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Abstract 

Machine learning and its associated algorithms involving deep neural networks have 

gained widespread admiration in the computer vision domain. In this regard, 

significant progress has been made in automating certain application-dependent tasks, 

especially in the fields of medicine, autonomous driving and robotics. Moreover, 

considerable improvements have already been made and work is underway to make 

automated systems secure and robust against failures. Nonetheless, researchers are 

struggling to find ways to give reasons and explanations for why a machine learning 

model made a certain decision. In particular, deep neural networks are considered to 

be “black-box” in this regard, and the reason is that their distributed encoding of 

information makes it even more challenging to interpret their decision-making 

capability. 

In view of the above challenges, this dissertation aims to establish methods to visualize 

and interpret the decisions of these complex machine learning models in an image 

classification task. We opt for three types of post hoc methods, i.e., global, hybrid and 

local interpretability to understand and assess the reasons and type of image features 

that are vital for a decision in an image classification task. Hence, we call our approach 

“visualizing and interpreting the decision of deep neural networks". 

On a global level, we investigate and assess the deep network architecture as a whole, 

keeping in view the internal connections between adjacent layers, filters and 

functioning of different hidden layers. Hence, we have proposed a visualization 

method in the form of a Caffe2Unity plugin to construct and visualize a complete 

AlexNet architecture in a virtual reality environment. This novel approach allows the 

user to become part of the virtual network and gives liberty to explore and visualize 

the internal states of the network. Exploring and visualizing the network in a virtual 

environment for global assessment, working and understanding of deep neural 

networks benefits both novices and experts among our target audience. 

Using a hybrid approach, we gave a local interpretable module within our global 

virtual model that allowed the user to visualize and interpret the network in real-time. 

We permitted the user to add an occlusion block on an image and visualize the results, 
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as well as verify the decision of the network via our reframed integrated Shapley 

values approach. In this way, we achieved our goal of finding a good reason to 

determine which part of the image the network considers important for making its 

decision. 

At the local interpretable level, we proposed a layer-wise approach using influence 

scores to gain deeper insights into the pre-trained models' decision-making capability. 

We used the layer-wise influence score to determine what each layer has learned and 

which training data is most influential in the decision. By finding a contrast between 

the influential image and the network's decision, we also identified the biased nature 

of the network towards the texture of the images. 

The proposed methods analyze different kinds of explainable and interpretable 

perspectives to study and unlock the “black-box” nature of deep neural networks in 

image classification tasks. We can augment the visualizing and interpretability 

approaches in many other applications, particularly in understanding action 

predictions in robotics and object scene understanding. 
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CHAPTER 1 
   

1   Introduction 

 

1.1  Motivation and Problem Definition 

 

Today's modern world mainly revolves around Artificial Intelligence (AI), machines 

and their ability to perform tasks efficiently within a limited amount of time. This 

popularity is due to Machine Learning (ML), which is playing a pivotal role in 

advancing technology in industry and the scientific sector. We not only see this at work 

in large industrial sectors, but it has become a part of our everyday lives. Consider 

smartphones with their ability to scan irises, fingerprints and even detect and track 

faces [87], strategic video games [88] and [89], various online tools and services that 

detect and translate languages [90], human-computer interaction, visual object 

recognition, physics and many computer vision tasks. The reason for the proliferation 

of AI-based machine learning is the availability of high computational processing 

units, access to vast volumes of datasets and enhanced algorithmic approaches that 

are able to achieve excellent performance in solving a large number of complex 

everyday tasks, in most cases reaching near human-level performance. 

In this regard, Deep Neural Networks (DNNs) have shown outstanding performance 

and are considered to be at the forefront, but due to their distributed non-linear 

encoding of information, they are perceived to be "black-boxes". Their non-linear 

nature makes it very difficult to determine how these complex structures arrived at a 

certain decision. Moreover, their internal operations, behavior and complexity in 

achieving the best performance are deeply unsatisfactory from a scientific standpoint 

because the development of improved models is limited to trial-and-errors [91], [92], 

[93] and [94]. Such a hindrance can be encountered in various resource-restricted 
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devices [95] or in security risk-related applications, where a lack of robustness to 

adversarial attacks can greatly hinder performance [96]. Furthermore, in certain 

applications, a lack of interpretability and transparency reduces trust in the decisions 

made by these deep networks. Solving the above challenges is a hot topic in this 

domain, and there is a lot of research underway to find the best possible solution to 

gain better insights into these high-end networks. 

In this thesis, we will focus on the interpretability of the decisions made by these large 

non-linear structures in the computer vision domain. Our main emphasis will be on 

the classification task, where we first try to gain a general understanding of network 

architecture in a virtual reality environment. At the same time, we further extend the 

interpretability approach to shed light on the assessment of deep neural network 

architecture by finding reasons for why the network correctly or incorrectly classifies 

an image. The goals of this work are summarized below: 

Global interpretability 

• To interpret the model and gain a general understanding of the deep neural 

network. To achieve this goal, we designed and visualized a pre-trained 

AlexNet [97] architecture on the ImageNet [98] dataset in a virtual reality 

environment of the gaming engine Unity. 

•  To evaluate the internal details and visualize the layers of the model, we 

configured the Caffe framework in a dynamic link library to be used in the 

Unity engine as a plugin. 

Hybrid Interpretability (local + global) 

• To countercheck the classification decisions, we employed and reframed 

Shapley values to interpret the results in real-time using a virtual setup. We 

also added occlusion on the images to see how the network behaves and which 

part of the test images are relevant and which areas negatively contribute to 

the decision-making capability of the network. 
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Local Interpretability 

• To further evaluate the model's decisions, we used influence scores in order to 

find out which training data is responsible for making the decisions. 

• To evaluate which image features are important at different layers of the 

network and for which features the network is biased. 

 

1.2  Organization of the thesis 

 

To achieve our objectives and define the basis, we have organized the structure of this 

thesis as follows:  

Chapter 2: We will describe the foundations and fundamentals required to understand 

the topics that are used later in the subsequent chapters. Next, we will describe 

machine learning in a more general way and then narrow it down to its learning types, 

i.e., supervised, unsupervised and reinforcement learning, while focusing on the 

neural network models in particular. Our main focus will be to describe these models 

in the computer vision domain and discuss what kinds of features are learned by the 

neural network model. We will briefly discuss the frameworks used for deep learning 

models (e.g., TensorFlow, Caffe, Keras) to give the user a bird's eye view of the relevant 

features of these frameworks. Then, we will focus on Convolutional Neural Networks 

(CNNs) as these networks play a pivotal role in most computer vision tasks. In this 

section, we will discuss how the input is processed through the different layers and 

how the input changes as it passes through different layers of the network. We will 

also describe the role of pooling layers, fully connected and softmax layers, stride and 

filters, etc. In general, this chapter will lay the foundation of our visualization strategy 

that we will describe in more detail in the following chapters. Lastly, we will introduce 

the use of computer technology to simulate the environment in virtual reality. We will 

describe the tools and simulating environments that are available to execute the task 

in virtual reality, while placing particular focus on the Unity gaming engine. 
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 Chapter 3: We will discuss in detail the related work that will be used in this thesis. 

In particular, we will primarily focus on how visualization has been used to 

understand DNNs, the methods that already exist and the goal of visualizing DNNs. 

We will also give a taxonomy of visualization, distinguishing between different 

methods and goals to assess these models in the computer vision domain. 

Chapter 4: In this section, we will describe the making of a dynamic link library for 

the Caffe framework – how it was compiled and what software-based prerequisites 

were needed for a successful compilation process. We will give details of the classes 

and main functions used in the execution of the current task. In this section, we will 

also cover how to link the Caffe framework to the Unity gaming environment 

alongside a demo program to demonstrate its successful compilation. 

Chapter 5: This chapter will detail the use of the DLL and the creation of a real-time 

interactive visualization model for deep neural networks in the Unity engine. In 

addition, we will describe how a user can interact with this immersive model and gain 

an in-depth understanding and interpret the model's decisions using Shapley values, 

hence giving the details of the manuscript. 

Chapter 6: We will discuss the semantics and deeper insights learned and interpreted 

by DNNs. It is also a post hoc interpretability approach where we want to understand 

and interpret why the network fails to classify an input image. The main focus of this 

study will be to interpret learned images and evaluate the reason for network decisions 

by using layer-wise influence scores. 

Chapter 7:  Lastly, we will draw conclusions and outline future work.
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CHAPTER 2 
   

2  Foundations 

 

This thesis is a combination of various models and techniques, particularly focusing 

on DNNs. The methods adopted for conducting the research are not only from the 

computer vision domain, but we have also implemented methods from the fields of 

game theory and robust statistics. In order to provide an in-depth understanding of 

the forthcoming chapters, we briefly describe the foundations of the context relevant 

to the content of this thesis. This chapter, while laying the foundations and describing 

some general information, will be particularly useful for readers who are novices in 

this field.  

2.1 Machine learning 

Learning is a fundamental capability of any machine learning model. Learning 

instructions are usually algorithms to determine the appropriate weights and/or other 

learning parameters. A machine can become intelligent if it learns from its changing 

environment and adapts to those changes in similar situations. In other words, we say 

that a machine can learn to solve problems by identifying patterns in the data through 

computational modelling. These models can be automated via classical programming 

languages in the form of an algorithm. Any machine learning model observes the 

patterns in its training data and predicts an output based on the given input pattern 

[99]. This input can be in the form of text, videos, signals and images. In this thesis, 

however, we deal with images as inputs for the machine learning model. Although 

there are various techniques to train these models, we here briefly describe supervised 

learning, unsupervised learning and reinforcement learning to give a general 

understanding. Below, we give a brief overview of these learning techniques. 
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Figure 2.1: Three most common types of machine learning techniques showing (a) classification of data 

into two groups with color shown in red and green (b) clustering the data based on similarity of patterns 

and (c) reinforcement learning in which an agent learns from its environment and performs certain action 

and based on correct action it gets a reward. 

 

Supervised learning 

Supervised learning is one of the most common methods used for machine learning 

today, which involves learning from examples. Training through supervision involves 

finding patterns and correlating the inputs with the corresponding correct outputs. 

The objective of this type of learning is to identify the correct labels based on unseen 

input data. In its very simple form, the supervised learning algorithm can be expressed 

in the form of  𝑦𝑎 = 𝑓(𝑥𝑎) , where 𝑎 ∈ {0, 𝑁} for 𝑁 sample input images. After learning, 

the model can predict and map each input 𝑥𝑎 to its corresponding output label 𝑦𝑎. 

Generally, supervised learning is divided into classification and regression problems 

depending upon the output space. If the algorithm predicts discrete values and assigns 

the input image to a particular group or class, we say it is a classification problem, as 

shown in Fig. 2.1(a). However, if the output prediction is continuous (e.g., income, 

temperature or sales, etc.), we say it's a regression problem. 

Unsupervised learning 

It is a type of self-organized learning where the model tries to group the data and 

establishes a comparison relationship to guess the predicted output. There is no 

labelled data with unsupervised learning, and the model finds patterns in this 

unlabelled dataset and groups them according to known patterns. Clustering is a type 

of unsupervised learning and usually is employed on items/objects (e.g., exam scores). 

The features, for instance, can be grades, averages, pass/fail, etc., which are grouped 
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according to similar patterns, as shown in Fig. 2.1(b). Generally, with unsupervised 

learning, the model is given 𝑥𝑎 input vectors, but unlike with supervised learning, 

there are no labelled output vectors. 

Reinforcement learning 

This type of learning basically involves learning and interacting with environments. 

There is no labelled or unlabelled data, but with this type of learning, the model/agent 

learns from the environmental state or whether a certain action was right or wrong. 

The selection of a particular action is called a policy, and if the agent is able to perform 

a correct action based on its changing environment, it is rewarded in the form of a 

signal. This reward may depend on the previous action or on the preceding actions 

that have already taken place, as shown in Fig. 2.1(c). The ultimate goal of 

reinforcement learning is to maximize the duration of the reward based on its optimal 

policy using trial and error. 

For DNNs, learning can be regarded as a non-linear optimization problem that tries to 

determine certain network parameters, minimizing the cost function for the given task 

[100]. DNNs were first introduced in the early 1990s and showed good performance 

in handwritten digit classification and face detection related tasks [101]. Until now, 

several research investigations have concluded that DNN models deliver robust 

performance on challenges related to visual classification tasks and have become the 

architecture of choice for large-scale image recognition [7] and [35]. Their work 

delivered state-of-the-art performance on CIFAR-10 datasets and ImageNet 2012 

classification benchmarks, and the model achieved an error rate of 16.4%. Authors in 

[102] used DNNs to visualize unsupervised features of hidden layers in Deep Belief 

Networks (DBNs). Experiments performed in [16] employed deep network models 

and developed innovative methods that led to the maximizing of neural activity of 

interest through optimization using gradient ascent in the image space. The main 

reason for these improvements and the high performance of DNNs was the 

availability of large training sets with millions of labelled examples, as well as the 

application and availability of powerful and fast Graphics Processing Units (GPUs) 

[102]. 
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To understand these complex machine learning models and device changes and 

improvements, we need a framework to store and process our data. This framework 

serves as a tool or interface, allowing the user to utilize pre-compiled and readily 

available components without the hassle of building algorithms from scratch. 

Although there are quite a few frameworks available, we will give a brief overview of 

the three most popular ones used in the computer vision community, namely Keras, 

Tensorflow and Caffe, which are most relevant to the context of this thesis. 

Tensorflow 

Keras is an open-source library that provides an end-to-end interface for experts and 

trainees in the field of machine learning. It was initially developed by a team of 

researchers at Google Brain and supports many pre-written codes as one of the most 

popular deep neural network models. This framework also has very strong 

community support, documentation and very flexible architecture support for CPUs 

and GPUs. In addition, it supports codes written in popular languages such as C++, 

Python and R, and is successfully deployed in audio, video, text and image related 

tasks. Although there are many components involved in this framework, the two most 

relevant for the context of this work are TensorFlow [103] and TensorBoard. 

Keras 

Although TensorFlow is very popular among the experts, Keras provides a more 

advanced high-level API for machine learning novices using the popular Python 

programming language. This framework is flexible in that it can provide support to 

run on Theano, TensorFlow and CNTK, making it ideal for research purposes. Like 

TensorFlow, it also supports most of the popular deep neural network architectures 

with CPU and GPU support. Keras provides two options for implementing deep 

neural networks: sequentially or via the Keras functional API, depending on the type 

of model being implemented. 
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Caffe 

Caffe [104] is another popular open-source framework for deep neural networks, 

developed and maintained by researchers at the University of California, Berkeley. 

The main reason for its popularity is that it is extremely fast compared to the other 

frameworks, especially for computer vision related tasks. Also, it offers the 

functionality of software wrappers for multiple programming languages such as 

Python, C, C++ and MATLAB. In addition, it has many popular pre-trained deep 

learning architectures and weights that can be used to solve machine learning tasks 

(e.g., audio, video, text, images, etc.) on CPUs and GPUs. 

2.2 Convolutional Neural Networks 

 

With huge advances in computing power and GPUs, machine learning models such 

as DNNs have gained immense popularity. These models have been shown to 

outperform in a wide variety of fields such as speech recognition, human-computer 

interaction, visual object recognition, physics and many kinds of computer vision 

tasks. However, these models are still considered to be a "black-box" due to their 

distributed encoding of information, internal operations, behavior and complexity in 

achieving the best performance. For these reasons, these models are inadequate from 

a research perspective because the development of improved models is limited to trial-

and-error [91], [92], [93] and [94]. It is difficult to understand how these complex 

networks arrive at a particular classification decision because of the interaction of a 

large number of non-linear parts and the size of the networks. Understanding what 

image features are learned through CNNs is interesting in its own right, but it is also 

important for further improvement of the models. For example, visualization using a 

deconvolution technique led to state-of-the-art work being done on the ImageNet 

benchmark in 2013 [82]. This method used image features and observed different 

convolutional filters to extract important features at different hidden layers of the 

DNN model. Since these complex models are a combination of different components, 
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layers and filters, we will briefly describe the function of some of these components 

used in any typical convolutional neural network. 

Although providing more elaborate information on these models is beyond the scope 

of this thesis, readers new to this field can find a more detailed overview of machine 

learning in the computer vision domain in the textbooks authored by Goodfellow, 

Bengio and Courville [105], and Murphy [106]. 

2.2.1 Components of DNNs 

 

Neural networks are basically inspired by the functioning of the biological neural 

system of the human brain, in which neurons are connected by synapses and form a 

dense network that propagates neural activity. Each neuron produces an output 

activation depending upon the incoming connection. In general, when the incoming 

charge exceeds a certain threshold, an action potential is triggered and propagates 

along the axon to release neurotransmitters at the synapses. A detailed working and 

chemical exchange of ions after the action potential of these biological neurons can be 

found in the book authored by Dayan and Abbott [107]. Similarly, we simplify the 

activation propagation of artificial neurons via synaptic weights. These weights are 

the learnable parameters for the neural network that learns and acquires knowledge 

during its training. 

This subsection aims to address the basic components involved in the understanding 

and functioning of an artificial neural network. In particular, we focus on a deep neural 

architecture in this work as a non-linear hierarchical parameterized structure that 

associates its parameters 𝜃 with input 𝑥 and output 𝑦 given as   𝑦 = 𝑓(𝑥, 𝜃). In a 

generalized way, we can say that a neural network can be represented as a function 𝑓𝑖  

of inputs 𝑥 = (𝑥1, 𝑥2, … , 𝑥𝑛) with the weight vectors 𝑤𝑖 = (𝑤𝑖,1, 𝑤𝑖,2, … , 𝑤𝑖,𝑛) , bias 

𝑏𝑖 and activation function ∅ given in a mathematical form as: 

𝑦𝑖 = 𝑓𝑖 (𝑥) = ∅(⟨𝑤𝑖,𝑥⟩ + 𝑏𝑖). 
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Usually, the choice of activation function ∅ depends on the type of function performed 

by the neural network. The most commonly used activation functions for 

classification-related tasks are rectified linear units ReLU and logistic or sigmoid 

functions 𝜎, given as: 

𝜎 =  
exp (𝑥)

exp(𝑥) + 1
 and 𝑅𝑒𝐿𝑢(𝑥) = max(0, 𝑥). 

