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Chapter 1

Introduction

The brain can change dramatically during learning and development yet remains
structurally stable (H.Lütcke, Margolis, and Helmchen, 2013). Stability and flex-
ibility are both hallmarks of brain functions for animals to cope with changeable
environments. Underlying sensory perception there are dynamic activity patterns
which are responsible for memory and behavior of animals. Neural circuits have
to deal with a trade-off between keeping stability for e.g. recognition of objects
and being plastically adapted to changing requirements from the outside. In ex-
periment, long-term imaging has shown that synaptic elements can be highly dy-
namic including in adult animals. Some studies point out that tuning properties
appear more flexible and may be adaptive to stimuli and behaviors (J.R.Kohn et al.,
2021; A.I.Weber, K.Krishnamurthy, and A.L.Fairhall, 2019; A.Borst, V.L.Flanagin,
and H.Sompolinsky, 2005). In the hippocampus, recent investigations revealed that
around 80% of the cells change their tuning properties over a timescale of a week
(T.Hainmueller and Bartos, 2018; T.Bonhoeffer, M.Huebener, and T.Rose, 2017). The
zebra finch, for example, sings a highly stereotyped song that is stable for years,
but the neuron patterns underlying song shift from day to day (for a review, see
M.S.Brainard and A.J.Doupe (2000)).

Visual cortex, as a model for plasticity, has been studied for many years (D.H.Hubel
and T.N.Wiesel, 1962; D.H.Hubel and T.N.Wiesel, 1963b; B.A.Wandell and S.M.Smirnakis,
2009; J.S.Espinosa and M.P.Stryker, 2012; Ko et al., 2011; L.White and D.Fitzpatrick,
2007; M.Sur and C.A.Leamey, 2001; Y.Frégnac et al., 1988; Y.Frégnac, S.Thorpe, and
E.Bienenstock, 1992). It is still controversial, however which mechanisms guide the
emergence and development of a hallmark of the cortical functional architecture,
orientation preference maps (OPMs) (M.Kaschube et al., 2010a; J.B.Ackman and
M.C.Crair, 2014; W.H.Bosking, J.C.Crowley, and D.Fitzpatrick, 2002; M.Kaschube
et al., 2010b; E.Erwin, K.Obermayer, and K.Schulten, 1995). Two classes of mecha-
nisms have been proposed, one is about molecular recognition of gradients of dif-
fusible ligands and cell-surface receptors to arrange map structures, another one are
called activity-dependent mechanisms which means the visual system uses corre-
lated patterns of pre- and postsynaptic activity to lead the map formation (L.White
and D.Fitzpatrick, 2007). The activity patterns are generated within the visual path-
way from retina, LGN to the primary visual cortex (M.V.Albert, Schnabel, and D.J.Field,
2008; S.Behpour, D.J.Field, and M.V.Albert, 2021). After an animal’s eyes open, the
activity is driven by visual experience. Many people believe that molecular recog-
nition governs the initial map formation and helps build a basic topology structure,
but for later stages in development, retinal activity patterns are required to tune
the maps for maturation (L.E.White, D.M.Coppola, and D.Fitzpatrick, 2001; M.Sur
and C.A.Leamey, 2001; M.C.Crair, D.C.Gillespie, and M.P.Stryker, 1998b). A recent
study shows in vivo by using calcium imaging that at early development period in
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ferret visual cortex contralateral, ipsilateral or binocular stimulation each creates dis-
tinct representations of orientation that are misaligned at the columnar and cellular
scale (J.T.Chang, D.Whitney, and D.Fitzpatrick, 2020). It is visual experiences that
drive the reorganization of these three representations to a unified binocular repre-
sentation of orientation. Another example is found in juvenile animals expose to
stimuli with a restricted range of orientation, as a result the OPMs are obviously af-
fected (F.Sengpiel, P.Stawinski, and T.Bonhoeffer, 1999a). This indicated experience-
dependent plasticity after the initial formation of OPMs.

The role visual experience plays may be more important than widely thought.
Several substantial biological changes in V1 are observed which follow eye opening
of animals (L.White and D.Fitzpatrick, 2007). At the time when visual experiences
drive the activity in the visual pathway, the density of cortical synapses in V1 is only
a fraction of that found in maturity and a large part of synapses are added during the
development when visual experiences affect the neural activity in V1. Interestingly,
the rapid increase of cortical synapses is accompanied by an outgrowth of long-
range horizontal connections which accelerates after eye opening. These long-range
connections are regarded as connections of cortical columns with similar response
properties (C.Gilbert and T.N.Wiesel, 1989; R.Malach et al., 1993; W.H.Bosking et al.,
1997). For orientation selectivity of V1, these connections are used to link neurons
with similar orientation preferences. Taken together, these observations indicate that
a large part of the construction of neural circuits in supragranular layers of V1 takes
place during a period when V1 is responsive to visual experiences. Furthermore,
by intrinsic signal optical imaging techniques it has been observed that, after OPMs
are initially detectable at the time of eye opening of some species, e.g. ferret, the
strength of mapping signals increases significantly until it reaches maturation state.
So during the postnatal period the maps become more robust and achieve full map
strength.

To sum up the above, the visual experiences are considered to exert a profound
influence over the formation and maturation of OPMs instead of only maintaining
the maps. In fact, receptive fields can be extremely plastic in V1. For instance, one
study demonstrated using a STDP protocol one can induce rearrangement of cor-
tical neurons’ sub-threshold and supra-threshold responses by only a few spikes
(V.Pawlak et al., 2013). During an hour a cortical neuron fires thousands of spikes.
Whether and why the orientation selectivity persists under this continuous stream of
activity is not clear and has not frequently been investigated in theoretical models.
Also the question about how visual experience exactly impact neuronal responses
and cortical architecture in the developing brain is still not well understood. Re-
cently, the Bednar group has built a detailed model with input driving the activity
in the visual system and open software packages are available online (J.Stevens et al.,
2013). We will use this well established model to investigate this open question. For
this model, the issues about time scales of modeling map formation, types of map
rearrangement and final states of the map development will be examined in detail.

An overview of my work is as follows. Except for the introduction parts, Chap-
ter 3 considers utilizing the van Hemmen model to reveal the mechanism of the
formation of receptive fields in the Topographica model and the results show that
the framework of the van Hemmen model is likely unsuitable to apply to the Topo-
graphica model. Chapter 4 examines, with the same conditions as used originally in
the Topographica model (J.Stevens et al., 2013), the dynamics of OPM development
is a long-term process and pinwheel crystals and boundary effects are discovered
in the simulations. Chapter 5 studies parameter variation of the excitatory range
in the model and analyzes the characteristics of pinwheel layouts during the map
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development. To remove boundary effects, Chapter 6 studies the model with peri-
odic boundary conditions which are newly implemented and gives the dynamical
description of cortical pattern changes under this condition. Chapter 7 analyzes the
process of OPM development for using different system sizes of the model and finds
that in a larger size of cortical area the pinwheel crystallization process is more ap-
parent and clearly observed. Chapter 8 compares pinwheel statistics generated by
using different learning rates in the model. Chapter 9 examines the impact of chang-
ing the parameter of the inhibitory interaction in the model and discovers that the
OPMs produced by using the previously used parameters values fail to match the
OPMs in the experiments. Chapter 10 studies the question whether using correlated
stimuli can reproduce OPMs conforming to the features of the common design (see
Chapter 2). The answer is no. Chapter 11 builds the model with a type of the long
range cortical interaction and examines the pinwheel statistics produced under this
condition. The results exhibit that the model with the long-range interaction in the
visual cortex and periodic boundary conditions is not able to generate features for
the common design. Chapter 12 is concerned with the impact of different numbers
of input patterns on OPM development in the model and discovers that the maps
which have pinwheel statistics similar to the common design are observed.
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Chapter 2

Fundamentals

2.1 The early visual pathway

The early visual pathway is presented in Figure 2.1. The visual pathway begins with
the retina where light enters through lens and falls on photo-receptors which convert
light signals into spike patterns. The retinal ganglion cells on the outermost layer of
retina conduct these action potentials to the brain. Different populations of ganglion
cells in the retina send information to the brain through the optic nerve. The optic
nerves from both eyes meet and cross at the optic chiasm, where the information
coming from both eyes is combined and then splits according to the visual fields.
From there the information from the left visual field travels in the right optic tract,
and information from the right visual filed travels in the left optic tract. This means,
the right half brain will process the information from the left field of view and the
left half brain will deal with the information from the right field of view. Each optic
tract targets the lateral geniculate nucleus (LGN) in the thalamus. The LGN consists
of 6 layers in humans and some other primates. Layer 1, 4 and 6 receive information
from the origin of nasal retina whereas layer 2,3 and 5 receive information from
the origin of the temporal retina. One of the main functions of LGN is relaying
the signals of retinal ganglion cells without modifying much of them. Therefore the
properties of receptive fields of LGN are similar to receptive fields of retinal ganglion
cells (E.Kaplan, S.Marcus, and Y.T.So, 1979; S.F.Tavazoie and R.C.Reid, 2000). Both
of them have center-surround structures. The visual information is carried by optic
radiation from LGN to the layer 4 of the primary visual cortex (V1), which is located
in the posterior pole of the occipital lobe. V1 is is the first stage of cortical processing
of visual information and highly specialized at pattern recognition of the moving
and static visual objects. V1 is composed of a two-dimensional sheet of neurons and
contains a large number of neurons. In human, the number is about 140 million
neurons per hemisphere.

V1 has retinotopic organization. This means V1 contains a complete map of the
visual field. Retinotopy is continuous, because neighboring point in V1 area corre-
spond to neighboring visual positions in the visual field.

There are two types of neurons in V1 area: simple cells and complex cells, accord-
ing to the structure of receptive fields (D.H.Hubel and T.N.Wiesel, 1959; J.A.Movshon,
I.D.Thompson, and D.J.Tolhurst, 1978; H.Kato, P.O.Bishop, and G.A.Orban, 1978).
The receptive fields of simple cells have two distinct responsible regions: on and off
subregions. On subregions respond to the light part of stimuli while off subregions
respond to the dark part of stimuli. But for complex cells, on and off regions are
superimposed, which means one position of the receptive fields can be stimulated
by both the light part and dark part of stimuli.

Neurons in V1 have many response properties. One of the important properties
is ocular dominance, which means neurons are selectively responsive to right eye
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or left eye. Another important property is orientation selectivity, which indicates
that different neurons in V1 have different orientation preferences for stimulus and
response most strongly for preferred orientation of the stimulus (D.H.Hubel and
T.N.Wiesel, 1962; D.H.Hubel and T.N.Wiesel, 1963b). In addition to these properties,
neurons in V1 are also selective for several attributes, such as direction of motion,
spatial and temporal frequency and so on. Here we don’t introduce these aspects.

Figure (2.1) Schematic illustration of the early visual pathway in carnivores and
primate.The visual pathway begins with the retina where light enters through lens.
The optic nerves from both eyes meet and cross at the optic chiasm for information
combination and splitting. Each optic tract projects to the lateral geniculate nucleus
(LGN) in the thalamus. Then visual information is transmitted by optic radiation
from LGN to the primary visual cortex (V1)(adapted from D.E.Hannula,
D.J.Simons, and N.J.Cohen (2005)).

2.2 The functional architecture of primary visual cortex

The cerebral cortex is the outer layer of neural tissue of the cerebrum of the brain
in humans and other mammals. The cerebrum is the largest part of the brain. In
the human brain, the cerebrum is the uppermost region of the central nervous sys-
tem. The cerebral cortex plays a key role in attention, awareness, thought, percep-
tion,memory, language and consciousness. It has a functional structure of cortical
columns, which are groups of neurons extending perpendicular to the cortical sur-
face and have nearly identical receptive fields. Neurons within a column share simi-
lar functional properties. In the single cortical layer parallel to the surface, neuronal
selectivity varies systematically. We understand the two dimensional patterns with
such characteristics as the functional maps of visual cortex. Especially, the spatial
structure of orientation preference is referred to as the functional architecture of pri-
mary visual cortex.

In the primary visual cortex of primates and carnivores, the structural units for
orientation selectivity are called orientation columns. The two-dimensional patterns
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which consist of orientation columns are called orientation preference maps. Experi-
mentally, the pattern of orientation preferences is measured by using optical imaging
of intrinsic signals (A.Grinvald et al., 1986; A.Grinvald et al., 1988). This method is
accomplished using an enhanced video acquisition system. It records the changes
from light reflectance when the cortical tissue is activated by different illuminance
conditions. Typically, the cortical responses Ek(x) are produced by stimulation with
a grating of orientation ϑk, see Fig 3.2(A). Here x represents the location of a col-
umn in the cortex. The activity patterns (Ek(x)) can be summarized to construct a
complex field which represents the two-dimensional orientation preference maps:

z(x) = ∑
k

e2iϑk Ek(x)

The preferred orientation of neurons at location x can be obtained from:

ϑ(x) =
1
2

arg(z)

The module |z(x)| is a measure of orientation selectivity at cortical location x. An
example of OPM constructed by this approach is shown in Figure 2.2. In OPMs there
is a typical organization called pinwheel around which columns preferring all ori-
entations surround a common center in a radial fashion (A.Grinvald et al., 1986;
D.H.Hubel and T.N.Wiesel, 1977; G.G.Blasdel and G.Salama, 1986; T.Bonhoeffer
and A.Grinvald, 1991). Pinwheels actually are the singular points of the filed ϑ(x).
See Figure 3.2. Mathematically, pinwheel centers are the roots of the complex field
z(x) = 0 (N.V.Swindale, 1982). As a topologically conserved measurement for con-
tinuously changing OPMs, topological charge indicates whether the preferred ori-
entations arrange around pinwheel centers in a clockwise or counterclockwise way
(N.V.Swindale, 1982). It is defined as:

qi =
1

2π

∮
Ci

∇ϑ(x)ds

Ci is a closed curve around only a pinwheel center and ϑ(x) is a continuous function
up to isolated singular points. Since ϑ(x) is a periodic variable from 0 to π, qi can
have values (N.D.Mermin, 1979):

qi =
n
2

In experiments, only the pinwheels with values |qi| = 1
2 are observed. qi = 1

2
means the preferred orientations increase around pinwheel centers in a clockwise
way, while qi = − 1

2 for the opposite change way of the orientations. Other topolog-
ical charges of qi = ±1,± 3

2 ... are never observed in animals. The pinwheel centers
can be visualized at single cell level with the experimental method of two-photon
calcium imaging in vivo (K.Ohki et al., 2006a).
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Figure (2.2) Orientation preference maps in the visual cortex of a tree
shrew.Different colors indicate different orientation preferences for the stimuli with
the color coded orientation.This map was obtained by optical imaging by summing
complex fields evoked by stimuli with different orientations.The right part shows
pinwheel structures.Pinwheel centers are the singular points around which all
orientations are arranged in a radial way(adapted from W.H.Bosking et al. (1997)).

The OPM exhibits a roughly repetitive arrangement of preferred orientations.
The column spacing Λ measures the average distance of adjacent iso-orientation do-
mains, which can be achieved by using wavelet analysis (M.Kaschube et al., 2010b;
T.Bonhoeffer and A.Grinvald, 1993). This size of Λ2 are called hypercolumn, which
contains the neuronal columns responding to all the orientations of stimulus. A hy-
percolumn occupies an area of about 1 mm2 on the cortical surface.

To characterize the layout of orientation columns, M.Kaschube et al. (2010b) de-
veloped a statistical approach based on pinwheel density. The concept of pinwheel
density means the average number of pinwheels per hypercolumn area. Firstly, they
found the mean pinwheel density was virtually identical in six species which are
macaque, mouse lemur, cat, tree shrew, galago and ferret and the values are close to
π (M.Kaschube et al., 2010b; W.Keil et al., 2012; M.Schottdorf et al., 2015a; C.L.A.Ho
et al., 2020). Secondly, they characterized intramap heterogeneity and local arrange-
ment of neighboring pinwheels. Their calculation results suggest these species share
a "common design" of orientation column layouts : the virtual identity of (i) pin-
wheel density, (ii) pinwheel density fluctuations as a function of subregion size, and
(iii) nearest-neighbor distance distributions of pinwheels. These findings support
that in spite of phylogenetical and ecological diversity during evolution, carnivores
and primates may follow a common layout rule of orientation columns.

In the primary visual cortex of a range of species, long-range horizontal connec-
tions are observed to link the iso-domanins of the same or similar orientation prefer-
ence in the maps, as revealed by a number of experiments (W.H.Bosking et al., 1997;
K.S.Rockland and J.S.Lund, 1982; L.C.Sincich and G.G.Blasdel, 2001; M.Weliky and
L.C.Katz, 1994; C.D.Gilbert and T.N.Wiesel, 1979; C.D.Gilbert and T.N.Wiesel, 1983;
Z.F.Kisvarday et al., 1997; M.Callaway and L.C.Katz, 1990; S.Löwel and W.Singer,
1992; L.E.White, D.M.Coppola, and D.Fitzpatrick, 2001). Studies in both of cat and
monkey visual cortex, for example, have demonstrated that horizontal connections
selectively link patches of neurons that have similar orientation preferences. These
connections extend for millimeters parallel to the cortical surface and generate patchy
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terminations. Horizontal connections are a important feature of the intrinsic cir-
cuitry of the visual cortex.

Compared to a ordered spatial arrangement of orientation columns in carnivores
and primates, glires or rodents, e.g. rats,gray squirrels and rabbits have column-
less, apparently random, salt-and- pepper organization for orientation preferences,
although all of their cortical neurons selectively response to stimulus orientations
(K.Ohki et al., 2005). See Figure 2.3. The complete randomness of organization for
rodents and the ordered arrangement of orientation columns for primates and car-
nivores pose a enigma for researchers about the formation mechanisms. One sug-
gested that the short-range circuit interaction is responsible for the formation of the
salt-and-pepper organization while a long range cortical interaction gives rise to the
columnar structure comforting a common design rule(M.Kaschube et al., 2010a).

Figure (2.3) single-cell resolution orientation maps for (A)cat’s visual cortex and
(B) rat’s visual cortex obtained by in vivo two-photon calcium imaging.(A) is a
pinwheel of cat’s visual cortex(adapted from K.Ohki et al. (2006b)). (B) is
salt-and-pepper structure of rat’s visual cortex.Different color indicates different
orientation preferences of neurons(adapted from K.Ohki et al. (2005)).

2.3 Development and plasticity of OPMs

How do the cortical functional architecture emerge during the development of an-
imals ? There is a long-term question that to what extent the structure and func-
tions of orientation columns are determined by genetic coding and visual experi-
ence. Experimental evidences show that an initial OPM can be established without
any visual inputs (B.G.Cragg, 1975; R.Backmann and K.Albus, 1982; S.F.Tavazoie
and Reid, 2000; B.M.Hooks and C.Chen, 2006; U.R.Karmarkar and D.Yang, 2006a).
Spontaneous activity may play a role in establishing the cortical patterns before or
during eye opening. In an experiment tree shrew is dark rearing and shows normal
OPMs with pinwheel density close to π (M.Kaschube et al., 2010a). The size of neu-
ral network including a huge number of neurons and synapses in one hypercolumn
is extremely large. It is unlikely for genes to encode the activities and connections
of this type of neural networks. Instead, For visual cortex, the synaptic architec-
ture of visual cortex remains plasticity and refinement lasting several months after
the initial orientation selectivity is established (M.Sur and C.A.Leamey, 2001). Some
experimental observations indicate that the development of OPMs is a process of
experience-dependent plasticity (U.R.Karmarkar and D.Yang, 2006b; B.Godde et al.,
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2002). One of the most remarkable evidences supporting this hypothesis comes from
the visual inputs rewired to the auditory cortex in ferrets (J.Sharma, A.Angelucci,
and M.Sur, 2000). Thalamocortical projections from the retina were experimentally
redirected to the auditory pathway at a very early stage of development. As a con-
sequence, similar patterns of OPMs have been observed in the area that would nor-
mally be the primary auditory cortex. This experiment suggests that by manipu-
lation to give inputs with some conditions the cerebral cortex can generate similar
cortical maps at different areas. Another experiment shows the visual cortex of kit-
tens reared in a striped environment responded to all orientations, but contributed
to twice as much surface area to the experienced orientation as the orthogonal one
(F.Sengpiel, P.Stawinski, and T.Bonhoeffer, 1999b). This effect indicates an instruc-
tive role of visual experience to make some neurons change their orientation prefer-
ence. Also, some other experiments show the deprivation of visual experience will
cause the degradation of OPMs (M.C.Crair, D.C.Gillespie, and M.P.Stryker, 1998a).
What is more, Sensory maps can undergo plastic changes with experience even in
adult brains (V.Pawlak et al., 2013; U.R.Karmarkar and D.Yang, 2006a). But how
visual experience impact neuronal responses and cortical architecture in the devel-
oping brain are still not well understood.

To summed up, the initial establishment of orientation map may be free require-
ment of visual experience but in the later stage of development the visual cortex can
be plastic and refined by visual experience. Especially, for the second stage there is
a period called critical period during which the cortex is most susceptible to visual
inputs (L.Reichl et al., 2012; B.M.Hooks and C.Chen, 2007). For example, in cats the
critical period lasts for about 3 months (K.R.Jones, P.D.Spear, and L.Tong, 1984).

