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Abstract

Clouds are crucial to the Earth’s radiation budget and energy balance. Inadequately
resolved cloud processes are a major source of uncertainty in weather forecasts and
climate prediction. Due to their turbulent nature, cloud dynamics span a vast range of
spatial and temporal scales from µm to km and ms to h, respectively. Together with
phase transitions, the transport of heat and moisture as well as cloud droplet-turbulence
interaction, the multiscale property of turbulence poses a huge challenge for unraveling
cloud processes. Deployed by kite-stabilized and helium-filled aerostats, the so-called
helikites, two specially designed instruments, the Max-Planck-Cloudkite + (MPCK+)
and the mini-Max-Planck-Cloudkite (mini-MPCK), measure the atmospheric state
and flow velocity as well as cloud microphysical properties. During EUREC4A field
campaign in the Caribbean from January to February 2020 above the Atlantic Ocean,
both the MPCK+ and the mini-MPCK profiled the atmospheric boundary layer of the
trade-wind region and sampled clouds. In this thesis, we report measurements of the
energy dissipation rate and cloud droplet statistics in the trade-wind region.

The energy dissipation rate is one of the most fundamental turbulence characteristics
and is estimated from one-dimensional velocity time-records. To benchmark different
methods for estimating the energy dissipation rate, each method is compared to the
ground-truth reference of direct numerical simulation (DNS) of stationary homogeneous
isotropic turbulence at different Taylor-scale Reynolds numbers 74 ≤ Rλ ≤ 321. The
impact of finite turbulence intensity and misalignment between the probe orientation
and the mean flow direction is systematically studied and expressed by analytical
expressions. Additionally, the effect of a finite averaging window and its Rλ dependence
is captured by scaling arguments which are compared to hot-wire measurements from
the Max Planck Variable Density Turbulence Tunnel with 147 ≤ Rλ ≤ 5864.

Both atmospheric turbulence and cloud droplet-turbulence interaction is investigated
with the help of energy dissipation rate estimates from, in total, 197 h record of scientific
data. This thesis examines the spatial distribution of cloud droplets in trade-wind
cumuli, the onset of warm-rain initiation and the altitude dependence of the cloud
droplet size distribution, which are analyzed based on 144 h of cloud droplet records.
Furthermore, turbulence characteristics of the boundary layer, its stability and isotropy
on inertial length scales are determined.
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Chapter 1

Introduction

1.1 Scope of the thesis
On average, more than 45% of the Earth’s surface and 68% of oceans are covered with
clouds [1]. Clouds form in the Earth’s atmosphere and can be classified in terms of
visual appearance and altitude [2]. As an example, clouds near the planetary surface
are known as fog whereas cauliflower-like cumulus clouds occur in an altitude range
between 0 km to 2 km. In general, clouds can be described as multi-phase turbulent
flows where cloud dynamics span a vast range of spatio-temporal scales [1, 3, 4]. In
turbulence, energy is injected into the flow at large scales and, at small scales, energy
is dissipated into heat at the energy dissipation rate ϵ, where the smallest relevant
scales are known as the Kolmogorov scales [5].

The most frequent cloud type on the Earth is trade-wind cumuli (more than 32
%) over the sub-tropical ocean, which develop in the lowest few kilometers of the
atmospheric boundary layer [1, 6]. Trade-wind cumuli are initiated by thermals that
rise above an altitude level, where moist air condenses, the so-called lifting condensation
level (LCL), and exist for several hours [1, 7, 8]. Often, shallow cumuli are only a
couple of hundreds meter deep but they can grow up to the trade-wind inversion in
case of strong enough buoyancy [9]. Trade-wind cumuli are isolated with larger regions
absent of clouds leading to a recently measured cloud cover at cloud base of 3.5%
[10]. They enhance the vertical heat and moisture transport [11], are coupled to global
circulation [6, and references therein] and are crucial in the Earth’s radiation budget
[12, 13]. Regarding the latter, trade-wind cumuli reflect solar radiation and thereby
cool the planet. The larger the area covered by shallow cumuli, the higher the fraction
of reflected solar radiation. Primarily, uncertainty in climate prediction is caused by a
lack of understanding of how these shallow cumulus clouds respond to global warming
[14], which is usually modeled by the cloud fraction at the cloud base [9]. Recently, it
has been shown that the climate sensitivity of shallow cumuli is low [9]. Instead, it
is suggested that a deeper understanding of mesoscale circulation and its response to
global warming is needed [9].

Despite the long history of research in the trades [e.g. 8, 15–18], the influence of
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Introduction

turbulence on small-scale cloud processes still lacks detailed understanding. Especially,
the rapid onset of precipitation in warm, i.e. ice-free, clouds within less than thirty
minutes cannot be explained by evaporation-condensation processes only [19]. Warm
rain forms in four steps. After the activation of cloud condensation nuclei in a super-
saturated (cf. Sec. 1.3.1) environment, i.e. where relative humidity exceeds 100%, cloud
droplets grow by condensation up to 15 µm during a time period of 30 min in typical
cloud conditions with low super-saturation [20]. Cloud droplets larger than 40 µm in
diameter further grow by gravitational collection where large cloud droplets sediment,
collide and coalesce with smaller droplets [21]. However, it is not clear how cloud
droplets transition the size gap of 15 µm to 40 µm in radius as neither condensational
growth nor gravitational collection is effective [20]. This size gap is also known as the
condensation-coalescence bottleneck. Warm-rain initiation concerns 31% of global and
72% of tropical rain [22] highlighting the fundamental importance of unraveling the
relevant cloud processes.

The condensational growth rate of cloud droplets is proportional to the super-
saturation [4]. In general, cloud droplets do not grow in homogeneous and constant
conditions [20]. Instead, the large-scale temperature and super-saturation field inside
clouds exhibit fluctuations caused by turbulent entrainment and mixing [4, 20]. These
fluctuations cause the cloud droplets to grow by condensation or to decay by evapora-
tion [3, 4]. Vice versa, these phase transitions impact the large-scale super-saturation
and buoyancy by latent heat effects driving the turbulent flow [4]. Despite that the
growth rate of cloud droplets decelerates with increasing diameter [23], a key ingredient
for rain formation is the presence of large droplets. Hopping from one large eddy to
another, cloud droplets experience different growth histories, which causes a broadening
of droplet size distributions [20]. If a cloud droplet is advected always by strongly
super-saturated eddies, this particular cloud droplet grows larger than the average.

A similar effect is known as convective ripening [24] where cloud droplets grow
by condensation in ascending air parcels until reaching the cloud top. Due to the
buoyancy reversal at the cloud top, the air parcel descends being dragged by cool air
masses. In the cloud core, the air parcel is mixed with warm cloudy air again. If the
time-scale of the mixing mechanism is much faster than the evaporation time scale, the
cloud droplet does not evaporate and can continue growing in the subsequent updraft.
It should be noted that convective ripening requires that the air parcel cools very
slowly during the ascent and warms very fast during descent due to subsequent mixing.
However, it is not yet fully understood how mixing processes are related to different
scales of the turbulent flows partly due to the lack of in-situ measurements resolving
sub-meter scales [4, 25].

Besides condensational growth, cloud droplets grow by collision-coalescence, which
is affected by cloud droplet-turbulence interactions due to cloud droplet inertia [20,
26]. Cloud droplet inertia is non-dimensionally captured by the Stokes number St
(cf. Sec. 1.3.2), which is a measure of how fast cloud droplet motions respond to
changes in the ambient flow [4]. If St is finite, cloud droplets do not trace the flow
anymore perfectly and are ejected from regions of high vorticity due to centrifugal
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1.1 Scope of the thesis

forces inducing an inhomogeneous spatial cloud droplet distribution [26]. Emphasizing
their importance, the spatial distribution of cloud droplets not only affects the collision
rate but also the radiative properties of clouds [27]. However, in-situ measurements of
cloud droplet spatial distribution resolving down to the smallest scales are rare [25].
If St is larger than 0.1, the inertial effects of cloud droplets become strong enough
so that cloud droplet trajectories can intersect, which is known as the “sling effect”,
causing high relative velocities of cloud droplets [28]. Both locally higher cloud droplet
concentration and higher relative velocity of adjacent cloud droplets cause enhanced
collision rates [29].

In typical turbulent cumulus clouds with a cloud depth of ∼ 1 km and cloud droplet
radius ∼ 10 µm, the collision rate due to droplet inertia is on the order of 1 × 10−6/s
whereas the rate of gravitational collection is two orders of magnitude larger, i.e.
∼ 1 × 10−4/s [26]. The probability of a cloud droplet to grow to a rain droplet is
estimated to be on the order of 10−7, which, considering a cloud droplet of radius
10 µm, involves about 125 collision-coalescence events with cloud droplets of the same
size to grow up to 50 µm in radius [26]. Hence, the initiation of rain is related to rare
and localized events resulting in the runaway growth of cloud droplets [26, 30]. In
general and independent of the underlying mechanism, the runaway growth of cloud
droplets is crucial to the onset of precipitation. It is therefore of utmost interest to
determine these runaway processes and to quantify their occurrence frequency [26].

To investigate such cloud processes, it is necessary to resolve the turbulent flow
down to the smallest scales as well as the spatial distribution of cloud droplets.
Advantageously in direct numerical simulation (DNS), the entire flow field is fully
resolved. To simulate cloud dynamics for clouds with a typical depth L ∼ 1000 m, a
characteristic velocity scale u ∼ 1 m/s and smallest relevant scales ηK ∼ 1 mm, a DNS
of 1018 grid points has to be run for a time period of at least l/u ∼ 10 min [31], which
is computationally very expensive, if not possible at all. In the DNS of a turbulent
flow with Rλ = 1300, the simulated time period is about 20 times the Kolmogorov
time scale τK [32]. Therefore, DNS is well-suited for investigating small-scale processes
[4]. Large-eddy simulations are able to simulate large-scale processes but suffer from
the parameterization of scales smaller than the grid size ranging from 5 m to 100 m
[33–35].

Laboratory experiments are able to reproduce turbulent flows with Taylor-scale
Reynolds numbers, a measure for the separation of large and small scales, as high
as observed in the atmosphere [36, e.g.]. However, in laboratory experiments, the
largest scale is L ∼ 1 m being much smaller than in the atmosphere (e.g. cloud
depth ranging from 100 m to 1000 m). Therefore, turbulent flows at high-Reynolds
number are usually generated by increasing the energy dissipation rate ϵ, which is
equivalent to decreasing the smallest scales (ηK ∝ ϵ−1/4). As a consequence, the role of
gravity compared to fluid accelerations, which is captured by the fluid Froude number
Fr ∝ η

−3/4
K , is underestimated compared to atmospheric flows. Hence, it is difficult

to reproduce realistic atmospheric conditions in laboratory experiments. Therefore,
in-situ measurements are necessary in order to investigate atmospheric flows and cloud
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processes.
In this thesis, airborne measurements of atmospheric turbulence and inside clouds

are conducted with two specially developed instruments, the Max Planck Cloudkite
+ (MPCK+) and the mini-Max Planck Cloudkite (mini-MPCK). The MPCK+ is
equipped with a combined holography and Particle Image Velocimetry system [37].
Both the MPCK+ and mini-MPCK count and size cloud droplets with the help of cloud
droplet probes. Furthermore, they comprise several instruments to measure relative
wind speed and fluid properties such as air temperature. Both instruments are carried
by tethered helium-filled and kite-stabilized balloons (”helikites”). Helikites provide a
high degree of mobility and guarantee high spatio-temporally resolved measurements
down to mm-scales due to the low relative wind speed ∼ 10 m/s (cf. Sec. 2.1). During
the EUREC4A (Elucidating the role of cloud-circulation coupling in climate) field
campaign [38], the MPCK+ and mini-MPCK profiled the atmosphere and sampled
clouds whereby the helikites are launched from both the research vessel (RV) Maria
S. Merian and RV Meteor. Due to their scientific instrumentation and high spatial
resolution, both instruments promise unique data sets of clouds and the cloud-free
atmosphere, which can serve as the basis for many research questions [37].

One of the most important goals is to measure the cloud droplet distribution in space
with the help of the MPCK+ and mini-MPCK, thereby quantifying inhomogeneities
and proving the existence of regions inside clouds devoid of cloud droplets. These
regions are referred to as cloud voids and are related to strong and long-living vortices
expelling cloud droplets due to centrifugal forces [39]. Furthermore, cloud droplet sizing
instruments aboard the MPCK+ and mini-MPCK allow for recording droplet size
distributions both in non-precipitating and precipitating clouds in order to quantify
the droplet size distribution, which affects cloud droplet inertia. The cloud droplet
measurements are complemented by turbulence measurements in order to assess the
importance of inertial and gravitational effects, which are captured by the Stokes
number and non-dimensional settling velocity Sv, respectively [4]. Both St and Sv
as well as many turbulence characteristics are based on the energy dissipation rate.
As explained in detail below (cf. Chapter 3), the energy dissipation rate is estimated
from one-dimensional time-records of the relative wind speed invoking Kolmogorov’s
phenomenology from 1941 [5].

In addition to cloud microphysical measurements, the MPCK+ and mini-MPCK
are able to measure vertical profiles, e.g. of temperature and wind in the atmospheric
boundary layer. Notably, the atmospheric boundary layer is considered to be the
lowest 100 m to 3000 m of the Earth’s atmosphere [40]. As mentioned below, the
static stability of the atmospheric boundary layer depends on the vertical gradient of
the virtual potential temperature (cf. Eq. (1.53)). A stably stratified boundary layer
suppresses the vertical motion of the fluid and an unstable boundary layer enhances the
vertical motion of the fluid impacting the vertical transport of heat and moisture [40].
In principle, atmospheric turbulence can also be driven by shear, a non-vanishing mean
wind gradient [40]. The relative importance of shear and stratification is captured
by the Richardson number [40, 41]. Quantifying Richardson numbers from profiles of
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1.2 Turbulent flows

mean wind and virtual potential temperature in combination with turbulence length
scales thus hints at the turbulent state and stability of the atmospheric boundary
layer. Based on this, one can evaluate the possibility of how far vertical transport
processes take place. As vertical heat and moisture transport is important for clouds
being initiated above thermals [7], it can be anticipated that the presence of clouds is
related to the stability of the boundary layer and its turbulent state.

To summarize, this work focuses on investigations of atmospheric turbulence and
cloud microphysics dealing with the following questions:

• How are cloud droplets in trade-wind cumuli distributed in space? Do cloud
voids exist in trade-wind cumuli?

• What is the role of cloud droplet inertia and gravity in non-precipitating and
precipitating clouds?

• How does the cloud droplet size distribution vary with altitude and from cloud
edge to cloud core?

• What are the characteristic turbulence features of trade-wind cumuli and how
do they differ from the cloud-free environment, e.g. in the sub-cloud layer or
between clouds?

• Does the stability of the boundary layer allow for the presence of turbulence?
• Is the assumption of statistically local isotropic turbulence valid? Hence, is it

justified to estimate the energy dissipation rate based on Kolmogorov’s phe-
nomenology?

• How accurately can the energy dissipation rate be estimated given various
experimental limitations?

After outlining the scope of the thesis, the most relevant concepts of turbulence and
cloud microphysics are introduced in Chapter 1. Both the MPCK+ and mini-MPCK
are presented in Chapter 2. In Chapter 3, the performance of energy dissipation rate
estimates under various experimental limitations is assessed. Results from atmospheric
turbulence and cloud microphysical measurements are presented in Chapter 4 and
discussed in Chapter 5.

1.2 Turbulent flows
As mentioned before, clouds are highly turbulent. Therefore, the equations of fluid
motion, a phenomenological description of turbulence and fundamental turbulence
characteristics are shortly introduced in this section. Most of the content is following
textbooks [5, 42]. If not mentioned otherwise, the fluid is assumed to be free of particles
and to consist of dry air only. In addition, it is assumed that the fluid is continuous
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and behaves like a Newtonian fluid fulfilling [42]

τij = ρν

(
∂ui

∂xj

+ ∂uj

∂xi

)
, (1.1)

where τij is the stress tensor, ρ the density and ν the kinematic viscosity. Hence,
the shear stresses of Newtonian fluids are proportional to the kinematic viscosity in
Newtonian fluids. If equations are written in the component form, Einstein’s convention
(i.e. summation over repeated indices) is implied.

1.2.1 Equations of motion
Conservation of Mass

As mass is not destroyed or created, mass is conserved. The conservation of mass can
be expressed in terms of the continuity equation [5]

∂ρ

∂t
+ ∂(ρui)

∂xi

= 0 , (1.2)

where ui is the i-component of the three-dimensional velocity field u(x, t). Equa-
tion (1.2) reduces to ∂ui/∂xi = 0 for an incompressible fluid.

Newton’s second law

Neglecting external forces like gravity, a fluid parcel of volume δV and density ρ is
accelerated by body forces and surface forces [5]. The latter is due to viscosity and
can be captured by the symmetric stress tensor τij = τji [42]. The body force results
from the net force that pressure exerts on all surfaces of that fluid parcel and applying
Gauss’ theorem [42]. Then, the equations of motion of a fluid parcel read [5]

Dui

Dt
= ∂ui

∂t
+ uj

∂ui

∂xj

= −1
ρ

∂p

∂xi︸ ︷︷ ︸
pressure gradient

+ ν
∂2ui

∂xj∂xj︸ ︷︷ ︸
viscous force

, (1.3)

equations are given by Eq. (1.2) and (1.3). This set of equations cannot be solved in
general due to its non-linearity in uj

∂ui

∂xj
, non-locality of the pressure gradient and the

dissipative nature of the viscous stresses [42]. In the absence of viscous forces, the fluid
parcel moves against the pressure gradient, i.e. from regions of high pressure to low
pressure.

1.2.2 Reynolds number and Nature of Turbulence
To better compare the relative importance of viscous stress to inertial forces, it is
helpful to write Eq. (1.3) in a non-dimensional form [5]. Capturing the typical velocity
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1.2 Turbulent flows

and length scales of the flow by ũ and L̃, respectively, the non-dimensional form of
Eq. (1.3) reads:

Dūi

Dt̄
= − ∂p̄

∂x̄i

+ ν

L̄ū︸︷︷︸
1/Re

∂2ūi

∂x̄j∂x̄j

, (1.4)

where ūi = ui/ũ, t̄ = tũ/L̃, ∂/∂x̄i = L̃∂/∂xi, p̄ = p/(ρũ2) and Re the Reynolds number.
The Reynolds number can be interpreted as a measure between inertial and viscous
forces:

Re = inertial forces
viscous forces = ρũ2L̃2

µL̃ũ
= ũL̃

ν
, (1.5)

where µ = ρν is the dynamic viscosity. If Re < 1, viscous forces dominate over inertial
forces and the flow is laminar. In the other limit, Re ≫ 1, the dynamics of the flow are
controlled by inertial forces. Of course, this view is simplified because it does not take
into account the effect of boundaries, initial conditions or stratification. However, due
to the low kinematic viscosity of (dry) air O(ν) ∼ 1 × 10−5 m2/s at typical atmospheric
conditions (air temperature of 20 °C at 1000 hPa), the Reynolds number is usually high
for finite ũ and L̃ so that the flow is turbulent in general.

Turbulent flows are omnipresent in daily life and expose themselves by whirls in a
river or at a waterfall, twisted smoke plumes from a chimney or in the cauliflower-like
appearance of cumulus clouds. These examples of a turbulent flow come along with a
higher rate in mixing and transport of heat, moisture and momentum compared to
laminar flows [5]. Two realizations of a turbulent flow are never identical due to their
strong dependence on initial conditions. Turbulent flows are coined by their chaotic,
multi-scale, intermittent and dissipative nature [5, 42].

A helpful quantity in describing the nature of turbulence is the vorticity ω = ∇×u,
which is a measure of the angular velocity of the fluid [42]. Re-expressing the Navier-
Stokes equations in terms of the vorticity for constant-density flows yields [5]:

Dω

Dt
= ν∇2ω + ω · ∇u . (1.6)

The first term on the right-hand side is due to the local diffusion of vorticity due to
viscous forces on the fluid parcel, which is why vorticity acts locally [42]. Considering
the second term on the right-hand side, the velocity gradient tensor ∇u can either
compress or stretch fluid parcels. Hence, due to the conservation of angular momentum,
vorticity is enforced (weakened) by a finite strain if ∇u causes stretching (compression)
of that fluid parcel. This effect is known as vortex stretching [5, 42].

With the help of vorticity and depending on its shape, a single whirl in a river can
be understood as a blob, sheet or tube of vorticity, which is often known as a turbulent
eddy [42]. Due to the local character of vorticity, these eddies are coherent over a
certain time and associated with a typical length scale l. Extending the idea of eddies
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on a cumulus cloud, its appearance is due to the complex arrangement of numerous
eddies of different sizes evolving in time and space, where small eddies are embedded in
larger eddies [5]. These eddies are coupled to the local velocity field, which compresses
or stretches the vortices. Turbulence can hence be regarded as a complex cluster of
intertwined vortices obeying Eq. (1.6) [42].

1.2.3 Reynolds decomposition and Mean-flow Equations
The most basic statistical quantity of a turbulent velocity field ui(x, t) is its mean Ui.
According to Reynolds, the velocity field can be decomposed into its mean Ui and the
fluctuating part u′

i [5]:

ui = Ui + u′
i . (1.7)

Invoking Reynolds decomposition, the Navier-Stokes equations can be rewritten in
terms of the mean-momentum or Reynolds equations by [5]

∂Ui

∂xi

= 0 , (1.8)

∂Ui

∂t
+ Uj

∂Ui

∂xj

= −1
ρ

∂⟨p⟩
∂xj

+ ν
∂2Ui

∂xj∂xj

− ∂⟨u′
iu

′
j⟩

∂xj

= 1
ρ

∂

∂xj

−⟨p⟩δij + νρ
∂⟨Ui⟩
∂xj︸ ︷︷ ︸

viscous stress

−ρ ⟨u′
iu

′
j⟩︸ ︷︷ ︸

Reynolds stress

 . (1.9)

The Reynolds stress tensor is hence given by co-variances of velocity fluctuations ⟨u′
iu

′
j⟩,

which is symmetric, i.e. ⟨u′
iu

′
j⟩ = ⟨u′

ju
′
i⟩, and has non-negative eigenvalues [5]. The

diagonal components are called “normal stresses” and the off-diagonal components are
called “ shear stresses” [5]. Furthermore, the turbulent kinetic energy k is defined in
terms of the trace of the Reynolds stress tensor, i.e. [5]

k ≡ 1
2⟨u′ · u′⟩ = 1

2⟨u′
iu

′
i⟩ . (1.10)

Together with the continuity equation, Eq. (1.8), there are four equations but 10
unknowns (Ui, ⟨p⟩ and ⟨u′

iu
′
j⟩). Hence, the Reynolds equations are unclosed and can

only be solved if the Reynolds stresses are known (or modeled) [5].

8



1.2 Turbulent flows

Anisotropy

The Reynolds stress tensor can also be decomposed into an isotropic part 2
3kδij and a

deviatoric part aij [5].

aij ≡ ⟨u′
iu

′
j⟩ − 2

3kδij ,

⇒ bij = aij

2k =
⟨u′

iu
′
j⟩

⟨u′
lu

′
l⟩

− 1
3δij , (1.11)

where bij is the normalized anisotropy tensor. The isotropic component 2
3k can be

included in an effective mean pressure so that the momentum is transported only by
the anisotropic components aij [5].

1.2.4 Homogeneous Isotropic Turbulence
In the following, the characteristic length scale of a fully turbulent flow is denoted by
L and the velocity scale by U . It is assumed that the Reynolds number Re = UL/ν is
very high.

A turbulent flow consists of eddies of multiple sizes. Energy is injected at the
largest scales L < L, which is why this range is called energy-containing range, and
which is practically realized by a stirring process or boundary effects. As an example,
in clouds, the energy is injected mostly by buoyant and shear instability [2, 4]. At
the smallest scales of the turbulent flow, where viscous forces are comparable to or
larger than inertial forces, kinetic energy is dissipated into heat. The range of scales in
between the energy-injection scale and the dissipation range is dominated by inertial
forces only and is known as the inertial sub-range [5]. According to the picture of the
turbulent energy cascade introduced by Richardson, energy is transferred from larger
eddies to smaller eddies by the breakup of eddies [5].

In the atmosphere, large eddies are generally anisotropic, e.g. due to stratification
or topography. Due to its chaotic nature, Kolmogorov postulated that small eddies of
a turbulent flow are independent of large eddies, hence the energy-injecting mechanism,
[5] leading to
Kolmogorov’s hypothesis of local isotropy:
“At sufficiently high Reynolds numbers, the small-scale turbulent motions (l ≪ L) are
statistically isotropic. ”

In consequence, the statistics of small eddies is universal. As kinetic energy is
dissipated into heat by viscous effects, it is plausible to assume that two parameters
determine the statistics of small eddies, the viscosity of the fluid and the rate at which
energy is transferred from large to small eddies. In equilibrium, this transfer rate
is approximately equal to the energy dissipation rate ϵ, at which kinetic energy is
dissipated due to viscous effects. This motivates [5] Kolmogorov’s first similarity
hypothesis:
“In every turbulent flow a sufficiently high Reynolds number, the statistics of small-scale
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motions (l < L) have a universal form that is uniquely determined by ν and ϵ.”
In this range of scales, viscous forces are important suggesting that the Reynolds

number associated with these scales l are on the order of one or smaller. Based on
dimensional arguments, there is only one set of length, time and velocity scales that
can be formed by ϵ and ν only. These scales are known as the Kolmogorov scales [43]:

ηK =
(
ν3

ϵ

)1/4

, (1.12)

τK =
(
ν

ϵ

)1/2
, (1.13)

uK = (νϵ)1/4 , (1.14)

where ηK , τK and uK are the Kolmogorov length, time and velocity scale, respectively.
The Reynolds number associated with the Kolmogorov scales is equal to one: Re(ηK) =
ηKuK

ν
= 1. The notion of “similarity” is due to the fact that the small-scale statistics

are statistically identical if they are scaled by the Kolmogorov scales [5].
In contrast to the smallest eddies with Re(ηK) = 1, the scale-dependent Reynolds

number Re(l) is still large for eddies in the inertial sub-range with ηK ≪ l ≪ L.
Intuitively, viscous effects play a minor role suggesting for
Kolmogorov’s second similarity hypothesis:
“In every turbulent flow a sufficiently high Reynolds number, the statistics of the
motions of scale l in the range ηK ≪ l ≪ L have a universal form that is uniquely
determined by ϵ, independent of ν.”

It is not possible to define length, time and velocity scales from only ϵ. However,
eddies of characteristic length scale l have characteristic time and velocity scales of [5]:

u(l) = (ϵl)1/3 , (1.15)

τ(l) =
(
l2

ϵ

)1/3

= l

u(l) , (1.16)

⇒ ϵ = u(l)3

l
= u(l)2

τ(l) , (1.17)

where the last step is explained below and where u(l) is the characteristic velocity
and τ(l) the characteristic time scale. τ(l) is also known as the eddy turnover time.
Considering the energy injection scale L, the characteristic velocity scale u(L) is similar
to the root mean square (RMS) of the velocity fluctuations u′:

u′ =
√

1
3⟨u′

iu
′
i⟩ . (1.18)

In homogeneous isotropic turbulence, the RMS velocity fluctuations u′ are equal to the
RMS fluctuations of the longitudinal velocity denoted by σu′

1
.

Furthermore, considering the picture of the energy cascade, kinetic energy is

10



1.2 Turbulent flows

transferred from eddies with a characteristic length scale larger than l to smaller ones.
Assuming that this energy transfer is across eddies of size l, the rate of energy transfer
across these eddies is ∼ u(l)2/τ(l), hence being constant and independent l within
the inertial sub-range [5]. In consequence, within the concept of the energy cascade,
the rate of energy transfer from the energy injection scale L to eddies of the inertial
sub-range with characteristic l is equal to the rate at which energy dissipates by viscous
effects, i.e. ϵ [5].

However, it is still unclear how the energy is distributed among eddies of different
sizes. A useful quantity is the energy spectrum function E(κ) capturing how much
energy is contained in eddies of a characteristic size l where κ = 2π/l is a wavenumber.
E(κ) contains information on the fully-resolved three-dimensional velocity field, which
is difficult to experimentally measure. However, E(κ) can be defined in terms of a
one-dimensional energy spectrum E11(κ), as given by Eq. (3.10) in Sec. 3.2.2, which
can be obtained from measurements of u1(x, t), the e1-component of the velocity
field. Assuming statistically stationary homogeneous isotropic turbulence, E(κ) can be
obtained by

E(κ) = 1
2κ

3 d
dκ

(
1
κ

dE11(κ)
dκ

)
. (1.19)

According to Kolmogorov’s second similarity hypothesis, inertial-range statistics are
uniquely governed by ϵ. Hence, the energy spectrum function is expected to be a
function of ϵ and κ only. Dimensional analysis yields the famous -5/3 - scaling of the
spectrum in the inertial sub-range [5]

E(κ) = CKϵ
2/3κ−5/3 , (1.20)

where CK ≈ 1.5 is the universal Kolmogorov constant. It should be noted that the
turbulent kinetic energy k is obtained by integrating over E(κ) all wavenumbers [5]

k =
∫ ∞

0
dκE(κ) . (1.21)

Similarly, the energy dissipation rate can be spectrally expressed as [5]

ϵ = 2ν
∫ ∞

0
dκκ2E(κ) . (1.22)

As E(κ) is monotonically decreasing in the inertial sub-range and the dissipation range,
Eqs. (1.21) and (1.22) reveal that most of the turbulent kinetic energy is stored in the
large eddies while most of the energy is dissipated at small scales [5].

As Kolmogorov described the phenomenology of the Richardson cascade theoretically
in 1941 [43, 44], this theory is usually referred to as K41 in the following.
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Correlation functions

One of the most basic second-order statistics is the two-point velocity covariance tensor
(compare Sec. 3.2.2). Here, we assume statistically stationary homogeneous isotropic
turbulent flow with vanishing mean, i.e. u(x, t) = u′(x, t) as well as ⟨u′2

1 ⟩ = ⟨u′2
2 ⟩ =

⟨u′2
3 ⟩ = ⟨u′2⟩, and that all averages are invariant under rotations of the coordinate

system. The two-point velocity covariance tensor is defined as [e.g. 5, 45, 46]

Rij(r) = ⟨u′
i(x+ r, t)u′

j(x, t)⟩ , (1.23)

= ⟨u′2⟩
(
g(r)δij + [f(r) − g(r)] rirj

r2

)
(1.24)

where Eq. (1.24) is due to isotropy and f(r) = R11(r)/R11(0) is the longitudinal
autocorrelation function. The transverse autocorrelation function g(r) is uniquely
defined in terms of f(r) by [5]

g(r) = f(r) + 1
2r
∂f(r)
∂r

. (1.25)

Notably, f(0) = g(0) = 1. Let the longitudinal direction of the flow be parallel to
the e1-direction of the chosen coordinate system. Then, R11(r) = ⟨u′2⟩f(r), R22(r) =
R33(r) = ⟨u′2⟩g(r), and the off-diagonal components are zero [5].

Descriptively, the correlation functions are a measure of how the velocity field is
correlated over a separation of r. The length, over which the flow can be considered to
be correlated is the integral length scale, which is defined as [5]

L11 =
∫ ∞

0
dr′f(r′) , (1.26)

L22 = L33 =
∫ ∞

0
dr′g(r′) (1.27)

(1.28)

where L11 is the longitudinal integral length scale and L22 as well as L33 are the
transverse integral scales. In homogeneous isotropic turbulence, L22 = L33 = L11/2
holds [5]. The integral scales are characteristic to large eddies so that L11 can also be
estimated by a scaling argument [47]:

L11 = Cϵ
⟨u′2

1 ⟩3/2

ϵ
. (1.29)

where Cϵ ≈ 0.5 is the dissipation constant. In homogeneous isotropic turbulence
at high Reynolds numbers, the integral scale is related to the energy injection scale
L by L11/L ≈ 1/2 [5]. In the atmosphere, L corresponds to the energy injection
scale, e.g. length scale of convection rolls in a convective boundary layer such as the
boundary layer depth [41]. Hence, the integral scale should be approximately half of
the boundary layer depth if the boundary layer is assumed to be isotropic. Similarly

12



1.2 Turbulent flows

and for completeness, the integral time scale T11 is given by

T11 = Cϵ
⟨u′2

1 ⟩
ϵ

= L11

⟨u′2
1 ⟩1/2 . (1.30)

In addition to integral scales, another length scale can be derived from autocorrela-
tion functions that is intermediate between the Kolmogorov length scale ηK and the
integral scales at high Reynolds numbers. This length scale is known as the Taylor
micro-scale and is obtained by [5]

λf =
(

−1
2
∂2f(0)
∂r2

)−1/2

, (1.31)

λg =
(

−1
2
∂2g(0)
∂r2

)−1/2

, (1.32)

(1.33)

where λf is the longitudinal and λg the transverse Taylor micro-scale. In homogeneous
isotropic turbulence, λf and λg can be expressed as [5]

λf =
√

30νu′2

ϵ
, (1.34)

λg =
√

15νu′2

ϵ
, (1.35)

(1.36)

invoking ϵ = 15ν⟨(∂u′
1/∂x1)2⟩, which will be introduced below. In homogeneous

isotropic turbulence, λf/λg =
√

2. Moreover, one can define a Reynolds number, the
Taylor micro-scale Reynolds number, with the help of the Taylor micro-scale [5]

Rλ = λgu
′

ν
=
√

15u′4

ϵν
(1.37)

∼
√

15ϵ
1/6L

2/3
11

ν1/2 (1.38)

which is based on λg and where u′ is substituted by u′ ∼ (L11ϵ)1/3. Defining a large-
eddy Reynolds number by ReL = k1/2L/ν with L ≡ k3/2/ϵ, the separation of scales
between the energy-containing eddies and the dissipative scales grows with ReL as [5]

L

ηK

= Re
3/4
L . (1.39)

In atmospheric flows, where a typical length scale is O(L) ∼ 100 m − 1000 m and
ηK ≈ 1 mm (cf. Chapter 4), a well-pronounced inertial sub-range, for example in
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second-order structure functions, is expected.

Structure functions

Kolmogorov’s phenomenology is also expressed in terms of velocity structure functions,
i.e. moments of velocity increments separated by a separation vector r [43]. As
mentioned before, we consider a velocity field u(x, t) with vanishing mean, i.e. u(x, t) =
u′(x, t). The second-order velocity structure function tensor is given by the covariance
tensor of velocity increments [5, 42]

Dij(r) =
〈
[u′

i(x+ r, t) − u′
i(x, t)]

[
u′

j(x+ r, t) − u′
j(x, t)

]〉
. (1.40)

In homogeneous isotropic turbulence, the diagonal components of the velocity fluc-
tuation covariance tensor are equal to each other, i.e. ⟨u′2

1 ⟩ = ⟨u′2
2 ⟩ = ⟨u′2

3 ⟩ = ⟨u′2⟩,
and it is assumed that all averages are invariant under rotations of the coordinate
system (compare Sec. 3.2.2). Then, the second-order velocity structure function tensor
depends only on the separation vector r [5]

Dij(r) = DNN(r)δij + [DLL(r) −DNN(r)] rirj

r2 , (1.41)

where DLL(r) is the longitudinal and DNN(r) the transverse structure function. Let
the longitudinal direction of the flow be parallel to the e1-direction of the chosen
coordinate system. Then, the longitudinal second-order structure function D11(r) is
related to f(r) by [e.g. 5, 42]

D11(re1) = DLL(r) = ⟨(u′
1(x+ re1, t) − u′

1(x, t))2⟩ = 2⟨u′2⟩(1 − f(r)) . (1.42)

Considering separations L ≫ r ≫ ηK in the inertial sub-range and taking Kolmogorov’s
second similarity hypothesis into account, the only possibility to match the units of
DLL(r) (m2/s2) is given by [5]

DLL(r) = C2(ϵr)ζ2 , (1.43)

where ζ2 = 2/3 and C2 ≈ 2 [5]. Furthermore, ∂Dij(r)/∂ri = 0 in incompressible,
zero-mean flows with ∂u′

i/∂xi = 0. In homogeneous isotropic turbulence, the transverse
structure function DNN(r) can hence be expressed as a function of DLL(r) only by [5]

DNN(r) = DLL(r) + 1
2r

∂

∂r
DLL(r) . (1.44)

Then, Dij(r) can be expressed in the inertial sub-range as [5]

Dij(r) = C2(ϵr)2/3
(4

3δij − 1
3
rirj

r2

)
. (1.45)
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1.2 Turbulent flows

At last, it should be noted that not only do many length scales depend on the variance
of the velocity fluctuations but also many length scales such as the integral length
scale as well as the Taylor micro-scales.

The Energy Dissipation Rate

In the framework of K41 and the energy cascade, the energy dissipation rate is a
fundamental quantity in turbulence. Turbulent kinetic energy is dissipated into heat
at the smallest scales of the flow by friction. Here, the rate of energy dissipation will
be introduced with the help of an energy budget equation for a fluid parcel of a fixed
volume and density ρ.

To derive a budget equation for the energy density, the Navier-Stokes equations,
Eq. (1.3), are multiplied with u, which yields [42]

∂u2/2
∂t

= −∇ ·
[(
u2

2 + p

ρ

)
· u
]

+ ∂

∂xj

(2νuiSij) − 2νSijSij︸ ︷︷ ︸
ϵ0≥0

, (1.46)

where Sij = (∂ui/∂xj + ∂uj/∂xi)/2 is the strain-rate tensor and u2/2 the turbulent
kinetic energy per unit mass of the fluid. The first term on the right-hand side (rhs) of
Eq. (1.46) is due to the convection of energy across the boundary of the fluid parcel.
In addition, the work of fluid parcel deformation due to pressure forces and viscous
stress at the boundary of the fluid parcel is captured by the second and third term,
respectively [42]. The last term on the right-hand side of Eq. (1.46) is the only term,
which is non-negative, hence acting as a global sink. We can identify this term with
the instantaneous energy dissipation rate per unit mass [42]

ϵ0 = 2νSijSij . (1.47)

However, Kolmogorov’s phenomenology from 1941 is based on the volume-averaged
mean energy dissipation rate, which is given by

ϵ ≡ ⟨ϵ⟩ = ⟨ϵ0⟩ = ⟨2νSijSij⟩ . (1.48)

In homogeneous isotropic turbulence, this equation simplifies to [5]

⟨ϵ⟩ = ν

〈
∂ui

∂xj

∂ui

∂xj

〉
= 15ν

〈(
∂u1

∂x1

)2〉
, (1.49)

where the rhs equation can be applied to one-dimensional time-records of the longitu-
dinal velocity in order to estimate the mean energy dissipation rate.

Refined similarity hypotheses

Kolmogorov’s phenomenology from 1941 relates velocity statistics to the mean energy
dissipation rate. However, it can be anticipated that the energy dissipation rate depends

15



Introduction

on local velocity gradients considering, e.g., Eq. (1.47), which are strongly fluctuating
resulting in heavy tails of their probability distribution functions (PDF) [5, 42, 48].
The strong fluctuations being localized in the flow is attributed to the phenomenon of
intermittency, which Kolmogorov accounted for in his refined similarity hypothesis [5].

Kolmogorov restated the first and second similarity hypothesis in 1962 by condi-
tioning velocity statistics on the locally volume-averaged energy dissipation rate. In his
refined similarity hypothesis, Kolmogorov defines the locally volume-averaged energy
dissipation rate field [49]

⟨ϵ0(x, t)⟩R = 3
4πR3

∫∫∫
V(R)

ϵ0(x+ r, t)dr . (1.50)

which were assumed to be log-normally distributed [5]. A consequence is that the
scaling exponents of the structure functions change [5]

ζn = 1
3n

(
1 − 1

6µ(n− 3)
)
, (1.51)

where µ = 0.25 is the intermittency exponent resulting in ζ2 = 2/3 + 1/36 being
referred to as K62-scaling in the following.

1.2.5 The Atmospheric Boundary Layer
The purpose of this section is to introduce the definition of the virtual potential
temperature θv and the Richardson number, which are both important quantities for
characterizing the stability of the atmospheric boundary layer. In addition, this section
is meant to emphasize the dynamic structure of the lower atmospheric boundary, i.e. of
the sub-cloud layer and the cloud layer. The interested reader is kindly referred to [e.g.
40, 41, 50, 51] for more information on atmospheric boundary layers. In particular, the
focus is on marine boundary layers.

The Earth’s topography poses a boundary to the atmospheric flow where the lowest
part, say up to an altitude of 3000 m, is influenced by processes at this boundary.
Therefore, the unaffected part of the Earth’s atmosphere is called the free atmosphere
and the region below, the affected part by boundary processes on time scales of an
hour or less is the boundary layer [40]. Boundary layers above the ocean are known as
marine boundary layers. Marine boundary layers develop slowly in time because, at the
bottom, the sea surface temperature is approximately constant over the diurnal cycle
due to strong mixing in the oceanic top layers as well as the large heat capacity of water
[40]. In marine boundary layers, forcing is mainly due to frictional drag, heat transfer
and phase transitions such as condensation and evaporation manifesting themselves
in the presence of clouds (cf. Fig. 1.1). Therefore, one can divide the boundary layer
into a sub-cloud layer and a cloud layer as shown in Fig. 1.1. Both frictional drag
leading to wind shear as well as thermals of rising warmer air drive turbulence in the
atmospheric boundary layer. The largest eddies of the turbulent flow scale with the
boundary layer depth h [40]. As turbulence is orders of magnitude more effective in

16



1.2 Turbulent flows

transporting heat or moisture, e.g., than diffusivity, the evolution of boundary layers is
coupled to turbulence [40]. The evolution of the sub-cloud layer depth can be captured
by a mass budget at the cloud base comprising (i) dry and warm air entrainment in
the sub-cloud layer denoted by E in Fig. 1.1, (ii) large-scale vertical motion W and
(iii) the vertical mass flux M at cloud base due to convection [9, e.g.].

Cloud layer

sub-cloud layer

free atmosphere

sea surface

cloud base

z 
/ 

km

0

1

h

M
E

W

Figure 1.1 Sketch of the atmospheric boundary layer and main physical processes affecting
its depth h. θv(z) is the virtual potential temperature as a function of altitude z. E, M and
W are the top entrainment velocity, M is the convective mass flux out of the sub-cloud layer
and W is the large-scale vertical velocity at z = h, respectively.

Warm air is less dense than colder air due to thermal expansion causing air parcels
to rise that are warmer than the environment. These air parcels are positively buoyant.
In the atmosphere, the temperature of vertically moving air parcels also changes
(adiabatically) because of pressure changes. This effect is compensated by the so-called
potential temperature for dry air [2]

θ = T

(
p

p0

)(1−γ)/γ

, (1.52)

where γ is the adiabatic constant of dry air and p0 = 1000 hPa is the reference pressure.
However, the atmosphere is not dry. Instead, air comprises liquid water, ice and water
vapor where the latter is less dense than air. Here, we focus on unsaturated air so
that ice and liquid water are not taken into account. In this context, one can define a
re-scaled potential temperature at which the density of dry air would equal that of
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moist air. This temperature is the so-called virtual potential temperature [2, 41]

θv = θ(1 + 0.61q) , (1.53)

where q = ρv/ρ is the specific humidity with the water vapor density ρv and the
dry air density ρ. It is apparent from Eq. (1.53) that θv ≤ θ so that the virtual
potential temperature is always larger than the potential temperature resulting in
larger buoyancy.

Static stability of boundary layers is usually expressed in terms of buoyancy. If
an air parcel is vertically shifted in altitude and relaxes back into its original position
due to buoyant forces, the boundary layer is considered to be statically stable. In
case the virtual potential temperature of a vertically shifted air parcel is identical to
the ambient, the ambient air is statically neutral. Otherwise, if buoyant forces cause
the air parcel to further move away from its original position, the boundary layer is
statically unstable. Static stability expresses itself in a positive vertical gradient of
θv(z). Turbulent mixing in the sub-cloud layer causes θv(z) to be constant with height
resulting in a so-called mixed layer. More precisely, θv(z) is the mean temperature
from cooler air parcels at the bottom and warmer air parcels at the top of the mixed
layer. The homogenized θv(z)-profile causes a sharp increase in θv(z) at the top of the
mixed layer, which is statically stable and known as temperature inversion. Hence, the
atmospheric boundary layer is usually topped by a stably stratified layer.

In a stably stratified boundary layer, vertical motions of air parcels are prone to
buoyant restoring forces, which consequently suppress vertical motions [40]. Besides
being buoyancy-driven, turbulence in the boundary layer is also generated by wind
shear. It is hence possible that the effect of vertical shear is stronger than stratification.
The gradient Richardson number quantifies the relative importance of stratification
and vertical wind shear and can be expressed as [40, p.176 ff]

Ri =
g

⟨θv⟩z

∂⟨θv⟩z

∂z(
∂⟨U1⟩z

∂z

)2
+
(

∂⟨U2⟩z

∂z

)2 , (1.54)

where g is gravity, ⟨·⟩z a vertical average and U1, U2 the horizontal mean wind compo-
nents. It has been shown that flows are turbulent for Ri < Ric ≈ 0.25 where Ric is the
critical Richardson number. For Ri > 1, turbulent static stability of the atmosphere
suppresses vertical turbulent motions [40, 52, and references therein]. The different
regimes are summarized in Table 1.1.

In practice, vertical gradients are approximated by finite differences, which yields
the bulk Richardson number [40, p.176 ff]

Ri = g

⟨θv⟩
∆⟨θv⟩z/∆z

(∆⟨U1⟩z/∆z)2 + (∆⟨U2⟩z/∆z)2 , (1.55)

where ∆ is the difference across altitude. Note that the critical Richardson number is
only valid for the gradient Richardson number [40]. Reasonable Richardson numbers
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Regime characteristics
Ri < 0 unstable stratification, turbulent

0 < Ri < 0.25 stable stratification, turbulent
0.25 < Ri < 1 turbulent

Ri > 1 stable stratification, non-turbulent
Table 1.1 Atmospheric Stability and presence of turbulence in different regimes of the
gradient Richardson number RiG. Values are taken from [52].

in the atmosphere are O(Ri) ∼ 10 [41].
At last, the energy dissipation in turbulent flows is related to viscosity (cf. Eq. (1.47),

as an example). Due to stratification, the density and air temperature is a function
of altitude affecting the viscosity of the fluid. The density of moist air and dynamic
viscosity η is obtained using CoolProp [53]. Then, the kinematic viscosity can be
calculated by

ν = η/ρ , (1.56)

where ρ is the density and η the dynamic viscosity.

1.2.6 Random Error of Time-Average
It is evident from section 1.2.4 that many turbulence characteristics, such as the
turbulent kinetic energy, the mean energy dissipation rate ϵ or longitudinal integral scale
L11, depend on the variance of longitudinal velocity fluctuations ⟨u′2

1 ⟩. Considering one-
dimensional velocity measurements in time in the streamwise direction of a statistically
stationary turbulent flow, the variance of velocity fluctuations ⟨u′2

1 ⟩ is defined by
⟨u′2

1 ⟩τ = ⟨(u1(t) − ⟨u1(t)⟩τ )2⟩τ where τ is the duration of the averaging window. This
implies that the accuracy of ⟨u′2

1 ⟩ depends on the accuracy of the time-averaged
longitudinal velocity ⟨u1(t)⟩τ . For an infinitely long averaging window with τ → ∞ and
assuming a statistically stationary turbulent flow, the time-averaged velocity converges
to the mean velocity with limτ→∞⟨u1⟩τ = ⟨u1⟩ = U . In this case, the one-dimensional
time-record of the velocity is ergodic. More detailed information about averages is
presented in section 3.2.1.

In simulations or laboratory experiments, it is possible to approximate such statis-
tically stationary and homogeneous turbulence. Consequently, longer runtime of the
simulations or longer measurement periods in laboratory experiments improves the
convergence of velocity statistics. In contrast, atmospheric turbulence is influenced
by the diurnal cycle and large-scale variability (“synoptic conditions”). Under many
atmospheric conditions, this large-scale variability is expressed by the so-called spectral
gap in the power spectrum of one-dimensional velocity fluctuations at frequencies ∼ 1/h
[e.g. 40, 54]. Hence, the upper bound on a suitable averaging window is ∼ 1 h [55].
Thus, the question arises of how accurately the mean velocity and variance of velocity
fluctuations can be determined.
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At first, the random error of mean velocity estimates is derived. Considering
one-point velocity time-records of a stationary turbulent flow, the mean velocity can
be estimated by time averaging. For a finite averaging window τ , the time-average of a
one-dimensional velocity time-record is defined by [e.g. 41]

⟨u1⟩τ = 1
τ

∫ τ

0
dtu1(t) . (1.57)

The random error can be captured in terms of the estimation variance as given by [41]

〈
(⟨u1(t)⟩τ − U)2

〉
=
〈(1

τ

∫ τ

0
dtu1(t) − U

)2〉
=
〈(1

τ

∫ τ

0
dtu′

1(t)
)2〉

, (1.58)

where U is the true mean velocity of the flow and u′
1(t) = u1(t)−U according to Reynolds

averaging. In the case of stationary turbulence, equation (1.58) can be rewritten in terms
of the longitudinal auto-correlation (coefficient) function ρ(t− s) = ⟨u′

1(t)u′
1(s)⟩/⟨u′2

1 ⟩
by [e.g. 41]

〈
(⟨u1(t)⟩τ − U)2

〉
= ⟨u′2

1 ⟩
τ 2

∫ τ

0
dt
∫ τ

0
ds ρ(t− s) . (1.59)

Figure 1.2 Visualization of substitution by ξ = t− s and γ = t+ s to reduce Eq. (1.59) to a
single integral in terms of initial integration variables t and s where τ denotes the averaging
window.