Theoretically, an architecture is defined by neurons arranged in layers, in which 

neurons interact with other neurons from adjacent layers. As the number of layers 

increases, the network becomes large and complex, with many neurons and 

connections. Hence, the name "deep" is used for neural networks with multiple stacks 

of layers. Although there are different types of deep neural architectures, we will 

briefly discuss the layers and components commonly used in CNNs. In a typical CNN 

for an image processing task, activations are represented in the form of 3-dimensional 

tensors used for height, width and channel. These channels are RGB colors for an input 

image that store useful features for deeper layers. However, it is necessary to 

understand the difference between the channels and the spatial components involved. 

Convolutional Layer: Each convolutional layer accepts a specific spatial layout of its 

input that is convolved (or multiplied on pixel grids) with spatial filters. These kernels 

are usually of a fixed size (typically 3x3, 5x5 or 7x7) depending upon the depth (or 

location) of that specific layer in the network. Each filter/kernel produces one output 

channel. These filter coefficients are the parameters for the CNNs. As the filter hovers 

over the pixel grids of the input, it produces feature maps that later serve as inputs for 

the successor layers, as shown in Fig. 2.2. 
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Figure 2.2: A typical 2D convolution operation with a kernel of size 3x3 shown in orange applied on three 

input channels to produce one output element. 

In a convolutional layer with 𝑛 number of filters/Kernel  𝐾 applied on 2D image 𝐼 of 

size 𝑖 × 𝑗 can be expressed as: 

(𝐾 ∗ 𝐼)(𝑖, 𝑗) = ∑ 𝐾(𝑚, 𝑛)𝐼(𝑖 + 𝑛, 𝑗 + 𝑚).

𝑚,𝑛

 

  Receptive fields: The feature maps are formed as a result of receptive fields, which 

are the parts of the images where a particular neuron is most sensitive. As the size of 

the receptive field grows, the computational cost increases and it is usually highly 

complex with very deep networks. However, there are a number of methods to 

sufficiently reduce the size of these receptive fields. A common approach to sub-

sample the activation maps is by pooling layers. 

Pooling: A common way to retain the spatial features of the image without losing 

important detailing is to have a low-resolution version of the input across all the 

channels. This can be efficiently achieved by pooling layers that are placed on alternate 

positions after the convolutional layers. Depending on the size of the kernel and 

image, mostly two common types of pooling are performed: max pooling or average 

pooling of the spatial features to sub-sample the feature maps, as shown in Fig. 2.3. 

Usually, a filter with a small stride is considered that determines the pixel shift over 

an input grid. 
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Figure 2.3: Max pooling operation showing a sub-sampling of feature maps with 2x2 kernel size with 

stride 2. 

Fully Connected Layer: In these layers, the neurons are connected one-to-one with the 

neurons of the next layers. It is more or less like a multilayer perceptron with usually 

2-3 layers that are actually responsible for mapping the activations from the previous 

layers into class probability distributions for the output. For a network, if we consider 

that l-1 is the fully connected layer, 𝑚(𝑙−1)  are the feature maps for the layers, 𝑤𝑖,𝑗
(𝑙)

 are 

the weight parameters, we can mathematically define it as: 

𝑦𝑖
(𝑙)

= 𝑓 (𝑥𝑖
(𝑙)

) where 𝑥𝑖
(𝑙)

=  ∑ 𝑤𝑖,𝑗
(𝑙)

𝑦𝑖
(𝑙−1)

𝑚(𝑙−1)

𝑗=1

 

Softmax layer: It is usually the layer before the output layer of the network containing 

an equal number of nodes as in an output layer. The softmax layer is responsible for 

assigning probabilities to classes in a multi-class classification problem and is given 

as: 

𝑓𝑗(𝑥) =
𝑒𝑥𝑗

∑ 𝑒𝑥𝑖𝑘
  

A generic structure showing the flow of an input image through various layers of the 

network during a convolutional and de-convolutional operation is shown in Fig. 2.4. 

Understanding which computations are carried out at each layer of CNNs is an 

important research direction in image recognition tasks. In particular, visualizing 

these layers to find ways of improving and interpreting these models is also becoming 

increasingly popular these days. An example is the interactive plotting of activations 

on each layer of trained networks in the case of static (2D images) and dynamic (video) 

inputs. Static images only give slow and detailed investigations of a particular input, 
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whereas video can be processed live from a user's camera and is especially helpful if 

someone wants to move different items in the field of view [79]. Another network 

analysis method is to study each layer as a group and analyze computations involving 

a set of neurons on a specific layer [46]. 

Past studies examining the interpretation and computing of the functions performed 

by individual neurons in the layers have been divided into two categories: data-centric 

and model-centric. The data-centric approach keeps the model constant, makes 

augmentations in the dataset and improves performance via individual units causing 

high or low activations. 

 

Figure 2.4: CNN with convolutional and de-convolutional paths defining the transition of input image as 

it passes through a convolutional, max pooling and fully connected layers, whereas a reverse strategy is 

seen in the de-convolutional pathway. 

This approach is easy and fast compared to model-centric approaches but is 

computationally expensive as it deals with large amounts of data to improve the 

learning of these models. An example of such an approach is the deconvolution 

method given in [82], which represents a specific image responsible for the firing of 

each neural unit. On the other hand, model-centric techniques directly analyse a 
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network, keeping the data constant and modifying the code for performance 

enhancements. Usually, these methods are slow and difficult to modify, for example, 

by making adjustments in the augmentations of the learning representation [16] or to 

generate synthetic datasets. 

Different researchers have devised methods to gain more transparent and deeper 

insights into these complex networks by means of visualization. Their research varies 

depending upon the type of network architecture used, visualization methods and 

goals for better understanding of machine learning models. A detailed review of these 

visualization strategies is given in chapter 3. 

2.3 Virtual Reality 

Virtual reality (VR) is basically a computer-generated digital world or mimicry of the 

real-world environment. It gives the user the opportunity to create a wide variety of 

digital content in a number of application domains such as the advertising industry, 

media, gaming, education, medicine, flight simulations, scientific visualizations, and 

even in various sub-branches of engineering domains [108] and [109]. In a virtual 

reality setup, a user can physically become a part of the virtual scenery around them 

and interact with virtual objects to show movements as if they were in the real world. 

Although VR systems have been around since the 1960s, with the gradual rise of 

information technology and advances in the graphics industry, this field of study has 

gained considerable attention. However, its use was initially confined to a few 

academic and corporate research labs where these expensive VR devices were strictly 

kept for use by only a limited number of people. 

Today, whatever the industry, VR devices are readily available at reasonable prices 

from a number of brands, the most popular being HTC Vive, Oculus, Google, Samsung 

and Microsoft. VR is a great way to understand, simulate, learn and interpret abstract 

concepts, and practice real skills before applying them in real-world scenarios to 

identify faults in the simulations and save budget costs for actual projects. 
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There are various forms of reality if considered on a virtual continuum scale, ranging 

from a real environment (in which we live) at one end and a virtual environment at 

the opposite end of the scale. However, there is another form of reality that lies 

between these opposite ends, known as mixed reality (or augmented reality [AR]), as 

shown below in Fig. 2.5. It is also sometimes further sub-divided into augmented 

reality or augmented virtuality (AV). How we try to replicate the real world and its 

object interactions in a virtual world depends on the goal of the application. However, 

in an augmented environment, there is no virtual world, but we can add certain 

interactive cues in the real world. In an AV, we can merge real-world objects into the 

virtual world, just like in immersive films. It's a matter of perspective between the two 

worlds that creates an illusion in the human mind. On the other hand, a VR 

environment is a computer-generated artificial environment that gives the user the 

feeling of being immersed in a completely new world that is very different from the 

real world in which they live, and makes the user become a part of that particular 

application. 

 

Figure 2.5: Different forms of reality shown on a virtuality continuum. 

In order to communicate between the human and different reality worlds, we need 

specialized hardware devices that serve as input/output. These hardware components 

enable a user to have that immersive feeling of being part of a virtual world. This is 

done via cyclic operations that take input from the user, pass it on to different 

components of the virtual world and return the output to the user and vice versa, as 



Chapter 2                                                                                                                               Foundations 
 

17 
 

shown in Fig. 2.6. This cycle involves taking input from the user (either through the 

eyes where the user is looking or from the hands that interact with virtual objects) to 

the virtual world application. This is where the application's objects are simulated, 

user interaction takes place and the dynamic geometry of the world is updated. To 

give the user that immersive experience, rendering is performed, which is basically 

the transformation of the computer-generated simulation into a user-friendly form 

that gives a sense of touch (haptics), visual rendering and even auditory rendering. 

The user receives an output as a physical representation in the form of sound via 

headphones or pixel displays in the form of images. 

 

Figure 2.6: Cyclic representation of a VR system 

2.3.1 VR system setup and components 

Every VR setup requires some sort of installation and the necessary devices to allow 

the user to fully experience the immersive environment. In general, we can categorize 

the components into two main types: (i) hardware components and (ii) software 

components. 

Usually, the hardware components include a personal computer to which other 

sensory devices can be connected that are necessary for interaction in the VR world. 

These sensory devices include a Head-mounted Display (HMD) for visuals along with 

headphones for the audio. In order to have uninterrupted communication, additional 

graphics and sound cards are added, and HMDs should be in a visible range for 

tracking devices to function properly. Input devices are some of the other VR 

hardware components without which interaction in a VR world is impossible. 

Typically, these devices include joysticks, hand controllers, electronic gloves to track 

the movement of the hands, a microphone, etc. These devices enable the user to touch 
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or manipulate virtual objects during visual exploration and work in coordination with 

the tracking devices. 

To actually build a VR environment, we need auxiliary graphics software that allows 

a user to design the virtual scenery and objects, assign specific visual properties and 

textures and even enhance the visual appearance of virtual objects. We can also 

integrate audio/video features into an object to give the impression that it is 

mimicking real-world objects. Finally, we need simulation software to tie all the 

components together and define the rules for the virtual world, such as how the objects 

will interact with each other, etc. In this work, we used the VR hardware supplied by 

HTC, and the HTC Vive VR gear set was used in the Unity gaming engine as 

simulation software. Chapters 4 and 5 describe in more detail how we utilized the VR 

setup and the application we demonstrated in the virtual environment in order to 

interpret the decisions of the deep neural network. 
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CHAPTER 3 
   

3 Literature Review 

 

The underlying theme of this work is to understand, visualize and assess the decisions 

of deep neural networks, particularly in the computer vision domain. Different 

researchers have devised methods to gain more transparent and deeper insights into 

these complex networks by means of visualization. Their research varies depending 

upon the type of network architecture used, visualization methods and goals for better 

understanding machine learning models 

 In this regard, we have complied a list of useful articles published in renowned 

conferences and journals for past ten years in a form of a review article. This work was 

compiled and reviewed during a training work at TU Dresden and is published as a 

book chapter with citation:  

Seifert, C.; Aamir, A.; Balagopalan, A.; Jain, D.; Sharma, A.; Grottel, S. & Gumhold, S. 

Visualizations of Deep Neural Networks in Computer Vision: A Survey  In 

Transparent data mining for Big and Small Data, pages 123–144. Springer.2017 

The content of this chapter is identical to the original published version but written 

here to match the format of this thesis. All the references are compiled under a single 

list of references at the end of the thesis. 
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 Visualizations of Deep Neural Networks in Computer Vision: A 

Survey 

Christin Seifert1, Aisha Aamir, Aparna Balagopalan, Dhruv Jain, Abhinav Sharma, 

Sebastian Grottel and Stefan Gumhold 

 Abstract  

In recent years, Deep Neural Networks (DNNs) have been shown to out-perform the 

state-of-the-art in multiple areas, such as visual object recognition, genomics and 

speech recognition. Due to the distributed encodings of information, DNNs are hard 

to understand and interpret. To this end, visualizations have been used to understand 

how deep architecture work in general, what different layers of the network encode, 

what the limitations of the trained model was and to interactively collect user 

feedback. In this chapter, we provide a survey of visualizations of DNNs in the field 

of computer vision. We define a classification scheme describing visualization goals 

and methods as well as the application area. This survey gives an overview of what 

can be learned from visualizing DNNs and which visualization methods were used to 

gain which insights. We found that most papers use pixel displays to show neuron 

activations. However, recently more sophisticated visualizations like interactive node-

link diagrams were proposed. The presented overview can serve as a guideline when 

applying visualizations while designing DNNs. 

3.1 Introduction 

 

Artificial Neural Networks for learning mathematical functions have been introduced 

in 1943 [48]. Despite being theoretically able to approximate any function [8], their 

popularity decreased in the 1970’s because their computationally expensive training 

 
Christin Seifert e-mail: Christin.42.Seifert@gmail.com, Aisha Aamir e-mail: aishaaamir7@gmail.com, 
Aparna Balagopalan e-mail: aparna.balagopalan@gmail.com, Dhruv Jain e-mail: dhruvjain.1027@gmail.com, 
Abhinav Sharma e-mail: abhinav0301@gmail.com , Sebastian Grottel e-mail: sebastian.grottel@tu-dresden.de, 
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was not feasible with available computing resources [49]. With the increase in 

computing power in recent years, neural networks again became subject of research 

as Deep Neural Networks (DNNs). DNNs, artificial neural networks with multiple 

layers combining supervised and unsupervised training, have since been shown to 

outperform the state-of-the-art in multiple areas, such as visual object recognition, 

genomics and speech recognition [36]. Despite their empirically superior performance, 

DNN models have one disadvantage: their trained models are not easily 

understandable, because information is encoded in a distributed manner.  

However, understanding and trust have been identified as desirable property of data 

mining models [65]. In most scenarios, experts can assess model performance on data 

sets, including gold standard data sets, but have little insights on how and why a 

specific model works [82]. The missing understandability is one of the reasons why 

less powerful, but easy to communicate classification models such as decision trees are 

in some applications preferred to very powerful classification models, like Support 

Vector Machines and Artificial Neural Networks [33].  

Visualization has been shown to support understandability for various data mining 

models, e.g. for Naive Bayes [2] and Decision Forests [66]. In this chapter, we review 

literature on visualization of DNNs in the computer vision domain. Although DNNs 

have many application areas, including automatic translation and text generation, 

computer vision tasks are the earliest applications [35]. Computer vision applications 

also provide the most visualization possibilities due to their easy-to-visualize input 

data, i.e., images. In the review, we identify questions authors ask about neural 

networks that should be answered by a visualization (visualization goal) and which 

visualization methods they apply therefore. We also characterize the application 

domain by the computer vision task the network is trained for, the type of network 

architecture and the data sets used for training and visualization. Note that we only 

consider visualizations which are automatically generated. We do not cover manually 

generated illustrations (like the network architecture illustration in [35]). Concretely, 

our research questions are: 
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RQ-1 Which insights can be gained about DNN models by means of visualization? 

RQ-2 Which visualization methods are appropriate for which kind of insights? 

To collect the literature we pursued the following steps: since deep architectures 

became prominent only a few years ago, we restricted our search starting from the 

year 2010. We searched the main conferences, journals and workshops in the area of 

computer vision, machine learning and visualization, such as: IEEE International 

Conference on Computer Vision (ICCV), IEEE Conferences on Computer Vision and 

Pattern Recognition (CVPR), IEEE Visualization Conference (VIS), Advances in Neural 

Information Processing Systems (NIPS). Additionally, we used keyword- based search 

in academic search engines, using the following phrases (and combinations): “deep 

neural networks”, “dnn”, “visualization”, “visual analysis”, “visual representation”, 

“feature visualization”. This chapter is organized as follows: the next section 

introduces the classification scheme and describes the categories we applied to the 

collected papers. Section 3 reviews the literature according to the introduced 

categories. We discuss the findings with respect to the introduced research questions 

in section 4, and conclude the work in section 5. 

3.2 Classification Scheme 

 

In this chapter we present the classification scheme used to structure the literature: we 

first introduce a general view, and then provide detailed descriptions of the categories 

and their values. An overview of the classification scheme is shown in Fig 3.1. First, 

we need to identify the purpose the visualization was developed for. We call this 

category visualization goal. Possible values are for instance general understanding 

and model quality assessment. Then, we identified the visualization methods used to 

achieve the above mentioned goals. Such methods can potential cover the whole 

visualization space [51], but literature review shows that only a very small subset has 

been used so far in the context of DNNs, including heat maps and visualizations of 

confusion matrices. Additionally, we introduced three categories to describe the 
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application domain. These categories are the computer vision task, the architecture 

type of the network and the data sets the neural network was trained on, which is also 

used for the visualization. Note, that the categorization is not distinct. This means that 

one paper can be assigned multiple values in one category. For instance, a paper can 

use multiple visualization methods (CNNVis uses a combination of node-link 

diagrams, matrix displays and heatmaps [44]) on multiple data sets. 

 

Figure 3.1: Classification Scheme for Visualizations of Deep Neural Networks. The dotted border 

subsumes the categories characterizing the application area. 

 

Related to the proposed classification scheme is the taxonomy of Gr¨un et al. for 

visualizing learned features in convolutional neural networks [25]. The authors 

categorize the visualization methods into input modification, de-convolutional and 

input reconstruction methods. In input modification methods, the output of the 

network and intermediate layers is measured while the input is modified. De-

Convolutional methods adapt a reverse strategy to calculate the influence of a 

neuron’s activation from lower layers. This strategy demonstrates which pixels are 

responsible for the activation of neurons in each layer of the network. Input 

reconstruction methods try to assess the importance of features by reconstructing 

input images. These input images can either be real or artificial images, that either 

maximize or lead to an output invariance of a unit of interest. This categorization is 

restricted to feature visualizations and therefore narrower as the proposed scheme. 

For instance, it does not cover the general application domain, and is restricted to 
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specific type of visualizations, because it categorizes the calculation methods used for 

pixel displays and heatmaps. 

