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Abstract

The boosting technique emerged from machine learning has become a widely used method
to estimate statistical models. As one of the most successful variants, componentwise
gradient boosting has been favored by more and more statisticians since its iterative
procedure not only provides intuitive variable selection in high-dimensional analysis, but
also supplies additional flexibility to estimate various types of additive regression terms.
But its dogmatic estimates, i.e. its direct and unquestionable estimation conclusion, do
not deliver any information about the error risk of estimation and prediction, which,
however, is the basis for many statistical analyses.

As one of the most essential conventional statistical theories, Bayesian methodology
maintains the ability to quantify uncertainty. Due to its unique prior philosophy, it has
grown immensely in the past decades and has led to the development of innumerable
new models. However, it often fails to give precise and unambiguous guidelines for the
variable selection, which in turn is the advantage of boosting.

This thesis proposes a Bayesian-based boosting theory, which integrates Bayesian
inference in the boosting framework. Componentwise boosting guarantees the high-
dimensional analysis and the flexibility of base-learners since additive terms are updated
individually. Furthermore, each base-learner inferred by Bayesian inference also preserves
additional Bayesian properties such as the prior and the credible-based uncertainty
quantification. The proposed Bayesian-based boosting method combines the strengths
of the two approaches and overcomes the weaknesses of both.

This thesis firstly solves the problem of imbalanced updates of predictors in general-
ized additive models for location, scale and shape (GAMLSS) estimated using gradient
boosting by introducing the adaptive step-length. Then, through the implementation of
Bayesian learners in the gradient boosting framework for linear mixed models (LMM),
the validity of the combination of Bayesian and boosting concepts is preliminarily
verified. The complete Bayesian-based boosting framework is eventually presented by
applying it to a generalized model family, namely structured additive regression (STAR)
models.

Overall, the proposed Bayesian-based boosting is not only the first systematic study
of the fusion of Bayesian inference and boosting techniques, but also an attempt to
integrate machine learning and statistics at a deeper level.
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Zusammenfassung

Die aus dem maschinellen Lernen hervorgegangene statistische Boostingtechnik ist zu
einer weit verbreiteten Methode zur Schätzung statistischer Modelle geworden. Als
eine der erfolgreichsten Varianten wird das komponentenweise Gradientenboosting von
immer mehr Statistikern favorisiert, da das iteratives Verfahren nicht nur eine intu-
itive Variablenauswahl in der Analyse von hochdimensionalen Datensätzen ermöglicht,
sondern auch zusätzliche Flexibilität bietet, um verschiedene Arten von additiven Re-
gressionstermen zu schätzen. Da Boostingmodelle nur Punktschätzer liefern, lassen sich
in der Regel keine Aussage über das Fehlerrisiko oder Vorhersage treffen, was jedoch
die Grundlage vieler statistischer Analysen ist.

Als eine der wichtigsten konventionellen statistischen Theorien bewahrt die bayesian-
ische Methodik die Fähigkeit, Unsicherheit zu quantifizieren. Aufgrund ihrer einzigarti-
gen a priori Philosophie ist die Methodik in den letzten Jahrzehnten immens gewachsen
und hat viele neue Modellarten hervorgebracht. Allerdings fehlt es oft an präzisen und
eindeutigen Vorgaben für die Variablenauswahl, was wiederum der Vorteil des Boostings
ist.

Diese Dissertation schlägt eine bayesianische Boostingtheorie vor, die die bayesian-
ische Inferenz in den Rahmen von Boostingtechniken integriert. Das komponentenweise
Boosting ermöglicht die hochdimensionalen und flexiblen Analysen von Basis-Lernern,
da additive Terme einzeln aktualisiert werden. Zusätzlich behält jeder durch die
bayesianische Inferenz abgeleitete Basis-Lerner weitere bayesianische Eigenschaften
wie zum Beispiel die Prioritheorie und die glaubwürdige Unsicherheitsquantifizierung.
Das vorgeschlagene bayesianische Boostingverfahren kombiniert also die Stärken und
überwindet die Schwächen der beiden Ansätze.

Diese Arbeit löst zunächst das Problem unausgeglichener Aktualisierungen von
Prädiktoren in verallgemeinerten additiven Modellen für Lage-, Skalen- und Formpa-
rameter (GAMLSS), die mit Hilfe des Gradientenboosting geschätzt werden, indem
eine adaptive Schrittlänge eingeführt wird. Dann wird durch die Implementierung von
bayesianischen Lernern im Rahmen des Gradientenboosting für lineare gemischte Mod-
elle (LMM) die Validität der Kombination von bayesianischen und Boosting-Konzepten
vorläufig verifiziert. Das vollständige bayesianische Boosting-Framework wird schließlich
präsentiert, indem es auf eine verallgemeinerte Modellfamilie angewendet wird, nämlich
auf strukturierte additive Regressionsmodelle (STAR).

Insgesamt ist das vorgeschlagene bayesianische Boosting nicht nur die erste system-
atische Studie zur Verschmelzung von bayesianischer Inferenz und Boostingtechniken,
sondern auch ein Versuch, maschinelles Lernen und Statistik auf einer tieferen Ebene
zu integrieren.
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Chapter 1

Introduction

Boosting is a machine learning ensemble technique in which a number of weak learners

are combined to create a stronger one. The so-called weak learners are a series of models,

each of which is capable of making predictions that are slightly better than a random

guess, while the strong learners are able to make more accurate predictions than any

of the individual weak learners. The idea of boosting was first introduced by Freund

(1995) and Freund and Schapire (1996, 1997) propose the first applicable algorithm,

AdaBoost, by building a committee of weak classifiers and weighting their predictions

to form a single strong classifier. Since then, boosting has been used extensively in a

variety of machine learning tasks and many different boosting algorithms have been

developed. Nowadays, boosting is considered one of the most effective and widely-used

ensemble learning techniques in machine learning.

The first breakthrough in boosting is the proposal of gradient boosting by Friedman

et al. (2000). They show that gradient boosting can be used to create a strong predictive

model by sequentially adding weak learners to the ensemble, each of which attempts to

correct the mistakes of the previous learners, and it uses a gradient descent to optimize

a loss function. Subsequently, Friedman (2001) proposes the concept of model-based

boosting, which uses a model to guide the training process, i.e. let weak learners focus

on the areas of the data where the model is less certain to improve the overall accuracy

of the ensemble. The idea of model-based boosting enables boosting outcomes to have

statistical properties. Thus, the era of statistical learning is ushered in.

One of the seminal works in statistical learning is the implementation of the

componentwise concept in gradient boosting proposed by Bühlmann and Yu (2003). In

1



2 CHAPTER 1. INTRODUCTION

the componentwise gradient boosting method, the variables are partitioned into several

disjoint subset (usually only one covariate in a subset) and each weak learner is trained

on each subset. This partition not only reduces the high-dimensional analysis, which is

the weakness of conventional statistical approaches, to a simple regression problem, but

also provides the flexibility to estimate various types of base-learners in one ensemble

model. In recent years, almost all research on statistical boosting is established on the

componentwise gradient boosting framework.

However, the estimation with boosting technique is usually dogmatic, that is it lacks

straightforward ways to construct estimators for the precision of parameters such as

variance or confidence intervals, which, nevertheless, is the basis of statistical analyses.

The conventional statistical inference methods on the other side are able to quantify

the uncertainty of estimates, which include both frequentist and Bayesian statistics, but

they are not good at dealing with high-dimensional data. Even though regularization

techniques such Lasso or ridge regression are available, the conventional approaches

still very often fail to give precise and unambiguous guidelines for the selection or the

exclusion of variables. The complementary relationship between boosting technique and

conventional statistical inference on these points makes it natural to further integrate

the two methods.

From the frequentist statistic perspective, Tutz and Binder (2006) propose a

likelihood-based boosting framework, since the general estimation method used in

gradient boosting is the least squares method, while in low-dimensional settings, an-

other typical inference method is the maximum likelihood. In the special case of L2 loss,

likelihood-based boosting coincides with gradient boosting. Nevertheless, even though

the paper indicates the possibility of constructing approximate confidence intervals in

likelihood-based boosting, this point did not receive much attention until the publication

of Rügamer and Greven (2020), which proposes inference for L2-boosting. Compared to

previous ad-hoc solutions such as permutation tests or bootstrapping, using a classical

statistical method to quantify the uncertainty in boosting has various advantages.

In contrast to the relatively wider application of likelihood-based boosting, there

is still little research on the implementation of Bayesian inference in boosting. Even

though the Bayesian theorem was proposed in the eighteenth century, long before

the fundamental theories proposed at the beginning of the twentieth century, which
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underpin modern statistics, its real development came with the rise of personal computers.

Bayesian statistics has grown immensely in the last few decades and it has rendered an

substantial amount of new types of models. The successful application of the boosting

technique to the field of statistics makes it desirable to establish a Bayesian-based

boosting framework, which is exactly the goal of this thesis.

Overall, the thesis mainly consists of three chapters, where each chapter represents

an individual project. Chapter 2 introduces some basic concepts of gradient boosting

and addresses the problem of imbalanced updates of predictors when applying it to

complex models such as generalized additive models for location, scale and shape

(GAMLSS) by introducing an adaptive step-length. The implementation of Bayesian

inference in boosting is intensively discussed in Chapter 3 and 4. Chapter 3 firstly

applies the Bayesian learner in gradient boosting to the specific linear mixed models

(LMMs), which makes quantifying the uncertainty of random effects in boosting possible.

Then, in Chapter 4, the flexible Bayesian-based boosting framework is proposed for the

more general family, the structured additive regression (STAR) models, which cover

not only linear and random effects as in LMMs, but also smooth and spatial learners.

A short summary of each chapter is given in the following:

Chapter 2: Adaptive step-length selection in gradient boosting

for Gaussian location and scale models

Tuning of model-based boosting algorithms relies mainly on the number of iterations,

while the step-length is fixed at a predefined value. For complex models with several pre-

dictors such as Generalized Additive Models for Location, Scale and Shape (GAMLSS),

imbalanced updates of predictors, where some distribution parameters are updated

more frequently than others, can be a problem that prevents some submodels to be

appropriately fitted within a limited number of boosting iterations. We propose an

approach using adaptive step-length (ASL) determination within a non-cyclical boosting

algorithm for Gaussian location and scale models, as an important special case of the

wider class of GAMLSS, to prevent such imbalance. Moreover, we discuss properties

of the ASL and derive a semi-analytical form of the ASL that avoids manual selection

of the search interval and numerical optimization to find the optimal step-length, and

consequently improves computational efficiency. We show competitive behavior of the
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proposed approaches compared to penalized maximum likelihood and boosting with

a fixed step-length for Gaussian location and scale models in two simulations and

two applications, in particular for cases of large variance and/or more variables than

observations. In addition, the underlying concept of the ASL is also applicable to the

whole GAMLSS framework and to other models with more than one predictor like

zero-inflated count models, and brings up insights into the choice of the reasonable

defaults for the step-length in the simpler special case of (Gaussian) additive models.

This chapter is based on:

Zhang, B., Hepp, T., Greven, S., Bergherr, E. (2022). Adaptive

step-length selection in gradient boosting for Gaussian location and scale

models. Computational Statistics, pages 1-38.

Chapter 3: Bayesian Learners in Gradient Boosting for Linear

Mixed Models

Selection of relevant fixed and random effects without prior choices made from possibly

insufficient theory is important in mixed models. Inference with current boosting

techniques suffers from biased estimates of random effects and the inflexibility of

random effects selection. This chapter proposes a new inference method BayesBoost

that integrates a Bayesian learner into gradient boosting with simultaneous estimation

and selection of fixed and random effects in linear mixed models. The method introduces

a novel selection strategy for random effects, which allows for computationally fast

selection of random slopes even in high-dimensional data structures. Additionally, the

new method not only overcomes the shortcomings of Bayesian inference in giving precise

and unambiguous guidelines for the selection of covariates by benefiting from boosting

techniques, but also provides Bayesian ways to construct estimators for the precision of

parameters such as variance components or credible intervals, which are not available

in conventional boosting frameworks. The effectiveness of the new approach can be

observed via simulation and in a real-world application. This chapter is based on:

Zhang, B., Griesbach, C., Bergherr, E. (2022). Bayesian learners in

gradient boosting for linear mixed models. The International Journal of

Biostatistics.
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Chapter 4: Bayesian-based Boosting for Quantifying Uncertainty

in Structured Additive Regression

The boosting method is widely used in statistical learning, but its results are dogmatic,

that is, it gives a direct and unquestionable estimation conclusion, which does not

provide information about the error risk of estimation and prediction, i.e. the uncertainty

of estimates, which is actually the basis for many statistical analyses. In this chapter, we

propose a Bayesian-based boosting framework for structured additive regression models,

which integrates Bayesian penalized inference into componentwise gradient boosting,

enabling the novel method to specifically benefit from the uncertainty estimation of

Bayesian inference and from the intuitive guidelines for the selection of variables of

boosting techniques. The results of both linear and non-linear simulations indicate

that the proposed method absorbs the advantages of both worlds well by maintaining a

balance between estimation accuracy and variable selection. An empirical study is also

carried out on the real Munich rent index data. This chapter is based on:

Zhang, B., Kneib, T., Bergherr, E.. Bayesian-based Boosting for

Quantifying Uncertainty in Structured Additive Regression. working paper.

Software

All of the analysis in this thesis was carried out on the statistical program R (R Core

Team, 2019, 2020, 2021, 2022, depending on the time the respective research was done)

in combination with related packages.
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Chapter 2

Adaptive step-length selection in

gradient boosting for Gaussian location

and scale models

Generalized additive models for location, scale and shape (GAMLSS) (Rigby and

Stasinopoulos, 2005) are distribution-based approaches, where all parameters of the

assumed distribution for the response can be modelled as additive functions of the

explanatory variables (Ripley, 2004; Stasinopoulos et al., 2017). Specifically, the

GAMLSS framework allows the conditional distribution of the response variable to come

from a wide variety of discrete, continuous and mixed discrete-continuous distributions,

see Stasinopoulos and Rigby (2008). Unlike conventional generalized additive models

(GAMs), GAMLSS not only model the location parameter, e.g. the mean for Gaussian

distributions, but also further distribution parameters such as scale (variance) and

shape (skewness and kurtosis) through the explanatory variables in linear, non-linear or

smooth functional form.

The coefficients of GAMLSS are usually estimated based on penalized maximum

likelihood method (Rigby and Stasinopoulos, 2005). However, this approach cannot

deal with high-dimensional data, or more precisely, the case of more variables than

observations (Bühlmann, 2006). As the selection of informative covariates is an impor-

tant part of practical analysis, Mayr et al. (2012) combined the GAMLSS framework

with componentwise gradient boosting (Bühlmann and Yu, 2003; Hofner et al., 2014;

Hothorn et al., 2022) such that variable selection and estimation can be performed

7
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simultaneously. The original method cyclically updates the distribution parameters, i.e.

all predictors will be updated sequentially in each boosting iteration (Hofner et al., 2016).

Because the levels of complexity vary across the prediction functions, separate stopping

values are required for each distribution parameter. Consequently, these stopping values

have to be optimized jointly as they are not independent of each other. The commonly

applied joint optimization methods like grid search are, however, computationally very

demanding. For this reason, Thomas et al. (2018) proposed an alternative non-cyclical

algorithm that updates only one distribution parameter (yielding the strongest improve-

ment) in each boosting iteration. This way, only one global stopping value is needed

and the resulting one-dimensional optimization procedure vastly reduces computing

complexity for the boosting algorithm compared to the previous multi-dimensional one.

The non-cyclical algorithm can be combined with stability selection (Meinshausen and

Bühlmann, 2010; Hofner et al., 2015) to further reduce the selection of false positives

(Hothorn et al., 2010).

In contrast to the cyclical approach, the non-cyclical algorithm avoids an equal

number of updates for all distribution parameters as it is not useful to artificially enforce

equal updates for parameters with a less complex structure than other parameters.

However, it becomes even more important to fairly select the predictor to be updated in

any given iteration. The current implementation of Thomas et al. (2018), however, uses

fixed and equal step-lengths for all updates, regardless of the achieved loss reduction of

different distribution parameters. In other words, different parameters affect the loss in

different ways, and an update of the same size on all predictors hence results in different

improvement with respect to loss reduction. As a consequence, a more useful update of

one parameter could be rejected in favor of the other one just because the relevance

in the loss function varies. As we demonstrate later, this leads to imbalanced updates

that affect the fair selection and predictors with large number of boosting iterations

still tend to be underfitted. This seems inconsistent, since one expects the underfitted

predictor to be updated with a small number of iterations. As we show later, a large σ

in a Gaussian distribution leads to a small negative gradient of µ and consequently the

improvement for µ with fixed small step-length in each boosting iteration will also be

small. This results in the algorithm needing a lot of updates for µ until its empirical

risk decreases to the level of σ. However, the algorithm may stop long before the
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corresponding coefficients are well estimated.

We address this problem by proposing a variation of the non-cyclical boosting algo-

rithm for GAMLSS, especially for Gaussian location and scale models, that adaptively

and automatically optimizes step-lengths for all predictors in each boosting iteration.

This ensures no parameter favored over the others by finding the factor that results

in the overall best model improvement for each update and then bases the decision

on which parameter to update on this comparison. While the adaptive approach does

not enforce equal numbers of updates for all distribution parameters, it yields a fair

selection of predictors to update and a natural balance in updates. For the very special

Gaussian case, we also derive (semi-)analytical adaptive step-lengths that decrease

the need for numerical optimization and discuss their properties. Our findings have

implications beyond boosted Gaussian location and scale models for boosting other

models with several predictors, e.g. the whole GAMLSS framework in general or for

zero-inflated count models, and also give insights into the step-length choice for the

simpler special case of (Gaussian) additive models.

The chapter is organized as follows: Section 2.1 introduces the boosted GAMLSS

models including the cyclical and non-cyclical algorithms. Section 2.2 discusses how to

apply the adaptive step-length on the non-cyclical boosted GAMLSS algorithm, and

introduces the semi-analytical solutions of the adaptive step-length for the Gaussian

location and scale models and discusses their properties. Section 2.3 evaluates the

performance of the adaptive algorithms and the problem of fixed step-length in two

simulations. Section 2.4 presents the application of the adaptive algorithms for two

datasets: the malnutrition data, where the outcome variance is very large, and the

riboflavin data, which has more variables than observations. Section 2.5 concludes with

a summary and discussion. Further relevant materials and results are included in the

appendix.

2.1 Boosted GAMLSS

In this section, we briefly introduce the GAMLSS models and the two cyclical and

noncyclical boosting methods for estimation.
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2.1.1 GAMLSS and componentwise gradient boosting

Conventional generalized additive models (GAM) assume a dependence only of the

conditional mean µ of the response on the covariates. GAMLSS, however, also model

other distribution parameters such as the scale σ, skewness ν and/or kurtosis τ with a

set of statistical models.

The K distribution parameters θT = (θ1,θ2, · · · ,θK) of a density function f(y|θ)

are modelled by a set of up to K additive models. The model class assumes that

the observations yi for i ∈ {1, · · · , n} are conditionally independent given a set of

explanatory variables. Let yT = (y1, y2, · · · , yn) be a vector of the response variable

and X be a n× J data matrix. In addition, we denote X i·, X ·j and Xij as the i-th

observation (vector of length J), j-variable (vector of length n) and the i-th observation

of the j-th variable (a single value) respectively. Let gk(·), k = 1, · · · , K be known

monotonic link functions that relate K distribution parameters to explanatory variables

through additive models given by

gk(θk) = ηθk
(X) = β0,θk

1n +
J∑

j=1

fj,θk
(X ·j|βj,θk

), for k = 1, . . . , K, (2.1)

where θk = (θk,1, · · · , θk,n)T contains the n parameter values for the n observations and

functions are applied elementwise if the argument is a vector, ηθk
is a vector of length

n, 1n is a vector of ones and β0,θk
is the model parameter specific intercept. Function

fj,θk
(X ·j|βj,θk

) indicates the effects of the j-th explanatory variable X ·j (vector of length

n) for the model parameter θk, and βj,θk is the parameter of the additive predictor

fj,θk
(·). Various types of effects (e.g., linear, smooth, random) for f(·) are allowed.

If the location parameter (θ1 = µ) is the only distribution parameter to be regressed

(K = 1) and the response variable is from the exponential family, (2.1) reduces to the

conventional GAM. In addition, fj can depend on more than one variable (interaction),

in which case X·j would be e.g. a n× 2 matrix, but for simplicity we ignore this case in

the notation.

A penalized likelihood approach can be used to estimate the unknown quantities;

for more details, see Rigby and Stasinopoulos (2005). This approach does not allow

parameter estimation in the case of more explanatory variables than observations, and

variable selection for high-dimensional data is not possible, which, however, can be well
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solved by using boosting. The theoretical foundations regarding numerical convergence

and consistency of boosting with general loss functions have been studied by Zhang and

Yu (2005). The work of Bühlmann and Yu (2003) on L2 boosting with linear learners

and Hastie et al. (2007) on the proof of the equivalence of the lasso and forward stagewise

regression paved the way of componentwise gradient boosting (Hothorn et al., 2022),

which emphasizes the importance of weak learners to reduce the tendency to overfit.

To deal with the high-dimensional problems, Mayr et al. (2012) proposed a boosted

GAMLSS algorithm, which estimates the predictors in GAMLSS with componentwise

gradient boosting. As this method updates in general only one variable in each iteration,

it can deal with data that has more variables than observations, and the important

variables can be selected by controlling the stopping iterations.

To estimate the unknown predictor parameters βj,θk
, j ∈ {1, · · · , J} in equation

(2.1), the componentwise gradient boosting algorithm minimizes the empirical risk R,

which is also the loss ρ summed over all observations,

R =
n∑

i=1

ρ (yi,η(X i·)) ,

where the loss ρ measures the discrepancy between the response yi and the predictor

η(X i·). The predictor η(X i·) = (ηθ1(X i·), · · · , ηθK
(X i·)) is a vector of length K. For

the i-th observation X i·, each predictor ηθk
(X i·) is a single value corresponding to the

i-th entry in ηθk in equation (2.1). The loss function ρ usually used in GAMLSS is the

negative log-likelihood of the assumed distribution of y (Thomas et al., 2018; Friedman

et al., 2000).

The main idea of gradient boosting is to fit simple regression base-learners hj(·) to

the pseudo-residuals vector uT = (u1, · · · , un), which is defined as the negative partial

derivatives of loss ρ, i.e.

u
[m]
k =

(
− ∂

∂ηθk

ρ(y,η)
∣∣∣
η=η̂[m−1](Xi·),y=yi

)
i=1,··· ,n

,

where m denotes the current boosting iteration. In a componentwise gradient boosting

iteration, each base-learner involves usually one explanatory variable (interactions are
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also allowed) and is fitted separately to u
[m]
k ,

u
[m]
k

base-learner−→ ĥ
[m]
j,θk

(X ·j) for j = 1, · · · , J.

For linear base-learner, its correspondence to the model terms in (2.1) shall be

ĥj,θk
(X ·j) = X ·jβ̂j,

where the estimated coefficients can be obtained by using the maximum likelihood or

least square method. The best-fitting base-learner is selected based on the residual sum

of squares, i.e.

j∗ = argmin
j∈{1,··· ,J}

n∑
i=1

(
uk,i − ĥj(Xij)

)2
,

thereby allowing for easy interpretability of the estimated model and also the use of

hypothesis tests for single base-learners (Hepp et al., 2019). The additive predictor

will be updated based on the best-fitting base-learner ĥj∗,θk∗ (X ·j∗) in terms of the

best-performing sub-model ηθk∗ ,

η̂
[m]
θk∗

(X) = η̂
[m−1]
θk∗

(X) + νĥj∗,θk∗ (X ·j∗), (2.2)

where ν denotes the step-length. In order to prevent overfitting, the step-length is

usually set to a small value, in most cases 0.1. Equation (2.2) updates only the best-

performing predictor η̂
[m]
θk∗

, all other predictors (i.e. for k ̸= k∗) remain the same as in

the previous boosting iteration. The best-performing sub-model θk∗ can be selected by

comparing the empirical risk, i.e. which model parameter achieves the largest model

improvement.

