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1 Introduction

Few innovations have changed our everyday life as much as the introduction of
semiconductor technology in the last century. As the most prominent example,
the silicon transistor led to the birth of modern electronics and is an integral
part of most modern computers and general electronic devices, see Ref. [1]. In
addition, semiconductor solar cells, in most cases composed of doped silicon
or gallium arsenide, provide nowadays a reliable source of renewable energy
and an alternative to burning fossil fuels for meeting the growing energy con-
sumption in our society, see Ref. [2]. Lastly, the direct conversion of electric
energy into light emission in certain semiconductors gave rise to the develop-
ment of light-emitting diodes, which have replaced traditional incandescent or
fluorescent sources of illumination in many applications, see Ref. [3].

With their production efficiency rising and costs sinking over time, see,
e.g., Ref. [4], the continued use of simple semiconductors such as silicon in
the upcoming decades seems very likely. Nonetheless, there is an ongoing
scientific search for new materials that could potentially overcome some of the
remaining problems of our current silicon-based technology.

One such problem is the Shockley-Queisser efficiency limit of conventional
single-junction solar cells, see Ref. [5], which estimates how much of the
incoming solar radiation energy can be converted into electrical energy. Its
largest limiting contributions are spectral losses: Solar radiation with an energy
below the semiconductor’s band gap will not be absorbed (a transmission loss),
while high energy solar radiation excites electrons far into the conduction band.
These “hot” charge carriers loose their energy by fast scattering processes with
the nuclear lattice until they reach the bottom of the conduction band. This
excess energy thus heats up the material without contributing to the output
voltage (thermalization loss). The theoretical efficiency limit from the spectral
losses alone is reduced to about 44 % for the band gap of silicon and reduces
upon considering further losses in a detailed-balance model to about 30 % for
silicon, see Ref. [5].

Increasing solar cell efficiency has been subject to many decades of research,
see, e.g., Refs. [6, 7]. One possibility are multi-junction solar cells, which
combine several semiconductors of varying band gaps to reduce the spectral
losses. An exciting alternative are hot carrier solar cells, see the overview in
Ref. [8]. They try to reduce the thermalization losses by extracting the excited
state charge-carrier energy before they relax to the bottom of the band gap and
loose their excess energy to heat. Such a mechanism was recently proposed
for the material class of manganites, in particular Pr1– xCaxMnO3 (PCMO), see
Refs. [9–11], which forms the basis for many investigations in this thesis.

Manganites show a very strong coupling between the manganese valence
electrons and the surrounding lattice distortion modes, also denoted as phonons.
The local distortion modes adjust to the electrons and reduce their energy,
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1 Introduction

leading to a trapping effect. This was first described for polar materials, in
which a charged electron causes lattice distortions that follow the electronic
movement and change its effective mass, which led to the name polaron for
such an electronic quasi-particle, see Refs. [12, 13]. We also refer to Ref. [14]
for a recent review of different types of polarons. In manganites, local polarons
form various types of complex cooperative ordered structures, depending on the
electron-doping of the material, see Refs. [15, 16]. When used as a solar cell,
the strong cooperative electron-phonon coupling in the material is assumed
to stabilize the excited electrons in a hot polaron state, with measurements
predicting a large enough lifetime to allow energy extraction, see Refs. [9, 10].
The hot polaron is formed by fast adjustment of the nuclear lattice to the
photo-excited electron, leading to a metastable electron-nuclear configuration.
Radiative recombination from such a metastable state might be dipole forbidden
and radiationless decay through an energy crossing prevented by the presence of
the surrounding cooperative distortions, possibly leading to the long lifetimes,
see Ref. [9]. These measurements indicate that a photovoltaic effect sets in only
below the long-range ordering temperatures of the polaronic distortions, which
was confirmed in the layered Ruddlesden-Popper variant Pr0.5Ca1.5MnO4 in
Ref. [11].

Also besides the possibilities of long-living hot charge carriers, many inter-
esting properties arise from the strong coupling of the electronic and lattice
degrees of freedom in manganites. For example, for certain dopings in PCMO,
a colossal magnetoresistance effect appears, in which the resistivity of the ma-
terial drops by several orders of magnitude upon applying a magnetic field,
see Refs. [17, 18]. The same effect can also be induced by photoexcitation,
see Refs. [19–21], external or chemical pressure, see Ref. [22], or electron
irradiation, see Ref. [23].

Understanding the role of the strong electron-phonon interactions present
in manganites might thus give access to new and yet unexplored physics.
Motivated by the measurements of a photovoltaic effect in PCMO, one goal
of this thesis is to get a theoretical estimate of the melting temperature of
electronic orbital order (concomitant with polaronic order) at certain dopings
in the material, and compare the results, for example, to the onset temperatures
of the measured photovoltaic effect, see Ref. [24]. For this, we start in chapter 2
with the description of the various interacting degrees of freedom in PCMO and
the current understanding of the complicated phase diagram of the material.
In chapter 3, we present a theoretical tight-binding model of the material
that has been shown to capture many of the relevant ordering principles in
manganites, see Refs. [25–27], and whose parameters have been carefully
adjusted to first-principles calculations in Ref. [28]. In chapter 4, this model is
applied to clarify the ground-state ordered structures at low doping in PCMO.
We then perform finite-temperature simulations that heat up the model system
and investigate the effect on the cooperative polaronic distortions. This is
done by using a molecular dynamics approach for the classical nuclei and an
(almost) adiabatic approximation for the fast electronic degrees of freedom.
The adiabatic approximation forces the electrons to stay in their instantaneous
ground state while following the nuclear motion. As outlined in the published
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article, Ref. [24], the resulting melting temperature of the order shows a good
agreement with new experimental measurements. Together, they suggest a
reevaluation of the low-doped finite-temperature region of the phase diagram.
These results are interpreted as a correlation between the onset of a photovoltaic
effect and the spontaneous orbital-order transition temperature, supporting the
conjecture from previous measurements in Refs. [9–11].

These findings encourage a direct simulation of a photoexcitation in both the
long-range ordered and disordered phases to better understand the influence of
this order on the relaxation processes. Such simulations, however, cannot be
done using the adiabatic approximation for the electrons. Two widely used algo-
rithms to extend quantum-classical electron-phonon dynamics to non-adiabatic
regimes are the Ehrenfest dynamics and the fewest-switches surface hopping
(FSSH) methods, see Refs. [29–31]. In the former, the nuclei evolve under a
potential given by the trace of the mixed quantum-classical Hamiltonian over
the electronic subsystem, which one might consider as a mean-field ansatz in
the electron-phonon coupling. In the latter, the nuclear potential is determined
at any instance of time from a single instantaneous electronic eigenstate, with
the possibility of stochastic hops between these eigenstates. Previous stud-
ies combining photoexcitation and -relaxation in the manganite tight-binding
model with Ehrenfest dynamics yielded promising results, see Refs. [32, 33].

In this thesis, we opt for a more fundamental investigation of both quantum-
classical methods and their ability to accurately reproduce electron-phonon
coupled dynamics. For this, we review in detail the concepts of adiabatic elec-
tronic states and energy surfaces in the Born-Huang framework, see Ref. [34],
and describe the relevance of non-adiabatic effects in the description of coupled
electron-phonon dynamics in chapter 5. The general theory is build on a com-
plete quantum mechanical treatment of the whole system, but we analyze as
well how to retain a non-adiabatic description while approximating the nuclei
as classical particles. Both Ehrenfest dynamics and FSSH are introduced in
that chapter, together with a variant of exact diagonalization (ED) in the Born-
Huang basis in a small model system. We will use the Holstein model, see
Ref. [35], as example system during our assessment of the non-adiabatic effects.
This is a prototypical model for studying electron-phonon coupling, as it in-
cludes (in its simplest form) only non-interacting electrons, uncoupled nuclear
harmonic oscillators, and a bi-linear local electron-phonon coupling. Despite
its simplicity, it has been successfully used to analyze absorption spectra in
PCMO, see Ref. [36].

Important for the application of Ehrenfest dynamics or FSSH to the tight-
binding model is a correct description of the general transport behavior of
excited electrons and the energy transfer between the electronic and nuclear
subsystems. Unbiased benchmark studies comparing these methods to nu-
merically exact and fully quantum mechanical results in extended condensed
matter systems are scarce, see Ref. [37], mostly due to the lack of exact com-
parison data. One recent advancement of a reciprocal space formulation of
FSSH has been compared to Ehrenfest dynamics and a numerically exact hier-
archical equations of motion (HEOM) method (see Ref. [38]) in Holstein and
Peierls model systems with up to 10 sites in Ref. [39]. A coupled extension
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1 Introduction

of Ehrenfest dynamics, the multiconfigurational Ehrenfest (MCE) method, see
Refs. [40, 41], has been benchmarked against the HEOM method and a second
coupled trajectory method (the multiple Davydov D2 ansatz, see Ref. [42]) in
a similar model with up to 16 sites, see Ref. [43]. In addition, a benchmark
study between Ehrenfest dynamics, FSSH and MCE was carried out in large
chromophores in Ref. [44]. In the field of cavity quantum electrodynamics,
both Ehrenfest dynamics and FSSH have been compared to numerically exact
methods in Ref. [45]. All these investigations were carried out in the last few
years and older benchmark studies are in most cases limited to small few-state
problems, see, e.g., Refs. [46, 47]. Of these above benchmark studies only
the reciprocal space FSSH study in Ref. [39], provides a comparison of both
quantum-classical methods in a condensed-matter like system that has some
similarity with the manganite model. The study finds that the agreement with
the exact data is better in FSSH than in Ehrenfest dynamics in the single studied
observable of the transient electronic populations of the lowest reciprocal-space
state.

Further investigations are definitely needed to assess the performance of
the quantum-classical methods in view of their potential application to the
manganite tight-binding model. We presented such an extended benchmark
study, carried out in a collaborative project, in Ref. [37]. The single-electron
results of that study, together with a few additional results, are presented and
discussed in detail in chapter 6. This study includes Ehrenfest dynamics,
FSSH, MCE and the numerically exact methods exact diagonalization and
density matrix renormalization group (DMRG) with local basis optimization
(LBO) (see Refs. [48–53]) in the extended one-dimensional Holstein model
with up to 51 sites. We start with small systems that can still be analyzed
easily in the Born-Huang framework and use the same formalism to evaluate
the methods’ performance in the larger systems. Various single-electron initial
states are analyzed. These include a “bare local” electron state, corresponding
to a local charge carrier injected into an empty Holstein chain, which was
also denoted as “Franck-Condon” initial state in another tensor network state
method study, see Ref. [54], and a “dressed local” initial state, in which the
nuclei are already adjusted locally to the inserted electron. One might describe
the following non-equilibrium dynamics as the development or stabilization of
a trapped polaron, and we discuss which of the studied methods can reproduce
the qualitative behavior predicted by the exact reference methods. For smaller
systems, initial states restricted to adiabatic eigenstates are studied as well.

While we do not apply the quantum-classical methods to the manganite tight-
binding model in this thesis, we believe that the evaluation of the methods’
performance (and of the various tested improvements of the FSSH method)
provides a starting point for such future non-adiabatic simulations. In particular,
the FSSH method seems to be a promising candidate to study the correlation
of the photovoltaic effect and the orbital-order phase transition in PCMO.

The thesis concludes with a summary and an outlook in chapter 7.
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2 Manganites

2.1 Perovskite structure

Owing to the early work published by Jonker and van Santen, see Ref. [55], the
material class of “manganites” is somewhat different from the usual chemical
notation associated with all manganese oxides crystallizing in a perovskite
structure. This structure, which has its name from the original perovskite
material of calcium titanite, is depicted in its undistorted form in Fig. 2.1. For
oxides, such as manganites, it has the chemical formula ABO3.

Figure 2.1: Sketch of the (undistorted) perovskite structure for ABO3 with cubic sym-
metry. The (purple) B-type cations are at the center of six (red) oxygen
atoms forming the corners of an octahedron. Neighboring octahedra are
corner-, i.e., oxygen-sharing. Between the octahedra lie (green) A-type
cations. For manganites, the B-type cations are manganese atoms, while
the A-type cations are, in most cases, trivalent rare earth or divalent alka-
line earth metals. Figure reproduced from Ref. [56].

The B-type cations, which in the following are always manganese ions, are
positioned at the centers of the oxygen octahedra. We will see that most of
the relevant physical interactions take place on these manganese sites. With
the oxygen atoms being formally in the state O2– , the valence on the man-
ganese atoms is determined by the A-type cations. There are three to four
d-electrons on the manganese sites, depending on the amount of divalent
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2 Manganites

(A2+Mn4+O2–
3 ) and trivalent (A3+Mn3+O2–

3 ) A-type cations. In this thesis,
we will only consider the specific material class of praseodymium-calcium
manganite Pr1– xCaxMnO3, or as shorthand PCMO, with the divalent calcium
and trivalent praseodymium A-type cations. The parameter x is the hole-doping
on the manganese sites, allowing for any mixture between pure PrMnO3 (x = 0)
and pure CaMnO3 (x = 1). The partially filled d-shell of the manganese sites
leads to the formation of various complicated ordered structures in the entire
doping range of 0 ≤ x ≤ 1, see Sec. 2.4.

The actual atomic structure of PCMO deviates from the ideal cubic one
presented in Fig. 2.1 and has the orthorhombic Pbnm-space group, see Refs. [57,
58]. This is both due to stretching modes of the manganese-oxygen bond
distances (investigated in more detail in Sec. 2.2.2) and due to a buckled
tilting of the oxygen octahedra. The tilting is influenced by the effective
radii of the A-type cations, which are too small to completely fill the space
between the octahedra, as can be quantified by a Goldschmidt tolerance factor
t = dA−O/(

√
2dMn−O) that is smaller than one, see Refs. [59, 60]. Here, dA−O

and dMn−O are the bond distances between oxygen and the A-type cation, and
oxygen and manganese, respectively. With the radii of praseodymium and
calcium being slightly different, the tilting angle of the octahedra varies in the
doping range from a stronger buckling for PrMnO3 to a nearly cubic symmetry
for CaMnO3, see Ref. [57]. The tilt-pattern is known as a GdFeO3-type
distortion, and is also observed in the similar, and more commonly studied,
material of LaMnO3, see Refs. [61–63]. The unit cell of the Pbnm-space group
consists of four octahedra, with its lattice vectors being, in a pseudo-cubic
approximation, close to a ≈ (x − y), b ≈ (x + y) and c ≈ 2z. Here, x, y and z
are the vectors connecting manganese atoms in neighboring octahedra, see also
Refs. [63, 64] for a graphical depiction of the Pbnm unit cell, and Fig. 2.6 for
a sketch of the Pbnm lattice vectors in the cubic lattice. For low hole-dopings
(with strong buckling and significant influence of the Mn-O stretching “Jahn-
Teller” modes (see Sec. 2.2.2)), the lengths of the lattice vectors split according
to b > a > c/

√
2 at low temperatures, see Ref. [57]. The system becomes more

orthorhombic and the manganese-oxygen-manganese bond angles deviate from
the ideal cubic 180◦ angle, see Ref. [60]. We will now investigate the physics
of a single octahedron, composed of the central manganese atom and the
surrounding six oxygen atoms, in more detail.

2.2 Single octahedron interactions

2.2.1 Crystal field splitting and electronic configuration

The central building block of manganites are the octahedra shown in the sketch
in Fig. 2.1. With the manganese atom being formally in the 4+ or 3+ va-
lence state, there are between three and four d-electrons on every manganese
atom. While the d-levels are degenerate for an isolated atom, this is not the
case in the presence of the surrounding atomic structure. For an undistorted
octahedral structural environment (cubic symmetry), the five real d-orbitals
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2.2 Single octahedron interactions

(a) d3z2−r2 (b) dx2−y2

(c) dxz (d) dyz (e) dxy

t2g

eg

Figure 2.2: The five real d-orbitals on the manganese atom, separated into the two
symmetry groups of eg (a), (b) and t2g (c)-(e), with the octahedral crystal
field indicated by black lines pointing toward the neighboring oxygen
atoms.

are split into two symmetry-groups. The eg orbitals, composed of the d3z2−r2

and the dx2−y2 state, which both have lobes pointing toward the oxygen neigh-
bors, see Figs. 2.2(a),(b), and the t2g orbitals, composed of the dxz, dyz and
dxy states, which have their lobes pointing in between the Mn-O bonds, see
Figs. 2.2(c)-(e). We note that the orbitals have no preferred direction in the
cubic case, and linear combinations of the eg orbitals lead to rotated versions of
these two, e.g., |3x2 − r2〉 = − cos(60◦) |3z2 − r2〉 + sin(60◦) |x2 − y2〉, restor-
ing the cubic symmetry.

Using standard ligand field theory, one can determine the energetic separation
of the two groups of orbitals due to the surrounding crystal field from their
electro-static interaction with the oxygen-p (O-p) orbitals, see, e.g., Ref. [65].
Estimates of the resulting expression suggest that the eg energy levels are in
the order of a few meV higher than the t2g levels, which is much smaller
than the measured energy splitting, see Ref. [27]. Instead, the majority of
the splitting is caused by a hybridization of the manganese-d (Mn-d) with
the O-p orbitals, see Ref. [28]. The eg states form σ-bonds with the O-p
states, resulting in bonding and antibonding contributions. The bonding states
are mostly of oxygen character and always filled; they are typically attributed
solely to the oxygen atoms and referred to as O-p. In contrast, the antibonding
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2 Manganites

states, which still have significant O-p contribution (see the densities of states
in Ref. [28]), are attributed to the manganese atoms and formally denoted as the
new Mn-eg states. The antibond significantly raises their energy (in the order
of eV) compared to the t2g levels. While this is different from the crystal field
normally considered in ligand field theory, we still refer to this energy splitting
as crystal field splitting. The t2g states can form π-bonds with the O-p states,
which are, however, much weaker compared to the σ-bonds of the eg states.
The different energy levels can split further if the local symmetry is reduced,
e.g., to a tetragonal case (z < x = y), but the orbitals will in the following still
be referred to, in a pseudo-cubic fashion, as eg and t2g orbitals. In particular,
the Jahn-Teller effect (see Sec. 2.2.2) leads to a considerable distortion of the
cubic symmetry and a large separation of the two eg energy levels.

For Mn4+, as present in CaMnO3, the three t2g orbitals, Figs. 2.2(c)-(e) are
occupied. They are all spin-aligned due to Hund’s rule, and have a total spin
of S = 3

2~. Since they are always occupied, any further minor splitting of
these orbitals due to distortions of the ideal oxygen octahedron is not relevant
for understanding ground state properties. A sketch of the density of states
of the Mn-d states of CaMnO3 is shown in Fig. 2.3(a), which indicates the
Hund’s splitting of the majority and minority spin directions, and the crystal
field splitting between t2g and eg states.

The picture changes once we move to Mn3+, as present in PrMnO3. The
additional fourth Mn-d electron occupies one of the eg electrons in the same spin
direction as the t2g electrons (for an isolated octahedron), which means that the
Coulomb interaction outweighs the crystal field splitting, leading to a high-spin
configuration, see Refs. [25–27]. The degenerate but only partially occupied
eg states of the majority spin direction are highly susceptible to further lattice
distortions that could lift this degeneracy. The main source of such distortions
is the Jahn-Teller effect, outlined in the next section, which leads to a distortion
of the oxygen octahedron in line with the occupied eg orbital and thus breaks
the cubic symmetry. One such example is shown in the schematic density of
states of PrMnO3 in Fig. 2.3(b).

2.2.2 The Jahn-Teller effect

Jahn and Teller investigated in their fundamental work, see Ref. [66], the
stability of partially occupied, symmetry-induced orbital-degenerate electronic
states in molecules, just like the high-spin configuration in a single octahedral
Mn3+ manganite. Based on group symmetry arguments, they showed that
the symmetric nuclear configuration leading to the orbital degeneracy will not
be stable for a non-linear molecule, in that a nuclear distortion exists which
lifts the degeneracy linearly around the degeneracy seam. For our manganite
system, the nuclear distortions lifting the eg orbital degeneracy can already be
estimated from the shape of the orbitals shown in Figs. 2.2(a) and 2.2(b). We
mentioned that the energy increment of these states in the crystal field splitting
is caused by their antibond with the O-p states. If the Mn-O bond distance
is now increased in the direction of their orbital lobes, then this antibond will
be weakened, thus reducing their energy. While the d3z2−r2 orbital is mainly
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2.2 Single octahedron interactions

Figure 2.3: Schematic illustration of the densities of states (DoS) for the Mn-d states of
(a) CaMnO3 and (b) PrMnO3, with the majority and minority spin direction
shown with positive and negative values, respectively. The Fermi-energy
is indicated with a dashed vertical line. In CaMnO3, the crystal field
splitting ∆CF between t2g and eg states, and the Hund’s splitting ∆Hund

between majority and minority spin directions are included. For PrMnO3,
an example of a Jahn-Teller distortion of the oxygen octahedron with the
Jahn-Teller splitting ∆JT of the corresponding eg states is shown (the oc-
cupied and unoccupied orbitals are further separated due to their Coulomb
interaction, which has to be considered for estimating these splitting en-
ergies). For a realistic density of states of the materials obtained from a
hybrid density-functional calculation we refer to Ref. [28].

oriented in the z-direction, the dx2−y2 orbital is mainly oriented in the x-y-plane.
The distortion mode splitting these two orbitals linearly (in first order) is the
so-called Q3 mode, see Refs. [67, 68], which is one of the Jahn-Teller modes
in an octahedral environment. It is defined as

Q3 =
1
√

6

(
2∆z − ∆x − ∆y

)
, (2.1)

where ∆i are the deviations of the O-Mn-O bond distances from their equilib-
rium value in the direction i (in cubic notation). For positive Q3, the oxygen
octahedron is elongated in the z-direction and compressed in the x-y-plane,
which reduces the energy of the d3z2−r2 orbital, while the dx2−y2 orbital in-
creases in energy by the same amount (in first order). For negative Q3, this
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2 Manganites

energy splitting happens in the opposite direction. The case of positive Q3 was
also indicated in the schematic density of states of PrMnO3, see Fig. 2.3(b).

As mentioned previously, the two eg orbitals form a two-dimensional mani-
fold of electronic states and linear combinations of the two orbitals lead to
rotated versions of them in other cubic directions. The distortion modes lifting
the orbital degeneracy build a similar two-dimensional space, with a second
Jahn-Teller mode Q2 being responsible for splitting the degeneracy of the linear
combinations 1√

2
(|3z2 − r2〉 ± |x2 − y2〉) (see Refs. [67, 68]):

Q2 =
1
√

2

(
∆x − ∆y

)
. (2.2)

One can form continuous distortions combining both modes: Q(θ) = cos(θ)Q3+

sin(θ)Q2. For example, Q(2π3 ) corresponds to a Q3 mode rotated onto the x-axis.
A detailed energy expression for this electron-phonon coupling is given when
introducing the tight-binding model, see Sec. 3.2.3, but we will already discuss
the qualitative nature of the electron-phonon coupling here.

If one starts at θ = 0 in the (classical) Q3-distorted octahedron (with |Q | > 0),
the d3z2−r2 orbital will have the lowest energy and is occupied for an isolated
octahedron. By continuously increasing the Jahn-Teller angle θ from 0 to 2π
(always with |Q | > 0), the adiabatic lowest energy eg orbital will change as well
according to the formula |θ/2〉 = cos(θ/2) |d3z2−r2〉 − sin(θ/2) |dx2−y2〉 (note
the half angle in this expression). Adiabatic electronic states will be introduced
rigorously in Ch. 5, and we note here only that they refer to electronic eigenstates
obtained for fixed nuclear positions. These lowest-energy orbitals are drawn
in Fig. 2.4 in steps of 30◦ of the Jahn-Teller angle θ. The corresponding Jahn-
Teller distortion is indicated with red arrows for the positive and negative pure
Q2 and Q3 modes.

For these Mn3+ sites, the occupied electronic orbital is always concomitant
with the Jahn-Teller distortion at not too high temperatures. This stabilized
electron-nuclear local configuration is also denoted as a Jahn-Teller polaron,
see, e.g., Ref. [14]. Some authors differentiate between a static and dynamic
Jahn-Teller effect, see, e.g., Ref. [69]. In the dynamic Jahn-Teller effect, the
Jahn-Teller angle θ can adjust freely, but always together with the electronic
orbital mixing angle |θ/2〉, so that the eg electron stays in the instantaneous
lowest-energy orbital. In a static Jahn-Teller effect, the Jahn-Teller angle θ (and
mixing angle |θ/2〉) is fixed by a long-range ordering of the lattice distortions
and electronic orbitals. This can also be seen as a cooperative Jahn-Teller
distortion, see Sec. 2.3 for more details on inter-octahedral interactions. De-
pending on whether the local distortions are part of a long-range or short-range
order, one might refer to the arrangement as a polaron crystal or polaron liquid,
respectively.

After completing one loop from θ = 0 to θ = 2π, the Jahn-Teller distortion
returns to a pure Q3 mode. This is not the case for the occupied eg orbital,
which changes sign during this loop, as is evident from Fig. 2.4 and indicated
there with a dotted line, and from the expression given above, which contained
only half the Jahn-Teller angle θ/2 as the mixing angle.
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2.2 Single octahedron interactions

Figure 2.4: The eg orbitals with the lowest energy in an isolated octahedron with a
Jahn-Teller distortion of Q(θ) = cos(θ)Q3 + sin(θ)Q2 , 0 are shown in
steps of 30◦ in the Jahn-Teller angle θ. The Jahn-Teller distortions of the
oxygen octahedron for a pure Q3 or Q2 mode (in both positive and negative
directions) are shown with red arrows.

The excited electronic state (the eg orbital with the highest energy for a
certain nuclear configuration), is the state |(θ + π)/2〉, which is always the
orbital drawn on the opposite site of the circle in Fig. 2.4. Except for the
symmetric (cubic) nuclear configuration at Q = 0, the energies of these two
orbitals will always be split. For more details, we refer to the energy expression
introduced in Sec. 3.2.3. The sign-change of the electronic wave function upon
completing an (adiabatically slow) loop around the symmetric configuration
is one realization of the geometric phase effect, also called Berry phase, see
Refs. [70–74]. In the following, we refer to Mn-sites in which the lower
adiabatic eg orbital has a larger occupation than the higher adiabatic orbital as
“orbital-polarized”. At low temperatures any site with a significant Jahn-Teller
distortion is typically orbital-polarized.

Other nuclear modes that remove the 90◦-angles between the different Mn-O
bonds, or simply shift the whole surrounding oxygen lattice, will not be consid-
ered here, although they exist, see Ref. [67]. However, one additional relevant
phonon mode remains: the breathing mode, Q1, see Refs. [67, 68], which is an
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isotropic expansion of the oxygen octahedron:

Q1 =
1
√

3

(
∆x + ∆y + ∆z

)
. (2.3)

With the eg state being an antibond, a larger breathing distortion will reduce the
energy of the occupied state, but it is independent of the orbital mixing angle.

2.3 Inter-octahedral interactions
The ground-state configuration of an isolated octahedron seems to be relatively
straightforward: For Mn4+, the spins of the t2g electrons are aligned and there
is no Jahn-Teller distortion. For Mn3+, the eg electron is spin-aligned with the
t2g electrons and its orbital mixing angle is coupled to the Jahn-Teller angle θ
of the nuclear modes Q2 and Q3, see also the densities of states in Fig. 2.3. The
situation becomes much more complicated once we turn to a full perovskite
configuration with many corner-sharing octahedra, see Fig. 2.1, as the different
degrees of freedom have competing tendencies for their ordering.

Let us start with the magnetic interactions. The electronic configuration
of the manganese atoms leads to the development of a magnetic moment
(from the three t2g electrons and potentially the one eg electron). Since the
manganese atoms are separated by oxygen atoms in the perovskite structure, a
direct magnetic exchange interaction between the manganese sites is suppressed
and instead indirect interactions via the oxygen atom dominate the magnetic
ordering.

The first description of a magnetic interaction of two cations through a non-
magnetic anion was given with the superexchange mechanism, see Ref. [75]
in which the general formulation of a previous work, Ref. [76], was evaluated
for practical purposes. In this original formulation, the superexchange effect
is derived with perturbation theory of an ionic bond picture, in which one
of the O-p electrons (along the bond direction) is virtually excited to one of
the neighboring manganese sites and subject to an onsite interaction, while the
second O-p electron has a direct exchange interaction with the other neighboring
manganese site. In the case of two Mn4+ ions connected by an oxygen bridge
(as in CaMnO3), there is no large overlap between the occupied Mn-t2g and
the O-p orbitals, which allows a ferromagnetic (FM) interaction for both the
onsite coupling of the first electron, and the direct exchange of the second
electron. Since the two O-p electrons have opposite spin, this leads in total to an
antiferromagnetic (AFM) interaction between the t2g spins of the neighboring
Mn4+ sites.

A similar result was obtained with various theoretical explanations, all lead-
ing to this same antiferromagnetic Mn4+-Mn4+ interaction, see Ref. [77]. These
include the successful theory of semicovalent exchange of Goodenough and
Loeb, see Refs. [16, 78], in which each of the two relevant O-p electrons form a
partial (one-electron) bond with empty manganese orbitals on the two opposite
sites of the oxygen atom. With each of these bonding electron states being
ferromagnetically coupled to the t2g electrons, one once again arrives at the
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2.3 Inter-octahedral interactions

AFM interaction. As mentioned above, what we refer to as O-p orbitals are in
fact the bonding states of the hybridized O-p and Mn-d orbitals, and the semi-
covalent exchange extends this approach by recognizing that the two different
spin directions of the relevant O-p orbital will form directional bonds with the
Mn-neighbor that is spin-aligned with them. The sign of the superexchange
interaction can change if the Mn-O-Mn bond deviates strongly from 180◦, as
demonstrated in Ref. [77], and can become ferromagnetic for a 90◦ bond. The
superexchange is thus influenced by the tilting distortion mentioned previously,
see Sec. 2.1.

In PrMnO3, at least along one axis on each Mn3+ ion, some of the relevant
manganese orbitals will already be occupied (e.g., the d3x2−r2 orbital for the
x-direction). Due to the strong overlap of this orbital with the O-p state,
an AFM interaction between the two is preferred by the Pauli principle, see,
e.g., Ref. [79], and instead of semicovalent, this bond was denoted as ionic in
Ref. [16]. In a situation where the oxygen atom can form one semicovalent
(FM) bond in one direction, and an ionic (AFM) bond in the other direction,
the total Mn-Mn interaction becomes ferromagnetic (the two O-p electrons still
have opposite signs). With this idea Goodenough could reproduce the spin-
ordering in the material LaMnO3 (which is a manganite in the similar Mn3+

configuration as PrMnO3), see Ref. [16]. LaMnO3 shows an antiferromagnetic
ordering along one axis, where two semicovalent bonds could be formed, and
a ferromagnetic ordering in the perpendicular plane, where a staggered orbital
configuration of the eg orbitals leads to alternating mixed semicovalent-ionic
Mn-O-Mn bonds of a ferromagnetic type. The same orbital and spin order
is also present in PrMnO3 and shown in Fig. 2.6. This type of ferromagnetic
superexchange comes along with an asymmetry of the Mn-O-Mn bond in that
the oxygen atom moves closer to the direction of the semicovalent bond. We
can already understand this mechanism from the Jahn-Teller distortion induced
by the occupied eg orbitals and in fact the experimental anisotropic magnetic
ordering can also be understood from these polaronic interactions without
referring to the concepts of semicovalent exchange, see Ref. [25].

The eg electrons of Mn3+ sites can in principle hop to neighboring man-
ganese sites, as they have a large overlap with the bridging oxygen atoms. This
is suppressed in the previously discussed Mn3+-Mn3+ bonds, due to Coulomb
interactions between the eg electrons, and additionally Jahn-Teller (if a different
orbital is occupied) or Hund’s interaction (if a different spin direction is occu-
pied). The situation changes in mixed valence compounds with Mn3+-Mn4+

bonds. Here, the eg electron can delocalize between the sites and favors both a
ferromagnetic spin alignment, as well as a similar Jahn-Teller distortion to min-
imize the respective interaction energies. This is known as the double-exchange
mechanism, see Ref. [80]. The spin- and Jahn-Teller-aligned configurations on
two neighboring sites reduce the energy of the eg electron delocalized between
both sites, and the combined structure is also referred to as Zener-polaron, see
Refs. [14, 80]. In contrast to the ferromagnetic superexchange, the double-
exchange leads to a strong conductance and can result in metallic ground-state
phases in manganites, but by itself it cannot explain the complex phase diagram
of many manganites, see Refs. [25, 27]. The eg electron hopping underlying
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the double exchange is influenced by Jahn-Teller and tilting deformations of
the lattice, see Refs. [63, 78], as well as the relative spin orientation of the t2g
electrons on neighboring sites, see Ref. [81].

Besides the t2g and eg interactions, we also have to consider the cooperative
Jahn-Teller distortions themselves. Since the octahedra share the oxygen-atom
corners, it seems intuitive that if one octahedron expands, e.g., in the z-direction,
that the±z-neighbors compress in the same direction, thus making similar Jahn-
Teller modes in neighboring octahedra unlikely and leading to an alternating
Jahn-Teller distortion pattern as already induced by the ferromagnetic superex-
change mechanism. Kanamori introduced in Ref. [68] the notion of an orbital
spin (cos(θ), sin(θ)), a pseudo spin, describing the Jahn-Teller distortion in the
Q3-Q2 plane (see Fig. 2.4). The alternating Jahn-Teller distortions then corre-
spond to an antiferro-Jahn-Teller ordering (which will be accompanied by an
antiferro-orbital (AFO) ordering, referring to the eg electrons whose mixing
angle adjusts according to the Jahn-Teller angle).

In the real material, the AFO ordering is not necessarily enforced by the
cooperative distortions, as there are two alternatives: First, the bonds are not
straight but tilted, as discussed in Sec. 2.1, with a Mn-O-Mn bond angle smaller
than 180◦. Upon the expansion in z-direction this tilting bond angle could
reduce further to allow two neighboring octahedra to have the same Jahn-Teller
mode. We mention, however, that these modes are not perfectly aligned in the
real tilted material, as the local coordinate system for the phonon modes build
from the position of the six oxygen neighbors will be different for different
sites. Second, the Mn-Mn distance could increase, even on a global scale,
in a certain direction, to accommodate for larger distortions in that elongated
direction. The lattice constants in fact vary strongly in the low-temperature
phase diagram for different doping x, allowing for such global trends, and also
the tilting angle depends slightly on the doping, see Ref. [58]. However, both
of these distortions lead to strain in the material and the induced stress will
counteract these options to some degree. Since the double exchange favors a
ferro-orbital (FO) alignment, at least of close-by Mn-sites, it competes with
the AFO tendency of the cooperative Jahn-Teller distortions, which can lead to
intricate orbital-ordered ground-state phases in the mixed valence regime, as
we will see in the next section.

The onsite Coulomb interaction can influence the eg-electron hopping simi-
larly as the Jahn-Teller distortions in preventing double occupations of Mn-eg
orbitals. This is also outlined in Refs. [27, 82], which show that models includ-
ing a strong Jahn-Teller interaction can predict most of the ordering principles
of manganites even without considering the Coulomb interaction.

2.4 The phase diagram of Pr1 – xCaxMnO3

The first systematic analysis of a manganite phase diagram was carried out by
Wollan and Koehler (see Ref. [15]) with neutron diffraction experiments on
La1– xCaxMnO3. Depending on the hole doping in the system they found a
variety of complex magnetic ground state phases, including both FM and AFM
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spin patterns, often with a directional dependence. The magnetic structures
were named after the classification presented in that study. The most important
patterns are (see also Ref. [28]): (a) A-type AFM, with FM spin alignment in
the x-y-plane and AFM alignment in the z-direction, (b) B-type FM, with FM
spin alignment in all directions, (c) C-type AFM, with FM spin alignment in
the z-direction and AFM alignment in the x-y-plane, (d) G-type AFM, with an
AFM spin alignment in all directions, and (e) CE-type AFM, with ferromagnetic
zig-zag chains in the x-y-plane and AFM coupling to other chains. All these
spin patterns appear also in Pr1– xCaxMnO3 and are sketched later in Fig. 2.6,
where the experimental phases at very low temperature are outlined (in the
following denoted as zero-temperature phases).

For Pr1– xCaxMnO3, detailed neutron diffraction, X-ray diffraction, magnetic
susceptibility and electrical resistivity measurements were carried out, see
Refs. [57, 58, 83], and interpreted in terms of the superexchange and double
exchange mechanisms to predict the magnetic and orbital ordering in the entire
doping range. The obtained phases are close to the ones of La1– xCaxMnO3
and could in many cases be well explained with the superexchange theory
of Goodenough, Ref. [16]. In contrast to La1– xCaxMnO3, the material stays
insulating (or semiconducting, see Ref. [58]) in the whole composition range
at zero temperature, which is attributed to the stronger buckling (tilting) and
thus reduced electron hopping bandwidth (see, e.g., Ref. [25]). The coarse
distribution of these phases is indicated in Fig. 2.5 for the doping range 0 ≤
x ≤ 1 and temperatures up to 1000 K.

The detailed zero-temperature phases will be described in the next section,
but we can already see that antiferromagnetic and ferromagnetic insulating
phases with orbital ordering are formed in the low doping region (close to
PrMnO3), while for higher doping an additional charge ordering is observed
in a variety of antiferromagnetic insulating phases. Close to CaMnO3, the
orbital and charge order vanishes, but the AFM-insulating character remains.
The influence of an increased temperature, which melts first the magnetic and
then the orbital and charge order, is analyzed in detail in Sec. 2.4.2. Here, the
striped region at small doping x is of special importance, as the established
literature-phase diagram predicts a melting of the orbital order only at very
high temperatures (up to 900 K for PrMnO3). As presented in Ref. [24], we
argue that the spontaneous orbital order vanishes already at much lower values
below the striped region, which is described in detail in Ch. 4.

2.4.1 Zero-temperature phases

Many experimental investigations of the phases at low temperatures (denoted
here as zero-temperature phases) followed the initial investigations of Refs. [57,
58, 83], see Refs. [17, 18, 20–22, 84–98], but the underlying ordering principles
in many doping regions are still not unambiguously agreed upon. In some
doping ranges, however, especially x = 0, x = 0.5, x ≈ 0.75 and x = 1, the
magnetic and orbital order has been verified in many experiments (although
not completely unanimously). In addition, all experiments agree in that around
x = 0.25 a ferromagnetic insulating phase develops, although the nature of
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Figure 2.5: Sketch of the relevant ordered phases of Pr1– xCaxMnO3, including anti-
ferromagnetic and ferromagnetic insulators (AFI and FMI), combined in
some doping ranges with orbital and charge order, according to the results
from Refs. [57, 58, 83]. At high temperatures a polaron liquid phase with
short- but without long-range orbital order develops. The phase transition
at even higher temperatures to a pseudo-cubic phase without short-range
order is not shown here. The zero-temperature phases are discussed in de-
tail in Sec. 2.4.1 and the finite-temperature phase transitions in Sec. 2.4.2.
Adapted figure with permission from Ref. [24]. Copyright (2022) by the
American Physical Society.
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the orbital order (and potentially charge order) is still under debate. These
phases are sketched in Fig. 2.6. We will now discuss the current experimental
understanding of the zero-temperature phases in the whole doping range.

At x = 0 (pure PrMnO3), the material is orthorhombic with c/
√

2 . a < b,
see Ref. [58], and has an A-type AFM spin order, i.e., FM coupling in the x-y-
plane and AFM coupling between planes (see Fig. 2.6). The magnetic order is
accompanied by an alternating in-plane d3x2−r2 − d3y2−r2 orbital order, exactly
like predicted from Goodenough’s theory of superexchange (or semicovalent
exchange) for the similar material LaMnO3, see Ref. [16]. The orbital order has
been further verified by theoretical ab initio calculations, see Refs. [28, 100].
As pointed out in Ref. [28], a weak admixture of a d3z2−r2 orbital is found,
which shifts the Jahn-Teller angle from the pure d3x2−r2 and d3y2−r2 modes
(θ = 120◦ and θ = 240◦, see Fig. 2.4) to values around θ = 110◦/θ = 250◦.

The orthorhombic distortions decrease with the hole doping until they are
nearly gone at x = 0.25, which is also accompanied by a transition to a
completely ferromagnetic (B-type) phase, see Ref. [58] and Fig. 2.6. For
the transition region, especially around x = 0.1, two alternative descriptions
and interpretations of the experimental data exist: First, a spin-canted phase
very similar to pure A-type PrMnO3, but with an FM moment building up
in-plane, eventually leading to the ferromagnetic phase at higher doping, see
Refs. [58, 101]. Second, in light of more recent experiments, nanoscale phase
separation between the A-type AFM and B-type FM phases, see Refs. [84, 85],
which could explain experiments showing a photoinduced ferromagnetism. As
the proposal of a phase separation is able to explain more of the observed
measurements, it might be regarded as “more physical”, see Ref. [86], but this
matter is still open to new research.

At x = 0.25, various experiments confirmed a completely ferromagnetic
phase, see Refs. [58, 87]. Double-exchange based theories (see Ref. [102])
would predict such an FM phase to be metallic, as the spin-alignment in the
double-exchange picture is caused by delocalized eg electrons. However, as
mentioned above, all zero-temperature phases are insulating in Pr1– xCaxMnO3.
An alternative was already presented above with the ferromagnetic superex-
change mechanism (see Sec. 2.3), which can be stabilized with a long-range or-
bital order, see Ref. [16]. Two types of orbital order with accompanying charge
order have been proposed based on simple model calculations: A layered or-
bital order with Mn4+ sites appearing only every second layer in z-direction (see
Ref. [82]), and the appearance of “orbital polarons”, see Ref. [103], which are
Mn4+ sites surrounded by six Mn3+ sites. These orbital polarons are regularly
placed on every second site in all three directions in two interlaced sublattices,
forming a body-centered cubic charge order, see Ref. [103]. Such charge-
ordered phases fit well to the ferromagnetic superexchange, as the Mn-O-Mn
bond between the Mn4+ and Mn3+ sites fulfills the mixed ionic-semicovalent
character needed for the ferromagnetic alignment (see Ref. [16]), and the reg-
ular placement of Mn4+ sites thus allows the development of FM bonds in all
directions, which is prohibited in pure PrMnO3. We note that an FM cou-
pling between the two sublattices in the orbital-polaron structure is less clear,
although supported by Hartree-Fock calculations, see Ref. [103].
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Figure 2.6: Sketches of the spin and orbital order of the experimental zero-temperature
phases at x = 0, x = 0.25, x = 0.5, x ≈ 0.75 and x = 1. The gray and red
colors refer to spin-up and -down direction, respectively, and visualize the
A-, B-, CE-, C- and G-type spin orders. Mn-sites without a strong orbital-
polarization are shown as small colored circles, while d3i2−r2-polarized
Mn-sites are indicated by sketches of the orbitals pointing in the corre-
sponding i-direction, with the color of the elongated lobes indicating the
spin-direction of the eg electron. For x = 0.25, a ferromagnetic spin order
has been confirmed, see Refs. [58, 87], but the underlying orbital order
is still under debate (see the discussion in the text), which is indicated by
question marks in the colored circles. The style of the orbital-sketches
is inspired by Ref. [99]. We also included a sketch of the Pbnm lattice
vectors in the cubic structure.
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From diffraction peaks of neutron scattering experiments, see Ref. [87], the
former variant of charge order could be ruled out, while the orbital polaron peaks
could not be clearly distinguished from Bragg peaks of twinned crystal struc-
tures, and this orbital and charge ordered phase remains possible. Alternatively
to such an intrinsic ferromagnetic-insulating (FM-I) phase, a phase separation
between an FM-metallic (FM-M) phase (with double exchange) and an AFM-
insulating (AFM-I) phase could be a possible explanation, which, however, was
dismissed as well by the same experimental study, see Ref. [87]. Instead, in
that study and supported by previous resonant X-ray studies, see Ref. [88], a
PrMnO3-like orbital order was suggested, with a stronger d3z2−r2-admixture. It
is not clear why a pure PrMnO3-like orbital order should lead to an insulating
FM phase, and in fact the theoretical results from Ref. [87] indicate that the
proposed FM phase is not insulating. As suggested in Ref. [88], the additional
Mn4+ ions could be disordered throughout the system, which would allow a
ferromagnetic superexchange in their environment. Overall, we consider the
type of orbital or charge order as not fully determined at this doping and the
respective region in the phase-diagram (see Fig. 2.5) could just as well belong
to the charge and orbital ordered region, with the orbital polarons of Ref. [103]
still remaining one possibility.

At higher hole dopings, the material was observed to be charge ordered over
a wide doping range, 0.3 < x < 0.75, see Refs. [58, 89, 95, 96, 98, 104], with
the orbital structures strongly influenced by the half-doped system x = 0.5,
accompanied by a (pseudo)tetragonal lattice distortion c/

√
2 < a ≈ b. At

x = 0.5, a CE-type AFM magnetic structure emerges, see Ref. [58], consisting
of FM zigzag chains in the x-y-plane that are antiferromagnetically stacked in
the z-direction, which was already suggested on experimental (Ref. [15]) and
theoretical (Ref. [16]) grounds for La0.5Ca0.5MnO3. As the name suggests, the
magnetic structure is composed of alternating unit cells of x-y-plane C-type
and E-type structures (see Refs. [27, 28] for sketches of the E-type AFM or-
der). Along the zigzag chains (formal) Mn3+ and Mn4+ ions alternate, forming
a checkerbord-like charge order, although density-functional calculations indi-
cate a smaller charge difference of 0.26 − 0.5 e between the two sites, which
might be even smaller in the real material, see Ref. [28]. The Mn3+ sites are at
the center of the trimer segments constituting the zigzag chains, and their or-
bital polarization alternates between the elongated d3x2−r2 and d3y2−r2 orbitals,
see Fig. 2.6. From a pure superexchange interaction model, other structures
are possible as well, and only with the additional condition to minimize the
elastic strain in the system, this CE-type structure could be rationalized on a
qualitative level, see Ref. [16]. More successful are models including two-band
eg electrons with a strong Jahn-Teller coupling, in which it could be shown that
the zigzag structure leads to a band-insulating behavior, see Refs. [25, 105].

Introducing additional eg electrons at x < 0.5 (electron doped CE), a spin-
canted variant of the CE-ordering was proposed according to early neutron
diffraction experiments, see Ref. [58], where the previously collinear spins
of the CE structure all gain a uniform small ferromagnetic moment. The
existence of charge order has been questioned for x = 0.4 and alternative
dimerized phases based on the two-site Zener polaron have been proposed,
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see Refs. [90, 91, 106]. Resonant X-ray diffraction studies confirmed the
lack of indications for charge disproportion, see Ref. [92], but re-assured the
formation of a CE-like trimerized orbital order, albeit without the strong charge
order implied by the formal Mn3+ and Mn4+ oxidation states. The trimer CE-
type structure can be converted into a dimer structure by a small symmetry
breaking while keeping the same magnetic order, which might lead to the
different experimental explanations. Even closer to the FM-I phase, in the
region 0.3 < x < 0.4, different experiments proposed a phase separation of
FM and AFM phases, see Refs. [21, 58, 97], or still a spin-canted AFM phase,
see Refs. [89, 93]. Transmission electron microscopy studies indicated an
ordering of additional Mn3+ ions in a half-doping like structure, see Ref. [94].
All experiments agree in that at least some kind of orbital order or charge order
exists at low temperatures in the 0.3 < x < 0.5 doping region, which leads to an
insulating state (as this is the case both for the half-doped perfect CE-structure
and the FM-I phase at quarter doping). Upon applying a strong magnetic field,
a ferromagnetic metallic (orbital/charge disordered) phase develops with its
resistivity decreased by several orders of magnitude, see Refs. [17, 18], which
is known as the colossal magnetoresistance (CMR) effect. The CMR can also
be induced by a photoexcitation, as first presented for x = 0.3 in Ref. [19],
and confirmed, e.g., in Refs. [20, 21], although the character of the photo-
induced FM-M phase might be different from the field-induced FM-M phase,
see Ref. [21] (and references therein). The charge order of the ground state can
also be removed with external or chemical pressure, inducing a metal-insulator
transition accompanied with CMR, see Ref. [22], or by electron irradiation, see
Ref. [23].

Hole dopings of x > 0.5 are generally much less investigated in the literature.
In the early neutron diffraction experiments, see Ref. [58], it was suggested that
close to half doping (x = 0.6) the CE-type structure remains with an additional
small inter-plane ferromagnetic coupling, while at higher hole doping (x = 0.7)
a new kind of spiral spin structure of non-collinear spins emerges. From the
similar compound La1– xCaxMnO3, which has received more attention in the
literature, especially at high hole dopings, an alternative explanation is the
development of charge and orbital ordered striped phases, similar to the CE-
structure, but with a smaller wave vector to account for the lower number of
eg electrons, see Refs. [107–110], which was also supported by theoretical
considerations, see Ref. [105]. Here, the phase at x = 2/3 has received special
attention, where for two (formal) Mn4+ sites there is only one Mn3+ site. Two
types of zigzag-striped structures were suggested at this doping: First, a bi-
stripe phase, in which the Mn3+ sites are separated by only a single Mn4+ site in a
90◦ angle, as in the CE-structure, while the three remaining Mn4+ sites separate
these bi-stripes, see Ref. [108]. Second, a “Wigner”-crystal phase, in which
Mn4+-Mn3+-Mn4+ trimers develop as in the CE-structure, but without overlap
in their Mn4+ sites, see Ref. [109]. In the direction of the elongated Mn3+

sites a double-exchange induced ferromagnetism develops in both proposed
structures, while the coupling between these clusters is antiferromagnetic or
frustrated, see Ref. [109], and might be non-collinear, see Ref. [110]. As
mentioned in Ref. [26], these two structures might be very close in energy and

20



2.4 The phase diagram of Pr1 – xCaxMnO3

it is not clear which one develops in Pr1/3Ca2/3MnO3.
Interestingly, these striped phases do not continue to much higher dopings,

as a transition to a (pseudo)tetragonal lattice with c/
√

2 > a ≈ b is observed
at x > 0.75, see Ref. [58]. The resulting magnetic structure was interpreted as
C-type, which occurs at these dopings also in other manganite compounds, see
Ref. [99]. The orbital order in the C-type magnetic structure is again composed
of (formal) Mn4+-Mn3+-Mn4+ trimers, now oriented in the z-direction. These
trimers are assumed to appear with a periodicity of four sites in the z-direction,
with an additional Mn4+ site between them, see Ref. [58] and the sketch in
Fig. 2.6. Originally it was proposed that in the x-y-plane the trimers avoid each
other, see Ref. [58], however, as known from theoretical considerations around
the half doped phase, the antiferromagnetic superexchange coupling favors a
charge stacking, see Refs. [25], and an in-plane stacked variant of the C-type
trimer structure cannot be ruled out. For the x = 0.75 phase itself, besides the
C-type structure proposed in Ref. [58], also an x-y-plane zigzag structure has
been proposed, similar to the x = 2/3 phase, but with a smaller wave vector,
see Ref. [111].

Close to pure CaMnO3, the antiferromagnetic superexchange between Mn4+

sites dominates the magnetic ordering, leading to a G-type antiferromagnet at
x = 1, see Refs. [16, 58]. Both the missing Jahn-Teller distortions and the
higher tolerance factor of the Ca ions lead to a nearly cubic lattice symmetry,
see Refs. [57, 58]. In electron-doped CaMnO3, phase separation between the
C-type x = 0.75 doping and the G-type x = 1 doping might occur, see Ref. [58].
For the similar La-doped CaMnO3, nanoscale phase separation was assumed
between small double-exchange enhanced ferromagnetic clusters caused by the
additional eg electrons, and the AFM matrix of CaMnO3 for very small electron
dopings, see Refs. [112–114]; where only at x . 0.94 the C-type AFM phase
starts to enter the phase competition, see Refs. [113, 114].

Overall, it is surprising how many uncertainties still exist in the ground-state
(zero-temperature) phase diagram, despite more than 35 years of continued
research since the original investigation of Jirak et al. in 1985 (Ref. [58]).
With diverging experimental interpretations of the different phases, theoretical
investigations of the phase diagram might provide additional insight. Many of
the confirmed ground state phases, e.g., around x = 0, x = 0.5 and x = 1, and
partially x = 0.25 and x = 0.75, can be reproduced by qualitative arguments,
as presented before, for example by the theory of semicovalent exchange, see
Ref. [16]. For a quantitative analysis, in particular one that is able to differentiate
between several experimentally proposed and energetically similar structures,
more involved models are needed, as described in detail in Refs. [25–27]. One
such model, with parameters determined from ab initio calculations, will be
used in this thesis, as introduced in Ch. 3. Before that, let us consider the
finite-temperature phase transitions presented in the sketch in Fig. 2.5.

2.4.2 Finite-temperature phase transitions

Many of the experimental studies presented above did not only describe the
ground-state phases, but also the melting of their order with increasing tem-
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perature, with the observed behavior during the phase transition often being
substantial in their interpretation of the ground-state experimental data. The
agreement of the studies is much closer for the melting of the magnetic struc-
ture than for the exact ordering mechanisms of the ground-state phases, and
up to today given mostly by the neutron diffraction studies by Jirak et al., see
Ref. [58, 83] (and for pure CaMnO3 by Wollan and Koehler, see Ref. [15]).
The Curie- and Néel-temperatures range between ≈ 90 K and 170 K , with the
highest values in the charge- and orbital-ordered region 0.4 < x < 0.8, and the
lowest values close to PrMnO3. The transition temperatures are indicated in
Fig. 2.5 and summarized in Ref. [24].

Of more relevance for this thesis are the transition temperatures for the charge
and orbital order, in particular, of the latter in the low-doped region of the phase
diagram. Even without a long-range orbital order, the strong electron-phonon
coupling will lead to local Jahn-Teller distortions, possibly accompanied by
short-range order. We thus refer to this high-temperature phase as a polaron
liquid. At even higher temperatures also the local Jahn-Teller distortions melt,
which is not included in the phase diagram sketch in Fig. 2.5.

Measuring the charge and orbital order is more difficult compared to the
magnetic transitions, which in our opinion is also partially responsible for the
remaining uncertainties in the ground-state phase diagram. One approach to
infer the charge or orbital order is a structural refinement of electron, X-ray,
or neutron diffraction experiments. Thereby one can obtain information about
the average Jahn-Teller distortions, as outlined in detail in Ref. [115], and thus
indirectly about the order in the system. This approach is especially helpful in
the orbital and charge ordered phases 0.3 < x < 0.875, where the appearance
of superlattice reflections in the diffraction experiments allows to investigate the
emergence of Pbnm-symmetry breaking ordering below a certain temperature,
see Refs. [90, 106]. Various such experiments confirmed charge- and orbital-
order melting temperatures TCO in the 0.3 ≤ x ≤ 0.5 doping region in the
range between 200 K and 250 K, see Refs. [58, 83, 93, 116], supported by
resistivity measurements, see Ref. [89]. Similar values are reported for the
charge and orbital ordered region 0.5 < x < 0.875, see Refs. [58, 117]. Below
TCO, the formation of two-phase ordered-disordered regions was suggested, see
Refs. [91, 106]. The transition temperatures are again indicated in Fig. 2.5 and
summarized in Ref. [24].

The same procedure is not as trivial around x = 0, where the orbital order
(see Fig. 2.6) produces no new superlattice reflections compared to the higher-
temperature tilting-induced Pbnm lattice. However, similar experiments can
measure variations in the average lattice constants to observe structural changes:
Pollert et al. (Ref. [57]) described two structural phase transitions at x = 0,
both deduced from changes in the lattice parameters. First, an orthorhombic-
to-orthorhombic O′ → O transition between 815-945 K, with the critical tem-
perature estimated at ∼945 K. This transition was attributed to the melting of
the cooperative Jahn-Teller order (together with the supporting orbital order)
and a simultaneous adjustment of the tilt-pattern. This temperature is indicated
by the upper end of the striped region in Fig. 2.5, and extends almost linearly
down to x = 0.25, following the established representation of the phase dia-
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gram presented in Ref. [58]. Second, a transition to a nearly cubic symmetry
O → C, completed above 1060 K, at which the tilting-induced GdFeO3-type
distortions of the lattice parameters vanish (at least on average), which is not
included in Fig. 2.5. The structural changes of the first, O′→ O transition were
also observed in the neutron diffraction experiments of Ref. [118], although
at a higher temperature of 1050 K. They attributed it to the Jahn-Teller/orbital
order melting as well. The second transition to a quasicubic system at even
higher temperatures was expected, but not measured in that reference. A drop
in the resistivity and thermoelectric power around 1000 K was also interpreted
as the orbital order transition temperature in Ref. [119], with order-disorder
fluctuations continuing down to a temperature T∗ at about 750 K. It is unclear
whether this lower temperature matches the beginning of the O′→ O transition
observed in Ref. [57]. While the existence of a structural phase transition at
these high temperatures, possibly combined with a metal-insulator transition,
is undisputed, these measurements give only indirect information about the
underlying orbital order.

A convincing experimental technique to directly observe the orbital order
in the system is the resonant X-ray scattering. Here, polarized X-rays are
tuned to the Mn-K edge to probe the Mn-1s to -4p transition. The presence of
orbital order will split the energy levels of the 4p orbitals, either by direct or
indirect Coulomb interaction, or by the coupling of the Mn-4p orbitals with the
Jahn-Teller distorted oxygen octahedra, see Refs. [88, 120], giving access to
the relative occupations of, for example, the d3x2−r2 and d3y2−r2 orbitals. Mn-L
edge transitions for probing orbital or magnetic order are possible as well, see
Ref. [121]. The transition temperatures for the charge and orbital order TCO,
indicated in Fig. 2.5, have been confirmed in the resonant X-ray scattering
experiments at x = 0.4 and x = 0.5, see Ref. [88].

For the quarter-doped phase, x = 0.25, the temperature dependence of the
PrMnO3-like orbital order peak shows an interesting behavior, see Ref. [88]:
A sharp drop is observed around room temperature, just as indicated as the
transition temperature in Fig. 2.5, but the peak vanishes only at very high
temperatures around 850 K. Resonant X-ray scattering of LaMnO3 (similar
to PrMnO3, x = 0) for the same kind of orbital order shows a similar two-
step feature, see Ref. [120], although here the intensity after the first drop
(at 200-250 K) is still at about 60 % of the low-temperature value. The peak
vanishes completely around 800 K, which is attributed to the orbital order
transition, while the first drop is associated with the magnetic transition at
140 K. It seems inconsistent that in one case the lower transition temperature is
attributed to the orbital-order transition (at x = 0.25) and in the other case the
higher transition temperature (at x = 0). As mentioned already in Ref. [57], the
cooperative Jahn-Teller distortions in the low-doping region (with its alternating
short and long Mn-O bonds in the x-y-plane, see, e.g., the visualization in
Ref. [64] and Fig. 2.6) might couple to the GdFeO3-type tilting distortion. It
was outlined in Ref. [24] that the onset of spontaneous orbital order might thus
be hidden in an induced order by the tilt-pattern.

