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Chapter 1

Introduction

Up to 17 million people worldwide die from cardiovascular disease (CVD) each year,
accounting for approximately 31% of global deaths [87]. Research on the mecha-
nisms of CVD as well as new treatments involves many disciplines such as physics,
medicine, biology, and computer. In this dissertation, I focus on arterial hemody-
namics using aortic flow as an example. New strategies combining fluid physics,
medical imaging, computer science and neural network (NN) are proposed, to im-
prove our understanding of hemodynamics and guide personalized stenting in aor-
tic coarctation.

In this introductory chapter, I firstly present an overview of hemodynamics (Sec-
tion 1.1), and then summarize its corresponding methodologies (Section 1.2). Section
1.3 describes the arterial hemodynamics related diseases and provides a literature
review over the state-of-the art. Finally, Section 1.4 gives the structure of this work.

1.1 Hemodynamics

The cardiovascular system, consisting of the arteries, veins, heart, capillaries and
flowing blood, is shown in Figure 1.1. It is considered to be a closed circulatory
vascular system, hence the name circulatory system. The cardiovascular system
supplies oxygen, hormones, and nutrients to the body’s organs and tissues through
blood flow, and transports waste products from tissue metabolism to the excretory
organs. This circulatory system is the basis for the body’s environmental homeosta-
sis, metabolism and maintenance of normal life activities [110]. In recent years, CVD,
including heart disease and vascular disease, are threatening human health and have
become the leading cause of human death worldwide [106, 84]. Thus, the study of
CVD has attracted increasing attention [130, 77]. The three-dimensional and multi-
scale nature of the structure of the cardiovascular system, and blood flow therein, are
very complex. Blood flow in the body is usually laminar. However, in some cases,
such as narrow vessels or ventricular chambers with complex shapes that result in
a relatively low critical Reynolds number (Re), blood flow may undergo transition
from laminar to turbulent or even become fully turbulent.

Hemodynamics refers to the dynamics of blood flow. It is the study of the causes,
conditions, states and various influences of blood flow in the circulatory system
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FIGURE 1.1: A sketch of the human circulatory system.

based on fluid mechanics. It is very useful in understanding blood flow patterns,
their physiological significance and the relation to diseases [92, 114]. The circulatory
system has many characteristics compared to other general hydrodynamic systems.
First, the heart is a complex "pump" controlled by the neurohumoral system, which
periodically pumps blood into arteries and then delivers it to various organs of the
body through flexible tubes with many branches. Secondly, blood is a suspension
containing a large number of blood cells, and in most arteries it exhibits the char-
acteristics of a non-Newtonian viscous fluid. From a fluid dynamics perspective,
hemodynamics is the study of the flow parameters (flow rate, velocity, pressure,
pattern, viscosity, etc.) of the human circulatory system under physiological and
pathological conditions [133]. Hemodynamics can be specifically divided into arte-
rial system hemodynamics, cardiac hemodynamics, venous system hemodynamics,
and microcirculatory hemodynamics.

1.2 Methodologies

Traditional quantitative methods for measuring hemodynamics include two main
categories: experimental measurements and numerical modeling. In recent years,
due to the development of modern computers, Machine Learning (ML) has been
used as a third category by some researchers. Here, I provide a brief introduction to



1.2. Methodologies 3

these methods. More details, especially their physical and mathematical basis, can
be found in Chapter 2.

• Experimental Measurements

In addition to invasive measurement methods, such as measuring pulse pres-
sure in the artery by inserting a cannula or catheter, here I focus on non-
invasive measurement methods using medical imaging techniques, especially
magnetic resonance imaging (MRI).

Several non-invasive methods have been used to provide reliable structural
information of cardiovascular system and blood flow therein. They are ultra-
sound (US), computed tomography (CT), MRI and digital subtraction imaging
(DSA). Therein, MRI is one of the safe, fast and accurate clinical diagnostic
methods. The biggest advantage of MRI over regular X-rays or CT is that it
does not cause any harm to the human body. As a result, MRI is now widely
used for diagnosis, therapeutic process monitoring and biomedical research
[65, 73].

In terms of blood flow measurements, on the one hand, the observation of in
vitro flow characteristics using particle imaging velocimetry (PIV) can be ap-
plied in experiments with realistic structural models of normal and diseased
blood vessels obtained by three-dimensional printing of vascular models [54,
100, 9]. On the other hand, quantitative measurements of blood flow can also
be performed by MRI, in addition to obtaining anatomical information. Phase
contrast MRI (PC MRI) measures blood flow using the phase changes pro-
duced by blood flow and is widely used in the study of cardiovascular dis-
eases [71, 118]. By using some post-processing techniques, blood flow can be
visualized locally and globally. In addition, some other hydrodynamic metrics
such as velocity, pressure drop, wall shear stress (WSS) and energy loss can be
calculated from the blood flow data. This can be of great value for physicians
to guide the treatment of some cardiovascular diseases [33, 97]. However, flow
MRI still has some limitations, generally caused by experimental techniques
and post-processing tools. For example, the images contain acquisition noise
and limited spatio-temporal resolution, which will affect the accuracy of quan-
titative blood flow analysis. In particular, the errors occurring near the blood-
vessel boundary can bias the calculation of WSS, which is determined by the
velocity gradient near the vessel wall. In addition, the timing of the measure-
ments still needs to be optimized [26, 135, 105].

• Numerical Modeling

With the rapid development of high performance computers, numerical mod-
eling, especially computational fluid dynamics (CFD) has been widely adopted
in the study of hemodynamics.
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In CFD, the governing equations of blood flow are solved numerically, with
realistic geometric boundaries based on medical images [86, 112, 111]. As CFD
can provide high fidelity flow information, it has been adopted for hemo-
dynamic studies. However, the accuracy of numerical results obtained by
CFD depends on many factors, such as geometry, model pre-processing, mesh
generation, numerical methods, boundary conditions, turbulence models, and
post-processing of simulation results. In general, CFD for hemodynamics is
time consuming and requires specialized knowledge. On the other hand, CFD-
based hemodynamic studies sometimes use flow information obtained by MRI
as boundary conditions. Therefore, the accuracy of flow MRI data is also a de-
cisive condition for the numerical solution of blood flow.

• Machine Learning

In recent years, ML has been considered as a new avenue for hemodynamic
studies. For example, it can provide accurate physical models for CFD and
evaluate automatically arterial hemodynamic characteristics. NN-based med-
ical image segmentation and automatic generation of high-quality computa-
tional meshes have addressed the drawbacks of traditional CFD simulation in
terms of difficult and time-consuming pre-processing [67, 126, 48, 143]. Using
CFD results as training data, the trained NN can accomplish rapid estimation
of the flow distribution and the pressure in the thoracic aorta [66].

However, due to the complexity of the circulatory system structure and the
uncertainty of the blood flow conditions, to build data-driven NN is challeng-
ing in personalized medicine, especially when the training samples are lim-
ited. Alternatively, Raissi et al. [102] proposed physics-informed NN (PINN).
It solves flow problems within a NN framework by approximating reference
training data and satisfying the basic flow governing equations. Compared to
CFD, PINN does not require precise boundary conditions or even exact geom-
etry, thus shows flexibility in hemodynamic studies. Some researchers have ex-
tended and refined PINN, making it capable of handling more complex flows.
For example, Xu et al. [142] extended PINN for turbulent flow by introducing
an artificial viscosity in the parameterized governing equations and demon-
strated the capability of PINN in data assimilation. PINN is gradually be-
ing used in conjunction with traditional techniques for hemodynamic studies.
Raissi et al. [61] used flow MRI data for arterial blood pressure prediction with
PINN. In addition, the correlation between blood flow velocity, pressure and
vessel cross-sectional area is illustrated in a one-dimensional model. Gao et
al. [37] predicted two-dimensional blood flow and further verified that PINN
can effectively improve image quality by comparing the velocity magnitude
obtained from CFD.

On the one hand, these three categories of methods can be validated against each
other to demonstrate their validity. On the other hand, based on the strengths and
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weaknesses of these methods, they can be coupled and used simultaneously for
hemodynamic studies. This is the main idea of this dissertation.

1.3 Arterial System Hemodynamics

This subsection provides a review of arterial hemodynamic studies using the meth-
ods mentioned above.

In the cardiovascular system, lesions of the arterial system often occur in the cere-
bral arteries, the heart, the left coronary artery and various parts of the aorta (such as
the bifurcation, the ascending and descending segments of the aorta). Common arte-
rial system hemodynamic disorders include atherosclerosis, aneurysms, and steno-
sis. The suggested treatments for arterial system include stenting and bypass graft
surgery [120, 39]. In recent years, hemodynamic studies in normal and pathologi-
cal states, using experimental measurement, CFD modeling and NN, have become
a focus of interest.

Atherosclerosis (AS) is a disease in which "yellow atheromatous" lipids are de-
posited in the inner walls of the arteries, causing damage to the vessel walls and nar-
rowing of the arteries. By determining the relationship between plaque formation
and progression in atherosclerosis, a deeper understanding of the psychophysiology
of coronary artery disease has been achieved, offering the opportunity for highly se-
lective preemptive interventions in the future [20, 19, 132]. Stone et al. obtained the
flow field by solving the basic equations of fluid dynamics in arterial anatomy re-
constructed from images obtained by US and angiography. By assessing endothelial
shear stress (ESS), progressive atherosclerosis and outward remodeling were found
in areas of low ESS, and outward remodeling occurred in areas of increased ESS
[123]. Strecker et al. investigated the relationship between carotid geometric param-
eters and WSS in patients at high risk for cardiovascular disease. In vivo evaluation
of three-dimensional fluid structures obtained at the carotid bifurcation by flow MRI
revealed that the geometric parameters of the carotid bifurcation can effectively help
physicians diagnose carotid plaque production in patients [124]. Ziegler et al. inves-
tigated MRI data from patients with atherosclerosis at the carotid bifurcation and
studied the relationship between WSS, turbulent kinetic energy (TKE) near the ves-
sel wall, and vessel geometry. It was concluded that there was a strong correlation
between WSS and TKE, while the diameter and bifurcation angle of the vessel had
little effect on TKE [145].

An aneurysm is an enlargement of the arterial wall due to a lesion or injury to
the arterial wall. It is an arterial lesion that occurs anywhere in the arterial sys-
tem, such as the cerebral arteries, the main arteries of the limbs, the aorta, and the
carotid arteries, and is characterized by a swollen, pulsating mass [130, 18, 52, 29,
89]. Basombrio et al. proposed that the non-Newtonian properties of blood plaid
a very critical role in accomplishing the modeling of aneurysms, especially in the
slower velocity region. And, several non-Newtonian models have been proposed
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and widely used in the simulation of cerebral aneurysm blood flow [10]. Cebral et
al. qualitatively investigated the correlation of complex flow patterns in cerebral
aneurysms with prior aneurysm rupture by using qualitative analysis within cere-
bral aneurysms obtained from images [18]. Nixon et al. showed through computer
simulations that abnormal levels of WSS contributed to the formation and devel-
opment of intracranial aneurysms. In addition, disturbed blood flow and low WSS
have been found to make patients more susceptible to extracranial atherosclerosis,
such as carotid artery disease [77]. Meng et al. surgically created new branches in the
carotid vessels of dogs. In vivo angiography and CFD simulations were performed
to observe blood flow at the point of bifurcation. Proliferative and destructive re-
modeling was observed, and flow regions with high gradients of WSS and high
WSS were found to be high risk factors for aneurysmal remodeling [74]. Katsuyuki
et al. evaluated the relationship between hemodynamic parameters (WSS and rela-
tive wall strain) and aneurysm structure based on intra-aortic pressure conduction,
periaortic US flowmetry, and WSS. It was found that high flow rates stimulated the
proliferation of endothelial and smooth muscle cells in experimental medium rat
aneurysms, which in turn may enhance aortic integrity and limit aneurysm devel-
opment [47]. White et al. performed numerical simulations of blood flow within the
patient’s aneurysm at rest and during exercise. Based on three geometric models
of the patient’s aorta obtained by MRI, they identified areas of low flow and even
stagnant blood flow within the aneurysm, which were reduced during the patient’s
exercise [139, 32]. Raissi et al. completed a quantitative hemodynamic study of a
patient-specific three-dimensional intracranial aneurysm using PINN, with the con-
centration field generated by CFD data as data constraint. The flow field predicted
by PINN was found to match the reference field in such a complex geometric model
[101]. Arzani et al. [6] completed the prediction of hemodynamics and WSS near the
vessel wall within the framework of PINN in an idealized aneurysm model, using a
small amount of flow fields obtained by CFD as constraint data.

The treatment of atherosclerosis and aneurysms, as well as other diseases that
cause localized narrowing of the arteries, can often be achieved by improving the
flow path through stenting or bypass grafting [5, 28, 38]. Brindise et al. performed
an experimental study of the hemodynamics at the coronary bifurcation of the stent
in vitro. Velocity measurements were performed using PIV on three types of stent
implanted vessels and hemodynamic parameters were calculated to assess the ef-
fect of different stents on blood flow [15]. Frauenfelder et al. quantitatively studied
the hemodynamics of abdominal aortic aneurysms before and after stenting. In the
numerical simulations, the fluid structure interaction (FSI) technique was used by
considering the interaction between the deformed vessel wall and the blood flow,
i.e. solving the fluid equation and the solid equation in each time step. It was ver-
ified that the streamline under experimental and numerical matched. In the aorta
after stent placement, numerical simulations showed a reduction in WSS and a de-
crease in turbulence [35]. Tsukui et al. established an in vitro test rig to assess the
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effectiveness of long-term distal anastomoses and discussed blood flow patterns.
CFD was used to simulate hemodynamics in the distal anastomotic stoma based on
the 3D geometry reconstructed from CT scan. A longer distal anastomosis technique
was identified to reduce blood flow energy loss due to factors such as smaller angles
and smooth graft curvature [134].

1.4 Structure of the Dissertation

Among the methods mentioned in Section 1.2, MRI, CFD and PINN have been used
to study hemodynamics. As listed in Section 1.3, most of these studies have used
only one of them. Of these, MRI allows direct access to flow field and geometric in-
formation; however, it has difficulties in measuring complex flows such as flow with
recirculation and turbulent flow, and cannot be used to predict surgical outcomes.
CFD allows direct solution of the physical equations and can be used for in silico
experiment, but requires accurate input of boundary and initial conditions. PINN is
constrained by both data and physical equations; it is still under development and
needs validation, especially for hemodynamics.

By combining experimental measurement, numerical modeling and physical prin-
ciples, particularly MRI, CFD and PINN, with each other, we can take advantages
of each method. As a result, we can more effectively quantify hemodynamics and
predict the outcome of surgical protocols.

In this dissertation, I propose two strategies that combine fluid physics, med-
ical imaging, computer modeling, and PINN, and apply them to image-based in
silico stent implantation (Chapter 3) and aortic blood flow prediction (Chapter 4), as
shown in Figure 1.2. More details are as follows:

In Chapter 2, physical principles of MRI, CFD and PINN are described. These
methods are further merged and implemented in studies of hemodynamics in Chap-
ter 3 and Chapter 4.

In Chapter 3, a new strategy, combining MRI and CFD, for personalized stent
intervention in aortic coarctation is proposed. To validate the accuracy of CFD, I
firstly perform numerical simulations using different turbulence modeling meth-
ods and compare the numerical results with experimental data from flow MRI. The
validated CFD method is further used to study the blood flows within virtually de-
formed aortic geometries, and to guide stent implantation.

In Chapter 4, a new strategy to accomplish blood flow prediction by combing
MRI and PINN is proposed. This strategy overcomes the weaknesses of MRI and
CFD for hemodynamics that emerged in Chapter 3. Prediction of both laminar and
turbulent blood flows with PINN in 3D printed idealized and realistic aortic ge-
ometries are performed. Flow data and geometric information from the MRI are
considered as inputs of the training. The effectiveness of the strategy for blood flow
prediction is also discussed.
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FIGURE 1.2: The main structure of this dissertation. Combing fluid
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tion focuses on the quantitative understanding of hemodynamics and
its application in stent planning. Two main parts were completed.
The first one is virtual stent implantation (in the yellow box), while
the second one is image-based aortic hemodynamic prediction with

PINN.

Finally, Chapter 5 summarizes the conclusions of the present dissertation and
provides an outlook for future work.
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Chapter 2

Principle of Hemodynamic
Methodologies

As mentioned in Chapter 1, three methods, including experimental measurement
(MRI), numerical modeling (CFD) and machine learning (PINN) are involved in this
study. This chapter describes these methods from a physical point of view, provid-
ing the theoretical basis for Chapters 3 and 4. Section 2.1 describes the principles
of MRI, PC MRI and introduces the experimental setups. Section 2.2 outlines the
governing equations for fluid flows, numerical approaches for turbulence model-
ing, and the lattice Boltzmann method (LBM) used for CFD simulations. Section 2.3
describes PINN based on machine learning and neural network, and introduces the
optimization algorithms and auto differentiation (AD) used in PINN.

2.1 Magnetic Resonance Imaging

This section is based on Refs. [141, 137, 125]. It is a general introduction of MRI and
PC MRI.

2.1.1 Basics of MRI

MRI is a technique based on the interaction of nuclear magnetic moments generated
by nuclear spins with an external magnetic field, and it pertains to the theory of
nuclear magnetic resonance (NMR). In clinical studies, hydrogen nuclei (positively
charged protons) are commonly used because they are abundant in the human body.

