms of the
trial design, subgroup analysis plan, and even the decision on the need for further
trials. More accurate subgroup findings in terms of subgroup definitions and treat-
ment effect estimates are more likely to be confirmed in subsequent trials. For in-
stance, sample size calculations and decisions on conducting further trials depend
amongst others on the treatment effect estimates in the identified subgroups. Hence,
controlling for overoptimistic treatment effect estimates improves the results of sub-
group identification methods. A flexible and effective way to incorporate results
of subgroup identification methods into the design and analysis plan are adaptive
designs. Research on adaptive designs offering the possibility to select promising
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subgroups and reallocate sample size was published recently [37, 71]. However,
these approaches need prespecified subgroups, which might be based on the knowl-
edge of the drug’s mechanism of action or analyses of previous studies. Recently
a proposal on a trial design incorporating subgroup identification and confirmation
together in a framework was made. Johnston et al. [50] proposed a two-stage adap-
tive clinical trial design with data-driven subgroup identification at interim analysis.
Four different data-driven subgroup identification methods were considered for the
interim analysis, a brute force method, SIDES [58] and SIDEScreen adaptive [56] and
lasso [88]. At the interim analysis, conditional powers based on the subgroups and
the overall populations are used to decide whether to continue the study as planned,
to increase the sample size in the overall population or the subgroup, to select the
overall population, the subgroup or both for the final analysis, or to stop the study
because of futility. The final analysis involves combination tests together with closed
testing procedures. Due to the lack of comparison studies for subgroup identifica-
tion methods for time-to-event data, Johnston et al. [50] selected the methods based
on their popularity and the ease of their implementation. Simulation studies com-
paring the performance of different methods for selecting a target population as in
my work [42] would be useful in the context of adaptive design concepts since more
information on the method performance can be used to determine the subgroup
identification method that should be incorporated in the interim analysis.
Precision medicine encompasses both differential treatment benefit and safety. Iden-
tifying patients at increased risk of adverse events is more challenging, as adverse
events are sometimes rare. Furthermore, data on adverse events are usually accom-
panied by additional information, e.g. the number of occurrences, severity, timing
and their duration [70]. This information should be taken into account in the anal-
yses. Therefore, more complex methods are needed to analyse safety data. For
instance, multi-state models may be required, because the occurrence of a partic-
ular adverse event may be precluded by the occurrence of another adverse event
or by the occurrence of the primary time-to-event endpoint. Although I focused
on treatment efficacy endpoints, the proposed methods apply in principle to safety
outcomes as well.
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A.1 Classification of Companion Diagnostics: A new frame-
work for biomarker-driven patient selection

The published version is publicly available from
https://doi.org/10.1007/s43441-021-00352-2.

A.2 A comparison of subgroup identification methods in clin-
ical drug development: Simulation study and regulatory
considerations

The published version is publicly available from
https://doi.org/10.1002/pst.1951.

A.3 Subgroup identification in individual participant data
meta-analysis using model-based recursive partitioning

The published version is publicly available from
https://doi.org/10.1007/s11634-021-00458-3.

A.4 Model-based recursive partitioning for discrete event
times

The preprint is publicly available from http://arxiv.org/pdf/2209.06592v1.
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