The investigation of the orbital-order transition temperature at the dopings
x = 0 and x = 0.1 is one of the focus points of this thesis and presented
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in Ch. 4. The results of these theoretical investigations support experimental
evidence, such as the onset of a photovoltaic effect and anomalies in X-ray
diffraction, magnetization, electron transport and optical properties, indicating
that the spontaneous orbital-order phase transition actually takes place already
around room temperature, and thus much lower than previously believed. This
has been indicated in Fig. 2.5 by the lower end of the striped orbital-ordered
region at low dopings. These results have been published in Ref. [24]. A
discussion of the nature of the induced order at higher temperatures and a
possible reevaluation of the phase diagram is given in Ref. [24] and in Ch. 4.
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3 Tight-binding description for
ground-state and finite-temperature
calculations

In the last chapter, we presented the various interactions and ordering principles
arising from the partially filled manganese d-shell, including the crystal field
splitting caused by the surrounding octahedral structure, onsite Coulomb and
Hund’s interactions among Mn-eg and -t2g electrons, and the important overlap
of their orbitals with the oxygen-p states, leading to the Jahn-Teller splitting of
the eg energy levels (caused by octahedral distortion modes), and to the (mostly)
antiferromagnetic Mn-O-Mn superexchange through the intermediate oxygen
atom. In addition, we presented the current experimental understanding of
the resulting rich phase diagram, which included ferro- and antiferromagnetic
spin-alignments, often of a non-isotropic type, and similar “ferro-” and “anti-
ferrorbital” order of the occupied Mn-eg orbitals, in some cases accompanied
by an additional charge order.

Many theoretical models have been proposed in the past to explain the
emergence of the different ordering principles and phases, with one of the
more successful ones being the previously presented theory of semicovalent
exchange (see Ref. [16]). At least on a qualitative level it could explain some of
the ordered phases and magnetic structures, in particular the x = 0 and x = 1
pure PrMnO3 and CaMnO3 cases, and with additional assumptions also the
half-doped CE-magnetic structure.

Various alternative models have been proposed for a quantitative description
of the ordered phases, and a pure double-exchange model, see Refs. [80, 102],
was being of high popularity in the early times of manganite studies, see
Ref. [25]. This model, in its simplest form, includes only a single Mn-eg
orbital per site, with the t2g spins coupled in a large Hunds-coupling assumption
to only modify the eg-electron hopping term, and the explicit influence of the
oxygen atoms being completely discarded. Already for the magnetic transitions,
double exchange model predictions did not coincide well with experimental
results, as summarized in Ref. [25]; one core problem remaining that in this
model a ferromagnetic interaction is always associated with an eg-electron
delocalization that leads to a larger conductance.

It is clear that any model hoping to describe the true orbital order of the sys-
tem needs to include at least the two eg orbitals per manganese site, which was
subsequently adopted by most recent theories of manganites, see the overview
in Ref. [25]. In addition, it was postulated that the combination of electron-
phonon interaction (between Mn-eg electrons and the oxygen ligands) in the
form of Jahn-Teller interactions, the eg to t2g Hund’s coupling and the inter-site
hopping of the eg electrons are the dominant effects necessary to understand
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the physics of manganites in the low-doped region, see Refs. [25, 122]. This is
also supported by modern benchmarks of such a model with density-functional
calculations in the local spin-density approximation, see Ref. [62]. Combining
these energy terms with an onsite Coulomb interaction and the antiferromag-
netic superexchange (which is necessary to understand, for example, the G-type
magnetic order in CaMnO3 without eg electrons), one arrives at an intricate
model of manganites that is able to reproduce basically all the magnetic, charge
and orbital orders at the various doping regions of manganites, and is reviewed
in detail in Refs. [25–27].

As described in Sec. 2.4.1, in various doping regions of the zero-temperature
phase diagram, the existing experimental results could not yet conclusively
agree upon the ground state’s spin, charge and orbital order, with several ordered
structures, spin-canted regions, or phase coexistence being proposed. Without
a consistent determination of the model’s parameters, a quantitative assessment
of the energies of the various structures is impossible, as is a calculation of the
orbital-order melting temperature, discussed in Sec. 2.4.2. Such a consistent
parameter determination was provided for this manganite model in Ref. [28]
on the basis of hybrid density-functional calculations.

In that approach, the electrons in the manganite model were described by
a Slater determinant composed of one-particle wave functions, see Ref. [28],
similar as in a Hartree-Fock approximation, see, e.g., Ref. [123], or as the
effective one-particle Kohn-Sham system in density-functional theory, see
Refs. [124, 125]. Among other things, see Sec. 3.2.5 and Ref. [28] for de-
tails, the parameters of the model have been determined by comparing the
density of states of the density-functional calculations (constructed from its
effective Kohn-Sham system with the hybrid correction) with the one-particle
energies of a single-site version of the manganite model. The resulting model
can hence be called a parametrized density-functional model, or a parametrized
Hartree-Fock model.

This manganite model, in the form presented in Ref. [28], is used in this
thesis for the investigation of Pr1– xCaxMnO3 and will be outlined in detail in
the following. It will be denoted as the tight-binding model for manganites
in this thesis, due to the tight-binding description of the Mn-eg electrons.
Small variations which were later introduced in Refs. [32, 126] are presented
in Sec. 3.2.6.

3.1 General description of the tight-bindingmodel
for manganites

The tight-binding model described in Refs. [25–28] is not a full electronic
structure method, like a density-functional calculation, but is instead focused
on the most important degrees of freedom, which are included on different levels
of theory: (a) The Mn-eg electrons are described as a quantum mechanical wave
function |Ψ〉, in a tight-binding basis of the two eg orbitals dx2−y2 and d3z2−r2 ,
indexed by α ∈ {a, b}, on every manganese site, each with both spin-up and
-down σ ∈ {↑, ↓} component. Their full basis hence includes four spin-orbitals
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per Mn-site R: |χσ,α,R〉. Following Ref. [28], the wave function is described
by a single Slater determinant composed of the one-particle wave functions
{|ψn〉}:

|ψn〉 =
∑
σ,α,R

|χσ,α,R〉 ψσ,α,R,n. (3.1)

(b) The three spin-aligned t2g electrons are replaced by a single classical spin ®SR
of length 3~

2 , localized on each manganese site R. (c) The octahedral distortions
are included by considering the classical nuclear positions of the oxygen atoms
®O.

Instead of allowing free three-dimensional displacements of the oxygen po-
sitions ®O from their equilibrium positions, they are restricted in this model to
a movement along the straight (180◦-angle) Mn-O-Mn line, without consider-
ing the octahedral tilting of the Mn-O-Mn bond angle and with the Mn-sites
placed on a regular grid (we note, however, that the model parameters were
obtained from the full tilted structure in Ref. [28], see also Sec. 3.2.5, and one
might consider the influence of the tilting on the parameters to be included
on an average level). Hence, each oxygen atom position can be quantified by
its one-dimensional displacement Oi,R from its equilibrium position at half the
distance between the manganese sites R and its neighbor R+i. R±i refers to
the manganese neighbor of site R in the positive or negative i ∈ {x, y, z} di-
rection. The difference of these oxygen displacements in positive and negative
orientation along a cubic axis ∆i,R = Oi,R −Oi,R−i are then the deviations of the
O-Mn-O bond distances around site R from their equilibrium value. These are
the bond distances that were used for describing the Jahn-Teller Q2,R, Q3,R and
breathing Q1,R modes introduced in Sec. 2.2.2.

As mentioned in Refs. [25, 27], depending on whether the octahedral modes
Qa,R, a ∈ {1, 2, 3} or the oxygen displacements Oi,R are used as the fundamental
degrees of freedom, one can switch between an individual and a cooperative
treatment of the distortion modes. We will follow the cooperative treatment
here, as also done in Refs. [127, 128], by considering variations of the underly-
ing oxygen displacements Oi,R, which influence the octahedral modes around
both neighboring manganese sites.

Besides the obvious Hartree-Fock approximation for the electrons, the classi-
cal and straight-line approximations for the oxygen atom positions, the regular
placement of the manganese atoms and the classical spin approximation for
the t2g electrons, several further approximations are necessary to reach the
tight-binding model for manganites. These include: The A-type cations are
assumed to always be in the formal oxidation states Ca2+ and Pr3+; any effect
of these ions despite the electron doping of the remaining system is ignored.
In a similar manner, the oxygen atoms are, for the purpose of the actual cal-
culations, assumed to be in the formal oxidation state O2– , leaving on average
exactly (4− x)Mn-d electrons per site and discarding the possibility of oxygen
vacancies. While the Mn-eg-O-p hybridization and the resulting crystal field
splitting was implicitly taken into account by separating the eg and t2g man-
ganese d-states, the oxygen-p electrons do not appear explicitly in the model,
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although we keep in mind that the Mn-eg states actually refer to the Mn-eg-O-p
antibonding orbitals, see Sec. 2.2.1.

Further approximations for determining an effective Mn-Mn eg-electron hop-
ping, for the form of the Jahn-Teller interaction potential, and for the antiferro-
magnetic superexchange interaction are described when the respective energy
terms are introduced in Secs. 3.2.1, 3.2.3 and 3.2.4.

3.2 The energy functional

Similar to the energy functional of density-functional theory, see Refs. [124,
125], we now present the energy functional of the tight-binding model for
manganites. In the spirit of the later introduced Car-Parrinello framework, see
Ref. [129], it will be denoted as the potential energy functional of the model
Epot(ψ, S,O), depending on the one-particle Mn-eg wave functions |ψn〉, see
Eq. (3.1), the t2g spins S, and the oxygen displacements O. The six fundamental
terms of the model, already mentioned above, are:

Epot = Ee + Ee−e + Ee−ph + Eph + Ee−S + EAFM, (3.2)

including the eg-electron hopping Ee, the onsite eg electron-electron Hartree-
Fock interaction Ee−e, the Jahn-Teller and breathing interactions of the oxygen
atoms (the classical phonons) with the eg electrons Ee−ph, the restoring forces
on these phonons Eph, the Hund’s interaction between eg electrons and t2g spins
Ee−S and the t2g spin antiferromagnetic superexchange interaction EAFM . All
these terms have been presented and discussed in detail in Refs. [25–28, 56,
126], and this section follows the same scheme.

To get some flexibility in describing excited one-particle states, a one-particle
occupation number fn is introduced in the following expressions, see Ref. [28],
which in the single-Slater determinant description is either one or zero for
the occupied or unoccupied states. For describing the onsite interactions, the
definition of the local one-center reduced density matrix will be useful, see
Ref. [28]:

ρσ,α,σ′,β,R =
∑

n

fnψσ,α,R,nψ∗σ′,β,R,n, (3.3)

whereα, β ∈ {a, b} (and later also γ, δ ∈ {a, b}) are the orbital indices (referring
to dx2−y2 and d3z2−r2), while σ, σ′ ∈ {↑, ↓} are the spin indices. The local spin-
orbital densities are given by nσ,α,R = ρσ,α,σ,α,R, and the local electron density
by nR =

∑
σ,α nσ,α,R.

We note that from the potential energy functional, Eq. (3.2), one can directly
derive the effective Hartree-Fock Hamiltonian for the electronic one-particle
states, which in the basis of the eg spin-orbitals becomes:

ĤHF =
∑
σ,α,R

∑
σ′,β,R′

|χσ,α,R〉
∂Epot(ψ, S,O)
∂ρ̃σ,α,σ′,β,R,R′

〈χσ′,β,R′ | , (3.4)
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with the reduced density matrix ρ̃σ,α,σ′,β,R,R′ =
∑

n fnψσ,α,R,nψ∗σ′,β,R′,n. This
Hartree-Fock Hamiltonian will then still depend on the classical spins S and
nuclei O, but also on the local one-center reduced density matrices of the eg
electrons ρσ,α,σ′,β,R, as typical in a Hartee-Fock description. All the following
terms can also be represented in such a Hartree-Fock Hamiltonian form, as done,
e.g., in Ref. [56]. For a non-Hartree-Fock version of the total Hamiltonian we
refer to Refs. [25–27].

3.2.1 Electron hopping

With the direct overlap of eg states on different sites being negligible, any hop-
ping of eg electrons between manganese sites is mediated by the intermediate
oxygen atoms. The relevant oxygen-p states are downfolded to allow for an
effective Mn-Mn hopping description, see Refs. [25, 27]. These effective hop-
ping terms are obtained from the orbital overlaps of the Mn-eg and O-p states,
according to the Slater-Koster tables, see Ref. [130]. The resulting kinetic
energy term for the electrons describes an orbital- and direction dependent
hopping:

Ee =
∑

R,R′,σ,α,β

∑
n

fnψ∗σ,α,R,nTα,β,R,R′ψσ,β,R′,n, (3.5)

where Tα,β,R,R′ is non-zero only for R and R′ being nearest neighbors, and then
taking different forms depending on the bond direction i ∈ {x, y, z} between
R and R′. Apart from the bond-direction, the hopping matrices T R,R′ are
assumed to be independent of the site indices, and can be described by direction
dependent matrices T i. In the basis of the two eg orbitals dx2−y2 and d3z2−r2

they become:

T x = −th

(
3/4 −

√
3/4

−
√

3/4 3/4

)
(3.6)

T y = −th

(
3/4

√
3/4

√
3/4 3/4

)
(3.7)

T z = −th

(
0 0
0 1

)
. (3.8)

From the downfolding, two additional energy terms emerge, which can be re-
garded as onsite-hopping terms for R = R′ (see Ref. [28]): The first being pro-
portional to the local electron density: 3th

∑
R nR, with nR =

∑
n,σ,α fn |ψσ,α,R,n |2,

which adds an energy per Mn-site of 3th(1 − x) and is included in the model
of this thesis. The second term is a constant energy contribution of −6th per
Mn-site, which is neglected in this thesis.

The single remaining parameter describing the eg-electron hopping is th.
Since the hopping is oxygen mediated, the hopping amplitude should depend
on the local distortion modes and on the local octahedral tilting angle. These
variations are ignored in choosing such a uniform hopping description. Density-
functional calculations of LaMnO3 show a good agreement with a tight-binding
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model using such a uniform hopping description, see Ref. [62], although next-
nearest neighbor hopping was included in that model.

3.2.2 Electron-electron interaction

Here, we consider the onsite Coulomb interaction between eg electrons only,
as the effective interaction between the t2g and eg states is only included on
the level of a Hund’s coupling, see Sec. 3.2.4. For more details on the various
Mn-d shell Coulomb interactions, we refer to Ref. [27]. Inter-site Coulomb
interactions are strongly screened, see Ref. [27], and neglected here as well.

On a Hartree-Fock level, and using the local one-center reduced density
matrices (Eq. (3.3)), the eg-eg Coulomb interaction terms can in general be
written as:

Ee−e =
1
2

∑
R

∑
α,β,γ,δ

∑
σ,σ′

Wα,β,γ,δ

[
ρσ,γ,σ,α,Rρσ′,δ,σ′,β,R − ρσ′,δ,σ,α,Rρσ,γ,σ′,β,R

]
,

(3.9)

where the square brackets include the Hartree and exchange terms of the reduced
density matrix, and the prefactor W describes the various orbital scattering
terms. These onsite electron-electron interaction terms for the eg and t2g orbitals
in a cubic symmetry have been presented by Kanamori, see Ref. [131], and
the interaction parameters are termed Kanamori parameters. They include an
intra- and inter-orbital Coulomb interaction U and U′, as well as an inter-orbital
exchange term J and pair-hopping term J′, where J = J′ see Refs. [27, 131].
When applied to the eg orbitals only, we have U = U′ + J + J′, see Ref. [27],
leaving only two independent parameters. They can be best visualized by
presenting W(α,β),(γ,δ) as a matrix in the orbital tupels (a, a), (a, b), (b, a) and
(b, b):

W =
©«
U 0 0 J′

0 U′ J 0
0 J U′ 0
J′ 0 0 U

ª®®®¬ =
©«
U 0 0 J
0 U − 2J J 0
0 J U − 2J 0
J 0 0 U

ª®®®¬ , (3.10)

which can be decomposed into three components: Wα,β,γ,δ = (U−2J)δα,γδβ,δ+
Jδα,δδβ,γ+ Jδα,βδγ,δ. Inserting this W into the Hartree-Fock interaction energy,
Eq. (3.9), one obtains the following energy contributions on every site :

Ee−e,R =
1
2

∑
α,σ

[
U

(
nσ,αnσ̄,α − |ρσ,α,σ̄,α |2

)
+ (U − 3J)

(
nσ,αnσ,ᾱ − |ρσ,α,σ,ᾱ |2

)
+ (U − 2J)

(
nσ,αnσ̄,ᾱ − |ρσ,α,σ̄,ᾱ |2

)
+ J

(
ρσ,ᾱ,σ,αρσ̄,α,σ̄,ᾱ

+ ρσ,ᾱ,σ,αρσ̄,ᾱ,σ̄,α − ρσ̄,α,σ,αρσ,ᾱ,σ̄,ᾱ − ρσ̄,ᾱ,σ,αρσ,ᾱ,σ̄,α

) ]
,

(3.11)
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where the site-index R is omitted in the local one-center reduced density matri-
ces and the local electron densities for clarity. Here, the indices σ̄ and ᾱ refer
to the opposite spin/orbital as σ and α.

Considering for a moment only the spin-orbit density-density interaction
terms (nσ,αnσ′,β) in Eq. (3.11), which all have a corresponding exchange contri-
bution (|ρσ,α,σ′,β |2), we can identify three major interaction contributions: The
intra-orbital interaction (with different spin), proportional to U, the inter-orbital
interaction with the same spin, proportional to (U − 3J), and the inter-orbital
interaction with different spin, proportional to (U − 2J). Hence, the onsite
Coulomb energy has the largest contribution for electrons with different spin,
and would in case of a double-occupation instead prefer a spin-aligned occu-
pation of both eg orbitals (which is just another manifestation of Hund’s rule).
With Jahn-Teller interactions shifting the eg energy levels, the occupations in
the full model might differ from this pure electron-electron interaction picture.
Kugel and Khomsky showed that one can actually describe orbital ordering
relying mainly on the Coulomb interaction, see Ref. [132], although modern
investigations attribute more importance to the Jahn-Teller effect (see, e.g.,
Ref. [28]).

Another collection of the energy terms presented in Eq. (3.11) was shown in
Ref. [28]:

Ee−e =
U − 3J

2

∑
R

{
(TrR[ρR])

2 − TrR
[
ρ2

R

] }
+ EOR, (3.12)

separating the Coulomb interaction into a Hartree- and self-interaction cor-
rection term (where the trace TrR[·] is taken over the onsite spin- and orbital
degrees of freedom on site R), and another contribution EOR, which is only rel-
evant for sites without full spin-polarization. Since the inter-spin interaction is
the largest contribution of the Coulomb terms (see Eq. (3.11)), the first term in
Eq. (3.12), proportional to (U −3J), can be regarded as the dominant Coulomb
interaction between different orbitals. As pointed out in Ref. [28], this effective
Coulomb interaction strength is much lower compared to the bare intra-orbital
interaction term U.

3.2.3 Phononmodes and the electron-phonon interaction

We already mentioned that the oxygen ligands are described by the classical
nuclear oxygen displacements Oi,R along the Mn-Mn straight bond line between
the Mn-sites R and R+i (where R±i is the Mn-neighbor-site in the ±i cubic
direction). With only the straight-cubic distortions allowed in the model, the
possible distortion modes around every manganese site are exactly the two
Jahn-Teller active phonon modes Q2,R and Q3,R and the breathing mode Q1,R,
which were defined in Sec. 2.2.2 and depend on the O-Mn-O bond distances
∆i,R = Oi,R − Oi,R−i . The tight-binding model assumes a quadratic restoring

31



3 Tight-binding description for ground-state and finite-temperature calculations

force on these phonon modes:

Eph =
1
2

∑
R

[
kJT

(
Q2

2,R +Q2
3,R

)
+ kbrQ2

1,R

]
. (3.13)

In addition, these modes couple to the Mn-eg electronic orbitals. The breath-
ing mode, which is an isotropic expansion, couples to the onsite electron density
ni. In contrast, the Jahn-Teller modes split the eg-orbital energy levels, with the
Q3 mode separating the d3z2−r2- and dx2−y2-orbital energies, and the Q2 mode
separating the positive and negative linear combination of these orbitals. The
whole electron-phonon interaction can then be written as:

Ee−ph = gJT

∑
R

∑
σ

∑
α,β

ρσ,α,σ,β,RMQ
β,α(Q2,R,Q3,R) − gbr

∑
R

nRQ1,R, (3.14)

with

MQ (Q2,Q3) =
[
σz

P · Q3 + σ
x
P · Q2

]
=

(
Q3 Q2
Q2 −Q3

)
, (3.15)

where σx/z
P are the x/z Pauli matrices (again in the two-orbital basis α ∈ {a, b},

corresponding to {dx2−y2, d3z2−r2}).
Let us omit the spin degree of freedom for a moment and consider a

singly occupied isolated octahedron with a general eg-electronic state de-
scribed by the linear combination |θ/2〉 = cos(θ/2) |d3z2−r2〉−sin(θ/2) |dx2−y2〉.
Inserting the corresponding wave function into Eq. (3.14) and considering
only the Jahn-Teller term on that single site, one arrives at: Ee−ph,JT =

−gJT [cos(θ)Q3 + sin(θ)Q2]. Minimizing the local Jahn-Teller coordinates for
such an electronic state yields (Q2,Q3) = gJT/kJT (cos(θ), sin(θ)). Hence, the
classical minimum of the Jahn-Teller distortions can change continuously, but
with constant absolute value

√
Q2

2 +Q2
3 = gJT/kJT , depending on the mixing

angle of the occupied electronic state, see also Ref. [68]. The Jahn-Teller angle
is twice as large as the orbital mixing angle, leading to a sign change of the wave
function after one loop in the Jahn-Teller angle, which was already discussed
in Sec. 2.2.2.

One can obtain the one-particle electronic eigenenergies of such an isolated
octahedron for any given (classical and fixed) Jahn-Teller distortion (Q2,Q3) by
diagonalizing the 2×2 matrix of Eq. (3.15) plus the diagonal restoring forces of
Eq. 3.13 (this corresponds to determining the adiabatic electronic energies of
the one-particle isolated octahedron, as mentioned in Sec. 2.2.2; more details
on adiabatic states and energies also outside of a classical approximation for
the nuclei are given in Ch. 5). This diagonalization leads to E±(Q2,Q3) =

±gJT |QJT | +
kJT
2 |QJT |

2, where |QJT | =

√
Q2

2 +Q2
3 does not depend on the

Jahn-Teller angle and the whole energy expression is thus isotropic in orbital
space. These energy surfaces are depicted in Fig. 3.1. Without Jahn-Teller
distortion, the two orbital energies are degenerate, while any type of distortion
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3.2 The energy functional

Figure 3.1: Electronic energy surfaces E±(Q2,Q3) = ±gJT |QJT | +
kJT

2 |QJT |
2 of the

one-electron single-site Jahn-Teller problem in the space of the fixed Jahn-
Teller distortions Q2 and Q3. The Jahn-Teller and restoring force constants
have been chosen as a dimensionless gJT = kJT = 2 in this figure. The
lower surface has its minimal values at the circle |QJT | = gJT/kJT , also
indicated on the x-y-plane, together with the Jahn-Teller angle θ. Real-
valued sketches of the corresponding adiabatic lower energy states are
shown in Fig. 2.4. The lower and upper energy surface become degenerate
at |QJT | = 0.

will lift the degeneracy in a double-conical form. For any Jahn-Teller angle
θ, the lower and upper electronic eigenstate are proportional to the |θ/2〉 and
|(θ + π)/2〉 state, as mentioned previously (see also Fig. 2.4 for sketches of the
lower eg state for some Jahn-Teller angles). Any octahedron occupied by a pure
one-electron state will undergo a Jahn-Teller distortion matching the electronic
state at zero temperature. For mixed-electron states this is not true in general:
A site half occupied by each one electron in the |d3z2−r2〉 orbital and another
one in the |dx2−y2〉 orbital will not undergo a Jahn-Teller distortion. One can
describe such sites as not-orbital-polarized and they can occur in some phases
in the complete model.

Electronic energy surfaces of the type presented here (see Fig. 3.1) are
called conical intersections and have received much attention in literature, see
the overview of various aspects in Ref. [133]. In particular, they allow for
a radiationless decay of excited electronic states by undergoing a structural
deformation, see also Ref. [134]. We note that the restoring force energy terms
presented in Eq. (3.13) can be understood as a lowest order approximation. As
discussed in Ref. [68], higher order terms can lift the isotropy of the Jahn-Teller
distortions, and will in general lead to local minima in the lower energy surface
of Fig. 3.1 at Jahn-Teller angles θ = 0,±2π/3, corresponding to the prolate
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3 Tight-binding description for ground-state and finite-temperature calculations

Jahn-Teller distortions (see Fig. 2.4) in the three cubic directions.

3.2.4 t2g spins, Hund’s coupling and antiferromagnetic
superexchange

One of the larger approximations in the model is the description of the t2g elec-
trons as a classical spin of length 3~

2 . While assessing the important interactions
in manganites, see Ch. 2, we mentioned that the t2g orbitals are always occupied
in one spin-direction, independent of the doping, and that their hybridization
with the oxygen-p states is much weaker compared to the eg orbitals. Their
rather large combined total spin justifies the classical approximation for the
spins, as has been stated and tested in Ref. [26], see also the references therein.
Ultimately, a quantum mechanical description of the t2g electrons, or their spin,
complicates the model significantly and would limit finding solutions mostly to
one-dimensional applications, see Ref. [26], which are then, however, not able
to accommodate the necessary 3D-ordered structures. Testing the classical
spin approximation against more intricate descriptions in small model systems
might be an interesting challenge in a future study, but is not done in this thesis.

The localized t2g spins are nonetheless important for the correct description
of the magnetic phases of Pr1– xCaxMnO3, as they are strongly coupled to the
eg electrons with a Hund’s coupling (see Ref. [28]):

Ee−S = −JH

∑
R

∑
α

∑
σ,σ′

ρσ,α,σ′,αMS
σ′,σ(
®SR), (3.16)

with ®SR = (Sx,R, Sy,R, Sz,R) and

MS
(
®S
)
=

(
3~
2

) [∑
i

σi
P · Si

]
=

(
Sz Sx − iSy

Sx + iSy −Sz

)
. (3.17)

The σi
P denote again the i ∈ {x, y, z} Pauli matrices and ®S is a general three-

dimensional spin vector.
In addition, we outlined the importance of the superexchange interaction (or

similarly semicovalent exchange) in Sec. 2.3. As this interaction can be under-
stood by virtual hopping processes of the oxygen-p electrons to the manganese
neighbors, and then the local interaction with the occupied Mn-d states, it is
clear that the t2g spins will be subject to some effective exchange interaction,
even though a direct t2g to oxygen-p hopping is suppressed. We pointed out
that for a straight Mn-O-Mn bond, the Mn4+-Mn4+ superexchange interaction
is always of the antiferromagnetic type, and thus the tight-binding model in-
cludes an antiferromagnetic nearest neighbor spin-spin interaction between the
t2g electrons:

EAFM = JAF

∑
R

∑
i∈{x,y,z}

(
3~
2

) −2
®SR ®SR+i . (3.18)
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3.2 The energy functional

Just as discussed for the eg-electron hopping, see Sec. 3.2.1, the AFM su-
perexchange interaction should depend on the local tilting angle and octahedral
distortions modifying the Mn-O-Mn bonds. As before, a uniform description
is chosen here instead, with global Hund’s coupling and AFM superexchange
parameters JH and JAF .

3.2.5 Model parameters

We described in the introduction to this chapter that we will use a parameter
set for the model that was determined in Ref. [28] on the basis of density-
functional calculations. In this determination it was first noted that the Jahn-
Teller and breathing electron-phonon coupling parameters gJT and gbr should
not be independent. This was concluded by considering the situation of a
pure elongation of an octahedron in one direction, e.g., along the z-axis. The
eg orbital with a δ-symmetry along that axis, here the dx2−y2 orbital, should
have its orbital energy level unchanged, since it is mostly unaffected by the
Mn-O bond distance in the z-direction. The same holds also for the other
two pure elongated distortions, which can all be constructed by demanding
the relation between Jahn-Teller and breathing distortion of

√
2Q1 = |QJT |.

The orbital energies of the δ-symmetry orbitals for these three distortions
are unchanged under the condition gJT |QJT | = gbrQ1. Combined, these two
equations lead to the relation gbr =

√
2gJT . Similarly, a relation of the restoring

force constants kbr and kJT was deduced by demanding that an isolated singly-
occupied octahedron with its electron in the d3z2−r2 orbital will undergo a pure
axial Jahn-Teller distortion, which leads to kbr = 2kJT . This is one of the two
assumptions that was discarded in later applications of the tight-binding model,
as described in Sec. 3.2.6.

With the two breathing parameters fixed, all other onsite terms, U, J, JH ,
gJT , and kJT , were fitted to the density of states of CaMnO3 and PrMnO3 and
to the obtained Jahn-Teller distortion of PrMnO3 from the density-functional
calculations, by considering a single-site (onsite) version of the tight-binding
model, see Ref. [28] for details. Most importantly, this onsite model assumed
perfect spin and orbital polarization when applied to the x = 0 (PrMnO3) case,
which might deviate from the true degree of spin and orbital polarization of
PrMnO3 in the corresponding density-functional calculation. We nonetheless
stick to these onsite parameters determined in Ref. [28]. The hopping term was
averaged over all oxygen bridges, dopings and magnetic structures investigated
in Ref. [28], and site-dependent variations of the hopping term are not con-
sidered in this thesis. Finally, the antiferromagnetic superexchange JAF was
determined by considering the energy difference per site of a ferromagnetic and
an antiferromagnetic configuration of the t2g spins in pure CaMnO3. This is the
only parameter which needed an adjustment in the fitting process of Ref. [28]:
The value obtained from the density-functional calculations, JAF = 3.326 meV
is much too low to correctly predict the various magnetic orders observed in
the material, in particular the CE-type phase at half doping. Instead it was
suggested to use an increased value of JAF = 14 meV, which we will also use
in this thesis. It was mentioned in Ref. [28] that a similar stabilization of
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3 Tight-binding description for ground-state and finite-temperature calculations

the CE-type phase can be reached if the eg hopping term is reduced slightly
around this doping, and that the hopping amplitudes in fact varied strongly
depending on whether a ferromagnetic or CE-type spin structure was assumed.
The necessity to increase JAF might thus come from the assumption of uniform
hopping taken in the tight-binding model.

The final parameters used in this thesis are listed in Table 3.1. They corre-
spond exactly to the parameters presented in Ref. [28], with the adjustment of
kbr already included (see Sec. 3.2.6 for details).

t 0.585 eV
U 2.514 eV
J 0.692 eV
gJT 2.113 eV/Å
gbr 2.988 eV/Å
kJT 5.173 eV/Å2

kbr 9.04 eV/Å2

JHund 0.653 eV
JAF 0.014 eV

Table 3.1: The tight-binding model parameters used in this thesis. With the exception
of kbr (see Sec. 3.2.6), they correspond to the parameters obtained in
Ref. [28] by comparing to hybrid density-functional calculations.

3.2.6 Alterations of the tight-bindingmodel
Two alterations of the tight-binding model have been proposed following the pa-
rameter determination of Ref. [28], both of which were introduced in Ref. [126]
and used in later applications of the tight-binding model for real-time dynamics
after an optical excitation, see Refs. [32, 33]. The first concerns the breathing
restoring force kbr , which in Ref. [28] was determined from the assumption
that the occupation of the d3z2−r2 orbital in an isolated octahedron should lead
to a purely axial Jahn-Teller distortion (see also Sec. 3.2.5). An alternative, also
followed in this thesis, is to adjust kbr in order to reproduce the ratio of Jahn-
Teller to breating distortion |QJT |/Q1 found in the PrMnO3 density-functional
calculation, see Ref. [126], leading to kbr ≈ 9.04, slightly lower than the value
used in Ref. [28] (kbr = 10.346).

The second, more substantial, change to the model includes the introduction
of an additional degree of freedom: the average Mn-Mn distance, i.e., the cubic
lattice constants Ti, i ∈ {x, y, z}. Until now, the Mn-Mn distance was fixed
and the local Jahn-Teller and breathing distortions solely determined by the
difference of the one-dimensional oxygen displacements along the various axes
∆i,R = Oi,R − Oi,R−i . When using periodic boundary conditions (which will
always be done here), the cooperative description of the oxygen positions leads
to a sum rule within every row Ωi

j,k of the three-dimensional crystal (where i
denotes the orientation of the row and j and k the position in the perpendicular
two-dimensional grid):

∑
R∈Ωi

j,k
∆i,R = 0, ∀i, j, k. This sum rule carries over to
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3.2 The energy functional

the Jahn-Teller and breathing modes, which cannot have a uniform contribution
on the various sites. In addition, global compression and expansions of the
lattice parameters are forbidden, while experimental results show a strong
variation of the c/a ratio (in the Pbnm unit cell) in the various doping regions,
see Ref. [58] and Sec. 2.4.1.

While variations in the b/a ratio of the Pbnm orthorhombic unit cell are seen
as well, see Ref. [58], these cannot be captured in the simplified cubic lattice
structure of the tight-binding model. Hence, while the lattice constants are
introduced as a new degree of freedom, we constrain the in-plane constants
to be equal at all times Tx = Ty. Thus, a uniform Q2-type distortion is
still prohibited, while a uniform Q3 distortion (modifying the c/a ratio), or a
global breathing term (global expansion/compression) is allowed. The oxygen
displacement Oi,R is still taken as the deviation of the oxygen atom from the
center position between both manganese neighbors, but these center positions
move as the (global) Mn-Mn distance changes with the lattice constants Ti. The
O-Mn-O bond distances relevant for determining the Jahn-Teller and breathing
distortions can then be expressed as: ∆i,R = Oi,R − Oi,R−i + Ti − d̄, where d̄
is the equilibrium value of the lattice constants, which will be their actual
value for the system without eg electrons, at x = 1 (CaMnO3). We mention
that with the constraint Tx = Ty, we have effectively introduced only two new
(scalar) degrees of freedom, which can be defined according to the Q1 and Q3
modes (see Sec. 2.2.2): TQ3 =

2√
6
(Tz − Tx) and TQ1 =

1√
3

(
Tx + Ty + Tz

)
. The

TQ1 mode couples only to the total number of electrons in the system and it
can be minimized independently in a ground-state search to a fixed value of
TQ1 =

gbr
kbr
(1− x)+

√
3d̄, where x is the hole doping, and thus (1− x) the average

number of eg electrons per Mn-site.

While the equilibrium value of the lattice constants d̄ has no influence on
the rest of the system in the tight-binding model whatsoever, it is necessary to
be determined if one wants to extract actual values for the lattice constants to
compare to other simulations or experiments. Two possibilities are conceivable
here: One could adjust d̄ to the average Mn-Mn distances, which directly relate
to the experimental lattice constants, yielding a value of d̄Mn−Mn = 3.748 Å
for CaMnO3, see Ref. [58]. Alternatively, one could adjust d̄ to twice the
Mn-O bond distances, which changes the meaning of the lattice constants to the
average O-Mn-O bond distance. Obtained from density-functional calculations
for CaMnO3, see Ref. [28], this gives a value of d̄O−Mn−O = 3.846 Å. It is clear
that the latter value is larger than the former, because the octahedra are tilted
in the Pbnm space group, with the Mn-O-Mn bond angles varying between
149◦ and 160◦, see Ref. [58]. Taking the Mn-Mn definition dMn−Mn and
by setting x = 0 in the expression for the TQ1 mode, we can get a direct
theoretical estimate for the average cubic lattice constants of PrMnO3, which
gives T̄ = 1√

3
TQ1 = 3.939 Å, which is very close to the experimental average

cubic lattice constant of 1
3

(
a/
√

2 + b/
√

2 + c/2
)
= 3.933 Å, see Ref. [135].
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3 Tight-binding description for ground-state and finite-temperature calculations

3.3 Ground-state search

With all terms and parameters of the potential energy functional of the tight
binding model (Eq. (3.2)) clarified, one can now try to find its ground-state
(zero-temperature) configurations. We mention that if one would seek a quan-
tum mechanical description for the nuclei, then one would have to add their
kinetic energy term as well, but this is not necessary to find their classical
minimum (at which their kinetic energy is zero). With analytic solutions to the
full tight-binding model being not available, one straightforward numerical ap-
proach is the use of Monte Carlo simulations. Originally used for a numerical
evaluation of an integral by a random sampling of the integration points, they
have been successfully applied to partition functions and observable averages
in classical and quantum systems, see Ref. [136], and Refs. [137, 138] and
references therein for more details. Monte Carlo approaches have been applied
with some success to the manganite tight-binding model, however, mostly in
limiting cases where either the Coulomb interaction was turned off (reducing
the model to a one-electron problem and avoiding the so-called sign-problem
of quantum Monte Carlo simulations), or without electron-phonon interactions
in a mostly Coulombic system with small system sizes, see Ref. [26] for an
overview of these results. This will not be the path followed in this thesis, where
we instead turn to (real-time) dynamical procedures of finding the ground state.
This is done in the spirit of the Car-Parrinello approach, introduced by Car and
Parrinello in their seminal work in Ref. [129].

3.3.1 Minimization constraints

We seek to find a minimum of the potential energy Epot(ψ, S,O,T) (now includ-
ing the lattice constants T), by varying the underlying degrees of freedom |ψn〉,
®SR, Oi,R and Ti under a set of constraints. In a general many-particle description
for the eg electron states, one would search for the many-particle ground state
|Ψ0(O, S)〉 and for the nuclear and spin configuration O0 and S0 that produce
the lowest many-particle eigenenergy E0(O0, S0) (a mixed quantum-classical
minimization). In the Hartree-Fock approach, the ground-state wave function
is fixed to a single-Slater determinant composed of the (N) one-particle wave
functions |ψn〉, defined in Eq. (3.1). In a minimization procedure directly mod-
ifying these one-particle wave functions, we thus have to enforce the constraint
of orthonormality between these wave functions. Another constraint for freely
optimized spins is to fix their lengths at 3~

2 . The constraints of keeping the oxy-
gen displacements along the Mn-Mn straight bond lines, and for keeping the
x-y-plane dynamical lattice constants equal (Tx = Ty) do not have to be added,
because we can remove the unnecessary degrees of freedom completely. In the
formalism of Lagrange multipliers, the orthonormality constraint for the one-
particle wave functions and the length constraint for the spins can be written
as:

Lconstr =
∑
n,m

Λm,n
(
〈ψn |ψm〉 − δn,m

)
+

∑
R

λR

(
| ®SR | −

(
3~
2

) )
. (3.19)
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3.3.2 Car-Parrinello approach

The Car-Parrinello approach outlined in Ref. [129] was proposed as a uni-
fied perspective on molecular dynamics and density-functional theory (or
general ab initio electronic structure methods), and hence directly aimed at
mixed quantum-classical systems as our tight-binding model. As outlined in
Ref. [129], it can be used both for determining ground-state properties and to
perform ab initio finite-temperature molecular dynamics, and in fact both ap-
plications will be used in this thesis to determine the zero-temperature phases
and finite-temperature phase transitions in the tight-binding model.

For finding ground states, the method can also be described as a dynamical
simulated annealing method, see Ref. [129]. The fundamental idea is to de-
scribe both quantum and classical degrees of freedom on a similar level, by
introducing physical or fictitious kinetic energy terms for all degrees of free-
dom in the system, and then dynamically evolving all of them simultaneously
according to Euler-Lagrange equations under some constraints.

This is done by defining a fictitious Lagrangian composed of the kinetic
energy terms Lkin, the potential energy expression to be minimized Lpot , and
the added constraints Lconstr :

L = Lkin − Lpot − Lconstr . (3.20)

For our tight-binding model, the potential energy expression is given in Eq. (3.2)
(Lpot = Epot), and the constraints were already outlined in Eq. (3.19). The new
kinetic energy expression includes not only the kinetic energy of the nuclei, but
also the fictitious terms for the one-particle wave functions and the t2g spins.
With the lattice constants added as new degrees of freedom, a kinetic energy
term is included for them as well:

Lkin =
∑

σ,α,R,n

fnMψ | Ûψσ,α,R,n |
2 +

1
2

∑
i,R

MO ÛO2
i,R +

1
2

∑
R

MS
Û®S

2
R +

1
2

∑
i∈{x,z}

MT ÛT2
i .

(3.21)

For a ground-state search all masses (MΨ, MO, MS and MT ) can be set to arbi-
trary values, as all these kinetic energy terms should vanish once the minimal
energy configuration is reached. Writing down the Euler-Lagrange equation
for the various degrees of freedom, one arrives at:

fnMψ Üψσ,α,R,n = −
∂Epot

∂ψ∗σ,α,R,n
−

∑
m

Λm,nψσ,α,R,m, (3.22)

MO ÜOi,R = −
∂Epot

∂Oi,R
, (3.23)

MS ÜSi,R = −
∂Epot

∂Si,R
− λR

Si,R

| ®SR |
, (3.24)

MT ÜTi = −
∂Epot

∂Ti
. (3.25)
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3 Tight-binding description for ground-state and finite-temperature calculations

The derivatives of the potential energy function with respect to quantities not
directly appearing in the various terms presented in Sec. 3.2 are obtained via
the chain rule from the derived quantities, e.g., ∂Epot

∂Oi,R
=

∑
a,R′

∂Epot

∂Qa,R′

∂Qa,R′

∂Oi,R
. The

force acting on the wave functions can also be expressed in terms of the Hartree-
Fock Hamiltonian ĤHF (see Eq. (3.4)) using ∂Epot

∂ψ∗σ,α,R,n
= fn 〈χσ,α,R |ĤHF |ψn〉.

It is evident that all equations of motion (3.22)-(3.25) are now of a (coupled)
Newtonian form, and they can be solved, for example, with a Verlet algorithm,
see Ref. [139]. The constraints for the one-particle wave functions and the spins
need to be enforced during this integration. Thereby one obtains fictitious,
coupled, and energy conserving dynamics of the various degrees of freedom.
For the ground-state search in the form of a dynamical simulated annealing,
the fictitious kinetic energy needs to be damped over time. This can be done in
the form of friction terms for each degree of freedom X: −MX ÛXαX , added to
the right-hand-side of the Euler-Lagrange equations (3.22)-(3.25). The friction
parameters αX can be tuned for each degree of freedom to control the speed of
annealing.

For the Verlet integration, both the first and second derivative of the degrees
of freedom are expanded symmetrically up to second order around the current
time step t. One time step t → t + ∆t, with the added friction term, but
without constraints, for a degree of freedom X can then be written as (see, e.g.,
Ref. [140]):

X(t + ∆t) = X(t)
2

1 + aX
− X(t − ∆t)

1 − aX

1 + aX
+ FX(t)

∆t2

MX

1
1 + aX

, (3.26)

where FX is the force acting on the degree of freedom X (determined from the
corresponding derivative of the potential energy), and aX B

αX∆t
2 .

The additional terms for the constraints are added afterward in each time step,
and the Lagrange parameters are determined such that after this correction the
degrees of freedom fulfill the constraint exactly at the beginning of the next time
step. This procedure was first suggested in Ref. [141]. For the wave functions,
this leads to a quadratic matrix equation that can be solved iteratively, see, e.g.,
Refs. [141–143]. For additional details on Verlet integration of Car-Parrinello
dynamics with constraints, we refer to Ref. [144].

With an appropriately chosen damping of the various kinetic energy terms,
the system ends up in a local minimum of the potential energy functional.
At this point all kinetic energy terms in Eq. (3.21) vanish and the resulting
potential energy is independent of the chosen mass and friction parameters. As
with all annealing methods, it is possible that the system relaxes toward a local
minimum (a metastable state), instead of the global energy minimum. While
the convergence to the global minimum can be improved by using a smaller
damping and thus giving the various degrees of freedom enough kinetic energy
to overcome local minima, one cannot rule out the possibility of obtaining a
metastable state.

This is especially true in our tight-binding model, in which the different
competing structures have completely different spin and orbital order. Even
within a pure phase of long-range order, several domains separated by domain
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walls can emerge if the system size is chosen large enough. A detailed analysis
of the obtained short- to intermediate-range order, combined with starting
simulations from various initial states, is thus necessary to reliably identify the
true ground states of the model. More details on these optimization strategies
are given in Sec. 3.3.3, as well as in Ref. [126]. We found that the convergence
behavior of the model is barely influenced by the exact choice of the fictitious
masses or friction parameters, as long as the latter are chosen small enough and
not in an overdamped regime. One option for the masses is to adjust them to
have similar natural frequencies for all degrees of freedom, and then to take the
friction terms in the slightly underdamped regime (estimated from the critical
damping of a harmonic oscillator of a = ω0∆t, see Ref. [140], where ω0 is the
oscillator frequency), see also Ref. [126] for such an example parameter set.

3.3.3 Numerical details

Simulation setups for the ground-state search

One first important decision is the system size to be simulated (with periodic
boundary conditions). While some of the proposed literature ground-state
structures (see Fig. 2.6) fit into a 2 × 2 × 2 unit cell (e.g., PrMnO3 at x = 0,
given here in cubic lattice dimensions of sites Nx × Ny × Nz), others (e.g., the
CE-type structure at x = 0.5) need a larger 4×4×2 cubic unit cell. Even larger
system sizes are needed for testing the Wigner or bi-stripe ground states that
were proposed at dopings close to x = 2/3 for La1– xCaxMnO3, or for simulating
a phase separation. Increasing the system size thus has the advantage that one
does not easily rule out more complicated ordered structures, which could
not fit into smaller unit cells. Conversely, it becomes increasingly difficult to
confirm the ground state in unbiased simulations in larger systems.

The gold standard for unbiased simulations is to start from a completely
random setup of one-particle wave functions, spins and nuclei (and possibly
lattice constants, although in practice we initialized them at Tx = Tz), and
independently of the initial state to obtain the same lowest energy structure.
The random setup includes selecting the spins in random directions and initial-
izing the one-particle wave functions with random values with a subsequent
orthonormalization, while for the nuclei both starting at their equilibrium val-
ues and with random uniform distortions in the range of ±0.1 Å are used as
strategies. The unbiased confirmation of the same ground state was in many
cases possible in a 2 × 2 × 2 system, which, however, excludes many ordered
structures. In larger systems, different ordered sub-domains, smaller defects
(like flipped spins) or frustrated configurations can emerge. In most cases
these metastable states have the same short-range order as the true ground-state
configuration. In regions of competing phases, however, several types of short-
range order can be found in sometimes intertwined arrangements. To determine
the true ground state as predicted from the tight-binding model, it can then be
necessary to construct the long-range ordered structures of all found variants
and compare their energies.

We find that in most cases once the spin configuration has been determined,
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3 Tight-binding description for ground-state and finite-temperature calculations

the convergence for the remaining charge and orbital order is much improved.
Hence, it proves valuable to start a set of calculations from various different
initial spin configurations. The spins are still allowed to adjust dynamically
during the simulation, but there are some simulations starting close to a fer-
romagnetic or to different types of antiferromagnetic arrangements. We are
aware that this introduces some bias into the ground-state search, as a very
complicated spin pattern might have been overlooked. Such a slightly biased
search is carried out for the A-, B-, C-, CE-, E- and G-type spin structures in a
4 × 4 × 4 system. With the exception of the E-type AFM spin order, all other
spin structures are already included in the current experimental understanding
of the phase diagram, see Fig. 2.6. We refer to Refs. [27, 28] for sketches of
the remaining E-type AFM order. The unbiased random setup and the slightly
biased spin-ordered setup are complemented by testing out various structures
proposed in the literature, see the overview in Sec. 2.4.1, where we again allow
for a subsequent relaxation after the setup. It is reassuring for the convergence
properties of our model that the literature orders did either correspond to the
ones obtained by our independent search, or were higher in energy. For the
ground-state results presented in this thesis, the lowest energy structures could
always be obtained from the random or spin-ordered setups; combined in the
cases of the metastable states analyzed later in Sec. 4.1.4 with a construction
of long-range ordered variants of the observed short-range order.

We mention that the importance of the spin structure for the model’s conver-
gence immediately suggests a (classical) Monte Carlo simulation of the spin
subsystem, where the electronic and nuclear subsystems are adjusted to each
new spin configuration before performing the next Monte Carlo step. An ap-
plication to large system sizes requires well adapted Monte Carlo steps, beyond
simple spin flips and allowing for non-collinear spins, which is left for future
investigations of the tight-binding model.

k-points

The tight-binding simulations presented in this thesis are always carried out
with periodic boundary conditions. The system sizes mentioned in the last
paragraphs hence rather refer to simulation supercells, rather than true man-
ganite system sizes, and determine the size of the ordered structures of spins
and phonons that can be described. Taking the spin and phonon configura-
tion as a periodically repeating background potential for the electronic wave
functions, one can apply Bloch’s theorem and take the electron wave vector ®k
as a valid quantum number to quantify the one-particle states as ψn,k (where
k is the index corresponding to the wave vector ®k). These states now each
carry a ®k-dependent Bloch phase ei®k ®R, where ®R defines the three-dimensional
position vector of the sites R. With a suitable redefinition of the wave func-
tions incorporating the Bloch phase projected on the first supercell, see, e.g.,
Ref. [56], the Bloch phase enters only in the form of an additional phase ei®k®t in
the hopping terms across the supercell boundaries, where ®t defines the supercell
lattice constants in the three cubic directions. We can now take a discrete set
of k-points in the first Brillouin zone to allow for additional freedom in the
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inter-supercell-phase of the wave functions. In our cubic crystal, the number
of k-points N k

i in any direction i determines how many times larger the ef-
fective electron-supercell is compared to the simulation supercell for the spins
and phonons, and thus this number should be chosen larger if the simulation
supercell is small in the particular direction. The potential energy is still given
for the simulation supercell, and one can incorporate the different k-points by
dividing the occupation number fn,k (now depending on k) by the total number
of k-points N k =

∑
i N k

i in all above equations, as well as adding a sum over
the k-points in the respective terms in the Lagrangian.

Increasing the number of k-points is computationally much less demanding
than increasing the supercell size: the number of spin and phonon degrees of
freedom stays constant, which reduces the problem of metastable structures
found during the optimization. In addition, the costly orthonormalization of
the one-particle wave functions does only have to be carried out within the
same k-point. The computational cost of this step, similar to a normal Gram-
Schmidt orthogonalization, scales with the second power of the number of
vectors to be orthonormalized (here the number of considered occupied and
empty one-particle wave functions), and with the first power of the dimension
of the one-particle basis, which, for a fixed doping and neglecting empty states,
gives a total scaling with the third power of the system size. In contrast, the
computational cost scales only linearly with the number of k-points.

Differently from the problem of metastable states mentioned previously, the
convergence with respect to the number of used k-points can be controlled
easily, although it will depend on the doping and structures of the ground-state
phases. An exemplary k-point convergence study for various fixed t2g spin
backgrounds at eight different hole dopings x is shown in Fig. 3.2. It shows the
convergence of the ground-state energy for different k-grids N k = N k

i ×N k
i ×N k

i
for the different spin structures, with the energy difference to the largest tested
k-grid (N k

i = 6) indicated on the y-axis. To ensure that all simulations actually
refer to the energy of the same ordered structure, the oxygen positions and
lattice constants have been fixed to the ones from the N k

i = 6 calculation.
After convergence for the fixed nuclear structure, the oxygen positions and
lattice constants were set unrestrained and convergence continued. However,
the ground-state energy did not change on scales visibly in Fig. 3.2 during this
second convergence step, indicating that the N k

i = 6 ground-state structure
is at least metastable also for all other tested number of k-points. Using a
single k-point can lead to larger variations and these values are omitted here
(in the simulations of this thesis we will never use N k

i = 1). For all larger
k-grids, the energy deviations are in the range of a few meV, and below 1 meV
for N k

i ≥ 4 for the tested spin structures and dopings. In most cases we rely
on a k-grid of at least N k = 4 × 4 × 4 for an average 4 × 4 × 4 system (and
correspondingly larger or smaller if the system’s dimensions change), but for
costly finite-temperature simulations a smaller k-grid of N k = 2 × 2 × 2 will
be used (although confirmed at least partially with larger k-grid simulations).
The results from Fig. 3.2 indicate that the convergence might be better in the
low-doped region investigated in this thesis.
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Figure 3.2: Convergence of the tight-binding ground-state energy with the number Nk
i

of k-points per direction i, i.e., for a k-grid of Nk = Nk
i ×Nk

i ×Nk
i points,

for fixed spin structures of A-, B-, C-, CE-, E- and G-type (see Fig. 2.6 for
visualizations of most of these spin orders and, e.g., Ref. [28] for a sketch of
the remaining E-type AFM order). The ground-state energy of the Nk

i = 6
system has been determined first. Afterward, simulations starting with
the different Nk

i are started with the oxygen positions and lattice constants
fixed to the configuration of the predetermined Nk = 6 × 6 × 6 system, in
order to analyze the effect of the k-grid on the energy convergence only
and to not have the possibility of encountering metastable states affect the
results. The difference on the resulting ground-state energies E(Nk

i ) from
the (Nk

i = 6)-simulation are shown.
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3.4 Finite-temperature calculations

3.4.1 Car-Parrinello molecular dynamics

We mentioned in Sec. 3.3.2 that the Car-Parrinello method was introduced not
just for describing a dynamical simulated annealing for a ground-state search,
but also for describing ab initio (finite-temperature) molecular dynamics, see
Ref. [129]. In going beyond the minimization procedure outlined in Sec. 3.3.2,
the Car-Parrinello ansatz transitions from a numerical optimization technique
to an actual approximation for the combined quantum-classical dynamics: The
Car-Parrinello molecular dynamics (CP-MD).

Let us give a short remark on notation: Molecular dynamics (MD) refers
in general to the numerical solution for the time-evolution of a set of clas-
sical degrees of freedom, which are typically atoms/phonons, under Newto-
nian forces, see Ref. [137]. If these forces are obtained from pre-determined
(parametrized) potentials, then the method is also called classical molecular
dynamics, see Ref. [144]. If instead the forces are determined from on-the-
fly electronic structure methods, such as the popular density-functional or
Hartree-Fock calculations, then the method is called ab initio molecular dy-
namics, see Ref. [144], which, however, still describes the nuclei as classical
particles. Examples for ab initio molecular dynamics are Car-Parrinello, Born-
Oppenheimer, or Ehrenfest molecular dynamics, see Ref. [144].

In order to use the Car-Parrinello approach for a molecular dynamics sim-
ulation, its equations of motion need to capture the real-time dynamics of the
nuclear degrees of freedom. This is done by setting the atomic mass MO in
the nuclear equation of motion (3.23) to its physical value (and similarly the
lattice-constant mass (MT , see Eq. (3.25)) if one seeks a dynamical description
of the lattice expansions/contractions), and by omitting the friction terms. The
electronic and spin masses (MΨ and MS, see Eqs. (3.22) and (3.24)) are still
fictitious and should be chosen such that there is little energy transfer between
these degrees of freedom (in the remainder of this section collectively termed
the electrons) with the “physical” nuclear subsystem, see also Ref. [144]. After
preparing the electrons in their ground state for the initial nuclear configuration,
they can approximately adiabatically follow the nuclear dynamics. Since the
nuclear forces are obtained on-the-fly from the time-evolved electronic degrees
of freedom, this is an example for ab initio molecular dynamics (see the previ-
ous remark on notation). While CP-MD is not restricted to an adiabatic electron
description, it is in most cases used in this way and can be understood as an
approximation to the true Born-Oppenheimer molecular dynamics (BO-MD),
see Ref. [144].

In BO-MD, the electrons in each nuclear propagation time step are set ex-
actly to their instantaneous ground state at that nuclear configuration, building
a position-dependent potential energy surface, called Born-Oppenheimer sur-
face, for the nuclei. This completely separates the electronic and nuclear time
scales according to the Born-Oppenheimer (BO) approximation. We note that
the BO approximation is independent of the classical approximation for the
nuclei, and is defined and analyzed in a more general context in Ch. 5. BO-
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MD simulations require to obtain the electronic ground state at every nuclear
configuration encountered along the trajectory, which can be costly for large
systems. In contrast, the electrons in CP-MD are included dynamically in the
time-evolution, and the costly BO ground-state search at every nuclear time step
can be avoided. The introduction of CP-MD led to a breakthrough of ab initio
molecular dynamics, with many applications in solid-state theory and quantum
chemistry, see Ref. [144], and this method will also be used to investigate the
orbital-order phase transition in low-doped Pr1– xCaxMnO3, see Sec. 4.2. For
such a description, the molecular dynamics needs to be applied to a canonical
ensemble at finite temperature.

3.4.2 Finite atom temperature: The Nosé-Hoover thermostat

Several approaches exist that extend molecular dynamics to describe a constant
temperature ensemble, see Ref. [137]. One of the most common forms is the
introduction of a Nosé-Hoover thermostat, see Refs. [145, 146], which is also
used in this thesis. The fundamental idea is to introduce an additional degree
of freedom, acting like a constant temperature heat bath, which couples to
the nuclei and constantly shuffles energy into and out of the system. In the
original formulation, see Ref. [145], which involves a re-scaling of time, an
extended system containing both the real system and the heat bath is defined,
whose microcanonical distribution function equals the canonical distribution
function of the real system. Under the assumption of an ergodic movement of
a nuclear trajectory in this extended system, one can thus recover the canonical
ensemble of the real system. Here, we follow the reformulation proposed by
Hoover, see Ref. [146], which avoids a re-scaling of time and results in simpler
equations, while leading to the same canonical ensemble for the real system (and
is still relying on ergodicity of the trajectory movement). We also refer to the
excellent review [147]. Hoover’s reformulation introduces a time-dependent
friction value for the nuclear degrees of freedom, which is itself given by a
differential equation depending on the difference of the current nuclear kinetic
energy from the finite-temperature expectation value:

MO ÜOi,R = −
∂Epot

∂Oi,R
− MOOi,R Ûζ, ∀i, R (3.27)

MTS Üζ =

(∑
i,R

MO ÛO2
i,R − gkBT

)
. (3.28)

Here, g is the number of free nuclear degrees of freedom, kB is the Boltzmann
constant and T is the temperature of the thermostat. MTS is an effective mass
for the single thermostat variable Ûζ . The variable Ûζ acts as a global friction
parameter for the nuclei and can take positive and negative values. It oscillates
with a thermostat oscillation period of TTS = 2π

√
MTS/2gkBT . The variable

ζ , whose derivative is used as the friction variable in the above equations, can
be integrated with a normal Verlet algorithm together with all other degrees of
freedom in the Car-Parrinello propagation algorithm, see Sec. 3.3.2.
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After the setup of the initial positions and momenta, a Nosé-Hoover ther-
mostat calculation is completely deterministic. It is known that the standard
Nosé-Hoover thermostat is rather stiff and does not fulfill ergodicity for very
small systems, such as the important case of an isolated harmonic oscillator,
see Ref. [146]. An extension was proposed in the form of Nosé-Hoover chains,
in which the thermostat variable is thermostatted itself, which can be done
recursively, see Ref. [148]. For the large systems studied in the tight-binding
model, we will stay with the original single-variable Nosé-Hoover thermostat
defined by the above equations.