Visualization Goals 

This category describes the various goals of the authors visualizing DNNs. We 

identified the following four main goals: 

•  General Understanding: This category encompasses questions about general 

behavior of the neural network, either during training, on the evaluation data set or 

on unseen images. Authors want to find out what different network layers are 

learning or have learned, on a rather general level. 

•  Architecture Assessment: Work in this category tries to identify how the network 

architecture influences performance in detail. Compared to the first category the 

analyses are on a more fine-grained level, e.g. assessing which layers of the 

architecture represent which features (e.g., color, texture), and which feature 

combinations are the basis for the final decision. 

• Model Quality Assessment: In this category authors have focused their research goal 

in determining how the number of layers and role played by each layer can affect 

the visualization process. 

• User Feedback Integration: This category comprises work in which visualization is the 

means to integrate user feedback into the machine learning model. Examples for 

such feedback integration are user-based selection of training data [58] or the 

interactive refinement of hypotheses [21]. 

 

Visualization Methods 

Only a few visualization methods [51] have been applied to DNNs. We briefly describe 

them in the following. 

• Histogram: A histogram is a very basic visualization showing the distribution of 

univariate data as a bar chart. 

• Pixel Displays: The basic idea is that each pixel represents a data point. In the context 

of DNN, the (color) value for each pixel is based on network activation, 
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reconstructions or similar and yield 2-dimensional rectangular images. In most 

cases the pixels next to each other in the display space are also next to each other in 

the semantic space (e.g., nearby pixels of the original image). This nearness criterion 

is defined on the difference from Dense Pixel Displays [32]. We further distinguish 

whether the displayed values originate from a single image, from a set of images 

(i.e., a batch), or only from a part of the image. 

• Heat Maps: Heat maps are a special case of pixel displays, where the value for each 

pixel represents an accumulated quantity of some kind and is encoded using a 

specific coloring scheme [73]. Heat maps are often transparently overlaid over the 

original data. 

• Similarity Layout: In similarity-based layouts the relative positions of data objects in 

the low-dimensional display space is based on their pair-wise similarity. Similar 

objects should be placed nearby in the visualization space, dissimilar objects farther 

apart. In the context of images as objects, suitable similarity measures between 

images have to be defined [53]. 

•  Confusion Matrix Visualization: This technique combines the idea of heatmaps and 

matrix displays. The classifier confusion matrix (showing the relation between true 

and predicted classes) is colored according to the value in each cell. The diagonal of 

the matrix indicates correct classification and all the values other than the diagonal 

are errors that need to be inspected. Confusion matrix visualizations have been 

applied to clustering and classification problems in other domains [70]. 

•  Node-Link Diagrams: are visualizations of (un-)directed graphs [1], in which nodes 

represents objects and links represent relations between objects. 

 

Computer Vision Tasks 

In the surveyed papers different computer vision tasks were solved by DNNs. These 

are the following: 

• Classification: The task is to categorize image pixels into one or more classes. 

• Tracking: Object tracking is the tasks of locating moving objects over time. 
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• Recognition: Object recognition is the task of identifying objects in an input image 

by determining their position and label. 

• Detection: Given an object and an input image the task in object detection is to 

localize this object in the image, if it exists. 

• Representation Learning: This task refers to learning features suitable for object 

recognition, tracking etc. Examples of such features are points, lines, edges, textures 

or geometric shapes. 

 

Network Architectures 

We identified six different types of network architectures in the context of 

visualization. These types are not mutually exclusive, since all types belong to DNNs, 

but some architectures are more specific, either w.r.t. the types of layers, the type of 

connections between the layers or the learning algorithm used. 

• DNN: Deep Neural Networks are the general type of feed-forward networks with 

multiple hidden layers. 

• CNN: Convolutional Neural Networks are a type of feed-forward networks 

specifically designed to mimic the human visual cortex [22]. The architecture 

consists of multiple layers of smaller neuron collections processing portions of the 

input image (convolutional layers) generating low-level feature maps. Due to their 

specific architecture CNNs have much fewer connections and parameters 

compared to standard DNNs, and thus are easier to train. 

• DCNN: The Deep Convolution Neural Network is a CNN with a special eight layer 

architecture [35]. The first five layers are convolutional layers and the last three 

layers are fully connected. 

• DBN: Deep Belief Networks can be seen as a composition of Restricted Boltzmann 

Machines (RBMs) and are characterized by a specific training algorithm [27]. The 

top two layers of the network have undirected connections whereas the lower layers 

have directed connection with the upper layers. 

• CDBN: Convolutional Deep Belief Networks are similar to DBNs, containing 

Convolutional RBMs stacked on one another [38]. Training is performed similar to 
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DBNs using a greedy layer-wise learning procedure i.e. the weights of trained 

layers are fixed and considered as input for the next layer. 

• MCDNN: The Multicolumn Deep Neural Networks is basically a combination of 

several DNN stacked in column form [7]. The input is processed by all DNNs and 

their output aggregated to the final output of the DNN. 

 

In the next section we will apply the presented classification scheme (cf. Figure 1) to 

the selected papers and provide some statistics on the goals, methods and application 

domains. Additionally, we categorize the papers according to the taxonomy of Gr¨un 

[25] (input modification methods, de-convolutional methods and input 

reconstruction) if this taxonomy is applicable. 

3.3 Visualizations of Deep Neural Networks 

 

Table 1 provides an overview of all papers included in this survey and their 

categorization. The table is sorted first by publication year and then by author name. 

In the following, the collected papers are investigated in detail, whereas the 

subsections correspond to the categories derived in the previous section. 

3.3.1 Visualization Goals 

 

Table 2 provides an overview of the papers in this category. The most prominent goal 

is architecture assessment (16 papers). Model quality assessment was covered in 8 and 

general understanding in 7 papers respectively, while only 3 authors approach 

interactive integration of user feedback. Authors who have contributed work on 

visualizing DNNs with the goal general understanding have focused on gaining basic 

knowledge of how the network performs its task. They aimed to understand what each 

network layer is doing in general. Most of the work in this category conclude that 

lower layers of the networks contains representations of simple features like edges and 

lines, whereas deeper layers tend to be more class-specific and learn complex image 
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features [61, 41, 47]. Some authors developed tools to get a better understanding of 

learning capabilities of convolutional networks2[80, 3]. They demonstrated that such 

tools can provide a means to visualize the activations produced in response to user 

inputs and showed how the network behaves on unseen data. Approaches providing 

deeper insights into the architecture were placed into the category architecture 

assessment. Authors focused their research on determining how these networks 

capture representations of texture, color and other features that discriminate an image 

from another, quite similar image [56]. Other authors tried to assess how these deep 

architectures arrive at certain decisions [42] and how the input image data affects the 

decision making capability of these networks under different conditions. These 

conditions include image scale, object translation and cluttered background scenes. 

Further, authors investigated which features are learned, and whether the neurons are 

able to learn more than one feature in order to arrive at a decision [52]. Also, the 

contribution of image parts for activation of specific neurons was investigated [86] in 

order to understand for instance, what part of a dog’s face needs to be visible for the 

network to detect it as a dog. Authors also investigated what types of features are 

transferred from lower to higher layers [79, 80], and have shown for instance that scene 

centric and object centric features are represented differently in the network [85]. Eight 

papers contributed work on model quality assessment. Authors have focused their 

research on how the individual layers can be effectively visualized, as well as the effect 

on the network’s performance. The contribution of each layer at different level greatly 

influence their role played in computer vision tasks. One such work determined how 

the convolutional layers at various levels of the network show varied properties in 

tracking purposes [72]. Dosovitskiy & Bronx have shown that higher convolutional 

layers retain details of object location, color and contour information of the image [12]. 

Visualization is used as a means to improve tools for finding good interpretations of 

features learned in higher levels [16]. Kriszhesvsky et al. focused on performance of 

individual layers and how performance degrades when certain layers in the network 

are removed [35]. Some authors researched user feedback integration. In the 

 
2 Tools available http://yosinski.com/deepvis and https://github.com/bruckner/deepViz, last accessed 2016-09-08 
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interactive node-link visualization in [26] the user can provide his/her own training 

data using a drawing area. This method is strongly tied to the used network and 

training data (MNIST hand written digit). In the Ml-O-Scope system users can 

interactively analyze convolutional neural networks [3]. Users are presented with a 

visualization of the current model performance, i.e. the a-posteriori probability 

distribution for  

Table 1 Overview of all reviewed papers 
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Table 2 Overview of visualization goals 

 

input images and pixel displays of activations within selected network layers. They 

are also provided with a user interface for interactive adaption of model hyper-

parameters. A visual analytics approach to DNN training has been proposed recently 

[44].The authors present 3 case studies in which DNN experts evaluated a network, 

assessed errors and found directions for improvement (e.g. adding new layers). 

3.4 Visualization Methods 

 

In this section we describe the different visualization methods applied to DNNs. An 

overview of the methods is provided in Table 3. We also categorize the papers 

according to Grün’s taxonomy [25] in Table 4. In the following we describe the papers 

for each visualization method separately. 

Table 3 Overview of visualization methods
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Table 4 Overview of categorization by Gr¨un [25]

 

3.4.1 Pixel displays 

 

Most of the reviewed work has utilized pixel based activations as a means to visualize 

different features and layers of deep neural networks. The basic idea behind such 

visualization is that each pixel represents a data point. The color of the pixel 

corresponds to an activation value, the maximum gradient w.r.t. to a given class, or a 

reconstructed image. The different computational approaches for calculating 

maximum activations, sensitivity values or reconstructed images are not within the 

scope of this chapter. We refer to the survey paper for feature visualizations in DNNs 

[25] and provide a categorization of papers into Gr¨un’s taxonomy in Table 4. 

Mahendran & Vedaldi [46],[47] have visualized the information contained in the 

image by using a process of inversion using optimized gradient descent function. 

Visualizations are used to show the representations at each layer of the network (cf. 

Fig. 3.2). All the convolutional layers maintain photographically realistic 

representations of the image. The first few layers are specific to the input images and 

form a direct invertible code base. The fully connected layers represent data with less 

geometry and instance specific information. Activation signals can thus be invert back 

to images containing parts similar, but not identical to the original images. Cao et al. 

[4] have used pixel displays on complex, cluttered, single images to visualize their 

results of CNNs with feedback. Nguyen et al. [52] developed an algorithm to 

demonstrate that single neurons can represent multiple facets. Their visualizations 

show the type of image features that activate specific neurons. A regularization 

method is also presented to determine the interpretability of the images to maximize 

activation. The results suggest that synthesizing visualizations from activated neurons 
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better represent input images in terms of the overall structure and color. Simonyan et 

al. [61] visualized data for deep convolutional networks. The first visualization is a 

numerically generated image to maximize a classification score. As second 

visualization, saliency maps for given pairs of images and classes indicate influence of 

pixels from the input image on the respective class score, via back-propagation. 

 

Figure. 3.2: Pixel based display. Activations of first convolutional layer generated with the DeepVis 

toolboxfrom [80] from https://github.com/yosinski/deep-visualization-toolbox/. 

3.4.2 Heat Maps 

 

In most cases, heat maps were used for visualizing the extend of feature activations of 

specific network layers for various computer vision tasks (e.g. classification [82], 

tracking [72], detection [84]). Heat maps have also been used to visualize the final 

network output, e.g. the classifier probability [63], [82]. The heat map visualizations 

are used to study the contributions of different network layers (e.g. [72]), compare 

different methods (e.g., [50]) or investigate the DNNs inner features and results on 

different input images [84]. Zintgraf et al. [86] used heat maps to visualize image 

regions in favor of, as well as image regions against, a specific class in one image. 
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Authors use different color coding’s for their heat maps: blue-red-yellow color 

schemes [72], [82], [84], white-red scheme [50], blue-white-red [86] and also a simple 

grayscale highlighting interesting regions in white [63]. 

3.4.3 Confusion Matrix and Histogram 

 

Two authors have shown the confusion matrix to illustrate the performance of the 

DNN w.r.t. a classification task (see Fig 3.3). Bruckner et al. [3] additionally encoded 

the value in each cell using color (darker color represents higher values). Thus, in this 

visualization dark off-diagonal spots correspond to large errors. In [7] the encoding 

used is different: each cell value is additionally encoded by the size of a square. Cells 

containing large squares represent large values; a large off-diagonal square 

corresponds to a large error between two classes. Similarly, in one paper histograms 

have been used to visualize the decision uncertainty of a classifier, indicating using 

color whether the highest-probable class is the correct one [35]. 

 

Figure. 3.3: Confusion Matrix example. Showing classification results for the COIL-20 data set. 

Screenshots reproduced with software from [59]. 

3.4.4 Similarity based layout 

 

In the context of DNNs, similarity based layouts so far have been applied only by 

Donahue et al. [11], who specifically used t-distributed stochastic neighbor embedding 

(t-SNE) [68] of feature representations. The authors projected feature representations 

of different networks layers into the 2-dimensional space and found a visible 
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clustering for the higher layers in the network, but none for features of the lower 

network layer. This finding corresponds to the general knowledge of the community 

that higher levels learn semantic or high-level features. Further, based on the 

projection the authors could conclude that some feature representation is a good 

choice for generalization to other (unseen) classes and how traditional features 

compare to feature representations learned by deep architectures. Fig 3.4 provided an 

example of the latter. 

 

Figure. 3.4: Similarity based layout of the MNIST data set using raw features. Screenshot was taken with 

a JavaScript implementation of t-SNE[67] https://scienceai.github.io/tsne-js/. 

3.4.5 Node-Link Diagrams 

 

Two authors have approach DNN visualization with node-link diagrams (see 

examples in Fig 3.5). In his interactive visualization approach, Adam Harley 

represented layers in the neural networks as nodes using pixel displays, and activation 

levels as edges [26]. Due to the denseness of connections in DNNs only active edges 

are visible. Users can draw input images for the network and interactively explore 

how the DNN is trained. In CNNVis [44] nodes represent neuron clusters and are 

visualized in different ways (e.g., activations) showing derived features for the 

clusters. 
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Figure.3.5: Node-link diagrams of DNNs. Top: Example from [26] taken with the online application at 

http://scs.ryerson.ca/aharley/vis/conv/. Bottom: screenshot of the CNNVis system [44] taken with the 

online application at http://shixialiu.com/publications/cnnvis/demo/. 

3.5 Network Architecture and Computer Vision Task 

 

Table 5 provides a summary of the architecture types. The majority of papers applied 

visualizations to CNN architectures (18 papers), while 8 papers dealt with the more 

general case of DNNs. Only 8 papers have investigated more special architectures, like 

DCNN (4 papers), DBNs (2 papers), CDBN (1 paper) and MCDNNs (1 paper). Table 6 

summarizes the computer vision tasks for which the DNNs have been trained. Most 

networks were trained for classification (14 papers), some for representation learning 

and recognition (9 and 6 papers, respectively). Tracking and Detection were pursued 

the least often. 
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Table 5 Overview of network architecture types

 

Table 6 Overview of computer vision tasks

 

3.6 Data Sets 

 

Table 7 provides an overview of the data sets used in the reviewed papers. In the field 

of classification and detection, the ImageNet dataset represent the most frequently 

used dataset, used around 21 times. Other popular datasets used in tasks involving 

detection and recognition such as Caltech101, Caltech256 etc. have been used 2-3 times 

(e.g. in [11], [56], [82], [85]). While ImageNet and its subsets (e.g. ISLVRC) are large 

datasets with around 10,000,000 images each, there are smaller datasets such as the 

ETHZ stickmen and VOC2010 which are generally used for fine-grained classification 

and learning. VOC2010, consisting of about 21,738 images, has been used twice, while 

more specialized data sets, such as Buffy Stickmen for representation learning, have 

been used only once in the reviewed papers [41]. There are datasets used in recognition 

with fewer classes such as CIFAR10, consisting of 60,000 color images, with about 10 

classes; and MNIST used for recognition of handwritten digits. 
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Table 7 Overview of data sets sorted after their usage. Column”#” refers to the 

number of papers in this survey using this data set.

 

3.7 Discussion 

 

In this section we discuss the implications of the findings from the previous section 

with respect to the research questions. We start the discussion by evaluating the results 

for the stated research questions. RQ-1 (Which insights can be gained about DNN 

models by means of visualization) has been discussed along with the single papers in 

the previous section in detail. We showed by examples which visualizations have 

previously been shown to lead to which insights. For instance, visualizations are used 

to learn which features are represented in which layer of a network or which part of 
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the image a certain node reacts to. Additionally, visualizing synthetic input images 

which maximize activation allows to better understand how a network as a whole 

works. To strengthen our point here, we additionally provide some quotes from 

authors: Heat maps: “The visualization method shows which pixels of a specific input image 

are evidence for or against a node in the network.” [86]. Similarity layout: “[. . . ] first layers 

learn ‘low-level’ features, whereas the latter layers learn semantic or ‘high-level’ features. [. . . 

] GIST or LLC fail to capture the semantic difference [. . . ]” [11]. Pixel Displays: “[. . . ] 

representations on later convolutional layers tend to be somewhat local, where channels 

correspond to specific, natural parts (e.g. wheels, faces) instead of being dimensions in a 

completely distributed code. That said, not all features correspond to natural parts [. . . ]” [80] 

 

Figure. 3.6: Relation of visualization goals and applied methods in the surveyed papers following our 

taxonomy. Size of the circles corresponds to the (square root of the) number of papers in the respective 

categories. For details on papers see Table 1. 

The premise to use visualization is thus valid, as the publications agree that 

visualizations help to understand the functionality and behavior of DNNs in computer 

vision. This is especially true when investigating specific parts of the DNN. To answer 

RQ-2 (Which visualization methods are appropriate for which kind of insights?) we 

evaluated which visualizations were applied in the context of which visualization 

goals. A summary is shown in Fig 3.6. It can be seen that not all methods were used in 

combination with all goals, which is not surprising. For instance, no publication used 
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a similarity layout for assessing the architecture. This provides hints on possibilities 

for further visualization experiments. Pixel displays were prevalent for architecture 

assessment and general understanding. This is plausible since DNNs for computer 

vision work on the images themselves. Thus, pixel displays preserve the spatial-

context of the input data, making the interpretation of the visualization straight-

forward. This visualization, however, method has its own disadvantages and might 

not be the ideal choice in all cases. The visualization design space is extremely limited, 

i.e. constrained to a simple color mapping. Especially for more complex research 

questions, extending this space might be worthwhile, as the other visualization 

examples in this review show. The fact that a method has not been used w.r.t. a certain 

goal does not necessarily mean that it would not be appropriate. It merely means that 

authors so far achieved their goal with a different kind of visualization. The results 

based on our taxonomy, cf. Fig.3.6 and Table. 1, hint at corresponding white spots. For 

example, node-link diagrams are well suited to visualize dependencies and relations. 

