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Abstract

This thesis studies linear hyperbolic boundary value problems that admit surface
waves as solutions. Surface waves are related to a specific type of weakly regular
hyperbolic boundary value problems, where the precise meaning of weak is to
be determined. With this thesis, we aim to provide a theoretical framework for
rigorously analyzing such problems. To this end, we show that, under appropriate
assumptions, a solution of a hyperbolic boundary value problem can be approxi-
mated by an oscillatory integral with complex-valued phase function. Then, we
use the theory of Fourier integral operators with complex phase to study the prop-
erties of that particular solution. Following this approach, we are able to provide
a refined description of the propagation of singularities as well as a preliminary
result concerning the regularity of the solution in the context of Sobolev spaces Hs.

Furthermore, we present some original results that complement the existing theory
of Fourier integral operators with complex phase. In particular, we propose an
alternative construction of the principal symbol of the operators, and use it to
compute the principal symbol after composition under the assumption of clean
intersection.
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Zusammenfassung

Diese Arbeit untersucht lineare hyperbolische Randwertprobleme, die Oberflä-
chenwellen als Lösung zulassen. Oberflächenwellen sind mit einer bestimmten Art
von schwach regulieren hyperbolischen Randwertproblemen verbunden, wo die
genaue Bedeutung von schwach regulieren zu bestimmen ist. Mit dieser Doktorar-
beit wollen wir einen theoretischen Rahmen für die rigorose Analyse dieser Art
von Problemen entwickeln. Dazu zeigen wir, dass eine Lösung des hyperbolischen
Randwertproblems unter geeigneten Annahmen durch ein Oszillationsintegral mit
komplexwertiger Phasenfunktion approximiert werden kann. Dann verwenden
wir die Theorie der Fourierintegraloperatoren mit komplexer Phasenfunktion, um
die Eigenschaften dieser Lösung zu untersuchen. Mit diesem Zugang ent wir eine
verfeinerte Beschreibung der Ausbreitung von Singularitäten stellen, sowie ein
vorläufiges Ergebnis über die Regularität der Lösung in den Sobolev-Räumen Hs.

Darüber hinaus präsentieren wir einige Resultate, die die existierende Theorie der
Fourierintegraloperatoren mit komplexer Phasenfuktion ergänzen. Insbesondere
schlagen wir einen alternativen Zugang zur Definition des Hauptsymbols vor und
benutzen diesen, umdie Komposition von Fourierintegraloperatorenmit komplexer
Phasenfuktion unter eine Clean-Intersection-Annahme zu untersuchen.
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1 | Introduction

The present thesis is concerned with the study of hyperbolic surface waves. The
term refers to a special type of solutions that leads to some loss of regularity.
Even though the regularity theory of hyperbolic boundary value problems is quite
developed, surface wave solutions represent a critical case for which the standard
techniques do not fully apply. To overcome this issue, we first show how surface
waves can be represented as an oscillatory integral with complex-valued phase
function. Later, we use the theory of Fourier integral operators with complex phase
to analyse these solutions.

This document covers both the theory of Fourier integral operators with complex
phase and the theory of hyperbolic boundary value problems. It contains a com-
prehensive summary of the existent theories, as well as original results concerning
the principal symbol map of Fourier integral operators with complex phase.

1.1 Background and problem setting

Let R1+d
+ denote the half-space {(x, y) ∈ R1+d : x ≥ 0}, and let L be a first order

symmetrizable hyperbolic operator with constant multiplicities. Consider an initial
boundary value problem, or IBVP for short,

Lu = f (t, x, y) in (0, T)×R1+d
+ ,

Bu = g(t, y) on (0, T)×Rd,

u|t=0 = u0(x, y) in Rd+1
+ ,

(1.1.1)
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Chapter 1. Introduction

The well-posedness of this problem is linked to the uniform Kreiss-Lopatinskii
(UKL) condition, which will be explained in Chapter 3. To put it simply, this
condition is the hyperbolic version of the Lopatinskii condition for elliptic operators.
It was introduced by Kreiss in [15] for strictly hyperbolic systems. With the help of
a symbolic symmetrizer, Kreiss proved maximal energy estimates for the solutions
of the BVP. It was later shown by Mètivier in [18], that the symbolic construction
can be carried out for a broader class of hyperbolic problems, which includes many
physically relevant systems: the class of symmetrizable hyperbolic systems with
constant multiplicities, also called constantly hyperbolic.

The UKL condition is a necessary and sufficient condition for the stability of the
problem (1.1.1) in Sobolev spaces. In this case, the problem is said to be strongly
stable, because the solution satisfies maximal energy estimates,

∥u∥2
L2 + ∥u|x=0∥2

L2 ≤ C
(
∥u0∥2

L2 + ∥ f ∥2
L2 + ∥g∥2

L2

)
. (1.1.2)

A weaker version of this condition, known as the Kreiss-Lopatinskii condition (KL)
allows us to classify hyperbolic IBVPs into three classes, which are stable under
perturbation of the coefficients. When the (KL) condition is satisfied, the problem
is stable in C ∞, but a loss of regularity is to be expected in Sobolev spaces. Then,
we have the following generic classification:

1. The strongly stable class (SS), when the UKL condition holds.

2. The unstable class (SU), when the KL condition fails.

3. The weakly regular problems, when the KL condition holds, but the UKL fails.

In [4], the authors introduce the class of weakly stable IBVPs of real type (WRR).
This class consists of weakly regular problems for which the UKL fails at the so-
called hyperbolic region (see Definition 3.4). The same paper also provides a generic
description of the transition between classes. The transition between the classes
SS and SU is described as the class of IBVP with surface wave solutions. That is,
problems of type 3, for which the UKL condition fails at the elliptic region.

An important illustration of this classification is given by the symmetric hyperbolic

2



1.1. Background and problem setting

problemswith dissipative boundary condition. The following proposition is proved
in [3].

Proposition 1.1. Let L be a Friedrichs symmetric hyperbolic operator.

1. If B is dissipative, then the IBVP (1.1.1) satisfy the KL condition.

2. If B is strictly dissipative, then the IBVP (1.1.1) satisfy the UKL condition.

Note that the statement does not imply that a symmetric hyperbolic system with
dissipative boundary condition cannot be strongly stable, just that further analysis
is required. Many physically relevant systems fit into this category. They are sym-
metrizable, but their boundary condition is maximally dissipative. Then, according
to the proposition above, they may be weakly regular and a loss of regularity is to be
expected. However, there is no general result that accounts for this loss of regularity,
and it has to be computed on a case-by-case basis.

On the other hand, it was shown in [6, Theorem 4.4] that if B is maximally dissi-
pative, the UKL condition can only fail at glancing points or at isolated points in
the elliptic region. In the second case, the failure is due to the existence of surface
waves. Since surface waves are important in applications, we chose to focus on
them. Namely, we study hyperbolic IBVPs that violate the UKL condition at the
elliptic region. Thus, one of our main goals is to account for the loss of regularity
caused by surface waves.

Furthermore, it is shown in [4], Chapter 3, that when the boundary condition is
homogeneous, i.e., Bu = 0, maximally dissipative IBVPs satisfy the energy estimate

∥u∥2
L2 ≤ C

(
∥u0∥2

L2 + ∥ f ∥2
L2

)
. (1.1.3)

Then, if a maximally dissipative problem violates the UKL condition, the loss of
regularity with respect to the strongly stable case can only occur at the boundary
x = 0. For this reason, we only treat the homogeneous boundary value problem,
i.e., we assume f ≡ 0.

Our approach is one that has been previously used for studying weakly regular
problems: Geometric optics approximation. See for example [6] and [2], where rig-

3



Chapter 1. Introduction

orous geometric optics approximation has been conducted for hyperbolic boundary
value problems violating the UKL. The main difference is that we treat the solution
as a Fourier distribution with complex phase. This allow us to rigorously study the
properties of the solution. To further emphasize the advantage of this approach, we
present below, in Section 1.3, the example of Rayleigh waves in linear elasticity. The
two-dimensional BVP serves as a model for the general problem, yet the resulting
equations are simple enough to be solved explicitly.

The main tool in our analysis is the theory of Fourier distributions with complex
phase. Because we aim for this thesis to be as self-contained as possible, we dedicate
a part of this document to review the theory. Since the theory is highly involved,
the review is rather long. We followed the approach developed in 1975 by Melin
and Sjöstrand in their paper [16], and subsequently improved in [17]. The most
challenging part of the theory is to provide meaningful global characterizations of
the distributions. The authors managed to do so by using almost analytic extensions
to obtain a complex-valued analogue of the Lagrangian manifolds use in the glob-
alization of the real case. However, the transition to the complex domain comes
with a price. In actuality, the new "Lagrangian manifolds" are an equivalence class
of almost analytic manifolds that may not be Lagrangian when restricted to the real
domain. Similarly, the analogue to the Maslov line bundle, denoted by L , is only a
"virtual" line bundle, which seems to be closer to a sheaf than the usual definition
of a vector bundle.

As a result of this intricate construction, the authors showed in [16] the existence
of a principal symbol map that behave somewhat like the real-valued principal
symbol map. To be precise, they showed the existence of a, rather complicated,
bijection

P : Γm+n/4(Λ, L ) −→ Im(X, Λ; Ω
1
2 )

Im−1(X, Λ; Ω
1
2 )

. (1.1.4)

Here, Γm(Λ, L ) denotes the space of sections of the almost analytic line bundle L ,
which are homogeneous of degree m. The construction is technical and abstract,
due to the limitations of working with the virtual line bundle. In fact, [16] does
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1.2. Main results

not give an explicit characterization of the principal symbol of a given distribution,
instead the authors define it as the pre-image under the map P . In other words,
the principal symbol of A ∈ Im

cl (X, Λ; Ω
1
2 ) is the homogeneous section

σ(A) := P−1([A]). (1.1.5)

While this is an excellent first result, it would be useful to have a more natural
definition of the principal symbol of a given distribution. Specially if one wants to
able to compute it after performing operations on the distributions, in particular,
composition.

Since the publication of [16] and [17], other authors have contribute to the theory.
For instance, in [12] Hörmander proposes an alternative approach, using complex
Lagrangian ideals instead of almost analytic extensions. He also provides necessary
and sufficient conditions for an operator of order zero to be L2 continuous (see
[11]). In [20], Trèves show a general method for solving the complex eikonal
equations, and thus finding the phase function of the solution operators associated
to hyperbolic problems. But, to the best of our knowledge, there is no intrinsic
formulation of the principal symbol of a Lagrangian distribution with complex
phase in the literature. With this thesis, we attempted to fill this gap in the literature.
Our construction, as well as some consequences, are presented in Section 2.2.

1.2 Main results

The construction of an approximated solution for a general homogeneous BVP, that
is a problem like (1.1.1) with f ≡ 0, is presented in Chapter 3. We also present
the analysis of this solution operator in light of the theory of Fourier distributions
with complex phase. Specifically, Theorem 3.7 states that, assuming the existence
of surface wave solutions, it is possible to represent the solution operator of the
BVP as a Fourier integral operator with complex phase. Furthermore, we provide a
complete description of the wave front set of such solution,

5



Chapter 1. Introduction

Theorem (Theorem 3.20). The wave front sent of the solution u is contained in the set{(
x, z, λj(ζ), ζ

)
∈ T∗X \ 0 :

(
z +∇λj(ζ)x, ζ

)
∈WF (g)

}
.

Regarding the theory of Fourier integral operators with complex phase, our main
results deal with the principal symbol of such operators. To be precise, we extend to
the complex-value case the approach by Duistermaat in [8]. That is, first we identify
the principal symbol of a given Lagrangian distribution with the leading order
term of the asymptotic expansion. Then, we showed that the resulting expression
defines a section of L , which is equivalent to P−1([A]). This allowed us to see that,
similarly to the real-valued case, the principal symbol map fits into a short exact
sequence

0→ Im−1
cl (X, Λ; Ω

1
2 )→ Im

cl (X, Λ; Ω
1
2 )

σ−→ S(m+d)(Λ, L )→ 0.

In addition, we study the composition of two Lagrangian distributions under the
assumption of clean composition. In [16], the authors studied the composition under
the assumption of transverse intersection and gave a rough description of the principal
symbol of the resulting distribution. With our characterization of the principal
symbol, we are able to generalize their result, and prove the following theorem.

Theorem (Theorem 2.51). Let A1 ∈ Im1
cl (X × Y, C1; Ω

1
2 ), A2 ∈ Im2

cl (Y × Z, C2; Ω
1
2 )

be such that the clean composition B = A1 ◦ A2 defines a distribution in the class
Im1+m2+e/2
cl (X × Z, C1 ◦ C2; Ω

1
2 ). Suppose that, for γ ∈ CR, the set Cγ is compact.

Then, the principal symbol of B is

σm+e/2(B) ∼
∫

Cγ

(a1)0(a2)0(θ
2 + σ2)

−nY
2
√

dΦ dy′′dθ′′dσ′′ ∈ S(m−e/2+n/4)(Λ, L ),

(1.2.1)

with n = nX + nZ, m = m1 + m2 and
√

dΦ defined as in Lemma 2.44. Here (a1)0, (a2)0

are the principal parts of the amplitudes of A1 and A2, respectively.

Since we deal with two fairly different topics, the present document is divided
into two parts. The first of them, Chapter 2, is dedicated to the theory of Fourier

6



1.3. A model case: Rayleigh waves in linear elasticity

distribution with complex phases. This chapter is further subdivided into two
sections. In Section 2.1, a summary of the theory is presented, following mainly
[16]. In Section 2.2, we present our construction of the principal symbol map and
the proof of Theorem 2.51.

Chapter 3 is devoted to the study hyperbolic surface waves. There, the theory of
well posedness of hyperbolic boundary value problems is introduced. To make
the presentation as clear as possible, we focus first on operators with constant
coefficients. In Section 3.2, we construct an approximated solution to the BVP,
which is a distribution with complex phase. In Section 3.3, we use the results of
Chapter 2 to analyse this solution. Finally, in Section 3.4, we consider operators
with variable coefficients.

1.3 A model case: Rayleigh waves in linear elasticity

The aim of this section is to illustrate the relevance of Fourier distributions with
complex phases in the study of surface waves. To do so, we consider the equation
of linear elasticity in an isotropic medium as a model case. Let λ and µ be positive
constants. We study the BVP

Lu = ∂2
t u− (λ + µ)∇(div u)− µ∆u = 0 in R× K, (1.3.1)

Bu = ∑
i
(niσij) = f j on R× ∂K,

where K is the half space {x ∈ R2 : x1 ≥ 0}, n is the normal vector to ∂K and σ is
stress tensor

σij = λ(div u)δij + µ(∂xj ui + ∂xi uj).

In the context of elasticity, surface waves are known as Rayleigh wave. They have
been thoroughly studied due to their considerable importance in different fields.
For instance, in seismology they are known to be responsible for most of the damage
during an earthquake. Other examples of surface waves can be found in [13], where
the author gives an informal overview of non linear hyperbolic surface waves.

7



Chapter 1. Introduction

We will follow the approach proposed by Taylor in [19]. Namely, assuming that
f j ∈ E ′(R× ∂K) vanishes for t < 0, our goal is to construct an approximate solution
to this problem. Hence, we consider the ansatz

u =
∫

eiϕ(t,x,ζ)a(t, x, ζ)F̂(ζ) dζ +
∫

eiψ(t,x,ζ)b(t, x, ζ)Ĝ(ζ) dζ, (1.3.2)

where ζ = (τ, ξ2) ∈ R2 is the dual variable to z = (t, x2) and F and G are scalar
valued distributions to be determined from the boundary condition. The phase
functions, ϕ and ψ, and the vector-valued amplitudes, a and b, will be found using
the method of geometric optics.

Construction of the approximated solution

The first step in the construction is to determine the phase functions ϕ and ψ. In
order to use the argument of geometric optics approximation, one needs to assume
that they satisfy the eikonal equations. In other words, we need to solve

ϕ′x1
= α(x1, z,∇zϕ), ψ′x1

= β(x1, z,∇zψ) (1.3.3)

ϕ|x1=0 = zζ, ψ|x1=0 = zζ

where α, β are roots in ξ1 of det σ(L)(x1, z, ξ1, ζ), here σ(L) denotes the principal
symbol of the operator L. A straightforward computation shows

α(ζ) = α(τ, ξ2) =

√
τ2

µ
− ξ2

2 and β(ζ) = β(τ, ξ2) =

√
τ2

λ + 2µ
− ξ2

2.

We can now rewrite the first line in equation (1.3.3) as

ϕ′x1
= α(∇zϕ) and ψ′x1

= β(∇zψ).

Then, it is easy to see that

ϕ = c(z, ζ) + α(∇zϕ)x1 ⇒ ϕ(x1, z, ζ) = zζ + α(ζ)x1,

ψ = c(z, ζ) + β(∇zψ)x1 ⇒ ψ(x1, z, ζ) = zζ + β(ζ)x1.

Note that α and β, thus ϕ and ψ, are not real valued. In fact, T∗(R× ∂K) is divided
into three regions

8



1.3. A model case: Rayleigh waves in linear elasticity

I. The hyperbolic region: |τ| > (λ + 2µ)1/2|ξ2|. Here both α and β are real
numbers.

II. The mixed region: µ1/2|ξ2| < |τ| < (λ + 2µ)1/2|ξ2|. Here α is real but β is
not.

III. The elliptic region: |τ| < µ1/2|ξ2|. Here both α and β are purely imaginary.

Since we want the phase functions to be smooth, we are excluding the regions

|τ| = µ1/2|ξ2| and |τ| = (λ + 2µ)1/2|ξ2|

from their domains. Finally, note that the integral (1.3.2) is defined, as long as
ℑα ≥ 0 and ℑβ ≥ 0. Hence, we take the positive branch of the square root.

We can now focus on the next step of our construction, to determine the amplitudes
a and b. This is usually done by solving the additional transport equations that arise
when replacing the ansatz u into the equation, however our problem is particularly
easy. In fact, it is enough to consider a and b such that

L(α, ζ)a(x1, z, ζ) = 0 and L(β, ζ)b(x1, z, ζ) = 0. (1.3.4)

Indeed, denoting by u1 the first integral in (1.3.2) and replacing into the equation
(1.3.1), we see

Lu1 =
∫ [

L
(

eiϕ(t,x,ζ)a(t, x, ζ)
)]

F̂(ζ) dζ = 0 ⇐⇒ L
(

eiϕ(t,x,ζ)a(t, x, ζ)
)
= 0.

It follows that

L
(

eiϕ(t,x,ζ)a(t, x, ζ)
)
= eiϕ(t,x,ζ) ∑

|γ|+|δ|≤2
(∂γL)(ϕ′x1

,∇zϕ)
(

Dδa
)
(x1, z, ζ),

here the derivatives are takenwith respect to (t, x). Note that (ϕ′x1
,∇zϕ) = (α(ζ), ζ),

so for |γ|+ |δ| = 0, we have

L(α(ζ), ζ)a(x1, z, ζ) = 0 ⇐⇒ a(x1, z, ζ) = a(ζ) = (ξ2,−α(ζ)) .

With this choice of a, all the other terms in the sum vanish and we conclude that u1

solves the equation of linear elasticity. The same argument works for the second
integral in (1.3.2), in this case one obtains b(ζ) = (β(ζ), ξ2).

9



Chapter 1. Introduction

Remark 1.2. Even though we have not computed their asymptotic expansion, the amplitudes
a and b are classical symbols. To see the full asymptotic sum, we should require that only
their principal parts satisfy (1.3.4), as stated in [19].

At this point we know that the the ansatz (1.3.2) satisfises the first equation in
(1.3.1). The link to the boundary condition is given by the distributions F and G.
Since ϕ(0, z, ζ) = ψ(0, z, ζ) = zζ, we can write u|x1=0 as one oscillatory integral

u(0, z) =
∫

eizζ A(ζ)

 F̂

Ĝ

 dζ

where A(ζ) denotes the 2× 2 matrix with columns a(ζ) and b(ζ). Then, the bound-
ary condition Bu(0, z) = ( f1, f2) reads

T

 F̂

Ĝ

 :=
∫

eizζM(ζ)

 F̂

Ĝ

 dζ =

 f1

f2

 dζ, with M(ζ) = BA(ζ).

(1.3.5)

Thus, to guarantee that u satisfises the boundary condition, F and G need to solve
the previous pseudodifferential equation. The following lemma, which is proven
in [19], tells us that it is possible to find such distributions.

Lemma 1.3. The operator T is elliptic in the hyperbolic and mixed regions. In the elliptic
region, the real-valued symbol p = det σ(T) has a simple zero on a hypersurface in
T∗(R× ∂K). On this hypersurface, ∂τ p ̸= 0.

This lemma says that the operator with symbol p = det σ(T) is of real principal type
at the elliptic region. It is well know that if the operator P is of real principal type,
one can always find an approximated solution to the equation Pu = f . Assuming
that f , which is defined for all t, has support contained in {t > 0}, the approximated
solution is actually unique modulo smooth functions. Thus, Lemma 1.3 implies
the existence of a forward fundamental solution for the operator T. Equivalently,
one can find distributions F and G that solve equation (1.3.5) up to a smooth factor,
assuming that supp( f j) ⊆ {(t, x, y) : t > 0, x > 0}. From there, we can conclude

10



1.3. A model case: Rayleigh waves in linear elasticity

that the distribution u in (1.3.2) defines an approximated solution to the BVP (1.3.1),
which is unique up to a smooth factor.

Remark 1.4. The general parametrix construction, due to Duistermaat and Hörmander
[9], uses heavier machinery than the one presented in [19], as the operator T corresponds
to a special case. An outline of the construction from [19] is presented in Appendix A.

Why should we use Fourier distributions?

Although the previous construction presents some technical difficulties, particularly
when constructing the parametrix for T, writing the solution u as a Fourier integral
with complex phase have considerable advantages. Themain one being that it offers
a way of rigorously studying the behaviour of the solution and the singularities
travelling along the boundary ∂K, i.e. the wave front set of the Rayleigh wave. On
this topic, Taylor proves in [19] the following two results

Lemma 1.5. Let S = WF ( f1)∪WF ( f2). The sets WF (F) and WF (G) are contained in

Σ = S ∪ {null-bicharacteristics of p = det σ(T) passing over S}.

Moreover, the wave front of the Rayleigh wave is exactly this set Σ.

As an immediate consequence of the lemma, we have the propagation of singulari-
ties for the solution u.

Theorem 1.6. Let u be the solution to (1.3.1). Assume that WF
(

f j
)
avoids the character-

istics variety. Then, in R× int K, WF (u) is contained in the set of null-bicharacteristics
of L passing over S, travelling in the positive t direction. Moreover, WF (u|R×∂K) ⊆ Σ.