2.4 Modeling the development of OPMs

Since Hubel and Wissel in experiments discovered the orientation selectivity of neu-
rons in cats’ primary visual cortex, many models have been proposed to modeling
the emergence and the development process of orientation selectivity (for review, see
N.V.Swindale (1996) and G.J.Goodhill (2007)). Hubel and Wissel firstly presented a
model about genetical predetermination of required neuronal circuitry (D.H.Hubel
and T.N.Wiesel, 1963a). But there are several disadvantages of this model which are,
for example, a high cost of genetical information about afferent axon branches to
contact neurons, neglect of considering cortical plasticity. Then activity-dependent
mechanisms have been applied to understand the development of functional archi-
tecture of V1. The pioneer work of this aspect was done by Malsburg (1973), Mals-
burg and D.J.Willshaw (1976), and Malsburg and D.J.Willshaw (1977). Their model
consists of a network of cells which has two sheet, one represents retina and an-
other one represents V1. Cells in retina are connected to units in V1 sheet which are
postsynaptic. The connection strengths are random initially and can be learned ac-
cording to Hebb learning rule (D.O.Hebb, 1949). There are two types of neurons in
cortical layer, excitatory and inhibitory ones, which interact to each other, with short
range excitation effect and long range inhibitory effect. Nine different set of stimuli
in the form of light bars were presented to the retina sheet. After 20 presentations
of all the stimuli different neurons in the cortical sheet become response selective to
different orientations. Also one can observe there are groups of nearby neurons hav-
ing same or similar orientation selectivity, which are analogous to cortical columns.
Linsker proposed a model of self-organization in the visual system that does not re-
quire structured input (R.Linsker, 1986a; R.Linsker, 1986b; R.Linsker, 1986c). The
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network consists of several layers and the units of the network are linear and are or-
ganized into two-dimensional layers. There are feed-forward connections between
layers, with each unit receiving inputs only from a neighborhood in the previous
layer which are regarded as receptive filed. Linsker used a modified Hebbian learn-
ing rule to update the connection weights. This linear network can reproduce orien-
tation preference patterns. Linsker’s model shows that structured inputs for retina
are not necessary to generate structured patterns of receptive fields in later process-
ing stages. And unstructured “spontaneous” activity patterns are sufficient to form
structured receptive fields during the development process. K.D.Miller (1994) stud-
ied a linear mathematical model consisting of a LGN ON cell-layer, a LGN OFF cell-
layer and a cortical layer. In this model the correlations among afferent activities
determine receptive filed structure. If the correlation function does not change sign
within an arbor radius, the resulting cortical cells come to receive only ON-center or
OFF-center inputs. If the correlation function changes sign, so that at small separa-
tions same type inputs are best correlated, but at larger separations within the arbor
radius opposite-type inputs are best correlated, then the segregated ON center and
OFF center subregions of receptive fields are developed.

Meanwhile, high-dimensional nonlinear models had been proposed and also ob-
served structure of the topographic map can arise from these models (K.Obermayer,
H.Ritter, and K.Schulten, 1990; G.J.Goodhill, 1993; H.G.Barrow, A.Bray, and J.M.L.Budd,
1996; M.Riesenhuber et al., 1998; J.Sirosh and R.Miikkulainen, 1997; J.A.Bednar and
R.Miikkulainen, 2006). In addition, these models were pointed out to have some
different properties from the linear models.

Compared with high-dimensional models, some authors have proposed “low-
dimensional”models which are also referred as dimension reduction framework
(R.Durbin and G.Mitchison, 1990; G.J.Goodhill and D.J.Willshaw, 1990; K.Obermayer,
G.G.Blasdel, and K.Schulten, 1992). We consider a example of multiple dimensional
feature space which is spanned by quantities describing e.g. receptive field proper-
ties of cortical cells. The coordinates can correspond to the position of a receptive
field in retinotopic space, to orientation preferences and specificity and to ocular
dominance. These feature variables form a five dimensional space and each point in
this space is mapped onto one point in the two-dimensional cortical surface of the
primary visual cortex. These models are generally based on using either the elastic
net (R.Durbin and D.J.Willshaw, 1987) or T.Kohonen (1982), T.Kohonen (2000), and
T.Kohonen (2006). For example, W.Keil and F.Wolf (2011) presented a mathemat-
ical approach to calculate cortical representations predicted by the elastic net(EN)
model for the joint mapping of stimulus position and orientation. The EN model
trades off of the space of visual stimulus features and the continuity of their corti-
cal representation. On the one hand, each stimulus features should be contained in
the representation of a cortical map. On the other hand, the wiring cost of neuron
connections should be kept low. To achieve this neurons that are physically close
in the cortex are required to have similar orientation preferences. These two aspects
compete with each other. This research demonstrate the optimization models for EN
are in principle capable of correctly predicting the common OPM design.

The analogy between the pattern formation of physical systems and the devel-
opment of OPMs in visual cortex inspires a class of mathematical models called the
long range interaction model (F.Wolf, 2005; M.Kaschube et al., 2010a; F.Wolf and
T.Geisel, 2003). These models are based on symmetry consideration and are the only
models which can reproduce the common design features of OPMs. The long-range
interaction model is defined by a dynamical equation for an order parameter field
z(x, t) that completely characterizes the spatial pattern of preferred orientations at
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time t. It consists of linear part and nonlinear part. In the nonlinear part there is
non-local interaction which is the key ingredient for pinwheel stabilization during
the map development. But one disadvantage of these models is that it is abstractly
formed and lacks details about how input activity patterns drive the self organiza-
tion process of OPM development.

In recent years Bednar group made a detailed model available to do simulations
and study (J.Stevens et al., 2013; J.A.Bednar and R.Miikkulainen, 2004; R.Miikkulainen
et al., 2005). An introduction will show the model in the following.

2.5 Topographica Model

The Topographica model is intended to mimic the biological structures and devel-
opmental process of orientation preference maps in primary visual cortex. In this
model, the V1 network is a sheet of N × N interconnected computational units
represented as “ neurons”. Each cortical neuron receives external input from two
types of LGN cells: ON-center and OFF-center. The LGN neurons in turn receive
input from the retina, which consists of R × R array of photoreceptor cells. In ad-
dition to the afferent connections, each cortical neuron has local excitatory and in-
hibitory connections with other neurons. Excitatory connections have a short range
and inhibitory connection have a larger range connecting nearby units. By a Heb-
bian mechanism,the intracortical interaction function is determined by intracortical
synaptic connections: it is positive between two cortical locations that tend to excite
one another, and negative between locations that tend to inhibit one another.

The ON and OFF neurons represent the entire pathway from photoreceptor out-
put transferred to the input for V1, including the ON and OFF processing in the reti-
nal ganglion cells and the LGN. In this model ON and OFF are simply divided into
separate channels and organized into an L× L array corresponding to the retinotopic
organization of the LGN. Each neuron of LGN and V1 generate an initial response
by a weighted sum of neurons’ responses in its connection field of afferent input.
The intracortical interaction regarded as “ Mexican-Hat” type between cortical neu-
rons then form the initial activation activity into a localized cortical pattern. After
the pattern has stabilized, the connection weights of cortical neurons are modified
based on Hebbian learning rule. As the self-organization progresses, responses of
these neurons grow more nonlinear and weak connections decay. The result is a
self-organized structure formation in a dynamical process driven by the input.

The following subsections describe the specific components of Topographica model
in more detail.

Retina. An input pattern is presented to the model by activating the photorecep-
tor units in the retina according to the gray-scale values in the pattern. To generate
such input patterns, the activity Ψ for photoreceptor cell xc, yc is calculated accord-
ing to:

Ψ(xc, yc, θ) = exp

(
− ((x − xc)cosθ + (y − yc)sinθ)2

2σ2
u

− (−(x − xc)sinθ + (y − yc)cosθ)2

2σ2
v

)
(1)

, (xc, yc), θ are random positions and orientation.
ON/OFF sheets. The cells in the ON and OFF channels of the LGN compute their

responses as a weighted sum of activity in their receptive fields. More precisely, the
activation level η for a unit at position j in an ON/OFF sheet O at time t + δt is
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calculated as

ηj,O(t + δt) = f (

γO ∑
i∈Fj,p

Ψi(t)wi,j

k + γs ∑
i∈Fj,s

ηi,O(t)wi,j,s
) (2)

Ψi is the activation value of unit i on retina from which ON/OFF unit j receives
input and its afferent connection field is Fj,p. ηi,O(t) is the activation of other units in
ON/OFF sheets on the previous step and received over the connection field Fj,s. The
function f is a half-wave rectifying function which removes the negative part of the
activation and ensures that ηj,O is always positive. The γO = 14 is a constant strength
for the connections from the photoreceptor sheet to the ON/OFF sheet to give the
activation level in the range 0.0 to 1.0. If contrast-gain control is not applied,k = 1
and γs = 0.If applied, e.g., in the GCL and GCAL models, k = 0.11 and γs = 0.6.
The weights wij define the strength of connections from the unit i in Retina to the
ON or OFF unit j and is a standard difference-of -Gaussian kernel. The Mexican-hat
shape of wij makes the connection area for ON unit j has positive center and negative
surround, and vice versa for OFF units. The mathematical form of the weight wij
from an ON unit j located at (x, y) and the unit i at position (x′, y′) in Retina is given
by:

wON
ij =

1
Zc

exp(− (x − x′)2 + (y − y′)2

2σ2
c

)− 1
Zs

exp(− (x − x′)2 + (y − y′)2

2σ2
s

) (3)

The width of the central Gaussian is given by σc = 0.037,and the surround Gaussian
σs = 0.15. Zc and Zs define the normalization constants that make sure the weights
sum equal 1.0. The weights for the OFF units are the negative of Equation (3).

Finally, when the contrast-gain control is activated, the weights Wij,s in the Equa-
tion (2) define the spatial profile of the lateral inhibitory interactions between unit
j and other unit i in the ON/OFF sheet. The weights Wij,s is a fixed, circular Gaus-
sian profile so that the connection between neuron j in the location (x, y) and the
presynaptic neuron i in the location (x′, y′) is given by :

wij,s =
1
Zs

exp(− (x − x′)2 + (y − y′)2

2σ2
s

) (4)

where σs = 0.125 and Zs is a normalizing constant.
The V1 sheet. Each V1 unit receives inputs from connections between ON/OFF

sheet and V1, and between V1 neurons. We can call these connections “ projections”(p).
The projections can be the afferent projection from the ON/OFF sheets(p = A), or
the recurrent lateral excitatory projection(p = E), and the recurrent lateral inhibitory
projection(p = I).from other V1 units. The activation of unit j in V1 sheet by afferent
connections is defined as following:

ηj,V(t) = f (∑
p

γpCjp(t)) (5)

Cjp(t + δt) = ∑
Fjp

ηi,p(t)wij,p (6)

The scaling factors for each projection type are γA = 1.5, γE = 1.7, γI = −1.4 , to
provide a balance between excitation and inhibition, and between afferent and lat-
eral influences, to allow smooth map to form. Cjp is the contribution to the activation
of unit j from each projection type. ηj,p is the activation of unit i of ON/OFF sheet or
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V1 neurons to which unit j is connected (its connection field Fj and wij,p is the con-
nection weight from unit i in LGN or V1 to unit j in LGN or V1 for the projection p. f
is a half-wave rectifying function. After previously mentioned steps from Retina to
V1, the final activation of V1 units is the response to the present stimulus in Retina.
At this point the response of V1 will be used to update the threshold of V1 units and
to update the afferent and lateral inhibitory weights through Hebbian learning rule.
Then the activation in V1 will be reset to 0, and then a new pattern will be presented
in Retina and thus the next iteration will be started.

Adaptation. The adaptation process is to bring the average activity of every unit
in V1 close to a specified value. It consists of two steps. The first step is to calculate
a smoothed average of settled activity patterns for each unit j.

ηj(t) = (1 − β)ηj(t) + βηj(t − 1) (7)

β is called the smoothing parameter which control the degree of smoothing. The
initial value of ηj(t = 0) is the target average V1 unit activity µ which equal 0.024.
The threshold is updated as follows:

θ(t) = θ(t − 1) + λ(ηj(t)− µ) (8)

where λ = 0.01 is the homeostatic learning rate. If the activity in the unit j move
away from the specified target, the threshold, according to the Equation (8), will be
automatically increased or decreased in order to force it closer to the target.

Learning. The weights of initial connection field are given by isotropic 2D Gaus-
sians for the lateral excitatory projection and uniformly random within a Gaussian
envelope for afferent and lateral inhibitory projections. Specifically, a neuron located
at (x, y) has a connection weight from unit i at (x′, y′) with following value:

wij =
1

Zp
uexp(− (x − x′)2 + (y − y′)2

2σ2
p

) (9)

here u = 1 for lateral excitatory projection wij,E and u is a random value chosen
from a uniform distribution for the afferent and lateral inhibitory projections wij,A
and wij,E. σp defines the width of Gaussian and σA = 0.27, σE = 0.025, σI = 0.075,
and Zp is a normalizing factor to ensure the total of all weights wij equal to 1. When
an image is presented to the Retina, the weights wij,p are updated once per iteration
by using a Hebbian learning rule. This rule reflects the correlations between the
ON/OFF unit activities and the V1 response activities. The updating procedure of
Hebbian connection weights at each iteration dependent on the activities of both
presynaptic and postsynaptic units, and the learning rate:

wij,p(t) =
wij,p(t − 1) + αηiηj

∑
k
(wkj,p + αηjηk)

(10)

The Hebbian learning rates for afferent connections, lateral excitatory connections
and lateral inhibitory connections are αA = 0.1, αE = 0 and αI = 0.3, respectively.
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Chapter 3

Van Hemmen Model

3.1 Introduction

In primary visual cortex, visual information is processed from retina to the cortical
areas. Basically, the processing experiences starting from retina, then going to lateral
geniculate nucleus (LGN) , finally projecting to the visual cortex. More details about
this process are shown in Chapter 2.

Cells in the LGN and the visual cortex are characterized by their receptive filed
regarded as the area on the retina or LGN that is to be activated by an light pattern
so as to evoke a response of the neuron. In retina and LGN, each receptive field is
arranged into a central disk, the "center", and a concentric ring, the "surround", each
region responding oppositely to light. In the LGN, there are two types of cells, the
ON cells and the OFF cells. An ON cell will show largest response if a light spot is
projected into the center of its receptive field. Similarly, an OFF cell responds best if
a light stimuli shine on the surrounding part of its receptive field.

For cortical cells, they respond selectively to the orientation of light stimulus
within the cell’s receptive fields (D.H.Hubel and T.N.Wiesel, 1959). According to
Hubel and Wiesel’s classification, cortical cells are divided to simple cells, complex
cells and hypercomplex cells (D.H.Hubel and T.N.Wiesel, 1962). Cortical simple cells
receive direct input from the LGN. Simple cell receptive fields are elongated and
approximately rectangular, with one long side being excitatory subregions or ON
subregions and the other being inhibitory subregions or OFF subregions. The two
subregions are aligned along its preferred orientation. If cortical cells have such re-
ceptive fields, they are called simple cells, which are proposed by Hubel and Wiesel,
according to the classical model they suggested. In this model, the receptive fields of
ON cells and OFF cells in LGN are superimposed partly to form the receptive fields
of simple cells.

How do the receptive fields of simple cells emerge during the development of
animals ? The arguments focus on genetically coding or activity-dependent mech-
anism. It is unlikely that for cortex a huge number of neurons and synapses can be
genetically arranged to form the structures of neuronal orientation selectivity. The
activity-dependent learning assumption says that the formation of receptive field
properties are driven by neural activity during the critical period of the develop-
ment. Starting from Malsburg (1973), several mathematical models have been pro-
posed to describe the activity-dependent learning process as a self-organization pro-
cess using a Hebbian learning rule (R.Linsker, 1986a; R.Linsker, 1986b; R.Linsker,
1986c). In order to describe the emergence of orientation-selective receptive fields
of simple cells, K.D.Miller (1994) introduce a mathematical model of linear differ-
ential equations for the Hebbian learning developmental process. The key element
of this model is the correlation function of the activity of LGN. Miller suggests that
this correlation function must have a zero crossing so that the orientation selectivity
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can emerge. Van Hemmen studied a new model based on the Miller model. They
derived the eigenfunctions associated with the learning equation. The eigenfunc-
tions determine the shape of the receptive fields and also the cortical map structure.
We call this model proposed by van Hemmen as van Hemmen model. We use this
model to describe and analyze the developmental process of orientation-selective re-
ceptive fields of Bednar model, to see if this Miller and Hemmen’s framework work
for the Bednar model, so that we can obtain some new insights for the emergence of
orientation selectivity.

3.2 Van Hemmen Model

Now we will introduce how Van Hemmen model is built step by step according to
the basic biological structures and the activity-dependent learning process.

Since Hubel and Wiesel proposed a classical model which states the receptive
fields of simple cells consist of LGN cells aligned along, we adopt this view and
assume the orientation selectivity is generated related to the convergence of LGN
inputs. Then we need to consider the connection weights between LGN and the
primary visual cortex. We neglect retinal activity and focus on LGN and V1 based
on Hubel and Wiesel’s proposal.

Van Hemmen model considers firing-rate to describe response properties of mod-
eling neurons. The V1 neurons receive inputs from both of LGN cells and other corti-
cal cells. Both of LGN ON or OFF channel and V1 are regarded as two-dimensional
sheets. The positions of cells are denoted as two-dimensional vectors. The vector
x=(x,y) denotes the position of a cell on the cortical sheet and α=(α,β) labels a posi-
tion on the LGN sheet; the basic structure is shown on Figure 3.1.

Figure (3.1) This scheme shows the connections between cortical simple cells and
LGN neurons, and the connection between cortical cells themselves. The LGN
inputs are weighted by the synapse Wc(x, α). Besides the responses of other cortical
cells also contribute to the firing rates of simple cells and B(x, x′) denotes the
interaction strength. The assumption says only the weights between LGN and the
cortex are learned during development(adapted from S.Wimbauer, W.Gerstner,
and J.L.Hemmen (1998)).

For LGN cells, we use L(x, y) o represent their firing rates, and W(x, α) to represent
the connection wights between LGN and V1 cells.For cortical cells, we use V(x, y)
to express their firing rates, and B(x, y) to express the connection weights with other
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cortical cells. Thus, we can obtain an equation to express the firing rate of cortical
cells which has a linear relationship with firing rates of LGN cells and other V1 cells.

V(x, t) = ∑
c=ON,OFF

∑
α

Wc(x, α)Lc(α, t) + ∑
x′

B(x, x′)V(x′, t) (1)

We can rewrite this equation as this following form:

V(x, t) = ∑
x′

I(x, x′) ∑
c=ON,OFF

∑
α

Wc(x′, α)Lc(α, t) (2)

Here I(x,x’) satisfies :
I−1(x, x′) = 1 − B(x, x′) (3)

the I−1 denotes the inverse of the matrix I. In this model to be simple they assume
that the long-time average of the rates L(x, y) to be zero. In other words, they regard
L(x, y) as the difference between the momentary firing rate and the average firing
rate. But when we apply this model to the Bednar model, we take L(x, y) as the
responses of neurons.

Hebbian learning is a rule of activity-dependent synaptic plasticity that if the
activation of pre- and post-synaptic neurons are correlated, their synaptic connec-
tion will be strengthened. The learning principle was first proposed by D.O.Hebb
(1949), who postulated that if a neuron A could successfully repeatedly activate a
postsynaptic neuron B when A itself is active, then A will gradually become more
effective in activating neuron B. In the model on consideration only synapses be-
tween the LGN and the cortex are modified by Hebbian learning, whereas intracor-
tical synapses are kept no change. We will examine how the synaptic weights W
change with the correlation between the response functions of LGN and the cortical
neurons. We assume at average level W at time t is determined by the correlation of
LGN responses and firing activity of V1 during a time window Λ.Thus:

dWc(x, α, t)
dt

= ηA(x − α)
1
Λ

∫ Λ

0
dsV(x, t − s)Lc(α, t − s) (4)

The arbor function, A tells how many synapses connecting LGN neurons to V1 to be
modified.Combine this equation with (2) we obtain:

dWc(x, α, t)
dt

= A(x − α)∑
x′

I(x, x′) ∑
c=ON,OFF

∑
α′

Cc,c′(α, α′)Wc′(x′, α′, t) (5)

In this equation C is the correlation function between the responses of two neurons
in the LGN,given by:

Cc,c′(α, α′) =
η

Λ

∫ Λ

0
dsac(α, s)ac′(α′, s) (6)

From the deduction of (5) we make two additional assumptions. One is we have
W(t) instead of W(t − s), this is because we assume W change very slowly during
this time window and can be regarded as fixed. Secondly, for the correlation func-
tion of LGN activity, we remove t factor since we want to have averaging effect over
time and also the randomness of LGN responses, so the correlation C doesn’t relate
to time t. Now we need to specify the elements in equation (5), where there are the
arbor function A(x − a), the intracortical interaction function I(x,x’) and the correla-
tion function of LGN cell responses, C.In the following the arbor function is given
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by a Gaussian:

A(x − α) = exp(−|x − α|2
2A

) (7)

This function makes synapses change in a distance |x − α|.Also, the excitatory inter-
action between cortical neurons are chosen to be a Gaussian:

I(x, x′) = exp(−|x − x′|2
2I

) (8)

Based on the research of K.D.Miller (1994), as a function of the distance |α − α′| the
correlation function of the activity of two neurons at positions α and α′ on the LGN
should change sign at least one time to let the orientation selectivity to emerge.So
here by inducing a sign change, the correlation functions are proposed as following:

CON,ON(α, α′) = COFF,OFF(α, α′) = exp(−|α − α′|2
2C

)− k

CON,OFF(α, α′) = COFF,ON(α, α′) = −ϵCON,ON(α, α′)

(9)

where 0 ≤ k ≤ 1 and 0 ≤ ϵ ≤ 1. For k = 0 the correlation function CON,ON is
a positive function whereas for k > 0 the value of the function has a zero crossing
at some finite distance. According ot the knowledge of ordinary linear differential
equation,we can know the solution of equation (5) Wc(x, α, t) can be expressed by
eigenfunctions Wc

a (x, α):

Wc(x, α, t) = ∑
a

ca(0)exp(λat)Wc(x, α)

Based on the analysis of Wimbauer et al.(1998), positive eigenvalues λa always ex-
ist and this may lead synaptic weights would increase to infinity. To avoild such
behavior of synapses we need to set bounds for Wc(x, α, t):

0 ≤ Wc(x, α, t) ≤ Wmax A(x − α)

With the largest eigenvalues the eigenfunction components will firstly reach the
bound. So the receptive fields will be determined by the eigenfunctions for the
largest eigenvalues.

The equation was solved and the solution was obtained. The eigenfunctions cor-
responding to receptive fields are shown in Figure 3.2. These functions mimic the
shapes of receptive fields observed in experiments. They confirmed that in their
equations, in order to get orientation-selective receptive fields, the correlation func-
tion of the LGN inputs must have a zero crossing.

Figure (3.2) The eigenfuction corresponding to the largest eigenvalue(adapted
from S.Wimbauer, W.Gerstner, and J.L.Hemmen (1998)).
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3.3 Using Van Hemmen model to study Topographica model

To understand the reason why the receptive fileds emerge during the development
process in Topographica model, we would be able to capture the instability frame-
work of Van Hemmen model to describe the formation of receptive fields. One of
the key elements for van Hemmen model is correlation functions of LGN activity. In
the Bednar model, the correlation functions of LGN inputs are not simply Gaussian
as (9), but acquired from calculations based on relevant data.

3.3.1 The correlation function of LGN activity for Topographica model

We use correlation coefficient formulas to calculate the correlation function of ON
and Off cells’ responses.