The main tuning parameter in this procedure, as in other boosting algorithms, is

how many iterations should be performed before it stops, which is denoted as mθstop .

As too large or small mθstop leads to over-/underfitting model, cross-validation (Kohavi

et al., 1995) is one of the most widely used methods to find the optimal mθstop .
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2.1.2 Cyclical boosted GAMLSS

The boosted GAMLSS can deal with data that has more variables than observations,

as the componentwise gradient boosting updates only one variable in each iteration. It

leads to variable selection if some less important variables have never been selected as

the best-performing variable and thus are not included in the final model for a given

stopping iteration mθstop .

The original framework of boosted GAMLSS proposed by Mayr et al. (2012) is a

cyclical approach, which means every predictor ηθk
, k ∈ {1, · · · , K} is updated in a

cyclical manner inside each boosting iteration. The iteration starts by updating the

predictor for the location parameter and uses the predictors from the previous iteration

for all other parameters. Then, the updated location model will be used for updating

the scale model and so on. A schematic overview of the updating process in iteration

m+ 1 for K = 4 is

(µ̂[m], σ̂[m], ν̂ [m], τ̂ [m])
update−→ η̂[m+1]

µ → µ̂[m+1]

(µ̂[m+1], σ̂[m], ν̂ [m], τ̂ [m])
update−→ η̂[m+1]

σ → σ̂[m+1]

(µ̂[m+1], σ̂[m+1], ν̂ [m], τ̂ [m])
update−→ η̂[m+1]

ν → ν̂ [m+1]

(µ̂[m+1], σ̂[m+1], ν̂ [m+1], τ̂ [m])
update−→ η̂[m+1]

τ → τ̂ [m+1].

However, not all of the distribution parameters have the same complexity, i.e. the

stopping iterations mθstop should be set separately for different parameters, or jointly

optimized, for example by grid search. Since grid search scales exponentially with the

number of distribution parameters, such optimization can be very slow.

2.1.3 Non-cyclical boosted GAMLSS

In order to deal with the issues of a cyclical approach, Thomas et al. (2018) proposed

a non-cyclical variation, that updates only one distribution parameter instead of

successively updating all parameters in each boosting iteration by comparing the

model improvement (negative log-likelihood) of each model parameter, see algorithm 1

(especially step 11). Consequently, instead of specifying separate stopping iterations

mθstop for different parameters and tuning them with the computationally demanding

grid search, only one overall stopping iteration, denoted as mstop, needs to be tuned
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with e.g. the line search (Friedman, 2001; Brent, 2013). The tuning problem thus

reduces from a multi-dimensional to a one-dimensional problem, which vastly reduces

the computing time.

Algorithm 1 has a nested structure, with the outer loop executing the boosting

iterations and the inner loops addressing the different distribution parameters. The

best-fitting base-learner and their contribution to the model improvement for every

parameter is selected in the inner loop and compared in the outer loop (step 11).

Therefore, only the best-performing base-learner is updated in a single iteration by

adding νĥ(X·j∗) to the predictor of the corresponding parameter θk∗ . Over the course

of the iterations, the boosting algorithm steadily increases the model in small steps and

the final estimates for different base-learners are simply the sum of all their updates

they may have received.

The cyclical approach led to an inherent but somewhat artificial balance between

the distribution parameters, as predictors for all distribution parameters are updated in

each iteration. Different final stopping values mθstop for different distribution parameters

- chosen by tuning methods such as cross-validation - allow stopping updates at different

times for distribution parameters of different complexity to avoid overfitting. In the

non-cyclical algorithm, especially when mstop is not large enough, there is the danger

of an imbalance between predictors. If the selection between predictors to update is

not fair, this could lead to iterations primarily updating some of the predictors and

underfitting others. We will provide a detailed example for the Gaussian distribution

with large σ in Section 2.3.2.

A related challenge is to choose an appropriate step-length ν
[m]
θk

for both the cyclical

and non-cyclical approaches. Tuning the parameters when boosting GAMLSS models

relies mainly on the number of boosting iterations (mstop), with the step-length ν usually

set to a small value such as 0.1. Bühlmann and Hothorn (2007) argued that using a

small step-length like 0.1 (potentially resulting in a larger number of iterations mstop)

had a similar computing speed as using an adaptive step-length performed by doing

a line search, but meant an easier tuning task for one parameter (mstop) instead of

two (mstop and ν). However, this results referred to models with a single predictor. A

fixed step-length can lead to an imbalance in the case of several predictors that may

live on quite different scales. For example, 0.1 may be too small for µ but large for
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Algorithm 1 Non-cyclical componentwise gradient boosting in multiple dimensions -
Basic algorithm

1: Initialize additive predictors η̂[0] =
(
η̂
[0]
θ1
, · · · , η̂[0]θK

)
with offsets.

2: For each distribution parameter θk, k = 1, · · · , K, specify a set of base-learners, i.e.
for parameter θk define h1,θk

(·), · · · , hJk,θk
(·) where Jk is the cardinality of the set

of base-learners specified for θk.
3: for m = 1 to mstop do
4: for k = 1 to K do
5: Compute negative partial derivatives − ∂

∂ηθk
ρ(y,η) and plug in the current

estimates η̂[m−1](·):

u
[m]
k = − ∂

∂ηθk

ρ(y,η),

where η = η̂[m−1](X i·) and y = yi for i = 1, · · · , n.
6: Fit (e.g. with the least square method) the negative gradient vector u

[m]
k

separately to every base-learner:

u
[m]
k

base-learner−→ ĥj,θk
(X ·j) for j = 1, · · · , Jk.

7: Select the best-fitting base-learner ĥj∗,θk
(X ·j∗) by inner loss, i.e. the residual

sum of squares of the base-learner fit w.r.t. u
[m]
k =

(
u
[m]
k,1 , · · · , u

[m]
k,n

)T
:

j∗ = argmin
j∈{1,··· ,Jk}

n∑
i=1

(
u
[m]
k,i − ĥj,θk

(Xij)
)2

,

where we dropped the dependence of j∗ on k in the notation for simplicity.
8: Set the step-length to a fixed value ν0, usually ν0 = 0.1:

ν
[m]
θk

= ν0

9: Compute the possible improvement of this update regarding the outer loss

∆ρk =
n∑

i=1

ρ
(
yi, η̂

[m−1]
θk

(X i·) + ν
[m]
θk

· ĥj∗,θk
(Xij∗)

)
.

10: end for
11: Update, depending on the value of the loss reduction, only the overall best-fitting

base-learner k∗ = argmink∈{1,··· ,K}∆ρk:

η̂
[m]
θk∗

(X) = η̂
[m−1]
θk∗

(X) + ν
[m]
θk

· ĥj∗,θk∗ (X ·j∗).

12: Set η̂
[m]
θk

:= η̂
[m−1]
θk

for all k ̸= k∗.
13: end for



16 CHAPTER 2. ADAPTIVE STEP-LENGTH

σ. We will discuss such cases analytically and with empirical evidence in the later

sections. Moreover, varying the step-lengths for different sub-models directly influences

the choice of best-performing sub-model in the non-cyclical boosting algorithm, thus

choosing a subjective step-length is not appropriate. In the following, we denote a fixed

predefined step-length such as 0.1 as the fixed step-length (FSL) approach.

To overcome the problems stated above, we suggest to use adaptive step-lengths

(ASL) while boosting. In particular, we propose to optimize the step-length for each

predictor in each iteration to obtain a fair comparison between the predictors. While

the adaptive step-length has been used before, the proposal to use different ASLs for

different predictors is new and we will see that this leads to balanced updates of the

different predictors.

2.2 Adaptive Step-Length

In this section, we first introduce the general idea of the implementation of adaptive

step-lengths for different predictors to GAMLSS. For the important special case of a

Gaussian location and scale models with two model parameters (µ and σ), we will

derive and discuss their analytical adaptive step-lengths and properties, which also

serves as an important illustration of the relevant issues more generally.

2.2.1 Boosted GAMLSS with adaptive step-length

Unlike the step-length in equation (2.2) and algorithm 1, step 11, the adaptive step-

length may also vary in different boosting iterations according to the loss reduction.

The adaptive step-length can be derived by solving the optimization problem

ν
∗[m]
j∗,θk

= argmin
ν

n∑
i=1

ρ
(
yi, η̂

[m−1]
θk

(X i·) + ν · ĥj∗,θk
(Xij∗)

)
, (2.3)

note that ν
∗[m]
j∗,θk

is the optimal step-length of the model parameter θk dependent on j∗

in iteration m. The optimal step-length is a value that leads to the largest decrease

possible of the empirical risk and usually leads to overfitting of the corresponding

variable if no shrinkage is used (Hepp et al., 2016). Therefore the actual adaptive

step-length (ASL) we apply in the boosting algorithm is the product of two parts, the
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Algorithm 2 Non-cyclical componentwise gradient boosting with adaptive step-length
- Extension of basic algorithm 1

· · · Steps 1-7 equal to algorithm 1 · · · , in addition, choose shrinkage parameter λ.
8: Find the optimal step-length ν

[m]
θk

by optimizing the outer loss:

ν
∗[m]
j∗,θk

= argmin
ν

n∑
i=1

ρ
(
yi, η̂

[m−1]
θk

(X i·) + ν · ĥj∗,θk
(Xij∗)

)
,

and set adaptive step-length ν
[m]
j∗,θk

as the optimal value with shrinkage λ:

ν
[m]
j∗,θk

= λ · ν∗[m]
j∗,θk

.

· · · Steps 9-13 equal to those in algorithm 1 · · ·

shrinkage parameter λ and the optimal step-length ν
∗[m]
j∗,θk

, i.e.

ν
[m]
j∗,θk

= λ · ν∗[m]
j∗,θk

.

In this chapter, we take λ = 0.1, thus 10% of the optimal step-length. By comparison,

the fixed step-length ν = 0.1 would correspond to a combination of a shrinkage parameter

λ = 0.1 with the “optimal” step-length ν∗ set to one.

The non-cyclical algorithm with ASL can be improved by replacing the fixed step-

length in step 8 of algorithm 1 with the adaptive one. We formulate this change in

algorithm 2.

As the parameters in GAMLSS may have quite different scales, updates with fixed

step-length can lead to an imbalance between sub-models, especially when mstop is not

large enough. When using FSL, a single update for predictor ηθ1 may achieve the same

amount of global loss reduction than several updates of another predictor ηθ2 even if

the actually possible contribution of the competing base-learners is similar, because

for different scales the loss reduction of ηθ2 in these iterations are always smaller than

that of ηθ1 . However, such unfair selections can be avoided by using ASL, because the

model improvement depends on the largest decrease possible of each predictor, i.e. the

potential reduction in the empirical risks of all predictors are on the same level and

their comparison therefore is fair. Fair selection does not enforce an equal number of

updates as in the cyclical approach. The ASL approach can lead to imbalanced updates

of predictors, but such imbalance actually reveals the intrinsically different complexities

of each sub-model.
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The main contribution of this chapter is the proposal to use ASLs for each predictor

in GAMLSS. This idea can also be applied to other complex models (e.g. zero-inflated

count models) with several predictors for the different parameters, because these models

meet the same problem, i.e. the scale of these parameters might differ considerably.

If a boosting algorithm is preferred for estimation of such a model, we provide a new

solution to address these kinds of problems, i.e. separate adaptive step-lengths for each

distribution parameter.

2.2.2 Gaussian location and scale models

In general, the adaptive step-length ν can be found by optimizing procedures such as a

line search. However, such methods do not help to reveal the properties of adaptive

step-lengths and its relationship with model parameters. Moreover, a line search method

searches for the optimal value from a predefined search interval, which can be difficult

to find out since too narrow intervals might not include the optimal value and too

large intervals increase the searching time. The direct computation from an analytical

expression is faster than a search. By investigating the important special case of a

Gaussian distribution with two parameters, we will learn a lot about the adaptive

step-length for the general case. Nevertheless, we must underline that for many cases

an explicit closed form for the adaptive step-length may not exist and line search still

plays an irreplaceable role. We perform the following study of the analytical solutions

for the Gaussian special case out of the wish of finding its inner relationship with the

model parameters, in order to better understand the limitation of fixed step-length and

how adaptive values improve the learning process.

Consider the data points (yi,xi·), i ∈ {1, · · · , n}, where x is a n × J matrix.

Assuming that the true data generating mechanism is a Gaussian model

yi ∼ N(µi, σi)

µi = ηµ(xi·)

σi = exp (ησ(xi·)) .

As we talk about the observed data, we replace ηθk
, where k = 1, 2 for Gaussian

distribution, with µ and σ, and replace X with x. The identity and exponential
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functions for µ and σ are thus the corresponding inverse link. Taking the negative

log-likelihood as the loss function, its negative partial derivatives uµ and uσ in iteration

m for both parameters can then be modelled with the base-learners ĥ
[m]
j,µ and ĥ

[m]
j,σ . The

optimization process can then be divided into two parts: one is the ASL for the location

parameter µ, and the other is for the scale parameter σ. As the ASL shrinks the

optimal value, we consider only the optimal step-lengths for both parameters.

Optimal step-length for µ

The analytical optimal step-length for µ in iteration m is obtained by minimizing the

empirical risk

ν
∗[m]
j∗,µ = argmin

ν

n∑
i=1

ρ
(
yi, {η̂[m]

µ (xi·), η̂
[m−1]
σ (xi·)}

)

= argmin
ν

n∑
i=1

(
yi − η̂

[m−1]
µ (xi·)− νĥ

[m]
j∗,µ(xij∗)

)2
2σ̂

2[m−1]
i

, (2.4)

where the expression σ̂
2[m−1]
i represents the square of the standard deviation in the

previous iteration, i.e. σ̂2[m−1]
i = (σ̂

[m−1]
i )2. The optimal value of ν∗[m]

j∗,µ is obtained by

letting the derivative of the equation equal zero, so we get the analytical ASL for µ

(for more derivation details, see also appendix A.1.1):

ν
∗[m]
j∗,µ =

∑n
i=1

(
ĥ
[m]
j∗,µ(xij∗)

)2
∑n

i=1

(
ĥ
[m]
j∗,µ(xij∗ )

)2

σ̂
2[m−1]
i

. (2.5)

It is obvious, that ν
∗[m]
j∗,µ is not an independent parameter in GAMLSS but depends on

the base-learner ĥ
[m]
µ (xij∗) with respect to the best performing variable x·j∗ and the

estimated variance in the previous iteration σ̂
2[m−1]
i .

In the special case of a Gaussian additive model, the scale parameter σ is assumed

to be constant, i.e. σ̂[m−1]
i = σ̂[m−1] for all i ∈ {1, · · · , n}. We then obtain

ν
∗[m]
j∗,µ =

∑n
i=1

(
ĥ
[m]
j∗,µ(xij∗)

)2
1

σ̂2[m−1]

∑n
i=1

(
ĥ
[m]
j∗,µ(xij∗)

)2 = σ̂2[m−1]. (2.6)
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This gives us an interesting property of the optimal step-length, i.e. the analytical

optimal step-length for µ in the Gaussian distribution is actually the variance (as

computed in the previous boosting iteration). This property enables this adaptive

step-length to be not only applicable for the special GAMLSS case, but also for the

boosting of additive models with normal responses. Therefore, in the case of Gaussian

additive models, we can use ν
[m]
j∗,µ = λσ̂2[m−1] as the step-length, which has a stronger

theoretical foundation, instead of the common choice 0.1.

Back to the general GAMLSS case, we can further investigate the behavior of the

step-length by considering the limiting case of m → ∞. For large m, all base-learner

fits ĥ
[m]
j∗,µ(xij∗) converge to zero or are similarly small. If we consequently approximate

all ĥ[m]
j∗,µ(xij∗) by some small constant h, this gives an approximation of the analytical

optimal step-length of

ν
∗[m]
j∗,µ ≈

∑n
i=1 h

2∑n
i=1

h2

σ̂
2[m−1]
i

=
nh2

h2
∑n

i=1
1

σ̂
2[m−1]
i

=
n∑n

i=1
1

σ̂
2[m−1]
i

, (2.7)

which is the harmonic mean of the estimated variances σ̂2[m−1]
i in the previous iteration.

While this expression requires m to be large, which may not be reached if mstop is of

moderate size to prevent overfitting, the expression still gives an indication of the strong

dependence of the optimal step-length on the variances σ̂
2[m−1]
i , which generalizes the

optimal value of the additive model in (2.6).

Optimal step-length for σ

The optimal step-length for the scale parameter σ can be obtained analogously by

minimizing the empirical risk, now with respect to ν
∗[m]
j∗,σ . We obtain

ν
∗[m]
j∗,σ =argmin

ν

n∑
i=1

ρ
(
yi, {η̂[m−1]

µ (xi·), η̂
[m]
σ (xi·)}

)
=argmin

ν

n∑
i=1

(
η̂[m−1]
σ (xi·) + νĥ[m]

σ (xij∗)
)
+

+
n∑

i=1

(
yi − η̂

[m−1]
µ (xi·)

)2
2 exp

(
2η̂

[m−1]
σ (xi·) + 2νĥ

[m]
σ (xij∗)

) . (2.8)
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After checking the positivity of the second-order derivative of the expression in equation

(2.8), the optimal value can be obtained by setting the first-order derivative equal to

zero:

n∑
i=1

ĥ[m]
σ (xij∗)−

n∑
i=1

(
ĥ
[m]
σ (xij∗) + ϵi,σ + 1

)
ĥ
[m]
σ (xij∗)

exp
(
2ν

∗[m]
j∗,σ ĥ

[m]
σ (xij∗)

) !
= 0, (2.9)

where ϵi,σ denotes the residuals when regressing the negative partial derivatives u
[m]
σ,i

on the base-learner ĥ
[m]
σ (xij∗), i.e.uσ,i = ĥ

[m]
σ (xi·) + ϵi,σ. Unfortunately, equation (2.9)

cannot be further simplified, which means that there is no analytical ASL for the scale

parameter σ in the Gaussian distribution. Hence, the optimal ASL must be found by

performing a conventional line search. For more details, see also Appendix A.1.2.

Even without an analytical solution, we can still use (2.9) to further study the

behavior of the ASL. Analogous to the derivation of (2.7), ĥ[m]
σ (xij∗) converges to zero

for m → ∞. If we approximate with a (small) constant ĥ[m]
σ (xij∗) ≈ h,∀i ∈ {1, · · · , n}.

Then (2.9) simplifies to

n∑
i=1

h−
n∑

i=1

(h+ ϵi,σ + 1)h

exp
(
2ν

∗[m]
j∗,σh

) = 0

⇔ν
∗[m]
j∗,σ =

1

2h
log

(
h+ 1 +

1

n

n∑
i=1

ϵi,σ

)
⇔ν

∗[m]
j∗,σ =

1

2h
log(h+ 1), (2.10)

where 1
n

∑n
i=1 ϵi,σ = 0 in the regression model. Equation (2.10) can be further simplified

by approximating the logarithm function with a Taylor series at h = 0, thus

ν
∗[m]
j∗,σ =

1

2h

(
h− h2

2
+O(h3)

)
=

1

2
− h

4
+O(h2).

As h → 0 for m → ∞, the limit of this approximate optimal step-length for σ is

lim
m→∞

ν
∗[m]
j∗,σ = lim

h→0

1

2
− h

4
=

1

2
. (2.11)

Thus, the ASL for σ approaches approximately 0.05 if we take the shrinkage parameter
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λ = 0.1 and iterations run for a longer time (and the boosting algorithm is not stopped

too early to prevent overfitting for this trend to show).

2.2.3 (Semi-)Analytical adaptive step-length

Knowing the properties of the analytical ASL in boosting GAMLSS for the Gaussian

distribution, we can replace the line search with the analytical solution for the location

parameter µ. If we keep the line search for the scale parameter σ, we call this

the Semi-Analytical Adaptive Step-Length (SAASL). Moreover, we are interested in

the performance of combining the analytical ASL for µ with the approximate value

0.05 = λ · 1
2

(with λ = 0.1) for the ASL for σ, which is motivated by the limiting

considerations discussed above and has a better theoretical foundation than selecting

an arbitrary small value in the common FSL. We call this step-length setup SAASL05.

In either of these cases, it is straightforward and computationally efficient to obtain the

(approximate) optimal value(s) and both alternatives are faster than performing two

line searches.

The semi-analytical solution avoids the need for selecting a search interval for the

line search, at least for the ASL for µ in the case of SAASL and for both parameters for

SAASL05. This is an advantage, since too large search intervals will cause additional

computing time, but too small intervals may miss the optimal ASL value and again

lead to an imbalance of updates between the parameters. Also note that the value 0.5

gives an indication for a reasonable range for the search interval for ν∗[m]
j∗,σ if a line search

is conducted after all.

The boosting GAMLSS algorithm with ASL for the Gaussian distribution is shown

in algorithm 3.

For a chosen shrinkage parameter of λ = 0.1, the νσ in SAASL05 would be 0.05,

which is a smaller or “less aggressive” value than 0.1 in FSL, leading to a somewhat

larger number of boosting iterations but a smaller risk of overfitting, and to a better

balance with the ASL for µ.
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Algorithm 3 Non-cyclical componentwise gradient boosting for the Gaussian location
and scale models with different step-lengths - Extension of basic algorithm 1

· · · Steps 1-7 equal to algorithm 1 · · · , in addition, choose shrinkage parameter λ.
8: Set or find the step-length ν

[m]
j∗,θk

for θk ∈ {µ,σ} by one of the followings:

• Adaptive step-length (ASL):

ν
∗[m]
j∗,θk

= argmin
ν

n∑
i=1

ρ
(
yi, η̂

[m−1]
θk

(xi·) + ν · ĥj∗,θk
(xij∗)

)
;

• Semi-analytical adaptive step-length (SAASL):

if θk = µ,

ν
∗[m]
j∗,µ =

∑n
i=1

(
ĥj∗,µ(xij∗)

)2
∑n

i=1

(ĥj∗,µ(xij∗)
2

σ̂
2[m−1]
i

,

if θk = σ, same as for ASL.

• Semi-analytical adaptive step-length (SAASL05):

if θk = µ, same as for SAASL,

if θk = σ, ν∗[m]
j∗,θk

= 0.5.

and set adaptive step-length ν
[m]
j∗,θk

as the optimal value with shrinkage λ:

ν
[m]
j∗,θk

= λ · ν∗[m]
j∗,θk

.

· · · Steps 9-13 equal to those in algorithm 1 · · ·

2.3 Simulation Study

In the following, two simulations are shown to demonstrate the performance of the

adaptive algorithms. The first one compares the estimation accuracy between different

non-cyclical boosted GAMLSS algorithms with FSL or ASL in a Gaussian regression

model for location and scale. The second one underlines the problem of FSL and the

performance of adaptive approaches if the variance in this setting is large.

2.3.1 Gaussian Location and Scale Model

The simulation study in Thomas et al. (2018) showed that their FSL non-cyclical

approach outperforms the classical cyclical approach. We use the same setup to show

that the ASL approach performs at least as good as the FSL non-cyclical approach (and



24 CHAPTER 2. ADAPTIVE STEP-LENGTH

hence also outperforms the classical cyclical approach). At the end of this subsection

we will show that the reason for the good performance of FSL is due to the chosen

simulated data structure. The setup is the following: the response yi is drawn from

N(µi, σi) for n = 500 observations, with 6 informative covariates xij, j ∈ {1, · · · , 6}

drawn independently from U(−1, 1). The predictors of both distribution parameters

are:

ηµ(xi·) = µi = xi1 + 2xi2 + 0.5xi3 − xi4

ησ(xi·) = log(σi) = 0.5xi3 + 0.25xi4 − 0.25xi5 − 0.5xi6,

where x3 and x4 are shared between both µ and σ.