Such information could be extracted for architecture assessment as well, depicting 

which input images and activation levels correlate highly to activations within 

individual layers of the network. Such a visualization will neither be trivial to create 

nor to use, since this first three part correlation requires suitable hyper-graph 

visualization metaphor, but the information basis is promising. Similar example ideas 

can be constructed for the other white spots in Fig. 3.6 and beyond. 

3.8 Summary and Conclusion 

 

In this chapter we surveyed visualizations of DNNs in the computer vision domain. 

Our leading questions were: “Which insights can be gained about DNN models by 

means of visualization?” and “Which visualization methods are appropriate for which 

kind of insights?” A taxonomy containing the categories visualization method, 

visualization goal, network architecture type, computer vision task and data set was 

developed to structure the domain. We found that pixel displays were most prominent 

among the methods, closely followed by heat maps. Both is not surprising, given that 
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images (or image sequences) are the prevalent input data in computer vision. Most of 

the developed visualizations and/or tools are expert tools, designed for the usage of 

DNN/computer vision experts. We found no interactive visualization allowing to 

integrate user feedback directly into the model. The closest approach is the semi-

automatic CNNVis tool [44]. An interesting next step would be to investigate which of 

the methods have been used in other application areas of DNNs, such as speech 

recognition, where pixel displays are not the most straight-forward visualization. It 

would be also interesting to see which visualization knowledge and techniques could 

be successfully transferred between these application areas. 
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CHAPTER 4 
   

4 Connecting Deep learning to Unity gaming 
engine 

 

4.1. Introduction 

 

Over the past few years, the computer vision community has enjoyed tremendous 

popularity in terms of hardware and software upgradations. In particular, faster 

computing devices, graphical resources and the availability of larger datasets [110] 

and [18] have enhanced the industry with efficient and robust solutions. Large datasets 

for training and testing allow the user to manipulate complex machine learning 

models, such as a deep neural network [35]. Although the success of these models is 

increasing significantly, such complicated structures suffer from interpretability and 

high computational demands in terms of space and time to perform tasks such as 

image annotation or even segmentation. Past studies have shown that it can be much 

easier if large amounts of image datasets are synthetically generated, annotated and 

semantically segmented to mimic real-world applications [111], [112] and [113]. 

Robotics research can greatly benefit from these synthetic 3D objects and scenes where 

an agent can learn to execute tasks in the real world via robotic simulations. Learning 

new actions in a simulated world, such as in a virtual world, can reduce excess training 

time for the robots. Human actions can be recorded to be simulated many times over 

instead of physically executing tasks. Artificial intelligence (AI) has paved its way to 

success in fields such as autonomous driving [114], intelligent games, various medical 

domains, simulating engineering-related tasks, etc. All this is possible because of 

synthetic or artificially simulated environments like virtual reality [114]. In this regard, 
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the video game industry has developed high-end platforms to help researchers in 

different fields design synthetic objects and virtual worlds. Among these are Unity 3D 

and Unreal Engine (UE), which provide many tools to create 3D objects, generate 

synthetic datasets and develop built-in applications with readily available virtual 

worlds. Incorporating the power of machine learning models into these gaming 

engines can greatly reduce the time and effort required to generate results, which is 

currently not fully available. To bridge the gap between these machine learning 

models, in particular, deep neural networks and gaming engines, we compiled a 

Windows-based Caffe framework as a dynamic link library that can be integrated as a 

plugin into the Unity gaming engine that we named Caffe2Unity. Our compiled 

plugin can open many doors in the gaming industry since the user is able to fully 

utilize the features of a deep neural network framework in the Unity environment. 

4.2 Related Work 

 

Many robotics simulators use synthetic objects and virtual worlds to mimic real-world 

scenarios in robotics research and industry to study different design principles [114] 

and [116]. Executing robotics tasks in a virtual world can provide a powerful interface 

to study physics dynamics, interactions and rendering capabilities. However, these 

simulators need to be regularly updated in order to be useful to the computer vision 

community. 

 In this regard, Unity and Unreal Engine both have up-to-date built-in scenes and 

objects that are upgraded and maintained by a large community. There is also a large 

repository containing many 3D objects, virtual sceneries and backgrounds that are 

actively maintained within the computer vision community [117], [118], [119] and 

[120]. Furthermore, there is an interesting open-source tool designed for use in the 

Unreal Engine that incorporates several computer vision tasks like segmentation, 

object masking and generation of virtual scenes [121]. Our work, however, integrates 

a Caffe-based complete deep neural network framework within the Unity gaming 

engine instead of using it as a separate application programming interface (API). It can 
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be customized for any computer vision task, such as detection, segmentation, 

classification, etc. Although it is still at an early development stage, we hope it can 

help many researchers build customizable projects and generate interesting results in 

the near future.  

4.3 Methodology  

 

Convolutional Architecture for Fast Feature Embedding (Caffe) is a deep learning 

framework developed and maintained by the Berkeley Vision and Learning Center 

(BVLC). The framework is open-source with a BSD license written in C++ along with 

its MATLAB and Python wrappers. A Caffe-based CNN consists of two parts: 

• The structure, e.g., the layer types that it contains, parameters describing each layer, 

the order of the layers and how the layers interact with each other. 

• The CNN weights: These are the result of the CNN's training and are used to 

transform the input of each layer to layer's output. 

The structure of a layer is described in a *.prototxt file. This file is written in a 

human-readable format that can be opened by a text editor such as Notepad 

and reveals the definition of the entire CNN. The weights of a CNN network 

are contained in a *.caffemodel file, which is not readable. It is loaded after the 

CNN has been defined as a structure. Normally, the first layer of a CNN is a 

data layer – this is where the input is stored, usually as an image. Next, each 

layer takes as input the output of a previous layer and produces its own output. 

There are two main functionalities associated with these layers: A forward pass 

that takes inputs and yields the output, and secondly, a backward pass that 

takes gradients to produce the output. Caffe's framework basically contains 

different layers, which normally include pooling, convolutional, rectified linear 

units, softmax, etc. These layers vary depending upon the network architecture 

being used. The temporal storage between layers is called activation maps or feature 
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maps. They are known as maps because each one is the output of a single neuron or a 

filter when this filter travels across the layer input. Whereas, all numerical values in 

caffe are contained in blobs. Blobs are usually a 4-dimensional array which provides 

memory to hold images or other data. Usually when an image is loaded from the disk 

it is stored in a blob. This loading of image or data is a synchronized operation of CPU 

and GPU. A numerical value contained in a CNN blob can be: 

• A weight: This remains constant over time and is used to process the 

input of the CNN. 

• A value: It is an intermediate result of processing the input of the CNN. 

This value is contained in an activation map. 

Therefore, numerical values contained in blobs are either weights or activation 

maps. Schematically, CNN blobs can thus be shown as in Fig. 4.1 below: 

 

Figure 4.1 : Schematic representation of CNN activation maps blobs, and weight blobs 

In the above schema, the 3 grey blocks on the left represent an input block with 3 

channels (channels 0, 1, 2). This is a blob with 3 dimensions, namely channel, width 

and height. The weight blob (which always belongs to a layer) in the middle has 4 

dimensions. The first dimension is an ordinal number (orange = 0, blue = 1, yellow = 

2, green = 3). The second dimension is where the weight reads from, i.e., the channel 

of the previous blob (0, 1, 2). The third and fourth dimensions are width and height 

respectively. Four filters in the layer in the middle produce four activation maps on 

the right. Each activation map corresponds to one filter. Again, we have a blob of 3 
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dimensions on the right. Based on the above information, we configured the Caffe 

framework as a dynamic link library (DLL) for the Unity gaming engine.  

4.3.1 Prerequisites of compiling of DLL and composing the network 
architecture   

In order to use the functionality of a deep neural network in the Unity engine, 

we need to have a configured Caffe framework on Microsoft Windows. The 

reason for this Windows-based configuration is that Unity is not fully 

functional or compatible with the Linux operating system. So, we used the 

following prerequisite versions in order to compile Caffe on Microsoft 

Windows: 

• Microsoft Visual Studio 2015 

•  CMake 

•  Git version 2.151.2 

•  CUDA 8.0 

• Python 3.5.4(64 bit)  

•  NVIDIA CuDNN v5 

We used a static compilation of Caffe to generate its *.lib files using Microsoft 

Visual Studio 2015 and statically linked the lib files to another project, forming 

a dynamic link library. The overall process is shown in Fig. 4.2. 

 

Figure 4.2: Compilation process of Caffe2unity DLL. 

After the configuration and compiling process, we chose to test the AlexNet 

architecture. The reason for its selection is its medium-sized architecture with a total 



Chapter 4                                                            Connecting Deep learning to Unity gaming engine 
 

46 
 

of 11 layers. We chose the following arrangement of all the layers and filters to use the 

network in a Unity environment. There are a total of 11 layers between input and 

output, and we listed the dimensions of the layers and filters that were used to design 

and test our DLL in a Unity environment.  

Layer 0: Represents the input image to be passed to the network with a size 

of 227 × 227 × 3. Layer 1: This is the first convolutional layer containing 96 filters of 

size 11 × 11, stride = 4 and padding = 0. Its overall size can be estimated 

as: 55 × 55 × 96, which is calculated as ((227 − 11)) ((4 + 1) = 55⁄ ) . Here, 96 is the 

depth (since each set represents 1 filter), and in total we have 96 filters for the first 

convolutional layer. Layer 2: The max-pooling layer, where we down-sample the input 

received from the previous layer with a 3 × 3 filter and stride 2, giving a size of 

27 × 27 × 96, which is calculated as ((55 − 3)) ((2 + 1) = 27)⁄ , representing the size 

of the outcome. In this layer, the depth remains the same as in the previous layer. Layer 

3: This is the second convolutional layer containing 256 filters with size 5 × 5, stride = 

1 and padding = 2. Similar to the previous layers, its size can be calculated as 

27 × 27 × 256. Since in this layer the padding = 2, we can restore the original size of 

the image, i.e., ((5 − 1)) (2 = 2).⁄   Layer 4: The next alternate layer is again a max-

pooling layer with a 3 × 3 filter and stride = 2, with size of 13 × 13 × 256 , which is 

calculated as ((27 − 3)) ((2 + 1) = 13)⁄ . Layer 5: The third convolutional layer 

contains 384 kernels of size 3 × 3, stride = 1 and padding = 1. Its size 

is 13 × 13 × 384, which is calculated as ((3 − 1)) (2 = 1)⁄ . Layer 6: It is the fourth 

convolutional layer containing a depth of 384 filters of size 3 × 3, stride =1 and 

padding =1. Its overall size can be obtained as 13 × 13 × 384, which is similar to 

previous layer. Layer 7: This is the last convolutional layer containing a depth of 256 

filters of size 3 × 3, stride =1 and padding =1. Hence, its size can be shown 

as 13 × 13 × 256, with its original size being restored, it can be calculated as 

((3 − 1)) (2 = 1)⁄ . Layer 8: The last max-pooling layer of the network contains a kernel 

of size 3 × 3 and stride = 2. Here, the overall size is 6 × 6 × 256, which is calculated as 

((13 − 3)) ((2 + 1) = 6⁄ ). Layer 9: The network's first fully connected layer containing 

4096 neurons, where 6 × 6 × 256 =9216 pixels serve as input to 4096 neurons, and the 
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weights are determined using back-propagation.  Layer 10: This is the second fully 

connected layer with 4096 neurons, which have the same properties as the previous 

layer. Layer 11: The last fully connected layer of the AlexNet architecture contains 1000 

neurons corresponding to the 1000 classes of the ImageNet dataset. 

We designed the architecture in a virtual environment based on the above calculations 

and chose to do an in-depth study of image classification as a computer vision task. 

Although, this DLL can also be used for other customizable tasks such as 3D rendering 

and modelling, segmentation, etc. To give a general overview of the integrated Caffe 

framework in a DLL, we give a snapshot of the ConvNet class template, as shown in 

Fig. 4.3. It basically uses ConvNet objects that contain two lists. The LayerInfos list 

contains information about the layers and weight blobs contained in each layer, and 

the BlobInfos list contains information about the activation maps. Later on, we added 

and customized functionality to interpret and visualize the AlexNet architecture in a 

real-time scenario (see chapter 5).  

 

Figure 4.3: Template of ConvNet class showing the main functions to be implemented.  

Additionally, we created the Visualizer class with helper functions for creating images 

from weight and activation blobs to check if the configuration was correct. Shown 
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below in Fig. 4.4 are the four main classes with the attributes and methods used in the 

DLL. 

 

Figure 4.4: Main classes of Caffe2unity DLL with the corresponding methods and attributes used to access 
the deep neural network  

4.4 Results and Application   

4.4.1 Perquisites of using the Caffe2Unity plugin in Unity 

 

To check the working of our DLL, we needed the following software and hardware: 

Windows 10 PC, Nvidia GeForce GTX, Microsoft Visual Studio 2019, SteamVR, Unity 

version 2019.1.1f1 (64-bit), HTC Vive headset, hand controller and two base stations. 

Given that the DLL itself is not an executable file, we had a demonstration program 

TestCaffe2Unity.exe to check its functionality. We followed the below steps to check 

the functionality of our DLL. After its correct compilation, the resulting interface 

should look like Fig. 4.5. 

• First, select a prototxt file. 

• Select a caffemodel file to load weights. 

• Select an image to load and forward to the network. 

• Press the "Load AlexNet and forward image" button. 

• Press "Visualize filters" in order to visualize the filters of the first convolutional layer  
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Figure 4.5: Demonstration program showing the network layers, activation maps and filter outputs of 
first convolutional layer 

This demo confirmed the correct configuration of our framework and can be imported 

as a plugin into the assets folder in the Unity environment. We used the extern "C" {...} 

qualifier and enclosed it in brackets to contain a block of function prototypes used in 

our DLL project to make it accessible for Unity. 

4.4.2 Setting up the room and Gear for VR  

Before we could visualize our network in the Unity environment, we needed to set up 

the room for navigation in the virtual reality space. We used the setup as described by 

SteamVR [122], which is shown in Fig. 4.5. 

 

 

Figure 4.5: (a) Left: Marking the play area shown in blue depending on the available space in the room. 

(b) Right: The diagonal placement of base station should be in visible range for the headset and hand 

controllers (fig adopted from [122]). 
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We used an HTC Vive headset with a room scale tracking feature to enable 360-degree 

movement in virtual space. The Vive base stations are responsible for tracking the 

user-initiated movement and interact with the environment using the hand 

controllers. Fig. 4.6 shows the complete HTC Vive set. 

 

Figure 4.6: HTC VIVE headset, base stations and two hand controller showing the required functionality 
of its buttons. 

4.4.3 Interactivity, navigation controls and topological arrangements 

 

For the initial study, we kept the network model static in the Unity environment, and 

all changes were implemented before the user entered the VR environment. The 

arrangement of the network was initially kept fixed. As a preliminary test run of 

Caffe2Unity in a virtual reality environment, we tested the classes from the ImageNet 

dataset to see if the classification was correct. We designed the AlexNet architecture 

using cubes to represent the neurons and filters, and lines to show the connection 

between the layers. As a visualization strategy, we chose a weight-centric approach 

that aimed to represent the relationship of filters and layers via their learnable 

parameters (i.e., weights). But, since the scene became extremely cluttered with 

millions of parameters, we employed weighted thresholds to minimize the weighted 

connections for each layer, as shown in Fig. 4.7. 

Although modelling the architecture in VR offers freedom to navigate between 

different layers and visualize filter connections, at the same time, it becomes difficult 

to analyze the actual working of the model due to cluttered information. In order to 
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overcome this issue, we used weighted thresholds to reduce the number of 

connections. In convolutional layers, in particular, to visualize useful semantic 

information, we used weighted threshold connections amongst the layers and 

assigned color codes to distinguish and remove cluttered information. We considered 

absolute weight activation values and converted them to percentage ranges. For 

example, if the WeightValue==0, assign the color yellow; if WeightValue>0 && 

WeightValue<4, assign blue; if WeightValue>=4 && WeightValue<7, assign red; if 

WeightValue>=7 && WeightValue<10, assign white; if WeightValue>=10 && 

WeightValue<20, assign green. This effect can be seen in Fig. 10(b), where all the 

weight values in range 0 are assigned yellow, but after applying the threshold, the 

cluttering is reduced. 

 

Figure 4.7: Snapshot of AlexNet architecture shown in VR demonstrating weighted threshold approach 

(a) all the connection are shown giving a cluttered scene (b) after applying a threshold limit to 50% 

reduction in the cluttered connection. 

Once the cluttering is removed, a user can better understand and interact with 

individual filters and neurons with a laser pointer to see the stored values and size of 

the filters applied to the neurons to produce activation maps. Furthermore, the user 

has the freedom to load different trained datasets, change the topology of the network 

model, adjust the filter space and layer width between the connection layers, 

regenerate the model according to their desired formation and visualize the 

corresponding results. In order to steer around the immersive model, the user can use 

the Vive controllers and teleportation to move throughout the network in the direction 
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the user is looking, i.e., movement is synchronous with the headset's camera. The panel 

used to modify the network properties and hand controllers' navigation is shown in 

Fig. 4.9. In addition, we reprogrammed the hand controllers to provide an additional 

teleportation capability in the virtual environment. We demonstrated the above 

settings on a smaller network with a limited number of neurons and hidden layers to 

give flexibility to the VR users and allow topological rearrangement to gain a better 

understanding of neural networks (see Fig. 4.8). Even though the model's visualization 

was in VR, most of the interactions were not performed in real-time. Before entering 

the VR mode, the user has the freedom to configure the required settings of the layers, 

adjust the weighted threshold values and the settings of the connection lines, set the 

spacing between the neurons and adjacent layers, etc. However, once in VR mode, the 

user can move back and forth and up/down in the network as many times as they 

want. A laser pointer can be used to select the properties of any neuron or filter to see 

the height/width of the activation maps, its layer name and its current number with 

the actual value or weight (see Fig. 4.9). Additional visualization results for the 

input/output layers and the weighted threshold results are shown in Fig. 4.10. 

