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Abstract

Computational Chemistry is an important field in chemistry which looks for solu-
tions for several questions such as reaction mechanisms, design of experiments and
understanding fundamental properties of molecules. For molecular systems, usually
quantum chemical methods are used. These methods give highly accurate results
albeit with high computational costs. They can be used to calculate several proper-
ties like energies, forces and also vibrational spectra. When it comes to vibrational
computations, there are two limiting factors; the level of electronic structure meth-
ods and the level of vibrational treatment. A highly accurate Potential Energy
Surface (PES) is needed to compute high quality vibrational frequencies. Machine
Learning Potentials (MLPs) which have become increasingly popular in chemistry
and material science can help in bridging the gap between accuracy and cost. Here,
High-Dimensional Neural Network Potentials (HDNNPs) are the MLPs of choice
used to construct an accurate Potential Energy Surface for use in vibrational spec-
troscopy.

The endeavour is to construct an HDNNP fitted to a computationally expensive Cou-
pled Cluster method starting from a small molecule which is Formic Acid Monomer
and then increase the system size to the Formic Acid Dimer. The constructed PES
will be used to calculate vibrational frequencies at harmonic and anharmonic levels
and also benchmark them against experimental and theoretical vibrational frequen-
cies. The HDNNP has further benefits of accurately representing the energies and
dynamics of the system at hand at low cost.

The work presents a methodology to construct a High-Dimensional Neural Network
Potential for use in vibrational spectroscopy. The PES is constructed systemati-
cally with proper analysis and validation steps to reach a predefined threshold of 10
cm−1 for harmonic frequencies. Additionally, the HDNNP for Formic Acid Dimer
is validated by computing anharmonic frequencies. Concurrently, it tests the capa-
bilities of a High-Dimensional Neural Network in representing the fine details of the
potential.
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Chapter 1

Introduction

In the past few decades, human life has become increasingly digital. Even though,
every new technological advancement has been welcomed with a sense of skepticism
and hesitation, technology and in particular computers have become more and more
prevalent in everyday life.

Computations have also become important in Chemistry, not only as a teaching
aid but also as an active field of research. Computational Chemistry is a union of
theoretical chemistry and computer programs to study chemical problems. Compu-
tational Chemistry is used to solve several types of chemical problems like molecular
geometry, energies and reaction mechanisms, dynamics of a system, spectroscopy,
drug design and physical properties in material chemistry.

Several tools are utilised in studying these problems. Molecular Mechanics con-
siders the system as a classical object. The energies and geometries are obtained
by considering the molecule as a ball and spring system. It utilises mathematical
methods like steepest descent to find optimal geometries and uses empirical data
to define energies as a function of bond distances, angles and dihedrals. Molecular
Mechanics is fast and enables understanding of fairly large systems.

Ab-initio methods solve the Schrödinger equation. The Schrödinger equation cannot
be solved exactly and ab-initio methods rely on approximations to solve for energy.
Ab-initio calculations are slow but very accurate. Because of high computational
costs, these cannot be used for large molecules.

Semi-empirical methods are based on Schrödinger equation but simplified exten-
sively by using experimental data for approximations. These are slower than Molec-
ular Mechanics but faster than wavefunction based methods.

Nowadays, one of the most widely used methods is Density Functional Theory
(DFT). These utilise a functional of electron density to calculate energies instead
of a wavefunction which is the case in ab-initio methods. These are faster than
wavefunction based methods but slower than semi-empirical methods.

Another method used in Computational Chemistry is Molecular Dynamics which
can be combined with any of the above described methods. It uses the time evo-
lution of a system using Newton’s laws of motion. The energies and forces can be
defined using a forcefield. When the energy is defined by quantum mechanics, it
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is called ab-initio molecular dynamics. Ab-initio molecular dynamics can simulate
chemical reactions.

There are several other tools or methods used in Computational Chemistry. One
of the topics gaining much interest in the recent times is the use of Machine Learn-
ing in chemistry. Machine Learning is a subset of artificial intelligence. Artificial
intelligence is when computers or machines are used to perceive and analyse and
use information without human interference. Artificial intelligence is used from web
search algorithms to self driving cars. One of the most active fields in artificial in-
telligence is Machine Learning.

Machine learning is developing methods that learn from data and then use what
is learned to interpolate or extrapolate the data. The machine learning algorithm is
able to predict behaviours in areas it is not trained using the underlying data. The
machine learning algorithm relies on three aspects; the data, the model of learning
and the output to be predicted [1]. In chemistry, machine learning potentials are
used widely for many applications such as chemical reactions, molecular design and
so on. [1–5].

To elucidate the use of MLPs in chemistry, one of the important concepts to in-
troduce is the Potential Energy Surfaces (PES). A potential energy surface is a
representation of the energy of a system as a function of the positions of nuclei
and electrons. The potential energy surface is often a multi dimensional function
of coordinates and it requires solving the Schrödinger equation for various atomic
arrangements and is a difficult problem to solve. In addressing problems which re-
quire an extensive set of atomic arrangements, the potential energy surface becomes
a difficult hurdle to overcome. This is the case of molecular dynamics where energies
and forces are calculated on the fly for the propagation of the system. This also
becomes a bottle neck for high level vibrational calculations. In these instances, it
becomes useful to have a representation of the potential energy surface in a func-
tional form. Analytical potentials are a solution to the problem but they involve
coming up with a functional relation between the geometry and the energies and is
only feasible for low dimensional molecules. Molecular Mechanics though useful in
doing computations with very large systems lack in accuracy.

A clear solution to the above described problem is constructing a Machine Learn-
ing Potential. An earliest example for the use of MLPs in constructing a Potential
Energy Surface is the work by Doren and et al. They used a feed forward Neural
Network to study the adsorption of CO on Ni(III) [6]. The Potential Energy Sur-
face of a system can be learned by an MLP algorithm by training it with a set of
reference data using an electronic structure method. This provides a way to get a
PES which has the accuracy of the quantum mechanical method used to construct
the reference data. Over the years, various studies have used MLPs for constructing
PESs. [7–12]

The first generation of MLPs was limited to small molecules [13,14]. This is mainly
due to the unavailability of descriptors which can handle large scale systems. This is
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addressed in the second generation of MLPs. This was solved by the introduction of
a descriptor known as Atom Centered Symmetry Functions by Behler [15]. The scal-
ing to large systems was also addressed when Behler and Parrinello [16] used element
specific atomic neural networks to output atomic energies which can be summed up
to give total energy of the system. The MLPs are known as High-Dimensional Neu-
ral Networks and will be used in this thesis. [7,14–20]. Other types of MLPs in the
second generation are Gaussian Approximation Potentials (GAPs) [21,22], Spectral
Neighbour Analysis Potentials (SNAPs) [23], Atomic Cluster Expansion (ACE) [24]
and so on. These all use descriptors which are local. These do not include long
range interactions such as electrostatics.

Including electrostatic interactions led to the third generation of MLPs. Here, the
short range and long range energies are computed separately. The long range en-
ergy is expressed using environment dependent charges. An example for this is
third generation HDNNPs [25,26].The fourth generation of MLPs include long range
electrostatic interactions depending on the atomic charges that relies on the whole
structure of the system [27, 28]. The fourth generation High-Dimensional Neural
Network Potential (4G-HDNNP) is an example of fourth generation MLPs which
considers atomic electro-negativities as a function of local atomic environment. [29].

The MLPs provide a very flexible form for the Potential Energy Surface. It is pos-
sible that because of this the MLP may not fully replicate the correct form of the
PES. Therefore, the selection of the training data and the validation step becomes
crucial in constructing a PES. Even though, the fit is really good it is possible to
have endured error compensation emphasizing the need to use the most useful vali-
dation technique. Usually RMSEs are used for validating the quality of a potential.
But, since the RMSEs are printed for structures which are present in the reference
data, it becomes important to propose another validation method to represent the
quality of the potentially especially in domains like vibrational spectroscopy where
the minute details of the PES become critical.

Here, it is proposed to use vibrational frequencies, both harmonic and anharmonic
frequencies, to examine the efficacy of a potential. The goal is to benchmark vi-
brational frequencies. At the same time, they also give a necessary validation to
the merit of the constructed potential. Neural Networks have been used to com-
pute vibrational frequencies for small systems. [30,31]. Several types of MLPs have
been used for this. [32–34] Larger systems have been handled by second generation
MLPs for large molecules, clusters and condensed systems. [26, 35–39] Though sec-
ond generation MLPs have been designed for very large systems, here HDNNPs are
used to test the limit of accuracy for moderate sized systems. The underlying data
used Coupled Cluster theory to provide energies and with the help of HDNNPs, the
intent is to produce high level vibrational frequencies based on a highly accurate
electronic structure method. This is highly desirable as the quality of computed
frequencies depend on both electronic structure method and vibrational treatments.
The union of both these desirable features has been a big challenge and a highly
accurate potential constructed by HDNNP could provide answer to the challenge.
This is possible as a very accurate potential should mimic the behaviour of under-
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lying level of theory. For this two systems are studied here: Formic Acid Monomer
and Formic Acid Dimer.

Formic Acid Monomer has been studied extensively using experiments because of its
importance in atmospheric chemistry [40] and interstellar chemistry [41–43]. Exper-
imental IR and Raman spectroscopy have been studied for Formic Acid Monomer
by gas phase and matrix isolation spectroscopy [44–53]. On the side of theory a few
studies have been done for the vibrational spectra of Formic Acid Monomer. VSCF
calculations have been performed on a Møller-Plesset PES to calculate overtones
of the molecule [49]. Vibrational Perturbation Theory has been used on high level
Coupled Cluster theory to calculate rotational and hyperfine parameters [54]. The
trans rotamer of Formic Acid Monomer is energetically more stable than the cis ro-
tamer and is the topic of study in the thesis. High level anharmonic calculations for
Formic Acid Monomer on an accurate potential energy surface has been interesting
for understanding its spectra as the fundamental O-H bend and the overtone of O-H
torsion are in resonance and the assignment of the peaks have been a topic of active
research for a long time [55,56].

A recent work [57] uses a PES constructed from CCSD(T)-F12c/cc-pVTZ-F12 en-
ergies as a reference. The PES is constructed using LASSO-based regression model.
Vibrational Configuration Interaction (VCI) vibrational frequencies are computed
on the PES and benchmarked against experimental data for both the trans con-
former for Formic Acid Monomer with an RMSD of 3 cm−1. VCI frequencies are
also calculated for the cis conformer. Another study constructed a PES based on
CCSD(T)-F12a/aug-cc-pVTZ for both the conformers for Multiconfiguration Time-
Dependent Hartree (MCTDH) vibrational calculations [58]. More recently a transfer
learned potential was constructed for Formic Acid Monomer based on MP2 and then
transfer learnt onto CCSD(T) with an aug-cc-pVTZ basis set [59]. Harmonic and
VPT2 frequencies were computed on this surface.

Formic Acid Dimer is a doubly hydrogen bonded planar molecule. It is a very
interesting and actively studied molecule for construction of PES for specifically
spectroscopic use. The double proton transfer especially makes it a very interesting
system for dynamic studies. The barrier for the double proton transfer [60] and the
ground-state tunnelling-splitting [60, 61]has been of interest specifically. There has
been a wealth of experimental studies for Formic Acid Dimer. Early works include
thermal gas phase spectroscopy [62, 63]. Recent work includes jet-cooled infra red
spectra and raman spectra in the finger print region of the monomer [64]. The inter-
molecular vibrational fundamental frequencies and many combination and overtone
bands of Formic Acid Dimer have been studied in the gas phase with remarkable ac-
curacy [65–67,67–74]. A review [75] gives a very good overview of the experimental
and theoretical work so far done in the case of vibrational spectroscopy of Formic
Acid Dimer. Though several PESs are available and constructed for spectroscopic
use in the case of Formic Acid Dimer, so far all these potentials are not able to
describe harmonic frequencies accurately, reporting a maximum deviation above 20
cm−1 with respect to the harmonic frequencies from the reference ab-initio method.
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One of the most widely used PES for vibrational studies is the Permutationally
Invariant Potential (PIP) constructed by Qu and Bowman [60] based on 13475 struc-
tures using CCSD(T)-F12a/haTZ level of theory. VCI calculations were performed
on this surface [76–78]. This PES was used in reduced dimensionality variational
calculation [79]. In this work, the potential was found to have very good concurrence
with experiments but two fundamental modes were majorly blue shifted and also
the PES has some artefacts such as PES holes and this necessitates the requirement
of another good quality PES for vibrational studies of Formic Acid Dimer. Another
full dimensional PES has been recently published for Formic Acid Dimer and Formic
Acid Monomer [59]. The underlying reference data is based on 26,000 MP2/aug-cc-
pVTZ structures which are transfer learned based on 866 CCSD(T)/aug-cc-pVTZ
energies to obtain a PES which is used to compute harmonic and anharmonic fre-
quencies. These two PESs will be compared to the HDNNP for Formic Acid Dimer.

In this work, the goal is benchmarking of vibrational frequencies for both Formic
Acid Monomer and Formic Acid Dimer as a validation step in assessing the quality
of the potential. It also helps to understand where the potential needs improvement
and to observe how it fares against experimental frequencies and the frequencies
from available potentials. The objective is to construct an accurate potential for
computing vibrational frequencies and such benchmarking the potential against the
other potentials is necessary to assess the accuracy and the benefits in using this
potential over others available.

The harmonic frequencies of Formic Acid Monomer is computed by constructing
an HDNNP based on CCSD(T)-F12c/cc-pVTZ-F12 energies. Initially, a dataset
obtained from David Tew [57] is used to construct an HDNNP which is analysed
and validated to see the quality of the potential. This is performed by defining vari-
ous validating parameters and systematically analysing and substantiating each step
along the way. The final HDNNP is constructed by improving the underlying data
through sampling critical regions of the PES. This HDNNP is then benchmarked
with reference Coupled Cluster harmonic frequencies and the frequencies obtained
from David Tew’s analytical potential.

In the case of Formic Acid Dimer, the harmonic frequencies are benchmarked with
the reference Coupled Cluster frequencies and harmonic frequencies obtained from
the potential (QB16) of Qu and Bowman [60]. The reference data was initially ob-
tained from Qu and Bowman used CCSD(T)-F12a/haTZ energies. The construction
of an HDNNP for Formic Acid Dimer goes through various iterations of construc-
tion of a potential. The final HDNNP serves to do various vibrational studies in
collaboration with Edit Matyus and Benjamin Schröder [80]. This gives opportu-
nity to benchmark VPT2 frequencies from the HDNNP with Coupled Cluster VPT2
frequencies and experimental frequencies. The reduced dimensionality variational
calculations are also done on the potential which leads to benchmarking with the
variational frequencies from QB16 and also with experiments. The various qualities
of the PES will be elucidated in this thesis.

In the case of both Formic Acid Monomer and Formic Acid Dimer, a procedure
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of developing a Machine Learning Potential for spectroscopic use will be underlined
and the further step of quality control and substantiation will be proposed. The aim
is to develop a sturdy full-dimensional potential of Coupled Cluster quality which
can provide an opportunity to perform high-level vibrational calculations which are
otherwise expensive and limited by the computational cost. The potential should
not only give good values of desired quantities but must be a global surface which
can be used in other applications such as Molecular Dynamics and representations
of important regions of the PES.

Since the HDNNP is constructed with the goal of vibrational benchmarking along
with RMSE and energetics, a goal of accuracy for the harmonic frequency is to be
defined which is to be within a deviation of 10 cm−1 from ab-initio harmonic fre-
quencies. In the case of Formic Acid Dimer, further to represent couplings properly,
benchmarking with VPT2 is considered an additional parameter of quality control.
And the final HDNNP serves to be used in high level computations such as varia-
tional methods.



Chapter 2

Theoretical Background

Computational chemistry uses concepts in quantum mechanics or classical mechanics
to find solutions to chemical problems. It also uses certain approximations to pre-
dict observables and properties for chemical systems of varying sizes and problems of
various kinds. When it comes to quantum chemistry, it mainly involves solving the
Time Independent Schrödinger Equation. When this is done using methods without
any experimental data, it is known as ab-initio methods. Computational Chemistry
has numerous applications. It can be used to find out reaction mechanisms, to cal-
culate dipole moments and polarizabilities, to produce vibrational, NMR and UV
spectra and so on.

The Time Dependent Schrödinger Equation is a linear partial differential equation
which describes the wavefunction of a system. It shows how the wavefunction of an
isolated system evolves over time.

Ĥψ(x, t) = iℏ
d

dt
ψ(t) (2.1)

Here, ψ is the wavefunction which encompasses all the properties of the system.
It basically gives the state of the system. ψ is a function of coordinates of the
system. If we know the state of a function at time t0, it is possible to calculate the
state of the system at a future time t.

Many applications in chemistry do not require the solution of the Time Depen-
dent Schrödinger Equation. Instead, the Time Independent Schrödinger Equation
is used.

Hψ = Eψ (2.2)

Here, the hamiltionian H is given by,

H =
−ℏ2

2m

d2

dq2
+ V (q) = T̂ + V̂ (2.3)

The Hamiltonian basically gives the energy contributions from Kinetic Energy T
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and Potential Energy V . This can be further broken down into the following for a
system with N electrons and M nuclei.

H = T̂e + T̂N + V̂eN + V̂ee + V̂NN

= −1

2

N∑
i

∇2
i −

1

2

M∑
A

1

MA

∇2
A −

N∑
i

M∑
A

ZA

riA
+

N∑
i

N∑
j>i

1

rij
+

M∑
A

M∑
B>A

ZAZB

rAB

(2.4)

Here, MA = mA

me
. Here, mA is the mass of A atom and me is the mass of elec-

tron. T̂e gives kinetic energy of electrons, T̂N gives nuclear kinetic energy. ˆVeN is the
nuclear-electron interaction energy, V̂ee is the electron-electron repulsion energy and
ˆVNN is the nuclear-nuclear repulsion energy contribution to the full potential energy

of the system. ZA gives the nuclear charge of an atom A. The Schrödinger equation
in Eq. 2.2 can be solved for only very few systems. Hence, a few approximations
have to be made to use it for solving chemical problems in molecular systems. One
such approximation is Born-Oppenheimer Approximation (BOA) [81,82].

The nuclei are much heavier than an electron. Therefore, their movement is much
slower compared to an electron. This means that the electrons adjusts their position
instantaneously when the nuclei move. Therefore, the movement of electrons and
nuclei can be assumed to be independent of each other. This helps to approximate
the wavefunction as follows.

ψmol(ri, rA) = ψel(ri, R)ψnuc(rA) (2.5)

This helps to describe the electronic motion separately while substituting in Eq.
2.2. Thus,

Ĥelψel(ri, R) = Eel(R)ψel(ri, R) (2.6)

Here, the electronic Hamiltonian is

Ĥel = T̂e + V̂eN + V̂ee + V̂NN (2.7)

Since the nuclei are considered stationary, the nuclear kinetic energy is assumed
to be 0. Also since the nuclei are fixed, R is treated as a parameter. Therefore,Eel

will depend on R parametrically. It is to be noted that ψnuc(rA) will define vibra-
tional and rotational motion of the molecule. Here, the also the V̂NN is considered
as a constant.
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The separation of a molecular Schrödinger equation into electronic and nuclear mo-
tion is known as the Born-Oppenheimer approximation. It is to be noted that the
BO approximation can breakdown when the separation between electronic states is
small. Basically, when there is a situation where the nuclear and electronic motion
is coupled, the BO approximation does not hold true.

Also, the energy of a system with respect to the coordinates of the nuclei is called
Potential Energy Surface(PES). The minima in this surface correspond to the equi-
librium structures. The saddle points give rise to Transition State enabling us to
map the profile of a reaction or other processes.

The variational principle [83] is another important concept used in quantum me-
chanics. Since an exact wavefunction for a system is impossible to construct, the
energy obtained using an approximate wavefunction is always greater than the exact
energy of the system.

With the help of these concepts, several methods have been used to solve quantum
chemical problems. The earliest attempt was using Hartree-Fock method which
uses the Slater-determinant to build a wavefunction from molecular orbitals. In
Hartree-Fock method, it is also assumed that the electron moves in a mean field
of all the other electrons. The difference between the Hartree-Fock energy and the
exact energy of a system is called correlation energy. A number of methods called
post-Hartree-Fock methods are devised to recover electron correlation which reduces
deviation from experimental results.
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2.1 Electronic Structure Methods

One of the important reasons to use quantum mechanical methods in chemistry is to
determine the electronic structure of a system. For a given geometry, the wavefunc-
tion can be optimised and a probability distribution of the electrons can be obtained.
Even the gradient can be determined according to the position of the nuclei in order
to obtain the equilibrium structure. For this, often an electronic structure method
needs to be chosen, eg: Hartree-Fock. And also a basis set need to be determined.
Using these two, the energies or geometry of a system can be computed. There will
be further discussions on basis sets. There are various electronic structure methods
built on top of Hartree-Fock which correct for the electron correlation. Examples are
Møller-Plesset Perturbation Theory (MP), Configuration Interaction (CI), Coupled
Cluster (CC) etc. These are wavefunction based methods. Density Functional The-
ory (DFT) is also a quantum mechanical method to determine electronic structure.
In DFT unlike, wavefunction based methods, the energies are dependent on elec-
tron density rather than the wavefunction. Another class of methods to obtain the
electronic structure of a system is the semi-empirical methods. Often, Hartree-Fock
and post Hartree-Fock methods are very expensive computationally. For example,
the most costly part of Hartree-Fock algorithm is the two electron integrals. Semi-
empirical methods approximate that using empirical data. As such they are built
on Hartree-Fock but with serious approximations that reduces the computational
cost considerably.

There are a few sources of error in ab-initio electronic structure calculations. One is
from the incompleteness of the basis set which will be explained in a later section.
Another is from incorrect treatment of electron correlation. All the post-Hartree-
Fock methods are the attempt at recovering electron correlation energy. The cor-
relation energy is defined as the difference between the exact energy of the system
and the Hartree-Fock energy.

