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Abstract

Polarization sets were introduced by Dencker (1982) as a refinement of wave-
front sets to the vector-valued case. He also clarified the propagation of polarization
sets when the characteristic variety of the pseudodifferential system under study con-
sists of two hypersurfaces intersecting tangentially (1992), or transversally (1995).
In this thesis, we consider the case of more than two intersecting characteristic hy-
persurfaces that are interesting transversally (and we give a note on the tangential
case).

Mainly, we consider two types of systems which we name "systems of generalized
transverse type" and "systems of MHD type", and we show that we can get a result
for the propagation of polarization set similar to Dencker’s result for systems of

transverse type. Furthermore, we give an application to the MHD equations.

il
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Zusammenfassung

Polarizationsmengen wurden von Dencker (1982) als eine Verfeinerung der
Wellenfrontmengen im vektorwertigen Fall eingefiihrt. Er kldrte auch die Aus-
breitung von Polarizationsmengen im Fall, dass die charakteristische Varitdt des
betrachteten pseudodifferenziellen Systems aus zwei Hyperflaichen besteht, die sich
tangential (1992) oder transversal (1995) schneiden.

Wir betrachten hauptséchlich zwei Typen von Systemen, die wir als "Systeme
vom verallgemeinerten transversalen Typ" und "Systeme vom MHD-Typ" bezeich-
nen, und beweisen ein Ergebnis iiber die Ausbreitung von Polarizationsmengen, das
dhnlich Denckers Resultat fiir Systeme vom transversalen Typ ist. Auferdem geben

wir eine Anwendung auf die MHD-Gleichungen.
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1 Introduction

As is known, the singular support is the set of points at which a distribution fails to be a
smooth function. In [H603|, Hormander defined the wavefront set of a distribution u, denoted
by WF(u), which is a refinement of the singular support of a distribution. The wavefront sets
does not only show the location of singularity, but also the direction in which the singularity
occurs. For any smooth manifold X, the wavefront set is closed conical subset of the cotangent
bundle 7%(X). The projection of the wavefront set on X is equal to the singular support
of the distribution. In |[H603|, Hérmander also gave the result for the propagation of the
wavefront set for the solutions of partial differential equations, when considering the partial
differential operator to be of real principal type, where he stated that the wavefront set is
invariant under the bicharacteristic low. Note that Hormader’s theorem is still satisfied if
one considers pseudodifferential operators instead of partial differential operators. Similarly,
one can define the H®-wavefront set, which will be showing the location and direction where
the distribution is not in the Sobolev space H*(X), and we have a similar propagation result
regarding the H*-wavefront sets for pseudodifferential operators of real principal type. In
[Den89], Dencker studied the propagation of singularities for pseudodifferential operators P €
U™(X) having characteristics of variable multiplicity. He considered the characteristic set to

be the union of hypersurfaces S;, j = 1,...,ro intersecting tangentially at N’

0,5 of order
ko > 1. Under some assumptions he proved that the wavefront set of u; the solution of the
considered pseudodifferential operator, is invariant under the union of the Hamilton flows on
Sj, 3 =1,...,10, given that Pu is smooth on X.

In [H603], Hormander defined locally the wavefront set of distributional sections u € D'(X; E),
where ' — X is a vector bundle over the manifold X. He defined the wavefront set of u locally
as |JWF(u;) where (uy,...,un) are the components of v with respect to a local trivialization

of E. However, this definition does not specify in which component u is singular, that is why

Dencker defined in [Den82a| the polarization set for vector-valued distribution u that we will



1 Introduction

be denoting it by Pol(u). The polarization set still shows the location and the direction of the
singularity as the wavefront set, but it additionally shows the most singular components of a
distribution. Hence, the polarization set of a distribution is a refinement of the wavefront set,
and the projection of Pol(u) \ 0 on the cotangent bundle 7*X gives the wavefront set of u.
Similarly, the H*-polarization set is defined as a refinement of the H*-wavefront set.

In |Den82a|, Dencker defined systems of pseudodifferential operators of real principal type;
note that the definition of systems of pseudodifferential operators of real principal type differs
from the case of scalar pseudodifferential operators of real principal type. In this article, Dencker
also defined Hamilton orbits for systems of real principal type which are certain line bundles,
and then he proved that the polarization set of a solution u of systems of real principal type P
will be union of Hamilton orbits, given that Pu is smooth. In |G86|, Gérard pointed out that
the above result also holds for H*-polarization sets.

Moreover, in [Den92|, Dencker considered pseudodifferential system having its characteristic
set is union of two non-radial hypersurfaces intersecting tangentially at an involutive manifold
of exactly order kg > 1. He also assumed that the principal symbol vanishes of first order
on the two-dimensional kernel at the intersection, and he assumed a Levi type of condition.
Then, he defined systems satisfying these conditions to be systems of uniaxial type. Outside the
intersection of the hypersurfaces the system will be of real principal type, hence the propagation
result of the polarization set is already known there. In this article, Dencker has also proved
a propagation result of the polarization set at the intersection. In [Den95|, Dencker considered
pseudodifferential system having its characteristic set is union of two non-radial hypersurfaces
intersecting transversally at an involutive manifold of codimension 2. He also assumed that
the principal symbol vanishes of first order on the two-dimensional kernel at the intersection.
Systems satisfying these conditions are systems of transverse type. In this article, Dencker has
also proved a propagation result of the polarization set at the intersection.

We worked on extending Dencker’s result stated above to pseudodifferential systems having
their characteristic sets are union of several non-radial hypersurfaces intersecting transversally
at an involutive manifold; not necessary just two hypersurfaces as in the case of systems of
transverse type and systems of uniaxial type. Note that even if we assumed that the hypersur-
faces are intersecting tangentially of exactly order ky > 1 instead of intersecting transversally,
we get a similar result, and for the proof we use the same weight and metric introduced by

Dencker in |[Den92| for the symbol classes S(1J, g) of the Weyl calculus. We have considered
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two cases for that: the first case is the case where we have ry hypersufaces, and we assumed
that roth-differential of the determinant of the principal symbol is different than zero at the
intersection, and the ith-differential of the determinat of the principal symbol vanishes at the
intersection for ¢+ < ry. Moreover, we assumed the dimension of the kernel of the principal
symbol to be ry at the intersection, and we also assumed a condition similar to the Levi type
condition given for systems of uniaxial type. We called systems satisfying the above conditions
systems of generalized transverse type, and we proved that we have a similar propagation result
of the polarization set as that for systems of uniaxial type. The second case, is the case where
we also have ry hypersurfaces, and condition similar to the Levi type condition given to sys-
tems of uniaxial type, but here we assumed that the (ry + 1)th-differential of the determinant
of the principal symbol is different than zero at the intersection, and the ¢th-differential of the
determinate of the principal symbol vanishes at the intersection for ¢ < rq + 1. Moreover, we
assumed the dimension of the kernel of the principal symbol to be rq 4+ 1 at the intersection.
We also assumed some additional conditions that we did not assume in the case of systems of
generalized transverse type. We defined systems satisfying these conditions to be systems of
MHD type. We named them systems of MHD type because we have first noticed such systems
when we considered the linearized ideal MHD equations. Thus we will have chapter in which
we study the propagation of polarization sets for the linearized ideal MHD equations.

In our work, we will assume that we have P an N x N system of pseudodifferential operators.
Let p = o(P) be the principal symbol, detp the determinant of p, and ¥ = (detp)~1(0) the
characteristics of P. We consider X to be union of several non-radial hypersurfaces intersecting
transversally at an involutive manifold 5. Now, we state our main theorem in this thesis
regarding the propagation of polarization sets for systems of generalized transverse type, and
systems of MHD type, but its proof will be postponed to sections 3.4 and to prove it for

systems of generalized transverse type, and systems of MHD type respectively. Let
ri(v)=sup{re R:ue H atv} veT*X\0 (1.1)
be the regularity function.

Theorem 1.1. Let P € U™

phg b€ an N X N system of generalized transverse type (or of MHD

type) at vy € Yo, and let A € \Ifghg be an N x N system such that the dimension of Ny N Np
is equal to 1 at vg, and let My = m(Na N Np \ 0) be a hypersurface near vy, where m :
T*X x CN — T*X is the projection along the fibers. Assume that u € D'(X,CV) satisfies

min(ry, +m—1,7%,) > r at vy. Then, Pol"(u) is a union of C* line bundles in NaNNp over
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bicharacteristics of Ma = 11 (NaNNp\ 0) near vy.

The plan of this thesis is as follows. In the first chapter, the first two sections 2.1, and
2.2] will be about the wavefront sets, and about the H*-wavefront set respectively. In these
two sections we give the definition of the wavefront set (and of the H®-wavefront set), and
some properties of the wavefront set (and of the H*-wavefront sets). Moreover, we will state
Hormander’s propagation result of the wavefront set for differnetial operators of real principal
type (and the propagation result for the H®-wavefront set). In sections 2.3 and 2.4 we will
give the definition of the polarization sets and H®-polarization sets respectively, and state
some of their proprieties. In chapter 3] we will discuss the propagation of polarization sets for
different types of systems. In section 3.1l we will state Dencker’s result for the propagation of
polarization sets for systems of real principal type; see [Den82a]. Moreover, we will state some
results proven in [HR04|, where they used the calculus of Fourier integral operators to construct
Lagrangian solutions and parametrices for systems of real principal type. In sections 3.2 and
B.3l we will state Dencker’s result regarding the propagation of polarization sets for systems of
uniaxial type; see [Den92|, and for systems of transverse type; [Den95| respectively. Note that
in [Den92| and [Den95|, Dencker proved several results for the propagation of polarization sets
under different conditions. Here we just mention the result which is similar to the result in our
main theorem. In sections 3.4l and [3.5] we will define systems of generalized transverse type,
and systems of MHD type respectively, and we prove Theorem [L.T] for both types of systems.

As we have mentioned, we first observed systems of MHD type when considering linearized
ideal MHD equations. Chapter @l will be an application for the results in [HR04|, and for the
propagation of polarization sets for systems of MHD type. First, we give the set of equations
describing the ideal MHD, and we linearize it. In section 4.1l we write the linearized ideal MHD
equations in the form of a wave equation, and we calculate the characteristic variety of this
wave equation under some assumptions as done in [Sch09]. Then, we calculate the transport
equation under these assumptions as an application to Hansen’s and Rohrig’s results mentioned
in subsection B.1.2] In section [4.2] we return to the linearized ideal MHD equations, and we
calculate the eigenvalues and their multiplicities which are not constant. Then, we study the
propagation of polarization sets, where we observe different cases, some in which our system is
of real principal type, some in which our system is of uniaxial type, and one where our system
is of MHD type.

In addition, we will have four appendices. Because in our work we will be considering
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involutive manifolds, the first appendix, Appendix[Alwill be about symplectic geometry. Section
[A Tl will be about symplectic linear algebra. In section we give the definition of symplectic
manifolds, and state Darboux’s theorem. In section [A.3 we will give a special case of the
symplectic manifold which is the conic symplectic manifold. Section [A.4] will be about the
characteristic foliation, where we state Frobenius theorem. In chapter B, we will be using
the symbol classes S(¢,g) of the Weyl calculus, that is why we included appendix [Bl which
is about Hormander Weyl calculus and estimates of pseudodifferential operators. In the first
section, section [B.I] we give the definition of the symbol class S(¥, g), and in section [B.2] we
give Hormander Weyl calculus, and in the last section, section we give the estimates of
pseudodifferential operators. Moreover, as in chapter [3] we will be using the Héormander spaces
H"™® we added appendix || which will be about the spaces B, which are generalization of
the spaces H™*. In section [C.1l we define these spaces, and in section we will discuss the
localization of these spaces. In appendix[Dlwe include some tools that we will be using to prove
our result. In section [D.1l we give the generalization of the Malgrange preparation theorem,
which was proven by Dencker in [Den92|, and in section [D.2] we give some calculus lemma

similar to that given in |[Den89| by Dencker, but here using different weight and metric.






2 Polarization sets

The wavefront sets describe the singularities of a distribution with respect to location and
direction. In [H603|, Hérmander gave the definition of the wavefront set, and stated many
properties of it. Also, in [H603|, Hérmander proved a propagation result of the wavefront set
for solutions of partial differential equations that are of real principal type. When we consider
vector-valued distribution, the wavefront set of u = (u;) € D'(X,C") is defined as union of
WEF(u;), but it does not specify in which components u is singular. In [Den82a|, Dencker gave
the definition of polarization set, which refines the notion of wavefront set for vector-valued
distributions, and it indicates the component that have the strongest singularity. Moreover, he
gave some properties of the polarization sets. In [G86|, Gérard have considered H*-polarization
set, and gave also some properties of the H®-polarization set.

In this chapter, we will give the definition of the wavefront set (and the H*-wavefront set),
and state some of their properties. Moreover, we will state Hormader’s propagation result for
the wavefront sets (and for the H*-wavefront sets). In addition, we will state the definition of

the polarization set (and H®-polarization set), and we will state some of their properties.

2.1 Wavefront sets

While the singular support of a distribution shows at which points the distribution is singular,
Hormander defined in [H603| the wavefront set which does not only tell where the distribution
is singular, but also it shows in which direction the singularity occurs. In this section, we will
introduce the definition of the wavefront set, and some properties of the wavefront sets.

First, we will remind the reader of the definition of the singular support of a distribution.

Definition 2.1. (Singular Support) Let u € D’(X), and let X to be an open set in R", then
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the singular support of u is defined as

singsupp(u) := X \ {zo € X; 3 an open neighborhood U of zy such that u|y € C*(U)}.
(2.1)
However, we have that if u € £(R™), then w is smooth if and only if the Fourier transform

of w is rapidly decreasing, that is, for every n € N, there exists a constant Cy > 0 such that
a(€)] < Cn(1+ €))7, (2.2)

for all £ € R™. Hence, we have the following proposition which can be used as another definition

of the singular support.

Proposition 2.2. Let u € D'(X), and let X to be an open set in R", and consider xy € X.
Then we say xq is not in the singular support of u if and only if there exists ¢ € D(X), with
(o) # 0 and @u is rapidly decreasing.

Now, we come to the definition of the wavefront set. The wavefront set consists of all the

directions such that the local Fourier transform of the distribution is not rapidly decaying in
this direction.
Definition 2.3. (Wavefront set in Euclidean Space) Assuming that X is an open set in R,
we say that a point (z¢,&) € X x (R™\ 0) does not belong to the wavefront set of u; denoted
by WF(u), if there exists a function ¢ € C*(X) with ¢(xy) # 0 and a conic neighborhood
[' CR™\ 0 of & such that, for each N € Ny, we have

Sglé?<1 + £ |@u(€)| < oo. (2.3)

The wavefront set is a refinement of the notion of singular support of a distribution in the

following sense: We have WF(u) C X x (R"\ 0) for u € D'(X) and
7 WF(u) = singsupp u, (2.4)

where 7 : X x (R™\ 0) — X is the projection onto the first component.

We can also define the wavefront set of a distribution on a smooth manifold by localization
on coordinate patches.
Definition 2.4. (Wavefront set in a smooth manifold) Assume that X is a smooth manifold,
k : U — V a diffeomorphism between open coordinate patch U of the manifold X, and V'
an open set in R", u € D'(V), and u € D'(U) the distributions with a(f) := u(f o k™!) for
fe€DU) . Then

WEF (@) = k, WF(u) := {( (), &' (2)€); (z,&) € WF(u)}. (2.5)



2.1 Wavefront sets

To state some properties of the wavefront set, we need to give the definition of properly
supported pseduodifferential operators, but first we have to state the kernel theorem.

Assume that X is an open set in R™ for j = 1,2. Every function K € C(X; x X3) defines
an integral operator K from Cy(X3) to C(X;) by the formula

/(/Cgb)(xl) = /K(xl,xg)qb(xg)dxg, ¢ € Co(X2), 1 € X;. (2.6)

This can be extended to arbitrary distribution K if ¢ is restricted to C5° and K¢ is a distribution.

We observe that we have

(Ko, v) = K(v @ ¢); ¢ € C5°(Xn), ¢ €C(Xa), (2.7)
when K € C(X; x X»).
Theorem 2.5. The Schwartz kernel theorem. Every distribution K € D'(X; x X3) defines
accroding to 21) a linear map K from C§°(Xy) to D'(Xy) which is continuous in the sense
Ko; — 0 in D'(Xy) if ; — 0 in C°(X2).
Conversely, for every such linear map KC there is one and only one distribution K such that

220) is valid. K is called the kernel of K.

From now on, assume that X is a smooth manifold.
Definition 2.6. A pseudodifferential operator A in X is said to be properly supported if both
projections from the support of the kernel in X x X to X are proper maps, that is for every

compact set K C X there is a compact set K’ C X such that
suppu C K = suppAu C K';u=0at K' = Au=0 at K. (2.8)
For P a pseudodifferential operator, we give the definition of the characteristic set of P by
Char P = {(z,§) € T"(X)\ 0; p(x,§) = 0}, (2.9)

where p is the principal symbol of P.

Theorem 2.7. If A € U™ is properly supported, and (zo,&) ¢ Char A then there exists
B € U™ properly supported such that (xg,&) ¢ WF(BA —1d) and (z¢,&) ¢ WF(AB —1d);
these conditions are equivalent.

Because of the above theorem, Hormander gave another description of the wavefront set in

|[H607]:
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Theorem 2.8. Ifu € D'(X), we have
WF(u) = ﬂ Char A, (2.10)

where the intersection is taken over all properly supported A € WO(X) such that Au € C®(X).

Remark 2.9. For u € D'(X), the wavefront set of u is a closed subset in 7% X \ {0}, and conic
in the sense that it is invariant under multiplication of the second variable by positive scalars.
That is, (z,§) € WF(u) implies (x,t£) € WF(u) for all ¢ > 0.

Theorem 2.10. If P € Y™ (X) is properly supported, and u € D'(X) then

WF(Pu) C WF(u) € WF(Pu) U Char P. (2.11)

A Special case is when P is elliptic. In this case we get WF(Pu) = WF(u), as Char P = ().

We will give two simple examples of the wavefront set of a distribution.

Example 2.11. (Wavefront set of the Dirac distribution) For é(x) € D'(R"™) we have
WEF(0) = {(0,¢) € R" x (R"\ 0); such that £ € R™\ 0}. (2.12)

Example 2.12. (Wavefront set of the Heaviside function) For H(x) being the Heaviside func-

tion on R we have
WEF(H) ={(0,¢) € R x (R\ 0); such that £ € R\ 0}. (2.13)

Here we used Theorem [2.10] as we have H' = §.

To state Hormander’s theorem about the propagation of wavefront set for a pseudodifferential
operator of real principal type, we have to introduce some definitions.
Definition 2.13. (Hamiltonian Vector field) Let P € ¥ (X)), and suppose that the principal

symbol p of P is real valued. The Hamiltonian vector field of p of 7*X \ 0 is defined locally by

L= B (2.14)

Definition 2.14. The integral curves of H, along which p = 0 are called null bicharacteristics.
Remark 2.15. Clearly, H,p = 0, thus p is constant along each bicharacteristic. The null bichar-
acteristics run in the characteristic set of P.
Definition 2.16. We say that H, is nowhere radial if d¢p # 0 or d,p }f €, when p = 0.
Definition 2.17. We say that P € ¥ (X) is of real principal type if the principal symbol p is
real and the Hamilton field H), is nowhere radial.

Notice that when P € ¥™(X) is of real principal type then the characteristic set of P is

foliated by null bicharacteristics.

10



2.2 Sobolev wavefront sets

Now, after defining operators of real principal type we can state Hormander’s theorem about

the propagation of the wavefront sets for pseudodifferential operators of real principal type.

Theorem 2.18. (Hormander’s theorem) Let P € W™ (X) be of real principal type, and let v be
a null bicharacteristic such that v N WF(Pu) # 0. Then v C WF(u) or vy N WF(u) = 0.

2.2 Sobolev wavefront sets

We can consider another type of wavefront set relative to the sobolev space which is called
H*-wavefront set. For H*-wavefront sets we have similar results as for the wavefront sets. In
this section we are also assuming X to be a smooth manifold.

Definition 2.19. If u € D'(X) we have

WEF*(u) = ] Char A, (2.15)
where the intersection is taken over all properly supported A € U9(X) such that Au € H{ (X).
For u € H (X) we get WF*(u) = 0.
Proposition 2.20. For u € D'(X), we have
TWF(u) ={z € X| u ¢ H® at z}, (2.16)
where m: T*X \ 0 — X is the canonical projection.
Notice that we have WF(u) = ("), WF*(u).
Theorem 2.21. For A € V™ (x) we have
WF*(Au) € WF*™™ (u) € WF*(A) U Char A. (2.17)

A special case of this is when A is elliptic. In this case we have WF*™™ (u) = WF*(Au).

We also have a result for the propagation of H® wavefront set for pseudodifferential operators

of real principal type.

Theorem 2.22. (Hérmander’s theorem) If P € W™ is of real principal type, v is a null bichar-
acteristic, then either v C WEF*™ 1 (u) \ WF*(Pu) or v N (WF**™ 1 (u) \ WF*(Pu)) = 0.

2.3 Polarization sets

In this section, we are going to consider vector-valued distribution instead of scalar distribu-

tion. In [H603|, Hormander stated that if E is a C* vector bundle over X, and u € D'(X, E),

11
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then the wavefront set of w is defined locally as union of WF(u;) where (uy,...,uy) are the
components of u with respect to a local trivialization of E. Passage to another local trivializa-
tion only means that (uq, ..., uy) is multiplied by an invertible C* matrix, so the definition is
independent of the choice of local trivialization. However, this definition does not specify the
component of u which have the strongest singularity. That is why Dencker defined in [Den82a]
the polarization sets, which are refinement of the wavefront set for vector-valued distributions.
In this section, we will give the definition of the polarization set and state some of its
properties. The propagation of polarization sets, will be postponed to the next chapter.
Definition 2.23 (Polarization set). Let £ — X be a vector bundle over a smooth manifold X,

and 7 : T*X \ 0 — X is the canonical projection. For v € D'(X, E), we define the polarization

set of u as
Pol(u)= (] Na (2.18)
AueC>(X)
where
Na={(x,&v) e ™ E; v e kera(x,§)}. (2.19)

Here A € UY(X; E,C) with principal symbol a, and 7*FE — T*X \ 0 is the induced (pullback)
bundle.

Note that u € D'(X; F) (distributional sections) is locally just a vector valued distribution.
Hence, the definition is locally the following:
Definition 2.24. For u € D'(X,C"), we define the polarization set of u as

Pol(u) = () Na (2.20)
Au€eC>®(X)
where
Na={(z,&v) € (T*X\0) x CV; v € kera(z, )} (2.21)

Here, A is 1 x N system of pseudodifferential operators of order zero with principal symbol a.
The polarization set is closed, conical in the £ variables and linear in the fiber.

Example 2.25. Let u = (uy,uy) € D'(X,C?) and assume that (y,7) ¢ WF(u;). Then
Pol(u) C {(z,£;(0,2)); z € C}

over a conical neighborhood of (y,n).

Example 2.26. Let u = (v,Av) € D'(R",C?) where v € D'(R") and A is the Laplacian
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2.4 Sobolev polarization sets

operator. Then
Pol(u) C {(z,&;(0,2)); z € C},
since if we choose A = (Id, —A™') we get Au =0 € C®(R"). For (z1,22) € kera = o(A) we get
Z1 = 0.
Hence, the polarization set indicates the component of the distribution having the strongest

singularity. The following proposition shows how the polarization set is a refinement of the

notion of the wavefront set.

Proposition 2.27. Ifu € D'(X,CY), then
m(Pol(u) \ 0) = WF(u), (2.22)
where T is the projection on T*X ; that is w(x, &, v) = (x,€).