Applying the atom thermostat to a CP-MD simulation can lead to a coupled
system of hot nuclei and “cold” electrons (where their effective temperature
refers to their fictitious kinetic energy terms). In particular, when the electronic
energy gaps become small, or the system even metallic, the assumption of a
negligible energy flow between the electronic and nuclear subsystem might not
hold. In such cases (and also in general to ensure that the electrons stay close
to their ground state) several variants have been proposed to keep the electronic
subsystem at a low effective temperature, such as using a second independent
thermostat for the electronic degrees of freedom, or to directly switch to BO-
MD, see Ref. [144] for an overview. In this thesis, we will ensure the cooling
of the electronic and spin subsystems by applying a constant small friction to
them, similar as in the optimization procedure, see Sec. 3.3.2. It needs to be
ensured that the finite-temperature results do not depend on the choice of this
friction parameter (within reasonable bounds).

Ensemble averages of an observable A are calculated under the ergodic hy-
pothesis as the mean value of the sampled values AS taken during the thermostat
calculation: 〈A〉 = 1

NS

∑
s As (where NS is the number of sampling points). Es-

timating the standard deviation of the ensemble average σ〈A〉 is non-trivial, as
subsequent sampling points are likely to be correlated. Here, we resort to a
blocking method, see Refs. [149, 150], where the sampling points are grouped
into a number of NB blocks Bi, each including L sampling points, and the mean
value over each block 〈A〉Bi

is treated as a new effective sampling point. The
block-estimate for the standard deviation of the total mean is then given via
σ2

L =
1

NB(NB−1)
∑NB

i=1
(
〈A〉Bi

− 〈A〉
) 2. For sufficiently large blocks, the mean val-

ues of the different blocks should become uncorrelated and the block-estimate
independent of further increments of the block size L. The block-estimate for
such large L should then approach the true standard deviation of the ensem-
ble averaged value. However, if the blocks sizes become comparable to the
sampling size, the block-estimate σL itself will have a large error. Reaching a
plateau in σL upon increasing L and before the errors are too large is thus an
indication of a sufficient simulation time and the plateau-value a good estimate
for the standard deviation of the ensemble average, see Refs. [149, 150] for
details.

We observe in general that this blocking approach converges in most cases
for temperatures away from the phase transition that will be investigated later
in Sec. 4.2. One such example is given for a CP-MD run at 600 K, away
from any phase transition, in Fig. 3.3(a). The figure shows block-estimates for
the standard deviation of the ensemble average of the order parameter divided
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Figure 3.3: Error estimate of the ensemble average of the order parameter (Eq. (4.6))
divided by the ground-state value of that order parameter, obtained by the
blocking method for a CP-MD run at (a) 600 K and (b) 220 K. These runs
are selected from the heating thermostat calculations presented later in
Fig. 4.6. They use a 4 × 4 × 4 simulation cell with Nk

i = 2 k-points in
every direction at doping x = 6

64 . Starting from the ground state at that
doping (see Sec. 4.2) the system is equilibrated at the target temperature
for 2.42 ps and thermal averaging is done for 12.1 ps with sampling points
obtained every 100 time steps of each ∆t = 2.42 as. See Table 4.2 for the
thermostat parameters and the results section 4.2 for further discussions on
the simulation procedure and the selected order parameter. The connecting
lines are guides for the eye.

by the order parameter of the ground-state phase. This is done for any integer
division of the number of sampling points up to L = NS/4. The order parameter
corresponds to the in-plane checkerboard Jahn-Teller correlation function and is
defined in Eq. (4.6), discussed in more detail when presenting the results of the
tight-binding model in Ch. 4. Increasing the block sizes beyond L = 0.05 · NS
changes the error estimate only within the growing uncertainty of the estimate
itself. This is considered a well converged error estimate.

We note that when cooling the system to low temperatures, it can end up
for a long time in a metastable state. In this case, the finite simulation time
might be too short to even capture that the error estimate is not converged.
One should thus not over-interpret these values. The situation becomes worse
close to the phase transition, for which one example is shown in Fig. 3.3(b).
Here, the error estimate still grows with the block size, indicating that longer
total simulation times are needed for an accurate error estimate (and an accurate
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thermal averaging). In this case it is advised to take the maximum error estimate
obtained for any block-division and consider this as a lower bound to the error
of the ensemble average, see Refs. [149, 150]. We will always follow this
procedure to take the maximum error estimate when presenting the results in
Ch. 4.

Both BO-MD and approximately CP-MD rely on the adiabatic approximation
for the fast degrees of freedom, which for the tight-binding model are the eg
electrons and the t2g spins. We note that one could still obtain the exact mixed
quantum-classical ensemble averages if one uses the thermostatted CP-MD (or
BO-MD) as an importance sampling for the true ensemble and corrects in the
calculation of observables for the adiabatic path taken, see, e.g., Ref. [151]. For
the electrons this requires the calculation of the excited electronic eigenstates
at every sampled nuclear configuration, which can be obtained, for example,
from linear-response time-dependent Hartree-Fock or density-function theory,
see, e.g., the overviews in Refs. [152, 153]. When a quantum mechanical
treatment of the spins is too costly, one could apply a thermostat to the classical
spin system as well, which can be done by using extensions of the Nosé-Hoover
thermostat, see Refs. [147, 154, 155]. Neither of these extensions or corrections
is used in this thesis, in which we concentrate on the breakdown of the long-
range orbital-order (which is strongly coupled to the long-range Jahn-Teller
order of the oxygen atoms). An independent melting of the spin-order at lower
temperatures, as expected from the experimental phase diagram, see Fig. 2.5,
thus cannot be described with this approach. Since we cannot exclude that the
adiabatic approximation for the fast degrees of freedom influences the melting
temperature of the orbital-order as well, further complementary studies are
needed in the future.

For non-equilibrium setups definitely including excited electronic states,
such as the relaxation after a photoexcitation, one has to question the validity of
the adiabatic approximation. Methods of including excited electronic states in a
dynamical simulation with classical nuclei (quantum-classical trajectory-based
methods) are described in detail in Ch. 5, and benchmarked in an electron-
phonon coupled system (the Holstein model) in Ch. 6. Combining these
methods with the CP-MD approach in the manganite tight-binding model is an
intriguing future prospect, but beyond the scope of this thesis. We note that a
combination of one of the quantum-classical trajectory methods, the Ehrenfest
dynamics method, has been applied to the manganite tight-binding model
without a thermostat in Refs. [32, 33]. However, it is known that Ehrenfest
dynamics combined with a nuclear thermostat cannot correctly reproduce the
mixed quantum-classical canonical ensemble (in general), see, e.g., Ref. [151],
and we stay for now with the well-established adiabatic molecular dynamics
approaches described above.
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4 Ground states and orbital-order phase
transition in low-doped Pr1 – xCaxMnO3,
obtained with themanganite
tight-bindingmodel

The tight-binding model presented in the last chapter, with the parameter deter-
mination based on density-functional calculations, presents an important step
toward independent theoretical predictions about the various phases emerging
in the Pr1– xCaxMnO3 phase diagram. With a fixed parameter set, see Ta-
ble 3.1, and without further adjustments to the individual doping regions, it is
able to correctly recover most of the ordering principles of the experimentally
known phases and can provide new insight in regions of diverging experimental
explanations, see Refs. [56, 126].

A systematic study of the ground-state predictions of the model was started
by Sangeeta Rajpurohit during her doctoral studies, and later joined by myself
with an independent code implementation. Ground-state results for selected
phases have been presented already in the Master’s thesis of the author of this
thesis, although without the alterations of the model presented in Sec. 3.2.6, see
Ref. [56]. An elaborate evaluation of the complete ground-state phase diagram,
including various metastable states between the pure phases, was presented in
the PhD thesis of S. Rajpurohit in Ref. [126]. A joint publication combining
the analysis of all ground-state results might follow in the future. We will not
repeat the results for the whole ground-state phase diagram in this thesis, for
which we refer to Ref. [126], but instead focus completely on the low doped
region 0 ≤ x ≤ 0.25, which we analyze in more detail. This is necessary
to understand the starting points for the finite-temperature orbital-order phase
transitions investigated at x = 0 and x = 0.1, which is at the heart of this
chapter.

Let us nonetheless shortly summarize, we refer to Ref. [126] for details, that
the model reproduces all magnetic phases presented in the experimental phase
diagram, see Fig. 2.6. This includes the A-type (AFM) phase at zero doping
and the B-type (FM) phase at quarter doping (which are both outlined in more
detail in the following), the striped CE-type (AFM) phase at half doping, the
C-type (AFM) phase at three-quarter doping (which, according to the model,
is energetically slightly preferred over the in-plane zig-zag spin structures that
have also been suggested, see Sec. 2.4.1), and (trivially) the G-type (AFM)
phase at x = 1. In addition, the Wigner-crystal phase at x = 2/3 is predicted
at slightly lower energies than the bi-stripe phase (by a few meV per site), and
obtained as an additional pure phase.

All other obtained and tested structures are energetically higher than the
predicted phase separated mixtures between these pure phases, and might
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be designated as metastable states. If the energy difference is small, we can
expect to encounter these structures regularly beyond absolute zero temperature.
Furthermore, a phase separation of differently doped phases will lead to a long-
range Coulomb interaction (in the real material, but not included in the model).
Hence, for metastable states very close in energy to the phase separation, we
cannot definitely conclude on the ground-state structure of the material.

Besides the spin structures, the model predicts orbital and charge ordering
in the x ≥ 0.5 phases in line with experimental measurements, see Ref. [126].
At x = 0.25, where the experimental results for the orbital or charge order are
not yet conclusive (see Sec. 2.4.1), the model proposes a new kind of ordering,
not excluded by previous experimental results, also discussed in the following
in Sec. 4.1.3. For x = 0, the in-plane orbital order is reproduced, but the Jahn-
Teller angles differ from the experimental and ab initio-results (discussed in
Sec. 4.1.2). This leads to qualitative deviations of the lattice constant ratio c/a
in the low-doped region from experimental results, while this ratio accurately
matches the experimental values for all dopings x > 0.25, see Ref. [126].
In summary, the existing results with the tight-binding model have shown its
capability of describing the various ground-state phases. The largest observed
deviations from confirmed experimental structures are at x = 0 in the c/a-ratio
(and correspondingly in the Jahn-Teller angles), which is also shown in the
following.

4.1 Zero-temperature phases 0 ≤ x ≤ 0.25
Let us now investigate in more detail the doping region 0 ≤ x ≤ 0.25. This
is the electron-rich side of the phase diagram with one eg electron per site for
pure PrMnO3 at x = 0, and on average 0.75 eg electrons per site at quarter
doping.

4.1.1 Overview

We start with an overview of the energy-over-doping diagram of the low lying
structures. At x = 0, an A-type spin structure has the lowest energy, see
Sec. 4.1.2, while at x = 0.25, a B-type ferromagnet emerges, see Sec. 4.1.3.
All other tested and obtained spin structures are higher in energy (see Sec. 3.3.3
for details on the optimization procedures) and we did not observe any canted
spin structure, or small-scale phase separation, being close in energy. Fig. 4.1
shows the energy per site for various dopings for fixed B-type and A-type spin
structures, obtained in a 4 × 4 × 4 lattice with N k = 6 × 6 × 6. In between of
these pure phases, we could not find any structure with an energy lower than the
phase-separation energy of E(x) = (EB x + EA(0.25 − x))/0.25, where EA and
EB are the energies per site of the x = 0 and x = 0.25 phase. Ignoring interface
energies and long-range Coulomb interactions, the phase-separation energy is
the theoretical energy of a two-phase mixture of (large) clusters composed of
the two pure phases. This phase-separation energy is included as black line in
Fig. 4.1, with the extended line toward the next pure (CE-type) phase at x = 0.5
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Figure 4.1: Energy per manganese site over doping x, for fixed t2g spins of A-type
(magenta squares) and B-type (green circles), as well as low-lying A/B-
type mixed phases (blue pentagons) analyzed in more detail in Sec. 4.1.4.
A thick black line connects the pure phases at x = 0 and x = 0.25, with
an extension to the x = 0.5 pure CE-type phase indicated at x > 0.25.

with an energy per site of ECE = −0.15446 eV indicated (but not analyzed in
more detail here). Several metastable structures could be realized that are very
close in energy to the phase separation, which is analyzed in more detail in
Sec. 4.1.4. We will see that these metastable phases are actually mixtures of the
A-type and B-type spin order of the neighboring pure phases, although their
orbital order is adjusted to reduce the interface energies.

4.1.2 x = 0
For pure PrMnO3 (x = 0), the model reproduces the A-type spin order of the
experimental results (see Fig. 2.6). It shows a checkerboard-like x-y-plane
orbital order as well. Density-functional calculations of this phase predict
alternating Jahn-Teller angles of θ = ±110◦, close to pure alternating d3x2−r2

and d3y2−r2 orbitals that would emerge at θ = ±120◦ (depicted in Fig. 2.4), see
Ref. [28]. The Jahn-Teller angles in the tight-binding results are reduced to
θ = ±69.2◦, which leads to orbitals closer to the form of alternating dx2−z2 and
dy2−z2 orbital shapes, as shown in a sketch in Fig. 4.2(a).

From the pure Q2 distortions at θ = ±90◦, the density-functional angles thus
indicate a constant negative Q3 mode on every site, which, besides octahedral
tilting, leads to a decreased c/a < 1 lattice constant ratio, in agreement with
the experimental results, see Refs. [58, 135]. The tight-binding angles lead to a
constant positive Q3 mode on every site, which results in an increased c/a > 1
ratio (with c = 0.27864 Å+ d̄ and a = 0.14693 Å+ d̄, see Sec. 3.2.6 for details
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Figure 4.2: (a) Sketch of the orbital and spin order obtained for PrMnO3 (x = 0).
Similar to Fig. 2.6, we indicate the t2g spin-orientation by the red/gray-
shade of one of the orbitals’ isosurfaces, with the eg spins being aligned
with the t2g spins in all cases. The orbitals show a checkerboard-like
x-y-plane order and an A-type spin order. (b)-(d) Planar cuts of the
correlation functions of the Jahn-Teller and spin order (see Eqs. (4.2) and
(4.1)) at different values of qc, for an N = 4 × 4 × 4 simulation cell with
Nk = 6 × 6 × 6. Non-zero values are obtained at discrete points due to
the finite system sizes and Gauss-broadened at these positions. With the
prefactors defined in Eqs. (4.1)-(4.4), they are all plotted on a constant
(but arbitrary) color-scale. The white dashed line shows the size of the
reciprocal unit cell.

on the value of d̄), deviating from the experimental results. As mentioned
previously, the low-doped region x < 0.25 is the only part of the ground-state
phase diagram which shows this discrepancy in the obtained lattice constants.
The tendency of superexchange coupled models to produce such reduced Jahn-
Teller angles at x = 0 has been pointed out already in early studies by Kugel
and Khomskii, see Ref. [132], and one possible suggested solution is the
inclusion of anharmonic terms in the Jahn-Teller energy expression. It was
mentioned before (see Sec. 3.2.3) that higher order restoring forces lead to
local minima in the lower energy surface of the Jahn-Teller problem at angles
θ = 0,±2π/3, which stabilizes the prolate over the oblate orbital types. We
note that the Q2-part of the Jahn-Teller angle (± sin(θ)), responsible for the in-
plane checkerboard orbital order, agrees excellently with the density-functional
theory results. As we are mainly interested in this in-plane orbital order when
considering finite-temperature phase transitions, we do not include any further
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4.1 Zero-temperature phases 0 ≤ x ≤ 0.25

correction terms into the model.
In general, the z-direction orbital order is very weak. The structure shown

in Fig. 4.2(a) has the lowest energy of the possible z-direction orderings (in the
tested 4×4×4 simulation supercell), and alternates every second plane. A pure
C-type orbital order (where the same orbital order repeats without shift between
planes) is only less than 0.4 meV per site higher in energy, and we consider the
different z-type orderings as nearly degenerate. It was pointed out in Ref. [127]
that a small z-direction hopping between the dx2−y2 orbitals stabilizes the C-
type orbital order. This term is zero in the ideal cubic setup when considering
σ-bonds only (see Sec. 3.2.1), but incorporating the octahedral tilting of the
real material would lead to a small non-zero value in that hopping term.

A good measure for the various types of order can be given in terms of
correlation functions in reciprocal space. We define these correlation functions
for the spin, Jahn-Teller, orbital, and charge order as dimensionless quantities
in the following ways:

CS( ®q) =
1

N2
R

(
3~
2

) −2 ∑
j∈{x,y,z}

�����∑
R

e−i ®q ®RSj,R

�����2 , (4.1)

CQ( ®q) =
1

N2
R

k2
JT

g2
JT
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�����∑
R

e−i ®q ®RQ j,R

�����2 , (4.2)
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�����∑
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�����2 , (4.3)

CC( ®q) =
10
N2

R

�����∑
R

e−i ®q ®R (nR − (1 − x))

�����2 , (4.4)

where we introduced the expressions σ̂O
j,R =

∑
α,β,σ |χσ,α,R〉

(
σ j

P

)
α,β
〈χσ,β,R |

for the orbital correlation function, with σ j
P referring to the j ∈ {x, y, z} Pauli

matrices. The x and z components of this term couple directly to the Q2 and
Q3 Jahn-Teller distortions, see Sec. 3.2.3, while the y component does not
couple to the Jahn-Teller distortions and is ignored in the correlation function
in Eq. (4.3).

The correlation functions will always be given in terms of the Pbnm-space
group with the lattice constants a, b, and c, see Fig. 2.6 for a sketch of the
orientation of the Pbnm lattice vectors in the cubic manganite tight-binding
structure. The relevant non-zero a-b-plane correlation functions (correspond-
ing to in-plane rotated x-y planes), are shown in Figs. 4.2(b)-(d). Due to
the finite system sizes, the correlation functions are non-zero only at discrete
values, at which they are Gauss-broadened for visibility in these figures. The
intensities of the diffraction spots indicate the value of the correlation function
at the corresponding wave vectors and the white dashed line shows the size of
the reciprocal unit cell.

Figs 4.2(b) and (c) show the Jahn-Teller correlation function at qc = 0 and
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qc = π/c. At qc = 0, we see a smaller diffraction spot at qa = qb = 0,
which represents the constant uniform positive Q3 mode on every site. Larger
diffraction spots are visible in the qc = π/c plane at (qa, qb) = (

2π
a , 0) (or equiv-

alently in our lattice at (qa, qb) = (0, 2π
b )). This diffraction spot corresponds

to the checkerboard-in-plane Jahn-Teller order (caused by the alternating Q2
modes). With the near-degeneracy of the out-of-plane Jahn-Teller orders, we
consider its qc position as not well determined, and we refer to (2πa , 0, qc) as
the general checkerboard-order diffraction peak. The orbital correlation func-
tion (Eq. (4.3)) shows diffraction spots at the same spots as the Jahn-Teller
order (not shown), with even the relative magnitude of the spots corresponding
exactly to the Jahn-Teller order values. This reflects that in this ground-state
the cooperative Jahn-Teller order matches the orbital order of the eg electrons.
Combined they could be described as a polaronic order, and the structure as a
polaronic crystal. The spin correlation function is shown in 4.2(d), which has
a non-zero value only at the A-type diffraction spot at (qa, qb, qc) = (0, 0, 2π

c ).
There is no charge order in the system, i.e., CC( ®q) = 0, ∀®q.

PrMnO3 is one of the systems investigated with density-functional calcu-
lations in Ref. [28] that have been used to determine the parameters of the
tight-binding model. In the used on-site model that was fitted to the den-
sities of states, a perfect spin and orbital polarization of the eg electrons
was assumed for PrMnO3. It is clear that this will not be the case in the
real material or in the tight-binding results, as the electrons will delocalize
to some extend to the neighboring sites to reduce their kinetic energy. The
spin and orbital polarization nS and nO can be obtained from the expectation
values of the Pauli matrices in the space of the spin- or orbital degrees of
freedom: nS =

√∑
j∈{x,y,z} 〈σ̂

S
j,R〉

2 and nO =

√∑
j∈{x,z} 〈σ̂

O
j,R〉

2, where the
spin expression is defined analogous to the orbital expression given above as
σ̂S

j,R =
∑
α,σ,σ′ |χσ,α,R〉

(
σ j

P

)
σ,σ′
〈χσ′,α,R |. In the tight-binding model we ob-

tain a spin polarization on every site of nS = 0.94, which is very close to a full
spin polarization, fitting to the large Hund’s coupling present in the system.
This also explains why the z-direction orbital order (where the spin changes
between planes) is nearly irrelevant for the system’s energy. In contrast, the
orbital polarization is nO = 0.742, which shows a non-negligible mixing of
an eg electron occupying the adiabatic lowest orbital of a certain site toward
its (mostly in-plane) neighbors having a different Jahn-Teller angle. It might
prove worthwhile to confirm the orbital polarization in density-functional cal-
culations (which will, however, strongly depend on the studied doping and spin
order) and potentially include it in a future adjusted parameter determination
model. This is, however, not done in this thesis.

Lastly, from the final ground-state structure we can obtain the (Hartree-Fock)
energy levels also of the unoccupied one-particle wave functions according to
εn = 〈ψn |ĤHF(ΨGS)|ψn〉, where ĤHF(ΨGS) is the Hartree-Fock Hamiltonian
(see Eq. (3.4)) for the ground-state Slater-determinant wave function, and |ψn〉

are the one-particle eigenstates of this Hamiltonian. We note, however, that the
energy levels of the unoccupied one-particle wave functions do not correspond
to true excitation energies (one could obtain improved excitation energies,
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4.1 Zero-temperature phases 0 ≤ x ≤ 0.25

for example, by using linear-response theory, see Refs. [152, 153], which
is not done in this thesis). Here, we only use the difference between the
highest-occupied and lowest-unoccupied one-particle eigenstate ∆Eg , which
also depends on the chosen k-point density, as the Hartree-Fock estimate of the
electronic band gap. We obtain a value of ∆Eg ≈ 0.967 eV, which is close to
the density-functional calculation band gap of 1.05 eV (see Ref. [28]).

In total, the tight-binding model reproduces both the A-type spin order and
the in-plane checkerboard orbital order known to appear in undoped PrMnO3
as the lowest-energy results. The lattice constant c/a-ratio is, however, not
reproduced and shows a positive rather than a negative Q3 admixture on every
site.

4.1.3 x = 0.25
Next, we consider the opposite end of the investigated doping regime: the
ferromagnetic (B-type) structure at x = 0.25. We outlined in detail in Sec. 2.4.1
that the type of orbital or potentially charge order is still under debate for this
phase, with suggestions ranging from a phase separation between ferromagnetic
metallic and antiferromagnetic insulating phases, over PrMnO3-like orbital
order with potentially disordered Mn4+ ions, to charge and orbital ordered
intrinsically ferromagnetic insulating phases, see Refs. [58, 82, 87, 88, 103].

Our tight-binding model clearly shows (see also Ref. [56]) the development
of an intrinsically ferromagnetic insulating phase (with∆Eg = 0.310 eV), where
the metallic double-exchange is suppressed by an orbital ordering of the Mn3+

ions. In our results, this orbital order is accompanied by a charge ordering
of the Mn4+ sites in a pattern indicated as sketch in Fig. 4.3(a). The formal
Mn4+ “hole” sites in the sketch are without any orbital polarization and have
no Jahn-Teller distortion, but the charge disproportion between the sites is
smaller than their formal oxidation state, with the eg electron density of the
electron-rich and electron-poor sites being 0.882 e and 0.353 e, respectively.
The electrons on the electron-rich sites (formal Mn3+ sites) occupy oblate
shaped orbitals in the three cubic planes, corresponding to Jahn-Teller angles
of 60◦ − ∆θ, 180◦ − ∆θ and 300◦ − ∆θ, where ∆θ = 13.348◦ denotes the shift
from the dz2−x2 , dx2−y2 and dy2−z2 orbitals (see Fig. 2.4). We observe an orbital
polarization of nO = 0.602 on these sites (and nO = 0 on the hole sites). These
oblate orbitals all have one opposite pair of lobes pointing toward the hole
site (the white colored lobes in the sketch in Fig. 4.3(a), which are slightly
smaller than the red lobes due to the Jahn-Teller angle shift), while the other
pair of lobes points to the neighboring oblate orbitals oriented perpendicular
to the oxygen bond. Hence, the electrons occupying all three types of orbitals
extend to some degree into the hole sites, leading to the orbital-unpolarized
state. Interpreted in the theory of semicovalent exchange (see Ref. [16]), the
hole sites allow for a semicovalent bond in all three cubic directions, which
gives rise to a ferromagnetic superexchange coupling between all sites, without
leading to a large conductivity as one would obtain in an orbital-disordered
double-exchange dominated structure. We note that this type of orbital order
could in principle also occur without any charge order if a larger part of the
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Orbital and spin structure at x = 0.25
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Figure 4.3: (a) Sketch of the orbital and spin order obtained at x = 0.25. The orbital
shapes and spin directions are indicated in the same way as in Figs. 2.6
and 4.2. The system is ferromagnetic and shows the development of
orbital-unpolarized sites (drawn as small circles). (b)-(d) Planar cuts of
the correlation functions of the Jahn-Teller and spin order (see Eqs. (4.2)
and (4.1)) at different values of qc, for an N = 4 × 4 × 4 simulation cell
with Nk = 6 × 6 × 6. We use the same Gaussian-broadening as before
(see Fig. 4.2), and the white dashed line shows the size of the reciprocal
unit cell.

eg electrons localized to the Mn3+ sites would delocalize into the hole sites.
In contrast to the previously suggested orbital-polarons composed of prolate
orbital types (see Ref. [103]), this structure has the advantage that all sites
are interconnected in a single superstructure, without the development of two
separate sublattices. The orbital or charge order diffraction peaks are, however,
the same as for the orbital-polarons presented in Ref. [103], and we adopt the
name orbital-polaron for the hole sites encased by six Mn3+ sites.

The system is invariant under cubic rotations and we obtain equal lattice
constants in all directions c/a = 1, which fits to the experimental results
showing a minimum in the octahedral distortions around this doping (see
Ref. [58]). Disordered variants of the orbital-polarons are only slightly higher
in energy (in the order of a few meV). With the orthorhomic constraint of
Lx = Ly we observe that the metastable states typically have an intact x-y-
plane orbital and charge order, while the order in the z-direction is weaker, see
also Ref. [126] for a sketch of such a metastable state.

The described order (in the symmetric lowest-energy structure) leads to equal
diffraction peaks in the orbital, charge and Jahn-Teller correlation functions
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at (qa, qb, qc) = (
2π
a , 0, 0), (

π
a,

π
b,

2π
c ), and ( πa,

−π
b ,

2π
c ), with all peaks having the

same intensity, see Figs. 4.3(b),(c) for the example of the Jahn-Teller correlation
function. The first diffraction peak in the qc = 0 plane corresponds to the same
checkerboard-type pattern also present at x = 0, although here with a different
value of qc. In the metastable variants of both phases, this peak remains, and
the diffraction spots are extended to all values of qc. The ferromagnetic order
leads to a single diffraction spot in the spin correlation function at (qa, qb, qc) =

(0, 0, 0), see Fig. 4.3(d).

4.1.4 0 < x < 0.25
Let us now turn to the intermediate region between the A-type AFM phase
at x = 0 and the B-type FM phase at x = 0.25. As presented in Sec. 4.1.1,
we could not find any structure lower in energy than the phase separation line.
Without interface or long-range Coulomb interactions we can thus expect a
mixture of the two phases presented above. A direct simulation of this phase
separated structure with negligible interface energy is beyond the reach of the
tight-binding model.

We could, however, find several low-lying states that are composed of
mixtures of A-type and B-type phases. We observe two types of x-y-plane
checkerboard-type orbital order in these metastable states, which is the type
of order that is shared between both pure phases analyzed above. First (type-
(I) order), the alternating oblate dx2−z2/dy2−z2 orbitals already found at x = 0
(see Fig. 4.2(a)), and second (type-(II) order) alternating dx2−y2 orbitals with
orbital-unpolarized formal Mn4+ sites. The type-(II) order is thus accompanied
by charge order and has a formal hole doping of 0.5. The magnetic order in
the x-y-plane within each type of orbital order is ferromagnetic, while between
both orders it is antiferromagnetic. In the z-direction, the magnetic order is
antiferromagnetic between sheets of type-(I) order, and ferromagnetic between
the two types of orbital order. We find very low energies for structures in
which the different types of order fill complete x-y-planes. The approximately
half-doped planes (type-(II) order) are then encased by two PrMnO3-like type-
(I) order planes and build a three-layer ferromagnetic cluster in the otherwise
A-type antiferromagnetic matrix. Such a structure is visualized in Fig. 4.4(a).

The doping determines the ratio of the two types of order. We could only
stabilize these metastable states as long as the ferromagnetic clusters are non-
overlapping, which leads to a maximum doping of x = 1/6. At higher dopings
we could not find metastable states being this close to the phase separation
energy. The exact placement of the ferromagnetic clusters in the A-type matrix
has only very little effect on the total energy, which is evident from a few
examples listed in Table 4.1, where the magnetic alignment of the subsequent
layers is shown by spin-arrows ↑ and ↓. We note that while the short-range order
sketched in Fig. 4.4(a) could be obtained with the usual ground-state search
optimization procedures (see Sec. 3.3.3), the low-energy structures outlined in
Table 4.1 were obtained by testing various spin and orbital configurations using
manual inputs.

The two different tested spin patterns for the x = 0.1 doping have nearly the
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(a)

Orbital and spin structure for the phase mixtures at 0 < x < 0.25
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Figure 4.4: (a) Sketch of the type of orbital and spin order obtained in the metastable
states presented in Table 4.1. The orbital shapes and spin directions are
indicated in the same way as in Figs. 2.6 and 4.2. (b)-(e) c-averaged
correlation functions of the Jahn-Teller, orbital, charge, and spin order
(see Eq. (4.5)), for the N = 4×4×8 simulation cell with Nk = 4×4×2 at
x = 0.125, with the c-direction spin pattern presented in the third row in
Table 4.1. We use the same Gaussian-broadening as before (see Fig. 4.2),
and the white dashed line shows the size of the reciprocal unit cell.

same energy, with the first pattern being antiferromagnetic, while the second
pattern has a weak residual ferromagnetic moment averaged over the simulation
cell (and the same applies to the two patterns analyzed for x = 0.125). This
shows again that the ordering in the z-direction is much weaker than the in-
plane checkerboard orbital order inherent to all observed structures. We note
that experimental interpretations of a spin-canted phase in this region (see
Refs. [58, 101]) could be caused by such an averaging over antiferromagnetic
and weakly ferromagnetic patterns, but our results are more in line with a
nanoscale phase separation of A-type and B-type phases, as proposed by newer
experimental studies, see Refs. [84–86] and as a more general ordering principle
by theoretical considerations in Ref. [26]. The energies of all presented spin
patterns presented in Table 4.1 are very close to the phase separation energy
of the pure x = 0 and x = 0.25 phases at the corresponding doping (differing
by less than 1 meV), see also Fig. 4.1. From the tight-binding results presented
here, we can thus expect to encounter all variants already at temperatures
significantly lower than the orbital-order transition temperatures indicated in
Fig. 2.5. The lower obtained energies at each doping account for three of the
blue pentagons included in the energy-over-doping graph at x = 0.1, x = 0.125
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4.1 Zero-temperature phases 0 ≤ x ≤ 0.25

doping x simulation cell spin configuration Epot/NR [eV]

0.1 N = 2 × 2 × 10
N k = 8 × 8 × 2 ↑↓↓↓↑↓↑↑↑↓ -0.1768

0.1 N = 2 × 2 × 10
N k = 8 × 8 × 2 ↑↓↓↓↑↓↑↓↓↓ -0.1767

0.125 N = 4 × 4 × 8
N k = 4 × 4 × 2 ↑↑↑↓↓↓↑↓ -0.1776

0.125 N = 2 × 2 × 8
N k = 8 × 8 × 2 ↑↓↓↓↑↓↓↓ -0.1778

1
6

N = 2 × 2 × 6
N k = 8 × 8 × 3 ↑↑↑↓↓↓ -0.1791

Table 4.1: Exemplary low-lying (metastable) A/B-mixed structures obtained at dop-
ings x = 0.1, x = 0.125 and x = 1/6. The simulation cells and k-grids are
given, as well as the used spin-configuration. These spins refer to the t2g
(and aligned eg) spin orientation in subsequent planes in the z-direction,
see also the sketch in Fig. 4.4(a) for an example of a ↓↑↑↑↓-pattern. The
energy per site is given in the last column. The energetically lower structure
at each doping is also included in the energy-over-doping graph in Fig. 4.1.

and x = 1
6 , see Fig. 4.1.

With the order in the z-direction having such little effect on the total energy, it
is useful to concentrate on the in-plane ordering only. For this we introduce the
z-direction (or in Pbnm notation c-direction) averaged correlation functions:

Cav
A (qa, qb) =

∑
qc

CA(qa, qb, qc), A ∈ {S,Q,O,C}, (4.5)

where the CA, A ∈ {S,Q,O,C}were defined in Eqs. (4.1)-(4.4). The c-averaged
correlation functions are qualitatively the same for all spin patterns and dop-
ings presented in Table 4.1, with the example correlation functions of the
antiferromagnetic pattern at x = 0.125 (third row in Table 4.1) shown in
Figs. 4.4(b)-(e). The Jahn-Teller, charge, and orbital correlation functions are
all very similar, although the charge correlation function has a larger contri-
bution at the (qa, qb) = (0, 0) peak, which comes from the out-of-plane charge
order. The checkerboard-peak at (qa, qb) = (

2π
a , 0) is present in all three types

of order, and weakest in the charge correlation function (relatively to the total
weight), where only the type-(II) order planes contribute. The spin correlation
function has a peak at (qa, qb) = (0, 0), with the contributing qc components of
the wave vector determined from the exact spin pattern.

Depending on the hole-doping (and the chosen simulation cell), the two
types of orbital order might not fill complete x-y-planes. In this case, they
form clusters in the mixed layers, with an in-plane antiferromagnetic coupling
between both types of order. The energy of such an example is included in
the energy-over-doping Fig. 4.1 at x = 6

64 obtained in a 4 × 4 × 4 simulation
cell (with N k = 4 × 4 × 4). Its energy of Epot/NR = −0.1743 eV is about
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2 meV above the phase separation line. When analyzing the finite-temperature
phase transition close to x = 0.1 we will start most simulations from this state,
and a sketch of the x-y-plane orbital order of such a structure is shown there,
see Fig. 4.5. The increased size in the x-y-direction allows for a melting of
the long-range checkerboard-like orbital order (in contrast to the 2 × 2 × 10
simulation cells presented in Table 4.1), while still being small enough to obtain
a sufficient thermal averaging time in the simulation.

4.2 Orbital-order phase transition at x = 0 and
x = 0.1

Let us now turn to the orbital-order phase transition at dopings x = 0 and
x = 0.1. As outlined in Sec. 2.4.2, the established experimental understanding
(see Refs. [57, 58, 118–120]) is a transition at very high temperatures: 945 K-
1050 K for x = 0 and >675 K for x = 0.1 (see Ref. [58] for the estimate of
the latter). This was also indicated in Fig. 2.5 as the upper end of the striped
region at low doping. The direct measurement of the orbital order by resonant
X-ray scattering for the similar material LaMnO3 indicated a two-step decrease
of the orbital order peak: Once around 200-250 K and the second drop to
zero at the high temperature (800 K) structural transition of that material, see
Ref. [120]. The same behavior was observed at x = 0.25 for Pr1– xCaxMnO3
in Ref. [88], although here the high-temperature tail had a reduced weight,
compared to the LaMnO3 measurements. We mention that the thermoelectric
power measurements presented in Ref. [119] for PrMnO3 also show a peak
shortly below 400 K. Already from these literature results, a detailed study of
the orbital order between 200 K and 400 K seems to be worthwhile.

Based on a series of new experimental measurements presented in Ref. [24],
we conjectured that the spontaneous orbital-order phase transition might happen
already at these lower temperatures, similar to the higher doping regions.
The theoretical simulations carried out by the author of this thesis, which
are presented in this chapter and partially in Ref. [24], support this evidence.
Much of the discussion presented here and at the end of this section follows the
argumentation of the published article, Ref. [24]. Before we continue with the
theoretical simulations, let us summarize the experimental evidence shown in
that article.

Of special importance is the observed onset temperature for a photovoltaic
effect (as quantified by the open-circuit voltage) in Pr1– xCaxMnO3 (PCMO).
Previous measurements for PCMO-SrTi1– yNbyO3 (STNO, y = 0.002) het-
erojunctions, see Refs. [9, 10], revealed that the photovoltaic effect in the
visible-to-infrared excitation range only sets in below the respective ordering
temperatures of the charge and orbital order (x = 0.34) or magnetic order
(x = 0.95). A connection of the Mn-d-O-p intraband photo-excitation lifetime
to the surrounding long-range order was given in Ref. [9], based on a simple
two-octahedron “Jahn-Teller dimer” model. Here, the dipole-allowed intra-
band excitation creates an electronic state in the excited Born-Oppenheimer
surfaces. Without the cooperative lattice effects created by the long-range
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4.2 Orbital-order phase transition at x = 0 and x = 0.1

order, a quick radiationless relaxation through conical intersections into the
electronic ground-state is possible. This is qualitatively similar to the Jahn-
Teller “monomer” (single site Jahn-Teller problem), whose energy surfaces are
depicted in Fig. 3.1: Without surrounding lattice effects, an excited electron-
nuclear wave function can relax toward the ground state by going through the
symmetric nuclear configuration. Cooperative lattice effects prevent this re-
laxation through the symmetric configuration. A similar effect is observed in
the more realistic Jahn-Teller dimer model (see Ref. [9]), where the position
of the conical intersection shifts away from the minimum of the excited en-
ergy surface, trapping the electron-nuclear system in a metastable state. This
excited electron-phonon configuration is also called a hot-polaron state, see
Ref. [9], and can have a long lifetime in the range of nanoseconds, allow-
ing for the extraction of the photo-excitation energy and the stabilization of
a photovoltaic effect. The correlation of long-range orbital and charge order
(always combined with the corresponding Jahn-Teller order) with the devel-
opment of a photovoltaic effect has been further confirmed in the effectively
two-dimensional Ruddlesden-Popper variant Pr0.5Ca1.5MnO4, where the tran-
sition and onset temperatures could be raised above room-temperature to 320 K,
see Ref. [11].

The new measurements presented in the published article (Ref. [24]) show
the onset of a photovoltaic effect in x = 0.1 doped Pr1– xCaxMnO3 thin films
around 220 K. This is much below the believed orbital order transition, and
higher than the magnetic transitions happening at 70 K and 80-130 K (see
Refs. [58, 83–86])). In addition, anomalies were reported in the x = 0.1 thin
films at 200-250 K. These anomalies appear (a) in the temperature dependence
of the optical band gap and the in-plane resistivity (with the latter linked to the
polaron hopping mobility), (b) in the transient optical response in a pump-probe
transmission experiment, which shows an increased hot-polaron lifetime below
around that temperature, and are visible (c) by the onset of a magnetoresistance
effect below 260 K that was linked to an orbital order transition at slightly
lower temperatures. We refer to Ref. [24] for a detailed discussion of these
experiments.

Furthermore, temperature dependent changes of the lattice parameters in
bulk PCMO measured by X-ray diffraction were reported in Ref. [24]. They
showed a change in slope of thermal expansion at the temperatures 350 K and
300 K for x = 0 and x = 0.1, interpreted as a continuous phase transition. The
higher temperatures observed in these bulk samples compared to the thin films
were attributed to misfit strain and growth-induced defects in the latter, see
Ref. [24]. Since our manganite tight-binding model is a bulk description of
PCMO, we will mainly compare to these higher transition temperatures. The
anomalies in various physical parameters fit to the drop in the orbital order
peak observed at similar temperatures in the resonant X-ray diffraction studies
of LaMnO3 and Pr0.75Ca0.25MnO3, see Refs. [88, 120].

Although this orbital order peak does not vanish to zero at these temperatures,
the drop seems to have broad repercussions in the different analyzed physical
quantities, and only in the lower temperature region a photovoltaic effect could
be observed. We mentioned in Sec. 2.4.2 that the high-temperature transition is
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expected to involve a coupled change of both the tilt-pattern and the cooperative
Jahn-Teller distortions, see also Ref. [57]. A tilt-transition is observed in
CaMnO3 as well, even without Jahn-Teller distortions, see Ref. [156]. This
led to the following proposal, presented in Ref. [24]: the high-temperature
transition is mainly a tilt-transition, which induces a weaker cooperative Jahn-
Teller (and orbital) order below ∼ 945 K. Below 350/300 K (x = 0/x = 0.1),
a stronger orbital order occurs spontaneously due to Mn-eg electronic and
electron-phonon interactions.

At this point, an independent confirmation by theoretical simulations using
the manganite tight-binding model can provide further insight. All ground-
state ordered phases in this model (see Sec. 4.1) are obtained solely from the
interactions presented in Sec. 3.2, without an external tilt-pattern supporting
the alternating PrMnO3-like orbital order. Thus, in this section (and the pub-
lished article, Ref. [24]), we investigate the melting of orbital order by direct
simulation with Car-Parrinello molecular dynamics (see Sec. 3.4.1) applied to
the manganite tight-binding model, for the dopings x = 0.1 and x = 0.

With most of the experimental results presented in Ref. [24] carried out for
a doping of x = 0.1, we will concentrate on this composition as well. The
results are presented first in Sec. 4.2.1. Afterward we turn to pure PrMnO3
in Sec. 4.2.2, which has the advantage that less uncertainty exists about its
ground state. Lastly, we discuss with a simplified model the connection of
the spontaneous and induced order, and provide an updated phase-diagram
incorporating the new results, both of which have been presented in Ref. [24].

4.2.1 x = 0.1

The N = 4 × 4 × 4, N k = 2 × 2 × 2 system

The ground-state structure at x = 0.1 is not as clear as for the pure PrMnO3
phase at x = 0, see Sec. 4.1.4. The energies of the A/B-type mixtures sketched
in Fig. 4.4(a) are almost degenerate with the phase separation energy between
the neighboring pure phases. Since we are limited in system size in the practical
simulations, we will study such an A/B-mixture for the phase transitions. A
good candidate would be the layer-filling variants presented in Table 4.1 for
x = 0.1. A 2 × 2 simulation cell in the x-y-plane is, however, too small to
capture the breakdown of long-range in-plane order, while a full 4 × 4 × 10
simulation cell leads to very long simulation times. We thus carry out the
main simulations in a 4 × 4 × 4 simulation cell, and confirm the transition
temperature in larger systems with less statistical averaging. We choose a
doping of x = 6

64 = 0.09375, close to the experimental doping of x = 0.1,
which in an ionic picture leads to six hole-sites. In the 4 × 4 × 4 simulation
cell, the two types of orbital order are not completely layer-filling, as already
mentioned in Sec. 4.1.4, and instead form clusters in the partially filled layers,
which is indicated in a sketch in Fig. 4.5. In this sketch, the in-plane Pbnm
lattice vectors a and b are indicated for a cubic lattice.

The relevant type of order is the x-y-plane alternating orbital or Jahn-Teller
order (which are strongly coupled and give the same transition temperatures in
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4.2 Orbital-order phase transition at x = 0 and x = 0.1

Figure 4.5: Sketch of the coexisting types of x-y-plane orbital order in the 0 < x <

0.25 A/B-mixed phases, when the order is not layer-filling as in Fig. 4.4(a).
The left site shows the type-(I), PrMnO3-like alternating dx2−z2/dy2−z2

order, and the right site the type-(II) alternating arrangement of dx2−y2 or-
bitals and orbital-unpolarized sites. Both lead to an in-plane checkerboard
peak of the orbital and Jahn-Teller correlation functions. We also included
the a and b vectors of the Pbnm unit cell.

all studied cases). This checkerboard-like pattern is shared by both the type-(I)
and type-(II) orders present in the A/B-mixture phases, as is also apparent from
the sketch in Fig. 4.5. The order parameter λ of the phase transition is thus set
to the (qa, qb) = (

2π
a , 0) peak of the c-averaged Jahn-Teller correlation function

(which is equivalent ot the (0, 2π
b ) peak in our lattice):

λ = Cav
Q

(
2π
a
, 0

)
. (4.6)

We note that this order parameter cannot become negative and does not change
when the in-plane order shifts by one site in the x- or y-direction. This is similar
to the mean squared magnetization sometimes used to study finite-size phase
transitions in magnetic materials, see Ref. [157]. The transition probability
between different shifted types of in-plane order is non-zero in a finite system
for any non-zero temperature. Therefore, one would have to be careful when
using, for example, the staggered orbital-pseudomagnetization (

∑
+

∑
j 〈σ̂

O
j,R〉 −∑

−

∑
j 〈σ̂

O
j,R〉, where the sums

∑
± are over two different checkerboard-like

in-plane sublattices) as order parameter, or equivalently the staggered Jahn-
Teller distortions. For such an order parameter, one has to ensure not to
run the molecular dynamics simulation for too long, as the order parameter
would eventually average out to zero. No such problem occurs with the order
parameter chosen here.

Finite-temperature ensemble averages of this order parameter are carried out
using Car-Parrinello molecular dynamics, which was outlined in Sec. 3.4.1.
The eg electrons and t2g spins are kept close to their adiabatic ground state by
applying a constant small friction on their subsystem, and choosing a small
mass for their fictitious dynamics. The Nosé-Hoover thermostat is applied to
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mψ mS αψ αS MO TTS ∆t

1.0 me · a2
o 1.0 me ·

(
ao

3/2~

) 2
0.41 1

fs 0.41 1
fs 15.999 u 100 fs 2.42 as

Table 4.2: Parameters used for the finite-temperature thermostat calculations: ficti-
tious masses m and constant friction α for the eg electrons and spins mψ,
mS , αψ and αS , as well as oxygen nuclear masses MO, thermostat oscilla-
tion period TTS = 2π

√
MTS/2gkBT (see Sec. 3.4.2), and the time step ∆t.

me is the electron mass, ao the Bohr radius, and u the atomic mass unit.

the nuclear degrees of freedom, which use the real oxygen atom masses. We do
not allow a dynamic movement of the lattice constants during the thermostat
calculation and instead keep them fixed at their ground-state values. The
chosen parameters for the electron and spin masses and friction, as well as
nuclear masses, thermostat oscillation period and the time step are given in
Table 4.2, see also Ref. [24].

For each target temperature T , the nuclei start at the (local) minima of
the potential energy surface obtained in the ground-state search, and their
momenta are initialized by a random Gauss distribution to reproduce an average
kinetic energy of 0.5kBT per degree of freedom (some non-zero momenta are
necessary to start the thermostat simulation). Several runs are started with
different random initial velocity distributions to ensure that the results do not
depend on this initialization. Afterward, each run is equilibrated for 2.42 ps
with the thermostat at the target temperature, which corresponds to about 24
thermostat oscillation periods. For obtaining the ensemble average 〈λ〉T of the
order parameter at a certain temperature T , the calculations continue for further
12.1 ps and sampling points are obtained every 100 time steps. Since the nuclei
started at the ground-state configuration, this will be denoted as the “heating”
of the system, and the values for temperatures up to 800 K are shown in Fig. 4.6
for six simulation runs for every temperature.

Here and in the following, the included error-bars show the maximum block-
estimate for any integer division of the number of sampling points up to a block
size of one-fourth of the total number of sampling points, see Sec. 3.4.2 for
details. In the temperature region of the phase transition this should only be
taken as a lower bound to the true standard deviation of the ensemble average,
as pointed out in Sec. 3.4.2. We use a k-grid of N k = 2 × 2 × 2, but the
transition is confirmed with a larger k-grid, see Fig. 4.10.

We observe a large drop of the order parameter between 200 K and 400 K,
after which the order parameter remains at a low (but non-zero) value. The
sharpest decent occurs around 270 K. To confirm this transition in the order
parameter we performed additional “cooling” simulations, which start from
the final configurations of the six heating runs at 400 K. We then set the target
temperature to new values between 20 K and 400 K. These temperatures are
typically reached in the order of one thermostat cycle, which corresponds
to an ultra-fast cooling of up to ∼ 4 K

fs . For a direct cooling from 400 K
to temperatures below 200 K not all simulations runs were able to recover
the high order of the ground state in the simulation time available, although
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Figure 4.6: Jahn-Teller order parameter (Eq. (4.6)) obtained in a 4 × 4 × 4 simulation
cell with Nk

i = 2 k-points in every direction at doping x = 6
64 . The order

parameter at every temperature is divided by the value at T = 0 (the ground
state). We show 6 different heating runs for temperatures up to 800 K,
which start from the ground state configuration and are obtained from
thermostat calculations with 12.1 ps of thermal averaging after 2.42 ps of
equilibration. In addition, we show six cooling runs starting from the final
configurations of the 400 K heating runs, down until 220 K (cooling 1),
and further cooling runs that start from the 200 K final configurations of
the first cooling runs down until 20 K (cooling 2). These cooling runs are
obtained with 9.68 ps of equilibration and 19.36 ps of thermal averaging.
The used thermostat parameters are listed in Table 4.2. All error bars
represent the maximum block-estimate of the thermal averages’ standard
deviations (see Sec. 3.4).

we increased these times to 9.68 ps of equilibration and 19.36 ps of thermal
averaging. Therefore, we performed a second set of cooling runs starting from
the final configuration of the 200 K runs of the first set of cooling simulations.
This second cooling procedure recovers high values of the order parameter as
T → 0, see Fig. 4.6. One run could nearly completely recover the ground-state
orbital order, while most of the simulation runs show some defects slightly
decreasing the order in the system. We confirmed the transition in additional
calculations starting from such defect structures, leading to the same transition
temperatures around 270 K (not shown here). The combined heating-cooling
cycle shows no hysteresis in the transition.

To better understand the nature of the transition, let us investigate the com-
plete c-averaged Jahn-Teller correlation functions at three temperatures before,
during, and after the transition. They show no large deviations between the
simulation runs and one example for each of the temperatures 20 K, 280 K and
400 K is shown in Figs. 4.7(a)-(c). We also included the orbital correlation
function at the same temperatures (Figs. 4.7(d)-(f)). They are almost propor-
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Jahn-Teller and orbital correlation functions at x ≈ 0.1
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Figure 4.7: (a)-(c) c-averaged Jahn-Teller correlation functions and (d)-(f) orbital cor-
relation functions (see Eqs. (4.2), (4.3) and (4.5)), for an exemplary heating
run at temperatures 20 K, 280 K and 400 K, in the 4 × 4 × 4 simulation
cell with Nk

i = 2 k-points in every direction at doping x = 6
64 . We use the

same simulation protocol and thermostat parameters as in Fig. 4.6, and
the same Gaussian-broadening as before (see Fig. 4.2). The white dashed
lines indicate the size of the reciprocal unit cell.

tional to the Jahn-Teller correlation functions at all temperatures and we will
mainly analyze the Jahn-Teller correlation functions in the following.

At 20 K, the main peaks are still the checkerboard order at (qa, qb) = (
2π
a , 0)

and a weaker peak at (qa, qb) = (0, 0). At higher temperature we observe that
all other possible peaks get an increasing weight as well. This is similar to a
discrete broadening of the previous checkerboard-peak. Above the transition at
T = 400 K almost all peaks have the same weight and the correlation function
becomes nearly independent of the wave vector, although the sum-rules for the
oxygen distortions along rows through the crystal (see Sec. 3.2.6) reduce the
weight along the diagonal lines. The peaks show a redistribution of weight,
while their total weight is mostly unaffected (and even slightly increased), which
corresponds to the breakdown of long-range order, but not of local Jahn-Teller
distortions.

It is instructive to analyze this in real-space as well, for which we consider the
real-space Jahn-Teller correlation function for the absolute in-plane distances
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Figure 4.8: Real-space Jahn-Teller correlation function (see Eq. (4.7)) for an exem-
plary heating run at temperatures (a) 100 K and (b) 400 K, in the 4× 4× 4
simulation cell with Nk

i = 2 k-points in every direction at doping x = 6
64 .

We use the same simulation protocol and thermostat parameters as in
Fig. 4.6.

∆x and ∆y:

CR
Q2
(∆x,∆y) =

1
NRmx,y

∑
R,R′

∑
j∈{2,3}

Q j,RQ j,R′
[
δ∆x,|Rx−R′x |δ∆y,|Ry−R′y |δ0,|Rz−R′z |

]
.

(4.7)

Here, δ denotes the Kronecker delta and |Ri − R′i | is the smallest absolute
distance in the i-direction between any periodic images of sites R and R′.
We also included the multiplicity mx,y, which equals the number of relative
distances (Ri − R′i ) contributing to the same absolute distance (e.g., m0,1 = 2,
since both (Rx − R′x = 1) and (Rx − R′x = −1) contribute). The results for two
such real-space correlation functions obtained at 100 K and 400 K are shown
in Fig. 4.8.

At 100 K, the correlation function is still similar to the ground-state con-
figuration, and consists mostly of the in-plane Q2 order, which leads to a
checkerboard-like pattern in the real-space correlation function. The additional
constant Q3 mode increases the contribution at the (∆x,∆y) = (0, 0) peak. This
peak is proportional to the average squared local Jahn-Teller distortion on ev-
ery site ∝

∑
R |QR |

2, and thus an indication of the remaining local Jahn-Teller
distortions and (indirectly) the orbital polarization. After the transition, at
400 K, a strong (0, 0) peak remains, but the long-range order vanishes. We
still observe a negative Jahn-Teller correlation function for neighboring sites
(∆x,∆y) = (1, 0) and (∆x,∆y) = (0, 1), indicative of a short-range checkerboard
order, but at larger distances the values are close to zero. This supports the in-
terpretation that only the cooperative Jahn-Teller and orbital order melts down,
while local distortions and orbital polarization remain. With the remaining
short-range order, this could be denoted as the transition from a polaron crystal
into a polaron liquid.

In the CP-MD, we aim at keeping the spins and electrons close to their
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Figure 4.9: Spin correlation functions 〈CS(0, 0, qc)〉T obtained from thermal averaging
during the heating runs in the 4 × 4 × 4 simulation cell with Nk

i = 2 k-
points in every direction at doping x = 6

64 (see Fig. 4.6 for details of the
simulation). We show the peaks at qc = 2π/c (A-type AFM), qc = π/c
(which is equal to qc = −π/c) and qc = 0 (B-type FM). The sum of all
these x-y-plane-ferromagnetic peaks

∑
qc 〈CS(0, 0, qc)〉T is included as

black dashed line. All error bars represent the maximum block-estimate
of the thermal averages’ standard deviations (see Sec. 3.4).

ground state during the thermostat run. Thus, we cannot hope to capture the
independent magnetic phase transitions expected from experimental results (see
Refs. [58, 83–86]) at very low temperatures at this doping: below 80-130 K
the system changes from paramagnetic to ferromagnetic in a large temperature
interval, and below 70 K the system becomes mostly antiferromagnetic, with
a mixture of FM and A-type AFM clusters currently being the most likely
explanation instead of a canted spin structure, see Sec. 2.4.1 and Ref. [86].
Our ground-state results reproduce the FM/A-type AFM mixture, as presented
in Fig. 4.4, although a small in-plane AFM contribution appears for the N =
4×4×4 simulation cell, because the different types of order are not completely
layer-filling, see Sec. 4.1.4. The finite-temperature results are shown in Fig. 4.9,
now resolved for the different relevant spin-peaks. These all have the same in-
plane wave vector of (qa, qb) = (0, 0): The B-type FM-peak (qc = 0), and
different antiferromagnetic peaks (qc = 2π/c and qc = ±π/c), where the A-
type AFM peak (qc = 2π/c) has the largest weight. We note that the sum of
all spin correlation function peaks is conserved to 1 by definition (Eq. (4.1)),
and a reduction of these (qa, qb) = (0, 0) peaks is always accompanied by
shifting weight to all other peaks. We observe no change in the spin order
at the experimentally expected transition temperatures. During the orbital-
order transition, the total weight of the (qa, qb) = (0, 0) peaks decays (included
as black-dashed line), and the individual peak weights vary strongly between
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4.2 Orbital-order phase transition at x = 0 and x = 0.1

simulation runs. From the experimental results, we would expect the spins to be
disordered at these temperatures, while in the CP-MD simulations, they follow
the atomic structure adiabatically and should not be over-interpreted. Their
summed weight stays low after the orbital-order phase transition, although we
observe a continued slow decay until 800 K.

In total, we cannot reproduce the magnetic phase transition with the used
adiabatic CP-MD simulation, and extensions to correctly capture the spin-
temperature are necessary for a better description. We cannot exclude that this
magnetic phase transition influences the orbital-order transition happening at
higher temperatures. Since the spin order supports the orbital order at these
dopings, we can speculate that a correct description of the spin transition would
lower the orbital-order transition temperature. Further studies are needed in
the future to investigate this in more detail.

Numerical confirmations and larger system sizes

In the CP-MD simulation, the spins and eg electrons are only approximately in
their ground states, which is achieved by the large mass difference to the nuclei
and by the application of a constant small friction. We need to ensure that the
friction is not chosen too large to impede with the atom dynamics. For this, we
repeat the heating simulations with both the electron and spin friction reduced
to half the values presented in Table 4.2. The results of three such simulation
runs in the heating-setup with equilibration and sampling times equal to the
previous heating runs are shown in Fig. 4.10(a).