The spin of each hydrogen proton generates a small magnetic field, and the rela-
tionship between the magnetic moment µ and the spin angular momentum J is

µ = gJ (2.1)

where g is the gyromagnetic ratio. Due to the thermal random motion, the direction
of the spin is random. The sum of the magnetic moments of all hydrogen nuclei
forms the net magnetization vector in MRI. When there is no external magnetic field,
the net magnetization vector is zero. When the proton is placed in a static external
magnetic field, the proton spins can be aligned parallel or anti-parallel to the external
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field, corresponding to the low and high energy states, respectively. The energies Ep

in low energy state and Eanti�p high energy state in are:

Ep = �g
h̄
2

B0, Eanti�p = g
h̄
2

B0 (2.2)

where h̄ = h/2p and h is Planck’s constant. B0 is the strength of the external mag-
netic field.

In thermodynamic equilibrium, more spins will be in low energy state, creat-
ing macroscopic magnetization M in the same direction as the external field. The
magnitude of M is

|M| = g2h̄2Ns

4KbT
B0 (2.3)

here Kb, Ns and T represent the Boltzmann constant, the number of spins and the
temperature respectively. This shows that the magnitude of M is proportional to Ns

and B0.
In addition, the proton will move like a gyroscope around the direction of the

external magnetic field, which is called precession and satisfies Larmor’s law:

w0 = gB0 (2.4)

where w0 is the precession frequency.

• Excitation

If a radiofrequency (RF) field B1 is added to excite the spins, which has the
same frequency w0 as the proton, NMR occurs. The addition of B1, on the
one hand, causes the transfer of energy and the proton jumps from the low
energy level to the high energy state, causing a subsequent decrease in the
longitudinal magnetic field strength. Taking Figure 2.1 as an example, the flip
angle describing the rotation of the magnetization vector, is:

a = g
Z TRF

0
B1(t)dt (2.5)

where TRF is the duration of pulse and the direction of B1 is perpendicular
to z axis. After the application of RF, the component Mxy of the magnetized in
x � y plane precesses around the z axis. An oscillating signal, also known as an
MRI signal, is induced by a magnetic field that varies with time. It is received
and further used to detect and quantify the density of proton spin.

• Relaxation

When the RF pulse disappears, the resonant hydrogen protons slowly return
to their original orientation and amplitude, i.e., the thermal equilibrium state.
This process is called "relaxation".
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FIGURE 2.1: Schematic diagram of RF pulsed NMR experiment. (a),
(b) and (c) represent "Equilibrium", "Excitation" and "Precession", re-

spectively

The macroscopic magnetization M = (Mx, My, Mz) during excitation and re-
laxation can be expressed as Bloch equation:

d
dt

M = gM ⇥ B +

0

B@
� 1

T2
Mx

� 1
T2

My
Meq�Mz

T1

1

CA (2.6)

where T1, T2 are the spin-lattice relaxation time and the spin-spin relaxation
time respectively. They describe the relaxation of the longitudinal (z axis) mag-
netization and the loss of transversal (x � y plane) magnetization. M? is intro-
duced for the magnetization in x � y plane, after RF excitation, the changes of
magnetization according to:

Mz(t) = Meq(1 � e�t/T1) (2.7)

M?(t) = Meqe�t/T2 (2.8)

where Meq is the equilibrum magnetization. In addition to the energy ex-
change with the environment, the decrease of the transverse magnetization
is also influenced by the energy changes between spins, so that T2 is smaller
than T1. Due to the dependence of T1 and T2 on individual materials, they can
be used to differentiate human tissues in clinical MRI.

If two-dimensional or three-dimensional imaging is to be achieved, signals from dif-
ferent spatial locations need to be differentiated. Thus spatial encoding is introduced
and performed by using additional gradient fields in addition to the main magnetic
field. For example, applying gradient fields Gx(t), Gy(t) in the x and y direction,
Larmor frequency and the transverse magnetization become:

w? = gG(t) · r = g(xGx(t) + yGy(t)) (2.9)
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M?(r, t) = M0(r) · e�i(w0t+f(r,t)) (2.10)

here, the phase evolution f is related to the time integral of the gradient field G:

f(r, t) = g
Z t

0
G(t)dt · r = 2pk(t) · r (2.11)

here, k(t) is the k-space trajectory:

k(t) :=
g

2p

Z t

0
G(t)dt (2.12)

In MRI, the transverse magnetization is integrated and the real-valued signal
detected by the coil is calculated in the entire volume.

R

Z
M?(r, t)dr = R

Z
M?(r, 0)e�2pik·re�iw0tdr (2.13)

By quadrature demodulation, e�iw0 t is removed. Assuming that the initial magne-
tization M?(r, 0) is proportional to the spin density r(r, 0), the MRI-received signal
S(t) can be written:

S(t) = a ·
Z

r(r)e�2pik(t)·rdr (2.14)

where a is a constant. Equation 2.14 shows that S(t) associated with the Fourier
transform of r(r)(the proton density).

2.1.2 Phase Contrast MRI

The basic principle of PC MRI is to use the proportional relationship between ve-
locity and phase difference to achieve quantitative measurements of the blood flow
velocity. In Equation 2.11, r can be defined as:

r = r0 + vrt +
1
2

art2 + . . . (2.15)

where r0, vr and ar are the initial position, velocity and acceleration of the spin re-
spectively.

When only the static and y-direction spins are considered, Equation 2.11 can be
written as follows:

f = gy0

Z t

0
Gy(t)dt + gvy

Z t

0
Gy(t)tdt + g

ay

2

Z t

0
Gy(t)t

2dt · · · (2.16)

It can be simplified to:
f = g(y0M0 + vy M1) (2.17)

where M0 and M1 are zeroth-moment and first-moment of the y-gradient.
When a bipolar velocity-encoded gradient is applied, as shown in Figure 2.2, the

gradient area of the waveform is zero at the zeroth moment, i.e., M0 = 0. And M1 is
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FIGURE 2.2: Schematic diagram of bipolar velocity coding gradient.
It consists of two lobes of equal area and opposite polarity.

calculated by

M1 =
Z 4t

0
�Gytdt + gvy

Z T+4t

T
Gytdt = Gy 4 tT (2.18)

Introducing the area of a single gradient lobe A = G 4 t, the phase difference is
obtained by Equations 2.17 and 2.18

f = gATv (2.19)

To ensure that the range of the phase difference is from �p to p (by toggling
the gradient waveform), the encoding velocity venc is introduced. It represents the
maximum measurable velocity.

venc =
p

g |DM1|
(2.20)

where DM1 = M1 � (�M1) = 2AT. Moreover, the signal-to-noise ratio of the mea-
sured velocity SNRv can be described by:

SNRv =
p

2
v

venc
SNR (2.21)

here, SNR represents the signal-to-noise ratio of the image.
In clinical applications, blood flow measurements in the circulatory system are

mainly accomplished using 2D PC MRI or 4D PC MRI.

• 2D PC MRI

Two-dimensional PC MRI (2D PC MRI) is performed to image one or more sin-
gle slices at different moments. Each time only one specific layer is stimulated,
usually chosen perpendicular to the vessel section. Based on 2D PC MRI data,
the calculate cardiac outputs (regurgitant flow, reflux flow, fractional flow, and
the ratio of pulmonary to circulating blood flow in cases of congenital or ac-
quired heart disease) can be calculated.
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• 4D PC MRI

Four-dimensional PC MRI (4D PC MRI) allows the simultaneous encoding of
three mutually perpendicular dimensions at different moments. This tech-
nique enables the dynamic display of blood flow, which can be used for hemo-
dynamic characterization of the heart and aorta. For example, by measuring
velocity of blood flow in different directions at different locations, it is possible
to calculate the mechanical parameters of blood flow (e.g. flow, regurgitant
fraction) and to assess the blood flow energy and shear in the vessel wall. On
the other hand, by displaying blood flow at different moments of the cardiac
cycle, details of flow patterns, such as eddy or turbulent flow, and other com-
plex blood flows can be observed.

Both 2D PC MRI and 4D PC MRI can be used to measure blood flows in the
human body, but with their own limitations. First, 4D PC MRI is more convenient
to obtain the time-varyiReng three-dimensional velocity field. Second, compared to
2D PC MRI, 4D PC MRI scans are somewhat more time consuming, taking 10-15
minutes, a time that depends on heart rate and respiratory control frequency. In
contrast, 2D PC MRI is generally faster, usually less than 2-5 minutes.

2.1.3 Experimental setups

In this subsection, three phantoms used in this dissertation are described. Flows in
these phantoms were measured using a MRI scanner Magnetom Skyra 3T (Siemens
Healthineers, Erlangen, Germany) and the experimentally obtained flow data were
utilized in Chapters 3 and 4.

• Phantom of Normal Vessel

The flow in this phantom is used to represent low Re laminar flow in an ide-
alized normal vessel geometry. The dark gray phantom, 20 cm in length and
40 mm in outer diameter, is located in a channel as shown in Figure 2.3. Water
from the pump flows into the channel from its left side through two small inlet
holes. A blue sponge is used to disperse the incoming water across the cross
section of the channel. Water flow coming out of the sponge is uniform, and
develops into laminar within the straws (each with diameter 5 mm).

• 3D printed Phantoms

The other phantoms with complex geometries, representing an idealized stenotic
vessel and two patient specific aortas, were obtained by 3D printing. 3D print-
ing, also known as additive manufacturing, is a technique for building objects
layer by layer using bonded materials based on digital model files. The print-
ing process is as follows: first, the desired geometry is designed and saved to
an STL file in which the surface of the object is approximated by a large num-
ber of triangles. The model is then "split" into several layers in order to guide
the printer to print layer by layer.
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(a)

(b)

FIGURE 2.3: The display of the phantom for a normal vessel [2]. (a)
photo of the flow channel; (b) the dimensions of the channel are 977⇥

200 ⇥ 50 mm. The blue arrows show the flow direction.

The 3D printed phantoms in this dissertation and the corresponding printer
used are shown in Figure 2.4.

The idealized stenotic vessel phantom was designed with Meshmixer [113]
and printed using Ultimaker 2 Extended+. This printer uses crafting fused
filament technology, with maximal printing dimension 323 ⇥ 223 ⇥ 305 mm,
different layer resolution (0.2 mm, 0.1mm, 0.06 mm and 0.04mm) and printing
speed (30-350 mm/s).

Two realistic aortic geometries were created by segmentation and reconstruc-
tion based on images from MRI. Particularly, the aortic region was selected
based on gray value in the MRI slices, then multiple slices were stacked to a
three dimensional geometry. Both geometries were printed with biocompati-
ble MED610 as material using the Stratasys’ high-end 3D laser printer Connex
3, with maximal printing dimension 340 ⇥ 340 ⇥ 200 mm and different layer
resolution (0.03 mm or 0.016 mm). This printer works on the principle that tiny
layers of liquid photopolymer are sprayed by a print head onto the building
tray and then instantly cured with ultraviolet light. The layers are then built
up to form a model.
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Outer surface

Inner surface

Outer surface

Inner surface

FIGURE 2.4: 3D printed phantoms and the corresponding printers
used. Top, a straight pipe with stenosis; bottom, two aortic geome-
tries. For each phantom, the inner surface was created based on spec-
ified dimensions or image segmentation, while the outer surface was
obtained by extruding the inner surface to a given thickness for the
purpose of 3D printing. More details of the phantoms are provided

in Chapters 3 and 4.
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2.2 Computational Fluid Dynamics

In CFD, several methods, such as the finite difference method, finite element method,
and finite volume method, have been developed to resolve the governing equations
of fluid flows, i.e. the Navier-Stokes Equations (NSE). In this dissertation, I used
the LBM, considering its advantage in parallelization and modeling of flows with
complex geometry. Here I first introduce the fluid governing equations, then list
the methods for modeling turbulence, and finally provide a brief introduction to the
LBM. This section is based on Refs. [78, 63, 11]. It is a general introduction of CFD.

2.2.1 The Governing Equations of Fluid Flows

In physics, based on the principles of conservation of mass, momentum and energy,
the macroscopic motion of a flow can be described by the following governing equa-
tions.

• Continuity equation

First, the fluid satisfies the law of conservation of matter in the process of flow.
The law of conservation of mass is that the total mass of a system remains con-
stant, no matter what changes the system evolve. And the Reynolds’ transport
equation is:

D
Dt

Z

V(t)

rdV =
Z

V(t)

[
∂r

∂t
+5 · (ru)]dV = 0 (2.22)

where D/Dt is the material derivative, V is the volume of fluid, r is the fluid
density, and u is the velocity vector of fluid. The left side of the equation in-
dicates the full derivative of the mass of the system with respect to time. In
order to keep the integration constant zero in any region V(t), the continuity
equation, also called the mass conservation equation, is obtained:

∂r

∂t
+ r 5 ·u = 0 (2.23)

For an incompressible fluid, such as the blood, the fluid density r remains
constant. So the continuity equation for an incompressible fluid is simplified
to

5 ·u = 0 (2.24)

• Momentum equation

According to Newton’s second law, the rate of change of the total momentum
of a system is equal to the sum of the total mass force acting on the system and
the total surface force acting on the surface. That is

D
Dt

Z

V(t)

(ru)dV =
Z

V(t)

rFdV +
Z

A(t)

s · ndA (2.25)
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here s is the mass force, F is a stress tensor, and n is the normal vector of
the surface. According to Reynolds’ second transport equation and Gauss’s
formula, it can be written:

Z

V(t)

r
Du
Dt

dV =
Z

V(t)

rFdV +
Z

V(t)

5 · sdV (2.26)

Thus, the differential form of the momentum equation is obtained:

r
Du
Dt

= rF +5 · s (2.27)

Combined with continuity equation, the conservative form of momentum equa-
tion is:

∂(ru)
∂t

+5 · (rcuu) = rF +5 · s (2.28)

Introducing the constitutive equation, the stress tensor is:

s = �pI + 2µS + µ
0
(5 · u)I (2.29)

where p, I are static pressure of fluid and the second-order unit tensor, re-
spectively. µ and µ

0 are the dynamic viscosity and the second coefficient of
viscosity. For the same fluid at a certain temperature, µ and µ

0 are constant. S
is the strain rate tensor and defined as S = 1

2
⇥
5u + (5u)T⇤.

Bring Equation 2.29 into Equation 2.27, another form of the momentum con-
servation equation is obtained:

∂(ru)
∂t

+5 · (ruu) = rF �5p +5 · [µ(5u + (5u)T)] +5(µ
0 5 ·u) (2.30)

Equation 2.30 is called Navier-Stokes equations (NSE).

• Energy equation

If there is heat transfer, the first law of thermodynamics must be considered
in the fluid flow process. According to the first law of thermodynamics, in a
system, the change in internal energy depends on the work done by external
forces and the heat transfer. Therefore, when studying the energy conservation
of fluid systems, the changes of kinetic energy and internal energy must be
considered:

D
Dt

Z

V(t)

r(#+
1
2

u2)dV =
Z

V(t)

rF ·udV +
Z

A(t)

(n ·s) ·udA+
Z

V(t)

rQudV �
Z

A(t)

q ·ndA

(2.31)
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In the formula, Q represents the increase of heat per unit mass of fluid caused
by factors such as radiation or chemical energy release, �

R

A(t)
q · ndA repre-

sents the heat increment caused by heat conduction, and the negative sign rep-
resents that the heat retention direction is opposite to the direction n of the
outer normal to the surface of the volume. The internal energy equation after
introducing the dissipation function F is

∂(r#)
∂t

+5 · (r#u) = �p 5 ·u +5 · (l 5 T) + F + rQ (2.32)

Equations 2.23, 2.30, 2.43 form the governing equations of fluid flow. For 3D
problems, there are seven equations in total and seven unknown parameters
(density r, three velocity components, pressure p, internal energy #, tempera-
ture T), thus the system of equations is closed.

For incompressible fluids such as blood, the density is constant and the con-
tinuity and momentum equations contain four unknown parameters (three
components of u, and p). Moreover, fluid flow and heat transfer are not cou-
pled, thus can be solved separately.

2.2.2 Numerical Approaches for Modeling Turbulent Flow

Turbulent flow is irregular and multiscale flow, generally three-dimensional and un-
steady, with strong diffusivity and dissipation. Turbulent flows consist of a compo-
sition of rotating vortices on different scales, which are random in their distribution,
size and direction of the rotation axis. The large-scale vortices cause low frequency
pulsations, which are mainly affected by the boundary conditions. small-scale vor-
tices cause high frequency pulsations, which are mainly determined by the viscous
forces. Vortices of different scales form relatively small-scale vortices after rupture.
In a fully developed turbulent region, the scale of fluid vortices can vary continu-
ously. Through the interaction between large-scale vortices and small-scale vortices,
the energy in the main flow is gradually transferred to the vortices in small-scale.
Finally, mechanical energy is converted into thermal energy due to the continuous
disappearance of small-scale vortices.

Despite the complexity of turbulent motion, the aforementioned governing equa-
tions are still applicable to turbulent flows. However, the strong transient and non-
linear characteristics of turbulent flow make it very challenging to accurately de-
scribe the full details of turbulence. Therefore, mathematical approaches for differ-
ent simplifications of turbulence have emerged.

In general, computational approaches for turbulence fall into two main cate-
gories: direct simulation simulations and non-direct simulations (scale-resolved sim-
ulations, Reynolds time-averaged simulations).

• Direct numerical simulation (DNS)
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DNS directly solve the governing equations of turbulent flow with different
numerical methods. This means that the flow must be resolved in all range of
spatial and temporal scales. All spatial scales of turbulence, from the smallest
dissipative scale (Kolmogorov scale, h) to the integral scale (L) must be solved
in a computational grid. The number of grid points (N3) required for three-
dimensional DNS is related to the Reynolds number Re of the flow [88]:

N3 � Re2.25 (2.33)

In addition, the number of time-integration steps (L/h) is proportional to

L
h
⇠ Re0.75 (2.34)

Since the number of floating-point operations used to perform the simulation
grows with the number of time steps and the number of grid points, the growth
rate of the number of operations is known from the above equation as Re3.