Proposition 2.28. Let A be an M x N system of pseudodifferential operators on X with
principal symbol a(z, &), and let u € D'(X,CY). Then

a(Pol(u)) C Pol(Au), (2.23)

where a operates on the fiber; a(x,&;v) = (x,& a(x, €v).
Corollary 2.29. Let E be an N x N system of pseudodifferential operators on X with principal
symbol e(x, &), and let u € D'(X,CN). If E is elliptic at (y,n) € T*X ; that is e(y,n) # 0, then

Pol(Eu) = e(Pol(u)) (2.24)

over a conical neighborhood of (y,mn).

2.4 Sobolev polarization sets

In |G86], Gérard considered the H*-polarization set, and stated that it has similar properties
as that of the polarization set. The propagation of the H?®-polarization set will be postponed
to the next chapter also.

Definition 2.30. For u € D'(X,C"), we define the H*-polarization set of u as

Pol'(u) = (] Na, (2.25)
AueH} (X)
where
Na={(z,&v) € (T*X\0) x CV; v € kera(z, )} (2.26)

13



2 Polarization sets

Here, A is 1 x N systems of pseudodifferential operators with o(A) = a being its principal
symbol.

The H*® Polarization set is a refinement for the H® wavefront set in the following sense:

Proposition 2.31. Ifu € D'(X,CY), then
m(Pol*(u) \ 0) = WF*(u), (2.27)
where 7 is the projection on T*X ; that is w(x,&;v) = (x,€).

Proposition 2.32. If A is M x N system of pseudodifferential operators on X of order m with
principal symbol a(z, &) and v € D'(X,CV), then

a(Pol®*(u)) C Pol*"™(Au), (2.28)

where a operates on the fiber; a(x,&;v) = (x, & a(x, §)v).
Corollary 2.33. Let E be an N x N system of pseudodifferential operators on X of order m
with principal symbol e(x,€), and let uw € D'(X,CN). If E is elliptic at (y,n) € T*X, then

Pol* ™ (Eu) = e(Pol*(u)) (2.29)

over conical neighborhood of (y,n).

14



3 Propagation of polarization sets

In this chapter, we will state the results of the propagation of polarization sets for different
types of systems. In [Den82a], Dencker have defined systems of real principal type and he gave
the propagation result of the polarization sets of such systems. In [Den92|, and [Den95| he gave
the propagation result for systems of uniaxial type, and for systems of transverse type. We
will state Dencker’s results in the first three sections. Moreover, we will give the definition of
two new kinds of systems, one which we named system of generalized transverse type, and the
other one we named system of MHD type, and we will prove our main theorem; Theorem [L1]

for these two types of systems.

3.1 Systems of real principal type

We diveded this section into two parts. In the first part, we state the definition of real
principal type, and state Dencker’s result regarding the propagation of polarization sets for
systems of real principal type; see [Den82a|. In the second part, we state some of the results
mentioned in [HR04] by Hansen and Rohrig, who merged the theory of real principal type
system with the calculus of Fourier integral operators. They showed that the principal symbol
of a Lagrangian distribution solving a real principal type system satisfies a transport equation,

and they constructed a Lagrangian solution and parametrices.

3.1.1 Propagation of polarization sets for systems of real principal
type

For the definition of real principal type, we will differentiate between two cases, the scalar case,
and the case of system of pseudodifferential operators. We aleady defined pseudodifferential

operators of real principal type for the scalar case; see Definition .17l For the case of system
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3 Propagation of polarization sets

of pseudofifferential operators we have the following definition:

Definition 3.1 (Case of system of Pseudodifferential operators). An N x N system P of
pseudodifferential operators on X with principal symbol p(z,&) is of real principal type at
(y,m) € T*X \ 0 if there exists an N x N symbol p(z, &) such that

ﬁ(m,f)p(l’,é) = Q(‘r7§> ' IdN

in a neighborhood of (y,n) where ¢(z, &) is a scalar symbol of real principal type and Idy is
the identity in CV.

Assuming P(x, D) to be an N x N system of pseudodifferential operators on an n-dimensional
smooth manifold X of order m, the symbol of P is an asymptotic sum of homogeneous terms:
(2, &) +pm—1(x, &) +pm—2(x, &)+ ... where p is the principal symbol of P and p; is homogeneous
of degree j. The characteristic set of P is

2 = {(z,&);det p(z,§) = 0}, (3.1)
and the subprincipal symbol of P is by definition
1 d*p
T i=Dmo1— 5o 3.2
PO Pmo T 55 2 g0, (3:2)

To state the result of the propagation of polarization set given by Dencker in [Den82a|, we have
to introduce first the connection he defined, and give the definition of the Hamilton orbit. In

[Den82a], Dencker defined the following connection
1
Dyw = Hyw + §{ﬁ7p}w + PPy, w, (3.3)

for systems of real principal type, where w is C*° function on T*X \ 0 with values in CV. {,}
is the Poisson bracket, where {p,p} = Hzp. Dp is a connection on Np over X, i.e. if w € kerp
at one point of a bicharacteristic of ¥, then Dpw € ker p along the bicharacteristic if and only
if w € kerp there. Hence, each parallel section (that is w such that Dpw = 0) is uniquely
determined by one point. Dp depends on the choice of p and ¢, however Dencker showed that
different choices of p and ¢ only change the solution of Dpw = 0 in Np by a scalar factor.
Definition 3.2 (Hamilton Orbit). A Hamilton orbit of a system P of real principal type is a
line bundle L C Np|,, where v is an integral curve of the Hamilton field of 3, and L is spanned
by C* section w satisfying D,w = 0.

Theorem 3.3 (Dencker’s propagation result). Let P be an N x N system of pseudodifferential
operators on a manifold X and let u € D'(X,CV). Assume that P is of real principal type at
(y,m) € X, and that (y,n) ¢ WE(Pu). Then, over a neighborhood of (y,n) in X, Pol(u) is a
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3.1 Systems of real principal type

union of Hamilton orbits of P.

In |[G86] Gérard stated that we have similar propagation result for the H*-polarization sets

for systems of real principal type.

Theorem 3.4. Let P be an N x N system of pseudodifferential operators on a manifold X of
order m, and let u € D'(X,CN). Assume that P is of real principal type at (y,n) € ¥, and
that (y,n) ¢ WE*(Pu). Then over a neighborhood of (y,n) € ¥, Pol*™'(u) is a union of
Hamilton orbits of P.

3.1.2 Lagrangian solutions to systems of real principal type

Before stating some results proven by Hansen and Rohrig in [HR04], we remind the reader by
the definition of Lagrnagian distribution, the definition of conormal distribution, and by the
definition of Fourier integral operator. Then we state some of the results mentioned in [HR04].
Definition 3.5 (Lagrangian distribution). Let X be an n-dimensional C*° manifold, and A C
T* X\ 0 be a closed conic Lagrangian submanifold. The class of Lagrangian distribution denoted
by I*(X,A) for p € C consists of all u € D'(X) with WF(u) C A such that, near any \° € A,

u is microlocally of the form

_ n42N

u(z) = (2m)" / 90 oz 0Vd0, € U
RN

n—2N

where a € S¥T1 (U x RY), and ¢ € C*(U x (RV \ 0)) is a phase function. Here, A = A,

microlocally near \°, where

Ay =A{(z, ¢ (x,0))| dy(x,0) =0} CU x (R"\0) =T"U\0.
Definition 3.6 (Conormal distribution). Let X be an n-dimensional C* manifold, Y C X,
and A = N*Y '\ 0, where

N*Y ={(y,§) € T, X| &1,y = 0}.

We write u € I(X,Y) = I!(X, N*Y \ 0) to denote classical conormal distributions of order .
Definition 3.7 (Fourier integral operator). Let X, Y be C* manifolds, and C' C (T*X \ 0) x
(T*Y \ 0) a homogeneous canonical relation, that is

A=C"={(z,y,{n) € T"(X xY)\ 0| (z,&y,—n) € C},

is closed conic Lagrangian submanifold of 7*(X x Y')\ 0. A linear operator A : C*(Y) — D'(X)
is a (classical) Fourier integral operator with underlying canonical relation C, of order u € C,

if its kernel belongs to Ifj(X x Y, A). We write A € I'}(X,Y, C).
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3 Propagation of polarization sets

The following settings will be assumed from now on till the end of this section. Let F' and
GG be complex C* vector bundles with the same fiber dimension N over n-dimensional smooth
manifold X. In [HR04|, they modified the definition of real principal type slightly in a way
that they chose explicitly a Hamilton field of the characteristic variety of the operator. Let
P € V(X F,G) be a properly supported and polyhomogeneous pseudodifferential operator
mapping sections of F' to sections of G. We say P is elliptic at the subset of 7* X \ 0 where the
principal symbol p € S™(T* X, Hom(F, )) is an isomorphism. The complement of the elliptic
set is the characteristic variety of P, Char P C T*X \ 0. Assume that for every v € T*X \ 0,
there exists symbols p € S*™™(T*X \ 0, Hom(G, F)) and ¢ € S*(T*X \ 0), homogeneous of
degree 1 — m, and 1, respectively, such that in a conic neighborhood of v, ¢ is of scalar real
principal type with Char P = ¢~'(0), Hamilton field H = H,, and pp = ¢qId. We then say P is
of real principal type with Hamilton field H. See Definition 3.1l

Using local coordinates, and local frames, P becomes an N x N matrix of scalar pseudod-
ifferential operators in an open subset of R™. Then the full symbol of P is an asymptotic sum
of homogeneous terms: p + py—1 + Ppm—2 + ... The subprincipal symbols of the components
of P is given by (B2). Let A C T*X \ 0 be a closed, conic Lagrangian submanifold of the
characteristic variety of P, A C Char P. Let M, and le\/ ® be the Maslov, and the half-density
bundle of A, respectively. SHT™4(A; My ® Q}\/ ‘QF ) is the space of symbols of the space of
Lagrangian distribution sections, I*(X, A; Q%Q ® F). See [H609, Section 25.1] to read more
about Lagrangian distributions.

Given local coordinates A1, ..., A, on A, the Lie derivative of half-densities with respect to H

(H = H,) is defined as follows:
Ly (u|ld\?) = (Hu + %div(H)u)|d/\|1/2. (3.4)
Here div(H) = >, 0H;/0A; when H =, H;0/0);. Over a (conic) neighborhood of a point
in A we trivialize bundles by choosing local frames of F', G, and Mj,:
My@ Qo F=@QY)Y =M 002G, (3.5)
Thus, we represent sections by N-vectors of half-densities.

Proposition 3.8. There is a first order differential operator Tpy on A, uniquely determined
by P and H, which maps C* sections of My ® Q}\/z ® kerp to C*™ sections of My ® le\/z ® F.
That s

Toar - CO(A, My © QY @ ker p) — C(A, My ® Q) ® F).
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3.1 Systems of real principal type

Tpm is given as follows
1
Tema = Lpa+ 5{p, pa + ipp*a. (3.6)
Trivializing bundles as in [B0), a is an N vector of half-densities with pa = 0.
Let E, € U*(X;F,, F) and E; € V*(X;G,G)) be elliptic with principal symbols e, and e,
respectively. Let f € C*(T*X \ 0) be a real-valued and non-vanishing in Char P. Then,
Tre. (e, a) = e Tpu(a), Tgpu(a)=Teu(a), Trsu(a)= fTru(a), (3.7)
holds for every a € C®(A, My ® le\/2 ® F) with pa = 0.
Remark 3.9. The transport equation 7p y acts on symbol spaces
Toa - SPTYYA My @ Q% @ kerp) — SFTYAA, My © Q) @ F).
This follows from (B.6]), since H is homogeneous of degree 0, and p is homogeneous of degree
1—m.
An equation 7py = 0 for a section a of ker p is called homogeneous transport equation.

Lemma 3.10. Let P, P, be N x N systems of pseudodifferential operators with principal sym-
bols p1, po and subprincipal symbols pi, p5. Then Py P, has principal symbol pypy and subprincipal

symbol
S S 1
Dp1P2 + p1ps + Z{phpz}'

Proof. The proof follows from the composition formula of the Weyl calculus |[H607, Section

18.5]. O

Proof of PropositionB.8. Assume trivialization of the bundles as in (8.5l Using pp = ¢Idy, we
can get that

{/p,py = f{p,p} — (H[) Idy —(H;p)p.
Using this, and using that L¢ya = fLya + %(Hf)a, we get the last formula in (3.7).

Let £ € ¥* be N x N elliptic with principal symbol e. Set P, = PE. P is of real principal
type with Hamilton field H, and principal symbol p; = pe. Observe that p1p; = ¢lIdy holds
with p; = e~ 1p. Using

(0q) Idy = (9p)p + p(Op), (3.8)

and He ! = e7!(He)e™!, we get

{ﬁhpl} - e_l{ﬁap}e + 26_1H€ - e_lﬁ{pv 6} + r.
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3 Propagation of polarization sets

Here r vanishes on ker p;. Using Lemma [3.10, we have
Py = e (pp'e + %ﬁ{n e}) + 1.
Here 75 vanishes on {¢ = 0}. Let b be a section of (Q}P)N with pa = p1b =0, a = eb. Then
Lyb=e'Lya—e *(He)b.
Summing up we have
Lub-+ 30, pi}o+ bl = ¢~ (Caa + {5, pha + ifp'a).

So, we get the first formula in ([B.7). Similarly, we can prove the second formula by multiplying

P from the right by an elliptic operator. [l

Remark 3.11. A transport equation 7ppya = 0 for a section a over a Lagrangian manifold
A C Char P can be viewed as a family of ordinary differential equations associated with the
bicharacteristic curves which foliate A.

If A is a Lagrangian distribution of order p with principal symbol a, then PA has order (at

most) m + p and principal symbol pa. If pa = 0 then PA is of order m+ p— 1. In the following
theorem, we will state the relation between its principal symbol and the transport connection
To.
Theorem 3.12. Assume A a homogeneous Lagrangian submanifold of T*(X) \ 0 such that
A Cc CharP. If A € [“(X,A;Qi(/2 ® F), and a € SFAY(A; My ® 911&/2 ® F) is a principal
symbol of A such that pa = 0, it follows that B = PA € ™™ 1(X A; Q%Q ® G) has a principal
symbol b € STTHIMATL(A My ® Q/I\/Q ® G) satisfying

i "Tpra = pb. (3.9)

Proof. We want to show that (8.9) holds microlocally near v € A. We assume that X is an
open subset of R", and that F' and G are trivial N-bundles. Hence, P is a N x N matrix of
scalar pseudodifferential operators, and a, and b are N-vectors of half-densities. We have to

prove that, in a conic neighbourhood of 7,
1 1 . - s -
sLma+ oA, pla+pp°a = pb.
First, consider P is diagonal, p = ¢Idy (p = Idy), and p® = 0. Then (B.9) follows from the
scalar case [H607, Theorem 25.2.4].

Next, consider when the principal symbol of P is diagonal p = ¢Idy, (we assumed here

p = Idy). Choose Py € ¥™ diagonal N x N with principal symbol p, and vanishing subprincipal
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3.1 Systems of real principal type

symbol. Choose E € WY elliptic N x N with principal symbol e which solves
1
—-He+p’e=0 (3.10)
)

in a conic neighbourhood of v. PE and E P have the same principal symbol ge. Using Lemma

B.I0, the subprincipal symbols of PE and EPa are

1 1
S+p’e+ —H d f— —H
qe’ + p’e 5 . and gqe 5 €

respectively. It follows from (B.I0) that the subprincipal symbols are equal. Hence PE = EPx
modulo U™ 2, Let E~! be a parametrix for E. Microlocally near v, B = PA = EPAE'A
holds modulo I™#72( X, A; Q;{Q@G ). From the previous case we have that the principal symbol
of PAE™'A equals i 'Ly (e a). Now, using [B.I0), we get:

b=i‘teLy(eta) =i '"Lya+ite(He )a=1i'Lya+ pia.

Now, consider the general case. P, = PP is of real principal type with diagonal principal
symbol p; = ¢Idy. By Lemma 310 the subprincipal symbol is p{ = p*p + pp* + (2¢) " {p, p}.
We apply the previous case to PB = P;A with p; = Idy and obtain

pb=i"'Lya+pia=i"'Lya+ppa+ (2i){p,p}a.

Apply Theorem B.12] with P the lift to X x Y under the canonical projection onto the factor

X and A = C' the twisted canonical relation.

Corollary 3.13. Assume that C' is a homogeneous canonical relation from T*(Y)\O to T*(X)\0
such that the projection of C'in T*(X)\0 is contained in Char P. If A € I"(X xY,C"; Qi(/iy ®
Hom(E, F)), and a € SFHnx+mv)/4(C, MC®Qlc/2®H0m(E, F)) is a principal symbol for A such
that pa = 0, it follows that B = PA € I™™ (X x Y, C’;Q%iy ® Hom(FE, G)) has principal

symbol b € STHHHIXAW)/A=L(C: Mo ® 910/2 ®@ Hom(E, G)) which satisfies
Z'717}37Ha = ﬁb
Let A C Char P be a closed, conic Lagrangian submaniold. We want to show how PA =0

modulo C* with non-trivial Lagrangian distribution A associated with A is solved.

Lemma 3.14. Let Ay C A be a conic isotropic submanifold of codimension one such that
evey bicharacteristic curve in A intersects Ny in exactly one point and transversally. Let ag €
SHE/AA: My @ QY2 @ F) and b € S™H /AN (A My @ QV? ® G). Then there is a unique
symbol a € SHHVA(A; My ® Q}Xﬂ ® F') which satisfies a = ay on Ay and the transport equation

21



3 Propagation of polarization sets

i Tppa=pb on A. If pag =0 on Ag then pa =0 on A.

Now, we show how B = PA is solved within the framework of Lagrangian distributions when
the product of principal symbols vanishes and the transport equation holds.
Proposition 3.15. Let B € I (X A; Q¥2®G) have principal symbolb. Let a € SFT/4(A; My ®
Q}\/Q ® F) with pa = 0 be such that the transport equation i~ Tpga = pb holds on A. Then there
exists A € IM( X, A, Q¥2®F) with principal symbol a such that B—PA € I 2(X A; Q¥2®G).

Proof. Choose A" € I"(X,A) with principal symbol a. By Theorem B.12] B’ := B — PA’ €
™= X A) with principal symbol b which satisfies pb’ = 0. From [Den82a), we have ker p =
imp. Therefore we find o’ € SF=1*"/4(A) with &' = pa”. A = A’ + A” has the requested

properties when A” € I*71(X, A) is chosen with principal symbol a”. O

Theorem 3.16. Let Ag C A be a conic isotopic submanifold of codimension one such that every
H bicharacteristic curve in A intersects Ay in exactly one point and transversally. Let ag €
Srn/A(A; MA®Q}\/2®F) be such that pag = 0 on Ag. Then there exists A € I"(X, A; Q¥2®F)
which satisfies PA = 0 modulo C*(X; F) and has principal symbol a such that a = ag on Ag

and pa =0, Tpga =0 on A.

Proof. Set By = 0. From Lemma B.14] and Proposition [3.15, we know that there exists A; €
I"(X, A;QY?®F) such that By := B;—PA; € I™"2(X, A: 0/*®G) and the principal symbol
of Ay, ay, satisfies a; = ag on Ag and pa; = 0, i~ 'Tpya; = pb; = 0 on A. Recursively for j € N,
we obtain A; € [*H1I(XA; Qi(/z ® F) and Bj;1 = B; — PA; € I 179(X A Q;/Q ® Q)
by solving inhomogeneous transport equations i~ '7pya; = pb; on A. A is constructed as an

asymptotic sum A ~ A; + Ag + ... O

3.2 Propagation of polarization sets for systems of uniaxial

type

In this section, we will state the definition of systems of uniaxial type, and give the result
of propagation of polarization sets for systems of uniaxial type given by Dencker in |[Den92| .
We are going to assume that the characteristic set is a union of two non-radial hypersurfaces,
which are tangent of exactly order ky > 1 at an involutive manifold. We will also assume that
the principal symbol of our system vanishes of first order on the two-dimensional kernel at the

intersection, and we will assume a Levi-type of condition.
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3.2 Propagation of polarization sets for systems of uniaxial type

Let P € U7} (X) be an N x N system of classical pseduodifferential operators on a smooth

manifold X. Let p be the principal symbol of P. Let ¥ = (det p)~'(0), and let
Yo ={(z,¢) € ¥ :d(detp) =0 at (z,§)}, (3.11)
and ¥; = X\ Xy, Assume that we have

> =51 US,, where S; and S, are non-radial hypersurfaces tangent at ( )
3.12

Yo = 51 NS5 of exactly order kg > 1,
microlocally near vy € ¥5. This means that the Hamilton field of S; does not have the radial
direction (&, 0¢), and it means also that the koth jets of S; and Sy coincide on ¥o, but no
(ko+1)th jet does. Note that we have P is of real principal type at 31, since d(det p) # 0 there;
see Definition Bl Moreover, (8.12]) gives us that 3, have to be a manifold of codimension > 2.

We assume that
¥, is an involutive manifold of codimension dy > 2, (3.13)
let NV, =kerp C (T*X \ 0) x CV. We will assume that
the (complex) dimension of the fiber of N, is equal to 2 at X, (3.14)
and
d*(det p) # 0 at X, (3.15)

that is p vanishes of first order on the kernel. We want to consider the limits of Np|y, when

we approach X, so let
'/V‘pj = '/V;D|Sj\227 (316)

Ts,> = Tx,S; = Tx,S> (note here 3 is not a manifold), and 0% := Ty, /TY,. Here 0% is the
normal bundle of ¥, in S; which is equal to the normal bundle of ¥ in Sy. Let ig : X9 — 03
denotes the zero section of 0%;. By the tubular neighborhood theorem we know that there
exists a diffeomorphism @ from some neighborhood U C S of 35 to a neighborhood U, € 0%,
of the zero section of 0%, and ® identifies X, itself with the zero section.

Before giving the definition of systems of uniaxial type, we need to give the definition of the
limit polarizations.

Definition 3.17. For j = 1,2, we define the limit polarizations

ONI ={(v,p,2) €01 xC" :p#0and z = khm 2k}, (3.17)

p
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3 Propagation of polarization sets

where z;, € kerp(vy) and vy, € S; \ Xg satisty (v — vy)/|v — vik| = p/|p| when k& — oo.
ON; f; is conical in £ and p, and homogeneous in the fiber, but it may have (complex) dimension

> 1 at (v, p). We assume that the fiber of
ON, NONZ = {0} over 9% \ (2 x 0). (3.18)

This condition means that no element in Np|s, can be the limit of polarization vectors on both
characteristic surfaces, along the same direction. Dencker showed that (3.I8]) implies that ON; }];
is a complex line bundle over 9% \ (X2 x 0), if we assume ([B.12)-(BI5). We will show this in
the proof of proposition Now, we give the definition of systems of uniaxial type:
Definition 3.18. The system P is of uniaxial type at vy € %o, if (312)-(BI5) and (BI8) hold
microlocally near vj.

It P e W, is of uniaxial type and Pu € H" near v € X, then we already know the result
as Dencker showed in [Den82a] that Pol”™”'(u) is a union of Hamilton orbits in Np near v
because P is of real principal type at ¥y, since d(detp) # 0. Now, we want to give Dencker’s
result for the propagation of the polarization set when we approach ¥a; see [Den92|. Note that
in this section we will not be writing precisely what Dencker wrote to prove the result, but it is

almost the same process. Dencker applied a change of variable while writing the normal form,

which we do not apply here.