 

 

Figure 4.8: Topological arrangement of the network (a) 1 -1 arrangement of network architecture (b) Row 

and column arrangement of network architecture with zoom in view shown in the circle 
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Figure 4.9: Snap shot of the settings panel (a) attributes of a particular neuron (b) Path selection for the 

network weight,  and its layers etc. (c) Different control settings for individual layers which the VR user 

adjust before entering the VR mode and (d) reprogrammed hand controllers buttons (trackpad for moving 

up, down right and left, menu button for laser pointer, trigger button for moving up and gripper buttons 

for moving down in the network.) for navigation and interaction in the VR environment.  

 

Figure 4.10: (a) showing the visualization of input image and its corresponding activation maps of the 

first convolutional layer. The colored connection lines show different weighted thresholds, whereas on 

the left shows the output layer with 10 classes represented as cubes. A green color cube indicates the 

probability of the correct prediction class. (b) Before and after view of applying weighted threshold in 

first convolutional layer with weight range set to WeightValue>0 && WeightValue<4 removes the weight 

range containing yellow color code. As a result all the weights shown in yellow connecting lines were 

eliminated afterwards giving a decluttered view of the activation maps and the adjacent layers.  
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4.5 Conclusion 

In this work, we developed a dynamic link library for the Caffe framework of a deep 

neural network, which is used as a plugin in the Unity gaming engine. We provided a 

demonstration version of the plugin to show how it works in Microsoft Visual Studio, 

giving the user the opportunity to interact with the plugin and utilize the 

functionalities of the Caffe framework. In this particular work, we tried to visualize a 

deep neural network in a virtual reality environment, where most of the VR settings 

were predefined. The presented model network gives the user the freedom to navigate 

between the layers and visit all the filters and neurons showing the feature activations, 

modify the network topology and use thresholds to assign color codes to different 

weight ranges in the convolutional layers to understand its internal representations. 

The same Caffe2Unity plugin reappears in the subsequent chapter, where we 

introduce a modified version of this plugin that made use of the virtual environment, 

gave the user more freedom regarding interactivity and converted all the functionality 

in real-time. In addition, we also provided an interpretation module to gain a better 

understanding of these complex machine learning models. 
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CHAPTER 5 
  

5 Caffe2Unity: An Immersive Visualization 
and Interpretation of Deep Neural 
Networks 

 

In the previous chapter, we compiled a plugin for window-based version of the Caffe 

framework. We tested its functionality in a virtual environment using a small network 

configuration of few layers. The features we delivered in the previous version was 

purely offline i.e. the user was not able to interact with the immersive model or its 

features. All the interaction was carried out before the user could enter in the virtual 

environment to visualize the model. However, in this chapter we expand our work on 

the plugin and include an interpretation module in the Caffe2Unity.dll and interpret 

all the interaction and results in real time. This gives more freedom to the user to 

explore and understand the network model, given the advantages of a virtual 

environment. We tested our updated version of the DLL with a medium size deep 

neural network with all the interaction and interpretation in real time.  

Details of the work given in the following sections are identical to the published 

version of the article. However the presentation style is adopted to match the format 

of the thesis and the references are given at the end as we maintain a single list for the 

whole thesis. The citation for the article is given as: 

Aamir, A.; Tamosiunaite, M.; Wörgötter, F. Caffe2Unity: Immersive Visualization and 

Interpretation of Deep Neural Networks. Electronics 2022, 11, 83. 

https://doi.org/10.3390/electronics11010083 
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Caffe2Unity: Immersive Visualization and Interpretation of Deep 
Neural Networks 

Aisha Aamir 1,*, Minija Tamosiunaite 1,2 and Florentin Wörgötter 

Abstract: Deep neural networks (DNNs) dominate many tasks in the computer vision 

domain, but it is still difficult to understand and interpret the information contained 

within these networks. To gain better insight into how a network learns and operates, 

there is a strong need to visualize these complex structures, and this remains an 

important research direction. In this paper, we address the problem of how the 

interactive display of DNNs in a virtual reality (VR) setup can be used for general 

understanding and architectural assessment. We compiled a static library as a plugin 

for the Caffe framework in the Unity gaming engine. We used routines from this 

plugin to create and visualize a VR-based AlexNet architecture for an image 

classification task. Our layered interactive model allows the user to freely navigate 

back and forth within the network during visual exploration. To make the DNN model 

even more accessible, the user can select certain connections to understand the activity 

flow at a particular neuron. Our VR setup also allows users to hide the activation 

maps/filters or even interactively occlude certain features in an image in real-time. 

Furthermore, we added an interpretation module and reframed the Shapley values to 

give a deeper understanding of the different layers. Thus, this novel tool offers more 

direct access to network structures and results, and its immersive operation is 

especially instructive for both novices and experts in the field of DNNs. 

 

Index Terms— Deep Neural Networks, Visualizations, Virtual Reality, Unity 

5.1 Introduction 

 

A Virtual Reality (VR) environment is a great way to interact with complex scientific 

visualizations, immense datasets, and complicated 3D structures [123]. Head-mounted 

displays used in VR have been shown to be a great source of learning in different 
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domains (e.g., complex scientific concepts in astronomy and engineering domains) 

compared to traditional learning environments [124], [125], [126] and [127]. It is 

believed that a user can learn and explore multifaceted structures more easily by 

navigating around them and exploring different characteristics for better 

understanding [123], [128].  

In this regard, DNNs have gained much popularity in the past decade due to the 

availability of faster computing devices that can minimize their computationally 

expensive training times. Although these models can process multidimensional forms 

of data, including audio, video, images, etc., in the computer vision domain, image 

analysis has been the most prevalent. In addition, visualizations of different machine 

learning models, particularly DNNs, have also played a significant role in the 

understanding of input-output processes between successive layers [80], [52]. Until 

now, DNN visualizations have been restricted to 2D visualization of images, which is 

not sufficient if we want to visualize the internal representations and interpretations 

of the network [123], [128] and [127]. Despite their tremendous performance in many 

computer vision tasks, these models are still considered to be "black-boxes" and 

require more transparency and interpretation to understand their decision-making 

process. In this regard, a VR environment can offer many advantageous visualization 

solutions that can help in understanding deep learning models. Earlier works 

regarding visualizations have particularly focused on expert users with an in-depth 

understanding of DNNs and were specially tailored for developers in this field [7], [9], 

and [103], [80] and [26]. 

In this paper, our primary goal is to provide a general understanding and architectural 

assessment of DNNs in a VR environment while targeting both non-experts and 

experts as our audience. We focused on the immersive visualization and interpretation 

of DNNs and provided a virtual walk through the network layers exploring different 

image activation features and connections across different layers. Additionally, an 

interpretation module was used to analyze the network's decisions by highlighting the 

positive and negative contributions of different regions of the test input images. Our 

main contributions in this paper are as follows: 
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• We compiled a Windows-based Caffe framework as a dynamic link library to be 

used as a plugin in the Unity gaming engine. 

• We designed a simplified, layered GUI for analyzing the AlexNet architecture [35] 

for novices and experts in the field. 

• We developed an interactive real-time module for adding occlusion on the input 

images to understand the behavior of the network. 

• We provided an interpretation module to reframe the Shapley values algorithm 

[130] for analyzing the network's decisions based on three hidden layers. 

5.2 Related Work 

In order to gain an intuitive understanding of the different features and responses of 

individual layers, researchers have developed tools and libraries to visualize the 

neural activations in different layers. In this regard, visualizations can be divided into 

two categories, namely static 2D image-based visualizations, and browser- and VR-

based interactive visualizations, for which a brief description is given in the following 

sub-sections. 

5.2.1 Static 2D image-based visualizations 

In this category, much work has been carried out on the 2D visualization of images. In 

[80] and [3], interactive software tools were used for understanding, and an 

exploratory analysis was done on how we can visualize the activations produced at 

each layer in response to user input. In [56], Layer-wise Relevance Propagation (LRP) 

based heatmaps were used for region perturbation and highlighting the important 

parts in an image during the classification task. While in [52] and [86], it was 

demonstrated that a single neuron can represent multiple facets and be visualized via 

a synthetically generated image, highlighting the specific areas in natural images that 

best activate the neurons. In [47], different visualization techniques based on natural 

images were studied, involving activation maximization in identifying and 

highlighting visual patterns. In [82], the visualization of intermediate layers was 

studied during an image classification task, showing properties such as 
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discriminability, compositionality and invariance among the features as the higher 

layers were approached. In [46], an analysis of the information contained in an image 

was performed by the process of inversion using an optimized gradient descent 

function. Visualizations were used to show the representations at each convolutional 

layer while maintaining the photographically realistic representations of the images. 

5.2.2 Web browser and VR - based interactive visualizations 

Other interactive visualization techniques include web-based representations based 

on the TensorflowJS library called ConvNetJS 

((http://cs.stanford.edu/people/karpathy/convnetjs/ (accessed on 08.04.2020))) that 

allows for training the network in the browser. In [10], the authors presented a real-

time interactive tool for convolutional neural networks. In addition, TensorBoard 

(https://www.tensorflow.org/versions/r0.8/how_tos/graph_viz/index.html(acces

sed on 08.04.2020)) (Google’s TensorFlow library) and TensorFlow Playground 

(http://playground.tensorflow.org/(accessed on 08.04.2020))  also provide web-

based interfaces that give the user the freedom to interact with and visualize detailed 

neural network configurations. NVIDIA has also implemented a web-based deep 

learning library called DIGITS (https://developer.nvidia.com/digits (accessed on 

08.04.2020)) which allows users to design, train, monitor, and visualize neural network 

models in a browser. The method developed by [83] allows the user to pick and choose 

certain data and visualize their highest activations in the subsequent layers. In [26], a 

3D interactive convolutional network was designed to allow users to draw images and 

simultaneously visualize the trained network. These methods are intuitive but lack the 

freedom of navigation, restricting the user's movements with only mouse and 

keyboard interactions. 

Despite having outstanding tools and methodologies, none of the visualization 

methods described above provide the user with the freedom to engage in a virtual 

reality environment. Few studies exist that deal with the visualization of CNNs in the 

VR domain. The work by [26] and [176] visualized a simplistic model that gives 

novices in this field a sense of the basic operations that occur in the different hidden 

http://playground.tensorflow.org/(accessed
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layers. Investigations by [129] developed an immersive node-link diagrams-based tool 

to visualize the internal representations of CNNs. The work by [177] gave a VR model 

of DNN, giving the user freedom to move layers and objects in tangible manner. In 

[178] authors provide interactive tool with various levels of details to explore DNN 

model, whereas in [179] hand gestures based interactive VR interface using DNNs is 

described using Tensorflow as a deep learning framework.  

 In our paper, we present immersive visualization and interpretation of CNNs, while 

focusing on an image classification task using the AlexNet architecture. Our study 

involves the configuration of Caffe on the .Net framework using Microsoft Visual 

Studio to provide a plugin for the “Unity” gaming engine. The next sections provide 

a detailed description of this “Caffe2Unity” plugin and its application for visualizing 

and interpreting the AlexNet architecture on an image classification task.  

  Methods 

A Windows-based Caffe framework was generated in the form of a dynamic link 

library (DLL) to create a model of the CNN in the gaming engine Unity, details of 

which are presented next. 

5.3.1 Compilation Process of the Caffe2Unity.dll 

 

In order to utilize the Caffe framework and its associated functionality to bridge the 

gap between deep learning and a gaming engine, the Caffe2Unity.dll was developed. 

Caffe was initially configured on a Windows platform and compiled to create a static 

library producing *.lib files to make the code platform and application independent. 

The compilation process was carried out using Microsoft Visual Studio 2015 and 

CMake to obtain the relevant make files for the compiler environment. Other 

prerequisites in the compilation process were Git (version 2.151.2), CUDA (version 

8.0), Python (version 3.5.4), and NVIDIA CuDNN (version 5). Once the Caffe 

framework was compiled and *.lib files were created, another C++ mixed-mode DLL 

project was developed to link statically to the static libraries of Caffe. To use routines 
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from the Caffe static library, a reference was added in the C++ mixed-mode DLL 

project to utilize the *.lib files of Caffe. For execution of the Caffe2Unity.dll, static 

library files of Caffe were selected as a default project. To test the current 

Caffe2Unity.dll, we used a pre-trained ImageNet dataset on the AlexNet architecture 

but to train a different network architecture with different dataset, levelDB or Lmdb 

format and caffe.exe is required. Figure 5.1 shows the conceptualization of the 

visualization strategy. 

 

Figure. 5.1: (a) Flow chart of the compilation process of the Caffe2Unity.dll and its interfacing with Unity 

to perform various tasks. In its current form, we used the DLL for image classification as an application 

domain. (b) Prototypes and attributes of the main classes used in the Caffe2Unity.dll to achieve our goal. 

(c) Snapshot of the visualization strategy illustrating the immersive model of AlexNet with details of all 

layers and activation maps that are used in the VR environment. 

The compiled DLL was used as a plugin in the asset folder of the Unity project where 

routines were called, and the immersive model of deep network was constructed. To 

give a general overview of the integrated Caffe framework in a DLL, we basically use 

ConvNet objects that contain two lists (Figure. 5.1b). The LayerInfos list contains 
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information about the layers and weight blobs contained in each layer, and the 

BlobInfos list contains information about the activation maps. Additionally, we 

created the Visualizer class with helper functions for creating images from weight and 

activation blobs to check the correct configuration of the DLL. 

After the configuration and compiling process, we chose to test the AlexNet 

architecture. The reason for its selection is its medium-sized architecture with a total 

of 11 layers. We made the following assumptions to calculate the size of the output 

and filters objects designed in Unity. Suppose we have an image size of 𝑁 × 𝑁 and a 

filter size of 𝐹 × 𝐹 for convolutional layer, 𝑃𝑠 for filters of pooling layer and stride 𝑆, 

we can calculate the output size of the convolutional and pooling layers respectively 

using the expressions: 𝑜𝑢𝑡𝑝𝑢𝑡_𝑠𝑖𝑧𝑒𝑐𝑜𝑛𝑣 =
(𝑁−𝐹)

𝑆+1
 and 𝑜𝑢𝑡𝑝𝑢𝑡_𝑠𝑖𝑧𝑒max _𝑝𝑜𝑜𝑙 =

(𝑁−𝑃𝑠)

𝑆+1
. 

Given that the DLL itself is not an executable file, we had a demonstration program 

TestCaffe2Unity.exe to check its functionality. The successful execution of the demo 

confirmed the correct configuration of our framework and was imported as a plugin 

into the assets folder in the Unity environment (see Figure 5.1c). We used the extern 

“C” {...} qualifier and enclosed it in brackets to contain a block of function prototypes 

used in our DLL project to make it accessible for Unity. The function prototypes used 

are given in the above Figure 5.1b. Once a function is added to the DLL project, it can 

be defined in the Caffe2Unity.cs file in Unity just like any normal function definition. 

One interesting feature is that any model trained on the Caffe framework can be used 

in the DLL and its functionality is independent of the different versions of Unity. In 

the current settings, the layers of AlexNet are hard-coded to avoid crashes but for 

customization, a single line of code can add or remove layers, thereby altering the 

network using a “for loop” for(int i = 0;  i < 9;/∗ data. layers. Count − 1 ∗/; i + +). It is 

currently set to 9 layers + 1 output layer. The following section provides details of the 

neural network model in the Unity gaming engine. 

5.3.2 Immersive model, Interactivity, and Navigation Controls 

 
A deep neural network is a hierarchical representation of linear and non-linear 

transformations between layers. Here, convolutional layers play a key role when 
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applied to input images to produce the corresponding feature maps indicating the 

learned local features. In this paper, we used a standard convolutional AlexNet model 

developed in [35] which consists of five convolutional and three fully connected layers. 

We used image classification as a standard task for this network and for our 

visualization method. Other classification tasks could be considered, too, but their 

visualization might be less straightforward. In the current setup, training of CNNs is 

not part of the visualization procedures. Thus, we work with a pre-trained AlexNet 

architecture. Deeper network models pre-trained with Caffe framework can also be 

used in the DLL as the functionality and basic operations remain almost the same. 

However, since our goal was to interpret, visualize, and give a general understanding 

of a DNN in a VR environment, the medium-sized AlexNet was an appropriate choice. 

Moreover, using AlexNet for the goal of assessing and understanding the network 

features in real time is more efficient with such a medium-sized network as compared 

to dealing with deeper and more recent networks. 

 

To provide freedom of navigation in the VR environment, the user interacts with a 

virtual graphical interface and first selects a desired path within the architecture given 

as a *.prototxt file. This file is in a human-readable format and describes the structure 

of the CNN in terms of model parameters, layer types, their order, and how these 

layers interact with each other. Next, the user selects the *. Caffemodel file, which is 

not human-readable and contains the weights of the trained CNN. This model file is 

loaded after the structure of the CNN has been defined. Finally, the user selects the 

output-label file and an input image for forwarding to the network. We introduced a 

very simple user-friendly GUI in the VR environment so that a user can select the 

model architecture files from a directory, load the output image-labels, and choose an 

input image for the network. We also provide an option to edit the image and add an 

occlusion block of any size on the input images to see how this affects the network in 

real time. To draw such an occlusion block, the user can press and drag the VR-

controller’s trigger button and release the trigger at the end. Both hand-controllers can 

alternatively be used for navigation in the network, the trackpad on the right-hand 

controller with laser pointer is used to move forward, backward, left, and right, 
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whereas the left-hand controller allows the user to move up and down in the network. 