Moreover, pn-inf = 0, 50, 250 or 500 non-informative variables sampled from U(−1, 1)

are also added to the model. We conduct B = 100 simulation runs.

The estimated coefficients of ηµ and ησ, whose values are taken at stopping iterations

tuned by 10-fold CV with the maximum number of boosting iterations set to 1000,

are shown in appendix figures A.1 and A.2. Overall, estimated coefficients are similar

between all four methods, with the shrinkage bias of boosting only becoming apparent

with an increasing number of noise variables.

Figure 2.1 shows the comparison of the mean squared error (MSE) among non-

cyclical boosted algorithms for µ and σ, where the MSEs are defined on the predictor

level as MSEµ = 1
n

∑n
i=1(µi− ηµ(xi·))

2 and MSEσ = 1
n

∑n
i=1(log(σi)− ησ(xi·))

2, respec-

tively. In general, all methods have a similar MSE, with the MSE of FSL increasing more

strongly with the number of non-informative variables pn-inf and ASL methods hence

slightly outperform FSL in the variance predictor for a high number of non-informative

variables. ASL and SAASL show identical results, as they should if the line search is

correctly conducted, with results returned by SAASL05 very similar.

Computing the negative log-likelihood in sample of the model fits reveals a slight

advantage for FSL (see appendix figure A.3). However, this can be linked to the fact

that FSL selects more false positive variables on average than the adaptive approaches

and thus shows a relatively stronger tendency to overfit the training data (figure 2.2).

Figure 2.2 illustrates the false positives of each methods for each parameter. For σ,

even if pn-info is small, the false positive rates of the adaptive approaches are notably
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Figure 2.1 Comparison between mean squared error for FSL and the three ASL
methods. The left column comprises the MSE for ηµ, the right column for ησ. The
different numbers of non-informative variables are represented row-wise.

smaller than those of FSL. As discussed above, ν [m]
j∗,σ ≈ 0.05 for large m in the adaptive

approach is smaller than νσ = 0.1 for FSL. An update with a smaller, conservative

step-length can apparently help to avoid overfitting and the adaptive step-length here

seems to strike the balance between learning speed and the number of false positives.

While it would also be possible to lower the step-length for FSL to reduce the number

of non-informative variables included in the final model, this would increase the number

of boosting iterations and the computing time, and it would not address the imbalance

between updates for µ and σ. The optimal choice of the step-length is also difficult

without further tuning or an automatic selection as in ASL.

With respect to the neglecting of actually informative variables, i.e. false negatives,

all four methods are able to find and select all variables for µ in all of the simulation

runs. Regarding σ, the risk of false negatives slightly increases with the number of

noise variables in the setting. However, even in the case of 500 noise-variables, only a

single false negative is observed in between 3% and 6% of the runs, independently of

the algorithm in question.
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Figure 2.2 Comparison between false positives for FSL and the three ASL methods.
The left column comprises the false positives for µ, and the right column for σ. The
different numbers of non-informative variables settings are represented row-wise.

To some extent, the low false negative rate can be expected considering the somewhat

greedy nature of boosting algorithms. For this reason, performance in terms of false-

positive selections is arguably the more important aspect and speaks to the adaptive

updates.

In figure 2.3 we show an example of the comparison between the optimal step-lengths

in this case. As can be seen, the step-lengths for σ (depicted in grey) converge to 0.5

as shown in section 2.2.2. The second fact that becomes obvious when looking at the

figure is that the optimal step-lengths for both predictors do not differ a lot. Even

though differences can be observed in early iterations in particular, the step-lengths

still have the same order of magnitude. This is not only the case for this example but

overall in this simulation setup. Having this in mind, similar results for both approaches

(FSL and ASL) are not very surprising anymore: there is hardly any difference in the

approaches, since the updates do not need different step-lengths to be balanced. In the

next subsection we will examine a case in which the data calls for different step-lengths,

and see how both methods perform under those changed circumstances.
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Figure 2.3 Comparison of the optimal step-lengths ν
∗[m]
j∗,µ and ν

∗[m]
j∗,σ in SAASL from

one of the 100 simulation runs. The step-lengths for µ are in black dots, the step-lengths
for σ in grey cross. Different horizontal layers of dots/crosses correspond to different
covariates.

2.3.2 Large Variance with resulting Imbalance between Location

and Scale

As discussed above, the Gaussian location and scale model in section 2.3.1 do not lead

to a large difference between FSL and ASL, as the optimal step-lengths for µ and σ

are roughly similar and the imbalance between the updates for the two predictors in

FSL is thus not large. In this section, we investigate a setting with a large variance,

which leads to a stronger imbalance between the two parts of the model.

In the following, we use SAASL as a representative of the adaptive approaches in

our presentation, as it yields identical results to ASL, but avoids the numerical search

for the optimal νµ by using the analytical result (2.5). Since estimated effects generally

deviate more strongly from theoretical values than before due to the large variance

(details will be discussed later), we additionally compare the results to those obtained

using GAMLSS with penalized maximum likelihood estimation as implemented in the

R-package gamlss (Rigby and Stasinopoulos, 2005).

Consider the data generating mechanism yi ∼ N(µi, σi), i ∈ {1, · · · , 500} with

B = 100 simulation runs. The predictors are determined by

ηµ(xi·) = µi = 1 + xi1 + 2xi2 − xi3

ησ(xi·) = log(σi) = 5 + 0.1xi1 − 0.2xi2 + 0.1xi3,
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where x·j ∼ U(−1, 1), j ∈ {1, 2, 3, 4, 5}, x·4 and x·5 are noise variables. The choice of

ησ leads to an extremely large standard deviation in the order of 150 due to the large

intercept 5. The stopping iteration is obtained by 10-fold CV, and the maximum number

of iterations is 3000 and 2,000,000 for SAASL and FSL respectively. The main goal of

this simulation setting is to highlight the imbalance problem of FSL when the scale

parameter is large. As many noise variables will make it difficult to demonstrate the

differences between FSL and adaptive approaches, we include only two noise variables

in this example for illustration.

As can be seen in figure 2.4, both fixed and adaptive step-lengths yield reasonable

estimates regarding ησ, but FSL results in many false negative estimates equal to zero

for ηµ in the majority of the simulation runs. This is of course connected to the relative

importance of the variance component in this setting, which should in itself already

lead to a preference for updating ησ rather than ηµ in early boosting iterations due to

the fact that the negative gradient for µ (i.e. uµ,i =
∑n

i=1(yi − µi)/σ
2
i with large σi) is

actually scaled by the variance (recall the large intercept 5, log-link and the resulting

exponential transformation) and hence very small. As a consequence, the impact on the

global loss of base-learners fit to the gradient is also small compared to those suggested

for updates regarding σ in step 11 of algorithm 1. Then, using the same step-length for

both parameters makes it clearly harder to identify informative effects on µ as they are

trivialized in comparisons.

The adaptive step-lengths implemented in SAASL compensates for this disadvantage.

Compared to the simulation result in the previous subsection, the estimates regarding

ηµ are less precise with large variability around true values. However, this is not a

problem of SAASL but again the consequence of the large variance, obscuring the

effects on the mean, and it is also encountered using the penalized maximum likelihood

approach implemented in the gamlss-package (called GAMLSS in figure 2.4). The

variability in the estimates is actually somewhat smaller than for GAMLSS due to

the regularization inherent in the boosting approach. This is also illustrated in figure

2.5 in the pairwise comparison of the estimated coefficients for both methods, where

SAASL leads to similar but slightly closer to zero estimates compared to the penalized

maximum likelihood based method GAMLSS.

Interestingly, figure 2.4 also reveals that the inability to identify informative variables
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Figure 2.4 Distribution of coefficient estimates from B = 100 simulation runs. The
true coefficients are marked by the dashed horizontal lines.

Table 2.1 Summary of the in-sample MSE for each estimation methods, i.e.
1
n

∑n
i=1 (yi − ŷi)

2.

Min. 1st Qu. Median Mean 3rd Qu. Max.
FSL 19848 21796 22547 22688 23579 27026

GAMLSS 19707 21687 22414 22586 23515 26883
SAASL 19679 21663 22372 22554 23443 26883

results in the lowest MSE for all three individual coefficients for µ when using FSL (for

more numerical details, see appendix A.3). As can be seen from table 2.1, however,

the combined additive predictor performs worse in terms of overall MSE than both

GAMLSS and SAASL, with the latter performing best.

To further highlight the differences in the selection behavior between FSL and

SAASL, figure 2.6 illustrates the proportion of boosting iterations used to update µ

over the course of the model fits, i.e. pmµ = mµ/(mµ +mσ), where mµ +mσ = mstop.

The bimodal distribution for FSL observed in the histogram in panel (a) demonstrates

another problem of the fixed step-lengths in this setting. Considering many estimates

equal or close to zero observed in figure 2.4, the mode close to pmµ = 0 is expected,

as it describes the proportion of simulation runs where µ has not been updated at all.

However, as soon as at least one base-learner for µ is recognized as an effective model

parameter, the small step-length fixed at 0.1 requires a huge number of updates for the

base-learner to actually make an impact on the global loss (hence the large number of
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Figure 2.5 Pairwise comparison of the estimated coefficients between GAMLSS and
SAASL for both model parameter µ (top row) and σ (bottom row).

maximum iterations allowed for FSL). This results in the second mode around pmµ = 1,

as the algorithm is mainly occupied with µ in the corresponding runs.

This is also illustrated by the scatter plot in figure 2.6b, where pmµ is plotted against

the stopping iteration mstop. Note that the y-axis is displayed with a logarithmic scale

and each tick on the y-axis represents a tenfold increase over the previous one. The

few points (FSL), whose mstop lie between 102 and 103, show a better balance between

the updates of µ and σ than other points, i.e. the middle region of pmµ . But we also

observe a bimodal distribution for FSL, i.e. lots of points are equal or close to pmµ = 0

and 1, with very low and extremely large values for mstop resulting, respectively.

As for SAASL, we observe a unimodel distribution of pmµ in figure 2.6a. The mode

smaller than 0.5 indicates SAASL updates σ a little more frequently than µ. Unlike

the cyclical approach that enforces an equal number of updates for all distribution

parameters, the balance formed by SAASL is more natural. This balance enables

alternate updates between two predictors even though they lie on different scales.

Therefore, the information in µ can be fairly discovered in time and it reduces the

risk of overlooking the informative base-learners with respect to µ. The number of

simulations runs, in which µ is not updated at all (pmµ = 0), reduces from 39 in FSL to

only 5 in SAASL. Moreover, none of the 100 simulations requires a substantial amount

of updates for µ to get well estimated coefficients (cf. also figure 2.4).

Table 2.2 displays the information about false positives and false negatives of the
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(a) Histogram (b) Scatter plot

Figure 2.6 Distribution of pmµ in B = 100 simulation runs. (a) Histogram of pmµ .
The histogram of the two approaches are overlayed using transparency. (b) Scatter plot
of mstop against pmµ . Points and crosses are displayed with transparency. The y-axis is
displayed on a logarithmic scale with base 10. Each tick represents a tenfold increase
over the previous one.

Table 2.2 The number of simulations with false positives and false negatives for each
variable under different modelling methods with respect to the two model parameters.
The false negatives part shows the number of simulations in which the informative
variables are excluded from the final model, and the false positives part shows how
many simulations include the non-informative variables in their final model. Values are
taken at the stopping iteration determined by 10-fold CV.

False Negatives False Positives
x·1 x·2 x·3 x·4 x·5

µ
FSL 83 77 81 21 20

SAASL 28 24 28 72 73

σ
FSL 9 1 6 83 82

SAASL 18 1 9 70 67

two approaches in all 100 simulations with respect to µ and σ. For example, the second

and fourth number 77 and 21 in the first line indicate that the informative variable x·2

is not included in the final model in 77 out of 100 simulation runs (i.e. false negative),

while there are 21 simulations whose final model contains the non-informative variable

x·4 (i.e. false positive). Similar as figure 2.2 in section 2.3.1, the conservative small

step-length for µ in FSL increases the number of boosting iterations, but reduces the

risk of overfitting. Less simulations containing noise variables for µ in FSL than in

SAASL confirms this behavior. According to equation (2.11) the ASLs νj∗,σ are a

sequence of values around 0.05, and (except for the values at early boosting iterations)

most of them smaller than 0.1. There are correspondingly slightly more simulations in

FSL overfitting the σ-submodel than in SAASL.

Although non-informative variables of µ are excluded from the FSL model, the
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informative ones are excluded as well. Actually µ is not updated in many simulations

at all (cf. figure 2.6a). The false negatives part of table 2.2 for µ confirms this. The

informative variables x·1 to x·3 are excluded from the final model in the majority

of simulations with FSL but not with SAASL. For σ, the smaller step-length νj∗,σ

in SAASL selects variables more conservatively and as a consequence slightly more

simulations underfit the σ-submodel in SAASL than in FSL, but the difference is far

less pronounced.

2.4 Applications

We apply the proposed algorithms to two datasets. The malnutrition dataset demon-

strates the shortcomings of FSL and the pitfalls of using numerical determination of

ASL with a fixed search interval, and with the riboflavin dataset we illustrate the

variable selection properties of each algorithm.

2.4.1 Malnutrition of children in India

The first data called india from the R package gamboostLSS (Hofner et al., 2018;

Fahrmeir and Kneib, 2011) are sampled from the Standard Demographic and Health

Survey between 1998 and 1999 on malnutrition of children in India (Fahrmeir and Kneib,

2011). The data sample contains 4000 observations and four variables (BMI of the child

(cBMI), age of the child in months (cAge), BMI of the mother (mBMI) and age of the

mother in years (mAge)). The outcome of interest in this case is a numeric z-score for

malnutrition ranging from -6 to 6, where the negative values represent malnourished

children. To highlight the problem of using a fixed step-length, we work with the

original variable stunting (corresponding to 100 * z-score). The identity and logarithm

functions are used as link functions for µ and σ respectively.

Because this is not a high-dimensional data example, we use the GAMLSS with

penalized maximum-likelihood estimation as a gold standard to examine the effectiveness

of adaptive approaches.

Table 2.3 lists the estimated coefficients of each variable on the predictors ηµ and

ησ at the stopping iteration tuned by 10-folds CV, where the maximum number of

iterations is set to 2000. The estimated intercept in ησ indicates a large variance of



2.4. APPLICATIONS 33

the response, with the setting thus being similar to the second simulation above. It is

therefore not surprising that FSL selects only one variable (cAge) for ηµ, i.e. a large

number of updates for the base-learner are required but the given maximal boosting

iteration is not large enough. In practice we can certainly increase the maximum

number of iterations as well as enlarge the commonly applied step-length 0.1 in order

to estimate the coefficients well. But their choices are very subjective and probably

result in tedious manual fine-tuning based on trial and error.

The ASL method with the default predefined search interval [0, 10] encounters a

similar problem as FSL. Apart from the only selected and underfitted variable cAge for

µ, the two variables (cBMI and cAge) for the σ-submodel are also underfitted compared

with the results from the gold standard GAMLSS. The reason for this phenomenon

lies in the relationship between the variance and step-length discussed in equation

(2.5). The log-link or exponential transformation for ησ in this example data requires

a sequence of huge step-lengths, but the default search interval does not fulfill this

requirement.

An estimation of ASL by increasing its search interval to [0, 50000], denoted as

ASL5 in table 2.3, results in coefficients comparable to those of GAMLSS. But choosing

a suitable search interval becomes an unavoidable side task for ASL when analyzing

this kind of dataset.

The results of the two semi-analytical approaches hardly differ from the maximum

likelihood based GAMLSS. Unlike the numerical determination with a fixed search

interval in ASL, the analytical approaches replace this procedure with a direct and

precise solution that gets rid of the potential manual intervention (e.g. increasing the

search interval). Contrary to the direct influence of the variance on ν
∗[m]
j∗,µ in equation

(2.5), the optimal step-length ν
∗[m]
j∗,σ is dominated by the chosen base-learner, but as

the number of learning iterations increases, such effects gradually disappear, and ν
∗[m]
j∗,σ

finally converges to 0.5. Thus, our default search interval [0, 1] is sufficient for ν
∗[m]
j∗,σ ,

and increasing the range of search interval as for ν∗[m]
j∗,µ in ASL is almost never necessary.

Theoretically, the ASL with a sufficiently large search interval (ASL5 in this example)

and SAASL should result in the same values as discussed in the previous theoretical

section. Due to the calculation accuracy of computers and the numerical optimization

steps, their outputs are very similar but can differ slightly for the malnutrition data.
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Table 2.3 Comparison of the estimated coefficients.

FSL ASL ASL5 SAASL SAASL05 GAMLSS

(Intercept) ηµ -174.772 -169.203 -91.160 -91.160 -91.160 -91.160
ησ 4.881 4.874 4.912 4.912 4.912 4.912

cBMI ηµ <0.001 <0.001 -13.925 -13.925 -13.925 -13.926
ησ -0.003 -0.003 -0.015 -0.015 -0.015 -0.015

cAge ηµ -0.038 -0.371 -5.847 -5.847 -5.847 -5.847
ησ -0.001 -0.001 0.003 0.003 0.003 0.003

mBMI ηµ <0.001 <0.001 11.708 11.708 11.708 11.708
ησ 0.009 0.009 0.009 0.009 0.009 0.009

mAge ηµ <0.001 <0.001 0.026 0.026 0.026 0.026
ησ 0.005 0.005 0.005 0.005 0.005 0.005
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Figure 2.7 The optimal step-length of each model parameters against the boosting
iterations. Up to the stopping iterations specified by 10-folds CV (here mstop = 769),
406 iterations are used to update µ and 363 iterations are used to update σ.

Figure 2.7 presents the optimal step-lengths ν
∗[m]
j∗,µ and ν

∗[m]
j∗,σ using SAASL for each

variable up to 769 boosting iterations specified by 10-fold CV for one simulation run.

Apparently, the optimal step-lengths for µ over the entire learning process are over

20000, which is far larger than the fixed step-length 0.1 and the upper boundary 10

of the predefined search interval in ASL. Without knowing this information, it is not

trivial to determine the search interval for ν
∗[m]
j∗,µ . And we thus (after acquiring this

graphic) re-estimated the example data with ASL5.

Additionally, figure 2.7b illustrates the optimal step-length for σ. After several

boosting iterations the optimal values of each covariate converge to their own stable

regions (ranging from about 0.38 to 0.56). As discussed above, the optimal step-lengths

for σ should be some values around 0.5, and this graphic confirms this statement.
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As this example is not high-dimensional and does not necessarily require variable

selection, we can use GAMLSS with penalized maximum likelihood estimation for

comparison. The fact that its results are very similar to those of the semi-analytical

approaches indicates that results from SAASL and SAASL05 are reliable. The only

alternative to achieve balance between predictors would be using a cyclical algorithm

(with the downsides discussed in the introduction). Rescaling the response variable

or standardizing the negative partial derivatives could reduce the scaling problem to

some extend, but would not eliminate the need to increase the step-length or reduce

the imbalance between predictors.

2.4.2 Riboflavin dataset

This data set describes the riboflavin (also known as vitamin B2) production by Bacillus

subtilis, containing 71 observations and 4088 predictors (gene expressions) (Bühlmann

et al., 2014; Dezeure et al., 2015). The log-transformed riboflavin production rate,

which is close to a Gaussian distribution, is regarded as the response. This data set is

chosen to demonstrate the capability of the boosting algorithm to deal with situations

in which the number of covariates exceeds the number of observations. Please note that

a comparison to the original GAMLSS algorithm is not possible in this case, since the

algorithm is not able to deal with more model parameters than available observations.

In order to compare the out-of-sample MSE of each algorithm, we select 10 observations

randomly as the validation set.

Table 2.4 summarize the selected informative variables for µ and σ separately at

the stopping iteration tuned by 5-fold CV, the corresponding coefficients are listed in

appendix A.4. The results in both tables demonstrate the intersection of the selected

variables, for example FSL selects 13 informative variables in total, and 9 of them are

also chosen by ASL and SAASL, and there are 11 variables common with SAASL05.

In general, for both µ and σ, more variables are included in the adaptive approaches

and the difference in the selected variables mainly lies between the adaptive and fixed

approach. Because the optimal step-length ν
∗[m]
j∗,µ lies in the predefined search interval

[0, 10] (and is actually smaller than 1, i.e. the adaptive step-length ν
[m]
j∗,µ < 0.1), and ν

∗[m]
j∗,σ

lies also in a narrower predefined search interval [0, 1], ASL and SAASL have the same

results. Moreover, as the adaptive step-length is smaller than the fixed step-length 0.1,
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Table 2.4 Number of chosen variables for ηµ and ησ. The diagonal depicts the number
per method, the off-diagonal elements overlapping variables.

ηµ ησ
FSL ASL SAASL SAASL05 FSL ASL SAASL SAASL05

FSL 13 9 9 11 16 9 9 12
ASL 9 20 20 18 9 17 17 15

SAASL 9 20 20 18 9 17 17 15
SAASL05 11 18 18 24 12 15 15 24

Table 2.5 Comparison of the out-of-sample MSE.

FSL ASL SAASL SAASL05 glmnet
MSE 2.611 1.111 1.111 1.193 0.946

the adaptive approaches make conservative (small) updates, leading to more boosting

iterations. Several of gene expressions for µ and σ are selected by all algorithms and

are thus consistently included in the set of informative covariates. Actually almost all

gene expressions chosen by FSL are also recognized as informative variables by all other

methods.

To compare the performance of each algorithm, table 2.5 lists the out-of-sample

MSE. In contrast to the fixed approach, the three adaptive approaches perform in

general well, where the performance of SAASL05 is slightly worse than the other two. In

addition, table 2.5 demonstrates also the result of Lasso estimator from the R package

glmnet (Friedman et al., 2010) suggested by Bühlmann et al. (2014). The mean squared

prediction error of glmnet is the smallest among the five approaches, but the difference

with the adaptive approaches is relatively small.

As glmnet cannot model the scale parameter σ, only the estimated coefficients of

the µ-submodel are provided in appendix A.4. Out of the 21 genes selected by glmnet,

7 and 9 of them are common with the ASL/SAASL and SAASL05, respectively. The

signs (positive/negative) of the estimated coefficients of these common covariates from

glmnet match the adaptive approaches. This comparison indicates that the boosted

GAMLSS with adaptive step-length is an applicable and competitive approach for

high-dimensional data analysis.
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2.5 Conclusions and Outlook

The step-length is often not treated as an important tuning parameter in many boosting

algorithms, as long as it is set to a small value. However, if complex models like

GAMLSS with several predictors for the different distribution parameters are estimated,

different scales of distribution parameters can lead to imbalanced updates and resulting

bad performances if one common small fixed step-length is used, as we show in this

chapter.

The main contribution of this chapter is the proposal to use separate adaptive

step-lengths for each distribution parameter in a non-cyclical boosting algorithm for

GAMLSS. In addition to the resulting balance in updates between different distribution

parameters, a balance between over- and underfitting is obtained by taking only a

proportion (shrinkage parameter) such as 10% of the determined optimal step-length

as the adaptive step-length. The optimal step-length can be found by optimization

procedures such as a line search. We illustrated with an example the importance of

updating the search interval for the search if necessary to find the optimal solution.

For Gaussian location and scale models, we derived an analytical solution for the

adaptive step-length for the mean parameter µ, which avoids numerical optimization and

specification of a search interval. For the scale parameter σ, we obtained an approximate

solution of 0.5 (or 0.05 with 10% proportion), which gives a better motivated default

value than 0.1 relative to the step-length for µ, and discussed a combination with a

one-dimensional line search in the semi-analytical approach.