Proposition 3.19. Let P € \I/;)hg be an N x N system of uniaxial type at vy € 5. Then by

choosing suitable symplectic coordinates, we may assume that X = RxR"™! vy = (0; (0, ..., 1)),
S ={(t,r;7,6) € T*(R x R" ) : 7 = 0}, (3.19)

and
Sy ={(t,z;7,&) € T*R x R* V) : 7+ B(t,z,€) = 0}, (3.20)

microlocally near vy. Here (3 is real and homogeneous of degree 1 in &, and satisfies in a conical

neighborhood of 1y
o't /jgl < |8 < et [gf, 0 < e < C, (3:21)

where (1,&,£") € R x RW~1 x R~ yhich gives ¥y = {1 = 0, = 0}. By conjugating P with
elliptic, scalar Fourier integral operators, and multiplying with elliptic N x N systems of order

0, we may assume that

s
1%

mod C™, (3.22)
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3.2 Propagation of polarization sets for systems of uniaxial type

microlocally near vy, where E € V!, is an elliptic (N — 2) x (N — 2) system and

phyg
F>=1dy D+ K(t,x,D,) mod C*. (3.23)
Here K(t,x,D,) € C*(R, \Il}?hg) is a 2 x 2 system, detk =0, and trace trk = 3 where k is the
principal symbol of K.
Proof. Since the result is local, we may assume X = R". Because X, is involutive, we

may choose symplectic, homogeneous coordinates (z,£) € T*R" near vy € Xg, so that vy =
(0;(0,...,1)) and

Yo ={(x,§) e T"R" : ¢’ = 0}, (3.24)
where £ = (¢/,£") € R% x R*%, We may also assume that

S1={(z,8) e T"R" : & = 0}, (3.25)

near v5. Now, we rename x, = t, (2o, .., 2q4,) = @, and (24941, ..., Tn) = ”. Since S5 is tangent

to S7 at X, we obtain
Sy ={(t,z;7,&) € T*R x R* ) : 7+ B(t,z,€) = 0}, (3.26)

with [ real and homogeneous of degree 1 in &, in a conical neighborhood of 1, and [ satisfies
B.21).
By choosing suitable homogeneous bases for ker p and orthogonal complement of Im p in C¥

on Y, and extending to a neighborhood, we obtain P on the form

P, P
p=|"" ""lest (3.27)
Py Py
Here Py, is an elliptic (N —2) x (N — 2) system and the principal symbols of Py, Pjo, and Py
vanish on 5. By constructing a parametrix for Pyy and multiplying P from left and right with

suitable elliptic systems of order 0, we obtain P on the form

F 0
pP= mod C* (3.28)
0 F
microlocally near vy, where E € W, is an elliptic (N —2) x (N — 2) system. To know more

about how this is done, you can check either [Den88, Proposition 2.5], or you can check the
proof of Proposition B.31] in the next section, as we will explain this more when writing the

normal form for systems of generalized transverse type.
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3 Propagation of polarization sets

If f is the principal symbol for F' = Py;, the conditions (815), (319), and (3.20) imply
det f=cr(t+3), 0£ce S, (3.29)
thus 9?(det f) = det(d,f) # 0 at ¥5. By Theorem [D.I, and by homogeneity, we may find
homogeneous system Cy € S° such that
f=Co(rIdy +Ek(t, z,£)), (3.30)

where det Cy # 0 at ¥5. By multiplication with an elliptic system, we may assume Cy = Ids.
Thus, det f = 7(7 + (), which implies detk = 0, and trk = 3. If f; € S is the term

homogeneous of degree 0 in the expansion of F', then Theorem [D.I] and homogeneity give
fO = Bflf —|— Bo, (331)

where By € C*(R, S°) is independent of 7, and B_; € S~!. By multiplying f with an operator

with symbol Idy —B_1, we may assume B_; = 0. By induction over lower order terms we obtain

B.23). 0

We want to introduce symbol classes adapted to the function 8 defined in (B.21]). Let
D) = 14 [¢/[PRor2(g) >, (3.32)

where (€) = (14 [£]?)"/2, thus ¥ ~ 1 + |B]. Consider the metric

g(dz,d§) = |dz[* +1dg'[*/(()" + |§')* + 1d&"|*/{€)* at (x,€), (3.33)

where p = ko/(ko + 1), which gives h? = supg/g” = ()" + [€'])72 < 1. We get that g is o
temperate, ¥ is a weight for g, and 8 € S(1J, g); see Appendix[Bl In fact, Taylor’s formula gives

B= > a%" (3.34)

‘Oz|=k‘0+1

where a® € S7% are homogeneous in £. Hence, we get
<§>Iv”\‘a§ag/’agf//m < C’a7<£>*k0*(|’ﬂ*kofl)+’£/|(k0+1*\’7l\)+ < C'(’mﬁhhll, (3.35)

by considering the cases |[£’'| Z (£)*. Similarly, we get that if we have a(¢, z, ) is homogeneous
of degree j in & and |a| < c¥*, then a € S(1¥7,g). Moreover, if k < j, then a = 0, otherwise a
vanishes of order > j(ko + 1) at .

Proposition 3.20. Let
P=1dy D, + K(t,xz,D,) (3.36)

be a 2 x 2 system with K € C*(R, W, ), and assume that k = o(K) satisfies det k = 0, and
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3.2 Propagation of polarization sets for systems of uniaxial type

trk = (. Then P is of uniazial type if and only if k € C*(R, S(9, g)).

Proof. We will write k in the following form

ki k
g |1 R 7 (3.37)
ko1 koo

and let o = (kq1, k12, ko1, ko2) € C*°(R, S1), homogeneous of degree 1 in €. By homogeneity; see

the discussion above,
ke C®R,S(,9)) < a=0() (3.38)

Assume that a = O(f) and (v, p) € 034, p # 0. Choose £, € v; — v such that (v —v;)|v —

vi|™t = p/lpl, 7 = oo. Let us define
VI (v, p) = lim =2 (). (3.39)

Since @ = O(f) does not depend on 7, so the above definition (3:39) is independent of the

choice of v;. We get
ONp(v, p) = ker((v7(v, p))ij=12); (3.40)
where (v7(v, p))ij=12 denotes the matrix with entries v (v, p) for 4,j = 1,2. We also have
ONE (v, p) = ker(—Tda +(v7 (v, p))ij=12)- (3.41)

It is easy to see that the condition ONR (v, p)NONE(v, p) = {0} is satisfied. Moreover, using that
det k = 0, and trace k = 3, we have that det(v7 (v, p));j=12) = det(— Ids +(v7 (v, p))ij=12) = 0.
Also, we get that (v7(v,p))ij=12) # {0} and (—Ids +(7¥ (v, p))ij=12) # {0}. Hence, by the
rank-nullity theorem we get dim ON}(v, p) and dim ONE(v, p) is equal to 1 for all (v, p) € 9%,

p # 0.
On the other hand, assume that o # O(f) at v € ¥5. Then there exists a sequence

v = (t;,21;0,&) — v, such that
la(v)| > 1|B(v)], VIeN. (3.42)

It is no restriction to assume that {(v —v;)|v — 1|7} has a limit 0 # p € 93|, as | — oo, and

that
gl = llimkij(yl)/\oz(um exists. (3.43)
—00
Since B(v)/|a(v)| — 0, we get that

ONE(v,p) 2 ker(("7); j=12) for s =1,2. (3.44)
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3 Propagation of polarization sets

Now, we want to show that ker((e"7); j—12) # {0}. As we have det k = 0, we get

lim ((k?nkgg - klgkgl)/(|&(l/l)|2) = 0. (345)

v|—V
So, we get the rank of the matrix (lim k;;/|cv(1)]) is strictly less than 2. By the rank-nullity
v —v
theorem we get that the dimension of the kernel of (lim k;;/|a(1)]) is greater or equal to 1.
v|—Vv

By that we get ker((e%7); j—12) # {0}. O

We will introduce some spaces that we are going to use. Let H™® be the space of u € &’
satisfying
lulléey = (2@”/]@(7, EI(7,6)"((7,9))*drd§ < o0, (3.46)
where 9 is given by (8.32]). We say that w € H™ at v € T*R" \ 0, that is, v ¢ WF"*(u), if
u = uy + ug, where u; € H™® and v ¢ WF(uy). Note that H"*~* C H™® when t > 0.
Proposition 3.21. Assume that P is a 2 X 2 system of pseudodifferential operators of order 1
on R™, on the form [323) with K € C*(R,0p(S(¥,q))) near vy € Xy. Let u € S'(R™,C?) and
assume Pu € H™ at vy. Then, for every 6 > 0 we can find cs > 0 and vs € H™T! at vy, such

that us = u — vy satisfies
jas(7,€)| < Cs.n((7,€)7", VN, (3.47)

when |7| > ¢5((§)° + (9)).

Proof. Without loss of generality, we will assume that 6 < pu is fixed, where pu = ko/(ko + 1).
Let x € C°(R) satisfy x(r) =1 when |r| < 1. Then we have
Pes(1.€) = X(e|TI((€)° + (9))7!) € 83, Ved >0, (3.48)

since dg. s is supported, where |7| & (£)° + (). Put vs = (1 — ¢5)(D)u, then us = ¢.s(D)u
satisfies (3.41T), Ved > 0.
In the support of 1 — ¢ s we find |det p| > % for small €, where

5 = ((1,€))° + ((1,9)) (3.49)

is a weight for the metric gs = |dt|? + |dx|* + (|d7|* + |d€|?)/{(7,€))®. Since § < u, we find
P € OpS(9s,gs) when |r| < C|¢|. Thus, we may construct E € Op S(dJ;', gs) C ‘If;g such
that EP = (1 —¢.s(D))I mod C*, microlocally near 1. Since E preserves wavefront sets, and

((1,9))0(E) € S, we find vs = EPu € H™* at 1. O
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3.2 Propagation of polarization sets for systems of uniaxial type

Let HI** be the Banach space of u € &', satisfying

(Jull)? = ) [lar, (e 0)drds < oc. (3.50)
If w e H}®, then we get u|,—, € H™® for almost all p, by Fubini’s theorem. If u € &’ satisfies
B:47), then
i < Crs(ullns +1) < Cru(Jull77*° + 1), Vr,s €R, (3.51)
where s+ = max(=+s,0). Hence, we lose only O(9) derivatives when taking restriction to {t = r},
for almost all r.
Definition 3.22. Let u € S'(R™), and assume & # 0 in WF(u). We say that u € H]® at
(to, o, &), that is, (to,,0,&) ¢ WFy*(u), if there exists ¢(t,z,&) € C*(R,S],) such that
o(t,xz, Dy)u € HP® and lim, _, _|d(to, 2o, Ao)| # 0.
We have
(to, w0, 0) & WEFL*(u) = (0,80) & WE™(u,), (3.52)
for almost all p close to tg, where u, = uli—,. If £ # 0 in WF(u), then from |[Den82b, Lemma
2.3|, we get that
7o (WE™) (1) = WFZ0 (u), (3.53)

where mo(t, x;7,€) = (¢, 2,£). The following lemma gives the result for the more general wave-

front sets:

Lemma 3.23. Assume that u € S'(R") satisfies B4T). Then Au satisfies BAT), for any
A€ C®(R,¥%,). We also obtain

WEFL™ = (1) © mo(WE™ () © WEF(u), (3:54)

where s+ = max(+s,0) and 7o(t, z;7,€) = (t,7,€). Since u € C* in 7wy (L) \ By by BAT), we
find
1o(WET=%=5 (1)) € WE"*(u) C 1o(WE" %5 (1)) on 3, (3.55)
where 1o(t, z,£) = (t,2;0,¢).
Note that H" = H™" is the usual Sobolev space.

Changing the notation, let z; = t, 2’ = (23, ..., 74, ), then = (x1,2’, 2") € Rx R~ x R0,

Introduce the symbol classes S™* = S((£)"h™%, g) where h™2 = 1 + |£]? + [&/|*k0 2 /(€)% and
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3 Propagation of polarization sets

(€) are weights for the metric g defined by
Gog(dx, d§) = |dx|? + |dE* R, (3.56)
Let U™* = Op S™* be the corresponding pseudodifferential operators, which maps H™* into L2.
Returning to the old notation where using ¢ instead of z;, and assume that P be of the form
in proposition B9, we get P € ¥ when K € C*®(R, S(9,g)) because we can notice that
h~2 = 92 and by that we have S%' = S(¥, g).
We are going to consider the following N x N system

Q = qldy +Q1 + Qo. (3.57)
Here ¢ is a scalar operator with symbol
qt,z;7,8) = (1 + B(t, 2,8)), (3.58)
where 8 € S(¥,g) is homogeneous and satisfies (8:21]). We will assume
Q1 = AyD, + Ay, (3.59)
with A; € S(¥,g), and Qo € S(1,g). We are going to study the following Cauchy Problem:
Qu=f

(U, Dtu)lt:O = (Uo, Ul).

(3.60)

Since we are going to assume that & # 0 in WF (u), the restrictions are well defined.
Proposition 3.24. Assume that v € D'(R",CY) satisfies (3.60), and & # 0 in WF(u). If
ug € H™, uy € H™ ' at (x9,&), f € HP™1 at (t,20,&) for 0 <t < tg, and & = 0, then
u € HP® at (to, xo,&o)-

Proof. By conjugating with an elliptic, scalar operator with symbol in S({¢)"¥*,g), we may
assume that r = s = 0. We will reduce to a first order symmetric system. Let v; = u, and
vy = ADu, where A € Op S(971, g) has symbol 97!, so v; = ADyv;. Then V = (v, vy) €
D'(R™, C?N), £ # 0 in WF(V), and V satisfies

PV =F
(3.61)
V0o = Vo.
Here P =Idoy Dy + K, F = (0, \f), Vo = “(ug, Mup), and K € Op S(9, g) has symbol equal
to

0 —9ldy
0 [ldy

=~
1%

mod S(1, g). (3.62)
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3.2 Propagation of polarization sets for systems of uniaxial type

We find Vy € H*® = L? at (z0,&) and F € H® at (¢,x¢,&) for 0 < ¢t < 5. Thus the result

follows from the following proposition. O]

Proposition 3.25. Let P = D;1dy +K where K € Op S(¥,g) has symbol which is diagonal-
izable in S(1, g) with eigenvalues 0 and 5 mod S(1,g), and B € C* is homogeneous, satisfying
B210). Assume that V € D'(R™,CV), € # 0 in WF(V) and V satisfies B.61). If Vo € L? at
(z0,&), F € H at (t,z0,&) for 0 <t <ty, and & =0, then V € H>? at (ty, xo,&)-

Proof. Using that £ # 0 in WF(V) and &, = 0, we get that V € H'" at (¢, z¢;7,&) when 7 # 0
and 0 < t < t5. By cut-off we may assume u € &', then by [Den82b, Lemma 2.3] we only
have to prove that V € L? at (ty, z0;0,&). By the assumptions and Definition .22, we may
find W (¢, x,&) € S(1, g) such that ¥ = 1 in a conical neighborhood of {(¢,x¢, &) : 0 <t <y},
UE € L? when 0 < t < tg, and UV |,—y € L. Let ¥y = ¥|;,—q and consider the Cauchy problem

PU=VF for0<t<t
(3.63)
Ult:O = ‘I’O%~

By |Den88, Lemma 5.4], this has a unique solution U € C®(R,D'(R"!,CY)) N L?. Put
W =V — U, then from they proof of Lemma B.23} check [Den92|, we know that (¢, x;7,&) ¢
WE(PW) = WE((1 — W)F), Y7, 0 < t < to, and (z0,&) ¢ WE(W o) = WE((1 — Wo)Vp).
By using the parametrix in [Den89, Proposition 3.4], and the microlocal uniqueness obtained

in [Den89, Section 5|, we get that (tg, z0;0,&) ¢ WE(W). O

Let
ri(v)=sup{re R:ue H atv}, veT"X\DO, (3.64)

be the regularity function. Note that as S; and S, are tangent at X5, so their Hamilton fields are
parallel on Y5, and since X5 is involutive, the Hamilton fields are tangent to ¥5. Therefore > and
Yo are foliated by the bicharacteristics of 3. Also, Dencker proved that 93 \ (X2 x 0) is foliated
by limit bicharactersitcs, which are liftings of bicharactersitics in 3, and that ON}E U ONE is
foliated by limit Hamilton orbits, which are liftings of limits of Hamilton orbits, and are unique

line bundles over limit bicharacteristics.

Theorem 3.26. Let P € W be an N X N system of uniazial type at vy € Yo, and let

Aec W), bealx N system such that the dimension of Na N Np is equal to 1 at vy. Assume
that u € D'(X,CY) satisfies min(rp, +m — 1,7%,) > r at vy. Then, Pol"(u) is a union of C*

line bundles in Ny N Np over bicharacteristics of 3 in My = w1 (Na NNp \ 0) near vy, where
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3 Propagation of polarization sets

w1 T*X \ 0 x CN — T*X is the projection along the fibers.

Proof. We may assume s = 0, N = 2, and P is of the form in proposition B.19 By using
Theorem for all terms in the expansion of A, we obtain that A € C*(R, ¥}, ). Since
o(A) #0 at 1y € Xy (because if 0(A) = 0 we do not get that the dimension of Ny NNp is equal
to 1), we can conjugate by suitable elliptic systems in C*°(R, W9, ) to get that Au = u; € H in
a conical neighborhood U of vy, for some ¢ > 0. Then, we find m; (Pol’(u)) = WF%(uy) in U. By
shrinking U and decreasing €, we may assume Pu € H¢ in U, (note that P € ¥%1) which gives
Qu = 'P*Pue H% ! there. Let P = (Pij); =12, and Q = (q;;)ij=12. Since go1 = [P11, Pn] €
C>*(R,0pS(¥,9)), we find gogus € H5 ! in U. Similarly, we find Pyu, € H5™! € U. Since
the result holds on Y1, we only have to prove that us € H? at (¢,20;0,&) € U Ny for ¢ < tg,
implies uy € H® at (g, 20;0,&) = 1.

Thus assume that uy € H® at (t,20;0,&) € UNYy when t < ty. Since S(v,g) € S, , and we
may assume that § < p, Lemma[B.23] gives that ug, Paous, and goous satisfies ([3.47). Then £ # 0
in WF(us), if we assume also that § < € in ([3.47) we find that Psus, and goous are in H> !
in mo(U N'Xy), and uy € HY at (t,x0,&) € mo(U N Xy) for t < t5 by ([B55). We also get that
Diug € H> ™V at (t,20,&) € mo(U N'Ey) when t < tg, since Pyy = D; mod C®(R,Op S(¥, g)).

This gives
(UQ, DtUQ)‘{t:T} c HS X HS’_I at (ZL’(),&)), (365)

for almost all r < ¢, close to t;. Proposition [3.24] (with N =1 and Q = ¢2) gives uy € H? at
(to, Zo, 50), and Lemma 3.23 giVGS Ug € H° at (t(), Zo; 0, 50) ]

Note that in [Den92|, Dencker showed additionally under what assumptions we get Pol"(u)

is union of limits of Hamilton orbits in N4 N Np near vy € Xs.

3.3 Propagation of polarization sets for systems of trans-
verse type

We want to state Dencker’s result regarding the propagation of polarization sets for systems
of transverse type; see [Den95|. Let P € Whhg be an N x IV system of classical pseudodifferential

operators on a smooth manifold X, p = o(P) be the principal symbol, and ¥ = (det p)~*(0) be
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3.3 Propagation of polarization sets for systems of transverse type

the characteristics of P. Let
Yo ={(z,§) € X :d(detp) =0 at (z,£)}, (3.66)

and ¥; = X\ X,. For systems of transverse type we have X is a union of two non radial
hypersurfaces intersecting transversally at >,. More precisely, the systems of transverse type
is defined as the following

Definition 3.27. The system P is of transverse type at vy € 35 if

5 is a non-radial involutive manifold of codimension 2, (3.67)

detp = e - g, where e # 0 and q is real valued with Hessian having rank 2 ( )
3.68
and positivity 1,

dimker p = 2 on X, (3.69)

microlocally near vj.

Similar to the case of systems of uniaxial type, if P € W7} is of transverse type and Pu € H"
near v € Xy, then P is of real principal type at v. Let /\/'IJ; be as in ([3.16). In [Den95|, Dencker
modified slightly the definition of limit polarizations.

Definition 3.28. For j = 1,2, the limit polarizations is defined by

ONL ={(v,2) € Dy x CN : 2z = Lim 7}, (3.70)
—00

where zj, € kerp(vy,) and S; \ X9 3 v, — 1.
ON, Ij; is conical in ¢ and linear in the fibers. Dencker showed that ON; Ij; is a C* line bundle
over Yo, 7 = 1,2, and that

ONpNONE = {0} over X,. (3.71)

Here, S; and S are transverse at Y, so their Hamilton fields are non-parallel on 5. Since
Y9 is involutive of codimension 2, the Hamilton fields of S; are tangent to X, and generate the
two-dimensional foliation of 3,. Moreover, ON: 1];. is foliated by limit Hamilton orbits which are
limits of Hamilton orbits in N; f;, and are unique line bundles over bicharacteristics in S; at 3
for j =1,2.

Theorem 3.29. Let P € V5 be an N X N system of transverse type at vy € o, and let
A € \Ilghg be a 1 x N system such that the dimension of Ny N Np is equal to 1 at vy, and
My = m(NaNNp\O0) is a hypersurface near vy. Assume that u € D'(X,CN) such that
Pu € H™™ and Au € H" at vy. Then Pol"(u) is a union of (limit) Hamilton orbits in

NaNNp. Herem : T*X x CN — T*X is the projection along the fibers.
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Note that in this case My = S; for some j, and Ny N Np is a union of (limit) Hamilton

orbits.

3.4 Propagation of polarization sets for systems of gener-
alized transverse type

In this section, we generalize Dencker’s result stated in the previous section by considering
the system to have its characteristic set is union of ry hypersurfaces intersecting transversally
at an involutive manifold of codimension dy > 2, with ro > 2. Let P € U7} (X) be an N x N

system of classical pseudodifferential operators on a smooth manifold X. Let P € \P;’;LQ(X ) be
a pseudodifferential operator on a smooth manifold X. Let p = o(P) be the principal symbol

and ¥ = p~!(0) the characteristic set. Assume microlocally near (zg,&) € %,

Y =U2, S;, ro > 2, where S; are non-radial hypersurfaces intersecting transversally at

Yy = M2,5;.
(3.72)
Assume microlocally near (xg, &),
¥, is an involutive manifold of codimension dy > 2. (3.73)
Assume that
the dimension of the fiber of NVp is equal to r¢ at 2o, (3.74)
and
d'(det p) = 0 for i < 7y and d™(detp) #0 at ¥,. (3.75)
Let
N = Nplsjis,, (3.76)

Ty, % := U2, Tx, S}, and let 95 = Tx,%/TS,. We let IN} as in Definition[3.17) for j = 1, ..., 7.
We will assume that the fiber of

ONpN...NONP ={0} over 9%\ (32 x 0). (3.77)

Definition 3.30. The system P is of generalized transverse type at vy € X, if (3.72)-(B.75)
and (B.77) hold microlocally near 1.
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Proposition 3.31. Let P € lIfll)hg be an N x N system of generalized transverse type at vy €

Yo. Then by choosing suitable symplectic coordinates, we may assume that X = R x R 1,
vo = (0;(0, ..., 1)), and
S;={t,r;7,§) e T*(R x R" ) : 7+ B(t,2,6) =0}, j=1,..,70, (3.78)

microlocally near vy. Here B; are real and homogeneous of degree 1 in &§; with 31 = 0, satisfies

i a conical neighborhood of vy

A1 < 1B < CIEl, j=2,.m, 0<c<C, (3.79)
where (1,&,€") € R x R®~1 x R ywhich gives ¥y = {7 = 0,& = 0}. By conjugating P
with an elliptic, scalar Fourier integral operators, and multiplying with elliptic N x N systems

of order 0, we may assume that

F 0
P = mod C*, (3.80)
0 FE
microlocally near vy, where E € W), is an elliptic (N —ro) x (N — o) system and
F=1d,, D;+ K(t,z,D,) mod C*. (3.81)

Here K(t,z,D,) € C®(R, WL, ) is a rg X vy system, such that k = o(K) has 0, Ba,...,3,, as

phg

eigenvalues.