Ecorr = Eexact − EHF (2.8)

There are two types of correlations, dynamic correlation and static correlation. Dy-
namic correlation arise from the instantaneous interaction of electrons due to their
movement. Static correlation arises from the fact that in some cases the single-
Slater-determinant HF wavefunction is a poor description of the electronic state.
The wavefunction has significant contribution from multiple electronic states. To
deal with this, multi-reference methods need to be used.

There are two factors that are desirable in a method other than being variational.
One is size consistency. A method is considered to be size consistent if the dissoci-
ated parts of a molecule at infinite distance gives the same computed energy as the
sum of computed energy of each of the parts. Another important characteristic is
size extensivity. A method is considered size extensive if the computed energy of n
non-interacting identical systems is n times the energy of one such system.
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In this thesis, many calculations were performed using Coupled Cluster methods.
Since Coupled Cluster is built on Hartree-Fock, the next section goes into an expla-
nation of the Hartree-Fock method.

2.1.1 Hartree-Fock

Hartree-Fock (HF) [84–88] is an approximation method to determine wavefunction
and energy of a many electron system. It finds an approximate solution to the
Schrödinger equation.

A simple form of the wavefunction could be a product of molecular orbitals. This
is called a Hartree Product.

ψHP (r1, r2...rN) = ϕ(r1)ϕ(r2)..ϕ(rN) (2.9)

Since, this does not fulfill the Pauli’s principle, another method to construct the
wavefunction using molecular orbitals had to be conceived. This should ensure that
the wavefunction is anti-symmetric with respect to the interchange of any spin-
spatial coordinate. This led to the wavefunction being represented as a Slater-
determinant.

ψHF (r1, r2...rN) =
1√
N !

∣∣∣∣∣∣∣∣
ψ1(r1) ψ2(r1) · · · · · · ψN(r1)
ψ1(r2) ψ2(r2) · · · · · · ψN(r2)
· · · · · · · · · · · · · · ·

ψ1(rN) ψ2(rN) · · · · · · ψN(rN)

∣∣∣∣∣∣∣∣ (2.10)

Each term in the determinant is a spin orbital which means it has both spin and
spatial components.

The expression for the Hartree-Fock energy comes out to be,

EHF = ⟨ψHF | Ĥ |ψHF ⟩ (2.11)

This can be written in terms of one electron and two electron integrals,

EHF =
∑
i

⟨i|h |i⟩+ 1

2

∑
ij

[⟨ij| |ij⟩ − ⟨ij| |ji⟩] (2.12)

The equation is solved for energy iteratively until certain predefined conditions are
met. The Hartree-Fock method also utilises the variational theorem to compute
energy. With a complete basis set, the best possible solution for the Hartree-Fock
energy can be obtained. This is called the Hartree-Fock limit. Open-shell systems
can also be handled using Unrestricted Hartree-Fock and Restricted Open shell
Hartree-Fock methods. But, Hartree-Fock may not be used in systems where there
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are multiple significant electronic configurations contributing to the wavefunction.

2.1.2 Coupled Cluster

Coupled Cluster [89,90] is a post-Hartree-Fock method used for many electron sys-
tems. Coupled Cluster is one of the most widely used post-Hartree-Fock method.
Coupled Cluster is non-variational, size extensive and size consistent. It basically
uses a cluster operator T̂ on a Slater-determinant |ϕ0⟩. The cluster operator T̂ is an
excitation operator. The wavefunction from Coupled Cluster is written as :

|ψ⟩ = eT̂ |ϕ0⟩ (2.13)

Here, |ϕ0⟩ is the reference Hartree-Fock wavefunction in the form of a Slater-determinant
and cluster operator T̂ for an N electron system is defined as:

T̂ = T̂1 + T̂2 + T̂3 + ...+ T̂N (2.14)

Here, T̂1 indicates single excitations, T̂2 indicates double excitations and so on.
Here these excitation operators are defined.

T̂1ϕ0 =
∑
i,a

tai ϕ
a
i (2.15)

T̂2ϕ0 =
∑
i<j
a<b

tabij ϕ
ab
ij (2.16)

Here, ϕa
i is the singly excited Slater-determinant with occupied spin-orbital ui re-

placed by virtual spin-orbital ua. T̂1 operator converts Slater-determinant ϕ0 into
a linear combination of all possible single excited Slater-determinants. ϕab

ij is the
doubly excited Slater-determinant with occupied spin-orbital ui and uj replaced by
virtual spin-orbitals ua and ub respectively. The rest of the operators are also defined
accordingly till T̂N because N is the total number of electrons.

Now, eT̂ can be expanded using Taylor expansion.

eT̂ = 1 + T̂ +
T̂ 2

2!
+
T̂ 3

3!
+ ... (2.17)

In order to use Coupled Cluster for calculations, an approximation is made. Only
some parts of the cluster operator are included. For example when only the T̂2
operator is included, i.e, T̂ = T̂2 it is called CCD method (Coupled Cluster Dou-
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bles). When T̂ = T̂1+ T̂2, it is called CCSD (Coupled Cluster Singles and Doubles).
CCSDT is Coupled Cluster Singles, Doubles and Triples with T̂ = T̂1 + T̂2 + T̂3.
CCSD(T) is the most popular Coupled Cluster method which is Coupled Cluster
Singles, Doubles and perturbative Triples. Here, the triple excitations are included
as perturbation.

The Schrödinger equation in terms of Coupled Cluster wavefunction becomes:

ĤeT̂ |ϕ0⟩ = EeT̂ |ϕ0⟩ (2.18)

This can be solved as

ECC = ⟨ϕ0| ĤeT̂ |ϕ0⟩ (2.19)

2.2 Explicitly Correlated Methods

The motivation behind the use of explicitly correlated methods is to solve the prob-
lem of slow convergence of the wavefunction. Electron correlation is dependent on
the distance r12 between two electrons, 1 and 2. Therefore, including r12 directly
in the definition of the wavefunction can describe the correlation energy more accu-
rately. These methods which include the distance between two electrons explicitly
in defining the wavefunction is called explicitly correlated methods.

There are various types of explicitly correlated methods [91–94]. CCSD(T)-F12
methods are widely used. In general F12 methods have an additional F12 doubles
term on top of the double excitations term where a function of r12 (f12) is included
in the two electron integrals.

2.3 Resolution of Identity (RI) Approximation

The four orbital Coulumb integral term in a wavefunction is computationally expen-
sive. The RI approximation [95, 96] involves representing pair products of atomic
basis functions as a linear combination of an auxiliary basis functions. This helps to
greatly simplify the four orbital integrals into three centre and two centre integrals.
The RI approximation is also known as density fitting.

2.4 Basis Sets

Basis sets are sets of functions used to construct a wavefunction in quantum chem-
istry. Several types of basis sets can be used for this purpose. Plane wave basis set
is often used in solid state chemistry and basis sets based on atomic orbitals is used
for molecular systems.
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A complete set of basis functions, i.e, an infinite number of basis functions, is re-
quired to represent the wavefunction exactly. With this and an exact representation
of correlation energy would be required to find the exact energy of a system. An
infinite basis set is not possible and a truncation is required to realistically use them.
This gives rise to a basis-set truncation error. Therefore, choosing a small enough
but accurate enough basis set for a given level of theory is one of the main challenges
in any computational chemistry problem.

There are various types of basis sets generally used for molecular systems. Lin-
ear Combination of Atomic Orbitals (LCAO) are used to construct wavefunctions.
One type is the Slater Type Orbitals (STO) which has an orbital exponent of the
type −eζr. The calculation of two-electron integrals become computationally costly
with STOs. And as a result a different kind of basis set is most commonly used.
These are Gaussian Type Orbitals (GTOs).

GTOs were very helpful in reducing the computational cost of quantum chemical
calculations as they handle the integrals efficiently. The exponents are of the form,
−eζr2 . Product of two Gaussians give another Gaussian thus greatly simplifying
two-electron integrals at multiple atomic centres. GTOs nevertheless does not rep-
resent orbitals at nuclei properly and as a result a larger basis set is often required to
produce accurate results. Multiple GTOs are brought together to form contracted
Gaussian functions whose linear combinations is used to represent orbitals.

A minimal basis set which is the simplest basis set uses a single Gaussian func-
tion to represent one spatial orbital. A split-valence basis set [97] was invented to
improve accuracy. Here, the valence orbital is represented by multiple Gaussian
functions and the core orbital is represented by a single Gaussian function. To
account for distortions caused by nearby atoms, polarization functions [98] can be
added to the basis set. Correlation consistent basis sets [99] are designed to converge
systematically to Complete Basis Set (CBS) limit using extrapolation techniques.
These are the most widely used basis sets. They include large polarization functions
added. The basis sets used in this work will be discussed in the Computational
Details section.
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2.5 High-Dimensional Neural Networks

High-Dimensional Neural Network Potentials (HDNNP) were conceptualised by
Behler and Parrinello [16, 19, 100]. These Neural Networks overcome the limita-
tions of the previous Neural Network Potentials. First of all, the previous NNPs
were limited to small scale systems. Secondly, they were not transferable with re-
spect to system size. They also failed at being invariant with respect to rotation or
translation of the system and the permutation of same atom types. All these have
been addressed in the formulation of High-Dimensional Neural Network Potentials.

Here, in HDNNPs, for each atom there is an atomic Neural Network which out-
puts an energy Ei. Summing up the atomic energies give the energy of the system.
It is to be noted that the atomic contributions to total energy is not an observable
and hence not chemically relevant.

Etotal =
N∑
i=1

Ei (2.20)

The atomic Neural Networks are specific to the element. The atomic energy Ei

strictly depends on the local environment of that particular atom which is defined
by a cutoff radius Rc. Rc is chosen such that all the relevant atomic interactions are
included.
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Figure 2.1: An example feed forward Neural Network which forms an atomic Neural
Network in High-Dimensional Neural Networks. There are two hidden
layers with 3 nodes each. The input is given as a symmetry function
G(i). The neurons are connected to each other by weight parameters
aklij . The bias nodes connects each node with a bias parameter bji
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Figure 2.2: A High-Dimensional Neural Network comprising of several Atomic Neu-
ral Networks. The input is given as a vector of symmetry function Gi

constructed from Cartesian coordinates ri. Each Atomic Neural Network
gives an atomic energy Ei which when summed up gives the full energy
of the system E.

The general structure of a High-Dimensional Neural Network is as follows. For
the feed-forward Neural Network for a particular atom, the input is a vector of sym-
metry function Gi. There are a number of layers with n number of nodes per layer.
The layers in between the input and output layer are called hidden layers. Each
node in a layer is connected to the previous one using a weight parameter which is
what is optimised in the training process of the algorithm.

We can notate that a weight parameter aklij connects input layer k and l with the
respective nodes i and j. Excepting the input nodes, all the nodes of a layer j are
connected to the bias node by a bias weight bji . The value of a node is calculated as

yji = gji (b
j
i +

∑
k

aj−1,j
ki · yj−1

k ) (2.21)

gji is the activating function. Therefore, the value a neuron is calculated by mul-
tiplying the previous layer values of nodes with the weight parameter and adding
them up along with the current bias weight and applying a function on them. The
activation function is a non linear function which prevents the output energy value
from being a linear combination of atomic coordinates. In HDNNP, the hyperbolic
tangent is used as the activation function except for the output layer.
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g(x) = tanh(x) =
ex − e−x

ex + e−x
(2.22)

For the output layer, g(x) = x is used as the activation function which basically
gives the sum of atomic energies while calculating the value of the output node.

If we imagine a feed forward Neural Network with two hidden layers with three
nodes each, the atomic energy, i.e, the output of a single feed forward Neural Net-
work is given as

E = g31(b
3
1 +

3∑
k=1

a23k1 · g2k(b2k +
3∑

l=1

a12lk · g1l (b1l +
3∑

i=1

a01i1 ·Gi)) (2.23)

2.5.1 Atom Centered Symmetry Functions

The input of each atomic Neural Network by a vector of symmetry functions which
provide a fingerprint of the atomic environment. They are constructed out of the
Cartesian coordinates of the atoms in the local environment.They ensure that the
High-Dimensional Neural Networks are invariant with respect to rotation and trans-
lation of the system and permutation of same elements. These are called Atom
Centered Symmetry Functions (ACSFs) [17]. The ACSFs depend on a cutoff radius
Rc. Rc is used to define a cutoff function fc. Only atomic environments up to Rc

are contributing to the atomic energy Ei.

fc(rij) =

{
0.5[cos(πrij

Rc
) + 1], when rij ≤ Rc

0, when rij > Rc

(2.24)

Here, rij is the distance between atoms i and j. There are two types of symme-
try functions, radial symmetry functions and angular symmetry functions. Radial
symmetry functions encompass two body terms and angular symmetry functions
encompass three body terms.

The radial symmetry function is defined as

Grad
i =

∑
j

e−η(rij−rshift)
2 · fc(rij) (2.25)

Here, η gives the width of the Gaussian function and rshift determines the centre
of the Gaussian function. The fact that each symmetry function is multiplied by
the cutoff function fc ensures that the total symmetry function decays to zero at the
cutoff radius. It also ensures that the double derivatives on the symmetry functions
don’t suddenly drop to zero at the cutoff distance and is hence differentiable.

The angular symmetry functions determine the orientation of atoms around a central
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Figure 2.3: Gaussian part of radial symmetry function showing the shape of the
function with varying η and rshift. Here η is in Bohr−2 and rshift is in
Bohr
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Figure 2.4: Cosine part of angular symmetry function showing the shape of the func-
tion with varying ζ and λ
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atom i. The angular symmetry function is defined as

Gang
i = 21−ζ

∑
j

∑
k

[1+λ · cos(θijk)]ζ · e−η(r2ij+r2jk+r2ik) · fc(rij) · fc(rjk) · fc(rik) (2.26)

Here, ζ ∈ {1, 2, 4, 16}. It indicates the width of the cosine part. It performs similar
to η for radial symmetry functions. Parameter λ has values either -1 or +1.

The symmetry functions are unchanged during training and their values are de-
termined prior to the training process. The whole training process is optimising
weight parameters such that an optimal sets of weights is obtained that associates
the symmetry functions and final energy output.

2.5.2 Training the High-Dimensional Neural Network

Training the High-Dimensional Neural Network Potentials indicates optimisation
of weight parameters and bias parameters to get output values very close to the
reference values. Here, the reference values mean the energy and force values of a
given geometry from a chosen theoretical method, for example ab-initio methods.
The optimisation of the parameters which could also be called fitting involves it-
eratively optimising the weights and biases such that the geometry and its energy
are matched well enough. In the case of High-Dimensional Neural Networks, all the
atomic Neural Networks are trained at the same time. The optimisation involves
the minimisation of an error function:

ferror =
1

Ntrain

Ntrain∑
i=1

(EHDNNP
i − Eref

i )2 (2.27)

The equation would be different if forces are also trained. It is to be noted that
not all structures in the reference data go into training. A small portion of struc-
tures are chosen as testing data, usually 10%.

The minimisation is performed using the adaptive, global, extended Kalman fil-
ter [101]. The obtained HDNNP needs to be evaluated to see its quality. In case
of the HDNNP not produce the desired output, the reference data can be extended
which is referred to as active learning. The first validation step in assessing the qual-
ity of the HDNNP is root mean squared error (RMSE) which is computed both for
energies and forces. It is defined as the average of root of sum of squared differences
between HDNNP energies and reference method energies. RMSE is also defined for
forces but here the the difference between each force component of a given structure
is evaluated which is then squared and summed over all the force components of all
the training structures and later taken mean root of.
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RMSE(Etrain) =

√√√√ 1

Ntrain

Ntrain∑
i=1

(EHDNNP
i − Eref

i )2 (2.28)

RMSE(f train) =

√√√√ 1

Ntraincomp

Ntraincomp∑
i=1

(fHDNNP
i − f ref

i )2 (2.29)

There can be an issue of overfitting while using a Neural Network Potential. It
is important to detect overfitting. The RMSE of training data is not a good indica-
tor of the quality of the potential. As what is wanted is as low an RMSE as possible,
it could lead to a situation where the training data is very well learned by the Neural
Network but it is unable to predict a structure which is not in the training dataset.
This is why the above mentioned testing data becomes important. The randomly
selected testing data and its RMSE helps to avoid the pitfalls of overfitting. If the
RMSE of the testing data (calculated in the same manner as testing), decreases and
then later increases with a number of iterations (epochs), it is indicative of overfit-
ting. Then, it is possible to choose the potential such that both the training and
testing RMSEs are reasonable and can produce a potential which predicts energies
or forces outside of the training data.
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2.6 Molecular Dynamics

Molecular dynamics studies how a molecule or atom evolves with time. A given
forcefield determines the interatomic potential. The trajectory of the dynamic evo-
lution is governed by Newton’s equations of motion.

Fiq = miaiq (2.30)

Fiq is obtained by multiplying mass of an atom mi with the acceleration along q
coordinate, aiq. The force component can be obtained by negative derivative of the
energy and as such depends on the interatomic potential. It is impossible to solve
the problem analytically when the system size is large and Molecular Dynamics uses
numerical methods to propagate the system through time.

The positions and accelerations at time t is used to calculate new positions af-
ter a time step dt. Various integrator methods are used to propagate the system
through finite time steps. One such example is the Velocity Verlet algorithm.

qi(t+ dt) = qi(t) + vi(t)dt+
fi(t)

2mi

dt2 (2.31)

vi(t+ dt) = vi(t) +
fi(t) + fi(t+ dt)

2mi

dt (2.32)

Here, vi is the velocity of an atom and qi is its position. Once the new position
qt+dt is determined, the forces at the position are calculated using the negative gra-
dient of the potential. And then the velocities are updated as well. Velocity Verlet
has numerous advantages and is hence widely used. It is numerically stable and also
time reversible without being more computationally costly compared to some other
methods.
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2.7 Theoretical Vibrational Spectroscopy

2.7.1 Harmonic Frequencies

Vibrational Spectra of polyatomic molecules can be described in terms of harmonic
oscillator approximation. For harmonic oscillator description, normal coordinates
are to be implemented.

For a molecule having N atoms, 3N coordinates are required to define its position.
Removing the translational degrees of freedom and rotational degrees of freedom, a
non linear molecule would have 3N − 6 vibrational degrees of freedom. It is 3N − 5
for a linear molecule. Each of the vibrational degrees of freedom is associated with
a frequency and the vibration is called the normal mode of vibration. The potential
energy of a molecule in principle is a function of the Nvib vibrational coordinates
and can be expanded using Taylor series.

V (q1, q2..qNvib
) = V (0, 0, ..., 0) +

1

2

Nvib∑
i=1

Nvib∑
j=1

∂2V

∂qi∂qj
qiqj + · · ·

=
1

2

Nvib∑
i=1

Nvib∑
j=1

fijqiqj + · · ·

(2.33)

Here, V (0, 0, ..., 0) is the potential energy at equilibrium. The first order deriva-
tive at equilibrium is 0 and hence that term is not included in the equation. fij is
the generalised force constants. For the harmonic oscillator approximation, only up
to the second derivative of the equation is considered which simplifies the equation
considerably. Yet, the cross terms make finding the solution to the Schrödinger
equation very difficult. Therefore, a new coordinate is introduced known as the
normal coordinate Qi which are basically mass weighted displacements. The normal
coordinate is often scaled by a factor to make it dimensionless for simpler expression
of energy which is known as dimensionless normal coordinate. Each normal coordi-
nate corresponds to a normal mode of vibration. This enables to write the potential
energy as :

V (Q1, Q2..QNvib
) =

1

2

Nvib∑
j=1

FjQ
2
j (2.34)

The vibrational Hamiltonian including both kinetic energy and potential energy
terms turn out to be:

Ĥvib =

Nvib∑
j=1

(
− ℏ2

2µ

d2

dQ2
j

+
1

2
FjQ

2
j

)
=

Nvib∑
j

Ĥvib,j (2.35)

The vibrational wavefunction can be written as:
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ψvib(Q1, Q2.., QNvib
) = ψvib,1(Q1)ψvib,2(Q2) · · ·ψvib,Nvib

(QNvib
) (2.36)

Solving the Schrödinger equation, the expressions of energy levels and wavefunc-
tion can be determined.

En = ℏω(n+
1

2
) (2.37)

Here, n = 0, 1, · · · which indicate the vibrational level with n = 0 being ground
level. At n = 0 for all the modes, the system will still have some energy. This is
called zero-point energy. And ω is the vibrational harmonic frequency of a particular
mode. The wavefunction for a given vibrational level is:

ψn(Q) =
(mω
πℏ

)1/4 1√
2nn!

Hne
−mωQ2

2ℏ

(√
mω

ℏ
Q

)
(2.38)

Here, Hn is the hermite polynomial. Harmonic Oscillator model has a number of
inadequacies. It cannot model bond dissociations. It also cannot describe overtones
or hotbands and as such anharmonicity should be included to get accurate depiction
of vibrational spectra.

2.7.2 Second-Order Vibrational Perturbation Theory

Second-order Vibrational Perturbation Theory (VPT2) [102, 103] is a widely used
method to include anharmonicity in molecular vibrations. Anharmonicity is how
molecular vibrations differ from harmonic oscillator model. In VPT2, the anhar-
monicity is added as a small perturbation (Ĥanh) to a Hamiltonian whose eigen-
functions are known. Here, the zeroth-order Hamiltonian is the harmonic oscillator
Hamiltonian (HHO). Therefore,

ĤV PT2 = ĤHO + Ĥanh (2.39)

The anharmonic potential is a Taylor series expansion of electronic energy in the
normal coordinate. The terms with the third and fourth derivative of the electronic
energy is considered. The force constants associated with these derivatives are called
as cubic force constants and quartic force constants.

Ĥanh =
1

3!