In addition, we confirm the near-adiabatic CP-MD results with a Born-
Oppenheimer molecular dynamics simulation (see Sec. 3.4.1), at least for the
electronic degrees of freedom. For this, we search for the electronic ground
state at each propagation time step and use the ground-state configuration
for determining the nuclear forces. This is done in an iterative procedure:
We construct the Hartree-Fock Hamiltonian (Eq. (3.4)) for the given nuclear
and spin configuration, and with a trial one-center reduced electronic density
matrix for the electron-electron interaction. By diagonalizing the quadratic
Hamiltonian in the electronic basis, we obtain a new electronic wave function
that is used to update the trial one-center reduced density matrix. These
steps are repeated until no element of the reduced density matrix changes
by more than 10−7 between iteration cycles. The spins are still treated with
the Car-Parrinello approach, as finding the spin ground state for each nuclear
configuration is computationally too expensive. Since no dynamical evolution
of the electronic degrees of freedom is carried out in a BO-MD simulation,
we use an increased time step of ten times the value presented in Table 4.2.
The Car-Parrinello treatment of the spins limits us in further increasing this
time step. Unfortunately, the larger time step is more than compensated by the
self-consistency routines, so that we only reach shorter total times with this
ansatz. Fig. 4.10(a) includes two such BO-MD heating runs with 1.21 ps of
equilibration and 6.05 ps of thermal averaging.

As another numerical test, we perform a simulation with a larger k-grid of
N k = 4 × 4 × 4, with 1.21 ps of equilibration and 3.63 ps of thermal averag-
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Figure 4.10: Jahn-Teller order parameter (Eq. (4.6)) for various heating thermostat
calculations. The order parameters at every temperature is divided by
the value at T = 0 of the corresponding ground state calculations. Except
for the deviations outlined in the following, the simulations use the same
parameters and heating protocol as in Fig. 4.6. The average (normalized)
order parameter values of these previous heating runs of Fig. 4.6 are
included as dotted black line for comparison. (a) Calculations in a
4 × 4 × 4 simulation cell at doping x = 6

64 . Results are shown for:
(decr. friction) three simulation runs with decreased friction, which use
half the friction values presented in Table 4.2, (Nk

i = 4) one simulation
with increased k-grid of Nk

i = 4 in every direction, and a reduced
equilibration time of 1.21 ps and thermal averaging time of 3.63 ps, and
(BO-MD) two simulation runs using a Born-Oppenheimer ansatz for the
electronic degrees of freedom (see the description in the text), while
the atoms and spins still use the parameters of Table 4.2, with 1.21 ps
of equilibration and 6.05 ps of thermal averaging. (b) Calculations in
increased system sizes of N = 4 × 4 × 10 at x = 0.1 and N = 6 × 6 × 4
at x = 14

144 , using Nk
i = 2 k-points in every direction. The two variants

(i) and (ii) of the 6 × 6 × 4 simulation cell correspond to layer-ordered
and layer-disordered metastable state variants for starting the thermostat
calculations. These three simulations are carried out with 1.21 ps of
equilibration and 3.63 ps of thermal averaging. All error bars represent
the maximum block-estimate of the thermal averages’ standard deviations
(see Sec. 3.4).
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4.2 Orbital-order phase transition at x = 0 and x = 0.1

ing. All three of these simulations, the reduced friction, the BO-MD, and the
increased k-grid, confirm the orbital-order phase transition around 270 K. The
averages of the heating-runs from Fig. 4.6 are included for comparison as a
dashed black line in Fig. 4.10. In the shorter simulations we still observe a
rather good convergence of the block-estimate of the mean’s standard deviation
(similar to Fig. 3.3(a)) away from the transition region, while the error estimate
in the transition region should only be regarded as a lower bound and longer
simulation times are needed to even estimate the error. We consider these
shorter simulation runs mainly as a qualitative confirmation of the transition
temperature presented in Fig. 4.6.

All the finite-temperature results presented so far have been carried out in
the 4 × 4 × 4 simulation cell at doping x = 6

64 = 0.09374. As outlined
while discussing the metastable mixtures at 0 < x < 0.25 in Sec. 4.1.4, the
ground-state configuration found in this simulation cell is about 2 meV higher
in energy compared to the phase separation energy line (see also the energy-
over-doping diagram, Fig. 4.1). To confirm that this choice has no influence
on the order of magnitude of the phase transition temperature, we carried out
a shorter qualitative simulation in a N = 4 × 4 × 10 simulation cell at the
exact doping x = 0.1. The two types of order are completely layer-filling for
this structure and the spin-pattern is given by the first entry of Table 4.1. Its
energy is less than 1 meV above the phase separation energy line. We stay with
a k-grid of N k = 2 × 2 × 2. The simulation is again carried out with 1.21 ps
of equilibration and 3.63 ps of thermal averaging and presented in Fig. 4.10(b).
The decay-behavior of the order parameter is very close to the results obtained
in the smaller simulation cell (included as dashed black line in Fig. 4.10(b)).
The high-temperature residual values match as well, which is not surprising,
as the systems share the same dimensions in the x and y direction.

Of more interest are thus systems which increase these in-plane dimensions.
We carried out simulations in a N = 6 × 6 × 4 simulation cell at doping
x = 14

144 ≈ 0.0972, starting from two different (metastable) ground states:
(i) with all hole-defects accumulated in a single x-y-layer, which we believe
is the energetically lowest structure to be found for these system dimensions
and doping, with an energy of Epot/NR = −0.1747 eV; about 2 meV above the
phase separation line and (ii) from a metastable state with the hole-defects rather
disordered throughout the cluster, encased by the PrMnO3-like type-(I) order,
with Epot/NR = −0.1702 eV; about 6 meV above the phase separation line. Due
to the large system size, both simulations are again carried out with the reduced
1.21 ps equilibration and 3.63 ps thermal averaging time and should be taken
as qualitative confirmations of the phase transition. The results are presented
in Fig. 4.10(b). In both simulations, we observe a large drop of the order
parameter close to 270 K. The higher-temperature tail of the order parameter
after the main drop is much reduced compared to all previous calculations,
which indicates that it was caused by the small in-plane system size taken
before. We cannot exclude that the slightly different doping of the calculations
presented in Fig. 4.10(b) compared to the previous results has some influence
on the transition behavior or temperature as well.

The curves for this system size (6 × 6 × 4) have some resemblance with
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the typical (1 − T/Tc)
β decay of the order parameter when approaching the

transition temperature in a continuous phase transition, see, e.g., Ref. [158].
A naive non-linear least squared fit using the Levenberg–Marquardt algorithm
(see Refs. [159, 160]) implemented in the software gnuplot (see Ref. [161]) of
this function to the data points up until 300 K yields (i) β = 0.141 ± 0.006,
TC = 280.0 ± 0.2 K, and (ii) β = 0.21 ± 0.02, TC = 299.8 ± 0.6 K. However,
we already mentioned that the sampling time in these larger systems is much
reduced and the mean values of each block in the blocking method (see Sec. 3.4
and Refs [149, 150]) are still likely to be correlated, thus underestimating the
error given in Fig. 4.10(b).

In addition, even larger systems and more sampling points close to the tran-
sition temperature are needed to truly estimate finite-size effects and perform a
rigorous finite-size scaling that could provide more information about the type
of the phase transition, see, e.g., Refs. [157, 162–164]. Such large systems
and long run times will require a significant speed-up of the thermostat calcu-
lations in a potential future study. One direct approach would be to increase
the fictitious masses of the electrons and spins, together with the integration
time-step ∆t. Such an adjustment has to be carefully evaluated, as too large
fictitious masses will lead to an increased energy transfer between the atoms
and the fast degrees of freedoms. Alternatively, one could reduce the complex-
ity of the model, for example by neglecting the electron-electron interaction.
We mentioned that models using a strong Jahn-Teller interaction can describe
manganites quite accurately also without the electron-electron interaction (see
Sec. 2.3 and Refs. [27, 82]), and this could give access to thermostat calculations
of larger system sizes.

In this thesis, we settle for the statement that we find strong indications for
a Jahn-Teller and accompanied orbital-order phase transition at temperatures
much lower than according to the established phase diagram (see Fig. 2.5).
Increasing the system size and performing a longer sampling might shift the
exact transition temperature away from the current estimate of around 270 K,
but is unlikely to move it to the high values of about 675 K according to
Ref. [58].

Of more relevance might be an improved description of the spin degrees
of freedom, beyond the adiabatic approximation, and of their independent
magnetic phase transitions. This is an interesting subject for a future study,
but beyond the scope of this thesis. As outlined before, we can speculate that
the spin-disordered state is more likely to reduce the orbital-order transition
temperature further, but this cannot be verified without additional calculations.

The adiabatic approximation is used for the eg electrons as well, and we could
even confirm that the transition temperature stays unchanged when switching
from CP-MD to BO-MD. Non-adiabatic corrections for the electronic degrees
of freedom become more relevant when the system becomes metallic. This does
not happen in the temperature range of the orbital-order transition presented
here, as observed by experimental measurements (see Ref. [24]), but also in
our tight-binding model from the one-particle estimate of the band gap, which
stays positive during the phase transition. For example, at 280 K, it has an
average value of ∆Eg ≈ 0.131 eV in the CP-MD runs presented in Fig. 4.6.
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4.2 Orbital-order phase transition at x = 0 and x = 0.1

However, this value should be taken with much caution, as the dynamic eg
electrons do not necessarily reproduce the ground-state densities during the
snapshots and because the estimate relies on the small k-grid only. Non-
adiabatic effects are analyzed in much more detail in the chapters 5 and 6. One
of the methods presented and benchmarked there and in Ref. [37], the fewest-
switches surface hopping (see Ref. [29]), is an intriguing candidate to extend the
adiabatic molecular dynamics carried out here to non-adiabatic regimes. While
including non-adiabatic effects might already be useful to confirm the transition
temperatures in future studies beyond the adiabatic approximation, it is of more
importance as soon as one seeks a direct simulation of non-equilibrium setups,
such as after a photoexcitation.

4.2.2 x = 0
Next, we look at the orbital-order phase transition for pure PrMnO3 at x = 0.
Here, there is no ambiguity of the ground-state structures as for the mixed phases
studied around x = 0.1. The general protocol of the simulations is similar to
before, and we use the parameters outlined in Table 4.2. The calculations are
performed in a 4×4×4 simulation cell with N k

i = 2 k-points in every direction.
For both the heating and cooling runs we use an equilibration time of 2.42 ps,
followed by 12.1 ps of thermal averaging. We resort again to a two-step cooling
procedure, with the first set of runs cooling down from 500 K below the main
transition region, and a second set of runs continuing down until 20 K, starting
from the 360 K final configurations of the first set of cooling runs. The heating
and cooling results for the Jahn-Teller order parameter are shown in Fig. 4.11.

In these simulations, we observe that the two-step cooling procedure recovers
the high order of the ground state almost perfectly, with only one of the six
simulation runs ending up in a defect state for some low temperatures. In
contrast to the results at x = 0.1, the transition is much more abrupt around
a temperature of 400 K. The transition is again unchanged upon decreasing
the frictions to half their values (not shown). The errors estimated from the
blocking method (see Sec. 3.4.2) indicate high uncertainties in the transition
region, while the convergence in the ordered and disordered regions is very
good. We cannot rule out that the type of the transition differs from the x = 0.1
phase transition at this point, and larger system results with an increased thermal
averaging time in the transition region are needed for a further analysis.

The behavior in the ordered and the disordered temperature regimes is,
however, very similar to before. We still observe a short-range ordering and
strong local Jahn-Teller distortions at high temperatures, while the long-range
Jahn-Teller and orbital order melts. This can be seen from the c-averaged Jahn-
Teller correlation functions in Fig. 4.12, shown for three temperatures of an
example heating run at (a) T = 300 K, (b) T = 400 K, and (c) T = 500 K. For
300 K, most of the weight is still at the (2πa , 0) peak and to a smaller extend on
the (0, 0) peaks, which is caused by the uniform Q3 mode of the ground state.
In addition, we already observe some weight on all other possible diffraction
spots. For 500 K, above the transition temperature, the Jahn-Teller correlation
function is again mostly independent of the wave vector, with the sum rules
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Figure 4.11: Jahn-Teller order parameter (Eq. (4.6)) obtained in a 4× 4× 4 simulation
cell with Nk

i = 2 k-points in every direction at doping x = 0. The
order parameter at every temperature is divided by the value at T = 0
(the ground state). We show 6 different heating runs for temperatures
up to 800 K, which start from the ground state configuration, and two
sets of six cooling runs, with the first (cooling 1) starting from the 500 K
heating simulations, and the second (cooling 2) continuing from the
360 K final configurations of the first set of cooling runs. The results are
obtained from thermostat calculations with 12.1 ps of thermal averaging
after 2.42 ps of equilibration. The used thermostat parameters are listed
in Table 4.2. All error bars represent the maximum block-estimate of the
thermal averages’ standard deviations (see Sec. 3.4).

of the oxygen displacements still reducing the weight on the diagonals (as
discussed before, see Sec. 4.2.1). Due to the larger uncertainties of the thermal
averaging at 400 K, we find varying amounts of long-range order in the different
simulation runs, and selected an average example in Fig. 4.12(b).

As before, we cannot reproduce the magnetic phase transition with our
adiabatic description of the spin degrees of freedom, which is shown with the
different spin correlation function peaks (0, 0, qc) in Fig. 4.13. In contrast to
the A/B-mixture obtained at higher doping, presented in Fig. 4.9, we observe
a pure A-type antiferromagnetic order at low temperatures. The A-type order
vanishes together with the orbital order around 400 K, which does not fit to the
experimental results indicating a Néel-temperature of≈ 91 K, see Refs. [58, 83].

Both, the influence of including a physical temperature for the spin degrees of
freedom and a larger system analysis at this doping are interesting prospects for
future investigation of this phase transition, but are not available. The results
here are again taken as a qualitative assessment of the orbital-order phase
transition temperature, trying to estimate whether the orbital order can persist
up to the proposed ≥ 900 K (see Refs. [57, 58, 118, 119]) in our tight-binding
thermostat calculations, which does not seem to be the case.
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Figure 4.12: c-averaged Jahn-Teller correlation functions (see Eqs. (4.2) and (4.5)),
for an exemplary heating run at temperatures (a) 300 K, (b) 400 K, and
(c) 500 K, in the 4 × 4 × 4 simulation cell with Nk

i = 2 k-points in every
direction at doping x = 0. We use the same simulation protocol and
thermostat parameters as in Fig. 4.11, and the same Gaussian-broadening
as before (see Fig. 4.2). The white dashed lines indicate the size of the
reciprocal unit cell.

4.2.3 Reevaluation of the phase diagram of Pr1 – xCaxMnO3

The breakdown of the long-range Jahn-Teller and orbital order at ∼ 270 K
for x = 0.1 and 400 K for x = 0 in our thermostat calculations fits well to
the measured change in the lattice parameters at 300 K and 350 K with X-ray
diffraction experiments in Ref. [24]. The results support the proposed idea that
spontaneous orbital order driven by the Mn-eg electron-electron and Jahn-Teller
electron-phonon interactions melts at much lower temperatures than previously
believed, see Ref. [24]. The remaining orbital order measured with resonant
X-ray diffraction in the similar material LaMnO3 (see Ref. [120]) at higher
temperatures might be induced by the tilting in the real system.

The coupling of several types of order parameters in the Landau theory of
phase transition has been discussed, for example, in Ref. [165]. In a sim-
ilar spirit, P. E. Blöchl proposed in Ref. [24] the introduction of a bilinear
term in a Landau-type free energy expression for the orbital x and tilting y

order parameters: −αxy. The orbital-order parameter x could, e.g., be the
staggered orbital-pseudomagnetization (see the discussion below Eq. (4.6)),
with a coupling to the octahedral tilting y. Introducing this coupling term
for two second-order phase transitions and assuming a finite-width transition
toward a saturated value for both transitions individually by using a prefactor
of tanh

(
T−TC
∆

)
, one can write down a simplified free energy expression:

FT (x, y) =
1
4

x4 + tanh
(
T − Tx

∆x

)
1
2

x2 +
1
4
y4 + tanh

(
T − Ty

∆y

)
1
2
y2 − αxy.

(4.8)

Without coupling, each order parameter undergoes a second-order like phase
transition at the temperatures Tx and Ty with a finite width of ∆x and ∆y. Using
the values Tx = 300 K and ∆x = 50 K for the orbital order, and Ty = 700 K
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Figure 4.13: Spin correlation functions 〈CS(0, 0, qc)〉T obtained from thermal averag-
ing during the heating runs in the 4 × 4 × 4 simulation cell with Nk

i = 2
k-points in every direction at doping x = 0 (see Fig. 4.11 for details on the
simulation). We show the peaks at qc = 2π/c (A-type AFM), qc = π/c
(which is equal to qc = −π/c) and qc = 0 (B-type FM). The sum of
all the x-y-plane-ferromagnetic peaks

∑
qc 〈CS(0, 0, qc)〉T is included as

black dashed line. All error bars represent the maximum block-estimate
of the thermal averages’ standard deviations (see Sec. 3.4).

and ∆y = 100 K for the tilting, one arrives at temperature-dependent order
parameters given by the two dotted lines in Fig. 4.14. The tilting (gray dots)
breaks down at 700 K, and independently the orbital order (black dots) at 300 K
(both have been scaled to 1 at T = 0 K).

With a coupling turned on, here α = 0.9 (preferring equal order parameter
signs), we instead observe the blue-dashed line for the tilting parameter and
the solid red line for the orbital order parameter in Fig. 4.14. The orbital order
shows two plateaus, the first at high values (higher than without coupling) at low
temperatures, with a drop toward a second plateau at the spontaneous orbital-
order transition temperature Tx . Only at the tilt-transition at Ty the remaining
orbital order vanishes. The parameters of the free energy model have been
chosen such that the orbital-order curve resembles that of the resonant X-
ray diffraction results of LaMnO3, presented in Ref. [120]. We differentiate
between the spontaneous and induced order by the question whether they still
persist without the coupling to the tilt pattern.

One cannot easily turn off the tilt pattern and no additional symmetries
are broken by the spontaneous orbital order in the presence of the octahedral
tilt, hence, one might still refer to the high-temperature tilt transition as the
orbital-order transition. Since a weaker tilt-coupling to the orbital order around
x = 0.25 is present as well, and visible in a second plateau in the resonant
X-ray diffraction experiments, see Ref. [88], this would shift the orbital-order
transition temperature also in this regime to much higher values. The observed
change in the physical parameters at the lower, spontaneous orbital-order transi-
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Figure 4.14: Order parameters for a range of temperatures according to the free energy
expression of two coupled order parameters, see Eq. (4.8), with the
parameters Tx = 300 K, ∆x = 50 K, Ty = 700 K and ∆y = 100 K. The
dotted lines show the x (black line) and y (gray line) order parameter for
α = 0, and the blue-dashed and red-solid lines the same order parameters
for α = 0.9. All values are scaled to the T = 0 K values obtained with
α = 0. Reprinted figure with permission from Ref. [24]. Copyright
(2022) by the American Physical Society.

tion is, however, similar to the orbital- and charge-order transition in the region
0.3 < x < 0.8. This includes the important onset of a photovoltaic effect only
below the spontaneous ordering temperatures.

We thus follow Ref. [24] and locate the transition temperature for the orbital
order at the proposed spontaneous transition. In the search for new manganite-
like materials with a high onset-temperature for a photovoltaic effect, it might be
this spontaneous orbital order one has to look out for, instead of just considering
general structural changes of the material. In this sense, a revised phase diagram
has been presented in Ref. [24], emphasizing the spontaneous transition at low
temperatures, and including the literature results outlined in this chapter and
in Sec. 2.4.2. This revised phase diagram is shown in Fig. 4.15, with the
theoretical results from this chapter indicated as crossed-out golden squares. In
Ref. [24], preliminary results for the x = 0 phase transition indicated a transition
temperature of about 360 K. We adjusted the values to 400 K according to the
well-sampled results presented in Sec. 4.2.2.

The theoretical results presented in this chapter provide a starting point for
various possible improvements and further studies. Increasing the system sizes
and thermal averaging, especially around the transition temperature, could give
further access to the type of transition. We cannot, however, rule out that the
neglected octahedral tilt-pattern influences this type in the real material. An
explicit treatment of the tilt-pattern is thus another possibility, either as a static
background potential, or dynamically in hope to capture the high-temperature
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tilt transition. This requires further parameter adjustment to experimental mea-
surements or ab initio calculations. Of most interest in our point of view is an
improved description of the spin subsystem, beyond the adiabatic approxima-
tion. This could allow to capture the magnetic transition at lower temperatures
and observe the influence of this transition onto the orbital-order transition. One
possibility for such an improved description is the introduction of a generalized
thermostat for the spin system, see Refs. [147, 154, 155].

Beyond just the investigation of phase transitions, a direct simulation of the
photoexcitation could give further insight into how the spontaneous orbital
order is coupled to the onset of the photovoltaic effect. This definitely requires
to leave the adiabatic description for the electronic degrees of freedom. A
detailed review and benchmark study of two quantum-classical methods that
are able to describe the relevant non-adiabatic effects is described in the next
two chapters. In particular, the fewest-switches surface hopping might be a
potential candidate for non-equilibrium thermal studies with the tight-binding
model in the future.
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Figure 4.15: Revised phase diagram of bulk Pr1– xCaxMnO3 with the sponta-
neous orbital-order transition indicated at low doping. Results from
Refs. [57, 58, 83, 88, 89, 93, 117, 156, 166] are included, see Ref. [24]
for a list of the various transition temperatures. In comparison to Fig. 2.5,
the high-temperature transition to a pseudo-cubic phase has also been in-
dicated at dopings x = 0, x = 0.52 and x = 1, see Refs [57, 156, 166]
(yellow circles/ellipse). The high-temperature tilting/structural transi-
tions according to Refs. [119] (1), [57] (2), [88] (3) and for CaMnO3
(Ref. [156]) are included as green diamonds. Magnetic transitions are
shown as green circles. The detailed magnetic arrangements in the low-
temperature region of the phase diagram are not resolved, see Ref. [58]
for details. The charge- and orbital-order transitions are indicated by
white squares, which for x = 0 and x = 0.1 are set to the new values
obtained from the second-order change in the lattice parameters at 350 K
and 300 K obtained by X-ray diffraction experiments, see Ref. [24]. The
thermostat transition temperatures presented in this thesis in Secs. 4.2.2
and 4.2.1 are included as crossed out golden squares. Adapted figure with
permission from Ref. [24]. Copyright (2022) by the American Physical
Society. The color of the theoretical results indicators has been changed,
and the position at x = 0 adjusted to the values obtained in this thesis.
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5 Non-adiabatic effects in
electron-phonon coupled systems:
Exact and quantum-classical
descriptions

In the last chapter we observed a correlation between the spontaneous orbital-
order phase transition and the onset of the photovoltaic effect (see Ch. 4), which
immediately suggests the direct simulation of a photoexcitation and the inves-
tigation of the subsequent relaxation process in both the orbital ordered and
disordered phases. Such a non-equilibrium simulation requires to lift the re-
striction of keeping the electrons in their instantaneous adiabatic ground state
and instead demands an adequate description of excited-state dynamics. A
dynamical evolution starting from these excited states leads in most cases to
transitions between different adiabatic electronic states, called “non-adiabatic
transitions”, and the breakdown of the Born-Oppenheimer approximation im-
plicitly invoked in the previous chapters when separating the electronic and
nuclear motion, see Refs. [167, 168]. In this chapter, we will review in detail all
these concepts and the challenges associated with describing non-equilibrium
dynamics in electron-phonon coupled systems on a more fundamental level.

Previous photoexcitation and -relaxation studies for our manganite tight-
binding model exist, see Refs. [32, 33], which use an Ehrenfest dynamics
description for the coupled dynamics. We want to understand this method with
its underlying approximations and explore alternatives and improvements to
this approach for future studies of manganites or general polaronic systems. In
particular, we are interested in methods that retain the mixed quantum-classical
description of the electron-phonon system, while at the same time being able
to accurately capture the strong interactions between both subsystems during
non-equilibrium dynamics.

The concepts of adiabatic electronic states and surfaces, as well as non-
adiabatic effects, will be introduced in the framework of the Born-Huang
expansion, which is an exact representation of the composite electron-nuclear
wave-function, see Ref. [34]. In this framework, we will introduce and an-
alyze two trajectory-based mixed quantum-classical methods, the previously
mentioned Ehrenfest dynamics and the fewest-switches surface hopping ap-
proach, see Refs. [29–31]. In the next chapter, Ch. 6, these methods will be
carefully benchmarked and tested in the paradigmatic Holstein model, which
is much simpler than the manganite tight-binding model, including only non-
interacting electrons, uncoupled harmonic phonon oscillators, and a bi-linear
electron-phonon coupling, making it the perfect system to focus on electron-
nuclear interactions. The Holstein model will already serve as an example
system for understanding the Born-Huang expansion, and is introduced in the
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next section. The results of the benchmark study and some parts of the theory
and methods introduced in this chapter have been published in the article [37],
which forms the basis for this and the next chapter.

5.1 The Holstein model
One of the prototypical electron-phonon composite systems is the Holstein
model, introduced in Ref. [35]. It includes a lattice of local harmonic oscillator
phonon degrees of freedom, which, in the most simple case, are uncoupled and
have the same frequency, i.e. dispersionless Einstein phonons. The phonons
are combined with non-interacting electrons that can hop between the lattice
sites in a one-orbital tight-binding fashion. The electron density on every site
couples to the local harmonic oscillator displacement with a bi-linear term.
In this model, which does not include electron-electron or phonon-phonon
interaction, the electron-phonon interaction is emphasized. Both short and
extended polarons emerge, depending on the parameters of the system. With
the local creation and annihilation operators for the phonons b̂†i and b̂i, and the
spinless electron operators ĉ†i and ĉi at site i, we can write the Hamiltonian of
the model as:

Ĥ =
∑
<i, j>

−t0(ĉ
†

i ĉ j + ĉ†j ĉi) +
∑

i

[
~ω0(b̂

†

i b̂i + 1/2) − γn̂i

(
b̂†i + b̂i

) ]
. (5.1)

Here, n̂i = ĉ†i ĉi is the electron density on site i and the sum in the hopping
term

∑
<i, j> sums over all distinctive pairs of nearest neighbor sites. The three

relevant parameters of the Holstein model are included in the Hamiltonian
(5.1): the electron hopping matrix element t0, the phonon frequency ω0 and
the electron-phonon coupling γ. In this thesis, we will only consider the
special case of one spatial dimension, for which the model was also originally
suggested (see Ref. [35]). This allows us to compare approximate methods to
numerically exact results of the density matrix renormalization group (DMRG)
(see Refs. [48–50]), which works most efficient in 1D-systems. We will always
use open boundary conditions for the Holstein model in this work.

Originally, the model was expressed in terms of real-space position x̂i and
momentum p̂i operators, see Ref. [35], which is also useful for applying the
Born-Huang framework in a later step (see Sec. 5.2.2). We can transform
the phonon operators using the typical harmonic oscillator ladder operator
definition: b̂i =

√
mω0
2~

(
x̂i +

i
mω0

p̂i

)
, with the nuclear mass m. For our one-

dimensional system the Hamiltonian becomes:

Ĥ =
L−1∑
i=1
−t0(ĉ

†

i ĉi+1 + ĉ†i+1ĉi) +

L∑
i=1

[
mω2

0
2

x̂2
i +

1
2m

p̂2
i −

√
2mω0

~
γn̂i x̂i

]
,

(5.2)

where L is the number of lattice sites.
The Holstein model is strongly simplified in contrast to the manganite tight-
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binding model. It lacks cooperative phonon distortions, electron-electron inter-
action and the spin degree of freedom, and has only a single electronic orbital
and nuclear mode per site. Hence, it is clear that we cannot use the model to test
all the approximations that have been used in the previous chapters, and instead
focus on the nuclei and their coupling to the electrons. Here, we can com-
pare a classical to a quantum description for the nuclei, and various treatments
of the electron-phonon interaction in trajectory-based algorithms. We note
that the model has been used to analyze absorption spectra in Pr1– xCaxMnO3
in Ref. [36]. The model in the single-electron variant (also called polaron
problem) serves as an example and testbed for the benchmark calculations per-
formed in the next chapter, Ch. 6, and it is not the aim of this thesis to better
understand or explore the model itself, which has been studied extensively,
see Refs. [169–175]. As we outlined in Ref. [37], in particular the two-site
Holstein model, the Holstein dimer, is a well studied system in literature, see
Refs. [176–185]. It is studied in quantum chemistry, where it is a simple model
system to describe a reaction path, see Refs. [186, 187], but it corresponds
also to the one-mode simplification of the spin-boson model, see Ref. [188].
The two-site system will be helpful to understand the concepts of adiabatic
surfaces/states and non-adiabatic effects introduced in this chapter.

With the natural length scale of the harmonic oscillators ˆ̄xi = x̂i/

√
~

mω0

(and correspondingly for the momenta) and by setting ~ω0 as energy unit,
we can bring the Hamiltonian into a dimensionless form. In the following,
dimensionless variables will always be indicated by a bar over the symbols:
ˆ̄H = Ĥ

~ω0
, t̄0 =

t0
~ω0

and γ̄ =
γ
~ω0

. This simplifies the Hamiltonian to the
following form:

ˆ̄H =
L−1∑
i=1
−t̄0(ĉ

†

i ĉi+1 + ĉ†i+1ĉi) +

L∑
i=1

[
1
2

ˆ̄x2
i +

1
2

ˆ̄p2
i −
√

2γ̄n̂i ˆ̄xi

]
. (5.3)

For the dimer, we switch to a relative ˆ̄q = ( ˆ̄x1− ˆ̄x2)/
√

2, and a center-of-mass
phonon mode ˆ̄Q = ( ˆ̄x1 + ˆ̄x2)/

√
2, with ˆ̄pq and ˆ̄pQ the corresponding momenta,

to rewrite the Hamiltonian in Eq. (5.3) as:

ˆ̄HL=2 = − t̄0(ĉ
†

1 ĉ2 + ĉ†2 ĉ1) +
ˆ̄q2

2
+

ˆ̄p2
q

2
+

ˆ̄Q2

2
+

ˆ̄p2
Q

2
− γ̄

[
ˆ̄q
( ˆ̄n1 − ˆ̄n2

)
+ ˆ̄Q

( ˆ̄n1 + ˆ̄n2
) ]
. (5.4)

In general, the center-of-mass phonon displacement 1√
N

∑
i ˆ̄xi, which corre-

sponds for the Holstein dimer to the variable ˆ̄Q, couples to the constant total
number of electrons N =

∑
i 〈n̂i〉 and is a simple harmonic oscillator that is

independent from the rest of the system. For the dimer, we are left with an
effectively one-phonon-mode Hamiltonian in the relative coordinate ˆ̄q, which
couples to the difference of the electronic population on the two sites. For
larger systems, one can single out the center-of-mass phonon mode by con-
structing the real discrete Fourier transform of the local nuclear modes. We
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use this approach in this thesis only for the dimer and trimer to simplify the
visualization of the Born-Oppenheimer surfaces and reduce the computational
effort of the numerically exact methods.

For the Holstein trimer, we introduce the three nuclear coordinates:

ˆ̄X =
1
√

3

( ˆ̄x1 + ˆ̄x2 + ˆ̄x3
)

ˆ̄xs =
2
√

6

(
ˆ̄x2 −

ˆ̄x1 + ˆ̄x3

2

)
(5.5)

ˆ̄xa =
1
√

2

( ˆ̄x3 − ˆ̄x1
)
. (5.6)

As for the dimer, the center-of-mass coordinate ˆ̄X does not couple to the rest
of the system. The symmetric phonon mode ˆ̄xs interacts with the difference of
electron density on the central site to the average density on the edge sites. The
antisymmetric phonon mode ˆ̄xa couples to the difference of electron densities
on the edge sites.

5.2 Non-adiabatic effects in the framework of the
Born-Huang expansion

One of the central challenges of both quantum-chemistry and solid-state physics
is the description of electron-nuclear composite systems. This includes molec-
ular systems and their chemical reactions, but also extended lattices with any
form of interaction between the electrons and the lattice nuclei. An intuitive un-
derstanding and qualitative predictions for the dynamics of these systems can be
achieved by implicitly or explicitly invoking a separation of the electronic and
nuclear time scales. This separation is often justified with the vastly different
masses of the respective particles, which M. Born and R. Oppenheimer utilized
in their seminal paper, see Ref. [189], to first solve the electronic eigenvalue
problem for fixed nuclear positions, and then finding perturbative solutions for
nuclear displacements around these positions, see also Ref. [190]. Nowadays,
one understands under the “Born-Oppenheimer approximation”, or sometimes
called “adiabatic approximation”, see Ref. [191], the complete separation of
electronic and nuclear time-scales, so that electronic eigenenergies are obtained
for fixed nuclear positions and the nuclei evolve under the influence of a single
electronic eigenenergy, see Refs. [190, 192]. This approximation is useful in
both the short-time (∼ femtosecond) and long-time (∼ picosecond-nanosecond)
regime of the microscopic time scale, as one singles out the dynamics of only
the electrons or the nuclei, respectively. The adiabatic approximation is implic-
itly utilized when electronic excitation spectra, or short-time dynamics after an
excitation or quench, are calculated for fixed nuclear positions in an electron-
nuclear composite system, and also forms the basis of Born-Oppenheimer
molecular dynamics simulations where classical atoms move in an effective
potential build from the instantaneous electronic ground state, see Ref. [190]
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and Sec. 3.4.1. A nearly adiabatic approximation was used in Sec. 4.2 when
the nuclei where heated with a thermostat, while the electron and spin system
were kept close to their ground state using Car-Parrinello molecular dynamics
(see Sec. 3.4.1).

While much of the intuitive pictures of molecular dynamics is driven by the
adiabatic approximation, it certainly is not always applicable, as sometimes the
instantaneous electronic eigenstates change rapidly with the nuclear coordinate,
leading to so-called “non-adiabatic effects”, which often dynamically couple
different electronic states. This becomes especially relevant when analyzing
the dynamics of excited electronic states with a strong coupling to surround-
ing phonons, see Refs. [31, 167, 168], for example after an optical excitation.
Fast relaxation channels through radiationless decay involve intersections, or
avoided crossings, between electronic states, at which the adiabatic approx-
imation breaks down, analyzed in various aspects in the excellent book in
Ref. [133]. It is thus important to better understand which terms are neglected
in the adiabatic approximation and how to go beyond the Born-Oppenheimer
picture. In this section we review the Born-Huang formalism, see Ref. [34],
which is an exact expansion of the total wave function in adiabatic electronic
eigenstates. Its language is strongly inspired by the adiabatic approximation,
but it allows to directly identify the correction terms to this approximation and
to properly define non-adiabatic effects.

5.2.1 A position-dependent electronic basis

In the Born-Huang formalism, but also in the adiabatic approximation, one
often talks about electronic states which depend on the nuclear position. This
is not an approximation, but simply a change of the representation of the total
state. We denote the vector of nuclear positions as R, which contains all d · N
nuclear degrees of freedom of the d-dimensional N nuclei: R = (R1, . . . , RdN ).
The nuclear momenta are correspondingly described by P = (P1, . . . , PdN )

and the masses of each mode k by mk . The electrons are described by a
discrete orthonormal basis {|χa〉}, which for now does not depend on the
nuclear positions (one could also generalize this to the continuous position
basis r). The total wave function describing the composite state is thusΨa(R) =
〈R, χa |Ψ〉, with the abstract total state |Ψ〉 and the composite electron-nuclear
basis 〈R, χa | = 〈R| ⊗ 〈χa |.

It is straightforward to transform the electronic basis at each nuclear position
into a different orthonormal basis:

|Ψ(t)〉 =
∑

a

∫
dR |R, χa〉 Ψa(R, t) =

∑
b

∫
dR′ |R′, φb(R′)〉 Ψ′b(R

′, t) (5.7)

B
∑

b

∫
dR′ |R′, φb(R′)〉

[∑
a

∫
dR 〈R′, φb(R′)|R, χa〉 Ψa(R, t)

]
.

(5.8)

We only need to require that the overlap 〈R′, φb(R′)|R, χa〉 = δ(R−R′)Ub,a(R) is
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defined by a proper unitary transform U(R) for every position R. Here,Ψ′b(R
′, t)

is a multi-component nuclear wave function in an R-dependent electronic basis.
With the knowledge of the transform U(R) at every nuclear position R, it
contains the same information as the previous wave function Ψa(R, t).

Let us insert the total state in the form of Eq. (5.8) into the Schrödinger
equation i~ d

dt |Ψ(t)〉 = Ĥ |Ψ(t)〉, where Ĥ is the total (non-relativistic) electron-
nuclear Hamiltonian of the system, which for a typical molecular or solid-state
system contains the kinetic energy of electrons and nuclei, and interaction
terms between all particles. It is instructive to separate the Hamiltonian into
two parts: the kinetic energy of the nuclei T̂nuc =

∑
k

P̂2
k

2mk
and all other terms,

which do not depend on the nuclear momentum:

Ĥ = T̂nuc(P̂) + ĤBO(R̂). (5.9)

These remaining terms are summarized in a term called the Born-Oppenheimer
(BO) Hamiltonian ĤBO. Inserting the state of Eq. (5.8) into the Schrödinger
equation and multiplying from the left with 〈R, φa(R)|, we arrive at an equation
for the nuclear wave function Ψ′a(R, t), see Ref. [191]:

i~
d
dt
Ψ
′
a(R, t) =

∑
b

[ ∑
k

1
2mk

(
1
~

i
∇k +

¯̄A(k)(R)

) 2

+ V (R)

]
a,b

Ψ
′
b(R, t).

(5.10)

Here, bold-face symbols are matrices in the chosen R-dependent electronic
basis, with the identity (1)a,b = δa,b and the two quantities:

Va,b(R) = 〈R, φa(R)|ĤBO(R̂)|R, φb(R)〉 = 〈φa(R)|ĤBO(R)|φb(R)〉 , (5.11)

¯̄Aa,b,(k)(R) = 〈R, φa(R)|P̂k |R, φb(R)〉 = 〈φa(R)|
~

i
∇k |φb(R)〉 . (5.12)

The Va,b(R) are matrix elements of the Born-Oppenheimer Hamiltonian in the
electronic basis, the R-dependence enters only parametrically. The ¯̄Aa,b,(k)(R)
capture the influence of the nuclear momentum operator on the R-dependent
electronic basis. The double-bar over the quantity A is introduced here for
the general position dependent basis {|φb(R)〉}. In most cases this quantity
is used for the specific basis of the Born-Oppenheimer states, see Sec. 5.2.2,
for which we will omit the bars. The k-components of each matrix element
can be summarized into a vector ®̄̄Aa,b(R) = 〈φa(R)| ~i ®∇|φb(R)〉, which is called
the derivative coupling between the electronic states a and b. The deriva-
tive couplings take the form of a vector potential in the nuclear Schrödinger
equation (5.10). For a nuclear-position-independent electronic basis |χa〉, as
in Eq. (5.7), this term vanishes and we are left with the typical Schrödinger
equation containing the nuclear kinetic energy and matrix elements of all other
terms. The R-dependence of the electronic basis, however, provides an addi-
tional flexibility, as we can choose a different basis set for each nuclear position.
This is used in the Born-Huang expansion explained in the next subsection.
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5.2.2 The Born-Huang expansion

The central idea of the Born-Huang formalism (see Ref. [34]) is to use an
electronic basis in which the V-matrix defined in Eq. (5.11) becomes diagonal.
This is exactly the eigenbasis of the Born-Oppenheimer Hamiltonian, which
can be obtained from the (R-dependent) eigenvalue problem:

ĤBO(R) |φBO
a (R)〉 = E BO

a (R) |φ
BO
a (R)〉 , (5.13)

to expand the total state as:

|Ψ(t)〉 =
∑

a

∫
dR |R, φBO

a (R)〉 Ψa(R, t). (5.14)

The states |φBO
a (R)〉 are called Born-Oppenheimer states and form a com-

plete electronic basis for every nuclear position R. Correspondingly, the
Born-Oppenheimer energies E BO

a (R) describe electronic energies for every
nuclear position and thus form energy surfaces named “Born-Oppenheimer
surfaces” in the nuclear configuration space. In the nuclear Schrödinger equa-
tion (Eq. (5.10)) they take the form of potential energy surfaces Va,b(R) =
δa,bE BO

a (R), along which the multi-component nuclear wave function evolves
under the influence of the derivative couplings ®Aa,b(R) = 〈φBO

a (R)|
~
i
®∇|φBO

b (R)〉
(now for the Born-Oppenheimer states and without the bars) as vector potential:

i~
d
dt
Ψa(R, t) =

∑
b

[ ∑
k

1
2mk

(
1
~

i
∇k + A(k)(R)

) 2

+ EBO(R)

]
a,b

Ψb(R, t).

(5.15)

Here, EBO(R) is the diagonal matrix containing the Born-Oppenheimer ener-
gies E BO

a (R) as diagonal entries. One might ask what we gained from this
change of the electronic basis. In a nuclear-position-independent electronic ba-
sis {|χa〉}, different electronic states are coupled via the off-diagonal elements
of the V-matrix Va,b(R) = 〈χa |ĤBO(R)|χb〉 in Eq. (5.10). If one thinks of a
typical tight-binding Hamiltonian, this might be a constant electron-hopping
matrix element Va,b(R) = −t0, which does not depend on the nuclear position
and thus has to be taken into account in the whole nuclear configuration space.
In contrast, in the Born-Oppenheimer basis different electronic states are cou-
pled via the derivative couplings ®Aa,b(R) (and the derivative thereof). These
terms can become highly peaked around certain nuclear configurations, as can
be seen from an alternative representation (see Ref. [191]):

Aa,b,(k)(R) =
〈φBO

a (R)|
(
~
i ∇k ĤBO(R)

)
|φBO

b (R)〉

E BO
a (R) − E BO

b (R)
, a , b. (5.16)

From the denominator, one can expect the derivative couplings to become
dominant whenever two Born-Oppenheimer surfaces come close in energy.
For regions where the derivative couplings are negligible, which is thus often
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Figure 5.1: A sketch of two Born-Oppenheimer surfaces EBO
i (R) for a nuclear co-

ordinate R. The surfaces are drawn as thick black lines, the derivative
couplings between the surfaces as blue area between the surfaces, and
an exemplary wave function density |Ψi(R, t)|2 at two times t1 and t2 as
red filled curves on top of the respective surfaces. The wave function is
initially (t1) on the upper surface and splits into two wave packets (t2) after
moving through the non-adiabatic coupling region.

the case for far separated surfaces, the different components of the nuclear wave
function will evolve independently in their corresponding adiabatic potential
energy surfaces, making it easy to develop an intuitive understanding of its
time evolution.

In the next section we will introduce the adiabatic, or Born-Oppenheimer,
approximation, in which the dynamics on the different energy surfaces are
regarded as completely independent from one another. Any effect that cannot
be described in such an isolated adiabatic surface picture, and thus going
beyond the Born-Oppenheimer approximation, is called a non-adiabatic effect,
see Ref. [191]. The derivative couplings, which are responsible for breaking this
approximation, are also called non-adiabatic couplings (see, e.g., Ref. [191]).

A sketch of a visual representation of the electron-nuclear dynamics in the
Born-Huang picture is shown in Fig. 5.1. It includes two Born-Oppenheimer
surfaces E BO

i=0,1 as function of some nuclear coordinate R as thick black lines
and the region of significant non-adiabatic coupling as a blue area between the
surfaces. Outside of this region, the derivative couplings (and their deriva-
tives) are negligible and the wave function will evolve corresponding to the
potential build by the Born-Oppenheimer surfaces, while within this region,
the derivative couplings allow for transitions between the surfaces and modify
the effective potential acting on the wave function. An example wave function
is shown at two times with its density |Ψi(R, t)|2 drawn as red filled curves
on the respective surfaces i = 0, 1. At time t1 the wave function starts on the
upper surface. The shape of the surface forces the wave packet toward the non-
adiabatic coupling region, where it partially transitions to the lower surface (a
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non-adiabatic transition). After both portions of the wave function leave this
region, their dynamics are again dictated by the Born-Oppenheimer surfaces
alone. The different shapes of the two surfaces will lead to a spatial separation
of both wave packets at later times t > t2.

Often only a few adiabatic surfaces are necessary to describe the whole dy-
namical evolution accurately, while higher and lower lying states are ignored
(for example, the system described by the sketch in Fig. 5.1 might include more
Born-Oppenheimer states, which are, however, far separated for all nuclear
configurations and thus irrelevant for the dynamics). This feature of the adia-
batic basis is also called compactness, see Ref. [74]. We note that one should
be careful in discarding states too easily. In particular, only because two energy
surfaces are far separated in the nuclear configuration space occupied by the
wave function during the whole time evolution, it is not guaranteed that they
do not influence each other. This is due to the possibility of surface crossings
in the form of conical intersections, at which the derivative couplings diverge
and a geometric phase effect emerges, see Refs. [70–72, 74], also called Berry
phase, see Ref. [73].

An obvious question is whether there is an alternative electronic basis in
which the derivative couplings (Eq. (5.12)) vanish completely and which still
allows a compact description with only a few electronic basis states contributing
to the dynamics. This is the idea of a diabatic basis, see Refs. [193–195], which
is usually constructed as a linear combination of adiabatic states and typically
changes less abruptly in the nuclear position space than the adiabatic basis, see
Refs. [194–197]. As pointed out by Ref. [198], however, in general no such
diabatic basis exists, with the exception of the “trivial diabatic” basis that does
not depend on the nuclear coordinates and for which the derivative couplings
vanish by definition.

In the following, when we talk about the adiabatic or diabatic basis, we
always refer to the Born-Oppenheimer or a nuclear-position-independent basis,
respectively. For later reference the two possible expansions are:

|Ψ(t)〉 =
∑

a

∫
dR |R, φBO

a (R)〉 Ψ
(a)
a (R, t) (5.17)

=
∑

a

∫
dR |R, χa〉 Ψ

(d)
a (R, t) (5.18)

where the superscripts (a) and (d) refer to the multicomponent nuclear wave
function in the adiabatic and diabatic basis.

To summarize, the Born-Huang formalism is an exact reformulation of the
dynamical electron-nuclear composite problem, which expands the total wave
function in Born-Oppenheimer eigenstates. The corresponding nuclear wave
function components evolve in a set of potential energy surfaces build from
the Born-Oppenheimer eigenenergies under the influence of a vector potential
called the derivative couplings.
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5.2.3 The Born-Oppenheimer/adiabatic approximation

One of the best known approximations to electron-nuclear systems is the adi-
abatic, or Born-Oppenheimer, approximation. In the Born-Huang framework,
with the Born-Oppenheimer electronic basis, this approximation simply corre-
sponds to neglecting all derivative couplings ®A in the nuclear Schrödinger equa-
tion (5.15). With the couplings between the different surfaces removed, each
component of the nuclear wave function evolves on a single Born-Oppenheimer
surface, independent of the other components:

i~
d
dt
Ψ
(a)
a (R, t) ≈

[ ∑
k

−~2∇2
k

2mk
+ E BO

a (R)

]
Ψ
(a)
a (R, t). (5.19)

We note that some authors differentiate between the adiabatic and the Born-
Oppenheimer approximation in that the latter only ignores the off-diagonal
derivative couplings, see, e.g., Ref. [191]. In this thesis we will use both terms
interchangeably to refer to the approximation which neglects all derivative
couplings. A time-evolution obtained according to Eq. (5.19) will leave the
electronic populations of the Born-Oppenheimer states

∫
dR|Ψa(R)|2 constant

over time and the Born-Oppenheimer states are treated like (R-dependent)
electronic eigenstates of the system.

This approximation forms the basis of the often used Born-Oppenheimer
molecular dynamics (BO-MD) approach, discussed in the context of the man-
ganite tight-binding model in Sec. 3.4.1, to which the Car-Parrinello molecu-
lar dynamics applied for the finite-temperature phase transitions presented in
Sec. 4.2 can be seen as an approximation. BO-MD assumes that the electrons
start in the lowest Born-Oppenheimer state. Furthermore, its energy surface is
assumed to be sufficiently far separated from all other Born-Oppenheimer
surfaces to justify that the Born-Oppenheimer approximation is valid and
non-adiabatic transitions are negligible. In addition, quantum effects of the
nuclei are neglected in the BO-MD approach and they are described as clas-
sical point particles (as in any molecular dynamics simulation). Instead of
the Born-Oppenheimer Schrödinger equation (5.19), they follow the classical
Newton’s equation of motion for particles in a potential given by the lowest
Born-Oppenheimer surface E BO

0 .
Once this energy surface has been constructed/calculated for a problem of

interest, the electrons are not longer relevant for the dynamics of the system. In
quantum chemistry this led for some time to a separation of tasks, with some
groups working on determining the energy surfaces, and other groups using
them, see Ref. [190]. For most realistic models describing materials, an exact
(or suitably fitted) analytic expression for the lowest Born-Oppenheimer surface
is not available and its energy and derivative (needed to calculate the forces
acting on the nuclei) are obtained in on-the-fly electronic structure calculations,
see Ref. [144, 199], denoted as ab initio molecular dynamics (see Sec. 3.4.1).
We refer to Ref. [200] for a recent overview of methods relying on such an
on-the-fly approach, several of which will be introduced later in Sec. 5.3.

One can certainly use the Born-Oppenheimer approximation and still con-
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sider the nuclei as quantum mechanical particles, or utilize a mixed ansatz
for the nuclear wave function, such as the truncated Wigner approach, see
Ref. [201], where the initial quantum state is correctly sampled in phase space,
but the subsequent dynamics follow approximated classical equations of mo-
tion. This ansatz will be described in more detail in Sec. 5.3.1. Alternatively,
one can improve Born-Oppenheimer molecular dynamics in the other direction:
keeping the classical nuclei, but allowing non-adiabatic transitions between
electronic surfaces, i.e., going beyond the Born-Oppenheimer approximation.
This is especially relevant for the non-equilibrium dynamics of excited elec-
tronic states, which will often involve more than one Born-Oppenheimer state.
Such methods that combine a classical description of the nuclei with a quantum
mechanical description of the electrons and allow for non-adiabatic transitions
are one main focus for the remainder of this thesis and will be introduced in
Sec. 5.3.

5.2.4 Born-Huang for the Holstein dimer and trimer

We can now apply the Born-Huang formalism to the Holstein dimer and trimer
to better understand the shape of their Born-Oppenheimer surfaces. The Hol-
stein dimer serves also as an example to visualize the effect of the non-adiabatic
coupling and how to think in terms of the Born-Huang formalism.

Born-Huang for the Holstein dimer

The Born-Oppenheimer Hamiltonian of the Holstein dimer for a system with
exactly one electron can be written as a 2 × 2-matrix in the basis of the two
site-local electronic states |χi〉 = c†i |0〉 , i = 1, 2. Omitting the irrelevant
center-of-mass phonon mode Q̄ and keeping only the relative distortion mode
q̄ = (x̄1 − x̄2)/

√
2 (see Eq. (5.4)), it becomes:

ˆ̄HBO
L=2(q̄) =

(
q̄2

2 − γ̄q̄ −t̄0
−t̄0

q̄2

2 + γ̄q̄

)
. (5.20)

This matrix can easily be diagonalized analytically, see Ref. [186], to obtain
the Born-Oppenheimer energies:

Ē BO
± (q̄) =

q̄2

2
±

√
q̄2γ̄2 + t̄2

0 . (5.21)

The two Born-Oppenheimer surfaces are shown in Fig. 5.2 for the case of
γ̄2/t̄0 > 1, where the lower surface has two minima. The two minima merge
for γ̄2/t̄0 = 1, and for γ̄2/t̄0 < 1 only a single minimum at q̄ = 0 is left.
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Figure 5.2: Lower and upper Born-Oppenheimer surfaces ĒBO
± (q̄) for the Holstein

dimer with γ̄ = 2 and t̄0 = 1, see Eq. (5.21). The imaginary part of
the derivative coupling according to Eq. (5.23) is included as well. The
separation of the two surfaces at the center and at one minimum of the lower
surface are indicated. Reproduced from Ref. [37], with the permission of
AIP Publishing. The position of the figure key has been adjusted.

The diagonalization also gives access to the Born-Oppenheimer states:

(
φBO
±,1 (q̄)
φBO
±,2 (q̄)

)
=

©«

√√√
1 +

(
q̄γ̄
t̄0
±

√(
q̄γ̄
t̄0

) 2
+ 1

) 2 −1

∓

√√√
1 +

(
q̄γ̄
t̄0
∓

√(
q̄γ̄
t̄0

) 2
+ 1

) 2 −1

ª®®®®®®®®¬
. (5.22)

The energetically lower (−) state has the same sign on both dimer sites with
the larger contribution on the site with the larger nuclear displacement (e.g.,
at site 1 for q̄ > 0, i.e., x̄1 > x̄2). The higher (+) state changes sign between
both sites and has the larger contribution on the site with the lower nuclear
displacement. In the language of chemical bonds we denote these states as
a bonding (−) and an antibonding (+) state, respectively. A sketch of these
Born-Oppenheimer wave functions at different q̄ for both surfaces is shown in
Fig. 5.3.

Ignoring the upper surface for a moment, i.e. in the spirit of the Born-
Oppenheimer approximation, we can expect to observe different ground states,
depending on the system parameters. In the small hopping/large coupling
regime (γ̄2/t̄0 > 1), with the double-minimum shown before, the ground state
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Figure 5.3: Sketch of the Born-Oppenheimer wave functions in the two states and
at different nuclear positions in a Holstein dimer system similar as pre-
sented in Fig. 5.2. The lower (bonding) state has a large contribution
on the site with the larger nuclear distortion (xi, indicated with sketches
of springs below the graph), while the higher (antibonding) state has the
larger contribution on the opposite site and changes sign between the sites.

wave function will have dominant contributions at non-zero q̄ = ±γ̄
√

1 − t̄2
0/γ̄

4

in the lower BO-state. Since this state has the electron density mostly localized
on the site with the larger nuclear displacement, the ground state will be com-
posed of localized electron-nuclear bound states. In the large hopping/small
coupling regime (γ̄2/t̄0 < 1), with the single-minimum at q̄ = 0, the ground
state wave function will have its largest contribution around q̄ = 0 and the
electron density is delocalized between both sites.

From the Born-Oppenheimer states and energies we can calculate the deriva-
tive couplings according to Eq. (5.12) or Eq. (5.16) (the diagonal entries Aa,a
vanish for real Born-Oppenheimer wave functions), see, e.g., Refs. [202, 203]:

Ā+,− = Ā∗−,+ = −i
γ̄

2t̄0

1
1 + (q̄γ̄/t̄0)2

. (5.23)

The imaginary part of these off-diagonal derivative couplings is included in
Fig. 5.2. The functional form corresponds to a Lorentzian curve around the
symmetric phonon distortion q̄ = 0, with its width proportional to γ̄/t̄0. For
a small hopping matrix element t̄0, the couplings become strongly peaked at
the avoided crossing, see Refs. [204–206], allowing for transitions of the wave
function between both Born-Oppenheimer surfaces, see Sec. 5.2.2.

An early estimate for the transition probability between the two electronic
states is given by the Landau-Zener formula, see Refs. [207, 208]. This formula
approximates the nuclei as classical point particles, which move along a fixed
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path q̄(t) with a constant velocity Û̄q. With only the electrons described on a
quantum mechanical level, their Schrödinger equation becomes much simpler
than the full nuclear Schrödinger equation (5.10) given before. In the basis of
the two site-local electronic states |Ψel(t)〉 =

∑
i |χi〉 Ψ

el
i , it can be written as:

i~
d
dt
Ψ

el
i (t) =

∑
j

〈χi |ĤBO(q(t))|χj〉 Ψ
el
j (t), (5.24)

with the nuclear coordinate q entering as a time-dependent external potential.
For a simple two-level system with a linear electron-phonon coupling and a
constant hopping term, like in Eq. (5.20), one can integrate this differential
equation to determine transition probabilities between electronic states. Start-
ing on the lower Born-Oppenheimer surface at q̄ → −∞ (where |φ−〉 = |χ2〉)
one can ask for the transition probability PLZ

−→+ to the upper Born-Oppenheimer
surface once the system reached q̄→∞ (where |φ+〉 = |χ2〉). This integration
yields (see Ref. [208]):

PLZ
−→+ = exp

(
−π |t̄0 |2

Û̄qγ̄

)
. (5.25)

Hence, in this approximation, the transition probability between both Born-
Oppenheimer surfaces becomes large when the electron hopping t̄0 is small, or
the nuclear velocity approaching the avoided crossing Û̄q is large. This fits to our
previous expectations that the adiabatic approximation (where P−→+ should be
small) works best when the Born-Oppenheimer surfaces are far separated and
the nuclei move adiabatically slow compared to the electrons.

Exact approach in the Born-Huang formalism for the Holstein dimer

If one seeks a correct quantum mechanical description of the composite
electron-nuclear system, the time evolution and surface transitions become
more complicated. Due to the quadratic restoring forces included in the Hol-
stein dimer, a wave packet initially localized to, for example, the upper Born-
Oppenheimer surface, can enter the avoided crossing region several times and
different wave packets might interfere when they collide. To get a better impres-
sion of the dynamics and the role of non-adiabatic effects we will now present
one example case for (numerically) exact dynamics in the Holstein dimer. The
method used here will also serve as the benchmark method to evaluate several
trajectory-based quantum-classical methods in Sec. 6.1 in the Holstein dimer.

The idea is to solve the complete nuclear Schrödinger equation in the Born-
Oppenheimer basis (Eq. (5.15)). In this subsection we will always use the
(adiabatic) Born-Oppenheimer basis and omit the superscript (a) of the wave
function. For the Holstein dimer (Eq. (5.20)) the nuclear Schrödinger equation
in the time-independent form becomes:

Ēn
Ψ

n
±(q̄) =

[
−

1
2
∇2

q̄ +
Ã2

2
+ Ē BO
±

]
Ψ

n
±(q̄) ∓

[
1
2
∂ Ã
∂q
+ Ã∇q̄

]
Ψ

n
∓(q̄), (5.26)
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with Ã = =(Ā−,+). In Eq. (5.26) the derivative coupling appears several
times. First, it contributes to the diagonal elements of the Hamiltonian with
a term Ã2/2, thus modifying the shape of the effective potential acting on the
wave function from the pure Born-Oppenheimer surfaces. If one differentiates
between the adiabatic and the Born-Oppenheimer approximation, then in the
latter this contribution would remain. Second, the derivative coupling and its
derivative couple the two Born-Oppenheimer states, so that, in general, the
eigenstates solving Eq. (5.26) will have contributions on both surfaces. The
resulting eigenenergies Ēn and eigenstates |Ψn〉 =

∑
±

∫
dq̄ |q̄, φBO

± (q̄)〉 Ψ
n
±(q̄)

are the same as obtained from solving the complete Schrödinger equation of the
system in any other, e.g., second quantized, basis, and should not be confused
with the Born-Oppenheimer energies or states.