Proof. We will prove it in the same way Dencker proved the normal form for systems of uniaxial
type. Since the result is local, we may assume X = R". Because Y, is involutive, we may choose
symplectic, homogeneous coordinates (z,&) € T*R" near vy € 3, so that vy = (0;(0,...,1))

and

Yo ={(z,&) € T"R" : & = 0}, (3.82)
where £ = (¢/,£") € R% x R*~%, We may also assume

Sy ={(x,8) e T*"R" : & =0}, (3.83)

near vy. Now, we rename x, = t, (22,..,2q,) = @', and (zg4y41,....,2,) = 2”. Since S is

intersecting transversally with S; at s, we obtain
S;={(t,r;7,8) € T*(R x R 1) : 7+ (¢, z,&) = 0}, (3.84)
with 3; real and homogeneous of degree 1 in &, 5 =0, and

€| < 18— Bl < CIEN, J#Kk, (3.85)
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in a conical neighborhood of vy. By taking k = 1, we obtain
' < B < ClE'l, G =2,....m0. (3.86)

Using that dim Np = rg at Xy, we can find an N x N elliptic matrix b homogeneous of degree

0 in the ¢ variables which maps Imp to {z € CV;z; =0, j < ro} over ¥3 near vy, and we can

choose an N x N matrix a homogeneous of degree 0 in the ¢ variables such that a~! maps ker p
onto {z € C;2; =0, j > ro} over ¥y near 1. Then we have
S11 S12
bpa= | (3.87)
S21 (&

such that e is an (N —rg) X (N — 1) matrix which is elliptic at vy, and s11, $12, S91, vanish on
Yo near .
Now, we choose N x N systems of pseudodifferential operators A and B with principal

symbols a, and b respectively. Then

S S
BPA= "1 77 (3.88)
521 E
where its principal symbol is given by (B.87). As F is a system of order 1 which is elliptic at

Y5, choose J to be its microlocal parametrix of order —1. Multiply BPA from the left with

Id,, —SiaJ
Bi=|{ " """, (3.89)
0 Idy_p,
Multiply also BiBPA from the right by
Id,, 0
A = . (3.90)
— TS Tdy_r,
By that we get
F 0
P mod C*, (3.91)
0 F

microlocally near vy, where E € \Ilrl,h is an elliptic (N — rg) X (N — ro) system. If f is the

g
principal symbol for F', then conditions [3.75) and (B.78)) imply

dethCTl_O[(T—i-ﬂi), 0#ce S, (3.92)
i=2

thus 97°(det f) = det(d,f) # 0 at ¥y. By Theorem [D.1 and homogeneity, we may find

homogeneous system Cy € S° such that

f=Co(r1d,, +k(t, z,£)), (3.93)
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3.4 Propagation of polarization sets for systems of generalized transverse type

where det Cy # 0 at ¥5. By multiplication with an elliptic system, we may assume Cy = Id,,.
Thus, det f = 7[[}2,(7 + §;), which implies that k(¢,z, &) has the eigenvalues 0, fs,...,3,,. If
fo € S is the term homogeneous of degree 0 in the expansion of F', then Theorem |D.2, and

homogeneity give
fo=B_1f + By, (3.94)

where By € C*(R, S?) is independent of 7, and B_; € S~!. By multiplying f with an operator

with symbol Id,, —B_;, we may assume B_; = 0. By induction over lower order terms we

obtain (B.81]).

We want to introduce symbol classes adapted to the functions f; defined in (B.79) for j =
2, ..., To. Let

V(€)= (£), (3.95)
where (¢) = (1 + |¢'|?)"/2, thus ¥ ~ 1 + |3;|. Consider the metric
g(dw,d§) = |dz]* + |d&'[*(€') 7 + |dg"[*(€) ™, (3.96)

and h? = sup g/g° = (¢')72. We get that g is o temperate, and §; € S(¢, g). See Appendix Bl

Moreover, using Taylor’s formula we can write
Bj = a;¢’, (3.97)

with a; € S° is homogeneous of degree 0 in &.

Proposition 3.32. Let
P=1d,, D, + K(t,z,D,) (3.98)

be an ro X 1o system with K € C®(R, W}, ), such that the eigenvalues of k = o(K) are 0,

Ba,...,Bry- Then P is of generalized transverse type if and only if k € C*(R,S(1, g)).

PT’OOf. FiI‘St, let k = (kij)lgi,jg’ro- Let a = (0[1, ceey alm) S COO(]R, Sl>, with o = (kila ceey kiro) for

t =1, ...,79 homogeneous of degree 1 in (. By homogeneity,
keC(R,5(0,9) < a=0(5). (3.99)

for every j =2, ..., 7.

Assume that o = O(B;) and (v,p) € 0%q, p # 0. Choose £\ X3 € v, — v such that
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(v—w)|lv —ul™ = p/|pl, | = oo. Let us define
Y9 (v, p) == lim ﬁ_J(VZ) for s €{2,...,ro} and 1 <i,j < ry. (3.100)
v|—v s

Since av = O(3;) does not depend on 7, so the above definition; ([BI00), is independent of the

choice of v;. We get
ONG (v, p) = ker((V7 (v, p))1<ij<ry)s V8 € {2,...s70}, (3.101)
where (79 (v, p))i<ij<r, denote the matrix with entries v (v, p) for 1 <, j < ry.
ONE(v, p) = ker(—1d,, + (77 (v, p))1<ij<ry) for s € {2,...,70}. (3.102)

It is easy to see that the condition (B.77) is satisfied.
On the other hand, assume that o # O(f;) at v € ;5. Then, there exists a sequence
v = (t;,21;0,&) — v, such that

la(v)| > 1|B;(v)|, VIeN. (3.103)

It is no restriction to assume that {(v —v;)|v — 1| '} has a limit 0 # p € 92|, as | — oo, and

that
ghl = lllrgokij(yl)/\a(ul)| exists. (3.104)
Since 5;(v)/|a(v)] — 0, we get that
ONE(v,p) D ker((e"7)1<ij<r,) for s=1,... 70. (3.105)

Now we want to show that ker((¢“7)i<;j<,,) # {0}. Since, we have detk = 0, we get
det ((e")1<ij<r,) = 0. Hence, we get that the rank of (%9);<; <, is less than or equal to

ro — 1, which gives in turn that dim ker((¢"7);<; j<,,) is greater than or equal to 1. O

Proposition 3.33. Assume that P is an ro X ro system of pseudodifferential operators of order
1 on R", on the form [B.98), with K € C*(R,O0p(S(?,g))) near vy € ¥a. Let u € S'(R™,C")
and assume Pu € H™® at vy. Then, for every § > 0 we can find cs > 0 and vy € H™T! at vy,

such that us = u — vs satisfies
|is(7,€)] < Csn{(1,)7N, VN, (3.106)

when || > c;({€)° + (£')).

Proof. Same proof as in Proposition 2.15 in [Den88|. We can assume that § < 1. Let x € Cg°(R)
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3.4 Propagation of polarization sets for systems of generalized transverse type

satisfy x(r) =1 when |r| < 1. Then we have
Ges(m,€) = x(elTI((§)° +(§)) ") € Sip, Ved >0, (3.107)

since (§) = ((7,€)) in supp do. 5. Put vs = (1 — ¢ 5)(D)u, then us = ¢. 5(D)u satisfies (B100),
Ved > 0.

In the support of 1 — ¢, 5, we have |det p| > ¢} for small ¢, where

95(7,€) = ((1,6))° +((1.€)), (3.108)
is a weight for the metric g5 = |dt|? + |dz|* + (|d7]? + |d€]?) /{(1, €))*. Hence, for small & we get
P € Op S(¥s, gs) when |7| < C[¢]. Therefore, we can construct E € Op S(95', g5) C ‘Ilgg such
that EP =2 (1 — ¢.5(D)) Id mod C>, microlocally near 1. As E preserves wavefront sets, and
we have ((1,¢))0(E) € S, we get that v; = EPu e H™**! at 1. O

We change notation, and put z; = ¢, 2’ = (z9,...,24,), which gives © = (x1,2/,2") €
RxR%®~1 x R"%_ Introduce the symbol classes S™* = S({£)"h™*, g) where h™2 = 1+|& >+ |¢'|?

and (¢) are weights for the metric g defined by
goe(dr, d€) = |da? + |dg[2h2. (3.109)

Let U™* = Op S™* be the corresponding pseudodifferential operators, which maps H™* into L2.
Returning to the old notation where using ¢ instead of 21, and assume that P € C*(R, Op(S(¥,¢)))
be as in Proposition [3.32, we get P € W%,

We are going to consider the following N x N system

ro—1
Q=qldy+ > Qi (3.110)
i=0
Here ¢ is a scalar operator with symbol
To
gtz ) =7[[(r+8), (3.111)
j=2

where 3; € S(¢, g) is homogeneous and satisfies (3.79). We will assume
Q=) AlDf, (3.112)
k=0

with A%, € Op S (9, g). We are going to study the following Cauchy Problem:

Qu=f

Dfu|t:0 =uy, for k=0,...,m7g — 1.

(3.113)

We are going to assume that the £ # 0 in WF(u). Hence, the restrictions are well defined.
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Proposition 3.34. Assume that u € D'(R",C") satisfies B113)), and & # 0 in WF(u). If
upy € H7F at (z0,&) for k = 0,...,19 — 1, f € HIS7"0F at (t,20,&) for 0 < t < tg, and
&, =0, then u € H}® at (to, o, &o)-

Proof. By conjugating with an elliptic, scalar operator with symbol in S({¢)"V*,¢g), we may
assume that 7 = s = 0. We will reduce to a first order symmetric system. Let v, = A*~1DF 1y,
for k =1,...,7, where A € Op S(971, g) has symbol ¥~1. Hence, v, = ADyvy_; for k =2, ..., 70.
Then V = (vy,...,v,,) € D'(R",C™N), £ #£ 0 in WF(V), and V satisfies

PV =F
(3.114)
Vl]izo = Vo.
Here P = Id,,y D;+K, F = (0,...,0, A1 ), Vo = (ug, Aug, ..., A, 1), and K € Op S(9, g)

has principal symbol k = (k;;)1<i j<r, such that

kii-{—l = —9 IdN for 1 S 1 S o — 17 (3115)
Frog = O BBy 9770 for 2 < j <, (3.116)
ki; = 0 elsewhere (3.117)

where the sum in (BIT0]) is such that 2 < iy < jandip_1+1 < i < j+hk—1for2 <k <rog—j+1.
We find Vy € H* = L? at (z9,&) and F € H>? at (¢, z0,&) for 0 < t < ty. Thus the result

follows from the next proposition, which we will state after the following Lemma. ]

Lemma 3.35. When the above assumptions are satisfied we get

/OEHVH(t)dt < 051/2(/08||Dtv + KV||(t)dt + ||VH(0)) (3.118)

for Ve C°(R™ CN), if ¢ > 0 is sufficiently small. Here ||.||(t) denotes the L? norm in the

x variables, depending on t.

Proof. We are going to prove it in a similar way as the proof of Lemma 5.2 in [Den88|. As k is
diagonalizable in S(1, g), we get that k = > >"", B;7;, with 3, = 0, where 7;(t, z,§) € S(1, g) is
the projection on the eigenvectors corresponding to the eigenvalues ; along the others when
¢ # 0. kis symmetrizable with symmetrizer M = ) mi7;, that is M > 0 amd Mk is symmetric.
Note that k is symmetrizable means there exists symmetric N x N system M (t,z,§) € S(1, g)
such that 0 < ¢ < M and Mk — (Mk)* € S(1,g). If we put ||[V]|(¢) to be the L? norm in the

x-variables, depending on ¢, and we put

VI, (1) = (MV, V) = /(MV(t,x),V(t,x))dx (3.119)
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then

VI3, (®)
c < THED <C (3.120)

If D,V + KV = F, we obtain
OV 3:(t) = ((OM — i(MK — K*M))V,V)(t) + (MF,V)(t) + (MV, F)(t)

(3.121)
< C(IVI5®) + I1F15,(1)).-
By Gronwall’s inequality we get, for bounded t,
¢
IVIR() < C(HVH?w(O) +/0 HFH%(S)dS), (3.122)
so (B.120) and integration gives the result. O

Proposition 3.36. Let P = D;Idy +K where K € OpS(9,g) has symbol which is diago-
nalizable in S(1, g) with eigenvalues 0, fa, ..., By, mod S(1,g), and 5; € C* is homogeneous,
satisfying B19) for j = 2,...,ry. Assume that V € D'(R",C"N), £ # 0 in WF(V) and V sat-
isfies BII4)). If Vo € L? at (wo,&), F € HX at (t,70,&) for 0 <t < ty, and & = 0, then
Ve HY at (t, z0,&)-

The condition on k means that there exists a basis of eigenvectors {v;} € S(1,g), with

eigenvalues 0, [Ba,...,0,, mod S(1,¢).

The above proposition is similar to Proposition in case systems of uniaxial type.
To prove Proposition 325 Dencker used the parametrix constructed in [Den89] for P =
Dy 1dy +K, where K € Op S(49, g) has principal symbol k satisfying the conditions in Propo-
sition B.25], and 9, and g are as in ([B:32]), and (333 respectively, and he used the microlocal
uniqueness; see [Den89|. In our case; case of generalized transverse type, we are using different
weight and metric, but we can still construct a parametrix for the Ny x Ny matrix, where
K € Op S(9, g) has principal symbol k satisfying the conditions in Proposition B.36 and we
can prove microlocal uniqueness as in |[Den89]. We will show this before giving the proof of
Proposition [3.36, The steps are similar to that in [Den89), except some details are changed.

Consider P = D;ldy, +K(t,z, D,) as in Proposition 336} that is, K € OpS(¥,g), has
principal symbol k(¢, z, £) satisfying

k is diagonalizable in S(1, g) with real eigenvalues {f;},;=1

in £, satisfying (3.79) and 8, = 0.

r, homogenous of degree 1

.....

(3.123)

Hence, there exists a base of left (right) eigenvectors in S(1, g). The dimension of the eigenspace
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corresponding to f3; is constant outside ¥Xo. Let 7;(t,x,&) € S(1,g) be the projection on the
eigenvectors corresponding to the eigenvalue 3; along the others when &' # 0, and extended by

continuity. Then we have
T
k=Y Bim, (3.124)
j=1

and k is symmetrizable with symmetrizer M = > m;mj, that is M > 0, and M K is symmetric.

We want to solve the microlocal Cauchy problem

DiE+KE =0
(3.125)
Eli—o = Idy,
microlocally near (0, (0,&), (0,&)), & = 0, with £ : &(R"') — D'(R"). Hence, we should

solve the eiconal equations
Qo+ Bi(t, v, deps) = 0
¢j<07 €, 7]) = <‘T7 77>

By Hamilton-Jacobi, this has a unique local solution, homogeneous of degree 1 in 7.

for j =1, ..., 7. (3.126)

Lemma 3.37. Let ¢; solve (B126) with f8; satisfying B79). Then we get that p;(t,x,n) =
¢;(t,x,m) — (z,m) satisfies

©; =0 whenn =0 Vj. (3.127)

Proof. Using (3.97)), the eiconal equation gives
Orps + a;(t, x,n + daps) (' + duripj) = 0, (3.128)

and ¢;(0,2,7) = 0. When ' = 0 we get dyp; + a;(t,x,n + dyp;)(dwp;) = 0, so uniqueness

gives ¢; = 0 when ' = 0. ]
Let E; : &'(R"') = D'(R"), j = 1,...,79 be oscillatory integrals defined by
Eu(t,z) = (2m)* // (@5 tem=wm)) (¢, 2, n)u(y)dydn, (3.129)

with a; € S(1,g). Assume that a; is supported in canonical neighborhood of {n’ = 0}.
By Lemma [D.3] we get

PEu(t,) = (2 [ [ @ten- 0y, 1. pyaty)dydn, (3.130)

where

bj (t, Z, 7]) = (atqu IdNO +/€(t, Z, qubj))aj + LjCLj + Rjaj, (3131)
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R; is continuous S(¥h!, g) — ST g), Vi, j, 1, with h? = (¢')~2, and
Lja; = Dya; + Z(a&.k)(t, x,dy¢;) Dy a5 + May, (3.132)
with M; € S(1,g).
Lemma 3.38. Assuming (B123), we can find a; € S(1,9) such that b; € S(9™,g), VN, in
BI30), j=1,...,r0 and
> ajli—o =Tdy, - (3.133)

J

Proof. Let a; ~ al + a;" + ..., where a;* € S(97*, g). The dominant term in ZI3T) is

(O Td, +h(t, 2, dodhy))a) = > &3 ((8; — Bj)mi)al,

where ¢} f = f(t,x,d.¢;), so we get a) € Im@fm; = Ny ker ¢im;. If we take af = 7;(0,z,n)
at t = 0, we obtain )~ af|;—g = Idy,. The term in S(97",g), r > 0 in the expansion (B.I3T) is

given by
Z ¢1((B; — By)mi)a; " + Lya;" + Rja} ™, (3.134)

since h < 97" (a; = 0). Now, ¢5(8; — ;) € S(¥,g) is invertible modulo S(¥~>, g) according
to B.79) when j # 1, since dy¢; = O(|n|) by (BI27). Hence, it suffices to solve successively,
with suitable initial data,

(¢3m;)(Lja;" + Rja} ") =0, r >0, (3.135)

where a; = 0, and (Idy, —¢j7;)a;" has been determined in the previous step. Here R; is

1
j
continuous S(¥, g) — S(¥"1, g), Vi.

Now, let {v}}; € S(1,g) be a base for Im ¢%7;, and consider Y, v}, a; € S(07", g). (Such a
base exists since it follows from the proof of Lemma [D.3] that ¢} preserves the metric g). Using
T = 0517, We get

(87Tj)ﬂ'l + 7Tj871'l = 5j18m Vi,j, l,
which gives
(¢Fm;) 5 (Om)vl = 6,9 (Om vl — ¢3(9m;) s (m)vl = 0 Vi, g, L.

Since Ok = )_.((08;)m; + B;0m;), we get

(¢5m;) L Zav —Z% vj,
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where
Vi = Dtai + Z¢j(a§z/8j>szal + Zy’éal € S(lvg)a (3136)
l 1

with u! € S(1,9). If we introduce local g orthogonal coordinates, then 3, ¢3 (0, Bj) Dy, trans-
forms into a uniformly bounded smooth vector field. Therefore, by adding a suitable linear
combination of v} to each column of a;" we may solve [BI35) for all 1 < j < 7o, with initial

data making

™ T = 0
my a;" = VI, at t = 0. (3.137)
j 0 >0
If we do this recursively for r > 0, we obtain the lemma. O]

Lemma 3.39. If a(t,z,n) € Ny SW™,9) has support where |n'| < c|n”|, and ¢(t,z,n) is
homogeneous of degree 1 satisfying (3127), then

a(t,z,y',n") = /ei(@(t’x’n)ﬂxl_y,’n» (t,z,m)dn € 5’100 (3.138)

Here 57 1s defined by

|DED2DL DY b(t 2w,y ") < Cagoil") 17", (3.139)
Proof. If N > dg + ||, we obtain
/ WL+ ) Ndy' < Ca, (3.140)
In’|<cln”|

so we get |a| < C. When differentiating (3.I38]) the derivatives falling on a give the right factors
(here we use that || < ¢|n’|). The derivatives falling on the exponent give either 1’ factors, or

factors

0F0207, o(t, 2,m)] < Char (n)~17"10 (3.141)

tYx Py
since we have by (8127) and homogeneity that |p(t, z,n)| < CY. The ' factors can be seen in
(B.I40), and the 9 factors are harmless since a € S(9~V, g), VN. O

The lemma gives

PEju = (2m)®=" [ [ etz y' 0" yuly)dydy”

(3.142)
Zj Eju|t:0 =u,
where 7; € 57, 7 = 1,...,70. We add to these terms Ey : &'(R*™) — D'(R") defined by
Eou(t,z) = (2m)%~ ”// W ao (8, 2,y 0" uly) dydn”, (3.143)
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with ag € S7. By Lemma [D.4] we have

PEgu(t,z) = (2m)%~ ”// =Y o (t, @,y " u(y)dydn” (3.144)

where by € S is given by

by = Dyag + e PrPL(t, 2, €)ao(t,y, 2,0 )\y " (3.145)
0 /!

if k is the full symbol of K. By using Proposition B41], we may solve

bo+>.r; =0, 0<t<eg, (3.146)
agli=o = 0,
modulo S™*°. Therefore, we obtain the solution to the Cauchy problem (BI258]). Naturally, this
can be done with ¢ replaced by t — s, for small s, which gives the following
Proposition 3.40. Let K(t,z,D,) € OpS(1J,g) be an Ny x Ny system with principal symbol
k(t,x, &) satisfying B123). Then then Cauchy problem for |s| < e

DE® + K(t,2, D) B 20, t > s,
(3.147)
E(S)|t:s =~ Tdy,,

microlocally near (0,(0,&),(0,&)), & = 0, has a solution E® : &(R"™1) — D'(R™) in the

form
)
- ZEj :
§=0
Here
EWu(t,z) = (QW)l_n//ei¢j(t,x,n>—<y,n>aj<t,x7n)u(y)dydn, j>1,
¢, solves (BI120), a; € S(1,g), and

ESu(t, z) = (2m)%~ "// W ag(t @,y 0 uly)dydn”,

where ag € SV, do = codim ¥,.

We are going to study the system

D f + ei<Dy7D€>k(ta Z, g)f(ta Y, 2/7 77”)’?/:1’ = T(t7 Z, Zl? 77”)7 t>0,
¢=(0") (3.148)

.f(oa xz, Zla n//) = fO(xv 2/7 77//)’
modulo 5™, where fy, r € 57, have values in CNo_and k € S(¥,g) is Ny x Ny system as in
Proposition B.36 By Lemma [D.4] we have r € S, if f € 57

Proposition 3.41. Assume that k(t,x,&) € S(9, g) is a symmetrizable Ny X Ny system. Then,
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for every fo, r € S7 4, the equation (3.148) has a solution f € SY,, in a canonical neighborhood
of (0,0, (0,77)) € R x R2do=2 x T*Rn—do,

Proof. We will solve (8.148) by iteration modulo Sfa). By Lemma [D.4] we have

ei<Dy’D§>k}(t, x, 5)f(t7 Y, zlv nll)‘y

. 0 (3.149)
= 62<Dy7D§/>k(t7 T, 5/7 n//)f(ta y/a xlla Zla n//)ylzx’ = k(ta xZ, Dx’a U/I)f(t> z, Zl? 77”)7

£=0
modulo terms in S7g5. Also, we have k supported where £ — (0,7")] < e(n”) and [t] < c.

By cutting off, we may assume k, f supported where (") ~ (1), and fy, r having compact

support. Let A = (n})~!, and let
w= (" 2, "). (3.150)
Then (B.148) becomes, by (3.149)

Dif(t, o', w) + k(t,2',w, Dp) f(t, 2/, ,w) Zr(t,2',w), t >0,

(3.151)
.f(()a .73/,’11)) = fO(x,a w)a
mod S(A7Y, |da’|? + |dw|?), where fy, r € S(A7Y, |d2’'|* + |dw|?), and
ke S(E), |da'|* + |dg'[P/(€')* + |dw]?).
We may assume that v = 0. Let
y=2a
(3.152)
n=¢,
then it suffices to solve the system
Dif(t,y,w) + k(t,y,w, Dy) f(t,y,w) Er(t,y,w), t >0,
' ! (3.153)

f(0,y,w) = foly, w),

modulo S(\, |dw|* + |dy|?), where k(t,y,w,n) € S((n),|dy|*> + |dn|*/{n)? + |dw|?), and fo,
r € S(1,|dw|* + |dy|?). By assumption, there exists a symmetric Ny x Ny system 0 < ¢ <
M(t,y,w,n) € S(1, |dy|*> + |dn|?/{n)? + |dw|?), such that Mk is symmetric modulo S(1,|dy|?* +
|dn|?/{(n)?+ |dw|?). To complete the proof we need to solve BI53) with f € S(1, |dw|* + |dy|?).
Going back, we obtain a solution in S, to (BI48) modulo S}gj.