This theorem has some important consequences that, as we will see later, also hold
for more general BVP. First of all, if the null-bicharacteristics of L do not pass over
R× ∂K twice, there is no reflection of singularities into the interior. Furthermore,
such rays cannot pass over the elliptic region (see [16] or Subsection 2.1.3 for
details), which meas that no more Rayleigh waves are produced.

Another advantage of this approach is that we can compute the regularity of the
solution in Sobolev spaces with respect to the boundary data f1 and f2. By construc-

11



Chapter 1. Introduction

tion we know that T is a pseudodifferential operator of order 0, then if f j ∈ Hs(R2),
it follows that both F and G are also in Hs(R2). Now, from the definition of the
phase functions, it is clear that u(0, z) is given by the action on F and G of a pseu-
dodifferential operator of order 0. Then, u(0, z) ∈ Hs with z = (t, x2). The same
holds if we consider u a function of z with x1 fixed. Finally, let us compute the Ht

norm of u in x1,

∥u(·, z)∥2
Ht =

∫
⟨ξ1⟩2t|û(ξ1, z)|2 dξ1

≤
∫
⟨ξ1⟩2t|a(t, x, ζ)|2|F̂(ζ)|2 dζ dξ1 +

∫
⟨ξ1⟩2t|b(t, x, ζ)|2|Ĝ(ζ)|2 dζ dξ1

≤
∫
⟨ξ1⟩2t|F̂(ζ)|2 dζ dξ1 +

∫
⟨ξ1⟩2t|Ĝ(ζ)|2 dζ dξ1

=
(
∥F∥2

L2 + ∥G∥2
L2

) ∫
⟨ξ1⟩2t dξ1,

which is finite as long as s ≥ 0 and t > −1/2. We have proven the following
proposition,

Proposition 1.7. Assume that f1 ∈ Hs(R2), j = 1, 2, for some s ≥ 0. Then, there exist a
solution u to the problem (1.3.1), unique up to a smooth remainder, such that

u(x1, z) ∈ Ht
(

R+; Hs
(

R2
))

, t > −1/2.

In general, one may not be able to get such a clear description of the phase functions.
But the theory of Fourier distributions with complex phase will allow us to obtain
results comparable to the ones presented in this section.

Remark 1.8. This proposition is compatible with the results obtained for general hyperbolic
surface waves (Theorem 3.25 and Theorem 3.29). Indeed, if we set t = s = 1/2, we
obtain u ∈ H1/2(R+ ×R2) ⊆ L2(R+ ×R2), which is the two-dimensional version of
Theorem 3.25.

12



2 | Fourier integral operators with complex

phase

As stated above, we wish to use Fourier integral operators with complex phase
to study certain type of hyperbolic boundary value problems. Thus, the present
chapter is devoted to the study of this type of operators.

A theory for Fourier integral operators with complex phase was develop by Melin
and Sjöstrand in their paper [16], and subsequently improved in [17]. The first
section of this chapter summarizes their work. Most of the results are presented
without proofs, as they are highly technical. Only the constructions that offer some
insights into the theory are included. With the purpose of making the presentation
as clear as possible, we also provide some examples and additional comments.

The second section consists of some original improvements on the theory. In their
paper [16], the authors follow Hörmander’s ideas in [10] closely. By using almost
analytic extensions, they construct a complex-valued analog of the real-valued theory.
Unfortunately, the almost analytic machinery introduces technical difficulties. As a
result, the constructions are more abstract than one would want. The difficulty is
particularly prominent when working with the principal symbol of the operators.
We present an alternative construction of the principal symbol that allows us to
overcome this difficulty. In addition, we study the composition of Fourier integral
operators under the assumption of clean intersection.

13



Chapter 2. Fourier integral operators with complex phase

2.1 Previously known results

As an introductory remark, note that the expression

I =
∫

eiϕ(x,θ)a(x, θ) dθ =
∫

eiℜϕ(x,θ)e−ℑϕ(x,θ)a(x, θ) dθ

is defined in the sense of oscillatory integrals if ℜϕ is a non-degenerate phase function
and ℑϕ ≥ 0. Unfortunately, this fact alone is not enough to obtain a complete
analog theory. The main idea in [16] is to use an almost analytic extension of
ϕ to formulate a complex-valued version of the geometrical objects involved in
the real-valued theory. This will allow us to develop a global theory for Fourier
distributions with complex phase function.

It is worth mentioning that this is not the only possible approach. For instance,
Hörmander developed an alternative theory using complex Lagrangian ideals
instead of the almost analytic machinery, see [12] for details.

The content of this section is taken from [16], although some of the statements has
been reformulated to facilitate the reading process.

2.1.1 Almost analytic functions and manifolds

Let ∂z denote the Cauchy-Riemann operator for z = x + iy ∈ C. If f is a smooth
function in Cn, we denote by ∂ f and ∂ f the operators

∂ f = ∑ ∂zj f dzj and ∂ f = ∑ ∂zj f dzj.

Definition 2.1. Let Ω ⊆ Cn be an open set and ΩR = Ω ∩Rn. We say that:

1. f ∈ C ∞(Ω) is almost analytic, if ∂ f vanish to the infinite order near ΩR. This
means that, for all close set K ⊂ ΩR, there exists a constant CN,K > 0 such that for
all z ∈ Ω with ℜz ∈ K, and all N ∈ Z+,

|∂ f (z)| ≤ CN,K|ℑz|N.

2. f1, f2 ∈ C ∞(Ω) are equivalent, if f1 − f2 is almost analytic. In this case, we write
f1 ∼ f2.

14



2.1. Previously known results

By an almost analytic extension of a function f ∈ C ∞(ΩR), we mean an almost analytic
function f̃ ∈ C ∞(Ω) such that f̃ |ΩR

= f .

A relatively simple construction shows that every f ∈ S (R) admits an almost
analytic extension, see for example [21, Theorem 3.6]. An extension of this re-
sult was proven in [16]. Given a function a ∈ Sm(Γ), defined in a conic set
Γ ⊆ Rn × (RN \ 0), there exists an almost analytic extension ã ∈ Sm(Γ̃), which is
unique up to equivalence . Here Γ̃ ⊆ Cn × (CN \ 0) satisfies Γ̃R = Γ and it is a cone
in the sense that, for all t ∈ R+, we have (z, tζ) ∈ Γ̃ if (z, ζ) ∈ Γ̃.

Remark 2.2. The class Sm(Γ̃) is defined in [16] as the space of smooth functions a(z, ζ),
with z = x + iy ∈ Cn and ζ = ξ + iη ∈ CN, that vanish for large |y|, |η| and satisfy an
estimate of the form

|∂α
x∂

β
ξ ∂

µ
y ∂ν

ηa| ≤ C⟨ξ⟩m−|β+ν|, ∀α, µ ∈Nn
0 , ∀β, ν ∈NN

0

on every compact set Γ′ ⋐ Γ̃.

The notion of almost analytic manifold can now be presented. They are of great
importance as they will play the role that smooth manifolds play in the real-valued
case.

Definition 2.3. Let Ω ⊆ Cn be an open set and M ⊆ Ω a closed submanifold (in the real
sense) of real dimension 2k. We say that M is an almost analytic manifold if for every
real point z0 ∈ M, one can find an open neighborhood O ⊆ Ω of z0 and almost analytic
functions fk+1, . . . , fn such that, in O,

• M is defined by fk+1 = · · · = fn = 0,

• and the differentials ∂ fk+1(z), . . . , ∂ fn(z) are linearly independent over C.

The neighborhood O can be interpreted as a complex analog of a coordinate neigh-
borhood. However, the term coordinate neighborhood would always refer to a real
coordinate patch. In contrast, we will refer to an appropriate set of complex coordi-
nates as admissible coordinates. The exact definition is presented in Subsection 2.1.3
because a special construction is required.

The following theorem gives a useful description of almost analytic manifolds.

15



Chapter 2. Fourier integral operators with complex phase

Theorem 2.4. Let Ω ⊆ Cn be an open set and M ⊆ Ω an almost analytic manifold. Then,
for every real point z0 ∈ M, one can find a neighborhood O = O′ ×O′′ ⊆ Ck ×Cn−k

of z0 in M and an almost analytic function h on O′ such that, for all z = (z′, z′′) ∈ O,
z′′ = h(z′).

Example 2.5. As an example of an almost analytic manifold, we can consider an
extension of a real manifold. Let Λ ⊆ Rn be a manifold, locally described by

x = (x′, x′′) ∈ U ⊆ Rk ×Rn−k; x′′ = ( fk+1(x′), . . . , fn(x′)).

Then, for every x ∈ Λ, take a complex neighborhood O ⊆ Cn such that OR ⊆ U
and almost analytic extensions f̃ j of f j to O, j = k + 1, . . . , n. Then, thanks to the
previous theorem, the set Λ̃ ⊆ Cn given locally, around every real point, by

z′′ = h(z′), h(z′) = ( f̃k+1(z′), . . . , f̃n(z′′)), for z ∈ O,

defines an almost analytic manifold, with the property Λ̃R = Λ.

The manifold above is not unique because the almost analytic extension of functions
are only unique up to equivalence. This motivates the notion of equivalent almost
analytic manifolds.

Definition 2.6. Let M1, M2 ⊆ Ω ⊆ Cn be two closed manifolds of the same dimension.
We say that M1 and M2 are equivalent, denoted M1 ∼ M2, if they have the same intersection
with Rn and, for every compact subset K ⋐ Ω and N ∈ Z+, we have

d(z, M2) ≤ CN,K|ℑz|N, z ∈ K ∩M1.

In the case of almost analytic manifolds, we also have a notion of local equivalence,
considering only neighborhoods of real points.

Proposition 2.7. Let M1, M2 ⊆ Ω ⊆ Cn be almost analytic manifolds of the same
dimension with M1R = M2R. Let h1, h2 be the defining functions in Theorem 2.4. Then,
the following conditions are equivalent:

i. M1 ∼ M2
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ii. For all K ⋐ Ω and N ∈ Z+ there is a constant CN,K > 0 such that,

|h1(x′)− h2(x′)| ≤ CN,K|ℑh2(x′)|N, (x′, hj(x′)) ∈ K, x′ ∈ Rk.

iii. For all K ⋐ Ω and N ∈ Z+ there is a constant CN,K > 0 such that,

|h1(z′)− h2(z′)| ≤ CN,K|(z′,ℑh2(z′))|N, (z′, hj(z′)) ∈ K.

The notion of equivalent almost analytic manifolds allows us to have a theory
independent of the choice of almost analytic extensions. This means that, when
working with almost analytic manifolds, one should keep in mind that they form
equivalence classes. It may be useful to think about them as germs of almost analytic
functions at real points.

To finish the section, let us consider a result that will be useful later: a complex-
valued version of the so called stationary phase formula. Although the usual real-
valued result can be applied to oscillatory integrals with complex-valued phase
functions, we need a stronger result in order to understand the asymptotic behaviour
of our distributions. That being said, the following construction is also interesting
on its own, as it shows that working with almost analytic functions and manifolds
requires, for the most part, only simple algebraic arguments.

Let F(x, w) ∈ C ∞(Rn ×Rk) be defined in a neighborhood of (0, 0). Assume that
ℑF ≥ 0 with equality only at (0, 0) and that

∂xF(0, 0) = 0, det(∂2
xF(0, 0)) ̸= 0.

Lemma 2.8. Let F be as above and F̃(z, ω), z = x + iy, ω ∈ Ck, be an almost analytic
extension to a complex neighborhood of (0, 0). Then, the equations

∂z F̃(z, ω) = 0, ∇(x,y)ℜF̃(z, ω) = 0, ∇(x,y)ℑF̃(z, ω) = 0,

define three equivalent almost analytic manifolds which are of the form z = Z(w). Moreover,
let M be any of these equivalent manifolds, then there exists C > 0 such that

ℑF̃(z, w) ≥ C|ℑz|2, (z, w) ∈ M, w ∈ Rk.
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Chapter 2. Fourier integral operators with complex phase

Theorem2.9 (The stationary phase formula). Let F be as above. There are neighborhoods
of the origin U ⊆ Rn, V ⊆ Rk and differential operators Cν,w(D), which are C ∞ functions
of w ∈ V, and have order at most 2ν, such that∫

eitF(x,w)ut(x) dx ∼
∞

∑
ν=0

t−ν−n/2eitF̃(Z(w),w) (Cν,w(D)ũt) Z(w), t→ +∞ (2.1.1)

in S−n/2
cl (V × R+). Here ut(x) ∈ S0

cl(R
n × R+) is supported in U × R+ and the

function (2π)−n/2C0,w is the branch of the square root of
(

det 1
i ∂2

z F(Z(w), w)
)−1

that
continuously deform into 1 under the homotopy

[0, 1] ∋ s 7→ 1
i
(1− s)∂2

z F + sI ∈ GL(n, C).

Proof. ([16, Section 2]) As one would expect, the proof relies on well-known tech-
niques to estimate the integral. The main difficulty is to find suitable coordinates
z̃ ∈ Cn that allow us to find such estimates. Let z = Z(w) be the manifold given by
Lemma 2.8 and consider

h(z, w) = F(z + Z(w), w)− F(Z(w), w), z ∈ Cn, w ∈ Rk,

defined in a neighborhood of the origin. Using Taylor’s formula, we can write

h(z, w) =
1
2
(z, R(z, w) · z) + ρ(z + Z(w), w),

where R(z, w) = 2
∫ 1

0 (1− t)h′′zz(tz, w) dt satisfies

|∂zR(z, w)|+ |ρ(z, w)| ≤ CN

(
|ℑz|N + |ℑZ(w)|N

)
, for N ∈N.

Our goal is to find coordinates z̃ ∈ Cn for which F(z, w)− F(Z(w), w) differs from
a quadratic form by a smooth factor. Note that R(0, 0) is a non-degenerate quadratic
form in Cn, thus there exists a matrix A such that ATR(0, 0)A = iI. Now, suppose
for a moment that there exists a matrix Q such that

iQ(z, w)TQ(z, w) = R(z, w), Q(0, 0) = A−1,

|∂zQ(z, w)| ≤ CN

(
|ℑz|N + |ℑZ(w)|N

)
.
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Then, the map z 7→ z̃(z) = Q(z− Z(w), w) · (z− Z(w)) would define the coordi-
nates we need. Indeed, in these new coordinates, we can write

F(z, w) = F(Z(w), w) +
i
2
(z̃, z̃) + ρ(z, w) (2.1.2)

and Rn is given by the equation ỹ = g(x̃, w), where z̃ = x̃ + iỹ and g is a C ∞

function near (0, 0). Finding such matrix Q is always possible, because the map

GL(n, C) ∋ Q 7→ iQTQ ∈ Sym(n, R)

is analytic with surjective differential. Hence, our first goal is completed.

Now let z(z̃) be the inverse map to z 7→ z̃(z), the next step is to examine the
behaviour of F along the chains Γw,s given by

x̃ 7→ z(z̃s), z̃s = z̃s(x̃) = x̃ + isg(x̃, w), 0 ≤ s ≤ 1.

The idea is to first integrate along Γw,0 and then estimate the difference between
this integral and the left hand side of (2.1.1). Without entering in much detail, the
key steps of the process are presented below.

Let ũt(z) be an almost analytic extension of ut, supported in a fixed neighborhood
of the origin. We can write∫

Rn
eitF(x,w)ut(x) dx =

∫
Γw,1

eitF(z,w)ũt(z) dz1 ∧ · · · ∧ dzn.

It follows form the Stoke’s formula, the fact that ũt is almost analytic, and the
properties of F that, for w is in some fixed neighborhood of the origin W ⊆ Rk

independent of ut,∣∣∣∣∫
Rn

eitF(x,w)ut(x) dx−
∫

Γw,0

eitF(z,w)ũt(z) dz1 ∧ · · · ∧ dzn

∣∣∣∣ ≤ CNt−N, ∀N ∈ Z+.

(2.1.3)

Note that the change of variables that leads to (2.1.2) allows us to compute∫
Γw,1

eitF(z,w)ũt(z) dz1 ∧ · · · ∧ dzn =
∫

U
eiF(Z(w),w)+ i

2 |x̃|2+ρ(z(x̃),w)ut(z(x̃))Jw(x̃) dx̃,

(2.1.4)
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Chapter 2. Fourier integral operators with complex phase

where Jw(x̃) = det
(

dz
dx̃

)
and U ⊆ Rn is a small enough neighborhood of the origin.

On the other hand, for any function f ∈ C ∞
0 (Rn), we have∣∣∣∣∣

∫
e−t |x|

2
2 f (x) dx−

k−1

∑
ν=0

(
2π

t

)n/2 ( ∆
2t

)ν f (0)
ν!

∣∣∣∣∣ ≤ C′kt−k−n/2 ∑
|α|≤2k+n+1

∫
|Dα f | dx.

(2.1.5)

One can verify the asymptotic formula (2.1.1) by combining equations (2.1.3),(2.1.4)
and (2.1.5) with f = ut Jw. Moreover, we see that C0,w(D) = (2π)n/2 Jw(0). Com-
puting the Hessian of both sides of this equation and setting z̃ = 0, we obtain

(2π)−n/2C0,w(D) = ±
(

det
1
i

∂2
z F(Z(w), w)

)−1/2

.

Finally, the branch of the square root is chosen in a way that
(

det 1
i ∂2

z F
)1/2

= 1

when ∂2
z F = iI.

2.1.2 Lagrangian manifolds and complex-valued phase functions

Lagrangian manifolds are a major component of the theory of Lagrangian distri-
butions. As they are associated with the phase functions, and we are allowing the
phase functions to be complex-valued, we need to extend the idea of symplectic
manifold to the complex domain. Before doing so, we need a more general notion
of almost analytic manifolds. The following definitions are taken from [16].

Let M be a real paracompact C ∞ manifold of dimension n. We say that an almost
analytic manifold N is associated to M, formally N ⊆ M̃ if:

1. NR ⊆ M is locally closed, i.e., every point of NR has an open neighborhood
U ⊆ M such that NR ∩U is closed in U.

2. One can find a covering of NR by coordinate neighborhoods

M ⊃ Xα
Hα−→ Ωα ⊆ Rn,

and almost analytic manifolds Nα ⊆ Ω̃α ⊆ Cn, such that NαR = Hα(Xα ∩ NR).
Here Ω̃α is some open set with Ω̃α ∩Rn = Ωα.
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3. The local representatives Nα satisfy the following compatibility condition:

H̃βα(Nα) and Nβ are equivalent nearHβ(Xα ∩ Xβ ∩ NR).

WhereHβα = Hβ ◦ H−1
α and H̃βα is an almost analytic extension.

Let M be a real symplectic manifold of dimension 2n, fix a point ρ0 ∈ M and
consider a coordinate neighborhood W ⊆ R2n of ρ0. Assuming that Λ ⊆ M̃
is an almost analytic manifold containing ρ0, we want to extend the symplectic
structure of M to M̃. This is done locally, so we identify the manifold Λ with its
local representative in W̃, where W̃ ⊆ C2n is an open set with W̃R = W.

Note that, given symplectic coordinates (x, ξ) near ρ0 in M, we can have coordinates
in Λ by taking almost analytic extensions

(
x̃, ξ̃
)
to W̃.

Definition 2.10. The manifold Λ is called positive Lagrangian if, near every real point
(x0, ξ0), it is equivalent to a manifold of the form

ξ̃ =
∂h
∂x̃

(x̃), x̃ ∈ Cn,

where h is an almost analytic function satisfying ℑh ≥ 0 on Rn, with equality at x0.

This definition does not fully extend the symplectic structure. So far, we have no
information on the symplectic form σ. In fact, the manifolds on which σ vanish
represent a special case.

Definition 2.11. An almost analytic manifold Λ ⊆ M̃, of real dimension 2n, is called
strictly positive Lagrangian if

i. ΛR is a submanifold of M.

ii. σα|Λα
∼ 0 for all local representatives Λα and all local almost analytic extensions σα

of σ.

iii. i−1σ(v, v) > 0 for all v ∈ Tρ(Λ) \
(
Tρ(ΛR)

)∼, ρ ∈ ΛR.

In practice, we will consider M = T∗X \ 0, for some smooth manifold X, and
Λ ⊆ (T∗X \ 0)∼ positive Lagrangian.
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Lemma 2.12. Let Λ ⊆ (T∗X \ 0)∼ be a conic almost analytic manifold such that σα|Λα

vanishes for all local representatives Λα and all local almost analytic extensions σα of σ.
Then, for every ρ0 ∈ ΛR, there are local coordinates x ∈ X such that, near ρ0, Λ has a local
representative of the form

x̃ =
∂g(ξ̃)

∂ξ̃
.

The function g is almost analytic and homogeneous of degree 1. Furthermore, Λ is a positive
Lagrangian manifold if ℑg(ξ) ≤ 0 for real ξ.

Due to this lemma, we will sometimes claim without proof that a positive La-
grangian manifold Λ ⊆ (T∗X \ 0)∼ is defined near every real point by

x̃ = H(ξ̃),

where H is positive homogeneous of degree 0 with ℑH(ξ) ≤ 0 for ξ real.

The complex version of a non-degenerate phase function is straightforward.

Definition 2.13. A complex-valued function ϕ(x, θ), smooth in a conic subset V of
Rn × (RN \ 0), is called non-degenerate phase function of positive type if ℑϕ ≥ 0
and

• dϕ ̸= 0,

• ϕ is homogeneous of degree 1 in θ,

• the differentials
{

d( ∂ϕ
∂θj

)
}N

i=1
are linearly independent over C on

CϕR =
{
(x, θ) ∈ V : ϕ′θ = 0

}
.

Remark 2.14. In [16], complex-valued non-degenerate phase functions are called regular
phase functions.

Let ϕ̃(x̃, θ̃) be an almost analytic extension of a non-degenerate phase function ϕ,
defined in a conic neighborhood W ⊆ Cn × (CN \ 0) of the point (x0, θ0) ∈ CϕR.
Then the critical set

Cϕ̃ =
{
(x̃, θ̃) ∈W : ∂θ̃ϕ̃(x̃, θ̃) = 0

}
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is a conic almost analytic manifold of dimension 2n. The image Λϕ̃ of Cϕ̃ under the
map

(x̃, θ̃) 7→
(
x̃, ∂x̃ϕ̃(x̃, θ̃)

)
is locally, near ρ0 = (x0, ϕ′x(x0, θ0)), a manifold of dimension 2n. Moreover, the
image of Cϕ̃R is precisely Λϕ̃R.