Assuming that u′
1(t) is ergodic and stationary, ρ(t − s) is symmetric and can be

described by one variable only [56]. Hence, the previous double integral, Eq. (1.59), can
be simplified to a single integral by substituting ξ = t− s and γ = t+ s [41]. Taking
into account that t, s ∈ [0, τ ], it follows that ξ ∈ [−τ, τ ] and γ ∈ [0, 2τ ] as shown by
Fig. 1.2 1. Furthermore, the integration boundaries need to be determined. Integrating

1Personal communication Michael Wilczek
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1.2 Turbulent flows

ξ from −τ to τ poses a condition on γ. To illustrate this, γ can be expressed in terms
of ξ by (i) γ = 2t − ξ or (ii) γ = 2s + ξ. Considering the case s = t = τ on the line
ξ = 0 and recalling that γ ∈ [0, 2τ ], the latter is only fulfilled for (i) 0 ≤ ξ ≤ τ or
(ii) −τ ≤ ξ ≤ 0, respectively. For the maximum available range of γ along the line
ξ = 0, where s = t, the above conditions lead to γ = 2t− |ξ| due to symmetry so that
the upper limit of the integral over γ is given by 2τ − |ξ|. Similarly, for s = t = 0 at
opposite ends of the line ξ = 0, (i) γ = −ξ or (ii) γ = +ξ, which leads to the lower
integration boundary γ = |ξ| due to 0 ≤ γ ≤ 2τ . Then, Eq. (1.59) can be written as

〈
(⟨u1(t)⟩τ − U)2

〉
= 1

2
⟨u′2

1 ⟩
τ 2

∫ τ

−τ
dξ
∫ 2τ−|ξ|

|ξ|
dγρ(ξ)

= ⟨u′2
1 ⟩
τ 2

∫ τ

−τ
dξ(τ − |ξ|)ρ(ξ)

= 2⟨u′2
1 ⟩

τ 2

∫ τ

0
dξ(τ − ξ)ρ(ξ) ,

= 2⟨u′2
1 ⟩
τ

∫ τ

0
dτ
(

1 − ξ

τ

)
ρ(ξ) , (1.60)

where the second-last equation follows from the symmetry of ρ(ξ) in ξ. Given that the
integral time scale T11 exists and is finite, Eq. (1.60) yields for τ → ∞ [41]

〈
(⟨u1(t)⟩τ − U)2

〉
≈
∫ ∞

0
dξρ(ξ) = 2⟨u′2

1 ⟩T11

τ
. (1.61)

Equation (1.61) is the estimation variance of the mean velocity U due to a finite ave-
raging window τ . In relative terms, i.e. considering ⟨(⟨u1(t)⟩τ − U)2 /U2, this equation
shows that the estimation variance increases with turbulence intensity

√
⟨u′2

1 ⟩/U and
integral time scale T11. The averaging variance decreases with the averaging window τ
motivating the importance of long averaging windows.

Secondly, one can derive a systematic error for estimating the variance of a stationary
and ergodic velocity time-record [56, 57]. Considering a velocity fluctuation time record
with vanishing (ensemble) mean, i.e. ⟨⟨u′

1(t)⟩τ ⟩ = 0, the variance estimate based on
the averaging window τ reads [e.g. 56]

⟨u′2
1 ⟩τ = 1

τ

∫ τ

0
dt (u′

1(t) − ⟨u′
1(t)⟩τ )2 = 1

τ

∫ τ

0
dt1

(
u′

1(t1) − 1
τ

∫ τ

0
dt2u′

1(t2)
)2

. (1.62)
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On average, Eq. (1.62) yields [e.g. 56]
〈
⟨u′2

1 ⟩τ

〉
=
〈1
τ

∫ τ

0
dt (u′

1(t) − ⟨u′
1(t)⟩τ )2

〉
=
〈1
τ

∫ τ

0
dtu′2

1 (t1) − 2u′
1(t)⟨u′

1(t)⟩τ + ⟨u′
1(t)⟩2

τ

〉
= ⟨u′2

1 ⟩1
τ

∫ τ

0
dt− 2

〈(1
τ

∫ τ

0
dtu′

1(t)
)2〉

+
〈(1

τ

∫ τ

0
dtu′

1(t)
)2〉

= ⟨u′2
1 ⟩ −

〈(1
τ

∫ τ

0
dtu′

1(t)
)2〉

= ⟨u′2
1 ⟩ − 2⟨u′2

1 ⟩T11

τ
, (1.63)

where⟨u′2
1 ⟩ is the true variance. In consequence, the estimation variance of the mean

velocity (Eq. (1.61)), which can be regarded as a random error, causes a systematic
underestimation of the variance. From Eq. (1.63), we can also estimate the relative
systematic error of the variance estimate, which is given by Eq. (3.41) and used in
Sec. 3.3.4.

To summarize, I define ⟨u1(t)⟩τ to be converged if the estimation variance of the
mean, Eq. (1.61), is much smaller than the variance for τ ≫ T11. I define ⟨u′2

1 ⟩τ to be
converged if the systematic error is much smaller than the random error, which are
both defined by Lenschow, Mann, and Kristensen in [56] for τ ≫ T11.

1.3 Cloud microphysics
This work focuses on warm clouds, which are free of ice. Hence, warm clouds are
particle-laden flows, where the air temperature is warmer than 0 °C and water is either
in the liquid or vapor phase. Here, before introducing important parameters with
respect to cloud droplet-turbulence interaction, some aspects of cloud droplet growth
are summarized. For more detailed information, the interested reader is kindly referred
to [4, 21, 23, 26].

1.3.1 Cloud Droplet Growth due to Condensation
Cloud droplets initiate in super-saturated environments when water vapor condenses
on a cloud condensation nucleus (CCN), which are aerosols such as sea salt particles in
marine environments. After being activated, cloud droplets can grow up to δp ∼ 30 µm
by condensation the growth rate for an isolated droplet is given by [4, 23]

ddp

dt = γ
2s
dp

, (1.64)
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where s = e/es − 1 is the super-saturation, e the vapor pressure, es the saturation
vapor pressure and γ a function of ambient pressure and temperature. In consequence
of the inverse relationship between droplet diameter and the growth rate (in terms of
dp), the droplet size distribution tends towards narrow distribution with increasing
mean droplet diameter d̄p around d̄p [4]. This is also captured by a time-evolution
equation for the droplet size distribution [23]. In unsaturated air, where s < 0, the
droplet diameter decreases with time. The evolution of the saturation field can be
captured by [4]

ds
dt = Au3 − s

τs

, (1.65)

where A is a temperature-dependent thermodynamic variable, u3 is the vertical velocity,
τs ∝ (nd̄p)−1 is the phase relaxation time, n the cloud droplet number concentration
and d̄p the mean droplet diameter. The first term in Eq. (1.65) describes adiabatic
cooling (heating) due to ascent (descent) [4]. The second term represents the change
in s due to droplet growth. On the one hand, condensation (evaporation) transfers
water vapor (liquid water) into liquid water (water vapor). On the other hand, latent
heat release heats (cools) the ambient air coupling to the supersaturation [4]. It should
be noted that Eqs. (1.64) and (1.65) apply in the cloud core and do not account for
fluctuations of supersaturation, e.g. due to mixing. It has been shown that cloud
droplets can be activated even in, on average, sub-saturated air [58].

Besides the mean droplet diameter, another central quantity for quantifying clouds
emerged in the brief summary above - the cloud droplet number concentration being
defined as [59]

n = N/V , (1.66)

where N is the total number count of cloud droplets and V is the sampling volume.
In many cloud probing instruments, e.g. cloud droplet probes, the sampling volume
is given by V = uA∆t where u is the relative wind speed, A is the measurement
cross-sectional area and ∆t is the sampling time interval. Similarly, the number
concentration can be defined for each diameter bin by

n(di ≤ dp < di+1) = N(di ≤ dp < di+1)/V , (1.67)

where N(di ≤ dp < di+1) is the number count of droplets in the diameter range di to
di+1.

1.3.2 Cloud Droplet - Turbulence Interaction
The following considerations are not only valid for cloud droplets but also for other
(spherical) particles in a turbulent flow. Some notions refer to particles in general
(e.g. particle relaxation time). Hence, in the scope of this thesis, cloud droplets and
particles both refer to cloud droplets.
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Cloud droplets are dispersed in turbulent flows obeying the Navier-Stokes equations
(Eqs. (1.3) and (1.2)). Several forces act on a cloud droplet in a turbulent environment,
among which are viscous drag, gravitational settling, added mass and the Basset-
Boussinesq force [26, 60]. As cloud droplet diameters are on the order of O(dp) ∼
10 µm, they are much smaller than the Kolmogorov length scale of the turbulent flow
O(ηK) ∼ 1 mm. Furthermore, the density of ambient air is much smaller than the
density of liquid water (ρ ≪ ρl, where ρ is the air density and ρl is the density of liquid
water). Taking into account both limits for cloud droplets, the equation of motion of
cloud droplets can be modeled in terms of gravity and Stokes drag [26]

u̇p = 1
τp

(u(x, t) − up) + g , (1.68)

where τp is the particle relaxation time, which is defined as [26]

τp = 2
9

(dp/2)2

ν

ρl

ρ
, (1.69)

where ν is the kinematic viscosity. The particle relaxation time is a measure for how
fast the cloud droplet kinematics respond to changes in the flow u(x, t). The relevant
time scale for changes at small scales of the flow is the Kolmogorov time scale τK ,
Eq. (1.13). A comparison of the particle relaxation time and the Kolmogorov time
yields the Stokes number [26]

St = τp/τK . (1.70)

The Stokes number is a measure for the inertia of cloud droplets. If St ≪ 1, particles
behave like tracers. If St ≫ 1, the finite particle inertia causes particles to move relative
to the ambient flow u(x, t). For 0.1 ≲ St, cloud droplets can be slung out of strong
vortices, which is known as the “sling effect” [28]. The sling effect can cause cloud
droplet trajectories of nearby droplets to cross each other increasing the chance for
cloud droplet collisions [28]. Due to intermittency and the relation to strong vortices,
sling events occur more frequently in high Rλ turbulent flows [61]. Experimentally, it
has been found that cloud droplets with St ≳ 0.1 are inhomogeneously distributed in
space leading to cloud voids [39] and clustering [62].

In still air, i.e. u(x, t) = 0, the cloud droplet is accelerated by gravity only. With
the initial condition up(t = 0) = 0, the cloud droplet velocity can be integrated to
up = uT (1 − exp(−t/τp) with uT = τpg. To compare the impact of gravitational
settling to cloud droplet inertia, the terminal velocity uT is related to the Kolmogorov
velocity scale uK , Eq. (1.14). This velocity ratio yields the non-dimensional settling
velocity parameter [4]

Sv = uT

uK

. (1.71)
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In a cloud with ⟨ϵ⟩ ∼ 1 × 10−2 W/kg, ν ∼ 1.5 × 10−5 m2/s and dp ∼ 30 µm, the Stokes
number St ∼ 0.07 is smaller than the non-dimensional settling velocity parameter
Sv ∼ 1.4 highlighting the importance of gravity [4].

Collision-Coalescence

Cloud droplets can not only grow by condensation but also by collision-coalescence,
which is crucial for the rapid onset of precipitation in warm clouds but is also related
to rare events [26, 63]. As an example, droplet growth due to gravitational collection
occurs at a rate of ∼ 1 × 10−4/s for a collector droplet with dp = 12.5 µm in a back-
ground of 10 µm-droplets assuming that 3% of geometric collisions lead to coalescence
[26]. Geometrically, collision-coalescence requires two droplets with diameters d1 and
d2 to be within a sphere of diameter D = d1 + d2 [26]. In addition to geometric
constraints, hydrodynamic droplet-droplet interactions and surface properties must
allow for coalescence [4]. Taking the three previous requirements into account, the
collection kernel, which is the important quantity for determining collision-coalescence
rates, can be written as [4]

K12 = Γ12E(d1, d2) , (1.72)

where E(d1, d2) is the collision efficiency [64, e.g.] and Γ12 the collision kernel. The
collision kernel Γ12 is proportional to D2 and to the relative velocity of two droplets
so that it is enhanced in case of intersecting trajectories of nearby cloud droplets [4,
26]. Furthermore, Γ12 is enhanced in the case of clustered cloud droplets resulting in
shorter inter-particle distances [26]. Note that not all geometric collisions, i.e. where
two droplets are closer than D/2, lead to coalescence in practice. This is because of a
disturbance flow that one droplet induces in the neighborhood of another droplet [4].
To overcome this flow perturbation, cloud droplets must be horizontally closer than
D/2 resulting in the collision efficiency E(d1, d2) = y2

c/(d1/2 + d2/2)2 where yc is the
critical inter-droplet distance for coalescence [4, e.g.].
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Chapter 2

The Max-Planck-Cloudkites

In this chapter, I introduce three instruments of the Max Planck Cloudkite Observa-
tory that are relevant to this thesis. These instruments, the Max Planck Cloudkite+
(MPCK+), the mini-Max Planck Cloudkite (mini-MPCK) and the micro-Max Planck
Cloudkite (micro-MPCK) are specially developed to provide insight into cloud micro-
physics from the large atmospheric scales ∼ 100 m down to the Kolmogorov scale, which
is a fraction of 1 mm. This chapter is organized as follows: first, I motivate the need for
balloon-borne measurements and shortly present the MPCK+. Afterwards, I introduce
the mini-MPCK in terms of requirements, scientific instrumentation, mechanical design
and in-field operation in Secs. 2.3.1 to 2.3.4. In Sec. 2.4, exemplary data from the
operation during the EUREC4A field campaign is shown which serves as the basis to
assess the performance of the mini-MPCK. This chapter is closed with a discussion
and outlook with respect to a revised version of the mini-MPCK in Sec. 2.5.

It is planned to submit parts of this section as an instrument paper on the Mini-
MPCK to the journal Atmospheric Measurement Techniques. Gholamhossein Bagheri,
Eberhard Bodenschatz and I conceived and designed the Mini-MPCK. Gholamhossein
Bagheri and I assembled the Mini-MPCK. Gholamhossein Bagheri, Freja Nordsiek,
Antonio Ibañez Landeta and I wrote the control software. Eberhard Bodenschatz,
Gholamhossein Bagheri, Freja Nordsiek, Oliver Schlenczek, Johannes Güttler, Antonio
Ibañez Landeta and I performed in-situ measurements and collected the data, which
was supported by Marcel Meyer, Andreas Kopp, Andreas Renner and Artur Kubitzek.
Mechanical parts and electronics were developed in collaboration with and manufactured
by the in-house machine shop and scientific electronics, respectively.

2.1 Introduction
Clouds determine the energy balance of the Earth’s atmosphere, its radiation budget
and the hydrological cycle [12, 13]. The lack of detailed understanding of clouds is
a main source of uncertainty in weather forecasting and climate modeling [65, and
references therein]. It is not yet quantitatively understood how rain is initiated in

0Interested readers are referred to [37] for detailed information.
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warm, i.e. ice-free, clouds and how warm rain initiation is connected to the cloud’s
surroundings [20, 26]. One of the most prevailing questions in climate modeling concerns
the sensitivity of trade-wind cumuli to changes in environmental conditions [6]. In
general, clouds are dispersed droplets or ice particles in a turbulent flow spanning a
wide range of spatial and temporal scales from micrometers to km and milliseconds
to hours [3]. At small scales, cloud particles interact with the flow and grow or decay
due to localized fluctuations of temperature and humidity [4, 23]. At intermediate
scales, entrainment and mixing is generated by turbulence [66]. Both small-scale and
intermediate-scale processes are coupled to large scales of the cloud via buoyancy and
drag forces [67].

The multiscale properties of the turbulent flow with typical Taylor-scale Reynolds
numbers O(104) in combination with moisture and temperature transport, phase
transitions, and inertial particle dynamics present a challenge for modeling and pa-
rameterization in large-eddy simulations (LES), e.g. [4, 68–73]. A fully-resolved direct
numerical simulation (DNS) does not rely on parameterizing small-scale processes but
demands 1018 grid points for a time period of at least 10 min in order to capture
the cloud evolution over at least one characteristic eddy turn-over time [31]. Even
nowadays, this approach is still far beyond any computational power which is why
recent numerical approaches combine DNS and LES [70]. Laboratory experiments pro-
vide a controlled and steady environment reaching atmospheric Taylor-scale Reynolds
numbers although they do not reproduce atmospheric conditions in their complexity
[among others 36, 74, 75]. This is why atmospheric field measurements serve as needed
compliments to simulations and laboratory experiments [76–78].

Trade-wind cumuli dynamically evolve during their life cycle, which is related to
turbulent processes such as entrainment and mixing [33, 79]. Entrainment and mixing
processes have been described by the transition length scale from inhomogeneous to
homogeneous mixing l∗ ∼ ϵ1/2τ

3/2
react where ϵ is the mean energy dissipation rate inside

the cloud and τreact the time scale of the phase change such as cloud droplet evaporation
or the super-saturation time scale. In highly turbulent clouds with ϵ ∼ 10−2 W/kg
and τreact ∼ 1 s [80], the transition length scale was found l∗ ∼ 0.1 m. To resolve these
entrainment and mixing processes of (trade-wind) cumulus clouds and to assess the
impact on the cloud droplet size distribution, highly resolved measurements in time
and space of both turbulence and cloud droplets are needed [29].

While in-situ measurements on towers or mountain tops guarantee the best spatio-
temporal resolution, ground-based measurements are fixed in location, limited in
altitude and experimental sites on mountain tops are affected by topography [54,
81–84]. Despite that remote sensing is able to characterize the large-scale environment,
it is limited in resolution and needs in-situ measurements for calibration [85–87].
Radiosondes lifted by weather balloons provide valuable insight into the vertical
structure of the atmospheric boundary layer and high flexibility with respect to the
launching location [e.g. 88–90]. However, they are not suitable for cloud evolution
studies because they are advected by the atmospheric flow and cannot be kept at
constant altitude.
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In contrast, aircraft-borne measurements are nearly fully uncorrelated with the
atmospheric flow due to a high relative wind speed (O(100 m/s) and are conducted
within the atmospheric boundary layer, i.e. far away from the topography. On the one
hand, Taylor’s hypothesis (introduced in Sec. 3.2.1) is advantageously fulfilled. On
the other hand, the high relative wind speed impedes high spatial resolution in the
millimeter to decimeter scale [52]. The relative wind speed of unmanned aerial vehicles
(UAV) and helicopters (∼ 20 m/s) is lower than that of aircraft although helicopters
are usually not allowed to enter clouds due to safety regulations [91, 92]. Therefore,
in-situ measurements are limited to cloud tops unless the cloud is shallow [8, 92].
Furthermore, helicopter-borne measurements usually require a minimal relative wind
speed in order to keep the instrument out of the rotor’s downdraft. During nighttime,
both helicopters and aircraft have major safety issues when flying at low altitude above
ground. Furthermore, aircraft, helicopters and unmanned aerial vehicles have a limited
operation time due to battery capacity so probing the atmospheric boundary layer
over the diurnal cycle is usually not possible [93, 94].

Tethered aerostats and kites can be operated in windy and calm atmospheric
conditions and they probe the atmospheric boundary layer below, inside and above
clouds if allowed by the net lift. They are able to measure at a constant altitude,
vertically profile the atmospheric boundary layer along the ascends and descends or,
combining the two previous flight strategies, perform staircase flights. In particular,
they are used to measure atmospheric turbulence, cloud microphysics, solar radiation
and fluxes of heat moisture and momentum up to a few km above Mean Sea Level
(MSL) [94–104]. However, tethered aerostats can only be operated in moderate wind
conditions up to O(10 m/s) [e.g. 98]. In the past, aerostats have been deployed from
research vessels proving the high mobility of this experimental approach [e.g. 105].
Compared to aircraft, the operation of balloons is fairly inexpensive [104]. The spatio-
temporal resolution of balloon-borne measurements is ∼ 10 times higher than that
of aircraft for comparable sampling rates thanks to the low relative wind speed of
O(1 m/s) − O(10 m/s). The measurement duration is only limited by disk space or
battery capacity [106].

Here, we use specially developed scientific instruments, the Max-Planck-Cloudkite
+ (MPCK+), the mini-Max-Planck-CloudKite (mini-MPCK), and the micro-Max-
Planck-Cloudkite (micro-MPCK) to characterize atmospheric turbulence and cloud
microphysics with high spatial and temporal resolution down to the micro-meter scale.
Being relatively lightweight instruments, they are deployed by tethered helium-filled and
kite-stabilized balloons (”helikites”, manufactured by Allsopp Helikites Ltd). During
the EUREC4A field campaign in the Caribbean from January to February 2020, the
mini-MPCK was operated on RV Meteor and RV Maria S. Merian over the Atlantic
Ocean during day and night with a flight duration up to 15 h. The MPCK+ was
deployed on RV Maria S. Merian and the micro-MPCK on RV Meteor. Compared
to aircraft, helicopters, or satellites, their operation is inexpensive. To minimize flow
distortions by the helikite, the mini-MPCK can be mounted on the main line 50 m
below the helikite.
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In this chapter, I introduce all three specially developed scientific instruments while
concentrating on the mini-MPCK. Regarding the mini-MPCK, the principal ideas on
the design and our choices in the instrumentation are presented in Sec. 2.3. Then, we
assess the performance of the mini-MPCK with the help of first data records from the
EUREC4A field campaign and comparisons of redundant measurements in Sec. 2.4.
Finally, we will provide an outlook on design improvements in Sec. 2.5.

2.2 Max Planck Cloudkite+
Climate models and weather predictions still suffer from an insufficient understanding
of cloud processes such as moist convection and cloud formation [65]. The vast range of
spatio-temporal scales of atmospheric and cloud dynamics, which is due to its turbulent
nature, is a major challenge in resolving such processes [3]. However, turbulence is
conjectured to be at the core of many small-scale processes in clouds such as mixing
and rain initiation in warm clouds [19, 26]. Fundamental questions are:

• How does turbulent mixing due to turbulent entrainment inside a cloud evolve
as a function of time and space? Is the mixing predominantly homogeneous or
inhomogeneous?

• How does turbulence affect relative droplet velocity statistics and distribution of
droplets in space?

• If globally present in clouds, how important is mixing and inertial clustering?
• How do cloud microphysics vary in time and space?

Providing answers to these questions by in-situ measurements requires the smallest
relevant scales of the turbulent flow and cloud features to be resolved. Therefore, the
Mobile Cloud Observatory (MCO) specially developed an airborne scientific instrument,
the Max Planck Cloudkite+ (MPCK+) as shown in Fig. 2.1. The interested reader is
referred to [37] for a detailed description of both the helikite, the MPCK+ and the
operational procedure whereas only a short summary is presented here.

The MPCK+ is specially developed for measuring atmospheric turbulence and
cloud microphysical quantities simultaneously. Therefore, the MPCK+ is equipped
with instruments that measure cloud droplet sizes, shape and spatial distributions
as well as the atmospheric state (air temperature and relative humidity) and wind
(Fig. 2.1). The remotely controlled MPCK+ is powered by a battery that lasts
for about 30 min with all imaging instruments running and several hours with only
non-imaging instruments running. The imaging instruments are the Particle Image
Velocimetry (PIV) and holography system (Fig. 2.1), which sample 1.6 L/s and 1.7 L/s
of air, respectively. Decisive for the MPCK+ design is to fully capture the coupling
between cloud microphysics and turbulence. This is why the overlap of sampling
volumes between, especially, the holography (droplet sizes and three-dimensional spatial
distributions) and the PIV (two-dimensional droplet velocities and two-dimensional
droplet spatial distribution) is crucial. This overlap is illustrated in Fig. 2.1 by the green
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Figure 2.1 Visualization of the Max Planck Cloudkite + (MPCK+) and its main scientific
instruments: the combined holography and PIV unit. The PIV is operated at 15 Hz with
a probing volume of 23 cm × 15 cm × 0.3 cm (green laser sheet) whereas the holography is
operated at 75 Hz with a probing volume of 1.5 cm × 1.5 cm × 10 cm (violet laser column).
The Fast Cloud Droplet Probe (Fast CDP) measures cloud droplet sizes in the range 1.5 µm
to 50 µm. The Laser Doppler Velocimetry sensor (LDV) was not operated during EUREC4A .
The wind speed is measured by a pitot tube at 100 Hz. Fluctuations of the wind speed and
air temperature are measured by a hot- and cold-wire, respectively, at ∼ 10 kHz. Relative
humidity and air temperature are measured at < 10 Hz.
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A B

Figure 2.2 The 250 m3 helikite at the airfield next to the Max Planck Institute for Dynamics
and Self-organization (A) and at the rear of RV Maria S. Merian during EUREC4A (B). A:
Besides the scientific instrumentation, the main components of the setup are the winch, the
main line, the backup line and the 250 m3 helikite. Initially, it was planned to mount the
MPCK+ at the keel of the 250 m3 helikite. B: The MPCK+ is hang from the 250 m3 helikite
at the front during EUREC4A .

laser sheet (PIV, wavelength 532 nm) and violet laser column (Holography, wavelength
355 nm).

The MPCK+ is carried by a tethered helikite consisting of a 250 m3 helium-filled
balloon and a kite where the keel is 15 m long (Fig. 2.2). The helikite can lift a net
payload of 50 kg at an altitude of 1 km above mean sea level (MSL). At the airfield next
to the Max Planck Institute for Dynamics and Self-organization (Fig. 2.2A), the 250 m3

helikite is held by a main tether (“main line”) and a backup tether (“backup line”). The
main tether is guided by a main pully and spooled by a large winch, which is anchored
to the ground. Originally, the MPCK+ was planned to be mounted at the keel of the
250 m3 helikite. During the EUREC4A field campaign, the MPCK+ was hung from
the helikite at the front in order to simplify the attachment and de-attachment process
(Fig. 2.2B). Being an airborne instrument that is pulled by a research vessel, it is
possible to sample individual clouds of interest with the MPCK+. Another advantage
of tethered aerostats is the low relative wind speed. Together with the high sampling
rate of the imaging instruments, the low relative wind speed allows for measurements
of cloud features at very high spatio-temporal resolution while the smallest resolved
scales are comparable to the Kolmogorov scales of the turbulent flow. As an example,
the cloud edge can be resolved with an accuracy below the low decimeter scale at
relative wind speeds of ∼ 10 m/s. Furthermore, it is possible to continuously sample
the cloud volume with both PIV and holography if the relative wind speed < 1 m/s.

To summarize, the MPCK+ is a mobile instrument that can be operated in remote
regions of the globe. The MPCK+ is equipped with a, to my knowledge and up to now,
unique PIV/holography combination to acquire highly resolved measurements inside
clouds. The MPCK+ measurements allow for unraveling cloud droplet - turbulence
interactions, e.g. the existence of spatial clustering, which is crucial for understanding
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rain formation in warm clouds and their radiative characteristics.

2.3 The mini-Max-Planck-CloudKite
The mini-Max-Planck-Cloudkite (mini-MPCK) is a scientific instrument, which is
specially developed to characterize atmospheric turbulence inside clouds and in the
cloud-free atmosphere, as well as to measure cloud droplets. The mini-MPCK is
designed to answer the following questions:

• How do environmental conditions such as the diurnal cycle, surface temperature,
surface structure or temperature profiles affect atmospheric turbulence?

• What is the energy dissipation rate inside clouds and at the cloud edge?
• How do large-scale circulation interact with cloud-scale processes and how do

they influence cloud microphysics?
• How are cloud droplets spatially distributed?
• What are the key differences between precipitating and non-precipitating clouds

in terms of turbulence characteristics?
• How much does moist convection affect the formation and evolution of clouds?
• How do phase changes affect moist convection?

In this section, we will first explain the design requirements for the mini-MPCK
that follow from the questions above. Then, we will shortly report on the scientific
instrumentation, the mechanical design and the operation of the mini-MPCK.

2.3.1 Design requirements
Characterizing atmospheric turbulence and cloud microphysics requires measurements
of various quantities. Under both cloud-free and cloudy conditions, the mini-MPCK
is designed to measure the wind vector, wind speed variations, air temperature, and
relative humidity, as well as cloud microphysical quantities and droplet numbers and
diameters. To relate turbulence and cloud microphysical measurements to environ-
mental conditions, static air pressure, air temperature and relative humidity have to
be recorded. Furthermore, high spatio-temporally resolved measurements of relative
humidity and air temperature (RHT) are not only crucial to measure vertical RHT
profiles but also to measure heat and moisture transport in the atmosphere or to
determine the evolution of supersaturation inside clouds [e.g. 51, 58, 107]. For all
measurements, basic quantities are the time and location of the measurement. As
an example, vertical profiles of thermodynamic quantities require the altitude of the
platform. As each sensor measures in the platform frame of reference, they have to be
converted into the earth frame of reference. As an example, it is important to rotate
the wind vector and wind speed measurements from the platform frame of reference
into the earth frame of reference as the wind velocity and wind speed measurement
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are relative to the platform motion, as mentioned in Sec. 2.3.2. Therefore, accurate
platform position, velocity, orientation (roll, pitch and yaw) and angular velocity
measurements are needed, too. The instrument is designed for redundant measure-
ments using independent measurement principles (e.g., wind measurements using sonic
and pressure-based anemometry) to identify systematic errors by the measurement
principle.

Measuring the air temperature and relative humidity inside clouds and in the
atmosphere is challenging because of the particle-laden environment and radiation.
Impinging droplets potentially moisturize the RHT sensors. In the case of unheated
RHT sensors, the RHT measurement of air is useless until the sensor is dry. Further
challenges arise from salt contamination which is likely in marine boundary layer
measurements after 5 min to 60 min exposure and which causes the sensors to remain
wet down to ≈ 30% relative humidity [108]. Note that the relative humidity is a
monotonically decreasing function of the air temperature which is why the bias in the
air temperature measurement also affects the relative humidity. If the instrument and
the RHT sensors are exposed to radiation, the instrument and RHT sensors heat up. In
consequence, the temperature measurement is overestimated and the RH measurement
underestimated due to the thermal mass of the instrument as well as the sensor and
heat exchange with the ambient air. Therefore, the RHT sensors need protection
against radiation and cloud droplets, which still ensures sufficient ventilation.

The mini-MPCK is supposed to characterize atmospheric turbulence and cloud mi-
crophysical parameters by in-situ measurements being deployed on a helikite (Fig. 2.3).
The helikite is held by the main tether, which is inclined to about 45° in equilibrium.
The main line is rolled up on a winch which is anchored to the ground thereby holding
the helikite in place. There are two possibilities to lift the mini-MPCK by a helikite.
On the one hand, the mini-MPCK can be attached to the helikite directly. On the
other hand, as shown in Fig. 2.3, the mini-MPCK can be attached to the main tether
at the center of mass which minimizes the flow distortion by the helikite. This way, it is
ensured that the mini-MPCK is balanced. Conducting air-borne in-situ measurements
with a helikite results in three important requirements. First, the mini-MPCK must be
sufficiently light so that the helikite still provides enough lift to reach cloud altitudes,
i.e. flight altitudes higher than 900 m above ground. In the case of the 75 m3 helikite,
the static lift at sea level is 35 kg (114 kg for a 250 m3 helikite). Second, to achieve an
accurate measurement of higher-order wind velocity statistics, the mini-MPCK must be
able to measure at least 30 min at an eddy turnover time of ∼ 10 min in the sub-cloud
layer [56]. Much longer measurements of at least 12 h duration are required to capture
the diurnal cycle of the boundary layer and clouds. Hence, the capacity of the battery
must be larger than 22 Ah because the power consumption of the mini-MPCK is 50
W when the CDP2 is constantly running. Note that the maximal power consumption
of the CDP2 can be as high as 120 W temporally. Third, the sensor and control
electronics need a waterproof housing against dust, splash water, and water droplets.

The mini-MPCK runs autonomously and without remote control. In the field, we
want to get instantaneous information on multiple measurement quantities, e.g. the
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mean relative wind speed, flight altitude and location for flight safety to just name a
few. These parameters are helpful to maneuver the helikite according to the chosen
flight strategy. If necessary, we also need to access the mini-MPCK remotely for manual
operation once it is in the air. For this reason, a radio link is needed as indicated by
the wifi symbol in Fig. 2.3.

2.3.2 Instrumentation
As mentioned above, the mini-MPCK is designed primarily for the characterization
of cloud microphysics and atmospheric turbulence. Table 2.1 gives an overview of
the sensors installed in the mini-MPCK. All measured quantities except cloud droplet
diameter dp, droplet number Np, droplet interval time ∆tp, acoustic temperature
Tacoustic, wind vector u, and liquid water content LWC are measured with at least two
different sensors. Here, we give an overview of our choice of scientific sensors. The main
requirements were serial interface to be compatible with the Max-Planck-Cloudkite
Protocol (Sec. 2.3.4), voltage range 3 V to 23 V, a compact design and low weight and
power device.

Wind vector and speed

The three-dimensional wind vector u = vp − v relative to the platform, where vp is
the platform velocity and v the flow, is required by a sonic anemometer (hereafter
referred to as “sonic”). Here, we use the uSonic3 Class A MP manufactured by
Metek GmbH at a sampling rate of 30 Hz. Advantageously, it measures the vertical
velocity in the platform frame of reference directly by 3 independent measurement
paths, hence attaining a high accuracy of the vertical velocity. The accuracy of the
wind measurement decreases with the angle of attack due to shadow effects of the
transducers [109]. We also shortened the sonic in order to save weight and to shrink
the mini-MPCK. In consequence, we had to sacrifice orientation data by the sonic.
Furthermore, the electronics were rearranged so that they occupied less space.

The relative wind speed u = |vp − v| is measured by the Pitot Static System
PSS-8™manufactured by Simtec AG (hereafter called “PSS8”) with a sampling rate
of 100 Hz. Assuming that the platform is always aligned with the predominant wind
direction, which is chosen to be the e1-direction, u =

√
u2

1 + u2
2 + u2

3 ≈ u1 in the
platform frame of reference if u1 ≪ u2,3.The measurement error of the dynamic
pressure due to misalignment between the sensor and the mean wind direction is below
2.5% for angles of attack (or side slip) between ±25°. The relative wind speed is further
measured by a hot-wire anemometer (55P16 miniature wire probe, mini-CTA, Dantec
Dynamics) at a sampling rate of 8 × 103 Hz. The analog signals are converted to digital
signals by a LabJack T7 OEM.
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9 m

~ 4 m

50 m

~ 1000 m

MCO winch ground

ground station

mini-MPCK

helikite

altitude
above 
ground

main tether

 35° - 50° 

Figure 2.3 Overview of operating the mini-MPCK in the field. The winch of the Max
Planck Observatory (MCO) is anchored to the ground, e.g. the deck of a research vessel in
case of remote measurements from a research vessel on the ocean. The helikite (75 m3 or
250 m3) is held by the main tether, which is rolled up by the winch. At maximal pull, the
line is inclined by about 45° as drag and lift of the helikite balance tension of the main tether.
The mini-MPCK carries all scientific instruments, records data inside clouds and cloud-free
atmosphere in the platform frame of reference (e′

i where i ∈ {1, 2, 3}) and is supposed to
orient itself to the mean wind U in the earth frame of reference (ei where i ∈ {1, 2, 3}). The
mini-MPCK is attached to the main tether 50 m below the helikite. The mini-MPCK is
connected to the ground station via two radio links (433 MHz and 2.4 GHz). The sketch is
unrealistically scaled for better visibility. The wifi symbol is copied from Keynote.
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Figure 2.4 The mini - Max Planck CloudKite (mini-MPCK). (A) The mini-MCPK is on
RV Maria S. Merian during the EUREC4A - ATOMIC field campaign in the Caribbean
January to February 2020. Posters showing the members of the ship’s and scientific crew
are blurred to protect privacy. (B) Schematic view of the mini-MPCK consisting of an
Instrument Box, Power box, fins, a centered aluminum tube, a tether moint and the main
line. (C) Front perspective to visualize the sensor arrangement. The mini-MPCK is equipped
with a sonic anemometer (1), a hot-wire anemometer (2), a pitot tube (3), a webcam (5), a
liquid-water-content probe (6), three temperature and relative humidity sensors (8, 9, 11), an
orientation sensor (10) and a UFT probe (12). Temperature and relative humidity sensors are
shielded by the nose (4). The cloud droplet probe (7) is supported by aluminum structures
(7a) and protected by a frame (7b).
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Temperature and Relative Humidity

Here, we use the HMP 7 manufactured by Vaisala to record the air temperature (PT
100) and relative humidity (capacitive measurement) at a sampling frequency of 0.2 Hz.
Supplementary RHT measurement is conducted with AOSONG AM2315 at 1 Hz. The
AOSONG RHT sensors are calibrated as explained in [37]. The air temperature is
further measured by the PSS8 temperature sensor (PT-100) at 100 Hz and by the
BMP388 (Bosch, Adafruit) at 1 Hz. The uSonic3 Class A MP manufactured by Metek
GmbH (“sonic”) is able to measure the air temperature with a sampling frequency
of 30 Hz indirectly via the measurement of the speed of sound in air as explained in
Sec. 2.B.

Cloud Droplets

The Cloud Droplet Probe 2 UAV (CDP2) from Droplet Measurement Technologies
Inc. is used to measure the size and number density of cloud droplets (2 µm to 50 µm
in diameter) with a sampling rate of 2 Hz. The CDP2 also provides the cloud droplet
inter-arrival time of up to 256 particles per sampling interval with a 1 µs temporal
resolution. Due to the low relative wind speed, more than 99% of the totally measured
particles is also recorded as particle-by-particle data (PbP-data) in typical shallow
cumulus conditions with a cloud droplet number concentration of ∼ 100/cm3 and
mean relative wind U ∼ 10 m/s. The CDP2 requires a wind speed between 10 m/s to
250 m/s. The measurement principle of the CDP2 is based on the forward scattering
of a laser beam (wavelength 658 nm) by crossing cloud particles. The scattered light
is projected through a 50/50 beam splitter onto two photodetectors (a qualifier and
a sizer), where the detected intensity is used to size the particles. A disadvantage
is that the CDP2 is not able to measure the velocity of the particles. However, the
CDP2 is lightweight (≈ 1.8 kg including power and data cables) and consumes ≲ 48 W.
Combining the droplet counts with the relative wind speed measurements, we obtain
the droplet density n = Np/(⟨u⟩A∆t), where ⟨u⟩ is the average relative wind speed,
A = 0.24 mm2 is the laser beam cross-section, and ∆t is the sampling interval. It is
possible to calculate the LWC using Np and dp. However, the LWC will most likely
be underestimated since droplets smaller than 2 µm and larger than 50 µm will not be
detected.

Position and Orientation

In addition to the time of measurement, it is essential to determine the platform
position, orientation and rotation. To meet this demand, the mini-MPCK is equipped
with an INS (Inertial Navigation System), which is a combination of a GNSS (Global
Navigation Satellite System) and IMU (Inertial Measurement Unit). Here, we use
an SBG Ellipse-N (manufactured by SBG Systems) containing an accelerometer, a
gyro, a magnetometer, a pressure sensor and a single-band GNSS. Due to its sensor
fusion logic, the SBG Ellipse-N is able to calculate angular velocities in real-time.
The SBG position,velocity, orientation and angular velocities are sampled at 200 Hz.
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Advantageously, it is very light (47 g) and small (46 x 45 x 24 mm). The SBG is the
origin of the platform frame of reference which is why all momentum arms are given
relative to the SBG Ellipse-N.

The SBG Ellipse-N GNSS position and velocity is backed up by the SparkFun
GPS-RTK2 (sampling rate 1 Hz), which is equipped with a u-blox ZED-F9P together
with a u-blox multiband antenna (ANN-MB Multi-band ANN-MB-00-00). Platform
orientation and acceleration are additionally acquired by the BNO055 (Adafruit) at
100 Hz. The barometric altitude is redundantly recorded by the PSS8 (at 100 Hz)and
the BMP388 (at 1 Hz).

2.3.3 Mechanical Design
The mini-Max Planck CloudKite (mini-MPCK) carries the scientific instrumentation
as well as controllers and electronics, which enable the operation. A side view of the
mini-MPCK on RV Maria S. Merian during the EUREC4A field campaign as well as
the instrument design is shown in Fig. 2.4. The mini-MPCK consists of two boxes.
The instrument box houses all scientific sensors except for the backup GNSS (u-blox
ZED-F9P). The scientific sensors are located at the upstream end of the mini-MPCK.
They are placed as close as possible to each other in order to measure the same
eddies on sub-meter scales. The maximal separation between all scientific sensors
is between the sonic and the CDP2, which is ≈ 62 cm relative to the center of the
measurement volume. The nose of the instrument reduces the pressure distortion close
to the scientific sensors. The nose part further protects the RHT sensors against cloud
droplets while ventilation is guaranteed by an array of holes. Furthermore, the nose is
colored white to protect the sensors from radiative heating. The power box houses the
battery, the power distribution electronics and the backup GNSS (u-blox ZED-F9P).
Both boxes are connected by an axial aluminum tube. As the power box, fins (50 cm
in diameter) and tether-mount can be shifted on the aluminum tube, it is possible to
place the tether-mount in the center of mass. The instrument box, power box and
fins are clamped to the aluminum tube. The tether-mount is fixed to the aluminum
tube by grub screws in order to prevent a reduction of the mechanical stability of the
aluminum tube.

To protect the electronics against water and dust, both sides of the power and
instrument box have to be sealed while still remaining accessible, e.g. for mainte-
nance. Therefore, all covers for the foreseen windows are circumferenced by a ridge.
Analogously, all windows are framed by a marine silicon-filled groove. The sealing
is accomplished by pressing the cover onto the marine silicon-filled groove frame by
numerous screws. The feed-throughs for cables are tightened around each cable and,
additionally, glued to the surface of the aluminum plate with silicon glue.

In addition, the instrument should orient itself in the mean wind direction so that
the measured flow is not disturbed by the instrument itself. The alignment can be
achieved by mounting the instrument below the kite-stabilized balloon. This can be
done by using dyneema lines that connect the foreseen loops (eyelets) at the instrument
box with hooks attached to the helikite’s keel. If the flow distortion by the balloon has
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Figure 2.5 Schematic overview of the communication network. On the ground, the weather
station sends meteorological data to the terminal in order to observe the local weather and
electrical field. The terminal routes commands from the GUI computer to the mini-MPCK.
The GUI computer also monitors meteorological data sent by the mini-MPCK via the radio-
link. The mini-MPCK is controlled by the master computer. The master computer not only
records the data acquired by the sensors, it also sends commands to the power distribution
unit in order to provide the sensors with power. The power distribution unit comprises safety
electronics for the battery, too, in order to prevent the battery to be under-charged. Dashed
arrows correspond to a data link and solid arrows to a power connection. Symbols are taken
from Keynote.

to be avoided, the instrument can be mounted on the main line, e.g. 50 m below the
balloon. This approach asks for a combination of two additional features. The first
feature is the tail of the instrument consisting of fins and a prolongation. The fins
provide the aerodynamic force to orient the instrument into the mean wind direction
where the prolongation enhances the momentum arm, hence improving the stabilization.
The second feature is the line mount, which needs to allow for at least 180° of rotational
freedom in the horizontal direction. As the line of the helikite stabilizes at an angle of
≈ 45° against the vertical in windy conditions, the tether-mount has to further allow
for at least ≈ 90° so that the instrument can align itself in the vertical direction, too.
To achieve a stable balance around the horizontal axis, the mini-MPCK is attached to
the main line at its center of mass.

Finally, the mini-MPCK is a mobile and flexible instrument, which should be
practical and easy to operate and to handle. In total, the mini-MPCK is shorter than
4 m and its weight amounts to ≈ 29 kg including the tether-mount. Therefore, it is
short and light enough to be maneuvered in laboratories and on the deck of a research
vessel by a reasonable number of persons. It should be noted that the mini-MPCK is
designed independently of the carrying platform. In principle, if the tether-mount is
exchanged by another mounting system, the mini-MPCK can also be operated from
towers.
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2.3.4 Operating the mini-MPCK remotely
In the field, we need instantaneous information on multiple measurement quantities,
e.g. the mean relative wind speed, flight altitude, location for flight safety and for
realizing the flight strategy. We also need to access the mini-MPCK remotely once it is
in the air in order to operate it manually. For that reason, we implemented a network
that comprises a ground station, the (airborne) mini-MPCK and a radio link as shown
in Figs. 2.3 and 2.5. The central part of the ground station is the so-called terminal
that monitors flight information of the airborne mini-MPCK and the electrical field to
detect thunderstorms as lightning strikes impose a huge danger to operators near the
main tether and to the experimental setup. On MSM89, the terminal also mapped the
line tension of the main tether, which was measured by a tensiometer.

The Max-Planck-CloudKite Protocol (MPCK-P) handles the communication be-
tween the ground station and the mini-MPCK. More precisely, the terminal routes
commands from the GUI computer to the airborne mini-MPCK and multiple mea-
surement quantities from the airborne mini-MPCK to the GUI computer via the
radio link. The radio link is established by radio modules of the ground station and
radio modules on the mini MPCK platform. The primary communication link is
the XBee (Zigbee-Module – 802.15.4 XBee ZB SMT manufactured by DIGI) at a
frequency of 2.4 GHz with an antenna provided by TE Connectivity Laird (RF ANT
2.4GHZ/5.5GHZ WHIP TILT). The backup communication link is established by
the RFM9x LoRa 433 MHz radio module (with an antenna from Antenova, model
SREI038-S9P), which is connected to the power controller in the power box of the
mini-MPCK.

The MPCK-P also handles the serial communication between the master computer
(here DA1100 Series Rugged Embedded Computer manufactured by Cincoze) and the
sensors where the measurement data are recorded as a function of computer time. To
simplify the interface, we decided on serial communication (RS 232, RS 422, and RS
485) whenever possible. In addition, the master computer sends commands to the
power controller (Arduino Feather M0 with 433 MHz LoRa Radio Module) setting
the relais for providing the sensors with power. As most of the scientific sensors are
“power-on”, they boot automatically and send data to the master computer via the
serial interface. Usually, the mini-MPCK is operated in full acquisition mode, i.e. all
connected sensors are switched on by default. In manual mode, each relais can be
switched on or off. The entire system can be rebooted.

The backup radio link provides an essential safety feature as it permanently sends
the GPS position to the terminal via the radio link. Importantly, the backup GPS
(Zed-F9P) is read by the power controller. As the power controller is powered by a 3V
backup battery, it continues to work independently of the master computer or the main
battery. Even if the master computer or main battery fails, the power controller sends
the GPS position to the terminal. A more detailed description of the communication
network and radio links is presented in [37].
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Research Cruise Flight ID UTC time takeoff UTC time landing duration [HH:MM]
RV Maria S. Merian 7 2020-02-05 12:43:00 2020-02-05 20:42:00 07:59
(MSM89) 10 2020-02-09 21:54:55 2020-02-10 18:43:00 20:48

13 2020-02-13 01:05:32 2020-02-13 19:11:15 18:05
15 2020-02-14 23:37:00 2020-02-15 19:06:43 19:29
17 2020-02-16 10:28:00 2020-02-16 18:34:00 08:06
19 2020-02-17 12:41:00 2020-02-17 18:11:00 05:30

RV Meteor 1 2020-01-24 21:38:40 2020-01-24 22:16:36 00:37
(M161) 3 2020-01-27 18:15:36 2020-01-27 20:55:58 02:40

4 2020-01-28 15:17:14 2020-01-28 18:16:30 02:59
5 2020-01-30 13:20:11 2020-01-30 18:38:02 05:17
6 2020-01-31 01:54:00 2020-01-31 06:26:06 04:32
7 2020-02-02 01:20:00 2020-02-02 13:00:00 11:40
8 2020-02-03 17:15:44 2020-02-04 04:47:06 11:31
9 2020-02-05 18:08:26 2020-02-06 13:00:00 18:51

10 2020-02-06 13:24:30 2020-02-06 19:06:32 05:42
Table 2.2 Flight overview for the two mini-MPCKs on RV Maria S. Merian (MSM89) and
RV Meteor (M161) during the EUREC4A field campaign. The duration is the time from
takeoff to landing. On RV Meteor, flight 2 did not record any data due to power failure.
Flights 1 to 6, 8, 9, 11, 12, 14, 16, 18, and 20 on MSM89 were conducted with the Max Planck
CloudKite + (MPCK+). During flight 11 on M161, which is not shown in the overview, the
75 m3 helikite including the mini-MPCK were lost in strong wind gusts. Flight 12 on M161
was conducted with the micro-MPCK, which is not subject of this article.

2.4 Performance assessment during in-situ measure-
ments

The mini-MPCK was deployed on two different platforms during the EUREC4A field
campaign, namely on a 250 m3 helikite on RV Maria S. Merian and on a 75 m3 helikite
on RV Meteor [6, 38]. We briefly explain the working principle of the setup and present
exemplary data records from the mini-MPCK research flights. In total, we performed
eight research flights on RV Meteor (M161) and six on RV Maria S. Merian (MSM89)
as shown in Table 2.2. On M161, the mini-MPCK primarily profiled the atmospheric
boundary layer to characterize its turbulence while the crew on MSM89 prioritized
measurements inside clouds. Hence, different flight strategies were performed.

2.4.1 In-field Operation aboard RV Meteor
In this section, we want to explain how measurements were conducted with the mini-
MPCK on M161. The procedure is slightly different from the flight operation on
MSM89 [37]. Figure 2.6A shows the 75 m3 helikte aboard RV Meteor (M161) during
the EUREC4A field campaign in its “parking” position downstream of the research
vessel. The helikite is held in place by the main tether. The perspective from the deck
of RV Meteor is presented in Fig. 2.6B. The MCO winch controls the length of the
main tether that is guided by a line guidance system. Its dimensions are chosen such
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that the main tether cannot tangle with the A-frame of RV Meteor or ship masts or
antennas even at a tether inclination angle of ≈ 45°.

During the launching and landing process, two more winches are needed because
the mini-MPCK has to be (de-)attached to the main tether. Because of the structural
stiffness, it is neither possible to pull the tether-mount through the line guiding system
nor the mini-MPCK which is connected to the main tether as mentioned above. This
problem is solved by the so-called “handling winch”, which is connected to a support
line being connected to the helikite directly. The handling winch serves to bring the
helikite closer to the deck without pulling on the main tether. The other additional
winch is located at the top bar of the A-frame. This winch pulls the main tether
towards the MCO winch with the help of an additional pully so that the mini-MPCK
can be easily connected (disconnected) to (from) the main tether during the launching
(landing) process on the deck. Notably, the A-Frame is tilted towards the MCO winch
as much as possible in order to generate more space for the process.

When the mini-MPCK is attached to the main tether, i.e. in flight, the flight
altitude is regulated by controlling the length of the main tether with the help of
the MCO winch. For flights 9 and 10 on M161, we used a mooring winch of RV
Meteor instead. The general landing and launching procedure remained the same,
though. Both on RV Meteor and RV Maria S. Merian, we profited from remote sensing
instruments that could give us information on the cloud base and from radiosondes
regarding the air temperature profiles [e.g. 38, 88]. This information was useful for the
choice of flight strategy.

2.4.2 Flight Properties and Platform Motion
Airborne measurements with an aerostat like the helikites are flexible in operation. Not
only are they capable of constant altitude flights, which is necessary when sampling
mainly clouds, but they are also capable of atmospheric profiling. A combination of
the two capabilities results in the staircase altitude profile. This flight strategy is
advantageous for measuring (vertical) fluxes in the atmospheric boundary layer. Since
the fluxes decrease linearly with altitude, two sufficiently long flight segments with
constant altitude in the sub-cloud layer are sufficient to determine the flux profile [56,
110]. Since the cloud base is variable in height, it is safe to choose the highest flight
distance in the sub-cloud layer at least 100 m below the cloud base. As mentioned
earlier, the cloud base was known a priori based on the remote sensing instruments
(radar) during our ship-based measurements during the EUREC4A field campaign.