In simulations and empirical applications, we showed favorable behavior compared

to use a fixed step-length FSL. We showed highly competitive results of our adaptive

approaches compared to a standard GAMLSS with respect to estimation accuracy for

the low-dimensional case, while the adaptive boosting approach has the advantages of

shrinkage and variable selection, which make it also applicable to the high-dimensional

case of more covariates than observations. Overall, the semi-analytical method for

adaptive step-length selection performs best among the considered methods.

In this chapter we focus on the Gaussian location and scale models to derive

analytical or semi-analytical solutions for the optimal step-length, but in most cases, a

line search has to be conducted for all distribution parameters. In the future, if possible

it is worth investigating analytical adaptive step-lengths for other distributions, because
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analytical or approximate adaptive step-lengths increase the numerical efficiency and

also reveal the relationships between the optimal step-lengths for different parameters

and model parameters (as well as properties of commonly used but probably less than

ideal step-length settings).

We are confident that the adaptive step-length concept is relevant way beyond

the Gaussian specification, so further work should contain the study on the stability

and effectiveness of the implementation of adaptive step-length to other common

distributions or zeor-inflated count models. Further work should also include the

implementation of further (e.g. non-linear, spatial etc.) effects (Hothorn et al., 2011)

into the model, and test the influence of the adaptive step-length on such effects.

Moreover, we discovered correlations between the optimal step-length ν
∗[m]
j∗,µ of a variable

and the coefficient of this variable in the σ-submodel through our application of the

algorithm. Future work should also investigate the relationship among the optimal

step-lengths of different parameters and the relationship of these step-lengths to model

coefficients.



Chapter 3

Bayesian Learners in Gradient

Boosting for Linear Mixed Models

Linear mixed models (LMM) (Laird and Ware, 1982) are widely used in longitudinal data

analysis as they incorporate random effects to deal with group-specific heterogeneity.

Data involving repeated observations of the same variables are common in epidemiology,

medical statistics and many other fields.

Likelihood-based methods are often used to make inference for (generalized) linear

mixed models (Bates et al., 2000; Gumedze and Dunne, 2011). These kinds of estimations

based on the maximum likelihood theory depend on the correct specification of the

distribution of estimators, since for misspecified distributions (of the random effects), the

estimators will be inconsistent and biased (Heagerty and Kurland, 2001; Litière et al.,

2008). To address the bias problems, especially with binary data or correlated random

effects (Breslow and Clayton, 1993; Breslow and Lin, 1995; Lin and Zhang, 1999), a fully

Bayesian inference via Markov Chain Monte Carlo (MCMC) simulation is proposed by

Fahrmeir and Lang (2001) for generalized additive and semiparametric mixed models.

One advantage of a Bayesian approach is that it is easier to take uncertainty in variance

components into account (Zhao et al., 2006). The Bayesian inference is also suggested

by Fong et al. (2010) due to the unreliability of the likelihood-based inference with

variance components being difficult to estimate, especially for small sample sizes, but

they replaced the compute-intensive MCMC simulation with the much faster integrated

nested Laplace approximation (INLA).

Regarding regularization and variable selection, the L1-penalized estimation (Lasso)

39
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is integrated into the likelihood-based inference (Schelldorfer et al., 2011; Groll and Tutz,

2014), which enables the method to deal with high-dimensional data. A likelihood-based

boosting approach for fitting generalized linear mixed models (GLMMs) is presented in

Tutz and Groll (2010) for the first time, that integrates the boosting technique into

the mixed model estimation. Especially with focus on penalized likelihood inference,

likelihood-based boosting (Tutz and Binder, 2006) represents an alternative to the well

known gradient boosting technique (Friedman, 2001) and is due to its componentwise

maximization routine (Bühlmann and Yu, 2003; Hothorn et al., 2010) suitable for

variable selection and high-dimensional data structures. The R package gamboostLSS

(Hofner et al., 2016) shows the latest progress of applying boosting framework to

additive models, but it cannot solve the problem of estimation bias and imbalanced

choice between fixed and random effects in LMMs. The potential bias of the likelihood-

based boosting estimators occurring in the presence of cluster-constant covariates like

gender or treatment group in longitudinal studies is addressed in Griesbach et al. (2021a)

and they proposed an improved algorithm where the random effects show no correlation

with any observed variables. Moreover, this bias correction was successfully adapted to

gradient boosting estimating technique for linear mixed models Griesbach et al. (2021b).

However, variable selection regarding the random structure in their approach is not

allowed, as the random effects have to be specified in advance.

While boosting provides a very flexible model-based inference, there is no straight-

forward way to conduct standard parametric hypothesis tests. The biased estimate

induced by shrinkage affects also other viable alternatives such as bootstrap confidence

intervals (Hepp et al., 2019; Mayr et al., 2017b). However, with Bayesian sampling,

the variability of the coefficients (e.g. credible intervals) can be fused as part of the

estimation procedure. Therefore, in this chapter, we introduce a novel inference method

that integrates a Bayesian learner into gradient boosting in linear mixed models, denoted

as BayesBoost, which incorporates the two concepts, Bayesian statistics and boosting,

for the first time and benefits from the shrinkage and variable selection properties of

boosting and from the uncertainty estimates of Bayesian inference.

The BayesBoost method divides the estimation procedure into two parts, the

componentwise gradient boosting estimation for the fixed effects and the merged

estimation (boosting with a Bayesian learner) for the random effects. The automatic
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selection of the random effects is based on their contribution to the model measured

e.g. by the in-sample mean squared error (MSE), and it assumes that only informative

fixed effects have random effects, in other words, only when a covariate is selected as a

fixed effect, it can be considered for the choice of random effects. Thus, the selection of

random effects is involved inside the selection of fixed effects conducted by the boosting

technique, and is performed with the estimation simultaneously. We also provide the

interface for a fixed user-defined random effects structure or a flexible user-defined

random effect candidates set to make the automatic selection without any assumptions.

However, the usage of Bayesian inference makes the model improvement being

affected by the stochasticity of MCMC samples. For a common boosting algorithm

like gradient boosting, model evaluation (such as MSE) decreases monotonously as the

boosting iteration increases, but the implementation of a Bayesian learner or a MCMC

procedure in BayesBoost cannot guarantee this descending order between adjacent

iterations. This makes the widely used Akaike information criterion (AIC) (Akaike,

1973) or the more suitable conditional AIC (cAIC) (Vaida and Blanchard, 2005; Liang

et al., 2008; Greven and Kneib, 2010) for mixed models difficult to serve as the stopping

criterion due to the stochasticity of the global minimum. We therefore suggest to use

probing Thomas et al. (2017) to prevent overfitting, which is a variable selection method

based on the addition of randomly permuted variables.

The chapter is structured as follows: Section 3.1 specifies the linear mixed models and

introduces how to make an inference with the BayesBoost algorithm, and discussions

on random effects selection and model choice are also covered. Section 3.2 evaluates

the performance of the BayesBoost algorithm in three different simulation scenarios

and highlights its new features. Section 3.3 presents the application of the BayesBoost

algorithm to the riboflavin data set, which deals with the relationship between gene

expression and the riboflavin production by Bacillus subtilis. At last, Section 3.4

concludes with a discussion and outlook.

3.1 Methods

This section starts with the specification of linear mixed models for longitudinal and

clustered data. Then we propose the BayesBoost algorithm with a detailed explanation
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of the parameter estimation. The model selection criterion based on probing is also

briefly introduced in the end of this section.

3.1.1 Model specification

For clusters or individuals i = 1, . . . ,m with n =
∑m

i=1 ni, where ni denotes the

replicates of the i-th individual, consider the linear mixed model

y = Xβ +Zγ + ε (3.1)

with γ

ε

 ∼ N

0

0

 ,

G 0

0 R

 , (3.2)

where y = (y1, . . . ,ym)
T , ε = (ε1, . . . , εm)

T and γ = (γ1, . . . ,γm)
T , as well as the

design matrices X = (X1, . . . ,Xm)
T and Z = blockdiag(Z1, . . . ,Zm). More specif-

ically, yi is the ni-dimensional vector of responses for individual i, X i and Zi are

ni × (p + 1)- and ni × (q + 1)-dimensional design matrices constructed from known

covariates, β is a (p + 1)-dimensional vector of fixed effects with intercept, γi is a

(q + 1)-dimensional vector of cluster-specific random effects with random intercept, and

εi is a ni-dimensional vector of errors.

We assume independency of γ and ε with positive definite covariance matrices. The

covariance matrices G and R are block-diagonal with

R = blockdiag(σ2Σn1 , · · · , σ2Σnm),

G = blockdiag(Q, · · · ,Q),

where γi ∼ N(0,Q) with (1 + q)× (1 + q)-covariance matrix Q. For i.i.d. errors, which

is also the case in this chapter, R simplifies to R = σ2I.

The predictor η for the response displays as

y = η =

p∑
k=1

ηk
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with

ηk = Xkβk +Zkγk, (3.3)

where Xk = (1, Xk) is a design matrix that accounts for the intercept and the corre-

sponding parameter vector is βk = (β0, βk). Zk and γk represent the design matrix

constructed by the covariate Xk and its random effect respectively.

3.1.2 Bayesian boosting inference method

This chapter proposes a novel estimation and variable selection method for linear mixed

effects models by integrating Bayesian inference, which constructs a Bayesian learner

for the precision of parameters, into the boosting framework, which is famous for its

variable selection and shrinkage features. In this chapter we refer to this method as

BayesBoost.

The additive representation (3.3) makes our approach possible as it naturally divides

the predictor into fixed and random parts and each part can be estimated separately

by treating the others as an offset. Specifically, the BayesBoost estimation procedure

contains two steps: the first step is to estimate fixed effects through gradient boosting

as usual, and the second step is to make Bayesian inference by employing a Bayesian

learner to the random effects while treating the estimated fixed effects as offsets.

Another emphasis is the selection of random effects. BayesBoost assumes that only

variables with an already selected fixed effect should be given the opportunity to obtain

an additional random effect. This means the random effect is considered informative

when its associated variable is already selected to have a fixed effect and the model

improvement for its random effect is greater than its fixed effect.

We first provide a full description of BayesBoost (algorithm 4). Note that the

presented description does not contain the stopping mechanism, which, however, is easy

to be implemented. Details of stopping method as well as other important steps will be

discussed in more detail in the following subsections.
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Algorithm 4 BayesBoost for LMM

1: Initialize ŷ, i ∈ {1, . . . ,m}, ˆ
β
[0]
0 ,R(0),Q[0],Λ

[0]
0 , a, b, v0 and random set E = {ranInt}

containing only the random intercept.
2: Construct correction matrix Z.
3: for s = 1, . . . , sstop do
4: Compute the negative gradient vector

u[s] = − ∂

∂η
ρ(y,η)

∣∣∣
η=η̂[s−1]

5: Fit every covariate Xk, k ∈ {1, . . . , p}, separately to the gradient u[s] with a
regression model to get the coefficients β̂k.

6: Select the best-fitting base-learner that results in the least residual sum of squares

MSEk,fixed =
1

n

n∑
i=1

(
ui − νX ikβ̂k

)2
, for k∗ = argmin

k∈{1,...,p}
MSEk.

7: if Xk∗ is not in the random effects set E then
8: Construct a potential design matrix Z

[s]
pot, update Q

[s]
pot, G

(0) and Λ
[s]
0,pot.

9: end if
10: Draw MCMC samples for the random effect γ(t), variance σ2(t) and covariance

Q(t).
11: Compute the posterior modes γ̂

[s]
mode, pot, σ̂

2[s]
mode and Q̂

[s]

mode, pot.
12: Calculate the model improvement regarding the random effect of Xk∗ ,

MSEk∗,random =
1

n

(
ui −Z

[s]
ik∗,potγ̂

[s]
k∗,mode, pot

)2
13: if MSEk∗,fixed < MSEk∗,random then
14: Reject the potential structure and reset them to the previous state.
15: else
16: Accept the potential structure and update random effects
17: end if
18: end for

Fixed effects estimation

From a BayesBoost perspective, only random effects are considered as random variables,

while fixed effects are assumed to be constant. So unlike in conventional full Bayesian

inference, where the fixed effects vector β is obtained by MCMC simulation, it is updated

by a boosting step in each iteration of the BayesBoost approach. In componentwise
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gradient boosting, the negative gradient vector

u[s] =
∂ρ(y, η̂[s−1])

∂η
= y − η̂[s−1], s = 1, . . . ,mstop,

with the L2-loss ρ(·), i.e. ρ(a, b) = 1
2

∑
(a− b)2, in boosting iteration s is fitted by each

base-learner, yielding

u[s] base-learner−→ ĥ(Xk) for k = 1, . . . , p.

For a linear base-learner, its correspondence to the model term shall be ĥ(Xk) = Xkβ̂k.

Note that Xk = (1, Xk) and βk = (β0, βk). The best-fitting base-learner is then selected

based on the residual sum of squares with respect to u[s]

k∗ = argmin
k∈{1,...,p}

n∑
i=1

(u
[s]
i − ĥ(Xik))

2,

where Xik denotes the i-th observation of Xk.

The updated fixed effects with respect to the best-fitting covariate are

β̂
[s]

= β̂
[s−1]

+ νβ̂
[s]

k∗ , (3.4)

where ν denotes a step-length or learning rate. Since β̂
[s−1]

is a vector of length (p+ 1)

and β̂
[s]

k∗ is of length 2, updates of β̂
[s]

in equation (3.4) happen only in the intercept term

and the corresponding k∗-th covariate, while all the other covariates remain unchanged.

Model improvement benefiting from the fixed effect Xk∗ is measured with the MSE

MSEk∗,fixed =
1

n

n∑
i=1

(
ui − νX ik∗β̂

[s]

k∗

)2
. (3.5)

This serves later for deciding whether Xk∗ should also contribute to the model from a

random effect perspective, i.e. the selection of random effects.
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Random effects estimation

After obtaining the estimated fixed effects, the full Bayesian inference for the parameters

of interest is based on the posterior distribution

p(γ,G,R|ỹ) ∝ p(ỹ|γ,G,R)p(γ|G)p(G)p(R), (3.6)

with ỹ = y − Xβ̂
[s]

treating fixed effects as an offset term and γ|G, R and G are

assumed to be independent. In general, the posterior (3.6) cannot be displayed in a

closed form, such that the full Bayesian inference is usually conducted through MCMC

simulation, or more precisely through Gibbs sampler in this chapter.

The random effects distribution γ ∼ N(0,G) can be seen as a prior for random

effects. Then, the full conditional distribution of γ is

p(γ|ỹ,G,R) ∝p(ỹ|γ,G,R)p(γ|G)

∝ exp

(
−1

2
(ỹ −Zγ)T R−1 (ỹ −Zγ)

)
exp

(
−1

2
γTG−1γ

)
. (3.7)

The inner term of the exponential function in equation (3.7) is a sum of two squared

forms, so the conditional distribution is Gaussian with parameters

Σγ =
(
ZTR−1Z +G−1

)−1
,

µγ = Σγ

(
ZR−1ỹ

)
.

According to the model specification, the covariance matrix for i.i.d. errors R = σ2I

is dominated by the hyperparameter σ2. Moreover, a weakly informative inverse gamma

prior σ2 ∼ IG(a, b) with small a and b is commonly proposed (Fahrmeir et al., 2021),

because for a = b and both values approaching zero, the distribution of log σ2 tends to

be a uniform distribution. Thus, small values for a and b are identified with a weakly

informative or noninformative prior. The full conditional density of σ2 turns out to be

p(σ2|ỹ,γ) ∝ p(ỹ|γ, σ2)p(σ2)

∝ (σ2)−
n
2 exp

(
− 1

2σ2
(ỹ −Zγ)T (ỹ −Zγ)

)
· (σ2)−a−1 exp

(
− 1

σ2
b

)
= (σ2)−

n
2
−a−1 exp

(
− 1

σ2

(
b+

1

2
(ỹ −Zγ)T (ỹ −Zγ)

))
,
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which is again an inverse gamma distribution IG(ã, b̃) with

ã = a+
n

2
,

b̃ = b+
1

2
(ỹ −Zγ)T (ỹ −Zγ) .

The last parameter whose prior needs to be specified is the covariance matrix G

of random effects. Analogously, the block-diagonal matrix G = blockdiag(Q, . . . ,Q)

is dominated by the covariance matrix of single individual Q. Usually, we assume an

inverse Wishart prior for the covariance matrix, i.e. Q ∼ IW(v0,Λ0), which can be

understood as the multivariate case of an inverse gamma distribution. Recalling that Q

is a (1 + q)× (1 + q)-dimensional matrix and there exists totally m clusters, we have

p(Q|ỹ,γ,R) ∝ p(ỹ|γ,Q,R)p(γ|Q)p(Q) ∝ p(γ|Q)p(Q)

∝ |Q|−
m
2 exp

(
−1

2

m∑
i=1

γT
i Q

−1γi

)
· |Q|−

v0+(1+q)+1
2 exp

(
−1

2
tr
(
Q−1Λ0

))
= |Q|−

m+v0+(1+q)+1
2 exp

(
−1

2
tr
(
Q−1

(
Λ0 + γTγ

)))
,

where | · | denotes the determinant of a matrix. Therefore, the full conditional for Q is

an inverse Wishart distribution with

v = v0 +m,

Λ = Λ0 + γTγ.

Bayesian inference for these unknown parameters is then made according to the

corresponding Gibbs samples drawn from the full conditional distributions. In conven-

tional Bayesian inference for linear mixed models, the MCMC simulation procedure is

performed only once. However, the combination of Bayesian inference and boosting

makes it necessary that the procedure is performed the same number of times as the

total of boosting iterations since the estimated fixed effects are treated as an offset term

and each update yields a different ỹ requiring the sampling process to be repeated. To

minimize the invalid samples (burn-in) to the most extent, we can use the posterior

modes from the last iteration instead of repeatedly using the initialized values as starting

values of the MCMC process for the current iteration. The preference to the mode
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instead of mean is due to the asymmetric prior distribution of σ2 and Q, and the

sample outliers affect the mean but have little effect on the mode. We omit burn-in of

the individual MCMC chains for two reasons: the first one is that, due to the gradual

convergence to the correct values the starting values in the later boosting iterations

are already in the correct area, since they are based on the results of the previous

boosting iteration. Hence, we could consider the whole chain generated by all boosting

iterations except the last as pseudo burn-in. The second reason is the stability we get

from the parameters generated solely by the boosting mechanism: the full conditional

distributions are derived on constant fixed effects β̂
[s]

, which also leads to less instability

than seen in full MCMC approaches. There won’t be large changes in the burn-in period

between the samples as seen in conventional Bayesian inference, where β is regarded a

random variable and must be drawn as well, because the process of approaching the

stationary region is omitted.

Another point that deserves mentioning here is the nearest positive definite matrix.

Even though model selection discussed in this chapter is based on probing (explanation

see below), it is sometimes useful to analyze the AIC or cAIC, which requires a Cholesky

decomposition of the covariance matrix G or just Q to avoid calculating the high-

dimensional inverse matrix (Säfken et al., 2021). The covariance matrix Q constructed

from the elementwise posterior mode of Gibbs samples, however, occasionally does not

guarantee to be a positive definite matrix, in other words, the condition of Cholesky

decomposition is not fulfilled. In practice, for the case of non-positive definite Q,

we suggest to transform it to its nearest positive definite matrix. The transforming

algorithm is beyond the scope of this chapter, for more details please refer to Higham

(2002).

Bias correction

A common problem of the likelihood-based boosting approach is the correlation between

random intercepts and cluster-constant covariates (e.g. gender or age-group), and the

problem can be addressed by introducing an additional correction step for the random

effects within a usual boosting framework Griesbach et al. (2021a). But unlike the

“piecewise” updates of random effects in usual boosting algorithms, BayesBoost extracts

the whole information of random effects from residuals (i.e. y − Xβ̂
[s]

) at once in
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every boosting iteration through MCMC simulation, and this mechanism often induces

ineffective updates of fixed effects. Due to stepwise build up of the boosting approach

fixed effects explain only a little variance of the response in the beginning iterations,

such that residuals contain lots of information, which ought to belong to the fixed effects

part, but are explained by the random effects altogether. Consequently, the information

extracted by fixed effects in the next boosting iteration from the remaining residuals

y −Xβ̂
[s−1]

−Zγ̂ [s−1] becomes ineffective since lots of information have already been

accounted by the random part.

Therefore, weakened and disentangled updates are meaningful not only for the

cluster-constant covariates as emphasized by Griesbach et al. (2021a), but also for the

cluster-varying variables in the BayesBoost framework. To prevent such correlation

between fixed and random effects, we replace the original design-matrix of the random

effects Z̃ with

Z = (I −X(XTX)−1XT )Z̃, (3.8)

where I −X(XTX)−1XT is known as the residual maker matrix, which is interpreted

as a matrix that produces least squares residuals in the regression of Z̃ on X when it

multiplies any Z̃. Note that the design matrix Z used in the entire algorithm including

what we have discussed above is actually the corrected version (3.8). Based on the linear

regression theory it can be easily proved that XTZ = 0, i.e. Z is uncorrelated with X.

From this perspective, the corrected design matrix Z and X creates two-dimensional

orthogonal subspaces. Variations or updates of random effects on the Z-subspace will

not influence fixed effects on the X-subspace due to this orthogonal projection. This

transformation helps limiting the explanation scope of random effects, i.e. random

effects explain only the variation of response that cannot be explained by fixed effects.

Random effects selection

Theoretically, we can perform a componentwise Bayesian estimation for all potential

random effects to perform the selection, e.g. by comparing model improvements of all

pairwise random effects. But this is obviously not an efficient method, since thousands

of Gibbs samples need to be drawn for each variable in every iteration, and most of

them are discarded after the winner of the comparison is obtained. Therefore, we
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assume that random effect variables are a subset of fixed effect variables, i.e. what

we have mentioned many times above that only the variable that has fixed effect can

have random effect. By this way it is enough to draw Gibbs samples for only the

selected fixed effect variables, which is especially efficient for high-dimensional data.

This assumption coincides also with practical experience, namely, it is hard to imagine

a variable that affects the response only in a random manner without including some

degree of fixed effect at all. To put it simply, a variable in a boosting iteration is said

to have an informative random effect when it has an informative fixed effect and the

model improvement of treating its random effect is greater than its fixed effect.

To make this selection mechanism possible, the covariance structure of random

effects needs to be reconstructed at the sampling step. Based on the random effects

assumption, as long as the best-fitting fixed effect Xk∗ in iteration s has not a random

effect, a temporary or potential covariance matrix Q
[s]
pot shall be constructed as

Q
[s]
pot = diag(Q[s−1], 1),

with 1 as the initialized starting value. The change of the covariance structure affects

also other relevant elements, for example the hyperparameter Λ[s]
0,pot. The design matrix

Z
[s]
pot should also correspond to the new structure. Estimates, especially γ

[s]
mode, pot

(posterior mode), based on the new structure enables us to get access to the model

improvement benefiting from the random effects part of Xk∗ , i.e.

MSEk∗,random =
1

n

n∑
i=1

(
ui −Z

[s]
ik∗,potγ̂

[s]
k∗,mode, pot

)2
, (3.9)

where Z
[s]
k∗,pot denotes the submatrix of Z [s]

pot accounting for the k∗-th covariate.

Decisions on the selection of random effects can thus be made by comparing the

mean squared error of the fixed effect part in (3.5) and the random effect part in (3.9)

regarding Xk∗ . If model improvement of the latter is greater than that of the former,

the structures of potential covariance as well as other elements shall be held, otherwise

they ought to be reset to the previous status.

Two reasons ensure the fairness of the comparison between the update in the fixed

effects and the random effects. The first one lies in the underlying concept of boosting,

i.e. update the parameter of interest yielding the largest improvement. The marginal
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influence of fixed effects decrease with increasing iterations, and upto some threshold

random effects will be considered by the model. In other words, as long as the random

effects are really informative, they will be selected into the final model sooner or later.