ρxy =
Cov(x, y)

σxσy
, where Cov(x, y) = E[(x − E(x))(y − E(y))] (10)

σx and σy are standard deviations of x and y, respectively. By averaging, e.g. 2000
sheets of LGN units’ responses, we calculate the mean correlation functions. The
plots of correlation functions of ON and ON neurons,ON and OFF neurons, OFF
and OFF neurons,respectively, are not shown here. We fit the 3 functions by using
3 mixed Gaussian type functions. We consider the cases when aspect ratio of Gaus-
sian stimuli equal 1 and 3.4, since prevous results show the orientation selectivity
changes significantly from aspect ratio 1 to aspect ratio 3.4. When aspect ratio =1,
the fitting functions for correlation functions are:

FON,ON
1 (x) = Aexp(

−x2

2σ1
2 ) (11)

In this equation, A = 1.006, σ1 = 1.562.

FON,OFF
1 (x) = 0.7exp(

−x2

σ22 )− 2.1
γ22 exp(

−x2

σ32 ) + γ3 (12)

In equation(12), σ2 = 5.827, γ2 = 1.673, σ3 = γ2
2, γ3 = −0.023.

FOFF,OFF
1 (x) = 1.0674exp(

−x2

2σ4
2 )− 0.155x2exp(

−x2

2σ5
2 ) + 6.142 × 10−3x4exp(

−x2

2σ6
2 )+

2.506 × 10−5x6exp(
−x2

2σ7
2 ) + A1exp(

−x2

2σ8
2 ) + B (13)

In equation (13), σ4 = 2.27, σ5 = 0.124, σ6 = 1.998, σ7 = 3.34, σ8 = 532.66,
A1 = −532.756, B = −3319.515. When aspect ratio =3.4, the fitting functions for
correlation functions are:

FON,ON
2 (x) = A2exp(

−x2

2σ92 ) + B1 (14)

In this equation A2 = 0.954, σ9 = 2.199, B1 = −0.014

FON,OFF
2 (x) = 0.7exp(

−x2

σ92 )− 2.1
γ4

2 exp(
−x2

σ10
2 ) + γ5 (15)
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In equation (15), σ9 = 6.844, γ4 = 1.713, σ10 = γ4
2, γ5 = −0.035.

FOFF,OFF
2 (x) = 1.056exp(

−x2

2σ11
2 )− 0.162x2exp(

−x2

2σ12
2 )+ 2.185× 10−3x4exp(

−x2

2σ13
2 )+

9.687 × 10−6x6exp(
−x2

2σ14
2 ) + A3exp(

−x2

2σ15
2 ) (16)

In equation (16), σ11 = −2.345, σ12 = 0.125, σ13 = 2.175, σ14 = 3.807, σ15 =
46.444, A3 = −0.09.

3.3.2 The calculation process

In this section we will solve the eigenvalue problem corresponding to the learning
equation(5),

λWc(x, α) = A(x − α)∑
x′

I(x, x′) ∑
c=ON,OFF

∑
α′

Cc,c′(α, α′)Wc′(x′, α′) (17)

Then we obtain

λWc(x, α) = exp(−|x − α|2
2D

)
∫

dx′
∫

dα′exp(−|x − x′|2
2I

) ∑
c′=ON,OFF

Cc,c′(α, α′)Wc′(x′, α′)

(18)
thus we have:

λWON(x, α) = exp(−|x − α|2
2D

)
∫

dx′
∫

dα′exp(−|x − x′|2
2I

) ∑
c′=ON,OFF

CON,c′(α, α′)Wc′(x′, α′)

(19)

λWOFF(x, α) = exp(−|x − α|2
2D

)
∫

dx′
∫

dα′exp(−|x − x′|2
2I

) ∑
c′=ON,OFF

COFF,c′(α, α′)Wc′(x′, α′)

(20)
Let W = (WON , WOFF),so

λW(x, α) = exp(−|x − α|2
2D

)
∫

dx′
∫

dα′exp(−|x − x′|2
2I

)

(
CON,ON(α, α′) CON,OFF(α, α′)
COFF,ON(α, α′) COFF,OFF(α, α′)

)
W(x′, α′)

(21)

we use variable ∆α = α − x, and let C =

(
CON,ON CON,OFF

COFF,ON COFF,OFF

)
, so

λW(x, ∆α) = exp(−|∆α|2
2D

)
∫

dx′
∫

dα′exp(−|x − x′|2
2I

)C((x− x′)+ (∆α−∆α′))W(x′, ∆α′)

(22)
We replace the integral by a sum. Let x⃗′i,j = (∆i′, ∆j′), ⃗∆α′

k,l = (∆k′, ∆l′)
then we can have

λWijkl = exp(− (∆k)2 + (∆l)2

2D
)∑

i′,j′
∑
k′,l′

(∆i′)(∆j′)(∆k′)(∆l′)exp(− (∆i − ∆i′)2 + (∆j − ∆j′)2

2I
)C((∆i−

∆i′ + ∆k − ∆k′, (∆j − ∆j′ + ∆l − ∆l′))Wi′ j′k′ l′ (23)
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Let Aijkli′ j′k′ l′ = exp(− (∆k)2+(∆l)2

2D )exp(− (∆i−∆i′)2+(∆j−∆j′)2

2I )C((∆i−∆i′+∆k−∆k′, (∆j−
∆j′ + ∆l − ∆l′)),

then we have

λWijkl = (∆i′)(∆j′)(∆k′)(∆l′) ∑
i′,j′,k′,l′

Aijkli′ j′k′ l′Wi′ j′k′ l′ (24)

We assume an odd number N, then i, j, k, l, i′, j′, k′, l′ ∈ {−N−1
2 , ..., N−1

2 }.
To solve (23) we can use the eigenvalue functions of python. Combine (13),(14)

and (15), set ∆i′, ∆j′, ∆k′, ∆l′ = 0.05 and know D = 0.27 ∗ 0.27, I = 0.025 ∗ 0.025,
theoretically we can solve (23) and get the eigenvalues λ and the corresponding
eigenvectors W. But in simulations we meet computing problem which is about our
current computer memory doesn’t support the so large matrix calculation.

So with this unsolved problem we still don’t know if the framework of Van Hem-
men model appears suitable to reveal the mechanism of the emergence of orientative
receptive field in the Topographica model.



21

Chapter 4

A study of the basic Topographica
model

4.1 Introduction

The brain can change dramatically during learning and development yet remains
structurally stable. Many studies support this viewpoint(for a review, see H.Lütcke,
Margolis, and Helmchen (2013)). In vivo long-term imaging has revealed that synap-
tic plasticity in adult brains may involve the strengthening or weaking of existing
synapses as well as synapse formation and elimination. In the hippocampus, recent
studies revealed that around 80% of the cells change their tuning properties over
a timescale of a week (T.Hainmueller and Bartos, 2018; T.Bonhoeffer, M.Huebener,
and T.Rose, 2017). The zebra finch, for example, sings a highly stereotyped song
that is stable for years, but the neuron patterns underlying song shift from day to
day(for a review, see M.S.Brainard and A.J.Doupe (2000)). Visual cortex, is a model
for plasticity of cortical circuits (D.H.Hubel and T.N.Wiesel, 1962; D.H.Hubel and
T.N.Wiesel, 1963b; B.A.Wandell and S.M.Smirnakis, 2009; J.S.Espinosa and M.P.Stryker,
2012; Ko et al., 2011; L.White and D.Fitzpatrick, 2007; M.Sur and C.A.Leamey, 2001;
Y.Frégnac et al., 1988; Y.Frégnac, S.Thorpe, and E.Bienenstock, 1992). Visual fea-
tures selectivity acquired around and after eye opening. The synaptic architecture
of visual cortex remains plastic lasting several months after the initial orientation
selectivity is established (J.T.Chang, D.Whitney, and D.Fitzpatrick, 2020). Many
experimental observations indicate that the development of orientation selectivity
involves a process of experience-dependent plasticity(for a review,see J.S.Espinosa
and M.P.Stryker (2012)). Sensory maps can undergo plastic changes with experi-
ence. The deprivation of visual experience can cause the degradation of orientation
selectivity. In fact receptive fields can be extremely plastic in V1. For instance, one
study demonstrated that using a STDP protocol can induce rearrangement of corti-
cal neuron’s sub-threshold and supra-threshold responses by only dozens of spikes
(V.Pawlak et al., 2013). During an hour cortical neuron fires thousands of spikes.
Whether and why the selectivity persists under this continuous stream of activity is
not well understood and has not frequently been investigated in theoretical models.

Using pattern formation approach, Wolf and coworkers investigated a class of
abstract mathematical models to determine the conditions for realistic orientation
maps generation modelling activity-dependent self-organization (F.Wolf, 2005; M.Kaschube
et al., 2010a; F.Wolf and T.Geisel, 2003). They found predicted maps exhibiting all
the statistics of the common design with dynamical stability and robustness if the
long-range neuronal interaction extending beyond one hypercolumn are present in
the models. W.Keil and F.Wolf (2011) using this mathematical approach examined
the Elastic Network model and found that in previous studied regimes, the ground
states of OPM layouts are periodic patterns. Only in an extreme limit aperiodic maps
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which resemble the representations of v1 in real animals were found. Also in this
model non-local neuronal interaction are essential for layout stabilization. L.Reichl
et al. (2012) studied a coordinated optimization model for the interaction between
orientation map and other types of maps and discovered that maps typically un-
dergo substantial rearrangement and pinwheel crystals and stripes dominate in the
final layouts. In particular, this study examined the time scales on which map opti-
mization takes place and how these time scales can be compared to those of visual
cortical development and plasticity.

To answer whether the common design features emerge as a consequence of ran-
dom connectivity for feedforward projections from retinal ganglion cells to cortical
target neurons, M.Schottdorf et al. (2015b) generalized and examined the stochas-
tic wiring model proposed by Ringach and coworkers and found that the random
wiring framework could not reproduce the experimentally observed layout invari-
ants. So far only the long-range interaction model can reproduce the common design
features. This model however lacks biological detail about how activity patterns
drive the self-organization process. Nevertheless, it is natural to expect microscopi-
cally detailed models consistent with the long-range interaction model, in the sense
that cortical activity patterns excite larger regions instead of the classical receptive
fields and accordingly might need to be driven by complex scene stimuli rather than
simple stimuli only activating the classical receptive field of a small number of neu-
rons. Therefore, realistic inputs such as natural scene stimuli are required to activate
widely distributed cortical activity and strong non-local neuronal connections are
necessary for the maturation of V1 architecture.

To test both of these hypotheses, for the first time, we use a detailed network
model with Hebbian-learning to simulate the development process of OPMs. We
use realistic inputs to drive the map development process over realistically long-
term time scales. In biology the relevant long time scales can be compared to so
called “ critical period” of animal brains’ plasticity for sensory experience.

4.2 Materials and Methods

4.2.1 Orientation selectivity calculation: Vector average method

The calculation of orientation selectivity is based on the vector average method
(Blasdel and Salama(1986)). Inputs that cover the full range of parameter values, e.g.
combinations of orientations, frequencies, and phases, are presented, and for each
value of the parameter, the peak response of the neuron is recorded. To calculate
the preferred orientation, for each orientation ϕ,other parameters such as phase and
spatial frequency are varied systematically, and the peak response η̂ϕ is recorded.

Then a vector is obtained for each orientation ϕ. with η̂ϕ as its length and 2ϕ as
its orientation, and these vectors are summed together to form vector

V = [Vx, Vy]

The preferred orientation of the neuron„ is computed as half the orientation of V:

Vx = ∑
ϕ

η̂ϕcos2ϕ, Vy = ∑
ϕ

η̂ϕsin2ϕ
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The magnitude of V can be regarded as an estimate for orientation selectivity; nor-
malized selectivity S would be:

S =

√
V2

x + V2
y

∑
ϕ

η̂ϕ

4.2.2 Pinwheel tracking

During the evolution of maps we analyzed the states using about hundred time
frames from the initial time T = 0 to the very late state, i.e. every time frame for
t = N × T∗(N = 1, 2, 3, ...). We tracked all the pinwheel centers and calculated
the pinwheel density as well as various other pinwheel statistics. Pinwheel centers
were located as the intersection of the zero contours of the real and imaginary com-
ponents in the polar representation of orientation preference. The pinwheel density
was defined as the average number of pinwheels per hypercolumn Λ2. Defined
in this way the pinwheel density is dimensionless and characterizes the layout of
orientation columns independent of their absolute size. To calculate distributions
of nearest neighbor distances of pinwheels with arbitrary charge we identified for
each pinwheel i in a given map the distances dij to all neighbors j with arbitrary
topological charge. We minimize the distances to find the nearest neighbors and the
distances are measured in units of column spacing. For distances dij between pin-
wheels with the same(opposite) charge, we consider the distances dij of pinwheel i
to all pinwheels j with the same (opposite) charge.

To calculate pinwheel density variability in subregions of size A, we sampled for
each map circular shaped regions of various size and placed their centers at random
locations of the map. Sizes of circular regions were uniformly distributed. To cal-
culate pinwheel density variability for a given area Ai, we randomly selected from
all regions in the set up to 1000 regions with size in the interval [Ai, Ai + dA] where
dA = min{|Ai+1 − Ai|, 0.1Λ2}, and calculated the standard deviation SD of pin-
wheel densities. Next, we estimated the variability coefficient c and the exponent
γ by fitting the empirically observed power law SD(A) = c(< ρ > /A)γ to the
SD(A)−curves.

To track pinwheels and find corresponding pinwheels between two time steps,
pinwheels in two consecutive time frames were detected using a pinwheel finder.
For each pinwheel in the first map, a list of potential corresponding pinwheels in
the second map is made. This is based both on distance (must be much smaller than
an hypercolumn) and on pinwheel sign (must be equal).Those lists are combined
into separated optimization sub-problems. In each problem a set of pinwheels in
the first map that must be mapped to a set of pinwheels in the second map. Each
sub-problem generally involves a very small amount of pinwheels. This is because
the pinwheels have a typical distance in a map and the search distance is lower than
that. Since the subproblems are small, each is solved by minimizing the total dis-
tance between matched pairs. This is done via recursive programming (i.e. brute
force).Once a list of matched pinwheels is made, with the remaining pinwheels the
same procedure is used to make a list of annihilated/generated pinwheels. It works
the same, only that the criteria of possible pinwheels requires them having opposite
sign and to be in the same time step. Finally, all pinwheels that could not be la-
beled as matched or annihilated or generated are given the labels lost or new. When
tracking pinwheels in multiple time steps, a table was generated with columns corre-
sponding to time steps and rows corresponding to matched pinwheels. The tracking
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results between two steps described above was used to fill the table. When a pin-
wheel gets annihilated or lost, its location in space was saved. When a pinwheel was
generated or new, it was checked if the location matches one of the lost pinwheels.
If they do, they are annotated in the same row. Motivation: This is required because
one can have a pinwheel pair that annihilates at time t and generates after a brief
time in time t + dt. With this procedure the pinwheels are assigned same ID, not a
new one. Once the table is complete, the next step is to give unique pinwheels IDs.
Usually they simply correspond to the rows of the table, but they can be complica-
tions which are treated separately.

We define the pinwheel creation c(t) and annihilation rate a(t) per hypercolumn
as:

c(t) =
dNc

Mdt
, a(t) =

dNa

Mdt
, M =

A
Λ2

where Nc and Na are the numbers of created and annihilated pinwheels, A is the size
of a map and Λ is a average wavelength of the map.

4.2.3 Simulation Procedure

A Retinal input layer was represented by “Photoreceptor” sheet by a two dimen-
sional array of units. The sheet has a pair of ’sheet coordinates’(x, y), floating-point
cartesian coordinates indicating an arbitrary point on the sheet’s plane. In simula-
tions the sheet was implemented using a finite matrix of units. First we specified the
value of the parameter ”density”, which gives the number of elements in the matrix
corresponding to a length of 1.0 in continuous sheet coordinates. Then a “sheetco-
ordinatesystem” converts sheet coordinates to matrix coordinates, as well as sheet
index coordinate to matrix index coordinates. The bound of sheet set as a square
and the area was given as 3.75*3.75. The density was 24. So when elongated and ori-
ented Gaussian pattern is sampled, firstly the pattern coordinate matrix is produced
from the bound and density, then transformed and rotated according to the center
(x, y) and orientation of the Gaussian. In every iteration we choose two Gaussian
combined, with positions and orientations uniform random chosen from interval
[−(

√
v1_area/2+ 0.25), (

√
v1_area/2+ 0.25)] and [−π, π], respectively. v1_area was

the size of the model cortical area. The size of single Gaussian stimuli was 0.088388
and its aspect ratio 4.66667. The contrast was defined as 70%. So the response value
of a unit in the Retina was given by 70%* of the Gaussian function value of the unit.

The projection from the Retina to LGN ON or OFF cells consisted of separate con-
nection fields, each of which is a spatially localized set of connections from neurons
in Retina near the corresponding topographic location of the target neuron. Each
connection field had radius 0.375 and shared an identical set of weights.

The LGN level of the visual system was represented by ON and OFF sheets, both
of which had density as 24 and radius as 0.5 ∗

√
v1_area+ 0.75. The response of LGN

cells is defined by

ηj,O(t + δt) = f (

γO ∑
i∈Fj,p

Ψi(t)wi,j

k + γs ∑
i∈Fj,s

ηi,O(t)wi,j,s
)

Here, the constant γ0 = 14, k = 0.11andγs = 0.6.Ψi is the activation value of unit i
on retina from which ON/OFF unit j receives input and its afferent connection field
is Fj,p. ηi,O(t) is the activation of other units in ON/OFF sheets on the previous step
and received over the connection field Fj,s.The function f is a half-wave rectifying
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function which removes the negative part of the activation and ensures that ηj,O is
always positive.The width of the central Gaussian is defined by 0.037, and the width
of the surround Gaussian by 0.15.The weights in the denominator define the local
inhibition for every units of LGN and share the same Gaussian profile with width
0.125 and normalization. The radius of the suppressive connection field is given as
0.25.This type of inhibition can be switched on or off for particular simulations. The
connection fields between LGN and primary visual cortex (V1) had 0.27083 as ra-
dius. Neurons in V1 near the border would have afferent connections that extend
over the border of LGN sheets, so the connection fields for these neurons are trun-
cated to be restrained in the projection area. This truncation of connections may re-
sult in artifacts for map formation. A strategy to avoid this kind of effect, is to impose
periodic boundary conditions to the connection fields and Retina. Such simulations
are examined later. In this section we just use open boundary conditions. The initial
weights are generated by a random Gaussian Cloud function. These weights can be
updated by a Hebbian learning rule

wij,p(t) =
wij,p(t − 1) + αηiηj

∑
k
(wkj,p + αηjηk)

The factor α is the learning rate, defined by a constant (e.g.0.1) devided by the num-
ber of connections per connection field.

For V1, we set the area size as 1.5 and the density as 49. Every unit of V1 has 3
type of connections with other units, one is with LGN ON or OFF units, another one
is for local excitatory interactions and the third one is for local inhibitory interactions
within V1. The excitatory and inhibitory connection weights within V1 neurons are
also defined using Gaussians in space, with width 0.05 and 0.15, respectively. They
can also be learned and for efficient computation, the learning rate of E is given by 0
and of I is constant and given by 0.3. The projection strength scaling factors for each
connection type was 1.5 for LGN, 1.7 for excitatory interaction and -1.4 for inhibitory
interaction. In addition, the threshold of responses of cortical neurons was chosen
adaptive. The corresponding parameter for the homeostatic learning rate set to 0.01,
and defined such that the average activity of each neuron was driven towards a the
specified target (here we use 0.024).

4.2.4 The model

The Topographica model mimics the main biological structures and developmental
processes underlying orientation preference maps in primary visual cortex. In this
model, the V1 network is a sheet of N × N interconnected computational units repre-
sented as “ neurons”. Each cortical neuron receives external input from two types of
LGN cells: ON-center and OFF-center. The LGN neurons in turn receive input from
the retina, which consists of R × R array of photoreceptor cells. In addition to the
afferent connections, each cortical neuron has local excitatory and inhibitory connec-
tions with other neurons. Excitatory connections have a short range and inhibitory
connection have a larger range connecting to nearby units. By a Hebbian mecha-
nism, the intracortical interaction function is determined by intracortical synaptic
connections: it is positive between two cortical locations that tend to excite one an-
other, and negative between locations that tend to inhibit one another.

The ON and OFF neurons represent the entire pathway from photoreceptor out-
put transferred to the input for V1, including the ON and OFF processing in the reti-
nal ganglion cells and the LGN. In this model ON and OFF are simply divided into
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separate channels and organized into an L× L array corresponding to the retinotopic
organization of the LGN.

Each neuron of LGN and V1 generate an initial response by a weighted sum of
neurons’ responses in its connection field of afferent input. The intracortical interac-
tion regarded as “Mexican-Hat” type between cortical neurons then form the initial
activation activity into a localized cortical pattern. After the pattern has stabilized,
the connection weights of cortical neurons are modified based on Hebbian learning
rule. As the self-organization progresses, responses of these neurons grow nonlinear
interaction set in and weak connections decay. The result is a self-organized struc-
ture formation in a dynamical process driven by the input.

The following subsections describe the specific components of GCAL model in
more details.