The primary purpose of the mini-MPCK on RV Meteor was to characterize atmo-
spheric turbulence and measure vertical fluxes in the sub-cloud layer. Clouds were
sampled whenever they were present and the dynamic lift of the helikite was sufficient
to reach altitudes of 800 m above mean sea level (MSL). Therefore, we performed
staircase flights, as exemplified by the barometric altitude record in Fig. 2.7A. The
mean altitude of the constant altitude ⟨zPSS8⟩τ flights is shown by the black dashed
lines, where PSS8 refers to the pitot tube. The standard deviation of barometric
altitude during constant altitude flight segments increases from 5 m for low altitudes
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Figure 2.6 The Helikite launched aboard the RV Meteor during the EUREC4A - ATOMIC
field campaign in the Caribbean January to February 2020. (A) Side view of the 75 m3

Helikite (1) in its parking position at 50 m altitude above MSL. The Helikite is anchored to
the rear of RV Meteor by the main line (2). (B) Perspective from the deck of RV Meteor.
The Helikite (1) is connected to the winch (4) via the main line (2). The line guiding system
(3) prevents the line from entangling in the ship’s structures such as the A-frame or various
cranes. (C) The Helikite (1) lifts the mini-MPCK being attached to the main line (2).
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≈ 200 m above MSL to 25 m for high altitudes of ≈ 1 km above MSL. Cloud events,
i.e., when the number of cloud particles Nd is greater than 30 0.5 s, are represented by
blue dots. The inset of Fig. 2.7A shows a map where the position of the mini-MPCK
is represented by red dots in terms of latitude and longitude. An overview of the flight
time per altitude is shown in Fig. 2.7B. The lowest flight segment is at about 200 m
above MSL, while the highest flight segment is concentrated at about 800 m above MSL,
since this was the maximum altitude we could reach at the beginning of EUREC4A in
low wind conditions. Between flight segments, the mean ascent speeds are in the range
of 0.18 m to 0.28 m, as shown in the left panel of Fig. 2.17. The mean descent rate is
in the range of −0.15 m/s to −0.35 m/s, with the slower descent rates due to the lower
spooling speed of the RV Meteor mooring winch (dashed line) compared to the MCO
winch (dashed line) in the right panel of Fig. 2.17.

The mini-MPCK on RV Maria S. Merian concentrated on cloud microphysical
measurements. Therefore, the flight altitude was adjusted to be inside the cloud layer
based on information gained by remote sensing. As an example, the altitude profile
of flight 19 on RV Maria S. Merian (MSM89) is shown in Fig. 2.7C where the first
clouds were encountered at ∼ 600 m and ∼ 1000 m above MSL. As the flight strategy
was different, the total flight time per altitude accumulates at ∼ 800 m and ∼ 1200 m
above MSL as shown in Fig. 2.7D.

We conducted airborne measurements with a kite-stabilized, helium-filled balloon,
which orients itself to the mean wind direction with the help of a keel. Hence, the
balloon is moving in the turbulent flow. As the mini-MPCK is not mounted on, e.g.,
a fixed mast, it is also prone to platform motions. If the mini-MPCK is mounted on
the pre-tensioned main tether due to the aerodynamic drag, the system corresponds
mechanically to a damped and driven pendulum. If the damping due to the tension
of the main tether is low, the driving force exerted by balloon motions can excite
pendulum motions of the mini-MPCK. The pendulum motion of the mini-MPCK on
RV Meteor is visualized in Fig. 2.8A by the power spectral density of the roll rate
PSD(ψ̇) which corresponds to angular accelerations. Notably, the tension on the main
tether was low due to the limited lift of the 75 m3 helikite which is why the damping
of the pendulum motion was small. We suggest that the pendulum motion of the
mini-MPCK results in an oscillation around its equilibrium position (i.e. the connection
to the tether-mount) at a frequency of ∼ 0.1 Hz due to the aerodynamic drag of the
fins. The tether-mount itself allows for horizontal and vertical rotation as explained
above so that oscillations are generally not dampened. The inset of Fig. 2.8A shows the
correlation of fmax on the mean wind speed U per flight where fmax is the frequency of
the global maximum of PSD(ψ̇) as indicated by dots.

In contrast, the tension of the main tether of the 250 m3 was much higher (< 1 t) on
RV Maria S. Merian. On MSM 89, the mini-MCPCK was attached to the main tether
only on flight 7. For all the other flights on MSM89, the mini-MPCK was mounted
below the balloon on more than 4 attachment points. This is why PSD(ψ̇) for flight 7
also exhibits higher frequency modes as shown in Fig. 2.8B. All other flights (flights 10,
13, 15, 17, 19) decay after their global maximum at roughly 1 Hz. Thus, mounting the
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mini-MPCK below the main balloon not only shifted the global maximum of PSD(ψ̇)
to higher frequencies, it also hindered higher-frequency oscillations, e.g. at ≈ 10 Hz.
The inset of Fig. 2.8B shows no correlation between fmax and the mean wind speed
per flight.

The platform motion also affects the angle of attack α = arcsin
(

u3
u

)
where u =√

u2
1 + u2

2 + u2
3 and angle of sideslip β = arcsin

(
u2/

√
u2

1 + u2
2

)
, where u1,2,3 are given

in the platform frame of reference with the platform North (1), platform East (2) and
platform Down (3). Both α and β are ideally close to 0°. Figure 2.9 shows α and β
for M161 (A, B) and MSM89 (C,D) for each flight of the mini-MPCK. Considering
M161 on RV Meteor, the angle of attack α (Fig. 2.9A) is reasonable for all flights but
flights 1, 5 and 6. Flight 1 was a test flight where the static lift of the helikite was
insufficient in wind-still conditions. As a result, the mini-MPCK could not be lifted
out of the wake of RV Meteor and did not achieve to follow the turbulent flow. In
flight 5, the CDP2 exerted a torque that the clamping mechanism on the rod could
not withstand. As a result, the instrument was turned by ≈ 45°. Similarly, the box
was still not stable against rotation on the rod in flight 6 even without CDP2. From
flight 7 on, we strengthened the clamping mechanism with an additional improvised
clamp. This attempt was successful and was even stable when the CDP2 was flown as
well in flight 9 and 10. The angle of sideslip β (Fig. 2.9) differs significantly from 0°
for each flight. This is due to the twist in the main tether and the limited horizontal
rotational freedom of 270° only. It happened that the mini-MPCK was blocked on
one end of the tether-mount even though we tried to clamp the tether-mount to the
main tether with the largest dynamical range possible. Considering MSM89, α is only
distributed around 0° in the case of flight 7, when the mini-MPCK was attached to the
main line, and flights 10 and 13. The angle of sideslip is non-ideal in any flight despite
that the mini-MPCK is mounted to the helikite. The angle of sideslip β is also affected
by the mounting configuration (Fig. 2.9D) where flight 7 (tether-mount) differs from
the other flights (10-19) where the mini-MPCK is hung from the main spare of the
250 m3 helikite. We attribute these differences to both the mounting configuration and
the different dimensions of the helikite and the mini-MPCK. Due to its larger size,
the helikite reacts to larger scales of the turbulent flow compared to the mini-MPCK.
Hence, the helikite is more inertial in reaction to the main flow and is advected by
much larger scales only. During the advection motions, the mini-MPCK does not
necessarily point into the mean wind.

2.4.3 Comparison to Radiosonde measurements
During the EUREC4A field campaign, radiosondes (Vaisala RS41-SGP) profiled the
atmospheric boundary layer to measure thermodynamical quantities such as air temper-
ature and relative humidity [88]. Likewise, altitude profiles of such thermodynamical
quantities can be obtained from mini-MPCK measurements as it is also equipped
with meteorological sensors to measure the air temperature and relative humidity as
a function of the flight altitude, as mentioned above. Although the RHT sensors are
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Figure 2.7 Flight strategies visualized by time series of barometric altitudes of the mini-
MPCK (A) for flight 10 during M161 on RV Meteor and (C) flight 19 during MSM89 on
RV Maria S. Merian. The barometric altitude is recorded as a function of time by the PSS8
(zPSS8, grey line). The measurement location in terms of latitude and longitude is upstream
of Barbados as shown by the red dots in the inset map of (A) and (C). Constant altitude legs
with mean altitude ⟨zPSS8⟩τ are highlighted by the black dashed line in (A) where τ is the
duration of each flight leg. The mini-MPCK traversed several clouds as shown by the number
counts of cloud droplets measured by the CDP2 exceeding 30 counts per 0.5 s. (B) and (D)
present the overview of total flight time per altitude for M161 on RV Meteor and MSM89 on
RV Maria S. Merian, respectively. The bin size is chosen to be 50 m. “basics” comprise the
Metek, PSS8, HMP7, AM2315, BMP388, SBG, BNO055 and ZED-F9P. HW is the hot-wire.
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Figure 2.8 Spectral properties of the platform motion are captured by the power spectral
density (PSD) of platform roll rate ψ̇ in frequency space for all flights on RV Meteor (A) and
on RV Maria S. Merian (B). The PSD(ψ̇) is block-averaged for time windows of 60 s. fmax

corresponds to the location of the global maximum of PSD(ψ̇) being illustrated by the dots.
The inset shows the frequency of maximal PSD(ψ̇) against the global mean velocity U .
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Figure 2.9 Angle of attack α and angle of sideslip β measured by the Metek sonic anemometer
for the mini-MPCK on RV Meteor (A, B) and the mini-MPCK on RV Maria S. Merian (C, D).
Ideally, i.e. in case of alignment to the mean wind direction, both PDF(α) and PDF(β) are
distributed around 0 m/s. The α-axis is clipped from −20° to 60° and the β-axis is clipped
from −60° to 20° to optimize visibility.
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mounted in plastic feed throughs due to the lower thermal conductivity compared to
the aluminum housing, the thermal mass of the instrument biases the air temperature
and relative humidity measurement. While the relative humidity is a monotonic func-
tion of air temperature, the absolute humidity is not. Hence, the absolute humidity
measurement is accurate provided that the ventilation of the RHT sensors is sufficient
and radiative errors are negligible and no droplets hit the RHT sensors. Furthermore,
the acoustic temperature measurement is the least affected temperature measurement
of the mini-MPCK. Neglecting radiative errors, the air temperature is derived from first
principles via the speed of sound of air which can be converted into air temperature
for a given absolute humidity [111] as explained in Sec. 2.B.

Here, we use altitude profiles of the air temperature and relative humidity measured
by the mini-MPCK to compare with three radiosonde measurements during flight
10 on RV Meteor (M161) as shown in Fig. 2.10A. On average, the mini-MPCK air
temperature is 0.06 K higher than the radiosonde (compare Fig. 2.10B). The accuracy of
the radiosonde is 0.3 K in soundings (below 16 km altitude above MSL) and the accuracy
of the AM2315 is between 0.1 K to 1 K. Thus, the altitude profile of the mini-MPCK
and all three radiosondes agrees well in the limit of accuracy of the measurements.
Between 50 m to 700 m altitude above MSL, the vertical air temperature gradient
measured by the mini-MPCK is −0.95 K per 100 m and the air temperature gradient
measured by the radiosondes is −0.98 K per 100 m. The vertical gradient of the air
temperature is close to the adiabatic lapse-rate of air temperature, which suggests a
well-mixed boundary layer. The reverse conversion is shown in Figs. 2.10 where the
speed of sound c is obtained from radiosonde measurements. As the mini-MPCK air
temperature was slightly higher than the radiosonde air temperature, the opposite
is true for the speed of sound. At last, the comparison of the relative humidity is
shown in Figs. 2.10E and F. On average, the mini-MPCK and radiosonde relative
humidity profiles deviate by 0.04% (absolute). However, the longer flight duration
enables the mini-MPCK to measure more variability in relative humidity as illustrated
by altitudes from 750 m to 900 m where two radiosondes measure a 10% change and the
mini-MPCK 20%-30% change in relative humidity. This significant change in relative
humidity is coincidental with a drop in air temperature. This is usually a sign of
entrainment of cold and dry air from the free troposphere. Further analysis is needed
to explore this event. In summary, the mini-MPCK compares statistically very well
with measurements from radiosondes for flight 10 on M161.

2.4.4 Flow Velocity Measurements and Turbulence character-
ization

The primary measurement goal of the mini-MPCK is the characterization of atmospheric
turbulence. For this reason, we first want to validate the velocity measurement itself.
To quantify the systematic error of the flow velocity measurement due to the boundary
of the instrument box, we performed measurements at different mean velocities 1 m/s to
11.5 m/s and locations, i.e. measurement volumes of different sensors, in the open-end
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Figure 2.10 Comparison of the T , c and RH measurements with the help of the mini-MPCK
to three radiosondes (radiosonde 1: 14:44 UTC, radiosonde 2: 16:19 UTC, radiosonde 3:
18:44 UTC) that were launched from RV Meteor during the duration of flight 10 of M161 [88].
The altitude profiles are shown in panels A, C and E whereas the PDFs of the differences
∆T (B), ∆c (D) and ∆RH (F) quantify the deviation of mini-MPCK barometric altitude
profiles from the ones measured by radiosondes 1 to 3. The large discrepancies in the relative
humidity are due to cloud events and entrainment of dry air.
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Prandtl wind tunnel as shown in Fig. 2.18. We used a 1:4 model of the mini-MPCK
and measured the mean velocities with a pre-calibrated off-the-shelve hot-wire (Testo
405i with 0.01 m/s resolution and 0.1 m/s accuracy). which was hand-held. The ratio
of the mean wind speed measured at a specific location Um and the mean speed in the
wind tunnel U∞ is shown in Fig. 2.11A. The error bars represent the variability during
the measurement period. U∞ is determined 0.5 m upstream of the model sonic. As the
ratio is close to 1, the shape of the instrument only slightly distorts the pressure field
affecting the velocity measurement. As it was difficult to keep the hot-wire calm and
in an optimal orientation for high U∞, these ratios are most likely overestimated. As
no significant trend is recognizable, we obtained the correction factors for the wind
velocity measurement by averaging all ratios but the one at the highest U∞.

The wind speed is measured with the PSS8 static pitot tube and with the Metek
sonic anemometer. The comparison of the PSS8 wind speed measurement to the Metek
wind speed measurement is shown in Fig. 2.11C and D for the mini-MPCK on RV Meteor
(M161) and RV Maria S. Merian (MSM89). The error bars are given by one standard
deviation. As mentioned before, the instrument box during flight 5 and 6 was rotated
by 45° around the aluminum tube. Due to the sub-optimal orientation, it cannot be
expected that the PSS8 and Metek show a good agreement. For all other flights, linear
fits yield on average a slope of 0.988±0.001 with an interception of 0.241 m/s±0.694 m/s
(average Pearson correlation coefficient 0.927 ± 0.034). During MSM89, the PSS8 wind
speed signal exhibited unphysical oscillations with an amplitude of 30 m/s in some cases.
Hence, all wind measurements were excluded where |uMetek − uPSS8| > 3σuMetek with
the standard deviation of the Metek wind speed σuMetek . Linear fits of the remaining
flights yield an average slope of 1.013 ± 0.001 and 0.181 ± 0.828 (average Pearson
correlation coefficient 0.845 ± 0.117). Taking into account the accuracy of the Metek
(1.5%, e.g. 0.15 m/s at mean wind speed of 10 m/s) and the PSS8 (0.15 m/s at 0 °C
angle of attack), the mini-MPCK is able to measure the wind speed accurately in the
field.

During EUREC4A, the PSS8 firmware runs a running average on the wind speed
measurements. The default averaging window length was set to 8 points, which
corresponds to 80 ms at a sampling rate of 100 Hz. Unfortunately, we did not switch
the running average off. Mathematically, the running average is a convolution of
a boxcar with the wind speed time record, which corresponds to a product of the
Fourier-transformed wind speed measurement and boxcar (sinc-function) in Fourier
space. Hence, the averaging affects the power spectrum as shown by the blue curve
in Fig. 2.11B. The power spectra are obtained by the Welch method for a window
of 30 min [112]. The power spectrum of the original PSS8 wind speed time record is
distorted in the inertial range for frequencies larger than 1 Hz. The peak around 0.2 Hz
is presumably due to the platform motion of the mini-MPCK, which has been explained
in Sec. 2.4.2. The running average can be principally reverted in Fourier space, which
causes singularities due to the sinc-devision. In real space, the running average can
be recursively reverted as explained in Sec. 2.A. The resulting power spectral density
follows the -5/3-scaling, which is predicted by the Kolmogorov phenomenology from
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Figure 2.11 Windtunnel measurements (A) and comparison of relative wind speed measure-
ments (C, D) by the sonic anemometer and the pitot tube. (A) The average wind speed was
measured by a calibrated hotwire (Testo 405i). The mean wind speed in the wind tunnel
U∞ was measured in the center of its cross section. Then, the wind speed Um measured by
the mini-MPCK is determined at all relevant measurement locations. At the highest mean
wind speed, the measurement is inaccurate as it was not possible to hold the sensor calmly
in place. (B) Power spectral density of original and recovered PSS8 wind speed measurement.
The expected K41 scaling f−5/3 is shown by the gray dotted line. The lower plots show the
measurements of the Metek sonic anemometer and the PSS8 pitot tube of mean wind speed
all flights of M161 on RV Meteor (C) and MSM89 on RV Maria S. Merian (D) during the
EUREC4A field campaign.

1941 [44]. Although the recursive approach is numerically more stable compared to
Fourier space, there are still peaks at harmonics of 12.5 Hz. Hence, the PSS8 wind
speed measurement has to be filtered at 12 Hz at most.

We use the filtered PSS8 wind speed time record to turbulence characteristics such
as the energy dissipation rate, from which we infer the most relevant turbulence length
scales, e.g. the Kolmogorov length scale ηK or the integral length scale L11. Invoking
K41, the mean energy dissipation rate is estimated by a fit in the inertial range of the
longitudinal second-order structure function DLL(r):

DLL(r) =
〈
(u1(x+ r) − u1(x))2

〉
, (2.1)

where longitudinal refers to the mean wind direction U/|U |. Longitudinal second-order
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Figure 2.12 Longitudinal second-order structure functions DLL(r) measured by the PSS8
static pitot tube on mini-MPCK for flight 10 on RV Meteor (M161) during EUREC4A.
(A) DLL(r) are computed for averaging windows of 30 min. The wind speed is low-pass
filtered with a cutoff at 12 Hz and high-pass filtered with a cutoff at 0.5 Hz using a 4th-order
butterworth filter. The gray dashed line sketches the expected r-scaling from Kolmogorov’s
refined phenomenology from 1962. The gray shaded area is the fit range for estimating the
mean energy dissipation rate. (B) Local scaling exponents ζ2(r) of DLL(r) for r ranging from
0 m to 8 m. The blue shaded region is the 10% environment or the K62-scaling exponent
ζ2 = 2/3+1/36 and the gray shaded region represents the fit-range. The K41-scaling exponent
is ζ2 = 2/3.

structure functions DLL(r) measured by the PSS8 static pitot tube on mini-MPCK for
flight 10 on RV Meteor (M161) during EUREC4A is shown in Fig. 2.12A for averaging
windows of 30 min. The wind speed is low-pass filtered with a cutoff at 12 Hz and
high-pass filtered with a cutoff at 0.5 Hz using a 4th-order Butterworth filter due to the
platform motion and recovery, respectively. The gray dashed line sketches the expected
r-scaling from Kolmogorov’s refined phenomenology from 1962 [49]. The fit range
(r ∈ [2 m, 6 m]) is sketched by the gray-shaded region. Figure 2.12B shows the local
scaling exponent of ζ2(r) = d logDLL(r)/d log r where the fit range is shown by the
gray-shaded region. The 10% environment is shown by the blue-shaded region. Both
K41 and K62 scaling exponents are drawn by the dashed and dotted lines, respectively.
Averaged over the fit range and for all time windows, the mean scaling exponent is
0.74 ± 0.06 (mean ± standard deviation). Neglecting all time windows with a larger
deviation than 10% from the K62-prediction, the mean scaling exponent is 0.71 ± 0.03.
Given that the PSS8 wind speed time record is even not corrected for platform motion,
the measured mean scaling exponents are very close to the K62 prediction (2/3 + 1/36).
Thus, our approach is able to reproduce the K62 scaling for estimating the mean energy
dissipation rate.

The altitude profile of the mean energy dissipation rates ⟨ϵI2⟩T , which are obtained
from DLL(r) based on 30 min time windows, is shown in Fig. 2.13A. The error bars
are given by the random error due to the finite averaging window [113]. Energy
dissipation rates are drawn in gray if the mean scaling exponent does not deviate by
more than 10% from the K62 prediction. Otherwise, the mean energy dissipation rate
is shown in red, which occurs in ∼ 37% of all time windows. In the altitude range of
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Figure 2.13 (A) Mean energy dissipation rate altitude profile. The mean energy dissipation
rate are estimated from DLL(r) obtained for time windows of 30 min. (B) Longitudinal
integral length scale L11 altitude profile where L11 is obtained via Eq. (1.29).

250 m to 1000 m above MSL, ⟨ϵI2⟩T does not vary significantly suggesting a well-mixed
boundary layer. Using the mean energy dissipation rates ⟨ϵI2⟩T and the variance σ2

u1

of the low-pass filtered PSS8 wind speed, the integral length scale can be estimated by
L11 = Cϵσ

3
u1/⟨ϵI2⟩T . The altitude profile of the estimated longitudinal length scale L11

is shown in Fig. 2.13B where the error bars are given by Gaussian error propagation
considering the error in ⟨ϵI2⟩T only and Cϵ = 0.7 as in grid turbulence [47]. In the
well-mixed region of the boundary layer, the integral length scale is 300 m to 400 m.
There are two outliers with L11 ≈ 1300 m and L11 ≈ 1700 m which is probably due to a
dry and cold air entrainment event of the troposphere (compare also Figs. 2.10A and E
at zPSS8 ∼ 650 m and zPSS8 ∼ 900 m, respectively). Both ⟨ϵI2⟩T and L11 are reasonable
as L11 is half the energy injection scale in isotropic turbulence [5]. Assuming that the
energy is injected by large convective rolls, the energy injection scale is approximately
given by the depth of the sub-cloud layer, which is ∼ 800 m above MSL for flight 10
on M161.

Ideally, in order to measure in the direction of the longitudinal velocity, the mini-
MPCK should always point in the direction of the mean velocity field while sampling
the turbulent flow. In practice, the mini-MPCK reacts to scales of the velocity field that
are comparable to the size of the components of the mini-MPCK, e.g. the fins. Hence,
the mini-MPCK rather points in the direction of a low-pass filtered velocity field. It is
expected that the mini-MPCK performs relatively stronger adjustment motions in high
turbulence intensities. To demonstrate the capability of the mini-MPCK to characterize
turbulence, we model the mini-MPCK as a virtual probe that points into the direction
of a low-pass filtered, three-dimensional velocity field. This is realized by re-projecting
the velocity time record of each virtual probe on the low-pass filtered velocity field.
Thereby, this approach assumes a vanishing instantaneous directional adjustment
time neglecting vortex shedding and its moment of inertia. It further neglects lateral
adjustment motions of the helikite causing an overestimation of the variance ⟨u′2

1 ⟩ of
15% − 30% [114]. In consequence, the virtual probes act like perfect weather vanes and
are subsequently denoted by “weather vane”-like velocity measurement. We chose a
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Figure 2.14 Ratio of the mean wind speed U (A), root mean square velocity fluctuations
σu′

1
(B), second-order structure functions D11(r) (C) and the mean energy dissipation rate

ϵI2 (D) obtained from measurements by “weather vane”-like virtual probes relative to a
reference measurement by uniformly moving virtual probe. The reference measurement is
denoted by “ref”. DNS of homogeneous isotropic turbulence are run for turbulence intensities
I = 0.1 − 0.8 and seven different filter scales, which are expressed in terms of the longitudinal
length scale L11 of the flow. Data points are given by ensemble averages and the error bars
are given by the standard deviation of the ensemble.

range of spectral cutoffs to assess the importance of the ratio between the integral scale
and the scale of eddies to which the mini-MPCK reacts. The DNS of homogeneous
isotropic turbulence is seeded with 1000 virtual probes sampling the three-dimensional
velocity field [115]. To capture the effect of the turbulence intensity, each virtual probe
samples the flow with a given mean speed but randomly chosen direction where the
root mean square velocity fluctuation σu′ of the DNS is fixed. Velocity time-records by
virtual probes with constant mean velocity serve as the reference measurement.

Both the reference as well as the “weather vane”-like measurements are analyzed.
The reference values of the mean wind speed U ref, root mean square velocity fluctuations
σref

u′
1

and second-order longitudinal structure function Dref
11 (r) are obtained from the

reference measurement of each virtual probe according to the analysis procedure in
[113]. The energy injection rate Ė serves as a reference for the mean energy dissipation
rate estimate ϵI2. Similarly, the mean wind speed U , root mean square velocity
fluctuations σu′

1
and second-order longitudinal structure function D11(r) are obtained
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from the “weather vane”-like measurement of each virtual probe according to the
analysis procedure in [113]. The ratio of “weather vane”-like measurements to reference
measurements captures the effect of adjustment motions where a value of 1 implies a
vanishing impact of adjustment motions.

Figure 2.14 shows the ensemble-averaged ratios of the measured mean velocity
U/U ref (Fig. 2.14A), the root mean square velocity fluctuations σu′

1
/σref

u′
1

(Fig. 2.14B),
the second-order structure function D11(r)/Dref

11 (r) for typical atmospheric turbulence
intensity I = 10% (Fig. 2.14C) and the mean energy dissipation rate obtained from
the longitudinal second-order structure function ϵI2/Ė (Fig. 2.14D). Error bars are
given by the ensemble standard deviation. L11 is estimated from the DNS directly
according to L11 = πE11(0)/(2σ2

u′
1
) [5]. Assuming typical the integral length scales

of atmospheric flows ∼ 200 m and given the length of the mini-MPCK ∼ 4 m, the
mini-MPCK corresponds to the pink line (0.02L11). Taking into account that Taylor’s
frozen field hypothesis is only valid for I ≤ 25%, it is expected that each considered
quantity (U , σu′

1
, D11(r), ϵI2) deviates significantly from the reference for I = 25%.

However, at smaller turbulence intensities I ≤ 25%, the effect of the adjustment motion
on the considered quantities is small for all filter scales. In the case of 0.02L11, D11(r)
is overestimated for small scales and under-estimated for large scales. In consequence,
the inertial range scaling exponent will be lower than the K62 prediction. Finally, we
conclude the mini-MPCK is well suited for characterizing atmospheric turbulence.

2.5 Discussions
In this section, we review the in-field performance of the mini-MPCK during EUREC4A.
We especially shed light on the measurement of the wind velocity, fluxes and RHT as well
as the tether-mount, operational inconveniences and structural stability. Furthermore,
we report on the revised mini-MPCK and implied improvements.

Wind measurements in particle-laden turbulent flows, such as inside clouds, are
difficult due to the presence of cloud particles. For example, impinging cloud droplets
cause spikes in the hot-wire wind fluctuation measurement [116] due to droplet evap-
oration. In addition, cloud droplets, especially rain droplets, can clog the holes of
the Pitot tube and impede the measurement of static pressure and total pressure.
In contrast, wind measurements using sonic anemometry, which relies on measuring
the speed of sound in (dry) air, are not significantly affected by cloud droplets [117].
Considering marine, shallow cumulus clouds, the liquid water content is ∼ 0.1 g/m3.
The sonic measurement volume is about 1 × 10−3 m3, so the volume fraction of water
to the measurement volume is ∼ 10−7. Despite the fact that the speed of sound in
liquid water is about 4c, where c is the speed of sound in dry air, it is plausible that
the influence of liquid water on the sound wind measurements is small in the case of
marine shallow cumuli. This consideration also shows the importance of redundancy
through different measurement principles.

Platform motions not only pose a challenge for measuring the wind speed but also
for measuring the vertical velocity in the Earth frame of reference, which is a critical
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quantity to measure vertical fluxes. The mini-MPCK is equipped with a sonic that
measures the vertical velocity by three independent, vertically oriented measurement
paths directly if the measurement paths are perfectly aligned with the vertical direction
in the Earth frame of reference. Therefore, it is not possible to determine vertical
fluxes from the mini-MPCK data records during EUREC4A without proper platform
motion and orientation corrections. Up to now, the data assimilation and sensor fusion
is not enough progressed to deal with the drift in the platform yaw angle and the noise
in the Euler angle rates.

To accurately characterizing atmospheric turbulence, the mini-MPCK should point
always in the mean wind direction. This is the ideal alignment reducing the flow
distortion by the instrument itself and ensuring to measure the longitudinal direction
of the flow. However, on RV Meteor, the mean angle of sideslip was significantly
deviating from 0° for most flights of the mini-MPCK. This is due to a combination
of a twisted main tether and limited rotational freedom of 270° in the horizontal
plane, which blocked the mini-MPCK in aligning itself with the horizontal mean
flow direction. Hence, the tether-mount proved to be not ideal. On RV Maria S.
Merian, the mini-MPCK was mounted below the balloon. Despite that the balloon is
orienting itself to the mean flow direction, the mini-MPCK is still oscillating which
is why the angle of sideslip is non-zero in the platform frame of reference. During
a land-based campaign in Finland, which took place in September 2022 in Pallas, a
similar instrument (winddart) was hung from the main tether of the 250 m3 helikite
by a 10 m long line. This configuration was very stable without oscillatory motions
because the coupling of balloon motions to the platform is weaker compared to a
tether-mount. In the future, on land-based campaigns, the mini-MPCK will be hung
from the main tether, too. Unfortunately, this approach was not operational on the
ocean because of the vertical inclination of the main tether and instrument landing
on the deck. However, the mini-MPCK is able to characterize atmospheric turbulence
even without the corrections for platform motions as explained in Sec. 2.4.4.

Radiation, salt contamination and impinging water droplets are a challenge for
atmospheric in-situ RHT measurements. Heat change due to radiative effects can
be minimized by the use of (white) shields, which is done by the white nose of the
mini-MPCK. However, good ventilation of the RHT sensors is critical for point-like
measurements of air temperature and relative humidity. Therefore, ventilation holes
are drilled in the enclosing white nose shield. Impinging droplets can be avoided by
arranging the ventilation holes relative to the sensors such that the sensors are most
likely not hit by inertial particles. Furthermore, it should be avoided to put a sensor in
the dead-water region of the flow through nose part. Here, we bypass the problem of
ventilation by using the acoustic temperature to obtain the air temperature and relative
humidity (Secs. 2.4.3 and 2.B). This approach also minimizes the effect of the thermal
mass of the housing and heat conduction by the sensor mounts in the nose part of the
mini-MPCK. To cope with salt contamination of wire-based temperature or capacitive
humidity measurements, the sensors should be frequently rinsed with distilled water.
However, the data would not be usable until the sensor dried again. To our knowledge,
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there is no way to fully avoid salt contamination in marine environments.
During the EUREC44A field campaign, the mini-MPCK was not sufficiently conve-

nient to operate. As an example, the instrument box had to be fully opened at one side
at least to maintain, e.g., the hot-wire. In addition to opening the window, the data
acquisition board (labjack) had to be unscrewed so that the mini-CTA is accessible.
Likewise, for every battery exchange, the power box had to be fully opened. For these
reasons, the instrument box shall be modulized so that accessing instruments is easier.
In addition, the side windows are now closed by a clamp mechanism that is much faster
and easier to open or close. Furthermore, in order to simplify the re-charging process,
adequate power plugs are planned to be outside of the power box so that charging is
possible without opening the power box.

In addition to the operational difficulties, the instrument box was not stable against
axial rotations around the aluminum tube. Furthermore, high-frequency oscillations
at frequencies higher than 1 Hz are visible in PSD(ψ̇) as shown in Fig. 2.8. These
oscillations might partially be explained by vortex shedding. Assuming a Strouhal
number Sr = fL/u and choosing u ∼ 10 m/s (mean velocity), L ∼ 24 cm (edge length
of instrument box), the frequency of vortex shedding is ∼ 8 Hz. Another reason for
high-frequency oscillations is the insufficient stiffness of the aluminum tube.

We addressed and solved the problems during EUREC4A by revising the mini-
MPCK, which results in the so-called mini-MPCK 2.0 (Fig. 2.15). While the concept
of two balanced boxes (i.e. instrument and power box) was adopted from the prototype
mini-MPCK, the mini-MPCK2.0 has a more aerodynamic oval shape in order to reduce
the pressure distortion at the nose. The vortex shedding is reduced by an aerodynamic
shield covering the box suspension between the instrument and power box and a
cone-shaped tail downstream of the power box. To improve the velocity data, the
stiffness of the aluminum box is increased by a specially designed suspension and a
foreseen mount for the hot-wire. In the future, the mini-MPCK 2.0 is equipped with
more sensors. First, the LWC-300 probe from Droplet Measurement Technologies Inc.
provides a direct measurement of the LWC in the range of 0 g/m3 to 3 g/m3. The
LWC-300 probe consists of a hot cylinder with a constant overheat temperature that
evaporates impinging cloud particles. Furthermore, the absolute humidity will be
optically measured by Licor 7500-DS. The Licor 7500-DS will be mounted next to the
sonic so that moisture fluxes can be properly measured. We also consider developing a
lightweight chilled mirror to measure the dew point, hence relative humidity, accurately
also in cloudy conditions.

The mini-MPCK is able to measure atmospheric turbulence even without complex
platform motion corrections if the most dominant modes of the platform motion are high-
pass filtered. Cloud microphysical measurements and atmospheric state measurements
are successfully measured by the mini-MPCK. Vertical flux measurements are currently
not possible as the wind vector needs to be corrected for platform motion. Therefore,
either better orientation sensors and adequate conversion to Earth frame of reference or
a different mounting strategy is needed. Due to its low power consumption, we consider
the mini-MPCK an ideal scientific instrument to conduct balloon-borne measurements
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Figure 2.15 The revised mini-MPCK 2.0 with an aerodynamic cover shielding the suspension
between the instrument box and power box and a cone-shaped tail to reduce vortex shedding.

across the diurnal cycle. Despite that, even more requirements will be fulfilled by the
mini-MPCK 2.0., the mini-MPCK is an easy-to-operate and flexible instrument that
can be operated not only on land-based towers but also balloon-borne in very remote
regions of the oceans.

Appendix 2.A Revert Running Average
The PSS8 system comprises a pitot tube, the so-called air data computer and a PT100
temperature sensor. The pitot tube records the static pressure ps and total pressure pt

in time. The PT100 temperature sensor measures the air temperature T . The air data
computer performs a running average over 8 data points by default so that

pt(ti+1) = 1
N

i∑
j=i−N

pt(tj) . (2.2)

The running averages for T and ps follow by substituting T and ps in Eq. (2.2). Given
the sampling frequency of 100 Hz, the running average of pt corresponds to a convolution
of pt with a boxcar of a time period of 80 ms. In consequence, the Fourier transform of
the boxcar, the sinc funcion, also appears in the power spectral density. However, the
running average of N data points can be reverted for all but the first N data points of
the pt-time series:

p̃t(ti−N) = Npt(ti+1) −
N∑

j=i−N+1
pt(tj) . (2.3)

60



2.B Air temperature from speed of sound

Assuming that the variability in T and ps is negligible on time scales below 100 ms,
the wind speed can be obtained using the Bernoulli equation

u =
√

2pd

ρ
, (2.4)

where pd = p̃t − ps and ρ is the air density. Invoking the ideal gas law for dry air and
using the PSS8 air temperature T and static pressure ps, the density of dry air is given
by:

ρ = M

R

ps

T
, (2.5)

whereR = 8.314 462 618 J/(K mol) is the universal gas constant andM = 28.965 × 10−3 kg/mol
is the molar mass of dry air.

Appendix 2.B Air temperature from speed of sound
In principle, the sonic measures the run time of sound pulses between at least two
transducers. From the distance between transducers and the run time, the wind
component parallel to the measurement path and the speed of sound can be obtained
[118]. The speed of sound c can be converted into air temperature [111]:

Ts = c2

γdRd
, (2.6)

where γd = Cpd/Cvd is the ratio of specific heat at constant pressure Cpd to the specific
heat at constant volume Cvd for dry air and Rd is the gas constant for dry air. Here,
the sonic temperature Ts is obtained under the assumption of dry air. In reality, both
R and γ depend on humidity. Taking into account humidity, the air temperature of
moist air as a function of Ts is given by [111]:

T = Ts
ξ(1 + χw)[1 + (Cvw/Cvd)χw]
(ξ + χw)[1 + (Cpw/Cpd)χw] , (2.7)

where χw is the water mixing ratio, ξ = Mw/Md = 0.622 the molar mass ratio of water
vapor to dry air. Technically, Zhou et al. refer to closed-path eddy-covariance systems.
Here, the water mixing ratio is obtained from the AOSONG AM2315 air temperature
and relative humidity measurement. To calculate χw = ρw/ρd, the water vapor density
is obtained by ρw = fρsat

w RH where f = 1.0016 + 3.15 × 10−6 hPa/ps − 0.074 hPa/ps is
the water enhancement factor [119] and ρsat

w is the density of saturated water vapor [120,
Eq. (3)]. The dry air density is obtained from Eq. (2.5). Additionally, the PSS8 static
pressure is low-pass filtered at 0.05 Hz in order to suppress static pressure variations
due to platform motion. At last, we use χw and T , Eq. (2.7), to calculate the relative
humidity of ambient air.
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Appendix 2.C Wind tunnel experiment
We performed wind tunnel measurements with a 1:4 model of the mini-MPCK in
order to determine deviations of the wind speed at different sensors from the true
mean wind speed U∞. Therefore, we mounted the model mini-MPCK on a frame of
aluminum profiles such that the model is central with respect to the cross-section of
the wind tunnel. Thereby, we minimize wall effects by the wind tunnel. Similar to the
mini-MPCK on M161, the model is mounted to a rod but with a locked tether-mount.
This means that the model did not align itself with the mean flow which is why the
model needs to be manually aligned to the mean flow direction prior to the wind speed
measurement.

Appendix 2.D The micro-Max Planck Cloudkite
After the loss of the mini-MPCK on M161 during flight 11 due to strong winds, we
built a minimal instrument package from spare parts, the so-called micro-Max Planck
Cloudkite (micro-MPCK). The micro-MPCK is a scientific instrument for measuring
atmospheric turbulence. The micro-MPCK and the experimental setup aboard RV
Meteor are shown in Fig. 2.16. The micro-MPCK is equipped with a Pitot Static
System PSS-8™ manufactured by Simtec AG (“PSS8”) to sample the relative wind
speed u1(t) and air temperature T at a frequency of 100 Hz. During the EUREC4A field
campaign, the micro-MPCK was deployed by a 34 m3 helikite with a static lift of 14 kg
during M161 Flight 12 on RV Meteor (Fig. 2.16). The micro-MPCK was strapped to
the keel of the helikite, as shown in Fig. 2.16A.

During flight 12, the main tether was the meteor line (manufactured by Rudolf
Seldis GmbH & Co. KG) with a diameter of 14 mm and a weight of 1.1 kg per 10 m
line. Since the total length of this line was only ∼ 400 m, the maximal achievable
flight altitude was limited to ∼ 150 m above MSL due to the line inclination ≳ 45°
in windy conditions. The launching and landing procedure of the micro-MPCK was
similar to the mini-MPCK on RV Meteor (see Sec. 2.3.4). The micro-MPCK was
deployed by the 34 m3 helikite being anchored to the ship directly to perform long-term
measurements in the boundary layer (Fig. 2.16B). This data can be compared to other
wind measurements aboard RV Meteor although it is not considered in the scope of
this thesis.
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Figure 2.16 The micro-MPCK (1) aboard RV Meteor during EUREC4A field campaign.
A: The micro-MPCK is equipped with a PSS8 pitot tube (2), a u-blox multiband antenna
(3) and an AM2315 RHT sensor (4). The GPS antenna (3) is glued to the outside of the
micro-MPCK Peli case in order to receive a better GPS signal. The micro-MPCK is strapped
to the keel (6) below the main spare (5) of a 34 m3 helikite (10). The original picture is
blurred where a person is partially shown in order to guarantee privacy. B: The main tether
(9) anchors the helikite to RV Meteor where the main tether is guided by the line guiding
system (8). The line guiding system is located between the side arms of the A-frame (7).
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Appendix 2.E Supplementary Figures

Figure 2.17 Barometric altitude difference as a function of time for the mini-MPCK on RV
Meteor (M161) for all ascents (left panel) and for all descents (right panel). The barometric
altitude is recorded with the PSS8. The time is given relative to the begin time tb of each
ascent or descent. Similarly, the altitude time record z(t) is given relative to the barometric
altitude z(tb) at the begin of each ascent or descent. The average ascent and descent rates
are obtained by linearly fitting the altitude time series. The dashed lines in both panels
comprise all flights (flight ID 1 - 8) that where conducted with the winch of the Mobile
Cloud Observatory (MCO) whereas the dash-dotted lines comprise the flights 9 and 10 being
conducted from a mooring winch of RV Meteor.

64



2.E Supplementary Figures

Figure 2.18 The 1:4 mini-MPCK model in mounted to a frame off aluminum profiles inside
the Prandtl tunnel. In the background, the fan is visible. The mini-MPCK is close to the
outlet and points to the mean wind direction.
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The Max-Planck-Cloudkites

Appendix 2.F Supplementary Tables

Symbol Definition Unit
a GPS altitude above MSL m
dp cloud droplet diameter m
Np cloud droplet number count #

∆tp cloud droplet inter-arrival time s
u relative wind vector m/s
u relative wind speed m/s
u′ relative wind speed fluctuations m/s
T temperature K

Tacoustic acoustic temperature K
RH relative humidity %
p pressure hPa
ψ roll °
θ pitch °
ϕ yaw °

lat GPS latitude °
lon GPS longitude GPS °
vp platform velocity m/s
v wind velocity m/s

LWC liquid water content g/m3

Table 2.3 Nomenclature of quantities that are used in the scope of this work.
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Chapter 3

Estimating the turbulent kinetic
energy dissipation rate from
one-dimensional velocity
measurements in time

In general, the energy dissipation rate is a central turbulence characteristics. In the
scope of this work, the energy dissipation rate is obtained from time records of the
longitudinal velocity inside clouds and in the cloud-free atmosphere. While the energy
dissipation rate can be directly obtained from the velocity gradient tensor in DNS, it is
difficult to measure the energy dissipation rate in-situ. A similar but shortened version
of this section is submitted as an article to Atmospheric Measurement Techniques.

The article reviews different methods applicable to different ranges and evaluates
their performance in homogeneous isotropic turbulence. It also provides an assessment
of various experimental limits and imperfections such as misalignment between the
sensor and mean flow direction, turbulence intensity and the effect of finite averaging
windows. Analytical expressions for all error sources are presented. In addition, the
article elaborates the possibility of estimating a transient energy dissipation rate. This
article is the basis for subsequent analysis of in-situ measurements and, hence, of great
importance for this work. Without this article, I could not determine the accuracy
neither of the energy dissipation rate estimates nor for all parameters that depend on
the energy dissipation rate.

I conceptualized the study together with Eberhard Bodenschatz, Michael Wilczek,
and Gholamhossein Bagheri. I further developed, validated and ran the analysis
code. Together with Tobias Bätge and Michael Wilczek, I theoretically modeled the
systematic and random errors due to experimental limitations/ imperfections. Together
with Eberhard Bodenschatz, Michael Wilczek, and Gholamhossein Bagheri, I analyzed
and interpreted the data. Furthermore, I wrote the initial draft, proofread and edited
the manuscript.

67



Estimating the turbulent kinetic energy dissipation rate from one-dimensional velocity
measurements in time

3.1 Introduction
Turbulence is fundamental to many natural and engineering processes, such as transport
of heat and moisture in the Earth’s atmosphere [e.g. 29, 50, 55, 121, 122], wind energy
conversion [123], entrainment and mixing [e.g. 8, 124–129], and warm rain initiation [e.g.
4, 23, 26, 130], to name just a few. In three-dimensional turbulence, the kinetic energy
is typically injected into the flow at the largest scales and successively transferred
to smaller eddies by means of the direct energy cascade. At the smallest scales
characterized by the Kolmogorov length scale (or the dissipation scale) ηK , kinetic
energy is dissipated by viscous effects at the energy dissipation rate ϵ. The energy
dissipation rate ϵ is one of the most fundamental quantities in turbulence and is used
to estimate many relevant features of a turbulent flow, such as the Kolmogorov length
scale ηK , the Taylor microscale λ [5], the Taylor-scale Reynolds number Rλ and, by
means of dimensional estimates, the energy injection scale.

The instantaneous energy dissipation field ϵ0(x, t) is highly intermittent with strong
small-scale fluctuations [5, 42, and references therein], which are at the core of the
intermittency problem in turbulence [48, 131, 132]. It also plays an important role
in turbulent mixing in reacting flows [e.g. 125, 133, 134] or turbulence-induced rain
initiation in warm clouds [4]. ϵ0(x, t), however, is extremely difficult to measure
experimentally as it requires the complete knowledge of the three-dimensional velocity
field at high temporal and spatial resolution.

Apart from the instantaneous dissipation field ϵ0(x, t), the energy dissipation in a
turbulent flow can be statistically described by either the local or global mean energy
dissipation rate which are both important. Local volume averages of the instantaneous
dissipation field ⟨ϵ⟩R and related surrogates, e.g. longitudinal, transverse or asymmetric
components of ϵ0(x, t), still capture intermittent effects of turbulence [135, 136, and
references therein]. The local volume averages of the dissipation field converge to the
global mean energy dissipation rate ⟨ϵ⟩ for infinitely large averaging volumes. ⟨ϵ⟩ can
be used to describe the statistics of homogeneous and locally isotropic turbulence
based on the Kolmogorov’s phenomenology (K41) [43]. However, even if the global
mean energy dissipation rate ⟨ϵ⟩ is known with a low uncertainty, it is of great value to
know how locally averaged dissipation rates ⟨ϵ⟩R deviate from the global mean energy
dissipation rate ⟨ϵ⟩.

For a statistically stationary homogeneous isotropic (SHI) turbulent flow, ⟨ϵ⟩ can
be estimated from time-dependent single-point one-dimensional velocity measurements
through different methods, such as longitudinal or transverse velocity gradients [137–
140, among others], inertial-range scaling laws comprising the famous 4/5 law [43, 44],
counting zero-crossings of the velocity fluctuation time series [141, 142] or dimensional
arguments [e.g. 143–145]. These methods usually invoke Taylor’s hypothesis to map
temporal signals onto spatial signals, which requires a sufficiently small turbulence
intensity. The turbulence intensity is defined as the ratio of the root mean square
velocity fluctuations σu′ to the mean velocity U . When all of these criteria are met,
single-point velocity measurements with hot-wire anemometers at a high temporal
resolution have been shown to be suitable for accurately estimating the global energy
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dissipation rate [138, 139, 146, 147]. However, ideal SHI and low-intensity turbulent
flows are rarely encountered in natural turbulent flows, such as those in the atmospheric
boundary layer.

In such non-stationary and inhomogeneous flows, the global mean energy dissipation
rate ⟨ϵ⟩ alone is not representative as the characteristics of turbulent flows can be
highly time- and space-dependent even at the energy injection scales. As a result, one
needs to calculate a local ⟨ϵ⟩τ and ⟨ϵ⟩R, respectively, based on velocity statistics for a
properly chosen averaging window τ in time or R in space, which is short enough for
resolving the temporal or spatial variations but also long enough to obtain statistically
representative values with acceptable systematic and/or random errors [e.g. 55, 56].
Therefore, a conflict arises with respect to the averaging time between resolving small-
scale features of a turbulent flow and statistical convergence under non-stationary and
inhomogeneous conditions.

In the case of atmospheric flows, in-situ measurements made via airborne [8, 52, 131,
140, 148–150, e.g.] as well as ground-based [54, 87, 151, 152, e.g.] platforms typically
can only resolve the coarse-grained time series of the local mean energy dissipation rate
⟨ϵ⟩τ . However, since there is no high-resolution three-dimensional velocity measurement
available during such in-situ measurements to serve as the ground-truth, it remains
unclear how large the errors in estimating the coarse-grained time series of the local
mean energy dissipation rate are due to individual choices of the averaging window. In
the absence of a ground-truth reference, the comparison between different methods
exposes large deviations [54, 140, 142, 153]. As an example, Wacławczyk et al. [153]
found deviations of about 5%-50% for estimating the mean energy dissipation rate
depending on the method and averaging windows using synthetic data modeled via
von Karman spectrum. Another example is the work of Akinlabi et al. [154], who
found that estimates of mean energy dissipation rate by one-dimensional longitudinal
velocity can differ by a factor of 2 to 3 from those calculated using DNS, depending on
the method used.

Our literature review indicates that a systematic investigation is still needed to
fully understand how the choice of averaging window, analysis methods, turbulence
intensity and large-scale random flow velocities can influence estimating the mean
energy dissipation rate and its deviations from the instantaneous energy dissipation rate.
To this end, we systematically benchmark different techniques available in the literature
using fully resolved DNS of statistically stationary, homogeneous, isotropic turbulence.
Since the full dissipation field is available from DNS, this approach provides ground-
truth reference for comparisons to the various estimation techniques. To bridge the gap
between typical Rλ of DNS and atmospheric flows, we use high-resolution measurements
of the longitudinal velocity components of the Variable Density Turbulence Tunnel [36,
147, 155] at various Taylor Reynolds number Rλ between 140 and 6000. The impact of
turbulence intensity, large-scale random sweeping velocities, size of averaging window,
Reynolds number and also possible experimental imperfections, such as anemometer
misalignment are investigated in detail. Our work aims to be a step towards the goal
of extracting the time-dependent energy dissipation rate from non-ideal naturally-
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occurring turbulent flows mitigating the impact of non-ideal features of the flow,
e.g., anisotropy or inhomogeneity. In Sect. 3.2, we first define the central statistical
quantities and the individual methods for estimating the energy dissipation rate in
detail. An analysis of the individual methods including discrepancies, errors due to
finite turbulence intensity, and alignment errors are discussed in Sect. 3.3 followed with
a summary of our findings.

3.2 Methods
Let u(x, t) = u1(x, t)e1 + u2(x, t)e2 + u3(x, t)e3 denote the three-dimensional velocity
vector of the turbulent flow, where x = x1e1 + x2e2 + x3e3 are the components of
the Cartesian coordinate system and t is the time. We assume that the streamwise
direction of the global-mean flow U is in the direction of e1 such that U = Ue1 is (by
definition) constant in space and time. We refer to e1 as the longitudinal direction and
the components normal to that, i.e. e2 and e3, as the transverse directions of the flow.
As mentioned earlier, many experimental setups record only a one-dimensional flow
velocity at one location and as a function of time. We consider this one-dimensional
velocity time record to be in the longitudinal flow direction unless otherwise stated.
In the following, we first introduce different averaging principles that can be used
to analyze turbulence statistics and Taylor’s frozen hypothesis, and then present the
commonly used methods for extracting the energy dissipation rate. A preliminary
introduction of the basic statistical description of turbulent flows is provided in the
appendix (Sec. 3.2.2) for the sake of completeness.

3.2.1 On Averaging, Reynolds Decomposition and Taylor’s
Hypothesis

Most methods used to retrieve the dissipation rate require spatially resolved velocity
statistics although the velocity is recorded only at a single point and as a function
of time in many experiments. Therefore, prior to estimating the energy dissipation
rate, the one-dimensional velocity time-record should be first mapped onto a spatially
resolved velocity field. This is achieved by invoking Taylor’s hypothesis, which requires
a Reynolds decomposition of the velocity time-record by separating the velocity fluctu-
ations from the mean velocity. To perform the Reynolds decomposition, we first have
to clarify what is meant by the mean velocity.