∑
ijk

FijkQiQjQk +
1

4!

∑
ijkl

FijklQiQjQkQl (2.40)

Solving this, the vibrational energy for a given vibrational level n is as follows:
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En = E0 +
∑
i

ωi

(
ni +

1

2

)
+
∑
i

∑
j≥i

xij

(
ni +

1

2

)(
nj +

1

2

)
(2.41)

ωi is the harmonic frequency. xij are anharmonic constants.

2.7.3 Variational Vibrational Computation

Variational calculations are more expensive than other anharmonic treatments. It
involves various steps including selection of a coordinate type like normal or curvi-
linear coordinates. A potential energy surface is also required. The Kinetic energy
operator is defined and the wavefunction is expanded as a linear combination of
basis functions. The nuclear Schrödinger equation is solved variationally. Though
limited by the quality of the potential energy surface, this method can give the best
possible solution to the problem at hand. It is very expensive and limited to very
small molecules.
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Computational Details

3.1 Molpro

The reference data is constructed using Molpro 2015 for Formic Acid Monomer and
Molpro 2019 for Formic Acid Dimer [104]. The various versions of Molpro were used
to be consistent while extending the dataset.

The explicitly correlated CCSD(T)-F12c [105] with a cc-pVTZ-F12 basis set [106]
was used for the reference calculations for Formic Acid Monomer. The Hessian was
constructed numerically using default values. The default for energy convergence
is ENERGY=10−6 and for the gradient, GRADIENT=3.10−4. The default for the
neglect of two electron integrals is TWOINT=10−14. The default Hessian step size
is 0.01 Bohr in Molpro.

The calculations for Formic Acid Dimer was performed using explicitly correlated
CCSD(T)-F12a [107–109] using aug-cc-pVTZ [110] basis set for Carbon and Oxy-
gen and cc-pVTZ [111] basis set for Hydrogen. This basis set will be addressed
as haTZ. For the resolution of identity approximation, a VTZ/JKFIT [112] basis
has been used. There are two settings used in the benchmarking for Formic Acid
dimer, a default setting and a tight setting. The tight setting has the following con-
ditions: a tighter threshold for two electron integrals (TWOINT=10−16) and energy
(ENERGY=10−10). It also used tighter convergence criteria for geometry optimi-
sation: GRADIENT=10−6 and STEP=10−6. It also uses a four point numerical
gradient with a step size of 0.005 Bohr for optimization and numerical Hessian.

3.2 RuNNer

The HDNNPs were constructed using the in-house software RuNNer [19, 20]. The
ACSFs [17] are listed in the appendix. For the training 90% of reference data goes
into the training set and the rest into the testing set. These data are selected
randomly based on a random seed initially specified. The optimisation utilises a
global adaptive extended Kalman filter [101]. The hidden layers utilises a hyper-
bolic tangent function as the activation function whereas the output layer uses a
linear activation function. For both Formic Acid Monomer and Formic Acid Dimer,
the energies alone are trained based on reference theoretical method.

The HDNNP for Formic Acid Monomer has a cutoff radius of 12 Bohr. Every
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HDNNP here has two hidden layers with a maximum of 10 nodes per layer. The
HDNNP for Formic Acid Dimer has a cutoff radius of up to 15 Bohr which includes
all the interatomic distances in the dataset. The number of nodes per layer is up to
18 and there are two hidden layers for all the HDNNPs discussed here.

3.3 Construction of the HDNNP

Construction of the HDNNP is performed using the flowchart given in Fig. 3.1. This
is called active learning [113–117]. The motivation behind active learning is that
randomly adding data points to improve a potential leads to waste of computational
resources and redundant data points in the dataset. When the computation of each
data point is expensive, it is desirable to avoid the redundancy. It is important to
add the most relevant data points to get a good potential.

Reference calculations  

Final HDNNP

Prediction

Training the HDNNP

Improve reference data

Figure 3.1: The figure explains the basic outline of the construction of the HDNNP.
There is an initial reference data based on DFT or wavefunction based
methods. The energies and forces in the reference data is used to train
the HDNNP. The prediction or validation step showcases the quality of
the potential for the given system. If the potential which is assessed by
numerous methods such as RMSE is of sufficient quality, it is selected.
If not, poorly described regions of the potential need to improved and
geometries in these regions are probed and added to the reference data.
Then, the same process repeats until a good quality HDNNP is obtained.

Here, in the case of Formic Acid Monomer and Formic Acid Dimer, the focus is
on obtaining a global potential energy surface and accurate vibrational frequencies.
For this active learning is employed by probing relevant areas of the potential energy
surface by two best HDNNPs of a particular iteration. If the two HDNNPs differ
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in energy more than a predefined threshold for a given structure in the probed
area, the structure is added to the reference data. The structures are probed using
various sampling methods through various iterations. After this, the new HDNNP
is validated using various parameters like RMSEs or harmonic frequencies. If the
HDNNP does not meet the standard, the cycle is repeated.

3.4 Finite Difference

The harmonic frequencies from the HDNNPs were performed at the equilibrium
structure of the corresponding potential. Finite difference was used to construct
the Hessian and obtaining the harmonic frequencies. Hessian matrix is a 3NX3N
matrix where each element is the second derivative of energy. N is the number of
atoms in a system. The Hessian matrix is based on Cartesian coordinates. Each
element of the Hessian matrix is as follows:

Hi,j =
∂2E

∂xi∂xj
(3.1)

In places where analytical gradients and double derivatives are not available, fi-
nite difference is used. Here, for the calculation of harmonic frequencies, the central
differences method is used. Each atom is displaced by a small displacement ∆xj
along an atomic coordinate xi, then each element of the Hessian is:

Hi,j =
( ∂E
∂xi

)0.5∆xj
− ∂E

∂xi
)0.5 −∆xj

∆xj
(3.2)

Diagonalisation of the mass weighted Hessian provides eigen values from which the
frequencies can be calculated.

3.5 Molecular Dynamics Simulations

Molecular Dynamics (MD) Simulations were performed for the validation step in
active learning with intermediate HDNNPs using n2p2 [118] and LAMMPS [119].
For Formic Acid Dimer, the MD simulations were performed at 100K and 300K.
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Results and Discussion

4.1 Formic Acid Monomer

Formic Acid Monomer is the initial system chosen for Neural Network potential
construction for the theoretical calculation of vibrational frequencies. Being a sim-
ple system with a few published potentials [57], it is an interesting benchmark as
it is studied extensively in theory and experiments. Not only that, it is a good
system to build up to Formic Acid Dimer. HDNNPs can be constructed for any
system and hence offers and advantage over potentials constructed with a partic-
ular system in mind. Hence, it would be interesting to see the capabilities of a
High-Dimensional Neural Network in describing vibrational frequencies and also
benchmark them against available potentials.

Figure 4.1: Schematics of trans Formic Acid Monomer

The initial dataset was obtained from David Tew [57]. It contains 23985 struc-
tures using which David Tew constructed an analytical potential with extremely
accurate vibrational harmonic frequencies. It is interesting to see how the HDNNP
would fare against such a potential. A comparison between the HDNNP and the
Tew Potential will be shown in a later section. Also for this system, the goal is to
construct a potential with a maximum of 10 cm−1 deviation for each vibrational
mode for harmonic frequencies.
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The reference data is constructed using CCSD(T)-F12c/cc-pVTZ-F12. For con-
structing the HDNNP, 10% of the structures were used for testing purposes and the
rest of the structures are employed for training. Two hidden layers are used for the
architecture of the HDNNP and a cutoff radius of 12.0 Bohr is used which covers all
the interatomic distances. The reference data does not contain forces and as such
only energy training is used to construct the potential.

4.1.1 Initial HDNNP

The initial HDNNP was constructed with the reference data used by David Tew for
his potential [57]. Of course, it is not necessary that the same data would work for
the Neural Network. However, it is important to get a feeling on the performance
of the first HDNNP, focusing on its shortcomings and their solutions.

The first HDNNP had 7 nodes per layer. It has 21577 structures in the train-
ing set and 2408 structures in the testing set. The RMSEs are given in Table 4.1.
The obtained RMSE values are around 1 meV/atom which is usually expected for
a good fit. The training RMSE is 1.534 meV/atom and the testing RMSE is 1.821
meV/atom. We can also observe that both the RMSEs are of similar magnitude
which is a sign that there is no overfitting. Still, it is better to have a lower RMSE
value because then it is evident that the HDNNP value for energies are much closer
to the reference energy values.

Table 4.1: Energy root mean squared errors (RMSE) of the training and test sets for
the HDNNP trained using initial dataset for the full energy range used
in training.

RMSE [meV/atom] RMSE [cm−1]
PES structures training testing training testing

FAM-HDNNP1 23985 1.534 1.821 123.7 146.9

Fig. 4.2 shows the difference in energy between Coupled Cluster and FAM-
HDNNP1 for each structure in the dataset. The training energies are in blue and the

Table 4.2: Comparison of the harmonic frequencies ωi (in cm−1) for FAM-HDNNP1
with frequencies from CCSD(T)-F12c/cc-pVTZ-F12 level of theory.

Mode FAM-HDNNP1 CCSD(T)-F12c/cc-pVTZ-F12
1 (ω7) 641.6 632.50
2 (ω9) 683.9 672.68
3 (ω8) 1081.6 1056.78
4 (ω6) 1146.4 1140.07
5 (ω5) 1329.5 1318.39
6 (ω4) 1422.7 1409.98
7 (ω3) 1812.8 1816.76
8 (ω2) 3102.2 3092.82
9 (ω1) 3780.7 3765.31
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Figure 4.2: Energy difference ∆E = ECC − EFAM-HDNNP1 as a function of the
reference energy ECC . The root-mean-squared errors (RMSE) for the
HDNNP are provided in Table 4.1

Figure 4.3: The energies according to Coupled Cluster and FAM-HDNNP1 along
rotation of C-O bond of Formic Acid Monomer

testing energies are in red. We observe that most structures fall between 5 meV/atom
deviation. There are a few structures that have very high deviation which are in-
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Table 4.3: Deviation of the harmonic frequencies ωi (in cm−1) for FAM-HDNNP1
with frequencies from CCSD(T)-F12c/cc-pVTZ-F12 level of theory.

Mode FAM-HDNNP1
1 (ω7) -9.1
2 (ω9) -11.22
3 (ω8) -24.82
4 (ω6) -6.33
5 (ω5) -11.11
6 (ω4) -12.72
7 (ω3) 3.96
8 (ω2) -9.38
9 (ω1) -15.39

Figure 4.4: Deviations of the harmonic vibrational frequencies ωi with respect to
the reference CCSD(T)-F12c/cc-pVTZ-F12 frequencies. ∆ω = ωCC −
ωFAM-HDNNP1

discriminate of training or testing. These deviations go up to 0.02 eV.atom. But,
overall the spread of deviation is broad which is more indicative of the fit not being
accurate yet.

Fig. 4.3 shows how the HCOOH rotation along the internal C-O bond varies the
energies. The energies are shown for both Coupled Cluster and FAM-HDNNP1. We
can see here that the HDNNP describes this well despite not yet at the best quality
possible. Nevertheless a look at harmonic frequencies is incumbent here.

The harmonic frequencies according to FAM-HDNNP1 and CCSD(T)-F12c/cc-pVTZ-
F12 are given in Table 4.2. There are 9 fundamental harmonic frequencies for Formic
Acid Dimer. At the first glance, it can be observed that the frequencies from FAM-
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HDNNP1 seem reasonable as the deviations are in the same order of magnitude as
the threshold which is predefined. But, it can be seen that there are differences
which are notable for the lowest vibrational mode for example. Mode 7 seem to be
well described with FAM-HDNNP1.

Table 4.3 shows the deviation of harmonic frequencies from CCSD(T)-F12c/cc-
pVTZ-F12 level of theory. We see that the highest deviation is for mode 3 with
nearly 25 cm−1. As this is also a low lying mode, the relative difference in frequen-
cies is high. We also see that four modes of vibrations have a deviation below 10
cm−1. It is also to be noted that the Root Mean Square Deviation (RMSD) for the
frequencies is 12.9 cm−1. Fig. 4.4 shows the deviations in the above table. This
is pictorially represented in Fig. 4.4. As can be seen, there is much improvement
needed in the Neural Network Potential as the maximum deviation and also the
deviations of other modes are too high and it does not reproduce the frequencies to
an acceptable degree.

The energy vs coordinate plot for nine normal modes of vibrations of Formic Acid
Monomer is given in Fig. 4.5. The vibrations are from low frequency modes to high
frequency modes. Even though the calculation of Hessian only uses small displace-
ments and as such a small energy range, in order to obtain a global PES which can
be used for high level vibrational computations and molecular dynamics, it is neces-
sary to have a decent description of a large range in energetics. Though the energy
range runs high, we can still observe certain deviations from the reference energies.
This is especially visible in mode 6. In order to take a closer look, the difference in
energy between HDNNP and Coupled Cluster is shown in Fig. 4.6. Here, we can
observe that the energy difference is in hundreds of meV/atom. Nevertheless, the
difference is much smaller in the energy range close to the equilibrium. There, it
is below 50 meV/atom in most cases. The last two high frequency modes show an
especially high deviation. But, as the energy range runs really high in the regions
of high deviation, this is to be expected. Most of the structures in the reference
data are in the range of 0.1 Hartree. Therefore, it is no surprise to have such high
deviations. Yet, the fact that the normal modes show much deviation from the ref-
erence indicate that adding structures alongside them might help in improving the
potential.
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Figure 4.5: Nine normal modes of Formic Acid Monomer from low frequency vibra-
tions to high frequency vibrations
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Figure 4.6: Energy difference ∆E − EHDNNP = ECC using FAM-HDNNP1 a for the
nine normal modes of Formic Acid Monomer.
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4.1.2 Final HDNNP

Table 4.4: Energy root mean squared errors (RMSE) of the training and test sets
for the HDNNP trained using final dataset for the full energy range used
in training.

RMSE [meV/atom] RMSE [cm−1]
PES structures training testing training testing

FAM-HDNNP 25983 0.943 1.033 76.0 80.9

The final HDNNP was constructed by including additional 1998 structures along
the normal modes of the Formic Acid Monomer. The Formic Acid Monomer was
displaced along the nine normal modes one at a time using eigenvectors obtained
from Coupled Cluster frequency calculation at the equilibrium structure. 23381
structures were used for training and 2602 structures were used for the testing set.
The HDNNP was constructed with two hidden layers of 10 neurons each and the
cutoff radius remains the same 12 Bohr. The quality of the fit in terms of RMSE is
given in Table 4.4. We can see that the training RMSE is 0.943 meV/atom and the
testing RMSE is 1.033 meV/atom. It can be observed that adding structures along
the nine normal modes lead to an improvement from the previous iteration of the
HDNNP for Formic Acid Monomer. Previously, the training and testing RMSEs
were 1.534 and 1.821 meV/atom respectively. It is again a good sign that both the
RMSEs are of the same order as it indicates lack of overfitting.

An important parameter to observe is how the energy of each structure looks like
according to the HDNNP. Fig. 4.7 shows the difference in energy between HDNNP
and Coupled Cluster. The spread of deviation is slightly less than the previous
iteration as there the ∆E varied from -0.015 eV/atom to 0.02 eV/atom. Here, the
spread is from -0.01 eV/atom to 0.02 eV/atom. Overall, we see that more structures
fall in a narrower region of spread compared to the previous HDNNP thus indicating
the improvement of energetics compared to previous HDNNP.

Since the potential is being developed for spectroscopic benchmarking, the look
at frequencies is necessary. Table 4.5 shows the harmonic frequencies of HDNNP
and Coupled Cluster in increasing order of wavenumbers. In the first glance, it is
evident there is an improvement from the previous HDNNP. A closer look can be
observed in Table 4.6. Here, we can observe that highest deviation is 7.71 cm−1 and
this is also for the highest value frequency mode. As all the deviations which are
also shown in Fig. 4.8 are below 10 cm−1, the potential offers promise for spectro-
scopic applications. A discussion and comparison with Tew Potential will be shown
in the next section. Six vibrational modes have deviation below 5 cm−1 with first,
fifth, sixth and eighth mode being below 3 cm−1. Also the RMSD of the frequencies
from HDNNP while comparing to Coupled Cluster is 4.69 cm−1. This is a good
improvement from the previous HDNNP’s RMSD which was 12.87 cm−1.
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Table 4.5: Comparison of the harmonic frequencies ωi (in cm−1) for FAM-HDNNP
with frequencies from CCSD(T)-F12c/cc-pVTZ-F12 level of theory.

Mode FAM-HDNNP CCSD(T)-F12c/cc-pVTZ-F12
1 (ω7) 635.2 632.50
2 (ω9) 676.9 672.68
3 (ω8) 1051.9 1056.78
4 (ω6) 1133.5 1140.07
5 (ω5) 1316.1 1318.39
6 (ω4) 1407.2 1409.98
7 (ω3) 1811.5 1816.76
8 (ω2) 3090.3 3092.82
9 (ω1) 3757.6 3765.31

Table 4.6: Deviation of the harmonic frequencies ωi (in cm−1) for FAM-HDNNP
with frequencies from CCSD(T)-F12c/cc-pVTZ-F12 level of theory.

Mode FAM-HDNNP
1 (ω7) -2.7
2 (ω9) -4.22
3 (ω8) 4.88
4 (ω6) 6.57
5 (ω5) 2.29
6 (ω4) 2.78
7 (ω3) 5.26
8 (ω2) 2.52
9 (ω1) 7.71
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1

Figure 4.7: Energy difference ∆E = ECC−EFAM-HDNNP as a function of the reference
energy ECC. The root-mean-squared errors (RMSE) for the HDNNP are
provided in Table 4.4

Figure 4.8: Deviations of the harmonic vibrational frequencies ωi with respect to
the reference CCSD(T) -F12c/cc-pVTZ-F12 frequencies. ∆ω = ωCC −
ωFAM-HDNNP
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4.1.3 Comparison with Tew Potential

The potential used by David Tew is an analytical potential. It is a LASSO-based
regression model and has remarkable accuracy with an RMSE of 9 cm−1 [57] up to
15,000 cm−1 above equilibrium. The harmonic frequencies from all the potentials are
given in Table 4.7. The comparison of Harmonic frequencies with respect to reference
method is shown in Fig. 4.9. The tabulated deviations are given in Table 4.8
showing the two Neural Network potentials discussed above and the Tew potential
are shown here. As we can observe the Tew Potential gives better frequencies with
a maximum deviation of 4.61 cm−1. The initial HDNNP had a maximum deviation
of nearly 25 cm−1 while the final HDNNP improved to 7.71 cm−1. This is higher
than that of the Tew Potential which is shown in the figure. The Tew potential
gives less than 1 cm−1 deviation for five vibrational modes. While comparing the
RMSD of the harmonic fundamentals with respect to the CCSD(T)-F12c/cc-pVTZ-
F12 fundamental harmonic frequencies, the initial HDNNP had an RMSD of 13
cm−1, 5 cm−1 for the final HDNNP and 2 cm−1 for Tew Potential. Clearly the Tew
Potential has a better performance. On the other hand, the HDNNP can still be
improved if need be with more sampling or other criteria for fitting. Nevertheless,
the current HDNNP shows good performance with deviations in the range of one
digit wavenumbers for the fundamental harmonic frequencies.

Figure 4.9: Deviations of the harmonic vibrational frequencies ωi with respect to the
reference CCSD(T) -F12c/cc-pVTZ-F12 frequencies. ∆ω = ωCC − ωPES



54 Chapter 4 Results and Discussion

Table 4.7: Comparison of the harmonic frequencies ωi (in cm−1) for different poten-
tials with frequencies from CCSD(T)-F12c/cc-pVTZ-F12 level of theory.

Mode Tew Potential FAM-HDNNP1 FAM-HDNNP CCSD(T)-F12c/cc-pVTZ-F12
1 (ω7) 632 641.6 635.2 632.50
2 (ω9) 673 683.9 676.9 672.68
3 (ω8) 1056 1081.6 1051.9 1056.78
4 (ω6) 1140 1146.4 1133.5 1140.07
5 (ω5) 1323 1329.5 1316.1 1318.39
6 (ω4) 1412 1422.7 1407.2 1409.98
7 (ω3) 1818 1812.8 1811.5 1816.76
8 (ω2) 3092 3102.2 3090.3 3092.82
9 (ω1) 3767 3780.7 3757.6 3765.31

Table 4.8: Deviation of the harmonic frequencies ωi (in cm−1) for various potentials
from frequencies from CCSD(T)-F12c/cc-pVTZ-F12 level of theory.

Mode Tew Potential FAM-HDNNP1 FAM-HDNNP
1 (ω7) 0.5 -9.1 -2.7
2 (ω9) -0.32 -11.22 -4.22
3 (ω8) 0.78 -24.82 4.88
4 (ω6) 0.07 -6.33 6.57
5 (ω5) -4.61 -11.11 2.29
6 (ω4) -2.02 -12.72 2.78
7 (ω3) -1.24 3.96 5.26
8 (ω2) 0.82 -9.38 2.52
9 (ω1) -1.69 -15.39 7.71
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4.2 Formic Acid Dimer

Formic Acid Dimer is an interesting system for construction of Potential Energy
Surface with the intention of usage for spectroscopic applications. With the wealth
of experimental data available and the system being at the forefront of develop-
ment of Machine Learning Potentials for calculating vibrational frequencies, Formic
Acid Dimer becomes a very convenient choice to construct High-Dimensional Neural
Networks to benchmark vibrational frequencies.