DNS is a useful tool in basic studies of turbulence, and regarded as as "nu-
merical experiment" and "golden standard". On the other hand, it is computa-
tionally expensive, even for low Re problems. Based on this, other simplified
turbulence models have been proposed.

• Large eddy simulation (LES)

LES is a kind of non-direct simulation. The basic concept of LES is to solve
the flow field by accurately solving the motion of turbulent flows at all scales
larger than a certain one. LES can capture large-scale effects and the coherent
structure of non-stationary processes and non-equilibrium processes, which
is not possible with Reynolds time-averaged simulations. In addition, LES
greatly saves computational consumption compared to DNS that solves all tur-
bulence scales [96, 108].

LES is filtered in space and time by using a filter j(x, t), which is defined as:

j(x, t) =
Z µ

�µ

Z µ

�µ
j(r, t)M(x � r, t � t)dtdr (2.35)

where M is the filter convolution kernel. For incompressible flows, the scalar
form of continuity equation and NSE are filtered to obtain the incompressible
continuity equation filtered:

∂ui
∂xi

= 0, (2.36)

∂ui
∂t

+ uj
∂(ui)
∂xj

= �1
r

∂p
∂ui

+ n
∂2ui

∂xj∂xj
�

∂tij

∂xj
(2.37)
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where p is the filtered pressure and u is the filtered velocity. tij = uiuj � uiuj,
known as subgrid-scale (SGS) stress, reflects the effect of small-scale vortex
motion on the equations of motion. The SGS stress is unknown, and the math-
ematical expression of the SGS stress needs to be constructed using the relevant
physical model. For example, considering that the kinetic energy dissipation
on the subgrid scale is similar to molecular diffusion, t is modeled as:

tij �
1
3

tkkdij = �2ntSij (2.38)

where nt is the turbulent viscosity; Sij =
1
2 (

∂ui
∂xj

+
∂uj
∂xi

) is the strain rate tensor. In
Chapter 3, I used the Smagorinsky-Lilly SGS model [116] for aortic flow simu-
lation. This model is based on the assumption that generation and dissipation
of energy are in equilibrium on small scales. It models the vortex viscosity as:

nt = C 42
q

2S̄ijS̄ij = C 42 ��S̄
�� (2.39)

where 4 is the grid size and C is a constant.

• Reynolds-averaged Navier–Stokes (RANS)

The RANS is different from DNS and LES. RANS is the governing equation
for the mean variable of the flow field and is based on the theoretical assump-
tion that the fluid variables in turbulent flow, such as velocity, pressure, etc.,
can be decomposed into two parts: a mean value (time averaged) and a pul-
sating value. It is a statistical averaging of the governing equations, ignoring
the turbulent pulsations at each scale and calculating only the mean motion,
thus reducing the spatial and temporal resolution as well as the computational
effort. In RANS, the continuity and momentum equations for incompressible
flows can be written as follow:

∂(ui)
∂xi

= 0, (2.40)

∂(ui)
∂t

+
∂(ujui)

∂xj
= �1

r

∂p
∂ui

+
1
r

∂sij

∂xj
+

∂(�u0
iu

0
j)

∂xi
. (2.41)

where ui is the Reynolds average velocity component, u0
i is the pulsation ve-

locity, sij is the stress tensor. �ru0
iu

0
j is called Reynolds stress and determined

by the pulsation velocity.

Although RANS can largely reduce computational consumption, it has some
drawbacks. The unknown term Reynolds stress needs to be solved by de-
veloping a turbulence model, which relies on a combination of theory and
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empirical formula. To establish a closed set of equations describing the av-
eraged flow quantities, several model assumptions based on the RANS equa-
tions and the pulsation equations have been proposed. Examples are the two-
equation model, the single-equation model and the zero-equation model (al-
gebraic model). In addition, the closed equations need to be adjusted to the
nature and results of the large-scale pulsations and the boundary conditions of
the flow.

2.2.3 Lattice Boltzmann Method

The LBM was used for CFD simulations in this dissertation.

• Boltzmann equation and Maxwell distribution

Besides the aforementioned macroscopic governing equations, fluid flow can
also be governed by the mesoscopic Boltzmann equation, which describes the
statistical behaviour of fluid particles based on kinetic theory. The fluid par-
ticles can move and collide with each other. The probability of each particle
being in a certain state is described by the distribution function f , which is
related to spatial location r(x, y, z) and particle velocity x(xx, xx, xz). At time t
and location r, the number of particle per unit volume n is

n =
Z

f (r, x, t)dx (2.42)

The change in the number of particles is due to particle motion and collision.
For individual particle, (∂ f /∂t)motion is caused by particle motion. F = ma is
expressed as the external force applied to the particle, where m is the particle
mass. Then (∂ f /∂t)motion can be expressed as

(
∂ f
∂t

)motion = �x · ∂ f
∂r

� a · ∂ f
∂x

, (2.43)

Introducing W( f ) = (∂ f /∂t)collision for particle number change resulted from
particle collision, and ∂ f /∂t the total change in the number of particles during
time interval dt, one gets the Boltzmann equation:

∂ f
∂t

+ x · ∂ f
∂r

+ a · ∂ f
∂x

= W( f ) (2.44)

To simplify the formula, normally only two-body collision is considered. Even
then, it is very hard to get an analytical solution to the Boltzmann equation.
For the gas with one single component without external force, the Boltzmann
equation can be solved with the equilibrium distribution, which is called the
Maxwell distribution:

f eq = n
1

(2pRT)d/2 exp[� (x � u)2

2RT
] (2.45)
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where 1/n, T and u are the macroscopic fluid density, temperature, and veloc-
ity, respectively. x � u is the peculiar velocity (random velocity), R is the gas
constant, d is the dimension. Although the Maxwell distribution is based on
the assumption of a single-component monoatomic gas, it can also be applied
to the case of diatomic polyatomic gases [31].

• Boltzmann-BGK equation and lattice Boltzmann equation

It should be mentioned that the macroscopic governing equations, e.g. the
NSE, can be recovered from the mesoscopic Boltzmann equation. Thus one can
numerical model fluid flows by solving the Boltzmann equation. The main dif-
ficulty in solving the Boltzmann equation lies in the collision term, mainly due
to its nonlinearity. Bhatnager, Gross and Krook proposed to replace this non-
linear collision term in the Boltzmann equation with a simple and linear op-
erator, as shown in Equation 2.46. Their assumptions are: the collision-based
effect is to change f so that it approximates the equilibrium distribution f eq; the
change rate is proportional to f eq � f ; u is a constant independent of particle
velocity x. So, one gets

W f = u [ f eq(r, x)� f (r, x, t)] (2.46)

Substitute Equation 2.46 into Equation 2.44, one gets the Boltzmann-BGK equa-
tion

∂ f
∂t

+ x · ∂ f
∂r

+ a · ∂ f
∂r

= u [ f eq(r, x)� f (r, x, t)] (2.47)

Therefore, u, T in f eq are the macroscopic parameters (density, velocity and
temperature) obtained by the velocity distribution function. Since the equi-
librium distribution function varies with time and space, it is called the local
equilibrium distribution function. The collision time t0 = 1

u is also called re-
laxation time, indicating the time interval between two collisions.

To numerically solve it, the Boltzmann-BGK equation is further discretized
in the space of velocity, time and space. Accordingly, the Lattice Boltzmann
Method (LBM) is generated [42, 115]. The Boltzmann-BGK equation is firstly
discretized in the velocity space. Since the details of particle motion do not
significantly affect the macroscopic motion of the fluid, instead of random
movements, the particles are forced to move/stream along specified directions
with given discrete velocities (lattice). The particle velocity x and distribution
function f are then represented by {e0, e1, · · · , eN} and { f0, f1, · · · , fN}, respec-
tively. Here ei is the discrete velocity of a lattice; fi = fi(r, ei, t); i = 0, 1, · · · , N
with N the total number of discrete velocities of a lattice. Then the Boltzmann
equation is discretized in both space and time, with spatial resolution eidt and
temporal resolution dt. We finally get the lattice Boltzmann equation with BGK
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operator and external force:

fi(r + eidt, t + dt)� fi(r, t) = � 1
t

⇥
fi(r, t)� f eq

i (r, t)
⇤
+ dtFi(r, t) (2.48)

where, dimensionless relaxation time t = t0/dt.

Space discretization and time discretization are not independent and can be
linked by the discrete velocity of the particles. This feature provides the con-
ditions for dividing the motion of particles in physical space into the processes
of streaming and collision.

• Lattice Boltzmann model

Three components of the discrete velocity model (lattice), the equilibrium dis-
tribution function and the evolution equation make up the lattice Boltzmann
model [140]. To develop a LBM model, the first step is to derive the con-
straints for the equilibrium distribution function f eq so that the corresponding
macroscopic equations can be recovered from the Boltzmann equation. Then
a suitable discrete velocity model (lattice) is selected and the equilibrium state
distribution function is determined based on the equations obtained from the
model through the constraints. The DdQm lattices [98] are the most popular
ones used in the LBM community. Here d and m represent the dimension and
the number of discrete velocities, respectively. The equilibrium distribution
function f eq adopted in a DdQm lattice reads

f eq
i = rwi


1 +

ei · u
c2

s
+

(ei · u)2

2c4
s

� u2

2c2
s

�
(2.49)

where wi is weight factor and cs is the lattice speed of sound. Macroscopic
parameters such as density r and velocity u can be obtained via the following
formulas:

Â
i

f eq
i = r, (2.50)

Â
i

f eq
i ei = ru, (2.51)

The D3Q19 lattice, as shown in Figure 2.5, is one of the commonly used lattices
for 3D fluid flows. Its discrete velocity, weight factor and sound speed are
listed in Table 2.1. The D3Q19 lattice is also adopted in this dissertation, for
simulations with the LBM.

• Boundary treatment

Boundary conditions play a very important role in fluid mechanics. For ex-
ample, for steady state problems, when a system reaches its stability, the flow
field is mainly determined by the boundary conditions. In addition, boundary
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TABLE 2.1: The weight factors and discrete velocities in the D3Q19
lattice.

i 0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18

wi
1
3

1
18

1
18

1
18

1
18

1
18

1
18

1
36

1
36

1
36

1
36

1
36

1
36

1
36

1
36

1
36

1
36

1
36

1
36

cix 0 +1 -1 0 0 0 0 +1 -1 +1 -1 0 0 +1 -1 +1 -1 0 0

ciy 0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18

ciz 0 0 0 0 0 +1 -1 0 0 +1 -1 +1 -1 0 0 -1 +1 -1 +1

29
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FIGURE 2.5: The D3Q19 lattice.
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treatment is very critical in the LBM, and they have a great impact on the accu-
racy, computational efficiency and computational stability of numerical model-
ing. During simulation, the distribution functions in the main flow domain are
obtained after each time step, but the distribution functions at the boundary
nodes are unknown. Therefore, it is necessary to determine the corresponding
distribution functions at the boundary nodes based on known boundary con-
ditions on the macroscopic scale. Here, I explain the treatment of the complex
boundaries used for the simulations in Chapter 3. Without external force, the
lattice Boltzmann Equation 2.48 reads

fi(r + eidt, t + dt)� fi(r, t) = � 1
t

⇥
fi(r, t)� f eq

i (r, t)
⇤

(2.52)

The above equation represents the two processes of particle movement: colli-
sion and streaming. During the collision process, fluid particles at the same
node collide with each other. f+i is the distribution function after the collision:

f+i (r, t)� fi(r, t) = � 1
t

⇥
fi(r, t)� f eq

i (r, t)
⇤

(2.53)

During the streaming process, fluid particles move along the grid lines in dif-
ferent directions and migrate to the neighboring nodes r + eidt. This leads to

fi(r + eidt, t + dt) = f+i (r, t), (2.54)

For example, in Figure 2.6, ei is a discrete velocity of fluid particle pointing
to the boundary node, and eī = �ei is the discrete velocity in the opposite
direction. The unknown distribution function f+ī on the boundary node rb

moves along eī into the fluid node r f . The expression is

fī(r f = rb + eīdt, t + dt) = f+ī (rb, t) (2.55)

Several boundary schemes [34, 14] have been introduced to obtain f+ī (rb, t) or
fī(r f , t + dt).

An extrapolation scheme was proposed by Guo et al. to deal with curved
boundaries in the LBM [40]. Such boundary treatment is adopted in the sim-
ulations in this dissertation, and will be introduced briefly. The basic idea of
this scheme is to divide the distribution function at a boundary node into two
parts: equilibrium state f+,eq

ī (rb, t) and non-equilibrium state f+,neq
ī (rb, t).

f+ī (rb, t) = f+,eq
ī (rb, t) + f+,neq

ī (rb, t) (2.56)

The equilibrium part is replaced by a virtual equilibrium distribution function,
and the non-equilibrium part is obtained by interpolating the non-equilibrium
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FIGURE 2.6: The Schematic of node types on complex boundaries.
The black curve represents the actual physical boundary, with red
dots the intersection of the physical boundary and the grid lines. The
blue circular dots, red square dots and gray circular dots represent

the fluid nodes, boundary nodes, and solid nodes, respectively.

part of the adjacent fluid nodes. Specifically

f+,eq
ī (rb, t) = f eq

ī (rb, ub, t) (2.57)

where rb and ub are defined as bellow:

if q � qc, r(rb) = r(r f ), ub =
uw+(q�1)u f

q ,

if q < qc, r(rb) = r(r f ), ub =
uw+(q�1)u f

q + (1 � q) 2uw+(q�1)u f f
q .

The non-equilibrium part is obtained by interpolating the distribution function
on the fluid node:

if q � qc, f+,neq
ī (rb, t) = fī(r f , t)� f eq

ī (r f , t),

if q < qc, f+,neq
ī (rb, t) = q[ fī(r f , t)� f eq

ī (r f , t)] + (1 � q)[ fī(r
0
f f , t)� f eq

ī (r f f , t)].

In the formula, qc 2 (0, 1) is the judgment condition of the interpolation for-
mat. Such boundary treatment has second-order accuracy in space and time,
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and good numerical stability [40].

• LBM based LES

As described in Section 2.2.2, the Smagorinsky model is based on the assump-
tion of eddy viscosity, and the turbulent viscosity correction is defined as

nt = C 42
q

2S̄ijS̄ij (2.58)

here, C is the Smagorinsky constrant, which depends on the physical problem.
In LBM, S̄ij can be calculated based on the distribution function:

S̄ij = � 3
2e2r(t + tSGS)dt

Â ekiekj( fk � f eq
k ) (2.59)

where tSGS is eddy relaxation time. The total relaxation time, which deter-
mines the speed of approaching local equilibrium, can be expressed as

ttotal = t + tSGS (2.60)

And, the relationship between viscosity coefficients and relaxation times are

ntotal =
e2dt

6
(2ttotal � 1) (2.61)

n =
e2dt

6
(2t � 1) (2.62)

where ntotal is the effective viscosity coefficient. Then, based on Equations 2.60-
2.62, tSGS is calculated:

tSGS =
3nt

e2dt
=

3nt

e2dt
(C4)2

q
2S̄ijS̄ij = �9(C4)2

2e2r
(t + tSGS)d

2
t

s
2 ’

ij
’

ij
(2.63)

where ’ij ’ij = Â ekiekj( fk � f eq
k ). In equidistant square grids(D = Dx = Dy =

Dz), the total relaxation time can be written:

ttotal = t + tSGS =
t +

r
t2 + 18(C4)2

q
2 ’ij ’ij/(e4rd2

t )

2
(2.64)

Finally, the LBM based LES (Smagorinsky model) can be given:

fi(r + eidt, t + dt)� fi(r, t) = � 1
ttotal

⇥
fi(r, t)� f eq

i (r, t)
⇤

(2.65)



2.3. Machine Learning and Physics Informed Neural Network 29

2.3 Machine Learning and Physics Informed Neural Network

As described in Chapter 1, PINN is a novel technique that can be used for hemo-
dynamic studies based on the basic governing equations of fluids and ML. A brief
overview of ML, particularly NN, is provided in Section 2.3.1. Then PINN, and op-
timizer and AD used in PINN, are provided in Section 2.3.2. This section is based on
Refs. [55, 61, 58, 17, 107].

2.3.1 Machine Learning and Neural Network

Machine learning (ML) is an important part of artificial intelligence. This technol-
ogy guides computers to learn from data and then use "experience" to improve its
performance. In the learning process, machines discover correlations and patterns
from large data sets through continuous training, and then make the best predic-
tions and decisions based on the results of data analysis. Data are an important part
of machine learning. Generally the more data used for learning, the more accurate
the predictions will be. Three types of ML [55], namely supervised learning, unsu-
pervised learning and reinforcement learning, are described below:

• Supervised learning

The machine learns from existing samples. Supervised learning models con-
sist of data pairs ("input" and "output"), where the output is labeled with the
desired value. By applying the algorithm, the system is able to compile the
training data and start identifying relevant similarities, differences and other
logical points until it is able to predict the results autonomously.

• Unsupervised learning

The machine needs to study the input data itself (most of which is unlabeled
and unstructured) and start using all the relevant, accessible "intuition" and
"experience" to connect things together. For machines, "experience" depends
on the input and the amount of data available.

• Reinforcement learning

Reinforcement learning, unlike supervised and unsupervised learning, works
by constantly interacting with the environment, by trial and error, and finally
by accomplishing a specific goal. In Reinforcement learning, the labels for
training data are not needed, while the feedback from the environment is needed
at each step of the action, and continuously adjusts the behavior of the training
object based on the feedback.

Neural network (NN) is one of machine learning algorithms that mimics the
structure and function of a biological NN. It is computed by connecting a large num-
ber of artificial neurons for estimating or approximating functions. In most cases, an
artificial NN can change its internal structure in response to external information,
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FIGURE 2.7: A multi-layer feed-forward NN. Ii are the input neurons;
Hj are the hidden neurons; Ok are the hidden neurons; Hij are the
weights of the input of the hidden layer; Wjk are the weights of the

output of the hidden layer.

which is an adaptive system. A common multi-layer structured feed-forward net-
work consists of three parts, as shown in Figure 2.7.