Generally, we have to distinguish between the global mean velocity U = ⟨u(x, t)⟩ =
Ue1, which is independent of time and space since u(x, t) is assumed to be statistically
stationary and homogeneous, the volume-averaged velocity ⟨u(x, t)⟩R over a sphere of
radius R, the time-averaged velocity ⟨u(x, t)⟩τ over a time interval τ , and the ensemble-
averaged velocity ⟨u(x, t)⟩N over N realizations [5, 41, among others]. In this work,
⟨·⟩ denotes the global mean, i.e. for infinitely large averaging windows in time or space.
Implicitly, ⟨u(x, t)⟩R = 3/(4πR3)

∫∫∫ R
0 dxu(x, t) and ⟨u(x, t)⟩τ = 1

τ

∫ τ/2
−τ/2 dt′u(x, t′)

are, respectively, local volume and time averages as both R and τ are typically
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finite. In the limit of R, τ → ∞, ⟨u(x, t)⟩R and ⟨u(x, t)⟩τ tend to U⃗ . For repeatable
experiments where identical experimental conditions are guaranteed, ⟨u(x, t)⟩N tends
to U when N → ∞.

Here we define the mean of a one-dimensional velocity time-record in the longitudinal
direction by

Uτ = ⟨u1(t)⟩τ = 1
τ

∫ τ/2

−τ/2
dt′u1(t′) , (3.1)

such that U = limτ→∞ Uτ where τ is the averaging window. It should be noted that
the global mean of the transverse velocity will be equal to zero, i.e. ⟨u2,3(t)⟩τ = 0 when
τ → ∞, since here it is assumed that they are orthogonal to the mean flow direction.

According to the Reynolds decomposition, the longitudinal velocity time record
is composed of the mean velocity U and the random velocity fluctuation component
u′

1(t) = u1(t) −U so that the mean of the longitudinal velocity fluctuations ⟨u′
1(t)⟩ = 0.

This is also true for other components of the velocity.
In certain circumstances, it is possible to map u′

1(t) from time to space coordinates
by applying the Taylor’s (frozen-eddy) hypothesis [41, 156], which relates temporal
and spatial velocity statistics. Taylor argues that eddies can be regarded as frozen
in time if they are passing the probing volume much faster than they evolve in time.
This is the case if the turbulence intensity I = σu′

1
/U is much smaller than the unity,

i.e. I ≪ 1, where σu′
1

= ⟨u′2
1 ⟩1/2 is the Root-Mean-Square (RMS) velocity fluctuation.

Then, the series of time lags ∆t = t− t0 relative to the start time t0 is mapped onto a
distance vector with x = x0 + U∆t e1 [156] where x0 is the initial position at time
t0. This approach is found to be reliable for I ≲ 0.25 [54, 157, 158] while it has been
shown to fail when I > 0.5 [159]. The application of Taylor’s hypothesis is inaccurate
in case of large-scale variations of the velocity fluctuation field comparable to the mean
velocity, which are known as “random sweeping velocity” [160, 161] and which can
be approximated by the turbulence intensity [158]. Complicating the estimation of
the mean velocity, random sweeping causes the mean energy dissipation rate to be
consistently overestimated [137, 162].

One way to cope with non-stationary velocity time records is to evaluate the mean
velocity for a subset of this signal. If the averaging time τ is finite, the time average Uτ

may differ from the mean velocity U causing a systematic bias in the subsequent data
analysis. The estimation variance of the time average Uτ can be analytically expressed
as [5, 41, among others]

⟨(Uτ − U)2⟩ ≈ 2⟨u′2
1 ⟩T
τ

, (3.2)

where T is the integral time scale and ⟨u′2
1 ⟩ the variance of the velocity time series.

Notably, the size of the averaging window has to be large enough such that it fulfills
⟨u′

1(t)⟩τ ≈ 0 to apply the Reynolds decomposition. This expression can be converted
to space invoking Taylor’s hypothesis.
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3.2.2 Preliminaries on Second-Order Statistics
As discussed in detail below, the mean energy dissipation rate can be related to second-
order statistics of the velocity field, either in terms of velocity gradients or in terms of
velocity increments. In any case, the two-point velocity covariance tensor turns out
to be the central quantity of interest, from which the second-order structure function
tensor, the spectral energy tensor and the velocity gradient covariance tensor can be
obtained.

In the following, we assume zero-mean SHI turbulence so that two-point quantities
depend only on the separation vector r, all averages are invariant under rotations of
the coordinate system, and the mean squared velocity fluctuation is identical for all
velocity components, i.e. ⟨u′2⟩ = ⟨u′2

1 ⟩ = ⟨u′2
2 ⟩ = ⟨u′2

3 ⟩. We provide an overview of
the most relevant definitions, their notation and conventions. This section does not
explicitly discuss the effect of the averaging window, but the definitions presented can
be applied to windowed inputs with no or straightforward modifications.

Under the given assumptions, the two-point velocity covariance tensor takes the
form [e.g. 5, 45, 46]

Rij(r) = ⟨u′
i(x+ r, t)u′

j(x, t)⟩ = ⟨u′2⟩
(
g(r)δij + [f(r) − g(r)] rirj

r2

)
, (3.3)

where f(r) = R11(r)/R11(0) and g(r) = f(r) + r∂rf(r)/2 are the longitudinal and
transverse autocorrelation functions, respectively, with f(0) = g(0) = 1. Notably, if
one chooses r = re1, R11(r) = ⟨u′2⟩f(r), R22(r) = R33(r) = ⟨u′2⟩g(r), and all other
components vanish [e.g. 5]. As a remarkable consequence, Rij(r) is uniquely defined
by f(r) in isotropic turbulence. As mentioned below, the integral length scale as well
as the Taylor microscale are determined by f(r) [5].

Analogously, a covariance tensor can be defined for velocity increments, i.e. the
second-order velocity structure function tensor [5, 42]

Dij(r) = ⟨[u′
i(x+ r, t) − u′

i(x, t)]
[
u′

j(x+ r, t) − u′
j(x, t)

]
⟩ (3.4)

= DNN(r)δij + [DLL(r) −DNN(r)] rirj

r2 . (3.5)

The longitudinal second-order structure function D11(r) is related to f(r) by [e.g.
5, 42]

D11(r = re1) = DLL(r) = ⟨(u′
1(x+ re1, t) − u′

1(x, t))2⟩ = 2⟨u′2⟩(1 − f(r)) . (3.6)

As explained below, measuring the longitudinal second-order structure function DLL(r),
the mean energy dissipation rate can be inferred from the inertial-range scaling of the
longitudinal structure function (cf. Eq. (3.15)).

Furthermore, the velocity gradient covariance tensor can also be defined in terms

72



3.2 Methods

of the velocity covariance tensor

Rijkl(r) =
〈
∂u′

i(x, t)
∂xk

∂u′
j(x, t)
∂xl

〉
= − lim

r→0
∂rk
∂rl
Rij(r) . (3.7)

Since the local and instantaneous energy dissipation rate (cf. Eq. (3.11)) is defined
in terms of the strain rate tensor Sik = (∂u′

i(x, t)/∂xk + ∂u′
k(x, t)/∂xi)/2, the mean

energy dissipation rate can be directly related to contractions of the velocity gradient
covariance tensor. Note that in a turbulent flow with zero-mean velocity, the strain
rate tensor Sik equals the fluctuation strain rate tensor sik.

The two-point velocity covariance tensor can be expressed in Fourier space through
the spectral energy tensor [5]

Φij(κ) = 1
(2π)3

∫∫∫ +∞

−∞
Rij(r)e−iκ·rdr , (3.8)

where κ is the wave vector. For SHI turbulence, Φij(κ) takes the form

Φij(κ) = E(κ)
4πκ2

(
δij − κiκj

κ2

)
(3.9)

where E(κ) is the energy spectrum function.
Since access to the full energy spectrum function is not always available, one-

dimensional spectra are of interest, too. The mean energy dissipation rate can be
estimated from the inertial range scaling of the longitudinal one-dimensional spectrum
(as shown in Eq. (3.17)), which can be calculated by both the energy spectrum function
and the velocity covariance tensor [5]

E11(κ1) =
∫ ∞

κ1

E(κ)
κ

(
1 − κ2

1
κ2

)
dκ = 1

π

∫ ∞

−∞
R11(e1r1)e−iκ1r1dr1 , (3.10)

with the wavenumber κ1 corresponding to the e1-direction and R11(0) = ⟨u′2⟩ =∫∞
0 E11(κ1)dκ1.

This concludes the second-order statistics in terms of the velocity that we consider
in the following to determine the mean energy dissipation rate.

3.2.3 Estimating the Energy Dissipation Rate
The energy dissipation rate can be derived from various statistical quantities. A non-
exhaustive list of the most common methods applicable to single-point measurements
are shown in Table 3.1. Details of selected methods considered in this study are
presented in the following subsections. If not explicitly mentioned, the averages denoted
with ⟨·⟩ are defined globally.
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Dissipative sub-range

Proceeding from the Navier-Stokes equations for an incompressible, Newtonian fluid,
the instantaneous energy dissipation rate is given by [e.g. 5, 42]

ϵ0(x, t) = 2ν (SijSij) . (3.11)

The contribution of the fluctuating part to the energy dissipation is much larger
than the contribution of the mean flow in the case of high-Re turbulent flows [5,
138]. Hence, the instantaneous energy dissipation rate can be defined in terms of the
velocity fluctuations only [5] where, in Eq. (3.11) and Table 3.1, Sij is replaced by the
fluctuation strain rate tensor sij = (∂u′

i(x, t)/∂xj + ∂u′
j(x, t)/∂xi)/2.

Averaged over a sphere with radius R and volume V(R), the (local) volume average
of the instantaneous energy dissipation rate is [5]

⟨ϵ0(x, t)⟩R = 3
4πR3

∫∫∫
V(R)

ϵ0(x+ r, t)dr . (3.12)

The local volume average ϵR(x, t) converges to the global mean energy dissipation rate
if R tends to infinity:

⟨ϵ⟩ = lim
R→∞

⟨ϵ0(x, t)⟩R = −ν lim
|r|→0

∂2
rj
Rii(r, t) , (3.13)

where the right-hand-side follows from partial integration. In experiments, it is often
not possible to measure ϵ0(x, t). Under the assumption of statistically homogeneous
and isotropic turbulence, the volume/time averaged energy dissipation rate are typically
inferred from one-dimensional surrogates [136, 138, 140, 143, 163, 164, among others],
such as:

ϵG = −15ν lim
|r|→0

∂2
r1R11(r, t) = 15ν

〈(
∂u′

1(x, t)
∂x1

)2〉
= 15ν

U2

〈(
∂u′

1(t)
∂t

)2〉
, (3.14)

where the mapping between space and time domains is possible by applying the Taylor’s
hypothesis if σu′

1
/U ≪ 1 [131, 140]. The relationship shown in Eq. (3.14) is often called

the “direct” method in the literature [131, 140, e.g.]. The deviation of ϵG from its
global mean ⟨ϵ⟩ depends quadratically on the turbulence intensity [131, 137, 162, 163].

Inertial sub-range: indirect estimate of energy dissipation rate

Kolmogorov’s second similarity hypothesis from 1941 [43] provides another method for
estimating the energy dissipation rate in the inertial range. Based on the inertial range
scaling of the nth-order longitudinal structure function, the mean energy dissipation
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rate can be calculated by [5]

DL...L(r) = Cn(ϵInr)ζn ⇔ ϵIn =
(
DL...L(r)
Cn

)1/ζn 1
r
, (3.15)

where Cn is a constant, e.g. C2 ≈ 2 [5], and ζn = n/3 according to K41 by dimensional
analysis. In practice, ϵI2 (Table 3.1) is retrieved either by fitting a constant to the
compensated longitudinal second-order structure function DLL(r), n = 2 in Eq. (3.15),
or a power law (∝ r2/3) to the inertial range of DLL, Eq. (3.6), if the inertial range is
pronounced over at least a decade. Accounting for intermittency, the scaling exponent
of the nth-order structure function is modified to ζn = n

3 [1 − 1
6µ(n − 3)] where µ is

the internal intermittency exponent [49]. The inertial range is bounded by the energy
injection scale L at large scales and by the dissipation range at small scales. That
is why the fit-range has to be chosen such that ηK ≪ r ≪ L. If the inertial range
is not sufficiently pronounced, the extended self similarity can be used to extend the
inertial range [165, 166]. Otherwise, ϵI2 can also be approximated by the maximum of
Eq. (3.15) (for n = 2) within the same range as before. This is possible because the
maximum lies on the plateau in case of a perfect K41 inertial range scaling.

In the inertial range, the transverse second-order structure function DNN (r) is equal
to 4DLL(r)/3 in a coordinate system where r = re1 is parallel to the longitudinal flow
direction [5] highlighting the importance of the measurement direction.

Inertial sub-range: spectral method

According to K41 [43], the inertial subrange of the energy spectrum function scales
as E(κ) ∝ ⟨ϵ⟩2/3κ−5/3 with the wavenumber κ by dimensional analysis. In isotropic
turbulence, the energy spectrum function can be converted into a one-dimensional
energy spectrum E11(κ1) (Eq. (3.10)). The wavenumber space is not directly accessible
from time-resolved point-like velocity measurements. Given the validity of Taylor’s
hypothesis, the one-dimensional energy spectrum E11(κ1) transforms to the frequency
domain with F11(f) = 2πE11(κ1)/U where κ1 = 2πf/U [e.g. 137, 167] yielding:

F11(f) = 18/55CK

(
U

2πϵS

)2/3
f−5/3 , (3.16)

which yields

ϵS = 2π
U

(
f 5/3F11(f)
18/55CK

)3/2

, (3.17)

with the one-dimensional Kolmogorov constant CK = 1.5 [5, 168]. Applying Taylor’s
hypothesis to a flow with a randomly sweeping mean velocity causes the Kolmogorov
constant to be systematically overestimated whereas the scaling of power-law spectra
remains unaffected [158, 169]. Hence, Eq. (3.17) is still valid for a randomly sweeping
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mean velocity although ϵS is overestimated if CK is not corrected for random sweeping.
F11 has the units of a power spectral density m2/s and ⟨u′2

1 ⟩ =
∫∞

0 F11(f)df .
Depending on the Fourier transform convention, the prefactor of CK might vary [41,
e.g.]. Under the assumption of Kolmogorov scaling in the inertial sub-range, this
identity can be adopted to estimate the mean energy dissipation rate from low and
moderate resolution velocity measurements of a finite averaging window [87, 140, 142,
170].

Energy injection scale

In equilibrium turbulence, the rate at which turbulent kinetic energy is transported
across eddies of a given size is constant in the inertial range assuming high enough
Reynolds numbers [e.g. 171]. By dimensional argument, this rate is proportional to
u3(l)/l, where u(l) is the characteristic velocity scale of eddies of length l. Considering
the integral scale L11 and its characteristic velocity scale u(L11), namely the RMS
velocity fluctuation σu′

1
, the mean energy dissipation rate can be calculated by [143]

ϵL = Cϵ

σ3
u′

1

L11
, (3.18)

where Cϵ is the dissipation constant and for time- and space-varying turbulence, it
depends on both initial as well as boundary conditions and the large-scale structure
of the flow [47, 145, 172, 173]. Cϵ is found to be about 0.5 for shear turbulence [47,
174] and 1.0 [172, 175] (or 0.73 Sreenivasan [47]) for grid turbulence. In this work Cϵ

is assumed to be 0.5 which holds approximately in a variety of flows [54, 168, and
references therein].

Usually, the longitudinal integral length scale L11 is defined as [5]

L11 = lim
r→∞

∫ r

0
dr′f(r′) = πE11(0)

2⟨u′2
1 ⟩ , (3.19)

However, due to experimental limitations, r is often given by the first zero-crossing
of f(r) in both laboratory and in situ measurements [54, e.g.], or, alternatively, by the
position where f(r) = 1/e [176, 177]. Griffin et al. [178] carried out an integration
for r → ∞ performing an exponential fit in the vicinity of f(r) = 1/e. Notably,
E11(0) =

∫∞
0 dκE(κ)/κ so that the estimation of L11 from the power spectrum is only

recommended if E(κ) = 1
2κ

3 d
dκ

(
1
κ

dE11(κ)
dκ

)
[5] is accurately determined like in DNS.

This approach not only requires a fully resolved velocity measurement but also a well
converged E11(κ1) as the conversion is highly sensitive to statistical scatter.

Ultimately, the choice of L11 strongly affects ϵL. In this work, we integrate f(r) to
the first zero-crossing because it does not depend on assumptions on the decay of f(r)
and the choice of the fit-range.
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3.2.4 Simulations of homogeneous isotropic turbulence
In this study, the direct numerical simulations of statistically homogeneous isotropic
turbulent flow with 74 ≤ Rλ ≤ 321 are used as the basis for evaluating the different
methods for determining the dissipation rate, see Table 3.2. Thereby, the performance
of the different methods to estimate the energy dissipation rate is not affected by
violating fundamental assumptions, e.g., anisotropy or inhomogeneity. We assume that
the velocity probe records idealized velocity time series neglecting the effect of transfer
functions [e.g. 179, 180, regarding sonic anemometry] or noise [139, 146, 181].

The simulations are carried out with the parallelized solver TurTLE [115], which
solves the Navier-Stokes equations on a periodic domain using a pseudo-spectral method
with a third-order Runge-Kutta time stepping. Here we use a forcing scheme with a
fixed energy injection rate on large scales. With this we reach a statistically stationary
state of homogeneous isotropic turbulence within approximately two to three integral
times.

To mimic an ensemble of single-point measurements, we introduced 1000 virtual,
i.e. non-interacting probes into the flow, which move with a given constant speed in
randomly-directed straight paths to record the local flow velocity. While the root
mean square velocity fluctuation is determined by the Navier-Stokes simulation, we
can control the mean flow speed through the speed of the virtual probe. The range
of used constant speeds corresponds to turbulence intensities of 1-50%. Along the
trajectories, we then sample the local three-dimensional velocity field (see Fig. 3.1)
as well as the velocity gradient field, where we use spline-interpolation of order 5 to
determine values in between grid points, see also [115, 182]. By projecting the velocity
vector on the direction of the trajectory, e1, and the orthogonal directions, e2 and e3,
we split the velocity field in longitudinal and transverse components, respectively. From
the sampled velocity gradient tensor we compute the local instantaneous dissipation
ϵ0. The time step is limited either by the stability requirements of the flow solver or,
for smaller turbulence intensities, by the required sampling frequency to capture the
underlying flow. Here, we choose the time step such that the distance traveled by the
probe within one step is around a tenth of the grid spacing, ∆t ≈ 0.1∆x

U
. The grid

spacing is chosen such that the highest wavenumber kmax satisfies kmaxη ≈ 3.
Using Taylor’s hypothesis, the longitudinal velocity time series correspond on

average to ∼ 3000ηK (for more details see Table 3.2) so that second- and third-order
moments of both longitudinal velocity fluctuations and increments are reasonably
converged (see Fig. 3.12). To estimate ϵI3, ϵI2 and ϵS, the longitudinal structure
functions are evaluated for scales 20ηK ≤ r ≤ 500ηK or in frequency domain for

U
500ηK

≤ f ≤ U
20ηK

.

3.2.5 Variable Density Turbulence Tunnel
To evaluate the performance of different methods at Reynolds numbers applicable to
atmospheric flows, we use the high-resolution hot-wire measurements of the longitudinal
velocity components of the Variable Density Turbulence Tunnel [VDDT, 36]. The
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case id box size Rλ Ė [c.u.] kmaxηK ηK [c.u.] I L11/ηK L/L11 Np [#]
DNS 1.1 512 74 0.4 3 0.015 0.01 41.2 161 10000
DNS 1.2 512 74 0.4 3 0.015 0.05 41.4 160 10000
DNS 1.3 512 74 0.4 3 0.015 0.1 41.3 160 10000
DNS 1.4 512 74 0.4 3 0.015 0.24 41.3 21 10000
DNS 1.5 512 74 0.4 3 0.015 0.5 41.4 16 10000
DNS 2.0 1024 142 0.4 3 0.007 0.11 99.0 332.8 1000
DNS 2.1 1024 219 0.4 3 0.007 0.011 147.8 15.6 1000
DNS 2.2 1024 217 0.4 3 0.007 0.055 147.6 15.7 1000
DNS 2.3 1024 216 0.4 3 0.007 0.11 147.9 15.6 1000
DNS 2.4 1024 212 0.4 3 0.007 0.27 146.8 15.7 1000
DNS 2.5 1024 207 0.4 3 0.007 0.53 145.5 15.8 1000
DNS 3.1 2048 302 0.5 3 0.0034 0.011 260.9 13.6 1000
DNS 3.2 2048 299 0.5 3 0.0034 0.054 258.2 13.8 1000
DNS 3.3 2048 295 0.5 3 0.0034 0.11 254.8 14.0 1000
DNS 3.4 2048 314 0.5 3 0.0035 0.26 275.6 20.2 1000
DNS 3.5 2048 321 0.5 3 0.0035 0.53 282.9 14.7 1000

Table 3.2 Parameter overview for each DNS. Rλ is the Taylor scale Reynolds number, Ė
the energy injection rate in code units (c.u.), kmax the largest resolved wavenumber, ηK the
Kolmogorov length scale, I = σu′

1
/U is the turbulence intensity, L11 the longitudinal integral

length scale derived from E(κ), L is the average probe track distance and Np the number of
virtual probes. The turbulence intensity I is controlled by setting the probe mean velocity
where σu′

1
≈ 1 is the root mean square longitudinal velocity fluctuation.
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Figure 3.1 From single-point velocity time records to the energy dissipation rate. (A) A
virtual probe is sampling the three-dimensional velocity field of the DNS 3.1 (see Table 3.2)
in time and space at a mean velocity U along its e1-direction corresponding to turbulence
intensity of 1%. (B) One-dimensional velocity time series u1(t) (blue solid) with corresponding
time average U = ⟨u1(t)⟩ (Eq. (3.1), red dashed line) of the same DNS 3.1, where both
u1(t) and U are re-scaled by U . (C) Visualization of the workflow from one-dimensional
velocity time record u1(t) to the energy dissipation rate via different methods. First, u1(t) is
decomposed in its mean and fluctuating part according to Reynolds decomposition (RD). Then,
the velocity time series is converted into a one-dimensional velocity field invoking Taylor’s
hypothesis (TH). Subsequently, second-order statistics (2nd-ord. St.) of the longitudinal
velocity fluctuations, its increments and first spatial derivative are inferred from which the
energy dissipation rate is estimated with the help of different methods.
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VDTT data used here is associated with Rλ between 1470 and 5864, which enables us
to bridge the gap between DNS (74 ≤ Rλ ≤ 321) and atmospheric Rλ ∼ O(103).

The VDTT is a recirculating wind tunnel where the working gas SF6 is pressurized
up to 15 bar. The VDTT has a horizontal length of 11.68 m and an inner diameter
of 1.52 m where the rotation frequency of the fan sets the mean flow velocity ranging
from 0.5 m/s to 5.5 m/s [36]. Long-range correlations of the turbulent flow determine
its anisotropy. These long-range correlations are shaped with the help of an active grid
consisting of 111 independently rotating winglets [155, 183]. The angular orientation
of each winglet ϑ(t, y, z) can be individually adjusted in space and time by a control
software depending on spatio-temporal grid-correlations [178]:

ϑ(t, y, z) =
∫
K(t′, y′, z′)A(t− t′, y − y′, z − z′)dt′dy′dz′ , (3.20)

where A is a three-dimensional random matrix of winglet angles and K is the correlation
kernel. The turbulence in the experiments with Rλ ∈ {4141, 5006, 5865} was driven in
an anisotropic way [183].

Longitudinal velocity fluctuations are temporally recorded with 30 µm to 60 µm
long nanoscale thermal anemometry probes [NSTAP; 184, 185, among others] or a
450 µm long conventional hot-wire from Dantec [186] corresponding to a resolution of
< 3ηK and < 5ηK , respectively [155] at variable distances from the active grid ranging
from ≈ 6−9 m. The velocity measurements have been extensively characterized in
terms of the mean flow profiles [183] as well as the decay of turbulent kinetic energy
[147, 187] exposing velocity probability distribution functions (PDF) being flatter than
Gaussian [183]. The inertial range scaling exponent ζ2 of the longitudinal second-order
structure function is in agreement with Kolmogorov’s revised phenomenology from
1962 (ζ2 = 0.693 ± 0.003 for Rλ > 2000) for a large variety of wake generation schemes
[188].

3.2.6 Quantification of systematic and random errors
Virtual probes record one-dimensional time records of DNS longitudinal velocity, from
which the mean energy dissipation rate can be estimated by various methods and
compared with the energy dissipation rate obtained directly from the DNS dissipation
field. Generally, there are two different errors when estimating the mean energy
dissipation rate, namely the systematic errors and random errors. The latter is related
to the estimation variance of the mean energy dissipation rate, i.e. the statistical
scatter of the ⟨ϵ⟩-estimates around the true mean. The systematic error of the mean
energy dissipation rate expresses itself in a non-vanishing ensemble average of the
deviations from the ground-truth.

Systematic errors are an inherent feature of the methods used for estimating
the dissipation rate, but are also affected by experimental limitations/imperfections
such as averaging windows and finite turbulence intensity parameterized by R and
I, respectively. One way to estimate these errors is to compare the estimated mean
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energy dissipation rate for a given averaging window R to the ground-truth of the DNS
defined by the mean energy dissipation rate per virtual-probe track, i.e., ⟨ϵ0(x, t)⟩R.
Another possibility would be to compare the estimates to the ensemble average of the
mean energy dissipation rate from all virtual probes, i.e., ⟨ϵ0(x, t)⟩R⟩N . Either of these
possibilities is valid and would be interesting to understand. However, our analysis
shows that the second approach is associated with a slightly higher absolute value
and a slightly higher standard deviation. For that reason, we have chosen the second
approach to make a conservative assessment of the systematic errors, i.e., we compare
the estimates of each method against ⟨⟨ϵ0(x, t)⟩R⟩N , by

βi = ⟨ϵi⟩R

⟨⟨ϵ0(x, t)⟩R⟩N

− 1 , (3.21)

where i ∈ {G, I3, I2, S, L} and ⟨ϵi⟩R is the estimate of the energy dissipation rate via
method i under the experimental limitations/imperfection such as size of averaging
window or finite turbulence intensity. To help distinguish between the different error
terms in this manuscript, we refer to β as “reference-compared” systematic error.

In addition, the systematic error can be evaluated by comparing the estimates of the
energy dissipation rate obtained by a method with imperfect data against the estimates
obtained by the same method with optimal data. We denote these types of errors
with δ and refer to them as “self-compared” errors. An experimental imperfection we
considered here is the sensor misalignment, which is a non-zero angle of incidence θ
between the longitudinal flow direction that sensor expect and U . To investigate the
isolated effect of sensor misalignment, we consider a specific set of DNS with constant
turbulence intensity (I = 1%) and the entire track length for each virtual probe. The
self-compared systematic error of each method due to misalignment is defined as

δi(θ) = ϵi(θ)
ϵi(0) − 1 , (3.22)

where ϵi(θ) is the estimate of the energy dissipation rate via method i ∈ {G, I3, I2, S, L}
from data with misalignment θ and ϵi(0) is the estimated dissipation rate from the
same method and flow conditions but with an aligned sensor, i.e. θ = 0.

Estimates of the mean energy dissipation rate are susceptible not only to systematic
errors, but also to random errors due to statistical uncertainty. For the averaging
window, errors given by Eq. (3.21) would be the best indicator of systematic errors.
However, random errors due to size of averaging window can also be significant. When
the spatial averaging window R (or temporal averaging window τ) is finite, we capture
the self-compared random error for each individual method by

δi(R) =

√√√√〈( ⟨ϵi⟩R

⟨⟨ϵi⟩R⟩N

− 1
)2〉

N

, (3.23)

where ⟨ϵi⟩R is the local mean energy dissipation rate based on the averaging window
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R normalised by its ensemble average, i.e. ⟨⟨ϵi⟩R⟩N . Eq. (3.23) indeed calculates
the standard deviation of the normalized ⟨ϵi⟩R, which is used here as a proxy for the
random error.

Symbol Definition Equation
βi reference-compared systematic error, i.e. relative to ground-truth reference ⟨⟨ϵ0(x, t)⟩R⟩N (3.21)
δi(θ) self-compared (systematic) error of each method at a given misalignment angle θ, relative to (3.22)

the estimates provided by the same method but at θ = 0
δi(R) self-compared (random) error due to finite R or τ (3.23)

Table 3.3 Overview of investigated errors and their definitions. i ∈ {G, I3, I2, S, L}, where
G stands for gradient method, I3 for 4/5 law, I2 for second-order structure function in the
inertial range, S for the spectral method, and L for the scaling argument. The averaging
window is denoted spatially by R and temporally by τ . The misalignment angle is represented
by θ. The superscripts “sys” and “rnd” denote the systematic and random nature of the
errors, respectively.

3.3 Results and Discussion
In the following, we first focus on the DNS data to calculate ϵG, ϵI3, ϵI2, ϵS, and ϵL from
the entire longitudinal velocity time records of all virtual probes and compare these
estimates against the ground-truth reference. Then, we systematically investigate the
impact of turbulence intensity, (virtual) probe orientation, and averaging window size
for all methods of interest. The influence of flow Reynolds number on the presented
results are then discussed by taking into account the VDTT data together with the
DNS data. Finally, we provide a proof of concept for a time-dependent dissipation rate
calculation by comparing the dissipation time series measured by ϵG, ϵI2, and ϵL and
its coarse-grained surrogate. In the following, we use the definitions of systematic and
random errors as mentioned in Sec. 3.2.6.

3.3.1 Verification of the analytical methods and a first insight
into their performance under ideal conditions

To verify the implementation of our methods, only data from cases with a low turbulence
intensity of 0.01 and an averaging window covering the entire size of the probe track are
used in this section. Furthermore, ϵI2 and ϵI3 are obtained by a fit according to Eq. (3.15)
with n = 2 and n = 3, respectively, in the inertial range with r ∈ [20ηK , 500ηK ] for
DNS 2.1 and 3.1. Analogously, ϵS is inferred from the inertial range fit, Eq. (3.17),
in the range f ∈ [U/(500ηK), U/(20ηK)]. Due to the absence of an inertial range for
low Taylor-scale Reynolds number (DNS 1.1 with Rλ = 74, compare Fig. 3.16), the
maximum of Eq. (3.15) is used to infer ϵI2 and ϵI3.

The distribution of the mean energy dissipation rate estimated by ϵG, ϵI2, ϵI3, ϵS, and
ϵL for each probe at Rλ = 302 is shown in Fig. 3.2. Estimations for other Rλ are shown
in supplementary Fig. 3.10. The ground-truth reference for the mean energy dissipation
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Figure 3.2 Validation of estimating the energy dissipation rate from ϵG, ϵI2, ϵI3, ϵS , and ϵL
re-scaled by the energy injection rate Ė. The data are taken from DNS 3.1 with 1000 probes,
Rλ = 302, I = 1%, θ = 0° and maximal available averaging window (R ≈ 3550ηK). The
ensemble mean of each method ⟨ϵi⟩N is denoted by red dots where the whiskers extend from
the minimal to maximal estimate of ϵi where i ∈ {G, I3, I2, S, L}. The reference mean energy
dissipation rate for each probe is given by ϵref. The dashed line represents the re-scaled global
mean energy dissipation rate of DNS 3.1 which is approximated by the ensemble average of
the true mean energy dissipation rate along the trajectory of each virtual probe.

rate for each probe is given by ϵref = ⟨ϵ0(x, t)⟩ along the probe trajectory x, which is
the average of the instantaneous energy dissipation rate along the trajectory of each
individual virtual probe (mean, median, standard deviation, range of βref: 0%, −0.7%,
18.6%, −50% . . . 68.2%) where βref = ⟨ϵ0(x, t)⟩/⟨⟨ϵ0(x, t)⟩⟩N − 1. The best performing
method is the gradient method ϵG (mean, median, standard deviation, range of βG:
−0.5%, 1.7%, 19.3%, −48.1% . . . 75.4%). The range of βG, i.e. −49.8% . . . 68.2%., is
also very close to the range of βref. The method with highest error is ϵI3 (mean,
median, standard deviation, range of βI3: 49.2%, 10.1%, 59.6%, −93.1% . . . 822.2%).
The superior performance of ϵG compared to others is mainly due to the fact that it
relies on second-order dissipative statistics that can be captured with fast statistical
convergence within a short sampling interval. Hence, the distribution of ϵG and ϵref are
similar. ϵI3, on the other hand, relies on third-order moments of the velocity increments
of inertial scales associated with slower statistical convergence compared to ϵG. Hence,
longer velocity records under stationary conditions are needed. For this reason, the
third-order structure function is not considered further in this study, as one of the
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main objectives of this study is to evaluate different methods suitable for extracting
the time-dependent energy dissipation rate.

Fig. 3.2 also shows that the estimates of the energy dissipation rate provided by
DLL(r) and E11(κ1) are close to each other, which can be explained by the fact that
they are both second-order quantities (in real and Fourier space, respectively) connected
by f(r). Furthermore, ϵI2 tends to overestimate the energy dissipation rate as the
mean is 8.8% higher than ⟨ϵ(x, t)⟩N (median βI2 ∼ 3.1%, standard deviation 41.7%,
−69.6% < βI2 < 199.8%). ϵS exhibits a similar overestimation (mean βS ∼ 4.1%,
median βS ∼ −2.0%, standard deviation 32.1%, −55.2% < βS < 210.4%), though to
a lesser extent. However, ϵS depends much stronger on properly setting the fit-range
than ϵI2 (supplementary Fig. 3.11). The spectral method ϵS can differ by a factor of
2 from ϵI2 depending on the high-frequency limit. This factor of 2 is in accordance
with a comparison of ϵI2 and ϵS by a linear fit resulting in a slope close to 0.5 [154].
In the DNS, the power spectrum is subject to strong statistical uncertainty at high
frequencies without ensemble-averaging the spectra of each virtual probe or longer
DNS runtimes. As the high-frequency limit of the inertial range of the spectrum is
hardly distinguishable from its dissipation range, the choice of the fit-range range for
ϵS is related to the fit-range of the longitudinal second-order structure function by
f ∈ [U/(500ηK), U/(20ηK)] as mentioned above. Wacławczyk et al. [153] found that the
estimation of the energy dissipation rate from the power spectral density is generally
robust at small wavenumbers whereas the second-order structure function performs
better at larger wavenumbers. With our choice of the fit-range r ∈ [20ηK , 500ηK ],
we confirm that ϵI2 is already reliable at the lower end of the inertial range where
dissipative effects are negligible.

At last, ϵL overestimates ⟨ϵ(x, t)⟩N by 40% on average (median βL ∼ 31.5%,
−69.5% < βL < 352.9%). This systematic overestimation might be due to the difficulty
in determining L11 as different methods for estimating the integral length L11 can
contribute to the systematic bias of ϵL. As mentioned above, we infer the longitudinal
integral length from fitting f(r) to the first zero crossing which yields, at least in the
DNS of this work, a systematic underestimation, as illustrated in Fig. 3.12. Figure 3.12
and 3.13 suggest that the scatter of ϵL is affected by the scatter of both σu′

1
and

L11. However, the accuracy of the dissipation constant Cϵ, which is a function of
large-scale forcing and initial conditions [47, 145, 172, 173], can potentially cause larger
mean deviations of ϵL from ⟨ϵ(x, t)⟩N . Advantageously, the large-scale estimate ϵL is
applicable to low-resolution measurements and only weakly biased with respect to the
ground-truth of DNS 1.1 where the variance is better converged (see Table 3.4 and
Fig. 3.10).

To compare to the results obtained from DNS 3.1, the bias of each method for DNS
1.1 and 2.1 is presented in Table 3.4 (more details can also be found in the supplementary
Fig. 3.10). Both DNS 1.1 and 2.1 with Rλ = 74 and Rλ = 210, respectively, show
that ϵG reproduces the global reference ⟨ϵ(x, t)⟩N closely (⟨βG⟩N < 1%) as in DNS
3.1. In contrast, ϵI3 is associated with the largest overestimates ⟨ϵ(x, t)⟩N for any
Rλ. Both ϵI2 and ϵS show comparably small deviations from ⟨ϵ(x, t)⟩N . The mean
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DNS ⟨βG⟩N ⟨βI3⟩N ⟨βI2⟩N ⟨βS⟩N ⟨βL⟩N

1.1 −0.003 ± 0.001 0.132 ± 0.005 −0.047 ± 0.002 0.011 ± 0.002 −0.044 ± 0.003
2.1 −0.002 ± 0.006 0.506 ± 0.038 −0.011 ± 0.014 0.074 ± 0.010 0.313 ± 0.017
3.1 −0.005 ± 0.006 0.492 ± 0.039 0.088 ± 0.013 0.041 ± 0.010 0.400 ± 0.020

Table 3.4 The systematic error of each method βi relative to the global mean energy
dissipation rate, Eq. (3.21), of each DNS where i ∈ {G, I3, I2, S, L}. The error is given by
the standard error which is defined as the standard deviation divided by the square root
of the number of samples. In both DNS 2.1 and 3.1, ϵI2 and ϵI3 were obtained by fitting
Eq. (3.15) for n = 2 and n = 3, respectively, in the range r ∈ [20ηK , 500ηK ]. This fit-range is
also used for calculating ϵS and it was converted into frequency domain by f = U/r, where U
is the mean velocity. In the case of DNS 1.1, the maximum of Eq. (3.15) was used to infer ϵI2
due to the absence of a pronounced inertial range. We used the maximum available window
size R in all cases, fixed turbulence intensity I = 1% and considered perfect alignment, i.e.
θ = 0°.

relative deviation of ϵS due to the change in fit-range is much larger than the mean
values of Table 3.4. This is why the fit-range was chosen to be constant for DNS 2.1
(r ∈ [20ηK , 500ηK ] and f ∈ [U/(500ηK), U/(20ηK)]) like in DNS 3.1 in order to prevent
for additional influences due to varying fit-ranges. Within these boundaries of the
fit-range for ⟨DLL(r)⟩N , the scaling exponent varied by approx. ±30%. It is found
that the systematic errors of ϵI2 and ϵS are smaller and comparable to those of the
gradient method when a fitting range is used for each dataset in which the scaling of the
structure function is close to the expected scaling, e.g. fit-range of r ∈ [50ηK , 100ηK ]
for DNS 2.1.

While ϵL is in close agreement with ⟨ϵ(x, t)⟩N for DNS 1.1 (Rλ = 74), it strongly
deviates for DNS 2.1 and 3.1, as elaborated above. In this context, we suggest that
large deviations for ϵL and ϵI3 are due to statistical uncertainties as DNS 2.1 and 3.1 are
shorter in terms of the integral length scale L11 than DNS 1.1 (Table 3.2, Fig. and 3.12).
However, although the box size of all DNS (see Table 3.2) is on the order of 6 integral
length scales, the ensemble of all probes represent a velocity record with a total length
of O(105) integral length scales for DNS 1.1 so that the statistics are well converged
(see Fig. 3.12A and 3.12B, for instance). Considering the reasonable agreements we
found between the mean energy dissipation rate estimated by different methods for
DNS 1.1 (Table 3.4) and the global value, we can verify the correct implementation
of the different methods studied here within the limits of the different methods and
statistical convergence.

3.3.2 Validity of Taylor’s hypothesis and impact of random
sweeping effects

A finite turbulence intensity causes the time to space conversion of velocity statistics
to be inaccurate and, hence, affects the energy dissipation rate. In the case of high
turbulence intensity (I ≳ 0.5), the eddy turnover time is on the same order as the
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advection time. As a result, the local directionality of the flow is significantly varying
in time and space, which hinders the applicability of the Taylor’s hypothesis. Here,
we quantify the impact of random sweeping on the accuracy of determining the mean
energy dissipation rate. Therefore, we set the mean speed of the virtual probes in each
DNS so that the turbulence intensity, and in consequence the random sweeping, is a
controlled parameter.

Fig. 3.3 shows the systematic errors βi for ϵG, ϵI2, ϵS, and ϵL at different turbulence
intensities for DNS 3.1-5. For each virtual probe taken into account in Fig. 3.3, we used
the entire time series so that the size of the averaging window is maximal. While each
method has a different systematic error and scatter, Fig. 3.3 indicates that the mean
relative deviation of each estimate from ⟨ϵ(x, t)⟩ increases with turbulence intensity.
This is particularly strong for the gradient method. For I = 1% and I = 10%,
the gradient method has the lowest scatter in terms of the standard deviation σβG

(19.3% and 27.3%) and the lowest systematic error in terms of the ⟨βG⟩N (−0.5% and
6.1%), respectively. At higher turbulence intensities, ϵI2 is the least affected method
with σβI2 = 37.2% and ⟨βI2⟩N = 6.5% for I = 25% as well as ⟨βI2⟩N = 24.5% and
σβI2 = 56.9% for I = 50%. At the highest turbulence intensities, both ϵL and ϵS are
associated with lower mean β than that of ϵG.

The fraction of track samples that can lead to a deviation of larger than 100%
increases from 0% to ∼ 60% for ϵG as the turbulence intensity increases from 1% to
50%. We hypothesize that these deviations of the mean are the result of random
sweeping effects, which limit the applicability of Taylor’s hypothesis. In frequency
space, Taylor’s hypothesis establishes a one-to-one mapping between the frequency
and the streamwise wavenumber, i.e. ω = κ1U . As the turbulence intensity grows, a
randomly sweeping mean velocity smears out this correspondence between frequencies
and wavenumbers.

To quantify the impact of random sweeping on estimates of ϵ, we first consider
the influence of random sweeping on the gradient method. For the gradient method,
Lumley [162] and Wyngaard and Clifford [137] have shown that in isotropic turbulence
random sweeping leads to an overestimation of the volume-averaged mean energy
dissipation rate by a factor of 1 + 5I2, i.e. ϵG = ϵ0[1 + 5 I2]. To illustrate this result,
we consider a model wavenumber-frequency spectrum, which is based on the same
modeling assumptions used in Wyngaard and Clifford [137]. It enables us to conduct a
systematic assessment of the interplay between Taylor’s hypothesis and the random
sweeping effects. The model wavenumber-frequency spectrum tensor Φij(κ, ω) can be
derived from an elementary linear random advection model [158, 169], which in case of
SHI turbulence can be expressed in terms of the energy tensor Φij(κ):

Φij(κ, ω) = Φij(κ)√
2πκ2I2U2

exp
(

−(ω/U − κ1)2

2κ2I2

)
. (3.24)

Within the model, the wavenumber-frequency spectrum Φij(κ, ω) consists of the energy
spectrum tensor in wavenumber space Φij(κ) multiplied by a Gaussian frequency
distribution. Φij(κ, ω) has a mean value proportional to the mean velocity and a
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Figure 3.3 Systematic error βi, Eq. (3.21), as a function of turbulence intensity I ∈
{0.01, 0.05, 0.1, 0.25, 0.5} for ϵG (•), ϵI2 (▶), ϵS (■), and ϵL (▲). The energy dissipation rates
are estimated from each longitudinal velocity time series of DNS 3.1-5 with ideal alignment
(θ = 0°) where the maximal available window size was used. The fit-range for the inertial
range of the power spectral density is chosen to be within U/(500ηK) ≤ f ≤ U/(20ηK) where
ηK is the Kolmogorov length scale, and, equivalently in space domain, 20ηK ≤ r ≤ 500ηK for
the longitudinal second-order structure function. The upper limit of the y-axis is chosen to
be 7.1 for improving the plot visibility (there are some outliers of ϵG for I = 50%).

variance proportional to the RMS velocity fluctuations. When the RMS velocity
fluctuations tend to zero at fixed mean velocity, i.e. in the limit of vanishing turbulence
intensity, the frequency distribution tends to a delta function, re-establishing the one-
to-one correspondence between the frequency and the wavenumber in the direction of
the mean flow. To establish the connection to the different methods using longitudinal
components and Taylor’s hypothesis, we consider the i = j = 1 component of Eq.
(3.24). One obtains the estimate for the longitudinal wavenumber spectrum based on
Taylor’s hypothesis which includes effect of random sweeping by first integrating over κ.
This leads to the frequency spectrum Ẽ11(ω), which corresponds to the one obtained
from temporal single-point measurements of the longitudinal velocity component:

E11(κ1)dκ1 = 1
U
Ẽ11(ω)dω = 2

U

[∫
Φ11(κ′, ω)dκ′

]
dω . (3.25)

Secondly, one applies Taylor’s hypothesis, corresponding to a substitution ω = κ1U ,
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where the prefactor 1/U cancels due to the Jacobian
∣∣∣ dω

dκ1

∣∣∣. In order to numerically
asses the impact of a finite turbulence intensity, we first assume a model wavenumber
spectrum [5, Eq. 6.246 ff.]:

E(κ) = CK⟨ϵ⟩2/3κ−5/3
(

κL

[(κL)2 + cL]1/2

)5/3+p0

exp(−βκηK) , (3.26)

where L is the energy injection scale and cL = 6.78, p0 = 2 and β = 1 are positive con-
stants. Based on this model wavenumber spectrum, Fig. 3.4 shows the overestimation
of the spectrum (pre-multiplied by κ2

1) in the inertial range and in the dissipative range
by evaluating Eq. (3.25) for different turbulence intensities. Here, the overestimation
is most pronounced in the dissipative range.

Finally, this enables us to evaluate the influence of random sweeping on the
gradient method since it is closely related to the wavenumber spectrum. Expressed in
wavenumber space, the relation, Eq. (3.14), takes the form:

ϵG = 15ν
∫
κ2

1E11(κ1)dκ1 = ϵ0[1 + 5I2] (3.27)

which recovers the result by [162] and [137]. Due to the κ2
1-weighting, the mean

dissipation rate is highly sensitive to the viscous cutoff of the energy spectrum, which
is overestimated by random sweeping effects, see Fig. 3.4. As a consequence, deviations
of the estimated dissipation rate are growing rapidly with turbulence intensity. In
the right panel of Fig. 3.4, we compare the effect of random sweeping on the gradient
method obtained through Eqs. (3.24), (3.25) and (3.27) with a model spectrum, the
one computed by Lumley [162], and the observed deviations by measurements of the
virtual probes in a DNS flow, here shown are the DNS 3.1-5. In fact, the estimate
from [162] can explain the magnitude of deviations observed by the virtual probes in
case of ϵG up to I = 25%. The strong deviation of βG at I = 50% is likely due to the
sensitivity of the gradients on the space-to-time conversion via Taylor’s hypothesis. At
high turbulence intensities the relative error of estimating the mean velocity increases.
Therefore, individual spatial increments are both under- and overestimated. As the
dissipation is quadratic in the gradients, overestimated gradients are over-weighted.
This deviations do not appear in evaluating (3.27) as there the mean velocity is a
parameter we choose.

Now let us consider the two inertial subrange methods. Here, as one can see in
Fig. 3.3 and 3.4, the increase of the mean relative deviation, β, is less pronounced. In
the inertial subrange random sweeping causes an overestimation of the spectrum of
merely several percent while the inertial range scaling is preserved as shown in Wilczek,
Xu, and Narita [158]. As both the second-order structure function and the spectral
method are based on the inertial subrange of the energy spectrum, the effect of a
randomly sweeping mean velocity is expected to be small on ϵI2 and ϵS. Here, the
overestimation of the spectrum can be used to express the relative systematic deviation
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of both ϵI2 and ϵS for different turbulence intensities analytically:

βI2 = βS = (CT (I))3/2 − 1 with CT (I) = 5
6

∫ ∞

0
dy
[
erf
(
y + 1√

2I

)
− erf

(
y − 1√

2I

)]
y2/3 ,

(3.28)

where CT (I) quantifies the spectral overestimation as function of mean wind and
fluctuations defined as in [158]. In Fig. 3.4B we compare the observed deviations
from the DNS to Eq. (3.28). This shows that Eq. (3.28) underestimates βI2 for
I ∈ {0.01, 0.05, 0.1} (i.e. DNS 3.1, 3.2 and 3.3). The underestimation is most likely
due to additional random errors associated with finite averaging window lengths. It
is obvious from Table 3.2 that DNS 3.3 has statistically the shortest probe tracks
∼ 3440ηK (DNS 3.1: ∼ 3550ηK , DNS 3.2: ∼ 3560ηK). Nonetheless, βI2 matches
the prediction of Eq. (3.28) for I ∈ {0.25, 0.5} where the corresponding probe tracks
statistically amount to ∼ 5570ηK and ∼ 4260ηK , respectively. The effect of the
averaging window size on ϵI2 is explored in Sec. 3.3.4. We conclude that Eq. (3.28) can
be used to estimate the error introduced by random sweeping of ϵI2.

At turbulence intensities larger than 15%, βS is smaller than Lumley’s prediction for
the gradient method, i.e. 5 I2. β̃S(I) underestimates the relative error of the spectral
method βS. This may be due to the strong dependence of ϵS on the U -based fitting
range, i.e., f ∈ [U/(500ηK), U/(20ηK)], which can differ significantly between virtual
probes at high turbulence intensities. Further work is needed to assess the dependence
of the spectral method on the choice of the fit-range for finite turbulence intensities.

3.3.3 Probe Orientation
In this section, we assess the influence of probe misalignment with respect to the mean
flow direction on estimating the energy dissipation rate at the energy injection scale, the
inertial range and the dissipation range. We assume the angle θ between the (virtual)
anemometer and the global mean wind direction U

|U | to be constant throughout the
sampling trajectory. In general, the rotation matrix around an arbitrary rotation axis
n̂ with nini = 1 is given by Rn̂

ij(θ) = (1−cos θ)ninj +cos θδij +sin θϵijknk, where ϵijk is
the Levi-Cevita tensor and δij the Kronecker delta. At first, we consider the covariance
tensor Rij(r′) as the integral length scale, the second-order structure function tensor as
well as the velocity gradient covariance tensor depend on Rij(r′) (Eqs. (3.3), (3.5) and
(3.7), respectively). In the sensor frame of reference, the covariance tensor is given by

Rij(r′) = u′2
(
g(r′)δij + [f(r′) − g(r′)]

r′
ir

′
j

r′2

)
, (3.29)
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Figure 3.4 The effects of random sweeping on the energy dissipation, Eq. (3.25), assuming
a model spectrum. (A) Premultiplied energy spectrum with random sweeping effects for
turbulence intensities I ∈ {0.1, 0.25, 0.5} where the original energy spectrum corresponds
to I = 0. (B) Systematic over-prediction illustrated by the relative error βi, Eq. (3.21), at
different turbulence intensities. The systematic over-prediction by [162] (solid black) matches
with the numerically obtained systematic error βG for the gradient method relative to the
ground-truth reference ⟨ϵ⟩ by using the model spectrum (Eq. (3.27), green squares). Both
reasonably estimate the data obtained from DNS 3.1-5 (blue diamonds). Also, we show
the systematic over-prediction of inertial subrange methods (βS : orange triangles, and βI2:
red circles, both from Eq. (3.21)) compared to the analytically derived error obtained by a
Gaussian random sweeping model (βI2,S , Eq. (3.28), grey dashed).

where r′
i = Rn̂

ij(θ)rj and r′ = r. As only the longitudinal component in the sensor
frame of reference is measured, Eq. (3.29) reads for i = j = 1 and r = re1

R11(r′) = ⟨u′2⟩
(
g(r) + [f(r) − g(r)] Rn̂

1l(θ)rlRn̂
1k(θ)rk

r2

)
(3.30)

= ⟨u′2⟩
(
g(r) + [f(r) − g(r)] (cos2 θ + n4

1(1 − cos θ)2 + 2n2
1(1 − cos θ) cos θ)

)
.