Figure 4.10: Schematics of Formic Acid Dimer

4.2.1 Construction of HDNNP

The efficient construction of an HDNNP requires a systematic approach. It begins
with an initial dataset, the choice of settings that guides the construction of the
Neural Network Potential and then assessment and analysis of the quality of the
Neural Network Potential. In the case of a spectroscopic quality potential, the en-
ergetics alone cannot determine the choice of a final potential or even the method of
refinement of the potential. The harmonic frequencies are a very important param-
eter that need to meet a standard. In the case of Formic Acid Dimer, along with
the usual standard of what is expected as the standard of RMSE (1-2 meV/atom),
we determine a maximum deviation of 10 cm−1 as what is required of the potential.

The construction of a potential that meets the requirements went through sev-
eral iterations of assessment and improvement. Here, it starts with the analysis of
the initial dataset of Formic Acid Dimer. The initial dataset was obtained from
Joel Bowman [60] and contains 13475 structures of Formic Acid Dimer computed
at CCSD(T)-F12a/haTZ level of theory.The energy distribution of the structures
is such that the higher energy region is sparsely populated. Qu and Bowman have
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constructed a Permutationally Invariant Potential [60] using this dataset for Formic
Acid Dimer which will be used for comparison with the HDNNP. This potential will
be referred to as Bowman Potential or QB16.

Figure 4.11: Energy distribution of Formic Acid Dimer structures in the initial
dataset obtained from Prof. Joel Bowman

As seen in Fig. 4.11, most of the structures are below 0.2 eV/atom which is 16,000
cm−1. As the Neural Network is heavily dependent on the underlying data, this can
lead to poor description in the higher energy regions which might manifest as certain
artefacts while assessing the quality of the constructed Neural Network Potential.
Nevertheless, as we are aiming for spectroscopic accuracy, the lower energy regions
or regions as high as 30,000 cm−1 are sufficient to be well described.

As discussed in the method section, the number of hidden layers is two for all
the HDNNPs discussed here. The main differentiating factor for the construction
of HDNNPs to arrive at a quality potential is the underlying dataset. Another dif-
ferentiating factor is the architecture of the HDNNP. As the dataset gets bigger, in
order to account for the necessary bigger flexibility, the Neural Network also often
needs to be of bigger size.
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4.2.2 HDNNP1

Here, the first reasonable HDNNP constructed using the raw data as shown in Fig.
4.11 is discussed. The HDNNP at this iteration will be referred to as HDNNP1
and the two HDNNPs discussed here will be HDNNP1a and HDNNP1b. Tables 4.9
and 4.10 give values for the parameters that define the Atom Centered Symmetry
Functions (ACSFs) for HDNNP1.

Table 4.9: Radial ACSF parameters η for HDNNP1. The various parameters are
described in the theory section.

element pair η[Bohr−2]
H-H 0, 0.003320, 0.007822, 0.014296, 0.024263, 0.040982, 0.072561, 0.144102
O-O 0, 0.002331, 0.005208, 0.008869, 0.013680, 0.020235, 0.029556, 0.043520
C-C 0, 0.000964, 0.002013, 0.003161, 0.004425, 0.005824
H-C 0, 0.003763, 0.009087, 0.017202, 0.030743, 0.056242, 0.113944, 0.295433
O-C 0, 0.003648, 0.008752, 0.016415, 0.028926, 0.051756, 0.100815, 0.240433
H-O 0, 0.003910, 0.009520, 0.018245, 0.033218, 0.062638, 0.134133, 0.395239

Table 4.10: Angular ACSF parameters η for all element combinations and
HDNNPs.The various parameters are described in the theory section.

No. η[Bohr−2] ζ λ
1 0.0 1.0 1.0
2 0.0 2.0 1.0
3 0.0 4.0 1.0
4 0.0 16.0 1.0
5 0.0 1.0 -1.0
6 0.0 2.0 -1.0
7 0.0 4.0 -1.0
8 0.0 16.0 -1.0

The initial dataset was used to construct Permutationally Invariant Polynomi-
als (PIPs) for Formic Acid Dimer [60]. As the same dataset is used to construct
HDNNPs, it may not work as intended. Further refinement of the dataset is required.
Even though both are Machine Learning algorithms, both are different approaches
for learning the potential energy curve of a system and as such require a different
method for selecting the data.

The two HDNNPs at this iteration are HDNNP1a and HDNNP1b. For both HDNNP1a
and HDNNP1b, a cutoff radius of 14.901 Bohr is used. This is so that the longest
atom-atom distance also falls under the definition of atomic environments. And as
a result, we can be assured that all interatomic distances and interactions are learnt
by the Neural Network.

Though various HDNNPs are constructed at this stage, HDNNP1a and HDNNP1b
are selected because they describe the energetics of each structure in a dataset of
13,475 structures better than the other HDNNPs in this iteration. For HDNNP1a,
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12138 structures are used for training and 1337 for testing. For HDNNP1b, 12062
structures went into training and 1413 structures were used for testing. Here, the
structures are selected randomly for training or testing. The RMSE of HDNNP1a
is 2.43 meV/atom for training and 13.99 meV/atom for testing whereas HDNNP1b
has 2.75 meV/atom for training and 10.22 meV/atom for testing. For selecting an
HDNNP at this stage, the energetics provide a reasonable indicator of the qual-
ity. But, here for a selection between HDNNP1a and HDNNP1b, we cannot rely
on RMSE alone. As can be seen, HDNNP1a has a better training RMSE whereas
HDNNP1b has a better testing RMSE. We need to take a look at how energies are
described for each structure for narrowing down our selection further. Secondly, we
need to look at harmonic frequencies which will be discussed later here. Because of
the uneven distribution of structures over a wide energy range, RMSE though a very
reasonable indicator, may not provide a full picture. The RMSEs of the HDNNPs
are shown in Table 4.11.

HDNNP1a and HDNNP1b are constructed with the same dataset and definitions
of Atom Centered Symmetry Functions. They differ in the initial weights used for
optimisation as these are selected randomly. Another difference is the structures
used for training and testing. But, the major differentiating factor between them
is the architecture of the Neural Network. Both HDNNP1a and HDNNP1b have
two hidden layers. HDNNP1a has 11 nodes per layer as opposed to 9 neurons for
HDNNP1b. As can be immediately observed, HDNNP1a has greater flexibility than
HDNNP1b.

Table 4.11: Energy root mean squared errors (RMSE) of the training and test sets
for the HDNNPs trained using initial dataset for the full energy range
used in training.

RMSE [meV/atom] RMSE [cm−1]
PES structures training testing training testing

HDNNP1a 13475 2.43 13.99 196 1129
HDNNP1b 13475 2.75 10.22 222 824

Usually the expected RMSE value is 1 meV/atom. The training RMSEs are
around 2-5 meV/atom here and the testing RMSE is a very high number, above
10 meV/atom. As the high energy regions are sparsely represented, a high testing
RMSE is not unusual. Still, here we must take a look at the harmonic frequencies
and see which of these HDNNPs describe it better and how good the values of fre-
quencies are.

In Fig.4.12 and 4.13, the energetics of HDNNP1s are showing the training ener-
gies in blue and the testing energies in red. The energy units are in eV/atom. The
training energies are shown in blue and the testing energies are shown in red. As
can be also seen in the RMSEs, the training energies are very close to the CCSD(T)-
F12a/haTZ energies. The testing energies show very high deviation above 0.2−0.3
eV/atom. This is well above 20,000 cm−1. But we can also see that for certain
structures the difference between Coupled Cluster and HDNNP values are above 0.1
eV/atom. Overall, this is not the quality we would want for the energetics. Even
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though, it is expected that the high energy region will not be well described in the
PES, we still would want to have a narrower range of error. In order to do other
applications like dynamics or even high level anharmonic calculations, a better ac-
curacy is required.

Also in the figures, we can see how the energetics differ for HDNNP1a and HDNNP1b.
We can see that the testing errors are very high for HDNNP1a compared to HDNNP1b.
High energy structures in the testing set have double the deviation in some cases
for HDNNP1a compared to HDNNP1b. This agrees with what we see in the test-
ing RMSEs as HDNNP1a has a higher testing RMSE. But, in the case of both
the HDNNPs, the training set shows relatively low error and also the lower energy
regions are well described. Therefore, we can conclude that both the HDNNPs per-
form relatively similar if we are only looking at the energetics. And the selection at
this stage would solely depend on the frequencies.

Table 4.12 shows the harmonic frequencies obtained from HDNNP1a and HDNNP1b
along with harmonic frequencies from reference Coupled Cluster method. As we can
see, HDNNP1a is closer to reference Coupled Cluster frequencies. But, in order to
see this more closely we need to take a look at Table 4.13. The largest deviation
for HDNNP1a harmonic frequencies is 48.88 cm−1 for ω6. Also, ω4, ω18, ω20 and ω21

show deviations above 40 cm−1. A few vibrational modes do behave well with this
potential. ω12, ω24, ω2, ω7 and ω8 are below 5 cm−1 deviation. But, still this is very
far from the accuracy desired.

Now, we can take a look at how HDNNP1b behaves and see how we can select
a potential at this stage. HDNNP1b has similar RMSE to HDNNP1a with a better
error for the testing set. And it would be interesting to see how the quality of the
frequencies compare. When we look at Table 4.13, we see that the maximum devi-
ation for HDNNP1b while comparing to Coupled Cluster frequencies is 75.86 cm−1

for ω21. This is quite a high deviation compared to HDNNP1a. We can also see that
ω4, ω10, ω19 and ω20 have deviations above 50 cm−1. Even though, the testing region
is energetically better described and the HDNNP1b energies are also quite close to
the Coupled Cluster energies, HDNNP1b does perform inferior to HDNNP1a when
we look at the frequencies. Of course, having good energetics is the first step in
selecting a potential, but for spectroscopic purposes, that alone is not a sufficient
measure as can be seen here. Also, Fig. 4.14 gives a visual representation of the
harmonic frequencies. It shows the difference between HDNNPs and Coupled Clus-
ter harmonic frequencies. And there, the clear difference between the two HDNNPs
can be seen. We can conclude that HDNNP1a is a better potential at this stage
and also that further refinement of HDNNPs is required to obtain a good quality
potential. Nevertheless, a first potential with a raw dataset does give reasonable
numbers and provide motivation that a better potential can be obtained.
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Table 4.12: Comparison of the harmonic frequencies ωi (in cm−1) for HDNNP1a and
HDNNP1b with frequencies from CCSD(T)-F12a/haTZ level of theory.

Mode Sym. HDNNP1a HDNNP1b CCSD(T)-F12a/haTZ
ω1 Ag 3217.5 3194.4 3203.36
ω2 Ag 3107.9 3091.3 3104.59
ω3 Ag 1708.4 1712.5 1717.13
ω4 Ag 1443.2 1550.3 1483.92
ω5 Ag 1376.3 1379.9 1413.1
ω6 Ag 1207.9 1265.2 1256.78
ω7 Ag 689.2 664.8 687.78
ω8 Ag 216.1 221.1 211.28
ω9 Ag 163.6 157.6 170.96

ω10 Bg 1073.2 1030.6 1085.04
ω11 Bg 936.9 965.3 959.6
ω12 Bg 256.9 261.9 257.76

ω13 Au 1128.4 1069 1102.03
ω14 Au 979.5 1015.9 986.46
ω15 Au 213.4 210.9 185.95
ω16 Au 68.5 73.2 76.36

ω17 Bu 3323.8 3285.3 3305.25
ω18 Bu 3060.4 3087.4 3100.56
ω19 Bu 1772.6 1728.9 1781.57
ω20 Bu 1411.4 1517.2 1455.96
ω21 Bu 1357.5 1329.2 1405.06
ω22 Bu 1253.9 1295.4 1260.06
ω23 Bu 703.9 733.5 715.81
ω24 Bu 280.9 267.9 278.07
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Table 4.13: Deviation of the harmonic frequencies ωi (in cm−1) for HDNNP1a
and HDNNP1b from CCSD(T)-F12a/haTZ frequencies. ∆ω = ωCC −
ωHDNNP

Mode Sym. HDNNP1a HDNNP1b
ω1 Ag -14.14 8.96
ω2 Ag -3.31 13.29
ω3 Ag 8.73 4.63
ω4 Ag 40.72 -66.38
ω5 Ag 36.8 33.2
ω6 Ag 48.88 -8.42
ω7 Ag -1.42 22.98
ω8 Ag -4.82 -9.82
ω9 Ag 7.36 13.36

ω10 Bg 11.84 54.44
ω11 Bg 22.7 -5.7
ω12 Bg 0.86 -4.14

ω13 Au -26.37 33.03
ω14 Au 6.96 -29.44
ω15 Au -27.45 -24.95
ω16 Au 7.86 3.16

ω17 Bu -18.55 19.95
ω18 Bu 40.16 13.16
ω19 Bu 8.97 52.67
ω20 Bu 44.56 -61.24
ω21 Bu 47.56 75.86
ω22 Bu 6.16 -35.34
ω23 Bu 11.91 -17.69
ω24 Bu -2.83 10.17
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Figure 4.12: Energy difference ∆E = ECC −EHDNNP1a as a function of the reference
energy ECC. The root-mean-squared errors (RMSE) for the HDNNP1a
are provided in Tab. 4.11.

Figure 4.13: Energy difference ∆E = ECC −EHDNNP1b as a function of the reference
energy ECC. The root-mean-squared errors (RMSE) for the HDNNP1b
are provided in Tab. 4.11.
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Figure 4.14: Deviations of the harmonic vibrational frequencies ωi with respect to
the reference CCSD(T)-F12a/haTZ frequencies. ∆ω = ωCC − ωHDNNP

for different HDNNPs
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Figure 4.15: Bowman Potential and HDDNP1 energies for all the structures from
the dataset obtained from Edit Matyus [79]

4.2.3 Development of HDNNP2

In order to develop the next iteration of HDNNP which will be henceforth addressed
as HDNNP2, several sampling methods and some modification to the description of
Neural Network were used. They will be addressed one by one.

As a result of collaboration with Prof. Matyus, an expansive dataset of structures
was obtained which contains 500,000 structures from direct product grid needed for
variational vibrational calculations [79]. In the dataset, the energies were computed
using QB16. These structures were used to improve the underlying dataset for de-
veloping a Neural Network Potential. Here, we use the technique of active learning
to select the structures which will later be recomputed using ab-initio methods to
add to the dataset.

The procedure is using HDNNP1a and HDNNP1b to predict the energies of these
500,000 structures. Then we take the difference between energies of HDNNP1a and
HDNNP1b and choose structures where both the HDNNPs differ greatly. The phi-
losophy behind this is that if both the HDNNPs trained with the same data identify
the energies with a big deviation, this means the region is not reasonably sampled.
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Figure 4.16: Bowman Potential and HDNNP1 energies for all the structures from
the dataset obtained from Edit Matyus [79] using Bowman Potential
energies as the x axis.
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Figure 4.17: ∆E = EHDNNP1a − EHDNNP1b for all the structures from the dataset
obtained from Edit Matyus [79]

Fig.4.15 shows the full dataset obtained from Edit. Here, the energies of the struc-
tures using Bowman’s Potential, HDNNP1a and HDNNP1b are shown. Fig. 4.16
shows the same energies with respect to the Bowman Potential energies in the x-axis.
Here, we can see that especially at high energy regions the two HDNNPs differ very
much from Bowman Potential. As it cannot be deduced yet how accurate Bowman
Potential is because of the sheer size of the dataset, we cannot yet infer how impor-
tant the information is. But, if we look at the two HDNNPs, we see that they agree
somewhat better with each other compared to Bowman Potential.

In order to see that closely, Fig. 4.17 becomes useful. Here, in Fig. 4.17, the
full dataset with energy difference between the two HDNNPs is shown as a function
of HDNNP1a energies. As we can see there are regions with very high deviation.
Ab-initio data is not available for these structures because of the sheer size of the
dataset. Also, we only need to sample structures in spectroscopically relevant en-
ergy range. Hence, we avoid the structures above 0.1 Hartree according to Bowman
Potential as shown in Fig. 4.15.

In Fig. 4.18, the ∆E=EHDNNP1a−EHDNNP1b is shown for the relevant energy range.
Here we can see that there are even structures with a deviation above 0.05 Hartree.
And it becomes imperative to look at the distribution of ∆E since we cannot afford
to run Coupled Cluster calculations for hundreds of thousands of structures. After
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looking at the energy distribution, we see that there are 2067 structures above 0.02
eV/atom, The distribution of energies with a ∆E > 0.02 eV/atom is given in Fig.
4.19. This is a very high deviation but at the same time it is important not to
enlarge the dataset very quickly as HDNNP should be constructed as efficiently as
possible. These structures were added to the training data.

Figure 4.18: ∆E = EHDNNP1a − EHDNNP1b for structures below 0.1 Ha according to
Bowman Potential in the dataset obtained from Edit Matyus [79]

Another change made to improve the HDNNP was to manually change the radial
symmetry functions from the values obtained from the RuNNerMakesym tool
of RuNNer. This was done for the radial symmetry functions of Carbon-Carbon
interactions. The two carbons of Formic Acid Dimer are part of the individual
Formic Acid Monomers and as such the shortest distance between them in the
dataset of all structures is still a high number which is 6.2330 Bohr. This results in
the ACSFs covering only a narrow range of interactions. This is shown in Fig. 4.20.

Table 4.14: New C-C Radial ACSF parameters η for HDNNPs
η[Bohr−2]
0, 0.003747, 0.009066, 0.017212, 0.030893, 0.056909

We can compare the new C-C parameter values given in Table 4.14 with that of
the earlier ACSFs given in Table 4.9. As can be seen in Fig. 4.21, the manually
changed symmetry functions are more flexible and cover a bigger region of values.
This has also helped to improve the Neural Network.
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Figure 4.19: Distribution and number of structures above a difference 0f 0.02
eV/atom between HDNNP1a and HDNNP1b for structures in the
dataset obtained from Edit Matyus [79]

Another sampling used to improve the Neural Network is adding structures along
the 24 normal modes of Formic Acid Dimer. The Formic Acid Dimer was displaced
along each of the normal mode using eigenvectors obtained from Coupled Cluster
and these structures were computed using the same Coupled Cluster method. Also,
the normal modes were used as a method of analysing the quality of the High-
Dimensional Neural Network Potential.

The energy vs coordinate plot of the 24 normal modes of Formic Acid Dimer are
shown in Fig. 4.22. The energies are shown for CCSD(T)-F12a, HDNNP1a and
HDNNP1b. In this plot, we can see that both the HDNNP1s describe the normal
modes fairly well even though explicit inclusion of this information is not available
in the training set. But more information on the description of normal modes can
be seen in 4.23. Here, the difference between HDNNP and Coupled Cluster energies
are shown in meV/atom. And this gives a better picture and also tells us why we
need to give a better description of the normal modes in training our dataset. We
see that ω11, ω13, ω4, ω18, ω2, ω1 and ω17 have energy errors equal to or above 10
meV/atom. For ω18, ω2, ω1 and ω17, the energy range probed is very high. For ω11,
ω13 and ω4, it is a bit more concerning because the probed energy range is a bit
lower. HDNNP1a and HDNNP1b seem to have similar behaviour in how it differs
from Coupled Cluster energies. But we can also observe that structures close to equi-
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Figure 4.20: C-C radial symmetry functions for the shortest bond distance of 6.2330
Bohr with a value of 0 for rshift

librium still have 1 meV/atom deviation in most cases. This reaffirms that sampling
the normal mode displacements may help in improving the neural network potential.

The structures with the above changes were used to train some intermediate HDNNPs.
These and additional sampling methods to improve the Neural Network to give
HDNNP to is shown in next section.

4.2.3.1 Intermediate HDNNPs

MD simulations were performed using previous HDNNPs; HDNNP-ia and HDNNP-
ib. One of the applications of High-Dimensional Neural Network Potentials is that
they can be used to perform Molecular Dynamic simulations. Here, again active
learning is employed. MD simulations were performed at 100K and 300K. The
structures were the two HDNNPs differed more than 1 meV/atom were selected for
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Figure 4.21: New symmetry functions for C-C distances with a cutoff of 15.0 Bohr.
Here rmin = 3.1907 Bohr and rshift = 0

adding to the training set. HDNNP-ia and HDNNP-ib have structures along nor-
mal modes, structures from Edit dataset and also the changed symmetry functions.
HDNNP-ia has 14782 structures in training set and 1616 structures in testing set.
HDNNP-ib has 14804 structures in training and 1594 structures in testing. More
information on the two intermediate HDNNPs is given in Appendix.

The RMSEs of the two intermediate HDNNPs are given in Table 4.15. As we can
see the two intermediate HDNNPs have improved RMSEs compared to the previous
iteration. HDNNP-ia has 1.24 meV/atom for training set and 5.94 meV/atom for
testing set whereas HDNNP-ib has 1.4 meV/atom for training and 6.16 meV/atom
for testing.

In addition to the structures from MD simulations using the above HDNNPs, struc-
tures with displacement for various Hessian step sizes were also added in the next
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stage of training which results in HDNNP2 discussed in the next section.The struc-
tures were displaced each atom along just one Cartesian coordinate at a time with
the displacement d = 0.001, 0.0025, 0.005, 0.0075, 0.01, 0.025, 0.05, 0.075, 0.1 in Bohr.

Table 4.15: Energy root mean squared errors (RMSE) of the training and test sets
for the intermediate HDNNPs trained using dataset for the full energy
range used in training.