• The input layer

It is where large amount of nonlinear input information is received by neurons.

• The hidden layer

It is the connection layer between the input and output layers and consists of
single or multiple hidden layers. The role is to take the features of the input
data and abstract them to another dimensional space to present their more
abstracted features that are better able to be divided linearly.

• The output layer

It is the last layer of the NN where the input from the last hidden layer is
received and the result is output.

The process of building a model by correcting the weights of each layer through
the training samples is called training algorithm. Different learning methods have
different network models and structures.

2.3.2 Physics Informed Neural Network

As mentioned earlier, data is very important to NN. Based on the amount of data,
there are three possible categories of physical problems: big data system, some data
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FIGURE 2.8: Relation of data-driven and physical principles. Dia-
gram modified from [58].

system, and small data system, as shown in Figure 2.8. In the big data system, there
is no need to model the physics principles and a data-driven approach may be the
most effective. In small data system, it is assumed that we have all the physics prin-
ciples and less data information, such as the initial and/or boundary conditions,
thus numerical modeling or analytical analysis can be considered. The most com-
mon is the intermediate system, where some data and some physical principles are
known and some parameter values in Partial differential equations (PDE) may be
missing. Therefore, there is a need for a new approach to machine learning with
sparse data and available mathematical models, combining data-driven methods
and physical principles, thus integrating experimental and numerical methods into
the same model.

In 2019, Kissas et al. proposed physics-informed neural network (PINN), which
combine constraints on existing data with governing equations so that training ap-
proximates both the training data and the physically informative PDE. The specific
way to implement the equation constraints is to use the automatic differentiation
(AD) tool in TensorFlow [1] to estimate the residuals of the equations. The loss of
the residuals is updated in each iteration and added to the loss function of the NN.
During the training process, the NN minimizes the total loss function containing the
data error and the residuals of the equations to achieve a final training result that
satisfies both the data and the physical laws [61, 27].

The general form of the PDE in the space-time domain solved by PINN is:

F(u(z); l) = f (z), z 2 W, W ⇢ RN (2.66)

B(u(z)) = b(z), z 2 ∂W (2.67)

where z = [xi . . . xn�1; t]. F is general nonlinear differential operator and f is a func-
tion that identifies the problem data, u(�) is the potential solution, l is the param-
eters of PDE. B(�) is the boundary condition or/and initial condition and b is the
boundary function.

The architecture of PINN is given in Figure 2.9. It can be seen that PINN consists
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of a NN on the left and constraint (data constraint and PDE constraint) on the right.
In the NN part, the inputs are x and t, while the output is u. This network represents
the mapping of inputs x, t and output u from points to unknown solutions, where s

is the activation function that enhances the nonlinearity of NN, giving it the ability
to describe and approximate highly nonlinear problems. In the constraint part, the
total loss function (consisting of the loss of the labeled data, the loss of the boundary
or initial conditions, and the deviation of the PDE) is computed and give feedback
to the NN.

The total loss in PINN is minimized using the optimizer and the parameters of
NN are obtained based on the learning rate. More details are given below.

Optimizer

In NN, optimization algorithms can help us to minimize an objective function (such
as loss function). The weights and biases can be considered as internal learnable
parameters of the NN, which are used to calculate the output values and learn and
update them in the direction of the optimization scheme to minimize the losses.
Gradient descent is briefly introduced in the following, as one of the most commonly
used optimization algorithms in NN.
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• Stochastic gradient descent

Stochastic gradient descent (SGD) updates the model parameters by searching
the minimum value to control the variance and eventually converge the model.
The formula for updating the parameters is:

qt+1 = qt � h 5q J(q) (2.68)

where h, J(q) and 5q J(q) represent the learning rate, the loss function and the
gradient of J(q).

Despite the many achievements of SGD optimization algorithms, there are still
some thorny issues that need to be addressed. For example, first, the choice
of the appropriate learning rate is very critical. Second, the learning rate is
constant during training and is the same for all parameters in the NN. Finally,
it is easy to fall into a large number of local optimal solutions or saddle points
during the optimization of highly non-convex error functions. Several other
methods have been proposed to address these issues.

• Momentum method

The momentum method is proposed to accelerate SGD by guiding in the rele-
vant direction and slowing down the oscillations in the non-relevant direction.
This is achieved by adding the coefficient vector of one update step to the next
update vector.

vt = gvt�1 + h 5q J(q) (2.69)

The parameters are updated by qt+1 = qt � vt. The momentum term g de-
faults to 0.9. Since the momentum term g expands the update in the dimen-
sion where the gradient points in the same direction and shrinks the update
in the dimension where the gradient direction changes. This avoids excessive
parameter updates, accelerates orientation, converges stably, and reduces os-
cillations.

• Adaptive gradient (Adagrad) and RMSprop

The Adagrad Gradient (Adagrad) method [51] is introduced for processing
sparse data, and it makes it possible to have a set of adaptive adjustment of
the learning rate for different problems by recording the forward direction and
distance during each iteration, i.e., different parameters are required for differ-
ent learning rates. On the basis of SGD, the regularizer is applied to Equation
2.69, so the update of the parameters is as follows:

Gt =
t

Â
0
|5q J(qt)|2 (2.70)

qt+1 = qt �
hp

Gt + e
5q J(qn) (2.71)
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where e is a small constant to prevent the denominator from being zero. And
Gt denotes the accumulation of squared gradients about the parameter qt.

The advantage of AdaGrad is that it makes more efficient use of information
from small gradients and converges more efficiently than the standard SGD
algorithm. However, the disadvantage of AdaGrad is that it requires a given
initial global learning rate. Therefore, if the set global learning rate h is too
large, it will lead to unstable optimization, while if h is too small, the learning
rate may stall at the point of reaching the optimum.

Another adaptive learning rate method, RMSprop, was proposed to address
the need for Adagrad’s rapidly decreasing learning rate.

vt = gvt�1 + (g � 1) [5q J(qt)]
2 , (2.72)

qt+1 = qt �
hp

vt + e
5q J(qt) (2.73)

• Adam

The essence of the Adam algorithm [59] is the combination of the momentum
method and the RMSProp algorithm. This algorithm comprehensively consid-
ers the attenuation average value of the first-order moment estimation, and
modifies RMSProp with an adaptive learning rate.

mt = b1mt�1 + (b1 � 1)5q J(qt) (2.74)

vt = b2vt�1 + (b2 � 1) [5q J(qt)]
2 (2.75)

where mt is the average value of the first-order moment gradient; vt is the
non-central difference value of the second-order moment gradient. The initial
values are m0 = 0 and v0 = 0. At the initial stage of the iteration, mt and vt

have a bias towards 0, resulting in b1 and b2 being close to one. Therefore, bias
corrections for first-order and second-order momentum are required.

m
0
t =

mt

1 � b1
(2.76)

v
0
t =

vt

1 � b2
(2.77)

The above formula can be used to update the parameters, which gives rise to
the Adam update rule:

qt+1 = qt �
hq

v0
t + e

m
0
t (2.78)

It is recommended that b1 = 0.9 and b2 = 0.999 [107]. Since Adam performs well
in practice compared to other adaptive learning methods, Adam was adopted
as the optimization algorithm in Chapter 4.
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Automatic Differentiation

In PINN, we have to solve the differential equations, which is the basis for imple-
menting the physical constraints. This is done with the Automatic differentiation
(AD).

In general, methods for solving differences in computer programs can be divided
into four categories: Manual differentiation, Numerical differentiation, Symbolic
differentiation and AD. Specifically, the manual differentiation is to first derive the
formula for calculating the derivative of the objective function by hand based on the
variables, and then program the implementation. This method is time-consuming
and error-prone. Therefore, numerical differentiation and symbolic differentiation
are often used. Numerical differentiation usually uses differences to compute an
approximation of the derivative. And the result of symbolic differentiation is an
expression of the derivative function. Symbolic differentiation is used to solve for-
mulas in mathematics.

AD is an intermediate method between symbolic and numerical differentiation.
As we know, numerical differentiation emphasizes direct substitution to solve the
problem at the beginning, while symbolic differentiation emphasizes direct algebraic
solution before final substitution. And in AD, symbolic differentiation is applied to
basic functions, such as constant, exponential, power, trigonometric and logarithmic
functions, and then numerical substitution is performed, preserving intermediate
results, and finally applied to the whole function. It is quite flexible in its application
and the differential solution process can be completely hidden from the user, so the
method is widely used.
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Chapter 3

In silico modeling for personalized
stenting in coarctation

Patients with coarctation of the aorta may suffer from different CVD due to local
stenosis and altered hemodynamics in the aorta. Stent intervention is a recom-
mended treatment to reduce the pressure gradients and restore blood flow therein.
However, a remaining challenge for physician is to select the optimal stent before
treatment. In this chapter, a new strategy based on MRI and CFD for stent planning
is presented. In Section 3.1, I focus on completing image-based in silico modeling
for personalized stent implantation. The impact of turbulence modeling methods
on the accuracy of fluid simulation is also discussed. Section 3.2 is a supplementary
material on virtual aortic deformation.

3.1 In Silico Modeling for Personalized Stenting in Coarcta-
tion

The following is a reprint of the published article "Dandan Ma, Yong Wang, Mueed
Azhar, Ansgar Adler, Michael Steinmetz, Martin Uecker. In silico modeling for per-
sonalized stenting in aortic coarctation. Engineering Applications of Computational
Fluid Mechanics, 16(1), 2056-2073 (2022). doi: 10.1080/19942060.2022.2127912."

DM designed the project under the guidance of MU. Specifically, DM designed
and conducted all experiments under the guidance of MU. MA and AA provided
assistance during the experiments. With the help of YW, DM performed CFD sim-
ulations and analyzed the results. Patient images and medical theory support were
provided by MS. DM wrote most of the manuscript, and all authors contributed to
the preparation of the manuscript.

Layout and reference numbering are adjusted, and there ware no substantial
changes in content.



38 Chapter 3. In silico modeling for personalized stenting in coarctation

Abstract

Stent intervention is a recommended therapy to reduce the pressure gradient and
restore blood flow for patients with coarctation of the aorta (CoA). A remaining chal-
lenge for physician is to select the optimal stent before treatment. Here, we propose a
framework for personalized stent intervention in CoA using in silico modeling, com-
bining image-based prediction of the aortic geometry after stent intervention with
prediction of the hemodynamics using computational fluid dynamics (CFD). Firstly,
the blood flow in the aorta, whose geometry was reconstructed from magnetic res-
onance imaging (MRI) data, was numerically modeled using the lattice Boltzmann
method (LBM). Both large eddy simulation (LES) and direct numerical simulation
(DNS) were considered to adequately resolve the turbulent hemodynamics, with
boundary conditions extracted from phase-contrast flow MRI. By comparing the
results from CFD and 4D-Flow MRI in 3D-printed flow phantoms, we concluded
that the LBM-based LES is capable of obtaining accurate aortic flow with acceptable
computational cost. In silico stent implantation for a patient with CoA was then per-
formed by predicting the deformed geometry after stent intervention and predicting
the blood flow. By evaluating the pressure drop and maximum wall shear stress, an
optimal stent is selected.
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3.1.1 Introduction

Coarctation of the aorta (CoA) refers to a local narrowing of the aortic arch. It makes
up 6 - 8% of all congenital heart diseases [99], and is often associated with other car-
diovascular diseases, such as aortic arch hypoplasia, subaortic stenosis, ventricular
and atrial septal defects [46, 104, 4]. The coarctation leads to high blood pressure and
thus heart damage. Stent intervention, which is generally performed based on clin-
ical experience without theoretical guidance, is a recommended therapy to reduce
the pressure gradient and restore blood flow.

With increasing computational power, in silico modeling is emerging as a promis-
ing tool to help clinicians with intervention planning and to evaluate the outcome
of therapies, such as stenting for intracranial aneurysm [144, 13], abdominal aortic
aneurysm [8], and type-B aortic dissection [21, 53]. By taking personalized informa-
tion as input, modeling also supports the design of patient-specific medical implants
[72].

For in silico modeling of personalized stent intervention in CoA, a protocol for
virtual geometry deformation [85] and a validated numerical method to accurately
predict the blood flow in the aorta are required. Regardless of the erythrocytes,
leukocytes, and platelets in blood, the flow in the aorta is normally modelled as
Newtonian fluid [93] considering the relatively large Reynolds number Re, which is
proportional to the flow velocity and aorta diameter and inversely proportional to
the blood viscosity. Computational fluid dynamics (CFD) [127] plays an important
role in biomedical engineering applications, such as drug delivery [3] and under-
standing of carotid stenosis [57, 56] and aortic dissection [25, 24]. Due to the per-
sonalized and complex 3D geometry and jet flows induced by heart contraction and
local narrowing, laminar flow, turbulent flow and transition between them may co-
exist spatiotemporally [121, 64]. Thus, to accurately resolve such aortic flow, both
turbulence and complex geometry should be considered in CFD simulations. Three
approaches, including Reynolds-averaged Navier–Stokes equations (RANS), large
eddy simulation (LES), and direct numerical simulation (DNS), are typically used
for turbulence modeling. From RANS to DNS, both the accuracy and computational
demand increases due to more and more details that need to be resolved.

So far, mainly RANS and LES were used to study aortic flow in literature [16].
With a transitional model, RANS was adopted to resolve flows in patient-specific
thoracic aortic aneurysm by Tan et al. [128] and aortic dissection by Cheng et al. [25,
24]. Simulations were carried out using ANSYS CFX, a commercial finite volume-
based solver. Kouseral et al. studied flow stability in a normal aorta using the same
numerical method, and compared their numerical results with experimental data
from in vivo magnetic resonance imaging (MRI) [62]. They concluded that the RANS
based shear stress transport transitional model was capable of capturing the correct
flow state when low inflow turbulence intensity (1.0%) was specified. Miyazaki et
al. validated three CFD models for aortic flows in the aorta of a healthy adult and
a child with double aortic arch [76]. Laminar, LES and the renormalization group
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(RNG) k-# model were considered and compared. Simulations were performed us-
ing another finite volume-based solver, ANSYS Fluent. Their results show that the
RNG k-# model has the highest correlation with data from 4D flow MRI. Recently,
Manchester et al. used LES to study the blood flow in patient-specific aorta with
aortic valve stenosis [68]. Here, the finite volume based open-source library Open-
FOAM, was used. After investigating the fluctuating kinetic energy, wall shear stress
(WSS) and energy loss, they concluded that turbulence played an important role in
aortic hydrodynamics.

It should be noted that severe turbulence will be encountered in CoA due to a
more complex geometry and larger Re, which might lead to higher requirements
on the CFD method. The aforementioned conventional CFD methods are based on
discretizations of macroscopic governing equations, such as the Navier-Stokes (NS)
equations. Alternatively, the lattice Boltzmann method (LBM) is based on the meso-
scopic Boltzmann equation and has multiple advantages, including simple handling
of complex geometric shapes, ease of programming, and suitability for paralleliza-
tion [63, 44, 23]. Therefore, the LBM is increasingly used for the simulation of turbu-
lent flow [22] and biological fluid flows [136]. Hennt et al. simulated the unsteady
blood flow in a patient-specific geometry with a moderate thoracic aortic coarctation,
and demonstrated that the LBM based DNS was capable of resolving such complex
flow [45]. Recently, Mirzaee et al. studied aortic flows for 12 patients with CoA us-
ing the LBM based LES, particularly with the Smagorinsky turbulence model [75].
A reasonable agreement for pressure drop between the numerical results and the
catheter measurements was achieved. Nevertheless, to guide in silico stent inter-
vention for CoA, a comprehensive validation for the LBM based LES for complex
flow is still missing.

Since the 1970s and 1980s, MRI has become an important clinical and scientific
tool that is widely used for diagnosis, monitoring of treatment procedures, and for
biomedical research [70]. Compared with X-ray and computed tomography, one
of the advantages of MRI is the use of non-ionizing radiation [73, 65]. In addition
to obtaining anatomical information, MRI can also be used for quantitative flow
measurements using phase-contrast imaging [80, 90, 118] including measurement of
aortic blood flow [76, 109].

In this study, we developed a framework for personalized stent intervention in
CoA using in silico modeling, combining CFD and image-based virtual geometry
deformation. Such framework can provide the optimal stent plan based on flow
simulations, before clinical intervention. A comprehensive validation of the LBM
based LES for aortic flow was also performed. Geometries for a patient-specific
aorta with CoA, before and after stent intervention, were considered and physical
phantoms were created using 3D printing for use in MRI flow experiments. Flow
measurements obtained with MRI scans were then used as boundary conditions for
simulations. Obtained numerical results using LBM based LES and DNS were then
compared with experimental 4D Flow data. To further validate the LBM based LES,
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we also compared within vivo data. We demonstrated that LES is capable of accu-
rately simulating complex aortic flow and further applied it for in silico stent im-
plantation. Details of the methodology are given in Section 2. Numerical results and
experimental measurements for aortic flows are presented and compared in Section
3. The application for stent selection is provided in Section 4. Discussion, limitations
of the current work and future works can be found in Section 5. A conclusion is
given in Section 6.

3.1.2 Methodology

MRI Experiments

The anatomical structure of the aorta and the flows therein were acquired by MRI,
which provided realistic geometries and boundary conditions for CFD simulations.
Comparison between CFD and phase-contrast flow MRI for flows in 3D-printed
phantoms and in vivo aorta were performed respectively.