Choose a partition of unity {x;(y, w)} € S(1,|dw]*+ |dy|?), such that there is a fixed bound
of the diameter of the supports of x;, and on the number of overlapping supports. Replacing

fo, v with x;fo, x;r, and translating in y, it suffices to solve (B.I53) with f € S, when fo,
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r € Cg° with fixed support. Since

(k(t, y,w,n) — k(t,0,w,m)) € S(y)(n), |dy|* + |dn|*/(n)* + |dw]?),

we can replace k(t,y,w, D,) by k(t,w,D,) = k(t,0,w, D,) in the system (BI53). By taking
M(t,w,n) = M(t,0,w,n) we obtain that Mk is symmetric, mod S(1, |dy|*+ |dn|*/{n)*+|dw]|?).

Now, taking the Fourier transform with respect to y in ([B.I53]), we want to solve

Dy f(t,n,w) + k(t,w,n) f(t,n,w) = 7(t,n,w), t >0,

] ) (3.154)
f(07 n, ’LU) = f0(777 U))
The unique temperate solution to (B.I54]) is given by
t
ftnw) = Ftonw)(onw) +1 [ FsnwiGnuds,  (3.15)
0
if F(t,n,w) is temperate solution to
DiF(t,n,w) + k(t, w,n)F(t,n,w) =0, t >0,
t (3.156)

F(0,n,w) = Idy, -
Since Fourier transformation and integration are continuous in S, and S is closed under mul-

tiplication we get that f € S. m

Now, we shall construct a microlocal parametrix for the Ny x Ny system P = D, Idy, +K (¢, z, D,),
where K € Op S(4, g) has principal symbol k satisfying (8.123), and study the propagation of
singularities. This will be done by using Duhamel’s principle and the parametrix for the Cauchy
problem constructed by Proposition B.40l

It suffices to consider w = (0,0,7() € Xa. Let o, be the restriction to {t = s} and ¢ € S7,,
have support in a conical neighborhood of w, such that w ¢ WF(¢—1) and N*{t = s}NWF ¢ =
(), Vs, where N* is the conormal bundle. Then the composition g, o ¢ is well defined, and we

put
t
Ef:/ E® o 0,0 ¢fds, f DR, (3.157)

t €] — e,¢[, where E®) is the solution to (BI47) for sufficiently small € > 0. Then E is a

microlocal parametrix near w, since
t

PEf:E(t)oQtoqﬁf—i—/ (PE®)op,0¢fds=¢f mod C.

—€

We want to study the singularities of this parametrix. Recall that 3 = U2 ,5;, where S; is non-
radial hypersurfaces. Let C; C S; x S be the forward (in ¢) Hamilton flow on S, j =1, ..., o,
and A* the diagonal in T*R" x T*R".
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3 Propagation of polarization sets

Proposition 3.42. Let P = D, + K(t,z,D,) be an Ny x Ny system with K € Op S(¥,g)
having principal symbol k satisfying BI123). If E is the parametriz for P defined by (3151),
then WF' E C (U2,C;) U A*, microlocally near (w,w) € Xa X ¥y,

Proof. We have WF(o,0f) = m(WF (¢ f))|i=s, where 7 : (t,z;7,&) — (t,2,€) is the projection.
Hence, it is enough to show

To
WE(E® fo)liss € | J Cjo ™ (WF fo), fo € D'(R™), (3.158)

7=1
where ¢ : T R™ — T*R"! is the dual to the inclusion of R""! as the surface {t = s} in R™.

Now, (3I58)) holds for EJ(-S) fo, j > 0, since ¢; solves (3.126]). Also, we have
WE(ES fo)lis € Coo i (WF fo), fo € D'(R"),

where Cjy € ¥y X 3 is the set of (wq,ws) such that w; and wy are in the same leaf of 35 and
t(wy) > t(wsy). Thus it suffices to prove that E(()S) € C* microlocally near (¢, z, (0,77), z, (0,7)))
when 2/ # 2/, By translation we may assume s = 0.

Now, applying P to E\" we obtain by (B143)-(3146) and Lemma [D.4

Dta() + 6i<Dy,7D§,>]%(ta xz, 5/7 n//)a()(ta ylv lﬂ) Zlv n//)| £'=0 = R0a07 > 07
v— (3.159)

ao(0,z,2',n") =0,
mod S7°°, microlocally when |2/ — 2'| > & > 0, Ve > 0. Here Ry : S{,, — S{gp, Vo, and
k is the full symbol of K. (This follows since (3.I58) holds for EJ(»O), j > 0.) Also, (B159) is
determined modulo S~ by the restriction of ag to {|y/ — 2| > £/2}, and k to {|¢/| < C{n")}.
We shall prove ag € S~ in {2’ # 2'}, by showing that ag € ST, = Sia,loﬂ Vv, there.
Assume ag € S7, near (to, o, 2,7M), |76 — 25| = ¢ > 0. By translation and localization,

we can assume that z; = 0, ag € S7, supported where (") = (i), and k supported where

€' < Cn") =2 Cny). Let A = (nf)~!, and we consider the change of variables (3.I50) and
BI52). Then ag(t,y,w) € S(A™,e), k(t,y.w,n) € S((n), |dy[* + |dnf*/{n)* + |dw|*), where e
is equal to the euclidean metric and we can assume v = 0. Clearly, |w| > oA™'. (BI59) holds
mod S(AV,e), VN, when |y| = |2/| < 0/2. Choose ®(s) € C3°(R), such that ®(s) = 1 when

|s| <1/2, &(s) =0 when |s| > 1, and let

X(y, w) = Ae(4ly|*/¢* + CN*|w]*) € S(A, |dy|* + |dw]?).
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3.4 Propagation of polarization sets for systems of generalized transverse type

Then by = \~/2yaq, satisfies

Dby + /;g(t,w, Dy)bo =1, O<t<e,
(3.160)

bo\t:o = To,
where ko(t,w,n) = k(t,0,w,n) and r; € C3°. In fact, xap € S(AY,e), VN, at t = 0. Also, the

calculus gives
A2 lko(t,w, Dyy), x] € Op S(1, §y),
and
AT2x(k(t,y, w.Dy) = ko(t, w, Dy)) € Op S((n), 4x).

where gy = Mdy|* + |dw|* + |dn|?/(n)?. Then we get that by is in S, 0 < ¢t < e. Thus
xao € S(A\2 ¢), and since this is uniformly in A when |2/ — 2/| > o > 0, we obtain the

proposition. O

Proof of Proposition [3.36. The argument is all the same as in the proof of Proposition [3.25]
except that to get U € C®(R,D'(R",C")) N L?, we need to prove (5.6) in [Den88| for our
case, which we proved in Lemma [3.35] and we need to prove the parametrix and the microlocal

uniquness proven in [Den89| for our used weight and metric, which we also proved. O]

Now, we will prove Theorem [L.T] for the case of systems of generalized transverse type. Note
that for systems of uniaxial type (tangential case), we have S; are tangent at X, so their
Hamilton fields are parallel on Y5, and since ¥, is involutive, the Hamilton fields are tangent to
Y. Therefore 3 and ¥y are foliated by the bicharacteristics of ¥. However, in case of systems
of transverse type, S; are transverse so their Hamilton fields are non parallel at 9, that is
why we assumed that M, is a hypersurface near 1 in the main theorem, so we could consider

My = S; for some j.

Proof. By multiplication and conjugation with elliptic, scalar pseudodifferential operators we
may assume that m = 1 and r = 0, and using the normal form we can assume that N = ry, and
P is of the form in Proposition [3.32. By using Theorem [D.2 for all terms in the expansion of
A, we obtain that A € C*(R, ¥}, ). As the dimension of the fiber of Ny NNp is 1 at 1y € ¥,
and the dimension of the fiber of Np is ry at Xy, we get ranko(A) = o — 1 at X, Hence, we
can conjugate by suitable elliptic systems in C*(R, W9, ) to get that Au = (uy, ...un,-1,0) € H*
in a conical neighborhood U of vy, for some € > 0. Then, we find 7,(Pol”(u)) = WF°(u,,) in

U. By shrinking U and decreasing e, we may assume Pu € H¢ in U. Remember that we have
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3 Propagation of polarization sets

P € W%, hence we get Qu = 'P°Pu € Ho " there. Let Q = (¢i;);%-,. Since g,,; are in
C>®(R,0p St g)) for i = 1,..rg — 1, we find that gyrtrgr1 € Ho in U. Similarly,
we find that P, u,, € H%"', which in turns gives DFf 'P, , u,, € Ho % for k =1,...,rg — 1.
We want to prove that u,, € H° at (t,20;0,&) € U Ny for t < ty, implies u,, € HY at
(to, 70;0,&0) = 0.

Thus assume that u,, € H® at (t,2¢;0,&) € U N Xy when ¢t < to. We may assume that
§ < 1, then Lemma B:23] gives that ,,, Pryrotiry, DF P,
satisfies ([B.106). Then £ # 0 in WF(u,,), and assuming that 6 < e in ([B.J06) we find that
Prorotiry, € HO™Y, DFIP, i, € HY Ffor k = 1,...,19—1 and gy ttr, € HE 770 in 1 (UNY,),

roTo

and u,, € HY at (t,z9,&) € mo(U Ny) for t < ty. Since P, = Dy mod C*(R,O0p S(¥, g)), we

orolre for k=2, ...,79 — 1 and gyyr,Ur,

get Prorotry = Dyuy, € H®™! which implies, using Dy~ P, u,, € H* %, that DFu,, € HO*

for k=1,...,r9 — 1. This gives
(DFuy)i=r € HY ™ at (10,&), for k=0, ..., — 1, (3.161)

for almost all r < ¢, close to to. Proposition B34 (with N =1 and Q = ¢y, gives u,, € H?
at (to, o, &), and Lemma [3.23 gives u,, € H® at (to, o;0,&). O

3.5 Propagation of polarization sets for systems of MHD

type

In this section, we define systems of MHD type which are also systems having their char-
acteristic sets are union of ry hypersufaces intersecting transversally at an involutive manifold
of codimension dy > 2, with rq > 2. However, they satisfy some assumptions different than
that in case of systems of generalized transverse type. We named them systems of MHD type
because we first noticed these types of systems when we considered studying the propagation
of polarization sets of the linearized ideal MHD equations. Let P € W (X) be an N x N

system of pseudodifferential operators of order m on a smooth manifold X. Let p = o(P) be

the principal symbol of P, detp the determinant of p and ¥ = (det p)~1(0) the characteristic
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3.5 Propagation of polarization sets for systems of MHD type

set of P. Assume microlocally near vy = (9,&y) € X, that
Y= U;OZI S, ro > 2, where S; are non-radial hypersurfaces intersecting transversally at
Yo = M2,5;.
(3.162)

We are interested in finding the propagation of polarization set at s, as in our application;

see chapter [ we know the result on 3\ ;. We assume that

Y9 is an involutive manifold of codimension dy > 2, (3.163)

d’(detp) =0 for j <7 and d°(detp) #0 at X,. (3.164)

Moreover, let N, = kerp C (T*X \ 0) x CV and assume that

the dimension of the fiber of NVp is equal to ro + 1 at X, (3.165)
d(det p) = 0 and d*(det p) # 0 at S, \ Xa, for only one ig € {1,...70}, (3.166)

and
d(detp) # 0 at S; \ 3y for each j € {1,...,ro}, such that j # . (3.167)

Moreover, assume that !P® the adjugate matrix of P can be written as
tPCO = RLl + LQ, (3168)

with R being a scalar pseudodifferential operator of order m, with o(R) vanishing on S;, to
the first order. Ly, and Ly are N x N matrices of order m(N —2), and m(N — 3) respectively.

Assume also that
o(L)p = fldw, (3.169)

with ¥ = {f = 0}. We are using same notation as the previous section.
Definition 3.43. The system P is of MHD type at vy € ¥, if (8162)-(B169) and B71) hold
microlocally near vy.

We want to write systems of MHD in a normal form.

Proposition 3.44. Let P € \I/}Jhg be an N x N system of MHD type at vy € 9. Then by
choosing suitable symplectic coordinates, we may assume that X = RxR"™! vy = (0;(0, ..., 1)),

and
S;={t, ;7,8 e T*R xR ) : 74 B(t,2,6) =0}, j=1,..,70, (3.170)
microlocally near vy. Here B are real and homogeneous of degree 1 in &; with B = 0, satisfies
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3 Propagation of polarization sets

i a conical neighborhood of v
A <161 <CIEl j=2,.;m0, 0<e<C, (3.171)

where (1,&',€") € R x R¥~1 x R*=% which gives Y9 = {7 = 0,£ = 0}. By conjugating P with
elliptic, scalar Fourier integral operators, and multiplying with elliptic N x N systems of order

0, we may assume that

F 0
P = mod C™, (3.172)
0 F
microlocally near vy, where E € WLy is an elliptic (N —ro — 1) x (N — 1o — 1) system, and
F=1d,,41 Di + K(t,z,D,) mod C*. (3.173)

Here K(t,z,D,) € C*(R, \Illl)hg) is an (ro+1) x (ro+1) system, and the eigenvalues of k(t, x,§);

the principal symbol of K(t,x, D,), are O (double), Ps,... -

Proof. The proof is similar to the proof of Proposition B.31, with some changes. Since the
result is local, we may assume X = R". Because Y5 is involutive, we may choose symplectic,

homogeneous coordinates (x,&) € T*R™ near vy € o, so that vy = (0;(0,...,1)) and
Yo ={(z,&) e T'R" : & = 0}, (3.174)
where £ = (£/,¢£") € R% x R"%_ We may also assume
Sy = {(z,&) € T*R™ : £ = 0}, (3.175)
near vy. Now, we rename z7 = t, (Z2,..,%q4,) = 2, and (Tgyt1,...,T,) = 2”. Since S; is
intersecting transversally with S; at >, we obtain
S;={(t,r;7,8) € T*(R x R" 1) : 7+ (¢, z,£) = 0}, (3.176)
with 3; real and homogeneous of degree 1 in &, 5 =0, and
] <18; = Bl < CIE'N, T#K, (3.177)
in a conical neighborhood of 1. By taking k = 1, we obtain

'l < 1B < CIE] J=2,.m0. (3.178)

Moreover, we can assume iy = 1 in (B.166]).
Using that dim Np = ry + 1 at Xy, we can find an N x N elliptic matrix b homogeneous of
degree 0 in the £ variables which maps Im p onto {z € CV;2; =0, j < rg+ 1} over ¥ near vy,

and we can choose an N x N matrix a homogeneous of degree 0 in the £ variables such that
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3.5 Propagation of polarization sets for systems of MHD type

a~! maps kerp onto {z € CV;2; =0, j > ro + 1} over ¥y near 1. Then we have

S11 S
pa= | " TP, (3.179)
S921 (&
such that e is an (N —rg — 1) x (N — 9 — 1) matrix which is elliptic at ¥, and $11, S12, So21,
vanish on Y near 1.

Now, we choose N x N systems of pseudodifferential operators A and B with principal

symbols a and b. Then

S S
BPA= """ "7, (3.180)
521 FE
where its principal symbol is given by ([B.I79). As E is a system of order 1 which is elliptic at

vy, choose J to be its microlocal parametrix of order —1. Multiply BPA from the left with

Id,s1  —SioJ
B=[ " 2 (3.181)
0 IdN—’I‘o—l

Multiply also BiBPA from the right by

Id, 0
A= . (3.182)
— TS Ty 1
By that we get
F 0

0 K

P

12

mod C*, (3.183)

microlocally near vy, where E € U}, is an elliptic (N — 79 — 1) x (N —r — 1) system. If f is

the principal symbol for F', then conditions (B.166]), (3167), and (3I70) imply
detf:CTzﬁ(T—}—ﬁi), 0#£ce S, (3.184)
i=2
thus o7t (det f) = det(d.f) # 0 at 33. By Theorem [D.Il and homogeneity, we may find
homogeneous system Cy € S° such that
f=Co(r1dy 1 +k(t, x,8)), (3.185)

where det Cy # 0 at 5. By multiplication with an elliptic system, we may assume Cy = Id,+1.
Thus, det f = 72 [[:°,(7 + 3;), which implies that k(¢, z, ) has the eigenvalues 0 (double), s,
.Bry- If fo € SY is the term homogeneous of degree 0 in the expansion of F, then Theorem

[D.2, and homogeneity give

Jo=B_1f + By, (3.186)
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3 Propagation of polarization sets

where By € C*(R, S°) is independent of 7, and B_; € S~!. By multiplying f with an operator

with symbol Id,,+1 —B_1, we may assume B_; = 0. By induction over lower order terms we

obtain (3.I73). O
We use the same weight and metric introduced in the previous section; see (8.95)), and (3.96]).

Thus, we have 3; € S(9, g).

Proposition 3.45. Let

P =1d,y11 Dy + K(t,2,D,) (3.187)

be an (ro + 1) x (ro + 1) system with K € C*(R, W], ), such that the eigenvalues of k = o (K)

are 0 (double), Ba,...,0,,. Then P satisfies B11) if and only if k € C*(R, S(¥, g)).
Proof. Same proof as in Proposition B.32] just we replace ¢ by rg + 1 when needed. ]

Proposition 3.46. Assume that P is an (ro+1)x (ro+1) system of pseudodifferential operators
of order 1 on R", on the form BIT3)), with K is in C>*(R,Op(S(J,q))) near vy € Xo, and
k(t,z,&) has the eigenvalues O (double), Bi,..., By, Letu € S'(R", C™tY) and assume Pu € H™*

at vy. Then, for every 6 > 0 we can find cs > 0 and vs € H™*! at vy, such that us = u — v;

satisfies

[as(7, €)| < Con((T,€))7", VN, (3.188)
when |7] > ¢5((€)° + (£)).
Proof. Same proof as for Proposition .33 with replacing ro by 7o + 1 when needed. n

We will be using the same symbol classes used in the previous section. That is, changing
notation, we put x; = t, ' = (29, ..., 74,), which gives x = (x,2',2") € R x Ré%~1 x Rn—do,

S8 = S({E)"h™*, g) where h™2 = 1+ |&|* + |€)? and () are weight for the metric g defined by
o, dE) = |daf? -+ |deh. (3.159)

Let U™ = Op S™* be the corresponding pseudodifferential operators, which maps H™* into L?.
Returning to the old notation where using t instead of x;, and assume that P be of the form
in proposition B.45 we get P € WO,

Now, we are ready to prove Theorem [L] for systems of MHD type:

Proof of Theorem [I.1l. By multiplication and conjugation with elliptic, scalar pseudodifferential
operators we may assume that m = 1 and r = 0, and using the normal form we can assume that

N =ro+1, and P is of the form (B.I87). By using Theorem for all terms in the expansion
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3.5 Propagation of polarization sets for systems of MHD type

of A, we obtain that A € C>*(R, W), ). As the dimension of the fiber of NyNNp is 1 at 1y € ¥,
and the dimension of the fiber of Np is 1o+ 1 at 3y, we get rank o(A) = ry at Xp. Hence, we
can conjugate by suitable elliptic systems in C*(R, ¥, ) to get that Au = *(uy,...uy,,0) € H*
in a conical neighborhood U of 1, for some ¢ > 0. Then, we find 7;(Pol®(u)) = WF®(u,,11)
in U. By shrinking U and decreasing €, we may assume Pu € H¢ in U. Remember that we
have P € WO Let L = L; + Ly and Q = LP. We have Qu = LPu € H% "F! there. Let
Q= (qw):";;ll By (BI68) and ([B.169) we have ¢;; are in C*(R, Op S(9¥™~1, g)) for i # j, we find
that gy 11rgr1trgr1 € HST in U. Similarly, we find that P, i1rg11trs1 € HS™!, which in
turns gives Df’lPTOHTOHuTOH e H *for k=1,...,7 — 1. We want to prove that Upg+1 € H°
at (t,20;0,&) € UNX, for t < tg, implies u,, 11 € H® at (tg, x;0,&) = vo.

Thus assume that u,,.; € H® at (¢,70;0,&) € U N Xy when ¢ < ty. We may assume that
§ < 1, then LemmaB23 gives that w41, Protiros1Urgs1, DF ' Prysirgsitirger for k=2, ..., m9—1
and Gry+1ro+1Uro+1 satisfies (BI88). Then £ # 0 in WF(u,,11), and assuming that 6 < € in
(BI06) we find that Pryirgq1trgs1 € HO™Y DEE P iirgiitingi1 € HOF for k= 1,...,79 — 1
and Gy 1rgr1Urgs1 € HETOM in mo(U N Sy), and u, 1 € HY at (t,20,&) € mo(U N Xy) for
t < tg. Since Pry 1,941 = Dy mod CP(R,Op S(1,g)), we get Proiirgi1Urgrr = Ditiyg1 € HO ™
which implies using DF ' P 1p041tros1 € HF that DFu, . € H* % for k = 1,...,m9 — 1.

This gives
(Dt 1)i=r € HETF at (20,&), for k=0,...,79 — 1 (3.190)

for almost all r < tg, close to tg. Proposition B34 (with N = 1 and Q = @ry11r9+1) gives
U1 € H? at (tg, 1o, &), and Lemma B.23 gives u,, 11 € H® at (tg, 20;0,&). O
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4 Application

Magnetohydrodynamics, or MHD couples Maxwell’s equations with hydrodynamics to describe
the behavior of electrically conducting fluids under the influence of electromagnetic fields. In
this chapter, we want to consider the simplest form of MHD, which is the Ideal MHD to study
the propagation of polarization set of the solution of these equations. Ideal MHD, assumes that
the fluid has so little resistivity that it can be treated as a perfect conductor. See |Sch09] to
know more about MHD equations.

We will show, under some assumptions, that the linearized ideal MHD equation is of real
principal type. As we mentioned before, systems of real principal type were defined by Dencker;
see |Den82a|, who studied the propagation of their solutions, and showed that the propagation
of polarization sets is governed by a certain connection on sections of the kernel subbundle,
ker po where p, is the principal symbol of the system. In [HR04|, Hansen and Roéhrig merged
the theory of real principal type systems with the calculus of Fourier integral operators and
constructed a Fourier integral solution for system of real principal type, and derived a transport
equation for the principal symbol of this solution (note that disregarding half densities this
transport equation is the connection introduced by Dencker).

The plan of this chapter is as follows: first, we introduce the ideal MHD equations and its
linearization. In section .1, we write the linearized ideal MHD equations in the form of a wave
equation P = 0 where (3 is the displacement vector and P is a second order 3 x 3 system; see
[Sch09, Lecture 20|, and we show that under some assumptions, the characteristic variety of P is
disjoint union of the Shear Alfvén wave, the slow magnetosonic wave and the fast magnetosonic
wave; see [Sch09, Lecture 24|, and [MZ05, Appendix A]. Moreover, we show that, under the
considered assumptions, P is of real principal type and we calculate the transport equation on
Char P. In section 4.2, we return to the linearized ideal MHD equations, and we study the
propagation of polarization sets in general. It turns out that we can consider different cases,

some in which we have our system is of real principal type, some in which our system is of
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uniaxial type, and we have a case where our system is of MHD type.

The set of equations describing the ideal MHD are

;

Op+u-Vp+ pdivu =0,
p(Ou+u-Vu)+Vp+ H x curl H =0,

OH —V x (ux H) =0,

\@p—i—u -Vp+ypdivu =0,
where p, p € R denotes the density and the pressure respectively. u € R? is the fluid velocity,
H € R? is the magnetic field, and v is the adiabatic index, see |[Sch09, Lecture 20].

Assuming a stationary equilibrium the linearized equations of (1) about (p, H, p) is:

Op = —pdivu — - Vp, (4.2a)
pOyis = —Vp — H x curl H — H x curl H, (4.2b)
OH =V x (4 x H), (4.2¢)
Op = —ypdivu — 4 - Vp, (4.2d)

where (p, H, p) are the values in the equilibrium state (that is the solutions of the Ideal MHD
equations when 0/0t = 0, and as we assumed stationary equilibrium we have u = 0). Note

that we used that
Vp+ H xcurl H =0, (4.3)

which we get from the stationary equilibrium assumption.