The VR-imagery from the head mounted device is real-time synchronous with the 

movements of the user. Modeling the architecture in the VR environment gives users 

the opportunity to navigate within different layers and to visualize filters and 

connections as often as wished. Hence, the user is truly immersed in the network 

architecture not being restricted to fixed operations of mouse or keyboard as in non-

VR systems. He or she can easily use the hand controllers for “teleportation”, this way 

moving through the network in all directions with real-time visualization by the 

headset. 

 

We created a layered VR-representation architecture to keep it as close to the network’s 

theoretical description and to—this way—allow for a more intuitive understanding 

because it allows step-by-step access of the structure. This way one can obtain a more 

detailed intuition for the operation of the different layers as compared to simple non-

VR-based visualizations. An additional advantage of this layered structure is that it 

also makes it easier to interpret neural-specific operations in case of image occlusions. 

In addition to this, the user can select to highlight specific connections to understand 

the activity flow from the input data passing a particular filter with its corresponding 

feature maps which is then forwarded to the deeper layers of the network. Aside from 

moving in the forward direction to view the deeper layers, the user can also move to 

previous layers at any time during visual exploration, which is usually not possible 

without a VR setup. At the output layer of the network, users can visualize the top five 

network classification results with their colored legend shown next to the output layer 

icon in a descending order of relevance. 

 

5.4  Results and Discussion 

5.4.1 Visualizations, Interpretation, and Analysis of the Network 
Decisions  

The immersive AlexNet architecture and its features are presented in Figure 5.2, which 

was selected as an example case; however, all methods can also be applied to other 
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DCNNs. In addition, we also provide a graphical user interaction video alongside a 

step-by-step guide to using the application as a separate Supplementary Materials. 

Analysis and interpretation of classification results is important as it helps to 

understand the decisions of the network, because at times even a perfectly trained 

network model misclassifies an image. Thus, finding the reasons for network decisions 

can help in improving model accuracy, thereby making it more trustworthy. 

 

Figure 5.2. (a) An immersive visualization of different layers of the AlexNet architecture in Unity, (b) 

virtual GUI for selecting paths for model weights, CNN structure, labels, and input image, (c) input layer, 

(d) first convolutional layer icon, (e) snapshot of activation maps of the 1st convolutional layer, (f) 

selecting the connection of a particular filter of the 1st convolutional layer to visualize its activity across 



Chapter 5                                                               Caffe2Unity: An Immersive visualization of DNNs 
 

66 
 

the network, and (g) deeper layer interactions of the selected filter. The user can visualize and hide filters 

and activation maps by selecting the corresponding option on the layer icon using a laser pointer. 

In the current paper, we re-framed the use of Shapley values [130] to find those regions 

in an image which play an important role in the model’s decision. Our layered 

structure enables us to go to individual layers to identify the highest activation regions 

that contribute in the Shapley value-based evaluation. The size of the individual 

features increases as we move to the deeper layers and the Shapley values grow 

because in the deeper layer, the network gains more confidence about its predictions. 

This kind of visualization is only possible in a VR environment. An example of the 

Shapley value results for a weasel as input image is shown in the VR environment in 

Figure 5.3. The red color indicates positive contributions to the network’s decision of 

these image regions while blue stands for negative contributions, which decrease the 

likelihood for a certain decision. White shows that these pixels have no effect on the 

decision of the network and occluding those regions will not change the network 

output. Shapley value-based interpretations are shown for three convolutional layers 

of the network. The top five potential classification results for the weasel image were 

“weasel”, “mink”, “polecat”, “black-footed ferret”, and “mongoose”, with highest 

probability of being a “weasel”. Figure 5.4 shows a zoomed-in view of Shapley-value 

results given in the VR environment for the weasel picture representing a “weasel” 

(left), and for the alternative four classification possibilities. For all five potential 

recognition hypotheses, red areas are concentrated around the face region of the 

images, which are, thus, considered as the most important regions of interest for the 

network. 

 

 

Figure. 5.3:  Analyzing the network decision using Shapley-value-based interpretations in the VR 
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environment. These interpretations are shown for three hidden layers namely conv1, conv3, and 

conv5, respectively (see also Figure 5.4 for zoomed in view). 

 

Figure. 5.4: Zoomed in view of VR-based Shapley value results from Figure 5.3 showing individual 

interpretation of three hidden layers, (a) conv1, (b) conv3, and (c) conv5 of the weasel image. 

 

However, in general, for this image, evidence remains far lower for all four ‘wrong’ 

classification hypotheses than for weasel. As we move to the deeper layers, features 

increase in size and become more abstract, finally providing the model confidence to 

make its decision as shown in Figure 5.4. To further enhance the usefulness of our VR 

system, the user can also add an occlusion block on the input images at random 

locations to hide part of the image. This is simply a black rectangle overlaid on the 

image using the laser pointer as shown in Figure 5.5. The user has the option to select 

an image of his/her choice from the sample image folder, add an occluded block of 

any size at any random location in the image, and save the image so it can be forward 

to the network. The classification results can then be interpreted using the Shapley 

values to see the effect of different image regions responsible for the final decision. 

As an example, we calculated the Shapley values for the weasel image by occluding 

the part that most strongly contributes to the network decision as shown above. The 

effect of the occluded block is evident in the activation of certain neurons and the 

feature maps that contribute to the final decision. The network now concludes that this 
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is a “guinea pig”. Shapley value-based interpretation of the partially occluded weasel 

image can explain this decision (Figure 5.5).  

 

Figure 5.5. Zoomed in view of VR-based results, (a) original image on the left whereas the right image 

shows the overlaid block occlusion, and (b) Shapley-value-based interpretation of the weasel image after 

being occluded by the VR user. Results are shown for three hidden convolutional layers, where the 

network strongly predicted the image as being a “guinea pig” instead of a “weasel”. 

From the remaining image, the network now considers the front of the animal body as 

most important where “guinea pig” and “weasel” yield high positive values, but a 

higher one for “guinea pig”. Interestingly, a black occlusion is (necessarily) also 

interpretable as part of an image and the network suggests that this part may be 

indicative of the image being a “notebook” with a total score even higher than for 

“weasel”. This occlusion-based method allows us to analyze network interpretations 

not only from the correct classification results but also from a such-distorted image, 

exploring the individual neurons and layers in the architecture. 
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5.5 Conclusions 

In this paper, we developed a dynamic link library for the Caffe framework of deep 

neural networks, which was used as a plugin for the Unity gaming engine. Users can 

interact with the plugin and utilize the functionalities of the Caffe framework. We used 

this plugin for immersive visualization of the AlexNet architecture with its application 

in image classification. The interactive immersive neural network model not only 

offers the freedom of navigation within the network layers but also provides the 

option to select certain connections to examine the activity flow of particular neurons. 

The novel aspect of integrating a Caffe framework with a gaming engine allows for 

using our DLL and the user can visualize the functioning of a deep neural network in 

a gaming engine without the need for additional programming dependencies. 

Initially, we used it for image classification tasks. As a future work, one could instead 

perform other tasks like detection, segmentation, image retrieval, design intelligent 

games, or other application specific solutions. In general, to get deeper insights as well 

to understand the learnt representations, this kind of visualization is easy to explore 

and debug given the design of our model. Our simple layered design is especially well-

suited for novices to better understand network function. 

To dig deeper into a network’s internal representation, we analyzed and interpreted 

the network decision using Shapley values to evaluate the regions of interest with and 

without occluding the input image. We observed a massive shift in the output decision 

and of the activation maps of the network when we added an occlusion block on the 

most relevant image features. Note that this is a real-time feature, which is a novel 

aspect of this work. A user can, in the VR setup, go back and forth many times to 

compare and visualize the most influential parts of the image features as given by the 

interpretation module. Without the VR setup, going back to visualize the hidden 

layers as well the shapely results in parallel is far more difficult. On the other hand, no 

change in the network decision was seen by occluding less important image regions 

as calculated by Shapley values (shown in Supplementary Materials). Thus, the 

interpretation results obtained by the Shapley values provide visual evidence of how 

different convolutional layers weigh important features in an input image. 
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In summary, we think that one can better assess and interpret DNN models via 

immersive exploration of different layers and activation maps rather than by using 

non-VR based visualization. Being able to visualize the flow from the input image into 

the network and the changes it undergoes is beneficial for getting a deeper 

understanding of these complex structures and allows us to some extent to interpret 

the network’s decision process. We have shown through Shapley values how 

important the regions of interest are for the network to make its decision. Using such 

observations, it may be possible to improve the model’s decision by retraining it with 

different sets of hybrid features associated with the interpretation of decision 

processes. This could be done, for example, by considering the importance of 

contextual information and how this affects the classification output, which will be 

one focus of our future work. 

Additional aspects for future work could be to try to arrive at a more formal 

quantification of the different aspects shown here. The visualization of network 

function shown here is mainly targeted at human viewers and there is no generally 

agreed baseline how to assess the quality of systems like ours and formal criteria 

cannot easily be established. Hence, to address the aspect of usefulness for a user, 

possibly the best way would be to perform user studies with people who have 

different backgrounds in understanding network operation and function (e.g., from a 

novice to an expert). The second aspect shown in this study concerns the visualization 

of network-decision regions via Shapley values. This lends itself to a more rigorous 

quality assessment and we are currently performing an assessment of the influence of 

different aspects in images on a network’s decision. This assessment, however, is very 

detailed and would exceed the scope of the current study. 
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5.6 Supplementary Material 

5.6.1 Installations  

As an initial step, install the Unity software from the download section on the official 

website https://unity3d.com/get-unity/download. Also install the software relevant 

for your virtual reality hardware device, in our case we installed SteamVR and the 

appropriate software for the HTC Vive. We followed the step by step installation guide 

for the HTC Vive given on the official website 

https://support.steampowered.com/steamvr/HTC_Vive/. All the installations are 

done according to the Windows operating system and specifications of the computer 

used.   

5.6.2 How to use the application 

After all these software installations, copy the Caffe2Unity.dll in the plugin folder of 

the Unity project. The step-by-step process for using this application is described 

below. 

Step1: Set the path for relevant files i.e. prototxt file, caffemodel file, output labels file 

and images to forward to the network. All these files are placed in the folder named 

“SampleData\”. We have used the images from ImageNet dataset with a .png 

extension. We used a customized binding to adjust the functionality of the HTC Vive 

hand controllers. The “North” play mode of the Trackpad of one controller is used to 

move to the “next_layer” and the “south mode” is used to move to the 

“previous_layer” in the network. The trigger button is used to interact with the user 

interface. The controller, which has a laser pointer, is used for “pointing” and 

“selecting” an object using the trigger button and also for moving back and forth in 

the network. The trackpad of the controller, without the laser pointer, is used to move 

up, down, left and right in the virtual environment. The hand controllers and blank 

interface of our application are shown below: 

https://unity3d.com/get-unity/download
https://support.steampowered.com/steamvr/HTC_Vive/
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Fig. 1: Hand controllers and GUI of the application. 

  

Step2:  Select the necessary paths as shown below, press the “Forward Image” button 

to pass the image to the neural network. 

 

Fig. 2: Selecting relevant paths for prototxt file, caffemodel and output label files using the laser pointer. 

Alternatively, the user can press the “Edit” button to add a block occlusion on the 

image and then forward it to the network, as shown below. 

 

Fig. 3: Input image selection and pressing the Edit button to add an occlusion block on the image. 

Step 3: After the image is loaded and forwarded to the network, the VR user can point 

with a laser to select and visualize or hide the activation maps/filters using the trigger 

button of the controller. This is shown below. The user can select a specific filter using 
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the laser pointer to see its related connections (depicted below).

 

Fig. 4: Convolutional layer 1 icon and selecting a specific activation map to see the activity flow along 

the layers. 

In this way, the user can explore all the layers until the output layer is reached, which 

shows the top five prediction results of the input, as depicted below. 

 

Fig. 5: Sample output layer showing the top five prediction results. 

Step 4:  As the last layer, the user can also analyze the network by pointing the laser 

on “Analyze network”, and use the trigger button from the hand controller to select 

that option. Upon clicking this button, you will see the label on the button ”Analyzing 

network”, and depending on the processing power of the computer, you will be able 

to get the Shapley values results as an interpretation of the network decision within 

few minutes of delay. 
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Fig. 6: Output layer icon, and legend for top five prediction results (1: highest probability) and icon to 

Analyze the network predictions for Shapley values results. 

After processing few minutes, you will get the results as shown below. 

 

Fig. 7: Shapley values results shown in VR for three convolutional layers. 
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5.5.3. Additional Visualization Results 

Some more results on a particular neuron selection and a ‘zoomed in’ view for Shapley 

values for occlusion and misclassification results are also shown below: 

 

 
 

Fig. 8: Particular neuron selection and its linkages in the deeper layers. 
 

 

Fig. 9: Zoomed in view of VR based Shapley value interpretation showing a misclassification result of 

Black horse identified as Great Dane. 



Chapter 5                                                               Caffe2Unity: An Immersive visualization of DNNs 
 

76 
 

 

Fig. 10: Zoomed in view of VR based Shapley values for adding occlusion block on the less relevant 

region of the image. The network is still able to correctly identify the image despite adding block 

occlusion. 
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CHAPTER 6 
   

6 Interpreting the decision of CNNs via 
influence functions 

 

Model interpretability is at the core of understanding deep neural network decisions. 

It provides explanations that are understandable to humans and allows avoiding the 

risk of bias in model predictions. In the previous chapters, we dealt with interpreting 

the decisions of deep neural network based on test input images. However in this 

section we will investigate and interpret the model output based on images in training 

dataset i.e. which training image influences the decisions of the network.  Here, we 

use the notion of influence functions that are commonly used in statistics to measure 

a change in a parametric observations and its effect on an estimator, hence useful for 

comparing the robustness and bias of the estimator [175]. In deep learning domain, we 

can use this notion to debug the results of a network model in respect to the training 

dataset. In this work, it was applied for analyzing perturbation of the loss functions to 

understand the behavior (specifically, class prediction) of deep learning models both 

in case of original test set images as well as  when those images were exposed to 

disturbances. We considered three types of disturbances in the original images of 

ImageNet dataset: texture, style and background elimination. For images with those 

disturbances we calculated so called influence scores [153] layer-wise, at different 

hidden layers of the VGG16 network. The influence scores allowed to identify the most 

influential training images for the testing images from ImageNet as well as in case of 

those images with aforementioned disturbances.  

Furthermore using hierarchical clustering, based on influence scores we grouped 

different disturbances and identified type of disturbances which bias network 

predictions the most. Layer-wise cluster analysis showed that the background 

information is more dominant on the lower layers, style is more dominant on the 
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middle layers, while object and texture information prevails on the higher layers. 

Object was considered important for making decisions when images without 

background information were classified correctly. Our layer-wise influence scoring is 

an effective method to extract deeper semantic representations and could help 

improve classification accuracy by retraining the relevant hidden layers. 

6.1 Introduction 

Today's machine learning algorithms based on deep networks have outperformed 

humans in solving tasks in various fields, not only in the computer vision domain but 

are also excelling in the industrial and medical domains [131]. Moreover, their ability 

to make predictions, exploratory data analysis and visualization are remarkable [132] 

and [133]. The success of deep networks is due to the availability of high-end 

computing devices [134], larger datasets for learning [10] and [135], and improved 

deep learning techniques [136] and [137]. However, despite their success in many 

domains, these complex structures suffer from a lack of interpretability and 

transparency in their learned representations [138]. One of the main reasons for this is 

their "black-box" nature and the distributed encoding of the data from which they 

generalize and learn the representations [138]. In order to understand the input-output 

relation of these complex models [139], we need to probe the individual or cluster of 

neurons to visualize and encode the acquired concepts [140] and [141]. There are 

certain approaches that deal with prototype building of learned representations in an 

abstract manner. For instance, to explain the concept of a "bird", these methods learn 

the representations by creating prototype images of the class of interest [142], [143], 

[61] and [80]. These kinds of learned representations generally adopt activation 

maximization as their basis and have proved to be an effective tool for providing a 

more transparent and visual understanding of CNNs. Another means to make CNN 

decision-making transparent is to consider individual predictions, i.e., heatmaps 

highlight the pixels most relevant for making a decision [144] and [61]. In [145] and 

[146], the authors used layer-wise relevance propagation to explain predictions 

applicable in many machine learning models such as CNNs [145], LSTMs [147] and 
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support vector machines [148]. In order to understand the predictions based on model 

behavior, the authors in [149] presented the spectral relevance analysis, which 

identifies individual heatmaps and clusters the learned concepts for classification. 

In this chapter, we used influence functions, which have a rich history in statistics, but 

not much has been found in the literature regarding their use in the deep learning 

domain. In order to identify the influence of a training instance on a particular model 

prediction, a simple way is to delete the training instance and retrain the model. 

Taking the difference between predictions can determine the influence, but retraining 

large networks requires a lot of time. To simplify this, one can establish if the network 

has a loss function that is twice differentiable with regard to its parameters. If so, we 

can approximate the influence of any instance on the model parameters and its 

predictions. Another reason why influence functions have not been so popular is 

because of the high computational cost of determining if a model's loss function is 

twice differentiable, which limits their use in today's machine learning models. 

However, there are methods that can efficiently and accurately approximate the 

influence functions using second-order optimization techniques [150] and [151]. 

Furthermore, [152] and [153] have used influence functions to present 

example/image-based explanations by identifying the most influential training 

images responsible for classification. These methods are useful for identifying model 

errors and biases, identifying mislabeled datasets and debugging models for better 

predictability, but they lack interpretability in terms of identifying the learned 

representations. In [153], authors approximate Influence functions using the second-

order optimization technique to represent model's behavior through training data 

[153]. We used this method and calculated the layer-wise influence score of each 

training image with regard to each test image, finding the most influential training 

images at each layer. As mentioned above, we used three different types of 

disturbances to the input images: texture, style and removing the background. For 

layer-wise influence scores, we applied cluster analysis to determine which of the 

aforementioned disturbances are learned at each layer. 
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6.2 Related work 

 

Despite the many challenges in determining an appropriate method that yields 

insights into deep network performance, one must be sure that the explanations of 

these methods give a true reflection of the internal functionality of these models [154]. 