Of the many ways to solve Eq. (5.26), we follow here a Car-Parrinello (see
Ref. [129]) motivated scheme, suggested by P. E. Blöchl (Ref. [209]). For this,
we discretize the nuclear coordinate space on a grid to obtain a set of basis
states 〈q̄, φBO

± (q̄)|. We then set up a fictitious Lagrangian for all components of
the one-particle wave functions Ψn

±(q̄):

L =
∑
±,q̄,n

MΨ | ÛΨn
±(q̄)|

2 −
∑

n

〈Ψn | ˆ̄H |Ψn〉 −
∑
m,n

Λm,n(〈Ψ
n |Ψm〉 − δm,n), (5.27)

where ˆ̄H refers to the complete dimer Hamiltonian (without Q̄), not the Born-
Oppenheimer Hamiltonian. This ansatz is similar to the already presented
ground-state Car-Parrinello search described in Sec. 3.3.2, see there for details.
A trial wave function Ψn

±(q̄) evolves for each eigenstate n according to the
forces determined from the full instantaneous energy expression ∂〈Ψn | ˆ̄H |Ψn〉

∂Ψn,∗
±,q̄

=

〈q̄, φBO
± (q̄)|

ˆ̄H |Ψn〉, which here forms a one-dimensional energy surface for each
component of the wave function.

A fictitious kinetic energy term is added for each such wave function com-
ponent, which is damped over time. Of the additional orthonormalization
included by the Lagrange-multiplier Λm,n, only the normalization of each state
and the orthogonalization to lower lying eigenstates is included in the equations
of motion (i.e., Λm,n is replaced by a triangular matrix). This ensures that the
n = 0 state relaxes to the one-particle ground state of the Hamiltonian, while
higher states relax to their respective one-particle excited states. In practice,
we obtained the eigenstates consecutively, and orthogonalized the forces acting
on the wave functions to the previously obtained lower-lying eigenstates. This
relaxation is again done with a Verlet-algorithm (see Ref. [139]). The final
total energy of each state is the eigenenergy of the corresponding state.

The eigenenergies have been compared to an exact diagonalization in second
quantization method, implemented by D. Jansen, see Ref. [37], which con-
firmed that both methods yield the same eigenenergies. We note that if one
diagonalizes the full dimer Hamiltonian (Eq. (5.4)) with the center-of-mass
coordinate Q̄ included, one gets additional eigenstates separated in energy by
multiples of ~ω0, due to the additional (independent) harmonic oscillator.

Six example eigenstates of the Holstein dimer are visualized in Fig. 5.4.
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Eigenstates of the Holstein dimer, γ̄ = 2.5, t̄0 = 2.5
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q
[√

~
mω0
·

γ
~ω0

]

(f) Ψ25(q),∆Ē = 12.898

Figure 5.4: Six different eigenstates |Ψn〉 of the Holstein dimer for γ̄ = t̄0 = 2.5
obtained with the approach outlined in Sec. 5.2.4. The contributions of
the (real) eigenfunctions in both the upper (Ψ+(q)) and lower (Ψ−(q))
Born-Oppenheimer state are shown, with the respective surfaces indicated
by gray lines. Positive and negative values of the wave functions are drawn
as red and blue filled curves.

Shown are the two components on the lower and upper Born-Oppenheimer
surface over the q-phonon degree of freedom. Figs. 5.4(a)-(c) show the low-
est three eigenstates, which all have only very little contribution on the upper
Born-Oppenheimer surface. The ground state Ψ0 is almost a linear combina-
tion of two Gaussians localized around the two minima of the lowest Born-
Oppenheimer surface, while the first excited state Ψ1 changes sign between the
two minima. Linear combinations of these two states are a good approximation
to Gaussians localized to one of the minima. The third eigenstate changes
sign twice on the lower surface and has a larger contribution at the symmet-
ric nuclear distortion q = 0. In Fig. 5.4(d) the first eigenstate with a large
contribution on the upper Born-Oppenheimer surface (Ψ13) is shown. Higher
lying eigenstates have a varying contribution on the two surfaces, with the 17th
(Ψ17) and the 25th (Ψ25) excited states being examples with a small and large
contribution on the upper surface, respectively.

We note that with the knowledge of the eigenstates one can directly calculate,
for example, an optical absorption spectrum. For this we need to obtain the
transition dipole moment between two states from the dipole operator acting
on the electron µ̂ = (n̂1 − n̂2) (we set the charge and the position of the electron
to unity). In the basis of the Born-Oppenheimer states (see Eq. (5.22)) this
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becomes:

〈Ψm | µ̂|Ψn〉 =

∫
dq̄

(
Ψ
∗m
− (q̄)Ψ

n
−(q̄) − Ψ

∗m
+ (q̄)Ψ

n
+(q̄)

) q̄γ̄/t̄0√
(q̄γ̄/t̄0)2 + 1

+

∫
dq̄

(
Ψ
∗m
− (q̄)Ψ

n
+(q̄) + Ψ

∗m
+ (q̄)Ψ

n
−(q̄)

) 1√
(q̄γ̄/t̄0)2 + 1

. (5.28)

The first term in Eq. (5.28) measures the overlap of the two states |Ψm〉 and
|Ψn〉 on the same Born-Oppenheimer surfaces, with a different sign for the
lower and upper surface. The scaling factor is odd in q̄-space and thus the two
states must have a different parity in the respective surface. The scaling factor,
which is (up to the sign) just the diagonal entry of the dipole operator in the
Born-Oppenheimer basis, is zero at q̄ = 0 and becomes finite and constant for
larger ±q̄. It gives rise to tunneling transitions between states and leads to a
large transition dipole moment between, for example, the ground state and the
first excited state shown in Figs. 5.4(a),(b), corresponding to a small excitation
energy of ∆E � ~ω0.

The second term measures the off-diagonal overlap between two states, i.e.
the wave function contributions on different Born-Oppenheimer surfaces. The
scaling factor (the off-diagonal matrix element of the dipole operator) is even
in q̄-space, thus the relevant contributions of the states must have the same
parity, and largest around q̄ = 0 (it is proportional to the imaginary part of the
derivative couplings, see Fig. 5.2). This term leads to a large transition dipole
moment between, for example, the states |Ψ2〉 and |Ψ13〉 (see Figs. 5.4(c),(d)),
which have a strong off-diagonal overlap around q̄ = 0 (with ∆Ē ≈ 2|t̄0 |).
Since this involves an excitation from a state that is not the ground state, it is
thermally activated. Such a transition has been observed also in small one-
dimensional Holstein chains, see Ref. [210]. In addition, the second term
gives rise to a transition dipole moment between the ground-state |Ψ0〉 and
high-excited states (for example |Ψ25〉, see Figs.5.4(a),(f)), which have a strong
off-diagonal overlap around the minima of the lower Born-Oppenheimer surface
(with ∆Ē ≈ 2γ̄2). This corresponds to an optical excitation from the lower to
the upper Born-Oppenheimer surface at roughly the same nuclear positions,
i.e. a vertical, “Franck-Condon”-like excitation, see Refs. [211, 212].

More relevant for the rest of this thesis is the calculation of real-time dy-
namics of an initial non-equilibrium state |Ψini〉. We can project this state
onto the eigenstates |Ψn〉 of the system to obtain the expectation value of some
observable Ô via:

〈Ψ(t)|Ô |Ψ(t)〉 =
∑
m,n

〈Ψini |Ψ
m〉 〈Ψn |Ψini〉 exp

(
−

i
~
(En − Em)t

)
〈Ψm |Ô |Ψn〉 .

(5.29)

One example is the Born-Oppenheimer probability density |Ψ±(q̄, t)|2 (Ô =
|q̄, φBO

± (q̄)〉 〈q̄, φ
BO
± (q̄)|). Let us start from an initial state with contributions

only on the upper Born-Oppenheimer surface, i.e., an antibonding initial state,

99



5 Non-adiabatic effects in electron-phonon coupled systems: Exact and
quantum-classical descriptions

0

10

20

30

Antibonding initial state, L = 2, γ̄ = 2.5, t̄0 = 2.5

0

10

20

30

-2 0 2 -2 0 2 -2 0 2

E
B

O
[~
ω

0]

|Ψ+(q)|2

|Ψ−(q)|2

(a) t = 0.0/ω0 (b) t = 1.2/ω0 (c) t = 2.5/ω0

E
B

O
[~
ω

0]

q
[√

~
mω0
·

γ
~ω0

]

(d) t = 3.4/ω0

q
[√

~
mω0
·

γ
~ω0

]

(e) t = 4.4/ω0

q
[√

~
mω0
·

γ
~ω0

]

(f) t = 5.2/ω0

Figure 5.5: Born-Oppenheimer probability densities |Ψ±(q̄, t)|2 calculated numeri-
cally exact via Eq. (5.29) for an antibonding initial state (Eq. (5.30)).
Shown are six snapshots at different times, (a) t = 0, the initial state,
(b) t = 1.2/ω0, (c) t = 2.5/ω0, (d) t = 3.4/ω0, (e) t = 4.4/ω0 and (f)
t = 5.2/ω0. Each snapshot shows the probability density on the upper
(lower) surface as red (blue) line drawn on top of the respective Born-
Oppenheimer surface (black) with a constant, arbitrary scaling. Non-
adiabatic transitions (b) and (d), separation of wave packets (c) and (e),
and interference between wave packets (f) are visible.

with a Gaussian-shape around q̄0 = γ̄:

|Ψini〉 =

∫
dq̄ |q̄, φBO

+ (q̄)〉 π
−1/4 exp

(
−(q̄ − q̄0)

2/2
)
. (5.30)

We stay with the same system parameters as presented in Fig. 5.4 (γ̄ = t̄0 = 2.5),
and obtain the first 250 eigenstates and eigenvalues to get an accurate represen-
tation of the initial state. We then calculate the Born-Oppenheimer probability
densities |Ψ±(q̄, t)|2, of which we show six time-snapshots in Fig. 5.5. The
Gaussian probability density of the initial state is visible in Fig. 5.5(a). The
wave packet propagates toward the avoided crossing at q̄ = 0, where a partial
non-adiabatic transition to the lower surface takes place (Fig. 5.5(b)). After
leaving the avoided crossing region, the derivative couplings become small
again and the contributions on the two surfaces evolve mostly independently.
Due to the different slopes of the surfaces, the two wave packets split in nuclear
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coordinate space, with the wave packet on the upper surface being reflected
at smaller |q̄ | than the wave packet on the lower surface (Fig. 5.5(c)). This is
called a wave packet splitting. The confining potential of the system returns
both wave packets to the avoided crossing point. The upper wave packet splits
again (Fig. 5.5(d)), which leads to three distinct wave packets at later times
(Fig. 5.5(e)). When previously splitted parts of the wave packet meet again
(Fig. 5.5(f)), they might interfere. This is especially relevant in a small system
like in the Holstein dimer with no dissipation channels and no decoherence. We
note that no complete relaxation to the lower Born-Oppenheimer surface is ob-
served at later times, because the wave function cannot dissipate its energy. We
see that these exemplary exact dynamics support the sketch of the non-adiabatic
dynamics drawn when introducing the Born-Huang expansion (Fig. 5.1). The
same initial state will be analyzed in more detail when comparing the exact
dynamics to trajectory-based methods, see Sec. 6.1.2.

Holstein trimer

In the Holstein trimer we can still easily visualize the shape of the Born-
Oppenheimer surfaces. We already introduced the symmetric ( ˆ̄xs) (Eq. (5.5))
and antisymmetric ( ˆ̄xa) (Eq. (5.6)) nuclear modes, which allowed us to re-
move the center-of-mass nuclear coordinate from the Hamiltonian. The Born-
Oppenheimer Hamiltonian for the Holstein trimer with a single electron in the
basis of the three site-local electronic states |χi〉 = c†i |0〉 , i = 1, 2, 3 becomes:

ˆ̄HBO
L=3(x̄s, x̄a) =

x̄2
s

2
+

x̄2
a

2
+

©«
γ̄

(
x̄a +

1√
3

x̄s

)
−t̄0 0

−t̄0 −γ̄ 2√
3

x̄s −t̄0

0 −t̄0 γ̄
(
−x̄a +

1√
3

x̄s

) ª®®®®¬
.

(5.31)

This 3 × 3 matrix can easily be diagonalized numerically for various x̄s and
x̄a to obtain the Born-Oppenheimer states and energies. As example, the Born-
Oppenheimer surfaces are shown for γ̄ = t̄0 = 2.5 in a contour-plot in Fig. 5.6
and as surface-plot in Fig. 5.7. The former allows to understand the form of
the surfaces and their minima, while in the latter the energy separation between
the surfaces is better visible, especially at the line x̄a = 0. Since the surfaces
are symmetric under the operation x̄a → −x̄a, see Ref. [37], only non-negative
values for x̄a are shown in the surface-plot.

The lowest surface Ē BO
0 (Fig. 5.6(c)) has three local minima. The lowest

(global) minimum is at positive γ̄ and x̄a = 0. This corresponds to a large
nuclear distortion on the central site (x2 > x1 = x3), compared to the edge
sites. The other two minima have the large nuclear distortions on the left (x1)
and right (x3) site, respectively. Similar as in the dimer we might use the
language of chemical bonds to categorize the lowest Born-Oppenheimer state
as a bonding state, which has the same sign on all three trimer sites. The Born-
Oppenheimer states at the nuclear positions of the three minima are sketched
in Fig. 5.6(c). The largest electronic contribution is in all cases on the site with
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Figure 5.6: Contours of the Born-Oppenheimer surfaces ĒBO
a , drawn every ∆ĒBO

a =

1, of the Holstein trimer with γ̄ = t̄0 = 2.5. Shown are the (a) highest, (b)
middle and (c) lowest Born-Oppenheimer surfaces. Some sketches of the
Born-Oppenheimer wave functions at the positions of the three minima in
the lowest surface (c), along the indicated line in the middle surface (b), and
at two selected points in the highest surface (a) are included. The contours
are obtained from numerical diagonalization of ˆ̄HBO

L=3 (see Eq. (5.31)) in
the nuclear coordinate space of the symmetric and antisymmetric nuclear
modes x̄s and x̄a. Reproduced from Ref. [37], with the permission of AIP
Publishing, the Born-Oppenheimer wave function sketches and the dotted
line in the middle surface have been added.
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Born-Oppenheimer surfaces, L = 3, γ̄ = 2.5, t̄0 = 2.5
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Figure 5.7: Born-Oppenheimer surfaces ĒBO
a (x̄s, x̄a) of the Holstein trimer with

γ̄ = t̄0 = 2.5, obtained from numerical diagonalization of ˆ̄HBO
L=3 (see

Eq. (5.31)) in the nuclear coordinate space of the symmetric and anti-
symmetric nuclear modes x̄s and x̄a. Only non-negative values of x̄a are
shown. The three surfaces in blue, green, and magenta correspond to the
three contours shown in Fig. 5.6(a)-(c), with the contour of the lowest
surface included on the x-y-plane. Reproduced from Ref. [37], with the
permission of AIP Publishing, the color of the lines at x̄a = 0 has been
changed to black.

the large nuclear distortion. The higher Born-Oppenheimer surfaces each have
only one minimum for the parameters chosen here. Along the x̄a = 0 line the
middle Born-Oppenheimer state has no contribution on the central site and thus
corresponds to a true non-bonding state, indicated by the sketch and the dotted
line in Fig. 5.6(b). As seen from Fig. 5.7, the lower two surfaces approach each
other asymptotically for x̄a = 0, x̄s → −∞. With the nuclear distortions on the
edge sites becoming large compared to the central site in this limit, the bonding
state will have more and more electronic weight on these edge sites, thus
becoming degenerate to the non-bonding state. Finally, the highest surface Ē BO

2
(Fig. 5.6(a)) has a single minimum and its Born-Oppenheimer states change
sign twice between the sites and can be associated with an antibonding state.
The two sketches of the Born-Oppenheimer states in Fig. 5.6(a) illustrate that
the electronic density of the antibonding state is distributed complementary
to the bonding state for x̄s sufficiently away from zero. The antibonding
surface approaches the non-bonding surface asymptotically for x̄a = 0, x̄s →∞

(see Fig. 5.7), where the distortion on the central site becomes large and the
antibonding state has less and less contribution on this site.

While we will only investigate the parameter set presented here in our bench-
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mark study in the Holstein trimer, see Sec. 6.2, we mention that for small t̄0,
two additional local minima can appear on the middle surface and the whole
system comes closer to a three-fold symmetry between the three sites. For
large t̄0, all surfaces have each only one minimum, similar as in the Holstein
dimer, which leads to delocalized states. The qualitative picture of the asymp-
totically approaching surfaces on the x̄a = 0 line stays the same for any positive
parameter choice of t̄0 and γ̄.

For larger systems both obtaining the Born-Oppenheimer surfaces for the
whole nuclear configuration space, as well as interpreting the associated Born-
Oppenheimer states becomes a difficult task. In practice one often relies on
on-the-fly methods to calculate both surfaces and states locally, see Refs. [199,
200]. It is clear that this local approach is not well suited to obtain the
quantum mechanical dynamics of an extended wave packet, and instead one
often turns to trajectory-based descriptions. These trajectory-based methods
will be discussed in detail in Sec. 5.3. We will see that in fact exact trajectory-
based methods exist, which however retain some quantum mechanical character
of the individual trajectories (often of a Gaussian type). Due to their inherently
non-local formulation, implementations of these methods in a Born-Huang
approach have to rely on some kind of local analytic estimate of the Born-
Oppenheimer surfaces, or on costly integrals in nuclear configuration space.
Hence, while it is definitely possible to obtain exact quantum mechanical
dynamics in a Born-Huang framework also for large composite systems, the
approach truly shines when turning to approximate methods, i.e., to local
trajectory-based methods that only require a local evaluation of the Born-
Oppenheimer surfaces. In the following we will describe two of the most
common (independent) trajectory-based methods often applied in quantum
chemistry: Ehrenfest and surface-hopping dynamics. While only the latter
makes explicit use of the Born-Huang expansion, this formalism helps us to
also assess the strengths and weaknesses of the former method.

5.3 Trajectory-basedmethods

We now turn to the trajectory-based methods Ehrenfest and surface-hopping
dynamics. These methods are mixed quantum-classical descriptions, which
combine (trajectory-based) classical Newtonian dynamics of the nuclei with a
quantum mechanical description of the electronic degrees of freedom. Both
methods do not employ the adiabatic approximation and thus go beyond stan-
dard Born-Oppenheimer molecular dynamics (see Sec. 5.2.3). In particular,
the potential in which the classical nuclear trajectories evolve is (in general) not
always the lowest Born-Oppenheimer surface. Instead, the potential is deter-
mined directly during the time evolution. We note that a mixture of a quantum
mechanical and a phase-space description of the electron-nuclear composite
system is not an approximation by itself and it can be rigorously derived in the
context of the partial Wigner transform. This section is again closely oriented
on the corresponding published article, see Ref. [37].
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5.3.1 The Wigner function formalism

Without electrons

Let us start with a bosonic system which can be represented in a general (many-
particle) real-space basis 〈R| (or equivalently in its momentum basis). One
can describe the quantum mechanical problem of this system in a phase space
representation without making an approximation. This is typically done by
using the Wigner transform to map an operator Ô = O(R̂, P̂) to a function in
phase space, denoted as OW (R, P), see Refs. [213–217]:

OW (R, P) =
∫

dZ eiP·Z/~ 〈R −
Z
2
|Ô |R +

Z
2
〉 , (5.32)

with the integral extending over the whole position space Z . This transforma-
tion allows to calculate expectation values via a phase-space average, similarly
as in classical mechanics:

〈Ô〉 =
∫

dR
∫

dP OW (R, P)
ρW (R, P)
(2π~)n

. (5.33)

Here, n is the spatial dimension of the system and ρW (R, P) is the Wigner
transform of the density matrix ρ̂. In the following we deal with pure states,
for which ρ̂ = |Ψ〉 〈Ψ|. One calls W(R, P) = ρW (R,P)

(2π~)n the Wigner function
of this state |Ψ〉, which has many desirable characteristics for a phase-space
description of a quantum mechanical state, for example (see Ref. [216] for a
detailed list): ∫

dR
∫

dP W(R, P) = Tr [ρ̂] = 1, (5.34)∫
dP W(R, P) = |Ψ(R)|2, (5.35)∫
dR W(R, P) = |φ(P)|2, (5.36)

with φ(P) = 〈P |Ψ〉. The Wigner transform is linear and for an operator
that is a function of only the position or only the momentum operators it
amounts to replacing the operators R̂ and P̂ by their classical values R and
P, respectively. Hence, one can easily calculate, for example, the energy
of an harmonic oscillator with (in dimensionless units) Ĥ = P̂2/2 + R̂2/2
via 〈H〉 =

∫
dR

∫
dP W(R, P)(P2/2 + R2/2). However, the Wigner function

does not have to be positive everywhere, thus we cannot think of it as a
proper probability distribution in phase space. Instead, it is often called a
quasidistribution, see Ref. [217].

Using Eqs. (5.32) and (5.33), we can calculate the quasidistribution in phase
space and determine expectation values of any operator by a phase-space aver-
age, as soon as we know the time evolved state |Ψ(t)〉 (in a Schrödinger picture).
To completely stay within a phase-space description we need to obtain a dy-
namical equation for the Wigner function. From the von Neumann equation for
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the density matrix, we obtain such an equation by taking the Wigner transform
of both sides (see Refs. [201, 216]):

i~
∂

∂t
ρ̂ =

[
Ĥ, ρ̂

]
⇒ i~

∂

∂t
W =

[
Ĥ, ρ̂

]
W /(2π~)

n. (5.37)

Unfortunately, the Wigner transform of a product of two operators is a Moyal
product (see Ref. [218]):

(Â · B̂)W = AW (R, P) exp
(
−

i~
2
Λ

)
BW (R, P), (5.38)

with the symplectic operator (see Ref. [201]):

Λ =

n∑
i=1

←−
∂

∂Pi

−→
∂

∂Xi
−

←−
∂

∂Xi

−→
∂

∂Pi
. (5.39)

The arrows← and→ indicate whether the derivative acts on the function before
or after the Λ-operator. The symplectic operator acting on two functions is
similar to the Poisson bracket: AΛB = −{A, B} = −

∑n
i=1

(
∂A
∂Pi

∂B
∂Xi
− ∂A

∂Xi

∂B
∂Pi

)
,

see Ref. [201]. Thus, the dynamical equation for the Wigner function becomes:

∂

∂t
W = −

2
~

HW sin
(
~

2
Λ

)
W . (5.40)

To lowest order in ~ this is equivalent to the classical Liouville equation:

∂

∂t
W = {HW,W} + O(~2). (5.41)

The classical Liouville equation can be solved with the method of character-
istics by starting with a swarm of independent trajectories sampled from the
initial condition W(t = 0) and time evolving them according to Hamilton’s
equations of motion, see, e.g., Ref. [201]. If the initial Wigner function is com-
pletely positive, the trajectories can be thought of as realizations of a classical
ensemble. From Eq. (5.41) we see that the initial sampling of the trajectories
from the correct Wigner function is already sufficient to include quantum cor-
rections in first order in ~. For a system where the higher order terms vanish,
such as a harmonic oscillator, the difference between a quantum mechanical
and a classical treatment of a dynamical problem is thus only in the sampling
of the initial conditions, see Ref. [216]. This ansatz is also called the truncated
Wigner approximation (see, e.g., Ref. [201]).

With electrons

We now turn to a composite electron-nuclear system, which can be represented
by basis states of the form 〈R, φa(R)|, which can refer both to nuclear position
dependent (e.g., adiabatic (a), φa(R) = φBO

a (R)) and position independent
(trivially diabatic (d), φa(R) = χa) electronic states, see Eqs. (5.17) and (5.18).
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Only the nuclear degrees of freedom should be described in phase space, which
can be done with a partial Wigner transform, see Refs. [219–221]. Here, we
use the definition following Ando et al. (Refs. [221, 222]):

Oa,b:W (R, P) =
∫

dZ eiP·Z/~ 〈R −
Z
2
, φa

(
R −

Z
2

)
|Ô |R +

Z
2
, φb

(
R +

Z
2

)
〉 ,

(5.42)

which corresponds to first representing the operator in the chosen electronic
basis and afterward performing the Wigner transform of every component
in the electronic basis. The resulting partially Wigner-transformed operator
can be understood as an operator acting on the electrons only: ÔW (R, P) B∑

a,b |φa(R)〉Oa,b:W (R, P) 〈φb(R)|, which, however, now depends on the elec-
tronic basis chosen in its definition (Eq. 5.42). Taking the electronic trace
Tr[·]e, expectation values can be obtained via:

〈Ô〉 =
∫

dR
∫

dP Tr
[
ÔW (R, P)Ŵ(R, P)

]
e , (5.43)

with Ŵ(R, P) = ρ̂W (R,P)
(2π~)n , similar to before, which for simplicity we will also

refer to as the Wigner function of the now composite electron-nuclear system.
For a pure state the Wigner function can be expressed as:

Wa,b:W (R, P) =
∫

dZ
eiP·Z/~

(2π~)n
Ψa

(
R −

Z
2

)
Ψ
∗
b

(
R +

Z
2

)
. (5.44)

Let us for simplicity turn for a moment completely to a diabatic electronic
basis (d). By applying the corresponding partial Wigner transform to the von
Neumann equation, one arrives at (see Ref. [219]):

∂

∂t
Ŵ (d) = −

i
~

(
Ĥ(d)W exp

(
−i~
2
Λ

)
Ŵ (d) − Ŵ (d) exp

(
−i~
2
Λ

)
Ĥ(d)W

)
. (5.45)

Λ is still the symplectic operator (see Eq. (5.39)), but in comparison to the case
without electrons, the operators Ĥ(d)W and Ŵ (d) do not commute. One can now
either expand the exponential in powers of ~, or equivalently (see Ref. [219])
in powers of m/M , where m and M are the masses of the electrons and nuclei,
respectively. Keeping only the first term in either expansion leads to the same
approximate equation:

∂

∂t
Ŵ (d) ≈ −

i
~

[
Ĥ(d)W , Ŵ (d)

]
+

1
2

(
{Ĥ(d)W , Ŵ (d)} − {Ŵ (d), Ĥ(d)W }

)
. (5.46)

Eq. (5.46) is called the quantum-classical Liouville equation (QCLE, see
Refs. [219, 223]). It is more involved than the classical Liouville equa-
tion (5.41), obtained in the truncated Wigner approximation for the pure bosonic
system. The first term in this equation (5.46) is proportional to the commutator
of the partially Wigner-transformed Hamiltonian ĤW and density matrix ρ̂W ,
as in the von Neumann equation, while the second term includes the Poisson
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brackets between both (non-commuting) operators. Most importantly, it cannot
be solved with the method of characteristics (see Ref. [220]), i.e., one cannot
directly simulate the dynamics of the quantum-classical Liouville equation
with an ensemble of independent trajectories. However, it is a useful starting
point for additional approximations, which can be used to arrive at one of
the independent-trajectory based methods used later (Ehrenfest dynamics, see
Ref. [220]), or at least to compare the resulting equations of motion with the
other method (surface-hopping dynamics, see Ref. [224]).

Even without a proper trajectory-based solution to the dynamical equation,
one can still use Eqs. (5.42) and (5.43) to calculate the correct expectation
value of any operator as long as the partially Wigner-transformed operator and
density matrix are available. Hence, if one samples an ensemble of trajectories
(potentially with associated negative weights) from the initial partially Wigner-
transformed density matrix, then at least all observables calculated from this
initial state via Eq. (5.43) will be correctly recovered. Used in this way, the
Wigner function formalism can be used to relate a trajectory ensemble uniquely
to the given quantum mechanical electron-nuclear state, but it does not provide
equations of motion that keep the trajectory ensemble close to the true Wigner
function.

As an example, let us take an initial state that is restricted to a single adiabatic
surface, such as the example shown for the Holstein dimer, see Fig. 5.5(a)
corresponding to |Ψini〉 defined in Eq. (5.30). The Wigner function obtained
via Eq. (5.44) in the adiabatic basis (a) has just one non-zero component,
which is then the normal Wigner transform of the nuclear wave packet. For this
example initial state (Eq. (5.30)) the Wigner function (in dimensionless units)
becomes:

W (a)a,b:W (q̄, p̄) = δa,b · δa,+ ·
1
π

exp
(
−p̄2 − (q̄ − q̄0)

2
)
. (5.47)

We note that with the definition of the partial Wigner transform according
to Eq. (5.42), the R-dependence of the electronic basis needs to be taken
into account even for an operator acting on the nuclei only, as long as the
operator is not diagonal in the position basis. For example, the partial Wigner
transform of the operator whose expectation value is the momentum distribution
Â = |P′〉 〈P′| (with 〈Â〉 = |Ψ(P′)|2 for a pure state) becomes in the adiabatic
basis:

A(a)a,b:W (R, P) =
∫

dZ
1
π~

e−i(P−P′)Z/~ 〈φa(R +
Z
2
)|φb(R −

Z
2
)〉 , (5.48)

which is significantly more difficult to calculate compared to the partial Wigner
transform in the diabatic basis: A(d)a,b:W (R, P) = δ(P − P′)δa,b.

Alternatively, one could always perform the Wigner transform in the di-
abatic basis and only afterward represent the Ŵ (d) in an adiabatic basis.
This approach was actually suggested first (see Ref. [219]) and differs from
Eq. (5.42) in that the electronic states do not depend on the integral variable
Z: |φ(R − Z

2 )〉 → |φ(R)〉, i.e., the electronic states are evaluated at a different
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nuclear position than the nuclear states in the integral. This form of the par-
tial Wigner transform (which one might denote with a reversed order of the
subscripts, O(a)W :a,b, see Ref. [222]) has the benefit that operators acting only
on the nuclei can always be Wigner transformed without referring to the elec-
tronic basis. However, the partial Wigner transform of an adiabatic initial state,
such as the example mentioned before (Eq. (5.30)), will be non-trivial and in
general lead to some negative values in the resulting Wigner function. This
also includes the important case of a system starting from the lowest Born-
Oppenheimer surface, such as most systems starting close to the ground state
(see the first eigenstate of the Holstein dimer for γ̄=t̄0=2.5 shown in Fig. 5.4(a),
which has no visible contribution on the upper surface). Hence, in this thesis,
where the Wigner function is mainly used for sampling initial states, we will
always use the definition Eq. (5.42).

5.3.2 Independent-trajectory approach

We now want to turn to a trajectory-based description of the electron-nuclear
composite problem. Without the attached electrons we saw that to first order
in ~ the dynamics in phase space can be described with the classical Liouville
equation (5.41) (truncated Wigner approximation, see also Ref. [201]), which
can be solved by a swarm of independent trajectories evolving according to the
corresponding Hamilton’s equations of motion, with initial conditions sampled
from the Wigner function W(t = 0). In the same spirit, the ansatz for the
independent-trajectory methods is to approximate the Wigner function of the
composite system (Eq. (5.44)) by an ensemble of classical nuclear trajecto-
ries (Rα(t), Pα(t)) (where α labels the trajectories) that each have an attached
electronic density matrix ρ̂el,α(t) (see also Ref. [37]):

Ŵ(R, P, t) ≈
1

Ntra j

Ntraj∑
α

wαδ(R − Rα(t))δ(P − Pα(t)) · ρ̂el,α(t). (5.49)

The constant wα is a weighting factor. For a Wigner function that in the chosen
electronic basis is completely positive, it can be set to wα = 1, ∀α. For each
trajectory the nuclear degrees of freedom should be propagated according to
Hamilton’s equations of motion:

∂Rαk
∂t
=
∂Hnuc,α

∂Pα
k

,
∂Pα

k

∂t
= −

∂Hnuc,α

∂Rαk
, (5.50)

where the effective nuclear Hamiltonian Hnuc,α will depend on the electronic
configuration at that instant of time (and can be regarded as time-dependent).
In both independent-trajectory methods discussed in the following, a classical-
trajectory equation (see Refs. [225, 226]) is used to propagate an electronic
density matrix ˆ̃ρα (or wave function Ψ̃α, for a pure state) in time. The classical-
trajectory ansatz replaces the position and momentum operators in the Hamil-
tonian with the time-dependent classical variables (R̂α, P̂α) → (Rα(t), Pα(t)),
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which leads to:

d
dt

ˆ̃ρα(t) = −
i
~

[
ĤBO(Rα(t)), ˆ̃ρα(t)

]
. (5.51)

The connection of this time-dependent electronic density matrix ˆ̃ρα to the one
used in the ensemble average ansatz ρ̂el,α, see Eq. (5.49), is different in the two
independent-trajectory approaches discussed below.

We already mentioned that this independent-trajectory ensemble approach
(Eqs. (5.49), (5.50) and (5.51)) is not an exact solution to the quantum-classical
Liouville equation (5.46), see Ref. [220]. Hence, in addition to neglecting
higher-order terms of ~ (or m/M), further approximations are needed to arrive at
this independent-trajectory ansatz. Depending on the approximations involved,
the form of the effective nuclear Hamiltonian Hnuc,α and the interpretation of
the electronic density matrix ˆ̃ρα will differ. In the following, we omit the
trajectory-index α where it does not lead to confusion, as each trajectory is
propagated completely independently from the others.

5.3.3 Multitrajectory Ehrenfest

One of the most common trajectory-based descriptions to include non-adiabatic
effects is the Ehrenfest approach, in which the electron-nuclear couplings are de-
scribed in a mean-field approximation, see Refs. [30, 227, 228]. It is also called
the mixed quantum/classical time-dependent self-consistent-field method, see
Refs. [229, 230].

Here, the nuclear Hamiltonian takes the form

Hnuc = Tnuc + Tr
[
ĤBO ρ̂el(t)

]
e , (5.52)

where Tnuc =
∑

k P2
k/(2mk) is the classical nuclear kinetic energy and the

trace Tr[·]e is taken over the electronic subsystem only (see Ref. [37]). In
the example of the Holstein model, taking the electronic trace of the Born-
Oppenheimer Hamiltonian corresponds to the replacement n̂i → 〈n̂i〉. By
taking this electronic trace, the nuclei of each trajectory evolve according to the
mean-field of the propagated electrons of that trajectory. Since multitrajectory
Ehrenfest includes a whole ensemble of trajectories, see Eq. (5.49), each with
their own electron density, it might be oversimplified to refer to the whole
method as a mean-field ansatz (in the electron-phonon coupling). We will
nonetheless follow this typical naming convention, see, e.g., Refs. [45, 228,
231]. The electronic degrees of freedom time-evolve under the classical-
trajectory Hamiltonian (Eq. (5.51)), i.e., ρ̂el = ˆ̃ρ.

The independent-trajectory equations of motion, Eqs. (5.51) and (5.50), with
the nuclear Hamiltonian given by Eq. (5.52) define the Ehrenfest dynamics. The
multitrajectory approach (Eq. (5.49)) allows to sample initial states described
by a distribution in phase space, but afterward the different trajectories do
not influence each other. Ehrenfest dynamics with multiple trajectories is
also called multitrajectory Ehrenfest (MTE), see Refs. [45, 231], and we will
follow this notation to differentiate it from the alternative multiconfigurational
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Ehrenfest method mentioned later, see Sec. 5.3.6.
One can derive (see Ref. [30] for details) the Ehrenfest dynamics equations

of motion (for a single trajectory) by assuming that the total wave function of
the composite system is (for all times) a product of an electronic and a nuclear
wave function. By integrating out one or the other part of the wave function
in the Schrödinger equation, one arrives at two coupled time-dependent mean-
field effective Schrödinger equations. Afterward, one takes the classical limit
for the nuclear degrees of freedom in both equations. First, the nuclear wave
function is factored into amplitude and phase terms, and in the equation for
the phases one takes ~ → 0, which leads to a Hamilton-Jacobi equation that
is equivalent to Hamilton’s equations, Eq. (5.50), with the Ehrenfest nuclear
Hamiltonian, Eq. (5.52). Second, the nuclear wave function appearing in the
electronic effective Schrödinger equation is replaced with a delta function at
the nuclear position, which leads to the electronic equation of motion used in
Ehrenfest dynamics, Eq. (5.51). Hence, one can think of Ehrenfest dynamics
as a combination of a classical approximation for the nuclei with an electron-
nuclear product ansatz (leading to a mean-field coupling) for the total wave
function.

One can also take these two approximations in the opposite order, which we
will look at in slightly more detail. The classical approximation for the nuclei
(or at least lowest order approximation in ~) leads to the quantum-classical
Liouville equation (5.46). As stated earlier, the first term and second term on
the r.h.s. of this equation are similar to the terms appearing in the quantum
mechanical von Neumann and the classical Liouville equation, respectively.
They can be separated by a product ansatz for the total density matrix of the
system (where Ŵ takes the role of the quantum-classical density matrix), see
Refs. [220, 232]: ρ̂(X) = ρ̂el · ρnuc(X) (with X = (R, P)). The electronic and
nuclear density matrices are the reduced density matrices of their respective
subsystems, ρ̂el =

∫
ρ̂(X)dX and ρnuc(X) = Tr [ρ̂(X)] and both are normalized

to have a trace of one (for the classical (nuclear) subsystem the integral over the
phase-space is one). This ansatz neglects correlations between the electronic
and nuclear subsystems.

Taking then either the trace over the electronic, or the phase-space inte-
gral over the nuclear degrees of freedom of the quantum-classical Liouville
equation, one gets two coupled equations of motion:

∂

∂t
ρ̂el(t) = −

i
~

[∫
dXĤ(d)W (X)ρ

nuc(X, t), ρ̂el(t)
]

(5.53)

∂

∂t
ρnuc(X, t) =

{
Tr

[
Ĥ(d)W (X)ρ̂

el(t)
]
, ρnuc(X, t)

}
. (5.54)

The first equation is a von Neumann equation where the electronic density
matrix evolves according to an effective (time-dependent) Hamiltonian given
by

∫
dXĤ(d)W (X)ρ

nuc(X, t). The second equation is a classical Liouville equa-
tion with an effective nuclear Hamiltonian given by Tr

[
Ĥ(d)W (X)ρ̂

el(t)
]
, which

corresponds exactly to the nuclear Hamiltonian used in Ehrenfest dynamics,
Eq. (5.52). For pure states (see Ref. [232]) these coupled equations can be
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solved by a classical nuclear trajectory ρnuc(X′) = δ(X′ − X(t)), where X(t)
solves the Hamilton’s equations of motion, which leads to the Ehrenfest dy-
namics equations of motion.

Ehrenfest dynamics is one of the simplest implementations of non-adiabatic
dynamics. Its time-evolution is completely deterministic and if one starts
from an initial condition in a pure classical nuclear state (R0, P0), then only a
single trajectory is needed. It can be used to augment a molecular dynamics
simulation with the possibility to go beyond the lowest Born-Oppenheimer
surface, which was done in a recent implementation of photoinduced non-
equilibrium dynamics for the manganite tight-binding model, see Refs. [32, 33].
In addition, neither Eqs. (5.51) nor (5.52) referred to a specific basis and
Ehrenfest dynamics is thus independent of the electronic basis.

To see that Ehrenfest dynamics does capture at least some non-adiabatic
effects, let us represent (for a pure state) the electronic wave function in the
adiabatic (Born-Oppenheimer) basis |φBO

a (R(t))〉 (see also Ref. [37]), which
depends on the classical nuclear path R(t): |Ψel(t)〉 =

∑
a Ψ

el,(a)
a (t) |φBO

a (R(t))〉.
The time evolution for the electrons is then described by the following Schrödinger
equation (see also Ref. [29]):

i~∂tΨ
el,(a)
a (t) =

∑
b

(
δa,bE BO

b (R(t)) +
∑

k

ÛRk(t)Aa,b,(k)(R(t))

)
Ψ

el,(a)
b (t), (5.55)

In contrast to the exact (multicomponent) nuclear Schrödinger equation (5.15),
this equation (5.55) is a purely electronic time evolution and the nuclei enter
only as time-dependent external variables. However, it has the similarity that
the off-diagonal elements of the derivative couplings allow non-adiabatic tran-
sitions between different Born-Oppenheimer states, here appearing in a scalar
product with the nuclear velocities ÛR(t). As already in the Landau-Zener for-
mula (see Refs. [207, 208]), Eq. (5.25), a wave packet approaching a region of
strong derivative couplings with a higher velocity will lead to a higher transition
probability between the surfaces. In fact, both equations ((5.25) and (5.55))
are the same Schrödinger equation in different representations, with the only
difference that in Ehrenfest dynamics the nuclear path is not predetermined,
but obtained by Hamilton’s equations of the mean-field nuclear Hamiltonian.

One of the main problems of the mean-field approximation becomes appar-
ent when comparing the nuclear Hamiltonian, Eq. (5.52) to the exact equa-
tion (5.15). In the exact Born-Huang framework, the dynamics on different
surfaces are coupled only when the derivative couplings become significant.
Otherwise wave packets on different surfaces evolve independently under the
potential given by their Born-Oppenheimer surfaces. This is not the case
for the Ehrenfest nuclear Hamiltonian, in which the potential is given by the
trace of the electronic density matrix with the Born-Oppenheimer Hamilto-
nian. If the density matrix of any trajectory has contributions on several Born-
Oppenheimer surfaces, then the trajectory will evolve according to a mixture
of surfaces, even when the derivative couplings are negligible. This can be
problematic for quenched systems, where the electron usually already starts in
some superposition of several states, but also for a wave packet starting on one
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Born-Oppenheimer surface moving through an avoided crossing, which should
in the exact case lead to a wave packet splitting, as observed, for example, in
Fig. 5.5. In addition, MTE violates detailed balance, which can lead to wrong
long-time results and deviations from the quantum Boltzmann distribution of
excited states in an equilibrium quantum-classical ensemble, see Ref. [233].

5.3.4 Fewest-switches surface hopping

Alternative independent-trajectory approaches are surface-hopping methods,
see Refs. [234, 235], which try to solve the mean-field problem of Ehrenfest
dynamics mentioned above. The idea is that the nuclear potential for a trajectory
is given by a single energy surface Eλ = 〈φλ |ĤBO(R)|φλ〉 at a time, which is
indicated by the currently active surface (AS) variable λ(t) of that trajectory
(|φλ〉 is then also called the active state of the trajectory). This surface, and
thus the whole algorithm, depends strongly on the chosen electronic basis
|φa〉. The standard choice (see Ref. [30]) is the Born-Oppenheimer (adiabatic)
basis, which will also be used here. In this basis the surface hopping nuclear
Hamiltonian for a certain trajectory has the form:

Hnuc = Tnuc + E BO
λ(t). (5.56)

A stochastic hopping algorithm is applied to account for non-adiabatic tran-
sitions between surfaces. We use here the most common hopping algorithm,
which is the fewest-switches surface hopping (FSSH) algorithm, see Ref. [29].
Here, the distribution of trajectories on the surfaces should approximately re-
produce the weights of an electronic density matrix time evolved under the
classical trajectory. This is the same time-evolution equation as for MTE, i.e.,
Eq. (5.51) for the density matrix, or Eq. (5.55) for the wave function in the adi-
abatic basis. Hence, the electronic populations obtained from |Ψ̃a(t)|2 = ρ̃a,a
(we will deal here only with pure electronic states for each trajectory) represents
the probability of a trajectory to be on surface a at a certain time t. The Ψ̃a are
denoted as electronic wave functions or amplitudes here, to differentiate them
from the active surfaces. In the literature on mean-field molecular dynamics
with surface hopping, the active surfaces are denoted as “auxiliary electronic
wave functions”, which are used to determine the nuclear forces, in contrast
to the “primary wave functions” Ψ̃a containing all quantum coherences, see
Refs. [236, 237]. We will not follow this notation here, as we will see that the
active surfaces are useful for more than just determining the nuclear forces and
are also relevant for calculating observables.

The time derivative of the surface probabilities determined from the elec-
tronic populations ρ̃a,a can be expressed as (see Ref. [29]):

∂

∂t
ρ̃a,a =

∑
b,a

−2<

[
i
~
(Ψ̃a)

∗
Ψ̃b

∑
k

ÛRk · Aa,b,(k)(R)

]
C

∑
b,a

ba,b, (5.57)

where < is the real part. FSSH identifies from this sum-decomposition
(Eq. (5.57)) the probability flow from surface a to surface b per time step
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∆t as −ba,b∆t. Assuming that an ensemble of N trajectories following the same
nuclear path R(t) are distributed on the surfaces according to ρ̃a,a(t) (∀a) at
time t, then (to lowest order in ∆t) at the time t + ∆t in total −Nba,b∆t tra-
jectories must switch from surface a to surface b, see Ref. [29]. Of the many
possibilities to design a hopping algorithm in which these changing probabil-
ities are fulfilled, the fewest-switches surface hopping tries to do this, as the
name implies, with the fewest number of surface hops possible. This is done
by allowing surface hops to occur only in the direction where the probability
flow −ba,b∆t is positive. The hopping probability of an individual trajectory
from active surface λ to another surface λ′ is then:

pλ→λ′ = max
{
−∆tbλ,λ′
ρ̃λ,λ

, 0
}
. (5.58)

We can directly see that the assumption of a swarm of trajectories following
the same nuclear path although being distributed on different surfaces will not
be satisfied in general for long times, since the different potentials formed by
the surfaces will affect the nuclear trajectories, see Ref. [238]. Hence, the so
called internal consistency condition of FSSH

1
Ntra j

Ntraj∑
r

ρ̃αa,a(t)
!
=

1
Ntra j

Ntraj∑
r

δa,λα(t), (5.59)

comparing the adiabatic populations according to the electronic wave functions
and the active surface distributions, will not be fulfilled in general. Decoherence
corrections of FSSH can improve the internal consistency, see Sec. 5.3.5.

After a hop between surfaces λ → λ′, which differ in energy by ∆E =
Eλ′ −Eλ, the nuclear kinetic energy of the trajectory is adjusted to conserve the
total energy of the system. In this velocity adjustment, the nuclear momentum
changes, here explicitly written as vectors, ®P → ®P′. Normally this is not done
in a uniform way, but along a unit hopping vector, which is typically taken as the
normalized derivative coupling vector Â B ®Aλ,λ′/| ®Aλ,λ′ |, see, e.g., Ref. [206]
for a discussion of this choice. With the nuclear kinetic energy along the
hopping vector defined as Tnuc

A =
∑

k(
®P · Â)2/(2mk)), the velocity adjustment

takes the following form (see also Ref. [239]):

®P′ = ®P −
(
®P · Â

) (
1 −

√
1 − ∆E/Tnuc

A

)
Â. (5.60)

If the hop is toward a higher energy surface, ∆E > 0, and the nuclear kinetic
energy along the hopping vector Tnuc

A is too small to provide the necessary en-
ergy, Tnuc

A < ∆E , then the hop is frustrated and ignored. These frustrated hops
can lead to a further violation of the internal consistency in FSSH (Eq. (5.59)),
most pronounced at low nuclear kinetic energies.

With this, the dynamical equations of FSSH for each trajectory α are set:
(1) the nuclear trajectory (Rα(t), Pα(t)) evolves under the influence of a single
Born-Oppenheimer surface, given by the active surface of that trajectory at
the given time, Eq. (5.56), (2) the electronic wave function/amplitude Ψ̃α(t)
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evolves via the classical nuclear trajectory equation (5.51), and (3) the active
surface λα(t) changes according to a hopping algorithm, which refers to the
adiabatic populations ρ̃αa,a = Ψ̃αa Ψ̃α∗a obtained from the time-evolved electronic
amplitudes (Eq. (5.58)). For calculating observables, however, we still need
to connect the attached electronic density matrix ρel,α used for sampling the
Wigner function (Eq. (5.49)) to these quantities.

Electronic wave function vs. active surfaces

Apparently, there are two variables in each trajectory which could be used
to calculate electronic expectation values: the density matrix/wave function
obtained from solving the classical-trajectory equation (ρ̃, resp. Ψ̃), or the
active surface λ, see Ref. [224]. Even if one is only interested in, for example,
calculating the populations of adiabatic states 〈n̂BO

a 〉, the results from these two
variables can differ, as the internal consistency condition of FSSH (Eq. (5.59))
will not be fulfilled in general. The standard way is to use the distribution
of active surfaces for calculating these adiabatic observables, i.e. 〈n̂BO

a 〉 =
1

Ntraj

∑Ntraj
α δa,λα , since, in contrast to the propagated wave function, the active

surface distribution approximately obeys detailed balance, see Refs. [233, 240].
For obtaining populations in another electronic basis, for example diabatic
populations, there is no obvious best option, see Refs. [224, 241, 242]. The two
possibilities (from the propagated wave functions (WF), or the active surfaces
(AS)) for defining the complete electronic density matrix in the adiabatic basis
correspond to (see Refs. [224, 241–243]):

ρel,(AS)
a,b = δλ(t),aδa,b, (5.61)

ρel,(WF)
a,b = Ψ̃aΨ̃

∗
b. (5.62)

According to the internal consistency condition (Eq. (5.59)) the trajectory-
average of the diagonal entries of these two density matrices should be the
same. Both options have advantages and disadvantages.

The first (AS) option leads to the desired form for calculating adiabatic pop-
ulations from the active surfaces only, which also approximately obey detailed
balance, as mentioned above. However, it can only describe a diagonal density
matrix in the adiabatic basis. If one starts in a superposition of different adi-
abatic states, or if this superposition develops during the time-evolution, then
the coherences, i.e., the off-diagonal elements of the electronic density matrix,
cannot be captured with the first definition.

One very extreme example in the Holstein dimer is a trajectory which af-
ter some time arrives at q = 0. Depending on the transition probability, the
trajectory might be on the upper or the lower surface. If one has many tra-
jectories close to q = 0, the total density matrix will therefore be of the form
ρel,(AS) = |φBO

+ 〉 p+ 〈φBO
+ | + |φ

BO
− 〉 p− 〈φBO

− |, where p+ and p− are the fraction
of trajectories on the respective surfaces. At q = 0, however, we have for
the Born-Oppenheimer states |φBO

±,1 |
2 = |φBO

±,2 |
2 = 0.5, independent of the active

surface. Hence, if one now wants to calculate, for example, the electron density
on one of the dimer sites close to this q = 0, then the result will always be 1/2,
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which is clearly wrong in general (one can imagine starting on one dimer site
with a hopping close to zero, then the trajectory should move through q = 0
with the electron density on the initially occupied site staying close to 1).

The second (WF) definition has no problem with describing such super-
position states, and diabatic populations can be readily calculated, also with
coherences included. One might consider in this case the active surfaces as
an auxiliary quantity, used only to determine the nuclear forces (similar as in
the mean-field literature mentioned above). On the downside, the electronic
wave function amplitudes are not guaranteed to obey detailed balance (which
is also violated in MTE), and in general are unreliable for long times, see
Refs. [233, 240–242]. Hence, both of the above definitions should be used with
caution. The decoherence correction mentioned later, Sec. 5.3.5, solves this
problem by relaxing the electronic amplitudes toward the active surfaces over
time, so that one can use the (WF)-definition (Eq. (5.62)) to describe the correct
short-time coherences without having the problem of the unreliable long-time
description.

We are not aware of any well defined approximation, in the sense that one
can quantify the error of a series expansion, or systematically improve the
results by increasing a variational space, which leads to the fewest-switches
surface hopping algorithm, see also Ref. [46]. Already in the first proposal for
the quantum-classical Liouville equation (QCLE) (see Ref. [219]) an approx-
imate surface-hopping trajectory approach was derived by using a so-called
momentum-jump approximation, which however did not directly derive the
FSSH-equations of motion. The closest connection between FSSH and the
QCLE was given by Subotnik et al. (Ref. [224]). They showed that the dy-
namical equation for the diagonal and off-diagonal elements of the partially
Wigner transformed density matrix in both approaches can become equivalent
under a series of conditions and one extension for FSSH: the inclusion of a
decoherence correction. More information on the decoherence correction are
given in Sec. 5.3.5.

The most important (termed major in Ref. [224]) conditions are first that
all trajectories at the same point in nuclear phase space and on the same
active surface always have the same attached electronic density matrix ρ̃ and
second that the nuclear momenta are large. The first condition will certainly
be violated when previously separated wave packets meet again, which is a
so-called recoherence. The second condition will be fulfilled if in the strong-
coupling regions, e.g., avoided crossings, the energy splitting of the surfaces is
small compared to the nuclear kinetic energy, which is the same requirement
that is also needed if one wants to avoid frustrated hops. Even with these
two assumptions fulfilled, the equations only become nearly equivalent when
including a special form of decoherence correction (named major condition 3
in Ref. [224]), which requires the propagation of additional variables, going
beyond standard FSSH. This is not done in this thesis. Hence, one should
be careful in deriving the validity or accuracy of FSSH by checking whether
the two conditions mentioned above are fulfilled, but they give a good first
indication.

Based on this approximate derivation of FSSH, an alternative (mixed) def-
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inition for the electronic density matrix was proposed, see Ref. [241], which
uses the active surfaces on the diagonal in the adiabatic basis, and the electronic
amplitudes to recover the coherences:

ρel,(mixed)
a,b =

{
δλ(t),a, for a = b
Ψ̃aΨ̃

∗
b, for a , b.

(5.63)

With this mixed definition the short-time coherences are correctly recovered,
while at long times the electronic density matrix is dominated by the active
surfaces, at least under the assumption that different trajectories carry different
phases, so that the coherences cancel out, see also Ref. [242]. With this mixed
definition one does not have to rely on a decoherence correction to calculate
accurate electronic populations in any basis. In addition, adiabatic populations
are calculated from the active surfaces only, as desired. One disadvantage is that
the electronic populations obtained by this definition might become negative,
which we observed in large systems with initial states starting in a superposition
of many adiabatic states. In these cases one needs to resort to a decoherence
correction to obtain both reasonable short- and long-time dynamics, see the
analysis in Sec. 6.3.1.

The same problem as for the calculation of observables also applies to the
setup of the initial state. Let us assume the Wigner function of the composite
initial system in some electronic basis is separable Wa,b:W (R, P) = W(R, P) ·
ρel

a,b(R), which will always be the case for the initial states studied in this
thesis (the electronic basis needs to be chosen first for the definition of the
partial Wigner transform used here, see the discussions in Sec. 5.3.1). The
nuclear trajectory can then be sampled from the Wigner function of the nuclear
subsystem W(R, P). If the electronic density matrix at the sampled nuclear
position is restricted to a single adiabatic state c, i.e., in the adiabatic basis
ρel

a,b = δa,bδa,c, then one can trivially set Ψ̃a = δa,c and λ = c, so that all
definitions of the electronic density matrix (Eqs. (5.61), (5.62) and (5.63))
are equivalent at t = 0. In the same way a mixed state of different adiabatic
states can be sampled by starting with an ensemble of trajectories for each
nuclear position, each of which starts from a selected adiabatic state c with the
probability given by ρ(a)c,c , leading again to equivalence of all definitions of the
electronic density matrix.

However, a general initial state will not be of these forms, but in a superpo-
sition of several, or many, adiabatic states, e.g., for a pure state, ρel

a,b = Ψ
el
a Ψ

el
b .

This can be a state obtained after an excitation with a photon field, see Ref. [242],
or simply a diabatic initial state, such as an electron localized to a single site in
a crystal. The adiabatic electronic density matrix will then contain coherences
(off-diagonal terms). The best guess for the active surface λ is to randomly
select them from the diagonal entries of the density matrix according to ρ(a)c,c (in
this way the active-surface electronic density matrix (Eq. (5.61)) will at least
recover the diagonal entries of ρel). To achieve equivalence of the density ma-
trix definitions at t = 0, one could now also project the electronic amplitudes Ψ̃
completely on the selected adiabatic state. This will discard all coherences and
observables relying on them will not be recovered for the initial state (which
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is the same problem as discussed for the definition of the active-surface elec-
tronic density matrix, Eq. (5.61)). If one is interested in long-time results,
high-temperature thermal states or observables depending only on adiabatic
populations, then this projection might be suitable, which has been used, for
example, in Ref. [243]. The alternative is to set (for a pure state) Ψ̃ = Ψel(t=0).
Using the wave-function or the mixed definition of the electronic density matrix
(Eq. (5.62) and (5.63)), one can recover all observables of the initial state, but
these definitions will deviate from the active-surface definition (Eq. (5.61))
from the beginning. This ansatz was also suggested based on the approximate
derivation of FSSH from the QCLE, see Ref. [242], and will be used in this
thesis. We note that the nuclear potential is always calculated from the active
surfaces according to Eq. (5.56), i.e., for a such a superposition state, the forces
acting on the nuclei will deviate from the correct quantum mechanical forces.
Hence, in contrast to MTE, we cannot guarantee that the ultra-short time dy-
namics in FSSH are recovered correctly when starting from a superposition of
adiabatic states.

5.3.5 FSSH improvements

The FSSH algorithm is more prone to numerical errors and can easier give
wrong results if not used carefully, compared to MTE. Due to the general
success of the surface-hopping technique, a large variety of improved algo-
rithms have been proposed in recent years, see Refs. [244, 245]. Here, we
are interested in variations that still stay close to the core formalism of FSSH,
while solving some of the problems that especially appear in large systems, see
Ref. [205]. The most important correction includes some form of decoherence,
which helps to ensure internal consistency (Eq. (5.59)) and to converge the
different definitions of the electronic density matrix. In addition, we have to
consider corrections necessary for sharply peaked derivative couplings, where
numerical convergence is difficult to achieve and very small time-steps are
needed with the standard hopping algorithm of FSSH (Eq. (5.58)). When
starting in a superposition of adiabatic states and in general in large systems,
applying a decoherence correction can lead to the problem of spurious charge
transfer, which we also need to address. The corrections are outlined in the
following.

Decoherence correction

The first idea for a correction to the standard FSSH algorithm was proposed
already in the original paper by Tully, Ref. [29], which was to add damping terms
for the off-diagonal elements of the propagated density matrix ρ̃, to approach,
over time, a diagonal electronic ensemble in the adiabatic basis. This damping
of the coherences, hence called decoherence correction, does not only improve
the internal consistency condition (Eq. (5.59)) mentioned above, it also solves
the problem of over-coherence inherent to the standard FSSH algorithm (and
in general all independent-trajectory methods): Since the trajectories do not
influence each other at all, a trajectory will coherently propagate any phase
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relation between surfaces for arbitrary long times. Hence, even if a trajectory
stays on a certain Born-Oppenheimer surface for a very long time and then
re-enters a region of strong non-adiabatic coupling, it will still “remember” if
it had electronic contributions on the other surfaces, while one would expect in
typical large systems that these have decayed in the meantime by interactions
with the environment. Adding any type of artificial decoherence correction
which is implemented on the independent-trajectory level will always be a
heuristic approach and many variations have been proposed in literature, see,
for example, Refs. [200, 205, 242, 244].