For the phantoms, the 3D anatomies of the heart and aorta of a 14-year-old pa-
tient with CoA, before and after stent intervention, were reconstructed from images
obtained by a Magnetom Skyra 3T (Siemens Healthineers, Erlangen, Germany). The
stent (diameter = 12 mm) used in this patient was a covered Cheatham-platinum
(CP) stent made of platinum-iridium (NuMed, Orlando, USA). The sequence param-
eters are listed in Table 1. Using ITK-SNAP [91], the geometry that starts from the
aortic root and ends above the diaphragm was segmented based on the grey values
and exported as STL file. The main branches, such as the right subclavian, the left
subclavian, the right carotid artery and the left carotid artery, were included. To have
an uniform surface mesh, the generated geometries were then remeshed using Au-
todesk Meshmixer [113]. The schematic diagram of the experiment is shown in Fig-
ure 3.1. Two aortic models, including the pre-interventional and post-interventional
geometries, were printed using the Stratasys’ high-end 3D laser printer Connex 3 us-
ing biocompatible MED610 as material. The phantoms were connected to a pump.
Forced water flows therein were then measured using 4D PC MRI [70, 33, 97]. The
sequence parameters can be found in Table 1 and Table 2. Every case was measured
three times with about 30 minutes per measurement. The averaged flow fields were
then used for comparison.

For the in vivo validation, the aortic blood flow of a 3-year-old patient, was ob-
tained using a 2D flow sequence instead of a 4D flow sequence, to reduce the dura-
tion of measurement. In the 2D measurement, the through-plane velocity of the flow
was measured in two planes located in the ascending aorta and descending aorta re-
spectively. All in vivo measurements were made with the use of ECG triggering
and respiratory gating. The in vivo measurement was performed using the same
MRI scanner as the phantom experiments and more details can be found in Table 3.
For further CFD simulation, the aortic geometry was segmented and reconstructed
using the same procedure as mentioned above.
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TABLE 3.1: MRI sequences used for the flow-phantom study: In vivo
MRI scans were performed pre and post intervention to obtain the
anatomical structure. These geometries were used for 3D-printing a

phantom then used for 4D-flow MRI measurements.

Geometry (pre) Geometry (post)

Sequence type 3D FLASH (TWIST) 3D T1 weighted FLASH

Acceleration 3 ⇥ 2 2 ⇥ 2

Matrix size 352 ⇥ 246 448⇥252

Number of slices 80 88

Slice thickness (mm) 1.30 1.20

Pixel size (mm2) 1.02⇥1.02 0.89⇥0.89

Repetition time (ms) 2.75 3.70

Echo time (ms) 1.00 1.31

Flip angle (�) 20 25

TABLE 3.2: 4D-flow sequences used for the flow-phantom study.

4D flow MRI (pre) 4D flow MRI (post)

Sequence type 3D Cartesian FLASH 3D Cartesian FLASH

Matrix size 384 ⇥504 416⇥364

Number of slices 144 144

Slice thickness (mm) 0.77 0.77

Pixel size (mm2) 0.77⇥0.77 0.77⇥0.77

Repetition time (ms) 36.40 70.40

Echo time (ms) 4.61 7.46

Flip angle (�) 7 7

Velocity encoding (cm/s) 50 40
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FIGURE 3.1: Schematic diagram of the phantom measurement. Top
left: anatomical 3D structures of a heart and great vessels (with CoA)
were segmented and reconstructed based on MRI images to obtain
the geometry of the aorta. Top right: 4D-Flow MRI of 3D printed
phantoms connected to a pump were performd for pre-interventional
and post-interventional geometries. Bottom: 4D-Flow MRI yields
three components (U, V, W) of the instantaneous flow velocity at each

voxel.
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TABLE 3.3: MRI sequences for geometry and 2D flow for in vivo val-
idation.

Geometry 2D flow MRI

Sequence type 3D T1 weighted FLASH 2D T1 weighted FLASH

Acceleration 3⇥2 2 ⇥ 2

Matrix size 320⇥260 192⇥119

Number of slices 88 30

Slice thickness (mm) 1.00 5.00

Pixel size (mm2) 1.00⇥1.00 1.56⇥1.56

Repetition time (ms) 312.01 39.44

Echo time (ms) 1.64 2.67

Flip angle (�) 20 20

Velocity encoding (cm/s) - 200

Numerical Modeling

The CFD simulations in this study were performed using the LBM, which is based on
the kinetic theory, particularly the Boltzmann equation which describes the move-
ments of fluid particles [63, 44, 23, 43]. For simulations, the space and time are
discretized into finite nodes and time steps. Starting from an initial state, the config-
uration of the fluid particles at each time step evolves in two sub-steps, streaming
and collision. During streaming, fluid particles at a node move to the neighbour-
ing nodes along specified discrete directions as defined by the lattice. The streamed
particles at a node collide with each other and change their velocity distribution
functions [12]. For 3D flows, the most popular lattice is the D3Q19, which is used in
this work.

Different operators, such as the single-relaxation time BGK [98] and the multi-
relaxation-time (MRT) operators [30], can be used to approximate the particle colli-
sion. We chose the MRT operator due to its better numerical stability. The governing
equation for the LBM with MRT operator reads

fi (x + eiDt, t + Dt)� fi(x, t) = Lij( f eq
j (x, t)� f j(x, t)), (3.1)

in which fi is the particle velocity distribution function along the ith direction; x and
t are the spatial coordinate and time respectively; Dt is time step; ei is the discrete
velocity of the lattice along the ith direction. The right-hand side of Equation (3.1)
represents the collision process in momentum space. Lij = M�1SM; M is a given
transformation matrix for the lattice; S is a diagonal matrix. Macroscopic parame-
ters, such as the fluid density, pressure and velocity, are moments of fi.

The left-hand side and right-hand side of Equation (3.1) represent the streaming
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and the collision processes respectively. The simplicity of this equation implies that
the LBM is readily parallelizable as the non-local streaming is linear while the non-
linear collision is local [63, 44, 23]. Thus, the LBM is increasingly used for turbulence
modeling, especially DNS with high performance modern computers. Additionally,
due to its particle feature, even with a simple Cartesian grid the LBM can resolve
flow with complex geometry, such as the patient-specific aortas considered in this
study.

The LBM based DNS and LES were investigated in this study, based on the open-
source library Palabos [50]. DNS resolves the flow at all scales without empirical
model in numerical experiments. As mentioned before, the calculation cost of DNS
is very high especially for flows with large Reynolds number [79, 136]. Alternatively,
LES explicitly solves large eddy current and implicitly calculates small eddies by
using a sub-grid scale (SGS) model, thus balancing accuracy and computational cost.
The Smagorinsky SGS model [117] was incorporated into the LBM in this study.

For all simulations, the inlet velocity with Poiseuille profile was specified at the
ascending aorta. The flow rates were given based on MRI measurements and can be
found in the following sections. Outlet boundary condition with a reference pressure
was applied to the descending aorta. The curved aortic wall was assumed to be no-
slip and treated with an extrapolation scheme [40].

3.1.3 Validation and Comparison

Phantom Experiments

The two phantoms filled with water were used in the MRI experiments and com-
pared to CFD simulations of the same geometries. The main branch blood ves-
sels were closed, to reduce their influence. Inlet and outlet of the geometries were
extended artificially for the connection of the water pipe. Water is incompress-
ible and Newtonian. Its density and kinematic viscosity are 1.0 ⇥103 kg/m3 and
1.0⇥10�6m2/s, respectively. The averaged velocity at the inlet is 0.1 m/s. The ge-
ometries with triangular surface meshes are shown in Figure 3.2. Quantitatively,
areas of the inlet planes and six specified cross sections, from ascending to descend-
ing aorta, are listed in Table 3.4. Locations of those sections can be found in the left
panel of Figure 3.7.

First, a mesh independence test was performed. We considered at least four
simulations with different spatial resolutions for each case, as shown in Figure 3.3
and Figure 3.4. The averaged kinetic energy E = 1

2 ÂN
i=1 u2

i /N in the whole compu-
tational domain was monitored. Therein, N is the number of lattices, ui is the local
velocity. Density (or mass) is almost constant thus not considered in the definition of
E. A smooth temporal development of E can be found in all curves, as we gradually
increased the inlet velocity from zero to the target value, for the purpose of better
numerical stability. By comparing the curves after the statistical steady states and
the corresponding computational costs, we chose the meshes with orange curves for
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24

FIGURE 3.2: Aortic geometries with triangular surface meshes. Left:
pre-interventional geometry; right: post-interventional one. Unit: m.

further simulations. In summary, 12.30 million (DNS) and 3.45 million (LES) lattice
nodes were selected for the pre-interventional geometry and 5.12 million (DNS) and
1.25 million (LES) lattice nodes for the post-interventional one.

Due to the complex geometry, e.g. multiple plane curvatures and branches, blood
flow in the patient-specific aorta is unsteady and complicated. Instantaneous veloc-
ity contours on a sagittal plane and a coronal plane in the pre-interventional geom-
etry are given in Figture 3.5. Due to the relatively low temporal resolution of 4D
flow MRI, here only results from DNS and LES are presented. It can be seen that
the flow therein is turbulent. Because of the local narrowing in the stenosis, flow
is accelerated in the pre-interventional geometry and the local Reynolds number on
the stenosis plane is more than 2500. Jet flow, which leads to high blood pressure

TABLE 3.4: Areas of the specified aortic cross sections for geometries
used in DNS.

pre-interventional geometry post-interventional geometry

Inlet (m2) 9.404e-05 6.859e-05

No.1 (m2) 4.175e-04 4.050e-04

No.2 (m2) 8.625e-05 8.857e-05

No.3 (m2) 1.380e-04 1.401e-04

No.4 (m2) 2.725e-05 1.281e-04

No.5 (m2) 2.544e-04 1.705e-04

No.6 (m2) 2.4780e-04 1.194e-04
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FIGURE 3.3: Mesh independence test (DNS). Time histories of the
averaged kinetic energies in the aortic geometries. Top row is
for the pre-interventional geometry; Bottom row is for the post-

interventional geometry.
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34
23
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FIGURE 3.4: Mesh independence test (LES). Time histories of the av-
eraged kinetic energies in the aortic geometries. Top is for the pre-
interventional geometry; Bottom is for the post-interventional geom-

etry.
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																																DNS																																																																																			LES																																										

FIGURE 3.5: Instantaneous velocity contours on a sagittal plane and
a coronal plane in the pre-interventional geometry of an aorta of a

patient with CoA simulated by CFD. Left: DNS; right: LES.

and high wall shear stress (WSS), is observed. DNS provides more flow details due
to higher spatial resolution.

As the flow is unsteady, temporal averaging was performed for both CFD and
MRI results and the following comparison is based on the time-averaged flow fields.
The main flow features can be found in Figture 3.6. The visualization of 3D stream-
lines and velocity vectors on the sagittal plane (insets) shows the complexity of the
flow within the patient’s aorta, especially where the stenosis occurs. Again, jet flow
and recirculation are observed in the pre-interventional geometry in the streamlines
and highlighted in the zoomed-in insets. Helical streamlines can also be found in
all cases. For the MRI results, some streamlines start from the vessel wall as no-
slip boundary condition is not guaranteed in MRI data. Nevertheless, all methods,
including DNS, LES and MRI, resolved the main flow features. Moreover, as the
aorta is deformed and flattened after stent implantation, the flow resistance in the
post-interventional geometry is reduced. The pressure drop is reduced from 790 Pa
(DNS) and 778 Pa (LES) to 9 Pa (DNS) and 8 Pa (LES), respectively. Those results
indicate that stent implantation restored the aortic flow effectively.

Figure 3.7 presents quantitative comparison of mean velocity magnitude on six
specified cross-sectional planes. These six planes, as shown in the left panel of Fig-
ture 3.7, represent the ascending, arch, pre-stenosis, on-stenosis, post-stenosis and
descending of the aorta respectively. The mean velocity magnitude was calculated
according to ÂN

i=1

q
U2

i + V2
i + W2

i /N, with N the number of points on a cross
plane. It can be seen from the right panel of Figture 3.7 that the MRI results are
a little larger than the numerical ones on planes Pre 2, Pre 3 and Pre 5. Using MRI re-
sults as reference, the relative deviations for LES and DNS are 4 � 28% and 7 � 27%
respectively. Largest deviation can be found on Pre 5, mainly due to the difficulty
for the MRI measurement induced by the recirculation after the stenosis. On Pre 4,
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Figure	9:	Comparison	of	streamline	along	the	aorta.	(a)Pre-operation.	(b)Post-operation.	

																				DNS																																														LES																																													MRI	

																			DNS																																														LES																																													MRI	

FIGURE 3.6: Streamlines of the flow computed with CFD simula-
tions of the aorta compared to MRI measurements of the flow in
the 3D-printed phantoms. The time-averaged flow is shown. The
insets show the velocity vectors on the sagittal planes. Top: pre-

interventional geometry; Bottom: post-interventional geometry.
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MRI data is between the DNS (�4%) and LES (7%) ones. For the post-interventional
geometry, CFD results agree with the experimental data well on all planes, with rel-
ative derivations less than 10%.

Velocity contours on those specified planes, in pre-interventional and post- inter-
ventional geometries, are given in Figures 3.8 and 3.9 respectively. Generally, flow
patterns are qualitatively well-matched among LES, DNS and MRI for both geome-
tries. Both LES and DNS provide more details and smoother fields due to higher
spatial resolution compared with MRI. Discrepancy between the CFD results and
MRI one is observed on Pre 4 and 5. We believe this is because of the complexity
induced by the jet flow and recirculation after the stenosis, which is visualized in
Figures 3.5 and 3.6. Nevertheless, the results from LES agree very well with those
from DNS on all specified planes.

Velocities along the centerlines of the pre-interventional and post-interventional
geometries were also compared. The centerline was extracted using the VMTK ex-
tension for 3D Slicer [94]. Since velocity in the pre-interventional geometry changes
more acutely because of the stenosis, here only the results for pre-interventional
geometry are presented. Discrete points along the centerline, starting from the as-
cending aorta after the artificial extension, are considered and can be found in the
left panel of Figure 3.10. Velocity components and magnitude are given in the right
panel. It can be seen that velocity components change sharply in the stenosis region
which leads to a peak in the profiles of velocity magnitudes. Results from LES, DNS,
and MRI agree with each other in most region of the aorta, except the coarctation.
Similarly to Figure 3.8, discrepancy mainly happens in the MRI result around the
stenosis, while good agreement between DNS and LES is always achieved. The flow

Based on the above comparisons, it can be concluded that CFD (LES and DNS)
results agree with the data from 4D-Flow MRI. More information, such as pressure
drop and WSS can be easily generated from the CFD results. Since LES needs less
computational resources but provides acceptable accuracy, we conclude that LES is
capable in resolving aortic flow and adopt it for the following research.

In vivo Validation

To further validate the numerical modeling, we also used in vivo measurements
in addition to the phantom study. The patient-specific aortic flow was compared
between LES and flow MRI. Considering the long measurement duration needed by
4D-Flow MRI [119], 2D flow MRI was used for the in vivo scans. Velocities, thus flow
rates, on specified planes perpendicular to the main flow direction were measured
with 2D phase-contrast flow MRI. The experimentally obtained flow rate on a plane
in the acceding aorta is shown in the left panel of Figure 3.11. The two time instants,
t1 and t2 during systole, were considered and their flow rates were used as inlet
boundary condition for the LES simulations. The experimentally recorded velocity
distributions in the descending aorta at these two instants were used for comparison.
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FIGURE 3.7: Comparison of mean velocity magnitude on specified
planes for the pre-interventional and post-interventional aorta geom-
etry. Left: six specified cross planes, including ascending, arch, pre-
stenosis, on-stenosis, post-stenosis and descending of aorta. Right:
The time-averaged mean velocities from 4D flow MRI and the CFD

simulations.
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Pre	1	 Pre		2	 Pre		4	 Pre		5	Pre		3	 Pre		6	

FIGURE 3.8: Flows in pre-interventional aorta. Velocity magnitude
distributions were compared among CFD simulations and 4D Flow

MRI on six planes as shown in Figure. 3.7. Time-averaged results.

Post	1	 Post		2	 Post		4	 Post		5	Post	3	 Post		6	

DNS	

LES	

MRI	

Figure	5:	Flows	in	post-operation	aorta.	In-plane	velocity	magnitude	distributions	are	compared	among	4D	Flow	MRI	and	the	CFD	
simulations		located	in	six	planes	as	shown	in	Figure	3.					

FIGURE 3.9: Flows in post-interventional aorta. Velocity magnitude
distributions were compared among CFD simulations and 4D Flow

MRI on six planes as shown in Figure 3.7. Time-averaged results.



54 Chapter 3. In silico modeling for personalized stenting in coarctation

FIGURE 3.10: Comparison of flow velocity along the centerline of the
pre-interventional aorta. Top: locations of the points starting from the
ascending aorta. Bottom: from top to bottom, velocity components

and magnitude. Time-averaged results.
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In numerical simulations, the aortic geometry was segmented and reconstructed
based on the MRI slices. The geometry extends from the aortic root to the descend-
ing aorta, and includes branch vessels as shown in Figure 3.11. Both the inlet and
outlet planes were approximately circular after the geometry were remeshed and
smoothed. We didn’t consider the deformation of the aorta, or fluid-solid interac-
tion, and assumed that the wall was not moving. A velocity profile based on the
experimentally recorded flow rate was specified as inlet. Specifically, the flow rate
Qin was calculated according to Qin = ÂN

i=1 Vi · Si. Here Vi is the pixel-velocity ob-
tained from 2D flow MRI, Si is the area of each pixel in the inlet plane, N is the total
number of pixels in the inlet plane. A parabolic profile with the same amount of
flow rate was then generated in Palabos as inflow boundary condition. A pressure
boundary condition, with a specified reference pressure, was defined as outlet at the
opening in the descending aorta, as velocity profile over there was unknown. Since
the vessel branches were open in this test, the difference of flow rates between the
inlet and outlet were assigned to the branches according to their cross areas [75, 95].