Even the best-performing deep learning models in various computer vision domains 

need a more transparent explanation of their predictions. For instance, interpretability 

via perturbation of data points has been extensively studied by [153], [130], [155], [156], 

[157] and [158], and they evaluated the changes in model outcomes either globally or 

locally. Moreover, perturbation-based methods are often inconsistent in their 

explanations, which might be true for one data point but not for its neighboring point 

or with similar data points within the same class. 

The saliency-based method is mostly studied for the interpretability of local features 

in image classification tasks [159], [160] and [161]. These methods emphasize the 

importance of individual pixels in image classification tasks, however, conclusions 

obtained for one image cannot be transferred to another image, and thus these local 

explanations are not sufficient to reflect model decisions. Instead, we need methods 

that address the distributed encoding of a neural network in a systematic way. In this 

regard, influence functions are a technique originating in statistics that has been used 

in machine learning tasks to trace predictions back to the training data [153], and to 

study robustness and cross-validation within a model [162], [163] and [164]. A similar 

method is used to estimate the Cook's distance for prioritizing the training points [165], 

whereas an influence-based distance metric is defined to understand and configure 

the classifiers [166]. Other methods use influence functions where the model is given 

adversarial examples to interpret the model decisions [167]. Meanwhile, changing the 

class labels in the subset of the training set improves the network prediction for 

incorrect test inputs [168]. These methods performed well in different machine 

learning models, but using them as a robust statistical approach for post hoc 

interpretability is an emerging research direction in the deep learning domain. We 

used influence functions to identify the added disturbances in images to which the 
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network is most sensitive , and explored how the hidden layers differ in terms of their 

influence scores in case of different types of disturbances. 

6.3 Methods 

6.3.1 Influence score and data set 

 

Let us assume that the CNN is pre-trained for the task of image classification, and we 

want to find out the importance of different hidden layers of the CNN. The non-linear 

nature of CNNs gradually untangles the semantic information as the activation moves 

towards the deeper layers [169], [170] and [171]. We describe the details of our 

methodology based on the schematic diagram as shown below in Fig. 6.1. Specifically, 

we will use Influence functions [153] to analyse network decisions in case of regular 

test set images as well as when disturbances have been added to those images.  

 

Figure 6.1: Schematic diagram illustrating the methodology used to interpret the model decisions using 

the notion of influence functions. The description of blocks enclosed within dotted line is marked (a-f) 

and is described alongside its relevant text and equations below. 

To accomplish this, we first define a training dataset for a neural network as  𝑅𝑡 =

{𝑥1, 𝑥2, . . . , 𝑥𝑛}, where n is the number of training samples; 𝑥𝑖 = (𝑎𝑖 , 𝑏𝑖) where 𝑎𝑖 are 

class images of the size 224 x 224 provided to the input of the neural network (marked 
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as   a  ), and 𝑏𝑖 is the output of the network, defined as one-hot encoding in 𝑐 output 

lines, where 𝑐 is the number of classes. We then define a loss function   b   given as: 

                                                             𝐿(𝜃) =
1

𝑛
∑ 𝐿(𝑥𝑖 , 𝜃)𝑛

𝑖=1                                                            (1) 

Where 𝐿 is the categorical-cross entropy loss with which the network was pre-trained 

i.e. a softmax followed by cross entropy loss written as: 𝐿 = −𝑙𝑜𝑔 (
𝑒𝑎𝑝

∑ 𝑒
𝑎𝑗𝐶

𝑗

)  where 𝑎𝑝 is 

the positive class. Formally we can write as: 𝐿 =  − ∑ 𝑏𝑖 log (𝑓(𝑎)𝑖) 𝑐
𝑖=1  where 𝑓(𝑎)𝑖 is 

the probability of each class and 𝑏𝑖 is the true label class. For 𝑐 number of output classes 

in the network model, the output of the softmax will be the probabilities for each of 

the classes. We can obtain these probabilities using  𝑓(𝑎)𝑖 =  (
𝑒𝑎𝑖

∑ 𝑒
𝑎𝑗𝐶

𝑗

) , i.e., we take 

exponentiation (𝑒𝑎𝑖) which is the output of each neuron for each class divided by the 

sum of all the exponents (∑ 𝑒𝑎𝑗𝐶
𝑗 ) to obtain (𝑓(𝑎)𝑖)  i.e. the probability of each class.  

Let us say that all learning samples in the beginning are contributing to the loss equally 

with coefficients 1 𝑛⁄  as defined in eq. (1) above. We will probe the loss function 𝐿(𝜃) 

by decreasing contributions of individual learning samples. Specifically, we will 

investigate the perturbation of the loss in respect to the training samples  c  . Our aim 

is to calculate how the network parameters 𝜃 would change in the case of changing 

the contribution of a specific sample 𝑥𝑗 ∈ (𝑗 = 1,2, … 𝑛)   to a loss by a small quantity 𝜖.  

For that, first we need to evaluate optimal network parameters for the loss function 

with the perturbation: 

                         𝜃𝜖,𝑥𝑗 
≝ arg 𝑚𝑖𝑛𝜃∈Θ

1

𝑛
(∑ 𝐿(𝑥𝑖 , 𝜃) +  𝜖𝐿(𝑥𝑗 , 𝜃)𝑛

𝑖=1 )                                      (2)  

In [153], it was shown that the rate of change in optimum network weights 𝜃 in respect 

to 𝜖 the way the latter quantity is defined in eq. (2), under the assumption of quadratic 

approximation of the loss function, can be expressed as follows  d  :  

𝐼𝑚𝑜𝑑,𝑝𝑎𝑟𝑎𝑚𝑠(𝑥𝑗) =  
𝑑𝜃𝜖,𝑥𝑗

𝑑𝜖
 |𝜖=0 

                                 =  −𝐻𝜃̂
−1∇𝜃𝐿(𝑥𝑗, 𝜃)                              (3) 
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Where,  ∇𝜃𝐿(𝑥𝑗, 𝜃) is the perturbation of approximated loss gradient in respect to the 

training sample at the point (𝑥𝑗, 𝜃) and  𝐻𝜃̂ is defined as follows: 

                                                     𝐻𝜃̂ =
1

𝑛
∑ ∇𝜃

2  𝐿(𝑥𝑖, 𝜃)𝑛
𝑖=0                                                  (4) 

 

Let us now define the test set  e  (including both original test images and images with 

disturbances) as 𝑅𝑐  = {𝑥̂𝑐1
, 𝑥𝑐2

, … 𝑥𝑐𝑚
} . We will calculate the influence of the training 

image 𝑥𝑗 on the loss at the test image 𝑥𝑐𝑘
 following the approximation given in [153]: 

𝐼𝑚𝑜𝑑,𝑙𝑜𝑠𝑠(𝑥𝑗, 𝑥𝑐𝑘
) =  

𝑑𝐿 (𝑥𝑐𝑘
 , 𝜃𝜖,𝑥𝑗

)

𝑑𝜖
 |𝜖=0 

                                                                         =  ∇𝜃𝐿(𝑥𝑐𝑘
, 𝜃)𝑇  

𝑑𝜃̂𝜖,𝑥𝑗

𝑑𝜖
 |𝜖=0 

                                                                         =  −∇𝜃𝐿(𝑥𝑐𝑘
, 𝜃)

𝑇
𝐻𝜃

−1 ∇𝜃 𝐿(𝑥𝑗, 𝜃)              (5) 

Since directly computing the Hessian matrix 𝐻𝜃̂  and its inverse as given in Eqs. (3-5) 

is computationally expensive, we used stochastic gradient to obtain HVP’s and their 

inverse on mini batch of training images. Specifically, we calculate HVP’s for each 

layer, which is the product between the Hessian matrix 𝐻𝜃̂ and gradient vector of loss.  

In [153] the gradients in Eq. (3) and influence scores in Eq. (5) were calculated based 

on the entire parameter set  𝜃  of the neural network. We expand the approach, by 

performing the analysis layer-wise, by separately finding gradients and Hessian 

Vector Products HVPs for each layer 𝑙 in the network, thus obtaining layer-wise 

influence scores as given below:   

                                 𝐼𝑠𝑐𝑟_𝑙(𝑥𝑗, 𝑥𝑐𝑘
) = 𝐼𝑚𝑜𝑑,𝑙𝑜𝑠𝑠

𝑙 (𝑥𝑗, 𝑥𝑐𝑘
) =  

𝑑𝐿(𝑥𝑐𝑘
,𝜃̂𝜖,𝑥𝑗

𝑙 )

𝑑𝜖
 |𝜖=0              

                                                         =   (−∇𝜃𝐿(𝑥𝑐𝑘
, 𝜃)

𝑇
𝐻𝜃̂

−1∇𝜃𝑖
𝐿(𝑥𝑗 , 𝜃𝜖,𝑥𝑗

𝑙 ) )                       (6) 

In the above expression, 𝜃𝑙 represents the parameters for the 𝑙𝑡ℎ layer of the network. 

The computation for Eq.(6) can be efficiently obtained via Tensorflow expression given 
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later in the text that will return the layer-wise gradients of the loss 𝐿(𝜃𝑖) for an image 

𝑥𝑗 which we denote as ∇𝜃𝑖
𝐿 (𝑥𝑗, 𝜃𝜖,𝑥𝑗

𝑙 ). By varying the parameters indices of 

∇𝜃𝑖
𝐿 (𝑥𝑗, 𝜃𝜖,𝑥𝑗

𝑙 ) in the above equation we can extract the influence scores for each 

individual layer. To calculate layer-wise score, we will be evaluating   f    i.e., expression 

(6) for each possible triplet of a training set image, network layer, and test set 

image  (𝑥𝑗, 𝑥𝑐𝑘
) ,  j = 1,2, … n and k = 1,2, … m and will call it an influence score. The 

image in the training set 𝑥𝑗 with the highest influence score for the test set  image 𝑥𝑐𝑘
 

will be called the (most) influential image  in layer 𝑙 formally defined as:  𝑥 𝐼𝑖𝑛𝑓(𝑙, 𝑘) =

 𝑎𝑟𝑔 𝑚𝑎𝑥𝑗=1,2..𝑛  𝐼𝑚𝑜𝑑,𝑙𝑜𝑠𝑠
𝑙 (𝑥𝑗 , 𝑥𝑐𝑘

). We also analyze compound influence score based on 

layer-wise influence scores: 

                                              𝛪𝑡𝑜𝑡𝑎𝑙 =  ∑ 𝐼𝑠𝑐𝑟_𝑙  (𝑥𝑗, 𝑥𝑐𝑘
)𝑛

𝑙=1                                                     (7) 

An overall layer-independent (most) influential image can also be obtained using the 

above expression as 𝑥 𝐼𝑖𝑛𝑓(𝑘) =  𝑎𝑟𝑔 𝑚𝑎𝑥𝑗=1,2..𝑛  𝐼𝑚𝑜𝑑,𝑙𝑜𝑠𝑠(𝑥𝑗, 𝑥𝑐𝑘
).We use the 

Tensorflow implementation of 𝑔𝑒𝑡_𝐻𝑣_𝑜𝑝() defined in 𝑝𝑦ℎ𝑒𝑠𝑠𝑖𝑎𝑛 as (Hv =

flatten ( tf . gradients ( tf . math . multiply ( flatten ( tf . gradients (L , 𝜃𝑖   ) ) , tf . stopgradient ( v ) ) , params ) )) 

to efficiently calculate the HVP’s similar to the one used in [153]. To extract layer-wise 

influence score for any layer l we use the above mentioned implementation to calculate 

layer-wise HVP’s (𝐿𝐻𝑉𝑃), mathematically represented in the following equation:  

                                     𝐿𝐻𝑉𝑃 =  𝑣𝑇𝐻 (𝜃𝑖)|𝜃=𝜃̂𝑖
  ∈  ℝ𝑃                                                                    (8) 

In the above equation, 𝐻(𝜃𝑖) is a matrix of second derivatives of loss and 𝑣 is a matrix 

for gradient vectors of loss containing the vectors 𝑣1 =  ∇𝜃1
𝐿(𝜃1) , 𝑣2 =

 ∇𝜃2
𝐿(𝜃2), … … 𝑣𝑃 =  ∇𝜃𝑃𝑙

𝐿(𝜃𝑃𝑙
) for different layers with 𝑃 number of parameters in the 

network.  The product between  𝐻(𝜃𝑖)|𝜃=𝜃̂𝑖
  and 𝑣𝑇 gives a matrix 𝐿𝐻𝑉𝑃 with gradient 

parameters vectors 𝜃𝑖 = [𝜃1   𝜃2   𝜃3  … 𝜃𝑃𝑙
] ∈  ℝ𝑃  for layer l. In the above equation, 𝐻 

is the same Hessian matrix from Eq. (3-5) (and used later in the text). Furthermore, we 

multiply element-wise the gradient vectors in 𝑣  and 𝐻 to obtain layer-wise HVP’s 

(𝐿𝐻𝑉𝑃). For each layer, we extract the 𝐿𝐻𝑉𝑃  of the layer l cutting off the rest of the layers 
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for which the product is not needed, and we repeat this for all the layers until we get 

separate 𝐿𝐻𝑉𝑃 for all layers of the model. 

We save the influence score of each layer into associated arrays or dictionaries and 

extract the influential image based on the highest influence score for the purpose of 

analysis. In addition, we take the intra-class mean of layer-wise influence score for 

each test set image with disturbance and save this score in the dictionaries. Whereas, 

a total influence for a particular image 𝑥𝑐𝑘
  is the sum of all layer-wise influences 

calculated in Eq. (7) as a compound influence score. 

Later, we show a comparison and establish a relationship of the intra-class mean 

influence score calculated for a particular test image with disturbances (using 

 Ι𝑡𝑜𝑡𝑎𝑙 from Eq. (7)) and the corresponding non-disturbed image as a control group. In 

this study, we have taken an average of the intra-class influence score over the samples 

within each class given as:  𝐼𝑎𝑣𝑔 =
 ∑ 𝐼𝑡𝑜𝑡𝑎𝑙(𝑓𝑜𝑟 𝑒𝑎𝑐ℎ 𝑖𝑚𝑎𝑔𝑒 𝑝𝑒𝑟 𝑐𝑙𝑎𝑠𝑠)

𝑁𝑜 𝑜𝑓 𝑖𝑚𝑎𝑔𝑒𝑠 𝑝𝑒𝑟 𝑐𝑙𝑎𝑠𝑠
 to identify an influence 

based trend between the image disturbance and their controlled groups. 

In order to test our methodology, we used the VGG16 network architecture, and 

defined the cues we wanted to quantify. We evaluated our method on the ImageNet 

dataset with 10 classes (chair, cat, elephant, zebra, screwdriver, bird, cup, toaster, bus 

and bicycle) using three types of disturbances: (1) foreground placed on a white-

background, (2) with texture added (Textured) and (3) with style added (Styled), 

where original images were used as controls (Fig. 6.2). We simplified the class 

labelling, i.e., ImageNet's Persian cat is labelled as "cat" and the hummingbird as 

"bird", etc. All original images are from the ImageNet dataset, and we used a subset of 

approximately 30,000 images (30*1000) as our training set and 200 images as a testing 

dataset, where the latter contains disturbances (200=5 images *10 classes*(1 original + 

3 disturbance types)) .  
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Figure 6.2: Sample styled and textured images used for adding disturbances and the converted input 

images of elephant class after the added disturbances. 

For white-background images (five per class) we eliminated the background and 

replaced it with white colour. To obtain styled images, we adopted the method from 

[172] where we applied the style transfer to the white-background images. We 

transferred four different styles to 50 images (5 per class) where style assignment was 

randomized.  To obtain texture images (50 overall, 5 per class), we used the method 

from [173] for different texture patterns like skin, fur, wool, feathers, etc. We 

summarized the overall methodology in Algorithm 1. 

Algorithm 1: layer-wise influence score  

Input:   training set and testing set images:  𝑹𝒕 = {𝒙𝟏, 𝒙𝟐, . . . , 𝒙𝒏} 𝑹𝒄  = {𝒙̂𝒄𝟏
, 𝒙̂𝒄𝟐

, … 𝒙̂𝒄𝒎
}   

Output: network prediction influence score 𝑰𝒔𝒄𝒓_𝒍 (𝒙𝒋, 𝒙̂𝒄𝒌
)  and most influential learning images for test 

images 
pre-process images of style and texture using [172][173]respectively  
Step 1: prepare _data to create archive 
    -rt       :   labelled training images 
    -rc       :   labelled test images 
    -mod  :   modified images 
    -o        :   output filename of archive  
Step 2: calculate  𝑰𝒔𝒄𝒓_𝒍     
             -Create network model instance  
    For each image  from 𝑹𝒄,  𝑹𝒕 and for each layer 𝒍 

          -Using eq. (2) calculate the optimal parameters for the perturbed loss  𝜽̂𝝐,𝒙𝒋
  

- calculate layer-wise HPV’s 𝑳𝑯𝑽𝑷 using eq. (8) for each layer w.r.t 𝑹𝒄 
- expanding eq. (5) for each layer and employing the obtained 𝑳𝑯𝑽𝑷 ,calculate parameter gradients 

𝑰𝒎𝒐𝒅,𝒍𝒐𝒔𝒔
𝒍 (𝒙𝒋, 𝒙̂𝒄𝒌

) 

          -calculate influential images of layer-wise 𝑰𝒔𝒄𝒓_𝒍, and total influence using eq.(6)and(7)    
          -return  layer-wise influence  score , influential images 
    End 
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6.3.2 Clustering and cluster variables 

 

We used hierarchical clustering as a statistical method to determine the similarity 

among the various images based on the observed influence scores. We started by 

considering the images with added disturbances and the intra-class influence score of 

all layers of the VGG16 as separate clusters, i.e., a cluster of singletons. We took an 

average of the individual layers from (𝐼𝑙_𝑎𝑣𝑔 = 𝑙1_𝑎𝑣𝑔, … , 𝑙16_𝑎𝑣𝑔) for all the intra-class 

images in the testing dataset (i.e., 5 images*4 cases*10 classes) as feature vectors. The 

clustering was based on 4 cases: original image, image with white background, 

textured and styled images. At each iteration step, we selected two singletons (i.e. 

images with disturbances and original images) and measured the similarity 𝑆𝑖𝑗 (%) 

between cluster-singletons "i" and "j”. We also calculated the average Euclidean 

distance 𝑑𝑖𝑗 between singletons from cluster-variables (i.e. original, styled, textured 

and white background) using their layer-wise influence score and merged the pair 

with the least distance. We then calculated a correlation distance matrix using 

Pearson’s correlation 𝜌𝑖𝑗 [174] to identify the common characteristics based on the 

layer-wise influence score to identify at which layers the disturbances in the images 

were more noticeable.  