Retina. An input pattern is presented to the model by activating the photorecep-
tor units in the retina according to the gray-scale values in the pattern. To generate
such input patterns, the activity Ψ for photoreceptor cell xc, yc is calculated accord-
ing to:

Ψ(xc, yc, θ) = exp

(
− ((x − xc)cosθ + (y − yc)sinθ)2

2σ2
u

− (−(x − xc)sinθ + (y − yc)cosθ)2

2σ2
v

)
(1)

, (xc, yc), θ are random positions and orientation.
ON/OFF sheets. The cells in the ON and OFF channels of the LGN compute their

responses as a weighted sum of activity in their receptive fields. More precisely, the
activation level η for a unit at position j in an ON/OFF sheet O at time t + δt is
calculated as

ηj,O(t + δt) = f (

γO ∑
i∈Fj,p

Ψi(t)wi,j

k + γs ∑
i∈Fj,s

ηi,O(t)wi,j,s
) (2)

Ψi is the activation value of unit i on retina from which ON/OFF unit j receives
input and its afferent connection field is Fj,p. ηi,O(t) is the activation of other units in
ON/OFF sheets on the previous step and received over the connection field Fj,s.The
function f is a half-wave rectifying function which removes the negative part of the
activation and ensures that ηj,O is always positive. The γO = 14 is a constant strength
for the connections from the photoreceptor sheet to the ON/OFF sheet to give the
activation level in the range 0.0 to 1.0. If contrast-gain control is not applied,k = 1
and γs = 0.If applied, e.g., in the GCL and GCAL models, k = 0.11 and γs = 0.6.
The weights wij define the strength of connections from the unit i in Retina to the
ON or OFF unit j and is a standard difference-of -Gaussian kernel. The Mexican-hat
shape of wij makes the connection area for ON unit j has positive center and negative
surround, and vice versa for OFF units. The mathematical form of the weight wij
from an ON unit j located at (x, y) and the unit i at position (x′, y′) in Retina is given
by:

wON
ij =

1
Zc

exp(− (x − x′)2 + (y − y′)2

2σ2
c

)− 1
Zs

exp(− (x − x′)2 + (y − y′)2

2σ2
s

) (3)

The width of the central Gaussian is given by σc = 0.037,and the surround Gaussian
σs = 0.15. Zc and Zs define the normalization constants that make sure the weights
sum equal 1.0. The weights for the OFF units are the negative of Equation (3).
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Finally, when the contrast-gain control is activated, the weights Wij,s in the Equa-
tion (2) define the spatial profile of the lateral inhibitory interactions between unit
j and other unit i in the ON/OFF sheet. The weights Wij,s is a fixed, circular Gaus-
sian profile so that the connection between neuron j in the location (x, y) and the
presynaptic neuron i in the location (x′, y′) is given by :

wij,s =
1
Zs

exp(− (x − x′)2 + (y − y′)2

2σ2
s

) (4)

where σs = 0.125 and Zs is a normalizing constant.
The V1 sheet. Each V1 unit receives inputs from connections between ON/OFF

sheet and V1, and between V1 neurons. We can call these connections “ projections”(p).The
projections can be the afferent projection from the ON/OFF sheets(p = A), or the
recurrent lateral excitatory projection(p = E), and the recurrent lateral inhibitory
projection(p = I).from other V1 units. The activation of unit j in V1 sheet by afferent
connections is defined as following:

ηj,V(t) = f (∑
p

γpCjp(t)) (5)

Cjp(t + δt) = ∑
Fjp

ηi,p(t)wij,p (6)

The scaling factors for each projection type are γA = 1.5, γE = 1.7, γI = −1.4 , to
provide a balance between excitation and inhibition, and between afferent and lat-
eral influences, to allow smooth map to form.Cjp is the contribution to the activation
of unit j from each projection type.ηj,p is the activation of unit i of ON/OFF sheet or
V1 neurons to which unit j is connected (its connection field Fj and wij,p is the con-
nection weight from unit i in LGN or V1 to unit j in LGN or V1 for the projection p. f
is a half-wave rectifying function. After previously mentioned steps from Retina to
V1, the final activation of V1 units is the response to the present stimulus in Retina.
At this point the response of V1 will be used to update the threshold of V1 units and
to update the afferent and lateral inhibitory weights through Hebbian learning rule.
Then the activation in V1 will be reset to 0, and then a new pattern will be presented
in Retina and thus the next iteration will be started.

Adaptation. The adaptation process is constructed to bring the average activity of
every unit in V1 close to a specified value. It consists of two steps. The first step is
to calculate a smoothed average of settled activity patterns for each unit j.

ηj(t) = (1 − β)ηj(t) + βηj(t − 1) (7)

β is called the smoothing parameter which control the degree of smoothing. The
initial value of ηj(t = 0) is the target average V1 unit activity µ which equal 0.024.
The threshold is updated as follows:

θ(t) = θ(t − 1) + λ(ηj(t)− µ) (7)

where λ = 0.01 is the homeostatic learning rate. If the activity in the unit j move
away from the specified target, the threshold, according to the Equation (8), will be
automatically increased or decreased in order to force it closer to the target.

Learning. The weights of initial connection field are given by isotropic 2D Gaus-
sians for the lateral excitatory projection and uniformly random within a Gaussian
envelope for afferent and lateral inhibitory projections. Specifically, a neuron located
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at (x, y) has a connection weight from unit i at (x′, y′) with following value:

wij =
1

Zp
uexp(− (x − x′)2 + (y − y′)2

2σ2
p

) (8)

here u = 1 for lateral excitatory projection wij,E and u is a random value chosen
from a uniform distribution for the afferent and lateral inhibitory projections wij,A
and wij,E. σp defines the width of Gaussian and σA = 0.27, σE = 0.025, σI = 0.075,
and Zp is a normalizing factor to ensure the total of all weights wij equal to 1. When
an image is presented to the Retina, the weights wij,p are updated once per iteration
by using a Hebbian learning rule. This rule reflects the correlations between the
ON/OFF unit activities and the V1 response activities. The updating procedure of
Hebbian connection weights at each iteration dependent on the activities of both
presynaptic and postsynaptic units, and the learning rate:

wij,p(t) =
wij,p(t − 1) + αηiηj

∑
k
(wkj,p + αηjηk)

(9)

The Hebbian learning rates for afferent connections, lateral excitatory connections
and lateral inhibitory connections are αA = 0.1, αE = 0 and αI = 0.3, respectively.

4.3 Results

This model mimics the early visual pathway. Figure 4.1(a) shows a simplified di-
agram of the early visual pathway in the cat. A stimulus placed in front of retina
through the cornea and lens, is activating retinal ganglion cell receptive fields and
transmitted to the LGN. LGN neurons project to stellate cells in layer IV of V1, which
selectively response to stimuli orientations. The orientation selectivity is arranged
in patterns of orientation domains, which exhibit a continuous, roughly repetitive
arrangement. These patterns are called orientation preference maps.

Figure 4.1(b) illustrates this model consists of four sheets, retina, LGN ON, LGN
OFF and V1. Each of them consists of two-dimensional arrays of computational
units. Input to the retina can be any type of patterned images, such as small natural
image patches. Typically we use four Gaussian stimuli shown here. The difference-
of-Gaussian afferent connections from the retina to the ON and OFF units generate a
local receptive field on the retina, and give the effect that ON-center units response
to light areas surrounded by dark, and OFF-center units response to dark areas sur-
rounded by light. V1 units receive afferent input from LGN ON and OFF units, and
also receive lateral excitatory and lateral inhibitory connections from nearby units,
which lead to the activity patches seen on the V1 sheet.

We find that long time scales are important for OPM development in this model.
In experiments, accumulating evidence shows that in the primary visual cortex of
several species, orientation selectivity emerged within a few postnatal days around
eye opening and subsequentially undergoes a critical period of map plasticity and
refinement lasting for several weeks. See Figure 4.2. Taking cat as an example,
Kaschube and coworkers demonstrated that the spatial arrangement of eye domi-
nance columns in striate cortex is progressively reorganized between the 6th and the
14th postnatal week such that the organization of orientation columns that are recip-
rocally connected to extra-striate visual cortex and contralateral hemisphere striate



4.3. Results 29

a

b

Figure (4.1) The early visual pathway in the visual
system(a).The stimulus activates the retina and the signals are
trasmitted to the LGN.Then LGN projects to V1 for the signals.
In V1 the neurons are interacted with inhibitory effects and
excitatory effects to response to the orientation selectivity of
stimulus.The basic structure of the Topographica model is
shown in(b).This model consists of retina,LGN and V1
sheets.The input placed on the retina sheet is 2 Gaussian
patterns.The LGN ON sheet responses to the light areas
surround by dark areas of stimulus, and the LGN off sheet
responses to the dark areas surround by light areas of
stimulus. Then the afferent inputs formed by the
difference-of-Gaussian from LGN are given to V1.There are 3
types of inputs received by cortical units in V1:the afferent
inputs from LGN, the excitatory interaction and the inhibitory
interaction between neurons.These input activities generate
the “activity bubbles” of the cortical response patterns shown
in V1 sheet.
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cortex are better matched. For mouse, the duration of the period of cortical plas-
ticity is quite long and extends beyond the third postnatal month. It was showed
that neurons in the binocular segment of mouse visual cortex change their preferred
orientations during this period. After eye opening, animals will see many images
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Figure (4.2) A scheme for the critical period since animals
open their eyes after their birth. The orientation selectivity
firstly decreases and then increases sharply until saturates
after animals’ eyes opening.

and generate a huge number of spikes in their brain. According to C.D.Meliza
and D.Yang (2006) pairing visual stimulation at a given retinal location with post-
synaptic spiking can rapidly alter receptive fields in developing rat visual cortex.
V.Pawlak et al. (2013) even demonstrated that an STDP protocol using a few dozens
of paired APs can transform a neuron’s visually evoked responses from non-spiking
to spiking and can induce a rearrangement of the neurons sub- and suprathreshold
responses to stimuli presented at locations surrounding the paired location. These
indicate that when animal’s eyes see a large number of images which as stimuli can
change the receptive fields in the visual cortex. Imagine just during a few seconds,
saccade can take several images. Assume a high firing rate like 10 HZ and low fir-
ing rate like 0.1 HZ, we can estimate during a time course how many spikes can be
generated. Consistently, we can also estimate how many images can be seen. There
are four typical time points. One is the time scale T*. The three others are the critical
period, the time per day not suffered from monocular deprivation which is about 3
hours, and the axon arbor collapsing takes at most 2 days.

In this model an iteration consists of a constant retinal activation from visual
activity patterns, followed by transferring to the ON and OFF cells of LGN and
processing at the primary cortex. To aid a detailed comparison we are present-
ing all maps and layout parameters as a function of time. In such displays time
is represented in two different ways. One way is based on conventions in the pat-
tern formation literature, time is rescaled with the largest growth rate γz of the OP
map,T = γz ∗ t. Another way is, to aid comparison with biological observations, we
also plot all the measurements of layout characteristics as a function of multiples of
the time scale T* where T* is the time for which the OP power reaches it peak value
or, if there is no peak in the OP power, reaches 90% of its final value. In these units
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T* represents the time when orientation selectivity is essentially mature and later
times correspond to subsequent convergence process. From biological perspective,
the first stage of the developmental period in which neurons reach adult-like levels
of orientation selectivity and the later convergence stage to the following period of
developmental juvenile plasticity e.g. until the closure of the developmental critical
periods.

We performed time calibration of simulated OPM development for the Topo-
graphica model as shown in Figure 4.3(a). We found 20000 time steps to correspond
one time scale,T∗. The orientation selectivity firstly decreased, due to the competi-
tion of modes outside the circle of positive growth rate similar to Swift-Hohenberg
equation models. After this the selectivity exhibits a rapid growth until it saturates.
The time scale for growth and saturation depends on model parameters, including
afferent learning rate, system size, cortex density, number of gaussian stimuli and so
on. For simulations with a different sets of parameters, we firstly redetermined time
scale need .

The central question of this study is, how visual cortical networks change after
many stimuli have been presented ? As the representation of visual cortex, the ori-
entation preference maps will be used to illustrate this. As shown in Figure 4.3(a),
one can see the maps continuously change driven by more and more stimuli presen-
tation. In the initial state the map look noisy and unstructured, but when t = 1T∗
it become more banded compared to previous states. When the simulation runs
longer than 1 time scale, the organization of orientation maps continued to change.
By observation, Orientation maps in the simulations typically became more regular
over time. With open boundary conditions, a banded geometry of the orientation
domains at the boundaries of V1 increasingly dominates the center of the model
area. After a few intrinsic time scales, map layout becomes stripe-like or crystal-like
shape with perpendicular direction extended from the borders. To assess this dy-
namic process, we used the properties pinwheel number, column spacing and pin-
wheel density. Pinwheel number is the total number of pinwheels in a orientation
map area. The pinwheel density is defined as the average number of pinwheels per
orientation hypercolumn. The typical column spacing is the average spacing of ad-
jacent iso-orientation columns, by Λ, and the frequency of occurrence of pinwheels
per mm2 by ρ̂, then the pinwheel density is given by ρ = ρ̂Λ2, where Λ2 is the area
of an orientation hypercolumn. The average pinwheel number decreases during the
time course and the pinwheel number reduces strongly during the first 10 intrinsic
time scales. The column spacing, or the average wavelength, only changes slightly.
These two variables give rise to a fall of the average pinwheel density, which drops
to below 3 from about the second time scale.

The dynamics of map organization is driven by pinwheel annihilation and cre-
ation. One example of pinwheel annihilation is given in Figure 4.4(a) and another
example of pinwheel creation is shown in Figure 4.4(b). How fast are the pinwheels
created or annihilated ? The annihilation rate is larger than the creation rate from
the beginning and then go to close but still slightly larger than the creation rate. See
Figure 4.4(c). How many pinwheels of the pattern in the early stage are still present
in the late stage ? For a given set of pinwheels at a early time t we further calculate
the fraction of pinwheels surviving until time t + w, w can be different time win-
dows. We choose w = 10, 50 and 100T∗. If w = 10T∗, we can observe that during the
first 10 time scales the surviving fraction is lower than the later period and increases
from about 50% to 75%. If w = 50T∗, the surviving fraction during the first 10 time
scales increase from about 30% to 50%, and then basically keeps a stable level. If
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w = 100T∗, the surviving fraction is shown as increase from about 20% to 25% dur-
ing the first 10 time scales and then doesn’t change so much. These also indicate the
longer time the w is, the smaller pinwheels’ surviving fraction until t+w. See Figure
4.4(d). For single neurons, their orientation preferences also change due to pinwheel
annihilation and creation. We can choose one neuron as an example. During the time
course this neuron’s preferred orientation continuously change. Especially their re-
ceptive fields’ orientation can have π/2 change during the time period from 0 to
25T*. See Figure 4.4(e).
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Figure (4.3) Time calibration for maps in the simulation (a).
20000 time steps are equal to 1 time scale. Example maps are
exhibited to indicate during the time course the layout of maps
is changing. The changes of pinwheel number, average
wavelength and mean pinwheel density for maps during the
time evolution are shown in (b)(c)(d).

How does the orientation selective pattern emerge from an initially homogenous
state and how should this process be characterized? In many physical systems, a
new pattern emerges at a critical values of certain control parameters like the critical
temperature for liquid-gas transitions. In order to reveal the critical point for map
formation, we fixed the stimulus size and performed simulations with different as-
pect ratio of Gaussian inputs.

The average orientation selectivity(OS) increases as the aspect ratio(AR) of Gaus-
sian stimuli increases. When AR=1, OS is the smallest and almost the same value
as the initial state. The initial weights give the non-zero OS by the measurement
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Figure (4.4) An example for pinwheel annihilation (a). An
example for pinwheel creation (b). Creation rate and
annihilation rate of pinwheels during the map development
(c). The fraction of pinwheels surviving during the time course
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Figure (4.4) (d).The change of orientation preferences for a
single neurondue to the dynamics of pinwheels (e). The
receptive field of the neuron can change Pi/2 during the time
course from 0 to 25T*.

method. When AR changes from 1 to 2.8, OS grows slightly, but after that OS rises
sharply, with around 3 fold growth of OS for 2.8 to 4 change of AR. See Figure 4.5(a).
We also use afferent learning rates ( for projection from LGN to V1) 0.05,0.02,0.01 to
perform simulations and find that the trends of growth are very similar and OS with
learning rate 0.01 has a little more sharper increase when AR changes from 2.8 to 4
than OS with the other learning rates.

We find another phase transition of orientation selectivity for changing the cor-
tical range of excitation, as shown in Figure 4.5(b). We pick two points, one close
to the critical point and another one far from the critical point, to examine system-
atic differences. For 0.25Λ, typical map layouts produced regular crystals which are
rhomboid especially for the center of the area. As for conditions far from the critical
point which is 0.1Λ, stripes can be seen in the maps generated.

To characterize the phase transition, we examined some key values of parameters
impacting map features. We varied aspect ratio, selecting 2.8, 3.4 and 4 as the key
points. When aspect ratio =2.8, the average pinwheel density fluctuates massively
and the map organization is very poor and changes dramatically during the time
course. For aspect ratios 3.4 and 4, the pinwheel density dropped to below 3. See
Figure 4.5(c). For an cortical excitatory range, we display the pinwheel densities for
the excitatory sigma 0.25Λ, 0.2Λ and 0.1Λ(Figure 5.5(d)). All of them decrease to
below 3. When we analyzed the pinwheel creation and annihilation rate. We pick
two conditions, one near the critical point and a second far from the critical point. We
find that both of creation rate and annihilation rate for aspect ratio 3.4 was slightly
higher than for aspect ratio 4. And in the initial state the annihilation rate was larger
than the creation rate and in the later stage they approach to each other. A similar
analysis for the excitatory range 0.25Λ and 0.1Λ is presented in Figure 5.5(e)(f).

We next systematically calculated the core layout parameters of the common
design−pinwheel density and pinwheel nearest neighbor distance distributions for
the Bednar model. We evaluated the standard deviation of pinwheel densities as
a function of the area A of randomly selected subregions of the iso-orientation do-
main layouts. The black line represents the SD for 2D poisson process of pinwheel
density π. Generally,the standard deviation’s decay with subregion size followed
a power law with increasing area size. We fitted the empirically observed power
law, to the standard deviation of the pinwheel density estimate in increasing subre-
gions of cortical area. At t = 1T∗, the pinwheel density variability reveals deviation
from SD for a 2D Poisson process of pinwheel density π. During time evolution
the deviation continues to become slightly larger. Next we plot pinwheel nearest
neighbor(NN) distance distributions of the model. Histograms for NN distances for
arbitrary charge and euqal charge become more concentrated around half the typical
column spacing. Histograms for NN distances for opposite charge deviate from the
fitting curve. These results are shown in Figure 4.6.
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a b

c d

e f

Figure (4.5) A bifurcation change for the average orientation
selectivity increasing as the aspect ratio of Gaussian stimuli
increases (a). The learning rates 0.1,0.05,0.02,0.01 are used for
comparison. Another phase transition of orientation selectivity
for changing the cortical excitatory range (b). The maps for
one point near the critical value and another point far from the
critical value are shown for differences. The average pinwheel
densities of maps for using aspect ratio 2.8,3.4 and 4 (c). The
average pinwheel densities of maps for different excitatory
ranges (d). Creation rate and annihilation rate of pinwheels for
using aspect ratios of stimuli as 3.4 and 4 (e). Creation rate and
annihilation rate of pinwheels for using excitatory ranges as
0.25Λ and 0.1Λ (f).
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Figure (4.6) Neareast neighbor distances of pinwheels
generated by the model without considering the topological
charges at time t=1T*,100T* and 300T* (a)(b)(c). The black
curves are the fitting functions for the common design.
Neareast neighbor distances of pinwheels generated by the
model with the same and the opposite topological charge at
time t=1T*,100T* and 300T*(d)(e)(f). The black curves are the
fitting functions for the common design. The standard
deviation of the pinwheel density estimated in randomly
selected circular regions of the size when time is
300T∗,respectively (g)(h)(i).The black curves are standard
deviation for a two-dimensional Poisson process of equal
density.
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Figure 4.7 summarizes all common design features determined for the model
layouts as a function of time and compares them to the experimentally observed
values in tree shrew, galago, ferret, dark-reared ferrets, and cats. Light (dark)grey
shaded areas indicate the single species(common design) consistency ranges. Over
time the pinwheel density of model layouts decreases from 3.1 and then remains
below the single species consistency range. Thus, the pinwheel density of model
orientation domain layouts is inconsistent with pinwheel densities observed in all
species. Next, we fitted the empirically observe power law, to the standard deviation
of the pinwheel density estimate in randomly selected circular regions of size A. The
variability exponent γ basically stayed above the experimentally observe regions
and the confidential interval band has some overlap with the experimental observa-
tion area, while the confidential interval of variability constant c dropped below the
experimental observe range. The Figure also displays the mean pinwheel NN dis-
tances as function of time, all of which increases during the first 10 time scales and
then basically keep a stable level. Only the mean pinwheel NN distances for equal
charge at some time points locate close to the border of experimental observe region
and the confidential interval band intersects with the region. The other two types of
mean NN distances are not consistent with the experimentally observed values.
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Figure (4.7) Pinwheel statistics of maps generated by
Topographica model fail to match the common design. Grey
shaded areas indicate the range consistent with the
experiments. Grey areas show the values of the common
design. The average pinwheel density of maps during the time
course (a). Confidential interval are shown for 90 maps. Blue
curves indicate the mean value. Mean nearest neighbor
distances of pinwheels compared with the common design
without considering topological charges, with the same
topological charge and with the opposite topological
charges,respectively (b)(c)(d). The variability exponent as a
function of time compared to the common design (e). The
variability constant in comparision with the common design
(f).

4.4 Discussion

In this study, we examined if and how a input-driven model generates constant or
changing orientation maps as representations of cortical functional architecture over
time scales representative of biological critical periods. Firstly, we determined the
time scales for simulations which correspond to the initial emergence of selectivity
and to subsequent modifications. Then we analyzed orientation preference changes
of single neurons and confirmed the layout of orientation maps exhibits rearrange-
ment after orientation selectivity saturates. To quantify the speed of the primary vi-
sual cortex remodelling, we calculated pinwheel annihilation and generation rates,
which turned out to be small but non zero. We closely examined one important
statistics of pinwheel layout – pinwheel density and found that it rapidly drops to
values below 3 over time after saturation of selectivity. Besides, we found there are
two types of phase transitions in this model’s parameter space. One is the transition
towards orientation selectivity for changing the aspect ratios of Gaussian stimuli.
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Another one is the phase transition to orientation selectivity when changing the cor-
tical excitatory range. In summary, we conclude there was no parameter regime in
which the common design parameters matched experimental observations.

1. The boundary effect
Orientation maps in the simulations typically become more regular over time.

The banded geometry of the orientation domains at the boundaries of V1 (with open
boundary condition) increasingly dominate the center of the simulation area. This
process is driven by pinwheel generation and annihilation events. The time scale
of pinwheel survival is roughly maintained over the course of the simulation, with
fluctuations depending on the learning rate of the system. The switching behavior
between the prominence of orientation stripes from the lateral and from the supe-
rior/inferior boundaries prevents the pinwheel density to decrease to crystal-like
values, concealing a potential ground state of the system. This indicates that bound-
ary effects strongly influence the layouts in this model. But in biological reality, there
is evidence showing that near the border of v1 and v2, orientation stripy domains
are in fact present and perpendicular to the area border. In order to remove the
boundary effect in this model, one can also consider implementing periodic bound-
ary condition to this model.