The time-averaged flow fields are given in the right panel of Figture 3.11. At
t1 (the instant with peak flow rate), the through-plane component of mean veloc-
ity from LES is 0.69 m/s, with relative deviation 8% in reference to the MRI result,
0.75 m/s. Similarly, at t2, the through-plane component of mean velocities are 0.55
m/s (LES) and 0.49 m/s (MRI). Thus, good agreement between LES and MRI was
achieved also in vivo. Moreover, LES with proper boundary condition could pro-
vide more flow details due to higher spatial resolution, as shown in both in vivo and
phantom tests.

3.1.4 Application for Stent Selection

Geometry Deformation

The main motivation for silico stent implantation is to help clinicians to evaluate the
surgical plans based on predicted results and to be able to select an optimal stent
already before surgery. A fast virtual stenting approach proposed by Neugebauer
et al. [85] was implemented in this work to generate virtually deformed geome-
tries. Several parameters, such as the aorta bending resistance, aorta stiffness, stent
stiffness, stent position and diameter were considered in this approach to represent
the interaction between aorta and stent. The deformed geometry was then obtained
based on the deformed centerline and deformed surface vertices, as shown in Figure
3.12 and 3.13.

A brief description of the procedure is given below. With image segmentation
and reconstruction, one gets a STL file with triangular facets and vertices describ-
ing the aortic geometry. The original centerline Loriginal, obtained using the VMTK
extension for 3D Slicer, is then modified to Ldeformed according to

Ldeformed = i · Loriginal + (1 � i) · Lreference, (3.2)
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FIGURE 3.11: Comparison of in vivo aortic flow between LES and
2D flow MRI. Top: the experimentally recorded flow rate crossing
the ascending plane; locations of the specified ascending plane and
descending plane are given in the inset. Bottom: The through-plane
component of velocity distributions on the descending plane at two

different time instants during the cardiac cycle.
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FIGURE 3.12: Virtual aortic deformation: the schematic diagram of
geometrical centerline deformation.

As shown in Figure 3.12. Here Lreference is a straight line closed by two splines,
which ensure a smooth transition; 0 < i < 1 is defined to represent the stiffness
of stent and aorta, and the aorta bending resistance. The surface is then deformed
based on the deformed centerline, as shown in Figure 3.13. A common orthogonal
vector ~vrotation is defined for both the original surface and the deformed one, and it
reads

vrotation = doriginal ⇥ voriginal (3.3)

for the original geometry. A vertex in the deformed surface can then be calculated
based on

vde f ormed = m · (dde f ormed ⇥ vrotation), (3.4)

with m the scaling factor to adjust the diameter of aorta. More details can be
found in [85] . Accordingly the deformed geometries after intervention with differ-
ent stents are shown in Figure 3.14 and Figure 3.15.

More details can be found in Section 3.2

CFD Evaluation

The original pre-interventional geometry and its deformed versions can be found in
Figure 3.14 and Figure 3.15. The deformed geometries were exported as STL files,
which were remeshed and further imported into the CFD solver for flow simulation.
The above validated LES was used to resolve the flows in the pre-interventional
geometry and the virtually deformed ones. We used the same boundary conditions
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FIGURE 3.13: Virtual aortic deformation: the schematic diagram of
geometrical surface vertex deformation.
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FIGURE 3.14: Virtual stent implantation: the visualization of geomet-
rical deformation after visual stent implantation.
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FIGURE 3.15: Virtual stent implantation: cross sections of the pre-
interventional geometry, virtually deformed geometries with stent di-

ameter 8 mm, 12 mm, and 16 mm respectively.

as mentioned in subsection 3.2, with flow rate 13.2 ml/s at the inlet. The numerically
obtained results are presented in Figures 3.16 - 3.18.

The color coded streamlines in Figure 3.16 show that a stent with diameter 8
mm is inadequate to reduce the stenosis and jet flow with a large local flow still can
be observed in the narrowing region. For stent diameter 12 mm or 16 mm, the jet
flow disappears, with substantially reduced maximum velocity compared to the pre-
interventional geometry. The velocity vectors, color coded with the velocity compo-
nent W, on different cross sections are provided in Figure 3.17. It presents quan-
titative comparison of velocity distributions on on-stenosis planes within different
geometries, as well as post-stenosis planes. On on-stenosis planes, the maximum ve-
locities are 0.40 m/s, 0.35 m/s, 0.23 m/s and 0.11 m/s respectively, decreased signif-
icantly from the pre-interventional geometry to the deformed ones. On post-stenosis
planes, the jet flow, which leads to locally high WSS, can be found in both the pre-
interventional geometry and the deformed one with diameter 8 mm. A much more
uniform on plane velocity distribution is achieved in the geometries with larger stent
diameter.

The WSS distributions are given in Figure 3.18. WSS describes the mechanical
force generated by blood flow on the vessel wall, thus plays an important role in
chronic adaption and remodelling [49]. It is defined as ty=0 = µ ∂u

∂y |y=0, where µ is
the dynamic viscosity of the flow, u is the flow velocity along the wall and y is the
height above the wall. As shown in Figure 3.18, high WSS is observed in the stenosis
region in the pre-interventional geometry and the deformed one with stent diameter
8 mm. After the stenosis, high WSS is also found in a part of the descending aorta
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19	

FIGURE 3.16: Streamlines in the pre-interventional and virtually
deformed aortas. Time-averaged results. From left to right: pre-
interventional geometry, virtually deformed geometries with stent di-

ameter 8 mm, 12 mm, and 16 mm respectively.

due to the impact of high-speed jet flow (see Figures 3.16 and 3.17 for reference).
A stent with diameter 16 mm enlarges the stenosis most and therefor leads to the
smallest WSS in the same region. However, as this stent is larger than the size of the
aorta, it also leads to a relatively large WSS before the stent, compared to the case
with stent diameter of 12 mm.

Stent Selection

To quantitatively compare the four cases with different stent diameter, the pressure
drop and maximum WSS are given in Figure 3.19. It can be seen that the pressure
drop is 119 Pa in the pre-surgical geometry, and is reduced to 34 Pa and 28 Pa in
the geometry with stent diameter 12 mm and 16 mm respectively. For the maximum
WSS on the aortic wall, the geometry with stent diameter 12 mm provides the small-
est value, 1.07 Pa. It is understandable that a larger diameter stent results in less
flow resistance thus smaller pressure drop, assuming that the aortic wall is always
deformable. On the other hand, size of the aorta wall and its nonlinear response to
possible strain should also be considered. If a stent is too large for the aorta, it is
conceivable that in addition to flow there will be external mechanical force from the
stent acting on the aortic wall.

Thus a stent with diameter 12 mm should be the optimal solution for the current
patient-specific aorta, which agrees with the physicians’ independent choice in this
case.

We further compared the virtually deformed geometry based on this optimal
stent with the post-interventional one reconstructed from MRI images in Figure 3.20.
Centerlines for both geometries were obtained and the distance (  1.60 mm) be-
tween two centerlines is presented. Similarly, the spatial dependent diameters are
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FIGURE 3.17: Velocity vectors, color coded with the component
W, on different cross sections. Time-averaged results. Top, on-
stenosis plane; bottom, post-stenosis plane. From left to right: pre-
interventional geometry, virtually deformed geometries with stent di-

ameter 8 mm, 12 mm, and 16 mm respectively.

FIGURE 3.18: WSS on the pre-interventional and virtually deformed
walls. Time-averaged results. From left to right: pre-interventional
geometry, virtually deformed geometries with stent diameter 8 mm,

12 mm, and 16 mm respectively.



62 Chapter 3. In silico modeling for personalized stenting in coarctation

12	
FIGURE 3.19: Quantitative comparison of pressure drop and maxi-

mum WSS in the aortas before and after deformation.

also given, with deviation less than 0.65 mm. It can be concluded that the virtu-
ally deformed geometry agrees with the clinically deformed one quantitatively. It
should be noted that in this study the physicians chose a stent with diameter 12 mm
independently and without input from the in silico modeling, which agrees with
the prediction based on the combination of virtual geometry deformation and CFD
simulation.

3.1.5 Discussion

Image-based in silico stent implantation [8, 21, 53, 85] and CFD [144, 13] together
provide a new framework for stent planning and interventional procedure evalua-
tion. Besides a protocol for virtual geometry deformation, a CFD method is needed
to accurately resolve the flows in the aortic geometries. However, blood flow in
patient-specific aorta is complicated [121, 64]. Laminar flow, turbulent flow and
transition between them may coexist spatiotemporally. In our study, we firstly eval-
uated the accuracy of LES to predict such complicated flow. Two CFD methods, the
LBM based LES and DNS, in cooperation with flow MRI, were considered. Both
phantom and in vivo validations show that the LBM based LES, which keeps a bal-
ance between numerical accuracy and computational requirement, is a reasonable
choice for resolving aortic flow. The validated LES was then used to predict the
flows in virtually deformed geometries with different stent diameters. By compar-
ing the flow fields, pressure drop, and maximum WSS, it was found that the optimal
stent was the one with diameter 12 mm, which agrees with the physicians’ indepen-
dent choice.

To restore blood flow, in addition to numerical methods, accurate geometry and
boundary conditions are also important. Based on MRI scans, aortic geometry can
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FIGURE 3.20: Validation of virtual stent implantation, with inset
showing the realistic post-interventional geometry. An optimal stent
with diameter 12 mm was chosen independently in both the in silico

modeling and clinical intervention.

be segmented and reconstructed from high-quality image slices [41, 7, 53]. Further-
more, flow MRI is used for visualization and quantification of aortic flow. 2D flow
MRI with through-plane velocity encoding is usually performed in clinical applica-
tions [119, 129, 138]. But the 2D flow measurement is affected by the selection of the
cross-sectional plane. 4D flow MRI, alternatively, is able to obtain time-dependent
3D blood flow, which is resolved in all three dimensions of space and the dimension
of time during the cardiac cycle. It can used for the estimation of the flow path-
ways and the WSS. But 4D flow imaging takes a significant amount of time, which
prevents wide clinical application. Thus for patient-specific in silico stent implanta-
tion, MRI and LES need to work together and both are indispensable. Particularly,
MRI provides data for geometry and boundary conditions, while LES predicts aortic
flows for further evaluation.

3.1.6 Limitations and Future Works

In this work, we validated the LBM based LES with both phantom and in vivo exper-
iments, and provided a realistic example of the in silico stent implantation. There are
still some improvements possible which could be considered in the future. Firstly,
the aortic flow is unsteady, but we didn’t consider time dependent boundary condi-
tion in our simulations. We argue that current boundary conditions are enough for
us to compare different methods and provide results for stent evaluation. By mod-
eling the realistic cardiac cycle, one may get more instantaneous flow information at
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the cost of longer computation time. Secondly, we assigned the flow rates to the ves-
sel branches according to their cross areas. An alternative is the Windkessel model
which considers resistance and capacitance of the vessel network. Thirdly, we used a
fast geometric method to mimic the complex interaction between the aortic wall and
the stent. Ideally, one would take into account the mechanical properties of the aortic
wall and the stent, as well as the geometry of the stent, and model their interaction
using finite element method. Unfortunately it is still a big challenge to get accurate
orthotropic properties of the fiber reinforced aortic wall and to model the contact
problem numerically. Thus a simplified geometric method is a reasonable start, and
should be improved in the future for more realistic virtual stent implantation.

On the other hand, as an important part of the in silico modeling, MRI provides
information such as geometry and boundary conditions. Thus the image quality
directly affects the flow field obtained. Therefore, MRI acquisition techniques and
image post-processing still need to be optimized. Furthermore, although the tradi-
tional CFD can resolve the hemodynamics accurately, it is still time consuming. For
rapid surgical planning, other methods such as machine learning might be consid-
ered in the future.

3.1.7 Conclusion

As a congenital defect, CoA may cause many serious problems for patients if it is
not treated in time and effectively. Stent intervention is a recommended therapy,
but it remains challenging for physicians to find the optimal stent before treatment.
In this study, we proposed a framework for personalized stent planning using in
silico modeling, combining CFD and image-based virtual geometry deformation.
We firstly compared the flow fields from LBM based LES and DNS, and MRI for 3D-
printed phantoms and in vivo. The validated LES was then used to resolve the flows
in virtually deformed aortic geometries. Stents with three different diameters were
considered. Based on the obtained pressure drop and maximum WSS, we concluded
that a stent with diameter 12 mm was the optimal one for the patient. This agrees
with the physicians’ independent choice. Our study shows that the proposed in
silico stenting is a powerful tool, and can be used to help clinicians to evaluate the
surgical plans based on predicted results and to be able to select an optimal stent
before intervention. Such methodology could also be extended to other stenosis,
such as cerebral artery stenosis.
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3.2 Supplementary Material

Geometry Deformation

• Transition zone deformation

In addition to the stent zone, we need to consider the transition zone, which
is the junction between the stent zone and the normal vessel. Because the ves-
sel is elastic, in order to ensure continuity and smooth transition between the
stenotic zone and the original vessel at the junction, we assume that the di-
ameter change of the transition zone is associated with the following logis-
tic function. The schematic diagram of virtual surface deformation located at
transition zone are shown in Figure 3.21. The diameter Dm can be calculated
using

Dm =
1

1 + e�12( n
m�0.5) , (3.5)

where n 2 [0, m], m is the length of the transition zone. If a large m is chosen,
it is a wider and smoother transition zone. So m represents the stiffness of the
vessel.

6
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FIGURE 3.21: The schematic diagram of virtual surface deformation
located at transition zone.

• The procedure of Geometry deformation
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TABLE 3.5: The parameters used in the visual aortic deformation.

Parameters Input

Narrowing region No. 300-393

Centerline control (Distance) 0.4

Centerline control (i) 0.1

Transition Zone 2

Stent diameter 12

The process of virtual aortic deformation [85] is shown in Figure 3.22. First,
we performed the calculation of the original aortic centerline. After image seg-
mentation and reconstruction, we were able to obtain a stl file of the aortic
geometry, whose centerline was then calculated using Vmtk. The basic princi-
ple is to find the centroid of the largest endotropic sphere at each vertex on the
3D Voronoi diagram of the surface grid, and connecting these centroids draws
the centerline. At the same time, the aortic diameters along the aorta were
also obatined. As shown in Figure 3.23, the relative stenosis from the ascend-
ing segment of the aorta through the aortic arch to the descending segment
occurs at points 300-393 on the centerline, with a stenosis length of 33.36 mm
and a minimum stenosis diameter of 6.03 mm. The input parameters for vir-
tual deformation are given in Table 3.5, where the centerline control (Distance)
represents the maximum distance between spline and straight line (the gray
line in Figure 3.12). Finally we got the new aortic centerline and the surface
geometry deformed according to the new aortic centerline, which can be seen
in Figure 3.2. In addition, based on the mean diameter range and the length of
the stenotic segment, an aortic stent (the diameter is 12 mm and the length is
34 mm) was recommended to treat this patient, and this result was proved to
be in good agreement with the the one used by the physicians.
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FIGURE 3.22: Flow chart of virtual aortic geometry deformation.
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FIGURE 3.23: The distribution of diameter along the centerline in the
pre-interventional aorta. The region of aortic stenosis is shown in the

black box.
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Chapter 4

Image-based hemodynamic
prediction using PINN

MRI is indispensable in hemodynamic studies as a harmless and non-invasive ex-
perimental tool, but the flow information obtained from flow MRI still have some
uncertainties. CFD resolves the flow field by numerically solving the physical equa-
tions, but its accuracy is determined by several factors such as the geometry of the
computational region, boundary conditions and numerical models.

The emergence of PINN, which is based on the NN framework and physical
equations, has attracted much interest. For several canonical laminar flows, PINN
performed well based on CFD data or experimental data as training data [102, 27,
58, 83]. Further development of the PINN offers the possibility to predict more com-
plex flow. For example, by involving an artificial viscosity, PINN was used for the
recovery of scale-adaptive turbulent structures [142]. Although PINN has evolved
considerably in the last few years and is being used in an increasing number of fields,
very little research has been done in biophysics, especially in hemodynamics.

In this chapter, I propose an alternative strategy that combines PINN and MRI to
quantitatively predict flow. This strategy overcomes the limitations of each method
in hemodynamic studies to accomplish more accurate and effective predictions. First,
I predict flow in idealized phantoms of normal and stenotic vessels and discuss the
accuracy of PINN in terms of image noise reduction and data assimilation, as well
as its ability to find vessel walls. Next, I use PINN to complete aortic flow prediction
in a CoA patient and discuss its ability to predict complex flow field.

4.1 Methodology

This section provides more details of PINN. The training data preparation based on
flow MRI is also introduced.

4.1.1 Physics Informed Neural Network

As mentioned in Chapter 1, blood in large vessels can be considered as a Newtonian
fluid. The motion of blood flow is governed by three fundamental conservation
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laws, as introduced in Chapter 2, namely, the laws of conservation of mass, conser-
vation of momentum and conservation of energy. Since blood is incompressible and
has a constant temperature in the body (without considering heat exchange), the
governing equations for blood flow can be further simplified as follows:

5 ·u = 0 (4.1)

r
Du
Dt

+5p � µ 52 u = 0 (4.2)

where r is the density, which is constant for incompressible blood flow; u is the
flow velocity containing three components (u, v, w) corresponding to (x, y, z) in the
three-dimensional Cartesian coordinate system; p is the pressure; and µ is the dy-
namic viscosity. Besides those governing equations, initial conditions and boundary
conditions are also required to resolve a specific flow.