RMSE [meV/atom] RMSE [cm−1]
PES structures training testing training testing

HDNNP-ia 16398 1.24 5.94 100 479
HDNNP-ib 16398 1.40 6.16 113 497
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Figure 4.22: 24 normal modes of Formic Acid Dimer from low frequency vibrations
to high frequency vibrations
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Figure 4.23: Energy difference ∆E −EHDNNP=ECC using HDNNP1a and HDNNP1b
for the 24 normal modes of Formic Acid Dimer.
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4.2.4 HDNNP2

Two good HDNNPs were selected at this by iteratively and systematically improving
the Neural Network as described in the previous section. The two HDNNPs are
HDNNP2a and HDNNP2b. These were trained with the same dataset of 27372
structures but with a different randomly selected distribution of training and testing
dataset. HDNNP2 has additional 13897 structures from HDNNP1. HDNNP2a has
24629 training structures and 2743 testing structures. It is constructed with 2 hidden
layers with10 nodes each. HDNNP2b has 24634 training structures and 2738 testing
structures. It has 2 layers with 15 neurons each. The quality of the fit with respect to
the RMSEs is shown in Table. 4.16. As we can see, HDNNP2a has 0.92 meV/atom
RMSE for training and HDNNP2b has 0.71 meV/atom. In both cases, it is a marked
improvement from HDNNP1a which has 2.43 meV/atom RMSE for the training set
which was shown in Table 4.11. HDNNP2a has 1.88 meV/atom RMSE for the testing
set whereas HDNNP2b has 1.99 meV/atom which shows considerable improvement
while considering that HDNNP1a had an RMSE of 13.99 meV/atom for testing set.
This also very much supports our hypothesis that Neural Networks can be improved
with the right analysis and sampling even while dealing with a system requiring
accuracy in the range of a few cm−1. Here, at this stage both the HDNNPs have a
similar quality with HDNNP2a has a better testing RMSE and HDNNP2b with a
better training RMSE.

Table 4.16: Energy root mean squared errors (RMSE) of the training and test sets
for HDNNP2 for the full energy range used in training.

RMSE [meV/atom] RMSE [cm−1]
PES structures training testing training testing

full energy range
HDNNP2a 27372 0.92 1.88 74 158
HDNNP2b 27372 0.71 1.99 57 160

As before, we need to see how the energetics look for each structure for the two
fits. These are shown in Figures 4.24 and 4.25. Both HDNNP2a and HDNNP2b
shows a better performance for the energetics compared to the previous HDNNPs.
In the case of HDNNP1a and HDNNP1b, the deviation had a spread from 0.15
eV/atom for HDNNP1b to even 0.3 eV/atom for HDNNP1a. Here, in both the
cases, the deviations spread up to 0.02 eV/atom. But, it is to be noted that in
both the cases the high deviations are above 0.2 eV/atom ab-initio energies. We
also see that in both cases the testing structures shown in red are the ones most
deviated from our reference energies. As before, the explanation remains that the
sparsely populated areas are the ones showing up as such artefacts in our analysis.
At a single glance, it may seem like HDNNP2a is more spread out than HDNNP2b.
But as we can see that is a result of how scaled the energy range is. Yet, we can
see that in the case of HDNNP2b, there are two testing structures with a deviation
above 0.04 eV/atom whereas HDNNP2a has two testing structures hovering around
0.03 eV/atom. And these ones are the structures with the biggest deviation. While
taking a close look at these structures, no inconsistency was observed except these
are structures where there are bigger displacements of the bonds. As we can see, at
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this stage, the two HDNNP2s are performing at similar quality and hence there is a
need to take a look at the harmonic frequencies. It is also to be noted that the two
HDNNPs have same underlying dataset and same definitions of the Atom Centered
Symmetry Functions. They both differ in the architecture such that HDNNP2b is
more flexible. They also differ in the distribution of training and testing data.

Figure 4.24: Energy difference ∆E = ECC −EHDNNP2a as a function of the reference
energy ECC. The root-mean-squared errors (RMSE) for the HDNNP2a
are provided in Tab. 4.16

In order to choose a potential here, the harmonic frequencies of both the poten-
tials should be looked at. This is given in Table A.12. At a first glance we can see
that both the HDNNPs have better harmonic frequencies than the previous gener-
ation. To have a closer look, the deviations of the harmonic frequencies from the
CCSD(T)/F12a harmonic fundamentals are given in Table A.13. We see here that
HDNNP2a has a maximum deviation of 24.86 cm−1 for ω18. Also ω18 has a deviation
of 21.29 cm−1. Also five other fundamentals have a deviation above 10 cm−1. These
are ω6, ω12, ω15, ω17 and ω22. We can also see that the highly deviated two frequen-
cies are for high frequency modes which are above 3000 cm−1. As such their relative
deviation would be smaller. In the case of HDNNP2b, we see that the maximum
deviation is 21.7 cm−1 for ω11. This is smaller than the maximum deviation for
HDNNP2a. We also see that another harmonic fundamental has a deviation above
20 cm−1. This is for ω13. But, seven other modes have deviation above 10 cm−1.
These are modes ω3, ω10, ω14, ω17, ω18, ω19 and ω20. Also the two modes with a
deviation above 20 cm−1 are also relatively low frequency vibrations with a Coupled
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Figure 4.25: Energy difference ∆E = ECC −EHDNNP2b as a function of the reference
energy ECC. The root-mean-squared errors (RMSE) for the HDNNP2b
are provided in Tab. 4.16

Cluster value of 959.6 and 1102.03 cm−1. The plot of comparison of the funda-
mental harmonic frequencies for the two HDNNPs are given in Fig. 4.26. It is to
be noted that both HDNNP2a and HDNNP2b have a comparable RMSD of 10 cm−1.

After a look at the harmonic frequencies and their comparison with ab-initio values,
we can now select an HDNNP at this stage. HDNNP2b has a smaller maximum
deviation. But, it is also evident that the higher deviation is for a smaller vibrational
frequency mode. Also, there are more modes of vibration with a higher deviation.
HDNNP2a though has a maximum deviation with 3 wave numbers more, these are
for higher frequency modes. Also, HDNNP2a has better description for other modes
in general. Hence, HDNNP2a can be selected at this point. But, both these good
HDNNPs can be used to refine our Neural Network further to obtain a fit that
satisfies the stipulation set prior.
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Table 4.17: Comparison of the harmonic frequencies ωi (in cm−1) for HDNNP2 with
frequencies from CCSD(T)-F12a/haTZ level of theory.

Mode Sym. HDNNP2a HDNNP2b CCSD(T)-F12a/haTZ
ω1 Ag 3213.2 3212 3203.36
ω2 Ag 3083.3 3105.4 3104.59
ω3 Ag 1722.5 1704.9 1717.13
ω4 Ag 1486.8 1477.8 1483.92
ω5 Ag 1418.5 1413.4 1413.1
ω6 Ag 1245.8 1250.3 1256.78
ω7 Ag 680.7 686.5 687.78
ω8 Ag 214.7 214.4 211.28
ω9 Ag 161.6 168.3 170.96

ω10 Bg 1083.3 1097.4 1085.04
ω11 Bg 958.9 937.9 959.6
ω12 Bg 240.0 266.3 257.76

ω13 Au 1104.8 1122.2 1102.03
ω14 Au 981.5 968.1 986.46
ω15 Au 172.8 178 185.95
ω16 Au 71.2 69.3 76.36

ω17 Bu 3323.7 3323 3305.25
ω18 Bu 3075.7 3089.9 3100.56
ω19 Bu 1783.0 1769.4 1781.57
ω20 Bu 1461.6 1443.8 1455.96
ω21 Bu 1415.0 1400 1405.06
ω22 Bu 1248.0 1251 1260.06
ω23 Bu 718.0 715.8 715.81
ω24 Bu 275.5 278.9 278.07
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Table 4.18: Deviation of the harmonic frequencies ωi (in cm−1) for HDNNP2 from
CCSD(T)-F12a/haTZ frequencies. ∆ω = ωCC − ωHDNNP

Mode Sym. HDNNP2a HDNNP2b
ω1 Ag -9.84 -8.64
ω2 Ag 21.29 -0.81
ω3 Ag -5.37 12.23
ω4 Ag -2.88 6.12
ω5 Ag -5.4 -0.3
ω6 Ag 10.98 6.48
ω7 Ag 7.08 1.28
ω8 Ag -3.42 -3.12
ω9 Ag 9.36 2.66

ω10 Bg 1.74 -12.36
ω11 Bg 0.7 21.7
ω12 Bg 17.76 -8.54

ω13 Au -2.77 -20.17
ω14 Au 4.96 18.36
ω15 Au 13.15 7.95
ω16 Au 5.16 7.06

ω17 Bu –18.45 -17.75
ω18 Bu 24.86 10.66
ω19 Bu -1.43 12.17
ω20 Bu -5.64 12.16
ω21 Bu -9.94 5.06
ω22 Bu 12.06 9.06
ω23 Bu -2.19 0.01
ω24 Bu 2.57 -0.83
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Figure 4.26: Deviations of the harmonic vibrational frequencies ωi with respect to
the reference CCSD(T)-F12a/haTZ frequencies for HDNNP2. ∆ω =
ωCC − ωHDNNP for different HDNNPs
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4.2.5 HDNNP3

HDNNP3 was developed after using HDNNP2a and HDNNP2b, described in the
previous section, for sampling a different set of structures. HDNNP3 was developed
by coupling 24 normal modes of Formic Acid Dimer. Formic Acid Dimer was dis-
placed along 2 normal modes at a time for all the different combinations, i.e. 276
combinations. Along each of the coupled mode, 100 structures were sampled. Then,
HDNNP2a and HDNNP2b were used to find energies of all the structures. Here,
again, active learning is employed. A threshold of 2 meV/atom was used to select
structures for training the dataset.

The difference in energies between HDNNP2a and HDNNP2b is shown in Fig. 4.27
and 4.28. The blue and red show energy regions where HDNNP2a and HDNNP2b
diverge greatly. White regions show where both the HDNNP2s agree well in pre-
dicting the energies. It is to be noted that there are regions in the plots where
the structures are sampled at very high energy ranges. So, first selection criteria
to improve the fit was to find the structures below 0.1 Ha according to HDNNP2a
. Among those structures, the ones which has an energy difference greater than or
equal to 2 meV/atom were selected.

The following HDNNP was selected after training with the above described dataset
which now comes out to have 29162 structures which includes additional 1790 struc-
tures when compared to HDNNP2. HDNNP3 has 14 nodes per layer. It has 26221
structures going into training and 5882 structures going into the testing set. The
quality of the fit in terms of RMSE is given in Table 4.19. The training RMSE
is 0.37 meV/atom and the testing RMSE is 2.04 meV/atom. As observed in other
iterations the testing RMSE is still higher than that of the training because of the
energy distribution of the dataset. When we take a look at the RMSEs for struc-
tures below 0.1 Hartree above equilibrium, we see that the training RMSE is 0.35
meV/atom and the testing RMSE is 0.34 meV/atom. This affirms that for all pur-
poses, the energy range we are interested in, which in itself is not a low range, is
very well defined by the HDNNP3. It is also seen that less than 1000 structures in
our dataset is above 0.1 Hartree.

Table 4.19: Energy root mean squared errors (RMSE) of the training and test sets
for HDNNP3 for the full energy range used in training.

RMSE [meV/atom] RMSE [cm−1]
PES structures training testing training testing

full energy range
HDNNP3 29162 0.37 2.04 30 165

energy range below 0.1 Ha

HDNNP3 28286 0.35 0.34 28 27

Now, it is of interest to observe how each structure in the dataset behaves ener-
getically. This is shown in Fig. 4.29. We can see that almost all the structures have
HDNNP3 energies very close to the Coupled Cluster energies. The highest deviation
is in the range of 0.04 eV/atom and those are higher energy regions with structures
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Figure 4.27: ∆E = EHDNNP2b−EHDNNP2a for displacements along two normal modes
at a time. The displacements are made using Coupled Cluster eigen-
vectors. Continued on the next page
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Figure 4.28: ∆E = EHDNNP2b−EHDNNP2a for displacements along two normal modes
at a time. The displacements are made using Coupled Cluster eigen-
vectors continued from previous figure
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in the testing set. In fact, all the structures which show a higher difference between
HDNNP3 and Coupled Cluster are in the testing set. Also when we take a look at
structures below 0.2 eV/atom in reference Coupled Cluster method, the deviation
between ab-initio and HDNNP3 is really low and both the methods converge very
well. So far, we can see that the energetics are well described in the third iteration
of the construction of the HDNNP for Formic Acid Dimer.

Figure 4.29: Energy difference ∆E = ECC − EHDNNP3 as a function of the reference
energy ECC. The root-mean-squared errors (RMSE) for the HDNNP3
are provided in Tab. 4.19

Now, the final check for the quality of the potential as always is a look at the
harmonic fundamentals. The harmonic frequencies from HDNNP3 are given in Ta-
ble 4.20. The frequencies at first sight looks very promising. As we can see the
HDNNP3 harmonic wavenumbers are very close to the CCSD(T)-F12a/haTZ num-
bers with a few wavenumbers uncertainty. In order to have a better understanding,
Table 4.21 gives the deviation between HDNNP3 frequencies and CCSD(T)-F12a
frequencies. The highest deviation between the two is 7.36 cm−1 for ω14. This is
well within the stipulated threshold of 10 cm−1. There are other vibrational modes
with deviation above 4 cm −1. ω1, ω3, ω9, ω13, ω15, ω16, ω17, ω21 and ω23 are the
modes with deviations above 4 cm−1. The plot of the deviations of frequencies is
given in Fig. 4.30. The HDNNP3 has an RMSD of 4 cm−1 while comparing to the
reference harmonic frequencies. Since, the harmonic frequencies showed a very good
performance, the above PES was used for further anharmonic studies in collabora-
tions. The PES was also named FAD-HDNNP as the potential to be published in
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peer-reviewed work. The anharmonic frequencies and a discussion on the 3 selected
iterations of HDNNPs and comparison with Bowman Potential will be discussed in
the next section. Before that, a few more results of analysis of the quality of the
potential will be discussed below.

Table 4.20: Comparison of the harmonic frequencies ωi (in cm−1) for HDNNP3 with
frequencies from CCSD(T)-F12a/haTZ level of theory.

Mode Sym. HDNNP3 CCSD(T)-F12a/haTZ
ω1 Ag 3209.0 3203.36
ω2 Ag 3102.4 3104.59
ω3 Ag 1721.5 1717.13
ω4 Ag 1486.0 1483.92
ω5 Ag 1410.2 1413.1
ω6 Ag 1257.0 1256.78
ω7 Ag 687.4 687.78
ω8 Ag 213.9 211.28
ω9 Ag 166.8 170.96

ω10 Bg 1083.3 1085.04
ω11 Bg 957.1 959.6
ω12 Bg 257.3 257.76

ω13 Au 1108.7 1102.03
ω14 Au 979.1 986.46
ω15 Au 180.2 185.95
ω16 Au 70.9 76.36

ω17 Bu 3311.7 3305.25
ω18 Bu 3099.4 3100.56
ω19 Bu 1784.0 1781.57
ω20 Bu 1459.0 1455.96
ω21 Bu 1409.7 1405.06
ω22 Bu 1259.5 1260.06
ω23 Bu 711.6 715.81
ω24 Bu 275.2 278.07

Though we obtained good harmonic frequencies, we also need to see how smooth
the potential is. Especially, at lower energy regions and at a very minute level, it is
possible that the potential is not smooth. This can arise out of overfitting. This is
especially interesting to look at for the potential discussed here. As we have seen
the testing RMSE for HDNNP3 is higher than that of training RMSE. We have
theorised that this is because of uneven energy distribution in the testing set. But,
usually a higher testing RMSE is indicative of overfitting in machine learning po-
tentials. Here, we are looking at how the frequencies behave at various step sizes for
finite difference Hessian. If our frequencies are consistent at various step sizes, we
can assume that the High-Dimensional Neural Network Potential is smooth. Then,
we can also affirm that there is no overfitting and hence the potential having the
testing RMSE is because of the energy distribution. The harmonic frequencies for
various Hessian step sizes is given in Table A.14 in the Appendix. The step sizes
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Table 4.21: Deviation of the harmonic frequencies ωi (in cm−1) for HDNNP3 from
CCSD(T)-F12a/haTZ frequencies. ∆ω = ωCC − ωHDNNP

Mode Sym. HDNNP3
ω1 Ag -5.64
ω2 Ag 2.19
ω3 Ag -4.37
ω4 Ag -2.08
ω5 Ag 2.9
ω6 Ag -0.22
ω7 Ag 0.38
ω8 Ag -2.62
ω9 Ag 4.16

ω10 Bg 1.74
ω11 Bg 2.5
ω12 Bg 0.46

ω13 Au -6.67
ω14 Au 7.36
ω15 Au 5.75
ω16 Au 5.46

ω17 Bu -6.45
ω18 Bu 1.16
ω19 Bu -2.43
ω20 Bu -3.04
ω21 Bu -4.64
ω22 Bu 0.56
ω23 Bu 4.21
ω24 Bu 2.87

shown are 0.001, 0.005, 0.01, 0.025 and 0.05 Bohr. Among these, the default and
usually used step size is 0.01 Bohr. This is also the step size used in calculating
harmonic frequencies using CCSD(T)-F12a/haTZ level of theory. A first look at the
table indicates that the frequencies are more or less the same across varying Hessian
step sizes. In order to have a closer look, the deviations of harmonic frequencies
from that of default Hessian step size is given in Table 4.22. We can see that at
0.001 Bohr and 0.005 Bohr, the frequencies are very close to the default step size
values. The difference is in decimal point values. This indicates the potential is very
smooth. As we go to 0.025 Bohr the highest deviation is 1.5 cm−1 for ω1. And for a
higher step size of 0.05 Bohr, the deviation goes up to 7 cm−1 for ω1 and ω17. ω18

and ω2 show 4.5 cm−1 deviation and the rest fall below 2.1 cm−1 deviation. This is
to be expected for higher step sizes as the finite difference relies on the assumption
that the step size is quite small. Analytical frequencies are also available, which are
given in the appendix.

The energy vs coordinate plot of normal modes according to FAD-HDNNP is given
in Fig. 4.31. It can be observed that the displacement of Formic Acid Dimer along
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Figure 4.30: Deviations of the harmonic vibrational frequencies ωi with respect to
the reference CCSD(T)-F12a/haTZ frequencies for HDNNP3. ∆ω =
ωCC − ωHDNNP for different HDNNPs

its 24 normal modes is very well described by FAD-HDNNP. In the Figure, the FAD-
HDNNP and Coupled Cluster energies are shown. They align very well. It should
be noted that this is a improvement from the description of normal modes while
comparing to HDNNP1a and HDNNP1b where just a first look itself shows that in
some modes, the curvature wasn’t fully aligned. Along with this plot, Figure 4.32
gives a better picture of the normal modes. Here, the difference between Coupled
Cluster and FAD-HDNNP energies are shown in meV/atom. We see that for most of
the normal modes, the deviation is in the range of 0.1 to 0.4 meV/atom. ω18 though
shows a higher deviation up to 1.2 meV/atom. Also, ω2 shows a deviation of up to 2
meV/atom and ω1 shows the highest with 6 meV/atom but while comparing to the
energy range in Figure 4.31, we can see it is a structure with high energy in range
of 0.3 Ha. In the case of ω2 and ω18 as well, the structures with high deviations
are the ones above 0.1 Ha energy. This is to be expected since most of the sampled
structures in the training is below that energy range. Even then, we can see that
the normal modes behave quite reasonably. For HDNNP1a and HDNNP1b, the de-
viations were even up to 10 meV/atom. ω1 had one structure with deviation up to
50 meV/atom. Therefore, we can see that this is a improvement in the description
of the normal modes. A comparison of the three iterations would be discussed in
the next section. Also, further sampling of structures to include 3 mode couplings
were done in improving the HDNNP. This will also be discussed.
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Table 4.22: Deviation of the harmonic frequencies ωi (in cm−1) for HDNNP3 using
various Hessian step sizes in Bohr from the default step size of 0.01 Bohr.
Here ∆ω = ωd − ωdefault

Mode Sym. 0.001 0.005 0.025 0.05
ω1 Ag -0.3 -0.2 1.5 6.8
ω2 Ag -0.2 -0.2 0.9 4.4
ω3 Ag 0 0 0.3 1.2
ω4 Ag 0 -0.1 0.3 1.3
ω5 Ag -0.1 -0.1 0.1 0.6
ω6 Ag -0.1 -0.1 0.3 1.5
ω7 Ag 0 0 0 -0.1
ω8 Ag 0.1 0 -0.1 -0.4
ω9 Ag 0.1 0.1 -0.1 -0.5

ω10 Bg 0 -0.1 0.2 0.8
ω11 Bg -0.1 -0.1 0.4 1.8
ω12 Bg -0.1 -0.1 0.3 1.3

ω13 Au -0.1 -0.1 0.1 0.8
ω14 Au 0 -0.1 0.3 1.6
ω15 Au -0.3 0 0.5 2.1
ω16 Au -0.1 0 0.4 2

ω17 Bu -0.3 -0.2 1.4 6.7
ω18 Bu -0.2 -0.2 1 4.5
ω19 Bu -0.1 -0.1 0.3 1.3
ω20 Bu 0 0 0.3 1.2
ω21 Bu 0 0 0.1 0.5
ω22 Bu -0.1 -0.1 0.3 1.5
ω23 Bu 0 0 0 -0.1
ω24 Bu 0 0 -0.2 -0.7
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Figure 4.31: 24 normal modes of Formic Acid Dimer from low frequency vibrations
to high frequency vibrations
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Figure 4.32: Energy difference ∆E −EHDNNP = ECC using FAD-HDNNP for the 24
normal modes of Formic Acid Dimer.
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4.2.6 Discussions on the Various HDNNP Iterations and their
Frequencies

After the development of the potential, it is interesting to see how it evolved overtime
and also how it compares to the other available potentials. The potential for Formic
Acid Dimer which has been most widely used in literature is the Poly Invariant
Potential constructed by Bowman (QB16) [77]. The potential gives very accurate
energies and reasonable frequencies. This potential is also interesting to compare
because the reference method used in its construction is the same as the one used
here. Fig. 4.33 show the difference between PES and Coupled Cluster energies for
structures below 25,000 cm−1. We can see how the HDNNPs improve over time.
HDNNP3/FAD-HDNNP shows extreme accuracy for both testing and training. We
can see how HDNNP1 initially had around 2000 cm−1 deviation which improved to
a range of 1000 cm−1 for HDNNP2. When we look at QB16, we see that it also has
remarkable accuracy comparable to that of FAD-HDNNP.