It was shown in [16, Theorem 3.6] that Λϕ̃ is locally a conic positive Lagrangian
manifold, whose equivalence class does not depend on the choice of almost analytic
extension ϕ̃. For this reason, in the following we will write Λϕ instead of Λϕ̃.

Remark 2.15. One can easily check that every local almost analytic extension σα vanishes
over the local representatives (Λϕ)α, but Λϕ do not satisfy Definition 2.11 in general. In
some cases, the restriction to the real domain, Λϕ̃R is not a manifold. Thus, it is not true in
general that Λϕ̃R ⊆ Rn × (Rn \ 0) is a Lagrangian manifold in the usual sense.

Definition 2.16. Let ϕ be a non-degenerate phase function, and fix (x0, θ0) ∈ CϕR. We say
that ϕ parametrizes a positive Lagrangian manifold Λ if, for any choice of almost analytic
extension ϕ̃,

Λ ∼ Λϕ̃ near (x0, ϕ′x(x0, θ0)).

Remark 2.17. A positive Lagrangian manifold Λ ⊆ (T∗X \ 0)∼ that satisfies the assump-
tions of Lemma 2.12, can always be parametrized by a non-degenerate phase function of the
form

ϕ(x, ξ) = x · ξ − g(ξ).

Notice that, the equivalence of almost analytic manifolds naturally induces an
equivalence relation on the phase functions that parameterize such manifolds.
Namely, two non-degenerate phase functions are equivalent if they parameterize
equivalent positive Lagrangian manifolds. This equivalence is make precise in the
following definition.

Definition 2.18. Let ϕ and ψ be non-degenerate phase functions defined in small conic
neighborhoods of (x0, θ0) ∈ Rn × (RN \ 0) and (x0, ω0) ∈ Rn × (RM \ 0), respectively.
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We say that ϕ and ψ are equivalent at (x0, ξ0) if ξ0 = ϕ′x(x0, θ0) = ψ′x(x0, ω0) and
Λϕ ∼ Λψ in a neighborhood of (x0, ξ0).

2.1.3 Fourier distributions and their principal symbol

Let V ⊆ Rn × (RN \ 0) be a conic open set, ϕ = ϕ(x, θ) ∈ C ∞(V) be a non-
degenerate phase function, and a = a(x, θ) ∈ Sm

cl(R
n × (RN \ 0)) be supported in a

closed conic subset of V. We define a Fourier distribution A = I(ϕ, a) ∈ D′(Rn) by

(I(ϕ, a), u) =
∫ ∫

eiϕ(x,θ)a(x, θ)u(x) dxdθ, u ∈ C ∞
0 (Rn). (2.1.6)

Formally,
I(ϕ, a) =

∫
eiϕ(x,θ)a(x, θ) dθ.

Note that the contribution ofℑϕ to the integral is an exponentially decreasing factor,
which cannot influence the singularities of the distribution. Thus, we get, directly
from the real case, a result about the wave front set of A. Namely,

WF (A) ⊆
{
(x, ϕ′x(x, θ)) : (x, θ) ∈ supp(a) ∩ CϕR

}
⊆ ΛϕR.

The following proposition tells us that equivalent phase functions yield the same
kind of distribution. A sketch of the proof is presented in order to illustrate the
relevance of the complex-valued stationary phase formula (Theorem 2.9). For a
detailed construction see [16, Theorem 4.2].

Proposition 2.19. Let ϕ(x, θ) and ψ(x, σ) be non-degenerate phase functions equivalent
at the real point ρ0 = (x0, ξ0). Then, there exist a ∈ Sm+(n−2N)/4

cl (Rn × (RN \ 0))
and b ∈ Sm+(n−2M)/4

cl (Rn × (RM \ 0)), such that the distributions A = I(ϕ, a) and
B = I(ψ, b) are microlocally equivalent near ρ0, this means

ρ0 /∈WF (A− B) .

Proof. First of all, recall that by definition of equivalence of phase functions, ϕ and
ψ parameterize equivalent positive Lagrangian manifolds Λϕ and Λψ. This means,
among other things, that

ΛϕR = ΛψR =: ΛR.
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Then, we have WF (A) ⊆ ΛR and WF (B) ⊆ ΛR. We need to show that the
distribution Â− B̂ is smooth at ρ0 ∈ ΛR.

Assume that in a conic complex neighborhood of ρ0, Λϕ is given by the equation
x = x(ξ) ∈ Cn, where x is homogeneous of degree 0 for real ξ. Let (x(ξ), θ(ξ)) ∈
Cn × (CN \ 0) be a critical point of the function

(x, θ) 7→ ϕ̃(x, θ)− xξ,

and suppose that the amplitude a is supported in a neighborhood of (x0, θ0). Then,
we can write Â(tξ) = I1(tξ) + I2(tξ), where

I1(tξ) = tN
∫

eit(ϕ(x,θ)−xξ)a(x, tθ)(1− χ(x, θ)) dxdθ,

I2(tξ) = tN
∫

eit(ϕ(x,θ)−xξ)a(x, tθ)χ(x, θ) dxdθ,

and χ ∈ C ∞
0 (Rn × (RN \ 0)) equals one near (x0, θ0). Note that, when ξ is in a

small enough neighborhood W of ξ0, the phase function of I1 has no critical points
in the support of a. It follows, by repeated partial integration, that I1 ∈ S−∞(W).
Thus, it does not contribute to the wave front set of A.

On the other hand, the fact that ϕ is a non-degenerate phase function implies that
the function F(x, θ, ξ) = ϕ̃(x, θ) − xξ satisfies the assumptions of Theorem 2.9.
Thus, we can apply the stationary phase formula to I2 with respect to (x, θ). Setting
t = 1, we get

Â(ξ) ∼
∞

∑
ν=0

e−ix(ξ)ξ |ξ|(N−n)/2−ν

(
C

ν, ξ
|ξ|
(Dx, |ξ|Dθ)ã

)
(x(ξ), θ(ξ)),

for ξ in a small conic neighborhood V of ξ0, independent of a. Now, if we take
Q−l(a) ∈ Sm+(n−2N)/4

cl (V) such that

Q−l(a) ∼
∞

∑
ν=1

(
C0, ξ

|ξ|

)−l
|ξ|−ν

(
C

ν, ξ
|ξ|
(Dx, |ξ|Dθ)ã

)
(x(ξ), θ(ξ)),

we can write
Â(ξ) ∼ e−ix(ξ)ξC0, ξ

|ξ|
+ Q−l(a).
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Since the factor e−ix(ξ)ξ is independent of the local representatives of Λϕ ∼ Λψ

(modulo S−∞), we can have a similar expansion for B̂, with the same exponential
factor and some b ∈ Sm+(n−2M)/4

cl . Finally, note that we can approximate each term
of the asymptotic sum of b in a way that

e−ix(ξ)ξ ã + Q−l(a) ∼ e−ix(ξ)ξ b̃,

which concludes the proof.

We can now define Fourier distributions globally. Let X be a C ∞ paracompact
manifold of dimension n and denote by D′(X; Ω

1
2 ) be the space of 1/2-densities

in X. From this point forward, unless stated otherwise, Λ ⊆ (T∗X \ 0)∼ denotes a
positive Lagrangian manifold.

Definition 2.20 (Fourier distributions). We say that a distribution A ∈ D′(X; Ω
1
2 )

belongs to the class Im
cl (X, Λ; Ω

1
2 ), if WF (A) ⊆ ΛR and there exists a phase function

ϕ ∈ C ∞(Rn ×RN) and an amplitude a ∈ Sm+(n−2N)/4
cl (Rn ×RN) such that

• for every ρ0 = (x0, ξ0) ∈ ΛR and every choice of local coordinates, A is microlocally,
near ρ0, of the form I(ϕ, a),

• Λ is parametrized by ϕ, that is Λ ∼ Λϕ near ρ0,

• supp(a) is contained in a small conic neighborhood of (x0, θ0) ∈ CϕR.

In analogy with the real case, one would like to define the principal symbol of
A ∈ Im(X, Λ; Ω

1
2 ) as a section of the tensor product of the bundle of 1/2-densities

in Λ and theMaslov line bundle. But, it turns out that it is impossible to replicate
this construction for complex manifolds in a way that is invariant under a change
of local coordinates. To avoid this difficulty, Melin and Sjöstrand [16] introduce
admissible coordinates and define a special line bundle over Λ, which is somewhat
similar to the product bundle described above.

This is an intricate construction, so we need to consider the linear situation first. Let
M̃ be the complex extension of a real symplectic vector space M of dimension 2n,
and denote by L− the set of negative definite Lagrangian planes in M. Let F ⊆ M
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be a fixed real Lagrangian plane and F̃ its complexification. We denote by B(F) the
set of all real bases of F.

Definition 2.21. Let N ⊆ M̃ be a positive semi-definite Lagrangian plane. A basis
e = {e1, . . . , en} of N is said to be admissible if there exists a basis f = { f1, . . . , fn} of F
and a plane L ∈ L− such that, for each j, ej is the projection of f j along L. We write

e = E( f , L) = EN( f , L), ( f , L) ∈ B(F)×L−,

and denote by B(N) the set of all admissible bases for N.

Given a set S ⊆ B(F)×L−, we write EN(S) to denote the set of all admissible bases
e = E( f , L) of N with ( f , L) ∈ S.

Proposition 2.22. The set B(N) is the union of two disjoint arcwise-connected subsets.
Two admissible bases e = E( f , L) and e′ = E( f ′, L′) belong to the same set if and only if
f , f ′ ∈ B(F) have the same orientation. Moreover, there exists a unique function

s = sN : B(N)×B(N)→ C \ 0

with the following properties

i. For all compact set K ⋐ B(F) × L−, the function s(e, e′) restricted to EN(K) ×
EN(K) is a continuous function of e, e′ and N.

ii. If e, e′, e′′ ∈ B(N), then s(e, e′)s(e′, e′′) = s(e, e′′).

iii. If e, e′ have the same L ∈ L−, then s(e, e′) > 0.

iv. s2(e, e′) = ±e/e′ with the plus sign precisely when f , f ′ have the same orientation.
Here,

e/e′ = e1 ∧ · · · ∧ en/e′1 ∧ · · · ∧ e′n, e = E( f , L), e′ = E( f ′, L′) ∈ B(N).

Proof. ([16, Theorem 6.2]) In order to prove this result, we need a description of
B(N) that is easier to handle. We start by choosing symplectic coordinates (x, ξ)

on M, such that F is given by x = 0 and N by x̃ = Aξ̃. Here A is a symmetric
matrix withℑA ≤ 0 and (x̃, ξ̃) are the corresponding coordinates in M̃. In the same
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coordinates, a plane L ∈ L− is of the form ξ̃ = Bx̃, for some symmetric matrix B
with ℑB < 0.

This allows us to establish one-to-one correspondence between the set of projections
F̃ → N along planes in L− and the matrices of the form (I − BA)−1. Indeed, if
(0, ξ̃0) ∈ F̃, the projected coordinates (x̃, ξ̃) ∈ N satisfy

ξ̃ = (I − BA)−1ξ̃0.

Then, the set of admissible bases B(N) can be identified with the set of matrices
M , of the form

C = CA(B, R) = (I − BA)−1R, (2.1.7)

where R ∈ GL(n, R) relates to the basis f of F, and A, B are determined by the
Lagrangian planes N, L as above. But, this representation is not unique, as the
plane L and the basis f can be chosen freely. Then, there could be matrices B, B′, R
and R′ such that

CA(B, R) = CA(B′, R′). (2.1.8)

It can be shown that these two representations are connected by an arc on the set
M . This arc defines a homotopy relation amongst the different representations
(2.1.7). Explicitly, let 0 ≤ t ≤ 1, and put

Bt = (1− t)B + tB′,

Rt = (I − Bt A)(I − B′A)−1R′ ∈ GL(n, R).

Then, for equation (2.1.8) to hold, we need (det R) / (det R′) > 0. This shows that
B(N) splits into two disjoint arc-connected components, which are determined by
the sign of det R in the representation (2.1.7). Or, equivalently, by the orientation
of f as a basis of F in the representation e = E( f , L).

For the second, and most important, part of the theorem, define

p(A, B, R) =
(

det(I − BA)−1
)1/2
|det R|1/2,
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with C, A, B and R as in equation (2.1.7). Here, the square root in the first factor is
taken as the branch that deforms into a positive real number when both A and B
go to iI. Note that, thanks to the homotopy above, the map p is continuous along
the fibers of

(A, B, R) 7→ (A, (I − BA)−1R).

Then, we can define

sA(C) = p(A, B, R) C = (I − BA)−1R.

Finally, for two admissible bases e and e′ with representation C and C′ as in (2.1.8),
the quotient e/e′ is

det(I − BA)−1R
det(I − B′A)−1R′

.

So, it is natural to define

sN(e, e′) :=
sA(C)
sA(C′)

.

Properties i. − iv. follow from the construction, while the uniqueness of s is a
consequence of ii.

Consider now a positive Lagrangian manifold Λ ⊆ (T∗X \ 0)∼ and ρ ∈ ΛR. Then,
M = Tρ(T∗X) and N = Tρ(Λ) satisfy the conditions of Definition 2.21. Namely,
Tρ(T∗X) is a symplectic vector space and Tρ(Λ) ⊂ Tρ(T∗X) is a positive semi-
definite Lagrangian plane. Taking F ⊆ M as the tangent space to the fiber, we can
define B(Tρ(Λ)) as above.

Keeping in mind the previous notation, we now define admissible coordinate
systems on Λ. Recall that, ETρ(Λ)(S) is the set of all admissible bases e = E( f , L) of
Tρ(Λ) with ( f , L) ∈ S ⊆ B(F)×L−.

Definition 2.23. Let λ = {λ1, . . . , λn} be almost analytic functions on Λ, defined in
some complex neighborhood Uλ of a real point. We say that λ1, . . . , λn are admissible
coordinates on Λ if

1. The differentials dλ1, . . . , dλn are linearly independent over C at real points.
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2. δλ = {δλ1, . . . , δλn} belongs locally to ETρ(Λ)(K) with ρ ∈ Uλ ∩ ΛR, for some
K ⋐ B(F)×L−. Here δλ is the dual basis of dλ in Tρ(Λ)∗.

We refer to the neighborhoods Uλ as admissible coordinate systems.

Note that each λj depends on some local coordinates (x, ξ) on Λ, defined near the
point ρ ∈ ΛR, where x denotes a choice of local coordinates on the manifold X and
ξ its dual coordinate. Another set of admissible coordinates, defined near some ρ′

would depend on different local coordinates (x′, ξ ′).

One can show that it is always possible to find admissible coordinates locally, how-
ever, this construction is not unique. By definition, the functions λ = {λ1, . . . , λn}
are chosen in a way that δλ, the dual to dλ, is an admissible basis to the Lagrangian
plane Tρ(Λ) in the sense of Definition 2.21. And, as stated in the proof of Proposi-
tion 2.22, one can have many admissible bases for the same plane. It is precisely
this property what allows us to define the "line bundle" we want, as each basis
would have its own admissible coordinate system.

All we need now is a way to define the transition functions between two coordinate
systems Uλ and Uµ. Thanks to Proposition 2.22, we know that

• s(δλ, δµ) is continuous in Uλ ∩ Uµ ∩ΛR.

• s2 = ±dµ

dλ
= ±det

[(
∂µj

∂λk

)
j,k

]
, where ∂µj/∂λk is defined by

dµj = ∑
k

(
∂µj

∂λk

)
dλk + ∑

k

(
∂µj

∂λk

)
dλk.

The positive sign occurs when dλ and dµ have the same orientation as bases
of Tρ(Λ).

Consider nowan almost analytic extensionS of s(δλ, δµ), defined in a small complex
neighborhood of Uλ ∩ Uµ ∩ΛR in Λ. Thanks to the previous properties, S can be
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chosen to satisfy

(
Sλ,µ

)2 ∼ ±dµ

dλ
, (2.1.9)

Sλ,λ ∼ 1, Sλ,µSµ,ω ∼ Sλ,ω. (2.1.10)

Additionally, the functions Sλ,µ are continuous under small perturbations of λ, µ

for which δλ, δµ stay in the same component of ETρ(Λ)(K). For all of these, the
functions Sλ,µ are the ideal choice of transition functions in the new almost analytic
line bundle.

Definition 2.24. The bundle L → Λ is defined as the family of admissible coordinate
systems Uλ on Λ with transition functions Sλ,µ. A section f ∈ Γ(Λ, L ) is an almost
analytic function on Λ such that, the restriction to each Uλ satisfy

fλ ∼ Sλ,µ fµ.

The space of homogeneous section of degree m is denote by Γm(Λ, L ).

At this point, it is necessary to clarify what we mean by homogeneous section.
Given t ∈ R+, denote by t : Λ→ Λ the multiplication by t in the second coordinate.
Then, if λ = {λ1, . . . , λn} are admissible coordinates near tρ ∈ ΛR, the pullback

t∗λ = {λ1 ◦ t, . . . , λn ◦ t}

defines admissible coordinates µ near ρ. We say that f ∈ Γ(Λ, L ) is homogeneous
of degree m if for all ρ ∈ ΛR, all t ∈ R+ and all coordinates λ near tρ

ft∗λ ∼ tmt∗ ( fλ) , near ρ. (2.1.11)

Remark 2.25. By definition of Γ(Λ, L ), in particular by the property (2.1.9) of the
transition functions, it holds in general that ft∗λ ∼ tn/2 fλ.

The following example show us that homogeneous functions on Λ define homo-
geneous section of Γ(Λ, L ). To avoid any confusion further on, the definition of
homogeneity is shown explicitly.
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Example 2.26. Let g be an almost analytic function in Λ, homogeneous of degree m
in ξ. We know that for each ρ ∈ ΛR, it is possible to find and admissible coordinate
system Uλ, locally near ρ. Then, we can define a function f such that fλ = g|Uλ .
Clearly, this defines a section of L .

Moreover, it can be shown that f ∈ Γm(Λ, L ). Indeed, fix ρ = (x, ξ) ∈ ΛR and
t ∈ R+. Then, near tρ, points in Λ are of the form (x, tξ) . Let λ = {λ1, . . . , λn}
and µ =

(
t−1)∗ λ be admissible coordinates near ρ and tρ, respectively. Explicitly,

for each j = 1, . . . , n,

µj(x, tξ) =
(

λj ◦ t−1
)
(x, tξ) = λj(x, ξ).

Then, near ρ, we have
(
t−1)∗ ( fλ)(x, ξ) ∼ f

(
x, 1

t ξ
)
∼ t−n/2 fλ(x, ξ) and

f(t−1)
∗
λ
∼ f (x, tξ) = tm f (x, ξ) = tn/2t−n/2tm f (x, ξ)

∼ tm−n/2 fλ(x, ξ) ∼ tm
(
t−1
)∗

( fλ) .

In other words, f satisfies relation (2.1.11). We conclude that it defines a section of
L , homogeneous of degree m.

The last step before defining the principal symbol of an distribution in Im
cl (X, Λ; Ω

1
2 )

is to assign to each non-degenerate phase function ϕ a non-vanishing section in
ΓN/2(Λ, L ). This is accomplished by Lemma 2.28. As we will see below, one can
easily define dϕ uniquely as a n-form on Cϕ, the difficulty of the construction lies
in obtaining the correct homogeneity. The construction presented here is part of
the proof of Theorem 6.4 in [16].

Remark 2.27. A p-form on an almost analytic manifold is completely defined by its local
representatives. In other words, all p-forms can be understood as

∑ ak d f1,k ∧ · · · ∧ d fp,k,

where ak and d f j,k are almost analytic functions.

For the rest of the section, f̃ would always denote an almost analytic extension of
some function f .
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Lemma 2.28. Given a non-degenerate phase function ϕ(x, θ) that parameterizes Λ near
ρ0 ∈ ΛR, there is a section

√
dϕ ∈ ΓN/2(Λ, L ), defined by

(
√

dϕ)τ ∼

det
1
i

 ϕ̃′′xx − ψ̃′′xx ϕ̃′′xθ

ϕ̃′′θx ϕ̃′′θθ

−1/2

, (2.1.12)

where τ is an admissible coordinate system on Λ and ψ ∈ C ∞(Rn) satisfy ψ̃′′xx < 0. The
branch of the square root is chosen as in Theorem 2.9.

Proof. [16, Theorem 6.4] Denote by dϕ̃ the almost analytic n-form on Cϕ that satisfy

dϕ̃ ∧ d
(

dϕ̃

dθ̃1

)
∧ · · · ∧ d

(
dϕ̃

dθ̃N

)
∼ in+Ndx̃1 ∧ · · · ∧ dx̃n ∧ dθ̃1 ∧ · · · ∧ dθ̃N.

(2.1.13)

The condition is satisfied if dϕ̃ ∼ a(λ)dλ1 ∧ · · · ∧ λn, where λ = (λ1 . . . , λn) are
admissible coordinates and

a(λ) ∼

det
1
i


∂λ

∂x̃
∂λ

∂x̃
∂2ϕ̃

∂x̃∂θ̃

∂2λ

∂θ̃



−1

.

This shows that the differential form dϕ̃ always exists and that it is unique up to
equivalence. Because of this, we write only dϕ. Thanks to the local identifica-
tion of Λ ∼ Λϕ with Cϕ, we can consider dϕ an n-form on Λ, defined in a conic
neighborhood of some real point ρ0 ∈ Λ.

Now let ψ ∈ C ∞(Rn) satisfy ψ̃′′xx < 0. The restriction to Λ of τ = ξ̃ − ψ̃′x̃ defines
admissible coordinates in Λ. In these coordinates, dϕ takes the form

dϕ ∼

det
1
i

 ϕ̃′′xx − ψ̃′′xx ϕ̃′′xθ

ϕ̃′′θx ϕ̃′′θθ

−1

dτ1 ∧ · · · ∧ dτn.

After taking the the square root in the previous n-form as in Theorem 2.9, we obtain
exactly equation (2.1.12). Moreover, any other function ψ′ results in admissible
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coordinates τ′ for which
(
√

dϕ)τ

(
√

dϕ)τ′
∼ Sτ,τ′ .

Recall that Sτ,τ′ is a transition function on L . Thus, we have correctly defined√
dϕ ∈ Γ(Λ, L ).

It is important to note that while
√

dϕ is independent of the function ψ, it does
depend on the choice of local coordinates x. In fact, if y is some new coordinate on
X and ϕ1(y, θ) also parameterize Λ near ρ0, we get

√
dϕ1 ∼

∣∣∣∣dỹ
dx̃

∣∣∣∣1/2√
dϕ.