The second one is the algorithm specification. On one hand, the subset assumption of

random effects guarantees a variable’s random effect cannot be selected earlier than its

fixed effect. This reduces the risk of including too many noise random effects, since they

are not shrunken and have large influence at early iterations and this indeed increases

the chance of random effects being selected at early stage. But on the other hand,

our algorithm specification makes random effects explain only the part that cannot

be explained by fixed effects as discussed in the bias correction step. This means the

information at early stage that is explained by random effects will be reexplained by

fixed effects at later iterations.

Theoretically, if Xk∗ is not additionally recognized to have a random effect, the

MCMC simulation process should be conducted again with the old covariance structure

to get more precise estimations. But we can still keep the samples excluding only Xk∗

relevant values practically, because a larger MSEk∗ usually implies an uncorrelated

non-informative random effect Xk∗ , so ignoring the Xk∗ relevant samples will have little

effect on the estimation. And regarding efficiency, a second MCMC procedure adds

a huge computational burden. Therefore, in our proposed algorithm the estimates

sampled from the potential structures are updated even if the random effect of Xk∗ is

not selected.

3.1.3 Stopping criterion

Classical model selection techniques are not so useful for the proposed framework,

since on the one hand, resampling methods like cross-validation (Allen, 1974; Stone,

1974, 1977) are difficult to be applied to mixed models because random effects are

subjects-level effects making estimates from the training data useless for the validation

set. On the other hand, information criteria like the cAIC fail due to the usage of

MCMC simulation since estimation based on the drawn samples is naturally random.

Thus, the global minimum of the cAIC series (i.e. a sequence of cAIC values, where each

value represents the evaluation of the model in the corresponding boosting iteration)

is subject to stochasticity and no longer reliable. Consequently, we suggest to use the
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Algorithm 5 Probing for mixed models

1: Expand the data set X by creating randomly shuffled images X̃k for each of the
k = 1, . . . , p variables Xk such that

X̃k ∈ SXk
,

where SXk
denotes the symmetric group that contains all n! possible permutations

of Xk. Note that cluster-constant variables permute at the subject level.
2: Initialize a boosting model on the inflated data set

X̄ = [X1, · · · , Xp, X̃1, · · · , X̃p]

for the fixed effects estimation and start iterations with s = 0.
3: Stop if the first X̃j is selected.
4: Return only the variables selected from the original data set X.

probing technique (Thomas et al., 2017).

The main idea of probing is adding artificial non-informative variables (usually the

permutation of all observed variables since the marginal distribution is preserved) to

the data to benefit from the presence of variables that are known to be independent

from the outcome. It is straightforward to implement probing to the componentwise

gradient boosting since boosting algorithms update a variable which yields the largest

improvement, and selecting a artificial variable essentially implies the best possible

improvement relies on information that is known to be unrelated to the outcome, i.e. it

is overfitted at this stage.

For convenience, we have made some amendments to the algorithm proposed by

Thomas et al. (2017) to make it suitable for mixed models, see algorithm 5. Note that

for cluster-constant variables, their permutation shall be conducted at the subject-level.

In addition, there is no need to extend the probing concept to random effects, since

it will add a substantial computing burden while benefiting little from the precision.

According to the mechanism of probing, the algorithm only stops when one of the

artificial non-informative variables is selected. This means that as long as the model has

adequately explained the information in the data, further estimates will inevitably select

non-informative variables, be it fixed effect or random effect. The stopping iteration

may differ when applying probing to random effects, but the difference can be neglected.

From the computing concerns, we therefore consider probing only for fixed effects.
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3.2 Simulation

In the following, three simulation studies are shown to demonstrate the performance of

BayesBoost. The first one compares the estimation accuracy for both random intercept

and random slope model between BayesBoost and the enhanced gradient boosting

algorithm grbLMM Griesbach et al. (2021a). The second one highlights the random

effects selection of BayesBoost and explores its uncertainty estimation feature. The

performance of uncertainty estimation is compared with BayesX (Belitz et al., 2022) in

the last simulation.

3.2.1 Estimation accuracy

The grbLMM algorithm shows the latest research results in applying gradient boosting

technique to linear mixed models, but the covariance structure of the random effects

must be specified in advance due to lacking an option for random effects selection. The

BayesBoost algorithm can mimick this behaviour by preserving the space of limiting the

maximal number of random effects the final model contains or just giving a pre-defined

covariance structure. These can be obtained by skipping step 7 in algorithm 4 if the

maximal number of random effects is exceeded, or simply replacing the step with a

pre-defined covariance structure (and skip the random effects selection, i.e. comparison

of MSEs), and the latter is what we have done in this simulation to conduct a fair

comparison.

We use the same setup as in Griesbach et al. (2021a): for individuals i = 1, · · · , 50

and their replicates j = 1, · · · , 10 and thus the total observations n = 500, the response

in the random intercept model is drawn from

yi = 1 + 2xi1 + 4xi2 + 3xi3 + 5xi4 + γi0 + εi,

with γ0 ∼ N(0, τ 2) , and in the random slope model is drawn from

yi = 1 + 2xi1 + 4xi2 + 3xi3 + 5xi4 + γi0 + γi1xi3 + γi2xi4 + εi, (3.10)
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with (γi0,γi1,γi2) ∼ N(0,Q) where

Q =


τ 2 τ ∗ τ ∗

τ ∗ τ 2 τ ∗

τ ∗ τ ∗ τ 2

 .

The simulations are evaluated for five different cases p ∈ {10, 25, 50, 100, 500} ranging

from low to high dimensions. In both models random variables xi, i = 1, . . . , p are

standard normal distributed and only the first four variables are informative, specifically,

x1 and x2 are cluster-constant covariates. Moreover, ε ∼ N(0, σ2) with σ = 0.4 and

τ ∈ {0.4, 0.8, 1.6}. In the random slope model τ ∗ is chosen such that cor(γic,γid) = 0.6

for all c, d = 1, 2, 3 holds.

The estimation accuracy is evaluated by the mean squared errors

MSEθ := ∥θ − θ̂∥2 and MSEσ2 :=
(
σ2 − σ̂2

)2
with θ ∈ {β,γ}. For random intercept model, the variance τ 2 is evaluated with

MSEτ2 := (τ 2 − τ̂ 2)
2, and in case of the random slope model, the covariance matrix Q is

measured by MSEQ = ∥Q− Q̂∥F where ∥ · ∥ denotes the Frobenius norm. Performance

of variable selection is evaluated by calculating the false positive rate (FP). False

negatives do not occur in both methods and hence are omitted.

Table 3.1 and 3.2 summarizes the performance of 100 simulation runs for random

intercept and random slope model respectively. The stopping iteration of grbLMM are

determined by 10-fold cross-validation, and that of BayesBoost are by probing. The

MCMC samples T drawn at each iteration in BayesBoost are set to 1000 and the

step-length ν in both methods is set to 0.1.

Generally, except for the variance component, grbLMM slightly outperforms BayesBoost

in all mean squared error measures for both random intercept and random slope models,

but the differences are neglectable. However, the false positive rates of grbLMM are

obviously worse than the ones produced by BayesBoost in all cases. This coincides

with the outperformance of grbLMM in the MSE comparison, as a model with more false

positives usually overfits and therefore has better estimation accuracy.

In turn, one of the big improvements of BayesBoost is the drastically reduction of
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Table 3.1 Mean value of 100 simulation runs with respect to each model evaluation
metric between grbLMM and BayesBoost in the random intercept setup.

τ p
grbLMM BayesBoost

MSEβ MSEτ2 MSEσ2 MSEγ FP MSEβ MSEτ2 MSEσ2 MSEγ FP

0.4

10 0.013 0.001 <.001 1.192 0.48 0.017 0.001 <.001 1.223 0.11
25 0.014 0.001 <.001 1.201 0.31 0.020 0.001 <.001 1.240 0.05
50 0.015 0.001 0.001 1.194 0.20 0.021 0.001 <.001 1.275 0.03
100 0.019 0.001 0.001 1.278 0.14 0.022 0.001 <.001 1.267 0.01
500 0.021 0.001 0.001 1.241 0.04 0.029 0.002 <.001 1.262 0.02
10000 0.027 0.002 0.001 1.278 <.01 0.013 0.002 <.001 1.181 <.01

0.8

10 0.043 0.014 <.001 2.570 0.49 0.048 0.018 <.001 2.770 0.10
25 0.043 0.014 <.001 2.528 0.35 0.053 0.016 <.001 2.912 0.05
50 0.050 0.012 0.001 2.759 0.24 0.053 0.016 <.001 2.806 0.02
100 0.050 0.015 0.001 2.701 0.16 0.057 0.019 <.001 2.850 0.01
500 0.057 0.015 0.001 2.837 0.05 0.064 0.017 <.001 3.031 <.01
10000 0.062 0.017 0.002 2.757 <.01 0.070 0.015 0.001 2.695 <.01

1.6

10 0.155 0.230 <.001 7.850 0.47 0.178 0.304 <.001 8.989 0.11
25 0.178 0.195 <.001 8.710 0.34 0.178 0.267 <.001 8.790 0.04
50 0.176 0.259 0.001 8.413 0.29 0.185 0.315 <.001 9.066 0.02
100 0.174 0.238 <.001 8.416 0.14 0.187 0.396 <.001 8.782 0.01
500 0.166 0.255 0.001 7.823 0.05 0.186 0.265 <.001 8.486 <.01
10000 0.179 0.304 0.003 7.826 0.01 0.178 0.313 0.001 7.823 <.01

false positives at a very low cost of accuracy. To some extent the effect can however

be contributed to probing. As introduced above, probing determines the stopping

iteration via the addition of non-informative variables, it is therefore sensitive to the

false positives. Consequently, it delivers a lower number of false positives in contrast

to common tuning procedures. For a more detailed comparison between probing

and CV, please refer to Thomas et al. (2017). A potential drawback of probing is

the stochasticity of permutations, there is thus no deterministic stopping iteration.

Rerunning the algorithm with different random seeds can help to stabilize results, but

there is no evidence proving resampling methods can help further reducing the false

positives.

The simulation as conducted by Griesbach et al. (2021a) has the disadvantage of

only covering one type of noise-to-signal ratio, we hence want to give a few details for a

broader coverage of this matter. We alter the picture with the same settings corrected

for the noise-to-signal ratio (NSR). The coefficients βc are transformed according to

βc = β

√
(rβTΣβ)−1,

where β = (2, 4, 3, 5) as the settings above and the NSR r ∈ {0.2, 0.5, 1}. The covariance

matrix Σ is a Toeplitz matrix with Σijρ
|i−j| for all 1 < i, j < p, where ρ = 0.9.

Table 3.3 shows the averaged false positive rate (FPR) and false negative rate

(FNR) among 100 simulation runs for both grbLMM and our proposed method. Unlike
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Table 3.2 Mean value of 100 simulation runs with respect to each model evaluation
metric between grbLMM and BayesBoost in the random slope setup.

τ p
grbLMM BayesBoost

MSEβ MSEQ MSEσ2 MSEγ FP MSEβ MSEQ MSEσ2 MSEγ FP

0.4

10 0.020 0.013 0.002 4.482 0.46 0.026 0.010 <.001 3.529 0.10
25 0.022 0.012 0.003 4.530 0.27 0.029 0.010 <.001 3.545 0.04
50 0.023 0.012 0.003 4.551 0.18 0.030 0.011 <.001 3.588 0.02
100 0.025 0.012 0.003 4.536 0.10 0.031 0.011 <.001 3.644 0.01
500 0.027 0.011 0.003 4.453 0.03 0.040 0.010 <.001 3.660 <.01
10000 0.032 0.012 0.005 4.548 <.01 0.054 0.009 0.001 3.952 <.01

0.8

10 0.072 0.124 0.002 6.923 0.44 0.083 0.133 <.001 6.332 0.11
25 0.073 0.121 0.003 7.015 0.28 0.087 0.136 <.001 6.482 0.04
50 0.074 0.119 0.003 6.956 0.17 0.087 0.134 <.001 6.620 0.02
100 0.078 0.094 0.003 7.060 0.11 0.085 0.118 <.001 6.635 0.01
500 0.082 0.124 0.003 6.953 0.04 0.100 0.139 <.001 6.832 <.01
10000 0.083 0.130 0.004 6.804 <.01 0.090 0.124 0.001 6.157 <.01

1.6

10 0.280 1.829 0.002 16.970 0.41 0.321 2.053 <.001 15.669 0.09
25 0.277 1.808 0.002 16.605 0.29 0.316 2.007 <.001 15.940 0.04
50 0.294 1.435 0.002 17.124 0.19 0.302 1.796 <.001 15.950 0.02
100 0.299 1.852 0.003 16.682 0.14 0.310 1.931 <.001 15.006 0.01
500 0.320 1.804 0.003 17.658 0.04 0.361 1.773 <.001 17.280 <.01
10000 0.281 1.904 0.005 16.380 <.01 0.339 1.788 0.001 15.705 <.01

in section 3.2.1 we can see the occurrence of false negatives with the help of NSR in

this example. The BayesBoost approach includes relatively less ineffective variables

than grbLMM at the cost of the exclusion of more effective ones. But generally speaking,

for both methods, the FPR and FNR are on the low levels. Hence, the absence of

false negatives in section 3.2.1 is mainly due to the strong signal of truly informative

variables. Note that the equivalence of FPR for all NSRs actually comes by chance,

since the estimated coefficients differ slightly from each other, though they are not

shown here, and the FNR varies under different NSRs.

Table 3.3 False positive rate (FPR) and false negative rate (FNR) under different
noise-to-signal ratio (NSR). The outcomes average 100 simulation runs with the total
number of covariates p = 100 and τ = 0.8.

grbLMM BayesBoost
NSR FPR FNR FPR FNR
0.2 0.096 <.001 0.011 <.001
0.5 0.077 0.001 0.011 0.022
1 0.066 0.001 0.011 0.065

In addition, we would like to make some comments on how to deal with random

effects for the prediction of new data. In mixed models, one needs to decide whether

predictions should be based on the marginal distribution of the response or on the

distribution that is conditional on the modes of the random effects Bates et al. (2015).

Therefore, setting random effects to zero for new observations is one possibility, another

one would be making predictions conditional on the modes of all the random effects.
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Figure 3.1 Boxplot of each model evaluation metric estimated by BayesBoost sum-
marizing the outcomes of 100 simulation runs for the random slope setup with τ = 0.8
and p = 50.

3.2.2 Random effects selection

To explore the performance of random effects selection in BayesBoost as well as other

features, we use the same simulation settings as in equation (3.10) and select only

one typical setup with τ = 0.8 and p = 50, but let all covariates (except for the

cluster-constant covariates) be participants for random effects. In other words, we do

not specify the covariance structure of random effects in advance, but let the algorithm

choose them automatically.

Figure 3.1 illustrates the distribution of each model evaluation metric defined above

over 100 simulation runs and all of the models are estimated by BayesBoost. Due to

the free structure of random effects, a false positive rate to γ is also shown in this figure.

In addition, since there is no occurrence of false negatives for both fixed effects and

random effects, they are hence omitted.

Overall speaking, there is almost no obvious difference between this outcome and

the corresponding row in Table 3.2. In particular, the false positive rate for random

effects (FPγ) is zero in more than half of the simulations, and its third quantile of

0.025 indicates that the majority of the runs select at most one non-informative random

effect. Therefore, from this comparison we can find that even though the random effects

are not given in advance, the BayesBoost algorithm can still capture the structures

effectively and give competitive outcomes.

To explore the characteristics of BayesBoost, we take a typical simulation from

the 100 runs as an example. In this example, none of the non-informative variables is

selected as fixed or random effect and all informative ones are included in the the final
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Figure 3.2 Distributions of the MCMC samples with respect to all individuals at
the stopping iteration. Black lines summarize the distribution of the samples with
outliers marked with the black dot. Orange points denotes the sample modes (posterior
modes) of each individual. The dashed grey line marks the location where the estimates
coincides with the truth.

model.

Figure 3.2 illustrates the distribution of MCMC samples for each random effect

at the stopping iteration. According to the setup, the size of the sample T = 1000

and they are summarized by black lines with respect to every individual (and outliers

marked with black points). The orange points represent the (posterior) modes of the

samples and serve as the estimates of random effects γ̂. The theoretical ideal estimation

is given through the dashed grey reference slash.

Besides again illustrating the fit of the γ̂ point estimation, the more important

feature lies in that BayesBoost is able to produce the uncertainty estimation for random

effects. Given the sample distribution, parameter estimation using boosting technique

is no longer simply a point estimation, but we can further tell to which extent we accept

the estimates. Hypothesis test, credible intervals as well as other Bayesian statistics of

interest for the random effects (and also for their covariance matrix Q) can thus be

established based on the samples.

It is possible to get access to similar uncertainty estimation for random effects from

conventional boosting methods, namely with the help of permutation or bootstrap.

But these methods suffer from the bias induced by shrinkage of boosting. BayesBoost,

however, gets rid of the shrinking estimation method but estimates random effects all

at once in each iteration. This makes the uncertainty obtained from BayesBoost more

reliable.
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Figure 3.3 shows the estimated coefficient paths of each covariates in each boosting

iteration for fixed effects β̂, the random effects γ̂i (posterior mode) of an individual

i and the estimated variance-covariance matrix Q̂. The stopping iteration is marked

with the vertical black dashed line. As discussed above, BayesBoost estimates random

effects not through the sum up of learning pieces but altogether as a whole. Hence

shrinkage is only applied to the estimation of fixed effects but not the estimation of

random effects. The other important boosting feature, variable selection, is shared

by both fixed and random effects. In this example, up to the stopping iteration, all

informative fixed and random effects are included into the final model with well fitted

coefficients.

If we take a closer look at figure 3.3b, we will find that the coefficient paths can

be roughly divided into three periods. The first period from the beginning lasts to

about 30 iteration. Estimates in this period oscillate heavily mainly due to the burn-in

of MCMC simulations. The second period lasts up to 191 iteration, which is also the

stopping iteration. In this period, along with the convergence of fixed effects, random

effects converge relatively smoothly to the true values. The remaining iterations can be

grouped to the third period. Fixed effects for this period have been overfitted, while

estimates for random effects fluctuate around their converged values. The degree of

oscillation depends on the Gibbs samples, and the fewer the samples, the greater the

oscillation of the curve wave.

As mentioned above that the seemingly “convergence” of random effects in the

second period cannot be interpreted as the shrinking estimation as fixed effects. Since

random effects in each BayesBoost iteration capture the residual information as much

as possible, each model during this period is already a mature model. This can be

observed more clearly from the similar graphic for the covariance matrix Q̂ in figure 3.3c.

The covariance between random effects changing little from about the 100 iteration to

the stopping iteration indicates the covariance matrix have already been in good state.

However, the coefficients of random effects in figure 3.3b still shows the convergence

behavior during this period. This phenomenon is actually the consequence of the

changes of fixed effects in this period. As discussed above, random effects should only

explain the response that cannot be explained by the fixed effects. This view takes the

form in practice that most of the data information is explained by random effects in
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(a) Fixed effects β̂
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(b) Random effects γ̂i
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Figure 3.3 The estimated coefficients of fixed and random terms as well as the
estimated covariance of random effects in each boosting iteration with the stopping
iteration marked with the dashed vertical line and the true values marked with the
vertical dashed lines. Plot (a) shows the estimates of fixed effects β̂. Plot (b) displays
the estimated random effects γ̂i for an individual i, where each curve in this plot is
drawn by the the sample modes. The black curve represents the random intercept, the
red and green curves represent the estimates for random slope x4 and x3 respectively.
Plot (c) shows the estimates of covariance Q̂ in each iteration. According to the model
specification, the true variance (diagonal of Q) for each random effect is 0.64, and the
true covariance between random effects (off-diagonal) is 0.384. Both true values are
marked with the dashed horizontal grey line. Counting from top to bottom, the first
three lines at the stopping iteration are the variance of random effects, while the last
three lines are the covariance between random effects.

early iterations, since the fixed effects due to shrinkage are quite small at this stage, and

as the fixed effects increase in later iterations, those information explained by random

effects earlier turns to be explained by fixed effects. This process thus makes estimates

of random effects forming a seemingly convergence behavior.

In addition, figure 3.3c is also drawn by the elementwise posterior modes of the

covariance samples. That means the Bayesian analysis of random effects also applies to

their covariance structure.

3.2.3 Performance of uncertainty estimation

The last simulation is to demonstrate the uncertainty estimation performance of

BayesBoost by a comparison to BayesX (Belitz et al., 2022). BayesX is a popular

and well-established tool for analyzing Bayesian structured additive regression models

based on MCMC simulation techniques such as generalized additive models (GAM)

and generalized additive mixed models (GAMM) that are important to this chapter.

Since the variable selection logic is different between BayesX (penalized likelihood

based) and BayesBoost (boosting based), for a relatively fair comparison, we specify full
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Bayesian inference in BayesX, which is the same as BayesBoost. The simulated data is

the same as equation (3.10) with τ = 0.8, but without noise variables, since the selection

performance has been discussed and illustrated above. Therefore, a random effects

structure is given in advance. Other specifications include the sample size T = 1000

and step-length ν = 0.1. The results for BayesX are based on 12000 iterations and using

every 10th sampled parameter for estimation after the burn-in period of 2000 iterations.

Both algorithms are applied to 100 simulation runs.

Figure 3.4 illustrates typical interval estimates of random effects for all individuals

from one the 100 runs for BayesBoost and BayesX. It can be observed that the estimated

intervals of BayesBoost are not very different from those of BayesX, since most of the

true effects are covered by the 95% credible interval. Only few true effects lie out of the

estimated intervals, for example the random intercept of the last individual. Overall

speaking, the distinct differences in the estimates for different individuals and the fact

that the estimated intervals generally cover the true effect indicate that both algorithm

are effective for estimating random effects, especially the effectiveness of BayesBoost.

The effectiveness can be observed more clearly from figure 3.5, which illustrates

the coverage probabilities of the 80%- and 95%-intervals for all 100 simulation runs.

For example, suppose the 80% credible interval of BayesBoost in figure 3.4 covers the

true effects of 42 out of all 50 individuals, then it results in a value of 0.84 (= 42/50).

Summarizing all the coverage probabilities in 100 simulation runs we get average values

as marked in each subfigure.

Different from figure 3.4, which shows only a graphical similarity of the two methods

in a single simulation run, figure 3.5 provides more complex quantitative information that

summarizing the performance in more simulation runs. In general, both BayesBoost

and BayesX share the same graphical pattern, i.e. both approaches have low coverage

probabilities in some simulation runs and high probabilities in others. This pattern

clearly shows the uncertainty estimation of the proposed algorithm is on the same level

as BayesX. From the quantitative perspective, the fact that the coverage rate of 80%-

and 95%-intervals are over 0.8 and 0.95, respectively, indicating that both algorithms

can estimate random effects well. The shows also the good performance of BayesBoost

in uncertainty estimation.
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Figure 3.4 Interval estimates of random effects for each individual between
BayesBoost (dark grey) and BayesX (light grey) sorted according to the ascending
order of random intercept. The interval estimate for each individual displays with two
lines, where the thick line covers the 80% of all MCMC samples (i.e. 10% and 90%
quantiles), and the thin line covers 95% of the samples (i.e. 2.5% and 97.5% quantiles).
The median is marked with grey points. The black dot in the middle of two grey lines
for each individual indicates the true effect.
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Figure 3.5 Coverage probabilities of the 80%- and 95%-intervals of each random effect
in 100 simulation runs for both by BayesBoost and BayesX. For each run, the coverage
probability summarizes the percentage of true effects covered by the corresponding
interval. The dark and light grey bars in each simulation indicate the 80%- and 95%-
interval respectively. The overall coverage rate among all 100 runs are labeled with the
corresponding values.