The schematic diagram of PC MRI based PINN is given in Figure 4.1. A fully con-
nected NN is considered. The input variables of the NN are the positions in a given
domain. The output is the flow velocities and other flow-related variables such as
pressure and Re. The constraint part contains data constraint and physical equation
constraint. The data constraint is to minimize the deviation of the predicted flow
field from velocity information from PC MRI, while the equation constraint is to
minimize the residuals of the physical equations calculated based on the automatic
difference method in Tensorflow [1]. Under the combined effect of data constraint
and physical equation constraint, the NN finally predicts the flow field with high
accuracy by adjusting the parameters of the hidden layers. The absolute loss equa-
tions are given in Equations (4.3) and (4.4). The total loss based on mean square
deviations of data and equations in training is given in Equation (4.5).

Lossequ1 =
∂u
∂x

+
∂v
∂y

+
∂w
∂z

(4.3)
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Losstotal = a ⇤ Lossdata + b ⇤ Lossequ + c ⇤ Lossbc

= a ⇤ 1
Nd

Nd

Â
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Â
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(|u⇤
k � uk|2 + |v⇤k � vk|2 + (|w⇤
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.

(4.5)

where Lossequ1 � Lossequ4 are the losses (or residuals) from the continuity equation
and NSE, respectively; a, b, c represent the contributions of the data constraint, phys-
ical equation constraint and the boundary data constraint, respectively. Lossdata =

Lossu + Lossv + Lossw, in which Lossu, Lossv, Lossw are defined as the mean square
deviations of the velocity components u, v and w. Lossbc can be seen as data con-
straint in boundary. Re = ruL/µ is the Reynolds number, with L the characteristic
length such as vessel diameter. µh is an artificial viscosity introduced to model tur-
bulence [142], and is set to zero for laminar flow. Ne, Nd, Nbc are the number of
equation constraint, number of data constraint, number of data in boundary respec-
tively; thus Nd  N and Nbc  N, with N the total number of discrete points in the
region of interest.

In this chapter, I used different NN and compared the computational results of
them. The Adam method [60] was selected as the optimizer (details described in
Chapter 2). swish [103] was selected as the activation function. The losses were used
to monitor the convergence during the iteration so that solutions with acceptable
accuracy were obtained.

4.1.2 Training Data Preparation

To provide training data for PINN, flows in several printed vessel phantoms, with
physiologically reasonable Re, were considered. For simplicity, water was used in-
stead of blood.

In a flow image/field, the flow information is contained at many voxels, each of
which is considered as a discrete point in space. In this study, the flow fields were
acquired using 4D PC MRI, containing three instantaneous velocity components at
a specific time and a specific location. Most of the voxels from PC MRI provide
realistic blood flow. Due to measurement limitations, some voxels may deviate from
the constraints of the physical equations.

As shown in Figure 4.1, three vessel phantoms, including both idealized ones and
realistic one, were considered in this study. All three phantoms were generated with
Autodesk Meshmixer [113], then printed out. The idealized phantoms were printed
using Ultimaker 2 Extended+, while the realistic aortic phantom was printed using
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FIGURE 4.1: The schematic diagram of PC MRI based PINN. Top, the
training data preparation from PC MRI; bottom, a schematic repre-

sentation of PINN in blue box.
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a high-end 3D laser printer from Stratasys due to more complex geometry, as shown
in Section 2.1.3. More details are given below:

• A straight pipe, with inner diameter 30 mm, was used to mimic a normal vessel
with laminar flow.

• A pipe with local narrowing was used to mimic a vessel with 50% stenosis.
The inner diameters in the normal part and narrowest part are 12 mm and 8.5
mm respectively. Flow therein was laminar.

• An aortic phantom was created based on the three-dimensional anatomy of
a patient specific aorta. The model was reconstructed from images obtained
by Magnetom Skyra 3T (Siemens Healthineers, Erlangen, Germany). The ge-
ometry, including the ascending aorta, aortic arch and descending aorta, was
segmented and exported as a STL file using ITK-SNAP [91]. The generated
geometry was then smoothed using Autodesk Meshmixer. The flow was tur-
bulent.

Water flows inside these phantoms were driven by a pump, and measured with
4D PC MRI [33, 97]. The parameters of the measurement sequences for the different
phantoms will be provided below. Three measurements were performed for each
phantom, and the averaged flow field of these three measurements was used as
training data for PINN. In addition, LBM-based CFD, with boundary conditions
obtained from PC MRI, was also performed for all phantoms and used as a reference
for comparison.

4.2 Results and Discussion

In the following I will first present the prediction of laminar flow in the normal
vessel. Such flow with analytical solutions is always considered as a benchmark
for flow measurement or modeling. I progressively increase the complexity of the
geometry, thus complexity of the flow. Secondly, the flow in a stenotic vessel is
discussed. Finally, prediction of the flow in a realistic aortic geometry of a CoA
patient is performed, and the same geometry was also considered in Chapter 3.

4.2.1 Laminar Flow in Normal Vessel

Flow in the normal vessel phantom was considered first. Such flow was laminar
with Re = 400, calculated from the maximum velocity and the pipe inner diameter.
Parameters used for the flow MRI are given in Table 4.1. In the flow data measured
by MRI, some noise is usually present at the boundaries due to e.g. blood and vessel
interactions, limitations of image segmentation, etc [69]. In order to select relatively
accurate data as training data and check the sensitivity of PINN to the training data,
several data sets away from the boundary were considered. The following cases
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TABLE 4.1: Parameters used in MRI sequences for the phantom of
normal vessel.

Straight pipe

Sequence type 3D Cartesian FLASH

Matrix size 320 ⇥ 263

Number of slices 25

Slice thickness (mm) 2.20

Pixel size (mm2) 2.10⇥2.40

Echo time (ms) 2.30

Repetition time (ms) 4.80

Flip angle (�) 10

Velocity encoding (cm/s) 5

were performed with either partial or full data constraint, while physical constraint
was applied at all voxels:

• PINN-50%: data in the central region with area of 50% of the cross-sectional
area of the pipe were selected for training;

• PINN-70%: data in the central region with area of 70% of the cross-sectional
area of the pipe were selected for training;

• PINN-100%: data in the the whole vessel were selected for training;

• PINNlessS: 5 out of 30 MRI slices in the long axis of the vessel, thus 1/6 of the
whole data, were selected as data constraint.

In the NN part, the inputs are x, y, and z; the outputs are u, v, w and p. Each
hidden layer has 50 neurons for each output variable, with a total of 10 hidden layers.
For simplicity, this network is named 10*(4*50). The learning rate is 10�3 for the first
10,000 iterations, after which it is 10�4. The contribution parameters of losses are
a = 1, b = 1, and c = 0. Therein, c = 0 means that no strict boundary condition
is applied. The predicted flow fields and comparisons are shown in Figures 4.2 and
4.3.

For such pipe flow, if the flow is fully developed, the velocity component in the
main flow direction (long axis) is parabolic and the other components are zero due
to no-slip boundary condition. The velocity profiles along the y direction located at
the center of the pipe, as well as the coordinate system, are shown in Figure 4.2. For
such simple flow, CFD data agree with analytical solution very well, thus work as
reference here. In general, the flow patterns from MRI, PINN and CFD are similar.
For the velocities components u and v, which should be zero, acceptable deviations
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are found in the profiles from MRI. Since PINN used the data from MRI as constraint
partially, similar but reduced deviations can be found in the profiles of PINN, espe-
cially in the region near the wall. For the velocity component w and magnitudep

u2 + v2 + w2, MRI introduced some artifacts in the center resulting an asymmetric
profile, while the profiles of PINN are closer to that of CFD.

The velocity contours in the x � y and y � z planes are shown in Figures 4.3 and
4.4. In the MRI-obtained flow, the maximum velocity region is off-center and there
is some noise at the boundary. But from PINN-50% to PINN-100%, the velocity
contours are getting closer and closer to those of CFD-obtained flow. PINNlessS
and PINN-100% are in general agreement with the CFD-obtained flow. It should be
mentioned that CFD used a higher spatial resolution compared with PC MRI and
PINN, thus the contours of the CFD-obtained flow are smoother than others. The
vessel boundary, i.e., the region with zero velocity, is successfully found in all cases
except PINN-50%. In addition, PINN successfully predicts the pressure distribution
in the main flow direction and the reference pressure at the outlet was defined as
zero.

The deviations are shown in Figures 4.5 and 4.6, in which the CFD-obtained flow
is used as a reference. It can be seen that the deviations are mainly distributed at
the boundary and the off-center regions. As mentioned previously, this is due to the
noise introduced by MRI in the area close to the vessel wall. Alternatively, PINN
effectively eliminates noise introduced by MRI, especially in the cases of PINN-70%,
PINN-100% and PINNlessS. These deviations are summarized in Table 4.2. It is
found that for PINN-50% and PINN-100%, the losses of velocity components are
close, while the loss of the equation in PINN-50% is the greatest. It should be men-
tioned that greater loss of data only means greater derivation between the predicted
and training data, and does not mean that the prediction is less accurate. And for
PINNlessS, the loss of data is slightly larger, while its loss of physical equations
is minimal, which means that the flow is more consistent with physical laws and
therefore more accurate.

The scatter plots of the velocity magnitude distribution are shown in Figure 4.7,
using the CFD data as a reference. The blue line represents the state that MRI/PINN
and CFD are in perfect agreement. The points with low CFD velocity in the fig-
ure represent points close to the no-slip boundary of the vessel. It can be seen that
the PINNlessS reduced the noises in the region close to the vessel wall, showing a
more converged distribution. The root mean square error (RMSE) is reduced from
0.0081288 for MRI to 0.0014937 for PINNlessS, while the coefficient of determination
(R2) increased from 0.70726 for MRI to 0.9943 for PINNlessS.

Based on the above discussion, we found that PINNLessS can achieve flow pre-
diction using a small amount of data. Therefore, in the next study, the data con-
straints was selected in a similar way as PINNlessS.
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FIGURE 4.2: The velocity profiles in a selected line along y direction.
Normal vessel phantom.
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FIGURE 4.3: The velocity contours in the cross-section. From left
to right, the three velocity components among the cases from MRI,

PINN and CFD. Normal vessel phantom.
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FIGURE 4.4: The velocity and pressure contours in the y � z plane
through the central line. From left to right, the three velocity compo-

nents and the pressure. Normal vessel phantom.
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FIGURE 4.5: The deviations of velocity components in the cross-
section, using CFD data as a reference. Normal vessel phantom.

FIGURE 4.6: The deviations of velocity components in the y � z plane
through the central line, using CFD data as a reference. Normal vessel

phantom.
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TABLE 4.2: The comparison of the losses and relative L2 errors ob-
tained with different training data sets.

PINN-50 % PINN-70 % PINN-100 % PINNlessS

Losstotal 9.320 ⇥ 10�6 6.586 ⇥ 10�6 8.234 ⇥ 10�6 7.284 ⇥ 10�5

Lossu 7.624 ⇥ 10�7 8.696 ⇥ 10�7 1.116 ⇥ 10�6 2.004 ⇥ 10�5

Lossv 1.153 ⇥ 10�6 1.432 ⇥ 10�6 1.761 ⇥ 10�6 3.057 ⇥ 10�5

Lossw 4.980 ⇥ 10�6 3.785 ⇥ 10�6 4.120 ⇥ 10�6 2.174 ⇥ 10�5

Lossdata 6.895 ⇥ 10�6 6.087 ⇥ 10�6 6.996 ⇥ 10�6 7.235 ⇥ 10�5

Lossequ 2.424 ⇥ 10�6 1.062 ⇥ 10�6 1.238 ⇥ 10�6 4.956 ⇥ 10�7

Relative L2 error of u 1.005 1.004 1.004 1.007

Relative L2 error of v 1.011 1.007 1.007 9.955 ⇥ 10�1

Relative L2 error of w 6.884 ⇥ 10�1 4.340 ⇥ 10�1 4.296 ⇥ 10�1 4.199 ⇥ 10�1

FIGURE 4.7: Scatter plot of the velocity magnitude distribution in the
normal vessel phantom (Unit: m/s). Points on the blue line indi-
cate a better fit for PINN/MRI and CFD. Top, comparison of MRI
data and CFD data; bottom, comparison of PINNlessS data and CFD
data. RMSE is the root mean square error and R2 is the coefficient of

determination.
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TABLE 4.3: Parameters used in MRI sequences for the stenotic vessel
phantom.

Pipe with stenosis

Sequence type 3D Cartesian FLASH

Matrix size 384⇥312

Number of slices 78

Slice thickness (mm) 0.77

Pixel size (mm2) 0.76⇥0.76

Echo time (ms) 4.6

Repetition time (ms) 36.40

Flip angle (�) 7

Velocity encoding (cm/s) 40

4.2.2 Laminar Flow in Stenotic Vessel

The flow in a vessel with 50% stenosis was considered secondly. This flow was
laminar with Re = 686, based on the maximum velocity and diameter at the steno-
sis. Parameters used for flow MRI are shown in Table 4.3. The CFD-obtained flow
showed that such flow was steady in the left part and unsteady in the right part
after the flow passed the stenosis. Thus only the domain from the normal vessel to
the narrowest part was considered for training and comparison. In the long axis of
the stenotic vessel, 6 out of 18 MRI slices (approximate 1/3 of the whole data) were
selected as data constraint. Two predictions of flow by PINN were performed: one
was preformed with the contribution parameters a = 50, b = 1, and c = 0. ; the
other with an additional no-slip boundary condition, i.e. velocity components at the
voxels at the wall were manually set to be zero, with a = 50, b = 1, and c = 50.
All the voxels were constrained by the physical equations. Four different network
structures were considered firstly, and compared in Table 4.4. It can be found that
the network 10*(4*50) has relatively smaller losses and relative L2 errors, and was
used for the following training.

The time histories of the losses can be found in Figures 4.8 and 4.9, where the ve-
locity components converge smoothly, while the error (residual) of equation changes
from large oscillations (with learning rate 10�3) to small fluctuations (with learning
rate 10�4) during the training of the PINN. It should be noted that a was set to 50 in
order to emphasize the data constraint, thus the total loss was scaled up accordingly.

The distributions of velocity located in the plane "A" with normal diameter and
the plane "B" with the smallest diameter are shown in Figures 4.10 and 4.11, respec-
tively. It can be found that the velocity profiles of MRI, PINN and CFD are similar.
Specifically, in plane "A", the velocity components and amplitudes are very consis-
tent, although there is some noise in the MRI data. In plane "B", the boundary and
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TABLE 4.4: The comparison of the losses and relative L2 errors ob-
tained by different PINN.

10*(4*30) 10*(4*50) 15*(4*50) 20*(4*50)

Losstotal 1.387 ⇥ 10�2 1.241 ⇥ 10�2 1.387 ⇥ 10�2 1.328 ⇥ 10�2

Lossu 1.161 ⇥ 10�4 9.842 ⇥ 10�5 1.077 ⇥ 10�4 1.098 ⇥ 10�4

Lossv 7.720 ⇥ 10�5 8.176 ⇥ 10�5 8.795 ⇥ 10�5 8.623 ⇥ 10�5

Lossw 8.231 ⇥ 10�5 6.693 ⇥ 10�5 8.045 ⇥ 10�5 6.768 ⇥ 10�5

Lossequ 8.573 ⇥ 10�5 5.226 ⇥ 10�5 6.596 ⇥ 10�5 1.011 ⇥ 10�4

Relative L2 error of u 4.092 ⇥ 10�1 4.051 ⇥ 10�1 4.070 ⇥ 10�1 4.143 ⇥ 10�1

Relative L2 error of v 9.591 ⇥ 10�1 9.611 ⇥ 10�1 9.604 ⇥ 10�1 1.002

Relative L2 error of w 9.988 ⇥ 10�1 0.995 ⇥ 10�1 9.933 ⇥ 10�1 9.887 ⇥ 10�1

maximum velocity values have some slightly larger deviations. In the main flow
direction (long axis), it can be seen from Figure 4.12 that u increases significantly
from the normal region of the vessel towards the stenosis region. Compared with
the MRI-obtained flow, the PINN-obtained flow is more continuous and smoother,
close to the CFD-obtained one. In particular, the flow obtained by PINN with bound-
ary conditions is closer to the CFD-obtained flow due to the inclusion of boundary
condition. The velocity contours in two cross sections are shown in Figures 4.13 and
4.14. In the normal region, the vessel wall with zero velocity was found in both
PINN with and without boundary condition. However, in the narrow region, the
variation of velocity in the radius direction is more significant and no boundary was
found in the PINN without boundary condition.

The scatter plots of the velocity magnitude distribution are shown in Figure 4.15,
using the CFD data as a reference. In the region with low CFD velocity, the PINN
data show a more consistent distribution compared to the MRI data. This represents
an effective improvement of the flow near the vessel wall by PINN, especially in the
case of PINN with boundary conditions. In the region with high CFD velocity, the
points from MRI are distributed on both sides of the blue line with bias, while some
points from PINN are distributed on the right side of the blue line, i.e., slightly lower
than the CFD data. From MRI to PINN, the RMSE decreases and R2 increases.