(3.31)

For further simplification, we assume without loss of generality that the mean wind
changes direction only in the horizontal plane. With this we can set n̂ = 1e3, which
yields for r′ = r′e′

1

R11(r′e′
1)/⟨u′2⟩ = f(r′) = ⟨u′2⟩

(
g(r) + [f(r) − g(r)] cos2 θ

)
, (3.32)

which we interpret as the measured autocorrelation function. Then, the measured
longitudinal integral length scale, Eq. (3.19), amounts to

L′
11(θ) =

∫ ∞

0
dr′f(r′) =

∫ ∞

0
dr cos θ(cos2 θf(r) + (1 − cos2 θ)g(r)) = 1

2L11 cos θ
(
1 + cos2 θ

)
,

(3.33)
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where the integration of f(r) and g(r) is carried out in the last step, see Eq. (3.19),
while considering the fact that L22 = L11/2 for isotropic turbulence [5]. As it can be
seen from Eq. (3.33), ϵL also depends on θ. Then, the analytically derived error for ϵL

due to misalignment of the sensor and the longitudinal wind direction is given by

δL(θ) = ϵL(θ)
ϵL(0) − 1 = 2

cos θ(1 + cos2 θ) − 1 , (3.34)

where ϵL(θ) represents the energy dissipation that is derived given an angle of incidence
θ and ϵL(0) is the reference value for perfect alignment of the mean flow direction and
the probe, i.e. when θ = 0.

An analogous argument also holds for the second-order structure function tensor,
Eq. (3.5):

D11(r′) = DNN(r) + [DLL(r) −DNN(r)] cos2 θ = DLL(r)
(

4 − cos2 θ

3

)
, (3.35)

where the transverse second-order structure function DNN(r) = D22(r) = D33(r) is
expressed as DNN(r) = 4DLL(r)/3 = 4C2(rϵ)2/3/3 in SHI turbulence [5]. Hence, the
analytically derived error δL(θ) as a function of θ is

δI2(θ) = ϵI2(θ)
ϵI2(0) − 1 =

(
4 − cos2 θ

3

)3/2 1
cos θ − 1 , (3.36)

where ϵI2(θ) represents the energy dissipation that is derived given an angle of incidence
θ and ϵI2(0) is the reference value for perfect alignment of the mean flow direction and
the probe.

The misalignment error for the gradient method can be estimated analytically
starting from the longitudinal component of the velocity gradient covariance tensor
R1111 — it can be also expressed in terms of the velocity covariance tensor Eq. (3.7).
Following similar arguments as above and starting from Eq. (3.7), assuming r = re1
and applying the rotation about an axis n̂ with nini = 1, we obtain

R1111(0) = − lim
r′→0

∂r′∂r′R11(r′e′
1) = − u′2

cos2 θ
lim
r→0

∂2
r

[
g(r) + [f(r) − g(r)]r

2 cos2 θ

r2

]
,

(3.37)

where ∂r′ = ∂r/ cos θ due to the rotation. Using ∂2
rg(r) = 2∂2

rf(r) + r
2∂

3
rf(r) [5], the

velocity gradient covariance tensor reduces to

R1111(0) = − u′2

cos2 θ
lim
r→0

(2 − cos2 θ)∂2
rf(r) + (1 − cos2 θ)r2∂

3
rf(r) (3.38)

=
〈(

∂u

∂x1

)2〉 2 − cos2 θ

cos2 θ
, (3.39)
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where −u′2 limr→0 ∂
2
rf(r) = ⟨(∂u/∂x1)2⟩ [5] is used for the last step. With the assump-

tion that r ≪ ηK and Eq. (3.13), the analytically derived error of ϵG as a function of θ
can be calculated to

δG(θ) = ϵG(θ)
ϵG(0) − 1 = 2

( 1
cos2 θ

− 1
)
, (3.40)

where ϵG(θ) represents the energy dissipation that is derived given an angle of incidence
θ and ϵG(0) is the reference value for perfect alignment of the mean flow direction and
the probe.

To compare the analytical expressions to DNS results, the sensing orientation of
the virtual probes is rotated around the e3-axis in the coordinate system of each the
virtual probe by an angle θ relative to their direction of motion, i.e. the e1-axis. Then,
ϵL(θ), ϵI2(θ), and ϵG(θ) are inferred from the new longitudinal velocity component. The
ensemble averaged relative errors of the estimated energy dissipation rates δ(θ) due to
misalignment is shown as a function of θ in Fig. 3.5 in the range of ±50° both for DNS
and the analytically derived Eqs. (3.40), (3.34), and (3.36). In general, the ensemble
averaged systematic errors follow the analytically derived errors reliably in terms of
the limits of accuracy for all Rλ at turbulence intensity I = 1%. The longitudinal
second-order structure function is the best performing method with a systematic error
⟨δI2⟩N of lower than 20% for θ ∈ [−25°, 25°], which increase to 100% at θ = ±50°.
⟨δL⟩N is similarly effected by misalignment but slightly larger than ⟨δI2⟩N . Despite its
fast statistical convergence, the ϵG is the most vulnerable method by misalignment
compared to the other two methods.

In experiments where the sensor can be aligned to the mean wind direction within
θ ∈ [−10◦, 10◦] over the entire record time, δi(θ) is expected to be small. Further work
is needed to evaluate the impact of a time dependent misalignment angle θ(t). We
suppose that keeping the angle of attack θ fixed over the entire averaging window, here
the entire time record of each probe, potentially leads to overestimation of δi(θ) with θ
being a function of time in practice.

3.3.4 Systematic and random errors due to finite averaging
window size R

In various experimental conditions, the maximal size of the averaging window is
constrained. If one wants to measure the mean energy dissipation rate of on individual
cloud, as an example, the averaging window is bounded by the cloud edges. But also
generally, the flow can be statistically non-stationary, e.g. due to rapidly changing
ambient conditions in the atmospheric boundary layer. This is why it is necessary to
know to which accuracy the mean energy dissipation rate can be determined given
a specific window size R. In this section, we tackle this question by evaluating the
longitudinal velocity time records of DNS and wind tunnel for specific window sizes R

— at least under ideal conditions of SHI turbulence.
Here our goal is to investigate how the accuracy of estimating the global mean
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Figure 3.5 Influence of misalignment between probe orientation and the mean flow direction
U in terms of the average error of the energy dissipation rate δi(θ) as a function of the
angle of attack θ. The energy dissipation rates are derived from DNS 3.1 with a turbulence
intensity of 1%, Rλ = 293 and maximally available window size. The error bars are given by
the standard error of the mean. The analytically derived errors δG(θ), δL(θ), and δL(θ) are
given by Eqs. (3.40), (3.34), and (3.36), respectively. The ordinate is limited from 0 to 2.2 to
guarantee a better visibility for δL(θ) and δI2(θ). The inset visualizes the misalignment angle
θ between the probe orientation and the mean flow direction U . The rotation axis is denoted
by n̂. As mentioned above, the mean flow direction U is considered as the longitudinal
direction of the flow.
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energy dissipation rate depends on the averaging window size by investigating the
associated systematic and random errors individually. To do this, we select an averaging
window of size R from the beginning of each track of virtual probes for case DNS 3.1.
In this way, we obtain 1 subrecord for each virtual probe, which amounts to a total of
1000 subrecords for each averaging window R. From each of these subrecords a mean
value of ϵ0 (i.e. ⟨ϵ0(x, t)⟩R)), ⟨ϵG⟩R, ⟨ϵL⟩R and ⟨ϵI2⟩R are then evaluated. The smallest
R considered for these analyses is 501ηK , which is limited by the upper bound of the
fitting range r ∈ [20ηK , 500ηK ] for estimating ϵI2. The largest window size considered
in this section is 3000ηK , which is limited by the total length of the virtual-probe track
(Table 3.2).

Before comparing estimates of the energy dispersion rate using different methods,
let us first compare the locally averaged energy dispersion rate ⟨ϵ0(x, t)⟩R) with the
instantaneous energy dispersion rate, which is shown in Fig. 3.6A. All averaging window
sizes create PDFs with similar shape, but significantly different from the shape of
the instantaneous field. The larger the volume over which the dissipation field is
averaged, the more the PDF(⟨ϵ0(x, t)⟩R) converges to a peak at the global mean energy
dissipation rate normalised by Ė, i.e. ⟨ϵ0(x, t)⟩/Ė ≈ 1.0.

We can further explore the influence of averaging window R for each method by
examining the distribution of systematic errors, i.e., βi, as shown in Fig. 3.6B-D. First
main point to note is the fact that all methods at small R tend to peak at a dissipation
rate lower than the global. Hence, the mean energy dissipation rate is most likely
underestimated. All PDF(βi(R)) become narrower and the mean relative errors βi(R)
converge to 0 as the R increases. The second main point to consider is the statistical
uncertainty, causing a random error in estimating the local mean energy dissipation
rate ⟨ϵ0(x, t)⟩R. As it can be seen in Fig. 3.6B-D, the width of the distribution is wide
with asymmetric long tails, especially for βI2 and βL. This is an indication that high
random errors are to be expected in the estimation of the mean energy distribution
rate.

We now focus on random errors associated with ϵG, ϵL and ϵI2 analytically. We
denote ⟨ϵG⟩R, ⟨ϵL⟩R and ⟨ϵI2⟩R the energy dissipation rates that are estimated for a
longitudinal velocity time record for a window of size R. For the calculation of random
errors caused by the choice of the size of the averaging window, we consider DNS 1.3,
2.3, and 3.3, as well as wind tunnel experiments that all have a comparable turbulence
intensity of I ≈ 10%.

Both the second-order structure function, Eq. (3.6), and the scaling argument,
Eq. (3.18), depend on the variance ⟨u′2

1 ⟩ of the longitudinal velocity time record. ϵG

is also related to ⟨u′2
1 ⟩ through Eqs. (3.14) and (3.3). The variance ⟨u′2

1 ⟩ itself is
subject to both systematic and random errors in case of a finite averaging window
R < ∞. Assuming an ergodic, hence, a stationary velocity-fluctuation time-record with
a vanishing mean, the systematic error in estimating the variance over an averaging

95



Estimating the turbulent kinetic energy dissipation rate from one-dimensional velocity
measurements in time

−1.00 −0.50 0.00 0.50 1.00 1.50 2.00
βL

0.00
0.25
0.50
0.75
1.00
1.25
1.50
1.75
2.00

PD
F(
β
L
)

501ηK
891ηK
1584ηK
2816ηK

−1.00 −0.50 0.00 0.50 1.00 1.50 2.00
βI2

0.00
0.25
0.50
0.75
1.00
1.25
1.50
1.75
2.00

PD
F(
β
I
2)

501ηK
891ηK
1584ηK
2816ηK

−1.00 −0.50 0.00 0.50 1.00 1.50 2.00
βG

0.00
0.25
0.50
0.75
1.00
1.25
1.50
1.75
2.00

PD
F(
β
G
)

501ηK
891ηK
1584ηK
2816ηK

0.00 0.40 0.80 1.20 1.60 2.00
〈ε0(x, t)〉R/Ė
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Figure 3.6 The effect of the averaging window size R (A) on the distribution of ⟨ϵ0(x, t)⟩R/Ė;
and on the accuracy of estimates obtained via (B) ⟨ϵG⟩R, (C) ⟨ϵI2⟩R, and (D) ⟨ϵL⟩R in terms of
the systematic errors βG, βI2, and βL, respectively, from the ground-truth reference ⟨ϵ0(x, t)⟩R

as given by Eq. (3.21). The velocity time records of the longitudinal component are taken
from DNS 3.1 (Rλ = 302, I = 1%, θ = 0°). In (A), the distribution of the instantaneous
dissipation rate ϵ0(x, t)/Ė sampled by all virtual probes is shown by the dashed line, and the
global average energy dissipation rate normalized by Ė is shown by the dotted vertical line.
The other PDFs in A are from the local average of the energy dissipation rate obtained from
a window of size R at the beginning of each virtual probe, i.e. 1000 averaged values for a
given R. In (B), (C) and (D) the vertical dotted lines correspond to ensemble averages of the
systematic errors βi. The ensemble average of βG slightly decreases from 0.4% for R = 501ηK

to −0.7% for R = 2815ηK where the standard deviation of βG decreases from 50% to 22%.
The ensemble average of βI2 decreases from 41% to 10% and the standard deviation from
185% to 5%. βL exhibits stronger deviations (mean βL of ∼ 44% and standard deviation
∼ 67% for R = 2816ηK).
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window of size R is given by [following 56, while applying Taylor’s hypothesis]

∆⟨u′2
1 ⟩ =

〈
⟨u′2

1 ⟩R

⟨u′2
1 ⟩ − 1

〉
N

≈ −2L11

R
, (3.41)

where ⟨u′2
1 ⟩R is the estimated variance based on the (finite) averaging window R,

⟨u′2
1 ⟩ is the true variance and it is assumed R ≫ L11. The always negative error

predicted by equation (3.41) indicates that for finite averaging window sizes, the
variance ⟨u′2

1 ⟩ is always statistically underestimated, which agrees with Figure 3.12A.
Eq. (3.41) furthermore indicates that the systematic error of the variance estimates
can be neglected for sufficiently long averaging windows R ≫ L11.

The variance estimates are also subject to statistical uncertainty, which is also
known as the random error of variance estimation [56]. Assuming that u′

1(t), which
has a zero mean, can be modeled by a stationary Gaussian process and that its
autocorrelation function is sufficiently well represented by an exponential, the random
error of estimating the variance can be expressed as [following 56, while applying
Taylor’s hypothesis]

erand =

√√√√√√〈
⟨u′2

1 ⟩R −
〈
⟨u′2

1 ⟩R

〉
N

⟨u′2
1 ⟩

2〉
N

≈

√√√√√√
〈 ⟨u′2

1 ⟩R〈
⟨u′2

1 ⟩R

〉
N

− 1
2〉

N

≈
√

2L11

R
,

(3.42)

where it is assumed R ≫ L11 such that the systematic error can be neglected and,
hence, ⟨⟨u′2

1 ⟩R⟩N ≈ ⟨u′2
1 ⟩. Here ⟨⟨u′2

1 ⟩R⟩N is the ensemble average of the variance
estimates ⟨u′2

1 ⟩R for an averaging window R. It can be seen that erand is larger than
the systematic error, (3.41), when R > L11.

Consequently, the estimation of the mean energy dissipation rate by the scaling
argument, Eq. (3.18), is affected by the (absolute) random error of the variance
estimation given by the product of erand and

〈
⟨u′2

1 ⟩R

〉
N

. Invoking the Gaussian error
propagation, the analytically derived error reads

δL(R) = 1
⟨ϵL⟩R

∂⟨ϵL⟩R

∂⟨u′2
1 ⟩R

erand︸ ︷︷ ︸
rel. rnd. err. of ⟨u′2

1 ⟩R

〈
⟨u′2

1 ⟩R

〉
N

︸ ︷︷ ︸
abs. rnd. err. of ⟨u′2

1 ⟩R

= 3
2

√
2L11

R
. (3.43)

δL(R) is a relative error, hence the prefactor 1/⟨ϵL⟩R. Notably, δL(R) scales as R−1/2.
Similarly, the longitudinal second-order structure function is also affected by the
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estimation variance of the variance,

eDLL
=

√√√√〈( DLL(r;R)
⟨DLL(r;R)⟩N

− 1
)2〉

N

=

√√√√〈( 2⟨u′2
1 ⟩R (1 − f(r))

2 ⟨⟨u′2
1 ⟩R⟩N (1 − f(r)) − 1

)2〉
N

≈
√

2L11

R
,

(3.44)

where DLL(r;R) is the longitudinal second-order structure function evaluated over
an averaging window of size R and under the assumption that the longitudinal auto-
correlation function f(r) is well converged over the range of the averaging window.

Thus, the uncertainty of estimating the variance propagates to ⟨ϵI2⟩R relying on
DLL(r;R) (Eq. (3.15) for n = 2). The random error δI2(R) can be analytically inferred
from the random error of the second-order structure function σDLL

by Gaussian error
propagation yielding

δI2(R) = 1
⟨ϵI2⟩R

∂⟨ϵI2⟩R

∂DLL

eDLL
⟨DLL(r;R)⟩N = 3

2

√
2L11

R
, (3.45)

which shows that δI2(R) scales as R−1/2 similar to δL(R). Considering Eqs. (3.14)
and (3.3), the gradient method can also be expressed as a function of the variance
⟨u′2

1 ⟩. Hence, Gaussian error propagation yields:

δG(R) = 1
⟨ϵG⟩R

∂⟨ϵG⟩R

∂⟨u′2
1 ⟩R

erand
〈
⟨u′2

1 ⟩R

〉
N

= −15ν 1
⟨ϵG⟩R

lim
|r|→0

∂2
rf(r)erand

〈
⟨u′2

1 ⟩R

〉
N

=
√

2L11

R
,

(3.46)

assuming R ≫ L11 such that the systematic error is negligible such that ⟨⟨u′2
1 ⟩R⟩N ≈

⟨u′2
1 ⟩.
Equations (3.43), (3.45), and (3.46) are expressed as a function of R and L11,

which do not reveal the dependency of random errors on the Reynolds number. In
addition, this expression relies on large scales that depend on the scale of the energy
input, which makes it difficult to fairly compare the errors between different flows as
it is not a universal feature. Therefore, we want to link the averaging window to the
Kolmogorov length scale ηK , which only depends on the viscosity and the mean energy
dissipation rate. We can rewrite these equations in terms of ηK , R and Rλ as follows:

δI2(R) = δL(R) = 3
2

√
2L11

R
= 3

2

√
2ηK

R

L11

L

( 3
20R2

λ

)3/4
≈ 3

2

√
ηK

R

( 3
20R2

λ

)3/4
(3.47)

δG(R) =
√

2L11

R
≈
√
ηK

R

( 3
20R2

λ

)3/4
(3.48)

where we have invoked L11/L ∼ 1/2, which is valid at sufficiently high Rλ and used the
relationship L/ηK =

(
3
20R2

λ

)3/4
[5]. Following the intuition, the longer the averaging

window, the smaller the random error of each method.

98



3.3 Results and Discussion

Furthermore, Eqs. (3.47) and (3.48) provide a mean to choose a suitable averaging
window size to achieve a given random error threshold a. Let Ra be the averaging
window of size R such that δi(R) < a. Then, the required averaging window Ra for ϵI2
and ϵL is

Ra/ηK = 9
4

( 3
20R2

λ

)3/4 1
a2 , (3.49)

where the required averaging window size Ra scales with R3/2
λ . Similarly, the required

averaging window for ϵG is

Ra/ηK =
( 3

20R2
λ

)3/4 1
a2 . (3.50)

For example, for the random errors of ϵI2 and ϵL to be less than 10% at Rλ = 1000,
the averaging window should be R ∼ 2 × 106ηK ∼ 2 × 104L11, while for ϵG the required
averaging window is R ∼ 8 × 105ηK ∼ 104L11.

Figure 3.7 shows the empirical random errors δG(R) (Fig. 3.7A) and δI2(R) (Fig. 3.7B)
as a function of the averaging window size for various Rλ based on VDTT data (for
ϵL see supplementary Fig. 3.14). To do this, we select an averaging window of size R,
where 1000ηK < R < O(106ηK), from the beginning of each 30 s time-segment from
the VDTT longitudinal velocities are recorded (a total of 47 to 597 time-segments
depending on Rλ).

The scaling of δG(R) and δI2(R) is well predicted for R ≳ 10L11 as expected from
Eqs. (3.46) and (3.45) and the assumptions we made to derive them. However, for
smaller R a statistical convergence of ϵG, ϵI2 or ϵL against the mean energy dissipation
rate cannot be expected, in particular when R/L11 < 1.

Furthermore, it is evident from Fig. 3.7 that the random errors do not fully collapse
on each other for different Reynolds numbers and at a given R/L11. Moving horizontally
on a line of constant random error, e.g., the dashed line of 50% error, the required
window size increases with Rλ, as shown in the insets of Figs. 3.7A and B. Predictions
of Eqs. (3.49) and (3.50) are also shown in these plots via solid/blue lines.

For both ϵG and ϵI2, the theoretical expectation for Ra tends to overestimate
the actual averaging window size at which a random error of 50% is achieved. This
overestimation is expected as the theoretical expectation for Ra, Eqs. (3.49) and (3.50),
are derived assuming that large-scale quantities such as f(r) and L11 are fully converged.
However, ϵG is technically relying on small scales. ϵG depends on velocity fluctuation
gradients, which are numerically obtained by central differences. Hence, each increment
in the velocity record contributes to the average in the gradient method, Eq. (3.14).
In the case of ϵI2, the number of possible increments reduces for larger separations for
a finite averaging window. By definition, the exact computation of L11 requires even a
fully converged f(r) for all r.

However, VDTT experiments with Rλ > 3000) underestimate the prediction of Eq.
(3.41) by about a factor of 2. This is particularly clear for ϵL shown in Fig. 3.14. This
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Figure 3.7 Random errors δG(R) (A) and δI2(R) (B) as a function of re-scaled averaging
window size R/L11 obtained from VDTT data at various Rλ shown by the colorbar. The
analytical results for δG(R) (A, Eq. (3.46)) and δI2(R) (B, Eq. (3.45)) are shown by the
dashed black lines. The dotted black line annotated with “50%” in each subplot corresponds
to 50% error-threshold. The insets show the sizes of the averaging windows in terms of
ηK when δG,I2(R) ≤ 0.5 as a function of Taylor microscale Reynolds number Rλ. The
inset plots include data from both DNS (red triangles) and the VDTT (grey circles). DNS
data used for the inset plots are from cases 1.3, 2.3 and 3.3 with I = 10% and θ = 0°.
The solid, blue lines show the prediction of the required averaging window according to
Eq. (3.50) (A-inset) and Eq. (3.49) (B-inset). The black dash-dotted line in inset plots is
a fit to the data: logR/ηK = 3

4 log 3
20 − 2 log afit + α log Rλ yielding α = 1.70 ± 0.18 and

afit = 1.67±0.64 (A-inset); logR/ηK = log 9
4

3
20

3/4−2 log afit+α log Rλ yielding α = 1.57±0.09
and afit = 0.95 ± 0.32. (B-inset)

deviation at high Rλ can be explained, at least in part, by the strong assumptions made
for the derivation of the random errors, i.e., the equations (3.45), (3.43), and (3.46). In
particular, for experiments with high Re in VDTT, the assumption of Gaussian velocity
fluctuations with zero skewness is questionable, as shown in Fig. 3.15. Lenschow, Mann,
and Kristensen [56] has already established that the size of the averaging window for a
skewed Gaussian process [see Eq. (19) in 56] must be twice as large as for a Gaussian
process with vanishing skewness. However, further work is needed to investigate these
deviations and improve the theoretical prediction.

3.3.5 Estimating the transient energy dissipation rate
As it has been shown in previous Figs. 3.6 and 3.7, both systematic and random error
decrease with the size of the averaging window. For a correct estimate of the magnitude,
it is therefore advantageous to choose the averaging window as large as possible, but
this has the price that the transient trend smaller than the selected window size cannot
be reproduced. In addition, it is also important to know to what extent the estimated
trend correlates with the actual trend. Given a certain averaging window size R, here
we empirically evaluate if trends in the coarse-grained time-series are physical or rather
statistical. In other words, we ask the question if local estimates of the mean energy
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dissipation rate follow the ground-truth reference ⟨ϵ0(x, t)⟩R or not. Respecting the
intermittent nature of turbulence and energy dissipation, the standard deviation of
⟨ϵ0(x, t)⟩R is a first proxy for the variability of the trend in ⟨ϵ0(x, t)⟩R. Hence, detecting
the true trend requires that βi and δi(R) are smaller than the standard deviation of
⟨ϵ0(x, t)⟩R.
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Figure 3.8 (Upper plot) Proof of concept for estimating the coarse-grained energy dissipation
rate ⟨ϵ0(x, t)⟩R re-scaled by the energy injection rate Ė via the one-dimensional surrogates
⟨ϵG⟩R, ⟨ϵI2⟩R, and ⟨ϵL⟩R for Rλ = 142, R/ηK ≈ 5500, θ = 0° and a turbulence intensity
I = 10% (DNS 2.0). All estimates are re-scaled by the energy injection rate Ė, too. We
narrowed the fit-range to 20ηK ≤ r ≤ 200ηK ensuring optimal fit results. (Lower plot)
Comparison between ⟨ϵI2⟩R/Ė with estimated random error according to Eq. (3.45) for the
averaging window R and ⟨ϵ0(x, t)⟩R.
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It can be already concluded from Figs. 3.2, 3.7, 3.10 and 3.14 that ϵG is the most
promising candidate to capture the true trend. However, to fully answer the above
questions, we need to conduct more in-depth analysis. The upper plot in Fig. 3.8
shows the re-scaled and coarse-grained dissipation field ⟨ϵ0(x, t)⟩R for a sliding window
of size R ≈ 5500ηK and a turbulence intensity I = 10% obtained from track of one
virtual probe for case DNS 2.0 (“probe 0”). Consistent with results shown earlier,
⟨ϵG⟩R follows ⟨ϵ0(x, t)⟩R best in comparison with ⟨ϵI2⟩R and ⟨ϵL⟩R. Both ⟨ϵI2⟩R and
⟨ϵL⟩R are associated with substantial scatter, although ⟨ϵI2⟩R has smaller deviations
from the ground-truth overall. Other probe tracks sample different portions of the
flow which is why a quantitative conclusion is not possible from one single probe. A
more comprehensive evaluation of which method is able to capture the true trend is
conducted below.

The lower plot in Fig. 3.8 shows ⟨ϵI2⟩R together with the random error of ϵI2
as defined by Eq. (3.45). Despite the strong scatter, the ground-truth reference is
nearly always within the errorbar of ϵI2 with some exceptions, e.g. r/ηK < 5000 or
r/ηK ≈ 44000. It can also be seen that ⟨ϵI2⟩R is, if at all, only weakly correlated
with the ground-truth reference ⟨ϵ0(x, t)⟩R for a window size of R/ηK ≈ 5500. This
shows that it is extremely difficult, if at all possible, to track the true trend with
low-resolution time records, which prevents the use of the gradient method.
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Figure 3.9 A: Dependence of the Pearson correlation coefficient between ⟨ϵi⟩R and ⟨ϵ0(x, t)⟩R

as a function of the re-scaled averaging window R/ηK where i ∈ {G, I2, L}. Time records of
the longitudinal velocity by all virtual probes and ⟨ϵ0(x, t)⟩R are taken from DNS 2.0 with
Rλ = 142, turbulence intensity I = 10% and perfect alignment (θ = 0°). The shaded region
is given by the standard error. B: Dependence of the Pearson correlation coefficient between
⟨ϵI2,L⟩R and ⟨ϵG⟩R as a function Rλ for a fixed re-scaled averaging window R = 30L11. The
error bars of the ensemble averaged coefficients are given by the standard error.

To assess this correlation more quantitatively, we evaluate Pearson’s correlation
coefficient between the ground-truth reference ⟨ϵ0(x, t)⟩R and ϵG, ϵI2 as well as ϵL,
respectively, as a function of the re-scaled averaging window size R/ηK for all virtual
probes of case DNS 2.0. As an example, Pearsons correlation coefficient between
ϵ0(x, t)⟩R and ϵI2 is 0.33 in Fig. 3.8 (upper plot). Figure 3.9A shows the ensemble
averages of Pearson’s correlation coefficient together with the standard error (shaded
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area). While ⟨ϵG⟩R has a pronounced correlation with the ground-truth reference
⟨ϵ0(x, t)⟩R, both ⟨ϵI2⟩R and ⟨ϵL⟩R are only very weakly correlated with ⟨ϵG⟩R.

The effect of Rλ on Pearson’s Correlation coefficient is shown in Fig. 3.9B also
for the VDTT experiments at various Rλ. Here, we compare ϵI2 and ϵL to ϵG in the
absence of ground-truth. To ensure a negligible systematic error, we chose a fixed
averaging window of R = 30L11 for each Rλ. Figure 3.9B shows that the correlation for
ϵI2 is always higher than that of ϵL except for very low Rλ. There is a non-monotonic
behavior in the correlation coefficients in Fig. 3.9B that seems to be related to the
skewness values shown in Fig. 3.15. Nonetheless, there is a clear increase in correlation
coefficients with Rλ. Firstly, the random error of δI2(R) ranges from 20% to 40% at
R = 30L11. Secondly, the kurtosis of the instantaneous energy dissipation field scales
with R3/2

λ [5, 49] which is why the variability in the instantaneous energy dissipation
field increases with Rλ. Hence, at small R3/2

λ and R = 30L11, ⟨ϵI2⟩30L11 scatters only
randomly around the global mean energy dissipation rate (with a 3% standard deviation
of ⟨ϵG⟩30L11), which is why the correlation coefficient is low. In contrast, at large Rλ

and R = 30L11, the locally averaged mean energy dissipation rate ⟨ϵG⟩30L11 fluctuates
stronger (≈ 30% standard deviation of ⟨ϵG⟩30L11) where δI2(R) is already comparable.

3.4 Summary
We have presented an extensive review on the analysis procedure for estimating the
energy dissipation rate from single-point one-dimensional velocity time records along
with an overview of the their advantages and disadvantages (see Table 3.1). The main
methods considered in this study are the gradient method ϵG, the 2nd-order SF (inertial
range) method ϵI2, the spectral method ϵS, and the scaling argument ϵL. We have
provided a systematic assessment of the accuracy of inferring the energy dissipation
rate from such one-dimensional velocity time series as a function of turbulence intensity,
probe orientation with respect to the longitudinal direction, and the effect of a finite
averaging window size. We used DNS data with Reynolds numbers in the range
74 ≤ Rλ ≤ 321 as well as experimental data from high-resolution one-dimensional
wind tunnel measurements with Reynolds numbers in the range 147 ≤ Rλ ≤ 5864 to
evaluate the performance of different methods against robust benchmark values. The
results presented in this study help to assess the accuracy of the energy dissipation
rate estimates as a function of several parameters, such as finite turbulence intensity,
misalignment between sensor and longitudinal flow direction, and finite size of the
averaging window. The main results are:

• Each method could reproduce the ground-truth reference ⟨ϵ(x, t)⟩ to within less
than 10 % for well converged statistics and at low turbulence intensity. The most
accurate method is the gradient method (ϵG) and the least accurate method is
the one based on the 4/5 law (ϵI3) (see Figure 3.2). The “reference-compared”
systematic error tend to be overestimated due to the global choice of the fit-range,
e.g. lower systematic errors for ϵI2 can be obtained by choosing a fit-range for
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each DNA dataset that is in a range where the scaling of the structure function
is closest to the expected scaling.

• In the case of finite turbulence intensities, ϵG, ϵS and ϵI2 systematically overesti-
mate the ground-truth energy dissipation rate. The gradient method (ϵG) is most
affected by a finite turbulence intensity I whereas ϵI2 is the least affected (see
Figs. 3.3 and 3.4B). The overestimation can be captured by a random advection
model (Fig. 3.4). Regarding the small-scale estimate ϵG, the random advection
model is in close agreement with the error formula provided by Lumley [162]
(βG ∝ 5I2).

• Considering the probe orientation, the gradient method (ϵG) is most affected
by misalignment between the probe orientation and the longitudinal flow direc-
tion whereas ϵI2 is the least affected (Figure 3.5) (compare Eqs. (3.40), (3.34),
and (3.36)).

• We provide scaling arguments δi(R) to estimate the required averaging window
size optimized for a desired random error threshold for ϵG, Eq. (3.50), ϵI2,
Eq. (3.49), and ϵL, Eq. (3.49). With this, we can estimate a coarse-grained
energy dissipation rate to within a predicted uncertainty as shown in Fig. 3.8.
Systematic errors βi are smaller than random errors δi(R) for R > 2L11.

• The random error of the gradient method δG(R) converges at least 4-5 times
faster than ϵI2 (compare Eqs. (3.49) and (3.50)).

• Only ϵG reliably estimates the transient energy dissipation rate ⟨ϵ⟩R although it
is most vulnerable to experimental imperfections/limitations.
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Appendix 3.A Nomenclature

Symbol Definition Equation Dimensions
A large-scale anisotropy parameter 3⟨u′2

1 ⟩/(2k)
CK Kolmogorov constant related to E(κ) 1.5
Cϵ dissipation constant 0.5

Dij(r) second-order velocity structure function tensor (3.5) L2T−2

E(κ) energy spectrum function
∫∫∫∞

−∞
1
2Φii(κ)δ(|κ| − κ)dκ L3T−2

E11(κ1) one-dimensional energy spectrum (3.10) L3T−2

F11(f) power spectral density of longitudinal velocity ∆t
N

F(u1(t))F∗(u1(t)) L2T−1

F(x) (discrete) Fourier transform ∑N−1
j=0 x(tj) exp(−2πitj/∆t)

I turbulence intensity σu′
1
/U

L length scale characteristic of large eddies, e.g. energy injection scale k3/2/ϵ L
L11 longitudinal integral length scale of the turbulent flow (3.19) L

Rij(r) velocity (two-point, one-time velocity auto-) covariance tensor (3.3) L2T−2

Rijkl(r) velocity gradient covariance tensor (3.7) T−2

Re Reynolds number UL
ν

Rλ Taylor-scale Reynolds number
√

15σ4
u1

ν⟨ϵ⟩

ReL turbulence Reynolds number k1/2L
ν

Sij strain rate tensor (∂ui(x,t)
∂xj

+ ∂uj(x,t)
∂xi

)/2 T−1

T longitudinal integral time scale of the turbulent flow
∫∞

0 f(τ)dτ T
U , Uτ global-mean velocity vector of the flow and the local-mean of the longitudinal velocity component (3.1) LT−1

for averaging window of duration τ relative to the virtual probe
afit fit parameter related to Eq. (3.49)
Ė energy injection rate of the DNS L2/T−3

f frequency T−1

f(r) longitudinal velocity auto-correlation [coefficient] function R11(r)/R11(0)
g(r) transverse velocity auto-correlation [coefficient] function f(r) + r∂rf(r)/2
k turbulent kinetic energy (u′2

1 + u′2
2 + u′2

3 )/2 L2T−2

r, r distance vector (or rather radial coordinate) and its absolute value L

sij [velocity] fluctuation strain rate tensor (∂u′
i(x,t)
∂xj

+ ∂u′
j(x,t)
∂xi

)/2 T−1

t time T
u (Eulerian) velocity vector of the flow u1e1 + u2e2 + u3e3 LT−1

u′ velocity fluctuation vector of the flow u−U LT−1

⟨u′2
1 ⟩ variance of longitudinal velocity fluctuations

∫∞
0 E11(κ1)dκ1 L2T−2

x position vector x1e1 + x2e2 + x3e3 L
Φij(κ) energy tensor (velocity spectrum tensor) (3.8) L5T−2

α fit parameter related to Eq. (3.49)
δij Kronecker delta
∆t time increment min{tj+1 − tj} T
ϵ energy dissipation rate L2T−3

ϵ0(x, t) instantaneous energy dissipation rate (3.11) L2T−3

ϵR locally volume averaged energy dissipation rate (3.12) L2T−3

⟨ϵ⟩ global-mean energy dissipation rate (rate of dissipation of turbulent kinetic energy) (3.13) L2T−3

ϵijk Levi-Cevita tensor
ζn nth-order structure function exponent d log DL...(r)

d log r

ηK Kolmogorov length scale (ν3/⟨ϵ⟩)1/4 L
θ angle of incidence between probe orientation and longitudinal flow direction °
κ wave vector L

λ longitudinal Taylor (micro-)scale
√

30νu′2
1

⟨ϵ⟩ L

ν kinematic viscosity L2T−1

σx standard deviation of quantity x
σu′

1
root mean square of longitudinal velocity fluctuations LT−1

ω angular frequency 2πf T
⟨. . . ⟩N ensemble average
⟨. . . ⟩R volume average [line average for 1D signal]

Table 3.5 Nomenclature for the turbulent flow. If our naming convention differs from the
terminology in [5], we add the convention of Pope in parentheses. Our annotations are
marked by brackets. Equations are either directly given or referenced from definitions below.
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Symbol Definition
1, 2, 3 indices of vectors and tensors

C cutoff
D dissipation range
G gradient
I2 inertial range of second-order structure function
I3 inertial range of third-order structure function
L longitudinal
N ensemble (e.g. ⟨·⟩N for ensemble average)

N . . . transverse (e.g. NN for transverse second-order structure function)
R averaging window size in space
S inertial range of the power spectral density
p probe

ref (ground-truth) reference
τ averaging window size in time

Table 3.6 Nomenclature for the subscripts.
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Ė

〈ε(x, t)〉N
〈εi〉N

A B

Figure 3.10 Validation of estimating the energy dissipation rate from ϵG, ϵI2, ϵI3, ϵS , and
ϵL. All estimates are re-scaled by the energy injection rate Ė. The data is taken from DNS
1.1 (A) and 2.1 (B), turbulence intensity I = 1%. The ensemble mean of each method ⟨ϵi⟩N

is denoted by red dots where the whiskers extend from the minimal to maximal estimate
of ϵi where i ∈ {G, I3, I2, S, L}. As the inertial range of DNS 1.1 (I = 1%, θ = 0° and
maximal available averaging window) is not well pronounced due to the low Rλ ∼ 74, we used
the maximum of Eq. (3.15) in order to retrieve ϵI2,3. The dashed line represents the global
mean energy dissipation rate of DNS 1.1 and 2.1 (Rλ = 219, I = 1%, θ = 0° and maximal
available averaging window), respectively, which is approximated by the ensemble average of
the true mean energy dissipation rate along the trajectory of each virtual probe. ϵref is the
reference distribution of ground-truth global mean energy dissipation field originating from
the dissipation field along the trajectory of each virtual probe.
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Figure 3.11 Estimates of the mean energy dissipation rate as a function of the fit-range for ϵI2
and ϵS for DNS 3.1 (1000 probes, Rλ = 302, I = 1%, θ = 0° and maximal available averaging
window) re-scaled by the energy injection rate Ė. The solid line represents the ensemble
average whereas the shaded region is given by the standard deviation. r0 ∈ [10ηK , 100ηK ] is
the lower boundary of the fit-range for ϵI2 where the upper boundary is fixed at r1 = 500ηK .
For ϵS , the fit-range is given by f ∈ [U/r1, U/r0]. The dashed line denotes the global mean
energy dissipation rate.
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Figure 3.12 Convergence of higher-order statistical quantities and longitudinal integral
length scale as well as small and large-scale anisotropy obtained from all virtual probes
of DNS 1.1 (Rλ = 74, I = 1%, θ = 0°). (A) The variance of the longitudinal velocity
fluctuations ⟨u′2

1 ⟩ and the longitudinal integral length scale LR
11 as a function of averaging

window size R normalized by the Kolmogorov length scale ηK . ⟨u′2
1 ⟩ is re-scaled by the

ensemble averaged variance of the longitudinal velocity fluctuations. For large R, ⟨⟨u′2
1 ⟩R⟩N

converges to ⟨u′2
1 ⟩ ≈ ⟨⟨u′2

1 ⟩⟩N (blue-dotted line) and the systematic error of the variance
(solid-black line), Eq. (3.41), decays to 0. LR

11 is the longitudinal integral length scale obtained
from averaging windows of size R. For large R, LR

11 should converge to L11 (red-dotted
line) which is not fully achieved in this range of R. (B) Premultiplied PDFs of second and
third-order velocity increments over distances r = 50ηK and r = 150ηK . The tails of the
pre-multiplied PDFs have decayed to zero for large (and re-scaled) increments ∆ru

′
1/σu′

1
so

that they can globally considered to be converged. (C) Small-scale anisotropy based on the
ratio of longitudinal gradients to the instantaneous energy dissipation B = ϵG/⟨ϵ0(x, t)⟩. In
isotropic turbulence, B = 1 on average. (D) Large-scale anistropy parameter A = 3⟨u′2

1 ⟩/(2k)
as a function of averaging window R where k is the turbulent kinetic energy and ⟨u′2

1 ⟩ the
variance of the longitudinal velocity fluctuations. In isotropic turbulence, A = 1 on average.
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Figure 3.13 Different estimated of the integral length from DNS 3.1 withRλ = 302, I = 1%,
θ = 0° and maximal available averaging window). L0

11 is inferred from integrating f(r) to
its first zero whereas L1/e

11 refers to the integration of f(r) > 1/e. Lfit
11 extends f(r) with an

exponential tail where the integration is performed up to infinity. The black dotted line is
the reference from DNS 3.1 obtained by Eq. (3.19). All estimates are re-scaled by ηK .
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Figure 3.14 Convergence of energy dissipation rate estimates for ϵL. The empirical random
error δL(R) is plotted as a function of re-scaled averaging window size R/L11 from VDTT
experiments at various Rλ. The analytical result for the random error (Eq. (3.43)) is shown
by the dashed black line. (Inset) The insets show the length of the averaging window in
terms of ηK where δ̂R

L is less than 50% as a function of Taylor microscale Reynolds number
Rλ. The inset plot shows data from DNS 1.3, 2.3 and 3.3 (red triangles) and the VDTT (grey
circle). The three red dots mark the experiments with the highest Rλ where the isotropy of
the grid forcing in the VDTT is not guaranteed anymore. The solid, blue line shows Eq. 3.49
resolved for R0.5/ηK . The double logarithmic fit (logR/ηK = 3

4 log 9
4

3
20 − 2 log afit +α log Rλ)

is performed for the scaling argument resulting in α = 1.87 ± 0.06 and afit = 1.75 ± 0.22
(black dash-dotted line) .
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Figure 3.15 Skewness and kurtosis of all VDTT experiments as a function of Rλ. The
skewness vanishes for normally distributed velocity time records. Similarly, the kurtosis
equals 0 for normally distributed velocity time records, according to Fisher’s convention.
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Figure 3.16 Longitudinal second-order structure functions for DNS 1.1 (A), DNS 2.1 (B),
and DNS 3.1 (C). The grey shaded region represents the fit-range (Eq. (3.15)) for each DNS.
The individual longitudinal second-order structure functions are calculated from the velocity
time records along the e1-direction of each virtual probe (blue lines). The ensemble averaged
longitudinal second-order structure functions are shown in red.
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Figure 3.17 Resolution effect on ϵG. ϵcG refers to the coarse-grained velocity time record.
Coarse-graining is realized by taking only every nth value of the fully resolved velocity time
record where n ∈ [1, 512], thereby controlling the resolution kmaxηK . Velocity data are taken
from DNS 2.0 (Rλ = 142, R ≈ 32000ηK , I = 10%, θ = 0°).
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Chapter 4

Atmospheric Turbulence and Cloud
Microphysics in the Trade-wind
region

In this chapter, I report on atmospheric turbulence characteristics both in cloud-free and
cloudy air in the trade wind region. Therefore, I consider time-records of the longitudinal
velocity unless otherwise stated. Furthermore, I describe cloud microphysics of trade-
wind cumulus clouds sampled by cloud droplet probes as mentioned in Chapter 2.
The droplet number concentration n, Eq. (1.66), is obtained using time-records of the
longitudinal velocity by the PSS8 pitot tube and cloud droplet probes to count the
cloud droplets per time.

If not mentioned otherwise, both atmospheric turbulence characteristics and cloud
microphysics are derived from relative wind speed measurements, which are in the
longitudinal, i.e. streamwise, direction of the flow in a first approximation. Hence,
these longitudinal velocity time-records are neither transformed to the Earth frame-
of-reference nor corrected for platform motion. For that reason, the vertical eddy
covariance measurements are not meaningful and will not be part of this thesis. However,
I will show that corrections are not required in a certain range of scales for characterizing
atmospheric turbulence if relevant modes of the platform motion are filtered. If not
mentioned otherwise, a 4th order Butterworth filter is used to retrieve low-pass filtered
velocity time-series with scipy.signal.filtfilt.

Reasonable platform motion correction requires i.a. three-dimensional filtered
orientation and angular velocity time series. Regarding the large-scale motion and
assuming that the mean wind speed U ∼ 10 m/s and u′ ≲ 1 m/s, the platform rotates
about up to 10° in time periods of several seconds. This amounts to rotation rates
of up to 10 °/s. To temporally resolve platform motions occurring on smaller scales
(compare power spectral density of the roll rate in Sec. 2.4.2), high temporally resolved
measurements at > 10 Hz with sub-degree accuracy (< 0.1°) are needed in order to
capture platform angular velocity accurately. The SBG Ellipse-N is nominally capable
of sub-degree accuracy and temporal resolution of up to 200 Hz. Unfortunately, the
yaw angle measurements are polluted by a drift on the order of 360 °/h, which is nearly
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impossible to correct. It is possible that this deficiency is caused by ground loops
in the MPCK both instrument boxes (MPCK+ and mini-MPCK). Another possible
explanation is the setting of the acquisition frequency of 200 Hz, which might stretch
the capabilities of the SBG in conditions of mediocre GNSS reception. In the future,
SBG will be operated at 20 Hz only and ground loops have been identified and avoided
in revised iterations of both instrument boxes.

In this chapter, I first report on atmospheric turbulence measurements at constant
altitude to illustrate and justify the analysis procedure (Sec. 4.1). Then, I provide
estimates of atmospheric turbulence characteristics within the marine boundary layer
as a function of altitude as well as diurnal cycle and assess the anisotropy of the
atmospheric flow (Sec. 4.2 and Sec. 4.3). Subsequently, I give an overview of cloud
microphysical measurements during the EUREC4A field campaign and a hint at cloud
droplet spatial clustering in a precipitating cloud (Sec. 4.4). At last, the effect of
filtering is evaluated in Sec. 4.B.

Eberhard Bodenschatz, Gholamhossein Bagheri, Freja Nordsiek, Philipp Höhne,
Oliver Schlenczek, Torben Neumann and me developed and built the MPCK+. Eber-
hard Bodenschatz, Gholamhossein Bagheri, Freja Nordsiek,Oliver Schlenczek, Antonio
Ibañez Landeta and me developed and built the mini-MPCK. During EUREC4A ,
Eberhard Bodenschatz, Gholamhossein Bagheri, Freja Nordsiek, Antonio Ibañez Lan-
deta, Oliver Schlenczek, Marcel Meyer, Andreas Kopp, Johannes Güttler, Kashwan
Hall and I acquired the data. Eberhard Bodenschatz, Gholamhossein Bagheri, Freja
Nordsiek,Oliver Schlenczek and I organized the data. I performed the data analysis.

4.1 Atmospheric Turbulence Measurements at Con-
stant Altitude

Turbulence measurements in the atmosphere are challenging because of, i.a., changing
synoptic conditions, diurnal cycle and topographic effects. Even in marine environments,
the mean wind direction varies in time and in space. Considering Flight 12 on
M161 aboard RV Meteor during EUREC4A field campaign, I prove the concept of
characterizing atmospheric turbulence with the Max Planck Cloudkites including the
choice of the averaging window T in a non-stationary flow. Thereby, I focus on the
simplest instrument box, the micro-MPCK, which behaves like a weather vane as
argued in Sec. 2.D. Hence, the influence of platform alignment motions is negligible in
a first approximation. In consequence, neither filtering nor corrections for platform
motion are applied in this section. As Flight 12 serves to acquire long time series at
nominally constant altitude, the altitude profile is also simple and suited for optimizing
statistical convergence. In this section, I first provide an overview of M161 Flight 12.
After that, I demonstrate statistical convergence in atmospheric turbulence and find the
best size for the averaging window. At last, I present bulk turbulence characteristics
for M161 Flight 12. The energy dissipation rate estimates in the sub-cloud layer will
be considered in more detail in Sec. 4.2.
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4.1.1 Overview of M161 Flight 12
During M161 Flight 12, the micro-MPCK was launched on February 15 2020 at 18:48
UTC and landed on February 16 2020 at 12:25 UTC which amounts to approx. 17
flight hours. Thus, Flight 12 on M161 is one of the longest continuous flights during the
EUREC4A field campaign. As shown by the barometric altitude time-record zPSS8(t)
of the micro-MPCK in Fig. 4.1A, the micro-MPCK was probing the atmospheric
boundary layer in a narrow altitude range between 80 m to 120 m above MSL where
the altitude fluctuates approximately by σzPSS8 ≈ 6 m. Together with the total flight
time, this flight strategy gives the possibility to illustrate statistical convergence in the
context of atmospheric measurements across the diurnal cycle.

The effect of the diurnal cycle on the air temperature is shown by the air temperature
time-record in Fig. 4.1B. The diurnal cycle is strongly connected to radiative heating
by the sun. Close to Barbados, the sunset is at approx. 18:00 AST (UTC - 4) and
sunrise at approximately 06:30 AST. The decrease in air temperature (Fig. 4.1B) starts
at 02:00 UTC and lags 4 h behind the sunset. This time delay is attributed to the
huge heat capacity of the ocean heating the boundary layer after sunset. The decrease
in air temperature by 0.5 K lasts ∼ 4 h (from 02:00 to 06:00 UTC) while the increase
after sunrise takes only 1 h. Hence, the diurnal cycle causes air temperature changes
on time scales ∼ 1 h. As mentioned below, this time scale seems to be critical for the
assumption of a stationary turbulent flow.

In addition to atmospheric state parameters, such as static pressure ps and air
temperature T , the micro-MPCK measured the relative wind in terms of the longitudinal
velocity u1(t) as a function of time (Fig. 4.1C). Visually, u1(t) is prone to large-scale
variations on time scales ≳ 1 h, which might be related to the RV Meteor velocity with
respect to ground. As mentioned above, reasonable correction for platform motion
is not possible but also not necessarily required for the keel-strapped micro-MPCK.
Under the assumption of statistically stationary turbulence, a vertical mean velocity
profile can be estimated in order to check at which altitude the micro-MPCK leaves the
wake of RV Meteor. The height-averaged longitudinal velocity ⟨u1(t)⟩z over vertical
increments of 5 m as a function of altitude above MSL is shown in Fig. 4.1D. ⟨u1(t)⟩z

saturated for altitudes higher than ∼ 40 m indicating that the micro-MPCK is out of
the wake of RV Meteor and possibly the atmospheric surface layer.