Figure 4.33: The three selected HDNNPs of various iteration up to 21950 cm−1

energies in the dataset. The first panel also shows Bowman Potential
energies. Here, ∆E = ECC −Epotential. Reproduced from Ref. [80] with
permission from the PCCP Owner Societies.
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We can also compare RMSEs for the three potentials which is given in Table 4.23.
The RMSE for HDNNP1 was 2.43 meV/atom for training set which reduced to 0.92
meV/atom for HDNNP2 and later 0.37 meV/atom for FAD-HDNNP. Similarly, the
very high testing RMSE of 13.99 meV/atom for HDNNP1 reduced to 1.88 meV/atom
for HDNNP2 and 2.04 meV/atom for FAD-HDNNP. While observing the more rel-
evant energy range as shown in the table, the testing RMSEs are more reasonable.
Below 0.1 Ha, HDNNP1 has 2.15 meV/atom for training and 2.42 meV/atom for
testing. HDNNP2 has 0.85 meV/atom training RMSE and 1.04 meV/atom testing
RMSE. FAD-HDNNP has very similar accuracy for training and testing in this en-
ergy range, 0.35 meV/atom and 0.34 meV/atom. It is to be noted that QB16 has an
RMSE 0f 0.91 meV/atom. Overall, the improvement in RMSE has been systematic
and we can also see that below 0.1 Ha, even HDNNP1 has a reasonable RMSE value
for the testing set.

Table 4.23: Energy root mean squared errors (RMSE) of the training and test sets
for the three iterations of HDNNPs. The reference dataset is increased
for each iteration using various sampling methods. The RMSEs for both
full dataset and the data below 0.1 Ha above equilibrium structure are
given.

RMSE [meV/atom] RMSE [cm−1]
PES structures training testing training testing

full energy range

HDNNP1 13475 2.43 13.99 196 1129
HDNNP2 27372 0.92 1.88 74 158
HDNNP3 29162 0.37 2.04 30 165

energy range below 0.1 Ha
HDNNP1 12725 2.15 2.42 174 195
HDNNP2 26531 0.85 1.04 68 83
HDNNP3 28286 0.35 0.34 28 27

Table 4.24 shows the geometrical parameters for the HDNNPs in comparison with
default and tight CCSD(T)-F12a/haTZ. We can see that FAD-HDNNP is closer to
the ab-initio values as opposed to HDNNP1 and HDNNP2. The only exception
being r(O· · ·O). But, overall all the three HDNNPs give reasonable geometries for
the equilibrium Formic Acid Dimer structure. If we compare FAD-HDNNP with
QB16, we can see that in most cases except r(C-H), r(O· · ·O) and ∠O-H· · ·O,
FAD-HDNNP gives a closer structure to default Coupled Cluster geometry. Also,
∠O=C-O is equally well described by both FAD-HDNNP and QB16.

The comparison of the harmonic frequencies using the the HDNNPs and default
and tight ab-initio settings is given in Table 4.25. Here, we can see how the fre-
quencies have evolved with various iterations of the HDNNP to give very accurate
values. But, in order to see the comparison with the tight settings and other PESs
available for the system at hand, we can look at Fig 4.34. As we have already done
extensive comparison with the default settings of Coupled Cluster, it is more inter-
esting to look at how the HDNNPs compare with tight settings. The first panel of
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Table 4.24: Geometrical parameters of the formic acid dimer minimum structure
optimized at the reference CCSD(T)-F12a/haTZ level of theory and
various potentials described in the section. Bond lengths are provided
in Ångström and angles in degrees.

Ab initio
Parameter default tight QB16 HDNNP1 HDNNP2 HDNNP3

r(O–H) 0.9934 0.9932 0.9927 0.9945 0.9925 0.9936
r(C–H) 1.0929 1.0930 1.0929 1.0927 1.0937 1.0927
r(C–O) 1.3113 1.3114 1.3116 1.3104 1.3121 1.3112
r(O· · ·O) 2.6748 2.6758 2.6778 2.6729 2.6791 2.6709
r(C=O) 1.2177 1.2176 1.2174 1.2192 1.2172 1.2178
∠O=C–O 126.14 126.14 126.15 126.26 126.13 126.13
∠O=C–H 122.02 122.03 122.05 122.04 122.15 121.99
∠C–O–H 109.77 109.76 109.73 109.42 109.93 109.79
∠O–H· · ·O 178.93 178.93 178.95 179.51 179.01 178.86

the figure shows the comparison of various HDNNPs’ harmonic fundamentals with
tight ab-initio settings. The RMSE as given improves from 27 cm−1 to 9 cm−1

to 4 cm−1 for HDNNP1, HDNNP2 and HDNNP3(FAD-HDNNP) respectively. We
can see how in the final FAD-HDNNP, all the frequency deviations lie below 10 cm−1.

The lower panel of Fig. 4.34 shows the available PESs for Formic Acid Dimer.
The figure shows how the harmonic fundamentals deviate from the respective ref-
erence methods. As can be easily observed, only FAD-HDNNP gives a deviation
below 10 cm−1 for all the modes of vibration for Formic Acid Dimer. The QB16 [60]
with which FAD-HDNNP shares level of theory for reference data has a maximum
deviation of 27 cm−1. It has two other fundamentals above the threshold of 10 cm−1

deviation. Nevertheless QB16 shows very good accuracy for all the other funda-
mentals. PESTL [59] has various fundamentals above the threshold of 10 cm−1 and
has a RMSD of 14 cm−1. FAD-HDNNP has the lowest RMSD followed by QB16
with 8 cm−1. Overall, we see that when it comes to harmonic frequencies for Formic
Acid Dimer with respect to the reference method, FAD-HDNNP shows the best per-
formances so far. Of course when it comes to spectroscopy, anharmonic frequencies
that compare well with the available experimental data is of the utmost importance.
Still, while preparing a PES for applications in spectroscopy, the first milestone to
overcome is energetics and harmonic frequencies of a certain quality.

The VPT2 frequencies using FAD-HDNNP and the analysis of it was done by Ben-
jamin Schröder in a collaboration which is published in a recent article [80]. The
results from the collaboration are discussed here as an exercise in benchmarking and
to further expound upon the features and merits of FAD-HDNNP. Benjamin was
able to get VPT2 frequencies from CCSD(T)-F12a and FAD-HDNNP. This is shown
in comparison to experimental values in Table 4.26. The FAD-HDNNP VPT2 fre-
quencies show good agreement with the experimental frequencies with a RMSD of
14 cm−1. For v1, v2, v17 and v18, there are not yet highly reliable experimental val-
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ues and also VPT2 cannot give reliable values because of anharmonic couplings and
resonances. If these modes are excluded, FAD-HDNNP has an RMSD of 9 cm−1.

Figure 4.34: Deviation of each of the harmonic frequencies of potentials ωi from
reference tight Coupled cluster frequency. Top panel shows the devi-
ations of various HDNNPs from CCSD(T)-F12a/haTZ harmonic fre-
quencies. ∆ω = ωi − ωCC . The bottom panel compares the differences
in harmonic frequencies from the QB16 PES by Qu and Bowman [77],
transfer-learned potential by Käser and Meuwly [59] and the final FAD-
HDNNP results. The reference ab initio frequencies are based on the
level of theory used to construct the potential. CCSD(T)/aug-cc-pVTZ
for PESTL and CCSD(T)-F12a/haTZ for QB16 and FAD-HDNNP. RM-
SEs are also given in the plot for easy comparison. Reproduced from
Ref. [80] with permission from the PCCP Owner Societies.

In collaboration with Edit Matyus and Alberto Martín Santa Daría, 8D intermolecular-
plus-torsion vibrational computations were performed on FAD-HDNNP. These are
also shown in the paper that is published [80]. Contrary to QB16, the HDNNP1,
HDNNP2 and FAD-HDNNP were able to produce potential energy curves along
the intermolecular coordinates without holes in the potential. This is shown in Fig.
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Table 4.25: Comparison of the harmonic frequencies ωi (in cm−1) for the
three HDNNPs against reference CCSD(T)-F12a/haTZ results. The
CCSD(T)-F12a/haTZ frequencies are calculated using default settings
and tight convergence criteria.

FAD-
HDNNP

CCSD(T)-F12a

Mode Sym. HDNNP1 HDNNP2 HDNNP3 default tight

ω1 Ag 3218 3212 3209 3203 3207
ω2 Ag 3060 3077 3103 3105 3103
ω3 Ag 1708 1723 1722 1717 1718
ω4 Ag 1443 1485 1486 1484 1482
ω5 Ag 1376 1417 1410 1413 1411
ω6 Ag 1254 1249 1257 1257 1255
ω7 Ag 689 681 688 688 686
ω8 Ag 216 215 214 211 210
ω9 Ag 164 173 167 171 170

ω10 Bg 1073 1083 1083 1085 1083
ω11 Bg 980 960 957 960 955
ω12 Bg 257 241 257 258 249

ω13 Au 1128 1106 1109 1102 1101
ω14 Au 937 983 979 986 985
ω15 Au 213 161 180 186 173
ω16 Au 68 71 71 76 68

ω17 Bu 3324 3323 3312 3305 3309
ω18 Bu 3108 3085 3100 3101 3099
ω19 Bu 1773 1783 1784 1782 1782
ω20 Bu 1411 1459 1459 1456 1453
ω21 Bu 1358 1414 1410 1405 1407
ω22 Bu 1208 1247 1260 1260 1260
ω23 Bu 704 718 712 716 715
ω24 Bu 281 275 275 278 276
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Table 4.26: Comparison of the VPT2 fundamental frequencies (in cm−1) obtained
from the FAD-HDNNP with experimental data

Mode Sym. ab initio FAD-HDNNP Exp.
ν1 Ag 2909 2920 -
ν2 Ag 2942 2948 -
ν3 Ag 1672 1677 1664
ν4 Ag 1431 1433 1430
ν5 Ag 1375 1375 1375
ν6 Ag 1225 1229 1224
ν7 Ag 679 682 681
ν8 Ag 194 197 194
ν9 Ag 157 164 161

ν10 Bg 1061 1058 1058
ν11 Bg 923 934 911
ν12 Bg 241 247 242

ν13 Au 1072 1074 1069
ν14 Au 959 964 939
ν15 Au 162 166 168
ν16 Au 67 68 69

ν17 Bu 3044 3041 -
ν18 Bu 2935 2941 -
ν19 Bu 1741 1745 1741
ν20 Bu 1406 1416 1407
ν21 Bu 1372 1375 1372
ν22 Bu 1234 1233 1234
ν23 Bu 704 706 708
ν24 Bu 262 264 264
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Figure 4.35: The three selected iterations of HDNNPs and Bowman Potential along
the 1-D cuts of inter-molecular coordinates of the formic acid dimer used
in the reduced-dimensionality variational computations. Reproduced
from Ref. [80] with permission from the PCCP Owner Societies.

4.35 The obtained vibrational frequencies are given in Table 4.27. Both QB16 and
FAD-HDNNP show very good performance, with only few cm−1 deviation from ex-
periments. But, both the potentials still show a blue shift for v8 and v9 fundamental
frequencies. Edit Matyus and Alberto Martín Santa Daría hypothesise two possibil-
ities for the blue shift. Since the FAD-HDNNP has been well tested and also gave
good results with VPT2, one possible reason could be the constrained coordinates
used in the variational calculations. If that is the case, the relaxation of the con-
strained coordinates could fix the problem. The other solution could be increasing
the degrees of vibrational freedom used in GENIUSH [120], the software used for
computing variational frequencies. But, this could be computationally very costly.
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Table 4.27: Vibrational energies with respect to the zero-point vibrational energy
(in cm−1) obtained with the 8D(It) intermolecular-torsional model in
the GENIUSH program using the Bowman Potential and FAD-HDNNP.
These are compared to the experimental values.

Assignment ν̃QB16 ν̃FAD-HDNNP ν̃expt

ν16 70 70 69.2
2ν16 141 140 139
ν15 162 171 168.5
ν9/ν8 191 190 161
ν8/ν9 208 210 194
3ν16 211 210

ν15 + ν16 232 240
ν12 239 243 242
ν24 253 253 264

ν9 + ν16 262 260
ν8 + ν16 277 279
4ν16 281 280

ν15 + 2ν16 303 309
ν12 + ν16 310 311 311
ν24 + ν16 323 322
2ν15 324 330 336

ν9 + 2ν16 332 340
ν8 + 2ν16 347 348
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4.2.7 Construction of HDNNP with 3D Coupling Terms

After obtaining FAD-HDNNP, there was still an attempt to see whether further
improvement of the potential was possible. Since, the previous FAD-HDNNP had
two dimensional coupling, 3 dimensional coupling were included to enhance the data-
set. Structures were displaced along 3 modes at a time. 125 structures were created
per mode coupling. After this, the energy of the structures were predicted using two
HDNNPs of the previous iteration; FAD-HDNNP and HDNNP3-i which is described
in the Appendix. Structures with a ∆E of more than 3 meV/atom between FAD-
HDNNP and HDNNP3-i were selected for adding to the existing reference data. 2522
additional structures are used to train HDNNP4 while comparing to FAD-HDNNP.

Table 4.28: Energy root mean squared errors (RMSE) of the training and test sets
for HDNNP4 for the full energy range used in training.

RMSE [meV/atom] RMSE [cm−1]
PES structures training testing training testing

HDNNP4a 31684 0.324 1.675 26 135
HDNNP4b 31684 0.341 1.328 27 107

Figure 4.36: Energy difference ∆E = ECC −EHDNNP4a as a function of the reference
energy ECC. The root-mean-squared errors (RMSE) for the HDNNP4a
are provided in Tab. 4.28

The two HDNNPs; HDNNP4a and HDNNP4b of the current iteration are to
be assessed in a similar manner as described in the previous sections. Table 4.28
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Figure 4.37: Energy difference ∆E = ECC −EHDNNP4b as a function of the reference
energy ECC. The root-mean-squared errors (RMSE) for the HDNNP4b
are provided in Tab. 4.28

gives the RMSEs for the two HDNNPs. We can immediately observe that the two
HDNNPs are of similar quality. The training RMSEs are 0.324 meV/atom and
0.341 meV/atom for HDNNP4a and HDNNP4b respectively. This is an improve-
ment, albeit slight, from FAD-HDNNP which had an RMSE of 0.37 meV/atom.
Here, HDNNP4a has a better training RMSE. When we look at the testing RMSE,
HDNNP4a has 1.675 meV/atom and HDNNP4b has 1.328 meV/atom. This is an im-
provement from that of FAD-HDNNP which had 2.04 meV/atom as testing RMSE.
Now, HDNNP4b has a better testing RMSE. This again brings the same question
on which do we choose if we had to at this point. Both the HDNNPs have similar
architecture with 2 hidden layers and 18 nodes per layer. Their only difference in
being the randomly selected distribution of training and testing data and the initial
weight parameters. HDNNP4a has 28500 structures in training and 3184 structures
in testing. HDNNP4b has similar training data and testing data. But, the struc-
tures that are selected for training and testing are different.

Figures 4.36 and 4.37 show the difference in energy between Coupled Cluster and
HDNNP4s for each structure in the dataset. The structures go up to 1.4 eV/atom ref-
erence energy. When we compare HDNNP4a and HDNNP4b, we see that HDNNP4b
has a narrower range of deviation going from -0.04 to 0.01 eV/atom as compared to
-0.04 to 0.04 eV/atom for HDNNP4a. The structures showing bigger deviations are



100 Chapter 4 Results and Discussion

the ones in the testing set and that is to be expected. FAD-HDNNP has a similar
range of deviation going from -0.04 eV/atom to 0.04 eV/atom. This is shown in
previous section in Fig. 4.29. Here, even though it seems like HDNNP4b has better
description of energies, it is to be noted that the structures that differ greatly for
HDNNP4a are in the higher energy region. Therefore, other than the fact that both
the HDNNPs are quite close to reference energy, we cannot infer much about the a
difference in quality of both the potentials at this point.

Table 4.29 tabulates the harmonic frequencies from HDNNP4a, HDNNP4b and
CCSD(T)-F12a/haTZ. It can be observed that the numbers are reasonable. In
order to see the deviations from reference harmonic frequencies, Table 4.30 is useful.
HDNNP4a has a maximum deviation of 7.74 cm−1 whereas HDNNP4b has -8.87
cm−1. Also, RMSD for HDNNP4a is 3.89 cm−1 and for HDNNPb it is 4.75 cm−1.
FAD-HDNNP had a maximum deviation of 7.36 cm−1 and an RMSD of 4 cm−1. We
can very well see that HDNNP4a has a very similar quality of frequency with similar
maximum deviation and RMSD. Even though the testing energies are the best for
HDNNP4b, the frequencies determine that it is slightly worse than HDNNP4a. Nev-
ertheless the difference is in less than 2 cm−1 and it is difficult to choose a potential
or determine its quality at this stage.

For HDNNP4a, only six other modes show a deviation above 5 cm−1. These are
ω1, ω2, ω4, ω13, ω16 and ω21. Four modes show a deviation below 1 cm−1. These
are ω3, ω5, ω8 and ω9. When it comes to HDNNP4b, seven other modes show a
deviation above 5 cm−1. These are ω1, ω3, ω10, ω11, ω14, ω15 and ω17. Three modes
show a deviation below 1 cm−1. These are ω12, ω22 and ω23. Overall, FAD-HDNNP,
HDNNP4a and HDNNP4b are of similar quality in terms of energetics and frequen-
cies. The frequency comparison between these three potentials is shown in Fig.
4.38. However, a question can be raised whether it was necessary to invest time
in developing these two potentials. First of all, if possible it is always interesting
to see how much the quest for accuracy can be pushed. Secondly, to see whether
the potential really has improved by including further coupling terms, anharmonic
calculations would need to be performed which often requires higher dimensional
grids.
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Table 4.29: Comparison of the harmonic frequencies ωi (in cm−1) for HDNNP4 with
frequencies from CCSD(T)-F12a/haTZ level of theory.

Mode Sym. HDNNP4a HDNNP4b CCSD(T)-F12a/haTZ
ω1 Ag 3209.3 3210.8 3203.36
ω2 Ag 3097.1 3106.6 3104.59
ω3 Ag 1717.6 1723.6 1717.13
ω4 Ag 1489.1 1485.3 1483.92
ω5 Ag 1412.6 1411.1 1413.1
ω6 Ag 1257.9 1253.3 1256.78
ω7 Ag 684.6 685.7 687.78
ω8 Ag 211.8 214.2 211.28
ω9 Ag 171.3 168.3 170.96

ω10 Bg 1087.2 1090.4 1085.04
ω11 Bg 962.5 952.4 959.6
ω12 Bg 259.0 257.8 257.76

ω13 Au 1107.1 1110.9 1102.03
ω14 Au 994.2 978.9 986.46
ω15 Au 182.9 177.3 185.95
ω16 Au 70.5 74.0 76.36

ω17 Bu 3307.4 3312.5 3305.25
ω18 Bu 3096.6 3096.1 3100.56
ω19 Bu 1778.2 1785.6 1781.57
ω20 Bu 1457.3 1453.2 1455.96
ω21 Bu 1410.5 1407.7 1405.06
ω22 Bu 1263.7 1260.2 1260.06
ω23 Bu 714.0 715.4 715.81
ω24 Bu 281.0 276.9 278.07
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Table 4.30: Deviation of the harmonic frequencies ωi (in cm−1) for HDNNP4 from
CCSD(T)-F12a/haTZ frequencies. ∆ω = ωCC − ωHDNNP

Mode Sym. HDNNP4a HDNNP4b
ω1 Ag -5.94 -7.44
ω2 Ag 7.49 -2.01
ω3 Ag -0.47 -6.47
ω4 Ag -5.18 -1.38
ω5 Ag 0.5 2
ω6 Ag -1.12 3.48
ω7 Ag 3.18 2.08
ω8 Ag -0.52 -2.92
ω9 Ag -0.34 2.66

ω10 Bg -2.16 -5.36
ω11 Bg -2.9 7.2
ω12 Bg -1.24 -0.04

ω13 Au -5.07 -8.87
ω14 Au -7.74 7.56
ω15 Au 3.05 8.65
ω16 Au 5.86 2.36

ω17 Bu -2.15 -7.25
ω18 Bu 3.96 4.46
ω19 Bu 3.37 -4.03
ω20 Bu -1.34 2.76
ω21 Bu -5.44 -2.64
ω22 Bu -3.64 -0.14
ω23 Bu 1.81 0.41
ω24 Bu -2.93 1.17
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Figure 4.38: Deviations of the harmonic vibrational frequencies ωi with respect to
the reference CCSD(T)-F12a/haTZ frequencies for HDNNP4. ∆ω =
ωCC − ωHDNNP for different HDNNPs





Chapter 5

Conclusion and Outlook

The goal of the project was to present a methodology to construct High-Dimensional
Neural Network Potentials solely for use in Vibrational Spectroscopy. This includes
the procedure to build a new potential, analysing it at each step along the way and
to devise approaches for sampling structures and improving the potential. The two
systems studied in the project are Formic Acid Monomer and Formic Acid Dimer.
Both the systems are heavily studied experimentally and theoretically. Moreover,
there are widely used potentials designed for the systems thus providing extensive
benchmarking opportunities. Another goal of the project is to test the capabilities
and limitations of High-Dimensional Neural Networks especially in a question re-
quiring highly accurate fine tuning like that of vibrational frequencies.