4.1 The ideal MHD wave equation and the transport equa-
tion

We can write the linearized ideal MHD equations (4.2)) in the form of a wave equation; see
[Sch09 Lecture 20]. Consider the displacement 5 to be defined by

9B

= (4.4)

U
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4.1 The ideal MHD wave equation and the transport equation

Substituting (4.4)) in (4.2a)), (4.2d), and (4.2d)) respectively, and integrating with respect to ¢

we get
p=—pdiv@—j3-Vp, (4.5a)
H =V x (8 x H). (4.5b)
p=—ypdiv3 — - Vp, (4.5¢)
Replace now (I50), {@E5d), and @) in o get
p(ZQ_tf =yV(pdivB)+ V(B3 -Vp)+(Vx (Vx(Bx H)))x H+(VxH)x (Vx(8xH)).
(4.6)
Equation is the ideal MHD wave equation. Consider from now on P where
P = —p% 2 1V (pdiv ) + V(3 Vp) + (V x (¥ x (8 x H))) x H
+(V x H) x (V x (8 x H)) (4.7)

=0.
Now, we want to calculate the Characteristic variety of P under some assumption; for this part

we refer to |[Sch09, Lectures 23 and 24|, and [MZ05, Appendix A].
Lemma 4.1. Assume ¢> = vyp/p > 0, 0 < |H|*> # pc®, € - H # 0, and € x H # 0 . The

characteristic variety of P is disjoint union of the Shear Alfvén wave, the slow magnetosonic
wave, and the fast magnetosonic wave characteristic varieties {qy = 0}, {g2 = 0}, and {g3 = 0}

respectively, where
q1 = p7—2 - <H€)27
0 = pl(r? — &X(z,)) (48)

qs = p(Tz - C?‘(xag))v

\

with

cfc(x,é) = —((+h*)E + V(2 — h2)2¢4 4 4b2c2£2),

Ir—‘ l\.’)lr—\

¢(@, &) =5 (¢ +h)E - V(e = W22t + db2ee?),

where ¢ = yp/p > 0 is the square of the sound speed, h*> = |H|?*/p is the square of the Alfvén
speed, b = |¢ x H|?/p.

29



4 Application

Proof. We have

paB = pr*B — yp€(§ - B) — (€ x (§ x (B x H))) x H, (4.9)

with p, is the principal symbol of P. Considering v = H/,/p, equation can be written as
p(7? = (€-0)*)B = p(( + B (€ B) — (v B)(E - v))E — pu(&- B)(E - v). (4.10)

Without loss of generality, let v = [H|/\/p é., £ = &, + §é, with & = & + &, and

B = Biéy + Byéy + B.€. with é,, €,, and €, are unit vectors that points in the direction of the

x-axis, y-axis, and z-axis respectively. Substituting this in equation (4.10)), we find

x-component: pr°8, = pc§€1 B, + p(h*E* + 2E3) Be, (4.11a)
y-component: p7°3, = ph%‘ﬁﬂy, (4.11b)
z-component: pr°83, = p(c*§€1)Bx + pc%ﬁﬁz. (4.11c)

Notice that the y-component decouples from the x- and z-components. This immediately gives

pr? = ph*¢f, (4.12)
This is the shear Alfvén wave. The characteristic equation for the coupled x-and z-component

18

pPrt = (S + h?) + pP PR e = 0. (4.13)
Hence, we get
2 P 2) 2)¢4 212¢2 ¢2
o 2<(c+h§i\/ h§+4ch§§> (4.14)

Still we want to prove that {¢; = 0}, {¢2 = 0}, and {¢g3 = 0} are disjoint. Dividing ([EI3) by
0%, it can be written as

(72 = R2€2)(2 — P€2) — 7222 (4.15)
Consider R(X) = (X? — h%f)(X? — ¢*€?) — X?R*¢T, {R < 0} = [, ¢} and R(X) < 0 for
X € [min(R?¢F, ¢*€?), max(h?Ef, ¢*¢?)]. Thus,

§ ax(h2§ﬁ, ) > 1€, (4.162)
As h%ﬁ # 0, we have R(h2£ﬁ) = _hzfﬁczfQ < 0. Hence, ¢} < h2£ﬁ <. -

Suppose that the conditions of LemmaldI]are satisfied. Now, we are interested in calculating

the transport equation as in [HR04|, which we stated in the subsection B.I.2l The full symbol
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4.1 The ideal MHD wave equation and the transport equation

of P is ps 4+ p1 + po, with ps is the principal symbol of P homogeneous of degree 2, and p; and
po are homogeneous terms of degree 1 and 0 respectively. One can check that the principal

symbol of P is
p2 = (pr* = (HE)*) 1ds —(yp + [H[)E @ £ + (HE(E @ H + H ® ), (4.17)

and
p1=iy(Vp) @+ @ (Vp) +i(V(H - §) - H+ (H - §) div H) 1d3+%(£ ® VIH|*) +i(V|H|* ®€)
—2(H-VYH®E) —i(V(H-6))QH—i(H-&)(Vo H)—i(V-H)(EQ H).

Using ({3), we get
pr=1y(Vp) @ {+i€ @ (Vp) = i(Vp) @ L+ i(V(H - §) - H+ (H - §) div H) 1ds +5 (¢ @ VIH])
+ %(V|H|2 ®E —i(H-V)H®E) —i(V(H-£)9H—i(H (VO H)—i(V-H)({®H).
(4.18)
One can check ([@I7), (I8 and the calculations given below by using "mathematica" for
example.
Let Ty, T's, and T's be disjoint conic neighborhoods of {¢; = 0}, {¢2 = 0}, and {¢3 = 0}
respectively. Set ¢ = ¢ in 'y, ¢ = ¢2 in I'y, and ¢ = ¢3 in T'3.

Proposition 4.2. P is of real principal type with respect to the Hamilton field H, of Char P =

{q =0}

Proof. We have ¢;, g2, and ¢3 are scalar real principal type. Let
w = |HPE@E+ |EPHRH — (H-)H®E+E® H) (4.19)

In I’y we take

. H- 2w2
Po =Wyt (ot [P 06~ (1 g)g@ 4 Hoe)+ T g
4243 4243 4243
to get popes = q1 Id3. In 'y we take
. 1 1 H . 2w2
Pr= L1y 4+ BRI 9§ — (- )€ 0 1+ Ho )+ L o)
0 a3 as 0143
to get paps = q2 Ids. In I's we take
. q 1 1 H - &)*w?
Bo = By 4 (p+ | HP)E 0 €~ —(H-¢ 0 H+ Hog) + L (4
il a2 a2 41492
to get pape = g3 Id3. L
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Remark 4.3. e The principal symbol of P calculated before can be written as

P2 = 171 + Q22 + q37s, (4.23)
where
w? (
m = Ids + , 4.24
V= G e TP )
: (< FIHP)E 0 € — (€€ H+ Hog) + — )
Ty = P —(H - ,
2 pc(w,€) — pi(,€) pci(z,§) — (H - §)?
(4.25)
and
1 (H - &)*w?
T3 = WwHHPERE—(H-OEQH+H®E) + ,
S 236 — (o 6) (Cws i o) I o6 - (£
(4.26)
with my, 5 and 73 are orthogonal projectors and m; + 79 4+ m3 = Id3
eInly,
Po=m1+ Ly + Ly, (4.27)
q2 qs
and set ™ =7y .
In FQ,
P2 =7T2+@7T1+%7T3, (4.28)
q1 qs
and set m = .
In Fg,
Po=ms+ Br 4+ B, (4.29)
q1 q2

and set ™ = m3.
On Char P, ps = 7, pom = 0 = 7ps, and poa = 0 if and only if a = 7a.

In what follows, let X = R x R®>, A C T*X \ 0 be a closed Lagrangian submanifold of the
characteristic set of P, and let Q}\/ ? denote the half-density bundle of A. S#+1(A, (Q}\/ *)3) is the
space of symbols of the space of Lagrangian distributions I*(X, A; (Q%Q)?’); see [H607].

From Subsection B.1.2, we know that there is a first order differential operator Tpy, on A,
uniquely determined by P and H, which maps a a 3-vector of half densities with p,a = 0 to

3-vector of half densities where

1. .
Tpua,a = Ly,a+ 5{292,292}@ + 1p2p-a. (4.30)
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4.1 The ideal MHD wave equation and the transport equation

Lemma 4.4. pop’m = 0 on Char P.

Proof. Differentiating py we get

2
ai,g; — —2(V(H &)~ H+ (H - €)div H) Idy —(yVp + V(| H[%) © € — £ & (7Vp+ V|H]?)
j=1 V¥

3

+(divH+H -V ERH+HRE+(VH-))@H+ (H-6)(Ve H+ (Ve H)T)
+H® (V(H-¢)

Therefore, the subprincipal p® = p; — % i aijgzj

is given as follows:
2ip° =y(ERVp—VpR&E +divHERH -—H®E) + (H-&)(—(Vo H)+ (Ve H))
+(H-V)(HRE-EQH)+(VH-E))9H-H®V(H-€)+2(VpRE—-E£® Vp).
We have
2ipop*n = 2imp*t  on Char P, (4.31)

Using that 2ip® is a 3 x 3 skew-symmetric matrix with zero entries on the diagonal, and = is
a symmetric matrix we get that 2imp°nm is a 3 x 3 skew-symmetric matrix. Therefore to prove
that it vanishes, it suffices to show that its rank is < 2. Since 7 is projection we have rank 7

=trace 7. Calculating the trace of m we get that rank 7=1 and hence we proved the lemma. [J

Lemma 4.5. Let A C Char P be a conic Lagrangian submanifold. Let a € S*F(A, (Q)/)3).
Then, {pa, p2}ma = —2(Hm)a on Char P.

Proof. We will prove the result for 7 = m; and the same argument applies for m and m3. We
have in a conic neighborhood of {¢; = 0}, ps = 171 + qam2 + g37s, and py = m; + Z—;m + Z—;’/T'g,.

Using that 72 = 7, and {q1, 1} = 0 we get
- q
{Da2, p2}mia ={m, @1 }ma + qo{m1, m}ma + qs{m, ms}ma + m{q, m}ma + q—37r2{q1, T3 }mia
2

+ %773{%, To}mia + m3{qi, T3}mia.
Using that Hr; = Hri = (Hm)m;+7;(Hn;) for j = 2,3, we get m{q1, 7;}ma = {q1, 7;}ma for
Jj =2,3, and using 0 = H(mams) = mo(Hms) + (Hma)ms and 0 = H (m3me) = m3(Hma) + (Hmws)me
we get mo{q1, m3ma = m3{q, m}ma = 0.
Using mp = Idg —m — 73, {m1,1ds} = {q1,1d3} = 0 and {7y, 7} = 0 we get

{D2, p2}ma = =2(Hm)ma + (g3 — q2){m1, m3}ma.

Now, we want to prove that {m,m3}ma = 0. We have 9,7 = 0,7} = m0,m1 + O, mm, and
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similarly 0,71 = 0,7} = m10,, 71 + Op,mim1. Also, 0 = O, (my73) = m0¢,m3 + O, m173. Hence,

T10¢,m3 = —0¢,mm3. Similarly, we have m,0,,m3 = —0,,m173. Combining these together we get

{m, m3}ma = m{m, m3}ma.

We have
3
7T1{7T1, 7T3}7T1(1, = Z 1 (8&71'18332.77'3 - (9zi7rlﬁgi7r3)7rla.
i=1
Moreover,
T10g, 10y, 310 = T10¢, m1 (T30,T3 + Oy, M3T3) M0 = 71 (Og, m173) Oy 30 = —m10¢, T3(0y, T3T1 )

=T (851.7T37T3)8x1.7r1a = T (851.#3 — Wgagiﬁg)axiﬂla = Wlagiﬂgaﬁiﬂ'la.

Using that ma = a on Char P, we get m0¢,m10,,T3m1 0 = m10¢, T30, myma. Therefore,

3
7T1{7T1,7T3}7T1(1, = Z?Tl(agiﬂgaxi’/ﬁ — 8xi7r10&7r3)7r1a.

=1

We have O¢, w30, m1 — 0y, m10¢, T3 1s a 3 X 3 skew-symmetric matrix with the entries in the diagonal
equal to zero. So same as before we get m {m, m3}ma = 0 as the rank of m; equal to 1. Hence,

the lemma is proved. O

Proposition 4.6. Let A C Char P be a conic Lagrangian submanifold. Leta € SFT(A, (Q}X/Q)‘g)
with poa = 0. Then

Tpua = Lya— (Hm)a on A. (4.32)
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4.2 Propagation of polarization sets for the linearized ideal MHD equations

4.2 Propagation of polarization sets for the linearized ideal

MHD equations

Note that (4.2) is hyperbolic symmetric with symmetrizer

vp 000000 —p
0 p00O0O0O 0
0 0p 0000 O
s_ |0 00,000 0| (.33
0000100 O
0000010 O
0 000001 0
—p 000000 42

The principal symbol of (2] is
(

T+ pipE 4+ ptH x (€ x H) =0,
(4.34)
TH+ (- u)H — (H - &) =0,

| 7P+ yp(§ - u) = 0.
We use here the notation & = (&, &, &) for the spatial frequencies and £ = |€[¢, = £,
Gy =10 — )€ = —€ x (€ X w).
We write ([34) in the general form 7U + A(U,€)U = 0 with parameters U = (p, H,p), and
U= (p,u, H,p).

We have the following result

Lemma 4.7. Assume that ¢> = yp/p > 0. The eigenvalues of A(U, ) are

(

/\0 — )\4 — 0,
A == s 3 >
+1 cs(©)[¢] (4.35)
Aig = £(&- H)/\/p,
Az = (€I,
with € = £/|€] and
cfc(f) = %((c2 + h?) + /(€2 — h2)2 4 4b2c2), (4.36)
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(&) = %((c2 + h?) — \/(c® — h2)2 4 4b%c?), (4.37)

where h2 = |H|?/p, b* = |£ x H|?/p.

Moreover, if we assume that 0 < |H|? # pc?, then we have
(1) When &+ H #0 and & x H # 0:
Ao = Ay is double eigenvalue of A(U, &), and the eigenvalues Ay1, Aro and Ayg are simple eigen-

values of A(U,€).

(i1) When &-H =0, £ #0:

A3 are simple eigenvalues, while A\g = A1 = Ao = Ny 15 a multiple eigenvalue.

(1ii) When & x H =10, £ #0:
when |H|? < pc® (resp. |H|* > pc?), iz (resp. Ai1) are simple; \yo # A5 are double, equal to
Ai1 (resp. Ais) depending on & - H, Ao is double equal to \4.

The proof of this lemma is very similar to the explanation given in [MZ05, Appendix A|
except here we have the additional eigenvalue \; = 0. Also, here we will not state all the

eigenspaces as in [MZ05].

Proof. Let U = (p,u, H,p). The eigenvalue equation A(U, &)U = AU reads

(

Ap = puy,

p iy =p+ H, - Hy,

Avits = ~Hy L. (4.38)
NH | =0y H, — Hyiy,
AH| =0,

\Ap = Ypuy.

On{p=0,1u=0H =0p=0} =EyE), Ais equal to A = 0. From now on we work on
Eg = {H| = 0} which is invariant by A(p,¢).
Consider v = H/\/p, ¥ = H/\/ﬁ, & =1p/p, o =p/p,and & = p/p. The characteristic system
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4.2 Propagation of polarization sets for the linearized ideal MHD equations

reads:

A0 = 1y,

Al =& +wvy -0y,

My = —vvg, (4.39)

AV = vl — vy,

A = ’)/Oﬂl”.
\

Take a basis of &+ such that v, = (b,0) and let @ = vj. In such a basis, the matrix of the

system 1is
A -1 00 0 0 O
0O X 00 -b 0 -1
0 0 X0 a 0 O
A=A==10 0 0 X 0 a 0 (4.40)
0O —b a 0O X 0 0
0 0 0 a 0 X O
0O —ya 0 0 0O 0 A
The characteristic roots satisfy
AN —a?) (A2 = a®) (A2 — ) — A% =0 (4.41)
Thus either
A=0or (4.42)
M\ =a? or (4.43)
. 1
N =c}(E) = 5(02 + h2 + /(e — h2)? 4 4b2¢2) or (4.44)
. 1
N =26 = 5((;2 + h? — \/(c2 — h2)2 + 4b2¢2), (4.45)

with h? = a® + b* = |H|?/p.
As in Lemma [LT), if we consider R(X) = (X — a?)(X — ¢?) — 12X, {R < 0} = [2(£), Z(§)],
and R(X) <0 for X € [min(a?, c?), max(a?, ¢?)]. Thus,

c?(f) > max(a?, ¢?) > a?, (4.46)

(€) < min(a?, ) < a?. (4.47)

At the case v, # 0 that is w = & x v # 0: we have the basis such that (4.40) holds is
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smooth in &. In this basis, w = (0,b0), b = |v,| > 0. Since R(c?) = —b*c* < 0 there holds
Aé) < A < c%(é) Suppose that a # 0. Then R(a?) = —a?® < 0 and 2(§) < a® < c?c(é)

~ ~ A ~

Moreover, ¢2(£)c}(§) = a’c® and ¢Z(§) > 0. However, when a = 0, we get ¢2(§) = 0, but
C?(f) > c? > 0.

When a # 0, and b = 0, the eigenvalues of A are #¢ (simple), 0 (simple), and A (double).
Assume that ¢® # h?. Note that when b = 0, then |a| = h and

when ¢ > h?: Cf(é) =, cs(é) = h,

when 2 < h? i ¢p(€) = h, ci(€) =c.

Let Q be a pseudodifferential operator of order 1, such that QU = 0 be the system of the
linearized ideal MHD equations, and ¢ = o(Q) be its principal symbol. We have detq =
r2(r2 — AEP)( — AR — (- H/p).

Proposition 4.8. When we have X is disjoint union of the hypersurfaces S1 = {q1 = 7 = 0},
Sy ={g =7 —cs()I¢] = 0}, S5 = {gs = 7 + cs()|¢] = 0}, Su = {qa =7 — (£~ H)/\/p = 0},
S5 ={g5 = 7+(§-H)/y/p =0}, So = {gs = 7—c;(€)[§] = 0}, and S7 = {gr = T+¢(§)[¢] = O},
that is when we are outside the intersection of any of these hypersurfaces then Q) is of real

principal type. Note that we have this case when & - H # 0, and & x H # 0.

Proof. Let I'1,....I'; be the disjoint conic neighborhoods of Si,...,57 respectively.
Let “¢® be the adjugate matrix (transpose of the cofactor matrix) of g. We can check by

using "Mathematica" for example that ‘¢ can be written as
tg® = M, (4.48)

with M being an 8 x 8 matrix.

In I'y, we choose

q= (1/ H qj) M, (4.49)

so we get

qgq = 71dg. (4.50)
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4.2 Propagation of polarization sets for the linearized ideal MHD equations

In Ty, for j =2,...,7 we choose

7
q= (1/((1?1_[%)) ‘g, (4.51)
=
so we get

4 = q; 1d; (4.52)

As g; for j =1,...7 are of real principal type we get the result.

Remember that from lemma we know that c}(é) + 2(€) and that C?(é) #0.
Proposition 4.9. If 7 # 0, and 72 # c%(é)\f]Q, orif T # 0, and T2 # 2(€)|€)2, then our system

is of uniazial type at Xo.

Proof. First case: If 7 # 0, and 7% # c?(f)k‘ >, we have X is union of two hypersurfaces
Sy = {7 —cs(€)I€] = 0}U{T+c,(€)[€] = 0}, and Sy = {7—(&-H)/\/p = 0yU{r+(¢-H)/\/p = 0}
intersecting at o = {7 = [{||H|/\/p, ExH =0, |H|* < pc®, & # 0}{T = —[¢||H|//p, EXH =
0,|H|? < pc2, € # 0}

Second case: If 72 # 2(£)|¢[2, and 7 # 0, we have ¥ is union of two hypersurfaces S, =
[ = esl€)1€l = 0} U {r + cr(E)le] = 0} and S5 = {7 — (€ H)/\/5 = O} U {r + (¢ - H)/ /7 = 0}
intersecting at Xy = {7 = |{||H|/\/p,{ X H = 0,|H|* > pc?, & # 0yU{r = —[¢||H|//p, X H =
0,|H|? > pc?, & # 0}.

In the first and in the second case we have: S; and S, are tangent of order 1 at Y, the
codimension of Y, is three, the (complex) dimension of N is equal to 2 at Yo, d*(detq) # 0
at Xo, and d'(detq) = 0 at X, for ¢ < 2. Hence, the conditions (3I2)-(B.I0) are satisfied. It
remains only to prove ([3.I8]). In [Den92|, Dencker mentioned that by proposition 3.2 in [Den92],

we only have to verify

0,q - ker g — Im g at 3y (4.53)
when p € Ty, 3, since the order of tangency of S; and Sy is 1. Ty, > is characterized as those p €
Ts, X such that 6g(det q) = 0. Thus T%,Y is spanned by Dy = &0¢, — £10¢,, Dy = £30¢, — £10k,,
D3 = §0¢, — &30¢,, Dy = H0¢, — H10g,, D5 = H10¢, — H30¢,, Dg = HoO¢y — H30¢,, D7 = 0,
Ds = §170- + [€]?0¢,, Dy = &70, + |€]?0gy, D1o = &370; + |€]?Dgy, D1y = TH10- + (€ - H) Oy,
Dy = 7H50; + (£ - H)O,, D15 = TH30, + (§ - H)Dg,. We can check that if *(vy, ..., v5) € kerg
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at Yo, then we find
D;q¢'(v1,...,v8) = Y(0,...,0), j=1,..,13, (4.54)

so, (BI]) is satisfied. For D; we clearly have D7¢'v = 0. We will show how one can get (€54
for the other D;’s, in particular we show the proof of D;, and we one can apply similar way to

the others. Let v € ker ¢ at Y5 so we have
(

i%l/l + p&iva + p&avs + vy = 0

i%w — p N Hs&s + Holo)vs + p &1 Hovg + p &1 Havr + p &g = 0

i%% + p & Hws — p~ (Hs&s + Hi&1)ve + p~ "o Havr + p~ ' &vg = 0

i%m +p & Hivs + p~ s Hovs — p~ ' (Haby + Hi&y)vr + p~ 608 = 0 (455)
—(Ha8s + H3&3)va + §oHyvs + §3Hyvy & %Vs =0

§iHovy — (H1&1 + H3é3)vs + §3Hovy £ %Vﬁ =0

§iH3vs + §oHavy — (H1&y + Hobo)va + %W =0

ﬂpéle + YpSavs + Yp&sva £ %Vs =0.
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4.2 Propagation of polarization sets for the linearized ideal MHD equations

We have
TV + p&ive + p&avs + pEsva
Tvy — p~ (H3&s + Halo)vs + p~ 161 Hovs + p~ & Havr + p~ 1611
Tvs + p e Hivs — pm (H3és + Hi& v + p & Havr + p~ oo
Digv = D, vy + p & Hivs + p~ ' Havs — p~ ' (Hao + Hi&)vr + p~ ' ésug
—(H3&s + H3&3)va + §oHyvs + S Hivy + T3
§iHovy — (H1 &1 + H3&3)vs + E3Hovy + T
S Hzvs + S Havy — (Hi&y + Ha&o)va + 717
YP&1ve + Yp&avs + YpEsva + TUs
(4.56)
oy 7 L,
oy F L1y,
SIS
|HIEL,
_p | ™7 ﬁa = (0, ...,0),
TVUs F 5
LI
oy L,
i LSl
for v € ker q at . O

Proposition 4.10. If 7% # c?(f)|§|2 then our system is of MHD type at Xs.