3.3 Application

We apply our proposed algorithm to a real data example, riboflavin (Vitamin B2)

production by Bacillus subtilis which is provided by DSM (Switzerland) and was first

published in Schelldorfer et al. (2011). The dataset has m = 28 specimens measured

at two to six time points (i.e. ni ∈ {2, . . . , 6}) and a total of n = 111 observations.

The response variable is the logarithm of the riboflavin production rate and the gene

expression levels are measured by p = 4088 covariates (genes). Therefore, this data set

calls for a strong variable selection tool, which is adapted to mixed models.

Due to the stochasticity of BayesBoost for both MCMC sampling and probing,

there is no deterministic solution to the data analysis if we rerun the algorithm multiple

times without a fixed random seed. We thus perform the algorithm 100 times with

different random MCMC seeds to stabilize outcomes. The sample size was chosen to be

T = 1000 and the step-length ν = 0.1. The random structure is not given in advance,

such that algorithm select random effects automatically.

Previous findings (Meinshausen et al., 2009; Lin et al., 2020) indicate YXLD-at as
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a significant fixed effect in riboflavin production. The impact of YXLD-at is also found

by other authors (Javanmard and Montanari, 2014; Meinshausen et al., 2009; Bühlmann

et al., 2014), who use a homogeneous version of the riboflavin set with n = 71 but from

the same source, which is available in the R package hdi. Note that due to the lack of

possibility to select random effects in these studies, their outcomes are merely based on

random intercept models.

Compared with the approaches in these studies, a key advantage of BayesBoost

lies in the random effects selection feature, which enables us to apply the more general

random slope model to the data, and let the algorithm decide what the final model

looks like. As with previous findings, we also observe the important effect of YXLD-at

on the riboflavin production, but this effect is not restricted to the role of fixed effect, it

affects the response also in a random way. On one hand, YXLD-at is selected as a fixed

effect in all 100 reruns, followed by LCTE-at and ssuA-at 39 times each. And on the

other hand, all of the models in these 100 reruns also conclude YXLD-at as a random

effect, followed by PRIA-at 20 times and YVAK-at 13 times. Though a significant test

is not performed in our studies, we still have enough confidence to say that YXLD-at is

an important effect if we average all the 100 outcomes.

One possible interpretation of this finding could be that the impact of YXLD-at is

twofold: on one hand we find a strong deterministic influence of this gene, but there is

also an subject-specific impact that has to be attributed to each individual. On the

other hand, this can be either some other covariate we cannot measure, but which is

correlated with YXLD-at or simply a different strength of the impact of YXLD-at itself.

To look at it from the statistical point of view, we refer to figure 3.6 which illustrates

the distributions of the mode of random effect YXLD-at for each specimen over the

100 reruns. On one hand, modes, as well as credible intervals, show clear differences

among specimens. This suggests that there are individual differences in the effects of

the riboflavin production. On the other hand, it can be observed that the 100 outcomes

have a relatively consistent conclusion on the estimates of the random effect YXLD-at

since most of the estimates concentrate on their mode, in other words, their standard

deviations (or variances) are small. This also strengthens our judgment that YXLD-at

affects the response in an individually random way.

This chapter is to the best of our knowledge the first to propose that YXLD-at is
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Figure 3.6 Densities of the mode of random effect YXLD-at for each specimen over
the 100 outcomes. The mode of the density and the standard deviation is labeled with
a value at the top right corner respectively. Modes are also marked with dashed grey
lines and two standard deviations around modes are marked with dashed black lines.

not only a fixed effect but also a random effect in the riboflavin production.

3.4 Discussion and Outlook

One of the most important reasons for boosting techniques being widely used in statistics

is due to its appealingly direct and effective variable selection feature. However, as the

method originated from machine learning, it lacks straight forward ways to construct

estimators for the precision of parameters such as variance or confidence intervals like

other statistical approaches based on distributions. Thanks to the development in

computer science, the Bayesian inference has grown immensely in the last decades and

rendered possible an extreme amount of new types of models. But it very often fails to

give precise and unambiguous guidelines for the selection of variables.
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This chapter proposes a new inference method, BayesBoost, by integrating a

Bayesian learner into gradient boosting to benefit from both worlds. On one hand,

the new approach has preserved the variable selection feature of model-based boosting

methods, so that the parameter estimation and both fixed and random effects selection

can be performed simultaneously. On the other hand, variation of random effects is

accessible through the BayesBoost estimation, which is not possible in the conventional

boosting framework. The effectiveness of BayesBoost can be observed from simulation

and empirical studies.

However, as a new attempt, it leaves also some open questions: Firstly, the concept

of BayesBoost is applicable due to the specific form of mixed models, i.e. the natural

separation of fixed and random effects. But it is still unknown whether this concept

can be extended to other common statistical models, especially the generalized additive

models (GAM) or structured additive regression models (STAR). Secondly, even for

the linear mixed models, BayesBoost only fills in the uncertainty estimation blank of

the random effects part left by the boosting framework, that of the fixed effects part

still remains unsolved. Thirdly, a potential drawback of our proposed algorithms is the

side effect of the shrinkage parameter ν on the selection preference of random effects.

According to the selection mechanism (step 12 in algorithm 4), a variable is said to have

random effect if the global improvement of it’s random effect is greater than it’s fixed

effect, but the latter is affected by the shrinkage parameter ν. A preliminary decision

thus have to be made, i.e. a smaller ν is suggested if one favors random effects, and

vice versa. We set it here to 0.1, but tuning it with cross-validation or other possible

methods needs to be further studied.

Extensions of this study could include the performance of hypothesis testing and

the establishment of credible intervals. Tests about the effectiveness of the approach on

the non-linear or spatial base-learners are also meaningful. Improving computational

efficiency has never been an outdated topic in Bayesian statistics, and replacing com-

putationally intensive MCMC simulations by much faster integrated nested Laplace

approximation (INLA) seems to be a straightforward and effective way to accelerate

the computing speed.

Since this chapter proposes only the preliminary Bayesian-based boosting concept,

it focuses on the specific linear mixed model. The open questions discussed above,
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especially the problem of the generalization of the idea of Bayesian-based boosting to

other common models will be discussed in the following Chapter 4.
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Chapter 4

Bayesian-based Boosting for

Quantifying Uncertainty in Structured

Additive Regression

The boosting technique has been widely used in making inference for statistical models

due to its stable variable selection feature and flexibility regarding the type of predictors.

From the original boosting algorithm (Schapire, 1990; Freund, 1995), which aims to

obtain a strong predictor by combining the solutions produced by iteratively applying

simple weak classifiers, to Adaboost (Freund and Schapire, 1996, 1997), which has been

hailed as the “best off-the-shelf classifier in the world” (Hastie et al., 2009), and later to

gradient boosting (Friedman et al., 2000; Friedman, 2001), which adapts the concept of

boosting to the field of statistical modeling, boosting has been implemented into almost

all statistical topics over the last two decades.

One of the most successful variant of boosting in statistical learning is the compo-

nentwise gradient boosting (Bühlmann and Yu, 2003), which updates only one additive

base-learner in each iteration. This simple but effective idea not only reduces the high-

dimensional analysis to a simple regression problem (Bühlmann, 2006), but also provides

the flexibility to estimate various types of base-learners in one additive regression model.

The general estimation method used in gradient boosting is the least squares method. In

low-dimensional settings, another typical inference method is the maximum likelihood.

Based on this idea, Tutz and Binder (2006) propose likelihood-based boosting, in which

the base-learners are directly estimated via optimizing the overall likelihood by using

69
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the additive predictor from the previous iteration as offset (Tutz and Binder, 2007; Groll

and Tutz, 2012). Generally, likelihood-based boosting (including the componentwise

likelihood-based boosting, which implements the componentwise concept) generates

similar results to gradient boosting, and especially in the case of L2 loss, likelihood-based

boosting coincides with gradient boosting. However, in contrast to gradient boosting,

approximate confidence intervals can be obtained by likelihood-based boosting (Tutz

and Binder, 2006).

Other researches pay more attention to model generalization and regularization

techniques. For example, boosting has already been implemented to generalized additive

models (GAM) (Tutz and Binder, 2006; Schmid and Hothorn, 2008; Hofner et al., 2014;

Hothorn et al., 2022), the more complex generalized additive models for location, scale

and shape (GAMLSS) (Mayr et al., 2012; Thomas et al., 2018; Zhang et al., 2022b), the

generalized additive mixed models (Groll and Tutz, 2012), and Cox models (Binder and

Schumacher, 2008; Binder, 2013; De Bin, 2016). In addition to the inherent property of

the componentwise concept in variable selection, the combination between boosting and

ridge (Tutz and Binder, 2007) or lasso (Zhao and Yu, 2004) has also been investigated.

Moreover, the selection performance has been enhanced and improved by using the

stability selection approach (Meinshausen and Bühlmann, 2010; Thomas et al., 2018).

For more details on the evolution of boosting, please review Mayr et al. (2014, 2017a).

Although more and more studies regarding statistical boosting have been published

in recent decades, The majority of the published papers regarding boosting techniques

focus on improving the estimation accuracy or in combination with various statistical

models. Nevertheless, to the best of our knowledge, little literature has studied the

fusion of boosting and Bayesian statistics, the latter of which, however, occupies

half of modern statistics due to its unique philosophical perspective and also the

computational advantages. In the few papers we found that contain both keywords

(Bayesian and boosting), Elkan et al. (1997) propose a boosted naive Bayesian learner,

which is equivalent to standard feedforward multilayer perceptrons. Similar models as

well as their improvements can also be found in Bauer and Kohavi (1999); Ting and

Zheng (1999), but due to their early publication, they are limited to the AdaBoost

framework. Another paper (Nock and Sebban, 2001) proposes a so-called “Bayesian

boosting theorem”, which concernes the AdaBoost as well, aiming, however, at bounding
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the error of the boosting algorithm and increasing the convergence speed instead

of combining the two (Bayesian and boosting) philosophies. The most relevant yet

unpublished work by Lorbert et al. (2012), while still built on AdaBoost, performs

approximate inference about the posterior distribution associated with latent variables

or weights placed on the base classifiers. In addition, the quality of the learned classifier

can be measured by the noise statistics of the classifier produced by the algorithm.

Even though Tutz and Binder (2006) point out the possibility of constructing

approximate confidence intervals in likelihood-based boosting, this concept did not

receive much attention until the publication of Rügamer and Greven (2020), which may

be the first systematic study of uncertainty quantification in boosting. They propose

inference for L2-boosting in the special case of linear, grouped, and penalized additive

models selected by L2-boosting using the selective inference framework (Fithian et al.,

2014; Tibshirani et al., 2016; Yang et al., 2016), a method that transfers classical

statistical inference to algorithms with preceding selection of model terms. Compared

to the previous ad-hoc solutions such as the permutation test (Mayr et al., 2017b),

which is restricted to certain special cases, or the bootstrap (Brockhaus et al., 2015;

Rügamer et al., 2018; Hepp et al., 2019), which does not lead to confidence intervals

with proper coverage due to the bias induced by the shrinkage effect, the advantage of

using a classical statistical method to quantify the uncertainty of boosting estimates is

obvious. Yet, as possibly the first paper studying uncertainty in boosting, it focuses

only on special additive models. Therefore, further work is still needed to cover a more

general model family.

Instead of using this frequentist statistical approach to quantify uncertainty in

boosting, we provide a Bayesian solution. In our previous studies (Zhang et al., 2022a),

we introduced a method that integrates a Bayesian learner into the boosting framework

for linear mixed models. However, the proposed algorithm was still preliminary, only

providing uncertainty information for random effects. In this chapter, we extend this

method by proposing a more general boosting framework based on Bayesian methodology,

that integrates Bayesian penalized regression in the componentwise boosting framework.

Compared to the previous work, the more general approach not only makes it possible

to extract uncertainty information from the fixed effects, but also extends the model

family to the generally structured additive regression (STAR) models, which is friendly
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to nonlinear and spatial base-learners.

In addition to richer technical features, this novel approach fills the gap in the field

of applying Bayesian inference to boosting. In contrast to the dogmatic estimate of

boosting, which delivers only an unquestionable point estimation, the proposed method

not only benefits from the uncertainty and prior knowledge of Bayesian methods,

but also maintains the useful features of boosting, for example, the intuitive variable

selection procedure and the flexibility of various types of base-learners. Furthermore,

this combination also provides a new way of thinking about the regularization research

of classical Bayesian methods. We denote our proposed novel method as Bayesian-based

boosting or bboost throughout this context.

This chapter is structured as follows: Section 4.1 describes briefly the basics of

Bayesian penalized regression and componentwise gradient boosting and then proposes

the details of the Bayesian-based boosting algorithm. In section 4.2, we compare

our method with other commonly used methods through simulations of linear and

non-linear scenarios, especially the performance in estimation accuracy, uncertainty,

and variable selection. An empirical study, which analyzes the Munich rent index

data including additional spatial variables, is presented in section 4.3. The study

helps to demonstrate the effectiveness of the proposed method in STAR models. The

final section 4.4 summarizes the chapter and discusses potential improvements of the

proposed method and possibilities of other relevant further works.

4.1 Methods

Bayesian-based boosting is established on the basic structure of componentwise boosting,

and instead of carrying out inference with least squares estimation in gradient boosting

or maximum likelihood estimation in likelihood-based boosting, we conduct Bayesian

inference for the unknown parameters in the new approach. In this section, we will

first briefly introduce the concepts of Bayesian penalized regression and the idea of

componentwise boosting, and then explain how to adapt them to make them suitable

for constructing the new Bayesian-based boosting algorithm. Lastly, we will specifically

discuss the mathematical relationship of the uncertainty in the new approach.



4.1. METHODS 73

4.1.1 Model specification

Given the (n× p)-dimensional matrix of covariates X, the distribution of the response

variable y belongs to an exponential family with mean µ = E(y|X) linked to a linear

predictor η by

µ = h−1(η),

and the general and flexible, structured additive predictor in STAR models (Fahrmeir

et al., 2004; Brezger and Lang, 2006) is given by

η = f1(z1) + · · ·+ fp(zp),

where various types of functions fj, j = 1, . . . , p are defined on a generic vector of

modeled covariates zj, for example, for linear cases, the function fj(zj) = xTβ, where

x is a subvector of zj; for non-linear cases, the function fj(zj) = f(x), and a spline

function f is defined on the single element x of zj; for spatial cases, fj(zj) = fspat(s),

where s is a spatially correlated variable; for random intercepts with cluster index

c, fj(zj) = βc, and for random slopes fj(zc) = xβc. Other types of effects such as

two-dimensional surfaces or spatially varying effects are also covered by STAR models,

for more details, please refer to Umlauf et al. (2015).

Due to the fact that all predictors can be written in terms of a linear combination

of basis functions, the unified representation in matrix notation can be written as

f j = Zjβj,

where f = (fj(z1), . . . , fj(zn))
T . Then, the question simplifies to the generic model

η = Zβ,

where the design matrix Z = (Z1, . . . ,Zp) and the corresponding coefficient β =

(β1, . . . ,βp). Therefore, for Gaussian distributed error term ϵ, the conditional distribu-
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tion of the response is a linear model given by

y|β, σ2 ∼ N(Zβ, σ2I),

where σ2 denotes the variance of ϵ and I is the identity matrix.

4.1.2 Bayesian penalized regression

We use Bayesian penalized regression to estimate the unknown parameters since it has

some similarities to the penalized least squares method. To obtain a Bayesian version

of penalized regression, a particular prior needs to be specified, i.e.

β̃|τ 2 ∼ N(0, τ 2K−1),

where β = (β0, β̃)
T and τ 2 denotes the variance parameter. The K is the penalty

matrix, for example, K = diag(0, 1, . . . , 1) in case of Ridge/LASSO regression, and

when considering the first-order difference penalty matrix for the smooth term, then

K = DT
1D1 and D1 is the first-order difference matrix. It can be proved that the

posterior for β is a multivariate Gaussian distribution N(µβ,Σβ) with

Σβ =

(
1

σ2
ZTZ +

1

τ 2
K

)−1

,

µβ =
1

σ2
ΣβZ

Ty.

Maximizing this posterior with respect to β is equivalent to minimizing the penalized

least squares criterion

PLS(λ) = (y −Zβ)T (y −Zβ) + λβ̃
T
β̃,

with λ = σ2/τ 2. Similar to how the penalty term λ affects the estimation, the posterior

mode is actually governed by τ 2, but in the reverse direction, i.e. the penalization is

strong for small τ 2 and negligible for large values of τ 2.

Usually, we specify a conjugate prior or, more specifically, an inverse gamma prior

with hyperparameters a and b for the variance parameter σ2, i.e. σ2 ∼ IG(a, b). Thus, it

can be proved that the full conditional distribution is again inverse gamma distributed
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IG(ã, b̃) with

ã = a+
n

2
,

b̃ = b+
1

2
(y −Zβ)T (y −Zβ) .

Unlike the general Bayesian penalized regression, in which an additional prior for the

penalty term τ 2 is needed for its estimation, we regard τ 2 as a model hyperparameter

controlling the degree of shrinkage of the estimation similar to the learning rate in

boosting techniques. Depending on the practical situation, it can either be given a

pre-defined fixed value or be tuned from the outside via, for example, cross-validation.

4.1.3 Componentwise boosting

In addition to the Bayesian foundations, we still need to modify the gradient boosting

framework to establish a Bayesian-based boosting. We focus on the componentwise

boosting since it is friendly to high-dimensional data, especially when the number of

covariates is larger than the number of observations, which is a weakness of classical

statistical methods, and therefore also of Bayesian statistics.

Generally, the fundamental of regression analysis using boosting techniques is the

optimization problem, or more precisely, the minimization of the empirical risk

argmax
η

ρ(y, η),

where ρ denotes a loss function. The most common loss function used in practice is the

L2 loss ρ(y, η) = (y − η)2. Unlike the AdaBoost, which fits base-learners to re-weighted

observations, the gradient boosting fits them to negative gradient vector u[m] of the loss

function evaluated at the previous iteration

u[m] = − ∂

∂η
ρ(y, η)

∣∣∣
η=η̂[m−1]

.

In case of the L2 loss, the negative gradient vector simplifies to (y − η̂). Therefore, the

negative gradient vector is also called pseudo-residuals in some literature. To address

the high-dimensional problem, Bühlmann and Yu (2003) proposed the componentwise

idea, which fits every base-learner hj, j = 1, . . . , p to u[m]. Typically, each base-learner
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hj corresponds to one covariable, and only the best-performing base-learner, i.e. the one

that yields the largest model improvement or the smallest square error loss, is added to

the previous predictor and serves as the estimate for the current iteration.

In contrast to gradient boosting, where estimation is usually performed by the least

square criterion, the estimation in likelihood-based boosting, just as its name suggests, is

obtained by maximizing a likelihood, using the predictor from the previous iteration as

an offset. In the special case of L2 loss, likelihood-based boosting coincides with gradient

boosting. Similarly, to make it suitable for high-dimensional data, likelihood-based

boosting can also follow the componentwise routine and update only the best-performing

component, which yields the largest log-likelihood in each iteration.

4.1.4 Bayesian-based boosting

Similar to the idea of likelihood-based boosting, that is the parameter of interest is

estimated through likelihood, inference can also be made in the Bayesian way. Therefore,

we build a Bayesian-based boosting framework by recursively estimating the pseudo-

residuals (using L2 loss) in each iteration with the Bayesian penalized regression.

Algorithm 6 formally presents the process of Bayesian-based boosting for structured

additive regression models.

In step 4 of algorithm 6, we derive the pseudo-residuals from the negative gradient

of the L2 loss, which inherits from the gradient boosting framework. From the loss

perspective, in case of complex models like generalized additive models for location,

scale and shape (GAMLSS), the loss function ρ is usually the negative log-likelihood of

the assumed distribution of the response (Thomas et al., 2018; Zhang et al., 2022b).

From the framework perspective, we can also treat the pseudo-residuals as the values

derived from the likelihood-based boosting by taking the current additive predictor

η̂[m−1] as an offset. Regardless of how the pseudo-residuals are constructed (likelihood

or negative gradient), the proposed Bayesian-based boosting does not deviate from the

core concept of boosting, i.e. building a strong predictor by refitting the residuals.

In the step 9, we take the posterior mode as estimate. Typically, the mode is used

for discrete variables, but it can still be estimated by a smooth function for continuous

ones, which is exactly what we have done later in the simulation and application section.

The choice of posterior statistics is subjective and depends on the concrete situation.
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Algorithm 6 Bayesian-based boosting for structured additive regression
1: Initialize the additive predictor with a starting value, e.g. η̂[0] = (0)i=1,...,n.
2: Initialize the hyperparameters τ2, a, b.
3: for Boosting iteration m = 1, . . . ,M do
4: Calculate the negative gradient vector with for example the L2 loss,

u[m] =

(
− ∂

∂η
ρ(y, η)

∣∣∣
η=η̂[m−1]

)
i=1,...,n

= y − η̂[m−1].

5: for Each base-learner p = 1, . . . , P do
6: Construct the design matrix Zp.
7: for MCMC samples t = 1, . . . , T do
8: Draw a sample of β̂

(t)
from N(µβp

,Σβp
) with

Σβp
=

(
1

(σ̂2
p)

(t)
ZT

pZp +
1

τ2
K

)−1

,

µβp
=

1

(σ̂2
p)

(t)
Σβp

ZT
p u

[m],

where K is the corresponding penalty matrix.
9: Draw a sample of (σ̂2

p)
(t) from IG(ã, b̃) with

ã = a+
n

2
,

b̃ = b+
1

2

(
u[m] −Zpβ̂

(t)

p

)T (
u[m] −Zpβ̂

(t)

p

)
.

10: end for
11: Take the posterior modes as estimates,

β̂
[m]

p = mode{β̂(1)

p , . . . , β̂
(T )

p },

σ̂2[m]
p = mode{(σ̂2

p)
(1), . . . , (σ̂2

p)
(T )}.

12: Calculate the model improvement

MSEp =
1

n

n∑
i=1

(
u
[m]
i −Zipβ̂

[m]

p

)2
.

13: end for
14: Select the best-performing p∗-th base-learner

p∗ = argmin
p

MSEp.

15: Update

β̂
[m]

= β̂
[m−1]

+ β̂
[m]

p∗ .

16: end for
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Other statistics such as mean or median are of course possible, but a different choice

will not fundamentally change the results.

Similarly, the other parts of algorithm 6 are also established based on the commonly

used specifications. The use of different preferred priors and model improvement criteria

does not affect the effectiveness of the framework.

In usual gradient boosting algorithms, a step-length or learning-rate parameter

is multiplied to the update β̂
[m]

p∗ in step 15. It is not necessary for the Bayesian-

based boosting framework, since on one hand, the small steps are ensured by the

variance hyperparameter τ 2 as discussed in section 4.1.2. On the other hand, additional

shrinkage parameter will trigger a philosophical debate about whether uncertainty can

be partitioned, but incorporating the shrinkage step into the parameter τ 2 avoids this

discussion since the inference is always established on the complete and unpartitioned

uncertainty.

4.1.5 Discussion of the uncertainty

For the last step in algorithm 6 (step 15), we arbitrarily focus on the p∗-th component

instead of the entire β vector for convenience, i.e.

β̂
[m]
p∗ = β̂

[m−1]
p∗ + β̂

[m]
p∗,update.

The expression of this equation indicates that β̂[m]
p∗ consists of two parts, the values at the

previous iteration β̂
[m−1]
p∗ and the update at the current iteration β̂

[m]
p∗,update. Considering

that β̂[m]
p∗ in Bayesian statistics is a random variable and that the value of the previous

iteration has been determined, the conditional distribution of β̂[m]
p∗ is actually dominated

by the distribution of the update β̂
[m]
p∗ , that is to say by

p(β̂
[m]
p∗ |β̂[m−1]

p∗ ) = p(β̂
[m−1]
p∗ + β̂

[m]
p∗,update|β̂

[m−1]
p∗ )

= p(β̂
[m]
p∗,update|β̂

[m−1]
p∗ ).