For Formic Acid Monomer, the HDNNPs are compared against the potential from
David Tew. The initial dataset obtained from David Tew uses CCSD(T)-F12c/cc-
pVTZ-F12 level of theory. The initial HDNNP had a maximum deviation of 24.82
cm−1. The goal is to obtain an HDNNP where all the fundamental Harmonic fre-
quencies are below 10 cm−1 deviation from that of the Coupled Cluster fundamen-
tals. The Tew Potential constructed with an analytical potential meant for quantum
dynamics has 4.6 cm−1 maximum deviation and an RMSD of 2 cm−1. The initial
HDNNP has an RMSD of 13 cm−1. This was improved by sampling structures along
normal modes using Coupled Cluster eigenvectors to obtain a final HDNNP of ex-
pected quality. This HDNNP has a maximum deviation of 7.71 cm−1 and an RMSD
of 5 cm−1. Though anharmonic frequencies are not computed for the HDNNP, it is
possible and would give opportunities for benchmarking with experimental frequen-
cies.

Formic Acid Dimer is a well studied system of particular interest because of the
system is used as a benchmark for constructing Potential Energy Surfaces for spec-
troscopic purposes. Even though it is a ten atom system of not particularly large
size and the PES is 24 dimensional, the anharmonic frequencies using high level
electronic structure methods are challenging and costly. Therefore, developing a po-
tential of Coupled Cluster quality is essential in providing avenues to perform high
level vibrational computations. One of the most widely used Potential for Formic
Acid Dimer is the one developed by Joel Bowman. It has been used in computing
various anharmonic frequencies like VCI, variational and so on. The goal in con-
structing the HDNNP was to provide an alternate potential for Formic Acid Dimer
which reproduces Harmonic Frequencies more accurately. Thus, in this project the
potential by Bowman has been used as a comparison against the HDNNP. At the
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same time, it was desirable to develop a potential which again produces Harmonic
Frequencies with a maximum deviation of 10 cm−1 compared to the reference elec-
tronic structure method.

The initial dataset obtained from Joel Bowman had 13475 structures with a sparsely
populated high energy region. The reference data was calculated using CCSD(T)-
F12a/haTZ level of theory. The sparsely populated regions in the dataset can give
certain artefacts while evaluating the trained potential. The initial HDNNP has
testing structures with higher deviations than the rest which arose as a consequence
of the distribution of structures according to energy. The Bowman Potential has a
maximum deviation of 27 cm−1 with respect to the reference Coupled Cluster fun-
damentals. The initial HDNNP had a maximum deviation of 49 cm−1. This is to
be expected with a sparse dataset.

At this initial stage of developing a potential, all the factors that go into constructing
a potential need to be analysed. At the same time, a step by step analysis procedure
must be followed to make sure the potential fulfills all the criteria necessary. For
example, it is not enough to have a potential which gives accurate frequencies if it
fails to describe a large part of the energy surface accurately. Therefore, an analysis
of energy and harmonic frequencies need to be done.

The second iteration of the HDNNP was constructed by addressing the weak-points
of the previous potential. The symmetry functions were made more flexible as a
first step. The collaboration with Edit Matyus gave access to a large dataset from
which poorly described structures in the reference data were identified. Sampling
structures along normal modes was also done. Along with this, adding structures
from MD simulations and structures used in Hessian construction helped in signifi-
cantly improving the reference data. The thus constructed iteration of HDNNP had
a much better description of the harmonic frequencies and energies. The maximum
deviation for harmonic fundamentals was 24.86 cm−1.

The third iteration of the HDNNP involved adding two dimensional couplings to the
dataset. This has a significant consequence. A good description of couplings is neces-
sary in a potential for getting good quality VPT2 frequencies. The final HDNNP has
a maximum deviation of 7.36 cm−1 for the harmonic frequencies. Along with this,
the good description of energies ensures that this a potential which can be utilised
to compute anharmonic frequencies in collaboration with Benjamin Schröder and
Edit Matyus. The potential gave good results with VPT2 and Variational methods.

Further development of the HDNNP with three dimensional couplings added give
very good results comparable to that of the previous iteration but the further valida-
tion of their quality and their would depend on computing anharmonic frequencies.

Overall, in this project a three step procedure is used to construct a good qual-
ity potential for spectroscopy use. Initially, the quality of the energies is assessed
using RMSE and careful probing of the global potential. This ensures that the
potential does not have holes or other unnatural artefacts. The potential is then
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further developed by adding carefully selected structures employing an active learn-
ing method to get all the harmonic fundamental frequencies within a deviation of 10
cm−1. Next step is to ensure that the couplings are well represented by performing
VPT2 calculations on the potential and benchmarking with ab-initio VPT2 frequen-
cies.

This potential has applications in computing high level anharmonicities. At the cur-
rent stage the FAD-HDNNP is the potential available for Formic Acid Dimer with
the best description of harmonic frequencies. It also represents a global potential
with good quality VPT2 and Variational frequencies [80]. The procedure outlined
here is a recipe for constructing good quality potentials for molecular systems which
can be used in quantum dynamics and spectroscopic applications. The construction
of an accurate and robust potential is time taking but provides opportunities to do
high level vibrational calculations with Coupled Cluster qualities. Moreover, if at
all the potential has weaknesses, it arises from the quality of the reference method.
Hence, a careful selection of reference level of theory and development of an HDNNP
based on it can provide dynamical studies of systems for which the system size is a
hindrance to perform high quality vibrational calculations.





Bibliography

[1] Mater, A. C. & Coote, M. L. Deep learning in chemistry. J. Chem. Inf. Model.
59, 2545–2559 (2019).

[2] Meuwly, M. Machine learning for chemical reactions. Chem. Rev. 121, 10218–
10239 (2021).

[3] Sanchez-Lengeling, B. & Aspuru-Guzik, A. Inverse molecular design using
machine learning: Generative models for matter engineering. Science 361,
360–365 (2018).

[4] Gasteiger, J. & Zupan, J. Neural networks in chemistry. Angew. Chem. Int.
Ed. 32, 503–527 (1993).

[5] Butler, K. T., Davies, D. W., Cartwright, H., Isayev, O. & Walsh, A. Machine
learning for molecular and materials science. Nature 559, 547–555 (2018).

[6] Blank, T. B., Brown, S. D., Calhoun, A. W. & Doren, D. J. Neural network
models of potential energy surfaces. J. Chem. Phys. 103, 4129–4137 (1995).

[7] Behler, J. Perspective: Machine learning potentials for atomistic simulations.
J. Chem. Phys. 145, 170901 (2016).

[8] Deringer, V. L., Caro, M. A. & Csányi, G. Machine learning interatomic
potentials as emerging tools for materials science. Adv. Mater. 31, 1902765
(2019).

[9] Noé, F., Tkatchenko, A., Müller, K.-R. & Clementi, C. Machine learning for
molecular simulation. Ann. Rev. Phys. Chem. 71, 361–390 (2020).

[10] Unke, O. T., Chmiela, S., Sauceda, H. E., Gastegger, M., Poltavsky, I., Schütt,
K. T., Tkatchenko, A. & Müller, K.-R. Machine learning force fields. Chem.
Rev. 121, 10142–10186 (2021).

[11] Friederich, P., Häse, F., Proppe, J. & Aspuru-Guzik, A. Machine-learned
potentials for next-generation matter simulations. Nat. Mater 20, 750–761
(2021).

[12] Behler, J. & Csányi, G. Machine learning potentials for extended systems - a
perspective. Eur. Phys. J. B 94, 142 (2021).

[13] Handley, C. M. & Popelier, P. L. A. Potential energy surfaces fitted by artificial
neural networks. J. Phys. Chem. A 114, 3371–3383 (2010).

[14] Behler, J. Neural network potential-energy surfaces in chemistry: a tool for
large-scale simulations. Phys. Chem. Chem. Phys. 13, 17930–17955 (2011).



110 Bibliography

[15] Behler, J. Atom-centered symmetry functions for constructing high-
dimensional neural network potentials. J. Chem. Phys. 134, 074106 (2011).

[16] Behler, J. & Parrinello, M. Generalized neural-network representation of high-
dimensional potential-energy surfaces. Phys. Rev. Lett. 98, 146401 (2007).

[17] Behler, J. Atom-centered symmetry functions for constructing high-
dimensional neural network potentials. J. Chem. Phys. 134, 074106 (2011).

[18] Artrith, N. & Behler, J. High-dimensional neural network potentials for metal
surfaces: A prototype study for copper. Phys. Rev. B 85, 045439 (2012).

[19] Behler, J. Constructing high-dimensional neural network potentials: A tutorial
review. Int. J. Quantum Chem. 115, 1032–1050 (2015).

[20] Behler, J. First principles neural network potentials for reactive simulations
of large molecular and condensed systems. Angew. Chem. Int. Ed. 56, 12828–
12840 (2017).

[21] Bartók, A. P., Payne, M. C., Kondor, R. & Csányi, G. Gaussian approximation
potentials: The accuracy of quantum mechanics, without the electrons. Phys.
Rev. Lett. 104, 136403 (2010).

[22] Bartók, A. P. & Csányi, G. Gaussian approximation potentials: A brief tu-
torial introduction. International Journal of Quantum Chemistry 115, 1051–
1057 (2015).

[23] Thompson, A., Swiler, L., Trott, C., Foiles, S. & Tucker, G. Spectral neighbor
analysis method for automated generation of quantum-accurate interatomic
potentials. Journal of Computational Physics 285, 316–330 (2015).

[24] Drautz, R. Atomic cluster expansion for accurate and transferable interatomic
potentials. Phys. Rev. B 99, 014104 (2019).

[25] Artrith, N., Morawietz, T. & Behler, J. High-dimensional neural-network
potentials for multicomponent systems: Applications to zinc oxide. Phys.
Rev. B 83, 153101 (2011).

[26] Morawietz, T., Sharma, V. & Behler, J. A neural network potential-energy
surface for the water dimer based on environment-dependent atomic energies
and charges. J. Chem. Phys. 136, 064103 (2012).

[27] Ghasemi, S. A., Hofstetter, A., Saha, S. & Goedecker, S. Interatomic potentials
for ionic systems with density functional accuracy based on charge densities
obtained by a neural network. Physical Review B 92, 045131 (2015).

[28] Xie, X., Persson, K. A. & Small, D. W. Incorporating electronic information
into machine learning potential energy surfaces via approaching the ground-
state electronic energy as a function of atom-based electronic populations.
Journal of Chemical Theory and Computation 16, 4256–4270 (2020).



Bibliography 111

[29] Ko, T. W., Finkler, J. A., Goedecker, S. & Behler, J. A fourth-generation high-
dimensional neural network potential with accurate electrostatics including
non-local charge transfer. Nat. Commun. 12, 398 (2021).

[30] Prudente, F. V., Acioli, P. H. & Soares Neto, J. J. The fitting of potential
energy surfaces using neural networks: Application to the study of vibrational
levels of h3+. J. Chem. Phys. 109, 8801–8808 (1998).

[31] Bittencourt, A. C. P., Prudente, F. V. & Vianna, J. D. M. The fitting of poten-
tial energy and transition moment functions using neural networks: transition
probabilities in oh (a2σ+ to x2π). Chem. Phys. 297, 153–161 (2004).

[32] Carrington Jr., T. Perspective: Computing (ro-)vibrational spectra of
molecules with more than four atoms. J. Chem. Phys. 146, 120902 (2017).

[33] Malshe, M., Narulkar, R., Raff, L. M., Hagan, M., Bukkapatnam, S., Agrawal,
P. M. & Komanduri, R. Development of generalized potential-energy surfaces
using many-body expansions, neural networks, and moiety energy approxima-
tions. J. Chem. Phys. 130, 184102 (2009).

[34] Manzhos, S. & Carrington Jr., T. Using redundant coordinates to represent
potential energy surfaces with lower-dimensional functions. J. Chem. Phys.
127, 014103 (2007).

[35] Gastegger, M., Behler, J. & Marquetand, P. Machine learning molecular dy-
namics for the simulation of infrared spectra. Chem. Sci. 8, 6924–6935 (2017).

[36] Quaranta, V., Hellström, M., Behler, J., Kullgren, J., Mitev, P. & Her-
mansson, K. Maximally resolved anharmonic oh vibrational spectrum of the
water/zno(101̄0) interface from a high-dimensional neural network potential.
J. Chem. Phys. 148, 241720 (2018).

[37] Morawietz, T., Marsalek, O., Pattenaude, S. R., Streacker, L. M., Ben-Amotz,
D. & Markland, T. E. The interplay of structure and dynamics in the raman
spectrum of liquid water over the full frequency and temperature range. J.
Phys. Chem. Lett. 9, 851–857 (2018).

[38] Shepherd, S., Lan, J., Wilkins, D. M. & Kapil, V. Efficient quantum vibra-
tional spectroscopy of water with high-order path integrals: From bulk to
interfaces. J. Phys. Chem. Lett. 12, 9108–9114 (2021).

[39] Sommers, G. M., Calegari Andrade, M. F., Zhang, L., Wang, H. & Car, R.
Raman spectrum and polarizability of liquid water from deep neural networks.
Phys. Chem. Chem. Phys. 22, 10592–10602 (2020).

[40] Khare, P., Kumar, N., Kumari, K. M. & Srivastava, S. S. Atmospheric formic
and acetic acids: An overview. Reviews of Geophysics 37, 227–248 (1999).

[41] Zuckerman, B., Ball, J. A. & Gottlieb, C. A. Microwave Detection of Inter-
stellar Formic Acid. The Astrophysical Journal 163, L41 (1971).



112 Bibliography

[42] Lattanzi, V., Walters, A., Drouin, B. J. & Pearson, J. C. Submillimeter
spectrum of formic acid. The Astrophysical Journal Supplement Series 176,
536 (2008).

[43] Snyder, L. E. Interferometric observations of large biologically interesting
interstellar and cometary molecules. Proceedings of the National Academy of
Sciences 103, 12243–12248 (2006).

[44] Bertie, J. E. & Michaelian, K. H. The raman spectra of gaseous formic acid
-h2 and -d2. The Journal of Chemical Physics 76, 886–894 (1982).

[45] Olbert-Majkut, A., Ahokas, J., Lundell, J. & Pettersson, M. Raman spec-
troscopy of formic acid and its dimers isolated in low temperature argon ma-
trices. Chemical Physics Letters 468, 176–183 (2009).

[46] Millikan, R. C. & Pitzer, K. S. Infrared spectra and vibrational assignment
of monomeric formic acid. The Journal of Chemical Physics 27, 1305–1308
(1957).

[47] Luiz, G., Scalabrin, A. & Pereira, D. Gas phase infrared fourier transform
spectra of h12 cooh and h13cooh. Infrared Physics & Technology 38, 45–49
(1997).

[48] Tan, T., Goh, K., Ong, P. & Teo, H. Rovibrational constants for the ν6 and
2ν9 bands of hcood by fourier transform infrared spectroscopy. Journal of
Molecular Spectroscopy 198, 110–114 (1999).

[49] Maçôas, E. M., Lundell, J., Pettersson, M., Khriachtchev, L., Fausto, R. &
Räsänen, M. Vibrational spectroscopy of cis- and trans-formic acid in solid
argon. Journal of Molecular Spectroscopy 219, 70–80 (2003).

[50] Redington, R. L. Vibrational spectra and normal coordinate analysis of iso-
topically labeled formic acid monomers. Journal of Molecular Spectroscopy
65, 171–189 (1977).

[51] Madeja, F., Markwick, P., Havenith, M., Nauta, K. & Miller, R. E. Rota-
tionally resolved infrared spectroscopy of h2- and d1-formic acid monomer in
liquid he droplets. The Journal of Chemical Physics 116, 2870–2878 (2002).

[52] Baskakov, O. I., Markov, I. A., Alekseev, E. A., Motiyenko, R. A., Lohilahti,
J., Horneman, V.-M., Winnewisser, B. P., Medvedev, I. R. & Lucia, F. C. D.
Simultaneous analysis of rovibrational and rotational data for the 41, 51, 61,
72, 81, 7191 and 92 states of hcooh. Journal of Molecular Structure 795, 54–77
(2006).

[53] Baskakov, O., Horneman, V.-M., Alanko, S. & Lohilahti, J. Ftir spectra of
the ν6 and ν8 bands of 13c formic acid molecule—assignment of fir-laser lines.
Journal of Molecular Spectroscopy 249, 60–64 (2008).

[54] Cazzoli, G., Puzzarini, C., Stopkowicz, S. & Gauss, J. Hyperfine structure
in the rotational spectra of trans-formic acid: Lamb-dip measurements and
quantum-chemical calculations*. A&A 520, A64 (2010).



Bibliography 113

[55] Nejad, A., Suhm, M. A. & Meyer, K. A. E. Increasing the weights in the
molecular work-out of cis- and trans-formic acid: extension of the vibrational
database via deuteration. Phys. Chem. Chem. Phys. 22, 25492–25501 (2020).

[56] Käser, S., Boittier, E. D., Upadhyay, M. & Meuwly, M. Transfer learning
to ccsd(t): Accurate anharmonic frequencies from machine learning models.
Journal of Chemical Theory and Computation 17, 3687–3699 (2021).

[57] Tew, D. P. & Mizukami, W. Ab initio vibrational spectroscopy of cis- and
trans-formic acid from a global potential energy surface. The Journal of Phys-
ical Chemistry A 120, 9815–9828 (2016).

[58] Richter, F. & Carbonnière, P. Vibrational treatment of the formic acid double
minimum case in valence coordinates. The Journal of Chemical Physics 148,
064303 (2018).

[59] Käser, S. & Meuwly, M. Transfer learned potential energy surfaces: accurate
anharmonic vibrational dynamics and dissociation energies for the formic acid
monomer and dimer. Phys. Chem. Chem. Phys. 24, 5269–5281 (2022).

[60] Qu, C. & Bowman, J. M. An ab initio potential energy surface for the formic
acid dimer: zero-point energy, selected anharmonic fundamental energies, and
ground-state tunneling splitting calculated in relaxed 1–4-mode subspaces.
Phys. Chem. Chem. Phys. 18, 24835–24840 (2016).

[61] Richardson, J. O. Full- and reduced-dimensionality instanton calculations of
the tunnelling splitting in the formic acid dimer. Phys. Chem. Chem. Phys.
19, 966–970 (2017).

[62] Millikan, R. C. & Pitzer, K. S. The infrared spectra of dimeric and crystalline
formic acid. J. Am. Chem. Soc. 80, 3515–3521 (1958).

[63] Bertie, J. E. & Michaelian, K. H. The Raman spectra of gaseous formic acid-h2

and -d2. J. Chem. Phys. 76, 886 (1982).

[64] Nejad, A., Meyer, K. A. E., Kollipost, F., Xue, Z. & Suhm, M. A. Slow
monomer vibrations in formic acid dimer: Stepping up the ladder with FTIR
and Raman jet spectroscopy. J. Chem. Phys. 155, 224301 (2021).

[65] Georges, R., Freytes, M., Hurtmans, D., Kleiner, I., Vander Auwera, J. &
Herman, M. Jet-cooled and room temperature ftir spectra of the dimer of
formic acid in the gas phase. Chem. Phys. 305, 187–196 (2004).

[66] Matylitsky, V. V., Riehn, C., Gelin, M. F. & Brutschy, B. The formic acid
dimer (hcooh)2 probed by time-resolved structure selective spectroscopy. J.
Chem. Phys. 119, 10553–10562 (2003).

[67] Ito, F. & Nakanaga, T. Jet-cooled infrared spectra of the formic acid dimer
by cavity ring-down spectroscopy: observation of the O-H stretching region.
Chem. Phys. 277, 163–169 (2002).



114 Bibliography

[68] Bertie, J. E., Michaelian, K. H., Eysel, H. H. & Hager, D. The raman-active
O–H and O–D stretching vibrations and raman spectra of gaseous formic acid-
d1 and -od. J. Chem. Phys. 85, 4779–4789 (1986).

[69] Birer, O. & Havenith, M. High-resolution infrared spectroscopy of the formic
acid dimer. Annu. Rev. Phys. Chem. 60, 263 (2009).

[70] Kollipost, F., Larsen, R. W., Domanskaya, A. V., Nörenberg, M. & Suhm,
M. A. Communication: The highest frequency hydrogen bond vibration and
an experimental value for the dissociation energy of formic acid dimer. J.
Chem. Phys. 136, 151101 (2012).

[71] Ortlieb, M. & Havenith, M. Proton transfer in (hcooh)2: An ir high-resolution
spectroscopic study of the antisymmetric c–o stretch. J. Phys. Chem. A 111,
7355 (2007).

[72] Zielke, P. & Suhm, M. A. Raman jet spectroscopy of formic acid dimers: Low
frequency vibrational dynamics and beyond. Phys. Chem. Chem. Phys. 9,
4528 (2007).

[73] Xue, Z. & Suhm, M. A. Probing the stiffness of the simplest double hydrogen
bond: The symmetric hydrogen bond modes of jet-cooled formic acid dimer.
J. Chem. Phys. 131, 054301 (2009).

[74] Herman, M., Georges, R., Hepp, M. & Hurtmans, D. High resolution fourier
transform spectroscopy of jet-cooled molecules. Int. Rev. Phys. Chem. 19,
277–325 (2000).

[75] Nejad, A. & Suhm, M. A. Concerted pair motion due to double hydrogen
bonding: The formic acid dimer case. J. Ind. Inst. Sci. 100, 1–15 (2020).

[76] Qu, C. & Bowman, J. M. Ir spectra of (HCOOH)2 and (DCOOH)2: Ex-
periment, VSCF/VCI, and ab initio molecular dynamics calculations using
full-dimensional potential and dipole moment surfaces. J. Phys. Chem. Lett.
9, 2604–2610 (2018).

[77] Qu, C. & Bowman, J. M. High-dimensional fitting of sparse datasets of
CCSD(T) electronic energies and MP2 dipole moments, illustrated for the
formic acid dimer and its complex IR spectrum. J. Chem. Phys. 148, 241713
(2018).

[78] Qu, C. & Bowman, J. M. Quantum and classical ir spectra of (HCOOH)2,
(DCOOH)2 and (DCOOD)2 using ab initio potential energy and dipole mo-
ment surfaces. Faraday Discuss. 212, 33–49 (2018).