To complete the proof, we need to verify the homogeneity. As before, we denote by
t : Λ→ Λ the multiplication by t ∈ R+ in the second coordinate. Now we consider
τ = ξ̃ − ψ̃′x̃ to be admissible coordinates near a point tρ0 = (x0, tξ0). Then,

t∗τ = tξ̃ − ψ̃′x̃ = t
(

ξ̃ − 1
t

ψ̃′x̃

)
defines admissible coordinates near ρ0. Proceeding as in Example 2.26, one can see
that

√
dϕ has the correct homogeneity. Indeed,

t∗
(√

dϕ
)

τ
∼

det
1
i

 ϕ̃′′xx(x̃, tθ̃)− ψ̃′′xx(x̃) ϕ̃′′xθ(x̃, tθ̃)

ϕ̃′′θx(x̃, tθ̃) ϕ̃′′θθ(x̃, tθ̃)

−1/2

∼ t(n+N)/2

det
1
i

 ϕ̃′′xx(x̃, θ̃)− 1
t ψ̃′′xx(x̃) ϕ̃′′xθ(x̃, θ̃)

ϕ̃′′θx(x̃, θ̃) ϕ̃′′θθ(x̃, θ̃)

−1/2

∼ tN/2
(√

dϕ
)
t∗τ

.

We conclude that
√

dϕ ∈ ΓN/2(Λ, L ).

The next theorem presents what we refer to as the principal symbol map. The proof
is long and technical and will be omitted. Instead, we offer a short explanation on
how the map acts locally.
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Theorem 2.29 (Principal symbol map). There is a linear bijection

P : Γm+n/4(Λ, L ) −→ Im(X, Λ; Ω
1
2 )

Im−1(X, Λ; Ω
1
2 )

.

Proof. See Theorem 6.4 in [16].

Let s ∈ Γm+n/4(Λ, L ) be supported in a small conic neighborhood of some ρ0. We
can find a non-degenerate phase function ϕ that parameterizes Λ near ρ0, and an
almost analytic function b on Λ homogeneous of degree m + n/4− N/2, such that
s ∼ b

√
dϕ. Then, define P(s) as the oscillatory integral

P(s) =
∫

eiϕ(x,θ)B(x, θ) dθ,

where B(x, θ) is an almost analytic extension of b to Cn ×CN.

As a direct consequence of the theorem, we have a formulation of the principal
symbol of a given distribution, as a section of the line bundle L .

Definition 2.30. Let A ∈ Im
cl (X, Λ; Ω

1
2 ). Then, the principal symbol of A is the section

σm(A) := P−1([A]) ∈ Γm+n/4(Λ, L ),

where [A] denotes the equivalent class of A in Im/Im−1.

Since we do not have information on the action of P−1, it is rather difficult to work
with this definition. In analogy with the real-valued theory, one may expect to be
able to obtain the principal symbol of a distribution A ∈ Im

cl (X, Λ) from any local
representation I(ϕ, a). Unfortunately, this is not clear from Definition 2.30. To be
precise, we know that

σm(A) = s ∼ b
√

dϕ ∈ Γm+n/4(Λ, L ), (2.1.14)

for some non-degenerate phase function ϕ that parameterizes Λ, and some almost
analytic function b. Then, the question is whether one can find a local representation
I(ϕ, a) for A, where the main homogeneous component of a ∈ Sm+(n−2N)/4

cl equals
b. The answer to this question is presented in Subsection 2.2.1
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2.1.4 Composition of Fourier integral operators

Let X, Y be paracompact C ∞ manifolds of dimension nX, nY respectively. A stan-
dard result tells us that T∗(X×Y) ∼= T∗X× T∗Y via

T∗(X×Y) ∋ (x, y, ξ, η)←→ (x, ξ, y,−η) ∈ T∗X× T∗Y.

Then, similar to the real case, if C ⊆ (T∗X \ 0)∼ × (T∗Y \ 0)∼ is an arbitrary sub-
manifold, we denote by C′ the manifold

{(x, y, ξ,−η) : (x, ξ, y, η) ∈ C} .

Definition 2.31. We say C ⊆ ((T∗X \ 0)× (T∗Y \ 0))∼ is a (strictly) positive canon-
ical relation if C′ ⊆ (T∗(X×Y) \ 0)∼ is a closed conic (strictly) positive Lagrangian
manifold.

Here closed means that C′R is a closed set of T∗(X × Y) \ 0. But, the set CR does
not need to be close in (T∗X \ 0)× (T∗Y \ 0). Finally, we define a special class of
operators.

Definition 2.32. An operator A : C ∞
0 (Y; Ω

1
2 )→ D′(X; Ω

1
2 ) is called a Fourier integral

operatorwith complex phase if its distributional kernelKA belongs to Im
cl (X×Y, Λ; Ω

1
2 ).

We denote this class by Im
cl (X×Y, C; Ω

1
2 ), where C′ = Λ ⊆ (T∗(X×Y) \ 0)∼ is a closed

conic positive Lagrangian manifold.

It follows from the real case that if C is a canonical relation, the operator A maps

C ∞
0 (Y; Ω

1
2 )→ C ∞(X; Ω

1
2 ),

and it can be extended to a continuous operator from E ′(Y; Ω
1
2 ) to D′(X; Ω

1
2 ).

Now let X, Y, Z be paracompactC ∞ manifolds of dimension nX, nY, nZ respectively.
Suppose that

A1 ∈ Im1
cl (X×Y, C1; Ω

1
2 ) and A2 ∈ Im2

cl (Y× Z, C1; Ω
1
2 ),

are properly supported operators, and that Cj = Λ′j are positive canonical relations.
The next step is to investigate under which conditions the composition A1 ◦ A2
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defines a Fourier integral operator according to Definition 2.32. To this end, denote
by ∆Y the diagonal

∆Y = {(y, y) ∈ Y×Y}.

Set D = T∗X × ∆T∗Y × T∗Z and let D̃ be its almost analytic continuation. The
following condition was considered in [16].

Assumption 2.33. Suppose that:

a. The intersection of C1 × C2 and D̃ is transverse at points in (C1R × C2R) ∩ D.

b. The natural projection (C1R × C2R) → (T∗X \ 0) × (T∗Z \ 0) is injective and
proper.

Remark 2.34. Two smooth submanifolds Y1 and Y2 of a smooth manifold X are said to
intersect transversally if, at every point x ∈ Y1 ∩Y2, it holds that TxY1 + TxY2 = TxX.

Proposition 2.35. Let Λ1 = C′1 and Λ2 = C′2 be parametrized by the non-degenerate
phase functions ϕ1(x, y, θ) and ϕ2(y, z, σ) respectively, and suppose that Assumption 2.33
holds. Then, there exists a positive canonical relation C ⊆ (T∗X \ 0)∼ × (T∗Z \ 0)∼

such that CR = C1R ◦ C2R. Moreover, the manifold Λ = C′ is parametrized by the phase
function Φ = ϕ1 + ϕ2. We write C = C1 ◦ C2.

Proof. Let N(∆Y) ⊆ T∗(X×Y) be the normal bundle of ∆Y and denote by (N∗)∼

the almost analytic continuation of N∗ = T∗X × N(∆Y) × T∗Z. In terms of the
manifolds Λ1 and Λ2, Assumption 2.33 reads:

a. Λ1 ×Λ2 and (N∗)∼ intersect transversely at real points.

b. The projection N∗ ∩ (Λ1R × Λ2R) → (T∗X \ 0)× (T∗Z \ 0) is injective and
proper.

Let ϕ1 and ϕ2 be non-degenerate phase function paramterizing Λ1 and Λ2 near
ρ1 = (x0, ξ0, y0,−η0) and ρ2 = (y0, η0, z0, ζ0), respectively. Then, the first condition
implies that the map

Λ1 ×Λ2 ∋ (x̃, ξ̃, ỹ′, η̃′, ỹ′′, η̃′′, z̃, ζ̃) 7→ (ỹ′ − ỹ′′, η̃′ + η̃′′) ∈ C2nY
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has surjective differential near (ρ1, ρ2). It follows, from this and the identification
Ci ←→ Λi, that the map

CnX+nY+N1+N2 ∋ (x̃, ỹ, z̃, θ̃, σ̃) 7→
(

∂ϕ̃1

∂ỹ
+

∂ϕ̃2

∂ỹ
,

∂ϕ̃1

∂θ̃
,

∂ϕ̃2

∂σ̃

)
∈ CnY+N1+N2

also has surjective differential. Which means that the function

Φ(x, z, (y, θ, σ)) = ϕ1(x, y, θ) + ϕ2(y, z, σ)

satisfy almost all the conditions to be a non-degenerate phase function near the real
point (x0, z0, y0, θ0, σ0), with (y, θ, σ) taken as the fiber variables. The only problem
is the homogeneity. Following the usual trick, let us introduce a homogeneous
function ω = ω(y, θ, σ) as the new fiber variable. In [16], the authors choose

ω(y, θ, σ) =
(

y(θ2 + σ2)1/2, θ, σ
)

.

We can now treat Φ(x, z, ω) as a non-degenerate phase function, and identify CΦ

with

C0
Φ =

{((
x̃, ỹ′, θ̃

)
,
(

ỹ′′, z̃, σ̃
))
∈ Cϕ1 × Cϕ2 : ỹ′ = ỹ′′,

∂ϕ̃1

∂ỹ
+

∂ϕ̃2

∂ỹ
= 0

}
.

Finally, define C1 ◦ C2 as the almost analytic manifold with (C1 ◦ C2)R = C1R ◦ C2R,
whose local representation is given by the map

(C1 × C2) ∩ D̃ ∋ (x̃, ξ̃, ỹ, η̃, ỹ, η̃, z̃, ζ̃) 7→ (x̃, ξ̃, z̃, ζ̃) ∈ C2nX+2nY .

In other words, there is a natural identification between C1 ◦ C2 and (C1 × C2) ∩ D̃.
That C1 ◦ C2 is a positive canonical relation, locally generated by Φ, follows from
the fact that the projection in Assumption 2.33 can be factored as

(N∗)∼ ∩ (Λ1 ×Λ2)→ C0
Φ
≈−→ CΦ → ΛΦ ↪→ C2nX+2nZ .

Theorem 2.36. Let C1 ⊆ (T∗X \ 0)∼× (T∗Y \ 0)∼ and C2 ⊆ (T∗Y \ 0)∼× (T∗Z \ 0)∼

be positive canonical relations satisfying Assumption 2.33. Suppose that the operators
A1 ∈ Im1

cl (X × Y, C1; Ω
1
2 ) and A2 ∈ Im2

cl (Y× Z, C2; Ω
1
2 ) are properly supported. Then,

A1 ◦ A2 ∈ Im1+m2
cl (X× Z, C1 ◦ C2; Ω

1
2 ).
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Proof. Suppose that A1 = I(ϕ1, a1) and A2 = I(ϕ2, a2), near ρ1 and ρ2, where ϕ1, ϕ2

are the phase functions above and

a1 ∈ Sm1+(nX+nY−2N1)/4
cl

(
RnX+nY ×RN1

)
,

a2 ∈ Sm2+(nY+nZ−2N2)/4
cl

(
RnY+nZ ×RN2

)
.

One can prove, following standard methods (see for instance [12]), that the com-
position A = A1 ◦ A2 is, modulo C ∞, locally given by∫

eiΦ(x,y,z,θ,σ)a(x, y, z, θ, σ) dy dθ dσ,

where Φ = ϕ1(x, y, θ) + ϕ2(y, z, σ), and

a = a1(x, y, θ)a2(y, z, σ) ∈ Sm′
cl (RnX+nY+nZ ×RN1+N2),

with m′ = m1 + m2 + (nX + nZ + 2(nY − N1 − N2))/4. We wish to consider y a
parameter. So, as before, we take

ω(y, θ, σ) =
(

y(|θ|2 + |σ|2)1/2, θ, σ
)

.

Then,
Φ(x, z, ω) = ϕ1(x, y, θ) + ϕ2(y, z, σ),

is the resulting phase function in Proposition 2.35 and

a(x, y, z, θ, σ) ∈ Dω

D(y, θ, σ)
Sm′−nY
cl (RnX+nZ ×RnY+N1+N2).

After computing Dω/D(y, θ, σ) = (|θ|2 + |σ|2)nY/2, we see that A is microlocally
of the form I(Φ, b), where the amplitude

b(x, z, ω) = a1(x, y, θ)a2(y, z, σ)(|θ|2 + |σ|2)−nY/2

belongs to the space

Sm1+m2+(nX+nZ−2(nY+N1+N2))/4
cl

(
RnY+nZ ×RN2

)
.

The result follows from this and Definition 2.20.
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Chapter 2. Fourier integral operators with complex phase

It is clear that the principal symbol of A is given by some map

γ : Γm′1(C′1; L )× Γm′2(C′2; L )→ Γm′((C1 ◦ C2)
′; L ),

where m′1 = m1 + (nX + nY)/4, m′2 = m2 + (nY + nZ)/4 and m′ = m1 + m2 +

(nX + nZ)/4. Unfortunately, once again [16] fails to provide an explicit description
of this map. Instead, the authors describe the square of the principal symbol.

To understand this description, we first need to clarify some terminology and
notation. LetM be a manifold, N ⊆M a submanifold, and ω a differential form
onM. We say that

• ω is a form on N , when considering the pull-back i∗ω. Here i : N → M is
the inclusion map.

• ω is a form along N , when considering the equivalence class [ω] with respect
to the relation

ω1 ∼ ω2 if ω1 −ω2 ≡ 0 on N .

Lemma 2.37. For any choice of local coordinates y1, . . . , ynY ,

ω = d(y′ − y′′) ∧ d(η′ + η′′)

defines an invariant 2nY-form along N(∆Y). Here

d(y′ − y′′) = d(y′1 − y′′1 ) ∧ · · · ∧ d(y′nY
− y′′nY

),

d(η′ + η′′) = d(η′1 + η′′2 ) ∧ · · · ∧ d(η′nY
+ η′′nY

).

Let Ω be the differential form on T∗X× T∗Y× T∗Y× T∗Z, and along N∗, defined
by the pull back π∗ω, where π : T∗X × T∗Y × T∗Y × T∗Z → T∗Y × T∗Y is the
natural projection. Denote by Ω̃ an almost analytic extension of Ω. Locally, we can
write

Ω̃ = d(ỹ′ − ỹ′′) ∧ d(η̃′ + η̃′′).

Denoting by α1, α2 and α the principal symbols of A1, A2 and A respectively, the
following equivalence is proven in [16].
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Theorem 2.38. There is an equivalence of forms on C′1 × C′2 along (C1 × C2) ∩ (N∗)∼,

α2
1 ∧ α2

2 ∼ ±α2 ∧Ω.

2.2 Original results

In this section, we present an alternative construction of the principal symbol map,
as well as, an explicit formulation of the principal symbol of A ∈ Im

cl (X, Λ; Ω
1
2 ).

With this new formulation, we revise the theorems in Subsection 2.1.4. In addition,
we generalize Assumption 2.33 to include the case of clean intersection. To do so, we
introduce the notion of complex-valued clean phase functions. This is a simple, yet
useful, generalization of the non-degenerate phase functions.

2.2.1 Alternative construction of the principal symbol

The following construction shows how the stationary phase formula can be used to
give an explicit description of the principal symbol of a distribution in Im

cl (X, Λ).
In particular, given a distribution A ∈ Im

cl (X, Λ), which is microlocally of the form
I(ϕ, a) near some real point ρ, we are able to see the relation between the amplitude
a and the function b in Definition 2.30.

We follow the ideas of Duistermaat for the real case (see [8]) and adapt them to
the complex domain. Namely, we use the asymptotic expansion in Theorem 2.9 to
provide a description of the principal symbol in coordinates. Later, we show that
this description corresponds to the pre-image, under the map P (Theorem 2.29), of
some equivalence class in [A]. Finally, we prove this is the same equivalence class
as the one in Definition 2.30.

Lemma 2.39. Let ϕ ∈ C ∞(Rn × (RN \ 0)) be a non-degenerate phase function and
(x0, θ0) ∈ CϕR fixed. Suppose that ψ ∈ C ∞(Rn) is real-valued and

ψ(x0) = 0, ψ′x(x0) = ϕ′x(x0, θ0), ψ′′xx < 0.

Then, the function F(x, θ) = ϕ(x, θ)− ψ(x) satisfies the assumptions of Theorem 2.9
around (x0, θ0).
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Chapter 2. Fourier integral operators with complex phase

Proof. It is clear that F(x, θ) is smooth with ℑF ≥ 0. From the definition of CϕR,
one sees that ℑF(x0, θ0) = 0. Thus, we only need to verify that

∂xF(x0, θ0) = 0, det(∂2
xF(x0, θ0)) ̸= 0.

A short computation shows

∂xF(x0, θ0) = ϕ′x(x0, θ0)− ψ′x(x0) = 0,

∂2
xF =

 ϕ′′xx − ψ′′xx ϕ′′xθ

ϕ′′θx ϕ′′θθ

 .

This matrix is the same as the one in the definition of
√

dϕ (Lemma 2.28). The
result is proven by the same arguments presented there.

Now let X be a smooth manifold of dimension n and consider a distribution
A ∈ Im

cl (X, Λ), which is of the form I(ϕ, a) microlocally near ρ0 = (x0, ξ0), with ϕ

a non-degenerate phase function, ξ0 = ϕ′x(x0, θ0) and a(x, θ) an amplitude function
in Sm+(n−2N)/4

cl (Rn × (RN \ 0)). Let u ∈ C∞
c be supported in a neighborhood of

x0 and ψ be as in the previous lemma (Lemma 2.39). Set v(x) = e−itψ(x)u(x). We
want to understand the asymptotic behaviour of I := (I(ϕ, a), v)L2 as t → ∞. By
definition,

(I(ϕ, a), v)L2 =
∫

eiϕ(x,θ)a(x, θ)e−itψ(x)u(x) dxdθ

=
∫

ei[ϕ(x,θ)−tψ(x)]a(x, θ)u(x) dxdθ.

After the change of variables θ = tη, we obtain

I =
∫

eit(ϕ(x,η)−ψ(x))tNa(x, tη)u(x) dη = tN
∫

eitF(x,η)ut(x, η) dη dx,

with F = ϕ− ψ and ut = a(x, tη)u(x). Thanks to Lemma 2.39, we know that the
complex-valued stationary formula (Theorem 2.9) applies here. We then get

e−itF̃(Z(η̃),θ̃) I ∼
∞

∑
ν=0

t−ν−(n+N)/2 (Cν,η(D)ũt
)

Z(η̃),

where x = Z(η̃) is the almost analytic manifold described by ∂x F̃(x̃, η̃) = 0.
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We can now describe the principal symbol of A as the map that assigns to each ψ

the top-order term of the asymptotic expansion of I. Since C0,w(D) = (2π)
n+N

2
√

dϕ,
we can write the principal symbol map explicitly

TA : ψ 7→ (2π)
n+N

2 ã0(Z(η̃), η̃)ũ(Z(η̃))
√

dϕ, (2.2.1)

where
√

dϕ ∈ ΓN/2(Λ, L ) and a0, the highest order term in the asymptotic sum of
a, is an homogeneous function of degree m + (n− 2N)/4 in η. The next step is to
relate this expression with the formulation of the principal symbol in [16], which
will give us a complete description of the principal symbol.

To do so, we need to introduce further notation. Denote by S(d)(Λ, L ), d = d1 + d2,
the space of almost analytic functions f ∼ bs, where s ∈ Γd1(Λ, L ) and b is an
homogeneous function of degree d2 in θ.

Theorem 2.40. Let A = I(ϕ, a), with ϕ(x, θ) ∈ C ∞(Rn × (RN \ 0)) a non-degenerate
phase function and a(x, θ) ∈ Sm+(n−2N)/4

cl . Then, the principal symbol of a distribution
A ∈ Im

cl (X, Λ; Ω
1
2 ) is the homogeneous section

σm(A) ∼ ã0
√

dϕ ∈ S(m+n/4)(Λ, L ), (2.2.2)

where a0 is the top order term of the asymptotic expansion of a.

Proof. Recall that, according to Definition 2.30, σm(A) = P−1([A]), where P is the
bijective map in Theorem 2.29. Then, we need to show that

TA(ψ) and P−1([A]) are equivalent as sections of L . (2.2.3)

First of all, we need to verify that TA(ψ) ∈ Γm+n/4(Λ, L ). In the previous section,
we showed that almost analytic homogeneous functions define homogeneous sec-
tions in L . This, together with the local identification of Cϕ and Λϕ, allows us to
interpret ã0 and ũ as elements of Γm+(n−2N)/4(Λ, L ) and Γ0(Λ, L ), respectively.
Then, it follows that the right hand side of (2.2.1) defines a homogeneous section
of degree m + n/4.

Recall that the sections of the line bundle form an equivalent class, and that the
classes are independent of the choice of almost analytic extension of a0 and u. Recall
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Chapter 2. Fourier integral operators with complex phase

also that TA(ψ) ∼ P−1([A]) means they belong to the same equivalence class. In
other words, we need to show that P ◦ TA is the identity.

Given a distribution A = I(ϕ, a), the equivalent class [A] is determined by the oscil-
latory integral I(ϕ, a0), where a0 is the top order term of the asymptotic expansion
of a. On the other hand, the action of P , tells us that

P(s) = I(ϕ, b), s ∼ b
√

dϕ ∈ Γm+n/4(Λ, L ),

with b an extension of b toCn×CN . Then, taking s = TA(ψ), we haveP(s) = I(ϕ, b)
with b = ã0ũ. Since this is valid for any u ∈ C∞

c and any almost analytic extensions,
we conclude that

P(s) ∼ I(ϕ, ã0) = [A].

Equivalently, P−1([A]) is a scalar multiple of TA(ψ) = ã0
√

dϕ, which gives the
result. Once again, there is some freedom in choosing the extension b, but another
extension will result in another representative of the same equivalent class.

This description of the principal symbol has some important consequences. First
note that σm maps

Im
cl (X, Λ; Ω

1
2 )→ S(m+n/4)(Λ, L ), (2.2.4)

Moreover, as a direct consequence of (2.2.3) and the bijectivity of P , we see that
σm+n/4 is surjective. Thus, similarly to the real-valued case, the map σm+n/4 fits
into a short exact sequence

0→ Im−1
cl (X, Λ; Ω

1
2 )→ Im

cl (X, Λ; Ω
1
2 )

σm
−→ S(m+n/4)(Λ, L )→ 0.

On the other hand, the equation (2.2.2) allows us to refine the formulation of
Theorem 2.38, because now we see the multiplicative behaviour of the principal
symbol.