4.1.2 Statistical Convergence in atmospheric turbulence
Characterizing a stationary turbulent flow requires statistical convergence of at least
the mean and variance estimates. As mentioned in Sec. 1.2.6, I define ⟨u′2

1 ⟩τ to be
converged if the systematic error, Eq. (1.63), is much smaller than the random error√

2⟨u′2
1 ⟩2T11/τ being defined in [56] for τ ≫ T11. Both systematic and random errors

decrease monotonically with τ . Thus, it is favorable to choose the maximally available
averaging window τ . To illustrate the effect of the averaging window τ , u1(t) is assumed
to be stationary in time. Later, this assumption will be checked as well.
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Figure 4.1 Overview of M161 Flight 12 on RV Meteor over night from February 15 2020 to
February 16 2020 during EUREC4A field campaign. Barometric altitude time-record zPSS8(t)
of the micro-MPCK flown at approximately constant altitude above MSL (A). Time-records
of air temperature T (B) and relative wind speed u1(t) (C) are shown for the entire flight. D:
The mean wind speed averaged over altitude increments of 5 m saturates for altitudes higher
than ≈ 40 m above MSL.

At first, I investigate the dependence of variance estimates from the longitudinal
velocity time record ⟨u′2

1 ⟩τ on the temporal averaging window size τ . Therefore, ⟨u′2
1 ⟩τ

is evaluated for each τ for the entire time series following the procedure in [56] where
each averaging window τ corresponds to one realization of the flow. Then, ⟨⟨u′2

1 ⟩τ ⟩N is
the ensemble average of ⟨u′2

1 ⟩τ as shown in Fig. 4.2A. The shaded region is given by the
standard error of the mean in order to capture statistical scatter. The large deviation
between ⟨⟨u′2

1 ⟩τ ⟩N and the predicted variance estimate, Eq. (1.61) with τ ≲ 5T11
(T11 = 46 s), is expected. In the range of 40T11 ≤ τ ≤ 70T11, ⟨⟨u′2

1 ⟩τ ⟩N overlaps with
the predicted variance estimate, Eq. (1.61) with τ = 65T11, within the standard error.
In Fig. 4.2A, τ = 50T11 is in the center of the overlap region between the empirical
and theoretical curve. For τ > 80T11, ⟨⟨u′2

1 ⟩τ ⟩N deviates strongly from the predicted
variance estimate, Eq. (1.61), suggesting non-stationarity. This is in accordance with
the time scale over which the air temperature changes (M161 Flight 12: ∼ 1 h due to
diurnal cycle, Fig. 4.1B). Hence, τ ∼ 1 h poses an upper limit on reasonable averaging
windows although it has to be emphasized that this is a time scale, which itself is
influenced by environmental conditions unlike in laboratory experiments or simulations.
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To focus on time scales below 1 h, i.e. the time scale of non-stationarity, the
longitudinal velocity time record is divided into segments of 3600 s ≈ 78T11 where the
ensemble consists of S segments. In each segment, ⟨⟨u′2

1 ⟩τ ⟩N is evaluated similar to the
previous procedure. Consequently, ⟨⟨⟨u′2

1 ⟩τ ⟩N⟩S is the ensemble average of ⟨⟨u′2
1 ⟩T ⟩N

over all segments S. Then, the predicted variance estimate, Eq. (1.61) with τ = 65T11,
is within the standard error of ⟨⟨⟨u′2

1 ⟩τ ⟩N⟩S in the range 10T11 ≤ τ ≤ 78T11 (Fig. 4.2B).
In Fig. 4.2A, τ = 39T11 is at the beginning of the overlap region while τ = 50T11 is
in the center of the overlap region between the empirical and theoretical curve, as
mentioned before. For τ = 1800 s ≈ 39T11, ⟨⟨⟨u′2

1 ⟩τ ⟩N⟩S is underestimated by ≈ 5%
compared to ⟨u′2

1 ⟩65T11 . Using
√

2⟨u′2
1 ⟩2T11/τ for the random error of the variance

estimate [56], the random error of ⟨u′2
1 ⟩τ is 18% which is significantly larger than the

systematic error of the variance estimate. Hence, ⟨u′2
1 ⟩τ is reasonably converged for

τ = 1800 s in the limit of accuracy. To resolve turbulence characteristics in time, I
choose the averaging window τ = 39T11, which is the shortest reasonable averaging
window possible.
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Figure 4.2 Variance estimates of longitudinal velocity time record ⟨u′2
1 ⟩τ as a function

of the temporal averaging window size τ re-scaled by the integral time scale T11 = 46 s.〈⟨u′2
1 ⟩τ

〉
N represents the ensemble average based on the averaging window τ . The shaded

blue region is given by the standard error of the mean. The systematic underestimation of
the variance estimate is shown by the solid black line and given by Eqs. (1.63) and (1.61).
A: u′

1(t) is assumed to be stationary. τ = 39T11 is at the beginning of the overlap region
while τ = 50T11 is in the center of the overlap region between the empirical and theoretical
curve. B: Taking into account the non-stationarity, the longitudinal velocity time record
is divided into segments of S = 3600 s. In each segment,

〈⟨u′2
1 ⟩τ

〉
N is evaluated for each τ .〈〈⟨u′2

1 ⟩τ
〉

N

〉
S

is the average of
〈⟨u′2

1 ⟩T

〉
N over all segments S. The black dashed line illustrates

⟨u′2
1 ⟩65T11 , i.e. the variance estimate based on an averaging window of 65T11. The theoretical

expectation, Eq. 1.63, is within the standard error of the variance estimate with an averaging
window τ = 39T11 denoted by ⟨u′2

1 (t)⟩39T11 . In the following, the shortest reasonable averaging
window is chosen to τ = 39T11 in order to resolve turbulence characteristics in time.

However, atmospheric flows are generally non-stationary due to, i.a., the diurnal
cycle. Above, we assumed u1(t) to be a statistically stationary time-record of the
longitudinal velocity. According to [5], a time series of a random process is statistically
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stationary if all statistics are independent of a shift in time. Here, a less strict criterion
has to be applied because the mean velocity of the flow is not accurately known due
to time-dependent platform motions as a result of ship motions. Therefore, I regard
u1(t) as statistically stationary if changes of ⟨u′2

1 (t)⟩τ under time shifts of the averaging
window τ are smaller than the random error of the variance estimate

√
2⟨u′2

1 ⟩2T11/τ

[56]. In the following, I will refer to ⟨u′2
1 ⟩65T11 as the reference for estimating errors

because τ = 65T11 is significantly shorter than τ = 78T11 and still agrees with the
prediction, Eq. (1.61), as shown in Fig. 4.2A. In doing so, the random error ⟨u′2

1 ⟩τ is
18% for τ = 1800 s and 32% for τ = 600 s. The systematic errors are 4% and 15%,
respectively, in comparison to ⟨u′2

1 ⟩65T11 .
Figure 4.3 shows ⟨u′2

1 (t)⟩τ as a function of time indicating that ⟨u′2
1 (t)⟩τ fluctuates

significantly. This might hint at the fact that the stationarity assumption is not
fulfilled globally. As an example, ⟨u′2

1 (t)⟩τ drops by 60% on February 16 2020 at 04:30
UTC (dotted line in Fig. 4.3), which is larger than the random error of the variance
estimate

√
2⟨u′2

1 ⟩2T11/τ for both τ = 600 s and τ = 1800 s. However, there are local
time intervals (e.g. February 15 2020 at 23:45 UTC to February 16 2020 at 01:25
UTC, the gray shaded region in Fig. 4.3) over which u1(t) appears to be approximately
statistically stationary. In that time interval, ⟨u′2

1 (t)⟩1800 s is constant within 12%, which
is smaller than the random error of ≈ 18%. Furthermore, ⟨u′2

1 (t)⟩τ fluctuates about
17% for τ = 600 s, which is lower than the random error, too. Remarkably, ⟨u′2

1 (t)⟩600 s
tends to be lower than ⟨u′2

1 (t)⟩1800 s, which is due to the underestimated variance as
illustrated in Fig. 4.2. To summarize, the choice of an averaging window τ = 1800 s
compromises between statistical convergence and still being temporally shorter than
characteristic time scales of non-stationarities of ∼ 1 h. This is further consistent with
Risius et al. [54] and Stull [40] as mentioned in Sec. 1.2.6.

4.1.3 Bulk Turbulence Characteristics of M161 Flight 12
A major goal of this section is to prove the capability of the Max Planck Cloud
Observatory to characterize atmospheric turbulence based on one-dimensional velocity
time-records along the trajectory of the micro-MPCK within the limits of (statistical)
accuracy. The configuration of the micro-MPCK can be considered as the experimental
equivalent of the idealized weather vane which is why the micro-MPCK bridges the
gap between simulation and in-situ measurement. Advantageously, it has been shown
in Sec. 2.4.4 that basic turbulence characteristics such as the energy dissipation rate
are only slightly affected by the alignment motions of a weather vane. For that reason,
one can assume that turbulence statistics obtained from measurements with the micro-
MPCK do not necessarily require corrections of these alignment motions or filtering.
After describing the bulk turbulence characteristics of M161 Flight 12, this assumption
will be discussed by comparing it to VDTT experiments.

In this thesis, turbulence is characterized in terms of the mean energy dissipation
rate. To cope with non-stationarity, the estimation of the mean energy dissipation
rate is based on an averaging window τ = 1800 s (Sec. 4.1.2). It has been shown
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Figure 4.3 The variance of longitudinal velocity fluctuations ⟨u′2
1 (t)⟩τ based on an averaging

window τ as a function of UTC time. Two averaging windows τ = 1800 s and τ = 600 s are
chosen to visualize the effect of time shifting the averaging window. If the change in ⟨u′2

1 (t)⟩τ

is smaller than the random error
√

2⟨u′2
1 ⟩2T11/τ for a specific time interval, the flow can be

regarded as stationary for this time window (e.g. grey region). The dotted line indicates
04:30 UTC.

in Chapter 3 that the most reliable estimate of the energy dissipation rate is ϵI2 for
airborne measurements in the atmosphere as it is least affected by misalignment as well
as finite turbulence intensity I and as it converges reasonably fast. Estimating the mean
energy dissipation rate by ϵI2 requires mapping the longitudinal velocity time-record
onto one-dimensional spatial lags, which invokes Taylor’s hypothesis (Sec. 3.2.1). As
the mean turbulence intensity for M161 Flight 12 is I = 9% (Imax = 12%), Taylor’s
hypothesis can be safely applied. Hence, the energy dissipation rate can be obtained
following the procedure as illustrated in Fig. 3.1. The resulting estimates for ϵI2 and
turbulence quantities relying on ϵI2 are presented by histograms in bulk ignoring the
diurnal cycle or other changes in synoptic conditions.

ϵI2 is obtained by fitting the second-order longitudinal structure function DLL(r)
in the inertial range. Fig. 4.4A shows the second-order longitudinal structure functions
Dτ

LL(r) estimated for each averaging window τ (blue lines). Under the assumption of
stationarity, ⟨Dτ

LL(r)⟩N is obtained by ensemble-averagingDτ
LL(r) (red line). ⟨Dτ

LL(r)⟩N

reveals a pronounced inertial range with a r2/3+1/36-scaling as predicted by K62 (gray
dashed line). This is supported by the local scaling exponent ζ2(r) being defined by
[188]:

ζ2(r) = d logDLL(r)
d log r . (4.1)

The fit region r ∈ [2 m, 20 m] is visually identified based on Fig. 4.4A and shaded
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in gray. The best fitting range for ⟨Dτ
LL(r)⟩N would be r ∈ [2 m, 6 m] although ζ2(r)

scatters strongly for individual Dτ
LL(r) in that range. The longer fit range is chosen

to reduce the influence of that scatter on ϵI2. However, as ζ2(r) = 0.71 on average
(standard deviation of 0.09) for 2 m ≤ r ≤ 20 m, it is acceptable to use ϵI2 invoking
r2/3-scaling according to K41. The resulting estimates of ϵI2 obtained from each Dτ

LL(r)
are cumulatively shown by the histogram of the energy dissipation rate estimates ϵI2
(Fig. 4.4B). The most frequent mean energy dissipation rate during M161 Flight 12 is
ϵI2 ≈ 8 mW/kg. This value is in accordance with energy dissipation rate estimates in
mountainous terrain where a range between 10−4 − 10−2W/kg is observed [54]. More
precisely, Fig. 4.4B shows a double peak. In the first half of M161 Flight 12, the
time-resolved ϵI2 (τ = 1800 s) strongly fluctuates by a factor of 2 while ϵI2 is more
uniform in the second half of M161 Flight 12. The strong fluctuations in the first half
might be due to the advection of more turbulent patches. However, the presence of the
double peak lacks detailed understanding. For completeness, the averaging window is
chosen in time to be τ = 1800 s, which is converted into the spatial averaging window
R = ⟨u1(t)⟩ττ as shown in Fig. 4.4D. The most frequent spatial averaging window R is
17 km.

The estimate of the mean energy dissipation rate ϵI2 serves as a basis for estimating
the Kolmogorov length scale ηK , Eq. (1.12), the longitudinal Taylor micro-scale λf ,
Eq. (1.34), the integral length scale L11, Eq. (1.29), and the Taylor-scale Reynolds
number Rλ, Eq. (1.38). The corresponding histograms are shown in Fig. 4.5A-D. Start-
ing with ηK , the most frequent Kolmogorov length scale is ηK = 0.75 mm. Moreover,
λf is most frequently 0.16 m whereas the most likely integral length scale L11 is 21 m.
Using the relation for the transverse Taylor micro-scale λg =

√
10η2/3

K L1/3 [5], one

can estimate the energy injection scale from ηK and λg: L =
(

λg√
10η

2/3
K

)3
≈ 81 m with

ηK = 0.75 mm and λg = 0.11 m. In homogeneous isotropic turbulence with L11 = L/2
at high Rλ, the integral scale is ≈ 40 m which is close to the average integral scale of
⟨L11⟩N ≈ 38 m but twice as large as the most frequent L11 in Fig. 4.5C. As the most
likely Rλ is ≈ 4300 and ⟨Rλ⟩N ≈ 5100 (4.5D), the assumption on high Rλ is valid.
Despite this discrepancy and taking into account that the integral scale is estimated
by a scaling argument, the estimated length scale across the entire range of turbulent
scales are consistent.

To evaluate the accuracy of the Taylor-scale Reynolds number and the turbulence
length scales, the accuracy of ϵI2 is critical. As mentioned before, the accuracy of ϵI2
can be captured by the systematic and random error based on the averaging window
R and integral length scale L11. The random error is estimated by Eq. (3.45). The
relative systematic error δsys

I2 (R) can be derived similarly to δI2(R) (Sec. 3.3.4):

δsys
I2 (R) =

(
1 − 2L11

R

)3/2
− 1 , (4.2)

where the histograms of δsys
I2 (R) and δI2(R) are shown in Fig. 4.6. The systematic error

δsys
I2 (R) is <2% and can be neglected in the following. The most frequent random error
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Figure 4.4 Energy dissipation rate estimate ϵI2 for M161 Flight 12 derived from second-order
longitudinal structure functions. A: The second-order longitudinal structure function Dτ

LL(r)
is estimated for each averaging windows τ (blue lines). Under the assumption of stationarity,
the ensemble average ⟨Dτ

LL(r)⟩N is shown by the red line. The expected K62 scaling in the
inertial range is indicated by the gray dashed line. The fit region is visually identified and
shaded in gray. B: Histogram of the energy dissipation rate estimate ϵI2 obtained from each
Dτ

LL(r). The fit range corresponds to the gray-shaded region in (A) or (C). C: Local scaling
exponent ζ2(r) of Dτ

LL(r) (blue lines) according to Eq. (4.1) and ⟨Dτ
LL(r)⟩N (red line). The

expected scaling exponents in the inertial range are drawn for K41 (gray dashed line) and
K62 (gray dotted line). The fit region is gray-shaded. D: The averaging window is chosen in
time τ = 1800 s converting to the spatial averaging window R = ⟨u1(t)⟩ττ , which is shown in
the histogram.
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Figure 4.5 Bulk turbulence characteristics of M161 Flight 12 for averaging window of
τ = 1800 s. Histograms are shown for the Kolmogorov length scale ηK (A), the longitudinal
Taylor micro-scale λf (B), the integral length scale L11 (C) and the Taylor micro-scale
Reynolds number Rλ (D). Histograms in B, C and D are limited up to 20 counts (#) for
better visibility.
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Figure 4.6 Histograms of the systematic error δsys
I2 (R) (A) and the random error δI2(R)

(B) of the energy dissipation rate estimate ϵI2 for M161 Flight 12. R = Uτ is the spatial
averaging window with τ = 1800 s. Both errors are estimated from L11 and ⟨u′2

1 ⟩R based on
the same R and, hence, have to be regarded rather as statistical estimates.
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is δI2(R) = 8% based on the estimated R and L11.
While the plausibility of the length scale has been demonstrated above, the signifi-

cance of the Rλ-estimate is assessed in the following. Estimating Rλ by Rλ ≡ u′λg/ν

and choosing u′ =
√

⟨u′2
1 ⟩65T11 = 0.81 m/s, ν = 1.552 × 10−5 m2/s and λg = 0.12 m, one

obtains Rλ ≈ 6300. This is 15% higher than ⟨Rλ⟩N ≈ 5100 (Fig. 4.5A) which has been
derived from ϵI2 and L11. The expected error e(Rλ) due to the random error in ϵI2 can
be calculated by Gaussian error propagation and by the chain rule to

e(Rλ) =
∣∣∣∣∣∂Rλ

∂ϵI2
δI2(R)ϵI2

∣∣∣∣∣ =
∣∣∣∣∣
(

Rλ

6ϵI2
− 2

3
Rλ

ϵI2

)
δI2(R)ϵI2

∣∣∣∣∣
= 1

2RλδI2(R) ≡
∣∣∣∣∣∣
∂
(

u′λg(ϵI2)
ν

)
∂ϵI2

δI2(R)
∣∣∣∣∣∣ (4.3)

with

∂

∂ϵI2
L2/3 = −2

3
1
ϵI2
L2/3 , (4.4)

Equation (4.3) yields e(Rλ = 5100) ≈ 200 and e(Rλ = 6300) ≈ 250 assuming that the
random error is 10% (compare the most frequent value in Fig. 4.6B). Using the maximum
value of δI2(R) observed during M161 Flight 12 ( δI2(R) ≈ 15%), e(Rλ = 5100) ≈ 380
and e(Rλ = 6300) ≈ 470. These values suggest that the uncertainty in Rλ cannot
be fully captured by the random error of ϵI2. Presumably, it is further affected by
the uncertainty in L11 of about 50% as illustrated by the deviation between the most
frequent and mean value of L11. Notably, δI2(R) is proportional to L3/2

11 . Thus, δI2(R)
potentially changes by a factor significantly larger than 1. However, Rλ is less amplified
by ν in Eq. (1.38) which scales only as ν−1/2 in contrast to Rλ ≡ u′λg/ν. A similar
range in Rλ has been observed in the surface layer in mountainous terrain with a most
likely Rλ ≈ 3000 and maximal Rλ ∼ 104 [54].

At last, these measurements are compared to VDTT experiments [188]. The first
point to note is that the PSS8 cannot resolve the dissipative scales in flows with
ηK ∼ 1 mm. In addition, due to recovering the PSS8 velocity time measurement and
the filtering in the frequency domain at 12 Hz (see Sec. 2.A), the local scaling exponent
should not be trusted for scales below ∼ 1 m. The strong oscillation at those scales
might be also due to platform motion. Despite minor oscillations of ζ2(r) around 2/3,
the agreement of ζ2(r) derived from ⟨Dτ

LL(r)⟩N for r ∈ [2 m, 6 m] in the inertial range
with the K62-prediction is remarkable. Assuming the energy injection scale to be
L ∼ 80 m as estimated above, r/L ∼ 10−2 in the range 2 m ≤ r ≤ 6 m. In the decade
from 10−2 ≤ r/L ≤ 10−1, ζ2(r) shows a comparable plateau in the VDTT experiments
with Rλ > 1000, which is in accordance with the observed Rλ for M161 Flight 12.
For r > 20 m, a uniform scaling according to K41 or K62 is not expected anymore as
r ∼ L. Large scales at r > 20 m take longer to converge due to the complex nature of
atmospheric flows and are not expected to exhibit the same scaling behavior due to the
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non-universality of turbulence at scales comparable to or larger than L11. Furthermore,
the agreement of ζ2(r) in the inertial range with Kolmogorov’s prediction at least in
the range r ∈ [2 m, 6 m] suggests that the micro-MPCK measures statistically isotropic
turbulence. Hence, the flow distortion of the helikite is supposedly small in that range.
To summarize, the micro-MPCK is able to characterize turbulence in terms of the
mean energy dissipation rate, length scales and Taylor micro-scale Reynolds number.
The same holds for all other configurations that are keel-mounted. Tether-mounted
instruments measure a flow that is less distorted by the helikite but the dynamics of
platform motion are more complex, too.

4.2 Atmospheric Turbulence Characteristics of the
Marine Boundary Layer

In this section, turbulence characteristics of the trade-wind sub-cloud layer are presented.
After determining the height of the boundary layer depth, atmospheric stability
is described in terms of the Richardson number. Subsequently, bulk turbulence
characteristics are presented and the assumption on local isotropy validated.

4.2.1 Top of stably stratified Boundary Layers
Airborne measurements with the MPCKs are performed at various altitudes. To
compare these measurements, the altitudes have to be re-scaled by, e.g., the top of
the boundary layer (TBL). There are various definitions for the TBL relating to the
cloud base, the lifting condensation level or a capping inversion of a scalar. Here, we
will determine the TBL in terms of the virtual potential temperature θv, which is
approximately constant with altitude in the mixed layer due to turbulence-induced
mixing and warm-air entrainment from above [110, 189], hence

∂θv

∂z
= 0 . (4.5)

The layer above the mixed layer is usually called the free atmosphere or troposphere.
As the free atmosphere is warmer than the mixed layer, θv increases at the top of the
mixed layer [189], hence

∂θv

∂z
> 0 . (4.6)

This increase in θv is known as a capping inversion. Thus, the top of the boundary
layer can be determined based on (i) the mixed layer and (ii) the capping inversion.
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Figure 4.7 Vertical profiles of the virtual potential temperature θv(z) recorded by radiosondes
during EUREC4A field campaign. During M161 Flight 10, three radiosondes [88] were
launched on RV Meteor (cf. Sec. 2.4.3) where ascents are visualized by dash-dotted lines
and descents by dotted lines. The top of the boundary layer (TBL) is shown by the circle
where only the estimate TBLi is shown. Each vertical profile is colored in order to visualize
the diurnal cycle where the colorbar denotes the Atlantic Standard Time (AST) of the day
(HH:MM AST). AST corresponds to UTC - 4h.

Here, similar to [190], the top of the boundary layer is estimated from (i) by

TBLi = min
z

(|θv(z) − ⟨θv⟩ML| > δθv) , (4.7)

δθv = max (max (|θv(z) − ⟨θv⟩ML|) , 0.2 K) , (4.8)

where ⟨θv⟩ML is the average of θv in the mixed layer (ML) over the altitude range 100 m
to 400 m and 0.1 K is the absolute accuracy of the temperature. If TBLi < 500 m, TBLi

is set to 500 m because the cloud base was higher than 500 m above MSL according to
remote sensing data1. Exemplarily, the estimate TBLi is shown in Fig. 4.7 derived from
three radio soundings [88] during M161 Flight 10. During EUREC4A , radio sondes
were launched from RV Meteor and RV Maria S. Merian to profile the atmosphere for
measuring , e.g., air temperature, air pressure and relative humidity [88]. In contrast
to radio soundings (compare Sec. 2.4.3), the MPCK measurements did not always
reach altitudes above the inversion which is why θv is retrieved via Eq. (1.53) from
radio soundings [88]. The accuracy of TBLi is ∼ 100 m, which is comparable to the
variability of the cloud base as observed by radar reflectivity [191]. As radio soundings
correspond to one-dimensional samples along the flight trajectory, individual datasets
are potentially prone to large statistical scatter.

Moreover, motivated by simplified θv-profiles above the inversion [40, 189], the top
1Personal communication with Heike Kalesse-Los
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of the boundary layer can also be estimated from (ii) by linearly extrapolating the
θv-profile and looking for the interception with ⟨θv⟩ML. Then, the top of the boundary
layer can be estimated by

TBLii = min
z

(∣∣∣∣∣∂θv

∂z
z + θ0

v − ⟨θv⟩ML

∣∣∣∣∣ < 0.1 K
)
, (4.9)

where the slope ∂θv

∂z
and the interception θ0

v are obtained by a linear fit above the
inversion, i.e. z ranging from 900 m to 1900 m. Both approaches assume a simplified
profile of θv, where TBLi tends to underestimate TBL. Moreover, the accuracy TBLii

depends a lot on the sharpness of the inversion and the depth of the entrainment zone
above the mixed layer. Therefore, TBL results from averaging TBLi and TBLii in this
work.

4.2.2 Stability of the Boundary Layer
One important goal of this thesis is to characterize atmospheric turbulence in the
marine boundary layer over the full diurnal cycle. Turbulence is suppressed in stably
stratified boundary layers, though [40]. Therefore, it is further interesting to investigate
the stability of the boundary layer over the diurnal cycle, too, and to assess the strength
of turbulence. The Richardson number Ri is a dimensionless parameter that captures
the strength of static stability compared to shear-generated turbulence [41].

According to Eq. (1.55), the Richardson number depends on the vertical gradient
of horizontal wind components u1,2. Assuming that the MPCK instruments are aligned
with the stream-wise direction and that u2,3 ≪ u1, it is sufficient to consider the u1
component in the platform frame of reference. Hence, the gradient Richardson number
can be approximated for an averaging window τ by

Ri = g

⟨θv⟩τ

∂θv

∂z(
∂u1
∂z

)2 , (4.10)

where g = 9.81 m/s2 is the gravitation constant and ⟨θv⟩τ is the time average of θv for
an averaging window τ . The vertical gradients of θv and u1 are obtained by a linear
fit against the altitude z. Furthermore, the platform speed with respect to ground
is subtracted from the wind speed measurement in the platform frame of reference
under the assumption that the streamwise wind direction and the platform velocity
are always parallel. However, as the research vessels were not moving with constant
speed with respect to ground, a correction is necessary to capture the denominator
of Eq. (4.10) correctly. Moreover, the time-record of u1 is low-pass filtered at 1/30Hz
to suppress high-frequency platform motion. The author will usually estimate Ri by
Eq. (4.10) unless otherwise stated. In the following, Richardson numbers with absolute
values larger than ∼ 10 are unphysical (Sec. 1.2.5) and hence discarded.

During EUREC4A , the MPCK instruments recorded the virtual potential tem-
perature θv and wind velocity along the flight trajectory, hence at varying altitudes.
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Figure 4.8 Profiles of the virtual potential temperature θv (A), the longitudinal wind speed
u1 (B) recorded by the mini-MPCK and the Richardson number Ri (C), Eq. (4.10), for Flight
10 on RV Meteor (M161). The averaging window is τ = 1800 s. Ric = 0.25 is the critical
Richardson number below which the flow is fully turbulent. The barometric altitude zPSS8 is
obtained from the PSS8 and re-scaled by the top of the boundary layer (TBL). The color
code corresponds to the local time of the day (AST). The entire time series of M161 Flight
10 is shown in Fig. 2.7A.

Exemplary profiles acquired during M161 Flight 10 are shown in Fig. 4.8 where the
color code corresponds to the time of the day in AST (UTC - 4) and where the altitude
time series of M161 Flight 10 is shown in Fig. 2.7A. The color code also reveals if
the mini-MPCK ascended or descended. For example in Fig. 4.8A, the color of θv

changes from grayish (∼ 12:00 AST) at zPSS8/TBL ≳ 1 to light orange (∼ 15:00
AST) at zPSS8/TBL = 0 which corresponds to a descent. The top of the boundary
layer (TBL) is obtained from radio soundings as described in Sec. 4.2.1, which were
conducted simultaneously with research flights of the MPCK+ or the mini-MPCK.
Considering the mini-MPCK, θv is calculated from time-records of the static pressure
by the PSS8 and the corrected air temperature and specific humidity by the sonic
(Sec. 2.B). As shown in Figs. 4.8A and B, the daytime variability of both θv and
u1, also recorded by the sonic, is small during noon as the earlier ascent and later
descent nearly overlap. Vertically, θv is roughly constant during the ascent whereas
θv decreases with altitude for 0.6 < zPSS8/TBL < 1 during the descent resulting in a
locally negative vertical gradient of θv (Fig. 4.8A). Still during the descent, θv increases
with altitude for 0.4 < zPSS8/TBL < 0.6 hinting at a stable layer. Regarding horizontal
wind speed, u1 changes with altitude by 2 m/s to 4 m/s (Figs. 4.8B), hence vertical
shear is observed. From Eq. (4.10) and vertical profiles of u1 and θv, the Richardson
number can be estimated. As expected, Ri is negative 0.6 < zPSS8/TBL < 1 and
positive for 0.4 < zPSS8/TBL < 0.6 (Fig. 4.8C). Despite that the estimation of Ri is
crude, Ri<1 suggests the presence of turbulence. It should be noted that the Ri is
estimated from one-dimensional measurements which is why individual points might
be influenced by thermals.

To study atmospheric stability more systematically and over the full diurnal cycle,
Ri is calculated for all flights (except for Flight 1, 4 and 6 due to an unphysical
velocity time record) on M161 aboard RV Meteor as shown in Fig. 4.9A and B. The
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Figure 4.9 Richardson number Ri as function of barometric altitude zPSS8 for flights 3, 5, 7,
8, 9 and 10 on M161 aboard RV Meteor. Ric = 0.25 is the critical Richardson number (solid
gray line) below which the flow is fully turbulent. The barometric altitude zPSS8 is obtained
from the PSS8 and re-scaled by the top of the boundary layer (TBL) as shown by the gray
dashed line.

lowest portion of the boundary layer (zPSS8/TBL < 0.4) is mostly unstable as Ri < 0
except for some outliers. In the middle (0.4 < zPSS8/TBL < 0.6), it is still turbulent
as 0 < Ri < 1 (Fig. 4.9B). Statically, the altitude range 0.4 < zPSS8/TBL < 0.6 is
neutral to stable as ∂θv/∂z ≳ 0. Within the limit of accuracy, this is in agreement
with ∂θv/∂z = 0 in a well-mixed layer. In the case of 0.7 < zPSS8/TBL < 1, the
boundary layer tends to be unstable again especially at times around 18:00 (sunset)
as shown in Fig. 4.9A for M161 Flight 8 and 9. The static instability results from
∂θv/∂z < 0 (compare Figs. 4.33B and C). Given that Ri > 0 at lower altitudes
(0.4 < zPSS8/TBL < 0.6) but at similar times after sunset, it is unlikely that the whole
boundary layer is statically unstable. Possibly, this might be due to entrainment of
warmer air parcels from the free atmosphere. However, this suggestion cannot be
checked without analyzing vertical fluxes, e.g. of heat and moisture. Above the top
of the boundary layer, the flow is stably stratified in most cases as expected. Flight
3 (small dots) shows some local instability above TBL. This is also obvious from the
profile of θv with locally ∂θv/∂z = 0 (Fig. 4.33A). In total, the boundary layer is
considered to be turbulent over the diurnal cycle and the full range as often Ri ≲ 1
(Fig. 4.9B) despite that Ri ∼ 10 in some cases.

4.2.3 Turbulence Characteristics in the Trade-wind Bound-
ary Layer

According to the previous Sec. 4.2.2, it is expected that the boundary layer is turbulent
across the entire diurnal cycle and across its vertical extent. As mentioned in Sec. 3.1,
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the mean energy dissipation rate is a central turbulence characteristic. The purpose of
this section is to estimate the most relevant features of a turbulent flow in terms of
the mean energy dissipation rate obtained from one-dimensional time-records of the
longitudinal velocity.

The general procedure for estimating the mean energy dissipation rate is illustrated
in Fig. 3.1 where, similar to Sec. 4.1.3, ϵI2 and an averaging window of τ = 1800 s is
used to estimate the mean energy dissipation rate. This procedure is based on the
assumption of locally isotropic turbulence and the applicability of Taylor’s hypothesis,
which is generally fulfilled as the turbulence is 7% on average with a standard deviation
of 4%. The isotropy of the turbulent flow is assessed in Sec. 4.3. Additionally, it should
be noted that all flights with unphysical velocity signals are ignored, i.e. M161 Flight 1,
4 and 6. Furthermore, due to platform motion, the longitudinal velocity time-records
are high-pass filtered with fc = 0.5 Hz where the effect is assessed in Sec. 4.B. In this
section, error bars are given by Eq. (3.45) for ⟨ϵI2⟩τ and by the re-scaled standard
deviation of z during the averaging window τ . As the flight altitude of the helikite
is not exactly constant, the error (uncertainty) of the re-scaled barometric altitude
zPSS8/TBL is captured by the standard deviation. Here, ⟨ϵI2⟩τ -values with an altitude
uncertainty larger than 50 m are discarded. We concentrate on measurements of the
mini-MPCK during M161 (RV Meteor) because the profiling of the boundary layer is
dedicated to studying its turbulent structure. On MSM89, cloud measurements were
prioritized which is why these flights are analyzed in more detail later (Sec. 4.4). A
summary of the bulk turbulence features during MSM89 is delivered in Fig. 4.35 and
Table 4.8. The averaged relative random errors e in Tables 4.1 and 4.8 are given by
Eqs. (3.45), (1.61), (3.42), (4.3) and (4.14) for ⟨ϵI2⟩τ , U , σu′

1
, Rλ, and L11, respectively.

The averaged relative random errors e for ηK and λf are given by:

e(ηK) =
∣∣∣∣∣ ∂ηK

∂⟨ϵI2⟩τ

δI2(R)⟨ϵI2⟩τ

∣∣∣∣∣ = ηK

4⟨ϵI2⟩τ

δI2(R)⟨ϵI2⟩τ = ηK

4 δI2(R) , (4.11)

e(λf ) =
∣∣∣∣∣ ∂λf

∂⟨ϵI2⟩τ

δI2(R)⟨ϵI2⟩τ

∣∣∣∣∣ = λf

2⟨ϵI2⟩τ

δI2(R)⟨ϵI2⟩τ = λf

2 δI2(R) , (4.12)

(4.13)

invoking Gaussian error propagation with respect to the relative random error in ⟨ϵI2⟩τ .
To assess the daily variability of the mean energy dissipation rate, an overview of

the mean energy dissipation rate estimates ⟨ϵI2⟩τ is shown as a function of re-scaled
barometric altitude zPSS8/TBL in Fig. 4.10 under the assumption of a stationary flow
for that period (time scale of days to weeks). The order of magnitude of ⟨ϵI2⟩τ ranges
from 1 × 10−5 W/kg to 1 × 10−3 W/kg, which possibly contradicts the assumption of
global stationarity on a weekly scale. To test this hypothesis, mean scaling exponents
ζ2 of Dτ

LL(r) within the fit range are classified by their deviation from the K62-
prediction where a deviation of 0.1 is accepted. Thus, ζ2 is in agreement with K62 if
|ζ2 − 2/3 + 1/36| < 0.1 (group 1) corresponding to the highly opaque ⟨ϵI2⟩τ -values
in Fig. 4.10. Otherwise, |ζ2 − 2/3 + 1/36| ≥ 0.1 and ζ2 is not in agreement with
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Figure 4.10 Overview of mean energy dissipation rate estimates ⟨ϵI2⟩τ obtained from one-
dimensional time-records of the longitudinal velocity during EUREC4A with the mini-MPCK
on M161 (RV Meteor) as a function of the re-scaled barometric altitude zPSS8. TBL is the
abbreviation for top of the boundary layer and the averaging window τ = 30 min. Error
bars are given by Eq. (3.45) for ⟨ϵI2⟩τ and by the re-scaled standard deviation of zPSS8
during the averaging window τ . Highly opaque ⟨ϵI2⟩τ -values are obtained from longitudinal
second-order structure functions Dτ

LL(r) with a mean scaling exponent ζ2, which satisfies
|ζ2 − 2/3 + 1/36| < 0.1 (in agreement with K62) in the fit range. In contrast, weakly opaque
⟨ϵI2⟩τ -values stem from Dτ

LL(r) with |ζ2 − 2/3 + 1/36| ≥ 0.1. Furthermore, ⟨ϵI2⟩τ is highly
opaque only if the standard deviation of the altitude is lower than 50 m. The right panel
shows the number counts of ⟨ϵI2⟩τ -values agreeing with K62 in blue and the number counts
of ⟨ϵI2⟩τ -values disagreeing with K62 in (weakly opaque) red. The ensemble average of each
ζ2-group is denoted by ⟨ζ2⟩.
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K62 (group 2) where ⟨ϵI2⟩τ -value are weakly opaque in Fig. 4.10. Thus, if the inertial
range is well pronounced and if the mean scaling exponent is in accordance with K62,
ϵI2 is considered to be a valid method to estimate the mean energy dissipation rate.
Focusing on time periods where ζ2 is in agreement with K62, ⟨ϵI2⟩τ ranges only from
4 × 10−4 W/kg to 2 × 10−3 W/kg except for only a few significant outliers. Hence, the
mean energy dissipation rate is fairly constant on a daily to weekly time scale which
is investigated in more detail below. Furthermore, the right panel of Fig. 4.10 shows
the number counts of averaging windows τ during which the ensemble-averaged mean
scaling exponent ⟨ζ2⟩ = 0.69±0.01 is agreeing with K62 in blue. The agreement between
K62 and ⟨ζ2⟩ is remarkable. Likewise, the number counts of averaging windows τ
during which the ensemble-averaged mean scaling exponent ⟨ζ2⟩ = 0.57±0.02 disagrees
with K62 is shown in (weakly opaque) red. Hence, the ensemble-averaged mean scaling
exponent is systematically lower than predicted by K62. In the following, only those
time periods are considered during which |ζ2 − 2/3 + 1/36| < 0.1 and the altitude
uncertainty below 50 m.

Even though the mean energy dissipation rate did not reveal a trend on a daily
to weekly time scale, the atmosphere changes on hourly time scales. As an example,
the air temperature changes at time scales below one hour (Sec. 4.1.1). Likewise, a
signature of that time scale is found in the cloud fraction time-evolution over the
diurnal cycle increasing after sunset [192, 193]. The dynamics of shallow cumuli are
coupled to heat and moisture fluxes, hence to convection [68]. In general, atmospheric
turbulence is driven by wind shear from the surface and buoyancy driven convection.
As convection, hence the energy injection, varies on hourly time scales, it is expected
that the mean energy dissipation rate varies over the diurnal cycle, too. Overall, the
profile of ⟨ϵI2⟩τ does not reveal a significant trend with the local time of the day in
Fig. 4.11A. Nevertheless, considering Flight 9 on M161, ⟨ϵI2⟩τ slightly increases from
≈ February 05 2020 19:00 AST to February 06 2022 00:00 AST but also with altitude.
Hence, it is not unambiguously that the increase is purely due to the effects of the
diurnal cycle. However, the vertical profile of θv has a negative slope for that time
frame (February 05 2020 19:00 AST to February 06 2022 00:00 AST) during M161
Flight 9, as shown in Fig. 4.33C, suggesting an unstable stratification which is critical
for convection. Therefore the increase in ⟨ϵI2⟩τ is most likely related to the diurnal
cycle. Similarly, the variance ⟨u′2

1 ⟩τ shows an increase with time for the same time
frame (Fig. 4.11B). Both L11, Eq. (1.29), and Rλ, Eq. (1.38), are derived from ⟨ϵI2⟩τ

and ⟨u′2
1 ⟩τ and, therefore, reveal a similar behavior (Figs. 4.11C and D). The error bars

for ⟨u′2
1 ⟩τ and Rλ are given by Eqs. (3.42) and (4.3), respectively. The error of L11 due

to δI2(R), the random error of ⟨ϵI2⟩τ , reads:

e(L11) =
∣∣∣∣∣ ∂L11

∂⟨ϵI2⟩τ

δI2(R)⟨ϵI2⟩τ

∣∣∣∣∣ = L11

⟨ϵI2⟩τ

δI2(R)⟨ϵI2⟩τ = L11δI2(R) . (4.14)

Considering the error bars being derived from the random error δI2(R) , ⟨ϵI2⟩τ

, ⟨u′2
1 ⟩τ , L11 and Rλ only, if at all, weakly depend on altitude. A general trend

with altitude is not significant although, for L11 and Rλ, it seems that two branches
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Figure 4.11 Influence of the diurnal cycle on bulk turbulence. The color code corresponds
to the local time of the day (UTC - 4h). TBL is the abbreviation for top of the boundary
layer and the averaging window τ = 1800 s. The error bars for z are given by the standard
deviation of z during the averaging window τ . A: The mean energy dissipation rate estimates
⟨ϵI2⟩τ are obtained from one-dimensional time-records of the longitudinal velocity during
EUREC4A with the mini-MPCK on M161 (RV Meteor). The error bars are given by Eq. (3.45)
for ⟨ϵI2⟩τ . B: The variance of velocity fluctuations ⟨u′2

1 ⟩τ is based on unfiltered u′
1. Error bars

are only considered for the barometric altitude. C: The longitudinal integral length scale L11
is estimated by Eq. (1.29). Error bars are obtained via Eq. (4.14). D: The Taylor micro-scale
Reynolds number Rλ is obtained by Eq. (1.38). Error bars are obtained via Eq. (4.3).
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emerge (Figs. 4.11C and D) where the left branch is constant with altitude in the
limit of accuracy. The left branch is mostly populated by M161 Flight 8 where the
boundary layer was stably stratified (Fig. 4.33B) but with vertical shear of the wind
speed (Fig. 4.33D). This is confirmed by the Richardson numbers which are mostly
positive for zPSS8/TBL < 1 (Fig. 4.9). The right branch consists predominantly of
M161 Flight 9 and is possibly related to larger convective structures with slightly
negative Richardson numbers for zPSS8/TBL < 1 (Fig. 4.9)). A more profound analysis,
including vertical fluxes in the Earth frame of reference, is required for supporting
this hypothesis. Ignoring the effect of the diurnal cycle, it is possible to summarize
bulk turbulence properties in terms of PDFs in Fig. 4.13 and in terms of statistical
quantities in Table 4.1. The above considerations explain the presence of multiple
peaks in the PDFs of L11 and Rλ (Fig. 4.13).

The PDFs of the systematic and random errors δsys
I2 (R) and δI2(R), respectively, is

shown in Fig. 4.12. As both errors are inferred in retrospect from, i.a., the estimated
L11, the scatter is expected. Therefore, both δsys

I2 (R) and δI2(R) should be interpreted
as rough estimates on the accuracy of ⟨ϵI2⟩τ where the systematic error is only half as
large as the random error on average. The random error δI2(R) is the largest compared
to δsys

I2 (R) , the systematic error δI2(θ) due to misalignment and due to finite turbulence
intensity βI2(I) (compare Fig. 4.34).
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Figure 4.12 PDFs of the systematic error δsys
I2 (R) (A) and the random error δI2(R) (B) of

the energy dissipation rate estimate ⟨ϵI2⟩τ during EUREC4A on M161 aboard RV Meteor.
R = Uτ is the spatial averaging window with τ = 1800 s. Both errors are estimated from
L11 and ⟨u′2

1 ⟩R based on the same R and, hence, have to be regarded rather as statistical
estimates.

The turbulence features are calculated based on the mean energy dissipation
rate, which is obtained from a filtered time-record of the longitudinal velocity with a
cutoff frequency fc = 0.5 Hz. As shown in Sec. 4.B, both the energy dissipation rate
⟨ϵI2⟩τ as well as the variance ⟨u′2

1 ⟩τ decrease with fc (e.g. Fig. 4.32B). Hence, L11 is
underestimated if ⟨u′2

1 ⟩τ is evaluated from the filtered time-record of the longitudinal
velocity. In contrast, L11 obtained from the unfiltered ⟨u′2

1 ⟩τ should be rather interpreted
as an estimation of the upper bound on L11. Similarly, it is expected that Rλ, Eq. (1.38),
is overestimated. Assuming that σu′

1
=
√

⟨u′2
1 ⟩τ from unfiltered u1(t) might be ∼ 30%
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too high and the estimate of the mean energy dissipation rate ∼ 30% too low results
in an overestimation of L11 by a factor of 3 and of Rλ by 2. As an example, a biased
estimate L11 ∼ 500 m would amount to Lc

11 ≈ 160 m and Rλ ∼ 20000 would amount
to Rc

λ ≈ 10000 where c denotes “correct”.

unit mean median std e [%]
U m/s 12.29 12.22 1.02 1.68
σu′

1
m/s 0.74 0.73 0.14 -

⟨ϵI2⟩τ mW/kg 0.88 0.73 0.57 40.84
ηK mm 1.50 1.48 0.25 10.21
λf m 0.59 0.60 0.17 20.42
L11 m 462 411 333 40.84
Rλ 16057 16336 6178 20.42

Table 4.1 Bulk turbulence features obtained from mini-MPCK time-records of the longitu-
dinal velocity component u1(t) on M161 (RV Meteor) during EUREC4A . U = ⟨u1(t)⟩τ is
the mean velocity obtained from u1(t) for the averaging window τ , σu′

1
the RMS fluctuation

of u1(t), ⟨ϵI2⟩τ the estimate of the mean energy dissipation rate according to Eq. (3.15) with
n = 2, ηK the Kolmogorov length scale, λf the longitudinal Taylor micro-scale, L11 the
integral length scale and Rλ the Taylor micro-scale Reynolds number. For each turbulence
feature, the mean, median, standard deviation (std) and relative random error e in % are
given. e is obtained by Eqs. (3.45), (1.61), (4.3), (4.14), (4.11) and (4.12) for ⟨ϵI2⟩τ , U , Rλ,
L11, ηK and λf , respectively. The averaging window is τ = 1800 s. u1(t) is not corrected for
platform motion.

4.3 Reynolds stress Anisotropy
The estimation of the mean energy dissipation rate according to Kolmogorov’s second
similarity hypothesis is based on the assumption of statistically (and locally) isotropic
turbulence. At least in the fit range (r ∈ [2 m, 6 m]), the mean scaling exponents of
DLL(r) are close to Kolmogorov’s prediction of ζ2 ≈ 0.69 in the inertial range for
isotropic turbulence. Although this agreement between observed and predicted scaling
exponents hints at isotropic turbulence in the inertial range, Kolmogorov’s prediction
of ζ2 ≈ 0.69 relies on the assumption of local isotropic turbulence conditioned on the
local energy dissipation rate in the first place [49]. Hence, an independent measure of
anisotropy is needed for confirming the inertial range isotropy, which would justify the
estimation of the mean energy dissipation rate as described above.

4.3.1 Graphical Representation of Reynolds stresses
For sufficiently high Rλ turbulent flows, Kolmogorov’s phenomenology from 1941
hypothesizes a range of scales r ≪ L where the turbulence is statistically isotropic
where L scales with the energy injection scale. This hypothesis implies that statistics
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Figure 4.13 Turbulence features during EUREC4A on M161 aboard RV Meteor. PDFs
are shown for the longitudinal RMS velocity fluctuation σu′

1
based on unfiltered u′

1 (A), the
mean energy dissipation rate estimate ⟨ϵI2⟩τ (B), the Kolmogorov length scale ηK (C), the
longitudinal Taylor micro-scale λf (D), the longitudinal integral length scale L11 (E) and the
Taylor micro-scale Reynolds number Rλ (F).
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State of turbulence Invariants eigenvalues of bij

(shape of Reynolds stress ellipsoid)
Isotropic (sphere) η = ξ = 0 λ1 = λ2 = λ3 = 0
2C axisymmetric (disk) η = 1/6, ξ = −1/6 λ1 = λ2 = 1/6
1C (line) η = 1/3, ξ = 1/3 λ1 = 2/3, λ2 = λ3 = −1/3
axisymmetric (prolate spheroid) η = ξ −1/3 ≤ λ1 = λ2 ≤ 0
axisymmetric (oblate spheroid) η = −ξ 0 ≤ λ1 = λ2 ≤ 1/6
2C (ellipse) η = (1/27 + 2ξ3)1/2

λ1 + λ2 = 1/3
Table 4.2 Special states of the Reynolds stress tensor described by the invariants ξ and η
as well as by eigenvalues λi of bij .“2C” is the abbreviation for two-component and “1C” for
one-component. Table is based from [5].

of scales r ≪ L are independent of large scales and universal even if the large scales
L are anisotropic. As an example, a first model with a linear return to isotropy for
decaying homogeneous anisotropic turbulence is proposed in terms of the normalized
anisotropy tensor bij, Eq. (1.11), [194]. However, the return-to-isotropy has also been
experimentally studied in three types of homogeneous anisotropic grid turbulence
revealing a non-linear return-to-isotropy [195]. As six components of bij are required
to characterize the anisotropy, a more convenient approach is the so-called “Lumley
triangle” characterizing the anisotropy graphically [5, 196]. This approach is based on
the fact that bii = 0 which is why the anisotropy can be described by two independent
invariants of bij only [5]. The invariants are obtained from bij in the principle axis
given by

b̃ij =

λ1 0 0
0 λ2 0
0 0 −(λ1 + λ2)

 ,

where λ1,2 ≥ 0 are the eigenvalues of bij. Then, the two independent invariants η and
ξ can be obtained from the principle invariants IIb and IIIb[5]:

6η2 = −2IIb = b2
ii = bijbji = 2(λ2

1 + λ1λ2 + λ2
2) , (4.15)

6ξ3 = 3IIIb = b3
ii = bijbjkbki = −3λ1λ2(λ1 + λ2) . (4.16)

Hence, every Reynolds stress tensor corresponds to a point in the ξ - η plane. Special
states of turbulence enclose a region in the ξ - η plane, which is known as the “Lumley
triangle”. These states are listed in Table 4.2. Only the points within the Lumley
triangle (as shown in Fig. 4.14) belong to realizable Reynolds stresses. Otherwise, if
the eigenvalues are complex or negative, the Reynolds stresses are non-realizable, and
the (ξ, eta)-pair lies outside the Lumley triangle. The interested reader is referred to
[5] for more details.
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Figure 4.14 Graphical representation of special turbulence states in terms of the Lumley
triangle in the η − ξ plane. Figure based on [195].

4.3.2 Anisotropy in high-Rλ flows
Here, the graphical representation of Reynolds stresses by the Lumley triangle is used
to confirm the inertial range isotropy of the turbulent flow. Thereby, the assumptions of
Kolmogorov’s phenomenology are justified independently, which, in retrospect, allows
for the estimation of the mean energy dissipation rate as described above.