[79] Martín Santa Daría, A., Avila, G. & Mátyus, E. Fingerprint region of the
formic acid dimer: variational vibrational computations in curvilinear coordi-
nates. Phys. Chem. Chem. Phys. 23, 6526–6535 (2021).

[80] Shanavas Rasheeda, D., Martín Santa Daría, A., Schröder, B., Mátyus, E. &
Behler, J. High-dimensional neural network potentials for accurate vibrational



Bibliography 115

frequencies: the formic acid dimer benchmark. Phys. Chem. Chem. Phys. –
(2022).

[81] Born, M. & Heisenberg, W. Zur quantentheorie der molekeln. Annalen der
Physik 379, 1–31 (1924).

[82] Born, M. & Oppenheimer, R. Zur quantentheorie der molekeln. Annalen der
Physik 389, 457–484 (1927).

[83] Ritz, W. Über eine neue methode zur lösung gewisser variationsprobleme der
mathematischen physik. Journal für die reine und angewandte Mathematik
135, 1–61 (1909).

[84] Hartree, D. R. The wave mechanics of an atom with a non-coulomb central
field. part i. theory and methods. Mathematical Proceedings of the Cambridge
Philosophical Society 24, 89–110 (1928).

[85] Fock, V. Näherungsmethode zur Lösung des quantenmechanischen Mehrkör-
perproblems. Zeitschrift fur Physik 61, 126–148 (1930).

[86] Roothaan, C. C. J. New developments in molecular orbital theory. Rev. Mod.
Phys. 23, 69–89 (1951).

[87] Roothaan, C. C. J. Self-consistent field theory for open shells of electronic
systems. Rev. Mod. Phys. 32, 179–185 (1960).

[88] Hall, G. G. & Lennard-Jones, J. E. The molecular orbital theory of chemical
valency viii. a method of calculating ionization potentials. Proceedings of the
Royal Society of London. Series A. Mathematical and Physical Sciences 205,
541–552 (1951).

[89] Coester, F. & Kümmel, H. Short-range correlations in nuclear wave functions.
Nuclear Physics 17, 477–485 (1960).

[90] Čížek, J. On the correlation problem in atomic and molecular systems. calcula-
tion of wavefunction components in ursell-type expansion using quantum-field
theoretical methods. The Journal of Chemical Physics 45, 4256–4266 (1966).

[91] Fliegl, H., Klopper, W. & Hättig, C. Coupled-cluster theory with simplified
linear-r12 corrections: The ccsd(r12) model. The Journal of Chemical Physics
122, 084107 (2005).

[92] Fliegl, H., Hättig, C. & Klopper, W. Inclusion of the (t) triples correction
into the linear-r12 corrected coupled-cluster model ccsd(r12). International
Journal of Quantum Chemistry 106, 2306–2317 (2006).

[93] Kong, L., Bischoff, F. A. & Valeev, E. F. Explicitly correlated r12/f12 methods
for electronic structure. Chemical Reviews 112, 75–107 (2012).

[94] Tew, D. P., Klopper, W., Neiss, C. & Hättig, C. Quintuple-ζ quality coupled-
cluster correlation energies with triple-ζ basis sets. Phys. Chem. Chem. Phys.
9, 1921–1930 (2007).



116 Bibliography

[95] Persson, B. J. & Taylor, P. R. Accurate quantum-chemical calculations: The
use of gaussian-type geminal functions in the treatment of electron correlation.
The Journal of Chemical Physics 105, 5915–5926 (1996).

[96] Manby, F. R., Werner, H.-J., Adler, T. B. & May, A. J. Explicitly corre-
lated local second-order perturbation theory with a frozen geminal correlation
factor. The Journal of Chemical Physics 124, 094103 (2006).

[97] Ditchfield, R., Hehre, W. J. & Pople, J. A. Self-consistent molecular-orbital
methods. ix. an extended gaussian-type basis for molecular-orbital studies of
organic molecules. The Journal of Chemical Physics 54, 724–728 (1971).

[98] Jensen, F. Polarization consistent basis sets: Principles. The Journal of
Chemical Physics 115, 9113–9125 (2001).

[99] Dunning, T. H. Gaussian basis sets for use in correlated molecular calculations.
i. the atoms boron through neon and hydrogen. The Journal of Chemical
Physics 90, 1007–1023 (1989).

[100] Behler, J. Representing potential energy surfaces by high-dimensional neural
network potentials. Journal of Physics: Condensed Matter 26, 183001 (2014).

[101] Blank, T. B. & Brown, S. D. Adaptive, global, extended kalman filters for
training feed-forward neural networks. J. Chemometrics 8, 391–407 (1994).

[102] Mills, I. M. 3.2 - vibration–rotation structure in asymmetric- and symmetric-
top molecules. In RAO, K. N. & MATHEWS, C. W. (eds.) Molecular Spec-
troscopy, 115–140 (Academic Press).

[103] NIELSEN, H. The vibration-rotation energies of molecules. REVIEWS OF
MODERN PHYSICS 23, 90–136 (1951).

[104] Werner, H.-J. et al. Molpro, version , a package of ab initio programs. See
https://www.molpro.net.

[105] Hättig, C., Tew, D. P. & Köhn, A. Communications: Accurate and efficient
approximations to explicitly correlated coupled-cluster singles and doubles,
ccsd-f12. The Journal of Chemical Physics 132, 231102 (2010).

[106] Peterson, K. A., Adler, T. B. & Werner, H.-J. Systematically convergent basis
sets for explicitly correlated wavefunctions: The atoms h, he, b–ne, and al–ar.
The Journal of Chemical Physics 128, 084102 (2008).

[107] Adler, T. B., Knizia, G. & Werner, H.-J. A simple and efficient CCSD(T)-F12
approximation. J. Chem. Phys. 127, 221106 (2007).

[108] Knizia, G., Adler, T. B. & Werner, H.-J. Simplified CCSD(T)-F12 methods:
Theory and benchmarks. J. Chem. Phys. 130, 054104 (2009).

[109] Werner, H.-J., Knizia, G., Adler, T. B. & Marchetti, O. Benchmark Studies for
Explicitly Correlated Perturbation- and Coupled Cluster Theories. Z. Phys.
Chem. 224, 493–511 (2010).



Bibliography 117

[110] Kendall, R. A., Dunning, T. H. & Harrison, R. J. Electron affinities of the
first-row atoms revisited. Systematic basis sets and wave functions. J. Chem.
Phys. 96, 6796–6806 (1992).

[111] Dunning, T. Gaussian Basis Sets for Use in Correlated Molecular Calculations.
I. The Atoms Boron through Neon and Hydrogen. J. Chem. Phys. 90, 1007–
1023 (1989).

[112] Weigend, F. A fully direct RI-HF algorithm: Implementation, optimised aux-
iliary basis sets, demonstration of accuracy and efficiency. Phys. Chem. Chem.
Phys. 4, 4285–4291 (2002).

[113] Gastegger, M., Behler, J. & Marquetand, P. Machine learning molecular dy-
namics for the simulation of infrared spectra. Chem. Sci. 8, 6924–6935 (2017).

[114] Podryabinkin, E. V. & Shapeev, A. V. Active learning of linearly parametrized
interatomic potentials. Computational Materials Science 140, 171–180 (2017).

[115] Browning, N. J., Ramakrishnan, R., von Lilienfeld, O. A. & Roethlisberger, U.
Genetic optimization of training sets for improved machine learning models of
molecular properties. The Journal of Physical Chemistry Letters 8, 1351–1359
(2017).

[116] Dral, P. O., Owens, A., Yurchenko, S. N. & Thiel, W. Structure-based sam-
pling and self-correcting machine learning for accurate calculations of potential
energy surfaces and vibrational levels. The Journal of Chemical Physics 146,
244108 (2017).

[117] Peterson, A. A., Christensen, R. & Khorshidi, A. Addressing uncertainty
in atomistic machine learning. Phys. Chem. Chem. Phys. 19, 10978–10985
(2017).

[118] Singraber, A., Behler, J. & Dellago, C. Library-based lammps implementation
of high-dimensional neural network potentials. J. Chem. Theory Comput. 15,
1827–1840 (2019).

[119] Plimpton, S. Fast parallel algorithms for short-range molecular dynamics. J.
Comp. Phys. 117, 1 (1995).

[120] Mátyus, E., Czakó, G. & Császár, A. G. Toward black-box-type full- and
reduced-dimensional variational (ro)vibrational computations. J. Chem. Phys.
130, 134112 (2009).





Appendix A

Appendix

A.1 HDNNP3-i

Number of layers = 2
Number of nodes per layer = 17

Table A.1: Energy root mean squared errors (RMSE) of the training and test sets
for HDNNP3-i for the full energy range used in training.

RMSE [meV/atom] RMSE [cm−1]
PES structures training testing training testing

HDNNP3-i 29162 0.573 2.254 46 182
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Table A.2: Comparison of the harmonic frequencies ωi (in cm−1) for HDNNP3-i with
frequencies from CCSD(T)-F12a/haTZ level of theory.

Mode Sym. HDNNP3-i CCSD(T)-F12a/haTZ
ω1 Ag 3201.8 3203.36
ω2 Ag 3091.8 3104.59
ω3 Ag 1719.2 1717.13
ω4 Ag 1491.9 1483.92
ω5 Ag 1416.6 1413.1
ω6 Ag 1257.2 1256.78
ω7 Ag 692.5 687.78
ω8 Ag 208.4 211.28
ω9 Ag 169.2 170.96

ω10 Bg 1079.2 1085.04
ω11 Bg 957.6 959.6
ω12 Bg 259.0 257.76

ω13 Au 1107.2 1102.03
ω14 Au 988.0 986.46
ω15 Au 181.7 185.95
ω16 Au 76.4 76.36

ω17 Bu 3311.2 3305.25
ω18 Bu 3090.3 3100.56
ω19 Bu 1778.5 1781.57
ω20 Bu 1453.9 1455.96
ω21 Bu 1415.2 1405.06
ω22 Bu 1259.0 1260.06
ω23 Bu 722.8 715.81
ω24 Bu 268.4 278.07
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Table A.3: Deviation of the harmonic frequencies ωi (in cm−1) for HDNNP3-i from
CCSD(T)-F12a/haTZ frequencies. ∆ω = ωCC − ωHDNNP

Mode Sym. HDNNP3-i
ω1 Ag 1.56
ω2 Ag 12.79
ω3 Ag -2.07
ω4 Ag -7.98
ω5 Ag -3.5
ω6 Ag -0.42
ω7 Ag -4.72
ω8 Ag 2.88
ω9 Ag 1.76

ω10 Bg 5.84
ω11 Bg 2
ω12 Bg -1.24

ω13 Au -5.17
ω14 Au -1.54
ω15 Au 4.25
ω16 Au -0.04

ω17 Bu -5.95
ω18 Bu 10.26
ω19 Bu 3.07
ω20 Bu 2.06
ω21 Bu -10.14
ω22 Bu 1.06
ω23 Bu -6.99
ω24 Bu 9.67
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A.2 Analytical Harmonic Frequencies of
FAD-HDNNP

Table A.4: Comparison of the harmonic frequencies ωi (in cm−1) for FAD-HDNNP
(analytical and the ones from finite difference) with frequencies from
CCSD(T)-F12a/haTZ level of theory.

Mode Sym. Analytical Finite difference CCSD(T)-F12a/haTZ
ω1 Ag 3208.8 3209.0 3203.36
ω2 Ag 3102.3 3102.4 3104.59
ω3 Ag 1721.5 1721.5 1717.13
ω4 Ag 1485.9 1486.0 1483.92
ω5 Ag 1410.2 1410.2 1413.1
ω6 Ag 1256.9 1257.0 1256.78
ω7 Ag 687.4 687.4 687.78
ω8 Ag 213.9 213.9 211.28
ω9 Ag 166.9 166.8 170.96

ω10 Bg 1083.3 1083.3 1085.04
ω11 Bg 957.0 957.1 959.6
ω12 Bg 257.2 257.3 257.76

ω13 Au 1108.6 1108.7 1102.03
ω14 Au 979.02 979.1 986.46
ω15 Au 180.1 180.2 185.95
ω16 Au 70.9 70.9 76.36

ω17 Bu 3311.5 3311.7 3305.25
ω18 Bu 3099.3 3099.4 3100.56
ω19 Bu 1783.9 1784.0 1781.57
ω20 Bu 1459.0 1459.0 1455.96
ω21 Bu 1409.7 1409.7 1405.06
ω22 Bu 1259.4 1259.5 1260.06
ω23 Bu 711.6 711.6 715.81
ω24 Bu 275.2 275.2 278.07
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A.3 RuNNer Settings

Table A.5: RuNNer settings for HDNNPs
Keyword Settings

nn_type_short 1
random_number_type 5
global_activation_short t t l

cutoff_type 1
use_short_nn

global_hidden_layers_short 2
scale_symmetry_functions
center_symmetry_functions

A.3.1 ACSFs

Table A.6: Radial ACSF parameters η for FAM-HDNNP1
element pair η[Bohr−2]

H-H 0, 0.007400, 0.018800, 0.038800, 0.079700, 0.187800
O-O 0, 0.005100, 0.011800, 0.021500, 0.036200, 0.060500
H-C 0, 0.008800, 0.023800, 0.054000, 0.132700, 0.475000
O-C 0, 0.007200, 0.018200, 0.037200, 0.075200, 0.171100
H-O 0, 0.009200, 0.025200, 0.058700, 0.152500, 0.641700

Table A.7: Angular ACSF parameters for all element combinations of all HDNNPs
No. η[Bohr−2] ζ λ
1 0.0 1.0 1.0
2 0.0 2.0 1.0
3 0.0 4.0 1.0
4 0.0 16.0 1.0
5 0.0 1.0 -1.0
6 0.0 2.0 -1.0
7 0.0 4.0 -1.0
8 0.0 16.0 -1.0
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Table A.8: Radial ACSF parameters η for FAM-HDNNP
element pair η[Bohr−2]

H-H 0, 0.007328, 0.018735, 0.038709, 0.079670, 0.187744
O-O 0, 0.005023, 0.011794, 0.021453, 0.036166, 0.060482
H-C 0, 0.008774, 0.023734, 0.053938, 0.132669, 0.474999
O-C 0, 0.007159, 0.018182, 0.037177, 0.075164, 0.171025
H-O 0, 0.009147, 0.025115, 0.058628, 0.152434, 0.641661

Table A.9: Radial ACSF parameters η for HDNNP-ia and HDNNP-ib
element pair η[Bohr−2]

H-H 0, 0.004, 0.009, 0.016, 0.028, 0.049, 0.094, 0.215
O-O 0, 0.003, 0.006, 0.010, 0.015, 0.022, 0.032, 0.048
C-C 0, 0.003747, 0.009066, 0.017212, 0.030893, 0.030893
H-C 0, 0.004, 0.009, 0.018, 0.031, 0.056, 0.114, 0.296
O-C 0, 0.004, 0.009, 0.017, 0.029, 0.052, 0.101, 0.241
H-O 0, 0.004, 0.010, 0.019, 0.033, 0.063, 0.134, 0.395

Table A.10: Radial ACSF parameters η for HDNNP3
element pair η[Bohr−2]

H-H 0, 0.004, 0.009, 0.016, 0.028, 0.049, 0.094, 0.215
O-O 0, 0.003, 0.006, 0.010, 0.015, 0.022, 0.032, 0.048
C-C 0, 0.003747, 0.009066, 0.017212, 0.030893, 0.030893
H-C 0, 0.004, 0.009, 0.018, 0.031, 0.056, 0.114, 0.296
O-C 0, 0.004, 0.009, 0.017, 0.029, 0.052, 0.101, 0.241
H-O 0, 0.004, 0.010, 0.019, 0.035, 0.067, 0.149, 0.486

Table A.11: Radial ACSF parameters η for HDNNP4a and HDNNP4b
element pair η[Bohr−2]

H-H 0, 0.004, 0.009, 0.016, 0.028, 0.049, 0.094, 0.215
O-O 0, 0.003, 0.006, 0.010, 0.015, 0.022, 0.032, 0.048
C-C 0, 0.003747, 0.009066, 0.017212, 0.030893, 0.030893
H-C 0, 0.004, 0.009, 0.018, 0.031, 0.056, 0.114, 0.296
O-C 0, 0.004, 0.009, 0.017, 0.029, 0.052, 0.101, 0.241
H-O 0, 0.004, 0.010, 0.019, 0.035, 0.067, 0.149, 0.486
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A.4 Harmonic Frequencies of Intermediate
HDNNPs

Table A.12: Comparison of the harmonic frequencies ωi (in cm−1) for HDNNP-i with
frequencies from CCSD(T)-F12a/haTZ level of theory.

Mode Sym. HDNNP-ia HDNNP-ib CCSD(T)-F12a/haTZ
ω1 Ag 3216.1 3203.7 3203.36
ω2 Ag 3136.5 3139.3 3104.59
ω3 Ag 1719.4 1708.0 1717.13
ω4 Ag 1500.5 1480.8 1483.92
ω5 Ag 1401.6 1407.3 1413.1
ω6 Ag 1240.0 1248.8 1256.78
ω7 Ag 684.8 674.5 687.78
ω8 Ag 216.1 212.1 211.28
ω9 Ag 132.5 146.3 170.96

ω10 Bg 1072.0 1101.1 1085.04
ω11 Bg 953.2 957.6 959.6
ω12 Bg 257.0 252.1 257.76

ω13 Au 1134.2 1132.5 1102.03
ω14 Au 977.2 984.9 986.46
ω15 Au 165.0 165.8 185.95
ω16 Au 78.2 64.9 76.36

ω17 Bu 3285.4 3280.9 3305.25
ω18 Bu 3064.5 3061.7 3100.56
ω19 Bu 1751.4 1774.8 1781.57
ω20 Bu 1445.3 1438.3 1455.96
ω21 Bu 1388.7 1361.6 1405.06
ω22 Bu 1273.6 1266.0 1260.06
ω23 Bu 727.3 713.2 715.81
ω24 Bu 275.0 257.2 278.07
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Table A.13: Deviation of the harmonic frequencies ωi (in cm−1) for HDNNP-i from
CCSD(T)-F12a/haTZ frequencies. ∆ω = ωCC − ωHDNNP

Mode Sym. HDNNP-ia HDNNP-ib
ω1 Ag -12.74 -0.34
ω2 Ag -31.91 34.71
ω3 Ag -2.27 9.13
ω4 Ag -16.58 3.12
ω5 Ag 11.5 5.8
ω6 Ag 16.78 7.98
ω7 Ag 2.98 13.28
ω8 Ag -4.82 -0.82
ω9 Ag 38.46 24.66

ω10 Bg 13.04 16.06
ω11 Bg 6.4 2
ω12 Bg 0.76 5.66

ω13 Au -32.17 30.47
ω14 Au 9.26 1.56
ω15 Au 20.95 20.15
ω16 Au -1.84 11.46

ω17 Bu - 19.85 24.35
ω18 Bu 36.06 38.86
ω19 Bu 30.17 6.77
ω20 Bu 10.66 17.66
ω21 Bu 6.36 43.46
ω22 Bu -13.54 -5.94
ω23 Bu -11.49 2.61
ω24 Bu 3.07 20.87
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Table A.14: Comparison of the harmonic frequencies ωi (in cm−1) for HDNNP3 with
various Hessian step sizes in Bohr.

Mode Sym. 0.001 0.005 0.01 0.025 0.05 CCSD(T)-F12a/haTZ
ω1 Ag 3208.7 3208.8 3209.0 3210.5 3215.8 3203.36
ω2 Ag 3102.2 3102.2 3102.4 3103.3 3106.8 3104.59
ω3 Ag 1721.5 1721.5 1721.5 1721.8 1722.7 1717.13
ω4 Ag 1486.0 1485.9 1486.0 1486.3 1487.3 1483.92
ω5 Ag 1410.1 1410.1 1410.2 1410.3 1410.8 1413.1
ω6 Ag 1256.9 1256.9 1257.0 1257.3 1258.5 1256.78
ω7 Ag 687.4 687.4 687.4 687.4 687.3 687.78
ω8 Ag 214.0 213.9 213.9 213.8 213.5 211.28
ω9 Ag 166.9 166.9 166.8 166.7 166.3 170.96

ω10 Bg 1083.3 1083.2 1083.3 1083.5 1084.1 1085.04
ω11 Bg 957.0 957.0 957.1 957.5 958.9 959.6
ω12 Bg 257.2 257.2 257.3 257.6 258.6 257.76

ω13 Au 1108.6 1108.6 1108.7 1108.8 1109.5 1102.03
ω14 Au 979.1 979.0 979.1 979.4 980.7 986.46
ω15 Au 179.9 180.2 180.2 180.7 182.3 185.95
ω16 Au 70.8 70.9 70.9 71.3 72.9 76.36

ω17 Bu 3311.4 3311.5 3311.7 3313.1 3318.4 3305.25
ω18 Bu 3099.2 3099.2 3099.4 3100.4 3103.9 3100.56
ω19 Bu 1783.9 1783.9 1784.0 1784.3 1785.3 1781.57
ω20 Bu 1459.0 1459.0 1459.0 1459.3 1460.2 1455.96
ω21 Bu 1409.7 1409.7 1409.7 1409.8 1410.2 1405.06
ω22 Bu 1259.4 1259.4 1259.5 1259.8 1261.0 1260.06
ω23 Bu 711.6 711.6 711.6 711.6 711.5 715.81
ω24 Bu 275.2 275.2 275.2 275.0 274.5 278.07
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Figure A.1: EHDNNP2a for displacements along two normal modes at a time. The
displacements are made using Coupled Cluster eigenvectors.
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Figure A.2: EHDNNP2b for displacements along two normal modes at a time. The
displacements are made using Coupled Cluster eigenvectors.
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