Using the clustering analysis procedure given as Algorithm 2, we identified three 

clusters to show which image disturbances were learned at hidden layers of the 

network. The clustering results were calculated based on the average of the intra-class 

influence scores. Our clustering method considered original and white-background 

images as one cluster, style and textured images as separate cluster. We also double-

checked with test image interpretability (i.e., Shapley values) to confirm the findings 

we had obtained using training image interpretability (i.e., using influence functions). 

In order to accomplish this, we used Shapley values [130] to interpret the network 

predictions. In doing so, we analyzed the predictions based on which features of the 

test image are important for the network. We used both of these schemes to analyze 

the findings and to estimate where the network remained consistent in making its 

decisions.  
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Algorithm 2: layer-wise hierarchical cluster analysis  

Input:   layer-wise influence score from eq. (6) for each image disturbance and its control images 
Output: cluster variable and layer-wise cluster observations  
For each 𝒙𝒋 in 𝑹𝒄 

       -1.  For each class, select the average intra-class layer-wise influence scores of four different cases: 
original  images as well as white background, textured and styled images as single separate clusters  

       -2. Calculate similarity and least distance between each cluster singleton using𝑺𝒊𝒋 =  
(𝟏− 𝒅𝒊𝒋) 

𝒅𝒎𝒂𝒙
∗ 𝟏𝟎𝟎. 

       -3.  Merge clusters with least distance 
       -4.  Calculate Pearson’s correlation distance using 𝑫𝒊𝒋 = 𝟏 − 𝝆𝒊𝒋 between each cluster variable 

       -5.  Update distance matrix 
       -6.  Repeat step 2 to 5 until one cluster is left 
End 
return cluster_ variables based on similarity, layer-wise cluster observations 
 

6.4. Result and discussion 

 

We performed experiments on the VGG16 architecture using the ImageNet dataset, 

with our training set consisting of 30,000 images. In our study, we calculated influence 

scores for 200 test images and the corresponding layer-wise influence scores to 

determine the basis for the network's decisions. 

6.4.1. Image classification with input image disturbances 

 

As an initial experiment, we tested the classification response for all types of 

disturbances. Nearly all images from the "original" and "white-background" categories 

were correctly classified by the network (Fig. 6.3). It is worth noting that the images 

with a white background showed predictions comparable to images in the original 

category, making the object an important cue for decision making. For the styled 

images, prediction probabilities were slightly less compared to the original and white-

background images. In contrast, textured images for all classes failed to classify 

correctly due to the texture coming from completely different classes. The decision 

was made based on the added texture rather than the class itself. Hence, the decision 

was biased, suggesting that the texture of the image is an important cue for network 

decisions.  
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Figure 6.3: Classification accuracies of the classes with varying image disturbances. All textured images 

failed to give correct predictions (0%) hence are not shown in figure above. 

Texture-style analysis 

To verify the importance of texture for the network's decisions, we tested the network 

with texture patches as input. The network was able to correctly identify the texture 

with classification probabilities given in Table 1. Further, we transferred the textured 

patches to 50 white-background images using the method in [173] (Fig. 6.4) to confirm 

our findings. Again, the network was making its decision based on the texture but not 

on the content of the image (Table 1, second column). 

 

Figure 6.4: Example showing predicted class label and accuracy for elephant class before and after transfer 

of texture. 

Styled images were also observed based on the activations of the hidden layers of the 

VGG16 network. We used this style-textured cue to see how the influence score varied 

along the network layers, as we will show next. 
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Table 1: Classification accuracies (%) of example texture image patches and class labels in case of 

texture transfer onto content images 

Before texture transfer After texture transfer 

Texture image Accuracy (%) Content image Predicted class label 

Zebra 0.93 Bird Zebra  

Leopard  0.93 Cat Leopard  

Elephant  0.95 Bus Indian elephant  

Golden retriever 0.92 elephant Golden retriever  

 

6.4.2. Influential image score and learned representations 

 

In the previous sections, we calculated influence scores for each of the 16 layers of the 

VGG16 network and named it as layer-wise influence score (𝐼𝑠𝑐𝑟_𝑙). We also gave total 

influence scores 𝐼𝑡𝑜𝑡𝑎𝑙 as a sum of all the 16 layers to analyze the global network 

predictions. To identify influential images, we used this total influence score for all 

images with added disturbances as well as the original images to identify which 

training image influenced the prediction of a testing image with the biggest influence 

score.   

Although all the original images were predicted correctly and were given the same 

predicted class label as their influential image, we also observed that their influential 

images were very sensitive to the background color (Fig. 6.5a). For white-background 

images, the network's prediction was also correct, and the influential training image 

also used to belong to the same class as the original. The only difference was that this 

time the influence score was slightly less compared to the case of the original image. 

Thus, we can conclude that the object itself is important and must have shaped the 

features of the CNN. Removing the background information in this case had very little 

effect on the final decision. For this, we calculate the average of the intra-class influence 

score to show a comparison of the images with disturbances with their original images 
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as control. This effect can be seen from the average influence scores ( 𝐼𝑎𝑣𝑔)  plotted for 

all the classes in Fig. 6.6c. 

As for the styled and textured images, one interesting observation was the similarity 

of the spatial features of the test images with their most influential training images 

(Fig. 6.5 b, c) and relatively fluctuating influence scores (Fig. 6.6 a, b) with their 

corresponding original images. However, in this case, the influential images played a 

negative role in the sense that the predicted class labels for the test images were very 

different from their influential image class, indicating a strong dependence on the 

styling and texture representations of the input images. Although, for styled and 

white-background images, the average influence score shows comparable fluctuations 

with their control groups, indicating their strong influence on correct network 

classifications, as is evident from Fig. 6.3. However, the average influence score of 

textured images as well as their control group is very low, indicating that influential 

training images are not considered for prediction, but the added texture was more 

dominant in network decisions. In all three cases, only the bird class showed a high 

influence score, indicating that there exists a strong similarity between the test and 

training instances as learned by the model.  
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Figure 6.5:  Intra-class influential images with highest influential score calculated using (𝐼𝑡𝑜𝑡𝑎𝑙) among 

the training set and corresponding test inputs of (a) original, (b) styled, (c) textured, and (d) white 

background images. 

 

Figure 6.6: Comparison of intra-class scores showing a plot between average influence scores ( 𝐼𝑎𝑣𝑔) : (a) 

original vs. styled images, (b) original vs textured images  and (c) original vs white background images.  

6.4.3. Interpretation of influence scores via Shapley values  

 

To further evaluate and interpret the learned representations, we identified Shapley 

value-based [130] influential regions between different types of test inputs (Fig. 6.7). 

Here, we did not calculate layer-wise Shapley values but only considered the test 
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images to see which image regions were important for the network. The reason for this 

analysis is that we wanted to identify the similarities in terms of what the network 

looks at in making its decision through the test image and its training images. We 

considered a region to be influential if the Shapley values in that region were higher 

(marked by red color in the figure). We observed that in the original and white-

background images, high Shapley values were concentrated on an object, so we could 

consider the object to be an influential region (Fig. 6.7 a, d). For the styled and textured 

images (Fig. 6.7 b, c), the influential regions are wider than in their corresponding 

original images. Thus, we can conclude that style and texture are important in network 

decisions. 

In addition, we detected that a change in the amount of added style-texture (%) 

changed the network's decisions based on the fluctuation in influence scores. We 

observed an inverse relationship between the percentage of style-texture and the 

influence score as well as network classification accuracy, i.e., as the amount of style 

or texture increased on the test images, the influence that a training instance had on 

the network's accuracy in correctly classifying the images decreased. We showed a 

common trend of the inverse relationship of texture varying from zero to 50% in 

iteration steps among the individual classes. The generalized relationship plot was 

based on the average of the texture-based influence scores and accuracy among the 

classes, which showed a similar trend and is shown in Fig. 6.8. As we increased the 

amount of texture on the test images, with each iteration, the influence score was 

turning negative and showing less resemblance to the training images, resulting in 

incorrect object recognition. So, we can say that the texture of the image becomes more 

influential on the network's decisions than the object itself. 
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Figure 6.7: Shapley-value based influential regions of images with disturbances, (a) original (b) textured 

(c) styled and (d) white background images. 

 

Figure 6.8: A generalized inverse-relationship of various classes showing a similar trend between 

averages (𝐼𝑎𝑣𝑔)of texture based intra-class influence scores and accuracy.  

6.4.4. Interpretation via cluster-analysis 

 

Moreover, we performed the cluster analysis based on Pearson's distance correlation 

of the average of the layer-wise influence scores of input disturbances and the control 

groups from the same class. As an illustration, we present the results for three classes 

(bird, elephant and bicycle).  
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Figure 6.9:  Layer-wise intra-class cluster analysis of the influence score on VGG16 network shown for 

three image classes, (a) identified three cluster , evaluated by Pearson´s distance correlation based on 𝐼𝑎𝑣𝑔. 

The original and white background images were determined as one cluster in terms of their similarity 

while style-textured images were identified as separate clusters based on dissimilarity from their 

controlled groups. (b) Their corresponding correlation matrix based on intra-class average layer-wise 

influence scores (𝐼𝑙_𝑎𝑣𝑔)  for the above classes.  

We identified three clusters: original and white background as one cluster shown in 

blue, styled in red and textured in green (Fig. 6.9a). The color association of the cluster 

variables is assigned depending on how similar the observations are to better visualize 

the common characteristics in clustering pattern. The similarity is determined based 

on the global influence score calculated for each intra-classes using 𝐼𝑎𝑣𝑔. To further 

learn about the common patterns that the model considers during decision making, 

we identify similarities among different images at individual layers using 𝐼𝑙_𝑎𝑣𝑔. So in 

general, one could get a global view via clustering as identified in Fig 6.9a and also in 

the correlation matrix (Fig 6.9 b) but to get a deeper understanding of why these 

clusters are formed we illustrate this relationship among the images with disturbances 

in Fig 6.10. Hence finding reasons and interpretation of the common features among 

different types disturbance in images. The analysis showed a high similarity of the 

layer-wise influence score between the original and white-background images which 

were identified as one cluster (in Fig. 6.9a) making the object serve as a learned 
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representation for prediction in higher layers. In contrast, the background information 

was more dominant at the lower layers and showed a high similarity (%) to the 

influence score between the original and white-background images (Fig 6.10 a, b). 

There is clear evidence of similarity among its influence score that can be visible in 

both Fig 6.10 a, b in first few layers and in the prediction layer. Where for white 

background images the prediction layer shows slightly high values for influence score 

hence making a correct classification of the object. This is also evident from our results 

presented in Fig. 6.5 a, d and Fig. 6.7 a, d.  Since the results are presented for all classes 

and they all seem to follow a common pattern across different layers depending upon 

the type of added image disturbances hence we represent these results as layer-wise 

clustering relationship. There is a very similar layer-wise clustering pattern for original 

and white background images as compared to the style-textured images.  

 

Figure 6.10: Intra-class layer-wise influence scores calculated from training set onto its corresponding 

images with disturbances show a clustering relationship of influence scores varying across the network 

layers for: (a) original images, (b) images with white background, (c) images with added style and (d) 

images with added texture for all the classes.  
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The layer-wise influence scores of the styled images fluctuated more towards the 

middle layers when compared with their controlled groups, indicating that the deeper 

layers of the network observe more abstract representations (Fig. 6.10 c). Styling the 

images modifies their appearance, making it difficult for the network to correctly 

correlate with its original image features in decision making. The values for influence 

score fluctuate for the middle layer as compared to the original images. However, 

despite the fluctuation and added style, the network does try to show some correct 

classification results which is also visible from the last layers. In contrast, no similarity 

is identified in terms of influence scores among the images with added texture and its 

corresponding original images. A very low layer-wise influence scores at the higher 

layers result in 0% classification accuracy of the textured images compared with their 

original images. This provides evidence that influence of embedded textures at the 

higher layers giving more semantic representations of the learned texture (Fig 6.10 d). 

Hence, the textured images formed a separate cluster (see Fig 6.9 a) as there was a high 

dissimilarity and increased distance between the layer-wise influence scores 

compared with its control group. 

6.5 Conclusions  

 

In this paper, we used influence score to analyze and interpret the decisions of the 

VGG16 network. We presented the network with various types of input images to 

observe changes in its predictions. We demonstrated that the network model strongly 

relies on the style-textured cues of the images. However, the type of input image and 

object-background information also play an important role in network decisions. We 

analyzed the network predictions using layer-wise influence scores to determine the 

influential images and gave evidence for the fluctuations in the decisions. Through 

cluster analysis, we identified at which layers the disturbances in an image were more 

noticeable. We observed a sudden drop in the network's recognition accuracy when 

we varied the style-texture ratios and finally concluded that the pre-trained model 

under study is biased towards style and textures in decision making. 
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As a future work, we can use the influence score to gain deeper insights into more 

abstract representations of various other network models. For instance, considering 

the layer-wise influence score, we can improve the classification accuracy and debug 

the model to achieve improved results, which can be a promising direction for future 

research avenues.
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CHAPTER 7 
   

7 Conclusions  

 

 In this thesis, we argue that visualizing and interpreting decisions through visuals can 

be useful for understanding complex "black-box" models. Images, objects, scenes, etc., 

are core to any classification problem in the computer vision domain. Gaining an in-

depth understanding of why these visuals can be important for model predictions, 

such as deep neural architectures, can help unlock these "black-box" models. These 

visuals can give substantial weight to providing logical explanations, assessments and 

understanding of the distributed information encoded within these networks. We use 

these visual representations to interpret the decision-making capabilities of deep 

neural networks, focusing on the goals and methods adopted to accomplish our task. 

In this chapter, we will first highlight the important findings of our approaches used 

to accomplish our objective, and secondly, we will conclude this work with some 

future perspectives and remarks. 

7.1  Summary  

 After a thorough review and analysis of the different methodologies that already exist 

in this field, we gave a concise amalgamated review of the literature on visualization 

techniques for deep neural networks in the computer vision domain. Building upon 

our review, we presented the idea of opening the "black-box" model in a virtual reality 

environment. The reason we chose this visualization strategy was that up till now, 

previous work on visualizing DNNs has been limited to 2D images, as it is easier to 

directly map the data that DNNs work on. Images, however, do not suffice to visualize 

the internal functions of a network. Thus, to fully capture the planned information, we 

moved towards 3D visualizations. Still, this would not create good visualizations due 
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to occlusion and scatter in the 3D formations. In order to cope with the complexity of 

3D visualization, we intended to build an interactive exploration and planned to use 

a virtual reality-based visualization. The intention was to enable the user to intuitively 

navigate through the immersive information space and gain a better visualization 

understanding. The user would be able to develop new visualization strategies, see 

the activation produced in the neurons, determine the features that make an image 

distinct from others, and last but not least, interpret the decision-making capabilities 

of these deep architectures. 

To the best of our knowledge, the work presented to integrate a Windows-based Caffe 

framework into the Unity gaming engine is the first of its kind. We developed 

Caffe2Unity.dll as a plugin for the gaming engine, allowing the user to utilize the 

functionality of a complete deep neural network and make the application platform-

independent.  

As a global interpretability, we performed a complete visualization and 

interpretability of individual layers, attributions of neurons and filters and activation 

maps in a virtual reality environment. We gave solutions for both real-time and non-

real-time situations depending upon the availability of computing resources, targeting 

both experts and novices in this field. 

We used our hybrid interpretability approach, which incorporates both a local and 

global interpretation method, to visualize the decisions of the deep neural network. 

We reframed the Shapley values approach in a VR environment and added an 

occlusion block to gain a real-time understanding of the network decisions. Varying 

the size of the block at any random location on the test images gives the VR user the 

freedom to understand the important regions within the images that the network 

deems relevant in its final prediction. 

Later, we extended our work to include a reverse interpretability approach, giving the 

idea of using layer-wise influence scores to determine which training data is 

responsible for the network's decisions, as opposed to the test images. To achieve our 

goal of interpretability, we used images with disturbances to see the variations in the 



Chapter 7                                                                                                                              Conclusions 
 

101 
 

network decisions. We observed an inverse relationship between the styled-textured 

influence scores and the accuracy of the correct predictions. By analyzing individual 

layers, we observed which insights were being learned at individual layers and 

identified the bias of the pre-trained model towards the varying texture of the images. 

7.2 Future perspective and remarks 

Based on our findings and the insights gained during this work, we suggest the 

following improvements and extensions for a future work: 

• In this current work, we used Caffe2Unity for the purpose of interpreting and 

visualizing the deep neural network. However, we plan to extend its usability for 

other computer vision-related tasks such as image retrieval, segmentation and 

detection to be performed within a virtual reality environment, making the task 

more application-oriented and scalable. 

•  The key idea behind integrating a deep network framework into a gaming engine 

was to reduce the extra burden of human effort when executing and interpreting 

action-oriented tasks for robots. Performing simulations repeatedly in virtual 

scenes can enable researchers in this field to improve their existing annotation 

results, avoid costly training time and incorporate more challenging tasks. 

• One very interesting connection exists between computer vision tasks and natural 

language processing, i.e., the ability to understand images in a human-

understandable language. We can improve our interpretation and understanding 

of machine learning models if the learned concepts are interpreted in a natural 

language instead of pixel representations. Incorporating such changes into our 

layer-wise influence approach can significantly improve the gist behind concept 

learning in deep neural networks. 
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