Theorem 2.41. Let A1 ∈ Im1
cl (X × Y, C1; Ω

1
2 ), A2 ∈ Im2

cl (Y × Z, C2; Ω
1
2 ) be as in

Theorem 2.36 and denote by B the composition A1 ◦ A2 ∈ Im1+m2
cl (X× Z, C1 ◦ C2; Ω

1
2 ).

Then,
σm(B) ∼ (a1)0(a2)0(θ

2 + σ2)
−nY

2
√

dΦ ∈ S(m+n/4)(Λ, L ),
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with m = m1 + m2, n = nX + nZ and (C1 ◦ C2)
′ = Λ ∼ ΛΦ. Here (a1)0, (a2)0 are the

principal parts of the amplitudes of A1 and A2, respectively.

Proof. Theorem 2.40 applied to B = A1 ◦ A2, tells us that

σm(B) ∼ b̃0
√

dΦ, (2.2.5)

with b = (a1)(a2)(θ
2 + σ2)

−nY
2 the amplitude of B. Then, the proof consists in

showing that
√

dΦ defines a section in Γ(Λ, L ), for Λ = (C1 ◦ C2)
′. Luckily, all the

necessary steps were proved in [16]. In general, the square of a section σ ∈ Γ(Λ, L )

defines, up to a sign, an almost analytic form on Λ of maximal degree. That is

σ2 ∼ ±ω, for some n-form ω.

By construction (see Lemma 2.28), we know that given a phase function ϕ, there is
a n-form ω = dϕ. Moreover,

σ2 ∼ ±dϕ, for σ =
√

dϕ. (2.2.6)

On the other hand, the proof of Theorem 2.38 states

dϕ1 ∧ dϕ2 ∼ ±(θ2 + σ2)−nY dΦ ∧Ω

defines an almost analytic form on Λ = (C1 ◦ C2)
′, and that α2

1 ∧ α2
2 ∼ ±α2 ∧Ω,

for some Ω. Here α1, α2, α are the principal symbols of A1, A2, B, respectively.
Combing these facts with the expressions for α1, α2 according to Theorem 2.40, we
get

α2
1 ∧ α2

2 ∼ ((a1)
2
0 dϕ1) ∧ ((a2)

2
0 dϕ2) ∼ ((a1)0(a2)0)

2 dϕ1 ∧ dϕ2

∼ ±
(
(a1)0(a2)0(θ

2 + σ2)−
nY
2

)2
dΦ ∧Ω,

Then, α2 ∼ ±b2
0dΦ. From equation (2.2.6), we see that α ∼ b0

√
dΦ. The result

follows from equation (2.2.5) and the definition of b0.

45



Chapter 2. Fourier integral operators with complex phase

2.2.2 Clean phase functions and composition

In [16], the case of transverse composition was considered. We wish to relax their
assumptions to include a slightly more general geometric situation. In this subsec-
tion, we consider the case of clean composition. To do so, we first need to consider
complex-valued clean phase functions. They are a natural generalization of the
concept of non-degenerate phase functions, but we were not able to find them in
the existing literature.

Definition 2.42. A complex-valued function ϕ(x, θ), smooth in a conic set V ⊂ Rn ×
RN \ 0, is called clean phase function of positive type if ℑϕ ≥ 0 and

• dϕ ̸= 0,

• ϕ is homogeneous of degree 1 in θ,

• there exist M ≤ N, such that M of the differentials
{

d( ∂ϕ
∂θj

)
}N

j=1
are linearly indepen-

dent over C on
CϕR =

{
(x, θ) ∈ V : ϕ′θ = 0

}
.

The number e = N −M is called the excess of ϕ.

Note that, whenever the excess e = 0, the function ϕ is a non-degenerate phase
function. Also note that, after reorganizing the variables, it is possible to split
θ ∈ RN \ 0 as (θ′, θ′′) ∈ (RM × Re) \ 0, where the differentials

{
d(∂ϕ/∂θ′j)

}
,

j = 1, . . . , M are the ones satisfying Definition 2.42.

As usual, we denote by Λϕ the manifold{(
x̃, ∂x̃ϕ̃(x̃, θ̃)

)
∈ Cn ×Cn \ 0 : (x̃, θ̃) ∈ Cϕ̃

}
,

for some almost analytic extension ϕ̃ of ϕ to a complex extension of V. One can
verify that

Cϕ =
{
(x̃, θ̃) ∈ Cn ×

(
CN \ 0

)
: ∂x̃ϕ̃(x̃, θ̃) = 0

}
is an almost analytic manifold of dimension 2(n + e). Moreover, the the map

Cϕ ∋ (x̃, θ̃)→
(
x̃, ∂x̃ϕ̃(x̃, θ̃)

)
∈ Λϕ (2.2.7)
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is almost analytic and bijective, which makes Λϕ a positive Lagrangian manifold.
Then, in view of Remark 2.17, it can be parameterized by a non-degenerate phase
function,

ψ̃(x̃, ξ̃) = x̃ξ̃ − g(ξ̃), (x̃, ξ̃) ∈ Cn × (Cn \ 0), (2.2.8)

for some almost analytic function g with ℑg ≤ 0 at ξ ∈ Rn \ 0. Denoting by ψ the
restriction of ψ̃ to the real domain, we see that ϕ ∼ ψ in the sense of Definition 2.18.
This equivalence of phase functions allows us to associate distributions in Im

cl with
a microlocal representation I(ϕ, a), where ϕ is a clean phase function instead of a
non-degenerate one.

Proposition 2.43. Let ϕ(x, θ) ∈ C ∞(Rn × (RN \ 0)) be a clean phase function of excess
e. Then, for a ∈ Sm+(n−2N−2e)/4(Rn × (RN \ 0)), the oscillatory integral I(ϕ, a) defines
a Fourier distribution of order m.

Proof. Fix a point (x0, θ0) ∈ CϕR and set ξ0 = ϕ′x(x0, θ0). We know that, near (x0, ξ0),
the almost analytic manifold Λ ∼ Λϕ is equivalent to a manifold Λψ, with ψ the
non-degenerate phase function (2.2.8). We wish to use the construction in Proposi-
tion 2.19 to show that there exists an amplitude b ∈ Sm+(n−2N′)/4(Rn × (RN′ \ 0)),
N′ = n, such that the oscillatory integrals I(ϕ, a) and I(ψ, b) are microlocally
equivalent near (x0, ξ0). This will imply that I(ϕ, a) defines a Fourier distribution.

The proof of Proposition 2.19 is based on the stationary phase formula. There, we
could apply Theorem 2.9 with respect to the variables (x, θ), because the phase
functions were assumed to be non-degenerate. This is no longer true for a clean
phase function ϕ. Instead, we need to consider θ = (θ′, θ′′) ∈ (RM ×Re) \ 0, and

I(ϕ, a) ∼
∫ (∫

eiϕ(x,θ′,θ′′)a(x, θ′, θ′′) dθ′
)

dθ′′. (2.2.9)

Since the differentials
{

d(∂ϕ/∂θ′j)
}
are linearly independent over C at real points,

we can apply the stationary phase formula to the inner integral in (2.2.9). The
rest of the argument in Proposition 2.19 applies without further modification. The
desired conclusion follows after integrating out the excess variables θ′′.
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Finally, note that applying the stationary formula in e less variables increases the
order of the distribution by e/2. Now the asymptotic sum (2.1.1) is in S−(n+N)/2+e/2

instead of S−(n+N)/2, as it was the case in Proposition 2.19.

Since the construction that leads to Theorem 2.40 is also based on the stationary
phase formula, the description of the principal symbol given by equation (2.2.2)
applies only to the inner integral in (2.2.9). So, a priori, the principal symbol of the
distribution A = I(ϕ, a) above is given by the integral, with respect to θ′′ , of the
principal symbol of the inner distribution. But, for this to be correctly defined, we
first need to modify the definition of

√
dϕ.

Lemma 2.44. Let ϕ(x, θ) be a clean phase function with excess e that parameterizes Λ.
Then, there is a section

√
dϕ ∈ Γ(N−e)/2(Λ, L ), defined by

(
√

dϕ)τ ∼

det
1
i

 ϕ̃′′xx − ψ̃′′xx ϕ̃′′xθ′

ϕ̃′′θ′x ϕ̃′′θ′θ′

−1/2

, (2.2.10)

where θ′′ are the excess variables in the splitting θ = (θ′, θ′′). Here τ, ψ and the branch of
the square root are chosen as in Lemma 2.28.

Proof. Note that, for θ′′ fixed, ϕ defines a non-degenerate phase functionwith respect
to the variables (x, θ′). Then, it follows fromLemma 2.28, that

√
dϕ defines a section

ofL . Since thematrix in (2.2.10) is nowof dimension (n+ N− e)× (n+ N− e), we
see that

√
dϕ is homogeneous of degree (N− e)/2, which completes the proof.

With this newmeaning for
√

dϕ, we can apply Theorem 2.40 to the inner integral in
equation (2.2.9). It follows that ã0

√
dϕ defines an element of S(m−e+n/4)(Λ, L ), but,

we still need to integrate out the excess variables θ′′. In principle, this integral may
not be defined. Thus, similar to the real case, we restrict the domain of integration.

Let π : Λϕ → Cn be the projection π(x̃, ξ̃) = ξ̃. The composition of π with the map
(2.2.7) defines a fiber bundle over Λ with fiber

Cξ̃ =
{
(x̃, θ̃) : ∂θ̃ϕ̃(x̃, θ̃) = 0, ∂x̃ϕ̃(x̃, θ̃) = ξ̃

}
.
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The fiber Cξ̃ can be interpreted as an almost analytic manifold of dimension 2e, if

the differentials
{

d( ∂ϕ
∂xj

)
}n

j=1
are linearly independent at real points. In any case,

we can compute
∫

Cξ̃
ã0
√

dϕ dθ′′ if we assume that CξR, the restriction of Cξ̃ to the
real domain, is compact.

Definition 2.45. Let ϕ(x, θ) ∈ C ∞(Rn× (RN \ 0)) be a clean phase function with excess
e, such that the set CξR above is compact. Then, the principal symbol of A ∈ Im

cl (X, Λ; Ω
1
2 ),

locally A = I(ϕ, a), is

σm(A) =
∫

Cξ̃

ã0
√

dϕ dθ′′ ∈ S(m−e+n/4)(Λ, L ). (2.2.11)

Here a0 is the principal part of a(x, θ) ∈ Sm+(n−2N−2e)/4
cl (Rn × (RN \ 0)).

We consider now a generalization of Assumption 2.33. As before, let X, Y, Z be
manifolds of dimension nX, nY, nZ respectively, ∆ = T∗X× diag(T∗Y)× T∗Z and
∆̃ its almost analytic continuation. Consider

A1 ∈ Im1
cl (X×Y, C1; Ω

1
2 ), A2 ∈ Im2

cl (Y× Z, C2; Ω
1
2 ),

where the Cj, j = 1, 2, are positive canonical relations. Recall that Λj = C′j are
positive Lagrangian manifolds.

Assumption 2.46. Suppose that:

a. At the real points of (C1 × C2) ∩ ∆, the intersection is clean with excess e.

b. The natural projection (C1R × C2R) → (T∗X \ 0) × (T∗Z \ 0) is injective and
proper.

Remark 2.47. The intersection of two smooth submanifolds Y1 and Y2 of a smooth manifold
X is said to be clean if, Y1 ∩Y2 defines a manifold and, at every point x ∈ Y1 ∩Y2, it holds
that TxY1 ∩ TxY2 = Tx(Y1 ∩Y2).
The non-negative integer e satisfying codim Y1 + codim Y2 = codim(Y1 ∩ Y2) + e is
called the excess of the intersection.

As expected, the generalized assumption leads to clean phase functions. The
following results follow form arguments similar to those in Subsection 2.1.4. Here
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we only present the parts where the proofs are different.

Proposition 2.48. Let C1 ⊆ (T∗X \ 0)∼× (T∗Y \ 0)∼, C2 ⊆ (T∗Y \ 0)∼× (T∗Z \ 0)∼

be positive canonical relations satisfying Assumption 2.46. Then, there exists a manifold
C′ := (C1 ◦ C2)

′, parameterized by a clean phase function Φ, such that CR = C1R ◦ C2R.
The excess of Φ is equal to the excess of the intersection at real points.

Proof. Since the Λj, j = 1, 2, are almost Lagrangian manifolds, there are coordinates
such that, in a neighborhood of real points (x0, ξ0, y0,−η0) ∈ Λ1R = C′1R and
(y′0, η′0, z0, ζ0) ∈ Λ2R = C′2R, the manifolds are given by the vanishing of

x̃− ∂H1

∂ξ̃
(ξ̃, η̃), ỹ +

∂H1

∂η̃
(ξ̃, η̃); ỹ′ − ∂H2

∂η̃′
(η̃′, ζ̃), z̃ +

∂H2

∂ζ̃
(η̃′, ζ̃).

The intersection (C1 × C2) ∩ ∆̃ is completely described by these functions together
with

ỹ = ỹ′, η̃ = η̃′,

and its tangent plane is given by the vanishing of these differentials. Clean intersec-
tion means that T(C1R × C2R) ∩ T∆ is described by the equations

d
(

x− ∂H1

∂ξ
(ξ, η)

)
= 0, d

(
y +

∂H1

∂η
(ξ, η)

)
= 0, d(y− y′) = 0,

d
(

y′ − ∂H2

∂η′
(η′, ζ)

)
= 0, d

(
z +

∂H2

∂ζ
(η′, ζ)

)
= 0, d

(
η − η′

)
= 0,

(2.2.12)

and has dimension nX + nZ + e, where e is the excess of the intersection. Like in
to the transversal case (Proposition 2.35), we define C1 ◦ C2 as the manifold that
satisfies (C1 ◦ C2)R = C1R ◦ C2R, where

C1R ◦ C2R =
{
((x, y, ξ, η), (y′, z, η′, ζ)) ∈ C1R × C2R : y = y′, η + η′ = 0

}
can be identified with (C1R × C2R) ∩ ∆. The main difference is that now the La-
grangian manifold Λ = (C1 ◦ C2)

′ is of dimension nX + nZ + e. Suppose now that
Λ1 and Λ2 are parameterized by the non-degenerate phase functions

ϕ1(x, y, ξ, η) = x · ξ − y · η + H1(ξ, η), ϕ2(y, z, η, ζ) = y · η − z · ζ + H2(η, ζ).
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The previous analysis shows that the function

Φ(x, z, ω) = ϕ1(x, y, ξ, η) + ϕ2(y, z, η, ζ), ω = ω(y, ξ, η, ζ),

defines a clean phase function with excess e, because the differentials d(∂Φ/∂ωj)

are exactly those in (2.2.12). Then, the excess of the phase function Φ is

dim Λ− (nX + nZ) = e.

Recall that y needs to be considered a parameter, so we take Φ as a function of
(x, z, ω), with ω = ω(y, ξ, η, ζ) some homogeneous function of degree 1. Finally,
note that there is a one-to-one correspondence between C1R ◦ C2R and

CΦR =
{
((x, y, ξ, η), (y, z, η, ζ)) ∈ Cϕ1 × Cϕ2 : ∂y(ϕ1 + ϕ2) = 0

}
,

so the manifold Λ = (C1 ◦ C2)
′ can be parameterized by the clean function Φ.

To make the notation consistent with the results presented in Section 2.1, we put
θ = (ξ, η) and σ = (η, ζ). Then, we consider Φ as a clean phase function depending
on (x, z, y, θ, σ), that is

Φ(x, z, ω) = ϕ1(x, y, θ) + ϕ2(y, z, σ), ω = ω(y, θ, σ),

where ω is some homogeneous function of degree 1.

The next theorem tells us that under Assumption 2.46, the composition of Fourier
integral operators is well-defined. Note that when the excess e = 0, we land
in the case of transverse composition. Thus, the following is a generalization of
Theorem 2.36.

It follows from the remark before Definition 2.45, that to compute the principal
symbol of the resulting distribution, we would need to integrate out the excess
variables. To do so, we take advantage of the identification between C1 ◦ C2 and
(C1 × C2) ∩ ∆̃.

Assumption 2.49. The image Cγ of a point γ ∈ (C1 ◦ C2)R in (C1R× C2R) ∩ ∆, defines
a compact fiber of dimension e over γ.
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Chapter 2. Fourier integral operators with complex phase

Theorem 2.50. Let C1 ⊆ (T∗X \ 0)∼× (T∗Y \ 0)∼ and C2 ⊆ (T∗Y \ 0)∼× (T∗Z \ 0)∼

be positive canonical relations satisfying Assumption 2.46 and Assumption 2.49. Suppose
that A1 ∈ Im1

cl (X × Y, C1; Ω
1
2 ) and A2 ∈ Im2

cl (Y × Z, C2; Ω
1
2 ) are properly supported.

Then, the composition A1 ◦ A2 defines a distribution in Im+e/2
cl (X × Z, C1 ◦ C2; Ω

1
2 ),

m = m1 + m2, where e is the excess of the intersection.

The proof is omitted because it is essentially the same as the proof of Theorem 2.36,
but uses the canonical transformation defined in Proposition 2.48, instead of the
one in Proposition 2.35. The order of the distribution is a direct consequence of
Proposition 2.43 and the fact that A1 ◦ A2 ∼ I(Φ, b), for

b(x, z, ω) = a1(x, y, θ)a2(y, z, σ)(|θ|2 + |σ|2)−nY/2 ∈ Sm′
cl

(
RnX+nZ ×RN

)
,

(2.2.13)

where A1 ∼ I(ϕ1, a1), A2 ∼ I(ϕ2, a2), N = nY + N1 + N2 and m′ = m1 +m2 +(nX +

nZ − 2N)/4. This last claim, can be proven by the same calculations presented in
Theorem 2.36.

To compute the principal symbol of the distribution A1 ◦ A2, we need further
assumptions. We can now present an extension of Theorem 2.41.

Theorem 2.51. Let A1 ∈ Im1
cl (X × Y, C1; Ω

1
2 ) and A2 ∈ Im2

cl (Y × Z, C2; Ω
1
2 ) satisfy

the assumptions of Theorem 2.50. Let m = m1 + m2 and denote by B the composition
A1 ◦ A2 ∈ Im+e/2

cl (X× Z, C; Ω
1
2 ). Then,

σm+e/2(B) ∼
∫

Cγ

(a1)0(a2)0(θ
2 + σ2)

−nY
2
√

dΦ dy′′dθ′′dσ′′ ∈ S(m−e/2+n/4)(Λ, L ),

(2.2.14)

with n = nX + nZ and
√

dΦ defined as in Lemma 2.44.

Proof. A direct consequence of Theorem 2.41 and Definition 2.45. We only need to
compute the order of homogeneity. Since

√
dΦ is defined according to Lemma 2.44,

it is homogeneous of degree (N − e)/2, with N = nY + N1 + N2 and e the excess
of the intersection. Then,

(a1)0(a2)0(θ
2 + σ2)

−nY
2
√

dΦ ∈ S(m′′)(Λ, L )
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for m′′ = m + (N − e)/2 = m1 + m2 − e/2 + (nX + nZ)/4. Equation (2.2.14)
follows after integration with respect to the excess variables ω′′ = ω′′(y, θ, σ). Note
that it is possible to organize the variables in a way that ω′′ = (y′′, θ′′, σ′′) ∈ Re, for
some splitting y = (y′, y′′), θ = (θ′, θ′′) and σ = (σ′, σ′′).

We conclude the chapter with an important observation: Proposition 2.48 im-
plies that Λ ∼ (C1 ◦ C2)

′ is a positive Lagrangian manifold. As such, it can
be parametrized by a non-degenerate phase function. This re-parametrization
could potentially save us the difficulty of working with the implicit variables
ω = ω(y, θ, σ), but the amplitude b will no longer be as in (2.2.13). In Subsec-
tion 3.3.2, we take advantage of this fact to verify the Hs-continuty of our solution
operator.

53
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At the beginning of this thesis, the equation of linear elasticity was presented as
a motivation to study Fourier distributions with complex phase functions. It was
shown, following ideas from [19], that it is possible to approximate the solution
operator by a sum of two Fourier integral operators with complex phase func-
tions. Approach that allowed us to rigorously study the properties of these type
of solutions. The present chapter is devoted to extend that construction, and the
subsequent analysis, to general hyperbolic surface waves.

Since surface waves are related to certain type of weakly regular hyperbolic bound-
ary value problems (BVP), the first section of this chapter is an overview of the
regularity theory of hyperbolic BVP. Specifically, we consider a constantly hyper-
bolic first order boundary value problem in the half-space

R1+d
+ := {(x, y) ∈ R1+d : x > 0, y ∈ Rd}.

Definition 3.1. A first order differential operator L, of the form

L = ∂t − A(t, x, y, ∂x, ∂y),

is called symmetrizible hyperbolic with constant multiplicities, or constantly hyperbolic, if
the matrix A(t, x, y, ξ, η) have only real, semi-simple eigenvalues, and their multiplicity is
independent of (t, x, y, ξ, η).

In order to make the presentation as clear as possible, we start by making a series
of simplifying assumptions. Assume that L has constant coefficients and that the
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boundary is non-characteristic. In other words, we consider the general IBVP
Lu = ∂tu− A0∂xu−

d

∑
j=1

Aj∂yj u = f (t, x, y) in (0, T)×R1+d
+ ,

Bu = g(t, y) on (0, T)×Rd,

u|t=0 = u0(x, y) in Rd+1
+ ,

(3.0.1)

where the matrices Aj ∈ MN×N(C) and B ∈ Mp×N(C) have constant entries and
A0 is non-singular. Furthermore, we assume that p is the number of incoming
characteristics, this is the number of negative eigenvalues of A0.

The well-posedness of this problem is connected to the so called uniform Kreiss-
Lopatinskii condition. When this condition is satisfied, the IBVP is strongly well-
posed, with estimates comparable to those obtained for the Cauchy problems.
Having said that, the existence of surface waves is related to the failure of the
condition in a controlled manner. And it is precisely this way of not satisfying the
condition, which naturally leads us to Fourier distributions whit complex phases.

This chapter consist of four sections. The first one is a summary of the theory of
well-posedness of hyperbolic boundary value problem. There, the uniform Kreiss-
Lopatinskii condition is introduced, and its relation to the existence of surface
waves is explained. On the second section, we show how the construction in [19]
can be used to obtain an approximated solution to a certain type of weakly regular
BVP. The third section is devoted to analyse this approximated solution. With the
help of the results from the previous chapter, we provide a refined description of
the propagation of singularities and a preliminary result concerning the regularity
of the solution. Finally, in the last section, we get rid of the assumption of constant
coefficients and study a more general operator L.