In this thesis, a force-based decoherence correction is used, which is based
on a frozen Gaussian method, see Refs. [246, 247], and was proposed in
Refs. [248, 249]. The decoherence time is estimated from considering the
influence of the overlap of two Gaussian wave packets located on different
electronic energy surfaces but centered around the same nuclear phase space
point on the transition probability between the two surfaces. The overlap decays
in second order in time with the difference of the nuclear forces on the different
surfaces, see Refs. [242, 248, 249]. Using this force-based decoherence rate
in the FSSH algorithm, all electronic amplitudes of the non-active states are
damped in each time step ∆t: Ψ̃′a = Ψ̃a · exp(−∆t/τa), ∀a , λ with the surface-
specific decoherence rate:

1
τa
=

√∑
k

(
Fλ

k − Fa
k

) 2
/(4ak~2), (5.64)

while the electronic amplitude of the active state is rescaled to conserve the
norm. Here, the forces are defined by Fa

k = ∇k E BO
a and ak is the so-called

“width of the frozen Gaussians” (see, e.g., Ref. [248]), which has units of
inverse length squared. Applied to the harmonic oscillators of the Holstein
model it is straightforward to take it as the inverse squared natural length scale
ak =

mω0
~ .

As mentioned earlier, the approximate connection of FSSH to the QCLE
by Subotnik et al. (Ref. [224]) led to a more involved expression for the
decoherence rates that require the propagation of additional variables in the
algorithm and is not done here. Using a frozen Gaussian ansatz for this
more involved expression also leads to a decoherence rate proportional to the
difference in forces, equivalent to a previously proposed so-called augmented
FSSH (A-FSSH) algorithm (see Refs. [203, 250]). This supports the force-
based choice for the decoherence rate taken here, see also Ref. [242], although
the expression presented in Ref. [224] leads to prefactors for the decay-rate
of on- and off-diagonal elements of the electronic density matrix that cannot
be recovered completely by using a wave-function based decoherence rate, see
Ref. [224].

Dealing with strongly peaked derivative couplings

The derivative couplings between two surfaces can become strongly peaked
when these surfaces come close together. One can see this in the example
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of the Holstein dimer, where the derivative couplings diverge for t0 → 0, see
Eq. (5.23). This can lead to numerical problems in the FSSH algorithm, as the
derivative couplings are needed for the time evolution of the density matrix if
an adiabatic basis is used (Eq. (5.55)), for calculating the hopping probabilities
(Eq. (5.57)) and for determining the direction of the velocity correction after a
surface hop (Eq. (5.60)). Very small time steps are then needed to still reliably
sample the derivative couplings, as otherwise the trajectory might completely
transition through an avoided crossing region between two time-steps, see
Refs. [204, 206, 251, 252]. While for a two-level system as in the Holstein
dimer this requires quite unphysical parameters (e.g., a very small electronic
hopping term), in large systems energy surfaces can regularly come very close
or cross completely, see Ref. [205], for example when two adiabatic states are
localized to different regions of the system and are only very weakly coupled.
Hence, in large systems, it is advisable to avoid referring to the derivative
couplings in the dynamical equations, when possible.

Since the time-evolution of the electronic amplitudes can be performed in
any basis, one can easily switch, for example, to the diabatic basis, which will
not depend on the derivative couplings. If the adiabatic electronic amplitudes
are needed to determine the hopping probabilities, then one can still obtain them
by performing the corresponding basis transformation after the wave function
propagation step, see Ref. [251]. This is also referred to as the representation
transformation technique in Ref. [205].

Avoiding the derivative couplings is not as simple for the hopping probabil-
ities, which explicitly refer to the probability flow between adiabatic states (at
least with the standard basis choice, see Ref. [30]) and several corrections to
obtain numerically stable variants have been proposed, see Ref. [205]. With
the electronic amplitudes propagated with the representation transformation
technique, the adiabatic probabilities at subsequent time steps, |Ψ̃a(t)|2 and
|Ψ̃a(t + ∆t)|2, are obtained without numerical difficulties. This can be used to
enforce the FSSH sum rule for the hopping probabilities (Eq. (5.57)) to linear
order in ∆t exactly:

|Ψ̃λ(t)|2 − |Ψ̃λ(t + ∆t)|2

|Ψ̃λ(t)|2
=

∑
a,λ

g
(λ)
a , (5.65)

where λ is the active surface and the g
(λ)
a are used to determine the hopping

probabilities in a time step∆t: pλ→a = max{g(λ)a , 0}, which was g(λ)a =
−∆tbλ,a
ρ̃λ,a

in
the standard FSSH implementation (see Eq. (5.58)). This sum rule is fulfilled
approximately if sufficiently small time steps are used, but can be violated
around a surface crossing or near-crossing when the derivative couplings are
sharply peaked, especially when the electronic amplitudes are propagated in the
diabatic basis, while the g

(λ)
a are obtained from the (numerically challenging)

adiabatic expression (Eq. (5.57)).
One option is to use a self-consistent correction, first proposed in Ref. [252],

in which the sum rule is enforced by adjusting the hopping probability from
the active state to one other state if a “trivial” surface crossing between the two

120



5.3 Trajectory-basedmethods

states is detected, where the character of the two surfaces interchanges within
one time step. This is typically the case when two surfaces (nearly) cross. In
this self-consistent corrected algorithm, the overlap of the Born-Oppenheimer
eigenstates is used to identify these situations. Slightly more advanced is the
crossing-corrected algorithm, where both surfaces involved in a surface hop
are checked for trivial crossings with all other surfaces, and the final state after
both a successful and a frustrated hop is adjusted accordingly, see Ref. [253].
In addition, the energy conservation step via nuclear velocity adjustment is
omitted in the crossing-corrected algorithm if a trivial crossing is detected
between the two surfaces involved in the surface hop, see Ref. [253]. The
disadvantage of these corrections is that they rely on the identification of the
trivial crossing situations. For Born-Oppenheimer surfaces that approach each
other asymptotically, as in the Holstein trimer, see Fig. 5.7, this might not
suffice.

Hence, in this thesis, we follow a different approach to obtain corrected
hopping probabilities in large systems. If the unitary time evolution operator
connecting the adiabatic wave functions between two time steps, Ψ̃a(t + ∆t) =∑

b Pa,b(t, t + ∆t)Ψ̃b(t), is known from the representation transformation tech-
nique, then one can fulfill the sum rule (Eq. (5.65)) exactly by choosing an
alternative expression for the g

(λ)
a :

g
(λ)
a =
|Ψ̃λ(t)|2 − |Ψ̃λ(t + ∆t)|2

|Ψ̃λ(t)|2

×

<

[
P∗a,λ(t, t + ∆t)Ψ̃a(t + ∆t)Ψ̃∗λ(t)

]
|Ψ̃λ(t)|2 −<

[
P∗λ,λ(t, t + ∆t)Ψ̃λ(t + ∆t)Ψ̃∗λ(t)

] . (5.66)

This expression for the hopping probabilities was suggested in Ref. [254] as an
improvement of a similar variant presented first in Ref. [251].

For the velocity adjustment after a surface hop we still have to rely on the
derivative couplings. In the crossing corrected algorithm (see Ref. [253]) the
velocity adjustment would be simply omitted when a trivial surface crossing
is encountered. Since in these cases the energy difference between surfaces is
very small anyway, we continue to use the numerically challenging derivative
couplings in this step, which will likely not influence the dynamics significantly.

Spurious charge transfer

One problem of introducing a decoherence correction might occur in large
systems, which is called spurious charge transfer (Refs. [243, 255]) or decoher-
ence correction enhanced trivial crossing problem (Refs [205, 256]), see also
Ref. [37]. If one starts with an initial state in a superposition of many adia-
batic states, then the decoherence correction quickly removes the coherences
necessary to correctly describe this initial state. One example is a state where
an electron is initially localized to a single site of the Holstein chain, while
all phonon harmonic oscillators are in the ground state (this will be one of the
example systems studied later, called bare local initial state, see Fig. 6.1(d)).
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For a trajectory where now most nuclei are around xi = 0, the adiabatic states
will be standing wave modes and delocalized in the whole system. The deco-
herence correction can then lead to an artificial fast charge transfer throughout
the system, independent of which form of the density matrix is used (which
become mostly equivalent when using the decoherence correction).

This problem occurs as well if one starts in a single adiabatic state, but
then encounters an erroneous surface hop (for example close to a trivial cross-
ing without using corrected hopping probabilities as discussed previously in
Sec. 5.3.5). In the worst case, a hop could happen between two surfaces lo-
cated to distant regions of the system. Without a decoherence correction, the
electronic amplitudes are still propagated via Eq. (5.51) and one can obtain a
reasonable electronic density from them (via Eq. (5.62)). With the decoher-
ence correction included, the electronic amplitudes are relaxed toward the new
adiabatic state, potentially leading to a system-size dependent spurious charge
transfer that is not related to a physical propagation. This was the main problem
identified in the original publications (Refs. [205, 243, 255, 256]), and using
corrected hopping probabilities or small time-steps can already alleviate a large
part of the problem (see Ref. [205] and also Ref. [257], where almost system-
size independent dynamics were achieved when using a crossing-corrected
algorithm). To further reduce the problem, and for dealing with initial states
in a superposition of many adiabatic states, where improving the hopping al-
gorithm is not sufficient, one can implement restrictions on the decoherence
correction.

Two variants of such restrictions have been proposed, which either allow for
decoherence only when the adiabatic population of the active state is sufficiently
large (Ref. [256], also used in [257] to obtain even better system-size indepen-
dence), or only within a certain active region of diabatic states (Ref. [255]).
For the case of the bare local initial state mentioned before, most adiabatic
states will have a significant contribution at the beginning and the first ap-
proach cannot be used to prevent the unphysical charge spreading. Hence, in
this thesis, the second approach is used. This ansatz was already applied to
organic semiconductor systems to study mobilities (see Refs. [243, 255]).

The active region of each trajectory is chosen to include a fraction R of
the electronic charge density, which in the original paper was set as R =
0.999 (Ref. [255]). This region is determined in each time step after the
propagation of electrons and nuclei, but before the decoherence correction. In
our implementation (see Ref. [37]) the active region is constructed by adding
diabatic states with decreasing population (for the one-electron case studied
here these are the site-local orbitals in the Holstein chain) to a subset until the
threshold R is exceeded. The higher the threshold, the more sites are included,
while a small R leads to a stronger restriction. Afterward, the decoherence
correction is applied, but all changes to the diabatic electronic amplitudes
(which are obtained by a representation transformation) outside of the active
region are ignored and the amplitudes inside the region are scaled to conserve
the total norm. This restriction is only applied to the decoherence correction,
not the normal electronic time evolution. It works especially well when the
electronic amplitudes Ψ̃ are localized to certain regions of the system, while
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the adiabatic states are delocalized, or localized to a different region. Hence,
it can counteract the spurious charge transfer both after an erroneous surface
hop, or for local initial states that are in a superposition of delocalized adiabatic
states.

The threshold value R gives some freedom in the degree of the restriction.
In the large systems where we apply this restriction later (L ≥ 11 in the
Holstein chain), we find that a value of R = 0.99 works even slightly better,
see Sec. 6.3.1. As a new approach we also tested to completely turn off the
decoherence correction for a fixed time at the beginning of the simulation.
This can help for the short-time dynamics of initial states that clearly depend
on the correct description of coherences, such as local initial states. Here (and
in Ref. [37]), when studying the Holstein chain, we use a simple ansatz of
delaying the use of a decoherence correction until a quarter phonon oscillation
period π/(2ω0) has passed, see Sec. 6.3.1.

An ever stronger restriction to surface hopping is the subsystem surface
hopping (see Ref. [258]), in which the surface hopping description is used
only for a dynamic part of the system, while the other sites are simulated with
molecular dynamics. With less adiabatic states included in the algorithm, trivial
crossings are less likely to be encountered, and adiabatic states localized to
distant regions of the system cannot influence the dynamics. Even a three-level
description combining surface hopping, molecular dynamics and a statistical
description for different regions of the system has been proposed, see Ref. [259].
Such approaches might be useful if one wants to treat large systems where the
important adiabatic states and surface transitions are still localized. These
combined descriptions are, however, beyond the scope of this thesis.

5.3.6 Coupled-trajectory approaches

As apparent from the discussions above, both MTE and FSSH introduce strong
approximations for the dynamics of a composite electron-nuclear system. A
trajectory-based approach can, however, be used to solve the system (in princi-
ple) exactly if one allows for a coupling between the individual trajectories. A
typical ansatz is to regard the trajectories as a moving basis used to represent
the time-evolving wave function, in most cases taken as frozen Gaussian states
(with fixed width), see Refs. [168, 246, 260]. If the Gaussian basis states fol-
low the true dynamics of the nuclear wave packet tightly, then (ideally) a small
number of such basis states for each electronic state is sufficient to represent
the wave function at any time. This can be taken as a fully variational ansatz,
leading to the variational multiconfiguration Gaussian (vMCG) method, see
Ref. [261], which gives an equation of motion both for the coefficients of the
wave function expansion and for the Gaussian parameters (the center points in
phase space and a phase term). We note that one can choose to use a different
set of Gaussian nuclear states for each electronic state (multi-set formalism),
or to expand the total wave function in a single set of electron-nuclear product
states (single-set formalism), see Ref. [262]. In any case, the basis states used
in the wave function expansion are also called configurations.

The resulting complicated equations of motion can be simplified if the center
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points of the Gaussians X(t) = (R(t), P(t)) of a configuration instead evolve
according to Ehrenfest dynamics (Eqs. (5.50)) with Hnuc given by the average
of the Hamiltonian over this configuration. This leads to multiconfigurational
Ehrenfest (MCE), see Refs. [40, 41]. While MCE is simpler than vMCG, the
non-variational ansatz conserves the total energy of the system only approxi-
mately, see Ref. [263].

There are two variants of MCE: in MCEv1, see Ref. [40], the wave function
is expanded in a set of configurations α given by electron-nuclear product states
|Ψ(t)〉 =

∑
α

∑
i aαi (t) |χi〉 |zα(t)〉, where the |zα(t)〉 are the Gaussian nuclear

states and the electronic basis |χi〉 stays fixed over time. Hence, the coupled
expansion coefficients aαi (t) take the role of electronic amplitudes. In contrast,
the alternative version, MCEv2, see Ref. [41], uses a time-dependent elec-
tronic state |φαi (t)〉 for each configuration, which is propagated independently
from all other configurations as in the standard MTE algorithm via Eq. (5.51).
These electronic states are normalized (in contrast to the expansion coefficients
interpreted as electronic amplitudes in MCEv1), and additional expansion co-
efficients Aα(t) are introduced to represent the total wave function in these
configurations: |Ψ(t)〉 =

∑
α

∑
i Aα(t) |φαi (t)〉 |z

α(t)〉. The equations of motion
for both the nuclear Gaussians and the electronic amplitudes in MCEv2 depend
only on the configuration itself, while the expansion coefficients Aα(t) couple
the different configurations. Hence, if one identifies the center point of the
Gaussian nuclear state as a classical nuclear particle in phase space X(t), then
the time-evolution of a configuration in MCEv2 is nearly equivalent to the one
of an MTE trajectory. The difference is that the nuclear forces in MTE are
determined solely from the classical nuclear position, while in MCEv2 one has
to take the average forces over the configuration Hnuc =

∑
i 〈φ

α
i , z

α |Ĥ |φαi , z
α〉.

For a nuclear Hamiltonian that is quadratic in the nuclear position, such as
for the Holstein Hamiltonian (Eq. (5.2)) in a diabatic basis, both forces are
equivalent. In this case one could take a finished MTE simulation (with the
nuclear trajectory and electronic density matrix known for all simulated time)
and only a posteriori time-evolve the coupled expansion coefficients Aα(t) to
obtain the MCEv2 wave function at any time.

The MCE algorithm has been carefully implemented and tested by Stefan
Gräber, see Ref. [264]. Besides exact diagonalization and a density matrix
renormalization group method, it will be used as a benchmark method to
evaluate MTE and FSSH in the Holstein model, see Ch. 6, which presents the
results of a comparative study published in Ref. [37]. For more numerical
details and convergence studies we thus refer to Refs. [37, 264], because these
tests have not been carried out by the author of this thesis. Here we note
only that while the method can become exact in principle (for a large number
of configurations), this convergence is difficult to reach in large systems, not
to the least because the total energy is not conserved when using too few
configurations. This will become evident in Ch. 6, where MCE turns out to
be a useful benchmark tool mainly for small systems, or specific observables
in large systems. Nonetheless, whenever the method can be converged, it
will correspond to the exact quantum mechanical time-evolution, which is a
significant difference to the independent-trajectory methods MTE and FSSH
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introduced above.
Other coupled-trajectory methods include the full multiple spawning, see

Ref. [265], in which the number of nuclear basis states increases dynamically
by spawning new trajectories when needed, and the Davydov D2 ansatz, see
Refs. [42, 43, 266–268]. In addition, ab initio MCE, see Ref. [269], and ab
initio multiple spawning, see Ref. [270], introduce further approximations to
deal with systems where the potential energy surfaces are only known locally
and in an adiabatic basis, as is often the case in electronic structure methods.
Lastly, the multiconfiguration time-dependent Hartree (MCTDH) method, see
Refs. [271, 272], is also based on an expansion of the wave function in time-
dependent single-particle functions, which, however, are themselves expressed
in a constant (often grid-based) basis set. The single-particle functions can
be expanded recursively using the MCTDH scheme, leading to the multilayer
MCTDH, see Refs. [273–275], suitable to describe large systems. When gen-
eralized to include non-orthogonal basis states and by replacing some single-
particle functions with Gaussian functions, one arrives at the Gaussian MCTDH
method, see Refs. [31, 276–278], which is the basis of the variational multi-
configuration Gaussian (vMCG) method mentioned above.

It is evident that a large pool of methods exist that rely on the idea of a
dynamically moving basis set, often described by a set of coupled trajectories,
and that in principle converge to the exact dynamics for a sufficiently large
basis set. In this thesis, the focus is on evaluating the performance of the
independent-trajectory methods MTE and FSSH, and only the MCE results
obtained by Stefan Gräber will be used to serve both as an additional benchmark
and as an outlook on the improved performance to be gained by coupling the
trajectories.

5.3.7 Implementation and convergence of the
independent-trajectory methods

Initial states in the Holstein chain

Both the MTE and FSSH algorithm will be used to investigate the non-
equilibrium dynamics of different initial states in the Holstein chain (Eq. (5.2)),
which have been investigated in detail in Ref. [37]. The partially Wigner
transformed density matrices of these initial states can always be separated
into a purely nuclear Wigner function and an electronic density matrix corre-
sponding to a pure state in some electronic basis: W ini

a,b:W (R, P) = W ini(R, P) ·
Ψini

a (R)Ψ
ini
b (R), where the nuclear Wigner function corresponds to a prod-

uct of Gaussians in the positions and momenta (R = ®x = (x1, . . . , xL) and
P = ®p = (p1, . . . , pL)), which in dimensionless units gives (see Ref. [37]):

W ini
(
®̄x, ®̄p

)
=

1
(π)L

L∏
i=1

exp
(
−

(
x̄i − x̄ini

i

) 2
)

exp
(
−p̄2

i

)
. (5.67)
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The center positions of the Gaussians, ®̄xini
i , are given by the initial state and

will typically be on any site either zero or
√

2γ̄. For these initial states, it is not
necessary to include any negative weights for the trajectories to approximate the
Wigner function of the composite system (see Eq. (5.49)) and all weights are set
to one: wα = 1, ∀α. Only single-electron states are considered in the following
and the diabatic basis will always be the site-local basis |χi〉 = ĉ†i |0〉, where
the diabatic populations correspond to the local electron densities ni = |Ψ

(d)
i |

2.
The initial sampling and the implementation of the time evolution in both
algorithms is presented in the following.

Implementation of MTE

The MTE algorithm is composed of the following steps:

1. An ensemble of Ntra j trajectories is sampled from the initial state. For
this, the nuclear configuration ®xα, ®pα of each trajectory α is selected
randomly according to the probability distribution given by the Wigner
function Eq. (5.67) (which here is completely positive). The whole set
of nuclear configurations is uniformly shifted and scaled in phase space
so that the mean and variance of the nuclear positions and momenta
matches the corresponding values from the nuclear Wigner function W ini.
Afterward, the electronic wave function of each trajectory is set to the
initial state Ψel,α = Ψini(®xα). If the initial state is given in the adiabatic
electronic basis, the wave function is transformed to the diabatic basis.

2. In each time step t → t + ∆t, for every trajectory α (omitting the su-
perscript α for clarity), first the nuclei are propagated according to the
nuclear Hamiltonian Eq. (5.52) for fixed electron densities ni = |Ψ

el
i (t)|

2:

H̄nuc =

L∑
i=1

[
1
2

p̄2
i +

1
2

x̄2
i −
√

2γ̄ni x̄i

]
. (5.68)

When assuming constant ni, the Hamilton’s equations of motion (see
Eq. (5.50)) can be solved exactly for each site i:

x̄i(t + ∆t) = x̄i(t) cos(ω0∆t) + p̄i(t) sin(ω0∆t) +
√

2γ̄ni [1 − cos(ω0∆t)] ,
(5.69)

and similarly for the momenta.

3. Thereafter, in the same time step, the electronic state of every trajectory
is propagated by assuming fixed nuclear positions ®x(t + ∆t), for which
the electronic eigenstates are just the Born-Oppenheimer states at that
nuclear position |φBO(®x(t + ∆t))〉 with the eigenenergies E BO(®x(t +∆t)),
both obtained by diagonalizing the Born-Oppenheimer Hamiltonian at
that nuclear position. Under this assumption, the electronic state can be
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propagated exactly via:

|Ψel(t + ∆t)〉 =
∑

a

|φBO
a (®x(t + ∆t))〉 exp

(
−

i
~
∆tE BO

a (®x(t + ∆t))
)

× 〈φBO
a (®x(t + ∆t))|Ψel(t)〉 . (5.70)

The time step ∆t needs to be chosen small enough to control the er-
ror of this electron-nuclear propagation separation, i.e. convergence of
observables with the time step needs to be ensured.

4. For calculating observables, the Wigner function of the composite system
is constructed via Eq. (5.44) and expectation values are calculated with
Eq. (5.33), where the partial Wigner transform is carried out in the
electronic basis used in the representation of the initial stateΨini to ensure
that all expectation values of the initial state are recovered correctly for
a sufficiently large number of trajectories.

5. Using the new electron density ni(t + ∆t), the algorithm repeats the last
steps starting with step 2 until the desired time tmax is reached.

Implementation of FSSH

The FSSH algorithm differs in various aspects from MTE and the exact form
of the algorithm depends on which improvements and changes are utilized (see
Sec. 5.3.5). The algorithm will be used in the adiabatic basis, i.e. the Born-
Oppenheimer surfaces are used to calculate the nuclear forces, which is the
typical choice for FSSH (see Ref. [30]). The integration of the electronic state
|Ψ̃〉 will, however, always be carried out with the representation transformation
technique in the diabatic basis (see Sec. 5.3.5), making use of the fact that the
electronic time evolution (Eq. (5.51)) is independent of the chosen basis. The
algorithm for FSSH can then be written in the following way:

1. The sampling of the nuclear configuration ®xα, ®pα is equivalent to the
sampling in MTE (step 1) taken from the nuclear Wigner function of
the initial state. The electronic amplitudes are set to the initial state
Ψ̃α = Ψini(®xα) and, if necessary, represented in the adiabatic electronic
basis (determined at that position ®xα). Afterward, the active state λα is
selected randomly with the probabilities of the states a given by their
electronic populations |Ψ̃αa |2.

2. Similar as for MTE, for every time step t → t +∆t and every trajectory α
(we again omit the superscript α), first the nuclei and afterward the elec-
trons (and active states) are propagated. In FSSH, the nuclear potential is
given by the active Born-Oppenheimer surface E BO

λ (®x), which explicitly
depends on the nuclear position. Hence, in general, we cannot exactly
integrate the nuclei as done in MTE. Instead we resort to a velocity Verlet
integration (see Refs. [279, 280]), which is mathematically equivalent to
the normal Verlet integration (see Ref. [139]) used also in the manganite
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tight-binding model (see Sec. 3.3.2), with the difference that the new
nuclear momenta ®p(t + ∆t) are obtained explicitly after each integration
step, which is necessary in FSSH to determine the hopping probabilities
(at least in the original formulation) and for the velocity adjustment after
a surface hop. Under the assumption of a constant active surface λ, the
propagation of the nuclei is then done in three steps:

a) A half-step in the momenta: pi(t + ∆t/2) = pi(t) −
∂EBO

λ (®x)
∂xi

���
®x(t)

.

b) A full-step in the positions: xi(t + ∆t) = xi(t) + 1
mi

pi(t + ∆t/2).

c) A second half-step in the momenta with the forces obtained at the
new nuclear position: pi(t + ∆t) = pi(t + ∆t/2) − ∂EBO

λ (®x)
∂xi

���
®x(t+∆t)

.

The derivatives of the Born-Oppenheimer surfaces of the Holstein model
can be calculated (using dimensionless units) via:

∂Ē BO
λ (
®̄x)

∂ x̄i

�����
®̄x(t)

= x̄i(t) −
√

2γ̄
〈
φBO
λ

(
®̄x(t)

) ��� n̂i

���φBO
λ

(
®̄x(t)

) 〉
. (5.71)

3. After the nuclear propagation, the electronic amplitudes Ψ̃ are evolved
in the same way as in MTE (step 3), i.e., for fixed nuclei x(t + ∆t).
When representing the states at the times t and t + ∆t in their respective
adiabatic bases, this amounts to:

Ψ̃
(a)
a (t + ∆t) =

∑
b

Pa,b(t, t + ∆t)Ψ̃(a)b (t) B∑
b

exp
(
−

i
~
∆tE BO

a (®x(t + ∆t))
) 〈
φBO

a (®x(t + ∆t))
��φBO

b (®x(t))
〉
Ψ̃
(a)
b (t).

(5.72)

Note that the derivative couplings do not appear in this expression, which
is different than if one would naively integrate the Schrödinger equa-
tion in the adiabatic basis via Eq. (5.55) as proposed originally (see
Ref. [29]). Eq. (5.72) can be thought of as a propagation in the di-
abatic basis, nestled between basis transformations from and into the
adiabatic basis. Pa,b(t, t + ∆t) defines the unitary adiabatic propagator
needed in the alternative hopping expression (Eq. (5.66)). The overlap
of Born-Oppenheimer states at different nuclear positions is evaluated in
the diabatic basis:〈
φBO

a (®x(t + ∆t))
��φBO

b (®x(t))
〉
=

∑
i

〈
φBO

a (®x(t + ∆t))
��χi

〉〈
χi

��φBO
b (®x(t))

〉
.

(5.73)

The representation of the Born-Oppenheimer states in the diabatic basis
〈χi |φ

BO
b (®x(t))〉 is in principle defined only up to a phase and obtained

from numerical diagonalization of the Born-Oppenheimer Hamiltonian.
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Since the Born-Oppenheimer Hamiltonian is real and symmetric, the
phase ambivalence is reduced to a sign flip. Hence, we ensure that
between subsequent time steps this sign does not change. In addition,
the off-diagonal derivative couplings ®Aa,b(®x(t + ∆t)) are calculated from
the expression Eq. (5.16).

4. From the electronic amplitudes Ψ̃(t), the nuclear momenta p(t + ∆t),
and the derivative couplings ®Aa,b(®x(t + ∆t)), the hopping probabilities
from the active to all other surfaces are calculated (a) via the original
expression (Eqs. (5.57) and (5.58)) for the Holstein dimer (L=2); or
(b) with the alternative expression Eq. (5.66), relying on the adiabatic
propagator Pa,b(t, t + ∆t), for all larger systems L ≥ 3. In both cases a
random number is generated and compared to the hopping probabilities
to check for a surface hop.

5. After a successful surface hop λ(t) → λ′ the velocity adjustment of the
nuclei is carried out according to Eq. (5.60). In case of a too small
velocity in the direction of the derivative coupling (a frustrated hop),
the surface hop is discarded. Otherwise the new active surface is set to
λ(t + ∆t) = λ′.

6. Only in case a decoherence correction is used:

a) Without restriction (FSSH+D, used here in the Holstein chain for
L ≤ 3): The force-based decoherence rate according to Eq. (5.64)
is applied to all non-active states Ψ̃a, ∀a , λ(t +∆t) and the active
state is rescaled to conserve the norm.

b) With restricted decoherence (FSSH+RD, used here for L ≥ 11):
The restrictions mentioned in Sec. 5.3.5 are applied, i.e., the deco-
herence correction is only used after a quarter phonon oscillation
period has passed and the active region restriction is used with an
electronic charge density threshold R that for the results presented
in Ch. 6 is set to R = 0.99, see the test of the influence of this
threshold in Fig. 6.12.

7. Observables are calculated via the partial Wigner transform formalism,
i.e. the approximated Wigner function Eq. (5.44) is used to obtain
expectation values via Eq. (5.33). The electronic density matrix in this
approximation to the partial Wigner transformed density matrix ρ̂el is
obtained from the mixed definition (Eq. (5.63)) for most simulations
presented in Ch. 6, the exception being the large system results L ≥ 11,
for which the mixed definition can lead to numerical problems, especially
far outside of the initially occupied sites (see Sec. 6.3.1). Here, the
wave-function definition (Eq. (5.62)) is used for FSSH+RD. Without
decoherence correction the wave-function definition is even less reliable
than the mixed definition, and we thus stay with the latter (see Sec. 6.3.1).

8. Using the new active state λ(t + ∆t), the algorithm repeats the last steps
starting with step 2 until the desired time tmax is reached.
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Numerical details of the FSSH algorithm

While the implementation of the MTE algorithm is relatively straightforward,
we made a few choices for the implementation of the FSSH algorithm above, in
particular which of the surface-hopping improvements presented in Sec. 5.3.5
to be used. The most drastic variation of the original FSSH algorithm is the
introduction of a decoherence correction. Testing this correction is left as one
of the goals of the next chapter (Ch. 6) when comparing MTE and FSSH to
numerically exact approaches and a coupled-trajectory method. The additional
variations/choices include: (a) The starting electronic amplitudes are set to
the amplitudes of the initial state Ψ̃αa (t = 0) = Ψini

a (®x
α(t = 0)), rather than

projecting them onto the chosen active state Ψ̃αa (t = 0) = δa,λα(t=0) (see the
discussion at the end of Sec. 5.3.4). (b) The propagation of the electronic
amplitudes is essentially carried out in the diabatic basis via Eq. (5.72) instead
of relying on the derivative couplings used in Eq. (5.55), originally proposed
in Ref. [29]. (c) The mixed definition of the density matrix (Eq. (5.63)) is
used to calculate observables, with the exception of the large systems L ≥ 11
when using a decoherence correction, where the wave-function definition is
used (Eq. (5.62)). (d) An alternative hopping expression is used in large
systems L ≥ 11 (Eq. (5.66)), which does not rely on derivative couplings. (e)
Restrictions to the decoherence correction are implemented in large systems
L ≥ 11 to avoid a spurious charge transfer (see Sec. 5.3.5). Most of these
choices have been justified already when they were introduced (see Secs. 5.3.4
and 5.3.5) and we will see and discuss their influence on the results in the next
chapter (Ch. 6).

Two of these are, however, of a purely numerical importance and affect
the convergence properties of FSSH. These are the approaches to avoid us-
ing derivative couplings in the electronic propagation and for calculating the
hopping probabilities, relevant for the trivial crossing problem, i.e., when two
surfaces come very close or cross. This problem can be visualized already in
the Holstein dimer when a very small electron hopping term t0 is used, serving
as a prototype for large systems, where such trivial crossings are expected to
occur frequently even for larger values of the electron hopping (see the analysis
in Ref. [205]). While not analyzed here, such a surface crossing can also appear
in small systems, like the Jahn-Teller model of a single manganite octahedron,
see the energy surfaces in Fig. 3.1.

To understand the trivial crossing problem, we start with an initial state
restricted to the upper Born-Oppenheimer surface, with a Gaussian nuclear
wave packet around q̄ = γ̄, just like the example case studied before with an
exact method (see Fig. 5.5). However, as parameters we choose now γ̄ =
2.5 and t̄0 = 0.01. For a t0 this small, the adiabatic and diabatic electronic
states are almost identical, but change character around q̄ = 0: for q̄ > 0 the
antibonding state is very close to |χ2〉, while for q̄ < 0 it is very close to |χ1〉,
i.e., it corresponds to the electronic state on the site with the smaller nuclear
displacement xi. The bonding state corresponds to the other state in both cases.
Since for this very small electron hopping we can expect the electron to stay
on the initially (mostly) occupied Holstein site |χ2〉 for an extended period, a
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trajectory passing q̄ = 0 should undergo a surface transition between the two
adiabatic states. With a very localized derivative coupling, the trajectory can
easily miss the large hopping amplitude around q̄ = 0 between two time steps.
The same problem also applies to the propagation of the electronic amplitudes
if the adiabatic formulation according to Eq. (5.55) is used.

Fig. 5.8 visualizes this trivial crossing problem. The time evolution of
the population of the upper (initially occupied) Born-Oppenheimer surface is
shown in Figs. 5.8(a)-(c) for different time steps ∆t in three variations of FSSH.
In all cases the population is calculated both from the electronic amplitudes
(solid lines) and from the distribution of active surfaces (dashed lines). In the
first variant, Fig. 5.8(a), the electronic amplitudes are propagated by integrat-
ing the Schrödinger equation in the adiabatic basis (Eq. (5.55) (by inserting the
derivative couplings, nuclear momenta and Born-Oppenheimer energies ob-
tained at the time t + ∆t in each time step, and then diagonalizing the resulting
matrix) and the hopping probabilities are calculated in the original way via
Eq. (5.57). Both depend on the derivative couplings, which leads to erroneous
results for too large time steps, as seen from that Fig. 5.8(a). For ∆t = 0.1/ω0
and ∆t = 0.01/ω0, the electronic amplitudes Ψ̃ (solid lines) do not capture
the wave packet transitions between the surfaces and the distribution of trajec-
tories (dashed lines) follows this trend. Only for ∆t = 0.001/ω0 the surface
transitions are captured correctly.

In the second variant, Fig. 5.8(b), the electronic amplitudes are propagated in
the diabatic basis, Eq. (5.72), and correctly capture the wave packet transition.
However, the surface hops still depend on the derivative couplings and, in par-
ticular, for ∆t = 0.1/ω0 many trajectories stay on the upper Born-Oppenheimer
surface (dashed line). For later times with we see that also the average popu-
lation of the upper Born-Oppenheimer surface calculated from the electronic
amplitudes (solid line) deviates from the converged results. Each individual
trajectory still correctly predicts an electron density localized to the second
Holstein site |χ2〉, but due to the (erroneous) incomplete surface switching,
the wave packet splits into several parts. Therefore, at later times, some of
the trajectories are at q̄ < 0 and some at q̄ > 0 which on average leads to the
deviation in the shown observable. Reducing the time step to ∆t = 0.01/ω0
already improves the results significantly and at ∆t = 0.001/ω0 the converged
time evolution is obtained. Finally, both the electronic amplitudes propagation
and the hopping probabilities are obtained without relying on derivative cou-
plings by using the corresponding Eqs. (5.72) and (5.66) in Fig. 5.8(c). Here,
even for a large time step of ∆t = 0.1/ω0, ten times larger than t0, the surface
transitions are captured correctly.

In addition, we show in Figs. 5.8(d)-(f) the time evolution of 〈q̂〉 (t) for the
same three FSSH variants. Since the nuclear forces are given by the active sur-
faces, only the combination of the diabatic electronic amplitude propagation
and the alternative hopping expression used in Fig. 5.8(f) provides a dynamical
evolution that is almost independent of the used time step. However, already
using the diabatic electronic propagation alone, in Fig. 5.8(e), improves the
results if time steps in the order of the electronic hopping term t0 are used.
This motivates our choice to always use the diabatic electronic time evolution
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Figure 5.8: Visualization of the trivial crossing problem in different variations of
FSSH in the Holstein dimer with γ̄ = 2.5 and t̄0 = 0.01. Starting from
a Gaussian nuclear wave packet in the antibonding state around q̄0 =

γ̄, the time evolution of the (a)-(c) population of the antibonding state
〈n̂+〉 and (d)-(f) average relative nuclear position 〈q̂〉 are shown using
different time steps ∆t. The three rows correspond to three variations
of FSSH: (a) and (d) the propagation of electronic amplitudes and the
calculation of hopping probabilities are performed in the original way (see
Ref. [29]) in the adiabatic basis and depend on the derivative couplings.
(b) and (e) the electronic amplitudes are instead propagated according
to Eq. (5.72) without referring to the derivative couplings. (c) and (f)
the electronic amplitudes are propagated according to Eq. (5.72) and the
alternative hopping expression, Eq. (5.66), is used (both do not rely on the
derivative couplings). To show the difference of the time evolution of the
electronic amplitudes and the distribution of the trajectories, the electron
densities in (a)-(c) are calculated both from the electronic amplitudes(

1
Ntr a j

∑Ntr a j
α ρ̃αa,a(t)

)
as solid lines and from the distribution of active

surfaces
(

1
Ntr a j

∑Ntr a j
α δa,λα(t)

)
as dashed lines, corresponding to using

the wave-function or active-surface definition of the electronic density
matrix (see Eqs. (5.62) and (5.61)).
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of Eq. (5.72) in all following calculations. For calculating the hopping prob-
abilities, we stay with the original version (Eq. (5.57)) for the Holstein dimer,
where we will not investigate such extremely small values for the electronic
hopping term t0, but use the alternative expression (Eq. (5.66)) for all larger
systems. We saw already from the Born-Oppenheimer surfaces of the Holstein
trimer (see Fig. 5.7) that the energy separation of the surfaces can become
very small, even for a large t0. As mentioned in Ref. [205], this tendency is
found in general in large systems and an algorithm which is fit to deal with
trivial crossings is thus needed. We note that the same accuracy as presented in
Figs. 5.8(c),(f) can also be achieved by using the self-consistent correction of
the hopping probability, as mentioned in Sec. 5.3.5. This correction is actually
implemented in our simulations of the Holstein dimer, but has no influence due
to the sufficiently small time steps used in the following in comparison to t0.

Convergence of the independent-trajectory methods

We now turn to a general convergence study of both independent-trajectory
methods. It is important to keep in mind that the methods will not converge
to the exact results, independent of the number of used trajectories or the time
step (as opposed to most coupled-trajectory methods introduced in Sec. 5.3.6).
Nonetheless, it is important to use a sufficient number of trajectories and a
small enough time step so that the results become, up to the desired accuracy,
independent of these parameters. This is also called internal convergence of
the algorithms.

In MTE, the number of trajectories Ntra j is only relevant to sample the
initial state and all following dynamics are completely deterministic. In FSSH,
the trajectories also perform random hops, so that one could sample many
trajectories from every previously sampled nuclear phase space point. In
practice, both samplings are done together by just using a large enough number
of trajectories randomly sampled from the Wigner function. We can thus expect
that FSSH needs a higher Ntra j to achieve internal convergence compared to
MTE. The convergence needs to be checked for every system, initial state and
even observable to be shown and here we will only present two example cases.

To evaluate the convergence with the number of used trajectories, we repeat
the simulation Nrun times for different random samplings of the Wigner function
(and different seeds for the random hops in FSSH). Since the trajectories
are time evolved completely independent from each other, the run-average of
an observable 〈〈Ô〉〉 B 1

Nrun

∑Nrun

l=1 〈Ô〉l over a large number of runs should
correspond to the normal expectation value 〈Ô〉l of a single run l averaged
over a large number of trajectories (with one caveat: the shifting and scaling of
the trajectory-ensemble to reproduce the mean and variance of the initial state
is one collective modification breaking this equivalence, which, however, has
very little influence at large Ntra j).

The sample standard deviationσO =

√
1

Nrun−1
∑Nrun

l=1

(
〈Ô〉l − 〈〈Ô〉〉

) 2
across

different runs indicates how far the different runs spread around their average
value, which depends on Ntra j . In a converged simulation we would expect the
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result to become (almost) independent of the sampling and thus the standard
deviation across runs should become small. We show two examples of the
standard deviation over the number of used trajectories in Fig. 5.9.
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Figure 5.9: Convergence of MTE, FSSH and FSSH+D/RD with the number of used
trajectories Ntraj . Shown are the run-averaged standard deviation of (a)
the electron density on the second Holstein site n2 in the Holstein dimer
with γ̄ = t̄0 = 2.5 at time t = 20/ω0 after starting from the antibonding
(adiabatic) initial state, and (b) the total phonon number Nph in the Holstein
chain with L = 51 sites, for the same parameters and time, after starting
from a dressed local state at the center of the chain (see the text for
details). In both cases, a time step of ∆t = 0.001/ω0 is used and linear fits
of the log-log data with a fixed slope of −0.5 (corresponding to an inverse
square root decay) are included as dashed lines. We used Nrun = 50 runs
for averaging data points with Ntraj ≤ 20 000 and Nrun = 25 runs for
data points with Ntraj ≥ 50 000. Reproduced from Ref. [37], with the
permission of AIP Publishing.

In Fig. 5.9(a) we take the antibonding (adiabatic) initial state in the Holstein
dimer, already used as example in Fig. 5.5, and select as observable the elec-
tronic occupation on the second dimer site 〈n̂2〉 at time t = 20/ω0. Fig. 5.9(b)
shows a result in a large system (L = 51), in an initial state of a single electron
localized at the center of the chain, with all harmonic oscillators starting in their
ground state, except the one at the position of the electron, which starts around√

2γ̄ (the ground state of an isolated Holstein site with one electron). This will
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later be called the dressed local initial state. Here, we take as observable the
total phonon number in the system 〈N̂ph〉 = 〈

∑
b̂†i b̂i〉 at t = 20/ω0.

In both examples, the standard deviation approximately follows an inverse
square-root decay as one would expect for a large number of random samples,
indicated as dashed/dotted lines in Fig. 5.9 and fitted to the data. For FSSH
both a variant without and with decoherence (restricted for L = 51) are shown,
which, however, do not differ significantly. MTE seems to need less trajectories
to obtain the same accuracy. The distance of the fitted lines indicates that FSSH
and FSSH+D need ≈ 1.88 and ≈ 1.96 times more trajectories than MTE in the
dimer example and ≈ 3.5 and ≈ 3.6 times more in the extended system. We
note, however, that we show the absolute standard deviation here. Since the
methods converge to different values, the relative standard deviation might give
different results. In general, our observations are close to the examples shown
here, with FSSH needing more trajectories than MTE, but still in a similar
order of magnitude. In our results in Ch. 6 we use 20 000 trajectories for most
calculations, while in some exceptions (L ≥ 11 with a dressed local initial
state and L = 25 with the small electron hopping term t0 = 1) we use 50 000
trajectories.

Next, the convergence with the used integration time step ∆t needs to be
ensured. An example is presented in Fig. 5.10 for the same system and initial
state as the second case in the Ntra j-convergence study before (Fig. 5.9(b)).
100 000 trajectories are used to keep the statistical error of the trajectory sam-
pling small and the expectation value of the total phonon number (of a single
run) at t = 20/ω0 is shown over the used time step. We see that MTE and FSSH
converge to vastly different values, while the difference of using a decoherence
correction in FSSH seems to have a smaller effect. For ∆t ≤ 0.01/ω0 there
remain small variations of the observable in the order of the standard variation
of the respective methods shown in Fig. 5.9(b) for Ntra j = 100 000, which we
consider as sufficiently converged. For the Holstein dimer (L = 2) we use in
the following ∆t = 0.01/ω0 and for all larger systems we use the even more
accurate ∆t = 0.001/ω0.
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Figure 5.10: Convergence of MTE, FSSH and FSSH+RD with the integration time
step ∆t in the Holstein chain with L = 51, γ̄ = t̄0 = 2.5 and Ntraj =

100 000. We show the convergence of the total phonon number Nph at
time t = 20/ω0 after starting from a dressed local state at the center of
the chain. Lines are included as guides for the eye. Reproduced from
Ref. [37], with the permission of AIP Publishing.
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6 Real-time non-adiabatic dynamics of
exact and quantum-classical methods
in the Holstein model

In the previous chapter, we discussed the concept of non-adiabatic effects in
electron-phonon coupled systems and described in detail two quantum-classical
independent-trajectory methods capable of dealing with these effects: multi-
trajectory Ehrenfest (MTE) and fewest-switches surface hopping (FSSH and
its decoherence corrected variants FSSH+D/FSSH+RD), see Secs. 5.3.3, 5.3.4
and 5.3.5. In this chapter, we put both methods to test, using the prototypical
one-dimensional Holstein model, see Eq. (5.2), to carry out a benchmark study
for the real-time dynamics of mostly quenched systems. The results of this
study have been published in Ref. [37] and this chapter will closely follow the
results of that article. The aim is to evaluate the strengths and limitations of
MTE and FSSH, among other things in view of their potential application to
describe the real-time dynamics in the more complicated tight-binding model
for manganites (see Ch. 3). One example would be the relaxation after an
optical excitation, as carried out, e.g., in Ref. [32], using an Ehrenfest descrip-
tion. We will not model the photo-excitation explicitly here, but instead start
from various (non-equilibrium) initial states and analyze the subsequent time
evolution. Since we cannot guarantee that the system after a photoexcitation
is restricted to a single adiabatic state, we put a special focus on initial states
starting in a superposition of several adiabatic states, which forms a particular
challenge for the FSSH method.

Besides the independent-trajectory methods, several other methods con-
tribute results in this benchmark study. Firstly, the coupled-trajectory method
multiconfigurational Ehrenfest (MCEv1, in the following denoted as MCE),
see Sec. 5.3.6. S. Gräber implemented this method and carried out the calcu-
lations. As mentioned previously, the method can, in principle, converge to
exact dynamics if a large number of configurations is used. In practice, we
find that convergence can be reached best in small systems and for specific
observables and that in large systems further methods are needed to provide
exact reference data. The benchmark study thus serves also as a test for this
coupled-trajectory method. MCE is not the focus of this thesis and for details
in the implementation and numerical tests we refer to the Master’s thesis of
S. Gräber (see Ref. [264]) and to our article (Ref. [37]). Here, we mention
only that an insufficient convergence of the method leads, among other things,
to a violation of the total energy conservation. For small systems this total
energy drift, which increases over time, was identified as a helpful indicator for
the methods convergence in Ref. [37], and we will follow the proposal of that
reference to indicate the time at which the energy drift exceeds the threshold
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of 0.2 ~ω0 as tMCE
0.2 ~ω0

. While the threshold value is chosen rather arbitrary, it
allows a comparison of the relative convergence of MCE in different systems.

For numerically exact benchmark data we instead rely on different methods.
In the Holstein dimer we already presented one algorithm to obtain a numer-
ically exact solution to the eigenvalue problem in the Born-Huang basis on a
grid (see Sec. 5.2.4), to which we will also refer to as exact diagonalization
(ED) in the Born-Huang basis. This is complemented by two additional wave-
function based methods carried out in a second quantized basis. Both methods
rely on a finite Hilbert space and introduce a cutoff of the number of harmonic
oscillator eigenstates M to be included on every Holstein site. The first is
exact diagonalization in second quantization, which is just a diagonalization
of the full matrix build from the truncated number of electron-phonon basis
states. D. Jansen implemented this method and carried out the calculations, see
Ref. [37] for details. ED in second quantization is used to obtain numerically
exact results in the Holstein trimer, but it also confirmed the results from ED
in the Born-Huang basis for the Holstein dimer (not shown here).

For larger systems obtaining numerically exact results becomes increasingly
difficult, as the Hilbert space increases exponentially. Here, we rely on the
density matrix renormalization group (DMRG) method, see Refs. [48–50].
The following short discussion follows Ref. [37]. The method is especially
well suited for one-dimensional (1D) systems, but generalizations can also
be applied to two-dimensional systems, see Refs. [281–285]. DMRG is still
actively developed, see Refs. [54, 286–291] and in this benchmark study a
combination of DMRG with a local basis optimization (LBO) (see Refs. [51–
53]) is used. The basic idea of DMRG is to represent the wave function in
a matrix-product state (MPS) form, which can be efficiently truncated with a
controlled error. The LBO aims at reducing the number of local basis states by
diagonalizing local reduced density matrices and truncating the number of used
eigenstates by their eigenvalues, which increases the efficiency of the algorithm
(see Refs. [51–53, 286, 288, 292–295]). DMRG has been successfully applied
to simulate time evolution, see Refs. [296–300] and is a state-of-the-art method
of theoretical solid-state physics to obtain numerically exact results mostly in
1D systems, see also the reviews [49, 50, 301].

Implementation, tests and calculations of DMRG-LBO in our benchmark
study were performed by D. Jansen and J. Stolpp, see Ref. [37] and their
PhD theses [302, 303] for further analysis of the method. In this thesis, the
DMRG results are taken as numerically exact reference data to benchmark
MTE and FSSH. It is important to note that the accuracy of the DMRG-LBO
results are quantified by two errors, introduced from the truncation of the
bond-dimension in the matrix-product state representation (εbond) and from the
LBO truncation (εLBO), which can be chosen and fixed during a DMRG-LBO
simulation. Convergence with these errors and with the used truncation of the
local phonon modes M needs to be ensured in all simulations. In contrast to the
MCEv1 method, this was always possible in all following systems and initial
states. Rather than obtaining inaccurate results, the reached maximum time
tmax is limited in DMRG.

MTE, FSSH and MCE are typical quantum chemistry methods, which have
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been subject to several benchmark studies in the past, see Refs. [39, 43–47]
and their discussion in Ch. 1. The DMRG-LBO simulations of our study
provide systematic, unbiased and new reference data to evaluate these methods
in an extended Holstein model. In addition, our study puts a special focus
on the influence of the initial state and its coherences and carefully evaluates
the different variations and improvements of FSSH necessary to describe these
states. The results are interpreted in the Born-Huang framework, which can
be explicitly applied in the small systems studied and helps to understand the
methods’ performance in large systems.

We start with an analysis of the Holstein dimer (with one electron), which is
not only the smallest non-trivial Holstein chain, but also a fundamental model
system in quantum-chemistry, see Refs. [176–185]. We study both initial states
restricted to one of the adiabatic states (adiabatic initial state), as we did already
in the previous chapter, e.g., in Figs. 5.5 and 5.8, as well as initial states where
the electron is restricted to a single Holstein site (local initial states), which
sometimes are also called diabatic initial states, as the electronic configuration
does not depend on the nuclear positions and can be represented by a diagonal
density matrix in the diabatic basis.

Two types of local initial states will be analyzed: First, the bare local state, in
which all nuclear harmonic oscillators are prepared in their lowest vibrational
state. This corresponds to a quantum quench, where before time zero the
electron-phonon coupling γ is set to zero, a single electron is inserted at one
Holstein site, and then at t ≥ 0 the coupling is turned on, leading to non-
equilibrium dynamics. One can also think of this as a local excitation of an
electron into a previously unoccupied chain of electronic orbitals that couple
to some phonon bath. Second, the dressed local state. Here, the harmonic
oscillator on the site initially occupied by the electron has already adjusted to
its electron density, which leads to a shift of the center of its Gaussian wave
function from zero to

√
2γ̄, while all other harmonic oscillators start again

in their lowest vibrational state. This initial state corresponds to a quantum
quench were the electron hopping term t0 is suddenly turned on at time t = 0.
All three initial states are schematically shown in Figs. 6.1(a)-(c), which also
includes their nuclear wave function density on the two Born-Oppenheimer
surfaces as sketch.

Adiabatic and local states are investigated in the Holstein trimer as well,
where the Born-Oppenheimer surfaces are still easy to visualize, see Figs. 5.6
and 5.7. This serves as the transition to large Holstein chains, where mainly
the bare and dressed local state of a single electron are investigated, see
Figs. 6.1(d)-(e). These states, in which the formation and dynamics of a polaron
can be investigated, have been studied recently with MCE for up to 16 sites in
a periodic Holstein chain (Holstein ring), see Ref. [43], which has been com-
pared to a previous study with the hierachical equations of motion method (see
Ref. [304]) with a good agreement between both methods. In addition, the bare
and dressed local states in the Holstein chain were studied with a numerically
exact tensor network state method in Ref. [54], where the states are referred to
as “Franck-Condon” and “relaxed” initial states. The parameters used in that
study will also be used later, see Sec. 6.3.4, which allows us to confirm their
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Figure 6.1: Sketches of the different one-electron initial states studied in this chapter
and in the published article, Ref. [37]. (a)-(c) Initial states in the Holstein
dimer: (a) An adiabatic initial state, with the electron starting on the upper
Born-Oppenheimer surface, (b) the bare local state, where an electron is
locally added into an empty Holstein dimer which was previously in its
ground state, (c) the dressed local state, where the electron hopping is
turned on at time t = 0 between one occupied (polaronic) and one empty
site. (d)-(e) The same states are also investigated for the Holstein trimer
(marked as rectangles) and in large Holstein chains, in particular the bare
and dressed local states. Reproduced from Ref. [37], with the permission
of AIP Publishing, the positions of the two sites in the Holstein dimer
(a)-(c) have been adjusted to the definitions used in the rest of this thesis.

results and evaluate our trajectory-based methods against numerically exact
literature results. Similarly, such local states have been investigated with FSSH
to extract mobilities (see Refs. [243, 256]), where, however, the phonons were
prepared to initially mimic a thermal ensemble and the study was focused on
steady-state results. Our results for the Holstein dimer, trimer and the Holstein
chain are presented in Secs. 6.1, 6.2 and 6.3. The analysis in these sections
closely follows the corresponding published article, Ref. [37], although with
a larger focus on investigating the independent-trajectory methods. Most, but
not all, presented figures have also been published there, as indicated in the
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respective figure captions. We note that in the following FSSH refers to the
surface hopping method without decoherence correction, and otherwise we
explicitly mention FSSH+D or FSSH+RD.

6.1 Holstein dimer
Before coming to the more difficult and interesting cases of the Holstein trimer
and the large Holstein chains, we first analyze the performance of MTE and
FSSH in the Holstein dimer. As mentioned above, this is a prototypical system
in quantum chemistry and has been used for comparative studies before, see,
e.g., Ref. [47]. It allows us to quantify the strengths and weaknesses of both
independent-trajectory methods, which can later be transferred to the larger
systems. The importance of the initial state for the performance of FSSH has
been pointed out in Ref. [241] and we will investigate this in more detail here.

6.1.1 The Born-Oppenheimer case

Let us start with a system and initial state where non-adiabatic transitions
are mostly prohibited. For this we choose the system parameters as γ̄ =
4, t̄0 = 10 and for the initial state we start with the electron on the upper
Born-Oppenheimer surface (antibonding adiabatic state) with the nuclear wave
function Gauss-distributed around q̄ini = γ̄ (see Eq. (5.67) for the form of
the initial Wigner function), depicted in Fig. 6.1(a). With the wave function
initially restricted to the upper surface and non-adiabatic transitions being
unlikely due to the large electron hopping t0, the wave function will stay on the
upper Born-Oppenheimer surface for a long time. Hence, only a single energy
surface determines the whole dynamics, which is exactly the case where the
Born-Oppenheimer approximation is justified. In this case, both MTE and
FSSH become equivalent and are reduced to the truncated Wigner approach
(see Sec. 5.3.1) for a wave function evolving in the potential E BO

+ (q). The time
evolution of the relative nuclear distortion 〈q̂〉, the electron density on the first
Holstein site 〈n̂1〉 and the electronic population on the upper (initially occupied)
Born-Oppenheimer surface 〈n̂+〉, obtained with MTE, FSSH, FSSH+D and
with exact diagonalization in the Born-Huang basis (ED) are shown in Fig. 6.2.

We observe an excellent agreement of all methods both for the average
nuclear distortion and the electron density (Figs. 6.2(a),(b)), with a slight
frequency shift appearing only after many phonon oscillation periods. The
overall damping of both observables toward the symmetric configuration is
very similar in all methods. We note that the potential given by the upper Born-
Oppenheimer surface E BO

+ (q) is not harmonic, see Eq. (5.21). In the population
on the upper Born-Oppenheimer surface, both MTE and FSSH stay close to a
value of one, while FSSH+D predicts a small decay of the population, stronger
than the decay obtained in the other methods. This case is an example where the
decoherence correction has a detrimental effect. While the probability is small,
some trajectories in both FSSH and FSSH+D hop from the upper to the lower
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Figure 6.2: Time evolution of the (a) relative nuclear distortion 〈q̂〉, (b) electron
density on site 1 〈n̂1〉 and (c) population on the upper Born-Oppenheimer
state 〈n̂+〉, obtained in the Holstein dimer with γ̄ = 4 and t̄0 = 10 for
the antibonding adiabatic initial state centered around q̄ini = γ̄. Results
are shown for the methods MTE (dotted green line), FSSH and FSSH+D
(dashed-dotted orange and magenta lines) and ED (in the Born-Huang
basis, solid blue line). We use the following method parameters: Ntraj =

20 000 and ∆t = 0.01/ω0 for the independent-trajectory methods MTE,
FSSH and FSSH+D, and calculated the first 250 eigenstates with ED using
1000 equidistant grid points in the range q̄ ∈ [−6, 6]. The lines connect
datapoints at every 0.1/ω0.
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surface over time (because t̄0 is large, but not infinite). With the electronic
amplitudes on the lower surface being very small, the probability to hop back
to the upper surface becomes large for these trajectories (see the hopping
probability Eq. (5.58)), which leads to the correct distribution of trajectories
in normal FSSH. In contrast, the decoherence correction in FSSH+D quickly
relaxes the electronic amplitudes of the switched trajectories toward the lower
surface, leading to the slow decay of trajectories toward the lower surface. We
see, however, that this effect takes a long time and that the other observables, at
least in this case, are well recovered. One can avoid this draining of trajectories
from the upper surface by applying an active surface decoherence restriction,
see Ref. [256], in which a decoherence correction is only applied if the active
surface has a large enough electronic population. In this thesis, where in most
cases the dynamics are not restricted to a subset of the adiabatic states, we will
not apply this kind of restriction.

In the case presented here, where (i) the parameters are in the adiabatic
regime (the surfaces are far separated) and (ii) the initial state is restricted
to a single adiabatic state, one could resort to a normal adiabatic molecular
dynamics simulation for the given potential E BO

+ (q). With FSSH and MTE
being mostly equivalent, the latter would be the method of choice, because it is
(even for the same number of trajectories and the same time step) slightly faster
(see Sec. 5.3.7 for the presentation of the algorithm and the necessary steps in
both methods).

6.1.2 Non-adiabatic transitions

Let us now switch to a parameter regime with frequent non-adiabatic transitions,
where one is forced to go beyond Born-Oppenheimer molecular dynamics if
one seeks to correctly capture the time evolution. As parameters we use
γ̄ = t̄0 = 2.5, which was already used in a few example cases before (see
Figs. 5.5 and 5.9(a)). This parameter set appears several times in this thesis
(and in Ref. [37]) and serves as the standard set to combine a strong electron-
phonon coupling with (relatively) fast electrons that are still slow enough to
allow for non-adiabatic transitions. We stay with the same initial state as before
(the antibonding adiabatic state centered around q̄ini = γ̄), see Fig. 6.1(a). The
dynamics of the Born-Oppenheimer probability densities obtained with ED (in
the Born-Huang basis) were already presented in Fig. 5.5, where we observed
several transitions in the avoided crossing region leading to wave function
splittings, and the interference of these splitted wave packets at a later time.
This is compared to the Born-Oppenheimer probability densities obtained with
MTE and FSSH (without decoherence) in Fig. 6.3 for four selected snapshots.