2. The time scales
Experimental evidence clearly supports that cortical circuits remain in plastic

state for weeks and months after the initial emergence of sensory responsiveness
and stimulus selectivity. To know how far the rearrangement of cortical circuitry can
reach a final state one has to relate the duration of the period of juvenile plasticity
to the fundamental timescale of the map dynamics. This time scale is the duration
of the process of establishing mature levels of the selectivity and in our model is
the time T∗. From a theoretical perspective this time scale depends on the ensem-
ble of activity patterns and on the details of the local cortical circuits which are not
completely known.

L.Reichl et al. (2012) obtained empirical estimates for the relative duration of ju-
venile plasticity by comparing the characteristic time scale of initial map emergence
and the duration of the period from map emergence to the closure of critical periods
of visual cortical plasticity. A lower bound to the relative duration of juvenile plas-
ticity is 10T∗ according to experiments in cat and ferret visual cortex.In both species,
data indicate at most one week to reach mature levels of single neuron’s orientation
selectivity, so the estimate for the time scale of orientation map development is that
T∗ is about one week. Since the period of susceptibility to monocular deprivation in
kitten lasts between 12 to 16 weeks after single neurons first reach adult like levels
of orientation selectivity and eye dominance, a lower bound for the relative dura-
tion of juvenile plasticity is thus 10T∗.The longest estimate for a critical period in cat
visual cortex was 33 weeks and assuming the time scale in the lower range of exper-
imentally reported peak time scales i.e. 3 hours, one can estimate an absolute upper
bound for the relative duration of the period of juvenile plasticity in cat is 1850 T∗.

3. Comparison to previous studies
The Topographica model integrates a few simple and biologically realistic mech-

anisms to reproduce the map development. Specifically, contrast-gain control in
the retinal ganglion cells and the lateral geniculate nucleus reduces variation in the
presynaptic drive due to differences in input patterns, while homeostatistic plastic-
ity of V1 neuron excitability reduces the postsynaptic variability in firing rates.

The elastic net model, for comparison lacks these biological mechanisms and
doesn’t simulate responses to individual input patterns such as Gaussian or retinal
waves. Unlike correlation-based learning models that use Hebbian learning over
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large batches of inputs, Topographica model operate using incremental Hebbian
learning rules. Although it is often more difficult to obtain mathematical results
of the final model than those of linear, feedforward networks, the incremental prop-
erties of self-organizing maps make them more suitable for studying map develop-
ment. Incremental learning allows gradual changes in network organization to be
tracked as a stream of inputs drive the development of the network forward.

Lateral interactions are a key element in this model. The biological basis for V1
cortical interactions is the long-rang horizontal connections between V1 neurons of
layer 2/3. In this model the lateral interactions are mexican-hat type, short-range
excitatory interacion and longer-range inhibitory interaction. However, this model
doesn’t include the long-range interaction part which means the cortical interac-
tion range beyond 1 hypercolumn, if compared to the Wolf’s model. Since Wolf’s
model predicts all the common design features shown in experimental observation,
we think in the future work this model need to integrate the long-range interaction
element, so that it may could solve the problem of predicting the experimetnal ob-
served map layouts.
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Chapter 5

Map dynamics near the critical
point

5.1 Introduction

As demonstrated in Chapter 4, the Topographica model has a critical point for map
formation at an aspect ratio of stimuli at about 3.4. Also there is another bifurcation
parameter controlling the development of orientation selectivity is the excitatory
range of cortical interactions. Here the critical point is located at about 0.08. In
the following we ask, how is the circuit dynamics affected when the aspect ratio of
stimuli or excitatory range are near or far from these critical points. In addition, we
examine the circuit rearrangement in cortical model areas of increased sizes to assess
the influence of boundary effects on circuit dynamics. In previous studies we chose
area sizes between 1 ∗ 1 or 1.5 ∗ 1.5. Now we set the size of the cortical area as 3 ∗ 3.

5.2 Map development near the critical point

Firstly we do a time calibration for map development. From the plot one can see it
is about 40000 steps as 1 time scale, T. See Figure 5.1.
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Figure (5.1) The developement of orientation selectivity. Every dot is for the
orientation selectivity value of every 20000 time steps.We can see at about 40000
time steps the selectivity reaches close to saturation state, therefore we choose
40000 time steps as 1 time scale.

By observation the maps at the beginning look somewhat noisy and stripy, but
lately from about 10T they become closer to the shapes of maps generated by Wolf’s
model((M.Kaschube et al., 2010a)). However the appearance of the maps at very
late stage are filled with noisy crystals. We do Fourier transform of the map data
and find in the initial stages there are multiple different Fourier modes saturing the
ring but to the very later stages, e.g.t = 100T, about four main modes dominate
the map distribution, which gives crystal-like shapes of the patterns. See Figure 5.2.
Then we do statistical analysis for the maps. As shown in Figure 5.3, during the
time evolution process the average pinwheel density of the maps goes above 4 and
stays around 4.5, which deviate from the common design range. Interestingly, the
mean pinwheel density does not fall below 3, as shown previously for the patterns.
The confidential interval is outside of the experimental observation region. Also we
plot the nearest neighbor distance distributions of pinwheel centers for t = 100T.
The NN distance distribution for the data doesn’t fit into the curves of the fitting
functions. As seen from the figures,the mean NN distances for the same charge,the
opposite charge, and arbitrary charge of pinwheels stays outside of the experimen-
tal observation scope. Also the confidential intervals don’t locate at inside of the
scope. Then we plot the standard deviation of the pinwheel density estimate in ran-
domly selected circular regions and compare it to the empirically observed power
law. They look like close to each other. The variability exponent r including its’ con-
fidential interval basically stay in the experimental observation regions while the
variability constant c with the confidential interval also lies in the experimental ob-
serve scopes. We want to know why the patterns become noisy crystals in the late
state. Is it because the excitatory range is near to the critical value ? To answer this
question we compare different maps with different excitatory ranges in controlled
conditions and find that the Fourier modes for maps generated with the excitatory
range 0.04,0.05,0.06,0.07 and 0.08 are not a few and more than 4 main modes. There-
fore the value 0.07 of the excitatory range for the maps in the "critical" state is not
the only reason for becoming the late shapes. We suppose that it should combine the
aspect ratios of the stimuli to analyze the maps further.
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Figure (5.2) An example of map development near the critical point and their
power spectrum by Fourier analysis.
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Figure (5.3) Pinwheel statistics for maps near the critical
point. The time of statistics (e)(f)(g)(j) is t = 100T.

5.3 Impact of the parameter "excitatory range"

As the parameter "excitatory range" of the cortical interaction is important for map
formation, we perform statistical analysis for different values of this paramter,including
ones close to and far from the critical value. Firstly, we analyze the pinwheel den-
sity of maps for different values of excitatory ranges. We find all the mean pinwheel
densities of maps for the values will drop to below 3(Figure 5.4). We will show other
statistics of maps one by one for different values of "excitatory range".
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In the case of the excitatory range as 0.03, the average pinwheel density with
the confidence interval drops to below 3 after a few time scales. The nearest neigh-
bor(NN) distance distributions as function of time are plotted. In the beginning the
mean NN distances with arbitrary and the opposite charge locate in the experiment
consistency range but later they leave this range and basically stay outside of the
range. The confidence interval of the mean NN distances with arbitrary charge of
pinwheels has a small part of intersection with the experimental observation area.
And the confidence interval of the mean NN distance with the opposite charge of
pinwheels basically stays outside of the area. The mean NN distance with the same
charge enters the experiment consistency range from the outside. Also the confi-
dence interval of the mean NN distance with the same charge of pinwheels mainly
overlaps the experimental consistence range. We show the NN distance distribu-
tion for t=150T. The distributions are close to the fitting functions but not fit. In
addition,we fit the empirical observation power law, to the standard deviation of
pinwheel density estimate in randomly selected circular regions. The confidence in-
tervals of variability exponent r and the variability constant c basically stay in the
experiment consistency range. We plot the case of t=150T for the standard deviation
of pinwheel densities as a function of the area of randomly selected subregions of the
iso-orientation domain layout. The black line indicates the standard deviation for 2
dimensional Poisson process of pinwheel density π. The pinwheel density variabil-
ity is close to the standard deviation of a 2 dimensional Poisson process of pinwheel
density π but not completely fit. See Figure 5.4.

For the case of the value of the excitatory range equal to 0.04, the average pin-
wheel density with the confidence interval basically drops to below 3 after a few
time scales. The NN distance distributions are analyzed. The mean NN distances
with confidence intervals for the pinwheels with the opposite charge and arbitrary
charge after a few time scales locate outside of the experiment consistency range,
but the mean NN distance for the pinwheels with the same charge stays in the ex-
periment consistency range. The confidence interval largely overlaps the range. We
plot the NN distance distributions for t=150T. The distributions deviate from the
fitting functions. Besides,we fit the empirical observation power law,to the stan-
dard deviation of pinwheel density estimate in randomly selected circular regions.
The variability exponent r with the confidence interval is close to the border of the
experiment consistency area while the variability constant c with the confidence in-
terval basically stays outside of this range. We show the standard deviation of pin-
wheel densities as a function of the area of randomly selected subregions of the
iso-orientation domain layout for t=150T. The pinwheel density variability deviate
from the standard deviation of a 2 dimensional Poisson process of pinwheel density
π. See Figure 5.5.

When the value of the excitatory range is 0.045, the average pinwheel density
with the confidence interval drops to below 3 after a few time scales.The NN dis-
tance distributions are plotted. After a few time scales from the beginning, the mean
NN distances for the pinwheels with the opposite charge and arbitrary charge lie in
the outside of the experiment consistency range, while the mean NN distance for the
pinwheels with the same charge stays in the experiment consistency range. The con-
fidential intervals have similar trends with the mean NN distance values. The NN
distance distributions for t=150T is plotted. These distributions deviate from the fit-
ting curves. In addition,we fit the empirical observation power law,to the standard
deviation of pinwheel density estimate in randomly selected circular regions. Both
of the variability exponent r and the variability constant c with the confidence inter-
vals are close to the boundary of experiment consistency range but c is basically in
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the outside of the range. The standard deviation of pinwheel densities as a function
of the area of randomly selected subregions of the iso-orientation domain layout for
t=150T is shown. The pinwheel density variability doesn’t fit the standard deviation
of a 2 dimensional Poisson process of pinwheel density π. See Figure 5.6.

For the value of the excitatory range as 0.055, the average pinwheel density with
the confidence interval basically drops to below 3 after a few time scales. Then we
analyze the NN distance distributions. As similar with the above cases in this sec-
tion, the mean NN distances with the confidence intervals for the pinwheels with
the opposite charge and arbitrary charge stay in the outside of the experiment con-
sistency range, while the mean NN distance for the pinwheels with the same charge
basically lies in the experiment consistency range. The NN distance distributions
for t=150T are shown. These distributions deviate from the fitting functions. Be-
sides,the empirical observation power law is fitted to the standard deviation of pin-
wheel density estimate in randomly selected circular regions. Both of the variability
exponent r and the variability constant c with their confidence intervals basically are
in the outside of the experiment consistency range. We plot the standard deviation
of pinwheel densities as a function of the area of randomly selected subregions of the
iso-orientation domain layout for t=150T. The pinwheel density variability deviate
from the standard deviation of a 2 dimensional Poisson process of pinwheel density
π. See Figure 5.7.

For the case of the excitatory range equal to 0.06, the mean pinwheel density with
the confidence interval has a similar trend with above cases, which is that the values
basically drop to below the experimental observation region. The NN distance dis-
tributions are analyzed. The mean NN distances of the pinwheels with the opposite
charge and arbitrary charge of pinwheels lie in the outside of the experiment con-
sistency range and the mean NN distance for the pinwheels with the same charge
basically stays in the range. The confidence intervals for the mean NN distances
of pinwheels are also shown. We plot the NN distance distributions for t=150T.
These distributions deviate from the fitting curves. In addition, we fit the empirical
observation power law, to the standard deviation of pinwheel density estimate in
randomly selected circular regions. Both of the variability exponent r and the vari-
ability constant c with their confidence intervals basically stay in the outside of the
experiment consistency range. For the case of t=150T We plot the standard devia-
tion of pinwheel densities as a function of the area of randomly selected subregions
of the iso-orientation domain layout. The pinwheel density variability is not con-
sistent with the standard deviation of a 2 dimensional Poisson process of pinwheel
density π. See Figure 5.8.

For the value of the excitatory range as 0.065, we do the analysis of average
pinwheel densities and the NN distance distributions. The mean pinwheel density
drops to below the experiment values and the confidence interval has a small part
intersecting with the experiment observation area. The mean NN distances of the
pinwheels with the opposite charge and arbitrary charge and their confidence in-
tervals stay outside of the experiment consistency range and the mean NN distance
for the pinwheels with the same charge lies in the experiment consistency range.
The NN distance distributions for t=150T are shown in the Figure 5.9. These distri-
butions deviate from the fitting functions. Besides,we fit the empirical observation
power law,to the standard deviation of pinwheel density estimate in randomly se-
lected circular regions. Both of the variability exponent r and the variability constant
c with their confidence intervals are not in the experiment consistency range. For the
case of t=150T We show the standard deviation of pinwheel densities as a function of
the area of randomly selected subregions of the iso-orientation domain layout. The
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pinwheel density variability dose not fit the standard deviation of a 2 dimensional
Poisson process of pinwheel density π. See Figure 5.9.

In the case of the excitatory range equal to 0.07, the mean pinwheel density drops
to below 3 but the confidence interval has some small parts in the experiment obser-
vation area. The NN distance distributions are also analyzed. After a few time scales
the confidence intervals including mean NN distances of the pinwheels with the ar-
bitrary and the opposite charge stands in the outside of the experiment consistency
range. A main part of the line of the mean NN distance for the pinwheels with the
same charge and a main part of the confidence interval lies in the experiment con-
sistency range . On t=150T the NN distance distributions are plotted. These distri-
butions are not fitted by the functions. In addition, the empirical observation power
law is fitted, to the standard deviation of pinwheel density estimate in randomly
selected circular regions. Basically both of the variability exponent r and the vari-
ability constant c with confidence intervals don’t but only a few points for r locates
at in the experiment consistency range. On t=150T we plot the standard deviation of
pinwheel densities as a function of the area of randomly selected subregions of the
iso-orientation domain layout. The pinwheel density variability deviate from the
standard deviation of a 2 dimensional Poisson process of pinwheel density π. See
Figure 5.10.

When the excitatory range grows to 0.075, we firstly analyze the average pin-
wheel density. After a few time scales the mean pinwheel density goes to below
3 and the confidence interval has some parts overlap the experiment observation
region. After a few time scales the confidece intervals including the mean NN dis-
tances of the pinwheels with the arbitrary and the opposite charge locate at the out-
side of the experiment consistency range while a large part of another confidence
interval including the line of the mean NN distance for the pinwheels with the same
charge lies in the experiment consistency range. For t=150T the NN distance dis-
tributions are plotted. See Figure 5.11. These distributions deviate from the fitting
functions. Besides, we fit the empirical observation power law,to the standard devi-
ation of the pinwheel density estimate in randomly selected circular regions. Both
of the variability exponent r and basically the variability constant c with their confi-
dence intervals don’t but except a few points locate at the border of the experiment
consistency range. For t=150T we plot the standard deviation of pinwheel densities
as a function of the area of randomly selected subregions of the iso-orientation do-
main layout. The pinwheel density variability deviate from the standard deviation
of a 2 dimensional Poisson process of pinwheel density π.

For the value of the excitatory range as 0.08, as the same step with the above
cases, we firstly analyze the average pinwheel density. The mean pinwheel density
basically drops to below 3. Its’ confidence interval has a wide band and some parts
of it overlap the experiment observation area. Contrary to the results of previous
values of the excitatory range, the mean NN distances of the pinwheels with the
arbitrary and the opposite charge locate at the inside of the experiment consistency
range while a part of the line of the mean NN distance for the pinwheels with the
same charge lies in the experiment consistency range. Also the confidence intervals
of the 3 type of mean NN distances of pinwheels have main parts locating at the
experiment observation regions. The NN distance distributions are shown in the
Figure 5.12 for t=150T. These distributions are closer than previous plots in this sec-
tion but still deviate from the fitting functions. Then we fit the empirical observation
power law,to the standard deviation of the pinwheel density estimate in randomly
selected circular regions. Both of the variability exponent r and the variability con-
stant c with their confidence intervals locate at in the experiment consistency range
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except for a few points. For t=150T we plot the standard deviation of pinwheel den-
sities as a function of the area of randomly selected subregions of the iso-orientation
domain layout. The pinwheel density variability basically fits the standard deviation
of a 2 dimensional Poisson process of pinwheel density π well.See Figure 5.12.

Now consider the value of the excitatory range as 0.085, we will have similar
analysis steps with the value of the excitatory range as 0.08. The average pinwheel
density basically drops to below 3 but at a short time section it intersects the exper-
iment observation area. The corresponding confidence interval becomes wide and
has certain parts locating at the experiment observation scope. The mean NN dis-
tances of the pinwheels with the arbitrary and the opposite charge stay on the inside
of the experiment consistency range while a part of the line of the mean NN distance
for the pinwheels with the same charge stay in outside of the experiment consistency
range. Also the three type of confidence intervals almostly fill the experiment obser-
vation regions. We selectively plot the NN distance distributions when the time is
150T. These distributions are close to the fitting functions. Then we fit the empirical
observation power law,to the standard deviation of the pinwheel density estimate
in randomly selected circular regions. Both of the variability exponent r and the
variability constant c with the confidence intervals lie in the experiment consistency
range except at a few points. Then we take the time 150T as an example to show the
standard deviation of pinwheel densities as a function of the area of randomly se-
lected subregions. The pinwheel density variability basically is close to the standard
deviation of a 2 dimensional Poisson process of pinwheel density π. See Figure 5.13.
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Figure (5.4) Pinwheel statistics for the excitatory range as
0.03.The mean pinwheel density of maps during the time
course (a).The mean NN distance for arbitrary pinwheel
charges(b).The mean NN distance for opposite pinwheel
charges(c).The mean NN distance for same pinwheel charges
(d).The NN distance distribution for arbitrary pinwheel
charges when t=150T (e).The NN distance distribution for
opposite pinwheel charges when t=150T (f). The NN distance
distribution for same pinwheel charges when t=150T (g).The
variability exponent r (h). The variability constant c (i). The
standard deviation of pinwheel densities as a function of the
area of randomly selected subregions of the iso-orientation
domain layout when the time is 150T.The black line indicates
the standard deviation for 2 dimensional Poisson process of
pinwheel density π (j).
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Figure (5.5) Pinwheel statistics for the excitatory range as
0.04.The mean pinwheel density of maps during the time
course (a).The mean NN distance for arbitrary pinwheel
charges(b).The mean NN distance for opposite pinwheel
charges(c).The mean NN distance for same pinwheel charges
(d).The NN distance distribution for arbitrary pinwheel
charges when t=150T (e).The NN distance distribution for
opposite pinwheel charges when t=150T (f). The NN distance
distribution for same pinwheel charges when t=150T (g).The
variability exponent r (h). The variability constant c (i). The
standard deviation of pinwheel densities as a function of the
area of randomly selected subregions of the iso-orientation
domain layout when the time is 150T.The black line indicates
the standard deviation for 2 dimensional Poisson process of
pinwheel density π (j).
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Figure (5.6) Pinwheel statistics for the excitatory range as
0.045.The mean pinwheel density of maps during the time
course (a).The mean NN distance for arbitrary pinwheel
charges(b).The mean NN distance for opposite pinwheel
charges(c).The mean NN distance for same pinwheel charges
(d).The NN distance distribution for arbitrary pinwheel
charges when t=150T (e).The NN distance distribution for
opposite pinwheel charges when t=150T (f). The NN distance
distribution for same pinwheel charges when t=150T (g).The
variability exponent r (h). The variability constant c (i). The
standard deviation of pinwheel densities as a function of the
area of randomly selected subregions of the iso-orientation
domain layout when the time is 150T.The black line indicates
the standard deviation for 2 dimensional Poisson process of
pinwheel density π (j).
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Figure (5.7) Pinwheel statistics for the excitatory range as
0.055.The mean pinwheel density of maps during the time
course (a).The mean NN distance for arbitrary pinwheel
charges(b).The mean NN distance for opposite pinwheel
charges(c).The mean NN distance for same pinwheel charges
(d).The NN distance distribution for arbitrary pinwheel
charges when t=150T (e).The NN distance distribution for
opposite pinwheel charges when t=150T (f). The NN distance
distribution for same pinwheel charges when t=150T (g).The
variability exponent r (h). The variability constant c (i). The
standard deviation of pinwheel densities as a function of the
area of randomly selected subregions of the iso-orientation
domain layout when the time is 150T.The black line indicates
the standard deviation for 2 dimensional Poisson process of
pinwheel density π (j).
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Figure (5.8) Pinwheel statistics for the excitatory range as
0.06.The mean pinwheel density of maps during the time
course (a).The mean NN distance for arbitrary pinwheel
charges(b).The mean NN distance for opposite pinwheel
charges(c).The mean NN distance for same pinwheel charges
(d).The NN distance distribution for arbitrary pinwheel
charges when t=150T (e).The NN distance distribution for
opposite pinwheel charges when t=150T (f). The NN distance
distribution for same pinwheel charges when t=150T (g).The
variability exponent r (h). The variability constant c (i). The
standard deviation of pinwheel densities as a function of the
area of randomly selected subregions of the iso-orientation
domain layout when the time is 150T.The black line indicates
the standard deviation for 2 dimensional Poisson process of
pinwheel density π (j).
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Figure (5.9) Pinwheel statistics for the excitatory range as
0.065.The mean pinwheel density of maps during the time
course (a).The mean NN distance for arbitrary pinwheel
charges(b).The mean NN distance for opposite pinwheel
charges(c).The mean NN distance for same pinwheel charges
(d).The NN distance distribution for arbitrary pinwheel
charges when t=150T (e).The NN distance distribution for
opposite pinwheel charges when t=150T (f). The NN distance
distribution for same pinwheel charges when t=150T (g).The
variability exponent r (h). The variability constant c (i). The
standard deviation of pinwheel densities as a function of the
area of randomly selected subregions of the iso-orientation
domain layout when the time is 150T.The black line indicates
the standard deviation for 2 dimensional Poisson process of
pinwheel density π (j).
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Figure (5.10) Pinwheel statistics for the excitatory range as
0.07.The mean pinwheel density of maps during the time
course (a).The mean NN distance for arbitrary pinwheel
charges(b).The mean NN distance for opposite pinwheel
charges(c).The mean NN distance for same pinwheel charges
(d).The NN distance distribution for arbitrary pinwheel
charges when t=150T (e).The NN distance distribution for
opposite pinwheel charges when t=150T (f). The NN distance
distribution for same pinwheel charges when t=150T (g).The
variability exponent r (h). The variability constant c (i). The
standard deviation of pinwheel densities as a function of the
area of randomly selected subregions of the iso-orientation
domain layout when the time is 150T.The black line indicates
the standard deviation for 2 dimensional Poisson process of
pinwheel density π (j).
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Figure (5.11) Pinwheel statistics for the excitatory range as
0.075.The mean pinwheel density of maps during the time
course (a).The mean NN distance for arbitrary pinwheel
charges(b).The mean NN distance for opposite pinwheel
charges(c).The mean NN distance for same pinwheel charges
(d).The NN distance distribution for arbitrary pinwheel
charges when t=150T (e).The NN distance distribution for
opposite pinwheel charges when t=150T (f). The NN distance
distribution for same pinwheel charges when t=150T (g).The
variability exponent r (h). The variability constant c (i). The
standard deviation of pinwheel densities as a function of the
area of randomly selected subregions of the iso-orientation
domain layout when the time is 150T.The black line indicates
the standard deviation for 2 dimensional Poisson process of
pinwheel density π (j).
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Figure (5.12) Pinwheel statistics for the excitatory range as
0.08.The mean pinwheel density of maps during the time
course (a).The mean NN distance for arbitrary pinwheel
charges(b).The mean NN distance for opposite pinwheel
charges(c).The mean NN distance for same pinwheel charges
(d).The NN distance distribution for arbitrary pinwheel
charges when t=150T (e).The NN distance distribution for
opposite pinwheel charges when t=150T (f). The NN distance
distribution for same pinwheel charges when t=150T (g).The
variability exponent r (h). The variability constant c (i). The
standard deviation of pinwheel densities as a function of the
area of randomly selected subregions of the iso-orientation
domain layout when the time is 150T.The black line indicates
the standard deviation for 2 dimensional Poisson process of
pinwheel density π (j).
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Figure (5.13) Pinwheel statistics for the excitatory range as
0.085.The mean pinwheel density of maps during the time
course (a).The mean NN distance for arbitrary pinwheel
charges(b).The mean NN distance for opposite pinwheel
charges(c).The mean NN distance for same pinwheel charges
(d).The NN distance distribution for arbitrary pinwheel
charges when t=150T (e).The NN distance distribution for
opposite pinwheel charges when t=150T (f). The NN distance
distribution for same pinwheel charges when t=150T (g).The
variability exponent r (h). The variability constant c (i). The
standard deviation of pinwheel densities as a function of the
area of randomly selected subregions of the iso-orientation
domain layout when the time is 150T.The black line indicates
the standard deviation for 2 dimensional Poisson process of
pinwheel density π (j).
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Chapter 6