Given the Gaussian prior as above, the posterior distribution is then

β̂
[m]
p∗,update|β̂

[m−1]
p∗ ∼ N(µβp∗ ,Σβp∗ ),
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and this implies as well that the conditional distribution of β̂[m]
p∗ follow the same posterior

distribution. Specifically, the conditional variance of β̂[m]
p∗ is given by

Var(β̂[m]
p∗ |β̂[m−1]

p∗ ) = Var(β̂[m]
p∗,update|β̂

[m−1]
p∗ ) =

(
1

σ2
ZTZ +

1

τ 2
K

)−1

. (4.1)

If we compare this to the variance of the least square estimator in linear regression,

Var(β̂LS) =

(
1

σ2
ZTZ

)−1

, (4.2)

we can easily find that their difference lies in the penalty component 1
τ2
K, and especially

τ 2, since the penalty matrix K is usually fixed and has little flexibility. The conditional

variance changes in the same direction as τ 2, that is, a larger τ 2 yields a larger

Var(β̂[m]
p∗ |β̂[m−1]

p∗ ) and vice versa. In the extreme case of τ 2 → ∞, the conditional

variance converges to the variance of the least square estimator.

Intuitively, it is reasonable that the conditional variance is affected by τ 2 in addition

to the model variance σ2, because even though we can treat τ 2 as a flexible penalty

term, τ 2 is essentially a variance hyperparameter of the prior of β. If the variance in the

prior is large, we cannot easily derive a small variance in the posterior, especially when

only insufficient data or so-called evidence exists. Conversely, for a given evidence, a

smaller τ 2 usually implies a stronger belief in the prior, allowing the posterior to vary

only within a narrower interval, i.e. a smaller variance.

Similarly, by reviewing the entire β vector instead of that for the arbitrary p∗-th

component, we can take the variance in the posterior in each component respective its

last updated iteration as the measure of uncertainty. Thereby, uncertainty analysis in

boosting is made possible.

4.2 Simulation

To test the effectiveness of the proposed algorithm bboost (short for Bayesian-based

boosting) for structured additive regression models, we divide the simulation analysis

into a linear and a non-linear regression part. For each case, the proposed approach

will be properly compared with other commonly used methods, including classical

linear regression models (lm) as well as non-linear approaches - the generalized additive
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models with integrated smoothness estimation (gam) (Wood, 2017), Bayesian inference

(BayesX) (Umlauf et al., 2015; Belitz et al., 2022), and the gradient boosting with

componentwise models, which is also referred as the model-based boosting algorithm

(mboost) (Hothorn et al., 2010; Hofner et al., 2014; Hothorn et al., 2022).

4.2.1 Model setup

For the linear regression, we assume independent uniformly distributed covariates

Xj ∼ U(−3, 3), j ∈ {1, . . . , p} and a standard normal distributed error term ϵi, i ∈

{1, . . . , 300}. The realization of the response y depends only on the first four covariates,

yi =
1

2
+ 2xi1 + xi2 − 2xi3 − xi4 + ϵi.

In addition to the four informative covariates, the input data contains also some non-

informative ones: for p = 4, there exists no noise variable, for p = 10, there are

low-dimensional 6 noise variables, and for p = 500, there are high-dimensional 496

noise variables, which is also the case of more covariates (p = 500) than observations

(n = 300).

In terms of the model setup, bboost draws T = 1000 MCMC samples for the

estimates in each iteration. Due to the fact that the proposed algorithm is not very com-

putationally efficient, we use AIC instead of cross-validation to determine the stopping

iteration and the maximal boosting iteration is limited to M = 300. The variance hy-

perparameter or shrinkage parameter τ 2 is element of the set of {0.00001, 0.001, 1, 1000}.

Since we have a good experience with τ 2 = 0.001, we take this value as default. In

addition, both hyperparameters a and b in the inverse Gamma prior are set to the

small value of 0.001. For other methods (lm, BayesX and mboost), we just take their

default settings in R package to make inference. For mboost, the stopping iteration is

determined by both 10-fold cross-validation and AIC to compare the results better.

Finally, we perform 100 simulation runs to analyze the stabilized results.

For the case of non-linear regression, we similarly simulate six independent uni-

formly distributed covariates Xp ∼ U(−4, 4), p ∈ {1, . . . , 6} but only the first three are
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informative. Then, we simulate the response through

yi = − sin(xi1)− cos(xi2)−
1

4
x2
i3 + ϵi, (4.3)

with ϵi ∼ N(0, 0.2), i ∈ {1, . . . , 300}. Note that since the shape of the cosine function

of x2 in the input domain from -3 to 3 is similar to the square function, we draw

samples from -4 to 4 to increase the complexity of the non-linear simulation. To test

the estimation accuracy and the performance of variable selection, we set the input

model as

y = s(x1) + · · ·+ s(x6),

which specify a P-spline smooth term for each covariate. For bboost, the shrinkage

parameter is τ 2 = 0.001 and 1000 MCMC samples of the estimates are drawn in each

iteration. Again, this simulation is rerun 100 times with different random seeds to

stabilize outcomes for further analysis.

4.2.2 Linear regression

Since the construction of splines in non-parametric regression is relatively complicated,

which makes the direct comparison of coefficients, especially the coefficients within

splines, very hard, we feature the performance in regards to estimation accuracy and

variable selection, as well as the general properties of bboost, in this section about

linear regression.

The estimation accuracy is evaluated by the averaged (sum/mean) squared errors

over the 100 simulation runs:

SSEy :=
n∑

i=1

(yi − ŷi)
2 and MSEβ := ∥β − β̂∥2 and SEσ2 := (σ2 − σ̂2)2,

where ∥·∥ denotes the Euclidean norm. The behavior of over- or underfitting is measured

by the false positive rate (FP), which divides the number of false positives by the total

number of noise variables. Since we practically observe no false negatives, they are

omitted from the analysis.

Table 4.1 lists the estimation accuracy of different approaches for various covari-
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Table 4.1 Estimation accuracy of different methods averaged over 100 simulation runs.
In Bayesian-based boosting (bboost), values are taken for the shrinkage parameter
τ 2 = 0.001. In linear models (lm), the false positive rate is calculated based on the 95%
significance level.

p Method SSEy (SD) MSEβ (SD) SEσ2 (SD) FP (SD)

4

bboost 293.799 19.282 0.173 0.045 0.003 0.006 - -
lm 293.292 19.343 0.170 0.044 0.004 0.007 - -

BayesX 295.951 23.644 0.171 0.043 0.007 0.007 - -
mboost(AIC) 293.296 19.344 0.170 0.044 0.005 0.008 - -
mboost(CV) 293.336 19.349 0.170 0.044 0.005 0.008 - -

10

bboost 291.506 19.052 0.180 0.046 0.003 0.006 0.242 0.225
lm 287.653 19.120 0.190 0.046 0.004 0.007 0.042 0.096

BayesX 289.635 23.462 0.193 0.046 0.007 0.007 - -
mboost(AIC) 289.975 19.187 0.179 0.045 0.005 0.009 0.537 0.184
mboost(CV) 289.388 19.445 0.181 0.045 0.005 0.009 0.628 0.273

500
bboost 225.767 21.679 0.239 0.056 0.057 0.032 0.055 0.016

mboost(AIC) 44.074 13.261 0.779 0.103 0.729 0.073 0.458 0.031
mboost(CV) 264.750 34.960 0.216 0.052 0.027 0.037 0.042 0.025

ates. It can be observed that the proposed approach bboost in general exhibits no

noticeable difference from the other commonly used methods in all metrics. For the

high-dimensional case (p = 500), in-sample sum squared errors (SSEy) in mboost(AIC)

are much smaller than bboost and mboost(CV), but it is obviously overfitted since

not only its false positives are much bigger but also the squared errors for β and σ2

underperform the other two. In the relatively more appropriate comparison between

bboost and mboost(CV), it can be seen, that SSEy in the former are to some extend

smaller than those in the latter at the cost of the inclusion of a few more false positive

covariates. But for p = 10, at about the same level of squared error differences, bboost

includes obviously less noise variables than mboost. Note that lm and BayesX contain

only cases with no (p = 4) and low-dimensional (p = 10) noise variables, since they are

not able to deal with data containing more variables than observations. In addition,

due to the relatively bad variable selection experience with mboost(AIC) not only in

the simulation study but also in the empirical analysis, we use the CV output as the

default for mboost in the following context.

The results in table 4.1 indicate that the general performance of bboost is very

competitive. The proposed method not only performs as well as the other commonly

used methods, but it also maintains the core features of the other methods, i.e. it

benefits from the uncertainty estimation of methods like lm and BayesX and it benefits
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Figure 4.1 Convergence behavior of the bboost (with τ 2 = 0.001) model. (a) shows
the estimated coefficient path (solid curves) with 95% credible intervals (dashed curves).
(b) shows the convergence path of the estimated model variance σ̂2. For both plots, the
stopping iteration mstop = 88 is marked with the vertical black line.

from the variable selection of boosting methods (mboost). In the following, we would

like to further investigate the uncertainty of estimates and the effect of the shrinkage

parameter on the uncertainty as stated in equation (4.1).

Figure 4.1 illustrates the convergence paths for the estimated coefficients from an

arbitrary simulation chosen from the 100 reruns with p = 10, and its corresponding

course of model variance. Firstly, as a member of the componentwise boosting family, the

bboost model is able to construct the coefficient path just as the usual componentwise

gradient boosting always does. Under the same scale, i.e. all variables are uniformly

distributed from -3 to 3 in our case, the covariate with large coefficients tends to be

included into the model at an early stage and followed by the ones with a smaller

effect. As long as the model sufficiently extracts the information contained in the

pseudo-residuals, the coefficients will converge to their corresponding stable regions, and

the model variance will also converge. Secondly, as emphasized in the theoretical section,

the main difference between bboost and existing boosting methods is the accessibility

of estimation uncertainty. By reviewing the conditional variance in equation (4.1), it is

clear that the uncertainty varies according to the model variance, and as σ̂2 converges,

the uncertainty narrows to a smaller interval. In this example, beginning from an

iteration near the stopping iteration (88-th), for example, the 75-th iteration, the true

effects (2, 1,−2,−1) for each covariate are already covered by the 95% credible intervals.

Apparently, the availability of uncertainty allows us to double-check the quality of

variable selection by viewing, for example, whether 0 lies outside of the interval.

To illustrate the effect of the shrinkage or the variance hyperparameter τ 2 on the
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Figure 4.2 The summarized standard deviation of estimates for 100 simulation runs
among different methods. For each simulation run, the standard deviation is calculated
based on the MCMC samples for BayesX and bboost and based on the theoretical value
for lm. For the case of τ 2 = 0.00001, the values are taken at the pre-defined maximal
stopping iteration.

uncertainty of the estimates, figure 4.2 summarizes the standard deviation of estimates

in 100 simulation runs, and compares the bboost for p = 10 under different τ 2 with

lm and BayesX. Since mboost provides no uncertainty information about the estimates,

they are omitted from the figure.

As discussed in section 4.1.5, the uncertainty of bboost tends to show a smaller

standard deviation than lm and BayesX due to the addition of the penalty component
1
τ2
K, and the larger τ 2 is, the closer the standard deviation of bboost is to the value

of lm. Conversely, an extremely small τ 2 implies an almost unalterable firm belief

in the prior, hence leading to a convergence of the uncertainty to zero. Note that

the coefficients for the case of τ 2 = 0.00001 do not converge at the given maximum

stopping iteration due to the extremely small shrinkage. A larger τ 2 provides more

similar information about uncertainty to the other methods, but it also reduces the

impact of boosting, especially its shrinking and variable selection features, because the

algorithm will stop very early if τ 2 is large.

4.2.3 Non-linear regression

Since the construction, re-parameterization and processing of smooth effects vary greatly

among different methods for the case of non-linear regression, the direct comparison

between coefficients is not informative, so here we pay more attention to variable

selection and estimation accuracy, especially to prediction accuracy. But since the

accuracy can be improved by adjusting parameters such as knots or degrees, the purpose
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Figure 4.3 Smooth effects estimated by bboost for 100 simulation runs. The red
curve in each subplot denotes the true effect and each light grey curve denotes the
estimated effect in each simulation.

of accuracy comparisons is to highlight the relative difference rather than absolute

values.

Firstly, figure 4.3 demonstrates estimation accuracy by showing the estimated

smooth effects for the three informative covariate in 100 simulation runs. From this

figure, we can clearly find that, even though bboost has some difficulties in estimating

the points at, for example, the peaks for s(x1) and the edges for s(x2), it is able to

discover the general effect of all three informative variables. Compared to the other

algorithms, the biggest improvement of bboost lies in the effect selection. In our

simulation setting, our proposed bboost has not only no false negatives, but also no

false positives (therefore, the smooth effect for the three non-informative variables are

excluded from the figure). In contrast, we observe a very high average false positive

rate 0.977 for the conventional gradient boosting algorithm mboost. However, the cost

of extremely low false positives is only a very slight increase in the in-sample MSE,

which takes a value of 0.0385 for bboost, 0.0368 for mboost, and 0.0336 for BayesX. In

addition, we observe also no false negatives from mboost.

The difficulties of bboost in making inferences for points at oscillation areas can

also be observed for predictions on new data. Figure 4.4 selects one typical simulation

run and compares the predictions between bboost and BayesX on newly generated 100

equidistant points from -4 to 4 for each covariate. Similar to the in-sample estimations

as illustrated in figure 4.3, bboost has challenges in predicting points on edges, e.g.

for x2, since the range of credible intervals at these regions becomes larger, but the
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Figure 4.4 Comparison of credible intervals of the three informative covariate between
bboost and BayesX for an arbitrary simulation run. The three plots at the top are the
outcomes produced by bboost and the other three plots below are by BayesX. The red
curve indicates the true effect, and the black and grey dashed lines are the 95% and
80% credible interval respectively.

intervals still cover the true values. In contrast, BayesX performs relatively better at

edges and generates narrower prediction intervals throughout the whole input domain.

However, narrower prediction intervals increase the risk of falsely excluding the truth,

i.e. overfitting to some extent.

Figure 4.4 shows only the coverage of the truth for only one simulation. To get a

better overview of the coverage behaviour, figure 4.5 summarizes the coverage rate at

each point over 100 simulation runs, i.e. the number of runs in which the prediction

interval covers the truth divided by the total 100 runs. In this figure, we can clearly find

that the overall coverage rate for all the three covariates in bboost outperforms BayesX

undoubtedly thank to the conservative prediction interval in bboost. In contrast,

BayesX exhibits an imbalanced prediction quality, i.e. it is better at predicting values

for example in the middle and edge of the input sequence than the ones at other areas.

Narrower and more sensitive credible interval as illustrated in figure 4.4 indeed show

overconfident predictions, which results in not only imbalanced prediction quality, but

also in a worse overall coverage rate.

A potential reason for the relatively wider credible interval for bboost compared to



4.2. SIMULATION 87

Coverage (95% CI): 100.00

Coverage (80% CI): 99.70

Coverage (95% CI): 74.20

Coverage (80% CI): 52.33

Coverage (95% CI): 100.00

Coverage (80% CI): 99.35

Coverage (95% CI): 80.79

Coverage (80% CI): 57.25

Coverage (95% CI): 99.10

Coverage (80% CI): 95.10

Coverage (95% CI): 56.23

Coverage (80% CI): 36.63

x1 x2 x3

b
b
o

o
s
t

B
a
y
e
s
X

−4 4 −4 4 −4 4

0.00

0.25

0.50

0.75

1.00

0.00

0.25

0.50

0.75

1.00

C
o
ve

ra
g

e
 r

a
te

Figure 4.5 Coverage rates of predictions for the three covariates between bboost
and BayesX. The dark and light grey area indicate the coverage rate of the 80% and
95% credible interval, respectively. The two horizontal dashed lines denote the 80%
and 95% coverage rate. The overall coverage is labelled at the bottom.

BayesX is the exclusion of non-informative variables. In our setting, BayesX is not able

to select variables, the noise ϵ in the response is partially explained by non-informative

variables and hence results in narrower credible intervals for the informative effects. In

contrast, due to the relatively good performance in variable selection, the effects for

the informative variables have to take the noise ϵ into account and thus result in more

uncertain estimates, i.e. wider credible intervals. However, wider interval in bboost

does not imply worse estimation ability, but rather reflects a balance between estimation

accuracy and variable selection.

Finally, we have to emphasize that the non-linear simulation here is mainly to show

the differences between bboost and BayesX, but not the prediction accuracy. That is,

both methods are able to capture the main pattern from the non-linear effects, thus

they show almost no differences in, for example, mean squared errors, but bboost due

to the variable selection tends to provide a more conservative prediction interval than

BayesX.
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4.3 Application

To further test the performance of the proposed Bayesian-based boosting for structured

additive regression models, we take the Munich rent index data (Kneib et al., 2011) as

a data example, which aims at predicting net rents based on a potentially large set of

covariates, since this data not only contains a spatial effect, i.e. the location or district

region affect rents, but also has many covariates that help to analyze the performance

of variable selection.

The data were collected by Infratest Sozialforschung for the rental guide in the

year of 2007 (for more details, see http://www.muenchen.de/mietspiegel). After

data preprocessing such as the handling of missing values, validity check of covariates,

etc., the final data contains 3019 flats and we include 200 covariates describing various

characteristics of flats such as the living area, the quality of bathroom equipment, and

the presence of central heating.

Previous analyses by Fahrmeir et al. (2021) have shown that the continuous variables

living areas and the age of the building affect the net rent per square meter non-linearly.

Moreover, a spatial variable indicating the district of flats in Munich is also available,

which can be incorporated by using a Markov random field.

Therefore, we predict the net rents per square meter using the geoadditive regression

model:

rentsqmi = β0 + xT
i β + f1(areai) + f2(yearci) + fgeo(districti) + ϵi,

where xi denotes a 197-dimensional vector of mostly categorical covariates and β the

corresponding effects. The non-linear functions f1 and f2 are cubic P-splines and

fgeo constructs a Markov random field on the administrative districts in Munich. For

bboost, the shrinkage parameter τ 2 = 0.001 and 1000 MCMC samples are drawn in

each boosting iteration and the AIC is used as the stopping criterion. As a baseline

reference, the model is also estimated using the gradient boosting for additive models

(mboost), the stopping iteration of which is also determined by AIC.

First, we focus on the linear effects selection, since all the three non-linear effects

are chosen by both methods. There are 107 and 118 out of a total of 197 input linear

effects are selected by bboost and mboost respectively, and there are 89 common

http://www.muenchen.de/mietspiegel
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Figure 4.6 Comparison of smooth effects between bboost and mboost. The plot on
the left shows the smooth effect of the variable living area and the right plot the variable
year of construction. Estimates of bboost are depicted by black solid and dashed lines
for the posterior mode and the 95% credible intervals, respectively, and estimates of
mboost are depcited by red lines. The distribution of observations is illustrated through
the rug at the bottom of each plot.

variables selected by both methods. In other words, about half the input linear effects

are considered informative and bboost selects eleven fewer variables than mboost.

Moreover, not only the majority of the selected covariates are common across the

two, but also all the 89 commonly selected linear variables have the same coefficient

sign, which shows that the proposed bboost can well capture the essential relationship

between flat characteristics and rent. The basic views of bboost on the selection of

effective variables and the direction of their influence are consistent with mboost.

Secondly, the comparison between both methods on the two smooth effects, living

area and year of construction, is demonstrated in figure 4.6. It can be observed

that bboost coincides with mboost in most regions, especially for values with more

observations, while their divergence becomes larger when only a few observations

are available, for example the estimates for very large or very old flats. A potential

interesting finding might be the effect of very old flats on rents. According to the

outcome of mboost and the study of Kneib et al. (2011), very old flats have little

or some positive impact on rent due to, for example, their historical or relical value,

whereas our approach demonstrates a negative impact, which might be due to the low

renovation possibilities for these flats.

Finally, figure 4.7 illustrates the spatial effects estimated by both models. It can

be expected that the flats at good location usually have higher rents, and this regular



90 CHAPTER 4. BAYESIAN-BASED BOOSTING

−3 30

(a) bboost

−1 10

(b) mboost

Figure 4.7 Spatial effects of the district variable on rents, where (a) shows the effects
estimated by the bboost model and (b) the effects estimated by the mboost model.

pattern can be found by the outcomes from bboost model. The central areas, business

districts, and areas adjacent to parks all have positive influence on rents, whereas the

outlying districts show a clear negative impact. However, spatial effects are not shown

as they should be in the mboost model. Except for a few districts, which demonstrate

some negative and positive effects, the majority of regions show no differences. This

indicates that although the region variable is selected into the final model, it still

exhibits non-significant behavior. The variance in the rents can be sufficiently explained

by the other linear and smooth effects.

Overall, the proposed bboost method has improved the variable selection to a

certain extent under the premise of maintaining the fitting accuracy. Compared with

the dogmatic method of gradient boosting in machine learning, the Bayesian-based

boosting retains the advantages of uncertainty estimation in conventional statistical

models, thereby leaving room for the error risk of prediction.

4.4 Summary and discussion

In this chapter, we extend the boosting framework based on Bayesian methodology

by proposing a novel inference method, which implements the Bayesian inference in

componentwise boosting. The proposed novel Bayesian-based boosting, on the one

hand, retains the prior and uncertainty estimation of Bayesian inference. On the other
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hand, it also benefits from the shrinkage estimation and the intuitive variable selection

procedure from boosting techniques.

The combination of Bayesian inference and boosting techniques enables analyses that

were previously impossible with a single method, particularly analyzing the confidence

intervals of estimated coefficients in the results of boosting and performing efficient

and intuitive variable selection in Bayesian methods. The benefits of providing diverse

information about the estimates are obvious, for example, one can achieve a more

intuitive sense of the accuracy and bias of the estimates from boosting, and further

uncertainty-based statistical analyses of estimates also become possible. Thereby,

further statistical properties are added to the boosting algorithm attributed to the

machine learning model, which is also an attempt to integrate machine learning and

statistics at a deeper level.

The effectiveness of our proposed Bayesian-based boosting in these aspects are veri-

fied through simulation and empirical analyses. For the simulation of linear regression,

the proposed novel algorithm realizes simultaneous uncertainty estimation and variable

selection in the fitting process under the premise of ensuring accuracy. In the case of

non-linear regression, our new method achieves a substantial improvement in variable

selection at the cost of a very low loss of accuracy. However, it does not imply the

preference for one of any aspect, but rather a balance between the estimation accuracy

and effect selection.

The proposed algorithm provides a flexible Bayesian-based boosting framework

for structured additive regression models. This means it leaves considerable space

for further adjustment and improvement, for example, the commonly used priors in

this chapter can surly be replaced with other priors depending on specific demands.

Moreover, the Gibbs sampling used in the proposed algorithm can also be replaced with

Metropolis-Hastings or other MCMC procedures.

Usually, a burn-in should be considered when using MCMC sampling. We omit

this in the proposed Bayesian-based framework due to the intrinsic mechanism of

boosting methods, that is, the best-fitting stopping iteration not only accounts for the

complexity of the model but also for the quality of the fit, and sufficient fit usually

implies the converge of coefficients. Nevertheless, samples drawn from the theoretical

burn-in period have a very large variance and posterior modes thus oscillate heavily
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during these iterations, which does not meet the converge requirement. Conversely, the

estimates at the stopping iteration are usually the coefficients that have been sufficiently

estimated and the sufficient estimates also mean that the samples drawn in the nearby

iteration have passed the burn-in period. In boosting methods, all estimates, including

the samples in our proposed Bayesian-based boosting, before the stopping iteration

are actually considered as burn-in. Therefore, an additional burn-in for the samples at

the stopping iteration is completely unnecessary. However, due to the stochasticity of

sampling, there still exits a very low probability that some samples in early iterations

cause the AIC to be abnormally small, so it is judged that boosting is stopped early. It

is thus recommended to force the stopping iteration to begin after some early iterations.