4.2.3 Transitional Flow in Aorta with CoA

The combination of PINN and MRI effectively accomplishes the flow prediction of
the simplified phantoms described above. Here, I will discuss the ability of PINN to
predict more complex flow in realistic aorta. The third phantom is the geometry of
a three-dimensional aorta from a patient with CoA. As presented in Chapter 3, the
bifurcation vessels were blocked in order to simplify the experimental setup. In this
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FIGURE 4.8: The losses monitored during the training process in the
case of stenotic vessel without boundary conditions. The learning
rate is 10�3 until 20,000 iterations, after which it becomes 10�4. Top,
Lossu, Lossv, Lossw and Lossdata; bottom, Lossequ and Losstotal . Contri-

bution parameters a = 50, b = 1, and c = 0.
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FIGURE 4.9: The losses monitored during the training process in the
case of stenotic vessel with boundary conditions. The learning rate is
10�3 until 20,000 iterations, after which it becomes 10�4. Top, Lossu,
Lossv, Lossw and Lossdata; bottom, Lossequ and Losstotal . Contribution

parameters a = 50, b = 1, and c = 50.
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FIGURE 4.10: The comparison of velocity profiles in the normal re-
gion of the stenotic vessel. Left: location of plane "A"; right: velocity

components along the symmetric axis of plane “A”.
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FIGURE 4.11: The comparison of velocity profiles in the narrowest
region of the stenotic vessel. Left: location of plane "B"; right: velocity

components along the symmetric axis of plane “B”.
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FIGURE 4.12: Velocity contours in the central x � z plane of the
stenotic vessel. Top, location of the central x � z plane; middle, distri-
butions of the velocity components; bottom, distributions of the dif-
ferences between the MRI/PINN data and the CFD data. All images
were interpolated to a resolution of 0.01 mm to calculate the differ-

ences.
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FIGURE 4.13: Velocity contours in a cross section of the normal re-
gion of the stenotic vessel. Top, location of the cross plane "A"; mid-
dle, distributions of the velocity components; bottom, distributions of
the differences between the MRI/PINN data and the CFD data. All
images were interpolated to a resolution of 0.01 mm to calculate the

differences.
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FIGURE 4.14: Velocity contours in the cross section of the narrowest
region of the stenotic vessel. Top, location of the cross plane "B"; mid-
dle, distributions of the velocity components; bottom, distributions of
the differences between the MRI/PINN data and the CFD data. All
images were interpolated to a resolution of 0.01 mm to calculate the

differences.
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FIGURE 4.15: Scatter plot of the velocity magnitude distribution in
the stenotic vessel phantom (Unit: m/s). Points on the blue line in-
dicate a better fit for PINN/MRI and CFD. Top, comparison of MRI
data and CFD data; middle and bottom, comparison of PINN data
(without/with boundary conditions) and CFD data. RMSE is the root

mean square error and R2 is the coefficient of determination.
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TABLE 4.5: Parameters used in the MRI sequences for aortic phantom
measurements.

aortic phantom
Sequence type 3D Cartesian FLASH

Matrix size 384 ⇥504
Number of slices 144

Slice thickness (mm) 0.77
Pixel size (mm2) 0.77⇥0.77
Echo time (ms) 4.61

Repetition time (ms) 36.40
Flip angle (�) 7

Velocity encoding (cm/s) 50

phantom, when the water flows through the bifurcation and stenosis of the aorta, it
causes a complex flow due to the complex geometry.

First, I selected 6 slices of PC MRI data along the main stream of the aorta as
data constraint to predict the flow through the whole stenotic region. The thickness
between the selected slices is 5.39 mm, which is 7 times the thickness of the original
MRI slices. The Re is about 5000, based on the maximum velocity and equivalent
diameter of the narrowest part of the aorta. Since some region of the flow was tur-
bulent, an additional output value nh was considered in the PINN. Such artificial
viscosity term was used to regress the Reynolds stress in the RANS model. a = 50,
b = 1 and c = 0 were used for the loss contributions in the training. This case is
named CoA-1. The network was 10*(5*80) and the convergence of the losses can
be found in Figure 4.16. The velocity component converges smoothly. Lossequ and
Lossdata change from large oscillations (learning rate of 10�3) to small fluctuations
(learning rate of 10�4).

Since the flow in the aortic stenotic segment was turbulent, the temporally av-
eraged flow field was used for training. Specifically, the MRI-obtained flow and
the CFD-obtained flow were averaged over multiple time instants, while the equa-
tion constraints for PINN were parameterized equations with the artificial viscosity.
The velocity contours in a y � z plane (Figure 4.17) and a x � z plane (Figure 4.18)
show a sharp increase in velocity as the blood flow passes through the stenosis,
producing a jet after the stenosis that leads to an abrupt change in pressure. The
MRI-obtained and PINN-obtained flows clearly show the complex profile. In the
PINN-obtained flow, the noise is reduced and the flow is smoother. Comparing the
velocity magnitude, it can be seen that both PINN and MRI are generally close to the
CFD-obtained flow. In addition, in the pressure distribution of PINN, a sharp drop
in pressure can be clearly observed as the blood flow passes through the stenotic
segment. This shows that PINN has the ability to accomplish flow prediction even
in realistic stenotic aortas using a small number of data constraint.
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FIGURE 4.16: The losses monitored during the training process in
CoA-1. The learning rate is 10�3 until 40,000 iterations, after which
it becomes 10�4. Top, Lossu, Lossv, Lossw and Lossdata are shown;
bottom, Lossequ and Losstotal are shown. Contribution parameters a =

50, b = 1, and c = 0.
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FIGURE 4.17: The velocity and pressure contours of CoA-1 in a y � z
plane. Left, the training data (6 slices) and the velocity magnitude
from CFD; middle, the velocity components, magnitude from MRI
and the pressure from PINN; right, the velocity components, magni-

tude and artificial viscosity from PINN.



94 Chapter 4. Image-based hemodynamic prediction using PINN

FIGURE 4.18: The velocity and pressure contours of CoA-1 in a x � z
plane. Left, the training data (6 slices) and the velocity magnitude
from CFD; middle, the velocity components, magnitude from MRI
and the pressure from PINN; right, the velocity components, magni-

tude and artificial viscosity from PINN.
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TABLE 4.6: Comparison of the losses and relative L2 errors obtained
for aortic stenosis flow.

CoA-1 CoA-2

Losstotal 1.042 ⇥ 10�1 4.47 ⇥ 10�2

Lossu 6.731 ⇥ 10�4 -

Lossv 6.992 ⇥ 10�4 -

Lossw 6.327 ⇥ 10�4 2.822 ⇥ 10�4

Lossequ 3.975 ⇥ 10�3 2.405 ⇥ 10�3

Relative L2 error of u 6.453 ⇥ 10�1 8.576 ⇥ 10�1

Relative L2 error of v 5.325 ⇥ 10�1 1.056

Relative L2 error of w 4.563 ⇥ 10�1 3.223 ⇥ 10�1

For MRI, obtaining all three high-precision velocity components in a volume
with 4D PC MRI sometimes is time-consuming and difficult, whereas it is relatively
easier to obtain the velocity component perpendicular to the scanning plane using
2D PC MRI. Thus, another case, CoA-2, was conducted as an attempt to test the
ability of PINN for flow prediction using one velocity component from MRI. In this
case, the input variables were the spatial location of the pixels (6 slices only) and
the velocity component in the main flow direction, i.e., x, y, z, and w. The contri-
bution parameters were a = 150, b = 1, and c = 0. The network was 10*(5*100)
and the convergence of the losses can be found in Figure 4.16. It can be seen that the
velocity component w converges smoothly. Lossequ and Lossdata change from large
oscillations (learning rate of 1e � 3) to small fluctuations (learning rate of 1e � 4),
same as the case with all three velocity components. The PINN-obtained flow is
given in Figure 4.20. Using CFD as a standard, PINN-obtained flow is similar to
MRI-obtained flow, but again more continuous and smoother. There are small devi-
ations in some places, such as the recirculation area after the stenosis. The losses and
relative L2-errors are summarized in Table 4.6, where the data constraint for CoA-1
is (x, y, z, u, v, w) and the data constraint for CoA-2 is (x, y, z, w). It is found that the
losses and errors of CoA-2 are close to those of CoA-1.

The scatter plots of the velocity magnitude distribution are shown in Figure 4.21.
The velocity distribution of PINN is similar to that of MRI, but the number of points
with larger deviations is reduced. In the region with high CFD velocity, PINN has
some points distributed below the blue line, meaning that they are slightly smaller
than the CFD data. Moreover, from CoA-1 to CoA-2, even only one velocity compo-
nent was used for training, RMSE and R2 don’t change too much. This implies that
PINN can accomplish the prediction of the volumetric flow and all velocity compo-
nents using only a single velocity component on finite slices.
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FIGURE 4.19: The losses monitored during the training process in
CoA-2. The learning rate is 10�3 until 40,000 iterations, after which it

becomes 10�4. Contribution parameters a = 150, b = 1, and c = 0.
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FIGURE 4.20: The velocity contours of CoA-2 in a x � z plane and a
y � z plane. Top, the location of stenosis; middle, the velocity con-
tours from MRI/PINN/CFD in a x � z plane; bottom, the velocity

contours from MRI/PINN/CFD in a y � z plane.
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FIGURE 4.21: Scatter plot of the velocity magnitude distribution in
CoA-1 and CoA-2 (Unit: m/s). Points on the blue line indicate a bet-
ter fit for PINN/MRI data and CFD data. Top, comparison of MRI
data and CFD data; middle and bottom, comparison of CoA-1/CoA-
2 data and CFD data. RMSE is the root mean square error and R2 is

the coefficient of determination.
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4.3 Discussion and Conclusion

Blood flow in our body is laminar in general, but in some cases it may become tran-
sitional or turbulent, such as with stenosis cased by congenital or under pathological
conditions. However, it is often difficult to obtain an accurate flow field using a sin-
gle method of hemodynamic study. Therefore, it is necessary to combine multiple
techniques to accomplish accurate blood flow visualization and investigation.

PC MRI plays a very important role in the visualization of human blood flow. As
we observed in the above cases, the flows measured by PC MRI clearly show rea-
sonable pattern. Although the images from PC MRI contain some deviations in the
flow field, compared with the CFD data. These deviations arise from the noise, dead
pixels and experimental errors that are inevitable during the data acquisition and
image reconstruction. In in vitro measurements of simplified phantoms of normal
and stenotic vessels, as shown in Section 4.2.1 and Section 4.2.2, MRI accurately cap-
tured the main features for both flows, and more noise were found in the stenotic
vessel due to more complex flow therein. The noise was distributed globally, but
most pronounced in the region close to the vessel boundaries. The ability of PC MRI
to measure complex flow, such as those in complex geometries and even turbulent
flows, was further proved in Section 4.2.3, where a realistic aortic phantom with
stenosis was considered.

On the other hand, CFD, by discretizing time and space and solving the physical
equations numerically, can resolve blood flow accurately with a higher temporal and
spatial resolution than quite a few experimental measurements, such as MRI. Thus
CFD has found synergistic use in hemodynamic studies [122, 131]. However, taking
aortic flow as an example, in addition to the precise vascular structure geometry,
the boundary conditions of the inlet and outlet are crucial for CFD and have a very
strong influence on the obtained flow pattern and hemodynamic parameters [36, 95,
82, 81]. Moreover, laminar and turbulent flows as well as transitional flows may
occur simultaneously in the aorta due to complex personalized geometries [68, 121].
This in turn poses a new challenge for CFD. In order to resolve such complex flow,
one needs to choose a turbulence model and balance accuracy and computational
requirement, as discussed in Chapter 3.

PINN is a scientific machine learning technique to solve complex problems con-
taining PDE by training NN to minimize a loss function [27]. The training process
is under the unsupervised learning without the labeled data. Unlike data-driven
approaches, it does not require a large number of samples, which is particularly
suitable for applications in personalized medicine. Numerous studies have shown
that PINN can predict the flow even white noise was artificially added.

For hemodynamic applications, prediction with medical image-based PINN can
exclude the effect of noisy MRI data so that the flow field of interest satisfies the laws
of physics. Accurate flow fields can also be predicted with a small amount of data.
For example, in the test case of realistic aortic geometry, the amount of constrained
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data is about 14% of the total predicted data. Moreover, the selection of sparse data
as training data also solves the limitation of acquisition resolution of PC MRI. In
addition, as shown in Figure 4.20, it was found that the three-dimensional velocity
field can be predicted using only the velocity component in one direction. Consid-
ering the advantages and disadvantages of 2D PC MRI and 4D PC MRI in clinical
applications, as discussed in Chapter 2, this feature would provide the possibility to
predict the 4D flow field using 2D PC MRI data. In addition to the choice of training
data, the structure of the fully connected NN also has an impact on the prediction
data, as verified in Table 4.4. With PINN, other hemodynamic parameters, such as
pressure distribution, pressure drop and Reynolds number, can also be predicted in
addition to the velocity field. Finally, compared to CFD, image-based PINN does not
require precise boundary conditions or turbulence models, thus greatly increasing
its versatility.

4.4 Summary

MRI is one of the most important experimental methods for hemodynamics, and the
blood flow obtained by it inevitably suffers from some noise and errors. In this chap-
ter I proposed a new strategy to accomplish blood flow prediction by combining MRI
and PINN. Specifically, using the spatial position of voxels obtained by MRI as in-
put, accompanied by a small amount of velocity information from MRI, and then us-
ing the flow governing equations as physical constraint, PINN succeeded in obtain-
ing volumetric hemodynamics. Laminar and turbulent flows in three-dimensional
printed phantoms, representing idealized and realistic vessel geometries, were suc-
cessfully predicted by PINN. This study shows that image-based PINN can avoid
the shortcomings of MRI and CFD, which are currently widely used for hemody-
namic studies, and use spare and noisy data to quantitatively predict blood flow.
Therefore, it promises to be a new avenue for hemodynamic studies and clinical
applications.



101

Chapter 5

Summary and Outlook

5.1 Summary

Cardiovascular diseases are circulatory diseases that affect the heart and blood ves-
sels, and are characterized by high morbidity, disability, mortality, recurrence and
complications. The circulatory system is thought of as a system that involves com-
plex blood flows. Hemodynamics is often used to study blood flow in such systems
under normal and pathological conditions to understand the mechanisms of vari-
ous diseases and to treat them accordingly. Different methods, such as experimental
measurement, numerical modeling and machine learning, have been adopted for
hemodynamic studies. However, each method has its own pros and cons. MRI can
provide flow fields and geometric information, but it cannot be used for prediction
of surgery and the acquired data are noisy. Numerical modeling, specifically CFD,
can provide accurate and high-resolution flow fields, but the accuracy of the results
is strongly influenced by the boundary conditions and numerical methods selected.
PINN, a new method that combines data and physical laws, is still under develop-
ment, and further development and validation is needed for clinical applications.

The combination of MRI, CFD, and PINN takes full advantage of each method,
allowing better quantification of hemodynamics and better prediction of the out-
come of surgical protocols.

The first strategy proposed is for personalized CoA stenting, using an in silico
model that combines prediction of aortic geometry after stenting based on MRI
with hemodynamic prediction using CFD. First, numerical simulations of flow in
the aorta were performed using LBM, with boundary conditions extracted from PC
MRI. LBM based LES was shown to resolve accurate aortic flow at an acceptable
computational cost, compared to MRI-obtained flow in a three-dimensional printed
phantom and in a volunteer. Subsequently, in silico stenting was performed in a
CoA patient by predicting the deformed aortic geometries and blood flows therein
after stent implantation. An optimal stent was selected by evaluating hemodynamic
parameters, such as pressure drop and maximum wall shear stress from in silico
modelings. Although only aorta was considered, such strategy can be extended to
other stenosis, and can be used to help clinicians to evaluate surgical plans before
intervention.
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The second strategy is to perform the flow prediction using PINN based on MRI-
obtained flow. Specifically, within the ML framework, the spatial location of voxels
obtained from MRI was used as input, flow information (such as velocity compo-
nents, pressure, etc.) was output, accompanied by a small amount of velocity in-
formation from MRI as data constraint, and flow governing equations (continuity
equation and NSE) were used as physical constraint. First, PINN successfully pre-
dicted the flows within three-dimensional printed phantoms of normal and stenotic
vessels respectively. PINN successfully located the wall in the normal vessel model
and to some extent in the stenotic vessel model. Secondly, the prediction of tur-
bulent flow in a realistic aortic geometry by PINN was achieved. It is shown that
three-dimensional turbulent flow can be predicted based on a small amount of 4D
PC MRI data, even using only one velocity component as data constraint. These
studies show that image-based PINN can overcome the drawbacks of MRI and CFD,
which are currently widely used for hemodynamic studies, and predict flow quanti-
tatively using small amounts of noisy data. It thus promises to be a new avenue for
hemodynamic studies and clinical applications.

In conclusion, in this dissertation I have developed two new strategies by com-
bining different methods based on physical information and applied them for quan-
titative study of hemodynamics. Bringing together physics, medicine and computer
science, these strategies may shed light on precision medicine and personalized
medical therapy.

5.2 Future Work

There are also some possible improvements that might be considered in the future.
For the in silico modeling for personalized stenting, (1) firstly, while the bound-
ary conditions using temporal velocities are sufficient to complete the current CFD
evaluation, modeling of the whole cardiac cycle could be considered to obtain more
information on the instantaneous flow field. One option is to involve the Wind-
kessel model, which takes into account the resistance of the vascular network and
the capacitance of the vascular network, in the boundary conditions. Corresponding
model parameters can be obtained from MRI data. (2) Secondly, the effect of vessel
deformation as well as the geometry of the stent on the flow can be considered. Of
course, this requires accurate mechanical properties of the aortic wall as theoretical
support. (3) Finally, although CFD can accurately solve hemodynamic problems, it
is still time consuming. The use of ML for preprocessing work could be considered
in the future.

For the image-based flow prediction, (1) firstly the ability of PINN to predict the
location of the vessel wall needs to be further improved. Finding the vessel wall,
in the current blood flow prediction, is mainly based on the phase images of PC
MRI. The combination of magnitude and phase images of PC MRI for vessel wall
prediction could provide a better way. (2) Secondly, in addition to the prediction
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of velocity field and pressure field, other hemodynamic parameters such as WSS
should be considered. (3) Thirdly, to obtain more accurate flow field, in addition
to fully connected feedforward NN used in this study, other structural NN such
as convolutional NN or recursive NN might be helpful and need to be tested. (4)
Finally, the flow predictions in this dissertation are based on in vitro experiments,
while prediction based on in vivo time-dependent flow is the ultimate target and
needs to be done in the future.
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