Impact of periodic boundary
conditions

6.1 Introduction

In order to remove boundary effects, we next introduced periodic boundary con-
ditions into the model. Periodic boundaries mean the model from retina to corti-
cal area are assumed to be wrapped around the boundaries and have the topology
of a 2 torus. This biologically is a counterfactual assumption since both the rep-
resented part of the retina as well as the cortical area a finite size bounded 2D re-
gions. However, boundary effects may very well represent real biological phenom-
ena. Closely examining models with periodic boundaries therefore can provide two
kinds of important biological insight. Firstly, by comparison with the finite open
boundary behaviour clearly identify phenomena cause by boundary conditions in
the model. Secondly, large regions models with periodic boundary conditions can
be more representative of bulk behaviour far from area boundaries. Results from pe-
riodic boundary simulations therefore also reveal characteristic difference between
"boundary layer" and "bulk behaviour".

6.2 Implementation of periodic boundary conditions

In order to remove the boundary effect for map formation, we use periodic boundary
conditions for the model. Periodic boundaries mean the model from retina part to
cortical part is wrapped by boundaries.

Firstly, the activity pattern inputs to the retina are periodically setted. We typ-
ically use Gaussian pattrns as the retina inputs. For the patterns, the x coordinate
part and the y coordinate part are rolled along the axises. The rolling range is be-
tween -75 and 75 if the retina area size is 1.5 ∗ 1.5 and the retina density is 100. We
use the random number function to generate random shifts of the x coordinate parts
and the y coordinate parts of the Gaussian patterns. Thus we can obtain random
periodical Gaussian patterns.

Secondly, we modify the input sheet slices for generating connection fields. The
creation of the input sheet slice provides the appropriate slice for the connection filed
on the input sheet, as well as provides this connection field’s exact bounds. Also the
function of input sheet slices creates the weights slice, which offers the slice for the
weights matrix. The weights matrix in nonperiodic cases must be cropped at an
edge. We need to make the submatrix’s bounds wrapped. The submatrix is equiv-
alent to computing the intersection between the SheetCoordinateSystem’s bounds
and the bounds of the input slices, and returning the corresponding submatrix of
the given matrix. As a single connection filed function which is applied to calculate
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the inputs from retina to LGN or from LGN to V1, it is the submatrix of input slices
multiplying the connection weights. By wrapping the bounds of the submatrix, we
could obtain periodic input slices from one layer to the next layer in the model.

Besides, we need to have corresponding measurement methods for measuring
the orientation selectivity of periodic maps. Instead of using sine waves to measure
the selectivity, we take periodic Gaussian patterns for the measurement. By choos-
ing size as 0.085 and aspect ratio as 5, we change the Gaussian patterns for various
centers x and y positions, also for 4 different orientations. For retina area size as 1 ∗ 1,
we use 50 positions for x axis direction and 50 positions for y axis direction. Thus for
every measurement 4 ∗ 50 ∗ 50 periodic Gaussian patterns are presented. We don’t
adopt sine waves as inputs for measurement is because near the edges a neuron in
the periodic network will see bits of two different chunks of sine waves, which will
by definition be a poor match to any single receptive filed.

In addition, we make equal sizes of areas for retina,LGN ON or OFF sheet and
V1 sheet, which is not the same as the previous Topographica model we use. In the
original Topographica model, near the boarder of the retina there is a area where
no input activity touches. But now we need to implement periodic inputs and the
boundary of retina is wrapped, so we need to remove the "free"area near the boarder
of the retina. Correspondingly, we also don’t use other layers with extra free space
near the boundaries. To be simplified, we adapt the same sizes of all sheets in this
model.

6.3 Map development with periodic boundary conditions

We do simulations to observe the process of the map development with periodic
boundary conditions. Take two maps as examples. For the first example maps, at
the initial state of time t = 0.1T(T is the time scale), the map looks stripy and is
multiple oriention arranged. In later stage, e.g.t = 20T, the orientations of map
stripes are reduced and the map become more lumpy. After this the map gradually
become regular and crystallized. Another map has a similar process with this map.
If we perform Fourier analysis we find for the maps of late stages,e.g. t = 200T,the
Fourier power spectrums of them has only a few modes, mainly 4 modes. This
indicate why they become crystallized. See Figure 6.1.
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Figure (6.1) The example snapshots of map development
process and fourier modes. (a)-(c) is a process of one map
development for t = 0.1T, 20T and 200T. (d) is Fourier modes
of the map(c). (e)-(g) is for another map development for
t = 0.1T, 20T, 200T. (h) is Fourier modes of the map(g).

Then we analyze pinwheel statistics of the maps during development. See Fig-
ure 6.2. For the average pinwheel density, at t = 1T it locates the common design
consistency range but lately it drops to below 3 and stays in between 2 and 2.5.The
confidence interval decreases to below the experiment observation region. We also
plot statistics for nearest neighbor distance distributions of pinwheel centers. At
t = 200T all of nearest neighbor distance distributions for pinwheels with the same
charge, the opposite charge and the arbitrary charge deviate from the fitting func-
tions. The mean NN distances as functions of time are shown. The mean NN dis-
tance without considering pinwheel charges keeps staying outside of experiment
observation range. The confidence interval leaves the experiment observation range
after a few time scales. The mean NN distance with the opposite pinwheel charges
have a similar trend with it and also locates at the outside of the experimental ob-
servation range. The corresponding confidence interval starts from the experiment
observation region and leaves the region lately. For the mean NN distance with the
same pinwheel charge it crosses the common design consistence range and the con-
fidence interval fills the experiment observation area. Besides, we fit the empirically
observe power law,to the standard deviation of pinwheel density estimate in ran-
domly selected circular regions of size A. The confidence intervals of the variability
exponent r and the variability constant c are outside of experimental scopes. We
evaluate the standard deviation of pinwheel densities as a function of the area A of
randomly selected subregions of the iso-orientation domain layout. In the figure the
black line is the standard deviation for 2 dimensional Poisson process of pinwheel
density π. The pinwheel density variability deviates from standard deviation of a 2
dimensional Poisson process of pinwheel density π. We show for example the case
of t = 200T.
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Figure (6.2) The statistics for map layouts during the time
course.The average pinwheel density of maps (a).The
variability exponent r (b). The variability constant c (c).For
t = 200T the NN distance distribution for arbitrary charges of
pinwheels (d). For t = 200T the NN distance distribution for
opposite charges of pinwheels (e). For t = 200T the NN
distance distribution for same charges of pinwheels (f). The
mean NN distance for arbitrary charges of pinwheels (g).The
mean NN distance for same charges of pinwheels(i). The mean
NN distance for opposite charges of pinwheels (h).The
standard deviation of pinwheel densities as a function of the
area of randomly selected subregions of the iso-orientation
domain layout when the time is 200T.The black line indicates
the standard deviation for 2 dimensional poisson process of
pinwheel density π (j).
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Chapter 7

The impact of system size

7.1 Map structure for different system sizes

The observation of different maps for different area sizes is as follows. Example
maps are shown in Figure 7.1. When the size of the area is 0.5 ∗ 0.5, there are just a
few pinwheels formed. Some parts of the small maps appear as crystal-like shapes.
For example, in the patterns shown in the Figure at least two crystals can be seen.
If the size of map areas is 1 ∗ 1, the maps are dominated by stripes perpendicular to
the boundaries. There are long stripes and crystals formed for the same orientation
preferences, respectively. The long stripes may be formed by crystals connecting to
each other. These patterns of stripes and crystals are affected by pinwheels generated
from the borders. These pinwheels gradually move into the central areas of the
maps and collide with other pinwheels so that pinwheel annihilation and creation
happens. If the size of the cortical area is 2 ∗ 2, clear rhombuses are formed and
observed, especially in the center area. When the size of maps becomes 3 ∗ 3, the
patterns appear more regular than the patterns of smaller maps. They consist of clear
crystals mostly and some stripes near the boundaries. The shapes of the crystals are
similar with rhombus and the stripes are formed by connection of some crystals.
Compared to maps with its’ size as 1 ∗ 1, there are no long stripes across the whole
areas for maps with its’ size as 3 ∗ 3. In the early period of a few time scales, the
patterns are not as regular as the later ones. And after some time scales, the maps
show to be close to be static except for some pinwheels moving to outside and inside
of the cortical area crossing the boundaries, respectively. For the maps close to be
static in the late stage, the crystals or stripes are parallel to each other. Bigger areas
of maps are thought to have less affection from the boundaries since the pinwheels
on the central areas are farther from the borders. This is one motivation for us to
consider the cases of maps with large areas.

7.2 The process of the map development for different system
sizes

We analyze pinwheel statistics of the maps with different system size to reflect the
characteristics of the map development process. Firstly, we plot average pinwheel
densities of the different maps. When the area size of maps is 1 ∗ 1, at the beginning
of development, e.g.t = 1T∗(T∗ is the time scale), the average pinwheel density of
the maps is around 3 and a part of the confidence interval locates at the experiment
observation range. As time proceeds, the confidence interval of the average pin-
wheel density falls below 3 and stands around 2.5 and keeps somewhat stable level.
Compared to the maps with area size as 1 ∗ 1, the average of pinwheel densities for
map area as 2 ∗ 2 and 3 ∗ 3 have relatively small confidence intervals. This means
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the fluctuation for different maps generated from different random seeds is small
for them. Similarly, the average pinwheel densities for map size as 2 ∗ 2 or 3 ∗ 3 at
the beginning of the development are also around 3 and then after a few time scales
drop below 3 and locate closely to 2.5. See Figure 7.2.

a b

c d

Figure (7.1) A map for area size as 0.5 ∗ 0.5 when t = 1T∗ and
t = 60T∗ (a). A map for area size as 1 ∗ 1 when t = 1T∗ and
t = 60T∗ (b). A map for area size as 2 ∗ 2 when t = 1T∗ and
t = 60T∗ (c). A map for area size as 3 ∗ 3 when t = 1T∗ and
t = 60T∗ (d).

Then we do the analysis of other pinwheel statistics including nearest neighbor
(NN)distance distribution of pinwheel centers and the stand deviation of pinwheel
densities.

Firstly t = 60T∗ we plot the nearest neighbor distance distributions of pinwheel



64 Chapter 7. The impact of system size

centers and the fitting function curves. See Figure 7.3. For maps with area size
as 1 ∗ 1, the 3 types of NN distance distributions are obviously decentralized and
not fitting to the function curves. As to maps with area size as 2 ∗ 2 or 3 ∗ 3, the
NN distance distributions are more centralized for the same charge, the opposite
charge and the arbitrary charge of pinwheels, however also deviate from the fitting
functions. The mean NN distances as functions of time are shown in Figure 7.4.
When the area size is 1 ∗ 1, the confidence interval including the mean NN distance
without considering pinwheel charges inreases from the beginning and stays outside
of the experiment observation region. The confidence interval including the mean
NN distance with the opposite pinwheel charge have a similar trend with it and also
grows from the beginning and lies above the experiment scope. For the confidence
interval including the mean NN distance with the same pinwheel charge basically it
largely overlap the experiment observation area. When the area size is 2 ∗ 2 or 3 ∗ 3,
the confidence intervals for the mean NN distance without considering charges of
pinwheels, with the opposite pinwheel charges have similar characterestics. All of
them increase from the begining and then keep above the experiment observation
areas. For the mean NN distance with same charges of pinwheels, the confidence
interval for the area size as 2 ∗ 2 or 3 ∗ 3 lies inside the experiment scopes.

In addition, we fit the empirically observe power law,to the standard deviation
of pinwheel density estimate in randomly selected circular regions of size A(Figure
7.5). We need to show the variability exponent r and the variability constant c. When
the area size of maps is 1 ∗ 1, the confidence interval of the variability constant c is
below the experiment observation area and the confidence interval of the variability
exponent r basically is above or close to the area. Then we evaluate the standard
deviation of pinwheel densities as a function of the area A of randomly selected
subregions of the iso-orientation domain layout. In the figure the black line is the
standard deviation for 2 dimensional Poisson process of pinwheel density π. The
pinwheel density variability deviates from standard deviation of a 2 dimensional
Poisson process of pinwheel density π. We show for example the case of t = 60T∗.
When the area size of maps is 2 ∗ 2, similar with the area size of maps as 1 ∗ 1, the
confidence interval of the variability constant c is below the experiment observation
area and the confidence interval of the variability exponent r basically is above the
area. We also show a example for t = 60T∗ the pinwheel density variability de-
viates more largely from standard deviation of a 2 dimensional Poisson process of
pinwheel density π than the case of the map area size as 1 ∗ 1. Now we consider
the cases for the map area size as 3 ∗ 3. Still similar with the previous two cases,the
confidence interval of the variability constant c is below the experiment observation
area and the confidence interval of the variability exponent r basically is above the
area. Then we can for example for t = 60T∗ find the the pinwheel density variability
deviates most largely from standard deviation of a 2 dimensional Poisson process of
pinwheel density π between the three cases of the map area size as 1 ∗ 1, 2 ∗ 2 and
3 ∗ 3.

As the results of the pinwheel statistics show,the pinwheel layouts for maps with
the area size as 1 ∗ 1, 2 ∗ 2 and 3 ∗ 3 fails to match the common design.
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Figure (7.2) The average pinwheel density for the area size as
1 ∗ 1 (a).The average pinwheel density for the area size as 2 ∗ 2
(b).The average pinwheel density for the area size as 3 ∗ 3 (c).
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Figure (7.3) The NN distance distributions for t = 60T∗. The
NN distance distribution for arbitrary pinwheel charges for
the area size as 1 ∗ 1 (a). The NN distance distribution for
opposite pinwheel charges for the area size as 1 ∗ 1 (b). The
NN distance distribution for same pinwheel charges for the
area size as 1 ∗ 1 (c). The NN distance distribution for arbitrary
pinwheel charges for the area size as 2 ∗ 2 (d). The NN
distance distribution for opposite pinwheel charges for the
area size as 2 ∗ 2 (e). The NN distance distribution for same
pinwheel charges for the area size as 2 ∗ 2 (f). The NN distance
distribution for arbitrary pinwheel charges for the area size as
3 ∗ 3 (g). The NN distance distribution for opposite pinwheel
charges for the area size as 3 ∗ 3 (h). The NN distance
distribution for same pinwheel charges for the area size as 3 ∗ 3
(i).
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Figure (7.4) The mean NN distance for arbitrary pinwheel
charges for the area size as 1 ∗ 1 (a). The mean NN distance for
opposite pinwheel charges for the area size as 1 ∗ 1 (b). The
mean NN distance for same pinwheel charges for the area size
as 1 ∗ 1 (c). The mean NN distance for arbitrary pinwheel
charges for the area size as 2 ∗ 2 (d). The mean NN distance for
opposite pinwheel charges for the area size as 2 ∗ 2 (e). The
mean NN distance for same pinwheel charges for the area size
as 2 ∗ 2 (f). The mean NN distance for arbitrary pinwheel
charges for the area size as 3 ∗ 3 (g). The mean NN distance for
opposite pinwheel charges for the area size as 3 ∗ 3 (h). The
mean NN distance for same pinwheel charges for the area size
as 3 ∗ 3 (i).
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Figure (7.5) r for the area size as 1 ∗ 1 (a). c for the area size as
1 ∗ 1 (b). SD for the area size as 1 ∗ 1 when t = 60T∗ (c). r for
the area size as 2 ∗ 2 (d). c for the area size as 2 ∗ 2 (e). SD for
the area size as 2 ∗ 2 when t = 60T∗ (f). r for the area size as
3 ∗ 3 (g). c for the area size as 3 ∗ 3 (h). SD for the area size as
3 ∗ 3 when t = 60T∗ (i).
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Chapter 8

Changing learning rates

8.1 Introduction

Learning rate is an important parameter of activity driven cortical circuit rearrange-
ment that can only be investigated in the framework of stimulus driven models.
Fundamentally learning rate controls a central qualitative feature of the circuit self-
organization process the effective noise level and the relative contribution of fluctuation-
driven and state-driven changes to circuit remodelling. Large learning rates imply a
large impact of individual stimuli and cortical activity patterns on the resulting cir-
cuit changes. In the limit of arbitrarily small learning rates only deterministic state
dependent changes drive circuit remodelling. Small learning rates thus strengthen
the relative impact of the prior circuit structure relative to individual activity events.
Comparing results for different learning rates thus enables to test whether elemen-
tary remodelling steps such as pinwheel pair generation or annihilation are driven
by fluctuations or by circuit state.

8.2 Map structure for different learning rates

We choose the maps for the learning rate as 0.02 to compare with the maps for the
learning rate as 0.1. The similar places for the two types of map development are
that they have long stripes which are the connection of crystal shapes and domi-
nate the simulation areas. See Figure 8.1. The different things for them are for the
maps with smaller learning rates, e.g.learning rate 0.02, the maps change slowly and
smoothly. Their pinwheels move gradually, not like maps with learning rate as 0.1
whose pinwheels move fast and fiercely. But for smaller learning rates, the map de-
velopment doesn’t become static finally but still change all the time. The time scales
for the map development with the learning rate as 0.02 are about 5 times the time
scale for the map development with the learning rate as 0.1.

Figure (8.1) The observation for maps with learning rate 0.02 at different time
stage.
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8.3 Pinwheel movement for different learning rates

We perform pinwheel tracking analysis for the pinwheel movement with learning
rates as 0.02 and 0.1, as shown in Figure 8.2. Both of them have tense pinwheel cre-
ation and annihilation events happening near the borders of cortical areas. More
pinwheel creation and annihilation events happen near the boundaries than those
events happen at central areas. For maps with learning rate as 0.1, there are also
more pinwheel creation and annihilation events happening except for near bound-
aries but around the center position. Also the directions for pinwheel moving from
the beginning to the end of the observation period for the map development are
shown in the Figure. In addition,the figures of vector average show the distribu-
tion of directions for pinwheel movement. For maps with learning rates as 0.1 they
have more activities of pinwheel creation and annihilation generated than maps with
learning rates as 0.02 during the development process.

How many pinwheels of the pattern in the early stage are still present in the late
stage ? For a given set of pinwheels at a early time t we further calculate the fraction
of pinwheels surviving until time t+w, w can be different time windows. We choose
w = 50T∗, 150T∗ and 250T∗. For maps with learning rates as 0.02, if w = 50T∗, we
can observe that at the first about 50 time scales the surviving fraction is lower than
the later period and increases from about 50% to 80%. If w = 150T∗, the surviving
fraction increase from about 20% to 50%. If w = 250T∗, the surviving fraction is
shown as increase from about 15% to 30%. Actually the curve for w = 250T∗ is close
to the one for w = 150T∗ during the time. By comparison, to maps with learning
rates as 0.1 the surviving fractions for different time windows are more stable. As for
w = 50T∗ the fraction keeps at the level of about 50% . For w = 150T∗ the fraction
increases from the beginning and then stays at about 25% level. For w = 250T∗ the
level is lower than the other two and is about 10%. The Figure indicates the longer
time the w is, the smaller pinwheels’ surviving fraction until t + w is.

8.4 Pinwheel statistics for different learning rates

Firstly, we look at the average pinwheel densities of maps with learning rates as 0.1
and 0.02. Results show the average pinwheel density for the learning rate 0.1 is a
little smaller than the average pinwheel density for the learning rate 0.02. The trend
is similar and both of them at the beginning are about 3.1 and then decrease to about
2.6 at later time periods. Average pinwheel densities are relate to average pinwheel
number. As shown by the Figure 8.3 the maps with the learning rate as 0.1 have less
pinwheel number than the maps with the learning rate as 0.02. Similar with average
pinwheel densities, the trend for average pinwheel number is also decreasing from
the starting.

Then we fit the empirically observe power law, to the standard deviation of pin-
wheel density estimate in randomly selected circular regions of size A. The standard
deviations for maps at t = 100T∗ with the two learning rates somewhat overlap or
are significantly close to each other.