The Reynolds stresses are obtained from time-records of the three-dimensional wind
vector in the platform frame of reference with the help of the sonic of the mini-MPCK.
Here, the invariants are calculated from Eqs. (4.15) and (4.16) based on:

ξ = 3

√
−1

2λ1λ2(λ1 + λ2) , (4.17)

η =
√

1
3(λ2

1 + λ1λ2 + λ2
2) . (4.18)

In the following, “invariants” refers to ξ, Eq. (4.17), and η, Eq. (4.18).
The invariants are shown in Fig. 4.15 for each mini-MPCK flight during the

EUREC4A field campaign in the marine boundary layer as well as for snapshots taken
in DNS of homogeneous isotropic turbulence (gray stars). In Fig. 4.15A, the turbulence
in the platform frame of reference appears to be statistically anisotropic for both tether-
mounted (circles) and spare-mounted (upright triangles) flights without high-pass
filtering the data. However, as the mini-MPCK is prone to platform motions, filtering
is needed (Sec. 2.4.2, cutoff frequency of fc = 0.5 Hz). The invariants obtained from
high-pass filtered wind vector time-records (fc = 0.5 Hz) are shown in Fig. 4.15B. First
point to note is that the flow appears to be more isotropic on scales l ≲ U/fc = 20 m
(with U ∼ 10 m/s and fc = 0.5 Hz) than globally for each flight. Moreover, invariants
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Figure 4.15 Lumley triangle in terms of the invariants ξ, Eq. (4.17), and η, Eq. (4.18),
obtained from EUREC4A field measurements for each mini-MPCK flight and from DNS of
homogeneous isotropic turbulence. The velocity wind vector is measured in situ as a function
of time by the mini-MPCK with the help of the sonic during EUREC4A field campaign.
Invariants obtained from measurements on M161 aboard RV Meteor are shown in blue, on
MSM89 aboard RV Maria S. Merian in red and from single snapshots of DNS 3.1 – 3.5 of
homogeneous isotropic turbulence, Table 3.2, by gray stars. Circles denote flights with a
tether-mounted mini-MPCK with a separation of at least 50 m to the helikite (“M161” and
“MSM89 line”). Upright triangles represent flights where the mini-MPCK is mounted to the
main spare on MSM89 (“MSM89”). Gray circles and gray lines represent special states of
turbulence according to Table 4.2. A: Time-records of the wind vector are not filtered. B:
Time-records of the wind vector are filtered at fc = 0.5 Hz. The inset shows a zoom close to
the origin.

obtained from flights in the tether-mounted configuration appear to be more isotropic
than flights in the spare-mounted configuration. Some of the invariants obtained from
filtered time-records of the three-dimensional wind vector during M161 are even close
to DNS as demonstrated in the inset of Fig. 4.15B. Hence, in the platform frame of
reference, the turbulence appears to be globally isotropic on scales l ≲ 20 m. This is in
agreement with the ensemble-averaged scaling exponent, e.g. ⟨ζ2⟩ = 0.74 ± 0.06 for
M161 Flight 10, overlapping with the K62-prediction. Already, it can be concluded
that the estimation of the mean energy dissipation rate according to Kolmogorov’s
phenomenology is justified for scales l ≲ 20 m.

To evaluate how well the isotropy assumption of Kolmogorov’s phenomenology is
fulfilled for shorter averaging windows, the Lumley triangle has been also visualized
for finite averaging windows of τ = 30 min. In contrast to bulk anisotropy in Fig. 4.15,
invariants obtained from mini-MPCK wind vector time-records for averaging windows
of 30 min are compared to each virtual probe in DNS 3.3 as shown in Fig. 4.16A. On
the one hand, reducing the averaging window enhances the statistical scatter as argued,
e.g., in Sec. 4.1.2. On the other hand, sampling a three-dimensional turbulent flow
along a one-dimensional trajectory might affect the invariants, too. Presumably, the
combination of finite averaging windows and one-dimensional sampling causes the
scatter of the invariants in the regime 0 ≤ η ≤ 0.15 and −0.15 ≤ ξ ≤ 0.2 for both
DNS 3.3 and mini-MPCK. Hence, there is no significant difference between invariants
obtained from virtual probes sampling DNS of homogeneous isotropic turbulence along
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Figure 4.16 Lumley triangle for individual averaging windows τ = 30 min obtained from
tether-mounted mini-MPCK time-records of the wind vector. A: Invariants obtained from
measurements with the mini-MPCK for averaging windows τ are compared to each virtual
probe of DNS 3.3 (Table 3.2). B: Invariants from airborne measurements with the mini-MPCK
are compared to ground-based measurements in mountainous terrain (personal communication
with Steffen Risius) where each point is colored by Rλ. C: Invariants obtained from the
mini-MPCK wind vector measurements are shown as a function of barometric altitude zPSS8
above MSL re-scaled by the top of the boundary layer (TBL). D: In order to characterize the
effect of static stability on the invariants, they are colored as a function of the Richardson
number Ri.

a one-dimensional trajectory and mini-MPCK measurements.
Furthermore, invariants from airborne measurements in the marine boundary layer

with the mini-MPCK are compared to ground-based measurements in mountainous
terrain on Mt. Zugspitze [54, 197] as shown in Fig. 4.16B. The invariants obtained
from ground-based measurements (upright triangles) tend to be more anisotropic than
the invariants obtained from filtered airborne measurements in the marine boundary
layer. On the one hand, this might be an effect of Rλ which is higher by at least a
factor of 2 for measurements in the marine boundary layer compared to ground-based
measurements in mountainous terrain. On the other hand, UFS measurements are
conducted within the surface layer in the presence of shear [54]. Another possible cause
for this deviation is the filtering in the case of mini-MPCK measurements.

In contrast to UFS measurements in the surface layer, the mini-MPCK sampled the
boundary layer in the well-mixed region and in the cloud layer as shown in Fig. 4.16C.
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The invariants obtained by the mini-MPCK tend to isotropy in the well-mixed region
of the marine boundary layer, i.e. where the virtual potential temperature is constant
with height [40] as fulfilled for 0.1 ≤ zPSS8/TBL ≤ 0.8, while the flow appears to
be comparable to ground-based measurements for 0.8 ≤ zPSS8/TBL. Taking into
account the inaccuracy of ∼ 100 m in determining the depth of the boundary layer
(TBL), the regime 0.8 ≲ zPSS8/TBL is close to an inversion which imposes a large-scale
anisotropy on the flow. The influence of decreasing line tension on the invariants
remains undetermined because of the absence of a tensiometer on RV Meteor.

At last, anisotropy is investigated with respect to static stability being captured by
the Richardson number Ri, Eq. (4.10). Here, the invariants are determined for the same
averaging windows with τ = 30 min as Ri. As the flow is considered to be statically
stable for Ri > 1, it is expected that the flow tends to be more anisotropic than
for Ri < 1 where the flow is expected to be fully turbulent, which can be confirmed
as shown in Fig. 4.16D. To summarize, the isotropy assumption of Kolmogorov’s
phenomenology can be considered as being fulfilled for scales l ∼ 20 m and in the
platform frame of reference as there is no significant difference to velocity measurements
of virtual probes in DNS of homogeneous isotropic turbulence. Thus, the estimation
of the mean energy dissipation rate based on averaging windows with τ = 30 min is
justified.

4.4 In-situ Measurements of Trade-wind Cumuli
Up to now, the atmosphere has been treated like a single-phase flow consisting of moist
air, i.e. a combination of dry air and water vapor. In practice, atmospheric flows
rather consist of multiple phases. As the air temperature never fell below 0 K over
the period of the Cloudkite measurements, one can assume that the atmosphere is
a particle-laden flow with moist air and liquid water droplets. From here on, liquid
water droplets are called “cloud droplets” (or cloud particles in general). This section
aims at providing an overview of cloud measurements, characterizing cloud turbulence,
describing cloud droplet statistics and giving a first inside in a precipitating cloud.
Cloud droplet measurements are based on FCDP and CDP-2 measurements, i.e. time-
series of cloud droplet size histograms at 2 Hz and particle-by-particle (PbP) time series
with a temporal resolution of 1 µs. PIV and holography measurements by the MPCK+
are not considered in the scope of this section. The protocol for checking the validity of
measurements is explained in Sec. 4.A and is applied to obtain the subsequent results.

During the EUREC4A field campaign, both the MPCK+ (FCDP) and mini-MPCK
(CDP2) sampled cloud-free air as well as marine trade-wind cumuli at different evolution
stages and at various mesoscale cloud patterns, e.g. so-called flowers as discussed in
Sec. 4.4.3 [198]. The cloud droplet probes (abbreviated with CDP in the following), i.e.
FCDP and CDP2, count and size cloud droplets. Clouds, and even different regions
within a cloud, can be characterized in the first approach by the cloud droplet number
concentration n, which is obtained according to Eq (1.66).

Overall, the cloud droplet number concentration n obtained from cloud particle
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Figure 4.17 Overview of droplet measurements during the EUREC4A field campaign with
the MPCK+ and the two mini-MPCKs aboard RV Maria S. Merian and RV Meteor. A:
The histogram of droplet number concentration n is obtained from the FCDP and CDP-2
measurements. The number concentration n is determined via Eq. (1.66) from all cloud
droplets measured by the CDP-2 and FCDP with dp ≤ 50 µm where the CDP detects cloud
droplets with a diameter down to 2 µm and the FCDP down to 1.25 µm. The relative wind
speed is acquired by a pitot tube (PSS8). The blue curve shows the histogram of n obtained
from all considered flights and the red curve shows the histogram of all flights except for
MSM 89 Flight 10 (“w/o MSM89 Flight 10”). B: The histogram of droplet diameters dp

is obtained from FCDP and CDP-2 measurements. In A and B, # is the number count of
occurrences per bin and the errorbars are given by the square root of the number counts
within each bin under the assumption of Poisson distributed counting statistics. C: The
platform vertical velocity wp is acquired by the SBG and plotted against n. D: The energy
dissipation rate estimate ⟨ϵI2⟩τ is obtained from PSS8 relative wind speed measurements for
an averaging window of τ = 60 s and plotted against n.
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size histogram records at 2 Hz spans 3 orders of magnitude (from O(n) ∼ 1/cm3

to ∼ O(n) ∼ 1 × 103/cm3) as shown in Fig. 4.17A. At low number concentrations
n ∼ 1/cm3, the histogram of n reveals a plateau but the number counts per n-bin
(denoted by #) decay by two orders of magnitude for n ranging from 2/cm3 to 10/cm3.
At higher n > 10/cm3, # grows from 400 to 1200 where the local maximum is at
n = 250/cm3. This local peak is identified with the most likely number concentration in
trade-wind cumuli that were sampled by the MPCK+ and mini-MPCK. Based on the
decay of the n-histogram for n > 1/cm3 and the local maximum of n at n = 250/cm3,
a reasonable range of cloud droplet number concentrations for cloud-free air is chosen
as n ≤ 10/cm3, which corresponds to 95% of the total CDP measurement time. In the
following, n > 10/cm3 is considered to be cloudy air (5% of the total CDP measurement
time, up to 7.3% depending on altitude [38]). Aircraft-borne measurements during
EUREC4A determine the cloud fraction at the cloud base to on average 3.5 % [10].
The error bars in Fig. 4.17A (and other histograms in the following) are given by the
standard deviation of a Poisson distribution

√
# under the assumption that occurrences

per n-bin are independent of the last occurrence.
As mentioned in Sec. 4.A, time periods of unphysical velocity measurements or

cloud droplet measurements close to sea surface have been discarded. Furthermore,
the maximum number concentration was lower than 1000/cm3 for all flights but
MSM89 Flight 10 (maximum n ≈ 1300/cm3). Therefore, histograms of the number
concentration are shown for all flights and all flights except for MSM89 Flight 10 in
Fig. 4.17A. Both the altitude as well as wind speed measurement were physical for
MSM89 Flight 10. The CDP recorded exceptionally high number counts, which were
about one order of magnitude higher in comparison to all other flights. Further research
is needed to understand the anomaly.

One limitation of the CDP2 is that it records only particle inter-arrival times (and
their diameters) for the first 256 particles per sampling interval of ≈ 0.5 s [25]. However,
the modest n combined with the low relative wind speed encountered with the helikites
results in a mean fraction of missed PbP-data of 0.25 (median 0.15, minimum 0.003
and maximal 0.79) which is much less than > 0.94 in case of aircraft measurements
with a relative wind speed of ≈ 90 m/s [25]. For completeness, it should be added that
the CDP2 includes all (valid) particles in the histogram data at 2 Hz.

The CDPs not only counted but also sized cloud particles in terms of the cloud
particle diameter dp. Cloud droplets with a diameter dp ≤ 7 µm are most frequent
among the measured cloud droplet (55%) whereas 39% attributed to the size range
7 µm to 15 µm (Fig. 4.17B). Only 5.9% of the measured cloud droplets have a diameter
within 15 µm to 23 µm and only 0.1% of the measured cloud droplets are larger than
23 µm in diameter. It should be noted that the FCDP accumulates also larger particles
in the last droplet diameter bin so that the last bin in Fig. 4.17B appears to be enhanced
due to rain. As explained in more detail below, cloud droplets with a diameter below
7 µm are not only encountered in clouds but also often in cloud-free air. Larger droplets
with diameters up to 20 µm are predominantly present exclusively in cloudy air, i.e. at
high n. This is expected because cloud droplets grow in a super-saturated environment
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where the time evolution of the super-saturation field depends on the vertical velocity
[107, and references therein]. Likewise, as most cloud condensation nuclei (CCN) are
activated in a supersaturated environment [58], high number concentrations of cloud
droplets, i.e. activated CCN, are related to regions of vertical updrafts (Fig. 4.17C).
Here, the vertical updrafts are captured by the vertical platform velocity wp that
corresponds to the low-pass filtered vertical flow velocity on scales similar to the size
of the helikite (O(10 m)). In cloud-free air, there is, if at all, only a weak correlation
between n and wp (Fig. 4.17C). In dilute cloudy air, i.e. n ranging from 10/cm3

to 100/cm3, significantly negative values of wp are observed where negative vertical
velocity is associated to downdrafts. These downdrafts are potentially related to a
subsiding shell of cold air at the cloud edge (medium n) and are caused by evaporative
cooling at the cloud top. In consequence, the buoyancy within the subsiding shell
should be negative. Furthermore, the energy dissipation rate (⟨ϵI2⟩τ with τ = 60 s)
tends to be higher for higher n for all flights. The turbulence within trade-wind cumuli
is considered in more detail in Sec. 4.4.1.

Radiative properties of clouds, warm rain initiation and the stage of cloud evolution
are related to the droplet size distribution, which is a function of time and space
[e.g. 23]. The particle size distribution is, i.a., affected by turbulent processes such as
mixing and collision-coalescence [e.g. 4, 23, 80, and references therein]. Despite that the
histogram of the number concentration n gives a valuable overview, it lacks information
on the dependence of the number concentration n on both cloud droplet size dp and
altitude. Taking into account cloud droplet sizes, a cumulative cloud droplet number
density ñ conditioned on a cloud droplet diameter range can be defined as:

ñ =
l∑

j=k

n(dj
p) , (4.19)

where the droplet size range is considered for diameter bins between dk
p and dl

p. Hence,
if ñ/n = 0 (n ̸= 0/cm3), no particles are within the considered droplet size range. In
contrast, all particles are within the droplet size range if ñ/n = 1. Figure 4.18 shows a
distribution of the relative cumulative number concentration ñ/n against the number
concentration n where both quantities have been binned. Counting the number of
occurrences (#) per bin (n - ñ/n -

bin) provides an overview of which droplet size range contibutes most to the total
cloud droplet population. Furthermore, as the cloud base is not constant in time and
space, altitude measurements have to be re-scaled by the cloud base in order to compare
all flights with CDP records. Here, the top of the boundary layer (TBL) is used to
estimate the cloud base where the procedure is explained in Sec. 4.2.1. As the cloud
base varies up to 100 m in altitude, which is similar to the accuracy of determining
TBL, generous altitude regimes have to be chosen. As TBL ranges from 600 m to 900 m
above mean sea level (MSL), altitude ranges are (i) 0.8 < zPSS8/TBL < 1.2 (“low”), (ii)
1.2 < zPSS8/TBL < 1.6 (“medium”) and (iii) zPSS8/TBL > 1.6 (“high”) where zPSS8 is
the barometric altitude obtained from the static pressure of the PSS8 pitot tube. In
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ñ
/n

0
1
2
3

lo
g#

100 101 102 103

n [cm−3]
0.00
0.25
0.50
0.75
1.00

ñ
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Figure 4.18 Cumulative cloud droplet number density ñ within a range of droplet sizes as
a function of total number density n. ñ/n is the fractional contribution of cloud droplets
within a size range to the total population n. The colorbar is given by the logarithm of
number of occurrences per bin (#). Each panel corresponds to an altitude range above MSL
(zPSS8), which is re-scale by TBL, and a range of droplet sizes dp.
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doing so, the percentage of measurements in clouds (n > 10/cm3) is 3.6% at low, 3.5%
at medium and 0.2% at high altitudes. Considering dense clouds, i.e. n > 100/cm3,
the measurement time percentage is 2.1% at low, 2.3% at medium and 0.2% at high
altitude.

For most sampled clouds between 0.8 < zPSS8/TBL < 1.2 consisted of cloud droplets
with 0 µm < dp < 10 µm (Fig. 4.18A) whereas only a smaller fraction of the droplet
population had diameters 10 µm < dp < 20 µm (Fig. 4.18D). The large percentage of
cloud droplets with 0 µm < dp < 10 µm (∼ 75%) can be attributed to droplet activation
at the cloud base and subsequent condensational growth up to dp ∼ 10 µm in ∼ 10 s
assuming 1% super-saturation [21].

Depending on the exact altitude of the cloud base and CDP measurement altitude, it
is possible that the CDP measurement is taken 100 m above the cloud base. Assuming a
vertical velocity of ∼ 1 m/s, an air parcel needs ∼ 100 s for an ascent of 100 m. Further
assuming a supersaturation of ∼ 1%, it is possible that cloud droplets grow up to
dp ≲ 20 µm [21, 107]. In the medium altitude range 1.2 < zPSS8/TBL < 1.6, most clouds
exhibit similar ñ although cloud droplets in the diameter range 10 µm < dp < 20 µm
are more frequent at n ≳ 100/cm3. As the growth rate due to condensation ∝ 1/dp

[21], it is expected that cloud droplets are, on average, larger at medium altitude range
compared to the low altitude range at cloud base.

Considering the diameter range 20 µm < dp < 30 µm (Fig. 4.18G, H, and I), firstly
one branch appears at low altitude for cloud-free air (n ≤ 10/cm3). Secondly, another
branch emerges in cloudy air (n > 10/cm3) at medium altitude (Fig. 4.18H), which only
weakly (< 10%) contributes to the total droplet population in most cases. In the range
10/cm3 < n < 100/cm3, i.e. diluted cloud air such as cloud edge or cloud top, cloud
particles with 20 µm < dp < 30 µm can contribute up to 75% of the population. At high
altitudes, the droplet population still comprises droplets with 20 µm < dp < 30 µm in
a few cases. To summarize, droplets with dp > 20 µm are most frequently encountered
near the cloud top and when the number density is moderate, say n ≲ 300/cm3.
High droplet number concentrations ( n > 500/cm3) are usually associated with a
narrow droplet size distribution with mean diameters below 10 µm. This observation is
consistent with previous measurements [199].

According to previous consideration on condensational growth, the CDPs only rarely
measured droplets with dp > 30 µm in low altitude region 0.8 < zPSS8/TBL < 1.2
(Fig. 4.18J). These large droplets are most frequently encountered at zPSS8/TBL >
1.2(Fig. 4.18K and L). In cloudy, but dilute air, i.e. 10/cm3 < n < 100/cm3, they
amount to less than 10% of the population. These droplet sizes are the best candidates
for inertial effects. Large droplets will be considered in more detail in the case of a
rain event in Sec. 4.4.3. Notably, at high altitude range zPSS8/TBL > 1.6, only a few
droplets were observed (Fig. 4.18C, F, I and L). On the one hand, this altitude range
is sampled the least by the mini-MPCK and MPCK+. On the other hand, shallow
marine cumuli are only a couple of hundred meters deep so this range might be already
above the top of shallow cumuli.
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Figure 4.19 PDF of the estimated mean energy dissipation rate in cloudy air (n > 10/cm3)
and in cloud-free air (n ≤ 10/cm3). The mean energy dissipation rate is estimated by ⟨ϵI2⟩τ ,
Eq. (3.15) with n = 2, for averaging windows of τ = 60 s.

4.4.1 Turbulence Characteristics of Trade-wind Cumuli
In section 4.2.3, bulk turbulence features of both the sub-cloud and cloud layer have
been estimated. However, turbulence in clouds is generated by buoyancy and shear,
which is coupled to phase changes [e.g. 4, and references therein]. The energy dissipation
is enhanced near the cloud top and the cloud edges [127, 140], which affects cloud
droplet - turbulence interactions. To investigate cloud droplet - turbulence interactions
within clouds in terms of the Stokes number or the non-dimensional settling velocity
(both depend on ϵ), it is, therefore, necessary to condition the turbulence analysis
on cloud events. As mentioned in Sec. 4.4, the condition n ≤ 10/cm3 is well suited
for cloud-free air. In the following, global statistics of turbulence characteristics are
presented irrespective of the cloud evolution stage.

The (local) mean energy dissipation rate ⟨ϵ⟩τ is obtained from averaging windows
τ = 60 s compromising between the horizontal extent of the cloud and convergence
of ⟨ϵ⟩τ . The PDF of the estimated local mean energy dissipation rates is shown in
Fig. 4.19. At ⟨ϵI2⟩τ ≳ 1 × 10−4 W/kg, the likelihood of measuring cloud-free air is 4
times higher than cloudy air while cloudy events are as probable as cloud-free events
for ⟨ϵI2⟩τ ∼ 1 × 10−3 W/kg. This regime could be related to a dissolving stage of
the cloud life cycle. To validate this hypothesis, though, further parameters such as
buoyancy or vertical velocity in the Earth frame of reference would have to be invoked.
Large ⟨ϵI2⟩τ ≳ 1 × 10−1 W/kg are found to be 4 times more likely in cloudy air. It
should be noted that from here on, turbulence characteristics in clouds are compared
to cloud-free air based on the same averaging window (τ = 60 s) because ⟨ϵ⟩τ or ⟨u′2

1 ⟩τ

themselves are a function of τ .
Due to the short averaging window τ = 60 s, the relative random error of ⟨ϵI2⟩τ ,
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Eq. (3.45), is on average ≈ 90% resulting in a large uncertainty for other turbulence
features large as well. The estimate of the random error is based on the median integral
length scale, which is estimated from all research flights with the MPCK+ and mini-
MPCK during EUREC4A based on τ = 1800 s. However, Eq. (3.45) is derived under the
assumption of stationarity. As individual clouds evolve in time, estimating the relative
random error of ⟨ϵI2⟩τ via Eq. (3.45) is not straightforward. As all scaling exponents
of DLL(r) within the fit range are accepted, the scaling criterion is redundant. Instead,
the error of ⟨ϵI2⟩τ is now estimated by the deviation of the maximum of Eq. (3.15)
(n = 2) and the corresponding fit. In the case of a well-pronounced K41-scaling range,
Eq. (3.15) (n = 2) reveals a plateau extended over the fit range. In that case, the
maximum is close to the fit by definition.

The resulting estimates of various turbulence features in trade-wind cumuli and
cloud-free air are summarized in Tables 4.3 and 4.4. On average and based on the
condition n > 10/cm3, the local mean energy dissipation rate is found to be twice as
large in trade-wind cumuli as outside clouds. The RMS velocity fluctuations σu′

1
are

15% higher in clouds than in ambient air. Accordingly, it is expected that characteristic
length scales outside clouds are larger than in clouds, which is the case as shown by
L11, λf and ηK . The smaller length scales are plausible because the turbulence in
clouds is driven locally, e.g. within the shear region formed between the updraft in the
cloud core and the subsiding shell around the cloud [79]. The subsiding shell is divided
in an outer and inner shell, which are 10 m in order of magnitude thick depending
on the cloud evolution stage [79]. Hence, the Taylor-scale Reynolds number Rλ is on
average smaller in clouds than outside clouds. However, these average considerations
are bound to large standard deviations. Considering the integral scale L11 in clouds,
the standard deviation is 109 m. Thus, a significant fraction of cloud events has an
integral scale of O(L11) ∼ 100 m. During EUREC4A , the typical depth of shallow
cumuli is ≲ 500 m, which is visually determined from radar reflectivity data [191]. The
energy injection scale can be obtained from the largest convective role, which is given
by the cloud depth, i.e. ≲ 500 m, and imposes an upper bound to the integral scale.
Integral scale estimates, which are larger than 500 m are considered outliers.

At last, it should be noted that the mean wind speed is below 10 m/s. This implies
a spatial resolution of CDP measurements at 2 Hz of less than 5 m. A spatial resolution
of 5 m is not sufficient to resolve mixing processes where cloud microphysical quantities
change on length scales ∼40 cm to 60 cm [25]. To study fine-scale processes of that
length scale or smaller, PbP data with a time resolution of 1 × 10−6 s (spatial resolution
of 1 × 10−5 m) would have to be invoked.

4.4.2 Statistics of Cloud Droplets in Trade-wind Cumuli
In the atmosphere, typical cloud droplets with diameters up to 25 µm, as observed at
EUREC4A , are generally two orders of magnitude smaller than the Kolmogorov length
scale of the turbulent flow in which they are embedded. Besides the gravitational force,
the dynamics of cloud droplets is coupled predominantly to the dissipative scales of
the flow being captured by the cloud particle Stokes number St [e.g. 4]. The relative
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unit mean median std
U m/s 7.83 7.02 2.61
σu′

1
m/s 0.66 0.65 0.25

⟨ϵI2⟩τ mW/kg 31.45 20.85 35.87
ηK mm 0.94 0.70 0.54
λf m 0.20 0.11 0.17
L11 m 62 12 109
Rλ 4302 2714 4109

Table 4.3 Cloud turbulence features obtained from time-records of the longitudinal velocity
component u1(t) on both MSM89 (RV Maria S. Merian) and M161 (RV Meteor) during
EUREC4A by both the MPCK+ and mini-MPCK. U = ⟨u1(t)⟩30L11τ is the mean velocity
obtained from u1(t) for the averaging window τ , σu′

1
the RMS fluctuation of u1(t), ⟨ϵI2⟩τ

the estimate of the mean energy dissipation rate according to Eq. (3.15) with n = 2, ηK the
Kolmogorov length scale, λf the longitudinal Taylor micro-scale, L11 the integral length scale
and Rλ the Taylor micro-scale Reynolds number. For each turbulence feature, the mean,
median and standard deviation (std) are given. The averaging window is τ = 60 s. u1(t) is
not corrected for platform motion. The MPCK+ and mini-MPCK are considered to be inside
clouds if the cloud droplet number density n > 10/cm3.

unit mean median std
U m/s 9.06 9.04 2.80
σu′

1
m/s 0.55 0.55 0.24

⟨ϵI2⟩τ mW/kg 16.51 1.51 25.49
ηK mm 1.34 1.31 0.78
λf m 0.33 0.26 0.27
L11 m 120 37 160
Rλ 5726 3514 4761

Table 4.4 Bulk turbulence features obtained from time-records of the longitudinal velocity
component u1(t) both on MSM 89 (RV Maria S. Merian) and M161 (RV Meteor) during
EUREC4A in cloud-free air (n ≤ 10/cm3). U = ⟨u1(t)⟩τ is the mean velocity obtained from
u1(t) for the averaging window τ , σu′

1
the RMS fluctuation of u1(t), ⟨ϵI2⟩τ the estimate of

the mean energy dissipation rate according to Eq. (3.15) with n = 2, ηK the Kolmogorov
length scale, λf the longitudinal Taylor micro-scale, L11 the integral length scale and Rλ the
Taylor micro-scale Reynolds number. For each turbulence feature, the mean, median and
standard deviation (std) are given. The averaging window is τ = 60 s. u1(t) is not corrected
for platform motion.
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impact of gravity to turbulence is captured by the non-dimensional settling velocity
Sv [e.g. 23, and references therein]. Both parameters identify potential cloud droplet
growth due to collision-coalescence and gravitational collection, which are important
to the initiation of rain in warm clouds [4, 23]. In the following, the parameter space
of cloud droplets is characterized in terms of St and Sv, which both depend on the
cloud droplet diameter and the energy dissipation rate.

Figure 4.20 Cloud droplet statistics in trade-wind cumuli based on measurements of MPCK+
and mini-MPCK during EUREC4A . A: The PDF of the Stokes number St is shown for all
flights based on the PbP-records acquired by FCDP and CDP-2. B: Non-dimensional settling
velocity parameter Sv as a function of cloud droplet Stokes number St for various altitude
ranges. The altitude is re-scaled by TBL (zPSS8/TBL). Arrows visualize the dependence
on the mean energy dissipation rate estimate ⟨ϵI2⟩τ and the droplet diameter dp. C: PDF
of droplet size ratio of two subsequent droplets where d>

p is the larger droplet and d<
p the

smaller droplet. D: Collision efficiency E according to [64]. τ = 60 s is the averaging window.

The Stokes number, Eq. (1.70), is obtained from PbP data under the assumption
of a constant kinematic viscosity of air ν = 1.5571 × 10−5 m2/s and a constant density
of liquid water ρH2O = 997 kg/m3. The energy dissipation rate is estimated by ⟨ϵI2⟩τ

with τ = 60 s. To calculate St, PbP-time stamps are matched with the time of ⟨ϵI2⟩τ ,
which is implicitly assumed to be constant over the averaging window. The resulting
PDF of St obtained from PbP cloud droplet diameters during EUREC4A is shown in
Fig. 4.20A. The vast majority of the encountered cloud droplets have a Stokes number
St < 0.01 (86% on average, maximally 99.99%) where droplet inertia can be neglected.
Inertial effects such as the sling effect just become significant for St ≳ 0.1 [28, 61]. The
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fraction of cloud droplets with St > 0.1 is 0.1% for all flights and 0.56% for MSM89
Flight 12 where the MPCK+ sampled precipitating clouds. This flight is investigated
in more detail in Sec. 4.4.3.

Despite that, the vast majority of cloud droplets behave most likely as tracer
particles (St < 0.01). The terminal velocity of a droplet is ∝ d2

p in still air [4] so that
gravitational settling could dominate cloud droplet motion. Furthermore, previous
considerations have shown an altitude dependence of the droplet size PDF and the
presence of particles larger than 20 µm (Sec. 4.4). Therefore, it is necessary to condition
the Sv-St parameter space on altitude, i.e. vertical distance to cloud base, as shown in
Fig. 4.20B. Considering the regime Sv > 1 and St < 0.1, gravitational settling is an
important process compared to droplet inertia in shallow cumulus clouds particularly
in the low altitude range 0.8 < zPSS8/TBL < 1.2. This regime is associated with a
moderate ⟨ϵI2⟩τ (on average 2 × 10−3 W/kg), L11 ≈ 177 m and an average cloud droplet
diameter of 17 µm. In the regime Sv < 1 and St < 0.1, neither gravitational settling
nor droplet inertia plays a significant role. This regime is the “tracer” regime and is
related to ⟨ϵI2⟩τ (on average 4 × 10−2 W/kg) and small particle diameters (average
dp ≈ 7 µm). This regime is occupied by all altitude ranges and associated with an
average integral scale of L11 ≈ 45 m. A significant fraction of cloud droplets in the
medium altitude regime 1.2 < zPSS8/TBL < 1.6 is dominated by droplet inertia, i.e.
Sv < 1 and St > 0.1. Cloud droplets are attributed to this regime with an average
diameter of 15 µm and in turbulent regions with ⟨ϵI2⟩τ being 8 × 10−2 W/kg on average.
Furthermore, the Taylor-scale Reynolds number is Rλ ∼ 1660 hinting at strong local
fluctuations of the energy dissipation rate due to intermittency. This is supported by
an average measured integral length scale L11 of only 5 m.

The regime where rain is initiated presumably the most efficiently is for Sv > 1 and
St > 0.1 with ⟨ϵI2⟩τ being 6 × 10−2 W/kg (Rλ ≈ 2330, L11 ≈ 10 m and dp ≈ 16 µm
on average). Due to finite droplet inertia (0.1 < St < 1), cloud droplets mostly
occupy regions of low vorticity in the turbulent flow while, simultaneously, they tend
to settle [4, 20]. As they mostly pass through strain-dominated regions of the flow
[4, 20], it is expected that the relative velocities between cloud droplets differ. It
can be concluded that gravitational collection is combined with collision-coalescence.
If Sv ≫ 1, the gravitational collection dominates over collision-coalescence. Most
of the cloud droplets in that Sv-St range (Sv > 1 and St > 0.1) are sampled at
1.2 < zPSS8/TBL < 1.6, which might be due to the flight strategy. Further analysis is
required to validate the explanation above where holography and PIV data promise
valuable insight. Furthermore, the gap between Sv ≳ 1 and O(St) ∼ 0.01 is remarkable.
It can be suggested that cumuli with a sufficient depth to reach the medium altitude
regime exhibit higher energy dissipation rates. To validate or falsify this hypothesis,
measurements of cloud top altitudes of the sampled clouds have to be taken into
account. Turbulent characteristics should be subsequently conditioned on the cloud
top altitude and should reveal bimodal behavior.

The efficiency of collision-coalescence depends on the sizes of colliding droplets [64,
200]. Despite that the CDPs cannot resolve collision events, they deliver cloud droplet
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sizes of two successive cloud droplets. Ignoring the turbulent flow and thermodynamics
of the background, two neighboring droplets can be considered as best candidates for
a collision. To estimate the efficiency of these potential collisions, the size ratio of
two successive droplets is calculated. d>

p is the larger droplet and d<
p the smaller so

the values lie within 0 and 1. The PDF of d<
p /d

>
p is shown in Fig. 4.20C. The first

point to note is that ratios of 0.1 and smaller are very rare. This can be explained
by the fast condensational growth of cloud droplets up to a few microns and the fact
that cloud droplets larger than 20 µm are rare (e.g. Fig. 4.17B). Despite variability
among the flights, droplet size ratios between 0.2 and 0.8 are nearly equally likely. The
largest range is observed for a size ratio of 0.6. In case of MSM89 Flight 12 , a local
minimum at size ratio about 0.5 emerges. The size ratio increases again at 0.6 and
0.7. As an example, a size ratio of 0.6 to 0.7 corresponds to neighboring droplets of
20 µm and 30 µm in diameter. In the case of MSM89 Flight 12 where the droplet size
ratio is higher for 0.6 and 0.7 compared to 0.5 and 0.9. As illustrated in Fig. 4.20D,
the collision efficiency E(d>

p , d
<
p ) is optimal in the range 0.5 to 0.75 [64]. The observed

size ratios during the rain event in MSM89 Flight 12 (cf. Sec. 4.4.3), therefore, are in
the optimal range.

Most cloud processes, among which is collision-coalescence, are related to the
spatial distribution of cloud droplets [23]. The spatial distribution of cloud droplets in
trade-wind cumuli is investigated as a function of the inter-particle distance ∆r. The
inter-particle distance is obtained from the PbP-inter-arrival time and low-pass filtered
relative wind speed (cutoff frequency at 0.05 Hz due to platform motion). The counting
statistics is conditioned on cloudy air, i.e. n > 10/cm3. The PDFs of inter-particle
distances irrespective of their size are shown in Fig. 4.21A where ∆r is re-scaled by
the Kolmogorov length scale for global comparison. Up to ∆r ∼ 1ηK , the error bars
are large due to counting statistics. however, MSM89 Flight 3 and 12 as well as M161
Flight 5 exhibit different behavior than the other flights. In the case of Flight 5,
the enhanced probability of ∆r < 1ηK , is due to high particle counts at low altitude
in the lowest size bin (and does not appear in Figs. 4.21B-D anymore). The CDP2
does not provide chemical information about the recorded particles. I suppose that it
measured sea spray or large aerosols which is why this flight is not further considered.
However, during MSM89 Flight 12, ∆r < ηK is more likely than ∆r > ηK which hints
at spatial clustering. In this context, it would be interesting to evaluate statistics on
inter-particle distances from 3D positions in order to avoid the projection issues of the
one-dimensional quantity ∆r. Between 1ηK − 10ηK , the PDF is nearly constant. On
these scales, the distribution of particles in space appears to be random.

However, the probability of finding two particles separated by 10ηK to 100ηK (i.e.
0.6 cm to 6 cm) is 3 to 4 orders of magnitude smaller than droplets separated by ∆r
between 1 – 10 ηK . In other words, shorter inter-particle distances of ∆r ∼ 1ηK − 10ηK

are more likely than ∆r ∼ 10ηK − 100ηK . This suggests that scales comparable to
10ηK − 100ηK are less populated, i.e. devoid of cloud droplets. These regions, that
are not occupied by cloud droplets, are also known as “cloud voids” and have been
experimentally measured on Mt. Zugspitze. Cloud voids on Mt. Zugspitze have

153



Atmospheric Turbulence and Cloud Microphysics in the Trade-wind region

an average size of 70 ηK [39], which is in agreement with the ∆r-measurements in
trade-wind cumuli. However, this drop can also be associated with merging different
cloud regions in the PDF. The number density in the cloud core is higher than at the
cloud edge, where entrainment and mixing processes occur. Thus, it is possible that the
two plateaus are related to the cloud core and cloud edge. This would imply that cloud
droplets, neglecting their size, are nearly randomly distributed. Conditioning the PDF
of ∆r to cloud core with n > 100/cm3, the PDF also deviates from Poisson behavior
for ∆r > 60ηK (Fig. 4.22). Therefore, the spatial distribution of cloud droplets is only
close to being random for scales ∆r < 60ηK .

Furthermore, the inter-particle distances depend on the droplet size range. The
inter-particle distances increase with increasing dp-threshold (Fig. 4.21B-D) where the
minimum distance is several ηK in the case of dp > 15 µm. Considering cloud droplets
larger than 15 µm, PDFs of MSM89 Flights 11, 12 and 18 exhibit power-law-like
behavior. In [25], this is attributed to dynamic processes such as entrainment.

To summarize, the Sv-St parameter space spans four orders of magnitude for both
parameters. Hence, diverse dynamics of cloud droplets embedded in a turbulent flow
are expected. For a rain event, the droplet size ratio has a local maximum at ≈ 0.6
where the collision efficiency is optimal. The droplet spatial distribution suggests cloud
voids but more detailed analysis, ideally paired with an analysis of 3D droplet positions,
is needed.

4.4.3 Cloud Droplet Statistics in Precipitating Cloud
Up to now, cloud droplet statistics were investigated for trade-wind cumuli in general
where the statistics comprised, i.a., different cloud evolution stages or mesoscale cloud
patterns. In this section, one rain event (MSM89 Flight 12) is picked to characterize
turbulence and cloud droplet statistics in a rainy cloud. The general cloud pattern
during MSM89 Flight 12 was “flower”, which is a cloud pattern with a typical size
of 20 km to 200 km lacking a unique shape and being well separated from each other
[198] as shown in Fig. 4.23. The MPCK+ sampled clouds of the flower in the orange
square of Fig. 4.23 where the radar reflectivity proves that the clouds are precipitating
from 19:00:00 AST on (Fig. 4.24, [191]). The following analysis is a first step towards
unraveling the role of turbulence in the onset of precipitation in so-called warm clouds,
i.e. clouds consisting of liquid water droplets only.

The total time series of the cloud droplet number concentration MSM89 Flight 12 is
shown in Fig. 4.25A where the grey period highlights the time period of the rain event
being considered in the following. From here on, we consider the gray-shaded region
with a time frame from 19:06:00 AST to 19:13:00 AST, if mentioned otherwise. During
that time period, the CDP sampled in total 114754 droplets (113114 PbP-droplets)
where 659 droplets have a diameter larger than 20 µm and 266 droplets with dp > 40 µm.
The number concentration for that time period (shaded region) is on average 108/cm3

with a peak concentration of 319/cm3 (median n = 94/cm3 and std n = 103/cm3).
The inset of Fig. 4.25A shows the MPCK+ barometric altitude zPSS8 as a function of

AST time varying by 75 m. The helikite responds to a low-pass filtered vertical velocity
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Figure 4.21 Probability density functions (PDF) of inter-particle distance (∆r) re-scaled
by the Kolmogorov length scale ηK . A: The ∆r/ηK-PDF is calculated for all cloud droplets.
B-D: The ∆r/ηK-PDFs are calculated for all cloud droplets with a diameter dp > 5 µm,
dp > 10 µm and dp > 15 µm. ηK is the average Kolmogorov length scale obtained from all
averaging windows with a cloud droplet number concentration n > 10/cm3. In each averaging
window, ηK is obtained by Eq. (1.12) where the mean energy dissipation rate ϵ is estimated
by ⟨ϵI2⟩τ and the averaging window τ = 60 s. E: Probability distribution function of ηK in
cloudy air, where the ηK estimates are not averaged over each flight.
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Figure 4.22 PDF of inter-particle distances ∆r re-scaled by the Kolmogorov length scale ηK

for cloud core regions defined by n > 100/cm3. ηK is the average Kolmogorov length scale
obtained from all averaging windows with a cloud droplet number concentration n > 10/cm3.
In each averaging window, ηK is obtained by Eq. (1.12) where the mean energy dissipation
rate ϵ is estimated by ⟨ϵI2⟩τ and the averaging window τ = 60 s. The average PDF of all
flights is fitted by a Poisson-distribution (“Poisson”). The dotted line is marks at ∆r = 60ηK .

of the atmospheric flow filtering on spatial scales characteristic to helikite dimensions.
As long as the winch is idle and the mean wind speed is constant, the helikite moves
vertically if the large-scale vertical velocity of the flow changes. Consequently, the
low number counts of cloud droplets at approximately 19:09:00 AST (Fig. 4.25B)
is coincidental with a large-scale downdraft. Furthermore, the inset also shows the
time evolution of the local mean energy dissipation rate ⟨ϵI2⟩τ estimates based on an
averaging window of τ = 60 s. The local mean energy dissipation rate varies by nearly
one order of magnitude with high values ∼ 0.1 W/kg in the period between the red
dashed lines. These comparably high values of ⟨ϵI2⟩τ coincide with significantly larger
cloud droplet diameters (Fig. 4.25A and B). Note that the error bars are given by
the difference between the maximum of the compensated structure function and the
inertial range fit as explained in Sec. 4.4.1. The estimates of the local mean energy
dissipation rate ⟨ϵI2⟩τ are obtained as explained in Sec. 4.A.

Besides the comparably high number counts of cloud droplets with dp > 20 µm in
the red bounded time frame (total number of cloud droplets is 10477, among which
349 droplets with dp > 20 µm and 100 droplets with dp > 40 µm), N(dp) reveals a
nearly permanent first peak at low dp ≈ 3 µm and second peak close to dp ≈ 12 µm
(Fig. 4.25B). The first peak is most likely associated with CCN activation within the
cloud but further investigation is beyond the scope of this thesis. The second peak at
dp ≈ 12 µm is associated with cloud droplets that grew by condensation. The second
peak extends up to dp ≈ 16 µm and the number of cloud droplets decays sharply for
dp > 22 µm even within the bounded region. Assuming statistically homogeneous and
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Barbados

South America

HALO Circle

200 km

Figure 4.23 Satellite image of MODIS Terra satellite with cloud reflectivity from the overpass
on February 12 2020 at 14:32 AST. The mesoscale cloud pattern upstream of Barbados is
“flower”. The MPCK+ on RV Maria S. Merian (MSM89 Flight 12) was close to the HALO
Circle (∼ 200 km in diameter [38]) on February 12 2020 at 19:00:00 AST. Taking into account
the North-Easterly wind direction and the mean wind speed (≈ 5 m/s), the MPCK+ sampled
the flower in the red square. Source: https://observations.ipsl.fr/aeris/eurec4a/Leaflet/index.
html. Taken on 2023-01-10.
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Figure 4.24 Radar reflectivity from W-band radar on February 12 2020 from 19:00 AST
to 20:00 AST as a function of height, i.e. altitude above MSL, aboard RV Maria S. Merian
[191]. Flying at an altitude of ≈ 900 m above MSL at a mean wind speed of U ≈ 5 m/s, the
MPCK+ is about 3 min downstream of RV Maria S. Merian. Source: https://atmos.meteo.
uni-koeln.de/~cacquist/eurec4a/dataBrowser4.html. Taken on 2023-01-10.
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Figure 4.25 A: Cloud droplet number concentration as a function of time for MSM89 Flight
12. The time frame from 19:06:00 AST to 19:13:00 AST is shaded in gray. The inset shows
the barometric altitude zPSS8 as a function of AST time as well as the local mean energy
dissipation rate ⟨ϵI2⟩τ , Eq. (3.15) with n = 2 and τ = 60 s. The error bars are given by the
difference between maximum and fit of Eq. (3.15) with n = 2 in the fit range. B: Histogram
of cloud droplet diameters N(dp) as a function of time. The histogram is re-scaled by the
maximum number count over the time period (19:06:00 AST to 19:13:00 AST) within a
cloud droplet diameter bin Nmax(dp). The red dashed lines bound a time period where the
histogram of cloud droplet diameters are significantly larger than before and after.
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stationary conditions over the time frame of interest (19:06:00 AST to 19:13:00 AST),
purely condensational growth of cloud droplets activated at the cloud base should
lead to a single peak, here at dp ≈ 12 µm. Therefore, the origin of droplet diameters
dp > 22 µm cannot be simply explained by condensational growth only. In the following,
the effect of collision-coalescence is therefore assessed in more detail.

A B

Figure 4.26 Non-dimensional settling velocity parameter and cloud droplet Stokes number
on MSM 89 Flight 12. A: The Sv-St parameter space is obtained from all cloud droplets in
the PbP-record from 19:06:00 AST to 19:13:00 AST. B: The Sv-St parameter space is shown
only for PbP-records between 19:09:23 AST and 19:10:34 AST, i.e. the time frame bounded
by the dashed red lines in Fig. 4.25. Each Sv-St point is colored in terms of the number
concentration n.

To evaluate the possibility of collision-coalescence, individual cloud droplets must
fulfill either Sv > 1 or St > 0.1 or both. Droplets attributed to this parameter space
are the best candidates to become a so-called “collector”-droplets resulting in drizzle
or rain. According to Eqs. (1.70) and (1.71), both Sv and St increase with d2

p, which is
why high St and Sv are expected for large droplets. During the rain event on MSM89,
most cloud droplets with Sv > 1 pertain to St > 0.1 as shown in Fig. 4.26A. In the
time frame of 19:09:23 AST and 19:10:34 AST with an enhanced fraction of droplets
> 20 µm in diameter, even all droplets with Sv > 1 pertain to St > 0.1. These cloud
droplets are inertial and settle due to gravity. In a downdraft, this implies mean
accelerations larger than gravitational acceleration. Moderate Sv ≳ 1 combined with
St > 0.1 can lead further to preferentially settling through strain-dominated regions of
the turbulent flow [4]. Most droplets with St < 0.1 behave like tracers with Sv < 1
and can thus be considered as background. For completeness, each Sv-St point in
Fig. 4.26 is colored in terms of the number concentration n where n is inferred from
the histogram data at 2 Hz. As St and Sv are calculated based on PbP-records of the
cloud droplet diameter, the histogram time is interpolated to the PbP-time where n is
assumed to be constant for each time interval of 0.5 s.

Considering precipitating clouds and assuming that collision coalescence plays
a significant role in the initiation of rain in warm clouds, the collision efficiency is
anticipated to be near the optimum. As mentioned in Sec. 4.4.2, the collision efficiency
depends on the droplet size ratio d<

p /d
>
p , which is shown for both the entire rain event
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Figure 4.27 Normalized histogram of droplet size ratio d<
p /d

>
p as a function of the d>

p and
PDF of inter-particle distance ∆r for the rain event. d>

p is the larger and d<
p the smaller

droplet. # is the number count per d<
p /d

>
p − d>

p bin. ∆r is re-scaled by the Kolmogorov
length scale ηK . A: The droplet size ratio d<

p /d
>
p is inferred from PbP-records of the cloud

droplet diameter for the total time period (19:06:00 AST to 19:13:00 AST). B: The ∆r/ηK

-PDF of total time period (19:06:00 AST to 19:13:00 AST) is shown for all droplets (gray
dotted line) and for various diameter ranges. C: The droplet size ratio d<

p /d
>
p is inferred from

PbP-records of the cloud droplet diameter for 19:09:23 AST and 19:10:34 AST only. D: The
∆r/ηK-PDF of total time period (19:09:23 AST to 19:10:34 AST) is shown for all droplets
(gray dotted line) and for various diameter ranges. The ∆r/ηK-range is limited to the range
of 1 × 10−1 to 1 × 104 for better visibility. Error bars are derived under the assumption of
Poissonian counting statistics.
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(Fig. 4.27A) and for a single cloud with larger droplet diameters (Fig. 4.27C). For
better contrast, the droplet size ratio is normalized by the maximal number count
per size bin (max #(dp)). Smaller droplets generate a wide range from ∼ 0.2 to 1
at d>

p ≲ 15 µm. This is because of the double peak in droplet sizes as shown in
Fig. 4.25B. The wide spread of d<

p /d
>
p suggests that different stages of condensational

cloud droplet growth are spatially mixed. Furthermore, taking into account the small
collision efficiency for small droplets (Fig. 4.20D), a ratio of 0.7 does not necessarily
hint at collision. Larger droplets with diameters dp > 23 µm seem to be in proximity
with smaller droplets as d<

p /d
>
p ≈ 1 only happens for smaller droplets. Therefore, a

droplet size ratio d<
p /d

>
p ≈ 1 can only be due to condensational growth in statistically

stationary and homogeneous conditions. This is further supported by the PDF of
inter-particle distances for the diameter range 20 µm ≤ dp < 50 µm (Figs. 4.27B and
D). The minimum distance of droplets in the diameter range 20 µm ≤ dp < 50 µm
is found to be beyond 100ηK (Tables 4.5 and 4.6). For droplets larger than 30 µm
and smaller than 40 µm, the most frequent size ratio is 0.4 and 0.7. Assuming that
these droplets are a result of collisions of 20 µm-droplets, 7 collisions are needed for a
20 µm to grow to a droplet with dp = 40 µm. The likelihood for collisions is largest in
regions of high number concentration as the inter-particle distances are likely to be
smaller than in regions of low number concentration such as the cloud edge (Fig. 4.28).
Considering droplet growth by condensation, the time for a 40 µm-droplet to grow in a
constantly super-saturated environment of 1% is ∼ 300 s [21]. As the bulk of cloud
droplets seems to be bound to diameters smaller than 20 µm, it can be concluded that
this is the limit of condensational growth in that rain event. Therefore, it is very likely
that larger droplets are due to collision-coalescence.