3.1 The Kreiss-Lopatinskii condition

The uniform Kreiss-Lopatinskii condition, or UKL for short, is necessary and suf-
ficient for the L2 well posedness of the hyperbolic IBVP. A detailed presentation
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of this condition can be found in [3] and [5]. For the sake of completeness, this
section contains a rough sketch of the ideas leading to UKL and its consequences.

We start by considering the IBVP (3.0.1), with f ≡ 0. After taking Fourier transform
on (t, y), we search for a solution that decays away from the boundary. To be precise,
we look for a solution v(x) = û(τ, x, η) to

v′ = iA(τ, η)v, A(τ, η) = (A0)
−1

(
τ In −

d

∑
j=1

Ajηj

)
,

such that v→ 0 when x → ∞. Here (τ, η) ∈ Rn, with n = 1 + d, and x ∈ R+. The
solution to this ODE, with initial condition v(0) = w, is

v(x) = eiA(τ,η)xw.

Suppose now that τ = ρ− iγ. Then, the hyperbolicity assumption implies that, for
γ > 0, A(τ, η) has no real eigenvalues and we can decompose CN as a direct sum
of eigenspaces. Then, v can be written as v(x) = v+(x) + v−(x), where

v±(x) =
1

2iπ

∫
C±

eixξ [ξ In −A(τ, η)]−1w dξ

and C± are curves enclosing the eigenvalues of A(τ, η) with positive/negative
imaginary part. Since we need our solution to be bounded for x > 0, we consider
only v+. It is clear that v+(0) = Pw, where P is the projector

P =
1

2iπ

∫
C+

[ξ In −A(τ, η)]−1w dξ.

Let S(τ, η) be the image of P. Then, stability of the BVP (3.0.1) requires that the
restriction of B to S(τ, η) is an isomorphism. When this holds, we say that the BVP
satisfy the uniform Kreiss-Lopatinskii condition, UKL for short.

Remark 3.2. For the weaker (non-uniform) version of the condition, the KL condition, one
needs to consider the boundary case ℑτ = 0. While the space S(τ, η) is no longer defined,
it is possible to consider the limit space as ℑτ → 0. Further details can be found in [3].

Let λj(τ, η) ∈ C denote the eigenvalues of A(τ, η) with ℑλj ≥ 0 and rj(τ, η) ∈ CN

is the corresponding eigenvector. Since the operator L is constantly hyperbolic, we
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know that for ℑτ ≤ 0, there are exactly p of such eigenvectors counted with their
multiplicities. Thus, we can write the stable function v+ as

v+(x) =
p

∑
j=1

eiλj(τ,η)xrj(τ, η). (3.1.1)

The solution u to the BVP in (3.0.1) is then

u(t, x, y) =
p

∑
j=1

∫
ei(τt+ηy)eiλj(τ,η)xrj(τ, η) dτ, dη.

Roughly speaking, there are two possible behaviours for u:

1. There are no solutions that grow or oscillate in time, i.e. ℑτ < 0. In this case,
the BVP satisfy the UKL condition.

2. There is a solution that oscillates in time, i.e. ℑτ = 0, and it is a limit of
solutions that grow in time and decay away from the boundary. In this case
the BVP satisfy the KL condition.

3.1.1 The Lopatinskii determinant

It is often difficult to verify the UKL condition in practice. But, there is a practical,
and somewhat easier, tool to verify this condition: the Lopatinskii determinant.
This is a function ∆, that vanishes precisely at the points (τ, η) where either KL or
UKL are violated.

To construct the determinant ∆, we first need a basis of the stable subspace S(τ, η)

which is jointly analytic in (τ, η) and, therefore, holomorphic in τ. By stable subspace
we mean the sum of the generalized eigenspaces corresponding to eigenvalues
of A(τ, η) with non-negative imaginary part. Let {X1(τ, η), . . . , Xp(τ, η)} be such
basis and define

∆(τ, η) = det(BX1(τ, η), . . . , BXp(τ, η)). (3.1.2)

Thanks to hyperbolicity and the assumption of constant multiplicities, it is possible
to take this basis as a basis of eigenvectors. This can be done following the procedure
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described in [14], Chapter II, Section 4.2. It follows that we can take the Xj to be
the eigenvectors rj in (3.1.1). At this point, there are two alternatives for the BVP,

1. UKL holds, meaning ∆(τ, η) ̸= 0 for all (τ, η) with ℑτ ≤ 0. So the problem
is strongly well-posed in any Sobolev space. Precise energy estimates can be
found in [3], Chapter 4.

2. UKL fails but KL holds. This means ∆(τ, η) ̸= 0 for all (τ, η) with ℑτ < 0,
but it vanishes for some τ ∈ R. Hence, the problem is generically weakly
well-posed.

In the second case, the problem is C∞ well-posed but there is a loss of regularity,
which has to be worked out in a case-by-case study. We are interested in one of
those cases, when the IBVP admits surface waves as solutions. Which, according to
[4], represents the transition between the classes of stable and unstable problems.

3.1.2 The block structure

Before giving the exact definition of surfaces waves, we need to understand another
important property of the symmetrizable and constantly hyperbolic BVPs, which
was introduced by Kreiss and improved by Mètivier [18] . Set τ = ρ− iγ, and
denote by X and X0 the set of frequencies

X = {ζ = (ρ− iγ, η) ∈ C×Rd : γ ≥ 0}, and X0 = {ζ ∈ X : γ = 0}.

Theorem 3.3 (Block structure). If the IBVP (3.0.1) is symmetrizable hyperbolic with
constant multiplicities, then for all ζ ∈ X there is a neighborhood O of ζ in C×Rd, an
integer L ≥ 1 and a invertible matrix T(ζ) defined in O such that

T−1(ζ)A(ζ)T(ζ) = diag (A1(ζ), . . . ,AL(ζ)) ,

where the blocks Ai are νi × νi matrices that satisfy one of the following conditions:

i. All elements of the spectrum of Ai(ζ) have strictly positive imaginary part.

ii. All elements of the spectrum of Ai(ζ) have strictly negative imaginary part.
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iii. νi = 1, Ai(ζ) is real when γ = 0 and ∂γAi(ζ) ̸= 0.

iv. νi > 1, Ai(ζ) has real coefficients when γ = 0, there exists ki ∈ R such that

Ai(ζ) =

 ki 1 0
...

. . . 1

0 . . . ki


and the lower left hand corner of ∂γAi(ζ) does not vanish.

Thanks to this result, we can classify the frequencies in X0 into four groups.

Definition 3.4 (Boundary frequencies). We say ζ ∈ X0 is

• elliptic if Theorem 3.3 is satisfied with exactly one block of type i. and, consequently,
one block of type ii. The set of elliptic frequencies is denoted by E .

• hyperbolic if Theorem 3.3 is satisfied exclusively with blocks of type iii. The set of
hyperbolic frequencies is denoted byH.

• mixed if Theorem 3.3 is satisfied with one block of type i., one block of type ii. and
at least one block of type iii., but no blocks of type iv. The set of mixed frequencies is
denoted byM.

• glancing if Theorem 3.3 is satisfied with at least one block of type iv. The set of
glancing frequencies is denoted by G.

It should be clear that we have a partition of the frequency space

X0 = E ∪H ∪M∪G,

however we will neglect the glancing frequencies, as we did in Section 1.3. Mainly
because their presence means there is at least one pair of crossing eigenvalues. As
explained in [2], if ζ ∈ X0 \ G, we can write

CN = S(ζ)
⊕

U(ζ),

where S and U refer to the stable and unstable subspaces of A, respectively. Note
that

S(ζ) = Se(ζ)
⊕

Sh(ζ),
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where Se is the generalized eigenspace associated to eigenvalues of positive imagi-
nary part, while Sh is associated to some real eigenvalues. Moreover, near glancing
points, it is no longer true that dim S = p, which is essential for the construction.

3.1.3 Surface waves

Let (ρ0, η0) ∈ E be a point where the BVP (3.0.1) violates the UKL condition. A
surface wave is a non-trivial solution of the form

ei(ρ0t+η0y)V(x), V ∈ L2(R+).

This solution represents a wave travelling in the direction parallel to the boundary.
More importantly, they have finite energy density and can be used to construct
exact solutions of the BVP (see [3], Chapter 7).

Clearly, a solution like this one can only exists if the Lopatinkii determinant vanishes
at some elliptic point (ρ0, η0), however a littlemore control is required. To be precise,
an IBVP admits a surface wave solution, if the following assumption is satisfied.

Assumption 3.5. The BVP satisfies KL, but the Lopatinskii determinant ∆ vanishes, at
the first order only, at some elliptic point. Explicitly, there exists some ζ0 = (ρ0, η0) ∈ E
such that

∆(ζ0) = 0, ∂γ∆(ζ0) ̸= 0,

and ∆(ζ) ̸= 0 everywhere else.

In general, because the UKL condition is not satisfied, surface waves are associated
with some loss of regularity. However, their presence does not implies instability.
For this reason, this type of problems are sometimes called weakly regular in the
literature.

Remark 3.6. Recall that we are considering the BVP in (3.0.1) with f ≡ 0 and g ̸= 0.
If we assume f ̸= 0 and g ≡ 0, the problem can be strongly well-posed in L2. See, for
instance, [3], Section 7.2.

As mention before, the authors in [4] showed that this condition generically de-
scribes the transition between the classes of strongly stable and strongly unstable
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Chapter 3. Hyperbolic surface waves

problems. They also showed that the BVP satisfying Assumption 3.5 are not stable
under perturbation of the coefficients, thus a small change in parameters can lead
to instability. An example of this can be found in [1], where a small change in the
coefficients forces the wave speed to become complex, which makes the solution
exponentially unstable.

3.2 An approximated solution of the BVP

In this section, we extend the construction used for Rayleigh waves to the case of
general hyperbolic surface waves. Specifically, we will show the following theorem

Theorem 3.7. Assume that the boundary value problem (3.0.1), with f ≡ 0, satisfies As-
sumption 3.5. Denote by λj(ζ), j = 1, . . . , p, the eigenvalues of A with positive imaginary
part, counted with their multiplicities, and by rj(ζ) the corresponding eigenvectors. Then,
one can approximate the solution of the BVP by

u =
p

∑
j=1

Sj(Fj), (3.2.1)

where the distributions Fj satisfy equation (3.2.7) below, and each Sj denotes the Fourier
integral operator with complex-valued phase function ϕj(x, z, ζ) = zζ + λj(ζ)x and
amplitude

aj(x, z, ζ) ∼ rj + ∑
l≥1

κ(x, z)
rj(ζ)

|ζ|l
.

Under the assumptions of the theorem, the arguments presented in Section 1.3 can
be applied, but we should expect the computations to be more involved. We now
present a sketch of the proof, the detailed construction can be found in the next few
subsections.

Sketch of the proof. Suppose that the BVP (3.0.1) satisfies Assumption 3.5 and take
the ansatz

u =
p

∑
j=1

uj, uj =
∫

eiϕj(x,z,ζ)aj(x, z, ζ)F̂j(ζ) dζ =: Sj(Fj). (3.2.2)
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3.2. An approximated solution of the BVP

The phase functions ϕj and the amplitudes aj will come from a geometric optics
approximation. Namely, for each j, ϕj should satisfy the eikonal equation (see
Subsection 3.2.1) and aj solves certain transport equations (see Subsection 3.2.2).
Finally, the distribution Fj solves the pseudodifferential equation T(F) = g, where
the operator T is determined by the boundary condition. (see Subsection 3.2.3). □

3.2.1 The phase functions

Following the ideas of geometric optics, for each j, the phase function ϕj needs to
satisfy the eikonal equation

∂xϕj = λj(∇zϕj), (3.2.3)

ϕj|x=0 = zζ,

where λj is a root in ξ of det σ1(L)(ξ, ζ) or, equivalently, an eigenvalue of A(ζ).
Note that, because λj can take imaginary values, ϕj must also be complex-valued, so
it is possible that the composition λj(∇zϕ) is not defined. To avoid this, we would
need to consider an almost analytic extension λ̃j of λj. In which case, the eikonal
equation (3.2.3) can be solved as long as λ̃j is smooth and positive homogeneous
of degree one. A method for solving this complex-valued eikonal equation can be
found in [20]. The general solution to (3.2.3) is given by the formula

ϕj(x, z, ζ) = zζ +
∫ x

0
λ̃j(θ) ds,

where θ = θ(s, y, ζ) solves the Hamilton equation,

dy
dx

= −
∂λ̃j

∂ζ
,

dθ

dx
=

∂λ̃j

∂z
,

y|x=0 = z, θ|x=0 = ζ.

Thanks to our simplifying assumptions, this generic situation is not relevant for
the model BVP (3.0.1), as the eigenvalues of A(ζ) are known to be analytic and
we only need to consider λj as a function on Cn. Since we are assuming constant
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coefficients, the Hamilton equation is solved by the curve (y, θ) = (z +∇λj(ζ)x, ζ).
Hence, for each j,

ϕj(x, z, ζ) = zζ + λj(ζ)x, (3.2.4)

with the variables (x, z, ζ) now taken in C1+n ×Cn. For the oscillatory integrals in
(3.2.2) to be defined, we need ℑϕj ≥ 0. Thus, we consider only eigenvalues λj with
non negative imaginary part. It is easy to check that this expression defines, for
each j, a regular phase function in the sense of Definition 2.13.

3.2.2 The amplitudes

We now follow the argument of geometric optics to determine the amplitude func-
tions aj. Since the real-valued stationary phase formula remains valid for complex
phase functions, we can directly replace each uj into the first equation of (3.0.1),
with f ≡ 0. Before doing so, recall that z = (t, y) and ζ = (τ, η). Next, note that we
can write A(τ, η) = Qτ + Pη, for matrices Q and P. Then, v = Luj is equivalent to
v =

(
∂x −Q∂t − P∂y

)
uj. Computing this, with ϕj as in (3.2.4), one sees that

v =
∫

eiϕj(x,z,ζ)cj(x, z, ζ)F̂j(ζ) dζ, cj = iλj(τ, η)aj + ∂xaj − bj,

where bj is given by the relation eiϕj bj =
(
Q∂t + P∂y

) (
eiϕj aj

)
. Assuming that each

aj ∈ Sm
cl , for some m, with aj ∼ ∑l≥0 a(l)j , it follows that

bj =i
(
Q(∂tϕj) + P(∂yϕj)

)
∑
l≥0

a(l)j + Q ∑
l≥0

∂ta
(l)
j + P ∑

l≥0
∂ya(l)j

=i (Qτ + Pη) ∑
l≥0

a(l)j + Q ∑
l≥0

∂ta
(l)
j + P ∑

l≥0
∂ya(l)j

=iA(τ, η) ∑
l≥0

a(l)j + Q ∑
l≥0

∂ta
(l)
j + P ∑

l≥0
∂ya(l)j

After sorting by homogeneity, and momentarily omitting the index j, we get that b
has an asymptotic sum b ∼ ∑l≥0 b(l), with

b(l) = iA(τ, η)a(l−1) + Q∂ta(l) + P∂ya(l).
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3.2. An approximated solution of the BVP

Then,

c(l) = iλj(τ, η)a(l−1) + ∂xa(l) − b(l)

= i
(
λj(τ, η)−A(τ, η)

)
a(l−1) + ∂xa(l) −Q∂ta(l) − P∂ya(l).

Setting a(−1) = 0 and c(l) = 0 for all l, we have

c(0) = ∂xa(0) −Q∂ta(0) − P∂ya(0) = 0,

c(1) = i
(
λj(τ, η)−A(τ, η)

)
a(0) − ∂xa(1) −Q∂ta(1) − P∂ya(1) = 0.

Both equations are satisfied if a(0)(τ, η) is an λj-eigenvector of A and a(1) is any
solution of

∂xw + Q∂tw + P∂yw = 0. (3.2.5)

The next value of l gives

c(2) = i
(
λj(τ, η)−A(τ, η)

)
a(1) − ∂xa(2) −Q∂ta(2) − P∂ya(2) = 0,

which shows that a(1) must also be in the λj-eigenspace, and a(2) should be solution
of (3.2.5). Continuing this way, we see that each aj is of the form

aj(x, z, ζ) ∼ rj(ζ)χ(ζ) + ∑
l≥1

κ(x, z)
rj(ζ)

|ζ|l
χ(ζ), (3.2.6)

where κ solves equation (3.2.5), rj is an eigenvector of A corresponding to λj and
χ ∈ C ∞ satisfy

χ(ζ) = 0 for |ζ| ≤ 1/2, χ(ζ) = 1 for |ζ| > 1.

Note that, for all j, rj is homogeneous of degree one, then the role of the factor |ζ|−l

is to fix the homogeneity, so that rj(ζ)/|ζ|l is homogeneous of degree 1− l. One
can verify that

aj(x, z, ζ) ∈ S0
cl(R

1+n × (Rn \ 0)).

Remark 3.8. We can pick κ to be a constant. In this case, the amplitudes aj would be
independent of (x, z), satisfying equation (3.2.5) trivially.
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3.2.3 The boundary condition

The last step is to show that one can find distributions Fj such that the ansatz (3.2.2)
satisfies the boundary condition. As before, this will be done by solving, mod C ∞,
the equation

T(F1, . . . , Fp)
T = g,

where T is determined by the boundary matrix B.

We start by replacing u|x=0 into the boundary condition, that is the second equation
of (3.0.1).

Remark 3.9. By u|x=0 we mean the restriction to the boundary of R+ ×Rn. That is the
trace of the distribution u.

A short calculation shows that

u|x=0 =
p

∑
j=1

∫
eiz·ζ aj(0, z, ζ)F̂j(ζ) dζ,

g = Bu|x=0 =
∫

eiz·ζM(z, ζ)F̂(ζ) dζ, (3.2.7)

where F = (F1, . . . , Fp)T andM ∈ Mp×p(C) is the matrix with columns Baj(0, z, ζ),
with aj the amplitudes in (3.2.6). Since each aj ∈ S0

cl and B can be seen as a
differential operator of order 0, it follows thatM can be seen as a classical amplitude
of order 0. Then, the right hand side of equation (3.2.7) defines a pseudodifferential
operator T, of order 0, acting on the vector value distribution F. Thus, the boundary
condition Bu|x=0 = g, can be seen as the equation T(F) = g. Moreover, the
principal symbol of T is

σ(T) =
(

Br1(ζ), . . . , Brp(ζ)
)

,

and q(ζ) := det σ(T) is exactly the Lopatinskii determinant ∆ in (3.1.2). Thanks
to Assumption 3.5, we know that q(ζ) has exactly one simple zero at some elliptic
point ζ0. Based on the construction of the parametrix for Rayleigh waves (see
Section 1.3) and other examples, we have reason to believe that ∆ is real-valued in
the elliptic region. Thus, we make the following additional assumption.
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3.2. An approximated solution of the BVP

Assumption 3.10. The determinant of σ(T), the principal symbol of T, is real-valued at
the elliptic region.

It then follows that the operator T is of real principal type near ζ0 ∈ E , and elliptic
away from E . The precise meaning of real principal type is given by the following
definition.

Definition 3.11. 1. [9] A pseudodifferential operator P with real-valued principal sym-
bol p(x, ξ) is of real principal type, if no complete null-bicharacteristic curve stays in
a compact set. Equivalently, P is of real principal type if the Hamiltonian vector field
Hp is nowhere radial on Char(P).

2. [7] An N × N system P of pseudodifferential operators with principal symbol p(x, ξ)

is of real principal type at (x0, ξ0), if there exists an N × N symbol p̃(x, ξ) such that

p̃(x, ξ)p(x, ξ) = q(x, ξ)IN,

in a neighborhood of (x0, ξ0), where q(x, ξ) is a scalar symbol of real principal type and
IN is the identity matrix. We say that P is of real principal type in Ω ⊆ Rn× (Rn \ 0),
if it is at every (x, ξ) ∈ Ω.

To see that T satisfies part 2 of this definition, it suffices to take p = σ(T) and p̃ as
its co-factor matrix. Assumption 3.5 tells us that q has exactly one simple zero in E ,
precisely at ζ0. Which implies that no null- bicharacteristic curve passing through
(z, ζ0) can stay in a compact set. This fact, combined with Assumption 3.10, makes
q = det σ(T) an operator of real principal type near (z, ζ0).

Remark 3.12. A pseudodifferential operator P with real-valued principal symbol p(x, ξ)

satisfying dξ p ̸= 0 on Char(P) is of real principal type. However, the two conditions are
not equivalent, as being of real principal type is more general.

The following theorem, which is proven in [19], tells us that we can find F mod C ∞.
Because we aim for this thesis to be as self-contained as possible, a short proof is
presented in Appendix A.

Theorem 3.13. Let T be a k× k system of pseudodifferential operators of order 0, with
principal symbol σ(T)(t, x, τ, ξ). Assume that q = det σ(T) is real and ∂τq ̸= 0 whenever
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q = 0. Then, one can construct a forward fundamental solution to the equation T.

We conclude that the function u in (3.2.2) solves the BVP (3.0.1) up to a smooth
remainder. Which completes the proof of Theorem 3.7.

We finish the section with an elementary consequence of the construction.

Proposition 3.14. Let T be the operator in (3.2.7). Suppose that g ∈ Hs(Rn), s ∈ R, has
support contained in {t > 0}. Then, the equation T(F) = g, has a solution F ∈ Hs(Rn),
which is unique mod C ∞ and vanish for t < 0.

3.3 Analysis of the solution

We have shown that (3.2.2) defines an approximation of the solution of the BVP
(3.0.1), which differs from the real solution by a smooth remainder. Such solu-
tion is given by the action of an operator S on the distribution F determined by
Proposition 3.14. The kernel of this operator is the distribution

K(x, z, y) =
p

∑
j=1

Kj(x, z, y) =
p

∑
j=1

∫
eiψj(x,z,y,ζ)aj(x, z, ζ) dζ, (3.3.1)

where ψj(x, z, y, ζ) = (z− y)ζ + λj(ζ)x and aj(x, z, ζ) is as in (3.2.6). In principle,
(x, z) ∈ R1+n

+ and ζ, y ∈ Rn, but we need to consider (x, z) ∈ C1+n and ζ, y ∈ Cn,
as explained in Subsection 3.2.1. Which makes our solution operator S a sum of
Fourier integral operators with complex phase of order −1/4. We denote by Sj the
operator with kernel Kj.