In terms of the uncertainty of estimates at the stopping iteration, they are actually

the variation at their own last updates and have a close relationship with the variance of

their least square estimator. This is easily reminiscent of the possibility for uncertainty

analysis in conventional gradient boosting methods. In gradient boosting, the coefficients

are usually estimated using least squares on the pseudo-residuals. However, the variance

of the least square estimator, as suggested in equation (4.2), does not depend on the

absolute values of pseudo-residuals, but on the model variance σ2, which can also be

regarded as the variance of the pseudo-residuals. Therefore, it seems possible to take

the variance of the least square estimator for each variable at every last update as the

uncertainty estimates in the usual gradient boosting. This would make the uncertainty

analysis in the existing dogmatic boosting methods possible.

Another point that deserves further optimization is the complexity of the algorithm.

There are three for loops nested in the proposed algorithm. Although it can be computed

in parallel for each base-learner, looping MCMC samples inside boosting iterations is an

immense computational burden, not to mention the requirement to tune the shrinking

parameter and other refinements.



Chapter 5

Conclusion and Afterthoughts

In this thesis, the boosting framework is extended in several ways so that it becomes

more powerful in fitting additive models. In the case of complex models, the existing

boosting algorithms are enhanced, and for the general additive regression models, the

boosting framework is extended based on Bayesian methodology.

5.1 Summary of the thesis

In Chapter 2, the imbalanced updates of predictors when applying boosting algorithm

to complex models like GAMLSS are intensively discussed. The original cyclical

componentwise gradient boosting algorithm for GAMLSS does not take the complexity

across the prediction functions into account, so the non-cyclical approach is proposed

in a way that the multiple-dimensional optimization problem of the stopping iteration

reduces to a one-dimensional optimization procedure, which vastly reduces computing

complexity. However, the achieved loss reduction of different distribution parameters

cannot be addressed well by using a fixed step-length, so the adaptive step-length is

suggested to ensure a fair selection. For the special case of Gaussian location and

scale models, an an analytical solution for the adaptive step-length for the location

parameter is derived, which avoids numerical optimization. As for the scale parameter,

even though the exact analytical expression cannot be found, an approximate solution

is suggested, which gives a better motivated default value than the commonly used

value of 0.1.

The adaptive step-length discussed in Chapter 2 aims at enhancing the ability

93
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of boosting in complex models. The discussion on the other weakness of boosting

in quantifying uncertainty of estimates begins from Chapter 3. In this section, a

preliminary Bayesian-based boosting is proposed for linear mixed models, which di-

vides the estimation procedure into two parts: the first estimates fixed effects still

with componentwise gradient boosting, and the other estimates random effects with

Bayesian inference. Thus, the variable selection feature of boosting is preserved and the

uncertainty of random effects is accessible. The attempt of the fusion of boosting and

Bayesian concepts discussed in this chapter focuses only on the specific linear mixed

models and can only quantify uncertainty for the random effects part. The complete

Bayesian-based boosting framework is presented in Chapter 4.

In Chapter 4, the proposed Bayesian-based Boosting is applied to the structured

additive regression models, which contain not only the linear and random effects as

the linear mixed models do, but it can also deal with smooth, spatial and other types

of effects. Bayesian-based boosting is achieved by implementing Bayesian penalized

regression in the componentwise boosting framework. The variance hyperparameter

of the coefficient prior also plays the role of a shrinking parameter in boosting, but it

avoids the problem of how to aggregate piecewise uncertainty in each iteration when

directly using step-length as shrinkage, since the uncertainty of estimates is estimated

separately in Bayesian-based boosting. The proposed Bayesian-based boosting is a

powerful new approach, benefitting immensely from both the Bayesian and the boosting

world.

5.2 Afterthoughts for further research

This thesis presents some new approaches and Bayesian-based boosting is possibly the

first attempt in this area of boosting, so there are still some open problems and ideas

for future research.

5.2.1 Further investigating analytical adaptive step-lengths

In Chapter 2, the adaptive step-length including its analytical as well as semi-analytical

solutions in gradient boosting algorithm are intensively discussed for Gaussian location

and shape models. Even though a numerical method for finding the optimal adaptive
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step-length is always a good choice, since the optimal value does not consistently have a

closed form, it is still worth investigating the analytical solution for other distributions.

On the one hand, compared to the numerical methods, the analytical solution will

improve the computing efficiency, and on the other hand, it helps to reveal the inner

relationships between the optimal step-length and the model parameters, which will

give better suggestions for the commonly used but probably less than ideal step-length

settings.

Another point that deserves further research is the correlation between the optimal

step-length ν
∗[m]
j∗,µ of a covariate and the coefficient of this covariate in the σ-submodel.

As illustrated in figure 2.7a, the converged adaptive step-lengths from high to low are

the mother’s BMI and age and the child’s age and BMI, which matches the order

the estimated coefficients of these variables in their σ-submodel. Similar results are

observed from the simulation study, although the results are not presented in this thesis.

We tend to believe there exists a more precise mathematical dependence between the

two terms.

5.2.2 Dependence between the prior coefficients and uncertainty

In the discussion of uncertainty of Bayesian-based boosting in Chapter 4, the dependence

of the variance hyperparameter τ 2 and the variance of coefficients can be observed.

The large τ 2 yields a large uncertainty of estimates. Theoretically, this dependence

makes sense, since the posterior estimates have more uncertainty if there is less prior

knowledge, and vice versa. Many applications prefer to use a non-informative prior,

which usually comes with a larger variance hyperparameter compared to the default

settings for τ 2 = 0.001 used in this thesis. Nevertheless, the variance hyperparameter in

the proposed Bayesian-based boosting framework has another role as the step-length or

learning rate, while a large τ 2 will weaken the effectiveness of the boosting technique,

and in extreme cases, the Bayesian-based boosting algorithm stops at the first step and

the results coincide with the results of conventional Bayesian inference.

On the other side, if an extra shrinkage parameter is applied to the updates, the

question arises whether the shrinkage should also be applied to the uncertainty of

updates or not, since it raises a philosophical question of whether the uncertainty of an

estimate is also divisible like the estimate itself in boosting. Our opinion is no, because
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if it could be possible, the aggregated uncertainty of estimates will approach infinity

instead of a converged value. As illustrated in figure 4.1a, the variance of updates for

arbitrary covariates converges to a constant, which is quite different from the fact that

updates for coefficients converge to zero. The sum of a sequence approaching to zero

converges to a constant, and the sum of a sequence approaching to a constant will go

infinity. This means that the idea of enforcing the step-length by applying an additional

shrinkage parameter and finally summing it up does not work for uncertainty, or at least

it does not work in this way. Therefore, how to keep the effectiveness of Bayesian-based

boosting for large τ 2 will be an interesting topic for further research.

5.2.3 Complexity of Bayesian-based boosting

The improvement of computing efficiency is always an important research topic. Instead

of the negative attitude to look forward to the development of computers to achieve the

purpose of improving efficiency, the optimization of the framework and the analytical

solution or mathematical approximation to the steps are the practical way of thinking.

As illustrated in algorithm 6, the proposed Bayesian-based boosting endures problem

of complexity due to the three nested for loops, and the problem becomes sever in

case of complex base-learners such as spatial effects. In addition, the complexity scales

exponentially with the number of covariates and accounting for the tuning of model

parameters, it is impractical to use Bayesian-based boosting to analyse large scale data.

Even though base-learners can be computed in parallel, it does not change the

intrinsic nature of boosting and MCMC procedure, i.e. the pseudo-residuals can only

be obtained after the finish of last boosting iteration, and likewise, the next MCMC

sample is only available after the previous one has been drawn. The implementation

of Bayesian inference in boosting framework makes the two method that are not so

efficient more complicated. One possible solution is to replace the MCMC process with

integrated nested Laplace approximations (INLA), but more works are needed to get a

better knowledge about the effectiveness and efficiency as well as the bias induced by

the approximation.
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Appendix A

Appendix

A.1 Derive the analytical ASL for the Gaussian dis-

tribution

Take the negative log-likelihood as the loss function, the loss for Gaussian distribution

can be displayed as

ρ (y, {ηµ, ησ}) =− log

[
1(√
2π
)n · det (diag (exp (−ησ(X)))) · exp

(
−1

2
(y − ηµ (X))T ·

· diag (exp (−2ησ(X))) · (y − ηµ(X))

)]
=
n

2
log(2π) + 1T

nησ(X) +
1

2
(y − ηµ(X))T diag (exp (−2ησ(X))) (y − ηµ(X)) .

The negative partial derivatives for both distribution parameters in iteration m are

then

u[m]
µ =−

∂ρ
(
y, {η̂[m−1]

µ , η̂
[m−1]
σ }

)
∂η̂µ

(A.1)

=diag
(
exp

(
−2η̂[m−1]

σ (X)
)) (

y − η̂[m−1]
µ (X)

)
, (A.2)

u[m]
σ =−

∂ρ
(
y, {η̂[m−1]

µ , η̂
[m−1]
σ }

)
∂η̂σ

(A.3)

=− 1n + diag
((

y − η̂[m−1]
µ (X)

)T) · (A.4)

· diag
(
exp

(
−2η̂[m−1]

σ (X)
)) (

y − η̂[m−1]
µ (X)

)
. (A.5)
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Both u
[m]
θ ,θ ∈ {µ,σ} can be regressed on the simple linear base-learner h

[m]
j∗,θ(x·j∗),

where j∗ denotes the best-fitting variable.

u[m]
µ = ĥ

[m]
j∗,µ(x·j∗) + ϵ̂[m]

µ (A.6)

u[m]
σ = ĥ

[m]
j∗,σ(x·j∗) + ϵ̂[m]

σ , (A.7)

where ϵ̂[m]
µ and ϵ̂[m]

σ denote the residuals in simple linear regression models.

A.1.1 Optimal step-length for µ

The analytical optimal step-length for µ in iteration m is obtained by minimizing the

empirical risk,

ν
∗[m]
j∗,µ =argmin

ν

n∑
i=1

ρ
(
yi, {η̂[m]

µ (xi·), η̂
[m−1]
σ (xi·)}

)
=argmin

ν

n∑
i=1

ρ
(
yi, {η̂[m−1]

µ (xi·) + νĥ
[m]
j∗,µ(xij∗), η̂

[m−1]
σ (xi·)}

)

=argmin
ν

n∑
i=1

− log

 1
√
2π exp(η̂

[m−1]
σ (xi·))

exp

−

(
yi − η̂

[m−1]
µ (xi·)− νĥ

[m]
j∗,µ(xij∗)

)2
2 exp(2η̂

[m−1]
σ (xi·))




=argmin
ν

n∑
i=1

1
2
log(2π) + log(σ̂

[m−1]
i ) +

(
yi − η̂

[m−1]
µ (xi·)− νĥ

[m]
j∗,µ(xij∗)

)2
2σ

2[m−1]
i


=argmin

ν

n∑
i=1

(
yi − η̂

[m−1]
µ (xi·)− νĥ

[m]
j∗,µ(xij∗)

)2
2σ̂

2[m−1]
i

,

Note that the expression σ̂
2[m−1]
i represents the square of the standard deviation in

the previous boosting iteration, i.e. σ̂2[m−1]
i = (σ̂

[m−1]
i )2. And according to the model

specification σ̂
[m−1]
i = exp(η̂

[m−1]
σ (xi·)).

It can be shown, that the expression is a convex function, so the optimal value ν
∗[m]
µ

is accessed by letting the first order derivative equal zero,

∂

∂ν

n∑
i=1

(
yi − η̂

[m−1]
µ (xi·)− νĥ

[m]
j∗,µ(xij∗)

)2
2σ̂

2[m−1]
i
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Eq.(A.2)
=

∂

∂ν

n∑
i=1

(
u
[m]
µ,i σ̂

2[m−1]
i − νĥ

[m]
j∗,µ(xij∗)

)2
2σ̂

2[m−1]
i

=
∂

∂ν

n∑
i=1

1

2
u
2[m]
µ,i σ̂

2[m−1]
i − νĥ

[m]
j∗,µ(xij∗)u

[m]
µ,i +

ν2
(
ĥ
[m]
j∗,µ(xij∗)

)2
2σ̂

2[m−1]
i


=

n∑
i=1

−ĥ
[m]
j∗,µ(xij∗) + ν

(
ĥ
[m]
j∗,µ(xij∗)

)2
σ̂
2[m−1]
i

 !
= 0

⇔ ν =

∑n
i=1 ĥ

[m]
j∗,µ(xij∗)u

[m]
µ,i∑n

i=1

(
ĥ
[m]
j∗,µ(xij∗ )

)2

σ̂
2[m−1]
i

Eq.(A.6)
=

∑n
i=1 ĥ

[m]
j∗,µ(xij∗)

(
ĥ
[m]
j∗,µ(xij∗) + ϵ̂

[m]
µ,i

)
∑n

i=1

(
ĥ
[m]
j∗,µ(xij∗ )

)2

σ̂
2[m−1]
i

=

∑n
i=1

(
ĥ
[m]
j∗,µ(xij∗)

)2
+
∑n

i=1 ĥ
[m]
j∗,µ(xij∗)ϵ̂µ,i∑n

i=1

(
ĥ
[m]
j∗,µ(xij∗ )

)2

σ̂
2[m−1]
i

=

∑n
i=1

(
ĥ
[m]
j∗,µ(xij∗)

)2
∑n

i=1

(
ĥ
[m]
j∗,µ(xij∗ )

)2

σ̂
2[m−1]
i

,

where
∑n

i=1 ĥ
[m]
j∗µ(xij∗)ϵ̂µ,i = 0, because the residuals are uncorrelated with the fitted

values.

A.1.2 Optimal step-length for σ

The analytical optimal step-length for σ in iteration m is obtained by minimizing the

empirical risk,

ν∗[m]
σ =argmin

ν

n∑
i=1

ρ
(
yi, {η̂[m−1]

µ (xi·), η̂
[m]
σ (xi·)}

)
=argmin

ν

n∑
i=1

ρ
(
yi, {η̂[m−1]

µ (xi·), η̂
[m−1]
σ (xi·) + νĥ

[m]
j∗,σ(xij∗)}

)

=argmin
ν

n∑
i=1

− log

 1
√
2π exp

(
η̂
[m−1]
σ (xi·) + νĥ

[m]
j∗,σ(xij∗)

) ·
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· exp

−

(
yi − η̂

[m−1]
µ (xi·)

)2
2 exp

(
2η̂

[m−1]
σ (xi·) + 2νĥ

[m]
j∗,σ(xij∗)

)



=argmin
ν

n∑
i=1

1

2
log(2π) +

n∑
i=1

(
η̂[m−1]
σ (xi·) + νĥ

[m]
j∗,σ(xij∗)

)
+

+
n∑

i=1

(
yi − η̂

[m−1]
µ (xi·)

)2
2 exp

(
2η̂

[m−1]
σ (xi·) + 2νĥ

[m]
j∗,σ(xij∗)

)
=argmin

ν

n∑
i=1

(
η̂[m−1]
σ (xi·) + νĥ

[m]
j∗,σ(xij∗)

)
+

n∑
i=1

(
yi − η̂

[m−1]
µ (xi·)

)2
2 exp

(
2η̂

[m−1]
σ (xi·) + 2νĥ

[m]
j∗,σ(xij∗)

) .
It can be shown, that the second order derivative of the expression is positive and thus

the expression a convex function. Letting the first order derivative equal zero, we get

∂

∂ν

 n∑
i=1

(
η̂[m−1]
σ (xi·) + νĥ

[m]
j∗,σ(xij∗)

)
+

n∑
i=1

(
yi − η̂

[m−1]
µ (xi·)

)2
2 exp

(
2η̂

[m−1]
σ (xi·) + 2νĥ

[m]
j∗,σ(xij∗)

)


=
n∑

i=1

ĥ
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j∗,σ(xij∗)−

n∑
i=1

(
yi − η̂[m−1]

µ (xi·)
)2

ĥ
[m]
j∗,σ(xij∗) exp

(
−2η̂[m−1]

σ (xi·)− 2νĥ[m]
σ (xij∗)

)
Eq.(A.5)
=

n∑
i=1

ĥ
[m]
j∗,σ(xij∗)−

n∑
i=1

u
[m]
σ,i + 1

exp
(
−2η̂

[m−1]
σ (xi·)

) ĥ[m]
j∗,σ(xij∗) exp

(
−2η̂[m−1]

σ (xi·)− 2νĥ
[m]
j∗,σ(xij∗)

)

=
n∑

i=1

ĥ
[m]
j∗,σ(xij∗)−

n∑
i=1

(
u
[m]
σ,i + 1

)
ĥ
[m]
j∗,σ(xij∗) exp

(
−2νĥ

[m]
j∗,σ(xij∗)

)
Eq.(A.7)
=

n∑
i=1

ĥ
[m]
j∗,σ(xij∗)−

n∑
i=1

(
ĥ
[m]
j∗,σ(xij∗) + ϵ̂

[m]
σ,i + 1

)
ĥ
[m]
j∗,σ(xij∗)

exp
(
2νĥ

[m]
j∗,σ(xij∗)

) !
= 0

A.2 Additional simulation graphics

In this appendix, we present the results for some of the simulated examples in Sect.

2.3.1. Boxplot of the estimated coefficients are showed in Figure A.1 and Figure A.2.

Figure A.3 illustrates the negative log-likelihood. The summary of stopping iterations

mstop is demonstrated in Figure A.4.
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Figure A.1 Boxplot of the estimated coefficients of ηµ in 100 simulation runs. Values
are taken at the stopping iterations determined by 10-folds cross-validation. The results
are separated according to fixed and adaptive approaches with respect to different
non-informative variables settings, i.e. pn-inf = 0, 50, 250 and 500. The horizontal red
lines indicate the true coefficients. The shrinkage of the coefficients towards zero can be
observed from this graphic.
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Figure A.2 Boxplot of the estimated coefficients of ησ in 100 simulation runs. Values
are taken at the stopping iterations tuned by 10-folds cross-validation. The results
are separated according to fixed and adaptive approaches with respect to different
non-informative variables settings, i.e. pn-inf = 0, 50, 250 and 500. The horizontal red
lines indicate the true coefficients. The shrinkage of the coefficients towards zero can be
observed from this graphic.
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Figure A.3 Summary of the negative log-likelihood of 100 simulation runs with
different estimating approaches with respect to various non-informative variables settings.
Values are taken at the stopping iteration determined by 10-folds cross-validation.
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Figure A.4 mstop tuned by 10-fold CV with different estimating methods with
respect to different non-informative variables settings. The predefined maximal learning
iteration is 1000.
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A.3 Additional simulation table

The additional Table A.1 summaries the average MSE of the estimated coefficients for

both Gaussian distribution parameters in Sect. 2.3.2.

Table A.1 The average MSE of the estimated coefficients for both model parameters
µ and σ w.r.t. three estimation approaches. The MSE for each coefficient is calculated
not only from 100 simulation runs (Total) at their stopping iterations but also from the
true positive subsets (TP), i.e. the simulations from which a coefficient is selected by
all three approaches.

µ σ

β̂1 β̂2 β̂3 β̂1 β̂2 β̂3

Total TP Total TP Total TP Total TP Total TP Total TP

FSL 13.7 80.9 26.5 112.2 13.8 76.0 0.84 0.81 1.41 1.42 0.84 0.82
GAMLSS 113.8 328.8 145.6 355.8 116.8 339.4 0.82 0.79 1.44 1.44 0.81 0.79
SAASL 71.3 250.2 95.8 271.7 73.3 238.5 0.85 0.81 1.39 1.40 0.85 0.82

A.4 Estimated coefficients of riboflavin dataset

In this appendix, we provide the estimated coefficients with fixed and adaptive ap-

proaches for riboflavin data in Sect. 2.4.2. Table A.2 and Table A.3 concern about the

µ-submodel and σ-submodel, respectively.
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Table A.2 The estimated coefficients of the µ-submodel with fixed and adaptive
approaches. Values are taken at the mstop tuned by 5-folds CV.

Variable FSL ASL SAASL SAASL05 glmnet

1 (Intercept) -7.03 -7.04 -7.04 -7.03 0.72
2 ARGF_at -0.08 -0.02 -0.02 -0.02
3 IOLE_at -0.32 -0.02
4 LYSC_at -0.06
5 RPLO_at -0.02 -0.08
6 SPOIISA_at 0.35 0.19 0.19 0.23 0.02
7 XKDC_at 0.18 0.09 0.19
8 XKDO_at 0.02 0.02 0.03
9 XKDS_at 0.11 0.08 0.08 0.08 0.06

10 XLYA_at 0.05
11 XTMA_at 0.03 0.03 0.01
12 XTRA_at 0.01
13 YCDH_at -0.03
14 YCGM_at -0.09 -0.06 -0.06 -0.06 -0.01
15 YCGN_at -0.04 -0.04 -0.04
16 YCGO_at -0.07 -0.14
17 YCGP_at -0.03
18 YCKE_at 0.15 0.12 0.12 0.14 0.15
19 YCLB_at 0.29
20 YCSG_at -0.08 -0.08 -0.18
21 YDAO_at -0.03
22 YDAR_at -0.24 -0.16 -0.16 -0.16
23 YDDK_at -0.04
24 YEBC_at -0.55
25 YHAI_at 0.12 0.12 0.11
26 YHFU_at -0.02 -0.02 -0.03 -0.01
27 YJCJ_at 0.11 0.04 0.04 0.04
28 YKBA_at 0.01
29 YKUH_at 0.05 0.05 0.06
30 YOAB_at -0.34
31 YORB_i_at 0.03 0.03 0.05 0.10
32 YOZH_i_at 0.02 0.02
33 YPGA_at -0.05
34 YTGB_at -0.09
35 YWQD_at -0.02
36 YXJA_at -0.01 -0.01 -0.01
37 YXLC_at -0.03 -0.03
38 YXLD_at -0.12 -0.14 -0.14 -0.16 -0.14
39 YXLE_at -0.06 -0.01 -0.01 -0.01
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Table A.3 The estimated coefficients of σ-submodel with fixed and adaptive ap-
proaches. Values are taken at the mstop tuned by 5-folds CV.

Variables FSL ASL SAASL SAASL05

1 (Intercept) -1.41 -1.29 -1.29 -1.53
2 COTJC_at -0.18 -0.18
3 DEGA_at -0.13 -0.61 -0.61 -0.89
4 EXPZ_at 0.21 0.21 0.05
5 LEVD_at 0.24 0.15 0.15 0.19
6 NTH_at -0.09 -0.11 -0.11
7 PHRI_r_at 0.06 0.03
8 TRUA_at -0.09 -0.74 -0.74 -0.71
9 XLYA_at -0.06

10 XPF_at -0.05
11 YACN_at 0.20
12 YCNK_at 0.66 0.06 0.06 0.27
13 YFIG_at -0.08 -0.09
14 YFMD_at -0.25 -0.43 -0.43 -0.35
15 YHBD_at -0.21 -0.21 -0.19
16 YHEN_at -0.05
17 YHFS_at 0.06
18 YITQ_at -0.24
19 YJFB_at -0.11 -0.11 -0.09
20 YKRS_at 0.29 0.29 0.35
21 YKVV_at 0.06 0.06 0.28
22 YPGA_at 0.07 0.05 0.05 0.12
23 YSBA_at -0.55 -0.55 -0.28
24 YSBB_at -0.15 -0.23 -0.23 -0.20
25 YTFP_at -0.24
26 YTQI_at 0.10 0.16 0.16 0.11
27 YURR_at -0.07 -0.07 -0.11
28 YWQA_at -0.11 -0.20
29 YYAE_at -0.06
30 YYBT_at -0.08 -0.03
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