We also plot the NN distance distributions for pinwheels with the arbitrary, the
same and the opposite charge for t = 100T∗. We find that the distributions for maps
with learning rates as 0.1 and 0.02 are not far from each other.

The pinwheel change during the map development comes from two parts. One
part is because pinwheels are created or annihilate in the process. Another part is
pinwheels move from outside of the simulation area or move to inside of the cortical
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area. We show two figures separately about this aspect. In Figure 8.3 in the begin-
ning more pinwheels annihilate than pinwheels are created. and lately pinwheel
creation number and annihilation number are similar. The pinwheels for learning
rates as 0.1 have slightly more events for the creation and annihilation than the pin-
wheels for learning rates as 0.02. In another figure the pinwheels moving into the
simulation area are more than the pinwheels moving to outside of the cortical area.
Also the number of pinwheels for moving between outside and inside of the simula-
tion area with the learning rate 0.1 are higher than the number of pinwheels with the
learning rate 0.02. The total change of pinwheel number for pinwheel creation, an-
nihilation, moving from outside to inside or from inside to outside of the simulation
area is also shown in the figure.
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a
Direction wheel

b

c

Figure (8.2) The directions represented by different color
(a).The analysis of pinwheel movement for maps with learning
rate 0.1(above) and 0.02(below) (b)(c). The heat maps for
pinwheel generation and annihilation in the cortical areas are
shown. Also the arrows indicate the directions of pinwheel
movement during the time course. Vector average codes the
directions of pinwheel movement. The surviving fractions of
pinwheels during the time course are given.
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Figure (8.3) The comparison of pinwheel statistics between
maps with learning rate 0.1 and 0.02. The NN distributions are
obtained when t=100T* for(d)(e)(f).
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Chapter 9

Impact of inhibitory interactions in
the model

9.1 Introduction

While short range excitatory interactions are essential for the formation of local clus-
ters of similar tuning properties, longer ranged inhibitory interactions are both im-
portant for the selection of a typical spacing of adjacent orientation domains and
potentially for the results of pattern selection. In order to explore the impact of this
parameter relative to the parameters used in the original Topographica model, we
examined the impact of changes of this parameter on pattern formation and pin-
wheel dynamics.

9.2 Maps generated by the model with different inhibitory
interaction ranges

We first show three snapshots of maps for t = 1T∗, t = 30T∗ and t = 60T∗. For an
inhibitory interaction range of 0.4, the map consists of patches and stripes. Besides,
there are some shadow areas distributed in the map. As for the inhibitory interaction
range as 0.6, when t = 1T∗ the map is basically formed by patches. Also the size of
the patches seem to be larger than the size of the patches of the map for the inhibitory
interaction range as 0.4. In later stage for t = 30T∗ and t = 60T∗, long stripes
appeared and the width of some stripes for t = 60T∗ is larger than the one for t =
30T∗. Also shadow places are seen for these maps. When the inhibitory interaction
range is 0.8,for t = 1T∗ the map mainly contains patches and in later time, e.g.
t = 30T∗ and t = 60T∗ long stripes are formed. In addition, shadows can also been
seen in these maps. See Figure 9.1.
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a b c

d e f

g h i

Figure (9.1) A map for t = 1T∗ for the inhibitory interaction
as 0.4(a). A map for t = 30T∗ for the inhibitory interaction as
0.4(b). A map for t = 60T∗ for the inhibitory interaction as
0.4(c). A map for t = 1T∗ for the inhibitory interaction as
0.6(d). A map for t = 30T∗ for the inhibitory interaction as
0.6(e). A map for t = 60T∗ for the inhibitory interaction as
0.6(f). A map for t = 1T∗ for the inhibitory interaction as 0.8(g).
A map for t = 30T∗ for the inhibitory interaction as 0.8(h). A
map for t = 60T∗ for the inhibitory interaction as 0.8(i).

9.3 The process of the map development for different inhibitory
interaction ranges in the model

We will analyze the pinwheel statistics for the map development with different in-
hibitory interaction ranges to characterize the development process.

Firstly we plot the average pinwheel density of maps during the process. See
Figure 9.2. For the inhibitory interaction range as 0.4, the average pinwheel densi-
ties and the confidence interval are shown in the Figure. The values of the average
pinwheel densities locate between 2.5 and 3. There is a fluctuation for the average
pinwheel densities during the course and the confidence interval have small parts
in the experiment observation area. For the inhibitory interaction range as 0.6, the
values of average pinwheel densities are around 2.5. The confidence interval is ba-
sically under the experiment value region. As for the inhibitory interaction range as
0.8, the values of average pinwheel densities are betwwen 2 and 2.5, and the confi-
dence interval is below the experiment observation scope.

Secondly, we do the analysis for nearest neighbor distance distribution of pin-
wheels. See Figure 9.3. For t = 60T∗ we plot the nearest neighbor distance distri-
bution of pinwheels and the fitting function curves. For the inhibitory interaction
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range as 0.4, the distributions are not fitted by the fitting functions. We also ana-
lyze mean NN distances as functions of time. See Figure 9.4. For the mean NN
distance without considering the charge of pinwheels, the confidence interval stays
above the experimental observation area during the time course. When we consider
the mean NN distance for the pinwheels with the opposite charge, the confidence
interval lies outside of the experimental observation area. As for the mean NN dis-
tance with the same charge of pinwheels, the confidence interval basically fills the
experiment observation region. When the inhibitory interaction range is 0.6, simi-
larly as the inhibitory interaction range as 0.4, the fitting functions deviate from the
NN distance distribution curves. We also plot the mean NN distances as functions
of time in the figures. As for the mean NN distance without considering charges of
pinwheels, the confidence interval starts from the experiment value area and then
leaves the area during the time course. For the mean NN distance for the pinwheels
with the opposite charge, the confidence interval also grows from location at inside
of the experiment area and then stays above the area. For the mean NN distance for
the pinwheels with the same charge, during the time course the confidence interval
has some intersections with the experimental observation area. When the inhibitory
interaction range is 0.8, the NN distributions can’t be fitted by the fitting functions.
Then we analyze the mean NN distances as functions of time. For the mean NN
distance without considering charges of pinwheels, except at some short time sec-
tions the confidence interval intersects with the experimental observation area and
at other time range it lies outside of the area. For the mean NN distance with the
opposite charge of pinwheels, the confidence interval basically stays outside of the
experimental observation area. For the mean NN distance with the same charge of
pinwheels, the confidence interval overlaps some parts of the experiment observa-
tion region and only a few short line sections of the mean NN distance lie in the
region .

Besides, we fit the empirically observe power law,to the standard deviation of
pinwheel density estimate in randomly selected circular regions of size A(Figure
9.5). We will also show the variability exponent r and the variability constant c.
When the inhibitory interaction range is 0.4, the confidence interval of the variabil-
ity exponent r basically is outside of the experimental observation area except at a
few time intervals it is located inside of area, and the confidence interval of the vari-
ability constant c is below the area except at a very short interval during the time
course. Then we evaluate the standard deviation of pinwheel densities as a function
of the area A of randomly selected subregions of the iso-orientation domain layout.
In the figure the black line is the standard deviation for 2 dimensional Poisson pro-
cess of pinwheel density π. The pinwheel density variability deviates from standard
deviation of a 2 dimensional Poisson process of pinwheel density π. We show for
example the case of t = 60T∗. For the inhibitory interaction range as 0.6, the con-
fidence interval of variability exponent r at the time interval for the beginning lies
outside of the experimental observation area and lately it enters the area and then
intersects with the border of the area several times, while the confidence interval of
the variability constant c also at the beginning time interval locates at outside of the
area and then it goes into inside of the area and crosses the boundary for several
times. Then we find the pinwheel density variability deviates more closely from
standard deviation of a 2 dimensional Poisson process of pinwheel density π than
the case of the inhibitory interaction range as 0.4. We give an example of the case
of t = 60T∗. For the inhibitory interaction range as 0.8,the confidence interval of
the variability exponent r and the confidence interval of the variability constant c
intersect with the boundaries of the experiment observation areas for some times.
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Then we find the the pinwheel density variability deviates from standard deviation
of a 2 dimensional Poisson process of pinwheel density π. An example of the case
of t = 60T∗ is shown.

a b c

Figure (9.2) The average pinwheel density of maps for the
inhibitory interaction range as 0.4 (a). The average pinwheel
density of maps for the inhibitory interaction range as 0.6 (b).
The average pinwheel density of maps for the inhibitory
interaction range as 0.8 (c).
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Figure (9.3) The NN distance distribution for arbitrary
pinwheel charges of maps for the inhibitory interaction range
as 0.4 when t = 60T∗ (a).The NN distance distribution for
opposite pinwheel charges of maps for the inhibitory
interaction range as 0.4 when t = 60T∗ (b). The NN distance
distribution for same pinwheel charges of maps for the
inhibitory interaction range as 0.4 when t = 60T∗ (c). The NN
distance distribution for arbitrary pinwheel charges of maps
for the inhibitory interaction range as 0.6 when t = 60T∗ (d).
The NN distance distribution for opposite pinwheel charges of
maps for the inhibitory interaction range as 0.6 when t = 60T∗

(e). The NN distance distribution for same pinwheel charges
of maps for the inhibitory interaction range as 0.6 when
t = 60T∗ (f). The NN distance distribution for arbitrary
pinwheel charges of maps for the inhibitory interaction range
as 0.8 when t = 60T∗ (g). The NN distance distribution for
opposite pinwheel charges of maps for the inhibitory
interaction range as 0.8 when t = 60T∗ (h). The NN distance
distribution for same pinwheel charges of maps for the
inhibitory interaction range as 0.8 when t = 60T∗ (i).
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a b c

d e f

g h i

Figure (9.4) The mean NN distance for arbitrary pinwheel
charges of maps for the inhibitory interaction range as 0.4 (a).
The mean NN distance for opposite pinwheel charges of maps
for the inhibitory interaction range as 0.4 (b). The mean NN
distance for same pinwheel charges of maps for the inhibitory
interaction range as 0.4 (c). The mean NN distance for
arbitrary pinwheel charges of maps for the inhibitory
interaction range as 0.6 (d). The mean NN distance for
opposite pinwheel charges of maps for the inhibitory
interaction range as 0.6 (e). The mean NN distance for same
pinwheel charges of maps for the inhibitory interaction range
as 0.6 (f). The mean NN distance for arbitrary pinwheel
charges of maps for the inhibitory interaction range as 0.8 (g).
The mean NN distance for opposite pinwheel charges of maps
for the inhibitory interaction range as 0.8 (h). The mean NN
distance for same pinwheel charges of maps for the inhibitory
interaction range as 0.8 (i).
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Figure (9.5) r for the inhibitory interaction range as 0.4 (a). c
for the inhibitory interaction range as 0.4 (b). SD for the
inhibitory interaction range as 0.4 (c). r for the inhibitory
interaction range as 0.6 (d). c for the inhibitory interaction
range as 0.6 (e). SD for the inhibitory interaction range as 0.6
(f). r for the inhibitory interaction range as 0.8 (g). c for the
inhibitory interaction range as 0.8 (h). SD for the inhibitory
interaction range as 0.8 (i).
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Chapter 10

An analysis for correlated stimuli

10.1 Introduction

Previously we studied cases for randomly distributed Gaussian stimuli. Now we
turn to describe properties of maps formed by using correlated stimuli which con-
sist of a pair of 2 parallel Gaussian patterns. These correlated stimuli are considered
to generate correlated cortical activity in the model visual cortex. This may be im-
portant for the long range neuronal interaction in the visual cortex as mentioned
before.

10.2 Using correlated stimuli in the model

We choose three snapshots of t = 1T∗, t = 50T∗ and t = 100T∗ to show the appear-
ance of maps during the development. We study two categories for simulation, one
is using simulation area as 1.5 ∗ 1.5 and two Gaussian stimuli and another is using
the same simulation area but four Gaussian stimuli which are two pairs of Gaussian
patterns. In the first category, we give distance of two stimuli as 0.1, 0.3 and 0.5. In
the second category, we fix the same distances of stimuluses as the first category. The
pair of stimuli is two parallel Gaussian patterns and the distance of them is shown
in Figure 10.1.

Figure (10.1) The pair of Gaussian stimuli used as a pair of correlated stimuli in
the simulation. The meaning of "distance" is for the distance between the centers of
two Gaussian patterns.

The layouts of maps for the two categories are shown in the Figure 10.2 and
Figure 10.3. They are not crystal-like and randomly arranged. We need to perform
statistical analysis to characterize the layouts of the maps.



10.2. Using correlated stimuli in the model 83

a

b

c

Figure (10.2) The maps for 1 pair of Gaussian patterns and
the distance of 2 Gaussian stimuli as 0.1 (a). The maps for 1
pair of Gaussian patterns and the distance of 2 Gaussian
stimuli as 0.3 (b). The maps for 1 pair of Gaussian patterns and
the distance of 2 Gaussian stimuli as 0.5 (c).
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a

b

c

Figure (10.3) The maps for 2 pair of Gaussian patterns and
the distance of 2 Gaussian stimuli as 0.1 (a). The maps for 2
pair of Gaussian patterns and the distance of 2 Gaussian
stimuli as 0.3 (b). The maps for 2 pair of Gaussian patterns and
the distance of 2 Gaussian stimuli as 0.5 (c).

10.3 The process of the map development for using corre-
lated stimuli

10.3.1 Pinwheel statistics for area size 1.5*1.5 and 1 pair of stimuli

In the first category, when the distance of two Gaussian stimuli is 0.1, the average
pinwheel density of maps fluctuates between 4 and 6 during the time course and
beyond the experimental observation area. The confidence interval also lies above
the experiment scope. When the distance of two correlated stimuli is 0.3, the average
pinwheel density of maps is located below the experimental observation area. The
confidence interval gradually leaves the experiment scope but still has intersections
with the scope in later stage. For the distance of two parallel stimuli is 0.5, the
confidence interval of average pinwheel densities drops to below the experimental
observation area and the mean pinwheel density keeps at the level of about 2.6 at
later time. See Figure 10.4.

Then we analyze nearest neighbor distance distribution of pinwheels for the first
category. Firstly we analyze mean NN distances as functions of time(Figure 10.6).
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When the distance of 2 Gaussian stimuli is 0.1, all of confidence intervals of the mean
NN distance without considering the charge of pinwheels,the mean NN distance for
the pinwheels with the opposite charge or the same charge stays below the experi-
mental observation areas,respectively. For the distance of 2 Gaussian stimuli as 0.3,
both of confidence intervals of the mean NN distance without considering the charge
of pinwheels,the mean NN distance for the pinwheels with the opposite charge grow
and leave the experimental observation area during the time course, while the mean
NN distance for the pinwheels with the same charge basically lies below the ex-
perimental observation area but at some time points it stands near the boundary of
the area. The confidence interval of the mean NN distance for the pinwheels with
the same charge overlaps small parts of the experimental observation region. When
the distance of 2 Gaussian stimuli is 0.5, similarly with the case of the distance of 2
Gaussian as 0.3, both of confidence intervals of the mean NN distance without con-
sidering the charge of pinwheels,the mean NN distance for the pinwheels with the
opposite charge increase and leave the experimental observation area from the be-
ginning of the time course. The mean NN distance for the pinwheels with the same
charge lies in the experimental observation area and some parts of it are located in
the common design region. The corresponding confidence interval intersects with
the experiment observation.

Secondly we choose t = 100T∗ and plot the nearest neighbor distance distribu-
tion of pinwheels and the fitting function curves for the first category(Figure 10.5).
For the distance of 2 Gaussian patterns is 0.1, the NN distance distribution of pin-
wheels without considering pinwheel charge is aing around 0.3 and deviates from
the fitting function. The NN dibout centerstance distribution for pinwheels with
the same charge centers around 0.4 and doesn’t fit the function. The NN distance
distribution for the pinwheels with the opposite charge centers around 0.3 and fails
to fit the given curve. When the distance of 2 parallel Gaussian stimuli is 0.3, the
NN distance distribution of pinwheels without relating to the pinwheel charge cen-
ters around 0.5 and doesn’t fit to the function. The NN distance distribution for
pinwheels with the opposite charge centers around 0.6 and obviously deviates from
the fitting curve. The NN distance distribution for pinwheels with the same charge
centers around 0.5 and is relatively close but still not fitting to the function. For
the distance of two correlated Gaussian as 0.5, the NN distance distribution of pin-
wheels without considering pinwheel charge centers around 0.5 and doesn’t fit to
the curve. The NN distance distribution for pinwheels with the opposite charge of
pinwheels centers around 0.6 and deviates from the fitting function. The NN dis-
tance distribution for pinwheels with the same charge centers around 0.55 and fails
to fit the function.

In the first category, additionally we fit the empirically observe power law,to the
standard deviation of pinwheel density estimate in randomly selected circular re-
gions of size A(Figure 10.7). We will also analyze the variability exponent r and the
variability constant c. When the distance of 2 Gaussian stimuli is 0.1, the confidence
interval of the variability exponent r is located in the experimental observation area
and at some time intervals lies in the common design area during the time course.
Besides, the confidence interval of the variability constant c also stays in the experi-
mental observation area and at some time intervals is located in the common design
area during the time evolution. Then we evaluate the standard deviation of pin-
wheel densities as a function of the area A of randomly selected subregions of the
iso-orientation domain layout. In the figure the black line is the standard deviation
for 2 dimensional Poisson process of pinwheel density π. The pinwheel density
variability deviates from standard deviation of a 2 dimensional Poisson process of
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pinwheel density π. We show for example the case of t = 100T∗.For the distance of
2 Gaussian stimuli as 0.3, the confidence interval of the variability exponent r firstly
enters the experimental observation area from the outside of area at the beginning
and after a short period leaves the experimental observation area during the time
course. The confidence interval of the variability constant c stays below the experi-
mental observation area during the time course. Then we see the pinwheel density
variability deviates from standard deviation of a 2 dimensional Poisson process of
pinwheel density π. We give an example of the case of t = 100T∗. When the dis-
tance of 2 Gaussian stimuli is 0.5, the confidence interval of the variability exponent
r fluctuates around the border of the experimental observation area and in most of
time lies inside the area. The confidence interval of the variability constant c stays
below the experimental observation area during the time evolution. Then we plot
the the pinwheel density variability deviates from standard deviation of a 2 dimen-
sional Poisson process of pinwheel density π. An example of the case of t = 100T∗

is shown.

a b c

Figure (10.4) The number of stimuli is 1 pair. The average
pinwheel density of maps for the distance of Gaussian stimuli
as 0.1 (a). The average pinwheel density of maps for the
distance of Gaussian stimuli as 0.3 (b). The average pinwheel
density of maps for the distance of Gaussian stimuli as 0.5 (c).



10.3. The process of the map development for using correlated stimuli 87

a

0 0.2 0.4 0.6 0.8 1
0

1

2

3

4

5

6

F
re

q
.(

n
o

rm
a

lis
e

d
)

d

b

0 0.2 0.4 0.6 0.8 1
0

1

2

3

4

5

6

F
re

q
.(

n
o

rm
a

lis
e

d
)

d+-

c

0 0.2 0.4 0.6 0.8 1
0

1

2

3

4

5

6

F
re

q
.(

n
o

rm
a

lis
e

d
)

d++

d

0 0.2 0.4 0.6 0.8 1
0

1

2

3

4

5

6

F
re

q
.(

n
o

rm
a

lis
e

d
)

d

e

0 0.2 0.4 0.6 0.8 1
0

1

2

3

4

5

6

F
re

q
.(

n
o

rm
a

lis
e

d
)

d+-

f

0 0.2 0.4 0.6 0.8 1
0

1

2

3

4

5

6

F
re

q
.(

n
o

rm
a

lis
e

d
)

d++

g

0 0.2 0.4 0.6 0.8 1
0

1

2

3

4

5

6

7

F
re

q
.(

n
o

rm
a

lis
e

d
)

d

h

0 0.2 0.4 0.6 0.8 1
0

1

2

3

4

5

6

7

F
re

q
.(

n
o

rm
a

lis
e

d
)

d+-

i

0 0.2 0.4 0.6 0.8 1
0

1

2

3

4

5

6

7
F

re
q

.(
n

o
rm

a
lis

e
d

)

d++

Figure (10.5) The number of stimuli is 1 pair and the time for
maps is t = 100T∗. The NN distance distribution for arbitrary
pinwheel charges of maps for the distance of Gaussian stimuli
as 0.1 (a). The NN distance distribution for opposite pinwheel
charges of maps for the distance of Gaussian stimuli as 0.1 (b).
The NN distance distribution for same pinwheel charges of
maps for the distance of Gaussian stimuli as 0.1 (c). The NN
distance distribution for arbitrary pinwheel charges of maps
for the distance of Gaussian stimuli as 0.3 (d). The NN
distance distribution for opposite pinwheel charges of maps
for the distance of Gaussian stimuli as 0.3 (e). The NN distance
distribution for same pinwheel charges of maps for the
distance of Gaussian stimuli as 0.3 (f). The NN distance
distribution for arbitrary pinwheel charges of maps for the
distance of Gaussian stimuli as 0.5 (g). The NN distance
distribution for opposite pinwheel charges of maps for the
distance of Gaussian stimuli as 0.5 (h). The NN distance
distribution for same pinwheel charges of maps for the
distance of Gaussian stimuli as 0.5 (i).
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a b c

d e f

g h i

Figure (10.6) The number of stimuli is 1 pair.The mean NN
distance for arbitrary pinwheel charges of maps for the
distance as 0.1 (a). The mean NN distance for opposite
pinwheel charges of maps for the distance as 0.1 (b). The mean
NN distance for same pinwheel charges of maps for the
distance as 0.1 (c). The mean NN distance for arbitrary
pinwheel charges of maps for the distance of Gaussian stimuli
as 0.3 (d). The mean NN distance for opposite pinwheel
charges of maps for the distance of Gaussian stimuli as 0.3 (e).
The mean NN distance for same pinwheel charges of maps for
the distance of Gaussian stimuli as 0.3 (f). The mean NN
distance for arbitrary pinwheel charges of maps for the
distance of Gaussian stimuli as 0.5 (g). The mean NN distance
for opposite pinwheel charges of maps for the distance of
Gaussian stimuli as 0.5 (h). The mean NN distance for same
pinwheel charges of maps for the distance of Gaussian stimuli
as 0.5 (i).
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Figure (10.7) The number of stimuli is 1 pair. r for the
distance of Gaussian stimuli as 0.1 (a). c for the distance of
Gaussian stimuli as 0.1 (b). SD for the distance of Gaussian
stimuli as 0.1 (c). r for the distance of Gaussian stimuli as 0.3
(d). c for the distance of Gaussian stimuli as 0.3 (e). SD for the
distance of Gaussian stimuli as 0.3 (f). r the distance of
Gaussian stimuli as 0.5 (g). c for the distance of Gaussian
stimuli as 0.5 (h). SD for the distance of Gaussian stimuli as 0.5
(i).