In this section, we use the tools from Chapter 2 to analyse the solution u. The theory
of Fourier operators with complex phase allows us to study the propagation of
singularities, as Taylor did in [19]. Furthermore, we are able to provide an refined
description of the wave front set of the solution u, as well as the wave front sent
of the surface waves. And, thanks to our result about clean intersection of Fourier
integral operators with complex phase, Theorem 2.50, we are able to proof the
continuity of the solution operator on the Sobolev space Hs. We then formulate a
theorem that could account for the lost of regularity under Assumption 3.5 with
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respect to the case where the UKL condition holds.

3.3.1 Propagation of singularities

We know that all the meaningful information about the singularities of the solution
operator comes from the points where the phase functions

ψj(x, z, y, ζ) = (z− y)ζ + λj(ζ)x

are real-valued. However, different eigenvalues of A(ζ) can have different be-
haviours. At any given point, some eigenvalues can be real while some others
have imaginary parts different from zero. Recall that, in view of Definition 3.4, the
frequency space is divided into three zones

1. The hyperbolic regionH, where the matrix A(x, z, ζ) is diagonalizable with
real eigenvalues. Then, when ζ ∈ H, all the ψj(x, z, ζ) are real-valued.

2. The elliptic region E , where p eigenvalues of A(x, z, ζ) have strictly positive
imaginary parts, while the rest have strictly negative imaginary part. Thanks
to the choices we made in Subsection 3.2.1, ζ ∈ E implies that ℑψj(x, z, ζ) > 0,
for all j.

3. The mixed regionM, where both kinds of eigenvalues are possible. Therefore,
all we can tell is that ℑψj ≥ 0.

Since we need to study each oscillatory integral separately, we need to further
subdivide these regions. For each j, denote byHj the set of frequencies ζ ∈ Rn \ 0
where the function ψj is real valued; and by Ej the set where ℑψj > 0. It follows
that

H = ∩p
j=1Hj and E = ∩p

j=1Ej.

With this inmind, we compute the critical set of each phase function and the positive
Lagrangian manifold associated to each oscillatory integral. Denoting by Cj the
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critical set of ψj, one can easily see that, for each j,

Cj =
{
(x, z, z +∇λj(ζ)x, ζ) : (x, z) ∈ C1+n, ζ ∈ Cn \ 0

}
,

CjR =
{
(x, z, z +∇λj(ζ)x, ζ) : (x, z) ∈ R1+n

+ , ζ ∈ Hj

}
.

Then the underlying positive Lagrangian manifold is

Λj =
{
(x, z, z +∇λj(ζ)x, λj(ζ), ζ,−ζ) : (x, z, ζ) ∈ C1+n × (Cn \ 0)

}
,

whose intersection with the real domain is a real manifold,

ΛjR =
{
(x, z, z +∇λj(ζ)x, λj(ζ), ζ,−ζ) : (x, z) ∈ R1+n

+ , ζ ∈ Hj

}
. (3.3.2)

Unfortunately this manifold is not good enough. Not only it is open, but its closure
ΛjR may not be smooth, as we have no way to guarantee that ∇λj(ζ) is defined at
the boundary. To illustrate this, lets go back momentarily to the equation of linear
elasticity in Section 1.3. There, we had

λ1(ζ) =

√
τ2

µ
− η2, λ2(ζ) =

√
τ2

λ + 2µ
− η2

and

H1 =
{
|τ| > µ1/2|η|

}
⇒ ∂H1 =

{
|τ| = µ1/2|η|

}
,

H2 =
{
|τ| > (λ + 2µ)1/2|η|

}
⇒ ∂H2 =

{
|τ| = (λ + 2µ)1/2|η|

}
.

Taking the closure ΛjR requires evaluating ∇λj, at points where the λj = 0 and
their gradients

∇λj(ζ) =
1

λj(ζ)
(τ,−η)

are singular. In this case, the way around the obstacle is fairly easy, and we have
inadvertently made the correct adjustments. Note that, for j = 1, 2,

∂Hj ⊆ G = {(τ, η) : λ1 = 0 or λ2 = 0},
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and that the support of the amplitude functions does not meet this region, because
we have carry on the construction away from the glancing points. Furthermore, the
regions Hj are separated from the corresponding Ej by G, as it is precisely at the
glancing region where the eigenvalues λj change from real to pure imaginary. In
other words

G =
⋃

j

∂Hj =
⋃

j

∂Ej.

Another nice aspect of the problem of linear elasticity is that the manifolds ΛjR

are Lagrangian, which, as explained in Chapter 2, is not always true. These useful
features may not be true in general but, since Rayleigh waves serve as a model for
hyperbolic surface waves, we believe it is reasonable to assume it. In summary, we
make the following assumptions

Assumption 3.15. The BVP (3.0.1) is such that the following hold:

1. The set of glancing frequencies satisfy
⋃p

j=1 ∂Hj ⊆ G and
⋃p

j=1 ∂Ej ⊆ G.

2. For each j, the manifold ΛjR in (3.3.2) is Lagrangian.

Remark 3.16. Under this condition, the elliptic region does not meet any of theHj.

Remark 3.17. The conditions of Assumption 3.15 would be satisfied whenever there are
square root eigenvalues.

On the other hand, the wave front set of K is the union
⋃p

j=1 WF
(
Kj
)
, with

WF
(
Kj
)
⊆
{
(x, z, z +∇λj(ζ)x, λj(ζ), ζ,−ζ) : (x, z, ζ) ∈ supp(aj), ζ ∈ Hj

}
.

This set is closed if we assume that, for each j, supp(aj) can be decomposed into
two disjoint sets

supp(aj)H =
{
(x, z, ζ) ∈ supp(aj) : ζ ∈ Hj

}
,

supp(aj)E =
{
(x, z, ζ) ∈ supp(aj) : ζ ∈ Ej

}
,
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which can be done thanks to Assumption 3.15. We then have WF (K) ⊆ M, with

M =
p⋃

j=1

{
(x, z, z +∇λj(ζ)x, λj(ζ), ζ,−ζ) : (x, z, ζ) ∈ supp(aj)H

}
. (3.3.3)

We now turn our attention to understanding the wave front set of the surface
waves. The analysis in [19] can be applied, with increased difficulty of having
many eigenvalues, which are real on different open sets. From construction, we
know that F solves the equation T(F) = g, where T is a pseuodifferential operator
of order 0. Thus, the standard results apply and we have

WF (F) ⊆ Char(T) ∪WF (g) ,

Char(T) = {(z, ζ) ∈ Rn × (Rn \ 0) : det σ(T) = 0} = {(z, ζ0) : z ∈ Rn}. (3.3.4)

This description can be refined if we consider the bicharachteristics flow. This way,
we obtain an analog to Lemma 1.5.

Lemma 3.18. The wave front set of the surface waves is contained in the set

Σ := WF (g) ∪ {null-bicharacteristics of ∆ = det σ(T) passing over WF (g)}.

Proof. For a pseudodifferential operator, the propagation of singularities is a well-
known phenomenon. Hence, we know that WF (F) ⊆ Σ. On the other hand, surface
waves solutions are of the form

usw(x, z) = eizζ0V, V = e−ℑλj(ζ0)xF−1
(

aj F̂
)
(x, z), for some j

where ζ0 ∈ E is the point where the Lopatinskii determinant ∆ vanishes, according
to Assumption 3.5. Recall that, in E , all λj = ℑλj are strictly positive and the
amplitudes aj are smooth. Then, it follows that the singularities of usw(x, z) are
exactly the singularities of F. Thus, WF (usw) = WF (F) ⊆ Σ.

Remark 3.19. The null-bicharacteristic curves mention in the lemma are of the form

(z(s), ζ0) =

((
∂∆
∂ζ

)
s + z(0), ζ0

)
,

with ζ0 ∈ E determined by Assumption 3.5, as before.
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Finally, we give a description of the wave front set of the solution of the BVP (3.0.1).
Since our approximation u differs from the real solution only by a smooth remainder,
it is enough to consider WF (u). To simplify the notation, write

(x, z) ∈ X = R+ ×Rn and y ∈ Y = Rn.

Then, the solution u satisfies the equation u = S(F), where S is the continuous
operator from C ∞

0 (Y) to D′(X) with distributional kernel K in (3.3.1).

Theorem 3.20. The wave front sent of the solution u is contained in the set

p⋃
j=1

{(
x, z, λj(ζ), ζ

)
∈ T∗X \ 0 :

(
z +∇λj(ζ)x, ζ

)
∈WF (g)

}
.

Proof. First recall that u = ∑
p
j=1 uj. Then, WF (u) ⊆ ⋃p

j=1 WF
(
uj
)
. The theorem

follows form this and the so called wave front relations (see [8] or Appendix C.2),
which state that, for each j,

WF
(
uj
)
⊆WF′(Sj) ◦WF

(
Fj
)
∪WF′X(Sj).

In this case, thanks to equation (3.3.3), we have

WF′(Sj) = {
((

x, z, λj(ζ), ζ
)

,
(
z +∇λj(ζ)x, ζ

))
∈ (T∗X× T∗Y) \ 0 : j = 1, . . . , p

and (x, z, z +∇λj(ζ)x, λj(ζ), ζ,−ζ) ∈WF (K)},

and

WF′X(Sj) =
{(

x, z, λj(ζ), ζ
)
∈ T∗X \ 0 :((

x, z, λj(ζ), ζ
)

,
(
z +∇λj(ζ)x, 0

))
∈WF′(S)

}
= ∅.

Thus,

WF
(
uj
)
⊆WF′(Sj) ◦WF

(
Fj
)

=
{(

x, z, λj(ζ), ζ
)
∈ T∗X \ 0 :

(
z +∇λj(ζ)x, ζ

)
∈WF (F) ⊆ Σ

}
.
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Finally, note that due to the definition of Σ, the points in WF
(
uj
)
must satisfy

one of two conditions: either
(
z +∇λj(ζ)x, ζ

)
∈ WF (g) or it lies in some null-

bicharacteristic curve. But, the second condition means that ζ = ζ0 ∈ E , which is
forbidden by equation (3.3.3).

3.3.2 Hs continuity

As already mentioned, surface wave solutions are responsible for some loss of
regularity. The aim of this section is to give a first result in this direction. We beging
by showing the continuity of the solution operator in the Sobolev spaces Hs.

To this end, we keep the notation of the previous section and study the composition
of the solution operator with its adjoint. For the composition to be well defined,
either Assumption 2.33 or Assumption 2.46 should hold. To verify these assump-
tions, we need to know the phase function of the adjoint operator. Consider an
operator A : C ∞

c (Y)→ C ∞(X), with distributional kernel

K(x, z, y, ζ) =
∫

eiψ(x,z,y,ζ)a(x, z, ζ) dζ.

Then A∗ : C ∞
c (X)→ C ∞(Y) is the operator with kernel

K∗(y, x, z, ζ) = K(x, z, y, ζ) =
∫

e−iψ(y,x,z,ζ)a(x, z, ζ) dζ,

where a(x, z, ζ) denotes the complex conjugate and −ψ = −ℜψ + iℑψ. In our case,
we have a sum of integrals Kj of this form, with ψj(x, z, y, ζ) = (z− y)ζ + λj(ζ)x.
Then, the phase function of the corresponding K∗j is

φj(y, x, z, ζ) := −ψj(y, x, z, ζ) = (y− z)ζ − λj(ζ)x.

For each j, we want to understand the composition Aj := S∗j ◦ Sj, where Sj denotes
the operator with kernel Kj. Note that, in principle, Aj maps C ∞

c (Y)→ C ∞(Y).

In the following, Λ∗j ⊆ (T∗(Y × X) \ 0)∼ and Λj ⊆ (T∗(X × Y) \ 0)∼ denote the
positive Lagrangian manifolds associated to each K∗j and Kj, respectively. Namely,

Λ∗j =
{
(y, x, y−∇λj(ζ)x, ζ,−λj(ζ),−ζ) : (x, y, ζ) ∈ C1+n × (Cn \ 0)

}
,

Λj =
{
(x, y−∇λj(ζ)x, y, λj(ζ), ζ,−ζ) : (x, y, ζ) ∈ C1+n × (Cn \ 0)

}
.

(3.3.5)
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We also need to consider the canonical relations

C∗j =
{
((y, ζ), (x, y−∇λj(ζ)x,−λj(ζ),−ζ))

}
⊆ (T∗Y \ 0)∼ × (T∗X \ 0)∼,

Cj =
{
((x, y−∇λj(ζ)x, λj(ζ), ζ), (y,−ζ))

}
⊆ (T∗X \ 0)∼ × (T∗Y \ 0)∼.

Recall that C∗j = (Λ∗j )
′ and Cj = (Λj)

′.

Lemma 3.21. The operators S∗j ∈ I−1/4
cl (Y × X, Λ∗j ) and Sj ∈ I−1/4

cl (X × Y, Λj) sat-
isfy Assumption 2.46. In particular, C∗j × Cj and ∆X = (T∗Y × diag(T∗X)× T∗Y)∼

intersect cleanly at real points.

Proof. For any j, denote by CR and ∆XR the restriction of C = C∗j × Cj and ∆X to
the real domain. Then, p ∈ CR ∩ ∆XR has the form

p = ((y, ζ, x, y−∇λj(ζ)x,−λj(ζ),−ζ), (x, y−∇λj(ζ)x,−λj(ζ),−ζ, y, ζ))

It is not hard to check that the intersection C ∩ ∆X is clean at real points. Indeed,
given p ∈ CR ∩ ∆XR any vector v ∈ Tp(CR ∩ ∆XR) is by construction tangent to
both CR and ∆XR at p. Then, Tp(CR ∩ ∆XR) ⊆ Tp(CR) ∩ Tp(∆XR). The opposite
relation follows after observing that the only difference between a vector v ∈ Tp(CR)

and a vector w ∈ Tp(CR ∩ ∆XR) is that v depends on (y, x, z, ζ, y′, x′, z′, ζ ′) and w
depends on (y, x, z, ζ) . But, the intersection of Tp(CR) with Tp(∆XR) reduces the
dimension, and we lose the extra variables. Thus, Tp(CR) ∩ Tp(∆XR) consists of
the subset of vectors v′ ∈ Tp(CR) that depend only on (y, x, z, ζ). Which implies
that Tp(CR) ∩ Tp(∆XR) ⊆ Tp(CR ∩ ∆XR).

Since it will be important later, we compute here the excess of the intersection. By
definition,

e = codim(CR) + codim(∆XR)− codim(CR ∩ ∆XR).

The set CR has dimension 2(1 + 2n), because both of the canonical relations have
dimension 1 + 2n. And the intersection CR ∩ ∆XR has dimension 1 + 2n. Then,

e = (2 + 4n) + (2 + 3n)− 3(1 + 2n) = 1 + n.
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Finally, note that the dimension of X is precisely 1 + n. So, we expect (x, z) to be
the excess variables.

A similar argument shows that the composition Sj ◦ S∗j is also defined. In that case,
Assumption 2.33 is satisfied with C1 × C2 = Cj × C∗j and D = T∗X× diag(T∗Y)×
T∗X. But, the resulting operator is not helpful for our goal.

Proposition 3.22. The composition Aj := S∗j ◦ Sj defines a pseudodifferential operator of
order n/2.

Proof. The previous lemma and Theorem 2.50 tell us that Aj := S∗j ◦ Sj defines an
operator in the class Im+e/2

cl (Y×Y, Λ), with

m = 2
(
−1

4

)
, e = 1 + n,

and Λ the positive Lagrangian manifold parameterized by the clean phase function

Φ(y, y′, ω) = −ψj(y, x, z, ζ) + ψj(x, z, y′, η), ω = ω(x, z, ζ, η).

More precisely, Λ is the image under a linear transformation of the set

CΦ ∼ {((y, x, z, ζ), (x, z, y′, η)) : − ∂xψj + ∂xψj = 0, −∂zψj + ∂zψj = 0}.

Restricting to real points, we see from the definition of ψ, that

CΦR ∼ {((y, x, z, ζ), (x, z, y′, η)) : ζ = η, λ(ζ) = λ(η) ∈ R}.

Under these conditions, Φ ∼ (y − y′)η, which makes Aj a pseudo differential
operator of order m + e/2 = n/2.

Remark 3.23. For each j, the operator Aj is elliptic. We can see from equations (2.2.13)
and (3.2.6), that the principal part of the amplitude of Aj is bj0 = |rj(ζ)|2|ζ|−(1+n). Since
the eigenvectors rj(ζ) cannot be zero, bj0 never vanishes.

We can now use this result to study the mapping properties of the solution operator
S. Recall that S is equal to the sum ∑

p
j=1 Sj.

Theorem 3.24. The solution operator S is continuous from H
n
4 (Y) to L2(X).
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3.3. Analysis of the solution

Proof. Let Aj denote the operator S∗j Sj. From the previous proposition, we know
that, for each j, Aj is a pseudodifferential operator of order n. As such, it maps
H

n
2 (Y)→ L2(Y) continuously. Then, if u ∈ H

n
2 (Y), it holds

∥Sju∥2
L2(X) = (S∗j Sju, u)L2(Y) = (Aju, u)L2(Y)

≤ ∥Aju∥H−
n
4 (Y)
∥u∥

H
n
4 (Y)
≤ C∥u∥2

H
n
4 (Y)

.

It follows that S : H
n
4 (Y)→ L2(X) continuously.

Thanks to the ellipticity of the operators Aj, the previous result is sharp. We
conclude the chapter with a result concerning the regularity of the solution u.

Theorem 3.25. Assume that f ≡ 0 and g ∈ H
n
4 (Rn). Then, there exists a solution u to

the BVP (3.0.1), unique mod C ∞, such that

u(x, z) ∈ L2 (R+ ×Rn) and u|x=0 ∈ H
n
4 (Rn).

Proof. From our construction, we know that the solution u is given by the equation

u(x, z) =
p

∑
j=1

Sj(Fj),

where F = (F1, . . . , Fp)T solves T(F) = g, for a pseudodifferential operator T of
order 0. Then, if g ∈ H

n
4 (Y), each Fj also belongs to H

n
4 (Y). Then, we get from the

action of S that u ∈ L2(R+ ×Rn).

On the other hand, it is clear from the definition of the phase functions, that u(0, z)
is given by the action of a pseudodifferential operator of order 0 on F ∈ H

n
4 (Y).

Then, u|x=0 ∈ H
n
4 (Rn).

This theorem does not imply that the problem is strongly stable. For that, we would
need to establish an energy estimate of the form

∥u∥L2 + ∥u|x=0∥L2 ≤ C∥g∥L2 ,

which is not the case here. In fact, we know that the problem is weakly stable, but
we are not able to provide a suitable energy estimate. The reason is that we cannot
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control the norm of the solution u by the norm of the boundary data g. From our
construction, we only know that

∥u∥L2 ≤ ∥F∥
H

n
4

and ∥g∥
H

n
4
= ∥T(F)∥

H
n
4
≤ ∥F∥

H
n
4
.

These inequalities tell us that the lost of regularity must come from the action of
the boundary operator T. We believe that the properties of the operator T will lead
to a priori estimates for the equation Tv = g, which in turn will give a suitable
definition of weak stability for hyperbolic problems with surface waves. A sketch
of a possible argument is presented in Appendix B. The approach is based on a
fact that T is of real principal type in the sense of Definition 3.11. However, this
estimate is only valid for problems satisfying Assumption 3.10, which may not hold
in general.

3.4 Boundary value problems with variable coefficients

At the beginning of this chapter, we restricted ourselves to the analysis of a first
order constantly hyperbolic operator with constant coefficients. This was done
in order to simplify the presentation, but the assumption is not essential for our
construction. We now consider the boundary value problem of the form

L(t, x, y, ∂t, ∂x, ∂y)u = 0 in (0, T)×R1+d
+ ,

B(t, y)u = g(t, y) on (0, T)×Rd,
(3.4.1)

where L is a symmetrizable hyperbolic differential operator with constant multi-
plicities and symbol

L(t, x, y, τ, ξ, η) = τ − A0(t, x, y)ξ −
d

∑
j=1

Aj(t, x, y)ηj.

The coefficients Aj ∈ C ∞
(
(0, T)×R1+d

+

)
, j = 0, 1, . . . , d, and B ∈ C ∞ ((0, T)×Rd)

are matrices of size N × N and p× N, respectively. As before, we assume that the
boundary is non-characteristic, and that p is the number of incoming characteris-
tics. Moreover, we assume that the coefficients of Aj and B are constant outside a
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3.4. Boundary value problems with variable coefficients

compact set. Then, the problem (3.4.1) can be reduced to[
∂x −A(t, x, y, ∂t, ∂y)

]
u = 0 in (0, T)×R1+d

+ ,

B(t, y)u = g(t, y) on (0, T)×Rd,
(3.4.2)

with

A(t, x, y, τ, η) = A−1
0 (t, x, y)

(
τ IN −

d

∑
j=1

Aj(t, x, y)ηj

)
.

In this section, we show that the arguments presented in the case of constant coeffi-
cients, can be applied to the BVP (3.4.2). The construction extends in a straightfor-
ward manner, the main difference is that the new phase functions and amplitudes
are more involved.

Additionally, the results from Section 3.3 are reviewed and reformulated to fit
the boundary value problem with variable coefficient. We should clarify that the
behaviour of the solution is essentially the same.

3.4.1 Assumptions

Since we are interested in the BVPs that admit surface waves, we assume that the
problem (3.4.2) violates the (UKL) condition in a particular way. To avoid any
confusion with the notation, all the necessary conditions are presented below.

For simplicity, we put z = (t, y) ∈ Rn, τ = σ− iγ and ζ = (τ, η). Also, thanks to
the homogeneity of the symbols, we can work on the semi-spheres

X =
{

ζ = (τ, η) ∈ Rn : σ2 + γ2 + |η|2 = 1, γ ≥ 0
}

,

X0 = {ζ ∈ X : γ = 0} .

The hyperbolicity now reads

Assumption 3.26 ([18]). The eigenvalues of the matrix A0(x, z)ξ + ∑d
j=1 Aj(x, z)ηj are

all real and semi-simple, and their multiplicity is independent of (x, z, ξ, η).
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Chapter 3. Hyperbolic surface waves

Under this assumption, the boundary value problem (3.4.2) satisfies the block
structure condition (Theorem 3.3). Thus, the classification of boundary points
given by Definition 3.4 remains valid for the points (x, z, ζ) ∈ R1+n

+ ×X0.