With the used number of 20 000 trajectories, both independent-trajectory
methods are able to recover the Gauss-distribution of the initial state to a good
extent (see Figs. 6.3(a)-(c)). In the next snapshot (Figs. 6.3(d)-(f)) the wave
packet should split into two parts on the two surfaces, centered around different
q. It is evident that this spatial separation of the wave packets is only reproduced
in the FSSH method, while in MTE the whole nuclear density is located around
a single value of q, which is located somewhere in between the centers of the
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Figure 6.3: Born-Oppenheimer probability densities |Ψ(a)± (q, t)|2 at four time-
snapshots in the four columns and for the three methods ED, MTE and
FSSH in the three rows, obtained in the Holstein dimer with γ̄ = t̄0 = 2.5
for the antibonding adiabatic initial state centered around q̄ini = γ̄. The se-
lected snapshots are (a)-(c) t = 0/ω0, (d)-(f) t = 2.5/ω0, (g)-(i) t = 4/ω0
and (j)-(l) t = 5.2/ω0, each for all three methods. Each snapshot shows
the probability density on the upper and lower surface as red and blue
lines drawn on top of their Born-Oppenheimer surfaces with a constant
(arbitrary) scaling. The same method parameters as in Fig. 6.2 are used.
Reproduced from Ref. [37], with the permission of AIP Publishing, line
widths and graph positions have been adapted to the format of this thesis.
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two wave packets obtained with the exact (and FSSH) method. This visualizes
that MTE already fails to describe a single wave packet splitting during a
non-adiabatic transition. The third column (Figs. 6.3(g)-(i)) shows a snapshot
after the second non-adiabatic transition and wave packet splitting. While
FSSH shows a qualitative agreement with the exact results, the probability
density in MTE is still localized to a narrow region. Finally, at t = 5.2/ω0
(Figs. 6.3(j)-(l)), the interference between the previously split parts of the wave
function occurs. Here, we observe the first significant deviation in the FSSH
method from the exact results, as the interference pattern is not recovered.
This is not surprising, as already in the approximate derivation of FSSH from
the QCLE (see Sec. 5.3.4) one of the assumptions breaks down when such a
recoherence (collision of previously split wave packets) occurs, see Ref. [224]
and the discussion in Ref. [242]. Meanwhile, the time evolved probability
density of MTE has lost any resemblance to the exact results.

To quantify the performance of the methods and to also compare to FSSH+D
and MCE, we show the time evolution of 〈n̂+〉, 〈n̂1〉 and 〈q̂〉 obtained with
MTE, FSSH, FSSH+D, MCE and ED (in the Born-Huang basis) in Fig. 6.4.
In the exact dynamics, we observe several partial non-adiabatic transitions,
where the population on the upper Born-Oppenheimer surface decreases (see
Fig. 6.4(a)). At later times, the wave packets on the lower surface can also
partly move back to the upper surface, and we do not observe equilibration
(at least in the time interval shown). The electron density initially oscillates
between the two Holstein sites (see Fig. 6.4(b)), but settles around 〈n̂1〉 ≈ 0.5
for later times when the nuclear density is far spread. The average nuclear
distortion (Fig. 6.4(c)) also starts with a single strong oscillation, which later
turns into the average of the oscillations of the various wave packets.

In all observables we see an excellent agreement of the coupled-trajectory
method MCE with the exact results, with significant deviations occurring only
at late times, beyond the time of the energy-drift indicator tMCE

0.2 ~ω0
. None of the

independent-trajectory methods is able to follow the exact results at late times,
but their performance differs for the first few phonon oscillation periods. In
MTE all observables start to deviate strongly from the exact results already after
a single oscillation period. Too little relaxation to the lower Born-Oppenheimer
surface is predicted during the non-adiabatic transitions, and the time evolution
of the nuclear observable 〈q̂〉 reflects that the nuclear density in MTE is not
able to split into several parts, with a strong coherent oscillation prevailing
for long times. In contrast, both FSSH and FSSH+D qualitatively follow the
exact dynamics, even for some time after the first recoherence event at around
t ≈ 5.2/ω0. We see that the decoherence correction improves the agreement
with the exact results, with barely any noticeable deviation until t ≈ 7/ω0.

In this example case, using a coupled-trajectory method like MCE seems to
be the method of choice, at least out of the tested trajectory-based methods.
The closest competition is FSSH+D, which can recover the shown observables
quantitatively for several phonon oscillation periods. In contrast, MTE seems
to be unable to describe partial non-adiabatic transitions correctly. We note that
the wave packet in this system is periodically forced back to the same avoided
crossing region, which is significantly more difficult to treat compared to the
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Figure 6.4: Time evolution of the (a) population on the upper Born-Oppenheimer
state 〈n̂+〉, (b) electron density on site 1 〈n̂1〉 and (c) relative nuclear
distortion 〈q̂〉, obtained in the Holstein dimer with γ̄ = t̄0 = 2.5 for the
antibonding adiabatic initial state centered around q̄ini = γ̄. Results are
shown for the methods MTE (dotted green line), FSSH and FSSH+D
(dashed-dotted orange and magenta lines), MCE (dashed light blue line)
and ED (solid blue line). The independent-trajectory methods and ED use
the same method parameters as in Fig. 6.2. MCE is performed with 300
configurations and reaches an energy drift of 0.2 ~ω0 at tMCE

0.2 ~ω0
= 6.37/ω0.

The snapshot-times shown in Fig. 6.3 are marked with vertical gray dashed
lines. Reproduced from Ref. [37], with the permission of AIP Publishing.
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typical avoided crossing problems of quantum chemistry, see, e.g., the original
FSSH article, Ref. [29].

6.1.3 Coherences in the initial state
The last example was the ideal situation for the surface hopping methods, with
the wave packet starting from a single adiabatic state and then approaching
an avoided crossing region, and FSSH+D seems like a suitable independent-
trajectory improvement of Born-Oppenheimer molecular dynamics in this case
(if more advanced methods are computationally too expensive). Instead of
having contributions on different Born-Oppenheimer states to build up over
time, one could also directly start in a coherent superposition of several of
these states. In such an initial state, the correct nuclear forces at every position
are not given by the derivatives of the Born-Oppenheimer surfaces, as assumed
in the surface hopping methods. One example is the bare local initial state
(see Fig. 6.1(b)), where the electron starts on one Holstein site and thus the
nuclei should initially move according to an electron density of zero on the
unoccupied and one on the occupied site. For a method to be able to deal
with such coherences widens its scope of applicability, for example to describe
the relaxation after a photoexcitation when one cannot guarantee to be initially
restricted to a single adiabatic state, see Ref. [242].

To discriminate the effects of non-adiabatic transitions occurring during the
time evolution and initial coherences between adiabatic states, we return to
the adiabatic parameter regime γ̄ = 4, t̄0 = 10 used before (see Fig. 6.2).
With the derivative couplings being very delocalized and non-adiabatic tran-
sitions prohibited, the dynamics of the two components of the adiabatic wave
function (Ψ(a)+ and Ψ(a)− ) should depend on their respective Born-Oppenheimer
surfaces only, see Eq. (5.15), and one could utilize the Born-Oppenheimer
approximation, see Eq. (5.19). This separation of the dynamics on the different
surfaces holds for the wave function amplitudes only. When using a classical
approximation for the nuclei instead and propagating them as trajectories, as
in MTE and FSSH, the local phase relation of both electronic wave function
components is important to correctly determine the nuclear forces, at least in
the short-time regime.

To better visualize the exact dynamics, we present two snapshots showing the
time-evolved probability densities of the bare local initial state in this adiabatic
parameter regime obtained with ED (in the Born-Huang basis) in Fig. 6.5.
The densities are shown both in the Born-Oppenheimer basis (Figs. 6.5(a),(c))
and in the diabatic (site-local) basis (Figs. 6.5(b),(d)), and the diagonal entries
of the Born-Oppenheimer Hamiltonian in the respective bases are included
in the figure. With the electron of the initial state being restricted to site
one in the Holstein dimer, the correct potential determining the forces at time
t = 0 corresponds to the shifted right harmonic oscillator V(q̄) = q̄2/2 − γ̄q̄,
see Fig. 6.5(b). This is also the force which is used in MTE to propagate
the nuclear trajectory. In FSSH, however, the forces are calculated from the
active surfaces, which for this initial state are either the upper or lower Born-
Oppenheimer surface. If we take a trajectory sampled close to q = 0, the
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2, each for the two times t = 0/ω0
and t = 4.04/ω0, obtained with ED in the Holstein dimer with γ̄ = 4
and t̄0 = 10 for the bare local initial state. The probability densities
in each snapshot are drawn with a constant (arbitrary) scaling on top of
the diagonal entries of the Born-Oppenheimer Hamiltonian in the used
basis, i.e., EBO

± (q) for the adiabatic and 〈χi |ĤBO(q)|χi〉 for the diabatic
probability densities. The ED method uses the same method parameters
as in Fig. 6.2. Reproduced from Ref. [37], with the permission of AIP
Publishing.

slope of either surface is close to zero, leading to a completely different nuclear
force. Conversely, the dynamics of the total wave function amplitudes take
place on the two surfaces separately. At later times (Figs. 6.5(c)-(d)), the
contribution of the wave function on the upper (antibonding) surface remains
close to q = 0, while the contribution on the lower surface is splitted into the
two bound states at the minima of the potential. This spatial separation limits
the influence of the initial coherences on the late-time dynamics. The exception
is the diabatic probability density close to the symmetric configuration (q ≈ 0),
which oscillates very fast between the two sites, due to the choice of the initial
state, and is delocalized in the snapshot selected in Fig. 6.5(d).

To see how the trajectory-based methods deal with this combination of
having coherences in the initial state and a wave packet splitting at later times,
we compare MTE, FSSH, FSSH+D, MCE and ED for two observables in
Fig. 6.6. First, we start with the population on the upper Born-Oppenheimer
state, which starts at 〈n̂BO

+ 〉 = 0.5. We observe that MTE and MCE correctly
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Figure 6.6: Time evolution of the (a) population on the upper Born-Oppenheimer state
〈n̂+〉 and (b) relative nuclear distortion 〈q̂〉, obtained in the Holstein dimer
with γ̄ = 4 and t̄0 = 10 for the bare local initial state. The inset (c) shows
the short-time evolution of 〈q̂〉. Results are obtained with the methods
MTE (dotted green line), FSSH and FSSH+D (dashed-dotted orange and
magenta lines), MCE (dashed light blue line) and ED (solid blue line). The
independent-trajectory methods and ED use the same method parameters
as in Fig. 6.2. MCE is performed with 60 configurations and does not reach
an energy drift of 0.2 ~ω0 in the shown time interval. The snapshot time
of Figs. 6.5(c)-(d) is marked with a vertical gray dashed line. Reproduced
from Ref. [37], with the permission of AIP Publishing.
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reproduce that this observable hardly changes over time. In contrast, FSSH
shows a large relaxation toward the lower Born-Oppenheimer state. This is
caused by one of the caveats of the surface hopping methods, mentioned in
Sec. 5.3.4: the frustrated hops. With the energy separation between the two
surfaces being large compared to the nuclear momenta, trajectories starting on
the lower surface are not able to hop toward the upper surface. In contrast the
trajectories starting on the upper surface can switch to the lower surface (and
potentially later back up to the upper surface). This leads to an asymmetry of the
populations and the observed decay. The approximate derivation of FSSH from
the QCLE also mentions large nuclear momenta as one of its assumptions, see
Ref. [224]. The decoherence correction removes the coherences between the
adiabatic states, leading to a much reduced hopping rate between the surfaces
and to a better prediction of the adiabatic populations (non-adiabatic transitions
at late times are very unlikely with the very small nuclear kinetic energy and
we could not observe the slow decoherence-correction induced decay observed
previously in Fig. 6.2).

Second, the time evolution of the average nuclear distortion is shown in
Fig. 6.6(b), and magnified in the short-time regime in Fig. 6.6(c). For the whole
time MCE coincides with ED, and there is no conceivable deviation even for
late times, which fits to the fact that the energy drift threshold of 0.2 ~ω0 is
not reached in that time interval. For short times the exact and MCE dynamics
predict a fast small oscillation of 〈q̂〉, which is at least partially reproduced by
the MTE method. This oscillation is caused by the fast electronic transitions
between the two Holstein sites and persists even for late times. Both FSSH
and FSSH+D do not capture these small oscillations, which is exactly because
the nuclear forces are calculated from the Born-Oppenheimer surfaces alone,
as explained before. In contrast, the large scale oscillations of the observable,
caused by the movement of the nuclei and the wave packet separation, is
surprisingly well reproduced with both surface hopping methods. In particular
FSSH+D shows a qualitative agreement with the exact results up to t ≈ 10/ω0.
With the electron switching rapidly between both sites, the average nuclear
forces are very close to adiabatic forces used in the surface hopping methods.
The opposite is true for MTE, which completely fails to describe this large
scale time evolution. With the nuclear forces calculated by the trace over
both surfaces in MTE, the wave packet separation seen in Fig. 6.5(c) cannot
be reproduced and not even a single phonon oscillation period is recovered
correctly.

While we used the same parameter regime as before in the Born-Oppenheimer
case (see Fig. 6.2), the performance of the independent-trajectory methods is
completely different. The coherences present in the initial state lead to wrong
short-time dynamics in the surface hopping methods, while the independent
dynamics on the two far separated surfaces for later times are well captured.
MTE can reproduce the ultra-short time dynamics, but the mean-field descrip-
tion leads to completely wrong long-time results. This underlines the influence
of the initial state on the performance of the independent-trajectory methods.

150



6.1 Holstein dimer

6.1.4 The bare local state with small electron hopping

In both previous cases, (i) the non-adiabatic transitions of an adiabatic initial
state and (ii) the initial state with coherences but in an adiabatic parameter
regime, FSSH+D seems like the best of the studied independent-trajectory
methods, at least beyond ultra-short times. We now turn to an example which
is far away from the adiabatic initial state or parameter regime: the bare local
state with a much reduced electron hopping of t̄0 = 0.5 and a strong coupling
γ̄ = 2. This was also labeled the resonant regime, see Ref. [188], since
the oscillation period of a localized electron charge in the undistorted Holstein
dimer equals the classical harmonic oscillator period for these parameters. This
case of a relatively slow electron (or fast phonon) might seem unphysical for
realistic materials, but it is excellent to test how the trajectory-based methods
deal with coherences in the initial state in a truly non-adiabatic regime. With
the nuclei and electrons moving at a similar speed, temporal polaronic trapping
effects were observed in large charge-density wave systems, visible in a plateau-
formation in the electronic densities, see Ref. [288]. In the Born-Oppenheimer
surfaces of the dimer (see Fig. 5.2) this corresponds to moments in time when
the wave packet is away from the symmetric point q = 0, where transitions
both between the surfaces and the Holstein sites are unlikely (for small t0, the
adiabatic and diabatic states are similar and change character around q = 0,
see the discussion in Sec. 5.3.7). This trapping alternates with time periods in
which the wave packet is close to q = 0, allowing for rapid transitions. In the
large systems the situation is similar, with the trapping occurring when a large
phonon number builds up temporarily on the occupied sites.

To see how the methods deal with such an initial state, the time evolution of
the electron density on one Holstein site is shown for the bare local initial state
in Fig. 6.7. A plateau in the electron density is clearly visible in both ED and
MCE, whose time evolutions coincide for the whole time-interval shown. We
see that MTE is able to somehow recover the plateau formation, although at
a slightly reduced value. The deviation is significantly stronger in the surface
hopping methods, where a plateau-like constant electron density is not visible.
All independent-trajectory methods predict a too strong localization of the
electron density on the initially occupied site after the first nuclear oscillation
period, with FSSH following the decline of the density slightly better than MTE
and FSSH+D for a short time interval.

It seems that neither of the independent-trajectory methods is able to properly
deal with this combination of initial state and parameter regime, with MTE at
least giving a proper time evolution within the first nuclear oscillation period.
As before, the coherences of the initial state prevent an accurate short-time
description of the surface hopping method, but in contrast to the adiabatic
regime this is not compensated by better long time dynamics in this case,
making FSSH/FSSH+D unsuitable to describe this case. We note that if one
would use the active surface definition of the density matrix, see Eq. (5.61),
or project the wave function amplitudes of the initial state toward the active
surfaces, then the electron density of both FSSH and FSSH+D would start
at 〈n̂1〉 = 0.5, far away from the true result. In our results for the larger
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Figure 6.7: Time evolution of the electron density on the initially occupied site 〈n̂1〉,
obtained in the Holstein dimer with γ̄ = 2 and t̄0 = 0.5 for the bare lo-
cal initial state. Results are shown for the methods MTE (dotted green
line), FSSH and FSSH+D (dashed-dotted orange and magenta lines),
MCE (dashed light blue line) and ED (solid blue line). The independent-
trajectory methods and ED use the same method parameters as in Fig. 6.2.
MCE is performed with 150 configurations and does not reach an energy
drift of 0.2 ~ω0 in the shown time interval. Reproduced from Ref. [37],
with the permission of AIP Publishing.

systems, we will focus on an intermediate electron hopping parameter regime
of t̄0 = 2.5, where non-adiabatic transitions happen frequently (see Fig. 6.3),
but the electrons are still faster than the phonons.

6.1.5 Tunneling
Another example where the independent-trajectories fail is the description of
tunneling. With the nuclei described as classical particles, the trajectories are
not able to overcome an energy barrier if their kinetic energy is insufficient.
Extensions of the methods to include tunneling exist, see Refs. [305, 306], but
are not included for the calculations carried out in this thesis (or in the corre-
sponding article, Ref. [37]). The inability to describe tunneling is especially
relevant at longer times and relatively low nuclear kinetic energies.

To visualize the problem, we selected the dressed local initial state, see
Fig. 6.1(c), in which much of the nuclear density is located close to the minimum
of the lower Born-Oppenheimer surface. For the parameters we stay with the
ones from the previous example, i.e., γ̄ = 2, t̄0 = 0.5, making non-adiabatic
transitions around q = 0 in principle possible. The resulting time evolution of
the electron density on the initially occupied site is shown in Fig. 6.8.

We see that ED indeed predicts a very slow tunneling transition between the
two Holstein sites with a period of approximately T ≈ 100π/ω0. From the
shape of the eigenstates of the Holstein dimer (see Fig. 5.3), we can speculate
that the initial state is in a superposition of the lowest two eigenstates. Their
energy splitting for the parameters used here is ∆E ≈ 0.02 ~ω0, which fits very
well to the observed tunneling period, see also Ref. [37]. All independent-
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trajectory methods are unable to describe the tunneling, as expected. The
coupled-trajectory method MCE shows the long-time tunneling effect to some
degree, but even for the used 200 configurations and the larger standard de-
viation used in the initial sampling (see Ref. [37]) it could not be converged
sufficiently to capture the complete recovery of the electron density after one
period. Extensions of coupled-trajectory methods to improve the description
of tunneling have also been proposed, see Refs. [307, 308].

6.1.6 Summary for the Holstein dimer
In this section, we presented a few example cases to illustrate the performance of
the independent-trajectory methods MTE, FSSH and FSSH+D in dealing with
non-adiabatic effects, either due to non-adiabatic transitions, or by starting from
an initial state with coherences between adiabatic states, or both. The methods
have been compared to ED and to the coupled-trajectory method MCE. The
latter significantly improved upon the MTE method and coincided well with
ED where converged. We saw that the surface hopping methods are well
prepared to deal with non-adiabatic transitions and can describe a wave packet
splitting. Coherences of the initial state impede their ability to describe the
short-time dynamics, but in an adiabatic parameter regime they still provide
a decent long-time description. In most examples, applying a decoherence
correction improved the results, in particular for nuclear observables. MTE
could always recover the ultra-short time dynamics, independent of the initial
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Figure 6.8: Time evolution of the electron density on the initially occupied site 〈n̂1〉,
obtained in the Holstein dimer with γ̄ = 2 and t̄0 = 0.5 for the dressed
local initial state. Results are shown for the methods MTE (dotted green
line), FSSH and FSSH+D (dashed-dotted orange and magenta lines),
MCE (dashed light blue line) and ED (solid blue line). The independent-
trajectory methods and ED use the same method parameters as in Fig. 6.2.
MCE is performed with 200 configurations and reaches an energy drift of
0.2 ~ω0 at tMCE

0.2 ~ω0
= 123.7/ω0. The quantum superposition sampling of

MCE was carried out with a larger standard deviation than normally, see
Ref. [37] for details. Reproduced from Ref. [37], with the permission of
AIP Publishing.
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state and parameters, but both non-adiabatic transitions and initial coherences
can lead to strong deviations from the exact results already after a single phonon
oscillation period. In larger systems, the separation of Born-Oppenheimer
surfaces can become smaller and also the shape of these surfaces changes
significantly. This is analyzed in the following.

6.2 Holstein trimer
We now turn to the Holstein trimer, which serves as an intermediate step before
continuing with the extended Holstein chain. The Born-Oppenheimer surfaces
of the trimer can still be visualized easily and are shown in Figs. 5.6 and
5.7. The shape of the surfaces differs drastically from the dimer, with the
middle (non-bonding) Born-Oppenheimer surface approaching either of the
other two surfaces for a large positive or negative symmetric nuclear distortion
x̄s (for x̄a = 0). We stay with a fixed parameter set of γ̄ = t̄0 = 2.5, i.e., a
strong electron-phonon coupling, with electrons that are faster than the nuclei,
but still allow for non-adiabatic transitions also outside of the asymptotically
approaching surfaces. As before, we investigate both adiabatic and local initial
states. For the comparison we have again the coupled-trajectory method MCE
and a version of exact diagonalization (ED), now carried out in a second
quantized basis, implemented and tested by D. Jansen, see Ref. [37] for details.

6.2.1 Non-bonding adiabatic initial state

We start with an adiabatic initial state, for which, unfortunately, no ED data are
available. As the starting surface we choose the middle, non-bonding, Born-
Oppenheimer surface with an initial Gaussian wave packet centered around
x̄a = 0 and x̄s =

2√
3
γ̄ (corresponding to the nuclear distortions of the dressed

local state, but with the electron promoted to the non-bonding state). This
non-bonding state has no contribution on the central trimer site for x̄a = 0, see
Fig. 5.6(b). Even with the Gaussian wave packet having a finite width in x̄a,
the electron density on the central site is still very small. The time evolution
of the electron density on this central site 〈n̂2〉 and of the symmetric phonon
distortion 〈x̂s〉 is shown in Fig. 6.9.

While no ED data are available, we consider the MCE simulation as a good
reference method, at least until the energy convergence criterion tMCE

0.2 ~ω0
is

reached. The time evolution of 〈x̂s〉 shows several large oscillations, slightly
damped for later times. During the first quarter nuclear oscillation, when the
wave packet approaches x̄s = 0, we see that the electron density on the central
site 〈n̂2〉 increases sharply. Here, already a large part of the wave packet
switched from the non-bonding to the bonding state, which has a significant
contribution on the central site for x̄s ≈ 0. Continuing to negative x̄s, however,
the bonding state has less contribution on the central site, visible in a decline of
the electron density on that site. With most of the electronic population staying
in the bonding state (Born-Oppenheimer ground state) for later times, the
density on the central site continues to oscillate together with the symmetric
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Figure 6.9: Time evolution of the (a) electron density on the central site 〈n̂2〉 and (b)
symmetric nuclear distortion 〈x̂s〉, obtained in the Holstein trimer with
γ̄ = t̄0 = 2.5 for the non-bonding adiabatic initial state (〈n̂BO

1 (t=0)〉 = 1)
centered around x̄inis = 2γ̄/

√
3, x̄inia = 0. Results are shown for the

methods MTE (dotted green line), FSSH and FSSH+D (dashed-dotted
orange and magenta lines) and MCE (dashed light blue line). We use the
following method parameters: For the independent-trajectory methods
Ntraj = 20 000 and ∆t = 0.001/ω0, while MCE uses 1200 configurations
and reaches an energy drift of 0.2 ~ω0 at tMCE

0.2 ~ω0
= 8.66/ω0. Reproduced

from Ref. [37], with the permission of AIP Publishing.

nuclear distortion. The dynamics obtained with all methods are relatively
similar, with the surface hopping methods reproducing the MCE results better
than MTE. MTE also underestimates the nuclear oscillation period of 〈x̂s〉 for
later times. We attribute the relatively good agreement of all methods to the
beneficial form of the Born-Oppenheimer surfaces: In the asymptotic regions
with strong non-adiabatic coupling, the slope of the approaching surfaces is
similar, resulting in roughly the same nuclear forces, independent of whether
a mean-field or a surface hopping approach is used. The performance of the
surface hopping methods is, as far as we can judge with the lack of ED data,
even better than in the Holstein dimer for the same parameters (see Fig. 6.4).

6.2.2 Bare local initial state

Next, we continue with the difficult case of a bare local initial state on the
central site (i.e., 〈n̂2(t = 0)〉 = 1), with strong coherences mainly between the
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lowest (bonding) and highest (antibonding) Born-Oppenheimer surfaces, using
the same parameters as before. The electronic population on the bonding state
(〈n̂BO

0 〉), the electron density on the central site, and the average symmetric
nuclear distortion are shown in Fig. 6.10.

From a similar initial state in the Holstein dimer (see Fig. 6.6), we expect
rapid electronic transitions between the Holstein sites. This is visible in the
electron density in Fig. 6.10(b). The effect of these transitions on the nuclear
distortions seems to be less pronounced here compared to the dimer case,
with Fig. 6.10(c) showing only small oscillations caused by these electronic
transitions. Nonetheless, we can observe that the ultra-short time description of
〈x̂s〉 in the surface hopping methods deviates slightly from the results obtained
with the other methods. In addition, the fast electronic transitions between
the sites, which persist in ED and MCE until late times, are quickly damped
in all independent-trajectory methods, with this damping being the fastest in
FSSH+D and slowest in MTE.

For the long-time behavior, we see that both FSSH and FSSH+D are closer
to the exact results for 〈x̂s〉 than MTE, and show a similar oscillation period,
although the agreement is more of a qualitative than quantitative nature. The
electron density on the central site obtained in the surface hopping methods also
seems to be slightly closer to the time-average of the exact and MCE dynamics,
but the small-scale oscillations are completely lost. Furthermore, we show the
relaxation of the initial state toward the lowest Born-Oppenheimer surface with
〈n̂BO

0 〉 in Fig. 6.10(a). This observable reveals that there is nearly no relaxation
in the MTE method toward the lowest surface and that the dynamics are thus
strongly influenced by the higher surfaces at later times. FSSH, FSSH+D and
MCE show a much stronger relaxation, with a better agreement of MCE and
FSSH+D at late times. With no ED reference data available for this observable,
this agreement should be taken with caution and further studies are needed.

6.2.3 Dressed local initial state
We now turn to the dressed local initial state, previously only used to investigate
the tunneling transition. The electron is initially placed on the central trimer
site and the nuclear distortion on that site is already adjusted to the electron,
which results in a Gaussian wave packet around x̄a = 0 and x̄s =

2√
3
γ̄, as before

in the non-bonding case. The dressed local state starts with a large population
on the lowest Born-Oppenheimer surface, with 〈n̂BO

0 (t = 0)〉 ≈ 0.92225, see
also Ref. [37]. This state still has coherences between the adiabatic states, but
these are much smaller compared to the bare local state, because the lowest
Born-Oppenheimer surface is further separated from the excited ones at this
point, see Fig. 5.7. With the far separation of the lowest and the excited
Born-Oppenheimer surfaces, we expect the contribution on the lowest surface
to be rather stationary, while the non-bonding and antibonding contributions
should undergo large nuclear oscillations, which might be a challenge for the
mean-field method MTE.

The dynamics of 〈n̂2〉 and 〈x̂s〉 are shown in Fig. 6.11. The MCE and ED
results show a better agreement compared to the bare local case, which fits to
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Figure 6.10: Time evolution of the (a) population on the lowest Born-Oppenheimer
state 〈n̂0〉, (b) electron density on the central site 〈n̂2〉 and (c) symmetric
nuclear distortion 〈x̂s〉, obtained in the Holstein trimer with γ̄ = t̄0 = 2.5
for the bare local initial state at the central site. Results are shown for the
methods MTE (dotted green line), FSSH and FSSH+D (dashed-dotted or-
ange and magenta lines), MCE (dashed light blue line) and ED (in second
quantization, solid blue line). The independent-trajectory methods use
the same method parameters as in Fig. 6.9. ED in second quantization is
performed with M = 26 local phonon states, while MCE uses 1000 con-
figurations and reaches an energy drift of 0.2 ~ω0 at tMCE

0.2 ~ω0
= 8.16/ω0.

Reproduced from Ref. [37], with the permission of AIP Publishing.
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Figure 6.11: Time evolution of the (a) electron density on the central site 〈n̂2〉 and (b)
symmetric nuclear distortion 〈x̂s〉, obtained in the Holstein trimer with
γ̄ = t̄0 = 2.5 for the dressed local initial state at the central site. Results
are shown for the methods MTE (dotted green line), FSSH and FSSH+D
(dashed-dotted orange and magenta lines), MCE (dashed light blue line)
and ED (in second quantization, solid blue line). The independent-
trajectory methods use the same method parameters as in Fig. 6.9. ED in
second quantization is performed with M = 21 local phonon states, while
MCE uses 1000 configurations and reaches an energy drift of 0.2 ~ω0 at
tMCE
0.2 ~ω0

= 14.72/ω0. Reproduced from Ref. [37], with the permission of
AIP Publishing.

the better convergence of MCE visible from the energy convergence criterion
tMCE
0.2 ~ω0

, which is reached at a later time. The same holds for FSSH and FSSH+D,
which deviate less from the exact results compared to the bare local case, as
can be seen in the time evolution of 〈x̂s〉. The average electron density on the
central site 〈n̂2〉 stays close to the exact results, while its small-scale oscillations
are again lost at late times.

The improvement of the other methods does not carry over to MTE. Here, the
electron density on the central site decays too much and 〈x̂s〉 oscillates around
too low values. As shown in the Holstein dimer, the mean-field averaging
in MTE prevents an accurate separation of the contributions on the different
surfaces. We find it surprising that even though the initial state has a very large
population on a single adiabatic state, the remaining coherent contributions on
the other states still influence and impair the dynamics to this extent.
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6.2.4 Summary for the Holstein trimer
Similar as in the Holstein dimer, the coupled-trajectory method MCE shows a
very good agreement with the exact results, where these are available. In these
small systems, where the MCE method is computationally still cheap (in some
cases even cheaper than the independent-trajectory methods), it is definitely the
method of choice out of the tested trajectory-based algorithms.

Of the independent-trajectory methods, MTE seems to perform worst, both
for an adiabatic and a local initial state. Even rough estimates for nuclear
oscillation periods or average nuclear distortions are unreliable after a single
oscillation period. The dressed local initial state shows that a small contribution
in another adiabatic state can already significantly alter the resulting dynamics.
In such a case it might be better to start independent dynamics of wave packets
restricted on the different Born-Oppenheimer surfaces. This would, however,
remove the short-time agreement of MTE with the exact methods that is one of
the strong suits of this method.

The surface hopping methods, which were specifically designed to describe
the independent dynamics on various surfaces, show a better agreement with
the exact results. The methods still work best when starting from a single
adiabatic state, as otherwise initial coherences prevent an accurate calculation
of the nuclear forces in the short-time regime. For such coherent initial states,
diabatic populations, such as local electron densities in the single-particle case,
can still be reproduced for some time by avoiding an initial projection onto
the Born-Oppenheimer surfaces (see the discussion at the end of Sec. 5.3.4)
and by using the mixed definition of the density matrix in the calculation of
observables (see Eq. (5.63)), although the short-time regime could also be
described with the wave-function definition. We observe a better agreement
of FSSH/FSSH+D with the exact results in the dressed local case, where the
coherences are less pronounced and the initial state is “almost” restricted to a
single adiabatic state. We could not observe a clear indication whether to use
or omit a decoherence correction is the better choice in the Holstein trimer.

6.3 Holstein chain
In the small systems of the Holstein dimer and trimer, the coupled-trajectory
method MCE clearly outperformed both MTE and the surface hopping methods.
We now continue with the extended Holstein chain, for which we carried
out benchmark calculations for sizes up to L = 51. These system sizes are
comparable to the systems studied with the manganite tight-binding model (see
Ch. 4), although still one-dimensional. The computational cost of MCE scales
with the third power of the number of used configurations, while both MTE and
FSSH do not only scale linearly with the number of trajectories, but can also be
perfectly parallelized. While MCE in principle converges to the exact results,
this convergence might not be reached in practice, see Ref. [263]. In the results
presented here and in the corresponding article, Ref. [37], a strict convergence
of MCE could not be achieved in general for long times and different methods
are needed to serve for benchmark purposes. With the systems being much
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too large for exact diagonalization, we will use the DMRG data provided by D.
Jansen and J. Stolpp for the Holstein chain, see the introduction of this chapter.

In this thesis, we will stay with the single-electron case and analyze both
bare and dressed local initial states located at the center of the Holstein chain,
see Figs. 6.1(d),(e). As stated in Ref. [169], the time-evolution in such a small
polaron setup already constitutes a challenging many-body problem, as the
phonon-dressing of the electron and the formation of a quasi-particle needs
to be captured. Here, we will analyze the spreading of the initially localized
electron density in this polaronic model and the energy transfer between the
electronic and nuclear subsystems. Additional results for charge-density wave
states in the Holstein chain are presented in Ref. [37], where the MTE results
were obtained by S. Gräber.

As mentioned already in Ref. [37], it is difficult to predict the transport
behavior of, for example, an initially localized charge density in correlated
1D lattice models, see Ref. [309], and hence the new DMRG reference data
provided in Ref. [37] are needed for the benchmark studies of the trajectory-
based methods. A recent tensor network state method study of the same initial
states has been presented in Ref. [54], whose results have been reproduced
for the same parameters with the DMRG method used here and in Ref. [37],
presented in Sec. 6.3.4. A benchmark test for MCE has been carried out in the
periodic dispersive Holstein chain against the hierarchical equations of motion
method for 10 sites and the multiple Davydov D2 ansatz for 16 sites (see
Refs. [43, 304]), which found a good performance of MCE for the parameters
chosen there. The Davydov D2 ansatz has also been applied to the same model
including off-diagonal electron-phonon coupling for 32 sites, see Ref. [268].

Similar initial states, although starting with the phonons prepared in a thermal
state, have been investigated with surface-hopping methods, see Refs. [243,
256] and references therein, from which we also adopted some of the FSSH
correction algorithms for large systems, see Sec. 5.3.5. In these studies, the
focus was on the long-time behavior and on estimating mobilities, but they
provided no comparison against numerically exact reference data to confirm
the accuracy of the methods. Bringing together the independent-trajectory
methods with the coupled-trajectory method MCE and the numerically exact
DMRG data, our benchmark study, published in Ref. [37], thus provides new
insight into the performance of these methods in large electron-phonon coupled
systems and serves as a starting point for testing future improvements and
variants of trajectory-based methods. In view of the possible application to
the manganite tight-binding model (see Ch. 3), we are mainly interested in the
performance of MTE in comparison to FSSH or FSSH+D in this thesis.

6.3.1 FSSH in large systems

Before continuing with the benchmark tests in the Holstein chain, we have to
evaluate our implementation of the FSSH method in these large systems. As
mentioned in Sec. 5.3.5, we decided to include a restriction to the decoherence
correction in this case. In addition, choosing an appropriate definition of the
electronic density matrix becomes more difficult for certain initial states in
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large systems. For the Holstein dimer and trimer, the mixed definition of the
density matrix (see Eq. (5.63)), could reproduce both adiabatic and diabatic
populations for all initial states in the short-time regime, and in many cases
also for longer times (see Ref. [241] for a discussion of the advantages of this
definition). As already mentioned in Sec. 5.3.4, this definition can lead to
negative electronic populations in the diabatic basis. We observed this only
for initial states starting with strong coherences between the adiabatic states,
such as the bare local case. In the small systems this was rarely a problem, and
also for the local states in large systems this leads only to very small negative
and positive electron densities far away from the initially occupied sites at the
edges of the Holstein chain.

However, one of the most interesting quantities for analyzing the spread-
ing of an initially localized charge is the reduced mean-squared displacement
(RMSD), defined as:

RMSD(t) =

√√√ L∑
i=1
〈n̂i(t)〉

(
a · i − xel

0

) 2
, (6.1)

where a is the distance between Holstein sites, here set to one, and xel
0 =[∑L

i=1 〈n̂i(t = 0)〉 ai
]

is the (average) initial electron position, here always the
center of the chain. The RMSD measures the spreading of the electron density
and its square, the mean-square displacement (MSD), is often taken as the dif-
fusion constant to determine the mobility via Einsteins relation when studying
charge transport, see, e.g., Refs. [243, 310, 311]. Hence, a square-root growth
of the RMSD is an indication for a diffusive transport behavior.

While important to quantify the transport behavior, it is a quantity highly
sensitive to the electron densities on the edges of the Holstein chain, due to the
quadratic prefactor scaling with the distance from the center of the chain in its
expression, Eq. (6.1). Hence, the small negative densities obtained with the
mixed definition of the density matrix on these sites can obscure the RMSD,
which is shown in Fig. 6.12(a). Here, the RMSD of the bare local initial
state for a very large system of L = 101 sites with γ̄ = t̄0 = 2.5 obtained with
FSSH with the three introduced definitions of the electronic density matrix (see
Sec. 5.3.4) is compared to the numerically exact results obtained with DMRG.

The DMRG results are only available for short times, which makes it difficult
to judge the long-time accuracy of FSSH. Nonetheless, we can observe three
vastly different results predicted from the three definitions for ρ̂el : Using the
electronic wave function (WF) definition (see Eq. (5.62)), the RMSD continues
to grow almost square-root like and seems to deviate from the DMRG curve,
which, for the times available, flattens off faster. The active surface (AS)
definition (see Eq. (5.61)) starts from a completely wrong value. Since the bare
local initial state starts with all nuclear harmonic oscillators in their ground state,
the adiabatic states of many trajectories are far spread throughout the system
and the local electron will have significant contributions in most of them. This
also visualizes again why we do not project the initial wave function amplitudes
onto the selected active adiabatic surface: In this case the three definitions of the
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Figure 6.12: Time evolution of the reduced mean-squared displacement obtained in
the Holstein chain with L = 101 and γ̄ = t̄0 = 2.5 for the bare local
initial state on the central site. (a) The RMSD calculated with differ-
ent definitions of the electronic density matrix in FSSH, ρ̂WF, ρ̂AS and
ρ̂mixed (see Eqs. (5.62), (5.61) and (5.63))) are compared to results ob-
tained with DMRG. The dashed part of the FSSH (mixed)-line reveals a
negative MSD. (b) FSSH with decoherence correction (FSSH+D) is com-
pared to DMRG and various types of FSSH with restricted decoherence
(FSSH+RD, see Sec. 5.3.5): (i) direct application of the decoherence
correction (DC) with an active space threshold of R = 0.999, (ii) delayed
application of the DC with R = 0.999, (iii) direct application of the DC
with R = 0.99, and (iv) delayed application of the DC with R = 0.99.
The independent-trajectory methods use the same method parameters as
in Fig. 6.9. The DMRG simulations are performed with εLBO = 10−9,
εbond = 10−9, ∆t = 0.004/ω0 and M = 40. Reproduced from Ref. [37],
with the permission of AIP Publishing.
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density matrix (Eqs. (5.61), (5.62) and (5.63)) would be equal initially, but all
lead to the wrong initial RMSD. For longer times, the (AS)-definition seems to
level off more than the (WF)-definition. With the active surfaces approximately
obeying detailed balance, we normally expect the long-time results according
to the (AS)-definition to be more accurate, which we cannot check with the
short-time DMRG results available here. The mixed definition of the density
matrix (see Eq. (5.63)), which normally combines the strengths of the other two
definitions and interpolates between the two, completely fails in the prediction
of this very sensitive quantity. The MSD even becomes negative for some
times, indicated by dashed lines in Fig. 6.12(a). From the results presented
here, it seems that all three definitions of the electronic density matrix in FSSH
are unable to provide reliable results for the RMSD in such large systems.

The ambiguity between the definitions is reduced (with their differences
damped over time), when using a decoherence correction. Since the wave
function amplitudes relax toward the active surfaces, we can stay with the
(WF)-definition when using a decoherence correction, which will approach
the (AS)-definition for later times. This is shown in Fig. 6.12(b). We see
immediately that the FSSH+D results for the RMSD indeed level off to an
almost constant value for late times, but show an unphysical super-fast spreading
at short times. The problem lies again in the initial state, which, as mentioned
previously, is in a superposition of many delocalized adiabatic states in most
trajectories. With the decoherence correction removing the coherences between
the adiabatic states, the electron density spreads artificially through the system,
with the velocity given by the decoherence rate and not by the electron hopping.
This is the reason why we have to apply the restrictions to the decoherence
correction (FSSH+RD), mentioned in Sec. 5.3.5, designed to prevent such a
“spurious charge transport” in large systems. We note that the restrictions were
suggested for dealing with surface hops between spatially distant adiabatic
states, but work just as well for the initial states with coherences studied here.

In Fig. 6.12(b) four variants of the decoherence-restriction are shown, with
two different values for the active space threshold R combined both with and
without the quarter-phonon oscillation period delay in the decoherence correc-
tion (see Sec. 5.3.5). In most observables the variant (iv) for the FSSH+RD
results, using a value of R = 0.99 with the delayed decoherence correction,
was the closest to the available DMRG results, which is therefore used in all
following results in the Holstein chain.

We note that using normal FSSH one can still obtain reasonable results for
most observables computed in the following. Despite its failure in describing
the RMSD, we use the mixed definition of the electronic density matrix ρ̂mixed

when computing diabatic electronic properties in FSSH, which for most other
observables is sufficient. When using the restricted decoherence correction,
we will instead use the wave function definition ρ̂WF for calculating diabatic
electronic properties (like electron densities on the various Holstein sites) and
the usual active surface distribution to determine the population on the Born-
Oppenheimer states.

163



6 Real-time non-adiabatic dynamics of exact and quantum-classical methods in the
Holstein model

6.3.2 Bare local initial state

We now start with the bare local initial state on the central site in the Holstein
chain, which we investigate for L = 11 and L = 51 for the same parameters as
in the Holstein trimer: γ̄ = t̄0 = 2.5. We compare the independent-trajectory
methods MTE, FSSH and FSSH+RD with the coupled-trajectory methods MCE
and the (for our purposes) numerically exact DMRG results. The results and
analysis are equivalent to the corresponding article, see Ref. [37], although in
this thesis with a slightly higher focus on the independent-trajectory methods.

The first observable which allows to discern the spreading behavior of the
local initial state in the studied methods is the electron density 〈n̂i〉 on the
different sites i. The results for all methods, both for L = 11 and L = 51,
are shown in Fig. 6.13. All methods show a ballistic (linear) spreading of
the electron density for short times (t < 2/ω0), which reflects off the chain
boundaries in the L = 11 system. The DMRG simulation reached a time of
only about one nuclear oscillation period. In the L = 11 system, the electron
densities of MCE, FSSH and FSSH+RD retain a large contribution close to the
initially occupied site, which fits to the DMRG results for the times available.
In contrast, the electron density obtained with MTE is much more delocalized
throughout the system. In the L = 51 system, the DMRG results show that the
whole electron density stays rather localized in the central region of the Holstein
chain after the initial ballistic expansion. This is qualitatively reproduced
with FSSH and FSSH+RD, and we mention that the small erroneous electron
densities at the chain boundaries in FSSH caused by the mixed definition of
the electron density are barely visible in this color-plot (they are in the range
of a few ±10−4). In MCE, the electron densities close to the central site seem
to be close to the DMRG results, but a fraction of the density escapes toward
the chain boundaries, with a (difficult to see) periodic modulation concomitant
with the nuclear oscillation. MTE shows a large spreading of the electron
density, which clearly deviates from the DMRG results.

A better quantitative analysis can be carried out with the RMSD, shown in
Fig. 6.14. For L = 11, we indeed observe a good agreement of all methods
except MTE. Also the results for FSSH, obtained with the mixed definition of
the density matrix, are still reasonable and close to the results of FSSH+RD
(obtained with the wave-function definition of the density matrix). For L = 51,
the FSSH results are left out, since no definition of the density matrix can
reproduce the RMSD, see Fig. 6.12. With the DMRG results obtained only
for short times, it is difficult to judge the long-time performance of the other
methods, which all show a qualitatively different time evolution. FSSH+RD
converges to an almost constant value after the initial expansion, MTE continues
with an almost diffusive spreading at late times, with a linear fit of the log-
log curve in the times tω0 ∈ [1, 20] revealing a slope of approximately 0.48,
and MCE shows a second large increase of the RMSD, not seen in any other
method, and the method is clearly not converged (see also Ref. [37], where the
convergence behavior of MCE in the Holstein chain is analyzed in more detail).
As before with FSSH, most of the electron density seems to be well described
with MCE, but the part of the density that escapes the trapping in the chain
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Electron density 〈n̂i〉 in the Holstein chain, bare local initial state, γ̄ = 2.5, t̄0 = 2.5
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Figure 6.13: Time evolution of the electron densities 〈n̂i〉 in the Holstein chain of
lengths L = 11 and L = 51, with γ̄ = t̄0 = 2.5 and starting from the bare
local initial state at the central site. Results are shown for the methods
(a) and (b) DMRG, (c) and (d) MCE, (e) and (f) MTE, (g) and (h) FSSH
and (i) and (j) FSSH+RD, each both for L = 11 and L = 51. The
independent-trajectory methods use the same method parameters as in
Fig. 6.9: Ntraj = 20 000 and∆t = 0.001/ω0. The DMRG simulations are
performed with εLBO = 10−8, εbond = 10−8, ∆t = 0.004/ω0 and M = 40.
MCE uses 5000 configurations, initialized with the pancake-like variant
for sampling the initial state (see Ref. [37] for details). Reproduced from
Ref. [37], with the permission of AIP Publishing, the figure layout has
been adapted to the format of this thesis.

center and moves toward the boundaries dominates the RMSD expression. A
longer time-evolution of the DMRG results is necessary to conclusively judge
the other methods in a future study, but for the times available, the FSSH+RD
method is the closest to DMRG.

The different behavior of at least MTE and the FSSH methods can be best
understood if we investigate the populations of the Born-Oppenheimer states.
This observable was computed neither with MCE nor DMRG, but it is still
instructive to look at. The populations are shown in Fig. 6.15. All methods
show very similar values for t = 0, with the distribution of active surfaces in
the surface hopping methods being very close to the electronic populations of
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Figure 6.14: Time evolution of the reduced mean-squared displacement (RMSD),
obtained in the Holstein chain with γ̄ = t̄0 = 2.5 and (a) L = 11 and
(b) L = 51 for the bare local initial state at the central site. Results are
shown for the methods MTE (dotted green line), FSSH and FSSH+RD
(dashed-dotted orange and magenta lines), MCE (dashed light blue line)
and DMRG (solid blue line). For L = 51, the results of FSSH are
ambiguous and omitted, see the discussion in Sec. 6.3.1. The methods
use the same method parameters as in Fig. 6.13, with the exception of
DMRG, where the cutoffs are decreased to εLBO = 10−9 and εbond = 10−9

for L = 51. Reproduced from Ref. [37], with the permission of AIP
Publishing.

MTE for the 20 000 trajectories used. As mentioned before, the bare local state
has significant contributions in every adiabatic state, with the L = 11 system
showing a slight alternation between even and odd states, and the L = 51
system having a population of close to 0.02 on every state.

The time evolution of the Born-Oppenheimer populations is, however, very
different in these methods. A weak relaxation toward the lowest state is seen
in MTE, with its population at time t = 20/ω0 increasing to 〈n̂BO

a 〉 ≈ 0.21 for
L = 11 and to 〈n̂BO

a 〉 ≈ 0.04 for L = 51. Most of the electronic weight is still
distributed among all of the adiabatic states. In contrast, the surface hopping
methods show a strong relaxation toward the lowest state, whose population
(determined from the active surface distributions) at time t = 20/ω0 increases
to 0.86 and 0.83 for FSSH and FSSH+RD in the L = 11 system, and to
0.80 and 0.81 for L = 51. A weak modulation with the nuclear oscillation
period is also visible. Hence, the long-time dynamics of both surface hopping
methods are strongly dominated by the lowest Born-Oppenheimer state, while
the dynamics of MTE are still influenced by most Born-Oppenheimer states,
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Figure 6.15: Time evolution of the Born-Oppenheimer states populations 〈n̂BO
a 〉 in

the Holstein chain of lengths L = 11 and L = 51, with γ̄ = t̄0 = 2.5, and
starting from the bare local initial state at the central site. Results are
shown for the methods (a) and (b) MTE, (c) and (d) FSSH, and (e) and
(f) FSSH+RD, each both for L = 11 and L = 51. The methods use the
same method parameters as in Fig. 6.13.

even at late times. Similar as in the Holstein dimer and trimer, the lowest Born-
Oppenheimer state for each nuclear configuration places the electrons where
their energy is lowest, which is typically a bonding state with the electron
localized at sites with a large nuclear displacement. The relaxation of the
surface hopping methods toward this lowest state thus indicates the formation
of electron-nuclear bound states and the saturation of the RMSD shown in
Fig. 6.14 might be attributed to a polaronic trapping of the electron density.
With the electron in MTE having persistently large populations in all the high-
excited Born-Oppenheimer states, the formation of such bound states is strongly
suppressed, which might be the reason why the electron density shows the
diffusive behavior in the RMSD.

Another indicator for the polaronic trapping of the electron density would
be the build-up of large nuclear distortions on the occupied sites. We show
the total number of phonons in the system, given by Nph =

∑
i 〈b̂
†

i b̂i〉, for all
studied methods in Fig. 6.16. The total phonon number determines the energy
stored in the phonon subsystem, as it corresponds (up to the additive zero-
point energies) to the harmonic oscillator terms of the Holstein-chain energy
expression (see Eq. (5.1)). With this system starting with all oscillators in their
ground state, it is thus an indicator for the energy transfer from the electron to
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Figure 6.16: Time evolution of the total phonon number Nph = 〈
∑

i b̂†i b̂i〉, obtained
in the Holstein chain with γ̄ = t̄0 = 2.5 and (a) L = 11 and (b) L = 51
for the bare local initial state at the central site. Results are shown for
the methods MTE (dotted green line), FSSH and FSSH+RD (dashed-
dotted orange and magenta lines), MCE (dashed light blue line) and
DMRG (solid blue line). All methods use the same method parameters
as in Fig. 6.13. Reproduced from Ref. [37], with the permission of AIP
Publishing.

the phonon subsystem. The curves for L = 11 and L = 51 are very similar,
as the total energy in both systems is equivalent if one discards the zero-point
energies. In both system sizes we observe a qualitatively different behavior
in MTE and the surface hopping methods, with the total phonon number in
MTE staying at very low values throughout the entire time evolution, while
the surface hopping methods stay at high phonon numbers after an initial rapid
build-up phase. This fits to the populations on the Born-Oppenheimer surfaces
depicted in Fig. 6.15 and the presence and absence of polaronic trapping in
FSSH/FSSH+RD and MTE, respectively. Both MCE and DMRG also show
the creation of a large phonon number in the first nuclear oscillation period,
with no other method reaching values as high as DMRG. For later times the
total phonon number of MCE returns to a value between the surface hopping
and MTE results. Unfortunately, the DMRG results are still only available for
roughly one nuclear oscillation period, and we cannot unambiguously deduce
the correct long-time behavior. The curve for L = 11 seems to suggest that the
Nph will stay at higher values, close to FSSH/FSSH+RD, but further studies
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are needed in the future for an accurate evaluation.
The convergence of MCE in these large systems is much better for local

observables close to the initially occupied site, see also Ref. [37], and also the
electron densities close to the center of the chain in Fig. 6.13 are closer to the
DMRG results, even for L = 51. We investigate this further by considering the
nuclear displacement on the central site 〈x̂central〉 for L = 51 in Fig. 6.17.
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Figure 6.17: Time evolution of the nuclear position on the central site 〈x̂central〉,
obtained in the Holstein chain with L = 51 and γ̄ = t̄0 = 2.5 for the bare
local initial state at the central site. Results are shown for the methods
MTE (dotted green line), FSSH and FSSH+RD (dashed-dotted orange
and magenta lines), MCE (dashed light blue line) and DMRG (solid blue
line). All methods use the same method parameters as in Fig. 6.13.
Reproduced from Ref. [37], with the permission of AIP Publishing.

Here, the agreement of MCE and DMRG (for the times available) is nearly
perfect, suggesting also a better performance of MCE at later times. We see
that MTE reproduces at least the first half nuclear oscillation in this observable,
but starts to oscillate around too low values later, indicative of the loss of
electron density on the central site observed in the other observables. The
surface hopping methods show again the surprising behavior that although the
first half nuclear oscillation is not reproduced perfectly, the later results agree
closely with the DMRG and MCE results (see also the example in the dimer
discussing how FSSH calculates the wrong nuclear forces for an initial state
with coherences, Sec. 6.1.3).

6.3.3 Dressed local initial state

We now turn to the dressed local initial state, which already starts with large
nuclear distortions on the central site in the beginning and a large contribution
on the lowest Born-Oppenheimer state. It is interesting to see how the per-
formance of the methods, especially MTE, FSSH and FSSH+RD, changes for
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this new initial state. We use the same parameters as before and show results
for L = 11 and L = 51. We start with the electron densities on the different
Holstein sites presented in Fig. 6.18.

All methods show a stronger localization around the central site compared
to the bare local case and the DMRG results are, at least for some observables,
available for longer times. During this time, for L = 11, there is almost no
discernible difference between DMRG, MCE, FSSH and FSSH+RD. Only at
late times the electron density of MCE delocalizes slightly, in contrast to the
surface hopping methods, and no DMRG results are obtained that could decide
the correct physical behavior. MTE, similar as in the bare local case, loses
the large electron density on the central site already after about half a nuclear
oscillation period, although here we observe a partial recurrence of that density
at later times. For L = 51, the spreading of the electron density in all methods
is similar to the bare local case, although on a smaller scale and we switched to
a logarithmic scale for the electron density. All methods show again a ballistic
spreading for very short times. Afterward, the DMRG and FSSH+RD electron
densities stay with an almost constant and similar width. FSSH predicts a too
small spreading for short times and extends to the DMRG/FSSH+RD width
for later times. MCE is very close to DMRG around the center of the chain,
but shows again the continued ballistic spreading for a portion of the electron
density. Finally, MTE shows a strong delocalization of the electron density
throughout the system, with only a small part of the density staying close to the
central site.

For a quantitative analysis we switch again to the RMSD, presented in
Fig. 6.19. For L = 11, in this observable, the difference of the independent-
trajectory methods to DMRG is larger than before in the bare local case, with all
methods deviating slightly after t ≈ 1/ω0 already. For later times, the RMSD
of MTE increases much higher than in any other method, while the FSSH and
FSSH+RD results stay close to the DMRG values. The MCE results show an
excellent agreement with DMRG. For L = 51, MTE shows a superdiffusive
behavior with the linear fit of the log-log data in the time tω0 ∈ [1, 20] having
a slope of approximately 0.61. MCE follows a similar curve for some time, but
flattens off to a mostly constant value after about one nuclear oscillation period.
The RMSD of FSSH+RD also shows a slight increment over time, but stays
closest to the DMRG results while they are available. Unfortunately, smaller
cutoffs in DMRG were needed to obtain converged results for this observable
and thus we cannot verify the long-time agreement.

Switching from an electronic to a phonon global observable, we now turn
to the total phonon number in Fig. 6.20. As before in the bare local case, this
observable is very similar for both system sizes. The total phonon number
in MTE rapidly decreases to a low value during the first oscillation period,
while all other methods predict a total phonon number staying close to the
initial value. Both the surface hopping methods and MCE show a qualitative
agreement with the DMRG results, although the curves are not overlapping
after half an oscillation period. It is difficult to judge which of these methods
is the closest to DMRG. However, the high values predicted by DMRG, MCE,
FSSH and FSSH+RD are compatible with the rather localized electron density
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Electron density 〈n̂i〉 in the Holstein chain, dressed local initial state, γ̄ = 2.5, t̄0 = 2.5
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Figure 6.18: Time evolution of the electron densities 〈n̂i〉 in the Holstein chain of
lengths L = 11 and L = 51, with γ̄ = t̄0 = 2.5, and starting from the
dressed local initial state at the central site. Results are shown for the
methods (a) and (b) DMRG, (c) and (d) MCE, (e) and (f) MTE, (g) and
(h) FSSH and (i) and (j) FSSH+RD, each both for L = 11 and L = 51.
The independent-trajectory methods use as parameters Ntraj = 50 000
and ∆t = 0.001/ω0. The DMRG simulations are performed with εLBO =

10−8, εbond = 10−8, ∆t = 0.004/ω0 and M = 40. MCE uses 5000
configurations, initialized with the pancake-like variant for sampling the
initial state (see Ref. [37] for details). Reproduced from Ref. [37], with
the permission of AIP Publishing, the figure layout has been adapted to
the format of this thesis.
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Figure 6.19: Time evolution of the reduced mean-squared displacement (RMSD),
obtained in the Holstein chain with γ̄ = t̄0 = 2.5 and (a) L = 11 and (b)
L = 51 for the dressed local initial state at the central site. Results are
shown for the methods MTE (dotted green line), FSSH and FSSH+RD
(dashed-dotted orange and magenta lines), MCE (dashed light blue line)
and DMRG (solid blue line). For L = 51, the results of FSSH are
ambiguous and omitted, see the discussion in Sec. 6.3.1. The methods
use the same method parameters as in Fig. 6.18, with the exception of
DMRG, where the cutoffs are decreased to εLBO = 10−9 and εbond = 10−9

for L = 51. Reproduced from Ref. [37], with the permission of AIP
Publishing.

obtained by these methods in Fig. 6.18 (note the logarithmic scale for L = 51
which might hide that most of the electron density in MCE stays close to the
center).