10.3.2 Pinwheel statistics for area size 1.5*1.5 and 2 pairs of stimuli

Now we consider using 2 pairs of paralled Gaussian stimuli and area size as 1.5*1.5
to simulate the map development. When the distance of Gaussian patterns is 0.1,
the average pinwheel density of maps firstly decreases and then fluctuate around
the boundary of the experiment scope. The confidence interval is partly locates in
the experimental observation area. When the distance of two Gaussian stimuli is
0.3, the average pinwheel density drops gradually from about 4 to below 3 and the
confidence interval leaves the experimental observation area during the time course.
For the distance of two Gaussian as 0.5, the average pinwheel density falls to around
2 during the time evolution and the confidence interval drops to be outside of the
experimental observation area. See Figure 10.8.

We choose t = 100T∗ and plot the nearest neighbor distance distribution of pin-
wheels and the fitting function curves for the second category(Figure 10.9). When
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the distance of 2 Gaussian patterns is 0.1, the NN distance distribution of pinwheels
without considering pinwheel charge deviates from the fitting function. The NN
distance distribution of pinwheels with the same charge centers around 0.5 and the
given function dosen’t fit to the distribution. The NN distance distribution of pin-
wheels with the opposite charge also centers around 0.5 and dosen’t fitted by the
function. When the distance of 2 Gaussian is 0.3, the NN distance distribution of
pinwheels without considering pinwheel charge centers around 0.45 and deviates
from the fitting curve. The NN distance distribution of pinwheels with the same
charge centers around 0.5 and the function doesn’t fit to the distribution. The NN
distance distribution of pinwheels with the opposite charge centers around 0.6 and
the fitting function significantly deviate from it. As for the distance of 2 input pat-
terns is 0.5, the NN distance distribution of pinwheels without considering pinwheel
charge centers around 0.5 and is not close to the fitting function. The NN distance
distribution of pinwheels with the same charge centers around 0.5 and doesn’t fit to
the function. The NN distance distribution of pinwheels with the opposite charge
highly deviates from the fitting function.

Then we do the analysis of nearest neighbor distance distribution of pinwheels
for this category. Firstly we analyze mean NN distances as functions of time(Figure
10.10). When the distance of 2 Gaussian is 0.1, both of confidence intervals of the
mean NN distances without considering the charge of pinwheels and the mean NN
distances for the opposite charge of pinwheels from the beginning of the period for
observation leave the experimental observation area and to the end of the period
they travel near the border of the experimental observation area. The confidence
interval of the mean NN distances for the same charge of pinwheels stays near the
boundary of the experimental observation area during the time course. When the
distance of 2 Gaussian is 0.3, both of confidence intervals of the mean NN distance
without considering the charge of pinwheels and the mean NN distance for the op-
posite charge of pinwheels firstly cross the experimental observation area and then
stay outside of the area during the time evolution. The confidence interval of the
mean NN distance for the same charge of pinwheels keep close to boundary of the
experimental observation area. For the distance of 2 patterns is 0.5, both of the con-
fidence intervals of the mean NN distance without considering the charge of pin-
wheels and the mean NN distance for the opposite charge of pinwheels grow from
the inside of the experimental observation area and then stay in the outside of the
area during the time course. The confidence interval of the mean NN distance for
the same charge of pinwheels is basically located below the experimental observa-
tion area during the time evolution and intersects with the border of the area.

In the second category, we also fit the empirically observe power law,to the stan-
dard deviation of pinwheel density estimate in randomly selected circular regions
of size A(Figure 10.11). Besides, we will show the variability exponent r and the
variability constant c. When the distance of 2 Gaussian stimuli is 0.1, the confidence
interval of the the variability exponent r is located in the experimental observation
area but not in the common design area, and the confidence interval of the variabil-
ity constant c firstly goes around the boundary of the experimental observation area
for some time scales and then enters the inside of the area. Then we calculate the
standard deviation of pinwheel densities as a function of the area A of randomly
selected subregions of the iso-orientation domain layout. The black line is the stan-
dard deviation for 2 dimensional Poisson process of pinwheel density π. The pin-
wheel density variability is not far but still deviates from standard deviation of a 2
dimensional Poisson process of pinwheel density π. We show for example the case
of t = 100T∗. For the distance of 2 Gaussian as 0.3, the confidence interval of the
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variability exponent r firstly is located in the experiment observation area but then
graduatelly leaves the area and the confidence interval of the variability constant c
drops to below the area during the time course. Then we plot the pinwheel den-
sity variability deviates from standard deviation of a 2 dimensional Poisson process
of pinwheel density π. We show an example of the case of t = 100T∗. For the
distance of 2 Gaussian stimuli as 0.5, the confidence interval of the variability ex-
ponent r fluctuates around the border of the experimental observation area and the
confidence interval of the variability constant c drops to below the area for the time
course. Then we analyze the the pinwheel density variability deviates from standard
deviation of a 2 dimensional Poisson process of pinwheel density π. An example of
the case for t = 100T∗ is shown.

a b c

Figure (10.8) The number of stimuli is 2 pair. The average
pinwheel density of maps for the distance of Gaussian stimuli
as 0.1 (a). The average pinwheel density of maps for the
distance of Gaussian stimuli as 0.3 (b). The average pinwheel
density of maps for the distance of Gaussian stimuli as 0.5 (c).
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Figure (10.9) The number of stimuli is 2 pair and the time for
maps is t = 100T∗. The NN distance distribution for arbitrary
pinwheel charges of maps for the distance of Gaussian stimuli
as 0.1 (a). The NN distance distribution for opposite pinwheel
charges of maps for the distance of Gaussian stimuli as 0.1 (b).
The NN distance distribution for same pinwheel charges of
maps for the distance of Gaussian stimuli as 0.1 (c). The NN
distance distribution for arbitrary pinwheel charges of maps
for the distance of Gaussian stimuli as 0.3 (d). The NN
distance distribution for opposite pinwheel charges of maps
for the distance of Gaussian stimuli as 0.3 (e). The NN distance
distribution for same pinwheel charges of maps for the
distance of Gaussian stimuli as 0.3 (f). The NN distance
distribution for arbitrary pinwheel charges of maps for the
distance of Gaussian stimuli as 0.5 (g). The NN distance
distribution for opposite pinwheel charges of maps for the
distance of Gaussian stimuli as 0.5 (h). The NN distance
distribution for same pinwheel charges of maps for the
distance of Gaussian stimuli as 0.5 (i).
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d e f

g h i

Figure (10.10) The number of stimuli is 2 pair. The mean NN
distance for arbitrary pinwheel charges of maps for the
distance as 0.1 (a). The mean NN distance for opposite
pinwheel charges of maps for the distance as 0.1 (b). The mean
NN distance for same pinwheel charges of maps for the
distance as 0.1 (c). The mean NN distance for arbitrary
pinwheel charges of maps for the distance of Gaussian stimuli
as 0.3 (d). The mean NN distance for opposite pinwheel
charges of maps for the distance of Gaussian stimuli as 0.3 (e).
The mean NN distance for same pinwheel charges of maps for
the distance of Gaussian stimuli as 0.3 (f). The mean NN
distance for arbitrary pinwheel charges of maps for the
distance of Gaussian stimuli as 0.5 (g). The mean NN distance
for opposite pinwheel charges of maps for the distance of
Gaussian stimuli as 0.5 (h). The mean NN distance for same
pinwheel charges of maps for the distance of Gaussian stimuli
as 0.5 (i).
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Figure (10.11) The number of stimuli is 2 pair.r for the
distance of Gaussian stimuli as 0.1 (a). c for the distance of
Gaussian stimuli as 0.1 (b). SD for the distance of Gaussian
stimuli as 0.1 (c). r for the distance of Gaussian stimuli as 0.3
(d). c for the distance of Gaussian stimuli as 0.3 (e). SD for the
distance of Gaussian stimuli as 0.3 (f). r the distance of
Gaussian stimuli as 0.5 (g). c for the distance of Gaussian
stimuli as 0.5 (h). SD for the distance of Gaussian stimuli as 0.5
(i).
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Chapter 11

Modeling the long range
interaction in the visual cortex

11.1 Introduction

In previous investigations, long range interactions appear as the key element for
the stabilization of orientation preference maps with "common design" features. In
order to more closely mimic the long range interactions in the visual cortex, we in-
troduced two types of effective inhibitory connections to the Topographica model:
"short" connections and "long connections". The "short connections" drive the basic
structure formation of patterns with one dominant wavelength. The "long connec-
tions" are responsible for the long range cortical competition in the model. Both of
them are thus effectively inhibitory and exhibit Gaussian envolope functions. Here
we explore an example for a choice of parameters the size of Gaussians 0.15 and 0.8
for "the short connection" and "the long connection". Where 0.8 is more than dou-
ble of a typical wavelength of the modeling cortex which is about 0.25, a condition
predicted by abstract order parameter models. We examine map development in
simulations with periodical boundary conditions.

11.2 The observation for maps developed for the long range
interaction in the model

First we show three snapshots at times t = 1T∗, t = 50T∗ and t = 100T∗ to represent
one example of the development process. The map layout is not crystal-like at all
times. See Figure 11.1.

Figure (11.1) An example of map development with the effect of modeling long
range interaction.
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11.3 The statistical analysis of the process of the map devel-
opment for the modeling of long range interaction

Now we perform statistical analysis to characterize the process of the map develop-
ment with the modeling long range interaction.

Regarding to the mean pinwheel density(Figure 11.2.), it gradually leaves the
experimental observation area during the time course, although the confidence in-
terval still have some parts in the area. From about t = 60T∗, the average pinwheel
density decreases to below 3. Then we analyze nearest neighbor (NN)distance dis-
tribution of pinwheels. See Figure 11.3. Firstly we calculate mean NN distances as
functions of time. For the mean NN distance without considering the charge of pin-
wheels, its’confidence interval stays outside of the experimental observation area.
As for the mean NN distance of pinwheels with the same charge, the confidence
interval overlaps the common design area. For the mean NN distance of pinwheels
with the opposite charge, the confidence interval gradually leaves the experimen-
tal observation region. Secondly we choose t = 100T∗ and plot the NN distance
distribution of pinwheels and the fitting function curves. All of the distributions de-
viate from the fitting functions. The NN distance distribution without considering
the charge of pinwheels have the shape of some rectange bars and dosen’t fit to the
function. The NN distance distribution for pinwheels with the same charge centers
around 0.45 and can’t fitted by the function curve. The NN distance distribution for
pinwheels with the opposite charge also centers about 0.45 and deviates from the
fitting curve.

Besides we fit the empirically observe power law,to the standard deviation of
pinwheel density estimate in randomly selected circular regions of size A. We will
also describe the variability exponent r and the variability constant c. As shown
in the figures, the confidence interval of the variability exponent r is located at the
experimental observation area but not at the common disign area. After about 5T∗

the confidence interval of the variability constant c falls to below the experimental
observation area and basically stays outside of the area but at a few time points,it
is close to the border of the area. Then we describe the standard deviation of pin-
wheel densities as a function of the area A of randomly selected subregions of the
iso-orientation domain layout. As shown in the figure the black line is the standard
deviation for 2 dimensional Poisson process of pinwheel density π. The pinwheel
density variability is close but still deviates from standard deviation of a 2 dimen-
sional Poisson process of pinwheel density π. We show for example the case for
t = 100T∗.
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Figure (11.2) The pinwheel statistics for maps developed for
the long range interaction model. The mean pinwheel density
of maps during the time course (a).The mean NN distance for
arbitrary pinwheel charges for the maps (b).The mean NN
distance for same pinwheel charges for the maps (c).The mean
NN distance for opposite pinwheel charges for the maps
(d).The NN distance distribution for arbitrary pinwheel
charges for the maps when t = 100T∗ (e). The NN distance
distribution for same pinwheel charges for the maps when
t = 100T∗ (f). The NN distance distribution for opposite
pinwheel charges for the maps when t = 100T∗ (g). The
variability exponent r for the maps (h).The variability constant
c for the maps (i).SD for the maps (j).
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Chapter 12

The impact of different numbers of
Gaussian stimuli for map
development

12.1 Introduction

In this chapter we analyze maps with 1,2,4,8,16,32 Gaussian stimuli, respectively
and show they have varied pinwheel statistics. By the analysis of simulation re-
sults, we find that using different numbers of Gaussian stimuli in the Topographica
model, map development is substantially altered. For example, when the number of
Gaussian stimuli is 32, we obtain the maps shown in the figure 12.1. Compared to
patterns developed by using 4 stimuli in the size of area as 1.5 ∗ 1.5, the maps with 32
stimuli appear to have some short curved stripes which are newly observed (Figure
12.1).

Figure (12.1) An example of map development with 32 Gaussian stimuli.

12.2 Map development using 2 Gaussian stimuli

Here we will show the analysis results for 2 Gaussian inputs. Now we analyzed the
statistics of pinwheels for maps developed by only 2 Gaussian stimuli in the area
size as 1.5 ∗ 1.5. The aspect ratio of the Gaussian pattern is 5.1. Firstly we show 3
snapshots of example maps and from the observation, there is no strong boundary
effect for the maps which is seen in maps with 4 Gaussian stimuli simulated in the
area 1.5 ∗ 1.5. See Figure 12.2.

Then we perform the analysis of pinwheel densities(Figure 12.3). The mean
value of pinwheel densities drops from about 3.4 at the beginning and then grows
to be in the common design area. From about t = 50T∗, the average pinwheel den-
sity is basically located at the common design region. The confidence interval of
pinwheel densities have main parts in the experimental observation area during the
time course.
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We analyze nearest neighbor (NN)distance distribution of pinwheels. See Figure
12.4. We calculate mean NN distances as functions of time. For the confidence in-
terval of mean NN distance without considering the charge of pinwheels, it is close
to the upper border of the experimental observation area. As for the mean NN dis-
tance with the same charge of pinwheels, the confidence interval is also close to and
fluctuates around the lower boundary of the experimental observation area. The
confidence interval of the mean NN distance with the opposite charge of pinwheels
is near the border of the experimental observation area and at some time points is
located inside of the area. Then we choose t = 150T∗ and plot the NN distance distri-
bution of pinwheels and the fitting function curves. Although all of the distributions
deviate from the fitting functions, but they are close to the fitting curves,respectively.

In addition we fit the empirically observe power law,to the standard deviation of
pinwheel density estimate in randomly selected circular regions of size A. We will
analyze the variability exponent r and the variability constant c. The confidence in-
terval of the variability exponent r is beside the upper boundary of the experimental
observation area and for some time points is located at inside of the area. The confi-
dence interval of the variability constant c is below and at outside of but is close to
the experimental observation area. Then we plot for example t = 150T∗ the standard
deviation of pinwheel densities as a function of the area A of randomly selected sub-
regions of the iso-orientation domain layout. The figure shows the black line is the
standard deviation for 2 dimensional Poisson process of pinwheel density π. The
pinwheel density variability is close but still deviates from standard deviation of a 2
dimensional Poisson process of pinwheel density π.

So far the pinwheel statistics for using only 2 Gaussian in area 1.5 ∗ 1.5 are mostly
close to the features of the common design among all the simulations we perform.

Figure (12.2) An example of map development with 2 Gaussian stimuli.
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Figure (12.3) The statistics of pinwheel layouts for maps
developed by using only 2 Gaussian. The mean pinwheel
density of maps during the time course (a). The mean NN
distance for arbitrary pinwheel charges (b). The mean NN
distance for same pinwheel charges (c). The mean NN distance
for opposite pinwheel charges (d). The NN distance
distribution for arbitrary pinwheel charges for the maps when
t = 150T∗ (e). The NN distance distribution for same pinwheel
charges for the maps when t = 150T∗ (f). The NN distance
distribution for opposite pinwheel charges for the maps when
t = 150T∗ (g). The variability exponent r for the maps (h). The
variability constant c for the maps (i). SD for the maps (j).
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Chapter 13

Discussion and Conclusion

Our study explored pinwheel dynamical phenomena in the framework of the To-
pographica model and asessed parameter dependencies of model behaviour and
model predictions for visual cortex development. In Chapter 3 I examined the van
Hemmen model to describe the mechanism of the formation of receptive fields in the
Topographica model and the current results show that the framework of van Hem-
men model is probably unsuitable to achieve this goal. In subsequent chapters I used
extensive numerical simulations to characterize the behaviour of the Topographica
model on long biologically important time scales. Chapter 4 examines with the same
conditions as used originally in the Topographica model, the dynamics of OPM de-
velopment on long-term time scales and during the process of pinwheel creation
and annihilation; In addition, pinwheel crystals are discovered to form in the sim-
ulations. Chapter 5 focuses on the parameter regime of the excitatory range of the
cortex in the model by examining the change of pinwheel layouts during map de-
velopment. Chapter 6 turns to study the model with periodic boundary conditions
which are newly implemented and gives the dynamical description of cortical pat-
terns under this condition. Chapter 7 analyzes the process of OPM development for
different system sizes of the model and finds that in larger size cortical areas (for ex-
ample if the area is 3 ∗ 3) that the pinwheel crystallization process is more apparent
and clearly expressed. Chapter 8 compares pinwheel statistics generated by using
different learning rates in the model. Chapter 9 performs an analysis for the param-
eter of the inhibitory interaction in the model and confirms that OPMs produced by
using the previously choosen parameters values fail to match observed OPMs for
the common design. Chapter 10 studies whether using correlated stimuli consist-
ing of 1 or 2 pairs of 2 parallel Gaussian stimuli could produce OPMs which could
have pinwheel layouts conformings the features of the common design. Chapter 11
builds a model with a new type of long range cortical interactions and examines the
pinwheel statistics produced under this condition. The results show the model with
the long-range interaction in the visual cortex and periodic boundary conditions is
not able to generate features for the common design. Chapter 12 examines the im-
pact of different numbers of input patterns for OPM development in the model and
discovers the maps which have similar pinwheel statistics to the common design are
observed for the first time in a high dimensional biologically detailed model.

13.1 Pinwheel crystallization in the developmental model

Now we turn to discuss the phenomena of pinwheel crystallization emerged in the
OPM development of the model. Pinwheel crystallization was for the first time ob-
served during the process of the map development in a detailed input-driven model.
Under various conditions including using 2 or 4 Gaussian stimuli, and cortical areas
of size 1 ∗ 1 or 1.5 ∗ 1.5, a boundary effect is observed for map formation, with the
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maps dominated by stripes perpendicular to the boundaries. There are long stripes
and crystals formed and the long stripes consist of crystals connected to each other.
The patterns of stripes and crystals are affected by pinwheel generation and disap-
pearance near the borders. Pinwheels which are generated near the boundary move
into the central zone of the simulation area and collide with other pinwheels, so that
pinwheel annihilation and creation happens. If the size of the cortical area is larger
e.g 3 ∗ 3, OPMs become more regular than the maps for smaller sizes and clear crys-
tals can be observed during the map development. The shapes of these crystals are
similar to rhomboid pinwheel crystals observed in abstract models previously and
the stripes near borders are additionally produced.

It is important to note that pinwheel crystallization is a dynamical process that
takes long time in map development. Whether it occurs in real brains is thus an
interesting question to discuss. Currently, some experimental evidences indicate
it is unlikely to happen in animal brains. At least five species have been discov-
ered to share the common design for their cortical architectures and do not appear
to have pinwheel crystallization process during their early and late stages of map
development ((C.L.A.Ho et al., 2021; W.Keil et al., 2012; M.Kaschube et al., 2010a;
M.Schottdorf et al., 2015b)). So it is most likely that pinwheel crystallization is a be-
havior only exhibited by theoretical and simulation models and a process character-
istic of developmental processes substantially different from the biological system.

Pinwheel crystals have been previously found in several abstract as well as in
synaptic plasticity based models. Von der Malsburg was the first to predict OPMs
by a synaptically based self-organization model in 1973 and this model displays
hexagonal patterns in the OPMs. Von der Malsburg in the simulations used a hexag-
onal grid of cells that may affect the formation of hexagonal patterns. Hexagonal
layouts of maps are also demonstrated by L.Reichl et al. (2012) which studys co-
ordinated optimization models of orientation preference, ocular dominance, spatial
frequency or direction preference. Strikingly, for solutions as optima of this model,
pinwheels are also arranged on regular periodic lattices such as rhombic pinwheel
crystals(rPWCs), which are similar to the shape of crystals found in our research.
rPWCs can also be found in some other studiesv (P.J.Thomas and J.D.Cowan, 2021;
M.Schnabel, M.Kaschube, and F.Wolf, 2008; W.Keil and F.Wolf, 2011). For example,
W.Keil and F.Wolf (2011) utilizes an amplitude equation approach which enables
to analytically compute optima of the elastic net model for visual cortical map lay-
out and determines a class of solutions which are rPWCs. In this study they also
find other solutions for hexagonal pinwheel crystallization. In Schnabel et al.(2008)’s
work, they show that a generalized Swift-Hohenberg model of visual cortical devel-
opment under the Euclidean symmetry has the solution of rPWCs which are similar
to the crystals in the Bednar model.

13.2 Conclusion and outlook

We examined different conditions and parameter regimes for OPM development
in the Topographica model and characterize map layouts on long time scales. Our
results for the first time provide a comprehensive characterization of the temporal
reorganization of orientation maps across all biologically relevant timescales, from
the first emergence of orientation selective cells to the final convergence of the entire
circuit architecture. All of these results confirm that - as expected for large aspect
ratio dynamical systems - visual cortical circuit development is predicted to exhibit
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a hierarchy of time scales. In addition, they provide strong evidence that the experi-
mentally observed universal common design of orientation pinwheels in visual cor-
tex provides a highly selective filter to identify models that quantitatively correctly
reproduce cortical functional organization. My comprehensive scan of parameter
variations and model modification demonstrate that models that quantitatively cor-
rectly reproduce cortical functional organization are very rare. Among these con-
ditions pinwheel layouts under conditions explained in Chapter 12 show statistical
characteristics mostly closely matching the features of the common design. Future
work should further explore the regime around these conditions to identify con-
ditions that can obtain pinwheel statistics of OPMs and reproduce the biologically
invariant common design.
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