Let E+(x, z, ζ) denote the stable subspace of A(x, z, ζ), that is the direct sum of
the generalized eigenspaces of A associated to eigenvalues of positive imaginary
part. We can locally choose a basis {r1(x, z, ζ), . . . , rq(x, z, ζ)} of E+(x, z, ζ), which
is smooth when γ > 0 and extends continuously to γ = 0. Then, for all (z, ζ) in
Rn ×X we can define the Lopatinskii determinant

∆(z, ζ) := det(B(z, ζ)r1(0, z, ζ), . . . , B(z, ζ)rp(0, z, ζ)). (3.4.3)

Now our weakly regularity condition, that is the assumption that guarantees the
existence of surface waves, reads

Assumption 3.27. Points of the form (0, z, ζ), satisfy the following conditions:

(KL) ([5]) For all ζ ∈ X with γ > 0, and all ζ ∈ X0 outside the elliptic region, the
Lopatinskii determinant ∆(z, ζ) does not vanish. Moreover,

dim E+(0, z, ζ) = p.

(SW) If there exists an elliptic point (z0, ζ0) such that ∆(z0, ζ0) = 0, then ∂σ∆(z0, ζ0) ̸= 0.

3.4.2 Construction of the solution

As before, we want to find an approximated solution to the BVP (3.4.2) of the form

U =
p

∑
j=1

Uj, Uj =
∫

eiϕj(x,z,ζ)aj(x, z, ζ)F̂j(z, ζ) dζ, (3.4.4)

where the functions ϕj, aj and Fj satisfy the same conditions as in the constant
coefficient case. Namely, the complex-valued phase functions ϕj should satisfy
certain complex-valued eikonal equations, the amplitudes aj solve the transport
equations arising from the method of geometric optics, and the scalar valued
distributions Fj are determined by the boundary condition.
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3.4. Boundary value problems with variable coefficients

Unlike the constant coefficient case, the equations involving ϕi and ai cannot be
solved explicitly. Instead, we follow the ideas of Trèves in [20, Chapter XI]. This
allows us to determine the phase functions and amplitudes up to a smooth remain-
der.

First, we need to determine the phase functions. For each j, ϕj must satisfy the
eikonal equation,

∂xϕj = λj(x, z,∇zϕj), (3.4.5)

ϕj|x=0 = zζ,

where λj is a root in ξ of D(x, z, ξ, ζ) = det (ξ IN −A(t, z, ζ)), with positive imagi-
nary part. For this equation to make sense, we need to consider an almost analytic
extension λ̃j, which introduces an error. The following arguments are taken from
[20], but adapted to our situation.

Since we are considering almost analytic extensions, let (z, ζ) ∈ Cn × (Cn \ 0).
Consider also the almost Hamilton-Jacobi equation

dz̃
dx

= −
∂λ̃j

∂ζ
,

dζ̃

dx
=

∂λ̃j

∂z
,

z̃|x=0 = z, ζ̃|x=0 = ζ.

Whose unique solution is given by

z̃ = z̃(x, z, ζ) and ζ̃ = ζ̃(x, z, ζ). (3.4.6)

These equations describe the flow of the complex vector field

Hλj =
n

∑
k=1

∂λ̃j

∂zk

∂

∂ζk
−

∂λ̃j

∂ζk

∂

∂zk
.

Note that, unless λj is analytic, this is not a Hamiltonian vector field, however, the
solution of (3.4.5) can still be obtained by following the flow of Hλj . Then, we can
write

ϕ̃j(x, z, ζ) = zζ +
∫ x

0
λ̃j(s, z, ζ̃(x, z̃(x, z, η), η)) ds. (3.4.7)
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One can easily check that ϕ̃j solves, modulo almost analytic functions, the equation

∂xw = λ̃j(x, z,∇zw),

w|x=0 = zζ.

Denoting by ϕi the restriction of ϕ̃j to the real domain, a short calculation shows
that

∂xϕj − λj(x, z,∇zϕj) = −λj(0, z, ζ) ∈ C ∞(Rn × (Rn \ 0)). (3.4.8)

We now focus on constructing the amplitudes. Once again, we wish to use argu-
ments from geometric optics. That is, we need to find ci ∈ Sm

cl , for some m, such
that

(∂x −A(x, z, ∂z))Uj =
∫

eiϕj(x,z,ζ)cj(x, z, ζ)F̂j(z, ζ) dζ = 0,

with

cj = i
(
(∂xϕj)aj −A(x, z, ∂zϕj)aj

)
+
(
∂xaj −A(x, z, ∂z)aj

)
= 0. (3.4.9)

Thanks to equation (3.4.5), we can solve

(∂xϕj)aj −A(x, z, ∂zϕj)aj = 0

by taking aj in the λj-eigenspace of A. But, since ϕj is only an approximated
solution, the equality holds only up to a smooth remainder. In view of (3.4.8), we
take a(0)j (z, ζ), the principal part of aj to be an eigenvector of λj(0, z, ζ). In this case,
the previous equation is satisfied modulo a smooth function. Then, the rest of the
terms in the asymptotic sum of aj need to be eigenvectors of λj(x, z, ζ) satisfying

(∂x −A(x, z, ∂z)) a(l)j = iλj(0, z, ζ)a(l−1)
j . (3.4.10)

Thus, we can determine the amplitudes aj ∼ ∑l≤0 a(l)j satisfying (3.4.9), by solving
equation (3.4.10) for each l.

The last step in the construction is to find the distributions Fi, which are the link
to the boundary condition. But, since ϕj|x=0 = zζ and a(0)j takes values in the
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eigenspace of λj(0, z, ζ), the arguments in Subsection 3.2.3 remain valid. In particu-
lar Theorem 3.13 holds, so we can approximate F, mod C ∞.

Going forward, we assume that the functionU in (3.4.4) is an approximated solution
of the boundary value problem (3.4.2). As before, we denote by S the operator
satisfying S(F) = U. Explicitly, S is the operator with distributional kernel

K =
p

∑
j=1

Kj =
p

∑
j=1

∫
eiψj(x,z,y,ζ)aj(x, z, ζ) dζ, (3.4.11)

where ψj(x, z, y, ζ) = (z − y)ζ +
∫ x

0 λj(s, z, ζ̃) ds, with ζ̃ given by (3.4.6), and
aj(x, z, ζ) as above.

3.4.3 Analysis of the solution operator

At the beginning of this section, we assumed that the coefficients of A and B are
constant outside a compact set. Thus, we only need to consider (x, z) inside that
compact set, lets call it V, because for (x, z) ∈ R1+n

+ \V, the analysis on the previous
section applies. We now consider the sets

Hj =
{
(x, z, ζ) ∈ V ×X0 : ℑλj(x, z, ζ) = 0

}
,

Ej =
{
(x, z, ζ) ∈ V ×X0 : ℑλj(x, z, ζ) > 0

}
.

Then, the real part of the critical set Cj of each ψj, is

CjR =

{(
x, z, z + ∂ζ

(∫ x

0
λj(s, z, ζ̃) ds

)
, ζ

)
: (x, z, ζ) ∈ Hj

}
,

=
{
(x, z, 2z− z̃(x, z, ζ̃), ζ) : (x, z, ζ) ∈ Hj and z̃ ∈ Rn

}
.

And, then the underlying positive Lagrangian manifold is

Λj =

{(
x, z, z + ∂ζ

(∫ x

0
λj(s, z, ζ̃) ds

)
, λj(x, z, ζ̃)− λj(0, z, ζ), ζ̃,−ζ

)}
,
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whose intersection with the real domain is a real manifold,

ΛjR =
{
(x, z, 2z− z̃(x, z, ζ̃), λj(x, z, ζ̃)−λj(0, z, ζ), ζ̃,−ζ) :

(x, z, ζ) ∈ Hj, (z̃, ζ̃) ∈ Rn ×Rn
}

.

Recall that z̃ = z̃(x, z, ζ) and ζ̃ = ζ̃(x, z, ζ) denote the solution to the almost Hamil-
ton equation in (3.4.6). Let us denote by H∗j the points in Hj for which the flow
(z̃, ζ̃) remains real, and by suppH∗j (aj) the intersection supp(aj) ∩H∗j . If we keep
Assumption 3.15, we can see that WF

(
Kj
)
⊆ Lj, where

Lj =

{
(x, z, 2z− z̃(x, z, ζ̃), λj(x, z, ζ̃)− λj(0, z, ζ), ζ̃,−ζ) : (x, z, ζ) ∈ suppH∗j (aj)

}
.

Concerning the singularities of the surface waves, Lemma 3.18 remains valid, how-
ever, the statement of Theorem 3.20 needs to be modified to fit the new manifolds
ΛjR. Recall that

WF (U) ⊆
p⋃

j=1

WF
(
Uj
)

.

Theorem 3.28. For each j, we have

WF
(
Uj
)
⊆
{(

x, z, λj(x, z, ζ̃)− λj(0, z, ζ), ζ̃
)
∈ T∗X \ 0 :

(
2z− z̃, ζ̃

)
∈WF (g)

}
.

To finish the analysis of the solution operator, one needs to verify the statement of
Theorem 3.25 when the operators are assumed to have variable coefficients. To do
so, we first need to show that the composition S∗j ◦ Sj, with Sj the operator with
kernel Kj in equation (3.4.11), still defines a pseudodifferential operator. Whether
or not this is true, depends completely on the properties of the phase functions ψj

and the positive Lagrangian manifolds Λj.

Retracing the arguments presented in the previous section, we obtain the following
result.

Theorem 3.29. Assume that f ≡ 0 and g ∈ H
n
4 (Rn). Then, there exists a solution u to

the BVP (3.4.1), unique mod C ∞, such that

u(x, z) ∈ L2 (R+ ×Rn) and u|x=0 ∈ H
n
4 (Rn).
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The proof is omitted because it follows the same arguments presented in Section 3.3.
In particular, one can see that Lemma 3.21 and Proposition 3.22 hold for the operator
Sj with kernel Kj as in equation (3.4.11). It also holds, that the composition S∗j ◦ Sj

defines an elliptic pseudodifferential operator.

Remark 3.30. The arguments in Appendix B remain valid for BVPs with variable co-
efficients. Thus, the energy estimate proposed there covers the problems studied in this
section.
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4 | Concluding remarks

In this thesis, the theory of Fourier integral operators with complex phase was
used to study hyperbolic surface waves. By representing the solution operator of
the corresponding hyperbolic boundary value problem as an oscillatory integral
with complex phase, we are able to improve the analysis of this type of solutions.
Specifically, we showed that if a constantly hyperbolic boundary value problem
violates the uniform Kreiss-Lopatinskii condition at an isolated elliptic frequency,
then the solution to the problem can be approximated by a distribution of the form

S(F) :=
p

∑
j=1

Sj(Fj) =
p

∑
j=1

∫
eiϕj(x,z,ζ)aj(x, z, ζ)F̂j(ζ) dζ,

where the vector value distribution F = (F1, . . . , Fp) is determined by the bound-
ary condition. After analyzing the operator S, we refined the previously known
description of the propagation of singularities (Theorem 3.20 and Theorem 3.28).
We also proved a preliminary result concerning the regularity of the solution (The-
orem 3.25 and Theorem 3.29). However, the loss of regularity caused by surface
waves remains an open question. In Appendix B, we propose a possible answer
to this question. Moreover, we conjecture an estimate that is compatible with the
results found in the literature for less general settings. Further investigation of the
proposed estimate is reserved for future studies. It would also be interesting to
consider a less controlled failure of the UKL condition.

An important part of this thesis was devoted to the study of Fourier integral opera-
tors with complex phase function. Particularly, we focus on the principal symbol

87



Chapter 4. Concluding remarks

map for this type of operators. After adapting a method from the real-valued
theory, we provide in Theorem 2.40 an explicit description of the principal symbol.
Furthermore, in Theorem 2.51, we compute the principal symbol after composition
under the assumption of clean intersection.

While the study of the clean composition of Fourier integral operators with complex
phase is interesting on its own, it also proved useful in applications. The proof of
Theorem 3.29 is based on the fact that the clean composition of S∗j and Sj defines a
pseudodifferential operator. In future work, it would be interesting to study the
composition under more general geometric assumptions. Geometrical situations
that appear in the study of physically relevant problems would be particularly
interesting.
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A Proof of Theorem 3.11

The purpose of this appendix is to show that we can construct a parametrix for
the boundary equation T(F) = g in Subsection 3.2.3. Or, equivalently, we show a
sketch of the proof of Theorem 3.13, which is taken from [19].

Theorem. Let T be a k× k system of pseudodifferential operators of order 0, with principal
symbol σ0(T)(t, x, τ, ξ). Assume that q(t, x, τ, ξ) = det σ0(T) is real and ∂τq ̸= 0
whenever q = 0. Suppose that supp(g) is contained in t > 0. Then, one can construct an
approximated solution to the equation Tv = g, which is unique modulo smooth functions
and vanish for t < 0.

Proof. ([19, Section 4]) Let R be the operator with the co-factor matrix of σ0(T) as
its symbol. Then, RT = q + Q, where Q is a pseudodifferential operator of order -1.
With this in mind, we can rewrite the equation Tv = g as

(q + Q)v = h, h = Rg.

Denote by S± the sets of characteristic curves of q with ±t > 0, respectively. It is
possible to write the identity operator as I = P+ + P− + P0, where P± have support
inside S±, and their principal parts are equal to 1 in a smaller conic neighborhood.
Then, the support of P0 necessarily consist of the points where q ̸= 0. Hence, q + Q
is elliptic on supp(P0), and the equation (q + Q)v0 = h0 can be solved.
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We now focus on solving the non-elliptic part. Formally, the solution to the equation
(q + Q)v+ = h+ is

v+ = (q + Q)−1h+ = i
∫ ∞

0
exp (is(q + Q))h+ ds.

The expression is not defined, but the function w(s) = exp (is(q + Q))h+ solves
the equation

∂sw = i(q + Q)w, w(0) = h+.

Since this is a hyperbolic equation, we can find an approximated solution w+ by
means of geometric optics approximation. It follows that (q + Q)w+ = v+ modulo
smooth functions. Repeating the argument over the support of P−, we see that

v = v0 + i
∫ ∞

0
ψ(s)w+(s) ds− i

∫ 0

∞
ψ(s)w−(s) ds, (A.1)

where ψ ∈ C ∞
0 (R) is 1 for |s| sufficiently small.

Finally, we check that this function actually solves Tv = g, mod C ∞. Note that
(q + Q)v = h implies R(Tv− g) = 0. Multipliying by σ0(T), we get

0 = (σ0(T)R)(Tv− g) = q(Tv− g).

Then, the result follows from the fact that q has isolated zeros.

B An energy estimate

The problems studied in this thesis are weakly regular in the sense that they cannot
satisfy maximal energy estimates in L2, like the one in equation (1.1.2). Instead,
there exists a loss of regularity with respect to the boundary data g. It remains
an open problem to establish a suitable notion of week regularity for constantly
hyperbolic BVPs that violate the UKL condition at the elliptic region.

A first step in this direction is to find appropriate energy estimates that account for
the loss of regularity with respect to the case when the UKL condition holds. In
this appendix we propose an energy estimate for BVPs satisfying Assumption 3.27
and Assumption 3.10. The theorem is an extension of Theorem 3.25.
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Theorem B.1. Assume that f ≡ 0 and g ∈ Hs(Rn). Then, there exists a solution
u ∈ Hs− n

4 (R+ ×Rn) of the BVP (3.0.1) which is unique mod C ∞. Moreover, it
satisfies

∥u∥
Hs− n

4 (R+×Rn)
+ ∥u|x=0∥Hs−1(Rn) ≤ C∥g∥Hs(Rn). (B.1)

Proof. The proof relies on the the properties of the solution operator S = ∑
p
j=1 Sj

and the boundary operator T constructed in Section 3.2. First recall that the approx-
imated solution u has the form ∑

p
j=1 uj, with

uj =
p

∑
j=1

Sj(Fj), and T(F) = g, F = (F1, . . . , Fp).

The pseudodifferential operator T is of real principal type at the elliptic region
E , and elliptic everywhere else. Then, assuming that g ∈ Hs(Rn), it follows that
F ∈ Hs(Rn) and that

∥F∥s−1 ≤ C∥g∥s. (B.2)

We also know that Aj = S∗j ◦ Sj is an elliptic pseuodifferential operator of order
n/2 (see Remark 3.23). Then, for each j, it holds S∗j (uj) = Aj(Fj) and

∥Fj∥s ≤ C
(
∥S∗j (uj)∥s− n

2
+ ∥Fj∥s−1

)
. (B.3)

Furthermore, it follows from Theorem 3.24 that

∥S∗j (uj)∥s− n
2
≤ C∥uj∥s− n

4
and ∥uj∥s− n

4
= ∥Sj(uj)∥s− n

4
≤ C∥Fj∥s. (B.4)

Combining inequalities (B.2)-(B.4), we obtain ∥uj∥s− n
4
≤ C∥g∥s. It follows that

∥u∥s− n
4
≤ C∥g∥s. (B.5)

On the other hand, the restriction of S to the boundary x = 0 is a pseudodifferential
operator of order 0. Thus,

∥u|x=0∥s−1 ≤ C∥F∥s−1 ≤ C∥g∥s. (B.6)

Estimate (B.2) is obtained by adding (B.5) and (B.6).
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C Further theoretical background

This Appendix contains additional results that are relevant for the context of this
thesis. The theory presented here is essential in the study of pseudodifferential
operators and Fourier integral operators. As such, it was used in the previous
chapters without further explanation. In the spirit of making this thesis as self-
contained as possible, we collect some of themost important aspects of the necessary
theoretical background.

C.1 Overview of symplectic geometry

In this section, we present the basic definitions concerning Lagrangian manifolds,
which are an important part of the theory of Fourier integral operators. In a way,
this appendix represents the standard geometrical setting for the real-valued theory
that was generalized in the first two sections of the second chapter of this thesis.
The content of this section is completely taken from [20, Chapter VII.].

Definition C.1. A vector space V, over R or C, with a non-degenerate antisymmetric
bilinear form ω is called a symplectic vector space. We write (V, ω) to denote this space.

That ω is non-degerate means that, if ω(x, y) = 0 for all y ∈ V, then x = 0. It can be
shown that every finite dimensional symplectic vector space is of even dimension
2n. Now, let W be any subspace of V, we denote by W⊥ the orthogonal complement
of W with respect to ω. Namely,

W⊥ = {x ∈ V : ω(x, y) = 0, ∀y ∈W}.

Definition C.2. A subspace W of a vector space V is called Lagrangian (resp. isotropic,
resp. coisotropic) if W = W⊥ (resp. W ⊂W⊥, resp. W⊥ ⊂W).

By construction, Lagrangian subspaces are of dimension n = (dim V)/2. We say
that two Lagrangian subspaces L1 and L2 are transverse if V = L1 ⊕ L2.

Definition C.3. A symplectic basis in (V, ω) is a basis (e1, . . . , en, f1, . . . , fn) of V, such
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that
ω(ei, ej) = ω( fi, f j) = ω(ei, f j)− δij.

Proposition C.1. Let L1 and L2 be transverse Lagrangian subspaces of V. Then, there are
bases e = (e1, . . . , en) of L1 and f = ( f1, . . . , fn) of L2, such that (e, f ) is a symplectic
basis of V.

Definition C.4. A symplectic manifold is a smooth manifold X, equipped with a closed
non-degenerate 2-form ω, such that for all x ∈ X, (TxX, ωx) define a symplectic vector
space.

It follows from the results above that a symplectic manifold X is of even dimension.
The fundamental example of a symplectic manifold is given by the cotangent bundle
T∗M of an arbitrary smooth manifold M of dimension n. Let (x1, . . . , xn) be local
coordinates in M and (ξ1, . . . , ξn) the associated coordinates in the tangent space.
Then, the symplectic form in T∗M is

ω =
n

∑
j=1

dξ j ∧ dxj.

DefinitionC.5. Let (X, ω) be a symplectic manifold. A submanifoldY is called Lagrangian
(resp. isotropic, resp. coisotropic) if, for every y ∈ Y, this is true for TyY as a subspace of
the symplectic space (TyX, ωy).

Proposition C.2. If x1, . . . , xn, y1, . . . , yn are symplectic coordinates in an open subset U
of X. Then, in U, the canonical volume form of X takes the form

Ω = dx1 ∧ · · · ∧ dxn ∧ dy1 ∧ · · · ∧ dyn.

C.2 The wave front set

Broadly speaking, the wave front set WF (u) characterizes the singularities of a
distribution u. The concept is useful to study the propagation of singularities due
to the action of an operator, as was done in Chapter 3. In this section, we collect the
definitions necessary to understand the analysis presented there. The content of
the section is taken from [8, Chapter 1].
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Let X denote an open set in Rn and u a distribution in D′(X). We also denote by û
the Fourier transform of u.

Definition C.6. The wave front set WF (u) is defined as the complement in X× (Rn \ 0)
of the collections of all (x0, ξ0) ∈ X× (Rn \ 0) such that, for some neighborhoods U of x0

and V of ξ0, we have

∀φ ∈ C ∞
0 (U), ∀N > 0, φ̂u(τξ) = O(τ−N) for τ → ∞, uniformly in ξ ∈ V.

It can be shown that WF (u) is a closed conic subset of X × (Rn \ 0). If X is
a manifold, it follows from the appropriate coordinate invariant definition that
WF (u) ⊆ T∗X \ 0.

For the rest of the section, we focus on continuous maps A : C ∞
0 (Y)→ D′(X) with

distributional kernel KA ∈ D′(X×Y). That is,

Au(x) =
∫

KA(x, y)u(y) dy, ∀u ∈ C ∞
0 (Y).

Definition C.7. The wave front relation WF′(A) of the operator A is the set

WF′(A) = {((x, ξ), (y, η)) ∈ (T∗X× T∗Y) \ 0 : (x, y, ξ,−η) ∈WF (KA)} .

We need to introduce further notation. Denote the projection of WF′(A) to T∗X \ 0
and T∗Y \ 0, respectively, by

WF′X(A) = {(x, ξ) ∈ T∗X \ 0 : ∃y ∈ Y, (x, y, ξ, 0) ∈WF (KA)} ,

WF′Y(A) = {(y, η) ∈ T∗Y \ 0 : ∃x ∈ X, (x, y, 0, η) ∈WF (KA)} .

Theorem C.1. Let Γ ⊆ T∗Y \ 0 be a closed conic set that does not meet WF′Y(A). Then,
A can be extended to a continuous map from E ′(Y) to D′(X) and

WF (Au) ⊆
(
WF′(A) ◦WF (u)

)
∪WF′X(A),

for all u ∈ E ′(Y) with WF (u) ⊆ Γ.

Here WF′(A) ◦WF (u) is the set{
(x, ξ) ∈ T∗X \ 0 : ∃(y, η) ∈ T∗Y, ((x, ξ), (y, η)) ∈WF′(A) and (y, η) ∈WF (u)

}
.
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