The very different behavior of MTE compared to the surface hopping meth-
ods can again be understood by considering the populations on the Born-
Oppenheimer states, shown in Fig. 6.21. All start again at very similar pop-
ulations, with the 50 000 trajectories giving an even closer agreement of the
active surface distributions of FSSH/FSSH+RD and the adiabatic electronic
amplitudes of MTE. The population of the lowest Born-Oppenheimer state
〈n̂BO

0 〉 in all methods starts at 0.91 and 0.90 in the L = 11 and L = 51 system,
respectively. The remaining population distributed among the higher Born-
Oppenheimer states quickly decays in the surface hopping methods, similar as
in the bare local case. In contrast, the electronic population in MTE transi-
tions to the higher states and the system thus partly looses the electron-nuclear
bound state. This was already observed in the dressed local initial state in the
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Figure 6.20: Time evolution of the total phonon number Nph = 〈
∑

i b̂†i b̂i〉, obtained in
the Holstein chain with γ̄ = t̄0 = 2.5 and (a) L = 11 and (b) L = 51 for
the dressed local initial state at the central site. Results are shown for the
methods MTE (dotted green line), FSSH and FSSH+RD (dashed-dotted
orange and magenta lines), MCE (dashed light blue line) and DMRG
(solid blue line). The methods use the same method parameters as in
Fig. 6.18, with the exception of DMRG, where the cutoffs are decreased
to εLBO = 10−9 and εbond = 10−9 for L = 51. Reproduced from Ref. [37],
with the permission of AIP Publishing.

Holstein trimer, where the electron density on the (initially occupied) central
site decayed too much compared to the other methods and the dynamics were
influenced too much by the higher Born-Oppenheimer surfaces.

Qualitatively independent of the bare or dressed local initial state, the elec-
tron in the surface hopping methods tends to relax toward the lowest Born-
Oppenheimer state, while the electron in MTE tends toward a population of
a broad spectrum of adiabatic states. In the other studied observables, the
dynamics of the surface hopping methods, in particular FSSH+RD, was always
closer to the DMRG results compared to MTE. The short time duration for
which these results could be obtained, does not allow a definitive statement
about the performance of the methods for longer times. Hence, we now turn
to another parameter set that allows for a longer time evolution in the DMRG
method.
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Figure 6.21: Time evolution of the Born-Oppenheimer states populations 〈n̂BO
a 〉 in

the Holstein chain of lengths L = 11 and L = 51, with γ̄ = t̄0 = 2.5, and
starting from the dressed local initial state at the central site. Results are
shown for the methods (a) and (b) MTE, (c) and (d) FSSH, and (e) and
(f) FSSH+RD, each both for L = 11 and L = 51. The methods use the
same method parameters as in Fig. 6.18.

6.3.4 Reduced electron hopping

As a final system we study the bare local initial state in the Holstein chain with
a reduced electron hopping of t̄0 = 1 and with L = 25, which was also studied
in Ref. [54]. The DMRG results could provide converged results for much
longer times in this system and the calculated RMSD coincides with the values
presented in Ref. [54], see Ref. [37]. Such a small electron hopping might
be physically less interesting if we have an application to the manganite tight-
binding model (see Ch. 3) in mind, but it is helpful to check the agreement of
especially FSSH+RD and DMRG, which in the previous Holstein chain results
were often close, but could only be analyzed for 1-2 nuclear oscillation periods.
In addition, the RMSD of the bare local state for t̄0 = 1 computed in Ref. [54]
showed a periodic increment with the nuclear oscillation period, similar to the
transient trapping that we observed for a small electron hopping in the Holstein
dimer (see Sec. 6.1.4). This leads to a more complicated form of the RMSD
compared to the results at larger t̄0 shown before, where the RMSD leveled off to
a constant value in DMRG for the times available (although we cannot exclude
an increase of the RMSD happening at later times). The RMSD computed
with MTE, FSSH+RD, MCE and DMRG is shown for two different values of
the electron-phonon coupling γ̄ = 4 and γ̄ = 2.5 in Figs. 6.22 and 6.23. The

174



6.3 Holstein chain

0

0.5

1

1.5

2

2.5

3

0 2 4 6 8 10 12 14 16 18

R
M

SD

t [1/ω0]

Bare local initial state L = 25, γ̄ = 4, t̄0 = 1

MTE
FSSH+RD
MCE
DMRG

Figure 6.22: Time evolution of the reduced mean-squared displacement (RMSD),
obtained in the Holstein chain with L = 25, γ̄ = 4 and t̄0 = 1 for the bare
local initial state at the central site. Results are shown for the methods
MTE (dotted green line), FSSH+RD (dashed-dotted magenta line), MCE
(dashed light blue line) and DMRG (solid blue line). The independent-
trajectory methods use the same method parameters as in Fig. 6.18.
The DMRG simulation is performed with εLBO = 10−8, εbond = 10−8,
∆t = 0.01/ω0 and M = 90. MCE uses 4500 configurations, initialized
with the pancake-like variant for sampling the initial state (see Ref. [37]
for details). The DMRG data agree with the results published in Ref. [54],
see Ref. [37]. Reproduced from Ref. [37], with the permission of AIP
Publishing, the data of Ref. [54] are omitted here.

DMRG data presented here agree with the results published in Ref. [54], see
Ref. [37].

We see that DMRG reproduces the step-like increment of the RMSD after
each nuclear oscillation period found in Ref. [54]. Starting with the γ̄ = 4 case
(Fig. 6.22), the MCE data perfectly reproduce the height of the first plateau and
the time and shape of the second increment of the RMSD. Afterward, the curve
starts to deviate from the DMRG results and looses its step-like form. It then
becomes closer to the MTE curve, which does not reproduce the plateaus at all
and instead steeply rises with the nuclear oscillation period visible as a weak
periodic modulation. The FSSH+RD method shows a step-like structure for the
RMSD, but severely overestimates the height of the first plateau. Interestingly,
it comes very close to the DMRG results for later times, as was observed before
in some observables (see, e.g., Fig. 6.17), when the influence of the initial
coherences weakens. All these observations also carry over to the γ̄ = 2.5
case, although the agreement of FSSH+RD and DMRG is slightly worse at
later times.

The results for both of these systems are reassuring in the interpretation
of the performance of FSSH+RD. In general, the surface hopping method is
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Figure 6.23: Time evolution of the reduced mean-squared displacement (RMSD),
obtained in the Holstein chain with L = 25, γ̄ = 2.5 and t̄0 = 1 for the
bare local initial state at the central site. Results are shown for the methods
MTE (dotted green line), FSSH+RD (dashed-dotted magenta line), MCE
(dashed light blue line) and DMRG (solid blue line). The methods use the
same method parameters as in Fig. 6.22, with the exception of the number
of local phonon states used in DMRG, which is reduced to M = 35. The
DMRG data agree with the results published in Ref. [54], see Ref. [37].
Reproduced from Ref. [37], with the permission of AIP Publishing, the
data of Ref. [54] are omitted here.

expected to work better for large values of t̄0 (the adiabatic regime, this is also
clearly seen in our analysis of the Holstein dimer, see Sec. 6.1). The long-
time agreement of a sensitive diabatic observable, such as the RMSD, for such
a small value of t̄0 might imply that the qualitative agreement with DMRG
observed in most observables for the previous parameter set of γ̄ = t̄0 = 2.5
could also hold in the long-time regime. However, this is only a speculation
at this point and long-time numerically exact results for larger t̄0 are needed to
confirm any statements.

Finally, we show the populations of the Born-Oppenheimer states for both
cases of reduced electron hopping in Fig. 6.24, here only for MTE and
FSSH+RD. For both values of the coupling γ̄, the initial state has similar pop-
ulations on all adiabatic states, as before in the bare local case (see Fig. 6.15).
In both methods and for both parameters, we see a clear periodic modulation
with the nuclear oscillation period. In FSSH+RD, the electron quickly relaxes
toward the lower Born-Oppenheimer states at the beginning and after each
oscillation period. This is interrupted by strong non-adiabatic transitions to a
large range of adiabatic states at times when the polaronic trapping is weakened.
In the MTE method, we also observe some relaxation toward the lower states,
which is, however, much weaker compared to FSSH+RD and the dynamics
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Figure 6.24: Time evolution of the Born-Oppenheimer states populations 〈n̂BO
a 〉 in the

Holstein chain of length L = 25 with t̄0 = 1, for both γ̄ = 4 and γ̄ = 2.5,
and starting from the bare local initial state at the central site. Results
are shown for the methods (a) and (b) MTE, (c) and (d) FSSH+RD, each
for both values of γ̄. The methods use the same time step and number of
trajectories as in Fig. 6.18.

are again influenced significantly by the higher Born-Oppenheimer states. The
periodic trapping is thus reproduced to a much smaller extend. For γ̄ = 2.5,
the periodic modulation is barely visible at later times.

6.3.5 Summary for the Holstein chain
Analyzing the results in the Holstein chain is more difficult than for the smaller
systems. In the t̄0 = 2.5 systems, the numerically exact method DMRG is avail-
able only for short times, and the other methods deviate strongly in their predic-
tion for the long-time dynamics, at least in some observables (see Fig. 6.16 for a
rather extreme example). Nonetheless, already the dynamics in this short-time
region allow some statements about the performance of the different meth-
ods, which is supported by the longer reaching results for the reduced electron
hopping t̄0 = 1.

We observed in several examples in the smaller systems that MTE is always
able to describe the ultra-short dynamics, which holds to some degree also for
the Holstein chain. For example, the initial ballistic expansion of the localized
electron density was always recovered. However, in all studied cases, MTE was
not able to establish (bare local), or stabilize (dressed local) a localization of the
electron density supported by large nuclear distortions, a “polaronic trapping”,
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for later times. The dynamics in MTE are always strongly influenced by most
of the Born-Oppenheimer states, either because there is no relaxation (bare
local), or because populations on the higher states are developed over time
(dressed local). In its mean-field approach, this results in a particularly bad
description of the total phonon numbers (see Fig. 6.16 and 6.20), even in the
short-time regime. Hence, for the parameters chosen here, two of the more
fundamental questions of (i) the transport behavior in a polaronic system, and
(ii) the energy transfer between the electronic and nuclear subsystems, can both
not be answered accurately with MTE, not even on a qualitative level. We
note that the local initial states studied for the Holstein chain are all quenched
systems which are not restricted to a single adiabatic state at the beginning,
though the dressed local state is not too far away from an adiabatic state (with
about 90 % of the electronic population in the lowest adiabatic state). The
performance of MTE might be better if starting from an adiabatic initial state,
for which, however, no benchmark data of either MCE or DMRG are available.
Judging from our results in the Holstein dimer, it is unlikely that the MTE
method will perform better once it encounters non-adiabatic transitions (see
Fig. 6.3). In total, MTE seems unsuited to describe non-adiabatic dynamics in
such large chains for the initial states and system parameters investigated here.

The coupled-trajectory method MCE, which performed remarkably in the
smaller systems, could not be converged in the Holstein chain. In contrast to the
independent-trajectory methods, which reached internal convergence up to our
criteria and could only be improved by making algorithmic changes, one could
thus achieve better MCE results by increasing the number of used configura-
tions. Hence, one cannot claim that the method is inaccurate, but it is difficult
to converge, which might have similar consequences in practical applications.
The underlying nuclear dynamics of MCE are given by the Ehrenfest equations
of motion (and for far separated configurations their dynamics become equiv-
alent to MTE, see Ref. [264]). With MTE failing to describe the dynamics
in large systems correctly, we can thus speculate that the poor convergence
of MCE is partially caused by the misguided underlying basis set dynamics.
Nonetheless, local observables close to the centers of the chain were recovered
excellently (partially seen in the color-plots of the electronic density, Figs. 6.13
and 6.18, and even better for the nuclear distortion on the central site, shown in
Fig. 6.17). Coupled-trajectory methods that do not rely on Ehrenfest dynamics
(see Sec. 5.3.6) might be an alternative.

Lastly, we have the surface hopping methods. In contrast to MTE, we en-
countered several difficulties when applying FSSH to large systems, some of
which were already known in literature, see Ref. [205]. These difficulties in-
cluded: (i) the integration scheme and the calculation of hopping probabilities,
for which alternative equations were used (see Sec. 5.3.7), (ii) the different
definitions possible for calculating diabatic electronic properties, such as the
electron densities and the RMSD, none of which were perfectly accurate in large
systems (see Fig. 6.12(a)), and (iii) the problems of applying a decoherence
correction in large systems, which solves the ambiguity of the electron density
definitions, but leads to a spurious charge transfer when describing initial states
with strong coherences, thus requiring a restricted decoherence correction, of
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which again several options are possible, see Fig. 6.12(b). The benefit was
that FSSH+RD showed a good qualitative agreement with the DMRG results
for most observables. These include the spreading of the electron density and
the RMSD, but also the build-up of a large total phonon number and thus the
electron-nuclear energy transfer. We note that with the exception of the RMSD
for L > 11, the results of normal FSSH were also acceptable when the mixed
definition of the electronic density matrix was used, and closer to the DMRG
results than MTE.

In order to generalize our statements for the performance of the methods,
further studies are needed in the future, not only for more parameter regimes (in
particular the large electron-hopping regime), but also for higher dimensional
systems (which is challenging for DMRG), for many-electron states (which were
to some degree studied in the article corresponding to this chapter, Ref. [37],
although only with MTE and DMRG), and, maybe most importantly, for more
complicated systems that include, e.g., a phonon dispersion or an electron-
electron interaction.

6.4 Evaluation of themethods

In this chapter and the corresponding article, see Ref. [37], we presented a
benchmark study of non-adiabatic dynamics described with the independent-
trajectory methods MTE, FSSH and FSSH+D/RD introduced in the last chapter,
the coupled-trajectory method MCE and the numerically exact ED and DMRG
methods. The results for ED in second quantization, MCE and DMRG were
obtained by S. Gräber, D. Jansen and J. Stolpp, see the beginning of Ch. 6 for
details. By providing reference data for the extended Holstein chain for various
quenched initial states, our results complement previous benchmark studies of
the trajectory-based methods, see, e.g., Refs. [39, 43–47] and their description
in Ch. 1. The comparison to the unbiased exact methods allows to accurately
judge the quality of the independent-trajectory methods, beyond just relying on
internal consistency criteria, such as size-independence of the mean-squared
displacement in large systems, which has been used in the literature on the
surface hopping methods (see Refs. [243, 256]).

As a specialty, at least for surface hopping simulations, we put a special
focus on the influence of the initial state and its coherences. The local states
can be regarded as quenched systems, not restricted to a single adiabatic state.
Interestingly, we found this initial states to be not just a challenge for the surface
hopping methods, but also for MTE, as we will describe in the following. Our
results were always interpreted in the Born-Huang framework and in terms of
adiabatic energy surfaces. While such a point of view is necessary to understand
the FSSH algorithm, one could stay in a completely diabatic picture when
dealing with the Ehrenfest method. However, as we presented both for small
and extended systems, the Born-Huang analysis allows to easily understand
the failure of MTE in many scenarios, and in our opinion this point of view is
helpful for assessing its range of validity. The different methods are evaluated
in the following, with a focus on the independent-trajectory methods.
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MTE is easy to implement and has no numerical caveats. Its independent-
trajectory nature allows for easy parallelization and it can be applied in large
systems and for many-electron states without any problems. It improves upon
the typical ground state Born-Oppenheimer or Car-Parrinello molecular dy-
namics (which were used for the thermal phase transition in Sec. 4.2) in that
dynamics on several surfaces can be described, including excited state dy-
namics and non-adiabatic transitions. If the dynamics take place solely on a
single Born-Oppenheimer surface (which might be an excited state), then the
method is equivalent to the surface hopping methods, or the truncated Wigner
approach with a potential given from the occupied surface. In this case, we
find a good performance of the method (see Fig. 6.2). In addition, MTE is
able to recover the ultra-short time dynamics for both local (diabatic) and adia-
batic initial states, and in many cases the first quarter nuclear oscillation period
(t ≈ π/(2ω0)) is well described, with the exception of the total phonon number
in the extended systems, see Figs. 6.16 and 6.20.

On the downside, the MTE method cannot capture independent dynamics
of wave packets on different Born-Oppenheimer surfaces (at similar nuclear
positions), which is a known problem of the method, see Refs. [29, 228], and
was one of the reasons leading to the development of the surface hopping
methods. We saw two cases where this is relevant: (i) when encountering
a non-adiabatic transition, for example at an avoided crossing, which in the
exact dynamics leads to a splitting of the wave packet (see Fig. 6.3), and (ii)
for initial states with coherences between the adiabatic states, such as the bare
and dressed local states. An extreme example for the latter is the bare local
state in the adiabatic parameter regime in the Holstein dimer (see Fig. 6.6), in
which the (coherent) upper and lower contribution of the wave function starts
to separate in the exact dynamics (see Fig. 6.5), which is not reproduced by
MTE. This is in strong contrast to the very good performance of MTE when
starting in an adiabatic initial state for the same parameters (see Fig. 6.2).

In the Holstein trimer and chain, MTE shows much less relaxation toward
the lower Born-Oppenheimer states compared to the surface hopping methods,
and in the dressed local state even a leakage of electronic population to the
higher states (see, e.g., Fig. 6.21). As presented in the Holstein trimer, even a
very small population on different surfaces can lead to wrong nuclear forces in
the mean-field description (see Sec. 6.2.3). The polaronic trapping and energy
transfer between subsystems in the Holstein chain could not be recovered even
qualitatively, see Sec. 6.3.5. As far as we can generalize from such a simple
model system, MTE seems to be a questionable choice for describing the non-
adiabatic dynamics in a strongly coupled polaronic material, at least when
several Born-Oppenheimer surfaces are involved, and one should be careful in
using the method to study energy transfer in solids, see also Ref. [312]. We
note that we did not study the anti-adiabatic parameter regime (with t̄0 � 1),
except in the numerical test for FSSH (see Fig. 5.8), as it is far away from any
physical parameter choice relevant for a potential application to our manganite
tight-binding model. Decoherence corrections of MTE exist, termed “decay-
of-mixing” methods, see Refs. [313, 314], which can improve the performance
of the method drastically, but make the algorithm basis dependent and closer
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to a surface hopping approach, and are not studied in this thesis.
Another extension of MTE, which in principle can even converge to exact

dynamics, was tested in this benchmark study: the coupled-trajectory method
MCE. Its performance in the Holstein dimer and trimer was excellent and close
to the results obtained with ED, and it could, in contrast to the independent-
trajectory methods, even describe a tunneling transition to some degree. It
works for both diabatic and adiabatic initial states, although for the implemen-
tation used in this study (see Refs. [37, 264]), calculating adiabatic observables
and initial states requires to solve integrals over the Gaussian configurations
for the projection onto the adiabatic basis, which is costly in large systems and
was only done for the dimer and trimer.

MCE converges much slower in large systems. For L = 11, with the number
of configurations used here, it still agreed with DMRG (for the times available)
in the RMSD, but already showed deviations in the total phonon number. For
L = 25, in the reduced electron hopping case, and for L = 51, it could not
capture the global dynamics of the initially localized charge carrier and cannot
be considered as a converged or exact method in this case. Local observables
around the initially occupied sites were still well described, see Fig. 6.17, but
in particular the RMSD increased to too high values, caused by the partial
escape of electron density from the polaronic trapping. The convergence with
an increasing number of configurations seems to be slow (see Refs. [37, 264])
and in the worst case could scale exponentially with the system size (when the
MTE-guided basis gives no accurate representation needed for the dynamics,
then a close to full basis might be needed). The computational cost scales with
the third power of the number of configurations. The potential application of
MCE to describe non-adiabatic dynamics in a complicated large system, such
as the ones studied with the tight-binding model for manganites, might thus
be limited. A plethora of alternative coupled-trajectory methods is available,
see the overview in Sec. 5.3.6, and their either fully variational ansatz or
their adiabatic spawning algorithms could make some of them more useful for
describing non-adiabatic dynamics. The benchmark study presented here and
in Ref. [37] might serve as a testbed for these methods.

Fewest-switches surface hopping, with its potential corrections, is the al-
ternative independent-trajectory method studied here. Its formulation is basis
dependent and was carried out in the adiabatic basis (i.e., the adiabatic en-
ergy surfaces were used for the nuclear dynamics). It is numerically much
more involved than MTE and the algorithm is more ambiguous, as a systematic
derivation from exact methods is missing (see Ref. [46]). From the definition of
the electronic density matrix to be used when calculating diabatic populations
(and setting up diabatic initial states), over the numerical problems when deal-
ing with trivial crossings, up to the decoherence correction enhanced spurious
charge transfer to look out for in large systems, one has to carefully evaluate
and analyze the method if one wants to extract physically reasonable quantities
(see Secs. 5.3.5, 5.3.7 and 6.3.1). Even with all these corrections, the method
still performs best when starting from an adiabatic initial state. It can describe
a wave packet splitting at an avoided crossing and the following independent
dynamics on the energy surfaces. Only at later times when the different parts
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of the wave function meet again, a recoherence, significant deviations from the
exact results are visible (see Fig. 6.3). Like MTE, FSSH does not provide an ac-
curate description of tunneling in its standard formulation, see Sec. 6.1.5, which
is well known, see Ref. [315]. Many of the corrections included here were of
special importance to allow a good description of initial states not restricted to
a single adiabatic state, as the local initial states. With coherences between the
adiabatic states being present from the beginning, the short-time nuclear dy-
namics of FSSH are not equivalent to the exact results anymore, see Fig. 6.6(c).
As suggested in the discussion of highly coherent initial states created by an
attosecond light-pulse, one might assume that a mean-field description would
be the better choice for such states, see Ref. [228].

Surprisingly, with the corrections included, we observed in nearly all stud-
ied systems a better long-time dynamics description with the surface hopping
methods compared to MTE. When the electron hopping is large enough, the
initial coherences, neglected in the calculation of the nuclear forces, average
out to allow for a reasonable description in terms of adiabatic surfaces, see
Fig. 6.6(b). The same good long-time description was observed for the inter-
mediate electron hopping in the Holstein trimer afterward, and for the reduced
electron-hopping regime t̄0 = 1 in the Holstein chain, see Sec. 6.3.4. For the
t̄0 = 2.5 results in the Holstein chain, longer exact reference data are needed
for a final evaluation of the surface hopping performance, but in the covered
time interval FSSH+RD showed the closest agreement to DMRG in the RMSD
and the global trend of the electron densities. The general behavior of the non-
adiabatic dynamics seem to qualitatively agree with the DMRG results as well,
describing a polaronic trapping of the electron. Judging from this benchmark
study, FSSH+RD seems to be a promising method to describe non-adiabatic
dynamics, also in large systems and for initial states not restricted to a single
adiabatic state, making it a valuable candidate for describing, for example,
relaxation processes in our manganite tight-binding model.

We want to mention that an application of FSSH without any corrections
and in particular for diabatic initial states can lead to wrong results and one
should carefully evaluate the system and its parameters. We refer to Ref. [45]
for a benchmark study in a cavity model, in which a diabatic initial state is used
(although this is never mentioned in that article), and the (uncorrected) FSSH
shows the worst performance of all investigated methods.

The ability of FSSH to approximately capture detailed balance (see R, efs. [233,
242]) and its often surprisingly accurate long-time description of non-adiabatic
dynamics leads to a constant development in the area of surface hopping meth-
ods and new variants or improvements are introduced frequently, see the excel-
lent reviews, Refs. [244, 316] for an overview over the last years. This thesis
covers the basic form of FSSH and all corrections necessary to obtain a good
description of the chosen initial states in small and large systems, but we hope
that the benchmark study presented here and in Ref. [37] can be used in the
future to test other variants of surface hopping methods.

For the application of FSSH to the manganite tight-binding model, it needs
to be able to describe many-particle electron states. Since the algorithm is
formulated in terms of such states, see Ref. [29], one can directly apply the
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method there. However, calculating the hopping probability between all pos-
sible many-particle states can become exponentially difficult in large systems.
For a system without direct electron-electron interactions, where the electronic
state is described by one Slater determinant, the independent-electron surface
hopping was proposed, see Ref. [317]. It is an exact reformulation of the hop-
ping probabilities (and the derivative couplings) in terms of the single-particle
orbitals used to construct the Slater determinant, which can be used to reduce
the computational cost of the method. Hence, an efficient implementation of
FSSH for many-electron states in the Holstein chain, such as the charge-density
wave states analyzed with MTE and DMRG in Ref. [37], is straightforward, but
not done here.

In interacting many-particle systems, a variety of electronic-structure meth-
ods has been combined with surface hopping approaches, see the overview
in Ref. [200]. Obtaining the true adiabatic many-particle states, energies and
derivative couplings can be demanding or impossible in practical applica-
tions. Mentioning two well known single-reference methods, excited states can
be calculated from linear-response time-dependent Hartree-Fock or density-
functional theory (LR-TDHF or LR-TDDFT), see Refs. [152, 153, 318, 319].
Alternatively, the excited states can be estimated from Slater determinants build
from the adiabatic single-particle states of the effective single-particle formu-
lation of Hartree-Fock or density-functional theory, see Refs. [200, 320–323].
Excitation energies estimated from this effective single-particle picture can dif-
fer from the exact results (see Ref. [324]), but have been benchmarked with
a good agreement to the linear-response results (see Ref. [322]) and allow a
very efficient numerical implementation of FSSH, as surface transitions take
place only between Slater determinants differing by one single-particle state,
see Refs. [321, 323]. This ansatz can also directly be applied to the manganite
tight-binding model.

Finally, the used reference method for large systems, DMRG (with LBO),
could always be converged for all system sizes, although the reached maximum
time is limited, which in the method is related to the growing entanglement,
see Ref. [50]. While most often used in one-dimensional systems, there are ap-
proaches to deal with two dimensions, see Refs. [49, 50, 281–285]. Systematic
efficient algorithms in 2D that include phonons are not yet available, but would
be interesting for future benchmark studies toward more realistic model sys-
tems. The method is not suited to describe the complicated three-dimensional
manganite tight-binding model, but is an excellent choice to benchmark the
trajectory-based methods in one-dimensional model systems, and is just as
well suited to describe many-electron states.
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In this thesis we analyzed systems with strong electron-phonon coupling. The
two focus points of the thesis were: (a) A theoretical investigation of the break-
down of the long-range orbital/Jahn-Teller order in low-doped Pr1– xCaxMnO3
(PCMO) at finite temperature using a tight-binding model for manganites.
Here, our results support new experimental evidence indicating that the spon-
taneous orbital order breaks down at much lower temperatures than previously
believed, and correlates with the onset of a photovoltaic effect, see Ref. [24]
and Sec. 4.2. (b) The second focus point was a detailed benchmark study
of two quantum-classical trajectory-based methods, multitrajectory Ehrenfest
(MTE) and fewest-switches surface hopping (FSSH). We carefully tested and
evaluated their capability of describing non-adiabatic real-time dynamics in a
prototypical polaronic system, the Holstein model. In most studied cases, the
FSSH method yielded a better description of both the mobility/spreading of the
excited charge carrier and the electron-nuclear energy transfer, see Ref. [37]
and Ch. 6. A good description of these quantities is necessary for an accurate
simulation of the relaxation after a photo-excitation in a system with strong
electron-phonon coupling.

One intriguing prospect for a future study is the combination of both obtained
insights: An application of FSSH to the manganite tight-binding model for a
direct simulation of the photoexcitation in both the orbital ordered and disor-
dered phases. This could provide a deeper understanding of the fundamental
requirements for a photovoltaic effect in such strongly coupled electron-phonon
systems and the general field of hot carrier solar cells. Let us now discuss our
theoretical results in more detail.

In the first part, we investigated the material class of manganites, specifically
Pr1– xCaxMnO3 (PCMO). This material shows a strong coupling of mobile
electrons, cooperative lattice distortions, and localized spins. An adequate
theoretical description that allows a direct comparison to experimental results
requires the use of an intricate tight-binding model including the dominant
interactions between all degrees of freedom, see Ch. 3. Such a model was
applied to predict the ordered ground states of PCMO in the low-doping region
0 ≤ x ≤ 0.25, see Sec. 4.1. The obtained spin and orbital order fits well
to experimental measurements, with one deviation being the lattice constant
c/a ratio around x = 0. For the intermediate region 0 < x < 0.25 various
nanoscale mixed structures were obtained that are nearly degenerate with the
phase separation energy of the neighboring pure phases. Such nanoscale phase
separation phenomena have been suggested in Ref. [26] and agree with more
recent experimental studies around that doping, see Refs. [85, 86]. The good
agreement of the model with experimental results is encouraging, see also the
general study including higher dopings in Ref. [126]. Nonetheless, several im-
provements of the tight-binding model are conceivable to cure the remaining

185



7 Conclusion and Outlook

problems. The inclusion of a site-dependent hopping that reacts to the local
octahedral distortions and spin background could remove the necessity to arti-
ficially increase the antiferromagnetic superexchange coupling, see Sec. 3.2.5.
In addition, anharmonic terms of the Jahn-Teller restoring forces could stabi-
lize prolate orbitals over the oblate ones and stabilize the correct c/a ratio, as
discussed in Secs. 3.2.3 and 4.1.2, see also Ref. [132].

Starting from the obtained ground and metastable mixed states at x = 0
and x = 0.1, we investigated the breakdown of the long-range orbital/Jahn-
Teller order with increasing temperature. For this, we used a Car-Parrinello
molecular dynamics approach, in which we heated the nuclei with a Nosé-
Hoover thermostat to a finite temperature, while the electrons and spins were
kept close to their adiabatic ground state. We obtained transition temperatures
of ∼ 270 K for x = 0.1 and ∼ 400 K at x = 0 that are in line with new
photovoltaic measurements observing the onset of the open circuit voltage
around∼ 220 K in thin film PCMO, see Ref. [24]. Anomalies in magnetization,
electron transport and optical properties around 220-250 K in x = 0.1 thin films
and in X-ray diffraction experiments around 300 K (x = 0.1) and 350 K (x = 0)
in bulk PCMO, see Ref. [24], are further evidence for a phase transition in this
temperature range. The continuous change of the lattice constants measured
in the X-ray diffraction experiments indicates a second-order transition. All
these results are in sharp contrast to the established phase diagram of PCMO,
which predicts the melting of the orbital order only around ∼ 675 K at x = 0.1
and 945 K at x = 0, see Refs. [57, 58, 118, 119]. Motivated by resonant X-ray
diffraction experiments at x = 0.25 (see Ref. [88]) and for the similar material
LaMnO3 (see Ref. [120]), which in both cases observe a two-step decay of the
orbital order, the new results were interpreted as a spontaneous orbital-order
phase transition around room temperature for x = 0.1. Above that transition,
a remaining tilting-induced order remains until the high temperature tilting-
transition, see Ref. [24] and Sec. 4.2. A revised phase diagram following this
proposal was presented in Ref. [24] and shown in Fig. 4.15.

The adiabatic description of the electrons and spins prevented us from ob-
taining the independent magnetic phase transition at low temperatures that is
indicated by experimental measurements (see Refs. [58, 83–86]). As the spin
transition might affect the orbital-order phase transition as well, we consider
augmenting the thermostat calculations with a thermal description for the spins
as one of the most important future extensions to our simulations. One straight-
forward approach would be to apply the Nosé-Hoover thermostat to the spin
degrees of freedom, as presented in Refs. [147, 154, 155].

The complexity of the model limits the size of the simulation cells and we
could not provide a proper finite size scaling of the phase transition. One
future path is thus to extend the model to larger systems. To reach these larger
systems, one could reduce sampling times or the complexity of the model (e.g.,
by removing the electron-electron interaction), or increase the fictitious masses
for the spins and electrons together with the integration time step. All of these
approaches should then be carefully tested against the small systems analyzed
here, before approaching larger systems.

In the second part of this thesis, we analyzed the importance of non-adiabatic
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effects on electron-phonon coupled systems, see Ch. 5. We outlined how the
coupled electron-nuclear dynamics can be described in the Born-Huang for-
malism, see Ref. [34], where a multicomponent nuclear wave function evolves
in a set of adiabatic Born-Oppenheimer surfaces. A contribution called the
derivative couplings acts as a vector potential that couples these surfaces and is
responsible for non-adiabatic effects. The examples of the Holstein dimer and
trimer were used to showcase how this formalism can be used to understand the
fully quantum mechanical coupled dynamics. We discussed the two trajectory-
based methods MTE and FSSH, see Refs. [29–31], which retain a non-adiabatic
description, while relying on the propagation of classical nuclei. In MTE, each
nuclear trajectory evolves according to a potential determined from the trace
of the mixed quantum-classical Hamiltonian over the electronic degrees of
freedom, which one might regard as a mean-field ansatz. In contrast, FSSH
is designed around the concept of adiabatic states, with the nuclear dynamics
evolving step-wise along single Born-Oppenheimer surfaces, interrupted by
stochastic switching.

Both quantum-classical methods have been benchmarked in the one-dimen-
sional Holstein model against the coupled trajectory method MCE, as well as
ED in the Born-Huang basis and in second quantization, and DMRG-LBO, see
Ch. 6 and the article [37]. Our results complement previous benchmark studies
(see Ch. 1 and Refs. [39, 43–47]) with a comparison to numerically exact
reference data in large condensed matter systems and a detailed investigation of
the role of the initial state. The calculations, implementations and tests of MCE,
ED in second quantization and DMRG-LBO were carried out by S. Gräber, D.
Jansen and J. Stolpp, see the beginning of Ch. 6. A detailed evaluation covering
the small and large system results of all methods was already given in Sec. 6.4,
including an outlook on potential method improvements.

The main results for the quantum-classical methods were: MTE provided a
good description of the ultra-short time dynamics in almost all studied cases,
while its long-time results deviated drastically from the exact reference data,
as soon as more than a single Born-Oppenheimer surface contributed to the
dynamics. This was observed after a non-adiabatic transition and for initial
configurations with coherences between the adiabatic states. In large systems,
the MTE-predictions for the energy stored in the nuclear subsystem (measured
from the total phonon number) and for the long-time localization of the elec-
tron density (measured from the reduced mean-squared displacement) deviated
drastically from all other methods.

FSSH showed in most cases a better intermediate- to long-time agreement
with the exact data, where they were available. As far as we could judge from
these exact reference data, it provided a better order of magnitude estimate for
the nuclear energy and the electron density localization. The only long-time
large-system results available, shown in Figs. 6.22 and 6.23, supported this
interpretation. Surprisingly, the FSSH method provided a reasonable long-
time description even for initial states in a superposition of adiabatic states
in most studied cases. This is outside of the typical use-case of this method,
but broadens its scope of applicability, for example, in view of a potential
application for the direct simulation of a photoexcitation and relaxation in
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7 Conclusion and Outlook

the manganite tight-binding model. As mentioned in Sec. 6.4, the method’s
performance in large systems relied heavily on the introduced corrections for the
propagation, calculation of hopping probabilities, decoherence and avoidance
of spurious charge transfer, see Secs. 5.3.4, 5.3.5 and 6.3.1.

We note that MCE outperformed both quantum-classical methods in the
small systems, while it could not be converged in large systems beyond short
times. A direct application of MCE to the manganite tight-binding model is an
interesting alternative to FSSH or MTE. We cannot judge at this point whether
the convergence of MCE in a three-dimensional model might be improved
compared to a one-dimensional model when both have the same total number
of sites.

Besides possible algorithmic improvements or method variants for MTE and
FSSH, see Sec. 6.4, several extensions of this benchmark study are conceiv-
able. First and foremost, longer exact reference data could confirm our current
interpretation of the methods’ performance. Second, our study is based on a
selection of example systems and parameters. A possible improvement is to
extend this study to a systematic parameter scan in the electron hopping and
electron-phonon coupling t̄0 and γ̄, ideally for a variety of initial states. Third,
adiabatic initial conditions could not be tested in large systems, due to the lack
of exact reference data for such initial states. The performance of both MTE
and FSSH was better for adiabatic initial states in the smaller systems, and it
would be insightful to confirm the same for the extended Holstein chain. Lastly,
our initial conditions all started with most harmonic oscillators sampled from
their ground state. Extending the study to phonons prepared in a thermal state
might be the next step toward an application to the finite-temperature phases in
the manganite tight-binding model.
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[180] T. Hakioǧlu, V. A. Ivanov, and M. Y. Zhuravlev, Physica A 284, 172
(2000).

[181] H. Rongsheng, L. Zijing, and W. Kelin, Phys. Rev. B 65, 174303
(2002).

[182] R. Qing-Bao and C. Qing-Hu, Commun. Theor. Phys. 43, 357 (2005).

[183] S. Paganelli and S. Ciuchi, Eur. Phys. J. Spec. Top. 160, 343 (2008).

[184] S. Paganelli and S. Ciuchi, J. Phys. Condens. Matter 20, 235203
(2008).

[185] Y. Y. Zhang, X. G. Wang, and Q. H. Chen, Solid State Commun. 149,
2106 (2009).

[186] L. K. McKemmish, R. H. McKenzie, N. S. Hush, and J. R. Reimers,
Phys. Chem. Chem. Phys. 17, 24666 (2015).

[187] J. R. Reimers, L. K. McKemmish, R. H. McKenzie, and N. S. Hush,
Phys. Chem. Chem. Phys. 17, 24641 (2015).

[188] S. A. Sato, A. Kelly, and A. Rubio, Phys. Rev. B 97, 134308 (2018).

[189] M. Born and R. Oppenheimer, Ann. Phys. 389, 457 (1927).

[190] J. C. Tully, Perspective on „Zur Quantentheorie der Molekeln“, in
Theoretical Chemistry Accounts: New Century Issue, edited by C. J.
Cramer and D. G. Truhlar, pp. 173–176, Springer, Berlin, Heidelberg,
2000.

198



Bibliography

[191] G. A. Worth and L. S. Cederbaum, Annu. Rev. Phys. Chem. 55, 127
(2004).

[192] J. C. Tully, J. Chem. Phys. 137, 22A301 (2012).

[193] W. Lichten, Phys. Rev. 131, 229 (1963).

[194] F. T. Smith, Phys. Rev. 179, 111 (1969).

[195] M. Baer, Chem. Phys. Lett. 35, 112 (1975).

[196] T. Van Voorhis, T. Kowalczyk, B. Kaduk, L.-P. Wang, C.-L. Cheng,
and Q. Wu, Annu. Rev. Phys. Chem. 61, 149 (2010).

[197] H. Köppel, W. Domcke, and L. S. Cederbaum, Adv. Chem. Phys. 57,
59 (1984).

[198] C. A. Mead and D. G. Truhlar, J. Chem. Phys. 77, 6090 (1982).

[199] G. Worth, M. Robb, and B. Lasorne, Mol. Phys. 106, 2077 (2008).

[200] R. Crespo-Otero and M. Barbatti, Chem. Rev. 118, 7026 (2018).

[201] A. Polkovnikov, Ann. Phys. 325, 1790 (2010).

[202] B. R. Landry and J. E. Subotnik, J. Chem. Phys. 135, 191101 (2011).

[203] B. R. Landry and J. E. Subotnik, J. Chem. Phys. 137, 22A513 (2012).

[204] S. Fernandez-Alberti, A. E. Roitberg, T. Nelson, and S. Tretiak,
J. Chem. Phys. 137, 014512 (2012).

[205] L. Wang, J. Qiu, X. Bai, and J. Xu, WIREs Comput. Mol. Sci. 10, e1435
(2020).

[206] S. Mai, P. Marquetand, and L. González, Surface Hopping Molecular
Dynamics, in Quantum Chemistry and Dynamics of Excited States,
edited by L. González and R. Lindh, pp. 499–530, John Wiley & Sons,
Ltd, 2020.

[207] L. D. Landau, Z. Sowjetunion 2, 46 (1932).

[208] C. Zener, Proc. R. Soc. Lond. A 137, 696 (1932).

[209] P. E. Blöchl, Personal communication, 2016.

[210] G. Schubert, G. Wellein, A. Weisse, A. Alvermann, and H. Fehske,
Phys. Rev. B 72, 104304 (2005).

[211] J. Franck and E. G. Dymond, Trans. Faraday Soc. 21, 536 (1926).

[212] E. Condon, Phys. Rev. 28, 1182 (1926).

[213] E. Wigner, Phys. Rev. 40, 749 (1932).

199



Bibliography

[214] H. Weyl, Z. Physik 46, 1 (1927).

[215] J. E. Moyal, Math. Proc. Cambridge Philos. Soc. 45, 99 (1949).

[216] M. Hillery, R. F. O’Connell, M. O. Scully, and E. P. Wigner, Phys.
Rep. 106, 121 (1984).

[217] W. B. Case, Am. J. Phys. 76, 937 (2008).

[218] H. J. Groenewold, Physica 12, 405 (1946).

[219] R. Kapral and G. Ciccotti, J. Chem. Phys. 110, 8919 (1999).

[220] R. Grunwald, A. Kelly, and R. Kapral, Quantum Dynamics in Al-
most Classical Environments, in Energy Transfer Dynamics in Biomate-
rial Systems, edited by I. Burghardt, V. May, D. A. Micha, and E. R.
Bittner, Springer Series in Chemical Physics, pp. 383–413, Springer,
Berlin, Heidelberg, 2009.

[221] K. Ando, Chem. Phys. Lett. 360, 240 (2002).

[222] K. Ando and M. Santer, J. Chem. Phys. 118, 10399 (2003).

[223] S. Nielsen, R. Kapral, and G. Ciccotti, J. Chem. Phys. 112, 6543
(2000).

[224] J. E. Subotnik, W. Ouyang, and B. R. Landry, J. Chem. Phys. 139,
214107 (2013).

[225] N. F. Mott, Proc. Cambridge Phil. Soc. 27, 553–560 (1931).

[226] J. B. Delos, W. R. Thorson, and S. K. Knudson, Phys. Rev. A 6, 709
(1972).

[227] P. Ehrenfest, Z. Physik 45, 455 (1927).

[228] A. Kirrander and M. Vacher, Ehrenfest Methods for Electron and
Nuclear Dynamics, in Quantum Chemistry and Dynamics of Excited
States, edited by L. González and R. Lindh, pp. 469–497, John Wiley
& Sons, Ltd, 2020.

[229] A. García-Vela, R. B. Gerber, and D. G. Imre, J. Chem. Phys. 97,
7242 (1992).

[230] M. S. Topaler, T. C. Allison, D. W. Schwenke, and D. G. Truhlar,
J. Chem. Phys. 109, 3321 (1998).

[231] N. M. Hoffmann, C. Schäfer, A. Rubio, A. Kelly, and H. Appel,
Phys. Rev. A 99, 063819 (2019).

[232] V. I. Gerasimenko, Theor. Math. Phys. 50, 49 (1982).

[233] P. V. Parandekar and J. C. Tully, J. Chem. Phys. 122, 094102 (2005).

200



Bibliography

[234] A. Bjerre and E. E. Nikitin, Chem. Phys. Lett. 1, 179 (1967).

[235] J. C. Tully and R. K. Preston, J. Chem. Phys. 55, 562 (1971).

[236] O. V. Prezhdo and P. J. Rossky, J. Chem. Phys. 107, 825 (1997).

[237] K. F. Wong and P. J. Rossky, J. Chem. Phys. 105, 2546 (2001).

[238] G. Granucci and M. Persico, J. Chem. Phys. 126, 134114 (2007).

[239] A. W. Jasper and D. G. Truhlar, Non-Born Oppenheimer Molecu-
lar Dynamics for Conical Intersections, Avoided Crossings, and Weak
Interactions, in Conical Intersections, edited by W. Domcke, D. R.
Yarkony, and H. Köppel, volume 17 of Advanced Series in Physical
Chemistry, pp. 375–414, World Scientific, 2011.

[240] J. R. Schmidt, P. V. Parandekar, and J. C. Tully, J. Chem. Phys. 129,
044104 (2008).

[241] B. R. Landry, M. J. Falk, and J. E. Subotnik, J. Chem. Phys. 139,
211101 (2013).

[242] J. E. Subotnik, A. Jain, B. Landry, A. Petit, W. Ouyang, and N. Bel-
lonzi, Annu. Rev. Phys. Chem. 67, 387 (2016).

[243] A. Carof, S. Giannini, and J. Blumberger, Phys. Chem. Chem. Phys.
21, 26368 (2019).

[244] L. Wang, A. Akimov, and O. V. Prezhdo, J. Phys. Chem. Lett. 7, 2100
(2016).

[245] B. Smith and A. V. Akimov, J. Phys.: Condens. Matter 32, 073001
(2019).

[246] E. J. Heller, J. Chem. Phys. 62, 1544 (1975).

[247] E. Neria and A. Nitzan, J. Chem. Phys. 99, 1109 (1993).

[248] B. J. Schwartz, E. R. Bittner, O. V. Prezhdo, and P. J. Rossky, J.
Chem. Phys. 104, 5942 (1996).

[249] E. R. Bittner and P. J. Rossky, J. Chem. Phys. 103, 8130 (1995).

[250] J. E. Subotnik and N. Shenvi, J. Chem. Phys. 134, 024105 (2011).

[251] G. Granucci, M. Persico, and A. Toniolo, J. Chem. Phys. 114, 10608
(2001).

[252] L. Wang and O. V. Prezhdo, J. Phys. Chem. Lett. 5, 713 (2014).

[253] J. Qiu, X. Bai, and L. Wang, J. Phys. Chem. Lett. 9, 4319 (2018).

[254] S. Mai, P. Marquetand, and L. González, Int. J. Quantum Chem.
115, 1215 (2015).

201



Bibliography

[255] S. Giannini, A. Carof, and J. Blumberger, J. Phys. Chem. Lett. 9,
3116 (2018).

[256] X. Bai, J. Qiu, and L. Wang, J. Chem. Phys. 148, 104106 (2018).

[257] J. Qiu, X. Bai, and L. Wang, J. Phys. Chem. Lett. 10, 637 (2019).

[258] L. Wang and D. Beljonne, J. Phys. Chem. Lett. 4, 1888 (2013).

[259] J. Qiu, Y. Lu, and L. Wang, J. Chem. Theory Comput. 18, 2803 (2022).

[260] E. J. Heller, J. Chem. Phys. 75, 2923 (1981).

[261] G. A. Worth, M. A. Robb, and I. Burghardt, Faraday Discuss. 127,
307 (2004).

[262] G. W. Richings, I. Polyak, K. E. Spinlove, G. A. Worth,
I. Burghardt, and B. Lasorne, Int. Rev. Phys. Chem. 34, 269 (2015).

[263] T. Ma, M. Bonfanti, P. Eisenbrandt, R. Martinazzo, and
I. Burghardt, J. Chem. Phys. 149, 244107 (2018).

[264] S. A. Gräber, Simulating real-time dynamics in the Holstein model
with Ehrenfest methods, Master’s thesis, Georg-August-Universität Göt-
tingen, Institute for Theoretical Physics, 2021.

[265] T. J. Martinez, M. Ben-Nun, and R. D. Levine, J. Phys. Chem. 100,
7884 (1996).

[266] A. S. Davydov, Sov. Phys. Usp. 25, 898 (1982).

[267] L. Cruzeiro-Hansson, Phys. Rev. Lett. 73, 2927 (1994).

[268] Y. Zhao, B. Luo, Y. Zhang, and J. Ye, J. Chem. Phys. 137, 084113
(2012).

[269] K. Saita and D. V. Shalashilin, J. Chem. Phys. 137, 22A506 (2012).

[270] M. Ben-Nun, J. Quenneville, and T. J. Martínez, J. Phys. Chem. A
104, 5161 (2000).

[271] H. D. Meyer, U. Manthe, and L. S. Cederbaum, Chem. Phys. Lett.
165, 73 (1990).

[272] M. H. Beck, A. Jäckle, G. A. Worth, and H. D. Meyer, Phys. Rep.
324, 1 (2000).

[273] H. Wang and M. Thoss, J. Chem. Phys. 119, 1289 (2003).

[274] H. Wang and M. Thoss, Multilayer Formulation of the Multiconfigu-
ration Time-Dependent Hartree Theory, in Multidimensional Quantum
Dynamics, edited by H.-D. Meyer, F. Gatti, and G. A. Worth, chap-
ter 14, pp. 131–147, Wiley, 2009.

202



Bibliography

[275] H. Wang, J. Phys. Chem. A 119, 7951 (2015).

[276] I. Burghardt, H.-D. Meyer, and L. S. Cederbaum, J. Chem. Phys.
111, 2927 (1999).

[277] I. Burghardt, M. Nest, and G. A. Worth, J. Chem. Phys. 119, 5364
(2003).

[278] I. Burghardt, K. Giri, and G. A. Worth, J. Chem. Phys. 129, 174104
(2008).

[279] W. C. Swope, H. C. Andersen, P. H. Berens, and K. R. Wilson, J.
Chem. Phys. 76, 637 (1982).

[280] G. Dahlquist and A. Björck, Numerical methods, Prentice-Hall,
Englewood Cliffs, N.J, 1974.

[281] F. Verstraete and J. I. Cirac, arXiv:cond-mat/0407066 (2004).

[282] E. M. Stoudenmire and S. R. White, Annu. Rev. Condens. Matter
Phys. 3, 111 (2012).

[283] R. Orús, Ann. Phys. 349, 117 (2014).

[284] B.-X. Zheng, C.-M. Chung, P. Corboz, G. Ehlers, M.-P. Qin, R. M.
Noack, H. Shi, S. R. White, S. Zhang, and G. K.-L. Chan, Science
358, 1155 (2017).

[285] B. Bruognolo, J.-W. Li, J. von Delft, and A. Weichselbaum, SciPost
Phys. Lect. Notes , 25 (2021).

[286] C. Brockt, F. Dorfner, L. Vidmar, F. Heidrich-Meisner, and
E. Jeckelmann, Phys. Rev. B 92, 241106 (2015).

[287] M. L. Wall, A. Safavi-Naini, and A. M. Rey, Phys. Rev. A 94, 053637
(2016).

[288] J. Stolpp, J. Herbrych, F. Dorfner, E. Dagotto, and F. Heidrich-
Meisner, Phys. Rev. B 101, 035134 (2020).

[289] T. Köhler, J. Stolpp, and S. Paeckel, SciPost Phys. 10, 058 (2021).

[290] J. Stolpp, T. Köhler, S. R. Manmana, E. Jeckelmann, F. Heidrich-
Meisner, and S. Paeckel, Comput. Phys. Commun. 269, 108106 (2021).

[291] E. Jeckelmann and S. R. White, Phys. Rev. B 57, 6376 (1998).

[292] B. Friedman, Phys. Rev. B 61, 6701 (2000).

[293] H. Wong and Z.-D. Chen, Phys. Rev. B 77, 174305 (2008).

[294] D. Jansen, J. Bonča, and F. Heidrich-Meisner, Phys. Rev. B 102,
165155 (2020).

203



Bibliography

[295] D. Jansen, C. Jooss, and F. Heidrich-Meisner, Phys. Rev. B 104,
195116 (2021).

[296] G. Vidal, Phys. Rev. Lett. 93, 040502 (2004).

[297] A. J. Daley, C. Kollath, U. Schollwöck, and G. Vidal, J. Stat. Mech.
2004, P04005 (2004).

[298] S. R. White and A. E. Feiguin, Phys. Rev. Lett. 93, 076401 (2004).

[299] J. Haegeman, J. I. Cirac, T. J. Osborne, I. Pižorn, H. Verschelde,
and F. Verstraete, Phys. Rev. Lett. 107, 070601 (2011).

[300] J. Haegeman, C. Lubich, I. Oseledets, B. Vandereycken, and F. Ver-
straete, Phys. Rev. B 94, 165116 (2016).

[301] S. Paeckel, T. Köhler, A. Swoboda, S. R. Manmana, U. Schollwöck,
and C. Hubig, Ann. Phys. 411, 167998 (2019).

[302] J. F. Stolpp, Transport and nonequilibrium dynamics in 1d many-body
systems with bosonic degrees of freedom, PhD thesis, Georg-August-
Universität Göttingen, http://dx.doi.org/10.53846/goediss-8867, 2021.

[303] D. Jansen, Transport and dynamical properties of electron-phonon
coupled systems, PhD thesis, Georg-August-Universität Göttingen,
http://dx.doi.org/10.53846/goediss-9675, 2023.

[304] L. Chen, Y. Zhao, and Y. Tanimura, J. Phys. Chem. Lett. 6, 3110
(2015).

[305] J. Zheng, X. Xu, R. Meana-Pañeda, and D. G. Truhlar, Chem. Sci.
5, 2091 (2014).

[306] J. Zheng, R. Meana-Pañeda, and D. G. Truhlar, J. Phys. Chem. Lett.
5, 2039 (2014).

[307] D. V. Makhov, W. J. Glover, T. J. Martinez, and D. V. Shalashilin,
J. Chem. Phys. 141, 054110 (2014).

[308] D. V. Makhov, T. J. Martinez, and D. V. Shalashilin, Faraday
Discuss. 194, 81 (2016).

[309] B. Bertini, F. Heidrich-Meisner, C. Karrasch, T. Prosen,
R. Steinigeweg, and M. Žnidarič, Rev. Mod. Phys. 93, 025003 (2021).

[310] A. Heck, J. J. Kranz, T. Kubař, and M. Elstner, J. Chem. Theory
Comput. 11, 5068 (2015).

[311] A. Heck, J. J. Kranz, and M. Elstner, J. Chem. Theory Comput. 12,
3087 (2016).

[312] A. P. Horsfield, D. R. Bowler, H. Ness, C. G. Sánchez, T. N.
Todorov, and A. J. Fisher, Rep. Prog. Phys. 69, 1195 (2006).

204



Bibliography

[313] C. Zhu, A. W. Jasper, and D. G. Truhlar, J. Chem. Phys. 120, 5543
(2004).

[314] C. Zhu, S. Nangia, A. W. Jasper, and D. G. Truhlar, J. Chem. Phys.
121, 7658 (2004).

[315] K. Drukker, J. Comp. Phys. 153, 225 (1999).

[316] B. Smith and A. V. Akimov, J. Phys.: Condens. Matter 32, 073001
(2019).

[317] N. Shenvi, S. Roy, and J. C. Tully, J. Chem. Phys. 130, 174107 (2009).

[318] E. Tapavicza, I. Tavernelli, and U. Rothlisberger, Phys. Rev. Lett.
98, 023001 (2007).

[319] B. F. E. Curchod, U. Rothlisberger, and I. Tavernelli,
ChemPhysChem 14, 1314 (2013).

[320] A. Görling, Phys. Rev. A 54, 3912 (1996).

[321] C. F. Craig, W. R. Duncan, and O. V. Prezhdo, Phys. Rev. Lett. 95,
163001 (2005).

[322] S. A. Fischer, B. F. Habenicht, A. B. Madrid, W. R. Duncan, and
O. V. Prezhdo, J. Chem. Phys. 134, 024102 (2011).

[323] M. Fischer, J. Handt, and R. Schmidt, Phys. Rev. A 90, 012525 (2014).

[324] N. T. Maitra, J. Chem. Phys. 125, 014110 (2006).

205





Acknowledgment

First of all, I would like to express my gratitude to Peter E. Blöchl for his
excellent supervision during the years of my doctoral studies. His invalu-
able feedback, constant support and our many scientific discussions made this
project possible and broadened my understanding of physics. I am grateful to
Fabian Heidrich-Meisner for becoming the second reviewer of this work and
for his general feedback and scientific advise during the last years. I would
like to extend my sincere thanks to Christian Jooß and Stefan Kehrein for being
part of my thesis advisory committee. Furthermore, I thank all members of my
examination board.

Special thanks go to all my collaborators in our joined projects. I particularly
enjoyed the many fruitful discussions with Fabian Heidrich-Meisner, Christian
Jooß, Sangeeta Rajpurohit, Birte Kressdorf, Tobias Meyer, Miroslav Hopjan,
David Jansen, and Stefan Gräber. I am grateful to the DFG and the SFB 1073
for their financial support and for enabling such collaborative projects.

I thank my former and present colleagues in the institutes in both Göttingen
and Clausthal for their scientific and moral support during my doctoral studies
and the great atmosphere in the research groups. In particular, but not limited
to: Nils Abeling, Florian Sohn, Thomas Köhler, Sebastian Paeckel, Kristof
Harms, Constantin Meyer, Robert Schade, Lukas Rump, Simon Luca Villani,
Kai Stroh, Jan Stolpp, and Laura Endter. I also thank Lukas Rump and David
Jansen for proofreading parts of the manuscript, and the administrative and
technical staff of Göttingen and Clausthal for all their help.

I would like to express my personal thanks to my family for their ongoing
support for as long as I can remember. Finally, I want to thank Christin, for her
continuous help, motivation and inspiration since more than 11 years and for
going with me through all ups and downs of the last years.

207


	Contents
	Introduction
	Manganites
	Perovskite structure
	Single octahedron interactions
	Crystal field splitting and electronic configuration
	The Jahn-Teller effect

	Inter-octahedral interactions
	The phase diagram of Pr₁₋ₓCaₓMnO₃
	Zero-temperature phases
	Finite-temperature phase transitions


	Tight-binding description for ground-state and finite-temperature calculations
	General description of the tight-binding model for manganites
	The energy functional
	Electron hopping
	Electron-electron interaction
	Phonon modes and the electron-phonon interaction
	t2g spins, Hund's coupling and antiferromagnetic superexchange
	Model parameters
	Alterations of the tight-binding model

	Ground-state search
	Minimization constraints
	Car-Parrinello approach
	Numerical details

	Finite-temperature calculations
	Car-Parrinello molecular dynamics
	Finite atom temperature: The Nosé-Hoover thermostat


	Ground states and orbital-order phase transition in low-doped Pr₁₋ₓCaₓMnO₃, obtained with the manganite tight-binding model
	Zero-temperature phases 0≤x≤0.25
	Overview
	x=0
	x=0.25
	0<x<0.25

	Orbital-order phase transition at x=0 and x=0.1
	x=0.1
	x=0
	Reevaluation of the phase diagram of Pr₁₋ₓCaₓMnO₃


	Non-adiabatic effects in electron-phonon coupled systems: Exact and quantum-classical descriptions
	The Holstein model
	Non-adiabatic effects in the framework of the Born-Huang expansion
	A position-dependent electronic basis
	The Born-Huang expansion
	The Born-Oppenheimer/adiabatic approximation
	Born-Huang for the Holstein dimer and trimer

	Trajectory-based methods
	The Wigner function formalism
	Independent-trajectory approach
	Multitrajectory Ehrenfest
	Fewest-switches surface hopping
	FSSH improvements
	Coupled-trajectory approaches
	Implementation and convergence of the independent-trajectory methods


	Real-time non-adiabatic dynamics of exact and quantum-classical methods in the Holstein model
	Holstein dimer
	The Born-Oppenheimer case
	Non-adiabatic transitions
	Coherences in the initial state
	The bare local state with small electron hopping
	Tunneling
	Summary for the Holstein dimer

	Holstein trimer
	Non-bonding adiabatic initial state
	Bare local initial state
	Dressed local initial state
	Summary for the Holstein trimer

	Holstein chain
	FSSH in large systems
	Bare local initial state
	Dressed local initial state
	Reduced electron hopping
	Summary for the Holstein chain

	Evaluation of the methods

	Conclusion and Outlook
	Bibliography