To summarize, the case study of the rain event hints at a significant impact of
collision-coalescence to rain initiation in warm clouds. Both gravitational collections as
well as sling events can be expected considering the Sv-St parameter space. It would
be interesting to complement these conclusions with measurements of super-saturation
(fluctuations) in the future. The effect of charge is not considered in the scope of this
thesis although it might affect the spatial distribution of cloud droplets on distances
≪ ηK as suggested by Fig. 4.28.
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Figure 4.28 PDF of re-scaled inter-particle distance ∆r conditioned on the cloud droplet
concentration n. The ∆r/ηK -PDF of total time period 19:06:00 AST to 19:13:00 AST is
shown for all droplets (gray dotted line) and for various ranges of the number concentration
n. The number concentration is inferred from time intervals of 0.1 s based on PbP-records of
inter-arrival time.

unit mean median std
U m/s 5.44 5.46 0.17
σu′

1
m/s 0.69 0.68 0.06

⟨ϵI2⟩τ mW/kg 69.87 69.53 12.42
ηK mm 0.48 0.47 0.02
λf m 0.06 0.05 0.01
L11 m 4 3 1
Rλ 1458 1338 294

Table 4.5 Cloud turbulence features obtained from time-records of the longitudinal velocity
component u1(t) for 19:06:00 AST to 19:13:00 AST in MSM89 Flight 12. U = ⟨u1(t)⟩τ is the
mean velocity obtained from u1(t) for the averaging window τ , σu′

1
the RMS fluctuation of

u1(t), ⟨ϵI2⟩τ the estimate of the mean energy dissipation rate according to Eq. (3.15) with
n = 2, ηK the Kolmogorov length scale, λf the longitudinal Taylor micro-scale, L11 the
integral length scale and Rλ the Taylor micro-scale Reynolds number. For each turbulence
feature, the mean, median and standard deviation (std) are given. The averaging window is
τ = 60 s. u1(t) is not corrected for platform motion.
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unit mean median std
U m/s 5.32 5.31 0.07
σu′

1
m/s 0.73 0.73 0.01

⟨ϵI2⟩τ mW/kg 98.52 100.22 8.08
ηK mm 0.44 0.43 0.01
λf m 0.05 0.05 0.00
L11 m 3 3 1
Rλ 1370 1354 134

Table 4.6 Cloud turbulence features obtained from time-records of the longitudinal velocity
component u1(t) for 19:09:23 AST to 19:10:34 AST in MSM89 Flight 12. U = ⟨u1(t)⟩30L11τ is
the mean velocity obtained from u1(t) for the averaging window τ , σu′

1
the RMS fluctuation

of u1(t), ⟨ϵI2⟩τ the estimate of the mean energy dissipation rate according to Eq. (3.15) with
n = 2, ηK the Kolmogorov length scale, λf the longitudinal Taylor micro-scale, L11 the
integral length scale and Rλ the Taylor micro-scale Reynolds number. For each turbulence
feature, the mean, median and standard deviation (std) are given. The averaging window is
τ = 60 s. u1(t) is not corrected for platform motion
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Appendix 4.A Protocol for Validity Flag
To investigate cloud microphysics of individual clouds, it is desirable to estimate a
mean energy dissipation rate per cloud. This requires that the averaging window is
short enough, hence the choice of the averaging window τ = 60 s. In the case of such
short averaging windows, it is possible that second-order statistics such as the variance
⟨u′2

1 ⟩ are not fully converged (cf. Sec. 4.1.2). In addition, the pitot tube measures
the relative wind speed inaccurately at low wind speeds ( U < 3 m/s) or it might be
clocked by cloud droplets, which both potentially causes wind measurement errors
(compare gray shaded regions in Fig. 4.29A and Fig. 4.29B). Hence, it is necessary
to detect unphysical turbulence parameters resulting from such erroneous velocity
measurements.

As an example, integral length scales larger than the boundary layer depth, i.e. the
scale of the largest convective roles, are unphysical. Therefore, the integral length scale
is required to be smaller than the boundary layer depth, i.e. L11 < 800 m. Furthermore,
a quality flag for ϵI2 is related to the mean scaling exponent ⟨ζ2⟩ in the inertial range of
the longitudinal second-order structure function according to [96] where 0.3 < ⟨ζ2⟩ < 0.9.
Moreover, if the inertial range of the longitudinal second-order structure function,
Eq. (3.15) with n = 2, is well pronounced, the maximum of the compensated structure
function ⟨ϵmax

I2 ⟩τ is close to the plateau, e.g.
∣∣∣ ⟨ϵmax

I2 ⟩τ

⟨ϵI2⟩τ
− 1

∣∣∣ < 0.3 where ⟨ϵI2⟩τ is defined
by Eq. (3.15) with n = 2 and ⟨ϵmax

I2 ⟩τ by the maximum of Eq. (3.15) with n = 2. As the
estimate ⟨ϵI2⟩τ invokes Taylor’s hypothesis, the turbulence intensity has to be smaller
than 25%. In this work, the criteria for characterizing turbulence are:

• U > 3 m/s
• L>

11 < 800 m
• 0.3 < ⟨ζ2⟩ < 0.9

•
∣∣∣ ⟨ϵmax

I2 ⟩τ

⟨ϵI2⟩τ
− 1

∣∣∣ < 0.3
• σu′

1
/U < 0.25

where L>
11 is the upper limit of the integral length scale. These criteria are applied in

order to characterize turbulence based on averaging windows of τ = 60 s as outlined in
Sec. 4.4.1. All averaging windows τ , which do not fulfill all requirements, are considered
as outliers and are discarded. Decreasing the upper limit of the integral scale from
L>

11 ≈ 1000 to L>
11 ≈ 100 decreases the fraction of valid averaging windows τ from 62%

to 46% as shown in Fig. 4.30A. Furthermore, the upper limit of physical integral scales
with L>

11 ≈ 800 lies within a region where the Taylor-scale Reynolds number Rλ does
not change. Hence, this choice is considered to be reasonable.

Errors in the longitudinal velocity measurements not only affect various estimates of
turbulence characteristics but also the cloud droplet number concentration. Unphysical
time-records of the longitudinal velocity time-record have been discarded for MPCK+
or mini-MPCK research flights EUREC4A field campaign have been discarded based
on visual check of the longitudinal velocity time series. However, short time intervals
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A

B

Figure 4.29 Outlier detection of the longitudinal velocity time-record. A: Time-record of
the relative longitudinal velocity measurement u1 of MSM89 Flight 12 as a function of AST
time. Gray regions are identified as erroneous. B: RMS fluctuations of u1 as a function of
AST time for an averaging window τ = 60 s. Outlier averaging windows are indicated by
gray squares.

not directly visible so that an additional outlier detection has to be performed. So
doing, based on the averaging window τ = 60 s, the σu′

1
-signal is median filtered with

a kernel size of 30. Based on the transient median of σu′
1
, a standard deviation σ is

calculated from the 60 s-σu′
1
-signal. In a stationary signal, the variation would only

rarely exceed the 3σ. Hence, an outlier is detected if σu′
1

of a single averaging window
exceeds 3σ, which is then neglected. This process is iterated 100 times. Then, the
remaining 60 s-σu′

1
estimates are considered to be physical. This yields a quality flag for

the longitudinal velocity time record as shown in Fig. 4.29A and B that is subsequently
used to infer the cloud droplet number concentration.

However, there are still unphysical cloud droplet number concentrations in some
localized events, where the absolute cloud droplet number counts per time are signifi-
cantly higher compared to other clouds of the same flight. This concerns M161 Flight
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Figure 4.30 Impact of outlier filtering on valid fraction of averaging windows τ (A) and on
the maximum Rλ estimate (B) as a function of the upper limit of the longitudinal integral
length scale L>

11.

005 when the mini-MPCK is still on RV Meteor. Moreover, an unphysical wind speed
measurement is not detected by the algorithm explained above for on specific time
interval during MSM89 Flight 12. Both time periods are neglected manually. Further
checks are needed in case of MSM89 Flight 10 to verify high cloud droplet number
counts per time but the velocity measurement is physical and the MPCK+ was far
away from the ship. This is why, this flight is not discarded in the scope of this work.

Appendix 4.B Effect of Filtering
The Max Planck Cloudkites record the velocity in the platform frame of reference.
Similar to wind velocity measurements on aircraft, the measured wind vector has to be
transformed to the Earth frame of reference. This procedure is known for wind velocity
measurements, e.g. on aircraft [201] or tethered balloons [98]. However, the helikite
motions are driven by the turbulent flow across a wide range of scales (Sec. 2.4.2),
which has been observed also by Egerer et al. deploying a helium-filled balloon [96].
Further corrections with respect to misalignment can be applied to the wind velocity
data in the Earth frame of reference, by assuming ⟨u′

3⟩τ = 0 [202]. Corrections for
platform motion require that the measurements of orientation, rotation rates and
acceleration are not drifting, noisy and synchronized in time with wind measurement
data. In principle, the SBG Ellipse-N is able to provide such a data set. However, due
to non-ideal configuration, mediocre GNSS reception and signal noise, it is likely that
these corrections will not succeed on EUREC4A data. That is why a cutoff frequency
fc = 0.5 Hz is chosen in order to suppress the influence of platform motion on the
turbulence analysis. Here, I want to discuss the effect of filtering on the RMS velocity
σu′

1
and the energy dissipation rate ϵI2.
The effect of filtering is illustrated by three different cases: (I) the uniformly

moving virtual probes in DNS (Fig. 4.31A and B), (II) the keel-strapped micro-MPCK
(Fig. 4.31C and D) and (III) the tether-mounted mini-MPCK on M161 Flight 10
(Fig. 4.31E and F). In case (I), DNS 3.3 is chosen due to the highest Rλ and a turbulence
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intensity of I = 10%, which is close to atmospheric observations. Furthermore,
uniformly moving probes in DNS 3.3 (Table 3.2) are taken because “weather vane”-like
probes measure a similar mean energy dissipation rate for I = 10%. However, the
range of cutoff frequency is smaller compared to cases (II) and (III) because of the
smaller separation of large and small scales as a consequence of Rλ being only ∼ 300.
In all cases, the energy dissipation rate is estimated by ϵI2 with a constant fit range
across the entire range of applied cutoff frequencies (case (I): r ∈ [20ηK , 200ηK ], case
(II): r ∈ [2 m, 4 m], case (III): r ∈ [2 m, 4 m]).

All three cases show a strong dependency of both σu′
1

and ϵI2 on the cutoff frequency
as shown in Fig. 4.31 where σu′

1
(fc) and ϵI2(fc) are given relative to the case with

the lowest fc ≳ 0 and referred to as “0”. Both σu′
1

and ϵI2 are ensemble averages
over all virtual probes in case (I) and over all averaging windows ⟩τ = 1800 s in
case (II) and (III). Starting with case (I), both σu′

1
(fc) and ϵI2(fc) decay with fc

only indicating a plateau for small fc. Considering cases (II) and (III), σu′
1

decreases
moderately for fc < 0.1 Hz and decays much faster between 0.1 Hz < fc < 0.2 Hz as
shown in Figs. 4.31C and E. In contrast, ϵI2 shows a longer plateau in Figs. 4.31D
and F, where ϵI2 only minimally changes up to fc ∼ 0.1 Hz. Assuming that L11 100 m
and U 10 m/s in the atmosphere, fc ∼ 0.1 Hz corresponds to a cutoff length scale
lc ∼ L11. Hence, cutoff frequencies corresponding to length scales larger than L11 are
only slightly affected by filtering. This is supported by derivatives dϵI2/dfc ≈ 0 (red
lines in Figs. 4.31B, D, and F).

However, fc = 0.5 Hz corresponds to a length scale lc ∼ 20 m with L11 100 m and
U 10 m/s in the atmospheric boundary layer. In contrast to the plateau region in
Figs. 4.31D and F, ϵI2 decays between 0.1 Hz < fc ≲ 0.5 Hz and the rate of change
dϵI2/dfc is non-zero. This suggests that fc = 0.5 Hz is in a regime that strongly varies
with fc, which is unfavorable. At fc = 0.5 Hz, the underestimation of ϵI2(fc) is 40% in
case (II) compared to ϵI2(0). In cases (II) and (III), σu′

1
(fc) is underestimated by 70 -

80% in comparison to σu′
1
(0). However, taking into account that the references σu′

1
(0)

and ϵI2(0) are also affected by platform motions for cases (II) and (III), the relative
comparison is not ideal.

To compare case (I) with cases (II) and (III), the cutoff frequency of fc = 0.5 Hz in
(II) and (III) has to be re-scaled. In code units (c.u.) of DNS where L11 ≈ 1 c.u., fc is
50 c.u. At fc = 50 c.u., ϵI2 nearly vanishes. As mentioned above, the separation of
scales in DNS 3.3 is much lower than in the atmosphere which makes it impossible to
relate fc of cases (II) and (III) to ηK of DNS. Therefore, case (I) cannot be invoked to
justify or to falsify the choice of fc. Case (I) rather supports the dependence of σu′

1
and ϵI2 on fc in general.

A complementary approach for investigating the effect of filtering involves the fact
that the mean energy dissipation rate ⟨ϵ⟩ can be obtained by integrating a pre-multiplied
energy spectrum E(κ) [5]

⟨ϵ⟩ = 2ν lim
κc→0

∫ ∞

κc

dκκ2E(κ) , (4.20)
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Figure 4.31 Effect of filtering on the RMS velocity fluctuations σu′
1

and the energy dissipation
rate ϵI2 as a function of the cutoff frequency fc. (A, B) Virtual probes sample DNS of
homogeneous isotropic turbulence at random directions but constant speed for a turbulence
intensity of ≈ 10% and Rλ ≈ 295. Hence, the dynamics of virtual probes are statistically
uncorrelated with the flow. (C, D) The micro-MPCK is mounted directly to the keel of
the 34 m3 helikite. This configuration is similar to a weather vane. DLL(r) is fitted for
r ∈ [2 m, 6 m]. (E, F) The mini-MPCK is always attached to the main tether of a 75 m3

helikite. The helikite behaves like a weather vane driving the platform motion of the
tether-mounted mini-MPCK. DLL(r) is fitted for r ∈ [2 m, 6 m].
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Figure 4.32 The effect of filtering using a model spectrum. A: The model spectrum,
Eq. (4.22), follows with CK = 1.5, p0 = 2, cL = 6.78, β = 2.1, L ∼ 200 m, ⟨ϵ⟩ ∼ 0.001 W/kg,
U ∼ 10 m/s and ν = 1.552 × 10−5 m2/s. B: The effect of filtering on ⟨ϵ⟩ is modeled by
introducing a finite integration boundary in Eq. (4.20). The dashed line corresponds to
fc = 0.5 Hz with κc = 2πU/fc.

where ν is the kinematic viscosity, κ = 2π/l, l a length scale, κc = 2πU/fc and fc a
cutoff frequency. Similarly, the turbulent kinetic energy k can be obtained by [5]

k = lim
κc→0

∫ ∞

κc

dκE(κ) . (4.21)

In homogeneous isotropic turbulence, k = 3/2⟨u′2
1 ⟩ = 3/2σ2

u′
1
. A model spectrum of

homogeneous isotropic turbulence with an exponential decay [203] is defined in [5, Eq.
6.246 ff.]:

E(κ) = CK⟨ϵ⟩2/3κ−5/3
(

κL

[(κL)2 + cL]1/2

)5/3+p0

exp(−βκηK) , (4.22)

where CK = 1.5 the Kolmogorov constant, p0 = 2 and cL = 6.78 and β = 2.1 are
positive constants. Here, L ∼ 200 m is the energy injection scale, ⟨ϵ⟩ ∼ 0.001 W/kg,
U ∼ 10 m/s and ν = 1.552 × 10−5 m2/s. This set of parameters corresponds to
Rλ =

(
20
3

)1/2 (
L

ηK

)4/3 ≈ 7100. The non-dimensional model spectrum is shown in
Fig. 4.32A. The influence of filtering on the estimation of ⟨ϵ⟩ can be modeled by
integrating Eq. (4.20) for various κc, i.e. neglecting the limit κc → 0. Similarly to case
(I) - (III), ⟨ϵ⟩(κc) decays with κc as shown in Fig. 4.32B. ⟨ϵ⟩(2πU/fc) with fc = 0.5 Hz
is underestimated by ∼ 20%. As σu′

1
=
√

⟨u′2
1 ⟩ =

√
2k/3 is dominated by large scales,

the effect of σu′
1

is larger. Regarding the model spectrum in Fig. 4.32, k(2πU/fc) is
underestimated by 95% which corresponds to underestimating σu′

1
(2πU/fc) by about

78% in case of homogeneous isotropic turbulence at fc = 0.5 Hz.
To summarize, the effect of filtering on ϵI2 is most likely between 20% and 40%

whereas the effect on σu′
1

is about 80% at large Rλ. Note that Rλ ∝
(

L
ηK

)4/3
implying

that the separation of scales grows with Rλ. As k is mostly stored in large scale and
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⟨ϵ⟩ mostly stored in small scales, k decays much faster with κc as shown in Fig. 4.32B.
As Rλ is very high in the atmosphere, small Rλ are not further discussed and the
interested reader is referred to [5].

Appendix 4.C Supplementary Tables

Research Cruise Flight fit range [m] fc [Hz] ffilt [Hz]
M161 1 ( 2 , 6 ) 0.5 10.0

10 ( 2 , 6 ) 0.5 10.0
3 ( 0.7 , 2.5 ) 0.5 10.0
4 ( 0.7 , 2.5 ) 0.5 10.0
5 ( 2 , 5 ) 0.5 10.0
6 ( 2 , 6 ) 0.5 10.0
7 ( 2 , 6 ) 0.5 10.0
8 ( 2 , 6 ) 0.5 10.0
9 ( 2 , 6 ) 0.5 10.0
12 ( 2.0 , 20.0 ) 0.5 10.0

MSM89 10 ( 1 , 5 ) None 10.0
7 ( 2 , 5 ) 0.5 10.0
13 ( 2 , 5 ) 0.5 10.0
15 ( 2 , 5 ) 0.5 10.0
17 ( 2 , 5 ) 0.5 10.0
19 ( 2 , 5 ) None 10.0
2 ( 2 , 5 ) None 10.0
5 ( 2 , 5 ) None 10.0
6 ( 0.8 , 3 ) 0.5 10.0
8 ( 0.7 , 2.5 ) 0.5 10.0
11 ( 0.7 , 2.5 ) 0.5 10.0
12 ( 0.7 , 2.5 ) 0.5 10.0
14 ( 2 , 5 ) 0.5 10.0
16 ( 2 , 5 ) 0.5 10.0
18 ( 0.7 , 2.0 ) 0.5 10.0
9 ( 0.7 , 2.5 ) 0.5 10.0
20 ( 0.7 , 2.5 ) 0.5 10.0
3 ( 0.7 , 2.5 ) 0.5 10.0

Table 4.7 Energy dissipation rate analysis parameters. Regarding EUREC4A , all energy
dissipation rates have been estimated via epsilonI2 based on one-dimensional time-records of
the wind speed acquired by the PSS8 pitot tube.
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unit mean median std e [%]
U m/s 6.16 5.57 1.68 1.27
σu′

1
m/s 0.69 0.71 0.16 -

⟨ϵI2⟩τ mW/kg 19.61 13.45 20.52 16.89
ηK mm 0.87 0.72 0.41 4.22
λf m 0.20 0.13 0.28 8.45
L11 m 134 19 1042 16.89
Rλ 4853 3492 9652 8.45

Table 4.8 Bulk turbulence features obtained from time-records of the longitudinal velocity
component u1(t) on MSM89 (RV Maria S. Merian) during EUREC4A by both the MPCK+
and mini-MPCK. U = ⟨u1(t)⟩30L11τ is the mean velocity obtained from u1(t) for the averaging
window τ , σu′

1
the RMS fluctuation of u1(t), ⟨ϵI2⟩τ the estimate of the mean energy dissipation

rate according to Eq. (3.15) with n = 2, ηK the Kolmogorov length scale, λf the longitudinal
Taylor micro-scale, L11 the integral length scale and Rλ the Taylor micro-scale Reynolds
number. For each turbulence feature, the mean, median, standard deviation (std) and relative
random error e in % are given. e is obtained by Eqs. (3.45), (1.61), (4.3), (4.14) (4.11)
and (4.12) for ⟨ϵI2⟩τ , U , Rλ, L11, ηK and λf respectively. The averaging window is τ = 1800 s.
u1(t) is not corrected for platform motion.
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Appendix 4.D Supplementary Figures

Figure 4.33 Vertical profiles of the virtual potential temperature θv and the longitudinal
velocity u1 recorded on M161 Flight 3 (A, C) Flight 8 (B, D) and Flight 9 (C, F). TBL
represents Top of the Boundary layer. Color code visualized the local time of the day (ATS)
corresponding to UTC - 4. The barometric altitude is acquired by the PSS8.
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Figure 4.34 PDFs of the systematic errors δI2(θ), Eq. (3.36), due to misalignment (A) and
βI2(I), Eq. (3.28),due to finite turbulence intensity (B) of the energy dissipation rate estimate
⟨ϵI2⟩τ during EUREC4A on M161 aboard RV Meteor. θ is the average angle of misalignment
and I the turbulence intensity. Both errors are estimated from averaging windows with
τ = 1800 s.
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Figure 4.35 Overview of mean energy dissipation rate estimates ⟨ϵI2⟩τ obtained from one-
dimensional time-records of the longitudinal velocity during EUREC4A on MSM89 (RV Maria
S. Merian) as a function of the re-scaled barometric altitude zPSS8. TBL is the abbreviation
for top of the boundary layer and the averaging window τ = 30 min. Error bars are given
by Eq. (3.45) for ⟨ϵI2⟩τ and by the re-scaled standard deviation of z during the averaging
window τ . Highly opaque ⟨ϵI2⟩τ -values are obtained from longitudinal second-order structure
functions Dτ

LL(r) with a mean scaling exponent ζ2, which satisfies |ζ2 − 2/3 + 1/36| < 0.1 (in
agreement with K62) in the fit range. In contrast, weakly opaque ⟨ϵI2⟩τ -values stem from
Dτ

LL(r) with |ζ2 −2/3+1/36| ≥ 0.1. Furthermore, ⟨ϵI2⟩τ is highly opaque only if the standard
deviation of the altitude is lower than 50 m. The right panel shows the number counts of
⟨ϵI2⟩τ -values agreeing with K62 in blue and the number counts of ⟨ϵI2⟩τ -values disagreeing
with K62 in (weakly opaque) red. The ensemble average of each ζ2-group is denoted by ⟨ζ2⟩.
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Chapter 5

Discussion and Outlook

In this section, an overall discussion, outlook and summary are presented. Both the
experimental approach and individual results are mostly discussed in the previous
Chapters 2, 3 and 4. Therefore, more general aspects are considered in the following.

5.1 Discussion

5.1.1 Turbulence Measurements in the Trade-wind Boundary
Layer

In this thesis, turbulence characteristics are inferred from one-dimensional velocity time-
records in the atmosphere being probed by balloon-borne instruments, the MPCK+
and the mini-MPCK. Concerning the performance of balloon-borne measurements with
the mini-MPCK, the interested reader is referred to Sec. 2.5. Similarly, the accuracy
of different methods of estimating the mean energy dissipation rate was discussed
in Sec. 3.3. Here, I concentrate on the discussion of turbulence characteristics and
anisotropy of the lower atmosphere.

Turbulence Characterization by Balloon-borne Measurements

The velocity is measured relative to the airborne instrument. Based on the one-
dimensional measurements of relative velocity in time, turbulence characteristics are
estimated from the local and global mean energy dissipation rate estimate and the
corresponding variance estimates. In case the instrument is attached to the helikite, it
is prone to platform motion affecting the relative velocity measurement. Modeling the
helikite as a weather vane, it has been shown that the effect of platform motion can be
neglected for both the variance and energy dissipation rate for turbulence intensities
up to 25%. During the EUREC4A field campaign, the turbulence intensity was 7%
on average with a standard deviation of 4% based on relative velocity measurements.
Hence, the effect of platform motion is considered to be negligible if the instrument
is mounted at the helikite. Otherwise, if the instrument is attached to the line, it
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not only adjusts to the mean wind direction (which it is supposed to do) but also
exhibits pendulum-like motions. Without corrections for platform motion, these
pendulum motions have to be filtered out because they affect inertial range statistics
expressing themselves in anomalous inertial range scaling of the longitudinal second-
order structure function. Presumably, they also result in overestimating the variance. It
has been argued that variance estimates based on filtered velocity records systematically
underestimate the true variance ⟨u′2

1 ⟩ most likely by up to 40%. However, balloon-borne
measurements tend to overestimate ⟨u′2

1 ⟩ by approximately 30% [114], which might
compensate partially for the variance underestimation associated with filtering. This
impacts also the systematic bias in Rλ and L11, which is thus likely to be overestimated
in Sec. 4.2.3.

Atmospheric in-situ measurements in time are accompanied by finite averaging
windows. As mentioned before, the variance estimate and energy dissipation rate
estimate depend on the choice of the averaging window. In steady flows, longer
averaging yields better statistical convergence (cf. Chapter 3). As an example, wind
tunnel measurements are conducted for time periods of ∼ 107 integral time scales
and more [147, 204]. In the atmospheric boundary layer, the diurnal cycle poses an
upper limit on a reasonable averaging window. Assuming a large-eddy turnover time
of ∼ 600 s (boundary layer depth ∼ 600 m and vertical velocity scale ∼ 1 m/s), an
averaging window of τ = 1800 s corresponds to 3 large eddy turnover times. Assuming
that the energy injection scale is about 1/6 of the large-eddy scale [5] and assuming
homogeneous isotropic turbulence with L11/L ∼ UT11 UT ≈ 1/2 (T is the energy
injection time scale and U a velocity scale), the averaging window of τ = 1800 s
corresponds to 36 integral time scales. In contrast to wind tunnel measurements, it
is hence expected that the statistical uncertainty does not vanish. As an example,
the relative random error of the mean energy dissipation rate is about 40% and the
systematic error is about 10% for mini-MPCK measurements on RV Meteor.

Both the random and the systematic error of the mean energy dissipation rate
propagate to other turbulence features such as the Taylor-scale Reynolds number Rλ,
Eq. (1.38). Ignoring the inaccuracy in the integral length scale estimate according to
Eq. 1.29, the relative random error of Rλ is approximately 20%. In the context of
the Taylor-scale Reynolds number Rλ, it should be pointed out that, advantageously,
the amplification due to the low value of kinematic viscosity is reduced in Eq. (1.38)
compared to Eqs. (1.37). However, Eq. (1.38) depends on the choice of a “large eddy”
length scale. Choosing the energy injection scale L ≈ 2L11 results in 22/3 ≈ 1.58 higher
Rλ. Similarly, using the longitudinal Taylor-micro scale λf instead of the transverse
Taylor micro-scale λg causes a systematic deviation by a factor of

√
2. Furthermore, L11

depends on the averaging window τ in consequence of the τ -dependent variance ⟨u′2
1 ⟩τ

and energy dissipation rate estimate. Hence, Rλ depends also on τ (cf. Tables 4.1,
4.8 and 4.4). As the systematic underestimation of ⟨u′2

1 ⟩τ is monotonically increasing
with τ , Eq. (1.63), the same trend is expected for L11 and Rλ. In-situ measurements
in mountainous terrain on Mt. Zugspitze report Rλ ∼ 3000 [54] whereas tower-based
Rλ-measurements in the atmospheric surface layer of Brookhaven National Laboratory
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(USA) ranges from 1 × 104 to 2 × 104 [205]. It should be noted that the averaging
window of this work (τ = 1800 s) is shorter than the averaging window chosen in the
tower-based measurement (τ ≥ 2000 s) [205]. Considering the loose definition of Rλ,
which potentially causes a discrepancy of ∼ 50%, the PDFs of Rλ ∼ as presented in
Figs. 4.5 and 4.13 are plausible.

To systematically assess turbulence in trade-wind cumuli, the analysis is conditioned
on the cloud droplet number concentration n. Due to the low cloud fraction, i.e. the
fraction of time where n > 10/cm3, an averaging window of τ = 1800 s is too large.
Therefore, the averaging window size was reduced to τ = 60 s resulting in higher
relative random errors (≈ 90%). However, these estimates are based on assumptions of
a stationary flow, which is questionable at least in growing and dissolving clouds. Thus,
one has to be careful with estimating the relative random error via δI2 although the
estimated random error of 90% hints at large statistical uncertainty. One possibility
to mediate the non-stationarity of evolving clouds is to evaluate the buoyancy and
vertical velocity of the cloud. As an example, growing clouds are positively buoyant in
the cloud core with rising air motions [79]. Since this is beyond the scope of this thesis,
the error in estimating the local mean energy dissipation rate has been chosen to be the
deviation of the maximum of Eq. (3.15) (n = 2) and the corresponding fit. On average,
the deviation amounts to 22% for the bulk and 21% in clouds with n > 10/cm3. Based
on that deviation and recalling that the energy dissipation rate is on average twice as
high inside clouds as in cloud-free air, the difference can be considered significant. As
mentioned before, random errors of Rλ, L11, λf and ηK are inferred via Gaussian error
propagation and are given by Eqs. (4.3), (4.14), (4.11) and (4.12), respectively. Each
of these equations is proportional to the relative random error δI2(R) with a pre-factor
≤ 1. In relative terms (e.g. e(ηK)/ηK), this implies that the relative errors are equal
to or less than δI2(R). Using the deviation of the maximum of Eq. (3.15) (n = 2) and
the corresponding fit (≈ 22%) as a measure for the random error, the relative random
error for each of these quantities is less than 22%. Considering the mean values of
Tables 4.3 and 4.4, the relative deviation is larger indicating significant differences
between cloud turbulence and bulk.

Similar energy dissipation rates ∼ 1 × 10−2 W/kg have been measured in a previous
field experiment (RICO, aircraft-borne) as well [127]. During CARRIBA, higher energy
dissipation rates inside trade-wind cumuli up to ∼ 1 × 10−1 W/kg near the cloud
top have been measured by a helicopter-borne instrument [8]. Hence, local mean
energy dissipation rates in clouds inferred from balloon-borne one-dimensional velocity
measurements in time during EUREC4A are consistent with previous energy dissipation
rate measurements.

The Richardson number

The stability of the atmospheric boundary layer is captured by the Richardson number
Ri, which is an important non-dimensional parameter to analyze entrainment in an
inversion layer [52]. Such an inversion layer is observed in the trade-wind boundary layer
above a mixed layer (Sec. 4.2.1). In the re-scaled altitude range 0.8 ≤ zPSS8/TBL ≤ 1.2,
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a large variability of Ri is observed. Especially in the late afternoon until sunset at 18:00
AST, Ri is often negative suggesting unstable stratification and turbulence (Fig. 4.9A).
During noon and night, significantly positive values up to Ri ∼ 10 are observed hinting
at stable stratification. Presumably, the high variability in Ri is coupled to large-scale
motions of the free atmosphere, which are referred to as mesoscale motions [9, 190]. In
the middle of the mixed layer zPSS8/TBL ≈ 0.5 and taking into account the difficulties
in estimating Ri as outlined below, values of 0 ≤ Ri < 1 indicate either a well-mixed
layer or a stable stratification. Based on the impression gained from six research flights,
it is unlikely to encounter an entirely unstably stratified sub-cloud layer. How far this
affects the cloud fraction, which is important for the Earth’s radiation budget and this
climate warming [9], remains an open question.

The Ri-values reported in this thesis originate from one-dimensional measurements
and hence refer to localized events. To calculate the vertical gradient of the mean
velocity, the platform speed with respect to ground is simply subtracted from the mean
relative wind speed under the assumption of perfect alignment of the mini-MPCK and
the mean wind direction. According to Sec. 2.4.2, the angles of attack and sideslip are
non-zero (Fig. 2.9) revealing that the perfect-alignment assumption is not generally
fulfilled. In most cases, the misalignment is approximately 20° causing an error of 7%
in the mean wind speed and is therefore neglected in the context of Ri (24% for M161
Flight 5). Furthermore, Ri depends on the virtual potential temperature θv, Eq. (1.53),
which is a function of the specific humidity. As the specific humidity is obtained
from the relative humidity measurement, insufficient ventilation due to the front nose
of the mini-MCPK might cause a larger response time of the humidity sensor. To
quantify this error, adequate control experiments in the laboratory would be necessary.
Furthermore, in humid air with RH≥ 90%, relative humidity is prone to errors of about
5%, which can be critical in that regime for measuring super-saturation. While these
errors are suggestive of being small, estimating the Richardson number Ri by Eq. 4.10
is difficult because the estimation relies on the assumption of a frozen atmosphere over
the entire averaging window. This problem can be mediated by multiple vertically
displaced instruments measuring the relevant parameters.

Anisotropy in the Atmosphere

The anisotropy of a turbulent flow is inferred by two invariants η and ξ of the normalized
anisotropy tensor. The anisotropy tensor and the invariants in Sec. 4.3 are derived
from a high-pass filtered velocity field, which is probed by a sonic anemometer. The
sonic anemometer has a limited spatial resolution of ∼ 10 cm, which is insufficient to
resolve dissipative scales. However, most of the kinetic energy is stored in large scales
(cf. Eq. (4.21) and Fig. 4.32B) so that the sonic anemometer is suited to experimentally
measure the (large-scale) anisotropy of turbulent flows in the atmosphere. As the
normalized anisotropy is related to the Reynolds stress tensor, it is important that
the co-variance estimates ⟨u′

iu
′
j⟩ are converged. This is achieved by either considering

the entire velocity time-record or by choosing the averaging window τ = 1800 s
compromising between statistical convergence and unsteady-forcing due to diurnal
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cycle (cf. Sec. 4.1.2). The cutoff frequency of fc = 0.5 Hz due to platform motion-
related filtering corresponds to a scale l ∼ U/fc ∼ 20 m, which is smaller than the
average integral length scales of the bulk (Table 4.1).

Measurements in atmospheric flows under various conditions have been conducted
revealing that turbulence universally returns to isotropy at scales smaller than the
energy-injection scales [206]. However, perfect isotropy in inhomogeneous flows is
not expected [5]. In DNS of shear-released turbulence, it has been shown that the
flow returns to isotropy on a time scale similar to the large-eddy turnover time
[207]. Concerning bulk turbulence characteristics of the marine trade-wind boundary
layer, integral and energy injection scales are on the order of magnitude of ∼ 100 m
suggesting isotropic turbulence of scales smaller than 20 m. This is confirmed by balloon-
borne measurements with the (tether-mounted) mini-MPCK as shown in Fig. 4.15B.
Additionally, this is supported by mean scaling exponents of the longitudinal second-
order structure function DLL(r) in the inertial sub-range, which are following K62-
scaling (ζ2 = 2/3 + 1/36). Furthermore, the experimentally obtained invariants derived
from the entire velocity time-record are in accordance with invariants inferred from
single snapshots of DNS of homogeneous isotropic turbulence. The small-scale isotropy
of scales below 20 m is highly relevant for the application of DNS of homogeneous
isotropic turbulence suggesting that DNS of homogeneous isotropic turbulence is
a useful tool to study atmospheric small-scale processes. Furthermore, it allows for
invoking Kolmogorov’s phenomenology to infer the energy dissipation rate from velocity
statistics.

5.1.2 Cloud droplet statistics
The motivation for characterizing cloud turbulence is to quantify cloud droplet-
turbulence interactions at small scales in both non-precipitating and precipitating
clouds. The cloud droplet population can be characterized in terms of the cloud droplet
size distribution involving quantities like the cloud droplet number concentration. In
the following, the main emphasis is discussing the cloud droplet number concentration,
the cloud droplet Stokes number St as well as the non-dimensional settling velocity
parameter Sv and the spatial distribution of cloud droplets.

One of the most fundamental cloud characteristics is the cloud droplet number
concentration n. The cloud number concentration impacts the super-saturation field
and thus feedbacks on cloud droplet growth (Sec. 1.3.1). Cloud droplet activation
at the cloud base, entrainment and mixing at the cloud edge and cloud droplet
evaporation at the cloud top change the cloud droplet number concentration n [208].
Measuring cloud droplet number concentration n by remote sensing is accompanied by
uncertainties of more than 50% [208] highlighting the importance of measuring n in
situ. During EUREC4A , the cloud droplet number concentration n spans three orders
of magnitude. Even in cloud-free air, the number concentration does not vanish. In
consequence, the CDPs sampled at least one cloud droplet, which causes a cloud droplet
number concentration of n = 1/(uA∆t) ≈ 0.6/cm3 with u ∼ 10 m/s, A ≈ 0.3 mm and
∆t = 0.5 s. Hence, n = 0.6/cm3 is the lower bound of PDF(n) as shown in Fig. 4.17.
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Furthermore, n decreases sharply before n = 10/cm3, which is followed by a plateau
indicating that number concentrations n > 10/cm3 are measured inside clouds. This
threshold is somewhat arbitrary as it could be chosen also slightly higher. However, as
future research involves cloud edge entrainment and mixing, it is important to capture
the cloud edge fully. Hence, the minimal cloud threshold is suitable.

Furthermore, the cumulative number concentration provides inside into the altitude
dependence of the droplet size distribution (cf. Fig. 4.18). Classifying cloud regions
or clouds by the distance from the top of the boundary layer is crude. The accuracy
of determining TBL is on the order of 100 m. Additionally, the altitude ranges
(0.8 < zPSS8/TBL < 1.2 and 1.2 < zPSS8/TBL < 1.6) are about 280 m deep for
TBL ∼ 700 m. Hence, the first altitude range might already contain shallow cumulus
clouds entirely because of their limited vertical extent on the order of a few 100 m.
In the future, altitude regimes could be refined by taking into account simultaneous
Radar data and determining the cloud base more accurately.

Despite the rough altitude ranges, bulk properties of clouds are still expected to
emerge. At the cloud base, cloud droplets are activated and the time to grow by
condensation is limited. Therefore, cloud droplets with a diameter dp ≥ 20 µm are rare
and about 75% of the cloud droplets are even smaller than 10 µm in diameter in the
majority of the clouds. In consequence, inertial effects are negligible for droplets with
dp ≤ 10 µm as captured by St ∝ d2

p ∼ 0.001 in case of moderate energy dissipation
ϵ ∼ 1 × 10−3 W/kg. These cloud droplets behave like tracers following the turbulent
flow nearly instantaneously. In case of higher ϵ ∼ 1 × 10−2 W/kg, St ∝ d2

p ∼ 0.01,
which might be sufficient for initiating cloud voids [39]. Cloud droplets with diameters
dp ≥ 20 µm are more likely to be encountered at larger distances from the cloud base
in the altitude regime 1.2 < zPSS8/TBL. Despite that they are rare, these droplets
(dp ≥ 20 µm and St ∼ 0.1 for ϵ ∼ 1 × 10−2 W/kg) are in a regime where sling events
can be locally expected [28, 61]. Therefore, these rare but large droplets, being of
utmost interest for studying cloud droplet-turbulence interaction, are most likely to
encounter 400 m or higher above the cloud base.

It has been established that estimating the energy dissipation rate in-situ comes
along with difficulties, which can either be mediated or, at least, quantified. Both
the cloud droplet Stokes number St as well as the non-dimensional settling velocity
parameter Sv depend on the energy dissipation rate. Practically, the energy dissipation
rate is an intermittent quantity and can locally fluctuate by more than an order of
magnitude depending on Rλ [5]. Therefore, both St and Sv vary locally. Here, the local
mean energy dissipation rate is invoked to calculate St and Sv. Invoking Gaussian
error propagation, the relative error of St ∝ ϵ1/2 due to the uncertainty in the energy
dissipation rate is given by δϵ/2. Assuming that the error of the local mean energy
dissipation rate is δϵ ≈ 22%, the relative error of St is 11%. Hence, St > 0.12 can be
considered to be significantly larger than 0.1. Similarly, the relative error of Sv ∝ ϵ−1/4

due to the uncertainty in the energy dissipation rate is given by δϵ/4. It follows that
the relative error of Sv is 5.5% due to the error of the local mean energy dissipation
rate of δϵ ≈ 22%.
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The Sv-St parameter space can be partitioned into four regimes (cf. Figs. 4.20B
and 4.26). Regime 1 (St < 0.1, Sv < 1) can be identified as the “tracer” regime.
Regime 2 (St < 0.1, Sv > 1) is dominated by gravitation so that (large) cloud droplets
sediment on average. In regime 3 (St > 0.1, Sv < 1), inertial effects presumably
dominate over gravitation, which is why clustering or even sling events are expected.
It is possible, though, that cloud droplets are accelerated downward by vortices, which
is known as preferential sweeping [4]. Cloud droplets in regime 4 (St > 0.1, Sv > 1)
are large with dp ≈ 16 µm on average and a few droplets larger than 30 µm in diameter.
For high enough Sv, the gravitational collection takes place in regimes 2 and 4. As the
non-dimensional settling velocity is still moderate (O(Sv) ∼ 1), it remains questionable
whether regime 4 is also associated with preferential sweeping. In a rain event, both
regimes 3 and 4 are populated suggesting that both droplet inertia and gravity play
an important role in the onset of precipitation. Due to the high accuracy in St and
Sv, these results are considered to be significant. It is important to note that the
classification of the St-Sv parameter space is most likely not complete, which is due
to the size range of the CDPs (dp ≥ 50 µm). As an example, drizzle droplets with
dp ≳ 100 µm have Stokes numbers St ≫ 1 in case of ϵ ∼ 1 × 10−2 W/kg leading to
significant particle motion relative to the flow.

-particle distances, which is related to lower cloud droplet number concentration n
(Fig. 4.28).

Lastly, the accuracy of ∆r scales with turbulence intensity. As the turbulence
intensity is 7% on average, the error is expected to be small. Another source of
measurement error in ∆r is the one-dimensional projection [e.g. 62]. In the case of
CDP-2, the length of the measurement volume is ∼

√
A ≈ 0.5 mm with A ≈ 0.3 mm.

This is smaller than the Kolmogorov length scale which is why the effect of one-
dimensional projection and finite measurement volume for inter-particle distances
∼ 1 cm is considered to be small, too. Hence, the strong indications for cloud voids are
significant.

5.2 Outlook
In the future, more data analysis and further experiments will provide more insight
into cloud microphysical and atmospheric small-scale processes. Here, the focus is
mainly on further analysis of cloud droplet statistics.

It has been shown that the Sv-St parameter space is altitude dependent by condi-
tioning individual droplets on altitude regimes. These altitude regimes are related to
the depth of the boundary layer. As this estimate is crude and accurate to ∼ 100 m,
better results might be obtained by extracting the cloud base from remote sensing data
such as Radar reflectivity. Although the information is contained in different altitude
regimes as well, a more direct and insightful measure might be cloud depth. It is
expected that cloud droplets in deeper clouds have more time to grow by condensation
in updrafts. As larger droplets result in larger St and Sv in case of equal energy
dissipation rates, it would be interesting to illustrate the Sv-St parameter space as a
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function of cloud depth. The cloud depth is further affected by the convective activity
of the cloud, hence the cloud evolution stage. The latter is determined as a function of
vertical velocity and buoyancy [79, e.g.], where both variables have to be taken into
account to determine the influence of the cloud evolution stage on the Sv-St diagram.
This would link inertial to large-scale processes to the cloud droplet scale, which could
hint at their relative importance in warm rain initiation. More events of warm rain
have to be analyzed in order to support the conclusions drawn in the scope of this
thesis. As warm-rain initiation is associated with rare events, more data is highly
welcome.

It has been hypothesized that cloud droplets in regime Sv > 1 pertain to St > 0.1
preferentially fall through strain-dominated regions of the turbulent flow where they
collide and coalesce with other cloud droplets. To test this hypothesis, it is favorable
to invoke imaging technology such as holography. One requirement is the ability to
track particles. Estimating the local energy dissipation rate, given the cloud droplet
sizes at each 3D location by holography and applying a tracking algorithm yields cloud
droplet paths together with St. Regions of strong vorticity can be identified by regions
devoid of cloud droplets. The remaining volume is assumed to be strain dominated.
Alternatively, in the presence of small cloud droplets with St < 0.01, these particles
can be interpreted as tracers to visualize the flow field. Then, shear can possibly be
visualized directly.

The unoccupied region for St ≲ 0.1 in Fig. 4.20B remains an open question. It
might be related to cloud depth because convective, hence deeper clouds, are thought
to be more turbulent than shallow clouds. In consequence, one might hypothesize a
transition in turbulence level, which is expressed by higher energy dissipation rates.
Another reason could be that St depends more stronger on the energy dissipation rate
ϵ than Sv. Hence, in low turbulent regions of the cloud such as the cloud base, the
cloud droplet motion is dominated by gravity.

In general, a higher resolved local mean energy dissipation rate would be desirable.
The only well-suited method to estimate the energy dissipation rate of atmospheric flows
based on very short averaging windows, say on a second scale, is the gradient method.
Despite its fragility to experimental limitations and imperfections, it converges the
fastest. However, the gradient method requires isotropic turbulence, which is generally
approximately fulfilled at small scales, and high spatio-temporal resolution below
the Kolmogorov scales. Hot-wire measurements with a sampling frequency of at
least ∼ 10 kHz [131] are able to deliver such high-resolution measurements of velocity
fluctuations under ideal conditions. In practice, that means low electrical noise, perfect
alignment with the mean wind direction and low turbulence intensity. Under ideal
conditions and given that the Kolmogorov scales of the flow can be resolved, the
hot-wire measurements would allow for determining St and Sv based on more localized
energy dissipation rate estimates that better reflect intermittent effects of the flow.

Another important parameter is the super-saturation, which is very challenging to
measure in-situ and yet more difficult to resolve down to dissipative scales, i.e. the
ambient of individual cloud droplets. Quantifying the super-saturation fluctuations
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at dissipative scales would yield valuable insight into the condensational growth of
individual cloud droplets. Especially at the cloud edge and at the cloud top, which is
affected by entrainment processes, super-saturation might fluctuate strongly. Moreover,
these measurements are of great importance to prove concepts of convective ripening and
large-eddy hopping by in-situ measurements. However, direct experimental verification
requires following droplets along their trajectory.

5.3 Summary
To investigate cloud microphysics and atmospheric turbulence in the trade-wind region,
balloon-borne in-situ measurements with two specially developed instruments are
conducted during the EUREC4A field campaign in the Caribbean from January to
February 2020 in the trade-wind region upstream of Barbados over the Atlantic ocean.
In-situ measurements were conducted aboard two Research Vessels (RV), namely
RV Maria S. Merian and RV Meteor where one MPCK+ and one mini-MPCK were
deployed on RV Maria S. Merian and one mini-MPCK on RV Meteor. Both instruments,
the Max-Planck-Cloudkite+ (MPCK+) and the mini-Max-Planck-Cloudkite (mini-
MPCK), are carried by helikites, a helium-filled and kite-stabilized balloon. The
helikites carrying one of these instruments, i.e. MPCK+ or mini-MPCK, at a time
are launched from the back of the RV Maria S. Merian and RV Meteor, respectively.
During EUREC4A field campaign, both instruments recorded 197 h of scientific data
in total, out of which 144 h comprise cloud droplet records. During EUREC4A , the
helikites performed a variety of flight patterns, among which staircase flights and
constant altitude flights were the most frequent. Additionally, measurements were
conducted over the entire diurnal cycle with the longest continuous flight of 20 h.

Both cloud droplet characteristics such as the Stokes number St and the non-
dimensional settling velocity parameter as well as many turbulence features depend on
the mean energy dissipation rate. Therefore, the mean energy dissipation is identified
as a central quantity, which is estimated from one-dimensional time-records of the
longitudinal velocity. To quantify the accuracy of different methods, among which are
the gradient method ϵG, the 2nd-order SF (inertial range) method ϵI2, and the scaling
argument ϵL, each method is compared to the ground-truth of DNS of homogeneous
isotropic turbulence with Reynolds numbers in the range 74 ≤ Rλ ≤ 321. In addition,
the effect of finite turbulence intensity, misalignment and finite averaging window is
assessed. The Reynolds number dependency of the averaging window is investigated
with the help of high-resolution one-dimensional velocity measurements in the VDTT
wind tunnel with Reynolds numbers in the range 147 ≤ Rλ ≤ 5864. In conditions of
low turbulence intensity, each method was able to reproduce the global mean energy
dissipation on average. However, each method overestimates the ground-truth energy
dissipation rate for finite turbulence intensity. Furthermore, misalignment between
the probe and the longitudinal direction results in systematic overestimation. In both
cases, the 2nd-order SF (inertial range) method ϵI2 is the least affected. However, it
has been found that the gradient method ϵG converges at least 4 to 5 times faster than
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ϵI2. Due to the robustness of ϵI2, this method is used to obtain the (local) mean energy
dissipation rate from airborne in-situ velocity measurements.

To justify the application of the 2nd-order SF (inertial range) method ϵI2 relying
on K41, the flow has to be statistically locally isotropic. Therefore, isotropy of length
scales below 20 m has been assessed for a high-pass filtered velocity time-record in the
platform frame of reference in terms of two invariants of the normalized anisotropy
tensor aij in the Lumley triangle. The comparison to velocity measurements of virtual
probes in DNS of homogeneous isotropic turbulence reveals that the flow is statistically
and locally isotropic. It is concluded that ϵI2 can be invoked to estimate the mean
energy dissipation rate.

Furthermore, the presence of turbulence in the sub-cloud layer and cloud layer
was assessed as a function of the Richardson number. Despite that its estimate is
rough, the Richardson number rarely exceeds the value of 1 in the lowest 40% of the
sub-cloud layer. Close to the top of the boundary layer, which is inferred from the
inversion of virtual potential temperature, Ri-values range from negative to about 10
suggesting large-scale variability of atmospheric stratification. In the middle of the
sub-cloud layer, Richardson numbers are mostly positive. Overall, turbulence is present
in the sub-cloud layer, which is well-mixed most of the time and sampled locations.
Turbulence features in the bulk atmosphere have been summarized for an averaging
window of τ = 1800 s in Tables 4.1 and 4.8 as well as for the cloud-free atmosphere and
inside clouds with an averaging window of τ = 60 s in Tables 4.4 and 4.3, respectively.
Generally, the local mean energy dissipation rate was two times higher in clouds than
in cloud-free air.

Cloud droplet - turbulence interaction is captured in terms of the Stokes number
and the non-dimensional settling velocity parameter Sv. The Sv-St parameter space
spans about four orders of magnitude for both parameters and has been classified
into four regimes. These regimes can be loosely described by tracers (1), gravitational
settling in low turbulence (2), preferential sweeping (3) and gravitational settling in
high turbulence (4). The two latter regimes appear predominantly at larger vertical
distances from the cloud base, i.e. in deeper clouds. This is related to the fact that
the likelihood to encounter cloud droplets larger than 30 µm increases with distance
from the cloud base. In addition, regimes 3 and 4 are populated in precipitating
clouds where 1% of cloud droplet Stokes numbers had Stokes number St > 0.1 in one
rain event. Regimes 1 and 2 are occupied by all altitude regimes as droplets with
dp < 10 µm exist at all altitudes. Furthermore, regimes 1 and 2 are populated by small
cloud droplets in rainy clouds as well as by all cloud droplets in non-precipitating
clouds. Statistically, the inter-particle distance of cloud droplets in the cloud core
deviates from a Poisson distribution where inter-particle distances at 60ηK are more
likely than expected by a scaled Poisson distribution suggesting for cloud voids. Cloud
voids cause an inhomogeneous spatial distribution of cloud droplets in space. In the
future, a more detailed analysis of three-dimensional cloud droplet position as well as
conditional statistics on cloud evolution stages and different regions in a cloud promise
further insight into cloud droplet spatial distributions.
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