Proof. When 72 # c?(£)|§|2, then ¥ is union of the five hypersurfaces S; = {7 =0}, S = {7 —
co(E)lEl = 0}, Sy = {r+eu(E)I€] = 0}, Sy = {r—(€-H)//p = 0}, and S5 = {7-+(&-H)/ /5 = 0},
intersecting at >y = ﬂ?zlSj ={r=0,-H =0, #0}. We want to prove that our system is
of MHD type at ;. We have S; intersect transversally at ¥, the codimension of ¥4 is equal
to two, d°(det ¢) # 0, and d'(det q) = 0 for i < 6 at X5, and dim of the fiber of N is equal to 6
at Xo. (B.160)is satisfied for iy = 1. Hence, still we want to check ([B.77). Again, we will prove
this by proving the following

0,q - kerg — Imgq at X, (4.57)

when p € Ty, 3. Ty, Y is spanned by Dy = &0¢, + £20¢, + £30¢,, Do = 707, D3 = 0y, Dy = 70¢,,
D5 = 70¢,, Dg = 70¢,, D7 = 704, Ds = 70y,, Dy = 70y,, D1o = (§ - H)Oy,, D11 = (§ - H)Oy,,
Dy = (- H)Oyy, D13 = (§- H)O,, and Dy = (£ - H)Og, (note that we have not mentioned
(€ H)Og, as it can be written in terms of D3, Dy4, and D). We have for (4, ..., v5) € ker g at
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¥
Diq *(vi,...,v5) = (0,...,0) at ¥y fori = 1,..., 14. (4.58)

From (448) we know that (BI68]), and ([B.I69) are satisfied with R = Dy, o(L;) = M, and
f =772 = AENEP) T = FOIEP) (T — (&~ H)?/p). O
Remark 4.11. When 7% # cfc(é)|§|2, on X\ Xo we have either 7 # 0 and for this case we have
Proposition [£9, or 7 = 0 but £ - H # 0 so our system is of real principal type in this case.

If 72 % 2(€)|¢]%, but 7 = 0 then we know that 72 # c?c(é)m? and again our system is of real
principal type in this case.

Note: As an application for systems of generalized transverse type, one can consider the
linearized isentropic MHD equations, which is 7 x 7 matrix; check |[MZ05, Appendic A| where
the first order term of the linearized isentropic MHD equations and its eigenvalues are given,

and then we can easily check the type of the system as we did in this section for linearized ideal

MHD equations.
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A Symplectic geometry

In this appendix, we will study about symplectic geometry. It will be divided into four sections.
The first section is about symplectic linear algebra. In the second section, we give the definition
of symplectic manifolds, and we state Darboux theorem. In the third section, we give the
definition of conic symplectic manifolds. And, in the last one, we discuss characteristic foliation,

where Frobenius theorem is also stated. To study more about symplectic geometry, one can

check |[H507].

A.1 Symplectic linear algebra

Let V' be a real vector space of dimension 2n, ¢ a bilinear form on V.
Definition A.1. (V,0) is said to be a symplectic vector space if ¢ is non-degenerate and skew-

symmetric. That is, we have
e o(u,v) =0 for all v € V implies that u = 0,
e o(u,v) + o(v,u) =0 for all u, v € V.

Note that the second condition is equivalent to o(u,u) = 0 for all u € V' because
0=o(u,v)+o(v,u) =c(u+v,u+v)—o(u,u) —o(v,v), (A.1)

so by choosing v = u we get 40 (u, u) = 20(u,u) which gives o(u,u) = 0.
Example A.2. V = R" x R" with coordinates (x, &), where the two factors are understood to

be dual to each other under the Euclidean inner product, and

o((z,8),(y,m)=z-n1-y-& (A.2)
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Using the language of differential forms, we have
o=drAdE = Zi:ldf"i A dE;. (A.3)
Let W C V be a linear subspace, we define the set
We={veV|VweW:o(,w)=0} (A4)

Note that dim W + dim W7 = 2n, and (W7)7 = W.
Definition A.3. Let W C V be a linear subspace. Then W is said to be

e isotropic if W C W7, which implies dim W < n,
e Lagrangian if W = W7 which implies dim W = n,

e involutive (or co-isotropic) if W O W which implies dim W > n.
Proposition A.4. All symplectic vector spaces of the same dimension 2n are symplectomor-

phic. That is, there exists a linear map T : (V,0) — (V',0") such that
o(u,v) =o'(Tu, Tv), u,v e V. (A.5)
Definition A.5. A linear basis ey,..., ,, fi,..., fn, of V is said to be symplectic if o(e;, ;) =
o(f;, fe) =0, and o(e;, fr) = 65 for 1 < j, k < n.
Example A.6. Let ¢1,...6,, denote the standard basis of R™. Then e; = (£1,0),...,e, = (&4, 0),
fi=1(0,&1),..., fn = (0,&,) is a symplectic basis of (R*", dz A df).
It is easy to find a symplectic basis to a given symplectic vector space (V, o): We choose two

complementary Lagrangian subspaces W, W’ of (V,o); that is V. = W + W’ or, equivalently
W N W' ={0}. W can be seen as the dual to W under the identification

W' S L(W,R),
w' = (w e o(w,w')).
Then, we find the symplectic basis ey, ..., e,, fi, ..., fn by choosing ey, ..., e, to be a linear basis
of W and fi, ..., f,, to be a linear basis of W’.
On the other hand, if we have ey, ..., e,, f1, ..., fn is a symplectic basis of (V,o) then W =
span{ey, ..., e, } and W’ = span{fi, ..., f»} are complementary Lagrangian subspaces of (Vo).

Lemma A.7. Let W C (V,0) be isotropic, with dimW = m < n. Then any linear basis

€1y ..y em of W can be completed to a symplectic basis eq,...en, f1,...,fn of (V,0).
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A.2 Symplectic manifolds

Let o be a differential 2-form on a manifold M, that is, for each p € M, the map o, :
T,M x T,M — R is skew symmetric bilinear on tangent space to M at p, and o, varies
smoothly in p. If do = 0, then we say that o is closed, where here d denotes the exterior
derivative.

Definition A.8. The 2-form o is called symplectic if ¢ is closed and o, is symplectic for all
pe M.

Note that if ¢ is symplectic, then dim 7, M = dim M have to be even.

Definition A.9. A symplectic manifold is a pair (M, o) where M is a manifold and o is a
symplectic form.

If (M, o) is a symplectic manifold, then (7,M, 0,) is a symplectic vector space for all p € M.
Example A.10. The simplest example of a symplectic manifold is R?" equipped with the form
Yoo dxy N dE;.

Theorem A.11. (Darboux) All symplectic manifolds of the same dimension are locally sym-
plectomorphic. More precisely, around each point of a symplectic manifold of dimension 2n
there are local coordinates xy, ..., T,, &1, ..., &, such that o = Z?:l dx; N d&;.

Definition A.12. Let (M, o) be a symplectic manifold, and f : M — R smooth. Then we
define Hy a vector field on M, by df = o(Hy,.).

In conical coordinates,

Definition A.13. Let (M, o) be a symplectic manifold, and f,g € C*°(M;R). The Poisson

af @ af o
Hf:Z / / (A.6)

bracket of the two functions f and ¢ is defined as

{f.9} = Hpg=0(H,, Hy). (A.7)
In canonical coordinates,
of 99 9f 9y
U9 =2 5e o0, " amoe, (A8)

Lemma A.14. We have [Hy, Hj] = Hyy g
Proposition A.15. (C>®(M;R);{, }) forms a Lie algebra, for (M, o) is a symplectic manifold.
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In particular, the Jacobi identity

{f{g.h}} +{g,{h, f}} +{h.{f,9}} =0
holds.

Definition A.16. Let (M, o) be a symplectic manifold. Then a C* submanifold N C M
is isotropic, coisotropic, symplectic, Lagrangian, if T,N C (1,M,0,) has the corresponding
property for all p € N.

Example A.17. Let Y C X be a smooth submanifold. Then the conormal bundle N*Y =
{(y,2) € T; X| &1,y = 0} is Lagrangian.

A.3 Conic symplectic manifold

Definition A.18. A symplectic manifold (M, o) is said to be conic if it admits a C* free proper
R, -action {x;}i~0 such that xjo = to for any ¢ > 0.
Example A.19. 7% X \ 0 with its natural R-action in the fibers.

A version of Darboux’s theorem holds: (M, o) is locally conically symplectomorphic to
T*R™\ 0 = R™ x (R™\ 0) with coordinates (x,&) and R, action x.(z,§) = (z, t&).
Definition A.20. The radial vector field R is the generator of the R, action, that is,

d
Rf = Exffh:l- (A.9)

The canonical 1-form o € Q'(M) is then defined as a = o(., R).
Example A.21. For M = R" x (R™\ 0), we have the radial vector field is R = £0/0¢, and the

canonical 1-form is o = &dx.
Proposition A.22. We have 0 = —da.

Proposition A.23. Let N C (M, o) be an n-dimensional closed submanifold. Then N is conic

Lagrangian if and only if o vanishes on N.

A.4 The characteristic foliation

Let X be a manifold, dim X = n, and F C T'X be a subbundle of rank k. F is also called
a distribution in differential topology. A k-dimensional submanifold Y C X is said to be an
integral manifold of F if T,Y = F, for all y € Y as subspaces of T, X.

For k = 1, we have F = span H locally for some non-degenerate vector field H on X, and
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integral manifolds of F are the integral curves of H.

For 2 < k < n, integral manifolds need not always exists even locally.
Definition A.24. The distribution F is said to be integrable (or involutive) if, locally, [H, K|(z) €
F. whenever H, K are vector fields on X such that H(z), K(z) € F, for any = € X.
Theorem A.25. (Frobenius) The distribution F is integrable if and only if there is an integral
manifold of F through every point of X . In this case, X is regularly foliated by mazimal integral
manifolds of F.

Let (M, o) be a symplectic manifold of dimension 2n, and let V' be a submanifold of M.
Lemma A.26. Let V' be a submanifold (M, o) of codimension r. Then V is involutive, that
is, (T,V)? C (T,,V) for allv € V, if and only if

{fi,f;i}=00nV for1 <i<j<r, (A.10)

where V- =A{f1 = ... = f, = 0} locally with dfy, ..., df, is linearly independent on V.
If V is of dimension n + p where 0 < p < n. Then (TV)? is a distribution of rank n — p.
Proposition A.27. If V is involutive, then (TV)? C TV is integrable.

Example A.28. Let (X, o) be a symplectic manifold, let p € S™(T*X \ 0) be a real-valued
such that dp # 0 everywhere in 7% X \ 0, and let p be the principal symbol of a pseudodifferential
operator P. Then Char P = p~!(0) C T*X \ 0 is a hypersurface, so it is involutive, since every
hypersurface of a symplectic manifold is involutive. Moreover, (7' Char P)? is spanned by H,,

and the integral curves of this integrable distribution are the integral curves of H,,.
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B Hormander Weyl calculus and
estimates of pseudodifferential

operators

This appendix will be divided into three sections. In the first section, we give the definition of
the general symbol classes of the Weyl calulus. In the second section, we discuss the Weyl cal-
culus. And in the last section, we give some estimates of the Weyl pseudodifferential operators.

For the proofs of the results mentioned in this appendix check [H607].

B.1 The symbol class S(¢, g)

Let V be a finite dimensional vector space, and g a metric on V. In [H607|, it was mentioned
that it is not a restriction to assume that the metric is Riemannian that is for every x € V we
have a positive definite quadratic form g,(y) in y € V.

Definition B.1. g is said to be slowly varying if there are positive constants ¢ and C such that

9:(y) < €= gayy(t) < Cgu(t). (B.1)

Decreasing ¢ we can replace (B.I) by a symmetric form:

92(y) < ¢ = g2(1)/C < goiy(t) < Cgalt). (B.2)
An example is the metric
|da|* + 1dg |/ (1 + [€]%), (B.3)
or more generally
|dao[* (1 + [€%)° + |dg|*(1 + [€[*) 7", (B-4)

if p<1.
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B Hormander Weyl calculus and estimates of pseudodifferential operators

If G is a fixed quadratic form, and « € C* in a neighborhood of z € V we define the norm

k
Julf () = suplu® (231, . ti) [/ [ G(85)2, (B.5)
1

t;ev
where u® denotes the k" differential of u. For fixed k an equivalent norm is the maximum
of the derivatives of order k& with respect to a G orthonormal coordinate system. When g is
Riemannian metric We will write |ul{(z) instead of |u|¢(x) when G = g,.

Now, we give the definition of the general symbol classes of the Weyl calculus.
Definition B.2. If g is slowly varying, then a positive real-valued function ¢ in V is said to

be g continuous if there are positive constants ¢ and C' such that
9z(y) <c=9(x)/C <V (z+y) < CY(z). (B.6)
We define S(1, g) to be the set of all u € C*(V') such that, for every integer k£ > 0
sup [uli(z)/d(z) < oo (B.7)

S(1, g) is a Fréchet space with the topology defined in (B.7)).

Now, we remind the reader of the definition of the symbol class Sf’i 5, and then we show in
which case we have S7; is same as S(1, g).
Definition B.3. Let X C R” be open, let u,p,d be real numbers with 0 < p < 1, and
0 <9 < 1. Then S¥;(X x RY) denotes the set of all a € C>(X x RY) such that for every

compact set K C X, and all o, 5 we have
|DPDSa(x,0)] < Copx(1+ |07l e K 6eRY, (B.8)

is valid for some constant C, g k.
If g is the metric (B4)), and we let ¥ = (1 + |£|?)*/? for any real number g. Then, S(¥, g)

becomes the symbol S ;.
Lemma B.4. Ifu e S(Y,g) andv € S(V, g) then uwv € S(VY',g). If 1/|u| < C/9 for some C,
then 1/u € S(1/9,g).

Note that we have Cg°(V)) € S(¥,g¢), for g, and ¥(z) are bounded from above and from

below when z is in a compact set.
Theorem B.5. We have S(9,g) C S, g) if and only if ¥/9' is bounded.
Let A be a real-valued quadratic form in the dual space V' of V. Then A(D) is a differential

operator in V' characterized by

A(D)exp(iz,&) = A(§) exp(ix, &), z €V,
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for every fixed £ € V'. When w is in S or in &’ we can define exp(iA(D))u as the inverse Fourier
transform of exp(iA(§))u(§) where @ is the Fourier transform of u. Let g be a positive definite

quadratic form in V, and let
K ={z; g(x) <1}
be the corresponding unit ball. Let

g*(z) = sup (z,£) (B.9)
g(Ag)<1

be the dual form of £ — g(A¢).
Proposition B.6. Let g be a positive definite quadratic form in V, and A a real quadratic
form in V'. Denote by K the unit ball with respect to g, and define g by (B9). Then for

u € C3°(K) we have

[exp(A(D))u = 3 _(GA(D)Yu/jl| < € sup sup [A(D)"ulf(y)/H!, (B.10)
i<k J=5 e
and
lexp(iA(D))u(z)| < Crr(l + inf gtz —y)) %2 sup sup |ul? (B.11)
YERK j<s+k

forallk >0 and R > 1 if 2s > dim V.

Definition B.7. The Riemannain metric g (and the positive function ) in V' is said to be
A temperate (resp. A, g temperate ) with respect to x € V if ¢ is slowly varying (and ¥ is g

continuous) and there exist constants C' and N such that for all y,t € V
gy(t) < Cae(t)(1 + g (x — )", (B.12)

Iy) < CY(x)(1+ g, (x —y)V. (B.13)

Now, we want to extend the definition of exp(iA(D)) from C§° to S(4J,g). For this we
introduce first the following definition.
Definition B.8. A continuous linear form on S(¢J, g) will be called weakly continuous if the

restriction to a bounded subset is continuous in the C* topology.

Theorem B.9. The map C° > u +— exp(iA(D))u(z) € C has a unique extension to a weakly
continuous linear form on S(9,g) for every x such that g is A temperate, g, < g2, and ¥ is

A, g temperate with respect to x. We have
lexp(iA(D))u(z)| < I(x)|ul, (B.14)

where the seminorm ||ul| in S(9,g) only depends on the constants in (B.2), (B.6), (B.12), and
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B.13).
Theorem B.10. Assume that the hypothesis of Theorem are fulfilled uniformly for all
n a linear subspace Vi of V. Then the map

S(9,9) 3 u s exp(iA(D))uly,
is weakly continuous with values in the space S(9, g)|v, of symbols in Vi corresponding to the
restrictions of ¥ and of g.

The preceding results can be improved when

h(z)* = sup 9:(t)/ 95 (¢) (B.15)

is not only less than or equal to 1, but is small. Let

Ry = exp(i(A(D))u— Y _(i(A(D))u/j. (B.16)
j<N
In [H607], it was shown that Ry has the bound
k

RY (@3 t1, s ti)] < B(@)N0() [T ga8)2 ] (B.17)

where ||u|| is a fixed seminorm in S(?J, g).

Theorem B.11. Assume the hyothesis of Theorem [B.9 are fulfilled uniformly for all x in a

linear subspace Vo of V. Then we have
S(@,9) 3 ur— Ry € SN, g)lv,

is weakly continuous. The seminorm in (BIT) depends only on N, k, and the constants in

B.2), B.9), B.I2), and B.I13).

B.2 Hormander Weyl calculus

Let V' be an n dimensional vector space over R and V' its dual. Given a € .(W), where

W =V & V'. First, we remind the reader about the operator a(z, D) for a € .7 (W):

a(x, D)u(z) = (27?)_”//a(x,ﬁ)e“w_y’@u(y) dy d¢, ue.s. (B.18)

82
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Here dy is a Lebesgue (Haar) measure in V' and d¢ is the dual one in V’. The weak version of
(B.Ig) is
(a(z, D)u,v) = (277)”///a(:v,ﬁ)e”xyﬁ)u(y)v(a:)dy dx d§
= (27)"///a(x,§)ei<t’5>u(x — t)v(z) dzx dt dE,

makes sense for any a € ./(W) and defines a continuous operator from . (V') to .#/(V'). The

(B.19)

adjoint operator of a(x, D) is given by

e Dyule) = 2m) " [ [ aly. e 0uty) dy de, (B.20)
interpreted in the weak sense too.
If a € S™ then a(xz, D) maps S to §. Also, when a € S™, we have the class of operator
(B.I8) is the same as the class of operators (B.20)), so they can be extended to continuous
operators from &’ to §'.

The operator a*(x, D) is defined, via the Weyl calculus as
a”(z, D)u = (27r)_”//a((x +1)/2,6)efe ¥y (y) dy dE. (B.21)
The Schwartz kernel is
K(z,) = (20" [ al(o +5)/2,e09 ds (B.22)
SO
K(x+1t/2,z —t/2) = (2#)"/a(:c,£)ei<t’5> d¢ (B.23)
is the inverse Fourier Transform of a with respect to £&. Hence, we have
a(z, &) = /K(x +1/2,x —t/2)e” ) dt. (B.24)

The adjoint of a™ is equal to a*. Hence, we have a" is its own adjoint if a is real valued.
Now, we want to give a formula for the composition of a¥'(x, D) and a¥(x, D) when a; and ay

are in . (W). Using (B.22)) we get that the kernel of a¥'(z, D)a¥(z, D) is equal to

(2m)™" / / / a1((z 4 2)/2,Oaz((z + y) /2, 7)e O+ E=vT) q2 d¢ dr, (B.25)

so it follows from (B.24]) that a’ay = a® where

a(x, &) = (2%)_2"////a1((17+z+t/2)/2,§)a2((x+z —/2)/2,7)e’ dz d¢ dt dr,
(B.26)
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with
E=(x—2z+1/2,()+(z—x+1/2,7) = (t,§)
=(r—2+t/2,(=&+(z—ax+1t/2,7 = ).
Introducing ¢ — &, 7 — &, (z —x +1/2)/2 and (z — 2 — t/2)/2 as new variables instead of ¢, 7,

(B.27)

z, and t, we get
a(z, &) =7~ / / / / ar(z + 2,& + Qag(x + 1, + 7)™ dz d¢ dt dr,  (B.28)
where
o(t,7:2,¢) = (1,2) — (£,¢). (B.29)

Here o is the symplectic form regarded as a quadratic form on W @ W, and notice that the
Jacobian after the change of variables is 22"

For f € #(R?), it follows from the Fourier inversion formula if f(z,y) = g(x)h(y) that

//fxy )eX Y da dy = (4)~ //fgn —in/2 g dn. (B.30)

Using that, we can write a(x, &) given above in the following form

a(x,&) = exp(io(Dy, De; Dy, Dy)/2)aq (2, §)az(y, 1) 2,6)=(y.m)- (B.31)

We want to study a when a; and as belong to suitable symbol classes. Hence, we will encounter

quadratic forms in W @& W of the form
G(t1,t2) = g1(t1) + g2(12),

~

where g; and gy are quadratic forms in W. If (z,&,y,n) € W @& W and (z,&,9,7n) are the dual

variables, let
If we write (z,£) = w and (£, —#) = w’ € W then

Let

g5 (w) = sup|o(w, w')|*/g;(w'). (B.32)
Then, we get that

G (wr,ws) = g7 (w2) + g5 (wn).

Definition B.12. The metric g in W =V & V' is called o temperate if it is slowly varying
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and there exist constants C' and N such that for all w,w’ € W
9 (1) < Cgu(t)(1 + g7, (w1 — w))™ (B.33)
is valid. A positive function 9 in W is called o, g temperate if 9 is g continuous and there exist
constants C' and N such that for all w,w’ € W we have
I(wr) < CHw)(1+ g5, (w—w))N, w,w € W. (B.34)
Remark that (B.33)) is equivalent to
go(t) < Cgi, (1)1 + g7, (wi — w))™. (B.35)
Using (B.35) we get 1/4 is o, g temperate if 9 is o, g temperate.
Proposition B.13. If g is a o temperate and 91, V5 are o, g temperate in W =V & V' then
the metric G = g1 ® g2 in W & W, where g1 = g2 = g, and the weight function 9 = ¢ ® V5 are
uniformly A temperate and A, G temperate with respect to the diagonal. If h(w)? = sup g.,/g2
then sup Gw/Gi = h(w)? also.
Now, we consider the general case where g; and g are different.
Proposition B.14. Let g, and go be o temperate in W. Then G = g1 @ g9 is uniformly A
temperate with respect to the diagonal in W & W if and only if

gifw < Cgirwl (t)(]' + ggw(wl - w>>N7 lLw,w; € W7

(B.36)
ggw < ngwg (t)(l + gf’w<w2 - w>>N7 t? w,wy € W.
The metric g = (g1 + g2)/2 is then o temperate in W. If we set
hi(w)? = sup giuw/gh: H(w)? =sup giuw/95, = Sup Gouw/97,
then
max(hi(w)?, ho(w)?, H(w)?) < 4sup gu/95 < hi(w)? + ho(w)? + 2H (w)?. (B.37)

If9; is 0, g; temperate then ¥ = 9, @10y is uniformly A, G' temperate with respect to the diagonal
m W & W if and only if
I1(wy) < CY1(w)(1 + g5, (w —w))N; w,wy € W;
? (B.38)
Do(wy) < CPg(w)(1 4 g3, (w — w))N; w,wy € W.
These conditions are equivalent to U; being o, g temperate.

The following theorem is tha main theorem of the Weyl calculus.

Theorem B.15. Let g be a o temperate Riemannian metric in W =V & V' with g < g%, and
let ¥y, 99 be 0,g temperate weight functions in W. Then the composition formula (B3I)) can
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be extended to a weakly continuous bilinear map (a1, as) — a = a1#as from S(Yy, g) x S(Vs, 9)

to 5(191’192,9) [f

h2 (.CE, 5) ‘= sup gm,&/gg,@ (B39)

then the map from a; € S(V1,g) and ay € S(V9, g) to the remainder term

a#az(r,€) = Y _(i0(Da, D; Dy, Dy) /2 ay (z, §)az(x, €) /5! (B.40)

J<N
evaluated for (x,€) = (y,n) is continuous with values in S(h™N9194, g) for every integer N. It
15 zero if a; or as s a polynomial of degree less than N.
The terms with j even (resp. odd) are symmetric (resp. skew symmetric) in a1, as. This
implies

a1 #ay — asftay — {ay, ax}/i € S(h*9194, g),

al#ag + ag#al — 2&1@2 € S(hQﬂl"ﬁg, g)

We have the following more general result:
Theorem B.16. Let g, and go be o temperate metrices in W =V & V' satisfying
¢, ) < Cql, (1 + gaw(wy —w))Y, t,w,w €W
' o (B.41)
ggw<t> < ngwg(]' + glw(wl - w))Nv l,w,w; € VV,

and assume that

H(%, 5)2 = sup glm,é/ggx,ﬁ = sup g2x,5/gip,§ <L (B42)

Let g = (g1 + g2)/2, and let 9; be g; continuous o, g temperate weight functions for j = {1,2}.
Then the composition formula (B31) can be extended to a weakly continuous bilinear map
(a1,az) = a = ayFtas from S(V1, g1) x S(¥2,g2) to S(V192,g). The map to the N remainder

term is continuous with values in S(HN9194, g) for every integer N.

Note that the error terms in the calculus improve by powers of H which may be smaller than

h defined (B.39).

Proposition B.17. Assume that g is o temperate, that G =Yg, where the function 9 > 1, is
slowly varying, and that G < G°. Then we get that G is o temperate.

The following proposition simplifies the condition in Theorem [B.16] for conformal metrics:

Proposition B.18. Assume that g, and go are conformal (that is, we have g = Vg1 for some

function ) o temperate metrics with h;(w)* = sup gjuw/g5, < 1 for j = {1,2}. Then (B.4I)) is
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valid and the function H in (B.42)) is (hihy)'/?.

Now, we want to show the invariance of the Weyl calculus under affine symplectic transfor-
mations y, that is, affine maps y in W with y*o = ¢. Having this invariance we may assume
V =R".

Lemma B.19. Fvery affine symplectic map is a composition of maps of the following types:

a) The translation x — x + xq in V.

)
b) The translation & — & + & in V.
)

(
(
(¢) The map x(x,€) replacing x;, & by &;, —x;, leaving the other coordinates unchanged.
(d) The map x(z,€&) = (Tx, 'T~1E) where T is a linear bijection in R™.

(e) The map x(z,§) = (x,& — Ax) where A is a symmetric matriz.

Theorem B.20. for every affine symplectic transformation x in W =V @V’ there is a unitary
transformation U in L*(V), uniquely determined apart from a constant factor of modulus 1,
such that for all linear forms L in W we have
U™ 'L(x,D)U = (Lo x)(z, D). (B.43)
U is also an automorphism of . and of %', and
U~ 'a"(x, D)U = (aox)"“(z, D) (B.44)
for every a € ' (W).
Notice that we have L(z, D) = L*(x, D) = L(x, D) when L is linear.
If a € (W), we have its kernel K € . is
K(z,y) = (2m)" [ ¢ 09a(a.g) e (B.45)
then we can write a(x, D) = b*(x, D) where b € (W) is given by (B.24), and b(z,§) =
etPePe)/2iq (. €). Moreover, if &(x, D) is defined by (B.20) then we have a(z, D) = &(x, D) if
a(x, &) = e"P=Pelc(x, €). Because of continuity these observations remain true if a, b, ¢ € .7”.
The following theorem shows under which conditions we have a(z, D) = b*(z, D) = é(x, D)
if a,b,c € S(9,g).
Theorem B.21. Let g be o temperate, g < g%, and let ¥ be o,g temperate. If g, ¢(t,7) =

Gze(t,—T) then exp(ikD,, D¢) is a weakly continuous isomorphism of S(¥, g) for every xk € R,

ePeDe) g (g €) — Z<il€Dz, De)a(x,€)/j! € S(hY9, g) (B.46)

j<N
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for every integer N if h is defined by (B.39). If a,b,c € S(¥,g) then a(x, D) = b“(x, D) =
é(x, D) if and only if
b(x,€) = e PP 2a(z, €) = PP (2, ),
a(z, &) = el P=P/2p (g €) = HP=Del (g €), (B.47)
ofx,6) = e PoPa(z, €) = 7P (g, €).
If .¢(0,7) < |7|?, then the bilinear maps (a,u) — a(z, D)u, (b,u) — b“(x, D)u, and (c,u) —
é(x, D)u are continuous from S(¥,g) x & to % and from S(9,g) x /" to ./".
Under the assumptions given in the above theorem, we have if a; € S(9;,¢g) for j = {1,2}
and u € . that
al’(z, D)ay (x, D)u = (a1#a2)*(x, D)u. (B.48)

Also, if a(x, D) is a pseudodifferential operator with polyhomogeneous symbol

a(x,f) ~ a’m(x7€> + amfl@ja é) + o (B49>

where a; is homogeneous in £ of degree j. Then by using Theorem [B.21], we can write a(x, D) =
b (x, D) where b(z,§) ~ > by—j(x,&). Then,

bin(2,8) = am(2,8), bm-1(2,§) = am-1(x,§) +iz GQQM(% §)/0x;0¢;/2, (B.50)

where b, is the subprincipal symbol.

B.3 Estimates of pseudodifferential operators

Theorem B.22. [f g is o temperate, and ¥ is o, g temperate then a*(x, D) is continuous map
from .7 to . and from ' to ', and it is weakly continuous as a function of a.

The following theorem shows the L? continuity:
Theorem B.23. If g < ¢7, g is o temperate, and vV is o,g temperate, then the operator
a¥(x, D) is L* continuous for every a € S(9,g) if and only if 9 is bounded. The L? norm of
a“(x, D) is then a continuous seminorm in S(1J, g).
Theorem B.24. If g < ¢7, g is o temperate, and ¥ s 0,9 temperate, then the operators
a(x, D) with a € S(9,g) are all compact in L? if and only if 9 — 0 at co.

Above we have considered scalar pesudodifferential operators, but the calculus developed in
Section [B.2] is not changed if the functions u take their values in a Banach space B; and the

symbol a takes its values in £ (B, By), so that a*(x, D)u takes its values in By. However, for

88



B.3 Estimates of pseudodifferential operators

the L? estimates we need Hilbert spaces. Hence, for theorems [B.23] and [B.24] we need B; and

Bs to be Hilbert spaces, and in the second case we need it also to be finite dimensional.

Theorem B.25. If g is o temperate,

h?(2,€) = sup gae/gae < 1, (B.51)
and 0 < a € S(1/h,g), then
(a*(z, D)u,u) > —Cllul|?, ueS, (B.52)

with scalar product and norm in L*(R™).

We have the following stronger Fefferman-Phong inequality :
Theorem B.26. If g is o temperate, and (B.E1) is satisfied, then (B52) is valid for every
a € S(1/h? g) with a > 0.

Considering the metric (B.4]) we get the following result:
Corollary B.27. If0 < a € Si(f*‘s)(R" X R™) and 0 < 6 < p <1 then a*(x, D) is bounded
from below, and so a(x.D) + a(x, D)*.

Note that Theorem [B.25] remains valid in the vector valued case.

Theorem B.28. Let g be a o temperate metric and assume that (B.21) holds. If a € S(1/h,g)

takes non-negative values in £ (H, H) where H is a Hilbert space, then we have

(a“(z, D)u,u) > —C|lu|?, ue L R" H). (B.53)
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C Generalization of the spaces H'"»*®

The spaces H™* introduced in Chapter [, see (3.46) is a particular case of the spaces B,
introduced by Hormander; check [H605|, where p = 2 and k(7,&) = (7,£)" (7, 9)® with ¥ given

by (832)). Although in our work we just deal with the case p = 2, in this appendix we will give

the definition of these spaces with general p, and state some of their properties. Also, we will

give some properties for the localization of these spaces.

C.1 The spaces B,

Definition C.1. A positive function k defined in R" is said to be a temperate weight function

if there exist positive constants C' and N such that
k(E+n) < (1L+ClENYk(n), &neR™
The set of all such functions £ will be denoted by 7 .
For k € 2 we write

Mi(§) = Sup k(& +n)/k(n).

Hence, M, is the smallest function such that

k(€ +m) < Mi(€)k(n).
M, is submultiplicative, that is
Mi(§ +n) < My (§) My (n),
and since M (&) < (1+ C|¢|)N we get that My, € .

Example C.2. Let P be a polynomial of degree m, and define the function P as

P(&)? =Y _|0"P()I*

| >0

(C.1)

91



C Generalization of the spaces H™*

This function is in £, since using Taylor’s formula we have
P(&+m) < (1+Cle))™P(n), (C.6)

where C' is a constant depending only on m and the dimension n.

Theorem C.3. If ki and ko belong to &, it follows that ki + ko, kiks, sup(ki,ks), and
inf(ky, ko) are also in . If k € & then k* € A for every real s. Moreover, if u is a

positive measure we have either uxk =o0o or uxk € .

Theorem C.4. If k € & we can for every d > 0 find a function K5 € 2 and a constant Cs
such that

1 < ks(§)/R(E) < C5, R, (C.7)

My, (§) < (1+ClEh™, ¢ eR”, (C.8)

where C' and N are independent of §, and My, tends to 1 uniformly on compact subsets of R"

when § tends to 0.

Now, we give the definition of the spaces B, j.
Definition C.5. If £ € J# and 1 < p < oo, we denote by B, the set of all distributions

u € . such that 4 is a function and

Jullox = ((2m) [IREa(EP de) < o0, (©9)
When p = oo, we interpret ||u||,x as ess.sup |k(&)a(E)].
Theorem C.6. B, is a Banach space with the norm (C.9). We have

& C By C.S. (C.10)

in the topological sense, that is, the topology in .7 is stronger than that induced there by By,
and the topology in B, is stronger than the one induced by .#'. Also, we have C3° is dense in
B, k.

Theorem C.7. If ky, ko € & and

ka(€) < Cki(§), €€ R, (C.11)

then we have By, C By y,. Conversely, if there exists non-empty open set X such that By, N
E'(X) C By, then (C.11)) is valid.
Corollary C.8. If ki, ko € &, then we have

prkl N Bp,kQ = Dyp ki+ko> (C12)
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and for u € By, N By, we have
]Hi%}é ”u”pJCj < ||u||p7k1+1€2 < ”uHPJﬁ + HUHPJQ' (013)
Now, we state when the inclusion mapping in Theorem is compact.
Theorem C.9. If K is a compact set in R™, the inclusion mapping of By, NE'(K) into By,
18 compact if

k2(€)/k1(§) = 0, as £ — oo. (C.14)

Conversely, if the mapping is compact for one set K with interior points, then (C14) is valid.
Now, we will show how differential operators with constant coefficients act in the spaces B, .
Theorem C.10. Ifu € By, then P(D)u € B, 5, with P is giwen by (C5).

Theorem C.11. Ifu; € By, NE" and us € B iy, then uy *x us € By jk,, and we have that

[[ur * valp ks < [t ]lps [[U2]loo.k, (C.15)

Theorem C.12. If k € JZ, and j is a non-negative integer such that
L+ [y /R e L, 1/p+ 1/ =1, (C.16)
then B, C CI. Conversely, if B, NE'(X) C C? for some non-empty open set X, then (CI6)

18 valid.

In the follwoing theorem, we determine the dual space of B, ;, when p < oo. Since S is dense
in B, if p < 0o (Theorem [C.6)), a continuous linear form on B,y is uniquely determined in

that case by its restriction to S.
Theorem C.13. If L is a continuous linear map on By, p < 0o, we have for some v € By 1y,
1/p+1/p=1,
L(u) =o(u), uesS.
The norm of this linear form is ||v||p/71/k. Thus, By 1, s the dual space of By and the canonical

bilinear form in By X By 1 /i is the continuous extension of the bilinear form v(u); v € By 1/,

u € S. Here v is the composition of v with x — —x.

Theorem C.14. Ifu € B, and ¢ € 7, then we get that pu € B, and

[fullps < [dllazllullp- (C.17)

The following theorem shows how to approxiamte by elements with compact support.

Theorem C.15. Let ¢ € C3° and assume that 1(0) = 1. Set ¢°(x) = ¢(ex). If u € B,y and
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p < oo, then we have that Y*u — w in B, when € — 0.
We can also approximate by the usual regularization:

Theorem C.16. Let ¢ € C3° such that [ ¢ dz = 1. Set ¢.(x) = e "¢(x/e). Ifu € B,y and

p < 0o, then the regularization u * ¢, converge to u in By when € — 0.

C.2 Localization of the spaces B,

Definition C.17. A linear subspace F of D'(X) is called semi-local if pu € F when u € F
and ¢ € C°(X). It is called local if, in addition, F contains every distribution u such that
pu € F for every ¢ € C3°.

From Theorem [C.14] we get that the set of restrictions to X of distributions in B,y is

semi-local.

Theorem C.18. If F is semi-local, the smallest local space containing F is the space
Foo = {u; u € D(X), ¢u€ F for every ¢ € Cg°(X)}.

Theorem C.19. Let F be a local subspace of D'(X). If u € D'(X) and to every point zo € X
there ezists a function ¢ € C°(X) such that pu € F and ¢(xq) # 0, it follows that u € F.
We denote by F€ the set of distributions in F with compact support in X. If F is semi-local,

we have
Fe=Florng(X), Floo=(F)ee (C.18)

Most of the results for the spaces B, stated in the previous section carry over immediately to
the local spaces B;‘?,‘;(X ) corresponding to the set of restrictions to X of distributions in B,
(or, equivalently, corresponding to B, N E'(X)).

Theorem C.20. We have B)%, (X) C B (X) if and only if (CII)) is valid.

Theorem C.21. If u € B (X), then P(D)u € BIIJ?;/]S(X).

Theorem C.22. Ifu € B (X) and ¢ € C*(X) then ¢u € BYR(X).

Theorem C.23. If u; € By, (R") NE'(R™) and uy € B, (R"), then uy  uy € By 1, (R™).
From Theorem [C.12] we obtain:

Theorem C.24. We have BII,?,‘;(X) C C/(X) for j is a non-negative integer if and only if (C.10])

15 valid.

Theorem leads to the following:

94



C.2 Localization of the spaces B, j

Theorem C.25. le,‘fg(X) is a Fréchet space with the topology defined by the semi-norms u —
lpullprs @ € C3°(X), and we have

C™(X) C BYi(X) € D(X) (C.19)
for some j in the topological sense. D (X) is the set of distributions of order < j.
Ifk, e Kand 1 <p, < oo, u=1,2,.... Consider the space [ B;)szu (X) with the topology

which is the least upper bound of the topologies in the spaces B;ifku (X), that is, defined by

the semi-norms

u = [|pul

pukss @ECT(X), p=1,2,..
This is a Fréchet space. Note that Theorem gives that
C™(X) = [ Bper, (X) i k(&) = (1+ €)™ (C.20)
1

Now, we extend Theorem [C.9]
Theorem C.26. Every bounded set in B¢ (X) is precompact in B¢ (X) if and only if (C.14)

pzkl pka
holds.
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D Background material

In the appendix, we will state some theorems and lemmas needed in proving results in chapter
Bl In the first section, we will state a generalization of the Malgrange preparation theorem, and

in the second section, we state some calculus lemmas.

D.1 Generalization of the Malgrange preparation theorem

For the proofs of the lemmas introduced in the section check the appendix in |[Den92).

Theorem D.1. Let F(t,z) be a C*> function of (t,x) in a neighborhood of the origin in R x R™
with values in £ (C™,C"), satisfying

F(0,0) =0, det(9,F(0,0)) # 0. (D.1)
Then we may factorize
F(t,z) =C(t,z)(tIdy +B(x)) (D.2)

near the origin, where C' and B are C* functions with values in £ (C",C"). We also get
det(C(0,0)) # 0 and B(0) = 0. If F is real (matriz) valued, we may choose C and B real

(matriz) valued.

Theorem D.2. Let F(t,x) satisfy the hypothesis in Theorem [DIl. If G(t,z) is C*® function

in a neighborhood of the origin in R x R™ with values in £ (C™,C"), then we can write
Gt 2) = Q(t, ) F(t,z) + R(z) (D.3)

near the origin, with C* functions @ and R.
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D.2 Some calculus lemmas

In the appendix in [Den89|, Dencker proved some calculus lemmas while considering the
weight and the metric given by ([B.32), and ([B33]) respectively. We will follow his steps to
prove similar calculus lemmas while using the weight and metric given by (3.95]), and (3.96])
respectively.

We are going to study the composition of conormal distributions having nonstandard sym-

bols. Let a,(z, D) € D'(R™ x R") be given by

oo Dyula) = (20) [ e e, gty dy, (D.4)
u € C°(R™), where a € S(9*,g), o(z,n) € C®°(T*R™\ 0) is homogeneous of degree 1 in the

n variables and satisfies (3127]). Here ¢, and g are defined by (8.95]), and (3.96]) respectively.
The composition with p(x, D) given by

p(x, D)a,(z, D)ulz) = (21) " / / (=) () aly, m)ulz)dzdndyde

(D.5)
= b‘/’(xv D)u(.ﬁlﬁ),
if p, a € §, where
b(w,n) = (27T)_”/e‘iEp(xaf)a(y,n)dydé (D.6)
and E = (y —z,§ —n) —(y,n) + ¢(z,n) = (y — z,0 —n), if we put
1
0=¢~ [ dupla+ sty — ), mds (D7)
0
Now, x : (z,&y,m) = (x,0;y,n) is a diffcomorphism. Thus, if we let
f(@,0;y,m) = p(x, §)aly, n),
we obtain
b(w,n) = e“Dy’D9>f(rc,9;y,77)>|g§g (D.8)
since
‘d<y,§)‘ 1
d(y,0)

This can be extended to general symbols by the following

Lemma D.3. Assume p(z,n) € C*°(T*R"\0) is homogeneous of degree 1 in the n variables and
satisfies BI2T). If a € S(V*, g), k € Z, has support in a sufficiently small conical neighborhood
of {n' =0} and p € S(V, g), then the composition is given by (D.5) where b € S(9*1, g) satisfies
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(D.8), and has expansion

b(x,n) = » (i{De, Dy — (39/51/)D5>)jp($,f)a(y,n)/ﬂ!g:w (D.9)

r =n+dgp(z,n)

=

Il
=)

modulo S(9*ThYN, g), with 0 given by (D), and h? = (¢')72.

Proof. If ¢ = 0 then (D.8)-(D.9) follows from the Weyl calculus, since g(t,—7) = g(t,7) (see
Theorems [B.I5 and [B2T. We have p(z,¢)a(y,n) € S(M,G) where M(&,n) = 9(£)9%(n) is a
weight for G = g, ¢(dx, d€) + g,,(dy,dn). Hence, if we prove that x*S(M,G) = S(M,G), we
get (D.9), since d:x = (0,1d;0,0) and d,x = (0,06/0y;1d,0). We only have to consider the

case when
0 —nl <e, (D.10)

since otherwise we may integrate by parts with respect to y in (D.6) to obtain b € S~°°. ([B.127))
gives |0 — &| < p|n'|, when 7 is in a small conical neighborhood of {r/ = 0}, with p is some

constant. We have
(O) <1+10" =N+ (€] <€) + pe(t), (D.11)
so, for p small we get (0") < (£’). Also, we have
() <1+ =0+ 10| <14 pln/| + 10" <(0) +cplf), (D.12)
so, for p small we have (¢) < ¢(¢'). Hence, we get x*M =~ M for n in a small conical
neighborhood of {7’ = 0}. As we have 96/0n” = O(|n/|), 90/0n = O(1), and 00/0x = O(|/),

we get x*G =~ G in a small conical neighborhood of {n’ = 0}. Thus by Lemma 8.2 in [H579|,
we obtain x*S(M, G) = S(M, G) if

k
Gy (P (w3 1, oo 1)) < Cr T Gy (¥ (w0, 1)) (D.13)

i=1

for k > 1, where x* is the kth differential. This means that

10507020 (2, y,m)| < Cagy ()~ (') V7]

v & (D.14)
105 07020" (, y, M| < Caa ()17 ()17,

for |a] + |8] + |y] > 1, with € given by (D.7). Since 6 is homogeneous of degree 1, the second

inequality follows easily by using ()~ < (/). Similarly, we get the first when |3’| > 0, and

otherwise

|a;85// 3]9/(137 Y, 77)‘ < Caﬂ"vhlll <77>_‘ﬂ“|’

99



D Background material

according to (B127), which proves (D.14) and the lemma. O

Now, let S7; 4 be the symbol defined by ([.139)), and dy = codim 5. For a € S}, we define
a(x,D") € D'(R™ x R™) by
a(z, D")u(z) = (2r)%~" // = oz 0" uly)dydn’”, (D.15)
u € Cg°(R™). If p, a € S, then the composition is given by
ple, D)a(z, D"Yulz) = (2m)~>" / [t aly, o ) sy
= b(x, D" )u(

(D.16)

where
b2 = 2 [ / =0 (5. Ealy, 2 )dyde

(D.17)

For more general symbols we obtain the following lemma.
Lemma D.4. If p € S(¥,9) and a € Sy, then the composition is given by (D.I6) where
b€ Sy, satisfies (D.IT) and

bz, 1) = ez‘(Dy/,D@p(I,5/’7]//)@(3/7 2 2 ") e—o + Ra, (D.18)

ylle

where R : 5744 — ng’lo s continuous. Also, b and Ra are determined modulo S™° by the

restriction of a to {|y — x| < e}, and p to {|€ — (0,7")] < e(n”)}, Ve > 0.

Proof. Let

Gy = da|* + [dE'|/(€)? + |d€" 2 /(€)* + |dy[* + |d='|* + |dn”"*/ (n")?,
and A(x, &, y,2,1n") = (y,£). Then the dual metric is given by

Gl (0., dy, 0) = € + |dy'[*(€)* + |dy"*(€)?, (D.19)

(z,6,y,2",m

and equal to +oo otherwise. We have p(x,&)a(y, 2/,n") € S(M, G) where M (&, 1) = 9(§)(n")".
In the following we will suppress the z’ variables, which are not important.

G is slowly varying, G < G4 at A = {¢ = (0,7"),y = 2} and G is A temperate with respect
to A, that is

G(w‘&yn” < CGW 0,7"),2,m") (1 + G x&yn”)(ouf - (07 T]//)7 Yy—x, 0))N
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This follows since

1) + ") /(&) < CA+1E" = ")),

and similarly M is A, G temperate with respect to A, since

M(&,n") /M ((0,97),7") = (£)

and we can easily check that

M(£7 n//)/M«O? 77//)7 7]//) < C<1 + Gé,ﬁ,y,n”)(()?g - <07 n//>7 y—-z, O)) (D20)

By Theorem [B.I0, we obtain that b € S satisfies (D.I17).
In order to prove (D.18)), we observe that

i(Dy,D¢) i(Dy/,D£/> i(Dy//,Dg//>

€ =€ oce .

If A (z,&,y,n") = (y',£") we obtain
GA'(0,d¢",0,dy",0) = GA(0,d¢", 0,dy", 0),
and equal to +o00 otherwise. We have G < (") 2G4 at A" = {¢" =",y = 2"}, and G is A”
temperate with respect A”, since
L+ [+ ")/ (&) < CA+ 1" —n")).
Similarly, M is A”, G temperate with respect to A”, so Theorem [B.11] gives
c= €i<Dy”’D§“>p($, é)(b(gj, nll)’A” c S(M, é)’
where G, M are the restrictions of G, M to A”. Here ¢ = p(z,&)a(y,n")|a», modulo S(M;, G)
where M; = M (")~
If Az, & y,n") = (¥, £), we get
G (0,de' dy',0) = GA(0,d¢', dy', 0)|ar,
and equal to +o0o otherwise. Then G < G4 at A’ = {¢’ = 0,9/ = 2/} in A”, and G is clearly
A’ temperate with respect to A’, since it is the restriction of an A temperate metric. Similarly,

M is A', G temperate with respect to A’, since it is restriction of an A, G temperate weight.

As before, we obtain that
b(l’,T]”) _ €i<Dy/’D§/>C($,§/,y/,n//>|A/ e ST,O,O

satisfies (D.18)), since

Glar = Gla = |da'[? + |da"|” + |d2'* + "2/ ("),
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Outside the support of the integrand in (D.I7), the symbol decays as any power of the G4

distance to the support (see |[Ho07, section 18.4]). Therefore, the last statement follows from

the fact that
GA(y - maf - (0777//)) Z ‘y - x‘Q + |£ - (0777/I>’27

at ('x? (O’ n/,)’ x? 77//)' D
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